Homework Assignment 5

1. Let F be a presheaf on a topological space X, and let $f: X \to Y$ be a continuous map. The *direct image* f_*F is defined by the following data:

$$(f_*F)(V) = F(f^{-1}(V)) \ \text{ for open } \ V \subset Y, \ \text{ and } \ \rho(f_*F)_{V_2}^{V_1} = \rho(F)_{f^{-1}(V_2)}^{f^{-1}(V_1)} \ \text{ for open } \ V_2 \subset V_1.$$

Show that f_*F is a presheaf. Furthermore, show that if F is a sheaf then f_*F is also a sheaf.

- 2. Let X be a closed subspace of a topological space Y, and let $\iota \colon X \to Y$ be the identity embedding. Let Sh(X) and Sh(Y) be the categories of sheaves of abelian groups on X and Y respectively. Given $F \in Sh(X)$, identify the stalks of the sheaf ι_*F . Use this to show that the functor $\iota_* \colon Sh(X) \to Sh(Y)$ is exact.
- 3. Let X = Y be the unit circle $\{z \in \mathbb{C} \mid |z| = 1\}$, and let $f: X \to Y$ be given by $f(z) = z^2$. Fix an abelian group S and let F be the constant sheaf of abelian groups on X with value group S (recall that for an open subset $U \subset X$, the group F(U) consists of all locally constant functions $U \to S$). Show that for any $y \in Y$, the stalk $(f_*F)_y$ is isomorphic to $S \times S$. On the other hand, let G be the constant sheaf on Y with value group $S \times S$. While G has the same stalks as f_*F , show that $G \not\simeq f_*F$. (Hint. Compute global sections.)
- 4. Let X be a topological space, and let \mathcal{B} be a basis of the topology. Given two sheaves F and G on X, assume that for every $U \in \mathcal{B}$ there is a morphism $f_U \colon F(U) \to G(U)$, and that for $U, V \in \mathcal{B}$ such that $V \subset U$ the diagram

$$\begin{array}{ccc} F(U) & \xrightarrow{f_U} & G(U) \\ \rho(F)_V^U \downarrow & & \downarrow \rho(G)_V^U \\ F(V) & \xrightarrow{f_V} & G(V) \end{array}$$

commutes. Show that there exists a unique morphism of sheaves $f: F \to G$ for which f_U for $U \in \mathcal{B}$ coincide with the given ones. Furthermore, show that if f_U is surjective (resp., injective) for every $U \in \mathcal{B}$, then f is surjective (resp., injective) as a morphism of sheaves.

- 5. (Gluing morphisms) Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be ringed spaces. Suppose we are given an open covering $\{U_i\}_{i\in I}$ of X, and for each $i\in I$ a morphism $(f_i, f_i^{\#}): (U_i, \mathcal{O}_X|U_i) \to (Y, \mathcal{O}_Y)$. If $(f_i, f_i^{\#})$ and $(f_j, f_j^{\#})$ coincide on the overlap $U_i \cap U_j$ for all $i, j \in I$ then there exists a morphism $(f, f^{\#})$ that restricts to $(f_i, f_i^{\#})$ on $(U_i, \mathcal{O}_X|U_i)$.
- 6. Let A be a commutative ring, and let $\{M_i, \tau_i^j\}$ be a direct system of A-modules over a directed set I. For any A-module N, one can consider the direct system $\{M_i \otimes_A N, \tau_i^j \otimes \operatorname{id}_N\}$. Show that there is a natural isomorphism of A-modules $(\lim_{\longrightarrow} M_i) \otimes_A N \simeq \lim_{\longrightarrow} (M_i \otimes_A N)$.

- 7. A commutative ring A is called reduced if its nilradical is zero. Show that A is reduced if and only if all localizations $A_{\mathfrak{p}}$ for all $\mathfrak{p} \in \operatorname{Spec} A$ are reduced. This can be generalized to schemes: a scheme X is defined to be reduced if the ring $\mathcal{O}_X(U)$ is reduced for all open $U \subset X$. Show that a scheme X is reduced if and only if all stalks $\mathcal{O}_{X,x}$ are reduced.
- 8. As in class, consider A = K[x, y] and $X = \operatorname{Spec} A$. Let M denote the A-module A/I where I = xA. Calculate the stalks $\widetilde{M}_{\mathfrak{p}}$ of the corresponding sheaf \widetilde{M} for all $\mathfrak{p} \in X$. Is \widetilde{M} a skyscraper sheaf?