

Since $55 = \frac{m}{n}$, gives.	<u> </u>	$-2 \cdot \frac{m}{n}$				
	2 12-	n-2m.	Sinap	n > o tim	e n too	นอ <i>ท</i> เว๋−
	> 15=	m-2n.	rater	n>0, time	vinator).	, , , ,
	- F- 5	n-2m-				
	= 15= 5	m-2n.				
Jake n'= m-2n, since	m n G M	n & Z.				
WTS: O <n'<n.< td=""><td>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</td><td></td><td></td><td></td><td></td><td></td></n'<n.<>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	100) 11 e	na 23n				
Since from (b). gi	-7 19/11/	2n < n.	(Cina e	22 - 22	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	⇒ 0< n			/ = /\(\mu^{-1}\)	211)	
l've shoron o <n'<n< td=""><td></td><td></td><td></td><td></td><td></td><td></td></n'<n<>						
Jake m'= 5n-2m, since	$m, n \in /N$, n	u E <u>U</u> .				
WTS. o< m'	,	,		1 0		<i>a</i> .)
Since $JS = \frac{m'}{n'}$, and	n >0, gir	res, m'>0	Caccord	to proper	ty of trou	tion).
l'ue shown m'70,						
Therefore. I've proveel se	ueh n'ouve	d m'exi	et		Apple	
(e). Let m, n & MV+	_ n					
Assume for contradiction		>				
Let S= Inc/N: Ime						
Since by assumption, gives	$S \neq \phi$, a	ind SSM	1, by L	UOP, gives	-	
		< n, which	,			
Dowever, from (d), In'	e M ⁺ , ∃m	' ← M+, <u>15</u> =	n', whi	ch n'eS and	el n'z no,	which.
contradicts to no is the small	llest element	in S.				
Therefore. S is an empty s	et and the	assumption	-15 false			
To provide a summary,			·		ive natura	l num-
bers, It is not a quotient with			•			

1	bers	OS W	e com	L mu	Hiply	ron	inator	and	clen	mina	tor 1	by '-	-1', u	here	Jī i	s not	s a	qua bie	nt of
_	intege	ers. 7	rom d	lefiniti	ion of	rat	ional	nun	ubers,	厅	7.S	irrai	tional						