CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I E II) 8 MARZO 2019

Svolgere i seguenti esercizi,

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. Chi usufruisce dell'esonero non deve rispondere ad esercizi e domande marcate con \bigstar .

Non è necessario consegnare la traccia.

- ★ Esercizio 1. Si consideri l'applicazione $f: X \in \mathcal{P}(\mathbb{Z}) \mapsto \{x+2 \mid x \in X\} \in \mathcal{P}(\mathbb{Z})$.
 - (i) Calcolare $f(\{-2,2,4\}), f(\mathbb{Z}) \in \overleftarrow{f}(\{\{-2,3,5\}\}).$
 - (ii) Verificare che f è biettiva e calcolare f^{-1} .
 - (iii) Siano $h: x \in \mathbb{Q} \mapsto 2x + 1 \in \mathbb{Q}$ e $g: y \in \mathbb{Z} \mapsto y/3 \in \mathbb{Q}$; descrivere $k:=h \circ g$ e decidere se k è surjettiva.

Esercizio 2. Si consideri l'operazione binaria definita in $S := \mathbb{Z} \times \mathbb{Z}_{64}$ da: per ogni $(a, \bar{b}), (c, \bar{d}) \in S$, $(a, \bar{b}) * (c, \bar{d}) = (ac, \bar{bc} + \bar{d})$.

- ★ (i) Decidere se * è commutativa, se è associativa, se ammette elementi neutri a destra e/o a sinistra.
- ★ (ii) Nel caso la domanda abbia senso, descrivere gli elementi simmetrizzabili in (S,*). Quanti sono? Che tipo di struttura (semigruppo, monoide, gruppo) è (S,*)?
- ★ (iii) Detti $V = 64\mathbb{Z} \times \mathbb{Z}_{64}$ e $W = \{65\} \times \mathbb{Z}_{64}$, si dica se per ciascuna di V e W se è una parte chiusa in (S, *) e, dove la domanda abbia senso, che tipo di strutture siano (V, *) e (W, *).
 - (iv) Determinare, nel caso esistano, gli elementi (u, \bar{v}) di S tali che $(u, \bar{v}) * (8, \overline{15}) = (-8, \overline{2})$.

Esercizio 3. Sia $A = \{n \in \mathbb{N} \mid n < 14\}$. Quante sono le parti X di A che verificano contemporaneamente le condizioni $6 \in X$, $7 \notin X$ e |X| = 5?

Esercizio 4. Enunciare il teorema fondamentale che lega relazioni di equivalenza e partizioni in un insieme. Dimostrare che la relazione binaria \sim definita in $A := \{n \in \mathbb{N} \mid n < 14\}$ da

$$\forall a, b \in A(a \sim b \iff a^2 + 3 \equiv_6 b^2 - 3)$$

è di equivalenza (suggerimento: ragionare sulle classi di a^2 e b^2 modulo 6; la condizione $a^2+3\equiv_6 b^2-3$ equivale a...?) e descrivere, elencando gli elementi di ciascuna classe, A/\sim .

Esercizio 5. Sia S l'insieme delle parti finite e non vuote di \mathbb{N} . Si definisca la relazione binaria ρ in S ponendo, per ogni $X,Y\in S$

$$X \rho Y \iff (X = Y \vee \forall x \in X(\forall y \in Y(x \le y))).$$

Dando per noto che ρ è una relazione d'ordine,

- (i) stabilire se ρ è una relazione totale.
- (ii) Determinare in (S, ρ) , eventuali minimo, massimo, elementi minimali, elementi massimali.
- (iii) Posto $X = \{1, 2, 3, 4\}$ e $Y = \{2, 5\}$, determinare in (S, ρ) l'insieme dei maggioranti di $\{X, Y\}$ e decidere se esiste sup $\{X, Y\}$;
- (iv) Sia $T = \{A, B, C, D, E, F, G, H\}$, dove $A = \{0\}$, $B = \{0, 4\}$, $C = \{0, 6\}$, $D = \{4, 5, 7\}$, $E = \{6\}$, $F = \{6, 9\}$, $G = \{7\}$, $H = \{9\}$. Disegnare il diagramma di Hasse di (T, ρ) e decidere se (T, ρ) è un reticolo, un reticolo distributivo, un reticolo complementato.
- (v) Esiste in S un elemento I tale che $(T \cup \{I\}, \rho)$ sia un reticolo non distributivo? Indicarne uno o spiegare perché non ne esistono.

Esercizio 6. Si determini il massimo primo p tale che $f := x^3 - \bar{3}x^2 + \bar{4}x + \bar{2} \in \mathbb{Z}_p[x]$ abbia $\bar{3}$ come radice. Si scriva poi f come prodotto di polinomi monici irriducibili in $\mathbb{Z}_p[x]$. Inoltre:

- (i) in $\mathbb{Z}_p[x]$, un polinomio associato a $x-\bar{3}$ deve dividere f? Quanti sono, in tutto, i polinomi di primo grado in $\mathbb{Z}_p[x]$ che dividono f?
- (ii) Senza eseguire calcoli, decidere se $f + (x \bar{3})^5$ è o non è irriducibile in $\mathbb{Z}_p[x]$.
- (iii) Si determini, nel caso esista, un polinomio g associato a f in $\mathbb{Z}_p[x]$ che abbia coefficiente direttore $\bar{4}$.
- (iv) Si determini, nel caso esista, un polinomio h associato a f in $\mathbb{Z}_p[x]$ tale che $h(\bar{0}) = \bar{4}$.