Experimen t 6

1. Two judges gave the following rank to a series of eight one act plays in drama competition. Examine the relationship between their judgments.

```
    Judge A
    8
    7
    6
    3
    2
    1
    5
    4

    Judge B
    7
    5
    4
    1
    3
    2
    6
    8
```

Write a R program for above problem.

Code:

```
#Q1
a=c(8,7,6,3,2,1,5,
4)
b=c(7,5,4,1,3,2,6,8)
cor(a,b,method="spearman") ggplot()+aes(x=a,y=b)
+geom point(shape=15,colour="blue")+theme minimal()
```

```
> #Q1
> a=c(8,7,6,3,2,1,5,4)
> b=c(7,5,4,1,3,2,6,8)
> cor(a,b,method="spearman")
[1] 0.6190476
> ggplot()+aes(x=a,y=b)+geom_point(shape=15,colour="blue")+theme_minimal()
> p
```


Approach 2

Judge A's rankings

```
judge_a <- c(8, 7, 6, 3, 2, 1, 5, 4)
# Judge B's rankings
judge_b <- c(7, 5, 4, 1, 3, 2, 6, 8)
```

Calculate the correlation coefficient between Judge A and Judge B correlation_coefficient <- cor(judge_a, judge_b)

Print the correlation coefficient cat("Correlation coefficient between Judge A and Judge B:", correlation_coefficient, "\ n")

You can also create a scatter plot to visualize the relationship plot(judge_a, judge_b, main="Scatter Plot of Judge A vs. Judge B", xlab="Judge A's Rankings", ylab="Judge B's Rankings")

Add a trendline (optional)
abline(lm(judge b ~ judge a), col="red")

Solved manually:

2. Calculate the rank correlation coefficient from the following data.

Height 60 62 64 66 68 70 72 74 Weight 92 83 101 110 128 119 137 146

Write a R program for above problem.

Code:

#Q2

height=c(60,62,64,66,68,70,7

2,74)

weight=c(92,83,101,110,128,119,137,146)

cor(height, weight, method="spearman")

```
> #Q2
> height=c(60,62,64,66,68,70,72,74)
> weight=c(92,83,101,110,128,119,137,146)
> cor(height,weight, method="spearman")
[1] 0.952381
```

Approach 2

```
# Height and Weight data
height <- c(60, 62, 64, 66, 68, 70, 72, 74)
weight <- c(92, 83, 101, 110, 128, 119, 137, 146)

# Calculate the rank of height and weight
rank_height <- rank(height)

# Calculate the difference in ranks
d <- rank_height - rank_weight

# Calculate the squared difference
d_squared <- d^2

# Calculate the sum of squared differences
sum_d_squared <- sum(d_squared)

# Calculate the number of observations
n <- length(height)

# Calculate the rank correlation coefficient (Spearman's rho)
rho <- 1 - (6 * sum_d_squared) / (n * (n^2 - 1))

# Print the rank correlation coefficient
cat("Rank Correlation Coefficient (Spearman's rho):", rho, "\n")
```

```
> # Calculate the rank of height and weight
> rank_height <- rank(height)
> rank_weight <- rank(weight)</pre>
> # Calculate the difference in ranks
> d <- rank_height - rank_weight
> # Calculate the squared difference
> d_squared <- d^2
> # Calculate the sum of squared differences
> sum_d_squared <- sum(d_squared)</pre>
> # Calculate the number of observations
> n <- length(height)</pre>
> # Calculate the rank correlation coefficient (Spearman's rho)
> rho <- 1 - (6 * sum_d_squared) / (n * (n^2 - 1))
> # Print the rank correlation coefficient
> cat("Rank Correlation Coefficient (Spearman's rho):", rho, "\n")
Rank Correlation Coefficient (Spearman's rho): 0.952381
```

Solved manually:

Create a new dataframe, auto_num, that contains only columns with numeric values from the auto dataset. You can do this using the Filter function. Calculate correlation for all pairs of numeric variables .

(g2)	Night 60 12 14 66 68 70 72 74
	Weight 92 83 101 110 128 119 137 146
	4 8 6 3
	Rank of X Rank of Y
	8 7 7 8 6 6 5 5
	S S 4 3
	2 2
	$R = 1 - 6 \leq di^2$
	$0^3 - 0$
	$= 1 - ((1^{2} + 1^{2} + 0^{2} + 0^{2} + 1^{2} + 1^{2} + 0^{2} + 0^{2})$ $= 8(63)$
	= 1 - <u>6+4</u> 8+63
	= 1-3. = 1-0.00476]
	5 1 - 0 00 1 5 0 .9 5 2 3 3 1

Code:

#Q3

library(ISL

R)

data("Aut

o")

head(Aut

o)

 $auto_num = data.frame(Auto[c(1,2,3,4,5,6,7,8)]$

) auto_num

pairs(auto_num)

```
# Assuming 'auto' is your original dataframe
# Create a new dataframe 'auto_num' with only numeric columns
auto_num <- Filter(is.numeric, auto)

# Calculate correlations for all pairs of numeric variables
correlations <- cor(auto_num)

# Print the correlation matrix
print(correlations)
```

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin
1	18	8	307.0	130	3504	12.0	70	1
2	15	8	350.0	165	3693	11.5	70	1
3	18	8	318.0	150	3436	11.0	70	1
4	16	8	304.0	150	3433	12.0	70	1
5	17	8	302.0	140	3449	10.5	70	1
6	15	8	429.0	198	4341	10.0	70	1
7	14	8	454.0	220	4354	9.0	70	1
8	14	8	440.0	215	4312	8.5	70	1
9	14	8	455.0	225	4425	10.0	70	1
10	15	8	390.0	190	3850	8.5	70	1
11	15	8	383.0	170	3563	10.0	70	1
12	14	8	340.0	160	3609	8.0	70	1
13	15	8	400.0	150	3761	9.5	70	1
14	14	8	455.0	225	3086	10.0	70	1
15	24	4	113.0	95	2372	15.0	70	3

4. Use the cor function to create a matrix of correlation coefficients for variables in the auto_num dataframe.

Code:

#Q4

cor(auto_num)

```
> #04
 > cor(auto_num)
                   mpg cylinders displacement horsepower
                                                         weight acceleration
                                                                                 year
             1.0000000 -0.7776175
                                  -0.8051269 -0.7784268 -0.8322442
                                                                  0.4233285 0.5805410 0.5652088
 mpg
 cylinders
                                   0.9508233 0.8429834 0.8975273
                                                                  -0.5046834 -0.3456474 -0.5689316
            -0.7776175
                      1.0000000
 displacement -0.8051269
                       0.9508233
                                   1.0000000
                                             0.8972570
                                                      0.9329944
                                                                  -0.5438005 -0.3698552 -0.6145351
 horsepower
            -0.7784268
                       0.8429834
                                   0.8972570
                                            1.0000000
                                                      0.8645377
                                                                  -0.6891955 -0.4163615 -0.4551715
 weight
            -0.8322442
                       0.8975273
                                   0.9329944
                                             0.8645377
                                                      1.0000000
                                                                  -0.4168392 -0.3091199 -0.5850054
 acceleration
             0.4233285 -0.5046834
                                  -0.5438005 -0.6891955 -0.4168392
                                                                  1.0000000 0.2903161 0.2127458
             0.5805410 -0.3456474
                                  -0.3698552 -0.4163615 -0.3091199
                                                                  0.2903161
                                                                            1.0000000
                                                                                      0.1815277
 origin
             0.5652088 -0.5689316
                                  -0.6145351 -0.4551715 -0.5850054
                                                                  0.2127458 0.1815277 1.0000000
 5. Find Karl Pearson's coefficient of correlation for the following
 X
        62
                64
                        65
                               69
                                       70
                                              71
                                                      72
                                                             74
 Y
        126
                125
                       139
                               145
                                       165
                                              152
                                                     180
                                                             208
 Write a R program for the above problem.
Code:
#05
x=c(62,64,65,69,70,71,72)
,74)
y=c(126,125,139,145,165,152,180,208)
cor(x,y, method="pearson")
```

Output:

```
> #Q5
> x=c(62,64,65,69,70,71,72,74)
> y=c(126,125,139,145,165,152,180,208)
> cor(x,y, method="pearson")
[1] 0.9031822
```

Solved manually:

	V 1/		7	1.2	
	X	XY	X2	У	
6	2 126	7812	3844	15876	
61	1 125	8000		15625	
60	139	9035	4225	19321	
65	145		4761	21025	
70		11550	4900	27225	
71	152	10792	5041	23104	
72		12960	5184	32400	
74	208		5476	43264	
				0	1./
EX=54	7, EY=1240, Ex=	37529 5	y 3 197840	, £xy=8ss	96
_ +	= 1 2x	: = 547	= 68.3	7.5	
	n	8			
_ y =	1. Zy!	= 1240	= 155		
	7	8			
		, .	•		
82	4 5 1	₹xiyi - ž	9	=	
	F.	Zzi2-22)(134.2 V	2)	
	1(7	22i - 2)(7 200 - 1	/	
			C . D	\	
	= 1,2	85546 -	- (68.37	5+155)	
	8				=
	[1	* 39500 - 115	2.775) / =	+197840-(13	512)
	1(8		(393) / (8		')
	[x= 0.0	703			
	-				
					1

6. At Hogwarts School of Witchcraft and Wizardry, students often have a lot of homework. The table below indicates the number of hours students studied, and how they performed on an exam in two of their classes.

Student	Potions			gainst the arts
	study hours	exam	study hours	exam
1	3	75	4	70
2	15	95	12	98
3	6	65	9	85
4	8	70	6	80
5	4	85	2	65
6	2	80	3	75
7	10	65	10	92

Find the correlations between hours spent studying and how students performed in their potions and defense against the dark arts classes.

Code:

```
#06
potions studyhours=c(3,15,6,8,4,2,
10)
potions examscore=c(75,95,65,70,
85,80,65)
defense_studyhours=c(4,12,9,6,2,3
,10)
defense examscore=c(70,98,85,80,6
5,75,92)
cor(potions studyhours,potions exa
mscore)
cor(defense studyhours,defense examscore)
Output:
 > #06
 > potions_studyhours=c(3,15,6,8,4,2,10)
 > potions_examscore=c(75,95,65,70,85,80,65)
 > defense_studyhours=c(4,12,9,6,2,3,10)
 > defense_examscore=c(70,98,85,80,65,75,92)
 > cor(potions_studyhours,potions_examscore)
 [1] 0.2686677
```

> cor(defense_studyhours,defense_examscore)

Solved manually:

[1] 0.9697606

(96)	Potions			ton //
-	tidyhours(h) Exams	erc(Y) Xv	r yy	XY
		9 225	5625 9025	225
- 6 3	65 70	36	4225	390
2	28		7 225	340
10	65	100	6 400	650
<u> </u>	(= 48, Zy= XV= 3750	535, €X	2, 454,	£y²≠41625
	1. 2x; = 1			
	1 €yi = 1.	a 535 = 7	76.429	
\delta_{\chi_2g}	= 1 Ex;	ナーギダ		
	$\sqrt{\left(\int_{\Omega} \mathcal{E} x_{i}^{2}\right)^{2}}$	- X; 1)(1	₹y; *- y)	
5	· 3750-			
	(12 454 - Co	(.257)2)(3	+ x 41625 -	(76.429)2)
¥ 5	0.269			

	(miles) / /
	Defece
Stu	ely hours (x) Eron Score (V) x 2 y 1 X y
-	-
4	70 16 4900 280
12	78 144 9604 1176
	0 7 722 703
-0	80 36 6400 480 65 4 4225 130
3	75 9 5625 225
10	9 2 100 8464 920
ZX	546, ZY=565, ZX=390, ZY=46443, ZXY=3976
F=	1 Exits 46/2 = 6.57)
J=	1 = 4; 2 = 565 = 200 80-714
- 8x	13 122:4: - 1)
_ 2	1 = x1 = x2 (1 = y2 - F2)
	(1 2x1 - x2) (1 0 1)
	= (1,3976) - (46, 2565)
	(46)2) (46)2) (4,46443 - (565)2)
	(1 390 - (46) 2) (1 46443 - (565) 2)
	71
	0.07/
	8=0.96976