Caja negra

Entradas:

Energía: La energía que utilizará el sistema para poder realizar un movimiento de los dos dedos protésicos, el pulgar y el meñique.

Señales: Se utilizarán para ordenar a los servomotores su posicionamiento para la movilidad de la prótesis.

Salidas:

Energía: el sonido que se produce del contacto de las piezas en la movilidad de los dedos protésicos gracias a la energía que se utiliza para su movilización.

Señales: La información que se obtiene del sistema gracias a la movilización del músculo.

Esquema de funciones

Matriz morfológica

Matriz Morfológica – Prótesis Parcial Activa (Meñique y Pulgar)

Función	Opción 1	Opción 2	Opción 3
Detectar intención	Sensor MyoWare	Sensor FSR en zonas	Acelerómetro en
de movimiento	(señal EMG)	activas	antebrazo (gesto
			global)
Activar movimiento	Servomotor para	Motor DC + tracción	Actuador neumático
funcional	articulación directa	por cable	simple (tipo agarre)
Control y	Arduino Uno	Arduino Nano	ESP32 (permite
procesamiento	(conocido y	(compacto)	comunicación
	compatible)		Bluetooth)
Mostrar estado del	LEDs (verde	Pantalla OLED	Alarma sonora (por
sistema	encendido, rojo	(iconos básicos)	sobrecarga o fallo)
	error)		
Interfaz física /	Hilo de nylon	Filamento TPU o	Cable guía con tubo
estructura	(tendón artificial)	PLA impreso	impreso

Tabla de valoración

Opción 1

Función	Opción Seleccionada	¿Que hace ?
Detectar intención de movimiento	Sensor FSR en zonas activas (Dedos funcionales)	Al presionar voluntariamente, el sensor genera una señal de activación. Fácil de ubicar y calibrar [1].
Activar movimiento funcional	Motor DC	El motor gira y jala un cable conectado a un mecanismo generando el movimiento de agarre [2].
Control y procesamiento	Arduino Nano	Microcontrolador compacto y de bajo costo. Procesa la señal del sensor y activa el motor.
Mostrar estado del sistema	LEDs (verde encendido, rojo error)	Indica si el sistema está encendido o si hubo un fallo.
Interfaz física / estructura	Hilo de nylon (tendón artificial)	Transfiere el movimiento del motor a los dedos

Opción 2

Función Opción Seleccionada ¿Que hace?
--

Detectar intención de movimiento	Acelerómetro en antebrazo	Detecta el movimiento general del brazo. El usuario mueve el brazo de una forma específica y eso activa la prótesis [3].
Activar movimiento funcional	Actuador neumático simple	Utiliza aire comprimido para abrir o cerrar un dedo o pinza. Se puede accionar rápidamente y con fuerza suficiente [4].
Control y procesamiento	ESP32	Microcontrolador compacto y de bajo costo. Procesa la señal del sensor y activa el motor.
Mostrar estado del sistema	Alarma sonora	Emite un sonido si el sistema detecta un mal funcionamiento o una obstrucción.
Interfaz física / estructura	Cable guía con tubo impreso	El cable se desliza dentro del tubo, guiando el movimiento con precisión.

Opción 3

Función	Opción Seleccionada	¿Que hace ?
Detectar intención de movimiento	Sensor MyoWare (señal EMG)	Mide la actividad eléctrica de los músculos. Detecta cuándo el usuario intenta mover un músculo específico [5].
Activar movimiento funcional	Servomotor	Mueve una parte de la prótesis directamente [6].
Control y procesamiento	Arduino Nano	Microcontrolador compacto y de bajo costo. Procesa la señal del sensor y activa el motor.
Mostrar estado del sistema	Pantalla OLED	Muestra íconos como "encendido", "error", "modo activo", etc.
Interfaz física / estructura	Hilo de nylon (tendón artificial)	Transfiere el movimiento del motor a los dedos

Opción 4

Función	Opción Seleccionada	¿Que hace ?
Detectar intención de movimiento	Sensor FSR en zonas activas (Dedos funcionales)	Al presionar voluntariamente, el sensor genera una señal de activación. Fácil de ubicar y calibrar.
Activar movimiento funcional	Motor DC	El motor gira y jala un cable conectado a un mecanismo generando el movimiento de agarre.
Control y procesamiento	ESP32	Microcontrolador compacto y de bajo costo. Procesa la señal del sensor y activa el motor.
Mostrar estado del sistema	Pantalla OLED	Visualización clara y directa del estado del sistema.
Interfaz física / estructura	Cable guía con tubo impreso	Transfiere el movimiento del motor a los dedos

Tabla comparativa de opciones de diseño

Opción	Costo	Facilidad de armado	Tecnología
Opción 1	Muy bajo	Alta	Básica
Opción 2	Medio-alto	Media	Alta
Opción 3	Medio	Media	Alta
Opción 4	Medio-alto	Media	Alta

Por tanto la opción ganadora sería la 1 viendolo desde la perspectiva de costo eficiencia y facilidad de ensamblaje

Conclusión

Decidimos uniformemente en utilizar servomotores como medio de movilización para la los dedos protésicos pulgar y meñique, estos servomotores estarán conectados a un sensor mayowear para la detección de señales musculares. En cuanto a los dedos parcialmente amputados, optamos por una opción más económica al ver la poca gravedad de la lesión, será una prótesis sencilla únicamente reemplazando el dedo amputado con uno hecho a partir de impresion 3D sostenido con una extensión de la prótesis flexible y unido a su dedo con una correa para su fácil movilidad. Este enfoque no da una perspectiva más económica. Adicionalmente la prótesis está conectada a una placa en la muñeca para su inmovilidad y como espacio para la colocación del cableado restante.

Bocetos

Referencias

[1] "Sensor de fuerza resistivo FSR DF9 40 500gr," Naylamp Mechatronics. [En línea]. Disponible:

https://naylampmechatronics.com/sensores/768-sensor-de-fuerza-resistivo-fsr-df9-40-500gr.

[2] "Motor DC," Harmonic Drive SE. [En línea]. Disponible:

https://harmonicdrive.de/es/glosario/motor-dc

[3] "Cómo funciona y qué hace el acelerómetro," TME. [En línea]. Disponible: https://www.tme.com/pe/es/news/library-articles/page/22568/Como-funciona-y-que-hace-el-acelerometro/

[4] "Actuador neumático de efecto simple," UNOX. [En línea]. Disponible:

https://unox.com.tr/es/urun/actuador-neumatico-de-efecto-simple-2/

[5] "Sensor muscular MyoWare," MyoWare. [En línea]. Disponible:

https://myoware-com.translate.goog/products/muscle-sensor/

[6] "¿Qué es un servomotor?," Advanced Motion Controls. [En línea]. Disponible: https://www.a-m-c.com/es/servomotor/