

Model Optimization and Tuning Phase Report

Date	16th June 2025
Team ID	SWTID1749621188
Project Title	Anemia Sense Leveraging-Machine Learning For-Precise Anemia Recognition
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Logistic Regression	<pre># 1. Logistic Regression model lr_classifier = LogisticRegression() # Define the hyperparameters and their possible values for tuning param_grid = { 'penalty': ['l1', 'l2', 'elasticnet', None], 'C': [0.01, 0.1, 1, 10, 100], 'solver': ['lbfgs', 'liblinear', 'saga'], 'max_iter': [100, 200, 500] }</pre>	<pre># Evaluate the performance of the tuned model accuracy = accuracy_score(y_test, y_pred) print(f'Optimal Hyperparameters: {best params}') print(f'Accuracy on Test Set: {accuracy}')</pre>
Naïve Bayes	<pre># 2. Naive Bayes classifier nb_classifier = GaussianNB() # Define the hyperparameters and their possible values for tuning param_grid = { 'var_smoothing': [1e-9, 1e-8, 1e-7, 1e-6, 1e-5] }</pre>	<pre># Evaluate the performance of the tuned model accuracy = accuracy_score(y test, y pred) print(f'Optimal Hyperparameters: {best params}') print(f'Accuracy on Test Set: {accuracy}')</pre>


```
Random
                          aram_grid = {
    'n_estimators': [50, 100, 200],
                                                                                                accuracy = accuracy score(y test, y pred)
  Forest
                            "max_depth': [None, 10, 20, 30],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4],
'bootstrap': [True, False]
                                                                                               print(f'Optimal Hyperparameters: {best_params}')
Classifier
                                                                                                print(f'Accuracy on Test Set: {accuracy}')
                                                                                                # Evaluate the performance of the tuned model
                                                                                                accuracy = accuracy score(y test, y pred)
                         param_grid = {
                                                                                                print(f'Optimal Hyperparameters: {best_params}')
   SVM
                              'C': [0.1, 1, 10, 100],
                                                                                               print(f'Accuracy on Test Set: {accuracy}')
                              'kernel': ['linear', 'rbf', 'poly', 'sigmoid'], 'gamma': ['scale', 'auto'],
                         gb_classifier = GradientBoostingClassifier()
                                                                                                accuracy = accuracy score(y test, y pred)
Gradient
                         param_grid = {
                                                                                                print(f'Optimal Hyperparameters: {best_params}')
                              'n_estimators': [50, 100, 200],
Boosting
                              'learning_rate': [0.01, 0.1, 0.2],
                                                                                                print(f'Accuracy on Test Set: {accuracy}')
                              'min_samples_split': [2, 5, 10]
                          lasso classifier = LogisticRegression(penalty='l1', solver='saga')
                                                                                                accuracy = accuracy_score(y_test, y_pred)
   Lasso
                                                                                                print(f'Optimal Hyperparameters: {best params}')
                         param grid = {
                                                                                                print(f'Accuracy on Test Set: {accuracy}')
                              'C': [0.01, 0.1, 1, 10, 100],
                              'max_iter': [100, 200, 500],
                              'tol': [1e-4, 1e-3, 1e-2]
                        dt classifier = DecisionTreeClassifier()
Decision
                                                                                               accuracy = accuracy_score(y_test, y_pred)
    Tree
                        param_grid = {
                                                                                               print(f"Optimal Hyperparameters: {best params}")
                             'criterion': ['gini', 'entropy'],
'splitter': ['best', 'random'],
'max_depth': [None, 10, 20, 30, 40, 50],
Classifier
                                                                                                print(f"Accuracy on Test Set: {accuracy}")
                             'min_samples_split': [2, 5, 10],
                             'min_samples_leaf': [1, 2, 4]
```


Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric				
Decision Tree	Confusion Matrix: [[157 0] [0 128]] Classification Report:				
Random Forest	Confusion Matrix: [[157 0] [0 128]] Classification Report:				
Naïve Bayes	Confusion Matrix: [[150 7] [7 121]] Classification Report:				
Gradient Boosting	Confusion Matrix: [[157 0] [0 128]] Classification Report:				

	Confusion Mat	rix:			
	[[154 3]				
	[0 128]]				
	2 33				
	Classification	n Report:			
		precision	recall f	1-score	support
Logistic Regression	0	1.00	0.98	0.99	157
8 8	1	0.98	1.00	0.99	128
	accuracy			0.99	285
	macro avg	0.99	0.99	0.99	285
	weighted avg	0.99	0.99	0.99	285
	Confusion Ma	trix:			
	[[152 5]				
	[0 128]]				
	. 33				
	Classificat				
		precision	recall	f1-score	support
SVM					
				0.98	157
		0.96	1.00	0.98	128
	accuracy	,		0.98	285
	macro av		0.98	0.98	285
	weighted av			0.98	285
	management and	, 3133	0.50		
	Confusion Ma	itrix:			
	[[155 2]				
	[0 128]]				
	Classificat				
•		precision	recall	f1-score	support
Lasso					
				0.99	157
		0.98	1.00	0.99	128
	accuracy	/		0.99	285
				0.00	285
	macro av			0.99	
				0.99 0.99	285

Final Model Selection Justification (2 Marks):

Final Model	Reasoning			
Random Forest	The Random Forest model was selected for its superior performance, exhibiting high accuracy during hyperparameter tuning. Its ability to handle complex relationships, minimize overfitting, and optimize predictive accuracy aligns with project objectives, justifying its selection as the final model.			