Practical part: LCA

The figure below shows a production process with four products, product A, product B, product C and product D and given emissions for this process. The characterization factor of NH3 into N equivalent is 0.09, and of NH4 into N equivalent is 0.78 and NOx into N equivalent is 0.39. You should use mass-based allocation of marine eutrophication impact into the products. Which statement is true for the result of this?

Solving

	CF	Emission (kg)	Marine eutrophication (kg N equivalent)	
NH3	0.09	50	4.5	
NH4	0.78	20	15.6	
Nox	0.39	10	3.9	
Total			24	

	Mass (kg)	Mass allocation (%)	Allocated impacts	
Product A	20	18%	4.36	
Product B	30	27%	6.55	
Product C	15	14%	3.27	
Product D	45	41%	9.82	
Total	Total 110		24	

Practical part: footprint and impact

A production process emits five different types of gases to the atmosphere: 50 kg of CO2, 30 kg of CO, 25 kg of NO $_{x}$, 35 kg of SO2, and 80 kg of CH4. What are the total impacts of this process? Use the characterization factors from the table below. Note that climate change unit is CO2 equivalent, human toxicity is kg 1.4-DB equivalent acidification is mol H+ equivalent.

- a. Total impact: 2547 kg CO2 equivalent
- b. Climate change: 2450 kg CO2 equivalent; Human toxicity: 44.3 kg 1,4 DB equivalent; Acidification: 52.5 mol H+ equivalent
- c. Climate change: 44.3 kg CO2 equivalent; Human toxicity: 2450 kg 1,4 DB equivalent; Acidification: 52.5 mol H+ equivalent
- d. Climate change: 2450 kg CO2 equivalent; Human toxicity: 52.5 kg 1,4 DB equivalent; Acidification: 44.3 mol H+ equivalent

	CHARACTERIZATION FACTOR				
Emission	Climate change	Human toxicity	Acidification		
CO2	1	-	-		
CO	-	0.012	-		
NOx	-	0.078	0.7		
SO2	-	1.2	1.0		
CH4	30	-	-		

Solving

	CHARACTERIZATION FACTOR				IMPACT		
	Climate change	Human toxicity	Acidification	Emission (kg)	Climate change impact (kg CO2eq)	Human toxicit impact (kg 1,4 DB equivalent)	Acidification impact (mol H+ equivalent)
CO2	1	0	0	50	50	0	0
CO	0	0.012	0	30	0	0.36	0
Nox	0	0.078	0.7	25	0	1.95	17.5
SO2	0	1.200	1.0	35	0	42	35
CH4	30	0	0	80	2400	0	0
Total					2450	44.31	52.5

Practical part: MFA

The figure below shows a system to produce a product A from feedstock A. This system has four processes and a total of 8 flows (x1.0, x1.1, x1.2, x2.1, x2.2, x2.3, x3.1, x3.2). 35% of Process 2 output is x2.1, 20% is x2.2 and 45% is x2.3. Set up the balance equations (in = out for each process). What are the values for **X2.1** and **X3.2**?

