

(11)Publication number:

2001-131535

(43)Date of publication of application: 15.05.2001

(51)Int.CI.

CO9K 3/14

G11B 5/84

(21)Application number : 11-315059

(71)Applicant: SHOWA DENKO KK

YAMAGUCHI SEIKEN KOGYO KK

(22)Date of filing:

05.11.1999

(72)Inventor: ISHITOBI TAKESHI

KO KIMIHIRO **OKI SHIGEO**

HAYASHI YOSHIKI

(54) GRINDING COMPOSITION

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a grinding composition capable of obtaining a high quality ground surface while maintaining a high grinding speed and also having no surface defect.

SOLUTION: This grinding composition contains water, a grinding powder and an organic sulfonic acid-based chelating compound.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

(19) 日本国特許庁(IP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2001-131535 (P2001-131535A) (43)公開日 平成13年5月15日(2001.5.15)

(51) Int. C1.7

識別記号

5 5 0

FΙ

テーマコート*(参考)

C09K 3/14

C09K

5 5 0 D 5D112

550 Z

G 1 1 B 5/84

G 1 1 B 5/84

3/14

Α

審査請求 未請求 請求項の数9

ΟL

(全6頁)

(21)出願番号

(22)出願日

特願平11-315059

平成11年11月5日 (1999.11.5)

(71)出願人 000002004

昭和電工株式会社

東京都港区芝大門1丁目13番9号

(71)出願人 000178310

山口精研工業株式会社

愛知県名古屋市緑区鳴海町母呂後153番地

(72) 発明者 石飛 健

長野県塩尻市大字宗賀1番地 昭和電工株

式会社塩尻工場内

(74)代理人 100067828

弁理士 小谷 悦司 (外1名)

最終頁に続く

(54) 【発明の名称】研磨用組成物

(57)【要約】

高い研磨速度を維持しつつ、しかも表面欠陥 のない高品質な研磨面が得られる研磨用組成物を提供す

【解決手段】 水、研磨剤粉末、及び有機ホスホン酸系 キレート性化合物を含有する研磨用組成物である。

【特許請求の範囲】

水、研磨剤粉末、及び有機ホスホン酸系 【請求項1】 キレート性化合物を含有することを特徴とする研磨用組 成物。

【請求項2】 前記有機ホスホン酸系キレート性化合物 は、ジエチレントリアミンペンタメチレンホスホン酸、 ホスホノブタントリカルボン酸、ホスホノヒドロキシ酢・ 酸、ヒドロキシエチルジメチレンホスホン酸、アミノト リスメチレンホスホン酸、ヒドロキシエタンジホスホン 酸、エチレンジアミンテトラメチレンホスホン酸、ヘキ 10 サメチレンジアミンテトラメチレンホスホン酸、及びこ れらの塩よりなる群から選択される少なくとも一種であ る請求項1に記載の研磨用組成物。

【請求項3】 研磨用組成物全体に占める有機ホスホン 酸系キレート性化合物の比率は合計で0.01~5質量 %である請求項1または2に記載の研磨用組成物。

【請求項4】 前記研磨剤粉末はアルミナである請求項 $1 \sim 3$ のいずれかに記載の研磨用組成物。

【請求項5】 更に、研磨促進剤を含有するものである 請求項1~4のいずれかに記載の研磨用組成物。

【請求項6】 前記研磨促進剤は、有機酸またはその 塩、及び無機酸塩よりなる群から選択される少なくとも 一種である請求項5に記載の研磨用組成物。

【請求項7】 研磨用組成物全体に占める研磨促進剤の 比率は合計で0.01~10質量%である請求項5また は6に記載の研磨用組成物。

【請求項8】 前記有機酸は、乳酸、リンゴ酸、クエン 酸、またはグルコン酸である請求項6または7に記載の 研磨用組成物。

【請求項9】 請求項1~8のいずれかに記載の研磨用 30 組成物を用いて磁気ディスク面を研磨する研磨方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、金属、プラスチッ ク、ガラス等を精密研磨仕上げするのに用いられる研磨 用組成物に関し、詳細にはコンピューターのハードディ スクドライブに組み込まれる磁気ディスクの研磨用組成 物に関するものである。本発明の研磨用組成物を用いれ ば、Ni-P等がメッキされているアルミニウム磁気デ イスク基板面を研磨するに当たり、速い研磨速度で、し 40 かも表面欠陥のない高品質の鏡面仕上げ面が得られる点 で非常に有用である。

[0002]

【従来の技術】従来より、研磨速度が速く、しかも高品 質の表面が得られるアルミニウム磁気ディスク面研磨用 研磨用組成物が種々提案されている。

【0003】例えば、研磨速度を高く維持しつつ、しか もピット、突起、スクラッチ等の表面欠陥のない髙品質 な研磨面を得る為の組成物として、グルコン酸や乳酸、

平2-84485);モリブデン酸塩及びアルミニウム 塩の研磨促進剤を含む組成物(特開平5-31115 3);ベーマイトと、ポリアミン系キレート化合物また はポリアミノカルボン酸系キレート化合物を含む組成物 (特開平11-92749) 等が開示されている。

【0004】一方、急速に発展するコンピューターのハ ード分野では、ハードディスクドライブでの磁気ヘッド と磁気ディスクの間隙(所謂フライングハイト)を狭く すれば記録密度を一層高めることができるという実情を 反映して、今までよりも更に高品質な仕上げ面を有する ディスクの提供が切望されている。記録密度を高くする 為には、ディスクの平面度や平坦度が良好で、しかも面 粗さ(Ra)が小さく、ピットや突起、スクラッチ、更 にディスク外周端部に生じる縁ダレがない等の特性を有 することが必要である。なかでもRa:約15A以下が 要求される高品質の研磨面においては、従来では許容さ れていた極微小ピットや突起であっても、所望の特性を 得るには問題となることから、こうした要求特性にも満 足し得る高品質仕上げ可能な研磨用組成物の提供が切望 20 されている。しかしながら、前記組成物を含め、従来の 研磨用組成物では、この様な高度の要求特性を満足する には未だ不充分であった。

[0005]

【本発明が解決しようとする課題】本発明は上記事情に 着目してなされたものであり、その目的は、高い研磨速 度を維持しつつ、しかも表面欠陥のない高品質な研磨面 が得られる研磨用組成物を提供することにある。

[0006]

【課題を解決するための手段】上記課題を解決し得た本 発明の研磨用組成物は、水、研磨剤粉末、及び有機ホス ホン酸系キレート性化合物を含有するところに要旨を有 するものである。

【0007】ここで、上記有機ホスホン酸系キレート性 化合物が、ジエチレントリアミンペンタメチレンホスホ ン酸、ホスホノブタントリカルボン酸、ホスホノヒドロ キシ酢酸、ヒドロキシエチルジメチレンホスホン酸、ア ミノトリスメチレンホスホン酸、ヒドロキシエタンジホ スホン酸、エチレンジアミンテトラメチレンホスホン 酸、ヘキサメチレンジアミンテトラメチレンホスホン 酸、及びこれらの塩よりなる群から選択される少なくと も一種であるもの;研磨用組成物全体に占める有機ホス ホン酸系キレート性化合物の比率が合計で0.01~5 質量%であるものは本発明の好ましい態様である。

【0008】また、上記研磨剤粉末としてはアルミナ、 シリカ、チタニア、ジルコニア等が使用されるが、特に アルミナの使用が推奨される。

【0009】本発明の研磨用組成物には、更に研磨促進 剤を含有することが好ましい。ここで、上記研磨促進剤 が、有機酸またはその塩、及び無機酸塩よりなる群から これらの金属塩からなる研磨促進剤を含む組成物(特開 50 選択される少なくとも一種であるもの;研磨用組成物全

30

体に占める研磨促進剤の比率は合計で0.01~10質 量%であるものは本発明の好ましい態様である。

【0010】また、上記研磨促進剤のうち有機酸として は、乳酸、リンゴ酸、クエン酸、またはグルコン酸が好 ましい。

【0011】更に、上記研磨用組成物を用いて磁気ディ スク面を研磨する研磨方法も本発明の範囲内に包含され る。

[0012]

【発明の実施の形態】本発明者らは、高い研磨速度を維 10 持しつつ、しかも表面欠陥のない高品質な研磨面であっ て、近年における高度の要求特性をも満足し得る研磨用 組成物を提供すべく鋭意検討してきた。その結果、研磨 用組成物中に有機ホスホン酸系キレート性化合物を含有 するものは所期の目的を達成し得ることを見出し、本発 明を完成した。

【0013】即ち、本発明の研磨用組成物は、水、研磨 剤粉末、及び有機ホスホン酸系キレート性化合物を含有 するものであるが、このうち有機ホスホン酸系キレート 性化合物を使用したところに本発明の最重要ポイントが 20 存在する。本発明者らの検討結果によれば、上記キレー ト性化合物は酸性度が高く、併用する研磨促進剤(後記 する)と相俟ってディスク表面のNi-Pメッキ層等に 作用して研磨効果を著しく高めると同時に、形成された 研磨屑のNiイオンと錯体化し、所謂キレート効果によ り、ディスク面への研磨屑(NiP)の再付着(突起と して観察される)を防止する効果も奏する。従って、有 機ホスホン酸系キレート性化合物を用いれば、有害な研 磨屑を研磨液と共に速やかに排出するというメリットも 得られる。

【0014】本発明に用いられる有機ホスホン酸系キレ 一ト性化合物としては、ジエチレントリアミンペンタメ チレンホスホン酸、ホスホノブタントリカルボン酸 (以 下「PBTC」と略記する)、ホスホノヒドロキシ酢 酸、ヒドロキシエチルジメチレンホスホン酸、アミノト リスメチレンホスホン酸(以下、「NTMP」と略記す る)、ヒドロキシエタンジホスホン酸(以下、「HED P」と略記する)、エチレンジアミンテトラメチレンホ スホン酸、ヘキサメチレンジアミンテトラメチレンホス ホン酸等が挙げられる。本発明では、これらの塩類も用 40 いられ、例えばアルカリ金属塩(ナトリウム塩、カリウ ム塩等)、アンモニウム塩、有機アミン塩(モノメチル アミン、ジメチルアミン、トリメチルアミン、モノエチ ルアミン、ジエチルアミン、トリエチルアミン等のアル キルアミン類;モノエタノールアミン、ジエタノールア ミン、トリエタノールアミン、モノイソプロパノールア ミン、ジメチルエタノールアミン等のアルカノールアミ ン類;ピリジン等)等を使用することができる。これら の有機ホスホン酸系キレート性化合物は、単独で使用し ても良いし、或いは2種以上併用しても構わない。

【0015】研磨用組成物全体に占める有機ホスホン酸 系キレート性化合物の比率は合計で0.01~5質量% の範囲であることが好ましい。 0.01質量%未満で は、研磨速度向上効果が得られない。より好ましくは 0.05質量%以上である。但し、5質量%を超えると ピット、突起等の表面欠陥が発生する。より好ましくは 2質量%以下である。

【0016】また、本発明に用いられる研磨剤粉末はア ルミナが好ましい。上記アルミナは結晶系に関係なく、 α -アルミナ、 θ -アルミナ、 γ -アルミナ等を用いる ことができるが、なかでも研磨速度の高いαーアルミナ の使用が推奨される。また、アルミナの粒子径は、平均 粒子径で0.02~5μmの範囲であることが好まし く、要求される面粗差等に応じて所望の粒径のものを適 宜選択することができる。研磨用組成物全体に占めるア ルミナの比率は1~30質量%であることが好ましい。 より好ましくは3質量%以上、20質量%以下である。 【0017】以上が本発明の研磨用組成物を構成する基 本成分であるが、本発明では、更に研磨効果を高める目 的で、研磨促進剤を含有しても良い。本発明に用いられ る研磨促進剤としては、有機酸またはその塩、及び無機 酸塩よりなる群から選択される少なくとも一種であるこ とが好ましい。

【0018】このうち有機酸としては、飽和脂肪族カル ボン酸(乳酸等)、飽和脂肪族ジカルボン酸(マロン 酸、コハク酸、アジピン酸、リンゴ酸、酒石酸等)、飽 和脂肪族トリカルボン酸(クエン酸等)、不飽和脂肪族 ジカルボン酸(フマル酸等)、アミノ酸(グリシン、ア - スパラギン酸等)、グルコン酸、ヘプトグルコン酸、イ ミノ二酢酸が挙げられ;有機酸塩としては、上記有機酸 のアルカリ金属塩(カリウム塩、ナトリウム塩等)、ア ンモニウム塩等が挙げられる。これらは単独で使用して も良いし、2種以上を併用しても構わない。また、無機 酸塩としては、硫酸塩(硫酸ナトリウム、硫酸マグネシ ウム、硫酸ニッケル、硫酸アルミニウム、硫酸アンモニ ウム等)、硝酸塩(硝酸ニッケル、硝酸アルミニウム、 硝酸アンモニウム、硝酸第二鉄等)、塩化アルミニム、 スルファミン酸ニッケル等が挙げられる。これらは単独 で使用しても良いし、2種以上を併用しても構わない。 また、上記有機酸またはその塩、無機酸塩についても、 夫々単独で使用しても良いし、或いは2種以上を併用し ても構わない。従って、例えば上記有機酸若しくはその 塩、または無機酸塩を夫々単独で使用しても良いし、或 いはこれらを2種以上組合せて使用する態様も本発明の 範囲内に包含される。このうち最も好ましい研磨特性が 得られるのは、有機酸と有機酸塩の組合わせである。

【0019】尚、研磨用組成物全体に占める研磨促進剤 の比率は合計で0.01~10質量%であることが好ま しい。0.01質量%未満では、研磨促進剤としての効 50 果に乏しい。より好ましくは0.03質量%以上であ

る。但し、10質量%を超えるとピットや突起等が発生 し、研磨面の品質が低下する他、研磨剤溶液の粘性が高 くなり過ぎたり、アルミナ粒子の凝集が発生する等、液 性にも悪影響を及ぼす様になる。より好ましくは5質量 %以下である。

【0020】尚、研磨促進剤として、少なくとも有機酸 を含む混合形態(有機酸と有機酸塩、有機酸と無機酸 塩、有機酸と有機酸塩と無機酸塩)の場合は、研磨用組 成物全体に占める有機酸の比率は0.003質量%以上 であることが好ましい。

【0021】更に本発明の研磨用組成物中には、必要に 応じて、研磨用組成物に通常含まれる成分を含有しても 良く、例えば、添加剤としてアルミナゾル、界面活性 剂、洗浄剤、防錆剤、防腐剤、p H調整剤、表面改質剤 (セルロース類、スルファミン酸、リン酸等) を添加す ることができる。

【0022】尚、上述した本発明の研磨用組成物を構成 する種々の成分濃度はハードディスク基板を研磨すると きの好ましい濃度である。従って、本発明組成物の調製 時には、上記濃度より濃厚な組成物を調製し、使用に際 20 して上記濃度の範囲内に薄めて使用することもできる。

【0023】また、本発明の研磨用組成物のpH値は2 ~6の範囲が好ましい。

*【0024】以下実施例に基づいて本発明を詳述する。 但し、下記実施例は、本発明を制限するものではなく、 前・後記の趣旨を逸脱しない範囲で変更実施することは 全て本発明の技術範囲に包含される。

[0025]

【実施例】以下の要領で研磨用組成物を調製した後、研 磨特性を評価した。

【0026】1. 研磨用組成物の調製

まず、焼成炉にて水酸化アルミニウムを大気中で約12 10 00℃に加熱処理することによりαアルミナを得た。こ のαアルミナを粉砕し、湿式分級して平均粒度0.6, 0.7及び1.0 μ mの各種アルミナ試料を調製した。 【0027】次に、表1及び表2の成分組成になる様、 水、上記アルミナ、研磨促進剤、及び必要に応じて有機 ホスホン酸系キレート性化合物を配合した後、混合し、 各種研磨剤を得た。得られた研磨剤を以下の研磨条件に 供した。

【0028】2. 研磨条件

被研磨ワークとして、NiーPメッキした3.5インチ アルミディスクを用い、下記条件で研磨試験を実施し、 ディスク評価を行った。

[0029]

①研磨試験条件

研磨試験機

9 B両面研磨機 [システム精工 (株) 製]

研磨パッド

ポリテックスDG

定盤回転数

上定盤28rpm、下定盤45rpm、

Sun # 78 rpm

スラリー供給量 100ml/min

加工時間

5 m i n

加工圧力

 $80 \, \text{g/cm}^2$

②ディスクの評価方法

研磨速度算出法

研磨前後のディスクの減少重量より算出。

【0030】研磨面品質評価法 ピット、突起、スク ラッチを顕微鏡観察により計数した。このうちピット及 び突起は、ディスク5枚の表裏を十文字に観察した視野 (×50倍) 中の個数を、また、スクラッチはディスク 1枚の表裏を十文字に観察した視野 (×100倍) 中の

個数を夫々係数した。

【0031】これらの結果を表1及び表2に併記する。

[0032]

【表1】

実施例	αアルミナ		研磨促進剤				±#±21.	研磨評価結果				
	粒度 D50	量	有機酸 種類 質量%		有機酸塩/		有機ホスホン酸系キルート	研磨速度	キエトル			
	μm	質量%			無機酸塩				突起	ピット	スクラッチ	
		RAA	作量共	貝里为	12274	質量%		µ m√min	個	個	個	
1	0.7	6	乳酸	0.5	乳酸 ナトリウム	1.0	PBTC 0.3	1.35	O	2	1	
2	0.6	6	乳酸	0.5	乳酸 ナトリウム	1.0	PBTC 0.3	1.07	0	2	2	
3	1.0	6	リンコ・酸	0.7	リンプ酸 ナトリウム	0.2	PBTC 0.3	1.45	0	5	2	
4	0.7	6	リンコ酸	0.7	リンコ 酸 ナトリウム	0.2	PBTC 0.3	1.39	0	3	1	
5	0.6	6	リンコ 酸	0.7	リンプ酸 ナトリウム	0.2	PBTC 0.3	1.11	0	3	1	
6	0.7	6	リンコで酸	0.7	リンプ酸 ナトリウム	0.2	PBTC 1.0	1.38	0	2	1	
7	0.7	6	リンコで酸	5.0	リンゴ酸 ナトリウム	4.0	PBTC 1.0	1.46	0	5	2	
8	0.7	6	りつ一酸	0.7	リン1酫 ナトリウム	0.2	HEDP 0.3	1.33	0	2	2	
9	0.7	6	リンコで酸	0.7	リンコ 強 ナトリウム	0.2	NTMP 0.3	1.36	0	2	2	
10	0.7	6	リンコ酸	0.7	リンコ 酸 ナトリウム	0.2	PBTC-4Na 0.3	1.35	0	4	2	
13	0.7	6	グルコン酸	0.5	ゲルコン酸 ナトリウム	0.5	PBTC 0.3	1.25	0	1	2	
. 12	0.7	6	がご酸	0.7	-		PBTC 0.3	1.32	0	4	2	
13	0.7	6		-	硝酸水	0.1	PBTC 0.3	1.33	0	6	2	
14	. 0.7	6	りンゴ酸		硝酸ニッケル	0.3	PBTC 0.3	1.34	0	4	2	
15	0.7	6	リンコを	0.7	が酸アルミ	0.2 0.2	P8TC 0.3	1.38	0	5 .	2	

[0033]

*【表2】

比較例	αアルミナ		研磨促進剤				±1111.1.3.1.3	研磨評価結果				
	粒度 D50	蚕	有機酸		有機酸塩/		有機ホスホン	研磨速度	表面欠陥			
	μm	質量%	種類	質量%	無機酸塩 種類 質量X		酸系キレート		_ 突起_	ピット	スクラッチ	
1	0.7	6	乳酸	0.5	乳酸ナトリウム	1.0	なし	μm/min 1.18	個 0	6	4	
2	1.0	6	リンコで酸	0.7	リンコ 酸 ナトリウム	0.2	なし	1.27	0	8	5	
3	0.7	6	リンコ 酸	0.7	リン3 酸 ナトリウム	0.2	なし	1.18	0	7	3	
4	0.6	6	リンコ・酸	0.7	リンコ 酸 ナトリウム	0.2	なし	0.93	1	9	3	
5	0.7	6	グルコン酸	0.5	ゲルコン酸 ナトリウム	0.5	なし	1.08	0	6	4	
6	0.7	6	リンゴ酸	0.7	_	-	なし	1.15	1	8	4	
7	0.7	5	_	-	硝酸7ルミ	1.0	なし	1.19	0	10	5 .	
8	0.7	6	ツコ酸	0.7	硝酸ニッケル	0.3	なし	1.17	1	8	4	
9	0.7	6	リンコ'酸	0.7	リンコ酸硝酸アルミ	0.2 0.2	なし	1.20	1	10	4	

【0034】まず、表1は本発明の要件を満足する実施 例1~15の結果を示したものであるが、いずれも研磨

れることが分かる。これに対し、表2に示す如く、有機 ホスホン酸系キレート性化合物を含有しない比較例1~ 速度が速くなり、しかも表面性状に優れた研磨面が得ら 50 9は、いずれも研磨速度が遅く、表面性状にも劣るもの

特開2001-131535

10

であった。 【0035】

【発明の効果】本発明の研磨用組成物は上記の様に構成*

*されているので、研磨速度が速く、しかも表面欠陥のない高品質な鏡面仕上げ面を得ることができる点で非常に 有用である。

フロントページの続き

(72) 発明者 洪 公弘

愛知県名古屋市緑区鳴海町字母呂後153番 地 山口精研工業株式会社内 (72)発明者 大木 繁雄

愛知県名古屋市緑区鳴海町字母呂後153番

地 山口精研工業株式会社内

(72) 発明者 林 良樹

愛知県名古屋市緑区鳴海町字母呂後153番

地 山口精研工業株式会社内

Fターム(参考) 5D112 AA24 GA09 GA14

.