WHAT IS CLAIMED:

1	 An integrated circuit, comprising:
2	functional circuitry;
3	a region devoid of the functional circuitry; and
4	a transistor disposed in the region.
1	2. The integrated circuit of claim 1 wherein:
2	the functional circuitry comprises functional-circuit blocks that are spaced
3	apart from one another; and
4	the devoid region comprises a region that is disposed between the
5	functional-circuit blocks.
1	3. The integrated circuit of claim 1 wherein:
2	the functional circuitry comprises a functional-circuit block having a portion
3	devoid of functional-circuit elements; and
4	the devoid region comprises the devoid portion of the functional-circuit block.
1	4. The integrated circuit of claim 1 wherein the transistor comprises an FET
2	transistor.
1	5. The integrated circuit of claim 1 wherein the transistor is automatically
2	placed in the devoid region.
1	6. The integrated circuit of claim 1 wherein the transistor is manually placed in
2	the devoid region.
1	7. An integrated circuit, comprising:
2	functional circuitry;
3	a region devoid of the functional circuitry; and
4	a buffer disposed in the region.
1	8. An integrated circuit, comprising:
2	functional circuitry;
3	a region devoid of the functional circuitry; and
4	a logic circuit disposed in the region.

1	9. The integrated circuit of claim 8 wherein the logic circuit comprises a logic
2	gate.
1	10. The integrated circuit of claim 8 wherein the logic circuit comprises an
2	inverter.
1	11. An integrated circuit, comprising:
2	first and second supply nodes;
3	functional circuitry;
4	a region devoid of the functional circuitry; and
5	a transistor disposed in the region and having a pair of input-output terminals
6	coupled to the first supply node and having a control terminal coupled
7	to the second supply node.
1	12. The integrated circuit of claim 11 wherein:
2	the transistor comprises an FET transistor;
3	the pair of input-output terminals comprises a pair of source-drain terminals;
4	and
5	the control terminal comprises a gate terminal.
1	13. An integrated circuit, comprising:
2	a conductive path;
3	functional circuitry;
4	a region devoid of the functional circuitry; and
5	a transistor disposed in the region and having a pair of input-output terminals
6	coupled to the conductive path and having a control terminal.
1	14. The integrated circuit of claim 13, further comprising:
2	a supply node; and
3	wherein the control terminal is coupled to the supply node.
1	15. The integrated circuit of claim 13 wherein the control terminal is coupled
2	to one of the input-output terminals.
1	16. The integrated circuit of claim 13 wherein the control terminal is
2	short-circuited to one of the input-output terminals.

1	17. An integrated circuit, comprising:
2	first and second regions;
3	functional circuitry disposed in the first and second regions;
4	a third region devoid of the functional circuitry;
5	a buffer disposed in the third region and having an input terminal and an
6	output terminal;
7	a first conductive path having a first terminal coupled to the functional circuitry
8	in the first region and having a second terminal coupled to the input
9	terminal of the buffer; and
10	a second conductive path having a first terminal coupled to the output terminal
11	of the buffer and having a second terminal coupled to the functional
12	circuitry in the second location.
1	18. The integrated circuit of claim 17 wherein the functional circuitry in the first
2	and second regions respectively comprises first and second blocks of the functional
3	circuitry, the first and second blocks being spaced apart from one another.
1	19. The integrated circuit of claim 17, further comprising:
2	a supply node; and
3	wherein the buffer comprises a transistor disposed in the devoid region and
4	having a control terminal coupled to the input terminal of the buffer, a
5	first terminal coupled to the output terminal of the buffer, and a second
6	terminal coupled to the supply node.
1	20. An integrated circuit, comprising:
2	first and second regions;
3	functional circuitry disposed in the first and second regions;
4	a third region devoid of the functional circuitry;
5	a logic circuit disposed in the third region and having an input terminal and an
6	output terminal;
7	a first conductive path having a first terminal coupled to the functional circuitry
8	in the first region and having a second terminal coupled to the input
9	terminal of the logic circuit; and

3

1

2

3

3

10	a second conductive path having a first terminal coupled to the output terminal
11	of the logic circuit and having a second terminal coupled to the
12	functional circuitry in the second location.
1	21. An integrated circuit, comprising:
2	functional circuitry;
3	a region devoid of the functional circuitry; and
4	a repair transistor disposed in the region and having a three terminals, one of
5	the terminals coupled to the functional circuitry.
1	22. The integrated circuit of claim 21 wherein two of the transistor terminals
2	are coupled to the functional circuitry.
1	23. The integrated circuit of claim 21 wherein the three transistor terminals
2	are coupled to the functional circuitry.
1	24. A method, comprising:
2	identifying an integrated-circuit region that is devoid of a circuit; and

- 25. The method of claim 24 wherein identifying the devoid integrated-circuit region and placing the transistor comprise executing software that identifies and places the transistor in the devoid integrated-circuit region.
- 26. The method of claim 24 wherein placing the transistor comprises executing software that automatically places the transistor in the devoid integrated-circuit region.
- The method of claim 24 wherein placing the transistor comprises executing software that allows one to manually place the transistor in the devoid integrated-circuit region.
- 1 28. The method of claim 24, further comprising connecting the transistor to 2 a supply node.
- 1 29. The method of claim 24, further comprising:

placing a transistor in the devoid integrated-circuit region.

- 2 identifying a conductive path; and
- 3 connecting the transistor to the path.

- 1 30. The method of claim 24, further comprising:
- 2 identifying a conductive path; and
- 3 buffering the path with the transistor.
- 1 31. The method of claim 24 wherein placing the transistor comprises placing a
- 2 logic circuit in the devoid integrated-circuit region.
- 1 32. A method, comprising:
- 2 forming a circuit in a first region of an integrated circuit; and
- 3 forming a transistor in a second region of the integrated circuit, the second region
- 4 being devoid of the circuit.
- 1 33. The method of claim 32, further comprising:
- 2 forming first and second supply nodes;
- 3 coupling a first terminal of the transistor to the first supply node; and
- 4 coupling second and third terminals of the transistor to the second supply node.
- 1 34. The method of claim 32, further comprising:
- 2 forming a conductive path; and
- 3 coupling first, second, and third terminals of the transistor to the conductive path.
- 1 35. The method of claim 32, further comprising:
- 2 forming a supply node;
- 3 forming a conductive path;
- 4 coupling first and second terminals of the transistor to the conductive path; and
- 5 coupling a third terminal of the transistor to the supply node.
- 1 36. The method of claim 32, further comprising:
- 2 forming first and second segments of a conductive path;
- 3 coupling an input terminal of the transistor to the first segment; and
- 4 coupling an output terminal of the transistor to the second segment.
- 1 37. The method of claim 32, further comprising:
- 2 forming first and second segments of a conductive path that is coupled to the circuit;
- 3 coupling an input terminal of the transistor to the first segment; and
- 4 coupling an output terminal of the transistor to the second segment.

- 1 38. The method of claim 32, further comprising coupling the transistor to 2 the circuit to repair a defect in the circuit.
- 1 39. The method of claim 32, further comprising:
- 2 forming a conductive path;
- 3 dividing the conductive path into first and second uncoupled segments; and
- 4 coupling the first segment to the second segment with the transistor.
- 1 40. A method, comprising;
- 2 dividing an array into locations, the array representing an integrated-circuit;
- 3 identifying the locations in the array unoccupied by circuit blocks; and
- 4 placing transistors in the unoccupied locations.
- 1 41. The method of claim 40 wherein placing transistors comprises placing blocks of transistors in the unoccupied locations.
- 1 42. A method of integrating additional transistors into an integrated circuit,
- 2 the method comprising:
- 3 calculating the dimensions of an array to store validity data;
- 4 initializing the array as valid;
- 5 reading block information including location and dimensions;
- 6 calculating the locations in the validity array corresponding to the block location and
- 7 dimensions;
- 8 marking the locations in the validity array as invalid;
- 9 checking for more blocks;
- 10 if more blocks are found, looping back to the step of reading block information;
- 11 if no more blocks are found, continuing:
- 12 for each location in the validity array, if valid, then place a transistor array block;
- 13 else, continue to next location.
 - 1 43. The method of claim 42, further comprising allowing a user to invalidate
- 2 locations within the validity array.