# 양자 인공지능을 이용한 암호분석 - 3차 발표 -

김현지, 임세진, 서화정

https://youtu.be/f9OrryIIcEE



양자컴퓨터와 양자인공지능

양자인공지능 관련 최신 개발 환경

양자인공지능을 통한 암호분석

### Development Roadmap

Executed by IBM

#### **IBM Quantum**



### 양자컴퓨터의 특징 및 AI 분야에서의 활용



#### • 양자 중첩

• 인자는 여러 상태를 확률적으로 가지고 있음 → 측정 시 단 하나의 상태로 결정





- 양자컴퓨터 활용은 AI 기술에서 IT 기업들에 의해 활발히 진행 중
- Quantum Al Lab
  - NASA, Universities Space Research Association, Google에서 운영 중
  - 양자컴퓨터 AI를 활용하여 컴퓨터 공학적 문제점을 해결하는 것을 목표로 함

| 년도   | 활동 내역                                                       |
|------|-------------------------------------------------------------|
| 2013 | Google에서 Quantum Al Lab 발표. 연구실 초기에는 D-Wave Two를 사용         |
| 2014 | D-Wave Two와 전통 컴퓨터 간의 연산 성능 비교 분석                           |
| 2019 | <mark>양자 우월성 달성 논문 발표.</mark> 자체 개발 양자 프로세서인 <b>시커모어 사용</b> |



### 양자컴퓨터를 통한 암호 해킹







2021년도 한성대에서 세계 최초로 시도된 공격: Quantum Al를 통한 암호 해킹 – 취약한 패턴 분석

### 과제의 목표 및 내용

#### 최종 목표: 양자 컴퓨터 상에서 양자 인공지능을 통해 암호 분석

전통적인 인공지능을 이용한 암호 분석의 한계점 확인 양자 컴퓨터와 양자 인공지능의 특징 분석 최신 연구 결과 파악

양자 컴퓨터 개발 **플랫폼 성능 비교 분석** 양자 인공지능을 통한 암호 분석

| 양자 인공지능<br>알고리즘 | Quantum Support Vector Machine (QSVM)<br>Quantum Neural Network |
|-----------------|-----------------------------------------------------------------|
| 개발 플랫폼          | IBM ProjectQ / IBM Qiskit / Microsoft Q#                        |
| 암호 알고리즘         | 고전암호 (Caesar, Vigenère)<br>S-DES, S-AES<br>S-SIMON, S-SPECK     |



Quantum Neural Network (Hybrid)

Pennylane

S-DES (분석 성공) S-AES (한계점 확인)

현재 양자 인공지능의 시간 및 자원의 한계로 인해 대상 암호 알고리즘 및 방법론 변경

QSVM\* → Hybrid

분석 가능한 S-DES에 집중

한계점 및 방향성 파악

**안정적이고 실현 가능한 암호 분석**을 위해 hybrid 방식으로 변경

**더 많은 실험** 진행

해당 결과를 기반으로 **다른 암호로 확장**할 경우의 한계점 및 방향성 파악

\*QSVM의 한계점: 양자 자원 부족, 많은 데이터 사용 어려움, 매우 긴 학습 시간

### 고전 신경망 vs 양자 신경망

- 고전 신경망과 달리 양자 신경망은 큐비트 회전각을 매개변수로 사용한다는 차이점을 가짐
- 양자 신경망에서는 행렬 곱 (양자 게이트)을 통해 큐비트의 상태를 변경
  - 주로 사용되는 양자 게이트는 **회전 게이트 (Rx, Ry, Rz) →** 회전 각이 필요하며, 이를 매개변수라고 함
- 하이브리드 방식
  - 고전 신경망 및 고전 최적화 알고리즘과 특정 복잡한 작업을 위해 양자 컴퓨터를 사용
  - 고전 신경망의 최적화 함수 및 손실 함수 사용 가능
  - 인공지능 프레임워크 (Tensorflow, Pytorch)와 양자 프레임워크 (Qiskit, Cirq)를 결합하여 사용
- NISQ (Noisy Intermediate-Scale Quantum era; 중간 규모의 양자 컴퓨터)
  - 오류 정정이 어려워서 계산 오류가 많이 발생 → Quantum만 사용하는 양자 신경망은 현실적으로 어려움
  - NISQ 시대의 프로세서는 기존의 보조 프로세서와 함께 작동해야 효과적
    → 현재는 고전 신경망과 양자 신경망의 하이브리드 방식이 성능 면에서 안정적

#### 회전 게이트

$$\hat{R}_{x}(\theta) = \begin{pmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}$$

$$\hat{R}_{y}(\theta) = \begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}$$

$$\hat{R}_{z}(\theta) = \begin{pmatrix} e^{-i\theta/2} & 0\\ 0 & e^{i\theta/2} \end{pmatrix}$$

| 특징     | 고전 신경망                | 양자 신경망                                                   |  |  |  |
|--------|-----------------------|----------------------------------------------------------|--|--|--|
| 프레임워크  | Tensorflow, pytorch   | Qiskit, Tensorflow Quantum, cirq, Pennylane              |  |  |  |
| 주 연산   | 행렬 곱                  | 행렬 곱 (양자 게이트)                                            |  |  |  |
| 매개변수   | 가중치, 바이어스 (편향)        | θ (큐비트 회전각)                                              |  |  |  |
| 활성화 함수 | Relu, Swish 등의 비선형 함수 | 비선형 연산 사용 (양자 게이트)                                       |  |  |  |
| 최적화 함수 | Adam, RMSProp         | 고전 신경망의 최적화 함수 (하이브리드),<br>SPSA, COBYLA, SLSQP (양자 only) |  |  |  |

### Grover vs Quantum Al

- Grover's algorithm을 통한 블록 암호 키 검색
  - Grover Oracle을 공격하고자 하는 암호 알고리즘 구현
  - 주어진 평문-암호문 (M-C)쌍과 알려지지 않은 키 K
  - Oracle f(K)  $\begin{cases} 1, if \ Enc(M, K) = C \\ 0, otherwise \end{cases}$



- Quantum AI를 통한 블록 암호 키 패턴 분석
  - Classic Al 기반 블록 암호 키 패턴 분석을 양자 컴퓨터 상에서 수행
  - Grover는 블록 암호에 대한 확률론적 전수조사라면 Quantum AI는 패턴 분석을 통한 확률론적 공격
  - Classic AI가 가진 연산 비효율성 해결
    - 10개의 bit (10) 혹은 qubit (1024)로 한번에 표현 가능한 정보의 양의 차이로 연산 속도 및 저장 공간의 차이



### Grover vs Quantum Al

• 양자 컴퓨터를 활용한 암호에 대한 공격 방법으로 Grover와 Quantum AI를 사용하는 것으로 크게 나눌 수 있음

#### 양자 자원이 적은 Quantum AI 가 더 빠르게 실현될 가능성이 높음

양자 자원을 달성하더라도 qubit 오류 정정에 더 큰 영향을 받는 Grover의 사용 시기는 더 늦을 것으로 예상

#### Grover

- 모든 key에 대한 전수조사이며 확실한 공격
- 많은 양질의 양자 자원이 필요
- Qubit에 오류가 있을 시 공격이 어려움

#### **Quantum Al**

- 암호의 취약한 패턴을 분석하는 확률론적 공격
- 적은 qubit 수와 작은 양자 회로 필요
- Qubit에 오류가 있을 시 정확도 손실은 있으나 일정 수준 이상의 정확도를 확보할 경우 공격 가능

양자 인공지능 연구 동향

### 양자 신경망 연구 동향

- Quantum만 사용하는 경우, MNIST(이진 또는 다중 분류) 데이터 셋을 사용하여 성능을 평가하는 정도
- 대부분 Hybrid를 위한 라이브러리인 Pennylane과 IBM 시뮬레이터 및 하드웨어 사용
  → 실제 양자 컴퓨터의 노이즈를 고려한 연구도 다수 존재

|              |     | Qubit  | Device                                         | Description                                               |  |  |  |
|--------------|-----|--------|------------------------------------------------|-----------------------------------------------------------|--|--|--|
|              | [1] | 8~14   | Classical simulator                            | 이진 분류, 다중 분류, 99%의 정확도                                    |  |  |  |
| Quantum-only | [2] | 8      | Ibmqx4<br>(quantum hardware)                   | 이진 분류, 99.86%의 정확도                                        |  |  |  |
|              | [3] | 6      | 12-qubit superconducting quantum processor     | 2x2 이미지 데이터 사용, 데이터 생성 모델                                 |  |  |  |
|              | [4] | 4 or 9 | Pennylane-Qiskit (simulator)                   | IBM hardware의 <b>노이즈를 수집하여 시뮬레이션</b> ,<br>9-qubit에서 성능 저하 |  |  |  |
| Hybrid       | [5] | 4      | Pennylane<br>(simulator)                       | 양자 레이어를 추가함으로써 <b>레이어 개수 감소</b><br>(20 <del>→</del> 9)    |  |  |  |
|              | [6] | 5      | Pennylane (sim),<br>ibmq_lima 등 (IBM hardware) | Pennylane의 여러 양자 회로에 대한 실험,<br><b>실제 양자 하드웨어 사용</b>       |  |  |  |

<sup>[1]</sup> Bausch, Johannes. "Recurrent quantum neural networks." Advances in neural information processing systems 33 (2020): 1368-1379.

<sup>[2]</sup> Edward Grant, Marcello Benedetti, Shuxiang Cao, Andrew Hallam, Joshua Lockhart, Vid Stojevic, Andrew G. Green, and Simone Severini. 2018. Hierarchical quantum classifiers. npj Quantum Inf. 4, 1 (2018), 1–8

<sup>[3]</sup> Huang, He-Liang, et al. "Experimental quantum generative adversarial networks for image generation." Physical Review Applied 16.2 (2021): 024051.

<sup>[4]</sup>Yang, Chao-Han Huck, et al. "Decentralizing feature extraction with quantum convolutional neural network for automatic speech recognition." *ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).* IEEE, 2021 [5] Houssein, Essam H., et al. "Hybrid quantum convolutional neural networks model for COVID-19 prediction using chest X-Ray images." *arXiv preprint arXiv:2102.06535* (2021).

<sup>[6]</sup> Suryotrisongko, Hatma, and Yasuo Musashi. "Evaluating hybrid quantum-classical deep learning for cybersecurity botnet DGA detection." Procedia Computer Science 197 (2022): 223-229.

### 양자 신경망 연구 동향



양자 신경망

### 양자 신경망

- 양자 역학적 현상 (얽힘, 중첩)을 활용한 인공지능
- 고전 신경망의 학습 과정을 양자 회로로 구성한 것
  - 양자 시뮬레이터 및 하드웨어로 실행 가능
- 양자 회로만 사용 또는 고전 신경망과 결합 가능 (하이브리드 방식)
  - 하이브리드 방식
    - 전체 신경망의 일부분을 양자 신경망으로 구성
      - → 양자 회로를 레이어로 사용
    - 고전 신경망은 고전 컴퓨터 (GPU)에서 연산하고, 양자 신경망은 양자 컴퓨터 (QPU)에서 연산
- 고전 신경망과 같이 입력 데이터에 대해 신경망이 동작하고 예측을 수행



고전 신경망

양자 신경망

- 데이터 준비
  - 학습에 사용하고자 하는 고전 데이터 준비
- 데이터 임베딩
  - 고전 데이터를 양자 신경망으로 학습할 수 없으므로 데이터 임베딩 필요 <del>></del> 고전 데이터를 양자 상태로 변환
  - 해당 과정은 입력 데이터를 회전각으로 사용하므로 parameterized circuit이 아님
  - 입력 데이터가 큐비트의 상태에 영향을 주도록 하며, 대표적으로 다음과 같은 임베딩 방식이 있음
  - 각 임베딩, IQP\* 임베딩: n개의 특징을 갖는 고전 데이터를 n개의 큐비트에 대한 회전 각으로 사용 (많은 qubit, 적은 depth)
  - 진폭 임베딩:  $2^n$ 개의 특징을 갖는 고전 데이터를 n개의 큐비트에 대한 진폭 벡터로 사용 (적은 qubit, 높은 depth)



\*IQP : Instantaneous quantum polynomial

- 양자 레이어
  - 양자 상태로 인코딩 된 후, 회전 게이트를 적용
    - 우측 큐비트와 같이, 목표 지점에 도달하기 위해 큐비트 상태를 변화시켜가며 학습
    - 큐비트의 상태는 양자 게이트를 사용하여 변화시킬 수 있음 (행렬 곱)
  - 정해진 회로 구성은 없으며, 실험을 통해 적절한 회로 구성 필요



(0)

- 측정
  - 0 또는 1 중 해당 값이 나올 **확률 (기댓값) 계산**
- Shots만큼 회로를 실행 및 측정
  - Shots=1,000이라면, 1,000번 회로 실행 및 측정이 수행
  - (큐비트 상태가 0이 나온 횟수) + (큐비트 상태가 1이 나온 횟수) = 1000
  - 더 많이 나온 상태가 최종 값으로 결정되며, 1,000번 중 900번이라면 0.9의 확률로 1의 값을 가지는 것



- 매개변수 갱신
  - 측정을 통해 얻은 값을 기반으로 기댓값을 구한 후, 손실 함수에 입력
  - 매개변수를 조정 (큐비트 상태 변경)한 후 회로를 재실행
    - → 전체 과정 반복



### 양자 신경망을 위한 양자 컴퓨터 환경 및 SDK 분석

### 양자 인공지능을 위한 SDK 분석

- 양자 인공지능을 활용한 암호 분석에 필요한 조건
  - **양자 회로** 및 **회전 게이트** (*Rx*, *Ry*, *Rz*) 동작 가능
  - 고전 인공지능 프레임워크 및 관련 라이브러리 지원
  - 하이브리드 신경망 구성 가능
  - 10-qubit 이상 지원: 하이브리드 신경망 사용 시 많은 qubit을 요구하지는 않음

|                                  | D-wave<br>Leap | IBM<br>Qiskit                          | AWS<br>Braket                           | Microsoft<br>Azure Quantum    | Pennylane                               |
|----------------------------------|----------------|----------------------------------------|-----------------------------------------|-------------------------------|-----------------------------------------|
| Circuit                          | X (annealing)  | 0                                      | 0                                       | 0                             | 0                                       |
| Rotation gate                    | X              | 0                                      | 0                                       | 0                             | 0                                       |
| 인공지능에 사용 가능한 qubit<br>(지원 qubit) | X (5760)       | <b>27</b> (32)                         | <b>20</b> (25)                          | 버그로 인해<br>동작하지 않음 (25)        | <b>16</b> (28)                          |
| Library                          | X              | 0                                      | X                                       | 0                             | 0                                       |
| Hybrid                           | Х              | Pytorch                                | Python                                  | Python, C#                    | Tensorflow-keras,<br>Pytorch            |
| 벤치마킹결과                           | 양자 회로<br>실행 불가 | MSE 사용 위해<br>multi-qubit 사용 시<br>버그 존재 | 관련 라이브러리 X,<br>거의 Pennylane과<br>연동하여 사용 | 라이브러리 문제,<br>회로 실행 <b>불안정</b> | 모든 요소 만족,<br>TF, Torch 지원,<br>정상적 학습 가능 |

### Pennylane - Parameterized quantum circuit

- Parameterized quantum circuit (매개변수를 가질 수 있는 회전 게이트가 있는 양자 회로)
  - 회전 게이트 (Rx, Ry, Rz), 얽힘 게이트 CNOT 사용
  - 1-layer당 qubit 수만큼의 회전 게이트 적용
  - 각 회로에는 얽힘 게이트의 차이가 있음
  - Random circuit (얽힘 비율 설정 가능), Strongly entangling circuit (풍부한 얽힘 및 회전 가능)
  - 회로 구성에는 정해진 규칙이 있는 것이 아니지만 Pennylane에서는 효과적인 회로를 제공



### 양자 인공지능을 활용한 S-DES 암호 분석

### 고전 신경망을 통한 암호 분석 (1차 발표 결과물)

- 암호화는 다음과 같은 성질을 가짐
  - 단일 비트가 변경될 경우 대부분 혹은 모든 비트에 영향 [혼돈]
  - 평문 1비트를 변경할 경우 통계학적으로 **암호문의 절반이 변경** [확산]

- 평문의 1번째 비트가 전체 암호문에 영향을 줄 수 있기 때문에 사용할 데이터는 temporal locality를 갖기 어려우며, 전역적인 정보를 반영해야 함
  - → temporal locality를 갖는 데이터의 학습에 효과적인 Convolution 및 Recurrent NN 계열이 아닌 전역적인 정보를 고려하기 좋은 linear layer 기반의 MLP가 적절함

\*Temporal: time 정보 가짐

\*Locality : 인접 feature는 비슷한 정보를 가짐

### 인공 신경망을 활용한 암호 분석 (1차 발표 결과물)

MLP (10-bit key, 8-bit plaintext and ciphertext)

| MLP                               | $1^{st}$ | $2^{nd}$ | $3^{rd}$ | $4^{th}$ | $5^{th}$ | 6 <sup>th</sup> | $7^{th}$ | $8^{th}$ | 9 <sup>th</sup> | $10^{th}$ | Params  | Description                                      |
|-----------------------------------|----------|----------|----------|----------|----------|-----------------|----------|----------|-----------------|-----------|---------|--------------------------------------------------|
| Previous Work                     | 0.64     | 0.74     | 0.71     | 0.58     | 0.64     | 0.8             | 0.54     | 0.6      | 0.85            | 0.8       | 805,930 | 과적합     많은 파라미터                                  |
| Residual                          | 0.72     | 0.77     | 0.75     | 0.6      | 0.76     | 0.8             | 0.59     | 0.68     | 0.85            | 0.83      | 53,802  | 과적합 해결     파라미터 감소                               |
| Gated Linear Units<br>(Best case) | 0.72     | 0.79     | 0.77     | 0.62     | 0.75     | 0.81            | 0.59     | 0.66     | 0.87            | 0.85      | 55,092  | <ul><li>Residual에 비해 안정적</li><li>빠른 수렴</li></ul> |

BAP가 낮음 (안전 비트)

BAP가 높음 (취약 비트)



- 비트 별 안전성
  - 4번째, 7번째 비트는 <u>안전</u> (60% 미만)
  - 6번째, 9번째, 10번째 비트는 암호 분석에 취약 (80%이상)
- Linear Neural Network (MLP) 구조에 최신 딥러닝 기술을 활용하여 암호 분석 수행
- 기본적인 MLP 기반의 이전 연구[So]에 비해 평균적으로 5.3% 더 높은 정확도 달성, 매개변수 수는 93.16% 더 감소

### 인공 신경망을 활용한 암호 분석 (1차 발표 결과물)

- MLP 구조의 네트워크가 CNN과 Transformer encoder에 비해 가장 좋은 성능을 보임
   → data의 locality 보다는 global information이 더 중요함을 알 수 있음
   \*순서 그리고 지역적 정보 보다는 전역적인 정보를 고려할 경우 더 높은 성공률 달성
- 정보 손실을 최소화 하기 위해 각 레이어의 unit 수를 줄이지 않은 MLP를 사용
- Residual connection 적용 시 parameter 수 현저히 감소
- Gated Linear Unit 적용 시 더 빠른 수렴 속도 및 안정적 학습 (과적합 감소)

#### <한계점>

- 데이터가 복잡해질수록 네트워크는 커져야 함 (network capacity 증가)
- 실험 환경, 네트워크 및 데이터셋의 크기로 인해 학습에 굉장히 많은 시간 소요
- 키 공간이 커질수록 전체 key bit에 대한 암호 분석이 어려움 > 56-bit DES에 대한 공격 확장은 불가능할 것으로 보임

#### 전통적인 인공지능을 이용한 암호분석의 한계점 확인

### 하이브리드 신경망을 이용한 알려진 평문 공격

- Dataset
  - Input data: (plaintext, ciphertext) bit
  - Label: key bit
- Hybrid network
  - Only QNN에 비해 학습 시간 절감, quantum-only 보다 더 안정적인 성능
- Library: Tensorflow-keras + Pennylane 사용
  - 양자 레이어와 고전 레이어를 결합하여 hybrid network 구성
  - 양자 레이어: 임베딩 레이어 + 파라미터화 된 양자 레이어
- 모든 비트에 대한 BAP (비트별 정확도)가 0.5를 초과하면 공격 성공
- Quantum circuit
  - Embedding
    - 얽힘 (Amplitude layer), 중첩 + 얽힘 (IQP)
  - Random circuit, Strongly entangling circuit
- Device
  - Pennylane의 default.qubit (default simulator), default.mixed (noise simulator)
  - Shots = 1000





### 암호 분석을 위한 하이브리드 신경망의 세부 사항 (2차 발표 결과물)

|                                        | Quantum (Random)                                                                                    | Quantum (Strongly)   | Description                                                                                                                                   |  |  |  |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Quantum circuit                        | Amplitude + Random                                                                                  | Amplitude + Strongly | Qubit 절약을 위해 amplitude embedding다양한 얽힘 (random)더 많은 회전 게이트와 강한 얽힘 (strongly)                                                                  |  |  |  |  |
| # of qubit                             | 4                                                                                                   | 4                    | 2-qubit은 충분한 성능 X<br>8-qubit은 실행 시간이 많이 소요                                                                                                    |  |  |  |  |
| # of quantum layer                     | 10                                                                                                  | 10                   | 5-bit key까지는 5개의 quantum layer 가능<br>그 이상은 <b>10~15개</b> 적용 필요 ( <b>1 epoch에 약 2~3만 초</b> )<br>20개는 학습 소요 시간 매우 증가 <b>(1 epoch에 약 4~5만 초)</b> |  |  |  |  |
| Architecture of classical hidden layer | 128, 128, 128, 32                                                                                   | 128, 128, 128, 64    | 실험 통해 적절하게 설정                                                                                                                                 |  |  |  |  |
| # of circuit                           | 2                                                                                                   | 4                    | Classical hidden layer의 구조와 # of qubit에 의해 결정<br>2~4개가 적당한 것으로 생각<br>더 늘릴 경우 학습 소요 시간 매우 증가                                                   |  |  |  |  |
| # of parameters                        | 43,956                                                                                              | 44,276               | Quantum circuit의 parameter는 매우 적으므로<br>classical layer가 많을 수록 크게 증가<br>Classical NN의 # of parameter: 55092                                    |  |  |  |  |
| # of data<br>(train, val, test)        | 28500, 20000, 1500                                                                                  | 19950, 14000, 1050   | 양자 신경망 학습 시간으로 인해 1차 결과물보다 적은 데이터 사용                                                                                                          |  |  |  |  |
| Description                            | 더 적은 데이터로 학습이 가능하며, 더 풍부한 회전 및 얽힘이 가능하여<br>classical 보다 더 높은 정확도를 얻은 Strongly entangling circuit 선택 |                      |                                                                                                                                               |  |  |  |  |

### 암호 분석을 위한 하이브리드 신경망의 세부 사항 (2차 발표 결과물)

| Quantum (Random) | Quantum (Strongly) | Description                      |
|------------------|--------------------|----------------------------------|
|                  |                    | Oubit 전약을 위해 amplitude embedding |

#### 암호 분석을 위한 양자 신경망 세부 사항



성능 및 학습 시간 고려하여 선택

10~15 quantum layer

성능 및 학습 시간 고려하여 선택

**Strongly Entangling circuit** 

Random circuit에 비해 더 높은 BAP 달성하여 선택 Using less data

학습 시간 고려하여 전체 데이터셋 중 일부분만 사용 (19950 (학습), 14000 (검증), 1050 (테스트))

classical 보다 더 높은 정확도를 얻은 Strongly entangling circuit 선택

| # of data<br>(train, val, test) | 28500, 20000, 1500 | 19950, 14000, 1050                          | 양자 신경망 학습 시간으로 인해 1차 결과물보다 적은 데이터 사용 |  |  |  |  |  |
|---------------------------------|--------------------|---------------------------------------------|--------------------------------------|--|--|--|--|--|
| Description                     | 더:                 | <br>더 적은 데이터로 학습이 가능하며, 더 풍부한 회전 및 얽힘이 가능하여 |                                      |  |  |  |  |  |

### Overview (3차 발표)

#### Classical neural network



MLP (Multi Layer Perceptron)

전역적인 정보를 고려할 수 있는 MLP 구조 사용 과적합 방지 및 파라미터 감소를 위한 최신 기법 적용

#### Quantum neural network using entanglement and superposition



**얽힘 (Entanglement)** 

얽힘을 통해 고전 신경망의 가중치 연결과 유사한 역할 수행\*



중첩 + 얽힘 (Superposition + Entanglement)

얽힘을 통한 가중치 연결 가능 여러 가중치를 중첩 상태로 병렬 연산 가능

### Embedding (Entanglement vs Superposition+Entanglement)

• Embedding 방식









- n개의 데이터에 대해 n개의 qubit 필요
- 입력 데이터를 회전 게이트 (Rx, Ry, Rz)의 회전 각  $(\theta)$ 으로 사용
- 많은 qubit, 적은 depth

### Embedding (Entanglement vs Superposition+Entanglement)

• Embedding 방식

Angle embedding









- $2^n$ 개의 데이터에 대해 n개의 qubit 필요
  - 입력 데이터를 큐비트의 진폭벡터로 사용
  - ex) x=(0.1,-0.7,1.0)이라는 데이터 벡터가 있다면 정규화 시킨 후 ( $x_{norm}=0.081,-0.571,0.816,0.000$ ), 2-qubit의 양자 상태 ( $0.081\ |00\rangle-0.571|01\rangle+0.816|10\rangle+0.000|11\rangle$ )로 변경
- 회전 게이트 및 얽힘을 위한 *CNOT* 게이트 사용
- 적은 qubit, 높은 depth

### Embedding (Entanglement vs Superposition+Entanglement)

• Embedding 방식

Angle embedding  $-Ry(\theta) - Ry(\theta) - Ry($ 



- 해당 임베딩에 고전 데이터 사용 시, 입력 데이터에 대한 중첩이 아닌 가중치를 중첩시켜 여러 가중치에 대해 한번에 학습 가능
  - n개의 데이터에 대해 n개의 qubit 필요 (입력 데이터를 회전 게이트의 회전 각으로 사용)
- 즉, amplitude 임베딩에 비해서 동일 qubit으로 반영할 수 있는 데이터 특징 (feature)가 적음
  - → 더 많은 feature를 반영하고 싶다면 qubit의 수를 늘려야 함
  - 그러나 현재의 양자신경망에서 동작 가능한 최대 qubit 수는 16개 (임베딩 방식과 상관 없음)
  - 그럼 16개의 qubit을 사용한다면? 그러나, 중첩이 없는 경우에 비해 2배의 시간이 더 소요
- 처음부터 중첩 상태의 양자 데이터 생성 시, 데이터에 대한 중첩 가능할 것 (2<sup>n</sup>개의 데이터에 대해 n개의 qubit 필요하지만 **하이브리드에 사용 불가**)
- 많은 qubit, 조절 가능한 depth

### Epoch에 따른 BAP 분석 (S-DES)

안전 비트 0.5 < BAP < 0.6 일반 비트 0.6 < BAP < 0.8 취약 비트 0.8 < BAP

# of data: Tr (19950), Val (14000), Ts (1050)

#### Classical

Avg. Epoch 63.2 63.2 63.9 64.6 66.8

Quantum의 자원 및 시간의 한계로 인해 1차 결과보다 데이터 수를 줄인 후 비교

#### **Quantum Amplitude (Entanglement)**

| Bit<br>Epoch | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | Avg. |
|--------------|----|----|----|----|----|----|----|----|----|----|------|
| 20           | 53 | 52 | 65 | 52 | 54 | 80 | 53 | 56 | 83 | 71 | 61.9 |
| 25           | 61 | 61 | 65 | 55 | 52 | 80 | 54 | 56 | 82 | 74 | 64.0 |
| 30           | 64 | 71 | 71 | 56 | 51 | 80 | 56 | 60 | 85 | 80 | 67.4 |

양자 자원 및 시간의 한계로 인해 30 epoch까지 실행 가능

- 모든 epoch에 대해, 안전 비트 (4, 7), 취약 비트 (6, 9)
  100 epoch :
- 10번째 비트가 <mark>취약 비트로 검출</mark> 8번째 비트가 **안전 비트에서 제외**
- **1, 2번째 비트 :** 15 epoch에서는 안전 비트였으나, **학습이 진행됨에 따라 탈락**

#### **Quantum IQP (Superposition + Entanglement)**

| Bit<br>Epoch | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | Avg. |
|--------------|----|----|----|----|----|----|----|----|----|----|------|
| 20           | 53 | 63 | 55 | 56 | 48 | 79 | 54 | 52 | 83 | 54 | 59.7 |
| 25           | 52 | 55 | 59 | 53 | 51 | 79 | 51 | 52 | 82 | 57 | 59.1 |
| 30           | 58 | 65 | 60 | 55 | 54 | 79 | 51 | 57 | 84 | 75 | 63.8 |

- 모든 epoch에 대해, 안전 비트 (4, 5, 7), 취약 비트 (6, 9)
- 30 epoch:

10번째 비트가 취약 비트로 검출, 8번째 비트가 안전 비트에서 제외 Classical 보다 적은 epoch에서 달성

- **동일 epoch에서 평균 BAP가 Classical에 비해 2.8% 높으며,** 최대 성능에서 0.6% 향상
- 20~30 epoch 구간에서 **classical에 비해 BAP 상승 폭이 큼** Quantum (2.1%, 3.4%), Classical (0.7%, 0.7%)

- 모든 epoch에 대해, 안전 비트 (1, 4, 5, 7, 8), 취약 비트 (9)
- 임베딩 가능한 feature가 적으므로 다른 방법들에 비해 BAP가 낮음 데이터가 아닌 가중치가 중첩 → 반영 가능한 feature 수가 적음 안전 비트가 많고 취약 비트가 적게 검출 5번째 비트는 20 epoch에서는 분석 실패

### Epoch에 따른 BAP 분석 (S-DES)

| 안전 비트 | 0.5 < BAP < 0.6  |
|-------|------------------|
| 일반 비트 | 0.6 < BAP < 0.8  |
| 취약 비트 | 0.8 < <i>BAP</i> |

# of data: Tr (19950), Val (14000), Ts (1050)

#### Classical

| Bit<br>Epoch | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | Avg. |
|--------------|----|----|----|----|----|----|----|----|----|----|------|
| 15           | 59 | 59 | 65 | 53 | 54 | 80 | 54 | 56 | 80 | 72 | 63.2 |
| 20           | 60 | 60 | 65 | 51 | 54 | 81 | 51 | 56 | 82 | 72 | 63.2 |
| 25           | 62 | 60 | 65 | 53 | 55 | 81 | 54 | 56 | 83 | 70 | 63.9 |
| 30           | 61 | 60 | 67 | 56 | 54 | 80 | 52 | 59 | 83 | 74 | 64.6 |
| 100          | 60 | 66 | 69 | 57 | 56 | 81 | 53 | 60 | 86 | 80 | 66.8 |

#### **Quantum Amplitude (Entanglement)**

| Bit<br>Epoch | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | Avg. |
|--------------|----|----|----|----|----|----|----|----|----|----|------|
| 20           | 53 | 52 | 65 | 52 | 54 | 80 | 53 | 56 | 83 | 71 | 61.9 |
| 25           | 61 | 61 | 65 | 55 | 52 | 80 | 54 | 56 | 82 | 74 | 64.0 |
| 30           | 64 | 71 | 71 | 56 | 51 | 80 | 56 | 60 | 85 | 80 | 67.4 |

- 모든 epoch에 대해, 안전 비트 (4, 5, 7), 취약 비트 (6, 9)
- 30 epoch:

10번째 비트가 취약 비트로 검출, 8번째 비트가 안전 비트에서 제외 Classical 보다 적은 epoch에서 달성

- **동일 epoch에서 평균 BAP가 Classical에 비해 2.8% 높으며,** 최대 성능에서 0.6% 향상
- 20~30 epoch 구간에서 **classical에 비해 BAP 상승 폭이 큼** Quantum (2.1%, 3.4%), Classical (0.7%, 0.7%)

#### Epoch에 따른 BAP 분석 (Classical, Quantum 공통)

- 모든 epoch에 대해, 안전 비트 (4, 7), 취약 비트 (9)
  - 모든 방법에서 안전 및 취약 비트에 대해 비슷한 경향을 보임
  - 9번째 비트는 양자 자원 제한으로 인해 적은 feature만 반영할 수 있는 IQP (중첩+얽힘)에서도 높은 BAP를 달성했으므로 매우 취약한 비트
- Epoch에 따라 BAP가 전반적으로 상승
  - 학습이 진행됨에 따라 예측 확률이 높아짐
     → 안전 비트 수 감소, 취약비트 수 증가
- 가장 적합한 방법 : Quantum Amplitude 방식 (얽힘만 사용)
  - 동일한 30 epoch에서 안전 비트의 수가 가장 적고 취약비트의 수가 가장 많음

ㅁ드 아이아에 대체 아저 비트 (4 7) 치야 비트 (6 0

• 평균 BAP가 가장 높음

데이터가 아닌 가중치가 중첩 → 반영 가능한 feature 수가 적음 안전 비트가 많고 취약 비트가 적게 검출 5번째 비트는 20 epoch에서는 분석 실패

g.

).7 ----

. . .

### Classical vs Quantum

#### • Avg., Epoch, Params를 모두 고려하여 비교한 결과

\*동일한 데이터 수 사용

| Bit Method | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | Avg. | Epoch | Params |
|------------|----|----|----|----|----|----|----|----|----|----|------|-------|--------|
| Classical  | 60 | 66 | 69 | 57 | 56 | 81 | 53 | 60 | 86 | 80 | 66.8 | 100   | 55092  |
| Amplitude  | 64 | 71 | 71 | 56 | 51 | 80 | 56 | 60 | 85 | 80 | 67.4 | 30    | 44276  |
| IQP        | 58 | 65 | 60 | 55 | 54 | 79 | 51 | 57 | 84 | 75 | 63.8 | 30    | 38084  |

#### • 각 요소에 대한 순위 비교

|                                   | 1st       | 2nd                   | 3rd       |
|-----------------------------------|-----------|-----------------------|-----------|
| Avg.<br>(Average BAP)             | Amplitude | IQP                   |           |
| 안전 비트 수 / 취약 비트 수                 |           | al (3/3)<br>ide (3/3) | IQP (5/1) |
| Epoch                             | Amplit    | Classical             |           |
| Params (The number of parameters) | IQP       | Amplitude             | Classical |

#### Classical

- Avg.는 2등이지만, 많은 epoch과 params가 필요
- Amplitude (가장 적합)
  - Avg.가 가장 높으며, 적은 epoch과 params가 필요
  - 70 epoch & 파라미터 20% 감소, BAP 0.6% 향상 (양자 이점 달성)
- IQP
  - Epoch과 params는 적지만 학습이 덜 된 상태라서 Avg.가 낮음
    → 현재 양자 컴퓨터로 충분한 학습이 불가능하므로 부적합한 방식
- 얽힘 (Amplitude) vs 중첩+얽힘 (IQP)
  - 현재는 양자컴퓨터 자원의 한계로 인해 중첩이 사용될 경우 더 적은 feature만을 반영할 수 있어서 성능이 좋지 않음
  - 향후, 더 많은 qubit 사용 가능 + 회로 실행 가속화가 충분히 가능하다면 중첩이 적용된 양자 신경망이 더 큰 이점을 가질 것으로 예상

### Classical vs Quantum

• Avg., Epoch, Params를 모두 고려하여 비교한 결과

| Method Bit | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
|------------|----|----|----|----|----|----|----|----|----|
| Classical  | 60 | 66 | 69 | 57 | 56 | 81 | 53 | 60 | 86 |
| Amplitude  | 64 | 71 | 71 | 56 | 51 | 80 | 56 | 60 | 85 |
| IQP        | 58 | 65 | 60 | 55 | 54 | 79 | 51 | 57 | 84 |

Qubit는 0, 1 뿐만 아니라 블로흐 구면 위의 값들을 표현 가능\*하므로 범위가 넓어서 더 정교한 가중치 표현 가능

\*도이하 데이터 스 사요

양자 신경망이 고전 신경망보다 더 좋은 성능을 달성 (Qubit의 얽힘과 풍부한 표현 범위로 인한 이점)

#### 현재는 얽힘만 사용한 양자 신경망이 암호 분석에 가장 효과적이며, 중첩을 충분히 활용하기 위해서는 더 큰 규모의 양자 컴퓨터 필요

| (Average BAP)                     | Ampiitude          | Ciassicai | IQI       |  |
|-----------------------------------|--------------------|-----------|-----------|--|
| 안전 비트 수 / 취약 비트 수                 | Classic<br>Amplitu | IQP (5/1) |           |  |
| Epoch                             | Amplit             | Classical |           |  |
| Params (The number of parameters) | IQP                | Amplitude | Classical |  |

/U epoch & 파다미디 ZU% 검소, BAP U.0% 왕강 (장사 익업 결강)

IQP

Epoch과 params는 적지만 학습이 덜 된 상태라서 Avg.가 낮음
 → 현재 양자 컴퓨터로 충분한 학습이 불가능하므로 부적합한 방식

- 얽힘 (Amplitude) vs 중첩+얽힘 (IQP)
  - 현재는 양자컴퓨터 자원의 한계로 인해 **중첩이 사용될 경우** 더 적은 feature만을 반영할 수 있어서 성능이 좋지 않음
  - 향후, 더 많은 qubit 사용 가능 + 회로 실행 가속화가 충분히 가능하다면 중첩이 적용된 양자 신경망이 더 큰 이점을 가질 것으로 예상

### 양자 컴퓨터의 노이즈를 고려한 암호 분석

- Pennylane에서 제공하는 default.mixed 시뮬레이터 사용
  - 노이즈 모델을 시뮬레이션하기 위해 노이즈 채널을 적용

|           | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Avg. | Epoch |
|-----------|---|---|---|---|---|---|---|---|---|----|------|-------|
| Amplitude |   |   |   |   |   |   |   |   |   |    |      |       |

### S-AES 암호 분석

- 암호 분석은 입력 데이터의 차원도 크고 (평문 크기x2), 분석을 위해 수많은 데이터가 필요
- 그러나 S-DES에 대한 분석에도 많은 시간이 소요
  - 현재 자원으로는 전체 데이터셋 학습에 어려움이 있어 35000개의 데이터만 사용
  - 1-epoch에 7~8시간 (Amplitude), 14시간 (IQP) 소요 (30 epoch에 9~10일 소요)
- S-AES에 대한 분석을 위해 키 공간 및 데이터의 수를 줄여서 실험
  - 4-bit 키 공간, 35000개의 데이터 사용 시, 1-epoch에 7~8시간 소요 (데이터 수 부족으로 인해 일부 키 비트 분석 실패)
  - 키 공간을 늘릴 경우 더 많은 데이터를 사용해야 함
  - 11-bit 키 공간에 대한 분석을 위해서는 최소 140만개의 데이터가 필요\* → 1-epoch에 최소 40일 소요\*\*
- Classical의 결과에서 알 수 있듯이 S-AES를 위해서는 S-DES에 비해 더 많은 파라미터가 필요
  - 따라서 Quantum에서도 더 많은 파라미터가 필요
  - 이에 맞게 양자 레이어, qubit, 양자 회로 수를 늘릴 경우, 1-epoch에  $40 \times \alpha$ 일 소요\*\*

\*1차 결과물 참고

\*\*2차 결과물의 소요 시간 분석 참고

현재의 양자 신경망으로는 S-AES 이상의 암호 분석은 어려움

(충분한 데이터 셋 사용 불가, 많은 qubit 사용 어려움, 매우 큰 학습 소요 시간)

### Quantum AI를 활용한 암호 분석 방향성 제시

#### 양자 인공지능 개발의 한계점

#### 관련 라이브러리 업데이트가 활발

- 개발 환경이 불안정
- 에러에 관한 정보들이 많지 않음

#### 양자 자원 활용 제약 및 실험의 어려움

- 사용 가능한 qubit의 수가 적음
- 학습 소요 시간이 매우 커서 충분한 실험 불가능

#### 양자 하이브리드 신경망 기반의 암호 분석 (S-DES)

#### 암호 분석 결과 (Classical, Quantum 공통)

- 취약 비트 : 6, 9, 10 (9가 가장 취약)
- 안전 비트: 4, 7
- 학습이 진행될수록 취약 비트가 많이 검출됨

#### **Quantum Advantage**

- 동일 epoch에 대해 2.8% 더 높은 BAP 달성, 파라미터 20% 감소
- 최대 BAP에 대해 70 epoch & 파라미터 20% 감소, BAP 0.6% 향상
- 즉, 더 적은 epoch으로 더 많은 취약 비트 검출 가능

#### 현재 양자 컴퓨터의 한계점으로 인한 어려움

• 축소된 데이터 셋 사용, 중첩 성질 활용 어려움, 적은 큐비트 사용

#### S-AES 이상의 암호에 대한 분석은 현실적으로 불가능

• 위와 같은 한계점들로 인해 충분한 데이터 셋 및 qubit 활용 불가



#### 현재의 양자 컴퓨터를 활용한 양자 인공지능 기반의 암호 분석은 시기상조

향후, 더 안정적이고 큰 규모의 양자 컴퓨터가 개발된다면 S-DES 이상의 암호에 대한 분석이 가능할 것으로 예상

## Q&A