Accuracy with latent categorical variable

Mc

May 27, 2014

Introduction

In plots we recast the results of simulations in terms of accuracy. We compute the accuracy of each method (continous or categorical), for each level of ρ (see below) by computing the the following quantities:

- false positive (FP) runs with with a significant test under a true null hypothesis
- true positive (TP) runs with a significant test under a false null-hypothesis
- true negative (TN) runs with a nonsignificant result under a true null-hypothesis
- false negative (FN) runs with a nonsignificant result under a false null-hypothesis

Plots to be produced:

- Sensitivity for all 4 of the decision possibilities (continuous ignoring categorical, categorical ignoring continuous, both, either), with X axis being rho (Figure 1)
- PPV for the 4 decision possibilities, with X axis being rho (Figure 2)
- Bar chart with the specificity for the 4 decision possibilities
- Bar chart with the NPV (aggregated over rho) for the 4 decision possibilities

Setup

Model

A categorical latent variable (ξ) and a continuous one (η are created with N cases, sharing a correlation equal to ρ . A measure x of ξ is created with reliability rel, and then is dichotomized accordingly to p 1 – p into c. The correlations $r_p e = r(\eta, x)$ and $r_p b = r(\eta, c)$ are computed, their p-value and significance (at .05) is recorded.

Design

```
\rho = (0, .1, .2, .3, .4, .5, .6, .7) rel = (0.3, 0.4, 0.5, 0.6, 0.7, 0.80.9)
```

Computation of quantities

- Continuous false positive (FP_C) freq of runs with continuous test p.<.05 and ρ =0
- Continuous true positive (TP_C) freq of runs with continuous test p.<.05 and $\rho > 0$
- Continuous true negative (TN_C) freq of runs with continuous test p.>=.05 and ρ =0
- false negative (FN_C) freq of runs with continuous test p.>=.05 and ρ >0
- PPV is defined as TP/(TP+FP)
- NPV is defined as TN/(TN+FN)

The same quantities are computed for the categorical indicator (*_S).

Accuracy for continuous indicator

```
rho SENS_C SPEC_C PPV NPV
1 0.1 0.09957143 0.9497143 0.6644423 0.5133194
2 0.2 0.25342857 0.9497143 0.8344309 0.5598787
3 0.3 0.44314286 0.9497143 0.8980892 0.6303812
4 0.4 0.60228571 0.9497143 0.9229422 0.7048346
5 0.5 0.72042857 0.9497143 0.9347544 0.7725741
6 0.6 0.80942857 0.9497143 0.9415088 0.8328740
7 0.7 0.86457143 0.9497143 0.9450344 0.8751975
```

Accuracy for categorical indicator

```
rho SENS_S SPEC_S PPV NPV

1 0.1 0.09857143 0.9491429 0.6596558 0.5128918

2 0.2 0.23714286 0.9491429 0.8234127 0.5544059

3 0.3 0.40400000 0.9491429 0.8881910 0.6142751

4 0.4 0.55128571 0.9491429 0.9155397 0.6789985

5 0.5 0.66071429 0.9491429 0.9285284 0.7366670

6 0.6 0.74485714 0.9491429 0.9360862 0.7881376

7 0.7 0.80385714 0.9491429 0.9404981 0.8287389
```

Accuracy for BOTH indicators significant

```
rho SENS_B SPEC_B PPV NPV
1 0.1 0.06114286 0.9771429 0.7278912 0.5099911
2 0.2 0.17800000 0.9771429 0.8862020 0.5431158
3 0.3 0.35200000 0.9771429 0.9390244 0.6012658
4 0.4 0.50814286 0.9771429 0.9569545 0.6651755
5 0.5 0.62814286 0.9771429 0.9648892 0.7243461
6 0.6 0.72214286 0.9771429 0.9693193 0.7785999
7 0.7 0.78971429 0.9771429 0.9718706 0.8229066
```

Accuracy for EITHER indicators significant

	rho	SENS_E	SPEC_E	PPV	NPV
1	0.1	0.1370000	0.9217143	0.6363636	0.5164492
2	0.2	0.3125714	0.9217143	0.7997076	0.5727983
3	0.3	0.4951429	0.9217143	0.8634778	0.6461045
4	0.4	0.6454286	0.9217143	0.8918279	0.7221849
5	0.5	0.7530000	0.9217143	0.9058257	0.7886566
6	0.6	0.8321429	0.9217143	0.9140122	0.8459420
7	0.7	0.8787143	0.9217143	0.9181967	0.8837146

Figure 1: Sensitivity for all 4 of the decision possibilities (continuous ignoring categorical, categorical ignoring continuous, both, either), with X axis being rho

Figure 2: PPV for the 4 decision possibilities, with X axis being rho

Figure 3: Bar chart with the specificity for the 4 decision possibilities

Figure 4: NPV for the 4 decision possibilities, with X axis being rho

