Machine Learning with Python: Foundations

https://www.linkedin.com/learning/machine-learning-with-python-foundations

Intro

- Computers receive 2 things
 - An input or data
 - A set of instructions on what to do
- ML is where computers don't get an explicit set of instructions
 - We give an input and expected output
 - Computer figures out the instructions
- Focus of ML is to predict

Data Collection

Considerations

- Objective is to identify and gather data to be used
- There are 5 key considerations when it comes to data
- The first is accuracy
 - Accurate data is needed for a good model
 - For supervised learning, this is especially crucial
 - Bad data = bad predictions
 - Labels for data can come from 2 sources
 - Event-based (it's a label based on a fact that happened)
 - Assigned (usually by experts on the topic)
 - o It's important to have a way to validate data after it's collected and labelled
- Second is relevance
 - o Data needs to be relevant in explaining why an input resulted in a certain output
 - Ex: shoe sizes have nothing to do with loan payment rates
- Third is *quantity*
 - o Generally speaking, most algorithms will need a lot of data for meaningful results
- Fourth is *variability*
 - Data needs to be diverse
 - Algorithm gains a broader view of the domain
- Fifth is ethics
 - o Concerns include bias, security, privacy, and consent
 - Biased data leads to biased predictions
 - Can be unintentional or implicit from human ethics
 - Need to minimize as much as possible

import pandas

- pandas is the go-to package when it comes to data analysis
- Lots of great functions that makes it easy to use

Basic Data Structures

```
# a 1d list is called a 'series'
fruits = ["apple", "banana", "orange"]
series = pandas.Series(fruits)

# a 2d list is a 'dataframe'
myDict = {
    "letters": ['a','b','c'],
    "numbers": [1,2,3],
    "decimals": [1.1, 2.2, 3.3]
}
df = pandas.DataFrame(myDict)

# custom column names
labels = ["label1", "label2", "label3"]
df2 = pandas.DataFrame(myDict, labels)
```

- Data structures are heterogenous
 - Can store different kinds of data
 - 1D is a series and 2D is a dataframe
- Dataframes can either infer the column labels or you can pass in a custom list for the labels

Reading from Files

```
csv = pandas.read_csv("path/to/file.csv")

# if an Excel file has multiple sheets, it'll read the first one by default
excel = pandas.read_excel("path/to/file.xlsx")

# specify sheet for Excel
excel2 = pandas.read_excel("path/to/file.xlsx", sheet_name="sheet2")
```

Data Exploration

Describing Data

- The idea of data exploration is to be able to describe our data
 - What it's about, how much data, and what's the quality
- A single "row" of data is called an <u>instance</u>
 - Also called a record or observation
 - This is a single example of the general concept behind the data collection
- Features describe important characteristics of the instance
 - o Categorical: holds discrete data, limited to a set of possible values
 - Continuous: usually integers or real numbers, infinite possibilities
- Sometimes we want to predict features of a dataset
- Dimensionality is the number of features in a dataset
 - More dimensions means more details
 - Also means higher computational complexity
- Sparsity and density describe how much data we have
 - Complementing concepts
 - Ex: missing 20% data = 20% sparse, 80% dense

Describing Data in Python

Basics

```
data = pandas.read_csv("dataFile.csv")
data.info()
print(data.head())
```

- The info() command will display a bunch of useful info describing our dataset
 - Dimensions
 - Types of data
- head() gives a sneak-peek of what our data actually looks like
 - Returns first 5 rows

Aggregations

```
print(data[["ColumnName"]].describe())
```

- This allows us to get info regarding a specific attribute
- It'll return 4 basic info for non-numbers
 - o count: number of (nonempty) entries
 - o unique: number of unique entries
 - top: the most frequently occurring entry
 - freq: how often it occurs
- In columns that are statistical, it'll return

```
count: number of entries
```

- o mean
- o std
- 0 25%
- 50% (aka median)
- 0 75%
- o max

Getting Value Counts

```
# gives a count of each unique value
data[["ColumnName"]].value_counts()

# gives percent of each unique value
data[["ColumnName"]].value_counts(normalize=True)
```

Other Functions

```
# get the mean of values in a column
data[["ColumnName"]].mean()

# group instances, and then get the mean values of each group
data.groupby("ColumnName1")[["ColumnName2"]].mean()

# sort based on a column (default is ascending)
data.groupby("ColumnName1")[["ColumnName2"]].mean().sort_values(by="ColumnName3")
```

Multiple Aggregations

```
# 'agg' gives us multiple aggregations
data.groupby("ColumnName1")[["ColumnName2"]].agg(["mean", "median", "max"])
```

Data Visualizations

- It's sometimes easier to show patterns with visuals
- <u>Comparison</u> visualizations show the difference between 2 or more items
 - Ex: a box plot
- Relationship visualizations shows how 2+ variables can affect each other
 - Ex: line charts and scatter plots
- <u>Distribution</u> visualizations shows stat distribution of a single feature

- Ex: histograms
- Composition visualizations show the inner makeup of data
 - Ex: stacked bar charts, pie charts

Data Visualization in Python

```
import pandas
import matplotlib.pyplot as plt

vehicles = pandas.read_csv("vehicles.csv")
```

- matplotlib is a popular package for generating data visualizations
- Note that in order to actually display the plot, we need to run plt.show() at the end

Scatter

```
vehicles.plot.scatter(x="citympg",y="co2emissions")
plt.show()
```

Histogram

```
vehicles[["co2emissions"]].plot.hist()
plt.show()
```

Box

```
pivot = vehicles.pivot(columns="drive", values="co2emissions")
pivot.boxplot(figsize=(10,6))
plt.show()
```

- In order to use a box plot, we need to first create a pivot table
 - X-axis is column values, Y-axis is cell values

Stacked Bar Chart

```
pivot = vehicles.groupby("year")["drive"].value_counts().unstack()
pivot.plot.bar(stacked=True, figsize=(10,6))
```

```
plt.show()
```

- We need to first create a pivot
 - We group by year
 - Then aggregate by drive

Data Preparation

Common Data Quality Issues

- The process of ensuring the data is suitable for our ML model
- One of the most common data issues is missing data
 - Usually a few missing features in a record here and there
 - Can result from human error, bias, or lack of reliable input
 - Changes in data collection methods can also result in missing data
- Several ways to resolve this
 - Remove records with missing data
 - Use holders to represent missing data (like N/A or -1)
 - We can also try to use imputation, which is a process to reasonably guess what those values are
 - Ex: replace all missing values with the median of non-missing values
- Another issue is *outliers*
 - Features that are unusual or very different than others
 - To fix outliers, you need to first understand what the outliers convey
- One valid reason for outliers is class imbalance
 - This is when the real world distribution of values is not uniform
 - More instances of a class label than others
 - Can lead to misleading predictions if not properly handled
- Ways to resolve
 - Undersample majority classes

Resolving Missing Data in Python

Check for Missing Values

```
import pandas
students = pandas.read_excel("students.xlsx")
mask = students['State'].isnull()

# display 'True' if attribute is missing, 'False' otherwise
print(mask)
```

```
# only display rows with missing data
print(students[mask])
```

Remove Missing Values

```
# remove all rows with any missing values
students.dropna()
```

- This is a rather extreme approach
- We usually want to remove rows that have missing values in a particular column

```
# only drop rows if both State and Zip are missing
students.dropna(subset=["State","Zip"], how="all")

# drop columns with any missing values
students.dropna(axis=1)

# specifies how many values need to be missing before it's removed
students.dropna(axis=1, thresh=10)
```

Resolve Missing Values

```
# replace all missing values with a constant value
students.fillna({'Gender':'Female'})

# replace all missing values with a value from a function
students.fillna({'Age':students['Age'].median()})

# change value of specific cell
mask = (studnets['City'] == 'Granger') & (students['State'] == 'IN')
students.loc[mask, 'Zip'] = 46530
```

Normalizing Data

- Goal of normalization (also called standardization) is to ensure all data share a common property
 - o Typically involves scaling data to fit within a range
 - Reduces complexity and improves interpretability
- Z-Score Normalization is one approach
 - Ensures the data has a mean of 0 and std of 1

$$\circ \ v' = rac{v - ar{F}}{\sigma_F}$$

- lacksquare $ar{F}$ is mean
- σ_F is std
- lacksquare F is feature
- v and v' are the old and new values
- Ex: suppose we have the values 12000, 24000, 30000, 40000, 98000
 - Mean is 40800, std is 33544
 - v=40000: $v' = \frac{40000 40800}{33544} = -0.024$
 - Final normalized values are -0.859, -0.500, -0.322, -0.024, -1.705
- Mean-max normalization gives our data a range between 2 user-defined bounds
 - Typically the bounds are 0 and 1

$$\circ \ \ v' = rac{v-min_F}{max_F-min_F}(upper_F-lower_F) + lower_F$$

 $\circ~$ Ex: bound 12000, 24000, 30000, 40000, 98000 to 0 and 1

$$v=30000$$
: $v'=rac{30000-12000}{98000-12000}(1-0)+0=0.209$

- Final normalized values are 0.000, 0.140, 0.209, 0.326, 1.000
- Both these approaches are suitable for data with no significant outliers
- Log transformation works for data with lots of outliers
 - $\circ v' = \log v$
 - Base can either be 2 or 10
 - Note that this only works for positive values

Normalize Data in Python

• We use the scikit-learn package for data transformations

Min-Max

```
from sklearn.preprocessing import MinMaxScaler

# transform data
c02emissions_mm = MinMaxScaler().fit_transform(vehicles[['co2emissions']])

# convert to pandas dataframe
c02emissions_mm = pandas.DataFrame(co2emissions_mm, columns=['co2emissions'])

# we can then describe and plot it
print(co2emissions_mm.describe())
c02emissions_mm.plot.hist(bins=20, figsize=(10,6))
```

- The histogram for the original and transformed data will look the same
 - What changed is the scale of the X-axis

Z-Score

```
from sklearn.preprocessing import StandardScaler

c02emissions_zm = StandardScaler().fit_transform(vehicles[['co2emissions']])
c02emissions_zm = pandas.DataFrame(c02emissions_zm, columns=['co2emissions'])
print(c02emissions_zm.describe())
c02emissions_zm.plot.hist(bins=20, figsize=(10,6))
```

Same process, just different Scaler object

Sampling

- Sometimes we need to split our current dataset
 - Current data could be too big
 - We might want to hold on to some of the data for later use
- This process is called sampling
 - The overall dataset is called a <u>population</u>
 - The subset we chose is called the <u>sample</u>
- Sampling methods
 - Random sampling without replacement
 - Random sampling with replacement
 - Also called bootstrapping
 - Good for datasets with little data
 - Stratified random sampling
 - Ensures the sample's distribution matches the population's

Sample Data in Python

```
response = 'co2emissions'
y = vehicles[[response]]

predictors = list(vehicles.columns)
predictors.remove(response)
x = vehicles[predictors]
```

- Suppose in vehicles.csv, we want co2emissions to be the output based on the other variables
 - co2emissions is the response
 - The others are the predictors

Split Data using Simple Random Sampling

```
from sklearn.model_selection import train_test_split
```

```
x_train, x_test, y_train, y_test = train_test_split(x, y)
```

- x_train holds independent variables of training set
- y_train holds dependent variables of training set
- x_test holds independent variables of testing set
- y_test holds dependent variables of testing set

```
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4)
```

- By default, 75% of dataset goes to training and 25% goes to test
- We can change it with test_size

Split Data using Stratified Random Sampling

```
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4,
stratify=x['drive'])
```

- We use stratify to specify which feature (column) to stratify by
- This ensures the dataset's distribution matches the distribution of population more closely

Reducing Data Dimensionality

- Idea is to reduce number of features before modeling
- The "curse of dimensionality" is the idea that increasing features will eventually decrease the performance of the model
 - We need exponentially more data instances per feature
 - Unless we can provide more data instances, our model will decrease
 - There's a limit to how much data was can collect, leading to a limit to the number of features we should have for optimal performance
- Feature selection is one way to reduce dimensionality
 - Identify min number of features needed for a good performance
 - Remove features that have minimal impact on the model performance
- Feature extraction is another method
 - Use math to reduce it
 - Results in completely new features
 - While still reliable, the disadvantage is that the new feature values are harder to interpret as a user

Modeling & Evaluation

Modeling

- The most well known phase of ML
- Objective is to identify the best ML modeling approach to solve the problem
- For supervised learning, there's 2 categories
 - o Classification: use features to produce a label
 - o Regression: use features to predict a continuous value
- Lots of different ML techniques can be used for both classification and regression
- There are also some techniques that are specifically for regression problems

Evaluation

- To evaluate a model, we need to run it on data it's never seen before
 - This ensures we have a reliable assessment of the model
- We usually grade the model with an accuracy metric
 - For classification, we use % correct
 - \circ For regression, we use Mean Absolute Error: $MAE = rac{\sum |Predicted-Actual|}{NumberTestInstances}$
 - This gives us an average margin of error

Building Model in Python

Build Model

```
import pandas
bikes = pandas.read_csv("bikes.csv")

response = "rentals"
y = bikes[[response]]

predictors = list(bikes.columns)
predictors.remove(response)
x = bikes[predictors]

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y)
```

Train Model

```
from sklearn.linear_model import LinearRegression
model = LinearRegressions().fit(x_train, y_train)
```

• Linear regression assumes there's a linear relationship between each feature and the output

```
# useful variable values
model.intercept_
model.coef_
```

- intercept_ gives us the intercept for the equation
 - o It's a constant that gets added to the end of calculations
- coef_ lists corresponding weights for each feature in the respective order
- These 2 variables basically give us the equation in which we can make predictions manually

Evaluate Model

```
model.score(x_test, y_test)
```

- This gives us the R-squared value
 - R-square value is also called the *coefficient of determination*
 - Common measurement for linear regression models
 - The close it is to 1, the better it is
- A R-square value of 0.98 means it explains 98% of the variability in response values for test data

```
from sklearn.metrics import mean_absolute_error
y_pred = model.predict(x_test)
mean_absolute_error(y_test, y_pred)
```

• This gives us the MAE, which is an average margin of error