1 正弦定理(計算)

- 正弦定理 -

(3) c = 10, R = 10 のとき, C を求めよ.

(4) $b = \sqrt{6}, A = 45^{\circ}, B = 60^{\circ}$ のとき, a を求めよ.

(5) $c=\sqrt{2}, B=30^\circ, C=45^\circ$ のとき, c を求めよ.

練習

 $\triangle ABC$ において、以下の問いに答えよ.

- (1) $a=5, A=45^{\circ}$ のとき、外接円の半径 R を求めよ.
- (6) $A=135^{\circ}, B=15^{\circ}, c=2$ のとき, a の値を求めよ.
- (2) $b=\sqrt{3}, B=120^\circ$ のとき、外接円の半径 R を求めよ.

2 余弦定理(計算)

-	余弦定	

(3)	a = 3, b =	$2, c = \sqrt{7}$	のと	き. C	を求めよ.

(4) $A = \sqrt{7}, b = 1, c = 2\sqrt{3}$ のとき、A を求めよ.

練習

△ABC において, 以下の問いに答えよ.

$$(1)$$
 $b=\sqrt{3}, c=2, A=150^\circ$ のとき, a を求めよ.

(5)
$$a = 1, b = \sqrt{5}, c = \sqrt{2}$$
 のとき, B を求めよ.

$$(2)$$
 $a=3, b=5, C=120^{\circ}$ のとき, c を求めよ.

3 正弦定理・余弦定理の証明	
正弦定理 ————————————————————————————————————	

3.1 角の判定

3 辺の長さから、ある角度の鋭角・直角・鈍角を判定しよう。 余弦定理

$$a^2 = b^2 + c^2 - 2bc\cos A$$

を変形して,

$$\cos A =$$

辺の長さが正なので,

$$2bc$$
 0

よって,

$$b^2 + c^2 - a^2$$

角

角

の符号が, $\cos A$ が符号になる.

さて,

$$\cos A > 0$$
 のとき, A は 角

$$\cos A = 0$$
 のとき, A は

$$\cos A < 0$$
 のとき, A は

練習

 $\triangle ABC$ の 3 辺が以下のとき, A の角の種類を判定せよ.

(1)
$$a = 9, b = 3\sqrt{2}, c = 7$$

(2)
$$a = \sqrt{7}, b = \sqrt{6}, c = 2$$

4 正弦定理・余弦定理の活用

4.1 復習

以下のような △ABC において, 指定たものを求めよ.

(1) $a = 2\sqrt{3}, b = 7, C = 30^{\circ}$ のとき, c

(2) $a=\sqrt{10}, A=135^{\circ}, B=30^{\circ}$ のとき, b

(3) $a=2,b=2\sqrt{2},c=\sqrt{5}-1$ のとき, B および外接円の半径 R

4.2 問題

(1) $\triangle ABC$ において, $a=2, b=\sqrt{3}+1, C=60^\circ$ のとき, 残り の辺の長さと角の大きさを求めよ.

(2) \triangle ABC において, $a=\sqrt{2}, b=\sqrt{3}+1, C=45^{\circ}$ のとき, 残りの辺の長さと角の大きさを求めよ.

4.3 最大角の大きさ

Question.	三角形 ABO	\mathbb{C} の辺が $a=$	3,b=6,c=	7のとき	き,最大
角は ∠A, ∠	∠B, ∠C のう	ちどれか.			

 \longrightarrow

つまり、最大の辺に向かい合う角が、その三角形の_____.

問題

 $\triangle ABC$ において, $\sin A:\sin B:\sin C=13:8:7$ が成立するとき, 最大角の大きさを求めよ.

練習

 $\triangle ABC$ において, $\sin A:\sin B:\sin C=3:5:7$ が成立するとき, 最大角の大きさを求めよ.

5 多角形への応用

5.1 三角形の面積

 $\triangle ABC$ の面積 S を求めてみよう.

(1) 鋭角三角形の場合

上図において、CD を ZA の三角比と AC を用いて

CD =

と表せるので、 $\triangle ABC$ の面積 S は、

$$S = \frac{1}{2} \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}}$$

(2) 鈍角三角形の場合

上図において、CD を ∠A の三角比と AC を用いて

CD=

と表せるので、 $\triangle ABC$ の面積 S は、

$$S = \frac{1}{2} \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}}$$

以上をまとめると,

三角形の面積

練習

以下のとき、三角形 ABC の面積を求めよ.

(1)
$$a = 3, b = 4, C = 60^{\circ}$$

(2)
$$a = \sqrt{3}, c = 2, B = 150^{\circ}$$

(3)
$$a = 3, b = 3, c = 3$$

(4) a=5, b=6, c=7 (ヒント: $\sin\theta$ が知りたい. でもすぐわかるのは $\cos\theta$...)

5.2 多角形の面積

(1) 円に内接する四角形 ABCD において,

$$AB=3, BC=2, CD=1, \angle B=60^\circ$$

のときの四角形 ABCD の面積を求めよ. (求める流れ:AC \rightarrow AD \rightarrow 面積)

(2) 円に内接する四角形 ABCD において,

$$AB=4, BC=4, CD=5, \angle C=60^\circ$$

のときの四角形 ABCD の面積を求めよ.

5.3 内接円と三角形

 $\triangle ABC$ の 3 辺の長さを a,b,c とし、内接円の半径を r とする. このとき、 $\triangle ABC$ の面積 S は、

$$S =$$

と表すことができる.

この式を使った問題を解いてみる.

問題

(1) \triangle ABC において, a=2,b=3,c=4 のとき, 内接円の半径 r を求めよ.

(2) \triangle ABC において, a=7,b=6,c=5 のとき, 内接円の半径 r を求めよ.

5.4 ヘロンの公式 (紹介)

入試で公式の証明が出る年があったりなかったり.

· ヘロンの公式 ———

 $\triangle {\rm ABC}$ の 3 辺の長さを a,b,c とする. 面積 S は以下の式で表すことができる.

$$S = \sqrt{s(s-a)(s-b)(s-c)}$$

ただし、
$$s = \frac{a+b+c}{2}$$

これを知っていると, 面積が簡単に求められる.

問題

 \triangle ABC において, a=2,b=3,c=4 のとき, 面積 S を求めよ.

Proof.

6 空間への応用

6.1 空間図形

 $200 \mathrm{m}$ 離れた山のふもとの 2 地点 A と B から, 山の山頂 P を見ると,

$$\angle PAB = 60^{\circ}, \angle PBA = 75^{\circ}$$

であった. また, B から P を見上げた角度は 30° であった. 図において, P と B の標高差 PH を求めよ.

 $300 \mathrm{m}$ 離れた山のふもとの 2 地点 A と B から, 山の山頂 P を見ると,

$$\angle PAB = 60^{\circ}, \angle HBA = 75^{\circ}$$

であった. また, B から P を見上げた角度は 30° であった. 図において, P と B の標高差 PH を求めよ.

6.2 問題演習

(1) 1 辺の長さが 4 である正四面体 ABCD において, 辺 CD の中点を M とする. $\triangle ABM$ の面積を求めよ.

(2) AB= 6, AD= 3, AE= 4 である. \triangle DEG の面積 S を求めよ.

(3) 1 辺の長さが 4 である正四面体 ABCD において、頂点 A から \triangle BCD に垂線をおろす.

(a) 点 H は \triangle BCD の外心であることを示せ.

(b) AH の長さを求めよ.

(c) 正四面体 ABCD の体積 V を求めよ.

(4) 1 辺の長さが 6 である正四面体の体積 V を求めよ.