

Sequential Monte Carlo methods

Lecture 7 – Auxiliary particle filters

Fredrik Lindsten, Uppsala University 2017-08-25

Fully adapted particle filter

Outline – Lecture 7

Aim: Illustrate the use of "locally optimal" proposals in the auxiliary particle filter (= fully adapted PF)

Outline:

- 1. Locally optimal proposals
- 2. When can they be computed?
- 3. Numerical illustration of fully adapted PF

1/9

Locally optimal proposals

With the choices

Resampling weights: $v_{t-1}^i \propto w_{t-1}^i \ p(y_t | x_{t-1}^i), \ i = 1, \ldots, N$

Propagation proposal: $q(x_t | x_{t-1}, y_t) = p(x_t | x_{t-1}, y_t)$

we obtain weights $\widetilde{w}_t^i = \mathrm{const.} \, \Rightarrow w_t^i = \frac{1}{N}, \ i = 1, \, \dots, \, N$

Referred to as the fully adapted particle filter (FAPF)

Locally optimal proposals

Bootstrap particle filter

Fully adapted particle filter

ex) ARCH model

ex) 1st order autoregressive conditional heteroskedasticity (ARCH) model:

$$X_t = \sqrt{1 + 0.5 X_{t-1}^2} V_t, \qquad V_t \sim \mathcal{N}(0, 1),$$
 $Y_t = X_t + E_t, \qquad E_t \sim \mathcal{N}(0, r).$

We simulate a data set and compare the **bootstrap particle filter** with the **fully adapted particle filter**, both using N = 100 particles.

Evaluation criteria: Mean-squared-error for test function $\varphi(x_t) = x_t$, $\mathbb{E}[(\varphi(x_t) - I_t(\varphi))^2]$, for t = 1, ..., 100.

4/9

ex) ARCH model

Data set with r = 1

ex) ARCH model

3/9

5/9

Data set with r = 0.1 (high signal-to-noise ratio)

6/9

ex) ARCH model

Data set with r = 10 (low signal-to-noise ratio)

7/9

A few concepts to summarize lecture 7

Locally optimal proposals: Proposals that take all the available information in the current measurement y_t into account.

Fully adapted particle filter: An auxiliary variable that use locally optimal proposals both for the ancestor indices (auxiliary variables) and for the state variable.

Partially adapted particle filter: An auxiliary particle filter that uses some suboptimal proposals (e.g. an approximation of the locally optimal ones) which still take the current measurement y_t into account.

Partial adaptation

Non-conjugate models: approximate $\bar{p}(x_t \mid x_{t-1}, y_t) \approx p(x_t \mid x_{t-1}, y_t)$ and $\bar{p}(y_t \mid x_{t-1}) \approx p(y_t \mid x_{t-1})$. E.g., local linearization, variational approximation, . . .

Approximate model used only to define the proposal!

Care needs to be taken so that the approximations are suitable to use as importance sampling proposals. (Heavier tails than target.)

8/9