Технологии синхронизации SHIWA NETWORK

Надежные решения для операторов связи и дата-центров

Проблематика: уязвимости ГНСС

"ј" Глушение (джамминг)

Подавление сигнала передатчиками мощностью 1-10 Вт. Радиус эффективного подавления до 10-30 км.

💢 Спуфинг

Подмена сигналов ГНСС ложными. Сложность обнаружения при профессиональной реализации.

ം Низкий уровень сигнала

Мощность сигнала на поверхности Земли составляет около -130 дБм, что делает его уязвимым к помехам.

🗚 Необходимость прямой видимости

Требуется прямая видимость спутников, что ограничивает использование в помещениях и подземных сооружениях.

Зависимость от зарубежной инфраструктуры

Большинство ГНСС контролируются иностранными государствами (кроме ГЛОНАСС).

Последствия для критической инфраструктуры

Операторы связи

- 🚻 Нарушение синхронизации базовых станций
- 🥎 Сбои в работе TDD-сетей 5G
- 🤳 Потеря качества связи
- 🛕 Невозможность работы в подземных коммуникациях

Центры обработки данных

- 🔡 Нарушение синхронизации серверных систем
- 告 Сбои в работе распределенных систем
- **Проблемы с целостностью данных**
- Финансовые потери: до 1 млрд рублей в день для крупных объектов

Альтернативное решение: СДВ и ИФРНС

ГСЕВЭЧ «Цель» - комплексное решение

СДВ (Сверхдлинные волны)

Частотный диапазон: 20.5-25.5 кГц

Длина волны: 12-15 км

Дальность действия: 8 000-10 000 км

Точность синхронизации: 1-20 мкс

Преимущества: Высокая проникающая способность,

работа в помещениях и под землей (до 100 м)

ИФРНС (Импульсно-фазовая РНС)

Частотный диапазон: ~100 кГц

Длина волны: ~3 км

Дальность действия: 1 000-2 000 км

Точность синхронизации: 100 нс - 1,5 мкс

Преимущества: Высокая точность, навигационные

возможности, устойчивость к помехам

Сравнение ГНСС, СДВ и ИФРНС

Параметр	гнсс	сдв	ИФРНС
Частотный диапазон	1.1-1.6 ГГц	20.5-25.5 кГц	~100 кГц
Проникающая способность	Низкая	Высокая	Средняя
Дальность действия	Прямая видимость	8 000-10 000 км	1 000-2 000 км
Точность синхронизации	~30 нс	~1 мкс	~100 нс
Устойчивость к помехам	Низкая	Высокая	Средняя
Устойчивость к спуфингу	Низкая	Высокая	Высокая
Работа в помещениях	Нет	Да	Частично
Работа под землей	Нет	Да (до 100 м)	Ограниченно
Независимость от зарубежных систем	Нет (кроме ГЛОНАСС)	Да	Да

Линейка продукции Shiwa Network

👜 Quantum-PCI (ТЕНШ.467883.01)

Специализированный сервер времени

Точность: до 5 нс

Хранители: кварцевые, рубидиевые, цезиевые

🕓 Quantum-Grand Mini (ТЕНШ.467883.02)

NTP/PTP cepsep Grandmaster Clock

Стабильность частоты: ±5 ppb

Поддержка x86_64 и ARM архитектур

👜 Quantum-PCI Mini (ТЕНШ.467883.03)

Компактный NTP/PTP сервер

Точность: <5 нс

Готовность: Q3 2025

🛛 Quantum-Time Stick (ТЕНШ.467883.04)

USB Ethernet адаптер с отметкой времени

Стабильность частоты: ±10 ppb

Готовность: Q4 2025

Quantum-1/2U Grandmaster (ТЕНШ.467883.05-06)

Многопользовательские системы

>1 000 000 сеансов РТР

Готовность: Q4 2025

Приемники навигационные RCB/M2

Точность: <5 нс (абсолютный режим)

<2,5 нс (дифференциальный режим)

Серийное производство

Преимущества для целевых секторов

Операторы связи

- Стабильная синхронизация базовых станций 4G/5G TDD
- Работа в подземных коммуникациях и плотной городской застройке
- **\$** Снижение затрат на обслуживание ГНСС-антенн
- 🤍 Устойчивость к помехам в городской среде

Центры обработки данных

- **:** Синхронизация серверных систем
- Работа в экранированных помещениях
- Устойчивость к электромагнитным помехам
- Независимость от внешних систем

Экономическое обоснование

Стоимость владения (ТСО)

ГНСС: Высокие затраты на обслуживание

СДВ/ИФРНС: Минимальные затраты на обслуживание

Окупаемость инвестиций (ROI)

ГНСС: 1-2 года, высокие риски

СДВ/ИФРНС: 2-3 года, стабильный ROI

Заключение и рекомендации

Ключевые выводы

- Уязвимости ГНСС создают критические риски для инфраструктуры
- (°Г') СДВ/ИФРНС обеспечивают высокую проникающую способность и устойчивость к помехам
- Продукты Shiva Network поддерживают автономное хранение и интеграцию с СДВ/ИФРНС
- Экономически обоснованное решение с предсказуемым ROI и низкими рисками

Рекомендации по внедрению

- (1) Операторам связи: внедрение СДВ/ИФРНС для синхронизации базовых станций 4G/5G TDD
- **Центрам обработки данных:** внедрение СДВ/ИФРНС для синхронизации серверных систем
- Критической инфраструктуре: комплексное решение с резервированием источников синхронизации
- **Всем секторам:** поэтапное внедрение с приоритетом на критические системы

Shiwa Network

Михайлов Алексей Борисович начальник отдела разработок Тел.: +7 (911) 829-49-50 Email: Michailov-alex@vandex.ru