Foundation of Cryptography (0368-4162-01), Lecture 8 Encryption Schemes

Iftach Haitner, Tel Aviv University

January 3 - 17, 2012

Section 1

Definitions

Correctness

Definition 1 (encryption scheme)

A trippet of PPT's (G, E, D) such that

- **1** $G(1^n)$ outputs a key $(e, d) \in \{0, 1\}^* \times \{0, 1\}^*$
- ② E(e, m) outputs a string in $c \in \{0, 1\}^*$
- **3** D(d, c) outputs $m \in \{0, 1\}^*$

Correctness

Definition 1 (encryption scheme)

A trippet of PPT's (G, E, D) such that

- **1** $G(1^n)$ outputs a key $(e, d) \in \{0, 1\}^* \times \{0, 1\}^*$
- ② E(e, m) outputs a string in $c \in \{0, 1\}^*$
- **3** D(d, c) outputs $m \in \{0, 1\}^*$

Definitions

Correctness

Definition 1 (encryption scheme)

A trippet of PPT's (G, E, D) such that

- **1** $G(1^n)$ outputs a key $(e, d) \in \{0, 1\}^* \times \{0, 1\}^*$
- ② E(e, m) outputs a string in $c \in \{0, 1\}^*$
- **3** D(d, c) outputs $m \in \{0, 1\}^*$

- e − encryption key, d − decryption key
- m plaintext, c = E(e, m) ciphertext
- $E_e(m) \equiv E(e,m)$ and $D_d(c) \equiv D(d,c)$,

Definitions

Definition 1 (encryption scheme)

A trippet of PPT's (G, E, D) such that

- **1** $G(1^n)$ outputs a key $(e, d) \in \{0, 1\}^* \times \{0, 1\}^*$
- ② E(e, m) outputs a string in $c \in \{0, 1\}^*$
- **3** D(d, c) outputs $m \in \{0, 1\}^*$

- e − encryption key, d − decryption key
- m plaintext, c = E(e, m) ciphertext
- $E_e(m) \equiv E(e,m)$ and $D_d(c) \equiv D(d,c)$,
- public/private key

• What would we like to achieve?

- What would we like to achieve?
- Attempt: for any $m \in \{0, 1\}^*$:

$$(m, E_{G(1^n)_1}(m)) \equiv (m, U_{\ell(|m|)})$$

- What would we like to achieve?
- Attempt: for any $m \in \{0, 1\}^*$:

$$(m, E_{G(1^n)_1}(m)) \equiv (m, U_{\ell(|m|)})$$

• Shannon – only for m with $|m| \le |G(1^n)_1|$

- What would we like to achieve?
- Attempt: for any $m \in \{0, 1\}^*$:

$$(m, E_{G(1^n)_1}(m)) \equiv (m, U_{\ell(|m|)})$$

- Shannon only for m with $|m| \le |G(1^n)_1|$
- Other concerns, e.g., multiple encryptions, active adversary

Semantic Security

Semantic Security

O Ciphertext reveal "no information" about the plaintext

Semantic Security

Semantic Security

- Oiphertext reveal "no information" about the plaintext
- Formulate via the simulation paradigm

Semantic Security

- O Ciphertext reveal "no information" about the plaintext
- Formulate via the simulation paradigm
- Cannot hide the message length

Definition 2 (Semantic Security – private-key model)

$$\begin{aligned} \big| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) &= f(1^n, m)] \\ - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) &= f(1^n, m)] \big| = \mathsf{neg}(n) \end{aligned}$$

Definition 2 (Semantic Security – private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if for any PPT A, \exists PPT A' s.t. \forall poly-bounded dist. ensemble $\mathcal{M} = \{\mathcal{M}_n\}_{n \in \mathbb{N}}$ and poly-bounded functions $h, f \colon \{0,1\}^* \mapsto \{0,1\}^*$

$$\begin{aligned} \big| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) &= f(1^n, m)] \\ - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) &= f(1^n, m)] \big| = \mathsf{neg}(n) \end{aligned}$$

poly-bounded?

Definition 2 (Semantic Security – private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if for any PPT A, \exists PPT A' s.t. \forall poly-bounded dist. ensemble $\mathcal{M} = \{\mathcal{M}_n\}_{n \in \mathbb{N}}$ and poly-bounded functions $h, f \colon \{0,1\}^* \mapsto \{0,1\}^*$

$$\begin{aligned} \big| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) &= f(1^n, m)] \\ - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) &= f(1^n, m)] \big| = \mathsf{neg}(n) \end{aligned}$$

poly-bounded? for simplicity we assume polynomial length

Definition 2 (Semantic Security – private-key model)

$$\begin{aligned} \big| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) &= f(1^n, m)] \\ - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) &= f(1^n, m)] \big| = \mathsf{neg}(n) \end{aligned}$$

- poly-bounded? for simplicity we assume polynomial length
- 1^n and $1^{|m|}$ can be omitted

Definition 2 (Semantic Security – private-key model)

$$\begin{aligned} \big| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) &= f(1^n, m)] \\ - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) &= f(1^n, m)] \big| = \mathsf{neg}(n) \end{aligned}$$

- poly-bounded? for simplicity we assume polynomial length
- 1^n and $1^{|m|}$ can be omitted
- Non-uniform definition

Definition 2 (Semantic Security – private-key model)

$$\begin{aligned} \big| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) &= f(1^n, m)] \\ - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) &= f(1^n, m)] \big| = \mathsf{neg}(n) \end{aligned}$$

- poly-bounded? for simplicity we assume polynomial length
- 1^n and $1^{|m|}$ can be omitted
- Non-uniform definition
- Reflection to ZK

Definition 2 (Semantic Security – private-key model)

$$\begin{aligned} \big| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) &= f(1^n, m)] \\ - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) &= f(1^n, m)] \big| = \mathsf{neg}(n) \end{aligned}$$

- poly-bounded? for simplicity we assume polynomial length
- 1^n and $1^{|m|}$ can be omitted
- Non-uniform definition
- Reflection to ZK
- public-key variant A gets e

Indistinguishablity

Indistinguishablity of encryptions

The encryption of two strings is indistinguishable

Indistinguishablity

Indistinguishablity of encryptions

- The encryption of two strings is indistinguishable
- Less intuitive than semantic security, but easier to work with

Indistinguishablity of encryptions – private-key model

Definition 3 (Indistinguishablity of encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions in the private-key model, if for any $p, \ell \in \text{poly}$, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \, \{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}} \, \text{and poly-time B,}$

$$|\Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(y_n)) = 1]|$$

= $neg(n)$

Indistinguishablity of encryptions - private-key model

Definition 3 (Indistinguishablity of encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions in the private-key model, if for any $p, \ell \in \text{poly}$, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$, $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ and poly-time B,

$$|\Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(y_n)) = 1]|$$

= $neg(n)$

Non-uniform definition

Indistinguishablity

Definitions

Indistinguishablity of encryptions – private-key model

Definition 3 (Indistinguishablity of encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions in the private-key model, if for any $p, \ell \in \text{poly}$, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}} \text{ and poly-time B},$

$$\left| \Pr_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(y_n)) = 1] \right|$$

= $\mathsf{neg}(n)$

- Non-uniform definition
- Public-key variant

Equivalence of definitions

Theorem 4

An encryption scheme (G, E, D) is semantically secure iff is has indistinguishable encryptions.

Equivalence of definitions

Theorem 4

An encryption scheme (G, E, D) is semantically secure iff is has indistinguishable encryptions.

We prove the private key case

Indistinguishablity \implies Semantic Security

Indistinguishablity ⇒ Semantic Security

Fix \mathcal{M} , A, f and h, be as in Definition ??.

Indistinguishablity Semantic Security

Fix \mathcal{M} , A, f and h, be as in Definition ??. We construct A' as

Algorithm 5 (A')

Input: 1^{n} , $1^{|m|}$ and h(m)

- $\bullet \leftarrow G(1^n)_1$
- 2 $c = E_e(1^{|m|})$
- **3** Output $A(1^n, 1^{|m|}, h(m), c)$

Indistinguishablity Semantic Security

Fix \mathcal{M} , A, f and h, be as in Definition ??. We construct A' as

Algorithm 5 (A')

Input: 1^{n} , $1^{|m|}$ and h(m)

- $\bullet e \leftarrow G(1^n)_1$
- 2 $c = E_e(1^{|m|})$
- **3** Output $A(1^n, 1^{|m|}, h(m), c)$

Claim 6

A' is a good simulator for A (according to Definition ??)

Proving Claim ??

Assume exists infinite $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly s.t.}$ for any $n \in \mathcal{I}$:

$$\begin{aligned} \left| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] \right. \end{aligned} \tag{1} \\ - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m)] \Big| > 1/p(n) \end{aligned}$$

Proving Claim ??

Assume exists infinite $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly s.t.}$ for any $n \in \mathcal{I}$:

$$\begin{aligned} \left| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] \right. \end{aligned} \tag{1} \\ - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m)] \Big| > 1/p(n) \end{aligned}$$

Fix $n \in \mathcal{I}$ and let $x_n \in \text{Supp}(\mathcal{M}_n)$ be a value that maximize **??**.

Proving Claim ??

Assume exists infinite $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly s.t.}$ for any $n \in \mathcal{I}$:

$$\begin{aligned} \left| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] \right. \end{aligned} \tag{1} \\ - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m)] \Big| > 1/p(n) \end{aligned}$$

Fix $n \in \mathcal{I}$ and let $x_n \in \operatorname{Supp}(\mathcal{M}_n)$ be a value that maximize **??**. Assume exits algorithm B that contradicts the indistinguishability of the scheme with respect to $\{(x_n, y_n = 1^{|x_n|})\}_{n \in \mathbb{N}}$ and $\{z_n = (1^n, 1^{|x_n|}, h(1^n, x_n), f(1^n, x_n))\}_{n \in \mathbb{N}}$.

Proving Claim ??

Assume exists infinite $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly s.t.}$ for any $n \in \mathcal{I}$:

$$\begin{aligned} \left| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] \right. \end{aligned} (1) \\ - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m)] \Big| > 1/p(n) \end{aligned}$$

Fix $n \in \mathcal{I}$ and let $x_n \in \operatorname{Supp}(\mathcal{M}_n)$ be a value that maximize **??**. Assume exits algorithm B that contradicts the indistinguishability of the scheme with respect to $\{(x_n, y_n = 1^{|x_n|})\}_{n \in \mathbb{N}}$ and $\{z_n = (1^n, 1^{|x_n|}, h(1^n, x_n), f(1^n, x_n))\}_{n \in \mathbb{N}}$.

Algorithm 7 (B)

Input:
$$z_n = (1^n, 1^{|x_n|}, h(1^n, x_n), f(1^n, x_n)), c$$

Output 1 iff $A(1^n, 1^{|x_n|}, h(x+n), c) = f(1^n, x_n)$

Semantic Security \implies Indistinguishability

Assume \exists B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and a $\{z_n\}_{n \in \mathbb{N}}$, such that (wlog) for infinitely many n's:

$$\Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(y_n)) = 1] \ge \frac{1}{p(n)}$$

Equivalence

Semantic Security ⇒ Indistinguishablity

Assume \exists B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and a $\{z_n\}_{n \in \mathbb{N}}$, such that (wlog) for infinitely many n's:

$$\Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(y_n)) = 1] \ge \frac{1}{p(n)}$$

- Let \mathcal{M}_n be x_n wp $\frac{1}{2}$ and y_n otherwise.
- Let $f(1^n, x_n) = 1$, $f(1^n, y_n) = 0$ and $h(1^n, \cdot) = z_n$.
- Define A(1ⁿ, 1^{ℓ (n)}, z_n , c) to return B(z_n , c).

Equivalence

Semantic Security ⇒ Indistinguishablity

Assume \exists B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and a $\{z_n\}_{n \in \mathbb{N}}$, such that (wlog) for infinitely many n's:

$$\Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(y_n)) = 1] \ge \frac{1}{p(n)}$$

- Let \mathcal{M}_n be x_n wp $\frac{1}{2}$ and y_n otherwise.
- Let $f(1^n, x_n) = 1$, $f(1^n, y_n) = 0$ and $h(1^n, \cdot) = z_n$.
- Define A(1ⁿ, 1^{ℓ (n)}, z_n , c) to return B(z_n , c).

$$\Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1}[A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] \ge \frac{1}{2} + \frac{1}{p(n)}$$

Equivalence

Semantic Security ⇒ Indistinguishablity

Assume \exists B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and a $\{z_n\}_{n \in \mathbb{N}}$, such that (wlog) for infinitely many n's:

$$\Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(y_n)) = 1] \ge \frac{1}{p(n)}$$

- Let \mathcal{M}_n be x_n wp $\frac{1}{2}$ and y_n otherwise.
- Let $f(1^n, x_n) = 1$, $f(1^n, y_n) = 0$ and $h(1^n, \cdot) = z_n$.
- Define A(1ⁿ, 1^{ℓ (n)}, z_n , c) to return B(z_n , c).

$$\Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1}[A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] \ge \frac{1}{2} + \frac{1}{p(n)}$$

For any A'

$$\Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1}[A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] \le \frac{1}{2}$$

Multiple Encryptions

Security Under Multiple Encryptions

Definition 8 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \in \text{poly}$,

$$\{x_{n,1}, \dots x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)} \in \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}},$$
 $\{z_n \in \{0,1\}^{p(n)}\}_{n \in \mathbb{N}}$ and polynomial-time B,

$$\begin{aligned} & \left| \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1] \right. \\ & \left. - \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1 \right| = \mathsf{neg}(n) \end{aligned}$$

Definition 8 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \in \text{poly}$,

$$\{x_{n,1}, \dots x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)} \in \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}},$$
 $\{z_n \in \{0,1\}^{p(n)}\}_{n \in \mathbb{N}}$ and polynomial-time B,

$$\begin{aligned} & \left| \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1 \right] \\ & - \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1 \Big| = \mathsf{neg}(n) \end{aligned}$$

Extensions:

Different length messages

Definition 8 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \in \text{poly}$,

$$\{x_{n,1}, \dots x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)} \in \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}},$$
 $\{z_n \in \{0,1\}^{p(n)}\}_{n \in \mathbb{N}}$ and polynomial-time B,

$$\begin{aligned} & \left| \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1 \right] \\ & - \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1 \Big| = \mathsf{neg}(n) \end{aligned}$$

Extensions:

- Different length messages
- Semantic security version

Definition 8 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \in \text{poly}$,

$$\{x_{n,1}, \dots x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)} \in \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}},$$
 $\{z_n \in \{0,1\}^{p(n)}\}_{n \in \mathbb{N}}$ and polynomial-time B,

$$\begin{aligned} & \left| \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1 \right] \\ & - \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1 \Big| = \mathsf{neg}(n) \end{aligned}$$

Extensions:

- Different length messages
- Semantic security version
- Public-key definition

Multiple Encryptions

Multiple Encryption in the Public-Key Model

Theorem 9

A public-key encryption scheme has indistinguishable encryptions for multiple messages, iff it has indistinguishable encryptions for a single message.

Multiple Encryption in the Public-Key Model

Theorem 9

A public-key encryption scheme has indistinguishable encryptions for multiple messages, iff it has indistinguishable encryptions for a single message.

Proof: Assume (G, E, D) is public-key secure for a single message and not for multiple messages with respect to B, $\{X_{1,t(n)}, \dots, X_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)} \in \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0,1\}^{p(n)}\}_{n \in \mathbb{N}}.$

Multiple Encryption in the Public-Key Model

Theorem 9

A public-key encryption scheme has indistinguishable encryptions for multiple messages, iff it has indistinguishable encryptions for a single message.

Proof: Assume (G, E, D) is public-key secure for a single message and not for multiple messages with respect to B,

$$\{X_{1,t(n)}, \dots X_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)} \in \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}},$$

 $\{Z_n \in \{0,1\}^{p(n)}\}_{n \in \mathbb{N}}.$

It follows that for some function $i(n) \in [t(n)]$

$$\begin{aligned} & \left| \mathsf{Pr}[\mathsf{B}(1^n, e, E_e(x_{n,1}), \dots, E_e(x_{n,i-1}), E_e(y_{n,i}), \dots, E_e(y_{n,t(n)})) = 1] \right. \\ & \left. - \mathsf{Pr}[\mathsf{B}(1^n, e, E_e(x_{n,1}), \dots, E_e(x_{n,i}), E_e(y_{n,i+1}), \dots, E_e(y_{n,t(n)})) = 1] \right| \\ & > \mathsf{neg}(n) \end{aligned}$$

where in both cases $e \leftarrow G(1^n)_1$

Multiple Encryptions

Algorithm 10 (B')

Input: 1ⁿ, $z_n = (i(n), x_{1,t(n)}, \dots x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)}, e, c$ Return B $(c, E_e(x_{n,1}), \dots, E_e(x_{n,i-1}), c, E_e(y_{n,i+1}), \dots, E_e(y_{n,t(n)}))$ Multiple Encryptions

Algorithm 10 (B')

Input: 1ⁿ,
$$z_n = (i(n), x_{1,t(n)}, \dots x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)}, e, c$$

Return B $(c, E_e(x_{n,1}), \dots, E_e(x_{n,i-1}), c, E_e(y_{n,i+1}), \dots, E_e(y_{n,t(n)}))$

B' is critically using the public key

Multiple Encryption in the Private-Key Model

Fact 11

Assuming (non uniform) OWFs exists, there exists an encryption scheme that has private-key indistinguishable encryptions for a single messages, but not for multiple messages

Multiple Encryptions

Multiple Encryption in the Private-Key Model

Fact 11

Assuming (non uniform) OWFs exists, there exists an encryption scheme that has private-key indistinguishable encryptions for a single messages, but not for multiple messages

Proof: Let $g: \{0,1\}^n \mapsto \{0,1\}^{n+1}$ be a (non-uniform) PRG, and for $i \in \mathbb{N}$ let g^i be its "iterated extension" to output of length i (see Lecture 2, Construction 15).

Definitions

Multiple Encryption in the Private-Key Model

Fact 11

Assuming (non uniform) OWFs exists, there exists an encryption scheme that has private-key indistinguishable encryptions for a single messages, but not for multiple messages

Proof: Let $g: \{0,1\}^n \mapsto \{0,1\}^{n+1}$ be a (non-uniform) PRG, and for $i \in \mathbb{N}$ let g^i be its "iterated extension" to output of length i(see Lecture 2, Construction 15).

Construction 12

- $G(1^n)$ outputs $e \leftarrow \{0,1\}^n$,
- $E_e(m)$ outputs $g^{|m|}(e) \oplus m$
- $D_e(c)$ outputs $g^{|c|}(e) \oplus c$

Multiple Encryptions

Claim 13

 $(\emph{G}, \emph{E}, \emph{D})$ has private-key indistinguishable encryptions for a single message

Proof:

Definitions

Claim 13

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n,y_n\in\{0,1\}^{\ell(n)}\}_{n\in\mathbb{N}}$ and $\{z_n\in\{0,1\}^{p(n)}\}_{n\in\mathbb{N}}$ be the triplet that realizes it.

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it. Wlog,

$$|\Pr[\mathsf{B}(z_n, g^{|x_n|}(U_n) \oplus x_n) = 1] - \Pr[\mathsf{B}(z_n, U_{|x_n|} \oplus x_n) = 1]| > \mathsf{neg}(n)$$
 (2)

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it. Wlog,

$$|\Pr[\mathsf{B}(z_n,g^{|x_n|}(U_n)\oplus x_n)=1]-\Pr[\mathsf{B}(z_n,U_{|x_n|}\oplus x_n)=1]|> \mathsf{neg}(n)$$
 (2)

Hence, B implies a (non-uniform) distinguisher for g

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it. Wlog,

$$|\Pr[\mathsf{B}(z_n,g^{|x_n|}(U_n)\oplus x_n)=1]-\Pr[\mathsf{B}(z_n,U_{|x_n|}\oplus x_n)=1]|> \mathsf{neg}(n)$$
 (2)

Hence, B implies a (non-uniform) distinguisher for g

Claim 14

(G, E, D) does not have a private-key indistinguishable encryptions for multiple messages

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it. Wlog,

$$|\Pr[\mathsf{B}(z_n, g^{|X_n|}(U_n) \oplus X_n) = 1] - \Pr[\mathsf{B}(z_n, U_{|X_n|} \oplus X_n) = 1]| > \mathsf{neg}(n)$$
 (2)

Hence, B implies a (non-uniform) distinguisher for g

Claim 14

(G, E, D) does not have a private-key indistinguishable encryptions for multiple messages

Proof:

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n,y_n\in\{0,1\}^{\ell(n)}\}_{n\in\mathbb{N}}$ and $\{z_n\in\{0,1\}^{p(n)}\}_{n\in\mathbb{N}}$ be the triplet that realizes it. Wlog,

$$|\Pr[\mathsf{B}(z_n, g^{|x_n|}(U_n) \oplus x_n) = 1] - \Pr[\mathsf{B}(z_n, U_{|x_n|} \oplus x_n) = 1]| > \mathsf{neg}(n)$$
 (2)

Hence, B implies a (non-uniform) distinguisher for g

Claim 14

(G, E, D) does not have a private-key indistinguishable encryptions for multiple messages

Proof: Take $x_{n,1} = x_{n,2}$, $y_{n,1} \neq y_{n,2}$ and $D(c_1, c_2)$ outputs 1 iff $c_1 = c_2$

Section 2

Constructions

Suffice to encrypt messages of a single length (here the length is n).

Suffice to encrypt messages of a single length (here the length is n).

Let \mathcal{F} be a (non-uniform) length preserving PRF

Suffice to encrypt messages of a single length (here the length is *n*).

Let \mathcal{F} be a (non-uniform) length preserving PRF

Construction 15

- $G(1^n)$: output $e \leftarrow \mathcal{F}_n$,
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(r, e(r) \oplus m)$
- $D_e(r, c)$: output $e(r) \oplus c$

Suffice to encrypt messages of a single length (here the length is *n*).

Let \mathcal{F} be a (non-uniform) length preserving PRF

Construction 15

- $G(1^n)$: output $e \leftarrow \mathcal{F}_n$,
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(r, e(r) \oplus m)$
- $D_e(r, c)$: output $e(r) \oplus c$

Claim 16

(G, E, D) has private-key indistinguishable encryptions for a multiple messages

Suffice to encrypt messages of a single length (here the length is *n*).

Let \mathcal{F} be a (non-uniform) length preserving PRF

Construction 15

- $G(1^n)$: output $e \leftarrow \mathcal{F}_n$,
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(r, e(r) \oplus m)$
- $D_e(r, c)$: output $e(r) \oplus c$

Claim 16

(G, E, D) has private-key indistinguishable encryptions for a multiple messages

Proof:

Let (G, f, Inv) be a (non-uniform) family of trapdoor permutations (see Lecture 6, Def 8) and let b be an hardcore predicate for f.

Definitions

Public key indistinguishable encryptions for multiple messages

Let (G, f, Inv) be a (non-uniform) family of trapdoor permutations (see Lecture 6, Def 8) and let b be an hardcore predicate for f.

Construction 17 (bit encryption)

- $G(1^n)$: output $(e, d) \leftarrow G(1^n)$
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(y = f_e(r), c = b(r) \oplus m)$
- $D_d(y, c)$: output $b(Inv_d(y)) \oplus c$

Let (G, f, Inv) be a (non-uniform) family of trapdoor permutations (see Lecture 6, Def 8) and let b be an hardcore predicate for f.

Construction 17 (bit encryption)

- $G(1^n)$: output $(e, d) \leftarrow G(1^n)$
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(y = f_e(r), c = b(r) \oplus m)$
- $D_d(y, c)$: output $b(Inv_d(y)) \oplus c$

Claim 18

(G, E, D) has public-key indistinguishable encryptions for a multiple messages

Let (G, f, Inv) be a (non-uniform) family of trapdoor permutations (see Lecture 6, Def 8) and let b be an hardcore predicate for f.

Construction 17 (bit encryption)

- $G(1^n)$: output $(e, d) \leftarrow G(1^n)$
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(y = f_e(r), c = b(r) \oplus m)$
- $D_d(y, c)$: output $b(Inv_d(y)) \oplus c$

Claim 18

- (G, E, D) has public-key indistinguishable encryptions for a multiple messages
 - We believe that public-key encryptions are of different complexity than private-key ones

Section 3

Active Adversaries

Active Adversaries

Dream version

Active Adversaries

- Dream version
- Chosen plaintext attack (CPA):
 Adversary can ask for encryptions done by the encryption key

- Dream version
- Chosen plaintext attack (CPA):
 Adversary can ask for encryptions done by the encryption key
- Passive chosen ciphertext attack (CCA1): same as CPA, but the adversary can for decryptions using the decryption key, before seeing the challenge

- Dream version
- Chosen plaintext attack (CPA):
 Adversary can ask for encryptions done by the encryption key
- Passive chosen ciphertext attack (CCA1): same as CPA, but the adversary can for decryptions using the decryption key, before seeing the challenge
- Adaptive chosen ciphertext attack (CCA2): same as CCA2, but the adversary can for decryptions using the decryption key after seeing the challenge, but not of the challenge itself

- Dream version
- Chosen plaintext attack (CPA):
 Adversary can ask for encryptions done by the encryption key
- Passive chosen ciphertext attack (CCA1): same as CPA, but the adversary can for decryptions using the decryption key, before seeing the challenge
- Adaptive chosen ciphertext attack (CCA2): same as CCA2, but the adversary can for decryptions using the decryption key after seeing the challenge, but not of the challenge itself

- Dream version
- Chosen plaintext attack (CPA):
 Adversary can ask for encryptions done by the encryption key
- Passive chosen ciphertext attack (CCA1): same as CPA, but the adversary can for decryptions using the decryption key, before seeing the challenge
- Adaptive chosen ciphertext attack (CCA2): same as CCA2, but the adversary can for decryptions using the decryption key after seeing the challenge, but not of the challenge itself
- In the public-key settings, the adversary is also given the public key

Dream version

- Chosen plaintext attack (CPA):
 Adversary can ask for encryptions done by the encryption key
- Passive chosen ciphertext attack (CCA1): same as CPA, but the adversary can for decryptions using the decryption key, before seeing the challenge
- Adaptive chosen ciphertext attack (CCA2): same as CCA2, but the adversary can for decryptions using the decryption key after seeing the challenge, but not of the challenge itself
- In the public-key settings, the adversary is also given the public key
- We focus on indistinguishability, but each of the above definitions has an equivalent semantic security variant.

CPA Security

Let (G, E, D) be an an encryption scheme. For a pair of alg. $A = (A_1, A_2), n \in \mathbb{N}, z \in \{0, 1\}^*$ and $b \in \{0, 1\}$, we let:

Experiment 19 ($Exp_{A,n,z_n}^{CPA}(b)$)

- $c \leftarrow \mathsf{E}_e(x_b)$
- Output $A_2^{E_e(\cdot)}(1^n, s, c)$

CPA Security

Definitions

Let (G, E, D) be an an encryption scheme. For a pair of alg. $A = (A_1, A_2), n \in \mathbb{N}, z \in \{0, 1\}^*$ and $b \in \{0, 1\}$, we let:

Experiment 19 ($Exp_{A,n,z_n}^{CPA}(b)$ **)**

- **2** $(x_0, x_1, s) \leftarrow A_1^{E_e(\cdot)}(1^n, z)$
- $c \leftarrow \mathsf{E}_e(x_b)$
- Output $A_2^{E_e(\cdot)}(1^n, s, c)$

Definition 20 (private key CPA)

(G, E, D) has indistinguishable encryptions in the private-key model under CPA attack, if \forall PPT A_1, A_2 , and poly-bounded $\{z_n\}_{n\in\mathbb{N}}$:

$$|\Pr[\exp_{A,n,z_n}^{CPA}(0) = 1] - \Pr[\exp_{A,n,z_n}^{CPA}(1) = 1]| = neg(n)$$

 The scheme from Construction ?? has indistinguishable encryptions in the private-key model under CPA attack(for short, private-key CPA secure)

- The scheme from Construction ?? has indistinguishable encryptions in the private-key model under CPA attack(for short, private-key CPA secure)
- The scheme from Construction ?? has indistinguishable encryptions in the public-key model (for short, public-key CPA secure)

- The scheme from Construction ?? has indistinguishable encryptions in the private-key model under CPA attack(for short, private-key CPA secure)
- The scheme from Construction ?? has indistinguishable encryptions in the public-key model (for short, public-key CPA secure)
- In both cases, definitions are not equivalent

CCA Security

Experiment 21 ($Exp_{A,n,z_n}^{CCA1}(b)$ **)**

- 2 $(x_0, x_1, s) \leftarrow A_1^{E_e(\cdot), D_d(\cdot)}(1^n, z)$
- $c \leftarrow \mathsf{E}_e(x_b)$
- Output $A_2^{E_{\theta}(\cdot)}(1^n, s, c)$

CCA Security

Experiment 21 ($Exp_{A,p,z_0}^{CCA1}(b)$ **)**

- **2** $(x_0, x_1, s) \leftarrow A_1^{E_e(\cdot), D_d(\cdot)}(1^n, z)$
- $c \leftarrow \mathsf{E}_e(x_b)$
- Output $A_2^{E_e(\cdot)}(1^n, s, c)$

Experiment 22 ($Exp_{A,n,z_0}^{CCA2}(b)$)

- **2** $(x_0, x_1, s) \leftarrow A_1^{E_e(\cdot), D_d(\cdot)}(1^n, z)$
- $c \leftarrow \mathsf{E}_e(x_b)$
- Output $A_2^{E_e(\cdot),D_d^{-c}(\cdot)}(1^n,s,c)$

Definition 23 (private key CCA1/CCA2)

(G, E, D) has indistinguishable encryptions in the private-key model under $x \in \{CCA1, CCA2\}$ attack, if \forall PPT A_1, A_2 , and poly-bounded $\{z_n\}_{n \in \mathbb{N}}$:

$$|\Pr[\exp_{A,n,z_n}^{x}(0) = 1] - \Pr[\exp_{A,n,z_n}^{x}(1) = 1]| = neg(n)$$

Definition 23 (private key CCA1/CCA2)

(G, E, D) has indistinguishable encryptions in the private-key model under $x \in \{CCA1, CCA2\}$ attack, if \forall PPT A_1, A_2 , and poly-bounded $\{z_n\}_{n \in \mathbb{N}}$:

$$|\Pr[\exp_{A,n,z_n}^{x}(0) = 1] - \Pr[\exp_{A,n,z_n}^{x}(1) = 1]| = neg(n)$$

Public key definition is analogous

Private-key CCA2

• Is the scheme from Construction ?? private-key CCA1 secure?

- Is the scheme from Construction ?? private-key CCA1 secure?
- Is it CCA2 secure?

Let (G, E, D) be a private key CPA scheme, and let $(Gen_M, Mac, Vrfy)$ be an existential unforgeable MAC.

Construction 24

- $G'(1^n)$: Output $(e \leftarrow G_E(1^n), k \leftarrow \operatorname{Gen}_M(1^n)).^a$
- $\mathsf{E}'_{d,k}(m)$: let $c = \mathsf{E}_e(m)$ and output $(c,t = \mathsf{Mac}_k(c))$
- $D_{e,k}(c,t)$: if $Vrfy_k(c,t) = 1$, output $D_e(c)$. Otherwise, output \bot

^aWe assume for simplicity that the encryption and decryption keys are the same.

- Is the scheme from Construction ?? private-key CCA1 secure?
- Is it CCA2 secure?

Let (G, E, D) be a private key CPA scheme, and let $(Gen_M, Mac, Vrfy)$ be an existential unforgeable MAC.

Construction 24

- $G'(1^n)$: Output $(e \leftarrow G_E(1^n), k \leftarrow \operatorname{Gen}_M(1^n)).^a$
- $\mathsf{E}'_{d,k}(m)$: let $c = \mathsf{E}_e(m)$ and output $(c,t = \mathsf{Mac}_k(c))$
- $D_{e,k}(c,t)$: if $Vrfy_k(c,t) = 1$, output $D_e(c)$. Otherwise, output \bot

^aWe assume for simplicity that the encryption and decryption keys are the same.

Theorem 25

Construction ?? is a private-key CCA2 secure encryption scheme.

Theorem 25

Construction ?? is a private-key CCA2 secure encryption scheme.

Proof: ?

Public-key CCA1

Public-key CCA1

Let (G, E, D) be a public-key CPA scheme and let (P, V) be a NIZK for $\mathcal{L} = \{(c_0, c_1, pk_0, pk_1) \colon \exists (m, r_0, r_1) \ s.t. \ c_0 = E_{pk_0}(m, r_0) \land c_1 = E_{pk_1}(m, r_1)\}$

Construction 26 (The Naor-Yung Paradigm)

- $G'(1^n)$:
 - **1** For $i \in \{0, 1\}$: set $(sk_i, pk_i) \leftarrow G(1^n)$.
 - ② Set $pk' = (pk_0, pk_1, r \leftarrow \{0, 1\}^{\ell(n)})$ and $sk' = (pk', sk_0, sk_1)$
- E'_{pk'}(m):
 - **1** For $i \in \{0, 1\}$: $c_i = \mathsf{E}_{pk_i}(m, c_i)$
 - 2 π be the proof of P that c_0 and c_1 encrypt the same message (with respect to r)
 - **3** Output (c_0, c_1, π) .
- $\mathsf{D}'_{sk'}(c_0, c_1, \pi)$: If π is a valid proof for (c_0, c_1, pk_0, pk_1) , return $\mathsf{D}_{sk_0}(c_0)$. Otherwise, return \bot

 We assume wlg. that the encryption key output by G(1ⁿ) is of length at least n

- We assume wlg. that the encryption key output by G(1ⁿ) is of length at least n
- \(\ell \) is an arbitrary polynomial, and determines the maximum message length to encrypt using "security parameter" \(n \).

- We assume wlg. that the encryption key output by G(1ⁿ) is of length at least n
- ℓ is an arbitrary polynomial, and determines the maximum message length to encrypt using "security parameter" n.
- Is the scheme CCA1 secure?

- We assume wlg. that the encryption key output by G(1ⁿ) is of length at least n
- \(\ell \) is an arbitrary polynomial, and determines the maximum message length to encrypt using "security parameter" \(n \).
- Is the scheme CCA1 secure? We need the NIZK to be "adaptive secure".

- We assume wlg. that the encryption key output by G(1ⁿ) is of length at least n
- \(\ell \) is an arbitrary polynomial, and determines the maximum message length to encrypt using "security parameter" \(n \).
- Is the scheme CCA1 secure? We need the NIZK to be "adaptive secure".

Theorem 27

Assuming that (P, V) is adaptive-secure, then Construction ?? is a public-key CCA1 secure encryption scheme.

- We assume wlg. that the encryption key output by G(1ⁿ) is of length at least n
- \(\ell \) is an arbitrary polynomial, and determines the maximum message length to encrypt using "security parameter" \(n \).
- Is the scheme CCA1 secure? We need the NIZK to be "adaptive secure".

Theorem 27

Assuming that (P, V) is adaptive-secure, then Construction ?? is a public-key CCA1 secure encryption scheme.

Proof: Given an attacker A' for the CCA1 security of (G', E', D'), we use it to construct an attacker A on the CPA security of (G, E, D).

Let $S = (S_1, S_2)$ be the (adaptive) simulator for (P, V, \mathcal{L})

Algorithm 28 (A)

- On $(1^n, pk)$:
 - let $j \leftarrow \{0, 1\}$
 - Let $pk_{1-j} = pk$, $(pk_j, sk_j) \leftarrow G(1^n)$ and $r \leftarrow S_1(1^n)$
 - Send $pk' = (pk_0, pk_1, r)$ to A'
- ② On query (c_0, c_1, π) of A' to D': if π is a valid proof for $(c_0, c_1, pk_0, pk_1) \in \mathcal{L}$, return $D_{sk_i}(c_j)$. Otherwise, return \perp .
- 3 Output the same pair (m_0, m_1) as A' does
- **1** On challenge c (= $E_{sk}(m_b)$):
 - Set $c_{1-j} = c$, $a \leftarrow \{0, 1\}$, $c_j = \mathsf{E}_{pk_j}(m_a)$, and $\pi \leftarrow \mathsf{S}_2((c_0, c_1, pk_0, pk_1), r)$
 - Send $c' = (c_0, c_1, \pi)$ to A'
- Output the same value that A' does

Claim 29

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \text{neg}(n))/2$.

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P,V), yields that

 $Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$ (3)

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P,V), yields that

$$Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$$
 (3)

Ignoring negligible terms, in the following we assume that A that always encrypts using sk_0 .

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P,V), yields that

$$Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$$
 (3)

Ignoring negligible terms, in the following we assume that A that always encrypts using sk_0 .

Let $A'(1^n, a^*, b^*)$ be the output of $A'(1^n)$ in the emulation induced by A, where $a = a^*$ and $b = b^*$.

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P,V), yields that

$$Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$$
 (3)

Ignoring negligible terms, in the following we assume that A that always encrypts using sk_0 .

Let $A'(1^n, a^*, b^*)$ be the output of $A'(1^n)$ in the emulation induced by A, where $a = a^*$ and $b = b^*$. It holds that

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P,V), yields that

$$Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$$
 (3)

Ignoring negligible terms, in the following we assume that A that always encrypts using sk_0 .

Let $A'(1^n, a^*, b^*)$ be the output of $A'(1^n)$ in the emulation induced by A, where $a = a^*$ and $b = b^*$. It holds that

- The adaptive zero-knowledge of (P, V) yields that $|\Pr[A'(1^n, 1, 1) = 1] \Pr[A'(1^n, 0, 0) = 1]| \ge \delta(n) \text{neg}(n)$

$$\begin{split} |\text{Pr}[A(1) = 1] - \text{Pr}[A(0) = 1]| \\ &= \big| \frac{1}{2} (\text{Pr}[A'(0, 1) = 1] + \text{Pr}[A'(1, 1) = 1]) \\ &- \frac{1}{2} (\text{Pr}[A'(0, 0) = 1] + \text{Pr}[A'(1, 0) = 1]) \big| \end{split}$$

$$\begin{split} |\text{Pr}[A(1) = 1] - \text{Pr}[A(0) = 1]| \\ &= \big| \frac{1}{2} (\text{Pr}[A'(0, 1) = 1] + \text{Pr}[A'(1, 1) = 1]) \\ &- \frac{1}{2} (\text{Pr}[A'(0, 0) = 1] + \text{Pr}[A'(1, 0) = 1]) \big| \\ &\geq \frac{1}{2} \big| \text{Pr}[A'(1, 1) = 1] - \text{Pr}[A'(0, 0) = 1] \big| \\ &- \frac{1}{2} \big| \text{Pr}[A'(1, 0) = 1] - \text{Pr}[A'(0, 1) = 1] \big| \end{split}$$

$$\begin{split} |\text{Pr}[\text{A}(1) = 1] - \text{Pr}[\text{A}(0) = 1]| \\ &= \left|\frac{1}{2}(\text{Pr}[\text{A}'(0,1) = 1] + \text{Pr}[\text{A}'(1,1) = 1])\right| \\ &- \frac{1}{2}(\text{Pr}[\text{A}'(0,0) = 1] + \text{Pr}[\text{A}'(1,0) = 1])| \\ &\geq \frac{1}{2}\left|\text{Pr}[\text{A}'(1,1) = 1] - \text{Pr}[\text{A}'(0,0) = 1]\right| \\ &- \frac{1}{2}\left|\text{Pr}[\text{A}'(1,0) = 1] - \text{Pr}[\text{A}'(0,1) = 1]\right| \\ &\geq (\delta(n) - \text{neg}(n))/2 \end{split}$$

Public-key CCA2

• Is Construction ?? CCA2 secure?

Public-key CCA2

- Is Construction ?? CCA2 secure?
- Problem: Soundness might not hold with respect to the simulated CRS, after seeing a proof for an invalid statement

- Is Construction ?? CCA2 secure?
- Problem: Soundness might not hold with respect to the simulated CRS, after seeing a proof for an invalid statement
- Solution: use simulation sound NIZK