Une méthode d'ensemble en apprentissage non supervisée quand on ne connaît rien sur la performance des experts ?

Antoine Cornuéjols & Christine Martin

AgroParisTech – INRA MIA 518

antoine.cornuejols,christine.martin@agroparistech.fr

Plan

- 1. Introduction : le problème
- 2. Approches conventionnelles
 - 1. Clustering
 - 2. Fonctions d'évaluation
- 3. Approche proposée
 - 1. Principe
 - 2. Algorithme de sélection des bonnes fonctions d'évaluation
- 4. Expériences
 - 1. Protocoles
 - 2. Résultats
 - 3. La combinaison des résultats
- 5. Conclusions

Introduction

Le problème

Découverte d'une classe d'intérêt

- Illustrations
 - Identification de fraudeurs
 - Gènes activés dans une condition environnementale
 - Protéines interagissant avec un médicament

Découverte d'une classe d'intérêt

Apprentissage non supervisé

$$\mathcal{S} = \{\mathbf{x}_1, \dots, \mathbf{x}_m\}$$

• à **2** (?) classes

Approches conventionnelles

Clustering

Clustering

- Questions
 - « Bonne » distance ?

- 2 classes ou N classes? 2.
 - Problème de multi-modalité
- 3. Si déséquilibré ?

Fonctions d'évaluation

Fonction

$$f_i:\mathcal{X}{
ightarrow}$$
 \mathbb{R}

Permettant de classer les « objets »

Fonctions d'évaluation

- Tri des exemples
 - Filter method

Fonctions d'évaluation

- Questions
 - A-t-on une bonne fonction ?
 - Existe-t-il un seuil évident ?

Approche proposée

Une méthode d'ensemble

• Un **ensemble** ${\mathcal F}$ de fonctions d'évaluation

- On mesure la corrélation des tris
 - Sur *S*
 - Sur des échantillons aléatoires

- On retient les fonctions
 - Sur-corrélées sur S
 - D'accord sur S
 - Pas (peu) en général

Méthode d'ensemble supervisée

Le **boosting**

Méthode d'ensemble non supervisée

Nouveau problème

Mesure de corrélation de tris

Détection de « nouveautés »

- Corrélation entre fonctions d'évaluation
 - Quelle information est fournie par la valeur ou le classement d'un exemple par une fonction d'évaluation sur la valeur ou le classement d'une autre fonction ?
 - Spearman / Kendall
 - Notre approche
 - Intersection des top_n des deux fonctions étudiées sur l'échantillon S.

Mesurer la corrélation

Une courbe réelle

Enveloppe de courbes possibles

Étude théorique

Mesure de sur-corrélation

L'algorithme de sélection

Algorithme 1: Sélection de fonctions de base pertinentes

Entrées: La base d'exemples S

L'ensemble \mathcal{F} de fonctions d'évaluation de base

Sorties: Un sous-ensemble $\mathcal{F}'' \in \mathcal{F}$ de fonctions de base

Génération de N échantillons "aléatoires" S_0 ;

pour tous les couples de fonctions d'évaluation $(f_i, f_j)_{(i \neq j)} \in \mathcal{F}$ faire

Calculer la surcorrélation de (f_i, f_j) sur S par rapport à la corrélation moyenne sur les échantillons S_0

fin pour tous

Sélectionner les fonctions d'évaluation $f_i \in \mathcal{F}$ de surcorrélation \geq

seuil_min_surcor : soit \mathcal{F}'

Initialisation : $\mathcal{F}'' = \emptyset$

pour tous les $f_i \in \mathcal{F}'$ faire

fin pour tous

Illustration

Expériences

Protocole expérimental

320 exemples dont

- 40 (soit 1/8); 80 (soit 1/4); 120 (soit 1/3) d'exemples `+'
- Dans \mathbb{R}^{20}
- 2 gaussiennes : \mathbf{P}_{χ}^{+} et \mathbf{P}_{χ}^{-}
 - $|\mu_{+} \mu_{-}|_{2} = 3$
 - $-\sigma = 1.5$ ou 2.5 ou 3.5 ou 4.5 (taux de bruit)

45 fonctions d'évaluation

- 22 positivement alignées
- 22 négativement alignées
- 1 fonction aléatoire

Résultats expérimentaux

σ	$\frac{m^+}{m}$	Before selection		After selection			
		auc_m	auc^M	auc_m	auc^M	\overline{auc}	AUC comb
1.5	$\frac{40}{320}$	0 ± 0	1 ± 0	0.92 ± 0.03	1 ± 0	0.98 ± 0.01	1 ± 0
	$\frac{80}{320}$	0 ± 0	1 ± 0	0.87 ± 0.06	1 ± 0	0.97 ± 0.01	1 ± 0
	$\frac{\overline{320}}{\overline{320}}$	0 ± 0	1 ± 0	0.84 ± 0.07	1 ± 0	0.95 ± 0.01	1 ± 0
2.5	$\frac{40}{320}$	0.02 ± 0.01	0.98 ± 0.01	0.94 ± 0.03	0.98 ± 0.00	0.96 ± 0.02	0.98 ± 0.01
	$\frac{80}{320}$ 120	0.03 ± 0.01	0.98 ± 0.01	0.85 ± 0.05	0.98 ± 0.01	0.91 ± 0.02	0.97 ± 0.01
		0.03 ± 0.01	0.98 ± 0.01	0.76 ± 0.03	0.98 ± 0.01	0.88 ± 0.02	0.97 ± 0.01
	$\frac{\overline{320}}{\underline{160}}$ $\overline{320}$	0.03 ± 0.01	0.98 ± 0.01	0.73 ± 0.04	0.97 ± 0.01	0.85 ± 0.02	0.95 ± 0.01
3.5	$\frac{40}{320}$	0.09 ± 0.02	0.91 ± 0.02	0.75 ± 0.06	0.90 ± 0.03	0.83 ± 0.01	0.90 ± 0.03
	$\frac{80}{320}$ 120	0.09 ± 0.02	0.92 ± 0.02	0.65 ± 0.05	0.92 ± 0.02	0.79 ± 0.02	0.90 ± 0.02
		0.09 ± 0.02	0.91 ± 0.01	0.64 ± 0.04	0.91 ± 0.01	0.77 ± 0.02	0.89 ± 0.02
	$\frac{\overline{320}}{\underline{160}}$ $\overline{320}$	0.10 ± 0.01	0.91 ± 0.02	0.63 ± 0.03	0.91 ± 0.02	0.76 ± 0.02	0.88 ± 0.02
4.5	$\frac{40}{320}$	0.13 ± 0.02	0.86 ± 0.02	0.67 ± 0.03	0.86 ± 0.02	0.76 ± 0.02	0.86 ± 0.02
	$\frac{80}{320}$ 120	0.15 ± 0.02	0.85 ± 0.02	0.65 ± 0.03	0.84 ± 0.03	0.75 ± 0.02	0.84 ± 0.03
	$\frac{120}{320}$ 160	0.15 ± 0.02	0.84 ± 0.02	0.62 ± 0.06	0.84 ± 0.02	0.73 ± 0.03	0.84 ± 0.02
	$\frac{160}{320}$	0.15 ± 0.01	0.85 ± 0.01	0.61 ± 0.03	0.85 ± 0.01	0.72 ± 0.02	0.83 ± 0.03

Table 1: Experimental results in function of the noise parameter σ and the proportion of the class '+'.

La combinaison des fonctions d'évaluation

Boosting et redescription

• Construction **itérative** de l'espace de redescription

Détection de nouveautés

- Algorithme itératif de combinaison de fonctions d'évaluation
 - De plus en plus discriminatives

- A. Cornuéjols, Ch. Martin (2011). « Unsupervised Object Ranking Using not even Weak Experts ». Int. Conf. on Neural Information Processing (ICONIP-2011).
- Ch. Martin & A. Cornuéjols (2012). « Détection non supervisée d'une sous-population par méthode d'ensemble et changement de représentation itératif ». Conf. Extraction et Gestion des Connaissances, (EGC-2012).
- A. Cornuéjols, Ch. Martin (2012). « Une nouvelle méthode de combinaison d'outils d'identification non supervisés ». *Atelier Prospectom-2012, Grenoble, 29-30 Nov. 2012.*
- A. Cornuéjols, Ch. Martin (AAFD-2014). « Une méthode d'ensemble en apprentissage non supervisé quand on ne connaît rien sur la performance des experts ? ».. AAFD-2014, 29-30 avril 2014, LIPN.

Conclusions

Conclusions

- En apprentissage non supervisé (à 2 classes)
 - 1ère méthode d'ensemble ne présupposant pas des « experts » bons
- Nouveau critère de sélection
 - La sur-corrélation des tris
- Étude **théorique**
 - On peut améliorer la précision et le rappel autant que l'on veut (peut)
- Étude empirique
 - Bons résultats confirmant le bien-fondé de l'approche
- Perspectives pour améliorer la combinaison

