Micro-ROS Serial Communication

Publisher + Subscriber Activity

{Learn, Create, Innovate};

- This activity is focused on integrating the previous concepts into a bigger project.
- Verify the correct wiring and connections before powering up the system.

- Create a node called *micro_ros_esp32_node*
- Implement two timers
 - Timer_1 10ms
 - Timer_2 100ms
- Read the value of the potentiometer.
 - Use ADC in the pin 36.
 - Read the ADC in Timer_1
- Publish the following data in Timer_2
 - Raw value of the potentiometer in /micro_ros_esp32/raw_pot
 - The raw data from the potentiometer mapped into a 0-3.3V range in /micro_ros_esp32/voltage

- Configure a PWM such that:
 - The output is in pin 15.
 - It has a 5000Hz frequency.
 - It has an 8-bit resolution.
 - It uses channel 0.
- Subscribe to the /micro_ros_esp32/pwm_duty_cycle topic.
 - You will receive a floating-point value corresponding to the duty cycle of the PWM.
 - Transform the duty cycle into a value corresponding to the selected PWM resolution.

Considerations

- Use appropriate data types.
- Check that the GPIO pins are properly set.
- Double check the micro-ROS syntax and functions.
- Use a LED to debug potential errors.

Resources

- Publishers and subscribers | micro-ROS
- microcontroller Is there an ideal PWM frequency for DC brush motors? -Electrical Engineering Stack Exchange
- Random Nerd Tutorials | Learn ESP32, ESP8266, Arduino, and Raspberry Pi

Useful commands

- Open serial port
 - ros2 run micro_ros_agent micro_ros_agent serial --dev /dev/ttyUSB0
- Subscribe to pot and voltage data
 - ros2 topic echo /micro_ros_esp32/raw_pot
 - ros2 topic echo /micro_ros_esp32/voltage
- Publish PWM duty cycle
 - ros2 topic pub /micro_ros_esp32/pwm_duty_cycle --once std_msgs/msg/Float32 "data: 15"
- View the values of the pot and voltage data
 - ros2 run rqt_plot rqt_plot

- Connect a H-bridge (L298) and a DC motor to the previous activity. The behavior of the motor should mimic the LED.
- Check the proper connections of the H-Bridge and the motor
- OUT1: DC motor A + terminal
- OUT2: DC motor A terminal
- OUT3: DC motor B + terminal
- OUT4: DC motor B termina
- IN1: Input 1 for Motor A
- IN2: Input 2 for Motor A
- IN3: Input 1 for Motor B
- IN4: Input 2 for Motor B
- EN1: Enable pin for Motor A (PWM)
- EN2: Enable pin for Motor B (PWM)

Micro-ROS Activity - Extra

Input port

1 2	1、RPWM	Forward level or PWM signal input, active high
	2、LPWM	Inversion level or PWM signal input, active high
000	3、R_EN	:Forward drive enable input , high enable , low close
00	4, L_EN	Reverse drive enable input , high enable , low close
00	5、R_IS	Forward drive -side current alarm output
00	6, LIS	: Reverse drive -side current alarm output
00	7. VCC	: +5 V power input, connected to the microcontroller 5V power supply
7 8	8、GND	: Signal common ground terminal

Usage one:

VCC pick MCU 5V power supply, GND connected microcontroller GND R_EN and L_EN shorted and connected to 5V level, the drive to work. L_PWM, input PWM signal or high motor forward R_PWM, input PWM signal or high motor reversal

Usage two:

VCC pick MCU 5V power supply , GND connected microcontroller GND R_EN and L_EN short circuit and PWM signal input connected to high-speed L_PWM, pin input 5V level motor is transferred R_PWM, pin input 5V level motor reversal

