Definitions

1.) Given sets X and Y, the direct product or cartesian product $X \times Y$ is defined as

$$X \times Y = \{(x, y) : x \in X \land y \in Y\}$$

2.) Given topological spaces X and Y, the product topology \mathcal{T}_p on $X \times Y$ is defined as

$$\mathcal{T}_p = \left\{ U \subseteq X \times Y : U = \bigcup_{\alpha \in \mathcal{A}} U_\alpha \times V_\alpha \right\}$$

given $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ and $\{V_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ are collections of open sets in X and Y respectively.

- 3.) Given topological spaces X and Y, the product topology on $X \times Y$ satisfies the following:
 - i.) The projection maps $p_X: X \times Y \to X$ and $p_Y: X \times Y \to Y$ are continuous.
 - ii.) Given a topological space W and a pair of continuous functions $g_X: W \to X$ and $g_Y: W \to Y$, there exists a unique continuous function $g: W \to X \times Y$ where $g_X = p_X \circ g$ and $g_Y = p_Y \circ g$.
- 4.) Given a collection of sets $\{X_{\alpha}\}_{{\alpha}\in\mathcal{A}}$, the direct product $\prod_{{\alpha}\in\mathcal{A}}X_{\alpha}$ is defined as

$$\prod_{\alpha \in A} X_{\alpha} = \left\{ \left\{ x_{\alpha} \right\}_{\alpha \in \mathcal{A}} : x_{\alpha} \in X_{\alpha} \right\}$$

- 5.) Given a collection of topological spaces $\{X_{\alpha}\}_{{\alpha}\in\mathcal{A}}$, the product topology on $\prod_{{\alpha}\in\mathcal{A}}X_{\alpha}$ satisfies the following:
 - i.) For all $\alpha \in \mathcal{A}$, the projection map $p_{\alpha} : \prod_{\alpha \in \mathcal{A}} X_{\alpha} \to X_{\alpha}$ is continuous.
 - ii.) Given a topological space W and a collection of continuous functions $\{g_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ where $g_{\alpha}:W\to X_{\alpha}$, there exists a unique continuous function $g:W\to\prod_{{\alpha}\in\mathcal{A}}X_{\alpha}$ where $g_{\alpha}=p_{\alpha}\circ g$.
- 6.) A topological space X is *Hausdorff* if and only if given distinct $x, x' \in X$, there exist open sets U, V in X where $x \in U, x' \in V$, and $U \cap V = \emptyset$.

Proofs

- a.) A topological space X is Hausdorff if and only if its diagonal is closed under the product topology.
- b.) Because this conjecture holds for every example we covered in class, I am choosing to pursue a proof of it.
- c.) Let X be a topological space, and suppose it is Hausdorff. Let D^{\complement} denote the complement of the diagonal of X, thus $D^{\complement} = \{(x, x') \in X \times X : x \neq x'\}$. Since X is Hausdorff, we know that for all $(x, x') \in D^{\complement}$, there exist open sets U, V in X where $x \in U$, $x' \in V$, and $U \cap V = \emptyset$, thus $(x, x') \in U \times V$. In addition, since $U \cap V = \emptyset$, $(x, x') \in U \times V \implies x \neq x'$. For each point $\alpha \in D^{\complement}$, assign open sets U_{α} and V_{α} that satisfy the Hausdorff property, thus $\alpha \in U_{\alpha} \times V_{\alpha}$, thus $D^{\complement} \subseteq \bigcup U_{\alpha} \times V_{\alpha}$. Finally, if $\alpha \in U_{\alpha} \times V_{\alpha}$, then $\alpha = (x, x')$ where $x \neq x'$, thus $\alpha \in D^{\complement}$, thu

Next, suppose the diagonal of X is closed, then D^{\complement} is open, thus there exist collections of open sets $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ and $\{V_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ where $D^{\complement}=\bigcup U_{\alpha}\times V_{\alpha}$. It is clear that for all $\alpha\in\mathcal{A},\ U_{\alpha}\times V_{\alpha}\subseteq D^{\complement}$, thus $(x,x')\in U_{\alpha}\times V_{\alpha}\implies x\neq x'$, thus $U_{\alpha}\cap V_{\alpha}=\varnothing$. Finally, since $(x,x')\in U_{\alpha}\times V_{\alpha}$, we know that $x\in U_{\alpha}$ and $x'\in V_{\alpha}$, thus for all distinct $x,x'\in X$, the Hausdorff property is satisfied, thus X is Hausdorff.

Thus we can conclude that X is Hausdorff if and only if the diagonal of X is closed.

d.) This property stuck out to me when we were looking at examples, so not much reworking of ideas was needed before settling on trying to prove it.