Mese a "zero-knowledge proof"-ok világáról

Kőműves Balázs

Faulhorn Labs & Codex bkomuves@gmail.com

Budapest University of Technology 2024.11.11

Mi ez?

A "zero-knowledge proofs" néven futó témakör egy *absztrakt* matematikán alapuló technológia, ami röviden azt tudja, hogy:

meg tudlak győzni egy állításról, nagyon hatékonyan, és anélkül hogy minden részletet elárulnék

Példák:

- van egy sakk feladványom, és meg akarlak győzni róla, hogy 2 lépésen belül lehet mattot adni, de nem akarom elárulni, hogy hogyan.
- van egy digitálisan aláírt dokumentumon, és ki akarok húzni belőle szenzitív részleteket
- egy online társasjátékban (pl. torpedó) meg akarlak győzni arról, hogy betartom a játékszabályokat

Mit jelentenek ezek a szavak?

A "proof" az itt egy füllentés: nem matematikai bizonyításról van szó, hanem *kriptográfiai bizonyításról*¹. Ez praktikusan azt jelenti, hogy lehetetlen erőforrások, páldaul egy univerzum méretű számítógép kellene ahhoz, hogy csalni tudjak.

A "zero-knowledge" azt jelenti, hogy semmilyen más információt nem árulok el², azon kívül hogy lehet 2 lépésen belül mattot adni.

Az "argument of knowledge" pedig azt jelenti, hogy én *tényleg* tudok 2 lépésen belül mattot adni, nem pedig csak tudom hogy lehetséges.

¹hivtalosan ezt "argument"-nek hívják

²ez nem minden alkalmazásban fontos, de az egyszerűség kedvéért azokat is mindenki így hívja (ami rengeteg félreértésre ad okot). □ ➤ ← ⊘ ➤ ← ≥ ➤ ← ≥ ➤ €

Miért?

Miért jutna ez a kérdés egyáltalán eszünkbe?

Két fontos alkalmazási terület, ahol egy ilyen technológia jól jöhet:

- privacy: amikor tényleg nem akarunk elárulni valamilyen információt a másik félnek
- hatékonyság: egy meglepő tény, hogy ha eltitkolunk egy csomó mindent, akkor a "maradék" meggyőző információ lehet akár nagyon kicsi is, és nagyon gyorsan³ (hatékonyan) megbizonyosodhat a másik fél arról hogy nem hazudunk

Mindenki tudja, hogy adatot nem lehet "a végtelenségig tömöríteni". Ami a meglepetés, hogy állításokat viszont lehet!

³a bizonyítékot létrehozni viszont kifejezetten lassú tud le<u>n</u>ni 📲 🕟 📲 🕞

Mit lehet vele csinálni?

Sok mindent!

- a digitális aláírás például ennek egy speciális esete
- online identitás: én dönthetem el, hogy mennyi információt osztok meg magamról, miközben a másik fél is biztonságban érezheti magát
- biztonságtechnika általában (credentials, attestations, stb)
- blockchain / web3 világban a privacy is, és a hatékonyság is
- anonim online szavazás
- jog, egészségügy, bankolás: bármi ahol a privacy fontos
- megbíható(bb) machine learning alkalmazások
- stb

Határterületek

Ez egy rendkívűl izgalmas területe az alkalmazott matematikának, de vannak más hasolóan érdekes, közelálló területek is:

- MPC (Secure Multi-Party Computation): több résztvevő közösen szeretne kiszámolni valamit a saját adataikat összegezve, de senki sem akarja a titkos adatait átadni a másiknak
- FHE (Fully Homomorphic Encryption): egy bonyolult számolást szeretnénk egy harmadik félnek outsource-olni, de nem akarjuk hogy a privát adataink kikerüljenek - erre egy (főleg elméleti) megoldás, ha titkosított adaton is végre lehet hajtani a számításokat, anélkül hogy dekódolnánk őket

Ezek között a területek között viszonylag sok az átjárás, de most itt a **ZK**-ra koncentrálunk.

Hogyan?

Ez az egész nagyon mágikusan hangzik! Hogyan lehetséges ez?!

Nos igen, a kriptográfia lényegében mágia :)

Először két egyszerűbb példával próbálom ezt megvilágítani:

- az elsőben a színvak ismerősünket próbáljuk meggyőzni, hogy a piros és a zöld tényleg két különböző szín;
- a második már valódi matematika: a Schnorr protokol arról tud meggyőzni valakit, hogy ismerjük egy csoportelem diszkrét logaritmusát

A gyanakvó színvak

Egy intuitív példa a színek létezését nem elfogadó színvak esete:

Tegyük fel hogy van egy színvak ismerősünk, aki nem hiszi el hogy van különbség a piros és a zöld szín között. Hogyan győzzük meg?

A gyanakvó színvak

Egy intuitív példa a színek létezését nem elfogadó színvak esete:

Tegyük fel hogy van egy színvak ismerősünk, aki nem hiszi el hogy van különbség a piros és a zöld szín között. Hogyan győzzük meg?

Fogjunk egy A4-es lapot, fessük be az egyik felét pirosra, a másikat zöldre. A barátunknak ez egyszínű szürke, nem látja a különbséget ha elfordítjuk 180 fokkal, de mi látjuk. Ha most az ismerősünk a háta mögött véletlenszerűen elforgatja (ő tudja hogy milyen állásba, például a hátulján meg van jelölve az egyik sarok), és mi konzisztensen meg tudjuk mondani az "egyszínű" oldalról, hogy elforgatta vagy nem, akkor egy idő után *kénytelen lesz* elhinni hogy mi látunk valamit ami ő nem...

Schnorr protokol

Egy matematikai példa a **Schnorr protokol**. Ez egy *interaktív protokol*, amivel arról győzi meg az egyik fél a másikat, hogy ismeri egy N méretű $\mathbb{G}:=\langle g\rangle$ ciklikus csoportban egy adott $x\in\mathbb{G}$ elem $w\in\mathbb{Z}_N$ diszkrét logaritmusát: $x=g^w$.

- ① a **prover** választ egy egyenletesen véletlen $r \in \mathbb{Z}_N$ számot, és elküldi a $t:=g^r \in \mathbb{G}$ csoportelemet
- ② a verifier válaszol egy szintén véletlen $c \in \mathbb{Z}_N$ challenge-el
- a prover az $s:=r+cw\in\mathbb{Z}_N$ számmal válaszolja meg a challenge-t
- lacktriangledown a verifier ellenőrzi a $g^s=t\cdot x^c$ egyenletet

Ez a példa több fogalmat is illusztrál: a "hardness of discrete logarithm" feltevés; interaktív protokol; commitment ($t \in \mathbb{G}$ egy elköteleződés r mellett); zero knowledge (r mint "blinding factor").

Mi az hogy állítás?

Mit jelent pontosan az hogy "állítás", amiről meg akarlak győzni?

A gyakorlatban valamilyen objektíven *eldönthető* dolgot szeretnénk; ennek egy praktikus verziója egy *számítógép program*, ami vagy azt mondja hogy **OKÉ**, vagy azt hogy **NEM**.

Formálisabban, van egy

$$f: X \times W \to \{\text{elhiszem, vagy nem}\}$$

függvényünk (relációnak is hívhatnánk), ahol X jelöli a nyilvános információt, és W jelöli a titkos információt 4 .

És arról akarlak meggyőzni, hogy egy nyilvánosan adott $x \in X$ mellé a birtokomban van egy olyan titkos $w \in W$, hogy

$$f(x, w) = IGEN$$

 $^{^4}$ ezt gyakran "witness"-nek hívják, emiatt a W betűb \mapsto « \bigcirc » \longleftrightarrow \bigcirc » \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

Sudoku

Egy jó példa erre a Sudoku feladvány⁵:

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

ltt X (a feladvány) a baloldali ábra; W (a megoldás) a jobboldali ábra; és az f program ellenőrzi, hogy a megoldás szabályos, és kompatibilis a feladvánnyal.

⁵a képeket loptam az internetekről

Madártávlat

Egy tipikus⁶ "blueprint" egy ZK bizonyítás elkészítéséhez:

- az X bemenetet (ha van, akkor kimenetet), W witness-t és minden, a függvény/reláció kiértékelése közben keletkező részeredményt is számokkal (pontosabban, véges test elemekkel) reprezentáljuk
- a relációnkant polinom egyenletekre fordítjuk le, úgy hogy az egyenletrendszernek pontosan akkor lesznek megoldásai a fenti számok, ha teljesül a reláció ("aritmetizáció")
- majd valamilyen matematikai trükkel megmutatjuk, hogy az egyenleteknek van megoldása, olyan, ami konzisztens a bemenetekkel is ("interactive oracle proof")
- végül ezt praktikusan megvalósíthatóvá tesszük kriptográfiai technológiákkal ("polynomial commitment schemes")

⁶de nem az egyetlen lehetséges

Polinomok

Sok, részben különböző konstrukció van ilyen ZK bizonyításokra, de majdnem mindegyik *véges testek feletti polinomokra* alapul.

Az egyváltozós⁷ polinomoknak két fontos tulajdonságát fogjuk használni:

- interpoláció: tetszőleges n méretű (x_i, y_i) párhalmazhoz lehet talalálni egy n-1 fokú f polinomot amire $f(x_i)=y_i$;
- **gyökök:** egy n fokú, nem konstans zéró polinomnak pontosan n gyöke van.

Miért pont véges testek? Már csak azért is, mert a számítógép azzal tud számolni... (de más hasznos tulajdonságaik is vannak.)

Schwartz-Zippel lemma

Tegyük fel, hogy adott két, legfeljebb d-edfokú polinom egy $\mathbb F$ véges test felett:

$$p,q\in\mathbb{F}^{\leq d}[x]$$

És arra vagyunk kíváncsiak, hogy egyenlőek-e.

Ha nem egyenlőek, akkor a különbségük is legfeljebb d-edfokú, tehát maximum d gyöke lehet. Tehát ha véletlenszerűen választunk egy $\zeta \in \mathbb{F}$ testelemet, és ott kiértékeljük őket, akkor annak a valószínűsege, hogy $p(\zeta) = q(\zeta)$ legfeljebb $d/|\mathbb{F}|$.

A gyakorlatban általában d relatíve kicsi (például 10^6), míg $\mathbb F$ sokkal nagyobb (például 10^{40} vagy akár 10^{80}). Így már egyetlen⁸ ponton kiértékelve is biztosak lehetünk abban hogy p és q egyenlőek-e!

Ez egy nagyon centrális ötlet a témakörben.

 $^{^8}$ ha $\mathbb F$ nem elég nagy, megismételhetjük 2-3 pontra is $> < \bigcirc > < \bigcirc > < \bigcirc > > \bigcirc$

Aritmetizáció

Hogyan fordítunk le egy függvényt / relációt polinom egyenletekre?

Két főbb elterjedt megközelítés van:

- aritmetikus áramkör
- és állapotgép

Ez a megkülönböztetés hasonló a fizikai chip-ek világához (célspecifikus vs. általános célú áramkör, avagy ASIC vs. CPU).

Utána egy következő lépésben ezeket konkrét egyenletekkel kódoljuk el; ezt is többféleképpen lehet csinálni (példák aritmetikus áramkör elkódolásokra: R1CS, Plonk, GKR, stb).

Aritmetikus áramkör

Egy "aritmetikus áramkör" arithmetikai kapukból (pl. összeadás, szorzás) és "drótokból" áll:

Ez az áramkör a következő függvényt valósítja meg:

$$f(x_1, x_2; w) := (x_1 + x_2)(x_2 + w) + (w + 7)^2$$

Állapotgép

Van egy állapotunk, amit egy $s \in \mathbb{F}^m$ vektorral kódolunk el, és egy step : $\mathbb{F}^m \to \mathbb{F}^m$ állapot-átmenet függvényünk. Ezt ismételgetjük egy megállási feltételig.

Például ez az állapotgép elkódolhat egy egyszerű virtuális processzort, és akkor az állításunkat megfogalmazhatjuk programként.

Ennek a megközelítésnek nagy előnye, hogy sokkal könnyebb használni: Az állítást csak egy programra kell fordítani, "alatta" minden más fix; így a lehetséges hibák halmaza is kisebb. Hátránya, hogy általában kicsit magasabbak a költségei.

Ezeket az (absztrakt) gépeket áltában "zero-knowledge virtual machines"-nak hívják (zkVM).

Polinom interpoláció

Általában bármilyen felmerülő adatot (például X,W bemenet és witness) először véges test elemekkel reprezentálunk, majd a keletkező $Y \in \mathbb{F}^N$ vektort egy N-1 fokú P polinommal reprezentáljuk, úgy hogy az rögzített x_i helyeken az A_i értékeket vegye fel:

$$P(x_i) = Y_i$$

Gyakorlati megfontolásokból (például hogy ezt az interpolációs polinomot hatékonyan ki lehessen számolni), az $\{x_i\}$ halmazt egy $H\subset \mathbb{F}^{\times}$ multiplikatív részcsoportnak szokták választani: $x_i:=\omega^i$,

$$H = \{1, \omega, \omega^2, \dots, \omega^{N-1}\} \subset \mathbb{F}^{\times} \quad \text{(megj.: } \omega^N = 1\text{)}$$

Tehát $P(\omega^i)=Y_i$. Ennek a konstrukciónak egy további előnye, hogy könnyű az indexeket eltolni: ha $P(x)=Y_k$ akkor $P(\omega x)=Y_{k+1},\ P(\omega^2 x)=Y_{k+2}$, stb.

Fibonacci állapotgép, I.

Egy egyszerű példa egy állapotgépre a Fibonacci sorozatot kiszámoló gép: $F_{n+1} = F_n + F_{n-1}$. Itt az állapot a k-adik lépésben két szám: (a_i,b_i) , és az állapot-átmenet függvény pedig:

$$step(a,b) := (a+b, a)$$

A kezdőállapot a hagyományos Fibonacci sorozatnál $(a_0,b_0)=(1,0)$, de most a példa kedvéért lehet mondjuk a kezdőállapot titkos, és az állítás, hogy tudunk olyan kezdőállapotot, amire az N-ik Fibonacci szám 9 egy adott $x\in\mathbb{F}$.

Hogyan csináljuk ezt? Először az (a_i,b_i) állapotsoroztat két $A,B\in\mathbb{F}[x]$ interpolációs polinommal reprezentáljuk:

$$A(\omega^i) = a_i$$
 és $B(\omega^i) = b_i$

 $^{^9}$ természetesen itt most mindent az $\mathbb F$ testben értünk \triangleright « \bigcirc \triangleright « \bigcirc \triangleright « \bigcirc \triangleright » \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

Fibonacci állapotgép, II.

Emlékezzünk, hogy $A(\omega^i)=a_i$ és $B(\omega^i)=b_i$. Most tehát át kell fordítani az állapot-átmenet egyenleteket: $a_k=a_{k-1}+b_{k-1}$ és $b_k=a_{k-1}$ ezekre a polinomokra. Első lépés:

$$\forall x \in H, \ x \neq 1. \quad A(x) = A(\omega^{-1}x) + B(\omega^{-1}x) \quad \text{és} \quad B(x) = A(\omega^{-1})$$

Itt elég kellemetlen az $x \neq 1$ (azaz $k \neq 0$) megkötés: Univerzális, $\forall x \in H \dots$ típusú egyenleteket szeretnénk. Ez könnyen megoldható:

$$0 = (x - 1) \cdot [A(x) - A(\omega^{-1}x) - B(\omega^{-1}x)]$$

$$0 = (x - 1) \cdot [B(x) - A(\omega^{-1}x)]$$

Szeretnénk még, hogy $A_N=t$, ahol $t\in\mathbb{F}$ egy nyilvános érték. Ezt többféleképpen el lehet kódolni; egy lehetőség: $\forall x\in H$. $\mathcal{L}_{N-1}(x)\cdot [A(x)-t]=0$. Itt \mathcal{L}_{N-1} egy Lagrange polinom:

$$\mathcal{L}_k(\omega^j) := \left\{ egin{array}{ll} 1, & \mathrm{ha} & k=j \\ 0, & \mathrm{ha} & k
eq j \end{array}
ight. \qquad \mathsf{deg}(\mathcal{L}_k) = N$$

Fibonacci állapotgép, III.

Utolsó lépésként a $\forall x \in H.\ P(x) = 0$ fajta egyenleteket szeretnénk tovább átírni olyanokká, amik már minden $x \in \mathbb{F}$ -re teljesülnek.

Szerencsére ez is viszonylag egyszerűen megvalósítható: $P(\omega^i)=0$ ekvivalens azzal, hogy P(x) osztható $(x-\omega^i)$ -vel. Ha minden i-re $P(\omega^i)=0$, akkor pedig P(x) osztható a $Z_H(x)$ "zéró polinommal" 10 :

$$Z_H(x) := \prod_{N=1}^{N-1} (x - \omega^i) = x^N - 1$$

Jelölje a hányadost $Q(x):=P(x)/Z_H(x)$. Fontos hogy ez is egy polinom. Ekkor a végső egyenleteink valahogy így fognak kinézni:

$$Q_{1}(x) \cdot Z_{H}(x) = (x-1) \cdot \left[A(x) - A(\omega^{-1}x) - B(\omega^{-1}x) \right]$$

$$Q_{2}(x) \cdot Z_{H}(x) = (x-1) \cdot \left[B(x) - A(\omega^{-1}x) \right]$$

$$Q_{3}(x) \cdot Z_{H}(x) = \mathcal{L}_{N-1}(x) \cdot \left[A(x) - t \right]$$

Fibonacci protokol, első próbálkozás

De hogyan lesz ezekből az egyenletekből meggyőző bizonyíték?

A Schnorr protokolhoz hasonlóan egy interaktív protokolt építünk. Az első probálkozás:

- a prover kiszámolja az (a_n,b_n) Fibonacci sorozatot, a titkos $(a_0,b_0)\in\mathbb{F}\times\mathbb{F}$ kezdőállapotból kiindulva
- $oldsymbol{2}$ ezekből elkészíti az A(x), B(x) interpolációs polinomokat
- lacktriangle majd kiszámolja a Q_1,Q_2,Q_3 hányados polinomokat
- lacktriangle elküldi az A,B,Q_1,Q_2,Q_3 polinomokat és a $t=a_{N-1}$ értéket
- **3** a **verifier** válasz egy véletlen $\zeta \in \mathbb{F}$ számot, és leellenőrzi a 3 egyenletet az $x \mapsto \zeta$ helyettesítéssel

Mi ezzel a baj?

Fibonacci protokol, első próbálkozás

De hogyan lesz ezekből az egyenletekből meggyőző bizonyíték?

A Schnorr protokolhoz hasonlóan egy interaktív protokolt építünk. Az első probálkozás:

- a prover kiszámolja az (a_n,b_n) Fibonacci sorozatot, a titkos $(a_0,b_0)\in\mathbb{F}\times\mathbb{F}$ kezdőállapotból kiindulva
- $oldsymbol{0}$ ezekből elkészíti az A(x), B(x) interpolációs polinomokat
- lacktriangledown majd kiszámolja a Q_1,Q_2,Q_3 hányados polinomokat
- lacktriangle elküldi az A,B,Q_1,Q_2,Q_3 polinomokat és a $t=a_{N-1}$ értéket
- **3** a **verifier** válasz egy véletlen $\zeta \in \mathbb{F}$ számot, és leellenőrzi a 3 egyenletet az $x \mapsto \zeta$ helyettesítéssel

Mi ezzel a baj? Ezek a polinomok lehetnek nagyon nagyok (ha N nagy), ami sok kommunikációt, és a verifier részéről (viszonylag) sok számolást jelent; továbba könnyen kinyerhető belőlük a "titok", hiszen $a_0=A(1)$ és $b_0=B(1)$.

Polinom commitment sémák

A dilemma feloldása, hogy a prover polinomok helyett csak az "ujjlenyomataikat" (commitment) küldi el a verifiernek (ezek kicsik), és az $x \mapsto \zeta$ helyettesíteseket is a prover végzi el; ezekhez **bizonyításokat** is mellékel, amik garantálják hogy konzisztens az ujjlenyomattal.

Definíció: Egy polynomial commitment scheme (PCS) a következő algoritmusok gyűjteménye:

$$\begin{array}{lll} \operatorname{commit} \,:\, \mathbb{F}^{\leq D}[x] & \to \, \mathbb{G} \\ \\ \operatorname{eval} \,:\, \mathbb{F}^{\leq D}[x] \times \mathbb{F} & \to \, \mathbb{F} \times \Pi \\ \\ \operatorname{check} \,:\, \mathbb{G} \times (\mathbb{F} \times \Pi) & \to \, \{\operatorname{true}, \operatorname{false}\} \end{array}$$

amik azt tudják, hogy:

- $\operatorname{eval}(f,t) = (f(t),\pi)$
- $\bullet \ \mathsf{check} \big(\mathsf{commit}(f), \mathsf{eval}(f,t) \big) = \mathsf{true}$
- reménytelenül nehéz másik $f' \in \mathbb{F}[x]$ polinomot találni, amire $\mathrm{commit}(f) = \mathrm{commit}(f')$
- reménytelenül nehéz másik $y'\in\mathbb{F}$ -t és $\pi'\in\Pi$ -t találni, amik átmennek az ellenőrzésen

Fibonacci protokol, második verzió

- **1** a **prover** kiszámolja az (a_n, b_n) Fibonacci sorozatot
- ezekből elkészíti az A(x), B(x) interpolációs polinomokat, és elküldi ezek commitment-jét: com(A), com(B), és a $t=A_{N-1}$ értéket
- **3** majd kiszámolja a Q_1, Q_2, Q_3 hányados polinomokat, és elküldi ezek commitment-jeit is: $com(Q_1), com(Q_2), com(Q_3)$
- lacktriangle a **verifier** válasz egy véletlen $\zeta \in \mathbb{F}$ számot, és elküldi a prover-nek
- **a prover** kiszámolja az $A(\zeta)$, $B(\zeta)$, $Q_{1,2,3}(\zeta)$ értékeket és a hozzájuk tartozó *bizonyításokat*, és ezeket elküldi a verifier-nek
- o a verifier leellenőrzi ezeket a bizonyításokat, és az egyenleteket is.

Ez már sokkal jobb: a commitmentek és az értekek nagyon "kicsik" (a polinomok méretéhez képest), as az ellenőrzések is csak keves időbe kerülnek.

Megjegyzés: Itt nagyon fontos, hogy a verifier csak az után választja ki a $\zeta \in \mathbb{F}$ challenge értéket, miután megkapta az összes commitment-et; ha a prover előre ismerné ζ -t, nagyon könnyen tudna csalni!

24 / 33

A véletlen lineáris kombináció trükk

Egy standard trükk polinomokat és egyenleteket véletlenszerűen választott együtthatókkal skálázva összeadni. Ezzel nagyon jelentős hatékonyságnövelést lehet elérni.

Tegyük fel hogy van m polinom-egyenletünk: $P_i(x)=0$ (ide képzelhetjük például a korábbi 3 egyenletet). Válasszunk egy véletlen $\alpha\in\mathbb{F}$ együtthatót, és képezzük a

$$\mathcal{P}(x) := \sum_{i=0}^{m-1} \alpha^{i} P_{i}(x) = P_{0}(x) + \alpha \cdot P_{1}(x) + \alpha^{2} \cdot P_{2}(x) + \dots$$

lineáris kombinációt. Annak esélye, hogy $\mathcal{P}(\zeta)=0$, de legalább egy $P_i(\zeta)\neq 0$, nagyon kicsi: α polinomjaként tekintve láthatjuk, hogy legfeljebb $m/|\mathbb{F}|$.

Így tehát m egyenlet külön-külön leellenőrzése helyett elég egyet ellenőrizni.

Kombinált hányadospolinom

Ezt a trükköt alkalmazhatjuk a Q_i hányadospolinomokra és a 3 egyeletre is:

$$Q(x) := Q_1(x) + \alpha \cdot Q_2(x) + \alpha^2 \cdot Q_3(x) =$$

$$= \sum_{i=1}^3 \alpha^{i-1} \cdot \left[P_i(x) / Z_H(x) \right] = \frac{1}{Z_H(x)} \sum_{i=1}^3 \alpha^{i-1} P_i(x)$$

Így csak egyetlen nagy egyenletünk marad: $orall x \in \mathbb{F}$

$$Q(x) \cdot Z_H(x) = 1 \cdot (x-1) \cdot \left[A(x) - A(\omega^{-1}x) - B(\omega^{-1}x) \right]$$

+ $\alpha \cdot (x-1) \cdot \left[B(x) - A(\omega^{-1}x) \right]$
+ $\alpha^2 \cdot \mathcal{L}_{N-1}(x) \cdot \left[A(x) - t \right]$

Fibonacci protokol, harmadik verzió

- **1** a **prover** kiszámolja az (a_n, b_n) Fibonacci sorozatot
- elkészíti az A(x), B(x) interpolációs polinomokat, és elküldi a ${\sf com}(A)$, ${\sf com}(B)$ commitment-eket és a $t=A_{N-1}$ értéket
- lacktriangle a verifier választ egy véletlen $lpha\in\mathbb{F}$ értéket, és elküldi azt
- **1** a **prover** kiszámolja a $\mathcal{Q}(x)$ kombinált hányadospolinomokat ezzel az α együtthatóval, és elküldi a $\mathrm{com}(\mathcal{Q})$ commitmentjét
- $\ensuremath{\mathfrak{o}}$ a verifier válasz egy véletlen $\zeta\in\mathbb{F}$ számot, és elküldi a prover-nek
- **1** a **prover** kiszámolja az $A(\zeta)$, $B(\zeta)$, $\mathcal{Q}(\zeta)$ értékeket és a hozzájuk tartozó bizonyításokat, és ezeket elküldi a verifier-nek
- a verifier leellenőrzi ezeket a bizonyításokat, és a kombinált egyenletet.

A sorrend továbbra is nagyon fontos!!

Fiat-Shamir heurisztika

Eddig mindig *interaktív protokollokról* volt szó: a prover és a verifier "beszélget", és a beszélgetés végére a verifier (ideális esetben) meggyőződik az állítás igazságáról.

Azonban a gyakorlatban sokszor sokkal praktikusabb lenne egy nem-interaktív bizonyítás: A prover elkészíti az egész bizonyítást egy "csomagként", és utána azt bárki le tudja ellenőrizni (például az internetről letöltve).

A jó hír, hogy ezt (bizonyos feltételek mellett) mindig meg lehet csinálni. Vegyük észre, hogy a verifier üzenetei mindig egyenletesen véletlenül választott $\mathbb F$ testelemek voltak. Az ötlet, hogy ezeket a challenge-eket a prover leszimulálja, olyan módon hogy ne tudja őket csalás céljából érdemben befolyásolni.

Ehhez a prover az összes korábbi (szimulált) üzenetváltások egy kriptografikus hash függvényét (pl. SHA256) veszi alapul.

Polinom commitment sémák, második nekifutás

Már majdnem minden "mozgó alkatrészt" megnéztünk, kivéve a PCS-eket. Emlékeztetőül:

$$\begin{array}{lll} \operatorname{commit} \,:\, \mathbb{F}^{\leq D}[x] & \to \, \mathbb{G} \\ \\ \operatorname{eval} \,:\, \mathbb{F}^{\leq D}[x] \times \mathbb{F} & \to \, \mathbb{F} \times \Pi \\ \\ \operatorname{check} \,:\, \mathbb{G} \times (\mathbb{F} \times \Pi) & \to \, \{\operatorname{true}, \operatorname{false}\} \end{array}$$

Több külöbőző ilyen séma van (és folyamatosan találnak ki új variációkat); ami közös bennük, hogy mindegyik valamilyen algebrai struktúrára épül: például

- dlog-nehéz csoportok (Bulletproofs)
- pairin-friendly elliptikus görbék (KZG, Dory)
- hibajavító kódok (FRI)
- groups of unknown order (DARK)
- rácsok, stb.

Pedersen vektor commitment

Bemelegítésképpen nézzük először a Pedersen (vektor) commitment-et. Ez NEM egy polinom commitment séma: csak annyit tud, hogy egy $x \in \mathbb{F}^n$ vektor "ujjlenyomatát" tudjuk képezni (hasonlóan egy kriptografikus hash függvényhez).

Szükségünk lesz egy rögzített $\mathbb G$ ciklikus csoportra, amire $|\mathbb G|=|\mathbb F|$, amiben nehéz a diszkrét logaritmus probléma, és rögített, véletlenszerűen választott, lineárisan független $g_1,\ldots g_n\in \mathbb G$ és $h\in \mathbb G$ generátor elemekre.

Ezek után, ha egy $x \in \mathbb{F}^n$ vektorhoz akarunk elköteleződni, akkor Pedersen commitment egyszerűen a:

$$\mathrm{com}(r;x) := h^r \cdot \prod_{i=1}^n g_i^{x_i} \in \mathbb{G}$$

csoportelem. Itt $r\in\mathbb{F}$ egy véletlenszerűen választott érték ("blinding factor"): Ez garantálja a zero-knowledge tulajdonságot. Amikor fel akarjuk fedni a vektort, akkor az r értéket is megmutatjuk.

KZG commitment, I.

A KZG commitment már egy igazi PCS. Itt egy kicsit bonyolultabb setup-ra lesz szükségünk: A csoportból két példány kell: $\mathbb{G}_1=\mathbb{G}_2$, rögzített $g_i\in\mathbb{G}_i$ generátorokkal; valamint egy bilineáris leképezés (vagy "pairing"): $\langle -,-\rangle:\mathbb{G}_1\times\mathbb{G}_2\to\mathbb{G}_T$ egy harmadik csoportba. A gyakorlatban $\mathbb{G}_{1,2}$ elliptikus görbék részcsoportjai, és \mathbb{G}_T egy véges test multiplikatív részcsoportja.

Ha $g \in \mathbb{G}_{1,2}$ és $|\mathbb{G}| = |\mathbb{F}| = p$, akkor egy $u \in \mathbb{F}_p$ prímtest-elemhez, amire gondolhatunk úgy is mint egy $0 \le u < p$ egész szám, elkészíthetjük az $[u]_i := g_i^u \in \mathbb{G}_i$ csoportelemet.

Szükségünk lesz még e következő, ún. "trusted setup"-ra: Válasszunk egy véletlenszerű, $titkos\ \tau\in\mathbb{F}$ elemet, és készítsük el az

$$[1]_1 = g_1, [\tau]_1, [\tau^2]_1, \dots, [\tau^D]_1 \in \mathbb{G}_1$$
 és $[1]_2 = g_2, [\tau]_2 \in \mathbb{G}_2$

sorozatokat. Nagyon fontos, hogy a τ -t **egyetlen résztvevő se ismerje** (ezt a gyakorlatban meg lehet valósítani ún. "trusted setup ceremoniákkal").

KZG commitment, II.

Ekkor egy $P(x) := \sum_{k=0}^{n} a_k x^k$ polinom KZG commitmentje

$$\mathrm{com}(P) := \left[P(\tau)\right]_1 = g_1^{f(\tau)} = g_1^{\left(\sum a_k \tau^k\right)} = \prod_{k=0}^n g_1^{(a_k \tau^k)} = \prod_{k=0}^n [\tau^k]_1^{a_k}$$

Ez nagyon hasonló a Pedersen commitmenthez, csak véletlenszerű g_k generátorok helyett helyett struktúrált $[\tau^k]$ generátoraink vannak.

Ha most meg akarunk győzni valakit, hogy $P(x_0)=y_0$, akkor a bizonyíték a $Q(x):=(P(x)-y_0)/(x-x_0)$ hányados-polinom $\mathrm{com}(Q)$ commitmentje lesz.

Hogyan tudjuk ezt ellenőrizni? Azt szeretnénk látni, hogy $Q(x)\cdot(x-x_0)=P(x)-y_0.$ Mindkét oldal commitmentjét képezve:

$$\operatorname{com}(Q)^{(\tau-x_0)} = \operatorname{com}(P) \cdot g_1^{-y_0}$$

Sajnos azonban au-t nem ismerjük. Itt segít a bilineáris "pairing":

$$\left\langle \operatorname{com}(Q) \;,\; [\tau]_2 \cdot g_2^{-x_0} \right\rangle = \left\langle \operatorname{com}(P) \cdot g_1^{-y_0} \;,\; g_2 \right\rangle$$

Linkek

Néhány link kiindulópontnak, ha valaki többet szeretne tudni:

- Justin Thaler: Proofs, Arguments, and Zero-Knowledge (online könyv): https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.htm
- Berkeley University ZKP MOOC (online kurzus): https://zk-learning.org/
- ZK Whiteboard Sessions (youtube előadások): youtube.com/playlist?list=PLj80z0cJm8QErn3akRcqvxUsyXWC810Gq
- zkp.science (linkgyűjtemény): https://zkp.science/
- Dankrad Feist: KZG polynomial commitments (blogposzt): https://dankradfeist.de/ethereum/2020/06/16/ kate-polynomial-commitments.html
- Alan Szepieniec: Anatomy of a STARK (tutorial): https://aszepieniec.github.io/stark-anatomy/