حل مسئله كمترين مربعات با تجزيه SVD

۱۱ تیر ۱۴۰۱

محمدرضا باطني

هدف ما یافتن برداری است که نرم دوم X را کمینه بکند و قید $|X||_2 = 1$ را هم حفظ کند.

روش حل بدین صورت است که ماتریس را به صورت SVD تجزیه میکنیم و با استفاده از ماتریس های تجزیه، مقدار $\min_{|X||_2=1} ||AX||_2$

این مقاله سه بخش دارد. در بخش اول مفاهیم مقادیر منفرد و تجزیه SVD و روش انجام این تجزیه توضیح داده میشود. در بخش دوم توضیح داده میشود که چگونه با استفاده از تجزیه SVD میتوان مسئله کمترین مربعات را حل کرد و در بخش سوم این موضوع اثبات میشود.

۱ بخش اول (توضیح مفاهیم)

 A^TA مقادیر منفرد: مقادیر منفرد ماتریس A برابر است با جذر مقادیر ویژه ماتریس

تجزیه SVD : یک تجزیه مشخص ماتریس A به سه ماتریس U به سه ماتریس U و Σ و V است به طوری که U U و ماتریس U باشد. U یک ماتریس متعامد U یک ماتریس متعامد U یک ماتریس متعامد U یک ماتریس نامبرده شده و همچنین قطری بودن ماتریس Σ در ادامه استفاده میشود.

روش یافتن تجزیه SVD : ماتریس AA^T یک ماتریس n^*n است. ثابت میشود که اگر تمام مقادیر ویژه های این ماتریس را به دست آوریم و بردار ویژه های یکه متناظر با هر کدام این مقادیر را پیدا کنیم و ستون به ستون و به ترتیب نزولی در یک ماتریس بچینیم (اگر تعداد بردار های ویژه از n کمتر بود بقیه ستون ها را صفر میگذاریم) در نهایت ماتریس u به دست میاید.

برای به دست آوردن Σ کافی است مقادیر منفرد A را به صورت نزولی در یک قطر ماتریس m^*m بچینیم. ماتریس m^*m است. ثابت میشود که اگر تمام مقادیر ویژه های این ماتریس را به دست آوریم و بردار ویژه های یکه متناظر با هر کدام این مقادیر را پیدا کنیم و سطر به سطر و به ترتیب نزولی در یک ماتریس بچینیم (اگر تعداد بردار های ویژه از m کمتر بود بقیه ستون ها را صفر میگذاریم) در نهایت ماتریس V^T به دست میاید.

بخش دوم مقاله (روش حل مسئله کمترین مربعات با تجزیه SVD)

برای یافتن مقدار X ای که جواب $2 + \min_{|X||_2 = 1} \|AX\|_2$ باشد، کافی است بردار ویژه متناظر با کوچک ترین مقدار ویژه متناظر با X یعنی آخرین سطر بردار X^T را به دست آوریم. همچنین مقدار عددی این مینیمم برابر رادیکال مقدار ویژه متناظر با این بردار است.

٣ بخش سوم مقاله (اثبات)

 $\min_{||X||_2=1} ||AX||_2 = \min_{||X||_2=1} ||U\Sigma V^T X||_2$ داریم : $(A=U\Sigma V^T)$ ما از آنجایی که U متعامد یکه است و پایه ای برای فضای سطری A است پس ضرب این ماتریس در یک بردار، اندازه آن $\min_{||X||_2=1} ||U\Sigma V^T X||_2 = \min_{||X||_2=1} ||\Sigma V^T X||_2$ را تغییر نمیدهد. یعنی : $||\Sigma V^T X||_2 = \min_{||X||_2=1} ||\Sigma V^T X||_2$

همچنین اگر y رابرابر X^TX قرار دهیم ، $||\Sigma V^TX||_2$ به $\min ||\Sigma V^TX||_2$ به به $\min ||\Sigma V^TX||_2$ قرار دهیم ، $||y||_2=1$ قرار دهیم ، $||X||_2=1$ به الدازه $||X||_2=1$ متعامد یکه است، ضرب آن در $||X||_2=1$ ، اندازه $||X||_2=1$. $\min_{||y||_2=1} |||\Sigma y||_2$ هم هست و مسئله ما تبدیل میشود به $||Y||_2=1$.

و حل این مسئله خیلی ساده است زیرا ماتریس Σ قطری است و سطر های آن به صورت نزولی چیده شده اند. بنابراین مقدار y برابر $[0,0,\dots,1]^T$ است.

راست. همان رادیکال کوچکترین مقدار منفرد ماتریس A یا همان رادیکال کوچکترین مقدار ویژه A^TA است.

برای محاسبه مقدار X ای که منجر به این مینیمم میشود کافی ست توجه کنیم که مقدار y برابر V^TX بود بنابراین : $y=V^TX \implies VV^TX=Vy \implies X=Vy$

y=0 همچنین برای به دست آوردن X ، یعنی همان برداری که $||AX||_2$ را مینیمم کرد، کافی است ماتریس V را در X مطلوب است. $[0,0,\dots,1]^T$ ضرب کنیم و این یعنی ستون آخر X یا همان سطر آخر X برابر بردار X مطلوب است.

نکته جالب تر اینکه با تغییر تمام \min ها به \max مسئله ما تبدیل به $\max_{|X||_2=1} ||AX||_2=1$ میشود که دقیقا برابر نرم ماتریس A است.

کد متلب تجزیه SVD و یافتن مقدار کمترین مربعات در پیوست آمده شده است. در این کد در ابتدا تجزیه انجام شده و بررسی شده که تجزیه به درستی انجام شده، سپس طبق صحبت های این مقاله X ساخته شده و بررسی شده که اندازه این X واقعا ۱ هست و سپس مقدار مینیمم X چاپ شده، همچنین در آخر به جای X شده و دیده میشود که جواب با X واقعا بر ابر است.

جزوه درس جبر خطی کاربردی دکتر عباداللهی سال ۱۳۹۷ - گروه کنترل دانشگاه علم و صنعت 16-385 Computer Vision (Kris Kitani) Carnegie Mellon University Wikipedia (Singular value decomposition)