CS210 - Introduction to Data Science Individual Project

Due Date: 15.03.2019 23:55

In this project, you will be exploring and analysing a real world dataset which includes taxi trips in a span of two weeks in New York City.

NYC Taxi Trip Dataset

Each row in the dataset corresponds to a taxi trip. The attributes and their explanations can be found below.

Attribute	Explanation
id	a unique identifier for each trip
vendor_id	a code indicating the provider associated with the trip record
pickup_datetime	date and time when the meter was engaged
dropoff_datetime	date and time when the meter was disengaged
passenger_count	the number of passengers in the vehicle
pickup_longitude	the longitude where the meter was engaged
pickup_latitude	the latitude where the meter was engaged
dropoff_longitude	the longitude where the meter was disengaged
dropoff_store_and_fwd_flag	indicates whether the trip record was held in vehicle memory
$\operatorname{trip_duration}$	duration of the trip in seconds

Project Description

The project consists of two parts; data exploration and hypothesis testing. In data exploration, you will extract and present insights about the data. And in the second part, you will evaluate two hypothesis regarding trip distances.

Data Exploration

- Give basic information regarding the dataset such as shape, data types and descriptive statistics that summarize columns.
- Create two new columns named "pickup_district" and "dropoff_district" by applying reverse geocoding ^{1 2} to associated coordinates.
- Extract the top 5 districts where passengers prefer to leave and arrive.
- Create a new column named "distance" by utilizing pick up and drop off coordinates ³.
- Create a new column named "time_of_day" by aggregating timestamps in "pickup_datetime" into 5 different categories.

```
7-9 AM: "rush_hour_morning"
9 AM - 4 PM: "afternoon"
4-6 PM: "rush_hour_evening"
6-11 PM: "evening"
11 PM - 7 AM: "late_night"
```

- Show how the average distance varies as time of the day changes.
- Show how the trip duration varies as time of the day changes.

Hypothesis Testing

- 1. Does passenger group size affect the distance?
 - Null hypothesis: passenger group size has no effect on the distance.
 - Apply a suitable statistical test and show the results.
- 2. Do trip distances increase in weekends?
 - Null hypothesis: The day of the week has no effect on the distance.
 - Again, apply a suitable statistical test and show the results.

¹https://developers.google.com/maps/documentation/geocoding/intro

²https://github.com/thampiman/reverse-geocoder

³https://pypi.org/project/geopy/

Submission

As discussed earlier, we expect you to implement your projects on a notebook environment. Name your .ipynb file as $name_surname_indv_proj.ipynb$ and upload to Sucourse. In addition, publish your notebooks online with nbviewer ⁴ as described in the first recitation. Put your url in a text file named $name_surname_url.txt$ and upload it to Sucourse as well. As the final remark, please do not forget to write your name and ID in the first cell.

Policies

- This is an individual project. Please, work on your own!
- TAs do not have official office hours. If you need help, please send them an email and arrange a time slot.

⁴https://nbviewer.jupyter.org/