

GEOMETRÍA

Capítulo 15

4th
SECONDARY

ÁREA DE REGIONES

CÍRCULARES

MOTIVATING | STRATEGY

Uno de los grandes inventos del hombre fue la rueda (la que denominamos círculo) cuya mayor aplicación era en el transporte; hoy en día se fabrican en serie, círculos que tienen infinitas aplicaciones y para generar dicha producción se diseñan moldes llamados matrices utilizando para ello las fórmulas de cálculo de áreas de círculo.

ÁREAS DE REGIONES CIRCULARES

Círculo

Es la unión de la circunferencia y su

interior.

O: Centro

OA: radio

S: Área del círculo

$$S = \pi \cdot r^2$$

L: longitud de la circunferencia

$$L=2.\pi.r$$

Corona circular

Es la región comprendida entre dos circunferencias concéntricas.

O: Centro

T : Punto de tangencia

S : Área de la corona circular

$$S = \pi.(R^2 - r^2)$$

$$S = \pi . (a)^2$$

Sector circular

Es una parte del círculo limitado por dos radios y su arco correspondiente.

1. El lado de un cuadrado mide 8. Calcule el área del círculo inscrito en dicho cuadrado.

Resolución

Piden el área del circulo inscrito en dicho cuadrado= S $S = \pi r^2$

- Se trazan: \overline{OP} y \overline{OT} .
- **ABPT**: Rectángulo

$$AB = PT = 8$$

$$2r = 8$$

$$r = 4$$

Reemplazando

$$S = \pi 4^2$$

$$S = 16\pi u^2$$

HELICO | PRACTICE

2. En la región cuadrantal AOB, calcule el área de la región sombreada, si

3. En la fotografía se muestra la ampliación de la imagen de una moneda de 5 soles si AB = 20 u y CD = 6 u. Calcule el área de la corona circular...

Resolución

- Piden el área de la corona circular: S
- S : Área de la corona circular

$$S = \pi(R^2 - r^2)$$

Hallando: r=3 , R=10

$$S = \pi(10^2 - 3^2)$$

$$S = \pi (100 - 9)$$

$$S = 91 \text{ m u}^2$$

4. Calcule el área del círculo inscrito en el sector circular de 60° y

 Piden el área del círculo inscrito en el sector circular : S

Se traza \overline{OT} .

Los puntos O,O₁ y T son colineales.

• Se traza $\overline{O_1N}$.

- ONO₁: Notable de 30° y 60°
- En \overline{OT} . 2r + r = 15 3r = 15 r = 5
- Reemplazando. $S = \pi 5^2$

 $S = 25\pi u^2$

5. En el grafico, O es centro del \widehat{AB} . Calcule el área de la región sombreada.

Resolución

- Piden el área de la región sombreada : S
- $S(SECTORAOB) = S + S_1$

Reemplazando: $S = S_{(reg.cuadrantal)} - S_1$

$$S = \frac{\pi 6^2}{4} - \frac{6.6}{2}$$

$$S=9\pi-18$$

$$S = 9(\pi - 2) u^2$$

6. En el grafico, se muestra un cuadrante de centro O. Calcule el área de la región sombreada.

Piden el Área de región sombreada: S

✓ ODBC : Trapecio

$$S = M + N + P$$

S : Área de un sector circular

$$S = \underbrace{\frac{54}{9}}_{360} \pi (2\sqrt{5})^{2}$$

$$S = \frac{3}{20} \pi (20)$$

$$S = 3\pi u^2$$

 $S = \Theta \pi r^2$

360°

7. En la figura se muestra un caballo atado en la esquina del contorno de una casa con una soga de 4 m. Si el suelo que rodea al caballo está lleno de pasto, calcule el área máxima que puede abarcar el caballo al tratar de comer el pasto que lo rodea.

Resolución · Piden: S

$$S = \frac{\Theta}{360^{\circ}} \pi r^2$$

Reemplazando:

$$S = \frac{270}{360} \pi 4^{2}$$

$$S=12\pi\ m^{_2}$$