UNIDAD 4: ALGORITMOS PARA FLUJOS DE DATOS

MODELOS DE FLUJO DE DATOS

Blanca Vázquez

Marzo 2022

SENSORES INDUSTRIALES

Los sensores industriales pueden capturar grandes cantidades de datos Imagen tomada de commonswikimedia.org

ESTACIONES DE MONITOREO DE LA CALIDAD EL AIRE

ESTACIONES DE MONITOREO DE LA CALIDAD EL AIRE

FLUJO DE DATO

Son datos que se generan constantemente (tiempo real) a partir de miles de fuentes de datos

- Normalmente los datos son enviados simultáneamente en conjuntos de tamaño pequeño (kbs)
- Si los datos no se almacenan o se procesan rápido, estos se perderán
- Dinámicos

INFORMACIÓN CONTENIDA EN LOS FLUJOS DE DATOS

- Atributos: cada atributo representa un tipo de dato (segmento, geo-localización, ID, ...)
- Marca de tiempo: indica hora y fecha de los datos generados
- Dato crudo: contiene la información original generada por la fuente de datos

EJEMPLOS DE FUENTES DE FLUJOS DE DATOS

- Monitoreo
- · Dispositivos IoT
- Internet y tráfico web (por ej. secuencias de páginas visitadas (clickstream))
- Transacciones financieras
- · Video juegos en línea
- Videos

DATOS DE SENSORES

Un sensor en el océano envía cada hora la temperatura del agua a una estación hidrológica (tasa de envío baja 4kb)

DATOS DE SENSORES

Un problema interesante sería:

- · Un millón de sensores
- · Cada uno enviando sus datos en una tasa de 10kb/segs
- · Esto replicado cada 150 millas
- · El océano Pacífico tiene 9,320.6 millas de norte a sur!!

DATOS DE IMÁGENES

Aproximadamente existen en órbita **5,000 satélites** que captan imágenes multiespectrales de la Tierra de **resolución media y alta**.

Aproximadamente capturan y envían: millón y

Aproximadamente capturan y envían: millón y medio de imágenes diarias

Cámaras de vigilancia generalmente producen imágenes de baja resolución (en comparación con los satélites), sin embargo el intervalo de envío es de 1 segundo.

Londres tiene alrededor de 6 millones de cámaras.

INTERNET Y TRÁFICO WEB¹

- · Google procesa 81,226 búsquedas por segundo
- · 3.5 miles de millones de búsquedas por día
- En 1999, a Google le tomó un mes indexar ≈ 50millones de páginas. En el 2012 le tomó un minuto.
- Cada pregunta viaja 1,500 millas (hacia el centro de datos y de regreso)
- La respuesta a una consulta tarda 2 segundos (usando 1,000 computadoras)

Fuente: https://www.internetlivestats.com/google-search-statistics/

PROCESAMIENTO DEL FLUJO DE DATOS

- Aplicaciones sencillas
 - · Implementación de mínimo máximo
 - · Generación de informes básicos
 - · Emitir alertas
- · Aplicaciones complejas
 - · Uso de aprendizaje máquina
 - · Procesamiento de eventos y transmisiones

RETOS

- 1. Memoria limitada para almacenar los datos
- 2. Debido a la vasta cantidad de datos, no es siempre posible generar respuestas exactas
- 3. Se espera que la calidad de la respuesta sea confiable
- 4. ¿Cómo trabajar con los datos (selección aleatoria, los últimos...)?

¿CÓMO SE PROCESAN LOS FLUJOS DE DATOS?

Un procesador de flujos de datos es un tipo de Sistema de Administración de datos (DSMS).

- · Cualquier número de flujos puede ingresar al DSMS.
- Los flujos que se reciben no necesariamente deben tener la misma tasa de datos o tipo de datos
- El tiempo entre flujos no necesita ser uniforme.
- Los algoritmos para procesar los flujos puede involucrar resumen, filtrado o uso de ventanas.

MODELO GENERAL DE UN DBMS

MODELO GENERAL DE PROCESAMIENTO DE FLUJOS DE DATOS

CONSULTAS SOBRE FLUJOS DE DATOS

- · Las consultas son frecuentes
 - Los flujos son evaluados a medida que se van recibiendo
 - Actualizaciones constantes
- · Las consultas son complejas
 - Pre-procesamiento de atributos y extracción de datos crudos

CONSULTAS SOBRE FLUJOS DE DATOS

Existen dos formas generales para hacer consultas sobre los flujos de datos:

- Consultas permanentes: están almacenadas dentro del procesador, son ejecutadas permanentemente y producen salidas en momentos apropiados
- Consultas Ad-hoc: se realiza una sola vez sobre el flujo o flujos actuales

CONSULTAS PERMANENTES

- Supongamos un sensor de temperatura en el océano, la consulta permanente sería "si la temperatura excede los 25 grados, emite una alerta".
- · Esta consulta solo dependen del último flujo recibido

CONSULTAS PERMANENTES

- Otro ejemplo de consulta permanente sería: cada vez que llegue una nueva lectura (temp) genera el promedio de las últimas 24 lecturas
- Aquí almacenados las últimas 24 lecturas, cuando un nuevo valor llega se hace el cálculo y se borra la primera lectura

CONSULTAS PERMANENTES

- Otro ejemplo de consulta permanente sería: obtén la temperatura máxima
- · ¿Cómo lo haríamos?
- Y si la consulta es obtener el promedio, ¿cómo lo haríamos?

CONSULTAS AD-HOC

- Son consultas hechas una sola vez sobre los flujos actuales.
- Un enfoque común es almacenar una ventana deslizante de cada flujo en el working storage.

VENTANAS DESLIZANTES

Técnica para el procesamiento de flujos de datos el cual divide dicho flujo en grupos de datos basándose en 2 parámetros

- Longitud de la ventana (window length): indica el tiempo que se tendrá en cuenta para el cálculo (desde t_{actual} hasta t_{actual} longitud de ventana)
- Intervalo (sliding interval): cada cuánto tiempo se vuelve hacer los cálculos sobre los datos de la ventana

VENTANAS DESLIZANTES

Ejemplo: Actualizar cada segundo (intervalo) con el valor de la mayor compra de los últimos 2 segundos (longitud de la ventana)

Imagen tomada de Workshop Apache Flink,2016

CAPAS EN EL PROCESAMIENTO DEL FLUJO DE DATOS

CAPAS EN EL PROCESAMIENTO DEL FLUJO DE DATOS

PLATAFORMAS: OPEN SOURCE

Actualmente existen numerosas plataformas que soportan el procesamiento de flujos de datos

- · Amazon Kinesis Streams
- · Amazon Kinesis Firehose
- · Apache Kafka
- · Apache Flume
- Apache Spark Streaming
- Apache Storm

APRENDIZAJE EN LÍNEA

En Aprendizaje máquina ha surgido el aprendizaje en línea

- Nos permite modelar problemas en donde la entrada son flujos continuos de datos
- Se busca encontrar un algoritmo que aprenda a partir de los datos y que pueda adaptarse a pequeños cambios
- Ejemplos: Descenso del gradiente estocástico (SGD) permite pequeñas actualizaciones

COMPARACIÓN DBMS VS DSMS

DBMS	DSMS
Almacenamiento persistente	Almacenamiento transitorio
Acceso aletorio	Acceso secuencial
Baja tasa de actualización	Tasas de múltiples Gbs
Servicios no de tiempo real	Servicios de tiempo real
Almacenamiento en disco ilimitada*	Memoria principal limitada