

第九章 代数系统

- 二元运算及一元运算的定义
- 二元运算的性质
 - 交换律、结合律、幂等律、消去律
 - 分配律、吸收律
- 二元运算的特异元素
 - 单位元
 - 零元
 - 可逆元素及其逆元

定义9.1 设 S 为集合,函数 $f: S \times S \rightarrow S$ 称为 S 上的二元运算,简称为二元运算.

验证一个运算是否为S上的二元运算,考虑以下两点:

- 1) S 中任何元素都可以进行这种运算,且运算的结果是惟一的;
- 2) S 中任何两个元素的运算结果都属于S,即S 对该运算是封闭的.

验证一个运算是否为 S 上的二元运算,考虑以下两点:

- 1) S 中任何元素都可以进行这种运算,且运算的结果是惟一的;
- 2) S 中任何两个元素的运算结果都属于S,即S对该运算是封闭的.
- 例9.1 二元运算的例子
- 1) N上的二元运算:加法、乘法.减法、除法
- 2) 设 $M_n(\mathbf{R})$ 表示所有 n 阶 $(n \ge 2)$ 实矩阵的集合,矩阵加法、减法和乘法都是 $M_n(\mathbf{R})$ 上的二元运算.

定义9.2 设 S 为集合,函数 $f: S \rightarrow S$ 上的一元运算,简称为一元运算。

定义 设S为集合,n为正整数,函数

$$f: \underbrace{S \times S \times ... \times S}_{n \uparrow} \rightarrow S$$

称为S上的n元运算,简称为n元运算.

算符: ∘ ,* ,·,⊕等符号

- ①对一元运算。, x 的运算结果记作。 x
- ②对二元运算。,如果x与y运算得到z,记做x°y=z
- ③对n 元运算,如果 a_1 、 a_2 … a_n 运算得到b,记做
- $\circ (a_1, a_2, ..., a_n) = b.$

说明:在同一问题中不同的运算使用不同的算符

运算表(表示有穷集上的一元和二元运算)

$\circ a_i$
° a ₁
° a ₂
•
•
•
$\circ a_n$

0	a_1	a_2	•••	a_n
a_1	a_1 ° a_1	a_1 ° a_2	•••	a_1 ° a_n
a_2	a_2 ° a_1	a_2 ° a_2	•••	a_2 ° a_n
•		• • •		
•		• • •		
•		• • •		
a_n	$a_n \circ a_1$	a_n ° a_2	•••	a_n ° a_n

例9.4 $S = \{1, 2\}$, 给出P(S)上的运算 Θ , 的运算表,其中全集为S。(Θ , 分别为对称差和绝对补运算)

⊕ 的运算表

\oplus	Ø	{1}	{2 }	{1,2}
Ø	Ø	{1}	{2 }	{1,2}
{1}	{1}	Ø	{1,2}	{2}
{2}	{2 }	{1,2}	Ø	{1}
{1,2}	{1,2}	{2 }	{1}	Ø

~ 的运算表

X	~ X
Ø	{1,2}
{1}	{2 }
{2}	{1}
{1,2}	Ø

练 $Z_5 = \{0, 1, 2, 3, 4\}$, ⊗ 为模 5 乘法, 即 $x \otimes y = xy \mod(5)$, 写出 ⊗ 的运算表。

解:

\otimes	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

注: $Z_n = \{0, 1, 2, ..., n-1\}$

二元运算的性质

定义9.3 设。为S上的二元运算,如果对于任意的 $x,y \in S$ 有

 $x \circ y = y \circ x$,则称运算在S上满足交换律.

例 Z, Q, R分别为整数、有理数、实数集; $M_n(R)$ 为 n 阶实矩阵集合, $n \ge 2$. 判断是否满足交换律。

集合	运算	交换律
Z, Q, R	普通加法+	有
	普通乘法×	有
$M_n(\mathbf{R})$	矩阵加法+	有
	矩阵乘法×	无

二元运算的性质

定义9.4 设。为S上的二元运算,如果对于任意的 $x,y,z \in S$ 有

 $(x \circ y) \circ z = x \circ (y \circ z),$

则称运算在S上满足结合律.

例 Z, Q, R分别为整数、有理数、实数集; $M_n(R)$ 为 n 阶实矩阵集合, $n \ge 2$. 判断是否满足结合律。

集合	运算	结合律
Z, Q, R	普通加法+	有
	普通乘法×	有
$M_n(\mathbf{R})$	矩阵加法+	有
	矩阵乘法×	有

二元运算的性质

定义9.5 设。为S上的二元运算,如果对于任意的 $x \in S$ 有

$$x \circ x = x$$

则称运算在 S 上满足幂等律.

例 Z, Q, R分别为整数、有理数、实数集; $M_n(R)$ 为 n 阶实矩阵集合, $n \ge 2$. 判断是否满足幂等律。

集合	运算	幂等律
Z, Q, R	普通加法+	无
	普通乘法×	无
$M_n(\mathbf{R})$	矩阵加法+	无
	矩阵乘法×	无

练 P(B)为幂集,判断在并∪,交 \cap ,相对补 $^-$,对称差⊕ 四种运算上是否适合交换律,结合律和幂等律。

集合	运算	交换律	结合律	幂等律
	并し	有	有	有
D(D)	交∩	有	有	有
P(B)	相对补-	无	无	无
	对称差⊕	有	有	无

定义9.6 设。 和* 为S上两个不同的二元运算,如果 $\forall x, y, z \in S$ 有

$$(x * y) \circ z = (x \circ z) * (y \circ z)$$

$$z \circ (x * y) = (z \circ x) * (z \circ y)$$

则称。运算对*运算满足分配律.

集合	运算	分配律
Z,Q,R	普通加法 + 与乘法 ×	×对+可分配
		+对×不分配
$M_n(\mathbf{R})$	矩阵加法 + 与乘法 ×	×对+可分配
		+对×不分配
P(B)	并∪与交∩	∪对○可分配
		○对∪可分配

定义9.7 设。 和* 为S上两个可交换的二元运算,如果 $\forall x, y \in S$ 有

$$x \circ (x * y) = x$$

$$x * (x \circ y) = x$$

则称。 和* 运算满足吸收律.

集合	运算	吸收律
Z,Q,R	普通加法 + 与乘法 ×	无
$M_n(\mathbf{R})$	矩阵加法 + 与乘法 ×	无
P(B)	并∪与交∩	有

定义9.8 设。为S上的二元运算,如果存在 e_l (或 e_r) $\in S$,使得对任意 $x \in S$ 都有

 e_l 。 x = x (或 x 。 $e_r = x$),则称 e_l (或 e_r)是 S 中关于 。 运算 的 左单位元(或右单位元).

定理9.1 设。为S上的二元运算, e_l 和 e_r 分别为。运算的左单位元和右单位元,则有

 $e_l = e_r = e$ 且 e 为 S 上关于。 运算的唯一的 单位元(幺元).

集合	运算	单位元
Z,	普通加法+	0
Q, R	普通乘法×	1
	矩阵加法+	n阶 全0矩阵
$M_n(\mathbf{R})$	矩阵乘法×	n阶 单位矩阵
P(B)	并∪	Ø
	交∩	В
	对称差⊕	Ø

定义9.9 设。为S上的二元运算,如果存在 θ_l (或 θ_r) $\in S$,使得对任意 $x \in S$ 都有

$$\theta_l$$
° $x = \theta_l$ (或 x ° $\theta_r = \theta_r$),则称 θ_l (或 θ_r)是 S 中关于。运算的左零元(或右零元).

定理9.2 设。为S上的二元运算, θ_l 和 θ_r 分别为。运算的左零元和右零元,则有

$$\theta_I = \theta_r = \theta$$

且 θ 为 S 上关于 。 运算的唯一的零元.

集合	运算	零元
Z,	普通加法+	无
Q, R	普通乘法×	0
$M_n(\mathbf{R})$	矩阵加法+	无
	矩阵乘法×	n阶全0 矩阵
P(B)	并し	В
	交∩	Ø
	对称差⊕	无

定义9.10 令 e 为 S 中关于运算。的单位元. 对于 $x \in S$,如果存在 y_l (或 y_r) $\in S$ 使得 y_l 。 x = e(或 x。 $y_r = e$)则称 y_l (或 y_r)是x 的 左逆元(或右逆元).

定理9.4 设。为S上可结合的二元运算,e为该运算。的单位元,对于 $x \in S$,如果存在左逆元 y_l 和右逆元 y_r ,则有 $y_l = y_r = y$ 且y为x唯一的逆元.

集合	运算	逆元
Z ,	普通加法+	X 的逆元 -x
Q, R	普通乘法×	X 的逆元 x-1 x-1属于给定集合
$M_n(\mathbf{R})$	矩阵加法+	<i>X</i> 逆元– <i>X</i>
	矩阵乘法×	X的逆元 X-1 X是可逆矩阵
P(B)	并し	Ø的逆元为Ø
	交∩	B的逆元为B
	对称差⊕	X的逆元为X

定义9.11 设。为V上二元运算,如果 $\forall x, y, z \in V$,

若 $x \circ y = x \circ z$,且x不是零元,则y = z

若 $y \circ x = z \circ x$, 且 x 不是零元,则 y = z

那么称。 运算满足 消去律.

- 例 1) Z, Q, R 关于普通加法和乘法满足消去律.
- 2) $M_n(\mathbf{R})$ 关于矩阵加法满足消去律,但是关于矩阵乘法不满足消去律。
- 3) $Z_n = \{0,1,2,...,n-1\}$ 关于模 n 加法 $x \oplus y = (x+y) \mod(n)$ 满足消去律.

例9.6 设。运算为Q上的二元运算,

$$\forall x, y \in \mathbb{Q}, x \circ y = x + y - xy,$$

- (1)。运算是否满足交换和结合律?说明理由.
- (2) 求。 运算的单位元、零元和所有可逆元.
- 解 (1) 任取 $x, y \in \mathbb{Q}, x \circ y = x+y-xy = y+x-yx = y \circ x$, 则。运算可交换,

任取
$$x, y, z \in \mathbb{Q}$$
,

$$(x \circ y) \circ z = (x+y-xy) + z - (x+y-xy) z$$

= $x+y+z-xy-xz-yz+xyz$

$$x \circ (y \circ z) = x + (y+z-yz) - x(y+z+2yz)$$

$$= x+y+z-xy-xz-yz+xyz$$

则。运算可结合.

(2) 设。运算的单位元和零元分别为 e 和 θ ,则对于任意 x 有 x° e = x 成立,即 $x+e-xe = x \Rightarrow e = 0$ 由于。运算可交换,所以 0 是幺元.

对于任意 x 有 x 。 $\theta = \theta$ 成立,即 $x+\theta-x\theta=\theta \Rightarrow x-x\theta=0 \Rightarrow \theta=1$ 由于。由于。运算可交换,所以 1 是单位元.

给定 x, 设 x 的逆元为 y, 则有 x。 y = 0 成立,即 $x+y+-xy=0 \Rightarrow y=-\frac{x}{1-x}$ $(x \neq 1)$

因此当 $x \neq 1$ 时, $y = -\frac{x}{1-x}$ 是 x 的逆元. x=1无逆元.

- 例9.7 设 $A=\{a,b,c\}$,A上的二元运算*如表所示.
- (1) 说明运算是否交换的、可结合的、幂等的.
- (2) 求出运算的单位元、零元、所有可逆元素的逆元.
- 解 (1) 任取x, y∈A, x * y = y * x, 则 * 运算满足交换率; 任取x, y, z∈A,(x * y) * z=x * (y * z) 则 * 运算满足结合率; 当 x=b 时, b * b = c ≠ b 则 * 运算不满足幂等率;

*	a	b	C
a	a	b	C
\boldsymbol{b}	b	C	a
C	C	a	b

(2)设*运算的单位元和零元分别为 e 和 θ ,

则对于任意 x 有 x*e = x 成立,

由表可知e = a;

对于任意 x 有 x* θ = θ 成立,

由表可知零元θ不存在;

给定x,设x的逆元为y,则有x*y=e=a成立,

由表可知 $a^{-1}=a, b^{-1}=c, c^{-1}=b$

*	a	b	C
a	a	b	C
b	b	C	a
C	C	a	b

练 设 $A = \{a, b, c\}$,构造 A 上的二元运算* 使得 a*b=c, c*b=b, 且*运算是幂等的、可交换的,给 出关于*运算的一个运算表,说明它是否可结合, 为什么?

*	a	b	C
a	a	C	
b	C	b	b
c		b	C

根据幂等律和已知条件a*b=c, c*b=b 得到运算表 根据交换律得到新的运算表 方框 可以填入a, b, c中任一选定的符号, 完成运算表

不结合,因为 (a*b)*b = c*b = b, a*(b*b) = a*b = c

由运算表判别算律的一般方法

- 交换律: 运算表关于主对角线对称
- 幂等律: 主对角线元素排列与表头顺序一致
- 消去律: 所有的行与列中没有重复元素
- 单位元: 所在的行与列的元素排列都与表头一致
- 零元: 所在的行与列都由该元素自身构成
- A 的可逆元: a 所在的行(第i行)中某列(比如第j列)元素为 e,且第j行i列的元素也是 e,那么 a 与第j个元素互逆
- · 结合律:除了单位元、零元之外,要对所有3个元素的组合验证表示结合律的等式是否成立

作业

习题9 (P191)

1

 $9(f_1, f_2)$

定义9.12 非空集合 S 和 S 上 k 个一元或二元运算 f_1, f_2, \ldots, f_k 组成的系统称为一个代数系统,简称 代数,记做 $V=\langle S, f_1, f_2, \ldots, f_k \rangle$.

- 1) S 称为代数系统的载体, S 和运算叫做代数系统的成分.
- 2) 有的代数系统定义指定了S中的特殊元素,称为代数常数,例如二元运算的单位元.
- 3) 有时也将代数常数作为系统的成分.

定义9.1 设S为集合,函数 $f: S \times S \rightarrow S$ 称为S上的二元运算,简称为二元运算.

验证一个运算是否为S上的二元运算,考虑以下两点:

- 1) *S* 中任何元素都可以进行这种运算,且运算的结果是惟一的;
- 2) S 中任何两个元素的运算结果都属于S,即S对该运算是封闭的.

定义9.12 非空集合 S 和 S 上 k 个一元或二元运算 f_1, f_2, \ldots, f_k 组成的系统称为一个代数系统, 简称代数, 记做 $V=\langle S, f_1, f_2, \ldots, f_k \rangle$.

- 1) S 称为代数系统的载体, S 和运算叫做代数系统的成分.
- 2) 有的代数系统定义指定了S中的特殊元素, 称为代数常数, 例如二元运算的单位元.
- 3) 有时也将代数常数作为系统的成分.

例 <N,+,0>, <Z,+,·,0,1>, <R,+,·,0,1>是代数系统,+ 和·分别表示普通加法和乘法.

定义9.13 如果两个代数系统中运算的个数相同,对应运算的元数相同,且代数常数的个数也相同,则称它们是同类型的代数系统.

推论 如果两个同类型的代数系统规定的运算性质也相同,则称为同种的代数系统.

定义9.15 设 $V_1 = \langle S_1, o \rangle$ 和 $V_2 = \langle S_2, * \rangle$ 是代数系统,其中 o 和 * 是二元运算. V_1 与 V_2 的 积代数 是 $V = \langle S_1 \times S_2, \cdot \rangle$, $\forall \langle x_1, y_1 \rangle$, $\langle x_2, y_2 \rangle \in S_1 \times S_2$, $\langle x_1, y_1 \rangle \cdot \langle x_2, y_2 \rangle = \langle x_1 \circ x_2, y_1 * y_2 \rangle$

例
$$V_1$$
=< \mathbb{Z} ,+>, V_2 =< $M_2(\mathbb{R})$, ·>, 积代数< $\mathbb{Z} \times M_2(\mathbb{R})$,o> $\forall < z_1, M_1 >$, $< z_2, M_2 > \in \mathbb{Z} \times M_2(\mathbb{R})$, $< z_1, M_1 >$ o $< z_2, M_2 > = < z_1 + z_2, M_1 \cdot M_2 >$ < 5 , $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} > \circ < -2$, $\begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} > = < 3$, $\begin{pmatrix} 2 & -1 \\ 2 & 0 \end{pmatrix} >$

第九章 代数系统

测验9设V=<Z5, ⊕>为代数系统,

- (1) 列出 ⊕ 的运算表;
- (2) 列出二元运算 ⊕ 的性质;
- (3) 求 田 运算的零元和单位元,并求出所有可逆元素的逆元。

作业

习题9 (P191)

11(1)