Nombre: _____

Profesor: Felipe Osorio

1. (25 pts) Considere el modelo,

$$V_i = \alpha K_i^{\beta_1} L_i^{\beta_2} \eta_i, \qquad i = 1, \dots, n,$$

$$\tag{1}$$

donde V_i es el valor agregado, K_i denota el capital, L_i representa el trabajo y $\epsilon = \log \eta$ es un término de error con $\mathsf{E}(\epsilon_i) = 0$ y $\mathsf{var}(\epsilon) = \sigma^2$. Asumiendo errores independientes y linealizando el modelo en (1), obtenga estimadores de β_1 y β_2 bajo la restricción $\beta_1 + \beta_2 = 1$.

2. (25 pts) Considere el modelo,

$$Y_i = \alpha + \theta z_i + \epsilon_i, \qquad i = 1, \dots, n,$$

donde $z_i = x_i - \overline{x}$, con $\overline{x} = \sum_{i=1}^n x_i/n$. Considere el siguiente estimador para θ :

$$b^* = \frac{1}{n-1} \sum_{i=2}^{n} \left(\frac{Y_i - Y_{i-1}}{\triangle x_i} \right),$$

con $\triangle x_i = x_i - x_{i-1}$. ¿Es b^* BLUE?

3. (25 pts) Considere la inclusión de una nueva variable regresora como

$$Y = X\beta + \phi Z + \epsilon$$
.

con $\epsilon \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})$. Obtenga un estimador para ϕ y su varianza.

4. (25 pts) Suponga una secuencia de observaciones $(Y_1, \boldsymbol{x}_1^\top)^\top, (Y_2, \boldsymbol{x}_2^\top)^\top, \dots, (Y_n, \boldsymbol{x}_n^\top)^\top$ y suponga el modelo,

$$\mathcal{M}_k: \quad Y_i = \boldsymbol{x}_i^{\top} \boldsymbol{\beta}_1 + \epsilon_i, \qquad i = 1, \dots, k,$$

$$Y_i = \boldsymbol{x}_i^{\top} \boldsymbol{\beta}_2 + \epsilon_i, \qquad i = k + 1, \dots, n,$$

donde $\boldsymbol{\beta}_1 = (\beta_1, \dots, \beta_p)^{\top}, \; \boldsymbol{\beta}_1 = (\beta_1, \dots, \beta_p)^{\top}, \; y \; \boldsymbol{\epsilon} = (\epsilon_1, \dots, \epsilon_n) \sim \mathsf{N}_n(\mathbf{0}, \sigma^2 \boldsymbol{I}_n).$ Defina $\boldsymbol{Y}_1 = (Y_1, \dots, Y_k)^{\top}, \; \boldsymbol{Y}_2 = (Y_{k+1}, \dots, Y_n)^{\top}, \; y$

$$m{X}_1 = egin{pmatrix} m{x}_1^ op \ dots \ m{x}_k^ op \end{pmatrix}, \qquad m{X}_2 = egin{pmatrix} m{x}_{k+1}^ op \ dots \ m{x}_n^ op \end{pmatrix}.$$

- a) Escriba el modelo lineal y determine los estimadores ML de $\boldsymbol{\theta} = (\boldsymbol{\beta}_1^\top, \boldsymbol{\beta}_2^\top, \sigma^2)^\top$.
- b) Obtenga el criterio de información de Schwarz asociado al modelo \mathcal{M}_k .