P425/1 PURE MATHEMATICS PAPER 1 June/July. 2023 3 hours

ACEITEKA JOINT MOCK EXAMINATIONS, 2023

Uganda Advanced Certificate of Education

Pure Mathematics
Paper 1
Time: 3 Hours

NAME:INDEX No:
INSTRUCTIONS TO CANDIDATES:
Answer all the eight questions in section A and only five questions in section B.
Indicate the five questions attempted in section B in the table aside.
Additional question(s) answered will not be marked.
All working must be shown clearly.
Graph paper is provided.
Silent, non-programmable scientific calculators and mathematical tables with a list of formulae may be used.

SECTION A (40 MARKS)

Answer all the questions in this section.

Qn 1: Solve the inequality $\frac{x+3}{x-2} \ge \frac{x+1}{x-2}$.

[5 Marks]

Qn 2: Find the angle $\alpha = \angle BAC$ of the triangle ABC whose vertices are A(1,0,1), B(2,-1,1) and C(-2,1,0).

[5 Marks]

Qn 3: The roots p and q of a quadratic equation are such that $p^3 + q^3 = 4$

and $pq = \frac{1}{2}(p^3 + q^3) + 1$. Find a quadratic equation with integral coefficients

whose roots are p^{-6} and q^{-6} .

[5Marks]

Qn 4: Use method of small changes to find the value of $\frac{1}{\sqrt{0.97}}$ correct to 3 decimal

places.

[5 Marks]

Qn 5: Points S and S' are the foci of the ellipse $\frac{x^2}{36} + \frac{y}{16} = 1$.

Find the coordinates of S and S'.

[5 Marks]

Qn 6: Evaluate: $\int_{0}^{1} \frac{8x - 8}{(x+1)^{3}(x-3)^{3}} dx.$

[5 Marks]

Qn 7: Given the function, $f(x) = \frac{3}{13 + 6\sin x - 5\cos x}$.

Use the substitution $t = tan\left(\frac{x}{2}\right)$, to show that f(x) can be written

in the form: $\frac{3(1+t^2)}{2(3t+1)^2+6}$.

[5 Marks]

Qn 8: Given that $y = \frac{\sin x}{x}$, show that $x \frac{d^2y}{dx^2} + 2 \frac{dy}{dx} + xy = 0$.

[5 Marks]

SECTION B (60 MARKS)

Answer any five questions from this section. All questions carry equal marks. Question 9:

(a). Prove by induction that for all positive integer $\sum_{r=1}^{n} (3r+1)(r+2) = n(n+2)(n+3)$

[6 Marks]

(b). Prove by induction that for all positive **odd** integers, n, $f(n) = 4^n + 5^n + 6^n$ is divisible by 15.

[6 Marks]

Question 10:

A circle that passes through the points A(3,4) and B(6,1) and the equation of the tangent to this circle at A is the line 2y = x + 5. Find:

[9 Marks] the coordinates of the centre of circle.

[2 Marks] (ii). the radius of the circle.

[1 Mark] (ii). the equation of the circle.

Question 11:

Given that $f(x) = \frac{64x^4 - 148x + 78}{(4x - 5)^3}$. Express f(x) into partial fractions.

[12 Marks] Hence evaluate $\int_{0}^{6} f(x) dx$.

Question 12:

- Use de Moivre's theorem to prove that: $\sin 5\theta = 5\sin \theta 20\sin^2 \theta + 16\sin^5 \theta$.
- Hence or otherwise, find the distinct roots of the equation $2+10x-40x^3+32x^5=0$ giving your answer to 3 decimal places where appropriate. [12 Marks]

Question 13:

The planes P_1 and P_2 are respectively given by the equations:

$$r = 2i + 4j - k + \lambda(i + 2j - 3k) + \mu(-i + 2j + k)$$
 and

 $r \cdot (2i - j + 3k) = 5$; where λ and μ are scalar parameters. Find:

- the Cartesian equation for plane, P_1 .
- to the nearest degree, the acute angle between $\boldsymbol{P}_{\!\scriptscriptstyle 1}$ and $\boldsymbol{P}_{\!\scriptscriptstyle 2}$.
- (iii). the coordinates of the point of intersection of the plane, P_1 , and the line

$$\frac{x-1}{5} = \frac{y-3}{-3} = \frac{z+2}{4}.$$
 [12 Marks]

Question 14:

Show that the volume of the solid generated by rotating the area enclosed by the curve $y = 2^x$, the lines x = 0 and y = 2 about the x - axis is

$$\frac{\pi}{\ln 4} (4 \ln 4 - 3) . [8 \text{ Marks}]$$

(b). Evaluate
$$\int_{0}^{\frac{\pi}{4}} \frac{4}{1 + \cos 2x} dx.$$
 [4 Marks]

Question 15:

[4 Marks]

- Given that $\cot^2 \theta + 3\csc^2 \theta = 7$, show that $\tan \theta = \pm 1$. (a).
- Express the function $y = 3\cos x \sqrt{3}\sin x$ in the form $R\cos(x + \alpha)$ where R is a con-(b). (i). Hence find the coordinates of the minimum point of y.

 State the State the values of x at which the curve cuts the x - axis. [8 Marks]

Question 16:

A sample of bacteria in a sealed container is being studied. The number of bacteria, p, in thousands, is given by the differential equation:

$$(1+t)\frac{dp}{dt} + p = (1+t)\sqrt{t}$$

where t is the time in hours after the start of the study.

Initially, there are exactly 5,000 bacteria in the container.

- Determine, according to the differential equation, the number of bacteria in the (a). container 8 hours after the start of the study.
- Find, according to the differential equation, the rate of change of the number of (b). bacteria in the container 4 hours after the start of the study.

[12 Marks]