LCI DATABASE TEMPLATE

ALICIA Project

Dr.-Ing Rahul Ramesh Nair
DLR – Inst. of Networked Energy Systems
25.10.2023

Agenda

Requirements for the structure of an LCI database

2. Proposed <u>Template</u>

3. LCI Networks

4. Demo (using Jupyter Notebook)

Requirements

Overview of LCI:

- Life cycle inventory (LCI) is the most resource intensive step amongst the four stages of LCA.
- Involves the "compilation and quantification of inputs and outputs for a product system throughout its life cycle"
- Forms the backbone of the current assessment and future research using various tools.

Dimensions of LCI:

- Data: from modelling of the life cycle inventory (for a given product system)
- Data about this data (Metadata): structured information about the LCI data (what, who, when, licencing, validity, etc.). Provides context to the LCI
- The software interface: software framework used for aggregation of the LCI and subsequent calculations.

Requirements – Top-level prerequisites

- ✓ Interdisciplinary cooperation
- ✓ Quality of research
- ✓ Workflow efficiency
- ✓ Domain-specific standardization
- ✓ Citations and archives
- ✓ Ease of use and deployability

Formats

Documentation

Platform

3

Requirements – a closer look!

Detailed Requirements

- Detailed metadata and revision tracking for databases
- Non-proprietary file formats and standardized/organized for machine readability.
- Structured code: modularity, documentation, version control, descriptive naming scheme, error handling, minimal code duplication, refactoring, abstraction
- Ease of adoption, deployment, and minimal entry barriers – reliance on existing tools.
- LCI must be FAIR Findable, Accessible,
 Interoperable & Reusable and Extensible

Limitations (Context of Brightway)

- Nested data are precluded from csv and xlsx datasets. Necessitates data
 conversions
- Rapid development of BW framework can induce code-incompatibility during project lifetime.
- Limitations in database matching within Brightway imports and exports.
- Lack of holistic visualization (graphical modelling) of complex product systems

Template - Definitions

- Module: system or group of systems in aircraft or procedures in operations (as in ATA)
 - <u>Dataset:</u> the collected LCI inventory for a module. Genarated in csv and formatted excel schema.
 - <u>Dataset properties:</u> the overview of info on the dataset. For imports and comparison using python.
 - Network: the directed network graph of the dataset. Inherits all the relational information.
 - Environment: configuration file for re-creating the conda environment.
 - Metadata: the structured collection of data about the dataset.

Project: the parent research work containing all the modules under investigation

- Readme: contains the information about the research project
- Glossary: project-specific and non-general LCA terminologies
- Source: the database in JSON-LD format as raw data for platform-independent crosscompatibility

Glossary.md

Template - Advantages

- Human-readable datasets (quick editing and importing via activity browser) & metadata
- Version control and logging using Git
- Lower technical hurdles in accessing the bw platform (minimal use of python). Implemented via self-contained packages with 2 front-facing jupyter notebooks.
- Detailed metadata, terminologies and glossary for reviewing, sharing, archiving & publishing.
- Availability of datasets in formats easily parseable by existing python packages (programmatic mutability of data)
- Customizable visualization of complex systems/components using directed network graphs
- Python code:
 - Modular and structured to facilitate feature updates
 - Standard packages and minimal dependencies.
 - Well documented (room for improvement)

Template – Final steps

- Project-specific LCI glossary
- Detailed context of the project to highlight the boundary conditions of the LCI
- The source LCI as JSON-LD for useability in platforms other than Brightway (openIca, simapro)
- Funding information, licenses and persistent identifiers (for compatibility with research data repos such as ERC)

Note: comments related to citations (within individual exchanges and/or activities) should only use DOI or PIDs

Where is network theory usually used?

Modelling power grids E.g. doi: 10.1038/s41598-022-22268-z

Protein interactions E.g. doi: 10.1038/NMETH.1282

Other applications include study of neural networks, supply chain management, transportation systems, social sciences etc.

Template – overview of workflow

Example Network Graph of a Materials LCI

Technosphere flows

References

- Helmholtz Metadata Collaboration (https://helmholtz-metadaten.de/en)
- Danish e-infrastructure consortium (https://www.howtofair.dk/)
- Brightway documentation (https://docs.brightway.dev/)

