Devoir surveillé n°01

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

- $\sum_{n\in\mathbb{N}} a_n$ est une série géométrique de raison q. On sait qu'elle converge si et seulement si |q|<1.
- 2 On sait que

$$R_n = \sum_{k=n+1}^{+\infty} q^k = q^{n+1} \sum_{k=0}^{+\infty} q^k = \frac{q^{n+1}}{1-q}$$

- Remarquons que $R_n = \frac{q}{1-q}q^n$ pour tout $n \in \mathbb{N}$. Or la série géométrique $\sum_{n \in \mathbb{N}} q^n$ converge et a pour somme $\frac{1}{1-q}$ donc $\sum_{n \in \mathbb{N}} R_n$ converge et $\sum_{n=0}^{+\infty} R_n = \frac{q}{(1-q)^2}$.
- 4 La série de Riemann $\sum_{n \in \mathbb{N}^*} \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.
- **5** Pour tout entier $n \in \mathbb{N}^*$,

$$\int_{t+1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}} \le R_n \le \int_{t}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$$

ou encore

$$\left[\frac{t^{-\alpha+1}}{-\alpha+1}\right]_{n+1}^{+\infty} \le \mathbf{R}_n \le \left[\frac{t^{-\alpha+1}}{-\alpha+1}\right]_n^{+\infty}$$

ou enfin

$$\frac{1}{(\alpha-1)(n+1)^{\alpha-1}} \leq \mathsf{R}_n \leq \frac{1}{(\alpha-1)n^{\alpha-1}}$$

En multipliant par $n^{\alpha-1}$, on obtient

$$\frac{1}{\alpha-1}\left(\frac{n}{n+1}\right)^{\alpha-1} \leq n^{\alpha-1} \mathrm{R}_n \leq \frac{1}{\alpha-1}$$

et donc $\lim_{n \to +\infty} n^{\alpha-1} R_n = \frac{1}{\alpha-1}$ via le théorème des gendarmes. Autrement dit, $R_n \underset{n \to +\infty}{\sim} \frac{1}{(\alpha-1)n^{\alpha-1}}$.

- La série de Riemann $\sum_{n\in\mathbb{N}^*}\frac{1}{n^{\alpha-1}}$ est une série de Riemann qui ne converge que si $\alpha-1>1$. Puisque c'est une série à termes positifs, la série $\sum_{n\in\mathbb{N}^*}^{\infty}R_n$ est de même nature : elle ne converge donc que si $\alpha>2$.
- 7 On trouve évidemment $\int_0^1 x^n dx = \frac{1}{n+1}$.
- 8 Pour tout $n \in \mathbb{N}^*$, la question précédente montre que

$$S_n = \sum_{k=1}^n \int_0^1 (-1)^k x^{k-1} dx = -\int_0^1 \sum_{k=0}^{n-1} (-x)^k dx$$

1

On reconnaît là la somme des termes d'une suite géométrique de raison -x donc

$$S_n = -\int_0^1 \frac{1 - (-x)^n}{1 - (-x)} dx = -\int_0^1 \frac{dx}{1 + x} + (-1)^n \int_0^1 \frac{x^n dx}{1 + x}$$

On calcule aisément

$$\int_0^1 \frac{\mathrm{d}x}{1+x} = \left[\ln(1+x)\right]_0^1 = \ln(2)$$

de sorte que

$$S_n = -\ln(2) + (-1)^n \int_0^1 \frac{x^n}{1+x} dx$$

9 Pour tout $x \in [0, 1]$,

$$0 \le \frac{x^n}{1+x} \le x^n$$

donc, par croissance de l'intégrale

$$0 \le \int_0^1 \frac{x^n}{1+x} \, \mathrm{d}x \le \int_0^1 x^n \, \mathrm{d}x = \frac{1}{n+1}$$

D'après le théorème des gendarmes, $\lim_{n \to +\infty} \int_0^1 \frac{x^n}{1+x} dx = 0$. La suite de terme général $(-1)^n$ étant bornée, on a également

 $\lim_{n\to+\infty} (-1)^n \int_0^1 \frac{x^n}{1+x} \, \mathrm{d}x = 0.$ La question précédente permet d'affirmer que (S_n) converge vers $-\ln(2)$. Autrement dit, la série $\sum_{n\in\mathbb{N}^*} a_n$ converge et a pour somme $-\ln(2)$.

10 Pour tout $n \in \mathbb{N}^*$,

$$R_n = \sum_{n=0}^{+\infty} a_n - S_n = (-1)^{n+1} \int_0^1 \frac{x^n dx}{1+x}$$

A l'aide d'une intégration par parties,

$$R_n = (-1)^{n+1} \left[\frac{x^{n+1}}{(n+1)(1+x)} \right]_0^1 + (-1)^{n+1} \int_0^1 \frac{x^{n+1} dx}{(n+1)(1+x)^2} = \frac{1}{2} \cdot \frac{(-1)^{n+1}}{n+1} + \frac{(-1)^{n+1}}{n+1} \int_0^1 \frac{x^{n+1} dx}{(1+x)^2}$$

A nouveau, pour tout $x \in [0, 1]$,

$$0 \le \frac{x^{n+1}}{(1+x)^2} \le x^{n+1}$$

donc par croissance de l'intégrale

$$0 \le \int_0^1 \frac{x^{n+1} \, \mathrm{d}x}{(1+x)^2} \le \frac{1}{n+2}$$

On en déduit donc que $\int_0^1 \frac{x^{n+1} dx}{(1+x)^2} = \mathcal{O}\left(\frac{1}{n}\right)$. On sait également que $\frac{(-1)^n}{n+1} = \mathcal{O}\left(\frac{1}{n}\right)$. Ainsi

$$\frac{(-1)^n}{n+1} \int_0^1 \frac{x^{n+1} \, dx}{(1+x)^2} = \mathcal{O}\left(\frac{1}{n^2}\right)$$

et finalement

$$\mathbf{R}_n = \underset{n \to +\infty}{=} \frac{1}{2} \cdot \frac{(-1)^{n+1}}{n+1} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

Les constantes recherchées sont donc $\beta = \frac{1}{2}$ et $\alpha = 2$.

11 La question précédente montre que $R_n = \frac{1}{2} a_{n+1} + \mathcal{O}\left(\frac{1}{n^2}\right)$. Posons $v_n = R_n - \frac{1}{2} a_{n+1}$ pour $n \in \mathbb{N}^*$. On a donc $v_n = \mathcal{O}\left(\frac{1}{n^2}\right)$. Or la série $\sum_{n \in \mathbb{N}^*} \frac{1}{n^2}$ est une série à termes positifs convergente donc la série $\sum_{n \in \mathbb{N}^*} v_n$ converge. Par ailleurs, $\sum_{n \in \mathbb{N}^*} a_n$ converge donc la série $\sum_{n \in \mathbb{N}^*} a_{n+1}$ converge également. Pour tout $n \in \mathbb{N}^*$, $R_n = \frac{1}{2} a_{n+1} + v_n$ donc la série $\sum_{n \in \mathbb{N}^*} R_n$ converge comme combinaison linéaire de deux séries convergentes.

© Laurent Garcin MP Dumont d'Urville

Problème 2

$$\boxed{\mathbf{1}} \text{ Posons } E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_2 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } E_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}. \text{ On a clairement } \mathcal{A} = \text{vect}(E_1, E_2, E_3) \text{ donc } \mathcal{A} \text{ est un }$$

sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$. De plus, la famille (E_1, E_2, E_3) est libre donc c'est une base de \mathcal{A} . Ainsi dim $\mathcal{A}=3$.

Comme \mathcal{A} est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$, c'est a fortiori un sous-groupe de $\mathcal{M}_3(\mathbb{R})$. De plus, $I_3 \in \mathcal{A}$ (choisir a = b = 1 et c = 0). Enfin, pour $(a, b, c, a', b', c') \in \mathbb{R}^6$

$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & -c & b \end{pmatrix} \begin{pmatrix} a' & 0 & 0 \\ 0 & b' & c' \\ 0 & -c' & b' \end{pmatrix} = \begin{pmatrix} aa' & 0 & 0 \\ 0 & bb' - cc' & bc' + cb' \\ 0 & -(bc' + cb') & bb' - cc' \end{pmatrix} = \begin{pmatrix} a' & 0 & 0 \\ 0 & b' & c' \\ 0 & -c' & b' \end{pmatrix} \begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & -c & b \end{pmatrix}$$

Ceci montre que \mathcal{A} est stable par produit et commutatif. Ainsi \mathcal{A} est bien un sous-anneau commutatif de $\mathcal{M}_3(\mathbb{R})$.

3 On calcule $M^2 = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & -2 & 0 \end{pmatrix}$. Tout d'abord, on a bien $I_3, M, M^2 \in \mathcal{A}$. Soit $(\lambda, \mu, \nu) \in \mathbb{R}^3$ tels que $\lambda I_3 + \mu M + \nu M^2 = 0$.

Ceci équivaut à $\begin{cases} \lambda-2\mu+4\nu=0\\ \lambda+\mu=0. \text{ On voit facilement que l'unique solution de ce système est le triplet nul. La famille}\\ -\mu-2\nu=0 \end{cases}$

 (I_3, M, M^2) est donc libre. Puisque dim A = 3, cette famille est une base de A.

- $\boxed{\mathbf{4}} \text{ On obtient } \mathbf{M}^3 = 2\mathbf{M} 4\mathbf{I}_3.$
- **5** Comme \mathcal{A} est un anneau, il est stable par produit. On peut donc montrer par récurrence que pour tout $k \in \mathbb{N}$, $M^k \in \mathcal{A}$, d'où l'existence des réels a_k , b_k et c_k .
- **6** En écrivant $M^{k+1} = MM^k$, on trouve $\begin{cases} a_{k+1} = -2a_k \\ b_{k+1} = b_k c_k \\ c_{k+1} = b_k + c_k \end{cases}$
- 7 On a $z_{k+1} = b_{k+1} + ic_{k+1} = (b_k c_k) + i(b_k + c_k) = (1+i)z_k$ pour tout $k \in \mathbb{N}$. La suite (z_k) est donc géométrique de raison 1+i et de premier terme $z_0 = b_0 + ic_0 = 1$: on a alors $z_k = (1+i)^k$ pour tout $k \in \mathbb{N}$. Enfin, puisque b_k et c_k sont réels, $b_k = \text{Re}(z_k) = \text{Re}\left((1+i)^k\right)$ pour tout $k \in \mathbb{N}$.

En utilisant la question **6**, on montre que $b_{k+2} = b_{k+1} - c_{k+1} = b_{k+1} - b_k - c_k = 2b_{k+1} - 2b_k$. La suite (b_k) est donc une suite récurrente linéaire d'ordre 2 dont le polynôme caractéristique est $X^2 - 2X + 2$. Les racines de ce polynômes sont donc $1 \pm i$. Il existe donc $(\lambda, \mu) \in \mathbb{C}^2$ tels que $b_k = \lambda (1+i)^k + \mu (1-i)^k$ pour tout $k \in \mathbb{N}$. Or $b_0 = b_1 = 1$ donc $\lambda = \mu = \frac{1}{2}$. Ainsi pour tout $k \in \mathbb{N}$, $b_k = \frac{(1+i)^k + \overline{(1+i)^k}}{2} = \operatorname{Re}\left((1+i)^k\right)$.

Comme u_0 , u_1 et u_2 sont entiers et que u_{n+3} s'exprime comme une combinaison linéaire à coefficients entiers de u_n et u_{n+1} , on prouve par récurrence triple ou par récurrence forte que la suite (u_n) est à valeurs entières.

Pour tout $n \in \mathbb{N}$, $\operatorname{tr}(M^{n+3}) = \operatorname{tr}(M^n M^3) = \operatorname{tr}(M^n (2M - 4I_3)) = 2 \operatorname{tr}(M^{n+1}) - 4 \operatorname{tr}(M^n)$ en utilisant la question **4** et la linéarité de la trace. De plus, $\operatorname{tr}(M^0) = \operatorname{tr}(I_3) = 3$, $\operatorname{tr}(M^1) = 0$ et $\operatorname{tr}(M^2) = 4$: les suites (u_n) et $(\operatorname{tr}(M^n))$ ont les mêmes trois premiers termes et vérifient la même relation de récurrence d'ordre 3, elles sont donc égales.

11 Soit $k \in [1, p-1]$. Alors $k \binom{p}{k} = p \binom{p-1}{k-1}$. Notamment p divise $k \binom{p}{k}$. Puisque $1 \le k \le p-1$, p ne divise pas k. Or p est premier donc $p \land k = 1$. D'après le lemme de Gauss, p divise $\binom{p}{k}$.

12 2 divise bien $u_2 = 2$: on peut donc supposer p impair. Posons $n = \frac{p-1}{2}$. Puisque (a_k) est géométrique de raison -2 et de premier terme $a_0 = 1$, on a $a_k = (-2)^k$ pour tout $k \in \mathbb{N}$. Ainsi

$$u_p = a_p + 2b_p = (-2)^p + 2\operatorname{Re}((1+i)^p) = -2^p + 2\sum_{k=0}^p \binom{p}{k}\operatorname{Re}(i^k)$$

© Laurent Garcin MP Dumont d'Urville

Or pour k impair, $Re(i^k) = 0$ donc

$$u_p = -2^p + \sum_{k=0}^n \binom{p}{2k} (-1)^k = -(2^p - 2) + 2\sum_{k=1}^n \binom{p}{2k} (-1)^k$$

D'après le petit théorème de Fermat, p divise 2^p-2 et puisque pour $1 \le k \le n$, on a $2 \le 2k \le p-1$, p divise également $\binom{p}{2k}$ d'après le rappel de l'énoncé. Ainsi p divise u_p .

© Laurent Garcin MP Dumont d'Urville

Solution 1

1. En convenant que $A_{n_0-1} = 0$:

$$\begin{split} \sum_{k=n_0}^n a_k \mathbf{B}_k &= \sum_{k=n_0}^n (\mathbf{A}_k - \mathbf{A}_{k-1}) \mathbf{B}_k \\ &= \sum_{k=n_0}^n \mathbf{A}_k \mathbf{B}_k - \sum_{k=n_0}^n \mathbf{A}_{k-1} \mathbf{B}_k \\ &= \sum_{k=n_0}^n \mathbf{A}_k \mathbf{B}_k - \sum_{k=n_0-1}^{n-1} \mathbf{A}_k \mathbf{B}_{k+1} \\ &= \mathbf{A}_n \mathbf{B}_n + \sum_{k=n_0}^{n-1} \mathbf{A}_k (\mathbf{B}_k - \mathbf{B}_{k+1}) \\ &= \mathbf{A}_n \mathbf{B}_n - \sum_{k=n}^{n-1} \mathbf{A}_k b_k \end{split}$$

- 2. a. La série $\sum b_n$, autrement dit la série $\sum B_{n+1} B_n$, est une série télescopique. Elle est donc de même nature que la suite (B_n) , c'est-à-dire convergente.
 - b. Tout d'abord, (A_n) est bornée donc $A_nB_n = \mathcal{O}(B_n)$. Puisque (B_n) converge vers 0, il en est de même de la suite (A_nB_n) . Ensuite, la suite (B_n) étant décroissante, la série $\sum b_n$ est une série à termes de signe constant. Or $A_nb_n = \mathcal{O}(b_n)$ et la série $\sum b_n$ converge donc la série $\sum A_nb_n$ converge. On en déduit que la suite de ses sommes partielles converge. La suite de terme général $\sum_{k=0}^{n-1} A_kb_k$ converge donc.

D'après la question 1, la suite de terme général $\sum_{k=n_0}^n a_k B_k$ converge donc en tant que somme de deux suites convergentes. Puisque $\sum_{k=n_0}^n a_k B_k$ est la somme de partielle de rang n de la série $\sum a_n B_n$, la série $\sum a_n B_n$ converge également.

- c. Posons $a_n = (-1)^n$ pour $n \ge n_0$. Alors A_n vaut 0, -1 ou 1 suivant la parité de n ou n_0 . En particulier, la suite (A_n) est bornée et on peut donc appliquer le résultat de la question précédente. La série $\sum (-1)^n B_n$ converge donc.
- 3. a. Il s'agit de la somme des termes d'une suite géométrique de raison $e^{i\theta} \neq 1$ (car $\theta \notin 2\pi \mathbb{Z}$).

$$\sum_{k=1}^{n} e^{ki\theta} = e^{i\theta} \frac{e^{in\theta} - 1}{e^{i\theta} - 1} = e^{\frac{i(n+1)\theta}{2}} \frac{\sin \frac{n\theta}{2}}{\sin \frac{\theta}{2}}$$

b. Cas $\alpha \leq 0$. La suite de terme général $\frac{e^{ni\theta}}{n^{\alpha}}$ ne tend pas vers 0. En effet, $\left|\frac{e^{ni\theta}}{n^{\alpha}}\right| = n^{-\alpha} \geq 1$ pour tout $n \in \mathbb{N}^*$. Cas $\alpha > 1$. La série $\sum \frac{e^{ni\theta}}{n^{\alpha}}$ converge absolument. En effet, pour tout $n \in \mathbb{N}^*$, $\left|\frac{e^{ni\theta}}{n^{\alpha}}\right| = \frac{1}{n^{\alpha}}$ et la série de Riemann $\sum \frac{1}{n^{\alpha}}$ converge puisque $\alpha > 1$.

Cas $0 < \alpha \le 1$. On utilise les résultats précédents avec $n_0 = 1$, $a_n = e^{in\theta}$ et $B_n = \frac{1}{n}$. D'après la question 3.a, pour tout $n \in \mathbb{N}^*$,

$$|A_n| = \left| e^{\frac{i(n+1)\theta}{2}} \frac{\sin \frac{n\theta}{2}}{\sin \frac{\theta}{2}} \right| \le \frac{1}{\left| \sin \frac{\theta}{2} \right|}$$

La suite (A_n) est donc bornée. La suite (B_n) est clairement décroissante de limite nulle. La question **2.b** permet alors d'affirmer que la série $\sum a_n B_n$ i.e. la série $\sum \frac{e^{in\theta}}{n^{\alpha}}$, converge. Cette série ne converge pas absolument puisque $\left|\frac{e^{in\theta}}{n^{\alpha}}\right| = \frac{1}{n^{\alpha}}$ et que la série $\sum \frac{1}{n^{\alpha}}$ ne converge pas $(\alpha \le 1)$.

© Laurent Garcin MP Dumont d'Urville

4. Rappelons que pour tout $n \ge n_0$

$$\sum_{k=n_0}^{n} a_k B_k = A_n B_n - \sum_{k=n_0}^{n-1} A_k b_k$$

La suite (B_n) converge vers 0 et (A_n) est bornée donc $\lim_{n \to +\infty} A_n B_n = 0$. Puisque (A_n) est bornée, $A_n b_n = \mathcal{O}(|b_n|)$. Or la série $\sum |b_n|$ converge car $\sum_{n \geq n_0} b_n$ est absolument convergente. De plus, la série $\sum |b_n|$ est à termes positifs donc la série $\sum A_n b_n$ converge (absolument). Ainsi la suite de terme général $\sum_{k=n_0}^{n-1} A_k b_k$ converge.

Il s'ensuit que la suite de terme général $\sum_{k=n_0}^n a_k \mathbf{B}_k$ converge également i.e. que la série $\sum_{n\geq n_0} a_n \mathbf{B}_n$ converge.