11. Непрекъснатост на функции. Свойства на непрекъснатите функции

Галина Люцканова

4 септември 2013 г.

Тук ще въведем понятието непрекъснатост на функция в интервал. Това е едно изключително важно понятие, което се използва навсякъде в математиката. Както обикновено ще започнем с една много интуитивна дефиниция. Непрекъсната функция в определен интервал е функция, която може да бъде начертана без да се вдига химикалът от листа в този интервал. Сега няколко примери, които ще бъдат илюстративни:

<u>Пример 11.1:</u> Да разгледаме функцията $f(x) = x^3 - x - \sin x$ в интервала $(-\infty, +\infty)$. По-долу е поместена графиката и:

От графиката си личи, че тази функция е непрекъсната.

<u>Пример 11.2:</u> Да разгледаме функцията $f(x) = \frac{1}{x}$ в интервала $(-\infty, +\infty)$.

От графиката си личи, че тази функция е прекъсната в 0, защото каквито и майсторски умения да имаме няма как да начертаем графиката на функцията в $(-\infty, +\infty)$ без да вдигнем химикала. Но пък съвсем спокойно можем да я начертаем в $(1, +\infty)$, т.е. функцията е непрекъсната в интервала $(1, +\infty)$.

<u>Пример 11.3:</u> Да разгледаме функцията $f(x) = \frac{\sin x}{x}$. По-долу е поместена графиката и:

От графиката изглежда, че тази функция е прекъсната в точката 0. Сега

като ще започваме формално ще започнем разбира се отдалеко и после ще се доближаваме бавно до целта.

Определение 11.1: Казваме, че функцията f(x) е непрекъсната в точката x_0 , ако x_0 е точка от дефиниционното множество на f(x), съществува $\lim_{x\to x_0} f(x)$ и $\lim_{x\to x_0} f(x) = f(x_0)$.

Надявам се, че си спомняте, че точката, при която смятаме границата на редицата, трябва да е точка на сгъстяване, ако не е точка на сгъстяване, то тогава приемаме, че функцията в нея е непрекъсната. Сега разбира се след тази кратка дефиниция, ще сложим 2 по-дълги дефиниции, но нека да напомним първо дефинициите за граница на функция:

Определение 11.2 (на Коши): Нека f(x) е една функция с дефиниционна област M и нека x_0 е точка на сгъстяване за M. Ще казваме, че числото l е граница на f(x) при x клонящо към $x_0(f(x))$ клони към l при x клонящо към $x_0(f(x))$ и записваме във вида $\lim_{x\to x_0} f(x) = l$, ако при всеки избор на положителното число ε , може да се намери такова число $\delta > 0$, че от условията $x \in M, x \neq x_0$ и $|x - x_0| < \delta$ да следва неравенството $|f(x) - l| < \varepsilon$.

Определение 11.3 (на Хайне): Нека f(x) е дефинирана в множеството M и нека x_0 е точка на сгъстяване за M. Ще казваме, че f(x) има граница, равна на L, когато каквата и клоняща към x_0 редица $\{x_n\}_{n=1}^{\infty}$ от точки от M да изберем $(x \neq x_0)$, съответната редица от функционални стойности $\{f(x_n)\}$ да клони към L. Сега да ги модифицираме:

Определение 11.4 (на Коши): Нека f(x) е една функция с дефиниционна област M и нека x_0 е точка на сгъстяване за M. Ще казваме, че функцият f(x) е непрекъната в точката x_0 , ако при всеки избор на положителното число ε , може да се намери такова число $\delta > 0$, че от условията $x \in M, x \neq x_0$ и $|x - x_0| < \delta$ да следва неравенството $|f(x) - f(x_0)| < \varepsilon$.

Определение 11.5 (на Хайне): Нека f(x) е дефинирана в множеството M и нека x_0 е точка на сгъстяване за M. Ще казваме, че f(x) е

непрекъната в x_0 , когато каквата и клоняща към x_0 редица $\{x_n\}_{n=1}^{\infty}$ от точки от M да изберем $(x \neq x_0)$, съответната редица от функционални стойности $\{f(x_n)\}$ да клони към $f(x_0)$.

Прекъсване от първи род Ако съществуват едновременно $\lim x_0 + 0f(x)$ и $\lim x_0 - 0f(x)$, но те не са равни едновременно на $f(x_0)$.

Пример 11.4: Да разгледаме функцията

$$f(x) = \begin{cases} 0, & \text{ako } 0 \le x \le 1\\ 1, & \text{ako } 1 < x \le 2 \end{cases}$$

Ето и графиката на функцията:

От графиката ясно си личи, че функцията е прекъсната в x_0 . Ясно е, че $\lim x_0 + 0 f(x) = 1$, а $\lim x_0 - 0 f(x) = 0$.

Когато имаме прекъсване от първи род разликата $\lim x_0 + 0 f(x) - \lim x_0 - 0 f(x)$ се нарича скок на f(x) в x_0 Тази функцията разгледана преди малко има скок 1.

Прекъсване от втори род Ако съществува поне една от границите $\lim x_0 + 0 f(x)$ или $\lim x_0 - 0 f(x)$, но те не са равни едновременно на $f(x_0)$.

Границата на функцията не е дефинира, защото може да е което и да е произволно число в интервала [-1,1].

Свойства на непрекъснатите функции: Нека f(x) и g(x) са непрекъснати функции в x_0 , то тогава

- 1. Нека f(x) и g(x) са непрекъснати функции в x_0 , то тогава $f(x)\pm g(x)$ е непрекъсната в x_0
- 2. Нека f(x) и g(x) са непрекъснати функции в x_0 , то тогава $f(x) \cdot g(x)$ е непрекъсната в x_0
- 3. Нека f(x) и g(x) са непрекъснати функции в x_0 и $g(x) \neq 0$ в околност на точката x_0 , то $\frac{f(x)}{g(x)}$ е непрекъсната в x_0
- 4. Нека f(x) е непрекъсната в точка x_0 , а g(y) е непрекъсната в точката y_0 . Тогава h(x) = g(f(x)) е непрекъсната в точка x_0
- 5. Ако f(x) е монотонна в интервала (a,b) и нека $x_0 \in (a,b)$, то съществува $\lim_{x\to x_0-0} f(x)$ и $\lim_{x\to x_0+0} f(x)$. (т.е. прекъсването може да бъде само от първи род)
- 6. Нека f(x) е монотонна сюрективна функция и по-точно $f: \triangle \to \mathbb{R}$, където \triangle е интервал.
 - (a) f(x) е непрекъсната $\iff f(\triangle)$ е интервал

(б) ако f(x) е непрекъсната и строго растяща, тя е обратима, а обратната и функция е непрекъсната и строгорастяща

Доказателство:

Преди доказателството малко графични разяснения, да начертаем произволна строго растяща функция

Начертала съм една строго растяща, непрекъсната функция. Както казах още в тема 3 за да получим обратната трябва да направим осева симетрия спрямо ъглополовящата на първи и трети квадрант. На интуитивно ниво трябва да е ясно, че правене на осева симетрия ние получаваме същия обект, но завъртян, което означава, че ако този обект няма прекъсвания, то и другият няма да има прекъсвания. Както се вижда на картинката, ако едната е монтонно растяща, то и другата е монотонно растяща.

1. Функцията f(x) = c (с е константа) е непрекъсната за всяко $x \in \mathbb{R}$.

Доказателство:

Задаваме $\varepsilon > 0$, търсим $\delta > 0$, такова че ако $|x - x_0| < \delta$, то $|f(x) - f(x_0)| = |c - c| = 0 < \varepsilon$, като последното винаги е изпълнено, то значи е изпълнено и ако $|x - x_0| < \delta$.

2. Функцията f(x) = x е непрекъсната за всяко $x \in \mathbb{R}$.

Доказателство:

Задаваме $\varepsilon > 0$, търсим $\delta > 0$, такова че ако $|x - x_0| < \delta$, то $|f(x) - f(x_0)| < \varepsilon$. Тогава избираме $\delta = \varepsilon$ и получава следната верига от неравенства:

$$|f(x) - f(x_0)| = |x - x_0| < \delta = \varepsilon$$

- 3. Всяка функция от вида $f(x) = cx^n$ (където c е константа, а n е цяло положително число) е непрекъсната за всяко $x \in \mathbb{R}$. Първо по индукция можем да докажем, че x^n е непрекъсната за всяко $x \in \mathbb{R}$.
 - (a) При n=1 имаме функцията $f_1(x)=x$ е непрекъсната за всяко $x\in\mathbb{R}$ (това е от предната точка).
 - (б) При n=k да допуснем, че функцията $f_k(x)=x^k$ е непрекъсната за всяко $x\in\mathbb{R}$, тогава ще докажем, че $f_{k+1}(x)=x^{k+1}$ е непрекъсната за всяко $x\in\mathbb{R}$. Разглеждаме функцията $f_{k+1}(x)=x^{k+1}=x\cdot x^k=f_1(x)\cdot f_k(x)$. Но понеже и двете функции са непрекъснати за всяко $x\in\mathbb{R}$, то тогава доказахме, че x^n е непрекъсната за всяко $x\in\mathbb{R}$. Понеже $f(x)=cx^n$ е произведение от две непрекъсната за всяко $x\in\mathbb{R}$ функции, следователно и $f(x)=cx^n$ е непрекъсната за всяко $x\in\mathbb{R}$.
- 4. $P(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x + a_0$ е непрекъсната за всяко $x \in \mathbb{R}$, което се доказва пак по индукция.
- 5. нека $P_n(x)$ е полином от n-та степен, а $Q_m(x)$ е полином от m-та степен. То тогава $\frac{P_m}{Q_n}$ е непрекъсната за всяко $x \in \mathbb{R}$, за което $Q_m \neq 0$. (следва от свойство 4)
- 6. Функцията $f(x) = a^x$ е непрекъсната за всяко $x \in \mathbb{R}$

Доказателство:

Понеже искаме да докажем, че функцията е непрекъсната за всяко $x \in \mathbb{R}$ трябва да докажем, че $\lim_{x \to x_0} a^x = a^{x_0}$. Поради така поставената цел изграждаме следната верига от равенства:

$$\lim_{x \to x_0} a^x = \lim_{x \to x_0} a^{x_0} \cdot a^{x - x_0} = a^{x_0} \cdot \lim_{x \to x_0} a^{x - x_0}.$$

За да получим това, което искаме остава единствено да докажем, че $\lim_{x\to 0}a^x=1$ и тогава ще получим $\lim_{x\to x_0}a_x=a^{x_0}$, т.е. това, което искаме.

- 7. Функцията $f(x) = \log_a x (a > 0, a \neq 1)$ е непрекъсната за всяко $x \in \mathbb{R}$, понеже тя е обратната функция на монотонната непрекъсната функция $f(x) = a^x$.
- 8. Функцията $f(x) = x^{\alpha}$ при $\alpha \neq 1$ и $\alpha > 0$ е непрекъсната за всяко $x \in \mathbb{R}$, понеже $f(x) = x^{\alpha} = a^{\log_a x^{\alpha}} = a^{\alpha \cdot \log_a x}$ и от от теоремата за непрекъснатост на съставни функции получаваме това, което искахме.
- 9. $\sin x$ е непрекъсната за всяко $x \in \mathbb{R}$

Доказателство:

Задаваме $\varepsilon > 0$, търсим $\delta > 0$, такава че ако $|x-x_0| < \delta$, то $|f(x)-f(x_0)|=|\sin x - \sin x_0| < \varepsilon$. Правим верига от неравенства:

$$|f(x) - f(x_0)| = |\sin x - \sin x_0| = \left| 2 \cdot \sin \left(\frac{x - x_0}{2} \right) \cdot \cos \left(\frac{x + x_0}{2} \right) \right| =$$

$$= |2| \cdot \left| \sin \left(\frac{x - x_0}{2} \right) \right| \cdot \left| \cos \left(\frac{x + x_0}{2} \right) \right| \le 2 \cdot \left| \frac{x - x_0}{2} \right| \cdot 1 = |x - x_0| < \delta = \varepsilon$$

Тогава полагаме $\delta=\varepsilon$ и получаваме, че когато $|x-x_0|<\delta=\varepsilon$, то $|f(x)-f(x_0)|<\varepsilon$

- 10. $\cos x = \sin(\frac{\pi}{2} x)$ е непрекъсната като суперпозиция на 2 непрекъснати функции
- 11. tg $x=\frac{\sin x}{\cos x}$ е непрекъсната при $\cos x=0$ или еквивалентно при $x\neq \frac{\pi}{2}+k\pi$ по свойство 4.
- 12. $\cot g x = \frac{\cos x}{\sin x}$ е непрекъсната при $\sin x = 0$ или еквивалентно при $x \neq k\pi$