STEM Lesson #1 Assemble Pedro

(Duration: $2h - Difficulty: \bigstar$)

@ Learning Objective

Discover the Pedro robot, understand its basic operation, and explore its different control modes.

Students will learn:

- 1. Basic concepts of robotics (programming, embedded systems, planetary gear systems)
- 2. How a 3D printer works
- 3. How to identify the components of a robot
- 4. How to assemble a robot

X Required Materials

- 1. All Pedro robot parts printed in 3D
- 2. 2 ball bearings
- 3. 4 continuous rotation (360°) servomotors
- 4. 1 micro USB cable
- 5. 7.4V battery
- 6. Pedro Rev3 Electronic Board
- 7. PC (Windows, Linux, or OS X) with Arduino IDE installed

Step 1 – Base

- Place the battery in the base and close the cover
- Place the electronic board in the middle of the base
- Connect the battery to the board
- Position the first servomotor in its slot (the cable should be oriented toward the board)

- Connect the servomotor to the board pins (Pin D5)
- Place the first planetary gear system on top of the servo
- Then place the gear in the center and press lightly so it attaches to the servo head
- Turn on the board (On/Off button), the gear system should rotate in both directions

Step 2 – Shoulder

- Insert the second servomotor into the robot's shoulder
- The servomotor should be oriented with the cable facing downward
- Connect the shoulder support to the shoulder
- Place the entire shoulder assembly on top of the planetary gear system
- Press until the shoulder is secured onto the planetary gear system
- Gently rotate the shoulder left and right to check the planetary gear rotation
- Screw the base with the 3 screws

Work in progress ...

STEM Lesson #2

Meet Pedro - Part 1

(Duration: $2h - Difficulty: \bigstar$)

© Learning Objective

Discover Pedro, understand its basic functioning, and explore its different control modes.

Students will learn:

- To identify the components of a robot
- To establish a connection with Pedro
- To test manual controls

X Required Materials

- 1 assembled Pedro robot
- 1 micro USB cable
- PC (Windows, Linux or OS X) with Arduino IDE installed
- Student logbook (provided)
- "Pedro Anatomy" sheet (annotated robot diagram)

Step 1 – Observe Pedro (1h)

- 5. Students examine Pedro from all angles
- 6. Using the "Pedro Anatomy" sheet, they identify:
- The electronic board
- The servomotors
- The battery
- The 3 planetary gear systems
- External modules: Radio NRF / Bluetooth / Wi-Fi / OLED screen
- 7. The electronic board: Identify the number of each element on Pedro's board

• PART 1 : Identification of non-programmable éléments (20 mn)

Button ON/OFF	LED ON/OFF	3 LED CR ¹	4 LED OK ²
5 3x LEDs	Reset	Switch radio → bluetooth → wifi	8 Switch
Battery ³	Button		Command AT Bluetooth

- 1. LED CR : Indique que la batterie est en cours de recharge
- 2. LED OK : Indique que le recharge de la batterie est terminée
- 3. LED indicateur du niveau de la batterie du bas vers le haut : 25%, 50% et 100%

PARTIE 2: Identification of programmable¹ element (20 mn)

1 LED	LED	3 LED	LED
Base D13	Shoulder D11	Elbow D8	Gripper D7
Pin Servo	Pin Servo	Pin Servo	Pin Servo
Base D5	Shoulder D6	Elbow D9	Gripper D10
9 Button A0 Select Servo	Button A1 Rotation Servo	Button A2 Rotation Servo	Microcontroleur¹ (Le brain)

^{1.} Un élément programmable est un composant de la carte électronique qui peut être controllé en programmant le microcontrolleur. Ce composant peut être un bouton, une LED ou des Pin (broches) d'entrée/sortie. Voir plus loin dans la fiche comment programmer la carte robot Pedro ainsi que les notion d'entrée/sortie.

• PART 3 : Identification of connecteurs (20 mn)

1 Module	2 Module	Module	OLED Screen
Radio	WiFi	Bluetooth	128x64
5 7.4 V Battery Connector	6 Pin RX TX A4 A4 A5 ¹	Port micro USB ²	Pin Bootloader ³

- 1. Les Pin RX, TX, A3, A4, A5 permet de relier le robot Pedro avec l'extérieur comme une carte arduino, un autre robot Pedro, un bouton ou une led sur une breadboard.
- 2. Le port USB a 3 fonctionnalités :
 - programmer la carte
 - recharger la batterie
 - controler le robot Pedro via son interface graphique sur PC
- 3. Le bootloader est la couche midleware permettant d'interfacer le matériel (les composants) avec l'applicatif (le programme) (hors fiche notion avancé des systèmes embarqué)

8. Discussion : donne une breve définition à chaque élément du tableau

Composant	Définition : à quoi ça sert ?
Le microntrôleur	
Les servomoteurs	
Le mordule NRF	
Le module HC-05	
Le module ESP01	
Le câble USB	

, w	_
- 00	<u>.</u>
=	1

Step 2 – Blink Programme (20 min)

- 8. Connect Pedro via USB
- 9. Open Arduino IDE
- 10. Select board type "Arduino Micro" (Tools → Board → Arduino Micro)
- 11. Select the correct port (Tools \rightarrow Port \rightarrow Arduino Micro)
- 12. Open the sketch "Blink" (File \rightarrow Examples \rightarrow Basic \rightarrow Blink)
- 13. Explain the Blink code: setup() and loop() functions

Fonction	Définition : à quoi ça sert ?
Setup	
PinMode (notion Input/Output)	
Loop	
digitalWrite (notion Low/High)	
delai (seconde)	

14. Verify (compile) (from « human langage » to « computer langage »)

- 15. Upload the code to the board (programmer la carte : envoyer le code « langage ordinateur » vers la carte)
- 16. Check that LED 13 on Pedro's board blinks every 1 second
- 17. Modify the Blink code to test different LEDs and delays (Do the steps 7 and 8 before each modification)

Modification	N° LED	Delai	Observation OK/KO
1	13	500 (1/2 s)	
2	7	5000 (5 s)	
3	8	10000 (10 s)	
4	11	3000 (3 s)	

18. Modifier le code Blink afin de faire clignoter 2 LEDs en même temps comme décrit dans le tableau suivant (faire les étapes 7 et 8 après chaque modification)

Modification	N° LED	Delai	Observation OK/KO
1	7 et 8	1000 (1 s)	
2	11 et 13	5000 (5 s)	
3	7 et 13	10000 (10 s)	
4	8 et 11	4000 (3 s)	

19. Modifier le code Blink afin de faire clignoter les 4 LEDs en même temps comme décrit dans le tableau suivant (faire les étapes 7 et 8 après chaque modification)

Modification	N° LED	Delai	Observation OK/KO
1	7, 8, 11 et 13	4000 (1 s)	
2	idem	8000 (5 s)	
3	idem	10000 (10 s)	
4	idem	12000 (3 s)	

Étape 3 – Contrôle manuel (40 min)

- 1. Utiliser les commandes clavier pour déplacer Pedro
- 2. Tester les vitesses et directions
- 3. Essayer le **mode radio** si un second Pedro est disponible
- 4. Bonus : défi d'adresse faire un parcours simple

Imaginer un geste original ou une chorégraphie pour Pedro (ex : "Pedro danse la Macarena"). Les meilleurs seront filmés et partagés sur le site de l'école.

📚 Notions STEM abordées

- Robotique : composants et architecture
- Programmation: structure d'un sketch Arduino
- Électronique : alimentation et moteurs
- Communication: USB / Radio

🧪 Identité visuelle Pedro – format fiche

- Bandeau haut **jaune** + **noir** avec logo Pedro
- Émojis repères pour chaque section (③, **, *\times, *\times, *\times)
- Numérotation claire (Fiche n°1, n°2...)
- Encadré "Challenge Bonus" pour stimuler la créativité
- QR code vers le code Arduino et les ressources