Decision Tree Learning

TM Chapter 3, RN Section 18.3

Outline

- Decision tree representation
- ID3 learning algorithm
- Entropy & information gain
- Overfitting

Why Study Decision Tree (DT) Learning?

	Concept Learning	DT Learning			
Target fn/concept	Binary outputs	Discrete outputs			
Training data	Noise-free	Robust to noise			
Hypothesis space	Restricted (hard bias)	Complete, expressive			
	Complete: version space	Incomplete: prefer shorter tree (soft bias)			
Search strategy	Refine search per example	Refine search using all examples			
		No backtracking			
Exploit structure	General to specific ordering	Simple to complex ordering			

DT Learning for Wait for a Table

Decide whether to wait for a table at a restaurant (i.e., output or target concept *Wait*) based on the following input attributes:

- 1. *Alternate*: is there an alternative restaurant nearby?
- 2. Bar: is there a comfortable bar area to wait in?
- 3. Fri/Sat: is today Friday or Saturday?
- 4. *Hungry*: are we hungry?
- 5. Patrons: number of people in the restaurant (None, Some, Full)
- 6. *Price*: price range (\$, \$\$, \$\$\$)
- 7. Raining: is it raining outside?
- 8. Reservation: have we made a reservation?
- 9. *Type*: kind of restaurant (French, Italian, Thai, Burger)
- 10. WaitEstimate: estimated waiting time in minutes (0-10, 10-30, 30-60, >60)

DT Learning for Wait for a Table

- Input instance of training examples is described by input attribute values (Boolean, discrete, continuous)
- These training examples show situations where I will/won't wait for a table:

Example	Attributes										Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

• Classification of training examples is +ve (T) or -ve (F)

Decision Trees

- Another possible representation for hypotheses
- Here is the "true" decision tree for deciding whether to wait for a table:

Expressive Power

- Decision trees can express any function of the input attributes
- e.g., for Boolean functions, truth table row → path to leaf:

- Trivially, there is a consistent decision tree for any training set with one path to leaf for each example but it probably won't generalize well to classify unobserved input instances
- Prefer to find compact decision trees

Expressive Power

- A Boolean decision tree can be expressed in disjunctive normal form
- e.g., A xor B \Leftrightarrow $(\neg A \land B) \lor (A \land \neg B)$

- Target concept $C \Leftrightarrow (Path_1 \vee Path_2 \vee ...)$ where each Path is a conjunction of attribute-value tests required to follow that path leading to a leaf with value true
- e.g., $Path = (Patrons = Full \land WaitEstimate = 0-10)$

Hypothesis/Search Space

Number of distinct binary decision trees with *m* Boolean attributes

- = number of Boolean-valued functions
- = number of distinct truth tables with 2^m rows
- $=2^{2^m}$

e.g., with 6 Boolean attributes, there are more than 18,446,744,073,709,551,616 trees

DECISION-TREE-LEARNING

- Aim. Find a small tree consistent with the training examples
- Idea. Greedily choose "most important" attribute as root of (sub)tree

```
function Decision-Tree-Learning(examples, attributes, parent_examples) returns tree  \begin{tabular}{l} \textbf{if } examples \end{tabular} is empty \begin{tabular}{l} \textbf{then return Plurality-Value}(parent_examples) \\ \textbf{else if } all \end{tabular} examples \end{tabular} have the same classification \begin{tabular}{l} \textbf{then return Plurality-Value}(examples) \\ \textbf{else} \\ A \leftarrow \end{tabular} examples \end{tabular} is empty \begin{tabular}{l} \textbf{then return Plurality-Value}(examples) \\ \textbf{else} \\ A \leftarrow \end{tabular} argmax_{a \in \end{tabular} attributes} \end{tabular} Importance (a, examples) \\ tree \leftarrow \end{tabular} a \end{tabular} examples \\ \textbf{for each value } v_k \end{tabular} of \end{tabular} A \end{tabular} examples \\ and \end{tabular} examples \end{tabular} and \end{tabular} examples \\ add \end{tabular} a \end{tabular} a \end{tabular} examples \\ add \end{tabular} a \end{tabular} a \end{tabular} examples \\ a \end{tabular} a \end{tabular} a \end{tabular} examples \\ a \end{tabular} a \end{tabular} a \end{tabular} ex
```

Learned Decision Tree

• Decision tree learned from the 12 examples:

• Substantially simpler than "true" decision tree -- a more complex hypothesis isn't justified by small amount of data

Choosing "Most Important" Attribute

Intuition. A good attribute splits the examples into subsets that are (ideally) "all +ve" or "all -ve" (i.e., classified exactly)

Patrons? is a better choice

Using Information Theory

- To implement the IMPORTANCE function in the DECISION-TREE-LEARNING algorithm, use entropy to measure uncertainty of classification
- Entropy measures uncertainty of r.v. $C \in \{c_1, ..., c_k\}$:

$$H(C) = -\sum_{i=1}^{k} P(c_i) \log_2 P(c_i)$$
.

- Define B(q) as entropy of Boolean r.v. that is true with probability $q: B(q) = -(q \log_2 q + (1-q) \log_2 (1-q))$.
- For a training set containing p +ve examples and n –ve examples, entropy of target concept C on this set is

$$H(C) = B\left(\frac{p}{p+n}\right) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n} \ .$$

Uncertainty of Classification

- If $p = n \ne 0$, then H(C) = B(1/2) = 1 (maximum uncertainty)
- If $(p \ne 0, n = 0)$ or $(p = 0, n \ne 0)$, then H(C) = 0 (no uncertainty)
- If p = 2, n = 4, $H(C) = B(2/6) \in (0, 1)$ (some uncertainty)

Entropy Curve

- For p/(p+n) between 0 & 1, the 2-class entropy B(p/(p+n)) is
 - 0 when p/(p+n) is 0
 - 1 when p/(p+n) is 0.5
 - 0 when p/(p+n) is 1

- monotonically increasing between 0 and 0.5
- monotonically decreasing between 0.5 and 1

Information Gain

• A chosen attribute A divides the training set E into subsets E_1 , ..., E_d corresponding to the d distinct values of A. Each subset E_i has p_i +ve and n_i –ve examples.

$$H(C|A) = \sum_{i=1}^{d} \frac{p_i + n_i}{p+n} B\left(\frac{p_i}{p_i + n_i}\right).$$

• Information gain of target concept C from the attribute test on A is the expected reduction in entropy:

$$Gain(C, A) = B\left(\frac{p}{p+n}\right) - H(C|A)$$

• Choose the attribute A with the largest Gain

Information Gain

- For the training set, p = n = 6, H(Wait) = B(6/12) = 1
- Consider the attributes *Patrons* and *Type* (and others too):

$$Gain(Wait, Patrons) = 1 - \left[\frac{2}{12}B\left(\frac{0}{2}\right) + \frac{4}{12}B\left(\frac{4}{4}\right) + \frac{6}{12}B\left(\frac{2}{6}\right)\right] = 0.541 \text{ bits}$$

$$Gain(Wait, Type) = 1 - \left[\frac{2}{12}B\left(\frac{1}{2}\right) + \frac{2}{12}B\left(\frac{1}{2}\right) + \frac{4}{12}B\left(\frac{2}{4}\right) + \frac{4}{12}B\left(\frac{2}{4}\right)\right] = 0 \text{ bits}$$

- *Patrons* has the highest *Gain* of all attributes and so is chosen by the DECISION-TREE-LEARNING algorithm as the root
- Recursively choose attributes for children nodes

Hypothesis Space Search

- DECISION-TREE-LEARNING is guided by IMPORTANCE function: information gain heuristic to search thru the space of DTs from simplest to increasingly complex
- Number of distinct DTs with m Boolean attributes $\gg 2^{2^m}$?

Inductive Bias of Decision-Tree-Learning

Approximate inductive bias of DECISION-TREE-LEARNING.

- (a) Shorter trees are preferred. (b) Trees that place high information gain attributes close to the root are preferred.
- If only (a) is considered, it is exactly the approximate inductive bias of breadth first search for the shortest consistent DT, which can be prohibitively expensive
- Bias is a preference for some hypotheses, rather than a restriction of hypothesis space. Which one is more desirable?
- Occam's razor: Prefer shortest/simplest hypothesis that fits the data

Occam's Razor

Why prefer short/simple hypotheses?

Argument in favor:

- Fewer short hypotheses than long hypotheses
 - Short/simple hypothesis that fits data unlikely to be coincidence
 - Long/complex hypothesis that fits data may be coincidence

Argument opposed:

- Many ways to define small sets of hypotheses (e.g., all trees with a prime number of nodes that use attributes beginning with "Z")
- Small sets of short/simple hypothesis can be obtained using different hypothesis representations

Overfitting

Definition. Hypothesis $h \in H$ overfits the set D of training examples iff

 $\exists h' \in H \setminus \{h\} \ (error_D(h) < error_D(h')) \land (error_{DX}(h) > error_{DX}(h'))$

where $error_D(h)$ and $error_{DX}(h)$ denote errors of h over D and set D_X of examples corresponding to instance space X, respectively

New erroneous/ noisy training example with Patrons = Some and Wait = No?

no. of training examples with Patrons = None?

Overfitting

How to avoid overfitting?

- Stop growing DT when expanding a node is not statistically significant
- Allow DT to grow and overfit the data, then post-prune it

How to select "best" DT?

- Measure performance over training examples/data
- Measure performance over a separate validation dataset
- MDL: minimize *size(tree)* & *size(misclassifications(tree))*

Reduced-Error Pruning

Partition data into training and validation sets

Do until further pruning is harmful:

- 1. Evaluate impact on validation set of pruning each possible node (i.e., removing subtree rooted at it)
- 2. Greedily remove the one that most improves validation set accuracy
- Produces smallest version of most accurate subtree
- What if data is limited?

Rule Post-Pruning

• Convert learned DT to an equivalent set of rules by creating one rule for each path from the root to a leaf

```
IF (Patrons = Full) \land (Hungry = Yes) \land (Type = Thai) \land (Fri/Sat = No)
THEN Wait = No
```

- Prune (generalize) each rule by removing any precondition that improves its estimated accuracy
- Sort pruned rules by estimated accuracy into desired sequence for use when classifying unobserved input instances

Continuous-Valued Attributes

Define a discrete-valued input attribute to partition the values of a continuous input attribute into a discrete set of intervals for testing:

WaitEstimate: estimated waiting time in minutes (0-10, 10-30, 30-60, >60)

Attributes with Many Values

Problem. Gain will select attribute with many values (e.g., Date)

Solution. Use *GainRatio* instead:

$$GainRatio(C, A) = \frac{Gain(C, A)}{SplitInformation(C, A)}$$

$$SplitInformation(C, A) = -\sum_{i=1}^{d} \frac{|E_i|}{|E|} \log_2 \frac{|E_i|}{|E|}$$

Recall (page 16) that a chosen attribute A divides the training set E into subsets $E_1, ..., E_d$ corresponding to the d distinct values of A

Attributes with Differing Costs

Problem. How to learn a consistent DT with low expected cost? (e.g., medical diagnosis: *Temperature*, *Biopsy*, *BloodTest*, *Pulse*)

Solution. Replace Gain by

$$\frac{Gain^2(C,A)}{Cost(A)}$$

$$\frac{2^{Gain(C,A)}-1}{(Cost(A)+1)^w}$$

where $w \in [0, 1]$ determines importance of cost

Missing Attribute Values

Problem. What if some examples are missing values of *A*?

Solution. Use training example anyway & sort through DT

- If node *n* tests *A*, then assign most common value of *A* among other examples sorted to node *n*
- Assign most common value of *A* among other examples sorted to node *n* with same value of output/target concept
- Assign probability p_i to each possible value of A
 - Assign fraction p_i of example to each descendant in DT

Classify new unobserved input instances with missing attribute values in same manner

Summary

- Decision tree learning uses information gain
- Decision tree learning differs from concept learning in its discrete-valued output/target concept, robustness to noisy data, complete & expressive hypothesis space, incomplete search strategy, soft preference bias, search refinement with all examples, simple to complex ordering of hypotheses (see table on page 3)
- Overfitting arises due to noisy and limited training data and can be avoided by post-pruning
- Extensions to DECISION-TREE-LEARNING include attributes with continuous, missing, many values and differing costs