西安电子科技大学。试……题。

題号₽	<u>_</u>		=	Д₽	£₽₽	六₽	七	八。	九↩	总分₽
分数↩	¢	ţ.	¢	¢	Ť.	¢	÷.	¢	¢	4

注意:闭卷考试,时间为 120 分钟,满分 100 分. … … 2021. 7∉

- 一、单项选择题(每小题4分,共12分)↓
 - 1.设 z = f(x, y) 由方程 $xyz = e^{x+z}$ 所确定,则 $\frac{\partial z}{\partial x} = [\underline{\cdots}]$.

(A)
$$\frac{z(x-1)}{x(1-y)}$$
 · · · (B) $\frac{z(1-y)}{y(1-x)}$ · · · (C) $\frac{z(x-1)}{x(1-z)}$ · · · (D) $\frac{y(x-1)}{x(1-z)}$ \leftarrow

2.设空间曲线 $\Gamma: \begin{cases} x^2 + y^2 + z^2 = 1, \\ x + y + z = 0, \end{cases}$ 则积分 $\oint_{\Gamma} (1+x)^2 ds = [\underline{\cdots}].$

$$(\mathbf{A})\frac{\pi}{2} \cdot \cdot \cdot \cdot \cdot (\mathbf{B})\frac{8}{3} \cdot \cdot \cdot \cdot \cdot \cdot (\mathbf{C})\frac{1}{2} \cdot \cdot \cdot \cdot \cdot \cdot \cdot (\mathbf{D})\frac{8\pi}{3} \leftarrow$$

- 3.关于级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^n}$,下列说法正确的是 $[\cdots \cdots]$.
 - (A) p > 1时,条件收敛·····(B) 0 < p ≤ 1 时,条件收敛↔
 - (C) p > 1时,级数发散·····(D) 0 < p ≤ 1 时,绝对收敛↔
- 二、填空题(每小题4分、共28分)。

 - 2.极限 $\lim_{(x,y)\to(2,0)} \frac{\ln(1-xy)}{y} = \underline{\cdots}$.
 - 3.平面 $2x + 3y z = \lambda$ 是曲面 $z = x^2 + y^3 + 1$ 在点 M(1,1,3) 处的切平面,则 $\lambda = \cdots$
 - 4.设 f(x) 连续且 $\int_0^1 f(x) dx = \sqrt{a} (a > 0)$,则 $\int_0^1 dx \int_0^1 f(x) f(y) dy = \underline{\cdots \cdots}$.

 - 6.设 Σ 是正圆锥面 $z = \sqrt{x^2 + y^2} \cdot (0 \le z \le 1)$,则曲面积分 $\iint_{\mathbb{T}} z dS = \underline{\cdots}$.
 - 7.设 f(x) 是周期为 2π 的周期函数,在一个周期 $[-\pi,\pi)$ 上 f(x) 的表达式为 f(x) = 1-x ,记 f(x) 的傅里叶级数的和函数为 s(x) ,则 $s(\frac{3\pi}{2}) = \underline{\cdots}$ 。

三、(8 分)求直线 $\begin{cases} x+y-z-2=0, \\ x-y+2z-1=0 \end{cases}$ 在平面 x+2y+z=3 上的投影直线方程.

四、(8 分)计算三重积分 $\iint_{\Omega} (x^2 + y^2 + z) dv$,其中 Ω 由曲面 $2z = x^2 + y^2$ 及平面 z = 1 围成。

五、(8分)设函数 z=z(x,y) 由方程 F(z-x,y+z)=0 所确定,其中 F(u,v) 具有连续的一阶偏导数,且 $F_1'+F_2'\neq 0$,求 $\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}$.

六、(10 分)验证:在整个xOy 面内, $(xy^2 + e^x)dx + (x^2y + e^y)dy$ 是某个函数的 全微分,并求出一个这样的函数. 八、(10 分) 求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n}$ 的收敛域及和函数.

七、(10 分) 设 Σ 为上半球面 $z=\sqrt{1-x^2-y^2}$ 的上侧,计算曲面积分 $\iint\limits_\Sigma y^3 \mathrm{d}y \mathrm{d}z + x^3 \mathrm{d}z \mathrm{d}x + (z^3+1) \mathrm{d}x \mathrm{d}y \ .$

九、(6分) 设 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} b_n$ 为正项级数,且极限 $\lim_{n\to\infty} (\frac{a_n}{a_{n+1}b_n} - \frac{1}{b_{n+1}}) = \lambda$,证明:

(1)当 $\lambda < 0$ 且 $\sum_{n=1}^{\infty} b_n$ 发散时,级数 $\sum_{n=1}^{\infty} a_n$ 发散. (2)当 $\lambda > 0$ 时,级数 $\sum_{n=1}^{\infty} a_n$ 收敛.