I. Projection sur une droite

1. Projection sur une droite parallèlement à une droite :

Activité:

Soient (D) et (Δ) deux droites sécantes en un point O et soit ABCD un quadrilatère tel que $C \in (\Delta)$, $D \in (D)$ et $(BD)//(\Delta)$.

- 1) **a.** Construire la droite (L) passante par A et parallèle à la droite (Δ) .
- **b.** Montrer que (L) et (D) sont sécantes en un point unique A'.

On dit que A' est le projeté de A sur (D) en parallèle à (Δ) .

- 2) Montrer que Dest le projeté du point Bsur (D) en parallèle à (Δ) .
- 3) Déterminer les projetés des points C et D sur (D) en parallèle à (Δ) .

Définition :

Soient (D) et (Δ) deux droites sécantes du plan et soient Mun point et M' un point du plan tel que : $M' \in (D)$ et $(MM')/(\Delta)$.

Le point M' est appelé **projeté** du point M sur la droite (D) parallèlement à la droite (Δ) et on écrit : p(M) = M'.

O Remarques:

- Si *M*'est la projection du point *M* tel que $M \neq M$ 'sur (*D*) parallèlement à (Δ), alors $M' \in (D)$ et $(MM')/(\Delta)$.
- o $M \in (D)$ si et seulement si p(M) = M. On dit que tout point de la droite (D) est invariant par la projection p.

Application:

On considère la figure ci-contre telle que :

(AB)//(IJ)//(JK)

(AC)//(NK)//(ML).

(BC)//(MJ)//(NI)

Remplir le tableau suivant:

Le	Son	Sur la	Parallèlement
point	projeté	droite	à la droite
I		(BC)	(AB)
J		(AB)	(BC)
N	K		
	N		AC

2. Projection orthogonale :

Définition:

Soient (D) et (Δ) deux droites perpendiculaires du plan (P). Le point M', projeté de M sur (D) parallèlement à (Δ) , est appelé projeté orthogonal du point M sur la droite (D).

Théorème de Thales II.

1. Théorème de Thales direct :

Propriété:

Soient (D_1) et (D_2) deux droites sécantes en un point A.

Soient B et M deux points de la droites (D_1) , distincts de A.

Soient C et N deux points de la droites (D_2) , distincts de A.

Si (MN) //(BC), alors : $\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$

 \square Application :

On considère la figure suivante telle que : (AB)//(ED).

Déterminer la valeur de x et y.

2. Réciproque du t héorème de

Thales

☐ ☐ Propriété

Soient (D_1) et (D_2) deux droites sécantes en un point A.

Soient B et M deux points de la droites (D_1) , distincts de A.

Soient C et N deux points de la droites (D_2) , distincts de A.

Si $\frac{AM}{AR} = \frac{AN}{AC}$ et si les points A, B, M et les points A, C, N sont dans la même ordre ,

alors les deux droites (MN) et (BC) sont parallèles.

(\square Remarque:

On utilise le réciproque du théorème de Thales pour montrer le parallélisme de deux droites.

 \square Application :

On considère la figure suivante telle que :

(AC)//(BD) et(EC)//(FD).

3. Théorème de Thales par la projection

□□□ Propriété

Soient (D) et (Δ) deux droites .

Soit (L) une droite non parallèle à (D) et non parallèle à (Δ).

Soient A, B, C des points de (D) tels que A et B distincts.

Si A', B', C' sont les projetés respectifs de A, B, C sur (Δ) parallèlement à (L),

alors: $\frac{AC}{AB} = \frac{A'C'}{A'B'}$.

III. conversation du coefficient de colinéarité de deux vecteurs :

□□ Propriété :

Soient (Δ) et (Δ ') deux droites sécantes.

Soiet \overrightarrow{AB} et \overrightarrow{CD} deux vecteurs colinéaires tel que : $\overrightarrow{CD} = k\overrightarrow{AB}$.

Si A', B', C', D' sont les projetés respectifs de A, B, C, D sur (Δ') parallèlement à (Δ) , alors : $\overrightarrow{C'D'} = k\overrightarrow{A'B'}$.

☐ ☐ Application:

ABC est un triangle du plan.

Soit M un point du plan tel que : $\overrightarrow{BM} = -\frac{3}{2}\overrightarrow{BC}$ et soit Nle projeté de Msur (AC) parallèlement à (AB).

- 1) Construire une figure convenable.
- 2) Montrer que : $\overrightarrow{AN} = -\frac{3}{2}\overrightarrow{AC}$

□□□ Propriété :

Soient (D) et (Δ) deux droites sécantes.

SoientA, B, C, D, E et F des points du plan et soient A', B', C', D', E' et F'ses projetés respectifs sur(D) parallèlement à (Δ) .

Si: $\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{EF}$, alors : $\overrightarrow{A'B'} + \overrightarrow{C'D'} = \overrightarrow{E'F'}$.

□ □ Exercice :

ABCest un triangle.

Soient I le milieux de segment [BC], E et F deux points du plan tels que : $\overrightarrow{AE} = -\frac{1}{4}\overrightarrow{AB}$ et $\overrightarrow{AF} = \frac{3}{4}\overrightarrow{AC}$.

On considère I point d'intersection de (AI) et (EF) et C' et B' les projetés sur(AI) en parallèle à (EF).

- 1) Construire une figure convenable.
- Montrer que I est le milieux de segment [B'C'].
- Montrer que : $\overrightarrow{AJ} = -\frac{1}{4}\overrightarrow{AB}^{\dagger}$ et $\overrightarrow{AJ} = \frac{3}{4}\overrightarrow{AC}^{\dagger}$.
- Montrer que : $2\overrightarrow{AI} = \overrightarrow{AB'} + \overrightarrow{AC'}$ et déduire \overrightarrow{AI} en fonction de \overrightarrow{AJ} .