1 Basic Thermodynamics

1.1 Ideal Gas Equation

Ideal Gas Equation : $PV = mRT = n\bar{R}T$

$$R = \frac{\bar{R}}{M}$$

 $\bar{R} = Universal\ Gas\ Constant$

 $M = Molecular \ mass$

1.2 Temperature Scale conversion

2 Fixed Mass Energy analysis

$$Work(W) = Force(F) * distance(\partial x)$$

= $PA\partial x$
= $P\partial v$
= PdV

$$W = \int P dV$$

The above work is called Non-flow work or closed system work or boundary work

2.1 Work formulae for various processes

Constant Volume work : $W = \int P dV = 0$

Constant Pressure work : $W = \int_{1}^{2} P dV = P(V_2 - V_1)$

Constant Temperature work:

$$W = \int PdV \tag{1}$$

For Ideal gas, PV = mRT. Here **mRT** is constant since T is constant in Isothermal process and **m** and **R** are already constants.

$$PV = C$$

$$\Rightarrow P = \frac{C}{V} \text{ or } V = \frac{C}{P}. \quad Use \ P = \frac{C}{V} \text{ in (1)}$$

$$\Rightarrow W = \int_{1}^{2} \frac{C}{V} dV = \boxed{C \ln \frac{V_{2}}{V_{1}}}$$
From (2), $\frac{V_{2}}{V_{1}} = \frac{P_{1}}{P_{2}} \Rightarrow \boxed{W = C \frac{P_{1}}{P_{2}}}$