On global location-domination in bipartite graphs

Carmen Hernando, Merce Mora, Ignacio M. Pelayo

Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract

A dominating set S of a graph G is called *locating-dominating*, LD-set for short, if every vertex v not in S is uniquely determined by the set of neighbors of v belonging to S. Locating-dominating sets of minimum cardinality are called LD-codes and the cardinality of an LD-code is the *location-domination number* $\lambda(G)$. An LD-set S of a graph G is global if it is an LD-set of both G and its complement \overline{G} . The global location-domination number $\lambda_g(G)$ is the minimum cardinality of a global LD-set of G.

For any LD-set S of a given graph G, the so-called S-associated graph G^S is introduced. This edge-labeled bipartite graph turns out to be very helpful to approach the study of LD-sets in graphs, particularly when G is bipartite.

This paper is mainly devoted to the study of relationships between global LD-sets, LD-codes and the location-domination number in a graph G and its complement \overline{G} , when G is bipartite.

Keywords: Domination, Global domination, Locating domination, Complement graph, Bipartite graph.

1 Introduction

Let G=(V,E) be a simple, finite graph. The open neighborhood of a vertex $v\in V$ is $N_G(v)=\{u\in V:uv\in E\}$. The complement of a graph G, denoted by \overline{G} , is the graph on the same vertices such that two vertices are adjacent in \overline{G} if and only if they are not adjacent in G. The distance between vertices $v,w\in V$ is denoted by $d_G(v,w)$. We write N(u) or d(v,w) if the graph G is clear from the context. Given any pair of sets A and B, $A \triangle B$ denotes its symmetric difference, that is, $(A \setminus B) \cup (B \setminus A)$. For further notation and terminology, we refer the reader to [6].

A set $D \subseteq V$ is a dominating set if for every vertex $v \in V \setminus D$, $N(v) \cap D \neq \emptyset$. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G [8]. A dominating set is global if it is a dominating set of both G and its complement graph, \overline{G} . The minimum cardinality of a global dominating set of G, denoted by $\gamma_g(G)$, is the global domination number of G [3, 4, 14]. If D is a subset of V and $v \in V \setminus D$, we say that v dominates D if $D \subseteq N(v)$.

A dominating set $S \subseteq V$ is a locating-dominating set, LD-set for short, if for every two different vertices $u, v \in V \setminus S$, $N(u) \cap S \neq N(v) \cap S$. The location-domination number of G, denoted by $\lambda(G)$, is the minimum cardinality of a locating-dominating set. A locating-dominating set of cardinality $\lambda(G)$ is called an LD-code [13, 15]. Certainly, every LD-set of a non-connected graph G is the union of LD-sets of its connected components and the location-domination number is the sum of the location-domination number of its connected components. LD-codes and the location-domination parameter have been intensively studied during the last decade; see [1, 2, 5, 7, 11, 9]. A complete and regularly updated list of papers on locating-dominating codes is to be found in [12].

The remaining part of this paper is organized as follows. In Section 2, we deal with the problem of approaching the relationship between $\lambda(G)$ and $\lambda(\overline{G})$, for any arbitrary graph G. In Section 3, we introduce the so-called LD-set-associated graph G^S , which is an edge-labeled bipartite graph constructed from an arbitrary LD-set S of a given graph G, and show some basic properties of this graph. Finally, Section 4 is concerned with the study of relationships between the location-domination number $\lambda(G)$ of a bipartite graph G and the location-domination number $\lambda(\overline{G})$ of its complement \overline{G} .

2 General case

This section is devoted to approach the relationship between $\lambda(G)$ and $\lambda(\overline{G})$, for any arbitrary graph G. Some of the results we present were previously shown in [9, 10] and we include them for the sake of completeness.

Notice that $N_{\overline{G}}(x) \cap S = S \setminus N_G(x)$ for any set $S \subseteq V$ and any vertex $x \in V \setminus S$. A straightforward consequence of this fact are the following results.

Proposition 1 ([10]). If $S \subseteq V$ is an LD-set of a graph G = (V, E), then S is an LD-set of \overline{G} if and only if S is a dominating set of \overline{G} .

Proposition 2 ([9]). Let $S \subseteq V$ be an LD-set of a graph G = (V, E). Then, the following holds.

- (a) There is at most one vertex $u \in V \setminus S$ dominating S, and in the case it exists, $S \cup \{u\}$ is an LD-set of \overline{G} .
- (b) S is an LD-set of \overline{G} if and only if there is no vertex in $V \setminus S$ dominating S in G.

The following theorem is a consequence of the preceding propositions.

Theorem 1 ([9]). For every graph G, $|\lambda(G) - \lambda(\overline{G})| < 1$.

According to the preceding inequality, for every graph G, $\lambda(\overline{G}) \in \{\lambda(G) - 1, \lambda(G), \lambda(G) + 1\}$, all cases being feasible for some connected graph G. See Table 1 for some basic examples covering all possible cases.

We intend to obtain either necessary or sufficient conditions for a graph G to satisfy $\lambda(\overline{G}) > \lambda(G)$, i.e., $\lambda(\overline{G}) = \lambda(G) + 1$. This problem was approached and completely solved in [10] for the family of block-cactus. In this work, we carry out a similar study for bipartite graphs. After noticing that solving the equality $\lambda(\overline{G}) = \lambda(G) + 1$ is closely related to analyzing the existence or not of sets that are simultaneously locating-dominating sets in both G and its complement \overline{G} , the following definitions were introduced in [10].

Definition 1 ([10]). A set S of vertices of a graph G is a global LD-set if S is an LD-set of both G and its complement \overline{G} . The global location-domination number of a graph G, denoted by $\lambda_g(G)$, is defined as the minimum cardinality of a global LD-set of G.

According to Proposition 2, an LD-set S of a graph G is non-global if and only if there exists a (unique) vertex $u \in V(G) \setminus S$ which dominates S, i.e., such that $S \subseteq N(u)$. Notice that, for every graph G, $\lambda_g(\overline{G}) = \lambda_g(G)$, since for every set of vertices $S \subset V(G) = V(\overline{G})$, S is a global LD-set of G if and only if it is a global LD-set of G. Observe also that an LD-code S of G is a global LD-set if and only if it is both an LD-code of G and an LD-set of G.

Theorem 2 ([10]). For any graph G = (V, E), $\max\{\lambda(G), \lambda(\overline{G})\} \leq \lambda_g(G) \leq \min\{\lambda(G) + 1, \lambda(\overline{G}) + 1\}$. Moreover,

- (a) If $\lambda(G) \neq \lambda(\overline{G})$, then $\lambda_q(G) = \max\{\lambda(G), \lambda(\overline{G})\}$.
- (b) If $\lambda(G) = \lambda(\overline{G})$, then $\lambda_q(G) \in {\lambda(G), \lambda(G) + 1}$, and both possibilities are feasible.
- (c) $\lambda_a(G) = \lambda(G) + 1$ if and only if every LD-code of G is non-global.

Corollary 1. If G is a graph with a global LD-code, then $\lambda(\overline{G}) \leq \lambda(G)$.

In Table 1, the location-domination number of some families of graphs is displayed, along with the location-domination number of its complement graphs and the global location-domination number. Concretely, we consider the path P_n of order $n \geq 7$; the cycle C_n of order $n \geq 7$; the wheel W_n of order $n \geq 8$, obtained by joining a new vertex to all vertices of a cycle of order n-1; the complete graph K_n of order $n \geq 2$; the complete bipartite graph $K_{r,n-r}$ of order $n \geq 4$, with $1 \leq r \leq n-r$ and stable sets of order $1 \leq r$ and $1 \leq$

Proposition 3 ([10]). Let G be a graph of order n. If $G \in \{P_n, C_n, W_n, K_n, K_{1,n-1}, K_{r,n-r}, K_2(r,s)\}$, then the values of $\lambda(G)$, $\lambda(\overline{G})$ and $\lambda_g(G)$ are known and they are displayed in Table 1.

G	P_n	C_n	W_n	K_n	$K_{1,n-1}$	$K_{r,n-r}$	$K_2(r,s)$
\overline{n}	$n \ge 7$	$n \ge 7$	$n \ge 8$	$n \ge 2$	$n \ge 4$	$2 \le r \le n - r$	$3 \le r \le s$
$\lambda(G)$	$\lceil \frac{2n}{5} \rceil$	$\lceil \frac{2n}{5} \rceil$	$\lceil \frac{2n-2}{5} \rceil$	n-1	n-1	n-2	n-2
$\lambda(\overline{G})$	$\left\lceil \frac{2n-2}{5} \right\rceil$	$\lceil \frac{2n-2}{5} \rceil$	$\lceil \frac{2n+1}{5} \rceil$	n	n-1	n-2	n-3
$\lambda_g(G)$	$\lceil \frac{2n}{5} \rceil$	$\lceil \frac{2n}{5} \rceil$	$\lceil \frac{2n+1}{5} \rceil$	n	n-1	n-2	n-2

Table 1: The values of $\lambda(G)$, $\lambda(\overline{G})$ and $\lambda_q(G)$ for some families of graphs.

3 The LD-set-associated graph

Let S be an LD-set of a graph G. We introduce in this section a labeled graph associated to S and study some general properties. This graph will allow us to derive some properties related to LD-sets and the location-domination number of G.

Definition 2. Let S be an LD-set with exactly k vertices of a connected graph G = (V, E) of order n. Consider $z \notin V(G)$ and define $N_G(z) = \emptyset$. The so-called S-associated graph, denoted by G^S , is the edge-labeled graph defined as follows.

- $(1) \ V(G^S) = (V \setminus S) \cup \{z\};$
- (2) For every pair of vertices $x, y \in V(G^S)$, $xy \in E(G^S)$ if and only if $|(N_G(x) \cap S) \triangle (N_G(y) \cap S)| = 1$;
- (3) The label $\ell(xy)$ of edge $xy \in E(G^S)$ is the only element of $(N_G(x) \cap S) \triangle (N_G(y) \cap S) \in S$.

Figure 1: Left: a graph G. Right: the LD-set-associated graph G^S , where $S = \{1, 2, 3, 4, 5\}$.

Notice that two vertices of $V \setminus S$ are adjacent in G^S if their neighborhood in S differ in exactly one vertex, the label of the edge, and z is adjacent to vertices of $V \setminus S$ with exactly a neighbor in S. Therefore, we can represent the graph G^S with the vertices lying on |S|+1 levels, from bottom (level 0) to top (level |S|), in such a way that vertices with exactly k neighbors in S are at level k. There is at most one vertex at level |S| and, if it is so, this vertex is adjacent to all vertices of S. The vertices at level 1 are those with exactly one neighbor in S and S is the unique vertex at level 0. An edge of S^S has its endpoints at consecutive levels. Moreover, if S^S is the unique vertex at S^S and S^S is at exactly one level higher than S^S , then S^S is an S^S with label S^S means that S^S are at level S^S is an LD-code, then for every S^S there exists at least an edge in S^S with label S^S is an LD-code, then for every S^S there exists at least an edge in S^S with label S^S is an LD-code, then for every S^S there exists at least an edge in S^S with label S^S is an LD-code, then for every S^S there exists at least an edge in S^S with label S^S is an LD-code, then for every S^S there

The following proposition states some properties of LD-set-associated graphs.

Proposition 4. Let S be an LD-set with exactly k vertices of a connected graph G = (V, E) of order n. Let G^S be its S-associated graph. Then the following holds.

- 1. $|V(G^S)| = n k + 1$.
- 2. G^S is bipartite.
- 3. Incident edges have different labels.
- 4. Every cycle of G^S contains an even number of edges labeled v, for all $v \in S$.

- 5. Let ρ be a walk with no repeated edges in G^S . If ρ contains an even number of edges labeled v for every $v \in S$, then ρ is a closed walk.
- 6. If $\rho = x_i x_{i+1} \dots x_{i+h}$ is a path satisfying that vertex x_{i+h} lies at level i+h, for any $h \in \{0,1,\dots,h\}$, then
 - (a) the edges of ρ have different labels;
 - (b) for all $j \in \{i+1, i+2, ..., i+h\}$, $N(x_j) \cap S$ contains the vertex $\ell(x_k x_{k+1})$, for any $k \in \{i, i+1, ..., j-1\}$.

Proof. 1. It is a direct consequence from the definition of G^S .

- 2. Consider the sets $V_1 = \{x \in V(G^S) : |N(x) \cap S| \text{ is odd} \}$ and $V_2 = \{x \in V(G^S) : |N(x) \cap S| \text{ is even} \}$. Then $V(G^S) = V_1 \cup V_2$ and $V_1 \cap V_2 = \emptyset$. Since $||N(x) \cap S| |N(y) \cap S|| = 1$ for any $xy \in E(G^S)$, it is clear that the vertices x, y are not in the same subset V_i , i = 1, 2.
- 3. Suppose that edges $e_1 = xy$ and $e_2 = yz$ have the same label $l(e_1) = l(e_2) = v$. This means that the sets $N(x) \cap S$ and $N(y) \cap S$ differ only in element v and the sets $N(y) \cap S$ and $N(z) \cap S$ differ only in element $v \in S$. It is only possible if $N(x) \cap S = N(z) \cap S$, implying that x = z.
- 4. Let ρ be a cycle such that $E(\rho) = \{x_0x_1, x_1x_2, \dots x_hx_0\}$. The set of neighbors in S of two consecutive vertices differ exactly in one vertex. If we begin with $N(x_0) \cap S$, each time we add (remove) the vertex of the label of the corresponding edge, we have to remove (add) it later in order to obtain finally the same neighborhood, $N(x_0) \cap S$. Therefore, ρ contains an even number of edges with label v.
- 5. Consider the vertices $x_0, x_1, x_2, x_3, ..., x_{2k}$ of the walk ρ . In this case, $N(x_{2k}) \cap S$ is obtained from $N(x_0) \cap S$ by adding or removing the labels of all the edges of the walk. Since every label appears an even number of times, for each element $v \in S$ we can match its appearances in pairs, and each pair means that we add and remove (or remove and add) it from the neighborhood in S. Therefore, $N(x_{2k}) \cap S = N(x_0) \cap S$, and hence $x_0 = x_{2k}$.
- 6. It straightly follows from the fact that $N(x_j) \cap S = N(x_{j-1} \cap S) \cup \{\ell(x_{j-1}x_j)\}$, for any $j \in \{i+1,\ldots,i+h\}$.

4 The bipartite case

In the sequel, G = (V, E) stands for a bipartite connected graph of order $n = r + s \ge 4$, such that $V = U \cup W$, being U, W their stable sets and $1 \le |U| = r \le s = |W|$.

This section is devoted to solving the equation $\lambda(\overline{G}) = \lambda(G) + 1$ when we restrict ourselves to bipartite graphs. According to Corollary 1, this equality is feasible only for graphs without global LD-codes.

Lemma 1. Let S be an LD-code of G. Then, $\lambda(\overline{G}) \leq \lambda(G)$ if any of the following conditions holds.

1. $S \cap U \neq \emptyset$ and $S \cap W \neq \emptyset$.

2. r < s and S = W.

3. $2^r \le s$.

Proof. If S satisfies item 1., then there is no vertex dominating S and, by Proposition 2, S is a global LD-code of G, which, according to Corollary 1, means that $\lambda(\overline{G}) \leq \lambda(G)$. Next, assume that r < s and S = W. In this case, U is not an LD-set, but is a dominating set since G is connected. Therefore, there exists a pair of vertices $w_1, w_2 \in W$ such that $N(w_1) = N(w_2)$. Hence, $W - \{w_1\}$ is an LD-set of $G - w_1$. Let $u \in U$ be a vertex adjacent to w_1 (it exists since G is connected), and notice that $(W \setminus \{w_1\}) \cup \{u\}$ is an LD-code of G with vertices in both stable sets, which, by the preceding item, means that $\lambda(\overline{G}) \leq \lambda(G)$. Finally, if $2^r \leq s$ then $S \neq U$, which means that S satisfies either item 1. or item 2.

Corollary 2. If $\lambda(\overline{G}) = \lambda(G) + 1$, then $r \leq s \leq 2^r - 1$. Moreover, if r < s then U is the unique LD-code of G, and if r = s we may assume that U is a non-global LD-code of G.

Proposition 5. If G has order at least 3 and $1 \le r \le 2$, then $\lambda(\overline{G}) \le \lambda(G)$.

Proof. If r = 1, then G is the star $K_{1,n-1}$ and $\lambda(\overline{G}) = \lambda(G) = n - 1$.

	$\lambda(\overline{G}) = \lambda(G)$	$\lambda(\overline{G}) = \lambda(G) - 1$		
r=1	•-<			
r = 2 $s = 2$	 <			
r = 2 $s = 3$		< □		

Figure 2: Some bipartite graphs with $1 \le r \le 2$.

Suppose that r=2. If $s\geq 2^2=4$ then, by Lemma 1, $\lambda(\overline{G})\leq \lambda(G)$.

If s=2, then G is either P_4 and $\lambda(\overline{P_4})=\lambda(P_4)=2$, or G is C_4 and $\lambda(\overline{C_4})=\lambda(C_4)=2$.

If
$$s=3$$
, then G is P_5 , $K_{2,3}$, $K_2(1,2)$, or a banner P , and $\lambda(\overline{P_5})=\lambda(P_5)=2$, $\lambda(\overline{K_{2,3}})=\lambda(K_{2,3})=3$, $2=\lambda(\overline{K_2(1,2)})<\lambda(K_2(1,3))=3$, and $2=\lambda(\overline{P})<\lambda(P)=3$.

Notice that the only bipartite graphs G such that $\lambda(G) = 2$ are P_3 , P_4 , C_4 and P_5 . Observe also that every bipartite graph G such that $\lambda(\overline{G}) = \lambda(G) + 1$ satisfies $\lambda(G) \geq r$, being r the order of its smallest stable set.

Next, we approach the case $\lambda(G) \geq 3$. That is to say, from now on we assume that $r \geq 3$.

Lemma 2. If $\lambda(\overline{G}) = \lambda(G) + 1$ and U is an LD-code of G, then G^U contains, for every vertex $u \in U$, at least two edges with label u.

Proof. Condition $\lambda(\overline{G}) = \lambda(G) + 1$ implies that there is no LD-code of G with vertices in both stable sets. Therefore, for any $u \in U$, $U \setminus \{u\}$ is not an LD-set of the graph G - u, otherwise the set $U \setminus \{u\}$ together with a neighbor of vertex u would be an LD-code of G with vertices in both stable sets. We distinguish two possible cases.

Case (a). If $N(U \setminus \{u\}) = W$ there is at least a pair of vertices $w_1, w_2 \in W$ such that $N(w_1) \triangle N(w_2) = \{u\}$ (see Figure 3,(a)). Moreover, since there is no LD-code with vertices in both stable sets, there must be another pair of vertices $w_3, w_4 \in W$ such that $N(w_3) \triangle N(w_4) = \{u\}$, otherwise $(U \setminus \{u\}) \cup \{w\}$, where w is the neighbor of u in $\{w_1, w_2\}$, would be an LD-code with vertices in both stable sets.

Case (b). If $N(U \setminus \{u\}) \subseteq W$, then there is exactly a vertex $w \in W$ such that $N(w) = \{u\}$ (see Figure 3,(b)). By the other hand, if the neighborhood in $U \setminus \{u\}$ of any two vertices of $W \setminus \{w\}$ is different, then $(U \setminus \{u\}) \cup \{w\}$ would be an LD-code with vertices in both stable sets. Therefore, there is at least a pair of vertices $w_1, w_2 \in W \setminus \{w\}$ such that $N(w_1) \triangle N(w_2) = \{u\}$. Notice that in this case $N(w) \triangle \emptyset = \{u\}$.

Figure 3: Case (a): $N(U \setminus \{u\}) = W$. Case (b): $N(U \setminus \{u\}) \subseteq W$.

Consequently, in both cases, for every $u \in U$, there are at least two edges with label u in the graph G^U .

In the study of LD-sets using the LD-associated graph, a family of graphs is particularly useful, the $cactus\ graph$ family. A block of a graph is a maximal connected subgraph with no cut vertices. A connected graph G is a cactus if all its blocks are cycles or edges. Cactus are characterized as those connected graphs with no edge shared by two cycles.

Lemma 3. Let $\lambda(\overline{G}) = \lambda(G) + 1$ and assume that U is an LD-code of G. Consider a subgraph H of G^U induced by a set of edges containing exactly two edges with label u, for each $u \in U$. Then, all connected components of H are cactus.

Proof. We will prove that there is no edge lying on two different cycles of H. Suppose on the contrary that there is an edge e_1 contained in two different cycles C_1 and C_2 of H. If the label of e_1 is $u \in U$, by Proposition 4 both cycles C_1 and C_2 contain the other edge e_2 of H labeled with u. Suppose that $e_1 = x_1y_1$ and $e_2 = x_2y_2$ and assume w.l.o.g. that there exist $x_1 - x_2$ and $y_1 - y_2$ paths in C_1 not containing edges e_1, e_2 . Let P_1 and P'_1 denote respectively those paths (see Figure 4 a).

We have two possibilities for C_2 : (i) there are $x_1 - x_2$ and $y_1 - y_2$ paths in C_2 not containing neither e_1 nor e_2 . Let P_2 denote the $x_1 - x_2$ path in C_2 in that case (see Figure 4 b); (ii) there are $x_1 - y_2$ and $y_1 - x_2$ paths in C_2 not containing neither e_1 nor e_2 (see Figure 4 c).

In case (ii), the closed walk formed with the path P_1 , e_1 and the $y_1 - x_2$ path in C_2 would contain a cycle with exactly an edge labeled with u, which is a contradiction (see Figure 4 d).

In case (i), at least one the following cases holds: the $x_1 - x_2$ paths in C_1 and in C_2 , P_1 and P_2 , are different or the $y_1 - y_2$ paths in C_1 and in C_2 are different (otherwise, $C_1 = C_2$).

Figure 4: All connected components of the subgraph H are cactus.

Assume that P_1 and P_2 are different. Let z_1 be the last vertex shared by P_1 and P_2 advancing from x_1 and let z_2 be the first vertex shared by P_1 and P_2 advancing from z_1 in P_2 . Notice that $z_1 \neq z_2$. Consider the cycle C_3 formed with the $z_1 - z_2$ paths in P_1 and P_2 . Let P_1^* and P_2^* be respectively the $z_1 - z_2$ subpaths of P_1 and P_2 (see Figure 4 e). We claim that the internal vertices of P_2^* do not lie in P_1' . Otherwise, consider the first vertex t of P_1' lying also in P_2^* . The cycle beginning in x_1 , formed by the edge e_1 , the $y_1 - t$ path contained in P_1' , the $t - z_1$ path contained in P_2^* and the $z_1 - x_1$ path contained in P_1 has exactly one appearance of an edge with label u, which is a contradiction (see Figure 4 f). By Proposition 4, the labels of edges belonging to P_1^* appear exactly two times in cycle C_3 , but they also appear exactly two times in cycle C_1 . But this is only possible if they appear exactly two times in P_1^* , since H contains exactly to edges with the same label. By Proposition 4, P_1^* must be a closed path, which is a contradiction.

We present next some properties relating parameters of bipartite graphs having cactus as connected components.

Lemma 4. Let H be a bipartite graph of order at least 4 such that all its connected components are cactus. If H has cc(H) connected components and cy(H) cycles, then the following holds.

- 1. |V(H)| = |E(H)| cy(H) + cc(H).
- 2. If ex(H) = |E(H)| 4 cy(H), then $ex(H) \ge 0$ and $|V(H)| = \frac{3}{4}|E(H)| + \frac{1}{4}ex(H) + cc(H)$.
- 3. $|V(H)| \ge \frac{3}{4}|E(H)| + 1$.
- 4. $|V(H)| = \frac{3}{4}|E(H)| + 1$ if and only if H is connected and all blocks are cycles of order 4.

Proof. 1. Since H is a planar graph with cy(H) + 1 faces and cc(H) connected components, the equality follows from the generalization of Euler's Formula:

$$(cy(H) + 1) + |V(H)| = |E(H)| + (cc(H) + 1).$$

2. All cycles of a bipartite graph have at least 4 edges, hence $ex(H) \ge 0$. By the preceding item,

$$|V(H)| = |E(H)| - \operatorname{cy}(H) + \operatorname{cc}(H) = |E(H)| - \frac{1}{4}(|E(H) - \operatorname{ex}(H)) + \operatorname{cc}(H) = \frac{3}{4}|E(H)| + \frac{1}{4}\operatorname{ex}(H) + \operatorname{cc}(H).$$

- 3. It immediately follows from the preceding item.
- 4. Observe first that if H is connected and all blocks are cycles of order 4, then $\operatorname{cc}(H)=1$ and $|E(H)|=4\operatorname{cy}(H)$. Hence, $\operatorname{ex}(H)=|E(H)|-4\operatorname{cy}(H)=0$ and by item 2, $|V(H)|=\frac{3}{4}|E(H)|+1$. Conversely, suppose that $|V(H)|=\frac{3}{4}|E(H)|+1$. The graph H must be connected, since otherwise $|V(H)|=\frac{3}{4}|E(H)|+\frac{1}{4}\operatorname{ex}(H)+\operatorname{cc}(H)\geq\frac{3}{4}|E(H)|+2$. On the other hand, if H contains a cycle of order at least 6 or a bridge, then $\operatorname{ex}(H)=|E(H)|-4\operatorname{cy}(H)>0$, implying that $|V(H)|=\frac{3}{4}|E(H)|+\frac{1}{4}\operatorname{ex}(H)+\operatorname{cc}(H)>\frac{3}{4}|E(H)|+\operatorname{cc}(H)=\frac{3}{4}|E(H)|+1$.

Proposition 6. If $r \geq 3$ and $\lambda(\overline{G}) = \lambda(G) + 1$, then $\frac{3r}{2} \leq s \leq 2^r - 1$.

Proof. By Corollary 2, we have that $s \leq 2^r - 1$, and we may assume that U is a non-global LD-code and there is no LD-code with vertices in both stable sets.

Consider a subgraph H of G^U with exactly two edges with label u for any $u \in U$. The graph H is bipartite since it is a subgraph of G^U and by Lemma 4,

$$s+1=|V(G^U)|\geq |V(H)|\geq \frac{3}{4}|E(H)|+1=\frac{3}{4}(2r)+1=\frac{3r}{2}+1$$

and consequently $s \ge \frac{3r}{2}$.

Lemma 5. If $\lambda(\overline{G}) = \lambda(G) + 1$ and U is an LD-code of G, let z be the vertex of G^U introduced in Definition 2 and let H be a subgraph of G^U with exactly two edges with label u, for each $u \in U$. Then the following holds.

- 1. If H has at least two connected components, then $s \geq \frac{3r}{2} + 1$.
- 2. If $\deg_{G^U}(z) = 0$, then $s \ge \frac{3r}{2} + 1$.
- 3. $\deg_{G^U}(z) \neq 0$ if and only if there is at least a vertex in W of degree 1 in G.
- 4. If G has no vertex of degree 1 in W, then $s \ge \frac{3r}{2} + 1$.

Proof. 1. By Lemma 4, $s+1 \ge |V(H)| = \frac{3}{4}|E(H)| + \frac{1}{4}ex(H) + cc(H) \ge \frac{3}{4}|E(H)| + 2 = \frac{3r}{2} + 2$, and thus, $s \ge \frac{3r}{2} + 1$.

- 2. If $\deg_{G^U}(z) = 0$, then z is not a vertex of H. Hence, $s \ge |V(H)| = \frac{3}{4}|E(H)| + \frac{1}{4}\mathrm{ex}(H) + \mathrm{cc}(H) \ge \frac{3}{4}|E(H)| + 1 = \frac{3r}{2} + 1$.
- 3. We know that $\deg_{G^U}(z) \neq 0$ if and only if there is a vertex $w \in W$ satisfying $N(w) \triangle N(z) = N(w) \triangle \emptyset = \{u\}$, i.e. if and only if $\deg_G(w) = 1$.

4. It is a straight consequence of items 2 and 3.

Proposition 7. There are no bipartite graphs G satisfying $\lambda(\overline{G}) = \lambda(G) + 1$ if $\frac{3r}{2} \leq s < \frac{3r}{2} + 1$.

Proof. Suppose on the contrary that G is a bipartite graph satisfying the conditions of the proposition. Condition $\lambda(\overline{G}) = \lambda(G) + 1$ implies that we may assume that U is an LD-code of G, there is no LD-code with vertices in both stable sets and U is not an LD-set of \overline{G} . Consider a subgraph H of G^U with exactly two edges with label u, for each $u \in U$ (it exists by Lemma 2).

Observe that the inequality is only possible for $s = \frac{3r}{2}$, whenever r is even, and for $s = \frac{3r+1}{2}$, whenever r is odd. If r is even and $s = \frac{3r}{2}$, then

$$\frac{3r}{2} + 1 = s + 1 = |V(G^U)| \ge |V(H)| = \frac{3}{4}|E(H)| + \frac{1}{4}\mathrm{ex}(H) + \mathrm{cc}(H) = \frac{3r}{2} + \frac{1}{4}\mathrm{ex}(H) + \mathrm{cc}(H).$$

Since $\operatorname{ex}(H) \geq 0$ and $\operatorname{cc}(H) \geq 1$, this is only possible for $\operatorname{ex}(H) = 0$, $\operatorname{cc}(H) = 1$, and $V(G^U) = V(H)$. By Lemma 4, H is a cactus with all blocks cycles of order 4, concretely, $\frac{r}{2}$ cycles. If r is odd and $s = \frac{3r+1}{2}$, then

$$\frac{3r}{2} + \frac{2}{4} + 1 = \frac{3r+1}{2} + 1 = s+1 = |V(G^U)| \geq |V(H)| = \frac{3}{4}|E(H)| + \frac{1}{4}\mathrm{ex}(H) + \mathrm{cc}(H) = \frac{3r}{2} + \frac{1}{4}\mathrm{ex}(H) + \mathrm{cc}(H).$$

This is only possible for ex(H)=2, cc(H)=1, and $V(G^U)=V(H)$. By Lemma 4, H is a cactus with exactly $\frac{r-1}{2}$ cycles: $\frac{r-1}{2}-1$ cycles of order 4 and a cycle of order 6, or $\frac{r-1}{2}$ cycles of order 4 and two bridges.

We also know that condition $\lambda(\overline{G}) = \lambda(G)$ implies the existence of a vertex $w^* \in V(G) \subseteq V(G^U) = V(H)$ such that $N_G(w^*) = U$, i.e., H has a vertex at the highest level. Lemma 5 allows us to conclude that H is connected and $z \in V(H)$. Thus, H must be a chain of cycles of order 4, or a chain of a cycle of order 6 and cycles of order 4, or a chain of a bridge and cycles of order 4, plus another bridge hanging from a vertex of this chain, with both bridges having the same label and, by Proposition 4, not lying in a path with all vertices at different levels (see Figure 5).

In consequence, one of the following cases holds in H: (i) z belongs to a cycle C of order 4; (ii) z belongs to a cycle C of order 6; (iii) z belongs to a bridge, e. In this case, there is no x-z path of length i in H with consecutive vertices in levels $i, i-1, \ldots, 1, 0$ respectively containing both edges of H with label $\ell(e)$. We may assume w.l.o.g. that the labels $a, b, c \in U$ of the edges of C and e are those of Figure 6. Let w_0 be the vertex of G indicated in the same figure.

We claim that the set $S = (U \setminus \{a\}) \cup \{w_0\}$ is an LD-set of \overline{G} with exactly r vertices. Indeed, if $w_0 \neq w^*$, then $N_{\overline{G}}(a) \cap S = S \setminus \{w_0\}$, $N_{\overline{G}}(w^*) \cap S = \{w_0\}$ and for any $x \in W \setminus \{w^*, w_0\}$, $N_{\overline{G}}(x) \cap S = \{w_0\} \cup S'$, where $S' = U \setminus (N_G(x) \cup \{a\}) \neq \emptyset$, since $N_G(x) \neq U \setminus \{a\}$. Moreover, for

Figure 5: Examples of subgraphs H.

Figure 6: Possible cases for vertex z in subgraph H.

any pair of different vertices $x,y\in W\setminus\{w^*,w_0\},\ N_G(x)\cap(U\setminus\{a\})\neq N_G(y)\cap(U\setminus\{a\}),$ implies that $N_{\overline{G}}(x)\cap S\neq N_{\overline{G}}(y)\cap S$. If $w_0=w^*$, then $N_{\overline{G}}(a)\cap S=S\setminus\{w^*\}$, and for any $x\in W\setminus\{w^*\}$, $N_{\overline{G}}(x)\cap S=\{w^*\}\cup S'$, where $S'=U\setminus(N_G(x)\cup\{a\}).$ Moreover, for any pair of different vertices $x,y\in W\setminus\{w^*\},\ N_G(x)\cap(U\setminus\{a\})\neq N_G(y)\cap(U\setminus\{a\}),$ implies that $N_{\overline{G}}(x)\cap S\neq N_{\overline{G}}(y)\cap S.$

Proposition 8. For every pair (r, s), $r, s \in \mathbb{N}$, such that $3 \le r$ and $\frac{3r}{2} + 1 \le s \le 2^r - 1$, there exists a bipartite graph G(r, s) such that $\lambda(\overline{G}) = \lambda(G) + 1$.

Proof. Let $s = \left\lceil \frac{3r}{2} + 1 \right\rceil$. Consider the bipartite graph $G(r, \left\lceil \frac{3r}{2} + 1 \right\rceil)$ such that $V = U \cup W$, $U = [r] = \{1, 2, \dots, r\}$, and $W \subseteq \mathcal{P}([r]) \setminus \{\emptyset\}$ is defined as follows. For r = 2k even:

$$W = \Bigl\{ [r] \Bigr\} \cup \Bigl\{ [r] \setminus \{i\} : i \in [r] \Bigr\} \cup \Bigl\{ [r] \setminus \{2i-1,2i\} : 1 \leq i \leq k \Bigr\}$$

and for r = 2k + 1 odd:

$$\begin{split} W = & \Big\{ [r] \Big\} \cup \Big\{ [r] \setminus \{i\} : i \in [r] \Big\} \cup \Big\{ [r] \setminus \{2i-1,2i\} : 1 \leq i \leq k-1 \Big\} \\ & \cup \Big\{ [r] \setminus \{r-2,r-1\}, [r] \setminus \{r-1,,r\}, [r] \setminus \{r-2,r-1,r\} \Big\} \end{split}$$

Figure 7: The labeled graph G^U-z , for $G=G(r,\left\lceil \frac{3r}{2}+1\right\rceil)$ and $U=\{1,\ldots,r\}$.

By construction, U is an LD-set of G with r vertices and by Corollary 2, U is not an LD-set of \overline{G} (see in Figure 7 the U-associated graph, G^U). We claim that there is no LD-set in \overline{G} with at most r vertices.

Suppose that S is an LD-set of \overline{G} . We already know that $S \neq U$. Let us assume that $|S \cap U| = r - k$, $k \geq 1$. Consider the subgraph H of G^U induced by 2k edges of G^U with label $u \in U \setminus S$. Notice that, by definition, this subgraph exists and $z \notin V(H)$. Moreover, by Lemma 3, all connected components of H are cactus. Observe that, by definition of the associated graph G^U , the vertices lying at the same connected component of H have the same neighborhood in $S \cap U$. We know also that W induces a complete graph in \overline{G} . Therefore, at least all but one vertex of each connected component of H must be in S. By Lemma 4, this value is

$$|V(H)| - \operatorname{cc}(H) = \frac{3}{4}|E(H)| + \frac{1}{4}\operatorname{ex}(H) = \frac{3}{4}2k + \frac{1}{4}\operatorname{ex}(H) = \frac{3}{2}k + \frac{1}{4}\operatorname{ex}(H) \ge \frac{3}{2}k.$$

Hence,
$$|S| \ge (r-k) + \frac{3}{2}k = r + \frac{1}{2}k > r$$
.

Remark. We derive from this result that $\lambda(G) = r$. Nevertheless, a direct proof of this fact can be given: it can be proved in a similar way that there is no LD-set of G with less than r vertices.

For $s > \lceil \frac{3r}{2} + 1 \rceil$, we can add up to $2^r - 1 - r$ vertices to the set W of the graph $G(r, \lceil \frac{3r}{2} + 1 \rceil)$ taking into account that the neighborhoods in U of the vertices of W must be different and non-empty. \square

Theorem 3. Let r, s be a pair of integers such that $3 \le r \le s$.

- (1) There exists a bipartite graph $V(G) = U \cup W$ such that |U| = r, |W| = s and $\lambda(\overline{G}) = \lambda(G) 1$.
- (2) There exists a bipartite graph $V(G) = U \cup W$ such that |U| = r, |W| = s and $\lambda(\overline{G}) = \lambda(G)$.
- (3) There exist a bipartite graph $V(G) = U \cup W$ such that |U| = r, |W| = s and $\lambda(\overline{G}) = \lambda(G) + 1$ if and only if $\frac{3r}{2} + 1 \le s \le 2^r 1$.

Proof. To prove item (1), take the bi-star $K_2(r,s)$ and check that $\lambda(K_2(r,s)) = r + s - 2$ and $\lambda(\overline{K_2(r,s)}) = r + s - 3$. To prove item (2), take the biclique $K_{r,s}$ and check that $\lambda(K_{r,s}) = \lambda(\overline{K_{r,s}}) = r + s - 2$. Finally, observe that item (3) is a corollary of Propositions 6, 7 and Proposition 8

References

- [1] N. Bertrand, I. Charon, O. Hudry, A. Lobstein, Identifying and locating-dominating codes on chains and cycles, *Eur. J. Combin.*, **25** (2004) 969–987.
- [2] M. Blidia, M. Chellali, F. Maffray, J. Moncel, A. Semri, Locating-domination and identifying codes in trees, *Australas. J. Combin.*, **39** (2007) 219–232.
- [3] R.C. Brigham, J.R. Carrington, Global domination, in: T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs, Advanced Topics, Marcel Dekker, New York, 1998, pp. 30–320.
- [4] R. C. Brigham, R. D. Dutton, Factor domination in graphs, Discrete Math., 86 (1-3) (1990) 127–136.
- [5] J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, Locating-dominating codes: Bounds and extremal cardinalities, *Appl. Math. Comput.*, **220** (2013) 38–45.
- [6] G. Chartrand, L. Lesniak, P. Zhang, Graphs and Digraphs, fifth edition, CRC Press, Boca Raton (FL), (2011).
- [7] C. Chen, R. C. Lu, Z. Miao, Identifying codes and locating-dominating sets on paths and cycles, *Discrete Appl. Math.*, **159** (15) (2011) 1540–1547.
- [8] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.
- [9] C. Hernando, M. Mora, I. M. Pelayo, Nordhaus-Gaddum bounds for locating domination, Eur. J. Combin., 36 (2014) 1–6.
- [10] C. Hernando, M. Mora, I. M. Pelayo, On global location-domination in graphs, http://arxiv.org/abs/1312.0772, 2014.
- [11] I. Honkala, T. Laihonen, On locating-dominating sets in infinite grids, Eur. J. Combin., 27 (2) (2006) 218–227.
- [12] A. Lobstein, Watching systems, identifying, locating-dominating ans discriminating codes in graphs, http://www.infres.enst.fr/~lobstein/debutBIBidetlocdom.pdf
- [13] D. F. Rall, P. J. Slater, On location-domination numbers for certain classes of graphs, *Congr. Numer.* **45** ((1984) 97–106.
- [14] E. Sampathkumar, The global domination number of a graph, J. Math. Phys. Sci. 23 ((1989) 377–385.
- [15] P. J. Slater, Dominating and reference sets in a graph, J. Math. Phys. Sci. 22 (1988) 445–455.