Базы данных

Понятия БД и СУБД

База данных (БД) - совокупность данных, организованных в соответствии с концептуальной структурой, описывающей характеристики этих данных и взаимоот- ношения между соответствующими сущностями и поддерживающей одну или более областей применения.

Система управления базами данных (СУБД) - это программное обеспечение для удобного управления базой данных, позволяющее создать базу данных и впоследствии манипулировать данными.

Модель данных - это формальное описание структуры хранения информации.

Основные функции СУБД

- Администрирование БД
- Настройка прав доступа
- Управление данными во внешней памяти (на дисках)
- Управление данными в оперативной памяти с использованием дискового кэша
- Журнализация изменений данных
- Резервное копирование и восстановление базы данных
- Поддержка языков БД для манипулирования данными

Свойства проектируемой БД

- Целостность
- Восстанавливаемость
- Безопасность
- Эффективность

Топ 10 БД

1.

2.

3.

4

5.

6.

7.

8.

9.

10.

Виды моделей организации данных

Классификация СУБД

По модели данных

- Иерархические
- > Сетевые
- Реляционные
- Нереляционные
- > Мультимодельные

По степени распределённости

- > Локальные
- Распределенные

По способу доступа

- Файлсерверные
- Клиентсерверные
- Встраиваемые

Виды моделей организации данных

Основные виды моделей организации данных

- Иерархическая модель
- Сетевая модель
- Реляционная модель (SQL)
- Не реляционная модель (NOSQL)

Иерархическая модель

Сетевая модель

Реляционная модель

Нереляционная модель

Нереляционная база данных - это база данных, в которой в отличие от большинств традиционных систем баз данных не используется табличная схема строк и столбцов.

В этих базах данных применяется модель хранения, оптимизированная под конкретные требования типа хранимых данных.

Преимущества нереляционных БД

- Гибкость
- Масштабируемость
- Высокая производительность
- Широкие функциональные возможности

Виды нереляционных моделей

- Key value storage (хранилище ключ-значение)
- Документоориентированное хранилище
- Колоночное хранение (столбцовое)
- Графовое хранилище

Key-value storage

Для чего используется:

- Кэш
- Сессии
- Счетчик посещений/просмотров
- Хранение изображений
- Брокеры сообщений

Key-value storage

Преимущества:

- Быстрая запись
- Быстрое получение (поиск) данных
- Легкая масштабируемость

Недостатки:

- Невозможность выполнения сложных запросов
- Невозможность выполнения агрегации данных
- Медленный поиск по значениям
- Возможные проблемы с генерацией ключа (при работе с большими данными)

Документоориентированное хранилище

Для чего используется:

- Каталоги
- Профили пользователей
- Управление контентом

Документоориентированное хранилище

Преимущества:

- Отсутствие схемы
- Высокая производительность
- Легкая масштабируемость
- Гибкость
- Отсутствие внешних ключей
- Открытые форматы
- Встроенное управление версиями

Недостатки:

- Ограничения по проверке на согласованность
- Проблемы с атомарностью
- Безопасность

Колоночное хранилище (столбцовое)

Для чего используется:

- Большой объем данных
- Аналитика

Колоночное хранение Column store

Колоночное хранилище (столбцовое)

Преимущества:

- Высокая производительность
- Сжатие данных
- Агрегация запросов на больших объемах данных
- Легкая масштабируемость

Недостатки:

- Медленно работают на запись
- Ограничения для разработчиков

Графовое хранилище

Для чего используется:

- Большой объем связанных данных
- Соцсети
- Рекомендательные системы

Графовое хранилище

Преимущества:

- Гибкая
- Легкая масштабируемость
- Быстрый поиск

Недостатки:

- Низкая производительность при незначительном количестве связей и больших объемах данных
- Плохо работают в параллельных архитектурах

Реляционная БД

Реляционная модель - это модель данных, структура которой основана на наборе отношений

Принципы БД:

 Данные хранятся в таблицах (отношениях), состоящих из столбцов (атрибутов, полей) и строк (кортежей)

• У каждого столбца есть свое имя и свой тип

 В таблице может быть минимум 1 столбец. А строк в таблице может и не быть

Запрос к базе данных возвращает результат

в виде таблиц

г и не бы	ТЬ	492853 Ca
возвраш	ает результат	
Столбец_1	Столбец_2	
Строка (кортеж)	Значение	
	Столбец (атрибут)	

Габлица Здания (отношение)		Атрибут Адре (заголовок столб	Схема отношения (строка заголовков)			
	Кадастр	Адрес	Дом	Квартир	Год	Износ
	567134	Ул. Юности	15	98	1982	34
	849367	Новое шоссе	171	54	1998	12
	492853	Светлый проезд	5	12	2010	0

Значение атрибута (значение поля **Дом** в третьей записи)

Типы данных в реляционной БД

- INT или INTEGER целочисленные данные
- **DEC** или **DECIMAL** десятичные дробные величины
- **FLOAT** еще один тип для десятичных дробных величин
- CHAR или CHARACTER строковый тип данных с фиксированной длинной
- VARCHAR строковые данные переменной длины
- DATE дата
- DATETIME дата и время
- **TEXT** (либо BLOB) большой объем информации

и много много других типов

Ограничения (constraints)

Ограничения - это правила для данных в таблице

- PRIMARY KEY
- FOREIGN KEY
- NOT NULL
- UNIQUE
- CHECK
- DEFAULT
- INDEX

Ограничения (constraints)

Ключ - это идентификатор, являющийся частью набора элементов данных

Ограничения (constraints)

NOT NULL гарантирует, что столбец не может иметь значение NULL.

UNIQUE гарантирует, что все значения в столбце разные. Для каждой таблицы может быть множество ограничений UNIQUE, но только одно ограничение PRIMARY KEY для каждой таблицы.

СНЕСК ограничивает диапазон значений, которые могут быть записаны в столбец.

DEFAULT определяет значение колонки по умолчанию

INDEX специальная структура базы данных, которая предназначена для повышения скорости

доступа к данным

Представления (view)

Представление - это SQL-запрос, которому заранее присвоено имя и который можно выполнить, указав имя.

Материализованное представление - это SQL-запрос, которому заранее присвоено имя и который можно выполнить, указав имя. Результат запроса сохраняется для дальнейшего использования.

Триггеры

Триггер - это программа, которая автоматически выполняется или запускается при возникновении некоторых событий

Транзакции

Транзакция - это логически завершенная единица работы, которая содержит один или более sqlзапрос. Все действия составляющие транзакцию либо должны выполниться полностью либо полностью не выполниться.

ACID:

ATOMICITY (атомарность) - гарантирует, что транзакция не может выполниться частично **CONSISTENCY (консистентность)** - требует, чтобы после завершения транзакции данные оставались консистентными и валидными

ISOLATION (изоляция) - требует, чтобы при параллельном выполнении транзакции они не влияли друг на друга

DURABILITY (надежность) - гарантирует, что если пользователь получил подтверждение, что транзакция выполнена, изменения не будут отменены из-за какого-либо сбоя

Нормализация

Нормализация - это удаление избыточности данных

1-я НФ

Сотрудник	Контакт
Иванов И.И.	123-456-789, 987-654-321
Сергеев С.С.	Рабочий телефон 555-666-777, Домашний телефон 777-888- 999
John Smith	123-456-789
John Smith	123-456-789

Сотрудник	Телефон	Тип телефона
Иванов И.И.	123-456-789	
Иванов И.И.	987-654-321	
Сергеев С.С.	555-666-777	Рабочий телефон
Сергеев С.С.	777-888-999	Домашний телефон
John Smith	123-456-789	

- В таблице не должно быть дублирующих строк
- В каждой ячейке таблицы хранится атомарное значение (одно не составное значение)
- В столбце хранятся данные одного типа
- Отсутствуют массивы и списки в любом виде

2 - я НФ

ФИО	Должность	Подразделение	Описание подразделения					
Иванов И.И.	Программист	Отдел разработки	Разработка и сопровождение приложений и сайтов	1NF				
Сергеев	Бухгалтер	Бухгалтерия	Ведение бухгалтерского и налогового учета финансово- хозяйственной деятельности					
John Smith	Продавец	Отдел реализации	Организация сбыта продукции		2NF			
				Табельный номер	ФИО	Должность	Подразделение	Описание подразделения
				1	Иванов И.И.	Программист	Отдел разработки	Разработка и сопровождение приложений и сайтов
				2	Ceprees C.C.	Бухгалтер	Бухгалтерия	Ведение бухгалтерского и налогового учета финансово- хозяйственной деятельности

- Таблица должна находиться в первой нормальной форме
- Таблица должна иметь первичный ключ
- Все неключевые столбцы таблицы должны зависеть от полного ключа (в случае если он составной)

3 - я НФ

Табельный номер	ФИО	Должность	Подразделение	Описание подразделения					
1	Иванов И.И.	Программист	Отдел разработки	Разработка и сопровождение приложений и сайтов	2NF	Табельный номер	ФИО	Должность	Подразделени
2	Ceprees C.C.	Бухгаятер	Бухгалтерия	Ведение бухгалтерского и налогового учета финансово-		1	Иванов И.И.	Программист	1
					1	2	Ceprees C.C.	Бухгалтер	2
				хозяйственной деятельности		3	John Smith	Продавец	3
3	John Smith	Продавец	Отдел реализации	Организация сбыта продукции	1	3NF			
						Идентификатор подразделения	Подразделение Описание подразделения		ления
						1	Отдел разработки	Разработка и сопро приложений и сайт	
						2	Бухгалтерия	Ведение бухгалтеро учета финансово-хо деятельности	
						3			

- Таблица должна находиться во второй нормальной форме
- В таблицах отсутствует транзитивная зависимость

Транзитивная зависимость - это когда неключевые столбцы зависят от значений других неключевых столбцов

Недостатки реляционных БД

- Нехватка гибкости
- Не всегда предметная область может быть представлена в виде "таблиц"
- Для реляционных БД предусмотрено вертикальное масштабирование

Модель представления базы данных - это описание базы данных с помощью графического языка, по которому она потом будет создана

ERD или ER-диаграмма - это разновидность блок-схемы, где показано, как разные «сущности» (люди, объекты, концепции и так далее) связаны между собой внутри системы

Инфологический уровень (концептуальный)

Даталогический уровень (логический)

Физический уровень

Один-к-одному

Многие-к-одному

Один-к-многим

Многие-ко-многим

У одного гражданина определенной страны обязательно есть только один паспорт этой страны

У каждого пользователя может быть один и больше номеров телефонов

Каждый учитель обучает многих учащихся, а каждый учащийся может обучаться с несколькими учителями

Отношение один к одному

Отношение один ко многим

Отношение многие ко многим

