1 Addition Law

1.1 Definitions and Notation

Definition 1: Let K be a field with $\operatorname{char}(K) \neq 2, 3$ and \overline{K} its algebraic closure. Define the hyperelliptic curve of genus two $H_0(K)$ as the set of solutions in K^2 to the equation $y^2 = C(x)$ where

$$C(x) = x^5 + ax^4 + bx^3 + cx^2 + dx + e$$

is a polynomial over K. Similarly, the set of solutions in the closure would be denoted $H_0(\overline{K})$. Define H(K) as $H_0(\overline{K}) \cup \{\infty\}$.

Note that we could obtain a more reduced form of C(x), eliminating a by shifting x to x - a/5. However, since this would rob us of the possibility of char(K) = 5 without simplifying our coming calculations in any significant manner, we shall be reluctant towards using this trick.

For the purpose of clarity, let points on the hyperelliptic curve — in the sense of solutions to $y^2 = C(x)$ — be designated by the calligraphic letter $\Omega = (x, y) \in H_0(\overline{K})$. The point opposite to Ω will be written $\overline{\Omega} = (x, -y)$ and by symmetry of the curve in y also belongs to $H_0(\overline{K})$. In the case where $\Omega = \infty$, define $\overline{\Omega} = \infty$.

We want to consider the set of all pairs (Q_1, Q_2) and tame it with an equivalence relation with the goal of obtaining an additive group:

Definition 2: Define **J** to be the set ∂/\sim where $\partial = H(\overline{K}) \times H(\overline{K})$. It is called the "Jacobian" and the equivalence relation is defined by

$$\begin{split} (\mathcal{Q}_1,\mathcal{Q}_2) &\sim (\mathcal{Q}_2,\mathcal{Q}_1) \\ \mathrm{and} \quad (\mathcal{Q},\overline{\mathcal{Q}}) &\sim (\infty,\infty). \end{split}$$

Write $\{Q_1, Q_2\}$ from now on and let bold letters denote points on the curve in the sense of classes of unordered pairs $\mathbf{P} = \{Q_1, Q_2\} \in \mathbf{J}$. The point $\{\overline{Q}_1, \overline{Q}_2\}$ will be called $\overline{\mathbf{P}}$ for now but can already tentatively be thought of as $-\mathbf{P}$. Call $\{\infty, \infty\}$ the zero of our set. Call Q_i a point-component.

A point $\Omega = (x_0, y_0)$ is called singular if it fulfills both $y_0 = 0$ and $C'(x_0) = 0$. A curve is called singular if and only if it has a singular point. We consider only non-singular hyperelliptics from here on; this amounts to C(x) having no repeated factors over \overline{K} ("squarefree").

1.2 The General Case

Let's start with $\mathbf{P}_1 = \{\Omega_1, \Omega_2\}$, $\mathbf{P}_2 = \{\Omega_3, \Omega_4\}$ with $\Omega_i = (x_i, y_i) \in H_0(K)$ or $\Omega_i = \infty$. To define $\mathbf{P}_3 = \mathbf{P}_1 + \mathbf{P}_2$ we distinguish between one general case and a number of special cases and first derive the results of the former before enumerating the latter ones.

CASE 1, FOUR DISTINCT POINT-COMPONENTS: Let $Q_i \in H_0(K)$ and \mathbf{P}_i be defined as above with $x_i \neq x_j$ whenever $i \neq j$.

The overarching idea is to obtain a fifth and sixth x-coordinate and the corresponding y-coordinates by passing a polynomial of degree three through the four points Q_i . Ideally this should give us two additional intersections with the curve which we then use as the components of our point $\mathbf{P}_1 + \mathbf{P}_2$.

Step 1: It is known that the Vandermonde matrix

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 1 & x_3 & x_3^2 & x_3^3 \\ 1 & x_4 & x_4^2 & x_4^3 \end{pmatrix}$$

has determinant $\prod_{i< j} (x_i - x_j)$ which is conveniently non-zero if and only if the x_i are pairwise distinct. Let $p(x) = p_3 x^3 + p_2 x^2 + p_1 x + p_0 \in \overline{K}[x]$ be the polynomial in unknown coefficients that we are looking for. With $\mathbf{y} = (y_1 \ y_2 \ y_3 \ y_4)^t$ and $\mathbf{p} = (p_0 \ p_1 \ p_2 \ p_3)^t$, the problem of determining p(x) can be rewritten as

$$V \cdot \mathbf{p} = \mathbf{v}$$

which by invertibility of V has a unique solution for \mathbf{p} with $p_i \in K$.

Note that the leading coefficient of p(x) is

$$p_3 = \frac{1}{\det(V)} \begin{vmatrix} 1 & x_1 & x_1^2 & y_1 \\ 1 & x_2 & x_2^2 & y_2 \\ 1 & x_3 & x_3^2 & y_3 \\ 1 & x_4 & x_4^2 & y_4 \end{vmatrix}$$

and the next step will depend on whether p(x) is truly of degree 3 or not.

STEP 2A: Knowing the coefficients p_i of p(x) we first assume that $p_3 \neq 0$ so we can proceed to look for the two additional solutions of the sextic equation

$$C(x) - (p(x))^2 = 0.$$
 (*)

Observe that this vanishes at x_1, x_2, x_3 and x_4 , so write the lefthand side as

$$C(x) - (p(x))^{2} = -p_{3}^{2}(x - x_{1})(x - x_{2})(x - x_{3})(x - x_{4})(x - x_{5})(x - x_{6})$$
(1)

for x_5 and x_6 in \overline{K} . Comparing the coefficients of both expressions at x^4 and x^5 yields

$$\sum_{\substack{i,j=1\\i < j}}^{6} x_i x_j = T_4 \tag{4}$$

and
$$\sum_{i=1}^{6} x_i = T_5$$
 (5)

where $T_4 = \frac{p_2^2 + 2p_1p_3 - a}{p_3^2}$ and $T_5 = \frac{1 - 2p_2p_3}{p_3^2}$. The first expression gives

$$x_6 \sum_{i=1}^{5} x_i + \sum_{\substack{i,j=1\\i < j}}^{5} x_i x_j = T_4.$$

Doing this twice and replacing x_6 with the information from (5) gives the tidy quadratic equation

$$x^{2} - \left(T_{5} - \sum_{i=1}^{4} x_{i}\right) \cdot x + \left(T_{4} - T_{5} \sum_{i=1}^{4} x_{i} + \sum_{\substack{i,j=1\\i \leq j}}^{4} x_{i} x_{j}\right) = 0 \qquad (\dagger)$$

of which x_5 is one solution and — by symmetry of the above steps — x_6 the other one. Compute $y_i = p(x_i)$, i = 5, 6 to obtain $Q_5 = \{x_5, -y_5\}$ and $Q_6 = \{x_6, -y_6\}$, at which point it becomes clear that the worst-case scenario for our field extension to accommodate the new coordinates is to be quadratic. Finally we define $\mathbf{P}_1 + \mathbf{P}_2$ to be equal to $\mathbf{P}_3 = \{Q_5, Q_6\}$.

STEP 2B: If p_3 were zero, the equation (*) would be quintic instead. We may therefore write the lefthand side factorized, so

$$(x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5), (2)$$

again for x_5 somewhere in \overline{K} . Defining $T_{4\infty} = p_2^2 - a$ and comparing the coefficients at x^4 gives

$$x_5 = T_{4\infty} - \sum_{i=1}^4 x_i \tag{\ddagger}$$

and we may rejoice in the implication of x_5 staying in K.

Compute $y_5 = p(x_5)$ and define $\mathbf{P}_1 + \mathbf{P}_2$ to be the point $\mathbf{P}_3 = \{(x_5, y_5), \infty\}$.

STEP 1': To extend our construction from $H_0(K)$ to H(K) we now consider $\Omega_4 = \infty$ with the other $\Omega_i = (x_i, y_i)$ as before. This can be seen as the x_i still being pairwise distinct, only that one of them is allowed to be ∞ here.

There is no coordinate x_4 this time, so we pass a quadratic polynomial p(x) through the remaining three points (x_i, y_i) . This means that we solve the linear system $\widetilde{V} \cdot \mathbf{p} = \widetilde{\mathbf{y}}$ where \widetilde{V} is the Vandermonde matrix for x_i , i = 1, ..., 3 which incidentally is the upper-left 3×3 sub-matrix of V. Here $\mathbf{p} = (p_0 \ p_1 \ p_2)^t$ and $\widetilde{\mathbf{y}} = (y_1 \ y_2 \ y_3)^t$ are defined as expected.

As before, the leading coefficient of p(x) might or might not be zero, but (*) will be quintic in either case, so we only have to worry about one step 2.

STEP 2': Doing a coefficient comparison at x^3 and at x^4 in (*) gives

$$\sum_{\substack{i,j=1\\i < j}}^{3} x_i x_j + x_5 \sum_{i=1}^{3} x_i + x_5 x_6 = b - 2p_1 p_2 \tag{3'}$$

and
$$\sum_{i=1}^{3} x_i + x_5 + x_6 = p_2^2 - a. \tag{4'}$$

Call the righthand terms $T_{3\infty}$ and $T_{4\infty}$, combine both equations and obtain

$$x^{2} - \left(T_{4\infty} \sum_{i=1}^{3} x_{i}\right) \cdot x + \left(T_{3\infty} - T_{4\infty} \sum_{i=1}^{3} x_{i} + \sum_{\substack{i,j=1\\i \leq j}}^{3} x_{i} x_{j}\right) \tag{\dagger'}$$

Solve, call the two solutions x_5 and x_6 , compute y_5 and y_6 through $p(x_5)$ and $p(x_6)$ and define $\mathbf{P}_1 + \mathbf{P}_2$ to be $\mathbf{P}_3 = \{(x_5, -y_5), (x_6, -y_6)\} = \{Q_5, Q_6\}$.

 \sim

Remark 1: Up to this point, we have given the general-case rule only for elements in $H(K) \times H(K)$. Extending to $\mathcal{J} = H(\overline{K}) \times H(\overline{K})$ is trivial as we can simply choose \overline{K} as the new K. The final step is to note that everything until now is well-defined on \mathbf{J} . The equivalence relation from Definition 2 corresponds to interchanging \mathcal{Q}_1 and \mathcal{Q}_2 or \mathcal{Q}_3 and \mathcal{Q}_4 or both. To this end we can check that interchanging (x_i, y_i) and (x_j, y_j) does nothing to the resulting \mathcal{Q}_5 and \mathcal{Q}_6 . This is the case because p(x) depends only on the solution of the linear system $V \cdot \mathbf{p} = \mathbf{y}$ on which the aforementioned

FIGURE 1A: The general case for the addition law in \mathbb{R}^2 where $p_3 \neq 0$.

Figures 1B and 1C: If $p_3 = 0$ we have at most five intersections.

permutation has no effect. With p invariant, the subsequent steps remain unchanged as well.

Finally, the restriction to K instead of \overline{K} was to showcase the degree of the required field extension, a feat we will now leave aside by always using \overline{K} .

Before we begin listing the special cases, we impose the following property: The sum of any $\mathbf{P}_1 = \{Q_1, Q_2\}$ and $\mathbf{P}_2 = \{Q_3, Q_4\}$ in \mathbf{J} fulfills the equality

$$\mathbf{P}_1 + \mathbf{P}_2 = \{Q_3, Q_2\} + \{Q_1, Q_4\}. \tag{\diamondsuit}$$

Note that the general-case addition we just defined already fulfills this, as we noted before that interchanging any of the (x_i, y_i) does not impact the solution **p** of the linear system nor any of the dagger equations.

Remark 2: The property (\diamondsuit) corresponds to the permutation (13) on the point-components \mathfrak{Q}_i . With Definition 2 allowing the permutations (12) and (34) this naturally leads to the observation that in fact all permutations of point-components must now leave the sum unchanged. In fact it is easy to check that the three transpositions generate all of S_4 and the remark above already provides compatibility with the construction of the general case.

A substantial bonus of this is the fact that commutativity corresponds to the permutation $(1\,3)(2\,4)$ which by the above we now obtained for free.

1.3 Complete List of Cases

We may now impose conditions on the relations between the Q_i without mentioning whether they belong to \mathbf{P}_1 or \mathbf{P}_2 . As a result, the list of special cases can be written in a significantly more concise manner.

As we strive to define $\{\Omega_1, \Omega_2\} + \{\Omega_3, \Omega_4\}$, for any $\Omega_i = (x_i, y_i) \in H_0(\overline{K})$ or $\Omega_i = \infty \in H(\overline{K})$ we observe that the following simplification takes place:

Let
$$\{i, j, k, l\} = \{1, 2, 3, 4\}$$
. Whenever $Q_i = \overline{Q}_j$ for $i \neq j$ we have

$$\begin{aligned} \{\mathcal{Q}_1, \mathcal{Q}_2\} + \{\mathcal{Q}_3, \mathcal{Q}_4\} &= \{\mathcal{Q}_i, \mathcal{Q}_j\} + \{\mathcal{Q}_k, \mathcal{Q}_l\} \\ &= \{\mathcal{Q}_k, \mathcal{Q}_l\} + \{\mathcal{Q}_j, \overline{\mathcal{Q}}_j\} \\ &= \{\mathcal{Q}_k, \mathcal{Q}_l\} + \{\infty, \infty\} \end{aligned}$$

so define

$$\{\mathbf{Q}_1,\mathbf{Q}_2\}+\{\mathbf{Q}_3,\mathbf{Q}_4\}=\{\mathbf{Q}_k,\mathbf{Q}_l\}.$$

The justification for this follows directly from Remark 2 and Definition 2. It is easily checked that this sum remains well defined if the choice of i and j is not unique. This allows us to treat the above as a separate case in order to characterize the other cases solely through the x-coordinates of the Ω_i , so we may assume

$$x_i = x_j \iff Q_i = Q_j$$

for any $\Omega_i, \Omega_j \in H(\overline{K})$, provided we assign $\Omega_i = \infty$ the x-coordinate $x_i = \infty$. There is a possibility for ambiguity of " ∞ " here, which we will however avoid later on by making it obvious which infinity we are working with.

We may now write the distinction between the remaining cases as follows:

1. The general case where all $x_1, ..., x_4$ are pairwise distinct.

- 2. The case $x_i = x_j$ but x_i , x_k and x_l are pairwise distinct.
- 3. The case where $x_i = x_j$ and $x_k = x_l$ but $x_i \neq x_k$.
- 4. The case $x_i = x_j = x_k$ but $x_l \neq x_i$.
- 5. The case where $x_1 = x_2 = x_3 = x_4$.

Since we are allowed to permute point-components anyway, we may fix which of the Q_i are equal and write everything out for the complete and final list:

- 0. The addition with zero, i.e. $\{Q_1, Q_2\} + \{\infty, \infty\}, Q_1, Q_2 \in H(\overline{K})$.
- 1. The general case where $Q_i \neq Q_j$ and $Q_i \neq \overline{Q}_j$ for $i \neq j$.
- 2. The single tangential case where all Ω_i as in case 1 with the exception of $\Omega_1 = \Omega_2 \in H_0(\overline{K})$ with $y_1 \neq 0$.
- 3. The double tangential case where all Q_i as in case 1 with the exception of $Q_1 = Q_2 \in H_0(\overline{K})$ with $y_1 \neq 0$ and $Q_3 = Q_4 \in H_0(\overline{K})$ with $y_3 \neq 0$.
- 4. The triple point case wherein $\Omega_1 = \Omega_2 = \Omega_3 \in H_0(\overline{K})$ with $y_1 \neq 0$ and $\Omega_4 \in H(\overline{K})$ differs from both Ω_1 and $\overline{\Omega}_1$.
- 5. The quadruple point case where all $Q_i \in H_0(\overline{K})$ are equal with $y_1 \neq 0$.

Remark 3:

- (i) In both lists, the cases do not overlap.
- (ii) For the list to be complete, we must allow for $\Omega_i = \infty$ for some i. Note that one is sufficient, since if two or more Ω_i were to be ∞ , we would be back at the case 0 by virtue of (\diamondsuit) , bringing the two infinities together in one point. As for case 1, we consider $\Omega_i \in H_0(\overline{K})$ and $\Omega_i \in H(\overline{K})$ in two separate cases and postpone handling the latter.
- (iii) As for the first case, the constructions will a priori only be made on \mathcal{J} . It remains to check that this makes indeed for a well-defined addition on \mathbf{J} by being invariant under interchanges of Ω_i and Ω_j for any i, j.

1.4 Addition Law for the Special Cases

Before we handle the next construction steps we need an intermediate result.

Lemma 1: If the derivatives $D(\tau) = D'(\tau) = \cdots = D^{(k-1)}(\tau) = 0$ for a polynomial D over a field of characteristic 0 or $p \ge k$ then

$$(t-\tau)^k \mid D(t).$$

Proof. Assume $\tau = 0$ by shifting t to $t + \tau$. With $D(t) = \sum_{i=0}^{d} a_i t^i$ we have

$$a_i = \frac{1}{i!}D^{(i)}(0) = 0$$
 $i = 0, ..., k-1$

so
$$t^k$$
 divides $D(t)$.

We will now use this property for $D(x) = C(x) - p^2(x)$ when factoring (*).

CASE 0, ADDITION WITH ZERO: As one might have anticipated we define $\mathbf{P}_1 + \mathbf{P}_2 = \mathbf{P}_1$ for every $\mathbf{P}_1 \in \mathbf{J}$ if $\mathbf{P}_2 = \{\infty, \infty\} = 0$.

Figure 0A: Illustrating a limit argument where Q_3 is very close to \overline{Q}_4 .

FIGURE 0B The addition with zero and justifying $\{Q, \overline{Q}\} \sim 0$.

CASE 2, TANGENTIAL: Let $\Omega_i \in H_0(\overline{K})$, $\Omega_1 = \Omega_2$, $y_1 \neq 0$ but x_1 , x_3 and x_4 are pairwise distinct. We cannot use the Vandermonde matrix in this case

because it won't possess maximal rank, consequently being non-invertible. We can however obtain an additional equation by demanding that our polynomial p(x) be tangential to the curve at Q_1 . This gives

$$2y\frac{dy}{dx} = 5x^4 + 4ax^3 + 3bx^2 + 2cx + d$$
and
$$\frac{dy}{dx} = 3p_3x^2 + 2p_2x + p_1$$

meaning that the system to solve for \mathbf{p} is now $V_1 \cdot \mathbf{p} = \mathbf{y}_1$ with

$$V_1 = \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 0 & 1 & 2x_1 & 3x_1^2 \\ 1 & x_3 & x_3^2 & x_3^3 \\ 1 & x_4 & x_4^2 & x_4^3 \end{pmatrix}.$$

The subscript indicates at which points the intersections have higher order. Here \mathbf{y}_1 is defined as \mathbf{y} with y_2 replaced by $y_2' = \frac{C'(x_1)}{2y_1}$ where C'(x) is the derivative of C and $2y_1 \neq 0$ because $\operatorname{char}(\overline{K}) \neq 2$ and $y_1 \neq 0$. Since $\det(V_1) = (x_4 - x_1)^2 (x_3 - x_1)^2 (x_4 - x_3)$ this fits neatly into our constraints by being non-zero exactly in the case where x_1, x_3 and x_4 are pairwise distinct.

Once the polynomial is determined, we note that the $p^2(x)$ shares a tangent with C(x) at x_1 on purpose, specifically

$$D'(x_1) = C'(x_1) - 2p(x_1)p'(x_1)$$

= $C'(x_1) - 2y_1y_2' = 0$

so we use Lemma 1 to see that the lefthand side of (*) either factors as

$$-p_3^2(x-x_1)^2 \prod_{i=3}^{6} (x-x_i)$$
$$(x-x_1)^2 \prod_{i=2}^{5} (x-x_i).$$

or

Now step two will be entirely identical to that of the general case and we can again solve (\ddagger) or (\dagger) for x_5 or x_5 and x_6 .

CASE 3, DOUBLE TANGENTIAL: Let $Q_i \in H_0(\overline{K})$, $Q_1 = Q_2$ and $Q_3 = Q_4$ but $x_1 \neq x_3$ and $Q_i \neq \overline{Q}_i$ meaning that neither y_1 nor y_3 will be zero. As before, we lack equations for our linear system, requiring the use of a second tangential constraint. Replace the fourth row of V_1 and \mathbf{y}_1 exactly like we did for the second one: $y'_4 = \frac{C'(x_3)}{2y_3}$ and

$$V_{13} = \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 0 & 1 & 2x_1 & 3x_1^2 \\ 1 & x_3 & x_3^2 & x_3^3 \\ 0 & 1 & 2x_3 & 3x_3^2 \end{pmatrix}.$$

FIGURE 2: The case of a tangential intersection at Q_1 .

Now $\det(V_{13}) = (x_3 - x_1)^4$ and this is again different from zero precisely whenever $x_3 \neq x_1$, so as before solve $V_{13} \cdot \mathbf{p} = \mathbf{y}_{13}$ for \mathbf{p} , then note that D(x) has double zeroes at x_1 and x_3 by the same argument as in case 2. By Lemma 1 we know that (*) has a factor $(x - x_1)^2(x - x_3)^2$ so we use the same procedure of case 1 with $x_2 = x_1$ and $x_4 = x_3$ to solve (†) or (‡).

CASE 4, TRIPLE POINT: Let $Q_i \in H_0(\overline{K})$, $Q_1 = Q_2 = Q_3$ but $x_1 \neq x_4$ and $y_1 \neq 0$. We can thus see this as a third-order intersection and demand that the curve and the polynomial share a second-order derivative at Q_1 :

$$V_{11} = \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 0 & 1 & 2x_1 & 3x_1^2 \\ 0 & 0 & 2 & 6x_1 \\ 1 & x_4 & x_4^2 & x_4^3 \end{pmatrix}.$$

Here $\det(V_{11}) = 2(x_4 - x_1)^3$ and with this, define \mathbf{y}_{11} by taking \mathbf{y}_1 and replacing the third coordinate by $y_3'' = \frac{C''(x_1)}{2y_1} - \frac{(C'(x_1))^2}{4y_1^3}$ where C'''(x) is the second-order derivative of C.

Apply Lemma 1 as in case 2, only this time we also have

$$D''(x_1) = C''(x_1) - 2p(x_1)p''(x_1) - 2(p'(x_1))^2$$

= $C''(x_1) - 2y_1y_3'' - 2(y_2')^2 = 0$

Figure 3: Two tangential intersection at Q_1 and Q_3 respectively.

as can be checked by glancing at the definition of y_3'' . With (*) factoring as

$$-p_3^2(x-x_1)^3 \prod_{i=4}^6 (x-x_i)$$
$$(x-x_1)^3 \prod_{i=4}^5 (x-x_i),$$

or

this again allows us to continue with one of the second steps of case 1 to find P_3 .

Case 5, Quadruple Point: Given the situation where $Q_i = Q_1 \in H_0(\overline{K})$ for every i with $y_1 \neq 0$, we use

$$V_{111} = \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 0 & 1 & 2x_1 & 3x_1^2 \\ 0 & 0 & 2 & 6x_1 \\ 0 & 0 & 0 & 6 \end{pmatrix}$$

which is invertible in all fields but those of characteristic 2 and 3.

Here \mathbf{y}_{111} is the same as \mathbf{y}_{11} except for the last coordinate which should read

$$y_4''' = \frac{C'''(x_1)}{2y_1} - \frac{3C'(x_1)C''(x_1)}{4y_1^3} + \frac{3(C'(x_1))^3}{8y_1^5}$$

FIGURE 4: An intersection of order three at Q_1 .

where C'''(x) is the third-order derivative of C. Once more, we solve the linear system $V_{111} \cdot \mathbf{p} = \mathbf{y}_{111}$. In addition to $D^{(i)}(x_1) = 0$, i = 0, ..., 2 we have

$$D'''(x_1) = C'''(x_1) - 2y_1 y_4''' - 6y_2' y_3'' = 0$$
$$D(x) = -p_3^2 (x - x_1)^4 (x - x_5)(x - x_6)$$
$$D(x) = (x - x_1)^4 (x - x_5)$$

which we subsequently use to solve (†) or (‡) and we're done.

so either

or

 \sim

Finally, as noted in Remark 3, (ii) we have yet to extend our definition from $H_0(\overline{K})$ to $H(\overline{K})$. Observe that this is only relevant for cases number two and four where we now consider $\mathfrak{Q}_4 = \infty$ as we did in STEP 1' of the general case. As an analogue to this, the relevant matrices \widetilde{V}_1 and \widetilde{V}_{11} will be the upper-left 3×3 sub-matrices of their $H_0(\overline{K})$ -counterparts V_1 and V_{11} .

In both cases we obtain a linear system of the form $\widetilde{V}_* \cdot \mathbf{p} = \widetilde{\mathbf{y}}_*$ for a three-element vector \mathbf{p} and the vectors $\widetilde{\mathbf{y}}_1$ and $\widetilde{\mathbf{y}}_{11}$ are defined like their 4-element counterparts \mathbf{y}_1 and \mathbf{y}_{11} with the last coordinate omitted.

Both matrices \widetilde{V}_* are invertible and we therefore get a unique polynomial p(x) wich we use to solve (\dagger') , obtaining x_5 , x_6 , $y_5 = p(x_5)$ and $y_6 = p(x_6)$ in \overline{K} and we define $\{\Omega_1, \Omega_2\} + \{\Omega_3, \infty\} = \{\Omega_5, \Omega_6\} = \{(x_5, -y_5), (x_6, -y_6)\}$.

FIGURE 5: An intersection of order four at Q_1 .

1.5 Well-Definedness of the Addition Law

To check whether our addition is well defined on **J** in each of the cases, we have to consider the permutation of point-components Q_i under the equivalence relation from Definition 2. Furthermore, to claim that all possible cases are all covered, it is necessary to check the permutations under (\diamondsuit) . Both cases can be combined into a single one by the following statement:

Lemma 2: In each given definition of '+', the result is invariant under the interchange of Q_i and Q_j .

Proof. Simultaneously interchanging $x_i \rightleftharpoons x_j$ and $y_i \rightleftharpoons y_j$ in our linear systems $V_* \cdot \mathbf{p} = \mathbf{y}_*$ has the effect of permuting the rows of V_* and \mathbf{y}_* and relabeling (x_k, y_k) whenever \mathcal{Q}_k was equal to \mathcal{Q}_i or \mathcal{Q}_j .

Consequently the resulting p(x) doesn't change, so neither do any of the terms T_* . The three dagger equations remain unchanged as well, as can easily be checked at (\dagger) , (\dagger) and (\dagger') which are invariant under $x_i \rightleftharpoons x_j$.

Finally, the version of Step 2 we fall into remains the same, since it is only imposed by the distinction of p_3 being zero or not.

2 Rational Functions on Hyperelliptics

The goal of this chapter is to look at rational functions on the hyperelliptic curve $y^2 = C(x)$ and to define a notion of the order of a function in a point on the curve. We then give some basic properties for this order function before we introduce divisors and proceed to look at functions with a specified number of poles at ∞ as a preparation for the proof of associativity on J.

2.1 Function Field and Order of Rational Functions

Definition 3: Define the ring of rational functions on the curve as

$$\mathcal{F} = K(x)[y] / (y^2 - C(x)).$$

As $y^2 - C(x)$ is irreducible in K(x)[y], \mathcal{F} is a field and $\mathcal{F} = K(x) + K(x)y$, so write elements $f \in \mathcal{F}$ as f = g + hy where $g, h \in K(x)$. Define $\overline{f} = g - hy$.

We will occasionally write things like $K[x, y] \subset \mathcal{F}$ but this is always implicitly understood to be in conjunction with $y^2 = C(x)$.

Reminders: A formal Laurent series written $\tau = \gamma t^e(1 + \cdots) \in K((t))$ with $\gamma \in K^*$, $e \in \mathbb{Z}$ has a unique inverse $\tau^{-1} = \gamma^{-1} t^{-e}(1 + \cdots) \in K((t))$.

From now on we will use an ellipsis to denote any terms of ascending order everywhere where we are not interested in the specifics.

If $\operatorname{char}(K) \neq 2$ and τ is a series of the form $\tau = 1 + \sum_{i=1}^{\infty} a_i t^i$ then it has a unique squareroot of the form $\sigma = 1 + \sum_{i=1}^{\infty} b_i t^i$ in $\overline{K}(t)$ meaning $\sigma^2 = \tau$. Write $\sigma = \sqrt{\tau} = 1 + \cdots$.

 \sim

In order to define the order of a function f in a point Ω , $\operatorname{ord}_{\Omega}(f) \in \mathbb{Z}$ for $f \in \mathcal{F}^*$ and $\Omega \in H(\overline{K})$ we first construct a K-homomorphism

$$\lambda_{\mathbb{Q}}: \mathfrak{F} \to \overline{K}((t))$$

Because $C(\lambda_{\Omega}(x)) = (\lambda_{\Omega}(y))^2$ has to be fulfilled, we decide on $\lambda_{\Omega}(x)$ and deduce $\lambda_{\Omega}(y)$. For this, we distinguish between three cases for $\Omega \in H(\overline{K})$.

Definition 4: 1. Let $Q = (x_0, y_0) \in H_0(\overline{K})$ with $y_0 \neq 0$ and consequently $C(x_0) \neq 0$.

Define $\lambda_{\mathbb{Q}}(x) = x_0 + t$. Now

$$C(\lambda_{\mathbb{Q}}(x)) = C(x_0 + t)$$

$$= C(x_0) + \dots + t^5$$

$$= C(x_0)(1 + \dots)$$

$$= y_0^2 \tau_1 \quad \text{with } \tau_1 \in K((t)).$$

Define $\lambda_{\mathbb{Q}}(y) = y_0 \sqrt{\tau_1}$.

2. Let $\Omega = (x_0, y_0) \in H_0(\overline{K})$ with $y_0 = 0$. Points with this property are called "Weierstrass Points" and as $C(x_0) = 0$ there are at most five of them. Write $C(x) = \prod_{i=1}^5 (x - \alpha_i)$ for $\alpha_i \in \overline{K}$ and for instance $\alpha_1 = x_0$.

Define $\lambda_{\mathbb{Q}}(x) = x_0 + t^2$. Now

$$C(\lambda_{\Omega}(x)) = t^2 \prod_{i=2}^{5} (x_0 - \alpha_i + t^2)$$

= $\mu t^2 (1 + \cdots)$

with $\mu \in \overline{K}$ being $\mu = \prod_{i=2}^5 (x_0 - \alpha_i) = C'(x_0)$ which is non-zero because our curve is non-singular. Write therefore $C(\lambda_{\Omega}(x)) = \mu t^2 \tau_2$ with $\tau_2 = 1 + \cdots$ and define $\lambda_{\Omega}(y) = \nu t \sqrt{\tau_2}$ with $\nu^2 = \mu$.

Note that we may choose one out of two squareroots for ν so whichever we take we naturally demand that we stay consistent in our choice.

3. Let $Q = \infty$. Define $\lambda_Q(x) = t^{-2}$. It follows that

$$C(\lambda_{\mathbb{Q}}(x)) = t^{-10} + at^{-8} + bt^{-6} + ct^{-4} + dt^{-2} + e$$

= $t^{-10}\sqrt{\tau_3}$

so define $\lambda_{\mathbb{Q}}(y) = t^{-5}\sqrt{\tau_3}$.

Definition 5: For $\Omega \in H(\overline{K})$ and $f \in \mathcal{F}^*$ define $\operatorname{ord}_{\Omega}(f) = \operatorname{ord} \lambda_{\Omega}(f)$.

Lemma 3: Let $f \in K[x,y] \subset \mathcal{F}$, $f \neq 0$ and $Q \in H_0(\overline{K})$, $Q = (x_0,y_0)$. Then

- (a) $\operatorname{ord}_{\mathfrak{Q}} f \geq 0$ and
- (b) if f(Q) = 0 then $\operatorname{ord}_{Q} f \geq 1$.

Proof.

(a) Because $\Omega \in H_0(\overline{K})$ we have $\lambda_{\Omega}(x)$, $\lambda_{\Omega}(y) \in \overline{K}[[t]]$ so with $f \in K[x,y]$ we have $\operatorname{ord}_{\Omega}(f) \in \mathbb{N}$.

(b) Write $f = A(x, y), A(X, Y) \in K[X, Y]$. First, let $y_0 \neq 0$.

$$\operatorname{ord}_{\Omega} f = \operatorname{ord} A(\lambda_{\Omega}(x), \lambda_{\Omega}(y))$$
$$= \operatorname{ord} A(x_0 + t, y_0 \sqrt{\tau_1}).$$

But $A(x_0 + t, y_0 \sqrt{\tau_1}) = \sum_{i=0}^{\infty} a_i t^i$ so with t = 0 we get $A(x_0, y_0) = a_0$ but the former is $f(\mathfrak{Q})$ which is 0, so $a_0 = 0$ and the claim follows.

If $y_0 = 0$ we would have $\operatorname{ord}_{\mathbb{Q}} f = \operatorname{ord} A(x_0 + t^2, \nu t \sqrt{\tau_2})$ instead. But like before, this means $0 = f(\mathbb{Q}) = A(x_0, 0) = a_0$ so again $\operatorname{ord}_{\mathbb{Q}}(f) \geq 1$.

Lemma 4: Let $f \in K(x) \subset \mathcal{F}$, $f \neq 0$, $Q \in H(\overline{K})$. Then

- (a) $\operatorname{ord}_{\mathbb{Q}}(f) = \operatorname{ord}_{x=x_0} f(x)$ if $\mathbb{Q} = (x_0, y_0) \in H_0(\overline{K})$ with $y_0 \neq 0$.
- (b) $\operatorname{ord}_{\mathbb{Q}}(f) = 2\operatorname{ord}_{x=x_0} f(x) \text{ if } \mathbb{Q} = (x_0, 0) \in H_0(\overline{K}).$
- (c) $\operatorname{ord}_{\infty}(f) = 2\operatorname{ord}_{x=\infty} f(x) = 2\operatorname{ord}_{x=0} f(\frac{1}{x}).$

Note that the right-hand sides of the equalities refer to the usual definition of the order of a rational function in a point $x_0 \in \overline{K} \cup \{\infty\}$.

Proof. Take $f \in K[x]$ and define $e = \operatorname{ord}_{x=x_0} f \in \mathbb{N}$ so $f(x) = (x - x_0)^e g(x)$ with $g \in \overline{K}[x]$ and $g(x_0) \neq 0$.

- (a) If $Q = (x_0, y_0)$, $y_0 \neq 0$ then $\lambda_Q(f) = f(x_0 + t) = t^e g(x_0 + t)$ and so ord $\lambda_Q(f) = e$ because $g(x_0 + t) = g(x_0) + \cdots$ with $g(x_0) \neq 0$.
- (b) Here $\lambda_{\Omega}(f) = f(x_0 + t^2) = t^{2e}g(x_0 + t^2)$ and again $g(x_0 + t^2) = g(x_0) + \cdots$ so ord $\lambda_{\Omega}(f) = 2e$.
- (c) For $\Omega = \infty$ we have $\lambda_{\Omega}(f) = f(t^{-2}) = \kappa t^{-2d} + \cdots$ with $\kappa \neq 0$ if $d = \deg f$ so $\operatorname{ord}_{x=0} f(\frac{1}{x}) = -d$ and so $\operatorname{ord}_{\lambda_{\Omega}}(f) = 2\operatorname{ord}_{x=0} f(\frac{1}{x})$.

Generally, if $f \in K(x)$ we can write $f = \frac{r}{q}$ for $r, q \in K[x]$ and apply $\operatorname{ord}_{x=x_0} f = \operatorname{ord}_{x=x_0} r - \operatorname{ord}_{x=x_0} q$ in order to use the above on r and q. \square

Lemma 5: For $f \in \mathcal{F}^*$ and $\Omega \in H(\overline{K})$ the order satisfies $\operatorname{ord}_{\Omega}(\overline{f}) = \operatorname{ord}_{\overline{\Omega}}(f)$

Proof. Split into three possible cases:

1. For $\Omega \in H_0(\overline{K})$ with $y_0 \neq 0$ we've got $\lambda_{\Omega}(x) = x_0 + t$ and $\lambda_{\Omega}(y) = y_0 \sqrt{\tau_1}$. Therefore $\lambda_{\overline{\Omega}}(x) = x_0 + t = \lambda_{\Omega}(\overline{x})$ and $\lambda_{\overline{\Omega}}(y) = -y_0 \sqrt{\tau_1} = \lambda_{\Omega}(\overline{y})$ so

$$\lambda_{\overline{\mathbb{Q}}}(f(x,y)) = f(\lambda_{\overline{\mathbb{Q}}}(x), \lambda_{\overline{\mathbb{Q}}}(y))$$

$$= \lambda_{\mathbb{Q}}(f(\overline{x}, \overline{y}))$$

$$= \lambda_{\mathbb{Q}}(\overline{f}(x,y)).$$

2. If $Q \in H_0(\overline{K})$ with $y_0 = 0$ then $\overline{Q} = Q$. Write f(x) = g(x) + h(x)y, so $\lambda_Q(\overline{f}) = g(x_0 + t^2) - h(x_0 + t^2)\nu t\sqrt{\tau_2}$.

Calling this $l(t) = \lambda_{\mathbb{Q}}(\overline{f})$ and looking at the construction of $\lambda_{\mathbb{Q}}$ we see that τ_2 sports only even powers of t so we see above that $l(-t) = \lambda_{\mathbb{Q}}(f)$. As interchanging t with -t doesn't change the order, we're done.

3. For $\Omega = \infty$, $\tau_3 = 1 + at^2 + bt^4 + ct^6 + dt^8 + et^{10}$ features only even powers as well, so again $l(-t) = \lambda_{\Omega}(f)$ for $l(t) = \lambda_{\Omega}(\overline{f}) = g(t^{-2}) - h(t^{-2})t^{-5}\sqrt{\tau_3}$. Finally, $\lambda_{\Omega}(f)$ is equal to $\lambda_{\overline{\Omega}}(f)$ since $\infty = \overline{\infty}$. Again ord $l(t) = \operatorname{ord} l(-t)$.

Lemma 6: If $f \in \mathcal{F}^*$ then the set $\{Q \in H(\overline{K}) \mid \operatorname{ord}_{Q} f \neq 0\}$ is finite and

$$\sum_{Q \in H(\overline{K})} \operatorname{ord}_{Q} f = 0.$$

Proof. First take $f \in K[x,y]$, $f \neq 0$ and let $\Omega = (x_0,y_0) \in H_0(\overline{K})$ with $\operatorname{ord}_{\Omega} f \neq 0$. By Lemma 3 (a) we know that $\operatorname{ord}_{\Omega} f \geq 1$. It follows that $\operatorname{ord}_{\Omega} (f\overline{f}) = \operatorname{ord}_{\Omega} f + \operatorname{ord}_{\Omega} \overline{f} \geq 1$. Now since f = g + hy, $f\overline{f} = g^2 - h^2C(x)$ which lies in K[x], so by Lemma 4 we have $\operatorname{ord}_{x=x_0}(f\overline{f}) = \operatorname{ord}_{\Omega}(f\overline{f}) \geq 1$. But there are only finitely many such x_0 and so only finitely many $y_0 = \pm \sqrt{C(x_0)}$.

If $f \in K(x, y)$, $f = \frac{r}{q}$, $r, q \in K[x, y]$ then $\operatorname{ord}_{x=x_0} f = \operatorname{ord}_{x=x_0} r - \operatorname{ord}_{x=x_0} q$, and again only finitely many x_0 exist for which this differs from zero.

For the second claim, give our sum the name

$$s(f) = \sum_{\mathfrak{Q} \in H(\overline{K})} \operatorname{ord}_{\mathfrak{Q}} f$$

and note that $s(f) = s(\overline{f})$ due to Lemma 5 and the fact that we take the sum over all Q. Because $\operatorname{ord}_{Q}(f\overline{f}) = \operatorname{ord}_{Q}(f) + \operatorname{ord}_{Q}(\overline{f})$ we can see that

$$s(f\overline{f}) = s(f) + s(\overline{f}) = 2s(f).$$

But because $f\overline{f} \in K(x)$ we can use Lemma 4 to write this out as

$$\begin{split} 2s(f) &= \sum_{\substack{Q \in H(\overline{K}) \\ = 2}} \operatorname{ord}_{\mathbb{Q}} f\overline{f} \\ &= 2 \sum_{\substack{x_0 \neq \infty \\ C(x_0) \neq 0}} \operatorname{ord}_{x=x_0} f\overline{f} + 2 \sum_{C(x_0)=0} \operatorname{ord}_{x=x_0} f\overline{f} + 2 \sum_{x_0 = \infty} \operatorname{ord}_{x=x_0} f\overline{f} \\ &= 2 \sum_{\substack{x_0 \in \overline{K} \cup \{\infty\} \\ }} \operatorname{ord}_{x=x_0} f\overline{f}. \end{split}$$

Here α_i are the points on which C(x) vanishes and since

$$\sum_{x_0 \in \overline{K} \cup \{\infty\}} \operatorname{ord}_{x=x_0} g = 0$$

for any $g \in K(x)$ we have s(f) = 0 in \mathbb{Z} .

2.2 Divisors and Lemmas

Definition 6: The divisor of a function $f \in \mathcal{F}^*$ is the formal sum

$$(f) = \sum_{\Omega \in H(\overline{K})} \operatorname{ord}_{\Omega} f \cdot \Omega$$

Thanks to Lemma 6 the sum is finite and the sum of all coefficients is 0.

Points $Q \in H(\overline{K})$ with a positive coefficient in (f) are called zeroes of f while those with a negative coefficient are called poles.

Lemma 7: If $f \in \mathcal{F}^*$ has no poles on $H(\overline{K})$, i.e. if $\operatorname{ord}_{\mathfrak{Q}} f \geq 0$ for all \mathfrak{Q} , then f is constant.

Proof. With f = g + hy, $\operatorname{ord}_{\mathbb{Q}} f \geq 0$ for every $\mathbb{Q} \in H(\overline{K})$ we take a look at $f + \overline{f} = 2g \in K(x)$ and $f\overline{f} = g^2 - h^2C \in K(x)$ and observe that by well-known properties of orders

$$\operatorname{ord}_{\mathbb{Q}}(f + \overline{f}) \ge \min\{\operatorname{ord}_{\mathbb{Q}} f, \operatorname{ord}_{\mathbb{Q}} \overline{f}\}$$
$$= \min\{\operatorname{ord}_{\mathbb{Q}} f, \operatorname{ord}_{\overline{\mathbb{Q}}} f\} \ge 0.$$

with Lemma 5 and similarly

$$\operatorname{ord}_{\mathfrak{Q}}(f\overline{f}) = \operatorname{ord}_{\mathfrak{Q}}f + \operatorname{ord}_{\overline{\mathfrak{Q}}}f \geq 0.$$

With the help of Lemma 4 we conclude that $\operatorname{ord}_{x=x_0}(f+\overline{f})\geq 0$ and $\operatorname{ord}_{x=x_0}(f\overline{f})\geq 0$ respectively.

But in $\overline{K}(x)$, a function q with $\operatorname{ord}_{x=x_0} q \geq 0$ for every $x_0 \in \overline{K} \cup \{\infty\}$ must be constant, so both $f + \overline{f}$ and $f\overline{f}$ are constant functions. Since f is a root of $(T - f)(T - \overline{f}) = T^2 - (f + \overline{f})T + f\overline{f} \in \overline{K}[T]$, f lies in \overline{K} .

Theorem 1: Let K be a field and $x, y \in K(t)$ rational functions such that $y^2 = C(x)$. Then x and y are actually constants, i.e. $x, y \in K$.

Lemma 8: Suppose $f \in \mathcal{F}^*$ has a pole of order at most one at ∞ i.e. $\operatorname{ord}_{\infty} f \geq -1$ and no pole at any other $\Omega \in H_0(\overline{K})$. Then f is a constant.

Proof. By Lemma 7 we can assume $\operatorname{ord}_{\infty} f = -1$ and $\operatorname{ord}_{\mathbb{Q}} f \geq 0$ for every $\mathbb{Q} \in H_0(\overline{K})$. Now f = g + hy and $\lambda_{\infty}(f) = \kappa t^{-1} + \cdots$ with $\kappa \neq 0$ in \overline{K} . Since we are only interested in the order, replace f with $\kappa^{-1} f$ so $\lambda_{\infty}(f) = t^{-1} + \cdots$.

Now remember that $\lambda_{\infty}(x) = t^{-2}$ so $\lambda_{\infty}(x - f^2) = \alpha t^{-1} + \cdots$, $\alpha \in \overline{K}$ and finally we have a regular power series $\lambda_{\infty}(x - f^2 - \alpha f)$ so

$$\operatorname{ord}_{\infty}(x - f^2 - \alpha f) \ge 0.$$

Also for any other $Q \in H_0(\overline{K})$ we have

$$\operatorname{ord}_{\mathbb{Q}}(x - f^2 - \alpha f) \ge \min{\operatorname{ord}_{\mathbb{Q}}(x), \operatorname{ord}_{\mathbb{Q}}(f^2), \operatorname{ord}_{\mathbb{Q}}f}$$

which is non-negative by virtue of the prerequisite on f and $\lambda_{\mathbb{Q}}(x) = x_0 + \cdots$. The previous Lemma now implies $x - f^2 - \alpha f \in \overline{K}$ so we see $x = f^2 + \alpha f + \beta$ as a polynomial x = X(f) with $X(T) \in \overline{K}[T] \setminus \overline{K}$.

Do the same thing with $\lambda_{\infty}(y) = t^{-5}\sqrt{\tau_3} = t^{-5} + \cdots$

so
$$\lambda_{\infty}(y - f^5) = \beta_4 t^{-4} + \cdots$$

and
$$\lambda_{\infty}(y - f^5 - \beta_4 f^4) = \beta_3 t^{-3} + \cdots$$

and so on, so $\lambda_{\infty}(y-f^5-\beta_4f^4-\beta_3f^3-\beta_2f^2-\beta_1f)$ is a power series as well. Again $y=f^5+\beta_4f^4+\beta_3f^3+\beta_2f^2+\beta_1f+\beta_0=Y(f)$ with $Y(T)\in \overline{K}[T]\setminus \overline{K}$.

Combined we have the polynomial equation $Y(f)^2 - C(X(f)) = 0$ over \overline{K} whose algebraic closure dictates either $f \in \overline{K}$ or $Y(T)^2 = C(X(T))$. The latter can't be true by Theorem 1 and the former is in contradiction to $\operatorname{ord}_{\infty} f = -1$.

Lemma 9: If $f \in \mathcal{F}^*$ has a pole of order at most two at ∞ and $\operatorname{ord}_{\mathbb{Q}} f \geq 0$ for every $\mathbb{Q} \in H_0(\overline{K})$ then f is of the form $f = \alpha + \beta x$ with $\alpha, \beta \in K$.

Proof. Because $\lambda_{\infty}(f) = \beta t^{-2} + \cdots$ where $\beta \in \overline{K}$ we have $\lambda_{\infty}(f - \beta x) = \gamma t^{-1} + \cdots$ and thanks to Lemma 8 we know this to imply $f - \beta x = \alpha$. \square

Lemma 10: If $f \in \mathcal{F}^*$ has a pole of order at most three at ∞ and $\operatorname{ord}_{\mathbb{Q}} f \geq 0$ for every $\mathbb{Q} \in H_0(\overline{K})$ then f is of the form $f = \alpha + \beta x$ with $\alpha, \beta \in K$.

Proof. We can see that for instance for α_1 one of the roots of C(x) we have

$$\lambda_{\infty} \left(\frac{y}{x - \alpha_1} \right) = (t^{-2} - \alpha_1)^{-1} t^{-5} \sqrt{\tau_3}$$
$$= t^2 (1 + \dots)^{-1} t^{-5} (1 + \dots)$$
$$= t^{-3} (1 + \dots).$$

So if $\lambda_{\infty}(f) = \gamma t^{-3} + \cdots$ then per Lemma 9 we have

$$f - \gamma \frac{y}{x - \alpha_1} = \alpha + \beta x.$$

But now for $Q = (\alpha_0, 0)$ we have

$$\lambda_{\mathcal{Q}}(f) = \alpha + \beta(\alpha_1 + t^2) + \gamma \frac{\nu t \sqrt{\tau_2}}{t^2}$$
$$= \gamma \nu t^{-1} + \cdots$$

so $\gamma\nu$ must be 0. Since $\nu=C'(x_0)\neq 0$ and f does not have any poles in $H_0(\overline{K})$, γ must be zero and so $f=\alpha+\beta x$.

Lemma 11: If $f \in \mathcal{F}^*$ has a pole of order at most four at ∞ then f is of the form $f = \alpha + \beta x + \gamma x^2$ with $\alpha, \beta, \gamma \in K$.

Proof. With $\lambda_{\infty}(f) = \gamma t^{-4} + \cdots$ we know that $\lambda_{\infty}(f - \gamma x^2) = \delta t^{-3} + \cdots$ and we use the previous Lemma to see that $f - \gamma x^2 = \alpha + \beta x$.

3 Associativity

Lemma 12: Suppose we have $Q_i = (x_i, y_i), Q_i \in H(\overline{K})$, that fulfill

$$\{Q_1,Q_2\}+\{Q_3,Q_4\}=\{\overline{Q}_5,\overline{Q}_6\}$$

with $\Omega_j = \infty$ for at most one $j \in \{1, ..., 6\}$. This means that we are in one of the cases 1–5 of the addition law which involved passing a polynomial p through all $\Omega_i \neq \infty$. Now remember that we defined $D(x) = C(x) - p^2(x)$.

If exactly e of the Ω_i are equal, say to some Ω_k for a $k \in \{1, ..., 6\}$, then

$$D(x) = (x - x_k)^e g(x)$$

with $g(x_k) \neq 0$. This is of course equivalent to stating $\operatorname{ord}_{x_k} D(x) = e$.

Proof. By construction we have

$$D(x) = -p_3^2 \prod_{i=1}^{6} (x - x_i)$$

if $p_3 \neq 0$. If $p_3 = 0$ and therefore $Q_j = \infty$ for exactly one $j \in \{1, ..., 6\}$ then

$$D(x) = \prod_{\substack{i=1\\i\neq j}}^{6} (x - x_i).$$

So by construction, Q_i being equal to some Q_k contributes a factor $x-x_k$. \square

Theorem 2: Let $\mathbf{P}_i \in \mathbf{J}$, $\mathbf{P}_i = \{Q_1, Q_2\}$, $\mathbf{P}_2 = \{Q_3, Q_4\}$ and $\mathbf{P}_3 = \{\overline{Q}_5, \overline{Q}_6\}$,

$$\mathbf{P}_1 + \mathbf{P}_2 = \mathbf{P}_3.$$

Then there exists an $f \in \mathcal{F}^*$ with divisor

$$(f) = Q_1 + Q_2 + Q_3 + Q_4 - \overline{Q}_5 - \overline{Q}_6 - 2\infty. \tag{*}$$

Remark 4: Looking back at the construction of $\mathbf{P}_1 + \mathbf{P}_2 = \mathbf{P}_3$ we used the equivalence $\Omega_i = \Omega_j \iff x_i = x_j, \ \Omega_i, \Omega_j \in H(\overline{K}), \ x_i, x_j \in \overline{K} \cup \{\infty\}$ for $i, j \leq 4$ whenever not in the zero case. We can now easily see that this extends to $i, j \in \{1, ..., 6\}$. First note that at most one of the six Ω_i may equal ∞ . By construction, the polynomial p(x) passes through all those Ω_i that are in $H_0(\overline{K})$. This implies that if $\Omega_i = \overline{\Omega}_j$ we must have $-y_i = y_j = p(x_j) = p(x_i) = y_i$ so $y_i = 0$ in $\operatorname{char}(K) \neq 2$ i.e. $\overline{\Omega}_i = \Omega_j = \Omega_i$.

Proof. First part

Note that if $\mathbf{P}_2 = 0$ then we want $(f) = \Omega_1 + \Omega_2 + 2\infty - \Omega_1 - \Omega_2 - 2\infty = 0$, a condition that is fulfilled by f = 1.

In all the other cases we have the polynomial p(x) at our disposal. We can now assume that we are not in the zero case. Since $y_i = p(x_i)$ for all i except possibly i = 6, we define

$$q = y - p(x) \in K[x, y] \subset \mathcal{F}^*$$

with the intention of showing that $(q) = \sum_{i=1}^{6} Q_i - 6\infty$.

By Lemma 3 (b) we know that $\operatorname{ord}_{\mathcal{Q}_i} q \geq 1$ for those \mathcal{Q}_i that are not ∞ .

Let's first assume that all $\Omega_i \in H_0(\overline{K})$. This means that we are in the case where p(x) is of degree 3, so as $\lambda_{\infty}(x) = t^{-2}$ we see that $\operatorname{ord}_{\infty} q = -6$. As $q \in K[x, y]$, the only negative order may be at ∞ which implies $\operatorname{ord}_{\Omega} q = 0$ for all $\Omega \in H_0(\overline{K})$ that are not one of the Ω_i .

With Lemma 12, if e_i of the Q_i are equal and $y_i \neq 0$ then with Lemma 4 (a)

$$\operatorname{ord}_{\Omega_i} q + \operatorname{ord}_{\Omega_i} \overline{q} = \operatorname{ord}_{\Omega_i} q \overline{q}$$
$$= \operatorname{ord}_{\Omega_i} D(x)$$
$$= e_i.$$

But by Remark 4 we know that $\operatorname{ord}_{\Omega_i} \overline{q} = 0$ as $q(\overline{\Omega}_i)$ can't be zero if $\overline{\Omega}_i \neq \Omega_i$, so $\operatorname{ord}_{\Omega_i} q = e_i$. In the case where $y_i = 0$, the same lemmas imply

$$\operatorname{ord}_{Q_i} q + \operatorname{ord}_{Q_i} \overline{q} = 2e_i$$

and since $\overline{\mathbb{Q}}_i = \mathbb{Q}_i$, Lemma 5 gives $\operatorname{ord}_{\mathbb{Q}_i} \overline{q} = \operatorname{ord}_{\mathbb{Q}_i} q$ so again $\operatorname{ord}_{\mathbb{Q}_i} q = e_i$.

So in both cases, if Q_i appears e_i times in the sum $\mathbf{P}_1 + \mathbf{P}_2 = \mathbf{P}_3$ then it appears the same number of times in (q) and all in all

$$(q) = \sum_{\{\Omega_i\}} e_i \Omega_i - 6\infty = \sum_{i=1}^6 \Omega_i - 6\infty.$$

Now consider the case where $Q_k = \infty$ for some k. Because p(x) is now of degree two or less and $\lambda_{\infty}(y) = t^{-5}\sqrt{\tau}$ we have $\operatorname{ord}_{\infty} q = -5$. This leads to

$$(q) = \sum_{\substack{i=1\\i \neq k}}^{6} Q_i - 5\infty = \sum_{i=1}^{6} Q_i - 6\infty$$

completing the first part of our proof.

Second Part

The divisor of $x - x_i$ is $(x - x_i) = Q_i + \overline{Q}_i - 2\infty$ both for $Q_i = \overline{Q}_i$ and $Q_i \neq \overline{Q}_i$.

Without loss of generality let $\Omega_5 \neq \infty$ and distinguish between $\Omega_6 \neq \infty$ and $\Omega_6 = \infty$. In the first case it is easy to check that for $f = q(x - x_5)^{-1}(x - x_6)^{-1}$,

$$(f) = \sum_{i=1}^{6} \Omega_i - 6\infty - \Omega_5 - \overline{\Omega}_5 - \Omega_6 - \overline{\Omega}_6 + 4\infty$$
$$= \sum_{i=1}^{4} \Omega_i - \overline{\Omega}_5 - \overline{\Omega}_6 - 2\infty$$

which corresponds precisely to the statement we aimed to prove. If $Q_6 = \infty$, we can define $f = q(x - x_5)^{-1}$ and check that

$$(f) = \sum_{i=1}^{5} Q_i - 5\infty - Q_5 - \overline{Q}_5 + 2\infty$$
$$= \sum_{i=1}^{4} Q_i - \overline{Q}_5 - \overline{\infty} - 2\infty.$$

So the function f that we were looking for is

$$f = \frac{y - p(x)}{(x - x_5)(x - x_6)}$$

if Ω_5 and Ω_6 are both different from ∞ and otherwise if $\Omega_6 = \infty$ then

$$f = \frac{y - p(x)}{x - x_5}.$$

Theorem 3: Associativity. The sums

$$\underbrace{(\mathbf{P} + \mathbf{Q})}_{=\mathbf{T}} + \mathbf{R} = \mathbf{S}$$
and
$$\mathbf{P} + \underbrace{(\mathbf{Q} + \mathbf{R})}_{=\mathbf{W}} = \mathbf{S}'$$

give the same result, namely S = S'.

Proof. We will use the following notation:

$$\mathbf{P} = \{\mathcal{P}_1, \mathcal{P}_2\}, \mathbf{Q} = \{\mathcal{Q}_1, \mathcal{Q}_2\}, \mathbf{R} = \{\mathcal{R}_1, \mathcal{R}_2\}, \mathbf{T} = \{\mathcal{T}_1, \mathcal{T}_2\}, \mathbf{W} = \{\mathcal{W}_1, \mathcal{W}_2\}, \\ \mathbf{S} = \{\mathcal{A}, \mathcal{B}\}, \mathbf{S}' = \{\mathcal{U}, \mathcal{V}\}, \\ \mathcal{A} = (a, *), \mathcal{B} = (b, *).$$

Thanks to the previous theorem we have functions f_{PQ} , f_{TR} , f_{PW} and f_{QR} in \mathcal{F}^* such that the divisor of

$$f = \frac{f_{\mathbf{PQ}}f_{\mathbf{TR}}}{f_{\mathbf{PW}}f_{\mathbf{QR}}}$$

is

$$\begin{split} (f) &= \, \mathcal{P}_1 \! + \! \mathcal{P}_2 \! + \! \mathcal{Q}_1 \, + \! \mathcal{Q}_2 \, - \! \mathcal{T}_1 \, - \! \mathcal{T}_2 \, - \! 2 \infty \\ &+ \, \mathcal{T}_1 \! + \! \mathcal{T}_2 \! + \! \mathcal{R}_1 \, + \! \mathcal{R}_2 \, - \! \mathcal{A} \, - \! \mathcal{B} \, - \! 2 \infty \\ &- \, \mathcal{P}_1 \! - \! \mathcal{P}_2 \! - \! \mathcal{W}_1 \! - \! \mathcal{W}_2 \! + \! \mathcal{U} \, + \! \mathcal{V} \, + \! 2 \infty \\ &- \, \mathcal{Q}_1 \! - \! \mathcal{Q}_2 \! - \! \mathcal{R}_1 \, - \! \mathcal{R}_2 \, + \! \mathcal{W}_1 \! + \! \mathcal{W}_2 \! + \! 2 \infty \\ &= \, \mathcal{U} + \mathcal{V} - \mathcal{A} - \mathcal{B}. \end{split}$$

This means that $\widetilde{f}=(x-a)(x-b)f$ has divisor $(\widetilde{f})=\overline{\mathcal{A}}+\overline{\mathcal{B}}+\mathcal{U}+\mathcal{V}-4\infty$. By Lemma 11, \widetilde{f} must be of the form $\kappa(x-\varrho)(x-\varsigma)\in\overline{K}[x]$ and so

$$f = \frac{\kappa(x - \varrho)(x - \varsigma)}{(x - a)(x - b)}.$$

But this has divisor of the form

$$(f) = \mathcal{M} + \overline{\mathcal{M}} + \mathcal{N} + \overline{\mathcal{N}} - \mathcal{A} - \overline{\mathcal{A}} - \mathcal{B} - \overline{\mathcal{B}}.$$

So, without loss of generality, either A = M and $B = \overline{M}$ or A = M and B = N. First case implies **S** and **S'** equals 0, second case implies (f) = A + B - A - B and in both cases we're done.