CAI 2.0, Linear Algebra Worksheet 2

Problem 1: Finding a perpendicular vector in \mathbb{R}^2

Let $\mathbf{u} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$. Find a nonzero vector \mathbf{v} in \mathbb{R}^2 that is perpendicular to \mathbf{u} , i.e., a nonzero 2-vector \mathbf{v} that makes an angle of $\pi/2$ radians (or 90°) with \mathbf{u} .

Problem 2: Determining the angle between vectors in \mathbb{R}^3

Let
$$\mathbf{u} = \begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$. Determine the angle between the vectors \mathbf{u} and \mathbf{v} .

Problem 3: Vector operations in \mathbb{R}^3

Let $\mathbf{a} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, and $\mathbf{c} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$. For each of the following, calculate the number or indicate that it is not defined.

- (a) $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c})$
- (b) $(\mathbf{a} \mathbf{b}) \cdot \mathbf{c}$
- (c) $\|{\bf a} + {\bf c}\|$
- (d) $(\mathbf{a} \cdot \mathbf{b}) + \mathbf{c}$
- (e) $\|-\mathbf{a}\|$

Problem 4: Geometry with dot products

- (a) Using that perpendicularity is governed by the dot products being equal to 0, find a nonzero vector in \mathbb{R}^3 that is perpendicular to $\mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$. Then find another that is not a scalar multiple of that one.
- (b) Find an equation in x, y, z that characterizes when $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ is perpendicular to $\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$. What does this collection of vectors look like?

Problem 5: Algebra with dot products

For
$$\mathbf{a} = \begin{bmatrix} 4 \\ -2 \\ 3 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 1 \\ 5 \\ -2 \end{bmatrix}$, and $\mathbf{c} = \begin{bmatrix} 6 \\ -4 \\ -1 \end{bmatrix}$, show that $\mathbf{a} \cdot (\mathbf{b} - \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} - \mathbf{a} \cdot \mathbf{c}$.

Problem 6: A correlation coefficient

Consider the collection of 5 data points: (-2,5), (-1,3), (0,0), (1,-2), (2,-6).

- (a) Plot the points to see if they look close to a line.
- (b) Compute the correlation coefficient exactly. Plug that into a calculator to approximate it to three decimal digits to see if its nearness to ± 1 fits well with the visual quality of fit of the line to the data plot in (a).

Problem 7: Computing correlation coefficients

Below are four different sets of data with 5 data points. For each set, compute the corresponding 5-vectors \mathbf{X} and \mathbf{Y} , and then compute the correlation coefficient r.

(a)
$$(-2, -4), (-1, -2), (0, 0), (1, 2), (2, 4)$$

(b)
$$(-2,-5)$$
, $(-1,3)$, $(0,1)$, $(1,-3)$, $(2,4)$

(c)
$$(-2,6)$$
, $(-1,2)$, $(0,-1)$, $(1,-2)$, $(2,-5)$

(d)
$$(-2,4)$$
, $(-1,-2)$, $(0,-1)$, $(1,3)$, $(2,-4)$