$N^{\underline{o}}$ de ordem:	

Mestrado Integrado em Engenharia Informática e Computação Arquitetura e Organização de Computadores Teste 1

1º ano 2015-11-17 Duração 1:45 Sem consulta

Atenção: Este teste tem 13 questões em 5 páginas, num total de 200 pontos.

Parte I — Questões de Escolha Múltipla

Cada questão tem uma resposta certa. Respostas erradas não descontam.

As respostas às questões de escolha múltipla devem ser assinaladas com x na grelha seguinte.

Apenas as respostas indicadas na grelha são consideradas para efeitos de avaliação.

					Que	stão				
Opção	1	2	3	4	5	6	7	8	9	10
A		×						×		
В	×			×			×			×
С			×			×				
D					×				×	

Pontos: / 100

- [10] 1. Represente o número decimal -129 em complemento para 2 com 8 bits.
 - A. 10000001₂ B. Não é possível representar
- C. 11111111₂ D. 10000000₂
- [10] 2. Considere os números $X = 1111001_2$ e $Y = 0100001_2$ com 7 bits. Assumindo que os números estão em complemento para 2, calcule X + Y.
 - B. 0011001₂ C. 10011101₂ D. 10011010₂ A. 0011010₂
- [10] 3. Considere os números $W = 1D_H$ e $Z = 1A_H$. O valor de W Z em binário é:
 - A. 1₂ B. 111₂ C. 11_2 D. 101₂
- [10] 4. Considere a representação em complemento para dois com 8 bits. O menor número que pode ser somado a 00101100_2 sem causar overflow é:
 - A. 11010100₂ B. **10000000₂** C. 10101100₂ D. 11111111₂
- [10] 5. Considere a figura seguinte.

O circuito realiza a função:

A.
$$\overline{A \cdot B} + \overline{A \cdot B}$$
 B. $\overline{A \cdot B}$ C. $(A+B) \cdot \overline{(A+B)}$ D. $A \oplus B$

- [10] 6. A função lógica $F(A,B,C)=A\cdot B+B\cdot C+\overline{A}\cdot\overline{C}$ é equivalente a:
 - A. $H(A, B, C) = (\overline{A} + \overline{B}) \cdot (\overline{B} + \overline{C}) \cdot (A + C)$
 - B. $M(A, B, C) = (A + B + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + C)$
 - C. $G(A, B, C) = (A + B + \overline{C}) \cdot (\overline{A} + B)$
 - D. $P(A, B, C) = \overline{\overline{A} \cdot \overline{B} + \overline{B} \cdot \overline{C} + A \cdot C}$
- [10] 7. Um parque de estacionamento tem 350 lugares. O sistema de hardware que controla as entradas guarda o número de lugares ocupados num registo com N bits. Qual é o menor valor possível de N?
 - A. 8 **B. 9** C. 11 D. 10
- [10] 8. A primeira posição de uma memória de 1 KiB (8 bits por posição) tem endereço 0x0C00. O endereço da última posição é:
 - A. Oxofff B. Oxfcoo C. Oxffff D. Oxoffe
- [10] 9. Considere o seguinte circuito em que inicialmente todos os flip-flops estão a 0.

Qual das sequências apresentada à entrada X em períodos sucessivos de CLK faz com que a saída Z fique exatamente duas vezes a 1?

- A. 11111 B. 01101 C. 01010 **D. 10101**
- [10] 10. Considere o seguinte circuito e a forma de onda gerada.

Para t = 0, $Q_1Q_0 = 00$. Quais são os valores das entradas $A_3A_2A_1A_0$?

A. 1100 **B. 0110** C. 0101 D. 0011

(Continua)

$N^{\underline{o}}$ de ordem:	

Arquitetura	٩	Organização	dе	Computad	lore
Aluullelula	$\overline{}$	Organizacao	uc	Combutat	יטו כ

	2015/16	

Nome: ______ $N^{\underline{o}}$ de estudante: _____

Parte II — Questões de Resposta Aberta

Atenção: Responder diretamente no enunciado. Justificar todas as respostas.

11. Dois números A e B estão representados no formato IEEE 754 (precisão simples). Os seus valores expressos em hexadecimal são:

A: C12C0000_H B: 41200000_H

[10] (a) Indique, justificando, o valor decimal do número A.

Sinal: 1 (o numero é negativo)

Expoente: 130. Expoente real: 130 + 127 = 3

 $1.01011 \times 2^3 = 1010.11$

Valor decimal: $-(2^3 + 2^1 + 2^{-1} + 2^{-2}) = -10,75$

[20] (b) Realize a operação A - B (sem conversão para decimal), indicando todos os passos.

Sinal de B: 0 (Positivo)

Expoente de B: 130. Expoente real: 130 - 127 = 3

- 1 Sinal: Estamos a subtrair um numero positivo a um numero negativo, portanto o sinal do resultado será negativo, ou seja 1.
- 2 Diferença de expoentes: E_A $E_B=3$ 3=0 (não é necessário alinhar as mantissas). Uma vez que o expoentes são iguais, o expoente a usar para o resultado é 3.
- 3 Efetuar o calculo das mantissas (Adição): $M_R = M_A + M_B = 1.01011 + 1.01000 =$

 $1.01011 + 1.01000 \\ 10.10011$

4 - Normalização: $M_R = 1.010011$ e incrementar o expoente do resultado em uma unidade logo $E_R = 4$

O resultado será então:

Sinal: 1

Expoente: $4 + 127 = 131 = 10000011_2$

Mantissa: 1.010011

 $\begin{array}{c} 1\ 10000011\ 010011000000000000000000\\ C1A60000_{H} \end{array}$

12. Considere o circuito lógico representado na figura, em que os blocos F e G representam circuitos combinatórios de três entradas A, B e C. O bloco F realiza a função $F(A, B, C) = A \cdot B + B \cdot \overline{C} + A \cdot C$.

[10] (a) Complete a tabela de verdade da função F(A, B, C).

A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- 1. $A \cdot B = 1$ implica A = 1 e B = 1; logo, 1 nas linhas 110_2 e 111_2 .
- 2. $B \cdot \overline{C}$ implica B = 1 e C = 0; logo, 1 nas linhas 010_2 e 110_2 .
- 3. $A \cdot C$ implica A = 1 e C = 1; logo, 1 nas linhas 101_2 e 111_2 .

As restantes linhas da tabela de verdade têm 0.

[10] (b) Suponha que se tem sempre H(A, B, C) = 0. O que se pode dizer sobre G(A, B, C)?

A saída da porta XOR de 2 entradas é 0 se e só se os valores das duas entradas forem iguais. Os dois blocos recebem as mesmas entradas. Logo, F(A,B,C) e G(A,B,C) são sempre iguais: os dois blocos realizam a mesma função lógica.

- (c) Suponha agora que H(A,B,C)=0 exceto para os valores de entrada A=B=C=0.
- [5] i. Determinar o valor de G(0,0,0).

Como H(0,0,0)=1 tem-se que $F(0,0,0)\neq G(0,0,0)$ (definição da função XOR). Como F(0,0,0)=0, resulta G(0,0,0)=1 .

[10] ii. Determinar a expressão simplificada (soma de produtos) da função G(A, B, C).

Para os valores das entradas $(A, B, C) \neq (0, 0, 0)$, $F \in G$ coincidem. Neste caso, G tem mais um 1 que F na sua tabela de verdade (na posição 000_2).

Usando a tabela de verdade alterada:

 $G(A,B,C) = A \cdot B + \overline{A} \cdot \overline{C} + A \cdot \overline{B} \cdot C = \overline{A} \cdot \overline{C} + A \cdot (B + \overline{B} \cdot C) = \overline{A} \cdot \overline{C} + A \cdot (B + C) = \overline{A} \cdot \overline{C} + A \cdot C + A \cdot B$ Uma simplificação alternativa levaria a $G(A,B,C) = \overline{A} \cdot \overline{C} + A \cdot C + B \cdot \overline{C}$ 13. A figura apresenta um sistema de memória composto por dois módulos de memória RAM. RAM1 usa descodificação total de endereços.

[10] (a) Calcule a capacidade de armazenamento de RAM1.

RAM1 usa descodificação total, pelo que os 18 bits não usados pelo circuito de seleção formam os endereços desta memória (A[17:0]).

Capacidade = Nº posições × Nº bits/posição = 2^{18} × 8 = 2^8 × 2^{10} × 8 = 2^5 6 KiB

[10] (b) Determine a gama de endereços a que as memórias respondem.

RAM1: CS = 1 se $A_{19} = 0$ e $A_{18} = 0$. Logo, os endereços de RAM1 têm o formato 00xx xxxx xxxx xxxx, resultando a gama de endereços de $00000_{\rm H}$ a $3{\rm FFFF}_{\rm H}$.

RAM2: CS = 1 se A_{19} = 1 e A_{17} = 0. Logo, os endereços de RAM2 têm o formato 1?0? xxxx xxxx xxxx xxxx, em que ? representa os bits (A_{18} e A_{16}) não utilizados por RAM2. Desta descodificação parcial resultam 4 endereços para cada posição da memória, correspondentes a $A_{18}A_{16}$ igual a: 00, 01, 10 e 11.

As gamas de endereços a que RAM2 responde são: $80000_{\rm H}$ a $8FFFF_{\rm H},~90000_{\rm H}$ a $9FFFF_{\rm H},~C0000_{\rm H}$ a $CFFFF_{\rm H}$ e $D0000_{\rm H}$ a $DFFFF_{\rm H}$.

- (c) Assuma que se quer acrescentar um novo módulo de memória ao sistema.
 - i. Determine a capacidade máxima que poderá ter e indique, justificando, o tipo de descodificação de endereços a usar.

Dos resultados anteriores obtém-se o seguinte mapa de memória:

Gama (hex)	Dispositivo	Dimensão (KiB)
00000 - 3FFFF	RAM1	256
40000 - 7FFFF		256
80000 - 9FFFF	RAM2	64+64
A0000 - BFFFF		128
COOOO - DFFFF	RAM2	64+64
E0000 - FFFFF		128

Das três gamas de endereços não ocupadas, a de maior dimensão é a de 256 KiB. Portanto, a capacidade máxima que um novo módulo de memória poderá ter é de 256 KiB, implicando que cada posição só possa ser acedida por um único endereço. Logo, tal memória deverá usar descodificação total.

[5] ii. Indique, justificando, a expressão lógica do circuito que seleciona esta memória.

A gama de endereçamento desta memória é 40000_H a 7FFFF_H. Uma vez que a capacidade é de 256 KiB, serão usados 18 bits para endereços e 2 para o circuito de seleção. Atendendo a que o formato dos endereços é 01xx xx(...) resulta $CS = \overline{A_{19}} \cdot A_{18}$.

[10]