Greedy

Algorithm Analysis

- Basic Idea
 - Change Making
- Review Kruskal's algorithm
- Union Find
- Review Prim's algorithm
- Priority Queue (heap)
- Heapsort

Basic Idea

Greedy

Greedy algorithm solves problem by

performing a sequence of

locally optimal, irrevocable steps.

Change Making

change of X cents using the least number of coins

U.S. coin denominations (1,5,10,25)

X = 37 by Greedy

iteration	Remaining change	25	10	5	1
0	37				
1	12	1	0	0	0
2	2	1	1	0	0
3	0	1	1	0	2

Correct? Yes but only for U.S. denominations.

Think about $\{1,7,10\}$ and X==14

Fractional Knapsack

W[] = {10, 20, 30} V[] = {60, 100, 120} Knapsack Capacity, W = 50;

Output:

Maximum possible value = 240 by taking items of weight 10 and 20 kg and 2/3 fraction

Kruskal's Algorithm

Find a weighted graph's minimal spanning tree (MST).

Minimal spanning tree

Tree - connected acyclic graph

Spanning tree - a subgraph of a given graph which

- 1) contains all vertices and
- 2) forms a tree.

Minimal spanning tree - a spanning tree of minimal weight.

Example

V: set of vertices E: set of edges

The number of edges in a tree == |V|-1

Sorting (weight)

Weight	Edge
5	AD
5	CE
6	DF
7	AB
7	BE
8	BC
8	EF
9	EG
9	DB
11	FG
15	DE

Example-coloring

Sorting (weight)

Weight	Edge
5	AD
5	CE
6	DF
7	AB
7	BE
8	ВС
8	EF
9	EG
9	DB
11	FG
15	DE

Example-{AD}

Sorting (weight)

Weight	Edge
5	AD
5	CE
6	DF
7	AB
7	BE
8	BC
8	EF
9	EG
9	DB
11	FG
15	DE

Example-{AD CE}

Sorting (weight)

Weight	Edge
5	AD
5	CE
6	DF
7	AB
7	BE
8	ВС
8	EF
9	EG
9	DB
11	FG
15	DE

Example-{AD CE DF}

Sorting (weight)

Weight	Edge
5	AD
5	CE
6	DF
7	AB
7	BE
8	ВС
8	EF
9	EG
9	DB
11	FG
15	DE

Example-{AD CE DF AB}

Sorting (weight)

Weight	Edge
5	AD
5	CE
6	DF
7	AB
7	BE
8	ВС
8	EF
9	EG
9	DB
11	FG
15	DE

Example-{AD CE DF AB BE} Sorting (weight)

Weight	Edge
5	AD
5	CE
6	DF
7	AB
7	BE
8	BC
8	EF
9	EG
9	DB
11	FG
15	DE

			_	_	_	
Α	В	C	D	E	F	G

Example-{AD CE DF AB BE EG} (weight)

Weight	Edge
5	AD
5	CE
6	DF
7	AB
7	BE
8	ВС
8	EF
9	EG
9	DB
11	FG
15	DE

Sorting: O(|E|log|E|)

Coloring: O((|V|-1)*V)

Example – Disjoint Subsets

idea: keep same color vertices in a singly-linked list

Sorting (weight)

Weight	Edge
5	AD
5	CE
6	DF
7	AB
7	BE
8	ВС
8	EF
9	EG
9	DB
11	FG
15	DE

Disjoint Subsets

Union and Find algorithm

Initialization

Array of representative

Find- {AD 14}

P: Array of representative

1 2 3 4 5 6 7

$$P(1) = 1$$

$$P(4) = 4$$

Union- {AD 14}

Array of representative

Find & Union- {AD 14, CE 35}

Array of representative

Find & Union- {AD 14, CE 35, DF 46}

Array of representative

Find & Union- {AD 14, CE 35, DF 46, AB 12}

Array of representative

Find & Union- {AD 14, CE 35, DF 46, AB 12, BE 25}

Array of representative

1 1 1 1 3 1 7

Find - {AD 14, CE 35, DF 46, AB 12, BE 25, BC 23}

Array of representative

Find - {AD 14, CE 35, DF 46, AB 12, BE 25, EF 56}

Array of representative

Find&Union - {AD 14, CE 35, DF 46, AB 12, BE 25, EG 57}

Array of representative

1 1 1 1 1 1 1

Reconsider Kruskal's algorithm

Sorting: O(|E|log|E|)

Coloring: O((|V|-1)*V)

Sorting: O(|E|log|E|)

Find and Union: (at most |E| iterations O(|E| + |V|)

E>V-2 (connected graph)

O(|E|log|E|)

Prim's algorithm

Example - Ini

Randomly select a node, say, **D**

MST= {}

	Α	В	С	E	F	G	
cost	5	9	ω	15	6	ω	
	Α	В	С	E	F	G	
mst	D	D	D	D	D	D	

Α

Α

cost

mst

Α

Α

cost

mst

Example - Update

Α

Α

cost

mst

Example - Update

MST= {AD DF AB BE CE EG}

	Α	В	С	E	F	G
cost						
	Α	В	С	E	F	G
mst	0	0	0	0	0	0

Priority Queue

Heap

Min-heap

Complete binary tree

the root of the heap/sub-heap is the smallest element

Can be represented by an array. (index starts from 0)

```
left(i) = 2i+1
right(i) = 2i+2
parent(i)= floor( (i-1)/2 )
```


2<6 swapping

Looking at the second last non-leaf node

Min-heap-Build - O(n)

size: n

Height: k = floor(logn)+1

Level k: the number of nodes 2^(k-1), each non-leaf node needs to compare 0 time

Level k-1: #nodes = $2^{(k-2)}$, compare 1 time

. . .

Level 1: #nodes = 2⁰, compare k-1 time

$$1*2^{(k-2)}+2*2^{(k-3)}+3*2^{(k-4)}+\cdots+(k-1)*2^{0} <= n \rightarrow O(n)$$
 (see next slides)

Or

$$T(n) = 2T(n/2) + logn \rightarrow = O(n)$$

Min-heap-Build - O(n)

$$1*2^{(k-2)}+2*2^{(k-3)}+3*2^{(k-4)}+\cdots+(k-1)*2^{0}$$

$$S = 1 \times \frac{n}{2^{1}} + 2 \times \frac{n}{2^{2}} + 3 \times \frac{n}{2^{3}} + \cdots + (k-1) \times \frac{n}{2^{k-1}}$$

$$S = (1 \times \frac{1}{2^{1}} + 2 \times \frac{1}{2^{2}} + 3 \times \frac{1}{2^{3}} + \cdots + (k-1) \times \frac{1}{2^{k-1}}) n$$

$$S/2 = (1 \times \frac{1}{2^{2}} + 2 \times \frac{1}{2^{3}} + 3 \times \frac{1}{2^{4}} + \cdots + (k-2) \times \frac{1}{2^{k-1}} + (k-1) \times \frac{1}{2^{k}}) n$$

$$S - S/2 = (\frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{k-1}} - (k-1) \times \frac{1}{2^k}) n = \text{n-logn-1}$$

S<=n

Min-heap- minimum

Return the first element

0(1)

Min-heap- extract minimum

Min-heap- insert

Reconsider Prim's algorithm

```
cost (min-heap)
extract-minimum log|V|
insert log|V|
```

To maintain *cost*, each edge in the adjacency list is visited |E|

O(|E|log|V|)

Heapsort

Heapsort - Buildup

Heapsort – extract-minimum

Heapsort – extract-minimum

