Теория гравитации как эмерджентного явления в рамках концепции Беспредельного Поля Потенций

Морозов Алексей Юрьевич 27 июля 2025 г.

Аннотация

Предлагается новая теория гравитации, основанная на концепции Беспредельного Поля Потенций (БПП). В данной парадигме гравитационные явления возникают как эмерджентные свойства фундаментального поля потенций, что позволяет преодолеть противоречия между общей теорией относительности и квантовой механикой. Теория предлагает решение проблемы квантовой гравитации через переосмысление онтологических основ пространствавремени. Представлен математический аппарат теории и результаты моделирования орбитального движения, демонстрирующие соответствие наблюдаемым явлениям и предсказывающие новые эффекты.

1 Введение: Кризис интерпретации в современной физике

Современная физика описывает реальность через две непримиримые парадигмы: общую теорию относительности (ОТО), где гравитация - это кривизна пространства-времени, и квантовую механику, где частицы существуют на фоне статичного пространства. Эта дихотомия особенно остро проявляется в проблеме квантовой гравитации.

Концепция Беспредельного Поля Потенций (БПП) предлагает решение, переосмысливая саму онтологию физической реальности. В БПП:

- Единственная фундаментальная сущность потенция
- Пространство возникает как сеть отношений между актуализированными потенциями
- Время последовательность актов актуализации
- Материя устойчивые резонансные конфигурации

Теория относительности и квантовая механика оказываются *эмер- джентными свойствами* БПП, возникающими из фундаментальной динамики актуализации потенций.

2 Теоретические основы БПП

2.1 Фундаментальные принципы

- 1. Поле потенций: Существует фундаментальное Беспредельное Поле Потенций \mathcal{P} , представляющее собой континуум неактуализированных состояний.
- 2. **Актуализация**: Физическая реальность возникает через процесс актуализации $A: \mathcal{P} \to \mathcal{R}$, где \mathcal{R} множество актуализированных паттернов.
- 3. **Резонансный принцип**: Актуализация происходит при выполнении условия резонанса $R(Q,P)>R_{\rm крит},$ где Q запрос, P потенция.

2.2 Сравнение теорий

Таблица 1: Сравнение принципов БПП с традиционными подходами

Аспект	Традиционные теории	БПП
Фундамент	Пространство-время	Поле потенций (\mathcal{P})
Актуализация	Не рассматривается	$A: \mathcal{P} \to \mathcal{R}$
Связи	Силовые взаимодействия	Резонанс потенций
Иерархия	Единое пространство	Вложенные паттерны

2.3 Математический аппарат

2.3.1 Пространство как паттерн связей

Пространство не является априорной сущностью, а возникает как граф отношений между актуализированными потенциями:

$$\mathcal{S} = \langle \mathcal{V}, \mathcal{E} \rangle$$

где:

- $V = \{v_i\}$ вершины (актуализированные потенции)
- $\mathcal{E} = \{e_{ij}\}$ рёбра (отношения резонанса)

Метрика пространства определяется плотностью связей:

$$g_{\mu\nu} = \frac{\partial^2 \ln Z}{\partial x^{\mu} \partial x^{\nu}}, \quad Z = \sum_{\text{паттерны}} e^{-\beta E[\mathcal{P}]}$$

где Z - статистическая сумма по всем возможным паттернам, $E[\mathcal{P}]$ - энергия актуализации паттерна.

2.3.2 Динамика актуализации

Движение объектов описывается уравнением актуализации:

$$\frac{D\mathbf{P}}{d\tau} = c^2 \nabla \ln p_{\text{pes}}$$

где:

- ullet Р паттерн объекта
- \bullet au локальное время
- ullet $p_{
 m pes}$ вероятность резонанса

Вероятность резонанса определяется как:

$$p_{\text{pes}}(i,j) = \exp\left(\frac{2Gm_j}{c^2r_{ij}} \cdot \kappa(\Delta L)\right) \cdot \Gamma(t) \cdot D(v_r)$$

где:

- \bullet $\kappa(\Delta L)$ иерархический коэффициент ($\kappa=10^{3-\min(\Delta L,3)}$)
- $\Gamma(t)$ релятивистский фактор ($\Gamma=e^{-\phi/c^2}$)
- $D(v_r)$ допплеровский фактор ($D = 1 + v_r/c$)

2.3.3 Локальное время

Каждый объект имеет свое локальное время, связанное со сложностью его паттерна:

$$\tau_{\text{лок}} = N \cdot \tau_{\text{глоб}}, \quad N \propto \text{сложность}(\mathcal{P})$$

где N - количество запросов, необходимых для актуализации паттерна.

2.3.4 Логарифмическая зависимость

Ключевым элементом теории является использование логарифмической функции:

$$\mathbf{a} = c^2 \nabla (\ln p_{\text{pes}})$$

Физическая интерперетация логарифмической зависимости:

- Логарифм вероятности резонанса отражает информационную близость паттернов
- Градиент логарифма определяет направление движения к максимальной связности

Математическая интерпретация логарифмической зависимости:

- Логарифм преобразует мультипликативные отношения в аддитивные
- Позволяет учесть иерархическую структуру: $\ln(a \cdot b) = \ln a + \ln b$
- Соответствует принципу: "Целое = Сумма связей, а не просто сумма частей"
- Вероятность резонанса зависит не от абсолютного количества общих черт, а от относительной значимости этих черт.

2.3.5 Экспоненциальная зависимость

Формула вероятности резонанса:

$$p_{\rm pes} = \exp\left(\frac{2Gm}{c^2r}\right)$$

Экспонента в формуле отражает:

- Нелокальную природу квантовых связей
 - Мгновенное распространение влияния
 - Экспоненциальное затухание с расстоянием
- Самоподобную структуру пространства

2.3.6 Квадратичная зависимость

Квадратичная зависимость c^2 в уравнениях имеет глубокий смысл:

- Представляет собой коэффициент преобразования между информационными и пространственными метриками
- Отражает фундаментальную связь между энергией и пространством

Закон обратных квадратов:

$$F \propto \frac{1}{r^2}$$

Объясняется:

- Сохранением потока резонанса
- Геометрией трёхмерного пространства

Происхождение $1/r^2$:

- 1. Из принципа сохранения потока резонанса: Плотность резонанса $1/{\rm r}^2$ (как интенсивность света)
- 2. Из теории категорий: В трёхмерном пространстве "сила "морфизмов убывает как $1/\mathbf{r^2}$
- 3. Экспериментальное соответствие: Ньютоновский закон $(1/r^2)$ частный случай при иерархической вложенности =1

2.3.7 Принцип минимальной сложности

Логарифмические и экспоненциальные формы обеспечивают *мини-мальную вычислительную сложность* для Вселенной — соответствуют идее "оптимизации запросов".

Теорема Нётер для информационных систем

Теорема устанавливает связь между симметрией и сохранением:

Инвариантность относительно сдвига в пространстве потенций \to **Сохранение** резонансного потока \to

$$\nabla \cdot (c^2 \nabla \ln p) = 0$$

Квантовая регуляризация

При приближении к планковскому масштабу $(r \to 0)$:

$$e^{1/r} \to \infty$$
 (сингулярность)

В рамках БПП это устраняется дискретностью паттернов:

$$p_{\rm res} = e^{1/r} \cdot e^{-(r/\ell_p)^{-2}}$$

где:

- ℓ_p планковская длина
- ullet p_{res} регуляризованный резонансный потенциал

Физический смысл

Данное уравнение описывает:

- Сохранение резонансного потока в пространстве потенций
- Регуляризацию квантовых сингулярностей
- Связь между классической и квантовой областями

Важные следствия

- При $r\gg\ell_p$ система ведет себя классически
- При $r \sim \ell_p$ проявляется квантовая природа
- Уравнение сохраняет валидность во всем диапазоне масштабов

Указанные зависимости - это естественное следствие трех принципов:

- 1. Принцип актуализации: Реальность = Потенция × Запрос
- 2. Принцип резонанса: Сила связи пропорциональна е в степени информационной близости
- 3. Принцип иерархии: Паттерны образуют вложенные структуры с экспоненциальным затуханием влияния

3 Гравитация как эмерджентное явление

3.1 Основное уравнение движения

В БПП гравитационное ускорение возникает как следствие градиента вероятности резонанса:

$$\mathbf{a} = c^2 \nabla (\ln p_{\text{pes}})$$

Это уравнение фундаментально отличается от ньютоновского и эйнштейновского подходов, поскольку:

- 1. Не постулирует "силу" как первичную сущность
- 2. Связывает движение с оптимизацией процессов актуализации
- 3. Учитывает иерархическую структуру реальности

3.2 Эквивалентность инерции и гравитации

Принцип эквивалентности получает естественное объяснение:

• Инерция: Сопротивление паттерна изменению состояния

$$F_{\text{ин}} = \frac{\Delta(\text{сложность})}{\Delta t}$$

• **Гравитация**: Движение вдоль градиента максимальной вероятности резонанса

Свободное падение - это движение, где паттерн объекта полностью резонирует с окружающим паттерном пространства.

3.3 Релятивистские эффекты

3.3.1 Замедление времени

Вблизи массивных объектов замедление времени возникает естественно:

$$\frac{\Delta t}{\Delta t_0} = \exp\left(\frac{\Phi}{c^2}\right), \quad \Phi = \sum_i \frac{2Gm_i}{r_i} \cdot \kappa_i$$

где κ_i - иерархический коэффициент для і-го объекта.

3.3.2 Отклонение света

Отклонение света в БПП объясняется как движение вдоль геодезических максимальной вероятности резонанса:

$$\delta\phi = \frac{4GM}{c^2b}(1 + \epsilon_Q)$$

где ϵ_Q - квантовая поправка, связанная с дискретностью пространства.

3.4 Экспериментальные следствия

Теория предсказывает как классические гравитационные эффекты, так и новые явления:

3.4.1 Классические эффекты

- Планетарные орбиты с высокой точностью соответствуют наблюдениям
- Гравитационное красное смещение в полном соответствии с ОТО
- Отклонение света вблизи массивных объектов
- Прецессия перигелия Меркурия

3.4.2 Новые предсказания

- Иерархические поправки к гравитационному взаимодействию
- Модификация закона всемирного тяготения на малых масштабах
- Новые типы гравитационных волн
- Специфическое поведение гравитации в системах с высокой иерархией

4 Квантовые аспекты теории

4.1 Планковский масштаб

На планковских масштабах теория предсказывает:

$$p_{\text{pes}} = \exp\left(\frac{2Gm}{c^2r}\right) \cdot \exp\left(-\frac{r}{\ell_p^2}\right)$$

где ℓ_p — планковская длина.

4.2 Квантовая гравитация

Теория предлагает решение проблемы квантовой гравитации через:

- Дискретность паттернов
- Естественную регуляризацию сингулярностей
- Квантование гравитационного взаимодействия

5 Моделирование и верификация

5.1 Программа моделирование движения Луны:

Программа моделирования движения Луны без использования формул Ньютона и Эйнштейна доступна по адресу: https://github.com/morozovsolncev/gravitation

5.1.1 Вывод уравнения гравитации по БПП:

Принцип экстремальности: $\delta S[\mathcal{P}] = 0$

Действие для паттерна: $S = \int \ln p_{\mathrm{pes}} d au$

Уравнение Эйлера-Лагранжа: $\tau \left(\mathcal{L} \dot{x}^{\mu} \right) = \mathcal{L} x^{\mu}$

Лагранжиан: $\mathcal{L} = c^2 \ln p_{\text{pes}}$

Результат: $[2]x^{\mu}\tau = c^{2}x^{\mu}(\ln p_{\text{pes}})$

5.1.2 Вероятность резонанса

$$p_{\text{pes}}(i,j) = \exp\left(\underbrace{\frac{2Gm_j}{c^2r_{ij}}}_{\text{гравитационный потенциал}} \cdot \underbrace{\kappa(\Delta L)}_{\text{иерархия}}\right) \cdot \underbrace{\Gamma(t)}_{\text{релятивизм}} \cdot \underbrace{D(v_r)}_{\text{движение}}$$
 (1)

Компоненты:

- Иерархический коэффициент: $\kappa(\Delta L) = 10^{3-\min(\Delta L,3)}$
 - $\Delta L=0$ (один уровень): $\kappa=10^3$
 - $\Delta L=1$ (соседние уровни): $\kappa=10^2$
 - $-\Delta L \ge 3$: $\kappa = 1$
- **Релятивистский фактор**: $\Gamma = e^{-\phi/c^2}, \ \phi$ гравитационный потенниал
- Допплеровский фактор: $D = 1 + v_r/c, v_r$ радиальная скорость

6 Гравитация как эмерджентное явление

6.1 Основное уравнение движения

Ньютон: $\mathbf{a} = -\nabla \Phi$

OTO: $[2]x^{\mu}\tau + \Gamma^{\mu}_{\alpha\beta}x^{\alpha}\tau x^{\beta}\tau = 0$

БПП: $\mathbf{a} = c^2 \nabla (\ln p_{\text{рез}})$

(оптимизация информационных потоков)

6.2 Иерархическая модель Солнечной системы

Для верификации теории разработана иерархическая модель движения небесных тел:

- Солнце: корневой паттерн (уровень 0)
- Земля: дочерний паттерн (уровень 1)
- Луна: вложенный паттерн (уровень 2)

Резонансные коэффициенты:

$$\kappa_{\text{прямой}} = 10^3, \quad \kappa_{\text{через уровень}} = 1$$

6.3 Результаты моделирования

Программное моделирование системы Земля-Луна показало:

- Стабильную эллиптическую орбиту с периодом 27.3 дней
- Релятивистское смещение перигея $\Delta \omega = 6\pi G M/(c^2 a (1-e^2))$
- Корреляцию угла Солнце-Луна и радиального ускорения

Рис. 1: Орбита Луны в зависимости от резонанса БПП

Рис. 2: Динамика параметров БПП для системы Луна-Земля

Рис. 3: Большая полуось и эксцентриситет Орбиты Луны

Рис. 4: Фазовый портрет движения Луны (радиальная скорость vs расстояние)

6.4 Интерпретация диаграмм:

6.4.1 Орбита Луны:

- Пунктирная окружность для сравнения с реальной орбитой.
- Цвет точек орбиты показывает силу резонанса (от синего = слабый к желтому = сильный).
- Стрелки показывают направление на Солнце в ключевые моменты времени.
- Сила резонанса: Композитный параметр (Земля \times 10³ + Солнце \times 1).
- Несовпадение конечной точки: Накопление фазовых ошибок в резонансной системе.

6.4.2 Динамика параметров БПП для системы Луна-Земля:

- Энергия актуализации: Кинетическая + потенциальная + полная.
- Угол Солнце-Земля-Луна: 0° = новолуние, 180° = полнолуние.
- Асимметрия эксцентриситета: Влияние солнечного приливного воздействия.
- Сдвиг фаз: Разница в периодах орбитального и сидерического месяцев.

6.4.3 Синусоида полуоси:

- Проявление иерархического резонанса Земля-Солнце.
- Пик на 14 день соответствует полнолунию, когда влияние Солнца максимально.
- Разница амплитуд показывает асимметрию орбиты.
- Снижение меньше реального указывает на сильное иерархическое влияние.

6.4.4 Эксцентриситет:

- Неправильная форма следствие нелинейности резонансных эффектов.
- Растянутость пиков проявление релятивистских поправок времени.
- Асимметрия (правый пик выше) влияние начальных условий.

7 Астрофизические приложения

7.1 Космология

Теория позволяет:

- Объяснить тёмную материю как паттерны с низкой вероятностью резонанса
- Предложить альтернативное объяснение тёмной энергии
- Построить согласованную модель эволюции Вселенной

7.2 Компактные объекты

В теории БПП:

- Чёрные дыры области с минимальной вероятностью резонанса
- Нейтронные звёзды высокоэнергетические паттерны
- Пульсары осциллирующие резонансные структуры

8 Экспериментальная проверка

8.1 Предлагаемые эксперименты

- Проверка иерархических поправок в лабораторных условиях
- Поиск квантовых гравитационных эффектов

- Исследование гравитационных эффектов в многоуровневых системах
- Наблюдение за высокоиерархическими астрофизическими системами

8.2 Перспективные направления исследований:

- **Квантовая гравитация**: Введение планковского масштаба как минимального размера паттерна
- **Тёмная материя**: Моделирование как паттернов с экстремально низкой $p_{\rm pes}$
- **Гравитационные волны**: Исследование как возмущений в сети связей

9 Выводы и перспективы

Теория гравитации на основе БПП предлагает:

- 1. Единый механизм для классической и квантовой гравитации
- 2. Естественное объяснение релятивистских эффектов
- 3. Решение проблемы сингулярностей

Вселенная не вычисляется — она вопрошает себя в диалоге потенций, где гравитация — лишь тень резонанса

Благодарности

Автор благодарит ИИ-ассистента DeepSeek-R1 за помощь в реализации численной модели и подготовке статьи.

Список литературы

- [1] Морозов, А.Ю. Манифест онтологии синтеза // Альманах «Венец поэзии» : электронный журнал. ISSN 2782-3318 (online). URL: https://vpoezii.online/archives/10083. Дата публикации: 01.07.2025. (Сборник трудов научной конференции «Венец познания»; 2025, №1), https://doi.org/10.5281/zenodo.15785841.
- [2] Rovelli, C. (2004). Quantum Gravity. Cambridge University Press.

Библиографическая ссылка для цитирования:

Морозов, А.Ю. Теория гравитации как эмерджентного явления в рамках концепции Беспредельного Поля Потенций / А.Ю. Морозов // Альманах «Венец поэзии» : электронный журнал. – URL: https://vpoezii.online/archives/10231. – Дата публикации: 27.07.2025. (Сборник трудов научной конференции «Венец познания» ; №1, 2005) – ISSN 2782-3318, https://doi.org/10.5281/zenodo.16495200.