Engineering features

MACHINE LEARNING FOR FINANCE IN PYTHON

Nathan George
Data Science Professor

One problem with linear models

```
# add non-linear interaction term for a linear model
SMAxRSI = amd_df['14-day SMA'] * amd_df['14-day RSI']
```

Some models that don't require manually creating interaction features:

Decision-tree-based models

- Random forests
- Gradient boosting

Others

neural networks

Volume features

Datetime feature engineering

Extracting the day of week

```
print(amd_df.index.dayofweek)
```

Dummies

	weekday_1	weekday_2	weekday_3	weekday_4	
Date					
2018-04-10	1	0	0	0	
2018-04-11	0	1	0	0	
2018-04-12	0	0	1	0	
2018-04-13	0	0	0	1	
2018-04-16	0	0	0	0	

Engineer some features!

MACHINE LEARNING FOR FINANCE IN PYTHON

Decision Trees

MACHINE LEARNING FOR FINANCE IN PYTHON

Nathan George

Data Science Professor

Decision trees

Decision trees

targets: [0, 0, 1, 1, 0, 1, 0]

Decision tree splits

targets: [0, 0, 1, 1, 0, 1, 0]

Decision tree splits

targets: [0, 0, 1, 1, 0, 1, 0]

Bad tree

Good tree

Decision tree regression

Regression trees

```
from sklearn.tree import DecisionTreeRegressor

decision_tree = DecisionTreeRegressor(max_depth=5)

decision_tree.fit(train_features, train_targets)
```


Decision tree hyperparameters

Max depth of 3

Evaluate model

```
print(decision_tree.score(train_features, train_targets))
print(decision_tree.score(test_features, test_targets))
```

```
0.6662215501032416-0.08917300191734268
```

```
train_predictions = decision_tree.predict(train_features)
test_predictions = decision_tree.predict(test_features)
plt.scatter(train_predictions, train_targets, label='train')
plt.scatter(test_predictions, test_targets, label='test')
plt.legend()
plt.show()
```


Grow some trees!

MACHINE LEARNING FOR FINANCE IN PYTHON

Random forests

MACHINE LEARNING FOR FINANCE IN PYTHON

Nathan George
Data Science Professor

Random forests

Bootstrap aggregating (bagging)

Feature sampling

Random Forests

- A collection (ensemble) of decision trees
- Bootstrap aggregating (bagging)
- Sample of features at each split

sklearn implementation

```
from sklearn.ensemble import RandomForestRegressor

random_forest = RandomForestRegressor()
random_forest.fit(train_features, train_targets)
print(random_forest.score(train_features, train_targets))
```


Hyperparameters

Parameter Grid

```
from sklearn.model_selection import ParameterGrid

grid = {'n_estimators': [200], 'max_depth':[3, 5], 'max_feature

from pprint import pprint

pprint(list(ParameterGrid(grid)))
```

```
[{'max_depth': 3, 'max_features': 4, 'n_estimators': 200}, {'max_depth': 3, 'max_features': 8, 'n_estimators': 200}, {'max_depth': 5, 'max_features': 4, 'n_estimators': 200}, {'max_depth': 5, 'max_features': 8, 'n_estimators': 200}]
```

Parameter Grid

```
test_scores = []
# loop through the parameter grid, set hyperparameters, save the scores
for g in ParameterGrid(grid):
    rfr.set_params(**g) # ** is "unpacking" the dictionary
    rfr.fit(train_features, train_targets)
    test_scores.append(rfr.score(test_features, test_targets))
# find best hyperparameters from the test score and print
best_idx = np.argmax(test_scores)
print(test_scores[best_idx])
print(ParameterGrid(grid)[best_idx])
```

```
0.05594252725411142
{'max_depth': 5, 'max_features': 8, 'n_estimators': 200}
```

Plant some random forests!

MACHINE LEARNING FOR FINANCE IN PYTHON

Feature importances and gradient boosting

MACHINE LEARNING FOR FINANCE IN PYTHON

Nathan George

Data Science Professor

Extracting feature importances

```
from sklearn.ensemble import RandomForestRegressor

random_forest = RandomForestRegressor()
random_forest.fit(train_features, train_targets)

feature_importances = random_forest.feature_importances_
print(feature_importances)
```

```
[0.07586547 0.10697602 0.12215955 0.23969227 0.29010304 0.0314028 0.11977058 0.00276721 0.00246329 0.0026431 0.00615667]
```


Sorting and plotting

```
# feature importances from random forest model
importances = random_forest.feature_importances_
# index of greatest to least feature importances
sorted_index = np.argsort(importances)[::-1]
x = range(len(importances))
# create tick labels
labels = np.array(feature_names)[sorted_index]
plt.bar(x, importances[sorted_index], tick_label=labels)
# rotate tick labels to vertical
plt.xticks(rotation=90)
plt.show()
```


Linear models vs gradient boosting

http://blog.kaggle.com/2017/01/23/a-kaggle-master-explains-gradient-boosting/

Boosted models

Available boosted models:

- Gradient boosting
- Adaboost

Fitting a gradient boosting model

```
from sklearn.ensemble import GradientBoostingRegressor
gbr = GradientBoostingRegressor(max_features=4,
                                learning_rate=0.01,
                                n_estimators=200,
                                subsample=0.6,
                                random_state=42)
gbr.fit(train_features, train_targets)
```


Get boosted!

MACHINE LEARNING FOR FINANCE IN PYTHON

