Notebook 100^o UNIFESO

1 de agosto de 2017

Sumário

1	Introdução 1.1 Template 1.2 Fast Input 1.2 Fast Input 1.3 Bugs do Milênio 1.4 Recomendações gerais 1.5 Os 1010 mandamentos 1.5 Uimites da representação de dados 1.7 Quantidade de números primos de 1 até 10 ⁿ 1.8 Triângulo de Pascal 1.9 Fatoriais 1.10 Tabela ASCII 1.10 Tabela ASCII	
	1.11 Primos até 10.000	7
2	Estruturas de dados 2.1 Prefix Sum 1D 2.2 BIT - Fenwick Tree 2.3 BIT - Fenwick Tree 2D	9
3	Paradigmas	10
4	Grafos 4.1 Ford Fulkerson	11 11 11 12 13 13 14
5	Matemática	15
6	Processamento de Strings	16
7	Geometria Computacional 7.1 Template - Júnior	17 17
8	Miscelânea	19

Introdução

1.1 Template

Digitar o template no inicio da prova. $N\tilde{\mathbf{A}}\mathbf{O}$ esquecer de remover o freopen()

```
#include <bits/stdc++.h>
using namespace std;
#define all(v) (v).begin(), (v).end()
#define pb push_back
#define fst first
#define snd second
#define debug(x) cout << #x << "_==_" << x << endl;
typedef pair <int , int > ii;

int main() {
    freopen("in", "rt", stdin)
    return 0;
}

typedef long long ll;
```

1.2 Fast Input

Em casos extremos mete isso sem medo.

```
template < class num > inline void rd(num &x)
{
    char c;
    while(isspace(c = getchar()));
    bool neg = false;
    if(!isdigit(c))
        neg = (c=-'-'), x = 0;
}
else
    x = c - '0';
while(isdigit(c=getchar()))
    x = (x < 3) + (x < 1) + c - '0';
if(neg)
    x = -x;
}</pre>
```

1.3 Bugs do Milênio

Cortesia da ITA.

Erros teóricos:

- Não ler o enunciado do problema com calma.
- Assumir algum fato sobre a solução na pressa.
- Não reler os limites do problema antes de submeter.
- Quando adaptar um algoritmo, atentar para todos os detalhes da estrutura do algoritmo, se devem (ou não) ser modificados (ex:marcação de vértices/estados).
- O problema pode ser NP, disfarçado ou mesmo sem limites especificados. Nesse caso a solução é bronca mesmo.
 Não é hora de tentar ganhar o prêmio nobel.

Erros com valor máximo de variável:

- Verificar com calma (fazer as contas direito) para ver se o infinito é tão infinito quanto parece.
- Verificar se operações com infinito estouram 31 bits.
- Usar multiplicação de int's e estourar 32 bits (por exemplo, checar sinais usando a*b>0).

Erros de casos extremos:

- Testou caso n = 0? n = 1? n = MAXN? Muitas vezes tem que tratar separado.
- Pense em todos os casos que podem ser considerados casos extremos ou casos isolados.

- Casos extremos podem atrapalhar não só no algoritmo, mas em coisas como construir alguma estrutura (ex: lista de adj em grafos).
- Não esquecer de self-loops ou multiarestas em grafos.
- Em problemas de caminho Euleriano, verificar se o grafo é conexo.

Erros de desatenção em implementação:

- Errar ctrl-C/ctrl-V em código. Muito comum.
- Colocar igualdade dentro de if? (if(a = 0)continue;)
- Esquecer de inicializar variável.
- Trocar break por continue (ou vice-versa).
- Declarar variável global e variável local com mesmo nome (é pedir pra dar merda...).

Erros de implementação:

- Definir variável com tipo errado (int por double, int por char).
- Não usar variável com nome max e min.
- Não esquecer que .size() é unsigned.
- Lembrar que 1 é int, ou seja, se fizer $long\ long\ a=1$ << 40;, não irá funcionar (o ideal é fazer $long\ long\ a=1LL$ << 40;).

Erros em limites:

- Qual o ordem do tempo e memória? 10⁸ é uma referência para tempo. Sempre verificar rapidamente a memória, apesar de que o limite costuma ser bem grande.
- A constante pode ser muito diminuída com um algoritmo melhor (ex: húngaro no lugar de fluxo) ou com operações mais rápidas (ex: divisões são lentas, bitwise é rápido)?

1.4 Recomendações gerais

Cortesia da PUC-RJ.

ANTES DA PROVA

- Revisar os algoritmos disponíveis na biblioteca.
- Revisar a referência STL.
- Reler este roteiro.
- Ouvir o discurso motivacional do técnico.

ANTES DE IMPLEMENTAR UM PROBLEMA

- Quem for implementar deve relê-lo antes.
- Peça todas as clarifications que forem necessárias.
- Marque as restrições e faça contas com os limites da entrada.
- Teste o algoritmo no papel e convença outra pessoa de que ele funciona.
- Planeje a resolução para os problemas grandes: a equipe se junta para definir as estruturas de dados, mas cada pessoa escreve uma função.

• O exercício é um caso particular que pode (e está precisando) ser otimizado e não usar direto a biblioteca?

Erros em doubles:

- Primeiro, evitar (a não ser que seja necessário ou mais simples a solução) usar float/double. E.g. conta que só precisa de 2 casas decimais pode ser feita com inteiro e depois %100.
- Sempre usar *double*, não *float* (a não ser que o enunciado peça explicitamente).
- Testar igualdade com tolerância (absoluta, e talvez relativa).
- Cuidado com erros de imprecisão, em particular evitar ao máximo subtrair dois números praticamente iguais.

Outros erros:

- Evitar (a não ser que seja necessário) alocação dinâmica de memória.
- Não usar STL desnecessariamente (ex: vector quando um array normal dá na mesma), mas usar se facilitar (ex: nomes associados a vértices de um grafo map < string, int >) ou se precisar (ex: um algoritmo O(nlogn) que usa < set > é necessário para passar no tempo).
- Não inicializar variável a cada teste (zerou vetores? zerou variável que soma algo? zerou com zero? era pra zerar com zero, com -1 ou com INF?).
- Saída está formatada corretamente?
- Declarou vetor com tamanho suficiente?
- Cuidado ao tirar o módulo de número negativo. Ex.: x%n não dá o resultado esperado se x é negativo, fazer (x%n+n)%n.

DEBUGAR UM PROGRAMA

- Ao encontrar um bug, escreva um caso de teste que o dispare.
- Reimplementar trechos de programas entendidos errados.
- \bullet Em caso de RE, procure todos os [, / e %.

1.5 Os 1010 mandamentos

Também cortesia da PUC-RJ.

- 0. Não dividirás por zero.
- 1. Não alocarás dinamicamente.
- 2. Compararás números de ponto flutuante usando EPS.
- 3. Verificarás se o grafo pode ser desconexo.
- 4. Verificarás se as arestas do grafo podem ter peso negativo.
- 5. Verificarás se pode haver mais de uma aresta ligando dois vértices.
- 6. Conferirás todos os índices de uma programação dinâmica.
- 7. Reduzirás o branching factor da DFS.
- 8. Farás todos os cortes possíveis em uma DFS.
- 9. Tomarás cuidado com pontos coincidentes e com pontos colineares.

1.6 Limites da representação de dados

tipo	bits	mínimo	 máximo	precisão decimal
char	8	0	 127	2
signed char	8	-128	 127	2
unsigned char	8	0	 255	2
short	16	-32.768	 32.767	4
unsigned short	16	0	 65.535	4
int	32	-2×10^{9}	 2×10^{9}	9
unsigned int	32	0	 4×10^{9}	9
long long	64	-9×10^{18}	 9×10^{18}	18
unsigned long long	64	0	 18×10^{18}	19

tipo	bits	expoente	precisão decimal
float	32	38	6
double	64	308	15
long double	80	19.728	18

1.7 Quantidade de números primos de 1 até 10^n

É sempre verdade que n/ln(n) < pi(n) < 1.26*n/ln(n).

$pi(10^1) = 4$	$pi(10^2) = 25$	$pi(10^3) = 168$
$pi(10^4) = 1.229$	$pi(10^5) = 9.592$	$pi(10^6) = 78.498$
$pi(10^7) = 664.579$	$pi(10^8) = 5.761.455$	$pi(10^9) = 50.847.534$

1.8 Triângulo de Pascal

n p	0	1	2	3	4	5	6	7	8	9	10
0	1										
1	1	1									
2	1	2	1								
3	1	3	3	1							
4	1	4	6	4	1						
5	1	5	10	10	5	1					
6	1	6	15	20	15	6	1				
7	1	7	21	35	35	21	7	1			
8	1	8	28	56	70	56	28	8	1		
9	1	9	36	84	126	126	84	36	9	1	
10	1	10	45	120	210	252	210	120	45	10	1

C(33, 16)	1.166.803.110	limite do int
C(34, 17)	2.333.606.220	limite do unsigned int
C(66, 33)	7.219.428.434.016.265.740	limite do long long
C(67, 33)	14.226.520.737.620.288.370	limite do unsigned long long

1.9 Fatoriais

Fatoriais até $20~{\rm com}$ os limites de tipo.

0!	1	
1!	1	
2!	2	
3!	6	
4!	24	
5!	120	
6!	720	
7!	5.040	
8!	40.320	
9!	362.880	
10!	3.628.800	
11!	39.916.800	
12!	479.001.600	limite do unsigned int
13!	6.227.020.800	
14!	87.178.291.200	
15!	1.307.674.368.000	
16!	20.922.789.888.000	
17!	355.687.428.096.000	
18!	6.402.373.705.728.000	
19!	121.645.100.408.832.000	
20!	2.432.902.008.176.640.000	limite do unsigned long long

1.10 Tabela ASCII

Char	Dec	Oct	Нех	:	Char	Dec	Oct	Hex	1	Char	Dec	Oct	Hex	I	Char	Dec	Oct	Hex
(nul)	0	0000	0x00	1	(sp)	32	0040	0x20	I	0	64	0100	0x40	I	`	96	0140	0x60
(soh)	1	0001	0x01	1	! -	33	0041	0x21	Ī	A	65	0101	0x41	İ	a	97	0141	0x61
(stx)	2	0002	0x02	1	"	34	0042	0x22	1	В	66	0102	0x42	1	b	98	0142	0x62
(etx)	3	0003	0x03	1	#	35	0043	0x23	1	С	67	0103	0x43	1	c	99	0143	0x63
(eot)	4	0004	0x04	-	\$	36	0044	0x24	1	D	68	0104	0x44	1	d	100	0144	0×64
(enq)	5	0005	0x05	-	િક	37	0045	0x25	-	E	69	0105	0x45		е	101	0145	0×65
(ack)		0006			&		0046		1	F		0106		1	£		0146	
(bel)	7	0007	0x07		1	39	0047		-	G		0107		1	g		0147	
(bs)	8	0010			(40	0050			H		0110			h		0150	
(ht)	9	0011)	41	0051		1	I		0111		1	i		0151	
(nl)		0012			*	42	0052			J		0112		1	j		0152	
(vt)	11	0013			+	43	0053		-	K		0113			k		0153	
(np)	12	0014			,				1	L		0114		1	1		0154	
(cr)	13	0015			-	45	0055		1	М		0115		1	m		0155	
(so)		0016			•		0056		1	N		0116		1	n		0156	
(si)	15	0017			/	47			1	0		0117		1	0		0157	
(dle)		0020			0		0060		1	P		0120		1	р		0160	
(dc1)	17	0021		.	1		0061		1	Q		0121		1	q		0161	
(dc2)	18	0022			2		0062			R		0122		1	r		0162	
(dc3)	19	0023			3		0063		1	S		0123		1	s		0163	
(dc4)	20	0024			4		0064		1	T		0124		1	t		0164	
(nak)	21	0025			5		0065		1	U		0125		1	u		0165	
(syn)		0026			6		0066		1	V		0126		1	v		0166	
(etb)	23	0027			7				1	W	87	0127		1	w		0167	
(can)	24				8		0070			х		0130		1	x		0170	
(em)	25	0031			9	57	0071		1	Y		0131		1	У		0171	
(sub)	26	0032			:	58	0072			Z		0132		1	z		0172	
(esc)	27	0033			;	59	0073		1	[91	0133		1	{		0173	0x7b
(fs)	28	0034			<	60	0074		1	/		0134			1		0174	0x7c
(gs)	29	0035			=	61		0x3d	-]		0135			}		0175	0x7d
(rs)	30	0036			>	62	0076		1	^		0136			~		0176	0x7e
(us)	31	0037	0x1f		?	63	0077	0x3f		_	95	0137	0x5f		(del)	127	0177	0x7f

$1.11 \quad Primos \ at\'e \ 10.000$

Existem 1.229 números primos até 10.000.

0	9	F	7	11	1.0	17	10	99	20	91
2	3	5	7	11	13	17	19	23	29	31
37	41	43	47	53	59	61	67	71	73	79
83	89	97	101	103	107	109	113	127	131	137
139	149	151	157	163	167	173	179	181	191	193
197	199	211	223	227	229	233	239	241	251	257
263	269	271	277	281	283	293	307	311	313	317
331 397	337	347 409	349 419	353 421	359 431	367 433	373 439	379 443	383 449	389
461	$\frac{401}{463}$	$\frac{409}{467}$	419	421	491	499	503	509	521	457 523
541	547	557	563	569	571	577	587	593	599	601
607	613	617	619	631	641	643	647	653	659	661
673	677	683	691	701	709	719	727	733	739	743
751	757	761	769	773	787	797	809	811	821	823
827	829	839	853	857	859	863	877	881	883	887
907	911	919	929	937	941	947	953	967	971	977
983	991	997	1009	1013	1019	1021	1031	1033	1039	1049
1051	1061	1063	1069	1013	1013	1021	1097	1103	1109	1117
1123	1129	1151	1153	1163	1171	1181	1187	1193	1201	1213
1217	1223	1229	1231	1237	1249	1259	1277	1279	1283	1213
1291	1225 1297	1301	1303	1307	1319	1321	1327	1361	1367	1373
1381	1399	1409	1423	1427	1429	1433	1439	1447	1451	1453
1459	1471	1481	1483	1487	1489	1493	1499	1511	1523	1531
1543	1549	1553	1559	1567	1571	1579	1583	1597	1601	1607
1609	1613	1619	1621	1627	1637	1657	1663	1667	1669	1693
1697	1699	1709	1721	1723	1733	1741	1747	1753	1759	1777
1783	1787	1789	1801	1811	1823	1831	1847	1861	1867	1871
1873	1877	1879	1889	1901	1907	1913	1931	1933	1949	1951
1973	1979	1987	1993	1997	1999	2003	2011	2017	2027	2029
2039	2053	2063	2069	2081	2083	2087	2089	2099	2111	2113
2129	2131	2137	2141	2143	2153	2161	2179	2203	2207	2213
2221	2237	2239	2243	2251	2267	2269	2273	2281	2287	2293
2297	2309	2311	2333	2339	2341	2347	2351	2357	2371	2377
2381	2383	2389	2393	2399	2411	2417	2423	2437	2441	2447
2459	2467	2473	2477	2503	2521	2531	2539	2543	2549	2551
2557	2579	2591	2593	2609	2617	2621	2633	2647	2657	2659
2663	2671	2677	2683	2687	2689	2693	2699	2707	2711	2713
2719	2729	2731	2741	2749	2753	2767	2777	2789	2791	2797
2801	2803	2819	2833	2837	2843	2851	2857	2861	2879	2887
2897	2903	2909	2917	2927	2939	2953	2957	2963	2969	2971
2999	3001	3011	3019	3023	3037	3041	3049	3061	3067	3079
3083	3089	3109	3119	3121	3137	3163	3167	3169	3181	3187
3191	3203	3209	3217	3221	3229	3251	3253	3257	3259	3271
3299	3301	3307	3313	3319	3323	3329	3331	3343	3347	3359
3361	3371	3373	3389	3391	3407	3413	3433	3449	3457	3461
3463	3467	3469	3491	3499	3511	3517	3527	3529	3533	3539
3541	3547	3557	3559	3571	3581	3583	3593	3607	3613	3617
3623	3631	3637	3643	3659	3671	3673	3677	3691	3697	3701
3709	3719	3727	3733	3739	3761	3767	3769	3779	3793	3797
3803	3821	3823	3833	3847	3851	3853	3863	3877	3881	3889
3907	3911	3917	3919	3923	3929	3931	3943	3947	3967	3989
4001	4003	4007	4013	4019	4021	4027	4049	4051	4057	4073
4079	4091	4093	4099	4111	4127	4129	4133	4139	4153	4157

4159	4177	4201	4211	4217	4219	4229	4231	4241	4243	4253
4259	4261	4271	4273	4283	4289	4297	4327	4337	4339	4349
4357	4363	4373	4391	4397	4409	4421	4423	4441	4447	4451
4457	4463	4481	4483	4493	4507	4513	4517	4519	4523	4547
4549	4561	4567	4583	4591	4597	4603	4621	4637	4639	4643
4649	4651	4657	4663	4673	4679	4691	4703	4721	4723	4729
4733	4751	4759	4783	4787	4789	4793	4799	4801	4813	4817
4831	4861	4871	4877	4889	4903	4909	4919	4931	4933	4937
4943	4951	4957	4967	4969	4973	4987	4993	4999	5003	5009
5011	5021	5023	5039	5051	5059	5077	5081	5087	5099	5101
5107	5113	5119	5147	5153	5167	5171	5179	5189	5197	5209
5227	5231	5233	5237	5261	5273	5279	5281	5297	5303	5309
5323	5333	5347	5351	5381	5387	5393	5399	5407	5413	5417
5419	5431	5437	5441	5443	5449	5471	5477	5479	5483	5501
5503	5507	5519	5521	5527	5531	5557	5563	5569	5573	5581
5591	5623	5639	5641	5647	5651	5653	5657	5659	5669	5683
5689	5693	5701	5711	5717	5737	5741	5743	5749	5779	5783
5791	5801	5807	5813	5821	5827	5839	5843	5849	5851	5857
5861	5867	5869	5879	5881	5897	5903	5923	5927	5939	5953
5981	5987	6007	6011	6029	6037	6043	6047	6053	6067	6073
6079	6089	6091	6101	6113	6121	6131	6133	6143	6151	6163
6173	6197	6199	6203	6211	6217	6221	6229	6247	6257	6263
6269	6271	6277	6287	6299	6301	6311	6317	6323	6329	6337
6343	6353	6359	6361	6367	6373	6379	6389	6397	6421	6427
6449	6451	6469	6473	6481	6491	6521	6529	6547	6551	6553
6563	6569	6571	6577	6581	6599	6607	6619	6637	6653	6659
6661	6673	6679	6689	6691	6701	6703	6709	6719	6733	6737
6761	6763	6779	6781	6791	6793	6803	6823	6827	6829	6833
6841	6857	6863	6869	6871	6883	6899	6907	6911	6917	6947
6949	6959	6961	6967	6971	6977	6983	6991	6997	7001	7013
7019	7027	7039	7043	7057	7069	7079	7103	7109	7121	7127
7129	7151	7159	7177	7187	7193	7207	7211	7213	7219	7229
7237	7243	7247	7253	7283	7297	7307	7309	7321	7331	7333
7349	7351	7369	7393	7411	7417	7433	7451	7457	7459	7477
7481	7487	7489	7499	7507	7517	7523	7529	7537	7541	7547
7549	7559	7561	7573	7577	7583	7589	7591	7603	7607	7621
7639	7643	7649	7669	7673	7681	7687	7691	7699	7703	7717
7723	7727	7741	7753	7757	7759	7789	7793	7817	7823	7829
7841	7853	7867	7873	7877	7879	7883	7901	7907	7919	7927
7933	7937	7949	7951	7963	7993	8009	8011	8017	8039	8053
8059	8069	8081	8087	8089	8093	8101	8111	8117	8123	8147
8161	8167	8171	8179	8191	8209	8219	8221	8231	8233	8237
8243	8263	8269	8273	8287	8291	8293	8297	8311	8317	8329
8353	8363	8369	8377	8387	8389	8419	8423	8429	8431	8443
8447	8461	8467	8501	8513	8521	8527	8537	8539	8543	8563
8573	8581	8597	8599	8609	8623	8627	8629	8641	8647	8663
8669	8677	8681	8689	8693	8699	8707	8713	8719	8731	8737
				8779				8819		
8741	8747	8753	8761		8783	8803	8807		8821	8831
8837	8839	8849	8861	8863	8867	8887	8893	8923	8929	8933
8941	8951	8963	8969	8971	8999	9001	9007	9011	9013	9029
9041	9043	9049	9059	9067	9091	9103	9109	9127	9133	9137
9151	9157	9161	9173	9181	9187	9199	9203	9209	9221	9227
9239	9241	9257	9277	9281	9283	9293	9311	9319	9323	9337
9341	9343	9349	9371	9377	9391	9397	9403	9413	9419	9421
9431	9433	9437	9439	9461	9463	9467	9473	9479	9491	9421 9497
9511	9521	9533	9539	9547	9551	9587	9601	9613	9619	9623
9629	9631	9643	9649	9661	9677	9679	9689	9697	9719	9721
9733	9739	9743	9749	9767	9769	9781	9787	9791	9803	9811
9817	9829	9833	9839	9851	9857	9859	9871	9883	9887	9901
9907	9923	9929	9931	9941	9949	9967	9973			
-						· ·	_			

Estruturas de dados

2.1 Prefix Sum 1D

```
Soma a..b em O(1).

#define MAXN 1000
int arr [MAXN];
int prefix [MAXN];

void build(int n){
    prefix [0] = 0;
    for(int i = 1; i <= n; i++) // arr 1-indexado</pre>
```

int get(int a, int b) { return prefix[b] - prefix[a-1]; }

prefix[i] = prefix[i-1] + arr[i];

2.2 BIT - Fenwick Tree

Soma 1..N e update em ponto em O(log n).

```
#define MAXN 10000
int bit [MAXN];
void update(int x, int val) {
   for (; x < MAXN; x+=x&-x)
      bit [x] += val;
}</pre>
```

```
int get(int x){
  int ans = 0;
  for(; x; x-=x&-x)
       ans += bit[x];
  return ans;
}
```

2.3 BIT - Fenwick Tree 2D

Soma um subretângulo e update em ponto em $O(log^2n)$.

```
#define MAXN 1000
int bit [MAXN] [MAXN];

void update(int x, int y, int val) {
   for (; x < MAXN; x+=x&-x)
        for(int j = y; j < MAXN; j+=j&-j)
        bit [x][j] += val;
}

int get(int x, int y) {
   int ans = 0;</pre>
```

```
for (; x; x=x&=x)
    for (int j = y; j; j==j&=j)
        ans += bit [x][j];
    return ans;
}
int get (int x1, int y1, int x2, int y2){
    return get (x2, y2) - get (x1-1, y2) - get (x2, y1
        -1) + get (x1-1, y1-1);
}
```

Paradigmas

Grafos

4.1 Ford Fulkerson

Encontra o fluxo máximo em $O(|f^*|E)$.

```
\#define MAXN 100000
struct node{
   int v , f , c;
    node(){}
    node(\ \mathbf{int} \ \_v\,, \ \mathbf{int} \ \_f\,, \ \mathbf{int} \ \_c)\,\{
        v = v, f = f, c = c;
};
vector < node > edges;
vector < int > graph [MAXN];
int vis [MAXN];
int cnt;
\mathbf{void} add(\mathbf{int} u, \mathbf{int} v, \mathbf{int} c){
    edges.pb(node(v, 0, c));
    \operatorname{graph}[u].\operatorname{pb}(\operatorname{edges.size}()-1);
    edges.pb(node(u, 0, 0));
    graph[v].pb(edges.size()-1);
int dfs(int s, int t, int f){
    if (s == t)
    return f;
    vis[s] = cnt;
```

```
for(auto e : graph[s]){
        if(vis[edges[e].v] < cnt && edges[e].c-edges[e]
             ].f > 0){
            if(int x = dfs(edges[e].v, t, min(f,edges[e]))
                ].c-edges[e].f))){}
                e\,d\,g\,e\,s\;[\ e\ ]\;.\;f\;\;+=\;x\;;
                edges[e^1].f -= x;
                return x;
        }
    return 0;
int maxFlow(int s, int t){
    int ans = 0;
    cnt = 1;
    memset(vis, 0, sizeof vis);
    \mathbf{while}(\mathbf{int} \ \mathsf{flow} = \mathsf{dfs}(\mathbf{s}, \ \mathsf{t}, \ 1{<}{<}30)) \, \{
        ans += flow;
        cnt++;
    return ans;
```

4.2 Edmonds Karp

Troca a dfs() do Ford Fulkerson por uma bfs() e o fluxo máximo fica em $O(VE^2)$.

4.3 Dinic

Encontra o fluxo máximo em $O(V^2E)$.

```
#define MAXN 5050
#define inf 0x3f3f3f3f

struct node{
   int v, f, c;
   node() {}
   node(int _v, int _f, int _c) {
      v = _v, f = _f, c = _c;
   }
};
vector<node> edges;
```

```
vector < int > graph [MAXN];
int dist [MAXN];
int ptr [MAXN];

void add(int u, int v, int c){
   edges.pb(node(v, 0, c));
   graph[u].pb(edges.size()-1);
   edges.pb(node(u, 0, 0));
   graph[v].pb(edges.size()-1);
}
```

CAPÍTULO 4. GRAFOS

```
bool bfs(int s, int t){
   memset(dist, inf, sizeof dist);
                                                                             int e = graph[s][i];
                                                                             if(dist[edges[e].v] == dist[s]+1 \&\& edges[e].c
                                                                                  -edges[e].f > 0){
    dist[s] = 0;
                                                                                 if(int x = dfs(edges[e].v, t, min(f, edges[
    queue<int> q;
    q.push(s);
                                                                                     e | .c-edges[e].f))){
                                                                                    edges[e].f += x;
                                                                                    edges[e^1].f -= x;
    while (!q.empty()) {
       int u = q.front(); q.pop();
                                                                                    return x;
        \quad \textbf{for} \, (\, \textbf{auto} \ \ \textbf{e} \ \ : \ \ \textbf{graph} \, [\, \textbf{u} \, ] \, ) \, \{ \,
                                                                                }
           if(dist[edges[e].v] == inf \&\& edges[e].c-
                                                                            }
                edges[e].f > 0){
               q.push(edges[e].v);
               dist[edges[e].v] = dist[u] + 1;
                                                                         return 0;
           }
       }
                                                                     int maxFlow(int s, int t){
                                                                         int ans = 0;
    return dist[t] != inf;
                                                                         \mathbf{while}(bfs(s, t)){
                                                                            memset(ptr, 0, sizeof ptr);
while(int f = dfs(s, t, inf))
}
int dfs(int s, int t, int f){
                                                                             ans += f;
   if (s == t)
    return f:
                                                                         return ans;
    for(int \&i = ptr[s]; i < graph[s].size(); i++){
```

4.4 Min cost max flow

Máximo fluxo com custo mínimo.

```
#define MAXN 1100
#define inf 0x3f3f3f3f3f
struct node{
     int v, f, c, val;
     node(){}
     node(int \_v, int \_f, int \_c, int \_val){
          v = v, f = f, c = c, val = val;
};
int v;
vector < node > edges;
vector < int > graph [MAXN];
\mathbf{int} \hspace{0.1in} \mathtt{dist} \hspace{0.1in} [\mathtt{MAXN}] \hspace{0.1in}, \hspace{0.1in} \mathtt{ptr} \hspace{0.1in} [\mathtt{MAXN}] \hspace{0.1in}, \hspace{0.1in} \mathtt{pai} \hspace{0.1in} [\mathtt{MAXN}] \hspace{0.1in};
\mathbf{void} \ \mathrm{add} \left( \ \mathbf{int} \ \ \mathrm{u} \ , \ \ \mathbf{int} \ \ \mathrm{v} \ , \ \ \mathbf{int} \ \ \mathrm{val} \ \right) \left. \left\{ \right. \right.
     edges.pb(node(v, 0, c, val));
     \operatorname{graph}[u].\operatorname{pb}(\operatorname{edges.size}()-1);
     edges.pb(node(u, 0, 0, -val));
     graph[v].pb(edges.size()-1);
ii operator+(ii a, ii b){
     a.fst += b.fst;
     a.snd += b.snd;
     return a;
}
\textbf{bool} \ \text{dijkstra} \, (\, \textbf{int} \ s \, , \ \textbf{int} \ t \, ) \, \{
     for (int i = 0; i < v; i++){
           dist[i] = inf;
          pai[i] = -1;
     dist[s] = 0;
     priority\_queue{<}ii\ ,\ vector{<}ii{>},\ greater{<}ii>>> q;
     q.push(\overline{ii}(0, s));
     while (!q.empty()) {
          int d = q.top().fst, u = q.top().snd;
          q.pop();
```

```
if(d > dist[u])
            continue;
        for (auto e : graph[u]) {
    if (dist[u] + edges[e].val < dist[edges[e].v</pre>
                 ] && edges[e].c-edges[e].f > 0){
                 dist[edges[e].v] = dist[u] + edges[e].
                      val;
                 p\,a\,i\,[\,\,e\,d\,g\,e\,s\,[\,\,e\,\,]\,\,.\,\,v\,\,] \ = \ u\,\,;
                q.push({dist[edges[e].v], edges[e].v});
        }
    return dist[t] != inf;
ii dfs(int s, int t, int f){
    if(s == t)
        return ii(0, f);
    \mbox{for} \, (\, \mbox{int} \  \, \&\, i \, = \, p\, t\, r\, [\, s\, ]\, ; \quad i \, < \, g\, ra\, p\, h\, [\, s\, ]\, . \,\, s\, i\, z\, e\, (\, )\, \, ; \quad i\, ++)\{
        int e = graph[s][i];
        if(pai[edges[e].v] == s && edges[e].c-edges[e
             [. f > 0)
             ii x = ii (edges[e].val, 0) + dfs(edges[e].v
                 , t, min(f, edges[e].c-edges[e].f));
             if(x.snd)
                edges[e].f += x.snd;
                edges[e^1].f = x.snd;
                return x;
        }
    \mathbf{return} ii (0, 0);
}
ii get(int s, int t){
     ii ans(0, 0);
```

CAPÍTULO 4. GRAFOS

```
while(dijkstra(s, t)){
   memset(ptr, 0, sizeof ptr);
   ii x;
   while((x = dfs(s, t, inf)).snd)
ans = ans + x;

return ans;
}
```

4.5 Stoer-Wagner

Custo mínimo para quebrar o grafo em dois componentes.

```
#define NN 105 // Vertices
                                                                   int zj = -1;
                                                                   #define MAXW 105 // Max value of edge
int g[NN][NN], v[NN], w[NN], na[NN]; //graph comeca
    com tudo 0
bool a [NN];
                                                                   a[v[zj]] = true;
int minCut(int n)
                                                                   if(i == n - 1)
   for(int i = 0; i < n; i++)
                                                                       best = min(best, w[zj]);
   v \, [ \ i \ ] \ = \ i \ ;
                                                                      for(int j = 0; j < n; j++)
                                                                      g[v[j]][prev] = g[prev][v[j]] += g[v[zj
   int best = MAXW * n * n;
                                                                           ]][v[j]];
                                                                      v[zj] = v[--n];
   \mathbf{while}(n > 1)
                                                                      break;
      a[v[0]] = true;
      for(int i = 1; i < n; i++)
                                                                   prev = v[zj];
         a[v[i]] = false;
                                                                   for(int j = 1; j < n; j++)
         na[i - 1] = i;
                                                                   if (!a[v[j]])
         w\,[\;i\;]\;\;=\;\;g\,[\,v\;[\;0\;]\,]\,[\;v\,[\;i\;]\;]\;;
                                                                   w[j] += g[v[zj]][v[j]];
                                                             }
      int prev = v[0];
                                                             return best;
      for(int i = 1; i < n; i++)
```

4.6 Tarjan

Componentes fortemente conexos em O(V+E).

```
#define MAXN 100100
vector <int> graph [MAXN];
stack <int> st;
int in [MAXN], low [MAXN], vis [MAXN], cnt;
int sccs;

void dfs(int u) {
   in [u] = low [u] = cnt++;
   vis [u] = 1;
   st.push(u);

   for (auto v : graph [u]) {
      if (!vis [v]) {
        dfs(v);
        low [u] = min(low [u], low [v]);
      }
      else
        low [u] = min(low [u], in [v]);
   }
   if (low [u] == in [u]) {
```

```
sccs++;
int x;
do{
    x = st.top();
    st.pop();
    in[x] = 1 << 30;
}while(x != u);
}

void tarjan(int n){
    cnt = sccs = 0;
    memset(vis, 0, sizeof vis);
    while(! st.empty())
        st.pop();
    for(int i = 0; i < n; i++)
        if(! vis[i])
            dfs(i);
}</pre>
```

4.7 Pontos de articulação

Complexidade O(V+E).

CAPÍTULO 4. GRAFOS

```
#define MAXN 100100
v\,\,e\,c\,t\,o\,r\,{<}\textbf{i}\,\textbf{n}\,\textbf{t}{>}\,\,g\,r\,a\,p\,h\,\,[\text{MAXN}\,]\;;
int in [MAXN] , low [MAXN] , vis [MAXN] , cnt;
{\tt vector}\!<\!\!\mathbf{int}\!> \ {\tt points}\;;
void dfs(int u int root){
     in[u] = low[u] = cnt++;
      v i s [u] = 1;
     int total = 0;
     bool ok = 0;
     \quad \textbf{for} \left( \, \textbf{auto} \  \, \textbf{v} \  \, : \  \, \textbf{graph} \left[ \, \textbf{u} \, \right] \, \right) \, \{ \,
           if (! v is [v]) {
                dfs(v, root);
low[u] = min(low[u], low[v]);
                total++:
                if(low[v] >= in[u])
                     ok = 1:
                // if(low[v] > in[u]) u-v eh uma ponte
```

4.8 LCA (Sparce Table)

Complexidade $\langle O(nlog), O(log) \rangle$.

Matemática

Processamento de Strings

Geometria Computacional

7.1 Template - Júnior

```
\#define pi acos(-1.0)
\#define eps 1e-6
 struct Point {
           \textbf{double} \ x \ , \ y \ ;
            Point() { };
            Point (double _x, double _y) {
                     \begin{array}{ll} x &=& -x \,; \\ y &=& -y \,; \end{array}
            void read() { scanf("%lf_%lf", &x, &y); }
                       double distance (Point other) { return hypot(x
                       - other.x, y - other.y); }
Point operator + (Point other) { return Point(
                                   x + other.x, y + other.y);
                       Point operator - (Point other) { return Point(
                                    x - other.x, y - other.y); }
                       Point operator * (double t) { return Point(x *
                                      t, y * t); }
                       Point operator / t, y / t); }
                                                                                    (double t) { return Point(x /
                       double operator * (Point q) {return x * q.x +
                                    y * q.y;} //a*b = /a//b/cos(ang) //
                                     Positivo\ se\ o\ vetor\ B\ esta\ do\ mesmo\ lado
                                     do\ vetor\ perpendicular\ a\ A
                       double operator % (Point q) {return x * q.y -
                                    y * q.x; //a%b = /a//b/sin(ang) //Angle
                                     of vectors
                       \label{eq:conditional_condition} \textbf{double} \hspace{0.1cm} \texttt{polar()} \hspace{0.1cm} \{ \hspace{0.1cm} \textbf{return} \hspace{0.1cm} ((\hspace{0.1cm} \textbf{y} \hspace{0.1cm} > - \text{eps}) \hspace{0.1cm} ? \hspace{0.1cm} \text{atan2} (\hspace{0.1cm} \textbf{y} \hspace{0.1cm} , \hspace{0.1cm} ) \} \hspace{0.1cm} \text{otherwise} \hspace{0.1cm} \text{otherwise} \hspace{0.1cm} \text{atan2} (\hspace{0.1cm} \textbf{y} \hspace{0.1cm} , \hspace{0.1cm} ) \hspace{0.1cm} \text{otherwise} 
                                    x) : 2*pi + atan2(y,x)); }
                       Point rotate (double t) { return Point (x * cos(
                                    t) - y * sin(t), x * sin(t) + y * cos(t));
                       Point rotateAroundPoint(double t, Point p) {
                                  return (this - p).rotate(t) + p;
                       bool operator < (Point other) const {</pre>
                                  if(other.x != x) return x < other.x;
                                  else return y < other.y;
                       }
            };
            struct Line {
                       double a, b, c;
                       Line() { };
                       Line(double _a, double _b, double _c)  {
                                 a = _{-a};
                                 b\ =\ \_b\,;
                                  c \ = \ \underline{\phantom{a}} c \, ;
                       Line (Point s, Point t) {
```

```
a = t . y - s . y;

b = s . x - t . x;
       c = -a * s.x - b * s.y;
   bool parallel(Line other) { return fabs(a *
        other.b - b * other.a) < eps; \ \}
   Point intersect (Line other) {
       if (this->parallel (other)) return Point (-
           HUGE VAL, -HUGE VAL);
       else {
          double determinant = this \rightarrow b * other.a -
                this \rightarrow a * other.b;
          \mathbf{double} \ \mathbf{x} = (\mathbf{this} -> \mathbf{c} * \mathbf{other.b} - \mathbf{this} -> \mathbf{b}
               * other.c) / determinant;
           double y = (this -> a * other.c - this -> c
               * other.a) / determinant;
          return Point(x, y);
   Line perpendicular (Point point) {
       return Line(-b, a, b * point.x - a * point.
   double distance (Point r) {
       Point p, q;
       if(fabs(b) < eps) {
          p = Point(-c / a, 0);
          q = Point((-c - b) / a, 1);
       else {
          p = Point(0, -c / b);
          q = Point(1, (-c - a) / b);
       P\,o\,i\,n\,t\  \  \, A\,=\,\,r\,\,-\,\,q\,,\  \  \, B\,=\,\,r\,\,-\,\,p\,,\  \  \, C\,=\,\,q\,\,-\,\,p\,;
       double a = A * A, b = B * B, c = C * C;
       return fabs(A % B) / sqrt(c);
};
class GeometricUtils {
   public:
   GeometricUtils() { };
   static double cross(Point a, Point b, Point c)
       double dx1 = (a.x - b.x), dy1 = (a.y - b.y)
       double dx2 = (c.x - b.x), dy2 = (c.y - b.y)
       return (dx1 * dy2 - dx2 * dy1);
   static bool above(Point a, Point b, Point c) {
```

```
return cross(a, b, c) < 0;
   static bool under (Point a, Point b, Point c) {
      return cross(a, b, c) > 0;
   static bool sameLine (Point a, Point b, Point c
       ) {
      return cross(a, b, c) < eps;
   static double segDistance(Point p, Point q,
       Point r) {
      Point A = \hat{r} - q, B = r - p, C = q - p;
      double a = A * A, b = B * B, c = C * C;
      if (cmp(b, a + c) >= 0) return sqrt(a);
       \textbf{else if } (cmp(a, b + c) >= 0) \ \textbf{return } sqrt(b)
      else return fabs(A % B) / sqrt(c);
};
struct Circle {
   double x, y, r;
   Circle() { };
   Circle (double x, double y, double r) {
      x = x;

y = y;

r = r;
   Circle(Point a, Point b, Point c) {
      Line\ ab = Line(a, b);
      Line bc = Line(b, c);
      double xAB = (a.x + b.x) * 0.5;
      \mbox{\bf double} \  \, yAB \ = \  \, (\, a \, . \, y \ + \ b \, . \, y \,) \  \  * \  \, 0 \, . \, 5 \ ;
      double xBC = (b.x + c.x) * 0.5;
      double yBC = (b.y + c.y) * 0.5;
      ab = ab.perpendicular(Point(xAB, yAB));
      bc = bc.perpendicular(Point(xBC, yBC));
      if(ab.parallel(bc)) {
          x = -1;
          y = -1;
          r = -1;
      Point center = ab.intersect(bc);
      x = center.x:
      y = center.y;
      r = center.distance(a);
   double getIntersectionArea(Circle c) {
      double d = hypot(x - c.x, y - c.y);
      if(d >= r + c.r) return 0.0;
       else if (c.r >= d + r) return pi * r * r;
      else if (r >= d + c.r) return pi * c.r * c.
```

```
else {
          double a1 = 2 * a cos((d * d + r * r - c.r))
               * c.r) / (2. * d * r));
          double a2 = 2 * a cos((d * d + c.r * c.r - a))
               r * r) / (2. * d * c.r));
          double num1 = (ld)a1 / 2. * r * r - r *
              r * sin(a1) * 0.5;
          double num2 = (1d)a2 / 2. * c.r * c.r -
              c.r * c.r * sin(a2)*0.5;
          return num1 + num2;
   }
};
Point getCircuncenter(Point a, Point b, Point c)
   Line l1 = Line(a, b);
   double xab = (a.x + b.x) * 0.5, yab = (a.y + b.x)
       .y) * 0.5;
   Line 12 = Line(b, c);
   double xbc = (b.x + c.x) * 0.5, ybc = (b.y + c
       y) * 0.5;
   11 = 11.perpendicular(Point(xab, yab));
   l2 = l2.perpendicular(Point(xbc, ybc));
   return 11. intersect (12);
vector < Point > ConvexHull(vector < Point > &
    polygon) {
   \verb|sort(polygon.begin()|, polygon.end())|;
   vector < Point > down, up;
   up.pb(polygon[0]);
   up.pb(polygon[1]);
   down.pb(polygon[0]);
   down.pb(polygon[1]);
    \begin{array}{lll} & \text{for (int } i = 2; \ i < polygon.size(); \ ++i) \ \{ \\ & \text{while}(up.size() >= 2 \&\& GeometricUtils.} \end{array} 
           above(up[up.size() - 2], up[up.size() -
       1], polygon[i])) up.pop_back();
while(down.size() >= 2 && GeometricUtils.
           under (down [down. size () -2], down [down.
           size() - 1, polygon[i])) down.pop back
           ();
       up.pb(polygon[i]);
       down.pb(polygon[i]);
   vector < Point > sol = up;
   for(int i = down.size() - 2; i > 0; --i) sol.
       pb(down[i]);
   return sol;
}
```

Miscelânea