Part II: Analysis and Forecast Modelling

Sally Chen

Contents

```
1
Defining Weather Elements as Time Series Objects
Train and Test Data Exploration
 3
 9
Building models to predict maximum temperature
                                                   10
 10
 13
 17
 4. Dynamic Regression with ARIMA(2,0,2) error and lag predictors . . . . . . . . . . . . . . . . . .
                                                   20
                                                   24
 Use the best model (No.4) to build full temperature forecast...........
Building models to predict the number of extreme heat days
                                                   35
library(fpp)
library(fpp2)
library(forecast)
library(GGally)
library(knitr)
# Load cleaned data
full = read.csv("full.csv")
train = read.csv("train.csv")
test = read.csv("test.csv")
```

Defining Weather Elements as Time Series Objects

```
ts_full = ts(full, frequency = 365.25, start = c(1999, 230))
ts_train = ts(train, frequency = 365.25, start = c(1999, 230))
ts_test = ts(test, frequency = 365.25, start = c(2016, 55))
ts_max = ts_train[, "max"]
```

```
ts_min = ts_train[, "min"]
ts_sunshine = ts_train[, "sunshine"]
ts_wind = ts_train[, "wind"]
ts_rainfall = ts_train[, "rainfall"]
```

Train and Test Data Exploration

```
# Check variables correlations
GGally::ggpairs(train[, 1:5])
```



```
## Time series plots for weather elements
elements = colnames(ts_train)
par(mfrow = c(2, 3))
for (i in 1:5) {
    ts.plot(ts_train[, i], type = "l", ylab = elements[i])
}
```


Inspect seasonal patterns from weather elements

```
# Sunshine -> seasonality, no trend
fitstl_sunshine = stl(ts_sunshine, t.window = 365.25, s.window = 365.25)
autoplot(fitstl_sunshine)
```


par(mfrow = c(1, 2))
acf(remainder(fitstl_sunshine), main = "ACF of residual from seasonal decomposition")
pacf(remainder(fitstl_sunshine), main = "PACF of residual from seasonal decomposition")

F of residual from seasonal decomprometric F of residual from the seasonal decomprometric F of residual from


```
# wind -> seasonality, no trend
fitstl_wind = stl(ts_wind, t.window = 365.25, s.window = 365.25)
autoplot(fitstl_wind)
```



```
par(mfrow = c(1, 2))
acf(remainder(fitstl_wind), main = "ACF of residual from seasonal decomposition")
pacf(remainder(fitstl_wind), main = "PACF of residual from seasonal decomposition")
```

F of residual from seasonal decomprometric F of residual from the seasonal decomprometric F of residual from


```
# rainfall -> no seasonality, no trend
fitstl_rainfall = stl(ts_rainfall, t.window = 365.25, s.window = 365.25)
autoplot(fitstl_rainfall)
```


par(mfrow = c(1, 2))
acf(remainder(fitstl_rainfall), main = "ACF of residual from seasonal decomposition")
pacf(remainder(fitstl_wind), main = "PACF of residual from seasonal decomposition")

F of residual from seasonal decompt of residual from seasonal decompt

Analyse trend in daily minimum and maximum temperature

Moving Average for Max Temperature

Moving Average for Min Temperature

Building models to predict maximum temperature

1. Linear model with a Fourier term to capture seasonality

```
##
## Call:
## tslm(formula = ts_max ~ trend + ts_rainfall + ts_sunshine + ts_wind +
##
      fourier(ts_max, K = 2))
##
## Residuals:
       Min
                  1Q
                      Median
## -14.2130 -2.6097 -0.2136
                                2.1744 16.7789
## Coefficients:
                                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                 1.399e+01 2.082e-01 67.215 < 2e-16 ***
## trend
                                 1.051e-04 2.913e-05 3.608 0.000311 ***
```

```
-1.428e-01 1.103e-02 -12.956 < 2e-16 ***
## ts_rainfall
## ts_sunshine
                               4.364e-01 1.461e-02 29.870 < 2e-16 ***
## ts wind
                                7.269e-02 3.192e-03 22.774 < 2e-16 ***
## fourier(ts_max, K = 2)S1-365 2.338e+00 7.663e-02 30.508 < 2e-16 ***
## fourier(ts_max, K = 2)C1-365 -5.446e+00 7.522e-02 -72.401 < 2e-16 ***
## fourier(ts_max, K = 2)S2-365 4.179e-01 7.187e-02
                                                    5.815 6.39e-09 ***
## fourier(ts_max, K = 2)C2-365 3.168e-01 7.210e-02 4.394 1.13e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.94 on 6025 degrees of freedom
## Multiple R-squared: 0.6409, Adjusted R-squared: 0.6404
## F-statistic: 1344 on 8 and 6025 DF, p-value: < 2.2e-16
AIC(tslm_max) # AIC = 33683.01
## [1] 33683.01
plot(ts_max, col = "grey", main = "Fitted Value from Linear Model", ylab =

→ expression(degree ~
   C))
lines(tslm_max$fitted.values)
```

Fitted Value from Linear Model


```
## Model diagnosis
par(mfrow = c(2, 1))
acf(tslm_max$residuals, main = "ACF of residual from fitted model") # lag q = 2
pacf(tslm_max$residuals, main = "PACF of residual from fitted model") # lag p = 2
```

ACF of residual from fitted model

PACF of residual from fitted model


```
Box.test(tslm_max$residuals, type = "Lj") #autocorrelation different from 0
```

```
##
## Box-Ljung test
##
## data: tslm_max$residuals
## X-squared = 1228.3, df = 1, p-value < 2.2e-16

dwtest(tslm_max, alternative = "two")</pre>
```

```
##
## Durbin-Watson test
##
## data: tslm_max
## DW = 1.0964, p-value < 2.2e-16
## alternative hypothesis: true autocorrelation is not 0</pre>
```

```
bgtest(tslm_max, 20)
##
  Breusch-Godfrey test for serial correlation of order up to 20
##
## data: tslm_max
## LM test = 1365.2, df = 20, p-value < 2.2e-16
2. Dynamic Regression with ARIMA(2,0,2) error
# Fit a dynamic regression to capture the dynamics left in the residuals
dr_max = Arima(ts_max, xreg = cbind(ts_rainfall, ts_sunshine, ts_wind, fourier(ts_max,
   K = 2), order = c(2, 0, 2)
summary(dr_max) # AIC = 32213.94
## Series: ts_max
## Regression with ARIMA(2,0,2) errors
## Coefficients:
##
                                    ma2 intercept ts_rainfall ts_sunshine
           ar1
                    ar2
                            ma1
        0.3119 -0.0777 0.2000 0.0720
##
                                           14.4956
                                                        -0.1114
                                                                      0.3825
## s.e. 0.2973 0.0948 0.2974 0.0658
                                            0.1857
                                                         0.0094
                                                                      0.0129
        ts_wind fourier(ts_max, K = 2).S1-365 fourier(ts_max, K = 2).C1-365
##
##
         0.0754
                                        2.4065
                                                                      -5.5318
         0.0030
## s.e.
                                        0.1081
                                                                       0.1071
##
        fourier(ts_max, K = 2).S2-365 fourier(ts_max, K = 2).C2-365
##
                               0.4200
                                                              0.3435
                               0.1055
                                                              0.1055
## s.e.
## sigma^2 estimated as 12.16: log likelihood=-16093.97
                             BIC=32301.11
## AIC=32213.94
                AICc=32214
##
## Training set error measures:
##
                         ME
                                RMSE
                                          MAE
                                                    MPE
                                                            MAPE
                                                                      MASE
## Training set -0.001506474 3.484254 2.624239 -2.377646 12.90383 0.5519211
                       ACF1
## Training set 0.0001884346
```

Fitted Value from Dynamic Regression with ARIMA(2,0,2) errors


```
par(mfrow = c(2, 1))
acf(dr_max$residuals, main = "ACF of residual from fitted model")
pacf(dr_max$residuals, main = "PACF of residual from fitted model")
```

ACF of residual from fitted model

PACF of residual from fitted model

Box.test(dr_max\$residuals)

```
##
## Box-Pierce test
##
## data: dr_max$residuals
## X-squared = 0.00021425, df = 1, p-value = 0.9883
```

```
## Construct a function to calculate p-value for fitted models
p_value = function(model) {
    t_fit = model$coef/(sqrt(diag(model$var.coef)))
    p_fit = 2 * pnorm(abs(t_fit), mean = 0, sd = 1, lower.tail = FALSE)

    return(p_fit)
}
p_value(dr_max)
```

```
##
                                                               ar2
                               ar1
                                                     4.124677e-01
##
                     2.941101e-01
##
                               ma1
                                                               ma2
##
                     5.012829e-01
                                                     2.741662e-01
##
                        intercept
                                                      ts_rainfall
##
                     0.00000e+00
                                                     2.011271e-32
##
                      ts_sunshine
                                                           ts_wind
```

```
##
                   1.178194e-193
                                                 2.610144e-141
## fourier(ts_max, K = 2).S1-365 fourier(ts_max, K = 2).C1-365
                                                  0.000000e+00
                   1.079688e-109
## fourier(ts_max, K = 2).S2-365 fourier(ts_max, K = 2).C2-365
                    6.823194e-05
                                                  1.131803e-03
# Forecast using fitted model
fcast_rainfall = forecast(ts_rainfall, method = "ets", h = 1508)
fcast_sunshine = forecast(ts_sunshine, method = "ets", h = 1508)
fcast_wind = forecast(ts_wind, method = "ets", h = 1508)
fcast_xreg = cbind(fcast_rainfall$mean, fcast_sunshine$mean, fcast_wind$mean,

    fourier(ts_max,

   K = 2, h = 1508)
colnames(fcast_xreg) = names(dr_max$coef)[-c(1:5)]
fcast1 = forecast(dr_max, xreg = fcast_xreg, h = 1508)
par(mfrow = c(1, 1))
plot(fcast1)
```

Forecasts from Regression with ARIMA(2,0,2) errors

3. Dynamic Regression with ARIMA(5,1,0) error

```
# Fit another dynamic regression using auto arima
dr2_max = auto.arima(ts_max, xreg = cbind(ts_rainfall, ts_sunshine, ts_wind,

    fourier(ts_max,

   K = 2)))
summary(dr2_max) # ARIMA(5,1,0), AIC = 32894.15
## Series: ts_max
## Regression with ARIMA(5,1,0) errors
## Coefficients:
##
            ar1
                     ar2
                              ar3
                                                 ar5 ts_rainfall ts_sunshine
                                        ar4
##
        -0.3593 -0.4016 -0.3344 -0.2413 -0.1734
                                                          -0.1073
                                                                        0.3773
## s.e.
         0.0128
                 0.0132 0.0135
                                   0.0132
                                            0.0127
                                                          0.0093
                                                                        0.0127
##
        ts_wind fourier(ts_max, K = 2).S1-365 fourier(ts_max, K = 2).C1-365
         0.0768
##
                                         2.3077
                                                                       -5.5230
## s.e. 0.0030
                                         1.5564
                                                                        1.5568
##
        fourier(ts_max, K = 2).S2-365 fourier(ts_max, K = 2).C2-365
##
                                0.4726
                                                               0.3174
                                0.7789
                                                               0.7795
## s.e.
##
## sigma^2 estimated as 13.63: log likelihood=-16434.07
## AIC=32894.15 AICc=32894.21 BIC=32981.31
##
## Training set error measures:
                               RMSE
                                                  MPE
                                                                     MASE
                        ME
                                         MAE
                                                          MAPE
## Training set 0.002838698 3.687538 2.751103 -2.09439 13.55714 0.5786026
## Training set -0.02089691
plot(ts_max, col = "grey", main = "Fitted Value from Dynamic Regression with ARIMA(5,1,0)

    errors",

   ylab = expression(degree ~ C))
lines(dr2_max$fitted)
```

Fitted Value from Dynamic Regression with ARIMA(5,1,0) errors


```
par(mfrow = c(2, 1))
acf(dr2_max$residuals, main = "ACF of residual from fitted model")
pacf(dr2_max$residuals, main = "PACF of residual from fitted model")
```

ACF of residual from fitted model

PACF of residual from fitted model


```
Box.test(dr2_max$residuals)
```

```
##
## Box-Pierce test
##
## data: dr2_max$residuals
## X-squared = 2.6349, df = 1, p-value = 0.1045

# Forecast using fitted model
fcast2 = forecast(dr2_max, xreg = fcast_xreg, h = 1508)
par(mfrow = c(1, 1))
plot(fcast2)
```

Forecasts from Regression with ARIMA(5,1,0) errors


```
## ME RMSE MAE MPE MAPE MASE
## Training set 0.002838698 3.687538 2.751103 -2.09439 13.55714 0.5786026
## Test set -4.654307073 6.478497 5.638558 -28.67872 31.51016 1.1858823
## ACF1 Theil's U
## Training set -0.02089691 NA
## Test set 0.40549696 1.760783
```

4. Dynamic Regression with ARIMA(2,0,2) error and lag predictors

```
summary(drlag_max) #AIC = 31560.4
## Series: ts_max
## Regression with ARIMA(2,0,2) errors
##
## Coefficients:
##
                                    ma2 intercept ts_rainfall lag1_rainfall
           ar1
                    ar2
                            ma1
        0.4347 -0.0893 0.0498 0.0541
                                          15.4300
                                                       -0.0644
                                                                       -0.0229
## s.e. 0.2797 0.1024 0.2797 0.0464
                                            0.3204
                                                         0.0097
                                                                        0.0102
        lag2_rainfall ts_sunshine lag1_sunshine lag2_sunshine ts_wind
##
                            0.4175
              -0.0258
                                           0.2432
                                                         0.1182
                                                                  0.0595
##
## s.e.
               0.0094
                            0.0127
                                                                  0.0029
                                           0.0136
                                                          0.0132
##
        lag1 wind lag2 wind fourier(ts max, K = 2).S1-365
##
          -0.0502
                     -0.0083
                                                     2.0346
           0.0029
                      0.0029
                                                     0.1118
## s.e.
##
        fourier(ts_max, K = 2).C1-365 fourier(ts_max, K = 2).S2-365
##
                              -4.7925
                                                              0.3369
## s.e.
                                                              0.1015
                               0.1099
##
        fourier(ts_max, K = 2).C2-365
                               0.3365
##
## s.e.
                               0.1021
## sigma^2 estimated as 10.92: log likelihood=-15761.2
## AIC=31560.4 AICc=31560.52 BIC=31687.79
## Training set error measures:
                                                     MPE
##
                          ME
                                 RMSE
                                           MAE
                                                             MAPE
## Training set -0.0001517959 3.300164 2.508675 -2.084281 12.45151 0.5276159
                       ACF1
## Training set 0.0001495279
plot(ts_max, col = "grey", main = "Fitted value from Dynamic Regression with ARIMA(2,0,2)

    errors",

   ylab = expression(degree ~ C))
lines(drlag_max$fitted)
```

K = 2), order = c(2, 0, 2))

Fitted value from Dynamic Regression with ARIMA(2,0,2) errors


```
par(mfrow = c(2, 1))
acf(drlag_max$residuals[3:len_train], main = "ACF of residual from fitted model")
pacf(drlag_max$residuals[3:len_train], main = "PACF of residual from fitted model")
```

ACF of residual from fitted model

PACF of residual from fitted model


```
Box.test(drlag_max$residuals)
```

```
##
## Box-Pierce test
##
## data: drlag_max$residuals
## X-squared = 0.00013487, df = 1, p-value = 0.9907
```

```
# Forecast using fitted mode!
fcast_lag1_rainfall = c(ts_sunshine[6034], fcast_rainfall$mean[1:1507])
fcast_lag2_rainfall = c(ts_sunshine[6033:6034], fcast_rainfall$mean[1:1506])
fcast_lag1_sunshine = c(ts_sunshine[6034], fcast_sunshine$mean[1:1507])
fcast_lag2_sunshine = c(ts_sunshine[6033:6034], fcast_sunshine$mean[1:1506])
fcast_lag1_wind = c(ts_wind[6034], fcast_wind$mean[1:1507])
fcast_lag2_wind = c(ts_wind[6033:6034], fcast_wind$mean[1:1506])

fcast_lag2_wind = c(ts_wind[6033:6034], fcast_wind$mean[1:1506])

fcast_lag_xreg = cbind(fcast_rainfall$mean, fcast_lag1_rainfall, fcast_lag2_rainfall,
    fcast_sunshine$mean, fcast_lag1_sunshine, fcast_lag2_sunshine, fcast_wind$mean,
    fcast_lag1_wind, fcast_lag2_wind, fourier(ts_max, K = 2, h = 1508))
colnames(fcast_lag_xreg) = names(drlag_max$coef)[-c(1:5)]

fcast3 = forecast(drlag_max, xreg = fcast_lag_xreg, h = 1508)
par(mfrow = c(1, 1))
plot(fcast3)
```

Forecasts from Regression with ARIMA(2,0,2) errors

Use the best model (No.4) to build full temperature forecast

```
full_len = length(ts_full[, "max"])
full_max = ts_full[, "max"]
full_sunshine = ts_full[, "sunshine"]
full_rainfall = ts_full[, "rainfall"]
full_wind = ts_full[, "wind"]

full_lag1_sunshine = c(NA, full_sunshine[1:(full_len - 1)])
full_lag2_sunshine = c(rep(NA, 2), full_sunshine[1:(full_len - 2)])
full_lag1_rainfall = c(NA, full_rainfall[1:(full_len - 1)])
full_lag2_rainfall = c(rep(NA, 2), full_rainfall[1:(full_len - 2)])
full_lag1_wind = c(NA, full_wind[1:(full_len - 1)])
full_lag2_wind = c(rep(NA, 2), full_wind[1:(full_len - 2)])
```

```
finaldr_max = Arima(full_max, xreg = cbind(full_sunshine, full_lag1_sunshine,

    full_lag2_sunshine,

    full_rainfall, full_lag1_rainfall, full_lag2_rainfall, full_wind, full_lag1_wind,
    full_{lag2\_wind}, fourier(full_{max}, K = 2)), order = c(2, 0, 2))
summary(finaldr_max)
## Series: full_max
## Regression with ARIMA(2,0,2) errors
##
## Coefficients:
##
            ar1
                    ar2
                            ma1
                                    ma2 intercept full_sunshine
##
         0.2189 0.0077 0.2545 0.0523
                                            15.4908
                                                            0.4090
## s.e. 1.1741 0.4071 1.1740 0.1503
                                             0.2885
                                                            0.0114
         full_lag1_sunshine full_lag2_sunshine full_rainfall full_lag1_rainfall
##
                     0.2382
                                          0.1203
                                                        -0.0749
                                                                            -0.0305
                                                         0.0087
## s.e.
                     0.0122
                                          0.0119
                                                                             0.0091
##
         full_lag2_rainfall full_wind full_lag1_wind full_lag2_wind
                    -0.0253
                                0.0620
                                                -0.0495
##
                                                                -0.0091
## s.e.
                     0.0084
                                0.0026
                                                 0.0026
                                                                 0.0026
         fourier(full_max, K = 2).S1-365 fourier(full_max, K = 2).C1-365
##
##
                                  2.0328
                                                                   -4.9460
## s.e.
                                  0.1004
                                                                    0.0989
         fourier(full max, K = 2).S2-365
                                          fourier(full max, K = 2).C2-365
##
##
                                  0.3476
                                                                    0.3008
                                  0.0914
                                                                    0.0923
## s.e.
##
## sigma^2 estimated as 11.07: log likelihood=-19754.23
                                  BIC=39678.08
## AIC=39546.45
                 AICc=39546.55
## Training set error measures:
                           ME
                                  RMSE
                                                       MPE
                                                               MAPE
                                                                         MASE
                                             MAF.
## Training set -0.0001978426 3.323339 2.533286 -2.096745 12.53738 0.5317751
##
                        ACF1
## Training set 1.017968e-05
plot(full_max, col = "grey", main = "Fitted value from predictive model for max

→ temperature",

    ylab = expression(degree ~ C))
```

lines(finaldr_max\$fitted)

Fitted value from predictive model for max temperature


```
par(mfrow = c(2, 1))
acf(finaldr_max$residuals[3:full_len], main = "ACF of residual from fitted model")
pacf(finaldr_max$residuals[3:full_len], main = "PACF of residual from fitted model")
```

ACF of residual from fitted model

PACF of residual from fitted model


```
Box.test(finaldr_max$residuals)
```

##

```
##
   Box-Pierce test
##
## data: finaldr_max$residuals
## X-squared = 7.8134e-07, df = 1, p-value = 0.9993
## build forecast
fcast_full_sunshine = forecast(full_sunshine, method = "ets", h = 365)
fcast_full_rainfall = forecast(full_rainfall, method = "ets", h = 365)
fcast_full_wind = forecast(full_wind, method = "ets", h = 365)
fcast_full_lag1_sunshine = c(full_sunshine[7542], fcast_full_sunshine$mean[1:364])
fcast_full_lag2_sunshine = c(full_sunshine[7541:7542], fcast_full_sunshine$mean[1:363])
fcast_full_lag1_rainfall = c(full_rainfall[7542], fcast_full_rainfall$mean[1:364])
fcast_full_lag2_rainfall = c(full_rainfall[7541:7542], fcast_full_rainfall$mean[1:363])
fcast_full_lag1_wind = c(full_wind[7542], fcast_full_wind$mean[1:364])
fcast_full_lag2_wind = c(full_wind[7541:7542], fcast_full_wind$mean[1:363])
fcast_full_xreg = cbind(fcast_full_sunshine$mean, fcast_full_lag1_sunshine,

    fcast_full_lag2_sunshine,

    fcast_full_rainfall$mean, fcast_full_lag1_rainfall, fcast_full_lag2_rainfall,
    fcast_full_wind$mean, fcast_full_lag1_wind, fcast_full_lag2_wind, fourier(full_max,
       K = 2, h = 365)
colnames(fcast_full_xreg) = names(finaldr_max$coef)[-c(1:5)]
```

```
fcast_full_max = forecast(finaldr_max, xreg = fcast_full_xreg, h = 365)
par(mfrow = c(1, 1))
plot(fcast_full_max)
```

Forecasts from Regression with ARIMA(2,0,2) errors

Date	Forecasted Max Temperature
2020-04-11	20.33
2020-04-12	21.22
2020-04-13	21.65
2020-04-14	20.05
2020-04-15	20.47
2020-04-16	20.50
2020-04-17	20.35
2020-04-18	21.30

Date	Forecasted N	Max Temperature
2020-04-19		21.94
2020-04-20		19.57
2020-04-21		18.00
2020-04-22		18.88
2020-04-23		19.09
2020-04-24		18.97
2020-04-25		19.80
2020-04-26		18.57
2020-04-27		17.66
2020-04-28		17.97
2020-04-29		19.40
2020-04-30		18.79
2020-05-01		18.05
2020-05-02		18.22
2020-05-03		17.20
2020-05-04		18.19
2020-05-05		18.26
2020-05-06		18.94
2020-05-07		17.82
2020-05-08		17.30
2020-05-09		16.55
2020-05-10		16.24
2020-05-11		16.10
2020-05-12		16.97
2020-05-13		17.05
2020-05-14		16.72
2020-05-15		16.88
2020-05-16		16.20
2020 - 05 - 17		15.97
2020-05-18		16.00
2020 - 05 - 19		16.12
2020-05-20		15.30
2020 - 05 - 21		16.15
2020 - 05 - 22		15.57
2020-05-23		15.64
2020 - 05 - 24		14.92
2020 - 05 - 25		14.76
2020-05-26		15.04
2020 - 05 - 27		13.98
2020 - 05 - 28		15.00
2020 - 05 - 29		15.30
2020-05-30		14.43
2020 - 05 - 31		13.66
2020-06-01		14.15
2020-06-02		14.08
2020-06-03		13.59
2020-06-04		13.63
2020-06-05		14.47
2020-06-06		14.27
2020-06-07		14.32
2020-06-08		14.11
2020-06-09		15.11

Date	Forecasted Max	Temperature
2020-06-10		15.13
2020-06-11		14.36
2020-06-12		13.26
2020-06-13		14.39
2020-06-14		13.57
2020-06-15		12.88
2020-06-16		12.77
2020-06-17		12.16
2020-06-18		12.66
2020-06-19		13.24
2020-06-20		13.85
2020-06-21		13.53
2020-06-22		14.04
2020-06-23		12.88
2020-06-24		13.28
2020-06-25		13.91
2020-06-26		13.41
2020-06-27		12.77
2020-06-28		13.45
2020-06-29		12.19
2020-06-30		13.05
2020-07-01		14.11
2020-07-02		13.55
2020-07-03		12.88
2020-07-04		12.15
2020-07-05		13.09
2020-07-06		13.47
2020-07-07		12.66
2020-07-08		12.55
2020-07-09		13.38
2020-07-10		12.08
2020-07-11		11.85
2020-07-12		13.27
2020-07-13		12.54
2020-07-14		13.18
2020-07-15		13.76
2020-07-16		13.82
2020-07-17		12.98
2020-07-18		12.76
2020-07-19		13.97
2020-07-20		13.28
2020-07-21		14.01 13.18
2020-07-22		
2020-07-23		12.80 13.65
2020-07-24		
2020-07-25 2020-07-26		13.25 13.35
2020-07-26		13.35
2020-07-27		14.38
2020-07-28		13.80
2020-07-29		14.21
2020-07-30		13.60
2020-01-01		10.00

Date	Forecasted Ma	x Temperature
2020-08-01		14.24
2020-08-02		12.98
2020-08-03		13.21
2020-08-04		13.99
2020-08-05		12.88
2020-08-06		12.65
2020-08-07		13.29
2020-08-08		13.85
2020-08-09		14.28
2020-08-10		13.22
2020-08-11		13.95
2020-08-12		13.82
2020-08-13		14.88
2020-08-14		15.51
2020-08-15		14.67
2020-08-16		14.06
2020-08-17		14.76
2020-08-18		14.59
2020-08-19		14.53
2020-08-20		14.61
2020-08-21		15.21
2020-08-22		15.56
2020-08-23		15.13
2020-08-24		15.11
2020-08-25		16.23
2020-08-26		16.87
2020-08-27		15.17
2020-08-28		15.47
2020-08-29		15.93
2020-08-30		16.61
2020-08-31		15.55
2020-09-01		15.01
2020-09-02		15.94
2020-09-03		16.29
2020-09-04		16.57
2020-09-05		16.69
2020-09-06		16.60
2020-09-07		16.73
2020-09-08		15.71
2020-09-09		15.25
2020-09-10		17.35
2020-09-11		16.64
2020-09-12		16.20
2020-09-13		16.94
2020-09-14		15.73
2020-09-15		14.84
2020-09-16		17.05
2020-09-17		16.95
2020-09-18		17.47
2020-09-19		18.09
2020-09-20		17.73
2020-09-21		18.07

Date	Forecasted 1	Max Temperature
2020-09-22		17.92
2020-09-23		18.15
2020-09-24		17.67
2020-09-25		18.98
2020-09-26		19.69
2020-09-27		17.74
2020-09-28		17.85
2020-09-29		17.90
2020-09-30		18.72
2020-10-01		19.36
2020-10-02		19.95
2020-10-03		19.13
2020-10-04		18.77
2020 - 10 - 05		18.48
2020-10-06		17.97
2020 - 10 - 07		20.13
2020-10-08		18.70
2020-10-09		18.22
2020-10-10		19.01
2020-10-11		19.47
2020-10-12		20.21
2020-10-13		20.79
2020-10-14		19.97
2020-10-15		19.87
2020-10-16		19.96
2020-10-17		21.22
2020-10-18		20.33
2020-10-19		20.04
2020-10-20		18.58
2020-10-21		18.82
2020-10-22		19.83
2020-10-23		20.66
2020-10-24		20.64
2020-10-25		20.21
2020-10-26 2020-10-27		20.48 21.17
2020-10-28 2020-10-29		22.63 22.62
2020-10-29		21.42
2020-10-30		19.80
2020-10-31		19.96
2020-11-01		21.45
2020-11-02		21.49
2020-11-04		21.41
2020-11-05		21.43
2020-11-06		21.26
2020-11-07		21.75
2020-11-08		21.22
2020-11-09		21.66
2020-11-10		23.13
2020-11-11		22.90
2020-11-12		21.50

Date	Forecasted Max Temperature
2020-11-13	20.70
2020-11-14	21.53
2020 - 11 - 15	22.17
2020-11-16	23.28
2020 - 11 - 17	24.51
2020-11-18	23.34
2020-11-19	24.56
2020-11-20	23.74
2020 - 11 - 21	22.37
2020 - 11 - 22	23.04
2020 - 11 - 23	21.93
2020 - 11 - 24	21.64
2020 - 11 - 25	22.01
2020-11-26	22.03
2020 - 11 - 27	23.83
2020 - 11 - 28	24.71
2020 - 11 - 29	24.70
2020-11-30	24.12
2020-12-01	23.34
2020-12-02	23.57
2020-12-03	22.73
2020-12-04	22.87
2020-12-05	23.39
2020-12-06	24.88
2020-12-07	23.95
2020-12-08	23.91
2020-12-09	24.67
2020-12-10	25.43
2020-12-11	26.81
2020-12-12 2020-12-13	25.36
2020-12-13	23.74 24.91
2020-12-14	25.10
2020-12-15	25.10 25.92
2020-12-10	25.52 25.53
2020-12-17	26.10
2020-12-10	25.00
2020-12-13	25.06
2020-12-20	25.19
2020-12-21	26.65
2020-12-23	27.46
2020-12-24	27.19
2020-12-25	27.02
2020-12-26	27.68
2020-12-27	26.81
2020-12-28	25.81
2020-12-29	25.62
2020-12-30	26.13
2020-12-31	26.67
2021-01-01	27.03
2021-01-02	26.45
2021-01-03	27.68

Date	Forecasted Max Temperature
2021-01-04	26.70
2021-01-05	27.10
2021-01-06	25.67
2021-01-07	25.92
2021-01-08	26.06
2021-01-09	27.00
2021-01-10	26.44
2021-01-11	26.97
2021-01-12	26.03
2021-01-13	26.10
2021-01-14	27.03
2021-01-15	27.34
2021-01-16	26.94
2021-01-17	26.52
2021-01-18	27.35
2021-01-19	25.89
2021-01-20	26.30
2021-01-21	27.59
2021 - 01 - 22	26.74
2021-01-23	27.57
2021-01-24	27.73
2021 - 01 - 25	27.81
2021-01-26	28.06
2021-01-27	27.99
2021-01-28	27.97
2021-01-29	27.20
2021-01-30	26.56
2021-01-31	26.00
2021-02-01	27.30
2021-02-02	27.41
2021-02-03	27.58
2021-02-04	28.13
2021-02-05	27.59
2021-02-06	26.98
2021-02-07	28.11 27.42
2021-02-08 2021-02-09	
2021-02-09	26.32 26.33
2021-02-10	26.60
2021-02-11	26.41 26.41
2021-02-12	27.41
2021-02-13	26.08
2021-02-14	25.96
2021-02-15	26.90
2021-02-10	26.24
2021-02-17	26.39
2021-02-10	26.17
2021-02-19	25.86
2021-02-20	26.50
2021-02-21	26.79
2021-02-23	26.52
2021-02-24	25.59
	20.00

Date	Forecasted Max Temperature
2021-02-25	25.19
2021-02-26	26.69
2021-02-27	25.93
2021-02-28	26.04
2021-03-01	26.93
2021-03-02	27.46
2021-03-03	27.23
2021-03-04	25.11
2021-03-05	24.49
2021-03-06	24.28
2021-03-07	25.69
2021-03-08	25.36
2021-03-09	25.04
2021-03-10	25.43
2021-03-11	25.33
2021-03-12	25.04
2021-03-13	24.52
2021-03-14	24.60
2021-03-15	23.14
2021-03-16	24.41
2021-03-17	25.90
2021-03-18	24.60
2021-03-19	23.59
2021-03-20	23.00
2021-03-21	22.82
2021-03-22	22.99
2021-03-23	21.59
2021-03-24	23.56
2021-03-25	22.06
2021-03-26	22.43
2021-03-27	23.88
2021-03-27	23.84
2021-03-29	23.43
2021-03-23	22.39
2021-03-30	22.70
2021-03-31	
2021-04-01	22.21 21.87
2021-04-02	22.36
2021-04-03	23.18
2021-04-04	21.67
2021-04-05	20.92
2021-04-06	20.92
2021-04-07	
	20.71
2021-04-09	20.36
2021-04-10	20.62

Building models to predict the number of extreme heat days

35