Pixels to spectra

Nicolas Crouzet, Laura Kreidberg & the ERS Hackathon Team

Outline

Pixel to spectra: main steps

Most common corrections

Outline

Pixel to spectra: main steps

Most common corrections

Transit spectroscopy

Measure the transit depth as a function of wavelength

From Winn 2010, adapted by X. Bonfils

From observations to images

A telescope

JWST

Image of a star

Spread over many pixels

Dispersive element

Inside *JWST* instruments

Spectral trace: Star image dispersed in wavelength

^{*} Par Vilisvir — Travail personnel, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=22087094

A series of integrations

We want to observe a transit in spectroscopy

- We need to monitor a star for several hours
- Each integration has a finite integration time (seconds to minutes)
 - Time-series observations (TSO)

etc...

- A series of integrations of the target's spectral trace
- Start point of our analysis

Time

Sum the pixels containing stellar signal

Where is the limit between the star and the background?

Define a box around the spectral trace ("whitelight")

Dispersion axis

Define a box for each wavelength ("wavelength bins")

Their size will set the resolution of the spectrum

Sum the pixels in each bin

Dispersion axis

On 1 image:

→ Stellar spectrum

Ezequiel Gonzalez, ISU, Masters report 2020

Spectroscopic lightcurves

Palle et al. 2017

Transit depth

Atmospheric absorption changes the transit depth

From Winn 2010, adapted by X. Bonfils

Measure the transit depth as a function of wavelength

Palle et al. 2017

Absorption spectrum

Palle et al. 2017

ERS Transit Pre-Launch Data Hackathon - 21-25 June 2021 - Pixels to spectra

Outline

Pixel to spectra: main steps

Most common corrections

We want to measure only the stellar flux

→ We need to remove the background flux

Measure the background flux

Measure the background flux

Subtract the background flux from the stellar flux

Flat-fielding

- Each pixel has a slightly different response
- Can be measured using "flat fields" (calibration images taken with a source that is uniform in intensity)
- **→** Calibration: Divide the image by a "flat-field"
 - The flat-field is wavelength dependent
 - Might not be useful, might even add noise

Bad pixels

Cosmic rays

Diagnostic information

External parameters (spacecraft, instrument) can affect the measured flux: systematics

- Position (x, y, angle)
- Width
- Temperature
- Etc...
- Measure them
- Assess their impact
- Decorrelations (or Gaussian processes)

Wavelength calibration

Correspondence between pixels and wavelengths

Dispersion axis in **pixel units** ——

We want wavelengths

- Extract the stellar spectrum
- Compare it to a template of similar spectral type
- Match spectral lines

Ezequiel Gonzalez, ISU, Masters report 2020

Wavelength calibration

Correspondence between pixels and wavelengths

Ezequiel Gonzalez, ISU, Masters report 2020

Other effects

- Drifts
- Persistence
- Non-linearity
- 1/f noise
- Unknown effects

Summary

- Basics of exoplanet spectrum extraction from spectroscopic time-series observations
- Some common corrections, but most corrections are different for each telescope and instrument
- Corrections and calibrations are often (always)
 necessary to reveal exoplanet atmosphere signatures

