Ключевые операции ЦОС

Перцев Дмитрий Юрьевич доцент кафедры ЭВМ БГУИР

Ключевые операции ЦОС

- прохождение сигнала через цифровой узел:
 - свертка:
 - линейная
 - циклическая
- на сколько один процесс похож на другой:
 - автокорреляция
 - взаимная корреляция
- импульсная характеристика
- цифровая фильтрация
- дискретные преобразования
 - преобразование Фурье
 - вейвлет-преобразования
- модуляция

Линейная (апериодическая) свертка (convolution)

Пусть имеется два дискретных сигнала:

- a(n), n = 0, ..., N-1
- b(n), n = 0, ..., M-1

где N и M - длины сигналов a(n) и b(n) соответственно

Линейной сверткой сигналов a(n) и b(n) называется дискретный сигнал вида:

$$s(n) = a \otimes b = \sum_{m=0}^{n} a(m) \cdot b(n-m), n = \overline{0..N + M - 2}.$$

Сигналы равны нулю вне заданных своих диапазонов: a(n) = 0 при n < 0 и n > N, b(n) = 0 при n < 0 и n > M

Свойства свертки

- Коммутативность
 - $a^{\Theta}b = b^{\Theta}a$
- Дистрибутивность
 - $a^{\Theta}(b+c) = a * b + a * c$
- Ассоциативность
 - $a * (b \otimes c) = (a \otimes b) * c = (a * c) * b$

Линейная свертка

- Дополняем нулями слева первый сигнал до длины N+M-1.
- Инвертируем во времени второй сигнал.
- Дополняем нулями справа второй сигнал до длины N+M-1.
- В цикле от о до N+M-2 сдвигаем второй сигнал вправо (или первый сигнал влево)
- Вычисляем на каждом шаге цикла произведения элементов и подсчитываем сумму произведений

Линейная свертка

Графическое представление линейной свертки

Отсчеты сигнала b(n) сдвигаются относительно отсчетов последовательности a(n) все возможные перекрывающиеся отсчеты почленно перемножаются и складываются.

Линейная свертка

пример вычисления линейной свертки двух сигналов a(n) = [2, 1, 3, -1] длиной 4 отсчета и b(n) = [-1, 1, 2] длиной 3 отсчета.

	а	(m)	2	1	3	-1				
b(0-m)	2	1	-1	$s(0)=2\cdot(-1)=-2$						
b(1-m) 2 1 -1 $s(1)=2-1=1$										
	2	1	7	$-1 s(2) = 2 \cdot 2 + 1 - 3 = 2$						
		b(3-	-m)	2	1	-1	s (3	3)=2	2+3+1=6	
b(4-n)					2	1	-1	s (4	$(1) = 2 \cdot 3 - 1 = 5$	
				b(5-	- m)	2	1	-1	s(5) = -2	

Свертка треугольного импульса

Циклическая свертка

В случае циклической свертки предполагается, что дискретные сигналы a(n) и b(n) — периодические с одинаковым периодом N отсчетов. Тогда круговой сверткой сигналов a(n) и b(n) называется сигнал вида:

$$s(n) = \sum_{m=0}^{N} a(m) \cdot b(n-m), n = \overline{0..N-1}.$$

Результат циклической свертки также имеет длину N отсчетов.

Циклическая свертка

Рассмотрим циклическую свертку на примере двух сигналов a(n) = [2, 1, 3, -1] и b(n) = [-1, 3, 2, 1].

Красной линией отмечены границы периодов повторения сигнала b(n-m). Заметим, что в силу периодичности сигналов b(-m) = b(N-m).

Циклическая свертка

Приведем пример вычисления линейной свертки через циклическую для a(n) = [2, 1, 3, -1] длиной 4 отсчета и b(n) = [-1, 1, 2] длиной 3 отсчета (этот пример был рассмотрен выше).

Дополним нулями a(n) = [2, 1, 3, -1, 0, 0] и b(n) = [-1, 1, 2, 0, 0, 0], так чтобы в каждой последовательности было по 6 отсчетов.

	-1	1	2	0	0	0	отразить	0	0	0	2	1	Ŀ
(m)	2	1	3	-1	0	0							

a(m)	2	1	თ	-1	0	0	
b(0-m)	-1	0	0	0	2	1	s(0) = -2
b(1-m)	1	-1	0	0	0	2	s(1)=1
b(2-m)	2	1	-1	0	0	0	s(2)=2
b(3-m)	0	2	1	-1	0	0	s(3)=6
b(4-m)	0	0	2	1	-1	0	s(4) = 5
b(5-m)	0	0	0	2	1	-1	s(5) = -2

Корреляция (correlation)

- - это мера схожести двух сигналов
- является методом анализа сигналов

- используется для оценки схожести 2 сигналов
- может быть выражена как косинус угла между векторами

Корреляция

Приведем один из вариантов использования метода. Допустим, что имеется сигнал s(t), в котором может быть (а может и не быть) некоторая последовательность x(t) конечной длины T, временное положение которой нас интересует. Для поиска этой последовательности в скользящем по сигналу s(t) временном окне длиной T вычисляются скалярные произведения сигналов s(t) и s(t). Тем самым мы "прикладываем" искомый сигнал s(t) к сигналу s(t), скользя по его аргументу, и по величине скалярного произведения оцениваем степень сходства сигналов в точках сравнения.

Смысл этой операции в том, чтобы найти наиболее вероятные периоды повторения формы исходного сигнала.

Корреляция (correlation)

$$C_{xy}(au) \equiv \int_{-\infty}^{\infty} x(t)y(t- au)dt$$

$$C_{xy}(m) \equiv \sum_{n=-\infty}^{\infty} x_n y_{n-m}$$

m, t – запаздывание (временной сдвиг)

Взаимно-корреляционная функция (cross-correlation function, CCF)

Интервал изменения значений корреляционных коэффициентов при сдвигах п может изменяться от –1 (полная обратная корреляция) до 1 (полное сходство или стопроцентная корреляция).

Пример определения сдвига между двумя детерминированными сигналами, представленными радиоимпульсами, по максимуму ФВК приведен на рисунке. По максимуму ФВК может определяться и сдвиг между сигналами, достаточно различными по форме.

Автокорреляционная функция (correlation function, CF)

подразумевает существование только одного сигнала и дает информацию о структуре сигнала и его поведении во времени

В качестве примера приведены два сигнала – прямоугольный импульс и радиоимпульс одинаковой длительности Т. Максимумы АКФ совпадают, что говорит о равной энергии сигналов.

Автокорреляция

- физический смысл АКФ энергия сигнала
- свойства:
 - симметричная и четная функция
 - имеет максимум в нуле (равна энергии сигнала)
 - АКФ периодической последовательности периодическая функция
 - АКФ суммы двух некоррелированных сигналов сумма АКФ этих сигналов
 - АКФ бесконечного во времени белого шума имеет пик в нулевом значении и нули во всех остальных

Корреляция

Корреляции

Исходный сигнал с шумами:

Автокорреляционная функция исходного сигнала:

АКФ прямоугольного импульса

Операции свертка и корреляция

Свертка (convolution)

$$y[n] = x[n]*h[n] = \sum_{-\infty}^{+\infty} x[n-k] \cdot h[k]$$

где h[n] – ядро свертки (kernel) или импульсная характеристика линейной системы.

Корреляция (correlation)

$$y[n] = x[n] * g[n] = \sum_{-\infty}^{+\infty} x[n+k] \cdot g[k]$$

где g[k] – искомый сигнал.

Эта формула совпадает с формулой свертки, если положить ядро свертки h[k]=g[-k]. Roppеляцию можно вычислять как свертку, положив в качестве ядра свертки искомый сигнал, развернутый относительно нулевой точки.

Импульсная характеристика

Мы рассматриваем дискретные линейные системы, т.е. системы, работающие с дискретными сигналами.

На вход такой системы подается последовательность чисел x[n] (дискретный сигнал), и на выходе получается последовательность чисел y[n].

По оси абсцисс отложены дискретные моменты времени. По оси ординат – амплитуды сигнала в эти моменты времени.

Импульсная характеристика. Реакция системы на цифровую дельта-функцию

Цифровая дельта-функция (функция Кронекера) – это сигнал вида

$$\delta[n] = \begin{cases} 1, n = 0 \\ 0, n \neq 0 \end{cases}$$

т.е. короткий единичный импульс

Цифровой единичный импульс

Импульсная характеристика. Реакция системы на цифровую дельта-функцию

Любой дискретный сигнал можно разложить сумму функций, сдвинутых во времени. Например, бесконечный сигнал x[n] можно представить в виде

$$x[n] = \sum_{i=-\infty}^{+\infty} x[i] \cdot \delta[n-1].$$

Здесь дельта-функция — «базисные функции», а x[i] — это их коэффициенты в линейной комбинации.

Представление сигнала в виде линейной комбинации сдвинутых во времени дельта-функций.

Импульсная характеристика. Реакция системы на цифровую дельта-функцию

Исследуем отклик (выходной сигнал) линейной системы на цифровую дельта-функцию. Для этого подадим дельта-функцию в систему и измерим выходной сигнал.

Пусть выходной сигнал равен h[n], т. е. $\delta[n] \to h[n]$.

Импульсная характеристика.

Реакция системы на цифровую дельта-функцию

Зная h[n] (отклик системы на $_{\bullet}$ льта-функцию), можно вычислить отклик системы на любой входной сигнал.

Действительно, так как любой входной сигнал является линейной комбинацией сдвинутых во времени дельта-функций, то выходной сигнал будет той же самой линейной комбинацией сдвинутых во времени функций h[n].

Результирующая формула для вычисления выходного сигнала y[n] по входному сигналу x[n] такова:

$$y[n] = \sum_{k=-\infty}^{+\infty} x[n-k] \cdot h[k]$$

Сигнал h[n] называется **импульсной** характеристикой (impulse response) системы, т.к. он является откликом системы на единичный импульс (дельта-функцию).

Цифровая фильтрация

Линейная цифровая фильтрация определяется как:

$$y(n) = \sum_{k=0}^{N-1} h(k)x(n-k),$$

где h(k), k=0,1,...,N-1 – коэффициенты фильтра, x(k), y(k) – вход и выход фильтра.

Фильтрация – это свертка сигнала с импульсной характеристикой фильтра во временных координатах.

Цифровая фильтрация. Блок-схема фильтра

В таком виде данный фильтра известен как трансверсальный фильтр. z^{-1} - задержка на один интервал дискретизации.

Цифровая фильтрация. Пример

Цифровая низкочастотная фильтрация биомедицинского сигнала с целью устранения шума.

Дискретные преобразования

Дискретные преобразования позволяют описывать сигналы с дискретным временем в частотных координатах или переходить от описания во временной области к описанию в частотной области.

Для получения спектра сигнал раскладывается на частотные составляющие с помощью дискретного преобразования. Это часто используется при реализации операций фильтрации, свертки и корреляции.

Существует много дискретных преобразований, из которых самым распространенным является дискретное преобразование Фурье (ДПФ), которое определяется следующим образом:

$$X(n) = \sum_{k=0}^{N-1} x(k) W^{kn}$$
, где $W = \exp(-2\pi i/N)$

Дискретные преобразования. Пример

Описание цифрового фильтра во временных и частотных координатах (импульсная характеристика и спектр фильтра). Спектр фильтра был получен с помощью $\Delta \Pi \Phi$.

- это процесс изменения одного или нескольких параметров сигнала
- модулируемый сигнал называется "несущим" (на частоте этого сигнала передается модулируемое сообщение, как правило, высокочастотный)
- информационный сигнал называется модулирующим (как правило, низкочастотный).
- в процессе модуляции несущего сигнала спектр модулирующего сигнала переносится в область несущей частоты
- гармонические сигналы можно модулировать во времени по амплитуде, частоте и фазе
- обычно сигналы модулируются таким образом, чтобы их частотных характеристики совпадали с характеристиками средств передачи и/или хранения, для минимизации искажения сигнала, эффективного использования доступной ширины полосы и придания сигналам некоторых желаемых свойств
- область применения: связь и цифровые аудиосистемы

Модуляция - это процесс преобразования одного или нескольких информационных параметров несущего сигнала в соответствии с мгновенными значениями информационного сигнала.

В результате модуляции сигналы переносятся в область более высоких частот.

Использование модуляции позволяет:

- согласовать параметры сигнала с параметрами линии;
- повысить помехоустойчивость сигналов;
- увеличить дальность передачи сигналов;
- организовать многоканальные системы передачи.

При модуляции на вход модулятора подаются сигналы:

- u(t) модулирующий, данный сигнал является информационным и низкочастотным (его частоту обозначают W или F);
- S(t) модулируемый (несущий), данный сигнал является неинформационным и высокочастотным (его частота обозначается w_o или f_o);
- Sм(t) модулированный сигнал, данный сигнал является информационным и высокочастотным.

В качестве несущего сигнала может использоваться:

- гармоническое колебание, при этом модуляция называется аналоговой или непрерывной;
- периодическая последовательность импульсов, при этом модуляция называется импульсной;
- постоянный ток, при этом модуляция называется шумоподобной.
- 1. Виды аналоговой модуляции:
- амплитудная модуляция (АМ), происходит изменение амплитуды несущего колебания;
- частотная модуляция (ЧМ), происходит изменение частоты несущего колебания;
- фазовая модуляция (ФМ), происходит изменение фазы несущего колебания.
- 2. Виды импульсной модуляции:
- *амплитудно-импульсная модуляция (АИМ)*, происходит изменение амплитуды импульсов несущего сигнала;
- частотно-импульсная модуляция (ЧИМ), происходит изменение частоты следования импульсов несущего сигнала;
- Фазо-импульсная модуляция (ФИМ), происходит изменение фазы импульсов несущего сигнала;
- Широтно-импульсная модуляция (ШИМ), происходит изменение длительности импульсов несущего сигнала.