香港中文大學 The Chinese University of Hong Kong

版權所有 不得翻印 Copyright Reserved

Course Examinations 1998 - 99

	Course Code & Title: csc 3130 Formal Languages and Automata Theory
	Time allowed : hours 0 minutes
	Student I.D. No. : Seat No. :
Ans	ewer all the questions.
1.	Consider the language L over $\Sigma = \{a, b\}$ where $L = \{\omega \mid (\omega \in \Sigma^*) \cap (\omega \text{ has no consecutive a's nor b's}) \cap (\omega \text{ ends with a "b")} \}$ (a) Write a regular expression for L. (6%) (b) Construct a DFA accepting L. (7%) (c) Construct from the DFA in (b), or otherwise, a DFA for \overline{L} . (6%) (d) We define the prefix of L, denoted by pfx(L), as follows: $pfx(L) = \{\omega \mid (\omega \in \Sigma^*) \cap (\exists x \in \Sigma^* \text{ such that } \omega x \in L)\}$ Construct from the DFA in (b), or otherwise, a DFA for pfx(L). (6%)
2.	 Consider the grammar G: S → aXd Sd aSd X → bc bX bXc (a) Describe the language generated by G. (6%) (b) Write G in Chomsky Normal Form. (6%) (c) Write G in Greibach Normal Form. (Hint: You can start from the original grammar G, instead of from its CNF constructed in (b).) (7%) (d) Use the result in (c) or otherwise, write a PDA for G. (6%)
3.	Consider the language L over $\Sigma = \{a, b, c\}$ where $L = \{a^ib^jc^k \mid i \leq j \leq k\}$ (a) Is L a regular language? Write a regular expression, or prove that it is not. (8%) (b) Is L a context free language? Give a CFG, or prove that it is not. (9%) (c) Is L recursive? Give a Turing machine accepting L, or prove that it is not. (8%)
4.	 Consider the grammar G: S → AC A → ab aAb C → cd cCd (a) Is G a deterministic CFG? Construct a DPDA, or prove that it is not. (5%) (b) Does the language generated by G, denoted by L(G), have the prefix property? Explain. (5%) (c) Is G a LR(0) grammar? Explain. (3%) (d) Give all the LR(0) items of G. (7%) (e) Show how the string "aabbcd" is parsed. (Note: No need to construct the DFA.) (5%)