Dr. Andrey Soldatenkov

Exercises, Algebraic Geometry II – Week 5

Exercise 21. (3 points) Flatness of morphisms.

Recall the definition of flatness of a morphism. Try to find examples and non-examples of flat morphisms. In particular, answer the following questions:

- 1. Let $f: X \to \mathbb{A}^n_k$ be the blow-up of the origin. Is f flat?
- 2. Consider $X = V(3x^2 + 6y^2) \subset \mathbb{A}^2_{\mathbb{Z}}$ and the natural projection $f: X \to \operatorname{Spec}(\mathbb{Z})$. Is f flat?
- 3. Let $X \subset \mathbb{A}^2_{\mathbb{Z}}$ be the closure (with reduced scheme structure) of $V(3x^2 + 6y^2) \subset \mathbb{A}^2_{\mathbb{Q}}$ in $\mathbb{A}^2_{\mathbb{Z}}$. Is the projection $f \colon X \to \operatorname{Spec}(\mathbb{Z})$ flat?

Exercise 22. (3 points) Smoothness of morphisms.

Decide whether the following morphisms are smooth.

- 1. $f: \mathbb{A}^1_k \to \mathbb{A}^1_k$ given by $k[x] \to k[y], x \mapsto y^2$.
- 2. The natural projection $f: X \to \operatorname{Spec}(\mathbb{Z})$, where $X = V(y^2z x^3 + 5xz^2) \subset \mathbb{P}^2_{\mathbb{Z}}$.
- 3. The natural projection $f: X \to \mathbb{A}^1_k$, $(x, y, t) \mapsto t$, where $X \subset \mathbb{A}^2_k \times \mathbb{A}^1_k$ is defined by $x^2 + y^2 = t$.

Exercise 23. (3 points) Locally free = fibres of constant dimension.

Let \mathcal{F} be a coherent sheaf on a reduced, locally Noetherian scheme X. Show that \mathcal{F} is locally free of rank r if and only if $x \mapsto \dim_{k(x)}(\mathcal{F} \otimes k(x))$ is the constant function $\equiv r$. Show that if X is in addition of finite type over a field then it is enough to check that this function is constant on the set of closed points.

Exercise 24. (5 points) Koszul complex.

Let A be a commutative ring and $a_1, \ldots, a_n \in A$ a sequence of elements. This sequence is called *regular*, if for any $1 \leq i \leq n$ the element a_i is not a zero-divisor in $A/(a_1, \ldots, a_{i-1})$. Consider the complex

$$K_i^{\bullet} = (\ldots \to 0 \to A \stackrel{a_i}{\to} A \to 0 \to \ldots)$$

concentrated in degrees -1 an 0, where the only non-zero differential is multiplication by a_i . Let K^{\bullet} be the tensor product $K^{\bullet} = K_1^{\bullet} \otimes_A \ldots \otimes_A K_n^{\bullet}$, so that K^{\bullet} is concentrated in degrees $-n, \ldots, 0$. Assuming that the sequence a_1, \ldots, a_n is regular, prove that $H^i(K^{\bullet}) = 0$ for $i \neq 0$ and $H^0(K^{\bullet}) = A/(a_1, \ldots, a_n)$. The complex K^{\bullet} is called Koszul complex and it gives a free resolution for the A-module $A/(a_1, \ldots, a_n)$.

Now let X be a variety, \mathcal{E} a locally free sheaf of finite rank r on X and $s \in H^0(X, \mathcal{E})$ a section which is locally given by a regular sequence of elements in the corresponding ring (this is true

if the zero locus of s has codimension equal to the rank of \mathcal{E}). Let $Y \subset X$ be the zero locus of s. Observe that the local Koszul complexes glue into a global locally free resolution of \mathcal{O}_Y (which is also called Koszul complex):

$$0 \to \Lambda^r \mathcal{E}^{\vee} \to \Lambda^{r-1} \mathcal{E}^{\vee} \to \dots \to \Lambda^2 \mathcal{E}^{\vee} \to \mathcal{E}^{\vee} \to \mathcal{O}_X \to \mathcal{O}_Y \to 0.$$

The differentials are given by convolution with s.

Exercise 25. (4 points) Universal family.

Consider the 'incidence variety' $X \subset \mathbb{P}^n_k \times \mathbb{P}^N_k$ of all degree d hypersurfaces given by the equation $\sum_I a_I x^I = 0$, where $x^I = x_0^{i_0} \dots x_n^{i_n}$ and the sum is over all $I = (i_0, \dots, i_n)$ with $\sum i_k = d$. (So $N = \dim |\mathcal{O}_{\mathbb{P}^n_k}(d)|$ or, in other words, $\mathbb{P}^N_k = |\mathcal{O}_{\mathbb{P}^n_k}(d)|$.) The second projection $f: X \to \mathbb{P}^N_k$ is called the universal family of hypersurfaces of degree d. Show that f is flat.

Consider the fibres $X_{(a_I)}$, $(a_I) \in \mathbb{P}^N_k$. Is for all i the dimension of $H^i(X_{(a_I)}, \mathcal{O})$ constant? What about $\chi(X_{(a_I)}, \mathcal{O})$ or $\chi(X_{(a_I)}, \mathcal{O}(k))$?