Gaussian Elimination with Partial Pivoting

Let's review: Gaussian Elimination

• An algorithm for solving a system of linear equations. $a_{1}x_{1} + a_{1}x_{2} + \cdots + a_{r}x_{r} = b_{1}$.

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1,$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2,$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

- We want to know what x₁, x₂, ..., x_n are.
- So we use our three matrix operations
 - 1. Add multiples of one equation onto another
 - 2. Interchange two equations
 - 3. Multiply an equation by a nonzero constant

1. Input Matrix

$$\begin{pmatrix}
2 & 1 & -1 & 2 & 5 \\
4 & 5 & -3 & 6 & 9 \\
-2 & 5 & -2 & 6 & 4 \\
4 & 11 & -4 & 8 & 2
\end{pmatrix}$$

- 2. We want to preserve the first a₁₁ and eliminate everything else in that row
 - 1. i.e. make it zero

- 3. To eliminate a_1 from the a_{i1} below it, we need to multiply equation 1 by a_{i1} / a_{11} :
 - For a₂₁, multiply by 2
 - Then subtract from eq 2
 - For a₃₁, multiply by -1
 - Then subtract from eq 3
 - For a₄₁, multiply by 2
 - Then subtract from eq 4

- 4. Now we've eliminated the coefficients of x1 for all equations except 1
- 5. We will now use equation 2 to eliminate the coefficients a_{22} and a_{23} .
 - For a₃₂, multiply by 2
 - Then subtract from eq 3
 - For a₄₂, multiply by 3
 - Then subtract from eq 4

Note that we do NOT do equation 1

$$\begin{pmatrix}
2 & 1 & -1 & 2 & 5 \\
0 & 3 & -1 & 2 & -1 \\
\hline
0 & 0 & -1 & 4 & 11 \\
0 & 9 & -2 & 4 & -8
\end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 & -1 & 2 & 5 \\
0 & 3 & -1 & 2 & -1 \\
0 & 0 & -1 & 4 & 11
\end{pmatrix}$$

- 6. Finally, we want to eliminate the coefficient for x3 in equation 4, a₄₃.
 - For a₄₃, multiply by -1
 - Then subtract from eq 4
- We leave the upper triangular part of the matrix to be solved in back substitution.

$$\begin{pmatrix}
2 & 1 & -1 & 2 & 5 \\
0 & 3 & -1 & 2 & -1 \\
0 & 0 & -1 & 4 & 11
\end{pmatrix}$$

- 7. Back substitution is now easy on a triangular matrix.
 - We can see this in the equations
- 8. To perform back substitution, we start with the last row of the matrix,
 - 7. We have one coefficient times one variable equal to six. Thus:

$$X_4 = 6/2$$

$$2x_1 + 1x_2 - 1x_3 + 2x_4 = 5$$
$$3x_2 - 1x_3 + 2x_4 = -1$$
$$-1x_3 + 4x_4 = 11$$
$$2x_4 = 6$$

$$\begin{pmatrix}
2 & 1 & -1 & 2 & 5 \\
0 & 3 & -1 & 2 & -1 \\
0 & 0 & -1 & 4 & 11 \\
0 & 0 & 0 & 2 & 6
\end{pmatrix}$$

The procedure is: $X_4 = b_4/a_{44}$

Here, $x_4 = 3$

- 7. Now eliminate the fourth column by subtracting all x4 values:
 - $a_{34} = 4$, so from b_3 , subtract $(a_{34}/a_{44})^*b_4$ and set a_{34} to 0.
 - This eliminates a₃₄
 - $a_{24} = 2$, so from b_2 , subtract $(a_{24}/a_{44})^*b_4$ and set a_{24} to 0
 - This eliminates a₂₄
 - $a_{14} = 2$, so from b_2 , subtract $(a_{14}/a_{44})^*b_4$ and set a_{14} to 0
 - This eliminates a₁₄

$$\begin{pmatrix}
2 & 1 & -1 & 2 & 5 \\
0 & 3 & -1 & 0 & -7
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & 1 & 3
\end{pmatrix}$$

- 7. Back substituting in column 4 enables us to solve for x_3 : $x_3 = 1$.
 - $a_{23} = -1$, so from b_2 , subtract $(a_{23}/a_{33})^*b_3$, and set a_{23} to 0
 - This eliminates a₂₃.
 - $a_{13} = -1$, so from b1, subtract $(a_{13}/a_{33})^*b_3$, and set a_{23} to 0
 - This eliminates a₁₃.

Now we can solve for x_2 : -2

(2)	1	- 1	0	$ -1\rangle$
0	3	- 1	0	-7
0	0	1	0	1
0	0	0	1	$\left \begin{array}{c} 3 \end{array} \right $

I	(2	1	0	0	0
	0	3	0	0	-6
	0	0	1	0	1
	0	0	0	1	3

- 7. Back substituting in column 3 enables us to solve for x_2 : x_2 = -2.
 - $a_{12} = -1$, so from b_1 , subtract $(a_{12}/a_{22})^*b_2$, and set a_{12} to 0
 - This eliminates a₁₂.
- 8. Now we can solve for x1:
 - $x_1 = b_1/a_{11} = 1$
- 9. Our solutions are:

$$x1 = 1$$

 $x2 = -2$
 $x3 = 1$
 $x4 = 3$

(2)	1	0	0	0
0	1	0	0	0 \ -2 1
0	0	1	0	1
0	0	0	1	3

/2	0	0	0	2
0	1	0	0	-2
0	0	1	0	1
0	0	0	1	$\left \begin{array}{c} 3 \end{array} \right $

$$\begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 \\
0 & 1 & 0 & 0 & | & -2 \\
0 & 0 & 1 & 0 & | & 1 \\
0 & 0 & 0 & 1 & | & 3
\end{pmatrix}$$

Solving and Inversion work the same

$$\begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 2 & 6 & 1 & 0 & 1 & 0 \\ 1 & 1 & 4 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} & b_{11} & b_{12} & b_{13} \\ a_{21} & a_{22} & a_{23} & b_{21} & b_{22} & b_{23} \\ a_{31} & a_{32} & a_{33} & b_{31} & b_{32} & b_{33} \end{pmatrix}$$

- Perform the same process with this matrix
- In the earlier example we only multiply and subtract b₁, b₂, b₃. Here we do it for all b's in the row
- When the left side is an identity matrix, then the right hand side is the inverse.

Partial Pivoting

- Each time we select the one of the coefficient values to isolate, that is a pivot.
- But several things (a₁₁-a₁₄) can be the in the pivoting position
 because we can arbitrarily switch rows in this matrix.
- In fixed pivoting there are no alternatives.

How do we pick the pivot?

To solve for x1 we have four possibilities (a₁₁ to b₄₁). In partial pivoting we always pick the largest value x_i as the new pivot

- Why?
 - The largest value becomes a denominator in other operations, so it's size eliminates "small denominator" errors that propagate

Example: A system that requires pivoting

Exact solutions:

$$-x_1 = 10.00$$

 $-x_2 = 1.00$

- Use 4-digit accuracy
- Lets suppose that we do not $\begin{pmatrix} .003 & 59.14 & 59.17 \\ 5.2 & -6.13 & 46.78 \end{pmatrix}$ do partial pivoting. So the first pivot is a_{11} .

 So scale equation 1 by $(a_{21}/\begin{pmatrix} .003 & 59.14 & 59.17 \\ 0 & 1024000 & 1025000 \end{pmatrix}$
 - So scale equation 1 by (a₂₁/ a₁₁) ≈ 17330 and subtract from equation 2.
 - So x2 = 1.001

Example from Wikipedia

Example: A system that requires pivoting

- We have found that $x_2=1.001$
- Backsolve for x₁:

$$-(a_{12}/a_1)*b_2 = 59.19$$

- Set $a_{12} = 0$ and $b_2 = .02$
- Then $x_1 = a_{11}/b_1 = .02/.003 = 6.667$

$$\begin{pmatrix} .003 & 59.14 & 59.17 \\ 0 & 1 & 1.001 \end{pmatrix}$$
 $\begin{pmatrix} 1 & 0 & 6.667 \end{pmatrix}$

$$\begin{pmatrix} 1 & 0 & 6.667 \\ 0 & 1 & 1.001 \end{pmatrix}$$

- But the actual solutions are:
 - $x_1 = 10.00$
 - $x_2 = 1.00$

Lets redo the example with partial pivoting

- So we want to solve for x_1 . $\begin{pmatrix} .003 & 59.14 & 59.17 \\ 5.2 & -6.13 & 46.78 \end{pmatrix}$ larger than a₁₁.
 - row 1.
 - Next, find the multiple of equation 1 and subtract from $\begin{pmatrix} 5.2 & -6.13 & | & 46.78 \\ 0 & 59.14 & | & 59.14 \end{pmatrix}$ equation 2:
 - $(x_{21}/x_{11}) = .0005769$
 - Here we get $x_2 = 1.000$
 - Now backsolve for x₁

$$\begin{pmatrix} .003 & 59.14 & 59.17 \\ 5.2 & -6.13 & 46.78 \end{pmatrix}$$

- No problem! Swap rows with
$$\begin{pmatrix} 5.2 & -6.13 & | & 46.78 \\ .003 & .59.14 & | & 59.17 \end{pmatrix}$$

$$\begin{pmatrix} 5.2 & -6.13 & | & 46.78 \\ 0 & 59.14 & | & 59.14 \end{pmatrix}$$

Lets redo the example with partial pivoting

- We found $x_2 = 1.000$
- $\begin{pmatrix} 5.2 & -6.13 & | & 46.78 \\ 0 & 1 & | & 1 \end{pmatrix}$ - To backsolve, we subtract (a₁₂ a_{22})* b_2 from b_1 , getting:
 - $-b_1 = 52.91$
 - This leaves $x_1 = 10.175$
- This is much much closer than the 6.667 we had earlier

$$\begin{pmatrix} 1 & 0 & 10.175 \\ 0 & 1 & 1 \end{pmatrix}$$

So how do we do partial pivoting?

- When we have to select a pivot, pick the pivot with the largest absolute magnitude
- Swap the largest pivot with the default pivot
- This happens each time you start working on a new column

$$\begin{pmatrix} 2 & 1 & -1 & 2 & 5 \\ 0 & 3 & -1 & 2 & -1 \\ 0 & 0 & -1 & 4 & 11 \\ 0 & 0 & 1 & -2 & -5 \end{pmatrix}$$

What did we see here?

- Partial pivoting is one way we can reorder our computations to reduce error without sacrificing anything else in the method
 - It changes the computation time because you must now scan the column each time you select a pivot
- Partial pivoting does not escape from all kinds of numerical problems
 - We could still be dividing by very small numbers and committing other errors
- People have gone through a lot of effort to find other (complicated) ways to reduce error

Homework

- You will implement gaussian elimination for matrix inversion, as well as GE with partial pivoting
 - Find a matrix that has no errors on both approaches
 - Find a matrix that creates numerical errors on simple GE but is more accurate on partial pivoting
 - How large can you make the magnitude of the error?
 - If you are careful you can design a matrix that still propagates error viciously and is hard to invert.