Оглавление

0.1	Группы													1
0.2	Кольца и поля													2
0.3	Алгоритм Евклида													3

Лекция 3: Группы, кольца, поля и теория чисел

22.09.2023

0.1 Группы

Пример. 1. $\mathbb{R}^*=(\mathbb{R}\setminus\{0\},\cdot)$ - абелева группа аналогично с $\mathbb{Q}^*,\mathbb{Q}_+^*,\mathbb{R}_+^*$

- $2.~(\mathbb{R},+)$ абелева
- 3. пусть X множество, G множество биекций $X\Rightarrow X,\circ$ композиция, тогда G группа
- 4. Группа движений плоскости, операция \circ
- 5. пусть X множество, тогда $(2^X, \triangle)$ группа (доказать)

Свойство. (сокращение), G - группа, $a, b, c \in G$

- 1. если $ac = bc \Rightarrow a = b$
- 2. если $ca = cb \Rightarrow a = b$

Доказательство.
$$ac = bc \stackrel{\exists c^{-1}}{\Rightarrow} (ac)c^{-1} = (bc)c^{-1} \stackrel{\text{ассои.}}{\Rightarrow} a(cc^{-1}) = b(cc^{-1}) \Rightarrow ae = be \Rightarrow a = b \text{ Q.E.D.}$$

Определение 1. Группы G и H - <u>изоморфны</u>, если \exists биекция из G в H, т.ч. $\forall x,y \in G: f(x\cdot y) = f(x)*f(y)$ где · - операция G, * - операция H

Обозначение. $G\cong H,$ \mathbf{f} - изоморфизм

Пример.
$$G(\mathbb{R},+)$$
 $H(\mathbb{R}_{+}^{*},\cdot)$ $f(x)=2^{x}$ - изоморфизм:

$$f(x+y) = 2^{x+y}$$
$$f(x)f(y) = 2^x \cdot 2^y$$

Замечание. в теории чисел все числа по умолчанию целые

Определение 2. число а делится на b, если: $\exists c : a = bc$

Свойство. 1. $a : c, b : c \Rightarrow a + b : c, a - b : c$

Кольца и поля

Доказательство.
$$a:c\Rightarrow a=kc\wedge b:c\Rightarrow b=mc$$

$$a=kc\wedge b=mc\Rightarrow \begin{cases} a+b=(m+k)c:c\\ a-b=(m-k)c:c \end{cases} \text{ Q.E.D.}$$

2. $\forall k : a : b \Rightarrow ak : b$

0.2

- 3. $a:b \land b:c \Rightarrow a:c$
- 4. $a : b \Rightarrow |a| \ge |b| \lor a = 0$

Доказательство.
$$a=bc\Rightarrow egin{bmatrix} c=0, \text{значит } a=0 \\ c\neq 0, \text{значит } |c|\geq 1 \end{bmatrix}$$
 значит, $|a|=|c||b|\geq |b|$ Q.E.D.

- 5. $\forall a:a:1$
- 6. $\forall a:0:a$

Определение 3. НОД (a_1, a_2, \ldots, a_k) - наибольшее число, на которое делятся a_1, a_2, \ldots, a_k

Обозначается как: (a_1, a_2, \dots, a_k)

Определение 4. НОК (a_1,a_2,\ldots,a_k) - наименьшее число, которое делится на a_1,a_2,\ldots,a_k Обозначается как: $[a_1,a_2,\ldots,a_k]$

Теорема 1. Если не все числа a_1, a_2, \dots, a_k равны нулю, но НОД существует.

Доказательство. Пусть A - множество всех общих делителей, тогда $1 \in A \Rightarrow A \neq \varnothing$

А ограничено сверху, т.к. \forall делитель $\leq |a_i|$, где a_i - любое ненулевое

число, значит, в множестве A есть наибольший элемент Q.E.D.

Теорема 2. Если все числа a_1, a_2, \ldots, a_k не равны нулю, но НОК существует.

Доказательство. Пусть A - множество всех общих кратных, тогда $a_1,a_2,\ldots,a_k\in A\Rightarrow A\neq\varnothing$

А ограничено снизу числом 0, значит, в множестве A есть наименьший элемент Q.E.D.

0.3 Алгоритм Евклида

Теорема 3. (деление с остатком) Пусть $b\in\mathbb{N}, a\in\mathbb{Z}$, тогда $\exists !q,r$: $\begin{cases} a=bq+r,\\ 0\leq r\leq b-1 \end{cases}$

Доказательство. 1. Пусть $A = \{a - bx : x \in \mathbb{Z}\}$

Среди элементов А есть хотя бы один неотрицательный:

. если $a \ge 0$, то $a \in A$

. если a < 0, то $a - ab = a(1 - b) \in A$

Пусть ${\bf r}$ - наименьший неотрицательный элемент в ${\bf A}.$ Проверим, что он подходит.

 $r = a - bx \Rightarrow a = bx + r$, х можно взять в качестве q

Преположим, что $r \ge b$, тогда:

 $r-b=a-b(x+1)\in A\Rightarrow \mathbf{r}$ - не наименьший элемент в $\mathbf{A}\Rightarrow r\leq b-1$

2. Докажем единственностью Пусть $a = bq_1 + r_1 = bq_2 + r_2$;

$$0 \le r_1, r_2 \le b - 1$$

$$b(q_1-q_2) = r_2-r_1 \Rightarrow (r_2-r_1) \vdots b \Rightarrow \begin{bmatrix} r_2-r_1 = 0 \\ |r_2-r_1| \ge b$$
 — противоречие: $r_1; r_2 \le b-1$

Значит, $r_1 = r_2 \Rightarrow q_1 = q_2$ Q.Е.D.

Определение 5. (Алгоритм Евклида) даны числа $a,b \in \mathbb{N}, a \geq b$

- 1. если a : b конец алгоритма, результат = b
- 2. если же не делится, то алгоритм применяется к паре $(b,\,r)$, где r остаток от деления а на b

Пример. a = 22, b = 6

```
1. 22 = 3 \cdot 6 + 4 : (22, 6) \to (6, 4)
2. 6 = 1 \cdot 4 + 2 : (22, 6) \to (4, 2)
3. 4 = 2 \cdot 2 - конец, ответ: 2
```

```
Замечание. (Запись с формулами:) a = bq_0 + r_1 \qquad 0 \le r_1 < b b = r_1q_1 + r_2 \qquad 0 \le r_2 < r_1 r_1 = r_2q_2 + r_3 \qquad 0 \le r_3 < r_2 \vdots \qquad \vdots \qquad \vdots r_{k-2} = r_{k-1}q_{k-1} + r_k \qquad 0 \le r_k < r_{k-1} \vdots \qquad \vdots \qquad \vdots r_{n-2} = r_{n-1}q_{n-1} + r_n \qquad 0 \le r_n < r_{n-1} r_{n-1} = r_nq_n, \text{ ответ: } r_n
```