

Theorem. G connected,

Theorem. G connected, $e \in E(G)$,

Theorem. G connected, $e \in E(G)$, G - e can have

Definition.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected. G is a tree if and only if every edge is a bridge.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected. G is a tree if and only if every edge is a bridge.

Definition.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected. G is a tree if and only if every edge is a bridge.

Definition. $H \subset G$ is a spanning subgraph if V(H) = V(G).

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected. G is a tree if and only if every edge is a bridge.

Definition. $H \subset G$ is a spanning subgraph if V(H) = V(G). If H is a tree, it is called a spanning tree.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected. G is a tree if and only if every edge is a bridge.

Definition. $H \subset G$ is a spanning subgraph if V(H) = V(G). If H is a tree, it is called a spanning tree.

Theorem.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected. G is a tree if and only if every edge is a bridge.

Definition. $H \subset G$ is a spanning subgraph if V(H) = V(G). If H is a tree, it is called a spanning tree.

Theorem. A graph is connected if and only if it has a spanning tree.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected. G is a tree if and only if every edge is a bridge.

Definition. $H \subset G$ is a spanning subgraph if V(H) = V(G). If H is a tree, it is called a spanning tree.

Theorem. A graph is connected if and only if it has a spanning tree.

Proof.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected. G is a tree if and only if every edge is a bridge.

Definition. $H \subset G$ is a spanning subgraph if V(H) = V(G). If H is a tree, it is called a spanning tree.

Theorem. A graph is connected if and only if it has a spanning tree.

Proof. If G has a spanning tree T,

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected. G is a tree if and only if every edge is a bridge.

Definition. $H \subset G$ is a spanning subgraph if V(H) = V(G). If H is a tree, it is called a spanning tree.

Theorem. A graph is connected if and only if it has a spanning tree.

Proof. If G has a spanning tree T, any $x, y \in V(G)$

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected. G is a tree if and only if every edge is a bridge.

Definition. $H \subset G$ is a spanning subgraph if V(H) = V(G). If H is a tree, it is called a spanning tree.

Theorem. A graph is connected if and only if it has a spanning tree.

Proof. If G has a spanning tree T, any $x, y \in V(G) = V(T)$ is connected by a path

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected. G is a tree if and only if every edge is a bridge.

Definition. $H \subset G$ is a spanning subgraph if V(H) = V(G). If H is a tree, it is called a spanning tree.

Theorem. A graph is connected if and only if it has a spanning tree.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected. G is a tree if and only if every edge is a bridge.

Definition. $H \subset G$ is a spanning subgraph if V(H) = V(G). If H is a tree, it is called a spanning tree.

Theorem. A graph is connected if and only if it has a spanning tree.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected. G is a tree if and only if every edge is a bridge.

Definition. $H \subset G$ is a spanning subgraph if V(H) = V(G). If H is a tree, it is called a spanning tree.

Theorem. A graph is connected if and only if it has a spanning tree.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

If
$$|E(G)| = |V(G)| - 1$$

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected. G is a tree if and only if every edge is a bridge.

Definition. $H \subset G$ is a spanning subgraph if V(H) = V(G). If H is a tree, it is called a spanning tree.

Theorem. A graph is connected if and only if it has a spanning tree.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

If |E(G)| = |V(G)| - 1 then G is a tree.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected. G is a tree if and only if every edge is a bridge.

Definition. $H \subset G$ is a spanning subgraph if V(H) = V(G). If H is a tree, it is called a spanning tree.

Theorem. A graph is connected if and only if it has a spanning tree.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

If |E(G)| = |V(G)| - 1 then G is a tree.

Theorem. $e \in E(G)$ is a bridge if and only if e is |E(G)| = |V(G)|not part of a cycle.

$$|E(G)| = |V(G)|$$

Exercise. G connected. G is a tree if and only if every edge is a bridge.

Definition. $H \subset G$ is a spanning subgraph if V(H) =V(G). If H is a tree, it is called a spanning tree.

Theorem. A graph is connected if and only if it has a spanning tree.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

If |E(G)| = |V(G)| - 1 then G is a tree.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

|E(G)| = |V(G)| then it cannot be tree

Exercise. G connected. G is a tree if and only if every edge is a bridge.

Definition. $H \subset G$ is a spanning subgraph if V(H) = V(G). If H is a tree, it is called a spanning tree.

Theorem. A graph is connected if and only if it has a spanning tree.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

If |E(G)| = |V(G)| - 1 then G is a tree.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle

Exercise. G connected. G is a tree if and only if every edge is a bridge.

Definition. $H \subset G$ is a spanning subgraph if V(H) = V(G). If H is a tree, it is called a spanning tree.

Theorem. A graph is connected if and only if it has a spanning tree.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

If |E(G)| = |V(G)| - 1 then G is a tree.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle

Exercise. G connected. G is a tree if and only if every Delete one edge from the cycle to get G'edge is a bridge.

Definition. $H \subset G$ is a spanning subgraph if V(H) =V(G). If H is a tree, it is called a spanning tree.

Theorem. A graph is connected if and only if it has a spanning tree.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

If |E(G)| = |V(G)| - 1 then G is a tree.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle

Exercise. G connected. G is a tree if and only if every Delete one edge from the cycle to get G'edge is a bridge.

Then |E(G')| = |V(G)| - 1

Definition. $H \subset G$ is a spanning subgraph if V(H) =V(G). If H is a tree, it is called a spanning tree.

Theorem. A graph is connected if and only if it has a spanning tree.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

If |E(G)| = |V(G)| - 1 then G is a tree.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle

Exercise. G connected. G is a tree if and only if every Delete one edge from the cycle to get G'edge is a bridge.

Then |E(G')| = |V(G)| - 1 so G' is a tree.

Definition. $H \subset G$ is a spanning subgraph if V(H) =V(G). If H is a tree, it is called a spanning tree.

Theorem. A graph is connected if and only if it has a spanning tree.

Theorem. G connected, $e \in E(G)$, G - e can have Conversely, at most 2 components If G is conversely.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected. G is a tree if and only if every Delete one edge from the cycle to get G' edge is a bridge. Then |E(G')| = |V(G)| - 1 so G' is a tree.

Definition. $H \subset G$ is a spanning subgraph if V(H) = V(G). If H is a tree, it is called a spanning tree.

Theorem. A graph is connected if and only if it has a spanning tree.

Proof. If G has a spanning tree T, any $x, y \in V(G) = V(T)$ is connected by a path in T, and therefore in G.

Conversely, If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle Delete one edge from the cycle to get G' Then |E(G')| = |V(G)| - 1 so G' is a tree. But V(G') = V(G),

Theorem. G connected, $e \in E(G)$, G - e can have Conversely, at most 2 components If G is conversely.

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected. G is a tree if and only if every Delete one edge from the cycle to get G' edge is a bridge. Then |E(G')| = |V(G)| - 1 so G' is a tree.

Definition. $H \subset G$ is a spanning subgraph if V(H) = V(G). If H is a tree, it is called a spanning tree.

Theorem. A graph is connected if and only if it has a spanning tree.

Proof. If G has a spanning tree T, any $x, y \in V(G) = V(T)$ is connected by a path in T, and therefore in G.

Conversely, If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle Delete one edge from the cycle to get G' Then |E(G')| = |V(G)| - 1 so G' is a tree. But V(G') = V(G), i.e. G' spans G

Assume that if |E(G)| = |V(G)| + k

Conversely, If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle Delete one edge from the cycle to get G'Then |E(G')| = |V(G)| - 1 so G' is a tree. But V(G') = V(G), i.e. G' spans G

Conversely, If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle Delete one edge from the cycle to get G' Then |E(G')| = |V(G)| - 1 so G' is a tree. But V(G') = V(G), i.e. G' spans G

Assume that if |E(G)| = |V(G)| + k for some $k \ge 0$ then G has a spanning tree.

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle Delete one edge from the cycle to get G'

Then |E(G')| = |V(G)| - 1 so G' is a tree.

Assume that if |E(G)| = |V(G)| + k for some $k \ge 0$ then G has a spanning tree.

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle Delete one edge from the cycle to get G'

Then |E(G')| = |V(G)| - 1 so G' is a tree.

Assume that if |E(G)| = |V(G)| + kfor some $k \ge 0$ then G has a spanning tree. If |E(G)| = |V(G)| + k + 1, then it is not a tree.

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle Delete one edge from the cycle to get G'Then |E(G')| = |V(G)| - 1 so G' is a tree. But V(G') = V(G), i.e. G' spans G Assume that if |E(G)| = |V(G)| + kfor some $k \ge 0$ then G has a spanning tree. If |E(G)| = |V(G)| + k + 1, then it is not a tree. i.e. it has a cycle

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle Delete one edge from the cycle to get G' Then |E(G')| = |V(G)| - 1 so G' is a tree. But V(G') = V(G), i.e. G' spans G

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle Delete one edge from the cycle to get G' Then |E(G')| = |V(G)| - 1 so G' is a tree. But V(G') = V(G), i.e. G' spans G

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle Delete one edge from the cycle to get G'Then |E(G')| = |V(G)| - 1 so G' is a tree. But V(G') = V(G), i.e. G' spans G

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle Delete one edge from the cycle to get G'Then |E(G')| = |V(G)| - 1 so G' is a tree. But V(G') = V(G), i.e. G' spans G

By induction, there is a tree, T, so that V(T) = V(G')

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle

Delete one edge from the cycle to get G'

Then |E(G')| = |V(G)| - 1 so G' is a tree.

By induction, there is a tree, T, so that V(T) = V(G') = V(G),

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle

Delete one edge from the cycle to get G'Then |E(G')| = |V(G)| - 1 so G' is a tree.

$$V(G') = V(G)$$

By induction, there is a tree, T ,
so that $V(T) = V(G') = V(G)$, so T also spans G

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle Delete one edge from the cycle to get G'Then |E(G')| = |V(G)| - 1 so G' is a tree.

$$V(G') = V(G)$$

By induction, there is a tree, T, so that V(T) = V(G') = V(G), so T also spans G

Theorem.

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle

Delete one edge from the cycle to get G'

Then |E(G')| = |V(G)| - 1 so G' is a tree.

By induction, there is a tree, T, so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G,

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle

Delete one edge from the cycle to get G'

Then |E(G')| = |V(G)| - 1 so G' is a tree.

for some $k \ge 0$

then G has a spanning tree. If |E(G)| = |V(G)| + k + 1,

then it is not a tree. i.e. it has a cycle

Delete one edge from the cycle to get G'

V(G') = V(G)

By induction, there is a tree, T,

so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G, has at least |V(G)| - |E(G)| components.

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle

Delete one edge from the cycle to get G'

Then |E(G')| = |V(G)| - 1 so G' is a tree.

for some $k \ge 0$

then G has a spanning tree. If |E(G)| = |V(G)| + k + 1,

then it is not a tree. i.e. it has a cycle

Delete one edge from the cycle to get G'

V(G') = V(G)

By induction, there is a tree, T,

so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G, has at least |V(G)| - |E(G)| components.

Main observation:

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle

Delete one edge from the cycle to get G'

Then |E(G')| = |V(G)| - 1 so G' is a tree.

for some $k \ge 0$

then G has a spanning tree. If |E(G)| = |V(G)| + k + 1,

then it is not a tree. i.e. it has a cycle

Delete one edge from the cycle to get G'

V(G')=V(G)

By induction, there is a tree, T,

so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G, has at least |V(G)| - |E(G)| components.

Main observation: adding an edge may decrease the number of components

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle

Delete one edge from the cycle to get G'

Then |E(G')| = |V(G)| - 1 so G' is a tree.

then G has a spanning tree. If |E(G)| = |V(G)| + k + 1,

then it is not a tree. i.e. it has a cycle

Delete one edge from the cycle to get G'

$$V(G') = V(G)$$

By induction, there is a tree, T, so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G, has at least |V(G)| - |E(G)| components.

Main observation: adding an edge may decrease the number of components but by at most 1.

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle

Delete one edge from the cycle to get G'

Then |E(G')| = |V(G)| - 1 so G' is a tree.

then G has a spanning tree. If |E(G)| = |V(G)| + k + 1,

then it is not a tree. i.e. it has a cycle

Delete one edge from the cycle to get G'

V(G')=V(G)

By induction, there is a tree, T,

so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G, has at least |V(G)| - |E(G)| components.

Main observation: adding an edge may decrease the number of components but by at most 1.

Proof.

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle

Delete one edge from the cycle to get G'

Then |E(G')| = |V(G)| - 1 so G' is a tree.

then G has a spanning tree. If |E(G)| = |V(G)| + k + 1,

then it is not a tree. i.e. it has a cycle

Delete one edge from the cycle to get G'

V(G')=V(G)

By induction, there is a tree, T, so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G, has at least |V(G)| - |E(G)| components.

Main observation: adding an edge may decrease the number of components but by at most 1.

Proof. If
$$|E(G)| = 0$$

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle Delete one edge from the cycle to get G'Then |E(G')| = |V(G)| - 1 so G' is a tree.

then G has a spanning tree. If |E(G)| = |V(G)| + k + 1,

then it is not a tree. i.e. it has a cycle

Delete one edge from the cycle to get G'

$$V(G') = V(G)$$

By induction, there is a tree, T, so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G, has at least |V(G)| - |E(G)| components.

Main observation: adding an edge may decrease the number of components but by at most 1.

Proof. If |E(G)| = 0 then every vertex is a component.

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle

Delete one edge from the cycle to get G'

Then |E(G')| = |V(G)| - 1 so G' is a tree.

then G has a spanning tree. If |E(G)| = |V(G)| + k + 1,

then it is not a tree. i.e. it has a cycle

Delete one edge from the cycle to get G'

V(G') = V(G)

By induction, there is a tree, T, so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G, has at least |V(G)| - |E(G)| components.

Main observation: adding an edge may decrease the number of components but by at most 1.

Proof. If |E(G)| = 0 then every vertex is a component. Assume the result holds if |E(G)| = k

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle

Delete one edge from the cycle to get G'

Then |E(G')| = |V(G)| - 1 so G' is a tree.

then G has a spanning tree. If |E(G)| = |V(G)| + k + 1,

then it is not a tree. i.e. it has a cycle

Delete one edge from the cycle to get G'

$$V(G')=V(G)$$

By induction, there is a tree, T, so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G, has at least |V(G)| - |E(G)| components.

Main observation: adding an edge may decrease the number of components but by at most 1.

Proof. If |E(G)| = 0 then every vertex is a component. Assume the result holds if |E(G)| = kIf |E(G)| = k + 1, delete an edge to get G'.

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle Delete one edge from the cycle to get G'

Then |E(G')| = |V(G)| - 1 so G' is a tree.

for some $k \ge 0$

then G has a spanning tree. If |E(G)| = |V(G)| + k + 1,

then it is not a tree. i.e. it has a cycle

Delete one edge from the cycle to get G'

V(G')=V(G)

By induction, there is a tree, T,

so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G, has at least |V(G)| - |E(G)| components.

Main observation: adding an edge may decrease the number of components but by at most 1.

Proof. If |E(G)| = 0 then every vertex is a component.

Assume the result holds if |E(G)| = k

If |E(G)| = k + 1, delete an edge to get G'.

$$V(G') =$$

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle

Delete one edge from the cycle to get G'

Then |E(G')| = |V(G)| - 1 so G' is a tree.

for some $k \ge 0$

then G has a spanning tree. If |E(G)| = |V(G)| + k + 1,

then it is not a tree. i.e. it has a cycle

Delete one edge from the cycle to get G'

V(G') = V(G)

By induction, there is a tree, T,

so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G, has at least |V(G)| - |E(G)| components.

Main observation: adding an edge may decrease the number of components but by at most 1.

Proof. If |E(G)| = 0 then every vertex is a component.

Assume the result holds if |E(G)| = k

If |E(G)| = k + 1, delete an edge to get G'.

$$V(G')=V(G)$$

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle

Delete one edge from the cycle to get G'

Then |E(G')| = |V(G)| - 1 so G' is a tree.

for some $k \ge 0$

then G has a spanning tree. If |E(G)| = |V(G)| + k + 1,

then it is not a tree. i.e. it has a cycle

Delete one edge from the cycle to get G'

V(G')=V(G)

By induction, there is a tree, T,

so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G, has at least |V(G)| - |E(G)| components.

Main observation: adding an edge may decrease the number of components but by at most 1.

Proof. If |E(G)| = 0 then every vertex is a component.

Assume the result holds if |E(G)| = k

If |E(G)| = k + 1, delete an edge to get G'.

$$V(G') = V(G)$$
 and $|E(G')| =$

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle

Delete one edge from the cycle to get G'

Then |E(G')| = |V(G)| - 1 so G' is a tree.

for some $k \ge 0$

then G has a spanning tree. If |E(G)| = |V(G)| + k + 1,

then it is not a tree. i.e. it has a cycle

Delete one edge from the cycle to get G'

V(G') = V(G)

By induction, there is a tree, T,

so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G, has at least |V(G)| - |E(G)| components.

Main observation: adding an edge may decrease the number of components but by at most 1.

Proof. If |E(G)| = 0 then every vertex is a component.

Assume the result holds if |E(G)| = k

If |E(G)| = k + 1, delete an edge to get G'.

$$V(G') = V(G)$$
 and $|E(G')| = |E(G)| - 1 = k$

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle

Delete one edge from the cycle to get G'

Then |E(G')| = |V(G)| - 1 so G' is a tree.

for some $k \ge 0$

then G has a spanning tree. If |E(G)| = |V(G)| + k + 1,

then it is not a tree. i.e. it has a cycle

Delete one edge from the cycle to get G'

V(G') = V(G)

By induction, there is a tree, T,

so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G, has at least |V(G)| - |E(G)| components.

Main observation: adding an edge may decrease the number of components but by at most 1.

Proof. If |E(G)| = 0 then every vertex is a component.

Assume the result holds if |E(G)| = k

If |E(G)| = k + 1, delete an edge to get G'.

V(G') = V(G) and |E(G')| = |E(G)| - 1 = k

G'.

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle

Delete one edge from the cycle to get G'

Then |E(G')| = |V(G)| - 1 so G' is a tree.

then G has a spanning tree. If |E(G)| = |V(G)| + k + 1,

then it is not a tree. i.e. it has a cycle

Delete one edge from the cycle to get G'

$$V(G') = V(G)$$

By induction, there is a tree, T, so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G, has at least |V(G)| - |E(G)| components.

Main observation: adding an edge may decrease the number of components but by at most 1.

Proof. If |E(G)| = 0 then every vertex is a component.

Assume the result holds if |E(G)| = k

If |E(G)| = k + 1, delete an edge to get G'.

V(G') = V(G) and |E(G')| = |E(G)| - 1 = k

G', has at least |V(G')| - |E(G')| components.

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle Delete one edge from the cycle to get G'Then |E(G')| = |V(G)| - 1 so G' is a tree.

then G has a spanning tree. If |E(G)| = |V(G)| + k + 1,

then it is not a tree. i.e. it has a cycle

Delete one edge from the cycle to get G'

$$V(G')=V(G)$$

By induction, there is a tree, T, so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G, has at least |V(G)| - |E(G)| components.

Main observation: adding an edge may decrease the number of components but by at most 1.

Proof. If |E(G)| = 0 then every vertex is a component.

Assume the result holds if |E(G)| = k

If |E(G)| = k + 1, delete an edge to get G'.

V(G') = V(G) and |E(G')| = |E(G)| - 1 = k

G', has at least |V(G')| - |E(G')| components.

G,

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle Delete one edge from the cycle to get G'Then |E(G')| = |V(G)| - 1 so G' is a tree. But V(G') = V(G), i.e. G' spans G

then G has a spanning tree. If |E(G)| = |V(G)| + k + 1,

then it is not a tree. i.e. it has a cycle

Delete one edge from the cycle to get G'

$$V(G')=V(G)$$

By induction, there is a tree, T, so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G, has at least |V(G)| - |E(G)| components.

Main observation: adding an edge may decrease the number of components but by at most 1.

Proof. If |E(G)| = 0 then every vertex is a component.

Assume the result holds if |E(G)| = k

If |E(G)| = k + 1, delete an edge to get G'.

$$V(G') = V(G)$$
 and $|E(G')| = |E(G)| - 1 = k$

G', has at least |V(G')| - |E(G')| components.

G, has at least |V(G')| - |E(G')| - 1 components.

Conversely,

If G is connected, $|E(G)| \ge |V(G)| - 1$ edges.

If |E(G)| = |V(G)| - 1 then G is a tree.

|E(G)| = |V(G)| then it cannot be tree i.e. it has a cycle Delete one edge from the cycle to get G'

Then |E(G')| = |V(G)| - 1 so G' is a tree.

Definition.

for some k > 0

then G has a spanning tree. If |E(G)| = |V(G)| + k + 1,

then it is not a tree. i.e. it has a cycle

Delete one edge from the cycle to get G'

$$V(G') = V(G)$$

By induction, there is a tree, T,

so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G, has at least |V(G)| - |E(G)| components.

Main observation: adding an edge may decrease the number of components but by at most 1.

Proof. If |E(G)| = 0 then every vertex is a component.

Assume the result holds if |E(G)| = k

If |E(G)| = k + 1, delete an edge to get G'.

V(G') = V(G) and |E(G')| = |E(G)| - 1 = k

G', has at least |V(G')| - |E(G')| components.

G, has at least |V(G')| - |E(G')| - 1 components.

Theorem. A graph G, has at least |V(G)| - |E(G)| components.

so that V(T) = V(G') = V(G), so T also spans G

Main observation: adding an edge may decrease the number of components but by at most 1.

Proof. If |E(G)| = 0 then every vertex is a component. Assume the result holds if |E(G)| = kIf |E(G)| = k + 1, delete an edge to get G'. V(G') = V(G) and |E(G')| = |E(G)| - 1 = kG', has at least |V(G')| - |E(G')| components. □

Definition. A cut vertex $v \in V(G)$ splits G into more components

V(G') = V(G)By induction, there is a tree, T, so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G, has at least |V(G)| - |E(G)|components.

Main observation: adding an edge may decrease the number of components but by at most 1.

Proof. If |E(G)| = 0 then every vertex is a component. Assume the result holds if |E(G)| = kIf |E(G)| = k + 1, delete an edge to get G'. V(G') = V(G) and |E(G')| = |E(G)| - 1 = kG', has at least |V(G')| - |E(G')| components. G, has at least |V(G')| - |E(G')| - 1 components.

Definition. A cut vertex $v \in V(G)$ splits G into more components

By induction, there is a tree, T, so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G, has at least |V(G)| - |E(G)| components.

Main observation: adding an edge may decrease the number of components but by at most 1.

Proof. If |E(G)| = 0 then every vertex is a component. Assume the result holds if |E(G)| = kIf |E(G)| = k + 1, delete an edge to get G'. V(G') = V(G) and |E(G')| = |E(G)| - 1 = kG', has at least |V(G')| - |E(G')| components. □

Definition. A cut vertex $v \in V(G)$ splits G into more components

Theorem. $v \in V(G)$ is a cut vertex if and only if there exist $x, y \in V(G)$, such that every path joining x and y contains v.

By induction, there is a tree, T, so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G, has at least |V(G)| - |E(G)| components.

Main observation: adding an edge may decrease the number of components but by at most 1.

Proof. If |E(G)| = 0 then every vertex is a component. Assume the result holds if |E(G)| = k If |E(G)| = k + 1, delete an edge to get G'. V(G') = V(G) and |E(G')| = |E(G)| - 1 = kG', has at least |V(G')| - |E(G')| components. \square

Definition. A cut vertex $v \in V(G)$ splits G into more components

Theorem. $v \in V(G)$ is a cut vertex if and only if there exist $x, y \in V(G)$, such that every path joining x and y contains v.

Theorem.

By induction, there is a tree, T, so that V(T) = V(G') = V(G), so T also spans G

Theorem. A graph G, has at least |V(G)| - |E(G)| components.

Main observation: adding an edge may decrease the number of components but by at most 1.

Proof. If |E(G)| = 0 then every vertex is a component. Assume the result holds if |E(G)| = kIf |E(G)| = k + 1, delete an edge to get G'. V(G') = V(G) and |E(G')| = |E(G)| - 1 = kG', has at least |V(G')| - |E(G')| components. □

Definition. A cut vertex $v \in V(G)$ splits G into more components

Theorem. $v \in V(G)$ is a cut vertex if and only if there exist $x, y \in V(G)$, such that every path joining x and y contains v.

Theorem. If $|V(G)| \ge 2$ then G has at least two vertices which are not cut vertices.