X₁: Demonstrate that if $p \equiv 1 \mod 4$, then $r \equiv a^{\frac{p+1}{4}}$ will generate two square roots $\{r, -r\}$. We will validate this by squaring both sides and discover that r equals the square root of a.

Let
$$a = u^{2}$$

$$r \equiv a^{\frac{p+1}{4}} = (u^{2})^{\frac{p+1}{4}} = u^{\frac{p+1}{2}} = [(u^{2})(u^{p-1})]^{\frac{1}{2}}$$
Since $u^{p-1} \equiv 1 \mod p$

$$r = (u^{2})^{\frac{1}{2}}$$

$$r \equiv a^{\frac{1}{2}}$$

X₂: Demonstrate that if $p \equiv 5 \mod 8$, $r = a^{\frac{p+3}{8}} \mod p$ will generate two square roots of a, $\{r, -r\}$ when $1 \equiv a^{\frac{p-1}{4}} \mod p$. If $p-1 \equiv a^{\frac{p-1}{4}} \mod p$, then $r = (2a)(4a)^{\frac{p-5}{8}} \mod p$ will generate two square roots of a, $\{r, -r\}$. We will validate the first part:

Let
$$a = u^2$$

 $r = (u^2)^{\frac{p+3}{8}} = u^{\frac{p+3}{4}} = (u^{\frac{p-1}{4}})(u) = u$

We then validate the second part:

<< I will attempt this and send in a later email, I need to get to work >>