### Class core values

- 1. Be **respect**ful to yourself and others
- 2. Be **confident** and believe in yourself
- 3. Always do your **best**
- 4. Be **cooperative**
- 5. Be **creative**
- 6. Have **fun**
- 7. Be **patient** with yourself while you learn
- 8. Don't be shy to **ask "stupid" questions**





Week 5, Lecture 1 Enzymes

### Learning Objectives

- Identify different properties of enzymes that can be improved
- 2. Evaluate proper choice of scaffold for enzyme evolution
- Identify the right assays for measuring and evolving enzymes
- 4. Critically evaluate literature on directed evolution



## Enzymes catalyze the transformation of substrates to products





### Schematic view of directed evolution pipeline





One of the most important steps is to pick the right scaffold



Stability vs Activity

Selectivity vs Promiscuity

The choice of diversification method heavily

depends on the goal





Random mutagenesis

ISM

Shuffling



## One of the goals of enzyme engineering is to increase its activity





### Enzymatic activity can be described by its rate





### Enzymatic activity can be described by its rate



#### Rate

How fast the enzyme turns  $S \rightarrow P$ Increase by increase in T Depends on [S]

### Turnover number can describe the activity



#### Rate

#### **Turnover number**

 $\# S \rightarrow P$  / time when enzyme is fully saturated with substrate



### Enzyme's catalytic cycle has a half-life

Rate Turnover number Half-life





# Altering enzyme's feedback loop is another area of interest in enzyme engineering





## High concentration of product can have negative feedback loop





# High substrate concentration can inhibit enzyme activity





### Known enzymes can be engineered for new function





# Easiest modification is to change substrate specificity





### The features of generated product can be altered





# Sometimes, non-catalytic features need to improve





Sometimes, non-catalytic features need to

improve





Sometimes, non-catalytic features need to

improve





Sometimes, non-catalytic features need to

improve





One of the key challenges in evolving enzymes is

the selection





# Enzyme-based life-death selection is a high throughput way to test enzyme activity

- 1. Antibiotic resistance
- 2

Requirements:



#### Requirements:



#### Requirements:





#### Requirements:



#### Requirements:

Generate signal
Signal is contained within the cell
Meaningful difference

#### Library generation:

Error prone PCR Site directed mutagenesis



#### Requirements:





#### Requirements:

Generate signal
Signal is contained within the cell
Meaningful difference

### Library generation:

4x forward evolution (shuffling)





# Colors can be helpful as a medium throughput screening method

#### Requirements:

Generate signal

No need for containment

Meaningful difference = easy to pick



## Colors can be helpful as a medium throughput screening method

#### Requirements:



# Colors can be helpful as a medium throughput screening method

#### Requirements:

Generate signal
Signal is contained within the cell
Meaningful difference = easy to pick

#### Library generation:

Error prone PCR (5-7 bp per gene) DNA shuffling



Running low throughput assays is sometimes the only way to screen

#### Library generation:

11 rounds of shuffling from 3 starting proteins

#### Screening:

Growth and measurement of product formation in media



Creating completely new reactivities is a more challenging task



## Creating completely new reactivities is a more challenging task – the case of C-X bond

## Creating completely new reactivities is a more challenging task – the case of C-X bond



C-X bond: In search of a proper scaffold



C-X bond: In search of a proper scaffold → Heme proteins offer reactivity and versatility





### C-X bond: Just a little bit of initial activity ...





Various **P450s** and **myoglobin** also catalyzed the formation of carbon–silicon bonds, but the reactions were not enantioselective (see Supplementary Materials).



### C-X bond: Evolving the scaffold

#### Turnover



#### enantioselectivity





### C-X bond: Evolving the scaffold





### New technologies open up new avenues for evolving enzymes



(h) NF01-405/488/561/635

(k) persicope w/ broadband mirror

(i) ND 0/0.5/1

(i) broadband mirror

- (a) Di02-R561
- (b) Di02-R488
- (c) Di01-R405/488/561/635
- (d) FF665-Di02
- (e) FF01-609/57-25
- (f) FF02-520/28-25







### For the next lecture:

- 1. Be ready for our panel with lots of questions
- 2. Have your proposal in mind. We'll be walking through specific aims.



## Next lecture: Protein Engineering in Action



Per Jr. Greisen

Director for Computational Drug
Discovery

Novo Nordisk



**Manasi Pethe** 

Protein Engineering Data Scientist

Bayer Crop Science



**Alex Carlin** 

Protein Engineer
Ginkgo Bioworks



**Amandeep Sangha** 

Research Scientist

Arzeda

