Λήμμα 0.0.1. Εστω $n \geqslant 1$ και $c_0, c_1, \ldots, c_{n-1}$ οι ρητοί αριθμοί που ορίζονται από την (;;). Υπάρχουν διακεκριμένοι ρητοί αριθμοί $\beta_1^*, \ldots, \beta_n^*$ και θετικοί ρητοί αριθμοί $\varrho_1^*, \ldots, \varrho_n^*$ τέτοιοι ώστε

$$\sum_{j=1}^{n} (\beta_j^*)^k \varrho_j^* = c_k$$

για κάθ ϵ $k = 0, 1, \ldots, n - 1$.

Aπόδειξη. Από το λήμμα 1.2.4, για κάθε n-αδα διαφορετικών ανά δύο πραγματικών αριθμών $β_1, β_2, \ldots, β_n$ το σύστημα των n γραμμικων εξισώσεων στους n αγνώστους

$$\sum_{j=1}^{n} \beta_j^k x_j = c_k \qquad k = 0, 1, \dots, n-1$$

έχει μοναδική λύση $(\varrho_1,\varrho_2,\ldots,\varrho_n)$. Έστω \Re το ανοικτό υποσύνολο του \mathbb{R}^n που αποτελείται από όλα τα $(\beta_1,\beta_2,\ldots,\beta_n)$ τέτοια ώστε $\beta_i\neq\beta_j$ για $i\neq j$, και έστω επίσης $\Phi:\Re\to\mathbb{R}^n$ η συνάρτηση που στέλνει το $(\beta_1,\beta_2,\ldots,\beta_n)$ στο $(\varrho_1,\varrho_2,\ldots,\varrho_n)$. Από τον κανόνα του Cramer για την επίλυση γραμμικών εξισώσεων, μπορούμε να εκφράσουμε κάθε ϱ_j ως ρητή συνάρτηση των $\beta_1,\beta_2,\ldots,\beta_n$, και έτσι η συνάρτηση

$$\Phi(\beta_1, \beta_2, \dots, \beta_n) = (\varrho_1, \varrho_2, \dots, \varrho_n)$$

είναι συνεχής. Έστω \mathbb{R}^n_+ το ανοικτό υποσύνολο του \mathbb{R}^n που αποτελείται από όλα τα σημεία (x_1,x_2,\ldots,x_n) με $x_i>0$ για $i=1,2,\ldots,n$.Από το λήμμα 1.2.6, αν οι $\beta_1,\beta_2,\ldots,\beta_n$ είναι οι n ρίζες του πολυωνύμου $H_n(x)$, έχουμε ότι $(\beta_1,\beta_2,\ldots,\beta_n)\in\Re$ και

$$\Phi(\beta_1, \beta_2, \dots, \beta_n) = (\varrho_1, \varrho_2, \dots, \varrho_n) \in \mathbb{R}^n_+$$

Καθώς το R^n_+ είναι ανοικτό υποσύνολο του R^n , συμπεραίνουμε ότι το $\Phi^{-1}(\mathbb{R}^n_+)$ είναι μια ανοικτή περιοχή στο \Re . Έτσι τα σημεία με ρητές συντεταγμένες έιναι πυκνά στο \Re και συνεπώς η περιοχή αυτή περιέχει ένα σημείο $(\beta^n_1,\beta^n_2,\ldots,\beta^n_n)$ με ρητές συντεταγμένες. Θεωρούμε τώρα το σημείο

$$(\varrho_1^*, \varrho_2^*, \dots, \varrho_n^*) = \Phi(\beta_1^*, \beta_2^*, \dots, \beta_n^*) \in \mathbb{R}_+^n$$

Κάθε ένας από τους αριθμούς ϱ_i^* μπορεί να εκφραστεί ως ρητή συνάρτηση των ρητών αριθμών $(\beta_1^*,\beta_2^*,\ldots,\beta_n^*)$ και άρα είναι φανερό ότι κάθε ένας από τους θετικούς αριθμούς ϱ_i^* είναι ρητός, το οποίο ολοκληρώνει και την απόδειξη του λήμματος.