Session 15: Introduction to Sets

- Sets
- Specification of sets
- Sets of Numbers
- Special sets

Sets, Functions and Relations

- Basic abstractions in mathematics and computer science
- Data structures are constructed using these abstractions
 - Unordered collections ~ sets
 - Order collections ~ sequences, which are functions
 - Networks, graphs ~ relations
 - Databases ~ relations
 - Objects ~ functions
- Computing is modelled using these abstractions
 - Finite state machines ~ relations
 - Programs are decomposed into functions
 - Cost of programs is expressed as functions

Some History

- Cantor, Founder of set theory, discovered uncountable sets
- Peano, Introduced notations (∈ , ∪ , ∩) and axioms for natural numbers based on set theory
- ZF developed the currently widely accepted axioms for set theory
- Wrote Pincipia Mathematica, deriving all mathematics from primitive axioms, know for his antimony on set theory

Georg Cantor, 1845 - 1918

Guiseppe Peano, 1858 - 1932

Zermelo Fraenkel

Bertrand Russell, 1872 - 1970

Introduction

- Sets are one of the basic building blocks in discrete mathematics.
 - Basis for counting, functions, relations
 - Programming languages have set operations
 - Databases are sets of discrete objects
- Set theory is an important branch of mathematics.
 - Many different systems of axioms have been used to develop set theory.
 - Here we are not concerned with a formal set of axioms for set theory.
 - Instead, we will use what is called naïve set theory.

Sets

- A set is an unordered collection of objects.
 - the students in this class
 - the chairs in this room

- The objects in a set are called the elements of the set.
- A set is said to **contain** its elements.

- The notation $a \in A$ denotes that a is an element of the set A.
- If a is not an element of A, write $\mathbf{a} \notin \mathbf{A} \cong \neg \alpha \in A$

Describing a Set: Roster Method

Listing all elements of a set

$$S = \{a, b, c, d\}$$

• Order not important: $S = \{a, b, c, d\} = \{b, c, a, d\}$

Examples

Set of all vowels in the English alphabet:

Set of all odd positive integers less than 10:

Set of all positive integers less than 100:

Set of all integers less than 0:

Sets of Numbers

 $N = natural numbers = \{0, 1, 2, 3,\}$

Z = integers = $\{..., -3, -2, -1, 0, 1, 2, 3, ...\}$

 Z^{+} = positive integers = {1, 2, 3,}

R = set of real numbers

R+ = set of positive real numbers

C = set of **complex numbers**

Q = set of *rational numbers*

Set-Builder Notation

Specify the property or properties that all members must satisfy:

$$S = \{x \mid P(x)\}$$

• P(x) may be expressed in natural language or predicate logic

Examples

 $S = \{x \mid x \text{ is a positive integer less than 100}\}$

 $O_1 = \{x \mid x \text{ is an odd positive integer less than 10}\}$

 $O_2 = \{x \in \mathbf{Z}^+ \mid x \text{ is odd and } x < 10\}$

 $P = \{x \mid Prime(x)\}$

 $\mathbf{Q}^+ = \{x \in \mathbf{R} \mid x = p/q, \text{ for some positive integers } p, q\}$

Interval Notation

For sets of numbers

$$[a,b] = \{x \mid a \le x \le b\}$$

 $[a,b) = \{x \mid a \le x < b\}$
 $(a,b) = \{x \mid a < x \le b\}$
 $(a,b) = \{x \mid a < x < b\}$

closed interval [a,b]
open interval (a,b)

Universal Set and Empty Set

The **universal set U** is the set containing everything currently under consideration.

Universal Set and Empty Set

The **universal set U** is the set containing everything currently under consideration.

- Sometimes implicit
- Sometimes explicitly stated
- Contents depend on the context

Universal Set and Empty Set

The **universal set U** is the set containing everything currently under consideration.

- Sometimes implicit
- Sometimes explicitly stated
- Contents depend on the context

The **empty set** is the set with no elements.

Denoted as Ø or {}

Some things to remember

Sets can be elements of sets.

$$\{\{1, 2, 3\}, a, \{b, c\}\}\$$

 $\{N, Z, Q, R\}$

The empty set is different from a set containing the empty set.

$$\emptyset \neq \{\emptyset\}$$

Summary

- Set definition
 - Roster method
 - Set Builder Notation
- Sets of Numbers
- Interval Notation
- Empty and Universal Set