Lecture 10: Directional Derivatives

October 22, 2016

Sunil Kumar Gauttam

Department of Mathematics, LNMIIT

Parametric Equation of a straight line passing through a given point and a given direction

In order to get equation of the line passing through (x_0, y_0) in the direction of (u_1, u_2) . First note that if P = (x, y) and $P' = (x_0, y_0)$ then vector from P to P' is $(x - x_0, y - y_0)$. Now we want this vector to be parallel to given unit vector (u_1, u_2) , that is there exist some $s \in \mathbb{R}$ such that

$$(x - x_0, y - y_0) = s(u_1, u_2).$$

If we very s over \mathbb{R} are we get all the point on the straight line. So parametric equation of the line passing through (x_0, y_0) in the direction of (u_1, u_2) is

$$x = x_0 + su_1, y = y_0 + su_2,$$

where parameter s varies over set of all real numbers.

Directional Derivatives

The notion of partial derivatives can be easily generalized to that of a directional derivative, which measures the rate of change of a function at a point along a given direction. We specify a direction by specifying a unit vector. Let $u = (u_1, u_2)$ be a unit vector in \mathbb{R}^2 , i.e., $|u| = 1 \iff u_1^2 + u_2^2 = 1$.

Definition 10.1 Let $D \subseteq \mathbb{R}^2$ and $f: D \to \mathbb{R}$ be any function. Let $u = (u_1, u_2)$ be a unit vector in \mathbb{R}^2 . Let $(x_0, y_0) \in D$ be such that D contains a segment of the line passing through (x_0, y_0) in the direction of u. We define the directional derivative of f at (x_0, y_0) along u to be the limit

$$\lim_{t \to 0} \frac{f(x_0 + tu_1, y_0 + tu_2) - f(x_0, y_0)}{t}$$

provided this limit exists. It is denoted by $D_u f(x_0, y_0)$.

Note that if v = -u, then

$$D_{v}f(x_{0}, y_{0}) = \lim_{t \to 0} \frac{f(x_{0} - tu_{1}, y_{0} - tu_{2}) - f(x_{0}, y_{0})}{t}$$

$$= \lim_{h \to 0} \frac{f(x_{0} + hu_{1}, y_{0} + hu_{2}) - f(x_{0}, y_{0})}{-h} \quad \text{(substituing } t = -h\text{)}$$

$$= -D_{u}f(x_{0}, y_{0})$$

Note also that if $\mathbf{i} := (1,0)$ and $\mathbf{j} := (0,1)$, then $D_i f(x_0, y_0) = f_x(x_0, y_0)$ and $D_j f(x_0, y_0) = f_y(x_0, y_0)$.

Theorem 10.2 (Differentiability and Directional Derivatives) Let $D \subset \mathbb{R}^2$ and let (x_0, y_0) be an interior point of D. If $f: D \to \mathbb{R}$ is differentiable at (x_0, y_0) , then for every unit vector $u = (u_1, u_2)$ in \mathbb{R}^2 , the directional derivative $D_u f(x_0, y_0)$ exists and moreover,

$$D_u f(x_0, y_0) = \nabla f(x_0, y_0) \cdot u = f_x(x_0, y_0) u_1 + f_y(x_0, y_0) u_2.$$

- **Example 10.3** 1. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x,y) := x^2 + y^2$. Since f is a polynomial in x,y hence it is differentiable everywhere on plane. Hence by above theorem, given any unit vector $u = (u_1, u_2)$ in \mathbb{R}^2 and any $(x_0, y_0) \in \mathbb{R}^2$, $D_u f(x_0, y_0)$ exists and is equal to $2x_0u_1 + 2y_0u_2$.
 - 2. Consider $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) := \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Find the directional derivative of f at (0,0) in the direction of the vector v=(1,1). Solution: The given vector is not unit vector hence in order find directional derivative in the direction of the vector (1,1) we find its unit vector. $|v| = \sqrt{2}$ Hence unit vector in direction of v would be the vector $u = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. Also recall that we have shown that function is not differentiable at (0,0), hence we can not apply the theorem to calculate the directional derivative. For $t \neq 0$, we consider

$$\frac{f\left(0 + \frac{t}{\sqrt{2}}, 0 + \frac{t}{\sqrt{2}}\right) - f(0, 0)}{t} = \frac{\frac{\frac{t^3}{2\sqrt{2}}}{\frac{t^4}{4} + \frac{t^2}{2}} - 0}{t} = \frac{\frac{\frac{t}{2\sqrt{2}}}{\frac{t^2 + 2}{4}}}{t} = \frac{\frac{t}{2\sqrt{2}} \times \frac{4}{t^2 + 2}}{t} = \frac{\sqrt{2}t}{t(2 + t^2)} = \frac{\sqrt{2}t}{2 + t^2}$$

Hence $D_u f(0,0) = \frac{1}{\sqrt{2}}$. Also recall that $\nabla f(0,0) = (0,0)$. Hence $D_u f(0,0) \neq \nabla f(0,0) \cdot u$.

Geometrical Interpretation of the Directional Derivative

The equation z = f(x, y) represents a surface S in space. If $z_0 = f(x_0, y_0)$, then the point $P(x_0, y_0, z_0)$ lies on S. The vertical plane that passes through P and $P_0(x_0, y_0)$ parallel to u intersects S in a curve C. Then $D_u f(x_0, y_0)$ is the slope of the tangent line to the curve C at the point $P(x_0, y_0, z_0)$.

Geometrical interpretation of the Gradient Vector

The Theorem 10.2 suggests the following geometric interpretation of the gradient. Let $D \subseteq \mathbb{R}^2$ and let (x_0, y_0) be an interior point of D. Let $f: D \to \mathbb{R}$ be differentiable at (x_0, y_0) and suppose $\nabla f(x_0, y_0) \neq (0, 0)$. Given any unit vector $u = (u_1, u_2)$,

$$D_u f(x_0, y_0) = \nabla f(x_0, y_0) \cdot u = |\nabla f(x_0, y_0)| \cos \theta,$$

where $\theta \in [0, \pi]$ is the angle between $\nabla f(x_0, y_0)$ and u. Thus, if we keep in mind the fact that $D_u f(x_0, y_0)$ measures the rate of change in f in the direction of u, then we can make the following observations.

- 1. $D_u f(x_0, y_0)$ is maximum when $\cos \theta = 1$, that is, when $\theta = 0$. Thus near (x_0, y_0) , $u = \frac{\nabla f(x_0, y_0)}{|\nabla f(x_0, y_0)|}$ is the direction in which f increases most rapidly.
- 2. $D_u f(x_0, y_0)$ is minimum when $\cos \theta = -1$, that is, when $\theta = \pi$. Thus near (x_0, y_0) , $u = \frac{-\nabla f(x_0, y_0)}{|\nabla f(x_0, y_0)|}$ is the direction in which f decreases most rapidly.
- 3. $D_u f(x_0, y_0) = 0$ when $\cos \theta = 0$, that is, when $\theta = \frac{\pi}{2}$. Thus near (x_0, y_0) , $u = \pm \frac{(f_y(x_0, y_0), -f_x(x_0, y_0))}{|\nabla f(x_0, y_0)|}$ are the directions of no change in f.

Example 10.4 For example, consider $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) = 4 - x^2 - y^2$. We have $f_x = -2x$ and $f_y = -2y$. So at $(x_0, y_0) = (1, 1)$, the gradient is given by $\nabla f(1, 1) = (-2, -2)$. Thus, near (1, 1), the steepest ascent on the surface z = f(x, y) is in the direction of $\frac{\nabla f(1, 1)}{|\nabla f(1, 1)|} = \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$, while the steepest descent is in the reverse direction, namely, $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, The directions of no change are $\pm \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$.