ME 211A: Infinitesimal deformation/transformation

September 28, 2018

quadratic transformation

In a plane $(\underline{O}, \underline{e}_1, \underline{e}_2)$, we consider an homogeneous transformation $\underline{x} = \underline{\Phi}(\underline{X}, t)$ made of the composition of:

a pure expansion about the axis $(\underline{O}, \underline{e}_1)$ with a dilatation factor λ , a rotation of angle θ about the third axis $(\underline{O}, \underline{e}_3)$.

Question: Calculate the gradient of the transformation?

Answer: $\underline{\Phi}(\underline{X},t)$ is defined by:

$$x_1 = \lambda X_1 \cos \theta + X_2 \sin \theta$$

$$x_2 = -\lambda X_1 \sin \theta + X_2 \cos \theta$$

$$x_3 = X_3$$
(1)

So the gradient of transformation is:

$$\underline{\underline{F}} = \begin{bmatrix} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{bmatrix} = \frac{\partial \underline{x}}{\partial \underline{X}} = \begin{bmatrix} \frac{\partial x_1}{\partial X_1} & \frac{\partial x_1}{\partial X_2} & \frac{\partial x_1}{\partial X_3} \\ \frac{\partial x_2}{\partial X_1} & \frac{\partial x_2}{\partial X_2} & \frac{\partial x_2}{\partial X_2} \\ \frac{\partial x_3}{\partial X_1} & \frac{\partial x_3}{\partial X_2} & \frac{\partial x_3}{\partial X_2} \end{bmatrix} = \begin{bmatrix} \lambda \cos \theta & \sin \theta & 0 \\ -\lambda \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(2)

Question: Calculate \underline{C} .

Answer:

$$\underline{\underline{C}} = \underline{\underline{F}}^T \underline{\underline{F}} = \begin{bmatrix} \lambda^2 \cos^2 \theta + \sin^2 \theta & (1 - \lambda^2) \sin \theta \cos \theta & 0\\ (1 - \lambda^2) \sin \theta \cos \theta & \lambda^2 \sin^2 \theta + \cos^2 \theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$
(3)

Question: Calculate \underline{e} .

Answer:

$$\underline{\underline{e}} = \frac{1}{2} \left(\underline{\underline{C}} - \underline{\underline{1}} \right) = \frac{1}{2} \begin{bmatrix} (\lambda^2 - 1) \cos^2 \theta & (1 - \lambda^2) \sin \theta \cos \theta & 0\\ (1 - \lambda^2) \sin \theta \cos \theta & (\lambda^2 - 1) \sin^2 \theta & 0\\ 0 & 0 & 0 \end{bmatrix}$$
(4)

Question: Calculate the displacement ξ and its gradient.

Answer:

$$\underline{\xi} = \underline{x} - \underline{X} = \begin{bmatrix} (\lambda \cos \theta - 1) X_1 + X_2 \sin \theta \\ -\lambda X_1 \sin \theta + X_2 (\cos \theta - 1) \\ 0 \end{bmatrix}$$
 (5)

$$\underline{\underline{\nabla \xi}} = \begin{bmatrix} \lambda \cos \theta - 1 & \sin \theta & 0 \\ -\lambda \sin \theta & \cos \theta - 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 (6)

Question: What is the condition for having small deformation $\|\underline{\underline{e}}\| \ll 1$? What is the physical interpretation for this condition?

Answer:

$$\|\underline{\underline{e}}\| = (\lambda^2 - 1)^2 (\cos^4 \theta + \sin^4 \theta + 2\sin^2 \theta \cos^2 \theta)$$

$$= (\lambda^2 - 1)^2 (\sin^2 \theta + \cos^2 \theta)^2$$

$$= (\lambda^2 - 1)^2 \ll 1$$
(7)

Thus, $\lambda \approx 1$ is the condition for having small deformation. The physical interpretation for this condition is that the expansion about axis $(\underline{O}, \underline{e}_1)$ has to be around 1.

Question: Explain what happens in the specific configuration $\lambda = 1, \theta = \pi/2$?

Answer:

It's rigid body rotation. It rotates $\pi/2$.