Backward Stochastic Differential Equations Tutor: Alekos Cecchin

Nathaniel Cogneaux

Dipartimento di Matematica "Tullio Levi-Civita", Università di Padova

19/05/2023

Introduction

A bit of history : backward stochastic differential equations (BSDEs) - [Bismut 1973] + [Pardoux & Peng 1990]

- Existence and uniqueness of solutions
- Applications in finance, control theory, mathematical physics...
- Today, BSDEs continue to be an active area of research

Plan

Agenda:

- I. Mathematical framework and definitions
- II. The linear case
- III. Well-Posedness of BSDEs
- IV. Basic Properties of BSDEs
- V. Some applications

For the whole seminar we fix a T>0, $(\Omega,\mathcal{F},\mathbb{F},\mathbb{P})$ a filtered probability space, and B a d-dimensional Brownian motion. We shall always assume $\mathbb{F}=\mathbb{F}^B$.

Theorem (Martingale representation theorem)

 $\forall \xi \in \mathbb{L}^2(\mathcal{F}_T^B)$, $\exists ! \sigma \in \mathbb{L}^2(\mathbb{F}^B, \mathbb{R}^d)$ such that :

$$\xi = \mathbb{E}[\xi] + \int_0^T \sigma_t . dB_t$$

Consequently, for any \mathbb{F}^B -martingale M such that $\mathbb{E}[|M_T|^2] < \infty$, $\exists ! \sigma \in \mathbb{L}^2(\mathbb{F}^B, \mathbb{R}^d)$ such that :

$$M_t = M_0 + \int_0^t \sigma_s . dB_s$$

$$\begin{cases} dY_t = 0 \\ Y_T = \xi \end{cases} \tag{1}$$

 $Y_t = \xi \ \forall t$? But then Y_t is not adapted to $\mathcal{F}_t^B \to \mathsf{We}$ need a certain Z_t such that

$$\begin{cases} dY_t = Z_t dB_t \\ Y_T = \xi \end{cases} \tag{2}$$

and thus Y_t becomes adapted to \mathcal{F}_t^B . Idea: Martingale representation theorem!

Given $\xi \in \mathbb{L}^2(\mathcal{F}_T^B)$, it induces naturally a martingale $Y_t := \mathbb{E}[\xi | \mathcal{F}_t]$. And by the previous theorem $\exists ! Z \in \mathbb{L}^2(\mathbb{F})$ such that :

$$dY_t = Z_t dB_t$$
, or equivalently, $Y_t = \xi - \int_t^T Z_s dB_s$.

This is a linear SDE with terminal condition $Y_T = \xi$ and Y is adapted thanks to $Z \to \mathsf{BSDE}$!

More generally,

Definition (Adapted solution of a BSDE)

An adapted solution of a BSDE is a *pair* of \mathbb{F} -measurable processes (Y,Z) with the terminal condition $Y_T = \xi$ such that for $t \in [0,T]$

$$-dY_t = f(t, Y_t, Z_t)dt - Z_t dB_t$$
, \mathbb{P} -a.s.

or equivalently

$$Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z_s dB_s$$

where $Y \in \mathbb{L}^2(\mathbb{F}, \mathbb{R}^{d_2})$, $Z \in \mathbb{L}^2(\mathbb{F}, \mathbb{R}^{d_2 \times d})$

f is often called the "driver" or the "generator"

General assumptions

- $\mathbb{F} = \mathbb{F}^B$ holds;
- f maps $[0, T] \times \Omega \times \mathbb{R}^{d_2} \times \mathbb{R}^{d_2 \times d}$ onto \mathbb{R}^{d_2} and is \mathbb{F} -measurable in all variables;
- f is uniformly Lipschitz continuous in (y,z) with a Lipschitz constant L;
- $\xi \in \mathbb{L}^2(\mathcal{F}_T, \mathbb{R}^{d_2})$ and $f^0 := f(.,0,0) \in \mathbb{L}^{1,2}(\mathbb{F}, \mathbb{R}^{d_2})$

Under these assumptions, the data (f, ξ) are said to be standard data for the BSDE. For notational simplicity we shall assume $d_2=d=1$

We consider the general linear BSDE with $d_2 = 1$

$$Y_t = \xi + \int_t^T [\alpha_s Y_s + \beta_s Z_s + f^0(s)] ds - \int_t^T Z_s dB_s (X)$$

The well-posedness of this BSDE will follow from the general theory. Here we provide a representation formula for its solution.

Theorem (Representation formula for LBSDE)

Let $\xi \in \mathbb{L}^2(\mathcal{F}_T, \mathbb{R})$ and $f^0 \in \mathbb{L}^{1,2}(\mathbb{F}, \mathbb{R}^d)$, $\alpha \in \mathbb{L}^{\infty}(\mathbb{F}, \mathbb{R})$, $\beta \in \mathbb{L}^{\infty}(\mathbb{F}, \mathbb{R}^d)$ and if the pair $(Y, Z) \in \mathbb{L}^2(\mathbb{F}, \mathbb{R}) \times \mathbb{L}^2(\mathbb{F}, \mathbb{R}^{1 \times d})$ satisfies the linear BSDE (X), then

$$Y_t = \Gamma_t^{-1} \mathbb{E}[\Gamma_T \xi + \int_t^T \Gamma_s f^0(s) ds | \mathcal{F}_t],$$

where Γ_t is the adjoint process defined by the forward LSDE,

$$d\Gamma_t = \Gamma_t[\alpha_t dt + \beta_t.dB_t]$$
; $\Gamma_0 = 1$

For the proof we need the following result:

Lemma

Let $\xi \in \mathbb{L}^2(\mathcal{F}_T, \mathbb{R}^{d_2})$ and $f^0 \in \mathbb{L}^{1,2}(\mathbb{F}, \mathbb{R}^{d_2})$ Then the following linear BSDE has a unique solution $(Y, Z) \in \mathbb{S}^2(\mathbb{F}, \mathbb{R}^{d_2}) \times \mathbb{L}^2(\mathbb{F}, \mathbb{R}^{d_2 \times d})$

$$Y_t = \xi + \int_t^T t^0(s) ds - \int_t^T Z_s dB_s$$

Proof (lemma): $Y_t = \mathbb{E}[\xi + \int_t^t f^0(s)ds|\mathcal{F}_t]$. And the uniqueness is deduced by the martingale representation theorem

Proof (Theorem): Applying Itô formula we have

$$d(\Gamma_t Y_t) = -\Gamma_t f^0(t) + \Gamma_t [Y_t \beta_t^T + Z_t] dB_t$$

With the change of variables :

$$\hat{Y}_t := \Gamma_t Y_t \; ; \; \hat{Z}_t := \Gamma_t [Y_t \beta_t^T + Z_t] \; ; \; \hat{f}^0(t) := \Gamma_t f^0(t)$$

Then, one may rewrite it as

$$\hat{Y}_t = \hat{\xi} + \int_t^T \hat{t}^0(s) ds - \int_t^T \hat{Z}_s dB_s$$

Then, with the previous lemma

$$\hat{Y}_t = \mathbb{E}[\hat{\xi} + \int_t^T \hat{t}^0(s) ds | \mathcal{F}_t]$$

A Priori Estimates for BSDEs

We now investigate the nonlinear BSDE, and we have the following result:

$\mathsf{Theorem}$

Suppose the data (f,ξ) to be standard data for the BSDE, and $(Y,Z) \in \mathbb{L}^2(\mathbb{F},\mathbb{R}^{d_2}) \times \mathbb{L}^2(\mathbb{F},\mathbb{R}^{d_2 \times d})$ be a solution to the BSDE. Then $Y \in \mathbb{S}^2(\mathbb{F},\mathbb{R}^{d_2})$ and there exists a constant C, depending only on T, L and d, d_2 such that

$$||(Y,Z)||^2 := \mathbb{E}[|Y_T^*|^2 + \int_0^T |Z_t|^2 dt] \le Cl_0^2$$

Where
$$I_0^2 := \mathbb{E}[|\xi|^2 + (\int_0^T |f^0(t)|dt)^2]$$

Proof: Omitted

A Priori Estimates for BSDEs

We deduce this theorem

Theorem

For i=1,2 Suppose the data (f^i,ξ^i) to be standard data for the BSDE, and $(Y^i,Z^i)\in\mathbb{L}^2(\mathbb{F},\mathbb{R}^{d_2})\times\mathbb{L}^2(\mathbb{F},\mathbb{R}^{d_2\times d})$ be a solution to the BSDE with coefficients (f^i,ξ^i) . Then

$$||(\Delta Y, \Delta Z)||^2 := \mathbb{E}[|\Delta \xi|^2 + (\int_0^T |\Delta f(t, Y_t^1, Z_t^1)|^2 dt)^2]$$

Where

$$\Delta Y := Y^1 - Y^2, \Delta Z := Z^1 - Z^2, \Delta \xi := \xi^1 - \xi^2, \Delta f := f^1 - f^2.$$

Proof: Omitted

Well-Posedness of BSDEs

We now establish the general well-posedness of BSDEs

$\mathsf{Theorem}$

Suppose the data (f, ξ) to be standard, the BSDE has a unique solution $(Y, Z) \in \mathbb{L}^2(\mathbb{F}, \mathbb{R}^{d_2}) \times \mathbb{L}^2(\mathbb{F}, \mathbb{R}^{d_2 \times d})$.

Proof: The uniqueness follows from the last Theorem on A Priori Estimates and the existence from the Picard iteration.

Remark : The well-posedness result can be extended to $\mathbb{L}^p(\mathbb{F})$ for $p \geq 2$.

Basic Properties of BSDEs

We have a comparison result

Theorem (Comparison Theorem)

Let $d_2=1$. Assume for i=1,2, (f^i,ξ^i) to be standard data, and $(Y^i,Z^i)\in \mathbb{S}^2(\mathbb{F},\mathbb{R})\times \mathbb{L}^2(\mathbb{F},\mathbb{R}^{1\times d})$ be the unique solution to the following BSDE :

$$Y_t^i = \xi^i + \int_t^T f(s, Y_s^i, Z_s^i) ds - \int_t^T Z_s^i dB_s$$

Assume further that

$$\xi^1 \leq \xi^2, \mathbb{P} - a.s., and f^1(., y, z) \leq f^2(., y, z), dt \times d\mathbb{P} - a.s. \forall (y, z).$$
 Then.

$$Y_t^1 \leq Y_t^2, 0 \leq t \leq T, \mathbb{P} - a.s.$$

Basic Properties of BSDEs

Theorem (Stability)

Let (ξ, f) and (ξ^n, f^n) , n = 1,2,..., be standard data with the same Lipschitz constant L, and $(Y, Z), (Y^n, Z^n) \in \mathbb{S}^2(\mathbb{F}, \mathbb{R}) \times \mathbb{L}^2(\mathbb{F}, \mathbb{R}^{1 \times d})$ be the solution to the corresponding BSDE. Denote

$$\Delta Y^n := Y^n - Y, \Delta Z^n := Z^n - Z, \Delta \xi^n := \xi^n - \xi, \Delta f^n := f^n - f.$$

Assume further that

$$\lim_{n\to\infty}\mathbb{E}[|\Delta\xi^n|^2+(\int_0^T|\Delta f^n(t,0,0)|dt)^2]=0,$$

and that $\Delta f^n(y,z) \to 0$ in measure $dt \times d\mathbb{P}$, for all (y,z). Then,

$$\lim_{n\to\infty} ||(\Delta Y^n, \Delta Z^n)|| = 0,$$

Applications: PDE and Feynman-Kac formulae

Let us consider the linear parabolic partial differential equation (PDE):

$$\begin{cases} \frac{\partial v}{\partial t} + Lv + f = 0, & \text{on } [0, T) \times \mathbb{R}^d, \\ v(T, .) = h, & \text{on } \mathbb{R}^d, \end{cases}$$
(3)

where *L* is the second order Dynkin operator:

$$Lv = b(x) \cdot \nabla v + \frac{1}{2} \operatorname{tr}(\sigma \sigma^{\top}(x) \nabla^{2} v). \tag{4}$$

Under suitable conditions on the functions b, σ , f and h defined on \mathbb{R}^d , there exists a unique solution v to (3), which may be represented by the Feynman-Kac formula:

$$v(t,x) = \mathbb{E}_h\left[\int_t^T f(X_{s,x}) ds + h(X_{T,x})\right], \quad (t,x) \in [0,T] \times \mathbb{R}^d$$

Applications: PDE and Feynman-Kac formulae

The solution to the (forward) diffusion process, $dX_s = b(X_s)ds + \sigma(X_s)dB_s$, $s \ge t$, starting from x at time t is denoted by $X_{t,x}$. With Ito's formula when v is smooth, we can define the pair of processes (Y, Z):

$$Y_t := v(t, X_t), \ Z_t = \sigma(X_t)^{\top} \frac{\partial v}{\partial x}(t, X_t), \quad 0 \leq t \leq T,$$

and applying Ito's formula to $v(s, X_s)$ between t and T, with v satisfying the PDE, we get:

$$Y_t = h(X_T) + \int_t^T f(X_s) ds - \int_t^T Z_s dB_s, \quad 0 \le t \le T, \quad (6)$$

where $h(X_T)$ is a terminal condition.

Applications in Stochastic Control : Stochastic maximum principle

We consider a stochastic control problem on a finite horizon : let X be a controlled diffusion on \mathbb{R}^n governed by

$$dX_s = b(X_s, \alpha_s)ds + \sigma(X_s, \alpha_s)dB_s, \quad (6.23)$$

where $\alpha \in A$, the control process, is a progressively measurable valued in A. The gain functional to maximize is

$$J(\alpha) = \mathbb{E}\left[\int_0^T f(t, X_t, \alpha_t) dt + g(X_T)\right],$$

where $f:[0,T]\times\mathbb{R}^n\times A\to\mathbb{R}$ is continuous in (t,x) for all a in A, $g:\mathbb{R}^n\to\mathbb{R}$ is a concave C^1 function, and f,g satisfy a quadratic growth condition in x.

Applications in Stochastic Control : Stochastic maximum principle

We define the generalized Hamiltonian $H:[0,T]\times\mathbb{R}^n\times A\times\mathbb{R}^n\times\mathbb{R}^{n\times d}\to\mathbb{R}$ by

$$H(t,x,a,y,z) = b(x,a) \cdot y + \operatorname{tr}(\sigma(x,a) \cdot z) + f(t,x,a),$$

and we assume that H is differentiable in x with derivative denoted by D_xH . We consider for each $\alpha \in A$, the BSDE, called the adjoint equation:

$$-dY_t = D_x H(t, X_t, \alpha_t, Y_t, Z_t) dt - Z_t dB_t, \quad Y_T = D_x g(X_T).$$

Applications in Stochastic Control : Stochastic maximum principle

Theorem

Let $\hat{\alpha} \in A$ and \hat{X} be the associated controlled diffusion. Suppose that there exists a solution (\hat{Y}, \hat{Z}) to the associated BSDE such that

$$H(t,\hat{X}_t,\hat{\alpha}_t,\hat{Y}_t,\hat{Z}_t) = \max_{a \in A} H(t,\hat{X}_t,a,\hat{Y}_t,\hat{Z}_t), \quad 0 \leq t \leq T, \ \textit{a.s.}$$

and

 $(x,a) \to H(t,x,a,\hat{Y}_t,\hat{Z}_t)$ is a concave function, for all $t \in [0,T]$. Then $\hat{\alpha}$ is an optimal control, i.e.

$$J(\hat{\alpha}) = \sup_{\alpha \in A} J(\alpha).$$

The end

To summarise...