ω (échelle log)

FILTRES ET FONCTIONS DE TRANSFERT

Exercice n°1

Représenter le diagramme de Bode asymptotique pour les fonctions de transfert suivantes. Indiquer dans quel domaine on a une intégration ou une dérivation du signal d'entrée.

1.
$$\underline{\underline{H}}(j\omega) = \underline{\underline{j}}\frac{\omega}{\omega_0}$$
 2. $\underline{\underline{H}}(j\omega) = \frac{\omega_0}{j\omega}$ 3. $\underline{\underline{H}}(j\omega) = 1 + \underline{\underline{j}}\frac{\omega}{\omega_0}$ 4. $\underline{\underline{H}}(j\omega) = \frac{1}{1 + \underline{\underline{j}}\frac{\omega}{\omega_0}}$

4.
$$\underline{H}(j\omega) = \frac{1}{1+j\frac{\omega}{\omega}}$$

5.
$$\underline{H}(j\omega) = \frac{j\frac{\omega}{\omega_0}(1+j\frac{\omega}{\omega_1})}{(1+j\frac{\omega}{\omega_2})(1+j\frac{\omega}{\omega_3})}$$
 avec $\omega_0 < \omega_2 < \omega_1 < \omega_3$

Exercice n°2

Détermination d'une capacité inconnue

On a réalisé un filtre passe-bas à l'aide d'un condensateur de capacité C et d'une résistance R = $1k\Omega$ La tension d'entrée a la valeur efficace U_e = 6V.

On a mesuré la tension de sortie U_s en fonction de la fréquence ; d'où le tableau suivant :

f(Hz)	200	500	1,00 10 ³	2.00 10 ³	5.00 10 ³	1.00 10 ⁴	2.00 10 ⁴	4.00	1.00 10 ⁵
								10 ⁴	
U _s (V)	5.95	5.72	5.08	3.73	1.82	0.943	0.476	0.191	95.5 10 ⁻³

- 1) Tracer le diagramme de Bode en gain de ce filtre (sur une feuille semi-logarithmique).
- 2) Déterminer la fréquence de coupure.
- 3) En déduire la capacité C du condensateur.

Exercice n°3

1. Etablir les fonctions de transfert de chaque circuit présenté.

2. Associer chaque fonction de transfert à un diagramme asymptotique proposé ci-après, en précisant les pentes et les pulsations remarquables.

ω (échelle log)

Exercice n°4

On étudie le filtre ci-contre.

- 1. En effectuant un schéma équivalent en basses puis en fautes fréquences déterminer sans calculs le type de ce filtre.
- 2. Déterminer la fonction de transfert de ce filtre en fonction de R et C.
- 3. Déterminer la pulsation caractéristique de ce filtre en fonction de R et C.

 $u_e(t)$

5. En haute fréquence quel est le comportement de ce filtre. Vers quelle valeur tend alors le déphasage de $u_s(t)$ par rapport à $u_e(t)$.

Exercice n°5

On considère le quadripôle suivant où C est une capacité, R une résistance et L une inductance.

1. Etudier qualitativement le comportement de ce quadripôle en haute et basse fréquence. De quel type de filtre s'agit-il?

2. On donne sa fonction de transfert :

$$\underline{H}(j\omega) = \frac{jL\omega}{4R + 4jL\omega - 3LC\omega^2R}$$

Montrer qu'elle peut se mettre sous l'une des formes : $\underline{H}(j_{\omega}) = \frac{A}{1+jQ\left(\frac{\omega}{\omega_0}\frac{\omega_0}{\omega}\right)} = \frac{j_{\overline{Q}\omega_0}^{\Lambda}}{1-\left(\frac{\omega}{\omega_0}\right)^2+j_{\overline{Q}\omega_0}^{\omega}}$

Exprimer A, Q et ω_0 en fonction de R, L et C.

- 3. Le diagramme de Bode a été donné, et on sait que Q = 10. Justifier l'allure des parties rectilignes du diagramme. En déduire la valeur de la fréquence f_0 .
- 4. Un circuit multiplieur fournit un signal d'entrée $v_e(t) = 2B\cos(100\omega_0 t).\cos(101\omega_0 t)$. Ecrire le signal obtenu en sortie.

