# This Page Is Inserted by IFW Operations and is not a part of the Official Record

### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

### IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

This Page Blank (uspto)

#### DE 196 11 236 C1

Method for allocating time slots to a multichannel connection in a switching device

Given a method for allocating time slots to a multichannel connection, the incoming and outgoing time slots are respectively provided with an identification character that unambiguously defines the sequence, and at least one auxiliary variable is determined, which, for a point in time, relates to the difference between a number of outgoing time slots and incoming time slots for the multichannel connection within the respective frame [or: range]. As a result of the inventive method and the inventive switching device, a multichannel connection is assured upon maintenance of the bit integrity.

Translation / April 10, 2001 / Yvonne / 120 words

This Page Blank (uspto)

- BUNDESREPUBLIK **DEUTSCHLAND**
- Patentschrift DE 196 11 236 C 1
- (5) Int. Cl.<sup>6</sup>: H 04J 3/24

H 04 L 5/22 H 04 L 12/52 H 04 Q 11/04



**DEUTSCHES PATENTAMT**  Aktenzeichen:

196 11 238.2-31

Anmeldetag:

21. 3.96

**(43)** Offenlegungstag:

Veröffentlichungstag

der Patenterteilung: 21. 11. 98

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(3) Patentinhaber:

Siemens AG, 80333 München, DE

② Erfinder:

Spahl, Gerd, Dipl.-Inform., 82178 Puchheim, DE

56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> US 51 75 539 US 51 23 010

🚱 Verfahren zur Zuordnung von Zeitlagen zu einer Mehrkanal-Verbindung in einer Vermittlungseinrichtung

Bei einem Verfahren zur Zuordnung von Zeitlagen zu einer Mehrkanal-Verbindung werden die ankommenden und abgehenden Zeitlagen jeweils mit einer die Reihenfolge eindeutig festliegenden Kennung versehen und zumindest eine Hilfsgröße bestimmt, die sich für einen Zeitpunkt auf die Differenz zwischen einer Anzahl abgehender Zeitlagen und ankommender Zeitlagen für die Mehrkanal-Verbindung innerhalb der jeweiligen Rahmen bezieht. Durch das erfindungsgemäße Verfahren und die erfindungsgemäße Vermittlungseinrichtung wird eine Mehrkanal-Verbindung unter Wahrung der Bit-Integrität gewährleistet.



#### DE 196 11 236

#### Beschreibung

Die Erfindung betrifft ein Verfahren zur Zuordnung von Zeitlagen zu einer Mehrkanal-Verbindung in einer Vermittlungseinrichtung.

Vermittlungseinrichtungen (US 5 175 539, US 5 123 010) in Kommunikationssystemen dienen dem Aufbau, der Steuerung und dem Abbau von Verbindungen zur Übertragung von Nutzinformation. Im einfachsten Fall besteht die Vermittlungseinrichtung aus einer 10 Koppelstufe, die einen Teilnehmer A mit einem Teilnehmer B verbindet. Die Anschlüsse der Teilnehmer A und B können dabei auf einem Port oder verschiedenen Ports liegen.

Weiterhin ist es bekannt, daß eine Vermittlungsein- 15 richtung mehrere Verbindungen im sogenannten Zeitmultiplex über eine einzige Verbindungsleitung realisieren kann. Eine solche physikalische Verbindungsleitung kann mehrere Kanäle übertragen, die beim Zeitmultiplex durch Zeitlagen gebildet werden. In einer nach die- 20 sem Prinzip betriebenen Vermittlungseinrichtung wird in einer Koppelstufe folglich keine physikalische Verbindung starr durchgeschaltet, sondern es findet eine Zuordnung von Zeitlagen für eine Verbindung statt.

Betrachtet man eine Verbindung von einem Teilneh- 25 mer A zu einem Teilnehmer B über eine Vermittlungseinrichtung, wobei die Verbindung vereinfachend als uni-direktional angesehen wird, so müssen vom Teilnehmer A ankommende Zeitlagen in der Vermittlungseinrichtung zu von der Vermittlungseinrichtung zum Teilnehmer B abgehende Zeitlagen zugeordnet werden. Damit findet eine Vermittlung der während der Zeitlagen übertragenen Information statt. Beim Zeitmultiplex sind dabei die Zeitlagen nach Rahmen organisiert, d. h. ein Rahmen enthält K Zeitlagen, die jeweils verschiedenen 35 Verbindungen zugeordnet werden können. Von Rahmen zu Rahmen bezeichnet jeweils die gleiche Zeitlage eine bestehende Verbindung.

Jeden der durch eine Zeitlage gebildeten Kanäle ist. eine Bit-Rate, zum Beispiel für B-Kanäle in ISDN-Vermittlungseinrichtungen 64 kBit pro Sekunde, zugeordnet. Erfordert nun eine Verbindung vom Teilnehmer A zum Teilnehmer B eine höhere Bit-Rate, so ist eine Mehrkanal-Verbindung erforderlich. Dies bedeutet Rahmens mehrere Zeitlagen zugeordnet werden müssen. Es ist dabei jedoch nicht erforderlich, daß diese Zeitlagen auf der gleichen physikalischen Verbindungsleitung übertragen werden.

Im Gegensatz zu Ein-Kanal-Verbindungen treten bei 50 Mehrkanalverbindungen zusätzliche Schwierigkeiten auf. Üblicherweise wird vom Teilnehmer A ein kontinuierlicher Informationsstrom erzeugt. Die Informationselemente dieses Informationsstromes sind gemäß einer muß auch beim Teilnehmer B nach Übertragung der Informationen gewährleistet sein. Die Kommunikationsendgeräte der Teilnehmer bzw. die Vermittlungseinrichtung haben dieser Forderung gerecht werden. Es ist wünschenswert, derartige Probleme von den Kom- 60 munikationsendgeräten fernzuhalten und schon in den Vermittlungseinrichtungen die anforderungsgemäße Behandlung von Mehrkanal-Verbindungen vorzusehen.

Der Erfindung liegt die Aufgabe zugrunde, bei der dung in einer Vermittlungseinrichtung die Reihenfolge der Informationselemente in den ankommenden Zeitlagen für die abgehenden Zeitlagen zu wahren. Diese Aufgabe wird durch das Verfahren nach dem Anspruch 1 oder 2 und die Vermittlungseinrichtung nach Anspruch 9 oder 10 gelöst. Vorteilhafte Ausgestaltungen sind den Unteransprüchen zu entnehmen.

Die Mehrkanal-Verbindung wird durch zumindest zwei ankommende und zwei abgehende Zeitlagen gebildet. Die bestimmte Anzahl n bezeichnet dabei die Zahl der ankommenden Zeitlagen für die Mehrkanal-Verbindung innerhalb eines ankommenden Rahmens mit insgesamt K Zeitlagen. Gleichvielen (n) abgehenden Zeitlagen in einem abgehenden Rahmen soll nun jeweils eine ankommende Zeitlage zugeordnet werden. Zur Kennzeichnung der Reihenfolge der ankommenden Zeitlagen innerhalb eines ankommenden Rahmens wird jeder ankommenden Zeitlage der Mehrkanal-Verbindung eine erste eindeutige Kennung zugeordnet. Die Gesamtheit der Informationen innerhalb der ankommenden Zeitlagen der Mehrkanal-Verbindung bildet die zu vermittelnde Mehrkanalinformation.

Ebenso wird den abgehenden Zeitlagen eine zweite, die Reihenfolge festlegende, eindeutige Kennung zugeordnet. Unter Beachtung der Position der ankommenden bzw. abgehenden Zeitlagen innerhalb der jeweiligen Rahmen wird eine erste Hilfsgröße bestimmt. Diese erste Hilfsgröße gibt die maximale Differenz an zwischen einer Zahl abgehender Zeitlagen und einer Zahl ankommender Zeitlagen für die Mehrkanal-Verbindung innerhalb der jeweiligen Rahmen bis zu einem eine abgehenden Zeitlage einschließenden Zeitpunkt. Diese er-30 ste Hilfsgröße kann daraufhin als Zuordnungsversatz für alle abgehenden Zeitlagen zur Zuordnung zu jeweils einer ankommenden Zeitlage verwendet werden. Ein Zuordnungsversatz von zum Beispiel drei bedeutet dabei für die Mehrkanal-Verbindung, daß die vierte abgehende Zeitlage der ersten ankommenden Zeitlage zugeordnet wird, die fünfte abgehende Zeitlage der zweiten ankommenden Zeitlage zugeordnet wird, usw. Umfaßt ein ankommender bzw. abgehender Rahmen wie vorstehend Beispiels fünf Zeitlagen, dann wird der ersten abgehenden Zeitlage des darauffolgenden abgehenden Rahmens die dritte ankommende Zeitlage zugeordnet. Der Zuordnungsversatz kann also im Sinne einer Indexierung verstanden werden.

Alternativ oder zusätzlich zur ersten Hilfsgröße kann nichts anderes, als daß der Verbindung innerhalb eines 45 zur Lösung der erfindungsgemäßen Aufgabe jedoch auch eine zweite Hilfsgröße bestimmt werden. Diese zweite Hilfsgröße bezeichnet einen Wert, der die Addition der minimalen Differenz zwischen einer Zahl abgehender Zeitlagen und ankommender Zeitlagen für die Mehrkanal-Verbindung innerhalb der jeweiligen Rahmen vor einem durch eine abgehende Zeitlage gebildeten Zeitpunkt mit der Anzahl der zuzuordnenden Zeitlagen bestimmt. Die ankommende Zeitlage wird jedoch für diesen Zeitpunkt mitgezählt. Auch diese zweite bestimmten Reihenfolge angeordnet. Diese Reihenfolge 55 Hilfsgröße kann als Zuordnungsversatz für alle abgehenden Zeitlagen zur Zuordnung zu jeweils einer ankommenden Zeitlage verwendet werden. Als Zuordnungsversatz eignet sich jedoch auch jeder andere Wert zwischen der ersten Hilfsgröße und der zweiten Hilfsgröße.

Wird die erste Hilfsgröße für den Zuordnungsversatz gewählt, dann entsteht eine minimale Verzögerung der Mehrkanalinformation in der Vermittlungseinrichtung. Jedoch auch jeder andere Wert bis zur zweiten Hilfs-Zuordnung von Zeitlagen zu einer Mehrkanal-Verbin- 65 größe schafft eine die Aufrechterhaltung der Reihenfolge der Informationselemente garantierende Zuordnung, die einen minimalen Rahmenversatz gewährleistet. Ein entscheidender Vorteil des erfindungsgemäßen Verfah-

rens ist es, daß die Reihenfolge der Informationselemente (bei digitalen Vermittlungssystemen auch Bit-Integrität genannt) bei jeder einzelnen Zuordnung erreicht wird. Damit erübrigt sich jede weitere Korrektur, die nötig wäre, wenn in Koppelstufen einer Vermittlungseinrichtung diese Bit-Integrität nicht gewährleistet wird. Weiterhin erweist es sich als vorteilhaft, daß beliebige abgehende Zeitlagen innerhalb abgehender Rahmen gewählt werden können und trotzdem das erfindungsgemäße Verfahren eine Zuordnung von abgehenden 10 jeweils zwei Verbindungsleitungen, Zeitlagen zu ankommenden Zeitlagen bewirkt, die die Bit-Integrität garantiert.

Für die Zuordnung wurde bisher angenommen, daß ankommende und abgehende Rahmen zum gleichen Zeitpunkt beginnen und dieselbe Anzahl von Zeitlagen 15 umfassen. Werden die Mehrkanalinformationen in der Vermittlungseinrichtung zwischengespeichert, dann kann eine Zwischenspeicherungsverzögerung dadurch berücksichtigt werden, indem für die Zuordnung der abgehenden Zeitlagen der Beginn eines ankommenden 20 Rahmens um mindestens die Zwischenspeicherungsverzögerung versetzt vor dem Beginn eines abgehenden Rahmens festgelegt wird, wobei die Zuordnung der ersten Kennung beibehalten wird. Der Verfahrensablauf kann als solches beibehalten werden, wenn der Versatz 25 rechnung der ersten und zweiten Hilfsgröße. genau der Zwischenspeicherungsverzögerung entspricht. Für jede Koppelstufe einer Vermittlungseinrichtung kann eine individuelle Zwischenspeicherungsverzögerung berücksichtigt werden.

Bei einer Zwischenspeicherung der zu vermittelnden 30 Mehrkanalinformationen werden mitunter mehrere Zeitlagen zu einem Wort zusammengefaßt. In diesem Fall werden alle ankommenden Zeitlagen eines Wortes für die erste ankommende Zeitlage des jeweiligen Wortes bei der Bestimmung der Hilfsgrößen gezählt. Durch 35 diese vorteilhafte Maßnahme kann wiederum individuell, wie bei der Berücksichtigung der Zwischenspeicherungsverzögerung, eine Anpassung des Algorithmus an die Besonderheiten der einzelnen Koppelstufen, die üblicherweise durch das Design der entsprechenden Kop- 40 pel-Schaltkreise bestimmt sind, erreicht werden.

Gemäß einer weiteren vorteilhaften Ausgestaltung werden auf verschiedenen Verbindungsleitungen gleichzeitig vorliegende Zeitlagen bei der Bestimmung der Hilfsgrößen gemeinsam gezählt, wenn die ankom- 45 menden und/oder abgehenden Zeitlagen eines Rahmens auf verschiedenen Verbindungsleitungen verteilt sind. Dadurch ist das erfindungsgemäße Verfahren auch in Vermittlungseinrichtungen nutzbar, die Zeitlagen von Informationen verschiedener Zeitlagen auf mehrere abgehende Verbindungsleitungen verteilen können.

Umfaßt eine Vermittlungseinrichtung mehrere Koppelstufen, wird vorteilhafterweise der Zuordnungsversatz bzw. die Summe des Zuordnungsversatzes der ein- 55 zelnen Koppelstufen gleich dem Produkt der Anzahl der zu vermittelnden Zeitlagen mit einer natürlichen Zahl gewählt. Dadurch wird zusätzlich zur Wahrung der Bit-Integrität auch eine Rahmen-Integrität gesichert, da die Informationen der Zeitlagen nicht nur in der richti- 60 gen Reihenfolge, sondern auch die Zeitlagen der Mehrkanal-Verbindung eines ankommenden Rahmens gemeinsam in einem abgehenden Rahmen enthalten sind.

Gemäß einer weiteren Ausgestaltungsform erfolgt nung der Zeitlagen in beiden Richtungen getrennt.

Im folgenden wird das erfindungsgemäße Verfahren und die erfindungsgemäße Vermittlungseinrichtung bezugnehmend auf die Figuren näher erläutert.

Dabei zeigen

Fig. 1 eine Vermittlungseinrichtung mit drei Koppel-

Fig. 2 eine schematische Darstellung der Zuordnung abgehender Zeitlagen zu ankommenden Zeitlagen auf jeweils einer Verbindungsleitung,

Fig. 3 eine schematische Darstellung der Zuordnung abgehender Zeitlagen zu ankommenden Zeitlagen auf

Fig. 4 eine schematische Darstellung der Zuordnung abgehender Zeitlagen zu ankommenden Zeitlagen unter Berücksichtigung einer Zwischenspeicherungsverzögerung bei einer wortweisen Zwischenspeicherung,

Fig. 5 eine schematische Darstellung der Zuordnung abgehender Zeitlagen zu ankommenden Zeitlagen über mehrere Koppelstufen,

Fig. 6 eine Vermittlungseinrichtung mit drei Koppelstufen und der Gewährleistung der Rahmenintegrität bei jeder einzelnen Koppelstufe,

Fig. 7 eine Vermittlungseinrichtung mit drei Koppelstufen, wobei die Rahmen-Integrität bei der letzten Koppelstufe wiederhergestellt wird, und

Fig. 8 ein schematisches Auflaufdiagramm der Be-

Die Vermittlungseinrichtung VE nach Fig. 1 besteht aus drei Koppelstufen K1, K2, K3, wobei die zweite Koppelstufe K2 jeweils über einen aus Verbindungsleitungen bestehenden Highway Hwy mit der ersten Koppelstufe K1 und der dritten Koppelstufe K3 verbunden ist. Die Koppelstufe K1 stellt über einen Highway Hwy eine Verbindung zu einem Teilnehmer A und die dritte Koppelstufe K3 über einen weiteren Highway Hwy eine Verbindung zum Teilnehmer B her.

Die Vermittlungseinrichtung VE wird im Zeitmultiplex betrieben, so daß auf den Verbindungsleitungen die übertragenen Informationen zu Zeitlagen innerhalb von Rahmen zuordenbar sind. Die Vermittlungseinrichtung VE wird durch eine Steuereinrichtung SE gesteuert. Die programmgesteuerte Steuereinrichtung SE kann über Speicherbereiche verfügen, auf denen unter anderem eine Datenbasis DB zur Registrierung von für Verbindungen zur Verfügung stehenden abgehenden und ankommenden Zeitlagen ei, aj. Bei einem Verbindungsaufbau vom Teilnehmer A zum Teilnehmer B erfolgt durch die Steuereinrichtung SE eine Auswahl von Zeitlagen ei, aj auf den Verbindungsleitungen Hwy, indem auf die Datenbasis DB zurückgegriffen wird.

Die Verbindung vom Teilnehmer A zum Teilnehmer mehreren Verbindungsleitungen zusammenfassen und 50 B wird als Mehrkanal-Verbindung aufgebaut. Dies bedeutet, daß innerhalb eines Rahmens Re, Ra mehrere Zeitlagen ei, aj für die Übertragung der Mehrkanalinformationen genutzt werden müssen. Dazu wird in der Steuereinrichtung SE der Vermittlungseinrichtung VE ein anhand der folgenden Figuren erläuterter Algorithmus angewandt.

> Zur Bestimmung der Hilfsgrößen für die Zuordnung der abgehenden Zeitlagen zu den ankommenden Zeitlagen sei zusätzlich auf die Anlage A verwiesen.

Nach Fig. 2 umfaßt die Mehrkanalinformation beispielhaft 8 ankommende Zeitlagen eo bis e7 innerhalb eines ankommenden Rahmens Re mit insgesamt K Zeitlagen. Der abgehende Rahmen Ra mit der gleichen Anzahl K Zeitlagen umfaßt ebenfalls 8 aus der Datenbasis bei bidirektionalen Verkehrsbeziehungen die Zuord- 65 DB ausgewählte abgehende Zeitlagen ao bis a7. Die ankommenden Zeitlagen eo bis e, und die abgehenden Zeitlagen ao bis ar wurden entsprechend ihrer Reihenfolge innerhalb der Rahmen Re, Ra mit einer eindeuti-

gen ersten bzw. zweiten Kennung i, j bezeichnet. Die Position der abgehenden und ankommenden Zeitlagen ei, aj kann dabei willkürlich innerhalb der ankommenden

bzw. abgehenden Zeitrahmen Re, Ra gewählt sein. In Fig. 2 ist das Ergebnis der Berechnung der ersten und zweiten Hilfsgröße d0, d1 bereits dargestellt. Für jeden Zeitpunkt einer abgehenden Zeitlage ao bis ar wird durch die Steuereinrichtung SE die Differenz zwischen einer Zahl abgehender Zeitlagen aj und ankommender Zeitlagen ei für die Mehrkanal-Verbindung in- 10 nerhalb der jeweiligen Rahmen Ra, Re bestimmt. Dabei wird die abgehende Zeitlage aj des Zeitpunktes der Bestimmung mit eingeschlossen. In Fig. 2 wurde die maximale Differenz, d. h. die erste Hilfsgröße d0 mit 3 bei der

siebten abgehenden Zeitlage as bestimmt.

Die zweite Hilfsgröße d1 wird dadurch bestimmt, daß für jeden Zeitpunkt einer ankommenden Zeitlage eo bis er die Differenz zwischen einer Zahl abgehender Zeitlagen aj und ankommender Zeitlagen ei für die Mehrkanal-Verbindung innerhalb der jeweiligen Rahmen Re, 20 Ra vor einem durch eine abgehende Zeitlage aj gebildeten Zeitpunkt bestimmt wird. Der minimale Wert wurde hier mit -1 zum Zeitpunkt der achten ankommenden Zeitlage e7 ermittelt. Zu diesem Wert -1 wird daraufhin die Anzahl der zuzuordnenden Zeitlagen aj addiert 25 (diese Anzahl ist gleich 8), wodurch sich beispielhaft der Wert 7 für die zweite Hilfsgröße d1 ergibt.

In einer allgemeinen Notation kann die Berechnungsvorschrift für die erste und zweite Hilfsgröße d0, d1 durch folgende Gleichungen angegeben werden:

 $d0 = \max(|\{a_i|a_i \leq zl\}| - |\{e_i|e_i \leq zl\}|)$  $d1 = \min(|\{a_j|a_j < zl\}| - |\{e_i|e_i \le zl\}|) + n$ 

wobei zl den Zeitpunkt einer Zeitlage und n die Anzahl 35 der ankommenden Zeitlagen ei der Mehrkanal-Verbindung angibt. {m|E} ist eine Menge, deren Elemente m die Eigenschaft E aufweisen. Der Operator |. | gibt dabei die Anzahl der Elemente der Menge an.

Zur Zuordnung wurde in Fig. 2 die erste Hilfsgröße 40 d0 (3) ausgewählt, so daß die vierte abgehende Zeitlage a<sub>3</sub> der ersten ankommenden Zeitlage e<sub>0</sub> zugeordnet wird usw. Die schwarzen durchgezogenen Pfeile geben dabei diese Zuordnung an. Die gestrichelten Pfeile bezeichnen ebenfalls diese Zuordnung, jedoch sind dies die 45 Zuordnungen, die zu einem Versatz im Rahmen führen und ersetzten die durchgezogenen Pfeile für die entsprechenden ankommenden Zeitlagen e5 bis e7.

Die schematische Darstellung der Zuordnung nach Fig. 3 erfolgt nach dem gleichen Prinzip wie die Zuord- 50 nung nach Fig. 2. Jedoch ist zu beachten, daß sowohl die ankommenden Zeitlagen eo bis ei als auch die abgehenden Zeitlagen ao bis a7 auf jeweils zwei Verbindungsleitungen (Highways) Hwy verteilt sind. Zum gleichen Zeitpunkt vorliegende Zeitlagen ei, ai werden bei der 55 Bestimmung der Hilfsgrößen d0, d1 jedoch gemeinsam gezählt. Somit ergibt sich erneut für die erste Hilfsgröße d0 der Wert 3 und für die zweite Hilfsgröße d1 der Wert 7. Wiederum wird durch Anwendung des erfindungsgemäßen Verfahrensablaufs eine Zuordnung der Zeitlagen ei, ai zu einer Mehrkanal-Verbindung unter Wahrung der Bit-Integrität erreicht.

Anhand von Fig. 4 wird die Zuordnung abgehender Zeitlagen aj zu ankommenden Zeitlagen ei unter Berücksichtigung einer Zwischenspeicherungsverzöge- 65 rung dtsl = 6 und einer 2 Zeitlagen e; zu einem Wort zusammenfassenden Zwischenspeicherung erläutert. Der Zeitpunkt des Beginns eines ankommenden Rah-

mens Re wird hier, zum Beispiel um die Zwischenspeicherungsverzögerung dtsl = 6 dem Beginn eines abgehenden Rahmens Ra vorweggestellt. Dieser Versatz des Beginns eines ankommenden Rahmens Re berücksichtigt die Zwischenspeicherungsverzögerung dtsl. Gleichzeitig werden bei dieser Zwischenspeicherung jeweils zwei Zeitlagen ei gemeinsam abgespeichert.

Die siebte und achte ankommende Zeitlage eg e7 werden gemeinsam abgespeichert, ebenso die fünfte und sechste ankommende Zeitlage e4, e5. Durch die gemeinsame Zwischenspeicherung wirken diese Zeitlagen jeweils wie eine einzige ankommende Zeitlage ei. Dieser Umstand muß bei der Bestimmung der ersten und zweiten Hilfsgröße d0, d1 berücksichtigt werden. Dies geschieht, indem ankommende Zeitlage e6, e7 bzw. e4, e5 für den Zeitpunkt einer abgehenden Zeitlage a; gemeinsam gezählt werden. Nach Fig. 4 wurde für die erste Hilfsgröße d0 der Wert 5 und für die zweite Hilfsgröße d1 der Wert 8 (0) ermittelt. Aus dem Wertebereich des Zuordnungsversatzes 1 zwischen 5 und 8 kann daraufhin ein Wert (der Zuordnungsversatz 1) gewählt werden, mit dem eine Zuordnung abgehender Zeitlagen a;

zu ankommenden Zeitlagen ei erfolgt.

Die Zuordnung der abgehenden Zeitlagen as zu ankommenden Zeitlagen ei nach Fig. 5 bezieht sich auf die drei Koppelstufen K1, K2, K3 nach Fig. 1. Vier abgehende Zeitlagen aj der dritten Koppelstufe K3 werden unter Zuhilfenahme der zweiten Koppelstufe K2 vier ankommenden Zeitlagen ei der ersten Koppelstufe K1 zugeordnet. Die Zwischenspeicherungsverzögerungen dtsl der Koppelstufen K1, K2, K3 sind dabei unterschiedlich. Die Zwischenspeicherungsverzögerung dtsl der ersten Koppelstufe K1 beträgt = 6, die der zweiten Koppelstufe K2 = 10 und die der dritten Koppelstufe K3 = 4. Die erste und dritte Koppelstufe K1, K3 speichern zwei Zeitlagen wortweise. Die zweite Koppelstufe K2 nimmt die Zwischenspeicherung zeitlagenbezogen vor. Anhand von Fig. 5 ist ersichtlich, daß auf jeder einzelnen Koppelstufe K1, K2, K3 die Reihenfolge der Informationselemente in den Zeitlagen bestehen bleibt, also die Bit-Integrität gewahrt wird. Die durchgezogen gezeichneten Zuordnungen haben keine Rahmenversatz, die gestrichelt gezeichneten haben eine Rahmenversatz von 1. Die Information der Zeitlage A0 erhält beispielsweise der Teilnehmer B in der Zeitlage B2 einen Rahmen später. Die Zeitlage A2 wird von Teilnehmer B zwei Rahmen später in der Zeitlage B0 empfan-

Anhand der Fig. 6 und 7 wird gezeigt, daß durch geeignete Wahl des Zuordnungsversatzes 1 auch über mehrere Koppelstufen K1, K2, K3 hinweg eine Rahmen-Integrität TSSI erreicht werden kann. Dabei ist es möglich, entsprechend Fig. 6, die Rahmenintegrität TSSI in jeder einzelnen Koppelstufe K1, K2, K3 herzustellen. Gemäß Fig. 7 kann dies jedoch auch erfolgen, indem erst bei der letzten Koppelstufe K3 eine Korrektur vorgenommen und die Rahmenintegrität TSSI hergestellt wird. Die Rahmenintegrität TSSI wird gewährleistet, indem aus dem Wertebereich für den Zuordnungsversatz 1 von der ersten Hilfsgröße d0 bis zur zweiten Hilfsgröße d1 ein Wert ausgewählt wird, der gleich dem Produkt der Anzahl n der zu vermittelnden Zeitlagen der Mehrkanal-Verbindung mit einer natürlichen Zahl ist. In den Zuordnungsbeispielen von Fig. 2, 3 und 4 bedeutet dies, daß der Zuordnungsversatz 1 oder die Summe der Zuordnungsversätze 1 der einzelnen Koppelstufen K1, K2, K3 gleich 0, 8 oder einem Vielfachen von 8 ist.

Soll die Rahmenintegrität TSSI in der letzten Koppelstufe K3 korrigiert werden, dann ist es vorteilhaft, bestimmte abgehende Zeitlagen aj innerhalb eines abgehenden Rahmens für die Mehrkanal-Verbindung auszuwählen. Entspricht beispielsweise das Muster der abgehenden Zeitlagen aj dem der ankommenden Zeitlagen ei, kann in jedem Fall eine Korrektur zur Rahmenintegrität TSSI durchgeführt werden.

Soll die Bit-Integrität BSI bzw. die Rahmenintegrität TSSI bei einer bidirektionalen Verbindung in beiden 10 Richtungen hergestellt werden, so ist das erfindungsgemäße Verfahren für beide Vermittlungsrichtungen getrennt anzuwenden. Das Verfahren ist anwendbar, wenn beliebige abgehende Zeitlagen aj aus der Datenbasis DB ausgewählt werden. Es kann jedoch vorteilhaft sein, 15 wenn bei der Auswahl abgehender Zeitlagen aj eine bestimmte den Algorithmus optimierende Vorauswahl getroffen wird. Durch diese Maßnahme, kann die Vermittlungsverzögerung verringert und ein minimaler Rahmenversatz erzielt werden.

In Fig. 8 ist die Berechnung der ersten und zweiten Hilfsgröße d0, d1 anhand eines Ablaufdiagramms dargestellt. Dieser Ablauf stellt eine Verwirklichung der oben genannten Gleichungen dar. Die Indexierung der Zeitlagen ei und ai erfolgt von 0 bis n-1. In einer ersten 25 Schleife wird eine Hilfsgröße ixin so eingestellt, daß eine mit dieser Hilfsgröße ixin indizierte ankommende Zeitlage ei vor dem Ende des ankommenden Rahmen Re, verringert um die Zwischenspeicherungsverzögerung dtsl eintrifft. Mittels der zweiten Schleife wird unter 30 Berücksichtigung der Zwischenspeicherungsverzögerung dtsl und einer eventuellen wortweisen Zwischenspeicherung eine Ausgangsgröße d für die weitere Berechnung der ersten und zweiten Hilfsgröße d0, d1 bestimmt, indem die Menge ankommender und abgehen- 35 der Zeitlagen ei und ai für verschiedene Zeitpunkte innerhalb eines Rahmens Re, Ra betrachtet und verglichen wird.

#### Patentansprüche

- Verfahren zur Zuordnung von Zeitlagen zu einer Mehrkanal-Verbindung in einer Vermittlungseinrichtung (VE),
  - wobei die Mehrkanal-Verbindung aus zumindest zwei ankommenden und zwei abgehenden Zeitlagen (ei, aj) besteht,
  - wobei einer bestimmten Anzahl (n) ankommender Zeitlagen (ei) innerhalb eines ankommenden Rahmens (Re) eine erste, die Reihenfolge festlegende, eindeutige Kennung (i) zugeordnet ist und die ankommenden Zeitlagen (ei) die zu vermittelnden Mehrkanal-Informationen bilden, und
  - wobei der gleichen Anzahl (n) abgehender 55 Zeitlagen (aj) in einem abgehenden Rahmen (Ra) eine zweite, die Reihenfolge festlegende, eindeutige Kennung (j) zugeordnet ist und die abgehenden Zeitlagen (aj) für die Mehrkanal-Verbindung zur Verfügung stehen, 60

#### bei dem

— eine erste Hilfsgröße (d0) bestimmt wird, die die maximale Differenz zwischen einer Zahl abgehender Zeitlagen (aj) und einer Zahl ankommender Zeitlagen (ei) für die Mehrkanal-Verbindung innerhalb der jeweiligen Rahmen (Re, Ra) bis zu einem eine abgehende Zeitlage (aj) einschließenden Zeitpunkt angibt,

und

- diese erste Hilfsgröße (d0) als Zuordnungsversatz (1) für alle abgehenden Zeitlagen (a<sub>j</sub>, j=i+l) zur Zuordnung zu jeweils einer ankommenden Zeitlage (e<sub>i</sub>) verwendet wird.
- 2. Verfahren zur Zuordnung von Zeitlagen zu einer Mehrkanal-Verbindung in einer Vermittlungseinrichtung (VE).
  - wobei die Mehrkanal-Verbindung aus zumindest zwei ankommenden und zwei abgehenden Zeitlagen (ei, ai) besteht,
  - wobei einer bestimmten Anzahl (n) ankommender Zeitlagen (ei) innerhalb eines ankommenden Rahmens (Re) eine erste, die Reihenfolge festlegende, eindeutige Kennung (i) zugeordnet ist und die ankommenden Zeitlagen (ei) die zu vermittelnde Mehrkanal Informationen bilden, und
  - wobei der gleichen Anzahl (n) abgehender Zeitlagen (aj) in einem abgehenden Rahmen (Ra) eine zweite, die Reihenfolge festlegende, eindeutige Kennung (j) zugeordnet ist und die abgehenden Zeitlagen (aj) für die Mehrkanal-Verbindung zur Verfügung stehen,

#### bei dem

— eine zweite Hilfsgröße (d1) bestimmt wird, die eine Addition der minimalen Differenz zwischen einer Zahl abgehender Zeitlagen (aj) und einer Zahl ankommender Zeitlagen (ei) für die Mehrkanal-Verbindung innerhalb der jeweiligen Rahmen (Re, Ra) vor einem durch eine abgehende Zeitlage (aj) gebildeten Zeitpunkt mit der Anzahl (n) der zuzuordnenden Zeitlagen bezeichnet, wobei die dem Zeitpunkt der abgehenden Zeitlage (aj) zugeordnete ankommende Zeitlage (ei) eingeschlossen ist,

und

40

- diese zweite Hilfsgröße (d1) als Zuordnungsversatz (l) für alle abgehenden Zeitlagen  $(a_i, j=i+1)$  zur Zuordnung zu jeweils einer ankommenden Zeitlage  $(e_i)$  verwendet wird.
- 3. Verfahren nach Anspruch 1 und 2, bei dem alternativ zur Verwendung der ersten bzw. zweiten Hilfsgröße (d0, d1)
  - ein Wert zwischen der ersten Hilfsgröße (d0) und der zweiten Hilfsgröße (d1) als Zuordnungsversatz (l) für alle abgehende Zeitlagen  $(a_j, j=i+1)$  zur Zuordnung zu jeweils einer ankommenden Zeitlage  $(e_i)$  verwendet wird.
- kommenden Zeitlage (ei) verwendet wird. 4. Verfahren nach einem der vorherigen Ansprüche, bei dem eine Zwischenspeicherungsverzögerung (dtsl) der Vermittlungseinrichtung (VE) bei einer Zwischenspeicherung der zu vermittelnden Mehrkanal-Informationen berücksichtigt wird, indem für die Zuordnung der abgehenden Zeitlagen (a<sub>i</sub>) der Beginn eines ankommenden Rahmens (Re) um mindestens die Zwischenspeicherungsverzögerung (dtsl) versetzt vor den Beginn eines abgehenden Rahmens (Ra) festgelegt wird, wobei die Zuordnung der ersten Kennung (i) beibehalten wird. 5. Verfahren nach einem der vorherigen Ansprüche, bei dem für eine bei einer Zwischenspeicherung der zu vermittelnden Mehrkanal-Informationen mehrere Zeitlagen (ei, ai) zu einem Wort zusammenfassenden Vermittlungseinrichtung (VE) alle ankommenden Zeitlagen (e;) eines Wortes für die erste ankommende Zeitlage (ei) des jeweiligen Wortes bei der Bestimmung der Hilfsgröße (d0, d1)

gezählt werden.

6. Verfahren nach einem der vorherigen Ansprüche, bei dem mindestens die ankommenden und/ oder abgehenden Zeitlagen (e1, aj) eines Rahmens (Re, Ra) auf verschiedene Verbindungsleitungen (Hwy) verteilt sind und gleichzeitig vorliegende Zeitlagen (ei, aj) auf verschiedenen Verbindungsleitungen (Hwy) bei der Bestimmung der Hilfsgröße (d0, d1) gemeinsam gezählt werden.

7. Verfahren nach einem der vorherigen Ansprü- 10 che, bei dem für eine oder mehrere Koppelstufen (K1, K2, K3) innerhalb der Vermittlungseinrichtung (VE) der Zuordnungsversatz (I) bzw. die Summe des Zuordnungsversatzes (I) der einzelnen Koppelstufen (K1, K2, K3) gleich dem Produkt der Anzahl 15 (n) der zu vermittelnden Zeitlagen (e1) mit einer

natürlichen Zahl ist.

8. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß bei einer bidirektionalen Verkehrsbeziehung die Zuordnung der 20 Zeitlagen (ei, aj) in beiden Richtungen getrennt

durchgeführt wird.

9. Vermittlungseinrichtung (VE) zur Vermittlung einer Mehrkanal-Verbindung, mit einer Datenbasis (DB) für abgehende, einer Anzahl (n) ankommen- 25 der Zeitlagen zuordenbaren Zeitlagen (aj), und mit einer Steuereinrichtung zur Zuordnung der abgehenden Zeitlagen (aj) zu jeweils einer ankommenden Zeitlage (ei)

- wobei die Mehrkanal-Verbindung aus zu- 30 mindest zwei ankommenden und zwei abge-

henden Zeitlagen (ei, ai) besteht,

wobei in der Datenbasis (DB) einer bestimmten Anzahl (n) ankommender Zeitlagen (ei) innerhalb eines ankommenden Rahmens 35 (Re) eine erste, die Reihenfolge festlegende, eindeutige Kennung (i) zugeordnet ist und die ankommenden Zeitlagen (e;) die zu vermittelnde Mehrkanal-Informationen bilden, und

- wobei in der Datenbasis (DB) der gleichen 40 Anzahl (n) abgehender Zeitlagen (aj) in einem abgehenden Rahmen (Ra) eine zweite, die Reihenfolge festlegende, eindeutige Kennung (j) zugeordnet ist und die abgehenden Zeitlagen (aj) für die Mehrkanal-Verbindung zur Verfü- 45 gung stehen,

bei dem durch die Steuereinrichtung (SE)

 eine erste Hilfsgröße (d0) bestimmt wird, die die maximale Differenz zwischen einer Zahl abgehender Zeitlagen (aj) und einer Zahl 50 ankommender Zeitlagen (e<sub>i</sub>) für die Mehrkanal-Verbindung innerhalb der jeweiligen Rahmen (Re, Ra) bis zu einem eine abgehende Zeitlage (aj) einschließenden Zeitpunkt angibt,

 diese erste Hilfsgröße (d0) als Zuordnungsversatz (I) für alle abgehenden Zeitlagen (a; j=i+l) zur Zuordnung zu jeweils einer ankommenden Zeitlage (ei) verwendet wird.

10. Vermittlungseinrichtung (VE) zur Vermittlung 60 einer Mehrkanal-Verbindung, mit einer Datenbasis (DB) für abgehende, einer Anzahl (n) ankommender Zeitlagen zuordenbaren Zeitlagen (ai), und mit einer Steuereinrichtung zur Zuordnung der abgehenden Zeitlagen (aj) zu jeweils einer ankommen- 65 den Zeitlage (e;)

wobei die Mehrkanal-Verbindung aus zumindest zwei ankommenden und zwei abgehenden Zeitlagen (e;, aj) besteht,

10

- wobei in der Datenbasis (DB) einer bestimmten Anzahl (n) ankommender Zeitlagen (ei) innerhalb eines ankommenden Rahmens (Re) eine erste, die Reihenfolge festlegende, eindeutige Kennung (i) zugeordnet ist und die ankommenden Zeitlagen (e1) die zu vermittelnde Mehrkanal-Informationen bilden, und wobei in der Datenbasis (DB) der gleichen Anzahl (n) abgehender Zeitlagen (aj) in einem abgehenden Rahmen (Ra) eine zweite, die Reihenfolge festlegende, eindeutige Kennung (j) zugeordnet ist und die abgehenden Zeitlagen (aj) für die Mehrkanal-Verbindung zur Verfügung stehen,

bei dem durch die Steuereinrichtung (SE)

 eine zweite Hilfsgröße (d1) bestimmt wird, die eine Addition der minimalen Differenz zwischen einer Zahl abgehender Zeitlagen (a;) und einer Zahl ankommender Zeitlagen (ei) für die Mehrkanal-Verbindung innerhalb der jeweiligen Rahmen (Re, Ra) vor einem durch eine abgehende Zeitlage (aj) gebildeten Zeitpunkt mit der Anzahl (n) der zuzuordnenden Zeitlagen bezeichnet, wobei die dem Zeitpunkt der abgehenden Zeitlage (a;) zugeordnete ankommende Zeitlage (ei) eingeschlossen ist,

und

 diese zweite Hilfsgröße (d1) als Zuordnungsversatz (1) für alle abgehenden Zeitlagen (aj, j=i+l) zur Zuordnung zu jeweils einer ankommenden Zeitlage (ei) verwendet wird.

11. Vermittlungseinrichtung (VE) nach Anspruch 9 und 10, bei der durch die Steuereinrichtung (SE) alternativ zur Verwendung der ersten bzw. zweiten

Hilfsgröße (d0, d1)

ein Wert zwischen der ersten Hilfsgröße (d0) und der zweiten Hilfsgröße (d1) als Zuordnungsversatz (1) für alle abgehende Zeitlagen  $(a_i, j=i+1)$  zur Zuordnung zu jeweils einer ankommenden Zeitlage (ei) verwendet wird.

12. Vermittlungseinrichtung (VE) nach einem der Ansprüche 9 bis 11, bei der eine Zwischenspeicherungsverzögerung (dtsl) der Vermittlungseinrichtung (VE) bei einer Zwischenspeicherung der zu vermittelnden Mehrkanal-Informationen berücksichtigt wird, indem die Steuereinrichtung für die Zuordnung der abgehenden-Zeitlagen (aj) den Beginn eines ankommenden Rahmens (Re) um mindestens die Zwischenspeicherungsverzögerung (dtsl) versetzt vor den Beginn eines abgehenden Rahmens (Ra) festlegt, wobei die Zuordnung der ersten Kennung (i) beibehalten wird.

13. Vermittlungseinrichtung (VE) nach einem der Ansprüche 9 bis 12, wobei die Vermittlungseinrichtung (VE) aus einer oder mehreren Koppelstufen (K1, K2, K3) besteht und die Steuerungseinrichtung derart ausgebildet ist, daß der Zuordnungsversatz (l) bzw. die Summe des Zuordnungsversatzes (1) der einzelnen Koppelstufen (K1, K2, K3) gleich dem Produkt der Anzahl (n) der zu vermittelnden Zeitlagen (e1) mit einer natürlichen Zahl gewählt

wird.

Hierzu 5 Seite(n) Zeichnungen

# - Leerseite -

(\_\_\_\_\_

Nummer: Int. Cl.<sup>6</sup>: DE 196 11 236 C1 H 04 J 3/24

Veröffentlichungstag: 21. November 1996

Fig. 2



Fig. 3



Nummer: Int. Cl.6:

DE 196 11 236 C1 H 04 J 3/24

Veröffentlichungstag: 21. November 1996

Fig.1



Nummer: Int. Cl.<sup>6</sup>: DE 196 11 236 C1 H 04 J 3/24

Veröffentlichungstag: 21. November 1996

Fig. 4



Fig. 5



Nummer: Int. Cl.<sup>6</sup>; DE 196 11 236 C1 H 04 J 3/24

Veröffentlichungstag: 21. November 1996

Fig. 6



Fig. 7



Nummer: Int. Cl.<sup>6</sup>: DE 196 11 236 C1 H 04 J 3/24

Veröffentlichungstag: 21. November 1996



602 147/319