

Mitotic Counting Reproducibility/Feature Study With Pathologists

Brandon D. Gallas PhD FDA/CDRH/OSEL/DIDSR

Charles Halsey, DVM, PhD and R. Mark Simpson, DVM, PhD

Molecular Pathology Unit, Laboratory of Cancer Biology and Genetics, NCI

Outline

- Motivation
- Study Design and Analysis Concepts
 - Show simulated data
- NIH clinical study
 - Data collection complete
- Reproducibility study
 - Proposal, looking for collaborators and sites

Motivation

- Evaluate new imaging technology
 - Truth not known
 - Reference for comparison determined by readers
 - Intra-reader agreement
 - Inter-reader agreement
 - "Reproducibility" Study
 - Example tasks
 - Impact of viewing mode on mitotic count (digital vs. optical)
 - Impact of stain on mitotic count (H&E vs. PHH3)
- Study designs and analysis methods are lacking
 - Want to account for reader and case variability

- "Counts" vs. "Counts"
- Scatter plot shows agreement

"Correlation" = 0.804744

- "Counts" vs. "Counts"
- Scatter plot shows agreement
- Summarize agreement
 - Correlation is one of many agreement measures

- Multiple readers evaluate Multiple cases
- Variability from cases
- Variability from readers

5/22/2016

- Intra-Reader
- Intra-modality
 - Requires replicated reads

Intra- Modality Agreement		Reference Modality, A					
		Dr. 1	Dr. 2	Dr. 3		Dr. 8	
		Dr. 1	$Q_1^{AA^*}$	P_{12}^{AA}	P_{13}^{AA}		P_{18}^{AA}
Reference dality, A	Dr. 2	P_{21}^{AA}	$Q_2^{AA^*}$	P_{23}^{AA}		P_{28}^{AA}	
	Dr. 3	P_{31}^{AA}	P_{32}^{AA}	$Q_3^{AA^*}$		P_{38}^{AA}	
Re	Modality,				****		
	Σ	Dr. 8	P_{81}^{AA}	P_{82}^{AA}	P_{83}^{AA}		$Q_8^{AA^*}$

5/22/2016

- Inter-Reader
- Intra-modality
 - No replicated reads

Intra- Modality Agreement		Reference Modality, A					
		Dr. 1	Dr. 2	Dr. 3		Dr. 8	
		Dr. 1	$Q_1^{AA^*}$	P_{12}^{AA}	P_{13}^{AA}		P_{18}^{AA}
eo	_	Dr. 2	P_{21}^{AA}	$Q_2^{AA^*}$	P_{23}^{AA}	***	P_{28}^{AA}
Reference	ity, A	Dr. 3	P_{31}^{AA}	P_{32}^{AA}	$Q_3^{AA^*}$		P_{38}^{AA}
Re	Modality,						
	Σ	Dr. 8	P_{81}^{AA}	P_{82}^{AA}	P ₈₃ ^{AA}		$Q_8^{AA^*}$

- Intra-Reader or Inter-Reader
- Inter-modality
 - No replicated reads

- Examples
 - Optical vs. Digital
 - H&E vs. PHH3

	Inter- Modality		Reference Modality, A					
Agreement		Dr. 1	Dr. 2	Dr. 3		Dr. 8		
В	Dr. 1	Q_1^{AB}	P_{12}^{AB}	P_{13}^{AB}		P_{18}^{AB}		
Ę.	Dr. 2	P_{21}^{AB}	Q_2^{AB}	P_{23}^{AB}	1000	P_{28}^{AB}		
New Modality, B	Dr. 3	P_{31}^{AB}	P_{32}^{AB}	Q_3^{AB}	200	P_{38}^{AB}		
- N		1949						
ž	Dr. 8	P_{81}^{AB}	P_{82}^{AB}	P_{83}^{AB}		Q_8^{AB}		

Intra			Reference Modality, A				
	dality eement	Dr. 1	Dr. 2	Dr. 3		Dr. 8	
	Dr. 1	$Q_1^{AA^*}$	P_{12}^{AA}	P_{13}^{AA}		P_{18}^{AA}	
e o	Dr. 2	P_{21}^{AA}	$Q_2^{AA^*}$	P_{23}^{AA}		P_{28}^{AA}	
Reference	Dr. 3	P_{31}^{AA}	P_{32}^{AA}	$Q_3^{AA^*}$		P_{38}^{AA}	
Re				****			
_ 2	Dr. 8	P_{81}^{AA}	P_{82}^{AA}	P_{83}^{AA}		$Q_8^{AA^*}$	

New Device Performance

Baseline Performance

Is inter-modality agreement worse than intra-modality agreement?

New Device Performance

Baseline Performance

Is intra-modality agreement worse than intra-modality agreement?

-	Inter-		Reference Modality, A				
Modality Agreement		Dr. 1	Dr. 2	Dr. 3	***	Dr. 8	
8	Dr. 1	Q_1^{AB}	P_{12}^{AB}	P_{13}^{AB}	кви	P_{18}^{AB}	
ality.	Dr. 2	P_{21}^{AB}	Q_2^{AB}	P_{23}^{AB}	×*×	P_{28}^{AB}	
Aode	Dr. 3	P_{31}^{AB}	P_{32}^{AB}	Q_3^{AB}	Ž	P_{38}^{AB}	
New Modality, B) <u>(</u>	
Ž	Dr. 8	P_{81}^{AB}	P_{32}^{AB}	P_{83}^{AB}		Q_8^{AB}	

Intra- Modality Agreement		Reference Modality, A					
		Dr. 1	Dr. 2	Dr. 3	***	Dr. 8	
	Dr. 1	Q_1^{AA}	P_{12}^{AA}	P_{13}^{AA}	ese.	P_{18}^{AA}	
900	Dr. 2	P_{21}^{AA}	$Q_2^{AA^*}$	P_{23}^{AA}		P_{28}^{AA}	
Reference dality, A	Dr. 3	P_{31}^{AA}	P_{32}^{AA}	$Q_3^{AA^*}$		P_{38}^{AA}	
Refer Modality,	***				, ;, ;,	/	
Σ	Dr. 8	P_{81}^{AA}	P_{82}^{AA}	P_{83}^{AA}	\	$Q_8^{AA^*}$	

requires replicated readings

- Intra-reader agreement
 - Summarize with average over all readers
- Inter-reader agreement
 - Summarize with average over all pairs of readers

Two options to produce study endpoints to answer study question

	Inter-		Reference Modality, A				
Modality Agreement		Dr. 1	Dr. 2	Dr. 3		Dr. 8	
a	Dr. 1	Q_1^{AB}	P_{12}^{AB}	P_{13}^{AB}	26 36 36	P_{18}^{AB}	
Ě	Dr. 2	P_{21}^{AB}	Q_2^{AB}	P_{23}^{AB}		P_{28}^{AB}	
New Modality	Dr. 3	P_{31}^{AB}	P_{32}^{AB}	Q_3^{AB}	<i>)</i> /	P_{38}^{AB}	
3	***	•**	***		 	ķ	
Z	Dr. 8	P_{81}^{AB}	P_{32}^{AB}	P_{83}^{AB}		Q_8^{AB}	

Intra- Modality Agreement		Reference Modality, A					
		Dr. 1	Dr. 2	Dr. 3	Dr. 8		
	Dr. 1	$Q_1^{AA^{*1}}$	P_{12}^{AA}	P ₁₃	P_{18}^{AA}		
eo l	Dr. 2	P_{21}^{AA}	Q_2^{AA}	PAA	P_{28}^{AA}		
Reference Modality, A	Dr. 3	P_{31}^{AA}	P_{32}^{AA}	QaA*	P_{38}^{AA}		
Re					`** <u>`</u>		
Μ	Dr. 8	P_{81}^{AA}	P_{82}^{AA}	P ₈₃	$Q_8^{AA^*}$		

requires replicated readings

- Intra-reader agreement
 - Summarize with average over all readers
- Inter-reader agreement
 - Summarize with average over all pairs of readers

Two options to produce study endpoints to answer study question.

- Which best?
- Can do both.
- Pros and Cons for each. Still learning practical and statistical efficiencies.
- Intra-reader requires replicated reading.
- Inter-reader agreement more variable, but averaging over more observations (pairs of readers).

- What about error bars for study endpoints?
- MRMC analysis: account for variability from
 - Multiple Readers
 - Multiple Cases
- Gallas, Anam, Chen, Wunderlich, Zhang (2016), "MRMC analysis of agreement studies." *In Proc. SPIE*, *9787*, *pp. 97870F-97870F-12*.
 - U-statistics
 - Agreement by concordance
 - Novel, builds on methods for area under the ROC curve
 - Peer reviewed manuscript in development

Happy to discuss later.

- Pl's from NIH
 - Mark Simpson, DVM, PhD
 - Charles Halsey, DVM, PhD
- Collaborators from FDA: Study Design and Analysis
 - Brandon Gallas, PhD
 - Weijie Chen, PhD
 - Zhiwei Zhang, PhD

Study Design

- Feature and task:
 - Mitotic Counting
- 12 readers:
 - veterinary pathologists at 4 sites
 - NCI, 2 academic centers, one regional reference lab
- 113 cases:
 - 1 case = 1 slide
 - specimens from canines with oral melanoma
 - H&E vs. Phosphohistone H3 (PHH3)

H&E

рНН3

Pro

Ana

Telo

H&E vs. Phosphohistone H3 (PHH3)

Study Design

- Counts collected according to standard of care
 - Microscope mode: each pathologist selects 10 evaluation FOVs per case and then counts at 40x
 - Digital mode: simulate standard of care
 - FOV locations saved for each pathologist in digital mode

Aims

- Compare prognostic ability of mitotic count from
 - H&E Optical, 40x
 - H&E Digital, 20x6 modalities = 6 viewing modes
 - H&E Digital, 40x
 - PHH3 Optical, 40x
 Ultimately, we did not study all
 - PHH3 Digital, 20x modalities and comparisons.
 - PHH3 Digital, 40x
- Inter-reader and Intra-reader agreement analyses
 - Inter-modality and Intra-modality

Study Design

- Split-plot study design
 - Reduce the total number of reads
 - Reduce workload of each reader
 Each case read by each reader 3 times instead of 6
 Washout time was minimum 1 week
 - Allow for slides to be shipped

Complicated.

Happy to discuss later.

 Obuchowski, N.; Gallas, B. D. & Hillis, S. L. (2012), 'Multi-Reader ROC Studies with Split-Plot Designs: A Comparison of Statistical Methods.' Acad Radiol, 19, (12), 1508-1517.

Primary Aim

- Compare prognostic ability of mitotic count
 - H&E slides on a microscope
 - PHH3 slides on a microscope
 - Truth is survival data with some censoring
 - Prognostic ability
 - = concordance between counts and survival
 - Test non-inferiority with possible superiority

Preliminary Results

Sorry. Nothing to share yet.

Data checks still in progress.

PI: Brandon Gallas

- NIH collaborators
 - Mark Simpson, DVM, MD
 - Charles Halsey, DVM, MD
- YOU!?

Synopsis

- Complement NIH clinical study:
 - mitotic counting
 - H&E vs. PHH3
 - Optical vs. Digital
- Inter-reader and Intra-reader agreement analyses
 - Inter-modality and Intra-modality
- Study Goal: Eliminating location variability yields faster and more precise data

Synopsis

- Difference from NIH clinical study
 - All pathologists evaluate <u>same pre-selected FOVs</u>
 - FOVs are smaller to fit on a screen
 - Equivalent in area to 10 traditional microscope FOVs
 - Use a reticle on the microscope to get same area as screen
 - Enabled by eeDAP:
 evaluation environment for digital and analog pathology

Status

- Protocol under development
- NIH clinical study
 - Source for slides and images
 - Inform study design: modalities, intra- vs. inter-reader
 - Inform study size: readers and cases
 - Results provide basis for comparison
- Collaborators/readers/sites being recruited
 - Hope to involve WSI WG members
 - Need feedback on study protocol
 - Loan and install eeDAP system at your site
 - Find a balance between workload and statistical power (more readers = smaller workload)

eeDAP

evaluation environment for digital and analog pathology

Camera

Microscope

Moving stage with multiple slides

Stage controller

Joystick for stage control

Computer and monitor not shown

eeDAP: Register WSI to Glass Slide (Stage)

eeDAP: Register WSI to Glass Slide (Stage)

eeDAP: Collect Data in WSI mode or Microscope mode

Parting Messages

Talk summary:

- Presented study design and analysis methods
- Generalize to new readers and new cases
 - = Account for reader and case variability
- Outlined NIH study
- Proposed complementary eeDAP study
 - Looking for collaborators/sites/readers
 - Offer to loan and install an eeDAP system

Parting Messages

- eeDAP available at https://github.com/DIDSR/eeDAP
- Reference
 - Gallas, B. D.; Gavrielides, M. A.; Conway, C.; Ivansky, A.; Keay, T.; Cheng, W.-C.; Hipp, J. & Hewitt, S. M. (2014), 'Evaluation Environment for Digital and Analog Pathology (eeDAP): a platform for validation studies.' *J Med Img*, *1*, *(3)*, *037501*.

Parting Messages

Studies of reproducibility can be a bridge/link between ...

- Technical performance
- Clinical performance
- For example: Track human performance on clinically related task as we vary IQ parameter.

Reductionist approach ...

- Pathologist expertise, case complexity, and clinical context are confounders to technology evaluation and system optimization.
- Limit case variability by defining a narrow task
 - Detect, count, characterize a single feature
- Limit case variability by defining a narrow study population

