Math 6800: Problem Set 1 W.D. Henshaw Due: Thurs. Sept. 15, 2022 (two weeks).

NLA = the text-book Numerical Linear Algebra, by Trefethen and Bau

NLA exercise 1.1 Let B be a 4×4 matrix ...

NLA exercise 2.2 The Pythagorean theorem asserts that for a set...

3. NLA exercise 2.3 Let $A \in \mathbb{C}^{m \times m}$ be hermitian. An eigenvector ...

✓. NLA exercise 2.5 Let $S \in \mathbb{C}^{m \times m}$ be skew-hermitian...

NLA exercise 2.6 If u and v are m-vectors, the matrix $I+uv^*$ is known...

 \checkmark . NLA exercise 3.1 Prove that if W is an arbitrary nonsingular matrix, ...

▼. NLA exercise 3.3 Vector and matrix p-norms are related by various inequalities, ...

Let $A \in \mathbb{C}^{m \times n}$ with columns a_i , and $B \in \mathbb{C}^{p \times n}$ with columns b_i

$$A = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}, \qquad B = \begin{bmatrix} b_1 & b_2 & \dots & b_n \end{bmatrix},$$

Show that

$$AB^* = a_1b_1^* + a_2b_2^* + \ldots + a_nb_n^*$$

 $AB^* = a_1b_1^* + a_2b_2^* + \ldots + a_nb_n^*,$ in <u>two</u> ways: (a) first using the component-wise definition for the elements of the product of two matrices (i.e. if D = AC then $d_{ij} = \sum_k a_{ik}c_{kj}$) and (b) secondly using block-matrix multiplication (hint: choose the blocks to be the columns of A and the rows of B^*).