

Seminar Approximation Algorithms

Approximating Nash Social Welfare under Submodular Valuations through (Un)Matchings

Based on a paper of the same title by J. Garg, P. Kulkarni, and R. Kulkarni

Zeno Adrian Weil Supervised by Dr Giovanna Varricchio

30th July 2023 · Algorithms and Complexity (Prof. Dr Martin Hoefer)

What is the issue?

What is the issue?

We need to distribute goods amongst recipients

What is the issue?

We need to distribute goods amongst recipients efficiently

What is the issue?

We need to distribute goods amongst recipients *efficiently* and *fairly*.

What is the issue?

We need to distribute goods amongst recipients *efficiently* and *fairly*.

Where is this encountered?

What is the issue?

We need to distribute goods amongst recipients efficiently and fairly.

Where is this encountered?

procurement

What is the issue?

We need to distribute goods amongst recipients *efficiently* and *fairly*.

Where is this encountered?

- procurement
- satellites

What is the issue?

We need to distribute goods amongst recipients efficiently and fairly.

Where is this encountered?

- procurement
- satellites
- water withdrawal

Table of Contents

- 1 Preliminaries
 - Allocations
 - Valuation Functions
 - Maximum Nash Social Welfare Problem

2 RepReMatch

- Naïve Approach
- The Algorithm
- Analysing Phases I & III
- Analysing Phase II
- 3 Conclusion

Allocations

Allocations

GOETHE UNIVERSITÄT

Setting:

Allocations

Setting:

recipients: set \mathscr{A} of n agents

Allocations

Setting:

- **recipients**: set \mathcal{A} of n agents
- **goods**: set \mathcal{G} of m items

Allocations

Setting:

- **recipients**: set \mathscr{A} of n agents
- **goods**: set \mathcal{G} of m items

Definition

An *allocation* is a tuple $x = (x_i)_{i \in \mathcal{A}}$ of bundles $x_i \subset \mathcal{G}$

Allocations

Setting:

- **recipients**: set \mathcal{A} of n agents
- **goods**: set \mathcal{G} of m items

Definition

An *allocation* is a tuple $\mathbf{x} = (\mathbf{x}_i)_{i \in \mathcal{A}}$ of bundles $\mathbf{x}_i \subset \mathcal{G}$ such that each item is element of precisely one bundle.

Allocations

Setting:

- **recipients**: set \mathcal{A} of n agents
- **goods**: set \mathcal{G} of m items

Definition

An *allocation* is a tuple $x = (x_i)_{i \in \mathcal{A}}$ of bundles $x_i \subset \mathcal{G}$ such that each item is element of precisely one bundle.

Item *j* is *assigned* to agent *i* if $j \in x_i$.

Allocations

Setting:

- **recipients**: set \mathscr{A} of n agents
- **goods**: set \mathcal{G} of m items

Definition

An *allocation* is a tuple $\mathbf{x} = (\mathbf{x}_i)_{i \in \mathcal{A}}$ of bundles $\mathbf{x}_i \subset \mathcal{G}$ such that each item is element of precisely one bundle.

Item *j* is *assigned* to agent *i* if $j \in x_i$.

But how to measure its efficiency and fairness?

Valuation Functions

Valuation Functions

Requirements:

Valuation Functions

Requirements:

■ monotonically non-decreasing: $v_i(S_1) \le v_i(S_2)$ if $S_1 \subset S_2$

Valuation Functions

Requirements:

- monotonically non-decreasing: $v_i(S_1) \le v_i(S_2)$ if $S_1 \subset S_2$
- **normalised**: $v_i(\emptyset) = 0$

Valuation Functions

Requirements:

- **■** monotonically non-decreasing: $v_i(S_1) \le v_i(S_2)$ if $S_1 \subset S_2$
- **normalised**: $v_i(\emptyset) = 0$

Valuation Functions

Requirements:

- monotonically non-decreasing: $v_i(S_1) \le v_i(S_2)$ if $S_1 \subset S_2$
- normalised: $v_i(\emptyset) = 0$

Types:

additive: $v_i(\mathcal{S}) := \sum_{j \in \mathcal{S}} v_i(j)$

Valuation Functions

Requirements:

- monotonically non-decreasing: $v_i(S_1) \le v_i(S_2)$ if $S_1 \subset S_2$
- normalised: $v_i(\emptyset) = 0$

- **additive**: $v_i(\mathcal{S}) := \sum_{j \in \mathcal{S}} v_i(j)$
- **submodular**: $v_i(S_1 \mid S_2)$

Valuation Functions

Requirements:

- monotonically non-decreasing: $v_i(S_1) \le v_i(S_2)$ if $S_1 \subset S_2$
- **normalised**: $v_i(\emptyset) = 0$

- **additive**: $v_i(\mathcal{S}) := \sum_{j \in \mathcal{S}} v_i(j)$
- submodular: $v_i(\mathcal{S}_1 \mid \mathcal{S}_2) := v_i(\mathcal{S}_1 \cup \mathcal{S}_2) v_i(\mathcal{S}_2)$

Valuation Functions

Requirements:

- monotonically non-decreasing: $v_i(S_1) \le v_i(S_2)$ if $S_1 \subset S_2$
- **normalised**: $v_i(\emptyset) = 0$

- **additive**: $v_i(\mathcal{S}) := \sum_{j \in \mathcal{S}} v_i(j)$
- submodular: $v_i(\mathcal{S}_1 \mid \mathcal{S}_2) := v_i(\mathcal{S}_1 \cup \mathcal{S}_2) v_i(\mathcal{S}_2)$
 - diminishing returns

Asymmetric Maximum Nash Social Welfare Problem

Problem

$$x^* \stackrel{!}{=} \arg \max \{ \text{NSW}(x) \}$$

 $x \in X_{\mathscr{A}}(\mathscr{C})$

■ $X_{\mathcal{A}}(\mathcal{G})$: all possible allocations

Problem

$$x^* \stackrel{!}{=} \arg \max \{ \text{NSW}(x) \}$$

 $x \in X_{\mathscr{A}}(\mathscr{C})$

- $X_{\mathcal{A}}(\mathcal{G})$: all possible allocations
- \bullet η_i : agent weight

Problem

$$x^* \stackrel{!}{=} \underset{x \in X_{\mathscr{A}}(\mathscr{C})}{\operatorname{arg max}} \{ \operatorname{NSW}(x) \} \qquad \text{with} \qquad \operatorname{NSW}(x) := \Big(\prod_{i \in \mathscr{A}} v_i(x_i)^{\eta_i} \Big)^{1/\sum_{i \in \mathscr{A}} \eta_i}$$

- $X_{\mathcal{A}}(\mathcal{G})$: all possible allocations
- \bullet η_i : agent weight

GOETHE UNIVERSITÄT

Asymmetric Maximum Nash Social Welfare Problem

Problem

$$x^* \stackrel{!}{=} \underset{x \in X_{\mathscr{A}}(\mathscr{C})}{\operatorname{arg max}} \{ \operatorname{NSW}(x) \} \qquad \text{with} \qquad \operatorname{NSW}(x) := \Big(\prod_{i \in \mathscr{A}} v_i(x_i)^{\eta_i} \Big)^{1/\sum_{i \in \mathscr{A}} \eta_i}$$

- $X_{\mathcal{A}}(\mathcal{G})$: all possible allocations
- \bullet η_i : agent weight

The NSW strikes a middle ground between efficiency and fairness!

GOETHE UNIVERSITÄT

Asymmetric Maximum Nash Social Welfare Problem

Problem

$$x^* \stackrel{!}{=} \underset{x \in X_{\mathscr{A}}(\mathscr{C})}{\operatorname{arg max}} \{ \operatorname{NSW}(x) \} \qquad \text{with} \qquad \operatorname{NSW}(x) := \Big(\prod_{i \in \mathscr{A}} v_i(x_i)^{\eta_i} \Big)^{1/\sum_{i \in \mathscr{A}} \eta_i}$$

- $X_{\mathcal{A}}(\mathcal{G})$: all possible allocations
- \bullet η_i : agent weight

The NSW strikes a middle ground between efficiency and fairness!

Is there a polynomial-time algorithm with an approximation factor ...

Problem

$$x^* \stackrel{!}{=} \underset{x \in X_{\mathscr{A}}(\mathscr{C})}{\operatorname{arg max}} \{ \operatorname{NSW}(x) \} \qquad \text{with} \qquad \operatorname{NSW}(x) := \Big(\prod_{i \in \mathscr{A}} v_i(x_i)^{\eta_i} \Big)^{1/\sum_{i \in \mathscr{A}} \eta_i}$$

- $X_{\mathcal{A}}(\mathcal{G})$: all possible allocations
- \bullet η_i : agent weight

The NSW strikes a middle ground between efficiency and fairness!

Is there a polynomial-time algorithm with an approximation factor \dots

Problem

$$x^* \stackrel{!}{=} \underset{x \in X_{\mathscr{A}}(\mathscr{C})}{\operatorname{arg max}} \{ \operatorname{NSW}(x) \} \qquad \text{with} \qquad \operatorname{NSW}(x) := \Big(\prod_{i \in \mathscr{A}} v_i(x_i)^{\eta_i} \Big)^{1/\sum_{i \in \mathscr{A}} \eta_i}$$

- $X_{\mathcal{A}}(\mathcal{G})$: all possible allocations
- \bullet η_i : agent weight

The NSW strikes a middle ground between efficiency and fairness!

Is there a polynomial-time algorithm with an approximation factor ...

 \blacksquare ... dependent on n?

Asymmetric Maximum Nash Social Welfare Problem

Problem

$$x^* \stackrel{!}{=} \underset{x \in X_{\mathscr{A}}(\mathscr{C})}{\operatorname{arg max}} \{ \operatorname{NSW}(x) \} \qquad \text{with} \qquad \operatorname{NSW}(x) := \Big(\prod_{i \in \mathscr{A}} v_i(x_i)^{\eta_i} \Big)^{1/\sum_{i \in \mathscr{A}} \eta_i}$$

- $X_{\mathcal{A}}(\mathcal{G})$: all possible allocations
- \bullet η_i : agent weight

The NSW strikes a middle ground between efficiency and fairness!

Is there a polynomial-time algorithm with an approximation factor ...

- \blacksquare ... dependent on n?
- ... independent from *m*?

Naïve Approach

GOETHE UNIVERSITÄT

Greedy algorithm:

Naïve Approach

GOETHE UNIVERSITÄT

Greedy algorithm:

Naïve Approach

Greedy algorithm:

Naïve Approach

GOETHE UNIVERSITÄT

Greedy algorithm:

Naïve Approach

Greedy algorithm:

Naïve Approach

GOETHE UNIVERSITÄT

- repeatedly use maximum weight matchings
- fails because of missing foresight

Naïve Approach

GOETHE UNIVERSITÄT

- repeatedly use maximum weight matchings
- fails because of missing foresight
 - additive valuations: sort items by valuation $\Rightarrow 2n$ -approximation (*SMatch*)

Naïve Approach

GOETHE UNIVERSITÄT

- repeatedly use maximum weight matchings
- fails because of missing foresight
 - additive valuations: sort items by valuation ⇒ 2*n*-approximation (*SMatch*)
 - submodular valuations: lowest valuation approximable only by $\Omega(\sqrt{m/\ln m})$

Naïve Approach

GOETHE UNIVERSITÄT

- repeatedly use maximum weight matchings
- fails because of missing foresight
 - additive valuations: sort items by valuation ⇒ 2*n*-approximation (*SMatch*)
 - **submodular valuations**: lowest valuation approximable only by $\Omega(\sqrt{m/\ln m})$

Key Ideas of the Algorithm

GOETHE UNIVERSITÄT

We need change the past in three phases:

Key Ideas of the Algorithm

GOETHE UNIVERSITÄT

We need change the past in three phases:

Key Ideas of the Algorithm

GOETHE UNIVERSITÄT

We need change the past in three phases:

Key Ideas of the Algorithm

GOETHE UNIVERSITÄT

We need change the past in three phases:

Key Ideas of the Algorithm

GOETHE UNIVERSITÄT

We need change the past in three phases:

Key Ideas of the Algorithm

GOETHE UNIVERSITÄT

We need change the past in three phases:

Key Ideas of the Algorithm

We need change the past in three phases:

Phase I Assign enough high-value items temporarily.

Key Ideas of the Algorithm

We need change the past in three phases:

Phase I Assign enough high-value items temporarily.

Key Ideas of the Algorithm

We need change the past in three phases:

Phase I Assign enough high-value items temporarily.

Key Ideas of the Algorithm

We need change the past in three phases:

Phase I Assign enough high-value items temporarily.

Key Ideas of the Algorithm

GOETHE UNIVERSITÄT

We need change the past in three phases:

Phase I Assign enough high-value items temporarily.

Key Ideas of the Algorithm

GOETHE UNIVERSITÄT

We need change the past in three phases:

Phase I Assign enough high-value items temporarily.

Phase II Assign the remaining items definitely.

Phase III Re-assign the items of phase I **definitely**.

Key Ideas of the Algorithm

GOETHE UNIVERSITÄT

We need change the past in three phases:

Phase I Assign enough high-value items temporarily.

Phase II Assign the remaining items definitely.

Phase III Re-assign the items of phase I definitely.

Key Ideas of the Algorithm

GOETHE UNIVERSITÄT

We need change the past in three phases:

Phase I Assign enough high-value items temporarily.

Phase II Assign the remaining items definitely.

Phase III Re-assign the items of phase I definitely.

Key Ideas of the Algorithm

We need change the past in three phases:

Phase I Assign enough high-value items temporarily.

Phase II Assign the remaining items definitely.

Phase III Re-assign the items of phase I definitely.

Theorem

RepReMatch guarantees a $2n(\log_2 n + 3)$ -approximation under submodular valuations.

The Algorithm

The Algorithm

GOETHE UNIVERSITÄT

The Algorithm

Phase I:

■ repeat $\lceil \log_2 n \rceil + 1$ times

The Algorithm

- **1** repeat $\lceil \log_2 n \rceil + 1$ times
 - **1** create bipartite graph $(\mathcal{A}, \mathcal{G}, E)$ with edge weights $\eta_i \cdot \log v_i(j)$

The Algorithm

- **1** repeat $\lceil \log_2 n \rceil + 1$ times
 - **1** create bipartite graph $(\mathcal{A}, \mathcal{G}, E)$ with edge weights $\eta_i \cdot \log v_i(j)$
 - 2 compute maximum weight matching

The Algorithm

- **1** repeat $\lceil \log_2 n \rceil + 1$ times
 - **1** create bipartite graph $(\mathcal{A}, \mathcal{G}, E)$ with edge weights $\eta_i \cdot \log v_i(j)$
 - 2 compute maximum weight matching
 - 3 update bundles x_i^{I} & remove assigned items

The Algorithm

Phase I:

- **1** repeat $\lceil \log_2 n \rceil + 1$ times
 - **1** create bipartite graph $(\mathcal{A}, \mathcal{G}, E)$ with edge weights $\eta_i \cdot \log v_i(j)$
 - 2 compute maximum weight matching
 - 3 update bundles x_i^I & remove assigned items

The Algorithm

Phase I:

- **1** repeat $\lceil \log_2 n \rceil + 1$ times
 - **1** create bipartite graph $(\mathcal{A}, \mathcal{G}, E)$ with edge weights $\eta_i \cdot \log v_i(j)$
 - 2 compute maximum weight matching
 - 3 update bundles x_i^{I} & remove assigned items

Phase II:

2 repeat until $\mathcal{G} = \emptyset$

The Algorithm

Phase I:

- **1** repeat $\lceil \log_2 n \rceil + 1$ times
 - **1** create bipartite graph $(\mathcal{A}, \mathcal{G}, E)$ with edge weights $\eta_i \cdot \log v_i(j)$
 - 2 compute maximum weight matching
 - $\mathbf{3}$ update bundles $\mathbf{x}_i^{\mathrm{I}}$ & remove assigned items

- **2** repeat until $\mathcal{G} = \emptyset$
 - **1** create bipartite graph $(\mathcal{A}, \mathcal{G}, E)$ with edge weights $\eta_i \cdot \log v_i(\mathbf{x}_i^{\mathrm{II}} \cup \{j\})$

The Algorithm

Phase I:

- **1** repeat $\lceil \log_2 n \rceil + 1$ times
 - **1** create bipartite graph $(\mathcal{A}, \mathcal{G}, E)$ with edge weights $\eta_i \cdot \log v_i(j)$
 - 2 compute maximum weight matching
 - 3 update bundles x_i^{I} & remove assigned items

- **2** repeat until $\mathcal{G} = \emptyset$
 - **I** create bipartite graph $(\mathcal{A}, \mathcal{G}, E)$ with edge weights $\eta_i \cdot \log v_i(x_i^{\mathbb{I}} \cup \{j\})$
 - 2 compute maximum weight matching

The Algorithm

Phase I:

- **1** repeat $\lceil \log_2 n \rceil + 1$ times
 - **1** create bipartite graph $(\mathcal{A}, \mathcal{G}, E)$ with edge weights $\eta_i \cdot \log v_i(j)$
 - 2 compute maximum weight matching
 - 3 update bundles x_i^{I} & remove assigned items

- **2** repeat until $\mathcal{G} = \emptyset$
 - **I** create bipartite graph $(\mathcal{A}, \mathcal{G}, E)$ with edge weights $\eta_i \cdot \log v_i(x_i^{\mathbb{I}} \cup \{j\})$
 - 2 compute maximum weight matching
 - 3 update bundles x_i^{II} & remove assigned items

The Algorithm

Phase I:

- **1** repeat $\lceil \log_2 n \rceil + 1$ times
 - **1** create bipartite graph $(\mathcal{A}, \mathcal{G}, E)$ with edge weights $\eta_i \cdot \log v_i(j)$
 - 2 compute maximum weight matching
 - **3** update bundles x_i^{I} & remove assigned items

Phase II:

- **2** repeat until $\mathcal{G} = \emptyset$
 - **1** create bipartite graph $(\mathcal{A}, \mathcal{G}, E)$ with edge weights $\eta_i \cdot \log v_i(x_i^{\mathbb{I}} \cup \{j\})$
 - 2 compute maximum weight matching
 - 3 update bundles x_i^{II} & remove assigned items

The Algorithm

Phase I:

- **1** repeat $\lceil \log_2 n \rceil + 1$ times
 - **1** create bipartite graph $(\mathcal{A}, \mathcal{G}, E)$ with edge weights $\eta_i \cdot \log v_i(j)$
 - 2 compute maximum weight matching
 - 3 update bundles x_i^{I} & remove assigned items

Phase II:

- **2** repeat until $\mathcal{G} = \emptyset$
 - **1** create bipartite graph $(\mathcal{A}, \mathcal{G}, E)$ with edge weights $\eta_i \cdot \log v_i(x_i^{\mathbb{I}} \cup \{j\})$
 - 2 compute maximum weight matching
 - 3 update bundles x_i^{II} & remove assigned items

Phase III:

3 create bipartite graph $(\mathcal{A}, \bigcup_{i \in \mathcal{A}} x_i^{\mathrm{I}}, E)$ with edge weights $\eta_i \cdot \log v_i(x_i^{\mathrm{II}} \cup \{j\})$

The Algorithm

Phase I:

- **1** repeat $\lceil \log_2 n \rceil + 1$ times
 - **1** create bipartite graph $(\mathcal{A}, \mathcal{G}, E)$ with edge weights $\eta_i \cdot \log v_i(j)$
 - 2 compute maximum weight matching
 - 3 update bundles x_i^{I} & remove assigned items

Phase II:

- **2** repeat until $\mathcal{G} = \emptyset$
 - **1** create bipartite graph $(\mathcal{A}, \mathcal{G}, E)$ with edge weights $\eta_i \cdot \log v_i(x_i^{\mathbb{I}} \cup \{j\})$
 - 2 compute maximum weight matching
 - 3 update bundles x_i^{II} & remove assigned items

- **3** create bipartite graph $(\mathcal{A}, \bigcup_{i \in \mathcal{A}} \mathbf{x}_i^{\mathrm{I}}, E)$ with edge weights $\eta_i \cdot \log v_i(\mathbf{x}_i^{\mathrm{II}} \cup \{j\})$
- 4 compute maximum weight matching

The Algorithm

Phase I:

- **1** repeat $\lceil \log_2 n \rceil + 1$ times
 - **1** create bipartite graph $(\mathcal{A}, \mathcal{G}, E)$ with edge weights $\eta_i \cdot \log v_i(j)$
 - 2 compute maximum weight matching
 - 3 update bundles x_i^{I} & remove assigned items

Phase II:

- **2** repeat until $\mathcal{G} = \emptyset$
 - **1** create bipartite graph $(\mathcal{A}, \mathcal{G}, E)$ with edge weights $\eta_i \cdot \log v_i(x_i^{\mathbb{I}} \cup \{j\})$
 - 2 compute maximum weight matching
 - 3 update bundles x_i^{II} & remove assigned items

- **3** create bipartite graph $(\mathcal{A}, \bigcup_{i \in \mathcal{A}} \mathbf{x}_i^{\mathrm{I}}, E)$ with edge weights $\eta_i \cdot \log v_i(\mathbf{x}_i^{\mathrm{II}} \cup \{j\})$
- 4 compute maximum weight matching
- **5** create bundles x_i^{III}

Analysing Phases I & III (1/2)

Analysing Phases I & III (1/2)

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Phase I reserves 'high-value' items.

Analysing Phases I & III (1/2)

Phase I reserves 'high-value' items. But what qualifies as 'high-value'?

Analysing Phases I & III (1/2)

Phase I reserves 'high-value' items. But what qualifies as 'high-value'?

Definition

Let $\mathbf{x}_i^* = \{o_i^1, o_i^2, ...\}$ be an optimal bundle.

Analysing Phases I & III (1/2)

Phase I reserves 'high-value' items. But what qualifies as 'high-value'?

Definition

Let $\mathbf{x}_i^* = \{o_i^1, o_i^2, ...\}$ be an optimal bundle. An item $j \in \mathcal{G}$ is **outstanding** if $v_i(j) \ge v_i(o_i^1)$.

Analysing Phases I & III (1/2)

Phase I reserves 'high-value' items. But what qualifies as 'high-value'?

Definition

Let $\boldsymbol{x}_i^* = \left\{o_i^1, o_i^2, \ldots\right\}$ be an optimal bundle. An item $j \in \mathcal{G}$ is **outstanding** if $v_i(j) \geq v_i(o_i^1)$.

⇒ Are enough outstanding items reserved?

Analysing Phases I & III (2/2)

Lemma

Each agent can be matched with an outstanding item in phase ${\rm I\hspace{-.1em}I\hspace{-.1em}I}.$

Analysing Phases I & III (2/2)

Lemma

Each agent can be matched with an outstanding item in phase ${\rm I\hspace{-.1em}I\hspace{-.1em}I}.$

maximum number of agents without outstanding item halved with each round of phase I

Lemma

Each agent can be matched with an outstanding item in phase III.

- maximum number of agents without outstanding item halved with each round of phase I
 - $\lceil \log_2 n \rceil + 1$ rounds in phase I are enough

Lemma

Each agent can be matched with an outstanding item in phase III.

- maximum number of agents without outstanding item halved with each round of phase I
 - $\lceil \log_2 n \rceil + 1$ rounds in phase I are enough
- induction on number of rounds in phase I

Lemma

Each agent can be matched with an outstanding item in phase III.

- maximum number of agents without outstanding item halved with each round of phase I
 - $\lceil \log_2 n \rceil + 1$ rounds in phase I are enough
- induction on number of rounds in phase I

Lemma

Each agent can be matched with an outstanding item in phase III.

- maximum number of agents without outstanding item halved with each round of phase I
 - $\lceil \log_2 n \rceil + 1$ rounds in phase I are enough
- induction on number of rounds in phase I

Base Case: In round 1 of phase I, either

■ $\leq n/2$ many agents without an outstanding item

Lemma

Each agent can be matched with an outstanding item in phase III.

- maximum number of agents without outstanding item halved with each round of phase I
 - $[\log_2 n] + 1$ rounds in phase I are enough
- induction on number of rounds in phase I

- $\leq n/2$ many agents without an outstanding item
- > n/2 many agents without an outstanding item

Lemma

Each agent can be matched with an outstanding item in phase III.

- maximum number of agents without outstanding item halved with each round of phase I
 - $[\log_2 n] + 1$ rounds in phase I are enough
- induction on number of rounds in phase I

- $\leq n/2$ many agents without an outstanding item
- > n/2 many agents without an outstanding item

Lemma

Each agent can be matched with an outstanding item in phase III.

- maximum number of agents without outstanding item halved with each round of phase I
 - $\lceil \log_2 n \rceil + 1$ rounds in phase I are enough
- induction on number of rounds in phase I

- $\leq n/2$ many agents without an outstanding item
- > n/2 many agents without an outstanding item

Lemma

Each agent can be matched with an outstanding item in phase III.

- maximum number of agents without outstanding item halved with each round of phase I
 - $[\log_2 n] + 1$ rounds in phase I are enough
- induction on number of rounds in phase I

- $\leq n/2$ many agents without an outstanding item
- > n/2 many agents without an outstanding item

Lemma

Each agent can be matched with an outstanding item in phase III.

- maximum number of agents without outstanding item halved with each round of phase I
 - $\lceil \log_2 n \rceil + 1$ rounds in phase I are enough
- induction on number of rounds in phase I

- $\leq n/2$ many agents without an outstanding item
- > n/2 many agents without an outstanding item

Lemma

Each agent can be matched with an outstanding item in phase III.

- maximum number of agents without outstanding item halved with each round of phase I
 - $\lceil \log_2 n \rceil + 1$ rounds in phase I are enough
- induction on number of rounds in phase I

- $\leq n/2$ many agents without an outstanding item
- > n/2 many agents without an outstanding item
 - > n/2 many items o_i^1 assigned to someone else

Lemma

Each agent can be matched with an outstanding item in phase III.

- maximum number of agents without outstanding item halved with each round of phase I
 - $\lceil \log_2 n \rceil + 1$ rounds in phase I are enough
- induction on number of rounds in phase I

- $\leq n/2$ many agents without an outstanding item
- > n/2 many agents without an outstanding item
 - > n/2 many items o_i^1 assigned to someone else
 - > n/2 many agents matched with outstanding item upon release in phase III

Analysing Phase II (1/2)

Analysing Phase II (1/2)

Definition

The set $\mathcal{L}_{i,r}$ of $lost\ items$ is the set of all optimal items $j \in x_i^*$

Analysing Phase II (1/2)

Definition

The set $\mathcal{L}_{i,r}$ of *lost items* is the set of all optimal items $j \in \mathbf{x}_i^*$ matched with other agents $i' \neq i$ in round r.

Analysing Phase II (1/2)

Definition

The set $\mathcal{L}_{i,r}$ of *lost items* is the set of all optimal items $j \in x_i^*$ matched with other agents $i' \neq i$ in round r.

Definition

Let $\mathbf{x}_i^{\mathrm{II}} = \left\{a_i^1, a_i^2, \ldots\right\}$ be the bundle of agent i.

Analysing Phase II (1/2)

Definition

The set $\mathcal{L}_{i,r}$ of *lost items* is the set of all optimal items $j \in x_i^*$ matched with other agents $i' \neq i$ in round r.

Definition

Let $x_i^{\text{II}} = \{a_i^1, a_i^2, ...\}$ be the bundle of agent *i*. The set of **optimal and attainable items** is defined as

$$\overline{x}_{i,r}^{\star} \coloneqq \left\{
ight.$$

Analysing Phase II (1/2)

Definition

The set $\mathcal{L}_{i,r}$ of *lost items* is the set of all optimal items $j \in x_i^*$ matched with other agents $i' \neq i$ in round r.

Definition

Let $x_i^{\text{II}} = \{a_i^1, a_i^2, ...\}$ be the bundle of agent *i*. The set of **optimal and attainable items** is defined as

$$\overline{x}_{i,r}^{\star} \coloneqq \left\{
ight.$$

in round r = 1,

Analysing Phase II (1/2)

Definition

The set $\mathcal{L}_{i,r}$ of *lost items* is the set of all optimal items $j \in x_i^*$ matched with other agents $i' \neq i$ in round r.

Let $x_i^{\text{II}} = \{a_i^1, a_i^2, ...\}$ be the bundle of agent *i*. The set of **optimal and attainable items** is defined as

$$\overline{x}_{i,r}^{\star} \coloneqq \left\{
ight.$$

in round r = 1,

Analysing Phase II (1/2)

Definition

The set $\mathcal{L}_{i,r}$ of *lost items* is the set of all optimal items $j \in x_i^*$ matched with other agents $i' \neq i$ in round r.

Let $x_i^{\text{II}} = \{a_i^1, a_i^2, ...\}$ be the bundle of agent *i*. The set of **optimal and attainable items** is defined as

$$\overline{x}_{i,r}^{\star} \coloneqq \left\{
ight.$$

in round r = 1,

Analysing Phase II (1/2)

Definition

The set $\mathcal{L}_{i,r}$ of *lost items* is the set of all optimal items $j \in x_i^*$ matched with other agents $i' \neq i$ in round r.

Definition

Let $\mathbf{x}_i^{\text{II}} = \{a_i^1, a_i^2, ...\}$ be the bundle of agent *i*. The set of **optimal and attainable items** is defined as

$$\overline{x}_{i,r}^{\star} \coloneqq \left\{
ight.$$

in round r = 1,

Analysing Phase II (1/2)

Definition

The set $\mathcal{L}_{i,r}$ of *lost items* is the set of all optimal items $j \in x_i^*$ matched with other agents $i' \neq i$ in round r.

Definition

Let $x_i^{\text{II}} = \{a_i^1, a_i^2, ...\}$ be the bundle of agent *i*. The set of **optimal and attainable items** is defined as

$$\overline{x}_{i,r}^{\star} \coloneqq \left\{
ight.$$

in round r = 1,

Analysing Phase II (1/2)

Definition

The set $\mathcal{L}_{i,r}$ of *lost items* is the set of all optimal items $j \in x_i^*$ matched with other agents $i' \neq i$ in round r.

Definition

$$\overline{x}_{i,r}^* := \begin{cases} x_i^* \setminus \left(\bigcup_{i' \in \mathscr{A}} x_{i'}^{\mathrm{I}} \cup \mathscr{L}_{i,1} \right) & \text{in round } r = 1, \end{cases}$$

Analysing Phase II (1/2)

Definition

The set $\mathcal{L}_{i,r}$ of *lost items* is the set of all optimal items $j \in \mathbf{x}_i^*$ matched with other agents $i' \neq i$ in round r.

Definition

$$\overline{\boldsymbol{x}}_{i,r}^{*} \coloneqq \begin{cases} \boldsymbol{x}_{i}^{*} \setminus \left(\bigcup_{i' \in \mathcal{A}} \boldsymbol{x}_{i'}^{\mathrm{I}} \cup \mathcal{L}_{i,1}\right) & \text{in round } r = 1, \\ & \text{in round } r \geq 2. \end{cases}$$

Analysing Phase II (1/2)

Definition

The set $\mathcal{L}_{i,r}$ of *lost items* is the set of all optimal items $j \in x_i^*$ matched with other agents $i' \neq i$ in round r.

Definition

$$\bar{\boldsymbol{x}}_{i,r}^{\star} := \begin{cases} \boldsymbol{x}_{i}^{\star} \setminus \left(\bigcup_{i' \in \mathcal{A}} \boldsymbol{x}_{i'}^{\mathrm{I}} \cup \mathcal{L}_{i,1}\right) & \text{in round } r = 1, \\ & \text{in round } r \geq 2. \end{cases}$$

Analysing Phase II (1/2)

Definition

The set $\mathcal{L}_{i,r}$ of *lost items* is the set of all optimal items $j \in x_i^*$ matched with other agents $i' \neq i$ in round r.

Definition

$$\bar{\boldsymbol{x}}_{i,r}^{\star} := \begin{cases} \boldsymbol{x}_{i}^{\star} \setminus \left(\bigcup_{i' \in \mathcal{A}} \boldsymbol{x}_{i'}^{\mathrm{I}} \cup \mathcal{L}_{i,1}\right) & \text{in round } r = 1, \\ & \text{in round } r \geq 2. \end{cases}$$

Analysing Phase II (1/2)

Definition

The set $\mathcal{L}_{i,r}$ of *lost items* is the set of all optimal items $j \in \mathbf{x}_i^*$ matched with other agents $i' \neq i$ in round r.

Definition

$$\bar{\boldsymbol{x}}_{i,r}^{\star} := \begin{cases} \boldsymbol{x}_{i}^{\star} \setminus \left(\bigcup_{i' \in \mathcal{A}} \boldsymbol{x}_{i'}^{\mathrm{I}} \cup \mathcal{L}_{i,1}\right) & \text{in round } r = 1, \\ & \text{in round } r \geq 2. \end{cases}$$

Analysing Phase II (1/2)

Definition

The set $\mathcal{L}_{i,r}$ of *lost items* is the set of all optimal items $j \in \mathbf{x}_i^*$ matched with other agents $i' \neq i$ in round r.

Definition

$$\bar{\boldsymbol{x}}_{i,r}^{\star} := \begin{cases} \boldsymbol{x}_{i}^{\star} \setminus \left(\bigcup_{i' \in \mathcal{A}} \boldsymbol{x}_{i'}^{\mathrm{I}} \cup \mathcal{L}_{i,1}\right) & \text{in round } r = 1, \\ & \text{in round } r \geq 2. \end{cases}$$

Analysing Phase II (1/2)

Definition

The set $\mathcal{L}_{i,r}$ of *lost items* is the set of all optimal items $j \in x_i^*$ matched with other agents $i' \neq i$ in round r.

Definition

$$\bar{\boldsymbol{x}}_{i,r}^{\star} := \begin{cases} \boldsymbol{x}_{i}^{\star} \setminus \left(\bigcup_{i' \in \mathcal{A}} \boldsymbol{x}_{i'}^{\mathrm{I}} \cup \mathcal{L}_{i,1}\right) & \text{in round } r = 1, \\ & \text{in round } r \geq 2. \end{cases}$$

Analysing Phase II (1/2)

Definition

The set $\mathcal{L}_{i,r}$ of *lost items* is the set of all optimal items $j \in \mathbf{x}_i^*$ matched with other agents $i' \neq i$ in round r.

Definition

$$\bar{\boldsymbol{x}}_{i,r}^{\star} := \begin{cases} \boldsymbol{x}_{i}^{\star} \setminus \left(\bigcup_{i' \in \mathcal{A}} \boldsymbol{x}_{i'}^{\mathrm{I}} \cup \mathcal{L}_{i,1}\right) & \text{in round } r = 1, \\ & \text{in round } r \geq 2. \end{cases}$$

Definition

The set $\mathcal{L}_{i,r}$ of *lost items* is the set of all optimal items $j \in \mathbf{x}_i^*$ matched with other agents $i' \neq i$ in round r.

Definition

$$\overline{\mathbf{x}}_{i,r}^* := \begin{cases} \mathbf{x}_i^* \setminus \left(\bigcup_{i' \in \mathscr{A}} \mathbf{x}_{i'}^{\mathrm{I}} \cup \mathscr{L}_{i,1}\right) & \text{in round } r = 1, \\ \overline{\mathbf{x}}_{i,r-1}^* \setminus \left(\mathscr{L}_{i,r} \cup \left\{a_i^{r-1}\right\}\right) & \text{in round } r \geq 2. \end{cases}$$

Analysing Phase II (1/2)

Definition

The set $\mathcal{L}_{i,r}$ of *lost items* is the set of all optimal items $j \in x_i^*$ matched with other agents $i' \neq i$ in round r.

Definition

Let $x_i^{\text{II}} = \{a_i^1, a_i^2, ...\}$ be the bundle of agent *i*. The set of *optimal and attainable items* is defined as

$$\bar{\boldsymbol{x}}_{i,r}^{\star} := \begin{cases} \boldsymbol{x}_{i}^{\star} \setminus \left(\bigcup_{i' \in \mathcal{A}} \boldsymbol{x}_{i'}^{\mathrm{I}} \cup \mathcal{L}_{i,1}\right) & \text{in round } r = 1, \\ \bar{\boldsymbol{x}}_{i,r-1}^{\star} \setminus \left(\mathcal{L}_{i,r} \cup \left\{a_{i}^{r-1}\right\}\right) & \text{in round } r \geq 2. \end{cases}$$

 \Rightarrow What is the valuation of the remaining items?

Lemma

$$v_i(\overline{\mathbf{x}}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1})$$

Lemma

$$v_i\big(\bar{x}_{i,r}^*\mid a_i^1,\dots,a_i^{r-1}\big)$$

Lemma

$$v_i(\overline{x}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1})$$

Lemma

$$v_i\big(\overline{\boldsymbol{x}}_{i,r}^{\star}\mid a_i^1,\dots,a_i^{r-1}\big)$$

Lemma

$$v_i(\overline{\mathbf{x}}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1})$$

Lemma

$$v_i\big(\overline{x}_{i,r}^{\star}\mid a_i^1,\dots,a_i^{r-1}\big)$$

Lemma

$$v_i(\overline{\mathbf{x}}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1})$$

Lemma

$$v_i(\overline{x}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1})$$

$$v_i(\overline{\mathbf{x}}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1})$$

$$v_i(\overline{\mathbf{x}}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1})$$

if $r \ge 2$

$$v_i\big(\overline{\boldsymbol{x}}_{i,r}^{\star}\mid a_i^1,\dots,a_i^{r-1}\big)$$

Lemma

$$v_i(\overline{x}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1})$$

$$v_i(\overline{\mathbf{x}}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1})$$

Lemma

$$v_i(\overline{x}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1})$$

$$v_i\big(\overline{x}_{i,r}^*\mid a_i^1,\dots,a_i^{r-1}\big)$$

$$v_i(\overline{x}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1})$$

$$v_i(\overline{x}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1})$$

Lemma

$$v_i\big(\overline{x}_{i,r}^{\star}\mid a_i^1,\dots,a_i^{r-1}\big)=v_i\big(\overline{x}_{i,r}^{\star}\cup\big\{a_i^1,\dots,a_i^{r-1}\big\}\big)-v_i\big(a_i^1,\dots,a_i^{r-1}\big)$$

Lemma

$$v_i(\bar{x}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1}) = v_i(\bar{x}_{i,r}^* \cup \{a_i^1, \dots, a_i^{r-1}\}) - v_i(a_i^1, \dots, a_i^{r-1})$$

Lemma

$$v_i(\bar{\mathbf{x}}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1}) = -v_i(a_i^1, \dots, a_i^{r-1}) + v_i(\bar{\mathbf{x}}_{i,r}^* \cup \{a_i^1, \dots, a_i^{r-1}\})$$

Lemma

$$v_i(\bar{\mathbf{x}}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1}) = -v_i(a_i^1, \dots, a_i^{r-1}) + v_i(\bar{\mathbf{x}}_{i,r}^* \cup \{a_i^1, \dots, a_i^{r-1}\})$$

Lemma

$$v_i(\bar{\mathbf{x}}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1}) = -v_i(a_i^1, \dots, a_i^{r-1}) + v_i(\bar{\mathbf{x}}_{i,r}^* \cup \{a_i^1, \dots, a_i^{r-1}\})$$

Lemma

$$v_i(\bar{\mathbf{x}}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1}) = -v_i(a_i^1, \dots, a_i^{r-1}) + v_i(\bar{\mathbf{x}}_{i,r}^* \cup \{a_i^1, \dots, a_i^{r-1}\})$$

Lemma

$$v_i\big(\overline{x}_{i,r}^{\star}\mid a_i^1,\dots,a_i^{r-1}\big)\geq -v_i\big(a_i^1,\dots,a_i^{r-1}\big)+v_i\big(\overline{x}_{i,1}^{\star}\big)$$

Lemma

$$v_i(\bar{x}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1}) \ge -v_i(a_i^1, \dots, a_i^{r-1}) + v_i(\bar{x}_{i,1}^*) - v_i(\mathcal{L}_{i,2} \mid a_i^1)$$

Lemma

$$v_i(\bar{x}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1}) \ge -v_i(a_i^1, \dots, a_i^{r-1}) + v_i(\bar{x}_{i,1}^*) - v_i(\mathcal{L}_{i,2} \mid a_i^1) - v_i(\mathcal{L}_{i,3} \mid a_i^1, a_i^2)$$
 if $r \ge 2$

Lemma

$$v_{i}(\overline{x}_{i,r}^{\star} \mid a_{i}^{1}, \dots, a_{i}^{r-1}) \geq -v_{i}(a_{i}^{1}, \dots, a_{i}^{r-1}) + v_{i}(\overline{x}_{i,1}^{\star}) - v_{i}(\mathcal{L}_{i,2} \mid a_{i}^{1}) - v_{i}(\mathcal{L}_{i,3} \mid a_{i}^{1}, a_{i}^{2}) - \dots$$
 if $r \geq 2$

Lemma

$$v_i(\overline{x}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1}) \ge -v_i(a_i^1, \dots, a_i^{r-1}) + v_i(\overline{x}_{i,1}^*) - \sum_{l=2}^r v_i(\mathcal{L}_{i,l} \mid a_i^1, \dots, a_i^{l-1})$$

Lemma

$$v_i(\overline{x}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1}) \ge -v_i(a_i^1, \dots, a_i^{r-1}) + v_i(\overline{x}_{i,1}^*) - \sum_{l=2}^r v_i(\mathcal{L}_{i,l} \mid a_i^1, \dots, a_i^{l-1})$$

Lemma

$$v_i(\bar{x}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1}) \ge -v_i(a_i^1, \dots, a_i^{r-1}) + v_i(\bar{x}_{i,1}^*) - \sum_{l=2}^r v_i(\mathcal{L}_{i,l} \mid a_i^1, \dots, a_i^{l-1})$$

Lemma

$$v_i(\bar{x}_{i,r}^{\star} \mid a_i^1, \dots, a_i^{r-1}) \ge -v_i(a_i^1, \dots, a_i^{r-1}) + v_i(\bar{x}_{i,1}^{\star}) - \sum_{l=2}^r v_i(\mathscr{L}_{i,l} \mid a_i^1, \dots, a_i^{l-1})$$

Lemma

$$v_{i}(\overline{x}_{i,r}^{*} \mid a_{i}^{1}, \dots, a_{i}^{r-1}) \geq -v_{i}(a_{i}^{1}, \dots, a_{i}^{r-1}) + v_{i}(\overline{x}_{i,1}^{*}) - \sum_{l=2}^{r} v_{l}(\mathcal{L}_{i,l} \mid a_{i}^{1}, \dots, a_{i}^{l-1})$$

Lemma

$$v_i(\overline{x}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1}) \ge -v_i(a_i^1, \dots, a_i^{r-1}) + v_i(\overline{x}_{i,1}^*) - \sum_{l=2}^{r} v_i(\mathcal{L}_{i,l} \mid a_i^1, \dots, a_i^{l-1})$$

Lemma

$$v_i(\bar{x}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1}) \ge -v_i(a_i^1, \dots, a_i^{r-1}) + v_i(\bar{x}_{i,1}^*) - \sum_{l=2}^r v_i(\mathscr{L}_{i,l} \mid a_i^1, \dots, a_i^{l-1})$$

Lemma

$$v_i(\overline{x}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1}) \ge -v_i(a_i^1, \dots, a_i^{r-1}) + v_i(\overline{x}_{i,1}^*) - \sum_{l=2}^{r} v_i(\mathcal{L}_{i,l} \mid a_i^1, \dots, a_i^{l-1})$$

if r > 2

Lemma

$$v_iig(ar{x}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1}ig) \geq -v_iig(a_i^1, \dots, a_i^{r-1}ig) + v_iig(ar{x}_{i,1}^*ig) - \sum_{l=2}^r v_iig(\mathscr{L}_{i,l} \mid a_i^1, \dots, a_i^{l-1}ig)$$

 $v_i(\mathcal{S}_1 \mid \mathcal{S}_2) \leq \sum_{j \in \mathcal{S}_1} v_i(j \mid \mathcal{S}_2)$ $\overline{x}_{i.r}^*$

Lemma

$$v_{i}(\overline{x}_{i,r}^{*} \mid a_{i}^{1}, \dots, a_{i}^{r-1}) \geq -v_{i}(a_{i}^{1}, \dots, a_{i}^{r-1}) + v_{i}(\overline{x}_{i,1}^{*}) - \sum_{l=2}^{r} \sum_{j \in \mathcal{L}_{i,l}} v_{i}(j \mid a_{i}^{1}, \dots, a_{i}^{l-1})$$
 if $r \geq 2$

Lemma

$$v_{i}(\overline{x}_{i,r}^{*} \mid a_{i}^{1}, \dots, a_{i}^{r-1}) \geq -v_{i}(a_{i}^{1}, \dots, a_{i}^{r-1}) + v_{i}(\overline{x}_{i,1}^{*}) - \sum_{l=2}^{r} \sum_{j \in \mathcal{L}_{i,l}} v_{i}(j \mid a_{i}^{1}, \dots, a_{i}^{l-1})$$

Lemma

$$v_{i}(\overline{x}_{i,r}^{*} \mid a_{i}^{1}, \dots, a_{i}^{r-1}) \geq -v_{i}(a_{i}^{1}, \dots, a_{i}^{r-1}) + v_{i}(\overline{x}_{i,1}^{*}) - \sum_{l=2}^{r} \sum_{j \in \mathcal{L}_{i,l}} v_{i}(j \mid a_{i}^{1}, \dots, a_{i}^{l-1})$$

Lemma

$$v_{i}(\overline{x}_{i,r}^{*} \mid a_{i}^{1}, \dots, a_{i}^{r-1}) \geq -v_{i}(a_{i}^{1}, \dots, a_{i}^{r-1}) + v_{i}(\overline{x}_{i,1}^{*}) - \sum_{l=2}^{r} \sum_{j \in \mathcal{L}_{i,l}} v_{i}(j \mid a_{i}^{1}, \dots, a_{i}^{l-2})$$

Lemma

$$v_{i}(\overline{x}_{i,r}^{*} \mid a_{i}^{1}, \dots, a_{i}^{r-1}) \geq -v_{i}(a_{i}^{1}, \dots, a_{i}^{r-1}) + v_{i}(\overline{x}_{i,1}^{*}) - \sum_{l=2}^{r} \sum_{j \in \mathcal{L}_{i,l}} v_{i}(j \mid a_{i}^{1}, \dots, a_{i}^{l-2})$$

Lemma

$$v_i(\overline{x}_{i,r}^* \mid a_i^1, \dots, a_i^{r-1}) \ge -v_i(a_i^1, \dots, a_i^{r-1}) + v_i(\overline{x}_{i,1}^*) - \sum_{l=2}^r \sum_{j \in \mathcal{L}_{i,l}} v_i(a_i^{l-1} \mid a_i^1, \dots, a_i^{l-2})$$

Lemma

$$v_i(\bar{x}_{i,r}^{\star} \mid a_i^1, \dots, a_i^{r-1}) \geq -v_i(a_i^1, \dots, a_i^{r-1}) + v_i(\bar{x}_{i,1}^{\star}) - \sum_{l=2}^{r} |\mathscr{L}_{i,l}| \cdot v_i(a_i^{l-1} \mid a_i^1, \dots, a_i^{l-2})$$

Lemma

$$v_{i}(\overline{x}_{i,r}^{*} \mid a_{i}^{1}, \dots, a_{i}^{r-1}) \geq -v_{i}(a_{i}^{1}, \dots, a_{i}^{r-1}) + v_{i}(\overline{x}_{i,1}^{*}) - \sum_{l=2}^{r} (n-1) \cdot v_{i}(a_{i}^{l-1} \mid a_{i}^{1}, \dots, a_{i}^{l-2})$$
 if $r \geq 2$

Summary & Outlook

Summary & Outlook

GOETHE UNIVERSITÄT

Summary & Outlook

- bundles valued using submodular valuation functions

Summary & Outlook

- bundles valued using submodular valuation functions
- Nash social welfare = weighted geometric mean of valuations

Summary & Outlook

- bundles valued using submodular valuation functions
- Nash social welfare = weighted geometric mean of valuations
- \blacksquare approximation factor independent from m?

Summary & Outlook

- bundles valued using submodular valuation functions
- Nash social welfare = weighted geometric mean of valuations
- approximation factor independent from *m*?
- simple, repeated matching fails because of missing foresight

Summary & Outlook

- bundles valued using submodular valuation functions
- Nash social welfare = weighted geometric mean of valuations
- approximation factor independent from *m*?
- simple, repeated matching fails because of missing foresight
- RepReMatch: $2n(\log n + 3)$ -approximative

Summary & Outlook

GOETHE UNIVERSITÄT

- bundles valued using submodular valuation functions
- Nash social welfare = weighted geometric mean of valuations
- \blacksquare approximation factor independent from m?
- simple, repeated matching fails because of missing foresight
- RepReMatch: $2n(\log n + 3)$ -approximative

Phase I finding enough outstanding items

Summary & Outlook

GOETHE UNIVERSITÄT

- bundles valued using submodular valuation functions
- Nash social welfare = weighted geometric mean of valuations
- \blacksquare approximation factor independent from m?
- simple, repeated matching fails because of missing foresight
- RepReMatch: $2n(\log n + 3)$ -approximative

Phase I finding enough outstanding items

Phase II assigning remaining items

Summary & Outlook

GOETHE UNIVERSITÄT

- bundles valued using submodular valuation functions
- Nash social welfare = weighted geometric mean of valuations
- \blacksquare approximation factor independent from m?
- simple, repeated matching fails because of missing foresight
- RepReMatch: $2n(\log n + 3)$ -approximative

Phase I finding enough outstanding items
Phase II assigning remaining items

Phase III re-assigning outstanding items

Summary & Outlook

GOETHE UNIVERSITÄT

- bundles valued using submodular valuation functions
- Nash social welfare = weighted geometric mean of valuations
- \blacksquare approximation factor independent from m?
- simple, repeated matching fails because of missing foresight
- RepReMatch: $2n(\log n + 3)$ -approximative

Phase I finding enough outstanding items
Phase II assigning remaining items

Phase III re-assigning outstanding items

Any Room for Improvement?

Possibly! Lower bound of $\frac{e}{e-1} \approx 1.58$

