Raport 4

Eksploracja danych

Mikołaj Langner, Marcin Kostrzewa nr albumów: 255716, 255749

2021-05-28

Spis treści

1	Wstęp	1
	Zadanie 1 2.1 a)	2
3	Zadanie 2	13
	3.1 Wizualizacja wyników grupowania $(K=3)$	13
	3.2 Ocena jakości grupowania	16

1 Wstęp

Niniejszy raport zawiera rozwiązania rozwiązania zadań z listy 4.

W zadaniu pierwszym zastosujemy zaawansowane metody klasyfikacji:

- bagging,
- boosting,
- random forest,
- metodę wektorów nośnych (SVM),

W zadaniu drugim badamy jakość

2 Zadanie 1

2.1 a)

Naszym zadaniem będzie zbadanie tego jak poprawia się jakość klasyfikacji, jeżeli zamiast pojedynczego drzewa decyzyjnego, użyjemy złożonego klasyfikatora.

2.1.1 Pojedyncze drzewo decyzyjne

Przypomnijmy najpierw jak radziła sobie metoda drzewa klasyfikacyjnego.

```
tree.model <- rpart(Type ~ ., data = train.subset, cp=0)</pre>
```

Wyglądało ono następująco — rysunek (1).

Rysunek 1: Pojedyncze drzewo decyzyjne.

Błędy predykcji wyznaczone za pomocą metod: 5-krotnej walidacji krzyżowej, bootstrap oraz .632+, wyniosły kolejno 0.1179775, 0.1180151 oraz 0.1008182.

2.1.2 Bagging

Najpierw skorzystamy z algorytmu bagging. Znajdziemy optymalną wartość dla parametru nbagg.

Rysunek 2: Wplyw ilosci replikacji na blad klasyfikacji.

Jak widać, najlepiej zbudować model dla nbagg równego 60. Parametr złożoności **cp** przyjmujemy równy 0, tak jak w przypadku pojedynczego drzewa.

Wyznaczymy dla tego modelu macierze pomyłek i wartości błędów klasyfkacji.

	1	2	3		1	2	3
1	36	0	0	1	21	0	0
2	0	51	0	2	2	19	0
3	0	0	31	3	0	1	17
(a	ı) Zbi	or ucz	zacy	(b) Zbio	or test	towy

Tabela 1: Macierze pomylek dla algorytmu bagging.

Błędy klasyfikacji to kolejno 0 i 0.05.

Wyznaczymy teraz dla tego modelu klasyfikacyjnego błędy predykcji podobnie jak dla drzewa decyzyjnego.

```
predictor <- function(model, newdata)</pre>
{predict(model, newdata=newdata, type = "class")}
bagging.predictor <- function(formula, data)</pre>
{bagging(formula, data = data, nbagg = choice, cp = 0)}
bagging.error.cv <- errorest(Type~., wine,</pre>
                                    model=bagging.predictor,
                                    predict=predictor, estimator="cv",
                                     est.para=control.errorest(k = 5))
bagging.error.boot <- errorest(Type~., wine,</pre>
                                       model=bagging.predictor,
                                       predict=predictor, estimator="boot",
                                       est.para=control.errorest(nboot = 25))
bagging.error.632 <- errorest(Type~., wine,</pre>
                                       model=bagging.predictor,
                                       predict=predictor, estimator="632plus",
                                       est.para=control.errorest(nboot = 25))
```

Błędy wyniosły kolejno 0.0561798, 0.0561724 oraz 0.0298668.

2.1.3 Boosting

Wykorzystamy teraz algorytm boosting — skorzystamy z funkcji boosting z pakietu adabag.

Najpierw dobierzemy optymalnie wartość parametru mfinal — ilość wykorzystanych przez algorytm drzew.

Wybieramy wartość mfinal równa 45.

```
boosting.start <- Sys.time()
boosting.model <- boosting(Type~., data = train.data, boos = TRUE,</pre>
```


Rysunek 3: Zaleznosc bledu od ilosci drzew.

```
mfinal = mfinal.choice)
boosting.end <- Sys.time()
boosting.test.pred <- predict(boosting.model, test.data)
boosting.train.pred <- predict(boosting.model, train.data)

test.confusion <- boosting.test.pred$confusion
train.confusion <- boosting.train.pred$confusion

print(xtable(train.confusion), file="boost1.tex", floating=FALSE)
print(xtable(test.confusion), file="boost2.tex", floating=FALSE)</pre>
```

	1	2	3		1	2	3
1	36	0	0	1	22	0	0
2	0	51	0	2	1	19	0
3	0	0	31	3	0	1	17
(a) Zbi	or ucz	zacy	(b) Zbio	or test	owy

Tabela 2: Macierze pomylek dla algorytmu boosting.

Błędy klasyfikacji to kolejno 0 i 0.0333333.

Wyznaczymy też teraz błędy predykcji (tym razem z racji złożoności obliczeniowej i długiego

czasu wykonania tylko dla metody 5-krotnej walidacji krzyżowej).

Błąd wyniosł 0.0224719.

2.1.4 Random Forest

Teraz wykorzystamy algorytm random forest.

Postaramy się odpowiednio dobrać parametry ntree (ilość drzew) i mtry (ilość losowo wybieranych cech).

Podobnie jak wcześniej wyznaczamy za pomocą modelu etykietki klas i wyznaczamy macierze pomyłek i błędy klasyfikacji.

Błędy klasyfikacji to kolejno 0 i 0.0166667.

Tak jak dla wcześniejszych algorytmów, wyznaczymy teraz błędy predykcji.

Rysunek 4: Wykresy zalezności bledu klasyfikacji od parametrow mtry i ntree.

	1	2	3		1	2	3
1	36	0	0	1	23	0	0
2	0	51	0	2	0	19	0
3	0	0	31	3	0	1	17
(a) Zbi	or ucz	zacy	(b) Zbio	or test	towy

Tabela 3: Macierze pomylek dla algorytmu randomForest.

Wyniosły one kolejno 0.0168539, 0.0183539 oraz 0.0106015.

Wykorzystamy teraz algorytm random forest do wyznaczenia rankingu cech (variable importance).

Rysunek 5: Wykres wazności zmiennych.

Przypomnijmy, że na ostatniej liście za zmienne istotne, takie, które dobrze dywersyfikowały klasy ze zbioru wine, były Alcohol i Flavanoids. Tak jak widzimy to na rysunku (5) dokonaliśmy wtedy całkiem dobrej decyzji, ponieważ zmienne te są w czołówce najważniejszych zmiennych. Wykresy wskazują, że najważniejsze są zmienne Color i Proline, które w trakcie dokonywania wyboru, odrzuciliśmy.

2.1.5 Wnioski

Podsumujmy uzyskane rezultaty w tabeli (4).

Metoda	Drzewa decyzyjne	bagging	boosting	random forest
$\overline{\text{CV}}$	0.1179775	0.0561798	0.0224719	0.0168539
Bootstrap	0.1180151	0.0561724	NaN	0.0183539
632+	0.1008182	0.0298668	NaN	0.0106015

Tabela 4: Wartości błędów predykcji.

Jak widzimy każda rozpatrywana metoda jest znacząco lepsza od pojedynczego drzewa klasyfikacyjnego. Najlepiej z nich poradził sobie algorytm random forest.

Mieliśmy także porównać czasy potrzebne do zbudowania modelu dla kolejnych metod. Wynosiły one:

- dla bagging 0.51429009437561,
- dla boosting 28.4926550388336,
- dla random forest 0.0565311908721924.

Widać, że algorytm boosting potrzebuje znacznie więcej czasu na stworzenie modelu od pozostałych algorytmów. ## b)

wine <- wine %>% select(c(Type, Alcohol, Flavanoids))

Rysunek 6: Dokładność klasyfikatora od parametru kosztu

- ## Setting default kernel parameters

Rysunek 7: Obszary decyzyjne dla ${\cal C}=0.1$

Rysunek 8: Obszary decyzyjne dla ${\cal C}=1$

Rysunek 9: Obszary decyzyjne dla ${\cal C}=10$

Rysunek 10: Obszary decyzyjne dla $C=100\,$

Rysunek 11: Obszary decyzyjne dla C=1000

Rysunek 12: Mapa ciepła dokładności klasyfikatora

linear	polynomial	radial
0.928	0.938	0.933

Tabela 5: Porównanie klasyfikatorów dla różnych jąder

sigma	С
0.10	100.00

Tabela 6: Parametry dla najlepszego klasyfikatora

3 Zadanie 2

W tym zadaniu zastosujemy algorytmy analizy skupień do wyznaczenia klastrów dla zbioru wine, ocenimy ich skuteczność i porównamy je ze sobą. Sięgniemy po dwa algorytmy: PAM i AGNES.

3.1 Wizualizacja wyników grupowania (K = 3)

Najpierw wyznaczymy macierz niepodobieństwa dla naszych danych.

```
data(wine)
wine.subset = wine[, -1]
diss.matrix <- daisy(wine.subset, stand=TRUE) %>% as.matrix
group.colors <- as.numeric(wine$Type)</pre>
```

Przyjrzyjmy się najpierw jakie wyniki daje nam zastosowanie algorytmu PAM.

Zobaczmy teraz, jak poradził sobie algorytm AGNES z single-linkage.

Zobaczmy jak wygląda dendrogram dla tego modelu.

Rysunek 13: Skupienia dla metody PAM

Rysunek 14: Skupienia dla metody AGNES z single-linkage

Partycja na 3 skupienia a rzeczywiste klasy – single-linkage

Poni-

żej wyniki dla algorytmu AGNES z complete-linkage.

Zobaczmy jak wygląda dendrogram w tym przypadku.

3.2 Ocena jakości grupowania

W tej części zadania, porównamy ze sobą algorytmy, jakość uzyskanego dzięk nim grupowania w zależności od przyjętej ilości skupień. Wykorzystamy wskaźniki wewnętrzne, jak i zewnętrzne.

3.2.1 Wkaźniki wewnętrzne

	K = 2	K = 3	K = 4	K = 5	K = 6	K = 7	K = 8	K = 9	K = 10
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.93
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.93	1.75
3	0.00	0.00	0.00	0.00	0.00	0.00	1.93	1.75	1.75
4	0.00	0.00	0.00	0.00	0.00	1.64	1.75	1.75	2.05
5	0.00	0.00	0.00	0.00	1.64	1.64	1.75	1.94	2.03
6	0.00	0.00	0.00	1.64	1.64	1.66	1.94	1.94	2.17
7	0.00	0.00	1.64	1.64	1.71	1.94	1.94	2.35	1.93
8	0.00	2.21	1.64	1.71	1.71	2.35	2.35	1.93	2.03
9	2.15	2.14	2.21	1.71	1.93	1.93	1.93	4.36	4.90
_10	2.15	2.14	2.76	2.76	1.93	1.93	1.93	1.93	1.93

Tabela 7: Seperacja w skupiskach

Rysunek 15: Skupienia dla metody AGNES z complete-linkage

Partycja na 3 skupienia a rzeczywiste klasy – complete-linkage

Rysunek 16: Dendrogram dla complete-linkage.

Rysunek 17: Wskaźniki wewnętrzne dla PAM i AGNES z complete-linkage

	K = 2	K = 3	K = 4	K = 5	K = 6	K = 7	K = 8	K = 9	K = 10
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.02
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.02	6.35
3	0.00	0.00	0.00	0.00	0.00	0.00	8.87	6.35	7.08
4	0.00	0.00	0.00	0.00	0.00	9.16	6.35	8.22	9.80
5	0.00	0.00	0.00	0.00	9.16	9.52	8.22	6.57	8.91
6	0.00	0.00	0.00	9.16	9.46	9.85	6.57	8.91	7.64
7	0.00	0.00	9.16	9.86	10.44	6.57	9.85	6.87	7.12
8	0.00	11.26	9.86	10.44	7.64	6.87	6.87	7.12	4.49
9	11.37	10.90	10.90	7.64	7.12	7.12	7.12	7.06	4.13
10	11.17	9.03	9.03	9.37	7.98	7.98	7.98	7.98	7.98

Tabela 8: Srednice skupisk

	K = 2	K = 3	K = 4	K = 5	K = 6	K = 7	K = 8	K = 9	K = 10
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	19.00
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	19.00	20.00
3	0.00	0.00	0.00	0.00	0.00	0.00	22.00	20.00	23.00
4	0.00	0.00	0.00	0.00	0.00	32.00	20.00	24.00	12.00
5	0.00	0.00	0.00	0.00	32.00	33.00	24.00	24.00	16.00
6	0.00	0.00	0.00	32.00	29.00	20.00	24.00	18.00	19.00
7	0.00	0.00	32.00	31.00	41.00	24.00	19.00	16.00	23.00
8	0.00	75.00	40.00	41.00	22.00	16.00	16.00	22.00	12.00
9	111.00	54.00	58.00	25.00	23.00	22.00	22.00	4.00	3.00
10	67.00	49.00	48.00	49.00	31.00	31.00	31.00	31.00	31.00

Tabela 9: Rozmiary skupisk

3.2.2 Wskaźniki zewnętrzne

Cases in matched pairs: 80.9 %

1 2 3

1 2 3

Rysunek 18: Porównanie wskaźników zewnętrznych

3.2.3 Ocena otrzymanych rezultatów

Page 1

Page 2

Page 1

Page 2

	1	2	3
Alcohol	0.59	-0.92	0.39
Malic	-0.47	-0.54	0.81
Ash	0.16	-0.90	0.05
Alcalinity	0.30	-0.15	0.60
Magnesium	0.02	-1.38	-0.54
Phenols	0.65	-1.03	-0.58
Flavanoids	0.95	0.00	-1.27
Nonflavanoids	-0.82	0.07	0.71
Proanthocyanins	0.47	0.07	-0.60
Color	0.02	-0.72	1.45
Hue	0.36	0.19	-1.78
Dilution	1.21	0.79	-1.40
Proline	0.55	-0.75	-0.31

Tabela 10: Medoidy dla metody PAM przy K=3