

Universidade de Brasília

Departamento de Ciência da Computação

Aula 10 Aritmética Computacional Aritmética Fracionária

Representação de casas decimais em complemento de 2:

Ex.: 8 bits

Q3:
$$2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0, \ 2^{-1} \ 2^{-2} \ 2^{-3}$$

Menor valor:
$$10000000$$
 $-2^4 = -16$

Maior valor:
$$011111111$$
 $2^3 + 2^2 + 2^1 + 2^0 + 2^{-1} + 2^{-2} + 2^{-3} = 15,875$

Q1:
$$2^6 2^5 2^4 2^3 2^2 2^1 2^0, 2^{-1}$$

Menor valor:
$$10000000$$
 $-2^6 = -64$

Maior valor:
$$011111111$$
 $2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 + 2^{-1} = 63,5$

Q7:
$$2^{0}$$
, 2^{-1} 2^{-2} 2^{-3} 2^{-4} 2^{-5} 2^{-6} 2^{-7}

Menor valor:
$$10000000$$
 $-2^0 = -1$

Maior valor:
$$011111111$$
 $2^{-1}+2^{-2}+2^{-3}+2^{-4}+2^{-5}+2^{-6}+2^{-7}=0,9921875$

Considerando 8 bits, calcule a representação em Q7

- □ 0.75 =
- □ **-**0.75 =
- □ 0.3 =

Considerando 16 bits, calcule a representação em Q15

- □ 0.75 =
- □ -0.75 =
- □ 0.3 =

Ponto Fixo

- Operações Matemáticas: da mesma forma que inteiros usando mesmo Q.
 - □ Soma
 - □ Subtração
 - Multiplicação (algoritmos clássicos apenas para positivos!)
 - □ Divisão (ex.: 5/8)

Ex.: 8 bits

	Q0	Q2	Q7
01010001	81	20.25	0.6328125
+ 10111001	<u>-71</u>	<u>-17.75</u>	-0.5546875
00001010	10	2.50	0.0781250
00000110	6	1.5	0.046875
× <u>00001010</u>	× <u>10</u>	× <u>2.5</u>	× <u>0.078125</u>
00000000 00111100	60	3.75	0.003662109375

Ponto Fixo

- Vantagens:
 - Aritmética é simples e rápida
 (Processador menor, mais rápido e mais barato)
- Problemas:
 - □ Pequena faixa dinâmica
 - □ Precisão depende da faixa dinâmica

- Precisamos de uma maneira de representar grande faixa dinâmica
 - números muito pequenos: 0,0000000000001182721226716
 - números muito grandes: 167283876351200000000000000000
- Notação Científica (base 10): Mantissa ou Significando Característica ou Expoente
 - Ex.: 1.182721226716×10⁻¹⁵ e 1.672838763512×10²⁹
 - □ Sempre normalizado, isto é, apenas 1 dígito não decimal (diferente de zero).
- Notação Científica (base 2)
 - \square Ex.: $1.010 \times 2^{-2} = 0.01010 = 0.3125 = (1+0.25) \times 2^{-2}$

Ponto Flutuante

- Representação:- sinal, expoente, significando: (-1)^S × M× 2^E
 - mais bits para o significando fornece mais precisão
 - mais bits para o expoente aumenta a faixa

■ Padrão de ponto flutuante IEEE 754 (2008):

- meia precisão: 16 bits: 1+5+10 Usada em processamento gráfico (GPU)
- precisão simples: 32 bits: 1+8+23 tipo (float)
- precisão dupla: 64 bits: 1+11+52 tipo (double)
- precisão quádrupla: 128 bits: 1+15+112 Ainda pouco utilizado

				_
S	Expoente	Fração		
15	14:10	9:0		ı
S	Expoente		Fração	
31	30:23		22:0	
S	Expoente			Fração
63	62:52			51:0
S	Expoente			Fraç
127	126:112	•		111

Padrão de ponto flutuante IEEE 754

- O bit "1" inicial do significando está implícito (aumenta a precisão)
- O expoente possui um off-set para facilitar a ordenação
 - Off-set de 15 para meia precisão 127 para precisão simples
 1023 para precisão dupla 16383 para precisão quádrupla
 - Formato:

$$(-1)^{sinal} \times (1 + Fração) \times 2^{(Expoente - offset)}$$

Exemplo:

```
Converter o número decimal N = -5,0 para IEEE754 precisão simples Colocar no formato: N = (-1)^S \times M \times 2^E onde 1 \le M < 2 S = 1 E = floor(log<sub>2</sub>(|N|)) = floor(log<sub>2</sub>(5,0)) = floor(2,3219) = 2 => Expoente=129 M = |N| / 2^E = 5,0 / 2^2 = 5,0/4 = 1,25 \Rightarrow 1,01<sub>2</sub>
```

Assim: $-5.0 = (-1)^1 \times (1.01_2) \times 2^{(129-127)}$ precisão simples IEEE: $1100\ 0000\ 1010\ 0000\ 0000\ 0000\ 0000\ 0000_2$ 0xC0A00000

1100 0001 0001 0000 0000 0000 0000 0000

1 10000010 001000000000000000000000

$$E = 130 - 127 = 3$$

 $M = 1.001$

Logo:
$$(-1)^1 \times (1.001) \times 2^3 = -(1001.0) = -9,0$$

Como representar 0?

Precisão	Simples	Precisão Dupla		Objete	
Expoente	Fração	Expoente	Fração	Objeto	
0	0	0	0	0	
0	≠0	0	≠0	±Número desnormalizado	
1-254	\forall	1-2046	\forall	±Número Ponto Flutuante	
255	0	2047	0	±∞	
255	≠0	2047	≠0	NaN	

Obs.: Número desnormalizado: Considera 0 inicial na mantissa

Qual a faixa dinâmica dos números representáveis em precisão simples e dupla sem overflow ou underflow?

Adição e Subtração em IEEE 754:

Procedimento idêntico às operações em Notação Científica base 10.

Converte-se o número com menor expoente para igualar ao expoente do maior e soma-se (subtrai-se) as mantissas

Ex.: Em notação científica Decimal

com limite de representação de 4 dígitos fracionários na mantissa

$$9.9999 \times 10^2 + 1.7100 \times 10^{-1} = 9.9999 \times 10^2 + 0.00171 \times 10^2 =$$

$$= 9.9999 \times 10^{2} + 0.0017 \times 10^{2} = 10.0016 \times 10^{2} = 1.00016 \times 10^{3} = 10.0016 \times 1$$

$$= 1.0002 \times 10^3$$

$$999.99 + 0.171 = 1000.161 \rightarrow 1000.2$$

Ex.: Em notação científica Binária

com limite de representação de 4 bits fracionários na mantissa

$$1.1110 \times 2^2 + 1.1100 \times 2^{-1} = 1.1110 \times 2^2 + 0.00111 \times 2^2$$

$$= 1.1110 \times 2^2 + 0.0011 \times 2^2 = 10.0001 \times 2^2 = 1.00001 \times 2^3$$

$$= 1.0000 \times 2^3$$

$$7.5 + 0.875 = 8.375 \rightarrow 8.000$$

Adição de ponto flutuante

Operações em Ponto Flutuante

Multiplicação e Divisão em IEEE 754:

Procedimento idêntico às operações em Notação Científica base 10:

- Multiplica-se as mantissas e soma-se os expoentes ou
- Divide-se as mantissas e subtrai-se os expoentes

Ex.: Decimal

$$3,2300 \times 10^2 \times 3,4150 \times 10^{-1} = 11,03045 \times 10^1$$

(4 dígitos) = $1,1030 \times 10^2$

Ex.: Binário

$$1,1000 \times 2^{-1} \times (-1,1101 \times 2^{-2}) = -10,10111 \times 2^{-3}$$

(4 bits) = -1,0101×2⁻²

Overflow: |resultado| > MAX : |resultado|=infinito

Underflow: |resultado| < MIN : |resultado|=0,0

Obs.: IEEE 754

Expoentes com offset, logo diminuir 1 offset da soma dos expoentes!

Obs.: Projetar o hardware!

Ponto Flutuante: Arredondamento

- O IEEE754 permite 5 tipos de arredondamentos
 - □ Sempre para +∞ (cima, *ceil*): $2.1 \rightarrow 3$ $2.5 \rightarrow 3$ $2.9 \rightarrow 3$
 - □ Sempre para -∞ (baixo, *floor*) : $2.1 \rightarrow 2$ $2.5 \rightarrow 2$ $2.9 \rightarrow 2$
 - □ Ao mais próximo (*round*): $2.1 \rightarrow 2$ $2.9 \rightarrow 3$ $2.5 \rightarrow ? \uparrow \downarrow ?$

Ao zero:
$$2.5 \rightarrow 2 \downarrow -2.5 \rightarrow -2 \uparrow$$

À maior magnitude: $2.5 \rightarrow 3 \uparrow$ $-2.5 \rightarrow -3 \downarrow$

Ao dígito par: $2.5 \rightarrow 2 \downarrow 3.5 \rightarrow 4 \uparrow$

Os arredondamentos se aplicam também ao último bit de precisão da mantissa.

Obs.: Em precisão finita operações lineares passam a ser não-lineares!

Ex.:
$$(x+y)+z \neq x+(y+z)$$

$$x + (y + z) = -1.5 \times 10^{38} + (1.5 \times 10^{38} + 1.0) = 0.0$$

$$(x + y) + z = (-1,5 \times 10^{38} + 1,5 \times 10^{38}) + 1,0 = 1,0$$

Ponto Flutuante - ISA RV32IMFD

- ☐ F: Single precision
- D: Double precision
- Q: Quad precision
- 32 Registradores de 64 bits:
 - f0, f1,..., f30, f31 com convenção
- Float-point Control and Status Register (fcsr)

31	3 7 5	4	3	2	1	0
Reserved	Rounding Mode (frm)	Accr	ued Ex	ceptio	ns (ff	lags)
		NV	DZ	OF	UF	NX
24	3	1	1	1	1	1

Modos de Arredondamento: Flags de exceção

000: ao número par (round) NV = Operação Inválida

001: para o zero (round) DZ = Divisão por zero

010: para baixo (floor) OF = Overflow

011: para cima (ceil) UF = Underflow

100: para a maior magnitude (round) NX = Inexato

Contr	ol and Sta	itus
Registers		Floating Point
Name	Number	Value
ft0	0	0x00000000000000000
ftl	1	0x0000000000000000
ft2	2	0x00000000000000000
ft3	3	0x00000000000000000
ft4	4	0x0000000000000000
ft5	5	0x0000000000000000
ft6	6	0x0000000000000000
ft7	7	0x00000000000000000
fs0	8	0x00000000000000000
fsl	9	0x0000000000000000
fa0	10	0x00000000000000000
fal	11	0x0000000000000000
fa2	12	0x0000000000000000
fa3	13	0x0000000000000000
fa4	14	0x00000000000000000
fa5	15	0x00000000000000000
fa6	16	0x0000000000000000
fa7	17	0x0000000000000000
fs2	18	0x0000000000000000
fs3	19	0x00000000000000000
fs4	20	0x00000000000000000
fs5	21	0x0000000000000000
fs6	22	0x0000000000000000
fs7	23	0x0000000000000000
fs8	24	0x0000000000000000
fs9	25	0x0000000000000000
fs10	26	0x0000000000000000
fsll	27	0x00000000000000000
ft8	28	0x0000000000000000
ft9	29	0x0000000000000000
ft10	30	0x0000000000000000
ftll	31	0x0000000000000000

Registers Floating Point Control and Status						
Name	Number	Value				
ustatus	0	0x00000000				
fflags	1	0x00000000				
frm	2	0x00000000				
fcsr	3	0x00000000				
uie	4	0x00000000				
utvec	5	0x00000000				
uscratch	64	0x00000000				
uepc	65	0x00000000				
ucause	66	0x00000000				
utval	67	0x00000000				
uip	68	0x00000000				
misa	769	0x40001128				
cycle	3072	0x00000000				
time	3073	0x00000000				
instret	3074	0x00000000				
cycleh	3200	0x00000000				
timeh	3201	0x00000000				
instreth	3202	0x00000000				

Operações com precisão simples

- □ Adição: fadd.s f0, f1, f2 # f0 = f1 + f2
- Subtração: fsub.s f0, f1, f2 # f0 = f1 f2
- □ Multiplicação: fmul.s f0, f1, f2 # f0 = f1 × f2
- \square Divisão: fdiv.s f0, f1, f2 # f0 = f1 ÷ f2
- □ Raiz Quadrada: fsqrt.s f0, f1 # $f0 = \sqrt{f1}$
- □ Comparação:

```
feq.s t1, f1, f2 # se f1 = f2 então t1=1 senão t1=0
```

fle.s t1, f1, f2 # se f1
$$\leq$$
 f2 então t1=1 senão t1=0

fmax.s f0, f1, f2 # f0 =
$$max(f1,f2)$$

fmin.s f0, f1, f2 # f0 = $min(f1,f2)$

Ponto Flutuante - ISA RV32IMF - Float-point Single

Transferências de dados

- □ Load: flw f1, -100(t0) # f1 = Mem[t0 100]
- □ Store: fsw f1, -100(t0) # Mem[t0 100] = f1
- ☐ Movimentação sem conversão:

```
fmv.x.s t0, f1 # transfere os bits t0 = f1
fmv s.x f1, t0 # transfere os bits f1 = t0
```

Movimentação com conversão:

```
fcvt.s.w f1, t0 # converte inteiro \rightarrow float
fcvt.s.wu f1, t0 # converte inteiro sem sinal \rightarrow float
fcvt.w.s t0, f1 # converte float \rightarrow inteiro
fcvt.wu.s t0, f1 # converte float \rightarrow inteiro sem sinal
```



```
float fahr2c(float fahr)
   return 5.0*(fahr-32.0) / 9.0;
# constantes no segmento de dados ou em imediatos (o que é + eficiente?)
.data
const5: .float 5.0
const9: .float 9.0
.text
fahr2c: la t0, const5
                                # ft0=5.0
        flw ft0,0(t0)
                                # ft1=9.0
        flw ft1, 4(t0)
        li t0,32
                                # Não requer acesso à memória de dados!!!
        fcvt.s.w ft2,t0
        fsub.s fa0, fa0, ft2
        fmul.s fa0, fa0, ft0
        fdiv.s fa0, fa0, ft1
        ret
```

Complexidades do ponto flutuante

- As operações aritméticas são mais complexas
- Além do overflow podemos ter underflow
- A precisão pode ser um grande problema
 - O IEEE 754 mantém dois bits extras, guarda e arredondamento
 - cinco modos de arredondamento
 - positivo dividido por zero produz infinito
 - zero dividido por zero produz um não-número (NaN)
 - outras complexidades...
- Implementar o padrão pode ser arriscado
- Não usar o padrão pode ser ainda pior
 - x86 e o bug fdiv do Pentium! (jul, set, nov, dez de 1994)

Conclusões

- A aritmética do computador é restrita por uma precisão limitada
- Os conjuntos de bit não têm um significado inerente mas existem padrões (convenções)
 - sem sinal
 - complemento de dois
 - ponto fixo
 - ponto flutuante IEEE 754
- As instruções determinam o "significado" dos conjuntos de bit
- O desempenho e a precisão são importantes; portanto, existem muitas complexidades nas máquinas reais
- A escolha do algoritmo é importante e pode levar a otimizações de hardware para espaço e tempo (por exemplo, multiplicação)