OS第五次作业

学号: 21371220

姓名:杨硕

Q1

a.

• 先来先服务

P1->P2->P3->P4->P5

• 短作业(进程)优先

P2->P4->P3->P5->P1

• 非抢占式的优先数

P2->P5->P1->P3->P4

轮转法

P1->P2->P3->P4->P5->P1->P5->P1

b.

• 先来先服务

进程	周转时间	等待时间
P1	10	0
P2	11	10
P3	13	11
P4	14	13
P5	19	14

平均周转时间: (10+11+13+14+19)/5=13.4

• 短作业(进程)优先

进程	周转时间	等待时间
P1	19	9
P2	1	0
P3	4	2
P4	2	1
P5	9	4

平均周转时间: (19+1+4+2+9)/5=7

• 非抢占式的优先数

进程	周转时间	等待时间
P1	16	6
P2	1	0
P3	18	16
P4	19	18
P5	6	1

平均周转时间: (16+1+18+19+6)/5=12

• 轮转法

进程	周转时间	等待时间
P1	19	9
P2	3	2
P3	5	3
P4	6	5
P5	15	10

平均周转时间: (19+3+5+6+15)/5=9.6

Q2

产生死锁的四个条件:

- 互斥条件:指进程对所分配到的资源进行排它性使用,即在一段时间内某资源只由一个进程占用。如果此时还有其它进程请求资源,则请求进程只能等待,直至占有资源的进程使用完释放资源
- 请求和保持条件:指进程已经保持至少一个资源,但又提出了新的资源请求,而该资源已被其它进程占有,此时请求进程阻塞,但又对自己已获得的其它资源保持不放
- 不可剥夺条件: 指进程已获得的资源, 在未使用完之前, 不能被剥夺, 只能在使用完时由自己释放
- 环路等待:指在发生死锁时,必然存在一个进程—资源的环形链,即进程集合{P0, P1, P2, ···, Pn}中,P0正在等待P1占用的资源,P1正在等待P2占用的资源,......,Pn正在等待P0占用的资源

Q3

假设每个进程 i 所需要的打印机数最大为 max_i , a_i 表示已分配给进程 i 的打印机数, b_i 表示进程 i 还需要的打印机数

由题意得

$$\sum \max_i = \sum a_i + \sum b_i < n + m$$

假设会发生死锁,即m个打印机都已被分配

$$\sum a_i = m$$

那么,则有

$$\sum b_i < n$$

即n个进程里至少有一个进程不需要申请资源(打印机),这个进程可以执行完,其资源就会释放,因此就不会 发生死锁,与前面假设矛盾,所以不可能产生死锁

Q4

- 线程最直接的理解就是"轻量级进程",它是一个基本的CPU执行单元,也是程序执行流的最小单元,由 线程ID、程序计数器、寄存器集合和堆栈组成。线程是进程中的一个实体,是被系统独立调度和分派的 基本单位,线程自己不拥有系统资源,只拥有一点在运行中必不可少的资源,但它可与同属一个进程的 其他线程共享进程所拥有的全部资源。
- 引入线程的目的是减小程序在并发执行时所付出的时空开销,提高操作系统的并发性能。

Q5

	已分配资源	最大需求量	需要资源
进程A	10211	11213	1002
进程B	20110	22210	2100
进程C	11010	21310	10300
进程D	11110	11221	111

可用资源00x12

- x=0,可用资源=12 < 需要资源_{min}=111,产生死锁,排除
- x=1,可用资源=112>111,此时进程D可以执行完,释放资源后,可用资源=11222>1002,进程A可以执行完,释放资源后,可用资源=21433>2100,进程B可以执行完,释放资源后,可用资源=41543>10300,进程C可以执行完

综上, 若保持安全状态, x最小值为1