UNIVERSITY OF BRISTOL

School of Mathematics

LINEAR ALGEBRA MOCK EXAM MATH10015 MOCK

2 hours 30 minutes

This paper contains two sections: Section A and Section B. Each section should be answered in a separate booklet.

Section A contains FIVE questions and Section B contains FOUR questions. All NINE answers will be used for assessment.

Calculators are not permitted.

Section A: Short Questions

- A1. (a) (3 marks) Write the following in the form a + ib, where a and b are real numbers:
 - (i) $z = \frac{7+3i}{4-2i}$.
 - (ii) $w = 5e^{-\frac{3\pi i}{4}}$.
 - (b) (i) (2 marks) Let $A = \begin{pmatrix} 1 & 2 & a \\ 3 & 7 & b \\ -4 & 0 & c \end{pmatrix}$. Give an example of non-zero values for a, b and c such that A is not invertible.
 - (ii) (3 marks) Let $B, C \in M_2(\mathbb{R})$. If det B = 2 and det C = 5 then must we have that det(B + C) = 7? Give a proof or a counter-example.
- A2. (a) (**3 marks**) Find the determinant of $\begin{pmatrix} 0 & 2 & -1 \\ 1 & 1 & 3 \\ -1 & -1 & 0 \end{pmatrix}$.
 - (b) (2 marks) Consider $v_1 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$ and $v_3 = \begin{pmatrix} -1 \\ 3 \\ 0 \end{pmatrix}$. Is $\{v_1, v_2, v_3\}$ a basis for \mathbb{R}^3 ? Justify your answer.
 - (c) (3 marks) Consider a linear map $S : \mathbb{R}^3 \to \mathbb{R}^4$. Suppose that we know $S(v_1), S(v_2)$ and $S(v_3)$. Can we determine S(w) for any $w \in \mathbb{R}^3$? Justify your answer.
- A3. (a) (3 marks) Consider the matrices

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 0 & -2 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 3 & -1 \\ 0 & 1 & 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 1 & -1 & 4 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

State whether each of A, B and C are in row echelon form, reduced row echelon form, or neither. You do not need to justify your answers.

- (b) (5 marks) Now consider a real system of equations with coefficients represented by the matrix A above.
 - (i) What is S(A, 0)?
 - (ii) Suppose that $x = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ is a solution to the system Ax = b for some $b \in \mathbb{R}^3$. State another solution to the system Ax = b.

Continued...

Cont... MOCK

A4. Let $V = \mathbb{R}^2$, a vector space over \mathbb{R} . Let $A = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$ and define $f : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ by $f(v, w) = v \cdot Aw$, where '·' denotes the usual dot product. For each of the following, carefully justify your answers.

- (a) (4 marks) For $v = (a_1, a_2)$ and $w = (b_1, b_2) \in \mathbb{R}^2$, find an expression for f(v, w). Hence decide if it is the case that $f(v, v) \geq 0$ for all $v \in \mathbb{R}^2$.
- (b) (2 marks) Do we have that f(v, v) = 0 if and only if v = 0?
- (c) (2 marks) Is it the case that f(v, w) = f(w, v) for every $v, w \in \mathbb{R}^2$?
- (d) (2 marks) Prove, for all $u, v, w \in V$, that f(v, u + w) = f(v, u) + f(v, w).
- A5. Let $f: \mathbb{R}^3 \to \mathbb{R}$ satisfy $f(e_1) = f(e_2) = f(e_3) = 2e_1$. Assume that f is \mathbb{R} -linear.
 - (a) (3 marks) With $\mathcal{E} = \{e_1, e_2, e_3\}$ and $\mathcal{E}' = \{e_1\}$, find $M_{\mathcal{E}'\mathcal{E}}(f)$.
 - (b) (3 marks) Construct an example of a non-linear function $g: \mathbb{R}^3 \to \mathbb{R}$ that satisfies $g(e_1) = g(e_2) = g(e_3) = 2e_1$. Make sure that you define g(x) for every $x \in \mathbb{R}^3$.
 - (c) (2 marks) How many distinct \mathbb{R} -linear functions $h : \mathbb{R}^3 \to \mathbb{R}$ are there that satisfy $h(e_1) = h(e_2) = h(e_3) = 2e_1$? You should give a brief justification of your answer.

Continued...

Cont... MOCK

Section B: Longer Questions

Please use a new booklet for this Part.

B1. (a) (i) (3 marks) Let $u, v, w \in \mathbb{R}^n$. Prove that the vectors u - v, v - w and w - u are linearly dependent over \mathbb{R} .

- (ii) (4 marks) Let $A \in M_{m,n}(\mathbb{R})$ with m < n. Is it possible for the rows of A to be linearly independent? Is it possible for the columns of A to be linearly independent? Justify your answers.
- (b) (i) (3 marks) Is the set $U = \{u \in \mathbb{R}^3 : u \text{ is a unit vector}\}\$ a subspace of \mathbb{R}^3 over \mathbb{R} ?
 - (ii) (5 marks)Let V and W be subspaces of \mathbb{R}^3 over \mathbb{R} . Let B_V be a basis for V and B_W be a basis for W. Show that $B_V \cap B_W$ is not necessarily a basis for $V \cap W$ by giving an example.

B2. (a) (5 marks) Find the inverse of the matrix

$$\begin{pmatrix} 1 & 0 & 3 \\ 0 & 2 & 5 \\ 1 & -1 & 0 \end{pmatrix}.$$

- (b) (3 marks) Let $A, B \in M_n(\mathbb{R})$. If A and AB are invertible, is B also invertible? Give a proof or a counter-example.
- (c) (4 marks) Consider a system of linear equations represented by the matrix equation Cx = b. Let D be an invertible matrix. Show that the system (DC)x = b has exactly one solution if and only if Cx = b has exactly one solution.
- (d) (3 marks) Let $A \in M_n(\mathbb{R})$ be an invertible matrix and suppose that B is a matrix that can be obtained from A by applying a finite number of row operations. Show that B is also invertible.

B3. Let $V = \mathbb{R}^3$ over \mathbb{R} , $f: V \to V$, $\mathcal{E} = \{e_1, e_2, e_3\}$ and

$$M_{\mathcal{E}\mathcal{E}}(f) := A = \begin{pmatrix} 0 & -2 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

- (a) (4 marks) Find the characteristic polynomial of A.
- (b) (2 marks) Find the eigenvalues of A. State their algebraic multiplicities.
- (c) (8 marks) Find the corresponding eigenvectors for your eigenvalues in (b). State the geometric multiplicity of each eigenvalue.
- (d) (1 marks) Find a basis \mathcal{A} such that $M_{\mathcal{A}\mathcal{A}}(f)$ will be a diagonal matrix.

Continued...

Cont... MOCK

B4. Define $S := \{p_i : i \in \mathbb{N} \cup \{0\}\} \subseteq F(\mathbb{R}, \mathbb{R})$ by setting $p_0(x) := 1$ for all $x \in \mathbb{R}$ and for $i \in \{1, 2, ...\}$ let $p_i(x) := x^i$ for all $x \in \mathbb{R}$. Let $\mathbb{P} := \operatorname{span}_{\mathbb{R}}(S)$ and $V := \mathbb{R}^4$ be vector spaces over \mathbb{R} , and define the \mathbb{R} -linear function $\phi : V \to \mathbb{P}$ by

$$(a, b, c, d) \mapsto ap_0(x) + bp_1(x) + cp_2(x) + d(-p_0(x) - p_1(x) - p_2(x)).$$

- (a) (3 marks) Find a basis for $Im(\phi)$. Justify your answer.
- (b) (3 marks) Find a basis for $ker(\phi)$. Justify your answer.
- (c) (3 marks) State the definition of an isomorphism. Is ϕ an isomorphism? Justify your answer.
- (d) (2 marks) Show that the equation for the Rank-Nullity Theorem is satisfied by ϕ .
- (e) (4 marks) Define $\psi: V \to \text{Im}(\phi)$ so that $\psi(x) = \phi(x)$ for all $x \in \mathbb{R}^4$. You can assume that ψ is linear. Is ψ (i) injective and (ii) surjective? Justify your answer.