Behavioural, ethological and pathological aspects of ToM: lessons from Bayesian Decision Theory

Jean Daunizeau

Brain and Spine Institute (ICM) — Paris, France ETH — Zurich, Switzerland

The neural bases of social behaviour

→ social cognition engage **specific** neural systems

The "false belief" test

What computational problem does ToM solve?

ToM = meta-Bayesian (Bayesian inference on a Bayesian agent's mental states)?

Overview of the talk

✓ Does ToM make a difference when we learn?

✓ Limited ToM sophistication: did evolution fool us?

✓ Playing *hide-and-seek* with non-human primates

✓ What about people with autism spectrum disorder?

Overview of the talk

✓ Does ToM make a difference when we learn?

✓ Limited ToM sophistication: did evolution fool us?

✓ Playing *hide-and-seek* with non-human primates

✓ What about people with autism spectrum disorder?

0-ToM

0-ToM does not apply the intentional stance

- → 0-ToM is a Bayesian agent with:
- beliefs (about non-intentional contingencies)
- preferences

« I believe that you will hide behind the tree »

1-ToM

- 1-ToM learns how the other learns
- → 1-ToM is a meta-Bayesian agent with:
- beliefs (about other's beliefs and preferences)

2-ToM

- 2-ToM learns how the other learns and her ToM sophistication level
- → 2-ToM is a meta-Bayesian agent with:
- beliefs (about other's beliefs about one's beliefs and preferences)
- preferences

« I believe that you believe that I believe ... »

k-ToM: recursive meta-Bayesian modelling

k-ToM learns how the other learns and her ToM sophistication level:

$$\lambda_{\tau}^{(k)} = f\left(\lambda_{\tau-1}^{(k)}, a_{\tau}, \theta_{1}^{(k)}\right)$$

k-ToM acts according to her beliefs and preferences:

$$p\left(a_{1,\tau+1}\middle|\theta^{(k)}\right) \propto \exp\left(\lambda_{\tau+1}^{(k)}, a_{1,\tau+1}\right)\middle/\theta_2^{(k)}$$

This induces a likelihood for a k+1-ToM observer:

$$p\left(a_{1,\to\tau} \middle| \theta^{(1,\dots,k)}, \kappa, m_{k+1}\right) = \prod_{k'=0}^{k} \prod_{\tau'=1}^{\tau} p\left(a_{1,\tau'} \middle| \theta^{(k)}\right)^{\zeta_{k'}(\kappa)}$$

Deriving the ensuing Free-Energy yields the k+1-ToM learning rule:

$$\begin{split} \lambda_{\tau+1}^{(k+1)} &= f\left(\lambda_{\tau}^{(k+1)}, a_{\tau}, \theta_{1}^{(k+1)}\right) \\ & f: \lambda_{\tau}^{(k+1)} \rightarrow \arg\max_{\lambda_{\tau+1}^{(k+1)}} F_{\tau}^{(k+1)} \\ F_{\tau}^{(k+1)} &= \left\langle \ln p\left(a_{1, \to \tau} \left| \theta^{(1, \dots, k)}, \kappa, m_{k+1} \right) \right\rangle + \left\langle \ln p\left(\theta^{(1, \dots, k)}, \kappa \left| m_{k+1} \right) \right\rangle - \left\langle \ln q_{\tau}\left(\theta^{(1, \dots, k)}, \kappa\right) \right\rangle \end{split}$$

k-ToM agents in competitive games

outcome table (« hide and seek »)

	hider: a ₁ = 1	hider: a ₁ = 0
seeker: a ₂ = 1	-1, 1	1, -1
seeker: $a_2 = 0$	1, -1	-1, 1

Volterra 1st-order kernels:

$$p(a_t = 1 | \omega) = s \left(\omega_0 + \sum_k \sum_{\tau} \omega_{\tau}^{(k)} u_{t-\tau}^{(k)} + \dots \right)$$

k-ToM agents in competitive games

outcome table (« hide and seek »)

	hider: a ₁ = 1	hider: a ₁ = 0
seeker: a ₂ = 1	-1, 1	1, -1
seeker: a ₂ = 0	1, -1	-1, 1

simulated behavioural performance (#wins/trial)

$$\tau = 512$$

Everybody is somebody's fool

0-ToM predicts 1-ToM

k-ToM agents in competitive games

outcome table (« hide and seek »)

	hider: a ₁ = 1	hider: a ₁ = 0
seeker: a ₂ = 1	-1, 1	1, -1
seeker: $a_2 = 0$	1, -1	-1, 1

simulated behavioural performance (#wins/trial)

$$\tau = 512$$

Behavioural task design

Behavioural performances (N=26)

ANOVA:

- **Framing** (p=0.007), **opponent** (p=0.009), 0 framingXop (but RB VS 1-ToM)
- 0 age, 0 sex

BETWEEN-SUBJECT VARIABILITY:

- 0 empathy, 0 executive functions (WCST, Go-NoGo, 3-back)
- RB: Corr NS & S (p=0.01), 0 otherwise

Volterra decompositions

Similarity to best k-ToM response

ANOVA:

- Framing (p=0.02), op (p=0.0001), 0 framingXop
- 0 age, 0 sex

SOBEL:

• mediation of framing (p=0.010), mediation of op (p=0.013)

Bayesian model comparison

Model's name	Bayesian	mentalizing	number of free parameters
k - ToM ($1 \le k \le 3$)	yes (B+)	yes (T+)	3
0-ToM	yes (B+)	no (T-)	3
HGF	yes (B+)	no (T-)	5
n -BSL $(1 \le n \le 3)$	yes (B+)	no (T-)	3
k -Inf $(1 \le k \le 2)$	no (B-)	yes (T+)	3 (1-Inf), 4 (2-Inf)
RL	no (B-)	no (T-)	3
WSLS	no (B-)	no (T-)	2
Nash	no (B-)	no (T-)	1

- 14 models, 26 participants, 2 tasks framings, 4 opponents (= 2912 model evidences)
- 2X2 model families (2 partitions: B+/B-, T+/T-)

Bayesian model comparison

Variability of human ToM sophistication

Overview of the talk

✓ Does ToM make a difference when we learn?

✓ Limited ToM sophistication: did evolution fool us?

✓ Playing *hide-and-seek* with non-human primates

✓ What about people with autism spectrum disorder?

Competitive versus cooperative games

« hide and seek »

« battle of the sexes »

	P1: a ₁ = 1	P1: a ₁ = 0
P2: a ₂ = 1	-1, 1	1, -1
P2: a ₂ = 0	1, -1	-1, 1

	P1: a ₁ = 1	P1: a ₁ = 0
P2: a ₂ = 1	2, 0	-1, -1
P2: a ₂ = 0	-1, -1	0, 2

Being right is as good as being smart

« hide and seek »

0.8 0.6 0.4 0.6 0.8 1

opponent's behavioural tendency

1-ToM predicts 0-ToM

« battle of the sexes »

0-ToM predicts 1-ToM

Evolutionary game theory

Can we explain the emergence of the natural bound on ToM sophistication?

- → Average adaptive fitness:
 - is a function of the behavioural performance, relative to other phenotypes
 - depends upon the frequency of other phenotypes within the population

 S_k frequency of phenotype k within the population

 ω_i frequency of game *i*

 $Q^{^{(i)}}(au)$ expected payoff matrix of game i at round au

→ Replicator dynamics [Maynard-Smith 1982, Hofbauer 1998]:

$$\frac{ds}{dt} = Diag(s) \left(\sum_{i} \omega_{i} Q^{(i)}(\tau) s - \sum_{i} \omega_{i} s^{T} Q^{(i)}(\tau) s \right)$$

evolutionary stable states: $s_{\infty} \equiv \lim_{t \to \infty} s(t)$

Replicator dynamics and ESS

ESS: phase portrait

Overview of the talk

✓ Does ToM make a difference when we learn?

✓ Limited ToM sophistication: did evolution fool us?

✓ Playing *hide-and-seek* with non-human primates

✓ What about people with autism spectrum disorder?

The main confound in primates' ToM assessment

You're competing for the food. Where should you approach the food from?

[Hare 2006]

Evolutionary factors of ToM sophistication

Playing "hide and seek" with primates

• Subjects:

Macaques (4+5), Orangutans (7), Chimps (6), Gorillas (5), Mangabeys (8), Lemurs (6)

Experimental paradigm:

- √ habituation/training sessions (rule learning)
- √ 3 opponent types (RB, 0-ToM, 1-ToM) X 4 sessions
- ✓ control task (behavioural perseveration)

Behavioural performances

Volterra decompositions

ToM sophistication of learning styles

No ToM

ToM & Precursors

Assessing the Machiavellian intelligence hypothesis

Assessing the *social brain* hypothesis

ToM sophistication

small brains

large brains

Overview of the talk

✓ Does ToM make a difference when we learn?

✓ Limited ToM sophistication: did evolution fool us?

✓ Playing *hide-and-seek* with non-human primates

✓ What about people with autism spectrum disorder?

ASD: ToM deficit hypothesis

ASD patients: summary statistics

- High functioning autistic patients (N=24)
- Neurotypical participants (N=24)
 matched for age, IQ, sex (21 males)

Group	ASD	NT
Age	25,5 (5,7)	27,9 (8,6)
IQ	104(17)	106 (14)
Social anhedonia	14,8 (8,4)	9.7 (4,2)

Behavioural performances: group comparison

Behavioural performances: group comparison

Summary

- Meta-Bayesian inference
 - the brain's model of other brains assumes they are Bayesian too
 - reciprocal social interaction → recursive beliefs
- Does mentalizing make a difference when we learn?
 - social framing effect ("mentalize or be fooled")
 - distribution of ToM sophistication = mixed
- Evolution of ToM:
 - cooperation+learning → natural bounds to ToM sophistication
 ("being right is as good as being smart")
 - non-human primates \rightarrow (brain) size matters
- Autism:
 - ASD = 1-ToM ? (cannot consider that others are mentalizing too)

References and acknowledgements

This is **Marie Devaine**'s hard work!

I also would like to thank:

- Dr. **G. Hollard**, economist (Ecole Polytechnique, Palaiseau, France)
- Dr. **S. Masi**, ethologist (Natural History Museum, Paris, France)
- Dr. B. Forgeot d'Arc, psychiatrist (Hopital Rivière-Des-Prairies, Montréal, Canada)

The social Bayesian brain: does mentalizing matter when we learn?

M. Devaine, G. Hollard, J. Daunizeau

PLoS Comp. Biol. (2014), 10(12): e1003992.

Theory of Mind: did evolution fool us? M. Devaine, G. Hollard, J. Daunizeau PLoS ONE (2014), 9(2): e87619.

Observing the observer (II): deciding when to decide
J. Daunizeau, H. E. M. Den Ouden, M. Pessiglione, S. J. Kiebel, K. J. Friston, K. E. Stephan
PLos ONE (2010b), 5(12): e15555.

Observing the observer (I): meta-Bayesian models of learning and decision-making J. Daunizeau, H. E. M. Den Ouden, M. Pessiglione, K. E. Stephan, S. J. Kiebel, K. J. Friston PLoS ONE (2010a), 5(12): e15554.