2024 ANN Project 6차 수행일지

- MNIST extended dataset을 이용한 CNN 모델 최적화 및 분석 -

■ 회의 정보

팀명	7조
수행 제목	최종 모델 후보 하이퍼파라미터 변경
날짜	2024.06.03.월
시간	21:00 - 22:00
수행자 이름	정하연, 송준규
참여 인원	정하연, 박태현, 송준규, 양은주

■ 수행 내용 및 결과

	1. Densel	Net 개선하	기						
수행 내용	- learnin_rate, optimizer 조합 찾기 - activation function 실험 - dropout 실험 - augmentation 실험 - BatchNormalization - 가중치 제한								
	- 노이즈 주입 1. DenseNet 개선하기								
	- (e	earnin_rat	e, optim	iizer 조합	찾기 (0.01	, Nestero	ov)		
	lr \ op	timizer	Adam	AdaMax	Nadam	AdamW	RMSprop	Nesterov	Momentum
결과		training_time	544.56	550.91	760.89	567.72	620.66	520.53	529.66
르늬	0.01	val_loss	0.3642	0.3317	0.4253	0.4842	0.6007	0.5694	0.577
		val_accuracy	0.873	0.8842	0,8711	0.8707	0.8719	0.8932	0.8922
		training_time	537.02	569.95	774.14	561.67	614.44	536.29	519.2
	0.001	val_loss	0.6163	0.8789	0.9919	0.808	0.8685	1.1198	1.1106
		val_accuracy	0.8924	0.8893	0.888	0.8861	0.8860	0.8867	0.8854
		training_time	545.23	565.66	751.28	557.15	613.29	542.48	519.65
	0.0001	val_loss	1.1086	1.1193	1.1327	0.7662	0.8024	0.9218	0.9276
I .		val accuracy	0.8867	0.8865	0.8877	0.8865	0.8895	0.8891	0.8889

lr\o	batch_size=1024 Ir \ optimizer		AdaMax	AdamW	Nesterov	Momentum
	training time	902.4	915.48	976.46	869.01	866.92
	val loss	0.3468	0.3042	0.3891	0.311	0.3194
0.01	val accuracy	0.8793	0.8906	0.8766	0.9009	0.8993
	test_accuracy	0.866	0.869	0.868	0.904	0.895
	training_time	895.94	913.5	929.1	906.08	868.29
0.004	val_loss	0.3391	0.6115	0.578	0.5875	0.5953
0.001	val_accuracy	0.8995	0.8925	0.8896	0.8892	0.8888
	test_accuracy	0.891	0.893	0.886	0.89	0.891
	•					

fixed values: Ir=0.001, optimizer=Nesterov								
activation \ evaluate	training_time	val_loss	val_accuracy	test_accuracy	top-1 accuracy	top-5 accuracy	evaluation_time	inference_time
ReLU	892.24	0.2893	0.8976	0.8867	0.8867	0.9922	11.858	10.724
LeakyReLU	892.01	0.2805	0.8997	0.8936	0.8936	0.9932	12.534	11.473
ELU	900.86	0.2632	0.903	0.8945	0.8945	0.9961	11.979	11.272
Swish	1168.56	0.303	0.898	0.8984	0.8984	0.9922	13.849	13.366

dropout 실험

dropout \ evaluate	training_time	val_loss	val_accuracy								
dropout_1	943.93	0.3013	0.8917	시간이 더 걸리고	l accuracy가 조금	금줄긴 했지만, tra	ining curve와 val	idation curve의 ㅊ	아이가 확연히 줄어	들었기에 0.5->0	3으로 낮춰서 테스트
dropout_2	940.85	0.3642	0.8748	모델이 훈련 데이	l터에서의 성능을	저하시킬 정도로	규제가 강하게 적	나용 (과소적합)			
dropout_3	973.92	0.4051	0.8705	모델이 훈련 데이	l터에서의 성능을	저하시킬 정도로	규제가 강하게 작	나용 (과소적합)			
dropout_4	1037.98	0.4292	0.8553								
dropout_5	973.22	0.2948	0.8942	loss가 가장 낮고	, learning_curve	가 가장 적게 진동	함> 테스트 대성	d d			
### (1) Fully Connects	ed Layer 뒤에 Dr	opout									
### (2) 각 Dense Bloc	k 뒤에 Dropout										
### (3) 각 Transition E	Block 뒤에 Dropo	ut									
### (4) Dense Blocks	내부 Convolution	nal Layers 뒤에 D	ropout								
### (5) 처음 Convolut	on Layer 뒤에 D	ropout									
### (1-1) 0.5 -> 0.3											
### (1-1) 0.3 -> 0.2											
dropout \ evaluate	training_time	val_loss	val_accuracy	test_accuracy	top-1 accuracy	top-5 accuracy	evaluation_time	inference_time			
dropout_1_1	974.06	0.2847	0.8974	0.9072	0.9072	0.9912	12.504	11.357			
dropout_5_1	973.52	0.2926	0.8939	0.8906	0.8906	0.9912	15.929	11.117			
OLH loarning supro-7	TIE HITI OU				0 7 7 7 7 7 7 7 7						

augmentation 실험

augmentation \ evaluate	training_time	val_loss	val_accuracy	test_accuracy	top-1 accuracy	top-5 accuracy	evaluation_time	inference_time		
aug_1	1698.6555	0.3539	0.875	0.8818	0.8818	0.9902	12.207	10.174		
aug_2	1920.1612	0.305	0.8863	0.8936	0.8936	0.9922	10.959	10.101	validation curve	> training _curve
aug_3	1986.3978	0.2885	0.8924	0.8936	0.8936	0.9932	10.659	10.114		
aug_4	1429.6499	0.2878	0.8935	0.8906	0.8906	0.9932	10.708	10.868		
aug_5	1994.2567	5.1104	0.024	0.0273	0.0273	0.1104	10.521	9.975	학습이 안됨 (과:	소적합)
aug_3 (Ir_scheduler)	validation_curve	가 아예 상승하지	않음. (과대적합)							

다음 수행 계획

	- 다양한 모델 구조 설계, 최종보고서 작성 (송준규)							
다음	- 설7	- 설계된 모델 훈련 및 측정, 최종 PPT 제작 및 발표 준비 (정하연)						
수행 계획	- 통7	- 통계적 검정 결과 정리 최종보고서 작성 (박태현)						
	- 최종 PPT 제작 및 발표 준비 (양은주)							
프로젝트	04.29(월)	프로젝트 개요 파악, 역할 분담, 수행계획서 작성						
수행일정	05.06(월)	EMNIST 분석, LeNet 5 및 ResNet 50 스터디 및 학습						

	05.13(월)	LeNet-5 및 ResNet-50 하이퍼파라미터 변경, 다양한 CNN 조사
	05.20(월)	다양한 CNN 모델 학습, 중간발표 PPT 제작, 대본 작성, 리허설
	05.22(수)	중간발표
	05.27(월)	CNN 모델 개발, 다양한 평가 metric 스터디, 실험 분석
	06.03(월)	최종발표 PPT 제작, 대본 작성, 리허설, 보고서 작성
	06.12(수)	최종발표