Data Analyst Perspective

STATISTICS

DESCRIPTIVE STATISTICS

Normal Distribution

Data Scientist/Data Analysts

Data doesn't follow a
Normal
Distribution...

Data follows a Normal Distribution...

Agenda

- INTRODUCTION TO NORMAL DISTRIBUTION
- EMPIRICAL RULE
- APPLICATIONS OF NORMAL DISTRIBUTION
- METHODS TO CHECK NORMALITY

In this post, I explained what a data a distribution and skewness, feel free to have a quick revision for **better understanding of Normal Distribution.**

- 0
- Normal Distribution is a bell-shaped curve that is symmetric about the mean.
- In a normal distribution, the mean, median, and mode are all equal and located at the center of the distribution.
- It's a fundamental concept in statistics because many natural phenomena follow this pattern.
- Normal distributions are also called Gaussian distributions or bell curves because of their shape.
- Many **Machine Learning Algorithms** works on assumption, that the data is normally distributed, that's why it is important.

BELL CURVE

The **empirical rule,** or the **68-95-99.7 rule**, tells you where most of your values lie in a normal distribution:

- Around 68% of values are within 1 standard deviation from the mean.
- Around 95% of values are within 2 standard deviations from the mean.
- Around 99.7% of values are within 3 standard deviations from the mean.
- SAT scores from students in a new test preparation course. The data follows a normal distribution with a mean score (M) of 1150 and a standard deviation (SD) of 150.

Following the empirical rule:

- Around 68% of scores are between 1,000 and 1,300, 1 standard deviation above and below the mean.
- Around 95% of scores are between 850 and 1,450, 2 standard deviations above and below the mean.
- Around 99.7% of scores are between 700 and 1,600, 3 standard deviations above and below the mean.

Statistical Inference:

- **Hypothesis Testing:** The normal distribution is used in tests such as the t-test, z-test, and ANOVA to determine if observed data significantly deviates from what is expected under a **null hypothesis**.
- **Confidence Intervals**: It helps in estimating the range within which a population parameter is likely to fall with a certain **level of confidence**.

Machine Learning:

- Feature Scaling: In some algorithms (like Principal Component Analysis (PCA) or Gaussian Naive Bayes), normalizing features to have a normal distribution can improve performance.
- Data Modeling: Algorithms that assume normally distributed errors, such as linear regression, can provide more accurate predictions if the data fits this assumption.
- Data Transformation: If data doesn't initially follow a normal distribution, data scientists can often transform it (e.g., using logarithms) to approximate normality, at lowing them to apply powerful statistical tools more effectively.

METHODS TO CHECK NORMALITY

Visual Inspection of Plots/Charts:

Histogram/KDE Plot : Look for a symmetric, bell-shaped curve.

Q-Q Plot (Quantile-Quantile Plot): Deviations from the line indicate deviations from normality.

Box Plot: A symmetric box plot with median close to the center of the box suggests normality.

Statistical Tests:

Shapiro-Wilk Test:

- Description: Tests the null hypothesis that the data is normally distributed.
- Interpretation: A p-value less than the chosen significance level (e.g., 0.05) indicates that the data significantly deviates from normality.

Kolmogorov-Smirnov Test:

- Description: Compares the sample distribution with a normal distribution.
- Interpretation: A small p-value indicates that the sample distribution differs significantly from a normal distribution.

Anderson-Darling Test:

- Description: Tests if a sample comes from a specific distribution, including the normal distribution.
- Interpretation: A p-value below the threshold suggests a deviation from normality.

Jarque-Bera Test:

- Description: Tests the skewness and kurtosis of the data to assess normality.
- Interpretation: A large test statistic or small p-value indicates that the data may not be normally distributed.

p-value, hypothesis testing ,confidence interval, anderson, shapiro what are these man ????

- Things are getting complicated now ??? I Understand these things are complicated .
- Utilize our 2 buddies, ChatGPT and Google.
- In future I'll cover all the concepts ,stay tuned.

THANK YOU

Share your thoughts and feedback!!

