ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ И НАУКИ ГОРОДА МОСКВЫ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ Г. МОСКВЫ «КОЛЛЕДЖ ПРЕДПРИНИМАТЕЛЬСТВА №11» ЦЕНТР ИНФОРМАЦИОННО-КОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ

Отчёт по выполнению задания демонстрационного экзамена специальности 09.02.06 «Сетевое и системное администрирование» КОД 09.02.06-3-2025

Выполнил студент гр. C-41 Гунина Варвара Александровна

Задания:

- 1. Расчет ІР-адресации
- 2. Выбор и создание туннеля
- 3. Выбор технологии динамической маршрутизации и её настройка
- 4. Настройка динамической адресации
- 5. Создание и настройка файлового хранилища
- 6. Настройка moodle
- 7. Установка браузера
- 8. Настройка туннеля до уровня обеспечивающего шифрование трафика
- 9. Выбор системы мониторинга и настройка этой системы

1. Расчет ІР-адресации

В таблице показано, какие адреса закреплены за конкретными устройствами.

Имя устройства	ІР-адрес	Шлюз по
		умолчанию
ISP	172.16.4.1/28	-
	172.16.5.1/28	
HQ-RTR	172.16.4.2/28	172.16.4.1
	172.16.0.1/26	
BR-RTR	172.16.5.2/28	172.16.5.1
	172.16.6.1/27	
HQ-SRV	172.16.0.2/26	172.16.0.1

HQ-CLI	172.16.0.3/28	-
BR-SRV	172.16.6.2/27	-
BR-DC	172.16.6.3/27	-

Настройка VLAN

На маршрутизаторе HQ-RTR настроены следующие VLAN:

- VLAN100 для сервера HQ-SRV
- VLAN200 для клиента HQ-CLI
- VLAN999 для административного управления

Каждая VLAN реализована с использованием виртуальных интерфейсов на порту eth1 и имеет свою подсеть.

2. Выбор и создание туннеля

Для связи между BR-RTR и HQ-RTR был выбран протокол GRE вместо IP-in-IP благодаря его более широким возможностям. Основные аргументы в пользу GRE следующие:

- 1. **Поддержка широковещания** GRE способен инкапсулировать как широковещательные, так и multicast-пакеты, что важно для корректной работы ряда сетевых протоколов.
- 2. Совместимость с различным оборудованием GRE-туннели, как правило, поддерживаются даже теми устройствами и операционными системами, которые не работают с IP-in-IP.
- 3. Дополнительная безопасность GRE позволяет использовать аутентификацию заголовков туннеля, что снижает вероятность несанкционированного доступа.

Благодаря этим возможностям GRE представляет собой более гибкое и безопасное решение для организации туннелей в разнородных сетевых инфраструктурах.

GRE на BR-RTR

Настройка GRE на HQ-RTR

3. Выбор технологии динамической маршрутизации и её настройка

Выбор технологии OSPF был обусловлен следующими факторами:

- Достаточно высокая скорость начального формирования таблицы маршрутов
- Хорошая совместимость и полноценная поддержка в среде ALT Linux
- Способность автоматически адаптироваться к изменениям в инфраструктуре при её модернизации

Настройка протокола OSPF на BR-RTR

```
GNU nano 7.2 /etc/frr/frr.conf Modified

frr version 8.5.1

frr defaults traditional
hostname BR-R
log file /var/log/frr/frr.log
no ip forwarding
no ipv6 forwarding
!
interface tun1
no ip ospf passive
exit
!
router ospf
passive-interface default
network 172.16.0.8/26 area 0
network 172.16.6.8/27 area 0
```

Настройка протокола OSPF на HQ-RTR

```
GNU nano 7.2 /etc/frr/frr.conf
frr version 8.5.1
frr defaults traditional
hostname HQ-R
log file /var/log/frr/frr.log
no ip forwarding
no ipv6 forwarding
!
interface tun1
no ip ospf passive
exit
!
router ospf
passive-interface default
network 172.16.0.8/26 area 0
network 192.168.0.0/24 area 0
exit
```

4. Настройка динамической адресации

Настройка протокола DHCP на HQ-RTR

```
GNU nano 7.2

# dhcpd.conf

# sample configuration file for ISC dhcpd

# option definitions common to all supported networks...

option domain-name "HQ-RTR";

option domain-name-servers 172.16.0.2;

default-lease-time 6000;

max-lease-time 72000;

authoritative;

subnet 172.16.0.0 netmask 255.255.255.192 {

    range 172.16.0.3 172.16.0.8;

    option routers 172.16.0.1;

}
```

5. Создание и настройка файлового хранилища

Был создан RAID-массив уровня 5, состоящий из трёх жёстких дисков по 1 ГБ каждый. Такое решение обеспечивает отказоустойчивость и балансировку нагрузки. (Скриншот)

Для организации сетевого доступа был отредактирован файл /etc/exports. Общая директория размещена по пути raiD5/nfs, с предоставлением прав на чтение и запись для устройств в подсети 172.16.0.0/26.

«Скриншот»

6. Настройка moodle

Система дистанционного обучения Moodle была развернута на сервере BR-SRV. Проведена настройка пользователей и их прав доступа, установлены необходимые компоненты — PHP и СУБД MySQL.

На сервере HQ-SRV Moodle функционирует с использованием веб-сервера Арасhe и базы данных mariadb. Основные параметры конфигурации:

- Название базы данных: moodledb
- Имя пользователя: moodle
- Пароль: P@ssw0rd

На главной странице отображается идентификатор рабочего места — «1».

7. Установка браузера

Для установки браузеры был выбран Yandex браузер так как он соответствует требованиям задания

«Скриншот»

8. Настройка туннеля до уровня обеспечивающего шифрование трафика

Для повышения безопасности передаваемых данных поверх GRE-туннеля была дополнительно настроена IPsec-защита. В качестве алгоритма шифрования использовался AES-256, обеспечивающий высокий уровень криптостойкости.

IPsec был настроен поверх GRE-туннеля между узлами HQ-RTR (192.168.0.1) и BR-RTR (192.168.0.2) с следующими параметрами:

• Шифрование: AES-256

• **Аутентификация:** предварительно согласованный ключ (PSK)

Также были внесены изменения в настройки OSPF, чтобы маршруты корректно передавались через защищённый туннель.

9. Выбор системы мониторинга и настройка этой системы

В качестве системы мониторинга была выбрана Zabbix на основе следующих преимуществ:

- Гибкая настройка и возможность масштабирования под различные инфраструктуры
- Наличие готовых шаблонов для мониторинга систем Windows, Linux и сетевого оборудования
- Поддержка различных способов уведомлений
- Открытый исходный код и активное сообщество разработчиков

Сервер Zabbix был установлен и сконфигурирован на HQ-SRV. Zabbix-агенты развернуты на устройствах HQ-RTR, BR-RTR и BR-SRV.