Earthquake Hazard Evaluation & Visualization

Georgialnstitute
of Technology

Cheng Zhang

Longchao Jia

Qiwei Mao

Tianhui Zhao

ABSTRACT

The scope of this project is to build a model that would predict the seismic damage level of a certain building.

PROBLEM DESCRIPTION

The disaster caused by earthquake has left unforgettable memories to us. Recent breakthrough in machine learning algorithms and earthquake prediction models allow us to locate it and predict damage level of it.

MODEL SELECTION & EVALUATION

Figure 2. k-folds cross validation comparison with k = 10

Model Input & Data Preprocess

Decision Tree

Neural Network

Ada-Boosting

Support Vector Machine (SVM)

K Nearest Neighbors (KNNs)

PC Regression & Partial Least Square

METHOD and IDEAS

Five steps we took:

- Database construction

Figure 1. A typical ground motion plot

- Model Features Selection
 Determining period using Lasso
- Prediction Model Construction

 Machine learning Regression Algorithms
- **Prediction Model Evaluation**K-fold cross-validation
- Damage Level Prediction
 Relate the predicted CAV value to the damage of a building
- Data visualization
 Output longitude, latitude, predicted earthquake intensity, confidence, recommended maximum layer of building

DATA VISUALIZATION

Input Geographical Location Information or Click on Map

Output: Longitude, Latitude, Predicted Earthquake Intensity, Confidence, Recommend Maximum Layer of Building

FUTURE USAGE

Our project can be used by earthquake associations as the reference of revising seismic design code in order to ensure the earthquake resistant behavior of newly constructed buildings in a more economical way.

Moreover, the program can predict the damage of current buildings to make the disaster rescue scheme wisely.