ĐẠI HỌC QUỐC GIA ĐẠI HỌC BÁCH KHOA TP HỒ CHÍ MINH

&…⊜…**ર**ુ

BÀI TẬP LỚN

MÔN: KIẾN TRÚC MÁY TÍNH

LÓP: L01 - EE3203

GIẢNG VIÊN HƯỚNG DẪN: TRẦN HOÀNG LINH

Họ và tên	MSSV	Phân công nhiệm vụ
Nguyễn Thanh Phong	2312626	 Phân chia công việc Bảng trạng thái
		Viết codeBảng trạng thái
Vũ Tiến Tuấn	2313774	- Viết code - Viết báo cáo
		- Việt Đào cao - Phát triển ý tưởng
Nguyễn Hoàng Tuấn	2313746	- Bảng trạng thái
		- Viết báo cáo

Thành phố Hồ Chí Minh – 2025

MỤC LỤC

I.	MỤC TIÊU	1
II.	TỔNG QUAN	1
	. TRIÊN KHAI	
]		
2	2. Viết bảng trạng thái	
	3. Xác định ngõ vào của Flip-Flop và ngõ ra	
	4. Code SystemVerilog	
	5. Kết quả mô phỏng	
	TỔNG KẾT	

I. MỤC TIÊU

- Hiểu nguyên tắc lập trình
- Ôn tập thiết kế logic cơ bản và FSM
- Thiết kế máy bán hàng sử dụng SystemVerilog

II. TỔNG QUAN

- Ngõ vào: Coin(2 bit) C₁C₀ với 00 01 10 11 -> ¢0 ¢5 ¢10 ¢25
- Sơ đồ trạng thái: 4 trạng thái ứng với 0 5 10 15
- Ngõ ra: o soda (1 bit), o change (3 bit)
- Ngõ ra delay 1 chu kì xung nhịp 20ns (f=50MHz): Thực hiện qua 4 Flip-Flop D

III. TRIÊN KHAI

1. Định nghĩa trạng thái và sơ đồ chuyển trạng thái

- S_0 : Chờ nhận tiền (Ngõ ra nếu được xuất sẽ bị delay 1 clock sau đó mặc định quay về S_0)
- S₁: Đang có ¢5
- S₂: Đang có ¢10
- S₃: Đang có ¢15

- Mô tả chuyển trạng thái: Bắt đầu tại trạng thái S0, khi nhận các Ngõ vào C1C0 sẽ chuyển sang các trạng thái S1, S2 hoặc S3; nếu số tiền hiện có lớn hơn hoặc bằng ¢20, mặc định chuyển về S0 và xuất o_soda = 1, o_change = phần tiền dư.

- Mã hóa trạng thái:

Trạng thái	Mã hóa
S_0	00
S_1	01
S_2	10
S_3	11

2. Viết bảng trạng thái

Ngĉ	vào	TT	НТ	ТТ	KT	Ngõ ra		D-FF			
C_1	C_0	Q_1	Q_0	Q_1^+	Q_0^+	\mathbb{Z}_3	\mathbb{Z}_2	Z_1	Z_0	D_1	D_0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	1
0	0	1	0	1	0	0	0	0	0	1	0
0	0	1	1	1	1	0	0	0	0	1	1
0	1	0	0	0	1	0	0	0	0	0	1
0	1	0	1	1	0	0	0	0	0	1	0
0	1	1	0	1	1	0	0	0	0	1	1
0	1	1	1	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0	1	0
1	0	0	1	1	1	0	0	0	0	1	1
1	0	1	0	0	0	1	0	0	0	0	0
1	0	1	1	0	0	1	0	0	1	0	0
1	1	0	0	0	0	1	0	0	1	0	0
1	1	0	1	0	0	1	0	1	0	0	0
1	1	1	0	0	0	1	0	1	1	0	0
1	1	1	1	0	0	1	1	0	0	0	0

3. Xác định ngõ vào của Flip-Flop và ngõ ra

a. Ngõ vào FF

$$D_0 = Q_0^+ = \overline{C_1} \overline{C_0} Q_0 + \overline{C_1} C_0 \overline{Q_0} + \overline{C_0} \overline{Q_1} Q_0$$

$$D_1 = Q_1^+ = C_1 \overline{C_0} \overline{Q_1} + \overline{C_1} \overline{C_0} Q_1 + \overline{C_1} Q_1 \overline{Q_0} + \overline{C_1} C_0 \overline{Q_1} Q_0$$

b. Ngõ ra Z (4 bit biểu diễn)

$$Z = Z_3 Z_2 Z_1 Z_0$$

- $Bit Z_3:o_soda$ $Z_3 = C_1C_0 + C_1Q_1 + C_0Q_1Q_0$ - $3 Bit Z_2Z_1Z_0:o_change$ $Z_2 = C_1C_0Q_1Q_0$ $Z_1 = C_1C_0\overline{Q_1}Q_0 + C_1C_0Q_1\overline{Q_0}$ $Z_0 = C_1C_0\overline{Q_0} + C_1\overline{C_0}Q_1Q_0$

4. Code SystemVerilog

```
module milestone1(
  input logic clk,
  input logic rst n,
  input logic c1, c0,
  output logic z3, z2, z1, z0
);
  // Các thanh ghi trạng thái
  logic q1, q0;
  logic next q1, next q0;
  // Thanh ghi dữ liệu ra (lưu giá trị kế tiếp)
  logic next z3, next z2, next z1, next z0;
  // Trạng thái kế tiếp
  always comb begin
     next q1 = (c1 \& \sim c0 \& \sim q1)
            (\sim c1 \& \sim c0 \& q1)
            (~c1 & q1 & ~q0) |
            (\sim c1 \& c0 \& \sim q1 \& q0);
     next q0 = (\sim c1 \& \sim c0 \& q0)
            (~c1 & c0 & ~q0) |
```

```
(\sim c0 \& \sim q1 \& q0);
  end
  // Update ngo ra z sau 1 chu kỳ
  always comb begin
     // (Giữ nguyên công thức gốc)
     next z3 = (c1 \& c0) | (c1 \& q1) | (c0 \& q1 \& q0);
     next z^2 = c^1 & c^0 & q^1 & q^0;
     next z1 = (c1 \& c0 \& \sim q1 \& q0) \mid (c1 \& c0 \& q1 \& \sim q0);
     next z0 = (c1 \& c0 \& \sim q0) | (c1 \& \sim c0 \& q1 \& q0);
  end
  // Sequential block: update state + registered outputs
  always ff@(posedge clk or negedge rst n) begin
     if (!rst n) begin
       q1 \le 1'b0;
        q0 \le 1'b0;
       z3 \le 1'b0;
       z2 \le 1'b0;
       z1 \le 1'b0;
       z0 \le 1'b0;
     end else begin
       q1 \le next q1;
       q0 \le next q0;
        z3 \le next z3;
        z2 \le next z2;
        z1 \le next z1;
       z0 \le next z0;
     end
  end
endmodule
```

5. Kết quả mô phỏng

- Chọn chu kì xung $(T_{clk}) = 20$ (ns). Tương đương với tần số $(f_{clk}) = 50$ (MHz)
- Kết quả RTL Viewer:

- Kết quả mô phỏng dạng sóng (Waveform Simulation):

- Nhận xét:

- + Ở kết quả mô phỏng dạng sóng chúng ta thấy do chân rst_n(reset) tích cực thấp nên chúng ta phải cấp mức logic 1 cho chân rst_n trong quá trình khảo sát thì các ngõ vào và ngõ ra mới hoạt động.
- + Do chúng ta sử dụng thêm 4 D_FF ở ngõ ra để delay 1 chu kì xung nhịp, điều này đóng vai trò như một trạng thái đệm. Khi số lượng tiền (coin) ở ngõ vào đã cung cấp đủ 20 cent thì phải đến chu kì xung nhịp tiếp theo trạng thái ở ngõ ra Z mới bắt đầu xuất tín hiệu ra.

IV. TÔNG KẾT

Ở milestone 1, nhóm đã đáp ứng đủ các mục tiêu. Nhóm chúng em đã cùng nhau xây dựng các bước để thiết kế FSM của máy bán hàng tự động. Qua đó, nhóm hiểu đã hiểu được nguyên tắc lập trình FSM, ôn tập lại cách thiết kế sơ đồ trạng thái cũng như bảng trạng thái, từ đó xây dựng và chuyển sang code SystemVerilog.