Lecture 1. Information Measurements

Lin Zhang

Tsinghua-Berkeley Shenzhen Institute

Shenzhen, China, 2017

1. Entropy

Preliminaries Re-cap Information Entropy Joint and Conditional Entropy Properties of Entropy

2. Mutual Information and K-L Divergence

Mutual information Properties of Mutual information Likelihood Ratio and Relative Entropy Information Divergence is Universal

3. Optimizing over the Measurements

Relations between the Information Measurements Convexity and Concavity of Entropy and Mutual Information Bounding the Error Probabilities

4. Generalize to Continuous RVs

Differential Entropy Properties of Differential Entropy Mutual Information for Continuous RVs

5. Summary and Reference

Ideas in a nutshell

Outline

- 1. Entropy
 - Preliminaries Re-cap Information Entropy Joint and Conditional Entropy Properties of Entropy
- 2. Mutual Information and K-L Divergence
- 3. Optimizing over the Measurements
- 4. Generalize to Continuous RVs
- 5. Summary and Reference

Basic Concepts and Intuitions

- A discrete random variable $X \sim p_X(x)$ and $p_X(a) = \Pr\{X = a\}$.
- We call $p_X(x)$ the probability mass function (PMF)
- What is the amount of information that a random event provides?
 - ▶ The self-information of a random event is

$$I(a) = \log \frac{1}{p(a)}. (1)$$

- ▶ $I(a) \ge 0$
- $I_{\alpha}(a) = \log_{\alpha} \beta I_{\beta}(a)$

The definition of H

• **Definition 1.1** The entropy H(X) is defined as

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x). \tag{2}$$

- $H(\mathbf{p})$ is a function of \mathbf{p} .
- $H(\mathbf{p}) = 0$, when X is deterministic.
- Another interpretation of entropy is $H(\mathbf{p}) = \mathbb{E}\left[\log \frac{1}{p(x)}
 ight]$

The Uniqueness of the Form of Entropy

- Three conditions given by Shannon [1948].
 - 1. Continuity.
 - Monotonousity.
 - 3. Additivity.

Information Entropy

• **Theorem 1.1** The form of entropy is unique, defined as

$$f(p_1, p_2, \dots, p_n) = -C \sum_{i=1}^n p_i \log p_i,$$
 (3)

where C is a scalar constant.

The Uniqueness of the Form of Entropy

- Conditions given by A.I. Khinchin.
 - 1. Continuity
 - 2. Additivity
 - 3. Maximum achievable at the uniform distribution.

$$\max_{\mathbf{p}} f(p_1, p_2, \dots, p_n) = f(\underbrace{\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}}_{n})$$
(4)

4. Zero-probability event does not change entropy

$$f(p_1, p_2, \dots, p_n) = f(p_1, p_2, \dots, p_n, 0)$$
(5)

Note that these conditions are equivalent to the Shannon conditions.

Joint and Conditional Entropy

Mutual Information and K-L Divergence

• **Definition 1.2** Joint entropy of (X, Y)

$$H(X,Y) = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log \frac{1}{p(x,y)}$$
 (6)

Definition 1.3 Conditional entropy

$$H(X|Y) = \mathbb{E}\left[\log\frac{1}{p(x|y)}\right]$$
 (7)

$$= \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log \frac{1}{p(x|y)}$$
 (8)

Generalize to Continuous RVs

Entropy

Chain Rule of Entropy

• **Theorem 1.2** Chain rule of entropy.

$$H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)$$
 (9)

• Corollary 1.3 For $(X_1, X_2, ..., X_n) \sim p(x_1, x_2, ..., x_n)$

$$H(X_1, X_2, \dots, X_n) = \sum_{i=1}^n H(X_i | X_{i-1}, \dots, X_1)$$
 (10)

Basic Properties of H

Mutual Information and K-L Divergence

- 1. Symmetry w.r.t $\mathbf{p} = (p_1, p_2, \dots, p_n) \in \mathbf{R}^n$
- 2. Non-negativity H(X) > 0
- 3. Additivity $H(p, q, 1 p q) = H(p) + (1 p)H(\frac{q}{1 p})$
- 4. Conditioning reduces entropy $H(X|Y) \leq H(X)$
- Maximum entropy achievable when p_i is uniformly distributed

$$H(\mathbf{p}) = H(p_1, p_2, \dots, p_n) \le H(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}) = \log n = \log |\mathcal{X}|.$$
 (11)

1. Entropy

 Mutual Information and K-L Divergence Mutual information Properties of Mutual information Likelihood Ratio and Relative Entropy

Information Divergence is Universal

- 3. Optimizing over the Measurements
- 4. Generalize to Continuous RVs
- 5. Summary and Reference

Definition of Mutual Information

• **Definition 1.4** The mutual information between X and Y is defined as

$$I(X;Y) = H(X) - H(X|Y)$$
(12)

- 1. $I(X;Y) = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$
- 2. I(X;Y) = H(X) + H(Y) H(X,Y)
- 3. I(X;Y) = 0 when X and Y are independent
- 4. I(X;Y) = H(X) = H(Y), one-to-one mapping between X and Y
- **Definition 1.5** Mutual information between multi-variables

$$I(X;Y,Z) = H(X) - H(X|Y,Z) = H(Y,Z) - H(Y,Z|X)$$
 (13)

Definition of Conditional Mutual Information

Definition 1.6 Conditional mutual information of multi-variables

$$I(X;Y|Z) = H(X|Z) - H(X|Y,Z) = H(Y|Z) - H(Y|X,Z)$$
 (14)

• Definition 1.7 Mutual information amongst three random variables is

$$I(X;Y;Z) = I(X;Y) - I(X;Y|Z).$$
 (15)

• Note that it can be a negative value.

Basic Properties of I(X;Y)

- 1. Symmetry I(X;Y) = I(Y;X)
- 2. Non-negativity $I(X;Y) \ge 0$ and $I(X;Y|Z) \ge 0$
- 3. $I(X;Y) \leq \min(H(X), H(Y))$
- 4. Additivity

$$I(X_1, X_2, \dots, X_n; Y) = \sum_{i=1}^{n} I(X_i; Y | X_1, X_2, \dots, X_{i-1})$$
 (16)

Likelihood ratio $\Lambda(x)$

Mutual Information and K-L Divergence

 MAP (maximum a posterior probability) estimation with observed x if $\frac{p(\theta_0|x)}{p(\theta_1|x)} > 1$, then $H_0: \theta = \theta_0$ is inferred. Otherwise, if $\frac{p(\theta_0|x)}{p(\theta_1|x)} < 1$, then $H_1: \theta = \theta_1$ is inferred.

By using Bayesian rule

$$p(\theta_i|x) = \frac{p(\theta_i)p(x|\theta_i)}{p(x)},\tag{17}$$

we reformulate MAP as a Likelihood Ratio Test (LRT).

If the likelihood ratio

$$\Lambda(x) = \frac{p(x|\theta_0)}{p(x|\theta_1)} > \frac{p(\theta_1)}{p(\theta_0)},\tag{18}$$

hypotheses H_0 is true and H_1 is true otherwise. Note that $p(x|\theta_i)$ and $p(\theta_i)$ denote likelihood and prior distribution, respectively.

• The log-likelihood ratio equals $\log \Lambda(x) = \log \frac{p(x|\theta_0)}{p(x|\theta_0)}$.

Relative Entropy $D(\mathbf{p}||\mathbf{q})$

• **Definition 1.8** The Relative Entropy between p(x) and q(x) is defined as

$$D(\mathbf{p}||\mathbf{q}) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$$
(19)

Generalize to Continuous RVs

- Other names of relative entropy are Kullback-Leibler Divergence and Cross Entropy.
- Symmetric property and triangle-inequality do NOT hold.
- $D(\mathbf{p}||\mathbf{q}) \ge 0$ with equality if and only if $\mathbf{p} = \mathbf{q}$.

Information Divergence is Universal

Information Divergence

- The Universe is Bayesian.
- The Mathematical Simplification.
 - Data space and space of distribution.
 - How to measure distance between distributions.
- Information as movement of knowledge.
- Divergence: A measure of volume of information

Different Version of Divergence

• Kullback-Leibler Divergence

$$D(\mathbf{p}||\mathbf{q}) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$$
 (20)

Renyi Divergence

$$D_{\alpha}(\mathbf{p}||\mathbf{q}) = \frac{1}{\alpha - 1} \log \left(\sum_{x \in \mathcal{X}} \frac{p^{\alpha}(x)}{q^{\alpha - 1}(x)} \right)$$
 (21)

• f-divergence, for convex function f

$$D_f(\mathbf{p}||\mathbf{q}) = \sum_{x \in \mathcal{X}} q(x) f\left(\frac{p(x)}{q(x)}\right)$$
 (22)

• Hellinger, Bregman, total variation, chi-square, alpha, etc.

Renyi Divergence $\alpha = 4$

Figure: A Ternary Example of the Information Divergence

Outline

- 1. Entropy
- 2. Mutual Information and K-L Divergence
- 3. Optimizing over the Measurements

Relations between the Information Measurements Convexity and Concavity of Entropy and Mutual Information Bounding the Error Probabilities

- 4. Generalize to Continuous RVs
- 5. Summary and Reference

Mutual Information and K-L Divergence

Entropy, Mutual Information and Relative entropy

• **Theorem 1.4** Entropy and K-L Divergence

$$H(X) = \log |\mathcal{X}| - D(\mathbf{p}||\mathbf{u}), \tag{23}$$

where \mathbf{u} denotes the uniform distribution and $D(\mathbf{p}\|\mathbf{u})$ measures the divergence from \mathbf{p} to \mathbf{u} .

• Theorem 1.5 Mutual Information and Relative Entropy

$$I(X;Y) = D(p(x,y)||p(x)p(y))$$
(24)

The Convex Set, Convex Function and Two Lemmas

Convex Set.

Entropy

- Convex Functions.
- Lemma 1.6 Jensen's inequality: For any convex function f, $E(f(X)) \ge f(E(X))$ holds. If f is strictly convex, the equality holds if and only if X is a constant.
- Lemma 1.7 Log-sum inequality: For non-negative real values a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n and

$$\sum_{i=1}^{n} a_i \log \frac{a_i}{b_i} \ge \left(\sum_{i=1}^{n} a_i\right) \log \frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i},\tag{25}$$

and the equality holds if and only if $\forall i=1,2,\ldots n,\ \frac{a_i}{b_i}$ equals to a constant.

Mutual Information and K-L Divergence

Entropy

Then Convexity of K-L Divergence

• Theorem 1.8 $D(\mathbf{p}\|\mathbf{q})$ is convex over (\mathbf{p},\mathbf{q}) , that is, for pmf $(\mathbf{p}_1,\mathbf{q}_1)$ and $(\mathbf{p}_2,\mathbf{q}_2)$,

$$D(\lambda \mathbf{p}_1 + (1 - \lambda)\mathbf{p}_2 \|\lambda \mathbf{q}_1 + (1 - \lambda)\mathbf{q}_2) \le \lambda D(\mathbf{p}_1 \|\mathbf{q}_1) + (1 - \lambda)D(\mathbf{p}_2 \|\mathbf{q}_2)$$
(26)

for all $0 \le \lambda \le 1$.

- Theorem 1.9 Entropy $H(X) = H(\mathbf{p})$ is concave over \mathbf{p} .
- Theorem 1.10 Mutual information $I(X;Y) = I(\mathbf{p}, \mathbf{Q})$ is concave over \mathbf{p} and convex over channel transition matrix \mathbf{Q} , respectively.

Fano's inequality and Estimation

• Theorem 1.11 Fano's inequality: For any estimator \hat{X} such that $X \longrightarrow Y \longrightarrow \hat{X}$ with $P_e = \Pr(X \neq \hat{X})$, we have

$$H(P_e) + P_e \log |\mathcal{X}| \ge H(X|\hat{X}) \ge H(X|Y). \tag{27}$$

• Corollary 1.12 $\forall X, Y$ and let $p = \Pr(X \neq Y)$,

$$H(p) + p\log|\mathcal{X}| \ge H(X|Y). \tag{28}$$

• Corollary 1.13 If $\hat{X} = Y$, Fano's inequality can be strengthened as

$$H(P_e) + P_e \log(|\mathcal{X}| - 1) \ge H(X|Y). \tag{29}$$

- 1. Entropy
- 2. Mutual Information and K-L Divergence
- 3. Optimizing over the Measurements
- 4. Generalize to Continuous RVs. Differential Entropy Properties of Differential Entropy Mutual Information for Continuous RVs
- 5. Summary and Reference

The definition of Differential entropy

Definition 1.14 The differential entropy h(X) of a continuous random variable X is

$$h(X) = -\int_{x \in S} f(x) \log f(x) dx,$$
(30)

where f(x) is the p.d.f (probability density function) and S is the support set.

- For variables X and Y, we have
 - ▶ joint differential entropy $h(X,Y) = -\int \int_{x,y} f(x,y) \log f(x,y) dx dy$,
 - conditional differential entropy $h(X|Y) = -\int \int_{x,y} f(x,y) \log f(x|y) dx dy$,
 - h(X,Y) = h(X) + h(Y|X) = h(Y) + h(X|Y), $h(X|Y) \le h(X)$ and $h(X,Y) \le h(X) + h(Y)$.
 - Note that h(X) is not necessarily positive.

Properties of Differential Entropy

Mutual Information and K-L Divergence

• **Theorem 1.15** The transform of h(X) has

$$h(aX) = h(X) + \log|a|. \tag{31}$$

• The differential entropy of a gaussian random variable $X \sim \mathcal{N}(m, \sigma^2)$ is

$$h(X) = \frac{1}{2}\log 2\pi e\sigma^2. \tag{32}$$

• **Theorem 1.16** Let the random variable X have variance σ^2 , then

$$h(X) \le \frac{1}{2} \log 2\pi e \sigma^2 \tag{33}$$

with equality if and only if $X \sim \mathcal{N}(m, \sigma^2)$.

Mutual Information for Continuous RVs

 Definition 1.15 The mutual information between continuous random variables X and Y is defined as

$$I(X;Y) = \int \int_{x,y} f(x,y) \log \frac{f(x,y)}{f(x)f(y)} dx dy,$$
 (34)

where f(x, y) and f(x) are joint p.d.f and marginal p.d.f, respectively.

- 1. Entropy
- 2. Mutual Information and K-L Divergence
- 3. Optimizing over the Measurements
- 4. Generalize to Continuous RVs
- 5. Summary and Reference Ideas in a nutshell

Ideas in a nutshell

- The definitions of Entropy, Mutual Information and K-L Divergence.
- The relations between these measurements
- Jensen's inequality and log-sum inequality.
- The convexity/concavity of entropy, mutual information and relative entropy
- Fano's inequality
- Differential entropy and mutual information for continuous random variables.

The whole story revisited

- The K-L Divergence is fundamental.
- K-L Divergence induces Shannon Entropy and Mutual Information.
- Convexity and concavity enables global optimizability.
- A trailer for three main results of Shannon theory.

Reference

Lin Zhang, Lecture notes on Fundamentals of applied information theory, 2014-spring, in Chinese.

Claude E. Shannon: A Mathematical Theory of Communication, Bell System Technical Journal, 1948.

Cover T M, Thomas J A. Elements of information theory[M]. John Wiley and Sons, 2012.

Xuelong Zhu, Fundamentals of applied information theory, Tsinghua Univ. Press, 2001, in Chinese.