

Descrierea soluției – powall

Propunător: prof. Ciprian Cheşcă Liceul Tehnologic "Grigore C. Moisil" Buzău

Soluția 1 - prof. Ciprian Cheșcă

În mod evident vom lucra cu descompunerea în factori primi a numerelor V_i , cu $1 \le i \le N$.

$$\nabla_{1} = p_{1}^{\alpha_{11}} p_{2}^{\alpha_{12}} ... p_{k}^{\alpha_{1k}},$$

$$\nabla_{2} = p_{1}^{\alpha_{21}} p_{2}^{\alpha_{22}} ... p_{k}^{\alpha_{2k}},$$

$$\nabla_{N} = p_{1}^{\alpha_{N1}} p_{2}^{\alpha_{N2}} ... p_{k}^{\alpha_{Nk}}$$

descompunerile în factori primi a numerelor V_i , cu $1 \le i \le N$, cu mențiunea că unii dintre exponenții de mai sus pot fi zero.

Fie X = $p_1^{l_1}p_2^{l_2}...p_k^{l_k}$, descompunerea în factori primi a numărului căutat X.

Problema revine la a găsi un algoritm de calcul a exponenților l_1, l_2, \ldots, l_k , (numere naturale nenule) pentru care:

 $l_{\rm l}+lpha_{\rm ll}$, $l_{\rm l}+lpha_{\rm l2}$, ... , $l_{\it k}+lpha_{\rm lk}$ sunt simultan divizibile cu ${\rm q}_{\rm l}$ $l_1 + \alpha_{21}$, $l_2 + \alpha_{22}$, ..., $l_k + \alpha_{2k}$ sunt simultan divizibile cu q₂

.....

 l_1+lpha_{N1} , l_2+lpha_{N2} , ... , l_k+lpha_{Nk} sunt simultan divizibile cu ${
m q_N}$ unde q_1, q_2, \ldots, q_N sunt numere naturale mai mari decât 1.

Să analizăm pentru început doar relațiile în care apare l_1 (adică pe verticală).

 $l_1 + \alpha_{11}$ divizibil cu q_1 se poate scrie și astfel:

 $l_1 \equiv -\alpha_{11} \pmod{q_1}$ și adăugând și celelalte ecuații avem :

 $l_1 \equiv -\alpha_{21} \pmod{q_2}$

 $l_1 \equiv -\alpha_{N1} \pmod{q_N}$.

Putem rezolva acest sistem de congruențe utilizând Teorema chinezească a resturilor, însă pentru aceasta avem nevoie de perechi de numere prime (q_i, q_j) $1 \le i < j \le N$.

Cum q_i pot fi alese liber rezolvăm restricția de mai sus alegând șirul numerelor prime 2,3,5,7.... astfel oricare două numere din șir vor fi prime între ele.

În mod asemănător se calculează toți exponenții l_i 1 \leq i \leq k.

Nu prezentăm modalitatea de rezolvare a sistemului de ecuații cu ajutorul teoremei chinezești a resturilor, deoarece acest algoritm se consideră a fi cunoscut.

http://www.infoarena.ro/teorema-chineza-a-resturilor

Soluția 2 - prof. Adrian Panaete - 100 puncte

Fie p₁, p₂, ..., p₁₀ primele 10 numere prime. Consideram e₁, e₂, ..., e₁₀ cu proprietățile: e_{i+1} divizibil cu p_i e_i divizibil cu p_j pentru oricare i \neq j Considerăm numărul X = $\mathbf{v_1}^{e1} \mathbf{v_2}^{e2} \dots \mathbf{V_{10}}^{e10}$ deci X·V_i = $\mathbf{v_1}^{e1} \dots \mathbf{v_i}^{ei+1} \dots \mathbf{V_{10}}^{e10}$

dar $e_1,...,e_{i-1},e_i+1,...,e_{10}$ divizibile cu p_i deci există un număr y astfel încât $X \cdot V_i = y^{pi}$ deci $X \cdot V_i$ este putere. Rămâne să determinăm valorile e_i și acestea se pot obține plecând de la $a_i = (p_1p_2...p_{10})/p_i$ și deoarece a_i este prim cu p_i rezultă că printre primii săi p_i-1 multiplii vom găsi pe acela care are restul p_i-1 mod p_i .

Soluția 3 - Mihai Cosmin Piț-Rada ~ 50 puncte

Sursă care din aproape, în aproape, adaugă câte un nou număr și updatează X-ul.

- 1. Pornim de la o soluție $\{a(1), a(2), \dots, a(n)\}$ și un X corespunzător, pentru care exponenții în urma înmulțirii devin $\{e(1), e(2), \dots e(n)\}$, i.e. $a(i) * X = b(i) ^ e(i)$.
- 2. Extindem mulțimea cu a(n+1). Fie $m = cmmmc\{ e(1), e(2) ... e(n) \}$
 - Se observă că $X' = X * X^m * a(n+1)^m = X^(m+1) * a(n+1)^m va funcționa pentru mulțimea extinsă.$
 - (*) dacă i <= n: $a(i) * X' = b(i)^e(i) * (X * a(n+1))^m = (ceva)^ei$
 - (*) dacă i = n+1: a(n+1)* X' = (X * a(n+1))^m

Ideea consideră cele n numere ca fiind independente, neâncercând să exploateze factorii în comun, din descompunerea în factori primi.

Se observă ușor că următorul cmmmc va fi m' = m*(m + 1).

Întrucăt acest cmmmc are un factor de creștere foarte mare, este necesar lucrul cu numere mari.

Numărul X se reprezintă în formă factorizată, ca perechi (numar prim, exponent), și va fi combinat cu scrierea similară a lui a(n+1), obținându-se X'. Procesul continuă până la epuizarea celor n numere.