```
In [ ]:
          import pandas as pd
          import numpy as np
          import warnings # to avoid warnings
          warnings.filterwarnings('ignore')
In [ ]:
          from google.colab import drive
          drive.mount('/content/drive')
In [ ]:
          data = pd.read csv("heartDiease.csv")
          data.head(10)
               id gender age hypertension heart_disease ever_married work type Residence type
Out[]:
         0
            9046
                    Male 67.0
                                         0
                                                      1
                                                                 Yes
                                                                         Private
                                                                                        Urban
                                                                           Self-
           51676 Female 61.0
                                         0
                                                      0
                                                                                         Rural
                                                                 Yes
                                                                      employed
                                         0
                                                      1
         2 31112
                    Male 80.0
                                                                 Yes
                                                                         Private
                                                                                         Rural
                                                      0
                                                                                        Urban
           60182 Female 49.0
                                         0
                                                                         Private
                                                                 Yes
                                                                           Self-
                                                      0
             1665
                  Female 79.0
                                         1
                                                                                         Rural
                                                                 Yes
                                                                      employed
           56669
                    Male 81.0
                                                                 Yes
                                                                         Private
                                                                                        Urban
           53882
                    Male 74.0
                                                      1
                                                                         Private
                                                                                         Rural
                                                                 Yes
           10434 Female 69.0
                                                                 No
                                                                         Private
                                                                                        Urban
            27419 Female 59.0
                                                                 Yes
                                                                         Private
                                                                                         Rural
            60491 Female 78.0
                                         0
                                                      0
                                                                 Yes
                                                                         Private
                                                                                        Urban
In [ ]:
          data = data.drop(columns = ['id']) # Droping column id
In [ ]:
          data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 5110 entries, 0 to 5109
         Data columns (total 11 columns):
              Column
                                  Non-Null Count Dtype
              -----
                                  -----
          0
              gender
                                  5110 non-null
                                                   object
          1
                                  5110 non-null
                                                   float64
              age
              hypertension
                                  5110 non-null
                                                   int64
          3
              heart_disease
                                                   int64
                                  5110 non-null
              ever_married
                                  5110 non-null
                                                   object
          5
              work type
                                                   object
                                  5110 non-null
          6
              Residence_type
                                  5110 non-null
                                                   object
          7
              avg_glucose_level 5110 non-null
                                                   float64
```

```
8
             bmi
                                 4909 non-null
                                                 float64
         9
             smoking_status
                                 5110 non-null
                                                 object
         10 stroke
                                 5110 non-null
                                                 int64
        dtypes: float64(3), int64(3), object(5)
        memory usage: 439.3+ KB
In [ ]:
         data = data.dropna() #dropping null values
In [ ]:
         data.shape
Out[]: (4909, 11)
In [ ]:
         ## pivot implmentation on sample values
         df = pd.DataFrame({'A': ['John', 'Boby', 'Mina'],
                'B': ['Masters', 'Graduate', 'Graduate'],
                'C': [27, 23, 21]})
In [ ]:
         df.pivot('A','B','C')
Out[ ]:
            B Graduate Masters
           Α
                   23.0
        Boby
                          NaN
         John
                  NaN
                           27.0
        Mina
                   21.0
                          NaN
In [ ]:
         data['age'] = data['age'].astype('int') # converting data type of age from floa
In [ ]:
         data['gender'].value_counts()
Out[]: Female
                   2897
        Male
                   2011
        Other
        Name: gender, dtype: int64
In [ ]:
         data = data.drop(data['gender']=='Other'].index) #removing row with gender
```

Replacing textual data to numeric values

```
In [ ]:
         data['gender'] = data['gender'].replace('Male',1)
         data['gender'] = data['gender'].replace('Female',0)
         data['ever_married'] = data['gender'].replace('Yes',1)
         data['ever_married'] = data['gender'].replace('No',0)
         data['Residence_type'] = data['gender'].replace('Urban',1)
         data['Residence type'] = data['gender'].replace('Rural',0)
         data=data[data['smoking_status']!='Unknown'] #removing row with gender as 'Unkn
         data
```

9 AM	learningML/heart_diease.ipynb at master · my-code-learning-area/learningML									
Out[]:		gender	age	hyperte	ension h	eart_disease	ever_married	work_type	Residence_type	avg
	0	1	67		0	1	1	Private	1	
	2	1	80		0	1	1	Private	1	
	3	0	49		0	0	0	Private	0	
	4	0	79		1	0	0	Self- employed	0	
	5	1	81		0	0	1	Private	1	
	•••				•••					
	5100	1	82		1	0	1	Self- employed	1	
	5102	0	57		0	0	0	Private	0	
	5106	0	81		0	0	0	Self- employed	0	
	5107	0	35		0	0	0	Self- employed	0	
	5108	1	51		0	0	1	Private	1	
	3425 r	ows × 11	1 colu	ımns						
	<									>
In []:	data	.corr()	# ре	erformin	ng data	correlatio	า			
Out[]:				gender	age	hypertensi	on heart_dise	ase ever_m	arried Residenc	e_typ
		gend	ler 1	.000000	0.044580	0.0378	53 0.1018	334 1.0	00000 1.0	00000
		a	ge 0	.044580	1.000000	0.2670	30 0.2600	0.0	44580 0.0)4458
	h	ypertensi	on 0	.037853	0.267030	1.0000	00 0.1110	683 0.0	37853 0.0	3785
	he	eart_disea	ise 0	.101834	0.260077	0.1116	83 1.0000	000 0.1	01834 0.7	10183
	e	ver_marri	ed 1	.000000	0.044580	0.0378	53 0.1018	334 1.0	00000 1.0	00000
	Res	idence_ty	pe 1	.000000	0.044580	0.0378	53 0.1018	334 1.0	00000 1.0	00000
	avg_g	lucose_le	vel 0	.070169	0.233974	0.1687	69 0.143	152 0.0	70169 0.0	7016
		b	mi 0	.014284	0.079317	0.1325	44 0.0012	208 0.0	14284 0.0)1428
		stro	ke 0	.012413	0.242465	0.1436	26 0.138	538 0.0	12413 0.0)1241

```
# One Hot encoding smoking_status, work_type
data_dummies = data[['smoking_status','work_type']]
data_dummies=pd.get_dummies(data_dummies)
# get_dummies to convert the categorical variables into binary columns
```

```
In []:
    data_stroke=data['stroke']
    data_stroke=data['stroke']
    data_drop(columns=['stroke'],inplace=True) #droping stroke column
    data=data.merge(data_dummies,left_index=True, right_index=True,how='left')#merg
```

Splitting the data into training and testing sets.

Training the model

```
In [ ]:
    from sklearn.linear_model import LogisticRegression
    from sklearn import metrics
    from sklearn.metrics import accuracy_score
    from sklearn.metrics import confusion_matrix
    #from sklearn.metrics import plot_confusion_matrix
In [ ]:

def Model(model):
    model.fit(x_train,y_train)
    score = model.score(x_test, y_test)
    model_train_score = model.score(x_train, y_train)
```