## Лабораторная работа №2

Имитационное моделирование

Волгин Иван Алексеевич

#### Содержание

| 1 | Цель работы                    | 4  |
|---|--------------------------------|----|
| 2 | Задание                        | 5  |
| 3 | Выполнение лабораторной работы | 6  |
| 4 | Выводы                         | 17 |

# Список иллюстраций

| 3.1  | Код для модели сети из задания 1 | 7  |
|------|----------------------------------|----|
| 3.2  | Размер окна                      | 8  |
| 3.3  | Размер очереди                   | 9  |
| 3.4  | Изменение типа TCP на Newreno    | 9  |
| 3.5  | Размер окна                      | 10 |
| 3.6  | Размер очереди                   | 11 |
| 3.7  | Изменение типа TCP на Vegas      | 11 |
| 3.8  | Размер окна                      | 12 |
| 3.9  | Размер очереди                   | 13 |
| 3.10 | Код для изменения оформления     | 14 |
| 3.11 | Вид графика с размером окна      | 15 |
| 3.12 | Вид графика с размером очереди   | 16 |

## 1 Цель работы

Целью работы является исследовать протокл TCP и алгоритм управления очередью RED.

#### 2 Задание

- Создать пример сети с дисциплиной RED
- Выполнить дополнительное упражнение

#### 3 Выполнение лабораторной работы

1. В первом задании нужно построить пример сети с дисциплиной RED. Осписание моделируемой сети: — сеть состоит из 6 узлов; — между всеми узлами установлено дуплексное соединение с различными пропускной способностью и задержкой 10 мс — узел r1 использует очередь с дисциплиной RED для накопления пакетов, максимальный размер которой составляет 25; — TCP-источники на узлах s1 и s2 подключаются к TCP-приёмнику на узле s3; — генераторы трафика FTP прикреплены к TCP-агентам. Для реализации этой модели написал следующий код (рис. 3.1).

```
set N 5
for {set i 1} {$i < $N} {incr i} {</pre>
set node_(s$i) [$ns node]
set node_(r1) [$ns node]
set node_(r2) [$ns node]
$ns duplex-link $node_(s1) $node_(r1) 10Mb 2ms DropTail
$ns duplex-link $node_(s2) $node_(r1) 10Mb 3ms DropTail
$ns duplex-link $node_(r1) $node_(r2) 1.5Mb 20ms RED
$ns queue-limit $node_(r1) $node_(r2) 25
$ns queue-limit $node_(r2) $node_(r1) 25
$ns duplex-link $node_(s3) $node_(r2) 10Mb 4ms DropTail
$ns duplex-link $node_(s4) $node_(r2) 10Mb 5ms DropTail
set tcp1 [$ns create-connection TCP/Reno $node_(s1) TCPSink $node_(s3) 0]
$tcpl set window 15
set tcp2 [$ns create-connection TCP/Reno $node_(s2) TCPSink $node_(s3) 1]
$tcp2 set window 15
set ftp1 [$tcp1 attach-source FTP]
set ftp2 [$tcp2 attach-source FTP]
set windowVsTime [open WindowVsTimeReno w]
set qmon [$ns monitor-queue $node_(r1) $node_(r2) [open qm.out w] 0.1];
[$ns link $node_(r1) $node_(r2)] queue-sample-timeout;
set redq [[$ns link $node_(r1) $node_(r2)] queue]
set tchan_ [open all.q w]
$redq trace curq
$redq trace ave
$redq attach $tchan
$ns at 0.0 "$ftp1 start"
$ns at 1.1 "plotWindow $tcp1 $windowVsTime"
$ns at 3.0 "$ftp2 start"
$ns at 10 "finish"
$ns run
```

Рис. 3.1: Код для модели сети из задания 1

В итоге получил следующие два графика (рис. 3.2) (рис. 3.3). На первом изображен размер окна. Можно заметить, что пиковое значение находится в районе 33, а основной диапазон значений от 1 до 14. На втором графике мы видим размер очереди. Пиковое значение равняется 11, также есть еще пара пиков на значениях 11 и 9, но основной диапазон от 0 до 7.



Рис. 3.2: Размер окна



Рис. 3.3: Размер очереди

2. Далее я приступил к выполнению дополнительного упражнения. Задачи: – Измените в модели на узле s1 тип протокола TCP с Reno на NewReno, затем на Vegas. Сравните и поясните результаты. – Внесите изменения при отображении окон с графиками (измените цвет фона, цвет траекторий, подписи к осям, подпись траектории в легенде).

В первом пункте нужно было сначала изменить тип протокла TCP на Newreno, что я и сделал (рис. 3.4).

```
set tcp1 [$ns create-connection TCP/Newreno $node_(s1) TCPSink $node_(s3) 0]
$tcp1 set window_ 15
set tcp2 [$ns create-connection TCP/Reno $node_(s2) TCPSink $node_(s3) 1]
$tcp2 set window_ 15
set ftp1 [$tcp1 attach-source FTP]
set ftp2 [$tcp2 attach-source FTP]
```

Рис. 3.4: Изменение типа TCP на Newreno

Получил следующие результаты (рис. 3.5) (рис. 3.6). На графике размера окна мы видим, что один пик на значении 33, а затем колебания в диапазоне от 4 до 14. На втором графике, который показывает размер очереди, можно заметить один (в отличии от прошлого Reno) пик на значении 13 и далее однородные колебания в диапазоне 0 - 8.



Рис. 3.5: Размер окна



Рис. 3.6: Размер очереди

Далее нужно было поменять тип протокола TCP уже на Vegas. В коде это выглядело так (рис. 3.7)

```
set tcp1 [$ns create-connection TCP/Vegas $node_(s1) TCPSink $node_(s3) 0]
$tcp1 set window_ 15
set tcp2 [$ns create-connection TCP/Reno $node_(s2) TCPSink $node_(s3) 1]
$tcp2 set window_ 15
set ftp1 [$tcp1 attach-source FTP]
set ftp2 [$tcp2 attach-source FTP]
```

Рис. 3.7: Изменение типа TCP на Vegas

Я снова получил два графика, которые уже сильно отличаются от двух предыдущих вариантов (рис. 3.8) (рис. 3.9). На первом графике мы видим частые краковременные пики и периоды по несколько секунд, когда значение размера окна не менялось. Второй меньше первого визуально отличается от предшественников. Пик также располагается на значении 13, а основной диапазон значений от 0 до 8.



Рис. 3.8: Размер окна



Рис. 3.9: Размер очереди

Вторым пунктом в упражнении было изменение оформления окон с графиками. Нужно было изменить цвет фона, цвет траекторий, подписи к осям и подпись траектории в легенде. Я внес изменения в код (рис. 3.10) и получил следующие результаты (рис. 3.11) (рис. 3.12).

```
set f [open temp.queue w]
puts $f "TitleText: red"
puts $f "Device: Postscript"
puts $f "0.Color: Yellow"
puts $f "1.Color: Green"
if { [info exists tchan_] } {
close $tchan_
exec rm -f temp.q temp.a
exec touch temp.a temp.q
exec awk $awkCode all.q
puts $f \"QUEUE"
exec cat temp.q >@ $f
puts $f \n\"AVG QUEUE
exec cat temp.a >@ $f
close $f
exec xgraph -fg blue -bg white -bb -tk -x time -t "TCPRenoCWND" WindowVsTimeReno
exec xgraph -fg gray -bg brown -bb -tk -x time -y queue temp.queue &
exit 0
set N 5
for {set i 1} {$i < $N} {incr i} {</pre>
set node_(s$i) [$ns node]
set node_(r1) [$ns node]
set node_(r2) [$ns node]
$ns duplex-link $node_(s1) $node_(r1) 10Mb 2ms DropTail
$ns duplex-link $node_(s2) $node_(r1) 10Mb 3ms DropTail
$ns duplex-link $node_(r1) $node_(r2) 1.5Mb 20ms RED
$ns queue-limit $node_(r1) $node_(r2) 25
$ns queue-limit $node_(r2) $node_(r1) 25
$ns duplex-link $node_(s3) $node_(r2) 10Mb 4ms DropTail
$ns duplex-link $node_(s4) $node_(r2) 10Mb 5ms DropTail
set tcp1 [$ns create-connection TCP/Vegas $node_(s1) TCPSink $node_(s3) 0]
$tcpl set window 15
set tcp2 [$ns create-connection TCP/Reno $node_(s2) TCPSink $node_(s3) 1]
$tcp2 set window_ 15
set ftp1 [$tcp1 attach-source FTP]
set ftp2 [$tcp2 attach-source FTP]
set windowVsTime [open WindowVsTimeReno w]
puts $windowVsTime "0.Color: Black"
puts $windowVsTime \"SIZE_OF_WINDOW"
set qmon [$ns monitor-queue $node_(r1) $node_(r2) [open qm.out w] 0.1];
[$ns_link_$node_(r1) $node_(r2)] queue_samole_timeout;
```

Рис. 3.10: Код для изменения оформления



Рис. 3.11: Вид графика с размером окна



Рис. 3.12: Вид графика с размером очереди

## 4 Выводы

В ходе выполнения лабораторной работы я исследовал прокол TCP и алгоритм управления очередью RED