G: Completely connected, indirected graph with non-negative weights (ie. each edge (u,v) has cost ((u,v) > 0)

Tour of 6: cycle C that includes every node of G exactly once

* Q: what is the cheapest tour of a graph G?

There is as of yet no "efficient" (polynomial time) also to solve.

The TSP problem is one of the class of NP-complete problems; finding polynomial also to solve it proves all NP complete probs can be solved via an efficient algorithm!!!

SIMPLIFIED TSP: A-TSP

D-INEQUALITY: Y Y, W & V, C(U, V) & C(U, W) + C(U, V)

· Assume a inequality to simplify the TSP...

· A-TSP is still an NP complete problem

We can find an approximate solution to the 1-759 efficiently, and the nesulting terr of G, T has C(T) < 2. C(Tx) where T* is the optimal hour of G.

Lemma 1 C(MST) & C(OT): MST= Min span tree of G, OT i optimal four of G Preof: Consider any OT. Take Cyu) & T and remove it. The result is a spanning tree ST whose cost is less that oT. Then we have C(MST) < C(ST) < C(OT)

	What is the efficient approximate solution of the 1-18p?
7	A-TSP Algorithm
	find on MST of 6 using Kruskal's algo O(mlogn)
	do a full walk of the MST:
	- result is a cycle Const, with 2/Emstledges, some repeat nodes,
	· Note that c(c) = 2 · C(MST)
	wherever there is repeated nodes in C, replace we direct edge
	· complete graph, = such edge exists
	· D-inequality, in direct edges cheaper than indirect
	Result C* is a tour (no repeat nodes)
	· C(cx) \(C(c) = 2 - C(MST)
	With Lemma 1: C(C*) < 2.C(MST) < C(OT), : approximate soln.
	Someone has figured but how to get soln - within factor of 1.5
L	at some point problem becomes NP complete w/ better approximations
	#
	· · · · · · · · · · · · · · · · · · ·
-	