Nume și grupă: _______ Data: 17.05.2024

- 1. (2.5p) Analizați convexitatea următoarelor funcții:
 - a) $f(x) = \sum_{i=1}^{r} |x|_{[i]}$, unde am notat cu $a_{[i]}$ componenta de rang i din a, i.e.

$$a_{[1]} \ge a_{[2]} \ge \cdots \ge a_{[n]}.$$

- b) $f(x, u, v) = -\log(uv x^T x)$, unde $dom(f) = \{(x, u, v) : uv > x^T x\}$
- 2. (2.5p) Fie problema de minimizare:

$$\min_{x} -\sum_{i=1}^{n} \log(1 - x_{i}^{2}) - \log(1 - \sum_{i=1}^{n} x_{i}).$$

Calculați explicit primul pas al metodei Newton cu pas constant $\alpha = 1$, pornind din $x^0 = [0\ 0\ 0]$.

3. (2.5p) Considerați problema de programare pătratică:

$$\min_{x} \frac{1}{2} x^{T} H x + q^{T} x$$
s.l. $x_{i} \in [-1, 1], \quad i = 1, 2, 3.$

unde
$$H = \begin{bmatrix} 13 & 12 & -2 \\ 12 & 17 & 6 \\ -2 & 6 & 12 \end{bmatrix}$$
 şi $q = \begin{bmatrix} -22 \\ -14.5 \\ 13 \end{bmatrix}$

- a) Realizați un pas de Metoda Gradient Proiectat (MGP) pornind din $x^0 = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$.
- b) Arătați că $x^* = \begin{bmatrix} 1\\1/2\\-1 \end{bmatrix}$ este optimul pentru această problemă și măsurați progresul făcut de MGP în x^1 față de x^0 .
- 4. (2.5p) Considerați următoarea problemă de optimizare:

$$\min_{x} x_1 + \frac{2}{x_2}$$
s.l. $-x_2 + 1/2 \le 0$
 $-x_1 + x_2^2 \le 0$.

- a) Figurați mulțimea fezabilă.
- b) Calculați problema duală.
- c) Rezolvați folosind condițiile Kuhn-Tucker.