Cálculo Lambda I

Paradigmas de Lenguajes de Programación

Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

11 de Septiembre de 2018

Objetivo de la clase

```
(\lambda x : \mathsf{Bool}. \ \lambda y : \mathsf{Bool} \to \mathsf{Bool}. \ y \ (y \ x)) \ ((\lambda z : \mathsf{Bool}. \ true) \ false) \ (\lambda w : \mathsf{Bool}. \ w)
```

¿Qué significa esto? ¿Significa algo? ¿Es válido? ¿Es un valor? ¿Cómo nos damos cuenta?

PLP (FCEN - UBA) Cálculo Lambda 11 de Septiembre de 2018 2

Objetivo de la clase

 $(\lambda x \colon \mathsf{Bool}.\ \lambda y \colon \mathsf{Bool} \to \mathsf{Bool}.\ y\ (y\ x))\ ((\lambda z \colon \mathsf{Bool}.\ true)\ \mathit{false})\ (\lambda w \colon \mathsf{Bool}.\ w)$

¿Qué significa esto? ¿Significa algo? ¿Es válido? ¿Es un valor? ¿Cómo nos damos cuenta?

Mapa del tema

c· .	
Sint	axis

■ Reglas de Tipado

Valores

■ Reglas de Evaluación

Μ, σ

 $\Gamma \vdash M : \sigma$

V

 $M \rightarrow M'$

Sintaxis

Ejercicio: ¿cuáles son expresiones sintácticamente válidas? Dibujar el árbol sintáctico y marcar las ocurrencias libres de variables.

- **1** λx : Bool \rightarrow Bool.x true
- 2 $(\lambda x : \mathsf{Bool} \to \mathsf{Nat}.x \ true)(\lambda y : \mathsf{Bool}.x)$
- $3 \lambda x : Nat$
- 4 $\lambda x. x$
- **5** if x then y else λz : Bool.z
- **6** $x (\lambda y : Bool.y)$
- 7 true false
- 8 succ(M)
- 9 succ true
- if $\operatorname{succ}(true)$ then $\lambda x : \operatorname{Bool}.x$

Ejercicio: demostrar (o explicar por qué no es posible) los siguientes juicios de tipado:

1 $\emptyset \vdash (\lambda x : \mathsf{Bool}. \ \lambda y : \mathsf{Bool}. \ if \ x \ then \ true \ else \ y) \ false : \mathsf{Bool} \to \mathsf{Bool}$

PLP (FCEN - UBA) Cálculo Lambda 11 de Septiembre de 2018 4

- $\blacksquare \emptyset \vdash (\lambda x : \mathsf{Bool}.\ \lambda y : \mathsf{Bool}.\ \textit{if}\ x\ \textit{then}\ \textit{true}\ \textit{else}\ y)\ \textit{false} : \mathsf{Bool} \to \mathsf{Bool}$
- 2 $\{x : Bool\} \vdash succ(0) : Nat$

- $\blacksquare \emptyset \vdash (\lambda x : \mathsf{Bool}.\ \lambda y : \mathsf{Bool}.\ \textit{if}\ x\ \textit{then}\ \textit{true}\ \textit{else}\ y)\ \textit{false} : \mathsf{Bool} \to \mathsf{Bool}$
- 2 $\{x : \mathsf{Bool}\} \vdash \mathsf{succ}(0) : \mathsf{Nat}$
- **3** ¿Existen Γ y σ tal que $\Gamma \vdash xx : \sigma$?

- $\emptyset \vdash (\lambda x : \mathsf{Bool}. \ \lambda y : \mathsf{Bool}. \ if \ x \ then \ true \ else \ y) \ false : \mathsf{Bool} \rightarrow \mathsf{Bool}$
- 2 $\{x : Bool\} \vdash succ(0) : Nat$
- **3** ¿Existen Γ y σ tal que $\Gamma \vdash xx : \sigma$?
- **4** \emptyset ⊢ *if* x *then* x *else* z : Bool
- 5 $\{x : Bool\} \vdash if x then x else 0 : Nat$

- $\emptyset \vdash (\lambda x : \mathsf{Bool}. \ \lambda y : \mathsf{Bool}. \ if \ x \ then \ true \ else \ y) \ false : \mathsf{Bool} \rightarrow \mathsf{Bool}$
- 2 $\{x : Bool\} \vdash succ(0) : Nat$
- **3** ¿Existen Γ y σ tal que $\Gamma \vdash xx : \sigma$?
- **4** \emptyset ⊢ *if* x *then* x *else* z : Bool
- 5 $\{x : Bool\} \vdash if x then x else 0 : Nat$

Valores

Ejercicio: ¿cuáles de estos términos son valores?

- 1 if true then $(\lambda x : Bool. x)$ else $(\lambda x : Bool. false)$
- 2 λx : Bool. false
- **3** $(\lambda x : Bool. x)$ false
- 4 succ(0)
- **5** succ(succ(0))
- $\mathbf{6}$ succ(x)
- 7 λx : Bool. (λy : Bool.x) false
- **8** λx : Bool \rightarrow Bool. x true

Semántica Operacional

Ejercicio: ¿cuál es el resultado de evaluar las siguientes expresiones? ¿El resultado es siempre un valor?

1 (λx : Bool. λy : Bool. if x then true else y) false

Semántica Operacional

Ejercicio: ¿cuál es el resultado de evaluar las siguientes expresiones? ¿El resultado es siempre un valor?

- **1** (λx : Bool. λy : Bool. if x then true else y) false
- **2** if $(\lambda b : Bool. true)$ false then $(\lambda x : Bool. x)$ true else $(\lambda y : Bool. y)$ false

Semántica Operacional

Ejercicio: ¿cuál es el resultado de evaluar las siguientes expresiones? ¿El resultado es siempre un valor?

- **1** $(\lambda x : Bool. \lambda y : Bool. if x then true else y) false$
- **2** if $(\lambda b : Bool. true)$ false then $(\lambda x : Bool. x)$ true else $(\lambda y : Bool. y)$ false

3 $(\lambda x : Bool. \lambda y : Bool \rightarrow Bool. y (y x)) ((\lambda z : Bool. true) false) (\lambda w : Bool. w)$

Simplificando la escritura

Podemos definir macros para expresiones que vayamos a utilizar con frecuencia. Por ejemplo:

- $Id_{\mathsf{Bool}} \stackrel{def}{=} \lambda x$: $\mathsf{Bool}.x$
- lacksquare and $\stackrel{def}{=}$

Simplificando la escritura

Podemos definir macros para expresiones que vayamos a utilizar con frecuencia. Por ejemplo:

- $Id_{\mathsf{Bool}} \stackrel{def}{=} \lambda x$: $\mathsf{Bool}.x$
- and $\stackrel{def}{=} \lambda x$: Bool. λy : Bool.if x then y else false

Primera extensión

Extensión con pares

- $M, N ::= ... \mid \langle M, N \rangle \mid \pi_1(M) \mid \pi_2(M)$
- \bullet $\sigma, \tau ::= \dots \mid \sigma \times \tau$
- Enunciar las nuevas reglas de tipado.
- Extender el conjunto de valores y determinar las nuevas reglas de semántica.

PLP (FCEN - UBA) Cálculo Lambda 11 de Septiembre de 2018 8

Primera extensión

Extensión con pares

- $M, N ::= ... \mid \langle M, N \rangle \mid \pi_1(M) \mid \pi_2(M)$
- \bullet $\sigma, \tau ::= \dots \mid \sigma \times \tau$
- Enunciar las nuevas reglas de tipado.
- Extender el conjunto de valores y determinar las nuevas reglas de semántica.
- ¿Qué problema introduce agregar la siguiente regla? ¿Y reemplazar otras por esta?

$$\pi_1(\langle M, N \rangle) \rightsquigarrow M$$

Primera extensión

Extensión con pares

- $M, N ::= ... \mid \langle M, N \rangle \mid \pi_1(M) \mid \pi_2(M)$
- \bullet $\sigma, \tau ::= \dots \mid \sigma \times \tau$
- Enunciar las nuevas reglas de tipado.
- Extender el conjunto de valores y determinar las nuevas reglas de semántica.
- ¿Qué problema introduce agregar la siguiente regla? ¿Y reemplazar otras por esta?

$$\pi_1(\langle M, N \rangle) \rightsquigarrow M$$

Verificar el siguiente juicio de tipado

 $\blacksquare \emptyset \rhd \pi_1((\lambda x : Nat. < x, True >) 0) : Nat$

Reducir el término a un valor

 $\blacksquare \pi_1((\lambda x : Nat. < x, True >) 0)$

Al agregar la siguiente regla para las abstracciones:

$$\frac{M \to M'}{\lambda x \colon \tau. \ M \to \lambda x \colon \tau. \ M'} \ E - ABS$$

Ejercicio

Repensar el conjunto de valores para respetar esta modificación, pensar por ejemplo si $(\lambda x : Bool. Id_{Bool} true)$ es o no un valor.

Al agregar la siguiente regla para las abstracciones:

$$\frac{M \to M'}{\lambda x \colon \tau. \ M \to \lambda x \colon \tau. \ M'} \ E - ABS$$

Ejercicio

Repensar el conjunto de valores para respetar esta modificación, pensar por ejemplo si $(\lambda x : Bool. Id_{Bool} true)$ es o no un valor. ¿Y $(\lambda x : Bool. x)$?

Al agregar la siguiente regla para las abstracciones:

$$\frac{M \to M'}{\lambda x \colon \tau. \ M \to \lambda x \colon \tau. \ M'} \ E - ABS$$

Ejercicio

- Repensar el conjunto de valores para respetar esta modificación, pensar por ejemplo si $(\lambda x : Bool. Id_{Bool} true)$ es o no un valor. ¿Y $(\lambda x : Bool. x)$?
- 2 ¿Qué reglas deberían modificarse para no perder el determinismo?

Al agregar la siguiente regla para las abstracciones:

$$\frac{M \to M'}{\lambda x \colon \tau. \ M \to \lambda x \colon \tau. \ M'} E - ABS$$

Ejercicio

- Repensar el conjunto de valores para respetar esta modificación, pensar por ejemplo si $(\lambda x : Bool. Id_{Bool} true)$ es o no un valor. ¿Y $(\lambda x : Bool. x)$?
- 2 ¿Qué reglas deberían modificarse para no perder el determinismo?
- Utilizando la nueva regla y los valores definidos, reducir la expresión: $(\lambda z \colon \mathsf{Bool.}\ (\lambda x \colon \mathsf{Nat} \to \mathsf{Nat.}\ y\ \underline{23})\ (\lambda x \colon \mathsf{Nat.}\ 0))$ ¿Qué se puede concluir entonces? ¿Es seguro o no agregar esta regla?

PLP (FCEN - UBA) Cálculo Lambda 11 de Septiembre de 2018 9

Continuará...

$$(\lambda x : Clase. fin x)$$
 (Cálculo Lambda I)

Machete: Tipos y Términos

Las expresiones de tipos (o simplemente tipos) son

$$\sigma$$
 ::= Bool | Nat | $\sigma \rightarrow \rho$

Sea $\mathcal X$ un conjunto infinito enumerable de variables y $x\in\mathcal X$. Los términos están dados por

```
M ::=
           true
           false
           if M then M else M
           \lambda x : \sigma. M
           MM
           0
           succ(M)
           pred(M)
           iszero(M)
```

11 / 16

Machete: Axiomas y reglas de tipado

$$\frac{x:\sigma\in\Gamma}{\Gamma\vdash true:Bool}\text{(T-True)}\qquad\frac{x:\sigma\in\Gamma}{\Gamma\vdash h:sool}\text{(T-False)}$$

$$\frac{x:\sigma\in\Gamma}{\Gamma\vdash x:\sigma}\text{(T-Var)}$$

$$\frac{\Gamma\vdash M:Bool\quad\Gamma\vdash P:\sigma\quad\Gamma\vdash Q:\sigma}{\Gamma\vdash if\ M\ then\ P\ else\ Q:\sigma}\text{(T-Ir)}$$

$$\frac{\Gamma,x:\sigma\vdash M:\tau}{\Gamma\vdash \lambda x:\sigma.\ M:\sigma\to\tau}\text{(T-Abs)}\qquad\frac{\Gamma\vdash M:\sigma\to\tau\quad\Gamma\vdash N:\sigma}{\Gamma\vdash MN:\tau}\text{(T-App)}$$

Machete: Axiomas y reglas de tipado

$$\frac{\Gamma \vdash M : Nat}{\Gamma \vdash \text{succ}(M) : Nat} \text{(T-Succ)} \qquad \frac{\Gamma \vdash M : Nat}{\Gamma \vdash \text{pred}(M) : Nat} \text{(T-Pred)}$$

$$\frac{\Gamma \vdash M : Nat}{\Gamma \vdash \text{iszero}(M) : Bool} \text{(T-IsZero)}$$

PLP (FCEN - UBA) Cálculo Lambda 11 de Septiembre de 2018

Machete: Semántica operacional

$$V ::= true \mid false \mid \lambda x : \sigma. M \mid \underline{n}$$
 donde \underline{n} abrevia $succ^{n}(0)$.

Reglas de Evaluación en un paso

$$\frac{M_1 \to M_1'}{M_1 M_2 \to M_1' M_2} \text{(E-APP1 O } \mu)$$

$$\frac{M_2 \to M_2'}{V_1 M_2 \to V_1 M_2'} \text{(E-APP2 O } \nu)$$

$$\frac{(\lambda x : \sigma. M) V \to M\{x \leftarrow V\}}{(\lambda x : \sigma. M) V \to M\{x \leftarrow V\}}$$

11 de Septiembre de 2018 Cálculo Lambda

Machete: Semántica operacional

$$V ::= true \mid false \mid \lambda x : \sigma. M \mid \underline{n}$$
 donde \underline{n} abrevia $succ^{n}(0)$.

Reglas de Evaluación en un paso

$$\frac{}{\text{if } \textit{true} \text{ then } M_2 \text{ else } M_3 \to M_2} \text{(E-IFTrue)}$$

$$\frac{}{\text{if } \textit{false} \text{ then } M_2 \text{ else } M_3 \to M_3} \text{(E-IFFALSE)}$$

$$\frac{M_1 \to M_1'}{\text{if } M_1 \text{ then } M_2 \text{ else } M_3 \to \text{if } M_1' \text{ then } M_2 \text{ else } M_3} \text{(E-IF)}$$

PLP (FCEN - UBA) Cálculo Lambda 11 de Septiembre de 2018

Machete: Semántica operacional

Reglas de Evaluación en un paso

$$\frac{M_1 \to M_1'}{\operatorname{succ}(M_1) \to \operatorname{succ}(M_1')} \text{(E-Succ)}$$

$$\frac{}{\operatorname{pred}(0) \to 0} \text{(E-PredZero)} \qquad \frac{}{\operatorname{pred}(\operatorname{succ}(\underline{n})) \to \underline{n}} \text{(E-PredSucc)}$$

$$\frac{M_1 \to M_1'}{\operatorname{pred}(M_1) \to \operatorname{pred}(M_1')} \text{(E-Pred)}$$

$$\frac{}{\operatorname{iszero}(0) \to \mathit{true}} \text{(E-IsZeroZero)} \qquad \frac{}{\operatorname{iszero}(\operatorname{succ}(\underline{n})) \to \mathit{false}} \text{(E-IsZeroSucc)}$$

$$\frac{M_1 \to M_1'}{\operatorname{iszero}(M_1) \to \operatorname{iszero}(M_1')} \text{(E-IsZero)}$$

PLP (FCEN - UBA) Cálculo Lambda 11 de Septiembre de 2018