The Definite Integral

Ryan Allison

University of Pittsburgh - Bradford

March 21, 2017

Why do we care about the area under the curve?

Below is a graph of v(t), the velocity (in cm/s) of an ice puck being pushed across a surface as a function of time (in sec).

Question

Calculate the area under the "curve" on the interval [0, 9]. What does this area tell us about the ice puck?

What is the Definite Integral?

Why do we care about the area under the curve?

Below is a graph of v(t), the velocity (in cm/s) of an ice puck being pushed across a surface as a function of time (in sec).

$$A = \sum_{i=1}^{5} A_{i}$$

$$= A_{1} + A_{2} + A_{3} + A_{4} + A_{5}$$

$$= (180 + 45 + 20 + 10 + 30)$$

$$= 285 \left(\frac{\sec c}{1} \cdot \frac{cm}{\sec c}\right)$$

$$= 285 \left(\frac{\sec c}{1} \cdot \frac{cm}{\sec c}\right)$$

$$= 285cm$$

Why do we care about the area under the curve?

Below is a graph of v(t), the velocity (in cm/s) of an ice puck being pushed across a surface as a function of time (in sec).

Question

Calculate the area under the "curve" on the interval [0,9]. What does this area tell us about the ice puck?

Answer

The puck traveled a total distance of 285 cm in 9 seconds.

How would we find the area under this curve?

How would we find the area under this curve?

Cut the interval in n subintervals.

The length of each subinterval is:

$$\Delta x = \frac{b-a}{n}$$

Here, the graph shows n = 5 subintervals.

Area approximation using right endpoints (R_n)

$$A\approx A_1+A_2+\cdots+A_5$$

$$= f(x_1)\Delta x + \cdots + f(x_5)\Delta x$$

$$A \approx R_5 = \sum_{i=1}^5 f(x_i) \Delta x$$

In General:

$$A \approx R_n = \sum_{i=1}^n f(x_i) \Delta x$$

Area approximated using left endpoints (L_n)

$$A\approx A_0+A_1+\cdots+A_4$$

$$= f(x_0)\Delta x + \cdots + f(x_4)\Delta x$$

$$A \approx L_5 = \sum_{i=1}^5 f(x_{i-1}) \Delta x$$

In general:

$$A \approx L_n = \sum_{i=1}^n f(x_{i-1}) \Delta x$$

Area approximated using midpoints (M_n)

The midpoint of each subinterval is:

$$\bar{x}_i = \frac{x_{i-1} + x_i}{2}$$

Area approximated using midpoints (M_n)

$$A \approx A_1 + A_2 + \cdots + A_5$$

$$= f(\bar{x}_1)\Delta x + \cdots + f(\bar{x}_5)\Delta x$$

$$A \approx M_5 = \sum_{i=1}^5 f(\bar{x}_i) \Delta x$$

In general:

$$A \approx M_n = \sum_{i=1}^n f(\bar{x}_i) \Delta x$$

How can we use this idea to find the exact area?

Instead of cutting the interval [a,b] into a finite number of subintervals, cut the interval up into n subintervals and let the $n \to \infty$.

The approximate area converges to the exact area as the $n \to \infty$

The approximate area converges to the exact area as the $n \to \infty$

The approximate area converges to the exact area as the $n \to \infty$

The approximate area converges to the exact area as the $n \to \infty$

The approximate area converges to the exact area as the $n \to \infty$

Discussion about the symbol x_i^*

Definition of the definite integral

Definite Integral

The definite integral of f on the interval [a, b] is:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

Where, f, is a continuous function defined for [a, b].

The quantity Δx is the width of the subintervals found by:

$$\Delta x = \frac{b-a}{n}$$
.

Every x_i^* is the **sample point** that lies in the i^{th} subinterval $[x_{i-1}, x_i]$.

Sum Formulas

You will use these in your bookwork:

$$\sum_{i=1}^{n} c = cn \qquad \qquad \sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} i^{3} = \left[\frac{n(n+1)}{2}\right]^{2}$$

$$\sum_{i=1}^{n} i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$