MA3505 Multivariate Statistics Project 1

April 28, 2016

- 1 Introduction and exploratory data analysis for the variables.
- 2 Analysis to answer each research question
- 2.1 Question 1
- 2.2 Question 2

Using the above code I created the necessary multivariate regression model. I was able to use this model to get the following table of coefficients:

	chol	thaldur	thaltime	met	thalach
(Intercept)	2.182e+02	2.964e+00	1.941e+00	4.167e+00	$1.216\mathrm{e}{+02}$
proto	5.933e-01	7.621e-02	7.395e-02	1.284e-02	1.241e - 01
restecg	-1.965e+01	1.506e-01	4.325e-01	1.305e-01	-2.202e-01
dig	6.033e+00	$3.130\mathrm{e}{+00}$	2.889e+00	1.519e+00	$-8.249\mathrm{e}{+00}$
prop	1.800e+01	3.734e-01	6.787e - 01	4.875e - 02	$-6.759\mathrm{e}{+00}$
nitr	-1.390e+01	-3.582e - 01	-3.903e-01	3.416e - 02	-5.949e+00
pro	-6.872e+01	1.142e+00	9.582e - 01	4.637e - 01	1.990e - 02
diuretic	-4.914e+01	1.516e+00	6.732e-01	3.744e - 01	1.610e+01
	thalrest	tpeakbps	tpeakbpd	trestbpd	oldpeak
(Intercept)	$7.475\mathrm{e}{+01}$	1.607e+02	9.326e+01	8.488e+01	1.937e + 00
proto	$4.602\mathrm{e}\!-\!02$	$2.114\mathrm{e}\!-\!01$	3.306e-02	1.262e-02	-3.094e-03
restecg	1.481e+00	3.762e+00	-1.245e+00	1.159e+00	-2.081e-01
dig	$2.175\mathrm{e}\!+\!00$	-7.984e+00	-1.854e+01	-4.949e+00	4.202e-01
prop	-2.692e-01	$5.788\mathrm{e}\!-\!02$	-1.988e+00	5.123e-01	-1.674e-02
nitr	-8.676e+00	-9.099e+00	-3.690e+00	$-3.270\mathrm{e}{+00}$	2.621e-01
pro	2.958e+00	4.851e+00	7.011e+00	2.962e-01	$-8.122e\!-\!01$
diuretic	-8.346e-01	6.602e+00	2.153e+00	1.116e+00	-2.439e-02
	rldv5	rldv5e			
(Intercept)	1.487e+01	1.497e+01			
proto	-6.571e-04	-6.529e-03			
restecg	$1.703\mathrm{e}\!-\!01$	$2.203\mathrm{e}\!-\!01$			
dig	-2.153e+00	-2.219e+00			
prop	1.272e+00	$1.175\mathrm{e}{+00}$			
$\operatorname{nit} r$	$6.343\mathrm{e}\!-\!01$	-6.043e-01			
pro	-1.583e+00	$7.800\mathrm{e}\!-\!01$			
diuretic	-1.303e-01	3.239e+00			

However this is not very useful, so I used the **summary()** function to enable me to achieve a more detailed view of my analysis. Below I have tried my best to explain the detailed view for each response variable.

```
Response chol:
Call:
lm(formula = chol ~ proto + restecg + dig + prop + nitr + pro +
    diuretic, data = datall)
Residuals:
                     Median
     Min
                1Q
                                   3Q
                                            Max
-221.153
           -37.934
                      -0.852
                               55.190
                                        310.650
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 218.1866
                          16.6717
                                    13.087
                                            < 2e-16 ***
                                            0.00207 **
               0.5933
                           0.1884
                                     3.149
proto
restecg
             -19.6467
                          15.5463
                                    -1.264
                                            0.20877
                          42.3211
               6.0327
                                     0.143
                                            0.88689
dig
              17.9968
                          25.2562
                                     0.713
                                            0.47750
prop
nitr
             -13.8953
                          24.8506
                                    -0.559
                                            0.57710
pro
             -68.7201
                          27.9126
                                    -2.462
                                            0.01524 *
diuretic
             -49.1356
                          33.0596
                                    -1.486
                                            0.13983
                                                                                        1
Signif. codes:
                              0.001
                                              0.01
                                                             0.05
                                                                           0.1
                 0
Residual standard error: 85.12 on 120 degrees of freedom
  (771 observations deleted due to missingness)
Multiple R-squared:
                      0.2402,
                                  Adjusted R-squared:
F-statistic: 5.418 on 7 and 120 DF,
                                       p-value: 2.026e-05
```

From the table above we can see that the predictor that had the most affect in the value of the **chol** response was **proto**. As *chol* refers to the amount of cholesterol in a person's system and *proto* refers to the type of exercise that they do, it is not a major surprise that this is the most important as in theory the higher the intensity of the your exercise program the lower your cholesterol will be. The second most important variable is **pro**; this is an indicator variable that tells us if someone uses *calcium channel blocker used during exercise* (it is used in cholesteryl ester hydrolysis which helps reduce cholesterol) during their exercise routine.

```
Response thaldur:
Call:
lm(formula = thaldur ~\tilde{\ } proto + restecg + dig + prop + nitr +
    pro + diuretic, data = datall)
Residuals:
            1Q Median
                                   Max
   Min
                            3Q
-4.312 \quad -1.681 \quad -0.310
                         1.422
                                 6.440
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
               2.964440
                           0.443361
                                        6.686 \quad 7.65 \,\mathrm{e}{-10} \ ***
                                               < 2e-16 ***
proto
               0.076214
                           0.005011
                                       15.209
restecg
               0.150581
                           0.413433
                                        0.364
                                                 0.7163
                                                 0.0063 **
               3.129630
                           1.125473
                                        2.781
dig
               0.373380
                           0.671654
                                        0.556
                                                 0.5793
prop
nitr
              -0.358181
                           0.660868
                                       -0.542
                                                 0.5888
pro
               1.141536
                           0.742300
                                        1.538
                                                 0.1267
diuretic
               1.516199
                           0.879177
                                        1.725
                                                 0.0872
                                                                                            1
Signif. codes:
                                0.001
                                                 0.01
                                                                0.05
                                                                              0.1
                  0
                        ***
Residual standard error: 2.264 on 120 degrees of freedom
  (771 observations deleted due to missingness)
Multiple R-squared:
                        0.6909,
                                    Adjusted R-squared:
F-statistic: 38.31 on 7 and 120 DF,
                                         p-value: < 2.2e-16
```

The predictor variable in this instance is **thaldur** which represents the length of time a person spends on an exercise test, it is therefore no surprise that **proto** is the most important predictor as the harder the exercise test the less time you will be able to do it for. The second most significant predictor **dig** refers to whether or not the person is taking a drug called *digitails* during exercise. Studies have shown that the use of this drug during exercise increases blood flow which could allow someone to exercise for longer (experts are not sure if it is a performance enhancing drug as trial results vary).

```
Response thaltime :
lm(formula = thaltime ~ proto + restecg + dig + prop + nitr +
    pro + diuretic, data = datall)
Residuals:
   Min
            1Q Median
                           3Q
                                  Max
-4.469 \quad -1.639 \quad -0.139
                        1.053
                                7.352
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                      4.322 \ 3.21e-05 ***
              1.941466
                          0.449229
proto
              0.073951
                          0.005077
                                     14.565
                                              < 2e-16 ***
                                      1.032
                                               0.3039
restecg
              0.432490
                          0.418906
                                      2.533
dig
              2.888715
                          1.140370
                                               0.0126 *
                          0.680544
                                      0.997
                                               0.3206
prop
              0.678710
nitr
             -0.390289
                          0.669615
                                      -0.583
                                               0.5611
              0.958162
                          0.752125
                                      1.274
                                               0.2051
pro
              0.673187
                          0.890814
diuretic
                                      0.756
                                               0.4513
Signif. codes:
                               0.001
                                               0.01
                                                             0.05
                                                                            0.1
                                                                                         1
Residual standard error: 2.294 on 120 degrees of freedom
  (771 observations deleted due to missingness)
                       0.6704,
                                   Adjusted R-squared:
Multiple R-squared:
F-statistic: 34.86 on 7 and 120 DF,
                                        p-value: < 2.2e-16
```

thaltime refers to the time at which a person's ST depression was measured. It is therefore no surprise that **proto** has the highest effect as different exercises will take different amount of times to complete meaning that if *thaltime* is always measured at the end of the exercise test people who do different tests will have different times but those who take the same test should have very similar times. **dig** is the next significant variable which sort of makes sense as you most likely have to wait for the drug to leave your system before your ST depression can be measured.

```
Response met :
Call:
lm(formula = met ~ proto + restecg + dig + prop + nitr + pro +
    diuretic, data = datall)
Residuals:
              1Q Median
    Min
                               3Q
                                       Max
-3.7325 \quad -1.0919 \quad -0.1298
                           0.8792
                                    5.8206
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.166578
                         0.336945
                                    12.366
                                              <2e-16 ***
proto
             0.012843
                         0.003808
                                     3.372
                                              0.0010 **
restecg
             0.130481
                         0.314201
                                     0.415
                                              0.6787
dig
             1.518904
                         0.855338
                                     1.776
                                              0.0783 .
prop
             0.048745
                         0.510444
                                     0.095
                                              0.9241
nitr
             0.034160
                         0.502247
                                     0.068
                                              0.9459
pro
             0.463725
                         0.564133
                                     0.822
                                              0.4127
diuretic
             0.374352
                         0.668158
                                     0.560
                                              0.5763
                                                             0.05
                                                                           0.1
                                                                                        1
Signif. codes:
                              0.001
                                               0.01
                 0
                       ***
Residual standard error: 1.72 on 120 degrees of freedom
  (771 observations deleted due to missingness)
Multiple R-squared:
                       0.1108,
                                   Adjusted R-squared:
F-statistic: 2.136 on 7 and 120 DF,
                                        p-value: 0.04484
```

The predictor **met** refers to the *metabolic equivalent of resting oxygen consumption while sitting* and therefore it is not much of a surprise that the response **proto** is the most significant. It is also not that surprising that it is as significant as before, as the trial that produced these results most likely used people of varying athletic abilities for each test in order to make the results more accurate.

```
Response thalach:
lm(formula = thalach ~\tilde{\ } proto + restecg + dig + prop + nitr +
    pro + diuretic, data = datall)
Residuals:
    Min
                  Median
                                3Q
                                       Max
              1Q
-42.497 -10.060
                  -0.925
                           13.735
                                    53.075
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 121.6141
                           3.6895
                                    32.962
                                             < 2e-16 ***
               0.1241
                           0.0417
                                     2.977
                                             0.00352 **
proto
              -0.2202
restecg
                           3.4405
                                    -0.064
                                             0.94908
              -8.2489
                           9.3659
                                    -0.881
                                             0.38022
dig
prop
              -6.7587
                           5.5893
                                    -1.209
                                             0.22896
nitr
              -5.9491
                           5.4996
                                    -1.082
                                             0.28154
               0.0199
                           6.1772
                                     0.003
                                             0.99743
pro
                                     2.200
              16.0994
                           7.3163
                                             0.02969
diuretic
Signif. codes:
                               0.001
                                               0.01
                                                              0.05
                                                                            0.1
                                                                                         1
Residual standard error: 18.84 on 120 degrees of freedom
  (771 observations deleted due to missingness)
Multiple R-squared:
                       0.1867,
                                   Adjusted R-squared:
F-statistic: 3.934 on 7 and 120 DF,
                                        p-value: 0.0006723
```

The predictor **thalach** refers to the maximum heart rate that a person achieves during their exercise test and as such it is no surprise that the response variable that is the most significant when calculating it is **proto**. This is because the more intense the exercise test is the more oxygen your body is going to need thus you will have a higher heart rate. Again it is not surprising that *proto* is only a 2* rather than a 3* significance level as your maximum heart rate will depend on how athletic you are, the more athletic the lower your max heart rate will be. **diuretic** is the other significant response variable and it refers to whether or not the subject uses diuretic used during exercise. Diuretic is considered to be a performance enhancing drug so it is therefore no surprise that it only has a 1* significance level due to the fact that the analysis up to now has shown that there is a high probability that athletes are involved in this trial and would be band by WADA if they were caught using it.

```
Response thalrest:
lm(formula = thalrest ~ proto + restecg + dig + prop + nitr +
    pro + diuretic, data = datall)
Residuals:
                               3Q
    Min
              1Q
                  Median
                                      Max
-28.204
                  -1.909
         -8.542
                            8.172
                                   55.796
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 74.75201
                                             <2e-16 ***
                          2.60040
                                    28.746
                                              0.120
proto
              0.04602
                          0.02939
                                     1.566
                                    0.611
                                              0.542
restecg
              1.48140
                          2.42487
                          6.60112
                                              0.742
dig
              2.17533
                                    0.330
                                    -0.068
                                              0.946
prop
             -0.26923
                          3.93939
nitr
             -8.67576
                          3.87612
                                    -2.238
                                              0.027 *
              2.95844
                          4.35374
                                    0.680
                                              0.498
pro
                                              0.872
             -0.83465
diuretic
                          5.15655
                                    -0.162
Signif. codes:
                              0.001
                                              0.01
                                                            0.05
                                                                          0.1
                                                                                       1
Residual standard error: 13.28 on 120 degrees of freedom
  (771 observations deleted due to missingness)
                      0.09876,
                                  Adjusted R-squared:
Multiple R-squared:
F-statistic: 1.879 on 7 and 120 DF,
                                       p-value: 0.07885
```

The **thalrest** variable refers to the subjects resting heart rate and the only variable that has any significant effect on the outcome of this result is **nitr** which tells us whether or not the subject uses nitrates used during their exercise. I am not quite sure what the use of nitrates has to do with the resting heart rates but I do know that they are added to 'unhealthy foods' such as *bacon*, *sandwich meats and salami* which could indicate that they are not very athletic but a high resting heart does not mean that someone is less athletic.

In this trial the subjects the measuring of their peak blood pressure was split into two different variables: **tpeakbps** and **tpeakbpd**, google wasn't able to explain why this is the case.

```
Response tpeakbps:
lm(formula = tpeakbps ~ proto + restecg + dig + prop + nitr +
    pro + diuretic, data = datall)
Residuals:
   Min
           1Q Median
                           3Q
                                 Max
-46.56 -15.18
               -2.97
                        13.36
                               58.73
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 160.70295
                           4.33227
                                    37.094
                                            < 2e-16 ***
proto
                                      4.317 \ \ 3.27e - 05 \ ***
               0.21138
                           0.04897
                           4.03984
                                               0.354
restecg
               3.76224
                                      0.931
              -7.98425
                          10.99749
                                     -0.726
                                               0.469
dig
prop
               0.05788
                           6.56303
                                     0.009
                                               0.993
nitr
              -9.09857
                           6.45763
                                     -1.409
                                               0.161
pro
                                      0.669
               4.85054
                           7.25334
                                               0.505
               6.60213
                           8.59083
                                      0.769
diuretic
                                               0.444
Signif. codes:
                              0.001
                                              0.01
                                                            0.05
                                                                          0.1
                                                                                       1
Residual standard error: 22.12 on 120 degrees of freedom
  (771 observations deleted due to missingness)
Multiple R-squared:
                      0.1992,
                                  Adjusted R-squared:
F-statistic: 4.266 on 7 and 120 DF,
                                       p-value: 0.0003059
```

For the variable that had the most significant affect on **tpeakbps** was (as normal it seems in this trial) **proto**. This is most likely because of the fact that exercise can lower your blood pressure and therefore the subjects that are able to take the more intensive exercise tests were likely to have a lower peak blood pressure.

```
Response tpeakbpd :
lm(formula = tpeakbpd \sim proto + restecg + dig + prop + nitr +
    pro + diuretic, data = datall)
Residuals:
    Min
                  Median
                               3Q
                                      Max
              1Q
-60.687
                  -0.023
                                   36.329
          -7.517
                            8.638
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
                           2.68207
                                             < 2e-16 ***
              93.26322
                                     34.773
                                             0.27768
proto
               0.03306
                           0.03031
                                      1.091
                                     -0.498
              -1.24519
                           2.50103
                                             0.61948
restecg
                                     -2.723
dig
             -18.54131
                           6.80844
                                             0.00743 **
              -1.98759
                           4.06311
prop
                                     -0.489
                                             0.62561
nitr
              -3.69032
                           3.99786
                                     -0.923
                                             0.35782
               7.01102
                           4.49047
                                      1.561
                                             0.12108
pro
               2.15344
                           5.31850
                                      0.405
                                             0.68627
diuretic
Signif. codes:
                              0.001
                                              0.01
                                                             0.05
                                                                           0.1
                                                                                        1
Residual standard error: 13.69 on 120 degrees of freedom
  (771 observations deleted due to missingness)
Multiple R-squared:
                       0.1321,
                                  Adjusted R-squared:
F-statistic:
               2.61 on 7 and 120 DF,
                                       p-value: 0.01525
```

The response variable that was most significant when working out the predictor **tpeakbpd** was **dig**. This makes sense as studies have shown that the use of the drug digitalis during exercise lowers a person's blood pressure.

```
Response trestbpd:
Call:
lm(formula = trestbpd ~ proto + restecg + dig + prop + nitr +
    pro + diuretic, data = datall)
Residuals:
              1Q Median
    Min
                               3Q
                                      Max
-35.510
                  -1.298
                            5.543
                                   24.175
         -6.141
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 84.87854
                          1.88379
                                   45.057
                                             <2e-16 ***
              0.01262
                          0.02129
                                    0.593
                                              0.554
proto
restecg
              1.15852
                          1.75663
                                    0.660
                                              0.511
                          4.78200
                                              0.303
             -4.94866
                                   -1.035
dig
              0.51233
                          2.85378
                                    0.180
                                              0.858
prop
                          2.80795
                                              0.246
nitr
             -3.27042
                                   -1.165
pro
              0.29623
                          3.15394
                                    0.094
                                              0.925
diuretic
              1.11644
                          3.73552
                                    0.299
                                              0.766
                                                                                       1
Signif. codes:
                 0
                              0.001
                                              0.01
                                                            0.05
                                                                          0.1
Residual standard error: 9.618 on 120 degrees of freedom
  (771 observations deleted due to missingness)
Multiple R-squared:
                      0.0366,
                                  Adjusted R-squared:
F-statistic: 0.6514 on 7 and 120 DF,
                                        p-value: 0.7126
```

The predictor variable **trestbpd** refers to the subjects resting blood pressure. As this must be taken before any exercise is started it makes sense that none of the responses are significant in determining what this value shall be due to them being manly related to the exercise test the subject takes.

```
Response oldpeak :
lm(formula = oldpeak ~ proto + restecg + dig + prop + nitr +
    pro + diuretic, data = datall)
Residuals:
    Min
              1Q
                 Median
                                3Q
                                       Max
-1.9343 \quad -0.6280 \quad -0.0506
                           0.3642
                                    3.5801
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
              1.937386
                          0.169250
                                     11.447
                                              <\ 2\,{\rm e}\!-\!16\ ***
proto
             -0.003094
                          0.001913
                                      -1.617
                                              0.10841
restecg
             -0.208133
                          0.157825
                                      -1.319
                                              0.18976
dig
              0.420187
                          0.429642
                                      0.978
                                              0.33004
                          0.256399
prop
             -0.016737
                                      -0.065
                                              0.94806
nitr
              0.262057
                          0.252282
                                      1.039
                                              0.30101
             -0.812187
                          0.283368
                                      -2.866
                                              0.00491
pro
             -0.024390
                          0.335620
                                      -0.073
                                              0.94219
diuretic
Signif. codes:
                               0.001
                                               0.01
                                                              0.05
                                                                            0.1
Residual standard error: 0.8642 on 120 degrees of freedom
  (771 observations deleted due to missingness)
                       0.1081,
                                   Adjusted R-squared:
Multiple R-squared:
F-statistic: 2.077 on 7 and 120 DF,
                                        p-value: 0.0511
```

The predictor variable **oldpeak** refers to *ST depression induced by exercise relative to rest* (which I understand from google to be a fancy way of saying that the subject gets a small heart attack during exercise). It makes sense then that the most significant variable in deciding what the value of which if it is high can cause heart attacks. *oldpeak* is going to be is **pro** as helps to lower cholesterol

The next two predictors, **rldv5** and **rldv5e**, refer to height at rest and height at peak exercise. I don't know what height they are referring to (I am assuming it is not just how tall they are as that would be dull to measure at rest and during peak exercise as it would not change) and luckily none of the response variables are significant in working out what the values of the variables will be.

Response rldv5 :

```
lm(formula = rldv5 ~ proto + restecg + dig + prop + nitr + pro +
    diuretic, data = datall)
Residuals:
     Min
                1Q
                     Median
                                   3Q
                                           Max
-10.7927
          -3.3161
                    -0.7927
                               3.0914
                                       16.1580
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.8748145
                                     14.108
                                               <2e-16 ***
                         1.0543301
             -0.0006571
                         0.0119165
                                     -0.055
                                                0.956
proto
restecg
              0.1703404
                         0.9831619
                                      0.173
                                                0.863
dig
             -2.1530704
                         2.6764216
                                     -0.804
                                                0.423
prop
              1.2718279
                          1.5972216
                                      0.796
                                                0.427
              0.6342939
                                      0.404
                                                0.687
nitr
                          1.5715709
             -1.5831511
                          1.7652196
                                     -0.897
                                                0.372
pro
             -0.1302669
                         2.0907202
diuretic
                                     -0.062
                                                0.950
Signif. codes:
                              0.001
                                              0.01
                                                            0.05
                                                                          0.1
Residual standard error: 5.383 on 120 degrees of freedom
  (771 observations deleted due to missingness)
Multiple R-squared:
                      0.016,
                                  Adjusted R-squared: -0.0414
F-statistic: 0.2787 on 7 and 120 DF,
                                        p-value: 0.9612
Response rldv5e :
lm(formula = rldv5e ~ proto + restecg + dig + prop + nitr + pro +
    diuretic, data = datall)
Residuals:
                     Median
     Min
                1Q
                                   3Q
                                            Max
-11.1533
          -3.5409
                    -0.4798
                               2.7664
                                       14.0371
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                                    14.284
                                              <2e-16 ***
(Intercept) 14.969428
                          1.048021
             -0.006529
                          0.011845
                                    -0.551
                                               0.583
proto
              0.220336
                         0.977279
                                     0.225
                                               0.822
restecg
dig
             -2.219224
                          2.660406
                                    -0.834
                                               0.406
              1.174742
                          1.587664
                                     0.740
                                               0.461
prop
             -0.604272
                          1.562167
                                     -0.387
                                               0.700
nitr
pro
              0.779970
                          1.754657
                                     0.445
                                               0.657
              3.238914
                          2.078210
diuretic
                                     1.559
                                               0.122
Signif. codes:
                              0.001
                                              0.01
                                                            0.05
                                                                          0.1
Residual standard error: 5.351 on 120 degrees of freedom
  (771 observations deleted due to missingness)
Multiple R-squared:
                      0.03959,
                                  Adjusted R-squared: -0.01643
F-statistic: 0.7067 on 7 and 120 DF,
                                        p-value: 0.6663
```

2.3 Question 3

Due to that each dataset is missing different variables from the data, we have decided that in order to maximise the amount of variables we have, we are going to be using each dataset independent of the others.

For each dataset we removed the dummy variables and variables that were missing at least a percentage of data. This percent was different for each data set and we were aiming for approximate at least double the number of observations to the number of variables.

2.3.1 Cleveland

After removing dummy variables and variables with at least 90% NA data, we are left with 45 variables and 201 observations.

Cloveland	l variance	inflation	factor
Слеуегалс	i variance	пппаллоп	Tactor

age	sex	$_{\mathrm{cp}}$	trestbps	htn	chol	cigs	years
2.070591	2.379469	1.683710	2.935706	1.734144	1.326342	2.346224	2.315459
fbs	famhist	restecg	$_{ m ekgmo}$	ekgday	ekgyr	dig	prop
1.281244	1.291443	1.338021	14.903816	3.357399	78.992867	1.296383	1.679766
nitr	pro	diuretic	thaldur	thaltime	met	thalach	thalrest
1.546570	1.415979	1.480903	9.549788	1.422540	10.328475	2.868773	1.713892
tpeakbps	$_{ m tpeakbpd}$	trestbpd	exang	xhypo	oldpeak	slope	rldv5e
2.829387	2.173463	2.785971	1.734917	1.870852	2.831028	2.291928	1.557587
ca	thal	cmo	cday	cyr	$_{ m lmt}$	ladprox	laddist
1.841289	2.051953	15.389866	3.413846	80.511913	1.401270	1.496650	1.526869
cxmain	om1	rcaprox	rcadist				
1.543251	1.789705	1.764053	1.835745				

From the variance inflation factor we see the variables **ekgmo**, **ekgyr**, **cmo** and **cyr** are highly collinear with other variables in the model.

Scree plot - Cleveland

Figure 1: Scree plot for PCA of Cleveland

From the scree plot in Figure 1 we see that we keep 6 components.

We have the loadings of each components as follows.

Cleveland PCA loadings

Loadings:

 $Comp.1\ Comp.2\ Comp.3\ Comp.4\ Comp.5\ Comp.6\ Comp.7\ Comp.8\ Comp.9\ Comp.10$

age 0.192 -0.196 0.167 -0.122 0.1	
$-0.195 0.306 0.193 \qquad -0.33 $	
cp 0.208 0.384	-0.116
trestbps $0.133 - 0.144 - 0.297 \ 0.222 \ 0.107 \ 0.119 \ -0.149$	
htn $0.222 -0.189 0.390 0.117$	
-0.184 0.184 0.2	
cigs $-0.200 0.181 0.231 -0.292 -0.128 -0.2$	
-0.189 0.145 0.223 -0.330 0.138 -0.138	56
fbs $-0.128 0.143 -0.214 0.132$	0.129
	62 -0.136
restecg $-0.103 -0.132$ $-0.128 0.238$	
ekgmo -0.244 -0.433 -0.109 0.220 -0.161 -0.109	44
0.384 0.326 0.255 0.298 -0.1384 0.326 0.255 0.298 -0.1384 0.326 0.255 0.298 -0.1384 0.326 0.255 0.298 -0.1384 0.326 0.255 0.298 -0.1384 0.326 0.255 0.298 -0.1384 0.326 0.255 0.298 -0.1384 0.326 0.255 0.298 -0.1384 0.326 0.255 0.298 -0.1384 0.326 0.255 0.298 -0.1384 0.326 0.255 0.298 -0.1384 0.326 0.255 0.298 -0.1384 0.255 0.298 -0.2884 -0.1384 0.2884 -0.1384 -	.09
	29 - 0.212
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
prop $0.102 0.107 0.162 -0.263 -0.247 0.105$	0.173
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
pro 0.236 -0.115 0.154 -0.2	
diuretic $0.128 - 0.417$ -0.1	
thaldur -0.301 -0.109 0.237 0.125 0.184 -0.149	0.200
	59 - 0.189
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.100
	06 - 0.141
	94 - 0.113
the lattest 0.225 0.297 0.221 0.145 0.145 0.145 0.145 0.145	0.110
tpeakbpd $-0.167 -0.330 \ 0.142$ $-0.128 \ 0.161 \ -0.1$	48 _0 150
	67 - 0.194
	0.154 0.154 0.157
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
•	-0.169 -0.263
	-0.205
	11 0 051
$\begin{bmatrix} ca & 0.213 & 0.113 & -0.124 & 0.283 & 0.2\\ ca & 0.211 & 0.162 & 0.167 & 0.102 & 0.283 & 0.$	
thal $0.231 - 0.163 \ 0.167 \ 0.102 \ -0.163 \ 0.167 \ 0.102$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	30 -0.218
lmt 0.130 -0.106 0.132	-0.126
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32
laddist 0.206 0.107 -0.114 0.254	
cxmain 0.189 0.150 0.104 0.1	11 0.201
om1 0.249 -0.108 0.202	
<u>-</u>	81 - 0.291
rcadist 0.196 0.103 0.183 -0.130	0.250

We see that the first principle component is mostly formed of thaldur, thalach, met and oldpeak variables.

The second principle component is mostly formed of cyr and ekgyr variables.

The third principle component is mostly formed of $\mathbf{tpeakbpd}$, $\mathbf{trestbpd}$, \mathbf{sex} and $\mathbf{trestbps}$ variables.

The fourth principle component is mostly formed of **ekgmo** and **cmo** variables.

The firth principle component is mostly formed of cday, ekgday, years and cigs variables.

The sixth principle component is mostly formed of diuretic, htn, ekgday

2.3.2 Hungary

After removing dummy variables and variables with at least 79% NA data, we are left with 36 variables and 88 observations.

Hungary variance inflation factor

age	sex	painloc	painexer	relrest	ср	trestbps	
2.434590	2.080449	2.654746	10.046548	6.565678	19.690793	4.275217	
htn	chol	$_{ m fbs}$	restecg	$_{ m ekgmo}$	ekgday	ekgyr	
1.861599	2.510843	2.038199	1.494730	26.201141	3.202566	179.069024	
prop	$\operatorname{nit} \mathbf{r}$	pro	diuretic	proto	thaldur	thaltime	
4.687494	8.190981	9.216954	3.508473	40.100317	160.858151	159.083733	
met	thalach	thalrest	$_{ m tpeakbps}$	$_{ m tpeakbpd}$	${ m trestbpd}$	exang	
8.256667	3.592979	1.974234	3.419070	3.548859	3.556353	3.194635	
oldpeak	slope	rldv5	rldv5e	cmo	cday	cyr	
2.059364	2.928694	9.159900	8.276601	26.609872	2.619470	173.894964	

From the variance inflation factor we see that the variables **painexer**, **cp**, **ekgmo**, **ekgyr**, **proto**, **thaldur**, **thaltime**, **cmo** and cyr are highly collinear with other variables in the model.

Scree plot - Hungary

Figure 2: Scree plot for PCA of Hungary

From the scree plot in Figure 2 we see that we keep 6 components.

We have the loadings of each components as follows.

Hungary PCA loadings

					8017 1 017					
Loadings:										
	Comp.1	Comp.2	Comp.3	Comp.4	Comp.5	Comp.6	Comp.7	Comp.8	Comp.9	Comp.10
age	0.162		0.184		-0.253		-0.105	-0.185	-0.114	0.137
sex		-0.144	-0.164	-0.236					0.232	
painloc	0.143		-0.261	-0.112	0.116					0.214
painexer	0.212		-0.335			-0.146				
relrest	0.228		-0.332					-0.159		-0.108
ср	0.229		-0.357			-0.163		-0.115		
trestbps	0.213		0.179	-0.290	0.113			-0.214		0.198
htn		-0.160	0.101			0.247		0.125	0.230	0.214
chol				-0.139	-0.207	-0.105		0.186	-0.529	
fbs		-0.170		-0.127	-0.193	0.168		0.265	-0.304	-0.195
restecg									-0.135	0.304
ekgmo	-0.191		-0.177		-0.276		0.344	-0.380		
ekgday			-0.108		-0.254	0.479	-0.110		0.255	
ekgyr	0.126	-0.312	0.189			-0.181	0.237		0.101	-0.326
prop	0.132	-0.253		0.301	0.117		0.112			0.194
nitr		-0.286		0.402						0.163

pro		-0.309		0.355					-0.105	0.119	
diuretic			0.129	-0.101	0.149		0.275	0.123	0.377	0.281	
proto	-0.312	-0.277	-0.136	-0.121							
thaldur	-0.305	-0.277	-0.135	-0.130							
thaltime	-0.303	-0.270	-0.138	-0.128			-0.111			0.113	
met	-0.306	-0.227					-0.192				
thalach	-0.259			-0.135	0.126		0.376	0.177	-0.142		
thalrest				-0.126			0.539	0.233	-0.141	0.269	
tpeakbps		-0.225		-0.292		0.170		-0.264			
tpeakbpd		-0.191	0.271	-0.231		0.134		-0.199			
trestbpd	0.157		0.155	-0.301	0.137			-0.207	-0.150	0.256	
exang	0.237		-0.216	-0.140						-0.175	
oldpeak		0.113		-0.168	0.217	0.146			0.259	-0.200	
slope	0.156		-0.245			0.280		0.287			
rldv5	-0.147	0.126			0.439	0.283		-0.130	-0.232	-0.109	
rldv5e	-0.128			0.116	0.444	0.289		-0.179	-0.172	-0.129	
cmo	-0.175		-0.194		-0.284	0.103	0.297	-0.395			
cday		-0.123			-0.229	0.387	0.133	0.142		-0.211	
cyr	0.130	-0.316	0.179			-0.181	0.222			-0.331	

We see that the first principle component is mostly formed of proto, met, thaldur and thaltime variables.

The second principle component is mostly formed of cyr, ekgyr and pro variables.

The third principle component is mostly formed of cp, painexer and relrest variables.

The fourth principle component is mostly formed of nitr and pro variables.

The firth principle component is mostly formed of ${\bf rldv5e}$ and ${\bf rldv5}$ variables.

The sixth principle component is mostly formed of ekgday and cday variables.

2.3.3 Longbeach

After removing dummy variables and variables with at least 50% NA data, we are left with 50 variables and 94 observations.

Longbeach variance inflation factor

			ongocach van					
age	sex	painloc	painexer	$\operatorname{relrest}$	$_{\mathrm{cp}}$	trestbps	htn	
3.228090	1.931427	2.577184	7.718893	6.621863	14.044802	3.617851	2.921354	
chol	smoke	cigs	years	$_{ m fbs}$	famhist	restecg	$_{ m ekgmo}$	
2.045184	4.098390	3.361309	4.794619	3.248168	2.369061	2.192354	3.658305	
ekgday	ekgyr	dig	prop	$\operatorname{nit} \mathbf{r}$	pro	diuretic	proto	
2.449554	39.950248	2.509731	2.528256	1.901292	1.732049	2.476101	4.533802	
thaldur	met	thalach	thalrest	$_{ m tpeakbps}$	$_{ m tpeakbpd}$	${f trestbpd}$	exang	
18.058001	16.434757	3.931213	2.659439	3.784661	2.735284	3.161172	2.222555	
xhypo	oldpeak	rldv5	rldv5e	cmo	cday	cyr	$_{ m lmt}$	
2.096734	4.015243	7.661567	6.930116	4.934749	2.272059	43.093455	1.678378	
ladprox	laddist	diag	$_{\rm cxmain}$	ramus	om1	om2	rcaprox	
2.126046	1.837113	1.766507	1.847673	2.269851	2.527439	2.913807	2.246981	
rcadist								
2.142703								

From the variance inflation factor we see that the variables **cp**, **ekgyr**, **thaldur**, **met** and **cyr** are highly collinear with other variables in the model.

Scree plot - Longbeach

Figure 3: Scree plot for PCA of Longbeach

From the scree plot in Figure 3 we see that we keep 11 components.

We have the loadings of each components as follows.

Longbeach PCA loadings

				20118	beach i C		~			
Loadings										
			-	$\operatorname{Comp.} 4$	$\operatorname{Comp.5}$	-	_	-	$\operatorname{Comp.9}$	Comp.10
age	-0.204		0.197			-0.182		-0.205		
sex				-0.215			0.147			0.146
painloc		-0.133	0.209			0.255		0.136	-0.105	
painexer	-0.192	-0.223			0.288	0.188	-0.162			
relrest	-0.181	-0.203			0.114			0.197		
	-0.181				0.216	0.288	-0.128	0.184		
trestbps	-0.196		0.310	-0.133		-0.202				
htn				-0.134						0.106
chol				0.166	0.175	-0.156	-0.232			-0.194
smoke	0.160		-0.191	-0.334						-0.186
cigs				-0.320						0.240
years	0.155	-0.117	-0.133	-0.344					0.103	
fbs		0.111	0.196			-0.168	-0.154			0.315
famhist				-0.124	-0.235			0.159		-0.316
restecg	0.125		0.132					-0.128	0.257	0.229
$_{ m ekgmo}$		-0.189	-0.134				0.178		-0.289	
ekgday			-0.149				0.357		0.264	0.166
ekgyr	-0.357	0.130	-0.161	-0.127			-0.195			
dig	0.166				-0.111	-0.241		0.111	0.227	-0.183
prop			0.137	-0.106		0.115	0.179	-0.179	0.135	-0.116
nitr			0.123		-0.215			-0.255	-0.139	
pro					-0.253			0.170	-0.112	
diuretic				-0.221			0.106		0.187	-0.109
proto	-0.288		-0.240		-0.102			-0.171		
thaldur		0.402					0.102	0.153	-0.190	-0.113
met		0.353			0.126		0.131	0.237	-0.172	
thalach		0.151		-0.129	0.323		0.279	0.172		
thalrest					0.349		0.169		0.119	
tpeakbps		0.264	0.229	-0.167			0.154			0.158
${\it tpeakbpd}$	0.139		0.223			0.141	0.235	0.144		
trestbpd			0.200	-0.181		-0.154		0.135		

1	0.405	0.000				0.44			0.440	0.4-4
exang	-0.105	-0.260				-0.14)	-0.110	-0.174
xhypo	-0.128				0.153				-0.148	
oldpeak	-0.250					-0.208				-0.274
rldv5	-0.238				-0.118		0.280		0.249	-0.137
rldv5e	-0.238				-0.191		0.255		0.224	-0.153
cmo		-0.244 -	-0.131 (0.117		-0.12	4 0.210)	-0.291	
cday					0.135	0.129	9 0.160	-0.310		0.299
cyr	-0.352	0.156 -	-0.160 $-$	0.134			-0.185	õ		
lmt	-0.104						-0.149	0.166		
ladprox		-0.103	_	0.127	0.229	-0.22	0			0.140
laddist						0.123		2	-0.233	
diag	-0.105				-0.109			0.384		0.174
cxmain	0.200	-0.126			0.200	-0.23	3	0.00-	-0.118	
ramus		0.103	0.113 -	0.139	0.140	0.20	-0.114	4 - 0.232	0.110	-0.116
om1		-0.105		0.144	0.110		0.11	0.202	-0.347	-0.161
om2		0.105		0.144 0.217	0.100	0.13	Q	-0.310	0.041	-0.142
rcaprox		-0.139		0.217 0.118	0.100	-0.34		-0.310 -0.113		-0.142
1 *	0.106	-0.139	_		-0.192				0.177	0.170
rcadist	-0.196	C 10	C 10				0.131		-0.177	0.172
	Comp.11	Comp. 12	Comp.13			mp.15		Comp.17		
age	-0.163		-0.136	0.11			0.110		0.185	-0.230
sex		-0.264		0.12				-0.206	-0.150	-0.363
painloc				0.21	10 0	.397			-0.138	-0.199
painexer							-0.246			
relrest	-0.147							0.229	0.114	
ср							-0.138			
trestbps	0.112		-0.129	-0.10	01					
htn	-0.123		0.241	-0.19	96 0	.100	0.102			
chol		0.180	-0.233					0.113	-0.105	-0.178
smoke	-0.107	0.100	0.200					0.203	0.100	0.1.0
cigs	0.101		-0.160		0	.131		0.200	-0.118	0.198
years			-0.264		U	.101		0.156	0.211	0.130
1 "	0.100	0.022	-0.204	0.16	20 0	176		0.130		0.050
fbs	-0.182	0.233		0.13		.176		0.110	0.135	0.250
famhist	0.400	0.269		0.19	99 0	.119	0.04.0	-0.113		0.209
restecg	-0.169						-0.216	-0.139		-0.238
ekgmo	-0.384	0.110	-0.184	-0.20		0.258				
ekgday	0.168	0.147		0.17	72 0	.161				
ekgyr		0.133					0.168	-0.111		
dig			0.121	-0.14			-0.255	-0.247		-0.129
prop		0.242	-0.265	-0.25	55 - 0	0.141	-0.265		-0.185	-0.188
nitr				0.32	-(22 - (0.116			-0.135	
pro		0.168	0.127	0.20			-0.188	-0.190		
diuretic	-0.194		0.170	-0.13		.170	0.322	0.248	0.107	-0.126
proto	-				ŭ			-0.156		-
thaldur	-0.152				0	.114	-0.138	0.111	-0.183	-0.152
met	-0.132						-0.230	0.215	-0.143	-0.166
thalach	3.100			0.13			0.230 0.102	5.210	0.140	0.111
thalrest		0.183		0.10		0.220	0.102 0.151	-0.344	0.430	-0.102
tpeakbps	-0.110			0.16		0.240	0.101	0.044	0.162	
		-0.145					0.252	0.155	0.102	-0.112
tpeakbpd	0.102	-0.105	0.145	0.14		0.169	0.353	-0.157	0.104	0.114
trestbpd	0.371	0.130	-0.147	-0.21		0.110	0.10-	-0.134	-0.124	0.114
exang	0.206	-0.116	-0.215	0.20			-0.106			
xhypo		0.349		-0.15		.253	0.155		0.123	
oldpeak		-0.159	0.101		0	.100			0.143	0.175
rldv5		-0.105								0.119
rldv5e					-(0.108		0.104		
cmo	-0.337		-0.142					-0.116		
cday	0.209	0.127			0	.122		0.258	-0.119	
cyr		0.146			· ·		0.164			
lmt		-0.226	-0.455	-0.24	45		0.126			
ladprox		-0.220 -0.137	0.224	0.2	10		0.120	0.117	-0.310	0.236
ladprox		-0.137	0.224					0.111	-0.510	0.230

laddist	0.331	-0.207		-0.191	0.182	-0.167	-0.168	0.349	-0.174	
diag		-0.262						-0.327	0.139	
cxmain	0.104	0.130		0.137	-0.356	-0.184	0.350	0.191	-0.105	
ramus	-0.196	-0.260		0.165	0.104	-0.133	-0.169	0.115	0.279	
om1			0.313	-0.280		0.122		-0.129		
om2						-0.257	-0.104		0.209	
rcaprox				0.184	0.156			-0.297		
rcadist		0.124	0.214				-0.106			

We see that the first principle component is mostly formed of **ekgyr**, **cyr** and **proto** variables.

The second principle component is mostly formed of thaldur, met variables.

The third principle component is mostly formed of htn, trestbps and cigs variables.

The fourth principle component is mostly formed of years, smoke and cigs variables.

The firth principle component is mostly formed of thalrest, thalach and painexer variables.

The sixth principle component is mostly formed of rcaprox, relrest and cp variables.

The seventh principle component is mostly formed of ekgday, rldv5 and thalach variables.

The eight principle component is mostly formed of diag, cday and om2 variables.

The ninth principle component is mostly formed of **om1**, **cmo** and **ekgmo** variables.

The tenth principle component is mostly formed of famhist, fbs and cday variables.

The eleventh principle component is mostly formed of **ekgmo**, **trestbpd**, **cmo** and **laddist** variables.

2.3.4 Switzerland

After removing dummy variables and variables with at least 13% NA data, we are left with 39 variables and 101 observations.

Switzerland variance inflation factor

age	sex	painloc	painexer	relrest	$_{\mathrm{cp}}$	trestbps	restecg
2.369562	1.738028	3.014841	5.301607	5.348634	5.703978	3.512376	2.391685
$_{ m ekgmo}$	ekgday	ekgyr	dig	prop	${\tt nitr}$	pro	diuretic
15.412883	4.698930	11.069307	1.660195	2.140460	2.363016	2.250616	1.810968
thaldur	thalach	thalrest	$_{ m tpeakbps}$	$_{ m tpeakbpd}$	${ m trestbpd}$	exang	xhypo
4.680438	4.923162	3.031050	4.382267	2.124042	2.928830	1.982196	2.170784
oldpeak	cmo	cday	cyr	lmt	ladprox	laddist	diag
2.282318	17.422769	4.254917	6.008334	1.696866	2.296964	1.815151	1.777471
cxmain	ramus	om1	om2	rcaprox	rcadist		
2.269139	2.183169	2.849526	1.660434	1.868517	1.905493		

From the variance inflation factor we see that the variables **ekgmo**, **ekgyr** and **cmo** are highly collinear with other variables in the model.

Scree plot - Switzerland

Figure 4: Scree plot for PCA of Switzerland

From the scree plot in Figure 4 we see that we keep 5 components.

We have the loadings of each components as follows.

Switzerland PCA loadings

				S 1110E		A loading	5 ¹²				
Loadings:											
	$\operatorname{Comp.1}$	$\operatorname{Comp.} 2$	-							Comp.10	
age			0.366		0.115			0.158		-0.138	
sex		-0.107			-0.238			-0.326	0.118		
painloc	-0.209	-0.265	-0.145	-0.197						0.160	
painexer	-0.245	-0.238	-0.183	-0.211			0.160				
relrest	-0.215	-0.193	-0.187	-0.264			0.147	0.144			
ср	-0.214	-0.292	-0.203	-0.250							
trestbps	-0.154	0.126	0.369	-0.192		0.114		0.169	0.116		
restecg		0.110	0.170		-0.182			0.101	0.202	-0.451	
$_{ m ekgmo}$	-0.337	0.199			-0.120	-0.168					
ekgday		-0.143	-0.219		-0.172	0.420	-0.178	0.222			
ekgyr	0.316	-0.219	0.142	-0.179	0.137		0.171				
dig				0.140		0.167	0.281	0.187		0.342	
prop	0.111	-0.227		0.129		-0.201	-0.174		0.204	0.143	
nitr	0.137	-0.214				-0.307		0.181	0.332		
pro		-0.111	0.106		-0.198	-0.331	-0.201	0.325		0.104	
diuretic	-0.105	-0.119	0.133	0.113	-0.114	-0.201	-0.162	0.173	-0.162		
thaldur	0.231			-0.107	-0.355	-0.161	0.192	-0.166		0.214	
thalach	0.184	0.172	-0.191	-0.187	-0.242		0.247	0.232	-0.236		
thalrest		0.269	-0.156				0.222	0.411	-0.151	-0.160	
tpeakbps		0.215	0.117	-0.372	-0.176			0.197			
$_{ m tpeakbpd}$	-0.116	0.125	0.148	-0.352		0.100			0.189		
trestbpd	-0.206	0.106	0.199	-0.179		0.214	-0.123		0.163	0.152	
exang	-0.188					0.153	-0.315		-0.251	-0.117	
xhypo			0.114	0.170	0.226	0.229	0.290	0.269		0.182	
oldpeak		-0.110		-0.298			0.151		-0.205	-0.187	
cmo	-0.345	0.185			-0.128	-0.128		-0.109			
cday		-0.129	-0.189		-0.188	0.381	-0.231	0.228			
cyr	0.275	-0.194	0.136	-0.154	0.202		0.144	-0.138			
lmt			-0.142				0.135		0.166	-0.333	
ladprox	-0.150	-0.113		0.186	0.132			0.122		-0.195	
laddist		-0.150	0.117		-0.348					0.198	

diag	-0.187	0.196	-0.179		-0.323	
cxmain	-0.102 -0.128		-0.190	0.219	-0.208	-0.366
ramus	-0.139 -0.107	0.237	0.129	0.108	-0.311	
om1	-0.186	0.154	0.153 - 0.247	0.315	0.124	-0.149
om2	-0.161	0.212			-0.338	
rcaprox	-0.189	0.119	0.159	0.133	0.116	0.156
rcadist	-0.106		0.137 - 0.255	0.277	0.220	

We see that the first principle component is mostly formed of cmo, ekgmo, ekgyr and cyr variables.

The second principle component is mostly formed of **cp**, **thalrest**, **painloc**, and **painexer** variables.

The third principle component is mostly formed of **trestbps** and **age** variables.

The fourth principle component is mostly formed of **tpeakbps**, **tpeakbpd** and **oldpeak** variables.

The firth principle component is mostly formed of **thaldur** and **laddist** variables.

2.4 Question 4

- 2.4.1 Cleveland
- 2.4.2 Hungary
- 2.4.3 Longbeach
- 2.4.4 Switzerland

3 Summary