

HMM's: Parameter Estimation

· Labeled data: (x(i), y(i))

unlike logistic regression which is P(71x)

· Maximize $\longrightarrow \sum_{i} \log P(\bar{y}^{(i)}, \bar{x}^{(i)})$ generative (joint) likelihood

· MLE with frequency counts

Biased coin of probability P of heads

- observe: HHHT

- what is maximum likelihood probability P for this coin? (value of P that maximizes

- 3/4 at first glance

argmax (3 log P + log (1-P)) = 3/4 / correct

* HMM parameter estimation doesn't involve gradient descent.

You can estimate parameters by counting and normalizing

 $S = \frac{N}{2}$ $T = \frac{N}{2} \circ \frac{2}{2} \circ \frac{2}{2}$ N V STOP

4	1
~	0

C	6.75 E	0
0	0	1
	0	0 0

c F P(Fish | V) E = N 2 0 0

	HMM's Parameter Estimation (continued)	
	· Smoothing	
	Add counts (falce data) to avoid 0's	
		f :
	$T \longrightarrow \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	75 75 75	
2 De la valoritation de la constantia		71
	Ex) $N \vee V$ They can fish $\Rightarrow P(\overline{y}, \overline{x}) = y_1 y_2 _{y_1} y_2 _{y_2}$ $x_1 _{y_1} x_2 _{y_2} x_3 _{y_3}$	5 73
	×2172 ×3173	
	1 3/5 1/5 3/5	
	1 1/2 1/2	
¥ 1.2		
9 2 2 2		
		1
3		
		1
7.0		
k		
To a state		
- Maria		
1	Herein - Berne British Herein - Berne Herein - Ber	

· HMM's : model of P(y, x) = P(y,) P(x, |y,) P(y2 |y,) ... · Inference: argument p(y|x) -> Given a sentence, what is most likely POS tag

y

sequence that could'se produced that sentence argmax $P(\bar{\gamma}|\bar{x}) = \underset{\bar{\gamma}}{\operatorname{argmax}} \frac{P(\bar{\gamma},\bar{x})}{P(\bar{x})} = \underset{\bar{\gamma}}{\operatorname{argmax}} \log P(\bar{\gamma},\bar{x})$ constant

w.r.t. $\bar{\gamma}$ = argmax log P(y,) + log P(x, ly,) + log(y, ly,) + ... · Viterbi Dynamic Program Define $v_i(\tilde{y}) = n \times |Y|$ |Y| = number of tagsscore of best path ending in is at time; Base: V, (y) = log P(x, |y) + log P(y) Recurrence: V; (y) = log P(x; |y) + max log P(y | yerre) + Vi-1 (yerre) Viterbi for i = 1 ... n: for 9 in 181: compute v; (y) Compute Vn+1 (STOP), this = Max log P(x, y) Track "backpointers" S = N - 1 V = N - 2 - 1 - 1 V = N - 2 - 1 - 1 V = N - 2 - 1 - 1 V = N - 3 - 1 - 1 V = N - 3 - 1 - 1 V = N - 3 - 1 - 1Ex. V: (ÿ) N -2 1-2-2-3: [-7] -4-1-3:-8

STOP

HMM's: Viterbi Algorithm