1

Does Singular Value Decomposition (SVD) of a matrix always exist?

Sandhya Addetla AI20RESCH14001

Abstract—Let A be an $m \times n$ real matrix of rank r. Then there exist orthogonal matrices $\mathbf{U} \in \mathbb{R}^{m \times m}, \mathbf{V} \in \mathbb{R}^{n \times n}$ and a diagonal matrix $\Sigma \in \mathbb{R}^{m \times n}$ with nonnegative diagonal entries $\sigma_1, \sigma_2, ..., ...$ such that

$$\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^t$$

1 Proof

Since A^TA is symmetric and positive semidefinite, there exists an $n \times n$ orthogonal matrix Vwhose column vectors are the eigenvectors of A^TA with non-negative eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$.

Hence $\mathbf{A}^T \mathbf{A} v_i = \lambda_i v_i$ for i = 1, 2, ..., n.

Let $r = \text{rank } \mathbf{A}$. Assume that $\lambda_1 \geq \lambda_2 \geq 2 \geq \lambda_r > 0$

and
$$\lambda_i = 0$$
 for $j = r + 1, r + 2, ..., n$.

Set
$$\sigma_i = \sqrt{\lambda_i}$$
 for all $i = 1, 2, ..., n$.

Then
$$v_i^t \mathbf{A}^t v \mathbf{A} v_i = \lambda_i v_i^t v_i = \lambda_i \ge 0$$
.

Then $\|\mathbf{A}v_i\| = \sigma_i$ for i = 1, 2, ..., n.

Set
$$\frac{\mathbf{A}v_i}{\sigma_i} = u_i$$
.

The set $u_1, u_2, ..., u_r$ is an orthonormal basis of C(A).

$$u^{t}_{i}u_{j} = \frac{(Av_{i})^{t}Av_{j}}{\sigma_{i}\sigma_{j}} = \frac{(v_{i})^{t}v_{j}\lambda_{j}}{\sigma_{i}\sigma_{j}} = \delta_{ij}$$

We can add to it an orthonormal basis $\{u_{r+1},...,u_m\}$ of $\mathbf{N}(\mathbf{A^t})$ so that $\mathbf{U}=[u_1,u_2,...,u_m]$ is an orthogonal matrix. Since $\mathbf{A}v_i=\sigma_iu_i$ for all i, we have the singular value decomposition

$$\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^t$$
 where $\Sigma = diag(\sigma_1, \sigma_2, ..., ...\sigma_r, 0, 0, ..., 0)$.