Progetto Elaborazione Linguaggio Naturale: Tecniche di Clustering

Giuseppe De Palma

Alma Mater Studiorum - Università di Bologna giuseppe.depalma@studio.unibo.it Matricola: 854846

Sommario Ciaone

1 Introduzione

Il clustering (o analisi dei gruppi) è una forma di machine learning non supervisionato che permette di raggruppare in cluster elementi non annotati dati in input. Un cluster è una collezione di oggetti "simili" tra loro che sono "dissimili" rispetto agli oggetti degli altri cluster. Questo tipo di machine learning è ottimo per partizionare un insieme di dati in diverse "categorie", quindi poter eseguire diverse analisi ed ottenere nuove informazioni. Applicazioni tipiche in cui il clustering viene molto usato è il riconoscimento di email di spam (le email a scopi pubblicitari o di frode), oppure per l'aggregazione di notizie (Google News ne è un esempio).

Il clustering trova possibili applicazioni anche nel campo dell'elaborazione del linguaggio naturale. Oltre alle nuove possibili analisi sui corpora ed al fornire una visualizzazione pittografica delle parole raggrupate, un interessante utilizzo è quello della **generalizzazione** delle parole.

Possiamo considerare i vari cluster delle classi di equivalenza. Per questo motivo, se avessimo un dataset su cui comporre i cluster fatto di frasi e parole, allora si potrebbe assumere che una qualche parola che compare in una frase può essere sostituita con un'altra dello stesso cluster lasciando intatta la correttezza della frase. Ad esempio, se avessimo nel nostro dataset "per Lunedi", "per Martedi", "per Mercoledi", "per Sabato", "per Domenica", senza avere "per Giovedi" e "per Vernedi", e avessimo un cluster in cui i giorni della settimana sono raggruppati insieme, allora potremmo generalizzare l'utilizzo della preposizione "per" con Giovedì e Vernedì.

Il clustering, quindi, può essere molto utile anche nell'elaborazione del linguaggio naturale. Nel progetto in studio vengono testate le capacità di alcune tecniche di clustering da cui si derivano dei risultati per mostrarne le differenze, i pregi e i difetti. I dati utilizzati negli esperimenti, comunque, non sono parti di testo, ma semplici dataset di vettori numerici 2D in modo tale da poter facilmente visualizzare i grafici relativi ai cluster e determinare le caratteristiche di ogni tecnica.

1.1 Outline

[SCRIVERE OUTLINE]

2 Clustering

Ci sono numerosi algoritmi per effettuare clustering, ma essi sono classificabili in poche tipologie: il clustering gerarchico e il clustering partizionale. Clustering partizionale consiste nell'ottenere dei cluster, di solito in modo iterativo, ma spesso senza determinare una vera relazione tra gli elementi. Si inizia con un insieme di cluster iniziale ed iterativamente si riassegnano gli oggetti nei giusti cluster. Il clustering gerarchico, invece, forma un albero (la gerarchia) degli elementi dove un nodo rappresenta un sotto-cluster del nodo padre e le foglie sono i singoli oggetti.

Un'altra importante distinzione tra gli algoritmi di clustering è il *soft clustering* e *hard clustering*. Nel primo caso, ogni oggetto può essere assegnato a più cluster secondo un qualche grado di appartenza, mentre nel secondo caso ogni oggetto è assegnato ad un unico cluster. In questo progetto vedremo quattro diversi algoritmi, due della classe di clustering gerarchico, due del clustering partizionale. I primi tre eseguono hard clustering mentre l'ultimo soft clustering.

Di seguito sono elencati i metodi implementati e testati:

- Clustering **gerarchico**
 - 1. Aggregativo
 - 2. Divisivo
- Clustering partizionale
 - 1. K-Means
 - 2. EM (soft clustering)

2.1 Gerarchico

Andando più in dettaglio sulle diverse tecniche, abbiamo detto che la prima classe di clustering permette di creare degli alberi con i cluster e sotto-cluster. Questo può essere ottenuto con un approcco bottom-up che è il clustering aggregativo, il quale inizia dai singoli oggetti e ne raggruppa i più simili, per poi raggruppare i gruppi più simili e così via, fino ad ottenere un unico gruppo che sarà la radice dell'albero. Un altro approccio è quello top-down, il clustering divisivo, che in modo inverso dal precedente parte dal gruppo comprendente tutti gli elementi e lo divide in sotto-gruppi in modo da massimizzare la similarità intrinseca dei gruppi, fino ad arrivare ai singoli elementi.

Un utile grafico che si ottiene da questo tipo di clustering è il cosidetto dendrogramma. [METTERE FIGURA DENDROGRAMMA E SPIEGARE]

Aggregativo Questo tipo di clustering è realizzato tramite un algoritmo greedy che prende in input un insieme di dati S, da cui ogni oggetto è considerato essere un piccolo cluster da un elemento. Ad ogni passo l'algoritmo determina i due cluster più simili e li unisce in un nuovo cluster. L'algoritmo termina quando il cluster contenente tutti gli elementi di S viene formato, il quale sarà l'unico cluster rimanente. I modi in cui si possono determinare la similarità dei cluster sono molteplici. L'algoritmo fa uso di una funzione di similarità per calcolare quanto dei cluster sono simili tra di loro, ce ne sono diverse, ad esempio alcune molto utilizzate sono:

- single link: ottiene la similarità di due membri più simili da due cluster diversi, rispettivamente;
- complete link: ottiene la similarità dei due membri meno simili da due cluster diversi, rispettivamente;
- group-average: ottiene la similarità media tra i membri di due cluster.

Nonostante le funzioni di similarità possano differire anche ampiamente, una proprietà che tutte devono avere è la monotonia. Per un insieme di dati S e una funzione di similarità sim:

$$\forall c, c', \hat{c} \subseteq S. \ min(sim(c, c'), sim(c, \hat{c})) \ge sim(c, c' \cup \hat{c})$$

Questo perché l'operazione di unione garantisce di non aumentare la similarità, quindi una funzione che non obbedisce a questa condizione rovinerebbe la gerarchia in quanto cluster non simili, piazzati in parti lontane nell'albero, potrebbero ritrovarsi ad essere simili in unioni successive e perciò l'essere vicini nell'albero non corrisponderebbe più al concetto di similarità.

[CAPIRE QUALE FUNZIONE DI SIMILARITA USO E SCRI-VERE]

Divisivo Come per la controparte aggregativa, dietro il clustering divisivo c'è un algoritmo greedy. Invece di iniziare dai singoli elementi, si inizia dal cluster contenente tutti gli oggetti. Ad ogni iterazione si determina quale cluster è quello meno coerente e lo si divide in due. Come prima si utilizzano funzioni di similarità poichè due cluster con oggetti simili sono più coerenti di cluster con oggetti non simili. Ad esempio, un cluster con molti oggetti identici ha una coerenza massimale. L'operazione di divisione di un cluster è anch'essa una operazione di clustering, poichè bisogna trovare due sotto-cluster. Qualsiasi tecnica di clustering può essere usata per la divisione, anche il clustering aggregativo. Per queste ragione il clustering divisivo è solitamente meno usato. However, there are tasks for which top-down clustering is the more nat-

2.2 Partizionale

Non-hierarchical algorithms often start out with a partition based on ran domly selected seeds (one seed per cluster), and then refine this initial partition. Most non-hierarchical algorithms employ several passes of ye- allocating objects to the currently best cluster whereas hierarchical algorithms need only one pass. However, reallocation of objects from one cluster to another can improve hierarchical clusterings too. We saw an example in section 14.1.3, where after each merge objects were moved around to improve global mutual information. If the non-hierarchical algorithm has multiple passes, then the question arises when to stop. This can be determined based on a measure of goodness or cluster quality. We have already seen candidates of such a measure, for example, group-average similarity and mutual information between adjacent clusters. Probably the most important stopping criterion is the likelihood of the data given the clustering model which we will introduce below. Whichever measure we choose, we simply continue clustering as long as the measure of goodness improves enough in each iteration. We stop when the curve of improvement flattens or when goodness starts decreasing.

K-Means

 \mathbf{EM}

- 3 Sessione Sperimentale
- 4 Conclusioni