3

CLAIMS

WHAT IS CLAIMED:

1	1.	A method for reconfiguring a signal path in a computing system including a	
2	plurality of system domains, the method comprising:		
3	detec	ting a predetermined condition triggering a reconfiguration of the computing	
4 5	recon	system; figuring a signal path affected by the condition from a first mode to a second	
6		mode responsive to detecting the condition;	
7	leavir	ng the unaffected system domains configured in the first mode; and	
8		ting the affected system domains in the second mode and the unaffected system	
9	77	domains in the first mode.	
1	2.	The method of claim 1, wherein detecting the failure includes detecting an	
2	interconnect	failure.	
1	3.	The method of claim 1, wherein the computing system includes at least one	
2	system control board and wherein detecting the failure includes detecting the failure from the		
3	system contro		
1	4.	The method of claim 1, wherein detecting the failure includes detecting the	
2	failure from t	he affected system domain.	
1	5.	The method of claim 4, wherein the computing system includes at least one	
2	system contro	ol board and the method further comprises notifying the system control board of	
3		the affected system domain.	
1	6.	The method of claim 1, wherein detecting the failure includes detecting the	
2	failure during	first operations.	
1	7.	The method of claim 1, wherein detecting the failure includes detecting the	
2	failure upon reset.		
1	8.	The method of claim 1, wherein configuring the affected system domains	
2	includes:		
3	config	uring a first switch in a first affected domain defining a first end of the affected	

signal path from the first to the second mode;

5

6

3

1

2

6

1

3

7

2

6

1

2

3

3

14.

configuring a crossbar switch defining a second end for the affected signal path from the first mode to the second mode. 9. The method of claim 1, wherein the computing system includes a system control board and configuring the affected system domains includes configuring the system domains from the system control board. 10. The method of claim 1, wherein: operating the unaffected system domains in the first mode includes separating a plurality of information in each transaction into two messages and transmitting the two messages in parallel, each on a respective half of the signal paths; and operating the affected system domains in the second mode includes transmitting the messages in series on a single half of the affected signal path. 11. The method of claim 1, wherein: operating the unaffected system domains in the first mode includes separating a plurality of information in each transaction into two messages and transmitting the two messages in parallel in a predetermined number of cycles: and operating the affected system domains in the first mode includes transmitting a plurality of information in each transaction in a single message in twice the predetermined number of cycles. 12. The method of claim 1, further comprising at least one of: defining the system domains: pausing operations after detecting the failure but before reconfiguring the affected system domain; and resetting the computing system after detecting the failure but before reconfiguring the affected system domain. 13. The method of claim 1, wherein dynamically reconfiguring a signal path affected by the condition from a first mode to a second mode includes dynamically reconfiguring the signal path affected condition from a normal mode to a degraded mode.

affected by the condition from a first mode to a second mode includes dynamically

reconfiguring the signal path affected condition from a degraded mode to a normal mode.

The method of claim 1, wherein dynamically reconfiguring a signal path

15.

1.

2	plurality of system domains, the method consisting essentially of:		
3	detecting a condition triggering a reconfiguration of the computing system; and		
4	reconfiguring a signal path affected by the condition from a first mode to a second		
5	mode responsive to detecting the condition; and		
6	operating the affected system domains in the second mode and the unaffected system		
7	domains in the first mode.		
1	16. A method for reconfiguring a signal path in a computing system including a		
2	plurality of system domains, the method comprising:		
3	detecting a condition triggering a reconfiguration of the computing system; and		
4	reconfiguring a signal path affected by the condition from a first mode to a second		
5	mode responsive to detecting the condition;		
6	operating the affected system domains in the second mode and the unaffected system		
7	domains in the first mode.		
1	17. A computing system, comprising:		
2	a plurality of system domains;		
3	a centerplane interconnecting the system domains;		
4	a system controller capable of detecting a condition triggering a reconfiguration and		
5	reconfiguring a signal path affected by the condition from a first mode to a		
6	second mode.		
1	18. The computing system of claim 17 wherein the system domains are		
2	18. The computing system of claim 17, wherein the system domains are dynamically configured.		
	-y		
1	19. The computing system of claim 17, wherein each system domain includes:		
2	a system board;		
3	an expansion board; and		
4	an I/O board.		
1	20. The computing system of claim 19, wherein the system board, expansion		
2	board, and I/O board comprise a system board set.		

A method for reconfiguring a signal path in a computing system including a

1	21. The computing system of claim 17, wherein the centerplane comprises a	
2	plurality of crossbar switches interconnecting the system domains.	
1	22. The computing system of claim 21, wherein the plurality of crossbar switches	
2	includes:	
3	a data crossbar switch;	
4	an address crossbar switch; and	
5	a response crossbar switch.	
1	23. A computing system, comprising:	
2	a plurality of system domains;	
3	a plurality of signal paths among the system domains; and	
4	a system controller capable of condition triggering a reconfiguration and dynamically	
5 6	reconfiguring a signal path affected by the condition from a first mode to a second mode.	
1 2	24. The computing system of claim 23, wherein the system domains are dynamically configured.	
1	25. The computing system of claim 23, wherein each system domain includes:	
2	a system board;	
3	an expansion board; and	
4	an I/O board.	
1	26. The computing system of claim 25, wherein the system board, expansion	
2	board, and I/O board comprise a system board set.	
1	27. The computing system of claim 23, wherein the centerplane comprises a	
2	plurality of crossbar switches interconnecting the system domains.	
1	28. The computing system of claim 27, wherein the plurality of crossbar switches	
2	includes:	
3	a data crossbar switch;	
4	an address crossbar switch; and	
5	a response crossbar switch.	

ı	29. The computing system of claim 23, wherein the plurality of signal paths		
2	includes:		
3	a plurality of data signal paths;		
4	a plurality of address signal paths; and		
5	a plurality of response signal paths.		
1	30. The computing system of claim 23, wherein each signal path comprises:		
2	a first half capable of transmitting a first message containing a first portion of the		
3	information in a given transaction in the normal mode; and		
4	a second half capable of transmitting a second message containing a second portion of		
5	the information in the transaction in the normal mode.		
1	31. The computing system of claim 30, wherein both the first and second halves		
2	are capable of transmitting a single message containing both the first and second portions in		
3	the degraded mode.		
1	32. The computing system of claim 23, wherein each signal path terminates at a		
2	first end in a first one of the system domains, routes through a crossbar switch, and terminates		
3	at a second end in a second one of the system domains.		
1	33. The computing system of claim 32, wherein the system domains and the signal		
2	paths are configurable by configuring the first end, the second end, and the crossbar switch.		
1	34. A computing system, comprising:		
2	a system controller;		
3	a plurality of system domains;		
4	at least one crossbar switch interconnecting the system domains;		
5	a plurality of signal paths, each signal path terminating at a first end in a first one of		
6	the system domains, routing through the crossbar switch, and terminating at a		
7	second end in a second one of the system domains; and		
8	a console connection over which the system controller can, responsive to a condition		
9	triggering a reconfiguration, reconfigure a plurality of the system domains		
10	affected by the condition and the crossbar switch to operate the affected signal		
11	paths in a first mode while the signal paths domains unaffected by the failure		
12	operate in a second mode.		

Ì

2

5

6

10

35.	A computing system,	comprising:
-----	---------------------	-------------

a plurality of system boards from which a plurality of system domains can be defined;

- a centerplane including at least one crossbar switch interconnecting the system domains to provide a plurality of signal paths among the system boards; and
- a system control board hosting a system controller capable of defining the system

domains, configuring the system domains and the crossbar switch to operate

the signal paths in a first mode, and, responsive to a condition triggering a

reconfiguration, reconfiguring the affected system domains and the crossbar

switch to operate the affected signal paths in a second mode while the

unaffected signals paths operate in the first mode.