Topologie - Opdracht 10

Luc Veldhuis - 2538227

April 2017

Q2) Laat $\alpha, \beta : [0, 1] \longrightarrow S^1$ twee lusjes zijn met basispunt $1 \in S^1 \subseteq \mathbb{C}$, zodanig dat $\alpha(t) \neq -\beta(t)$ voor alle $t \in [0, 1]$. Laat zien dat α en β homotoop relatief $\{0, 1\}$ zijn.

Een lus $\gamma:[0,1] \longrightarrow X$ in een topologische ruimte X is een continue afbeelding, zodat $\gamma(0) = \gamma(1) = b$ voor een basispunt $b \in X$.

Twee functies $f, g: X \longrightarrow Y$ zijn homotoop relatief $A \subseteq X$ als er een continue functie $H: X \times I \longrightarrow Y$ bestaat met H(x,0) = f(x) en H(x,1) = g(x) en $\forall a \in A, \forall t \in I$ geldt H(a,t) = f(a) Omdat α en β per definitie continu zijn, en beide hetzelfde domein en bereik hebben, is de functie $H: [0,1] \times I \longrightarrow S^1$ met $H(x,t) = (1-t)\alpha(x) + t\beta(x) = \alpha(x) - t\alpha(x) + t\beta(x)$ ook continu, omdat het bestaat uit een samenstelling van continue functies en omdat additie en vermenigvuldiging zijn gedefinieerd op deze ruimte.

We hebben nu een continue functie H, zodat $H(x,0) = (1-0)\alpha(x) + 0\beta(x) = \alpha(x)$ en zodat $H(x,1) = 0\alpha(x) + 1\beta(x) = \beta(x) \ \forall x \in X$. Dus H is een homotopie.

Er is gegeven dat dat $\alpha(0) = \alpha(1) = \beta(0) = \beta(1) = 1 \in S^1$.

Nu moeten we nog laten zien dat deze ook relatief $\{0,1\}$ is.

$$H(0,t) = (1-t)\alpha(0) + t\beta(0) = 1 - t + t = 1 = \alpha(0)$$

$$H(1,t) = (1-t)\alpha(1) + t\beta(1) = 1 - t + t = 1 = \alpha(1)$$

Dus deze homotopie is ook relatief $\{0,1\}$

Opmerking: Ik gebruik nooit $\alpha(x) \neq -\beta(x)$, er mist nog iets?

Q3) Bereken $\pi_1(\mathbb{R} - \{0\}, 1)$?

Uit de definitie volgt dat : $\pi_1(\mathbb{R} - \{0\}, 1) = \{\text{homotopieklassen van lussen in } \mathbb{R} - \{0\} \text{ met basispunt } 1 \}.$

Omdat lussen continue afbeeldingen zijn, kan het nooit zo zijn dat $\gamma(t) < 0$, want deze functie begint in 1, en als deze door het punt 0 zou willen, is deze functie niet meer continu.

Dus voor alle lussen γ met beginpunt $1 \in \mathbb{R}$ geldt nu dat $\gamma(t) > 0$

Neem nu $\mathbb{R}^+ \subseteq \mathbb{R} - \{0\}$. Deze deelverzameling is een wegsamenhangende verzameling die het punt 1 bevat. Hij is wegsamenhangend, omdat er een pad kan worden gemaakt naar elk willekeurig tweetal punten in de verzameling \mathbb{R}^+ . Dan volgt uit 12.13 dat $\pi_1(\mathbb{R} - \{0\}, 1) = \pi_1(\mathbb{R}^+, 1)$. Ook weten we dat een ruimte samentrekbaar is naar $x_0 \in X$ als er een homotopie $H: X \times I \longrightarrow X$ is zodanig dat H(x,0) = x en $H(x,1) = x_0$. Dus van de identiteits functie id_X naar de constante functie x_0 .

Neem nu de homotopie: H(x,t) = (1-t)x + t. Deze functie is continu, omdat het een samenstelling is van continue functies, en multiplicatie en additie zijn gedefinieerd op deze ruimte. Ook geldt dat H(x,0) = x en dat H(x,1) = 1. Dus omdat deze homotopie bestaat, geldt dat \mathbb{R}^+ samentrekbaar is naar 1.

Dus dit is de enigste klasse in $\pi_1(\mathbb{R}^+, 1) = \pi_1(\mathbb{R} - \{0\}, 1)$.

Dus hieruit volgt dat $\pi_1(\mathbb{R} - \{0\}, 1) = \{[1]\}$

Q4) Laat $f: X \longrightarrow Y$, en $g: Y \longrightarrow Z$ continue afbeeldingen tussen topologische ruimten zijn. Kies basispunten $x_0 \in X$, $y_0 \in Y$ en $z_0 \in Z$ zodanig dat $f(x_0) = y_0$ en $g(y_0) = z_0$. We definiëren een afbeelding $f_*: \pi_1(X, x_0) \longrightarrow \pi_1(Y, y_0)$ door $f_*([\alpha]) := [f \circ \alpha]$.

(a) Laat zien dat f_* goed gedefinieerd is, dat wil zeggen, als $\alpha \simeq \beta$ relatief $\{0,1\}$ dan ook $f\alpha \simeq f\beta$ relatief $\{0,1\}$

Neem aan dat $\alpha \simeq \beta$ relatief $\{0,1\}$ met α,β beide lussen.

Als ze homotoop zijn relatief $\{0,1\}$ betekent dit dat er een homotopie bestaat zodat $H(x,0) = \alpha(x), H(x,1) = \beta(x)$ en $H(0,t) = H(1,t) = \alpha(0) = \beta(0) = \beta(1) = \alpha(1)$ Nu moeten we laten zien dat $f\alpha \simeq f\beta$ relatief $\{0,1\}$.

Omdat f een continue afbeelding is, en α en β ook continu zijn, is $f\alpha$ en $f\beta$ ook continu. Omdat geldt dat $\alpha(0) = x_0$ en $f(x_0) = y_0$ geldt dat $f(\alpha(1)) = f(\alpha(0)) = y_0 = f(\beta(0)) = f(\beta(1))$ Dus als we nu de afbeelding G(x,t) = f(H(x,t)) definieren, is deze goedgedefinieerd en voldoet het aan de zojuist beschreven voorwaardes voor de homotopie. Dus $f\alpha \simeq f\beta$.

(b) Laat zien dat f_* een homomorfisme van groepen is. (Dat wil zeggen $f_*([\alpha][\beta]) = f_*([\alpha])f_*([\beta])$) We weten dat voor de klassen in $[\alpha], [\beta] \in \pi_1(X, x_0)$ geldt dat $[\alpha][\beta] = [\alpha \star \beta]$ En $f_*([\alpha \star \beta]) = [f \circ (\alpha \star \beta)] = {}^{claim} [(f \circ \alpha) \star (f \circ \beta)] = [f \circ \alpha] \star [f \circ \beta] = f_*([\alpha])f_*([\beta])$. We moeten nu alleen nog bewijzen dat $[f \circ (\alpha \star \beta)] = [(f \circ \alpha) \star (f \circ \beta)]$. We weten dat $f \circ (\alpha \star \beta) = f(\alpha \star \beta)$, de afbeelding is van een lus die begint in $\alpha(0)$ naar

We weten dat $f \circ (\alpha \star \beta) = f(\alpha \star \beta)$, de afbeelding is van een lus die begint in $\alpha(0)$ naar $\alpha(1) = \beta(0)$ naar $\beta(1)$. En we weten uit de definitie van \star dat samengestelde lussen goed gedefinieerd zijn, namelijk:

getermieerd zijn, namerijk.
$$(\alpha \star \beta)(x) = \begin{cases} \alpha(x) & 0 \le x \le \frac{1}{2} \\ \beta(x) & \frac{1}{2} \le x \le 1 \end{cases}$$
 Dit geeft $f(\alpha \star \beta) = \begin{cases} f(\alpha(x)) & 0 \le x \le \frac{1}{2} \\ f(\beta(x)) & \frac{1}{2} \le x \le 1 \end{cases}$

Maar dit is tevens de definitie van $f(\alpha) \star f(\beta)$.

Deze functie is goedgedefinieerd omdat $f(\alpha(1)) = y_0 = f(\beta(0))$

Dus $f(\alpha \star \beta) = f(\alpha) \star f(\beta)$

Dus dan geldt ook dat $[f(\alpha \star \beta)] = [f \circ (\alpha \star \beta)] = [f(\alpha) \star f(\beta)]$

Dus $f_*([\alpha][\beta]) = f_*([\alpha])f_*([\beta])$

Dus f_* is een homomorfisme van groepen.

(c) Laat zien dat $(g \circ f)_* = g_* \circ f_*$

We weten $f_*(x) = [f \circ x]$ en $g_*([y]) = [g \circ y]$ en ook $(g \circ f)_*([x]) = [(g \circ f) \circ x]$

Als we dit substitueren krijgen we:

 $(g \circ f)_*([\alpha]) = [(g \circ f) \circ \alpha] = [g \circ (f \circ \alpha)] = g_*([f \circ \alpha]) = g_*(f_*([\alpha])) = g_* \circ f_*([\alpha])$ we gens associativiteit van \circ .

 $Dus (g \circ f)_* = g_* \circ f_*$

(d) Laat $id_X: X \longrightarrow X$ de identiteit zijn. Toon aan dat $(id_X)_* = id_{\pi_1(X,x_0)}$

Er is gegeven: $(id_X)_*([x]) = [id_X \circ x] = [x]$

Maar ook $id_{\pi_1(X,x_0)}([x]) = [x]$

Dus $\forall [x] \in \pi_1(X, x_0)$, geldt $(id_X)_*([x]) = [x] = id_{\pi_1(X, x_0)}([x])$

Dus $(id_X)_* = id_{\pi_1(X,x_0)}$

(e) Laat $f: X \longrightarrow Y$ een homeomorfisme zijn. Toon aan, dat $f_*: \pi_1(X, x_0) \longrightarrow \pi_1(Y, y_0)$ bijectief is.

Een functie f is een homeomorfisme als f bijectief is en zowel f als f^{-1} continu is.

Een functie is een bijectie, als hij zowel injectief als surjectief is.

Bewijs f_* is injectief:

Kies $[x], [y] \in \pi_1(X, x_0)$ willekeurig.

Neem nu $f_*([x]) = f_*([y])$.

Bewijs dat [x] = [y]

Neem aan dat $[x] \neq [y]$. We weten dat f bijectief is, dus er geldt als $x \neq y$ dan $f(x) \neq f(y)$. Omdat we nu kijken naar equivalentie klassen kan het niet zo zijn dat [f(x)] = [f(y)], want dan zou er een element in Y zijn waarop zowel f(x) en f(y) afbeeldt, maar dat betekent dat x en y in dezelfde klasse zitten, en dit is niet mogelijk door de aanname.

Dus geldt $[f(x)] \neq [f(y)]$. Dus $f_*([x]) = [f(x)] \neq [f(y)] = f_*([y])$

Tegenspraak, [x] = [y].

Nu het bewijs dat f_* surjectief is:

 $\forall [y] \in \pi_1(Y, y_0) \text{ is er een } [x] \in \pi_1(X, x_0) \text{ zodat } f_*([x]) = [y].$

We weten dat f bijectief is. Dus voor elke equivalentie klasse $[y] \in \pi_1(Y, y_0)$ is er een continue functie $f_*^{-1}([y]) = [f^{-1} \circ y] = [x]$ omdat f^{-1} bestaat en continu is omdat f een homeomorfisme is.

Dus $\forall [y] \in \pi_1(Y, y_0)$ is er een $[x] \in \pi_1(X, x_0)$ met $f_*([x]) = [y]$.

Dus f_* is bijectief als f een homeomorfisme is.