Microprozessortechnik - MSP430

N. Vetter

Institut für Informatik

28. Januar 2015

Gliederung

- 1 Übersicht
- 2 Allgemeines
 - Vorstellung
- 3 Architektur
 - Eigenschaften
 - Grafik
- 4 Memory
 - Anordnung
 - Mapping

- 5 CPU
 - Eigenschaften
 - Registergrafik
 - Adressierungsarten
 - Instruktionen
- 6 Clock
 - Clock-Typen
 - Clock-Grafik
- 7 Peripherie
 - Multplikator

MSP430:

- 16-Bit-RISC-Mikrocontroller
- Firma: Texas Instruments
- entwickelt in Freising, Deutschland
- Sprachen: Assempler, C
- für möglichst niedrigen Stromverbrauch optimiert

Anwendung:

- Wärmezähler
- Blutdruckmessgeräte
- Tauchcomputer

- klassische Von-Neumann-Architektur
- Datenbus (16-Bit)
- Adressbus (16-Bit)
- 16 16-Bit Register
- unterschiedliche Speichergrößen möglich
- unterschiedlichste Peripherie möglich
- Low-Power-Mode
- \blacksquare Hardwaredesign nach Software Bedürfnissen \to sehr effizienter und kompakter Code durch Compiler

N. Vetter Universität Potsdam

Figure 2.2: Block diagram of the MSP430F2003 and F2013, taken from the data sheet.

0x0206									
0x0205	15, msb	14	bits	9	8	word			
0x0204	7	6	bits	1	0, Isb) word			
0x0203	byte								
0x0202	7, msb	6	bits	1	0, Isb	} byte			
0x0201	more significant byte, MSB								
0x0200	less significant byte, LSB								
0x01FF									

- Little-endian
- Untertilung in Byte und Word(2 Byte)

Address	Type of memory					
0xFFFF	interrupt and reset					
0xFFC0	vector table					
0xFFBF	flash code memory					
0xF800	(lower boundary varies)					
0xF7FF						
0x1100						
0x10FF	flash					
0x1000	information memory					
0x0FFF	bootstrap loader					
0x0C00	(not in F20xx)					
0x0BFF						
0x0280						
0x027F	RAM					
0x0200	(upper boundary varies)					
0x01FF	peripheral registers					
0x0100	with word access					
0x00FF	peripheral registers					
0x0100	with byte access					
0x000F	special function registers					
0x0000	(byte access)					

- 16MHz/8MHz max. (je nach Ausführung)
- keine Minimalfrequenz
- 16 16-Bit-Register (4 Spezielle, 12 Freie)
- 7 unterschiedliche Adressmodi

Register:

- Program counter (PC)
- Stack pointer (SP)
 - speichert Rücksprungadresse
 - wächst abwärts oder schrumpft aufwärts
- Status register (SR)
 - zeigt das Ergebnis der letzten Operation (C,Z,N,V)
 - steuert ebenfalls bestimmte MCU Modi.
- Constant generator
 - liefert durch Kombination von R2/R3 und den Adressmodi Standardwerte

Registergrafik

Folie 9/ 14

Table 6. Address Mode Descriptions

ADDRESS MODE	S ⁽¹⁾	D (1)	SYNTAX	EXAMPLE	OPERATION				
Register	1	1	MOV Rs,Rd	MOV R10,R11	R10> R11				
Indexed	✓	1	MOV X(Rn),Y(Rm)	MOV 2(R5),6(R6)	M(2+R5)>M(6+R6)				
Symbolic (PC relative)	1	1	MOV EDE,TONI		M(EDE)> M(TONI)				
A bsolute	1	1	MOV &MEM,&TCDAT		M (MEM)> M(TCDAT)				
Indirect	1		MOV @ Rn,Y(Rm)	MOV @R10,Tab(R6)	M(R10)> M(Tab+R6)				
Indirect autoincrement	1		MOV @ Rn+,Rm	MOV @R10+,R11	M(R10)> R11 R10 +2> R10				
Imme diate	1		MOV #X,TONI	MOV #45,TONI	#45> M(TONI)				

$$\blacksquare$$
 R2 \rightarrow Register-Mode

$$lue{}$$
 0(R2) $ightarrow$ Adress-Mode

$$\blacksquare$$
 @R2+ \to 8

$$\blacksquare$$
 R3 \rightarrow 0

$$\blacksquare$$
 @R3 \rightarrow 2

■
$$0R3+ \rightarrow -1$$

Aufbau:

- 2 Operanden
- 1 Operand
- Sprünge

Merkmale:

- Byte und Word Adressierung
- 16-Bit Instruktionslänge
- 27 Standard-Befehle
- trotz RISC: weitere 24 emulierte Befehle (z.B.: CLR, INC, DEC, DECD, NOP)
- emulierte Befehle haben keine Nachteile

Folie 11/ 14

2 Clock-Typen:

- 1 Niedrig-Frequenz-Clock
 - meist ein Uhrenquarz mit 32KHz
 - dient zur regelmäßigen Steuerung der CPU
 - verbraucht im Dauerbetrieb extrem wenig Strom
 - dient als RTC
- 2 digital Steuerbarer Oszillator
 - \blacksquare startet in weniger als $1\mu s$
 - dient zum schnellen "wecken" der MCU aus dem Low-Power-Mode
 - stellt eine Hochfrequenzuhr dar

Clock-Grafik

Figure 1. Hardware Multiplier Block Diagram

Universität Potsdam