OPTIMIZATION

LESSON 2.2

Formulation Exercises

FORMULATING LINEAR PROBLEMS

A product-mix problem

- A furniture manufacturer produces tables and chairs. The process involves machining, sanding, and assembling the pieces to make the tables and chairs.
- It takes **5h** to machine the pieces for a table, **4h** to sand the pieces, and **3h** to assemble a table.
- A chair requires **2h** to machine the pieces, **3h** to sand the pieces, and **4h** to assemble a chair.
- There are **270h** available for machining the pieces, **250h** for sanding the pieces, and **200h** for assembling.
- If the profit for a table is €100 and for a chair €60, how many tables and chairs should the manufacturer produce in order to maximize the overall profit?
- What if there is an additional requirement to produce four chairs for each table?

LP MODEL

	Per Unit	Product	
Resource/Item	Table Chair		Resource Availability (h)
Machining	5	2	270
Sanding	4	3	250
Assembly	3	4	200
Profit per unit (€)	100	60	_

Maximize
$$Z = 100T + 60C$$

Subject to
$$5T + 2C \le 270 \qquad \text{Machining}$$
$$4T + 3C \le 250 \qquad \text{Sanding}$$
$$3T + 4C \le 200 \qquad \text{Assembly}$$
$$T \ge 0 \text{ and } C \ge 0 \qquad \text{Nonnegativity}$$

Excel Model

Excel Model

Decision variables	Table	Table Chair		Objective function		
Number of units to produce	0	0		0		
Profit per unit	100	60				
Constraints			LHS	RHS		
Machining	5	2	0	270		
Sanding	4	3	0	250		
Assembly	3	4	0	200		

Excel Solution

Decision variables	Table		Objective function	
Number of units to produce	48.5714	13.5714		5671.428571
Profit per unit	100	60		
Constraints			LHS	RHS
Machining	5	2	270	270
Sanding	4	3	235	250
Assembly	3	4	200	200

Objective Ce	ll (Max)		
Cell	Name	Original Value	Final Value
\$L\$ Numb	er of units to produc	e	
11 Object	ive function	0	5671.428571

/arial	ble Cells			
Cell	Name	Original Value	Final Value Integ	ger
\$I\$1	Number of units to produce			
1	Table	0	48.57142857 Contin	
\$J\$	Number of units to produce			
11	Chair	0	13.57142857 Contin	

Const					
raints					
Cell	Name	Cell Value	Formula	Status	Slack
\$K\$					
15	Machining LHS	270	\$K\$15<=\$L\$15	Binding	0
\$K\$					
16	Sanding LHS	235	\$K\$16<=\$L\$16	Not Binding	15
\$K\$					
17	Assembly LHS	200	\$K\$17<=\$L\$17	Binding	0

IBM ILOG CPLEX Optimization Studio

How to install IBM CPLEX

- Go to <u>https://www.ibm.com/products/ilog-cplex-optimization-studio</u>
- Choose "No-cost academic edition"
- Sign up with the FEUP email address
- Fill the form and check the email to complete the registration

Enter your academic institution issued email to begin

Only the students and faculty of participating academic institutions are eligible to access this website. Please enter your academic institution issued email below to register.

Your academic institution issued email.

Find answers in our frequently asked questions

Submit

How to install IBM CPLEX

• Choose the packages you want to download

☐ Select All (or use check be	oxes below to select image(s) to dowi	nload)		
☑ IBM ILOG CPLEX Optimize	ation Studio V12.10 Quick Start Guid		ation Studio V12.10 for OSX Multiplat	
Size	4MB		2555	
IBM ILOG CPLEX Optimization Studio V12.10 Quick Start Guide Multiplatform Multilingual (CC437ML) - ☐ View Size				
License agreement	Download estimate	→ eAssembly	License agreement	Download estimate
☑ IBM ILOG CPLEX Optimize	ation Studio V12.10 for Windows x8	6-64 Multilingual (CC438ML) - ☐ View details	By clicking the "I agree" button, you a	gree that (1) you have had the opport
Size	703MB		and multi-product package terms, if a	my, and (2) terms of the license agree
Date posted	6 dez 2019		terms of the agreement(s), you will be	e unable to download the software.
License agreement	Download estimate	→ eAssembly	■ I agree ○ I do not agree	
☐ IBM ILOG CPLEX Optimiz	ation Studio V12.10 for Linux x86-6	4 Multilingual (CC439ML) - 🖵 View details	Sal Photos Avenue	
Size	637MB		Download now	
Date posted	6 dez 2019			

1. Creating a new project

2. Adding a run configuration

3. Creating a model

3.1 Model 1

File .mod - with the model

```
TablesChairs Model1.mod 

□
  2 * OPL 20.1.0.0 Model
  3 * Author: tgalv
  4 * Creation Date: 10 Feb 2022 at 14:06:35
    6 //declare data
 8 {string} Products =...; // products
10 float profit[Products] = ...;
11 float machining[Products] = ...:
12 float sanding[Products] = ...;
13 float assembly[Products] = ...:
14 float timeMachining = ...;
15 float timeSanding = ...:
16 float timeAssembly = ...;
 17
 18 //decision variables
19 dvar float+ x[Products];
 21 maximize sum(i in Products) profit[i] * x[i];
 22
 23 subject to {
      sum (i in Products) machining[i]* x[i] <= timeMachining;</pre>
     sum (i in Products) sanding[i]* x[i] <= timeSanding;</pre>
      sum (i in Products) assembly[i]* x[i] <= timeAssembly;</pre>
27 }
 28
290 execute OUTPUT RESULTS {
      var file = new IloOplOutputFile ("solutionTablesChairs1.txt", true);
      file.writeln ("Objective Function = ", cplex.getObjValue ());
      for (i in Products)
       file.writeln ("Variable x[", i, "] = ", x[i]);
33
 34
35
```

File .dat - with the data

```
🔯 TablesChairs Model1.mod 🗦 TablesChairs Data1.dat 🖾
 2 * OPL 20.1.0.0 Data
 3 * Author: tgalv
 4 * Creation Date: 10 Feb 2022 at 15:38:49
 7 Products = {"table"."chair"};
 8 profit= [100, 60];
 9 machining = [5 2];
10 sanding = [4,3];
11 assembly = [3,4];
12 timeMachining = 270;
13 timeSanding = 250;
14 timeAssembly = 200:
```

3.1 Running Model 1


```
II IIIOAC MACHIMING | IIOUUCCO | - ....
odel1.mod : CPLEX
                    12 float sanding[Products] = ...:
                    13 float assembly[Products] = ...;
ata1.dat
                    14 float timeMachining = ...;
                    15 float timeSanding = ...:
วท1
                    16 float timeAssembly = ...:
1 mod · CPLEX
                    17
2.mod: CPLEX

□ Solutions 
□
at
                   // Ouality There are no bound infeasibilities.
dat
cel1.dat
                   // There are no reduced-cost infeasibilities.
                   // Maximum Ax-b residual
:1 txt
                                                              = 2.84217e-14
                   // Maximum c-B'pi residual
                                                              = 0
® Breakpoi... ⊠
                   // Maximum |x|
                                                              = 48.5714
1 - 2 × | A A A A A A
                   // Maximum |slack|
                                                              = 15
                   // Maximum |pi|
                                                              = 15.7143
                   // Maximum |red-cost|
                                                              = 0
                   // Condition number of unscaled basis = 1.3e+01
                   x = [48.571]
                             13.571];
```

3.2 Model 2

File .mod - with the model

```
TablesChairs Model2.mod 
☐ TableChairs Data2.dat
 1 /****************
 2 * OPL 20.1.0.0 Model
    * Author: tgalv
    * Creation Date: 10 Feb 2022 at 17:52:22
 6 //declare data
                                                The sections are
 8 {string} Products =...; // products
                                                not defined in the
 9 {string} Sections =...: // sections
                                                model
11 float Profit[Products] = ...:
12 float TimePerSection[Sections][Products] = ...;
14 float AvailableTime[Sections] = ...;
15
16 //decision variables
17 dvar float+ x[Products];
19 maximize sum(i in Products) Profit[i] * x[i] :
 20
 21 subject to {
 22 forall (i in Sections)
      sum (j in Products) TimePerSection[i,j]* x[j] <= AvailableTime[i];</pre>
24 }
25
 26 execute OUTPUT RESULTS {
      var file = new IloOplOutputFile ("solutionTablesChairs1.txt", true);
      file.writeln ("Objective Function = ", cplex.getObjValue ());
      for (i in Products)
      file.writeln ("Variable x[", i, "] = ", x[i]);
31
32
```

File .dat - with the data

```
    TablesChairs Model2.mod □ TableChairs Data2.dat 
    TableChairs D
       2 * OPL 20.1.0.0 Data
       3 * Author: tgalv
               * Creation Date: 10 Feb 2022 at 18:01:58
       6Products = {"table"."chair"};
       7 Sections = {"machining", "sanding", "assembly"};
       9 Profit= [100, 60];
   10 TimePerSection = [[5,2],[4,3],[3,4]];
  11 AvailableTime =[270,250,200]:
   12
   13

→ 

■ Run Configurations

▼ D Configuration1 (default)

    To run this new
                                                                                                                                                                      TablesChairs Model1.mod : CPL
     model we will need
                                                                                                                                                                      TablesChairs Data1.dat
     to create a new

▼ 
    Configuration 2

    Run Configuration
                                                                                                                                                                      TablesChairs Model2.mod : CPLI
                                                                                                                                                                      TableChairs Data2.dat
                                                                                                                                                       Excel_Configuration1
                                                                                                                                                      TablesChairs Model1.mod : CPLEX
```

☑ TablesChairs Model2.mod : CPLEX

3.3 Model 3 - reading data from a excel file

File .mod is the same of Model 1 (for simplicity)

```
🔊 TablesChairs Model1.mod 🛭 🗐 TablesChairs DataExcel1.dat
1 /**************
 2 * OPL 20.1.0.0 Model
 3 * Author: tgalv
 4 * Creation Date: 10 Feb 2022 at 14:06:35
 6 //declare data
 8 {string} Products =...; // products
10 float profit(Products) = ...:
11 float machining[Products] = ...:
12 float sanding[Products] = ...;
13 float assembly[Products] = ...:
14 float timeMachining = ...:
15 float timeSanding = ...:
16 float timeAssembly = ...:
17
18 //decision variables
19 dvar float+ x[Products];
21 maximize sum(i in Products) profit[i] * x[i];
22
23 subject to {
      sum (i in Products) machining[i]* x[i] <= timeMachining;</pre>
      sum (i in Products) sanding[i]* x[i] <= timeSanding;</pre>
      sum (i in Products) assembly[i]* x[i] <= timeAssembly;</pre>
27 }
```

File .dat - links to the excel file

```
☐ TablesChairs Model1.mod

                        ■ TablesChairs DataExcel1.dat \( \times\)
 2 * OPL 20.1.0.0 Data
 3 * Author: tgalv
 4 * Creation Date: 10 Feb 2022 at 16:50:16
 6 / / n=4:
 7 //m=3:
   SheetConnection my sheet("TablesChairs dataExcel1.xlsx")
11 Products from SheetRead(my sheet, "Products");
12 machining from SheetRead(my sheet, "Machining");
13 sanding from SheetRead(my sheet. "Sanding"):
14 assembly from SheetRead(my sheet, "Assembly");
15 profit from SheetRead(my sheet, "Profit"):
16
17 timeMachining from SheetRead(my sheet, "TimeMachining");
18 timeSanding from SheetRead(my sheet, "TimeSanding");
19 timeAssembly from SheetRead(my sheet, "TimeAssembly");
20
21 x to SheetWrite(my sheet, "results");
```

3.3 Model 3 - reading data from a excel file

In the excel file we need to define names for the cells that characterize the problem

⊿ A	В	С	D	E	F	G
1 Products	chair	table		Available1	īme	
2 Machining	5	2		270		
3 Sanding	4	3		250		
4 Assembly	3	4		200		
5 Profit	100	60				
6						
7 results	48.57143	13.57143				
8						
9						
10						
11						

3.4 Model 4 - Exercise

Add the new constraint (4 chairs for each table) and solve the integer problem

- (i) in excel
- (ii) in CPLEX

HOMEWORK ASSIGNMENT

PROBLEM 1 - CORPORATION WEIGELT

- The corporation Weigelt has three factories with excess of production capacity. Fortunately, the company has a new product ready to be produced, and all three factories can produce it. Thus, some of the excess of capacity can be used for the new product.
- This product can be produced in three different sizes (large, medium and small), with a unitary profit of 420€, 360€ and 300€, respectively. Factories 1, 2 and 3 have excess of capacity, which enables them to produce 750, 900 and 450 units of this product per day, respectively, independently of the produced size or the combination of different sizes.
- The availability of storage space during the production process also imposes a limitation in the production of the new product. Factories 1, 2 and 3 have storage capacity of 13 000, 12 000 and 5 000 square meters, respectively, for a production day. Each unit of large, medium and small product produced per day requires 20, 15 and 12 square meters, respectively.
- The sales forecast indicates that 900, 1200 and 750 units of large, medium and small sizes can be sold daily, respectively.
- The management wants to know how many units of each size to produce in each factory in order to maximize the profit.

PROBLEM 1 - FORMULATION

Decision Variables: $x_{ii} = number$ of products produced in factory i with size j

Objective function:

$$\text{Max } Z = 420 \text{ x}_{11} + 360 \text{ x}_{12} + 300 \text{ x}_{13} + 420 \text{ x}_{21} + 360 \text{ x}_{22} + 300 \text{ x}_{23} + 420 \text{ x}_{31} + 360 \text{ x}_{32} + 300 \text{ x}_{33}$$

Constraints:

Problem 1 - Excel

xij	xij number of units produced in factory i with size j									
		P	roduct size	S						
		Size L	Size M	Size S	Production /Factory		Production Capacity	Storage occupied		Storage Space
	Factory 1	0	0	0	0	<=	750	0	<=	13000
Factories	Factory 2	0	0	0	0	<=	900	0		12000
	Factory 3	0	0	0	0	<=	450	0	<=	500
	Space required	20	15	12						
	Sales	0	0	0						
		<=	<=	<=						
	Sales forecast	900	1200	750			Total profit			
	Unitary Profit	€ 420.00	€ 360.00	€ 300.00			€ -			

PROBLEM 1 - CPLEX

```
File weigelt.mod
6 {string} Factories =...; // factories
7 {string} Prod Sizes =...; // product sizes
.0 float Profit[Prod Sizes] = ...;
1 float SalesForecast [Prod Sizes] = ...;
2 float SpaceRequired[Prod_Sizes] = ...;
3 float SpaceAvailable[Factories]= ...;
4 float ProdCapacity[Factories]= ...:
6 //decision variables
7 dvar float+ x[Factories][Prod Sizes];
.9 maximize sum(j in Prod Sizes) sum(i in Factories) Profit[j] * x[i][j] ;
   subject to {
     // production capacity
    forall (i in Factories)
     sum (j in Prod Sizes) x[i][j] <= ProdCapacity[i];</pre>
    //storage capacity
    forall (i in Factories)
     sum (j in Prod Sizes) SpaceRequired[j]*x[i][j] <= SpaceAvailable[i];</pre>
    //sales
    forall (j in Prod_Sizes)
9
     sum (i in Factories) x[i][j] <= SalesForecast[j];</pre>
```

File weigelt.dat

```
6 SheetConnection my_sheet("Weigelt1.xlsx");
8 Factories from SheetRead(my sheet, "Factories");
9 Prod Sizes from SheetRead(my sheet, "Prod Sizes");
10 ProdCapacity from SheetRead(my sheet, "ProdCapacity");
Profit from SheetRead(my sheet, "Profit");
13 SalesForecast from SheetRead(my sheet, "SalesForecast");
14 SpaceAvailable from SheetRead(my sheet, "SpaceAvailable");
L5 SpaceRequired from SheetRead(my sheet, "SpaceRequired");
18 x to SheetWrite(my sheet, "results");
```

Use the previous excel file, but do not forget to define names for the parameters of the problem

PROBLEM 1 - CORPORATION WEIGELT

A new constraint:

In each factory, some of the employees may be fired, unless most of the excess production could be used to produce the new product. To avoid firing employees, management decided that the three factories should use the same percentage of the excess capacity to produce the new product.

PROBLEM 1 - FORMULATION

New constraints:

$$\frac{1}{750}(x_{11} + x_{12} + x_{13}) - \frac{1}{900}(x_{21} + x_{22} + x_{23}) = 0$$

$$\frac{1}{750}(x_{11} + x_{12} + x_{13}) - \frac{1}{450}(x_{31} + x_{32} + x_{33}) = 0$$

We could also include the following constraint, but it is redundant considering the last 3 equations

$$\frac{1}{900}$$
 ($x_{21} + x_{22} + x_{23}$) - $\frac{1}{450}$ ($x_{31} + x_{32} + x_{33}$) = 0

Homework: adapt the excel file (and OPL project) to these new constraints. Comment the results