Appendix A

Equivalent Nodal Loads

Planar Elements (2D)

Width of loaded face = 1 unit

Planar Elements (2D)

Width of loaded face = 1 unit

LOAD TYPE

Axisymmetric Elements (2D)

Loading over 1 radian

Uniform

1 unit

Triangular

3-node triangle

$$F_1 = \frac{1}{6} \left(r_1^2 + r_0 r_1 - 2r_0^2 \right)$$

$$F_2 = \frac{1}{6} \left(2r_1^2 - r_0 r_1 - r_0^2 \right)$$

$$F_2 = \frac{1}{12} \left(3r_1^2 - 2r_0 r_1 - r_0^2 \right)$$

6-node triangle

$$F_1 = \frac{1}{6} \left(r_0 r_1 - r_0^2 \right)$$

$$F_2 = \frac{1}{3} \left(r_1^2 - r_0^2 \right)$$

$$F_3 = \frac{1}{6} \left(r_1^2 - r_0 r_1 \right)$$

$$F_1 = -\frac{1}{60} \left(r_1^2 - 2r_0 r_1 + r_0^2 \right)$$

$$F_2 = \frac{1}{15} \left(3r_1^2 - r_0 r_1 - 2r_0^2 \right)$$

$$F_3 = \frac{1}{60} \left(9r_1^2 - 8r_0r_1 - r_0^2 \right)$$

Axisymmetric Elements (2D)

Loading over 1 radian

Axisymmetric Elements (2D)

Loading over 1 radian LOAD TYPE

Three Dimensional Elements (3D)

Area of loaded face = 1 unit Unit stress applied

<u>14-node</u> <u>hexahedron (type 5)</u>

$$F_1 = F_2 = F_3 = F_4 = \frac{1}{12}$$
 $F_1 = F_3 = F_5 = F_7 = -\frac{1}{12}$

$$F_5 = \frac{2}{3}$$

<u>20-node</u> <u>hexahedron</u>

$$F_1 = F_3 = F_5 = F_7 = -\frac{1}{12}$$

$$F_2 = F_4 = F_6 = F_8 = \frac{1}{3}$$