03/04(一)浙江工业大学高等数学(A)考试试卷

班级: 姓名: 学院: 总分 四 五 六

一、试解下列各题(每小题3分):

本题全部为填空题,请将答案填入题中横线上空白处,不填解题过程。

1.
$$\lim_{x\to\infty} (1+\frac{b}{x+a})^{cx+d} =$$
 (其中 a,b,c,d 为常数)。

2.
$$\lim_{x\to 0} (\frac{1}{x} - \frac{1}{e^x - 1}) = \underline{\hspace{1cm}}_{\circ}$$

5. 函数
$$y = x - 2 \ln x$$
 的单调增加区间是_____。

6.
$$\int \frac{x^3 dx}{x^8 + 2x^4 + 2} dx = \underline{\hspace{1cm}}$$

8. 设
$$f(x)$$
 在 $[0, +\infty)$ 上连续,且 $\int_0^{x^2} f(t)dt = x(1+e^x)$,则 $f(1) = \underline{\hspace{1cm}}$ 。

9. 已知
$$xe^x$$
 为 $f(x)$ 的一个原函数,则 $\int_0^1 xf'(x)dx =$ _______。

差 $y = e^{rx}$ 是微分方程 y'' + 7y' + 12y = 0 的解,则 $r = ______$ 。

二、试解下列各题(每小题4分):

本小题全部为选择题,每小题给出四种选项,其中有且仅有一个是正确的,将你认为正确 的代码填入括号内。

1. 下列极限中,正确的是(

A.
$$\lim_{x \to \infty} \frac{\sin x}{x} = 1$$
 B. $\lim_{x \to 0} \frac{\sin x}{2x} = 1$ C. $\lim_{x \to \infty} x \sin \frac{1}{x} = 1$ D. $\lim_{x \to 0} \frac{\sin \frac{1}{x}}{\frac{1}{x}} = 1$.

2. 设
$$f(x)$$
 在 $(-\delta, \delta)$ 内有定义且 $\lim_{x\to 0} \frac{f(x) - f(0)}{(\sin x)^2} = \frac{1}{2}$,则有结论: ()

(A)
$$f(0)$$
 是 $f(x)$ 的最大值。 (B) $f(0)$ 是 $f(x)$ 的最小值。

(C)
$$f(0)$$
 是 $f(x)$ 的极大值。 (D) $f(0)$ 是 $f(x)$ 的极小值。

- 3. 函数 y = |x| + 1 在 x = 0 处 ()
 - A. 无定义
- B. 不连续
- C. 可导 D. 连续但不可导

《 微分方程 $y'' + y' = e^x + x$ 的一个特解的形式为 ()

- (A) $y^* = ae^x + bx$; (B) $y^* = axe^x + bx + c$;
- (C) $y^* = ae^x + x(bx+c)$; (D) $y^* = axe^x + x(bx+c)$;

三、计算下列各题(每小题5分):

- 2. 求曲线 $y = e^x + x$ 上点 (0, 1) 处的切线方程。
- 3. 求: $\int x^3 \sqrt{x^2 3} \, dx$
- \mathbf{x} . 求微分方程 $\mathbf{y'''} \mathbf{y''} = \mathbf{x}$ 的通解。

四、计算下列各题(每小题6分):

- 1. 求由拋物线 $y = x^2$, $y = 2 x^2$ 所围图形绕 x 轴旋转一周所成立体的体积。
- **※** 求微分方程 $(4x^3 + 2xy)dx + (x^2 + 1)dy = 0$ 的通解。

五、 $(8 \, \Im)$ 设 $S_1(t)$ 是曲线 $y = x^3$ 与直线 x = 0 及 y = t (0 < t < 1) 所围的图形的面积, $S_2(t)$ 是曲线 $y = x^3$ 与直线 x = 1 及 y = t (0 < t < 1) 所围的图形的面积, 试求 t 为何值时 $S_1(t) + S_2(t)$ 最小? 最小值是多少?

※、(8分) 设函数 f(x) 连续,且满足 $f(x) = e^x + \int_0^x t f(t) dt - x \int_0^x f(t) dt$,求: f(x)

七、(6分)设f(x)在[0,1]上连续,在(0,1)内可微,且满足条件 $f(1) = 2\int_{a}^{\frac{1}{2}}xf(x)dx$,

试证: (1) 存在 $c \in [0, \frac{1}{2}]$, 使得f(1) = cf(c);

(2) 存在 $\xi \in (c,1)$, 使得 $\xi f'(\xi) + f(\xi) = 0$