- Problemas modelados por grafos
 - Caminhos;
 - Redes de comunicação;
 - Localização de facilidades (Correios, Hospitais, Escolas, etc.);
 - Desenhos de circuitos impressos;
 - Otimização de layout;
 - Distribuição de produtos;
 - Telecomunicações;
 - Limpeza urbana;
 - Controle de tráfego;
 - Atribuição de rádio frequência móvel

Maximização de fluxo

Caminho de menor custo (caminho mínimo)

- É possível avaliar todas as possibilidades?
 - Heurísticas

- Fluxo em redes
 - Nó de oferta (fonte)
 - Nó de demanda (terminal)
 - Nó de transbordo (pontos de passagem)
 - Conservação de fluxo no nó
 - Fluxo que chega + fluxo ofertado = fluxo que sai + fluxo consumido

Caminho mínimo

Algoritmo de Dijkstra

- 1. Atribua valor zero à estimativa do custo mínimo do vértice s (a raiz da busca) e infinito às demais estimativas;
- 2. Atribua um valor qualquer aos precedentes (o precedente de um vértice t é o vértice que precede t no caminho de custo mínimo de s para t);
- 3. Enquanto houver vértice aberto:
 - 1. Seja k um vértice ainda aberto cuja estimativa seja a menor dentre todos os vértices abertos;
 - 2. Feche o vértice *k*
 - 3. Para todo vértice *j* ainda aberto que seja sucessor de *k* faça:
 - 1. Some a estimativa do vértice k com o custo do arco que une k a j;
 - 2. Caso esta soma seja melhor que a estimativa anterior para o vértice j, substitua-a e anote k como precedente de j

S	1	2	3	4
0	*	*	*	*
-	-	-	-	-

S	1	2	3	4
0	10	5	*	*
-	S	S	-	-

S	1	2	3	4
0	10	5	*	*
-	S	S	-	-

S	1	2	3	4
0	8	5	14	7
-	2	S	2	2

S	1	2	3	4
0	8	5	14	7
-	2	S	2	2

S	1	2	3	4
0	8	5	13	7
-	2	S	4	2

S	1	2	3	4
0	8	5	13	7
-	2	S	4	2

S	1	2	3	4
0	8	5	9	7
-	2	S	1	2

S	1	2	3	4
0	8	5	9	7
-	2	S	1	2

Fluxo máximo

- Caminho de aumento
 - Caminho de origem → destino com fluxo residual em todas as arestas
- Capacidade residual do caminho de aumento
 - Valor mínimo dos resíduos das arestas que compõe o caminho de aumento
- Exemplos
 - Circuitos elétricos
 - Rede ferroviária
 - Transporte de fluidos
 - Distribuição de produtos
 - Redes de comunicação

Fluxo máximo

- Ford-Fulkerson
 - Toda a aresta e_i possui uma capacidade de fluxo c_i não negativa
 - Existe um único vértice fonte (s)
 - Existe um único vértice terminal (t)
 - Não existe fluxo chegando em s nem saindo de t

Fluxo máximo

Algoritmo de Ford-Fulkerson

- Cria-se o grafo residual G_r , onde cada aresta tem a sua capacidade de fluxo substituída pela sua capacidade de fluxo residual c_r
- Percorra G_r a partir de s, escolhendo entre as arestas possíveis as de maior c_r
- Se encontrar um caminho de aumento
 - subtrair de todas as suas arestas do caminho o valor do menor c_r das suas arestas
 - Atualiza G_r (incluindo capacidades de folga)

Ford-Fulkerson

Exercício — Considerando que os valores das arestas são os seus custos, encontre o caminho de menor custo entre S e T

Exercício — Considerando que os valores das arestas são as suas capacidades de fluxo, encontre fluxo máximo entre S e T

