a

a

13 janvier 2021

1 Calcul booléen

1.1 Notations

— Vrai : \top

— Faux : \bot

— Non : \neg

— Et : \land

-- Ou : \lor

De plus, dans ce chapitre, on notera $B = \{\top, \bot\}$

Ordre de priorité dans les calculs : \neg, \land, \lor

1.2 Règles de calcul

Propriété 1 \(\lambda\):

- Commutatif
- Associatif
- Neutre : \top

Propriété 2 V:

- Commutatif
- Associatif
- Neutre : \bot

Propriété 3 $Entre \lor$, $\land et \lnot$

- Distributivité (\vee est distributif sur \wedge et inversement contrairement aux nombres)
- Loi de De Morgan : $\forall (a, b, c) \in B^3$

$$-\neg(a \land b) = \neg a \lor \neg b$$

$$- \neg (a \lor b) = \neg a \land \neg b$$

Démonstration 1 Montrons que $\forall (a,b,c) \in B^3, a \land (b \lor c) = (a \land b) \lor (a \land c)$ On étudie toutes les possibilités pour ((a,b,c)). Il y en a 8 car $2^3 = 8$

On les regroupe dans une table de vérité

a	b	c	$b \lor c$	$a \wedge (b \vee c)$	$a \wedge b$	$a \wedge c$	$(a \wedge b) \vee (a \wedge c)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Les colonnes sont identiques

Les propriétés de \wedge et \vee ressemblent à celle pour \cdot et + sur $\mathbb{Z}/n\mathbb{Z}$

On utilise alors souvent:

-0

— 1

- +

Dans ce cas, les loi de DE Morgan sont :

Loi de De Morgan : $\forall (a, b, c) \in B^3$

$$- \underline{\overline{(a \wedge b)}} = \overline{a} + \overline{b}$$

 $--\overrightarrow{(a+b)} = \overline{a}\overline{b}$

Attention dans ce cas, 1 + 1 = 1

' $(Z/nZ, +, \cdot)$ est un corps.

 (B, \vee, \wedge) n'est même pas un anneau car 1 n'a pas d'opposé

'Notons le ou exclusif :

11=0 On peut vérifier que (B,\wedge) est un corps , isomorphe à Z/nZ

1.3 Autres connecteurs logiques

Combien y-a-t-il de fonction de B dans B ? Il y en a $|B|^{|B|}=4$ Il y a $id,\neg,0,1$

Combien y-a-t-il de fonction de B^2 dans B? Il y en a 16. Nous connaisons déja \vee, \wedge , Pour definir un opérateur, il suffit de donnée sa table de vérité

1.3.1 L'implication

Exemple 1 "Mange to soupe ou vo dans to chambre" by FP donne

"Si tu ne mange pas ta soupe alors va dans ta chambre"

Interpretation en mathématiques :

Table de vérité de \Rightarrow :

 $a \quad b \quad a \Rightarrow b$

 $0 \ 0 \ 1$

 $0 \quad 1 \quad 1$

1 0 0

1 1 1

Ainsi, la formule $\forall (a,b)inB^2, a \Rightarrow b$ est vraie si et seulement si a chaque fois que a est vrai, b l'est aussi. (Quand a est faux, b peut valoir n'importe quoi!)

Digressions:

Un théorème est une formule $\forall x \in E, P(x) \Rightarrow Q(x)$ où E est un ensemble et P, Q des prédicats sur E. (fonctions de E dans B) Dans le cas où P est faux, on a aucune informations sur Q.

Pour montrer q'un théorème est faux, il faut montrer $\neg(\forall x \in E, P(x) \Rightarrow Q(x))$ cad $\exists x \in E, \neg(P(x) \Rightarrow Q(x))$ cad $\exists x \in E, \neg Q(x) \land P(x)$ Ainsi, cela revient à trouver un $x \in E$ pour lequel l'hypothèse est vraie mais la conclusion est fausse. Un tel x s'appelle un contre-exemple

1.3.2 Equivalents

1.3.3 Non-et

Il est utilisé car il coute seulement 3 transistors.

On peut definir les autres opérations à partir du non-et. (cf Exercice 9)

De même on définit non-ou.

En général dans un langage, il est seulement fournit \neg, \land, \lor desquels on peut définir les autres.

2 Formules logiques