A MODIFIED-STRIP-ANALYSIS METHOD FOR PREDICTING WING FLUTTER AT SUBSONIC TO HYPERSONIC SPEEDS

E. Carson Yates, Jr.

NASA Langley Research Center Langley Station, Hampton, Va.

FORM 608	166 36094 (ACCESSION NUMBER)	(THRU)
FACILITY	(NASA CR OR TMX OR AD NUMBER)	(CODE) 3 2 (CATEGORY)

GPO PRICE \$_______

CFSTI PRICE(S) \$______

Hard copy (HC) ________

Microfiche (MF) ________

#577

ff 653 July 65

A MODIFIED-STRIP-ANALYSIS METHOD FOR PREDICTING WING FLUTTER AT SUBSONIC TO HYPERSONIC SPEEDS

By E. Carson Yates, Jr.*
NASA Langley Research Center

ABSTRACT

3609

The modified-strip-analysis method of flutter prediction, which was originally presented in NACA Research Memorandum L57LlO, is reviewed briefly, some of its limitations are examined, its relations to some other strip methods are indicated, and some results of its use are shown in comparison with experimental flutter data and with results of other analytical methods for Mach numbers up to 15.3. The modified strip analysis is formulated from Theodorsen's method and employs distributions of aerodynamic parameters which may be evaluated from any suitable linear or nonlinear steady-flow theory or from measured steady-flow load distributions for the undeformed wing. The method has been shown to give good flutter results for a broad range of swept and unswept wings at speeds up to hypersonic. The method, however, is not suitable for application to wings of very low aspect ratio nor to unswept wings at Mach numbers near 1.0.

INTRODUCTION

In subsonic and supersonic flutter analyses for finite wings, evaluation of the required oscillatory aerodynamic loads by rigorous methods usually entails extensive computation. Even with the aid of high-speed computing machinery, flutter analyses by some of the more involved methods are arduous and time-consuming. Some of these procedures, therefore, have not been widely used.

^{*}Aerospace Engineer. Associate Fellow, ATAA.

Consequently, approximate methods, notably strip methods, are frequently employed for trend studies, for preliminary design work, and for examining the mechanism of flutter, while the more erudite methods are frequently reserved for checking final designs.

Strip-type adaptations of two-dimensional methods to three-dimensional flutter problems, moreover, often require extensive tabulations of loading parameters or rather complicated expressions programed for their generation. Exceptions to this statement are the strip-type application of Theodorsen's method (ref. 1) to unswept wings (see also ref. 2) and the adaptation of that method for swept wings by Barmby, Cunningham, and Garrick (ref. 3). Although these methods are based on two-dimensional incompressible flow, they can be modified to take into account the aerodynamic effects of finite span and compressibility.

NACA Research Memorandum L57L10 (ref. 4) presented a simple, approximate modified-strip-analysis method for rapid flutter prediction, which was essentially a generalization of the method of Barmby, Cunningham, and Garrick in order to account for the aerodynamic effects of finite planform and compressibility. The purpose of the present report is to review this method briefly, to examine some of its limitations, to indicate its relation to some other strip methods, and to summarize some of the results obtained with it.

SYMBOLS

a spect ratio of full wing including fuselage intercept

nondimensional distance from midchord to elastic axis measured

perpendicular to elastic axis, positive rearward, fraction of

semichord b

nondimensional distance from midchord to local aerodynamic center ac,n (for steady flow) measured perpendicular to elastic axis, positive rearward, fraction of semichord b ъ semichord of wing measured perpendicular to elastic axis bs streamwise semichord at wing root complex circulation function C = F + iGlocal lift-curve slope for a section perpendicular to elastic axis $^{c}l_{\alpha,n}$ in steady flow local vertical translational displacement of wing at elastic axis, h positive downward Μ Mach number . oscillatory moment about elastic axis per unit length of wing, M_{α} positive leading edge up Ρ oscillatory lift per unit length of wing along elastic axis, positive downward downwash expression defined by equation (3) V free-stream speed

 $V_{\rm n}$ component of free-stream velocity normal to elastic axis $\theta \qquad \qquad {\rm local\ torsional\ displacement\ of\ wing\ measured\ about\ elastic\ axis,}$ $positive\ leading\ edge\ up$ $\Phi_{\rm c}/\Psi \qquad {\rm quarter-chord\ sweep\ angle,\ positive\ for\ sweepback}$ $\Phi_{\rm ea} \qquad {\rm elastic\ axis\ sweep\ angle,\ positive\ for\ sweepback}$

taper ratio of full wing including fuselage intercept mass ratio of wing panel $\rho \qquad \text{fluid density} \\ \sigma \qquad \text{local bending slope of elastic axis} \\ \tau \qquad \text{local rate of change of twist along elastic axis} \\ \omega \qquad \text{flutter frequency} \\ \omega_{\alpha} \qquad \text{frequency of first uncoupled torsional vibration} \\ \qquad \qquad \text{mode}$

Subscripts:

denotes quantities associated with compressible flow

denotes quantities associated with incompressible flow

Dot over a quantity indicates differentiation with respect to time.

DESCRIPTION OF THE MODIFIED STRIP ANALYSIS

In the modified strip analysis as presently formulated the oscillatory aerodynamic loads are evaluated in terms of wing sections oriented normal to the wing elastic axis as in the method of Barmby, Cunningham, and Garrick (ref. 3), although an analogous procedure would apply for streamwise sections. The fundamental concept underlying this modification of the method of Barmby, Cunningham, and Garrick may be stated as follows: For the oscillatory as well as for the steady-flow condition, the dominant aerodynamic effects of finite planform and compressibility are considered to be indicated by the lift- and pitching-moment-producing capacity of each wing section as reflected by the steady-state section lift-curve slope and aerodynamic-center position for the undeformed wing.

The nature of the present modification may be more clearly indicated by illustrating the relation of the modified strip analysis to the method of Barmby, Cunningham, and Garrick (or to the method of Theodorsen) and to the steady-state condition. For this purpose, consider the lift force acting on a streamwise section of a wing which for simplicity is assumed to be unswept. For the steady-state condition in three-dimensional compressible flow,

$$P = -c_{\lambda_{\alpha}, n} \theta \left(\frac{\rho}{2} V^2\right) (2b)$$
 (1)

$$= -c_{l_{\alpha},n} \rho V b Q$$

where Q is the downwash such that the effective angle of attack is given by Q/V. Theodorsen in reference 1 effectively modified this expression (and the corresponding expression for pitching moment) for application to a thin wing oscillating in two-dimensional incompressible flow. For this case, $c_{l\alpha,n} = 2\pi$, and

$$P = -2\pi \rho VbQC + noncirculatory terms$$
 (2)

where Q is now the effective downwash associated with the oscillation, $C = C(k) = F_{\rm I} + iG_{\rm I} \quad \text{is a complex "circulation function" which accounts for the effect of the oscillatory motion on the magnitude and phase angle of the lift vector, and the noncirculatory terms account for the air forces associated with the up and down pumping action of the wing as distinguished from the circulatory or induced forces represented by the first term of equation (2). In formulating the corresponding pitching moment <math>M_{\rm C}$, the section aerodynamic center is located at the quarter chord for two-dimensional incompressible flow. The method of

Barmby, Cunningham, and Garrick is in turn a stripwise adaptation of Theodorsen's equations for application to swept wings. For unswept wings the two methods coincide.

In the analogous expressions for the modified strip analysis, the section lift-curve slope and aerodynamic center remain arbitrary and thus may vary from section to section across the span and may also vary with Mach number. Thus for oscillatory three-dimensional compressible flow,

$$P = -c_{l_{\alpha},n} \rho VbQC + noncirculatory terms$$
 (3)

The values of section lift-curve slope and of section aerodynamic center may be evaluated from any suitable linear or nonlinear steady-flow aerodynamic theory (as in refs. 4 to 10) or from measured load distributions (as in refs. 8 to 11), in other words, from any method considered to give accurate steady-state loads. For nonzero Mach numbers the complex circulation function of Theodorsen is modified in magnitude only by utilizing aerodynamic coefficients given by Jordan (ref. 12) for a two-dimensional thin airfoil oscillating in subsonic or supersonic flow. Thus

$$C = C(k,M) = \sqrt{\frac{F_C^2 + G_C^2}{F_I^2 + G_I^2}} (F_I + iG_I)$$

or for moderately small reduced frequencies,

$$C \approx \frac{F_C}{F_T} \left(F_T + iG_T \right)$$

Here subscript I designates values associated with incompressible flow; whereas, subscript C denotes values calculated from Jordan's coefficients for

compressible flow. The underlying idea here is that if the reduced frequency is moderately small, the G values remain relatively small, and the calculated flutter speed is not very sensitive to changes in G. Furthermore, the magnitude of G assumes less significance as M increases into the supersonic range because the reduced frequency at flutter generally decreases as supersonic Mach number increases so that C(k) approaches 1 + i0. The objective was to try a minimum modification of the existing method. The noncirculatory terms are retained in the incompressible-flow form for the following reason: The pumping or noncirculatory effect of the wing oscillation depends on the velocity component perpendicular to the wing surface and not on the stream velocity as such. (See refs. 1, 3, and 4.) This contribution to the section aerodynamic loading decreases as reduced frequency decreases and in most flutter analyses appears to be small though not negligible. Use of steady-flow aerodynamic parameters in the present method probably makes it suitable only for cases involving low to moderate reduced frequencies so that the velocity component perpendicular to the wing surface will in general be small. Therefore, the effect of compressibility on the noncirculatory flow associated with this small normal velocity component is ignored.

The complete expressions thus obtained for the oscillatory section lift and pitching moment on a section of a swept wing are (ref. 4)

$$P = -\pi \rho b^{2} \left[\ddot{h} + V_{n} \dot{\theta} + V_{n} \dot{\sigma} \tan \Lambda_{ea} - ba \left(\ddot{\theta} + V_{n} \dot{\tau} \tan \Lambda_{ea} \right) \right] - c_{l_{\alpha}, n} \rho V_{n} b C Q$$
(4)

7

and

$$M_{\alpha} = -\pi \rho b^{14} \left(\frac{1}{8} + a^{2} \right) \left(\ddot{\theta} + V_{n} \dot{\tau} \tan \Lambda_{ea} \right) + \pi \rho b^{2} V_{n} \left(\dot{h} + V_{n} \sigma \tan \Lambda_{ea} \right)$$

$$+ \pi \rho b^{3} a \left(\ddot{h} + V_{n} \dot{\sigma} \tan \Lambda_{ea} \right) + \pi \rho b^{2} V_{n}^{2} \left(\theta - ab\tau \tan \Lambda_{ea} \right)$$

$$- 2\pi \rho V_{n} b^{2} \left[\frac{1}{2} - \left(a - a_{c,n} \right) c \frac{c_{1\alpha,n}}{2\pi} \right] Q$$

$$(5)$$

where the downwash expression Q is given by

$$Q = \dot{h} + V_{n}\theta + V_{n}\sigma \tan \Lambda_{ea} + b \left(\frac{c_{l_{\alpha,n}}}{2\pi} + a_{c,n} - a\right) \left(\dot{\theta} + V_{n}\tau \tan \Lambda_{ea}\right)$$
 (6)

Equations for flutter analysis employing these expressions are given in reference 4.

To review briefly, if aerodynamic parameters for two-dimensional incompressible flow are employed, the modified strip analysis reduces to the method of Barmby, Cunningham, and Garrick (ref. 3). In addition, if the elastic axis is unswept, both methods become identical with that of Theodorsen (ref. 1). On the other hand, if the flow is steady, the modified strip analysis reduces to the conventional steady-state form (eq. (1)) which itself is employed in the simplified steady-state flutter-analysis method of Pines. (See refs. 8 and 13 to 16.)

The principles of the modified strip analysis may be summarized as follows: In the method of Barmby, Cunningham, and Garrick (ref. 3), variable lift-curve slope is substituted for the two-dimensional incompressible-flow value 2π , and variable aerodynamic center is substituted for quarter chord. Spanwise distributions of these steady-flow section aerodynamic parameters which are pertinent to the desired planform and Mach number are used. Appropriate values of

Mach number-dependent circulation functions are obtained from two-dimensional unsteady compressible-flow theory.

Use of the modified strip analysis avoids the necessity of reevaluating a number of loading parameters for each value of reduced frequency since only the modified circulation functions, and, of course, the reduced frequency itself, vary with frequency. It is therefore practical to include in the digital computing program a very brief logical subroutine which automatically selects reduced-frequency values that converge on a flutter solution. The problem of guessing suitable reduced-frequency values is thus eliminated, so that a large number of flutter points can be completely determined in a single brief run on the computing machine. If necessary, it is also practical to perform the calculations manually.

RESULTS AND DISCUSSION

Numerical Results

Flutter characteristics have been calculated by the modified strip analysis and compared with results of other calculations and with experiments for Mach numbers up to 15.3 and for wings with sweep angles from 0° to 52.5°, aspect ratios from 2.0 to 7.4, taper ratios from 0.2 to 1.0, and center-of-gravity positions between 34 percent chord and 59 percent chord. (See refs. 4 to 11.) These ranges probably cover the great majority of wings that are of practical interest with the exception of very-low-aspect-ratio surfaces such as delta wings and missile fins.

Figure 1 shows some initial flutter data measured in the Langley transonic dynamics tunnel in air and in Freon-12 for a 45° swept wing with taper ratio 0.6 and aspect ratio 4 (ref. 10). The open circular symbols indicate flutter points

measured in air, and the open square symbols indicate data measured in Freon-12. The results of an attempt to duplicate this set of data by the modified strip analysis are indicated by the corresponding solid symbols. Flutter speeds calculated by use of steady-flow aerodynamic parameters obtained from linearized lifting-surface theory are represented by plain symbols, and values calculated by use of experimentally determined steady-state pressure distributions are indicated by flagged symbols. Note first that the flutter data measured in air are duplicated quite satisfactorily in both subsonic and transonic ranges. In particular, the transonic minimum flutter speed is accurately predicted. Next observe that the levels of flutter-speed index obtained with Freon-12 in the transonic range are about 70 percent higher than corresponding values for air. This difference is also predicted by the modified strip analysis and is associated with the large differences in mass ratio between tests in air and in Freon-12. Mass ratios for the tests in Freon-12 were of the order of 8 to 12, whereas mass ratios for the transonic tests in air were as high as 260. Agreement between calculated and measured flutter frequencies is also quite satisfactory. (See ref. 10.)

Figure 2 shows flutter data obtained in the Langley transonic blowdown tunnel for a 45° swept wing with taper ratio 0.2 and aspect ratio 4 (ref. 6). In the subsonic range, the modified strip analysis is in good agreement with results of the kernel-function method (ref. 17) and with experiment. Note the abrupt rise of flutter speed near Mach number 1.07. This rise was accompanied by a corresponding increase of flutter frequency and thus indicated an abrupt change of flutter mode. In the low supersonic range, the modified strip analysis indicated two flutter solutions having essentially the same flutter speed but different flutter frequencies. One of these calculated frequencies was near the

level of experimental subsonic flutter frequency, whereas the other was higher and close to supersonic measured flutter frequencies. Thus, the modified strip analysis also predicted a sudden change in flutter mode.

Figure 3 shows these same results from the transonic blowdown tunnel (TBT) in comparison with flutter data for the same wing measured in the Langley supersonic aeroelasticity tunnel (SAT) (ref. 6). In the low supersonic range, the apparent discrepancy in flutter speed levels obtained in the two tunnels is also predicted by the modified strip analysis and is caused primarily by differences in mass ratio for the two sets of tests. This figure also shows one of the difficulties that may be encountered when linearized aerodynamic theory is used in the modified strip analysis. Calculated flutter speeds relating to the data from the supersonic aeroelasticity tunnel turn sharply upward and become highly unconservative after the wing leading edge becomes supersonic and the local aerodynamic centers move rearward to the vicinity of the local centers of gravity. When the local aerodynamic centers lie close to the local centers of gravity, the flutter speeds calculated by the modified strip analysis become quite sensitive to small changes in the aerodynamic-center positions. Under these circumstances, which generally occur in the supersonic range, the combination of linearized aerodynamic theory and the modified strip analysis may yield highly unconservative flutter results because, as in the present case, linearized supersonic aerodynamic theory characteristically predicts aerodynamic centers that are too far rearward. It is apparent that under such circumstances adequate flutter prediction will require aerodynamic parameters to be determined by methods more accurate than linearized aerodynamic theory, for example, from nonlinear aerodynamic theories which include the effects of finite wing thickness or from measured steady-state loads. In figure 3, use of aerodynamic parameters

obtained from the Busemann second-order theory yielded quite accurate flutter speed at M = 2.0.

Figure 4 contains flutter data for a rectangular wing of aspect ratio 2 (refs. 8 and 18). This wing was not cantilever mounted as were the previously mentioned wings. Instead, the root of this rectangular wing was attached to a flexible arm which permitted the wing panel to roll and pitch almost as a rigid body. Although the experimental data do not extend into the subsonic range, the subsonic flutter speeds given by the strip method appear reasonable in comparison with the transonic data. At Mach numbers above 1.0, the strip calculations (ref. 8) compare favorably with experiment and with calculations by the quasi-steady second-order theory of Van Dyke (refs. 19 and 20) which is closely comparable to piston theory and includes the effects of finite wing thickness. Agreement with experiment is good up to hypersonic speeds. In the modified strip analysis, the compressibility modification employed in the circulation function becomes zero as the component of Mach number normal to the leading edge approaches 1.0. Hence the modified strip analysis is not suitable for application to unswept wings in the near-sonic range unless measured aerodynamic parameters or empirical modifications are employed in the computation of the circulation functions. However, the simplified steady-state method of Pines (ref. 13), which is the zero-frequency limiting case of the modified strip analysis, may be used transonically for unswept wings.

Limitations of the Modified Strip Analysis

The modified strip analysis is, of course, subject to the usual planform limitations that apply to strip methods in general; that is, it is not considered suitable for application to wings of low aspect ratio. Satisfactory results

have been shown herein for an unswept wing with a panel aspect ratio of 1.0. (See also ref. 8.) Good results have also been obtained for a 45° swept wing with a panel aspect ratio of 0.9 (ref. 4). These aspect ratios, however, are probably close to the lower limit for which the modified strip analysis or any strip method would be suitable. In addition, the modified strip analysis as presently formulated does not permit camber deformations of wing sections normal to the elastic axis, although a camber mode could be introduced without great difficulty. Note that even with the present formulation, however, camber of streamwise sections may be represented for swept wings.

Use of aerodynamic parameters associated with steady-flow conditions implies that suitability of the method for high reduced frequencies may be questionable. However, good flutter results have been obtained with reduced frequencies as high as 0.3 (ref. 6). None of the numerous flutter calculations which have been made by the modified strip analysis have been limited by this condition.

Because of the nature of the compressibility modification applied to the circulation function, the modified strip analysis is not applicable when the component of Mach number normal to the wing leading edge is near 1.0. For swept wings this condition occurs in the supersonic range and does not constitute a serious limitation because calculated flutter boundaries generally vary smoothly with Mach number in this region. Curves may therefore be faired through calculated flutter characteristics with confidence. For unswept wings, however, this limitation precludes application of the modified strip analysis in the transonic range unless measured aerodynamic parameters or empirical modifications are employed in the computation of the circulation functions. Nevertheless, the zero-frequency limiting case of the modified strip analysis may be employed transonically for these wings.

Finally, in cases for which the local aerodynamic centers lie close to the local centers of gravity the aerodynamic parameters employed in the modified strip analysis should be determined by the most accurate means available since in these cases the calculated flutter speeds are quite sensitive to small changes in the locations of the local aerodynamic centers. This limitation does not seem to be peculiar to the modified strip analysis but appears to apply to other flutter-analysis methods as well. (See ref. 8.)

CONCLUDING REMARKS

A modified strip analysis has been developed for rapidly predicting flutter of finite span swept or unswept wings at subsonic to hypersonic speeds. The method employs distributions of aerodynamic parameters which may be evaluated from any suitable linear or nonlinear steady-flow theory or from measured steady-flow load distributions for the undeformed wing. The method has been shown to give good flutter results for a broad range of wings at Mach numbers from 0 to as high as 15.3.

REFERENCES

- 1. Theodorsen, Theodore: General Theory of Aerodynamic Instability and the Mechanism of Flutter. NACA Rep. 496, 1935.
- 2. Smilg, Benjamin, and Wasserman, Lee S.: Application of Three-Dimensional Flutter Theory to Aircraft Structures. ACTR No. 4798, Materiel Div., Army Air Corps, July 9, 1942.
- Barmby, J. G., Cunningham, H. J., and Garrick, I. E.: Study of Effects of Sweep on the Flutter of Cantilever Wings. NACA Rep. 1014, 1951. (Supersedes NACA TN 2121.)
- 4. Yates, E. Carson, Jr.: Calculation of Flutter Characteristics for Finite-Span Swept or Unswept Wings at Subsonic and Supersonic Speeds by a Modified Strip Analysis. NACA RM L57L10, 1958.
- 5. Yates, E. Carson, Jr.: Some Effects of Variations in Density and Aerodynamic Parameters on the Calculated Foutter Characteristics of Finite-Span
 Swept and Unswept Wings at Subsonic and Supersonic Speeds. NASA TM X-182,
 1960.
- 6. Yates, E. Carson, Jr.: Subsonic and Supersonic Flutter Analysis of a Highly Tapered Swept-Wing Planform, Including Effects of Density Variation and Finite Wing Thickness, and Comparison With Experiments. NASA TM X-764, 1963.
- 7. Yates, E. Carson, Jr., and Bennett, Robert M.: Use of Aerodynamic Parameters From Nonlinear Theory in Modified-Strip-Analysis Flutter Calculations for Finite-Span Wings at Supersonic Speeds. NASA TN D-1824, 1963.
- 8. Yates, E. Carson, Jr., and Bland, Samuel, R.: Comparative Evaluation of Methods for Predicting Flutter and Divergence of Unswept Wings of Finite Span. NASA TN D-2051, 1963.

- 9. Yates, E. Carson, Jr., and Desmarais, Robert N.: Comparisons of Some Wing Flutter Characteristics Obtained by Modified Strip Analysis, Subsonic Kernel Function, and Experiment. NASA TN D-2297, 1964.
- 10. Yates, E. Carson, Jr., Land, Norman S., and Foughner, Jerome T., Jr.:

 Measured and Calculated Subsonic and Transonic Flutter Characteristics of
 a 45° Sweptback Wing Planform in Air and in Freon-12 in the Langley

 Transonic Dynamics Tunnel. NASA TN D-1616, 1962.
- ll. Yates, E. Carson, Jr.: Use of Experimental Steady-Flow Aerodynamic Parameters in the Calculation of Flutter Characteristics for Finite-Span Swept or Unswept Wings at Subsonic, Transonic, and Supersonic Speeds. NASA TM X-183, 1959.
- 12. Jordan, P. F.: Aerodynamic Flutter Coefficients for Subsonic, Sonic, and Supersonic Flow (Linear Two-Dimensional Theory). R. & M. No. 2932,

 British A.R.C., 1957. (Supersedes R.A.E. Report Structures 141.)
- 13. Pines, Samuel: An Elementary Explanation of the Flutter Mechanism. Proceedings of the National Specialists Meeting on Dynamics and Aeroelasticity, Fort Worth, Texas, Nov. 6-7, 1958.
- 14. Mazelsky, Bernard: An Engineering Approach to the Aerodynamic Loadings of Arbitrarily Deformable Wings. CIT, Solid Mechanics Seminar, June 3, 1958.
- 15. MacNeal, Richard H.: Simple Analytical Solutions of the Binary Flutter Problem. WADD TN 60-130, March 1960.
- 16. Zimmerman, Norman H.: Elementary Static Aerodynamics Adds Significance and Scope in Flutter Analyses. Presented to AIA Los Angeles Meeting, July 1961.

- 17. Watkins, Charles E., Woolston, Donald S., and Cunningham, Herbert J.: A

 Systematic Kernel Function Procedure for Determining Aerodynamic Forces
 on Oscillating or Steady Finite Wings at Subsonic Speeds. NASA Rep. R-48,
 1959.
- 18. Goetz, Robert C.: Effects of Leading-Edge Bluntness on Flutter Characteristics of Some Square-Planform Double-Wedge Airfoils at a Mach Number of 15.4. NASA TN D-1487, 1962.
- 19. Van Dyke, Milton D.: A Study of Second-Order Supersonic Flow Theory.

 NACA Rep. 1081, 1952.
- 20. Morgan, Homer G., Huckel, Vera, and Runyan, Harry L.: Procedure for Calculating Flutter at High Supersonic Speed Including Camber Deflections, and Comparison With Experimental Results. NACA TN 4335, 1958.

FIGURE CAPTIONS

Figure 1.- Flutter characteristics of swept wing in air and in Freon-12.

$$\Lambda_{\rm c}/4 = 45^{\rm o}$$
, $\lambda = 0.6$, $A = 4.0$.

Figure 2.- Flutter characteristics of highly tapered swept wing.

$$\Lambda_{\rm c}/\mu = 45^{\rm o}$$
, $\lambda = 0.2$, $\Lambda = 4.0$.

Figure 3.- Flutter characteristics of highly tapered swept wing.

$$\Lambda_{\rm c}/4 = 45^{\rm o}$$
, $\lambda = 0.2$, $\Lambda = 4.0$.

Figure 4.- Flutter characteristics of rectangular wing.

$$\Lambda_{\rm c}/\mu = 0$$
, $\lambda = 1.0$, $\Lambda = 2.0$.

Yates. Figure 1.

Yates. Figure 4.