1		(1:8, -5:5, -10:5) be a three dimensional array. How many ents are there in the array A?
	a	1200
	b	1408
	C	33
	d	1050
		number of rotations required to insert a sequence of elements
2		8,7,10 into an empty AVL tree is?
	a a	0
	b	1
	C	2
	d	3
	OggO	rtunistic reasoning is addressed by which of the following
3	1	ledge representation
	а	Script
	b	Blackboard
	С	Production Rules
	d	Fuzzy Logic
	The f	ollowing steps in a linked list
		p = getnode()
4		info (p) = 10
7		next (p) = list
		list = p
	resul	t in which type of operation?
	a	pop operation in stack
	b	removal of a node
	C	inserting a node
	d	modifying an existing node
5		reduce parsing belongs to a class of
-	a	bottom up parsing
-	b	top down parsing
	d	recursive parsing predictive parsing
-		h of the following productions eliminate left recursion in the
	prod	uctions given below:
6	prod	$S \rightarrow Aa \mid b$
		$A \rightarrow Ac \mid Sd \mid \varepsilon$
	а	$S \rightarrow Aa \mid b$, $A \rightarrow bdA'$, $A' \rightarrow A'c \mid A'ba \mid A \mid \epsilon$
	b	$S \rightarrow Aa \mid b$, $A \rightarrow A' \mid bdA'$ $A' \rightarrow CA' \mid adA' \mid \epsilon$
<u> </u>	C	
	d	
	<u>u</u>	$S \rightarrow Aa \mid b$, $A \rightarrow cA' \mid adA' \mid bdA'$ $A' \rightarrow A \mid \epsilon$

	Consi	der the following psuedocode:			
		x : integer := 1			
,		y : integer := 2			
		procedure add			
		x := x + y			
ļ					
	!	procedure second (P: procedure)			
		x : integer := 2			
7		P()			
		procedure first			
		y : integer := 3			
		second(add)			
		E40			
		first()			
		write_integer (x)			
	What	does it print if the language uses dynamic scoping with deep			
	bindi				
	-	2			
	a b	3			
	C	4			
	d	5			
		h logic gate is used to detect overflow in 2's complement			
8	arithmetic?				
-	а	OR gate			
	b	AND gate			
	С	NAND gate			
	d	XOR gate			
	In an	array of 2N elements that is both 2-ordered and 3-ordered,			
9	what	is the maximum number of positions that an element can be			
	from	its position if the array were 1-ordered?			
	а	1			
	b	2			
	С	N/2			
	d	2N-1			
	1	frame buffer has 8 bits per pixel and 8 bits are allocated for			
10	1	of the R, G, B components, what would be the size of the			
	_	ıp table?			
	а	24 bytes			
	b	1024 bytes			
	C	768 bytes			
	d	256 bytes			

11	1	two BCD numbers 0x14 and 0x08 are added what is the binary sentation of the resultant number?			
	а	0x22			
	b	0x1c '			
	С	0x16			
	d	results in overflow			
12		n of the following sorting algorithms has the minimum running complexity in the best and average case?			
	а	Insertion sort, Quick sort			
	b	Quick sort, Quick sort			
	С	Quick sort, Insertion sort			
	d	Insertion sort, Insertion sort			
40	The n	umber 1102 in base 3 is equivalent to 123 in which base			
13	syste				
	а	4			
	b	5			
	С	6			
	d	8			
14	A processor is fetching instructions at the rate of 1 MIPS. A DMA module is used to transfer characters to RAM from a device transmitting at 9600 bps. How much time will the processor be slowed down due to DMA activity?				
	а	9.6 ms			
	b	4.8 ms			
	С	2.4 ms			
	d	1.2 ms			
15					
	a	5			
	b	6			
	С	8			
	d	9			
16		much speed do we gain by using the cache, when cache is 80% of the time? Assume cache is faster than main memory.			
	а	5.27			
	b	2.00			
	С	4.16			
	d	6.09			

17	value	eight bit bytes 1100 0011 and 0100 1100 are added. What are the s of the overflow, carry and zero flags respectively, if the netic unit of the CPU uses 2's complement form?
	а	0, 1, 1'
	b	1, 1, 0
	С	1, 0, 1
	d	0, 1, 0
18	How	many check bits are required for 16 bit data word to detect 2 bit
		s and single bit correction using hamming code?
	а	5
	b	6
		7
	C	
	d	8
19	be tra	is the maximum number of characters (7 bits + parity) that can ansmitted in a second on a 19.2 kbps line. This asynchronous mission requires 1 start bit and 1 stop bit.
	a	192.
		240
	b	
	С	1920
	d	1966
20	IEEE	1394 is related to
	а	RS-232
	b	USB
	С	Firewire
	d	PCI
21	funct	t will be the cipher text produced by the following cipher tion for the plain text ISRO with key k =7. [Consider 'A' = 0, 'B' ='Z' = 25] $C_k(M) = (kM + 13) \mod 26$
	а	RJCH
	b	QIBG
	С	GQPM
	d	XPIN
		set of boolean operators that is sufficient to represent all
22		ean expressions is said to be complete. Which of the following to complete?
	а	{NOT, OR}
	b	{NOR}
	С	{AND, OR}
	d	{AND, NOT}

22	Whic	Which of the following is the highest isolation level in transaction					
23	management?						
	а	Serializable					
	b	Repeated Read					
	С	Committed Read					
	d	Uncommitted Read					
	Cons	ider the following relational schema:					
		Suppliers (sid:integer, sname:string, saddress:string)					
		Parts (pid:integer, pname:string, pcolor:string)					
		Catalog (<u>sid:integer, pid:integer,</u> pcost:real)					
24	What	is the result of the following query?					
	(SELI	ECT Catalog.pid from Suppliers, Catalog					
	1 -	RE Suppliers.sid = Catalog.pid)					
		MINUS					
	(SEL	ECT Catalog.pid from Suppliers, Catalog					
	WHE	RE Suppliers.sname <> 'sachin' and Suppliers.sid = Catalog.sid)					
	а	pid of Parts supplied by all except sachin					
	b	pid of Parts supplied only by sachin					
	С	pid of Parts available in catalog supplied by sachin					
	d	pid of Parts available in catalogs supplied by all except scahin					
25	Consider the following dependencies and the BOOK table in a						
	relati	relational database design. Determine the normal form of the given					
	relati	relation.					
	ISBN → Title						
	ISBN → Publisher						
		Publisher → Address					
	а	First Normal Form					
	b	Second Normal Form					
	С	Third Normal Form					
1	d	BCNF					
26	Calc	ulate the order of leaf(p _{leaf}) and non leaf(p) nodes of a B ⁺ tree					
		d on the information given below					
		Search key field = 12 bytes					
		Record pointer = 10 bytes					
	E	Block pointer = 8 bytes					
		Block size = 1 KB					
	a	$p_{leaf} = 51 \& p = 46$					
	b	$p_{leaf} = 47 \& p = 52$					
	C	$p_{leaf} = 46 \& p = 51$					
	d	$p_{leaf} = 52 \& p = 47$					

27		hysical location of a record determined by a formula that		
	1	forms a file key into a record location is		
	a	Hashed file		
	b	B-Treé file		
	С	Indexed file		
	d	Sequential file		
	The n	nost simplified form of the boolean function		
28		$x (A,B,C,D) = \Sigma (7,8,9,10,11,12,13,14,15)$		
		essed in sum of minterms) is?		
	a	A + A'BCD		
	b	AB + CD		
	С	A + BCD		
	d	ABC + D		
		many programmable fuses are required in a PLA which takes		
29		outs and gives 8 outputs? It has to use 8 OR gates and 32 AND		
	gates	The state of the s		
	а	1032		
	b	776		
	С	1284		
	d	1536		
30	In a three stage counter, using RS flip flops what will be the the counter after giving 9 pulses to its input? Assume that the of counter before giving any pulses is 1.			
	a	1		
	b	2		
	+	9		
	C d	10		
	_	nich of the following shading models of polygons, the		
31		polation of intensity values is done along the scan line?		
	а	Gourard shading		
	b	Phong shading		
	С	Constant shading		
	d	Flat shading		
32	Whic	h of the following number of nodes can form a full binary tree?		
	а	8		
		15		
	b			
	b	14		

33	What	is the matrix transformation which takes the independent
	vecto	rs $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 5 \end{bmatrix}$ and transforms them to $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$
	respe	ctively?
	а	$\left[\begin{array}{cc} 1 & -1 \\ 1 & 0 \end{array}\right]$
	b	$ \left(\begin{array}{cc} 0 & 0 \\ 0.5 & 0.5 \end{array}\right) $
	С	$\begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix}$
	d	$\begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$
34	In 808	36, the jump condition for the instruction JNBE is?
	а	CF = 0 or $ZF = 0$
	b	ZF = 0 and SF = 1
	С	CF = 0 and ZF = 0
	d	CF = 0
		many number of times the instruction sequence below will loop e coming out of the loop?
35		MOV AL, 00H A1: INC AL JNZ A1
	а	1
	b	255
-	C	256
	d	Will not come out of the loop
36	whic	85 microprocessor, the ISR for handling trap interrupt is at h location?
	a	3CH
	b	34H
-	C	74H
	d	24H

/	
इसरी (isro	

The voltage ranges for a logic high and a logic low in RS-232 C standard is a Low is 0.0V to 1.8V, High is 2.0V to 5.0V b Low is -15.0V to -3.0V, High is 3.0V to 15.0V c Low is 3.0V to 15.0V, High is -3.0V to -15.0V d Low is 2.0V to 5.0V, High is 0.0V to 1.8V In the Ethernet, which field is actually added at the physical layer and is not part of the frame a preamble b CRC						
a Low is 0.0V to 1.8V, High is 2.0V to 5.0V b Low is '-15.0V to -3.0V, High is 3.0V to 15.0V c Low is 3.0V to 15.0V, High is -3.0V to -15.0V d Low is 2.0V to 5.0V, High is 0.0V to 1.8V 38 In the Ethernet, which field is actually added at the physical layer and is not part of the frame a preamble						
b Low is r-15.0V to -3.0V, High is 3.0V to 15.0V c Low is 3.0V to 15.0V, High is -3.0V to -15.0V d Low is 2.0V to 5.0V, High is 0.0V to 1.8V 38 In the Ethernet, which field is actually added at the physical layer and is not part of the frame a preamble						
c Low is 3.0V to 15.0V, High is -3.0V to -15.0V d Low is 2.0V to 5.0V, High is 0.0V to 1.8V 38 In the Ethernet, which field is actually added at the physical layer and is not part of the frame a preamble						
d Low is 2.0V to 5.0V, High is 0.0V to 1.8V In the Ethernet, which field is actually added at the physical layer and is not part of the frame a preamble						
In the Ethernet, which field is actually added at the physical layer and is not part of the frame a preamble						
and is not part of the frame a preamble						
a preamble						
b CRC						
c address						
d location						
39 Ethernet layer-2 switch is a network element type which gives						
a different collision domain and same broadcast domain						
b different collision domain and different broadcast domain						
c same collision domain and same broadcast domain						
d same collision domain and different broadcast domain						
If the frame to be transmitted is 1101011011 and the CRC polynomial						
40 to be used for generating checksum is $x^4 + x + 1$, then what is the						
transmitted frame?						
a 11010110111011						
b 11010110111101						
c 11010110111110						
d 11010110111001						
What will be the efficiency of a Stop and Wait protocol, if the						
41 transmission time for a frame is 20ns and the propagation time is						
30ns?						
a 20%						
b 25%						
c 40%						
d 66%						
42 IPv6 does not support which of the following addressing modes?						
a unicast addressing ·						
b multicast addressing						
c broadcast addressing						
d anycast addressing						
What is IP class and number of sub-networks if the subnet mask is						
255.224.0.0?						
a class A, 3						
b class A, 8						
c class B, 3						
d class B, 32						

44		h algorithm is used to shape the bursty traffic into a fixed rate by averaging the data rate?					
	а	solid bucket algorithm					
	b	spanning tree algorithm					
	С	hocken helm algorithm					
	d	leaky bucket algorithm					
45	A pac	ket filtering firewall can					
	a	deny certain users from accessing a service					
	b	block worms and viruses from entering the network					
	С	disallow some files from being accessed through FTP					
	d	block some hosts from accessing the network					
46		h of the following encryption algorithms is based on the Fiestal					
40	strutı	ire?					
	а	Advanced Encryption Standard					
	b	RSA public key cryptographic algorithm					
	С	Data Encryption Standard					
	d	RC4					
47	The p	rotocol data unit for the transport layer in the internet stack is					
	а	segment					
	b	message					
	С	datagram					
	d	frame					
48	The C	The Guass-Seidal iterative method can be used to solve which of					
	the fo	ollowing sets?					
	a	Linear algebraic equations					
	b	Linear and non-linear algebraic equations					
	С	Linear differential equations					
	d	Linear and non-linear differential equations					
49	What	is the least value of the function $f(x) = 2x^2 - 8x - 3$ in the					
		/al [0 , 5] ?					
	a	-15					
	b	7					
	С	-11					
-	d	-3					

	Consi	der the followin	g set of processe	s, with arrival tir	nes and the	
			mes given in milli			
		Process	Arrival Time	Burst Time		
		P1	0	4		
50		P2	2	2		
		P3	3	1		
		· · · · · · · · · · · · · · · · · · ·			1	
	What	is the sequence	in which the pro-	cesses are comp	oleted?	
			scheduling with a			
	millis	econds.	•	•	,	
	а	P1, P2, P3				
	b	P2, P1, P3				
	С	P3, P2, P1				
	d	P2, P3, P1				
	In ca	se of a DVD,	the speed of d	ata transfer is	mentioned in	
51		ples of?	•			
	а	150 KB/s				
	b	1.38 MB/s				
	С	300 KB/s				
	d	2.40 MB/s				
	Supp	ose we have va	riable logical rec	ords of lengths	of 5 bytes, 10	
52			while the physical			
			n and minimum fr			
	а	25 and 5				
	b	15 and 5			·	
	С	15 and 0				
	d	10 and 5				
	A CP	U scheduling al	gorithm determin	es an order for t	he execution	
53	of its scheduled processes. Given 'n' processes to be scheduled on					
	one p	rocessor, how	many possible dif	fferent schedule:	s are there?	
	а	n				
	b	n ²				
	С	n!				
	d	2 ⁿ				
54	Whic	h of the followir	ng are the likely ca	auses of thrashi	ng?	
	а	Page size was				
	b	There are too n	nany users connec	ted to the system		
	0	Loget recently	read policy is used	for page replace	mont	
L	С		used policy is used policy is used for			

		ider a logical a					
55		ed onto a phy in the physica					е
	a	5, 3 °	ii auuress a	ina logical	audress res	pectivery	
	b	10, 10					
	c	15, 13					
ļ	d	15, 15					
F.C.	In a 6	4-bit machine,	with 2 GB	RAM, and	8 KB page s	ize, how ma	ınγ
56	entrie	es will be there	in the pag	e table if it	is inverted?		
	а	2 ¹⁸					
	b	2 ²⁰					
	С	2 ³³					
	d	2 ⁵¹					
57	Whic	h of the follow		necessary	condition f	or deadlock	?
	a	Mutual exclus	ion	· · · · · · · · · · · · · · · · · · ·			
	b	Reentrancy					
	С	Hold and wait		817.1.8.1 · · · · · · · · · · · · · · · · · · ·			
	d	No pre-emption			····		
	Cons	ider the follow	wing proce	ss and res	ource requ	irement of e	each
		Process	Type 1			Type 2	
			Used	Max	Used	Max	
58		P1	1	2	1	3	
		P2	1	3	1	2	
		P3	2	4	1 1	4	
	Pred	Predict the state of this system, assuming that there are a total of 5					
-		nces of resour					
	а	Can go to saf	e or unsafe	state based	on sequenc	е	
	b	Safe state					
	С	Unsafe state	-				
	d	Deadlock stat					
		rvation free jo					
59		finitely waits fo	or a service	. Which of	the followin	g job	
	Sche						
			s is starvati		·-	•	.
	а	Priority quein	g				
	a b	Priority quein Shortest Job	g First				,
	а	Priority quein	g First				

60	The state of a process after it encounters an I/O instruction is			
	а	ready		
	b	blocked		
	С	idle '		
	d	running		
61	Embe	bedded pointer provides		
	a	a secondary access path		
	b	a physical record key		
	С	an inverted index		
	d	a prime key		
62	when strictl	A particular parallel program computation requires 100 seconds when executed on a single CPU. If 20% of this computation is strictly sequential, then theoretically the best possible elapsed times for this program running on 2 CPUs and 4 CPUs respectively are		
	а	55 and 45 seconds		
	b	80 and 20 seconds		
	С	75 and 25 seconds		
	d	60 and 40 seconds		
63	#inclu #inclu void n {	onsider the following C code. nclude <stdio.h> nclude <math.h> oid main() double pi = 3.1415926535; int a = 1; int i; for(i=0; i < 3; i++)</math.h></stdio.h>		
		t would the program print?		
	a	000		
	b	010		
<u></u>	C	101		
	d	111		

```
What is the output of the following Java program?
     Class Test
        public static void main (String ☐ args)
           int x = 0:
           int y = 0;
64
           for (int z = 0; z < 5; z++)
              if((++x > 2) || (++y > 2))
                x++;
           System.out.println(x + "" + y);
            82
            8 5
       b
            83
       С
            53
     Consider the list of page references in the time line as below:
65
            96234444344258685532339627
     What is the working set at the penultimate page reference if \Delta is 5?
            {8,5,3,2,9,6}
            {4,3,6,2,5}
       C
            {3,9,6,2,7}
       d
            {3,9,6,2}
     What is the cyclomatic complexity of a module which has seventeen
66
      edges and thirteen nodes?
            4
            5
       b
            6
       C
       d
67
      Which of the following types of coupling has the weakest coupling?
            Pathological coupling
            Control coupling
       b
            Data coupling
       C
            Message coupling
```

्र इस्से डिस्स	

68		of the following testing methods uses fault simulation		
	techn	· · · · · · · · · · · · · · · · · · ·		
	a	unit testing		
	b	beta testing		
	C.	stress testing		
	d	mutation testing		
00		rogram P calls two subprograms P1 and P2 and P1 can fail 50%		
69	1	time and P2 can fail 40% of the time, what is the failure rate of		
	progr	- AA-T-AL-AT		
	a	50%		
	b	60%		
	C	70%		
	d	10%		
70	Which of the following strategy is employed for overcoming the priority inversion problem?			
	a	Temporarily raise the priority of lower priority level process		
	b	Have a fixed priority level scheme		
	С	Implement kernel pre-emption scheme		
	d	Allow lower priority process to complete its job		
	Let P	(E) denote the probability of the occurrence of event E.		
71	1	(x) = 0.5 and P(B) = 1, then the values of P(A/B) and P(B/A)		
		ectively are		
-	а	0.5, 0.25		
	b	0.25, 0.5		
	С	0.5, 1		
	d	1, 0.5		
72		many diagonals can be drawn by joining the angular points of		
		tagon?		
	a b	20		
		21		
	d	28		
		are the final states of the DFA generated from the following		
	NFA			
	1	0 1 2		
73				
73				
	S	$q_0 = q_1 = q_2$		
		_		
	а	q ₀ , q ₁ , q ₂		
	b	$[q_0, q_1], [q_0, q_2], []$		
	С	q ₀ , [q ₁ , q ₂]		
	d	[q ₀ , q ₁], q ₂		

INDIAN SPACE REASERCH ORGANISATION	Page 14 of 15
------------------------------------	---------------

74	The number of elements in the power set of the set {{A,B},C} is			
	а	7		
	b	8		
	С	3 ′		
	d	4		
75	What	is the right way to declare a copy constructor of a class if the		
7.5	name of the class is MyClass?			
	a	MyClass (constant MyClass *arg)		
	b	MyClass (constant MyClass &arg)		
	С	MyClass (MyClass arg)		
	d	MyClass (MyClass *arg)		
76				
	a	n * (n-1) / 2		
	b	n ²		
	С	n * (n+1) / 2		
	d	n * (n+1)		
77	The b	inary equivalent of the decimal number 42.75 is		
	a	101010.110		
	b	100110.101		
	С	101010.101		
	d	100110.110		
78	Which of the following is not provided as a service in cloud computing?			
	а	Infrastructure as a service		
	b	Architecture as a service		
	С	Software as a service		
	d	Platform as a service		
79		puilt-in base class in Java, which is used to handle all		
, 5	exceptions is			
	а	Raise		
	b	Exception		
	С	Error		
	d	Throwable		
80		aphics, the number of vanishing points depends on		
	a	the number of axes cut by the projection plane		
	b	the centre of projection		
	С	the number of axes which are parallel to the projection plane		
	d	the perspective projections of any set of parallel lines that are not parallel to the projection plane		