

AD-A144 421

AFWAL-TR-84-2004

INVESTIGATION OF THERMAL COKING RATES OF  
AIR FORCE JET FUELS

William J. Purvis

PRATT & WHITNEY AIRCRAFT  
GOVERNMENT PRODUCTS DIVISION  
P.O. BOX 2691  
WEST PALM BEACH, FLORIDA 33402

MARCH 1984

FINAL REPORT FOR PERIOD MARCH 1982 - JANUARY 1984

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DTIC FILE COPY

AERO PROPULSION LABORATORY  
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES  
AIR FORCE SYSTEMS COMMAND  
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433



DTIC  
ELECTED  
AUG 20 1984

S

B

24 08 17 063

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Robert W. Jr.

ROBERT W. MORRIS, JR.  
Fuels Branch  
Fuels and Lubrication Division  
Aero Propulsion Laboratory

Arthur V. Churchill

ARTHUR V. CHURCHILL  
Chief, Fuels Branch  
Fuels and Lubrication Division  
Aero Propulsion Laboratory

FOR THE COMMANDER

Benito P. Botteri

BENITO P. BOTTERI, Assistant Chief  
Fuels and Lubrication Division  
Aero Propulsion Laboratory

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/POSE, N-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

## UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                      | READ INSTRUCTIONS<br>BEFORE COMPLETING FORM |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 1. REPORT NUMBER<br><br>AFWAL-TR-84-2004                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2. GOVT ACCESSION NO.<br><br>AD-A144 421                                                             | 3. RECIPIENT'S CATALOG NUMBER               |
| 4. TITLE (and Subtitle)<br><br>INVESTIGATION OF THERMAL COKING<br>RATES OF AIR FORCE JET FUELS                                                                                                                                                                                                                                                                                                                                                                                             | 5. TYPE OF REPORT & PERIOD COVERED<br><br>Final Report<br>March 1982 - January 1984                  |                                             |
| 7. AUTHOR(s)<br><br>William J. Purvis                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6. PERFORMING ORG. REPORT NUMBER<br><br>P&WA/FR-17211                                                |                                             |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br><br>United Technologies Corporation<br>Pratt & Whitney Aircraft<br>Government Products Division<br>P.O. Box 2691, West Palm Beach, FL 33402                                                                                                                                                                                                                                                                                                 | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS<br><br>PE62203F/3048/304805/<br>30480597 |                                             |
| 11. CONTROLLING OFFICE NAME AND ADDRESS<br><br>Aero Propulsion Laboratory (AFWAL/POSF)<br>Air Force Wright Aeronautical Laboratories (AFSC)<br>Wright-Patterson Air Force Base, Ohio 45433                                                                                                                                                                                                                                                                                                 | 12. REPORT DATE<br><br>March 1984                                                                    |                                             |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)                                                                                                                                                                                                                                                                                                                                                                                                                | 13. NUMBER OF PAGES<br><br>141                                                                       |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15. SECURITY CLASS. (of this report)<br><br>Unclassified                                             |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE                                                           |                                             |
| 16. DISTRIBUTION STATEMENT (of this Report)<br><br>Approved for public release; distribution unlimited                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                      |                                             |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                      |                                             |
| 18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      |                                             |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      |                                             |
| Fuel<br>Additive<br>Thermal Stability<br>Alternate Fuels<br>Antioxidant                                                                                                                                                                                                                                                                                                                                                                                                                    | Corrosion Inhibitor<br>Fuel System Icing Inhibitor<br>Metal Deactivator<br>Conductivity Additive     |                                             |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      |                                             |
| <p>Present gas turbine engine fuel systems operate with pressures and temperatures that promote auto-oxidative degradation of jet fuels. As a result, insoluble fuel deposits form which can adhere to engine parts, reducing both life and performance significantly.</p> <p>This study evaluated the rates of deposit for selected jet fuels as a function of temperature and the effect of several current fuel additives on the rates of thermal deposition. Tests were run on the</p> |                                                                                                      |                                             |

**UNCLASSIFIED**

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

fuels with various concentrations of the additives and various levels of aromatic content. Deposits were collected on stainless steel coupons using an experimental coking apparatus that was developed for this program.

It was found that the breakpoint temperature decreased and the concentration of peroxide increased as the aromatic content of the fuels increased. The rate of formation of deposits increased with decreases in the breakpoint temperature. The presence of different fuel additives had substantial effects on the rate of deposition.

It was concluded that aromatic concentration and breakpoint temperature are good indicators of the relative rate of deposition of a fuel. An increase in the rate of deposition results from an increase in aromatic content or a decrease in breakpoint temperature. Fuel additives that are used for specific effects may produce a secondary effect that is reflected in the rate of deposition.

**UNCLASSIFIED**

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

## FOREWORD

This final report on the investigation of thermal coking rates of Air Force jet fuels was prepared by the Government Products Division of Pratt & Whitney Aircraft, West Palm Beach, Florida for the Aero Propulsion Laboratory of Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio, under Contract F33615-82-C-2210, Project 3048, Work Unit 30480597. The Air Force Project Engineer was Robert W. Morris, Jr., AFWAL/POSF.

DTIC  
ELECTED  
AUG 20 1984  
S D  
B

|                          |                      |
|--------------------------|----------------------|
| Accession For            |                      |
| NTIS GRA&I               |                      |
| DTIC TAB                 |                      |
| Unannounced              |                      |
| Justification            |                      |
| By _____                 |                      |
| Distribution/ _____      |                      |
| Availability Codes _____ |                      |
| Dist                     | Avail and/or Special |
| A-1                      |                      |

DUPLICATE COPY INSPECTED

## TABLE OF CONTENTS

| SECTION                                                                                                                                                                        | PAGE |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| I      INTRODUCTION .....                                                                                                                                                      | 1    |
| II     LITERATURE SEARCH (TASK 4.3.1) .....                                                                                                                                    | 3    |
| III    MATERIAL ACQUISITION (TASK 4.3.2) .....                                                                                                                                 | 6    |
| IV    BASELINE STUDY (TASK 4.3.3) .....                                                                                                                                        | 7    |
| V    FUEL BLEND STUDY TASK 4.3.4 .....                                                                                                                                         | 10   |
| VI    DATA ANALYSIS .....                                                                                                                                                      | 16   |
| VII   CONCLUSIONS AND RECOMMENDATIONS .....                                                                                                                                    | 18   |
| A    THEORY AND OPERATION OF THE EXPERIMENTAL COKING APPARATUS .....                                                                                                           | 28   |
| B    A TEST METHOD FOR THE DETERMINATION OF THE PART-<br>PER MILLION LEVEL OF ACTIVE OXYGEN IN AVIATION TUR-<br>BINE FUELS .....                                               | 33   |
| C    EXPERIMENTAL DEPOSIT RATE DATA OF SELECTED CLAY<br>TREATED AIR FORCE JET FUELS AS EVALUATED BY THE<br>EXPERIMENTAL COKING APPARATUS .....                                 | 36   |
| D    EXPERIMENTAL PEROXIDE ANALYSES OF SELECTED CLAY<br>TREATED AIR FORCE JET FUELS WHICH HAVE BEEN THER-<br>MALLY STRESSED USING THE EXPERIMENTAL COKING AP-<br>PARATUS ..... | 81   |

## LIST OF ILLUSTRATIONS

| <b>FIGURE</b> |                                                                                                                                                                        | <b>PAGE</b> |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1             | Fuel Leakage Source at Lower Swageloc Fitting .....                                                                                                                    | 11          |
| A-1           | Schematic of Experimental Coking Apparatus .....                                                                                                                       | 30          |
| A-2           | Sample Coupons Mounted in Holder .....                                                                                                                                 | 31          |
| A-3           | Sample Coupons Removed from Holder and Washed .....                                                                                                                    | 31          |
| A-4           | Sample Coupons Tested at Temperatures from 21 to 288°C .....                                                                                                           | 32          |
| B-1           | Chemical Apparatus Used During Analyses .....                                                                                                                          | 34          |
| C-1           | Variation of Fuel Deposit Rate as a Function of Fuel Temperature:<br>Effect of Antioxidant Additive on Clay Treated JP-8 Fuel .....                                    | 37          |
| C-2           | Variation of Fuel Deposit Rate as a Function of Fuel Temperature:<br>Effect of Corrosion Inhibitor on Clay Treated JP-8 Fuel .....                                     | 38          |
| C-3           | Variation of Fuel Deposit Rate as a Function of Fuel Temperature:<br>Effect of Fuel System Icing Inhibitor on Clay Treated JP-8 Fuel .....                             | 39          |
| C-4           | Variation of Fuel Deposit Rate as a Function of Fuel Temperature:<br>Effect of Conductivity Additive on Clay Treated JP-8 Fuel .....                                   | 40          |
| C-5           | Variation of Fuel Deposit Rate as a Function of Fuel Temperature:<br>Effect of Metal Deactivator on Clay Treated JP-8 Fuel .....                                       | 41          |
| C-6           | Variation of Fuel Deposit Rate as a Function of Fuel Temperature:<br>Effect of Antioxidant Additive on Clay Treated JP-4 Fuel with 10%<br>Total Aromatics .....        | 42          |
| C-7           | Variation of Fuel Deposit Rate as a Function of Fuel Temperature:<br>Effect of Corrosion Inhibitor on Clay Treated JP-4 Fuel with 10%<br>Total Aromatics .....         | 43          |
| C-8           | Variation of Fuel Deposit Rate as a Function of Fuel Temperature:<br>Effect of Fuel System Icing Inhibitor on Clay Treated JP-4 Fuel with<br>10% Total Aromatics ..... | 44          |
| C-9           | Variation of Fuel Deposit Rate as a Function of Fuel Temperature:<br>Effect of Conductivity Additive on Clay Treated JP-4 Fuel with 10%<br>Total Aromatics .....       | 45          |
| C-10          | Variation of Fuel Deposit Rate as a Function of Fuel Temperature:<br>Effect of Metal Deactivator on Clay Treated JP-4 Fuel with 10%<br>Total Aromatics .....           | 46          |

## LIST OF ILLUSTRATIONS (Continued)

| FIGURE |                                                                                                                                                                         | PAGE |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| C-11   | Variation of Fuel Deposit Rate as a Function of Fuel Temperature:<br>Effect of Antioxidant Additive on Clay Treated JP-4 Fuel with 25%<br>Total Aromatics .....         | 47   |
| C-12   | Variation of Fuel Deposit Rate as a Function of Fuel Temperature:<br>Effect of Corrosion Inhibitor Additive on Clay Treated JP-4 Fuel with<br>25% Total Aromatics ..... | 48   |
| C-13   | Variation of Fuel Deposit Rate as a Function of Fuel Temperature:<br>Effect of Fuel System Icing Inhibitor on Clay Treated JP-4 Fuel with<br>25% Total Aromatics .....  | 49   |
| C-14   | Variation of Fuel Deposit Rate as a Function of Fuel Temperature:<br>Effect of Conductivity Additive on Clay Treated JP-4 Fuel with 25%<br>Total Aromatics .....        | 50   |
| C-15   | Variation of Fuel Deposit Rate as a Function of Fuel Temperature:<br>Effect of Metal Deactivator on Clay Treated JP-4 Fuel with 25%<br>Total Aromatics .....            | 51   |
| C-16   | Variation of Fuel Deposit Rate as a Function of Fuel Temperature:<br>Effect of Antioxidant Additive on Clay Treated JP-4 Fuel with 35%<br>Total Aromatics .....         | 52   |
| C-17   | Variation of Fuel Deposit Rate as a Function of Fuel Temperature:<br>Effect of Corrosion Inhibitor on Clay Treated JP-4 Fuel with 35%<br>Total Aromatics .....          | 53   |
| C-18   | Variation of Fuel Deposit Rate as a Function of Fuel Temperature:<br>Effect of Fuel System Icing Inhibitor on Clay Treated JP-4 Fuel with<br>35% Total Aromatics .....  | 54   |
| C-19   | Variation of Fuel Deposit Rate as a Function of Fuel Temperature:<br>Effect of Conductivity Additive on Clay Treated JP-4 Fuel with 35%<br>Total Aromatics .....        | 55   |
| C-20   | Variation of Fuel Deposit Rate as a Function of Fuel Temperature:<br>Effect of Metal Deactivator on Clay Treated JP-4 Fuel with 35%<br>Total Aromatics .....            | 56   |
| D-1    | Variation of Active Oxygen Expressed as Peroxide as a Function of<br>Fuel Temperature of a Clay Treated JP-8 Fuel, Baseline Data .....                                  | 82   |
| D-2    | Variation of Active Oxygen Expressed as Peroxide as a Function of<br>Fuel Temperature, Effect of Antioxidant on a Clay Treated JP-8 Fuel                                | 83   |
| D-3    | Variation of Active Oxygen Expressed as Peroxide as a Function of<br>Fuel Temperature, Effect of Corrosion Inhibitor on a Clay Treated<br>JP-8 Fuel .....               | 84   |

## LIST OF ILLUSTRATIONS (Continued)

| <i>FIGURE</i> |                                                                                                                                                                        | <i>PAGE</i> |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| D-4           | Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Fuel System Icing Inhibitor on a Clay Treated JP-8 Fuel .....            | 85          |
| D-5           | Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Conductivity Additive on a Clay Treated JP-8 Fuel .....                  | 86          |
| D-6           | Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Metal Deactivator on a Clay Treated JP-8 Fuel .....                      | 87          |
| D-7           | Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature of a Clay Treated JP-4 Fuel, Baseline Data .....                                    | 88          |
| D-8           | Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Antioxidant on a Clay Treated JP-4 Fuel .....                            | 89          |
| D-9           | Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Corrosion Inhibitor on a Clay Treated JP-4 Fuel .....                    | 90          |
| D-10          | Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Icing Inhibitor on a Clay Treated JP-4 Fuel .....                        | 91          |
| D-11          | Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Conductivity Additive on a Clay Treated JP-4 Fuel .....                  | 92          |
| D-12          | Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Metal Deactivator on a Clay Treated JP-4 Fuel .....                      | 93          |
| D-13          | Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature of a Clay Treated JP-4 Fuel with 25% Aromatics, Baseline Data .....                 | 94          |
| D-14          | Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Antioxidant on a Clay Treated JP-4 Fuel with 25% Aromatics .....         | 95          |
| D-15          | Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Corrosion Inhibitor on a Clay Treated JP-4 Fuel with 25% Aromatics ..... | 96          |
| D-16          | Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Icing Inhibitor on a Clay Treated JP-4 Fuel with 25% Aromatics .....     | 97          |

## LIST OF ILLUSTRATIONS (Continued)

| FIGURE |                                                                                                                                                                          | PAGE |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| D-17   | Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Conductivity Additive on a Clay Treated JP-4 Fuel with 25% Aromatics ..... | 98   |
| D-18   | Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Metal Deactivator on a Clay Treated JP-4 Fuel with 25% Aromatics .....     | 99   |
| D-19   | Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature of a Clay Treated JP-4 Fuel with 35% Aromatics, Baseline Data .....                   | 100  |
| D-20   | Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Antioxidant on a Clay Treated JP-4 Fuel with 35% Aromatics .....           | 101  |
| D-21   | Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Corrosion Inhibitor on a Clay Treated JP-4 Fuel with 35% Aromatics .....   | 102  |
| D-22   | Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Icing Inhibitor on a Clay Treated JP-4 Fuel with 35% Aromatics .....       | 103  |
| D-23   | Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Conductivity Additive on a Clay Treated JP-4 Fuel 35% Aromatics .....      | 104  |
| D-24   | Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Metal Deactivator on a Clay Treated JP-4 Fuel with 35% Aromatics .....     | 105  |

## LIST OF TABLES

| <b>TABLE</b> |                                                                                                                                                                      | <b>PAGE</b> |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1            | Fuel Additives for Fuel Blend Study .....                                                                                                                            | 6           |
| 2            | Fuel Sample Analysis as Received .....                                                                                                                               | 8           |
| 3            | Hydrocarbon Type Analysis of 2040 Aromatic Solvent .....                                                                                                             | 8           |
| 4            | Critical Constants for Selected Air Force Jet Fuels .....                                                                                                            | 9           |
| 5            | Fuel Additive Properties .....                                                                                                                                       | 12          |
| 6            | Parts-Per-Million Concentrations for Various Antioxidant-Fuel Blends<br>(2,6-Ditertiary-Butyl-4-Methyl-Phenol) .....                                                 | 13          |
| 7            | Parts-Per-Million Concentrations for Various Jet Fuel Corrosion Inhibitor — Fuel Blends (DCI-4A) .....                                                               | 13          |
| 8            | Parts-Per-Million Concentrations for Various Jet Fuel System Icing Inhibitor — Fuel Blends (2-Methoxyethanol) .....                                                  | 14          |
| 9            | Parts-Per-Million Concentrations for Various Jet Fuel Metal Deactivator Blends (N,N <sup>1</sup> -Disalicylidene-1,2-Propanediamine) .....                           | 14          |
| 10           | Additive Concentrations, Pounds Per 1000 Barrels .....                                                                                                               | 15          |
| 11           | Arrhenius Constants for a JP-8 Fuel as Derived From a Pseudo First-Order Reaction Between 121°C and 316°C .....                                                      | 20          |
| 12           | Arrhenius Constants for a JP-4 Fuel Clay Treated with a 10% Total Aromatic Concentration as Derived from a Pseudo First-Order Reaction Between 121°C and 316°C ..... | 21          |
| 13           | Arrhenius Constants for a JP-4 Fuel Clay Treated with a 25% Total Aromatic Concentration as Derived from a Pseudo First-Order Reaction Between 121°C and 316°C ..... | 22          |
| 14           | Arrhenius Constants for a JP-4 Fuel Clay Treated with a 35% Total Aromatic Concentration as Derived from a Pseudo First-Order Reaction Between 121°C and 316°C ..... | 23          |
| 15           | JP-8 Fuel Deposits at Selected Temperatures Derived from a Linear Regression of Experimental Data Between 121°C and 316°C .....                                      | 24          |
| 16           | JP-4-10% Aromatics Fuel Deposits at Selected Temperatures Derived from a Linear Regression of Experimental Data Between 121°C and 316°C .....                        | 25          |
| 17           | Fuel Deposit from a Selected JP-4 Clay Treated with 25% Aromatic Concentration at Temperatures Derived from a Linear Regression of ECA Experimental Data .....       | 26          |

## LIST OF TABLES (Continued)

| <i>TABLE</i> |                                                                                                                                               | <i>PAGE</i> |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 18           | JP-4-35% Aromatics Fuel Deposits at Selected Temperatures Derived from a Linear Regression of Experimental Data Between 121°C and 316°C ..... | 27          |
| B-1          | Peroxide Analysis Equipment/Materials .....                                                                                                   | 35          |
| C-1          | Clay Treated JP-8 Baseline .....                                                                                                              | 57          |
| C-2          | Clay Treated JP-8, Antioxidant at Twice Maximum Allowable Concentration .....                                                                 | 57          |
| C-3          | Clay Treated JP-8, Antioxidant at Maximum Allowable Concentration .....                                                                       | 57          |
| C-4          | Clay Treated JP-8, Antioxidant at Midspecification Concentration .....                                                                        | 58          |
| C-5          | Clay Treated JP-8, Antioxidant at Minimum Effective Concentration .....                                                                       | 58          |
| C-6          | Clay Treated JP-8, Corrosion Inhibitor at Minimum Effective Concentration .....                                                               | 58          |
| C-7          | Clay Treated JP-8, Corrosion Inhibitor at Twice Maximum Allowable Concentration .....                                                         | 59          |
| C-8          | Clay Treated JP-8, Icing Inhibitor at Three Times Maximum Allowable Concentration .....                                                       | 59          |
| C-9          | Clay Treated JP-8, Icing Inhibitor at Low Relative Concentration Relative to Maximum .....                                                    | 59          |
| C-10         | Clay Treated JP-8, Conductivity Additive at Minimum Effective Concentration .....                                                             | 59          |
| C-11         | Clay Treated JP-8, Conductivity Additive at Maximum Allowable Concentration .....                                                             | 60          |
| C-12         | Clay Treated JP-8, Conductivity Additive at Twice Maximum Allowable Concentration .....                                                       | 60          |
| C-13         | Clay Treated JP-8, Conductivity Additive at Three Times Maximum Allowable Concentration .....                                                 | 60          |
| C-14         | Clay Treated JP-8, Metal Deactivator at Three Times Maximum Allowable Concentration .....                                                     | 61          |
| C-15         | Clay Treated JP-8, Metal Deactivator at Maximum Allowable Concentration .....                                                                 | 61          |
| C-16         | Clay Treated JP-8, Metal Deactivator at Twice Maximum Allowable Concentration .....                                                           | 61          |

## LIST OF TABLES (Continued)

| TABLE                                                                                                                 | PAGE |
|-----------------------------------------------------------------------------------------------------------------------|------|
| C-17 Clay Treated JP-4 — Baseline .....                                                                               | 62   |
| C-18 Clay Treated JP-4 With 10% Aromatics, Antioxidant at Minimum Effective Concentration .....                       | 62   |
| C-19 Clay Treated JP-4 With 10% Aromatics, Antioxidant at Twice Maximum Allowable Concentration .....                 | 63   |
| C-20 Clay Treated JP-4 With 10% Aromatics, Antioxidant at Midspecification Concentration .....                        | 63   |
| C-21 Clay Treated JP-4 With 10% Aromatics, Antioxidant at Maximum Allowable Concentration .....                       | 63   |
| C-22 Clay Treated JP-4 With 10% Aromatics, Corrosion Inhibitor at Twice Maximum Allowable Concentration .....         | 64   |
| C-23 Clay Treated JP-4 With 10% Aromatics, Corrosion Inhibitor at Minimum Effective Concentration .....               | 64   |
| C-24 Clay Treated JP-4 With 10% Aromatics, Icing Inhibitor at Low Relative Concentration Relative to Maximum .....    | 64   |
| C-25 Clay Treated JP-4 With 10% Aromatics, Icing Inhibitor at Three Times Maximum Allowable Concentration .....       | 64   |
| C-26 Clay Treated JP-4 With 10% Aromatics, Conductivity Additive at Three Times Maximum Allowable Concentration ..... | 65   |
| C-27 Clay Treated JP-4 With 10% Aromatics, Conductivity Additive at Twice Maximum Allowable Concentration .....       | 65   |
| C-28 Clay Treated JP-4 With 10% Aromatics, Conductivity Additive at Maximum Allowable Concentration .....             | 65   |
| C-29 Clay Treated JP-4 With 10% Aromatics, Conductivity Additive at Minimum Effective Concentration .....             | 66   |
| C-30 Clay Treated JP-4 With 10% Aromatics, Metal Deactivator at One-Half Maximum Allowable Concentration .....        | 66   |
| C-31 Clay Treated JP-4 With 10% Aromatics, Metal Deactivator at Maximum Allowable Concentration .....                 | 66   |
| C-32 Clay Treated JP-4 With 10% Aromatics, Metal Deactivator at Twice Maximum Allowable Concentration .....           | 67   |
| C-33 Clay Treated JP-4 With 10% Aromatics, Metal Deactivator at Three Times Maximum Allowable Concentration .....     | 67   |

## LIST OF TABLES (Continued)

| <i>TABLE</i> |                                                                                                                  | <i>PAGE</i> |
|--------------|------------------------------------------------------------------------------------------------------------------|-------------|
| C-34         | Clay Treated JP-4 With 25% Aromatics Baseline .....                                                              | 67          |
| C-35         | Clay Treated JP-4 With 25% Aromatics, Antioxidant at Minimum Effective Concentration .....                       | 68          |
| C-36         | Clay Treated JP-4 With 25% Aromatics, Antioxidant at Midspecification Concentration .....                        | 68          |
| C-37         | Clay Treated JP-4 With 25% Aromatics, Antioxidant at Maximum Allowable Concentration .....                       | 68          |
| C-38         | Clay Treated JP-4 With 25% Aromatics, Antioxidant at Twice Maximum Allowable Concentration .....                 | 69          |
| C-39         | Clay Treated JP-4 With 25% Aromatics, Corrosion Inhibitor at Twice Maximum Allowable Concentration .....         | 69          |
| C-40         | Clay Treated JP-4 With 35% Aromatics, Corrosion Inhibitor at Maximum Allowable Concentration .....               | 69          |
| C-41         | Clay Treated JP-4 With 25% Aromatics, Corrosion Inhibitor at Midspecification Concentration .....                | 70          |
| C-42         | Clay Treated JP-4 With 25% Aromatics, Corrosion Inhibitor at Minimum Effective Concentration .....               | 70          |
| C-43         | Clay Treated JP-4 With 25% Aromatics, Icing Inhibitor at Low Relative Concentration Relative to Maximum .....    | 70          |
| C-44         | Clay Treated JP-4 With 25% Aromatics, Icing Inhibitor at Three Times Maximum Allowable Concentration .....       | 70          |
| C-45         | Clay Treated JP-4 With 25% Aromatics, Conductivity Additive at Three Times Maximum Allowable Concentration ..... | 71          |
| C-46         | Clay Treated JP-4 With 25% Aromatics, Conductivity Additive at Twice Maximum Allowable Concentration .....       | 71          |
| C-47         | Clay Treated JP-4 With 25% Aromatics, Conductivity Additive at Maximum Allowable Concentration .....             | 71          |
| C-48         | Clay Treated JP-4 With 25% Aromatics, Conductivity Additive at Minimum Effective Concentration .....             | 72          |
| C-49         | Clay Treated JP-4 With 25% Aromatics, Metal Deactivator at Three Times Maximum Allowable Concentration .....     | 72          |
| C-50         | Clay Treated JP-4 With 25% Aromatics, Metal Deactivator at Twice Maximum Allowable Concentration .....           | 72          |

## LIST OF TABLES (Continued)

| TABLE                                                                                                                 | PAGE |
|-----------------------------------------------------------------------------------------------------------------------|------|
| C-51 Clay Treated JP-4 With 25% Aromatics, Metal Deactivator at Maximum Allowable Concentration .....                 | 73   |
| C-52 Clay Treated JP-4 With 25% Aromatics, Metal Deactivator at Minimum Effective Concentration .....                 | 73   |
| C-53 Clay Treated JP-4 With 35% Aromatics Baseline .....                                                              | 73   |
| C-54 Clay Treated JP-4 With 35% Aromatics, Antioxidant at Twice Maximum Allowable Concentration .....                 | 74   |
| C-55 Clay Treated JP-4 With 35% Aromatics, Antioxidant at Maximum Allowable Concentration .....                       | 74   |
| C-56 Clay Treated JP-4 With 35% Aromatics, Antioxidant at Midspecification Concentration .....                        | 74   |
| C-57 Clay Treated JP-4 With 35% Aromatics, Antioxidant at Minimum Effective Concentration .....                       | 75   |
| C-58 Clay Treated JP-4 With 35% Aromatics, Corrosion Inhibitor at Minimum Effective Concentration .....               | 75   |
| C-59 Clay Treated JP-4 With 35% Aromatics, Corrosion Inhibitor at Mid-specification Concentration .....               | 75   |
| C-60 Clay Treated JP-4 With 35% Aromatics, Corrosion Inhibitor at Maximum Allowable Concentration .....               | 76   |
| C-61 Clay Treated JP-4 With 35% Aromatics, Corrosion Inhibitor at Twice Maximum Allowable Concentration .....         | 76   |
| C-62 Clay Treated JP-4 With 35% Aromatics, Icing Inhibitor at Three Times Maximum Allowable Concentration .....       | 76   |
| C-63 Clay Treated JP-4 With 35% Aromatics, Icing Inhibitor at Low Relative Concentration Relative to Maximum .....    | 77   |
| C-64 Clay Treated JP-4 With 35% Aromatics, Conductivity Additive at Minimum Effective Concentration .....             | 77   |
| C-65 Clay Treated JP-4 With 35% Aromatics, Conductivity Additive at Maximum Allowable Concentration .....             | 77   |
| C-66 Clay Treated JP-4 With 35% Aromatics, Conductivity Additive at Twice Maximum Allowable Concentration .....       | 78   |
| C-67 Clay Treated JP-4 With 35% Aromatics, Conductivity Additive at Three Times Maximum Allowable Concentration ..... | 78   |

## LIST OF TABLES (Continued)

| TABLE                                                                                                             | PAGE |
|-------------------------------------------------------------------------------------------------------------------|------|
| C-68 Clay Treated JP-4 With 35% Aromatics, Metal Deactivator at One-Half Maximum Allowable Concentration .....    | 78   |
| C-69 Clay Treated JP-4 With 35% Aromatics, Metal Deactivator at Maximum Allowable Concentration .....             | 79   |
| C-70 Clay Treated JP-4 With 35% Aromatics, Metal Deactivator at Twice Maximum Allowable Concentration .....       | 79   |
| C-71 Clay Treated JP-4 With 35% Aromatics, Metal Deactivator at Three Times Maximum Allowable Concentration ..... | 79   |
| C-72 Clay Treated JP-7 .....                                                                                      | 80   |
| C-73 Shale Derived Light Diesel Oil (Occidental Oil Company) .....                                                | 80   |
| D-1 Clay Treated JP-8 Baseline .....                                                                              | 106  |
| D-2 Clay Treated JP-8, Antioxidant at Twice Maximum Allowable Concentration .....                                 | 106  |
| D-3 Clay Treated JP-8, Antioxidant at the Maximum Allowable Concentration .....                                   | 107  |
| D-4 Clay Treated JP-8, Antioxidant at Midspecification Concentration .....                                        | 107  |
| D-5 Clay Treated JP-8, Antioxidant at Minimum Effective Concentration ..                                          | 108  |
| D-6 Clay Treated JP-8, Corrosion Inhibitor at Twice Maximum Allowable Concentration .....                         | 108  |
| D-7 Clay Treated JP-8, Corrosion Inhibitor at Minimum Effective Concentration .....                               | 109  |
| D-8 Clay Treated JP-8, Icing Inhibitor at Low Relative Concentration Relative to Maximum .....                    | 109  |
| D-9 Clay Treated JP-8, Icing Inhibitor at Three Times Maximum Allowable Concentration .....                       | 110  |
| D-10 Clay Treated JP-8, Conductivity Additive at Three Times Maximum Allowable Concentration .....                | 110  |
| D-11 Clay Treated JP-8, Conductivity Additive at Twice Maximum Allowable Concentration .....                      | 111  |
| D-12 Clay Treated JP-8, Conductivity Additive at the Maximum Allowable Concentration .....                        | 111  |

## LIST OF TABLES (Continued)

| <i>TABLE</i>                                                                                       |     | <i>PAGE</i> |
|----------------------------------------------------------------------------------------------------|-----|-------------|
| D-13 Clay Treated JP-8, Conductivity Additive at Minimum Effective Concentration .....             | 112 |             |
| D-14 Clay Treated JP-8, Metal Deactivator at Maximum Allowable Concentration .....                 | 112 |             |
| D-15 Clay Treated JP-8, Metal Deactivator at Twice Maximum Allowable Concentration .....           | 113 |             |
| D-16 Clay Treated JP-8, Metal Deactivator at Three Times Maximum Allowable Concentration .....     | 113 |             |
| D-17 Clay Treated JP-4 Baseline .....                                                              | 114 |             |
| D-18 Clay Treated JP-4, Antioxidant at Twice Maximum Allowable Concentration .....                 | 114 |             |
| D-19 Clay Treated JP-4, Antioxidant at the Maximum Allowable Concentration .....                   | 115 |             |
| D-20 Clay Treated JP-4, Antioxidant at Midspecification Concentration .....                        | 115 |             |
| D-21 Clay Treated JP-4, Antioxidant at Minimum Effective Concentration .....                       | 116 |             |
| D-22 Clay Treated JP-4, Corrosion Inhibitor at Minimum Effective Concentration .....               | 116 |             |
| D-23 Clay Treated JP-4, Corresion Inhibitor at Twice Maximum Allowable Concentration .....         | 117 |             |
| D-24 Clay Treated JP-4, Icing Inhibitor at Three Times Maximum Allowable Concentration .....       | 117 |             |
| D-25 Clay Treated JP-4, Icing Inhibitor at Low Relative Concentration to Maximum .....             | 118 |             |
| D-26 Clay Treated JP-4, Conductivity at Minimum Effective Concentration .....                      | 118 |             |
| D-27 Clay Treated JP-4, Conductivity Additive at Twice Maximum Allowable Concentration .....       | 119 |             |
| D-28 Clay Treated JP-4, Conductivity Additive at the Maximum Allowable Concentration .....         | 119 |             |
| D-29 Clay Treated JP-4, Conductivity Additive at Three Times Maximum Allowable Concentration ..... | 120 |             |
| D-30 Clay Treated JP-4, Metal Deactivator at Three Times Maximum Allowable Concentration .....     | 120 |             |

## LIST OF TABLES (Continued)

| <i>TABLE</i> |                                                                                                                  | <i>PAGE</i> |
|--------------|------------------------------------------------------------------------------------------------------------------|-------------|
| D-31         | Clay Treated JP-4, Metal Deactivator at Twice Maximum Allowable Concentration .....                              | 121         |
| D-32         | Clay Treated JP-4, Metal Deactivator at the Maximum Allowable Concentration ... .....                            | 121         |
| D-33         | Clay Treated JP-4, Metal Deactivator at Midspecification Concentration .....                                     | 122         |
| D-34         | Clay Treated JP-4 with 25% Aromatics Baseline .....                                                              | 122         |
| D-35         | Clay Treated JP-4 with 25% Aromatics, Antioxidant at Twice Maximum Allowable Concentration .....                 | 123         |
| D-36         | Clay Treated JP-4 with 25% Aromatics, Ant. Ant. at Maximum Allowable Concentration .....                         | 123         |
| D-37         | Clay Treated JP-4 with 25% Aromatics, Antioxidant at the Midspecification Concentration .....                    | 123         |
| D-38         | Clay Treated JP-4 with 25% Aromatics, Antioxidant at Minimum Effective Concentration .....                       | 124         |
| D-39         | Clay Treated JP-4 with 25% Aromatics, Corrosion Inhibitor at Twice Maximum Allowable Concentration .....         | 125         |
| D-40         | Clay Treated JP-4 with 25% Aromatics, Corrosion Inhibitor at Maximum Allowable Concentration .....               | 125         |
| D-41         | Clay Treated JP-4 with 25% Aromatics, Corrosion Inhibitor at Midspecification Concentration .....                | 126         |
| D-42         | Clay Treated JP-4 with 25% Aromatics, Corrosion Inhibitor at Minimum Effective Concentration .....               | 126         |
| D-43         | Clay Treated JP-4 with 25% Aromatics, Icing Inhibitor at Three Times Allowable Concentration .....               | 127         |
| D-44         | Clay Treated JP-4 with 25% Aromatics, Icing Inhibitor at Low Relative Concentration Relative to Maximum .....    | 127         |
| D-45         | Clay Treated JP-4 with 25% Aromatics, Conductivity Additive at Three Times Maximum Allowable Concentration ..... | 128         |
| D-46         | Clay Treated JP-4 with 25% Aromatics, Conductivity Additive at Twice Maximum Allowable Concentration .....       | 128         |
| D-47         | Clay Treated JP-4 with 25% Aromatics, Conductivity Additive at Maximum Allowable Concentration .....             | 129         |

## LIST OF TABLES (Continued)

| <i>TABLE</i>                                                                                                          |             |  |
|-----------------------------------------------------------------------------------------------------------------------|-------------|--|
|                                                                                                                       | <i>PAGE</i> |  |
| D-48 Clay Treated JP-4 with 25% Aromatics, Conductivity Additive at Minimum Effective Concentration .....             | 129         |  |
| D-49 Clay Treated JP-4 with 25% Aromatics, Metal Deactivator at Minimum Effective Concentration .....                 | 130         |  |
| D-50 Clay Treated JP-4 with 25% Aromatics, Metal Deactivator at Maximum Allowable Concentration .....                 | 130         |  |
| D-51 Clay Treated JP-4 with 25% Aromatics, Metal Deactivator at Twice Maximum Allowable Concentration .....           | 131         |  |
| D-52 Clay Treated JP-4 with 25% Aromatics, Metal Deactivator at Three Times Maximum Allowable Concentration .....     | 131         |  |
| D-53 Clay Treated JP-4 with 35% Aromatics, Baseline .....                                                             | 132         |  |
| D-54 Clay Treated JP-4 with 35% Aromatics, Antioxidant at Minimum Effective Concentration .....                       | 132         |  |
| D-55 Clay Treated JP-4 with 35% Aromatics, Antioxidant at Midspecification Concentration .....                        | 133         |  |
| D-56 Clay Treated JP-4 with 35% Aromatics, Antioxidant at Maximum Allowable Concentration .....                       | 133         |  |
| D-57 Clay Treated JP-4 with 35% Aromatics, Antioxidant at Twice Maximum Allowable Concentration .....                 | 134         |  |
| D-58 Clay Treated JP-4 with 35% Aromatics, Corrosion Inhibitor at Twice Maximum Allowable Concentration .....         | 134         |  |
| D-59 Clay Treated JP-4 with 35% Aromatics, Corrosion Inhibitor at Maximum Allowable Concentration .....               | 135         |  |
| D-60 Clay Treated JP-4 with 35% Aromatics, Corrosion Inhibitor at Mid-specification Concentration .....               | 135         |  |
| D-61 Clay Treated JP-4 with 35% Aromatics, Corrosion Inhibitor at Minimum Effective Concentration .....               | 136         |  |
| D-62 Clay Treated JP-4 with 35% Aromatics, Icing Inhibitor at Three Times Maximum Allowable Concentration .....       | 136         |  |
| D-63 Clay Treated JP-4 with 35% Aromatics, Icing Inhibitor at Low Relative Concentration Relative to Maximum .....    | 137         |  |
| D-64 Clay Treated JP-4 with 35% Aromatics, Ccnductivity Additive at Three Times Maximum Allowable Concentration ..... | 137         |  |

## LIST OF TABLES (Continued)

| TABLE                                                                                                                 | PAGE |
|-----------------------------------------------------------------------------------------------------------------------|------|
| D-65 Clay Treated JP-4 with 35% Aromatics, Conductivity Additive at Twice Maximum Allowable Concentration .....       | 138  |
| D-66 Clay Treated JP-4 with 35% Aromatics, Conductivity Additive at Maximum Allowable Concentration .....             | 138  |
| D-67 Clay Treated JP-4 with 35% Aromatics, Conductivity Additive at Minimum Effective Concentration .....             | 139  |
| D-68 Clay Treated JP-4 with 35% Aromatics, Conductivity Additive at Three Times Maximum Allowable Concentration ..... | 139  |
| D-69 Clay Treated JP-4 with 35% Aromatics, Metal Deactivator at Twice Maximum Allowable Concentration .....           | 140  |
| D-70 Clay Treated JP-4 with 35% Aromatics, Metal Deactivator at Maximum Allowable Concentration .....                 | 140  |
| D-71 Clay Treated JP-4 with 35% Aromatics, Metal Deactivator at Midspecification Concentration .....                  | 141  |

## SECTION I

### INTRODUCTION

Aircraft powered by gas turbine engines rely, for the most part, on jet fuels derived from petroleum based crudes. Due to variations in geographical, chemical and petrochemical process characteristics, jet fuels can vary in both basic physical and chemical nature. These variations, some more exact than others, can impact the performance, reliability and/or maintainability of a gas turbine engine system. To a larger extent, high performance gas turbine aircraft are also susceptible to fuel property variations, particularly with regard to performance, maintenance and — most importantly — mission life. Fuel properties from a specifications requirement can vary over a broad range in some instances. For example, the total chemical aromatic content can vary up to 25% by volume for a JP-4 fuel (MIL-T-5624L). Variations of fuel specification can lead to changes in the chemical nature and, therefore, affect the fuel's overall utility as a source of combustion.

Among the various fuel properties that are known to affect the utility of a jet fuel adversely, the impact of thermal stability has long maintained paramount interest. Many studies and unique apparatus have been proposed and used in an attempt to determine the nature of the effects of thermal stress on a jet fuel.\*

This program was designed to address several specific physical and chemical characteristics experimentally that are intrinsic to current Air Force jet fuels to underscore the physicochemical nature of a fuel's carbonaceous deposit and to provide experimental evidence for the low temperature prepyrolytic (auto-oxidation) of jet fuels by a pseudo-first-order chemical mechanism. In addition, the effects of five current fuel additives were evaluated for their individual effect on the rate of various fuel deposit formations. Chemical kinetic calculations based on a pseudo-first-order mechanism were applied to a temperature versus deposit formation and the resultant activation energies compared to those derived from active oxygen determinations. The latter had not been attempted by any other previous research.

A unique device was designed, fabricated, and tested at the Materials Engineering and Technology's Advanced Fuel and Lubricant Laboratory of Pratt & Whitney Aircraft's Government Products Division to establish the maximum deposition of carbonaceous fuel products by thermal stresses. The experimental coking apparatus (ECA) is described in detail in Appendix A and was used extensively to establish both the baseline and fuel-blend deposition data. Evaluation of thermal stressed fuel samples for peroxide concentration was based on ASTM D-7303 and is discussed in Appendix B.

The program is divided into four tasks, each designed to support other work in this investigation. All tasks were dovetailed to provide a maximum effort coordinated toward successful completion of the program.

Task 1 is entitled Literature Search and addresses the current and past scientific and technical literature to establish a working technical base. Task 2 provides assimilation of equipment and materials including both fuels and additives. Task 3 utilizes a selection of six Air Force jet fuels to establish fuel deposit baselines using the experimental coking apparatus, and Task 4 concludes the program with a precise evaluation of four selected fuels blended singly with current fuel additives. Each of these tasks was initially proposed as a logical sequence to the timely conclusion of the program. However, during the course of the program, the initial testing of four additives in Task 4 was increased to five additives. This could be done without an

---

\* CRC literature survey on the thermal oxidation stability of jet fuel (CRC Project No. CA-43-67), 1978.

## SECTION II

### LITERATURE SEARCH (TASK 4.3.1)

The research problems imposed on gas turbine engine development by the intrinsic nature of thermal instability has, for the most part, been directed in one of two directions. Basic research has used chemically pure materials in single, double, triple, etc., blends to approximate a fuel. These blends, in some instances, can give results which are not directly applicable to jet fuels. The use of jet fuels in equipment simulating a representative section of a gas turbine fuel system can give more meaningful results if the representation is precise. Searches were conducted in both chemical and engineering literature for data that were previously established from tests to determine the nature of fuel thermal stability. These searches, as discussed below, were conducted using the following key words and phrases: Thermal Stability, Jet Fuel Deposit, Fuel Instability, Jet Fuel Thermal Stability (Reactions), Fuel Peroxide, Auto Oxidation of Jet Fuel (Pyrolysis), Fuel Aromaticity, and Jet Fuel Cracking.

Several sources of information were utilized to perform the literature search including a thorough search of DIALOG® (Lockheed Information Systems), the Defense Documentation Center of the Defense Logistics Agency. The literature search included review of more than 8,000,000 citations. A list of available articles was scrutinized to select only those references related to the program, and these articles were ordered through the P&WA/GPD library branch of the United Technologies Corporation Library. A summary of the reference sources is given below:

#### 1. DIALOG® (Lockheed Information Systems, Palo Alto, California)

- a. Comprehensive Dissertation Abstracts (CDA) includes university dissertations of more than 630,000 citations with monthly updates from virtually every American college and university during the 1861 to December 1982 time frame.
- b. Claims® Patents was searched using the five definitive data bases listed below:
  - *Claims/Chemistry: From 1950 through 1970* includes more than 265,000 sources of US chemical and chemically related patents issued during this time period. Foreign equivalents from Belgium, France, Great Britain, West Germany, and the Netherlands are included.
  - *Claims/Class* is the classification code and title directory for all classes and selected subclasses of the US Patent Classification System. More than 15,000 sources were reviewed using this data base to facilitate the other searches.
  - *Claims/US Patents: From 1971 to 1978*, which contains more than 485,000 records

utilizing quarterly updates of all US patents, was reviewed for corrosion inhibiting additives in oil lubricant systems.

- *Claims/US Patents: From 1978 to the present* contains more than 85,000 records that were reviewed as described above for corrosion inhibitors for engine oil systems.
- Claims/US Patent Abstracts Weekly was reviewed to supplement the two claims listed above for the month of October 1979 only. Approximately 3,000 citations were reviewed.
- c. Metadex (Metals Abstracts/Alloys Index) from 1966 to present contains more than 370,000 citations with monthly updates from the American Society of Metals. These citations were reviewed for fuel compatibility.
- d. Scisearch®, a multidiscipline index to the literature of science and technology, was reviewed to the full extent of its 2,700,000 citations. The references searched were derived from more than 2600 of the major scientific and technical journals.
- e. ISMEC, the Information Service of Mechanical Engineering indices, provides a review of the significant articles of mechanical engineering from approximately 250 journals published throughout the world. This search included more than 90,000 citations for corrosion inhibitors.
- f. CA Search, covering Chemical Abstracts from 1967 to the present and including approximately 4,000,000 citations, was reviewed in its entirety.
- g. Smithsonian Science Information Exchange (SSIE) Current Research includes only the last two years, approximately 253,000 citations. This data base contains reports of both Government-funded and privately funded scientific research projects from more than 1300 organizations that fund research.
- h. NTIS, National Technical Information Service, includes citations from reports of Government-funded studies.
- i. COMPENDIX, an Engineering Index, reviews magazines and articles in the engineering field.
- j. Conference Papers Index reviews national and international conference presentations documented by publications in the area of scientific research and development.

2. Defense Documentation Center of the Defense Logistics Agency in Alexandria, Virginia, includes reports from Wright Patterson Air Force Base, Naval Air Development Center, Southwest Research Institute, and other Government agencies.

### SECTION III

#### MATERIAL ACQUISITION (TASK 4.3.2)

The principal objective of this task was to locate and acquire all materials necessary for the successful, cost effective, timely completion of all tests and fuel analyses conducted in Tasks 4.3.3 and 4.3.4. Also included in this task was acquisition of pertinent literature references which were determined, through the abstract review of Task 4.3.1, to be intrinsic to the tests conducted in this program.

Fuel samples were received from Wright-Patterson Air Force Base (WPAFB) during the first several months of this program. Samples included the following:

- 230 gallons of JP-4 fuel
- 60 gallons of JP-7 fuel
- 115 gallons of JP-8 fuel
- 60 gallons of light diesel fuel (Occidental Petroleum Co.)
- 60 gallons of Ashland 20-40 solvent.

Fuel additives were acquired either from WPAFB/POSF or directly from the manufacturers. The additives used throughout the fuel blend study are shown in Table 1 together with other pertinent information.

TABLE 1  
FUEL ADDITIVES FOR FUEL BLEND STUDY

| Additive                           | Manufacturer                   | Chemical Description                    | As-Received Concentration |
|------------------------------------|--------------------------------|-----------------------------------------|---------------------------|
| Antioxidant (A.O.29)               | E. I. duPont de Nemours & Co.  | 2,6-di-tertiary-butyl-4-methylphenol    | 100%                      |
| Corrosion Inhibitor (DCI-4A)       | E. I. duPont de Nemours & Co.  | Organic acids                           | 75%                       |
| Fuel System Icing Inhibitor (FSII) | Fisher Scientific (Item 13092) | 2-methoxyethanol                        | 100%                      |
| Conductivity Improver (Stadis 450) | E. I. duPont de Nemours & Co.  | Polymeric nitrogen and sulfur compounds | 25%                       |
| Metal Deactivator (DMD-2)          | E. I. duPont de Nemours & Co.  | N,N'-disalicylidene-1,2-propane diamine | 50%                       |

Acquisition of all support and test materials was completed by the third month of the program. However, due to the later addition of peroxide analyses (ASTM 3703) on the thermal stressed fuel samples of Tasks 4.3.3 and 4.3.4, the materials for the peroxide analyses were not obtained until the fourth month after the beginning of the contract.

## **SECTION IV**

### **BASELINE STUDY (TASK 4.3.3)**

The principal objective of this task was to provide a set of baseline fuel deposit data for six select Air Force jet fuels. These data were generated on the experimental coking apparatus (ECA) at auto-oxidation temperatures from 121 to 288°C. Appendix A details the test procedure used for fuel tests throughout this task. Data analysis and the development of the Arrhenius parameters are discussed in detail in Section VI. Pertinent details involving the baseline tests follow together with notes on the specially developed procedures for fuel preparations.

Five fuels were received from AFWAL/POSF and were immediately evaluated for their physical and chemical characteristics as shown in Table 2. The thermal stability of these selected fuels was the primary reason for their selection. The breakpoint temperatures, as shown in Table 2, represent the range in thermal stabilities derived according to ASTM D-3241. Initially samples of these fuels were received in five-gallon epoxy-lined steel containers. After the first three months, larger 55-gallon epoxy-lined drums were received. The delay initially occurring at the beginning of this program concerning these fuel shipments was due to receipt and assembly of a 34°F cold storage room. All fuel and fuel-additive blends used throughout this program were stored at 34°F ( $\pm 3^\circ$ ) under a dry nitrogen head at atmospheric pressure. Care was taken throughout to maintain a nitrogen atmosphere over each fuel including transfer from the larger 55-gallon drums to smaller 1- or 5-gallon containers. All containers were lined with epoxy to inhibit oxidation. Analyses of the JP-4 and JP-8 as-received samples were duplicated at the end of the program to verify that the fuel integrity had not been altered during the course of this investigation.

The six fuel samples to be evaluated were as follows: JP-7, JP-8, JP-4 with 10% aromatics, JP-4 with 25% aromatics, JP-4 with 35% aromatics (aromatic concentrations in volume percents) and light diesel oil (Occidental Petroleum Co. referred to as OCCI-Light). Prior to each ECA test, a sample of fuel to be tested was clay treated, severely, to eliminate polar compounds and fuel additives. These would include nitrogen, oxygen and sulfur compounds as well as polar additives such as antioxidants. The procedure for clay treatment followed the technique discussed in ASTM D-2550 with one exception. The amount of attapulgus clay used was five times that recommended in the ASTM procedure. A high clay-to-fuel ratio was used to strip each fuel to a standard, repeatable composition. Low, repeatable conductivity measurements were used to verify successful fuel stripping. The technique of preparing a repeatable baseline fuel was considered extremely important to the success of the tests scheduled for Task 4.3.4 because fuel blends of baseline fuels together with selected fuel additives were to be studied relative to their rates of fuel deposition.

After each fuel was severely clay treated (the label C.T. designates clay treated), baseline data were developed on the ECA. A minimum of seven temperatures between 121 and 288°C were tested with at least three up to five repeat tests to verify the validity of the fuel deposit rate.

Two of the original six selected baseline fuels were a blend of the original JP-4 fuel (10% aromatics) with the Ashland 20-40 solvent. Table 3 presents an organic type of analysis of the 20-40 solvent used in this program. These two fuels had a final concentration of 25% aromatics and 35% aromatics. It should be noted that the JP-4 with 10% aromatics was clay treated but the 20-40 solvent was not clay treated. The aromatic concentration in JP-4 did not change, via ASTM D-1319, due to clay filtration. Five-gallon blends of these two fuels were prepared as necessary for all subsequent testing.

TABLE 2  
FUEL SAMPLE ANALYSIS AS RECEIVED

|                                                           | <i>JP-4</i>    | <i>20/40 Solv</i> | <i>Occidental<br/>Shale Derived/<br/>Diesel</i> | <i>JP-7</i>     | <i>JP-8</i>     |
|-----------------------------------------------------------|----------------|-------------------|-------------------------------------------------|-----------------|-----------------|
| API Grav/60°F                                             | 54.9           | 13.8              | 39.3                                            | 45.5            | 46.5            |
| SP Grav/60°F                                              | 0.7591         | 0.9732            | 0.8285                                          | 0.7994          | 0.7949          |
| Distillation, °C (°F)                                     |                |                   |                                                 |                 |                 |
| IBP                                                       | 79 (174)       | 191 (376)         | 160 (320)                                       | 187 (1)         | 150 (2)         |
| 10%                                                       | 106 (223)      | 214 (417)         | 185 (365)                                       | 200             | 186             |
| 20%                                                       | 115 (239)      | 222 (432)         | 194 (381)                                       | 207             | 198             |
| 30%                                                       | 124 (255)      | 227 (441)         | 199 (390)                                       | 210             | 208             |
| 40%                                                       | 134 (274)      | 233 (451)         | 205 (401)                                       | 213             | 215             |
| 50%                                                       | 147 (296)      | 237 (459)         | 212 (414)                                       | 216             | 223             |
| 60%                                                       | 163 (325)      | 242 (468)         | 217 (423)                                       | 220             | 230             |
| 70%                                                       | 179 (355)      | 247 (477)         | 229 (444)                                       | 224             | 234             |
| 80%                                                       | 204 (399)      | 253 (487)         | 233 (451)                                       | 228             | 244             |
| 90%                                                       | 224 (435)      | 263 (505)         | 250 (482)                                       | 234             | 253             |
| End Point                                                 | 248 (478)      | 277 (531)         | 270 (518)                                       | 257             | 272             |
| Residue, %                                                | 1.0            | 1.4               | 1.1                                             | 1.2             | 1.3             |
| Loss, %                                                   | 1.0            | 1.1               | 0.9                                             | 0.3             | 0.2             |
| Water, ppm                                                | 70             | 330/70 a          | c                                               | 30              | 60              |
| Particulates 0.8μ, mg/l                                   | 0.04           | 0.001             | 1.4                                             | 0.001           | 0.0002          |
| Aromatics, % volume                                       | 9.88           | 98.10             | 36.73                                           | 4.13            | 16.98           |
| Olefins, % volume                                         | 1.39           | BDL b             | 3.23                                            | 1.01            | 0.71            |
| Flash Point, °F                                           |                | 175 (PM)          | 125 (PM)                                        | 145 (3) 160 (4) | 109 (3) 118 (4) |
| Net Heat of Combustion,<br>MJ/kg (Btu/lb)                 | 43.70 (18,787) | 40.08 (17,230)    | 42.47 (18,173)                                  | 43.50 (18,702)  | 43.36 (18,641)  |
| Thermal Stab., ASTM D-3241                                |                |                   |                                                 |                 |                 |
| Breakpoint Temperature, °C (°F)<br>(After Clay Treatment) | 285 (545)      | N/A               | 190 (374)                                       | 410 (770)       | 340 (644)       |

a. H<sub>2</sub>O content reduced to 70 ppm from 330 ppm after fuel treatment with Linde 3A Molecular Sieve  
b. Below detectable limits  
c. Non-conclusive analysis by Karl Fischer  
d. Lines of separation by FIA, ASTM D-1019, not defined sharply  
(1) ASTM D-86, (2) ASTM D-2887, (3) ASTM D-56, (4) ASTM D-93 (PM) Pensky-Martin

TABLE 3  
HYDROCARBON TYPE ANALYSIS OF  
2040 AROMATIC SOLVENT\*

| <i>Hydrocarbon Type</i>    | <i>Percent by<br/>Volume</i> |
|----------------------------|------------------------------|
| Paraffinic                 | 1.9                          |
| Monocycloparaffinic        | 0.5                          |
| Alkyl benzenes             | 24.3                         |
| Indan/tetralins            | 7.1                          |
| Indene/dihydronaphthalenes | 1.2                          |
| Naphthalenes               | 65.0                         |
| Hydrogen content           | 8.27 w/o                     |

\*Data courtesy of Major D. Potter, WPAFB/POSF

Test pressures were developed in the following manner. Previous work has detailed the intrinsic relationship of the critical pressure of hydrocarbon mixtures at elevated temperatures. Gas turbine fuels, as a first approximation, were considered to follow the API gravity-mean boiling point function. Therefore, to determine the test pressure necessary to establish a quality fluid in the ECA at specific preselected temperatures, the curves for hydrocarbon mixtures established by W. B. Kay and represented by R. E. Maxwell were used with the fuel or fuel

blend API gravity minus a boiling point. The critical pressure thus derived is commonly referred to as the pseudo critical pressure. Table 4 lists the corresponding pseudo-critical pressures and the pressures used throughout this program for each fuel, together with other critical parameters.

TABLE 4  
CRITICAL CONSTANTS FOR SELECTED AIR FORCE JET FUELS

| Fuel Sample * | Average Boiling Point (°C) | API Gravity at 60°F | P <sub>C</sub> (MPa) | T <sub>C</sub> (°C) | Test Pressure Range (MPa) |
|---------------|----------------------------|---------------------|----------------------|---------------------|---------------------------|
| JP-7          | 217                        | 47.0                | 2.089                | 396                 | 2.275 - 2.379             |
| JP-8          | 194                        | 47.9                | 2.310                | 374                 | 2.551 - 2.620             |
| JP-4-10% ARO  | 159                        | 55.0                | 2.482                | 338                 | 2.758 - 2.827             |
| JP-4-25% ARO  | 172                        | 47.5                | 2.586                | 357                 | 2.827 - 2.930             |
| JP-4-35% ARO  | 179                        | 41.2                | 2.730                | 371                 | 3.034 - 3.172             |
| OCCI-Light    | 216                        | 39.0                | 2.365                | 238                 | 2.551 - 2.620             |

\* All Samples Clay Treated

By establishing the test pressure as equivalent to 10% above the pseudo-critical pressure, the fuel was maintained in liquid form and no boiling off was anticipated. This was confirmed by placing a cryotrap downstream of the ECA exhaust. A continuous effluent sample was condensed from the ECA reaction chamber; no fuel was collected which substantiated the liquid fuel quality in the reaction chamber.

All test runs on the ECA were conducted for a one-hour duration except for the JP-7 fuel. This fuel, which has a high thermal stability (JFTOT break point  $\approx 410^{\circ}\text{C}$ ), required a minimum of three hours and in most cases four hours to produce a deposit on the 1 by 2 inch stainless steel coupons. On the other extreme, the OCCI-light produced inordinate amounts of deposit, so much so that the coupons were sealed in the coupon holder. Upon removal, the deposit cracked and fell away, making gravimetric evaluations difficult. No problems were encountered with the JP-8 or JP-4 fuels. Appendix C contains all baseline rate data from the six selected fuels and Section VI presents the Arrhenius data analyses.

The variation or more specifically the efficiency of oxygen utilization during the ECA testing of a specific fuel is a direct function of the ease and affinity that various fuel components have for high-energy molecular oxygen. A gas chromatograph and a time-of-flight mass spectrometer were added to the ECA test equipment to measure this oxygen utilization by the various fuels during their baseline tests. Both units performed up to standard; however, the amount of change found in the oxygen concentration from free flowing air into and out of the ECA reaction chamber was below detectable limits. Modifications to the sensitivity of both units was attempted but did not allow repeatable oxygen analyses to be made.

The oxygen measurements were deleted from the original statement of work and were replaced by the measurement of the fuel formed peroxide concentration. Peroxides form as precursors to the end product acids and polymerized material characteristic to the deposit from auto oxidation of jet fuels. The methodology used for determining the peroxide concentration is discussed in Appendix B as derived from a modified ASTM D3703-78 procedure. Data derived for each baseline fuel test are presented in Appendix D. Section VI presents the Arrhenius evaluation of these data.

## SECTION V

### FUEL BLEND STUDY TASK 4.3.4

This task had multiple purposes. First, a series of fuel blends were prepared from four selected fuels used in Task 4.3.3 (Section IV) with fuel additives current to gas turbine fuel technology. Subsequent to preparation of stable fuel-additive blends, a series of ECA tests were used to provide the necessary data for an Arrhenius analysis and a comparison to the original baseline generated in Task 4.3.3.

After completion of the fuel baseline study, four fuels were selected by the Air Force program monitor based on the fuel properties and characteristics common to current and projected Air Force utilization. These fuels were the JP-8 (MIL T-83133A), the JP-4 (MIL T-56241) with the two blends of 20-40 solvent and JP-4.

The additives initially suggested for study, as single-constituent fuel blends, are summarized in Table 1. Table 5 further defines the chemical and physical characteristics of each additive. Only three of the five additives were in a form or were described in detail well enough that they could be reconstructed analytically for repeat use. Therefore, enough of each additive was obtained so that the program usage would amount to 50% of the total available additive. No attempt was made to purify any of the additives further. Any additive purification would not reflect performance available additives and may have lead to subsequent misleading conclusions.

Fuels used to prepare the fuel-additive blends were treated with Attapulgus clay in the manner described in Section IV for the fuel baseline study. As in this study, each clay treated fuel was freshly prepared in 18-liter quantities, maximum, stored in a cold room at 1°C ( $\pm 0.5^\circ$ ), and used as needed. All fuel additive blends were mixed and used within one month after blending. Excess clay treated fuel was not prepared because of the potential that auto-oxidation could result and invalidate the final test results. All fuels were sparged and blanketed with dry nitrogen until use.

Fuel-additive blends were prepared prior to use by the following procedure. An 18-litre clay treated fuel sample was weighted to  $\pm 0.1$  gm on a Sauter E49-ED2180 balance. Then a prescribed mass, in grams of additive, was added to provide the necessary concentration of the additive in the selected fuel. Tables 6 through 9 present the additive concentrations in terms of parts-per-million and as milligrams per liter of additive.

These values take into account the fuel density and the dilution factor or active ingredient concentration of the as-received additive. Each table contains the uniform concentration of each of the additives. This uniform concentration was used to calculate the required milligrams per liter of additive for each fuel-additive blend. This was done so that all fuels would contain the same concentration of additive on a parts-per-million by weight basis. The rate of deposit formation was, therefore, comparable if the additive part-per-million concentrations were used. The basic limits for the additive concentration are two to three times the current military fuel or additive specification as described in Table 10.

The individual fuel additive limits can be described as follows: (1) Anti-oxidant, AO-29, and the corrosion inhibitor were blended as (a) the minimum effective concentration, (b) half-way between the minimum effective and maximum allowable concentration, (c) the maximum allowable concentration and (d) twice the maximum allowable concentration. The metal deactivator was prepared in four concentrations: (a) one-half the maximum allowable, (b) the

maximum allowable, (c) twice and (d) three times the maximum allowable specification concentration. Finally the fuel system icing inhibitor was blended at (a) less than the maximum, (b) the maximum, (c) twice and (d) three times the maximum allowable specification concentration. Finally, the fuel conductivity additive was added to clay treated fuel samples until the desired conductivity in picosiemens, was reached. This last additive proved to be unstable, requiring blends to be prepared and monitored with additive adjustments over a period of three to four days. After this time the fuel would remain stable at the set conductivity for at least three weeks during which time the ECA tests were completed. Another method of working with the conductivity additive was to passivate glass containers with a final rinse after cleaning with a 50/50% mixture of methanol and toluene. Conductivity measurements were made on a daily basis to ensure that no change had taken place. In the additive tables (Tables 6 through 9), which list the additive concentrations used in these fuel blend studies, the minimum effective and maximum allowable concentrations are listed as pounds per thousand barrels for the antioxidant and the corrosion inhibitor. The fuel system icing inhibitor minimums and maximums are given in volume percentages and the metal deactivator is given as milligrams per liter. Master blends, which contained the maximum concentration of fuel additive, were prepared and provided to the program monitor at the conclusion of the fuel blend study.

ECA tests were conducted in 50°F intervals in the manner described in Appendix A. Occasional changes in test conditions occurred during several tests which were cause for termination of the test. One such condition was that of autoignition. Since the concentration of oxygen within the reaction chamber was in excess of 18%, autoignition was experienced several times with all fuel blends when an excess amount of heat was generated too rapidly. Large amounts of carbon were subsequently formed within the reaction chamber which required cleaning prior to further testing. The only other major problem occurred with fuel leakage at the lower insulated Swageloc® fitting. Refer to Figure 1.



*Figure 1. Fuel Leakage Source at Lower Swageloc Fitting*

After each test a peroxide analysis was conducted as reviewed in Appendix B. A fuel sample of 250 to 300 milliliters was collected while the fuel was still under pressure and at elevated temperature. The sample bottle was prior washed, rinsed with ethyl alcohol (100%) and dried with nitrogen. The fuel sample thus taken was sparged with nitrogen and analyzed immediately in three aliquots for the total concentration of peroxide. Carbon deposition data together with the peroxide data have been listed in Appendices C and D and analyzed in Section VI. For most peroxide analyses the spread on the data was less than 3%; however, data with a  $\pm 5\%$  variation was considered acceptable.

TABLE 5  
FUEL ADDITIVE PROPERTIES

|                                               | <i>A029</i>                                        | <i>DCI-4A</i>     | <i>FSII</i>                                       | <i>Stadis-450</i>                                               | <i>DMD-2</i>                               |
|-----------------------------------------------|----------------------------------------------------|-------------------|---------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------|
| Physical Form                                 | Colorless to Pale Yellow Flakes                    | Dark Amber Liquid | Colorless Liquid                                  | Clear-Yellow Liquid                                             | Light-Yellow Liquid                        |
| Specific Gravity<br>(16/16C)                  | 0.61 <sup>(6)</sup>                                | 0.94              | 0.966 <sup>(3)</sup>                              | 0.9                                                             | 0.99                                       |
| Melting Point, °C                             | 69                                                 | -                 | -                                                 | -                                                               | -                                          |
| Boiling Point, °C                             | 266                                                | N/A               | 124.5                                             | 90                                                              | 140                                        |
| Flash Point, °C                               | 132 <sup>(1)</sup>                                 | 32 <sup>(2)</sup> | 43 <sup>(4)</sup>                                 | 4.4 <sup>(4)</sup>                                              | 33 <sup>(4)</sup> 41 <sup>(5)</sup>        |
| Solubility,<br>Wt % (20°C) <sup>(6) (7)</sup> |                                                    |                   |                                                   |                                                                 |                                            |
| Isopentane                                    | 50                                                 | CM                | CM                                                | PM-CM                                                           | PM-CM                                      |
| Benzene                                       | 40                                                 | CM                | CM                                                | PM                                                              | CM                                         |
| Toluene                                       | 43                                                 | CM                | CM                                                | PM                                                              | CM                                         |
| Water                                         | I/S                                                | -                 | CM                                                | I/S                                                             | I/S                                        |
| Solvent                                       | None                                               | Xylene            | None                                              | Toluene 74 v/o<br>and isopropyl<br>alcohol 3 v/o                |                                            |
| Chemical<br>Description                       | 2,6-Diteriary<br>Butyl-4-Methyl-<br>Phenol         | Proprietary       | Ethylene-<br>Glycol<br>Monomethyl<br>Ether (EGME) | Proprietary<br>Nitrogen and<br>Sulfur<br>Polymeric<br>Compounds | N,N'-Disalicylidene-<br>1,2-Propanediamine |
| (1) ASTM D92 (COC)                            | (5) ASTM D-1310 (TOC)                              |                   |                                                   |                                                                 |                                            |
| (2) ASTM D93 (PMCC)                           | (6) Untapped Density, Gram Per Cubic Centimeter    |                   |                                                   |                                                                 |                                            |
| (3) 20°C                                      | (7) CM - Completely Miscible, PM - Partly Miscible |                   |                                                   |                                                                 |                                            |
| (4) ASTM D-56 (TCC)                           |                                                    |                   |                                                   |                                                                 |                                            |

TABLE 6  
PARTS-PER-MILLION CONCENTRATIONS FOR VARIOUS ANTIOXIDANT-FUEL BLENDS (2,6-DITERTIARY-BUTYL-4-METHYL-PHENOL)

| <i>Clay</i>                                                              | <i>Treated Fuel</i> | <i>Pounds/1000 Barrels</i> |        |        |        |
|--------------------------------------------------------------------------|---------------------|----------------------------|--------|--------|--------|
|                                                                          |                     | 6.0                        | 7.2    | 8.4    | 16.8   |
| JP-4                                                                     | 10% Aromatics       | 22.7                       | 27.2   | 31.7   | 63.5   |
| JP-4                                                                     | 25% Aromatics       | 21.2                       | 25.4   | 29.6   | 59.3   |
| JP-4                                                                     | 35% Aromatics       | 20.6                       | 24.7   | 28.9   | 57.7   |
| JP-8                                                                     | 17% Aromatics       | 21.6                       | 26.0   | 30.3   | 60.6   |
| Proposed Uniform Concentration                                           |                     | 21.0                       | 26.0   | 31.0   | 62.0   |
| <i>Required Milligrams per Liter Equivalent to Uniform Concentration</i> |                     |                            |        |        |        |
| JP-4 — 10%                                                               | Aromatics           | 15.852                     | 19.630 | 23.408 | 46.816 |
| JP-4 — 25%                                                               | Aromatics           | 16.988                     | 21.030 | 25.073 | 50.172 |
| JP-4 — 35%                                                               | Aromatics           | 17.437                     | 21.612 | 25.760 | 51.493 |
| JP-8 — 17%                                                               | Aromatics           | 16.618                     | 20.581 | 24.544 | 49.062 |

TABLE 7  
PARTS-PER-MILLION CONCENTRATIONS FOR VARIOUS JET FUEL CORROSION INHIBITOR — FUEL BLENDS (DCI-4A)\*

| <i>Clay</i>                                                              | <i>Treated Fuel</i> | <i>Pounds/1000 Barrels</i> |        |        |        |
|--------------------------------------------------------------------------|---------------------|----------------------------|--------|--------|--------|
|                                                                          |                     | 3.0                        | 5.5    | 8.0    | 16.0   |
| JP-4 — 10%                                                               | Aromatics           | 11.3                       | 20.8   | 30.2   | 60.5   |
| JP-4 — 25%                                                               | Aromatics           | 10.6                       | 19.4   | 28.2   | 56.4   |
| JP-4 — 35%                                                               | Aromatics           | 10.3                       | 18.9   | 27.5   | 55.0   |
| JP-8 — 17%                                                               | Aromatics           | 10.8                       | 19.8   | 28.8   | 57.7   |
| Proposed Uniform Concentration                                           |                     | 11.0                       | 20.0   | 29.0   | 58.0   |
| <i>Required Milligrams per Liter Equivalent to Uniform Concentration</i> |                     |                            |        |        |        |
| JP-4 — 10%                                                               | Aromatics           | 11.061                     | 20.145 | 29.203 | 58.406 |
| JP-4 — 25%                                                               | Aromatics           | 11.871                     | 21.594 | 31.281 | 62.563 |
| JP-4 — 35%                                                               | Aromatics           | 12.188                     | 22.158 | 32.127 | 64.254 |
| JP-8 — 17%                                                               | Aromatics           | 11.625                     | 21.101 | 30.612 | 61.189 |

\*As Received Concentration of DCI-4A Is Taken as 75% Active Ingredient

**TABLE 8**  
**PARTS-PER-MILLION CONCENTRATIONS FOR VARIOUS JET FUEL  
 SYSTEM ICING INHIBITOR FUEL BLENDS (2-METHOXYETHANOL)**

| <i>Clay Treated Fuel</i>                                                           | <i>Percent by Volume</i> |             |             |             |
|------------------------------------------------------------------------------------|--------------------------|-------------|-------------|-------------|
|                                                                                    | <i>0.05</i>              | <i>0.15</i> | <i>0.30</i> | <i>0.45</i> |
| JP-4 — 10% Aromatics                                                               | 639.9                    | 1919.6      | 3839.1      | 5758.6      |
| JP-4 — 25% Aromatics                                                               | 597.2                    | 1791.4      | 3582.9      | 5374.3      |
| JP-4 — 35% Aromatics                                                               | 581.6                    | 1744.9      | 3489.7      | 5234.6      |
| JP-8 — 17% Aromatics                                                               | 610.5                    | 1831.5      | 3663.0      | 5494.5      |
| Proposed Uniform Concentration                                                     | 607.0                    | 1823.0      | 3644.0      | 5466.0      |
| <i>Required Milligrams per Liter Equivalent for Proposed Uniform Concentration</i> |                          |             |             |             |
| JP-4 — 10% Aromatics                                                               | 458.336                  | 1376.513    | 2751.599    | 4127.371    |
| JP-4 — 25% Aromatics                                                               | 491.123                  | 1474.980    | 2948.349    | 4422.537    |
| JP-4 — 35% Aromatics                                                               | 504.227                  | 1514.373    | 3027.081    | 4540.608    |
| JP-8 — 17% Aromatics                                                               | 480.370                  | 1442.721    | 2883.857    | 4325.786    |

**TABLE 9**  
**PARTS-PER-MILLION CONCENTRATIONS FOR  
 VARIOUS JET FUEL METAL DEACTIVATOR BLENDS  
 (N,N<sup>1</sup>-DISALICYLIDENE-1,2-PROPANEDIAMINE)\***

| <i>Clay Treated Fuel</i>                                                                         | <i>Milligrams per Liter</i> |            |             |             |
|--------------------------------------------------------------------------------------------------|-----------------------------|------------|-------------|-------------|
|                                                                                                  | <i>2.9</i>                  | <i>5.8</i> | <i>11.6</i> | <i>17.4</i> |
| JP-4 — 10% Aromatics                                                                             | 3.8**                       | 7.7        | 15.4        | 23.0        |
| JP-4 — 25% Aromatics                                                                             | 3.6                         | 7.2        | 14.3        | 21.5        |
| JP-4 — 35% Aromatics                                                                             | 3.5                         | 7.0        | 14.0        | 21.0        |
| JP-8 — 17% Aromatics                                                                             | 3.7                         | 7.3        | 14.7        | 22.0        |
| Proposed Uniform Concentration                                                                   | 3.6                         | 7.3        | 14.6        | 21.9        |
| <i>Required Milligrams per Liter for Proposed Uniform Concentration at 50% Active Ingredient</i> |                             |            |             |             |
| JP-4 — 10% Aromatics                                                                             | 5.495                       | 11.017     | 22.008      | 33.025      |
| JP-4 — 25% Aromatics                                                                             | 5.865                       | 11.810     | 23.593      | 35.403      |
| JP-4 — 35% Aromatics                                                                             | 6.050                       | 12.100     | 24.227      | 36.328      |
| JP-8 — 17% Aromatics                                                                             | 5.760                       | 11.546     | 23.091      | 34.610      |

\*As Received Concentration is 50% Active Ingredient

\*\*Parts-per-Million Based on 100% Active Ingredient

TABLE 0  
ADITIVE CONCENTRATIONS, POUNDS PER 1000 BARRELS

| Fuel                 | Antioxidant |     |     |      | Corrosion Inhibitor |     |    |    | Fuel System Icing Inhibitor* |      |      |      | Conductivity Additive** |     |      |      | Metal Deactivator + |     |      |      |
|----------------------|-------------|-----|-----|------|---------------------|-----|----|----|------------------------------|------|------|------|-------------------------|-----|------|------|---------------------|-----|------|------|
|                      | C1          | C2  | C3  | C4   | C1                  | C2  | C3 | C4 | C1                           | C2   | C3   | C4   | C1                      | C2  | C3   | C4   | C1                  | C2  | C3   | C4   |
| JP-4 — 10% Aromatics | 6.0         | 7.2 | 8.4 | 16.8 | 3                   | 5.5 | 8  | 16 | 0.05                         | 0.15 | 0.30 | 0.45 | 200                     | 600 | 1200 | 1800 | 2.9                 | 5.8 | 11.6 | 17.4 |
| JP-4 — 25% Aromatics | 6.0         | 7.2 | 8.4 | 16.8 | 3                   | 5.5 | 8  | 16 | 0.05                         | 0.15 | 0.30 | 0.45 | 200                     | 600 | 1200 | 1800 | 2.9                 | 5.8 | 11.6 | 17.4 |
| JP-4 — 35% Aromatics | 6.0         | 7.2 | 8.4 | 16.8 | 3                   | 5.5 | 8  | 16 | 0.05                         | 0.15 | 0.30 | 0.45 | 200                     | 600 | 1200 | 1800 | 2.9                 | 5.8 | 11.6 | 17.4 |
| JP-8 — 17% Aromatics | 6.0         | 7.2 | 8.4 | 16.8 | 3                   | 5.5 | 8  | 16 | 0.05                         | 0.15 | 0.30 | 0.45 | 200                     | 600 | 1200 | 1800 | 2.9                 | 5.8 | 11.6 | 17.4 |

\* Units of Concentration = volume %

\*\* Units = Picosiemens/Meter (pS/m)  
(1 pS/m = ICS (Conductivity Unit))

Indicates Desired Conductivity Level = 50 pS/m  
+ Milligrams of Metal Deactivator per Liter of Fuel

## SECTION VI

### DATA ANALYSIS

The principle for determining the rate of jet fuel deposition, as described in this program, was to provide the basis for an Arrhenius evaluation and determination of the activation energy for each of the four selected fuels. As discussed in Section V the fuels were: JP-4 with 10% aromatics, JP-4 with 25 and 35% aromatics, and JP-8 with 17% aromatics; all fuels were clay treated and blended with specific, qualified additives. These tests were conducted on freshly prepared fuel blends using the Experimental Coking Apparatus (ECA) as discussed in Appendix A. Immediately after each ECA test, a sample of the fuel was evaluated by ASTM D-3703 for peroxide content. These data were then plotted against the reciprocal of the absolute test temperature and comparisons were made to the deposition and peroxide levels of the baseline fuels.

Each data set was then evaluated using a linear regression analysis to determine the Arrhenius factors, the activation energy and the pre-exponential factor.\* Values are listed for each fuel and fuel-additive blend in Tables 11 through 14. Comparison of the fuel-additive blends with the baseline fuel preserves the effect of the additive on the fuel deposit rate of formation. At first glance, the JP-4-10% aromatics shows a lower specific deposit rate than the fuel blends to 25 and 35% with the 2040 solvent. Also, the JP-4-25% aromatics blend deposition rate was less than the JP-4-35% aromatics.

The antioxidant (AO-29;AO) conductivity improver (Stadis-450; CDI), and the metal deactivator (DMD-21, MDA) had visible effects on all fuels tested. The AO decreased the rate of the overall fuel deposition relative to the fuels baseline for JP-4 fuels. An increase in aromatic content of the JP-4 fuel also affected the deposition by decreasing the effectiveness of the AG-5 according to the following order:

$$\text{JP-4-35\% aromatics} > \text{JP-4-25\% aromatics} > \text{JP-4-10\% aromatics}$$

The JP-8 rate of deposition also decreased with the decrease approximately equal to the JP-4-10% aromatics. The CDI and the MDA deposition rates were adversely affected. In all tests the deposition increased in clay treated fuel samples of JP-4 and JP-8. The CDI and MDA deposition increased according to the following:

$$\text{JP-4-10\% aromatics} < \text{JP-4-25\% aromatics} < \text{JP-4-35\% aromatics}$$

JP-8-17% aromatics affected the baseline rate of deposition between that of JP-4-10% and JP-4-25% aromatics.

Both the corrosion inhibitor (DC1-4A; CI) and the fuel system icing inhibitor (2-methoxyethanol; FSII) indicate a relatively small influence on the deposition rates of the four selected fuels. The CI had a small negative effect (increase) in fuel deposition at the 25 and 35% aromatic level in JP-4. The 35% aromatic JP-4 reflected a larger deposition than the 25% JP-4.

Most of the peroxide levels were in relative agreement with the rates of deposition; that is, the peroxide level increased with an increase in the deposition rate. All AO treated fuels had a decrease in peroxide level while the CDI and the MDA peroxide levels were higher than their respective baseline. The JP-8/CDI blend peroxide data indicated a lower peroxide concentration (Figure C-5 in Appendix C) than expected. Peroxide concentrations were consistently lower for

\* Benson, Sidney W., *The Foundations of Chemical Kinetics*, 1960, McGraw-Hill Book Co., pg. 66-8

greater than expected from the ECA deposition data. Peroxide data established using the CI and the FSH blends paralleled with deposition rate data. When little or no shift from the fuel baseline deposition was recorded, the peroxide concentration also repeated.

Each Arrhenius evaluation was completed per fuel/additive blend as follows: A specific set of deposition rates and fuel temperatures were curve fit using a first-degree linear curve fit. Then, using the slope and y-intercept, the linear equation of the form  $y = mx + b$  was evaluated at 149, 204, 260 and 316°C. Specific deposition rates which can be specified in this manner can be used subsequently to relate relative comparisons of similar fuels or fuel blends. This comparison formed the basis of the conclusions in Section VII. In addition to the preceding, the curve fit yields a coefficient of determination which, for this investigation, was at least 0.90. This value indicates that 90% of the data used to generate the curve fit will be within a  $1\sigma$  band.

*NOTE:* The basic interpretation of the Arrhenius Equation has, since the late 1800's, been used to relate the temperature dependence of chemically reactant systems. The basic mathematical relation, developed from sucrose inversion studies,\* can be written as

$$\frac{d \ln k'}{dT} = -\frac{E^*}{RT^2}$$

where T is the Kelvin temperature,  $k'$  the specific reaction rate, and  $E^*$  is the Arrhenius activation energy. When integrated this equation, after assuming that the activation energy remains linear over the range of T, yields the textbook equation

$$k'(T) = A \exp(-E^*/RT).$$

In most theoretical discussions involving the Arrhenius activation energy, it is often neglected, sometimes assumed, that the real interpretation of  $E^*$  is known to the reader. Here this is not the case. Specifically the Arrhenius model represents the intermediate active form of the reactant/product molecules characteristic to a given reaction. In the case of this investigation, this active form cannot be described by any simple chemical formula; even an empirical formula would perhaps be too bold. Instead it is utilization of the activated complex that is noteworthy and that there is no definitive relationship between the energy necessary to achieve the activated complex and the magnitude of the specific reaction rate. A decrease in fuel deposition is not necessarily coupled to a decrease in the energy necessary to achieve that deposition. Subsequently no rational judgement about these two quantities can be made based on the data of this investigation.

---

\* Arrhenius, S., Z. Physik Chem., 4, 226 (1889)

## SECTION VII

### CONCLUSIONS AND RECOMMENDATIONS

The deposition rate data from the tests conducted in Task 4.3.3, Fuel Baseline Study, confirmed the effects of aromatic compounds. The baseline data curve fit to a straight line in Figures D-1, D-6, D-11 and D-16 show the deposition rates for JP-8, JP-4-10% -aromatics, JP-4-25% aromatics and JP-4-35% aromatics as increasing. The JFTOT thermal stability breakpoint temperatures for these fuels decreases in this same order. Also, the aromatic content was the only change made to the original clay treated fuel for the JP-4 fuels. The breakpoints decrease as the aromatic contents increased. This change paralleled the increase in the specific reaction rate.\*

Experimental specific rate data, as tabulated in Appendix C for each specific jet fuel and additive combination, was used as data in the solution of a linear regression analysis. The reciprocal of the absolute temperature (degrees Kelvin) was taken as the independent variable and the specific rate (grams per square centimeter-second) as the dependent variable. The linear regression was further applied in the subsequent Arrhenius analyses by conversion of the dependent variables to their common logarithm. Tables 11 through 14 represent the activation energies (calories per mole) and the Arrhenius pre-exponential factors for the four jet fuels.

A low Arrhenius activation energy projects a low energy threshold to the hypothetical chemically active transition state. In general, the lower the activation energy the lower the energy required to reach the reaction products. This in turn specifies that the deposition will occur at a lower thermal energy input level as compared to another fuel at a higher activation energy. This does not directly relate to the quantitative measure of a fuels deposition or deposition rate. Comparison of the baseline activation energies reflects a decrease as the aromatic concentrations of the JP-4 fuels are increased. The JP-8 activation energy is approximately 100 calories less than the JP-4-10% aromatics. Subsequent comparisons of the additives used in the fuel-blend study yields the following conclusions:

1. The antioxidant (AO-29) effectively reduces the activation energies in all fuels tested. AO-29 also reduces the specific rates of each fuel tested.
2. The corrosion inhibitor (DCI-4A) and the fuel system icing inhibitor (2-methoxyethanol) show little or no variation from the clay treated baseline.
3. Both the conductivity additive (Stadis-450) and the metal deactivator (DMD-2) increased the activation energy at all concentrations.

The Arrhenius pre-exponential factor can be considered a measure of the entropy of the activated transition state and can be used to relate the order/disorder of this transition state. Even under the most highly ordered reaction schemes the pre-exponential factor is difficult to relate accurately to a reactions characteristic. Close comparison of the calculated pre-exponential factors for this study did not result in any further absolute information.

In addition to the Arrhenius analyses of Tables 11 through 14 the linear regressions were used in each fuel and/or fuel-blend test to establish the fuel deposit expected at 149 (300), 204 (400), 260 (500) and 316°C (600°F). Tables 15 through 18 represent these data in similar order to the Arrhenius constants. The data calculated at 149 and 204°C deviate from the baseline only

\* The specific reaction rate, being unique for each fuel or fuel additive, as used here refers to the measured deposition in grams normalized to one cubic centimeter and one second.

in relatively small quantities, whereas the 260 and 316°C levels show dominant deviations from their baselines. Variations for each of the additives directly paralleled the variations previously discussed for the Arrhenius activation energies and are summarized as follows:

1. Virtually all specific rates increased when relating the fuels in the order of JP-8, JP-4-10% aromatics, JP-4-25% aromatics and JP-4-35% aromatics.
2. The antioxidant tests revealed a progressive decrease in deposit formation at constant temperature coupled with an increase in the deposit reduction with test temperature.
3. The metal deactivator and the conductivity additive paralleled their activation energies, respectively, an increase.
4. The fuel system icing inhibitor and the corrosion inhibitor maintained their deposition relative to the baseline except at elevated temperatures.

At elevated temperatures which approach the region of pyrolysis, variation in deposit formation would be expected to decrease and the concentrations of water vapor and oxides of carbon would increase, both with little or small correlation. In this study the peroxide concentrations were evaluated and are reported in Appendix D. At deposit temperatures in excess of 260°C (500°F), the peroxide concentration decreased; however, within the temperature range of 149 to 260°C (300 to 500°F) a trend very similar to the specific rate variation was established. The peroxide analyses were evaluated using the same linear regression as used with the specific rate data. However, due to the variation in analytical results using the procedure discussed in Appendix B, an accurate Arrhenius analysis could not be made. The basic trend in the peroxide concentrations were to parallel the deposition rate as expected based on the theories concerning fuel deposition.\*

\*(1) Hammond, G. S. and Soffer, I. M., J. Am. Chem. Soc., Vol. 72, 4711 (1951);  
(2) Shine, H. and Ayrey, G., Chem. Rev., Vol. 63, 645 (1963);  
(3) Bevington, J. C., et.al, Trans. Faraday Society, Vol. 54, 863 (1958);  
(4) Walling, C., J. Phys. Chem., Vol 71, 2361 (1967).

**TABLE II**  
**ARRHENIUS CONSTANTS FOR A JP-8 FUEL AS DERIVED FROM A  
 PSEUDO FIRST-ORDER REACTION BETWEEN 121°C AND 316°C**

| Fuel              | Specific Rate of<br>Deposit Formation             |                                                                   | Specific Rate of<br>Peroxide Formation            |                                                  |
|-------------------|---------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|
|                   | Activation<br>Energy<br>(cal mole <sup>-1</sup> ) | Preexponential<br>Factor<br>(cm <sup>-2</sup> sec <sup>-1</sup> ) | Activation<br>Energy<br>(cal mole <sup>-1</sup> ) | Preexponential<br>Factor<br>(sec <sup>-1</sup> ) |
| Baseline CT       | 7822                                              | $2.335 \times 10^{-6}$                                            | 8077                                              | $1.373 \times 10^4$                              |
| AO-29             |                                                   |                                                                   |                                                   |                                                  |
| MEC               | 7634                                              | $1.658 \times 10^{-6}$                                            | 7285                                              | $5.673 \times 10^3$                              |
| $\frac{1}{2}$ MAC | 7304                                              | $9.104 \times 10^{-7}$                                            | 8507                                              | $1.781 \times 10^3$                              |
| MAC               | 7003                                              | $7.492 \times 10^{-7}$                                            | 6826                                              | $3.034 \times 10^3$                              |
| 2 MAC             | 6422                                              | $3.466 \times 10^{-7}$                                            | 7609                                              | $6.316 \times 10^3$                              |
| DCI-4A            |                                                   |                                                                   |                                                   |                                                  |
| MEC               | 7761                                              | $2.218 \times 10^{-6}$                                            | 6146                                              | $1.836 \times 10^3$                              |
| 2 MAC             | 7775                                              | $2.207 \times 10^{-6}$                                            | 6840                                              | $3.723 \times 10^3$                              |
| FSII              |                                                   |                                                                   |                                                   |                                                  |
| << MAC            | 8002                                              | $2.815 \times 10^{-6}$                                            | 11540                                             | $3.509 \times 10^5$                              |
| 3 MAC             | 7965                                              | $2.638 \times 10^{-6}$                                            | 6490                                              | $2.533 \times 10^3$                              |
| Stadis 450        |                                                   |                                                                   |                                                   |                                                  |
| MEC               | 7897                                              | $2.551 \times 10^{-6}$                                            | 8378                                              | $1.846 \times 10^4$                              |
| MAC               | 8114                                              | $3.375 \times 10^{-6}$                                            | 6757                                              | $3.377 \times 10^3$                              |
| 2 MAC             | 8200                                              | $3.938 \times 10^{-6}$                                            | 7552                                              | $7.456 \times 10^3$                              |
| 3 MAC             | 8218                                              | $4.341 \times 10^{-6}$                                            | 7455                                              | $6.717 \times 10^3$                              |
| DMD-2             |                                                   |                                                                   |                                                   |                                                  |
| $\frac{1}{2}$ MAC | Negligible effect on baseline<br>data             |                                                                   |                                                   |                                                  |
| MAC               | 8143                                              | $3.372 \times 10^{-6}$                                            | 7345                                              | $7.018 \times 10^3$                              |
| 2 MAC             | 8391                                              | $4.825 \times 10^{-6}$                                            | 7625                                              | $9.551 \times 10^3$                              |
| 3 MAC             | 8597                                              | $7.250 \times 10^{-6}$                                            | 7659                                              | $1.066 \times 10^4$                              |

TABLE 12  
ARRHENIUS CONSTANTS FOR A JP-4 FUEL CLAY TREATED WITH A 10%  
TOTAL AROMATIC CONCENTRATION AS DERIVED FROM A PSEUDO  
FIRST-ORDER REACTION BETWEEN 121°C AND 316°C

| Fuel        | Specific Rate of<br>Deposit Formation |                                       | Specific Rate of<br>Peroxide Formation |                          |
|-------------|---------------------------------------|---------------------------------------|----------------------------------------|--------------------------|
|             | Activation<br>Energy                  | Preexponential<br>Factor              | Activation<br>Energy                   | Preexponential<br>Factor |
|             | (cal mole <sup>-1</sup> )             | (cm <sup>-2</sup> sec <sup>-1</sup> ) | (cal mole <sup>-1</sup> )              | (sec <sup>-1</sup> )     |
| Baseline CT | 8769                                  | $3.126 \times 10^{-5}$                | 9758                                   | $1.524 \times 10^5$      |
| AO-29       |                                       |                                       |                                        |                          |
| MEC         | 8506                                  | $2.044 \times 10^{-5}$                | 8218                                   | $2.040 \times 10^4$      |
| ½ Σ MC      | 7730                                  | $7.149 \times 10^{-5}$                | 7710                                   | $1.074 \times 10^4$      |
| MAC         | 7259                                  | $3.336 \times 10^{-5}$                | 7788                                   | $9.672 \times 10^3$      |
| 2 MAC       | 6817                                  | $1.796 \times 10^{-5}$                | 7175                                   | $3.879 \times 10^3$      |
| DCl-4A      |                                       |                                       |                                        |                          |
| MEC         | 8764                                  | $3.047 \times 10^{-5}$                | 9995                                   | $1.820 \times 10^5$      |
| 2 MAC       | 8904                                  | $3.597 \times 10^{-5}$                | 9553                                   | $1.243 \times 10^5$      |
| PSII        |                                       |                                       |                                        |                          |
| << MAC      | 8625                                  | $2.672 \times 10^{-5}$                | 9613                                   | $1.168 \times 10^5$      |
| 3 MAC       | 7869                                  | $1.077 \times 10^{-5}$                | 9634                                   | $1.319 \times 10^5$      |
| Stadis 450  |                                       |                                       |                                        |                          |
| MEC         | 8911                                  | $3.295 \times 10^{-5}$                | 9897                                   | $1.755 \times 10^5$      |
| MAC         | 8926                                  | $3.826 \times 10^{-5}$                | 11290                                  | $9.062 \times 10^5$      |
| 2 MAC       | 9112                                  | $4.944 \times 10^{-5}$                | 10741                                  | $4.015 \times 10^5$      |
| 3 MAC       | 9325                                  | $6.600 \times 10^{-5}$                | 9847                                   | $2.631 \times 10^5$      |
| DMD-2       |                                       |                                       |                                        |                          |
| ½ MAC       | 8962                                  | $4.058 \times 10^{-5}$                | 10221                                  | $2.741 \times 10^5$      |
| MAC         | 8979                                  | $4.338 \times 10^{-5}$                | 9699                                   | $2.114 \times 10^5$      |
| 2 MAC       | 9067                                  | $5.046 \times 10^{-5}$                | 10492                                  | $4.401 \times 10^5$      |
| 3 MAC       | 8993                                  | $4.841 \times 10^{-5}$                | 10951                                  | $9.066 \times 10^5$      |

TABLE 13  
 ARRHENIUS CONSTANTS FOR A JP-4 FUEL CLAY  
 TREATED WITH A 25% TOTAL AROMATIC  
 CONCENTRATION AS DERIVED FROM A PSEUDO  
 FIRST-ORDER REACTION BETWEEN 121°C  
 AND 316°C

| Fuel        | Specific Rate of<br>Deposit Formation |                                       | Specific Rate of<br>Peroxide Formation |                          |
|-------------|---------------------------------------|---------------------------------------|----------------------------------------|--------------------------|
|             | Activation<br>Energy                  | Preexponential<br>Factor              | Activation<br>Energy                   | Preexponential<br>Factor |
|             | (cal mole <sup>-1</sup> )             | (cm <sup>-2</sup> sec <sup>-1</sup> ) | (cal mole <sup>-1</sup> )              | (sec <sup>-1</sup> )     |
| Baseline CT | 8727                                  | $3.798 \times 10^{-5}$                | 9239                                   | $1.247 \times 10^5$      |
| AO-29       |                                       |                                       |                                        |                          |
| MEC         | 8354                                  | $2.281 \times 10^{-5}$                | 8810                                   | $7.366 \times 10^4$      |
| ½ Σ MC      | 8449                                  | $2.209 \times 10^{-5}$                | 8720                                   | $6.257 \times 10^4$      |
| MAC         | 7892                                  | $1.137 \times 10^{-5}$                | 8526                                   | $4.821 \times 10^4$      |
| 2 MAC       | 7603                                  | $7.907 \times 10^{-6}$                | 8652                                   | $5.678 \times 10^4$      |
| DCl-4A      |                                       |                                       |                                        |                          |
| MEC         | 8729                                  | $3.782 \times 10^{-5}$                | 9314                                   | $1.346 \times 10^5$      |
| ½ Σ MC      | 8753                                  | $3.916 \times 10^{-5}$                | 9725                                   | $2.255 \times 10^5$      |
| MAC         | 8595                                  | $3.256 \times 10^{-5}$                | 8933                                   | $1.005 \times 10^5$      |
| 2 MAC       | 8790                                  | $4.381 \times 10^{-6}$                | 9229                                   | $1.366 \times 10^5$      |
| FSII        |                                       |                                       |                                        |                          |
| << MAC      | 8679                                  | $3.586 \times 10^{-5}$                | 8973                                   | $9.627 \times 10^4$      |
| 3 MAC       | 8637                                  | $3.457 \times 10^{-5}$                | 9037                                   | $1.016 \times 10^5$      |
| Stadis 450  |                                       |                                       |                                        |                          |
| MEC         | 8804                                  | $4.215 \times 10^{-5}$                | 9580                                   | $1.741 \times 10^5$      |
| MAC         | 8904                                  | $5.241 \times 10^{-5}$                | 8828                                   | $8.321 \times 10^4$      |
| 2 MAC       | 9116                                  | $6.396 \times 10^{-5}$                | 8439                                   | $6.245 \times 10^4$      |
| 3 MAC       | 9159                                  | $7.279 \times 10^{-5}$                | 9539                                   | $2.203 \times 10^4$      |
| DMD-2       |                                       |                                       |                                        |                          |
| ½ MAC       | 8692                                  | $3.911 \times 10^{-5}$                | 8698                                   | $7.533 \times 10^4$      |
| MAC         | 8678                                  | $4.080 \times 10^{-5}$                | 9337                                   | $1.547 \times 10^4$      |
| 2 MAC       | 8704                                  | $4.468 \times 10^{-5}$                | 8667                                   | $7.616 \times 10^4$      |
| 3 MAC       | 8890                                  | $6.083 \times 10^{-5}$                | 8931                                   | $1.120 \times 10^4$      |

TABLE 14  
ARRHENIUS CONSTANTS FOR A JP-4 FUEL CLAY TREATED WITH  
A 35% TOTAL AROMATIC CONCENTRATION DERIVED FROM A PSEUDO  
FIRST-ORDER REACTION BETWEEN 121°C AND 316°C

| Fuel Additive Concentration | Specific Rate of Deposit Formation  |                                                            | Specific Rate of Peroxide Formation                 |                     |
|-----------------------------|-------------------------------------|------------------------------------------------------------|-----------------------------------------------------|---------------------|
|                             | Energy<br>(cal mole <sup>-1</sup> ) | Activation Factor<br>(cm <sup>-2</sup> sec <sup>-1</sup> ) | Preeexponential Energy<br>(cal mole <sup>-1</sup> ) | Activation Factor   |
| Baseline CT                 | 8493                                | $3.486 \times 10^{-5}$                                     | 8969                                                | $1.265 \times 10^5$ |
| AO-29                       |                                     |                                                            |                                                     |                     |
| MEC                         | 8134                                | $2.213 \times 10^{-5}$                                     | 8515                                                | $7.263 \times 10^4$ |
| ½ Σ MC                      | 7995                                | $1.528 \times 10^{-5}$                                     | 8292                                                | $5.189 \times 10^4$ |
| MAC                         | 7852                                | $1.487 \times 10^{-5}$                                     | 8234                                                | $4.329 \times 10^4$ |
| 2 MAC                       | 7592                                | $1.019 \times 10^{-5}$                                     | 7787                                                | $2.534 \times 10^4$ |
| DCI-4A                      |                                     |                                                            |                                                     |                     |
| MEC                         | 8332                                | $3.001 \times 10^{-5}$                                     | 9019                                                | $1.281 \times 10^5$ |
| ½ Σ MC                      | 8453                                | $3.276 \times 10^{-5}$                                     | 9383                                                | $2.054 \times 10^5$ |
| MAC                         | 8579                                | $4.100 \times 10^{-5}$                                     | 8749                                                | $1.108 \times 10^5$ |
| 2 MAC                       | 8817                                | $5.634 \times 10^{-5}$                                     | 9330                                                | $2.026 \times 10^5$ |
| FSII                        |                                     |                                                            |                                                     |                     |
| << MAC                      | 8185                                | $2.511 \times 10^{-5}$                                     | 9241                                                | $1.674 \times 10^5$ |
| 3 MAC                       | 8249                                | $2.730 \times 10^{-5}$                                     | 8795                                                | $1.056 \times 10^5$ |
| Stadis 450                  |                                     |                                                            |                                                     |                     |
| MEC                         | 8635                                | $4.141 \times 10^{-5}$                                     | 8825                                                | $1.069 \times 10^5$ |
| MAC                         | 8516                                | $3.89 \times 10^{-5}$                                      | 9127                                                | $1.504 \times 10^5$ |
| 2 MAC                       | 8898                                | $6.217 \times 10^{-5}$                                     | 8790                                                | $1.094 \times 10^5$ |
| 3 MAC                       | 9146                                | $8.785 \times 10^{-5}$                                     | 9365                                                | $2.069 \times 10^5$ |
| DMD-2                       |                                     |                                                            |                                                     |                     |
| ½ MAC                       | 8461                                | $3.739 \times 10^{-5}$                                     | 8613                                                | $9.354 \times 10^4$ |
| MAC                         | 8545                                | $5.000 \times 10^{-5}$                                     | 8734                                                | $1.078 \times 10^5$ |
| 2 MAC                       | 8601                                | $5.299 \times 10^{-5}$                                     | 8990                                                | $1.369 \times 10^5$ |
| 3 MAC                       | 8795                                | $7.943 \times 10^{-5}$                                     | 9021                                                | $1.481 \times 10^5$ |

TABLE 15  
JP-8 FUEL DEPOSITS AT SELECTED TEMPERATURES DERIVED FROM A  
LINEAR REGRESSION OF EXPERIMENTAL DATA BETWEEN 121°C AND 316°C

| Fuel        | Fuel Temperature |                                    |       |       |
|-------------|------------------|------------------------------------|-------|-------|
|             | 149°C            | 204°C                              | 260°C | 316°C |
| Baseline CT | 0.019            | 0.057                              | 0.135 | 0.273 |
| AO-29       |                  |                                    |       |       |
| MEC         | 0.017            | 0.049                              | 0.114 | 0.227 |
| ½ Σ MC      | 0.017            | 0.046                              | 0.102 | 0.193 |
| MAC         | 0.016            | 0.043                              | 0.094 | 0.176 |
| 2 MAC       | 0.015            | 0.037                              | 0.075 | 0.134 |
| DCI-4A      |                  |                                    |       |       |
| MEC         | 0.020            | 0.058                              | 0.136 | 0.273 |
| 2 MAC       | 0.019            | 0.056                              | 0.133 | 0.268 |
| FSII        |                  |                                    |       |       |
| << MAC      | 0.019            | 0.057                              | 0.137 | 0.282 |
| 3 MAC       | 0.018            | 0.055                              | 0.133 | 0.272 |
| Stadis 450  |                  |                                    |       |       |
| MEC         | 0.019            | 0.057                              | 0.138 | 0.279 |
| MAC         | 0.020            | 0.060                              | 0.148 | 0.307 |
| 2 MAC       | 0.021            | 0.064                              | 0.159 | 0.333 |
| 3 MAC       | 0.023            | 0.070                              | 0.173 | 0.361 |
| DMD-2       |                  |                                    |       |       |
| 3 MAC       | 0.024            | 0.078                              | 0.202 | 0.436 |
| 2 MAC       | 0.020            | 0.064                              | 0.163 | 0.346 |
| MAC         | 0.019            | 0.058                              | 0.144 | 0.299 |
| ½ MAC       |                  | Negligible effect on baseline data |       |       |

TABLE 16  
 JP-4-10% AROMATICS FUEL DEPOSITS AT SELECTED TEMPERATURES  
 DERIVED FROM A LINEAR REGRESSION OF EXPERIMENTAL DATA  
 BETWEEN 121°C AND 316°C

| <i>Fuel</i>       | <i>Fuel Temperature</i> |       |       |       |
|-------------------|-------------------------|-------|-------|-------|
|                   | 149°C                   | 204°C | 260°C | 316°C |
| Baseline CP       | 0.084                   | 0.280 | 0.740 | 1.624 |
| AO-29             |                         |       |       |       |
| MEC               | 0.075                   | 0.242 | 0.619 | 1.324 |
| $\frac{1}{2}$ MAC | 0.066                   | 0.192 | 0.451 | 0.903 |
| MAC               | 0.054                   | 0.147 | 0.328 | 0.630 |
| 2 MAC             | 0.044                   | 0.126 | 0.268 | 0.494 |
| DCI-4A            |                         |       |       |       |
| MEC               | 0.082                   | 0.275 | 0.725 | 1.591 |
| 2 MAC             | 0.082                   | 0.280 | 0.749 | 1.666 |
| FSII              |                         |       |       |       |
| << MAC            | 0.085                   | 0.279 | 0.724 | 1.570 |
| 3 MAC             | 0.085                   | 0.249 | 0.596 | 1.208 |
| Stadis 450        |                         |       |       |       |
| MEC               | 0.084                   | 0.232 | 0.749 | 1.652 |
| MAC               | 0.085                   | 0.291 | 0.781 | 1.740 |
| 2 MAC             | 0.088                   | 0.309 | 0.846 | 1.917 |
| 3 MAC             | 0.092                   | 0.329 | 0.925 | 2.135 |
| DMD-2             |                         |       |       |       |
| $\frac{1}{2}$ MAC | 0.087                   | 0.297 | 0.801 | 1.790 |
| MAC               | 0.091                   | 0.312 | 0.842 | 1.885 |
| 2 MAC             | 0.095                   | 0.331 | 0.902 | 2.035 |
| 3 MAC             | 0.100                   | 0.343 | 0.927 | 2.078 |

TABLE 17.  
FUEL DEPOSIT FROM A SELECTED JP-4 CLAY TREATED WITH 25%  
AROMATIC CONCENTRATION AT TEMPERATURES DERIVED FROM A  
LINEAR REGRESSION OF ECA EXPERIMENTAL DATA

| Fuel Additive<br>Concentration | Temperature |       |       |       |
|--------------------------------|-------------|-------|-------|-------|
|                                | 149°C       | 204°C | 260°C | 316°C |
| Baseline CT                    | 0.107       | 0.354 | 0.931 | 2.037 |
| AO-29                          |             |       |       |       |
| MEC                            | 0.101       | 0.317 | 0.799 | 1.690 |
| ½ Σ MC                         | 0.087       | 0.277 | 0.707 | 1.509 |
| MAC                            | 0.087       | 0.257 | 0.616 | 1.250 |
| 2 MAC                          | 0.085       | 0.242 | 0.563 | 1.113 |
| DCI-4A                         |             |       |       |       |
| MEC                            | 0.107       | 0.354 | 0.929 | 2.034 |
| ½ Σ MC                         | 0.107       | 0.357 | 0.941 | 2.063 |
| MAC                            | 0.108       | 0.351 | 0.908 | 1.964 |
| 2 MAC                          | 0.115       | 0.384 | 1.017 | 2.237 |
| FSII                           |             |       |       |       |
| << MAC                         | 0.107       | 0.353 | 0.924 | 2.012 |
| 3 MAC                          | 0.109       | 0.356 | 0.927 | 2.013 |
| Stadis 450                     |             |       |       |       |
| MEC                            | 0.109       | 0.364 | 0.965 | 2.126 |
| MAC                            | 0.120       | 0.407 | 1.092 | 2.427 |
| 2 MAC                          | 0.114       | 0.398 | 1.091 | 2.472 |
| 3 MAC                          | 0.123       | 0.432 | 1.192 | 2.711 |
| DMD-2                          |             |       |       |       |
| ½ MAC                          | 0.115       | 0.380 | 0.996 | 2.171 |
| MAC                            | 0.122       | 0.430 | 1.053 | 2.293 |
| 2 MAC                          | 0.130       | 0.429 | 1.125 | 2.456 |
| 3 MAC                          | 0.142       | 0.480 | 1.285 | 2.853 |

TABLE 18  
 JP-4-35% AROMATICS FUEL DEPOSITS AT SELECTED TEMPERATURES  
 DERIVED FROM A LINEAR REGRESSION OF EXPERIMENTAL DATA  
 BETWEEN 121°C AND 316°C

| <i>Fuel</i>             | <i>Temperature</i> |       |       |       |
|-------------------------|--------------------|-------|-------|-------|
|                         | 149°C              | 204°C | 260°C | 316°C |
| Baseline CT             | 0.130              | 0.418 | 1.071 | 2.296 |
| AO-29                   |                    |       |       |       |
| MEC                     | 0.127              | 0.388 | 0.954 | 1.979 |
| $\frac{1}{2} \Sigma$ MC | 0.119              | 0.350 | 0.837 | 1.692 |
| MAC                     | 0.110              | 0.329 | 0.796 | 1.639 |
| 2 MAC                   | 0.111              | 0.316 | 0.733 | 1.448 |
| DCI-4A                  |                    |       |       |       |
| MEC                     | 0.136              | 0.426 | 1.073 | 2.265 |
| $\frac{1}{2} \Sigma$ MC | 0.128              | 0.410 | 1.045 | 2.231 |
| MAC                     | 0.138              | 0.449 | 1.162 | 2.508 |
| 2 MAC                   | 0.143              | 0.480 | 1.275 | 2.811 |
| FSII                    |                    |       |       |       |
| << MAC                  | 0.135              | 0.417 | 1.031 | 2.149 |
| 3 MAC                   | 0.136              | 0.424 | 1.056 | 2.213 |
| Stadis 450              |                    |       |       |       |
| MEC                     | 0.131              | 0.428 | 1.113 | 2.414 |
| MAC                     | 0.140              | 0.452 | 1.160 | 2.490 |
| 2 MAC                   | 0.143              | 0.486 | 1.303 | 2.895 |
| 3 MAC                   | 0.151              | 0.532 | 1.463 | 3.323 |
| DMD-2                   |                    |       |       |       |
| $\frac{1}{2}$ MAC       | 0.145              | 0.464 | 1.184 | 2.529 |
| MAC                     | 0.153              | 0.505 | 1.318 | 2.864 |
| 2 MAC                   | 0.174              | 0.567 | 1.470 | 3.181 |
| 3 MAC                   | 0.207              | 0.692 | 1.834 | 4.037 |

## APPENDIX A

### THEORY AND OPERATION OF THE EXPERIMENTAL COKING APPARATUS

The experimental coking apparatus (ECA) was initially designed to study the rates of jet fuel deposits found in the mechanical fuel systems aboard gas turbine powered aircraft. It is basically a stainless steel, 2-liter cylindrical reaction chamber which contains the necessary material and induction coil to heat a sample of jet fuel to any prescribed temperature inductively from ambient to 340°C. Table A-1 presents the original design criteria to which the ECA was designed and fabricated.

The ECA was used throughout this program to establish, gravimetrically, the maximum amount of deposit that can be realized from a prescribed volume of fuel. The experimental test conditions were as follows:

1. The test temperature is in the range characteristic to auto-oxidation from ambient to 288°C. For the purposes of this study the minimum temperature was taken as 121 to 135°C. Both chromel/alumel and platinum/platinum-rhodium thermocouples were used to measure test temperatures.
2. Test pressures were recorded on both helicoil pressure gages and digital readouts using Teledyne® transducers. The test pressures were set according to the pseudo-critical pressures as discussed in the body of this report.
3. Standardized, compressed air cylinders were used to supply a steady, continuous flow of oxygen into the base of the reaction chamber of the ECA. The flow rate was 300 standard cubic centimeters per minute measured continuously at a downstream location by a Matheson Model 8240 mass flow controller. The kinetic analyses and Arrhenius evaluations that are used to relate fuel deposit characteristics to the changes in fuel composition based on a first-order rate mechanism were the only concentration variables in the fuel component. This air flow is of utmost importance because of the necessity to provide a very high concentration of oxygen compared to the amount of fuel components that will produce fuel deposits at the test condition.
4. The duration of each ECA test was established by measuring the time necessary to condense a gravimetrically determinable fuel deposit on a 4 square inch coupon. For the selected fuels in this study a 60-minute test duration at temperature was used, however, three to four hours was necessary for JP-7 to provide a measurable deposit.

The ECA is shown in Figure A-1 in schematic form. During the tests conducted with the fuel baseline and blend tasks, a modified test procedure was used and is outlined as follows: The reaction chamber was manually filled with 1 liter of fuel to be tested. This would cover both the susceptor and the induction coil. The induction heater leads, which are located inside the reaction chamber, are coated with a composite material that has no effect on the thermal or chemical stability of jet fuels at elevated temperatures and pressures. These leads were also covered with fuel. After the fuel had been added, two sample coupons of stainless steel were placed into the sample holder, Figure A-2. The platinum thermocouples were placed into the susceptor and the sample holder was placed in the top of the reaction chamber. A visual

inspection was made prior to each test from the top of the ECA. After confirming that the coil, susceptor and sample coupons were all in their proper places, the top was positioned with an ATC AES 1002 2 AGC Fluorocarbon Elastomer Gasket. The nitrogen system was activated to 207 kPa, the reaction chamber was pressure checked for leaks, and then the pressure was reduced to atmospheric. This would complete the pretest setup and checkout.

The 15-kilowatt Tocco induction heater was then brought on line per the manufacturer's instructions and the temperature of the susceptor was increased from ambient to 38°C. The susceptor was held at this temperature for one minute to activate the Leeds and Northrop Model 165 temperature controller. Next, the high pressure regulated air supply was activated and the reaction chamber pressure was brought to 10% above the psuedo-critical pressure. After a stable pressure was established, the Matheson mass flow controller was turned on and a flowrate of 300 SCCM of dry standard air was maintained during the remainder of the test. With both the pressure and flowrate set and constant, the induction heater was turned to full power and simultaneously control was transferred to the temperature controller. The Leeds and Northrop controller not only controlled the maximum test temperature but also would control the rate of heating or the variation of temperature flux to the fuel from the susceptor. A timer on the Tocco control unit was set to the required run time after the test temperature had been reached.

At the conclusion of each test the reaction chamber was allowed to cool for one hour at ambient pressure and at 300 SCCM of nitrogen as a system purge. The sample coupons (Figure A-3) were removed from the sample holder, washed with a solution of hexane and toluene and placed in a vacuum oven at 100°C for one hour at a pressure of five inches of mercury. After the initial drying period, one sample coupon was labeled and placed into an amber or brown jar, covered with a nitrogen blanket and sealed for shipment to Wright-Patterson Air Force Base. The other coupon was weighted on a Mettler Model M5SA six place to within 1 microgram. The coupon was then cleaned with a proprietary multiple-solvent to remove all deposit material and the coupon reweighted. This gravimetric differential was used as the basis for the specific deposit rate for the test fuel. Figure A-4 shows a series of sample coupons from tests run from 121 to 288°C in 28° increments. Both the baseline and fuel blend deposition rates were established as just described; refer to Appendix C.

Fuel samples for the peroxide analyses (as discussed in Appendix B) were taken immediately at the conclusion of the preset time at temperature. A 75 gram sample of fuel was withdrawn, under pressure, into a nitrogen purged borosilicate glass sample bottle. The sample was divided into at least three separate samples and each sample was analyzed for the level of peroxide in parts per million per ASTM D-3703-78. Data and Arrhenius plots are presented in Appendix D.

# EXPERIMENTAL COKING APPARATUS



Figure A-1. Schematic of Experimental Coking Apparatus

Air, Nitrogen  
 Combustion Products  
 Fuel, Liquid  
 SV10 - Motor Generator Cooling Water  
 SV11 - Capacitor Coil Cooling Water



*Figure A-2. Sample Coupons Mounted in Holder*



*Figure A-3. Sample Coupons Removed from Holder and Washed*



## Best Available Copy

*Figure A-4. Sample Coupons Tested at Temperatures from 21 to 288°C*

## APPENDIX B

### A TEST METHOD FOR THE DETERMINATION OF THE PART-PER-MILLION LEVEL OF ACTIVE OXYGEN IN AVIATION TURBINE FUELS

The products of auto-oxidation of gas turbine fuels contain substantial and measurable quantities of oxygen in addition to other elements. Chemical mechanisms have been proposed that treat the chemical reactions responsible for incorporation of molecular oxygen into the products of fuel auto-oxidations. The procedure that follows is a modification of the ASTM D3703-78, a standard test method for evaluating the peroxide number of aviation turbine fuels and was used explicitly to determine the part-per-million level of peroxide in fuel samples. The samples evaluated by this method were analyzed immediately after thermal stressing had been completed on the experimental coking apparatus. Fuel samples were not held overnight nor refrigerated due to potential continuation of possible peroxy-free radical reactions.

A sample of fuel to be tested was divided into three aliquots and weighed to  $\pm 0.002$  gram. The sample was immediately sparged with pure, dry nitrogen gas. The sparging was carried out in a 250 ml iodine flask for samples with a peroxide concentration of 75 ppm or more while a 500 ml iodine flask was used for concentrations less than 75 ppm. The iodine flasks and all other equipment that came into contact with the fuel sample had been final rinsed with pure ethyl alcohol just prior to use to remove any trace quantities of moisture. The iodine flasks also were flushed with pure, dry nitrogen just prior to introduction of the fuel sample.

After the sample was sparged for a minimum of 3 minutes at a rate of 200 SCCM, 25 ml of Freon 113 was added and the sparging was continued for a minimum of 5 minutes. A stirring motor utilizing a magnetic stir bar was used to agitate the solution vigorously after the Freon 113 was added to the fuel sample. Without stopping the sparging, 20 ml of Ultrex acetic acid was added followed by 2 to 3 ml of freshly prepared/stabilized potassium iodide.

Note: The use of the terminology "stabilized" may be misleading when used without explanation. In these analyses, the potassium iodide was prepared freshly on a daily basis as follows: First, 50 ml of deionized water was filtered (0.8 micron) and sparged vigorously with pure, dry nitrogen for three minutes while the temperature was increased to 90°C. Then, 75 grams of ACS reagent grade potassium iodide was slowly added and magnetically stirred until the iodide was completely dissolved. Finally, the solution was cooled to room temperature and topped off with nitrogen. Every effort was made to ensure a "less than detectable" amount of free iodine would be formed through complete exclusion of molecular oxygen.

After the potassium iodide had been added, the nitrogen flow was increased to 500 SCCM and held there for 30 seconds after which time the nitrogen flow was terminated and the flask was set aside for 5 minutes  $\pm$  3 seconds. During this time, the peroxides present in the original fuel sample react and oxidize iodide ion to free iodine which is then titrated with a standard sodium thiosulfate as discussed in Section 8.3 of ASTM 3703-78. The resultant calculations of parts-per-million were converted into both millimoles of active oxygen\* per liter of fuel and millequivalents of active oxygen per kilogram of fuel. Figure B-1 shows various chemical apparatus used in these analyses and Table B-1 lists the specific chemicals.

\* Active oxygen is defined as one-half of the oxygen of a fuel-derived hydroperoxide. Millequivalent weight of 8.



*Figure B-1. Chemical Apparatus Used During Analyses*

TABLE B-1  
PEROXIDE ANALYSIS EQUIPMENT/MATERIALS

| <i>Burets, Fisher Brand Machlett Automatic Burets</i> |                 |                    |                  |                           |                 |
|-------------------------------------------------------|-----------------|--------------------|------------------|---------------------------|-----------------|
| <i>Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub></i>       | <i>Capacity</i> | <i>Subdivision</i> | <i>Tolerance</i> | <i>Reservoir Capacity</i> | <i>Cat. No.</i> |
| 0.1N                                                  | 2ml             | 1/100ml            | ± 0.02ml         | 500ml                     | 03-847A         |
| 0.01N                                                 | 10ml            | 5/100ml            | ± 0.06ml         | 1000ml                    | 03-847D         |
| 0.005N                                                | 25ml            | 1/10ml             | ± 0.06ml         | 2000ml                    | 03-847E         |
| <i>Freon 113</i>                                      | 25ml            | 1/10ml             | ± 0.06ml         | 2000ml                    | 03-847E         |

**NOTE:** Filters, Plugs, and Silica Gel Come With Burets.

*Fisher Support Assembly for Machlett Burets, Rectangular Cast Iron Support Model, 14-679*

This Stand Is for One Buret Only. Included Are, Clamps and Ring Supports.

*Fisher Scientific Co.*

Graduated Cylinder With Stopper. Cat. No. 08-565D

*Fisher Scientific Co.*

Pyrex Brand Flask - 250ml, Cat. No. 10-094B  
Stopper No. 14-640-3.

*Fisher Scientific Co.*

Kimax Brand Flask, 500ml, Cat. No. 10-096C

*Fisher Scientific Co.*

Kimax Brand, 25ml, Cat. No. 10-100B. Stopper No. 16.  
*VWR Scientific Inc. Borosilicate Glass Pasteur Pipets.*  
Length 5-3/4 in. Cat. No. 14673-010  
Length 9 in. Cat. No. 14673-043  
*VWR Scientific Inc. Disposable Pasteur Pipets.*  
Length 5-3/4 in. Cat. No. 14672-200  
Length 9 in. Cat. No. 14672-380

*Fisher Scientific Co.*

Corning Magnetic Stirrers, Model - PC353-14-511-200.

*VWR Scientific Inc., Stir Bars, Magnetic, Star Head Nalgene.*  
Height × Diameter = 5/16 × 3/8 in., Nalge No., 6600-00-10, Cat. No., 56958-502  
Height × Diameter = 9/16 × 3/8 in., Nalge No., 6600-00-14, Cat. No., 56948-513.

*Fisher Scientific Co., Kimax Brand, Reusable Glass Culture Tubes.*

OD × L  
25 × 150, Cat. No. 14-930-10J  
Screw Caps, GCMI Size, 24-410, Cat. No. 14-930-15J.  
Blue, Epoxy Coated Rack, 28 cm × 21 cm × 10 cm, Cat. No. 14-793-4.

*Fisher Scientific Co.*

Balance-Mettler, PC Series, Model PC 220.

*Matherson*

Regulator-Model No., 3104.

*Fisher Scientific Co., Racon 113, Freon.*

Trichloro-1,2,2, Trifluoroethane.

## **APPENDIX C**

### **EXPERIMENTAL DEPOSIT RATE DATA OF SELECTED CLAY TREATED AIR FORCE JET FUELS AS EVALUATED FROM THE EXPERIMENTAL COKING APPARATUS**

The following deposition rate data were established for selected Air Force jet fuels between 250 and 550°F. Reaction pressures were held constant at 10% above the pseudocritical pressure for each fuel. Test parameters are (1) test temperature in degrees fahrenheit which reflects the fuel deposit temperature at equilibrium during the ECA test, (2) test pressures are the total fuel pressures recorded as pounds per square inch gage, and (3) air flow rate reported as standard cubic centimeters per (SCCM) minute of 80°F air. Deposit rate data are presented as grams per square centimeter-second, as normalized specific deposit rates.



Figure C-1. Variation of Fuel Deposit Rate as a Function of Fuel Temperature: Effect of Antioxidant Additive on Clay Treated JP-8 Fuel



*Figure C-2. Variation of Fuel Deposit Rate as a Function of Fuel Temperature: Effect of Corrosion Inhibitor on Clay Treated JP-8 Fuel*



Figure C-3. Variation of Fuel Deposit Rate as a Function of Fuel Temperature: Effect of Fuel System Icing Inhibitor on Clay Treated JP-8 Fuel



Figure C-4. Variation of Fuel Deposit Rate as a Function of Fuel Temperature: Effect of Conductivity Additive on Clay Treated JP-8 Fuel



Figure C-5. Variation of Fuel Deposit Rate as a Function of Fuel Temperature: Effect of Metal Deactivator on Clay Treated JP-8 Fuel



*Figure C-6. Variation of Fuel Deposit Rate as a Function of Fuel Temperature: Effect of Antioxidant Additive on Clay Treated JP-4 Fuel with 10% Total Aromatics*



*Figure C-7. Variation of Fuel Deposit Rate as a Function of Fuel Temperature: Effect of Corrosion Inhibitor on Clay Treated JP-4 Fuel with 10% Total Aromatics*



*Figure C-8. Variation of Fuel Deposit Rate as a Function of Fuel Temperature: Effect of Fuel System Icing Inhibitor on Clay Treated JP-4 Fuel with 10% Total Aromatics*



Figure C-9. Variation of Fuel Deposit Rate as a Function of Fuel Temperature: Effect of Conductivity Additive on Clay Treated JP-4 Fuel with 10% Total Aromatics



Figure C-10. Variation of Fuel Deposit Rate as a Function of Fuel Temperature: Effect of Metal Deactivator on Clay Treated JP-4 Fuel with 10% Total Aromatics



Figure C-11. Variation of Fuel Deposit Rate as a Function of Fuel Temperature  
Effect of Antioxidant Additive on Clay Treated JP-4 Fuel with 25% Total Aromatics



Figure C-12. Variation of Fuel Deposit Rate as a Function of Fuel Temperature:  
Effect of Corrosion Inhibitor Additive on Clay Treated JP-4 Fuel with  
25% Total Aromatics



Figure C-13. Variation of Fuel Deposit Rate as a Function of Fuel Temperature:  
Effect of Fuel System Icing Inhibitor on Clay Treated JP-4 Fuel with  
25% Total Aromatics



Figure C-14. Variation of Fuel Deposit Rate as a Function of Fuel Temperature:  
Effect of Conductivity Additive on Clay Treated JP-4 Fuel with 25% Total Aromatics



Figure C-15. Variation of Fuel Deposit Rate as a Function of Fuel Temperature  
 Effect of Mass Generation on Fuel Temperature JP-4 Fuel with 25% Total  
 Aromatic



Figure C-16. Variation of Fuel Deposit Rate as a Function of Fuel Temperature:  
Effect of Antioxidant Additive on Clay Treated JP-4 Fuel with 35% Total Aromatics



Figure C-17. Variation of Fuel Deposit Rate as a Function of Fuel Temperature:  
Effect of Corrosion Inhibitor on Clay Treated JP-4 Fuel with 35% Total  
Aromatics



*Figure C-18. Variation of Fuel Deposit Rate as a Function of Fuel Temperature:  
Effect of Fuel System Icing Inhibitor on Clay Treated JP-4 Fuel with  
35% Total Aromatics*



**Figure C-19. Variation of Fuel Deposit Rate as a Function of Fuel Temperature: Effect of Conductivity Additive on Clay Treated JP-4 Fuel with 35% Total Aromatics**



Figure C-20. Variation of Fuel Deposit Rate as a Function of Fuel Temperature:  
Effect of Metal Deactivator on Clay Treated JP-4 Fuel with 35% Total Aromatics

TABLE C-1  
CLAY TREATED JP-8 BASELINE

| <i>Test Temperature (°F)</i> | <i>Test Pressure (psi)</i> | <i>Airflow (SCCM)</i> | <i>Deposit Rate ((gm/cm² sec) 10⁻¹⁰)</i> |
|------------------------------|----------------------------|-----------------------|------------------------------------------|
| 260                          | 375                        | 301                   | 1.292                                    |
| 275                          | 374                        | 300                   | 1.507                                    |
| 315                          | 371                        | 302                   | 2.691                                    |
| 359                          | 381                        | 303                   | 3.870                                    |
| 362                          | 384                        | 298                   | 3.870                                    |
| 393                          | 376                        | 298                   | 6.028                                    |
| 440                          | 375                        | 299                   | 8.826                                    |
| 441                          | 380                        | 299                   | 9.687                                    |
| 483                          | 381                        | 301                   | 13.445                                   |
| 539                          | 382                        | 303                   | 17.976                                   |

TABLE C-2  
CLAY TREATED JP-8, ANTIOXIDANT AT TWICE  
MAXIMUM ALLOWABLE CONCENTRATION

| <i>Test Temperature (°F)</i> | <i>Test Pressure (psi)</i> | <i>Airflow (SCCM)</i> | <i>Deposit Rate ((gm/cm² sec) 10⁻¹⁰)</i> |
|------------------------------|----------------------------|-----------------------|------------------------------------------|
| 512                          | 438                        | 300                   | 8.719                                    |
| 501                          | 432                        | 300                   | 8.181                                    |
| 466                          | 436                        | 300                   | 6.351                                    |
| 458                          | 435                        | 301                   | 6.243                                    |
| 390                          | 430                        | 302                   | 3.670                                    |
| 382                          | 439                        | 301                   | 3.552                                    |
| 351                          | 435                        | 303                   | 2.583                                    |
| 333                          | 438                        | 306                   | 2.260                                    |
| 299                          | 435                        | 301                   | 1.615                                    |
| 276                          | 435                        | 302                   | 1.292                                    |

TABLE C-3  
CLAY TREATED JP-8, ANTIOXIDANT AT  
MAXIMUM ALLOWABLE CONCENTRATION

| <i>Test Temperature (°F)</i> | <i>Test Pressure (psi)</i> | <i>Airflow (SCCM)</i> | <i>Deposit Rate ((gm/cm² sec) 10⁻¹⁰)</i> |
|------------------------------|----------------------------|-----------------------|------------------------------------------|
| 531                          | 381                        | 302                   | 12.271                                   |
| 497                          | 385                        | 301                   | 10.226                                   |
| 472                          | 384                        | 300                   | 7.998                                    |
| 423                          | 376                        | 300                   | 5.812                                    |
| 381                          | 375                        | 300                   | 4.090                                    |
| 350                          | 381                        | 300                   | 2.799                                    |
| 302                          | 382                        | 300                   | 1.722                                    |
| 281                          | 380                        | 302                   | 1.507                                    |
| 276                          | 376                        | 301                   | 1.292                                    |

**TABLE C-4**  
**CLAY TREATED JP-8, ANTOXIDANT AT**  
**MIDSPECIFICATION CONCENTRATION**

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻¹⁰) |
|---------------------------------|-------------------------------|--------------------------|--------------------------------------------|
| 516                             | 375                           | 302                      | 11.087                                     |
| 491                             | 375                           | 300                      | 10.872                                     |
| 473                             | 374                           | 301                      | 8.611                                      |
| 469                             | 370                           | 301                      | 9.365                                      |
| 431                             | 381                           | 305                      | 6.351                                      |
| 388                             | 381                           | 301                      | 4.736                                      |
| 376                             | 376                           | 299                      | 4.090                                      |
| 330                             | 375                           | 299                      | 2.476                                      |
| 291                             | 374                           | 299                      | 1.615                                      |

**TABLE C-5**  
**CLAY TREATED JP-8, ANITOXIDANT AT**  
**MINIMUM EFFECTIVE CONCENTRATION**

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻¹⁰) |
|---------------------------------|-------------------------------|--------------------------|--------------------------------------------|
| 536                             | 380                           | 301                      | 16.038                                     |
| 502                             | 380                           | 300                      | 12.163                                     |
| 457                             | 381                           | 300                      | 8.719                                      |
| 433                             | 375                           | 300                      | 7.212                                      |
| 393                             | 375                           | 301                      | 5.059                                      |
| 341                             | 376                           | 302                      | 3.014                                      |
| 300                             | 374                           | 302                      | 1.938                                      |
| 278                             | 373                           | 301                      | 1.399                                      |
| 261                             | 374                           | 303                      | 1.076                                      |

**TABLE C-6**  
**CLAY TREATED JP-8, CORRÓSION INHIBITOR**  
**AT MINIMUM EFFECTIVE CONCENTRATION**

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻¹⁰) |
|---------------------------------|-------------------------------|--------------------------|--------------------------------------------|
| 279                             | 376                           | 301                      | 1.722                                      |
| 291                             | 374                           | 301                      | 1.830                                      |
| 400                             | 381                           | 300                      | 6.459                                      |
| 415                             | 380                           | 300                      | 6.566                                      |
| 515                             | 379                           | 300                      | 16.038                                     |
| 511                             | 380                           | 301                      | 16.899                                     |

TABLE C-7  
CLAY TREATED JP-8, CORROSION INHIBITOR AT  
TWICE MAXIMUM ALLOWABLE CONCENTRA-  
TION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm <sup>2</sup> sec) 10 <sup>-10</sup> ) |
|---------------------------------|-------------------------------|--------------------------|---------------------------------------------------------------------|
| 375                             | 375                           | 301                      | 1.615                                                               |
| 376                             | 376                           | 301                      | 1.722                                                               |
| 377                             | 377                           | 301                      | 6.135                                                               |
| 376                             | 376                           | 301                      | 6.351                                                               |
| 374                             | 374                           | 300                      | 14.639                                                              |
| 381                             | 381                           | 300                      | 17.007                                                              |

TABLE C-8  
CLAY TREATED JP-8, ICING INHIBITOR AT  
THREE TIMES MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm <sup>2</sup> sec) 10 <sup>-10</sup> ) |
|---------------------------------|-------------------------------|--------------------------|---------------------------------------------------------------------|
| 280                             | 376                           | 301                      | 1.722                                                               |
| 289                             | 375                           | 302                      | 1.615                                                               |
| 394                             | 381                           | 300                      | 5.490                                                               |
| 396                             | 380                           | 300                      | 6.028                                                               |
| 526                             | 376                           | 300                      | 16.469                                                              |
| 513                             | 378                           | 296                      | 16.792                                                              |

TABLE C-9  
CLAY TREATED JP-8, ICING INHIBITOR AT LOW  
RELATIVE CONCENTRATION RELATIVE  
TO MAXIMUM

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm <sup>2</sup> sec) 10 <sup>-10</sup> ) |
|---------------------------------|-------------------------------|--------------------------|---------------------------------------------------------------------|
| 273                             | 375                           | 301                      | 1.5069                                                              |
| 284                             | 376                           | 301                      | 1.5069                                                              |
| 396                             | 377                           | 298                      | 6.2431                                                              |
| 402                             | 374                           | 298                      | 6.3507                                                              |
| 521                             | 371                           | 300                      | 17.76                                                               |
| 520                             | 381                           | 298                      | 16.361                                                              |

TABLE C-10  
CLAY TREATED JP-8, CONDUCTIVITY ADDITIVE  
AT MINIMUM EFFECTIVE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm <sup>2</sup> sec) 10 <sup>-10</sup> ) |
|---------------------------------|-------------------------------|--------------------------|---------------------------------------------------------------------|
| 283                             | 375                           | 300                      | 1.722                                                               |
| 317                             | 376                           | 301                      | 2.476                                                               |
| 400                             | 375                           | 300                      | 6.243                                                               |
| 446                             | 376                           | 299                      | 9.365                                                               |
| 497                             | 380                           | 299                      | 14.531                                                              |
| 535                             | 381                           | 298                      | 19.375                                                              |

TABLE C-11  
CLAY TREATED JP-8, CONDUCTIVITY ADDITIVE  
AT MAXIMUM ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm <sup>2</sup> sec) 10 <sup>-10</sup> ) |
|---------------------------------|-------------------------------|--------------------------|---------------------------------------------------------------------|
| 283                             | 375                           | 301                      | 1.615                                                               |
| 289                             | 380                           | 300                      | 1.937                                                               |
| 316                             | 380                           | 300                      | 2.583                                                               |
| 355                             | 380                           | 299                      | 4.090                                                               |
| 400                             | 381                           | 298                      | 6.674                                                               |
| 443                             | 376                           | 298                      | 9.795                                                               |
| 485                             | 376                           | 300                      | 13.993                                                              |
| 521                             | 372                           | 301                      | 18.837                                                              |

TABLE C-12  
CLAY TREATED JP-8, CONDUCTIVITY ADDITIVE  
AT TWICE MAXIMUM ALLOWABLE CONCENTRA-  
TION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm <sup>2</sup> sec) 10 <sup>-10</sup> ) |
|---------------------------------|-------------------------------|--------------------------|---------------------------------------------------------------------|
| 286                             | 376                           | 301                      | 1.830                                                               |
| 310                             | 375                           | 302                      | 2.476                                                               |
| 343                             | 376                           | 301                      | 3.875                                                               |
| 389                             | 380                           | 300                      | 6.458                                                               |
| 431                             | 380                           | 300                      | 9.257                                                               |
| 463                             | 380                           | 301                      | 13.132                                                              |
| 497                             | 376                           | 301                      | 16.361                                                              |
| 523                             | 375                           | 300                      | 20.021                                                              |

TABLE C-13  
CLAY TREATED JP-8, CONDUCTIVITY ADDITIVE  
AT THREE TIMES MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm <sup>2</sup> sec) 10 <sup>-10</sup> ) |
|---------------------------------|-------------------------------|--------------------------|---------------------------------------------------------------------|
| 289                             | 375                           | 302                      | 2.045                                                               |
| 322                             | 371                           | 301                      | 3.337                                                               |
| 348                             | 371                           | 301                      | 4.198                                                               |
| 398                             | 373                           | 301                      | 7.535                                                               |
| 447                             | 380                           | 302                      | 11.302                                                              |
| 488                             | 380                           | 303                      | 17.653                                                              |
| 511                             | 376                           | 303                      | 19.590                                                              |
| 516                             | 374                           | 301                      | 21.529                                                              |

TABLE C-14  
CLAY TREATED JP-8, METAL DEACTIVATOR AT  
THREE TIMES MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm <sup>2</sup> sec) 10 <sup>-10</sup> ) |
|---------------------------------|-------------------------------|--------------------------|---------------------------------------------------------------------|
| 527                             | 376                           | 300                      | 27.233                                                              |
| 511                             | 379                           | 300                      | 23.681                                                              |
| 474                             | 380                           | 300                      | 17.545                                                              |
| 408                             | 381                           | 301                      | 9.257                                                               |
| 358                             | 381                           | 299                      | 5.059                                                               |
| 321                             | 382                           | 298                      | 3.552                                                               |
| 291                             | 383                           | 299                      | 2.153                                                               |
| 281                             | 381                           | 300                      | 2.045                                                               |

TABLE C-15  
CLAY TREATED JP-8, METAL DEACTIVATOR AT  
MAXIMUM ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm <sup>2</sup> sec) 10 <sup>-10</sup> ) |
|---------------------------------|-------------------------------|--------------------------|---------------------------------------------------------------------|
| 528                             | 379                           | 300                      | 19.483                                                              |
| 494                             | 381                           | 301                      | 14.424                                                              |
| 426                             | 381                           | 302                      | 8.181                                                               |
| 362                             | 381                           | 303                      | 4.306                                                               |
| 319                             | 381                           | 301                      | 2.583                                                               |
| 289                             | 381                           | 300                      | 1.722                                                               |
| 280                             | 382                           | 300                      | 1.615                                                               |

TABLE C-16  
CLAY TREATED JP-8, METAL DEACTIVATOR AT  
TWICE MAXIMUM ALLOWABLE CONCENTRA-  
TION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm <sup>2</sup> sec) 10 <sup>-10</sup> ) |
|---------------------------------|-------------------------------|--------------------------|---------------------------------------------------------------------|
| 511                             | 379                           | 300                      | 0.236                                                               |
| 492                             | 380                           | 300                      | 16.146                                                              |
| 419                             | 381                           | 301                      | 8.611                                                               |
| 418                             | 382                           | 302                      | 7.858                                                               |
| 358                             | 381                           | 303                      | 4.306                                                               |
| 319                             | 381                           | 304                      | 2.906                                                               |
| 285                             | 380                           | 300                      | 1.722                                                               |
| 284                             | 376                           | 300                      | 1.830                                                               |

TABLE C-17  
CLAY TREATED JP-4 BASELINE

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹) |
|---------------------------------|-------------------------------|--------------------------|-------------------------------------------|
| 257                             | 424                           | 300                      | 0.474                                     |
| 279                             | 426                           | 299                      | 0.689                                     |
| 329                             | 425                           | 299                      | 1.249                                     |
| 374                             | 426                           | 299                      | 2.368                                     |
| 401                             | 424                           | 300                      | 2.928                                     |
| 435                             | 427                           | 300                      | 4.779                                     |
| 480                             | 425                           | 299                      | 6.114                                     |
| 482                             | 427                           | 300                      | 6.415                                     |
| 535                             | 426                           | 300                      | 11.410                                    |

TABLE C-18  
CLAY TREATED JP-4 WITH 10% AROMATICS,  
ANTIOXIDANT AT MINIMUM  
EFFECTIVE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹) |
|---------------------------------|-------------------------------|--------------------------|-------------------------------------------|
| 283                             | 427                           | 295                      | 0.614                                     |
| 278                             | 425                           | 295                      | 0.614                                     |
| 321                             | 425                           | 296                      | 1.055                                     |
| 369                             | 423                           | 295                      | 1.862                                     |
| 391.5                           | 425                           | 296                      | 2.508                                     |
| 421                             | 426                           | 294                      | 3.143                                     |
| 440                             | 425                           | 296                      | 4.004                                     |
| 472                             | 426                           | 295                      | 5.425                                     |
| 485                             | 427                           | 296                      | 5.500                                     |
| 532                             | 425                           | 295                      | 8.751                                     |

TABLE C-19.  
CLAY TREATED JP-4 WITH 10% AROMATICS,  
ANTIOXIDANT AT TWICE MAXIMUM  
ALLOWABLE CONCENTRATION

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁹) |
|-----------------------|---------------------|----------------|----------------------------------|
| 533                   | 425                 | 300            | 3.713                            |
| 509                   | 425                 | 300            | 2.982                            |
| 471                   | 425                 | 301            | 2.422                            |
| 416                   | 427                 | 301            | 1.475                            |
| 366                   | 423                 | 299            | 1.001                            |
| 357                   | 422                 | 300            | 0.958                            |
| 307                   | 424                 | 300            | 0.576                            |
| 258                   | 421                 | 299            | 0.334                            |

TABLE C-20  
CLAY TREATED JP-4 WITH 10% AROMATICS,  
ANTIOXIDANT AT MIDSPECIFICATION  
CONCENTRATION

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁹) |
|-----------------------|---------------------|----------------|----------------------------------|
| 519                   | 425                 | 300            | 5.888                            |
| 480                   | 429                 | 300            | 3.961                            |
| 472                   | 428                 | 302            | 4.004                            |
| 428                   | 427                 | 301            | 2.659                            |
| 391                   | 428                 | 301            | 1.841                            |
| 327                   | 425                 | 301            | 1.012                            |
| 325                   | 425                 | 302            | 0.926                            |
| 283                   | 425                 | 301            | 0.560                            |
| 252                   | 425                 | 303            | 0.398                            |

TABLE C-21  
CLAY TREATED JP-4 WITH 10% AROMATICS,  
ANTIOXIDANT AT MAXIMUM ALLOWABLE  
CONCENTRATION

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁹) |
|-----------------------|---------------------|----------------|----------------------------------|
| 538                   | 425                 | 301            | 4.628                            |
| 527                   | 423                 | 300            | 4.069                            |
| 483                   | 424                 | 300            | 3.315                            |
| 449                   | 424                 | 300            | 2.314                            |
| 408                   | 422                 | 300            | 1.819                            |
| 403                   | 423                 | 302            | 1.572                            |
| 342                   | 423                 | 301            | 0.969                            |
| 333                   | 422                 | 300            | 0.797                            |
| 283                   | 424                 | 300            | 0.463                            |
| 253                   | 423                 | 300            | 0.334                            |

TABLE C-22  
CLAY TREATED JP-4 WITH 10% AROMATICS,  
CORROSION INHIBITOR AT TWICE MAXIMUM  
ALLOWABLE CONCENTRATION

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁹) |
|-----------------------|---------------------|----------------|----------------------------------|
| 285                   | 419                 | 305            | 0.710                            |
| 287                   | 423                 | 302            | 0.732                            |
| 400                   | 422                 | 300            | 3.078                            |
| 509                   | 425                 | 298            | 8.493                            |
| 510                   | 419                 | 300            | 8.956                            |

TABLE C-23  
CLAY TREATED JP-4 WITH 10% AROMATICS,  
CORROSION INHIBITOR AT MINIMUM EFFECTIVE CONCENTRATION

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁹) |
|-----------------------|---------------------|----------------|----------------------------------|
| 283                   | 422                 | 301            | 0.743                            |
| 290                   | 426                 | 302            | 0.732                            |
| 399                   | 419                 | 304            | 2.809                            |
| 497                   | 422                 | 300            | 8.041                            |
| 506                   | 425                 | 300            | 8.008                            |

TABLE C-24  
CLAY TREATED JP-4 WITH 10% AROMATICS,  
ICING INHIBITOR AT LOW RELATIVE  
CONCENTRATION RELATIVE TO MAXIMUM

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁹) |
|-----------------------|---------------------|----------------|----------------------------------|
| 296                   | 422                 | 305            | 0.926                            |
| 306                   | 426                 | 304            | 0.9150                           |
| 399                   | 425                 | 300            | 3.078                            |
| 490                   | 421                 | 304            | 6.652                            |
| 504                   | 419                 | 300            | 8.546                            |

TABLE C-25  
CLAY TREATED JP-4 WITH 10% AROMATICS,  
ICING INHIBITOR AT THREE TIMES MAXIMUM  
ALLOWABLE CONCENTRATION

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁹) |
|-----------------------|---------------------|----------------|----------------------------------|
| 300                   | 423                 | 300            | 0.829                            |
| 302                   | 420                 | 298            | 0.990                            |
| 393                   | 418                 | 304            | 2.723                            |
| 497                   | 419                 | 301            | 7.330                            |

TABLE C-26  
CLAY TREATED JP-4 WITH 10% AROMATICS,  
CONDUCTIVITY ADDITIVE AT THREE TIMES  
MAXIMUM ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹) |
|---------------------------------|-------------------------------|--------------------------|-------------------------------------------|
| 409                             | 426                           | 301                      | 3.778                                     |
| 508                             | 427                           | 299                      | 11.194                                    |
| 492                             | 421                           | 296                      | 9.052                                     |
| 444                             | 423                           | 296                      | 5.726                                     |
| 396                             | 423                           | 300                      | 3.541                                     |
| 342                             | 429                           | 302                      | 1.722                                     |
| 312                             | 421                           | 305                      | 1.141                                     |
| 296                             | 419                           | 303                      | 0.926                                     |
| 280                             | 422                           | 302                      | 0.753                                     |

TABLE C-27  
CLAY TREATED JP-4 WITH 10% AROMATICS,  
CONDUCTIVITY ADDITIVE AT TWICE MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹) |
|---------------------------------|-------------------------------|--------------------------|-------------------------------------------|
| 521                             | 419                           | 302                      | 11.485                                    |
| 516                             | 423                           | 301                      | 10.118                                    |
| 454                             | 427                           | 300                      | 6.071                                     |
| 404                             | 426                           | 303                      | 3.348                                     |
| 354                             | 427                           | 301                      | 1.884                                     |
| 317                             | 428                           | 302                      | 1.227                                     |
| 289                             | 419                           | 300                      | 0.829                                     |
| 282                             | 426                           | 302                      | 0.721                                     |

TABLE C-28  
CLAY TREATED JP-4 WITH 10% AROMATICS,  
CONDUCTIVITY ADDITIVE AT MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹) |
|---------------------------------|-------------------------------|--------------------------|-------------------------------------------|
| 512                             | 426                           | 301                      | 9.182                                     |
| 509                             | 421                           | 302                      | 9.397                                     |
| 449                             | 420                           | 301                      | 5.231                                     |
| 396                             | 425                           | 300                      | 2.917                                     |
| 349                             | 423                           | 300                      | 1.765                                     |
| 304                             | 424                           | 299                      | 0.980                                     |
| 290                             | 423                           | 302                      | 0.764                                     |
| 284                             | 419                           | 301                      | 0.753                                     |

TABLE C-29  
 CLAY TREATED JP-4 WITH 10% AROMATICS,  
 CONDUCTIVITY ADDITIVE AT MINIMUM  
 EFFECTIVE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹ |
|---------------------------------|-------------------------------|--------------------------|------------------------------------------|
| 533                             | 419                           | 304                      | 11.431                                   |
| 529                             | 421                           | 299                      | 9.752                                    |
| 449                             | 420                           | 298                      | 4.854                                    |
| 398                             | 426                           | 304                      | 3.100                                    |
| 360                             | 427                           | 300                      | 1.991                                    |
| 340                             | 427                           | 301                      | 1.453                                    |
| 300                             | 431                           | 300                      | 0.893                                    |
| 279                             | 419                           | 301                      | 0.689                                    |

TABLE C-30  
 CLAY TREATED JP-4 WITH 10% AROMATICS,  
 METAL DEACTIVATOR AT ONE-HALF MAXIMUM  
 ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹ |
|---------------------------------|-------------------------------|--------------------------|------------------------------------------|
| 534                             | 424                           | 303                      | 11.776                                   |
| 518                             | 427                           | 300                      | 9.709                                    |
| 450                             | 421                           | 299                      | 5.554                                    |
| 395                             | 424                           | 298                      | 2.982                                    |
| 361                             | 426                           | 299                      | 2.067                                    |
| 356                             | 423                           | 300                      | 1.970                                    |
| 322                             | 422                           | 301                      | 1.249                                    |
| 296                             | 426                           | 301                      | 0.8719                                   |
| 283                             | 427                           | 301                      | 0.7320                                   |

TABLE C-31  
 CLAY TREATED JP-4 WITH 10% AROMATICS,  
 METAL DEACTIVATOR AT MAXIMUM  
 ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹ |
|---------------------------------|-------------------------------|--------------------------|------------------------------------------|
| 526                             | 427                           | 300                      | 11.399                                   |
| 519                             | 421                           | 300                      | 10.839                                   |
| 456                             | 425                           | 300                      | 5.845                                    |
| 396                             | 424                           | 301                      | 3.294                                    |
| 351                             | 426                           | 301                      | 1.873                                    |
| 317                             | 421                           | 300                      | 1.238                                    |
| 292                             | 420                           | 302                      | 0.8719                                   |
| 282                             | 422                           | 300                      | 0.7535                                   |

TABLE C-32  
CLAY TREATED JP-4 WITH 10% AROMATICS,  
METAL DEACTIVATOR AT TWICE MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>( $gm/cm^2 sec \cdot 10^{-9}$ ) |
|---------------------------------|-------------------------------|--------------------------|--------------------------------------------------------|
| 286                             | 425                           | 300                      | 0.818                                                  |
| 293                             | 424                           | 301                      | 0.947                                                  |
| 321                             | 429                           | 301                      | 1.345                                                  |
| 352                             | 428                           | 31                       | 2.024                                                  |
| 391                             | 425                           | 300                      | 3.294                                                  |
| 449                             | 421                           | 297                      | 6.071                                                  |
| 499                             | 422                           | 297                      | 9.397                                                  |
| 505                             | 421                           | 300                      | 10.398                                                 |
| 528                             | 426                           | 301                      | 12.217                                                 |

TABLE C-33  
CLAY TREATED JP-4 WITH 10% AROMATICS,  
METAL DEACTIVATOR AT THREE TIMES  
MAXIMUM ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>( $gm/cm^2 sec \cdot 10^{-9}$ ) |
|---------------------------------|-------------------------------|--------------------------|--------------------------------------------------------|
| 383                             | 416                           | 300                      | 3.218                                                  |
| 280                             | 422                           | 300                      | 0.818                                                  |
| 288                             | 423                           | 301                      | 0.883                                                  |
| 316                             | 429                           | 302                      | 1.335                                                  |
| 469                             | 416                           | 300                      | 6.749                                                  |
| 511                             | 425                           | 300                      | 11.087                                                 |
| 518                             | 423                           | 298                      | 12.443                                                 |
| 347                             | 424                           | 299                      | 1.959                                                  |

TABLE C-34  
CLAY TREATED JP-4 WITH 25%  
AROMATICS BASELINE

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>( $gm/cm^2 sec \cdot 10^{-8}$ ) |
|---------------------------------|-------------------------------|--------------------------|--------------------------------------------------------|
| 393                             | 484                           | 301                      | 0.340                                                  |
| 260                             | 484                           | 302                      | 0.065                                                  |
| 263                             | 482                           | 300                      | 0.067                                                  |
| 313                             | 485                           | 299                      | 0.141                                                  |
| 362                             | 489                           | 298                      | 0.250                                                  |
| 431                             | 486                           | 302                      | 0.545                                                  |
| 436                             | 482                           | 299                      | 0.589                                                  |
| 492                             | 481                           | 298                      | 0.868                                                  |
| 513                             | 483                           | 301                      | 1.137                                                  |
| 540                             | 482                           | 300                      | 1.429                                                  |

TABLE C-35  
CLAY TREATED JP-4 WITH 25% AROMATICS,  
ANTIOXIDANT AT MINIMUM  
EFFECTIVE CONCENTRATION

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁸) |
|-----------------------|---------------------|----------------|----------------------------------|
| 543                   | 493                 | 302            | 1.282                            |
| 527                   | 495                 | 301            | 1.016                            |
| 482                   | 490                 | 301            | 7.115                            |
| 429                   | 491                 | 301            | 4.704                            |
| 385                   | 496                 | 300            | 3.014                            |
| 350                   | 491                 | 300            | 2.024                            |
| 315                   | 486                 | 303            | 1.259                            |
| 285                   | 487                 | 300            | 0.861                            |
| 256                   | 493                 | 304            | 0.603                            |

TABLE C-36  
CLAY TREATED JP-4 WITH 25% AROMATICS,  
ANTIOXIDANT AT  
MIDSPECIFICATION CONCENTRATION

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁹) |
|-----------------------|---------------------|----------------|----------------------------------|
| 537                   | 493                 | 300            | 9.860                            |
| 492                   | 492                 | 299            | 7.158                            |
| 495                   | 490                 | 295            | 7.201                            |
| 443                   | 495                 | 299            | 4.456                            |
| 392                   | 489                 | 301            | 2.788                            |
| 355                   | 490                 | 300            | 1.970                            |
| 349                   | 490                 | 300            | 1.948                            |
| 280                   | 495                 | 302            | 0.635                            |
| 319                   | 494                 | 304            | 1.238                            |
| 261                   | 493                 | 300            | 0.603                            |
| 275                   | 495                 | 299            | 0.614                            |

TABLE C-37  
CLAY TREATED JP-4 WITH 25% AROMATICS,  
ANTIOXIDANT AT MAXIMUM  
ALLOWABLE CONCENTRATION

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁹) |
|-----------------------|---------------------|----------------|----------------------------------|
| 545                   | 491                 | 301            | 9.418                            |
| 501                   | 496                 | 302            | 6.996                            |
| 444                   | 487                 | 304            | 4.047                            |
| 389                   | 485                 | 306            | 2.497                            |
| 352                   | 490                 | 310            | 1.722                            |
| 362                   | 491                 | 300            | 1.679                            |
| 309                   | 491                 | 303            | 1.087                            |
| 296                   | 495                 | 301            | 0.8826                           |
| 265                   | 491                 | 300            | 0.6135                           |

TABLE C-38  
CLAY TREATED JP-4 WITH 25% AROMATICS,  
ANTIOXIDANT AT TWICE MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm <sup>2</sup> sec) 10 <sup>-9</sup> ) |
|---------------------------------|-------------------------------|--------------------------|--------------------------------------------------------------------|
| 545                             | 491                           | 390                      | 8.450                                                              |
| 496                             | 496                           | 301                      | 5.612                                                              |
| 443                             | 483                           | 304                      | 3.757                                                              |
| 437                             | 489                           | 304                      | 3.800                                                              |
| 399                             | 490                           | 310                      | 2.551                                                              |
| 359                             | 493                           | 306                      | 1.744                                                              |
| 318                             | 491                           | 302                      | 1.152                                                              |
| 304                             | 487                           | 301                      | 0.947                                                              |
| 271                             | 489                           | 299                      | 0.644                                                              |

TABLE C-39  
CLAY TREATED JP-4 WITH 25% AROMATICS,  
CORROSION INHIBITOR AT TWICE MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm <sup>2</sup> sec) 10 <sup>-9</sup> ) |
|---------------------------------|-------------------------------|--------------------------|--------------------------------------------------------------------|
| 501                             | 415                           | 303                      | 11.184                                                             |
| 493                             | 421                           | 302                      | 10.28                                                              |
| 446                             | 416                           | 300                      | 6.523                                                              |
| 395                             | 412                           | 302                      | 3.896                                                              |
| 389                             | 413                           | 301                      | 3.875                                                              |
| 354                             | 414                           | 298                      | 2.336                                                              |
| 320                             | 415                           | 300                      | 1.636                                                              |
| 286                             | 418                           | 297                      | 1.033                                                              |

TABLE C-40  
CLAY TREATED JP-4 WITH 35% AROMATICS,  
CORROSION INHIBITOR AT MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm <sup>2</sup> sec) 10 <sup>-9</sup> ) |
|---------------------------------|-------------------------------|--------------------------|--------------------------------------------------------------------|
| 501                             | 410                           | 302                      | 9.784                                                              |
| 491                             | 410                           | 302                      | 8.945                                                              |
| 394                             | 414                           | 303                      | 3.692                                                              |
| 291                             | 418                           | 310                      | 1.033                                                              |
| 289                             | 411                           | 305                      | 0.9688                                                             |

TABLE C-41  
CLAY TREATED JP-4 WITH 25% AROMATICS,  
CORROSION INHIBITOR AT  
MIDSPECIFICATION CONCENTRATION

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁹) |
|-----------------------|---------------------|----------------|----------------------------------|
| 497                   | 414                 | 302            | 10.204                           |
| 496                   | 415                 | 300            | 9.764                            |
| 398                   | 410                 | 301            | 3.584                            |
| 292                   | 410                 | 302            | 1.001                            |
| 285                   | 410                 | 303            | 0.920                            |

TABLE C-42  
CLAY TREATED JP-4 WITH 25% AROMATICS,  
CORROSION INHIBITOR AT MINIMUM  
EFFECTIVE CONCENTRATION

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁹) |
|-----------------------|---------------------|----------------|----------------------------------|
| 504                   | 412                 | 302            | 10.538                           |
| 496                   | 414                 | 300            | 9.375                            |
| 399                   | 413                 | 301            | 3.875                            |
| 298                   | 415                 | 302            | 1.152                            |
| 298                   | 409                 | 301            | 1.066                            |

TABLE C-43  
CLAY TREATED JP-4 WITH 25% AROMATICS,  
ICING INHIBITOR AT LOW RELATIVE  
CONCENTRATION  
RELATIVE TO MAXIMUM

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁹) |
|-----------------------|---------------------|----------------|----------------------------------|
| 277                   | 415                 | 302            | 8.719                            |
| 294                   | 412                 | 301            | 9.795                            |
| 399                   | 408                 | 306            | 40.365                           |
| 522                   | 405                 | 306            | 124.43                           |
| 516                   | 410                 | 304            | 105.92                           |

TABLE C-44  
CLAY TREATED JP-4 WITH 25% AROMATICS,  
ICING INHIBITOR AT THREE TIMES MAXIMUM  
ALLOWABLE CONCENTRATION

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁹) |
|-----------------------|---------------------|----------------|----------------------------------|
| 233                   | 420                 | 302            | 0.8826                           |
| 285                   | 421                 | 299            | 1.001                            |
| 398                   | 421                 | 300            | 3.692                            |
| 499                   | 416                 | 300            | 10.280                           |
| 509                   | 412                 | 302            | 10.516                           |

TABLE C-45  
CLAY TREATED JP-4 WITH 25% AROMATICS,  
CONDUCTIVITY ADDITIVE AT THREE TIMES  
MAXIMUM ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹) |
|---------------------------------|-------------------------------|--------------------------|-------------------------------------------|
| 292                             | 405                           | 300                      | 1.152                                     |
| 299                             | 402                           | 300                      | 1.270                                     |
| 325                             | 412                           | 301                      | 1.937                                     |
| 361                             | 404                           | 303                      | 2.917                                     |
| 362                             | 403                           | 299                      | 3.073                                     |
| 405                             | 408                           | 301                      | 5.091                                     |
| 448                             | 407                           | 297                      | 7.610                                     |
| 491                             | 406                           | 299                      | 12.185                                    |
| 497                             | 404                           | 300                      | 12.077                                    |

TABLE C-46  
CLAY TREATED JP-4 WITH 25% AROMATICS.  
CONDUCTIVITY ADDITIVE AT TWICE MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹) |
|---------------------------------|-------------------------------|--------------------------|-------------------------------------------|
| 492                             | 410                           | 300                      | 11.011                                    |
| 490                             | 411                           | 300                      | 10.495                                    |
| 457                             | 408                           | 302                      | 7.675                                     |
| 409                             | 407                           | 301                      | 4.844                                     |
| 368                             | 407                           | 300                      | 3.121                                     |
| 327                             | 406                           | 301                      | 1.808                                     |
| 296                             | 416                           | 301                      | 1.152                                     |
| 300                             | 410                           | 300                      | 1.162                                     |

TABLE C-47  
CLAY TREATED JP-4 WITH 25% AROMATICS,  
CONDUCTIVITY ADDITIVE AT MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹) |
|---------------------------------|-------------------------------|--------------------------|-------------------------------------------|
| 498                             | 410                           | 301                      | 10.893                                    |
| 497                             | 412                           | 301                      | 10.398                                    |
| 449                             | 408                           | 302                      | 6.953                                     |
| 407                             | 408                           | 316                      | 7.050                                     |
| 369                             | 406                           | 310                      | 2.842                                     |
| 327                             | 409                           | 300                      | 1.830                                     |
| 304                             | 410                           | 302                      | 1.313                                     |
| 292                             | 413                           | 304                      | 1.098                                     |

TABLE C-48  
CLAY TREATED JP-4 WITH 25% AROMATICS,  
CONDUCTIVITY ADDITIVE AT MINIMUM  
EFFECTIVE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹) |
|---------------------------------|-------------------------------|--------------------------|-------------------------------------------|
| 287                             | 412                           | 301                      | 1.012                                     |
| 304                             | 410                           | 301                      | 1.173                                     |
| 324                             | 412                           | 298                      | 1.159                                     |
| 365                             | 411                           | 295                      | 2.73                                      |
| 407                             | 406                           | 299                      | 4.155                                     |
| 455                             | 407                           | 300                      | 7.050                                     |
| 494                             | 411                           | 300                      | 9.634                                     |
| 507                             | 410                           | 300                      | 11.194                                    |

TABLE C-49  
CLAY TREATED JP-4 WITH 25% AROMATICS,  
METAL DEACTIVATOR AT THREE TIMES  
MAXIMUM ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹) |
|---------------------------------|-------------------------------|--------------------------|-------------------------------------------|
| 501                             | 412                           | 302                      | 14.682                                    |
| 498                             | 415                           | 301                      | 12.820                                    |
| 478                             | 417                           | 301                      | 11.668                                    |
| 443                             | 414                           | 301                      | 8.256                                     |
| 401                             | 413                           | 301                      | 4.962                                     |
| 360                             | 410                           | 300                      | 3.531                                     |
| 357                             | 412                           | 296                      | 3.078                                     |
| 322                             | 413                           | 302                      | 1.981                                     |
| 292                             | 418                           | 304                      | 1.378                                     |
| 274                             | 416                           | 300                      | 1.055                                     |

TABLE C-50  
CLAY TREATED JP-4 WITH 25% AROMATICS,  
METAL DEACTIVATOR AT TWICE MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹) |
|---------------------------------|-------------------------------|--------------------------|-------------------------------------------|
| 516                             | 414                           | 302                      | 13.423                                    |
| 491                             | 415                           | 301                      | 11.690                                    |
| 447                             | 419                           | 302                      | 7.276                                     |
| 393                             | 418                           | 300                      | 4.510                                     |
| 358                             | 417                           | 310                      | 2.852                                     |
| 318                             | 416                           | 306                      | 1.744                                     |
| 292                             | 417                           | 302                      | 1.270                                     |
| 271                             | 416                           | 310                      | 0.9149                                    |

TABLE C-51,  
CLAY TREATED JP-4 WITH 25% AROMATICS,  
METAL DEACTIVATOR AT MAXIMUM  
ALLOWABLE CONCENTRATION

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁹) |
|-----------------------|---------------------|----------------|----------------------------------|
| 517                   | 420                 | 302            | 12.443                           |
| 499                   | 418                 | 301            | 11.851                           |
| 451                   | 418                 | 310            | 7.459                            |
| 402                   | 420                 | 310            | 4.306                            |
| 363                   | 421                 | 300            | 2.949                            |
| 324                   | 414                 | 310            | 1.744                            |
| 297                   | 412                 | 302            | 1.292                            |
| 280                   | 416                 | 308            | 0.990                            |

TABLE C-52 :  
CLAY TREATED JP-4 WITH 25% AROMATICS,  
METAL DEACTIVATOR AT MINIMUM  
EFFECTIVE CONCENTRATION

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁹) |
|-----------------------|---------------------|----------------|----------------------------------|
| 528                   | 412                 | 300            | 13.423                           |
| 510                   | 413                 | 300            | 11.959                           |
| 493                   | 410                 | 301            | 9.655                            |
| 446                   | 410                 | 296            | 6.846                            |
| 400                   | 411                 | 301            | 3.875                            |
| 356                   | 411                 | 299            | 2.659                            |
| 297                   | 418                 | 300            | 1.1302                           |
| 279                   | 420                 | 301            | 0.9149                           |
| 327                   | 417                 | 310            | 1.851                            |

TABLE C-53  
CLAY TREATED JP-4 WITH 35%  
AROMATICS BASELINE

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁹) |
|-----------------------|---------------------|----------------|----------------------------------|
| 257                   | 278                 | 303            | 0.076                            |
| 291                   | 281                 | 303            | 0.125                            |
| 313                   | 282                 | 302            | 0.158                            |
| 315                   | 283                 | 302            | 0.171                            |
| 351                   | 282                 | 302            | 0.276                            |
| 395                   | 282                 | 302            | 0.416                            |
| 422                   | 281                 | 303            | 0.587                            |
| 451                   | 280                 | 301            | 0.776                            |
| 459                   | 280                 | 301            | 0.763                            |
| 498                   | 280                 | 303            | 1.119                            |
| 516                   | 281                 | 299            | 1.344                            |

TABLE C-54  
CLAY TREATED JP-4 WITH 35% AROMATICS,  
ANTIOXIDANT AT TWICE MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹) |
|---------------------------------|-------------------------------|--------------------------|-------------------------------------------|
| 538                             | 312                           | 301                      | 10.463                                    |
| 482                             | 310                           | 301                      | 6.835                                     |
| 434                             | 311                           | 302                      | 4.662                                     |
| 394                             | 311                           | 303                      | 3.272                                     |
| 356                             | 310                           | 300                      | 2.185                                     |
| 313                             | 310                           | 301                      | 1.399                                     |
| 310                             | 311                           | 301                      | 1.324                                     |
| 262                             | 312                           | 301                      | 0.7535                                    |

TABLE C-55  
CLAY TREATED JP-4 WITH 35% AROMATICS,  
ANTIOXIDANT AT MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹) |
|---------------------------------|-------------------------------|--------------------------|-------------------------------------------|
| 529                             | 310                           | 300                      | 10.333                                    |
| 490                             | 300                           | 299                      | 7.858                                     |
| 429                             | 301                           | 298                      | 4.898                                     |
| 402                             | 305                           | 299                      | 3.617                                     |
| 353                             | 303                           | 300                      | 2.260                                     |
| 351                             | 305                           | 299                      | 2.142                                     |
| 304                             | 304                           | 300                      | 1.302                                     |
| 271                             | 309                           | 299                      | 0.764                                     |
| 538                             | 307                           | 300                      | 11.603                                    |

TABLE C-56  
CLAY TREATED JP-4 WITH 35% AROMATICS,  
ANTIOXIDANT AT  
MIDSPECIFICATION CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹) |
|---------------------------------|-------------------------------|--------------------------|-------------------------------------------|
| 529                             | 303                           | 300                      | 12.023                                    |
| 498                             | 299                           | 300                      | 8.514                                     |
| 483                             | 300                           | 300                      | 7.556                                     |
| 438                             | 298                           | 301                      | 5.371                                     |
| 394                             | 300                           | 300                      | 5.552                                     |
| 359                             | 303                           | 299                      | 2.573                                     |
| 311                             | 300                           | 300                      | 1.442                                     |
| 287                             | 302                           | 300                      | 1.098                                     |
| 256                             | 300                           | 300                      | 0.721                                     |

TABLE C-57  
CLAY TREATED JP-4 WITH 35% AROMATICS,  
ANTIOXIDANT AT MINIMUM  
EFFECTIVE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹) |
|---------------------------------|-------------------------------|--------------------------|-------------------------------------------|
| 546                             | 300                           | 300                      | 14.962                                    |
| 494                             | 305                           | 300                      | 9.655                                     |
| 488                             | 303                           | 300                      | 8.912                                     |
| 448                             | 305                           | 301                      | 6.727                                     |
| 410                             | 303                           | 300                      | 4.790                                     |
| 406                             | 304                           | 299                      | 4.370                                     |
| 351                             | 310                           | 299                      | 2.573                                     |
| 321                             | 304                           | 299                      | 1.733                                     |
| 284                             | 305                           | 300                      | 1.119                                     |
| 262                             | 300                           | 300                      | 0.807                                     |

TABLE C-58  
CLAY TREATED JP-4 WITH 35% AROMATICS,  
CORROSION INHIBITOR AT MINIMUM  
EFFECTIVE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹) |
|---------------------------------|-------------------------------|--------------------------|-------------------------------------------|
| 296                             | 456                           | 307                      | 1.270                                     |
| 297                             | 456                           | 304                      | 1.388                                     |
| 399                             | 454                           | 306                      | 4.198                                     |
| 520                             | 455                           | 307                      | 14.090                                    |
| 539                             | 456                           | 307                      | 14.822                                    |

TABLE C-59  
CLAY TREATED JP-4 WITH 35% AROMATICS,  
CORROSION INHIBITOR AT  
MIDSPECIFICATION CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹) |
|---------------------------------|-------------------------------|--------------------------|-------------------------------------------|
| 280                             | 452                           | 303                      | 1.195                                     |
| 281                             | 449                           | 306                      | 1.044                                     |
| 396                             | 451                           | 302                      | 4.521                                     |
| 531                             | 452                           | 303                      | 14.09                                     |
| 540                             | 459                           | 304                      | 16.40                                     |

TABLE C-60  
CLAY TREATED JP-4 WITH 35% AROMATICS,  
CORROSION INHIBITOR AT MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹ |
|---------------------------------|-------------------------------|--------------------------|------------------------------------------|
| 527                             | 506                           | 302                      | 16.027                                   |
| 493                             | 452                           | 303                      | 11.690                                   |
| 446                             | 416                           | 302                      | 7.546                                    |
| 400                             | 421                           | 302                      | 4.876                                    |
| 343                             | 431                           | 301                      | 2.594                                    |
| 291                             | 425                           | 304                      | 1.324                                    |
| 273                             | 420                           | 306                      | 1.012                                    |

TABLE C-61.  
CLAY TREATED JP-4 WITH 35% AROMATICS,  
CORROSION INHIBITOR AT TWICE MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹ |
|---------------------------------|-------------------------------|--------------------------|------------------------------------------|
| 499                             | 451                           | 306                      | 14.090                                   |
| 496                             | 450                           | 316                      | 13.057                                   |
| 443                             | 453                           | 309                      | 8.407                                    |
| 404                             | 452                           | 308                      | 5.177                                    |
| 349                             | 451                           | 307                      | 2.723                                    |
| 296                             | 445                           | 305                      | 1.561                                    |
| 285                             | 456                           | 306                      | 1.206                                    |
| 273                             | 453                           | 307                      | 1.055                                    |

TABLE C-62,  
CLAY TREATED JP-4 WITH 35% AROMATICS,  
ICING INHIBITOR AT THREE TIMES MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹ |
|---------------------------------|-------------------------------|--------------------------|------------------------------------------|
| 287                             | 447                           | 302                      | 1.270                                    |
| 292                             | 447                           | 303                      | 1.313                                    |
| 405                             | 445                           | 302                      | 4.521                                    |
| 502                             | 449                           | 304                      | 11.173                                   |
| 513                             | 450                           | 303                      | 13.487                                   |

TABLE C-63  
CLAY TREATED JP-4 WITH 35% AROMATICS,  
ICING INHIBITOR AT LOW RELATIVE  
CONCENTRATION  
RELATIVE TO MAXIMUM

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁹) |
|-----------------------|---------------------|----------------|----------------------------------|
| 296                   | 448                 | 303            | 1.432                            |
| 302                   | 445                 | 302            | 1.410                            |
| 398                   | 450                 | 302            | 4.596                            |
| 494                   | 451                 | 304            | 10.419                           |
| 507                   | 453                 | 306            | 11.700                           |

TABLE C-64  
CLAY TREATED JP-4 WITH 35% AROMATICS,  
CONDUCTIVITY ADDITIVE AT MINIMUM  
EFFECTIVE CONCENTRATION

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁹) |
|-----------------------|---------------------|----------------|----------------------------------|
| 540                   | 445                 | 306            | 16.985                           |
| 499                   | 442                 | 305            | 11.485                           |
| 447                   | 446                 | 305            | 75.563                           |
| 399                   | 445                 | 304            | 4.721                            |
| 400                   | 446                 | 304            | 4.467                            |
| 354                   | 442                 | 302            | 2.745                            |
| 301                   | 442                 | 301            | 1.442                            |
| 281                   | 444                 | 306            | 1.076                            |

TABLE C-65  
CLAY TREATED JP-4 WITH 35% AROMATICS,  
CONDUCTIVITY ADDITIVE AT MAXIMUM  
ALLOWABLE CONCENTRATION

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁹) |
|-----------------------|---------------------|----------------|----------------------------------|
| 526                   | 445                 | 310            | 15.919                           |
| 492                   | 442                 | 308            | 10.893                           |
| 440                   | 443                 | 305            | 76.531                           |
| 405                   | 442                 | 306            | 5.231                            |
| 400                   | 446                 | 305            | 4.801                            |
| 357                   | 449                 | 304            | 3.069                            |
| 304                   | 446                 | 306            | 1.550                            |
| 281                   | 447                 | 304            | 1.173                            |

TABLE C-66  
CLAY TREATED JP-4 WITH 35% AROMATICS,  
CONDUCTIVITY ADDITIVE AT TWICE MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹ |
|---------------------------------|-------------------------------|--------------------------|------------------------------------------|
| 516                             | 442                           | 304                      | 16.523                                   |
| 513                             | 443                           | 306                      | 14.962                                   |
| 486                             | 445                           | 305                      | 12.529                                   |
| 425                             | 441                           | 304                      | 7.050                                    |
| 391                             | 445                           | 302                      | 4.628                                    |
| 349                             | 444                           | 303                      | 3.014                                    |
| 284                             | 445                           | 305                      | 1.238                                    |
| 290                             | 442                           | 305                      | 1.302                                    |

TABLE C-67  
CLAY TREATED JP-4 WITH 35% AROMATICS,  
CONDUCTIVITY ADDITIVE AT THREE TIMES  
MAXIMUM ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹ |
|---------------------------------|-------------------------------|--------------------------|------------------------------------------|
| 517                             | 445                           | 310                      | 19.45                                    |
| 514                             | 447                           | 308                      | 17.298                                   |
| 488                             | 445                           | 309                      | 13.746                                   |
| 438                             | 444                           | 308                      | 8.536                                    |
| 396                             | 442                           | 305                      | 5.619                                    |
| 356                             | 447                           | 304                      | 3.380                                    |
| 292                             | 446                           | 299                      | 1.518                                    |
| 294                             | 448                           | 302                      | 1.432                                    |

TABLE C-68  
CLAY TREATED JP-4 WITH 35% AROMATICS,  
METAL DEACTIVATOR AT ONE-HALF MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>Test Temperature</i><br>(°F) | <i>Test Pressure</i><br>(psi) | <i>Airflow</i><br>(SCCM) | <i>Deposit Rate</i><br>(gm/cm² sec) 10⁻⁹ |
|---------------------------------|-------------------------------|--------------------------|------------------------------------------|
| 529                             | 445                           | 310                      | 15.888                                   |
| 496                             | 446                           | 312                      | 12.852                                   |
| 444                             | 443                           | 311                      | 75.563                                   |
| 399                             | 445                           | 310                      | 4.790                                    |
| 394                             | 449                           | 309                      | 4.876                                    |
| 371                             | 440                           | 310                      | 3.757                                    |
| 345                             | 445                           | 309                      | 2.659                                    |
| 296                             | 446                           | 310                      | 1.496                                    |
| 277                             | 445                           | 311                      | 1.141                                    |

TABLE C-69  
CLAY TREATED JP-4 WITH 35% AROMATICS,  
METAL DEACTIVATOR AT MAXIMUM  
ALLOWABLE CONCENTRATION

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁹) |
|-----------------------|---------------------|----------------|----------------------------------|
| 518                   | 442                 | 310            | 16.792                           |
| 485                   | 443                 | 302            | 12.529                           |
| 433                   | 445                 | 306            | 7.416                            |
| 394                   | 445                 | 307            | 5.307                            |
| 350                   | 445                 | 308            | 2.992                            |
| 288                   | 444                 | 304            | 1.464                            |
| 286                   | 444                 | 303            | 1.335                            |

TABLE C-70  
CLAY TREATED JP-4 WITH 35% AROMATICS,  
METAL DEACTIVATOR AT TWICE MAXIMUM  
ALLOWABLE CONCENTRATION

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁹) |
|-----------------------|---------------------|----------------|----------------------------------|
| 523                   | 446                 | 303            | 19.493                           |
| 520                   | 446                 | 304            | 17.986                           |
| 485                   | 445                 | 305            | 14.617                           |
| 435                   | 449                 | 306            | 8.514                            |
| 390                   | 441                 | 305            | 5.436                            |
| 345                   | 442                 | 305            | 3.423                            |
| 298                   | 443                 | 305            | 1.722                            |
| 294                   | 445                 | 304            | 1.798                            |

TABLE C-71  
CLAY TREATED JP-4 WITH 35% AROMATICS,  
METAL DEACTIVATOR AT THREE TIMES  
MAXIMUM ALLOWABLE CONCENTRATION

| Test Temperature (°F) | Test Pressure (psi) | Airflow (SCCM) | Deposit Rate ((gm/cm² sec) 10⁻⁹) |
|-----------------------|---------------------|----------------|----------------------------------|
| 509                   | 441                 | 306            | 22.389                           |
| 508                   | 441                 | 304            | 19.999                           |
| 475                   | 446                 | 302            | 16.156                           |
| 430                   | 444                 | 302            | 9.548                            |
| 384                   | 444                 | 302            | 6.760                            |
| 339                   | 447                 | 304            | 3.800                            |
| 296                   | 441                 | 306            | 2.024                            |
| 294                   | 442                 | 308            | 2.045                            |

TABLE C-72  
CLAY TREATED JP-7

| <i>Test Temperature (°F)</i> | <i>Test Pressure (psi)</i> | <i>Airflow (SCCM)</i> | <i>Deposit Rate (gm/cm² sec) 10⁻¹¹</i> |
|------------------------------|----------------------------|-----------------------|----------------------------------------|
| 320                          | 349                        | 300                   | 3.229                                  |
| 323                          | 354                        | 310                   | 3.588                                  |
| 355                          | 355                        | 305                   | 5.741                                  |
| 395                          | 353                        | 300                   | 12.56                                  |
| 397                          | 350                        | 295                   | 13.28                                  |
| 420                          | 351                        | 295                   | 19.02                                  |
| 440                          | 346                        | 295                   | 22.96                                  |
| 519                          | 347                        | 300                   | 62.43                                  |
| 541                          | 350                        | 300                   | 83.24                                  |
| 544                          | 352                        | 310                   | 91.49                                  |

TABLE C-73-  
SHALE DERIVED LIGHT DIESEL OIL  
(OCCIDENTAL OIL COMPANY)

| <i>Test Temperature (°F)</i> | <i>Test Pressure (psi)</i> | <i>Airflow (SCCM)</i> | <i>Deposit Rate (gm/cm² sec) 10⁻⁶</i> |
|------------------------------|----------------------------|-----------------------|---------------------------------------|
| 257                          | 382                        | 298                   | 0.573                                 |
| 284                          | 385                        | 301                   | 0.756                                 |
| 326                          | 380                        | 300                   | 1.068                                 |
| 362                          | 385                        | 301                   | 1.417                                 |
| 402                          | 384                        | 299                   | 1.880                                 |
| 431                          | 390                        | 299                   | 2.283                                 |
| 445                          | 384                        | 300                   | 2.586                                 |
| 483                          | 385                        | 301                   | 3.129                                 |
| 493                          | 384                        | 301                   | 3.224                                 |
| 535                          | 385                        | 299                   | 4.151                                 |

## **APPENDIX D**

### **EXPERIMENTAL PEROXIDE ANALYSES OF SELECTED CLAY TREATED AIR FORCE JET FUELS WHICH HAVE BEEN THERMALLY STRESSED USING THE EXPERIMENTAL COKING APPARATUS**

The following data represent the peroxide concentrations found in selected, thermally stressed jet fuels. These data correspond to data presented in Appendix C and were determined using a modified ASTM 3703-78 as discussed in Appendix B. These data, as presented here, consist of the fuel stress temperature in fahrenheit degrees, the concentration of active oxygen in parts per million and the milliequivalent weight of oxygen per kilogram of fuel. Each datum is an average of three analyses.



Figure D-1. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature of a Clay Treated JP-8 Fuel, Baseline Data



Figure D-2. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Antioxidant on a Clay Treated JP-8 Fuel



*Figure D-3. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Corrosion Inhibitor on a Clay Treated JP-8 Fuel*



*Figure D-4. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Fuel System Icing Inhibitor on a Clay Treated JP-8 Fuel*



*Figure D-5. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Conductivity Additive on a Clay Treated JP-8 Fuel*



*Figure D-6. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Metal Deactivator on a Clay Treated JP-8 Fuel*



*Figure D-7. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature of a Clay Treated JP-4 Fuel, Baseline Data*



Figure D-8. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Antioxidant on a Clay Treated JP-4 Fuel



Figure D-9. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Corrosion Inhibitor on a Clay Treated JP-4 Fuel



Figure D-10. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Icing Inhibitor on a Clay Treated JP-4 Fuel



Figure D-11. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Conductivity Additive on a Clay Treated JP-4 Fuel



Figure D-12. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Metal Deactivator on a Clay Treated JP-4 Fuel



Figure D-13. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature of a Clay Treated JP-4 Fuel with 25% Aromatics, Baseline Data



Figure D-14. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Antioxidant on a Clay Treated JP-4 Fuel with 25% Aromatics



Figure D-15. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature. Effect of Corrosion Inhibitor on a Clay Treated JP-4 Fuel with 25% Aromatics



*Figure D-16. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Icing Inhibitor on a Clay Treated JP-4 Fuel with 25% Aromatics*



*Figure D-17. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Conductivity Additive on a Clay Treated JP-4 Fuel with 25% Aromatics*



*Figure D-18. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Metal Deactivator on a Clay Treated JP-4 Fuel with 25% Aromatics*



Figure D-19. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature of a Clay Treated JP-4 Fuel with 35% Aromatics, Baseline Data



*Figure D-20. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Antioxidant on a Clay Treated JP-4 Fuel with 35% Aromatics*



Figure D-21. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Corrosion Inhibitor on a Clay Treated JP-4 Fuel with 35% Aromatics



*Figure D-22. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Icing Inhibitor on a Clay Treated JP-4 Fuel with 35% Aromatics*



*Figure D-23. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Conductivity Additive on a Clay Treated JP-4 Fuel 35% Aromatics*



Figure D-24. Variation of Active Oxygen Expressed as Peroxide as a Function of Fuel Temperature, Effect of Metal Deactivator on a Clay Treated JP-4 Fuel with 35% Aromatics

TABLE D-1  
CLAY TREATED JP-8 BASELINE

| <i>ECA Test Temperature (°F)</i> | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|----------------------------------|--------------------------------------|--------------------------------------------------------|
| 260                              | 0                                    | 0                                                      |
| 275                              | 0                                    | 0                                                      |
| 315                              | 8.6                                  | 1.1                                                    |
| 359                              | 13.3                                 | 1.7                                                    |
| 362                              | 15.9                                 | 2.0                                                    |
| 393                              | 23.3                                 | 2.8                                                    |
| 440                              | 31.0                                 | 3.9                                                    |
| 441                              | 32.4                                 | 4.0                                                    |
| 483                              | 50.5                                 | 6.3                                                    |
| 539                              | 68.4                                 | 8.5                                                    |

Linear Regression Data:

|                  |         |
|------------------|---------|
| 0.002369/300°F = | -0.0426 |
| 0.002096/400°F = | 0.4392  |
| 0.001876/500°F = | 0.8276  |
| 0.001697/600°F = | 1.1423  |

Activation Energy = 8077 cal/mole  
Pre-exponential Factor =  $1.373 \times 10^4$

TABLE D-2  
CLAY TREATED JP-8, ANTIOXIDANT AT TWICE MAXIMUM ALLOWABLE CONCENTRATION

| <i>ECA Test Temperature (°F)</i> | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|----------------------------------|--------------------------------------|--------------------------------------------------------|
| 512                              | 47.2                                 | 5.9                                                    |
| 501                              | 40.3                                 | 5.0                                                    |
| 466                              | 25.4                                 | 3.2                                                    |
| 458                              | 27.0                                 | 3.4                                                    |
| 390                              | 15.0                                 | 1.9                                                    |
| 382                              | 13.6                                 | 1.7                                                    |
| 351                              | 9.9                                  | 1.2                                                    |
| 333                              | 9.4                                  | 1.2                                                    |
| 299                              | BDL                                  | —                                                      |
| 276                              | BDL                                  | —                                                      |

Linear Regression Data:

|                  |         |
|------------------|---------|
| 0.002369/300°F = | -0.1379 |
| 0.002096/400°F = | 0.3160  |
| 0.001876/500°F = | 0.6819  |
| 0.001697/600°F = | 0.9784  |

Activation Energy = 7609 cal/mole  
Pre-exponential Factor =  $6.316 \times 10^3$

TABLE D-3  
CLAY TREATED JP-8, ANTOXIDANT AT  
THE MAXIMUM ALLOWABLE CONCENTRATION

| <i>ECA Test Temperature (°F)</i> | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|----------------------------------|--------------------------------------|--------------------------------------------------------|
| 531                              | 50.0                                 | 6.3                                                    |
| 497                              | 36.8                                 | 4.6                                                    |
| 472                              | 35.2                                 | 4.4                                                    |
| 423                              | 20.5                                 | 2.6                                                    |
| 381                              | 14.2                                 | 1.8                                                    |
| 350                              | 10.6                                 | 1.3                                                    |
| 302                              | 8.4                                  | 1.0                                                    |
| 281                              | BDL                                  | —                                                      |
| 276                              | BDL                                  | —                                                      |

Linear Regression Data:

$$0.002369/300^{\circ}\text{F} = -0.0508$$

$$0.002096/400^{\circ}\text{F} = 0.3564$$

$$0.001876/500^{\circ}\text{F} = 0.6847$$

$$0.001697/600^{\circ}\text{F} = 0.9506$$

Activation Energy = 6826 cal/mole  
Pre-exponential Factor =  $3.034 \times 10^3$

TABLE D-4 \*  
CLAY TREATED JP-8, ANTOXIDANT AT  
MIDSPECIFICATION CONCENTRATION

| <i>ECA Test Temperature (°F)</i> | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|----------------------------------|--------------------------------------|--------------------------------------------------------|
| 516                              | 53.2                                 | 6.7                                                    |
| 491                              | 48.1                                 | 6.0                                                    |
| 473                              | 38.4                                 | 4.8                                                    |
| 469                              | 32.0                                 | 4.0                                                    |
| 431                              | 25.8                                 | 3.2                                                    |
| 388                              | 16.2                                 | 2.0                                                    |
| 376                              | 11.1                                 | 1.4                                                    |
| 330                              | 9.7                                  | 1.2                                                    |
| 291                              | BDL                                  | —                                                      |

Linear Regression Data:

$$0.002369/300^{\circ}\text{F} = -0.151$$

$$0.002096/400^{\circ}\text{F} = 0.356$$

$$0.001876/500^{\circ}\text{F} = 0.764$$

$$0.001697/600^{\circ}\text{F} = 1.096$$

Activation Energy = 8507 cal/mole  
Pre-exponential Factor =  $1.7808 \times 10^4$

TABLE D-5\*  
CLAY TREATED JP-8, ANTOXIDANT AT  
MINIMUM EFFECTIVE CONCENTRATION

| <i>ECA Test Temperature (°F)</i> | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|----------------------------------|--------------------------------------|--------------------------------------------------------|
| 536                              | 62.8                                 | 7.9                                                    |
| 502                              | 51.6                                 | 5.1                                                    |
| 457                              | 29.6                                 | 3.7                                                    |
| 433                              | 26.4                                 | 2.6                                                    |
| 393                              | 21.2                                 | 2.6                                                    |
| 341                              | 11.2                                 | 1.4                                                    |
| 300                              | 8.2                                  | 1.0                                                    |
| 278                              | BDL                                  | —                                                      |
| 261                              | BDL                                  | —                                                      |

Linear Regression Data:

|                  |         |
|------------------|---------|
| 0.002369/300°F = | -0.0167 |
| 0.002096/400°F = | 0.4179  |
| 0.001876/500°F = | 0.7682  |
| 0.001697/600°F = | 1.0521  |

Activation Energy = 7285 cal/mole  
Pre-exponential Factor =  $5.673 \times 10^3$

TABLE D-6  
CLAY TREATED JP-8, CORROSION  
INHIBITOR AT TWICE MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>ECA Test Temperature (°F)</i> | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|----------------------------------|--------------------------------------|--------------------------------------------------------|
| 281                              | BDL                                  | —                                                      |
| 284                              | 8.5                                  | 1.1                                                    |
| 394                              | 18.2                                 | 2.3                                                    |
| 407                              | 18.6                                 | 2.3                                                    |
| 512                              | 55.6                                 | 6.9                                                    |
| 514                              | 59.0                                 | 7.4                                                    |

Linear Regression Data:

|                  |        |
|------------------|--------|
| 0.002369/300°F = | -0.031 |
| 0.002096/400°F = | 0.439  |
| 0.001876/500°F = | 0.768  |
| 0.001697/600°F = | 1.034  |

Activation Energy = 6840 cal/mole  
Pre-exponential Factor =  $3.723 \times 10^3$

TABLE D-7  
CLAY TREATED JP-8, CORROSION  
INHIBITOR AT MINIMUM  
EFFECTIVE CONCENTRATION

| <i>ECA Test<br/>Temperature<br/>(°F)</i> | <i>Parts per Million<br/>of Peroxide</i> | <i>Milliequivalents of<br/>Oxygen per<br/>Kilogram of Fuel</i> |
|------------------------------------------|------------------------------------------|----------------------------------------------------------------|
| 279                                      | 8.2                                      | 1.0                                                            |
| 291                                      | —                                        | —                                                              |
| 400                                      | 22.9                                     | 2.9                                                            |
| 415                                      | 21.9                                     | 2.7                                                            |
| 515                                      | 52.8                                     | 6.6                                                            |
| 511                                      | 47.5                                     | 5.9                                                            |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.083 |
| 0.002096/400°F = | 0.449 |
| 0.001876/500°F = | 0.745 |
| 0.001697/600°F = | 0.984 |

Activation Energy = 6146 cal/mole  
Pre-exponential Factor =  $1.836 \times 10^3$

TABLE D-8  
CLAY TREATED JP-8, ICING  
INHIBITOR AT LOW RELATIVE  
CONCENTRATION RELATIVE TO MAXIMUM

| <i>ECA Test<br/>Temperature<br/>(°F)</i> | <i>Parts per Million<br/>of Peroxide</i> | <i>Milliequivalents of<br/>Oxygen per<br/>Kilogram of Fuel</i> |
|------------------------------------------|------------------------------------------|----------------------------------------------------------------|
| 273                                      | BDL                                      | —                                                              |
| 284                                      | 1.6                                      | 0.2                                                            |
| 396                                      | 21.8                                     | 2.7                                                            |
| 402                                      | 21.1                                     | 2.6                                                            |
| 521                                      | 55.0                                     | 6.9                                                            |
| 520                                      | 50.9                                     | 6.4                                                            |

Linear Regression Data:

|                  |        |
|------------------|--------|
| 0.002369/300°F = | -0.428 |
| 0.002096/400°F = | 0.261  |
| 0.001876/500°F = | 0.816  |
| 0.001697/600°F = | 1.265  |

Activation Energy = 11,540 cal/mole  
Pre-exponential Factor =  $3.509 \times 10^5$

TABLE D-9  
CLAY TREATED JP-8, ICING  
INHIBITOR AT THREE TIMES  
MAXIMUM ALLOWABLE CONCENTRATION

| <i>ECA Test<br/>Temperature<br/>(°F)</i> | <i>Parts per Million<br/>of Peroxide</i> | <i>Milliequivalents of<br/>Oxygen per<br/>Kilogram of Fuel</i> |
|------------------------------------------|------------------------------------------|----------------------------------------------------------------|
| 280                                      | 8.1                                      | 1.0                                                            |
| 289                                      | 7.9                                      | 1.0                                                            |
| 394                                      | 16.7                                     | 2.1                                                            |
| 396                                      | 19.8                                     | 2.5                                                            |
| 526                                      | 47.5                                     | 5.9                                                            |
| 513                                      | 61.8                                     | 7.7                                                            |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.044 |
| 0.002096/400°F = | 0.432 |
| 0.001876/500°F = | 0.744 |
| 0.001697/600°F = | 0.997 |

Activation Energy = 6,490 cal/mole  
Pre-exponential Factor =  $2.533 \times 10^3$

TABLE D-10  
CLAY TREATED JP-8, CONDUCTIVITY  
ADDITIVE AT THREE TIMES MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>ECA Test<br/>Temperature<br/>(°F)</i> | <i>Parts per Million<br/>of Peroxide</i> | <i>Milliequivalents of<br/>Oxygen per<br/>Kilogram of Fuel</i> |
|------------------------------------------|------------------------------------------|----------------------------------------------------------------|
| 289                                      | 7.9                                      | 1.0                                                            |
| 322                                      | 7.8                                      | 1.0                                                            |
| 348                                      | 12.3                                     | 1.5                                                            |
| 398                                      | 17.9                                     | 2.2                                                            |
| 447                                      | 36.8                                     | 4.6                                                            |
| 488                                      | 42.8                                     | 5.3                                                            |
| 511                                      | 48.0                                     | 6.0                                                            |
| 516                                      | 57.0                                     | 7.1                                                            |

Linear Regression Data:

|                  |        |
|------------------|--------|
| 0.002369/300°F = | -0.031 |
| 0.002096/400°F = | 0.413  |
| 0.001876/500°F = | 0.772  |
| 0.001697/600°F = | 1.062  |

Activation Energy = 7,455 cal/mole  
Pre-exponential Factor =  $6.717 \times 10^3$

TABLE D-11  
CLAY TREATED JP-8, CONDUCTIVITY  
ADDITIVE AT TWICE MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>ECA Test Temperature</i><br>(°F) | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|-------------------------------------|--------------------------------------|--------------------------------------------------------|
| 286                                 | 6.8                                  | 0.9                                                    |
| 310                                 | 8.6                                  | 1.1                                                    |
| 343                                 | 10.0                                 | 1.2                                                    |
| 389                                 | 20.9                                 | 2.6                                                    |
| 431                                 | 22.0                                 | 2.7                                                    |
| 463                                 | 41.4                                 | 5.2                                                    |
| 497                                 | 42.7                                 | 5.3                                                    |
| 523                                 | 64.3                                 | 8.0                                                    |

Linear Regression Data:

---

|                  |        |
|------------------|--------|
| 0.002369/300°F = | -0.036 |
| 0.002096/400°F = | 0.414  |
| 0.001876/500°F = | 0.777  |
| 0.001697/600°F = | 1.072  |

Activation Energy = 7,552 cal/mole  
Pre-exponential Factor =  $7.456 \times 10^3$

---

TABLE D-12  
CLAY TREATED JP-8, CONDUCTIVITY  
ADDITIVE AT THE MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>ECA Test Temperature</i><br>(°F) | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|-------------------------------------|--------------------------------------|--------------------------------------------------------|
| 283                                 | BDL                                  | —                                                      |
| 289                                 | 9.2                                  | 1.2                                                    |
| 316                                 | 9.9                                  | 1.2                                                    |
| 355                                 | 12.0                                 | 1.5                                                    |
| 400                                 | 20.7                                 | 2.6                                                    |
| 443                                 | 26.1                                 | 3.3                                                    |
| 485                                 | 55.7                                 | 7.0                                                    |
| 521                                 | 50.8                                 | 6.4                                                    |

Linear Regression Data:

---

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.031 |
| 0.002096/400°F = | 0.434 |
| 0.001876/500°F = | 0.759 |
| 0.001697/600°F = | 1.023 |

Activation Energy = 6,757 cal/mole  
Pre-exponential Factor =  $3.377 \times 10^3$

---

TABLE D-13  
CLAY TREATED JP-8, CONDUCTIVITY  
ADDITIVE AT MINIMUM  
EFFECTIVE CONCENTRATION

| <i>ECA Test<br/>Temperature<br/>(°F)</i> | <i>Parts per Million<br/>of Peroxide</i> | <i>Milliequivalents of<br/>Oxygen per<br/>Kilogram of Fuel</i> |
|------------------------------------------|------------------------------------------|----------------------------------------------------------------|
| 283                                      | 6.2                                      | 0.8                                                            |
| 317                                      | 7.3                                      | 0.9                                                            |
| 400                                      | 23.0                                     | 2.9                                                            |
| 446                                      | 29.0                                     | 3.6                                                            |
| 497                                      | 56.2                                     | 7.0                                                            |
| 535                                      | 76.0                                     | 9.5                                                            |

Linear Regression Data:

|                  |        |
|------------------|--------|
| 0.002369/300°F = | -0.070 |
| 0.002096/400°F = | 0.430  |
| 0.001876/500°F = | 0.833  |
| 0.001697/600°F = | 1.159  |

Activation Energy = 8,378 cal/mole  
Pre-exponential Factor =  $1.846 \times 10^4$

TABLE D-14  
CLAY TREATED JP-8, METAL  
DEACTIVATOR AT MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>ECA Test<br/>Temperature<br/>(°F)</i> | <i>Parts per Million<br/>of Peroxide</i> | <i>Milliequivalents of<br/>Oxygen per<br/>Kilogram of Fuel</i> |
|------------------------------------------|------------------------------------------|----------------------------------------------------------------|
| 528                                      | 67.8                                     | 8.5                                                            |
| 494                                      | 48.3                                     | 6.0                                                            |
| 424                                      | 34.8                                     | 4.3                                                            |
| 362                                      | 18.2                                     | 2.3                                                            |
| 319                                      | 8.2                                      | 1.0                                                            |
| 289                                      | 8.1                                      | 1.0                                                            |
| 289                                      | 7.8                                      | 1.0                                                            |

Linear Regression Data:

|                  |        |
|------------------|--------|
| 0.002369/300°F = | 0.0446 |
| 0.002096/400°F = | 0.4828 |
| 0.001876/500°F = | 0.8360 |
| 0.001697/600°F = | 1.1222 |

Activation Energy = 7,345 cal/mole  
Pre-exponential Factor =  $7.0177 \times 10^3$

TABLE D-15  
CLAY TREATED JP-8, METAL  
DEACTIVATOR AT TWICE MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>ECA Test<br/>Temperature<br/>(°F)</i> | <i>Parts per Million<br/>of Peroxide</i> | <i>Milliequivalents of<br/>Oxygen per<br/>Kilogram of Fuel</i> |
|------------------------------------------|------------------------------------------|----------------------------------------------------------------|
| 511                                      | 63.0                                     | 7.9                                                            |
| 492                                      | 53.1                                     | 6.6                                                            |
| 419                                      | 33.1                                     | 4.1                                                            |
| 418                                      | 24.8                                     | 3.1                                                            |
| 358                                      | 17.1                                     | 2.1                                                            |
| 319                                      | 12.0                                     | 1.5                                                            |
| 285                                      | 6.5                                      | 0.8                                                            |
| 284                                      | 7.1                                      | 0.9                                                            |

Linear Regression Data:

|                  |        |
|------------------|--------|
| 0.002369/300°F = | 0.0337 |
| 0.002096/400°F = | 0.4885 |
| 0.001876/500°F = | 0.8552 |
| 0.001697/600°F = | 1.1523 |

Activation Energy = 7,625 cal/mole  
Pre-exponential Factor =  $9.551 \times 10^3$

TABLE D-16  
CLAY TREATED JP-8, METAL  
DEACTIVATOR AT THREE TIMES  
MAXIMUM ALLOWABLE CONCENTRATION

| <i>ECA Test<br/>Temperature<br/>(°F)</i> | <i>Parts per Million<br/>of Peroxide</i> | <i>Milliequivalents of<br/>Oxygen per<br/>Kilogram of Fuel</i> |
|------------------------------------------|------------------------------------------|----------------------------------------------------------------|
| 527                                      | 78.5                                     | 9.8                                                            |
| 511                                      | 73.1                                     | 9.1                                                            |
| 474                                      | 41.7                                     | 5.2                                                            |
| 408                                      | 27.4                                     | 3.4                                                            |
| 358                                      | 18.5                                     | 2.3                                                            |
| 321                                      | 15.1                                     | 1.9                                                            |
| 291                                      | 8.4                                      | 1.1                                                            |
| 281                                      | 6.0                                      | 0.7                                                            |

Linear Regression Data:

|                  |        |
|------------------|--------|
| 0.002369/300°F = | 0.0636 |
| 0.002096/400°F = | 0.5205 |
| 0.001876/500°F = | 0.8888 |
| 0.001697/600°F = | 1.1872 |

Activation Energy = 7,659 cal/mole  
Pre-exponential Factor =  $1.0656 \times 10^4$

TABLE D-17  
CLAY TREATED JP-4 BASELINE

| <i>ECA Test Temperature (°F)</i> | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|----------------------------------|--------------------------------------|--------------------------------------------------------|
| 257                              | 6.5                                  | 0.8                                                    |
| 279                              | 6.8                                  | 0.8                                                    |
| 329                              | 17.5                                 | 2.2                                                    |
| 374                              | 26.6                                 | 3.3                                                    |
| 401                              | 30.1                                 | 3.8                                                    |
| 435                              | 79.9                                 | 10.0                                                   |
| 480                              | 105.6                                | 13.2                                                   |
| 482                              | 116.8                                | 14.6                                                   |
| 535                              | 158.8                                | 19.9                                                   |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.133 |
| 0.002096/400°F = | 0.715 |
| 0.001876/500°F = | 1.184 |
| 0.001697/600°F = | 1.564 |

Activation Energy = 9,758 cal/mole  
Pre-exponential Factor =  $1.524 \times 10^5$

TABLE D-18  
CLAY TREATED JP-4, ANTIOXIDANT  
AT TWICE MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>ECA Test Temperature (°F)</i> | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|----------------------------------|--------------------------------------|--------------------------------------------------------|
| 258                              | 4.2                                  | 0.5                                                    |
| 307                              | 5.8                                  | 0.7                                                    |
| 357                              | 12.2                                 | 1.5                                                    |
| 366                              | 8.8                                  | 1.1                                                    |
| 416                              | 18.5                                 | 2.3                                                    |
| 471                              | 34.8                                 | 4.3                                                    |
| 509                              | 36.1                                 | 4.5                                                    |
| 533                              | 44.8                                 | 5.6                                                    |

Linear Regression Data:

|                  |        |
|------------------|--------|
| 0.002369/300°F = | -0.125 |
| 0.002096/400°F = | 0.303  |
| 0.001876/500°F = | 0.648  |
| 0.001697/600°F = | 0.928  |

Activation Energy = 7,175 cal/mole  
Pre-exponential Factor =  $3.879 \times 10^3$

TABLE D-19  
CLAY TREATED JP-4, ANTIOXIDANT  
AT THE MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>ECA Test Temperature</i><br>(°F) | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|-------------------------------------|--------------------------------------|--------------------------------------------------------|
| 253                                 | 4.8                                  | 0.6                                                    |
| 283                                 | 4.9                                  | 0.6                                                    |
| 333                                 | 9.1                                  | 1.1                                                    |
| 342                                 | 13.1                                 | 1.6                                                    |
| 403                                 | 18.6                                 | 2.3                                                    |
| 408                                 | 24.8                                 | 3.1                                                    |
| 449                                 | 32.5                                 | 4.1                                                    |
| 483                                 | 43.8                                 | 5.5                                                    |
| 527                                 | 58.1                                 | 7.3                                                    |
| 539                                 | 74.8                                 | 9.3                                                    |

Linear Regression Data:

|                  |        |
|------------------|--------|
| 0.002369/300°F = | -0.045 |
| 0.002096/400°F = | 0.419  |
| 0.001873/500°F = | 0.794  |
| 0.001697/600°F = | 1.097  |

Activation Energy = 7,788 cal/mole  
Pre-exponential Factor =  $9.672 \times 10^3$

TABLE D-20  
CLAY TREATED JP-4, ANTIOXIDANT  
AT MIDSPECIFICATION CONCENTRATION

| <i>ECA Test Temperature</i><br>(°F) | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|-------------------------------------|--------------------------------------|--------------------------------------------------------|
| 252                                 | 5.6                                  | 0.7                                                    |
| 283                                 | 5.9                                  | 0.73                                                   |
| 325                                 | 12.2                                 | 1.52                                                   |
| 327                                 | 10.2                                 | 1.3                                                    |
| 391                                 | 27.9                                 | 3.5                                                    |
| 428                                 | 30.6                                 | 4.1                                                    |
| 472                                 | 42.1                                 | 5.3                                                    |
| 480                                 | 56.7                                 | 7.1                                                    |
| 519                                 | 67.6                                 | 8.5                                                    |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.040 |
| 0.002096/400°F = | 0.500 |
| 0.001876/500°F = | 0.871 |
| 0.001697/600°F = | 1.171 |

Activation Energy = 7,710 cal/mole  
Pre-exponential Factor =  $1.074 \times 10^4$

TABLE D-21  
CLAY TREATED JP-4, ANTOXIDANT  
AT MINIMUM EFFECTIVE CONCENTRATION

| <i>ECA Test Temperature</i><br>(°F) | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|-------------------------------------|--------------------------------------|--------------------------------------------------------|
| 283                                 | 7.2                                  | 0.9                                                    |
| 278                                 | 6.7                                  | 0.8                                                    |
| 321                                 | 12.6                                 | 1.6                                                    |
| 369                                 | 18.4                                 | 2.3                                                    |
| 391                                 | 29.5                                 | 3.7                                                    |
| 421                                 | 33.2                                 | 4.1                                                    |
| 440                                 | 36.3                                 | 4.5                                                    |
| 472                                 | 66.4                                 | 8.3                                                    |
| 485                                 | 58.4                                 | 7.3                                                    |
| 532                                 | 89.3                                 | 11.2                                                   |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.056 |
| 0.002096/400°F = | 0.546 |
| 0.001876/500°F = | 0.942 |
| 0.001697/600°F = | 1.262 |

Activation Energy = 8.218 cal/mole  
Pre-exponential Factor =  $2.040 \times 10^4$

TABLE D-22  
CLAY TREATED JP-4, CORROSION INHIBITOR AT MINIMUM EFFECTIVE CONCENTRATION

| <i>ECA Test Temperature</i><br>(°F) | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|-------------------------------------|--------------------------------------|--------------------------------------------------------|
| 283                                 | 6.7                                  | 0.8                                                    |
| 290                                 | 9.3                                  | 1.2                                                    |
| 399                                 | 37.2                                 | 4.6                                                    |
| 497                                 | 131.3                                | 16.4                                                   |
| 506                                 | 105.6                                | 13.6                                                   |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.087 |
| 0.002096/400°F = | 0.683 |
| 0.001876/500°F = | 1.164 |
| 0.001697/600°F = | 1.553 |

Activation Energy = 9.995 cal/mole  
Pre-exponential Factor =  $1.82 \times 10^5$

TABLE D-23  
CLAY TREATED JP-4, CORROSION  
INHIBITOR AT TWICE MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>ECA Test<br/>Temperature<br/>(°F)</i> | <i>Parts per Million<br/>of Peroxide</i> | <i>Milliequivalents of<br/>Oxygen per<br/>Kilogram of Fuel</i> |
|------------------------------------------|------------------------------------------|----------------------------------------------------------------|
| 285                                      | 10.2                                     | 1.3                                                            |
| 287                                      | 7.4                                      | 0.9                                                            |
| 400                                      | 52.1                                     | 6.5                                                            |
| 509                                      | 107.2                                    | 13.4                                                           |
| 510                                      | 144.4                                    | 18.1                                                           |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.150 |
| 0.002096/400°F = | 0.720 |
| 0.001876/500°F = | 1.179 |
| 0.001697/600°F = | 1.551 |

Activation Energy = 9,553 cal/mole  
Pre-exponential Factor =  $1.243 \times 10^5$

TABLE D-24  
CLAY TREATED JP-4, ICING  
INHIBITOR AT THREE TIMES  
MAXIMUM ALLOWABLE CONCENTRATION

| <i>ECA Test<br/>Temperature<br/>(°F)</i> | <i>Parts per Million<br/>of Peroxide</i> | <i>Milliequivalents of<br/>Oxygen per<br/>Kilogram of Fuel</i> |
|------------------------------------------|------------------------------------------|----------------------------------------------------------------|
| 300                                      | 9.2                                      | 1.2                                                            |
| 302                                      | 12.1                                     | 1.5                                                            |
| 393                                      | 46.3                                     | 5.8                                                            |
| 491                                      | 90.4                                     | 11.3                                                           |
| 497                                      | 124.9                                    | 15.6                                                           |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.134 |
| 0.002096/400°F = | 0.709 |
| 0.001876/500°F = | 1.172 |
| 0.001697/600°F = | 1.548 |

Activation Energy = 9,634 cal/mole  
Pre-exponential Factor =  $1.319 \times 10^5$

TABLE D-25  
CLAY TREATED JP-4, ICING  
INHIBITOR AT LOW RELATIVE  
CONCENTRATION TO MAXIMUM

| <i>ECA Test<br/>Temperature<br/>(°F)</i> | <i>Parts per Million<br/>of Peroxide</i> | <i>Milliequivalents of<br/>Oxygen per<br/>Kilogram of Fuel</i> |
|------------------------------------------|------------------------------------------|----------------------------------------------------------------|
| 296                                      | 8.4                                      | 1.0                                                            |
| 306                                      | 10.7                                     | 1.3                                                            |
| 399                                      | 45.3                                     | 5.7                                                            |
| 490                                      | 98.7                                     | 12.3                                                           |
| 540                                      | 138.3                                    | 17.3                                                           |

Linear Regression Data:

$$0.002369/300^{\circ}\text{F} = 0.092$$

$$0.002096/400^{\circ}\text{F} = 0.665$$

$$0.001876/500^{\circ}\text{F} = 1.128$$

$$0.001697/600^{\circ}\text{F} = 1.502$$

Activation Energy = 9,613 cal/mole  
Pre-exponential Factor =  $1.168 \times 10^5$

TABLE D-26  
CLAY TREATED JP-4, CONDUCTIVITY  
AT MINIMUM EFFECTIVE CONCENTRATION

| <i>ECA Test<br/>Temperature<br/>(°F)</i> | <i>Parts per Million<br/>of Peroxide</i> | <i>Milliequivalents of<br/>Oxygen per<br/>Kilogram of Fuel</i> |
|------------------------------------------|------------------------------------------|----------------------------------------------------------------|
| 280                                      | 8.6                                      | 1.1                                                            |
| 296                                      | 8.3                                      | 1.0                                                            |
| 312                                      | 15.7                                     | 2.0                                                            |
| 342                                      | 17.4                                     | 2.2                                                            |
| 396                                      | 33.7                                     | 4.2                                                            |
| 444                                      | 77.6                                     | 9.7                                                            |
| 492                                      | 97.7                                     | 12.2                                                           |
| 508                                      | 157.6                                    | 19.7                                                           |
| 409                                      | 46.3                                     | 5.8                                                            |

Linear Regression Data:

$$0.002369/300^{\circ}\text{F} = 0.122$$

$$0.002096/400^{\circ}\text{F} = 0.712$$

$$0.001876/500^{\circ}\text{F} = 1.188$$

$$0.001697/600^{\circ}\text{F} = 1.574$$

Activation Energy = 9,897 cal/mole  
Pre-exponential Factor =  $1.755 \times 10^6$

TABLE D-27  
CLAY TREATED JP-4, CONDUCTIVITY  
ADDITIVE AT TWICE MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>ECA Test Temperature (°F)</i> | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|----------------------------------|--------------------------------------|--------------------------------------------------------|
| 282                              | 8.6                                  | 1.1                                                    |
| 289                              | 11.1                                 | 1.4                                                    |
| 317                              | 14.3                                 | 1.8                                                    |
| 354                              | 32.5                                 | 4.1                                                    |
| 404                              | 46.2                                 | 5.8                                                    |
| 454                              | 110.8                                | 13.9                                                   |
| 516                              | 172.2                                | 21.5                                                   |
| 521                              | 222.3                                | 27.8                                                   |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.184 |
| 0.002096/400°F = | 0.809 |
| 0.001876/500°F = | 1.312 |
| 0.001697/600°F = | 1.720 |

Activation Energy = 10,741 cal/mole  
Pre-exponential Factor =  $4.016 \times 10^5$

TABLE D-28  
CLAY TREATED JP-4, CONDUCTIVITY  
ADDITIVE AT THE MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>ECA Test Temperature (°F)</i> | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|----------------------------------|--------------------------------------|--------------------------------------------------------|
| 284                              | 7.8                                  | 1.0                                                    |
| 290                              | 6.7                                  | 0.8                                                    |
| 304                              | 12.8                                 | 1.6                                                    |
| 349                              | 18.4                                 | 2.3                                                    |
| 396                              | 86.7                                 | 10.8                                                   |
| 449                              | 94.4                                 | 11.8                                                   |
| 509                              | 158.8                                | 19.9                                                   |
| 512                              | 176.6                                | 22.1                                                   |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.114 |
| 0.002096/400°F = | 0.787 |
| 0.001876/500°F = | 1.330 |
| 0.001697/600°F = | 1.770 |

Activation Energy = 11,290 cal/mole  
Pre-exponential Factor =  $9.062 \times 10^5$

TABLE D-29  
CLAY TREATED JP-4, CONDUCTIVITY  
ADDITIVE AT THREE TIMES MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>ECA Test Temperature</i><br>(°F) | <i>Pa.</i><br><i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|-------------------------------------|----------------------------------------------------|--------------------------------------------------------|
| 279                                 | 27.7                                               | 1.6                                                    |
| 300                                 | 14.8                                               | 1.8                                                    |
| 340                                 | 22.1                                               | 2.8                                                    |
| 360                                 | 36.3                                               | 4.5                                                    |
| 398                                 | 48.4                                               | 6.0                                                    |
| 449                                 | 129.2                                              | 15.2                                                   |
| 529                                 | 264.4                                              | 33.1                                                   |
| 533                                 | 201.9                                              | 25.2                                                   |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.276 |
| 0.002096/400°F = | 0.864 |
| 0.001876/500°F = | 1.337 |
| 0.001697/600°F = | 1.721 |

Activation Energy = 9,847 cal/mole  
Pre-exponential Factor =  $2.631 \times 10^5$

TABLE D-30  
CLAY TREATED JP-4, METAL  
DEACTIVATOR AT THREE TIMES  
MAXIMUM ALLOWABLE CONCENTRATION

| <i>ECA Test Temperature</i><br>(°F) | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|-------------------------------------|--------------------------------------|--------------------------------------------------------|
| 383                                 | 51.9                                 | 6.5                                                    |
| 280                                 | 12.1                                 | 1.5                                                    |
| 288                                 | 12.4                                 | 1.6                                                    |
| 316                                 | 17.1                                 | 2.1                                                    |
| 469                                 | 174.6                                | 21.8                                                   |
| 511                                 | 255.4                                | 31.9                                                   |
| 518                                 | 293.6                                | 36.7                                                   |
| 347                                 | 37.6                                 | 4.7                                                    |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.290 |
| 0.002096/400°F = | 0.943 |
| 0.001876/500°F = | 1.469 |
| 0.001697/600°F = | 1.896 |

Activation Energy = 10,951 cal/mole  
Pre-exponential Factor =  $9.066 \times 10^6$

TABLE D-31  
CLAY TREATED JP-4, METAL  
DEACTIVATOR AT TWICE MAXIMUM  
ALLOWABLE CONCENTRATION

| ECA Test Temperature (°F) | Parts per Million of Peroxide | Milliequivalents of Oxygen per Kilogram of Fuel |
|---------------------------|-------------------------------|-------------------------------------------------|
| 296                       | 9.3                           | 1.2                                             |
| 293                       | 14.9                          | 1.9                                             |
| 321                       | 15.3                          | 1.9                                             |
| 352                       | 33.6                          | 4.2                                             |
| 391                       | 40.3                          | 5.0                                             |
| 449                       | 98.8                          | 12.4                                            |
| 499                       | 186.8                         | 23.4                                            |
| 505                       | 203.3                         | 25.4                                            |
| 528                       | 222.3                         | 27.8                                            |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.213 |
| 0.002096/400°F = | 0.839 |
| 0.001876/500°F = | 1.344 |
| 0.001697/600°F = | 1.752 |

Activation Energy = 10,492 cal/mole  
Pre-exponential Factor =  $4.401 \times 10^5$

TABLE D-32  
CLAY TREATED JP-4, METAL  
DEACTIVATOR AT THE MAXIMUM  
ALLOWABLE CONCENTRATION

| ECA Test Temperature (°F) | Parts per Million of Peroxide | Milliequivalents of Oxygen per Kilogram of Fuel |
|---------------------------|-------------------------------|-------------------------------------------------|
| 282                       | 10.2                          | 1.3                                             |
| 292                       | 11.3                          | 1.4                                             |
| 317                       | 13.6                          | 1.7                                             |
| 351                       | 30.8                          | 3.8                                             |
| 396                       | 42.7                          | 5.3                                             |
| 456                       | 107.8                         | 13.5                                            |
| 519                       | 162.4                         | 20.3                                            |
| 526                       | 195.5                         | 24.4                                            |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.201 |
| 0.002096/400°F = | 0.792 |
| 0.001876/500°F = | 1.268 |
| 0.001697/600°F = | 1.654 |

Activation Energy = 9,899 cal/mole  
Pre-exponential Factor =  $2.114 \times 10^5$

TABLE D-33  
CLAY TREATED JP-4, METAL  
DEACTIVATOR AT  
MIDSPECIFICATION CONCENTRATION

| <i>ECA Test Temperature (°F)</i> | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|----------------------------------|--------------------------------------|--------------------------------------------------------|
| 283                              | 7.3                                  | 0.9                                                    |
| 296                              | 13.3                                 | 1.7                                                    |
| 322                              | 14.1                                 | 1.8                                                    |
| 356                              | 31.6                                 | 3.9                                                    |
| 361                              | 21.9                                 | 2.7                                                    |
| 395                              | 44.7                                 | 5.6                                                    |
| 450                              | 91.8                                 | 11.5                                                   |
| 518                              | 148.9                                | 18.6                                                   |
| 534                              | 209.8                                | 26.2                                                   |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.148 |
| 0.002096/400°F = | 0.757 |
| 0.001876/500°F = | 1.249 |
| 0.001697/600°F = | 1.647 |

Activation Energy = 10,221 cal/mole  
Pre-exponential Factor =  $2.741 \times 10^5$

TABLE D-34  
CLAY TREATED JP-4 WITH 25%  
AROMATICS BASELINE

| <i>ECA Test Temperature (°F)</i> | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|----------------------------------|--------------------------------------|--------------------------------------------------------|
| 393                              | 49.7                                 | 6.2                                                    |
| 260                              | 11.3                                 | 1.4                                                    |
| 263                              | 7.3                                  | 0.9                                                    |
| 313                              | 23.8                                 | 3.0                                                    |
| 362                              | 31.6                                 | 3.9                                                    |
| 431                              | 71.2                                 | 8.9                                                    |
| 436                              | 100.8                                | 12.6                                                   |
| 492                              | 165.3                                | 20.7                                                   |
| 513                              | 179.8                                | 22.5                                                   |
| 540                              | 239.4                                | 29.9                                                   |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.314 |
| 0.002096/400°F = | 0.865 |
| 0.001876/500°F = | 1.309 |
| 0.001697/600°F = | 1.669 |

Activation Energy = 9,239 cal/mole  
Pre-exponential Factor =  $1.247 \times 10^5$

TABLE D-35  
CLAY TREATED JP-4 WITH 25%  
AROMATICS, ANTIOXIDANT AT TWICE  
MAXIMUM ALLOWABLE CONCENTRATION

| <i>ECA Test<br/>Temperature<br/>(°F)</i> | <i>Parts per Million<br/>of Peroxide</i> | <i>Milliequivalents of<br/>Oxygen per<br/>Kilogram of Fuel</i> |
|------------------------------------------|------------------------------------------|----------------------------------------------------------------|
| 271                                      | 10.3                                     | 1.3                                                            |
| 304                                      | 14.8                                     | 1.8                                                            |
| 318                                      | 23.6                                     | 2.9                                                            |
| 359                                      | 25.2                                     | 3.1                                                            |
| 399                                      | 44.8                                     | 5.6                                                            |
| 437                                      | 91.3                                     | 11.4                                                           |
| 443                                      | 68.2                                     | 8.5                                                            |
| 496                                      | 138.4                                    | 17.3                                                           |
| 544                                      | 176.2                                    | 22.0                                                           |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.276 |
| 0.002096/400°F = | 0.792 |
| 0.001876/500°F = | 1.208 |
| 0.001697/600°F = | 1.545 |

Activation Energy = 8,652 cal/mole  
Pre-exponential Factor =  $5.678 \times 10^4$

TABLE D-36  
CLAY TREATED JP-4 WITH 25%  
AROMATICS, ANTIOXIDANT AT  
MAXIMUM ALLOWABLE CONCENTRATION

| <i>ECA Test<br/>Temperature<br/>(°F)</i> | <i>Parts per Million<br/>of Peroxide</i> | <i>Milliequivalents of<br/>Oxygen per<br/>Kilogram of Fuel</i> |
|------------------------------------------|------------------------------------------|----------------------------------------------------------------|
| 265                                      | 9.8                                      | 1.2                                                            |
| 296                                      | 13.6                                     | 1.7                                                            |
| 309                                      | 16.8                                     | 2.1                                                            |
| 362                                      | 34.8                                     | 4.3                                                            |
| 352                                      | 28.6                                     | 3.6                                                            |
| 389                                      | 32.6                                     | 4.1                                                            |
| 444                                      | 83.7                                     | 10.5                                                           |
| 504                                      | 129.6                                    | 16.2                                                           |
| 545                                      | 181.3                                    | 22.7                                                           |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.270 |
| 0.002096/400°F = | 0.779 |
| 0.001876/500°F = | 1.189 |
| 0.001697/600°F = | 1.521 |

Activation Energy = 8,526 cal/mole  
Pre-exponential Factor =  $4.821 \times 10^4$

TABLE D-37  
CLAY TREATED JP-4 WITH 25%  
AROMATICS, ANTIOXIDANT AT THE  
MIDSPECIFICATION CONCENTRATION

| <i>ECA Test Temperature</i><br>(°F) | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|-------------------------------------|--------------------------------------|--------------------------------------------------------|
| 275                                 | 13.8                                 | 1.7                                                    |
| 261                                 | 8.8                                  | 1.1                                                    |
| 319                                 | 18.3                                 | 2.3                                                    |
| 280                                 | 11.4                                 | 1.4                                                    |
| 349                                 | 27.4                                 | 3.4                                                    |
| 355                                 | 22.9                                 | 2.9                                                    |
| 392                                 | 46.3                                 | 5.8                                                    |
| 443                                 | 88.6                                 | 11.1                                                   |
| 495                                 | 133.6                                | 16.7                                                   |
| 492                                 | 124.4                                | 15.5                                                   |
| 537                                 | 188.6                                | 23.6                                                   |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.283 |
| 0.002096/400°F = | 0.803 |
| 0.001876/500°F = | 1.223 |
| 0.001697/600°F = | 1.562 |

Activation Energy = 8,720 cal/mole  
Pre-exponential Factor =  $6.257 \times 10^4$

TABLE D-38  
CLAY TREATED JP-4 WITH 25%  
AROMATICS, ANTIOXIDANT AT MINIMUM  
EFFECTIVE CONCENTRATION

| <i>ECA Test Temperature</i><br>(°F) | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|-------------------------------------|--------------------------------------|--------------------------------------------------------|
| 256                                 | 9.5                                  | 1.2                                                    |
| 285                                 | 14.2                                 | 1.8                                                    |
| 315                                 | 14.7                                 | 1.8                                                    |
| 350                                 | 29.4                                 | 3.7                                                    |
| 385                                 | 55.6                                 | 7.0                                                    |
| 429                                 | 64.8                                 | 8.1                                                    |
| 482                                 | 148.6                                | 18.6                                                   |
| 527                                 | 166.5                                | 20.8                                                   |
| 543                                 | 208.6                                | 26.1                                                   |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.307 |
| 0.002096/400°F = | 0.833 |
| 0.001876/500°F = | 1.256 |
| 0.001697/600°F = | 1.600 |

Activation Energy = 8,810 cal/mole  
Pre-exponential Factor =  $7.366 \times 10^4$

TABLE D-39  
CLAY TREATED JP-4 WITH 25%  
AROMATICS, CORROSION INHIBITOR  
AT TWICE MAXIMUM  
ALLOWABLE CONCENTRATION

| ECA Test Temperature (°F) | Parts per Million of Peroxide | Milliequivalents of Oxygen per Kilogram of Fuel |
|---------------------------|-------------------------------|-------------------------------------------------|
| 286                       | 14.3                          | 1.8                                             |
| 320                       | 26.2                          | 3.3                                             |
| 354                       | 31.7                          | 4.0                                             |
| 389                       | 66.3                          | 8.3                                             |
| 395                       | 60.8                          | 7.6                                             |
| 446                       | 122.4                         | 15.3                                            |
| 493                       | 142.3                         | 17.8                                            |
| 501                       | 190.8                         | 23.9                                            |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.359 |
| 0.002096/400°F = | 0.909 |
| 0.001876/500°F = | 1.353 |
| 0.001697/600°F = | 1.713 |

Activation Energy = 9,229 cal/mole  
Pre-exponential Factor =  $1.366 \times 10^5$

TABLE D-40  
CLAY TREATED JP-4 WITH 25%  
AROMATICS, CORROSION INHIBITOR  
AT MAXIMUM ALLOWABLE CONCENTRATION

| ECA Test Temperature (°F) | Parts per Million of Peroxide | Milliequivalents of Oxygen per Kilogram of Fuel |
|---------------------------|-------------------------------|-------------------------------------------------|
| 289                       | 14.3                          | 1.8                                             |
| 291                       | 17.7                          | 2.2                                             |
| 394                       | 64.6                          | 8.1                                             |
| 491                       | 152.7                         | 19.1                                            |
| 501                       | 173.3                         | 21.1                                            |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.368 |
| 0.002096/400°F = | 0.902 |
| 0.001876/500°F = | 1.333 |
| 0.001697/600°F = | 1.682 |

Activation Energy = 8,953 cal/mole  
Pre-exponential Factor =  $1.005 \times 10^5$

TABLE D-41  
CLAY TREATED JP-4 WITH 25%  
AROMATICS, CORROSION INHIBITOR  
AT MIDSPECIFICATION CONCENTRATION

| <i>ECA Test Temperature</i><br>(°F) | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|-------------------------------------|--------------------------------------|--------------------------------------------------------|
| 285                                 | 13.6                                 | 1.7                                                    |
| 292                                 | 14.8                                 | 1.8                                                    |
| 398                                 | 56.8                                 | 7.1                                                    |
| 496                                 | 221.3                                | 27.7                                                   |
| 497                                 | 155.5                                | 19.4                                                   |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.320 |
| 0.002096/400°F = | 0.900 |
| 0.001876/500°F = | 1.367 |
| 0.001697/600°F = | 1.746 |

Activation Energy = 9,725 cal/mole  
Pre-exponential Factor =  $2.255 \times 10^5$

TABLE D-42  
CLAY TREATED JP-4 WITH 25%  
AROMATICS, CORROSION INHIBITOR  
AT MINIMUM EFFECTIVE CONCENTRATION

| <i>ECA Test Temperature</i><br>(°F) | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|-------------------------------------|--------------------------------------|--------------------------------------------------------|
| 298                                 | 17.1                                 | 2.1                                                    |
| 298                                 | 13.8                                 | 1.7                                                    |
| 399                                 | 65.2                                 | 8.1                                                    |
| 496                                 | 163.5                                | 20.4                                                   |
| 504                                 | 155.1                                | 19.4                                                   |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.309 |
| 0.002096/400°F = | 0.864 |
| 0.001876/500°F = | 1.312 |
| 0.001697/600°F = | 1.675 |

Activation Energy = 9,314 cal/mole  
Pre-exponential Factor =  $1.346 \times 10^5$

TABLE D-43  
CLAY TREATED JP-4 WITH 25%  
AROMATICS, ICING INHIBITOR AT  
THREE TIMES ALLOWABLE CONCENTRATION

| ECA Test<br>Temperature<br>(°F) | Parts per Million<br>of Peroxide | Milliequivalents of<br>Oxygen per<br>Kilogram of Fuel |
|---------------------------------|----------------------------------|-------------------------------------------------------|
| 283                             | 13.2                             | 1.6                                                   |
| 285                             | 14.1                             | 1.8                                                   |
| 398                             | 56.2                             | 7.0                                                   |
| 499                             | 142.3                            | 17.8                                                  |
| 509                             | 198.3                            | 24.8                                                  |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.330 |
| 0.002096/400°F = | 0.875 |
| 0.001876/500°F = | 1.306 |
| 0.001697/600°F = | 1.656 |

Activation Energy = 9,037 cal/mole  
Pre-exponential Factor =  $1.016 \times 10^5$

TABLE D-44  
CLAY TREATED JP-4 WITH 25%  
AROMATICS, ICING INHIBITOR AT  
LOW RELATIVE CONCENTRATION  
RELATIVE TO MAXIMUM

| ECA Test<br>Temperature<br>(°F) | Parts per Million<br>of Peroxide | Milliequivalents of<br>Oxygen per<br>Kilogram of Fuel |
|---------------------------------|----------------------------------|-------------------------------------------------------|
| 277                             | 13.3                             | 1.7                                                   |
| 294                             | 14.4                             | 1.8                                                   |
| 399                             | 64.2                             | 8.0                                                   |
| 522                             | 182.2                            | 22.8                                                  |
| 516                             | 193.8                            | 24.2                                                  |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.339 |
| 0.002096/400°F = | 0.875 |
| 0.001876/500°F = | 1.306 |
| 0.001697/600°F = | 1.656 |

Activation Energy = 8,973 cal/mole  
Pre-exponential Factor =  $9.627 \times 10^4$

TABLE D-45  
CLAY TREATED JP-4 WITH 25%  
AROMATICS, CONDUCTIVITY ADDITIVE  
AT THREE TIMES MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>ECA Test Temperature (°F)</i> | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|----------------------------------|--------------------------------------|--------------------------------------------------------|
| 292                              | 18.6                                 | 2.3                                                    |
| 299                              | 17.1                                 | 2.1                                                    |
| 325                              | 29.3                                 | 3.7                                                    |
| 361                              | 56.2                                 | 7.0                                                    |
| 362                              | 47.6                                 | 6.0                                                    |
| 405                              | 77.3                                 | 9.7                                                    |
| 448                              | 149.7                                | 18.7                                                   |
| 491                              | 172.7                                | 21.6                                                   |
| 497                              | 208.9                                | 26.1                                                   |

**Linear Regression Data:**

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.406 |
| 0.002096/400°F = | 0.975 |
| 0.001876/500°F = | 1.434 |
| 0.001697/600°F = | 1.805 |

Activation Energy = 9,539 cal/mole  
Pre-exponential Factor =  $2.203 \times 10^5$

TABLE D-46  
CLAY TREATED JP-4 WITH 25%  
AROMATICS, CONDUCTIVITY ADDITIVE  
AT TWICE MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>ECA Test Temperature (°F)</i> | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|----------------------------------|--------------------------------------|--------------------------------------------------------|
| 309                              | 24.2                                 | 3.0                                                    |
| 296                              | 19.6                                 | 2.4                                                    |
| 327                              | 28.1                                 | 3.5                                                    |
| 368                              | 47.3                                 | 5.9                                                    |
| 409                              | 73.2                                 | 9.1                                                    |
| 457                              | 116.3                                | 14.5                                                   |
| 490                              | 171.2                                | 21.4                                                   |
| 492                              | 162.2                                | 20.3                                                   |

**Linear Regression Data:**

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.428 |
| 0.002096/400°F = | 0.931 |
| 0.001876/500°F = | 1.337 |
| 0.001697/600°F = | 1.666 |

Activation Energy = 8,439 cal/mole  
Pre-exponential Factor =  $6.245 \times 10^4$

TABLE D-47  
CLAY TREATED JP-4 WITH 25%  
AROMATICS, CONDUCTIVITY ADDITIVE  
AT MAXIMUM ALLOWABLE CONCENTRATION

| <i>ECA Test Temperature</i><br>(°F) | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|-------------------------------------|--------------------------------------|--------------------------------------------------------|
| 292                                 | 17.6                                 | 2.2                                                    |
| 304                                 | 18.1                                 | 2.3                                                    |
| 327                                 | 23.7                                 | 3.0                                                    |
| 369                                 | 43.4                                 | 5.4                                                    |
| 407                                 | 68.2                                 | 8.5                                                    |
| 449                                 | 94.3                                 | 11.8                                                   |
| 497                                 | 156.1                                | 19.5                                                   |
| 498                                 | 164.6                                | 20.6                                                   |

**Linear Regression Data:**

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.351 |
| 0.002096/400°F = | 0.878 |
| 0.001876/500°F = | 1.302 |
| 0.001697/600°F = | 1.646 |

Activation Energy = 8,828 cal/mole  
Pre-exponential Factor =  $8.321 \times 10^4$

TABLE D-48  
CLAY TREATED JP-4 WITH 25%  
AROMATICS, CONDUCTIVITY ADDITIVE  
AT MINIMUM EFFECTIVE CONCENTRATION

| <i>ECA Test Temperature</i><br>(°F) | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|-------------------------------------|--------------------------------------|--------------------------------------------------------|
| 287                                 | 13.1                                 | 1.6                                                    |
| 304                                 | 18.6                                 | 2.3                                                    |
| 324                                 | 24.7                                 | 3.1                                                    |
| 365                                 | 36.2                                 | 4.5                                                    |
| 407                                 | 68.3                                 | 8.5                                                    |
| 455                                 | 128.4                                | 16.1                                                   |
| 494                                 | 159.3                                | 19.9                                                   |
| 507                                 | 183.4                                | 22.9                                                   |

**Linear Regression Data:**

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.320 |
| 0.002096/400°F = | 0.887 |
| 0.001876/500°F = | 1.344 |
| 0.001697/600°F = | 1.715 |

Activation Energy = 9,580 cal/mole  
Pre-exponential Factor =  $1.741 \times 10^5$

TABLE D-49  
CLAY TREATED JP-4 WITH 25%  
AROMATICS, METAL DEACTIVATOR  
AT MINIMUM EFFECTIVE CONCENTRATION

| <i>ECA Test Temperature</i><br>(°F) | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|-------------------------------------|--------------------------------------|--------------------------------------------------------|
| 327                                 | 27.4                                 | 3.4                                                    |
| 279                                 | 12.6                                 | 1.6                                                    |
| 297                                 | 19.4                                 | 2.4                                                    |
| 356                                 | 45.7                                 | 5.7                                                    |
| 400                                 | 54.7                                 | 6.8                                                    |
| 446                                 | 113.9                                | 14.2                                                   |
| 493                                 | 145.6                                | 18.2                                                   |
| 510                                 | 182.3                                | 22.8                                                   |
| 528                                 | 204.4                                | 25.6                                                   |

Linear Regression Data:

$$0.002369/300^{\circ}\text{F} = 0.378$$

$$0.002096/400^{\circ}\text{F} = 0.897$$

$$0.001876/500^{\circ}\text{F} = 1.316$$

$$0.001697/600^{\circ}\text{F} = 1.654$$

Activation Energy = 8,698 cal/mole  
Pre-exponential Factor =  $7.593 \times 10^4$

TABLE D-50  
CLAY TREATED JP-4 WITH 25%  
AROMATICS, METAL DEACTIVATOR  
AT MAXIMUM ALLOWABLE CONCENTRATION

| <i>ECA Test Temperature</i><br>(°F) | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|-------------------------------------|--------------------------------------|--------------------------------------------------------|
| 280                                 | 13.7                                 | 1.7                                                    |
| 297                                 | 17.6                                 | 2.2                                                    |
| 324                                 | 23.4                                 | 2.9                                                    |
| 363                                 | 42.6                                 | 5.3                                                    |
| 402                                 | 64.4                                 | 8.0                                                    |
| 451                                 | 151.3                                | 18.9                                                   |
| 499                                 | 156.2                                | 19.5                                                   |
| 517                                 | 211.3                                | 26.4                                                   |

Linear Regression Data:

$$0.002369/300^{\circ}\text{F} = 0.357$$

$$0.002096/400^{\circ}\text{F} = 0.914$$

$$0.001876/500^{\circ}\text{F} = 1.363$$

$$0.001697/600^{\circ}\text{F} = 1.727$$

Activation Energy = 9,337 cal/mole  
Pre-exponential Factor =  $1.547 \times 10^5$

TABLE D-51  
CLAY TREATED JP-4 WITH 25%  
AROMATICS, METAL DEACTIVATOR  
AT TWICE MAXIMUM  
ALLOWABLE CONCENTRATION

| ECA Test Temperature (°F) | Parts per Million of Peroxide | Milliequivalents of Oxygen per Kilogram of Fuel |
|---------------------------|-------------------------------|-------------------------------------------------|
| 271                       | 14.8                          | 1.8                                             |
| 292                       | 16.9                          | 2.1                                             |
| 318                       | 24.9                          | 3.1                                             |
| 358                       | 38.2                          | 4.8                                             |
| 393                       | 54.2                          | 6.8                                             |
| 447                       | 120.2                         | 15.0                                            |
| 491                       | 172.3                         | 21.5                                            |
| 516                       | 183.2                         | 22.9                                            |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.396 |
| 0.002096/400°F = | 0.913 |
| 0.001876/500°F = | 1.329 |
| 0.001697/600°F = | 1.667 |

Activation Energy = 5.567 cal/mole  
Pre-exponential Factor =  $7.616 \times 10^4$

TABLE D-52.  
CLAY TREATED JP-4 WITH 25%  
AROMATICS, METAL DEACTIVATOR  
AT THREE TIMES MAXIMUM  
ALLOWABLE CONCENTRATION

| ECA Test Temperature (°F) | Parts per Million of Peroxide | Milliequivalents of Oxygen per Kilogram of Fuel |
|---------------------------|-------------------------------|-------------------------------------------------|
| 274                       | 14.1                          | 1.8                                             |
| 292                       | 22.8                          | 2.9                                             |
| 322                       | 27.3                          | 3.4                                             |
| 357                       | 35.5                          | 4.4                                             |
| 360                       | 48.2                          | 6.0                                             |
| 401                       | 80.3                          | 10.0                                            |
| 433                       | 103.2                         | 12.9                                            |
| 478                       | 151.3                         | 18.9                                            |
| 498                       | 218.7                         | 27.3                                            |
| 501                       | 191.3                         | 23.9                                            |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.427 |
| 0.002096/400°F = | 0.960 |
| 0.001876/500°F = | 1.369 |
| 0.001697/600°F = | 1.737 |

Activation Energy = 8.931 cal/mole  
Pre-exponential Factor =  $1.120 \times 10^5$

TABLE D-53  
CLAY TREATED JP-4 WITH 35%  
AROMATICS BASELINE

| <i>ECA Test Temperature (°F)</i> | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|----------------------------------|--------------------------------------|--------------------------------------------------------|
| 257                              | 11.2                                 | 1.4                                                    |
| 291                              | 22.4                                 | 2.8                                                    |
| 313                              | 24.9                                 | 3.1                                                    |
| 315                              | 34.2                                 | 4.3                                                    |
| 351                              | 39.2                                 | 4.9                                                    |
| 395                              | 86.0                                 | 10.7                                                   |
| 422                              | 87.3                                 | 10.9                                                   |
| 451                              | 146.2                                | 18.3                                                   |
| 459                              | 129.4                                | 16.2                                                   |
| 498                              | 224.7                                | 28.0                                                   |
| 516                              | 248.4                                | 31.0                                                   |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.460 |
| 0.002096/400°F = | 0.995 |
| 0.001876/500°F = | 1.426 |
| 0.001697/600°F = | 1.776 |

Activation Energy = 8,969 cal/mole  
Pre-exponential Factor =  $1.265 \times 10^5$

TABLE D-54  
CLAY TREATED JP-4 WITH 35%  
AROMATICS, ANTIOXIDANT AT  
MINIMUM EFFECTIVE CONCENTRATION

| <i>ECA Test Temperature (°F)</i> | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|----------------------------------|--------------------------------------|--------------------------------------------------------|
| 262                              | 13.6                                 | 1.7                                                    |
| 284                              | 17.3                                 | 2.2                                                    |
| 321                              | 32.2                                 | 4.0                                                    |
| 351                              | 42.4                                 | 5.3                                                    |
| 406                              | 79.6                                 | 9.9                                                    |
| 410                              | 76.0                                 | 9.5                                                    |
| 448                              | 102.5                                | 12.8                                                   |
| 488                              | 206.6                                | 25.8                                                   |
| 494                              | 194.3                                | 24.3                                                   |
| 546                              | 245.7                                | 30.7                                                   |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.454 |
| 0.002096/400°F = | 0.962 |
| 0.001876/500°F = | 1.372 |
| 0.001697/600°F = | 1.703 |

Activation Energy = 8,515 cal/mole  
Pre-exponential Factor =  $7.263 \times 10^4$

TABLE D-55  
CLAY TREATED JP-4 WITH 35%  
AROMATICS, ANTIOXIDANT AT  
MIDSPECIFICATION CONCENTRATION

| ECA Test Temperature (°F) | Parts per Million of Peroxide | Milliequivalents of Oxygen per Kilogram of Fuel |
|---------------------------|-------------------------------|-------------------------------------------------|
| 256                       | 11.9                          | 1.5                                             |
| 287                       | 16.3                          | 2.0                                             |
| 311                       | 22.4                          | 2.8                                             |
| 359                       | 48.4                          | 6.0                                             |
| 394                       | 68.8                          | 8.6                                             |
| 438                       | 88.2                          | 11.0                                            |
| 483                       | 159.3                         | 19.9                                            |
| 498                       | 191.0                         | 23.9                                            |
| 529                       | 164.7                         | 20.6                                            |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.423 |
| 0.002096/400°F = | 0.918 |
| 0.001876/500°F = | 1.317 |
| 0.001697/600°F = | 1.640 |

Activation Energy = 8,292 cal/mole  
Pre-exponential Factor =  $5.189 \times 10^4$

TABLE D-56  
CLAY TREATED JP-4 WITH 35%  
AROMATICS, ANTIOXIDANT AT  
MAXIMUM ALLOWABLE CONCENTRATION

| ECA Test Temperature (°F) | Parts per Million of Peroxide | Milliequivalents of Oxygen per Kilogram of Fuel |
|---------------------------|-------------------------------|-------------------------------------------------|
| 271                       | 13.7                          | 1.7                                             |
| 304                       | 20.1                          | 2.5                                             |
| 351                       | 34.8                          | 4.3                                             |
| 353                       | 32.1                          | 4.0                                             |
| 402                       | 61.1                          | 7.6                                             |
| 429                       | 76.1                          | 9.5                                             |
| 490                       | 136.2                         | 17.0                                            |
| 529                       | 198.4                         | 24.8                                            |
| 538                       | 191.3                         | 23.9                                            |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.375 |
| 0.002096/400°F = | 0.866 |
| 0.001876/500°F = | 1.262 |
| 0.001697/600°F = | 1.583 |

Activation Energy = 8,234 cal/mole  
Pre-exponential Factor =  $4.329 \times 10^4$

TABLE D-57  
CLAY TREATED JP-4 WITH 35%  
AROMATICS, ANTIOXIDANT AT TWICE  
MAXIMUM ALLOWABLE CONCENTRATION

| <i>ECA Test<br/>Temperature<br/>(°F)</i> | <i>Parts per Million<br/>of Peroxide</i> | <i>Milliequivalents of<br/>Oxygen per<br/>Kilogram of Fuel</i> |
|------------------------------------------|------------------------------------------|----------------------------------------------------------------|
| 262                                      | 12.2                                     | 1.5                                                            |
| 310                                      | 19.2                                     | 2.4                                                            |
| 313                                      | 21.3                                     | 2.7                                                            |
| 356                                      | 33.8                                     | 4.2                                                            |
| 394                                      | 50.4                                     | 6.3                                                            |
| 434                                      | 100.3                                    | 12.5                                                           |
| 482                                      | 124.3                                    | 15.5                                                           |
| 538                                      | 141.7                                    | 17.7                                                           |

**Linear Regression Data:**

$$0.002369/300^{\circ}\text{F} = 0.373$$

$$0.002096/400^{\circ}\text{F} = 0.838$$

$$0.001876/500^{\circ}\text{F} = 1.213$$

$$0.001697/600^{\circ}\text{F} = 1.516$$

Activation Energy = 7,787 cal/mole  
Pre-exponential Factor =  $2.534 \times 10^4$

TABLE D-58  
CLAY TREATED JP-4 WITH 35%  
AROMATICS, CORROSION INHIBITOR  
AT TWICE MAXIMUM ALLOWABLE  
CONCENTRATION

| <i>ECA Test<br/>Temperature<br/>(°F)</i> | <i>Parts per Million<br/>of Peroxide</i> | <i>Milliequivalents of<br/>Oxygen per<br/>Kilogram of Fuel</i> |
|------------------------------------------|------------------------------------------|----------------------------------------------------------------|
| 273                                      | 14.3                                     | 1.8                                                            |
| 285                                      | 13.9                                     | 2.5                                                            |
| 296                                      | 22.3                                     | 2.8                                                            |
| 349                                      | 53.4                                     | 6.7                                                            |
| 404                                      | 94.4                                     | 11.8                                                           |
| 443                                      | 133.6                                    | 16.7                                                           |
| 496                                      | 224.7                                    | 28.1                                                           |
| 499                                      | 241.6                                    | 30.2                                                           |

**Linear Regression Data:**

$$0.002369/300^{\circ}\text{F} = 0.478$$

$$0.002096/400^{\circ}\text{F} = 1.034$$

$$0.001876/500^{\circ}\text{F} = 1.483$$

$$0.001697/600^{\circ}\text{F} = 1.846$$

Activation Energy = 9,330 cal/mole  
Pre-exponential Factor =  $2.026 \times 10^5$

TABLE D-59  
 CLAY TREATED JP-4 WITH 35%  
 AROMATICS, CORROSION INHIBITOR  
 AT MAXIMUM ALLOWABLE CONCENTRATION

| <i>ECA Test Temperature (°F)</i> | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|----------------------------------|--------------------------------------|--------------------------------------------------------|
| 273                              | 16.7                                 | 2.1                                                    |
| 291                              | 23.2                                 | 2.9                                                    |
| 343                              | 48.3                                 | 6.0                                                    |
| 400                              | 89.8                                 | 11.2                                                   |
| 446                              | 149.2                                | 18.7                                                   |
| 493                              | 218.7                                | 27.3                                                   |
| 527                              | 265.3                                | 33.2                                                   |

**Linear Regression Data:**

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.516 |
| 0.002096/400°F = | 1.038 |
| 0.001876/500°F = | 1.459 |
| 0.001697/600°F = | 1.800 |

Activation Energy = 8,749 cal/mole  
 Pre-exponential Factor =  $1.108 \times 10^5$

TABLE D-60  
 CLAY TREATED JP-4 WITH 35%  
 AROMATICS, CORROSION INHIBITOR  
 AT MIDSPECIFICATION CONCENTRATION

| <i>ECA Test Temperature (°F)</i> | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|----------------------------------|--------------------------------------|--------------------------------------------------------|
| 280                              | 16.2                                 | 2.0                                                    |
| 281                              | 18.1                                 | 2.3                                                    |
| 396                              | 76.3                                 | 9.5                                                    |
| 531                              | 264.7                                | 45.6                                                   |
| 540                              | 291.5                                | 36.4                                                   |

**Linear Regression Data:**

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.456 |
| 0.002096/400°F = | 1.016 |
| 0.001876/500°F = | 1.467 |
| 0.001697/600°F = | 1.833 |

Activation Energy = 9,383 cal/mole  
 Pre-exponential Factor =  $2.054 \times 10^5$

TABLE D-61  
CLAY TREATED JP-4 WITH 35%  
AROMATICS, CORROSION INHIBITOR  
AT MINIMUM EFFECTIVE CONCENTRATION

| <i>ECA Test Temperature</i><br>(°F) | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|-------------------------------------|--------------------------------------|--------------------------------------------------------|
| 296                                 | 18.9                                 | 2.4                                                    |
| 297                                 | 22.6                                 | 2.7                                                    |
| 399                                 | 82.7                                 | 10.3                                                   |
| 520                                 | 258.6                                | 32.3                                                   |
| 539                                 | 262.2                                | 32.8                                                   |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.440 |
| 0.002096/400°F = | 0.978 |
| 0.001876/500°F = | 1.411 |
| 0.001697/600°F = | 1.763 |

Activation Energy = 9,019 cal/mole  
Pre-exponential Factor =  $1.281 \times 10^5$

TABLE D-62  
CLAY TREATED JP-4 WITH 35%  
AROMATICS, ICING INHIBITOR  
AT THREE TIMES MAXIMUM  
ALLOWABLE CONCENTRATION

| <i>ECA Test Temperature</i><br>(°F) | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|-------------------------------------|--------------------------------------|--------------------------------------------------------|
| 287                                 | 17.8                                 | 2.2                                                    |
| 292                                 | 23.4                                 | 2.9                                                    |
| 405                                 | 85.3                                 | 10.7                                                   |
| 502                                 | 194.6                                | 24.3                                                   |
| 513                                 | 254.3                                | 31.8                                                   |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.472 |
| 0.002096/400°F = | 0.992 |
| 0.001876/500°F = | 1.419 |
| 0.001697/600°F = | 1.762 |

Activation Energy = 8,795 cal/mole  
Pre-exponential Factor =  $1.056 \times 10^5$

TABLE D-63  
CLAY TREATED JP-4 WITH 35%  
AROMATICS, ICING INHIBITOR AT  
LOW RELATIVE CONCENTRATION  
RELATIVE TO MAXIMUM

| ECA Test Temperature (°F) | Parts per Million of Peroxide | Milliequivalents of Oxygen per Kilogram of Fuel |
|---------------------------|-------------------------------|-------------------------------------------------|
| 296                       | 20.3                          | 2.5                                             |
| 302                       | 22.4                          | 2.8                                             |
| 398                       | 83.4                          | 10.4                                            |
| 494                       | 197.3                         | 24.7                                            |
| 507                       | 233.7                         | 29.2                                            |

Linear Regression Data:

$$0.002369/300^{\circ}\text{F} = 0.441$$

$$0.002096/400^{\circ}\text{F} = 0.992$$

$$0.001876/500^{\circ}\text{F} = 1.436$$

$$0.001697/600^{\circ}\text{F} = 1.796$$

Activation Energy = 9,241 cal/mole  
Pre-exponential Factor =  $1.674 \times 10^5$

TABLE D-64  
CLAY TREATED JP-4 WITH 35%  
AROMATICS, CONDUCTIVITY ADDITIVE  
AT THREE TIMES MAXIMUM  
ALLOWABLE CONCENTRATION

| ECA Test Temperature (°F) | Parts per Million of Peroxide | Milliequivalents of Oxygen per Kilogram of Fuel |
|---------------------------|-------------------------------|-------------------------------------------------|
| 294                       | 19.7                          | 2.5                                             |
| 292                       | 22.6                          | 2.8                                             |
| 356                       | 49.8                          | 6.2                                             |
| 396                       | 79.6                          | 9.9                                             |
| 438                       | 140.6                         | 17.6                                            |
| 488                       | 228.6                         | 28.6                                            |
| 514                       | 258.6                         | 32.3                                            |
| 517                       | 271.4                         | 33.9                                            |

Linear Regression Data:

$$0.002369/300^{\circ}\text{F} = 0.469$$

$$0.002096/400^{\circ}\text{F} = 1.027$$

$$0.001876/500^{\circ}\text{F} = 1.478$$

$$0.001697/600^{\circ}\text{F} = 1.843$$

Activation Energy = 9,365 cal/mole  
Pre-exponential Factor =  $2.069 \times 10^5$

TABLE D-65  
CLAY TREATED JP-4 WITH 35%  
AROMATICS, CONDUCTIVITY ADDITIVE  
AT TWICE MAXIMUM ALLOWABLE  
CONCENTRATION

| <i>ECA Test Temperature</i><br>(°F) | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|-------------------------------------|--------------------------------------|--------------------------------------------------------|
| 290                                 | 21.8                                 | 2.7                                                    |
| 284                                 | 18.6                                 | 2.3                                                    |
| 349                                 | 47.2                                 | 5.9                                                    |
| 391                                 | 77.2                                 | 9.6                                                    |
| 425                                 | 113.5                                | 14.2                                                   |
| 486                                 | 194.3                                | 24.3                                                   |
| 513                                 | 239.8                                | 30.0                                                   |
| 516                                 | 241.5                                | 30.2                                                   |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.490 |
| 0.002096/400°F = | 1.014 |
| 0.001876/500°F = | 1.437 |
| 0.001697/600°F = | 1.779 |

Activation Energy = 8,790 cal/mole  
Pre-exponential Factor =  $1.094 \times 10^5$

TABLE D-66  
CLAY TREATED JP-4 WITH 35%  
AROMATICS, CONDUCTIVITY ADDITIVE  
AT MAXIMUM ALLOWABLE CONCENTRATION

| <i>ECA Test Temperature</i><br>(°F) | <i>Parts per Million of Peroxide</i> | <i>Milliequivalents of Oxygen per Kilogram of Fuel</i> |
|-------------------------------------|--------------------------------------|--------------------------------------------------------|
| 281                                 | 15.9                                 | 2.0                                                    |
| 304                                 | 26.2                                 | 3.3                                                    |
| 357                                 | 44.3                                 | 5.5                                                    |
| 400                                 | 84.3                                 | 10.5                                                   |
| 405                                 | 89.9                                 | 11.2                                                   |
| 440                                 | 124.3                                | 15.5                                                   |
| 492                                 | 208.7                                | 26.1                                                   |
| 526                                 | 256.4                                | 32.1                                                   |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.453 |
| 0.002096/400°F = | 0.998 |
| 0.001876/500°F = | 1.437 |
| 0.001697/600°F = | 1.792 |

Activation Energy = 9,127 cal/mole  
Pre-exponential Factor =  $1.504 \times 10^5$

TABLE D-67  
CLAY TREATED JP-4 WITH 35%  
AROMATICS, CONDUCTIVITY ADDITIVE  
AT MINIMUM EFFECTIVE CONCENTRATION

| ECA Test<br>Temperature<br>(°F) | Parts per Million<br>of Peroxide | Milliequivalents of<br>Oxygen per<br>Kilogram of Fuel |
|---------------------------------|----------------------------------|-------------------------------------------------------|
| 281                             | 17.7                             | 2.2                                                   |
| 301                             | 23.4                             | 2.9                                                   |
| 354                             | 44.8                             | 5.6                                                   |
| 400                             | 72.4                             | 9.0                                                   |
| 399                             | 83.7                             | 10.5                                                  |
| 447                             | 126.3                            | 15.8                                                  |
| 499                             | 236.4                            | 29.6                                                  |
| 540                             | 258.3                            | 32.3                                                  |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.461 |
| 0.002096/400°F = | 0.988 |
| 0.001876/500°F = | 1.412 |
| 0.001697/600°F = | 1.756 |

Activation Energy = 8,825 cal/mole  
Pre-exponential Factor =  $1.069 \times 10^5$

TABLE D-68  
CLAY TREATED JP-4 WITH 35%  
AROMATICS, CONDUCTIVITY ADDITIVE  
AT THREE TIMES MAXIMUM  
ALLOWABLE CONCENTRATION

| ECA Test<br>Temperature<br>(°F) | Parts per Million<br>of Peroxide | Milliequivalents of<br>Oxygen per<br>Kilogram of Fuel |
|---------------------------------|----------------------------------|-------------------------------------------------------|
| 294                             | 19.7                             | 2.5                                                   |
| 296                             | 24.6                             | 3.1                                                   |
| 339                             | 48.7                             | 6.1                                                   |
| 384                             | 79.6                             | 9.9                                                   |
| 430                             | 121.7                            | 15.2                                                  |
| 475                             | 187.8                            | 23.5                                                  |
| 508                             | 257.7                            | 32.2                                                  |
| 509                             | 239.6                            | 30.0                                                  |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.501 |
| 0.002096/400°F = | 1.039 |
| 0.001876/500°F = | 1.473 |
| 0.001697/600°F = | 1.825 |

Activation Energy = 9,021 cal/mole  
Pre-exponential Factor =  $1.481 \times 10^5$

TABLE D-69  
CLAY TREATED JP-4 WITH 35%  
AROMATICS, METAL DEACTIVATOR  
AT TWICE MAXIMUM ALLOWABLE  
CONCENTRATION

| ECA Test<br>Temperature<br>(°F) | Parts per Million<br>of Peroxide | Milliequivalents of<br>Oxygen per<br>Kilogram of Fuel |
|---------------------------------|----------------------------------|-------------------------------------------------------|
| 294                             | 23.6                             | 2.9                                                   |
| 298                             | 21.2                             | 2.6                                                   |
| 345                             | 47.2                             | 5.9                                                   |
| 390                             | 76.3                             | 9.5                                                   |
| 435                             | 119.3                            | 14.9                                                  |
| 485                             | 197.9                            | 27.7                                                  |
| 520                             | 274.8                            | 34.4                                                  |
| 423                             | 269.4                            | 33.7                                                  |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.483 |
| 0.002096/400°F = | 1.020 |
| 0.001876/500°F = | 1.452 |
| 0.001697/600°F = | 1.802 |

Activation Energy = 8,990 cal/mole  
Pre-exponential Factor =  $1.369 \times 10^5$

TABLE D-70  
CLAY TREATED JP-4 WITH 35%  
AROMATICS, METAL DEACTIVATOR  
AT MAXIMUM ALLOWABLE CONCENTRATION

| ECA Test<br>Temperature<br>(°F) | Parts per Million<br>of Peroxide | Milliequivalents of<br>Oxygen per<br>Kilogram of Fuel |
|---------------------------------|----------------------------------|-------------------------------------------------------|
| 286                             | 19.8                             | 2.5                                                   |
| 288                             | 22.6                             | 2.8                                                   |
| 350                             | 49.6                             | 6.2                                                   |
| 394                             | 85.3                             | 10.7                                                  |
| 433                             | 127.8                            | 16.0                                                  |
| 485                             | 209.8                            | 26.2                                                  |
| 518                             | 238.4                            | 29.8                                                  |

Linear Regression Data:

|                  |       |
|------------------|-------|
| 0.002369/300°F = | 0.512 |
| 0.002096/400°F = | 1.033 |
| 0.001876/500°F = | 1.453 |
| 0.001697/600°F = | 1.793 |

Activation Energy = 8,734 cal/mole  
Pre-exponential Factor =  $1.078 \times 10^5$

TABLE D-71  
CLAY TREATED JP-4 WITH 35%  
AROMATICS, METAL DEACTIVATOR  
AT MIDSPECIFICATION CONCENTRATION

| <i>ECA Test<br/>Temperature<br/>(°F)</i> | <i>Parts per Million<br/>of Peroxide</i> | <i>Milliequivalents of<br/>Oxygen per<br/>Kilogram of Fuel</i> |
|------------------------------------------|------------------------------------------|----------------------------------------------------------------|
| 277                                      | 17.8                                     | 2.2                                                            |
| 296                                      | 23.9                                     | 3.0                                                            |
| 345                                      | 48.3                                     | 6.0                                                            |
| 371                                      | 63.5                                     | 7.9                                                            |
| 394                                      | 85.6                                     | 10.7                                                           |
| 399                                      | 86.3                                     | 10.8                                                           |
| 444                                      | 142.7                                    | 17.8                                                           |
| 496                                      | 197.6                                    | 24.7                                                           |
| 529                                      | 269.5                                    | 33.7                                                           |

  

| <u>Linear Regression Data:</u> |       |
|--------------------------------|-------|
| 0.002369/300°F =               | 0.513 |
| 0.002096/400°F =               | 1.027 |
| 0.001876/500°F =               | 1.441 |
| 0.001697/600°F =               | 1.777 |

  

|                                              |
|----------------------------------------------|
| Activation Energy = 8.613 cal/mole           |
| Pre-exponential Factor = $9.354 \times 10^4$ |