Дискретна математика 2 (Discrete mathematics)

Contents

1	Лен	кція 1	4					
	1.1	Подільність чисел	4					
	1.2	Найбільший спільний дільник	5					
	1.3	Алгоритм Евкліда	6					
2	Лекція 2							
	2.1	Найменше спільне кратне	8					
	2.2	Евклідові послідовності	9					
3	Лег	кція 3	11					
	3.1	Розширений алгоритм Евкліда	11					
	3.2	Лінійні діафантові рівняння	12					
4	Лекція 4							
	4.1	Прості числа	14					
	4.2	Розподіл простих чисел	14					
	4.3	Основна теорема арифметики	16					
5	Лекція 5							
	5.1	Мультиплікативні функції	17					
	5.2	Кількість та сума дільників	18					
	5.3	Досконалі числа	19					
	5.4	Функція Мебіуса	19					
6	Лекція 6							
	6.1	Порівняння за модулем	21					
	6.2	Степені за модулем	22					
	6.3	Обернені елементи за модулем	23					
7	Лекція 7							
	7.1	Китайська теорема про остачі	24					
	7.2	Функція Ойлера	25					
	7.3	Теорема Ойлера та мала теорема Ферма	26					
8	Лен	кція 8	27					
	8.1	Функція Кармайкла	27					

Contents 3

9	Лек	ція 9	2 9
	9.1	Системи числення	29
	9.2	Ознака подільності числа	29
	9.3	Подільність біноміальних коєфіціентів	31
10	Лек	ція 10	33
	10.1	Лінійні порівняння за модулем	33
	10.2	Елементи загальної теорії розв'язування порівнянь	33
	10.3	Розклад Тейлора для поліномів	35
	10.4	Поліноміальні порівняння за модулем степеня простого числа (1)	36
11	Лек	ція 11	37
	11.1	Поліноміальні порівняння за модулем степеня простого числа (2)	37
	11.2	Квадратичні лишки, критерій квадратичності Ойлера	38
	11.3	Критерій квадратичності Гаусса	39
12	Лек	ція 12	40
	12.1	Символ Лежандра та його властивості	40
	12.2	Символ Якобі та його властивості	41
13	Лек	ція 1	44
	13.1	Алгебраїчні системи з однією операцією	44
	13.2	Приклади алгебраїчних систем з однією операцією	45
	13.3	Властивості елементів моноїдів. Циклічні моноїди	46
14	Лек	ція 2	47
	14.1	Властивості елементів груп. Циклічні групи	47
	14.2	Порядок групи, порядок елементу групи. Підгрупи	48
	14.3	Класи суміжності, індекс підгрупи, теорема	
		Лагранжа та наслідки з неї	50
15	Лек	ція 3	52
	15.1	Властивості циклічних груп та їх елементів	52
	15.2	Стуруктура циклічних груп	53
	15.3	Нормальні підгрупи	54
	15.4	Факор-групы	54
	15.5	Морфізми алгебраїчних структур	55
16	Лек	ція 4	57
	16.1	Теорема про гомоморфізм груп	57
		Кільця	58
		Напівкільця	59
	16.4	Класи кілець, підкільця, ідеали	60

4 Contents

Appen	dix A A	64
A.1	Подільність многочленів	64
A.2	Наслідок з подільності(теорема Безу)	64
A.3	Наслідок з теореми Безу	64
A.4	Теорема Вієта	65
A.5	Схема Горнера	65
A.6	Ланцюгові дроби	65
A.7	Чим більше знаємо дробів - тим точніше α	66
A.8	Кожен скінченний дріб описує одне раціональне число	66
A.9	Наближення числа π	67

Основа теорії чисел

(Fundamentals of Number theory)

CHAPTER 1

Лекція 1

1.1 Подільність чисел

- властивості натуральних чисел $\mathbb{N} = \{1,\ 2,\ 3,\dots\}$ $\mathbb{N}_0 = \{0,\ 1,\ 2,\ 3,\dots\}$ $\mathbb{Z} = \{-1,\ 0,\ 1,-2,\ 2,\dots\}$

Definition 1.1.1. а поділяється на $b-a \dot{b}$ або b ділить a(b e dільникома) b | a.

$$a : b \Leftrightarrow \exists k \in \mathbb{Z} : \ a = kb$$

Property.

- 1. $a \neq 0, a \vdots 0$
- 2. $a \neq 0, 0 : a$
- 3. $a : b, b : c \Rightarrow a : c$
- 4. a:1
- 5. $a : c, b : c \Rightarrow (\alpha a \pm \beta b) : c$
- 6. $a : b \Leftrightarrow ac : bc, c > 0$

Theorem 1.1.1 (Euclidean divisiom).

$$\forall a, b \in \mathbb{Z} \exists !q, r : q \in \mathbb{Z}, r \in \mathbb{N} \ 0 \le r \le |b| \ a = bq + r$$

Proof.

- 1. Існування $bq, q \in \mathbb{Z}$ росте необмежено. $\exists q \; ; \; bq \leq a \leq b(q+1), \; r=a-bq.$
- 2. Єдиність Нехай a = bq + r, a = bq' + r' $0 = b(q - q') + (r - r') \Rightarrow (r - r') \vdots b$, $-|b| < r - r' < |b| \Rightarrow$ $\Rightarrow r - r' = 0$, q = q'.

$$q=\lfloor\frac{a}{b}\rfloor\text{ - частка}.$$

$$r=a+b\cdot\lfloor\frac{a}{b}\rfloor\text{ - остача}=a\mod b.$$

1.2 Найбільший спільний дільник

Найбільший спільний дільник: HCД(a, b)(українська нотація), gcd(a, b)(англійська нотація), (a, b)(спеціальзована література з теорії чисел).

Definition 1.2.1. gcd(a, b) = d:

- 1. a : d, b : d

Property.

- 1. $gcd(a, b) = b \Leftrightarrow a \vdots b$
- 2. $a \neq 0$: gcd(a, 0) = a
- 3. $\gcd(a,\ b)$ поділяється на довільний спільний дільник а та b
- 4. c > 0: gcd(ac, bc) = c gcd(a, b)
- 5. $d = \gcd(a, b) \Rightarrow \gcd(\frac{a}{d}, \frac{b}{d})$

Lemma 1.2.1.

$$\gcd(a, b) = \gcd(b, a - b)$$

Proof.

$$d = \gcd(a, b), d' = \gcd(b, a - b)$$

Нехай d > d'

 $a : d, b : d \Rightarrow (a - b) : d \Rightarrow d$ - спільний дільник b та a-b $\Rightarrow d' : d$ - Упс!

Нехай d < d'

$$b : d', a - b \Rightarrow b + (a - b) = a : d' - \text{Ync!}$$

Consequence.

$$a \ge b$$
: $gcd(a, b) = (b, a \mod b)$

Proof.
$$a = bq + r$$

 $\gcd(a, b) = \cdots = \gcd(r, b)$

1.3 Алгоритм Евкліда

Вхід: $a, b \in \mathbb{N}$

Вихід: $d = \gcd(a, b)$

$$r_0 := a, r_1 := b$$

$$r_0 = r_1 q_1 + r_2$$

$$r_1 = r_2 q_2 + r_3$$

$$r_2 = r_3 q_3 + r_4$$

$$\vdots$$

$$r_{n-1} = r_n q_n, \ r_n = d$$

Proof.
$$r_{i+1} = r_i \mod r_{i-1}$$

 $r_0 \ge r_1 > r_2 > \dots > r_n > r_{n+1} = 0$
 $\gcd(a, b) - \gcd(r_0, r_1) = \gcd(r_1, r_2) = \gcd(r_2, r_3) = \dots =$
 $= \gcd(r_{n-1}, r_n) = \gcd(r_n, 0) = 0$

Lemma 1.3.1.

$$\forall i, \ r_{i+2} < \frac{r_i}{2}$$

Proof.
$$r_i = r_{i+1}q_{i+1} + r_{i+2} \ge r_{i+1} + r_{i+2} > r_{i+2} + r_{i+2} = 2r_{i+2}$$
 \Rightarrow AE зробить $\le 2\lceil \log_2 a \rceil$ кроків.

$$\gcd(123, 456).$$

$$123 = 456 \cdot 0 + 123$$

$$456 = 3 \cdot 123 + 87$$

$$123 = 87 \cdot 1 + 36$$

$$87 = 36 \cdot 2 + 15$$

$$36 = 15 \cdot 2 + 6$$

$$15 = 6 \cdot 2 + 3$$

$$6 = 3 \cdot 2 \Rightarrow \gcd = 3$$

CHAPTER 2

Лекція 2

2.1 Найменше спільне кратне

Definition 2.1.1. $a, b \in \mathbb{N}$ M = HCK(a, b), lcm(a, b), [a, b]

- 1. $M \vdots a, M \vdots b$
- 2. $M \min \max$ е число

Property.

- 1. lcm(a, 0) 'на доске был нарисован грустный смайлик'
- 2. $lcm(a, b) = a \Leftrightarrow a \vdots b$
- 3. a, b -взаемнопрост $i \Rightarrow lcm(a, b) = a \cdot b$
- 4. Довільне спільне кратне a та b : lcm(a, b)
- 5. $\forall c > 0$, $\operatorname{lcm}(ac, bc) = c \operatorname{lcm}(a, b)$
- 6. $\frac{\mathrm{lcm}(a,\,b)}{a}$ та $\frac{\mathrm{lcm}(a,\,b)}{b}$ взаємнопрості

Theorem 2.1.1.

$$\forall a, b \in \mathbb{N} : \gcd(a, b) \cdot \operatorname{lcm}(a, b) = a \cdot b$$

Proof. Hexaŭ
$$d = \gcd(a, b), \ a = a_1 \cdot d, \ b = b_1 \cdot d.$$
 $\gcd(a_1, b_1) = 1, \ \operatorname{lcm}(a_1, b_1) = a_{,1} \cdot b_1, \ \operatorname{lcm}(a, b) = d \cdot a_1 \cdot b_1$ $d \cdot \operatorname{lcm}(a, b) = (a_1 \cdot d) \cdot (b_1 \cdot d) = a \cdot b$

Theorem 2.1.2.

$$\forall a, b \in \mathbb{N} : \gcd(a, b, c) = \gcd(\gcd(a, b), c) = \gcd(a, \gcd(b, c))$$

Proof.
$$d = \gcd(a, b, c)$$

 $d' = \gcd(a, b) \Rightarrow d' : d, c : d \Rightarrow d = \gcd(c, d')$

$$\operatorname{lcm}(a, b, c) = \operatorname{lcm}(\operatorname{lcm}(a, b), c) = \operatorname{lcm}(a, \operatorname{lcm}(b, c))$$

Theorem 2.1.3.

$$\forall a, b, c \in \mathbb{N}: \ \operatorname{lcm}(a, b, c) = \frac{a \cdot b \cdot c \cdot \gcd(a, b, c)}{\gcd(a, b) \cdot \gcd(b, c) \cdot \gcd(c, a)}$$

Решітка(lattice) - $\langle A, \leq, \sup, \inf \rangle$

Example:

- 1. множини, \subseteq , \cap , \cup $|A| + |B| = |A \cup B| + |A \cap B|$
- 2. \mathbb{R} , \leq , max, min $a + b = \max\{a, b\} + \min\{a, b\}$
- 3. \mathbb{N} , \vdots , lcm, gcd $a \cdot b = \text{lcm}(a, b) \cdot \text{gcd}(a, b)$

 $\max\{a_1,\ldots,a_n\} = a_1 + \cdots + a_n - \min\{a_1, a_2\} - \cdots - \min\{a_{n-1}, a_n\} + \min\{a_1, a_2, a_3\} - \min\{a_1, a_2, a_3, a_4\}$

2.2 Евклідові послідовності

Definition 2.2.1. Послідовність $a_0, a_1, \ldots, a_i \in \mathbb{R}$ - евклідова,

якщо
$$\forall n, m \in \mathbb{N}_0 \quad n > m$$
:

$$\gcd(a_n, a_m) = \gcd(a_m, a_{n-m}) \Rightarrow \gcd(a_n, a_m) = \gcd(a_m, a_{n \mod m})$$

Theorem 2.2.1.

$$(a_i)$$
 - $ee\kappa nido o a i a_0 = 0$, $mo \forall n, m : \gcd(a_n, a_m) = a_{\gcd(n, m)}$

Proof. n=m - очевидна.

$$n > m$$
:

$$d=\gcd(n,\ m,)$$
 АЕ породжуе послідовність $r_0,\ r_1,\ \dots,r_t,$ де $r_0=n,$ $r_1=m,\ r_t=d,\ r_{t+1}=0,\ r_{i+1}=r_{i-1}\mod r_i$ $\gcd(a_n,\ a_m)=\gcd(a_{r_0},\ a_{r_1}=\gcd(a_n,\ a_m)=\gcd(a_{r_1},\ a_{r_2}=\dots=\gcd(a_{t_0},\ a_{t_{i+1}})=a_{r_t}=a_0$

Consequence.

Якщо додатково
$$a_1 = 1$$
, то $gcd(n, m) = 1 \Rightarrow gcd(a_n, a_m)$

Example:

$$a_k = k$$

Example:

$$\begin{aligned} a_k &= 2_k - 1 \\ \gcd(a_n,\ a_m) &= ^? \gcd(a_m,\ a_{n-m}) \\ a_n &= 2^n - 1 = 2^n - 2^m - 1 = 2^m (2^{n-m} - 1) + (2^m - 1) = 2^m \cdot a_{n-m} + a_m = a_n \\ \gcd(2^n - 1,\ 2^m - 1) &= 2^{\gcd(n,\ m)} - 1 \end{aligned}$$

Example:

$$a_k = \alpha^k - 1, \ \alpha \in \mathbb{N}, \ \alpha \ge 2$$

 $a_0 = 0, \ a_1 = \alpha - 1 \ne 1$

$$a_k = \alpha^k - \beta^k, \ \alpha, \ \beta \in \mathbb{N}, \ \alpha > \beta \ge 2$$

$$(a_i)$$
 - евклідова і $a_0=0, \ \mathrm{To} \ \forall n>m: \ \gcd(a_n, \ a_m)=1$

Лекція 3

3.1 Розширений алгоритм Евкліда

Theorem 3.1.1 (Little Bezout's theorem).

$$\forall a, b \in \mathbb{N}, d = \gcd(a, b) \quad \exists u, v \in \mathbb{Z}, d = au + bv$$

```
\begin{array}{l} \textit{Proof.} \\ r_0 = r_1q_1 + r_2 \\ r_1 = r_2q_2 + r_3 \\ r_2 = r_4q_4 + r_5 \\ & \vdots \\ r_{n-3} = r_{n-2}q_{n-2} + r_{n-1} \\ r_{n-2} = r_{n-1}q_{n-1} + r_n \\ r_{n-1} = r_nq_n \\ \text{Тоді} \ d = r_n = r_{n-2} - r_{n-1}q_{n-1} = r_{n-2} - q_{n-1}(r_{n-3} - r_{n-2}q_{n-2}) = \cdots = \\ = u \cdot r_0 + v \cdot r_1 \end{array}
```

Consequence.

- 1. $d = au + bv \Rightarrow odne$ з чисел u, v недодатне, a inше невід'ємне.
- 2. $d = \gcd(x_1, x_2, \ldots, x_k) \Rightarrow a_1, a_2, \ldots, a_k \in \mathbb{Z} : d = a_1 x_1 + a_2 + x_2 + \cdots + a_k x_k$
- 3. $\forall i: u_i, v_i \in \mathbb{Z} \ r_i = au_i + bv_i \Rightarrow u_0 = 1, v_0 = 0, u_1 = 0, v_1 = 1$ $u_{i+1} = u_{i-1} u_i q_i, \ v_{i+1} = v_{i-1} v_i q_i, \ r_{i+1} = r_{i-1} q_i r_i = (au_{i-1} + bv_{i-1}) q_i (au_i + bv_i) = a\underbrace{(u_{i-1} q_i u_i)}_{v_{i+1}} + b\underbrace{(v_{i-1} q_i v_i)}_{v_{i+1}}$

$$\gcd(123, 456).$$

$$123 = 456 \cdot 0 + 123$$

$$456 = 3 \cdot 123 + 87 \qquad q_1 = 3$$

$$123 = 87 \cdot 1 + 36 \qquad q_2 = 1$$

$$87 = 36 \cdot 2 + 15 \qquad q_3 = 2$$

$$36 = 15 \cdot 2 + 6 \qquad q_4 = 2$$

$$15 = 6 \cdot 2 + 3 \qquad q_5 = 2$$

$$6 = 3 \cdot 2 \qquad q_6 = 2 \Rightarrow \gcd = 3$$

		q_1	q_2	q_3	q_4	q_5	
		3	1	2	2	2	
u_i	1	0	1	-1	3	-7	17
v_i	0	1	-3	4	-11	26	-63

Theorem 3.1.2.

 $\gcd(a, b) - \min \partial \partial \partial am He$ число , яке має форму au + bv, $u, v \in \mathbb{Z}$

Proof.

1.
$$C = \{au + bv \mid u, v \in \mathbb{Z}\}$$
 $d' = \min\{d' > 0\}, \ d \in C$ тоді $\forall d \in C : c : d'$ Нехай $c' = au' + bv', \ c' : d',$ тоді $c = q'd' + r', \ 0 < r' < d'$ $r' = c' - q'd' = (au' + bv') - q'(au'_{\alpha} + bv'_{\alpha}) =$ $= a(u' = -q'u'_{\alpha}) + b(v' - q'v'_{\alpha})$ - Упс!

2.
$$d=au+bv=\gcd(a,\ b)\Rightarrow d\ \vdots\ d'$$
 $a=a\cdot 1+b\cdot 0\Rightarrow a\ \vdots\ d',\ b=a\cdot 0+b\cdot 1\Rightarrow b\cdot \cdot\cdot d'$ $\Rightarrow d'$ - спільний дільник a та $b\Rightarrow d'=au'_{\alpha}+bv'_{\alpha}\ \vdots\ d\Rightarrow d=d'$

3.2 Лінійні діафантові рівняння

Definition 3.2.1. $f(x_1, x_2, ..., x_n) = 0, x_i \in \mathbb{Z}$

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = c, \ a_i \in \mathbb{Z}, \ c \in \mathbb{Z}$$

 $ax+by=c,\ a,\ b,\ c\in\mathbb{Z}$ - коефіцієнти, $x,\ y\in\mathbb{Z}$ - невідомі.

Theorem 3.2.1.

$$Hexaŭ\ ax + by = c\ d = \gcd(a,\ b)$$

- 1. pівняння має розв'язк $u \Leftrightarrow c : d$
- 2. $a=a_0\cdot d,\ b=b_0\cdot d,\ c=c_0\cdot d,\ (x_0,\ y_0)$ якийсь розв'язок рівняння. Тоді довільний розв'язок $(x,\ y)$: $\begin{cases} x=x_0+b_0\cdot t \\ y=y_0-a_0\cdot t \end{cases} t\in\mathbb{Z}$

Proof.

1. Якщо
$$c : d$$
, але $ax + by : d$ то Упс! Якщо $c : d$, то $a_0x + b_0y = c_0$ - еквівалентне рівняння $1 = a_ou + b_0v \Rightarrow x_0 = u \cdot c_0$, $y_0v \cdot c_0$ - розв'язки.

2.
$$ax + by = a(x_0 + b_0t) + b(y_0 - a_0t) = \underbrace{(ax_0 + by_0)}_{=c} + \underbrace{(ab_0t - ba_0t)}_{a_0b_0dt - a_0b_0dt} = c$$

Нехай
$$(x, y)$$
 - розв'язок рівняння $ax + by = 0$, $ax_0 + by_0 = c \Rightarrow a(x - x_0) + b(y - y_0) = 0 \Rightarrow$ $\Rightarrow a_0(x - x_0) + b_0(y - y_0) = 0 \gcd(a_0, b_0) = 1 \Rightarrow 1 = a_0u + b_0v \Rightarrow$ $\Rightarrow 0 = \underbrace{a_0u}_{=(1-b_0v)} (x - x_0) + b_0v(y - y_0) = (x - x_0) + b_0(u(y - y_0) - v(x - x_0)) \Rightarrow$ $\Rightarrow x - x_0 \vdots b_0, x - x_0 = b_0 \cdot t, t \in \mathbb{Z} \Rightarrow a_0 \cdot b_0t + b_0(y - y_0) = 0 \Rightarrow$ $\Rightarrow y - y_0 = a_0t$

$$15x + 9y = 27$$

$$15 = 9 \cdot 1$$

$$9 = 6 \cdot 1 + 3$$

$$6 = 3 \cdot 2 \Rightarrow 3 = 15 \cdot (-1) + 9 \cdot 2$$

$$27 \vdots 3 \Rightarrow \text{розв'язки існують}$$

$$5x + 3y = 9$$

$$1 = 5 \cdot (-1) + 3 \cdot 2$$

$$x_0 = 9, y_0 = 18$$

$$\begin{cases} x = -9 + 3 \cdot t \\ y = 18 - 5 \cdot t \end{cases} \qquad t = 10 : \qquad x = -9 + 30 = 21, \ y = 18 - 50 = -32$$

$$5 \cdot 21 - 3 \cdot 32 = 105 - 96 = 9$$

$$?t : \qquad x > 0, \ y > 0$$

$$\begin{cases} -9 + 3t > 0 \\ 18 - 5t > 0 \end{cases} \Rightarrow \begin{cases} t > 3 \\ t < 3, 6 \end{cases}$$

Лекція 4

4.1 Прості числа

Definition 4.1.1. $n \in \mathbb{N}$

- просте \Leftrightarrow мае рівно два дільники 1 та п - складене $\Leftrightarrow \exists a: \ 1 < a < n \quad n:a$

1 - не просте, не складене

Lemma 4.1.1.

$$n \in \mathbb{N}$$
: $gcd(n, n+1) = 1$

Theorem 4.1.2 (Euclid).

Якщо $A=\{p_1,p_2,\ldots,p_n\}$ - скінченна сукупність простих чисел, то існує просте $\underline{P}\notin A$

Proof.

$$Q=p_1p_2p_3\dots p_n+1\Rightarrow Q\ \vdots\ p_i,\ n=\overline{1,n}$$
 Q - або просте, або має простий дільник

Consequence.

Простих чисел нескінченно багато

Lemma 4.1.3.

$$n \in \mathbb{N}$$
 - складене $d > 1$ — \min дільник $n \Rightarrow d$ - $npocme$

Proof. Нехай d - складене, $d=a\cdot b,\ a,\ b\neq 1,\ d \vdots a,\ n \vdots d\Rightarrow n \vdots a$ - Упсв!

4.2 Розподіл простих чисел

Сито Ератросфена(пошук простих чисел?)

 $2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10\ 11\ 12\ 13\ 14\ 15\ 16\ 17\ 18\ 19\ 20$

// Беремо перше число яке тут ϵ . Це число 2 - воно просте. Після чого беремо і викреслюємо кожне друге число.

(2) 3 \$\frac{1}{4} 5 \hstepsilon 7 \hstepsilon 9 \hstepsilon 11 \hstepsilon 13 \hstepsilon 15 \hstepsilon 6 17 \hstepsilon 19 \hstepsilon 0

// Беремо перше незакреслене число. Це число 3 - воно просте. Викреслюємо кожне трете число в цьому ряду.

(2) (3) $\cancel{4}$ 5 $\cancel{8}$ 7 $\cancel{8}$ $\cancel{9}$ $\cancel{1}$ $\cancel{1}$

// Беремо настпуне. Це 5 - просте. Викреслюємо кожне п'яте число. Ну вони вже викреслині. Тому далі уже нічого не викреслюєтся.

Lemma 4.2.1.

$$n = a \cdot b, \ 1 < a, \ b < n \Rightarrow \min\{a, b\} \le \sqrt{n} \le \max\{a, b\}$$

Proof. Від супротивного

Consequence.

Y cumi Epampocфена для $2\dots N$ nicля викреслень чисел $\leq \sqrt{n}$ залишаются npocmi.

Example:

 $\forall m \in \mathbb{N}$: існують m послідовних натуральних складених чисел.

$$(m+1)! \vdots 2, (m+1)! \vdots 3, (m+1)! \vdots 5, \dots, (m+1)! \vdots (m+1).$$

Example:

Прості числа-близнюки $p,\ q$: прості, p-q=2 Наразі найбільша відома пара чисел близнюків: $2996863034895\cdot 2^{1290000}\pm 1$

Example:

Прості числа Мерсена: $M_p = 2^p - 1$ - просте, $M_n = 2^n - 1$ - складене

Lemma 4.2.2.

$$M_p$$
 - $npocme \Rightarrow p$ - $npocme$. $p = a \cdot b \Rightarrow M_p = 2^{ab} - 1 \vdots 2^a - 1$

Постулат Бертрана

 $\forall n \in \mathbb{N}, \geq 4$. інтервал $n \dots 2n-2$ містить просте число.

Функція розподіла простих чисел $\Pi(x)$

 $\Pi(x) =$ кількість простих чисел < x.

$$\frac{1}{2} \cdot \frac{x}{\log_2 x} \le \Pi(x) \le 5 \cdot \frac{x}{\log_2 x} \to \alpha \cdot \frac{x}{\ln x} \le \Pi(x) \le \beta \cdot \frac{x}{\ln x}, \quad \alpha = 0.92129, \quad \beta = 1,10555$$

Theorem 4.2.3 (Adamer, Vallee).

$$\Pi(x) \sim \frac{x}{\ln x} (\Pi(x) \sim \int_{2}^{x} \frac{dt}{\ln t}) \Rightarrow p_n \sim n \cdot \ln n$$

Theorem 4.2.4 (Dirichlet).

Якщо gcd(a, b) = 1, то існує ∞ простих чисел виду $a \cdot m + b$

4.3 Основна теорема арифметики

Lemma 4.3.1 (Euclid).

$$p - npocme, ab \vdots p \Rightarrow \begin{bmatrix} a \vdots p \\ b \vdots p \end{bmatrix}$$

$$Proof.$$
 Нехай $ab : p$, але $a : p \Rightarrow \gcd(a, p) = 1 \Rightarrow$ $\Rightarrow \exists u, v, \quad au + pv = 1 \Rightarrow \underbrace{ab}_{p} \cdot u + \underbrace{p}_{p} \cdot bv = \underbrace{b}_{p}$ \vdots_{p} \vdots_{p}

Theorem 4.3.2 (Fundamental theorem of arithmetics).

$$\forall n \in \mathbb{N}: \ n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}, \ \partial e \ p_1 < p_2 < \dots < p_t - \ - \ npocmi, \ \alpha_i \geq 1 \ - \ натуральні.$$

Proof.

1. Існування

Нехай все вірне , n_0 — min чысло, яке не розкладаэться $\Rightarrow n_0$ - складене $\Rightarrow \exists a: 1 < a < n_0: n = a \cdot b$

2. Єдність

Нехай
$$n=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_t^{\alpha_t}=q_1^{\beta_1}q_2^{\beta_2}\dots q_t^{\beta_t},\ n\ \vdots\ p_1\Rightarrow q_1^{\beta_1}\dots q_t^{\beta_t}\ \vdots\ p_1\exists i:\ q_i^{p_i}\ \vdots\ p_1\Rightarrow q_i=p_i$$

Example:

Приклад Гільберта

Розглянемо числа виду 4k+1 5, 9, 13, 17, 21, 25 $((4k_1+1)(4k_2+1)=4(\dots)+1)$

1.
$$d \mid n \Rightarrow d = q_1^{\beta_1} q_2^{\beta_2} \dots q_t^{\beta_t}, \ 0 \le \beta_i \le \alpha_i$$

2.
$$a = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}, \ \alpha_i \ge 0,$$
 $b = p_1^{\beta_1} p_2^{\beta_2} \dots p_t^{\beta_t}, \ \beta_i \ge 0$

$$\gcd(a, b) = \prod_{i=1}^t p_i^{\min\{\alpha_i, \beta_i\}}, \qquad \operatorname{lcm}(a, b) \prod_{i=1}^t p_i^{\min\{\alpha_i, \beta_i\}}$$

3.
$$a
i b$$
, $a
i c$, $gcd(b, c) = 1 \Rightarrow a
i (b \cdot c)$

Лекція 5

5.1 Мультиплікативні функції

Definition 5.1.1. f(n) - мультіплікативна:

1.
$$f(n) \not\equiv 0$$

2.
$$\forall a, b \in \mathbb{N}$$
: $gcd(a, b) = 1 \Rightarrow f(ab) = f(a)f(b)$

Example:

$$f(n) = 1$$

$$f(n) = n$$

$$f(n) = n^{S}$$

Property.

1.
$$f(1) = 1$$
; $f(n) = f(n \cdot 1) = f(n)f(1)$

- 2. Якщо x_1, x_2, \ldots, x_t попарно взаємнопрості, то $f(x_1 x_2 \ldots x_t) = f(x_1) \ldots f(x_t)$
- 3. Якщо f(n), g(n) мультиплікативні, то $h(n) = f(n) \cdot g(n)$ мультиплікативна

4.
$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}, \ f(n) = f(p_1^{\alpha_1}) \cdot f(p_2^{\alpha_2}) \dots f(p_t^{\alpha_t})$$

Definition 5.1.2. f(n) - мультиплікативна.

Числовий інтеграл
$$g(n) = \sum_{d \mid n} f(d)$$

Theorem 5.1.1 (S).

$$f(n)$$
 - мультиплікативна $\Rightarrow g(n)$ - також.

Proof.

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}, \quad d \mid n \Rightarrow d = p_1^{\beta_1} p_2^{\beta_2} \dots p_t^{\beta_t}, \quad 0 \le \beta_i \le \alpha_i$$

$$g(n) = \sum_{d \mid n} f(d) = \sum_{\beta_1 = 0}^{\alpha_1} \sum_{\beta_2 = 0}^{\alpha_2} \dots \sum_{\beta_t = 0}^{\alpha_t} f(p_1^{\beta_1} \dots p_t^{\beta_t}) =$$

$$= \sum_{\beta_1} \dots \sum_{\beta_t} \prod_i = 1^t f(p_i^{\beta_t}) = \prod_{i=1}^t \sum_{\beta_i = 0}^{\alpha_i} f(p_i^{\beta_i})$$

$$g(n) = \prod_{i=1}^{t} \sum_{\beta_i=0}^{\alpha_i} f(p_i^{\beta_i})$$

5.2 Кількість та сума дільників

Definition 5.2.1. *Кількість дільників*

$$\tau(n) = \sum_{d \mid n} 1$$

Definition 5.2.2. Сума дільників

$$\sigma(n) = \sum_{d \mid n} d$$

Proposition.

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}, \qquad p_t^{\alpha_t} : \quad \tau(n) = (1 + \alpha_1)(1 + \alpha_2) \dots (1 + \alpha_t)$$
$$\sigma = \prod_{i=0}^t \frac{p_i^{\alpha_{i+1}}}{p_i - 1}$$

Proof.

$$p$$
 - просте. $\tau(p) = 2$ $\tau(p^{\alpha}) = 1 + \alpha$ $\tau(n) = \tau(p_1^{\alpha_1}) \dots \tau(p_t^{\alpha_t}) = (1 + \alpha_1)(1 + \alpha_2) \dots (1 + \alpha_t)$ $\sigma(p) = 1 + p$ $\sigma = 1 + p + p^2 = \dots + p^{\alpha} = \frac{p^{\alpha+1} - 1}{p - 1}$ $\sigma(n) = \sigma(p_1^{\alpha_1})\sigma(p_2^{\alpha_2}) \dots \sigma(p_t^{\alpha_t})$

$$n = 1000 = 2^{3}5^{3}$$

$$\tau(1000) = (1+3)(1+3) = 16$$

$$\sigma(1000) = \frac{2^{4}-1}{2-1} \cdot \frac{5^{4}-1}{5-1} = 2340$$

Example:

$$n = 1001 = 7 \cdot 11 \cdot 13$$

$$\tau(1001) = (1+1)(1+1)(1+1) = 8$$

$$\sigma(1001) = (1+7)(1+11)(1+13) = 1344$$

Property.

1.
$$\tau(n) \le 2\sqrt{n}$$

 $n : d \Rightarrow n = d \cdot d'$
 $\sigma(n) \ge n + 1$

2.
$$\tau(n)$$
 - непарне $\Leftrightarrow n=m^2$

3.
$$\sigma$$
 - $nenaphe \Leftrightarrow \begin{bmatrix} m^2 \\ 2m^2 \end{bmatrix}$

5.3 Досконалі числа

Definition 5.3.1. Досконале число n:

 $n=\ cymi\ ycix\ дільників\ окрім\ власне\ n\ або\ \sigma(n)=2n$

Example:

$$n = 6$$
: $1 + 2 + 3 = 6$

Example:

$$n = 28$$
: $1 + 2 + 4 + 7 + 14 = 28$

Theorem 5.3.1 (Euclid-Euler).

Парне n - досконале $\Leftrightarrow n=2^{p-1}\cdot M_p,\ \partial e\ M_p=2^p-1$ - просте число Марсена Proof.

1.
$$n = 2^{p-1} \cdot M_p$$
, $p > 2$
 $\sigma(n) = \sigma(2^{p-1} \cdot M_p) = \sigma(2^{p-1})\sigma(M_p) = (2^p - 1)(M_p + 1) = 2^p(2^p - 1) = n$

2. Нехай
$$n$$
 - парне досконале, $n = 2^k \cdot b$, b - непарне $\sigma(n) = \sigma(2^k \cdot b) = (2^k - 1) \cdot \sigma(b) = 2^k \cdot b = 2n \Rightarrow$ $\Rightarrow b \vdots (2^k - 1), \ b = (2^k - 1) \cdot c \qquad (2^k - 1)\sigma(b) = 2^k (2^k - 1) \cdot c$ $\sigma(b) = 2^k \cdot c = (2^k - 1 + 1) \cdot c = b + c$ $b \vdots c, \ c \neq 1, \ c \neq b \Rightarrow \sigma(b) > 1 + b + c \Rightarrow c = 1.$ $b = 2^k - 1, \ \sigma(b) = b + 1 \Rightarrow b$ - просте. $n = 2^{k-1} \underbrace{(2^k - 1)}_{\text{HOCTE}}$

5.4 Функція Мебіуса

Definition 5.4.1. $\mu(n)$:

$$\mu(p^{\alpha}) = \begin{cases} -1, & \alpha = 1 \\ 0, & \alpha > 1 \end{cases} \Rightarrow M(n) = \begin{cases} (-1)^k, & n = p_1 p_2 \dots p_t \\ 0, & n \vdots a^2 \end{cases}$$

Lemma 5.4.1 (характерізаційна властивість μ).

$$\sum_{d \mid n} M(d) = \begin{cases} 1, & n = 1 \\ 0, & n \neq 1 \end{cases}$$

Proof.

$$p^{\alpha}$$
: $\mu(1) + \mu(p) + \mu(p^2) + \dots + \mu(p^{\alpha}) = 1 + (-1) + 0 + 0 + \dots + 0 = 0$ За теоремою 5.1.1 $\sum_{d \mid n} \mu(d) = \prod_i \sum_{\beta} \mu(p_i^{\beta})$

Proposition. f(n) - мультіплікативна, $n = p_1^{\alpha_1} \dots p_t^{\alpha_t}$

$$\sum_{d \mid n} M(d) f((d) = (1 - f(p_1))(1 - f(p_2)) \dots (1 - f(p_t))$$

Proof. За теоремою
$$5.1.1 \sum_{\beta} \mu(p_1^{\beta}) f(p_i^{\beta}) = \mu(1) f(1) + \mu(p_i) f(p_i) + \mu(p_i^2) f(p_i^2) + \dots = 1 + (-1) f(p_i) = 1 - f(p_i)$$

Theorem 5.4.2 (закон обертання Мебіуса).

$$f(n)$$
 - мультіплікативна, $g(n) = \sum_{d \mid n} f(d) \Rightarrow f(n) = \sum_{d \mid n} M(d) \cdot g(\frac{n}{d})$

Proof.
$$\sum_{d \mid n} M(d) \cdot \sum_{\delta \mid \frac{n}{d}} f(\delta) = \sum_{(d, \delta), d\delta \mid n} \mu(d \cdot f(\delta)) = \sum_{\delta \mid n} \sum_{d \mid \frac{n}{d}} \mu(d) f(\delta) = \sum_{\delta \mid n} f(\delta) \cdot \sum_{d \mid \frac{n}{d} = 1 \Rightarrow \delta = n} \mu(d) = f(n)$$

$$a_0, a_1, \ldots, a_n$$
 $A(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ - ряд Діріхле. $B(s) = \sum_{n=1}^{\infty} \frac{b_n}{n^s}$
 $C(s) = A(s) \cdot B(s) = \sum_{n=1}^{\infty} \frac{c_n}{n^s} \Rightarrow C_n = \sum_{d \mid n} a_d \cdot b_n$
 $\frac{1}{\xi(s)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^S}$
 $C(s) = A(s) \cdot \xi(s)$
 $C(s) = A(s) \cdot \xi(s)$
 $C(s) = \sum_{d \mid n} a_d$
 $C(s) = C(s) \cdot (\xi(s))' \Rightarrow a_n = \sum_{d \mid n} \mu(d) c_n$

Лекція 6

6.1 Порівняння за модулем

Definition 6.1.1. $a, b \in \mathbb{N}$, $a \ ma \ b \ nopiehoeahi з a \ mod \ n$:

$$a \equiv b \pmod{n}, \ a \equiv_n b, \ \kappa o n u \colon (1) \exists t \in \mathbb{Z} : \ a = b + nt$$

$$(2) \ a \mod n = b \mod n$$

$$(3) \ (a - b) \vdots n$$

Property.

1.
$$a \equiv a \pmod{n}$$
, $a \equiv b \pmod{n} \Rightarrow b \equiv a \pmod{n}$, $a \equiv b \pmod{n}$, $b \equiv a \pmod{n} \Rightarrow a \equiv a \pmod{n}$

2.
$$a \equiv b \pmod{n}$$
, $c \equiv d \pmod{n} \Rightarrow a \pm c \equiv b \pm d \pmod{n}$, $ac \equiv bd \pmod{n}$

Proof.
$$a = b + nt_1$$
, $c = d + nt_2$, $ac = bd + \underbrace{nt_1d + nt_2b + n^2t_1t_2}_{n \cdot T, T \in \mathbb{Z}}$

$$p(x_1, x_2, \ldots, x_t)$$
 - поліном з цілими коефіцієнтами, $(a_i), (b_i): a_i \equiv b_i \pmod n \Rightarrow p(a_1, a_2, \ldots, a_t) = p(b_1, b_2, \ldots, b_t) \pmod n$

3. Akujo $ca \equiv cb \pmod n$, $\gcd(c, n) = 1$, mo $a \equiv b \pmod n$ As $a \equiv b \pmod 4$, $a \not\equiv a \pmod 4$

Proof.
$$ca - cb : n, c(a - b) : n \Rightarrow (a - b) : n$$

4. (a)
$$a \equiv b \pmod{n}, \ k \neq 0 \Rightarrow ak \equiv bk \pmod{nk}$$

(b)
$$d = \gcd(a, b, n)$$

 $a = a_1 d_1, b = b_1 d_1, n = n_1 d_1, a \equiv b \pmod{n} \Rightarrow a_1 \equiv b_1 \pmod{n}$

Proof.
$$a = b + nt$$
, $a_1 \not d = b_1 \not d + n_1 \not dt$

5.
$$a \equiv b \pmod{n}$$
, $n : d \Rightarrow a \equiv b \pmod{d}$

6.
$$a \equiv b \pmod{n_1}$$
,
 $a \equiv b \pmod{n_2}$,
 \vdots
 $a \equiv b \pmod{n_t}$,
 $a \equiv b \pmod{n_t}$,
 $a \equiv b \pmod{n_t}$,
 $a \equiv b \pmod{n_t}$
7. $a \equiv b \pmod{n} \Rightarrow \gcd(a, n) = \gcd(b, n)$

Definition 6.1.2. *Лишок за модулем* n: $k, [k], \underline{k}$

$$\{k + nt \mid k \in \mathbb{Z}\}$$

Definition 6.1.3. Повна система лишків(кільце):

$$\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$$

6.2 Степені за модулем

Lemma 6.2.1 (A).

$$a \cdot \mathbb{Z}_n + b = \mathbb{Z}_n$$

Якщо x пробігає усі елементи \mathbb{Z}_n і $\gcd(a, n) = 1$, то $\forall b \in \mathbb{Z}$ $y = (ax + b) \mod n$ - також пробігає усі лишки з \mathbb{Z}_n

Proof. Нехай $ax_1 + b \equiv ax_2 + b \pmod{n}$, $ax_1 \equiv ax_2 \pmod{n}$, $x_1 = x_2 \pmod{n}$

6.3 Обернені елементи за модулем

Definition 6.3.1. $\forall a \in \mathbb{Z}, n \in \mathbb{N}$ Обернене до а за mod n a^{-1} mod n:

$$a \cdot a^{-1} \equiv a^{-1} \cdot a \equiv 1 \pmod{n}$$

Theorem 6.3.1.

$$\exists a^{-1} \mod n \Leftrightarrow \gcd(a, n) = 1$$

Proof.

- 1. Нехай $\gcd(a,\ n)=1$ Тоді $\exists u,\ v \qquad a\cdot u+n\cdot v=1\Rightarrow a\cdot u\equiv 1(\mod n)\Rightarrow u=a^{-1}\mod n$
- 2. Нехай $\forall a^{-1} \mod n, \gcd(a, \ n) = d > 1$ $a \cdot a^{-1} = 1 + nt, \ 1 = a \cdot a^{-1} nt \ \vdots \ \text{- Упс!}$

Definition 6.3.2. Зведена с-ма лишків (мультиплікативна группа кільця \mathbb{Z}_n)

$$\mathbb{Z}_n^* = \{ a \mid \gcd(a, n) = 1 \}$$

Definition 6.3.3. Функція Ойлера

$$\varphi(n) = |\mathbb{Z}_n^*|$$

Лекція 7

7.1 Китайська теорема про остачі

Theorem 7.1.1 (Chinese remainder theorem).

$$\begin{cases} x \equiv b_1 (\mod n_1) & \textit{yci } n_i \textit{ nonapho взаемнопрості} \\ x \equiv b_2 (\mod n_2) & \textit{Todi ichye рівно один класс лишків} \\ \vdots & \text{mod } n_1 n_2 \dots n_i, \\ x \equiv b_t (\mod n_t) & \textit{який є розв'язком системи.} \end{cases}$$

Proof.

1. Нехай x_1 та x_2 - різні розв'язки.

$$x_1 \equiv x_2 \equiv b_i \pmod{n_i} \Rightarrow (x_1 - x_2) \vdots n_i, \ i = \overline{1, t} \Rightarrow (x_1 - x_2) \vdots n_1 n_2 \dots n_t$$

2.
$$\begin{cases} x \equiv b_1 \pmod{n_1} & x = b_1 + n_1 k, \ k \in \mathbb{Z} \\ x \equiv b_2 \pmod{n_2} & \Rightarrow n_1 k + b_1 \pmod{n_2}, \ k = \overline{1, n_2 - 1} \\ 3 \text{ леми A: } \exists ! k \ n_1 k + b_1 \equiv b_2 \pmod{n_2} \\ \text{Повторюємо для } n_1 n_2 \text{ та } n_3, \ n_1 n_2 n_3 \text{ та } n_4 \dots \end{cases}$$

3.
$$N = n_1 n_2 \dots n_t$$
, $N_i = \frac{N}{n_i}$, $M_i = N_i^{-1} \mod n_i$
 $x_0 = (b_i N_1 M_1 + b_2 N_2 M_2 + \dots + B_i N_i M_i) \mod N$ - розв'язок
 $x_0 \mod n_1 \equiv b_1 N_1 M_1 \mod n_1 \equiv b_1 N_1 N_1^{-1} \mod n_1 = b_1 \mod n_1$

Example:

$$\begin{cases} x \equiv 1 \pmod{2} & n_1 = 2 \quad N_1 = 21 \quad M_1 = 1 \\ x \equiv 2 \pmod{3} & n_2 = 3 \quad N_2 = 14 \quad M_2 = 14^{-1} \mod{3} = 2 \\ x \equiv 3 \pmod{7} & n_3 = 7 \quad N_3 = 6 \quad M_3 = 6^{-1} \mod{7} = 6 \mod{7} \\ N = 42, & x_0 = 1 \cdot 4 \cdot 1 + 2 \cdot 14 \cdot 2 + 3 \cdot 6 \cdot 6 \equiv 17 \mod{42} \end{cases}$$

7.2Функція Ойлера

Definition 7.2.1.

 $arphi(n)=|\mathbb{Z}_n^*|=\kappa$ -ть чисел в інтервалі $1\dots n$, які взаємнопрості з n

Proposition.

 $\varphi(n)$ - мультиплікативна.

Proof.

$$n = ab$$
, $gcd(a, b) = 1$

$$n=ab,\ \gcd(a,\ b)=1$$
 $\forall x:\ \gcd(x,\ n)=1\Leftrightarrow \begin{cases}\gcd(x,\ a)=1\ \gcd(x,\ b)=1\end{cases}$ (Випливає з ОТА) $\varphi(n)=\varphi(a\cdot b)$
 $x\equiv x_0(\mod n)\Leftrightarrow \begin{cases}x\equiv x_0(\mod a) & x_0=x_0\mod a & \varphi(a)\ x\equiv x_0(\mod b) & x_0=x_0\mod b & \varphi(b)\end{cases}$
 $(x_a,\ x_n):\ \varphi(a)\cdot\varphi(b)$

$$\begin{array}{ll} n=p: & \varphi(p)=p-1 \; (\text{Bci okpim } p) \\ n=p^{\alpha}: & \varphi(p)=p^{\alpha}-p^{\alpha-1} \; (\text{Bci okpim } p,\; 2p,\; 3p,\; 4p,\ldots,\; (p^{\alpha-1}-1,\; p^{\alpha}) \\ n=p_1^{\alpha_1}p_2^{\alpha_2}\ldots p_t^{\alpha_t}: & \varphi(n)=\prod\limits_{i=1}^t (p_i^{\alpha_i}-p_i^{\alpha_i-1})=n\cdot\prod\limits_{i=1}^t (1-\frac{1}{p_i}) \end{array}$$

Example:

$$\varphi(31) = 30$$

 $\varphi(32) = \varphi(2^5) = 16$
 $\varphi(33) = \varphi(3 \cdot 11) = 30$

Proposition.

$$\sum_{d \mid n} \varphi(d) = n$$

Proof.

$$\varphi(n) = \#x : \qquad \gcd(x, n) = 1,$$

$$N_d = \#x : \qquad \gcd(x, n) = d, \ x = x_1 \cdot d, \ n = n_1 \cdot d, \ \gcd(x_1, n_1) = 1 \Rightarrow$$

$$\Rightarrow N_\alpha = \varphi(n_1) = \varphi(\frac{n}{d}) \Rightarrow n = \sum_{d \mid n} N_d = \sum_{d \mid n} \varphi(\frac{n}{d}) = \sum_{d \mid n} \varphi(d)$$

$$\sum_{d \mid n} \varphi(d) = n \Rightarrow \varphi(n) = \sum_{d \mid n} \mu(d) \cdot \frac{n}{d} = n - \frac{n}{p_1} - \frac{n}{p_2} - \dots - \frac{n}{p_t} + \frac{n}{p_2 p_3} + \dots + \frac{n}{p_{t-1} p_t} - \frac{n}{p_1 p_2 p_2} - \dots + (-1)^t \frac{n}{p_1 p_2 \dots p_t}$$

7.3 Теорема Ойлера та мала теорема Ферма

Theorem 7.3.1 (Euler).

$$\forall n \in \mathbb{N}, \ \forall a \in \mathbb{Z}_n^* : \ a^{\varphi(n)} \equiv 1 \pmod{n}$$

Proof.

$$\forall a \in \mathbb{Z}_n^*: a\mathbb{Z}_n^* = \mathbb{Z}_n^*$$
 якщо x пробігає усі значення \mathbb{Z}_n^* , то ax також пробігає \mathbb{Z}_n^* $ax \equiv ay \pmod{n} \Rightarrow x \equiv y \pmod{n}$ $\mathbb{Z}_n^* = \{b_1, b_2, \ldots, b_{\varphi(n)}\} = \{ab_1, ab_2, \ldots, ab_{\varphi(n)}\} \Rightarrow b_1 b_2 \ldots b_{\varphi(n)} \equiv ab_1 \cdot ab_2 \ldots ab_{\varphi(n)} 1 \equiv a^{\varphi(n)} \pmod{n}$

Consequence. n = p

$$a : p \Rightarrow a^{p-1} \equiv 1 \pmod{n}$$

Theorem 7.3.2 (Fermat's little theorem).

$$p$$
 - $npocme: \forall a$ $a^p \equiv p \pmod{a}$

Proof.

$$a \stackrel{\cdot}{\underline{\cdot}} p \qquad a^p \equiv a \equiv 0 \pmod{p}$$

 $a \stackrel{\cdot}{\underline{\cdot}} p \qquad a^{p-1} \equiv 1 \pmod{p}$

CHAPTER 8

Лекція 8

8.1 Функція Кармайкла

$$\mathbb{Z}_8^* = \{1, 3, 5, 7\}, \ \varphi(8) = 4$$

 $1^2 \equiv 1 \pmod{8}, \ 3^2 \equiv 1 \pmod{8}, \ 5^2 \equiv 1 \pmod{8}, \ 7^2 \equiv 1 \pmod{8}$

Proposition. n > 3, a - n

$$a^{2^{n-2}} \equiv 1 \pmod{2^n}$$

Proof. Доведемо за MMI.

База: n = 3

$$a = 2k + 1$$
 $a^2 = (2k + 1)^2 = 4k(k + 1) + 1 \equiv 1 \pmod{8}$

 ${\rm Kpok}$: n

$$a^{2^{n-2}} \equiv 1 \pmod{2^n} \qquad a^{2^{n-2}} = 1 + 2^n \cdot t$$

$$a^{2^{n-1}} = (1 + 2^n \cdot t)^2 = 1 + 2 \cdot 2^n \cdot t + 2^{2n} \cdot t^2 = 1 + 2^{n+2} \cdot t_1 \equiv 1 \pmod{2^{m+1}}$$

Definition 8.1.1 (Функція Кармайкла: $\lambda(n)(\psi(n))$).

$$\lambda(n) = \min\{u : \forall a \in \mathbb{Z}_n^* : a^u \equiv 1 (\mod n)\}$$

Lemma 8.1.1.

$$\forall a \in \mathbb{Z}_n^* : a^{\omega} \equiv 1 \pmod{n} \Rightarrow \omega : \lambda(n)$$

Proof.

Нехай
$$\omega : \lambda(n) \Rightarrow \omega = q \cdot \lambda(n) + r, \ 0 \le r \le \lambda(n)$$
 $1 \equiv a^{\omega} \equiv a^{q \cdot \lambda(n) + r} \equiv (a^{q \cdot \lambda(n)})(a^r) \equiv a^r \pmod{n}$ - Упс!

Lemma 8.1.2.

$$n=p^{lpha},\; p\geq 3 \Rightarrow \exists a\in \mathbb{Z}_n^k:\; 1,\; a,\; a^2,\ldots,\; a^{arphi(n)-1}$$
 - попарно різні лишки

Proof. Доведення буде пізніше

Consequence.

$$\lambda(p^{\alpha}) = \varphi(p^{\alpha})$$

Theorem 8.1.3 (Carmichael).

1.
$$n = p$$

$$\lambda(n) = \begin{cases} \varphi(n), \ n = 2, \ 4, \ p^{\alpha}, \ p \ge 3\\ \frac{1}{2}\varphi(n), \ n = 2, \ \alpha > 3 \end{cases} \qquad (\lambda(p^{\alpha}) = \varphi(p^{\alpha}), \ \lambda(2^{\alpha}) = 2^{\alpha - 1}, \ \alpha = 3$$

2.
$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}$$

$$\lambda(n) = \operatorname{lcm}(\lambda(p_1^{\alpha_1})), \ (\lambda(p_2^{\alpha_2})), \dots, \ (\lambda(p_t^{\alpha_t}))$$

Proof.

2) Нехай
$$a^{\omega} \equiv 1 \pmod{n}, \ \forall a \in \mathbb{Z}_n^* \Rightarrow a^{\omega} \equiv 1 \pmod{p_i^{\alpha_i}} \Rightarrow \omega \ \vdots \ \lambda(p_i^{\alpha_i}) \Rightarrow \min \omega = \operatorname{lcm}(\lambda(p_1^{\alpha_1})), \ (\lambda(p_2^{\alpha_2})), \ldots, \ (\lambda(p_t^{\alpha_t})) = \lambda(n)$$

Example:

$$n = 35 = 5 \cdot 7$$

 $\varphi(35) = 4 \cdot 5 = 24$ $\lambda(35) = \text{lcm}(4, 6) = 12$

$$n = 1000 = 2^3 \cdot 5^3$$

$$\varphi(1000) = \varphi(2^3)\varphi(5^3) = 4 \cdot 100 = 400 \qquad \lambda(1000) \operatorname{lcm}(\lambda(2^3), \lambda(5^3)) = \operatorname{lcm}(2, 100) = 100$$

Лекція 9

9.1 Системи числення

- представлення чисел у вигляді послідовності символів обмеженого алфавіту. (Позиційна) система числення за основою B:

Популярні системи числення: B = 2, B = 10, B = 16

Непозиційні системи:

- 1. римська
- 2. фібоначчієва
- 3. факторіальна

Example:
$$\overline{11010}_2 = 2 + 8 + 16 = 26$$

$$2^n = \underbrace{100 \dots 0_2}_{n}$$

Example: 70 y B = 3

$$70 = 23 \cdot 3 + 1$$

$$23 = 7 \cdot 3 + 2$$

$$7 = 2 \cdot 3 + 1$$

$$2 = 0 \cdot 3 + 2$$

$$70 = \overline{2121}_3$$

9.2 Ознака подільності числа

Theorem 9.2.1 (Pascal's divisibility rule).

$$Hexaŭ n = a_{k-1}a_{k-2}...a_1a_0, m \in \mathbb{N}, \qquad r_0 := 1, r_{i+1}r_1B \mod m$$

$$To\partial i \ n \equiv \sum_{i=0}^{k-1} a_i r_i \pmod{m}, \qquad n \vdots m \Leftrightarrow \sum_{i=0}^{k-1} a_i r_i \vdots m$$

Proof.

$$r_i \equiv B^i \mod m, \ n = a_{k+1}B^{k+1} + \dots + a_1B + a_0 = \sum_{i=0}^{k-1} a_iB^i = \sum_{i=0}^{k-1} a_ir_i \pmod m$$

Remark.

- 1. $n \leq B^k$, $\sum a_i r_i \leq k \cdot m \cdot B$
- 2. Якщо $\gcd(B, m) = 1$, то послідовність (r_i) є періодичною. Період $\leq \lambda(m)$. Якщо $\gcd(B, m) \neq 1$

Example:

$$(B = 10), m = 3$$

 $r_0 = 1$ $r_1 = 10 \cdot 1 \mod 3 = 1 \Rightarrow n \equiv \sum a_i \pmod{3}$

Example:

$$(B = 10), m = 4$$

 $r_0 = 1$ $r_1 = 10 \cdot 1 \mod 4 = 2$ $r_2 = 10 \cdot 2 \mod 4 = 0 \Rightarrow$
 $\Rightarrow n \equiv 2a_i + a_0 \pmod 4$

Example:

$$\begin{array}{ll} (B=10),\ m=7\\ r_0=1 & r_1=10\cdot 1 \mod 7=3 & r_2=10\cdot 3 \mod 7=-1\\ r_4=-3 & r_5=-2 & r_6=1\\ 12345678\equiv 8\cdot 1+7\cdot 3+6\cdot 2-5\cdot 1-4\cdot 3-3\cdot 2+2\cdot 1+1\cdot 3\equiv 2(\mod 7) \end{array}$$

Example:

$$(B = 10), m = 7, 11, 13$$

$$1001 = 7 \cdot 11 \cdot 13 \equiv -1 \begin{pmatrix} 7 \\ \text{mod } 11 \\ 13 \end{pmatrix} \Rightarrow$$

$$\Rightarrow n \equiv \overline{a_2 a_1 a_0} - \overline{a_5 a_4 a_3} + \overline{a_8 a_7 a_6} - \overline{a_{11} a_{10} a_9} + \dots + \begin{pmatrix} 7 \\ \text{mod } 11 \\ 13 \end{pmatrix}$$

$$m = 11 : 10 \equiv -1 \pmod{11}$$

$$n \equiv a_0 - a_1 + a_2 - a_3 + \dots = \sum_{i=0}^{k-1} (-1)^i a_i \pmod{11}$$

Lemma 9.2.2.

1. Якщо
$$m \mid (B-1)$$
, то $n \equiv \sum_{i=0}^{k-1} a_i \pmod{m}$

2. Armo
$$m \mid (B+1), mo \ n \equiv \sum_{i=0}^{k-1} (-1)^i a_i \pmod{m}$$

9.3 Подільність біноміальних коєфіціентів

$$C_n^k = \frac{n!}{k!(n-k)!}$$

Proposition.

p - npocme:

$$C_p^k \mod p = \begin{cases} 1, k = 0, \ p \\ 0, 0 < k < p \end{cases}$$

Proof.

$$C_p^0 = C_p^p = 1$$
 $C_p^k = \frac{p!}{k!(p-k!)} \, \vdots \, p$

Proposition ("біном для дурників").

$$\forall a, b \in \mathbb{Z}, p - npocme (a + b)^p \equiv a^p + b^p \pmod{p}$$

Theorem 9.3.1 (Lucas').

$$p$$
 - $npocme$, $n = \overline{n_{k-1}n_{k-2}\dots n_1n_0}$, $m = \overline{m_{k-1}m_{k-2}\dots m_1m_0}$
$$C_m^n \equiv C_{n_0}^{m_0}C_{n_1}^{m_1}\dots C_{n_{k-1}}^{m_{k-1}}(\mod p)$$

Proof.

$$n = \widetilde{n}p + n_0, \ m = \widetilde{m}p + m_0, \ C_n^m, \ \equiv C_{\widetilde{n}}^{\widetilde{m}}C_{n_0}^{m_0}(\mod p)$$
 Розглянемо біном $\operatorname{coef}[x^m] = C_n^m \ (1+x)^n = (1+x)^{\widetilde{n}p}(1+x)^{n_0} \equiv (1+x^p)^{\widetilde{n}}(1+x)^{n_0} \qquad m = \widetilde{m}p + m_0$ x^m одержуємо $x^{\widetilde{m}p}$ з $(1+x^p)^{\widetilde{n}} \Rightarrow x^{\widetilde{m}}$ з $(1+x)^{\widetilde{n}} \Rightarrow \operatorname{coef}[x^m] = C_{\widetilde{n}}^{\widetilde{m}}C_m^n$

Consequence.

1. Akujo
$$\exists i: m_i > n_i, \ mo \ C_n^m \equiv 0 (\mod p)$$

2.
$$n = p^k = (\underbrace{100...0}_{k})_p$$

$$\forall m: \ 0 < m < p^k \qquad \forall i: \ m_i \neq 0, \ 0 \leq i \leq k \Rightarrow C^m_{p^k} \vdots p$$

Лекція 10

10.1 Лінійні порівняння за модулем

```
ax \equiv \pmod{n}
1. Якщо \gcd(a, n) = 1, то x \equiv a^{-1} \cdot b \pmod{n}
```

```
2. Якщо a\underline{x}=b+nt,\ b=ax-nt Якщо b\stackrel{.}{:}d - розв'язків немає Якщо b\stackrel{.}{:}d, то a=a_1d,\ b=b_1d,\ n=n_1d \gcd(a_1,\ n_1)=1 b_1=a_1x-n_1t\Rightarrow a_1x\equiv b_1(\mod n_1) x_0,\ x_0+n_1,\ x_0+2n_1,\ x_0+(d-1)n_1 - d розв'язків
```

Example:

```
12x \equiv 5 \pmod{25}x \equiv 12^{-1} \cdot 5 \pmod{25} \equiv 15 \pmod{25}
```

Example:

$$12x \equiv 5 \pmod{27}$$
$$\gcd(12, 27) = 3, 5 \vdots 3 \Rightarrow \emptyset$$

Example:

```
12x \equiv 9 \pmod{27}
\gcd(9, 27) = 3, 9 \vdots 9
4x \equiv 3 \pmod{9}
\begin{cases} x_0 \equiv 3 \\ x_0 \equiv 3 + 9 \equiv 12 \\ x_2 \equiv 12 + 9 \equiv 21 \end{cases}
x_0 \equiv 3 \pmod{9}
\begin{cases} x_0 \equiv 3 \\ x_0 \equiv 3 + 9 \equiv 12 \\ x_0 \equiv 3 + 9 \equiv 12
```

10.2 Елементи загальної теорії розв'язування порівнянь

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ - поліном з цілими коєфіцієнтами. $f(x) \equiv 0 \pmod m$

1. Якщо $m = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}$, то

$$f(x) \equiv 0 \pmod{m} \Leftrightarrow \begin{cases} f(x) \equiv (\mod{p_1^{\alpha_1}}) \\ f(x) \equiv (\mod{p_2^{\alpha_2}}) \\ \vdots \\ f(x) \equiv (\mod{p_t^{\alpha_t}}) \end{cases}$$

2. $f(x) \equiv 0 \pmod{p}$ $f(x) \equiv 0 \pmod{p}$ Ta $g(x) \equiv 0 \pmod{p}$

- еквівалентні, якщо множини розв'язків спіспадають

Lemma 10.2.1. $\forall h(x), f(x)$:

$$f(x)\equiv 0(\mod p),\ f(x)-(x^p-x)\cdot h(x)\equiv 0(\mod p)$$
 - еквівалентні
$$\Rightarrow f(x)\equiv 0(\mod p),\ f(x)\mod (x^p-x)\equiv 0(\mod p)$$
 можна розглядати $f:\deg f< p$

Theorem 10.2.2 (Fundamental theorem of arithmetics for \mathbb{Z}_p). $f(x) \in \mathbb{Z}_p[x]$, deg f = n < p

Якщо
$$a_n \, \vdots \, p, \, mo \, f(x) \equiv 0 (\mod p)$$
 ма $e \leq n \, poзe$ 'язків

Proof. MMI за n

- 1. n=1 $a_1x+a_0\equiv 0 \pmod p,\ \gcd(a_1,\ p)=1\Rightarrow$ рівно один розв'язок
- 2. Для усіх поліномів deg $\leq n-1$ вірне $f(x) \equiv 0 \pmod{p}$
 - (а) Якщо розв'язків немає ок
 - (b) Якщо x_0 розв'язок, то $f(x) = (x x_0) \cdot g(x) + f(x_0) \equiv (x x_0) \cdot g(x) \pmod{p}$ g(x) поліном з цілими коєфіцієнтами, $\deg g = n 1$ $coef[x^{n-1}]g = a_n \vdots p \Rightarrow g(x) \equiv 0 \pmod{p}$ має $\leq n 1$ розв'язків

Consequence.

Якщо
$$f(x)=0(\mod p)$$
 ма $e>n$ розв'язків, то $\forall i: a_i : p$

Proof.

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \equiv 0 \pmod{p}$$

$$a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \equiv 0 \pmod{p}$$

$$\vdots$$

$$a_0 \equiv 0 \pmod{p}$$

Theorem 10.2.3 (Wilson).

$$n - npocme \Leftrightarrow ((n+1)! + 1) : n$$

Proof.

- 1. p просте, p>3 $(p-1)!\equiv -1 \pmod{p}$? $f(x)=(x-1)(x-2)(x-3)\dots(x-(p-1))-(x^{p-1}-1)$ degf=p-2, 1, 2, 3,..., p-1 корені $\mod p$ p=2 очевидна
- 2. Нехай $n = a \cdot b$, $! < a < n \Rightarrow (n-1)! \vdots a$ $\Rightarrow (n-1)! + 1 \vdots n$

10.3 Розклад Тейлора для поліномів

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum_{t=0}^n a_t x^t$$

$$f'(x) = f^{(1)}(x) = \sum_{t=1}^{n} a_t t x^{t-1}$$

f'(x) - поліном з цілими коєфіцієнтами $\deg f = n-1$ К-тий похідний поліном: $f^{(k)}(x) = \sum_{t=0}^n a_t t(t-1) \dots (t-k+1) x^{t-k}$

Lemma 10.3.1.

$$\frac{f^{(k)}(x)}{k!} = \sum_{t=k}^{n} C_t^k a_t x^{t-k}$$

$$\frac{t(t-1)\dots(t-k+1)}{k!}\dots\frac{(t-k)!}{(t-k)!} = \frac{t!}{k!(t-k)!}$$

Remark. $f^{(0)}(x) \equiv f(x)$

Theorem 10.3.2 (Taylor series). $\forall f(x) : \forall x_0, \alpha$

$$f(x + \alpha) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} \alpha^k$$

Proof.

$$f(x_0 + \alpha) = \sum_{t=0}^{n} a_t (x_0 + \alpha)^t = \sum_{t=0}^{n} \sum_{k=0}^{t} a_y C_t^k x_0^{t-k} \alpha^k$$

10.4 Поліноміальні порівняння за модулем степеня простого числа (1)

Theorem 10.4.1. f(x) - поліном з цілими коефіцієнтами x_0 .

$$f(x_0) \equiv 0 \pmod{p^k}, f'(x_0) \vdots p$$

Тоді існує единий лишок $x_k : f(x_k) \equiv 0 \pmod{p^k}, x_k \equiv x_0 \pmod{p}, \forall k$

Proof. ММІ за k

- 1. k = 1
- 2. k = 2

нНехай
$$x_k$$
 - задовільняє умовам $f(x_k) \equiv 0 \pmod{p^k}, \ f'(x_k) \stackrel{\cdot}{:} \ p, \ x_k \equiv x_0 \pmod{p}$ $\Rightarrow f'(x_k) \equiv f'(x_0) \pmod{p} \Rightarrow f'(x_k) \stackrel{\cdot}{:} \ p$ Шукаємо $x_{k+1} = x_k + p^k \cdot t, \ 0 \le t \le p-1$ $f(x_{k+1}) \equiv 0 \pmod{p^{k+1}}$ $f(x_k + p^k t) = f(x_k) + f'(x_k) \cdot p^k t + \frac{f''(x_k)}{2!} (p^k t)^2 + \cdots \equiv$ $\equiv f(x_k) + f'(x_k) \cdot p^k t \pmod{p^k} \Rightarrow 0 \equiv f(x_k) + f'(x_k) \cdot p^k t \pmod{p^k}$ $f'(x_k) \cdot t \equiv -\frac{f(x_0)}{p^k} \pmod{p} \Rightarrow$ існує єдине $t \Rightarrow$ існує єдине значення

Лекція 11

11.1 Поліноміальні порівняння за модулем степеня простого числа (2)

Theorem 11.1.1. f(x) - опліном з цілими коефіцієнтами

$$x_0:$$
 $f(x_0) \equiv 0 \pmod{p},$ $f'(x_0) \vdots p$
 $x_k:$ $f(x_k) \equiv 0 \pmod{p^k},$ $x_k \equiv x_0 \pmod{p}$

 $To \partial i$:

1. \mathcal{I}_{κ} $\mathcal{I}_{$

$$f(x) \equiv 0 (\mod p^{k+1}$$
 - не має розв'язків

2. Якщо $f(x_k)p^{k+1}$, то

розв'язками
$$\mod p^{k+1}$$
 е усі числах $_k + p^k t$, $t = \overline{0, p-1}$

Proof.

$$x_{k+1} = x_t + p^k t, \ t = \overline{0, p-1}$$

$$f(x_{k+1}) = f(x_k + p^k t) = f(x_k) + f'(x_k) \cdot p^k t + \dots \equiv f(x_k) \pmod{p^{k+1}}$$

$$f(x_{k+1}) \equiv 0 \pmod{p^{k+1}} \Rightarrow f(x_k) \equiv 0 \pmod{p^{k+1}}$$

Example:

$$x^4 + 7x + 4 \equiv 0 \pmod{27}$$

 $f(x) = x^4 + 7x + 4$ $f'(x) = 4x^3 + 7$

- 1. $f(x) \equiv 0 \pmod{3}$ $x_0 \equiv 1 \pmod{3}$ $f'(1) = 4 + 7 = 11 \equiv -1 \pmod{3}$
- 2. $f(x) \equiv 0 \pmod{9}$ $x_1 = x_0 + 3 \cdot t_0$ $f'(1) \cdot t_0 \equiv -\frac{f(1)}{3} \pmod{3}$ $2t_0 \equiv -4 \equiv 2 \pmod{3}$ $t_0 = 1$ $x_1 = 1 + 3 = 4 \pmod{9}$
- 3. $f(x) \equiv 0 \pmod{27}$ $x_2 = x_1 + 9t_1$

$$f'(4) \cdot t_1 \equiv -\frac{f(4)}{9} \pmod{3}$$

 $263t_1 \equiv -32 \pmod{3}$
 $2t_1 \equiv 1 \pmod{3}$
 $t_1 = \pmod{3}$ $x_2 = 4 + 9 \cdot 2 \equiv 22 \pmod{27}$

11.2 Квадратичні лишки, критерій квадратичності Ойлера

 $ax^2 + bx + c \equiv 0 \pmod{p}$ - квадратичне порівняння. $\Rightarrow x^2 \equiv \alpha \pmod{p}$

Definition 11.2.1. $\alpha \in \mathbb{Z}_p^*$ - квадратичний лишок за $\mod p$, якщо

$$\exists x : x^2 \equiv \alpha \pmod{p}$$

$$\mathbb{Z}_p^* = \{1, 2, 3, \dots, p-1\}, \ \mathbb{Z}_p^* = \{-\frac{p-1}{2}, \dots, -2, -1, 1, 2, \dots, \frac{p-1}{2}\}_{(p>3)},$$

$$Y_p = \{1, 2, \dots, \frac{p-1}{2}\}$$

$$f(x) = x^2 - \alpha$$
 x_0 - корінь, то $(-x_0)$ також корінь

Lemma 11.2.1.

 \mathbb{Z}_p^* має рівно $\frac{p-1}{2}$ квадратичних лишків та $\frac{p-1}{2}$ квадратичних не лішків

Proof.

Квадратичні лишки:
$$(1)^2,\ 2^2,\ 3^2,\dots,\ \left(\frac{p-1}{2}\right)^2\Rightarrow \frac{p-1}{2}$$
 штук Але $0< u< v\leq \frac{p-1}{2}$: $u^2\equiv v^2(\mod p)$ то $x^2\equiv u^2(\mod p)$ має 4 розв'язки $\pm u,\ \pm v\Rightarrow$ квадратичних лишків $\frac{p-1}{2}$ штук

Theorem 11.2.2 (Euler's criterion).

$$Proof.$$
 $a \equiv 0 \pmod{p}$ - очевидно

$$a\not\equiv 0 (mod p) \Rightarrow a^{p-1} \equiv 1 (\mod p) a^{p-1} - 1 = (a^{\frac{p-1}{2}} - 1) (a^{\frac{p-1}{2}} + 1) \equiv 0 (\mod p)$$
 Нехай $a = b^2 \Rightarrow a^{\frac{p-1}{2}} = b^{p-1} \equiv 1 (\mod p)$
$$\frac{p-1}{2} - 1 - \text{ма}\varepsilon \leq \frac{p-1}{2} \text{ коренів, усі квадратичні лишки - корені}$$

11.3 Критерій квадратичності Гаусса

Theorem 11.3.1 (Gauss' criterion). $a \in \mathbb{Z}_p^*, a \cdot Y_p = \{a, 2a, 3a, \dots, \frac{p-1}{2}a\}, l$ - кількість від'ємних лишків у $a \cdot Y_p$

$$(-1)^l = \left\{ egin{array}{ll} 1, & a$$
 - квадратичний лишок $-1, & a$ - квадратичний нелишок

$$\begin{array}{l} Proof. \\ \forall u \in Y_p: \ lu \in \{0,\ 1\}, \ r_u \in Y_p, \ a \cdot u \equiv (-1)^{lu} \cdot r_u (\mod p) \\ u \not\equiv v \Rightarrow r_u \not\equiv r_v (\mod p) \\ \begin{cases} u \not\equiv v \\ r_u \equiv r_v \end{cases} \Rightarrow \begin{cases} au \not\equiv av \\ r_u \equiv r_v \end{cases} \Rightarrow au \equiv av (\mod p) \\ a(u+v) \vdots p, \ \text{ane} \ 0 < \frac{u}{v} \leq \frac{p-1}{2} \Rightarrow 0 < u+v \leq p-1 < p \Rightarrow u+v \vdots p \text{- Ync!} \end{cases} \Rightarrow \begin{cases} (a\cdot 1)(a\cdot 2)(a\cdot 3) \dots (a\frac{p-1}{2}) \equiv (-1) \end{cases} \Rightarrow \begin{cases} (a\cdot 1)(a\cdot 2)(a\cdot 3) \dots (a\frac{p-1}{2}) \equiv (-1) \end{cases} \Rightarrow (-1)^l (\mod p) \end{cases}$$

Лекція 12

12.1 Символ Лежандра та його властивості

 $x^2 \equiv a \pmod{p}, \ p \geq 3$ - просте

Definition 12.1.1. Символ Лежандра -

$$\left(\frac{a}{p}\right) = \left\{ \begin{array}{ll} 1, & a - \kappa в a \partial p a m u ч h u \ddot{u} \ n u m o \kappa \\ -1, & a - \kappa в a \partial p a m u ч h u \ddot{u} \ h e n u m o \kappa \\ 0, & a \vdots p \end{array} \right.$$

Ойлер:
$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$$

 $\Gamma aycc: \left(\frac{a}{p}\right) \equiv (-1)^l$

Property.

1.
$$\left(\frac{a}{p}\right) = 1$$
, $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$,
 $p = 4k + 3: \left(\frac{-1}{p}\right) = -1$, $p = 4k + 1: \left(\frac{-1}{p}\right) = -1$

2.
$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$$
 $\left(\frac{a^2}{p}\right) = 1, \qquad \left(\frac{ab^2}{p}\right) = \left(\frac{a}{p}\right)$

3.
$$\left(\frac{2}{p}\right) = (-1)^{\frac{p-1}{8}}$$

$$p = 8k \pm 1 = \left(\frac{2}{p}\right) = 1, \qquad p = 8k \pm 3\left(\frac{2}{p}\right) = -1$$

4. Закон квадратичноЇ взаємодії Гаусса

$$p, q$$
 - непарні прості, $\left(\frac{p}{q}\right) = (-1)^{\frac{p-1}{2}}(-1)^{\frac{q-1}{2}}\left(\frac{q}{p}\right)$

12.2 Символ Якобі та його властивості

n - непарне, a - довільне

Definition 12.2.1. Символ Якобі

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right)^{\alpha} \left(\frac{a}{p_2}\right)^{\alpha} \dots \left(\frac{a}{p_t}\right)^{\alpha}$$

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}, \ \left(\frac{a}{n}\right) \in \{-1, 1, 0\}, \ \left(\frac{a}{n}\right) = 0 \Leftrightarrow \gcd(a, n) \neq 1,$$
 $\left(\frac{a}{n}\right) = -1 \Leftrightarrow a - kb$ квадратний нелишок $\mod n, \ \left(\frac{a}{n}\right) = 1 \Leftrightarrow ?$

Property.

1.
$$\left(\frac{1}{n}\right) = 1$$
, $\left(\frac{-1}{n}\right) = (-1)^{\frac{n-1}{2}}$

$$2. \left(\frac{a \cdot b}{n}\right) = \left(\frac{a}{n}\right) \left(\frac{b}{n}\right)$$

3.
$$\left(\frac{2}{n}\right) = (-1)^{\frac{n^2 - 1}{8}}$$

4.
$$\left(\frac{a}{n}\right) = (-1)^{\frac{a-1}{2}} \frac{n-1}{2} \left(\frac{a}{n}\right), \quad a, n - \text{непарнi}$$

Example:

$$x^{2} \equiv 59 \pmod{97}$$

$$\left(\frac{59}{97}\right) = (-1)^{\frac{59-1}{2}} \frac{97-1}{2} \left(\frac{59}{97}\right) = (-1)^{\frac{a-1}{2}} \frac{n-1}{2} \left(\frac{38}{29}\right) = \left(\frac{2}{29}\right) \left(\frac{19}{29}\right) = (-1) \left(\frac{19}{59}\right) = (-1)(-1)^{\frac{19-1}{2}} \frac{59-1}{19} = (-1)^{\frac{19-1}{2}} \frac{59-1}{19} = (-1)^{\frac{19-$$

$$= (+1)\left(\frac{2}{19}\right) = -1$$

Вступ до абстрактної алгебри

(Introduction to Abstract algebra)

Лекція 1

13.1 Алгебраїчні системи з однією операцією

$\mathcal{A}, \cdot (\mathcal{A} \times \mathcal{A} \to \mathcal{A})$

Операція · - замкнена на множині \mathcal{A} , бо вона приймає аргументи з множини \mathcal{A} і повертає значення з цієї множини

 $B \subseteq \mathcal{A}$, якщо $\forall b_1, b_2 \in B : b_1 \cdot B_2 \in B - B$ замкнена відносно \cdot, \mathcal{A} - не порожня.

Definition 13.1.1.

 $\langle \mathcal{A}, \, \cdot \rangle$ - алгебраїчна система з однією операцією

Property (можливі).

- 1. acoujamusність: $\forall a, b, c \in \mathcal{A} : a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 2. комутативність: $\forall a, b \in \mathcal{A} : a \cdot b = b \cdot a$
- 3. нейтральний елемент: $e_L \in \mathcal{A}$ лівий нейтральний $\Leftrightarrow \forall a \in \mathcal{A}: e_L \cdot a = a$ $e_R \in \mathcal{A}$ правий нейтральний $\Leftrightarrow \forall a \in \mathcal{A}: a \cdot e_R = a$ $e \in \mathcal{A}$ нейтральний \Leftrightarrow одночасно лівий і правий
- 4.
 "нуль": $z_L \in \mathcal{A}$ лівий нуль $\Leftrightarrow \forall a \in \mathcal{A}: z_L \cdot a = z_L$ $z_R \in \mathcal{A}$ правий нуль $\Leftrightarrow \forall a \in \mathcal{A}: a \cdot z_R = z_R$ $z \in \mathcal{A}$ нейтральний \Leftrightarrow одночасно лівий і правий
- 5. наявність обернениз елементів: (за умови наявность нейтрального!) $a \in \mathcal{A}$ має лівий обернений $a_L^{-1}: a_L^{-1} \cdot a = e$ $a \in \mathcal{A}$ має лівий обернений $a_R^{-1}: a \cdot a_R^{-1} = e$ $a^{-1} \in \mathcal{A}$ оберенений до $a \in \mathcal{A}$. якщо $a \cdot a^{-1} = a^{-1} \cdot a = e$

Definition 13.1.2.

 $\langle \mathcal{A}, \cdot \rangle$ - напівгрупа, якщо операція \cdot - асоціативна

Definition 13.1.3.

 $\langle \mathcal{A}, \cdot \rangle$ - моноїд, якщо \cdot - асоціативна, $\exists e \in \mathcal{A} \ \forall a \in \mathcal{A} : e \cdot a = a \cdot e = a$

Definition 13.1.4.

$$\langle \mathcal{A}, \cdot \rangle$$
 - група, якщо вона моноїд і $\forall a \in \mathcal{A} \ \exists a^{-1} \in \mathcal{A}: \ a \cdot a^{-1} = a^{-1} \cdot a = e$

Remark.

 \cdot - комутативна \Rightarrow комутативна напівгрупа комутативний моноїд абелева група

Remark.

Форми запису:

Mулітиплікативна Aдитивна $a \cdot b$ a + b $a^n, n \in \mathbb{Z}$ $n \cdot a, n \in \mathbb{Z}$ a^{-1} -a "множення" "додавання"

13.2 Приклади алгебраїчних систем з однією операцією

Example:

 $\langle \mathbb{N}, + \rangle$ - комутативна напівгрупа, $\langle \mathbb{N}_0, + \rangle$ - комутативний моноїд, $\langle \mathbb{Z}, + \rangle$ - абелева група, $\langle \mathbb{N}, - \rangle$ - не алгебраїчна система, $\langle \mathbb{Z}, + \rangle$ - не напівгрупа, $\langle \mathbb{N}, \cdot \rangle$ - комутативний моноїд, $\langle \mathbb{Z}, +\cdot \rangle$ - комутативний моноїд, $\to 1^n = 1, (-1)^{-1} = -1$ $\langle \mathbb{Q}, \cdot \rangle$ - комутативний моноїд, $\mathbb{Q}^* = \| \setminus \{0\} \Rightarrow \langle \mathbb{Q}^*, \cdot \rangle$ - абелева группа, $\langle \mathbb{Z}_{>}, + \mod m \rangle$ - абелева група, $\langle \mathbb{Z}_{>}, \cdot \mod m \rangle$ - комутативний моноїд, $\langle \mathbb{Z}_{>}^*, + \mod m \rangle$ - абелева група $Mat_{n\times m}(\mathbb{R})$: за додаванням - абелева група за множенням - моноїд $\mathcal{G}L_n(\mathbb{R}) = \{M \in M_{a+n \times m}(\mathbb{R}) | \det M \neq 0 \}$ - загальна лінійна група $X^X = \{f \mid f: X \to X, \; \langle X^X, \; \circ \rangle$ - моноїд Sym(X) - множина бієктивних відображень $\Rightarrow \langle Sym(X), \circ \rangle$ - група(симетрична група підстановок на X) $\langle 2^A, \cup \rangle$ - комутативний моноїд, \emptyset - нейтральний $\langle 2^A, \setminus \rangle$ - не напів група, $(B \setminus C) \setminus D \stackrel{?}{=} B \setminus (C \setminus D)$ $\langle 2^*, \Delta \rangle$ - абелева група, $A \Delta \varnothing = A, A = A^{-1}$ $\langle A^*, \parallel \rangle$ - моноїд

13.3 Властивості елементів моноїдів. Циклічні моноїди

 $\langle \mathcal{M}, \, \cdot
angle$ - моноїд

Lemma 13.3.1.

 $Y \mathcal{M}$ існує лише одін нейтральний елемент

Proof. Нехай e_1, e_2 - нейтральні елементи

$$\forall g \in \mathcal{M}: g = e_1 \cdot g = e_2 \cdot g$$

 $\Rightarrow e_1 = e_2$ HE MOXHA!!!

/ * Cka

Скорочуваність - теж властивіть. Вона може бути, а може і не бути. І опки ви не доведете, використовувати її не можна.

*/

 $e_1 = e_1 \cdot e_2 = e_2$ (аксіома про нейтральний елемент)

Lemma 13.3.2.

Якщо $a \in \mathcal{M}$ має лівий та правий обернені елменти, то вони співпадают

$$\begin{array}{lll} \textit{Proof.} & a_l^{-1}, \ a_R^{-1}: & a_L^{-1} \cdot a \cdot a_R^{-1} = a_L^{-1} \cdot e = a_L^{-1} \\ & a_L^{-1} \cdot a \cdot a_R^{-1} = a_R^{-1} \cdot e = a_R^{-1} \end{array} \qquad \Box$$

Lemma 13.3.3.

Якщо $a \in \mathcal{M}$ - оборотний, то він має рівно один обернений елмент

Proof.

Definition 13.3.1. *Cmenih елемента* $a \in \mathcal{M}$:

$$a^0 = e, \ a^1 = a, \ a^{n+1} = a^n \cdot a, \ n \ge 1$$

$$\langle a \rangle = \{e, a, a^2, \dots\} = \{a^n \mid n \in \mathbb{N}\}\$$

 \mathcal{M} - цикліччний моноїд $\Leftrightarrow \exists g: \mathcal{M} = \langle g \rangle \Rightarrow g$ - твірний елемент/генератор

Theorem 13.3.4.

$$\forall a \in \mathcal{M}, \ \forall m, \ n \in \mathbb{N}_0: \ a^m \cdot a^n = a^{m+n}$$

Proof. MMI:

$$\forall m$$
 - фіксоване: $n=0$ (база): $a^m \cdot a^0 = a^m \cdot e = a^m = a^{m+0}$ $n \to n+1$ $a^m \cdot a^{n+1} = a^m \cdot a^n \cdot a = a^{n+m} \cdot a = a^{m+n+1}$

🖨 Ціклічні моноїди - комутативні

Fact.

Існує фактично один нескінченний циклічний моноїд: $\langle \mathbb{N}_0, + \rangle$

$$\mathcal{M} = \langle g \rangle : g^k \mapsto k$$

$$Hexaŭ ichye \ \mathcal{M} = \langle g \rangle, \ | \mathcal{M} | < \infty$$

$$\Rightarrow \exists \min g : g^s = g^m, \ m < s$$

$$\Rightarrow \exists \min g : g^s = g^m, \ m < s$$

$$\langle 2 \rangle \in \mathbb{Z}_{20} \ \textit{3a} \cdot \langle 2 \rangle = \{ \overbrace{1, 2}, \overbrace{4, 8, 16, 32} \} \sim C_{2, 4}$$

CHAPTER 14

Лекція 2

14.1 Властивості елементів груп. Циклічні групи

 $\langle G, \cdot \rangle$ - замкненість

- асоціативність

- В нейтральний елемент

- $\forall a \ \exists a^{-1} : a \cdot a^{-1} = a^{-1} \cdot a = e$

Property.

1. Правило скорочення:

 $\forall a, x, y \in G:$ $ax = ay \Rightarrow x = y, xa = ya \Rightarrow x = y$

2. $\forall a, b \in G:$ $ax = b \\ ya = b$ - мають единий розв'язок

Proof.

(a) $x = a^{-1}b$: $ax = a(a^{-1} \cdot b) = (a \cdot a^{-1})b = e \cdot b = b \Rightarrow$ - розв'язок

(b) Нехай $x_1,\; x_2$ - розв'язки $ax=b \qquad \Rightarrow b=ax_1=ax_2 \Rightarrow x_1=x_2$

3.

Proposition. $\forall a, b \in G$

(a) $e^{-1} = e$

(b) $(a^{-1})^{-1} = a$

 $(c) (ab)^{-1} = b^{-1}a^{-1}$

 $(d) \ \forall \in \mathbb{Z}: \ (a^{-1})^m = (a^m)^{-1}$

Proof.

(c) $(ab)^{-1} \cdot \underbrace{(ab)}_{x} = e$, $(ab)^{-1} \cdot a \cdot b \cdot b^{-1} = (ab)^{-1} \cdot a = e \cdot b^{-1} = b^{-1}$, $(ab)^{-1} = b^{-1} \cdot a^{-1}$

4.

Theorem 14.1.1. $\forall a \in G, \ \forall m, \ n \in \mathbb{Z}$:

$$a^m \cdot a^n = a^{m+n}, \qquad (a^m)^n = a^{mn}$$

Proof.

(a)
$$a^m \cdot a^n = a^{m+n} : \quad (1) \ m, \ n > 0 \text{ - доведено для } \forall \text{ моноїд}$$

$$(2) \ n, \ m < 0 \text{ - } a^m \cdot a^n = (a^{-1})^{-m} (a^{-1})^{-n} \text{ - див. II. } (1)$$

$$m > 0 \qquad a^m a^n = a^m (a^{-1})^t = \underbrace{aaa \dots a}_{m} \underbrace{a^{-1}a^{-1} \dots a^{-1}}_{t}$$

$$(3) \ n < 0 \qquad m \geq t := a^{m-t} = a^{m+n}$$

$$t = -n < 0 \quad m < t := (a^{-1})^{t-m} = a^{m-t} = a^{m+n}$$

$$(4) \ m < 0, \ n > 0 \text{ - аналогічно}$$

(b)

$$n \ge 0$$
: $(a^m)^n = a^m \cdot a^m \cdot \dots \cdot a^m = a^{mn}$
 $n < 0$: $(a^m)^n = ((a^m)^{-1})^{-n} = ((a^{-1})^m)^{-n} = (a^{-1})^{-mn} = a^{mn}$

Fact. *Циклічні групи*

$$G$$
 - циклічна $\Leftrightarrow \exists g: G = \langle g \rangle$

 \Rightarrow yci циклічні групи зводятся до $\langle \mathbb{Z}, + \rangle$

yci циклічні групи зводятся до $\langle \mathbb{Z}_m, + \rangle$

14.2 Порядок групи, порядок елементу групи. Підгрупи

Lemma 14.2.1.

$$\langle G, \cdot \rangle, \ a \in G, \ \langle a \rangle$$
 - скінченна $\Rightarrow \langle a \rangle$ н містить передпорядку

Proof.

Definition 14.2.1. $\langle a \rangle$

- орбіта елемента а

Definition 14.2.2. ord G

Порядок групu = |G|

Definition 14.2.3. ord a

Порядок елемент
$$y = |\langle a \rangle|$$

Якщо $\exists n \in \mathbb{N} : a^n = e, mo \text{ ord } a = \min\{n \mid a^n = e\}, iнакшe \text{ ord } a = \infty$

Example:

$$\operatorname{ord} e = 1, \qquad \operatorname{ord} a = 1 \Leftrightarrow a = e$$

Example:

$$\langle \mathbb{Z}, + \rangle$$
: ord $0 = 1$, ord $1 = \infty$
 $\langle \mathbb{Z}_4, + \rangle$: ord $0 = 1$, ord $1 = 4$, ord $2 = 2$

Lemma 14.2.2.

Якщо $g \in G$ мае скінченний порядок: ord $g^u = n < \infty$, то $g = e \Leftrightarrow u : n$

Proof.

$$\bigoplus u = k \cdot n \Rightarrow g^u = (g^n)^k = e^k = e$$

$$\oplus$$
 Нехай u : $n \Rightarrow u = nq + r, \ 0 < r < n$ $e \cdot g^u = (g^n)^q \cdot g^r = e^q \cdot g^r = g^r \Rightarrow n$ - не порядок g - Упс!

Definition 14.2.4. Πίθεργητα

$$H \subseteq G$$
 - $nidepyna\ G \Leftrightarrow H$ - $epyna$

$$\langle H, \cdot \rangle$$
 — замкненість — асоціативність — наявність е — наявність обернених

Example:

$$\langle \mathbb{Z}, + \rangle$$
: $2\mathbb{Z}$ - підгрупа $n\mathbb{Z} = \{nm \mid m \in \mathbb{Z}\}$ - підгрупа $2\mathbb{Z} + 1$ - не підгрупа (не замкнена) \mathbb{Z}_n - підгрупа \mathbb{Z}

Example:

$$\mathcal{S}L_n(\mathbb{R})\subseteq\mathcal{G}L_n(\mathbb{R}),\,\mathcal{S}L_n(\mathbb{R})=\{M\in\mathcal{G}L_n(\mathbb{R})\mid\det M=1\}$$
 - спеціальна підгрупа

Тривіальні підгрупи: $\{e\}$, G, інші пігрупи - власні

Proposition.

$$H \subseteq G - \Leftrightarrow \forall a, b \in H : a \cdot b^{-1} \in H$$

14.3 Класи суміжності, індекс підгрупи, теорема Лагранжа та наслідки з неї

Definition 14.3.1. Hexaŭ $\langle G, \cdot \rangle$ - $\epsilon pyna, H \subseteq G$ - $ni\partial \epsilon yna$

Елементи $g_1, g_2-(\text{ліво})$ конгуретні відносно $H: g_1 \equiv g_2 \pmod{n} \Leftrightarrow g_1^{-1} \cdot g_2 \in H \Leftrightarrow \exists h \in H: g_2 = g_1 \cdot h, \ g_1 = g_2 \cdot h^{-1}$ (право) конгурентні $\longrightarrow g_1 \cdot g_2^{-1} \in H \ \exists h \in H: g_2 = h \cdot g_1$

Lemma 14.3.1.

 $\equiv \mod H \leftarrow g_1 \underset{H}{\sim} g_2 \ (\mathit{відношення}\ \mathit{еквівалентності}\ \mathit{на}\ G)$

лівий клас суміжності $g \in G$: $gH = \{gh \mid h \in H\}$ правий : $Hg = \{hg \mid h \in H\}$ $\Rightarrow G \bigcup_{g \in G} gH$

Proposition. усі класи суміжно рівнопотужні

$$\forall g \in G \qquad |gH| = |H|$$

Ргооf. Розглянемо відображення $fg: H \to gH$ $fg(x) = g \cdot x$ — сюр'єктивне за побудовою gH — ін'єктивне: $x_1, x_2 \in H$ $fg(x_1) = fg(x_2), \ g \cdot x_1 = g \cdot x_2, \ x_1 = x_2$ ⇒ fg - бієкція ⇒ |gH| = |H|

Definition 14.3.2.

Індекс пігрупи H у групі $G: [G:H] = \kappa$ ількість різник класів суміжності

G — скінченна \Rightarrow індекс скінченний G — не скінченна \Rightarrow що завгодно

Example:

$$[G:\{e\}] = |G|, [G:G] = 1, \langle \mathbb{Z}, + \rangle, H = n\mathbb{Z}, [\mathbb{Z}:n\mathbb{Z}] = n$$

Theorem 14.3.2 (Lagrange).

$$|G| = [G:H] \cdot |H|$$
, якщо G - скінченна

Proof.
$$G = \bigcup_{g} |gH| = \#$$
класів сумижності $\cdot |H| = [G:H] \cdot |H|$

Consequence. $Hexaŭ |G| = n < \infty$

- 1. $\forall H$ $ni\partial zpyna: n : |H|$
- 2. $\forall q \in G : n : \text{ord } q$

$$\textit{Proof.} \text{ ord } g = |\langle g \rangle|, \; \langle g \rangle$$
 - підгрупа G

- 3. $\forall g \in G : g^n = e$
- 4. \forall група простого порядку ϵ циклічною

Proof.
$$|G|=p,\ p\geq 2$$
 - просте, $\exists g+e\Rightarrow \operatorname{ord} g\mid p,\ \operatorname{ord} g\neq 1\Rightarrow \operatorname{ord} g=p\Rightarrow \Rightarrow |\langle g\rangle|=p\Rightarrow |\langle g\rangle|=G$

Theorem 14.3.3 (Sylow).

$$|G|=n,\ n$$
 - складене, $p^{\alpha}\mid n,\ p$ - просте $\Rightarrow \exists H\subseteq \$ - підгрупа, $|H|=p^{\alpha}$

Theorem 14.3.4.

G - нециклічна скінченна абелева група, $|G|=n\Rightarrow \exists u\mid n,\ u< n:\ \forall g\in G:\ g^u=e$ Для $\langle \mathbb{Z}_m^*,\ \cdot \rangle$ число u визначається функцією Кармайкла $\lambda(m)$

Лекція 3

15.1 Властивості циклічних груп та їх елементів

 $G = \langle g \rangle = \{ g^k \mid k \in \mathbb{Z} \}$

Генератор групи - довільне g' $G = \langle g' \rangle$

Lemma 15.1.1.

$$\forall H \subseteq G$$
 - $ni\partial rpyna$: H - $uuклiчнa$

Proof. H - тривіальна - то очевидно ($H = \{e\}$ - ок, H = G - за умови) H - не тривіальна $\Rightarrow \exists g^k \in H, \ g^k \neq e \Rightarrow H$: містить: $g^k : g^{-k} \Rightarrow \exists k > 0 : \ g^k \in H$ Нехай $s = \min\{k > o : g^k \in H\} \Rightarrow \langle g^k \rangle \subseteq H : ? \subseteq \langle g^k \rangle$

$$\forall t:\ g^t \in H \Rightarrow t \ \vdots \ s$$

Нехай
$$t$$
:, тоді $t=sq+r,\ 0< t< s\Rightarrow g^r=g^{t-sq}=g^t\cdot (g^s)^{-q}\in H$ - Упс!
$$\Rightarrow t: s\Rightarrow g^t=(g^s)^q\subseteq \langle g^s\rangle\Rightarrow H\subseteq \langle g^s\rangle$$

Lemma 15.1.2.

ord
$$g^k = \frac{n}{\gcd(n, k)}$$
, skujon = $|G| < \infty$

Proof. ord $g^k = \min\{U>0 \ : \ \left(g^k\right)^u = e\} \Rightarrow ku \ : \text{ ord } g \Rightarrow ku \ : n.$ Нехай $d = \gcd(k, \, n)$

$$k = k_1 \cdot d \qquad k_1 \cdot d \cdot u \vdots u$$

$$\gcd(k_1, n) = 1 \qquad d \cdot u \vdots n$$

$$\Rightarrow \min u = \frac{n}{d} \Rightarrow \operatorname{ord} g^k = \frac{n}{d} = \frac{n}{\gcd(n, k)}$$

Consequence.

 Γ рупа G містить $\varphi(n)$ генераторів

Lemma 15.1.3.

Якщо
$$d=\gcd(n,\ k),\ mo\ \langle g^k\rangle=\langle g^d\rangle$$

Proof. З одного боку,
$$k : d \Rightarrow g^k = (g^d)^m \in \langle g^d \rangle \Rightarrow \langle g^k \rangle = \langle g^d \rangle$$
 З іншого боку, ord $g^k = |\langle g^k \rangle| = \frac{n}{d}$, ord $g^d = |\langle g^d \rangle| = \frac{n}{\gcd(n, d)} = \frac{n}{d} \Rightarrow$ $\Rightarrow |\langle g^k \rangle| = |\langle g^d \rangle| \Rightarrow \langle g^k \rangle = \langle g^d \rangle$

Consequence.

Усі підгрупи G однакового порядку співпадають

Proof.
$$|\langle g^k \rangle| = |\langle g^M \rangle| \Rightarrow \operatorname{ord} g^k = \operatorname{ord}^M \Rightarrow \gcd(n, k) = \gcd(n, M) = d$$

 $\Rightarrow \langle g^k \rangle = \langle g^d \rangle = \langle g^M \rangle$

15.2 Стуруктура циклічних груп

Proposition. $G = \langle g \rangle, \ |G| = n < \infty$

 $\forall d \mid n : -i$ снуе единна підгрупа індексу d

- $icну \epsilon \epsilon \partial u$ нна $ni \partial r pyna nopя <math>\partial \kappa y d$

- існує рівно $\varphi(d)$ елементів порядку d

Proof.

1.
$$d\mid n\Rightarrow\langle g^d\rangle$$
 - підгрупа порядку $\frac{n}{d}\Rightarrow [G:\,\langle g^d\rangle=\frac{n}{n/d}-d$

2.
$$d' = \frac{n}{d} \,: | > \langle g^{d'} \rangle$$
 - підгрупа порядку d

3. елементи порядку d - генератори $\langle g^{d'} \rangle \Rightarrow \exists \varphi(d)$ генераторів

Consequence.

$$\sum_{d \mid n} \varphi(d) = n$$

15.3 Нормальні підгрупи

Definition 15.3.1. $H \triangleleft G$

$$H \subseteq G$$
 - нормальна $\Leftrightarrow \forall g \in G, \forall h \in H: ghg^{-1} \in H$

У абелевої групи усі підгрупи нормальні

Theorem 15.3.1 (equivalent conditions).

- (1) $H \triangleleft G$
- $(2) \ \forall g \in G: \ gHg^{-1} = H$
- $(3) \ \forall g \in G: gH = Hg$

Proof.

- $(1)\sim(2)$ за означенням : $gHg^{-1}\subseteq H$: $H?\subseteq gHg^{-1}$: $\forall h\in H$: $\exists h'\in H$: $h=gHg^{-1}$ Нехай $h'=g^{-1}\cdot h\cdot g\in H$ з означення нормальності для g^{-1} Тоді $gh'g^{-1}=gg^{-1}hgg^{-1}=h$
- $(2) \sim (3) qHq^{-1} = H \Leftrightarrow qH = Hq$

Введемо $G/H=\{gh\mid g\in G\}$ - множина усіх класів суміжності. $\langle G,\cdot\rangle\Rightarrow\langle G/H,\cdot\rangle$. $(g_1H)\cdot(g_2H)=(g_1g_2)H$ fg(x)=gx hg(x)=xq

15.4 Факор-групы

Theorem 15.4.1.

Якщо
$$H \triangleleft G$$
, то $\langle G/H, \cdot \rangle$ - група (фактор-група)

Proof.

- замкненість з побудови
- успадкування з $\langle G, \cdot \rangle$
- нейтральний елемент : eH = H
- оберенений елемент : $(gH)^{-1} = (g^{-1})H$ де пастка?

$$(g_1H)\cdot(g_2H)=(g_1g_2)H$$
 – не факт, що · - операція $(a_1H)\cdot(a_2H)=(a_1a_2)H$

Треба довести, що
$$\left\{\begin{array}{ll} a_1\equiv a_2 \mod H \\ b_1\equiv b_2 \mod H \end{array}\right. \Rightarrow a_1b_1\equiv a_2b_2 \mod H$$

$$\exists h_{a_1},\ h_{a_2} \in H:\ a_1 = h_a \cdot a_2 \Rightarrow a_1b_1 = h_1 \cdot a_2 \cdot h_b \cdot b_2$$
 Але: H - нормальна підгрупа $\Rightarrow a_2H = Ha_2 \Rightarrow \exists h_c:\ a_2h_b = h_ca_2 \Rightarrow a_1b_1 = h_ah_c \cdot a_2b_2 \Rightarrow a_1b_1 \equiv a_1b_1 \equiv a_2b_2 \mod H$

15.5 Морфізми алгебраїчних структур

Definition 15.5.1. $\langle S, \cdot \rangle$, $\langle A, \times \rangle$ - алгебраїчні структури

Гомоморфізм: $f: S \to A, \ \forall a, \ b \in S: \ f(a \cdot b) = f(a) \times f(b)$

 $S \sim A$ ізоморфні структури

З точки зору абстрактної алгебри ізоморфні структури співпадають:

властивості, які випливають з аксіом, співпадають:

- існує єдина група порядку 2 (з точністю до ізоморфізму)
- існує єдина нескінченна циклічна група (з точністю до ізоморфізму)

Definition 15.5.2.

Розділяемо гомоморфізм моноїдів та груп.

Ендоморфізм: гоморфізм алгеброїчною структури саму на себе.

Автоморфізм: бієктивний ендоморфізм.

Fact. $\forall S$ - μ aniespyna

множина $\ddot{i}\ddot{i}$ автоморфізмів утворює группу $\langle Aut(S), \circ \rangle$

Поняття нормальності підгрупи пов'язане з внутрішнім автоморфізмами $\varphi_a(x) = a \times a^{-1}$

Example:

$$\langle \mathbb{R}, + \rangle, \langle \mathbb{R}^+, \cdot \rangle \qquad \mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$$

$$f(x) = e^x : f(x+y) = e^{x+y} = e^x \cdot e^y = f(x) \cdot f(y)$$

$$f^{-1}(x) = \ln x \Rightarrow f \text{ - iзоморфізм}$$

Example:

 $f(a)=a\mod n$: гомоморфізм $\langle \mathbb{Z}, + \rangle$ на $\langle \mathbb{Z}_n, + \rangle$, $\langle \mathbb{Z}, \cdot \rangle$ на $\langle \mathbb{Z}_n, \cdot \rangle$ сюр'єктивне \Rightarrow епіморфізм

Example:

 $\det:\ Mat_{n\times n}(\mathbb{R}) o \mathbb{R}$ - гомоморфізм за множенням

$$\det \left[egin{array}{cc} a & 0 \\ 0 & \ddots \end{array}
ight] = a$$
 - епіморфізм

 $\det: Mat_{n imes n}(\mathbb{R}) o \mathbb{C}$ - не епіморфізм

CHAPTER 16

Лекція 4

16.1 Теорема про гомоморфізм груп

Lemma 16.1.1. $\langle G, \; \cdot \rangle, \; \langle H, \; \times \rangle, \; f:G \to H$ гомоморфізм груп

(1)
$$f(e_G) = e_H$$

(2) $f(a_G^{-1}) = (f(a_H))^{-1}$

Proof.

$$(1) \ \forall a \in G: \ f(a \cdot e_G) = f(a) \times f(e_H) = e_H = f(e_G)$$

Definition 16.1.1. \mathcal{A} *дро гомоморфізму*

$$\ker f = f^{-1}(e_H) = \{ a \in G : f(a) = e_h \}$$

Definition 16.1.2. Образ гомоморфізму

Im
$$f = f(G) = \{b \in H \mid \exists a \in G : f(a) = b\}$$

Example:

$$f(a) = a \mod n,$$
 $f: \mathbb{Z} \to \mathbb{Z}_n$
 $\Rightarrow \ker f = n\mathbb{Z}, \operatorname{Im} f = \mathbb{Z}_n$

Example:

$$\det : \mathcal{G}L_n(\mathbb{R}) \to \mathbb{R}$$
$$\ker(\det) = \{A \mid \det A = 1\} = \mathcal{S}L_n(\mathbb{R}), \operatorname{Im}(\det) = \mathbb{R} \setminus \{0\}$$

Theorem 16.1.2 (group homomorphism).

$$\langle G, \cdot \rangle, \langle H, \times \rangle, f: G \to H$$
 гомоморфізм груп

- (1) ker f нормальна $ni\partial rpyna$ G
- (2) $G/\ker f \sim \operatorname{Im} f$

Proof.

(1)
$$? \forall g \in G, \forall a \in \ker f : gag^{-1} \in \ker f : f(gag^{-1}) = f(g) \times f(a) \times f(g^{-1}) = f(g) \times e_H \times (f(g))^{-1} = f(g) \times (f(g))^{-1} = e_H \Rightarrow gag^{-1} \in \ker f$$

- (2) $K = \ker f$: побудуємо ізоморфізм $\psi: G/K \to \operatorname{Im} f, \ \psi(gK) := f(g)$
 - (a) коректність: $g_1 \equiv g_2 \pmod{K} \Leftrightarrow \psi(g_1) = \psi(g_2) \iff f(g_1) = f(g_2)$ $\exists a \in K : g_1 = a \cdot g_2, \ \psi(g_1k) = f(g_1) = f(a \cdot g_2) =$ $= f(a) \times f(g_2) = e_H \times f(g_2) = f(g_2)$
 - (b) гомоморфізм з побудови: $\psi(g_1k\cdot g_2k)=g(g_1g_2)=f(g_1)\times f(g_2)==\psi(g_1k)\times \psi(g_2k)$
 - (c) сюр'єктивність з означення $\operatorname{Im} t$
 - (d) ін'єктивність: $\psi(g_1k) = \psi(g_2k) \Rightarrow f(g_1) = f(g_2) \Rightarrow f(g_1) \times (f(g))^{-1} = e_H \Rightarrow f(g_1 \cdot g_2^{-1}) = e_H, \ g_1 \cdot g_2^{-1} \in K \Rightarrow g_1 = g_2 \pmod{K}$ $\Rightarrow \psi$ ізоморфізм

Proposition.

Якщо
$$H \triangleleft G$$
, то відображення $\varphi: G \rightarrow G/H$ - гомоморфізм $\varphi(g):=gH$ $\ker \varphi=H$

16.2 Кільця

 $\langle A, +, \cdot \rangle, + =$ "додавання", $\cdot =$ "множення"

Definition 16.2.1. $\langle \mathcal{R}, +, \cdot \rangle$

- кільце $\hspace{1cm} ext{(1)} \langle \mathcal{R}, +
 angle \hspace{1cm}$ абелева група
 - $(2) \langle \mathcal{R}, \cdot \rangle$ напівгрупа
 - (3) дистрибутивність: $\forall a, b \in \mathbb{R}$: $(a+b) \cdot c = a \cdot c + b \cdot c$ $c \cdot (a+b) = c \cdot a + c \cdot bx$

Якщо $\mathcal{R} = \{r\}$, то - тривіальне кільце - нудне та нецікаве $\Rightarrow |\mathcal{R}| \geq 2$

Example:

$$\mathbb{R}$$
, \mathbb{C} , \mathbb{Q} - кільця за $+$, \cdot

Example:

кільце лишків
$$|\mathbb{Z}_n|$$
 (+ mod , · mod)

16.3. Напівкільця 61

Example:

кільце матриць $Mat_{n\times m(\mathbb{R})}$

Example:

кільце поліномів
$$R[x] = \left\{ \sum_{k=0}^{n} a_k x^k \mid a_k \in \mathbb{R} \right\}$$

Definition 16.2.2.

$$\mathcal{R}^+ \equiv \langle \mathcal{R}, +
angle$$
 - адетивна група кільця \mathcal{R}

 $\mathit{Hyль}\ \mathit{кільця}$ - нейтральний елемент - $\mathcal{O}\left(\mathcal{O}_{\mathcal{R}}\right)$

обернене за додаванням: -a

$$\forall m \in \mathbb{Z} : ma = \begin{cases} a + a + \dots + a, \ m > 0 \\ (-a) + (-a) + \dots + (-a), \ m < 0 \end{cases}$$

Lemma 16.2.1.

у довільному кільці
$$\mathcal{R}$$
:
$$(1) \ \forall a \in \mathcal{R}: \qquad \qquad 0 \cdot a = a \cdot 0 = 0$$
$$(2) \ \forall a, \ b \in \mathcal{R}: \qquad (-a) \cdot b = a \cdot (-b) = -(a \cdot b)$$

Proof.

$$(1) \ 0 = 0 + 0 \Rightarrow 0 \cdot a = (0 + 0) \cdot a = 0 \cdot a + 0 \cdot a$$

 $0 = 0 \cdot a$ аналогічно $a \cdot 0 = 0$

16.3 Напівкільця

Definition 16.3.1. $\langle \mathcal{S}, +, \cdot \rangle$

- напівкільце (1) $\langle \mathcal{S}, + \rangle$ - комутативний мноїд

(2) $\langle \mathcal{S}, \cdot \rangle$ - напівгрупа

(3) дистрибутивність

(4) мультиплікативність нуля: $\forall a \in \mathcal{S}: 0 \cdot a = a \cdot 0 = 0$

Example:

 \mathbb{N}_0 - напівкільце за $+, \cdot$ (нема оберненого елмента за додаванням)

Example:

 $(\{Q\}, \oplus, \&)$ - булеве напівкільце (нема оберненого елмента за множенням)

16.4 Класи кілець, підкільця, ідеали

Типи кілець:

- 1. кільце з одиницею: $\langle \mathcal{R}, \cdot \rangle$ моноїд, нейтральний елмент 1 $(1_{\mathcal{R}})$ одиниця за множенням. \mathcal{R} нетривіальне $\Rightarrow 0 \neq 1$
- 2. комутативне кільце: · комутативне
- 3. кільце без дільника нуля: $a \cdot b = 0, \ a \neq 0, \ b \neq 0 \Rightarrow a$ лівий, b правий дільники нуля $\Rightarrow \forall a, \ b \in \mathcal{R}: \ a \cdot b \Rightarrow (a =) \lor (b = 0)$
- 4. область цілісності (цілісне кільце) (integral domain) комутативне кільце за одиниею і без дільників нуля

$$\mathcal{R}$$
 - цілісне кільце $\Leftrightarrow \forall a \neq 0, b, c \in \mathcal{R}: a \cdot b = a \cdot c \Rightarrow b = c$

Definition 16.4.1. $\langle \mathcal{F}, +, \cdot \rangle$

Поле - кільце, у якому
$$\langle \mathcal{F} \setminus \{0\}, \cdot \rangle$$
 - абелева група

Fact.

Поле - цілісне кільце, скінчене цілісне кільце - поле

Example:

$$\mathbb{R}$$
, \mathbb{C} , \mathbb{Q} - поля

Example:

 \mathbb{Z} - цілісне кільце, $2\mathbb{Z}$ - комутативне кільце без одиниці

Example:

 \mathbb{Z}_n - комутативне кільце з одиницею. n - просте $\Rightarrow \mathbb{Z}_n$ - поле, n - складне $\Rightarrow \varepsilon$ дільники нуля

Example:

 $Mat_{n\times m}(\mathbb{R})$ - некомутативне кільце з одиницею

Definition 16.4.2.

$$a^{-1}$$
 - оборотний, якщо $\exists a^{-1} \in \mathcal{R}: \ a \cdot a^{-1} = a^{-1} \cdot a = 1$

 \mathcal{R}^* - множина усіх оборотних елментів \mathcal{R}

Lemma 16.4.1.

$$\langle \mathcal{R}^*, \cdot \rangle$$
 - $rpyna$

Definition 16.4.3.

Підкільце
$$\mathcal{R}' \subseteq \mathcal{R}$$
. $\langle \mathcal{R}', +, \cdot \rangle$ - кільце

Lemma 16.4.2 (subring criterion).

$$\mathcal{R}' \subseteq \mathcal{R}$$

$$\Leftrightarrow$$

$$\mathcal{R}' \subseteq \mathcal{R} \qquad \Leftrightarrow \qquad (1) \ 1_{\mathcal{R}} \in \mathcal{R}'$$

(2)
$$\forall x, y \in \mathcal{R}'$$
:

$$x - y \in \mathcal{R}'$$

$$x \cdot y \in \mathcal{R}'$$

Definition 16.4.4.

$$I\partial ea\Lambda \mathcal{I} \subseteq \mathcal{R}$$

$$\Leftrightarrow$$

$$I$$
деал $\mathcal{I} \subseteq \mathcal{R}$ \Leftrightarrow (1) \mathcal{I} - $ni\partial \kappa i$ льце

(2)
$$\forall a \in \mathcal{I}, \ \forall r \in \mathcal{R}: \qquad a \cdot r \in \mathcal{I}, \ r \cdot a \in \mathcal{I}$$

$$a \cdot r \in \mathcal{I}, \ r \cdot a \in \mathcal{I}$$

Example:

 \mathbb{Z} - підкільце у \mathcal{R} , але не ідеал

Example:

$$2\mathbb{Z}$$
, $n\mathbb{Z}$ - ідеали у \mathbb{Z}

Appendices

Appendix

А.1 Подільність многочленів

$$1 + x + x^{2} + x^{3} + \dots + x^{n-1} = S(x)$$

$$1 + x(1 + x + x^{2} + \dots + x^{n-2}) = 1 + x(s(x) - x^{n-1}) = S(x)$$

$$x^{n-1} = (X - 1)(x^{n-1} + x^{n-2} + \dots + x + 1)$$

А.2 Наслідок з подільності (теорема Безу)

$$x \to \frac{x}{y}: \qquad \frac{x^n}{y^n} - 1 = (\frac{x}{y} - 1)(\frac{x^{n-1}}{y^{n-1}} + \frac{x^{n-2}}{y^{n-2}} + \frac{x}{y} + 1) \qquad |x| \to y^n$$
$$x^n - y^n = (x - y)(x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \dots + xy^{n-2} + y^{n-1})$$
$$\Rightarrow (x^n - y^n) \vdots (x - y)$$

Поліном:
$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \ a_n \in \mathbb{R}, \ a_n \neq 0, \ \deg p = n$$
 $p(x) - p(y) = a_n (x^n - y^n) + a_{n-1} (x^{n-1} - y^{n-1}) + \dots + a_1 (x - y) + a_0 \cdot 0$ $p(x) - p(y) \vdots (x - y), \ p(x) - p(y) = (x - y) \cdot Q(x, y), \ Q(x, y)$ - поліном від x, y

Theorem (Безу).

$$p(x)$$
 - поліном, $\forall \ \alpha$ - число $\Rightarrow p(x) - p(\alpha) \vdots (x - \alpha)$ або

 $\forall \alpha - ucno \exists q(x) : p(x) = (x - \alpha) \cdot q(x) + p(\alpha), \deg q = \deg p - 1$

А.3 Наслідок з теореми Безу

1. якщо
$$\alpha$$
 - корінь $p(x)$, то $p(x)$: $(x-\alpha)$
$$p(\alpha)=0 \Rightarrow p(x)=(x-\alpha)\cdot q(x)+p(\alpha)=(x-\alpha)\cdot q(x)$$

2. якщо
$$\alpha_1,\ \alpha_2,\dots,\alpha_n\in\mathbb{C}$$
 - усі корені з урахуванням кратності, то $p(x)=a_n(x-\alpha_1)(x-\alpha_2)\dots(x-\alpha_n)$

А.4 Теорема Вієта

$$x^{n}: a_{n} = a_{n}$$

$$x^{n-1}: a_{n-1} = a_{n}(-\alpha_{1} - \alpha_{2} - \dots - \alpha_{n}) \Rightarrow \alpha_{1} + \alpha_{2} + \dots + \alpha_{n} = -\frac{a_{n-1}}{a_{n}}$$

$$p(x) = a_{3}x^{3} + a_{2}x^{2} + a_{1}x + a_{0} = a_{3}(x - \alpha_{1})(x - \alpha_{2})(x - \alpha_{3}) = a_{3}(x^{3} - \alpha_{1}x^{2} - \alpha_{2}x^{2} - \alpha_{3}x^{2}\alpha_{1}\alpha_{2}x + \alpha_{1}\alpha_{3}x + \alpha_{2}\alpha_{3}x - \alpha_{1}\alpha_{2}\alpha_{3})$$

$$x^{3}: a_{3} = a_{3}$$

$$x^{2}: a_{2} = a_{3}(-\alpha_{1} - \alpha_{2} - \alpha_{3}) \qquad x^{k}: a_{k} = a_{n} \cdot (-1)^{n-k} \sum_{i=1}^{n} \alpha_{i_{1}}\alpha_{i_{2}} \dots \alpha_{i_{k}}$$

$$x: a_{1} = a_{3}(\alpha_{1}\alpha + \alpha_{1}\alpha_{3} + \alpha_{2}\alpha_{3}) \qquad 1 \leq i_{1} < i_{2} < \dots < i_{n} \leq n$$

$$x^{0} = 1: a_{0} = a_{3}(-\alpha_{1}\alpha_{2}\alpha_{3})$$

$$\Rightarrow \alpha_{1} + \alpha_{2} + \dots + \alpha_{n} = -\frac{a_{n-1}}{a_{n}}, \qquad \alpha_{1}\alpha_{2} \dots \alpha_{n} = (-1)^{n} \cdot \frac{a_{0}}{a_{n}}$$

А.5 Схема Горнера

$$p(x) = a_{n}x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}$$

$$q(x) = b_{n}x^{n} + b_{n-1}x^{n-1} + \dots + b_{1}x + b_{0}$$

$$p(x) = (x - \alpha) \cdot q(x) + p(\alpha) = (x - \alpha)(b_{n-1}x^{n-1} + \dots + b_{1}x + b_{0}) + p(\alpha) =$$

$$= b_{n-1} \cdot x^{n} + b_{n-2} \cdot x^{n-1} + b_{n-3} \cdot x^{n-2} + \dots + b_{1} \cdot x^{2} + b_{0} \cdot x$$

$$-\alpha b_{n-1}x^{n-1} - \alpha b_{n-2}x^{n-2} - \dots - \alpha b_{2}x^{2} - \alpha b_{1}x - \alpha b_{0} + p(\alpha) =$$

$$= a_{n} \cdot x^{n} + a_{n-1} \cdot x^{n-1} + \dots + a_{1}x + a_{0}$$

$$a_{n} = b_{n-1} \qquad b_{n-1} = a_{n}$$

$$a_{n-1} = b_{n-2} - \alpha \cdot b_{n-1} \qquad b_{n-2}a_{n-1} + \alpha \cdot b_{n-1}$$

$$a_{n-2} = b_{n-3} - \alpha \cdot b_{n-2} \qquad b_{n-3} = a_{n-2} + \alpha \cdot b_{n-2}$$

$$\Rightarrow \qquad \vdots$$

$$a_{1} = b_{0} - \alpha b_{1} \qquad b_{0} = a_{1} + \alpha b_{1}$$

$$a_{0} = p(\alpha) - \alpha b_{0} \qquad p(\alpha) = a_{0} + \alpha b_{0}$$

$$\frac{a_{n}}{\alpha} \begin{vmatrix} a_{n-1} & a_{n-2} & \dots & a_{n} & a_{1} & a_{0} \\ p(\alpha) & a_{0} + \alpha b_{0} & p(\alpha) \end{vmatrix}$$

/ *

Задача схеми Горнера - поділити многочлен на $(x-\alpha)$, не обчислюючи усі степені α . Ефективніший за ділення у стовпчик - простий (лише 1 "+" та 1 "x" на одну клітинку) та швидкий (один цикл for + перекладання з одного масиву у інший)

*/

А.6 Ланцюгові дроби

$$\alpha \in \mathbb{R}: \quad \alpha = a_1 + a_0, \ a_{\in} \mathbb{Z}, \ 0 \le \alpha_1 < 1$$

$$\alpha = a_1 + \frac{1}{\frac{1}{\alpha_1}} = a_1 + \frac{1}{\frac{a_2}{\alpha_2}} = a_1 + \frac{1}{\frac{1}{\alpha_2 + \frac{1}{\alpha_2}}} = a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \alpha_3}} = \dots$$

68 Appendix A. A

Ланцюговий дріб
$$\alpha$$
 - представлення α у вигляді $a_1+\frac{1}{a_2+\frac{1}{a_3+\alpha_3}}:\alpha=[a_1;a_2,a_3,a_4,\dots],$ $a_1\in\mathbb{Z},\ a_1\in\mathbb{N}_0$

А.7 Чим більше знаємо дробів - тим точніше α

$$\alpha = a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4 + \frac{1}{a_5 + \dots}}}}$$

А.8 Кожен скінченний дріб описує одне раціональне число

Proposition.

 $\alpha \in \mathbb{Q}, \ \alpha = \frac{m}{n} \Leftrightarrow \alpha$ мае скінченний ланцюговий дріб

Proof.

$$\begin{array}{c|c}
 & 1 \\
\hline
a_2 + 1 \\
\hline
a_3 + 1 \\
\hline
 & \ddots \\
\hline
a_{t-1} + 1 \\
\hline
 & a_{t-1} + 1 \\
\hline
 &$$

$$\Rightarrow$$
 (Алгоритм Евкліда!)
$$\alpha = \frac{m}{n} = \frac{r_0}{r_1} = \frac{r_1q_1 + r_2}{r_1} = q_1 + \frac{r_2}{r_1} = q_1 + \frac{1}{\frac{r_1}{r_2}} = q_1 + \frac{1}{q_2 + \frac{r_3}{r_2}} = \cdots = \frac{1}{\frac{q_2 + \frac{1}{q_3 + \frac{1$$

/ *

- \Leftarrow Усі a_i цілі, невід'ємні (нулі лише для ірраціональних випадків), крім $_1$ воно може бути від'ємним, цілим. (тому ми його відділяємо;)
- ⇒ Алгоритм Евкліда скінченний, тому фокус такий.

*/

A.9 Наближення числа π