Flerdimensjonal analyse (MA1103)

Øving 7

Oppgave 1 (3.4: 12)

Anta at kurven C er lukket. Vis at integralet $\int_C \mathbf{F} \cdot d\mathbf{r}$ har samme verdi uansett hvilket punkt på kurven vi bruker som start-/stoppsted (forutsatt at orienteringen er den samme).

Oppgave 2 (3.7: 1)

Finn nivåkurvene til funksjonen. Tegn nok av dem til at du kan danne deg et bilde av funksjonsgrafen.

a)
$$f(x,y) = 4x^2 + 3y^2$$

b)
$$f(x,y) = \frac{1}{x^2 - y^2}$$

Oppgave 3 (3.7: 3)

Skriv om funksjonen til polarkoordinater og skisser grafen.

a)
$$f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$$

b)
$$f(x,y) = \frac{x}{x^2 + y^2}$$

Oppgave 4 (3.7: 4)

Skriv om funksjonen til både sylinder- og kulekoordinater. Avgjør hva du synes er mest informativt i hvert enkelt tilfelle.

a)
$$f(x, y, z) = (x^2 + y^2)e^{-z^2}$$

b)
$$f(x, y, z) = \frac{1}{x^2 + y^2 + z^2}$$

Oppgave 5 (3.7: 5)

Finn en ligning for tangentplanet til funksjonen i det angitte punktet.

a)
$$f(x,y) = x^2y$$
 i punktet $(1,-2,f(1,-2))$.

b)
$$f(x,y) = xe^{-xy}$$
 i punktet $(1,0,f(1,0))$

Oppgave 6 (3.9: 1)

Finn to parametriseringer av paraboloiden $z = x^2 + y^2$, én ved hjelp av vanlige koordinater (x, y) og én ved hjelp av polarkoordinater (r, θ) .

Oppgave 7

Finn en parametrisering av den delen av kuleflaten $x^2 + y^2 + z^2 = 16$ som ligger i første oktant (dvs. i området der $x \ge 0, y \ge 0, z \ge 0$).

Oppgave 8

Finn en parametrisering av den delen av sylinderflaten $x^2 + y^2 = 4$ som ligger mellom z = 0 og z = 1.

Oppgave 9

Finn en parametrisering av sylinderen $y^2 + z^2 = 25$.

Oppgave 10 (*A*)

Gitt er en kule av radius 2 med sentrum i orgio. Finn en ligning for tangentplanet til kulen i punktet $(1,1,\sqrt{2})$.

A: Denne oppgave er en ekstra oppgave (frivillig).

Oppgavene finnes i boka Flervariabel analyse med lineær algebra av T.Lindstrøm og K.Hveberg. Se henvisningen i parentes.