UNIVERSIDADE DO ESTADO DE RIO DE JANEIRO

SEGUNDA LISTA DE EXERCÍCIOS DE ÁLGEBRA (Congruência módulo)

- 1. Mostre, para todo $n \in \mathbb{N}$, que (a) $10^{2n} \equiv 1 \pmod{11}$, (b) $10^{2n+1} + 1 \equiv 0 \pmod{11}$.
- 2. Ache o resto da divisão
 - (a) de 7^{10} por 51
 - (b) de 2^{100} por 11
 - (c) de 5^{21} por 127
 - (d) de 14^{256} por 17
 - (e) de $(116 + 17^{17})^{21}$ por 8
 - (f) de $13^{16} 2^{25}5^{15}$ por 3
 - (g) de $1! + 2! + \cdots + (10^{10})!$ por 40
- 3. Mostre que $(m-a)^2 \equiv a^2 \pmod{m}$.
- 4. Sejam $a, p \in \mathbb{N}$, com p primo. Mostre que, se $a^2 \equiv 1 \pmod{p}$, então $a \equiv 1 \pmod{p}$ ou $a \equiv p-1 \pmod{p}$.
- 5. Calcule o resto da divisão de 3⁹⁸⁷⁴⁵ por 43.
- 6. Calcule o resto da divisão de 2^{41048^2} por 41047.
- 7. Calcule o resto da divisão de 3^{19!} por 307.
- 8. Calcule o resto da divisão de

$$1^{p-1} + 2^{p-1} + \dots + (p-1)^{p-1}$$
,

por p, se sabendo que apenas p > 2 é primo.

9. Determine todos os primos positivos p para os quais a equação

$$2x + x^p + x^{p!} \equiv 1 \pmod{p},$$

tem solução $x \neq 0 \pmod{p}$.

- 10. Calcule el resto da divisão de
 - (a) 2^{495} por 15841;
 - (b) de 2^{41045} por 41041;
 - (c) de 2^{77} por 2465.
- 11. Mostre que nenhum número natural da forma 4n + 3 pode ser escrito como a soma de dois quadrados.
- 12. Se k > 2, mostre, para a impar, que $a^{2^{k-2}} \equiv 1 \pmod{2^k}$.