ML Coding Practice Lecture 04-1 Real-time Object Detection

Prof. Jongwon Choi Chung-Ang University Fall 2022

Today's Lecture

What's Object Detection?

R-CNN / Fast RCNN / Faster RCNN

• SSD / YOLO

So far: Image classification

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Other Computer Vision tasks

Other Computer Vision tasks

Label each pixel in the image with a category label

Don't differentiate instances, only care about pixels

Sliding window approach

Sliding window approach

Fully convolutional

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Fully convolutional

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Fully convolutional

Design network as a bunch of convolutional layers, with **downsampling** and **upsampling** inside the network!

Fully convolutional

Design network as a bunch of convolutional layers, with **downsampling** and **upsampling** inside the network!

Recall: Transposed convolution

Output contains copies of the filter weighted by the input, summing at where at overlaps in the

Need to crop one pixel from output to make output exactly 2x input

Fully convolutional

Design network as a bunch of convolutional layers, with **downsampling** and **upsampling** inside the network!

Other Computer Vision tasks

Aside: Human pose estimation

Represent pose as a set of 14 joint positions:

Left / right foot
Left / right knee
Left / right hip
Left / right shoulder
Left / right elbow
Left / right hand
Neck
Head top

Aside: Human pose estimation

Aside: Human pose estimation

Other Computer Vision tasks

Object detection: preface

Object detection: as regression?

Object detection: as regression?

Each image needs a different number of outputs!

CAT: (x, y, w, h)

4 numbers

DOG: (x, y, w, h)

DOG: (x, y, w, h)

CAT: (x, y, w, h)

16 numbers

DUCK: (x, y, w, h) DUCK: (x, y, w, h)

••••

Many numbers!

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? NO Cat? NO Background? YES

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? YES Cat? NO Background? NO

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? YES Cat? NO Background? NO

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? NO Cat? YES Background? NO

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? NO Cat? YES Background? NO

Problem: Need to apply CNN to huge number of locations and scales, very computationally expensive!

Region proposals

- Find "blobby" image regions that are likely to contain objects
- Relatively fast to run; e.g. Selective Search gives 1000 region proposals in a few seconds on CPU

Regions of Interest (RoI) from a proposal method (~2k)

R-CNN

R-CNN

Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

R-CNN

Problems

- Ad hoc training objectives
 - Fine-tune network with softmax classifier
 - log loss
 - Train post-hoc linear SVMs
 - hinge loss
 - Train post-hoc bounding-box regressions
 - least squares
- Training is slow (84h), takes a lot of disk space
- Inference (detection) is slow
 - 47s / image with VGG16 [Simonyan & Zisserman. ICLR15]
 - Fixed by SPP-net [He et al. ECCV14]

Fast R-CNN (Training)

Fast R-CNN: Rol Pooling

Hi-res input image: 3 x 640 x 480 with region proposal

Hi-res conv features: 512 x 20 x 15;

Projected region proposal is e.g. 512 x 18 x 8 (varies per proposal)

Divide projected proposal into 7x7 grid, max-pool within each cell

Rol conv features: 512 x 7 x 7 for region proposal Fully-connected layers

Fully-connected layers expect low-res conv features: 512 x 7 x 7

R-CNN vs SPP vs Fast R-CNN

R-CNN vs SPP vs Fast R-CNN

Insert Region Proposal **Network (RPN)** to predict proposals from features

Jointly train with 4 losses:

1. RPN classify object / not object

loss

- 2. RPN regress box coordinates
- 3. Final classification score (object classes)
- 4. Final box coordinates

Region Proposal Network (RPN)

R-CNN Test-Time Speed

Today's Lecture

What's Object Detection?

R-CNN / Fast RCNN / Faster RCNN

• SSD / YOLO