Attention Is All You Need (Vaswani et al., 2017)

Presenters: Vikrant Yadav, Dhruba Pujary, Tarun Krishna

University of Amsterdam

Motivation

- *RNNs/LSTMs model dependencies along a (long) recurrent path.
- *Even if the gradient play nice this does not necessarily mean that they model interactions correctly \rightarrow **credit assignment** problem.
- * \mathbf{h}_{t+1} really depend upon \mathbf{x}_0 or \mathbf{x}_1 or both or neither?
- * In general attention mechanism was motivated by the difficulty of storing large amounts of information into a single, fixed size vector.
- * Any long-distance dependency can suffer from having to squeeze large amounts of information into fixed sized representations.

Self-Attention

- Self-attention computes attention between elements of the same sequence.
- * can replace RNNs as sequence model
- * shortens paths of credit assignment
- * at the core of Google's Transformer NMT system.
- **Self-attention** is bidirectional (like a Bi-RNN), but no recurrent connections between time steps. It can be visualized as shown below:

Figure 1: An schematic for self-attention.

Model Architecture

The Transformer follows an **Encoder-Decoder** architecture using stacked self-attention and point-wise, fully connected layers on both the ends with slight changes in decoder Figure 2.

Encoder and Decoder Stacks

-Encoder

- A stack of N=6 identical layers, each layer has two sub-layers
- * a multi-head self-attention mechanism
- * a simple, position-wise fully connected feed-forward network
- a residual connection around two sub-layers, followed by layer normalization

Decoder

- A stack of N=6 identical layers, each layer has three sub-layers
- * a multi-head self-attention mechanism
- * a multi-head attention over the output of the encoder stack
- * a simple, position-wise fully connected feed-forward network
- a residual connection around two sub-layers, followed by layer normalization
- modified self-attention sub-layer in the decoder stack to prevent positions from attending to subsequent positions using masking.

Figure 2: The Transformer - model architecture.

Building Blocks of Transformer

Figure 3: Scaled Dot-Product Attention (left), Multi-Head Attention (right) consists of several attention layers running in parallel.

- -Scaled Dot-Product Attention(Q, K, V) = softmax $(\frac{QK^T}{\sqrt{d_K}})V$,Q, K, V are Query, Key and Value matrix respectively, d_k dimension for keys Figure 3.
- Multi-Head Attention allows the model to jointly attend to information from different representation subspaces at different positions.

MultiHead $(Q, K, V) = Concat(head_1, ..., head_h)W^O$ where $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

- Position-wise Feed-Forward Networks: Each of the layers in the encoder and decoder contains a fully connected feed-forward network, which is applied to each position separately and identically as:

$$FFN(x) = ReLU(xW_1 + b_1)W_2 + b_2$$

- Positional Encoding was introduced to inject some information about the relative or absolute position of the tokens in the sequence. Where *pos* is the position and *i* is the dimension.

$$PE(pos, 2i) = \sin(pos/10000^{2i}/d_{model})$$

 $PE(pos, 2i + 1) = \cos(pos/10000^{2i}/d_{model})$

Results

The animal didn't cross the street because it was too tired

The animal didn't cross the street because it was too wide

Figure 4: The encoder self-attention distribution for the word it while doing translation from English for 2 different context sentences

Figure 5: Comparison of Transformer with previous state of art methods

Transformer's Mutation

- *core idea of *Transfomer* is to find correlation between 2 features which can be distant apart in same domain or be in different domains. For example (speech and text) or (image and text)
- * Different mutated version's of Transformer can be created to find also correlation between cross domain features
- * Investigate local, restricted attention mechanisms to efficiently handle large inputs and outputs