Analyse II

Louis Merlin

February 23, 2016

Contents

1	Équ	èquations différentielles ordinaires			
	1.1	Définitions et exemples	2		
	1.2	Equations différentielles à variables séparées (EDVS) (du premier			
		ordre)	4		

Chapitre 1

Équations différentielles ordinaires

1.1 Définitions et exemples

Exemple 1

$$y' = 0 \Rightarrow y(x) = C$$
 où $C \in \mathbb{R}$

y(x) = 2 est une solution, et y(x) = C, $\forall C \in \mathbb{R}$ est une solution plus générale.

Définition Une équation différentielle ordinaire est une expression

$$E(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0$$

où $E: \mathbb{R}^{n+2} \to \mathbb{R}$ une fonction donnée, $n \in \mathbb{R}^*$

On cherche un intervalle ouvert $I \subset \mathbb{R}$ et une fonction $y: I \to \mathbb{R}$ de classe C^n telle que l'équation soit satisfaite pour tout $x \in I$.

Applications

 $\mathrm{EDO} \rightarrow \mathrm{croissance}$ de la population, désintegration radioactive.

 $\mathrm{EDP} \to \mathrm{prévisions}$ météo, marché financier.

Exemple 2

$$y'' = 0 \Rightarrow y'(x) = C_1 \text{ pour } C_1 \in \mathbb{R}, x \in \mathbb{R}$$

 $y' = C \Rightarrow y(x) = C_1 x + C_2 \text{ pour } C_1, C_2 \in \mathbb{R}, x \in \mathbb{R}$

Exemple 3

$$y + y' = 0 \Rightarrow y = y'$$

Rappel: $(a^x)' = a^x \log a, \forall a \in \mathbb{R}$

$$\log a = -1 \Rightarrow a = \frac{1}{e} \Rightarrow \left(\left(\frac{1}{e} \right)^x \right)' = -\left(\frac{1}{e} \right)^x$$

 $(e^{-x})'=-e^{-x}$ est une solution pour tout $x\in\mathbb{R}$. Plus généralement, $(Ce^{-x})'=-Ce^{-x}$ pour $C\in\mathbb{R},\,x\in\mathbb{R}$.

Exemple y'=-y "Équation à variables séparées" Si on écrit $y'=\frac{dy}{dx}\Rightarrow \frac{dy}{dx}=-y$

$$\frac{dy}{y} = -dx \qquad \qquad \int \frac{dy}{y} = -\int dx$$
 variables séparées des primitives

$$\Rightarrow \log |y| = -x + C_1$$

$$\Rightarrow |y| = e^{-x+C_1} = e^{C_1} \times e^{-x}$$

$$\Rightarrow |y| = C_2 e^{-x}, C_2 > 0$$

$$\Rightarrow y(x) = \pm C_2 e^{-x}, C_2 > 0$$

Mais y(x) = 0 est aussi une solution.

Finalement on a : $y(x) = Ce^{-x}, \forall C \in \mathbb{R}, \forall x \in \mathbb{R}.$

Terminologie

$$E(x, y(x), y'(x), \dots, y^{(n)}) = 0$$
 (*)

 Définition L'ordre de l'équation (*) est n si E est une fonction non-constante de $y^{(n)}$

Définition Si (*) est une expression polynomiale de $y^{(n)}$, alors le **degré** de l'équation est le degré du polynôme en $y^{(n)}$. Si le degré est 1, alors l'équation est dite linéaire.

Définition Si l'expression (*) ne dépend pas de de x, l'équation différentielle est dite **autonome**.

Remarque Si l'équation différentielle est autonome, et $y(x) = \mathbb{R} \to \mathbb{R}$ est une solution, alors y(x+C) l'est aussi pour tout $C \in \mathbb{R}$, $x \in \mathbb{R}$ (par exemple dans l'Exemple 3 : $y(x) = Ce^{-x} \Rightarrow y(x) = Ce^{-(x+C')}$ est aussi une solution).

Type des équations différentielles

Equation	Ordre	Degré	Autonome
y' = 0	1	1	oui
y'' = 0	2	1	oui
y + y' = 5x + 1	1	1	non
sin(y') = 0	1	Ø	oui
$e^x(y')^2 + y = 0$	1	2	non

Définition La solution générale d'une équation différentielle est l'ensemble de toutes les solutions de l'équation.

Exemple $y' = 0 \Rightarrow y(x) = 2$ est une solution sur \mathbb{R} , mais ce n'est pas la solution générale. La solution générale est y(x) = C pour tout $C \in \mathbb{R}$.

Définition Problème de Cauchy

Résoudre l'équation $E(x, y(x), y'(x), \dots, y^{(n)}) = 0$ et trouver l'intervalle ouvert $I \subset \mathbb{R}$ et une fonction $y(x) : I \to \mathbb{R}$ de classe $C^n(I)$ telle que $y(x_0) = b_0$, $y(x_1) = b_1$, etc. Le nombre de conditions initiales dépend du type de l'équation.

Exemple $y'' = 0 \Rightarrow$ la solution générale est $y(x) = C_1 x + C_2, \forall C_1, C_2 \in \mathbb{R}$ sur \mathbb{R} .

Si on a : y(0) = 1 et y(2) = 4 comme conditions initiales, alors $y(0) = C_2 = 1$ et $y(2) = C_1 \times 2 + C_2 = 2C_1 + 1 = 4 \Rightarrow C_1 = \frac{3}{2}$.

La solution particulière satisfaisant les conditions initiales est $y(x) = \frac{3}{2}x + 1$.

1.2 Equations différentielles à variables séparées (EDVS) (du premier ordre)

Définition $f(y) \times y'(x) = g(x)$ où $f: I \to \mathbb{R}$ est une fonction continue sur I est une **équation différentielle à variables séparées** (EDVS).

Explication

$$f(y)\frac{dy}{dx} = g(x) \Leftrightarrow \int f(y)dy = \int g(x)dx$$

Une fonction $y:J'\subset J\to I$ qui satisfait l'équation est une solution de classe C'.

Théorème Existence et unicité d'une solution de EDVS

Soit $f: I \to \mathbb{R}$ une fonction continue telle que $f(y) \neq 0$ sur I.

 $g: I \to \mathbb{R}$ une fonction continue.

Alors pour tout couple $(x_0 \in J, b_0 \in I)$ l'équation

$$f(y)y'(x) = y(x) \tag{**}$$

admet une solution $y: J' \to I$ vérifiant les conditions initiales $y(x_0) = b_0$. Si $y_1: J_1 \to I$ et $y_2: J_2 \to I$ sont deux solutions telles que $y_1(x_0) = y_2(x_0) = b_0$, alors $y_1(x) = y_2(x)$ pour $x \in J_1 \cap J_2$.

Démonstration Soit :

$$F(y) = \int_{b_0}^{y} f(s)ds \implies F(y) \text{ est monotone}$$

 $\Rightarrow F(y) \text{ est inversible et } F(b_0) = 0$
 $\Rightarrow f(y) \neq 0 \text{ sur } I$

Soit:

$$G(x) = \int_{x_0}^x g(s)ds \to G(x_0) = 0 \quad x_0, x \in J$$

Soit $y(x) = F^{-1}(G(x))$ sur un voisinage de $x_0 \in J$:

$$\Rightarrow F(y(x)) = G(x)$$

$$\Rightarrow F'(y(x)) \times y'(x) = G'(x)$$

$$\Rightarrow f(y(x)) \times y'(x) = g'(x)$$

$$\Rightarrow y(x) = F^{-1}(G(x)) \text{ est une solution}$$

$$\Rightarrow y(x_0) = F^{-1}(G(x_0)) = F^{-1}(0) = b_0$$

$$\Rightarrow y(x) \text{ satisfait les conditions initiales}$$

<u>Unicité</u>: Soient $y_1(x)$ et $y_2(x)$.

$$y_1(x_0) = y_2(x_0) = b_0 \Rightarrow F(y_1(x)) = F(y_2(x))$$

 $\Rightarrow y_1(x) = y_2(x)$