

EVENT PROCESSING WITH STREAM ANALYTICS

Big Data - Technology, Platforms & Products

TYPICAL EVENT PROCESSING

Event Broker

(WebAPIs)

Field Gateways

External data sources

13,000 + HOURS

12,000+

NEW ADS POSTED ON craigslist

in

in

WORLD'S LARGEST

COMMUNITY

CREATED CONTENT!

79,364 WALL POSTS

50+ WORDPRESS DOWNLOADS

510,040 COMMENTS

320 +

370,000 + MINUTES VOICE CALLS ON

skype

98,000+ TWEETS

TIMELINESS OF INFORMATION

What's trending in the past 5 minutes?

Your high school friend is also in Vegas NOW.

TYPICAL EVENT PROCESSING

Event Broker

(WebAPIs)

Field Gateways

External data sources

DATA AT REST

Question

"How many red cars are in the parking lot?"

Answering with a relational database Walk out to the parking lot Count vehicles that are: Red, Car

SELECT count(*) FROM ParkingLot WHERE type = 'Auto' AND color = 'Red'

DATA IN MOTION

Different Question

"How many red cars have passed exit 18A on A-10 in the last hour?"

Answering with a relational database
Pull over, park all vehicles in a lot, keep them there for an hour
Count vehicles in the lot

Not a great solution...

AZURE STREAM QUERY LANGUAGE

Simple SQL dialect

Familiar – learning curve reduction

High-Level – expression of intent, not implementation

Maintainable – focus on the essentials of the problem

Extended in natural ways to express temporal concepts

WINDOW – multiple kinds

(tumbling, hopping, sliding)

TIMESTAMP BY, BETWEEN

DATEDIFF in joins

PARTITION BY for scale-out

```
WITH agg AS
(
     SELECT Avg(reading), Building
     FROM Temperature
     GROUP BY TumblingWindow(second, 1), building
)
SELECT A1.Avg AS Old, A2.Avg AS New, A1.Building
FROM Agg A1 JOIN Agg A2
ON A1.Building = A2.Building
AND DATEDIFF(minute,A1,A2) BETWEEN 4.5 AND 5.5
WHERE
     (a1.avg < a2.avg - 10) OR (a1.avg > a2.avg+10)
```

DEMO

TYPICAL EVENT PROCESSING

STRENGTHS

- Analyze millions of events per SECOND
- Fault tolerant
- SQL spoken here
- Fully managed service by Azure

BUILT-IN FUNCTIONS AND SUPPORTED TYPES

Aggregate functions

Count, Min, Max, Avg, Sum

Scalar functions

Cast

Date and time: Datename, Datepart, Day, Month, Year, Datediff, Dateadd

String: Len, Concat, Charindex, Substring, Patindex

A TEMPORAL SYSTEM

- Every event is a point in time, and thus must come with a timestamp.
 - (remember how relational DBs need a PK? Temporal systems need a timestamp)
- Stream Analytics can append your events with a timestamp. (bad practice if standalone)
 - Can be skewed by network and hardware latency.
- Users can define application time stamps with the TIMESTAMP BY clause.
- Aggregations have timestamps at the end of the window.

TRADITIONAL SQL

How many vehicles passed through each toll booth yesterday?

 Why can't we ask how many cars have gone through so far today?

SELECT TollID, Count(*) AS Count FROM EntryTable WHERE date = 'yesterday' GROUP BY TollID

AZURE STREAM QUERY LANGUAGE

How many vehicles pass through each toll booth every 3 seconds?

SELECT TollID, System.Timestamp AS WindowEnd, Count(*) AS Count FROM EntryStream TIMESTAMP BY EntryTime GROUP BY TUMBLINGWINDOW(second, 3), TollID

TUMBLING WINDOW

SELECT TollID, System.Timestamp AS WindowEnd, Count(*) AS Count FROM EntryStream TIMESTAMP BY EntryTime GROUP BY TUMBLINGWINDOW(second, 3), TollID

HOPPING WINDOW

SELECT TollID, System.Timestamp AS WindowEnd, Count(*) AS Count FROM EntryStream TIMESTAMP BY EntryTime GROUP BY HOPPINGWINDOW(second, 2, 3), TollID

SLIDING WINDOW

SELECT TollID, System.Timestamp AS WindowEnd, Count(*) AS Count FROM EntryStream TIMESTAMP BY EntryTime GROUP BY SLIDING(second, 2, 3), TollID HAVING Color = RED

SUM AGGREGATION

How much toll revenue is being accumulated every 3 minutes?

SELECT System.Timestamp AS WindowEnd, Sum(TollAmount) AS IntervalRevenue FROM EntryStream TIMESTAMP BY EntryTime GROUP BY TUMBLINGWINDOW(minute, 3), WindowEnd

SUM AGGREGATION

Which 3 minute time interval made more than \$10?

SELECT System.Timestamp AS WindowEnd, Sum(TollAmount) AS IntervalRevenue FROM EntryStream TIMESTAMP BY EntryTime GROUP BY TUMBLINGWINDOW(minute, 3), WindowEnd Having IntervalRevenue > 10

DATEDIFF

How long does it take for each car to pass through the toll zone?

SELECT

EntryStream.LicensePlate,

DATEDIFF (second, EntryStream.EntryTime, Exitstream.ExitTime) AS DurationInSeconds

FROM EntryStream timestamp by EntryTime

JOIN Exitstream timestamp by ExitTime

ON Exitstream.LicensePlate = ExitStream.LicensePlate

AND DATEDIFF(second, EntryStream, ExitStream) BETWEEN 0 AND 1800

DATEDIFF

How long does it take for each car to pass through the toll zone?

SELECT

EntryStream.LicensePlate,

DATEDIFF(second, EntryStream.EntryTime, Exitstream.ExitTime) AS DurationInSeconds

FROM EntryStream timestamp by EntryTime

JOIN Exitstream timestamp by ExitTime

ON Exitstream.LicensePlate = ExitStream.LicensePlate

AND DATEDIFF(second, EntryStream, ExitStream) BETWEEN 0 AND 1800

DATEDIFF, INTEGER ONLY

How long (in HOURS) does it take for each car to pass through the toll zone?

Decimal floats cut off, returns only 0s.

SELECT

EntryStream.LicensePlate,

DATEDIFF(hour, EntryStream.EntryTime, Exitstream.ExitTime) AS DurationInSeconds

FROM EntryStream timestamp by EntryTime

JOIN Exitstream timestamp by ExitTime

ON Exitstream.LicensePlate = ExitStream.LicensePlate

AND DATEDIFF(hour, EntryStream, ExitStream) BETWEEN 0 AND 1800

CALCULATIONS

How fast (mph) was each car traveling through the toll zone? Assuming the toll zone was 1.5 miles long.

SELECT

EntryStream.LicensePlate,

1.5 / (DATEDIFF(second, (second, EntryStream.EntryTime, Exitstream.ExitTime) / 60 / 60) AS MilesPerHour

FROM EntryStream timestamp by EntryTime

JOIN Exitstream timestamp by ExitTime

ON Exitstream.LicensePlate = ExitStream.LicensePlate

AND DATEDIFF(second, EntryStream, ExitStream) BETWEEN 0 AND 3600

AZURE STREAM-QL QUIRKS

Who was speeding through the toll zone?

• Simple question... but the query below will break.

SELECT

EntryStream.LicensePlate,

1.5 / (DATEDIFF(second, (second, EntryStream.EntryTime, Exitstream.ExitTime) / 60 / 60) AS MilesPerHour

FROM EntryStream timestamp by EntryTime

JOIN Exitstream timestamp by ExitTime

ON Exitstream.LicensePlate = ExitStream.LicensePlate

AND DATEDIFF(second, EntryStream, ExitStream) BETWEEN 0 AND 3600

WHERE Miles Per Hour > 62

AZURE STREAM-QL QUIRKS

Who was speeding through the toll zone?

• Works... but ugly solution.

SELECT

EntryStream.LicensePlate,

1.5 / (DATEDIFF(second, (second, EntryStream.EntryTime, Exitstream.ExitTime) / 60 / 60) AS MilesPerHour FROM EntryStream timestamp by EntryTime

JOIN Exitstream timestamp by ExitTime

ON Exitstream.LicensePlate = ExitStream.LicensePlate

AND DATEDIFF(second, EntryStream, ExitStream) BETWEEN 0 AND 3600

WHERE 1.5 / (DATEDIFF(second, (second, EntryStream.EntryTime, Exitstream.ExitTime) / 60 / 60) > 62