

Vulnerability and Risk assessments with GIS

Presented by:

HeiGIT, German Red Cross and 510 data initiative January 2022

What is disaster risk?

Risk is the combination of hazard, exposure and vulnerability

Source: <u>UNDRR</u>

What is disaster risk?

Risk is the combination of hazard, exposure and vulnerability

Source: <u>UNDRR</u>

Source: UNU-EHS

Risk = Hazard x Exposure x Vulnerability Vulnerability = Susceptibility + (1 - Coping Capacity)

What is disaster risk?

Risk is the combination of hazard, exposure and vulnerability

Source: <u>UNDRR</u>

Source: UNU-EHS

Risk = Hazard x Exposure x Vulnerability Vulnerability = Susceptibility + (1 - Coping Capacity)

Source: **INFORM Index**

Risk = 1/3Hazard&Exposure x 1/3Vulnerability x 1/3 Lack of Coping Capacity

Considerations for Anticipatory Action

- What hazard should be considered for the Early Action Protocol Development?
- What are the disaster risks/disaster impacts that could be addressed by Anticipatory Action?
- What are the root causes of those disaster risks and impact? (vulnerability and exposure)
- What vulnerability and exposure indicators should be prioritized as part of the trigger and selection of action?

Which information do you need to act early when a forecast comes in?

Peru Cold Wave EAP

Prioritized impact

- 1. Acute respiratory infections
- Mortality and morbidity of livestock

Trigger: 4 consec. days of temp. under the 5th percentile

Lead time: 5 days

Lifespan: 5 years

Budget

- 56.000 CHF Readiness
- 86.800 CHF Pre-positioning
- 107.000 CHF Activation

Total: CHF 249.800

Readiness Activities

Annual workshop to review EAP, warehousing, DM staff

Prepositioning

Shelter materials, protection kit, clothing

Early Actions

 Distribution of veterinary kits, materials to install a temporary shelter for alpacas, protection kit for alpaca herders.

 Warm clothing for children under five years, material for house insulation.

• Disease prevention and health promotion awareness raising.

Exposure in the Peru cold wave EAP

Vulnerability towards typhoons in the Philippines

Prioritized impacts

- 1. Loss of income of farmers and fishermen
- 2. House damage due to the wind

With regard to the prioritized impacts, the typhoon Early Action Protocol (EAP) will target:

- ➤ the vulnerable farmers (rice, corn, abaca) as well as smallholders of livestock;
- ➤ the fishing communities involved in small-scale "municipal" fisheries or in aquaculture;
- ➤ or the people living in light-weight material houses.

Identify key vulnerability indicators

Which area is most at risk?

Hazard Exposure

Presence of other NGOs

Indicator-based assessments

Indicator-based assessments

Workflow for indicator-based assessments

Normalisation of data

$$Xnew = \frac{X - Xmin}{Xmax - Xmin}$$

Number of Hospitals/		
Municipality 100 00	00 inhabitants	Normalization
1	5	0,17
2	7	0,29
3	2	0
4	15	0,76
5	6	0,23
6	2	0
7	19	1
8	4	0,11
9	8	0,35
10	12	0,58
11	17	0,88
12	10	0,47

 $Risk = Hazard\ exposure\ *Vulnerability$

$$Hazard\ Expsosure\ index \\ = \frac{w1E1 + wEn}{n}$$

$$E = \frac{alpaca\ herders}{sqkm}(normalised)$$

$$Vulnerability\ index = \frac{w1V1 + wVn}{n}$$

$$V = \frac{(Hospitals_n) + (poverty_n) + (food\ insecurity_n)}{3}$$

$$Vweighted = \frac{(0.25 * Hospitals) + (0.5 * poverty) + (0.25 food\ insecurity)}{3}$$

How do you interpret those maps?

Example - Flood Risk

Vulnerability map

Flood exposure map

Example – Intervention map

Vulnerability map

How do you interpret those maps?

Pros and Cons of composite indicators

