Problem 2

OBJECTIVES: To evaluate a differential equation using Heun's method.

ALGORITHM:

```
    Start
    Define function, f(x, y)
    Assign an initial value for
```

3. Assign an initial value for x_0 , y_0 , x_n and h. [where, x_0 and y_0 = initial conditions, x_0 = required value and y_0 = initial conditions.

 x_n = required value and h = interval.]

```
4. While (x_0 + h \le x_n)
5. Compute m1 = f(x_0, y_0)
```

and
$$m2 = f(x_0 + h, y_0 + m1 \times h)$$
.

6. Find the improved estimate of x_0 and y_0 . $y_0 = y_0 + (h/2)(m1 \times m2)$ $x_0 = x_0 + h$

- 7. print x_0 and y_0 .
- 8. End
- 9. print the final x_0 and y_0
- 10. Stop.

Sample Input/output:

Evaluating Heun's method for f(x,y) = (2y/x) or $f(x,y) = \frac{2y}{x}$

Tasks:

Write a code to evaluate a differential equation using Heun's method.