Exercice 1 Soit $\lambda, \mu, \nu \in \mathbb{R}$. On considère les fonctions définies sur \mathbb{R} par

$$f_1(x) = \begin{cases} \lambda(x-1)(x+3) & \text{si } x \in [0,2] \\ 0 & \text{ailleurs} \end{cases}, \quad f_2(x) = \begin{cases} \mu \frac{1}{x+1} & \text{si } x \in [0,1] \\ 0 & \text{ailleurs} \end{cases}$$

et

$$f_3(x) = \begin{cases} \nu(1-\nu x) & \text{si } x \in [0,2] \\ 0 & \text{ailleurs} \end{cases}$$

- 1. Pour chacune des fonctions précédentes dire si ce sont des densités de probabilités, on donnera alors les valeurs de λ , μ et ν correspondantes. Sinon dire pourquoi elles ne le sont pas.
- 2. Pour toutes celles qui sont des densités expliciter leur fonction de répartition.

Exercice 2 On considère la fonction définie sur \mathbb{R} par

$$f_X(x) = \begin{cases} \frac{\lambda}{x^2 + x - 2} & \text{si } x \in [2, 3] \\ 0 & \text{ailleurs} \end{cases}$$

1. Déterminez les réels α et β (en fonction de λ) tels que

$$f_X(x) = \frac{\alpha}{x-1} + \frac{\beta}{x+2}$$

2. Déterminez λ pour que f_X soit bien la densité de probabilité d'une variable aléatoire X.

Exercice 3 Soit $\lambda \in \mathbb{R}$. On considère la fonction définie sur \mathbb{R} par

$$f(x) = \begin{cases} \frac{\lambda}{x^4} & \text{si } x \in [1, +\infty[\\ 0 & \text{ailleurs} \end{cases}$$

- 1. pour quelle valeur de λ , f est-elle une densité de probabilités d'une v.a.r. X. Dans toute la suite on supposera λ égal à cette valeur.
- 2. Expliciter sa fonction de répartition.
- 3. Soit $\alpha \in \mathbb{R}$. Résoudre (en fonction de α) $\mathbb{P}(X \leq x) = \alpha$.

Exercice 4 Soient X et Y deux v.a dont les fonctions de répartitions F_X et F_Y sont égales.

Que peut on dire de leurs densités de probabilités. Justifier votre réponse.

Exercice 5 La fontion définie par

$$F(x) = \begin{cases} \lambda(1-x^2) & \text{si } x \in [0,1] \\ 0 & \text{ailleurs} \end{cases}$$

peut-elle être la fonction de répartition d'une v.a. (justifier votre réponse).

Exercice 6 Soit F_X la fonction de répartition d'une v.a.r. X. Exprimer la fonction de répartition, F_Y , de la v.a.r. $Y = X^2 + 1$ en fonction de F_X .

Exercice 7 La fonction de répartition d'une v.a. X est donnée par

$$F_X(x) = \begin{cases} 0 & \text{si } x \in]-\infty, 1] \\ \frac{\ln(x)}{\ln(2)} & \text{si } x \in]1, 2] \\ 1 & \text{si } x \in]2, +\infty[\end{cases}$$

- 1. Calculer sa densité de probabilité f_X .
- 2. Soit $\alpha \in \mathbb{R}_{-}$, résoudre dans \mathbb{R}

$$\mathbb{P}(X \ge 2\alpha) = \alpha$$

Exercice 8 La densité de probabilité d'une v.a. X est donnée par

$$f_X(x) = \begin{cases} 0 & \text{si } x \le 0\\ \lambda e^{-3x} & \text{si } x > 0 \end{cases}$$

- 1. Déterminer λ pour que f_X soit bien une densité de probabilité (dans toute la suite λ sera supposé égal à cette valeur).
- 2. Calculer la fonction de répartition de X.
- 3. Calculer $\mathbb{P}(X < 1)$, $\mathbb{P}(X \ge -1)$ et $\mathbb{P}(-2 \le X < 1)$.

Exercice 9 On considère la fonction suivante, définie sur \mathbb{R} :

$$f(t) = \begin{cases} kt^2 & \text{si } -1 \le t \le 1\\ 0 & \text{sinon.} \end{cases}$$

- 1. Déterminer k pour que f soit une densité de probabilité. On supposera désormais que k est égal à la valeur trouvée, et que f est la densité d'une variable aléatoire X.
- 2. Déterminer la fonction de répartition F(x) de X.

 On séparera les cas $x \le -1$, $-1 \le x \le 1$ et $x \ge 1$.
- 3. Soit $a \in \mathbb{R}$. Déterminer, en fonction de a, les valeurs de x telles que $\mathbb{P}(X > x) = a$.

Exercice 10 Attendre ou pas le bus.

Chaque matin pour vous rendre à l'IUT vous passez à coté d'un abri-bus et vous vous posez la même question : attendre un bus ou continuer à pied.

• Vérifier que la fonction définie ci-dessous (par son graphique) est une densité de probabilité.

- On suppose que le temps d'attente du bus a la densité de probabilité précédente. Si vous devez attendre plus de 15 mn, vous serez en retard. Quelle est la probabilité de cet événement (pas si rare pour certains!).
- Calculer $\mathbb{P}(X \leq 5)$ et $\mathbb{P}(5 \leq X \leq 15)$.
- Quel est le temps d'attente moyen.

Exercice 11 Soit X une variable aléatoire de densité f_X avec

$$f_X(t) = \begin{cases} 1+t & \text{si } t \in [-1,0] \\ \alpha & \text{si } t \in [0,2] \\ 0 & \text{sinon} \end{cases}$$

- \bullet Représenter la densité de X.
- Déterminer α .
- \bullet Calculer et représenter la fonction de répartition de X.
- Calculer $\mathbb{P}(X > 12)$.
- Calculer la fonction de répartition F_Y de la variable aléatoire $Y = X^2$, en déduire sa densité f_Y .
- Représenter les deux fonctions f_Y et F_Y .

Exercice 12 Soit X une variable aléatoire de densité f_X :

$$f_X(t) = Kt^2$$
 si $t \in [-\alpha, \alpha]$, Osinon

- 1. Représenter la densité de X.
- 2. Déterminer K en fonction de α .
- 3. Déterminer puis représenter la fonction de répartition F_X de X.
- 4. Calculer $\mathbb{P}(X > 2)$.

Exercice 13 Soit X une v.a. qui suit une loi de densité f_X donnée par

$$f_X(t) = \begin{cases} 0 & \text{si} \quad t \in]-\infty, 1[\\ \frac{\alpha}{t} & \text{si} \quad t \in [1, 2[\\ 0 & \text{si} \quad t \in [2, +\infty[\\ \end{bmatrix}]$$

- 1. Déterminer α pour que f_X soit une densité de probabilité (dans toute la suite α sera supposé égal à cette valeur).
- 2. Calculer la fonction de répartition de X.
- 3. Calculer $\mathbb{P}(X < 2)$, $\mathbb{P}(X \ge -1)$ et $\mathbb{P}(-1 \le X < 1)$.