Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

- Workflow of projects
- Selecting AI projects
- Organizing data and team for the projects

- Workflow of projects
- Selecting AI projects
- Organizing data and team for the projects

Workflow of a machine learning project

Example: Speech recognition

Amazon Echo / Alexa

Google *Home*

Apple Siri

Baidu *DuerOS*

Key steps of a machine learning project

Echo / Alexa

- 1. Collect data
- 2. Train model

 Iterate many times until good enough
- 3. Deploy model

 Get data back

 Maintain / update model

Key steps of a machine learning project

Self-driving car

1. Collect data

image position of other cars

- 2. Train model

 Iterate many times until good enough
- 3. Deploy model

 Get data back

 Maintain / update model

Workflow of a data science project

Example: Optimizing a sales funnel

Key steps of a data science project

Optimizing a sales funnel

1. Collect data

User ID	Country	Time	Webpage
2009	Spain	08:34:30 Jan 5	home.html
2897	USA	13:20:22 May 18	redmug.html
4893	Philippines	22:45:16 Jun 11	mug.html

2. Analyze data

Iterate many times to get good insights

3. Suggest hypotheses/actions

Deploy changes

Re-analyze new data periodically

Key steps of a data science project

Manufacturing line

Mix clay S

Add glaze

Final inspection

Clay Batch #	Supplier	Mixing time (minutes)
001	ClayCo	35
034	GooClay	22
109	BrownStuff	28

- 1. Collect data
- 2. Analyze data

 Iterate many times to get good insight
- 3. Suggest hypotheses/actions
 Deploy changes

Re-analyze new data periodically

	Mug Batch #	Country	Humidity	Temperature in kiln (F)	Duration in kiln (hours)
t	301	Spain	0.002%	1410°	22
U	302	USA	0.003%	1520°	24
	303	Malaysia	0.002%	1420°	22

Every job function needs to learn how to use data

Sales

Data science

Visit website

Product page

Shoppingcart

Checkout

Optimize sales funnel

Machine learning

Name	Title	Company size	Email	Priority
Tayler	CEO	3050	tay@a	high
Janet	Manager	230	jan@b	medium
David	Intern	30	dave@c	low

Automated lead sorting

Manufacturing line manager

Data science

Mix clay Shape mug Add glaze

Add glaze

Final Fire kiln inspection

Optimize sales funnel

Machine learning

Automated visual inspection

Recruiting

Data science Email Phone \rightarrow \rightarrow outreach screen Onsite \rightarrow Offer interview

Optimize recruiting funnel

Machine learning

Automated resume screening

Marketing

Data science

A B

A/B testing

Machine learning

Customized product recommendation

Agriculture

Data science

Crop analytics

Machine learning

Precision weed killing

How to choose an AI project I

AI knowledge and domain knowledge

What AI can do

Things valuable for your business

Domain experts

Brainstorming framework

- Think about optimizing tasks rather than automating jobs. E.g., call center routing, radiologists.
- What are the main drivers of business value?
- What are the main points in your business?

You can make progress even without big data

- Having more data almost never hurts.
- Data makes some businesses (like web search) defensible.
- But with small datasets, you might still make progress.

How to choose an AI project II

Due diligence on project

Due diligence on project

Technical diligence

- Can AI system meet desired performance
- How much data is needed
- Engineering timeline

Business diligence

- Lower costs
- Increase revenue
 - Launch new product or business

current business

new

business

Build vs. buy

- ML projects can be in-house or outsourced
- DS projects are more commonly in-house
- Some things will be industry standard avoid building those.

Working with an AI team

Specify your acceptance criteria

ok

ok

defect

Goal: detect defects with 95% accuracy

Provide AI team a dataset on which to measure their performance

How AI teams think about data

Training set

Test set

ok

ok

defect

Pitfall: Expecting 100% accuracy

Test set

ok

ok

ok

defect

- Limitations of ML
- Insufficient data
- Mislabeled data
- Ambiguous label

Technical tools for AI teams (optional)

Open-source frameworks

Machine learning frameworks:

- PyTorch
- TensorFlow
- Hugging Face
- PaddlePaddle
- Scikit-learn
- R

Research publications

Arxiv

Open source repositories:

GitHub

CPU vs. GPU

CPU: Computer processor (Central Processing Unit)

GPU: Graphics Processing Unit

Cloud vs. On-premises