Cold-Start Recommendations Across E-Commerce Platforms

Problem Statement

- **Goal**: Optimize personalized recommendations for users visiting new e-commerce websites with minimal purchase history.
- **Challenge:** The cold-start problem limits recommendation effectiveness, leading to poor user experience, reduced engagement, and lower conversion rates.

Why This Problem Matters

- User Frustration: Irrelevant recommendations decrease user satisfaction.
- Business Impact: Affects customer retention and revenue.
- Cross-Platform Relevance: Users switch between platforms (e.g., Amazon to eBay), losing valuable interaction data.

Success Metrics

- Precision@k, Recall@k, NDCG: Measure relevance of recommendations.
- Click-Through Rate (CTR): User engagement with recommendations.
- Computational Efficiency: Latency and memory usage.

Constraints & Data Requirements

• Constraints:

- Data availability across platforms
- Real-time recommendation performance
- User privacy compliance

Required Data:

- User interactions (orders, wishlists, browsing)
- Product metadata (titles, images, reviews)
- User-generated content (ratings, preferences)

Technical Approach

- Model: GraphSAGE with Metadata Integration
- Features:
 - Pre-trained BERT embeddings for text metadata
 - Image embeddings (e.g., CLIP)
 - Graph topology (user-item interactions)
- Objective Function: Optimize ranking loss for cold-start scenarios

Algorithm & Implementation

- **GraphSAGE Aggregation**: Modified to handle heterogeneous features
- Libraries:
 - PyTorch Geometric (GraphSAGE)
 - Hugging Face Transformers (BERT embeddings)
 - Scikit-learn (Preprocessing)
- Web Extension: Real-time recommendations across e-commerce sites

Validation Methods

- Evaluation Metrics: Precision@k, Recall@k, NDCG
- Cross-Validation: Simulate cold-start by hiding interactions
- Baseline Comparison: Collaborative filtering, standard GraphSAGE

Initial Results

- Custom Dataset (76 images):
 - HDBSCAN identified 3 clusters (sweaters, sweatpants, dresses/skirts)
 - Low CPU usage (<5%), fast execution (<1 min)
- Fashion-MNIST (1,000 images):
 - 33 clusters detected with meaningful groupings
 - Minimal resource consumption, completed in minutes

Current Limitations

- Outliers: Patterned clothing not clustered well
- Scalability: Challenges with large datasets
- Metadata Mismatch: Inconsistent data formats across sites

Next Steps

- Optimize Clustering: Fine-tune HDBSCAN parameters
- Improve Metadata Handling: Better standardization across platforms
- Real-Time Performance: Enhance web extension efficiency
- Expand Datasets: Include more diverse product data

1. Heterogeneous Graph Neural Networks (HeteroGNN)

• Why It's a Good Fit: Handles multi-type data (users, products, brands) and multi-relation graphs.

• How It Works:

- Graph Construction: Users, products, brands as nodes; interactions as edges.
- Node Features: BERT for text, CLIP for images, price normalization.
- Aggregation: Learns from diverse node and edge types.

Application to Our Problem:

- Build a cross-platform graph with nodes representing users, products, and brands from different e-commerce sites.
- Use product metadata (image embeddings, descriptions, prices) as node features.
- Learn user preferences from Store1 and predict relevant products in Store2.
- Scalability: Mini-batch training with neighbor sampling.

2. Factorization Machines (FM)

Why It's a Good Fit: Integrates metadata into collaborative filtering efficiently.

• How It Works:

- User-Item Matrix enriched with brand, price, description, image embeddings.
- Predicts likelihood of user-item interactions.

Application to Our Problem:

- Represent each user-item interaction with features like user behavior, product metadata (brand, price, image embeddings).
- Factorization Machines will learn feature interactions, allowing us to make predictions even if the user has no prior history on the current website.
- Ideal for quick recommendations based on metadata similarity across platforms.
- Scalability: Fast training/inference, easy to update.
- Challenges: Limited non-linear relationship modeling, requires feature engineering.

3. Meta-Learning (MAML-Based Recommender)

Why It's a Good Fit: Adapts quickly to new platforms with minimal data.

• How It Works:

- Meta-Training: Learns from multiple platforms (Amazon, eBay).
- Meta-Adaptation: Fine-tunes for new sites with minimal interactions.
- Incorporates metadata for cold-start scenarios.

Application to Our Problem:

- Train the model on datasets from known e-commerce platforms (meta-learning phase).
- When a user visits a new store, fine-tune the model using limited interactions, leveraging metadata like images, brand, and descriptions.
- Scalability: Optimized for few-shot learning, quick adaptation.
- Challenges: Complex implementation, meta-training required.

Algorithm Comparison Summary

Algorithm	Strengths	Challenges	Best Use Case
Heterogeneous GNN	Handles multi-type data, scalable	Complex graph design, dynamic updates	Rich metadata with complex relationships
Factorization Machines	Simple, fast, scalable	Limited to linear interactions	Real-time recommendations with metadata
Meta-Learning (MAML)	Quick adaptation for cold-start users	Complex to implement, requires meta-training	Cross-platform personalization with minimal data

Questions & Discussion

- How can we improve real-time cross-platform recommendations?
- Strategies for handling data privacy across websites?
- Ideas for integrating additional metadata types?