Lesson 40: Sorting Routines

What is sorting?

Sorting simply means **arranging items in ascending or descending order**. Two types of approaches to sorting are described here:

- 1. The **incremental** approach
- 2. The **divide-and-conquer** approach (typically uses recursion)

Of the two, divide-and-conquer is by far the **fastest** (in most cases)...but also the most complicated.

Big O Summary

It will probably be easier to learn the Big O designation for each sorting and search routine when simultaneously viewing all of them in a table:

Sorts		Best Case	Average Case	Worst Case
	Bubble Sort	O(n)	$O(n^2)$	$O(n^2)$
	Selection Sort	$O(n^2)$	$O(n^2)$	$O(n^2)$
	Insertion Sort	O(n)	$O(n^2)$	$O(n^2)$
	Quick Sort	$O(n \log n)$	$O(n \log n)$	$O(n^2)$
	Merge Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
	Radix Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
Searches				
	Linear or Sequential	l O(1)	O(n)	O(n)
	Binary	O(1)	$O(\log n)$	$O(\log n)$
	Binary Search Tree	O(1)	$O(\log n)$	O(n)

Occasionally, "best case" is referred to as the **most restrictive** or **fastest executing** case. Similarly, "worst case" is referred to as the **least restrictive** or **slowest executing** case.