ÇEV 806 Hava Kirliliği ve İklim Değişimi

1 - Hava Kirliliği ve Hava Kirleticileri

Doç. Dr. Özgür ZEYDAN

https://ozgurzeydan.com.tr/

Hava Kirliliği

Tanım: atmosferin doğal yapısında bulunmayan kirleticilerin insan sağlığına, bitkilere, hayvanlara veya materyallere zarar verebilecek konsantrasyonda ve yeterince uzun süre havada bulunması.

Başlıca Hava kirleticileri:

- > Kükürt dioksit
- > Azot oksitler
- > Karbon monoksit
- Uçucu organik bileşikler
- ➤ Hidrojen sülfür
- ➤ Aerosoller

EPA - Criteria Air Pollutants

- ➤ Yer seviyesi ozonu (O₃)
- Partikül madde (PM)
- Karbon monoksit (CO)
- Kükürt dioksit (SO₂)
- > Azot dioksit (NO₂)
- Kurşun (Pb)

Hava Kirleticilerinin Sınıflandırılması

Karbon Monoksit (CO)

- > Renksiz ve kokusuz bir gazdır.
- > Tam yanmama sonucu oluşur.
- Başlıca kaynağı motorlu taşıtlardır.
- > Soba zehirlenmeleri
- Yüksek konsantrasyonda solunasıyla kandaki hemoglobin ile birleşerek karboksihemoglobin (COHb) oluşumuna sebep olur. Kanın oksijen taşıma kapasitesi düşer. Tepkime geri dönüşümsüzdür.
- > Zehirleyicidir, ölüme sebep olabilir.

Karbon Monoksit Zehirlenmesi Belirtileri

Azotun Oksijen ile Oluşturduğu Bileşikler

Bileşik	Kimyasal Formül	Azotun Değerliği
Diazot monoksit	N ₂ O	+1
Azot monoksit	NO	+2
Diazot trioksit	N_2O_3	+3
Azot dioksit	NO ₂	+4
Diazot pentaoksit	N_2O_5	+5

Azot Oksitler (NOx)

- \rightarrow (NOx = NO + NO₂)
- Azot monoksit (NO)
- Azot dioksit (NO₂)

- \triangleright NO + NO₂ toplamı azot oksitler (NOx) olarak adlandırılır.
- **>** (%95)(%5)

Azot Monoksit (NO)

- Renksiz bir gazdır.
- Orta derecede toksik gazdır.
- > Başlıca kaynağı motorlu taşıtlar ve diğer yanma işlemleridir.
- ➤ Oksijenle reaksiyonu sonucunda NO₂ oluşur.

$$>$$
 NO + $\frac{1}{2}$ O₂ \rightarrow NO₂

Azot Dioksit (NO₂)

- 0 119.7 pm
- Kahverengi veya turuncu renktedir.
- Yüksek konsantrasyonları toksiktir.
- Gün ışığında uçucu organik bileşikler ile reaksiyonu sonucunda yer seviyesi ozonu oluşur.
- Havadan ağır olan NO₂'nin suda çözünmesi ile Nitrik Asit (HNO₃) oluşur. (Asit yağmurlarına sebep olur)

Kükürt Oksitler (SOx)

- \triangleright (SOx = SO₂ + SO₃)
- Kükürt Dioksit (SO₂)
- Kükürt Trioksit (SO₃)
- > Hava kirliliği açısından önemli kükürt oksitlerdir.

Kükürt Dioksit (SO₂)

- Renksiz bir gazdır.
- Başlıca kaynağı fosil yakıtlarıdır.
- > Solunum sistemine, bitkilere ve materyallere zarar verir.
- ➤ Suda çözünerek H₂SO₃'ü (Sülfüroz Asidi) oluşturur.
- > SO₂ + H₂O \rightarrow H₂SO₃
- ➤ Oksijen ile reaksiyonuyla SO₃ oluşur.
- > SO₂ + $\frac{1}{2}$ O₂ \rightarrow SO₃

Kükürt Trioksit (SO₃)

- Oldukça aşındırıcıdır.
- Solunum sistemini tahriş eder.
- ➤ Suda çözünerek H₂SO₄'ü (Sülfürik Asiti) oluşturur. (Asit yağmuru)
- > SO₃ + H₂O \rightarrow H₂SO₄

Hidrojen Sülfür (H₂S)

- > Renksiz bir gazdır, çürük yumurta gibi kokar.
- Oldukça toksiktir, koroziftir, yüksek oranda alev alabilir.
- Organik maddenin oksijensiz ortamda bozunması (anaerobik digestion) sonucunda oluşur.
- > Kanalizasyon sistemlerinde taç korozyonuna sebep olur.

Uçucu Organik Bileşikler (UOB)

- ➤ Volatile Organic Compounds (VOC)
- Metan (CH₄) ve Metan Dışı Uçucu Organik Bileşikler (NMVOC) olarak 2 gruba ayrılır.
- Metanın reaktivitesi oldukça düşüktür.
- > NMVOC kaynakları motorlu taşıtlardır.
- Ayrıca, yeşil bitkilerin de uçucu organik bileşik emisyonları (biyojenik emisyonlar) vardır.

BTEX Bileşikleri

- \triangleright Benzen (C₆H₆)
- ➤ Toluen (Metil Benzen) (C₇H₈)
- Etil Benzen (C₈H₁₀)
- > Ksilenler
 - Orto Ksilen (1,2 Dimetil Benzen) (C₈H₁₀)
 - Meta Ksilen (1,3 Dimetil Benzen) (C₈H₁₀)
 - Para Ksilen (1,4 Dimetil Benzen) (C₈H₁₀)

BTEX

Dioksin (PCDD) ve Furanlar (PCDF)

- > PVC, PCB ya da diğer organohalojenlerin 1200 °C'nin altında yanması veya pirolizi sonucunda oluşurlar.
- ➤ Cl atomları 1,2,3,4,6,7,8 veya 9 nolu karbonlara bağlanabilir.
- > Kanserojen, mutajen ve teratojen bileşiklerdir.

Hazardous Air Pollutants

- Kansere veya diğer ciddi sağlık etkilerine sebep olan toksik hava kirleticileridir.
- Evsel, sanayi veya mobil kaynaklardan salınabilirler.

> EPA Initial List of Hazardous Air Pollutants with Modifications

Troposferik Ozon (O₃)

- > Troposferde ikincil kirletici olarak oluşmaktadır.
- Fotokimyasal sis olarak da adlandırılır.
- Azot oksitler ile uçucu organik bileşiklerin güneş ışığındaki reaksiyonu sonucu ortaya çıkan fotokimyasal bir kirleticidir.

Güneş ışığı

- ➤ UOB + NOx Troposferik ozon
- Oldukça reaktiftir, canlılara ve materyallere zarar verir.
- Solunduğunda boğazda tahriş, öksürük, boğaz kuruluğu, baş ve göğüs ağrısı, akciğer fonksiyonlarında azalma ve astım atakları görülür.

Ozonun Atmosferde Bulunuşu

Partikül Maddeler (PM)

- Boyut, kaynak ve kimyasal yapıları bakımından kompleks bir karışım gösteren tozlardır.
- $ightharpoonup PM_{10}$: kaba partiküller (aerodinamik çap $\leq 10 \ \mu m$)
 - Kısa sürede çökerler
- \triangleright PM_{2.5}: ince partiküller (aerodinamik çap \le 2.5 μ m)
 - Atmosferde uzun süre kalırlar
- \geq PM_{0.1}: süper ince partiküller (aerodinamik çap \leq 0.1 µm)

Table 4.1. Definitions of terms that describe airborne particulate matter.

<u>Term</u>	<u>Definition</u>
Particulate matter	Any material, except uncombined water, that exists in the solid or liquid state in the atmosphere or gas stream at standard condition.
Aerosol	A dispersion of microscopic solid or liquid particles in gaseous media.
Dust	Solid particles larger than colloidal size capable of temporary suspension in air.
Fly ash	Finely divided particles of ash entrained in flue gas. Particles may contain unburned fuel.
Fog	Visible aerosol.
Fume	Particles formed by condensation, sublimation, or chemical reaction, predominantly smaller than 1 micron (tobacco smoke).
Mist	Dispersion of small liquid droplets of sufficient size to fall from the air.
Particle	Discrete mass of solid or liquid matter.
Smoke	Small gasborne particles resulting from combustion.
Soot	An agglomeration of carbon particles.

https://www.epa.gov/sites/default/files/2016-07/documents/introvis.pdf

Partikül maddelerin boyut dağılımları, özellikleri ve çökelme hızları

Godish, T., Air Quality, 4th ed., CRC Press, U.S.A., 2004

X. Luo et al. / Environmental Pollution 255 (2019) 113138

Partikül Maddelerin Kaynakları

Doğal

- Volkanlar
- Orman yangınları
- Deniz spreyleri
- Rüzgar ile taşınan çöl tozları
- Biyolojik kaynaklar (polenler, bakteriler gibi)
- Meteor parçacıkları

Antropojenik

- Ulaşım (dizel yakıt tüketen araç emisyonları)
- Isınma amaçlı tüketilen yakıtların yanması
- Odun sobaları
- > Fosil kaynaklı güç santralleri
- Çimento fabrikaları
- Taş ocakları
- Katı ve tehlikeli atık yakma tesisleri
- Çeşitli endüstriyel faaliyetler

Partikül Maddelerin Kimyasal Yapıları

- > Sülfat
- Nitrat
- Amonyum
- Organik bileşikler
- > Asidik maddeler
- Metaller

Dizel yakıt emisyonlarında:

- > n-alkanlar
- > n-alkanoik asitler
- Aromatik aldehitler ve asitler
- Çok halkalı aromatik hidrokarbonlar (PAH)

Ca²⁺, Cl-, F-, K⁺, Mg⁺, Na⁺, PM_{2.5} İçeriği Ions NH₄⁺, NO₃⁻, and SO₄²⁻ Inorganic components Al, As, Ba, Bi, Br, Ca, Cd, Co, Metals Cr, Cu, Fe, K, Mg, Mn, Mo, Ni, Pb, S, Se, Si, Sr, Ti, V, and Zn PM_{2.5} components Water-soluble organic nitrogen and water-Hydrophilic soluble organic acids **Organic** Organophosphorus, short-chain chlorinated components paraffins, organohalogen compounds, Hydrophobic polycyclic aromatic hydrocarbons, and their derivatives Fungi Ascomycota and Basidiomycota **Biological** components Acidobacteria, Actinobacteria, Bacteroidetes, Bacteria

Fig. 3. Classification of components in PM_{2.5}.

Chloroflexi, Cyanobacteria, Firmicutes,

Gemmatimonadetes, and Proteobacteria

Chemosphere

Overview of PM_{2.5} and health outcomes: Focusing on components, sources, and pollutant mixture co-exposure

Chemosphere 323 (2023) 138181

Temiz ve kirli havadaki kirletici miktarları

Hava Kirletici	Temiz kabul edilen havadaki	Kirli havadaki
	konsantrasyon (ppm)	konsantrasyon (ppm)
SO ₂	0.001 - 0.01	0.02 - 3.2
CO	1	2 - 300
NOx	0.001 - 0.01	0.30 - 3.5
Toplam hidrokarbonlar	1	1 - 20
Partikül madde	10 - 20 μg/m³	260 - 3200 μg/m³

Kirletici Konsantrasyon Birimleri

1 ppm (vol) pollutant =
$$\frac{1 \text{ liter pollutant}}{10^6 \text{ liter air}}$$
=
$$\frac{(1 \text{ liter/22.4}) \times \text{MW} \times 10^6 \,\mu\text{g/gm}}{10^6 \text{ liters} \times 298^\circ\text{K/273}^\circ\text{K} \times 10^{-3} \,\text{m}^3/\text{liter}}$$
=
$$40.9 \times \text{MW} \,\mu\text{g/m}^3$$

25 °C ve 760 mmHg

Hava Kirleticilerinin Kaynakları

https://www.nps.gov/subjects/air/sources.htm

Hava Kirleticilerinin Sınıflandırılması

- Kaynaklarına göre:
 - Antropojenik
 - Doğal
- Harekete göre:
 - Sabit
 - Hareketli
- Atmosferde oluşumlarına göre
 - Birincil
 - İkincil
- Kaynak türüne göre
 - Noktasal
 - Çizgisel
 - Alansal

Hava kalitesi modellerine veri girişi açısından önemli!

Hava Kirleticilerinin Kaynakları

- CO: Araçlardan ve motorlardan yakıt yanması (ulaşım, konut ısıtması, endüstriyel işlemler).
- ➤ UOB'ler: Biyojenik emisyonlar, biyokütle yakımı, tarım, boya, kaplama, baskı kullanımı, yüzey temizliği, yakıt üretimi, dağıtımı ve yanması.
- NOx: Mobil kaynaklar ve sabit yanma kaynakları (araçlar, elektrik tesisatları, büyük endüstriyel kazanlar, odun yakma vb.) dahil olmak üzere her türlü yakıtın havada yanması.

https://www.degruyter.com/document/doi/10.1515/psr-2016-0122/html

Hava Kirleticilerinin Kaynakları

- ➤ SO₂: Elektrik enerjisi üretimi, endüstriyel işlemler (petrol rafinasyonu, demir dışı metal eritme vb.) için fosil yakıtların yakılması.
- PM: Malzeme taşıma işlemleri (cevherlerin kırılması veya öğütülmesi, kuru malzemelerin toplu olarak yüklenmesi), yanma işlemleri, endüstriyel işlemler, çiftçilik (sürme, tarla yakma), asfaltsız yollar ve yol inşaatları vb.

Birincil ve İkincil Kirleticiler

https://blog.breezometer.com/ultimate-guide-understanding-air-quality-data/