08 이미자를 분류합니다

4팀 신원 /서용민

INDEX

- 8-1 합성곱 연산에 대해 알아봅니다
- 8-2 풀링 연산에 대해 알아봅니다
- 8-3 합성곱 신경망의 구조를 알아봅니다
- 8-4 합성곱 신경망을 만들고 훈련합니다
- 8-5 케라스로 합성곱 신경망을 만듭니다

8-1

합성곱 연산에 대해 알아봅시다

다층 신경망 & 합성곱 신경망

다층 신경망

합성곱 신경망

앞 장의 다층 신경망(완전 연결 신경망)은 이미지를 1차원 데이터로 변환한 후 입력층으로 사용해야 했음.

반면 합성곱 신경망은 이미지의 공간적인 구조 정보를 보존하면서 학습할 수 있음.

다층 신경망 구조& 합성곱 신경망 구조

합성곱 연산

합성곱(convolution):

하나의 함수와 또 다른 함수를 반전 이동한 값을 곱한 후, 구간에 대해 적분하는 수학 연산자. f*g로 표시.

수식으로 나타내면:
$$(f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau) d\tau$$

이산 함수의 경우:
$$(f*g)(m) = \sum_n f(n)g(m-n)$$

합성곱 연산을 그림으로 이해

1차배열 x와 w

Wr: 배열 w의 원소 순서를 뒤집은 것.

합성곱 연산을 그림으로 이해

뒤집어진 배열 Wr과 x배열의 각 원소끼리 곱해진 후에 더해짐.

Wr이 x배열 끝에 도달할때 까지 수행 됨.

교차 상관 연산

합성곱 신경망에서는 대부분 신경망을 만들때 교차 상관을 사용함.

합성곱을 적용하는 뒤집지않고 교차 상관을 적용하는 상관이 없음.

합성곱 구현

```
[1] import numpy as np
w = np.array([2,1,5,3])
x = np.array([2,8,3,7,1,2,0,4,5])
```

[2] w_r=np.flip(w)
print(w_r)

[3 5 1 2]

w_r2=w[::-1] #전체 데이터를 역순으로 출력해줌. print(w_r)

[3 5 1 2]

[1]: 넘파이 배열로 w, x 정의

[2]: 넘파이 flip 함수로 배열 뒤집기

[3]: 파이썬 슬라이스 연산자로도 뒤집기 가능

싸이파이로 합성곱, 교차 상관 수행

- from scipy.signal import convolve convolve(x, w, mode='valid')
- narray([63, 48, 49, 28, 21, 20])
- from scipy.signal import correlate correlate(x, w, mode='valid')

array([48, 57, 24, 25, 16, 39])

싸이파이의 합성곱 함수 convolve 수행

싸이파이의 교차 상관 함수 correlate 수행

패딩과 스트라이드

패딩(padding)은 원본 배열 양 끝에 빈 원소를 추가하는 것.

스트라이드(stride)는 미끄러지는 배열의 간격을 조절하는 것.

밸리드 패딩

밸리드 패딩(valid padding):

원본 배열에 패딩을 추가하지 않고 미끄러지는 배열이 원본 배열의 끝으로 갈 때까지 교차 상관 수행.

원본 배열의 각 원소가 연산에 참여하는 정도가 다름 (양 끝 원소 연산 참여도가 낮음).

결과로 얻는 배열의 크기는 원본 배열보다 작게 됨.

풀패딩

풀 패딩은 원본 배열 원소의 연산 참여도를 동일하게 만듦.

이를 위해 원본 배열 양 끝에 가상의 원소 0(제로 패딩)을 추가함.

세임 패딩

세임 패딩은 출력 배열의 길이를 원본 배열의 길이와 동일하게 만듦.

이를 위해 출력 배열의 길이가 원본 배열의 길이와 같아지도록 원본 배열에 제로 패딩을 추가.

밸리드 패딩, 풀패딩, 세임 패딩 코드 구현

- [12] correlate(x, w, mode='valid')
 array([48, 57, 24, 25, 16, 39])
- correlate(x, w, mode='full') #원본 배열 원소의 참여도 동일해짐.
 array([6, 34, 51, 48, 57, 24, 25, 16, 39, 29, 13, 10])
- [14] correlate(x, w, mode='same') #출력 배열길이가 입력 배열 길이와 9로 같음. array([34, 51, 48, 57, 24, 25, 16, 39, 29])

밸리드 패딩: mode='valid'

풀 패딩: mode='full'

세임패딩: mode='same'

스트라이드

미끄러지는 간격을 조정.

스트라이드를 2로 지정하면 2칸씩 미끄러지며 연산을 수행.

합성곱 신경망에서는 보통 스트라이드를 1로 지정.

2차원 배열의 합성곱 수행

2차원 원본 배열 x와 미끄러지는 배열 w

원본 배열 왼쪽 모서리 끝에 w 배열을 맞추고 합성곱 수행.

오른쪽으로 w배열을 1칸 옮기고 끝에 도달하면 아래로 1칸 내려서 다시 왼쪽 끝부터 합성곱 수행.

2차원 배열의 세임 패딩

l	2	3	٥	l			i		2	3	٥
4	5	Ь	٥	4	5	6	٥	4	5	6	٥
7	8	9	٥	7	8	9	٥	7	8	9	٥
٥	٥	٥	٥	٥	٥	٥	٥	٥	٥	٥	٥

ı	2	3	٥
4	5	6	٥
7	8	9	٥
٥	٥	٥	٥

l	2	3	٥	
4	5	6	٥	
7	8	9	٥	
٥	٥	٥	٥	

ı	2	3	٥
4	5	6	٥
7	8	9	٥
٥	٥	٥	٥

1	2	3	٥
4	5	6	٥
7	8	9	٥
٥	٥	٥	٥

l	2	3	٥	1	2	3	٥
4	5	6	٥	4	5	6	٥
7	8	9	٥	7	8	9	٥
٥	٥	٥	٥	٥	٥	٥	D

오른쪽과 아래쪽 모서리에 제로 패딩 추가됨

2차원 배열에서 스트라이드

l	2	3	٥		l	2	3	٥	l	2	3	D	l	2	3	٥
4	5	Ь	٥		4	5	6	٥	4	5	Ь	٥	4	5	6	٥
7	8	9	D		7	8	9	D	7	8	9	D	7	8	9	D
D	D	D	٥	ì	٥	٥	D	٥	٥	D	٥	٥	 ٥	٥	٥	٥

미끄러지는 방향은 유지, 미끄러지는 간격의 크기만 커짐 위에서는 스트라이드를 2로 지정

2차원 배열의 합성곱 구현

```
[15] x = np.array([[1,2,3]])
                   [4,5,6],
                    [7,8,9]])
     w = np.array([[2,0],[0,0]])
     from scipy.signal import correlate2d
     correlate2d(x,w,mode='valid')
     array([[ 2, 4],
            [ 8, 10]])
```

correlate2d() 함수를 이용, 2차원 배열 합성곱 계산

correlate2d(x,w,mode='same')

```
array([[ 2, 4, 6],
      [ 8, 10, 12],
       [14, 16, 18]])
```

세임 패딩 계산.

텐서플로로 합성곱 수행

지금까지 싸이파이로 합성곱을 구현

텐서플로에서도 합성곱 함수가 제공됨

이제 앞에서의 원본배열을 입력, 미끄러지는 배열을 가중치 라고 부를 것

합성곱 신경망의 입력

텐서플로의 2차원 합성곱 수행 함수는 conv2d().

이 함수는 입력으로 4차원 배열을 받음.

합성곱 신경망의 입력

위는 입력 4차원 배열의 모습.

입력을 4차원 배열로 표현하면 (2,3,3,3)

(배치, 샘플 높이, 샘플 너비, 채널)

합성곱 신경망의 가중치

가중치도 4차원.

(2 , 2 , 3 , 3)

(가중치 높이, 너비, 채널, 가중치 개수)

합성곱 수행을 위해 배열 차원 변경

```
[17] import tensorflow as tf
    x_4d = x.astype(np.float).reshape(1,3,3,1)
    w_4d = w.reshape(2,2,1,1)
```

x, w를 넘파이 reshape() 메서드로 2차원 배열에서 4차원 배열로 바꿈. 텐서플로는 실수형 입력을 기대하므로 넘파이 astype() 메서드로 입력의 자료형을 실수로 바꿔줌.

합성곱 수행

```
[19] c_out = tf.nn.conv2d(x_4d, w_4d, strides=1, padding='SAME')
[20] c_out.numpy().reshape(3,3)
    array([[ 2., 4., 6.],
         [ 8., 10., 12.],
         [14., 16., 18.]])
[19]
스트라이드 1, 패딩은 세임 패딩 적용
conv2d() 함수는 결괏값으로 Tensor 객체를 반환. 텐서플로에서는 다차원 배열을 텐서라고 부름.
Tensor 객체의 numpy() 메서드를 사용시, 텐서를 넘파이 배열로 변환 가능
[20]
배치와 컬러 차원 제거하고 (3,3)크기로 변환하여 출력
```

합성곱의 가중치

합성곱의 가중치를 필터 또는 커널이라고 부름.

이 책에서는 합성곱 필터 1개 지칭은 '커널'

필터 전체를 지칭할때는 일반 신경망과 동일하게 '가중치' 라고 지칭.

8-2

풀링 연산에 대해 알아봅시다

풀링 연산

합성곱층:

합성곱 신경망에서 합성곱이 일어나는 층

풀링층:

풀링이 일어나는 층

특성 맵(feature map):

합성곱층과 풀링층에서 만들어진 결과 입력이 합성곱층을 통과할 때 합성곱과 활성화 함수가 적용되어 특성 맵이 만들어짐. 그 다음 특성 맵이 풀링층을 통과하여 또 다른 특성 맵이 만들어짐.

풀링 연산

풀링:

특성 맵을 스캔하여 최댓값을 고르거나 평균값을 계산하는 것.

위는 최대 풀링 그림(특성 맵을 스캔하며 최댓값을 고름)

최대 풀링과 평균 풀링

풀링 영역의 크기는 보통 2x2를 지정.

일반적으로 스트라이드는 풀링의 한 모서리 크기로 지정 -(풀링 영역이 겹쳐지지 않도록)

2x2풀링은 특성 맵의 크기를 절반으로 줄임 (면적은 1/4)

=>특성 맵의 한 요소가 입력의 더 넓은 영역을 대표하는 효과를 나타냄.

최대 풀링 : 특성 맵 위를 스캔하며 최댓값을 고름.

평균 풀링 : 풀링 영역의 평균값을 계산

=>최대 풀링은 가장 큰 특징을 유지시키는 성질이 있으므로 이미지 분류작업에 잘 맞음.

(평균 풀링은 특징들을 희석시킬 가능성이 높음)

최대 풀링과 평균 풀링 수행

[23]

1~16 값이 들어간 4x4크기 배열을 만들어 1x4x4x1 크기 배열로 변형한 것.

[24]

max_pool2d()함수로 최대 풀링을 수행.
ksize 매개변수에 풀링의 크기
strides 매개변수에 스트라이드 크기
max_pool2d()함수가 반환한 텐서 객체를 numpy()메서드로
변환=> 2x2크기 2차원 배열로 변형
=> 최대 풀링 수행

추가적으로 풀링층에는 학습되는 가중치가 없고, 풀링층 통과 전후로 배치, 채널 크기 동일함.

8-3

합성곱 신경망의 구조를 알아봅시다

합성곱 신경망의 구조

이전까지 은닉층에 시그모이드 함수를 활성화 함수로 사용.

출력층에는 이진 분류시: 시그모이드 함수 사용 다중 분류시: 소프트맥스 함수 사용

ReLU함수: 주로 합성곱 층에 적용되는 활성화 함수.(합성곱 신경망의 성능을 높여줌). 0보다 작은 값은 0으로 만들고, 0보다 큰 값은 그대로 통과 시킴.

렐루 함수 구현

```
[25] def relu(x):
    return np.maximum(x,0)
```

```
[26] x=np.array([-1,2,-3,4,-5])
relu(x)
```

array([0, 2, 0, 4, 0])

r_out=tf.nn.relu(x)
r_out.numpy()

array([0, 2, 0, 4, 0])

[25]

넘파이의 맥시멈 함수를 통해 렐루 함수를 간단히 구현 가능 (두 매개변수 값 중 큰 값을 반환 하는 함수)

[26]

relu 함수의 반환값을 보면 음수는 0이 되고 양수만 그대로 반환되는 것을 확인 가능

[27]

텐서플로에서 제공하는 렐루 함수는 relu()임 렐루 함수는 Tensor 객체로 반환하므로, 출력할 때는 넘파이로 반환해줘야 함.

렐루 함수의 도함수

렐루 함수의 도함수 입력 x값이 0보다 크면 1이고 0보다 작으면 0임 x=0일때의 도함수는 없는것이 맞지만 대부분 딥러닝 패키지들은 x=0일때의 도함수를 0으로 생각해줌

합성곱 신경망의 입력 데이터

앞장의 다층 신경망과 달리 합성곱 신경망은 이미지의 2차원 형태를 그대로 입력으로 사용 (1차원 배열로 펼치지 않아 이미지 정보가 손상되지 않음)

이미지는 채널이라는 차원을 하나 더 가지고 있음

색상을 표현하기 위한 정보: RGB (빨강, 초록, 파랑의 조합)

합성곱층에서 일어나는 일

이미지의 모든 채널에서 합성곱이 한 번에 적용되어야 하므로 커널의 마지막 차원과 입력 채널의 개수가 같아야 함

4x4x3 이미지 위를 3x3x3 커널이 이동하며 합성곱을 4번 수행 => 2x2 크기 커널 생성

커널이 5개이므로 특성맵 5개가 생성됨

풀링층에서 일어나는 일

합성곱층을 통해 특성 맵이 만들어졌음

이 특성 맵에 활성화 함수로 렐루 함수를 적용, 풀링 적용.

풀링은 특성 맵의 크기를 2x2x5에서 1x1x5 크기로 줄여 줌

특성 맵을 펼쳐 완전 연결 신경망에 주입

합성곱층과 풀링층을 통과시켜 얻은 특성 맵은 일렬로 펼쳐 완전 연결 연결층에 입력으로 주입

8-4

합성곱 신경망을 만들고 훈련합니다

합성곱 신경망 구조

ConvolutionNetwork

```
def __init__(self, n_kernels=10, units=10, batch_size=32, learning_rate=0.1):
  self.n_kernels = n_kernels # 합성곱의 커널 개수
  self.kernel_size = 3 # 커널 크기
  self.optimizer = None # 옵티마이저
  self.conv_w = None # 합성곱 층의 가중치
  self.conv_b = None # 합성곱 총의 절편
  self.units = units # 은닉층의 뉴런 개수
  self.batch_size = batch_size # 배치 크기
  self.w1 = None # 은닉층의 가중치
  self.b1 = None
                      # 은닉층의 절편
  self.w2 = None
                      # 출력층의 가중치
  self.b2 = None # 출력층의 절편
  self.a1 = None # 은닉층의 활성화 출력
  self.losses = [] # 훈련 손실
  self.val losses = [] # 검증 손실
  self.lr = learning_rate # 학습률
```

새로 추가된 변수

정방향 계산

```
def forpass(self, x):
   # 3x3 합성곱 연산을 수행합니다.
   c_out = tf.nn.conv2d(x, self.conv_w, strides=1, padding='SAME') + self.conv_b
   # 렐루 활성화 함수를 적용합니다.
   r_out = tf.nn.relu(c_out)
   # 2x2 최대 풀링을 적용합니다.
   p_out = tf.nn.max_pool2d(r_out, ksize=2, strides=2, padding='VALID')
   # 첫 번째 배치 차원을 제외하고 출력을 일렬로 펼칩니다.
   f_{out} = tf.reshape(p_{out}, [x.shape[0], -1])
   z1 = tf.matmul(f_out, self.w1) + self.b1 # 첫 번째 층의 선형 식을 계산합니다
   a1 = tf.nn.relu(z1)
                                       - # 활성화 함수를 적용합니다
   z2 = tf.matmul(a1, self.w2) + self.b2 # 두 번째 총의 선형 식을 계산합니다.
   return z2
```

정방향 계산

7장

```
def forpass(self, x):
z1 = np.dot(x, self.w1) + self.b1 # 첫 번째 층의 선형 식을 계산합니다
self.a1 = self.sigmoid(z1) # 활성화 함수를 적용합니다
z2 = np.dot(self.a1, self.w2) + self.b2 # 두 번째 층의 선형 식을 계산합니다.
return z2
```

```
# 첫 번째 배치 차원을 제외하고 출력을 일렬로 펼칩니다.
f_out = tf.reshape(p_out, [x.shape[0], -1])
z1 = tf.matmul(f_out, self.w1) + self.b1 # 첫 번째 층의 선형 식을 계산합니다
a1 = tf.nn.relu(z1) # 활성화 함수를 적용합니다
z2 = tf.matmul(a1, self.w2) + self.b2 # 두 번째 층의 선형 식을 계산합니다.
return z2
```

역방향 계산

7장

```
def backprop(self, x, err):
   m = len(x) # 샘플 개수.
   # 출력층의 가중치와 절편에 대한 그래디언트를 계산합니다.
   w2_grad = np.dot(self.a1.T, err) / m
   b2_grad = np.sum(err) / m
   # 시그모이드 함수까지 그래디언트를 계산합니다.
   err_to_hidden = np.dot(err, self.w2.T) * self.a1 * (1 - self.a1)
   # 은닉층의 가중치와 절편에 대한 그래디언트를 계산합니다.
   w1_grad = np.dot(x.T, err_to_hidden) / m
   b1_grad = np.sum(err_to_hidden, axis=0) / m
   return w1_grad, b1_grad, w2_grad, b2_grad
```

Automatic Differentiation

```
x = tf.Variable(np.array([1.0, 2.0, 3.0]))
with tf.GradientTape() as tape:
    y = x ** 3 + 2 * x + 5

# 그래디언트를 계산합니다.
print(tape.gradient(y, x))

tf.Tensor([ 5. 14. 29.], shape=(3,), dtype=float64)

배열크기 데이터타입
3x1 더이터타입
```

$$y' = 3x^2 + 2$$

Training() 수정

```
def training(self, x, y):
   m = Ien(x)
                        # 샘플 개수를 저장합니다.
   with tf.GradientTape() as tape:
      z = self.forpass(x) # 정방향 계산을 수행합니다.
      # 손실을 계산합니다.
       loss = tf.nn.softmax_cross_entropy_with_logits(y, z)
       loss = tf.reduce_mean(loss)
   weights_list = [self.conv_w, self.conv_b,
                 self.w1, self.b1, self.w2, self.b2]
   # 가중치에 대한 그래디언트를 계산합니다.
   grads = tape.gradient(loss, weights_list)
   # 가중치를 업데이트합니다.
   self.optimizer.apply_gradients(zip(grads, weights_list))
```

Fit() 수정

```
def fit(self, x, y, epochs=100, x_val=None, y_val=None):
   self.init_weights(x.shape, y.shape[1]) # 은닉층과 출력층의 가중치를 초기화합니다
   self.optimizer = tf.optimizers.SGD(learning_rate=self.lr)
   # epochs만큼 반복합니다.
   for i in range(epochs):
      print('에포크', i, end=' ')
      # 제너레이터 함수에서 반환한 미니배치를 순환합니다.
      batch_losses = []
       for x_batch, y_batch in self.gen_batch(x, y):
          print('.', end='')
          self.training(x_batch, y_batch)
          # 배치 손실을 기록합니다.
          batch_losses.append(self.get_loss(x_batch, y_batch))
      print()
      # 배치 손실 평균내어 훈련 손실 값으로 저장합니다.
      self.losses.append(np.mean(batch_losses))
      # 검증 세트에 대한 손실을 계산합니다.
      self.val_losses.append(self.get_loss(x_val, y_val))
```

init_weights() 수정

```
def init_weights(self, input_shape, n_classes): #Units=10
  g = tf.initializers.glorot_uniform()
  self.conv_w = tf.Yariable(g((3, 3, 1, self.n_kernels)))
  self.conv_b = tf.Yariable(np.zeros(self.n_kernels), dtype=float)
  n_features = 14 * 14 * self.n_kernels
  self.w1 = tf.Yariable(g((n_features, self.units))) # (특성 개수, 은닉층의 크기)
  self.b1 = tf.Yariable(np.zeros(self.units), dtype=float) # 은닉층의 크기, 클래스 개수)
  self.w2 = tf.Yariable(g((self.units, n_classes))) # (은닉층의 크기, 클래스 개수)
  self.b2 = tf.Yariable(np.zeros(n_classes), dtype=float) # 클래스 개수
```

변수 초기화

경사하강법

출발점에 따라 결과가 달라질 수 있음

분산 조정 기반 초기화

Xavier Glorot Initialization

He Initailization

확률 분포를 기반으로 추출한 값으로 가중치를 초기화 하되, 가중치 별로 이 확률 분포의 분산을 동적으로 조절해주는 방법

분산을 조정할 때에는 fan in, fan out 사용

분산 조정 기반 초기화

fan in : 해당 레이어에 들어오는 input tensor의 차원 크기

fan out : 해당 레이어가 출력하는 output tensor의 차원 크기

Fully Connected Layer 1000 x 100

fan in fan out

Xavier 초기화

fan in과 fan out을 모두 고려

Vanishing Gradient를 해결하기 위해 만들어짐

Sigmoid, Tanh 활성화 함수로 사용하는 신경망에서 많이 사용

glorot unifom: unif(-limit, +limit), limit=
$$\sqrt{\frac{6}{fan\ in + fan\ out}}$$

glorot normal: normal(mean=0, stddev), stddev=
$$\sqrt{\frac{2}{fan\ in+fan\ out}}$$

He 本기화

Xaiver와 유사하지만 Neuron의 fan out을 고려 X

ReLu 활성화 함수로 사용하는 신경망에서 많이 사용

ReLu가 0 이하의 activation을 제거하기 때문에 fan in에 집중

he unifom:
$$unif(-limit, +limit), limit = \sqrt{\frac{6}{fan\ in}}$$

he normal:
$$normal(mean=0, stddev), stddev = \sqrt{\frac{2}{fan\ in}}$$

Perdict() 수정

```
def predict(self, x):
    z = self.forpass(x) # 정방향 계산을 수행합니다.
    return np.argmax(z, axis=1) # 가장 큰 값의 인덱스를 반환합니다.

def score(self, x, y):
    # 예측과 타깃 열 벡터를 비교하여 True의 비율을 반환합니다.
    return np.mean(self.predict(x) == np.argmax(y, axis=1))

def update_val_loss(self, x_val, y_val):
    z = self.forpass(x_val) # 정방향 계산을 수행합니다.
    a = self.softmax(z) # 활성화 함수를 적용합니다.
    a = np.clip(a, 1e-10, 1-1e-10) # 출력 값을 클리핑합니다.
    # 크로스 엔트로피 손실과 규제 손실을 더하여 리스트에 추가합니다.
    val_loss = np.sum(-y_val*np.log(a))
    self.val_losses.append((val_loss + self.reg_loss()) / len(y_val))
```

predict(self, x):

return np.argmax(z, axis=1)

```
def predict(self, x):
    z = self.forpass(x)  # 정방향 계산을 수행합니다.
    return np.argmax(z.numpy(), axis=1) # 가장 큰 값의 인덱스를 반환합니다.

def score(self, x, y):
    # 예측과 타깃 열 벡터를 비교하여 True의 비율을 반환합니다.
    return np.mean(self.predict(x) == np.argmax(y, axis=1))

def get_loss(self, x, y):
    z = self.forpass(x)  # 정방향 계산을 수행합니다.
    # 손실을 계산하여 저장합니다.
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y, z))
    return loss.numpy()
```

predict(self, x):

return np.argmax(z.numpy(), axis=1)

검증 손실 계산

```
def predict(self, x):
    z = self.forpass(x) # 정방향 계산을 수행합니다.
    return np.argmax(z, axis=1) # 가장 큰 값의 인덱스를 반환합니다.

def score(self, x, y):
    # 예측과 타깃 열 벡터를 비교하여 True의 비율을 반환합니다.
    return np.mean(self.predict(x) == np.argmax(y, axis=1))

def update_val_loss(self, x_val, y_val):
    z = self.forpass(x_val) # 정방향 계산을 수행합니다.
    a = self.softmax(z) # 활성화 함수를 적용합니다.
    a = np.clip(a, 1e-10, 1-1e-10) # 출력 값을 클리핑합니다.
    # 크로스 엔트로피 손실과 규제 손실을 더하여 리스트에 추가합니다.
    val_loss = np.sum(-y_val*np.log(a))
    self.val_losses.append((val_loss + self.reg_loss()) / len(y_val))
```

update_val_loss(self, x_val, y_val)

```
a = self.softmax(z)
a = np.clip(a, 1e-10, 1-1e-10)
val_loss = np.sum(-y_val*np.log(a))
```

```
def predict(self, x):
    z = self.forpass(x)  # 정방향 계산을 수행합니다.
    return np.argmax(z.numpy(), axis=1) # 가장 큰 값의 인덱스를 반환합니다.

def score(self, x, y):
    # 예측과 타깃 열 벡터를 비교하여 True의 비율을 반환합니다.
    return np.mean(self.predict(x) == np.argmax(y, axis=1))

def get_loss(self, x, y):
    z = self.forpass(x)  # 정방향 계산을 수행합니다.
    # 손실을 계산하여 저장합니다.
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y, z))
    return loss.numpy()
```

```
get_loss(self, x, y)
loss =
    tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(y, z)
    )
```

1. 데이터 세트 불러오기

2. 훈련 데이터 세트를 훈련 세트와 검증 세트로 나누기

```
from sklearn.<mark>model_selection</mark> import train_test_split
x_train, x_val, y_train, y_val = train_test_split(x_train_all, y_train_all, stratify=y_train_all,
test_size=0.2, random_state=42)
```

3. 타깃을 원-핫 인코딩으로 변환

```
y_train_encoded = tf.keras.utils.to_categorical(y_train)
y_val_encoded = tf.keras.utils.to_categorical(y_val)
```

4. 입력 데이터 준비

```
x_train = x_train.reshape(-1, 28, 28, 1)
x_val = x_val.reshape(-1, 28, 28, 1)
```

5. 입력 데이터 표준화 전처리

```
x_train = x_train / 255
x_val = x_val / 255
```

61

7. 훈련, 검증 손실 그래프

```
plt.plot(cn.losses)
plt.plot(cn.val_losses)
plt.ylabel('loss')
plt.xlabel('iteration')
plt.legend(['train_loss', 'val_loss'])
plt.show()
```

8. 검증 세트의 정확도 확인

```
cn.score(x_val, y_val_encoded)
0.877166666666666667
```


He 초기화 훈련

```
def init_weights(self, input shape, n classes):
    g = tf.initializers.he_uniform() #he_uniform.
    self.conv_w = tf.Variable(g((3, 3, 1, self.n_kernels)))
    self.conv_b = tf.Variable(np.zeros(self.n_kernels), dtype=float)
    n_features = 14 * 14 * self.n_kernels
    self.w1 = tf.Variable(g((n_features, self.units))) # (특성 개수, 은닉층의 크기)
    self.b1 = tf.Variable(np.zeros(self.units), dtype=float) # 은닉층의 크기
    self.w2 = tf.Variable(g((self.units, n_classes))) # (은닉층의 크기, 클래스 개수)
    self.b2 = tf.Variable(np.zeros(n_classes), dtype=float) # 클래스 개수
```

He 초기화 훈련

훈련, 검증 손실 그래프

```
plt.plot(cn.losses)
plt.plot(cn.val_losses)
plt.ylabel('loss')
plt.xlabel('iteration')
plt.legend(['train_loss', 'val_loss'])
plt.show()
```


정확도 확인

8-5

케라스로 합성곱 신경망을 만듭니다

케라스로 합성곱 신경망 만들기

1. 데이터 세트 불러오기

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

2. 합성곱층 쌓기

```
conv1 = tf.keras.Sequential()
conv1.add(Conv2D(10, (3, 3), activation='relu', padding='same', input_shape=(28, 28, 1)))
```

커널 개수 커널 크기

높이, 너비, 컬러채널 배치 차원을 제외한 입력의 크기

케라스로 합성곱 신경망 만들기

3. 풀링층 쌓기

```
CONV1.add(MaxPooling2D((2, 2))) Strides = 풀링 크기(기본값). Padding = 'valid'(기본값)
```

4. 완전 연결층에 주입할 수 있도록 특성 맵 펼치기

```
conv1.add(Flatten())
```

5. 완전 연결층 쌓기

```
conv1.add(Dense(100, activation='relu'))
conv1.add(Dense(10, activation='softmax'))
```

케라스로 합성곱 신경망 만들기

6. 모델 구조 알펴보기

conv1.summary()		
Model: "sequential"		
Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 28, 28, 10)	100
max_pooling2d (MaxPooling2D)	(None, 14, 14, 10)	0
flatten (Flatten)	(None, 1960)	0
dense (Dense)	(None, 100)	196100
dense_1 (Dense)	(None, 10)	1010
Total params: 197,210 Trainable params: 197,210 Non-trainable params: 0		

<u>∃</u> 71	파라이터 개수
28 x 28 x 10	3 x 3 x 1 x 10 + 10
14 x 14 x 10	14 × 14 × 10 × 100 + 100 10 × 100 + 10

1. 모델 컴파일

Adaptive Moment Estimation

손실함수의 값이 최적 값에 가까워질수록 학습율을 낮춰 손실 함수의 값이 안정적으로 수렴

2. 아담 옵티마이저 사용

•

٠

.

3. 손실, 정확도 그래프

```
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train_loss', 'val_loss'])
plt.show()
```

```
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train_accuracy', 'val_accuracy'])
plt.show()
```


4. 정확도

케라스로 He 초기화 훈련

손실, 정확도 그래프

```
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train_loss', 'val_loss'])
plt.show()
   0.4
   0.3
   0.2
   0.1
            train loss
            val loss
                                           15.0 17.5
             2.5
                   5.0
                         7.5
                               10.0
                                     12.5
        0.0
                              epoch
```


케라스로 He 초기화 훈련

정확도

loss, accuracy = conv1.evaluate(x_val, y_val_encoded, verbose=0)
print(accuracy)
0.9123333096504211

Xavier 91.23% < 91.24%

개념:

무작위로 일부 뉴런 비활성화 시켜 특정 뉴런에 과도하게 의존하여 훈련하는 것을 방지

개념:

무작위로 일부 뉴런 비활성화 시켜 특정 뉴런에 과도하게 의존하여 훈련하는 것을 방지

모델을 훈련시킬 때만 적용하는 기법 테스트, 실전 적용 X

상대적으로, 테스트와 실전의 출력값 > 훈련 출력값

테스트나 실전에서는 출력값을 드롭아웃 비율만큼 낮춰야 함

텐서플로 & 딥러닝 프레임워크

훈련 할 때 드롭아웃의 비율만큼 뉴런의 출력을 높여서 훈련

드롭아웃의 비율 = 0.25

$$\frac{1}{1 - 0.25} = 1.33 \dots$$

33% 출력 증가

1. 케라스로 만든 합성곱 신경망에 드롭아웃 적용

```
from tensorflow.keras.layers import Dropout

conv2 = tf.keras.Sequential()
conv2.add(Conv2D(10, (3, 3), activation='relu', padding='same', input_shape=(28, 28, 1)))
conv2.add(MaxPooling2D((2, 2)))
conv2.add(Flatten())
conv2.add(Dropout(0.5))
conv2.add(Dense(100, activation='relu'))
conv2.add(Dense(10, activation='softmax'))
```

2. 드롭아웃층 확인

conv2.summary()			
Model: "sequential_1"			
Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	28, 28, 10)	100
max_pooling2d_1 (MaxPooling2	(None,	14, 14, 10)	0
flatten_1 (Flatten)	(None,	1960)	0
dropout (Dropout)	(None,	1960)	0
dense_2 (Dense)	(None,	100)	196100
dense_3 (Dense)	(None,	10)	1010
Total params: 197,210 Trainable params: 197,210 Non-trainable params: 0			

훈련되는 가중치 X 텐서의 차원 유지

3. 훈련

82

4. 손실, 정확도 그래프

```
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train_loss', 'val_loss'])
plt.show()
```

```
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train_accuracy', 'val_accuracy'])
plt.show()
```


5. 정확도

드롭아웃 적용해 He 초기화 훈련

손실, 정확도 그래프

```
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train_loss', 'val_loss'])
plt.show()
   0.50
                                                   train loss
                                                    val loss
   0.45
   0.40
 0.35
<u>8</u>
   0.30
   0.25
   0.20
                                       12.5 15.0 17.5
               2.5
                     5.0
                            7.5
                                 10.0
         0.0
                                epoch
```


드롭아웃 적용해 He 초기화 훈련

정확도

- Reference -

Do it!딥러닝 입문 8장 - Google Slides

합성곱 신경망(Convolution Neural Network) - 딥 러닝을 이용한 자연어 처리 입문 (wikidocs.net))