SUBJECT-SPECIFIC LINEAR MODELS FOR LONGITUDINAL DATA

What we have been doing:

• Marginal/Population-average (PA) linear model:

$$\mathbf{Y}_i = X_i' \boldsymbol{\beta} + \boldsymbol{\epsilon}_i$$

- All variation in Y_{ij} not explained by $m{x}_{ij}$ is captured by ϵ_{ij}
- ϵ_i is mean-zero, uncorrelated with X_i
- So that:

$$\mathrm{E}(Y_{ij}|\boldsymbol{x}_{ij}) = \boldsymbol{x}'_{ij}\boldsymbol{\beta}$$

and therefore β has a **population-average** interpretation equivalent to that in OLS models for independent data

- Main role of longitudinal (versus cross-sectional) data in PA models:
 - increase **statistical efficiency** of inferences on $oldsymbol{eta}$
 - study the variance-covariance-correlation model

- Conditional/Subject-specific models have interpretations explicitly tailored to longitudinal data in order to answer questions such as:
 - What is the effect of time on Y_{ij} in terms of subject-specific trajectories (changes) over time?
 - What is the effect of covariates varying within subject, allowing subjects to act as their own conrol?
- General **subject-specific** linear model for longitudinal data:

$$Y_{ij} = \boldsymbol{x}'_{ij}\boldsymbol{\beta} + \boldsymbol{d}'_{ij}\boldsymbol{U}_i + Z_{ij}$$

where

$$Z_{ij} \sim N(0, \tau^2)$$

and the Z_{ij} 's are independent of X_i , d_{ij} , U_i and of each other

- Now, d_{ij} is also a set of observed covariates for the ith subject at the jth time (like x_{ij})
 - $oldsymbol{d}_{ij}$ is usually a subset of what is in $oldsymbol{x}_{ij}$
 - $oldsymbol{d}_{ij}$ has coefficient $oldsymbol{U}_i$, which is **subject specific**
 - each subject has his own personal $oldsymbol{U}_i$
 - the $oldsymbol{U}_i$'s vary across subjects
 - Special case: random intercept

if $\boldsymbol{d}_{ij}=1$, we have personal intercept \boldsymbol{U}_i for each subject i

Note importantly that if we just examine the ith subject,

$$\mathrm{E}(Y_{ij}|\boldsymbol{U}_i,\boldsymbol{d}_i,\boldsymbol{x}_{ij}) = \boldsymbol{x}_{ij}'\boldsymbol{\beta} + \boldsymbol{d}_{ij}'\boldsymbol{U}_i$$

which is a subject specific model for that subject

• **Example:** Arm circumference in Nepalese children as a function of age and sex. Let $Y_{ij} = arm_{ij}$:

$$Y_{ij} = \beta_0 + \beta_1 \mathsf{age}_{ij} + \beta_2 \mathsf{sex}_i + \beta_3 \mathsf{age}_{ij} \times \mathsf{sex}_i + U_{i1} + U_{i2} \mathsf{age}_{ij} + Z_{ij}$$

- "common effect" (my term) covariates:

$$oldsymbol{x}_{ij}' = (1, \mathtt{age}_{ij}, \mathtt{sex}_i, \mathtt{age}_{ij} imes \mathtt{sex}_i)$$

- "subject-specific effect" (again, my term) covariates:

$$\boldsymbol{d}'_{ij} = (1, \mathtt{age}_{ij})$$

– personal intercept U_{i1} and personal slope U_{i2}

• This model could be rewritten in hierarchical linear model form as

$$Y_{ij} = (\beta_0 + \beta_2 sex_i + U_{i1}) + (\beta_1 + \beta_3 sex_i + U_{i2})age_{ij} + Z_{ij}$$
,

(sex is a between-subject covariate) so that for subject i

- the subject-specific intercept is $\beta_0 + \beta_2 sex_i + U_{i1} = b_{i0}$
- the **subject-specific** slope with respect to age is $\beta_1 + \beta_3 sex_i + U_{i2} = b_{i1}$
- Therefore, the model for subject *i* is

$$Y_{ij} = b_{i0} + b_{i1} \operatorname{age}_{ij} + Z_{ij}$$

- This is a **subject-specific** model:
- Each subject has own slope and own intercept
 - Both determined by subjects' sex and some deviation U_{i1} and U_{i2}

A simpler model is

$$Y_{ij} = (\beta_0 + \beta_2 \operatorname{sex}_i + U_{i1}) + \beta_1 \operatorname{age}_{ij} + Z_{ij}$$

which allows:

- a subject-specific intercept
- a common slope for all subjects
- Each subject has **same slope** with respect to age, and **different** intercepts determined by subjects' sex and U_{i1}
- Two ways to handle the U_i coefficients (different assumptions required):
 - Fixed effects (FE) model: Treat them as fixed parameters (like the β 's) (fixed effects model)
 - * One U_i parameter for each subject i
 - Random effects (RE) model: Treat them as random variables from a distribution, independent of X_i (random effects model)
 - * Eg, $U_i \sim N(0, \nu^2)$, and U_i is independent of X_i and Z_{ij}

Example: "Random effect" Subject-specific Models

• **Example:** Arm circumference in Nepalese children

Suppose we consider the **random intercept** model for arm circumference

$$Y_{ij} = \beta_0 + \beta_1 \operatorname{wt}_{ij} + \beta_2 \operatorname{age}_{ij} + \beta_3 \operatorname{sex}_i + U_i + Z_{ij}$$
$$= (\beta_0 + \beta_3 \operatorname{sex}_i + U_i) + \beta_1 \operatorname{wt}_{ij} + \beta_2 \operatorname{age}_{ij} + Z_{ij}$$

Particular interest: coefficient β_1 of weight

• Then each subject has his / her own intercept

$$b_{0i} = \beta_0 + \beta_3 \operatorname{sex}_i + U_i,$$

 β_1 and β_2 are common slopes with respect to weight and age

- The model assumes that each subject in the population has the **same slope**, but that these slopes capture the **within-subject** change in the mean arm circumference for a unit change in weight
- In such a random effects model, we assume:
 - $-U_i \sim N(0, \nu^2)$
 - U_i is **independent** of X_i (and the Z_{ij} 's) (a **key** assumption)
- (As we have seen in previous notes) the model can be estimated via ML or ReML in software:

```
proc mixed data=nepal method=ML;
class id sex;
model arm=wt age sex/ s;
random intercept/ subject=id;
run;
```

Covariance	Parameter	Estimates
Cov Parm	Subject	Estimate
Intercept	id	0.4106
Residual		0.1275

Solution for Fixed Effects

				Standard			
Effect	sex		Estimate	Error	DF	t Value	Pr > t
			0.000	0.4000	405	5 4 00	
${ t Intercept}$			8.9626	0.1633	195	54.89	<.0001
wt			0.6630	0.02326	678	28.51	<.0001
age			-0.05949	0.003620	678	-16.43	<.0001
sex		1	-0.2920	0.09528	678	-3.06	0.0023
sex		2	0	•	•	•	•

- This model is estimated assuming:
 - random intercepts U_i are **normally-distributed** among subjects
 - U_i is **independent** of the covariates \boldsymbol{x}_{ij} for that subject

Example: "Fixed effect" Subject-specific Models

- Suppose instead that we wanted to fit the **same model**, but:
 - did not want to assume random effects U_i independent of X_i
 - did not want to assume normally distributed random effects
 - did not really care about the effect of sex
- Then we can fit the same model (formally), assuming that the U_i 's are not random, but rather **fixed quantities** for each subject

 This is called a **fixed effects** model in econometrics
- We will work more on random effects models later

"Fixed effect" Subject-specific Models

Why fit a model with the U_i 's fixed? What do we gain?

- the U_i 's model **heterogeneity** in level of arm circumference across subjects
- this heterogeneity arises from unobserved factors on each subject,
 e.g.:
 - genetic factors
 - environmental factors such as nutrition
- we would like to measure the effect of weight on arm circumference adjusting for these things
 - -o.w. they may confound the arm circumference-weight relationship
- We would like to assess how arm circumference responds within subjects to variation in weight
 - each person act as his/her own control

• suppose we had measures of these things — we might fit the model:

$$Y_{ij}=eta_0+eta_1 ext{wt}_{ij}+eta_2 ext{age}_{ij}+eta_3 ext{sex}_i+eta_4 ext{genetics}_i+eta_5 ext{nutrition}_i+Z_{ij}$$
 and obtain the adjusted coefficient eta_1 for weight

• since we do not get to observe all of these things, suppose we just lump them all together into U_i :

$$U_i = \beta_4 \texttt{genetics}_i + \beta_5 \texttt{nutrition}_i + \beta_3 \texttt{sex}_i$$

and fit the model

$$Y_{ij} = \beta_0 + \beta_1 \mathsf{wt}_{ij} + \beta_2 \mathsf{age}_{ij} + U_i + Z_{ij}$$

• Note: sex_i is absorbed in U_i

- ullet Note: Any constant can be added to eta_0 and subtract from U_i
 - We can restrict $\sum_{i=1}^{m} U_i = 0$ in estimation
 - $\rightarrow \beta_0$ is average of personal intercepts $U_i + \beta_0$.
- then we have automatically adjusted for genetics, nutrition, etc., without including them in the model!
 - \rightarrow **subject-level** effect U_i adjusts for unobserved subject-level factors
 - → each subject is his/her own control

- however, the U_i now contains **confounding variables** on the relationship of arm circumference to weight:
 - $\rightarrow U_i$ associated with both arm circumference **and** weight
 - $\rightarrow U_i$ is **not independent** of covariates $x_{ij}!$ (as in random effects models)
- treating the U_i 's as **fixed quantities** and trying to estimate the model skirts this violation of the independence of random effects assumption
- fixed effects models restrict our focus to only within-subject
 covariation of predictor and response

Estimation of Fixed Effects Model (Classic Approach)

Starting with

$$Y_{ij} = \beta_0 + \beta_1 \mathsf{wt}_{ij} + \beta_2 \mathsf{age}_{ij} + \beta_3 \mathsf{sex}_i + U_i + Z_{ij}$$

- ullet Average the LHS for each subject i to get \bar{Y}_i
- Average the RHS for each subject i to get

$$\beta_0 + \beta_1 \operatorname{avg}(\mathtt{wt})_i + \beta_2 \operatorname{avg}(\mathtt{age})_i + \beta_3 \operatorname{sex}_i + U_i + \bar{Z}_i$$

• Now subtract to obtain within-subject deviations

$$\begin{aligned} Y_{ij} - \bar{Y}_i &= & \{\beta_0 + \beta_1 \mathtt{wt}_{ij} + \beta_2 \mathtt{age}_{ij} + \beta_3 \mathtt{sex}_i + U_i + Z_{ij} \} \\ &- \{\beta_0 + \beta_1 \mathtt{avg}(\mathtt{wt})_i + \beta_2 \mathtt{avg}(\mathtt{age})_i + \beta_3 \mathtt{sex}_i + U_i + \bar{Z}_i \} \\ &= & \beta_1 (\mathtt{wt}_{ij} - \mathtt{avg}(\mathtt{wt})_i) + \beta_2 (\mathtt{age}_{ij} - \mathtt{avg}(\mathtt{age})_i) + (Z_{ij} - \bar{Z}_i) \end{aligned}$$

- Note: Can see in this model form that the model isolates the
 within-subject covariability of arm circumference, weight and age
- Fitting this model with OLS is one way to estimate a fixed effects model
- To estimate U_i (with restriction of $\sum_{i=1}^m U_i = 0$):
 - Within each subject i, by averaging

$$Y_{ij} = \beta_0 + \beta_1 \mathbf{wt}_{ij} + \beta_2 \mathbf{age}_{ij} + U_i + Z_{ij},$$

we can estimate $\beta_0 + U_i$ by

$$\widehat{\beta_0 + U_i} = \bar{y}_i - \bar{\boldsymbol{x}}_i' \widehat{\boldsymbol{\beta}},$$

where $ar{x}_i' \widehat{oldsymbol{eta}}$ includes subject-averaged effects of wt and age.

- β_0 can be estimated by averaging $\widehat{\beta_0 + U_i}$:

$$\widehat{\beta}_0 = \frac{1}{m} \sum_{i=1}^m \widehat{\beta_0} + U_i$$

- Fixed effects U_i can be "estimated" as:

$$\widehat{U}_i = (\bar{y}_i - \bar{\boldsymbol{x}}_i' \widehat{\boldsymbol{\beta}}) - \widehat{\beta}_0$$

• SAS code:

```
proc glm data=nepal;
absorb id;
class sex;
model arm = wt age sex/ solution;
contrast 'F test for wt and age'
wt 1 ,
age 1 ;
run;
```

		Number of Observa	1000 877		
		Sum of			
Source	DF	Squares	Mean Square F	Value Pr	c > F
Model	198	1033.244986	5.218409	42.06	<.0001
Error	678	84.120106	0.124071		
Corrected Total	876	1117.365092			
Contrast		DF Contrast S	SS Mean Square	F Value	Pr > F
F test for wt and age		2 108.0030639	54.0015319	435.25	<.0001
			Standard		
Paramete	er	Estimate	Error	t Value	Pr > t
wt		0.8010690922	0.03096592	25.87	<.0001
age		0754262423	0.00466085	-16.18	<.0001
age sex	1	0754262423 0.0000000000 B	0.00466085 ·	-16.18 ·	<.0001

- the effect of sex is not estimable
- the estimated coefficient of weight is about 25 percent higher in the fixed effects formulation than in the random effects formulation, suggesting some confounding by unobserved between subject factors
- Degrees of freedom (df) calculation for fixed effects model:
 - observations: 877
 - subject-specific intercepts (number of subjects): 197
 - within-subject predictors: 2

final denominator df: 877 - 197 - 2 = 678

• The overall model F-test above the main output tests whether all within-subject model terms are zero, i.e.

$$H_0: \beta_1 = \beta_2 = 0$$

versus

$$H_A$$
: at least one of $\beta_2, \beta_3 \neq 0$

Therefore, this is on 2 numerator df

ullet The denominator df 678 is used in the overall model F-test as well as for any F- or t-test generated from the model, e.g.,

```
contrast 'F test for wt and age'
wt 1 ,
age 1 ;
```

would generate F-test with 2 numerator df and 678 denominator df

• Note: F-test for fixed-effects model is same to OLS, by considering U_i as coefficients of dummy variables.

• An alternative way in SAS:

```
proc glm data=nepal;
class id;
model arm = wt age id / solution p noint;
ods output ParameterEstimates=parm PredictedValues=pred;
run;
```

Parameter	c	Estimate	Standard Error	t Value	Pr > t
wt		0.801069092	0.03096592	25.87	<.0001
age		-0.075426242	0.00466085	-16.18	<.0001
id	120011	7.131001505	0.29489058	24.18	<.0001
id	120012	6.660281955	0.31420165	21.20	<.0001
<snip></snip>					

• $\beta_0 + U_i$ are estimated for each subject i

```
• Let's check \operatorname{corr}(\hat{U}_i, \boldsymbol{x}'_{ij}\widehat{\boldsymbol{\beta}})
  *obtain U (include beta0);
  data parm;
       set parm;
       if (Parameter eq "wt")or(Parameter eq "age")then delete;
       id=input(substr(parameter,11),12.0);
       rename estimate=U;
       keep id estimate;
  run;
  *obtain X*beta;
  data pred;
       merge nepal(keep=id) pred;
       keep id Predicted;
  run;
  data tmp;
       merge pred parm;
       by id;
       Xbeta=predicted-U;
  run;
  *calculate corr(U_i,X*beta);
```

proc corr data=tmp;
var U Xbeta;
run;

Pearson Correlation Coefficients Prob > |r| under HO: Rho=0 Number of Observations

	U	Xbeta
U	1.00000	-0.56602
		<.0001
	985	877
Xbeta	-0.56602	1.00000
	<.0001	
	877	877

- \bullet Correlation between \widehat{U}_i and the fitted linear predictor ${\pmb x}'_{ij}\widehat{\pmb \beta}$ is rather large (-0.56)
 - suggesting substantial confounding of the relationships between arm circumference and weight and age in a non-fixed effects model (either a marginal model or a random effects model)

ullet Another way in SAS using proc panel (include F test for Fixed Effects U):

```
data nepal2;
set nepal;
  if(id=360162)or(id=360431)or(id=360432)then delete;
          *all arm are missing for these subjects;
  obs + 1;
  by id;
  if first.id then obs = 1;
run;
proc panel data = nepal2;
  id id obs;
  model arm = wt age sex/ fixone;
run;
```

Parameter Estimates

Variable	DF	Estimate	Standard Error	t Value	Pr > t	Label
Intercept	1	7.082318	0.2232	31.73	<.0001	Intercept
wt	1	0.801069	0.0310	25.87	<.0001	
age	1	-0.07543	0.00466	-16.18	<.0001	
sex	0	0	•	•	•	

F Test for No Fixed Effects

Num DF	Den DF	F Value	Pr > F
196	678	13.94	<.0001

• The F-test that all $U_i = 0$ tests the hypothesis

$$H_0: U_i = 0, i = 1, \dots, m$$

versus

 H_A : at least one $U_i \neq 0$

- Null: all subjects share the same intercept β_0
- This test is on 196 df (ie, numerator DF=m-1) because there are 196 constraints (note we set $\sum_{i=1}^{m} U_i = 0$).
- The test rejects with F=13.94 and we conclude that there are differences among subjects in subject-specific intercepts
- Note: Stata code for FE model: xtreg arm wt age sex , fe

Explore Alternative Way Partial regression for fixed effects models (Decompose between-/within-subject effects)

- Fitting the linear FE model is equivalent to doing partial linear regression on a model with a separate intercept $(\beta_0 + U_i)$ on each subject
 - like including a **dummy variable** U_1, \ldots, U_m for each of m subjects
- Partial regression:
 - 1. both y_{ij} 's and each covariate $x_{ij} = (x_{ij1}, \dots, x_{ijp})$ is regressed on the set of subject-level dummy variables
 - ie, between-subject values: eg, \bar{x}_i . (average within subject)
 - 2. y_{ij} residuals and x_{ij} residuals are obtained from these regressions ie, within-subject deviation: eg, $(x_{ij} \bar{x}_{i\cdot})$ (longitudinal effect)
 - 3. the y_{ij} residuals are regressed on the set of x_{ij} residuals

- This will give you exactly the same β coefficients as using the within-subject deviation method above.
 - The within-subject deviations are **in fact** the residuals from the dummy variable regression:

Within-subject deviations

$$Y_{ij} - \bar{Y}_i = \beta_1(\mathsf{wt}_{ij} - \mathsf{avg}(\mathsf{wt})_i) + \beta_2(\mathsf{age}_{ij} - \mathsf{avg}(\mathsf{age})_i) + (Z_{ij} - \bar{Z}_i)$$

- \bullet However, final regression will not know to account for the fact that m separate coefficients (for dummy variables) have already been estimated before β
 - need to adjust DF
- Standard errors are incorrect because it is assumed that the residuals are independent
 - i.e., denominator DF = 877 2 = 875 (wrong!).

Summary A few general notes for FE

- When you include a fixed subject-specific intercept, you cannot estimate the effects for any subject-level covariates
- FE model sacrifices **between-subject** information to avoid the assumption of independence of U_i 's from the \boldsymbol{X}_i 's
- All between-subject variation in the data is absorbed by the subject-specific dummies
 - Effects of independent variables are solely within-subject effects
 - There needs to be enough within-subject variation for the estimator to be meaningful
- FE models may have too many subjects
 - \rightarrow Too many dummy variables for model specification.
 - \rightarrow decreases the degrees of freedom for adequately statistical tests.

- Autocorrelation over time is not solved by FE
- FE model is equivalent to estimating a separate intercept for each subject
 - possible to include other fixed effects such as slopes, but estimation is complicated
 - → may require non-standard software
- we will revisit these models later on when we do models for binary and count data

Compare FE and RE models

- FE model:
 - U_i 's are allowed to be correlated with between subject components of \boldsymbol{X}_i 's
 - No assumption on distribution of U_i

- Random effects (RE) model
 - Independence assumption between U_i 's and \boldsymbol{X}_i 's
 - is much safer when the within-subject covariates are fixed by design, or are the same for all subjects (e.g., week)
 - Normality distribution of U_i
 - Some numerical studies claim evidence of robustness of RE model on normality assumption violation
- Hausman test (1978)
 - Null hypothesis: U_i are not correlated with the regressors X
 - A significant test result \rightarrow RE model should be rejected in favor of the FE model.
 - R code examples for FE/RE model and Hausman test (https://www.princeton.edu/ otorres/Panel101R.pdf)