泛函分析作业

习题 1. 设 \mathscr{X} 是 B 空间, \mathscr{X}_0 是 \mathscr{X} 的闭子空间. 映射 $\varphi:\mathscr{X}\to\mathscr{X}/\mathscr{X}_0$ 定义为

$$\varphi: x \mapsto [x] \quad (\forall x \in \mathscr{X}),$$

其中 [x] 表示含 x 的商类. 求证 φ 是开映射.

证明. 因为 $\varphi(\alpha x + \beta y) = [\alpha x + \beta y] = \alpha[x] + \beta[y] = \alpha \varphi(x) + \beta \varphi(y)$, φ 是线性算子. 又因为 \mathscr{X} 是 B 空间, \mathscr{X}_0 是闭子空间,则 $\mathscr{X}/\mathscr{X}_0$ 是 B 空间,因此 $\mathscr{X}/\mathscr{X}_0$ 是第二纲的. 又因为 φ 是满射,则 φ 是开映射.

习题 2. 设 \mathcal{X} , \mathcal{Y} 是 B 空间, 又设方程 Ux = y 对 $\forall y \in \mathcal{Y}$ 有解 $x \in \mathcal{X}$, 其中 $U \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, 并且 $\exists m > 0$, 使得

$$||Ux|| \geqslant m||x|| \quad (\forall x \in \mathscr{X}).$$

求证:U 有连续逆 U^{-1} , 并且 $||U^{-1}|| \leq 1/m$.

证明. 因为对任意的 $y \in \mathcal{Y}$, 方程 Ux = y 有解, 那么 U 是满射, 又因为 $\forall x, y \in \mathcal{X}$, $x \neq y$, 有 $||Ux - Uy|| \ge m||x - y|| > 0$, 则 U 是单射, 即 U 是双射. \mathcal{X} , \mathcal{Y} 是 B 空间, 那么 U 可逆且 U^{-1} 连续. 又因为

$$||x|| = ||U(U^{-1}x)|| \ge m||U^{-1}x||,$$

則 $||U^{-1}|| \leq \frac{1}{m}$.

习题 3. 设 H 是 Hilbert 空间, $A \in \mathcal{L}(H)$, 并且 $\exists m > 0$, 使得

$$|(Ax, x)| \geqslant m||x||^2 \quad (\forall x \in H).$$

求证: $\exists A^{-1} \in \mathcal{L}(H)$.

证明. 因为 R(A) 是闭子空间, 若 $R(A) \neq H$, 则 $R(A)^{\perp} \neq \{\theta\}$, 即存在 $y \in H$, $y \neq \theta$, 使得对 $\forall x \in H$, (Ax, y) = 0. 那么 $0 = |(Ay, y)| \ge m||y||^2 > 0$, 矛盾. 则 R(A) = H, A 是满射.

又因为

$$||Ax|| ||x|| \ge |(Ax, x)| \ge m ||x||^2,$$

则 $||Ax|| \ge m||x||$, 那么 A 是单射, 则 A 是双射, 又 H 是 Hilbert 空间, 则 $A^{-1} \in \mathcal{L}(H)$.■

习题 4. 设 \mathcal{X},\mathcal{Y} 是 B^* 空间, D 是 \mathcal{X} 的线性子空间, 并且 $A:D\to\mathcal{Y}$ 是线性映射. 求证:

- (1) 如果 A 连续且 D 是闭的, 那么 A 是闭算子;
- (2) 如果 A 连续且是闭算子, 那么 Ø 完备蕴含 D 闭;
- (3) 如果 A 是单射的闭算子, 那么 A^{-1} 也是闭算子;
- (4) 如果 $\mathscr X$ 完备, A 是单射的闭算子, R(A) 在 $\mathscr Y$ 中稠密, 并且 A^{-1} 连续, 那么 $R(A)=\mathscr Y$.

证明. (1) 设 $x_n \to x$, $Ax_n \to y$, 那么 $x \in D$. 又因为 A 连续, $Ax_n \to Ax$, 则 Ax = y, 那 么 A 是闭算子.

(2) 若 \mathscr{Y} 完备. 若 $x_n \to x, x_n \in \mathscr{X}, \forall n$. 因为 A 连续, 则 A 有界, 那么

$$||Ax_n - Ax_m|| \le ||A|| ||x_n - x_m||,$$

即 $\{Ax_n\}$ 是 Cauchy 列, 又因为 $\mathscr Y$ 完备, 则 $\{Ax_n\}$ 收敛, 记极限为 y. A 又是闭算子, 则 $x \in D, Ax = y, D$ 是闭集.

(3) A 为闭算子,则 $G_A = \{(x, Ax) \in \mathcal{X} \times \mathcal{Y} : x \in D\}$ 是闭集.又因为 $G_{A^{-1}} = \{(y, A^{-1}y) \in \mathcal{Y} \times \mathcal{X} : y \in R(A)\}$,对任意的 $(y_n, A^{-1}y_n) \in G_{A^{-1}}$,若存在 $(y, z) \in \mathcal{Y} \times \mathcal{X}$,使得 $(y_n, A^{-1}y_n) \to (y, z)$,则 $\|(y_n, A^{-1}y_n)\| \to \|(y, z)\|$ 即

$$||y_n|| + ||A^{-1}y_n|| \to ||y|| + ||z||,$$

又因为存在 $x_n, Ax_n = y_n$, 则

$$||x_n|| + ||Ax_n|| \to ||z|| + ||y||,$$

即 $(x_n, Ax_n) \to (z, y)$, 则 $z \in \mathcal{X}, y = Az$, 那么 $z = A^{-1}y$ 且 $y \in R(A)$, $G_{A^{-1}}$ 是闭集, A^{-1} 是闭算子.

(4) 由 (3), A^{-1} 是闭算子. 根据 (2), R(A) 是闭集, 即 $R(A) = \overline{R(A)} = \mathscr{Y}$.

习题 5. 用等价范数定理证明: $(C[0,1],\|\cdot\|_1)$ 不是 B 空间, 其中 $\|f\|_1 = \int_0^1 |f(t)| \, \mathrm{d}t$, $\forall f \in C[0,1]$.

证明. 设 $||f||_2 = \max_{0 \le t \le 1} |f(t)|$, 那么

$$||f||_1 = \int_0^1 |f(t)| dt \le \max_{0 \le t \le 1} |f(t)| = ||f||_2,$$

则 $\|\cdot\|_1$ 与 $\|\cdot\|_2$ 等价. 存在 M>0, 使得对任意的 $f\in C[0,1]$, $\|f\|_2\leqslant M\|f\|_1$.

习题 6 (Gelfand 引理). 设 \mathcal{X} 是 B 空间, $p: \mathcal{X} \to \mathbb{R}$ 满足

- $(1) p(x) \geqslant 0 \quad (\forall x \in \mathscr{X});$
- (2) $p(\lambda x) = \lambda p(x) \quad (\forall \lambda > 0, \forall x \in \mathscr{X});$
- (3) $p(x_1 + x_2) \leq p(x_1) + p(x_2) \quad (\forall x_1, x_2 \in \mathcal{X});$
- (4) 当 $x_n \to x$ 时, $\lim_{n\to\infty} p(x_n) \geqslant p(x)$.

求证: $\exists M > 0$, 使得 $p(x) \leq M||x||, \forall x \in \mathcal{X}$.

证明.

习题 7. 设 \mathcal{X} 和 \mathcal{Y} 是 B 空间, $A_n \in \mathcal{L}(\mathcal{X}, \mathcal{Y})(n=1,2,\cdots)$, 又对 $\forall x \in \mathcal{X}, \{A_n x\}$ 在 \mathcal{Y} 中收敛. 求证: $\exists A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, 使得

$$A_n x \to A x \quad (\forall x \in \mathscr{X}), \quad \text{\'AL} \quad ||A|| \leqslant \varliminf_{n \to \infty} ||A_n||.$$

证明. 令 $Ax := \lim_{n \to \infty} A_n x$, 则 A 是线性算子. 又

$$||Ax|| = \lim_{n \to \infty} ||A_n x|| \le \lim_{n \to \infty} ||A_n|| ||x||,$$

则 $||A|| \leq \underline{\lim}_{n \to \infty} ||A_n||$. 下证 $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$.

因为对 $\forall x, \{A_n x\}$ 收敛, 那么 $\sup_n ||Ax|| < \infty, \forall x$, 由共鸣定理, 存在 M, 使得

$$\sup_{n} ||A_n|| \leqslant M,$$

则 $||A|| \leq M$, 即 $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$.

习题 8. 设 1 , 并且 <math>1/p + 1/q = 1. 如果序列 $\{\alpha_k\}$ 使得对 $\forall x = \{\xi_k\} \in l^p$ 保证 $\sum_{k=1}^{\infty} \alpha_k \xi_k$ 收敛, 求证: $\{\alpha_k\} \in l^q$. 又若 $f: x \mapsto \sum_{k=1}^{\infty} \alpha_k \xi_k$, 求证: f 作为 l^p 上的线性泛函, 有

$$||f|| = \left(\sum_{k=1}^{\infty} |\alpha_k|^q\right)^{\frac{1}{q}}.$$

证明. 令 $f_n(x) = \sum_{k=1}^n \alpha_k \xi_k$,又因为 $\forall x \in l^p, \sum_{k=1}^\infty \alpha_k \xi_k$ 收敛,则 $\forall x \in l^p, \{f_n(x)\}$ 收敛,那么存在 $f \in \mathbb{K}^*$ 使得 $f_n \stackrel{s}{\to} f$,即 $f(x) = \sum_{k=1}^\infty \alpha_k \xi_k$.

令
$$x_n = (\alpha_1^{q-1}e^{-i\theta_1}, \cdots, \alpha_k^{q-1}e^{-i\theta_n}, 0, \cdots) \in l^p$$
, 那么

$$f(x_n) = \sum_{k=1}^n |\alpha_k|^q \leqslant ||f|| \left(\sum_{k=1}^n |\alpha_k|^{(q-1)p}\right)^{\frac{1}{p}} = ||f|| \left(\sum_{k=1}^n |\alpha_k|^q\right)^{\frac{1}{p}},$$

上式对任意的 n 成立, 则 $\|\{\alpha_k\}\| \leq \|f\| < \infty$, 即 $\{\alpha_k\} \in l^q$. 又根据 Hölder 不等式,

$$|f(x)| \le \sum_{k=1}^{n} |\alpha_k \xi_k| \le ||\{\alpha_k\}|| ||x||,$$

则 $||f|| \le ||\{\alpha_k\}||$, 综上 $||f|| = ||\{\alpha_k\}||$.

习题 9. 如果序列 $\{\alpha_k\}$ 使得对 $\forall x = \{\xi_k\} \in l^1$, 保证 $\sum_{k=1}^{\infty} \alpha_k \xi_k$ 收敛, 求证: $\{\alpha_k\} \in l^{\infty}$. 又若 $f: x \mapsto \sum_{k=1}^{\infty} \alpha_k \xi_k$ 作为 l^1 上的线性泛函, 求证:

$$||f|| = \sup_{k \ge 1} |\alpha_k|.$$

证明. 类似习题 (8), 令 $f_n(x) = \sum_{k=1}^n \alpha_k \xi_k$, 则对 $\forall x \in l^1$, $\{f_n(x)\}$ 收敛, 则存在 $f \in \mathbb{K}^*$, 使得 $f_n \stackrel{s}{\to} f$, 即 $f(x) = \sum_{k=1}^\infty \alpha_k \xi_k$. 令 $x_n = (\underbrace{0, \cdots, 0}_{n-1}, \overline{\alpha_n}, 0 \cdots)$, 那么对 $\forall n$, 有

$$|\alpha_n| \leqslant ||f||$$
,

即 $\|\{\alpha_k\}\| \sup_n \alpha_n < \infty$, 那么 $\{\alpha_k\} \in l^{\infty}$. 又

$$|f(x)| \le \sum_{k=1}^{\infty} |\alpha_k \xi_k| \le ||\{\alpha_k\}|| ||x||,$$

则 $||f|| \le ||\{\alpha_k\}||$, 综上 $||f|| = ||\{\alpha_k\}||$.

习题 10. 用 Gelfand 引理证明共鸣定理.

证明. 已知 \mathcal{X}, \mathcal{Y} 是 B 空间, $W \subset \mathcal{L}(\mathcal{X}, \mathcal{Y})$, 且 $\sup_{A \in W} \|Ax\| < \infty$ ($\forall x$), 下面证明存在 M 使得 $\sup_{A \in W} \|A\| \leqslant M$.

 $\Leftrightarrow p(x) = \sup_{A \in W} ||Ax||, \ \mathbb{M} \ p : \mathscr{X} \to \mathbb{R} \ \mathbb{H}$

- $(1) \ p(x) \geqslant 0, \ \boxplus \ \forall \lambda > 0, p(\lambda x) = \sup_{A \in W} \|A(\lambda x)\| = \lambda \sup_{A \in W} \|Ax\| = \lambda p(x).$
- $(2) p(x_1 + x_2) = \sup_{A \in W} ||A(x_1 + x_2)|| \le \sup_{A \in W} ||Ax_1|| + \sup_{A \in W} ||Ax_2|| = p(x_1) + p(x_2).$
- (3) 若 $x_n \to x$, 对 $\forall A \in W, p(x_n) \ge ||Ax_n|| \ge ||Ax|| ||Ax_n Ax||$, 则 $\underline{\lim}_{n \to \infty} p(x_n)$ $\ge ||Ax||$, 两边同时取上确界,

$$\underline{\lim}_{n \to \infty} p(x_n) \geqslant \sup_{A \in W} ||Ax|| = p(x).$$

综上, 根据 Gelfand 引理, 存在 M>0, 使得 $p(x)\leqslant M\|x\|$, 即 $\sup_{A\in W}\|Ax\|\leqslant M\|x\|$, 则

$$\sup_{A \in W} \|A\| \leqslant M.$$

习题 11. 设 \mathcal{X}, \mathcal{Y} 是 B 空间, $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ 是满射的. 求证: 如果在 \mathcal{Y} 中 $y_n \to y_0$, 则 $\exists C > 0$ 与 $x_n \to x_0$, 使得 $Ax_n = y_n$, 且 $||x_n|| \leq C||y_n||$.

证明. 考虑 $A_1: \mathscr{X}/\operatorname{Ker} A, A_1([x]) = Ax$. 因为 A 是满射, A_1 也是满射, 对 $[x_1] \neq [x_2], A_1([x_1]) = Ax_1 \neq Ax_2 = A_1([x_2]),$ 则 A_1 是单射, A_1 是双射. 且 $A_1(\alpha[x_1] + \beta[x_2]) = \alpha Ax_1 + \beta Ax_2 = \alpha A_1([x_1]) + \beta A_1([x_2]),$ A_1 是线性算子.

下面证明 $A_1 \in \mathcal{L}(\mathcal{X}/\operatorname{Ker} A, \mathcal{Y})$, 因为

$$||A_1[x']|| = ||Ay'|| \le ||A|| ||y'|| \quad \forall y' \in [x']$$

且 $||[x']|| = \rho(x', \text{Ker } A)$,那么存在 $\{z_n\} \subset \text{Ker } A$,使得 $||x' - z_n|| \to [x']$,令 $y'_n = x' - z_n$, $Ay'_n = Ax'$ 则 $y'_n \in [x']$,且 $||y'_n|| \to ||[x']||$,则

$$||A_1[x']|| \le ||A|| \lim_{n \to \infty} ||y_n'|| = ||A|| ||[x']||,$$

即 A_1 是有界线性算子.

A 是满射, \mathcal{X} , \mathcal{Y} 是 B 空间, 存在 $x_n, x_0, Ax_n = y_n, Ax_0 = y_0$ 且 $x_n \to x_0$, 根据逆算子定理, $A^{-1} \in \mathcal{L}(\mathcal{Y}, \mathcal{X}/\operatorname{Ker} A)$, 又因为 $||x|| = \rho(x, \operatorname{Ker} A) \leq ||x||$, 则

$$||x_n|| = ||A_1^{-1}y_n|| \le ||A_1^{-1}|| ||[y_n]|| \le ||A^{-1}|| ||y_n||.$$

习题 12. 设 \mathcal{X},\mathcal{Y} 是 B 空间, T 是闭线性算子, $D(T)\subset\mathcal{X},R(T)\subset\mathcal{Y},N(T)\stackrel{\triangle}{=}\{x\in\mathcal{X}\mid Tx=\theta\}.$

- (1) 求证: N(T) 是 \mathscr{X} 的闭线性子空间.
- (2) 求证: $N(T) = \{\theta\}$, R(T) 在 \mathcal{Y} 中闭的充要条件是, $\exists \alpha > 0$, 使得

$$||x|| \le \alpha ||Tx|| \quad (\forall x \in D(T)).$$

(3) 如果用 d(x, N(T)) 表示点 $x \in \mathcal{X}$ 到集合 N(T) 的距离 $\left(\inf_{x \in N(T)} \|z - x\|\right)$. 求证: R(T) 在 \mathcal{Y} 中闭的充要条件是, $\exists \alpha > 0$, 使得

$$d(x, N(T)) \leqslant \alpha \|Tx\| \quad (\forall x \in D(T)).$$

证明. (1) 由闭图像定理, $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, 则 N(T) 是闭线性子空间.

(2) "⇒". 由 $N(T) = \{\theta\}$, T 是单射, 根据习题 (4), D(T) 是闭子空间, 又 R(T) 也是闭子空间, 那么 R(T), D(T) 是 B 空间, T 是从 D(T) 到 R(T) 的双射, 则 $T^{-1} \in \mathcal{L}(R(T), D(T))$, $||T^{-1}y|| \leq ||T^{-1}||||y||$ 即

$$||x|| \le ||T^{-1}|| ||Tx||.$$

" \leftarrow ". 同样有 D(T) 是闭子空间, 又因为 $||x|| \le \alpha ||Tx||$, T 是单射即 $N(T) = \{\theta\}$. 设 $y_n \in R(T), y_n \to y$, 存在 $x_n, Tx_n = y_n$ 又因为 $||x|| \le \alpha ||Tx||$ 和 \mathcal{X} 是 B 空间, 则 $\{x_n\}$ 收敛, 设极限是 x, 则 $Tx_n \to Tx$ 那么 Tx = y, R(T) 是闭集.

(3) 因为 $\mathcal{X}/\operatorname{Ker} A$ 是 B 闭空间, 令 $T_1: \mathcal{X}/\operatorname{Ker} A \to \mathcal{Y}, T_1([x]) = Tx$, 类似于习题 (11), T_1 是有界线性算子且是单射. 那么第 (3) 问等价于 $R(T_1)$ 是闭集的充要条件是 $\exists \alpha > 0$, 使得

$$||[x]|| \leq \alpha ||T_1([x])||,$$

即第 (2) 问的结论.

习题 13. 设 a(x,y) 是 Hilbert 空间 H 上的一个共轭双线性泛函, 满足:

- (1) ∃M > 0, 使得 $|a(x,y)| \le M||x|| ||y||$ $(\forall x, y \in H)$;
- (2) $\exists \delta > 0$, 使得 $|a(x,x)| \ge \delta ||x||^2$ $(\forall x \in H)$.

求证: $\forall f \in H^*, \exists y_f \in H$, 使得

$$a(x, y_f) = f(x) \quad (\forall x \in H),$$

而且 y_f 连续地依赖于 f.

证明. 由 Lax-Milgram 定理, 存在唯一的 $A \in \mathcal{L}(H)$, 使得 a(x,y) = (x,Ay), 且 $A^{-1} \in \mathcal{L}(H)$, $\|A^{-1}\| \leq \frac{1}{\delta}$. 又由 Riesz 表示定理, 对任意的 $f \in H^*$, 存在唯一的 u, 使得 f(x) = (x, u), $\|f\| = \|u\|$, A 是满射, 则存在 y_f , $Ay_f = u$, 那么

$$a(x, y_f) = (x, Ay_f) = f(x),$$

且 $||f|| = ||Ay_f||$. 若 $f_n \to f$, $f_n - f \in H^*$ 且 $a(x, y_{f_n} - y_f) = (x, Ay_{f_n}) - (x, Ay_f) = f_n(x) - f(x)$, 则 $||f_n - f|| = ||A(y_{f_n} - y_f)|| \to 0$, A 是双射, 则 $y_{f_n} \to y_f$.