Complement Space Complexity

Nabil Mustafa

Computational Complexity

Definition

$$\mathbf{coPSPACE} = \{\mathit{L} : \overline{\mathit{L}} \in \mathbf{PSPACE} \ \}$$

Definition

$$\mathbf{coPSPACE} = \{\mathit{L} : \overline{\mathit{L}} \in \mathbf{PSPACE} \ \}$$

$$coL = \{L : \overline{L} \in L \}$$

Definition

$$\mathbf{coPSPACE} = \{\mathit{L} : \overline{\mathit{L}} \in \mathbf{PSPACE}\ \}$$

$$coL = \{L : \overline{L} \in L \}$$

Claim: coPSPACE = PSPACE

Definition

$$coPSPACE = \{L : \overline{L} \in PSPACE \}$$

$$coL = \{L : \overline{L} \in L \}$$

Claim: coPSPACE = PSPACE

Claim: coL = L

Definition

$$coPSPACE = \{L : \overline{L} \in PSPACE \}$$

$$coL = \{L : \overline{L} \in L \}$$

Claim: coPSPACE = PSPACE

Claim: coL = L

• All deterministic classes are closed under complement.

Definition

$$coPSPACE = \{L : \overline{L} \in PSPACE \}$$

$$coL = \{L : \overline{L} \in L \}$$

Claim: coPSPACE = PSPACE

Claim: coL = L

All deterministic classes are closed under complement.

Definition

$$conspace = \{L : \overline{L} \in NSPACE \}$$

Definition

$$\mathsf{coPSPACE} = \{ L : \overline{L} \in \mathsf{PSPACE} \ \}$$

$$coL = \{L : \overline{L} \in L \}$$

Claim: coPSPACE = PSPACE

Claim: coL = L

All deterministic classes are closed under complement.

Definition

$$conspace = \{L : \overline{L} \in NSPACE \}$$

Claim: coNSPACE = NSPACE

Definition

$$coPSPACE = \{L : \overline{L} \in PSPACE \}$$

$$coL = \{L : \overline{L} \in L \}$$

Claim: coPSPACE = PSPACE

Claim: coL = L

All deterministic classes are closed under complement.

Definition

$$coNSPACE = \{L : \overline{L} \in NSPACE \}$$

Claim: coNSPACE = NSPACE

By Savitch's theorem

Definition

$$coPSPACE = \{L : \overline{L} \in PSPACE \}$$

$$coL = \{L : \overline{L} \in L \}$$

Claim: coPSPACE = PSPACE

Claim: coL = L

All deterministic classes are closed under complement.

Definition

$$coNSPACE = \{L : \overline{L} \in NSPACE \}$$

Claim: coNSPACE = NSPACE

By Savitch's theorem – NSPACE = PSPACE

Definition

 $\mathsf{coNL} = \{L : \overline{L} \in \mathsf{NL} \}$

Definition

$$coNL = \{L : \overline{L} \in NL \}$$

Immerman-Szelepscenyi Theorem

 $\mathsf{coNL} \ = \mathsf{NL}$

Definition

$$coNL = \{L : \overline{L} \in NL \}$$

Immerman-Szelepscenyi Theorem

coNL = NL

The following two claims are exactly similar to coNP & NP proofs:

Claim: A language \overline{L} is **coNL** complete iff L is **NL** complete

Definition

$$coNL = \{L : \overline{L} \in NL \}$$

Immerman-Szelepscenyi Theorem

coNL = NL

The following two claims are exactly similar to coNP & NP proofs:

Claim: A language \overline{L} is **coNL** complete iff L is **NL** complete

Claim: If L is coNL complete, and $L \in NL$, then coNL = NL

Definition

$$coNL = \{L : \overline{L} \in NL \}$$

Immerman-Szelepscenyi Theorem

coNL = NL

The following two claims are exactly similar to coNP & NP proofs:

Claim: A language \overline{L} is **coNL** complete iff L is **NL** complete

Claim: If L is coNL complete, and $L \in NL$, then coNL = NL

Claim: UNREACHABILITY is coNL complete

Definition

$$coNL = \{L : \overline{L} \in NL \}$$

Immerman-Szelepscenyi Theorem

coNL = NL

The following two claims are exactly similar to coNP & NP proofs:

Claim: A language \overline{L} is **coNL** complete iff L is **NL** complete

Claim: If L is coNL complete, and $L \in NL$, then coNL = NL

Claim: UNREACHABILITY is coNL complete

Claim: If UNREACHABILITY $\in NL$, then coNL = NL

Claim

Claim

$\mathit{UNREACHABILITY} \in \mathsf{NL}$

• Given a graph G = (V, E), |V| = n, and two vertices u and v

Claim

- Given a graph G = (V, E), |V| = n, and two vertices u and v
 - ▶ UNREACHABILITY : Is v unreachable from u in G?

Claim

- Given a graph G = (V, E), |V| = n, and two vertices u and v
 - ▶ UNREACHABILITY : Is v unreachable from u in G?
- Construct a NTM N such that

Claim

- Given a graph G = (V, E), |V| = n, and two vertices u and v
 - ▶ UNREACHABILITY : Is v unreachable from u in G?
- Construct a NTM N such that
 - ightharpoonup N uses $O(\log n)$ space

Claim

- Given a graph G = (V, E), |V| = n, and two vertices u and v
 - ▶ UNREACHABILITY : Is v unreachable from u in G?
- Construct a NTM N such that
 - ightharpoonup N uses $O(\log n)$ space
 - ▶ If there does not exist a path from *u* to *v*, then some sequence of transition rules will halt with an 'accept'.

Claim

- Given a graph G = (V, E), |V| = n, and two vertices u and v
 - ▶ UNREACHABILITY : Is v unreachable from u in G?
- Construct a NTM N such that
 - ► *N* uses $O(\log n)$ space
 - ▶ If there does not exist a path from *u* to *v*, then some sequence of transition rules will halt with an 'accept'.
 - ▶ If there exists a path from *u* to *v*, then *all* sequence of transition rules should halt with a 'reject'.

Claim

- Given a graph G = (V, E), |V| = n, and two vertices u and v
 - ▶ UNREACHABILITY : Is v unreachable from u in G?
- Construct a NTM N such that
 - ► *N* uses $O(\log n)$ space
 - ▶ If there does not exist a path from *u* to *v*, then some sequence of transition rules will halt with an 'accept'.
 - ▶ If there exists a path from *u* to *v*, then *all* sequence of transition rules should halt with a 'reject'.
- Once again, it's not as simple as saying: run the NTM M for REACHABILITY, and just invert its answer.

A Counting Problem

A Counting Problem

CC : Given G = (V, E) and a vertex u, count the number of vertices reachable from v in G.

Have not formally described TM for non-boolean functions

A Counting Problem

- Have not formally described TM for non-boolean functions
- For a TM it is obvious:
 - Put the output on the work-tape before halting.
 - Write-only output tape space does not matter.

A Counting Problem

- Have not formally described TM for non-boolean functions
- For a TM it is obvious:
 - Put the output on the work-tape before halting.
 - Write-only output tape space does not matter.
- For a NTM it is less clear:

A Counting Problem

- Have not formally described TM for non-boolean functions
- For a TM it is obvious:
 - Put the output on the work-tape before halting.
 - Write-only output tape space does not matter.
- For a NTM it is less clear:
 - ► The NTM ends in many ways, with possibly different answers

A Counting Problem

- Have not formally described TM for non-boolean functions
- For a TM it is obvious:
 - Put the output on the work-tape before halting.
 - Write-only output tape space does not matter.
- For a NTM it is less clear:
 - ► The NTM ends in many ways, with possibly different answers
 - So, what could be a consistent definition of the output?

A Counting Problem

- Have not formally described TM for non-boolean functions
- For a TM it is obvious:
 - Put the output on the work-tape before halting.
 - Write-only output tape space does not matter.
- For a NTM it is less clear:
 - ► The **NTM** ends in many ways, with possibly different answers
 - So, what could be a consistent definition of the output?
- A NTM N computes a non-boolean function f iff
 - All sequences that halt with an 'accept' must have the same output string
 - All other sequences must halt with a 'reject' state

Claim

If $\mathit{CC} \in \mathit{NL}$, then $\mathit{UNREACHABILITY} \in \mathit{NL}$

Claim

If $\mathit{CC} \in \mathit{NL}$, then $\mathit{UNREACHABILITY} \in \mathit{NL}$

Set tsum = number of nodes reachable from u

Claim

If $\mathit{CC} \in \mathit{NL}$, then $\mathit{UNREACHABILITY} \in \mathit{NL}$

Set tsum = number of nodes reachable from uSet counter = 0

Claim

If $\mathit{CC} \in \mathit{NL}$, then $\mathit{UNREACHABILITY} \in \mathit{NL}$

Set tsum = number of nodes reachable from uSet counter = 0For each vertex $t \neq v$ in G

Claim

If $\mathit{CC} \in \mathit{NL}$, then $\mathit{UNREACHABILITY} \in \mathit{NL}$

Set tsum = number of nodes reachable from uSet counter = 0 For each vertex $t \neq v$ in G

ullet Guess if t is reachable from u

Claim

If $\mathit{CC} \in \mathit{NL}$, then $\mathit{UNREACHABILITY} \in \mathit{NL}$

- Guess if t is reachable from u
- If the guess is that t is reachable

Claim

If $\mathit{CC} \in \mathit{NL}$, then $\mathit{UNREACHABILITY} \in \mathit{NL}$

- Guess if t is reachable from u
- If the guess is that t is reachable
 - Guess a path from u to t

Claim

If $\mathit{CC} \in \mathit{NL}$, then $\mathit{UNREACHABILITY} \in \mathit{NL}$

- Guess if t is reachable from u
- If the guess is that t is reachable
 - Guess a path from u to t
 - Verify that the above path is correct.

Claim

If $\mathit{CC} \in \mathit{NL}$, then $\mathit{UNREACHABILITY} \in \mathit{NL}$

- Guess if t is reachable from u
 - If the guess is that t is reachable
 - Guess a path from u to t
 - Verify that the above path is correct.
 - If verification fails at any stage, halt with 'reject'

Claim

If $\mathit{CC} \in \mathit{NL}$, then $\mathit{UNREACHABILITY} \in \mathit{NL}$

- Guess if t is reachable from u
 - If the guess is that t is reachable
 - Guess a path from u to t
 - Verify that the above path is correct.
 - If verification fails at any stage, halt with 'reject'
 - If verification succeeds, increment counter.

Claim

If $\mathit{CC} \in \mathit{NL}$, then $\mathit{UNREACHABILITY} \in \mathit{NL}$

Set tsum = number of nodes reachable from uSet counter = 0

For each vertex $t \neq v$ in G

- Guess if t is reachable from u
- If the guess is that t is reachable
 - Guess a path from u to t
 - Verify that the above path is correct.
 - If verification fails at any stage, halt with 'reject'
 - ▶ If verification succeeds, increment counter.

If counter = tsum, 'accept'

Claim

If $\mathit{CC} \in \mathsf{NL}$, then $\mathit{UNREACHABILITY} \in \mathsf{NL}$

Set tsum = number of nodes reachable from uSet counter = 0 For each vertex $t \neq v$ in G

- Guess if t is reachable from u
- If the guess is that t is reachable
 - Guess a path from u to t
 - Verify that the above path is correct.
 - If verification fails at any stage, halt with 'reject'
 - ▶ If verification succeeds, increment counter.

If counter = tsum, 'accept' Otherwise, 'reject'

Claim

If $\mathit{CC} \in \mathit{NL}$, then $\mathit{UNREACHABILITY} \in \mathit{NL}$

Set tsum = number of nodes reachable from u

Set counter = 0

For each vertex $t \neq v$ in G

- Guess if t is reachable from u
- If the guess is that t is reachable
 - Guess a path from u to t
 - Verify that the above path is correct.
 - If verification fails at any stage, halt with 'reject'
 - ▶ If verification succeeds, increment counter.

If counter = tsum, 'accept'
Otherwise, 'reject'

Claim

The above algorithm uses $O(\log n)$ non-deterministic space

- Remember our objective:
 - ▶ If *v* is not reachable from *u*, at least one sequence should result in an 'accept'
 - ▶ If *v* is reachable, *all* sequences should result in a reject

- Remember our objective:
 - ▶ If *v* is not reachable from *u*, at least one sequence should result in an 'accept'
 - ▶ If v is reachable, all sequences should result in a reject
- Assume v is not reachable from u.

- Remember our objective:
 - ▶ If *v* is not reachable from *u*, at least one sequence should result in an 'accept'
 - ▶ If v is reachable, all sequences should result in a reject
- Assume v is not reachable from u.
 - ightharpoonup \exists sequence of guesses that identify vertices connected to u

- Remember our objective:
 - ▶ If *v* is not reachable from *u*, at least one sequence should result in an 'accept'
 - ▶ If v is reachable, all sequences should result in a reject
- Assume v is not reachable from u.
 - ightharpoonup 3 sequence of guesses that identify vertices connected to u
 - ightharpoonup \exists guesses which verify correctly the connecting path from u

- Remember our objective:
 - ▶ If *v* is not reachable from *u*, at least one sequence should result in an 'accept'
 - ▶ If v is reachable, all sequences should result in a reject
- Assume v is not reachable from u.
 - ightharpoonup 3 sequence of guesses that identify vertices connected to u
 - ightharpoonup guesses which verify correctly the connecting path from u
 - ► Therefore counter gets incremented exactly *tsum* times.

- Remember our objective:
 - ▶ If *v* is not reachable from *u*, at least one sequence should result in an 'accept'
 - ▶ If v is reachable, all sequences should result in a reject
- Assume v is not reachable from u.
 - ightharpoonup 3 sequence of guesses that identify vertices connected to u
 - ightharpoonup \exists guesses which verify correctly the connecting path from u
 - ► Therefore counter gets incremented exactly *tsum* times.
 - ► The **NTM** halts with an accept.

- Remember our objective:
 - ▶ If *v* is not reachable from *u*, at least one sequence should result in an 'accept'
 - ▶ If v is reachable, all sequences should result in a reject
- Assume v is not reachable from u.
 - ightharpoonup 3 sequence of guesses that identify vertices connected to u
 - ightharpoonup guesses which verify correctly the connecting path from u
 - ► Therefore counter gets incremented exactly *tsum* times.
 - ► The **NTM** halts with an accept.
 - ▶ Correctness: If, not counting v, there are already tsum connected vertices, this implies that v is not reachable from u.

- Remember our objective:
 - ▶ If *v* is not reachable from *u*, at least one sequence should result in an 'accept'
 - ▶ If v is reachable, all sequences should result in a reject
- Assume v is not reachable from u.
 - ightharpoonup 3 sequence of guesses that identify vertices connected to u
 - ightharpoonup \exists guesses which verify correctly the connecting path from u
 - ► Therefore counter gets incremented exactly *tsum* times.
 - ▶ The **NTM** halts with an accept.
 - ► Correctness: If, not counting *v*, there are already *tsum* connected vertices, this implies that *v* is not reachable from *u*.
- Assume v is reachable from u.

- Remember our objective:
 - ▶ If *v* is not reachable from *u*, at least one sequence should result in an 'accept'
 - ▶ If v is reachable, all sequences should result in a reject
- Assume v is not reachable from u.
 - ightharpoonup 3 sequence of guesses that identify vertices connected to u
 - ightharpoonup guesses which verify correctly the connecting path from u
 - ► Therefore counter gets incremented exactly *tsum* times.
 - ▶ The **NTM** halts with an accept.
 - ► Correctness: If, not counting *v*, there are already *tsum* connected vertices, this implies that *v* is not reachable from *u*.
- Assume v is reachable from u.
 - ▶ No matter what we guess, we never incorrectly say a vertex *t* is reachable when it is not

- Remember our objective:
 - ▶ If *v* is not reachable from *u*, at least one sequence should result in an 'accept'
 - ▶ If v is reachable, all sequences should result in a reject
- Assume v is not reachable from u.
 - ightharpoonup 3 sequence of guesses that identify vertices connected to u
 - ightharpoonup guesses which verify correctly the connecting path from u
 - ► Therefore counter gets incremented exactly *tsum* times.
 - ▶ The **NTM** halts with an accept.
 - ► Correctness: If, not counting *v*, there are already *tsum* connected vertices, this implies that *v* is not reachable from *u*.
- Assume v is reachable from u.
 - ► No matter what we guess, we never incorrectly say a vertex *t* is reachable when it is not
 - ▶ Therefore, even if we guess the connected vertices correctly, counter will become at most tsum 1.

- Remember our objective:
 - ▶ If *v* is not reachable from *u*, at least one sequence should result in an 'accept'
 - ▶ If v is reachable, all sequences should result in a reject
- Assume v is not reachable from u.
 - ightharpoonup 3 sequence of guesses that identify vertices connected to u
 - ightharpoonup \exists guesses which verify correctly the connecting path from u
 - ► Therefore counter gets incremented exactly *tsum* times.
 - ▶ The **NTM** halts with an accept.
 - ► Correctness: If, not counting *v*, there are already *tsum* connected vertices, this implies that *v* is not reachable from *u*.
- Assume v is reachable from u.
 - No matter what we guess, we never incorrectly say a vertex t is reachable when it is not
 - ► Therefore, even if we guess the connected vertices correctly, counter will become at most *tsum* − 1.
 - Correctness: Therefore, we always reject.

$\texttt{CC} \in \textbf{NL}$

Claim

 $\mathit{CC} \in \mathit{NL}$

$\texttt{CC} \in \mathsf{NL}$

Claim

 $\mathit{CC} \in \mathit{NL}$

Proof.

We know that REACHABILITY is in ${f NL}$

Claim

 $CC \in NL$

Proof.

Claim

$$CC \in NL$$

Proof.

We know that REACHABILITY is in ${f NL}$ CC is just summing up REACHABILITY over all vertices:

• Set counter = 0

Claim

 $CC \in NL$

Proof.

- Set counter = 0
- For each vertex t in G

Claim

 $CC \in NL$

Proof.

- Set counter = 0
- For each vertex t in G
 - Guess a path from u to t

Claim

 $CC \in NL$

Proof.

- Set counter = 0
- For each vertex t in G
 - Guess a path from u to t
 - Verify that that path is correct.

Claim

 $CC \in NL$

Proof.

- Set counter = 0
- For each vertex t in G
 - Guess a path from u to t
 - Verify that that path is correct.
 - If verification fails at any stage, halt with 'reject'

Claim

 $CC \in NL$

Proof.

- Set counter = 0
- For each vertex t in G
 - Guess a path from u to t
 - Verify that that path is correct.
 - If verification fails at any stage, halt with 'reject'
 - If we'll early stage, hair with reject
 - If verification succeeds, increment counter.

Claim

 $CC \in NL$

Proof.

- Set counter = 0
- For each vertex t in G
 - Guess a path from u to t
 - Verify that that path is correct.
 - If verification fails at any stage, halt with 'reject'
 - If verification succeeds, increment counter.
- Output counter

Claim

 $CC \in NL$

Proof.

We know that REACHABILITY is in **NL** CC is just summing up REACHABILITY over all vertices:

- Set counter = 0
- For each vertex t in G
 - Guess a path from u to t
 - Verify that that path is correct.
 - If verification fails at any stage, halt with 'reject'
 - If verification succeeds, increment counter.
- Output counter

Problem?

Claim

 $CC \in NL$

Proof.

We know that REACHABILITY is in **NL** CC is just summing up REACHABILITY over all vertices:

- Set counter = 0
- For each vertex t in G
 - Guess a path from u to t
 - Verify that that path is correct.
 - If verification fails at any stage, halt with 'reject'
 - If verification succeeds, increment counter.
- Output counter

Problem? All paths reject! Only works if every vertex is reachable.

$\texttt{CC} \ \in \textbf{NL}$

Claim

 $\mathit{CC} \in \mathit{NL}$

$\texttt{CC} \in \mathsf{NL}$

Claim

 $CC \in NL$

Proof.

 \mathtt{CC} is just summing up REACHABILITY over all vertices carefully:

Claim

 $CC \in NL$

Proof.

CC is just summing up REACHABILITY over all vertices carefully:

- Set counter = 0
- For each vertex t in G

Claim

$$CC \in NL$$

Proof.

CC is just summing up REACHABILITY over all vertices carefully:

- Set counter = 0
- For each vertex t in G
 - Guess if t is reachable from u

Claim

 $CC \in NL$

Proof.

CC is just summing up REACHABILITY over all vertices carefully:

- Set counter = 0
- For each vertex t in G
 - Guess if t is reachable from u
 - If the guess is that t is reachable

 $CC \in \mathbf{NL}$

Claim

 $\mathit{CC} \in \mathit{NL}$

Proof.

- Set counter = 0
- For each vertex t in G
 - Guess if t is reachable from u
 - If the guess is that *t is* reachable
 - \star Guess a path from u to t

 $CC \in \mathbf{NL}$

Claim

 $CC \in NL$

Proof.

- Set counter = 0
- For each vertex t in G
 - Guess if t is reachable from u
 - If the guess is that t is reachable
 - \star Guess a path from u to t
 - Verify that that path is correct.

Claim

 $CC \in NL$

Proof.

- Set counter = 0
- For each vertex t in G
 - Guess if t is reachable from u
 - ▶ If the guess is that *t* is reachable
 - \star Guess a path from u to t
 - Verify that that path is correct.
 - If verification fails at any stage, halt with 'reject'

Claim

 $CC \in NL$

Proof.

- Set counter = 0
- For each vertex t in G
 - Guess if t is reachable from u
 - If the guess is that t is reachable
 - \star Guess a path from u to t
 - Verify that that path is correct.
 - If verification fails at any stage, halt with 'reject'
 - * If verification succeeds, increment counter.

Claim

 $CC \in NL$

Proof.

- Set counter = 0
- For each vertex t in G
 - Guess if t is reachable from u
 - ▶ If the guess is that *t* is reachable
 - \star Guess a path from u to t
 - Verify that that path is correct.
 - If verification fails at any stage, halt with 'reject'
 - * If verification succeeds, increment counter.
- Output counter

Claim

$CC \in NL$

Proof.

CC is just summing up REACHABILITY over all vertices carefully:

- Set counter = 0
- For each vertex t in G
 - Guess if t is reachable from u
 - If the guess is that t is reachable
 - \star Guess a path from u to t
 - Verify that that path is correct.
 - * If verification fails at any stage, halt with 'reject'
 - * If verification succeeds, increment counter.
- Output counter

Problem?

Claim

 $CC \in NL$

Proof.

CC is just summing up REACHABILITY over all vertices carefully:

- Set counter = 0
- For each vertex t in G
 - Guess if t is reachable from u
 - If the guess is that t is reachable
 - \star Guess a path from u to t
 - Verify that that path is correct.
 - If verification fails at any stage, halt with 'reject'
 - * If verification succeeds, increment counter.
- Output counter

Problem? All paths with subsets of reachable vertices guessed correctly give different answers (including the correct one!)

Let T_i be the count of vertices reachable from u in at most i steps.

Let T_i be the count of vertices reachable from u in at most i steps.

Claim

If we know T_i , we can compute T_{i+1} .

Let T_i be the count of vertices reachable from u in at most i steps.

Claim

If we know T_i , we can compute T_{i+1} .

Set $T_{i+1} = 0$

Let T_i be the count of vertices reachable from u in at most i steps.

Claim

If we know T_i , we can compute T_{i+1} .

Set $T_{i+1} = 0$

For each vertex t in G

ullet Compute and check if $t \in \mathcal{T}_{i+1}$

Let T_i be the count of vertices reachable from u in at most i steps.

Claim

If we know T_i , we can compute T_{i+1} .

Set $T_{i+1} = 0$

- For each vertex s in G
 - ▶ Compute and check if $s \in T_i$
 - ▶ If $s \in T_i$ and $(s, t) \in E$, increment T_{i+1}

Let T_i be the count of vertices reachable from u in at most i steps.

Claim

If we know T_i , we can compute T_{i+1} .

Set $T_{i+1} = 0$

- Set *counter* = 0
- For each vertex s in G
 - Guess the exact subset V' of vertices in T_i
 - counter: Maintains size of V'

Let T_i be the count of vertices reachable from u in at most i steps.

Claim

If we know T_i , we can compute T_{i+1} .

Set $T_{i+1} = 0$

- Set *counter* = 0
- For each vertex s in G
 - Guess the exact subset V' of vertices in T_i
 - counter: Maintains size of V'
 - If counter $\neq T_i$, know we made a mistake

Let T_i be the count of vertices reachable from u in at most i steps.

Claim

If we know T_i , we can compute T_{i+1} .

Set $T_{i+1} = 0$

- Set *counter* = 0
- For each vertex s in G
 - Guess the exact subset V' of vertices in T_i
 - counter: Maintains size of V'
 - If counter $\neq T_i$, know we made a mistake
 - Also verify that each vertex in V' is in T_i

Let T_i be the count of vertices reachable from u in at most i steps.

Claim

If we know T_i , we can compute T_{i+1} .

Set $T_{i+1} = 0$

- Set *counter* = 0
- For each vertex s in G
 - Guess the exact subset V' of vertices in T_i
 - counter: Maintains size of V'
 - If counter $\neq T_i$, know we made a mistake
 - Also verify that each vertex in V' is in T_i
 - V' is correct. Simply check if an edge to t from it.

Let T_i be the count of vertices reachable from u in at most i steps.

Claim

If we know T_i , we can compute T_{i+1} .

Set $T_{i+1} = 0$

- Set *counter* = 0, r = 0
- For each vertex s in G
 - Guess if $s \in T_i$

Let T_i be the count of vertices reachable from u in at most i steps.

Claim

If we know T_i , we can compute T_{i+1} .

Set $T_{i+1} = 0$

- Set *counter* = 0, r = 0
- For each vertex s in G
 - Guess if $s \in T_i$
 - ▶ If the guess is that $s \in T_i$
 - ★ Guess a path of length i from u to s
 - ★ Verify that the path is correct

Let T_i be the count of vertices reachable from u in at most i steps.

Claim

If we know T_i , we can compute T_{i+1} .

Set
$$T_{i+1} = 0$$

- Set *counter* = 0, r = 0
- For each vertex s in G
 - Guess if $s \in T_i$
 - ▶ If the guess is that $s \in T_i$
 - ★ Guess a path of length i from u to s
 - ★ Verify that the path is correct
 - ★ If verification fails at any stage, halt with 'reject'

Let T_i be the count of vertices reachable from u in at most i steps.

Claim

If we know T_i , we can compute T_{i+1} .

Set
$$T_{i+1} = 0$$

- Set *counter* = 0, r = 0
- For each vertex s in G
 - Guess if $s \in T_i$
 - ▶ If the guess is that $s \in T_i$
 - ★ Guess a path of length i from u to s
 - ★ Verify that the path is correct
 - * If verification fails at any stage, halt with 'reject'
 - ★ If verification succeeds, counter++.

Let T_i be the count of vertices reachable from u in at most i steps.

Claim

If we know T_i , we can compute T_{i+1} .

Set
$$T_{i+1} = 0$$

- Set *counter* = 0, r = 0
- For each vertex s in G
 - Guess if $s \in T_i$
 - ▶ If the guess is that $s \in T_i$
 - ★ Guess a path of length i from u to s
 - ★ Verify that the path is correct
 - * If verification fails at any stage, halt with 'reject'
 - ★ If verification succeeds, counter++. If $(s, t) \in E$, set r = 1

Let T_i be the count of vertices reachable from u in at most i steps.

Claim

If we know T_i , we can compute T_{i+1} .

Set
$$T_{i+1} = 0$$

- Set *counter* = 0, r = 0
- For each vertex s in G
 - Guess if $s \in T_i$
 - ▶ If the guess is that $s \in T_i$
 - ★ Guess a path of length i from u to s
 - ★ Verify that the path is correct
 - * If verification fails at any stage, halt with 'reject'
 - ★ If verification succeeds, counter++. If $(s, t) \in E$, set r = 1
- If counter $\neq T_i$, halt with 'reject'

Let T_i be the count of vertices reachable from u in at most i steps.

Claim

If we know T_i , we can compute T_{i+1} .

Set
$$T_{i+1} = 0$$

- Set *counter* = 0, r = 0
- For each vertex s in G
 - Guess if $s \in T_i$
 - ▶ If the guess is that $s \in T_i$
 - ★ Guess a path of length i from u to s
 - ★ Verify that the path is correct
 - * If verification fails at any stage, halt with 'reject'
 - **★** If verification succeeds, counter++. If $(s, t) \in E$, set r = 1
- If counter $\neq T_i$, halt with 'reject'
- If r = 1, increment T_{i+1}

$\texttt{CC} \in \textbf{NL}$

• Note that T_{n-1} is the answer to problem CC .

- ullet Note that \mathcal{T}_{n-1} is the answer to problem CC .
 - ► Construct *T_i* inductively

$CC \in \mathbf{NL}$

- ullet Note that \mathcal{T}_{n-1} is the answer to problem CC .
 - ► Construct *T_i* inductively
 - ▶ $T_0 = 1 \text{just } u \text{ itself.}$

$CC \in \mathbf{NL}$

- ullet Note that \mathcal{T}_{n-1} is the answer to problem CC .
 - ► Construct *T_i* inductively
 - ▶ $T_0 = 1$ just u itself.
 - ▶ To compute T_{i+1} , we only need T_i

- Note that T_{n-1} is the answer to problem CC .
 - ► Construct *T_i* inductively
 - ▶ $T_0 = 1$ just u itself.
 - ▶ To compute T_{i+1} , we only need T_i
 - ▶ Can't afford to keep all T_i , only T_i to compute T_{i+1}

- Note that T_{n-1} is the answer to problem CC .
 - ► Construct *T_i* inductively
 - ▶ $T_0 = 1$ just u itself.
 - ▶ To compute T_{i+1} , we only need T_i
 - ▶ Can't afford to keep all T_j , only T_i to compute T_{i+1}
 - ▶ Reuse the space for computing each T_{i+1}

- Note that T_{n-1} is the answer to problem CC.
 - ► Construct *T_i* inductively
 - ▶ $T_0 = 1$ just u itself.
 - ▶ To compute T_{i+1} , we only need T_i
 - ▶ Can't afford to keep all T_j , only T_i to compute T_{i+1}
 - ▶ Reuse the space for computing each T_{i+1}
- The algorithm described is correct.

- Note that T_{n-1} is the answer to problem CC.
 - Construct T_i inductively
 - ► $T_0 = 1$ just u itself.
 - ▶ To compute T_{i+1} , we only need T_i
 - ▶ Can't afford to keep all T_j , only T_i to compute T_{i+1}
 - ▶ Reuse the space for computing each T_{i+1}
- The algorithm described is correct.
 - ► Each path that halts with 'accept' gives the same answer.

- Note that T_{n-1} is the answer to problem CC.
 - Construct T_i inductively
 - ▶ $T_0 = 1$ just u itself.
 - ▶ To compute T_{i+1} , we only need T_i
 - ▶ Can't afford to keep all T_i , only T_i to compute T_{i+1}
 - ▶ Reuse the space for computing each T_{i+1}
- The algorithm described is correct.
 - ▶ Each path that halts with 'accept' gives the same answer.
 - Pretty easy to see that we check for each type of failure.

- Note that T_{n-1} is the answer to problem CC.
 - Construct T_i inductively
 - ► $T_0 = 1$ just u itself.
 - ▶ To compute T_{i+1} , we only need T_i
 - ▶ Can't afford to keep all T_j , only T_i to compute T_{i+1}
 - ▶ Reuse the space for computing each T_{i+1}
- The algorithm described is correct.
 - ► Each path that halts with 'accept' gives the same answer.
 - Pretty easy to see that we check for each type of failure.
 - Proof given nicely in Papadimitriou's book.

- Note that T_{n-1} is the answer to problem CC.
 - Construct T_i inductively
 - ▶ $T_0 = 1$ just u itself.
 - ▶ To compute T_{i+1} , we only need T_i
 - ▶ Can't afford to keep all T_j , only T_i to compute T_{i+1}
 - ▶ Reuse the space for computing each T_{i+1}
- The algorithm described is correct.
 - ▶ Each path that halts with 'accept' gives the same answer.
 - Pretty easy to see that we check for each type of failure.
 - Proof given nicely in Papadimitriou's book.
- Space used is $O(\log n)$

- Note that T_{n-1} is the answer to problem CC.
 - Construct T_i inductively
 - ▶ $T_0 = 1$ just u itself.
 - ▶ To compute T_{i+1} , we only need T_i
 - ▶ Can't afford to keep all T_i , only T_i to compute T_{i+1}
 - ▶ Reuse the space for computing each T_{i+1}
- The algorithm described is correct.
 - ► Each path that halts with 'accept' gives the same answer.
 - Pretty easy to see that we check for each type of failure.
 - Proof given nicely in Papadimitriou's book.
- Space used is O(log n)
 - ▶ Re-use space over T_i , so consider space for each T_i

- Note that T_{n-1} is the answer to problem CC.
 - Construct T_i inductively
 - ▶ $T_0 = 1$ just u itself.
 - ▶ To compute T_{i+1} , we only need T_i
 - ▶ Can't afford to keep all T_i , only T_i to compute T_{i+1}
 - ▶ Reuse the space for computing each T_{i+1}
- The algorithm described is correct.
 - ▶ Each path that halts with 'accept' gives the same answer.
 - Pretty easy to see that we check for each type of failure.
 - Proof given nicely in Papadimitriou's book.
- Space used is $O(\log n)$
 - \triangleright Re-use space over T_i , so consider space for each T_i
 - ▶ Use constant number of vertex indices $-O(\log n)$

$CC \in NL$

- Note that T_{n-1} is the answer to problem CC.
 - ► Construct *T_i* inductively
 - ▶ $T_0 = 1$ just u itself.
 - ▶ To compute T_{i+1} , we only need T_i
 - ▶ Can't afford to keep all T_i , only T_i to compute T_{i+1}
 - ▶ Reuse the space for computing each T_{i+1}
- The algorithm described is correct.
 - ▶ Each path that halts with 'accept' gives the same answer.
 - Pretty easy to see that we check for each type of failure.
 - Proof given nicely in Papadimitriou's book.
- Space used is O(log n)
 - \triangleright Re-use space over T_i , so consider space for each T_i
 - ▶ Use constant number of vertex indices $-O(\log n)$
 - ▶ Use constant number of counters $-O(\log n)$

UNREACHABILITY \in NL

Nabil's Note: These are slides by Laiq. I have not checked them.

UNREACHABILITY

We now give the 'certificate'-based proof of the previous theorem.

We know that if UNREACHABILITY $\in NL$ then NL = coNL

UNREACHABILITY ∈ NL

Nabil's Note: These are slides by Laiq. I have not checked them.

UNREACHABILITY

We now give the 'certificate'-based proof of the previous theorem.

We know that if UNREACHABILITY $\in NL$ then NL = coNL

UNREACHABILITY

CLAIM: UNREACHABILITY $\in NL$ we only need to show O(log - n) space Algorithm A such that

- ∃ polynomial sized certificate and
- $A(\langle G, s, t \rangle, u) = 1$ iff t is not reachable from s in G.

• Let C_i be the set of vertices reachable from s in at most i steps

UNREACHABILITY $\in \mathit{NL}$ - PROOF

- Let C_i be the set of vertices reachable from s in at most i steps
- vertices are labeled from 1 to n so that each could be represented by log-n bits.

- Let C_i be the set of vertices reachable from s in at most i steps
- vertices are labeled from 1 to n so that each could be represented by log-n bits.
- The certificate only sequence of vertices from s to v (for $v \in C_i$)

- Let C_i be the set of vertices reachable from s in at most i steps
- vertices are labeled from 1 to n so that each could be represented by log-n bits.
- The certificate only sequence of vertices from s to v (for $v \in C_i$)
- Certificate could be checked using read-once Access

- Let C_i be the set of vertices reachable from s in at most i steps
- vertices are labeled from 1 to n so that each could be represented by log-n bits.
- The certificate only sequence of vertices from s to v (for $v \in C_i$)
- Certificate could be checked using read-once Access
 - first vertex of sequence should be s.

- Let C_i be the set of vertices reachable from s in at most i steps
- vertices are labeled from 1 to n so that each could be represented by log-n bits.
- The certificate only sequence of vertices from s to v (for $v \in C_i$)
- Certificate could be checked using read-once Access
 - first vertex of sequence should be s.
 - for s > 0, v_{i-1} and v_i should have an edge.

- Let C_i be the set of vertices reachable from s in at most i steps
- vertices are labeled from 1 to n so that each could be represented by log-n bits.
- The certificate only sequence of vertices from s to v (for $v \in C_i$)
- Certificate could be checked using read-once Access
 - first vertex of sequence should be s.
 - for s > 0, v_{i-1} and v_i should have an edge.
 - $v_k = v$ (last vertex should be v)

- Let C_i be the set of vertices reachable from s in at most i steps
- vertices are labeled from 1 to n so that each could be represented by log-n bits.
- The certificate only sequence of vertices from s to v (for $v \in C_i$)
- Certificate could be checked using read-once Access
 - first vertex of sequence should be s.
 - for s > 0, v_{j-1} and v_j should have an edge.
 - $v_k = v$ (last vertex should be v)
 - certificate is at most polynomial sized.

our Algorithm will use following 2 procedures

• Given $|C_i|$, certify if $v \notin C_i$ (1)

our Algorithm will use following 2 procedures

- Given $|C_i|$, certify if $v \notin C_i$ (1)
- Given $|C_i|$, certify if $|C_i| = c$ (2)

our Algorithm will use following 2 procedures

- Given $|C_i|$, certify if $v \notin C_i$ (1)
- Given $|C_i|$, certify if $|C_i| = c$ (2)

NOTE: (2) will be applied iteratively to find Max-Size of sets $C_1, C_2, C_3, ..., C_n$ and then will use (1) to certify that $t \notin C_n$

Procedure-1 Given $|C_i|$, certify if $v \notin C_i$

• Certificate here is the list of certificates for every $u \in C_i$ sorted in ascending order of Vertex labels

- Certificate here is the list of certificates for every $u \in C_i$ sorted in ascending order of Vertex labels
- The Algorithms checks
 - Each certificate is valid

- Certificate here is the list of certificates for every $u \in C_i$ sorted in ascending order of Vertex labels
- The Algorithms checks
 - Each certificate is valid
 - u's label (whose certificate is given) is larger than previous vertex's label
 - no certificate is provided for v

- Certificate here is the list of certificates for every $u \in C_i$ sorted in ascending order of Vertex labels
- The Algorithms checks
 - Each certificate is valid
 - u's label (whose certificate is given) is larger than previous vertex's label
 - no certificate is provided for v
 - total number of certificate = $|C_i|$

- Certificate here is the list of certificates for every $u \in C_i$ sorted in ascending order of Vertex labels
- The Algorithms checks
 - Each certificate is valid
 - u's label (whose certificate is given) is larger than previous vertex's label
 - \triangleright no certificate is provided for v
 - total number of certificate = $|C_i|$
- if $v \notin C_i$ then certificate will be accepted

- Certificate here is the list of certificates for every $u \in C_i$ sorted in ascending order of Vertex labels
- The Algorithms checks
 - Each certificate is valid
 - u's label (whose certificate is given) is larger than previous vertex's label
 - no certificate is provided for v
 - ▶ total number of certificate = $|C_i|$
- if $v \notin C_i$ then certificate will be accepted
- if $v \in C_i$ then there won't be $|C_i|$ certificate for $|C_i|$ vertices other than v

PROOF - UNREACHABILITY $\notin NL$

Given $|C_{i-1}|$, certify if $v \notin C_i$

• Similar to previous procedure

- Similar to previous procedure
- Certificate here is the list of $|C_{i-1}|$ certificates certifying $u \in C_{i-1}$ for every $u \in C_{i-1}$

- Similar to previous procedure
- Certificate here is the list of $|C_{i-1}|$ certificates certifying $u \in C_{i-1}$ for every $u \in C_{i-1}$
- The Algorithms checks

- Similar to previous procedure
- Certificate here is the list of $|C_{i-1}|$ certificates certifying $u \in C_{i-1}$ for every $u \in C_{i-1}$
- The Algorithms checks
 - Each certificate is valid

- Similar to previous procedure
- Certificate here is the list of $|C_{i-1}|$ certificates certifying $u \in C_{i-1}$ for every $u \in C_{i-1}$
- The Algorithms checks
 - Each certificate is valid
 - u's label (whose certificate is given) is larger than previous vertex's label

- Similar to previous procedure
- Certificate here is the list of $|C_{i-1}|$ certificates certifying $u \in C_{i-1}$ for every $u \in C_{i-1}$
- The Algorithms checks
 - Each certificate is valid
 - u's label (whose certificate is given) is larger than previous vertex's label
 - verify no certificate is given for v or Neighbor of v

- Similar to previous procedure
- Certificate here is the list of $|C_{i-1}|$ certificates certifying $u \in C_{i-1}$ for every $u \in C_{i-1}$
- The Algorithms checks
 - Each certificate is valid
 - u's label (whose certificate is given) is larger than previous vertex's label
 - \triangleright verify no certificate is given for v or Neighbor of v
 - total number of certificates = $|C_i|$

- Similar to previous procedure
- Certificate here is the list of $|C_{i-1}|$ certificates certifying $u \in C_{i-1}$ for every $u \in C_{i-1}$
- The Algorithms checks
 - Each certificate is valid
 - u's label (whose certificate is given) is larger than previous vertex's label
 - verify no certificate is given for v or Neighbor of v
 - total number of certificates = $|C_i|$
- since $v \in C_i$ iff $\exists u \in C_{i-1}$ such that u = v or u is neighbor of v.

- Similar to previous procedure
- Certificate here is the list of $|C_{i-1}|$ certificates certifying $u \in C_{i-1}$ for every $u \in C_{i-1}$
- The Algorithms checks
 - Each certificate is valid
 - u's label (whose certificate is given) is larger than previous vertex's label
 - \triangleright verify no certificate is given for v or Neighbor of v
 - total number of certificates = $|C_i|$
- since $v \in C_i$ iff $\exists u \in C_{i-1}$ such that u = v or u is neighbor of v.
- so the procedure provides correct results

- Similar to previous procedure
- Certificate here is the list of $|C_{i-1}|$ certificates certifying $u \in C_{i-1}$ for every $u \in C_{i-1}$
- The Algorithms checks
 - Each certificate is valid
 - u's label (whose certificate is given) is larger than previous vertex's label
 - \triangleright verify no certificate is given for v or Neighbor of v
 - total number of certificates = $|C_i|$
- since $v \in C_i$ iff $\exists u \in C_{i-1}$ such that u = v or u is neighbor of v.
- so the procedure provides correct results

Given
$$|C_{i-1}|$$
, certify if $|C_i| = c$

• The certificate that $|C_i| = c$ will have n certificates

Given
$$|C_{i-1}|$$
, certify if $|C_i| = c$

- The certificate that $|C_i| = c$ will have n certificates
 - ▶ There is a certificate for every $u \in C_i$

Given
$$|C_{i-1}|$$
, certify if $|C_i| = c$

- The certificate that $|C_i| = c$ will have n certificates
 - ▶ There is a certificate for every $u \in C_i$
 - ► There is a certificate for every $u \notin C_i$

Given $|C_{i-1}|$, certify if $|C_i| = c$

- The certificate that $|C_i| = c$ will have n certificates
 - ▶ There is a certificate for every $u \in C_i$
 - ► There is a certificate for every $u \notin C_i$
- ullet Algorithm will verify all certificates and count the certificates for $u \in C_i$

Given $|C_{i-1}|$, certify if $|C_i| = c$

- The certificate that $|C_i| = c$ will have n certificates
 - ▶ There is a certificate for every $u \in C_i$
 - ► There is a certificate for every $u \notin C_i$
- Algorithm will verify all certificates and count the certificates for $u \in C_i$
- Accepts if count = c