R	FS	TR		CI		内	如风	Ÿ	半
Z			l I			Г 3			

	_:	RESTRICTED 内部	义任	
		Solution	Marks	Remarks
1.	(a)	$x = \frac{y-3}{2} \qquad (or \frac{y-3}{2})$	1A	
	(þ)	(a+b) (x+2y)	1A	No mark if parenthesis is missed
	(C)	4√3	1A	
	(d)	(i) 50	1A	In (d), accept ans. written in order
		(ii) 65	1A	
		(iii) 60	1A 6	
			. .	
2.	(a)	$\frac{3\pi}{4} \qquad (\text{or } 0.75\pi)$	1A	
	(p)	144	1A	, ,
	(c) (d)	216 5π (or 15.7)	1A 1A	r.t. 15.7
		8:27 (不接) (本格)		
_	(6)		1A	Accept $\frac{8}{27}$ etc.
		(or 1:3.38, 0.296:1, 2 ³ :3 ³)		r.t 3 sig. fig.
			5	
3.	(k+3)	$(k-2) + 2 = k^2$	1A	
		$x-4 = k^2$	1A	
	k = 4		1A	· · · · · · · · · · · · · · · · · · ·
	OR	by long division,		
	1	$[(x+3)(\tilde{x}-2)\tilde{+}2]+(x-k) = (x+k+1)\dots(k^2+k-4)$ $\therefore k^2+k-4 = k^2$	>A	
		$\begin{array}{l} \therefore \ K^- + K^- 4 = K^- \\ k = 4 \end{array}$	1A + 17 1A	
			3	
		, v^2		
•	(a)	$x = k \frac{y^2}{z} \qquad \text{(for some constant } k \neq 0\text{)}$	1A	
		$54 = k \frac{3^2}{10}$		
		••		
		k = 60	1A	
		$\therefore x = 60 \frac{y^2}{z}$		
	/h:	When y = 5		
	(b)	When $y = 5$, $z = 12$, 60×5^2		
		$x = \frac{60 \times 5^2}{12} = 125$	1A	
		OR		
		$\frac{54 \cdot 10}{3^2} = \frac{x \cdot 12}{5^2}, x = 125$	1A	
		3 ² 5 ² , 2 2 2 3		
		<u> </u>		
			3	
94-	CE-Ma	ths I		P.1

RESTRICTED 内部文件
Provided by dse.life

RESTR	ICTED	内部文件
--------------	--------------	------

	* / == *		RESTRICTED 内部	文件	
			Solution	Marks	Remarks
15.	(a)	(i)	The number of babies born in Hong Kong in the first year after 1994 = 70000×1.02 = 71400	1 A	
	•.	(ii)	The number of babies born in Hong Kong n the nth year after 1994 $= 70000(1.02)^n$ by $7/400 \times 1.02$	1A	1. by Accept 70000(1+20%)*
	(b)		If 70000 (1.02)" > 90000	1м	Accept using $=$, \geq , \leq , $<$
			then $n\log(1.02) > \log(\frac{9}{7})$	IM 可逐调 n值转	For taking logarithm, may be absorbed by $n=13$ or $n>12.7$ in what follows
			 n > 12.69 In the 13th year after 1994, the number of babies born in Hong Kong will exceed 90000. i.e. In the year 2007. 	1 A	
	(c)		The total number of babies born in Hong Kong in the years 1997 to 2046 inclusive $= 70000 (1.02^{3} + 1.02^{4} + + 1.02^{52})$ $= 70000 (1.02)^{3} (1 + 1.02 + 1.02^{2} + + 1.02^{49})$		
			= $70000(1.02)^3(\frac{1.02^{50}-1}{1.02-1})$ ≈ 6282944	1M + 1A	1M for sum of G.P. 美艾夏70元 及1.02
			≈ 6280000	1A	r.t. 6 280 000
, ^	(d)	(i)	The leap years between 1997 to 2046 are 2000, 2004,, 2044. Number of leap years = \frac{2044 - 2000}{4} + 1 = 12	14	
		(ii)	$70000(1.02^6 + 1.02^{10} + \ldots + 1.02^{50})$ $= 70000(1.02)^6(1 + 1.02^4 + \ldots + 1.02^{44})$ $= 70000(1.02)^6(1.02)^{4\times12} - 1$		(茎上斑 1.02)
			$= 70000 (1.02)^{6} \frac{(1.02)^{4 \times 12} - 1}{(1.02)^{4} - 1}$	1M + 1A	1M for sum of G.P. (× 1.02 ±) x
			≈ 1517744 ≈ 1520000	14	1 1M for sum of G.P. { 妄 L现 1.02 】

94-CE-Maths I

P.11

RESTRICTED 内部文件	RE	STF	RICT	ΓED	内部	文件
-----------------	----	-----	------	-----	----	----

	<u>KESTRICT</u>	ED 内部文件	
So	olution	Marks	Remarks
5. (a) $BE = \sqrt{1^2 + 2^2} = \sqrt{5}$ (o	r 2.24)	1A	r.t. 2.24
(b) $\tan x^{\circ} = \frac{1}{2}$ (or sin	$\Delta x^{o} = \frac{1}{\sqrt{3}}$	1A	
$x \approx 26.57$ ≈ 26.6			
		1A	r.t. 26.6; accept 26°34'
$tan \angle EBC = 2$, $\angle EBC = y \approx 63.43 - 26.57$	63.43°		
≈ 36.9		_1A_	r.t. 36.9 accept 36°52'
	E	4_	
A ←	x° y° 1 1 1 1 1 1 1 1 1 1		
<pre>. (a) Selling Price = \$ x</pre>			
•	$\frac{(1.7)(0.95)x-x}{x}$ × 100%	1A 1M	
	<i>x</i> 61.5%	1A	
OR (1+70%) (1-5		1A + 11	
= 61.5%	•	. 1A	
(b) v = 2907			a de la companya de
(2) $(1+61.5%)$		1M	
= 1800		1A 5	
	•		
4-CE-Maths I			P.2

RESTRICTED 内部文件
Provided by dse.life

RESTRICTED 內部文件

***	NEST NICIED ME	PXIT	
	Solution	Marks	Remarks
14. (a)	$\frac{OQ}{\sin 50^{\circ}} = \frac{500}{\sin 70^{\circ}} = \frac{OP}{\sin 60^{\circ}}$	1 A	For either
	$OQ = \frac{500 \sin 50^{\circ}}{\sin 70^{\circ}} \approx 407.60 \text{ (m)}$		
	≈ 408 (m)	1A	r.t. 408
	$OP = \frac{500 \sin 60^{\circ}}{\sin 70^{\circ}} \approx 460.80 \text{ (m)}$		
	≈ 461 (m)	1A	r.t. 461
(b)	h = OPtan30°		
	≈ (460.80)tan30°	ĺМ	(引外代的)直值)
•	≈ 266	1A	r.t. 266
(c)	$\tan \angle TQO = \frac{h}{OQ} = \frac{266.044}{407.6} \approx 0.6527$	1 _M	え必べてのく値)
	∠TQO ≈ 33.1° ≈ 33°	1A	ŕ
(d)	(i) $OR = \frac{h}{\tan 20^{\circ}} \approx 730.95 \approx 731 \text{ (m)}$		
	$\cos \angle OQR = \frac{(OQ)^2 + (QR)^2 - (OR)^2}{2(OQ)(QR)}$		
	$= \frac{(407.60)^2 + (400)^2 - (730.95)^2}{2(407.60)(400)}$	1M	(R. go ti ca, RR, cx土值)
	≈ -0.6383		
	$\angle OQR = 129.66^{\circ} \approx 130^{\circ}$	1A	r.t. 130
	$\theta = 130 - 70$		
	= 60	1A	
	(ii) By symmetry, $\triangle OQR \equiv \triangle OQS$,		
	$\therefore \ \angle OQR = \angle OQS$	1M	
	$\alpha + 50 + 60 = 130$		
	$\alpha = 20$	İ	
	The bearing of S from Q is S20°E (or 160°)	1A	
		1	

D	EC-	TDI	CT	ED	rft-r ti	حاب 17	سلدا
Л	E 3	INI		EU	ME	11) X	1 -

14 -	RESTRICTED 内部	义任	
	Solution	Marks	Remarks
7. (a)	$\frac{(a^4b^{-2})^2}{ab} = \frac{a^8b^{-4}}{ab}$ $= \frac{a^8}{ab^{1+4}}$	1M	For applying $(a^pb^q)^n = a^{pn}b^{qn}$
	$=\frac{a^8}{ab^{1+4}}$	1M	For applying $a^{-a} = \frac{1}{a^n}$
	$= \frac{a^7}{b^5}$	1 A	
(b)	$\log\sqrt{12} = \frac{1}{2} (\log 12)$	1M	For applying logx a=nlogx
	$= \frac{1}{2} (\log 4 + \log 3)$	1M	For applying logry=logr+logy
	$= \frac{2x+y}{2} (\text{or } x+\frac{y}{2})$	_1A_	
		6	
- (a)	$c = 6$ $\alpha \beta = c = 6$	1A 1A	
		ın l	
(b)	$\alpha + \beta = -b$	·1A	Accept $-\frac{b}{1}$
(c)	$(\alpha - \beta)^2 = \alpha^2 + \beta^2 - 2\alpha\beta$		
	$= (\alpha + \beta)^2 - 4\alpha\beta$ $= b^2 - 24$	1A 1A	
	Area of $\triangle ABC = \frac{1}{2} (AB) (OC)$ (or $\frac{1}{2} \begin{vmatrix} 0 & 6 \\ \beta & 0 \\ \alpha & 0 \\ 0 & 6 \end{vmatrix}$)		
	$= \frac{6}{2} (\alpha - \beta)$	换	
_	$= 3\sqrt{b^2 - 24}$	<u> </u>	
-	$y = x^2 + bx + c$ $(0,6)$ $B \qquad A$ $(\alpha,0)$		

94-CE-Maths I

P.3

RESTRICTED F	为部	文件
--------------	----	----

	Solution	Marks	Remarks
13. (c)(ii)	$\therefore \angle EKC = h_2 + f, c = \angle EKC + e$ $\therefore \angle EKC = 90^{\circ} + 23^{\circ} = 113^{\circ}$ $c = 113^{\circ} + 14^{\circ}$	1м	For either
	= 127°	2A	
	OR : $c = b+2e$, $b = a+2f$: $c = a+2f+2e = a+74^\circ$: $a+c = 180^\circ$: $c = (180^\circ-c)+74^\circ$	1M	For either
	= 127°	2A	
	OR $g = 180^{\circ} - f - h_{I}$ $= 180^{\circ} - 23^{\circ} - 90^{\circ} = 67^{\circ}$ $d = 180^{\circ} - g - e$ $= 180^{\circ} - 67^{\circ} - 14^{\circ} = 99^{\circ}$ $c = 2f + 180^{\circ} - d$ $= 46^{\circ} + 180^{\circ} - 99^{\circ}$	1M	
,	= 127°	2A	
	OR $\therefore 2a+2e+2f = 180^{\circ}$ $\therefore a = 90^{\circ}-14^{\circ}-23^{\circ} = 53^{\circ}$ $c = 180^{\circ}-a = 180^{\circ}-53^{\circ}$	1м	
	= 127°	2A	

DECTDICTED 内がかみ

, н		RESTRICTED 内部	文件	•
		Solution	Marks	Remarks
9. (a)	(i)	The probability that he will be late on all the three days		
		$= \left(\frac{1}{7}\right)^3 \qquad \text{(or } \frac{1}{7} \times \frac{1}{7} \times \frac{1}{7})$	1A	
		$= \frac{1}{343} $ (or 0.00292)	1A	r.t. 0.00292
	(ii)	The probability that he will not be late on all the three days		
		$= (1-\frac{1}{7})^3$	1M	(1-p) ³ , p in a(i)
		$= \frac{216}{343} $ (or 0.630)	1 A	r.t. 0.630
(b)	(i)	The probability that he will be late on Thursday and Friday only		,
		$= \frac{1}{10} \times \frac{1}{10} \times (1 - \frac{1}{10})$	1A	
		$= \frac{9}{1000} (or \ 0.009)$	1A	
	(ii)	The probability that he will be late on any two of the three days		
		$= \frac{1}{10} \times \frac{1}{10} \times (1 - \frac{1}{10}) + \frac{1}{10} \times (1 - \frac{1}{10}) \times \frac{1}{10} + (1 - \frac{1}{10}) \times \frac{1}{10} \times \frac{1}{10}$		
		$(\text{or } 3 \times \frac{9}{1000})$	1M	3p, p in (b)(i)
		$= \frac{27}{1000} $ (or 0.027)	1A	
(c)	The p	probability that he will be late for school anday		
	$= \frac{1}{2}$	$\times \frac{1}{7} + \frac{1}{2} \times \frac{1}{10}$	1A	For the value $\frac{1}{2}$
			1M	For p ₁ + p ₂
	17	•	1A	For the whole expression
	$= \frac{17}{14}$	(or 0.121)	1 A	r.t. 0.121
		全無解釋 PP-1		
04-07-1	 -			
9 4-ce- Ma	atns I	DECTRICTED 4		P.4
		RESTRICTED 內部	又件	Provided by dse.life
•				

RESTRICTED 内部文件

		RES	TRICTED 內部	文件	
		Solution		Marks	Remarks
13. (a)	In Δ <i>BKE</i> ,	$b + e + k_1 = 180^{\circ}$ $k_1 = 180^{\circ} - b - e$	(1	三角形內角和
	Similarly, in	n Δ <i>GDE</i> ,			数 ext. L, conyclic
		$g = 180^{\circ} - d - e$		Ŷ	(15m) ext. L. yelic
	b = d		(ext./, cyclic quad.)	1	東京村一年である。 国内接近連形が前面から にくる L = int spp. L
	$\therefore k_1 = g$	•			lext L = int. spp. L
	$\therefore k_1 = k$	Ź	(vert. opp /s)	1	對頂角 不接納し サゲム
	$\therefore g = k_2$				對頂角不接納了可以上
	i.e. ∠FGH				to the offer verol. L
(b)	In ΔFHG ,	$h_1 + f + g = 180^{\circ}$	$(\angle sum of \Delta)$		
	Cimilanto i	$h_1 = 180^{\circ} - f - g$			
	Similarly, in	$h_2 = \boxed{180^\circ - f - k}$	_		
	$g = k_2$		·	1A	
	$\therefore h_1 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$		(proved)	1A	
	$\begin{array}{ccc} & & & \\ &$				
			(adj. /s on st. line)	1	直線上的鄰角和 talk is on all line
	$\therefore 2h_1 = h_1 = 9$				15 on al line
	i.e. FH⊥G				Potential adj. 15.
(c)(i)	In Δ <i>EHJ</i> ,		(ext. <i>L</i> of Δ)	1	三角形外角
_		$j = h_1 - e$	(1 -cxd.L)	_	二月ル介月
		= 90° - e			
	In Δ <i>FHG</i> ,	$g + h_1 + f = 180^{\circ}$	(∠ sum of ∆)		
		$g = 180^{\circ} - h_1 - f$.	
		= 180° -90° -f			
		= 90° -f			
	$\therefore \angle AED$ $2e = 2f$) = ∠AFB	(Given)		
	e = f			į	
	:. <u>ј</u>	= g	(3×1) of 2, 1 (3×2)	(Ap)	
	Hence, D,J,	H,G are concyclic.	(ext.∠ = int. opp.∠)	1	外角=內對角 Converse of ext. L, cyclic quad. 圓內接四邊形外角的逆定理
94-CE-Mat	hs I				P.8

RESTRICTED 内部文件

RESTRICTED 内部文件

	I LOII	MCILDY	LYCHER	
	Solution		Marks	Remarks
10. (a) volume of water				
$= 6\pi m^3$				
(b) $\pi (2)^2 h = \frac{4}{3} \pi (0.6)^3$				
$h = 0.072 \text{of} (3.6)^3$				1M for an equation in h
η - 0.072 εγ	可多的主	東阿)	1A	1 1
(c) $\frac{4}{3}\pi r^3 + 6\pi = \pi (2)^2 (2r)$				1M for an equation in r in the form
				of $x+y=z$, or equivalent, with
$2r^3 - 12r + 9 = 0$			١٠.	exactly 2 terms in r
			1	f.t.
Let f(r) = 2r³-: f(0.6)≈2.23 f(1)=-1 < 0	12~10~0	3	,	美装
度转点,(f(0.6)≈2.23	> 0 (or 1	3-6r+4.5) (6Υ	2r-12r+9:	0)(pp-1)
f(1)=-1 < 0	17.8		1M	Testing that the signs are different
[: f(r) = 0 ha	s a root between	0.6 and 1		
Interval	mid-value (r _i)	f(r _i)]	
t 0.6 < r < 1	0.8	+ve (0.424)	1M + 1	1366-201
0.8 < r < 1	0.9	-ve (-0.342)		1 M for testing sign at mid-value 1A for the correst sign of the function at mid-value 1M for the correct choice of the
0.8 < r < 0.9	0.85	+ve (0.0283)	1M	
0.85 < r < 0.9	0.875	-ve (-0.160)		next interval
0.85 < r < 0.875	0.8625	-ve (-0.0668)		
0.85 < r < 0.8625	0.85625	-ve (-0.0195)		
0.85 < r < 0.85625	0.853125	+ve (0.00435)		
.853125 < r < 0.85625	0.8546875	-ve (-0.00757)		
∴ 0.853125 < r <	0.8546875			
The value of r co	orrect to 2 deci	mal places is 0.8	5. 1A	Check whether it is bounded by the
		en e		last interval
/				
71 .		Marine State Control of the Control	-	
3m h n	1			$\langle \lambda^2 \rangle$
1.5m 1.	5m0.6m	2r m	킄	
			3	
2m	-2m	2m -	╡	

R	FST	ΓRI	CT	ED.	内部	(
-17				EU) X 4-

	RESTRICTED 內部	文件	
	Solution	Marks	Remarks
.2. (a)	A = (10,0)	1A	pp-1 if parenthesis is missed
	radius of $C_2 = 7$	l 1A	Accept x = 10, y = 0
(b)	·· AOQR - AAPR (] 東東 名 公 對 為)	1 м	Or equating ratios involving OR
= 10+0	$\frac{\chi_{1}}{Q} = \frac{OR}{1} = \frac{10 + OR}{7}$ $OR = \frac{5}{3}$	1A	
C			
	Hence the x-coordinate of $R = -\frac{5}{3}$.	1A	pp-1 if writing $R = -\frac{5}{3}$ $P \mid P \mid$
(C)	$QR = \sqrt{(\frac{5}{3})^2 - 1^2} = \frac{4}{3}$ (技納一6了,以後之營	1 ,, 1	1/4) of K=(-2,0)
(0)	Slope of $QP = \tan \angle ORQ$ $2 \frac{1}{2} \frac{1}{2}$	1A	
	$= \frac{OQ}{QR} = \frac{3}{4} (or \ 0.75)$	1A	
	$OR \sin \angle ORQ = \frac{OQ}{OR} = \frac{3}{5}$	1A	
	slope of QP = tan/ORQ		
	$= \frac{\frac{3}{5}}{\sqrt{1-(\frac{3}{5})^2}}$		
	$\sqrt{1-\left(\frac{3}{5}\right)^2}$		
	$=\frac{3}{4}$ (or 0.75)	1A	
(d)	The external common tangent QP has equation		
	$\frac{y-0}{x+\frac{5}{3}} = \frac{3}{4}$	1M + 1A	1M for pointt-slope form
	3x - 4y + 5 = 0	1A	Or equivalent
(e)	The external common tangent with negative slope has		
	slope = $-\frac{3}{4}$ equation:	1M	
	$\frac{y-0}{x+\frac{5}{3}} = -\frac{3}{4}$		
	$\frac{x+\frac{3}{3}}{3x+4y+5}=0$	1.0	
	3x + 4y + 5 = 0	1A	Or equivalent
• .	2		
	R O A		x
	$\bigcap_{i} C_i$	/	/
-CE-Ma	ths I		
		C_2	P

RESTRICTED 内部文件

RESTRICTED 内部文件 Solution Marks Remarks 11. (a) 4x + 3y = k铁管或客标 dated 新山多 1A For the line x+y=101A For the line x+2y=12For the line 2x=3yAccept broken lines 動職犯國際的 (b) (i) $2x+2y \ge 20$ (or $x+y \ge 10$) 1A $2x \ge 3y$ 1A $x+2y \ge 12$ 1A -1 for any strict inequality (or x > 0, y > 0)1A Accept $x \ge 0$, $y \ge 0$; go through (ii) Total payment, P, in \$ is P = 300(x+2y) + 500xIgnore unit = 800x + 600yBy drawing parallel lines of 4x + 3y = 0, 1M + 1Must shown on the graph paper OR P(6,4)=7200, P(8,2)=7600 1M + 111M for substituting 1 point P(12,0)=9600Optional P is minimum when x=6, y=41A .. The total payment is minimum when the length is 6 m and the width is 4 m $\,$ Minimum total payment = $$(800 \times 6 + 600 \times 4)$. = \$ 7200 1A 94-CE-Maths I P.6