

Parsimonious Linear Fingerprinting for Time Series

Lei Li, B. Aditya Prakash, Christos Faloutsos School of Computer Science Carnegie Mellon University

VLDB2010, 36th International Conference on Very Large Data Bases

Answering similarity queries in Time Series

Databases

SELECT * FROM TSDB WHERE data LIKE

Automatic labeling of human motion sequences

Summarization / Compression

Outline

- Motivation
- Proposed Method: Intuition & Example
 - Experiments & Results
 - PLiF: Insight Details
 - Conclusion

VLDB 2010

Intuition: Goals

VLDB 2010 © L. Li, 2010

Intuition: Goals

G1	Good features/similarity function
	(1a) lag independent(1b) frequency proximity(1c) grouping harmonics
G2	Good compression
G 3	Ability to forecast
G4	Scalability

Example: synthetic signals

Equations

- (b) $\cos(2\pi t/100)$
- (c) $\sin(2\pi t/98 + \pi/6)$
- (d) $\frac{\sin(2\pi t/110) + \cos(2\pi t/30)}{0.2\sin(2\pi t/30)}$
- (e) $\frac{\cos(2\pi t/110) + \cos(2\pi t/30 + \pi/4)}{0.2\sin(2\pi t/30 + \pi/4)}$

VLDB 2010

Intuition (1a)

Equations

- (b) $\cos(2\pi t/100)$
- (c) $\sin(2\pi t/98 + \pi/6)$
- (d) $\frac{\sin(2\pi t/110) + \cos(2\pi t/30)}{0.2\sin(2\pi t/30)}$
- (e) $\frac{\cos(2\pi t/110) + \cos(2\pi t/30 + \pi/4)}{0.2\sin(2\pi t/30 + \pi/4)}$

VLDB 2010

Intuition (1b)

Equations

- (b) $\cos(2\pi t/100)$
- (c) $\sin(2\pi t/98 + \pi/6)$
- (d) $\frac{\sin(2\pi t/110) + \cos(2\pi t/30)}{0.2\sin(2\pi t/30)}$
- (e) $\cos(2\pi t/110) + \\ 0.2\sin(2\pi t/30 + \pi/4)$

VLDB 2010

© L. Li, 2010

Intuition (1c)

Equations

- (b) $\cos(2\pi t/100)$
- (c) $\sin(2\pi t/98 + \pi/6)$
- (d) $\frac{\sin(2\pi t/110) + \cos(2\pi t/30)}{0.2\sin(2\pi t/30)}$
- (e) $\frac{\cos(2\pi t/110) + \cos(2\pi t/30 + \pi/4)}{0.2\sin(2\pi t/30 + \pi/4)}$

VLDB 2010

© L. Li, 2010

Q: only two numbers to represent each!

Intuition: how it works

find hidden variable/pattern

Intuition: how it works

find hidden variable/pattern

Why it works? / How to interpret?

Basic Idea

Why not SVD/PCA?

VLDB 2010

20

Outline

- Motivation
- Proposed Method: Intuition & Example
- **Experiments & Results**
 - PLiF: Insight Details
 - Conclusion

Experiment: Goals to Verify

- G2 Good compression
- Ability to forecast
- G4 Scalability

Experiments

• Datasets:

Mocap 49 * 100-500

BGP: 10 * 103k

Chlorine:166 * 4k

Result – Visualization

Mocap PLiF first two "fingerprints"

With PLiF, now able to visualize very high dimensional time sequences

Result – Clustering

-0.05

0

FP1

0.05

PLiF + thresholding

Pred.	walk	run
-1	26	3
1	0	20

Accuracy = 46/49

PCA + kmeans

Pred.	walk	run
-1	15	13
1	11	10

Accuracy = 25/49

VLDB 2010 © L. Li, 2010 25

0.1

Result – Clustering

Intuition: Goals

Result - Compression

Chlorine 166 * 4k

Storing only the PLiF features & sampling of hidden variables

28 **VLDB 2010** © L. Li, 2010

Result - Compression

& sampling of hidden variables

VLDB 2010 © L. Li, 2010 29

Intuition: Goals

Scalability

Linear ~ sequence length

Scalability

- Optimized algorithm
- Details later

VLDB 2010 © L. Li, 2010

Intuition: Goals

Outline

- Motivation
- Proposed Method: Intuition & Example
- Experiments & Results
- PLiF: Insight Details
 - Conclusion

Proposed Method: PLiF

- Learning Dynamics
- Finding Canonical Form
- Handling the Lag
- Grouping Harmonics

Step 1. Learning Dynamics

- Use machine learning to find:
 - "Transition" of HiddenVariables (HV): one timetick to other
 - "Mixing" weights:HVs → observed data

Time series of hidden variables

Underlying Model: Linear Dynamical Systems

Model parameters:

$$\theta = \{\mu_0, Q_0, A, Q, C, R\}$$

$$z_1 = \mu_0 + \omega_0$$

 $z_{n+1} = A \cdot z_n + \omega_n$
 $x_n = C \cdot z_n + \varepsilon_n$

Dynamics/Transition in Hidden Variables

Mixing Weights

Learning the Parameters

- Expectation-Maximization
- maximizing the expected log likelihood:

$$L(\theta; \mathcal{X}) = \mathbb{E}_{\mathcal{X}, \mathcal{Z}|\theta} [-D(\vec{z}_1, \vec{\mu}_0, \mathbf{Q}_0)]$$

$$-\sum_{t=2}^{T} D(\vec{z}_t, \mathbf{A}\vec{z}_{t-1}, \mathbf{Q}) - \sum_{t=1}^{T} D(\vec{x}_t, \mathbf{C}\vec{z}_t, \mathbf{R})$$

$$-\frac{1}{2} \log |\mathbf{Q}_0| - \frac{T-1}{2} \log |\mathbf{Q}| - \frac{T}{2} \log |\mathbf{R}|] (13)$$

Standard EM: expensive!

Further speed optimization in our PLiF: matrix inversion using Woodbury matrix identity

Step 2: Canonicalization

- But, hidden variables
 - hard to interpret
 - non-unique: many combinations are essentially the same
- Intuition:
 - To make hidden variables compact and "uniquely" identified

Canonicalization adds Interpretability

HV before

Time series of HV after canonicalization (real part)

Step 2: Canonicalization

Again,
 Estimating how each signal is composed of "harmonics"/patterns

but, in complex space

Step 3: Handling Lag

• Intuition:

- Groups emerge..
- reducing redundancy
- eliminating phase shift

Step 3: Handling Lag

• Idea:

- only magnitude counts
- removing duplicates

Step 3: Handling Lag

• interpretability /

Step 4: Grouping Harmonics

Step 4: Grouping Harmonics

Step 4: Grouping Harmonics

Parsimonious Linear Fingerprinting

Goals $\leftarrow \rightarrow$ steps

Good features/similarity function

(1a) lag independent

(1b) frequency proximity

(1c) grouping harmonics

Good compression

Ability to forecast

Scalability

Learning Dynamics

Handling Lag

Grouping Harmonics

VLDB 2010

© L. Li, 2010

50

Outline

- Motivation
- Proposed Method: Intuition & Example
- Experiments & Results
- PLiF: Insight Details
- Conclusion

Conclusion

- Need for finding compact representation of time series data
- Intuition & Insights of PLiF
- Interpretation of PLiF & How it works
- Experiments on a diverse set of data
 - It really works!
 - It is fast & scalable.

Parsimonious Linear Fingerprinting

Goals $\leftarrow \rightarrow$ steps

Good features/similarity function

(1a) lag independent

(1b) frequency proximity

(1c) grouping harmonics

Good compression

Ability to forecast

Scalability

Learning Dynamics

Canonical Form

Handling Lag

Grouping Harmonics

Question?

• Thanks!

B. Aditya

Prakash

Lei Li

Christos Faloutsos

http://www.cs.cmu.edu/~leili/

leili@cs.cmu.edu

appendix

BACKUP

1. FT cannot do forecasting

VLDB 2010 56

1. FT cannot do forecasting

VLDB 2010 57

- 1. FT cannot do forecasting
- 2. No arbitrary frequency

- 1. FT cannot do forecasting
- 2. No arbitrary frequency
- 3. nearby frequency treated differently, not suited for across signals

Details for Implementation

Read this only if you want to implement it

Modelling the data: Linear Dynamical Systems

Model parameters:

$$\theta = \{\mu_0, Q_0, A, Q, C, R\}$$

$$z_1 = \mu_0 + \omega_0$$

 $z_{n+1} = A \cdot z_n + \omega_n$
 $x_n = C \cdot z_n + \varepsilon_n$

Linear Dynamical Systems: parameters

	name	meaning & example
μ_0	initial state for hidden variable	e.g. initial position, velocity & acceleration
A	transition matrix	how the states move forward, e.g. soccer flying in the air
С	transmission/ projection/ output matrix	hidden state → observation, e.g. camera taking picture of the soccer
Q_0	Initial covariance	
Q	transition covariance	how precision is the soccer motion
R	transmission/ projection covariance	i.e. observation noise; e.g. how accurate is the camera

Learning the Dynamics

- Expectation-Maximization
- maximizing the expected log likelihood

$$L(\theta; \mathcal{X}) = \mathbb{E}_{\mathcal{X}, \mathcal{Z}|\theta}[-D(\vec{z}_1, \vec{\mu}_0, \mathbf{Q}_0)$$

$$-\sum_{t=2}^{T} D(\vec{z}_t, \mathbf{A}\vec{z}_{t-1}, \mathbf{Q}) - \sum_{t=1}^{T} D(\vec{x}_t, \mathbf{C}\vec{z}_t, \mathbf{R})$$

$$-\frac{1}{2} \log |\mathbf{Q}_0| - \frac{T-1}{2} \log |\mathbf{Q}| - \frac{T}{2} \log |\mathbf{R}|]$$

Finding Canonical Form

- Intuition: find the canonical dynamics
- taking eigenvalue decomposition of the transition matrix A

$$A = V\Lambda V^*$$

• compensate C with

$$C_h = C \cdot V$$

- C_h is a projection of the data to the dynamics
- but...

Lags and Harmonics group

- Handling the lag:
 - Intuition: phase/shift should not matter
 - step: eliminating duplicate conjugate in C_h , taking magnitude, ==> C_m
- Group harmonics
 - taking SVD or PCA on C_m
 - resulting fingerprints H₁

3D VIEW OF HIDDEN VARIABLES

Example: parsimonious HV after canonicalization

SPEEDUP OPTIMIZATION

Scalability

• Speedup the computation of matrix inverse using Woodbury matrix identity

$$(\mathbf{X} + \mathbf{Y}\mathbf{Z}\mathbf{Y}^T)^{-1} = \mathbf{X}^{-1} - \mathbf{X}^{-1}\mathbf{Y}(\mathbf{Z}^{-1} + \mathbf{Y}^T\mathbf{X}^{-1}\mathbf{Y})^{-1}\mathbf{Y}^T\mathbf{X}^{-1}$$