Machine Learning Modeling with Data Limitation

Mostafa S. Ibrahim *Teaching, Training and Coaching for more than a decade!*

Artificial Intelligence & Computer Vision Researcher PhD from Simon Fraser University - Canada Bachelor / MSc from Cairo University - Egypt Ex-(Software Engineer / ICPC World Finalist)

© 2023 All rights reserved.

Please do not reproduce or redistribute this work without permission from the author

Framework Overview

- Ancillary segmentation network
 - Goal: Generate Initial segmentation for the weak-set
 - Network Input: image & bounding boxes
 - Training Data: fully annotated dataset
 - Inference: on weakly annotated dataset
 - Network Output: segmentation labels (logits)
- Primary segmentation network
 - Standard Segmentation + Refine psduelo-labels during training
 - Self correction: 2 approaches for refining logits

Ancillary segmentation network

- Use the 2 types of annotation to train on the full model
- Then inference on the weakly labeled (with image / bbox as inputs)
- Now build pseudo labels for the weakly-set

No Self-Correction Approach

- Use the generated pseudo labels of from the ancillary model
- Train **Primary** segmentation network
 - Dataset: full-set (proper labels) + weak-set(pseudo labels)
- In training:
 - If the image is from the full-set, use the ground truth
 - If the image is from the weak-set, use its generated pseudo label

Full Training

Self-Correction

- We may think in one more DNN that takes the current predictions from the ongoing primary network and from the ancillary network and improve it
- Adel suggestion: feed the the full set also to the ancillary and use its ground truth to guide the correction module (nice)

Semi-supervised Labeling

- Refer to my CVPR 20 paper (<u>slides</u>, <u>video</u>)
 - Mostafa S Ibrahim, et al, Semi-Supervised Semantic Image Segmentation with Self-correcting Networks
- Good resume implementation project and experience in Computer Vision

Active Learning Labeling

- Goal: Minimize the number of labeled examples ⇒ less cost
- Active learning involves iteratively labeling the data instances that the model finds most confusing
- Annotators only annotate the most informative subset
 - Hence overall avoid annotation examples that won't help the model
- Participated in this <u>paper</u>: Active learning for structured prediction from partially labeled data

"Acquire knowledge and impart it to the people."

"Seek knowledge from the Cradle to the Grave."