We can now prove that if a linear program has a feasible solution and is bounded, then it has an optimal solution.

Proposition 45.1. Let (P_2) be a linear program in standard form, with equality constraint Ax = b. If $\mathcal{P}(A, b)$ is nonempty and bounded above, and if μ is the least upper bound of the set $\{cx \in \mathbb{R} \mid x \in \mathcal{P}(A, b)\}$, then there is some $p \in \mathcal{P}(A, b)$ such that

$$cp = \mu$$
,

that is, the objective function $x \mapsto cx$ has a maximum value μ on $\mathcal{P}(A, b)$ which is achieved by some optimum solution $p \in \mathcal{P}(A, b)$.

Proof. Since $\mu = \sup\{cx \in \mathbb{R} \mid x \in \mathcal{P}(A,b)\}$, there is a sequence $(x^{(k)})_{k\geq 0}$ of vectors $x^{(k)} \in \mathcal{P}(A,b)$ such that $\lim_{k\to\infty} cx^{(k)} = \mu$. In particular, if we write $x^{(k)} = (x_1^{(k)}, \dots, x_n^{(k)})$ we have $x_j^{(k)} \geq 0$ for $j = 1, \dots, n$ and for all $k \geq 0$. Let \widetilde{A} be the $(m+1) \times n$ matrix

$$\widetilde{A} = \begin{pmatrix} c \\ A \end{pmatrix},$$

and consider the sequence $(\widetilde{A}x^{(k)})_{k>0}$ of vectors $\widetilde{A}x^{(k)} \in \mathbb{R}^{m+1}$. We have

$$\widetilde{A}x^{(k)} = \begin{pmatrix} c \\ A \end{pmatrix} x^{(k)} = \begin{pmatrix} cx^{(k)} \\ Ax^{(k)} \end{pmatrix} = \begin{pmatrix} cx^{(k)} \\ b \end{pmatrix},$$

since by hypothesis $x^{(k)} \in \mathcal{P}(A, b)$, and the constraints are Ax = b and $x \geq 0$. Since by hypothesis $\lim_{k \to \infty} cx^{(k)} = \mu$, the sequence $(\widetilde{A}x^{(k)})_{k \geq 0}$ converges to the vector $\begin{pmatrix} \mu \\ b \end{pmatrix}$. Now, observe that each vector $\widetilde{A}x^{(k)}$ can be written as the convex combination

$$\widetilde{A}x^{(k)} = \sum_{j=1}^{n} x_j^{(k)} \widetilde{A}^j,$$

with $x_j^{(k)} \geq 0$ and where $\widetilde{A}^j \in \mathbb{R}^{m+1}$ is the jth column of \widetilde{A} . Therefore, $\widetilde{A}x^{(k)}$ belongs to the polyheral cone

$$C = \operatorname{cone}(\widetilde{A}^1, \dots, \widetilde{A}^n) = \{\widetilde{A}x \mid x \in \mathbb{R}^n, \ x \ge 0\},\$$

and since by Proposition 44.2 this cone is closed, $\lim_{k\geq\infty}\widetilde{A}x^{(k)}\in C$, which means that there is some $u\in\mathbb{R}^n$ with $u\geq0$ such that

$$\begin{pmatrix} \mu \\ b \end{pmatrix} = \lim_{k \ge \infty} \widetilde{A} x^{(k)} = \widetilde{A} u = \begin{pmatrix} cu \\ Au \end{pmatrix},$$

that is, $cu = \mu$ and Au = b. Hence, u is an optimal solution of (P_2) .

The next question is, how do we find such an optimal solution? It turns out that for linear programs in standard form where the constraints are of the form Ax = b and $x \ge 0$, there are always optimal solutions of a special type called basic feasible solutions.