



李奕清



### 目录

3DGS/NeRF + SD/SVD

- 1. Taming Video Diffusion Prior with Scene-Grounding Guidance for 3D Gaussian Splatting from Sparse Inputs (Guidevd-3DGS)
- 2. Difix3D+: Improving 3D Reconstructions with Single-Step Diffusion Model

- [1] Taming Video Diffusion Prior with Scene-Grounding Guidance for 3D Gaussian Splatting from Sparse Inputs . CVPR, 2025
- [2] Difix3D+: Improving 3D Reconstructions with Single-Step Diffusion Model. CVPR, 2025

### 三维重建和NVS



### 任务定义

- 3D重建算法:从多张二维图像恢复出场景的三维几何模型。传统方法比如摄影测量,新方法NeRF, 3DGS
- 新视角合成(Novel View Synthesis, NVS): 给定 源图像 及 源相机位姿 ,渲染生成目标相机位姿对应的图片。
- 常见的NVS流程: 1、重建: 从已有视角进行3D重建, 2、渲染: 根据重建场景渲染出新视角的图片。



3D重建



新视角合成

### 三维重建和NVS



# 任务定义





源图像



新视角合成

#### Guidevd-3DGS



### 背景

• 现有方法普遍采用face-forward的视角设置,过度简化了现实世界的稀疏输入建模,忽略了两个关键问题:

1. 外推:即使稀疏输入尽可能多地覆盖了场景,仍可能存在视野之外的区域。

2. 遮挡: 当新视角与训练输入视角略有偏差时, 遮挡问题频繁出现。





### 动机

• 视频扩散模型 (SVD) 可以为**不可见区域**提供信息。但直接使用可能导致性能下降。其主要原因是生成序列存在**多视角不一致性**,具体表现为:

1. 帧间外观不一致: 同一序列中的不同帧可能存在外观差异。

2. 虚假元素: 生成的序列可能包含场景中并不存在的元素。





### 方法

- 受无需训练的方法启发,提出了**场景锚定引导**策略,以确保生成序列的一致性。具体而言,在每一步去噪过程中,生成的噪声序列会从**渲染序列**中接收**梯度引导**。为什么能采用**渲染序列**进行一致性约束:
- 1. 相邻帧内容一致:由于相机运动范围有限,渲染序列中的相邻帧具有高度一致的外观。
- 2. 渲染序列提供场景锚定:可引导扩散模型避免生成场景中不存在的元素。





## 方法

- 1. 场景锚定引导(Scene-Grounding Guidance),无需训练和微调
- 2. 轨迹初始化策略,有效覆盖un-seen区域和遮挡区域
- 3. 基于生成序列的3DGS优化策略





### 场景锚定引导

分数函数: 由Unet估计

扩散模型去噪公式: 
$$\mathbf{x}_{t-1} = (1 + \beta_t/2)\mathbf{x}_t + \beta_t \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t) + \sqrt{\beta_t} \mathbf{z}$$
 (2)

受方法[1,2]启发,添加一致性目标 Q 来引导去噪

$$p(\mathbf{x}_{t}|\mathbf{c}) = \frac{p(\mathbf{c}|\mathbf{x}_{t})p(\mathbf{x}_{t})}{p(\mathbf{c})}, \quad \text{贝叶斯展开}$$

$$\nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t}|\mathcal{Q}) = \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t}) + \nabla_{\mathbf{x}_{t}} \log p(\mathcal{Q}|\mathbf{x}_{t}), \quad (3)$$
—

**2** 一致性约束项

根据[2], 能量函数 
$$p(\mathbf{c}|\mathbf{x}_t) = \frac{\exp\{-\lambda \mathcal{E}(\mathbf{c}, \mathbf{x}_t)\}}{Z}$$
, 进一步推导一致性约束 
$$\nabla_{\mathbf{x}_t} \log p(\mathcal{Q}|\mathbf{x}_t) \propto -\nabla_{\mathbf{x}_t} \mathcal{L}(\mathcal{Q}, \mathbf{x}_t), \tag{4}$$

如何定义Q?不像[1,2]使用额外的模型,而是使用3DGS渲染序列S作为Q,好处是:不用引入额外模型,

#### 不要微调就能提供**场景锚定**

$$\mathcal{L}(\mathbf{S}, \mathbf{M}, \mathbf{X}_{0|t}) = \|\mathbf{M} \odot (\mathbf{S} - \mathbf{X}_{0|t})\|_{1} + \lambda_{\text{perc}} \mathcal{L}_{\text{perc}}(\mathbf{M} \odot \mathbf{S}, \mathbf{M} \odot \mathbf{X}_{0|t}),$$
(6)

- [1] Universal guidance for diffusion models. CPVR, 2023.
- [2] Training-free energy-guided conditional diffusion model. ICCV, 2023.



### 场景锚定引导

#### Algorithm 1 Generation with Scene-Grounding Guidance

- 1: Function GENERATOR( $\mathcal{R}, I, \{\phi_j\}_{j=1}^L$ )
- 2: **Input:** Optimized 3DGS model  $\mathcal{R}$ , input image I, camera trajectory of a sequence  $\{\phi_j\}_{j=1}^L$ .
- 3: **Given:** Latent image-to-video diffusion model  $\epsilon_{\theta}$ , VAE decoder  $\mathcal{D}$ , pre-defined  $\beta_{t}$ ,  $\bar{\alpha}_{t}$  and guidance scale  $\gamma_{t}$ .
- 4: Abbreviate  $\epsilon_{\theta}(\mathbf{x}_t, t, I, \{\phi_j\}_{j=1}^L)$  as  $\epsilon_{\theta}(\mathbf{x}_t, t)$
- 5:  $\mathbf{S}, \mathbf{M} = \operatorname{rasterize}(\{\phi_j\}_{j=1}^L, \mathcal{R})$   $\triangleright \operatorname{Eq.}(1)\&(5)$
- 6:  $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$
- 7: **for** t = T, ..., 1 **do**
- 8:  $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I}) \text{ if } t > 1, \text{ else } \mathbf{z} = \mathbf{0}$
- 9:  $\hat{\mathbf{x}}_{t-1} = (1 + \frac{1}{2}\beta_t)\mathbf{x}_t \frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}}\epsilon_{\theta}(\mathbf{x}_t, t) + \sqrt{\beta_t}\mathbf{z}$
- 10:  $\mathbf{x}_{0|t} = \frac{1}{\sqrt{\bar{\alpha}_t}} (\mathbf{x}_t \sqrt{1 \bar{\alpha}_t} \epsilon_{\theta}(\mathbf{x}_t, t))$
- 11:  $\mathbf{X}_{0|t} = \mathcal{D}(\mathbf{x}_{0|t})$
- 12:  $\mathbf{g}_t = \nabla_{\mathbf{x}_t} \mathcal{L}(\mathbf{S}, \mathbf{M}, \mathbf{X}_{0|t})$   $\triangleright \text{Eq. (6)}$
- 13:  $\mathbf{x}_{t-1} = \hat{\mathbf{x}}_{t-1} \gamma_t \mathbf{g}_t$   $\triangleright$  Eq. (2)& (4)
- 14: end for
- 15: **return**  $\mathcal{D}(\mathbf{x}_0)$



## 轨迹初始化策略

对每个稀疏输入视角,在其周围采样多个候选相机姿态,并使用3DGS渲染。选择在渲染图片中存在显著黑洞(未覆盖区域)的候选姿态,并插值生成完整的相机轨迹: $\Phi=\{\{\phi_j^{(i,c)}\}_{j=1}^L|i,c\},$ 





### 基于生成序列的3DGS优化方案

- 1. 训练一个初始的3DGS。
- 2. 进行轨迹初始化,构建轨迹池。
- 3. 迭代过程, 每隔固定步数生成新的序列, 并将其用于优化。
- 4. 结合输入视图和生成视图的损失函数, 更新3DGS。

### 损失函数

$$\mathcal{L}^{\text{input}} = (1 - \lambda)\mathcal{L}_1(C_i, C_i^{\text{gt}}) + \lambda \mathcal{L}_{\text{D-SSIM}}(C_i, C_i^{\text{gt}}), (8)$$

$$\mathcal{L}^{\text{gen}} = \lambda_{\text{gen}1} \mathcal{L}_1(C_j, S_j) + \lambda_{\text{gen}2} \mathcal{L}_{\text{perc}}(C_j, S_j),$$
 (9)

#### Algorithm 2 3DGS Optimization with Generation

- 1: Input: Sparse inputs of N images  $\{C_i^{\text{gt}}, \varphi_i\}_{i=1}^N$ .
- 2: Given: Number of iterations  $N_{\text{iter}}$ , generation interval  $N_{\text{gen}}$ , ratio of samples from other sequences  $\eta$ .
- 3: Variable: Global list of generated views G = [].
- 4: Baseline 3DGS model optimization  $\Rightarrow \mathcal{R}$
- 5: Trajectory initialization  $\Rightarrow \Phi$   $\triangleright$  Eq. (7)
- 6: **for**  $t = 0, ..., N_{\text{iter}} 1$  **do**
- 7: **If**  $t \% N_{\text{gen}} = 0$  **then**
- 8: Sample an input view I
- 9: Sample a trajectory around I from  $\Phi \Rightarrow {\{\phi_j\}_{j=1}^L}$
- 10:  $\mathbf{S} = \text{GENERATOR}(\mathcal{R}, I, \{\phi_j\}_{j=1}^L)$
- 11: Append S to G
- 12: End If
- 13: Sample an input view to get  $\mathcal{L}^{input}$   $\triangleright$  Eq. (8)
- 14: If rand()  $\geq \eta$  then
- 15: Sample a generated view from S
- 16: Else Sample a generated view from G
- 17: **End If**
- 18: Use the generated view to get  $\mathcal{L}^{gen}$   $\triangleright$  Eq. (9)
- 19:  $(\mathcal{L}^{input} + \mathcal{L}^{gen})$ .backward()
- 20: # Densification and opacity reset
- 21: end for



## 实验结果



ScanNet++数据集和Replica数据集,6个视角输入



### 实验结果

| Method                       | R     | teplica [4        | 4]     | ScanNet++ [58] |       |        |  |
|------------------------------|-------|-------------------|--------|----------------|-------|--------|--|
|                              | PSNR↑ | SSIM <sup>↑</sup> | LPIPS↓ | PSNR↑          | SSIM↑ | LPIPS. |  |
| Mip-NeRF [2]                 | 18.12 | 0.707             | 0.391  | 19.58          | 0.755 | 0.389  |  |
| InfoNeRF [20]                | 13.07 | 0.598             | 0.552  | 14.54          | 0.646 | 0.495  |  |
| DietNeRF [16]                | 18.99 | 0.676             | 0.444  | 19.76          | 0.719 | 0.431  |  |
| FreeNeRF [56]                | 20.99 | 0.765             | 0.324  | 20.17          | 0.756 | 0.368  |  |
| S <sup>3</sup> NeRF [68]     | 22.54 | 0.800             | 0.287  | 22.21          | 0.787 | 0.364  |  |
| 3DGS <sup>‡</sup> [19]       | 22.80 | 0.818             | 0.179  | 21.41          | 0.817 | 0.211  |  |
| DNGaussian [21]              | 17.63 | 0.718             | 0.435  | 19.01          | 0.754 | 0.367  |  |
| DNGaussian <sup>‡</sup> [21] | 22.71 | 0.821             | 0.189  | 20.68          | 0.788 | 0.281  |  |
| FSGS [69]                    | 20.22 | 0.760             | 0.304  | 17.95          | 0.730 | 0.373  |  |
| FSGS <sup>‡</sup> [69]       | 22.99 | 0.833             | 0.205  | 21.23          | 0.813 | 0.257  |  |
| Ours                         | 26.35 | 0.872             | 0.122  | 23.89          | 0.850 | 0.182  |  |

定量结果

| (a)                        | Gen. | Cuida  | Tuni  | Full Image |                           |       | Observable Regions |       |       |
|----------------------------|------|--------|-------|------------|---------------------------|-------|--------------------|-------|-------|
| (a)                        |      | Guide. | Traj. | PSNR↑      | SNR↑ SSIM↑ LPIPS↓ PSNR↑ : | SSIM† | <b>LPIPS</b> ↓     |       |       |
| Baseline 3DGS              |      |        |       | 22.80      | 0.818                     | 0.179 | 25.45              | 0.860 | 0.129 |
| w/ Vanilla Generation      | 1    |        |       | 23.69      | 0.840                     | 0.160 | 25.00              | 0.870 | 0.119 |
| w/ Guided Generation       | 1    | ✓      |       | 25.03      | 0.852                     | 0.139 | 26.52              | 0.881 | 0.101 |
| w/ Guided Generation&Traj. | 1    | 1      | ✓     | 25.58      | 0.859                     | 0.138 | 26.53              | 0.883 | 0.100 |

| (b)                        | PSNR† | SSIM <sup>↑</sup> | LPIPS. |
|----------------------------|-------|-------------------|--------|
| Baseline 3DGS              | 22.80 | 0.818             | 0.179  |
| w/ Guided Generation&Traj. | 25.58 | 0.859             | 0.138  |
| w/ perceptual loss         | 26.35 | 0.872             | 0.122  |
| w/o local sampling         | 26.28 | 0.871             | 0.127  |
| w/o global list            | 26.01 | 0.867             | 0.122  |



## 不足

- 1. 图片内容过平滑,分辨率不高,320×512
- 2. 多视角一致性和图片保真度实质上还是缺少保证,依赖于SVD的能力











Guidedvd-3dgs

GT

Guidedvd-3dgs

GT







## 方法

- 通过单步扩散模型SD-Turbo,增强、去除un-seen视角欠拟合造成的伪影
- 可以在两个阶段起作用: 重建阶段用来去除伪影, 增强图片。后处理阶段作为一个实时增强器



Blue Cameras: Training Views; Red Cameras: Target Views;

Orange Cameras: Intermediate Novel views along the progressive 3D updating trajectory (Sec. 4.2).



## 方法

- 输入: 低质图像和参考图像, 输出干净图像。
- 修改了SD-Turbo中的自注意力层,将低质图像和参考图像拼接,考虑到相互的图像内容。
- VAE的Decoder也进行LoRA的微调





## 方法

• 微调时,输入不是随机高斯噪声,而是退化的渲染图像。

SSIM

0.4521

• 发现**退化图像分布**与原始扩散模型在特定噪声水平 τ = 200下训练的噪声图像的分布相似。

0.5263



0.6129

0.6814

0.6618

0.6752



## DIFIX3D: 渐进式更新Progressive 3D Updates

- 1. 使用参考视图优化 3D 表示
- 每隔n次迭代,将GT相机姿态向目标视图扰动 ∇, 渲染新视角,使用DIFIX进行Refine
- 3. 优化后的图像添加到训练集,再进行n次迭代
- 4. 通过逐步扰动相机姿态、优化新视角和更新训练集,逐渐提高 3D 一致性





## DIFIX3D+: 实时后渲染处理

- 1. 进一步增强新视角,在推理时使用 DIFIX 作为后处理, 有效地去除残留的伪影
- 2. 由于 DIFIX 是一个单步模型,额外的渲染时间在 A100上 仅需 76 毫秒,比标准的多步去噪扩散模型快 10 倍以上





### 损失函数

• 矩阵风格损失: 一般用在风格迁移任务。对齐 CNN中的深层特征

$$\mathcal{L}_{Gram} = \frac{1}{L} \sum_{l=1}^{L} \beta_l \left\| G_l(\hat{I}) - G_l(I) \right\|_2,$$

• L2重建损失 + 感知损失 + 矩阵风格损失

$$\mathcal{L} = \mathcal{L}_{Recon} + \mathcal{L}_{LPIPS} + 0.5\mathcal{L}_{Gram}.$$





### 实验结果



Figure 5. In-the-wild artifact removal. We show comparisons on held-out scenes from the DL3DV dataset [23] (top, above the dashed line) and the Nerfbusters [70] dataset (bottom). DIFIX3D+ corrects significantly more artifacts that other methods.



### 实验结果

|                     | Nerfbusters Dataset |        |        |                 | DL3DV Dataset |        |        |                 |  |
|---------------------|---------------------|--------|--------|-----------------|---------------|--------|--------|-----------------|--|
| Method              | PSNR↑               | SSIM↑  | LPIPS↓ | $FID\downarrow$ | PSNR↑         | SSIM↑  | LPIPS↓ | $FID\downarrow$ |  |
| Nerfbusters [70]    | 17.72               | 0.6467 | 0.3521 | 116.83          | 17.45         | 0.6057 | 0.3702 | 96.61           |  |
| GANeRF [46]         | 17.42               | 0.6113 | 0.3539 | 115.60          | 17.54         | 0.6099 | 0.3420 | 81.44           |  |
| NeRFLiX [88]        | 17.91               | 0.6560 | 0.3458 | 113.59          | 17.56         | 0.6104 | 0.3588 | 80.65           |  |
| Nerfacto [58]       | 17.29               | 0.6214 | 0.4021 | 134.65          | 17.16         | 0.5805 | 0.4303 | 112.30          |  |
| DIFIX3D (Nerfacto)  | 18.08               | 0.6533 | 0.3277 | 63.77           | 17.80         | 0.5964 | 0.3271 | 50.79           |  |
| DIFIX3D+ (Nerfacto) | 18.32               | 0.6623 | 0.2789 | 49.44           | 17.82         | 0.6127 | 0.2828 | 41.77           |  |
| 3DGS [20]           | 17.66               | 0.6780 | 0.3265 | 113.84          | 17.18         | 0.5877 | 0.3835 | 107.23          |  |
| DIFIX3D (3DGS)      | 18.14               | 0.6821 | 0.2836 | <u>51.34</u>    | 17.80         | 0.5983 | 0.3142 | 50.45           |  |
| DIFIX3D+ (3DGS)     | 18.51               | 0.6858 | 0.2637 | 41.77           | 17.99         | 0.6015 | 0.2932 | 40.86           |  |

Table 2. Quantitative comparison on Nerfbusters and DL3DV datasets. The best result is highlighted in **bold**, and the second-best is <u>underlined</u>.

| Method        | $\tau$ | SD Turbo Pretrain. | Gram | Ref      | $LPIPS \!\!\downarrow$ | $\text{FID}{\downarrow}$ |
|---------------|--------|--------------------|------|----------|------------------------|--------------------------|
| pix2pix-Turbo | 1000   | ✓                  |      |          | 0.3810                 | 108.86                   |
| DIFIX         | 200    | ✓                  |      |          | 0.3190                 | 61.80                    |
| DIFIX         | 200    | ✓                  | V    |          | 0.3064                 | 55.45                    |
| DIFIX         | 200    | ✓                  | ✓    | <b>✓</b> | 0.2996                 | 47.87                    |

Table 5. Ablation study of DIFIX components on Nerfbusters dataset. Reducing the noise level, conditioning on reference views, and incorporating Gram loss improve our model.



### 不足

- 1. **多视角一致性**和**图片保真度**实质上还是缺少保证,依赖于SD注意力+3D表征的能力(例如,幻觉内容、几何结构偏移、直线扭曲)
- 2. 颜色色调会发生轻微改变 (一般容易更深)













**GT** 



GT

Difix3D+

Difix3D+



