# traffic simulator

### February 16, 2024

```
[33]: from datetime import datetime, timedelta
      from pandas import DataFrame
      import matplotlib.pyplot as plt
      import networkx as nx
      from networkx import Graph
      from networkx.drawing.nx_agraph import write_dot, graphviz_layout
      from networkx.readwrite import json_graph
      import os
      from random import randint
      import sys
      from typing import Tuple
[34]: sys.path.append("../")
      tests_dir = os.path.abspath("../tests")
      sys.path.append(tests_dir)
[35]: from traffic_simulator.city_map import CityMap
      from traffic_simulator.model import TimeDeltaDiff
      from traffic_simulator.traffic_analysis import TrafficAnalyzer
      from traffic simulator.traffic simulation import Simulator
      from conftest import generate_static_city_map, generate_static_trips
     Generate City Map
[36]: r2_city_map = generate_static_city_map()
      r2_city_map
[36]: <networkx.classes.graph.Graph at 0x12852c3d0>
[37]: CityMap.get_city_map_statistics(r2_city_map)
     node degree and node clustering
     0 2 0
     1 2 0
     4 3 0
     3 2 0
     2 1 0
     the adjacency list
```

```
0 1 4
1 3 4
4 2 3
3 2
```

[38]: CityMap.visualize\_city\_map(r2\_city\_map)

$$\{(0, 1): 6, (0, 4): 9, (1, 3): 11, (4, 2): 10, (4, 3): 7\}$$



# 1 Generate Static Trips

[39]: 20

## 2 R2

The benefit values of constructing the following new roads:

$$(0,2),\ (0,3),\ (1,2),\ (1,4),\ (2,3)$$

Use a k value (budget) of 2, which two of the above roads would you recommend for construction? Remember that once the first road is

constructed, benefits that you initially computed for the other 4 will now change and these will need to be recomputed.

### Generate Benefit Matrix k = 0 # Initial Benefit Matrix

```
[40]: def get_max_benefit_road_segment(max_benefit_matrix: DataFrame) -> Tuple[int,__
int]:
    max_benefit = max_benefit_matrix.iloc[0].values
    source = int(max_benefit[0])
    destination = int(max_benefit[1])

return source, destination
```

```
[41]: r2_benefit_matrix, n1, n2, n1_n2_truth_table_data = TrafficAnalyzer.

oget_road_recommendations(r2_city_map, r2_trips,debug=True)

r2_benefit_matrix
```

```
[41]:
          source
                  destination
                                 benefit
      3
               2
                              3
                                    38.6
      4
               0
                              2
                                    38.0
      0
               1
                              2
                                    30.0
      2
               1
                              4
                                    30.0
      1
               0
                              3
                                    12.8
```

```
[42]: ### n1 and n2 Truth Tables - show details of internal algorithmic calculations n1_n2_truth_table_data
```

```
nx_neighbor ny_neighbor nx_indirect_benefits \
[42]:
                                                 \{(4, 1), (1, 4)\}
          1
             2
                                         -1
      0
                            4
                                                \{(4, 1), (1, 4)\}
      1
          1
             2
                            4
                                         -1
      2
          1
             2
                                          0
                           -1
                                                                {}
      3
             2
                                                                {}
          1
                           -1
                                          0
      4
          1
             2
                           -1
                                          3
                                                                {}
      5
          1
             2
                           -1
                                          3
                                                                {}
      6
          1
             2
                           -1
                                          3
                                                                {}
      7
          1
             2
                                          3
                                                                {}
                           -1
                                                                {}
      8
          1
             2
                           -1
                                         -1
      9
          0
             3
                           -1
                                         -1
                                                                {}
                            2
                                                \{(1, 2), (2, 1)\}
      10
          1
             4
                                         -1
                                                \{(1, 2), (2, 1)\}
      11
          1
             4
                            2
                                         -1
         1 4
      12
                            3
                                         -1
                                                \{(1, 2), (2, 1)\}
                            3
                                                \{(1, 2), (2, 1)\}
      13 1 4
                                         -1
      14 2 3
                            1
                                         -1
                                                \{(1, 2), (2, 1)\}
      15 2 3
                                                \{(1, 2), (2, 1)\}
                            1
                                         -1
                                                \{(1, 2), (2, 1)\}
      16 2 3
                            4
                                         -1
```

```
17
    2
        3
                       4
                                     -1
                                             \{(1, 2), (2, 1)\}
18
    0
        2
                                                              {}
                      -1
                                      1
                                                              {}
19
    0
        2
                      -1
                                      1
20
        2
                      -1
                                                              {}
    0
                                      4
21
    0 2
                      -1
                                      4
                                                              {}
                                            {\tt indirect\_x}
                                                         indirect_y
                  ny_indirect_benefits
0
                                        {}
                                                       4
                                        {}
1
                                                       1
                                                                     4
2
                       \{(0, 2), (2, 0)\}
                                                       0
                                                                     2
3
                       \{(0, 2), (2, 0)\}
                                                       2
                                                                     0
4
    \{(2, 3), (0, 2), (2, 0), (3, 2)\}
                                                       2
                                                                     3
                                                                     2
5
    \{(2, 3), (0, 2), (2, 0), (3, 2)\}
                                                       0
                                                                     0
6
    \{(2, 3), (0, 2), (2, 0), (3, 2)\}
                                                       2
7
    \{(2, 3), (0, 2), (2, 0), (3, 2)\}
                                                       3
                                                                     2
8
                                        {}
                                                      -1
                                                                    -1
9
                                        {}
                                                                    -1
                                                      -1
10
                                        {}
                                                       1
                                                                     2
                                        {}
                                                       2
11
                                                                     1
                                                                     2
12
                                        {}
                                                       1
13
                                        {}
                                                       2
                                                                     1
                                                       1
                                                                     2
14
                                        {}
15
                                        {}
                                                       2
                                                                     1
                                        {}
                                                       1
                                                                     2
16
                                                       2
17
                                        {}
                                                                     1
                                                                     2
18
                       \{(1, 2), (2, 1)\}
                                                       1
19
                       \{(1, 2), (2, 1)\}
                                                       2
                                                                     1
20
                       \{(1, 2), (2, 1)\}
                                                       1
                                                                     2
                                                       2
21
                       \{(1, 2), (2, 1)\}
                                                                     1
   has_edge_indirect_x_y has_edge_nx_neighbor_indirect_y
0
1
                          F
                                                                F
                           F
                                                                F
2
                                                                F
                           F
3
4
                          F
                                                                F
                          F
                                                                F
5
                          F
                                                                F
6
7
                          F
                                                                F
                          F
                                                                F
8
                          F
                                                                F
9
                          F
                                                                F
10
                           Т
                                                                F
11
12
                          F
                                                                F
                           Т
                                                                Т
13
14
                           Τ
                                                                F
                           F
                                                                F
15
```

```
16
                              Τ
                                                                Т
      17
                              F
                                                                F
                              F
                                                                F
      18
                              F
                                                                F
      19
                              F
      20
                                                                F
      21
                              F
                                                                F
         has_edge_indirect_x_x has_edge_ny_neighbor_indirect_y
      0
                                                                F
      1
                              F
                                                                F
                                                                F
      2
                              Т
                                                                F
      3
                              F
                              F
                                                                F
      4
      5
                              Τ
                                                                F
      6
                              F
                                                                F
                                                                F
      7
                              Τ
                              F
                                                                F
      8
                              F
      9
                                                                F
                              F
                                                                F
      10
                              F
                                                                F
      11
      12
                              F
                                                                F
      13
                              F
                                                                F
      14
                              F
                                                                F
      15
                              F
                                                                F
                              F
                                                                F
      16
                              F
                                                                F
      17
                              Т
                                                                F
      18
      19
                              F
                                                                F
      20
                              Τ
                                                                F
                              F
                                                                Т
      21
[43]: |##### k = 1 # Recommended road to build first is the road segment (2,3)
      r2_max_benefit_matrix = TrafficAnalyzer.get_max_road_benefit(r2_benefit_matrix)
      r2_max_benefit_matrix
         source destination benefit
[43]:
      3
              2
                            3
                                   38.6
[44]: source, destination = get_max_benefit_road_segment(r2_max_benefit_matrix)
      print(f"({source}, {destination})")
     (2, 3)
[45]: CityMap.add_road_segment(r2_city_map, source, destination)
      CityMap.visualize_city_map(r2_city_map)
     \{(0, 1): 6, (0, 4): 9, (1, 3): 11, (4, 2): 10, (4, 3): 7, (3, 2): 10.2\}
```



```
[46]: r2_benefit_matrix, n1, n2, n1_n2_truth_table_data = TrafficAnalyzer.

Get_road_recommendations(r2_city_map, r2_trips,debug=True)

r2_benefit_matrix
```

```
[46]:
                  destination
          source
                                 benefit
      1
               0
                              2
                                     26.6
      0
               1
                              2
                                     26.0
      3
               1
                              4
                                     18.6
      2
               0
                              3
                                     12.8
```

[47]: ### n1 and n2 Truth Tables - show details of internal algorithmic calculations n1\_n2\_truth\_table\_data

```
[47]:
                 nx_neighbor ny_neighbor nx_indirect_benefits ny_indirect_benefits \
      0
          1
             2
                            4
                                         -1
                                                 \{(4, 1), (1, 4)\}
                                                                                       {}
             2
                                                 \{(4, 1), (1, 4)\}
                                                                                       {}
      1
          1
                            4
                                         -1
      2
          1
             2
                                          0
                                                                        \{(0, 2), (2, 0)\}
                           -1
                                                                {}
             2
                                          0
                                                                {}
                                                                        \{(0, 2), (2, 0)\}
      3
          1
                           -1
                                                                {}
                                                                        \{(0, 2), (2, 0)\}
      4
          1
             2
                           -1
                                          3
             2
                                          3
                                                                {}
                                                                        \{(0, 2), (2, 0)\}
      5
          1
                           -1
      6
          0 2
                            3
                                         -1
                                                 \{(0, 3), (3, 0)\}
                                                                                       {}
      7
          0
             2
                            3
                                         -1
                                                 \{(0, 3), (3, 0)\}
                                                                                       {}
      8
          0
             2
                            4
                                         -1
                                                 \{(0, 3), (3, 0)\}
                                                                                       {}
```

```
2
                                                                                      {}
9
    0
                       4
                                     -1
                                             \{(0, 3), (3, 0)\}
10
    0
       2
                                                                      \{(1, 2), (2, 1)\}
                      -1
                                                              {}
                                      1
11
        2
                      -1
                                      1
                                                              {}
                                                                      \{(1, 2), (2, 1)\}
12
        2
                                                              {}
                                                                      \{(1, 2), (2, 1)\}
    0
                      -1
                                      4
13
    0
        2
                      -1
                                      4
                                                              {}
                                                                      \{(1, 2), (2, 1)\}
                       2
                                             \{(0, 2), (2, 0)\}
14
    0
        3
                                     -1
                                                                                      {}
15
                       2
                                     -1
                                             \{(0, 2), (2, 0)\}
                                                                                      {}
    0
        3
                       4
                                                                                      {}
16
    0
        3
                                     -1
                                             \{(0, 2), (2, 0)\}
                                                                                      {}
                       4
                                             \{(0, 2), (2, 0)\}
17
    0
       3
                                     -1
18
        3
                      -1
                                     -1
                                                                                      {}
19
                       2
                                     -1
                                             \{(1, 2), (2, 1)\}
                                                                                      {}
    1
20
    1
                       2
                                     -1
                                             \{(1, 2), (2, 1)\}
                                                                                      {}
21
    1
        4
                       3
                                     -1
                                             \{(1, 2), (2, 1)\}
                                                                                      {}
                       3
                                                                                      {}
22
    1
                                     -1
                                             \{(1, 2), (2, 1)\}
    indirect_x
                  indirect_y has_edge_indirect_x_y
               4
0
                             1
                                                       Τ
                                                       F
1
               1
                             4
               0
                             2
                                                      F
2
               2
                             0
                                                       F
3
4
               0
                             2
                                                       F
               2
                             0
                                                      F
5
6
               0
                             3
                                                      F
7
               3
                             0
                                                       Т
                                                       F
8
               0
                             3
               3
                             0
                                                      Т
9
                             2
               1
                                                      F
10
11
               2
                             1
                                                      F
                             2
                                                       F
12
               1
               2
                                                       F
13
                             1
14
               0
                             2
                                                       F
               2
                             0
                                                       Т
15
               0
                             2
                                                       F
16
               2
                                                       Т
17
                             0
                                                       F
18
              -1
                            -1
19
               1
                             2
                                                       F
               2
                                                       Т
20
                             1
                                                      F
21
               1
                             2
                                                       Т
22
               2
                             1
   has_edge_nx_neighbor_indirect_y has_edge_indirect_x_x \
                                      F
0
                                                                F
                                      F
                                                                F
1
                                      F
                                                                Т
2
                                      F
                                                                F
3
4
                                      F
                                                                Τ
5
                                      F
                                                                F
```

```
F
                                                                  F
      6
      7
                                          F
                                                                  F
      8
                                          Т
                                                                  F
      9
                                          Т
                                                                  F
                                                                  Т
                                          F
      10
                                          F
                                                                  F
      11
      12
                                          F
                                                                  Τ
      13
                                          F
                                                                  F
                                          F
                                                                  F
      14
                                          F
                                                                  F
      15
      16
                                          Т
                                                                  F
      17
                                          Τ
                                                                  F
                                                                  F
                                          F
      18
                                                                  F
      19
                                          F
                                                                  F
      20
                                          F
      21
                                          Т
                                                                  F
      22
                                          Т
                                                                  F
         \verb|has_edge_ny_neighbor_indirect_y| \\
      0
                                          F
                                          F
      1
                                          F
      2
      3
                                          F
                                          F
      4
      5
                                          Τ
      6
                                          F
      7
                                          F
                                          F
      8
      9
                                          F
      10
                                          F
                                          F
      11
      12
                                          F
      13
                                          Т
      14
                                          F
      15
                                          F
      16
                                          F
      17
                                          F
      18
                                          F
      19
                                          F
                                          F
      20
      21
                                          F
      22
                                          F
[48]: ##### k = 2 # Next recommended road to be built is the road segment (0,2)
      r2_max_benefit_matrix = TrafficAnalyzer.get_max_road_benefit(r2_benefit_matrix)
      r2_max_benefit_matrix
```

[48]: source destination benefit
1 0 2 26.6

[49]: source, destination = get\_max\_benefit\_road\_segment(r2\_max\_benefit\_matrix) print(f"({source}, {destination})")

(0, 2)

[50]: CityMap.add\_road\_segment(r2\_city\_map, source, destination)
CityMap.visualize\_city\_map(r2\_city\_map)

 $\{(0, 1): 6, (0, 4): 9, (0, 2): 11.4, (1, 3): 11, (4, 2): 10, (4, 3): 7, (3, 2): 10.2\}$ 



## 3 R3

[56]: r3\_city\_map = Simulator.generate\_map()
r3\_city\_map

[56]: <networkx.classes.graph.Graph at 0x128db6af0>

[57]: r4\_city\_map = r3\_city\_map.copy()
r4\_city\_map

- [57]: <networkx.classes.graph.Graph at 0x129492e20>
- [58]: CityMap.get\_city\_map\_statistics(r3\_city\_map)

```
node degree and node clustering
```

- 0 9 0.0833333333333333
- 1 9 0.1111111111111111
- 2 6 0.066666666666667
- 3 6 0
- 4 8 0.14285714285714285
- 5 5 0
- 6 9 0.138888888888888
- 7 5 0.1
- 8 11 0.16363636363636364
- 9 11 0.16363636363636364
- 10 8 0.03571428571428571
- 11 6 0.266666666666666
- 12 12 0.13636363636363635
- 13 10 0.0888888888888888
- 14 16 0.1166666666666667
- 15 7 0.2857142857142857
- 16 9 0.055555555555555
- 17 6 0.0666666666666667
- 18 11 0.07272727272727272
- 19 4 0.3333333333333333
- 20 6 0.0666666666666667
- 21 9 0.19444444444445
- 22 5 0.1
- 23 8 0.21428571428571427
- 24 6 0.2
- 25 7 0.09523809523809523
- 26 6 0.2
- 27 9 0.22222222222222
- 28 6 0.13333333333333333
- 29 11 0.16363636363636364
- 30 7 0.14285714285714285
- 31 13 0.166666666666666
- 32 4 0.1666666666666666
- 33 7 0.047619047619047616
- 34 10 0.0888888888888888
- 35 5 0.1
- 36 1 0
- 37 4 0
- 38 3 0
- 39 7 0.14285714285714285
- 40 11 0.16363636363636364
- 41 7 0.09523809523809523
- 42 10 0.13333333333333333

- 43 8 0.03571428571428571
- 44 8 0.14285714285714285
- 45 16 0.0916666666666666
- 46 2 0
- 47 10 0.13333333333333333
- 48 13 0.1794871794871795
- 49 10 0.1111111111111111
- 50 4 0
- 51 6 0.0666666666666667
- 52 8 0.17857142857142858
- 53 4 0.166666666666666
- 54 9 0.0833333333333333
- 55 9 0.166666666666666
- 56 11 0.2
- 57 6 0.13333333333333333
- 58 7 0.09523809523809523
- 59 9 0.166666666666666

#### the adjacency list

- 0 20 3 35 59 14 27 47 32 5
- 1 12 52 50 58 39 15 13 8 22
- 2 11 3 54 8 48 20
- 3 10 38 13 31
- 4 22 14 55 6 44 5 45 15
- 5 18 31 54
- 6 25 45 31 12 46 27 21 36
- 7 12 18 22 25 45
- 8 14 23 40 35 52 51 15 34 42
- 9 31 28 56 49 48 55 46 11 47 45 58
- 10 29 16 45 54 50 30 42
- 11 34 48 42 14
- 12 31 43 55 21 27 53 18 14 29
- 13 49 56 17 40 14 21 39 34
- 14 23 42 22 59 30 52 21 16 29 31
- 15 42 52 54 55
- 16 18 53 20 48 34 55 43
- 17 38 45 39 30 42
- 18 58 52 21 50 47 28 59
- 19 57 49 53 45
- 20 24 51 49
- 21 30 54 35 28
- 22 57
- 23 43 31 37 29 40 54
- 24 29 43 48 49 26
- 25 48 33 58 59 42
- 26 45 59 39 33 29
- 27 49 34 31 41 40 56
- 28 33 40 30

```
29 51 45 34 47 44
30 44 59
31 39 34 40 56 47
32 47 44 41
33 49 39 51 34
34 47 44
35 49 42
36
37 56 50 51
38 47
39 41
40 54 45 56 58 48
41 45 56 52 43
42 48 43
43 47 45
44 56 57 45
45 51 49 57
46
47 59
48 53 49 59 55 56
49
50
51
52 54 57
53
54 58
55 57 58 56
56 59
57
58
59
```

```
\{(0, 20): 8, (0, 3): 23, (0, 35): 5, (0, 59): 14, (0, 14): 24, (0, 27): 17, (0, 47): 12, (0, 32): 20, (0, 5): 25, (1, 12): 11, (1, 52): 23, (1, 50): 7, (1, 58): 7, (1, 39): 9, (1, 15): 6, (1, 13): 23, (1, 8): 19, (1, 22): 23, (2, 11): 20, (2, 3): 11, (2, 54): 24, (2, 8): 23, (2, 48): 11, (2, 20): 18, (3, 10): 12, (3, 38): 11, (3, 13): 18, (3, 31): 21, (4, 22): 23, (4, 14): 18, (4, 55): 19, (4, 6): 5, (4, 44): 15, (4, 5): 15, (4, 45): 20, (4, 15): 6, (5, 18): 7, (5, 31): 23, (5, 54): 25, (6, 25): 11, (6, 45): 13, (6, 31): 13, (6, 12): 22, (6, 46): 8, (6, 27): 12, (6, 21): 17, (6, 36): 23, (7, 12): 24, (7, 18): 22, (7, 22): 23, (7, 25): 7, (7, 45): 19, (8, 14): 19, (8, 23): 9, (8, 40): 22, (8, 35): 13, (8, 52): 20, (8, 51): 15, (8, 15): 8, (8, 34): 8, (8, 42): 10, (9, 31): 15, (9, 28): 13, (9, 56): 16, (9, 49): 25, (9, 48): 5, (9, 55): 12, (9, 46): 21, (9, 11): 21, (9, 47): 11, (9, 45): 18, (9, 58): 14, (10, 29): 11, (10, 16): 14, (10, 45): 15, (10, 54): 11, (10, 50): 25, (10, 30): 19, (10, 42): 23, (11, 34): 18, (11, 48): 11, (11, 48): 11, (11, 48): 11, (11, 48): 11, (11, 48): 11, (12, 14, 11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (11, 14): 12, (
```

```
23, (11, 42): 21, (11, 14): 25, (12, 31): 11, (12, 43): 6, (12, 55): 11, (12,
21): 16, (12, 27): 16, (12, 53): 24, (12, 18): 16, (12, 14): 8, (12, 29): 23,
(13, 49): 9, (13, 56): 23, (13, 17): 13, (13, 40): 19, (13, 14): 23, (13, 21):
10, (13, 39): 21, (13, 34): 13, (14, 23): 6, (14, 42): 20, (14, 22): 20, (14,
59): 18, (14, 30): 17, (14, 52): 10, (14, 21): 8, (14, 16): 23, (14, 29): 13,
(14, 31): 9, (15, 42): 18, (15, 52): 10, (15, 54): 23, (15, 55): 13, (16, 18):
15, (16, 53): 23, (16, 20): 13, (16, 48): 11, (16, 34): 16, (16, 55): 16, (16,
43): 24, (17, 38): 7, (17, 45): 7, (17, 39): 24, (17, 30): 5, (17, 42): 11, (18,
58): 16, (18, 52): 21, (18, 21): 16, (18, 50): 17, (18, 47): 13, (18, 28): 21,
(18, 59): 15, (19, 57): 24, (19, 49): 22, (19, 53): 24, (19, 45): 9, (20, 24):
20, (20, 51): 22, (20, 49): 11, (21, 30): 7, (21, 54): 19, (21, 35): 9, (21,
28): 25, (22, 57): 8, (23, 43): 23, (23, 31): 12, (23, 37): 14, (23, 29): 5,
(23, 40): 10, (23, 54): 5, (24, 29): 17, (24, 43): 8, (24, 48): 23, (24, 49):
23, (24, 26): 24, (25, 48): 5, (25, 33): 22, (25, 58): 8, (25, 59): 7, (25, 42):
12, (26, 45): 24, (26, 59): 20, (26, 39): 14, (26, 33): 25, (26, 29): 10, (27,
49): 16, (27, 34): 11, (27, 31): 9, (27, 41): 9, (27, 40): 6, (27, 56): 8, (28,
33): 24, (28, 40): 6, (28, 30): 22, (29, 51): 17, (29, 45): 9, (29, 34): 22,
(29, 47): 24, (29, 44): 14, (30, 44): 14, (30, 59): 19, (31, 39): 7, (31, 34):
8, (31, 40): 8, (31, 56): 15, (31, 47): 13, (32, 47): 20, (32, 44): 14, (32,
41): 10, (33, 49): 21, (33, 39): 5, (33, 51): 5, (33, 34): 24, (34, 47): 15,
(34, 44): 16, (35, 49): 21, (35, 42): 25, (37, 56): 25, (37, 50): 16, (37, 51):
20, (38, 47): 21, (39, 41): 10, (40, 54): 8, (40, 45): 17, (40, 56): 5, (40,
58): 19, (40, 48): 7, (41, 45): 13, (41, 56): 7, (41, 52): 7, (41, 43): 12, (42,
48): 12, (42, 43): 14, (43, 47): 24, (43, 45): 20, (44, 56): 17, (44, 57): 25,
(44, 45): 9, (45, 51): 12, (45, 49): 25, (45, 57): 16, (47, 59): 20, (48, 53):
6, (48, 49): 16, (48, 59): 15, (48, 55): 24, (48, 56): 11, (52, 54): 24, (52,
57): 21, (54, 58): 19, (55, 57): 16, (55, 58): 14, (55, 56): 20, (56, 59): 19}
```



```
[60]: def get_traffic_times() -> Tuple[datetime, datetime]:
    # (8 AM - 6 PM) # 10 hour time span
    start_time = datetime.strptime('08:00', '%H:%M').time()
    end_time = datetime.strptime('18:00', '%H:%M').time()

    start_date = datetime.now() - timedelta(days=30)
    random_start_datetime = datetime.combine(start_date.date(), start_time)

    random_end_datetime = random_start_datetime + timedelta(hours=10)

    return random_start_datetime, random_end_datetime

traffic_start_datetime, traffic_end_datetime = get_traffic_times()

print("Traffic start datetime:", traffic_start_datetime)

print("Traffic end datetime", traffic_end_datetime)

Traffic start datetime: 2024-01-17 08:00:00

Traffic end datetime 2024-01-17 18:00:00

[63]: r3_r4_trips = Simulator.generate_trips(r3_city_map,
```

traffic\_start\_datetime,
traffic\_end\_datetime,
TimeDeltaDiff.SECONDS)

```
r3_r4_number_of_trips = 0
                       for trip in r3_r4_trips:
                                      r3_r4_number_of_trips += trip.numer_of_trips
                       r3_r4_number_of_trips
[63]: 36000
[67]: r3_benefit_matrix = TrafficAnalyzer.get_road_recommendations(r3_city_map,__
                           ⇒r3_r4_trips)
                       r3_benefit_matrix
[67]:
                                              source
                                                                             destination
                                                                                                                                benefit
                       1003
                                                              36
                                                                                                                 45
                                                                                                                                    2525.8
                       25
                                                              14
                                                                                                                                    1906.8
                                                                                                                 37
                       278
                                                              31
                                                                                                                 36
                                                                                                                                    1880.2
                       527
                                                                                                                                    1760.0
                                                              38
                                                                                                                 45
                       570
                                                              22
                                                                                                                 31
                                                                                                                                    1744.0
                                                                                                                                        172.0
                       852
                                                              28
                                                                                                                 42
                                                                                                                 53
                                                                                                                                        168.4
                       164
                                                              10
                       1446
                                                                 5
                                                                                                                 28
                                                                                                                                        158.4
                       1355
                                                              26
                                                                                                                 32
                                                                                                                                        149.6
                       703
                                                                  7
                                                                                                                 46
                                                                                                                                            93.6
                       [1535 rows x 3 columns]
[68]: |##### k = 1 # Recommended road to build first is the road segment
                       r3_max_benefit_matrix = TrafficAnalyzer.get_max_road_benefit(r3_benefit_matrix)
                       r3_max_benefit_matrix
[68]:
                                               source destination
                                                                                                                                benefit
                       1003
                                                              36
                                                                                                                                     2525.8
[69]: source, destination = get_max_benefit_road_segment(r3_max_benefit_matrix)
                       print(f"({source}, {destination})")
                      (36, 45)
[70]: CityMap.add_road_segment(r3_city_map, source, destination)
[71]: CityMap.visualize_city_map(r3_city_map, location_size=60, location_font_size=1,__
                            →road_widths=1)
                    \{(0, 20): 8, (0, 3): 23, (0, 35): 5, (0, 59): 14, (0, 14): 24, (0, 27): 17, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 1
                    47): 12, (0, 32): 20, (0, 5): 25, (1, 12): 11, (1, 52): 23, (1, 50): 7, (1, 58):
                    7, (1, 39): 9, (1, 15): 6, (1, 13): 23, (1, 8): 19, (1, 22): 23, (2, 11): 20,
                     (2, 3): 11, (2, 54): 24, (2, 8): 23, (2, 48): 11, (2, 20): 18, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 13, (3, 10): 14, (3, 10): 15, (3, 10): 15, (3, 10): 15, (3, 10): 15, (3, 10): 15, (3, 10): 16, (3, 10): 17, (3, 10): 18, (3, 10): 18, (3, 10): 19, (3, 10): 18, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10): 19, (3, 10
```

```
38): 11, (3, 13): 18, (3, 31): 21, (4, 22): 23, (4, 14): 18, (4, 55): 19, (4,
6): 5, (4, 44): 15, (4, 5): 15, (4, 45): 20, (4, 15): 6, (5, 18): 7, (5, 31):
23, (5, 54): 25, (6, 25): 11, (6, 45): 13, (6, 31): 13, (6, 12): 22, (6, 46): 8,
(6, 27): 12, (6, 21): 17, (6, 36): 23, (7, 12): 24, (7, 18): 22, (7, 22): 23,
(7, 25): 7, (7, 45): 19, (8, 14): 19, (8, 23): 9, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 4
52): 20, (8, 51): 15, (8, 15): 8, (8, 34): 8, (8, 42): 10, (9, 31): 15, (9, 28):
13, (9, 56): 16, (9, 49): 25, (9, 48): 5, (9, 55): 12, (9, 46): 21, (9, 11): 21,
(9, 47): 11, (9, 45): 18, (9, 58): 14, (10, 29): 11, (10, 16): 14, (10, 45): 15,
(10, 54): 11, (10, 50): 25, (10, 30): 19, (10, 42): 23, (11, 34): 18, (11, 48):
23, (11, 42): 21, (11, 14): 25, (12, 31): 11, (12, 43): 6, (12, 55): 11, (12,
21): 16, (12, 27): 16, (12, 53): 24, (12, 18): 16, (12, 14): 8, (12, 29): 23,
(13, 49): 9, (13, 56): 23, (13, 17): 13, (13, 40): 19, (13, 14): 23, (13, 21):
10, (13, 39): 21, (13, 34): 13, (14, 23): 6, (14, 42): 20, (14, 22): 20, (14,
59): 18, (14, 30): 17, (14, 52): 10, (14, 21): 8, (14, 16): 23, (14, 29): 13,
(14, 31): 9, (15, 42): 18, (15, 52): 10, (15, 54): 23, (15, 55): 13, (16, 18):
15, (16, 53): 23, (16, 20): 13, (16, 48): 11, (16, 34): 16, (16, 55): 16, (16,
43): 24, (17, 38): 7, (17, 45): 7, (17, 39): 24, (17, 30): 5, (17, 42): 11, (18,
58): 16, (18, 52): 21, (18, 21): 16, (18, 50): 17, (18, 47): 13, (18, 28): 21,
(18, 59): 15, (19, 57): 24, (19, 49): 22, (19, 53): 24, (19, 45): 9, (20, 24):
20, (20, 51): 22, (20, 49): 11, (21, 30): 7, (21, 54): 19, (21, 35): 9, (21,
28): 25, (22, 57): 8, (23, 43): 23, (23, 31): 12, (23, 37): 14, (23, 29): 5,
(23, 40): 10, (23, 54): 5, (24, 29): 17, (24, 43): 8, (24, 48): 23, (24, 49):
23, (24, 26): 24, (25, 48): 5, (25, 33): 22, (25, 58): 8, (25, 59): 7, (25, 42):
12, (26, 45): 24, (26, 59): 20, (26, 39): 14, (26, 33): 25, (26, 29): 10, (27,
49): 16, (27, 34): 11, (27, 31): 9, (27, 41): 9, (27, 40): 6, (27, 56): 8, (28,
33): 24, (28, 40): 6, (28, 30): 22, (29, 51): 17, (29, 45): 9, (29, 34): 22,
(29, 47): 24, (29, 44): 14, (30, 44): 14, (30, 59): 19, (31, 39): 7, (31, 34):
8, (31, 40): 8, (31, 56): 15, (31, 47): 13, (32, 47): 20, (32, 44): 14, (32, 47): 14, (32, 47): 14, (32, 47): 14, (32, 47): 15, (31, 40): 15, (31, 40): 16, (31, 40): 16, (31, 40): 17, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18, (31, 40): 18
41): 10, (33, 49): 21, (33, 39): 5, (33, 51): 5, (33, 34): 24, (34, 47): 15,
(34, 44): 16, (35, 49): 21, (35, 42): 25, (36, 45): 21.5999999999998, (37, 47)
56): 25, (37, 50): 16, (37, 51): 20, (38, 47): 21, (39, 41): 10, (40, 54): 8,
(40, 45): 17, (40, 56): 5, (40, 58): 19, (40, 48): 7, (41, 45): 13, (41, 56): 7,
(41, 52): 7, (41, 43): 12, (42, 48): 12, (42, 43): 14, (43, 47): 24, (43, 45):
20, (44, 56): 17, (44, 57): 25, (44, 45): 9, (45, 51): 12, (45, 49): 25, (45,
57): 16, (47, 59): 20, (48, 53): 6, (48, 49): 16, (48, 59): 15, (48, 55): 24,
(48, 56): 11, (52, 54): 24, (52, 57): 21, (54, 58): 19, (55, 57): 16, (55, 58):
14, (55, 56): 20, (56, 59): 19}
```



| [72]: |      | source | destination | benefit |
|-------|------|--------|-------------|---------|
|       | 527  | 38     | 45          | 1930.72 |
|       | 25   | 14     | 37          | 1906.80 |
|       | 1283 | 30     | 45          | 1831.44 |
|       | 570  | 22     | 31          | 1744.00 |
|       | 615  | 32     | 48          | 1616.60 |
|       | •••  |        |             |         |
|       | 852  | 28     | 42          | 172.00  |
|       | 164  | 10     | 53          | 168.40  |
|       | 1445 | 5      | 28          | 158.40  |
|       | 1354 | 26     | 32          | 149.60  |
|       | 703  | 7      | 46          | 93.60   |

[1534 rows x 3 columns]

```
[73]: ##### k = 2 # Recommended road to build first is the road segment
r3_max_benefit_matrix = TrafficAnalyzer.get_max_road_benefit(r3_benefit_matrix)
r3_max_benefit_matrix
```

```
[73]:
                                       source
                                                                  destination
                                                                                                                benefit
                     527
                                                    38
                                                                                                   45
                                                                                                                 1930.72
[74]: source, destination = get_max_benefit_road_segment(r3_max_benefit_matrix)
                     print(f"({source}, {destination})")
                    (38, 45)
                   CityMap.add_road_segment(r3_city_map, source, destination)
[76]: CityMap.visualize_city_map(r3_city_map, location_size=60, location_font_size=1,_
                          →road_widths=1)
                   \{(0, 20): 8, (0, 3): 23, (0, 35): 5, (0, 59): 14, (0, 14): 24, (0, 27): 17, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 1
                   47): 12, (0, 32): 20, (0, 5): 25, (1, 12): 11, (1, 52): 23, (1, 50): 7, (1, 58):
                   7, (1, 39): 9, (1, 15): 6, (1, 13): 23, (1, 8): 19, (1, 22): 23, (2, 11): 20,
                   (2, 3): 11, (2, 54): 24, (2, 8): 23, (2, 48): 11, (2, 20): 18, (3, 10): 12, (3, 10): 12
                   38): 11, (3, 13): 18, (3, 31): 21, (4, 22): 23, (4, 14): 18, (4, 55): 19, (4, 55): 38, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55)
                   6): 5, (4, 44): 15, (4, 5): 15, (4, 45): 20, (4, 15): 6, (5, 18): 7, (5, 31):
                   23, (5, 54): 25, (6, 25): 11, (6, 45): 13, (6, 31): 13, (6, 12): 22, (6, 46): 8,
                   (6, 27): 12, (6, 21): 17, (6, 36): 23, (7, 12): 24, (7, 18): 22, (7, 22): 23,
                   (7, 25): 7, (7, 45): 19, (8, 14): 19, (8, 23): 9, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 40): 22, (8, 40): 23, (8, 40): 24, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 4
                   52): 20, (8, 51): 15, (8, 15): 8, (8, 34): 8, (8, 42): 10, (9, 31): 15, (9, 28):
                   13, (9, 56): 16, (9, 49): 25, (9, 48): 5, (9, 55): 12, (9, 46): 21, (9, 11): 21,
                   (9, 47): 11, (9, 45): 18, (9, 58): 14, (10, 29): 11, (10, 16): 14, (10, 45): 15,
                   (10, 54): 11, (10, 50): 25, (10, 30): 19, (10, 42): 23, (11, 34): 18, (11, 48):
                   23, (11, 42): 21, (11, 14): 25, (12, 31): 11, (12, 43): 6, (12, 55): 11, (12,
                   21): 16, (12, 27): 16, (12, 53): 24, (12, 18): 16, (12, 14): 8, (12, 29): 23,
                   (13, 49): 9, (13, 56): 23, (13, 17): 13, (13, 40): 19, (13, 14): 23, (13, 21):
                   10, (13, 39): 21, (13, 34): 13, (14, 23): 6, (14, 42): 20, (14, 22): 20, (14,
                   59): 18, (14, 30): 17, (14, 52): 10, (14, 21): 8, (14, 16): 23, (14, 29): 13,
                   (14, 31): 9, (15, 42): 18, (15, 52): 10, (15, 54): 23, (15, 55): 13, (16, 18):
                   15, (16, 53): 23, (16, 20): 13, (16, 48): 11, (16, 34): 16, (16, 55): 16, (16,
                   43): 24, (17, 38): 7, (17, 45): 7, (17, 39): 24, (17, 30): 5, (17, 42): 11, (18,
                   58): 16, (18, 52): 21, (18, 21): 16, (18, 50): 17, (18, 47): 13, (18, 28): 21,
                   (18, 59): 15, (19, 57): 24, (19, 49): 22, (19, 53): 24, (19, 45): 9, (20, 24):
                   20, (20, 51): 22, (20, 49): 11, (21, 30): 7, (21, 54): 19, (21, 35): 9, (21,
                   28): 25, (22, 57): 8, (23, 43): 23, (23, 31): 12, (23, 37): 14, (23, 29): 5,
                   (23, 40): 10, (23, 54): 5, (24, 29): 17, (24, 43): 8, (24, 48): 23, (24, 49):
                   23, (24, 26): 24, (25, 48): 5, (25, 33): 22, (25, 58): 8, (25, 59): 7, (25, 42):
                   12, (26, 45): 24, (26, 59): 20, (26, 39): 14, (26, 33): 25, (26, 29): 10, (27,
                   49): 16, (27, 34): 11, (27, 31): 9, (27, 41): 9, (27, 40): 6, (27, 56): 8, (28,
                   33): 24, (28, 40): 6, (28, 30): 22, (29, 51): 17, (29, 45): 9, (29, 34): 22,
                   (29, 47): 24, (29, 44): 14, (30, 44): 14, (30, 59): 19, (31, 39): 7, (31, 34):
                   8, (31, 40): 8, (31, 56): 15, (31, 47): 13, (32, 47): 20, (32, 44): 14, (32, 47): 14, (32, 47): 14, (32, 47): 14, (32, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15
                   41): 10, (33, 49): 21, (33, 39): 5, (33, 51): 5, (33, 34): 24, (34, 47): 15,
```

56): 25, (37, 50): 16, (37, 51): 20, (38, 47): 21, (38, 45): 8.4, (39, 41): 10,

```
(40, 54): 8, (40, 45): 17, (40, 56): 5, (40, 58): 19, (40, 48): 7, (41, 45): 13, (41, 56): 7, (41, 52): 7, (41, 43): 12, (42, 48): 12, (42, 43): 14, (43, 47): 24, (43, 45): 20, (44, 56): 17, (44, 57): 25, (44, 45): 9, (45, 51): 12, (45, 49): 25, (45, 57): 16, (47, 59): 20, (48, 53): 6, (48, 49): 16, (48, 59): 15, (48, 55): 24, (48, 56): 11, (52, 54): 24, (52, 57): 21, (54, 58): 19, (55, 57): 16, (55, 58): 14, (55, 56): 20, (56, 59): 19}
```



| [77]: |      | source | destination | benefit |
|-------|------|--------|-------------|---------|
|       | 25   | 14     | 37          | 1906.80 |
|       | 1282 | 30     | 45          | 1831.44 |
|       | 953  | 3      | 45          | 1769.04 |
|       | 318  | 45     | 46          | 1760.60 |
|       | 944  | 22     | 45          | 1643.52 |
|       | •••  | •••    |             | •       |
|       | 164  | 10     | 53          | 168.40  |
|       | 1193 | 2      | 49          | 162.00  |
|       | 1444 | 5      | 28          | 158.40  |
|       | 1353 | 26     | 32          | 149.60  |
|       | 702  | 7      | 46          | 93.60   |

#### [1533 rows x 3 columns]

```
[78]: \#\#\#\# k = 3 \# Recommended road to build last is the road segment (14,18)
                    r3 max benefit matrix = TrafficAnalyzer.get max road benefit(r3 benefit matrix)
                    r3_max_benefit_matrix
[78]:
                                                         destination
                                 source
                                                                                                       benefit
                    25
                                              14
                                                                                         37
                                                                                                          1906.8
[79]: source, destination = get_max_benefit_road_segment(r3_max_benefit_matrix)
                    print(f"({source}, {destination})")
                  (14, 37)
[80]: CityMap.add_road_segment(r3_city_map, source, destination)
[81]: CityMap.visualize_city_map(r3_city_map, location_size=60, location_font_size=1,_
                        →road_widths=1)
                 \{(0, 20): 8, (0, 3): 23, (0, 35): 5, (0, 59): 14, (0, 14): 24, (0, 27): 17, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 1
                 47): 12, (0, 32): 20, (0, 5): 25, (1, 12): 11, (1, 52): 23, (1, 50): 7, (1, 58):
                 7, (1, 39): 9, (1, 15): 6, (1, 13): 23, (1, 8): 19, (1, 22): 23, (2, 11): 20,
                  (2, 3): 11, (2, 54): 24, (2, 8): 23, (2, 48): 11, (2, 20): 18, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 10): 12, (3, 1
                 38): 11, (3, 13): 18, (3, 31): 21, (4, 22): 23, (4, 14): 18, (4, 55): 19, (4,
                 6): 5, (4, 44): 15, (4, 5): 15, (4, 45): 20, (4, 15): 6, (5, 18): 7, (5, 31):
                 23, (5, 54): 25, (6, 25): 11, (6, 45): 13, (6, 31): 13, (6, 12): 22, (6, 46): 8,
                  (6, 27): 12, (6, 21): 17, (6, 36): 23, (7, 12): 24, (7, 18): 22, (7, 22): 23,
                  (7, 25): 7, (7, 45): 19, (8, 14): 19, (8, 23): 9, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 23, (8, 40): 24, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 4
                 52): 20, (8, 51): 15, (8, 15): 8, (8, 34): 8, (8, 42): 10, (9, 31): 15, (9, 28):
                 13, (9, 56): 16, (9, 49): 25, (9, 48): 5, (9, 55): 12, (9, 46): 21, (9, 11): 21,
                  (9, 47): 11, (9, 45): 18, (9, 58): 14, (10, 29): 11, (10, 16): 14, (10, 45): 15,
                  (10, 54): 11, (10, 50): 25, (10, 30): 19, (10, 42): 23, (11, 34): 18, (11, 48):
                 23, (11, 42): 21, (11, 14): 25, (12, 31): 11, (12, 43): 6, (12, 55): 11, (12,
                 21): 16, (12, 27): 16, (12, 53): 24, (12, 18): 16, (12, 14): 8, (12, 29): 23,
                  (13, 49): 9, (13, 56): 23, (13, 17): 13, (13, 40): 19, (13, 14): 23, (13, 21):
                 10, (13, 39): 21, (13, 34): 13, (14, 23): 6, (14, 42): 20, (14, 22): 20, (14,
                 59): 18, (14, 30): 17, (14, 52): 10, (14, 21): 8, (14, 16): 23, (14, 29): 13,
                  (14, 31): 9, (14, 37): 12.0, (15, 42): 18, (15, 52): 10, (15, 54): 23, (15, 55):
                 13, (16, 18): 15, (16, 53): 23, (16, 20): 13, (16, 48): 11, (16, 34): 16, (16,
                 55): 16, (16, 43): 24, (17, 38): 7, (17, 45): 7, (17, 39): 24, (17, 30): 5, (17,
                 42): 11, (18, 58): 16, (18, 52): 21, (18, 21): 16, (18, 50): 17, (18, 47): 13,
                 (18, 28): 21, (18, 59): 15, (19, 57): 24, (19, 49): 22, (19, 53): 24, (19, 45):
                 9, (20, 24): 20, (20, 51): 22, (20, 49): 11, (21, 30): 7, (21, 54): 19, (21,
                 35): 9, (21, 28): 25, (22, 57): 8, (23, 43): 23, (23, 31): 12, (23, 37): 14,
                  (23, 29): 5, (23, 40): 10, (23, 54): 5, (24, 29): 17, (24, 43): 8, (24, 48): 23,
```

(24, 49): 23, (24, 26): 24, (25, 48): 5, (25, 33): 22, (25, 58): 8, (25, 59): 7, (25, 42): 12, (26, 45): 24, (26, 59): 20, (26, 39): 14, (26, 33): 25, (26, 29):

10, (27, 49): 16, (27, 34): 11, (27, 31): 9, (27, 41): 9, (27, 40): 6, (27, 56): 8, (28, 33): 24, (28, 40): 6, (28, 30): 22, (29, 51): 17, (29, 45): 9, (29, 34): 22, (29, 47): 24, (29, 44): 14, (30, 44): 14, (30, 59): 19, (31, 39): 7, (31, 34): 8, (31, 40): 8, (31, 56): 15, (31, 47): 13, (32, 47): 20, (32, 44): 14, (32, 41): 10, (33, 49): 21, (33, 39): 5, (33, 51): 5, (33, 34): 24, (34, 47): 15, (34, 44): 16, (35, 49): 21, (35, 42): 25, (36, 45): 21.5999999999999, (37, 56): 25, (37, 50): 16, (37, 51): 20, (38, 47): 21, (38, 45): 8.4, (39, 41): 10, (40, 54): 8, (40, 45): 17, (40, 56): 5, (40, 58): 19, (40, 48): 7, (41, 45): 13, (41, 56): 7, (41, 52): 7, (41, 43): 12, (42, 48): 12, (42, 43): 14, (43, 47): 24, (43, 45): 20, (44, 56): 17, (44, 57): 25, (44, 45): 9, (45, 51): 12, (45, 49): 25, (45, 57): 16, (47, 59): 20, (48, 53): 6, (48, 49): 16, (48, 59): 15, (48, 55): 24, (48, 56): 11, (52, 54): 24, (52, 57): 21, (54, 58): 19, (55, 57): 16, (55, 58): 14, (55, 56): 20, (56, 59): 19}



## 4 R4

```
[82]: r4_benefit_matrix = TrafficAnalyzer.get_road_recommendations(r4_city_map,_u + r3_r4_trips, shrinkage_factor=0.8)
r4_benefit_matrix
```

```
[82]: source destination benefit
1003 36 45 1139.6
278 31 36 919.0
```

```
25
           14
                           37
                                  856.4
527
           38
                           45
                                  843.0
570
           22
                           31
                                  812.2
            5
                                   67.2
1446
                           28
544
           34
                           52
                                   62.4
                                   57.6
375
           56
                           58
1475
             3
                           58
                                   56.0
            7
703
                           46
                                   46.8
```

[1535 rows x 3 columns]

```
[83]: ##### k = 1 # Recommended road to build first is the road segment
r4_max_benefit_matrix = TrafficAnalyzer.get_max_road_benefit(r4_benefit_matrix)
r4_max_benefit_matrix
```

[83]: source destination benefit 1003 36 45 1139.6

[84]: source, destination = get\_max\_benefit\_road\_segment(r4\_max\_benefit\_matrix) print(f"({source}, {destination})")

(36, 45)

[85]: CityMap.add\_road\_segment(r4\_city\_map, source, destination)

```
\{(0, 20): 8, (0, 3): 23, (0, 35): 5, (0, 59): 14, (0, 14): 24, (0, 27): 17, (0, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 1
47): 12, (0, 32): 20, (0, 5): 25, (1, 12): 11, (1, 52): 23, (1, 50): 7, (1, 58):
7, (1, 39): 9, (1, 15): 6, (1, 13): 23, (1, 8): 19, (1, 22): 23, (2, 11): 20,
(2, 3): 11, (2, 54): 24, (2, 8): 23, (2, 48): 11, (2, 20): 18, (3, 10): 12, (3, 10): 12
38): 11, (3, 13): 18, (3, 31): 21, (4, 22): 23, (4, 14): 18, (4, 55): 19, (4,
6): 5, (4, 44): 15, (4, 5): 15, (4, 45): 20, (4, 15): 6, (5, 18): 7, (5, 31):
23, (5, 54): 25, (6, 25): 11, (6, 45): 13, (6, 31): 13, (6, 12): 22, (6, 46): 8,
(6, 27): 12, (6, 21): 17, (6, 36): 23, (7, 12): 24, (7, 18): 22, (7, 22): 23,
(7, 25): 7, (7, 45): 19, (8, 14): 19, (8, 23): 9, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 4
52): 20, (8, 51): 15, (8, 15): 8, (8, 34): 8, (8, 42): 10, (9, 31): 15, (9, 28):
13, (9, 56): 16, (9, 49): 25, (9, 48): 5, (9, 55): 12, (9, 46): 21, (9, 11): 21,
(9, 47): 11, (9, 45): 18, (9, 58): 14, (10, 29): 11, (10, 16): 14, (10, 45): 15,
(10, 54): 11, (10, 50): 25, (10, 30): 19, (10, 42): 23, (11, 34): 18, (11, 48):
23, (11, 42): 21, (11, 14): 25, (12, 31): 11, (12, 43): 6, (12, 55): 11, (12,
21): 16, (12, 27): 16, (12, 53): 24, (12, 18): 16, (12, 14): 8, (12, 29): 23,
(13, 49): 9, (13, 56): 23, (13, 17): 13, (13, 40): 19, (13, 14): 23, (13, 21):
10, (13, 39): 21, (13, 34): 13, (14, 23): 6, (14, 42): 20, (14, 22): 20, (14,
59): 18, (14, 30): 17, (14, 52): 10, (14, 21): 8, (14, 16): 23, (14, 29): 13,
(14, 31): 9, (15, 42): 18, (15, 52): 10, (15, 54): 23, (15, 55): 13, (16, 18):
```

15, (16, 53): 23, (16, 20): 13, (16, 48): 11, (16, 34): 16, (16, 55): 16, (16, 43): 24, (17, 38): 7, (17, 45): 7, (17, 39): 24, (17, 30): 5, (17, 42): 11, (18, 58): 16, (18, 52): 21, (18, 21): 16, (18, 50): 17, (18, 47): 13, (18, 28): 21, (18, 59): 15, (19, 57): 24, (19, 49): 22, (19, 53): 24, (19, 45): 9, (20, 24):20, (20, 51): 22, (20, 49): 11, (21, 30): 7, (21, 54): 19, (21, 35): 9, (21, 28): 25, (22, 57): 8, (23, 43): 23, (23, 31): 12, (23, 37): 14, (23, 29): 5, (23, 40): 10, (23, 54): 5, (24, 29): 17, (24, 43): 8, (24, 48): 23, (24, 49):23, (24, 26): 24, (25, 48): 5, (25, 33): 22, (25, 58): 8, (25, 59): 7, (25, 42): 12, (26, 45): 24, (26, 59): 20, (26, 39): 14, (26, 33): 25, (26, 29): 10, (27, 49): 16, (27, 34): 11, (27, 31): 9, (27, 41): 9, (27, 40): 6, (27, 56): 8, (28, 33): 24, (28, 40): 6, (28, 30): 22, (29, 51): 17, (29, 45): 9, (29, 34): 22, (29, 47): 24, (29, 44): 14, (30, 44): 14, (30, 59): 19, (31, 39): 7, (31, 34): 8, (31, 40): 8, (31, 56): 15, (31, 47): 13, (32, 47): 20, (32, 44): 14, (32, 47): 14, (32, 47): 14, (32, 47): 14, (32, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 15, (31, 47): 1541): 10, (33, 49): 21, (33, 39): 5, (33, 51): 5, (33, 34): 24, (34, 47): 15, (34, 44): 16, (35, 49): 21, (35, 42): 25, (36, 45): 21.5999999999998, (37, 47)56): 25, (37, 50): 16, (37, 51): 20, (38, 47): 21, (39, 41): 10, (40, 54): 8, (40, 45): 17, (40, 56): 5, (40, 58): 19, (40, 48): 7, (41, 45): 13, (41, 56): 7, (41, 52): 7, (41, 43): 12, (42, 48): 12, (42, 43): 14, (43, 47): 24, (43, 45): 20, (44, 56): 17, (44, 57): 25, (44, 45): 9, (45, 51): 12, (45, 49): 25, (45, 57): 16, (47, 59): 20, (48, 53): 6, (48, 49): 16, (48, 59): 15, (48, 55): 24, (48, 56): 11, (52, 54): 24, (52, 57): 21, (54, 58): 19, (55, 57): 16, (55, 58): 14, (55, 56): 20, (56, 59): 19}



```
[87]: r4_benefit_matrix = TrafficAnalyzer.get_road_recommendations(r4_city_map,__
                              →r3_r4_trips, shrinkage_factor=0.8)
                        r4 benefit matrix
[87]:
                                                source
                                                                                destination
                                                                                                                                     benefit
                        527
                                                                 38
                                                                                                                     45
                                                                                                                                         946.36
                        25
                                                                 14
                                                                                                                     37
                                                                                                                                         856.40
                        1283
                                                                 30
                                                                                                                     45
                                                                                                                                         841.72
                        570
                                                                 22
                                                                                                                     31
                                                                                                                                         812.20
                        954
                                                                    3
                                                                                                                     45
                                                                                                                                         694.04
                        1445
                                                                    5
                                                                                                                     28
                                                                                                                                             67.20
                        544
                                                                 34
                                                                                                                     52
                                                                                                                                             62.40
                        375
                                                                 56
                                                                                                                     58
                                                                                                                                             57.60
                        1474
                                                                    3
                                                                                                                     58
                                                                                                                                             56.00
                        703
                                                                    7
                                                                                                                     46
                                                                                                                                             46.80
                        [1534 rows x 3 columns]
[88]: \#\#\#\# k = 2 \# Recommended road to build first is the road segment
                        r4_max_benefit_matrix = TrafficAnalyzer.get_max_road_benefit(r4_benefit_matrix)
                        r4_max_benefit_matrix
[88]:
                                             source
                                                                            destination
                                                                                                                           benefit
                        527
                                                            38
                                                                                                                 45
                                                                                                                                     946.36
[89]: source, destination = get_max_benefit_road_segment(r4_max_benefit_matrix)
                        print(f"({source}, {destination})")
                      (38, 45)
[90]: CityMap.add_road_segment(r4_city_map, source, destination)
[91]: CityMap.visualize_city_map(r4_city_map, location_size=60, location_font_size=1,_u
                              →road_widths=1)
                      \{(0, 20): 8, (0, 3): 23, (0, 35): 5, (0, 59): 14, (0, 14): 24, (0, 27): 17, (0, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 14): 24, (1, 1
                     47): 12, (0, 32): 20, (0, 5): 25, (1, 12): 11, (1, 52): 23, (1, 50): 7, (1, 58):
                     7, (1, 39): 9, (1, 15): 6, (1, 13): 23, (1, 8): 19, (1, 22): 23, (2, 11): 20,
                      (2, 3): 11, (2, 54): 24, (2, 8): 23, (2, 48): 11, (2, 20): 18, (3, 10): 12, (3, 10): 12
                     38): 11, (3, 13): 18, (3, 31): 21, (4, 22): 23, (4, 14): 18, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55): 19, (4, 55)
                     6): 5, (4, 44): 15, (4, 5): 15, (4, 45): 20, (4, 15): 6, (5, 18): 7, (5, 31):
                     23, (5, 54): 25, (6, 25): 11, (6, 45): 13, (6, 31): 13, (6, 12): 22, (6, 46): 8,
                      (6, 27): 12, (6, 21): 17, (6, 36): 23, (7, 12): 24, (7, 18): 22, (7, 22): 23,
                      (7, 25): 7, (7, 45): 19, (8, 14): 19, (8, 23): 9, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 22, (8, 40): 23, (8, 40): 24, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 4
                     52): 20, (8, 51): 15, (8, 15): 8, (8, 34): 8, (8, 42): 10, (9, 31): 15, (9, 28):
                     13, (9, 56): 16, (9, 49): 25, (9, 48): 5, (9, 55): 12, (9, 46): 21, (9, 11): 21,
                      (9, 47): 11, (9, 45): 18, (9, 58): 14, (10, 29): 11, (10, 16): 14, (10, 45): 15,
                      (10, 54): 11, (10, 50): 25, (10, 30): 19, (10, 42): 23, (11, 34): 18, (11, 48):
```

```
23, (11, 42): 21, (11, 14): 25, (12, 31): 11, (12, 43): 6, (12, 55): 11, (12,
21): 16, (12, 27): 16, (12, 53): 24, (12, 18): 16, (12, 14): 8, (12, 29): 23,
(13, 49): 9, (13, 56): 23, (13, 17): 13, (13, 40): 19, (13, 14): 23, (13, 21):
10, (13, 39): 21, (13, 34): 13, (14, 23): 6, (14, 42): 20, (14, 22): 20, (14,
59): 18, (14, 30): 17, (14, 52): 10, (14, 21): 8, (14, 16): 23, (14, 29): 13,
(14, 31): 9, (15, 42): 18, (15, 52): 10, (15, 54): 23, (15, 55): 13, (16, 18):
15, (16, 53): 23, (16, 20): 13, (16, 48): 11, (16, 34): 16, (16, 55): 16, (16,
43): 24, (17, 38): 7, (17, 45): 7, (17, 39): 24, (17, 30): 5, (17, 42): 11, (18,
58): 16, (18, 52): 21, (18, 21): 16, (18, 50): 17, (18, 47): 13, (18, 28): 21,
(18, 59): 15, (19, 57): 24, (19, 49): 22, (19, 53): 24, (19, 45): 9, (20, 24):
20, (20, 51): 22, (20, 49): 11, (21, 30): 7, (21, 54): 19, (21, 35): 9, (21,
28): 25, (22, 57): 8, (23, 43): 23, (23, 31): 12, (23, 37): 14, (23, 29): 5,
(23, 40): 10, (23, 54): 5, (24, 29): 17, (24, 43): 8, (24, 48): 23, (24, 49):
23, (24, 26): 24, (25, 48): 5, (25, 33): 22, (25, 58): 8, (25, 59): 7, (25, 42):
12, (26, 45): 24, (26, 59): 20, (26, 39): 14, (26, 33): 25, (26, 29): 10, (27,
49): 16, (27, 34): 11, (27, 31): 9, (27, 41): 9, (27, 40): 6, (27, 56): 8, (28,
33): 24, (28, 40): 6, (28, 30): 22, (29, 51): 17, (29, 45): 9, (29, 34): 22,
(29, 47): 24, (29, 44): 14, (30, 44): 14, (30, 59): 19, (31, 39): 7, (31, 34):
8, (31, 40): 8, (31, 56): 15, (31, 47): 13, (32, 47): 20, (32, 44): 14, (32,
41): 10, (33, 49): 21, (33, 39): 5, (33, 51): 5, (33, 34): 24, (34, 47): 15,
56): 25, (37, 50): 16, (37, 51): 20, (38, 47): 21, (38, 45): 8.4, (39, 41): 10,
(40, 54): 8, (40, 45): 17, (40, 56): 5, (40, 58): 19, (40, 48): 7, (41, 45): 13,
(41, 56): 7, (41, 52): 7, (41, 43): 12, (42, 48): 12, (42, 43): 14, (43, 47):
24, (43, 45): 20, (44, 56): 17, (44, 57): 25, (44, 45): 9, (45, 51): 12, (45,
49): 25, (45, 57): 16, (47, 59): 20, (48, 53): 6, (48, 49): 16, (48, 59): 15,
(48, 55): 24, (48, 56): 11, (52, 54): 24, (52, 57): 21, (54, 58): 19, (55, 57):
16, (55, 58): 14, (55, 56): 20, (56, 59): 19}
```



[92]: r4\_benefit\_matrix = TrafficAnalyzer.get\_road\_recommendations(r4\_city\_map, r3\_r4\_trips, shrinkage\_factor=0.8)
r4\_benefit\_matrix

| [92]: |      | source | destination | benefit |
|-------|------|--------|-------------|---------|
|       | 25   | 14     | 37          | 856.40  |
|       | 1282 | 30     | 45          | 841.72  |
|       | 318  | 45     | 46          | 789.80  |
|       | 953  | 3      | 45          | 772.04  |
|       | 569  | 22     | 31          | 748.20  |
|       | •••  | •••    |             | •       |
|       | 1444 | 5      | 28          | 67.20   |
|       | 543  | 34     | 52          | 62.40   |
|       | 375  | 56     | 58          | 57.60   |
|       | 1473 | 3      | 58          | 56.00   |
|       | 702  | 7      | 46          | 46.80   |

[1533 rows x 3 columns]

[93]: ##### k = 3 # Recommended road to build last is the road segment
r4\_max\_benefit\_matrix = TrafficAnalyzer.get\_max\_road\_benefit(r4\_benefit\_matrix)
r4\_max\_benefit\_matrix

[94]: source, destination = get\_max\_benefit\_road\_segment(r4\_max\_benefit\_matrix)
print(f"({source}, {destination})")
(14, 37)

[95]: CityMap.add\_road\_segment(r4\_city\_map, source, destination)

 $\{(0, 20): 8, (0, 3): 23, (0, 35): 5, (0, 59): 14, (0, 14): 24, (0, 27): 17, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 14): 24, (0, 1$ 47): 12, (0, 32): 20, (0, 5): 25, (1, 12): 11, (1, 52): 23, (1, 50): 7, (1, 58): 7, (1, 39): 9, (1, 15): 6, (1, 13): 23, (1, 8): 19, (1, 22): 23, (2, 11): 20,(2, 3): 11, (2, 54): 24, (2, 8): 23, (2, 48): 11, (2, 20): 18, (3, 10): 12, (3, 10): 1238): 11, (3, 13): 18, (3, 31): 21, (4, 22): 23, (4, 14): 18, (4, 55): 19, (4, 6): 5, (4, 44): 15, (4, 5): 15, (4, 45): 20, (4, 15): 6, (5, 18): 7, (5, 31): 23, (5, 54): 25, (6, 25): 11, (6, 45): 13, (6, 31): 13, (6, 12): 22, (6, 46): 8, (6, 27): 12, (6, 21): 17, (6, 36): 23, (7, 12): 24, (7, 18): 22, (7, 22): 23,(7, 25): 7, (7, 45): 19, (8, 14): 19, (8, 23): 9, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 35): 13, (8, 40): 22, (8, 40): 22, (8, 40): 23, (8, 40): 24, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 40): 25, (8, 452): 20, (8, 51): 15, (8, 15): 8, (8, 34): 8, (8, 42): 10, (9, 31): 15, (9, 28): 13, (9, 56): 16, (9, 49): 25, (9, 48): 5, (9, 55): 12, (9, 46): 21, (9, 11): 21, (9, 47): 11, (9, 45): 18, (9, 58): 14, (10, 29): 11, (10, 16): 14, (10, 45): 15,(10, 54): 11, (10, 50): 25, (10, 30): 19, (10, 42): 23, (11, 34): 18, (11, 48): 23, (11, 42): 21, (11, 14): 25, (12, 31): 11, (12, 43): 6, (12, 55): 11, (12, 21): 16, (12, 27): 16, (12, 53): 24, (12, 18): 16, (12, 14): 8, (12, 29): 23, (13, 49): 9, (13, 56): 23, (13, 17): 13, (13, 40): 19, (13, 14): 23, (13, 21): 10, (13, 39): 21, (13, 34): 13, (14, 23): 6, (14, 42): 20, (14, 22): 20, (14, 59): 18, (14, 30): 17, (14, 52): 10, (14, 21): 8, (14, 16): 23, (14, 29): 13, (14, 31): 9, (14, 37): 12.0, (15, 42): 18, (15, 52): 10, (15, 54): 23, (15, 55): 13, (16, 18): 15, (16, 53): 23, (16, 20): 13, (16, 48): 11, (16, 34): 16, (16, 55): 16, (16, 43): 24, (17, 38): 7, (17, 45): 7, (17, 39): 24, (17, 30): 5, (17, 42): 11, (18, 58): 16, (18, 52): 21, (18, 21): 16, (18, 50): 17, (18, 47): 13, (18, 28): 21, (18, 59): 15, (19, 57): 24, (19, 49): 22, (19, 53): 24, (19, 45): 9, (20, 24): 20, (20, 51): 22, (20, 49): 11, (21, 30): 7, (21, 54): 19, (21, 35): 9, (21, 28): 25, (22, 57): 8, (23, 43): 23, (23, 31): 12, (23, 37): 14, (23, 29): 5, (23, 40): 10, (23, 54): 5, (24, 29): 17, (24, 43): 8, (24, 48): 23, (24, 49): 23, (24, 26): 24, (25, 48): 5, (25, 33): 22, (25, 58): 8, (25, 59): 7,(25, 42): 12, (26, 45): 24, (26, 59): 20, (26, 39): 14, (26, 33): 25, (26, 29):10, (27, 49): 16, (27, 34): 11, (27, 31): 9, (27, 41): 9, (27, 40): 6, (27, 56):8, (28, 33): 24, (28, 40): 6, (28, 30): 22, (29, 51): 17, (29, 45): 9, (29, 34): 22, (29, 47): 24, (29, 44): 14, (30, 44): 14, (30, 59): 19, (31, 39): 7, (31, 34): 8, (31, 40): 8, (31, 56): 15, (31, 47): 13, (32, 47): 20, (32, 44): 14, (32, 41): 10, (33, 49): 21, (33, 39): 5, (33, 51): 5, (33, 34): 24, (34, 47):15, (34, 44): 16, (35, 49): 21, (35, 42): 25, (36, 45): 21.5999999999999, (37, 56): 25, (37, 50): 16, (37, 51): 20, (38, 47): 21, (38, 45): 8.4, (39, 41): 10,

```
(40, 54): 8, (40, 45): 17, (40, 56): 5, (40, 58): 19, (40, 48): 7, (41, 45): 13, (41, 56): 7, (41, 52): 7, (41, 43): 12, (42, 48): 12, (42, 43): 14, (43, 47): 24, (43, 45): 20, (44, 56): 17, (44, 57): 25, (44, 45): 9, (45, 51): 12, (45, 49): 25, (45, 57): 16, (47, 59): 20, (48, 53): 6, (48, 49): 16, (48, 59): 15, (48, 55): 24, (48, 56): 11, (52, 54): 24, (52, 57): 21, (54, 58): 19, (55, 57): 16, (55, 58): 14, (55, 56): 20, (56, 59): 19}
```



## 5 R5

```
[97]: r5_city_map = Simulator.generate_map(connectedness=0.10)
r5_city_map
```

[97]: <networkx.classes.graph.Graph at 0x12c479e50>

```
[98]: CityMap.get_city_map_statistics(r5_city_map)
```

node degree and node clustering

- 1 9 0.111111111111111
- 2 6 0.066666666666667
- 3 6 0
- 4 8 0.14285714285714285
- 5 5 0
- 6 9 0.13888888888888

- 7 5 0.1
- 8 11 0.16363636363636364
- 9 11 0.16363636363636364
- 10 8 0.03571428571428571
- 11 6 0.266666666666666
- 12 12 0.13636363636363635
- 13 10 0.0888888888888888
- 14 16 0.11666666666666667
- 15 7 0.2857142857142857
- 16 9 0.055555555555555
- 17 6 0.0666666666666667
- 18 11 0.072727272727272
- 19 4 0.333333333333333
- 20 6 0.0666666666666667
- 21 9 0.19444444444445
- 22 5 0.1
- 23 8 0.21428571428571427
- 24 6 0.2
- 25 7 0.09523809523809523
- 26 6 0.2
- 27 9 0.2222222222222
- 28 6 0.13333333333333333
- 29 11 0.16363636363636364
- 30 7 0.14285714285714285
- 31 13 0.166666666666666
- 32 4 0.166666666666666
- 33 7 0.047619047619047616
- 34 10 0.088888888888888
- 35 5 0.1
- 36 1 0
- 37 4 0
- 38 3 0
- 39 7 0.14285714285714285
- 40 11 0.16363636363636364
- 41 7 0.09523809523809523
- 42 10 0.13333333333333333
- 43 8 0.03571428571428571
- 44 8 0.14285714285714285
- 45 16 0.0916666666666666
- 46 2 0
- 47 10 0.13333333333333333
- 48 13 0.1794871794871795
- 49 10 0.1111111111111111
- 50 4 0
- 51 6 0.0666666666666667
- 52 8 0.17857142857142858
- 53 4 0.166666666666666
- 54 9 0.08333333333333333

- 55 9 0.166666666666666
- 56 11 0.2
- 57 6 0.13333333333333333
- 58 7 0.09523809523809523
- 59 9 0.166666666666666

#### the adjacency list

- 0 20 3 35 59 14 27 47 32 5
- 1 12 52 50 58 39 15 13 8 22
- 2 11 3 54 8 48 20
- 3 10 38 13 31
- 4 22 14 55 6 44 5 45 15
- 5 18 31 54
- 6 25 45 31 12 46 27 21 36
- 7 12 18 22 25 45
- 8 14 23 40 35 52 51 15 34 42
- 9 31 28 56 49 48 55 46 11 47 45 58
- 10 29 16 45 54 50 30 42
- 11 34 48 42 14
- 12 31 43 55 21 27 53 18 14 29
- 13 49 56 17 40 14 21 39 34
- 14 23 42 22 59 30 52 21 16 29 31
- 15 42 52 54 55
- 16 18 53 20 48 34 55 43
- 17 38 45 39 30 42
- 18 58 52 21 50 47 28 59
- 19 57 49 53 45
- 20 24 51 49
- 21 30 54 35 28
- 22 57
- 23 43 31 37 29 40 54
- 24 29 43 48 49 26
- 25 48 33 58 59 42
- 26 45 59 39 33 29
- 27 49 34 31 41 40 56
- 28 33 40 30
- 29 51 45 34 47 44
- 30 44 59
- 31 39 34 40 56 47
- 32 47 44 41
- 33 49 39 51 34
- 34 47 44
- 35 49 42
- 36
- 37 56 50 51
- 38 47
- 39 41
- 40 54 45 56 58 48

```
41 45 56 52 43
42 48 43
43 47 45
44 56 57 45
45 51 49 57
46
47 59
48 53 49 59 55 56
49
50
51
52 54 57
53
54 58
55 57 58 56
56 59
57
58
59
```

```
\{(0, 20): 8, (0, 3): 17, (0, 35): 20, (0, 59): 8, (0, 14): 13, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 27): 21, (0, 2
47): 8, (0, 32): 6, (0, 5): 17, (1, 12): 19, (1, 52): 5, (1, 50): 13, (1, 58):
18, (1, 39): 20, (1, 15): 15, (1, 13): 20, (1, 8): 6, (1, 22): 22, (2, 11): 24,
(2, 3): 7, (2, 54): 18, (2, 8): 25, (2, 48): 14, (2, 20): 20, (3, 10): 19, (3, 10): 19
38): 23, (3, 13): 7, (3, 31): 5, (4, 22): 20, (4, 14): 20, (4, 55): 18, (4, 6):
20, (4, 44): 12, (4, 5): 5, (4, 45): 16, (4, 15): 11, (5, 18): 14, (5, 31): 12,
(5, 54): 19, (6, 25): 12, (6, 45): 9, (6, 31): 18, (6, 12): 20, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 23, (6, 46): 24, (6, 46): 25, (6, 46): 26, (6, 46): 27, (6, 46): 28, (6, 46): 29, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 4
27): 10, (6, 21): 18, (6, 36): 13, (7, 12): 8, (7, 18): 24, (7, 22): 8, (7, 25):
21, (7, 45): 20, (8, 14): 8, (8, 23): 24, (8, 40): 7, (8, 35): 5, (8, 52): 21,
(8, 51): 20, (8, 15): 11, (8, 34): 5, (8, 42): 15, (9, 31): 12, (9, 28): 14, (9, 51): 15, (9, 51): 15, (9, 51): 16, (9, 51): 17, (9, 51): 18, (9, 51): 18, (9, 51): 18, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 5
56): 5, (9, 49): 10, (9, 48): 19, (9, 55): 18, (9, 46): 6, (9, 11): 9, (9, 47):
14, (9, 45): 6, (9, 58): 12, (10, 29): 21, (10, 16): 21, (10, 45): 21, (10, 54):
19, (10, 50): 24, (10, 30): 23, (10, 42): 10, (11, 34): 14, (11, 48): 23, (11,
42): 12, (11, 14): 9, (12, 31): 25, (12, 43): 11, (12, 55): 18, (12, 21): 8,
(12, 27): 19, (12, 53): 7, (12, 18): 6, (12, 14): 13, (12, 29): 8, (13, 49): 21,
(13, 56): 8, (13, 17): 20, (13, 40): 8, (13, 14): 16, (13, 21): 12, (13, 39): 9,
(13, 34): 10, (14, 23): 21, (14, 42): 22, (14, 22): 14, (14, 59): 23, (14, 30):
7, (14, 52): 6, (14, 21): 15, (14, 16): 24, (14, 29): 15, (14, 31): 25, (15,
42): 13, (15, 52): 18, (15, 54): 8, (15, 55): 16, (16, 18): 17, (16, 53): 11,
(16, 20): 12, (16, 48): 17, (16, 34): 25, (16, 55): 17, (16, 43): 12, (17, 38):
16, (17, 45): 15, (17, 39): 20, (17, 30): 20, (17, 42): 25, (18, 58): 15, (18,
52): 23, (18, 21): 18, (18, 50): 11, (18, 47): 8, (18, 28): 22, (18, 59): 22,
(19, 57): 15, (19, 49): 15, (19, 53): 23, (19, 45): 14, (20, 24): 21, (20, 51):
20, (20, 49): 16, (21, 30): 9, (21, 54): 14, (21, 35): 23, (21, 28): 15, (22,
57): 6, (23, 43): 17, (23, 31): 7, (23, 37): 15, (23, 29): 25, (23, 40): 8, (23,
```

```
54): 16, (24, 29): 8, (24, 43): 6, (24, 48): 24, (24, 49): 21, (24, 26): 5, (25, 48): 6, (25, 33): 18, (25, 58): 20, (25, 59): 23, (25, 42): 25, (26, 45): 24, (26, 59): 19, (26, 39): 24, (26, 33): 6, (26, 29): 8, (27, 49): 13, (27, 34): 11, (27, 31): 13, (27, 41): 25, (27, 40): 11, (27, 56): 24, (28, 33): 12, (28, 40): 20, (28, 30): 25, (29, 51): 24, (29, 45): 6, (29, 34): 8, (29, 47): 9, (29, 44): 11, (30, 44): 21, (30, 59): 5, (31, 39): 11, (31, 34): 9, (31, 40): 19, (31, 56): 5, (31, 47): 7, (32, 47): 19, (32, 44): 15, (32, 41): 10, (33, 49): 12, (33, 39): 13, (33, 51): 23, (33, 34): 13, (34, 47): 13, (34, 44): 24, (35, 49): 14, (35, 42): 8, (37, 56): 24, (37, 50): 20, (37, 51): 25, (38, 47): 11, (39, 41): 13, (40, 54): 11, (40, 45): 11, (40, 56): 13, (40, 58): 18, (40, 48): 18, (41, 45): 17, (41, 56): 18, (41, 52): 23, (41, 43): 9, (42, 48): 10, (42, 43): 15, (43, 47): 15, (43, 45): 8, (44, 56): 24, (44, 57): 6, (44, 45): 9, (45, 51): 24, (45, 49): 11, (45, 57): 16, (47, 59): 9, (48, 53): 17, (48, 49): 20, (48, 59): 18, (48, 55): 9, (48, 56): 19, (52, 54): 15, (52, 57): 7, (54, 58): 15, (55, 57): 11, (55, 58): 24, (55, 56): 19, (56, 59): 23}
```



```
r5_number_of_trips
[101]: 36000
[103]: r5_benefit_matrix = TrafficAnalyzer.get_road_recommendations(r5_city_map,__
                             ⇔r5_trips)
                         r5_benefit_matrix
[103]:
                                              source
                                                                           destination
                                                                                                                          benefit
                         1003
                                                             36
                                                                                                                              2518.2
                                                                                                            45
                         1125
                                                             45
                                                                                                            54
                                                                                                                              1560.0
                         1521
                                                             45
                                                                                                            58
                                                                                                                              1546.8
                         318
                                                             45
                                                                                                            46
                                                                                                                              1528.4
                                                                                                                              1520.2
                         1502
                                                             14
                                                                                                            57
                                                                                                            55
                         1266
                                                             11
                                                                                                                                 140.4
                         350
                                                             27
                                                                                                            46
                                                                                                                                 127.6
                         1520
                                                             34
                                                                                                                                 124.8
                                                                                                            49
                         1334
                                                             11
                                                                                                            35
                                                                                                                                 112.0
                         319
                                                             16
                                                                                                            19
                                                                                                                                 108.8
                         [1535 rows x 3 columns]
[104]: | ##### k = 1 # Recommended road to build first is the road segment
                         r5_max_benefit_matrix = TrafficAnalyzer.get_max_road_benefit(r5_benefit_matrix)
                         r5_max_benefit_matrix
[104]:
                                              source destination
                                                                                                                         benefit
                         1003
                                                                                                            45
                                                             36
                                                                                                                              2518.2
[105]: source, destination = get_max_benefit_road_segment(r5_max_benefit_matrix)
                         print(f"({source}, {destination})")
                       (36, 45)
[106]: CityMap.add_road_segment(r5_city_map, source, destination)
[107]: CityMap.visualize_city_map(r5_city_map, location_size=60, location_font_size=1,__
                              →road_widths=1)
                      \{(0, 20): 8, (0, 3): 17, (0, 35): 20, (0, 59): 8, (0, 14): 13, (0, 27): 21, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 1
                      47): 8, (0, 32): 6, (0, 5): 17, (1, 12): 19, (1, 52): 5, (1, 50): 13, (1, 58):
                       18, (1, 39): 20, (1, 15): 15, (1, 13): 20, (1, 8): 6, (1, 22): 22, (2, 11): 24,
                       (2, 3): 7, (2, 54): 18, (2, 8): 25, (2, 48): 14, (2, 20): 20, (3, 10): 19, (3, 10): 19
                      38): 23, (3, 13): 7, (3, 31): 5, (4, 22): 20, (4, 14): 20, (4, 55): 18, (4, 6):
                      20, (4, 44): 12, (4, 5): 5, (4, 45): 16, (4, 15): 11, (5, 18): 14, (5, 31): 12,
                       (5, 54): 19, (6, 25): 12, (6, 45): 9, (6, 31): 18, (6, 12): 20, (6, 46): 22, (6, 46): 21, (6, 46): 22, (6, 46): 22, (6, 46): 21, (6, 46): 22, (6, 46): 22, (6, 46): 23, (6, 46): 24, (6, 46): 25, (6, 46): 26, (6, 46): 27, (6, 46): 28, (6, 46): 29, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 21, (6, 46): 20, (6, 46): 21, (6, 46): 20, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 22, (6, 46): 21, (6, 46): 22, (6, 46): 21, (6, 46): 21, (6, 46): 22, (6, 46): 21, (6, 46): 22, (6, 46): 23, (6, 46): 24, (6, 46): 24, (6, 46): 25, (6, 46): 25, (6, 46): 26, (6, 46): 26, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 22, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 46): 21, (6, 4
```

r5\_number\_of\_trips += trip.numer\_of\_trips

```
27): 10, (6, 21): 18, (6, 36): 13, (7, 12): 8, (7, 18): 24, (7, 22): 8, (7, 25):
21, (7, 45): 20, (8, 14): 8, (8, 23): 24, (8, 40): 7, (8, 35): 5, (8, 52): 21,
(8, 51): 20, (8, 15): 11, (8, 34): 5, (8, 42): 15, (9, 31): 12, (9, 28): 14, (9, 28): 14, (9, 28): 14, (9, 28): 14, (9, 28): 14, (9, 28): 14, (9, 28): 14, (9, 28): 14, (9, 28): 14, (9, 28): 14, (9, 28): 14, (9, 28): 15, (9, 28): 15, (9, 28): 16, (9, 28): 16, (9, 28): 17, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 28): 18, (9, 2
56): 5, (9, 49): 10, (9, 48): 19, (9, 55): 18, (9, 46): 6, (9, 11): 9, (9, 47):
14, (9, 45): 6, (9, 58): 12, (10, 29): 21, (10, 16): 21, (10, 45): 21, (10, 54):
19, (10, 50): 24, (10, 30): 23, (10, 42): 10, (11, 34): 14, (11, 48): 23, (11,
42): 12, (11, 14): 9, (12, 31): 25, (12, 43): 11, (12, 55): 18, (12, 21): 8,
(12, 27): 19, (12, 53): 7, (12, 18): 6, (12, 14): 13, (12, 29): 8, (13, 49): 21,
(13, 56): 8, (13, 17): 20, (13, 40): 8, (13, 14): 16, (13, 21): 12, (13, 39): 9,
(13, 34): 10, (14, 23): 21, (14, 42): 22, (14, 22): 14, (14, 59): 23, (14, 30):
7, (14, 52): 6, (14, 21): 15, (14, 16): 24, (14, 29): 15, (14, 31): 25, (15,
42): 13, (15, 52): 18, (15, 54): 8, (15, 55): 16, (16, 18): 17, (16, 53): 11,
(16, 20): 12, (16, 48): 17, (16, 34): 25, (16, 55): 17, (16, 43): 12, (17, 38):
16, (17, 45): 15, (17, 39): 20, (17, 30): 20, (17, 42): 25, (18, 58): 15, (18,
52): 23, (18, 21): 18, (18, 50): 11, (18, 47): 8, (18, 28): 22, (18, 59): 22,
(19, 57): 15, (19, 49): 15, (19, 53): 23, (19, 45): 14, (20, 24): 21, (20, 51):
20, (20, 49): 16, (21, 30): 9, (21, 54): 14, (21, 35): 23, (21, 28): 15, (22,
57): 6, (23, 43): 17, (23, 31): 7, (23, 37): 15, (23, 29): 25, (23, 40): 8, (23,
54): 16, (24, 29): 8, (24, 43): 6, (24, 48): 24, (24, 49): 21, (24, 26): 5, (25,
48): 6, (25, 33): 18, (25, 58): 20, (25, 59): 23, (25, 42): 25, (26, 45): 24,
(26, 59): 19, (26, 39): 24, (26, 33): 6, (26, 29): 8, (27, 49): 13, (27, 34):
11, (27, 31): 13, (27, 41): 25, (27, 40): 11, (27, 56): 24, (28, 33): 12, (28,
40): 20, (28, 30): 25, (29, 51): 24, (29, 45): 6, (29, 34): 8, (29, 47): 9, (29,
44): 11, (30, 44): 21, (30, 59): 5, (31, 39): 11, (31, 34): 9, (31, 40): 19,
(31, 56): 5, (31, 47): 7, (32, 47): 19, (32, 44): 15, (32, 41): 10, (33, 49):
12, (33, 39): 13, (33, 51): 23, (33, 34): 13, (34, 47): 13, (34, 44): 24, (35,
49): 14, (35, 42): 8, (36, 45): 13.2, (37, 56): 24, (37, 50): 20, (37, 51): 25,
(38, 47): 11, (39, 41): 13, (40, 54): 11, (40, 45): 11, (40, 56): 13, (40, 58):
18, (40, 48): 18, (41, 45): 17, (41, 56): 18, (41, 52): 23, (41, 43): 9, (42,
48): 10, (42, 43): 15, (43, 47): 15, (43, 45): 8, (44, 56): 24, (44, 57): 6,
(44, 45): 9, (45, 51): 24, (45, 49): 11, (45, 57): 16, (47, 59): 9, (48, 53):
17, (48, 49): 20, (48, 59): 18, (48, 55): 9, (48, 56): 19, (52, 54): 15, (52,
57): 7, (54, 58): 15, (55, 57): 11, (55, 58): 24, (55, 56): 19, (56, 59): 23}
```



| [108]: |      | source | destinatio | n   | benefit |
|--------|------|--------|------------|-----|---------|
|        | 1520 | 45     | 5          | 8   | 1768.80 |
|        | 1124 | 45     | 5          | 4   | 1586.64 |
|        | 1297 | 11     | 4          | 5   | 1584.20 |
|        | 318  | 45     | 4          | 6   | 1577.68 |
|        | 1397 | 28     | 4          | 5   | 1569.20 |
|        | •••  | •••    | •••        | ••• |         |
|        | 350  | 27     | 4          | 6   | 127.60  |
|        | 1519 | 34     | 4          | 9   | 124.80  |
|        | 1333 | 11     | 3          | 5   | 112.00  |
|        | 1349 | 36     | 4          | 6   | 110.88  |
|        | 319  | 16     | 1          | 9   | 108.80  |

[1534 rows x 3 columns]

[109]: ##### k = 2 # Recommended road to build first is the road segment
r5\_max\_benefit\_matrix = TrafficAnalyzer.get\_max\_road\_benefit(r5\_benefit\_matrix)
r5\_max\_benefit\_matrix

```
1520
                                     45
                                                                  58
                                                                             1768.8
[110]: source, destination = get_max_benefit_road_segment(r5_max_benefit_matrix)
               print(f"({source}, {destination})")
              (45, 58)
             CityMap.add_road_segment(r5_city_map, source, destination)
[112]: CityMap.visualize_city_map(r5_city_map, location_size=60, location_font_size=1,_
                  →road_widths=1)
             \{(0, 20): 8, (0, 3): 17, (0, 35): 20, (0, 59): 8, (0, 14): 13, (0, 27): 21, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 1
             47): 8, (0, 32): 6, (0, 5): 17, (1, 12): 19, (1, 52): 5, (1, 50): 13, (1, 58):
             18, (1, 39): 20, (1, 15): 15, (1, 13): 20, (1, 8): 6, (1, 22): 22, (2, 11): 24,
              (2, 3): 7, (2, 54): 18, (2, 8): 25, (2, 48): 14, (2, 20): 20, (3, 10): 19, (3, 10): 19
             38): 23, (3, 13): 7, (3, 31): 5, (4, 22): 20, (4, 14): 20, (4, 55): 18, (4, 6):
             20, (4, 44): 12, (4, 5): 5, (4, 45): 16, (4, 15): 11, (5, 18): 14, (5, 31): 12,
              (5, 54): 19, (6, 25): 12, (6, 45): 9, (6, 31): 18, (6, 12): 20, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 23, (6, 46): 24, (6, 46): 25, (6, 46): 26, (6, 46): 27, (6, 46): 28, (6, 46): 29, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 4
             27): 10, (6, 21): 18, (6, 36): 13, (7, 12): 8, (7, 18): 24, (7, 22): 8, (7, 25):
             21, (7, 45): 20, (8, 14): 8, (8, 23): 24, (8, 40): 7, (8, 35): 5, (8, 52): 21,
              (8, 51): 20, (8, 15): 11, (8, 34): 5, (8, 42): 15, (9, 31): 12, (9, 28): 14, (9, 12)
             56): 5, (9, 49): 10, (9, 48): 19, (9, 55): 18, (9, 46): 6, (9, 11): 9, (9, 47):
             14, (9, 45): 6, (9, 58): 12, (10, 29): 21, (10, 16): 21, (10, 45): 21, (10, 54):
             19, (10, 50): 24, (10, 30): 23, (10, 42): 10, (11, 34): 14, (11, 48): 23, (11,
             42): 12, (11, 14): 9, (12, 31): 25, (12, 43): 11, (12, 55): 18, (12, 21): 8,
              (12, 27): 19, (12, 53): 7, (12, 18): 6, (12, 14): 13, (12, 29): 8, (13, 49): 21,
              (13, 56): 8, (13, 17): 20, (13, 40): 8, (13, 14): 16, (13, 21): 12, (13, 39): 9,
              (13, 34): 10, (14, 23): 21, (14, 42): 22, (14, 22): 14, (14, 59): 23, (14, 30):
             7, (14, 52): 6, (14, 21): 15, (14, 16): 24, (14, 29): 15, (14, 31): 25, (15,
             42): 13, (15, 52): 18, (15, 54): 8, (15, 55): 16, (16, 18): 17, (16, 53): 11,
              (16, 20): 12, (16, 48): 17, (16, 34): 25, (16, 55): 17, (16, 43): 12, (17, 38):
             16, (17, 45): 15, (17, 39): 20, (17, 30): 20, (17, 42): 25, (18, 58): 15, (18,
             52): 23, (18, 21): 18, (18, 50): 11, (18, 47): 8, (18, 28): 22, (18, 59): 22,
             (19, 57): 15, (19, 49): 15, (19, 53): 23, (19, 45): 14, (20, 24): 21, (20, 51):
             20, (20, 49): 16, (21, 30): 9, (21, 54): 14, (21, 35): 23, (21, 28): 15, (22,
             57): 6, (23, 43): 17, (23, 31): 7, (23, 37): 15, (23, 29): 25, (23, 40): 8, (23,
             54): 16, (24, 29): 8, (24, 43): 6, (24, 48): 24, (24, 49): 21, (24, 26): 5, (25,
             48): 6, (25, 33): 18, (25, 58): 20, (25, 59): 23, (25, 42): 25, (26, 45): 24,
              (26, 59): 19, (26, 39): 24, (26, 33): 6, (26, 29): 8, (27, 49): 13, (27, 34):
             11, (27, 31): 13, (27, 41): 25, (27, 40): 11, (27, 56): 24, (28, 33): 12, (28,
             40): 20, (28, 30): 25, (29, 51): 24, (29, 45): 6, (29, 34): 8, (29, 47): 9, (29,
             44): 11, (30, 44): 21, (30, 59): 5, (31, 39): 11, (31, 34): 9, (31, 40): 19,
              (31, 56): 5, (31, 47): 7, (32, 47): 19, (32, 44): 15, (32, 41): 10, (33, 49):
             12, (33, 39): 13, (33, 51): 23, (33, 34): 13, (34, 47): 13, (34, 44): 24, (35,
             49): 14, (35, 42): 8, (36, 45): 13.2, (37, 56): 24, (37, 50): 20, (37, 51): 25,
              (38, 47): 11, (39, 41): 13, (40, 54): 11, (40, 45): 11, (40, 56): 13, (40, 58):
```

[109]:

destination

source

benefit

18, (40, 48): 18, (41, 45): 17, (41, 56): 18, (41, 52): 23, (41, 43): 9, (42, 48): 10, (42, 43): 15, (43, 47): 15, (43, 45): 8, (44, 56): 24, (44, 57): 6, (44, 45): 9, (45, 51): 24, (45, 49): 11, (45, 57): 16, (45, 58): 10.7999999999999, (47, 59): 9, (48, 53): 17, (48, 49): 20, (48, 59): 18, (48, 55): 9, (48, 56): 19, (52, 54): 15, (52, 57): 7, (54, 58): 15, (55, 57): 11, (55, 58): 24, (55, 56): 19, (56, 59): 23}



| [113]: |      | source | destination | benefit |
|--------|------|--------|-------------|---------|
|        | 374  | 37     | 45          | 1753.24 |
|        | 831  | 5      | 45          | 1627.80 |
|        | 304  | 23     | 45          | 1626.20 |
|        | 1124 | 45     | 54          | 1586.64 |
|        | 318  | 45     | 46          | 1577.68 |
|        |      |        | •••         | •••     |
|        | 350  | 27     | 46          | 127.60  |
|        | 1519 | 34     | 49          | 124.80  |
|        | 1333 | 11     | 35          | 112.00  |
|        | 1349 | 36     | 46          | 110.88  |
|        | 319  | 16     | 19          | 108.80  |

#### [1533 rows x 3 columns]

```
[114]: ##### k = 3 # Recommended road to build last is the road segment
                     r5 max benefit matrix = TrafficAnalyzer.get max road benefit(r5 benefit matrix)
                     r5_max_benefit_matrix
[114]:
                                                            destination
                                                                                                   benefit
                                    source
                     374
                                                37
                                                                                        45
                                                                                                    1753.24
[115]: source, destination = get_max_benefit_road_segment(r5_max_benefit_matrix)
                     print(f"({source}, {destination})")
                    (37, 45)
[116]: CityMap.add_road_segment(r5_city_map, source, destination)
[117]: CityMap.visualize_city_map(r5_city_map, location_size=60, location_font_size=1,_
                         →road_widths=1)
                   \{(0, 20): 8, (0, 3): 17, (0, 35): 20, (0, 59): 8, (0, 14): 13, (0, 27): 21, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 14): 13, (0, 1
                   47): 8, (0, 32): 6, (0, 5): 17, (1, 12): 19, (1, 52): 5, (1, 50): 13, (1, 58):
                   18, (1, 39): 20, (1, 15): 15, (1, 13): 20, (1, 8): 6, (1, 22): 22, (2, 11): 24,
                   (2, 3): 7, (2, 54): 18, (2, 8): 25, (2, 48): 14, (2, 20): 20, (3, 10): 19, (3, 10): 19
                   38): 23, (3, 13): 7, (3, 31): 5, (4, 22): 20, (4, 14): 20, (4, 55): 18, (4, 6):
                   20, (4, 44): 12, (4, 5): 5, (4, 45): 16, (4, 15): 11, (5, 18): 14, (5, 31): 12,
                   (5, 54): 19, (6, 25): 12, (6, 45): 9, (6, 31): 18, (6, 12): 20, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 22, (6, 46): 23, (6, 46): 24, (6, 46): 25, (6, 46): 26, (6, 46): 27, (6, 46): 28, (6, 46): 29, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 46): 20, (6, 4
                   27): 10, (6, 21): 18, (6, 36): 13, (7, 12): 8, (7, 18): 24, (7, 22): 8, (7, 25):
                   21, (7, 45): 20, (8, 14): 8, (8, 23): 24, (8, 40): 7, (8, 35): 5, (8, 52): 21,
                   (8, 51): 20, (8, 15): 11, (8, 34): 5, (8, 42): 15, (9, 31): 12, (9, 28): 14, (9, 51): 15, (9, 51): 15, (9, 51): 16, (9, 51): 17, (9, 51): 18, (9, 51): 18, (9, 51): 18, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 51): 19, (9, 5
                   56): 5, (9, 49): 10, (9, 48): 19, (9, 55): 18, (9, 46): 6, (9, 11): 9, (9, 47):
                   14, (9, 45): 6, (9, 58): 12, (10, 29): 21, (10, 16): 21, (10, 45): 21, (10, 54):
                   19, (10, 50): 24, (10, 30): 23, (10, 42): 10, (11, 34): 14, (11, 48): 23, (11,
                   42): 12, (11, 14): 9, (12, 31): 25, (12, 43): 11, (12, 55): 18, (12, 21): 8,
                   (12, 27): 19, (12, 53): 7, (12, 18): 6, (12, 14): 13, (12, 29): 8, (13, 49): 21,
                   (13, 56): 8, (13, 17): 20, (13, 40): 8, (13, 14): 16, (13, 21): 12, (13, 39): 9,
                   (13, 34): 10, (14, 23): 21, (14, 42): 22, (14, 22): 14, (14, 59): 23, (14, 30):
                   7, (14, 52): 6, (14, 21): 15, (14, 16): 24, (14, 29): 15, (14, 31): 25, (15,
                   42): 13, (15, 52): 18, (15, 54): 8, (15, 55): 16, (16, 18): 17, (16, 53): 11,
                   (16, 20): 12, (16, 48): 17, (16, 34): 25, (16, 55): 17, (16, 43): 12, (17, 38):
                   16, (17, 45): 15, (17, 39): 20, (17, 30): 20, (17, 42): 25, (18, 58): 15, (18,
                   52): 23, (18, 21): 18, (18, 50): 11, (18, 47): 8, (18, 28): 22, (18, 59): 22,
                   (19, 57): 15, (19, 49): 15, (19, 53): 23, (19, 45): 14, (20, 24): 21, (20, 51):
                   20, (20, 49): 16, (21, 30): 9, (21, 54): 14, (21, 35): 23, (21, 28): 15, (22,
                   57): 6, (23, 43): 17, (23, 31): 7, (23, 37): 15, (23, 29): 25, (23, 40): 8, (23,
                   54): 16, (24, 29): 8, (24, 43): 6, (24, 48): 24, (24, 49): 21, (24, 26): 5, (25,
                   48): 6, (25, 33): 18, (25, 58): 20, (25, 59): 23, (25, 42): 25, (26, 45): 24,
```

(26, 59): 19, (26, 39): 24, (26, 33): 6, (26, 29): 8, (27, 49): 13, (27, 34):

11, (27, 31): 13, (27, 41): 25, (27, 40): 11, (27, 56): 24, (28, 33): 12, (28, 40): 20, (28, 30): 25, (29, 51): 24, (29, 45): 6, (29, 34): 8, (29, 47): 9, (29, 44): 11, (30, 44): 21, (30, 59): 5, (31, 39): 11, (31, 34): 9, (31, 40): 19, (31, 56): 5, (31, 47): 7, (32, 47): 19, (32, 44): 15, (32, 41): 10, (33, 49): 12, (33, 39): 13, (33, 51): 23, (33, 34): 13, (34, 47): 13, (34, 44): 24, (35, 49): 14, (35, 42): 8, (36, 45): 13.2, (37, 56): 24, (37, 50): 20, (37, 51): 25, (37, 45): 20.4, (38, 47): 11, (39, 41): 13, (40, 54): 11, (40, 45): 11, (40, 56): 13, (40, 58): 18, (40, 48): 18, (41, 45): 17, (41, 56): 18, (41, 52): 23, (41, 43): 9, (42, 48): 10, (42, 43): 15, (43, 47): 15, (43, 45): 8, (44, 56): 24, (44, 57): 6, (44, 45): 9, (45, 51): 24, (45, 49): 11, (45, 57): 16, (45, 58): 10.79999999999999, (47, 59): 9, (48, 53): 17, (48, 49): 20, (48, 59): 18, (48, 55): 9, (48, 56): 19, (52, 54): 15, (52, 57): 7, (54, 58): 15, (55, 57): 11, (55, 58): 24, (55, 56): 19, (56, 59): 23}

