Lecture Topics

- x86 instructions
- Operate instructions
- Data movessignment Project Exam Help
- Conditional conteps://powcoder.com
- Control flow instructions Add Wechat powcoder
- Assembler conventions
- Code example

Aministrivia

- MP0
 - In TAs office hours by 2/2
 - you car Arsnig in mentiment in the lp

https://powcoder.com

Add WeChat powcoder

Assignment Project Exam Help zJUI Students Lecture Recordings **ECE 391 Syllabus** Computer Systems Engineering Future lecture/discussion material is subject to cha powcoder.com Lecture recordings can be found on echo sorting S. Spring 2021 ZJUI Students: Lecture recordings can be found on Media site **Discussion Recordings** Announcements Live Discussions will be held on Zoom. Discussion recordings can be found on mediaspace Piazza Queue Date Reading Recording Link (only for discussions) Overview Lecture Syllabus Discussion Staff Directory 1/26 1. Class overview and big picture: Lecture1 CN Office Hours 1/27 Overview of MPs and Environment: Slides MP0 Course Notes 1/28 2. x86 instruction set architecture: introduction and instruc CN Assignments 3. x86 isa: assembler conventions, calling convention, example CN Lecture3 Exams 2/3 PS1, x86: Slides PS1 Grades 4. C to x86 linkage, device I/O; role of system software, system calls: CN, (ULK1) Tools, References, 5. Interrupts and exceptions, processor and ISA support: Lecture5 CN, (ULK4) and Links 2/10 MP1, x86, calling convention: Slides MP1

Live Discussion (Zoom link)

ECE 391 Computer Systems Engineering Spring 2021 Announcements Piazza Queue Overview Syllabus Staff Directory

Office Hours Course Notes Assignments <u>Exams</u> Grades

Tools, References, and Links

Syllabus

Assignment Project Exam Help

Future lecture/discussion material is subject to change.

Lecture recordings can be found on echapttps://powcoder.com

ZJUI Students: Lecture recordings can be found on Media site

ZJUI Students: Lecture recordings can be found on Media site

Live Discussions will be held on Zoom. Discussion recordings can be found on mediaspace.

Dat	Add Wachet newcoder	Danding	Becouding Link (only for discussions)
Dat	Add Wethat powcoder	Reading	Recording Link (only for discussions)
	Lecture		
	Discussion		
1/26	1. Class overview and big picture: Lecture1	CN	
1/27	Overview of MPs and Environment: Stides	MP0	
1/28	2. x86 instruction set architecture: intro-ction and instructions: <u>Lecture2</u>	CN	
2/2	3. x86 isa: assembler conventions, calling anvention, camples: <u>Lecture3</u>	CN	
2/3	PS1, x86: Slides	PS1	
2/4	4. C to x86 linkage, device I/O; role of system a ftware, system calls: Lecture4	CN, (ULK1)	
2/9	5. Interrupts and exceptions, processor and ISA support: Lectures	CN, (ULK4)	
2/10	MP1, x86, calling convention: Slides	MP1	

Lecture Slides

Discussion Slides

Office Hours

Go to "Office Hours" tab on the class web sit:

Assignment Project Exam Help

1:00 PM	2:00 PM	1.1	Viancourt	Naveen Nathan	7.20 0.	, − ¬	
2:00 PM	htt]	OS s/ijanDO Chakraborty, Jack Harris	Viancourt, Sahil Patel	r.com Momas Viancourt	Discussion - AD1 - CY	Prof.	 Ali: Ane
3:00 PM	4:00 PM	chakraborty, Aneesh Kotnana	Chat _{wa} po	owcod	discussion - AD4 - Yuming	<u>Lumetta</u> <u>Zoom</u>	Ali: Shi Ane
4:00 PM	5:00 PM	Mihir Rajpal, Aneesh Kotnana	James Wang		Andrew Fortunat, Patrick Kulach, ChenYang Huang	Prof. Kalbarczy k Zoom	

Introduction and Basics

- What is x86? (Intel-32-bit architecture)
 - variable-length instruction encoding (1-16 bytes)
 - small redissing partner more than it is the legislation of the legis
 - 32-bit, byte-addressable address space
 https://powcoder.com
 complex addressing modes

 - many data ty Act of Whe Ct that y provious der

Registers

Registers

```
-> extended, i.e., 32-bit
EAX accumulator
                                instruction pointer
                          EIP
EBX base (of array)
                          EFLAGS flags/condition codes
ECX count (soignment Project Exam Help
EDX data (2<sup>nd</sup> operand)/powcoder.com
ESI source index (string copy)
EDI destination Add WeChat powcoder
EBP base pointer (base of stack frame)
ESP stack pointer
```

- Use % as a prefix for registers in assembly
- Other registers: floating-point, MMX, etc. (not discussed in this class)

Data Types

- 8-, 16-, 32-bit unsigned and 2's complement
- IEEE single- and double-precision floating point Assignment Project Exam Help
- Intel "extenders:f/poveoder)com
- ASCII string dd WeChat powcoder
- Binary-coded decimal

Memory

 Microprocessor addresses a maximum of 2ⁿ different memory locations, where n is a number of bits on the address bus. Assignment Project Exam Help

https://powcoder.com

- Memory
 - x86 supports Andel a Wee Cshattle pow conder
 - byte (8 bits) is a basic memory unit
 - e.g., when you specify address 24 in memory, you get the entire eight bits
 - when the microprocessors address a 16-bit word of memory, two consecutive bytes are accessed

How are bytes stored to memory?

0x12345678

0x78, 0x56, 0x34, 0x12

in consecutive memory locations

x86 Instructions – Basics

 Operations, data movement, condition codes, control flow, stack ops, data size conversion

Operations Assignment Project Exam Help

```
ADD AND SHL
SUB Add We Chat poweoder

NEG NOT SHR
INC XOR ROL
DEC ROR
```

 typically 2-operand instructions (destination and one source are the same)

Operations – Example

```
operation

data type (technically optional)

L = long (32b)
W = word (16b)
B = byte (8b)
```

Immediate Values

immediate value marker what does the following **\$0**x hex instruction do? Assignment Project Exam Help 0, %EAX \$53 https://powedoder.com 1,2,9 Add WeChat powcoder $EAX \leftarrow 0$

- how big can they get?
 - usually up to 32 bits
 - larger constants → longer instructions
 - length of operand must be encoded, too

answer is NOT

instead: $EAX \leftarrow EAX AND M[0]$ (usually crashes)

Data Movement: Memory Addressing

Memory operand has this general form

Instructions

```
immediate, register, or memory reference

src, dst register, or memory reference

LEA Assignment Project Essister Plup

memory reference only – address stored in dst

https://powcoder.com
(can't both be memory references)

Add WeChat powcoder

Examples:
```

```
MOVW %DX, 0x10(\%EBP) # M[EBP + 0x10] \leftarrow DX MOVB (%EBX,%ESI,4), %CL # CL \leftarrow M[EBX + ESI * 4]
```

Instructions: Examples to Solve

```
EAX \leftarrow M[0x10000 + ECX]
[answer] MOVL 0x10000(%ECX), %EAX
          Massignment Broject Exam Help
[answer] MOV ttps Plane Ber.com
          ESI ← LABEL + 4 (two ways!)
Add WeChat powcoder
[answer] MOVL $LABEL + 4, %ESI
          LEAL LABEL + 4, %ESI
          ESI \leftarrow LABEL + EAX + 4
[answer] LEAL LABEL + 4(%EAX), %ESI
                      expression calculated by assembler;
                      instruction holds one displacement value
```

Instructions: Examples to Solve

```
EAX \leftarrow M[0x10000 + ECX]
[answer] MOVL 0x10000(%ECX), %EAX
          Assignment Broject Exam Help
[answer] MOVWhttpsp//plowecoder.com
          ESI +ALLABATELCHALL (BWOWWOWEL)
[answer] MOVL $LABEL + 4 , %ESI
          LEAL LABEL + 4 , %ESI
          FSI \leftarrow IABFI + FAX + 4
[answer] LEAL LABEL + 4(%EAX), %ESI
```

Condition Codes (in EFLAGS)

Among others (not mentioned in this class)...

SF: sign flag: result is negative when viewed as

A's spennine not project Exam Help

ZF: zero flag: result is exactly zero https://powcoder.com
CF: carry flag: unsigned carry or borrow occurred (or otherdids Welchate power oderaning, e.g., on shifts)

OF: overflow flag: 2's complement overflow (and other instruction-dependent meanings)

PF: parity flag: even parity in result (even # of 1 bits)

What Instructions Set Flags (condition codes)?

- Not all instructions set flags
- Some instructions set some flags! Assignment Project Exam Help

 • Use CMP or TEST to set flags:

TESTL %EAX de the chat the conscorde (EBX AND EAX)

Note that EBX does not change in either case

 What combinations of flags are needed for unsigned/signed relationships comparator?

Control Flow Instructions (1)

 Consider two three-bit values A and B; How to decide if A<B?

	Assignment Project Exam Help						
Α	010	010	010	110	110	110	
В	-00 0 1	tpsi/p	<u>owę</u> ąde	er.60m	-011	<u>-111</u>	
C	010	1 1 00 0 0 0 0 0 0 0 0 		owcoder	011	111	
CF	0	dd ivc		0	0	1	
OF	0	1	0	0	1	0	
SF	0	1	0	1	0	1	
unsigned <	No	Yes	Yes	No	No	Yes	
signed <	No	No	No	Yes	Yes	Yes	

Control Flow Instructions (2)

- Note that CF suffices for unsigned <
- What about signed < ?

 Assignment Project Exam Help

 https://powcoder.com

 sf
 Add WeChat powcoder

Answer: OF XOR SF

Branch Mnemonics

- Unsigned comparisons: "above" and "below"
- Signed comparisons: "less" and "greater"
- Both: equal/signment Project Exam Help unsigned jne jb jbe je jae ja https://powcoder.com relationship \neq < \leq = \geq > signed Add WeChat powcoder.jg
- in general, can add "n" after "j" to negate sense
- forms shown are those used when disassembling
 - do not expect binary to retain your version
 - e.g., "jnae" becomes "jb"