$$y = 2x + 3$$

 $x = [1,2,3,4,5]$

$$y = 2x + 3$$

$$x = [1,2,3,4,5]$$

$$y = [5,7,9,11,13]$$


```
x = [1,2,3,4,5]
y = [5,7,9,11,13]
    y = 2x + 3
```

```
area = [2600,3000,3200,3600,4000]
```

```
price = [550k, 565k, 610k, 680k, 725k]
```

```
area = [2600,3000,3200,3600,4000]

price = [550k,565k,610k,680k,725k]
```

price = 135.78 * area + 180616.43

```
area = [2600,3000,3200,3600,4000]
```

```
price = [550k, 565k, 610k, 680k, 725k]
```

```
price = 135.78 * area + 180616.43
```

Home prices in monroe township, NJ (USA)

area		price
	2600	550000
	3000	565000
D	3200	610000
	3600	680000
	4000	725000

Mean Squared Error

$$ms\varepsilon = \frac{1}{n} \sum_{i=1}^{n} (y_i - y_{predicted})^2$$

Mean Squared Error

$$ms\varepsilon = \frac{1}{n} \sum_{i=1}^{n} (y_i - (mx_i + b))^2$$
Cost Function

Gradient descent is an algorithm that finds best fit line for given training data set

Mean Squared Error

$$ms\varepsilon = \frac{1}{n} \sum_{i=1}^{n} (y_i - (mx_i + b))^2$$
Cost Function

Hindi Machine Learning Tutorial 4 - Gradient Descent and Cost Function

