1. Let function f be defined by the polynomial below:

$$f(x) = -6x^4 + 5x^3 - 2x^2 + 7x + 8$$

Draw lines that match each function reflection with its polynomial:

Reflections Polynomials	
f(−x) •	$\bullet -6x^4 - 5x^3 - 2x^2 - 7x + 8$
-f(x) •	$ \bullet 6x^4 - 5x^3 + 2x^2 - 7x - 8 $
-f(-x) •	

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

	e ()	()	1 ()
x	f(x)	g(x)	h(x)
1	8	2	$\begin{array}{ c c } h(x) \\ \hline 5 \\ \end{array}$
2	9	4	7
3	4	9	2
4	6	3	1
5	3	5	6
6	2	1	3
7	1	7	4
8	5	6	8
9	7	8	9

3. Evaluate g(2).

4. Evaluate $h^{-1}(5)$.

5. Assuming g is an **odd** function, evaluate g(-9).

6. Assuming f is an **even** function, evaluate f(-3).

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = x^2 - 1$$

a. Express p(-x) as a polynomial in standard form.

b. Express -p(-x) as a polynomial in standard form.

c. Is polynomial p even, odd, or neither?

d. Explain how you know the answer to part c.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = 5(x+4)$$

a. Evaluate f(9).

b. Evaluate $f^{-1}(75)$.

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(6).

b. Evaluate $b^{-1}(3)$.

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

x	f(x)	-f(x)	f(-x)	-f(-x)
-2	-3			
-1	6			
0	0			
1	-6			
2	3			

b. Is function f even, odd, or neither?

c. How do you know the answer to part b?