Data Clustering

- Two different criteria
 - Compactness, e.g., k-means, mixture models
 - Connectivity, e.g., spectral clustering

Graph Clustering

Goal: Given data points $X_1, ..., X_n$ and similarities $w(X_i, X_j)$, partition the data into groups so that points in a group are similar and points in different groups are dissimilar.

Similarity Graph: G(V,E,W) V - Vertices (Data points)

E - Edge if similarity > 0

W - Edge weights (similarities)

Similarity graph

Partition the graph so that edges within a group have large weights and edges across groups have small weights.

Similarity graph construction

Similarity Graphs: Model local neighborhood relations between data points

Partitioning a graph into two clusters

Min-cut: Partition graph into two sets A and B such that weight of edges connecting vertices in A to vertices in B is minimum.

$$\operatorname{cut}(A,B) := \sum_{i \in A, j \in B} w_{ij}$$

Easy to solve O(VE) algorithm

Not satisfactory partition – often isolates vertices

Partitioning a graph into two clusters

Partition graph into two sets A and B such that weight of edges connecting vertices in A to vertices in B is minimum & size of A and B are very similar.

$$\operatorname{cut}(A,B) := \sum_{i \in A, j \in B} w_{ij}$$

Normalized cut:

Find with
$$migNcut(A, B) := cut(A, B)(\frac{1}{vol(A)} + \frac{1}{vol(B)})$$
A and B

$$vol(A) = \sum_{i \in A} d_i$$

But NP-hard to solve!!

Spectral clustering is a relaxation of these.

labels =
$$\{1, -1\}$$
. $\{i \in A\}$. $\{i \in A\}$. $\{i \in A\}$.

$$min$$

 $f = \{f_i, f_2, \dots f_n\}$

$$\lim_{f=\{f_i,f_2,\cdots f_n\}} \sum_{i \in A} \omega_{ij} = \frac{1}{4} \sum_{j \in I3} \omega_{ij}$$

$$f = \{f_i,f_2,\cdots f_n\}$$

$$i \in A$$

$$i \in A$$

$$i \in A$$

$$(f_i - f_j)^2 = 0 \quad \text{if } f_i = f_j$$

$$(f_i - f_j)^2 = 4 \quad \text{if } f_i \neq f_j$$

$$\begin{aligned}
\left(f_{i}-f_{j}\right)^{2} &= 0 \quad \text{if } f_{i}=f_{j} \\
\left(f_{i}-f_{j}\right)^{2} &= 4 \quad \text{if } f_{i}=f_{j}
\end{aligned}$$

$$\begin{aligned}
f_{i}-f_{j}\right)^{2} &= 4 \quad \text{if } f_{i}=f_{j}
\end{aligned}$$

$$\begin{aligned}
f_{i}-f_{j}\right)^{2} &= 4 \quad \text{if } f_{i}=f_{j}
\end{aligned}$$

$$\begin{aligned}
f_{i}-f_{j}\right)^{2} &= 4 \quad \text{if } f_{i}=f_{j}
\end{aligned}$$

$$\begin{aligned}
f_{i}-f_{j}\right)^{2} &= 4 \quad \text{if } f_{i}=f_{j}
\end{aligned}$$

$$\begin{aligned}
f_{i}-f_{j}\right)^{2} &= 4 \quad \text{if } f_{i}=f_{j}
\end{aligned}$$

$$\frac{1}{4} \sum_{ij} (f_{i} - f_{j})^{2} \omega_{ij} = \frac{1}{4} \sum_{ij} f_{i}^{2} \omega_{ij} + f_{j}^{2} \omega_{ij} - 2f_{i}f_{j} \omega_{ij}$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i}f_{j} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i}f_{j} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i}f_{j} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i}f_{j} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i}f_{j} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i}f_{j} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i}f_{j} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i}f_{j} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i}f_{j} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i}f_{j} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i}f_{j} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i}f_{j} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i}f_{j} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i}f_{i} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i}f_{i} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i}f_{i} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i} \omega_{ij} \right)$$

$$= \frac{1}{2} \left(\sum_{ij} f_{i}^{2} \omega_{ij} - \sum_{ij} f_{i} \omega_{ij} \right)$$

Normalized Cut and Graph Laplacian

$$Ncut(A, B) := cut(A, B)(\frac{1}{vol(A)} + \frac{1}{vol(B)})$$

Let
$$f = [f_1 f_2 \dots f_n]^T$$
 with $f_i = \begin{bmatrix} \frac{1}{\text{VOl}(A)} & \text{if } i \in A \\ -\frac{1}{\text{VOl}(B)} & \text{if } i \in B \end{bmatrix}$

$$\int \mathbf{f}^T \mathbf{L} \mathbf{f} = \sum_{ij} w_{ij} (\mathbf{f}_i - \mathbf{f}_j)^2 = \sum_{i \in A, j \in B} w_{ij} \left(\frac{1}{\text{vol}(A)} + \frac{1}{\text{vol}(B)} \right)^2$$

$$\underbrace{\mathbf{f}^T \mathbf{D} \mathbf{f}}_{j} = \sum_{i \in A} d_i \mathbf{f}_i^2 = \sum_{i \in A} \frac{d_i}{\operatorname{vol}(A)^2} + \sum_{j \in B} \frac{d_i}{\operatorname{vol}(B)^2} = \underbrace{\frac{1}{\operatorname{vol}(A)} + \frac{1}{\operatorname{vol}(B)}}_{\mathbf{vol}(B)}$$

$$Ncut(A, B) = \frac{\mathbf{f}^T \mathbf{L} \mathbf{f}}{\mathbf{f}^T \mathbf{D} \mathbf{f}}$$

$$\operatorname{Ncut}(A, B) = \frac{\mathbf{f}^T \mathbf{L} \mathbf{f}}{\mathbf{f}^T \mathbf{D} \mathbf{f}} = \int_{-\infty}^{\infty} \mathbf{1}_{non} \int_{-\infty}^{$$

Normalized Cut and Graph Laplacian

$$\min \mathbf{Ncut}(A, B) = \min \frac{\mathbf{f}^T \mathbf{Lf}}{\mathbf{f}^T \mathbf{Df}}$$

where
$$f = [f_1 f_2 \dots f_n]^T$$
 with $f_i = \begin{cases} \frac{1}{\text{vol}(A)} & \text{if } i \in A \\ -\frac{1}{\text{vol}(B)} & \text{if } i \in B \end{cases}$

Relaxation:
$$\min \frac{\mathbf{f}^T \mathbf{L} \mathbf{f}}{\mathbf{f}^T \mathbf{D} \mathbf{f}}$$
 s.t. $\int \mathbf{f}^T \mathbf{D} \mathbf{1} = \mathbf{0}$

s.t.
$$\int f^T D1 = 0$$

Solution: f – second eigenvector of generalized eval problem

$$Lf = \lambda Df$$

Obtain cluster assignments by thresholding f at 0

Approximation of Normalized cut

$$Ncut(A, B) := cut(A, B)(\frac{1}{vol(A)} + \frac{1}{vol(B)})$$

Let *f* be the eigenvector corresponding to the second smallest eval of the generalized eval problem.

$$\mathbf{Lf} = \lambda \mathbf{Df} \quad .$$

Equivalent to eigenvector corresponding to the second smallest eval of the normalized Laplacian $L' = D^{-1}L = I - D^{-1}W$

Recover binary partition as follows:

$$i \in A$$
 if $f_i \ge 0$
 $i \in B$ if $f_i < 0$

Example

Xing et al 2001

How to partition a graph into k clusters?

Spectral Clustering Algorithm

Input: Similarity matrix W, number k of clusters to construct

- Build similarity graph
- Compute the first k eigenvectors v_1, \ldots, v_k of the matrix

- Build the matrix $V \in \mathbb{R}^{n \times k}$ with the eigenvectors as columns
- ullet Interpret the rows of V as new data points $Z_i \in \mathbb{R}^k$

• Cluster the points Z_i with the k-means algorithm in \mathbb{R}^k .

Eigenvectors of Graph Laplacian

- 1st Eigenvector is the all ones vector 1 (if graph is connected)
- 2nd Eigenvector thresholded at 0 separates first two clusters from last two
- k-means clustering of the 4 eigenvectors identifies all clusters

Why does it work?

Data are projected into a lower-dimensional space (the spectral/eigenvector domain) where they are easily separable, say using k-means.

Original data

Projected data

Graph has 3 connected components – first three eigenvectors are constant (all ones) on each component.

Understanding Spectral Clustering

- If graph is connected, first Laplacian evec is constant (all 1s)
- If graph is disconnected (k connected components), Laplacian is block diagonal and first k Laplacian evecs are:

Understanding Spectral Clustering

- Is all hope lost if clusters don't correspond to connected components of graph? No!
- If clusters are connected loosely (small off-block diagonal enteries), then 1st Laplacian even is all 1s, but second evec gets first cut (min normalized cut)

$$Ncut(A, B) := cut(A, B)(\frac{1}{vol(A)} + \frac{1}{vol(B)})$$

1	1	.2	0
1	1	0	.1
.2	0	1	1
0	.1	1	1

1st evec is constant since graph is connected

Sign of 2nd evec indicates blocks

Why does it work?

Block weight matrix (disconnected graph) results in block eigenvectors:

Slight perturbation does not change span of eigenvectors significantly:

Why does it work?

Can put data points into blocks using eigenvectors:

Embedding is same regardless of data ordering:

1	.2	1	0	
.2	0	1	1	
1	1	0	.1	
0	1	.1	1	
W				

Understanding Spectral Clustering

- Is all hope lost if clusters don't correspond to connected components of graph? No!
- If clusters are connected loosely (small off-block diagonal enteries), then 1st Laplacian even is all 1s, but second evec gets first cut (min normalized cut)

$$Ncut(A, B) := cut(A, B)(\frac{1}{vol(A)} + \frac{1}{vol(B)})$$

What about more than two clusters?
 eigenvectors f₂, ..., f_{k+1} are solutions of following normalized cut:

$$\operatorname{Ncut}(A_1, \dots, A_k) = \sum_{i=1}^k \frac{\operatorname{cut}(A_i, \overline{A}_i)}{\operatorname{vol}(A_i)}$$

Demo: http://www.ml.uni-saarland.de/GraphDemo/DemoSpectralClustering.html

k-means vs Spectral clustering

Applying k-means to laplacian eigenvectors allows us to find cluster with non-convex boundaries.

30

k-means vs Spectral clustering

Applying k-means to laplacian eigenvectors allows us to find cluster with non-convex boundaries.

k-means vs Spectral clustering

Applying k-means to laplacian eigenvectors allows us to find cluster with non-convex boundaries.

Examples

Ng et al 2001

Examples (Choice of k)

Ng et al 2001

Some Issues

Choice of number of clusters k Most stable clustering is usually given by the value of k that maximizes the eigengap (difference between consecutive eigenvalues)

$$\Delta_k = |\lambda_k - \lambda_{k-1}|$$

Some Issues

- Choice of number of clusters k
- Choice of similarity
 choice of kernel
 for Gaussian kernels, choice of σ

Good similarity measure

Poor similarity measure

Some Issues

- > Choice of number of clusters k
- Choice of similarity
 choice of kernel
 for Gaussian kernels, choice of σ
- ➤ Choice of clustering method k-way vs. recursive bipartite