Pouria Mistani

Data Scientist with physics background

- +1 951 386 9775
- Nttp://www.pouriamistani.com
- in My LinkedIn Profile
- p.a.mistani@gmail.com

Hard Skills -

- Multi-Variable Calculus, Statistics, Linear Algebra, Stochastic Processes
- Machine Learning,
 Scientific Computing
- Data Intuition Extraction
- </> Python, C/C++, HTML
- Tensorflow, Keras, Scikit-Learn, Scipy, Pandas, Boost, GSL
- SQL, Apache Spark
- Matplotlib, ParaView, Seaborn
- ♣ MPI, Petsc
- Linux, Mac OS, Windows

Soft Skills -

- Multi-disciplinary

 Fast-paced

 Critical Thinking

 Problem Solving

 Team Player
 - 6 years experience in several scientific collaborations
- Communication
 - 10 years of teaching experience

Working Experience

	Developed two parallel computing softwares to numerically integrate
	nonlinear PDEs. Also I developed a stochastic model based on data.
2013 – 2016	Research/Teaching Assistant University of California Riverside
	Analyzed terabytes of high-dimensional datasets produced by the
	illustris simulations of the Universe, and developed a theory for
	assembly of dwarf galaxies from data.
2014 – 2014	Visiting Scholar Harvard University
	Developed several Python routines to effectively filter through

Research/Teaching Assistant

illustris datasets.

2012 – 2013 Scientific Software Developer
I was involved in development of a real-time star identification

system. This project involved data acquisition and calibration of optoelectronic devices, followed by image processing and fast search algorithms for pattern recognition.

University of California Santa Barbara

Education

2016 - now

2016 – now	PhD in Mechanical Engineering U	Iniversity of California, Santa Barbara
	Focus: Computational Science and Er	ngineering (GPA: 3.95/4.0)
2013 – 2016	MS Physics	University of California, Riverside
	Focus: Computational Astrophysics (GPA: 3.95/4.0)	
2009 – 2013	BS Physics	Sharif University of Technology
	Focus: Astronomy (GPA: 18.45/20.0)	
2008 – 2013	BS Aerospace Engineering	Sharif University of Technology
	Focus: Astronautics (GPA: 18.45/20.	0)

Projects

Electroporation </>
C++, Petsc, Python, Scikit-Learn, Scipy, Tensorflow, Keras,
(Biophysics) Visualization, Data Wrangling, Linux

(Biophysics) Visualization, Data Wrangling, Linu:
2016-now We numerically solved partial different

We numerically solved partial differential equations with nonlinear boundary conditions on tens of thousands of interfaces with arbitrary geometries. We used a finite volume discretization on adaptive interface-fitted Voronoi grids. I implemented more than 5,000 lines of parallel C++ code, tested, then ran it on Stampede2 supercomputer using 2,048 processors for 24 hours. I simulated the evolution of more than 200 million Voronoi cells over 100 timesteps. The generated raw datasets were $\geq 25~\mathrm{GB}$ per snapshot, which I processed on-the-fly to generate a total of $100~\mathrm{MB}$ reduced measurements per simulation for use in post-processing. I used ParaView in parallel over 256 processors to visualize the results, then I extensively analyzed the datasets in Python (I wrote a class with more than 2,000 lines of code performing a variety of statistical analysis over $\sim 1,000,000$ time series). The product is a high fidelity reduced model that predicts observations with minimal computations, e.g. on your smartphone.

Epitaxy (Materials) 2016-2019 </> C++, Petsc, Boost, p4est, Visualization, Linux
We developed a novel approach for efficiently simulating epitaxial growth using the island dynamics model, i.e. an evolutionary nonlinear PDE model. In this approach we made use of a forest of quadtree grids using p4est library in a parallel environment. This work extended previous studies by combining mesh adaptivity and multi-core parallelism that enabled simulations of mound formation in orders of magnitude larger domains. We used C++ using parallel framework Petsc as an interface to BLAS and LAPACK linear algebra libraries, as well as Boost for fast mathematical operations.

Dwarf Galaxies (Astrophysics) 2014-2016 </> Python, C, MPI, GSL, matplotlib, Scipy, Scikit-Learn, Pandas,
Data Wrangling, Linux

I analyzed $250\mathrm{TB}$ of correlated datasets generated by the Illustris cosmological and hydrodynamical simulation suite to study the assembly of dwarf galaxies. I developed a semi-analytic model for the formation and stripping of globular clusters that support our findings.

Pouria Mistani

Data Scientist with physics background

About Me

I build multiscale mathematical models from big data. I develop parallel scientific computing softwares (multi-core and GPU) to generate and analyze large datasets, which I then use to develop physics-informed predictive models at different scales of time and length. These models can accelerate decision making or enhance complex technological, biomedical and financial processes.

Persona

Barskills -

Memberships

Society for Industrial and Applied Mathematics, USA

National Elite Foundation, Iran

Awards

2019	Travel award for SIAM conference on computational science
	and engineering Spokane, Washington, USA Finalist for the 3rd edition of the IEEE entrepreneurship forum
2017	and startup contest IEEE Robotics and Automation Society
2016	IEEE RAS Awarded 740,082 SUs computing allocation on Stampede
2010	supercomputer XSEDE TACC
2015	FIELDS fellowship for big data and visualization NASA MIRO program
2015	Michael Devirian award for outstanding research by a 2nd year
	graduate student University of California, Riverside
2013	Winner of dean's distinguished fellowship award University of California, Riverside
2013	Merit based admission offer to the graduate program in aerospace engineering
	Sharif University of Technology
2013	Ranked 1st among BS students in department of aerospace engineering
2000	Sharif University of Technology Top 0.1% (rank 258) among more than 300,000 high school
2008	students in the national university entrance exam Ministry of Education, Iran
2007	4 year "National Elite Foundation Undergraduate Fellowship
0007	Award" Ministry of Education, Iran
2007	Silver medal in the 3rd national olympiad in astronomy Ministry of Education, Iran
	•

Publications

2019	A parallel Voronoi-based approach for meso-scale simulations of cell aggregate electropermeabilization Pouria Mistani, A Guittet, C Poignard, F	Journal of Computational Physics
2019	Towards a tensor network representation of complex systems Pouria Mistani, S Pakravan, F Gibou	Springer International Publishing
	Tensor network renormalization as	
2019	an ultra-calculus for complex system	Springer International Publishing
	dynamics Pouria Mistani, S Pakravan, F Gibou	
2018	The island dynamics model on parallel quadtree grids Pouria Mistani, D Bochlov, A Guittet, J Sch	Journal of Computational Physics
	F Gibou	illelder, D Margetis, C Ratscii,
2016	On the assembly of dwarf galaxies in clusters and their efficient formation of globular clusters Monthly Not Monthly Not globular clusters	cices of Royal Astronomical Society
	Pouria Mistani, L Sales, A Pillepich, R S berger, D Nelson, V Rogriguez-Gomez, F	_

Teaching

ME	Engineering Dynamics (main instructor)	UC Santa Barbara
ME	Statics	UC Santa Barbara
ME	Fluid Mechanics I, II (twice)	UC Santa Barbara
ME	Engineering Vibrations (twice)	UC Santa Barbara
PHYS	Intermediate Mechanics	UC Santa Barbara
PHYS	General Physics Discussions (sections 2A	u, 2B, 2C) UC Riverside
PHYS	Physics General Labs (sections 2LA, 2LC,	2C) UC Riverside
AE	Orbital Mechanics (5 semesters)	Sharif University of Technology
AE	Aircraft Design II	Sharif University of Technology