Razão de distorção

- Consideremos uma fonte sem memória e alfabeto $X = \{x_i : i = 1, ..., q\}$, com respetivas probabilidades $\{P(x_i) : i = 1, ..., q\}$.
- Na sua transmissão por um canal, os símbolos x_i fonte serão em geral transformados em novos símbolos y_i de um alfabeto $Y = \{y_i : j = 1, ..., r\}$.

- Em geral a recuperação da mensagem inicial a partir do resultado da transmissão da sua versão codificada não será total por
 - na própria codificação das mensagens, a representação dos símbolos originais poderá não ser exacta, pelo que a recuperação da mensagem original pode ser sujeita a erros;
 - a redundância introduzida na codificação para a transmissão da mensagem pelo canal poderá ser insuficiente de forma que a informação transmitida exceda a capacidade do canal.
- A teoria da razão de distorção, introduzida por C. E. Shannon em 1959, visa a determinação da informação mútua mínima que o canal deverá possuir, para uma distribuição de probabilidades dada para a fonte à entrada, de forma que a distorção média não exceda uma dada tolerância *D*.

Suponhamos que cada uma de M possíveis mensagens fonte é codificada por uma palavra de comprimento n.
 Seja H(M) a entropia da mensagem fonte.
 A razão de codificação R é definida por

$$R = \frac{H(M)}{n}.$$

- Note-se que, no caso de todas as mensagens terem a mesma probabilidade, $H(M) = \log M$.
- No caso geral, H(M) é o número médio de bits transmitido para cada mensagem fonte.

Medidas de distorção

- A medida de distorção de uma letra x_i , $d(x_i, y_j)$, é a medida do custo da representação do símbolo fonte x_i pelo símbolo y_j .
- A distorção média, \overline{d} é definida como sendo a média pesada dos $d(x_i, y_j)$:

$$\overline{d} = \sum_{i=1}^{q} \sum_{j=1}^{r} P(x_i) P(y_j | x_i) d(x_i, y_j)$$

onde os $P(y_j|x_i)$ são as probabilidades de transição do canal.

Fixada a distribuição de probabilidades para a entrada, dizemos que as probabilidades de transição do canal são D-admissíveis se a correspondente distorção média satisfizer a desigualdade $\overline{d} \leqslant D$.

- O conjunto das probabilidades de transição D-admissíveis representa-se por \mathcal{P}_D .
- A cada elemento P de \mathcal{P}_D corresponde a informação mútua do canal, dada por

$$I(X;Y) = \sum_{i=1}^{q} \sum_{j=1}^{r} P(x_i) P(y_j|x_i) \log \frac{P(y_j|x_i)}{P(y_j)},$$

onde $P(y_j) = \sum_{i=1}^q P(y_j|x_i)P(x_i)$, como habitualmente.

■ Dada uma distribuição de probabilidades $\{P(x_i): i=1,\ldots,q\}$ para os símbolos da fonte, a *função* razão de distorção associa a cada D o seguinte valor:

$$R(D) = \min_{[P(y_j|x_i)]_{i,j} \in \mathcal{P}_D} I(X;Y),$$

ou seja, a informação mútua mínima que o canal poderá proporcionar não excedendo a tolerância D para a distorção média.

Trata-se de um problema de otimização de uma função contínua não linear definida no compacto \mathcal{P}_D . O mínimo existe, mas é difícil de calcular.

Exemplos

Consideremos o canal

Note-se que se trata de uma generalização dos BSC e dos BEC.

- Tomemos a medida de distorção para o canal dada por:
 - $d(x_1, y_1) = d(x_2, y_3) = 0$, indicando que nesses casos a transmissão é fiel e não há erro na representação dos símbolos à partida como resultado da utilização do canal;
 - $d(x_1, y_2) = d(x_2, y_2) = 1$, ou seja atribuímos custo 1 à perda do símbolo transmitido;
 - $d(x_1, y_3) = d(x_2, y_1) = 3$, o que significa que atribuímos custo 3 à inversão de bit.

Supondo que $P(x_1)=P(x_2)=0.5$ e as probabilidades $P(y_j|x_i)$ do canal são dadas pela seguinte matriz

$$\mathbf{P} = \left[\begin{array}{ccc} 0.7 & 0.2 & 0.1 \\ 0.1 & 0.2 & 0.7 \end{array} \right],$$

podemos calcular $P(y_1) = 0.4$, $P(y_2) = 0.2$, $P(y_3) = 0.4$,

$$I(X;Y) = \frac{1}{2}(0.7\log(0.7/0.4) + 0.1\log(0.1/0.4) + 0.2\log(0.2/0.2) + 0.2\log(0.2/0.2) + 0.1\log(0.1/0.4) + 0.7\log(0.7/0.4))$$
$$\approx 0.365,$$

e a distorção média

$$\overline{d} = \sum_{i=1}^{2} \sum_{j=1}^{3} P(x_i) P(y_j | x_i) d(x_i, y_j)$$

$$= 2 \times \frac{1}{2} [(0.7)(0) + (0.2)(1) + (0.1)(3)]$$

$$= 0.5$$

- Assim, para D=0.5, a matriz do canal dada por ${\bf P}$ é D-admissível e tem informação mútua $I(X;Y)\simeq 0.365$.
- Haverá alguma matriz do canal com $\overline{d} \leqslant 0.5$ e I(X;Y) < 0.365?
- Intuitivamente, é de esperar que o mínimo da informação mútua seja atingido quando se tomar a distorção máxima admissível $\overline{d} = 0.5$.

Consideremos as duas matrizes

$$P_{BSC} = \begin{bmatrix} \frac{5}{6} & 0 & \frac{1}{6} \\ \frac{1}{6} & 0 & \frac{5}{6} \end{bmatrix} \qquad P_{BEC} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix},$$

correspondendo respetivamente a um BSC e a um BEC.

Fazendo as contas, obtém-se em ambos os casos distorção média $\overline{d}=0.5$ enquanto $I_{BSC}(X;Y)\simeq 0.350$ e $I_{BEC}(X;Y)\simeq 0.5$.

Propriedades de R(D)

Passamos a estudar o comportamento da função $D \mapsto R(D)$.

Resultado 2.9 A função R(D) é uma função decrescente de D com valores no intervalo [0, H(X)]. O máximo é atingido para o valor mínimo possível da distorção, D_{\min} , e existe um valor mínimo D_{\max} tal que R(D) = 0 para $D \geqslant D_{\max}$.

- Note-se que se D_{\min} é o mínimo para a distorção média \overline{d} , então $\mathcal{P}_D = \emptyset$ para $D < D_{\min}$.
- Note-se também que a função R(D) é obviamente decrescente pois o conjunto de matrizes sobre o qual se toma o mínimo de I(X;Y) aumenta com D.

Vejamos então qual é o valor D_{\min} para

$$\overline{d} = \sum_{i=1}^{q} \sum_{j=1}^{r} P(x_i) P(y_j | x_i) d(x_i, y_j).$$

Recorde-se que os $d(x_i, y_j)$ são medidas de distorção fixadas e as probabilidades $P(x_i)$ são dadas. A variável em relação à qual se pretende minimizar a distorção média \overline{d} é a matriz $\mathbf{P} = [P(y_j|x_i)]_{i,j}$ do canal.

- Uma vez que todos os coeficientes são não negativos, para um dado x_i a melhor estratégia para minimizar \overline{d} consiste em concentrar a probabilidade $P(y_j|x_i)=1$ num y_j para o qual $d(x_i,y_j)$ for mínimo.
- Fazendo $d(x_i) = \min_j d(x_i, y_j) = d(x_i, y_{j(x_i)})$, temos então

$$D_{\min} = \sum_{i=1}^{q} P(x_i) d(x_i).$$

Calculando I(X; Y), obtemos

$$I(X;Y) = H(Y) - H(Y|X)$$

$$= H(Y) - \sum_{i} \sum_{j} P(x_i)P(y_j|x_i) \log P(y_j|x_i)$$

$$= H(Y)$$

o que mostra que $R(D_{\min}) = H(Y) = I(X;Y) \leqslant H(X)$.

- Para mostrar que $R(D_{\text{max}}) = 0$, começamos por observar que, sendo R(D) decrescente, se R(D) = 0 for atingido para um dado D, também será R(D') = 0 para $D' \geqslant D$.
- Ora mostrámos que I(X;Y)=0 implica que a entrada e a saída são independentes, i.e., $P(y_j)=P(y_j|x_i)$ para todos os i e j, ou ainda cada coluna da matriz \mathbf{P} tem as entradas todas iguais.
- Assim, mediante a condição I(X;Y) = 0, obtemos

$$\overline{d} = \sum_{j} P(y_j) \sum_{i} P(x_i) d(x_i, y_j). \tag{6}$$

- Procuramos portanto o menor \overline{d} desta forma, ou seja pretendemos minimizar (6), sendo aqui a variável a distribuição $P(y_j)$ (a qual, mediante as restrições acima, determina a matriz do canal).
- Seja j^* o índice para o qual $\sum_i P(x_i) d(x_i, y_j)$ é mínimo. Concentrando em y_{j^*} a probabilidade, i.e., tomando $P(y_{j^*}) = 1$, obtemos o valor mínimo para \overline{d} . Concluímos que D_{\max} é dado pela fórmula:

$$D_{\max} = \min_{j=1,\dots,r} \sum_{i=1}^{q} P(x_i) d(x_i, y_j).$$

Exemplo

Recorde-se o exemplo anterior:

Consideremos o canal deste tipo com matriz de probabilidades

$$\mathbf{P} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}.$$

- Como $P(y_j|x_i) = P(y_j), I(X;Y) = 0.$
- A distorção correspondente é

$$\overline{d} = \frac{1}{2} \frac{1}{3} (0 + 1 + 3 + 3 + 1 + 0) = \frac{4}{3}.$$

- No entanto o valor de D_{\max} poderá ser inferior, pois não começámos por minimizar \overline{d} sujeito à condição I(X;Y)=0.
- De facto,

$$D_{\max} = \frac{1}{2} \min_{j} (d(x_1, y_j) + d(x_2, y_j)) = \frac{1}{2} \min\{0 + 3, 1 + 1, 3 + 0\} = 1.$$

Logo
$$D_{\text{max}} = 1$$
, sendo $I(X;Y) = 0$ com $\overline{d} = 1$ obtido com $\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$.

Concluímos que, se admitirmos uma distorção de 1, então é possível obter informação mútua nula, a qual é atingida tomando o canal que produz à saída sempre o símbolo $y_2 = ?$.

Codificação da fonte

3 Codificação da fonte

Sistemas de comunicação digital

- Em sistemas de comunicação digital, um problema fundamental consiste no armazenamento e transmissão eficientes da informação.
- Para começar, precisamos de representar a informação na forma adequada ao seu tratamento digital, ou seja em código binário.
- Assim, pretende-se obter sistemas de codificação que satisfaçam as seguintes condições:
 - a partir da mensagem codificada, deve ser possível recuperar sem ambiguidade a mensagem original;
 - uma mensagem dada deve poder ser transformada eficientemente numa sua representação binária o mais curta possível e dela ser recuperada também eficientemente.

- Para a transmissão por um canal com ruído, devemos tomar cuidados adicionais, aumentando a redundância da versão codificada transmitida de forma a recuperar da perturbação da mensagem introduzida pelo canal.
- De momento vamos concentrarmo-nos na codificação da fonte, supondo que a mensagem codificada recebida pelo recetor reproduz fielmente a mensagem codificada emitida pela fonte.
- Considere-se um alfabeto $S = \{s_i : i = 1, ..., q\}$ da fonte e um alfabeto $X = \{x_j : j = 1, ..., r\}$ dito o alfabeto do código.
- Uma *palavra-código* é uma palavra do alfabeto do código.

- Uma codificação é uma correspondência $s_i \mapsto C(s_i)$ associando a cada letra de S uma palavra-código, i.e., uma sua representação como uma palavra sobre o alfabeto do código.
- Uma tabela de codificação ou simplesmente uma codificação da fonte é uma lista $\{s \mapsto C(s) : s \in S\}$ representando a codificação de cada símbolo da fonte.
- Dado um alfabeto A, representemos por A^* o conjunto de todas as palavras (finitas) nas letras de A.
- A concatenação define uma operação sobre A^* :

$$(a_1a_2\ldots a_m)\cdot (b_1b_2\ldots b_n)=a_1a_2\ldots a_mb_1b_2\ldots b_n.$$

Note-se que esta operação é associativa e que A^* é um monoide, sendo a palavra vazia ε o elemento neutro.

■ Naturalmente, as letras são vistas como palavras com um só símbolo.

Proposição 3.1 O monoide A^* tem a seguinte propriedade universal: dado um monoide M e uma função $\varphi: A \to M$, existe uma única extensão de φ a um homomorfismo $\hat{\varphi}: A^* \to M$, i.e., tal que o diagrama seguinte comuta:

Prova. Basta tomar $\hat{\varphi}(a_1 a_2 \dots a_m) = \varphi(a_1) \varphi(a_2) \dots \varphi(a_m)$. \square

■ Uma codificação não é mais do que uma função $C: S \to X^*$.

- Dizemos que a codificação C é $n\tilde{a}o$ -singular se C for injetiva.
- Dizemos que a codificação C é descodificável (ou um c'odigo, segundo alguns autores) se a extensão \hat{C} a S^* for injetiva.
- Uma codificação diz-se *binária*, *ternária*, *r-ária* se o alfabeto da codificação for respetivamente um alfabeto com 2, 3, r símbolos. Nos dois primeiros casos, é frequente tomar $X = \{0, 1\}$ e $X = \{0, 1, 2\}$, respetivamente.

Exemplo

Sejam $S = \{s_1, s_2, s_3, s_4\}$ e $X = \{0, 1\}$. Consideremos os seguintes esquemas de codificação:

Fonte	A	В	C
s_1	0	0	00
s_2	11	11	01
s_3	00	00	10
s_4	11	010	11

- A não é não-singular;
- **B** é não-singular mas não é descodificável: $\mathbf{B}(s_3) = 00 = \hat{\mathbf{B}}(s_1s_1);$
- C é descodificável.

Códigos instantâneos

- Um esquema de codificação *C* diz-se *instantâneo* se a descodificação de uma mensagem parcial pode ser feita logo que seja reconhecida uma palavra do código, independentemente do que se lhe siga.
- De forma equivalente, se $C(s_i)$ é prefixo (i.e., factor à esquerda no monoide X^*) de $C(s_j)$ então $s_i = s_j$. Uma codificação com esta propriedade diz-se também um código prefixo.
- Em particular, note-se que todo o código prefixo é descodificável.
- Dualmente, se C é tal que, sempre que $C(s_i)$ é sufixo (i.e., factor à direita no monoide X^*) de $C(s_j)$, tem-se $s_i = s_j$, então C diz-se um código sufixo. [Exercício: mostre que os "códigos sufixos" são códigos.]

Exemplo

Considere-se os seguintes esquemas de codificação:

Fonte	A	В	C
s_1	0	0	0
s_2	10	01	01
s_3	110	011	011
s_4	1110	0111	111

- Os três esquemas são descodificáveis: sendo o primeiro um código prefixo, o segundo e o terceiro são códigos sufixos.
- Para provar que \mathbf{C} é descodificável, basta notar que se tivermos uma mensagem em código $x_{i_1}x_{i_2}\ldots x_{i_m}\in \hat{\mathbf{C}}(S^*)$, as posições com 0 determinam a factorização em palavras-código: conforme a classe de congruência módulo 3 do número de 1's entre 0's consecutivos, teremos s_1 , s_2 ou s_3 seguido de uma potência de s_4 .
- Note-se também que, dado um prefixo 0111111 . . . de uma mensagem codificada, por muito longo que seja, não sabemos qual é a primeira letra da mensagem original até que apareça o próximo 0.