Definición de integral triple

Nuestro objetivo ahora es definir la integral triple de una función f(x, y, z) en una caja (paralelepípedo rectangular) $B = [a, b] \times [c, d] \times [p, q]$. Procediendo como en las integrales dobles, dividimos los tres lados de B en n partes iguales y formamos la suma

$$S_n = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} f(\mathbf{c}_{ijk}) \Delta V,$$

donde \mathbf{c}_{ijk} es un punto de B_{ijk} , el ijk-ésimo paralelepípedo rectangular (o caja) en la partición de B y ΔV es el volumen de B_{ijk} (véase la Figura 5.5.1).

Definición Integral triple Sea f una función acotada de tres variables definida en B. Si $\lim_{n\to\infty} S_n = S$ existe y es independiente de la elección de \mathbf{c}_{ijk} , decimos que f es integrable y llamamos a S su integral triple (o simplemente la integral) de f sobre B y la denotamos mediante

$$\iiint_B f \ dV, \quad \iiint_B \ f(x,y,z) \ dV \qquad \text{o} \ \iiint_B \ f(x,y,z) \ dx \ dy \ dz.$$

Propiedades de las integrales triples

Como antes, podemos demostrar que las funciones continuas definidas en B son integrables. Además, las funciones acotadas cuyas discontinuidades están contenidas en gráficas de funciones continuas [tales como

Figura 5.5.1 Partici ón de una caja B en n^3 subcajas B_{iik} .