

DSPAUDIOEVM Evaluation Board

User's Manual

Order Number: DSPAUDEVMEBUM/D Revision 1, January 2003

This page intentionally left blank.

TABLE OF CONTENTS

Paragra Number		Page Number
	SECTION 1	
	OVERVIEW	
1.1	Introduction	1
1.2	DSPAUDIOEVM Architecture	
1.2.1	Daughterboard	
1.2.1	Motherboard	
1.2.2	Debugger Interfaces	
1.3.1	Suite56 OnCE ‰ Debugger	
1.3.1	Symphony Debugger Interface	
1.4	Microcontrollers	
1.5	Config MPU	
1.6	Debug MPU	
1.7	Getting Started	
1.8	Running the Passthru Code	
1.0	Training the Facetina Code	
	SECTION 2	
	MOTHERBOARD	
2.1	Introduction	4
2.2	Configuration Jumpers	
2.2.1	JP1/JP2 - S/PDIF Transmitter Output	
2.2.2	JP3/JP4 – S/PDIF Receiver Input	
2.2.3	JP5 — Pass-thru Header	
2.2.4	Debugger and Microcontroller Configuration	
2.2.4.1	PJ6 Debug MPU Crystal Selection	
2.2.4.2	JP7 – MPU Program Control	
2.2.4.3	JP8 – SHI Debug Source Selection	
2.2.4.4	JP9 – OnCE/JTAG Debugger Source Selection	
2.2.4.5	JP10 – Config / Debug MPU Communication	
2.2.4.6	JP11 – AUX Mode Input Source Selection	
2.3	Signal Headers	
2.3.1	P1 — PPI Header	
2.3.2	P2 — OnCE Header	8
2.3.3	P3 — ANALOG I/O	8
2.3.4	TP1 / TP2 Headers	9
2.4	On-board Debugger Connections	9
2.4.1	J2 — USB Interface 9	
2.4.2	J3 — RS232 Interface	9
2.4.3	J4 — Parallel Port Debugger Interface	9
2.5	External I/O	10
2.5.1	J9 / J10 — Microphone Inputs	
2.5.1.1	RV1/RV2 - Microphone Gain Control	
2.5.2	J11 / J12 — Analog Outputs	
2.5.3	J13 — Headphone Outputs	
2.5.3.1	SW2 / SW3 — Channel Select	
2.5.3.2	RV3 / RV4 — Headphone Volume Select	11

Paragraph Number	I.	Page Number
	SECTION 3	
	DAUGHTERBOARD	
3.1	DSPX36XDB1	12
3.2	Mode Selection	12
3.3	Memory	13
3.4	JP11 - Clock Selection	
3.5	Daughterboard Audio I / O and Clock Control Header	13
3.5.1	TIO0 – Timmer Port	
3.5.2	JP1 - Synchronous/Asynchronous Clock Control	13
3.5.3	JP2 – Single/Double Speed Clocking Control	13
3.5.4	JP3 - FST_1 Connection	14
3.5.5	JP4 – SCKT_1 Connection	14
3.5.6	JP5 - FSR_1 Connection	14
3.5.7	JP6 - SCKR_1 Connection	14
3.5.8	JP7 - DSP MUTE Control	14
3.5.9	JP8 - INT_0/SPDIF Error Flag Connection	14
3.5.10	JP9 - SDO5/SDI0 Configuration	14
3.5.11	JP10 SDO4/SDI1 Configuration	14
	SECTION 4	
	EVM BILL OF MATERIALS	
	EVM Bill of Materials	15
	APPENDIX A	
	Motherboard Schematics	31
	Motherboard Layout	
	Daughterboard Schematics	
	Daughterboard Layout	
	A PREMININ P	
	APPENDIX B	
	PASSTHRU CODE	
B.1	56362 / 366 / 367 Passthru Code	
B.2	56364 Passthru Code	55

SUPPORTING DOCUMENTATION

LIST OF FIGURES

	J. Company of the com	Number
igure A.1	DSP563XX Evaluation Platform Block Diagram	31
igure A.2	DSP563XX Evaluation Platform DACA 1-3	32
Figure A.3	DSP563XX Evaluation Platform DACB 4-6	33
igure A.4	DSP563XX Evaluation Platform ADC 1-2	34
igure A.5	DSP563XX Evaluation Platform Configuration MPU	35
igure A.6	DSP563XX Evaluation Platform Headphone Amplifier and Mixer	36
igure A.7	DSP563XX Evaluation Platform SPDIF	37
igure A.8	DSP563XX Evaluation Platform PPI and JTAG Command Converter	38
igure A.9	DSP563XX Evaluation Platform JTAG/PPI Debugger MPU	39
igure A.10	DSP563XX Evaluation Platform DSP Daughter Card	40
igure A.11	DSP563XX Evaluation Platform Power and MCLK Lost Detect and Systems Res	
igure A.12	DSP563XX Evaluation Platform Notes and Tables	42
igure A.13	Top Motherboard Assembly Layout	43
igure A.14	Bottom Motherboard Assembly Layout	44
igure A.15	Daughter Card DSP56362/366/367	45
igure A.16	Daughter Card DSP56364	46
igure A.17	DSP56367 Daughter Card Memory	47
igure A.16	DSP56367 Daughter Card Connectors	48
igure A.19	Top Daughterboard Assembly Layout	49
Figure A.20	Bottom Daughterboard Assembly Layout	

Page

LIST OF TABLES

		Number
Table 2.1	JP1 / JP2 – S/PDIF Transmitter Output	4
Table 2.2	JP3 / JP4 – S/PDIF Receiver Input	5
Table 2.3	JP5 — PASS-THRU Header	5
Table 2.4	JP6XXX – Debug MPU Crystal Selection	5
Table 2.5	JP11 Selections	7
Table 2.6	P1 — PPI Header	7
Table 2.7	P2 — OnCE Header	8
Table 2.8	P3 — Analog I / O	8
Table 2.9	TP1 Header — GP TP1–8	g
Table 2.10	TP2 Header — GP TP9–16	g
Table 2.11	J11	10
Table 2.12	J12	10
Table 3.1	Mode Selection for 56362/366/367	12
Table3.2	Mode Selection for 56364	12
Table 3.3	Daughterboard Audio I / O and Clock Control Header	13
Table 4.1	EVM Bill of Materials	

Page

SECTION 1 OVERVIEW

1.1 Introduction

The DSPAUDIOEVM Evaluation Board is used to demonstrate the abilities of the DSP56362, DSP56364, DSP56366, and DSP56367 Digital Signal Processors and to provide a hardware tool allowing the development of applications that use these devices.

The DSPAUDIOEVM is designed for the following purposes:

- To allow new users to become familiar with the features of the 56300 architecture: The tools and examples provided with the DSPAUDIOEVM facilitate evaluation of the feature set and the benefits of the family.
- To serve as a platform for real-time software development: The tool suite enables the user to develop and simulate routines, download the software to on-chip or on-board RAM, and then run and debug the software using a debugger via the JTAG/OnCE port or the Serial Host Interface port. The breakpoint features of the OnCE port enable the user to easily specify break conditions and to execute user-developed software at full speed, until the break conditions are satisfied. The ability to examine and modify all user-accessible registers, memory, and peripherals through the OnCE or SHI port greatly facilitates the task of the developer.
- To serve as a platform for hardware development. The hardware platform enables the user to connect
 external hardware peripherals. The on-board peripherals can be disabled, providing the user with the
 ability to reassign any and all of the DSP's peripherals. The OnCE port's unobtrusive design means that
 all of the memory on the board and on the DSP chip is available to the user.

1.2 DSPAUDIOEVM Architecture

The DSPAUDIOEVM Audio EVM system is a development tool for authoring and testing of Digital Audio DSP software. It can also be used as a demo platform for Motorola's digital audio DSP technologies. The EVM system consists of a motherboard and a daughterboard (Ordered separately).

1.2.1 Daughterboard

The daughterboard connects to the motherboard by way of two 96 pin connectors and includes a 512Kx8 FLASH, three 128Kx8 SRAM (one 128Kx8 for the 56364 daughterboard) and one of the DSP options. The daughterboard supports all of the 5636X DSPs but will be populated with the DSP associated with the part number ordered. The daughterboard is designed to be upgraded/replaced as future DSPs become available while reusing the existing EVM motherboard.

1.2.2 Motherboard

The motherboard has a variety of digital and analog audio I/O including:

- 4 switchable S/PDIF inputs (2 optical and 2 Coaxial)
- 4 simultaneous S/PDIF outputs(3 Coaxial and 1 Coaxial/Optical)
- 12 analog output channels(6 stereo RCA type connectors)
- · 2 analog microphone inputs
- 2 analog inputs (1 stereo RCA type connectors)
- · Headphone output (can mix any combination of analog signals using switch array)

The motherboard uses an included external universal power supply (100-220VAC, 50-60 Hz). The power supply uses an IEC three pin power connector for the AC supply. The user must supply the AC cable required to connect power to the region specific AC power connection.

1.3 Debugger Interfaces

1.3.1 Suite56 OnCE[™] Debugger

The motherboard also supports multiple debugger interfaces. The Motorola high speed parallel port OnCE command converter tool is embedded in the EVM (no special cables are required). An IEEE 1284 Parallel port cable is included in the EVM kit for convenience.

This OnCE interface can be used with the Motorola Suite56 tool set software and documentation available at http://www.metroworks.com/MW/Develop/Embedded/suite56.htm

1.3.2 Symphony Debugger Interface

In addition to OnCE debugging, the motherboard includes a real time Symphony Debugger Interface (SDI). This debugger uses either a RS-232 or USB interface and allows SPI or I²C communication to the DSP from a PC for real time debugging and configuration of the DSP. The software and documentation to enable use of the SDI debugger are available off the Web:

http://e-www.motorola.com/webapp/sps/site/prod_summary.jsp?code=DSPAUDIOEVM&nodeld=10279539058775# or go to http://www.motorola.com, search for DSPAUDIOEVM, and follow the links to the user's manual.

Note: The SDI software is primarily designed for users of ROMed Software Architecture DSPs, and it is not the best tool to use for generic DSPs.

1.4 Microcontrollers

There are two HC08 Motorola microcontrollers included in this EVM. They each have a dedicated function and are re-flashable in the event a field upgrade is required to the EVM.

1.5 Config MPU

This is an HC908GP32 microcontroller and is pre-programmed with software to enable all of the on-board AKM components and clocking mode changes. This microcontroller also controls the mute functionality of the final audio outputs and the switching of the inputs sourced to the DSP daughterboard.

1.6 Debug MPU

This is an HC908JB16 and is pre-programmed with software to allow communication (from a host PC to the DSP) via the serial RS232 and USB ports in conjunction with the supplied SDI debugger software.

1.7 Getting Started

The first step to using your EVM system is to insert the daughterboard into the motherboard. The connectors are keyed to be inserted in only one direction, but for reference the Motorola white silkscreen should be oriented identically on the motherboard and daughterboard.

Connecting the power supply is the next step and we recommend always using a grounded AC power cord for both improved audio performance and safety. Connect the power supply to the AC power source first and then to the EVM at the round J1 connector. When the connector is properly seated, all five of the power LEDs located next to the J1 connector should be illuminated.

1.8 Running the Passthru Code

The daughterboards are shipped with a simple piece of audio passthru code stored in the on-board flash. The SW1 switch on the daughterboard controls the DSP boot modes, to enable pass-thru mode switch MODA "on" and MODB "off" on the DSP daughtercard. Switching MODA "off" and MODB "on" will disable pass-thru mode but will enable use of the SDI debugger. (For more information, refer to the individual DSP users manuals, as well as Table 3.1 and Table 3.2.)

For the above mentioned passthru function the source device is selected by setting the jumpers of JP11 (AUX in). The default setting from the factory configures the system to source audio data from the optical RX1 S/PDIF input. Alternate settings are described in the Motherboard Configuration section of this manual. The DSP passthru software passes the audio sourced from the selected input to the first 4 stereo analog outputs. You can listen to these outputs by connecting an external amplifier and speaker to the RCA outputs or by using the built-in headphone amplifier. To use the headphone output select the desired analog output signals using the left and right channel select switches (SW2/SW3) and adjust the left and right volume sliders (RV3/RV4).

SECTION 2 MOTHERBOARD

2.1 Introduction

This section will define the motherboard and daughterboard jumper and switch functionality including their default setting. The jumpers allow flexibility to re-route signals throughout the board and only the simple jumper settings will be covered in this documentation. More advanced EVM users will be able to experiment with alternate configurations using this section in conjunction with the schematic included in Appendix A. The default jumper settings are indicated with the dark gray boxes.

2.2 Configuration Jumpers

2.2.1 JP1/JP2 - S/PDIF Transmitter Output

The JP1 and JP2 headers are designed to allow selection of the S/PDIF output sources driven by the daughterboard (DSP), AKM 4101 S/PDIF transmitter, or AKM 4114 S/PDIF receiver. The DSP option on these jumpers is for future flexibility to allow for multiple S/PDIF signals to be sourced from the daughterboard directly. One of the S/PDIF signals (TXSD4, TXSD5, or TXSD6) can be directed to the TX4 output by selecting it, using JP2 and selecting the 4101TX4 option in the TX4 section of JP1. The 4114TX jumper option on TX4 is to allow direct connection of the S/PDIF receiver relay to S/PDIF out. The ADO jumper option on TX1 allows the S/PDIF transmitter (DAX port) of certain DSPs to be connected to the S/PDIF output connector.

TX2 TX4 4101TX4 TX1 TX3 4101TX4 TXSD5 TXSD6 4114TX TXSD4 ADO DSP 4101 DSP 4101 DSP 4101 DSP JP2 JP1

Table 2.1 JP1 / JP2 – S/PDIF Transmitter Output

2.2.2 JP3/JP4 – S/PDIF Receiver Input

The JP3 jumper allows for hardware configuration of the AKM 4114 S/PDIF receiver. The default setting is for software control mode and the AKM 4114 is configured by the Motorola HC908GP32 configuration microcontroller on the motherboard.

The JP4 jumper controls the S/PDIF receiver input source to allow direct routing to the daughterboard using the DSP setting or selecting connection to the AKM 4114 (default).

Table 2.2 JP3 / JP4 - S/PDIF Receiver Input

IN=	=HI	R	K 1	R	X2 RX3		X 3	R	K 4
*	*	*	*	*	*	*	*	*	*
*	*	*	*	*	*	*	*	*	*
DIF2	DIF0	DSP	4114	DSP					4114
JF	23		JP4						

2.2.3 JP5 — Pass-thru Header

This jumper block is included to give convenient access to all the critical audio clocks and data lines. These jumpers can be removed to allow for rerouting of the audio signals within the board and to allow for expansion to external boards. As an example, this header could be used to connect to an external audio codec board for evaluation of the Motorola DSP with a specific audio codec.

Table 2.3 JP5 — PASS-THRU Header

2.2.4 Debugger and Microcontroller Configuration

Table 2.4 JP6XXX – Debug MPU Crystal Selection

JB EX1		P	GM N	ID		SHI		•	JTAG	i		MPU	СОМ			AU	X IN:	=HI	
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
RS232	USB/PGM	DEBUG MPU	CONFIG MPU	PGM	PPI PORT	DEBUG MPU	CONFIG MPU	OnCE	USB/RS232	PARALLEL	COMO	COM1	COM2	СОМЗ	AUX1	AUX2	AUX3	AUX4	AUX5
JF	P6		JP7			JP8			JP9			JP	10				JP11		

2.2.4.1 PJ6 Debug MPU Crystal Selection

The JP6 jumper is for selection of RS232 or USB communication when using the SDI debugger. Note that USB mode is not possible when using the Win NT software version. The RS232 position should be jumpered when the RS232 interface is used for the SDI debugger, and the USB/PGM position should be used when using the USB interface for the SDI debugger or when reprogramming of the Debug Micro is required. Only one of these jumpers should be connected at any one time. Use of the wrong jumper setting will cause SDI communication failure to occur or a reduction in the data transfer rate.

2.2.4.2 JP7 - MPU Program Control

The JP7 jumpers are only used when the on-board microcontrollers are to be re-programmed. Placing a jumper in the PGM position places the selected microcontroller in program mode upon power-on. The microcontroller to be programmed is selected by placing a jumper in either the DEBUG MPU or CONFIG MPU positions. With no jumper in the PGM position, the other two jumpers are ignored.

2.2.4.3 JP8 – SHI Debug Source Selection

The JP8 jumpers are for selection of various debugger modes. The default selection is for SDI debugger use. The PPI port can be used with legacy "PPP Development Interface" software and a PPI cable although the latest SDI debugger software is the preferred option for future upgradability and support. The third option, CONFIG MPU, is not currently supported on the EVM. Only one jumper position should be used at any one time.

2.2.4.4 JP9 - OnCE/JTAG Debugger Source Selection

The JP9 jumpers are used for selection of alternative debugging tools such as the Suite 56 OnCE interface mentioned earlier. To use this, simply connect to a host PC with a parallel cable and have a jumper in the PARALLEL positions. The OnCE jumper option can be used if the user wishes to connect an external OnCE/JTAG debugger interface to the board. The USB/RS232 option is not currently supported and only one jumper should be inserted at a time.

2.2.4.5 JP10 – Config / Debug MPU Communication

The JP10 jumpers provide a communication port between the debug microcontroller and the configuration microcontroller. When the SDI debugger is used and the AUX5 jumper is out, the SDI debugger interface controls the audio input source. The JP10 jumpers provide a communication port between the debug microcontroller and the configuration microcontroller. When the SDI debugger is used, and the AUX5 jumper is out, the SDI debugger interface controls the audio input source. To allow this, all JP10 jumpers should be populated.

2.2.4.6 JP11 - AUX Mode Input Source Selection

The JP11 jumpers are present as an alternative to using the SDI debugger software to select between the various inputs available. If the AUX5 jumper is present then the following jumper settings will result in the input selection shown in Table 2.5

Table 2.5 JP11 Selections

Input Selected	Aux5	Aux4*	Aux3	Aux2	Aux1
RX1	1	0	0	0	0
RX2	1	0	0	0	1
RX3	1	0	0	1	0
RX4	1	0	0	1	1
AIN1	1	0	1	0	0
SDI debugger selects input	0	Х	Х	Х	Х

^{*} When the Aux5 jumper is present, the Aux4 jumper directly controls the mute functionality of the EVM motherboard.

2.3 Signal Headers

These headers allow for external debugger connections, analog output signal measurement, and GPIO access.

2.3.1 P1 — PPI Header

The PPI header connections are to allow for backwards compatibility with existing PPI software tool set and to allow easy access to the SHI port connections from the motherboard. Note that when using PPI source, JP8 must have PPI Port jumper in place.

Table 2.6 P1 — PPI Header

NC(1)	*	*	SS/HA2
GND	*	*	SCK/SCL
GND	*	*	HREQ
SDA	*	*	MOSI / HA0
VDD	*	*	MISO

2.3.2 P2 — OnCE Header

The P2 OnCE header is for connection of an external OnCE/JTAG debugger tool to the OnCE/JTAG port of the DSP on the daughterboard. Further explanation of the OnCE/JTAG signal definition can be found in the DSP users manuals. The P2 OnCE header is for connection of an external OnCE/JTAG debugger tool to the OnCE/JTAG port of the DSP on the daughterboard. Further explanation of the OnCE/JTAG signal definition can be found in the DSP users manuals. Note that when using an external OnCE/JTAG debugger tool, the JP9 JTAG jumper should be in the "OnCE" position.

Table 2.7 P2 — OnCE Header

TDI(1)	*	*	GND
TDO	*	*	GND
TCK	*	*	GND
N/C	*		KEY
RESET	*	*	TMS
VDD	*	*	N/C
N/C	*	*	N/C

2.3.3 P3 — ANALOG I/O

The Analog I/O header allows for analog access to input signals before the A/D (AIN1) op-amp stage and the output signals after the D/A (AO1-6) op-amp stage. This section is provided for ease of analog measurement and analog I/O connector relocation.

Table 2.8 P3 — Analog I / O

Α	06	A	D 5	A	04	A	03	A	02	A	01	Al	N1
R	L	R	L	R	L	R	L	R	L	R	L	R	L
*	*	*	*	*	*	*	*	*	*	*	*	*	*
*	*	*	*	*	*	*	*	*	*	*	*	*	*
	GND												
	P3												

2.3.4 TP1 / TP2 Headers

TP1 and TP2 jumper blocks route to daughterboard for GPIO test points and future flexibility. On the DSP 56362/6/7 parts, as an example, these headers are connected to the DSP HDI08 port. See daughterboard schematics and appendix for device specifics.

Table 2.9 TP1 Header — GP TP1-8

TP1	*	*	TP8
TP2	*	*	TP7
TP3	*	*	TP6
TP4	*	*	TP5

Table 2.10 TP2 Header — GP TP9-16

TP9	*	*	TP16
TP10	*	*	TP15
TP11	*	*	TP14
TP12	*	*	TP13

2.4 On-board Debugger Connections

The connectors discussed in this section are the on-board debuggers. For specific information on using the debuggers, see the relevant User's Manuals.

2.4.1 J2 — USB Interface

This connector is used in conjunction with the SDI software to debug a DSP using USB communications. See Section 2.2.4 *Debugger and Microcontroller Configuration* for the proper jumper settings to use this interface.

2.4.2 J3 — RS232 Interface

This connector can be used for debugging or for in-field updating of the microcontroller code. To use this port for debugging, the SDI software must be used. See Section 2.2.4 *Debugger and Microcontroller Configuration* for the proper jumper settings to use this interface.

2.4.3 J4 — Parallel Port Debugger Interface

This connector is used for the on-board Suite56 Parallel Port Command Converter. In conjunction with the Suite56 software, this interface provides a high-speed debugger connection through the JTAG/OnCE port of the DSP. See Section 2.2.4 *Debugger and Microcontroller Configuration* for the proper jumper settings to use this interface.

2.5 External I/O

2.5.1 J9 / J10 — Microphone Inputs

There are two microphone inputs available at 1/8inch microphone connectors J9 and J10 labeled MIC1 and MIC2. These can also be monitored via headphones by switching MIC1 and MIC2 on. The input levels of these can be adjusted with the potentiometers at RV1 and RV2 labeled MIC1 LEVEL and MIC2 LEVEL. These signals are connected to the ADC2 A/D converter.

Note: If 1/4 inch to 1/8 inch adaptors are used for the microphone connection use only stereostereo or mono-mono style adapters. Stereo-mono or mono-stereo adapters will result in a short of the incoming audio signal to ground.

2.5.1.1 RV1/RV2 - Microphone Gain Control

These potentiometers control the input levels for MIC1 and MIC2 respectively. To prevent damage, always start with these controls in a low setting, i.e., twisted left. These inputs can be monitored directly, using the on-board headphone amplifier.

2.5.2 J11 / J12 — Analog Outputs

Fixed pre-amp outputs (Variable through Digital Volume control on the DSP) are provided for 12 channels of output. These RCA connections can be fed into a variable or fixed amplifier stage. Care should be taken to verify signal integrity before connecting to large fixed amplifiers to avoid audible noise or speaker damage.

These outputs are located at J11 and J12.

Table 2.11 J11

AOUT1	AOUT2	AOUT3	
White	White	White	
Red	Red	Red	

Table 2.12 J12

AOUT4	AOUT5	AOUT6
White	White	White
Red	Red	Red

If using the Software Architecture, the analog outputs correspond to the following:

AOUT1 WHITE Left Main
AOUT1 RED Right Main

AOUT2 WHITE Left Surround
AOUT2 RED Right Surround

AOUT3 WHITE Center

AOUT3 RED Subwoofer

AOUT4 WHITE Left Back
AOUT4 RED Right Back

AOUT5 WHITE Left Secondary
AOUT5 RED Right Secondary

AOUT6 WHITE Unassigned AOUT6 RED Unassigned

2.5.3 J13 — Headphone Outputs

These channels can also be monitored with the on-board headphone amplifier. The channel listened to is selected via switches SW2 and SW3. Moving the switch to the right will enable the corresponding channel. There are right and left volume sliders (RV3 and RV4) to allow variations in volume level and balance control. Headphones should be plugged in to the J13 1/8-inch headphone connector.

2.5.3.1 SW2 / SW3 — Channel Select

These switches control what is routed to the on-board headphone amplifier. Moving the switch to the right will enable the corresponding channel. Multiple switches/channels can be enabled at one time, and the signals will be summed into the the corresponding headphone channel.

2.5.3.2 RV3 / RV4 — Headphone Volume Select

These sliders allow for volume and balance adjustment for the headphone amplifier. To help prevent damage to headphones or hearing, always start with the sliders in a low-volume position.

SECTION 3 DAUGHTERBOARD

3.1 DSPX36XDB1

These daughterboard connection and jumper definitions are specific to the DSPX36XDB1 boards. Any future alternate daughterboards will have additional documentation.

3.2 Mode Selection

Various boot-up modes can be selected via the MODE pins and pins PB13 and PB14 settings can be determined using switch bank SW1. Switch position "ON"= signal high. Table 13 shows the modes available for the 56362/366/367. Table 14 shows the modes available for 56364. See part-specific user manual for full details.

Table 3.1 Mode Selection for 56362/366/367

MODD	MODC	MODB	MODA	PB14*	PB13*	Mode
0	0	0	0	Х	Х	Expanded mode (execute from \$C00000)
0	0	0	1	Х	Х	Bootstrap from external FLASH
0	0	1	0	0	1	Bootstrap SA in SPI mode*
0	0	1	0	1	1	Bootstrap SA in I ² C mode*
0	1	0	1	Х	Х	Boot from SHI (slave SPI mode)
0	1	1	1	Х	Х	Boot from SHI (slave I ² C mode)
1	0	0	0	Х	Х	Expanded mode (execute from \$008000)
1	1	0	0	Х	Х	Bootstrap in HDI08 ISA mode
1	1	0	1	Х	Х	Bootstrap in HDI08 HC11 mode
1	1	1	0	Х	Х	Bootstrap in HDI08 8051 mode
1	1	1	1	Х	Х	Bootstrap in HDI08 69302 mode

^{*} These modes are only applicable to DSPs which have the embedded ROM based Software Architecture (SA).

Note: All other modes are reserved and should not be used.

Table 3.2 Mode Selection for 56364

MODD	MODC	MODB	MODA	Mode
0	Х	0	0	Jump to PROM starting address
0	Х	0	1	Bootstrap from byte-wide memory
0	Х	1	0	Reserved
0	Х	1	1	Reserved for Burn-in testing
1	Х	0	0	Reserved
1	Х	0	1	Bootstrap from SHI (slave SPI mode)
1	Х	1	0	Bootstrap from SHI (slave I2C mode, clock freeze enabled)
1	Х	1	1	Bootstrap from SHI (slave I2C mode, clock freeze disabled

3.3 Memory

The daughterboard includes three 128Kx8 SRAM (one 128Kx8 SRAM for the 56364 daughterboard). There is also a 512Kx8 FLASH device resident on the board. From factory the FLASH is programmed with an audio passthru code to allow simple verification of initial board operations. See Section 1.8 *Running the Passthru Code* for an explanation of running the passthru code.

3.4 JP11 - Clock Selection

Jumper bank JP11 allows for the following clocking modes:

OSC - Clock DSP from canned oscillator at U7 (not Populated)

XTAL – Clock DSP from 24.576MHz crystal at X1 (default mode)

EXT - Clock DSP from motherboard 24.576MHz clock source

Only one of the JP11 options should be populated at the same time.

3.5 Daughterboard Audio I / O and Clock Control Header

Table 3.3 Daughterboard Audio I / O and Clock Control Header

TIO0	ours V Jours	oync/Async	Spd/Dbl		EST 4	- - - -	SCKT 4		FSR_1	SCKR_1	DSP MUTE	INTO	0103/3003		FIG9//6014	200
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q
TI0	JI	P1	JF	2	JI	-3	JI	P4	JP5	JP6	JP7	JP8	JI	9	JF	10

3.5.1 TIO0 – Timmer Port

This is connected directly to the TIO0 pin on the DSP.

3.5.2 JP1 - Synchronous/Asynchronous Clock Control

This jumper set controls whether or not the DSP is in synchronous or asynchronous mode. Position B allows the DSP GPIO (pin PB9) to choose the mode. Position C forces the mode to be asynchronous, and no jumper forces synchronous mode. In synchronous mode FST is connected to FSR, and SCKT is connected to SCKR on the ESAI port of the DSP.

3.5.3 JP2 – Single/Double Speed Clocking Control

This jumper set controls whether or not the motherboard is in single or double speed mode. Position D forces the motherboard into double speed mode. Position E allows the DSP GPIO pin PB11 to control the mode (e.g., through a PPP), and no jumper forces single speed mode. An example of this signal's use is for decoding of DTS 96/24 content. In this mode, it is required to update the masterclock ration expectation in the D/A converters and S/PDIF transmitters because the DTS 96/24 decoder doubles the audio sample rate as part of the decoding process.

3.5.4 JP3 - FST 1 Connection

This set of jumpers determines which frame sync clock source is used for the AKM DAC4_6. The F position directs the ESAI_0 FST signal to DAC4_6. Position G directs the ESAI_1 FST signal to DAC4_6, and population of both jumpers will synchronize/short the two ESAI port FST lines.

Note: Position F should always be populated when using a 56362 or 56364 daughterboard.

3.5.5 JP4 - SCKT 1 Connection

This set of jumpers determines which serial clock source is used for the AKM DAC4_6. Position H directs the ESAI_0 SCKT signal to DAC4_6, position I directs the ESAI_1 SCKT signal to DAC4_6 and population of both jumpers will synchronize/short the two ESAI port SCKT lines.

Note: Position H should always be populated when using a 56362 or 56364 daughterboard.

3.5.6 JP5 - FSR 1 Connection

This jumper connects/shorts the FSR and FSR_1 signals together. No jumper means that the FSR_1 signal stops at the header.

3.5.7 JP6 - SCKR_1 Connection

This jumper connects/shorts the SCKR and SCKR_1 signals together. No jumper means that the SCKR_1 signal stops at the header.

3.5.8 JP7 - DSP MUTE Control

This jumper controls the mute signal when used in conjunction with the Software Architecture or GPIO control. With the jumper in place, the mute control is connected to the DSP GPIO pin PB12. No jumper means that mute functionality will only be controlled by the motherboard.

3.5.9 JP8 - INT_0/SPDIF Error Flag Connection

This jumper connects the error flag signal from the AKM 4114 to the DSP GPIO pin PB15. This allows the DSP to be informed of the status of the AKM 4114 S/PDIF receiver. If the connection is not desired this jumper can be removed.

3.5.10 JP9 - SDO5/SDI0 Configuration

This jumper set controls the signal connections of SDO5/SDI0. Depending on the ESAI setting in the DSP, this pin can be configured as an input or an output. A jumper in position N feeds the SDI0 signal from the ADC2 microphone source. A jumper in the O position feeds the SDO5 signal to DAC4_6.

3.5.11 JP10 SDO4/SDI1 Configuration

This jumper set controls the input source for SDI1. A jumper in the P position feeds the SDI1 signal from the AKM 4114 S/PDIF receiver. A jumper in the Q position feeds the SDI1 signal from ADC1. There is no available jumper setting for use of the SDO4 signal.

SECTION 4 EVM BILL OF MATERIALS

Table 4.1 EVM Bill of Materials

RefDes	Value	Part Number	Description	Manufacturer
C1	470UF	EEV-FC1E471P	Aluminum Electrolytic Capacitor/FC Series 470UF 25V	Panasonic
C2	470UF	EEV-FC1E471P	Aluminum Electrolytic Capacitor/FC Series 470UF 25V	Panasonic
C3	470UF	EEV-FC1E471P	Aluminum Electrolytic Capacitor/FC Series 470UF 25V	Panasonic
C4	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C5	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C6	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C7	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C8	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C9	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C10	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C11	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C12	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C13	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C14	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C15	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C16	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C17	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C18	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C19	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C20	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C21	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C22	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C23	4.7UF	T491A475M016AS	4.7UF Tantalum Chip Capacitor 16V 3216	Kemet
C24	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C25	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C26	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C27	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C28	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C29	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C30	4.7UF	T491A475M016AS	4.7UF Tantalum Chip Capacitor 16V 3216	Kemet
C31	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C32	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C33	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C34	18PF	C080COG500-180JNE	18 PF 5% COG 0805 50V Ceramic Chip Capacitor	Venkel
C35	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C36	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C37	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C38	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C39	4.7UF	T491A475M016AS	4.7UF Tantalum Chip Capacitor 16V 3216	Kemet
C40	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C41	18PF	C080COG500-180JNE	18 PF 5% COG 0805 50V Ceramic Chip Capacitor	Venkel
C42	4.7UF	T491A475M016AS	4.7UF Tantalum Chip Capacitor 16V 3216	Kemet
C43	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C44	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C45	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C45	18PF	C080COG500-180JNE	18 PF 5% COG 0805 50V Ceramic Chip Capacitor	Venkel
C46	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel

Table 4.1 EVM Bill of Materials

C48	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C49	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C50	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C51	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C52	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C53	4.7UF	T491A475M016AS	4.7UF Tantalum Chip Capacitor 16V 3216	Kemet
C54	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C55	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C56	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C57	4.7UF	T491A475M016AS	4.7UF Tantalum Chip Capacitor 16V 3216	Kemet
C57	4.7UF	T491A475M016AS	' '	Kernet
	+		4.7UF Tantalum Chip Capacitor 16V 3216	
C59	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C60	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C61	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C62	47PF	C080COG101-470JNE	47 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C63	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C64	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C65	47PF	C080COG101-470JNE	47 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C66	18PF	C080COG500-180JNE	18 PF 5% COG 0805 50V Ceramic Chip Capacitor	Venkel
C67	47PF	C080COG101-470JNE	47 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C68	47PF	C080COG101-470JNE	47 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C69	7PF	C080COG500-7R0JNE	7 PF 5% COG 0805 50V Ceramic Chip Capacitor	Venkel
C70	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C71	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C72	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C73	4.7UF	T491A475M016AS	4.7UF Tantalum Chip Capacitor 16V 3216	Kemet
C74	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C75	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C76	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C77	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C78	47PF	C080COG101-470JNE	47 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C79	47PF	C080COG101-470JNE	47 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C80	4.7UF	T491A475M016AS	4.7UF Tantalum Chip Capacitor 16V 3216	Kemet
C81	4.7UF	T491A475M016AS	4.7UF Tantalum Chip Capacitor 16V 3216	Kemet
C82	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C83	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C84	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C85	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C86	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C87	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C88	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C89	4.7UF	T491A475M016AS	4.7UF Tantalum Chip Capacitor 16V 3216	Kemet
C90	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C91	NONE		Do Not Install	
C92	NONE		Do Not Install	
C93	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C94	4.7UF	T491A475M016AS	4.7UF Tantalum Chip Capacitor 16V 3216	Kemet
C94	4.7UF	T491A475M016AS	4.7UF Tantalum Chip Capacitor 16V 3216	Kemet
C95	0.1UF			
	-	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C97	4.7UF 0.1UF	T491A475M016AS C0805X7R500-104KNE	4.7UF Tantalum Chip Capacitor 16V 3216 0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Kemet Venkel

Table 4.1 EVM Bill of Materials

C00	0.1115	C0805Y7D500 404KNF	0.111E109/ Y7P 0805 50\/ Coromic Chic Consoiter	Vonkol
C99 C100	0.1UF 4.7UF	C0805X7R500-104KNE T491A475M016AS	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel Kemet
C100	0.1UF	C0805X7R500-104KNE	4.7UF Tantalum Chip Capacitor 16V 3216	Venkel
C101	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor 0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C102	4.7UF	T491A475M016AS	4.7UF Tantalum Chip Capacitor 16V 3216	Kemet
C103	4.7UF	T491A475M016AS		Kernet
C104	0.1UF	C0805X7R500-104KNE	4.7UF Tantalum Chip Capacitor 16V 3216	Venkel
C105	0.1UF		0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C100	4.7UF	C0805X7R500-104KNE T491A475M016AS	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Kemet
C107	4.7UF	T491A475M016AS	4.7UF Tantalum Chip Capacitor 16V 3216	Kernet
C108	0.1UF		4.7UF Tantalum Chip Capacitor 16V 3216	Venkel
C1109	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
	-	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	
C111	4.7UF	T491A475M016AS	4.7UF Tantalum Chip Capacitor 16V 3216	Kemet
C112	470PF	C080COG101-471JNE	470 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C113	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C114	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C115	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C116	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C117	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C118	4.7UF	T491A475M016AS	4.7UF Tantalum Chip Capacitor 16V 3216	Kemet
C119	470PF	C080COG101-471JNE	470 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C120	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C121	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C122	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C123	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C124	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C125	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C126	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C127	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C128	4.7UF	T491A475M016AS	4.7UF Tantalum Chip Capacitor 16V 3216	Kemet
C129	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C130	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C131	470PF	C080COG101-471JNE	470 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C132	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C133	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C134	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C135	470PF	C080COG101-471JNE	470 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C136	470PF	C080COG101-471JNE	470 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C137	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C138	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C139	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C140	470PF	C080COG101-471JNE	470 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C141	470PF	C080COG101-471JNE	470 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C142	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C143	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C144	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C145	470PF	C080COG101-471JNE	470 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C146	470PF	C080COG101-471JNE	470 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C147	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C148	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C149	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel

Table 4.1 EVM Bill of Materials

			I	
C150	470PF	C080COG101-471JNE	470 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C151	470PF	C080COG101-471JNE	470 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C152	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C153	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C154	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C155	470PF	C080COG101-471JNE	470 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C156	470PF	C080COG101-471JNE	470 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C157	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C158	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C159	150PF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C160	470PF	C080COG101-471JNE	470 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C161	470PF	C080COG101-471JNE	470 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C162	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C163	470PF	C080COG101-471JNE	470 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C164	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C165	470PF	C080COG101-471JNE	470 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C166	470PF	C080COG101-471JNE	470 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C167	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C168	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C169	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C170	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C171	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C172	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C173	4.7UF	T491A475M016AS	4.7UF Tantalum Chip Capacitor 16V 3216	Kemet
C174	4.7UF	T491A475M016AS	4.7UF Tantalum Chip Capacitor 16V 3216	Kemet
C175	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C176	470PF	C080COG101-471JNE	470 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C177	150PF	C080COG101-4713NE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C178	0.1UF	C0805X7R500-104KNE	0.1UF10% X7R 0805 50V Ceramic Chip Capacitor	Venkel
C179	470PF	C080COG101-471JNE	470 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
C180	150PF			
	IDUPF	C080COG101-151JNE	150 PF 5% COG 0805 100V Ceramic Chip Capacitor	Venkel
D1		SSL-LX15IC	Led Red Water Clear SOT-23	Lumex
D2		SSL-LX15IC	Led Red Water Clear SOT-23	Lumex
D3		SSL-LX15IC	Led Red Water Clear SOT-23	Lumex
D4		SSL-LX15IC	Led Red Water Clear SOT-23	Lumex
D5		SSL-LX15IC	Led Red Water Clear SOT-23	Lumex
D6		SSL-LX15IC	Led Red Water Clear SOT-23	Lumex
D7		SSL-LX15IC	Led Red Water Clear SOT-23	Lumex
D8		BAS16	High Conductance Ultra Fast Diode SOT23	Fairchild
D9		BAS16	High Conductance Ultra Fast Diode SOT23	Fairchild
D10		BAS16	High Conductance Ultra Fast Diode SOT23	Fairchild
D11		BAS16	High Conductance Ultra Fast Diode SOT23	Fairchild
J1		LN-0507B	5 Pin Right Angle DIN Connector	Vimex
J2		5075BR-04	Universal Serial Bus, 4 position, female connector-blacck	Vimex
J3		205A-09FGTBBC3	9 Pin Female Right Angle D-Sub Connector .318"	Vimex
J4		205A-25MGTBBC3	25 Pin Male Right Angle D-Sub Connector .318"	Vimex
J5		73-096114-300	96-pin 3-row DIN41612 Female Type C Straight Connector .110" Tail Length	Teka
J6		JE040060BN	2 X 2 RCA Jack All Black Nickel Plated	Vimex
J7		73-096114-300	96-pin 3-row DIN41612 Female Type C Straight Connector .110" Tail Length	Teka
J8		JE040060TN	2 X 2 RCA Jack Top-White/Yellow Bottom Red/Yellow - Nickel	Vimex
J9		SCJ-0367	3.5 MM Stereo Phone Jack	Vimex

Table 4.1 EVM Bill of Materials

,	1		Ta =	T
J10		SCJ-0367	3.5 MM Stereo Phone Jack	Vimex
J11		JE0600610N	3 X 2 RCA Jack Top White Bottom Red-Nickel	Vimex
J12		JE0600610N	3 X 2 RCA Jack Top White Bottom Red-Nickel	Vimex
J13		SCJ-0367	3.5 MM Stereo Phone Jack	Vimex
JP1-2		AFM2-26SG6MM/3.55MM	13 X 2 Header 2.54mm on center 6 mm/3.0mm	Vimex
JP3-4		AFM2-20SG6MM/3.55MM	10 X 2 Header 2.54mm on center 6 mm/3.0mm	Vimex
JP5		AFM2-64SG6MM/3.55MM	32 X 2 Header 2.54mm on center 6 mm/3.0mm	Vimex
JP6-11		AFM2-40SG6MM/3.55MM	20 X 2 Header 2.54mm on center 6 mm/3.0mm	Vimex
P1		AFM2-10SG6MM/3.55MM	5 X 2 Header 2.54mm on center 6 mm/3.0mm	Vimex
P2		AFM2-14SG6MM/3.55MM	7 X 2 Header 2.54mm on center 6 mm/3.0mm	Vimex
P3		AFM2-28SG6MM/3.55MM	14 X 2 Header 2.54mm on center 6 mm/3.0mm	Vimex
Q1	NONE		Do Not Install	
Q2	NONE		Do Not Install	
Q3	NONE		Do Not Install	
Q4	NONE		Do Not Install	
Q5		FMMTA56	PNP Transistor SOT23	
Q6		MMBF170	Power MOSFET 500 mAmps, 60V SOT-23	ON Semiconductor
Q7		MMBF170	Power MOSFET 500 mAmps, 60V SOT-23	ON Semiconductor
Q8		FMMTA56	PNP Transistor SOT23	Zetex
Q9		MMBF170	Power MOSFET 500 mAmps, 60V SOT-23	ON Semiconductor
Q10		MMBF170	Power MOSFET 500 mAmps, 60V SOT-23	ON Semiconductor
Q11		FMMTA56	PNP Transistor SOT23	Zetex
Q12		FMMTA56	PNP Transistor SOT23	Zetex
Q13		FMMTA06	NPN Transistor SOT23	Zetex
Q14		FMMTA06	NPN Transistor SOT23	Zetex
Q15		FZT796ATA	PNP Transistor SOT223	Zetex
Q16		FZT696BTA	NPN Transistor SOT223	Zetex
Q17		FMMTA06	NPN Transistor SOT23	Zetex
Q18		FMMTA06	NPN Transistor SOT23	Zetex
Q19		FMMTA06	NPN Transistor SOT23	Zetex
Q20		FMMTA06	NPN Transistor SOT23	Zetex
Q21		FMMTA06	NPN Transistor SOT23	Zetex
Q22		FMMTA06	NPN Transistor SOT23	Zetex
Q23		FMMTA06	NPN Transistor SOT23	Zetex
Q24		FMMTA06	NPN Transistor SOT23	Zetex
Q25		FMMTA06	NPN Transistor SOT23	Zetex
Q26		FMMTA06	NPN Transistor SOT23	Zetex
Q27		FMMTA06	NPN Transistor SOT23	Zetex
Q28		FMMTA06	NPN Transistor SOT23	Zetex
Q29		FMMTA06	NPN Transistor SOT23	Zetex
Q30		FMMTA06	NPN Transistor SOT23	Zetex
Q31		FMMTA06	NPN Transistor SOT23	Zetex
Q32		FMMTA06	NPN Transistor SOT23	Zetex
Q33		FMMTA06	NPN Transistor SOT23	Zetex
Q34		FMMTA06	NPN Transistor SOT23	Zetex
Q35		FMMTA06	NPN Transistor SOT23	Zetex
Q36		FMMTA06	NPN Transistor SOT23	Zetex
Q37		FMMTA06	NPN Transistor SOT23	Zetex
		FMMTA06	NPN Transistor SOT23	

Table 4.1 EVM Bill of Materials

Q39		FMMTA06	NPN Transistor SOT23	Zetex
Q40		FMMTA06	NPN Transistor SOT23	Zetex
Q41		FMMTA06	NPN Transistor SOT23	Zetex
R1		CR0805-10W-24R9FT	24.9 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R2		CR0805-10W-24R9FT	24.9 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R3	0.0	CR0805-10W-000T	ZERO OHM Jumper 0805	В
R4	0.0	CR0805-10W-000T	ZERO OHM Jumper 0805	Venkel
R5	20K	CR0805-10W-2002FT	20K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R6	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R7	20K	CR0805-10W-2002FT	20K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R8	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R9	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R10	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R11	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R12	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R13	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R14	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R15	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R16	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R17	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R18	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R19	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R20	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R21	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R22	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R23	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R24	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R25	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R26	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R27	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R28	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R29	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R30	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R31	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R32	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R33	20K	CR0805-10W-2002FT	20K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R34	20K	CR0805-10W-2002FT	20K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R35	20K	CR0805-10W-2002FT	20K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R36		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R37		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R38		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R39		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R40		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R41		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R42		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R43		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R44		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R45		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R46		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R47		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R48		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel

Table 4.1 EVM Bill of Materials

R49		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R50		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R51		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R52		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R53		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R54		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R55		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R56		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R57		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R58		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R59		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R60		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R61		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R62		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R63		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R64		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R65		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R66		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R67		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R68		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R69		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R70		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R71		CR0805-10W-2000FT	200 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R72	NONE		Do Not Install	
R73	0.0	CR0805-10W-000T	ZERO OHM Jumper 0805	Venkel
R74	NONE		Do Not Install	
R75	NONE		Do Not Install	
R76	0.0	CR0805-10W-000T	ZERO OHM Jumper 0805	Venkel
R77	NONE		Do Not Install	
R78	0.0	CR0805-10W-000T	ZERO OHM Jumper 0805	Venkel
R79		CR0805-10W-3320FT	332 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R80	1.1K	CR0805-10W-1101FT	1.1K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R81	NONE		Do Not Install	
R82	1.1K	CR0805-10W-1101FT	1.1K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R83		CR0805-10W-1540FT	154 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R84	NONE		Do Not Install	
R85	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R86	0.0	CR0805-10W-000T	ZERO OHM Jumper 0805	Venkel
R87	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R88	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R89	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R90	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R91	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R92	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R93		CR0805-10W-24R9FT	24.9 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R94		CR0805-10W-24R9FT	24.9 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R95	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R96	100K	CR0805-10W-1003FT	100K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R97	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R98	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R99	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel

Table 4.1 EVM Bill of Materials

R100	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R101	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R102	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R103	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R104	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R105		CR0805-10W-4020FT	402 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R106	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R107	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R108		CR0805-10W-2430FT	243 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R109	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R110	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R111	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R112	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R113	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R114	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R115	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R116	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R117	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R118	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R119	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R120		CR0805-10W-1100FT	110 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R121	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R122		CR0805-10W-2430FT	243 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R123	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R124	_	CR0805-10W-1100FT	110 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R125		CR0805-10W-3320FT	332 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R126		CR0805-10W-1100FT	110 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R127		CR0805-10W-3320FT	332 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R128	1K	CR0805-10W-1001FT	1K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R129		CR0805-10W-1100FT	110 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R130		CR0805-10W-1100FT	110 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R131		CR0805-10W-3320FT	332 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R132		CR0805-10W-3320FT	332 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R133	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R134	100K	CR0805-10W-1003FT	100K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R135	1K	CR0805-10W-1001FT	1K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R136	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R137	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R138	1K	CR0805-10W-1001FT	1K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R139	1K	CR0805-10W-1001FT	1K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R140	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R141	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R142	100K	CR0805-10W-1003FT	100K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R143	7.5K	CR080510W-7501FT	7.5K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R144	2.49K	CR0805-10W-2491FT	2.49K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R145	1.5K	CR0805-10W-1501FT	1.5K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R146	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R147	100K	CR0805-10W-1003FT	100K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R148	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R149	100K	CR0805-10W-1003FT	100K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R150	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel

Table 4.1 EVM Bill of Materials

R151	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R152	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R153	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R154	1K	CR0805-10W-1001FT	1K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R155	1K	CR0805-10W-1001FT	1K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R156	NONE		Do Not Install	
R157	10M	CR0805-10W-1005FT	10M 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R158	1K	CR0805-10W-1001FT	1K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R159	10M	CR0805-10W-1005FT	10M 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R160	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R161	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R162	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R163	7.5K	CR080510W-7501FT	7.5K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R164	2.49K	CR0805-10W-2491FT	2.49K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R165	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R166	NONE		Do Not Install	
R167	0.0	CR0805-10W-000T	ZERO OHM Jumper 0805	Venkel
R168	100K	CR0805-10W-1003FT	100K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R169	100K	CR0805-10W-1003FT	100K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R170	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R171	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R172	1K	CR0805-10W-1001FT	1K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R173	1K	CR0805-10W-1001FT	1K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R174	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R175	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R176	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R177		CR0805-10W-1100FT	110 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R178	NONE		Do Not Install	
R179	0.0	CR0805-10W-000T	ZERO OHM Jumper 0805	Venkel
R180	0.0	CR0805-10W-000T	ZERO OHM Jumper 0805	Venkel
R181	18K	CR0805-10W-183JT	18K 5% 0805 .1 W Thick Film Chip Resistor	Venkel
R182	100K	CR0805-10W-1003FT	100K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R183	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R184	100K	CR0805-10W-1003FT	100K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R185	0.0	CR0805-10W-000T	ZERO OHM Jumper 0805	Venkel
R186	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R187	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R188	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R189	76.8K	CR0805-10W-7682FT	76.8K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R190	NONE		Do Not Install	
R191	1.74K	CR0805-10W-1741FT	1.74K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R192		CR0805-10W-1100FT	110 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R193	0.0	CR0805-10W-000T	ZERO OHM Jumper 0805	Venkel
R194		CR0805-10W-1540FT	154 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R195	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R196	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R197	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R198	. 3	CR0805-10W-24R9FT	24.9 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R199	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R200	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R201	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel

Table 4.1 EVM Bill of Materials

R202	101/	CD000E 40W 4000ET	40K 40K 0005 4 W Think Film Chin Doninton	Vankal
	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R203	100K	CR0805-10W-1003FT	100K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R204	100K	CR0805-10W-1003FT	100K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R205	416	CR0805-10W-1100FT	110 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R206	1K	CR0805-10W-1001FT	1K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R207	1K	CR0805-10W-1001FT	1K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R208		CR0805-10W-7320FT	732 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R209		CR0805-10W-2430FT	243 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R210	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R211	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R212		CR0805-10W-1100FT	110 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R213	NONE		Do Not Install	
R214	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R215	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R216	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R217	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R218	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R219	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R220	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R221	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R222	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R223	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R224	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R225	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R226	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R227	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R228	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R229	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R230	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R231	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R232	20K	CR0805-10W-2002FT	20K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R233	NONE		Do Not Install	
R234	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R235	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R236	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R237	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R238	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R239	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R240	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R241	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R242	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R243	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R244	20K	CR0805-10W-2002FT	20K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R245	2010	CR0805-10W-2430FT	243 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R246	NONE	5110000 1011-24001 I	Do Not Install	VGTIRGI
R247	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R247 R248	10K	CR0805-10W-1002FT	·	1
			10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R249	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R250	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R251 R252	10K 4.99K	CR0805-10W-1002FT RR1220P-4991-D-M	10K 1% 0805 .1 W Thick Film Chip Resistor 4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Venkel Susumu Co Ltd

Table 4.1 EVM Bill of Materials

R253	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R254	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R255	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R256	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R257	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R258	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R259	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R260	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R261	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R262	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R263	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R264	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R265	10K		·	
		CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R266	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R267	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R268	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R269	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R270	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R271	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R272	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R273	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R274	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R275	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R276	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R277	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R278	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R279	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R280	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R281	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R282	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R283	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R284	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R285	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R286	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R287	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R288	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R289	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R290	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R291	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R292	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R293	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R294	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R295	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R296	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R297	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R298	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R299	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R300	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thirk Film Chip Resistor	Venkel
R301	3.57K	CR0805-10W-3571FT		Venkel
R302	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R302	4.99K	RR1220P-4991-D-M	3.57K 1% 0805 .1 W Thick Film Chip Resistor 4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd

Table 4.1 EVM Bill of Materials

R304	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R305	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R306	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R307	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R308	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R309	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R310	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R311	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R312	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R313	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R314	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R315	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R316	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R317	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R318	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R319	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R320	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R321	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R322	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R323	3.57K	CR0805-10W-3571FT	3.57K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R324	100K	CR0805-10W-1003FT	100K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R325	1.1K	CR0805-10W-1101FT	1.1K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R326	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R327	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R328	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R329	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R330	4.99K	RR1220P-4991-D-M	4.99K 0.5% 0805 .1 W Thin Film Chip Resistor	Susumu Co Ltd
R331	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R332	10K	CR0805-10W-1002FT	10K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R333	1011	CR0805-10W-2430FT	243 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R334	20K	CR0805-10W-2002FT	20K 1% 0805 .1 W Thick Film Chip Resistor	Venkel
R335	NONE	0.10000 1011 2002. 1	Do Not Install	70111101
R336	NONE		Do Not Install	
R337	0.0	CR0805-10W-000T	ZERO OHM Jumper 0805	Venkel
R338	0.0	CR0805-10W-000T	ZERO OHM Jumper 0805	Venkel
R339	NONE	O110000 1000 0001	Do Not Install	VOTING
R340	NONE		Do Not Install	
R341	NONE		Do Not Install	
R342	NONE		Do Not Install	
R343	NONE		Do Not Install	
RV1	1K	CA6V-SMD-1K-WT	6mm Trimmer 1K with White Knob	Vimex
RV2	1K	CA6V-SMD-1K-WT	6mm Trimmer 1K with White Knob	Vimex
RV3	10K	SL101N-A-10K-L2.5	10K Audio Taper Slide Pot	Venkel
RV4	10K	SL101N-A-10K-L2.5	10K Audio Taper Slide Pot	Venkel
SW1	1310	TL3301NF160QG/TR	Surface Mount Tact Switch	E-Switch
SW2		218-8LPST	8 Position Half Pitch Dip Switch	CTS
SW3		218-8LPST	8 Position Half Pitch Dip Switch	CTS
			·	
T1 T2		TTWB1010	1:1 Wide Band RF Transformers Surface Mount	Coilcraft
		TTWB1010	1:1 Wide Band RF Transformers Surface Mount	Coilcraft
T3 T4		TTWB1010 TTWB1010	1:1 Wide Band RF Transformers Surface Mount 1:1 Wide Band RF Transformers Surface Mount	Coilcraft Coilcraft

Table 4.1 EVM Bill of Materials

T5		TTWB1010	1:1 Wide Band RF Transformers Surface Mount	Coilcraft
T6		TTWB1010	1:1 Wide Band RF Transformers Surface Mount	Coilcraft
TP6	GND	PJ-202-30	Test Point .300"	Components Corp
TP7		AFM2-08SG6MM/3.55MM	4 X 2 Header 2.54mm on center 6 mm/3.0mm	Vimex
TP9	GND	PJ-202-30	Test Point .300"	Components Corp
TP10		AFM2-08SG6MM/3.55MM	4 X 2 Header 2.54mm on center 6 mm/3.0mm	Vimex
TP11	GND	PJ-202-30	Test Point .300"	Components Corp
U1		SN65220	Single Universal Serial Bus Port Transient Suppressor DBV SOT-23-6	TI
U2		MAX232D	Dual EIA-232 Driver/Receiver SOIC-16.150"	Maxim
U3		74LVXC4245QSC	8-Bit Dual Supply Configuarable Volt Interface Transceiver 3-STATE Outputs QSOP 16	Fairchild
U4		74LVXC4245QSC	8-Bit Dual Supply Configuarable Volt Interface Transceiver 3-STATE Outputs QSOP 16	Fairchild
U5		74VHCT08M	Quad 2 Input AND Gate SOIC-14	Fairchild
U6		74VHCT125M	Quad Buffer with 3-STATE Outputs SOIC-14	Fairchild
U7		74LCX07D	Low Voltage Hex Buffer Open Drain Outputs SOIC-14	Fairchild
U8		FST3257	Quad 2:1 Multiplexer/De Multiplexer Bus Switch	ON Semiconductor
U9		DS1818R-5	3.3 Econo Reset with Push Button SOT23	Dallas
U10		MC68HC908JB16FA	MPU	Motorola
U11		74VHC00M	Quad 2-Input NAND Gate SOIC-14	Fairchild
U12		74VHC32M	Quad 2-Input OR Gate SOIC-14	Fairchild
U13		74VHCT125M	Quad Buffer with 3-STATE Outputs SOIC-14	Fairchild
U14		FST3257	Quad 2:1 Multiplexer/De Multiplexer Bus Switch	ON Semiconductor
U15		MC68HC908GP32CFB	MPU	Motorola
U16		GP1FA550TZ	SPDIF Optical Transmitter	Sharp
U17		AK4101VQ	Quad Outputs 192KHZ 24-Bit DIT 44 Pin LQFP (0.8mm pitch)	AKM
U18		74VHCT125M	Quad Buffer with 3-STATE Outputs SOIC-14	Fairchild
U19		74VHCT125M	Quad Buffer with 3-STATE Outputs SOIC-14	Fairchild
U20		74VHCT125M	Quad Buffer with 3-STATE Outputs SOIC-14	Fairchild
U21		74VHC74M	Dual D-Type Flip-Flop with Preset and Clear SOIC-14	Fairchild
U22		74VHCT08M	Quad 2 Input AND Gate SOIC-14	Fairchild
U23		GP1FA550RZ	SPDIF Optical Receiver	Sharp
U24		NC7SZU04M5	TinyLogic UHS Unbuffered Inverter SOT 23-5	Fairchild
U25		MAX8211CSA	Microprocessor Voltage Monitors with Programmable Voltage Detection SOIC-8	Maxim
U26		GP1FA550RZ	SPDIF Optical Receiver	Sharp
U27		AK4114VQ	High Feature 192KHz 24-Bit Digital Audio Interface Transceiver 48 pin LQFP (0.5mm pitch)	AKM
U28		NE5532AD8	High Performance Low Noise Dual Operational Amplifier DMP8, SOIC-8	Philips
U29		AK5380VT	96KHz 24-Bit ADC with Single-ended Input 16 pin TSSOP	AKM
U30		AK4355VF	192KHz 24-Bit 6ch DAC for DVD -Audio 28 pin VSOP (0.65mm pitch)	AKM
U31		AK4355VF	192KHz 24-Bit 6ch DAC for DVD -Audio 28 pin VSOP (0.65mm pitch)	AKM
U32		NE5532AD8	High Performance Low Noise Dual Operational Amplifier DMP8, SOIC-8	Philips
U33		NE5532AD8	High Performance Low Noise Dual Operational Amplifier DMP8, SOIC-8	Philips
U34		AK5380VT	96KHz 24-Bit ADC with Single-ended Input 16 pin TSSOP	AKM
U35		NE5532AD8	High Performance Low Noise Dual Operational Amplifier DMP8, SOIC-8	Philips
U36		NE5532AD8	High Performance Low Noise Dual Operational Amplifier DMP8, SOIC-8	Philips
U37		NE5532AD8	High Performance Low Noise Dual Operational Amplifier DMP8, SOIC-8	Philips
U38		NE5532AD8	High Performance Low Noise Dual Operational Amplifier DMP8, SOIC-8	Philips
U39		NE5532AD8	High Performance Low Noise Dual Operational Amplifier DMP8, SOIC-8	Philips
U40		NE5532AD8	High Performance Low Noise Dual Operational Amplifier DMP8, SOIC-8	Philips

Table 4.1 EVM Bill of Materials

U41		NE5532AD8	High Performance Low Noise Dual Operational Amplifier DMP8, SOIC-8	Philips
U42		NE5532AD8	High Performance Low Noise Dual Operational Amplifier DMP8, SOIC-8	Philips
U43		NE5532AD8	High Performance Low Noise Dual Operational Amplifier DMP8, SOIC-8	Philips
U44		LM1117MP-ADJ	3 Terminal Adjustable Positive LDO Regulator SOT223	NSC
U45		LM1117MP-ADJ	4 Terminal Adjustable Positive LDO Regulator SOT223	NSC
U46		NC7SZU04M5	TinyLogic UHS Unbuffered Inverter SOT 23-5	Fairchild
U47		LM337IMP	3 Terminal Adjustable Negative Regulator SOT223	NSC
U48		74LVXC3245QSC	8-Bit Dual Supply Configuarable Volt Interface Transceiver 3-STATE Outputs QSOP 16	Fairchild
U49	4.7V	TPS79147DBVR	Ultra Low Noise High PSRR Fast RF 4.7V 100-MA, LDO Linear Regulator SOT23-5	TI
U50	4.7V	TPS79147DBVR	Ultra Low Noise High PSRR Fast RF 4.7V 100-MA, LDO Linear Regulator SOT23-5	TI
U51	4.7V	TPS79147DBVR	Ultra Low Noise High PSRR Fast RF 4.7V 100-MA, LDO Linear Regulator SOT23-5	TI
U52	4.7V	TPS79147DBVR	Ultra Low Noise High PSRR Fast RF 4.7V 100-MA, LDO Linear Regulator SOT23-5	TI
X1	9.8304 MHZ	HCM49-9.8304MABJT	HCM49 Series Surface Mount Crystals 9.8304MHZ	Citizen America
X2	24.576 MHZ	HCM49-24.576MABJT	HCM49 Series Surface Mount Crystals 24.576MHZ	Citizen America
Х3	11.059 2MHZ	HCM49-11.0592MABJT	HCM49 Series Surface Mount Crystals 11.0592MHZ	Citizen America
X4	12.000 MHZ	HCM49-12.000MABJT	HCM49 Series Surface Mount Crystals 12.000MHZ	Citizen America

APPENDIX A

Motherboard Schematics

Figure A.1 DSP563XX Evaluation Platform Block Diagram

Figure A.2 DSP563XX Evaluation Platform DACA 1-3

Figure A.3 DSP563XX Evaluation Platform DACB 4-6

Figure A.4 DSP563XX Evaluation Platform ADC 1-2

Figure A.5 DSP563XX Evaluation Platform Configuration MPU

Figure A.6 DSP563XX Evaluation Platform Headphone Amplifier and Mixer

Figure A.7 DSP563XX Evaluation Platform SPDIF

Figure A.8 DSP563XX Evaluation Platform PPI and JTAG Command Converter

Figure A.9 DSP563XX Evaluation Platform JTAG/PPI Debugger MPU

Figure A.10 DSP563XX Evaluation Platform DSP Daughter Card

Figure A.11 DSP563XX Evaluation Platform Power and MCLK Lost Detect and Systems Reset

Figure A.12 DSP563XX Evaluation Platform Notes and Tables

Motherboard Layout

Figure A.13 Top Motherboard Assembly Layout

44

Freescale Semiconductor, Inc.

Figure A.14 Bottom Motherboard Assembly Layout

Go to: www.freescale.com

DAUGHTERBOARD SCHEMATICS

Figure A.15 Daughter Card DSP56362/366/367

Figure A.16 Daughter Card DSP56364

Figure A.17 DSP56367 Daughter Card Memory

Figure A.18 DSP56367 Daughter Card Connectors

Daughterboard Layout

Figure A.19 Top Daughterboard Assembly Layout

Figure A.20 Bottom Daughterboard Assembly Layout

50

Freescale Semiconductor, Inc.

APPENDIX B

PASSTHRU CODE

B.1 56362 / 366 / 367 PASSTHRU CODE

```
v2.0
; passthru36x.asm
i \text{ meb } 10/02/02
; Copyright (c) MOTOROLA 2002
 History:
       v2.0
                     Corrected DMA errata violation in DAX handling. DAX is
              meb
               now interrupt driven.
 Program Operation:
       This software is designed for use with the DSPAUDIOEVMMB1 equipped
       with a 56362/6/7 daughter card. This code is not for use with a
       56364 daughter card. With the proper jumper settings this software
       will accept either analog or digital input and pass it straight
       through to the output. A custom processing routine could be added in
       the STEREO_PROCESS subroutine.
       page
       include 'ioequ.asm'
       include 'vectors.asm'
; Init data storage
       orq
RX_BUFF_BASE
                     ds
                                   ; left input sample
RX_data_1_2
                            1
RX_data_3_4
                            1
                     dя
                                   ; right input sample
TX_BUFF_BASE
              equ
TX_data_1_2
                     ds
                            1
                                   ; left output sample
TX_data_3_4
                            1
                                   ; right output sample
                     ds
RX PTR
              ds
                            ; receive buffer pointer
TX PTR
                     1
                            ; transmit buffer pointer
flags
                     ds
RightReceive
                     0
              equ
; Init interrupt vectors
p:$00
       org
       jmp
              START
              p:$2E
       org
              dax_tx_isr
       jsr
              p:$30
       org
       jsr
              esai_rx_isr
       jmp
```

DSPAUDIOEVM Evaluation Board Users Manual

```
nop
       jsr
               esai_rxe_isr
               esai_rxls_isr
       jsr
               esai_tx_isr
       jsr
       jmp
       nop
       jsr
               esai_txe_isr
               esai_txls_isr
       jsr
; Init core registers
              p:$100
       orq
START
main
       ori
               #$03,mr
                                      ; mask interrupts
               #$050003,x:M_PCTL
       movep
                                             ; DSP core at 24.576x4=98.28MHz
       move
               #0,omr
               #0,sp
                                             ; reset hardware stack pointer
       movec
               #$000083,x:M_IPRP
                                             ; ESAI int's enabled IPL 2
       movep
                                             ; DAX int's enabled IPL 1
       move
               #$40,r6
                                      ; initialize stack pointer
       move
               #>$FFFF,m6
                                             ; linear addressing
                                             ; initialize inputs, outputs to 0
               #>RX_BUFF_BASE,r0
       move
               #>$FFFF,m0
       move
               \#0,x0
       move
               #4
       rep
       move
               x0,x:(r0)+
               #>RX_BUFF_BASE, x0
       move
       move
               x0,x:RX PTR
               #>TX_BUFF_BASE, x0
       move
               x0,x:TX_PTR
       move
; FST/FSR and SCKT/SCKR are generated by the AKM AK4114 S/PDIF receiver
#$000000,x:M PCRC
                                             ; disable ESAI port
       movep
               #$000000,x:M PRRC
       movep
               #$0c0200,x:M_TCCR
                                             ; init transmit clock control
       movep
register
               ;FST is input
                                                             (bit22=0)
               ;SCKT is driven externally
                                                             (bit21=0)
               ;FST polarity is negative
                                                             (bit19=1)
               ; clockout on falling, latch in on rising
                                                             (bit18=1)
               ;2 words per frame
                                                             (bit13:9=00001)
               ;all other bits are not relevant and are initialized to 0
               #$0c0200,x:M RCCR
                                             ;init receive clock control register
       movep
               ;FSR is input
                                                             (bit22=0)
               ;SCKR is driven externally
                                                             (bit21=0)
               ;FSR polarity is negative
                                                             (bit19=1)
               ; clockout on falling, latch in on rising
                                                             (bit18=0)
                                                             (bit13:9=00001)
               ;2 words per frame
               ;all other bits are not relevant and are initialized to 0
               #$000000,x:M_SAICR
                                             ;init ESAI common control register
       movep
               ;data left aligned to bit 23
                                                             (bit8=0)
                                                             (bit6=0)
               ;asynchronous mode
```

MOTOROLA

DSPAUDIOEVM Evaluation Board Users Manual

51

52

Freescale Semiconductor, Inc.

```
;bits 23:9 and 5:3 are reserved and are initialized to 0
         ;all other bits are not relevant and are initialized to 0
        #$d17d00,x:M_TCR
                                            ;init trasmit control register
movep
        ; last slot interrupt enabled
                                                             (bit23=1)
        ;transmit interrupt enabled
                                                             (bit22=1)
        ; even slot interrupt disabled
                                                             (bit21=0)
         ; exception interrupt enabled
                                                             (bit20=1)
        ;transmitter normal operation
                                                             (bit19=0)
         ;reserved
                                                                      (bit18=0)
         ;zero padding disabled
                                                             (bit17=0)
         ;FS occurs 1 bit clock early
                                                             (bit16=1)
         ; word length FS
                                                             (bit15=0)
        ;32-bit slot length, 24-bit word length (bit14:10=11111)
        ;network mode
                                                             (bit9:8=01)
         ;data left aliqued
                                                             (bit7=0)
                                                              (bit6=0)
         ;MSB shifted out first
         ;all transmitters disabled
                                                             (bit5:0=000000)
        #$d17D02,x:M_RCR
                                            ; init receive control register
movep
        ; last slot interrupt enabled
                                                             (bit23=1)
        ;receive interrupt enabled
                                                             (bit22=1)
        ; even slot interrupt disabled
                                                             (bit21=0)
        ; exception interrupt enabled
                                                             (bit20=1)
        ;receiver normal operation
                                                             (bit19=0)
                                                                  (bit18:17=00)
        ;reserved
        ;FS occurs 1 bit clock early
                                                             (bit16=1)
        ; word length FS
                                                             (bit15=0)
        ;32-bit slot length, 24-bit word length
                                                             (bit14:10=11111)
        ;network mode
                                                             (bit9:8=01)
        ;data left aligned
                                                             (bit7=0)
        ;MSB shifted out first
                                                             (bit6=0)
                                                                    (bit5:4=00)
        ;reserved
        ;receivers 3 and 2 disabled
                                                             (bit3:2=00)
        ;receiver 1 enabled
                                                             (bit1=1)
        ;receiver 0 disabled
                                                             (bit0=0)
movep
        #$000fdb,x:M_PCRC
                                            ; Enable ESAI port
movep
        #$000fdb,x:M_PRRC
        reserved
                                                       (bit23:12=000000000000)
                                                        (bit11:0=111111011011)
        ;all pins enabled as ESAI except HCKT & HCKR
        #$000003,x:M TSMA
                                            ; init transmit slot mask registers
movep
        ;reserved
                                                           (bit23:16=00000000)
                                                     (bit15:0=1111111111111111)
        ;enable slots 15:0
        #$000003,x:M_TSMB
movep
                                                           (bit23:16=00000000)
        ;reserved
        ;enable slots 31:16
                                                     (bit15:0=1111111111111111)
                                            ; init receive slot mask registers
        #$00ffff,x:M_RSMA
movep
        ;reserved
                                                           (bit23:16=00000000)
                                                     (bit15:0=111111111111111)
        ;enable slots 15:0
        #$00ffff,x:M_RSMB
movep
                                                           (bit23:16=00000000)
         ;reserved
        ;enable slots 31:16
                                                     (bit15:0=111111111111111)
        #$000000,x:M_TX0
                                            ;zero out transmitter 0
movep
movep
        #$000000,x:M_TX1
                                            ;zero out transmitter 1
                                            ;zero out transmitter 2
        #$000000,x:M_TX2
movep
                                            ;zero out transmitter 3
        #$000000,x:M_TX3
movep
bset
        \#0,x:M TCR
                                            ; enable TX0
        #1,x:M TCR
                                            ; enable TX1
bset
bset
        #2,x:M_TCR
                                            ;enable TX2
                                            ;enable TX3
bset
        #3,x:M_TCR
```

DSPAUDIOEVM Evaluation Board Users Manual

```
; Init DAX
; Clock source is 256fs generated by the AKM 4114 S/PDIF receiver
#$000000,x:M_XNADR
      movep
                                 ;clear non audio data register (unused)
             #$000009,x:M_XCTR
                                        ;init DAX control register
      movep
             ;bits 23:6 are reserved and are initialized to 0
             ;start block disabled
                                                     (bit5=0)
             ;external clock f=256xfs
                                                     (bit4:3=01)
                                                     (bit2=0)
             ;block transferred interrupt disabled
             ;transmit underrun interrupt disabled
                                                     (bit1=0)
             ; audio data register empty interrupt enabled
                                                     (bit0=1)
             #$000000,x:M_XADRA
                                 ; init audio register A with dummy data
      movep
             #$000000,x:M_XADRB
                                 ;init audio register B with dummy data
      movep
             #$000003,x:M_PCRD
                                        ;enable DAX port
      movep
      movep
             #$000003,x:M_PRRD
      andi
             #$FC,mr
                                 ; enable all interrupt levels
LOOP
      jclr
             #RightReceive, x: flags, *
      bclr
             #RightReceive,x:flags
             x:RX_BUFF_BASE,a
                                        ;receive left
      move
      move
             x:RX_BUFF_BASE+1,b
                                 ;receive right
             STEREO_P
      isr
                                 ; allows user to insert processing subroutine
             ROCESS
             a,x:TX B
                                        ;transmit left
      move
             UFF_BASE
             b,x:TX_BUFF_BASE+1
      move
                                 ;transmit right
             LOOP
      jmp
STEREO_PROCESS
      nop
      nop
      rts
      include 'passthru36x isr.asm'
; passthru36x_isr.asm
                     v2.0
 meb 10/02/02
 Interrupt service routines used for passthru36x.asm.
; Copyright (c) MOTOROLA 2001
      Digital Audio Applications
      orq
                   p:
```

MOTOROLA

DSPAUDIOEVM Evaluation Board Users Manual

53

54

Freescale Semiconductor, Inc.

```
; ESAI transmit exception isr
esai_txe_isr
        bclr
                 #14,x:M SAISR
                                            ; clear underrun error flag
esai_tx_isr
                                                    ; ESAI transmit isr
                 r0,x:(r6)+
                                                    ; save r0 to the stack
        move
                 m0,x:(r6)+
                                                    ; save m0 to the stack
        move
        move
                 #1,m0
                                                    ; modulus 2 buffer
                                                    ; load the pointer to the Tx buffer
        move
                 x:TX PTR,r0
        nop
                 x:(r0),x:M_TX0
                                           ; write tx data to transmitter 0
        movep
                                           ; write tx data to transmitter 1
        movep
                 x:(r0),x:M_TX1
                                           ; write tx data to transmitter 2
        movep
                 x:(r0),x:M_TX2
                 x:(r0)+,x:M TX3
                                           ; write tx data to transmitter 3
        movep
        move
                 r0,x:TX_PTR
                                                    ; update tx buffer pointer
                                                    ; restore m0
                 x:-(r6),m0
        move
        move
                 x:-(r6),r0
                                                    ; restore r0
        rti
esai txls isr
                                            ; ESAI transmit last slot isr
                 r0,x:(r6)+
                                                    ; save r0 to the stack
        move
        move
                 #TX_BUFF_BASE,r0
                                                    ; reset tx pointer
        move
                 r0,x:TX PTR
                                                    ; reset tx buffer pointer
                                                    ; restore r0
        move
                 x:-(r6),r0
        rti
esai_rxe_isr
                                            ; ESAI receive exception isr
                 #7,x:M_S
        bclr
                                           ; clear overrun error flag
                 AISR
                                                    ; ESAI receive isr
esai_rx_isr
                                                    ; save r0 to the stack
        move
                 r0,x:(r6)+
                 m0,x:(r6)+
                                                    ; save m0 to the stack
        move
                                                    ; modulus 2 buffer
        move
                 #1,m0
        move
                 x:RX_PTR,r0
                                                    ; load the pointer to the rx buffer
        nop
                 #$6,x:M_SAISR,LeftSlot
                                           ; if left channel data don't set flag
        jset
                                            ; if right channel data then set flag
                 #RightReceive, x: flags
        bset
LeftSlot
                                           ; move rx data to buffer
                 x:M_RX1,x:(r0)+
        movep
        move
                 r0,x:RX_PTR
                                                    ; update rx buffer pointer
        move
                 x:-(r6),m0
                                                    ; restore m0
        move
                 x:-(r6),r0
                                                    ; restore r0
        rti
esai rxls isr
                                            ; ESAI receive last slot isr
        move
                 r0,x:(r6)+
                                                    ; save r0 to the stack
                 #RX_BUFF_BASE,r0
                                                    ; reset rx buffer pointer
        move
                                                    ; update rx buffer pointer
        move
                 r0,x:RX_PTR
        move
                 x:-(r6),r0
                                                    ; restore r0
        rti
                                                    ; DAX transmit isr
dax_tx_isr
        move
                 r0,x:(r6)+
                                                    ; save r0 to the stack
                                                    ; save m0 to the stack
        move
                 m0,x:(r6)+
                 x:TX_PTR,r0
                                                    ; load the pointer to the TX buffer
        move
        movep
                 x:(r0),x:M XADR
                                           ; write TX data to the audio data register
                 x:-(r6),m0
                                                    ; restore m0
        move
        move
                 x:-(r6),r0
                                                    ; restore r0
        rti
```

DSPAUDIOEVM Evaluation Board Users Manual

B.2 56364 PASSTHRU CODE

```
;passthru364.asm
                        v1.0
; meb 07/25/02
; Copyright (c) MOTOROLA 2002
; Program Operation:
       This software is designed for use with the DSPAUDIOEVMMB1 equipped
       with a 56364 daughter card. With the proper jumper settings this
       software will accept either analog or digital input and pass it
       straight through to the output. A custom processing routine could be
       added in the STEREO_PROCESS subroutine.
 *********************
       page
       include 'ioequ.asm'
       include 'vectors.asm'
; ***********************
; Init data storage
               x:$00
        org
RX_BUFF_BASE
RX_data_1_2
                       ds
                                       ; left input sample
                               1
RX_data_3_4
                       ds
                                       ; right input sample
TX_BUFF_BASE
               equ
TX_data_1_2
                       ds
                               1
                                       ; left output sample
TX_data_3_4
                               1
                                       ; right output sample
                       ds
RX PTR
                               ; receive buffer pointer
TX_PTR
                       1
                               ; transmit buffer pointer
flags
                       ds
                               1
RightReceive
               equ
; Init interrupt vectors
               p:$00
       orq
jmp
START
               p:$30
       org
        jsr
               esai_rx_isr
        jmp
       nop
               esai_rxe_isr
        jsr
        jsr
               esai_rxls_isr
        isr
               esai_tx_isr
        jmp
       nop
               esai_txe_isr
        jsr
        jsr
               esai_txls_isr
; Init core registers
```

```
org
                 p:$100
START
main
        ori
                 #$03,mr
                                            ; mask interrupts
        movep
                 #$050003,x:M_PCTL
                                                     ; DSP core at 24.576x4=98.28MHz
        move
                 #0,omr
                 #0,sp
        movec
                                                     ; reset hardware stack pointer
        movep
                 #$000003,x:M IPRP
                                            ; ESAI int's enabled and top
priority
        move
                 #$40,r6
                                            ; initialize stack pointer
                 #>$FFFF,m6
                                                     ; linear addressing
        move
                 #>RX_BUFF_BASE,r0
                                                     ; initialize inputs, outputs to 0
        move
        move
                 #>$FFFF,m0
                 \#0,x0
        move
        rep
                 #4
                 x0,x:(r0)+
        move
        move
                 #>RX BUFF BASE,x0
                 x0,x:RX_PTR
        move
                 #>TX BUFF BASE, x0
        move
                 x0,x:TX_PTR
        move
; Init ESAI
; FST/FSR and SCKT/SCKR are generated by the AKM AK4114 S/PDIF receiver
                 #$000000,x:M_PCRC
        movep
                                            ; disable ESAI port
        movep
                 #$000000,x:M_PRRC
                                            ;init transmit clock control register
                 #$0c0200,x:M_TCCR
        movep
                 ;FST is input
                                                                       (bit22=0)
                  ;SCKT is driven externally
                                                                       (bit21=0)
                 ;FST polarity is negative
                                                                       (bit19=1)
                 ; clockout on falling, latch in on rising
                                                                       (bit18=1)
                 ;2 words per frame
                                                                       (bit13:9=00001)
                 ;all other bits are not relevant and are initialized to 0
                 #$0c0200,x:M_RCCR
                                            ;init receive clock control register
        movep
                 ;FSR is input
                                                                       (bit22=0)
                 ;SCKR is driven externally
                                                                       (bit21=0)
                  ;FSR polarity is negative
                                                                       (bit19=1)
                  ; clockout on falling, latch in on rising
                                                                       (bit18=0)
                 ;2 words per frame
                                                                       (bit13:9=00001)
                 ; all other bits are not relevant and are initialized to {\tt O}
                 #$000000,x:M SAICR
                                            ;init ESAI common control register
        movep
                 ;data left aligned to bit 23
                                                                       (bit8=0)
                                                                       (bit6=0)
                 ;asynchronous mode
                  ;bits 23:9 and 5:3 are reserved and are initialized to 0
                  ;all other bits are not relevant and are initialized to 0
                                            ; init trasmit control register
                 #$d17d00,x:M TCR
        movep
                 ; last slot interrupt enabled
                                                                       (bit23=1)
                  ;transmit interrupt enabled
                                                                       (bit22=1)
                 ; even slot interrupt disabled
                                                                       (bit21=0)
                 ;exception interrupt enabled
                                                                       (bit20=1)
                 ;transmitter normal operation
                                                                       (bit19=0)
                                                                               (bit18=0)
                 ;zero padding disabled
                                                                       (bit17=0)
                 ;FS occurs 1 bit clock early
                                                                       (bit16=1)
                  ; word length FS
                                                                       (bit15=0)
```

DSPAUDIOEVM Evaluation Board Users Manual

```
;32-bit slot length, 24-bit word length
                                                               (bit14:10=11111)
         ;network mode
                                                               (bit9:8=01)
         ;data left aligned
                                                               (bit7=0)
         ;MSB shifted out first
                                                               (bit6=0)
         ;all transmitters disabled
                                                               (bit5:0=000000)
         #$d17D02,x:M_RCR
movep
                                    ; init receive control register
         ; last slot interrupt enabled
                                                               (bit23=1)
         ;receive interrupt enabled
                                                               (bit22=1)
         ; even slot interrupt disabled
                                                               (bit21=0)
         ; exception interrupt enabled
                                                               (bit20=1)
         ;receiver normal operation
                                                               (bit19=0)
         ;reserved
                                                                   (bit18:17=00)
         ;FS occurs 1 bit clock early
                                                               (bit16=1)
         ;word length FS
                                                               (bit15=0)
         ;32-bit slot length, 24-bit word length
                                                               (bit14:10=11111)
         ;network mode
                                                               (bit9:8=01)
         ;data left aliqued
                                                               (bit7=0)
         ;MSB shifted out first
                                                               (bit6=0)
         reserved
                                                                     (bit5:4=00)
                                                               (bit3:2=00)
         ;receivers 3 and 2 disabled
         ;receiver 1 enabled
                                                               (bit1=1)
         ;receiver 0 disabled
                                                               (bit0=0)
         #$000fdb,x:M_PCRC
                                    ; Enable ESAI port
movep
         #$000fdb,x:M_PRRC
movep
                                                        (bit23:12=000000000000)
         ;reserved
         ;all pins enabled as ESAI except HCKT & HCKR (bit11:0=111111011011)
         #$000003,x:M_TSMA
movep
                                    ; init transmit slot mask registers
         ;reserved
                                                             (bit23:16=00000000)
         ;enable slots 15:0
                                                       (bit15:0=1111111111111111)
         #$000003,x:M_TSMB
movep
                                                             (bit23:16=00000000)
         ;reserved
         ;enable slots 31:16
                                                       (bit15:0=111111111111111)
         #$00ffff,x:M_RSMA
                                    ; init receive slot mask registers
movep
         ;reserved
                                                             (bit23:16=00000000)
         ;enable slots 15:0
                                                       (bit15:0=1111111111111111)
         #$00ffff,x:M_RSMB
movep
         ;reserved
                                                            (bit23:16=00000000)
         ;enable slots 31:16
                                                       (bit15:0=1111111111111111)
         #$000000,x:M_TX0
                                    ;zero out transmitter 0
movep
         #$000000,x:M_TX1
                                    ; zero out transmitter 1
movep
movep
         #$000000,x:M_TX2
                                    ;zero out transmitter 2
         #$000000,x:M TX3
                                   ;zero out transmitter 3
movep
bset
         #0,x:M_TCR
                                   ;enable TX0
                                   ;enable TX1
         #1,x:M_TCR
bset
bset
         #2,x:M_TCR
                                    ;enable TX2
bset
         #3,x:M_TCR
                                    ;enable TX3
andi
        #$FC,mr
                                    ; enable all interrupt levels
```

58

Freescale Semiconductor, Inc.

```
; Main loop
LOOP
        jclr
               #RightReceive, x: flags, *
       bclr
               #RightReceive,x:flags
       move
               x:RX BUFF BASE,a
                                               ;receive left
               x:RX BUFF BASE+1,b
                                       ;receive right
       move
               STEREO_PROCESS
                                       ;allows user to insert processing subroutine
        jsr
               a,x:TX_BUFF_BASE
                                               ;transmit left
       move
               b,x:TX_BUFF_BASE+1
                                       ;transmit right
       move
        jmp
               LOOP
STEREO_PROCESS
       nop
       nop
       rts
       include 'passthru364_isr.asm'
; passthru364_isr.asm
; meb 07/25/02
; Interrupt service routines used for passthru364.asm.
; Copyright (c) MOTOROLA 2001
       Digital Audio Applications
               p:
       orq
esai_txe_isr
                                       ; ESAI transmit exception isr
       bclr
               #14,x:M_SAISR
                                       ; clear underrun error flag
                                               ; ESAI transmit isr
esai_tx_isr
                                               ; save r0 to the stack
               r0,x:(r6)+
       move
                                               ; save m0 to the stack
       move
               m0,x:(r6)+
               #1,m0
                                                modulus 2 buffer
       move
       move
               x:TX_PTR,r0
                                               ; load the pointer to the Tx buffer
       nop
               x:(r0),x:M_TX0
                                       ; write tx data to transmitter 0
       movep
                                       ; write tx data to transmitter 1
       movep
               x:(r0),x:M_TX1
       movep
               x:(r0),x:M_TX2
                                       ; write tx data to transmitter 2
       movep
               x:(r0)+,x:M_TX3
                                       ; write tx data to transmitter 3
                                                       ; update tx buffer pointer
               r0,x:TX_PTR
       move
       move
               x:-(r6),m0
                                                       ; restore m0
               x:-(r6),r0
       move
                                                       ; restore r0
       rti
                                       ; ESAI transmit last slot isr
esai_txls_isr
               r0,x:(r6)+
       move
                                               ; save r0 to the stack
       move
               #TX_BUFF_BASE,r0
                                               ; reset tx pointer
       move
               r0,x:TX_PTR
                                               ; reset tx buffer pointer
```

DSPAUDIOEVM Evaluation Board Users Manual

```
move
                 x:-(r6),r0
                                                    ; restore r0
        rti
esai_rxe_isr
                                           ; ESAI receive exception isr
        bclr
                 #7,x:M_SAISR
                                            ; clear overrun error flag
                                                    ; ESAI receive isr
esai_rx_isr
                 r0,x:(r6)+
                                                    ; save r0 to the stack
        move
                 m0,x:(r6)+
                                                    ; save m0 to the stack
        move
        move
                 #1,m0
                                                    ; modulus 2 buffer
                 x:RX_PTR,r0
                                                    ; load the pointer to the rx buffer
        move
        nop
                 #$6,x:M_SAISR,LeftSlot
        jset
                                           ; if left channel data don't set flag
        bset
                 #RightReceive, x: flags
                                           ; if right channel data then set flag
LeftSlot
                 x:M_RX1,x:(r0)+
                                           ; move rx data to buffer
        movep
                                                    ; update rx buffer pointer
                 r0,x:RX_PTR
        move
        move
                 x:-(r6),m0
                                                    ; restore m0
        move
                 x:-(r6),r0
                                                    ; restore r0
        rti
                                           ; ESAI receive last slot isr
esai_rxls_isr
        move
                 r0,x:(r6)+
                                                    ; save r0 to the stack
        move
                 #RX_BUFF_BASE,r0
                                                    ; reset rx buffer pointer
                 r0,x:RX_PTR
                                                    ; update rx buffer pointer
        move
                                                    ; restore r0
                 x:-(r6),r0
        move
        rti
```

SUPPORTING DOCUMENTATION

Find device user manual/datasheets at

NOTES

http://e-www.motorola.com/webapp/sps/library/docu_lib.jsp

56300 Family Manual

http://e-www.motorola.com/brdata/PDFDB/docs/DSP56300FM.pdf http://e-www.motorola.com/brdata/PDFDB/docs/DSP56300FMAD.pdf

56362

http://e-www.motorola.com/brdata/PDFDB/docs/DSP56362.pdf http://e-www.motorola.com/brdata/PDFDB/docs/DSP56362UM.pdf

56364

http://e-www.motorola.com/brdata/PDFDB/docs/DSP56364.pdf http://e-www.motorola.com/brdata/PDFDB/docs/DSP56364UM.pdf

56366

http://e-www.motorola.com/brdata/PDFDB/docs/DSP56366.pdf http://e-www.motorola.com/brdata/PDFDB/docs/DSP56366UM.pdf

56367

http://e-www.motorola.com/brdata/PDFDB/docs/DSP56367UM.pdf

AKM parts

www.akm.com

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

MOTOROLA LITERATURE DISTRIBUTION P.O. BOX 5405, DENVER, COLORADO 80217 1-800-441-2447 OR 480-768-2130

JAPAN:

MOTOROLA JAPAN LTD.; SPS, TECHNICAL INFORMATION CENTER 3-20-1, MINAMI-AZABU. MINATO-KU, TOKYO 106-8573, JAPAN 81-3-3440-3569

ASIA/PACIFIC:

MOTOROLA SEMICONDUCTORS H.K. LTD. SILICON HARBOUR CENTRE, 2 DAI KING STREET TAI PO INDUSTRIAL ESTATE, TAI PO, N.T. HONG KONG 852-26668334

HOME PAGE:

HTTP://MOTOROLA.COM/SEMICONDUCTORS

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or quarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service names are the property of their respective owners.

© Motorola Inc. 2003

DSPAUDEVMEBUM/D, Rev.1