

Winning Space Race with Data Science

YELAMAN BAIDOL 2024.09.15

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- Data Collection with API
- Data Collection with Web Scraping
- Data Wrangling
- Exploratory Data Analysis with SQL
- Exploratory Data Analysis with Visualization
- Interactive Visual Analysis (Folium, Plotly Dash)

Summary of all results

- EDA results
- Visual analytics
- Predictive Analysis (SVM, KNN, Logistic Regression, Classification Tree)

Introduction

- Project background and context
 - Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage.
- Problems you want to find answers
 - To determine the cost of a launch.
 This information can be used if an alternate company wants to bid against space X for a rocket launch

Methodology

Executive Summary

- Data collection methodology:
 - Describe how data was collected
- Perform data wrangling
 - Describe how data was processed
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

- Data was collected by using GET request method from SpaceX API.
- *json_normalize* method was used to convert the json result into a dataframe.
- The API was used to get information about the launches using the IDs given for each launch.
- A Falcon 9 launch records HTML table are extracted from Wikipedia.
- In order to get HTML table, BeautifulSoup was used.

Data Collection – SpaceX API

- Data collection with SpaceX API
- https://github.com/YelamanBaidol/IBM-COURSE-10/blob/main/data-collection-api.ipynb

Data Collection - Scraping

- Web scraping with BeautifulSoup
- https://github.com/YelamanBaidol/IBM-COURSE-10/blob/main/webscraping.ipynb

Data Wrangling

- Number of launches on each site was calculated.
- The number and occurrence of each orbit was determined.
- The number and occurrence of mission outcome of the orbits was calculated.
- https://github.com/YelamanBaidol/IBM-COURSE-10/blob/main/Data%20wrangling.ipynb

EDA with Data Visualization

- Exploratory Data Analysis and Feature Engineering were performed using `Pandas` and `Matplotlib`.
- Relationship between
 - Flight number and Launch Site
 - Flight number and Payload Mass
 - Payload Mass and Launch Site
 - Success rate of each orbit type
 - Flight number and Orbit type
 - · Payload Mass and Orbit type
 - Launch yearly trend were visualized to analyze the data.
- https://github.com/YelamanBaidol/IBM-COURSE-10/blob/main/edadataviz.ipynb

EDA with Data Visualization

- SQL queries were performed to understand the data set.
- https://github.com/YelamanBaidol/IBM-COURSE-10/blob/main/eda-sql-coursera_sqllite.ipynb

Display average payload mass carried by booster version F9 v1.1 1 %sql SELECT AVG("PAYLOAD MASS KG") as "Average Payload Mass", "Booster Version" FROM SPACEXTABLE WHERE Booster Version LIKE 'F9 v1.1%' List the date when the first succesful landing outcome in ground pad was acheived. Hint:Use min function 1 %sql SELECT MIN("Date") FROM SPACEXTABLE WHERE Landing Outcome = "Success (ground pad)" List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000 1 %sql SELECT "Booster_Version" FROM SPACEXTABLE WHERE "Landing_Outcome" = "Success (drone ship)" and ("PAYLOAD MASS KG" > 4000 and "PAYLOAD MASS KG" < 6000) List the total number of successful and failure mission outcomes 1 %sql SELECT "Mission Outcome", COUNT("Mission Outcome") FROM SPACEXTABLE GROUP BY "Mission Outcome"

• The count of landing outcomes between the date 2010-06-04 and 2017-03-20

Date	Landing_Outcome	Count
2012-05-22	No attempt	10
2016-04-08	Success (drone ship)	5
2015-01-10	Failure (drone ship)	5
2015-12-22	Success (ground pad)	3
2014-04-18	Controlled (ocean)	3
2013-09-29	Uncontrolled (ocean)	2
2010-06-04	Failure (parachute)	2
2015-06-28	Precluded (drone ship)	1

Build an Interactive Map with Folium

- All launch sites were marked on a map.
- The success/failure launches for each site were marked on a map.
- The distances between a launch site to its proximities were calculated.
- https://github.com/YelamanBaidol/IBM-COURSE-10/blob/main/launch_site_location.ipynb

	Launch Site	Lat	Long
0	CCAFS LC-40	28.562302	-80.577356
1	CCAFS SLC-40	28.563197	-80.576820
2	KSC LC-39A	28.573255	-80.646895
3	VAFB SLC-4E	34.632834	-120.610745

Build an Interactive Map with Folium

Build a Dashboard with Plotly Dash

- A Plotly Dash application was built to perform interactive visual analytics on SpaceX launch data in real-time.
- A Launch Site Drop-down Input Component was added.
- Success-pie-chart based on selected site dropdown was added.
- The success-payload-scatter-chart scatter plot was plotted.
- https://github.com/YelamanBaidol/IBM-COURSE-10/blob/main/spacex_dash_app.py

Build a Dashboard with Plotly Dash

Predictive Analysis (Classification)

- Support Vector Machine, K Nearest Neighbor, Logistic Regression,
 Classification tree methods were used.
- GridSearchCV method was used to find best hyperparameters for the methods above.
- Before applying the methods, the data was split into training and test data.
- Then, best hyperparameters were determined and the accuracy scores were calculated.
- https://github.com/YelamanBaidol/IBM-COURSE-10/blob/main/SpaceX_Machine%20Learning%20Prediction_Part_5.ipynb

Predictive Analysis (Classification)

- Confusion matrices were plotted.
- As an example, confusion matrix for classification tree method.
- Test Data Accuracy was shown.

	Method	Test Data Accuracy
0	Logistic Reg.	0.833333
1	SVM	0.833333
2	Decision Tree	0.833333
3	KNN	0.833333

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

After flight
 number 80, for
 all the launch
 sites, success
 rate was 100%.
 However, flight
 number
 between 0 and
 20, success rate
 was too low.

Payload vs. Launch Site

 From Payload Mass Vs. Launch Site scatter point chart, for the VAFB-SLC launch site there are no rockets launched for heavy payload mass (greater than 10000).

Success Rate vs. Orbit Type

 From the bar chart, it can be seen that for the orbit type of ES-L1, GEO, HEO and SSO, the success rate was 100%. On the other hand, for SO, it was 100% failure.

Flight Number vs. Orbit Type

• In the LEO orbit, success seems to be related to the number of flights. Conversely, in the GTO, ISS orbits, there appears to be no relationship between flight number and success.

Payload vs. Orbit Type

- With heavy payloads the successful landing or positive landing rate are more for PO, LEO and ISS.
- However, for GTO, it's difficult to distinguish between successful and unsuccessful landings as both outcomes are present.

Launch Success Yearly Trend

• Success rate kept increasing since 2013 until 2020.

All Launch Site Names

• The names of the unique launch sites

Launch Site Names Begin with 'CCA'

• 5 records where launch sites begin with `CCA`

1 %sql	1 %sql SELECT * FROM SPACEXTABLE WHERE "Launch_Site" LIKE 'CCA%' LIMIT 5								
* sqlite:///my_data1.db Done.									
Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
2010-06- 04	18'45'00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010-12- 08	15'43'00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05- 22	/.यय.()()	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-10- 08	0.32.00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-03- 01	15.10.00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

The total payload carried by boosters from NASA

Average Payload Mass by F9 v1.1

The average payload mass carried by booster version F9 v1.1

```
1 %sql SELECT AVG("PAYLOAD_MASS__KG_") as "Average Payload Mass", "Booster_Version" FROM SPACEXTABLE WHERE Booster_Version LIKE 'F9 v1.1%'

* sqlite:///my_data1.db
Done.

Average Payload Mass Booster_Version

2534.66666666665 F9 v1.1 B1003
```

First Successful Ground Landing Date

• The dates of the first successful landing outcome on ground pad

```
1 %sql SELECT MIN("Date") FROM SPACEXTABLE WHERE Landing_Outcome = "Success (ground pad)"

* sqlite://my_data1.db
Done.

MIN("Date")
2015-12-22
```

Successful Drone Ship Landing with Payload between 4000 and 6000

• The names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

```
1 %sql SELECT "Booster_Version" FROM SPACEXTABLE WHERE "Landing_Outcome" = "Success (drone ship)" and ("PAYLOAD_MASS__KG_" > 4000 and "PAYLOAD_MASS__KG_" < 6000)

* sqlite:///my_data1.db
Done.

Booster_Version
F9 FT B1022
F9 FT B1021.2
F9 FT B1021.2
F9 FT B1031.2
```

Total Number of Successful and Failure Mission Outcomes

• The total number of successful and failure mission outcomes

1 %sql SELECT "Mission_Outcome", COUNT("Mission_Outcome") FROM SPACEXTABLE GROUP BY "Mission_Outcome"		
* <u>sqlite:///my_data1.db</u> Done.		
Mission_Outcome	COUNT("Mission_Outcome")	
Failure (in flight)	1	
Success	98	
Success	1	
Success (payload status unclear)	1	

Boosters Carried Maximum Payload

• The names of the booster which have carried the maximum payload mass

2015 Launch Records

- The failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

Month	Year	Booster_Version	Launch_Site	Landing_Outcome
01	2015	F9 v1.1 B1012	CCAFS LC-40	Failure (drone ship)
04	2015	F9 v1.1 B1015	CCAFS LC-40	Failure (drone ship)

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

- The count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order
- %sql SELECT "Date", "Landing_Outcome", COUNT(*) as "Count" FROM SPACEXTABLE WHERE ("Date" BETWEEN "2010-06-04" and "2017-03-20") GROUP BY "Landing_Outcome" ORDER BY "Count" desc

Date	Landing_Outcome	Count
2012-05-22	No attempt	10
2016-04-08	Success (drone ship)	5
2015-01-10	Failure (drone ship)	5
2015-12-22	Success (ground pad)	3
2014-04-18	Controlled (ocean)	3
2013-09-29	Uncontrolled (ocean) 2	
2010-06-04	Failure (parachute) 2	
2015-06-28	Precluded (drone ship)	1

Markers of all launch sites

Launch sites are very close to the coast. Three of the sites are on the east part of the US.

Launch Outcomes on a map

• From the markers, it can be seen that Launch Site KSC LC-39A had the highest success rate.

Launch site CCAFS LC-40 and its proximities

• Launch Site CCAFS LC-40 is in close proximity to railway, highway and coastline.

Launch site CCAFS LC-40 and its proximities

- Launch Site CCAFS LC-40 is in close proximity to railway, highway and coastline.
- But the closest city, Titusville, is 23 km away from the site.

Success Rate Pie Plot for All Launch Sites

 It can be seen that KSC LC-39A had the highest success rate, while CCAFS SLC-40 had the lowest one.

Success Rate Pie Plot

 KSC LC-39A, the successful landing was ~77%. Moreover, CCAFS LC-40 had high success rate of ~73%.

Relationship between Payload Mass and Class

• Booster Version of FT had the highest success between payload mass of 2000 and 5000 kg. When the payload mass was higher than 5000 kg, it was failure.

Classification Accuracy

• All the methods had the same test accuracy.

	Method	Test Data Accuracy
0	Logistic Reg.	0.833333
1	SVM	0.833333
2	Decision Tree	0.833333
3	KNN	0.833333

Confusion Matrix

• All the models performed the best with accuracy of 83%. All of them had 12 TP, 3 FP, 3 TN, 0 FN.

Conclusions

- Launch sites had different success rates. For instance, KSC LC-39A had the highest success rate among all sites, while CCAFS SLC-40 had the lowest one. KSC LC-39A, the successful landing was ~77%. Moreover, CCAFS LC-40 had high success rate of ~73%.
- Booster Version of FT had the highest success between payload mass of 2000 and 5000 kg. However, when the payload mass was higher than 5000 kg, it was failure.
- With heavy payloads the successful landing or positive landing rate are more for PO, LEO and ISS.
- In the LEO orbit, success seems to be related to the number of flights. After flight number 7, success rate was 100%.

Conclusions

- For the orbit type of ES-L1, GEO, HEO and SSO, the success rate was 100%. On the other hand, for SO, it was 100% failure.
- For the VAFB-SLC launch site there are no rockets launched for heavy payload mass (greater than 10000).
- After flight number 80, for all the launch sites, success rate was 100%. However, flight number between 0 and 20, success rate was too low.
- In summary, the success rate kept increasing since 2013 until 2020.

