SALIM HABIB UNIVERSITY

(FORMERLY BARRETT HODGSON UNIVERSITY) **Title**

Brute-Force Attack Detection Using Pushdown Automaton (PDA)

Course Information

Course Name # Theory of Automata Instructors Name # Dr Samita Bai Semester # CS(5-A)

Team Members

Dilshad Ali (F22csco30) Faisal Ali (F22csco23) Umar Nawaz(F22csco22)

Table of Contents

Abstract	3
1. Introduction	3
Background	3
Problem Statement	3
Objectives	3
Scope and Limitations	3
2. Literature Review	4
Technologies and Algorithms	4
Knowledge Gaps	
3. Methodology	4
Project Workflow	4
PDA Graph	4
Control Flow	5
System Architecture	6
4. Implementation	7
Development Details	7
Code and Environment	7
Challenges	7
5. Results and Discussion	7
Performance Metrics	7
Visualization	7
Discussion	7
6. Conclusion and Future Work	7
Summary	8
Future Work	8

Abstract

This project demonstrates the design and implementation of a **Pushdown Automaton** (**PDA**) to detect brute-force login attempts based on a predefined threshold of failed login attempts. The PDA transitions between states—initial, tracking, alert, and success—based on user behavior. A Flask-based web application simulates login attempts, integrating PDA transitions with session management. A visualization module illustrates PDA state transitions using **NetworkX** and **Matplotlib**. The project showcases how automata theory can solve real-world cybersecurity problems, providing a foundation for future enhancements in anomaly detection.

1. Introduction

Background

Brute-force attacks are a major cybersecurity threat, involving repeated attempts to guess credentials. Theory of Automata provides formal models to analyze and mitigate such issues. A **Pushdown Automaton (PDA)** offers an elegant approach to detect anomalies based on login patterns.

Problem Statement

To develop an automata-based system that identifies brute-force attacks by monitoring login attempts and triggering alerts upon exceeding a failure threshold.

Objectives

- 1. Model user login behavior with PDA states and transitions.
- 2. Detect brute-force attempts in real-time.
- 3. Provide an intuitive visualization of state transitions.

Scope and Limitations

- **Scope**: Focuses on detecting brute-force attacks in a simulated environment.
- **Limitations**: Does not support multi-user detection or integration with external authentication systems.

2. Literature Review

Technologies and Algorithms

- Pushdown Automaton (PDA): Tracks states and transitions using a stack.
- Flask: Framework for building the simulation.
- NetworkX and Matplotlib: For visualizing PDA transitions.

Knowledge Gaps

Few implementations leverage PDA for real-time brute-force detection, presenting an opportunity to explore this domain.

3. Methodology

Project Workflow

- 1. **Requirement Analysis**: Define PDA states, transitions, and input symbols.
- 2. System Design: Develop PDA logic and integrate it into a web application.
- 3. **Testing**: Validate the system with sample login attempts.

PDA Graph

Control Flow

System Architecture

• Components:

- PDA Logic (State Management)
- Web Interface (Flask)
- Visualization Module

4. Implementation

Development Details

The PDA transitions between states (q0, q1, q2, q3) based on user input (F for failed login, S for success). Threshold-based alerting is implemented in q2.

Code and Environment

- Programming Languages: Python
- Libraries: Flask, NetworkX, Matplotlib

Challenges

- 1. Ensuring accurate PDA transitions with session persistence.
- 2. Visualizing transitions dynamically.

5. Results and Discussion

Performance Metrics

• Accuracy in detecting brute-force attempts: 100% for simulated data.

Visualization

• Directed graph illustrating PDA state transitions.

Discussion

The system accurately detects anomalies and visualizes transitions. However, scalability for multi-user scenarios remains a challenge.

6. Conclusion and Future Work

Summary

The project successfully demonstrates a PDA-based approach to detect brute-force login attempts. It integrates theoretical concepts with practical implementation, showcasing the applicability of automata theory in cybersecurity.

Future Work

- 1. Extend support for multi-user detection.
- 2. Integrate with live authentication systems.
- 3. Enhance visualization with real-time updates.