Problem 9): To begin, consider an arbitrary cyclic group \mathbb{G} and a generator $g \in \mathcal{G}$. Then, given any two group elements h_1 and h_2 , we define the function $DH(h_1, h_2)$ as

$$DH(h_1, h_2) = g^{\log_g h_1 \cdot \log_g h_2}$$
(9.1)

The **DDH** Assumption is that the result of DH (h_1, h_2) , on any uniform group elements h_1 and h_2 , is indistinguishable from any other uniform element of the group.

Now, we define the **El Gamal** encryption algorithm according to

- Accept input public key $pk = \langle \mathbb{G}, q, g, h \rangle$.
- Chose $y \leftarrow \mathbb{Z}_q$
- Output the cipher text $c = \langle c_1, c_2 \rangle$ determined according to

$$c = \langle c_1, c_2 \rangle = \langle q^y, h^y \cdot m \rangle$$

We also note that the **El Gamal** encryption algorithm uses the private key $sk = \langle \mathbb{G}, q, g, x \rangle$. Where $(\mathbb{G}, q, g,)$ is obtained from a generator and h is defined $h \equiv g^x$. Therefore, cipher-text may be encrypted according to the relation

For cipher-text
$$c=\langle c_1,c_2 \rangle$$
 decrypt using $\boxed{m\equiv \frac{c_2}{c_1^x}}$