Appello 2 — Parte 1

$$30/08/2024$$
 — versione 1 —

♥♣♦♠

32 pt - durata 1h 30' - MS Forms

Gli studenti aventi diritto a svolgere la **prova ridotta** del 30% secondo la L.170/2010 (indicazioni **Multichance** team) **NON** svolgono i quesiti contrassegnati con (***)

TEST - 18 pt

$$1-2$$
 pt (***) No Multichance

Quanti numeri (escluso lo zero) sono rappresentati nell'insieme $\mathbb{F}(2,5,-4,4)$? Quale numero in base 10 si ottiene per questo insieme scegliendo segno s=0, mantissa $m=(11001)_2$ ed esponente e=-1?

$$2*288 = 576, 0.390625$$

2 — 2 pt

Il numero di Nepero e può essere approssimato come $s_N = \sum_{n=0}^N \frac{1}{n!}$, tale che $e = \lim_{N \to \infty} s_N$. Quanto vale s_5 ? Si determini il valore minimo N_{min} tale per cui l'errore commesso approssimando e con $s_{N_{min}}$ risulti inferiore a 10^{-4} .

$$s_5 = 2.7167, N_{min} = 7$$

3-1 pt

Sia $A \in \mathbb{R}^{20 \times 20}$ una matrice tridiagonale che ammette fattorizzazione LU senza pivoting. Si valuti il numero di operazioni necessarie per calcolare il determinante di A utilizzando un metodo computazionalmente efficiente.

$$3(n-1) + (n-1) = 76$$

Si consideri la fattorizzazione LU senza pivoting di una matrice $A \in \mathbb{R}^{n \times n}$. Si indichino le affermazioni false:

1. Se
$$A = \begin{bmatrix} a & b \\ c & 0 \end{bmatrix}$$
 si hanno $L = \begin{bmatrix} 1 & 0 \\ \frac{c}{a} & 1 \end{bmatrix}$ e $U = \begin{bmatrix} a & b \\ 0 & -\frac{cb}{a} \end{bmatrix}$.

- 2. Se la matrice A è invertibile allora esiste sempre la fattorizzazione LU.
- 3. Per n=60, il calcolo della fattorizzazione LU richiede 144 000 operazioni.
- 4. Se un elemento pivotale è nullo allora la matrice A è singolare.
- 5. Se la matrice A è sparsa allora anche L e U sono matrici sparse.

false
$$(2)$$
, (4) e (5)

$5-1 \ \mathrm{pt}$ (***) No Multichance

Si consideri il sistema sovradeterminato $A\mathbf{x} = \mathbf{b}$, dove $A = \begin{bmatrix} 4 & 3 & 2 \\ 3 & 4 & 1 \\ 2 & 1 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ e $\mathbf{b} = \mathbf{b}$

 $(1, 1, 1, 1)^T$. Si risolva il sistema con il metodo della fattorizzazione QR e si riportino il valore dell'elemento $(Q)_{12}$ della matrice Q e dell'ultima componente del vettore soluzione $(\mathbf{x})_3$.

$$q_{12} = 0.3052; x_3 = 0.2744$$

6 — 2 pt

Si consideri la matrice tridiagonale $A \in \mathbb{R}^{100 \times 100}$, tale che $(A)_{i,i} = 5$, per $i = 1, \ldots, 100$, $(A)_{i+1,i} = (A)_{i,i+1} = -2$, per $i = 1, \ldots, 99$. Si approssimi l'autovalore di A più vicino a s = 6 utilizzando il metodo delle potenze inverse con shift, implementato nella funzione Matlab[®] invpowershift.m, a partire dal vettore $\mathbf{x}^{(0)} = (1, 1, \ldots, 1)^T \in \mathbb{R}^{100}$ e con una tolleranza di 10^{-8} . Si riportino l'approssimazione ottenuta e il numero di iterazioni effettuate.

 $\lambda = 6.0453, 7$ iterazioni

7 — 2 pt

Si vuole approssimare l'unico zero $\alpha \in I = [a, b]$ di una funzione f(x) continua nell'intervallo I usando il metodo di bisezione. Si indichino le affermazioni vere.

- 1. La convergenza è garantita se f(a) f(b) < 0, ma solo se a e b sono sufficientemente vicini a α .
- 2. La convergenza non è garantita se α è uno zero di molteplicità maggiore di 1.
- 3. La convergenza non è garantita se α è uno zero avente molteplicità pari $(m=2,\,4,\,6,\ldots).$
- 4. La convergenza è garantita se $|f'(\alpha)| < 1$.
- 5. La convergenza è garantita se $|f'(\alpha)| > 0$.

Vere (3), (5)

8 — 2 pt

Si vuole approssimare il punto di minimo della funzione $f(x) = (x-1)\sin(x)$ nell'intervallo [0,1]. Si eseguano a tal fine 5 iterazioni del metodo di Newton. Si riportino le iterate $x^{(1)}$ e $x^{(5)}$ ottenute applicando il metodo a partire da $x^{(0)} = 1$, oltre al valore $f\left(x^{(5)}\right)$ corrispondente.

$$x^{(1)} = 0.7727, \quad x^{(5)} = 0.4797, \quad f(x^{(5)}) = -0.2401$$

9-2 pt (***) No Multichance

Si vuole calcolare il punto di intersezione delle funzioni $f(x)=\sin(2\pi x)$ e $g(x)=\pi(x-1/6)+\sqrt{3}/2$ nel semipiano x>0, trovando lo zero della funzione h(x)=f(x)-g(x) mediante il metodo di Newton implementato nella funzione Matlab[®] newton.m con iterata iniziale $x^{(0)}=0$ e una tolleranza di 10^{-4} sul criterio d'arresto. Si riportino le coordinate del punto di intersezione, il numero di iterazioni effettuate e l'ordine di convergenza del metodo.

$$(0.1667, 0.8659)^T$$
, 11, 1

10 — 2 pt

Si consideri la funzione di iterazione $\phi(x)=\eta\left(1-e^{2x-1}\right)+x$, dipendente dal parametro $\eta\in\mathbb{R}$ e dotata del punto fisso $\alpha=\frac{1}{2}$. Per quali valori di η è garantita la convergenza del metodo delle iterazioni di punto fisso ad α , scegliendo l'iterata iniziale "sufficientemente" vicina a α ? Per quali valori di η tale convergenza è monotona?

Conv. $\eta \in (0,1)$; Conv. monotona $\eta \in (0,1/2)$

ESERCIZIO – 14 pt

Si consideri il sistema lineare $A \mathbf{x} = \mathbf{b}$, dove $A \in \mathbb{R}^{n \times n}$ è una matrice simmetrica e definita positiva, con \mathbf{x} , $\mathbf{b} \in \mathbb{R}^n$ per $n \ge 1$. In particolare, si pongano n = 100 e

$$A = \text{pentadiag}(1, -4, 6, -4, 1) \in \mathbb{R}^{100 \times 100}$$

mentre $\mathbf{b} \in \mathbb{R}^{100}$ è tale per cui $\mathbf{x} = \mathbf{1} \in \mathbb{R}^{100}$.

NOTA: Si riportino nelle risposte: tutti i valori richiesti, tutti i comandi Matlab[®] usati, tutte le funzioni Matlab[®] implementate, le descrizioni dei procedimenti usati, le giustificazioni teoriche dei risultati e tutte le definizioni della notazione.

Punto 1) — 3 pt

Si consideri il metodo della fattorizzazione LU con pivoting per riga per risolvere il sistema lineare.

- Si illustrino i passaggi principali del metodo, includendo l'eventuale permutazione delle righe ed evidenzando i costi computazionali corrispondenti. Lo si applichi alla soluzione del sistema lineare ottenendo la soluzione numerica $\hat{\mathbf{x}} \in \mathbb{R}^n$, per cui si calcoli e si riporti il valore del residuo normalizzato (relativo) corrispondente. Viene effettuata la permutazione per righe?
- Dopo aver risposto al punto precedente, si *stimi* l'errore relativo commesso applicando il metodo, definendo tutta la notazione usata. Si verifichi che l'errore relativo è effettivamente inferiore all'errore precedentemente stimato.
- Quale metodo diretto sarebbe stato più conveniente applicare dal punto di vista computazionale? Perchè?

Spazio per risposta lunga O(6.7e5) ops, $P \neq I$, $res_{rel} = 9.2222e - 16$, K(A) = 3.4579e6, $err_{stim} = 3.1889e - 9$, $err_{vero} = 1.2079e - 12$, Cholesky O(3.3e5) ops

Punto 2) — 3 pt (***) No Multichance

Si considerino i metodi di Jacobi e Gauss–Seidel per l'approssimazione della soluzione ${\bf x}$ del sistema lineare.

- Si determini se i metodi di Jacobi e Gauss–Seidel convergono a \mathbf{x} per ogni scelta dell'iterata iniziale $\mathbf{x}^{(0)} \in \mathbb{R}^{100}$.
- Si applichi il metodo di Gauss-Seidel usando la funzione Matlab[®] gs.m con iterata iniziale $\mathbf{x}^{(0)} = \mathbf{0} \in \mathbb{R}^{100}$, tolleranza sul criterio d'arresto del residuo normalizzato $tol = 10^{-3}$ e massimo numero di iterazioni pari a 10^{3} . Si riportino il numero di iterazioni N_{it} effettuate, il valore del residuo normalizzato $\|\mathbf{b} A\mathbf{x}^{(N_{it})}\|/\|\mathbf{b}\|$ e l'errore relativo $\|\mathbf{x} \mathbf{x}^{(N_{it})}\|/\|\mathbf{x}\|$ corrispondenti.
- Dopo aver risposto al punto precedente, si commenti l'accuratezza del risultato ottenuto applicando il metodo di Gauss-Seidel.

Spazio per risposta lunga $\rho_{B_J}=1.6654>1,~\rho_{B_{GS}}=0.999\overline{9}<1,~N_{it}=546,~res_{norm}=9.9920e-4,~err_{norm}=0.9395$

Punto 3) — 3 pt

Si consideri il metodo del gradiente coniugato precondizionato per l'approssimazione di x con le seguenti matrici di precondizionamento (precondizionatori):

$$P_1 = I \in \mathbb{R}^{n \times n}, \quad P_2 = \operatorname{tridiag}(-1, 2, -1) \in \mathbb{R}^{n \times n}, \quad P_3 = T \in \mathbb{R}^{n \times n},$$

dove I è la matrice identità, mentre T è la matrice tridiagonale estratta dalla matrice A.

- Quale o quali precondizionatori P_1 , P_2 oppure $P_3 \in \mathbb{R}^{n \times n}$ è possibile utilizzare per il metodo?
- Per quale precondizionatore $P_1,\,P_2$ oppure $P_3\in\mathbb{R}^{n\times n}$ è garantita la convergenza più rapida del metodo per ogni scelta dell'iterata iniziale $\mathbf{x}^{(0)} \in \mathbb{R}^n$?
- Con il precondizionatore selezionato si applichi il metodo usando la funzione Matlab® pcg con $\mathbf{x}^{(0)} = \mathbf{0} \in \mathbb{R}^n$ e tolleranza sul criterio d'arresto basato sul residuo normalizzato $tol = 10^{-6}$. Si riportino il numero di iterazioni N_{it} effettuate e il valore dell'errore $\|\mathbf{x}^{(N_{it})} - \mathbf{x}\|_A$ corrispondente.

Spazio per risposta lunga P_3 non SDP, P_2 , $K(P_2^{-1}A) = 1.0542e3 \ll K(A)$, $c = 0.9402, N_{it} = 50, err = 5.9580e - 14$

Punto 4) — 3 pt

Si consideri il metodo delle potenze per approssimare l'autovalore $\lambda_1(A)$.

- Si riportino il numero di iterazioni N_{it} e il valore dell'approssimazione $\lambda_1^{(N_{it})}$ ottenuti tramite la funzione Matlab $^{ ext{@}}$ eigpower. $ext{m}$ con iterata iniziale $ext{y}^{(0)} =$ $\frac{\mathbf{x}^{(0)}}{\|\mathbf{x}^{(0)}\|} \in \mathbb{R}^n, \text{ dove } \left(\mathbf{x}^{(0)}\right)_i = i \text{ per } i = 1, \dots, n, \text{ e tolleranza } tol = 10^{-3}.$
- Per A reale e simmetrica e il metodo delle potenze vale la stima:

$$\left|\lambda_1(A) - \lambda_1^{(k)}\right| \le C \left|\frac{\lambda_2(A)}{\lambda_1(A)}\right|^{2k} \quad \text{per } k \to +\infty,$$

dove C>0è una costante. La si utilizzi per stimare il numero di iterazioni

N necessarie al metodo delle potenze affinchè $\frac{\left|\lambda_1(A) - \lambda_1^{(N)}\right|}{\left|\lambda_1(A) - \lambda_1^{(0)}\right|} < 10^{-3}$. Qual

è l'ordine di convergenza atteso dal metodo? Perchè?

Spazio per risposta lunga $N_{it} = 28, 15.5799, N = 2393, p = 1$

Punto 5) — 2 pt (***) No Multichance

Si consideri il seguente metodo iterativo dipendente da un parametro $\mu \in \mathbb{R}$ per la risoluzione di un generico sistema lineare $A \mathbf{x} = \mathbf{b}$, dove $A \in \mathbb{R}^{n \times n}$, \mathbf{x} , $\mathbf{b} \in \mathbb{R}^{n}$.

essendo
$$a_{ij} = (A)_{ij}$$
, $b_i = (\mathbf{b})_i$ e $x_i^{(k)} = \left(\mathbf{x}^{(k)}\right)_i$ per $i, j = 1, \dots, n$.

Si implementi l'algoritmo in una funzione Matlab® e la si riporti. Si applichi poi l'algorithmo alla soluzione del sistema lineare precedentemente assegnato per $n=100,\,\mathbf{x}^{(0)}=\mathbf{0}\in\mathbb{R}^{100},\,\mu=1.7$ e $tol=10^{-3}$. Si riportino il numero di iterazioni effettuate N_{it} e i valori $x_1^{(1)},\,x_1^{(2)}$ e $x_1^{(N_{it})}$ ottenuti.

Spazio per risposta lunga $N_{it} = 187, x_1^{(1)} = 0.8500, x_1^{(2)} = 0.8755, x_1^{(N_{it})} = 0.9767$