Problem 1

Assumptions:

1. If there is a line (x, y), there will not be another line with (y, x)

Part A

Map function:

$$map:(null,(x,y)) \rightarrow [(x,1),(y,1)]$$

Reduce function:

$$reduce: (x, [1,1,\dots]) \rightarrow (x, sum([1,1,\dots]))$$

The file would have each line: x, count_of_friends

Part B

Phase 1

Map function:

$$map:(null,(x,y))
ightarrow [(x,y),(y,x)]$$

Reduce function (identity):

$$reduce: (x, [y_1, y_2, \dots])
ightarrow (x, [y_1, y_2, \dots])$$

Intemediary Step (optional)

Filter out all pairs where the length of the friend list < k

Phase 2

Map Function:

$$map: (x_i, [y_1, y_2, \dots])
ightarrow ((y_i, y_j), 1) orall i, j, i
eq j$$

Additionally, we also need to remove duplicates like (y_i, y_j) and (y_j, y_i) . We can do this my sorting the pairs in alphabetically order and then removing the duplicates.

Reduce Function:

$$reduce: ((y_i,y_j), \llbracket 1,1,\dots \rrbracket)
ightarrow ((y_i,y_j), sum(\llbracket 1,1,\dots \rrbracket))$$

Write the (y_i,y_j) pairs that have key ≥ 7

Part C

Map function:

Reduce function:

$$reduce: (x, [1, 1, \ldots])
ightarrow egin{cases} (x, ext{null}) & ext{with probability } 0.01 \ ext{nothing} & ext{otherwise} \end{cases}$$

Problem 2

Part A

Consider the computation of $m_n = mina_1, a_2, \ldots, a_n$. In a single MapReduce pass, some reducer, let's call it R_n , must be responsible for computing and outputting the pair (n, m_n) .

Assume the input to reducer R_n is determined by fewer than n of the original input values. This implies there exists at least one input a_j (for some $j \in \{1, \dots, n\}$) that provides no information to R_n .

But this contradicts the definition of R_n because it must use all n input values to compute m_n correctly. Therefore, the input to R_n must be exactly the sequence (a_1, \ldots, a_n) and the reducer size is n.

Part B

Idea

First we make a key observation. To compute m_i , we can do $m_i = min/m_{i-1}, a_i/m_i$ instead of comparing all a_k where k < i.

We can do 2 logical steps as follows:

1. Split the input sequence into $\frac{n}{sqrtn}$ equal and ordered chunks and compute the min for the largest index in the chunk.

2. now we will have \sqrt{n} pairs of local minima and we perform the naive version of the algorithm but instead of using all a_i we use only the a_i 's that are greater than the largest m_i before the target m_i . Additionally we must use all the previous m_i 's as well (but we could compute a running minima of all intermediate m_i's given a third pass). This will make the reducer size in the second pass as most $(\sqrt{n}-1)+(\sqrt{n}-1)$ (the second to last element) which is still $O(\sqrt{n})$

Algorithm

Pass 1 - chunk mins

Break array A into \sqrt{n} equal and ordered chunks $C_1, C_2, \ldots, C_{\sqrt{n}}$. For the mapping function we need to be able to map i to a chunk id c_i . We do this as follows:

$$c_i = \lceil rac{i}{\sqrt{n}}
ceil$$

Mapping function:

$$map:(i,a_i)\mapsto (c_i,a_i)$$

Reduce function:

$$reduce: (c_i, [a_i, \dots, a_{i+\sqrt{n}-1}]) \mapsto (c_i, M_i)$$

where
$$M_i = \min\{[a_i, \dots, a_{i+\sqrt{n}-1}]\}$$

Pass 2 - Assemble

We now have inputs:

- 1. (c_j, M_j)
- 2. (i, a_i)

Mapping Function:

After the shuffle phase:

$$(c_i, [('min', M_1), \ldots, ('min', M_{i-\sqrt{n}})], ('val', i, a_i), \ldots, ('val', i + \sqrt{n}, a_{i+\sqrt{n}}))$$

Reduce Function:

Each reducer is responsible for a single chunk c_i

1. Calculate the running minimum from all minimum chunks:

$$P = \min\{M_i | ('min', M_i) \in list\}$$

- 2. Initialize local_min as P (if no 'min' tuples like in the first chunk, initialise to infinity)
- 3. Sort the value tuples (val', i, a_i) by i
- 4. Iterate through the sorted value tuples
 - for each $('val', i, a_i)$:
 - $lacksquare update local_min = min(local_min, a_i)$
 - emit the final pair $(i, local_m in)$

We then combine the lists from all reducers and return

Problem 3

Assumption:

- We are using a single machine for subsumpling but we could potentially distribute it. However, this will be order of n, so no effect on the big O of communication cost.
- We assume that when we sample we produce dividers that are roughly equal size.

 This is a fair assumption if we take k to be large enough to preserve the distribution of the data.

Part A

The goal is to broadcast $x_0, \ldots x_{k+1}$ (k+2) numbers to t machines.

The subsampling happens on the master so there is no communication cost involved. We simply pick each number with probability k/n. The broadcast is the only phase we have a communication cost.

This means we are sending a total of (k+2) imes t=kt imes 2t numbers in total. This is O(kt)

Part B

The goal here is to compute how many numbers fall into each of the k buckets (exist on each machine).

First we count the number of elements in each bucket on each of the t local machines. We end up with a count for each of the k buckets.

Next, we need to transmit this count back to the master to sum up the total number of elements in each bucket. Here, we send k (or 2k if we are sending pairs) numbers to the

master from each of the t machines. G_i is then the sum of the count sent from each machine for each bucket.

Thus, in total we are sending at most 2k imes t numbers across the network which is O(kt)

Part C

The goal here is to use the global counts that we have from the master to figure out which G_i contains the median and then which element in G_i is the median (r).

We now have $(n_i, count_i)$ on the master. Wer can find G_i and r as follows:

1. Calculate the median's overall rank					
$N = \sum { m counts}$	(2)				
$\overline{\mathrm{median}}$ _ $\mathrm{rank} = \lceil N/2 ceil$					
	(4)				
2. Find the bucket containing the median	(5)				
$\operatorname{cumulative} \setminus \operatorname{count} = 0$					
for j from 0 to length(counts) -1 :					
// Check if the median falls within the current bucket	(8)				
$if (cumulative \setminus count + counts[j]) \ge median \setminus rank:$	(9)				
// 3. Calculate the rank 'r' within this bucket	(10)				
$r = \mathrm{median} \backslash \mathrm{rank} - \mathrm{cumulative} \backslash \mathrm{count}$	(11)				
return (j,r) // Return the bucket index and the rank	(12)				
	(13)				
// If not found, add the current bucket's count to the total	(14)				
$\operatorname{cumulative} \subset \operatorname{cumulative} \subset \operatorname{count} + \operatorname{counts}[j]$	(15)				

There is no communication cost since this is all done on the master.

Part D

We now know G_j and r so we need to collect an ordered list of numbers in G_j to find the median.

The master instructs all t machines to send it only the numbers they have that belong to bucket G_j . The total communication is the total number of elements in G_j , which is n_j .

The network cost would be the expected size of n_j . Since we chose k samples, the data would be divided into k+1 chunks of roughly equal size on average.

Thus the network communication cost is approximately $\frac{n}{k+1}$ which is $O(\frac{n}{k})$

Once the master has the list of numbers in G_j , we sort it and return the element at index r. This is the median.

Part E

From the above parts we know communication cost is:

$$TotalCost(k) \approx O(kt) + O(kt) + O(n/k) = O(kt + n/k)$$

To minimize network cost we need to find k that minimizes f(k) = kt + n/k

$$f'(k) = t - \frac{n}{k^2}$$

Set f'(k) = 0 to find the minimum:

```
0 = t-\frac{n}{k^2} \newline
k^2=\frac{n}{t} \newline
k = \sqrt{\frac{n}{t}}
```

Thus we choose $k=\sqrt{\frac{n}{t}}$ to minimize network cost.

Problem 4

Config

```
In [9]: # Import necessary libraries for Spark
         from pyspark.sql import SparkSession
         from pyspark.sql.functions import *
         from pyspark.sql.types import *
         from pyspark.sql.window import Window
In [10]: # Initialize Spark session for local machine
         spark = SparkSession.builder \
             .appName("Assignment1 Problem4") \
             .master("local[*]") \
             .config("spark.sql.adaptive.enabled", "true") \
             .config("spark.sql.adaptive.coalescePartitions.enabled", "true") \
             .get0rCreate()
         # Set log level to basically no verbose output
         spark.sparkContext.setLogLevel("ERROR")
         print(f"Spark version: {spark.version}")
         print(f"Spark UI available at: {spark.sparkContext.uiWebUrl}")
        Spark version: 3.5.4
```

Spark UI available at: http://10.228.244.25:4040

```
In [11]: datasources = {
    'links': spark.read.csv('data/links.csv', header=True, inferSchema=True
    'movies': spark.read.csv('data/movies.csv', header=True, inferSchema=True
    'ratings': spark.read.csv('data/ratings.csv', header=True, inferSchema=
    'tags': spark.read.csv('data/tags.csv', header=True, inferSchema=True)
}
```

Part A

- Code Function: Calculates the mean number of ratings received per movie across the entire dataset.
- Implementation:
 - Groups ratings by movieID and counts ratings per movie
 - Computes the overall average of these counts
 - Output: 10.37 ratings per movie on average

```
In [12]: df = datasources['ratings']
    avg_count = (
        df.groupBy('movieID').agg(count('rating').alias('count')) #count ratings
        .agg(avg('count')) # get the average counts
        .collect()[0][0] # get the average
)
    print('Average number of ratings per movie: ',avg_count)
```

Average number of ratings per movie: 10.369806663924312

Part B

- Code Function: Determines which movie genres receive the highest average ratings from users.
- Implementation:
 - Joins ratings and movies datasets on movieID
 - Splits pipe-separated genres (Action|Comedy|Drama) into individual rows using explode()
 - Each movie has many genres. we will assume that the movie appears in all of the genres it is classified in as a single entry to compute the average rating of the genre.
 - Groups by genre and calculates average rating
 - Sorts results in descending order
- Key Findings:
 - Film-Noir (3.92) Highest rated genre
 - War (3.81) Second highest
 - Documentary (3.80) Third highest
 - Horror (3.26) Lowest rated genre

```
movies = datasources['movies']
In [13]:
         ratings = datasources['ratings']
         # join genre on movie id in ratings
         df = (
             ratings.join(
                 movies.select('movieID', 'genres'),
                 on='movieID',
                 how='left'
         )
         # explode the genres column
         df = (df)
             # first cast g1|g2|g3 to a list
             .withColumn('genres', split('genres', '\|'))
             # explode the list into multiple rows
             .withColumn('genres', explode('genres'))
         # groupby and get average rating for each genre
         genre_avg = (
             df.groupBy('genres')
             .agg(avg('rating').alias('avg_rating')) # get average rating for each ge
             .sort('avg_rating', ascending=False) # sort by average rating
         genre_avg.show()
```

```
avg_rating|
             genres|
          Film-Noir | 3.920114942528736 |
                Warl
                        3.8082938876312
        Documentary | 3.797785069729286 |
              Crime | 3.658293867274144|
              Drama|3.6561844113718758|
            Mystery | 3.632460255407871 |
          Animation | 3.6299370349170004 |
               IMAX| 3.618335343787696|
            Western | 3.583937823834197 |
            Musical|3.5636781053649105|
          Adventure | 3.5086089151939075 |
            Romance | 3.5065107040388437 |
           Thriller|3,4937055799183425|
            Fantasy | 3.4910005070136894 |
|(no genres listed)|3.4893617021276597|
             Sci-Fi| 3.455721162210752|
             Action | 3.447984331646809 |
           Children | 3.412956125108601 |
             Comedy | 3.3847207640898267 |
             Horror | 3.258195034974626 |
```

Part C

- Code Function: Identifies the highest-rated movies within each genre category.
- Implementation:
 - Similar genre explosion technique as Part B
 - Groups by movieID, title, and genres to get per-movie averages
 - Uses window functions (row_number() with partitionBy) to rank movies within each genre
 - Filters to show only top 3 movies per genre
- · Key Findings:
 - Many genres have multiple movies with perfect 5.0 ratings
 - Examples include "Black Mirror", "Sonatine", "12 Chairs (1976)"
 - Shows that niche or less-rated movies can achieve perfect scores
- Technical Note: The ranking uses row_number() over a window partitioned by genre and ordered by average rating (descending).

```
In [14]: movies = datasources['movies']
         ratings = datasources['ratings']
         # we need ratings, movies, and genres
         df = (
             ratings.join(
                  movies.select('movieID', 'genres', 'title'),
                  on='movieID',
                 how='left'
              )
         # explode the genres column
         df = (df)
             # first cast g1|g2|g3 to a list
              .withColumn('genres', split('genres', '\|'))
             # explode the list into multiple rows
              .withColumn('genres', explode('genres'))
         movie avg = (
             df.groupBy('movieID', 'title', 'genres')
              .agg(avg('rating').alias('avg_rating')) # get average rating for each mo
             # keep only the top 3 movies in each genre
              .withColumn('rank',
                  row_number().over(Window.partitionBy('genres').orderBy(desc('avg_rat
              .filter('rank <= 3')</pre>
              .sort('genres', 'rank')
              .drop('movieID')
         movie_avg.show(60)
```

+	title	•		genres		++ rank
1	Black Mirror		genres		+ 5.0	++ 1
i	Death Note: Desu	•	-		•	
	The Adventures of	•	-		•	
i	Sonatine (Sonachi		3	Action	-	
i	Knock Off (1998)	•		Action	•	
i	Max Manus (2008)			Action	•	
i	12 Chairs (1976)	•	Ad	dventure	•	
ĺ	Junior and Karlso		Ac	dventure	5 . 0	
ĺ	Asterix and the V		Ac	dventure	•	
ĺ	My Life as McDull		Ar	nimation	5.0	
ĺ	Into the Forest o		Ar	nimation	5.0	
	Winnie the Pooh a		Ar	nimation	5.0	
	The Fox and the H		(Children	5.0	1
	Wow! A Talking Fi		C	Children	5.0	2
	Junior and Karlso		(Children	5.0	3
	Unfaithfully Your			Comedy	5.0	1
	What Happened Was			Comedy	5.0	2
	Presto (2008)			Comedy	5.0	3
	American Friend,			Crime	5.0	1
	Little Murders (1			Crime	5.0	2
	Trailer Park Boys			Crime	5.0	3
	Tickling Giants (Docu	umentary	5.0	1
	Zeitgeist: Moving		Docu	umentary	•	
	Martin Lawrence L		Docu	umentary	5.0	3
	Sisters (Syostry)			Drama	•	
	Thousand Clowns,	•		Drama	•	
	Duel in the Sun (Drama	•	
	L.A. Slasher (2015)	•		Fantasy	•	
	Presto (2008)			Fantasy	•	
	My Left Eye Sees			Fantasy	•	
	Rififi (Du rififi	•		ilm-Noir		
	Long Goodbye, The				4.66666666666667	
	You Only Live Onc		Fi	ilm—Noir	•	
	Maniac Cop 2 (1990)			Horror	•	
	Buzzard (2015)			Horror	•	
	Galaxy of Terror			Horror	-	
	More (1998)	•		IMAX	•	
	Happy Feet Two (2			IMAX	•	
	Journey to the We			IMAX	•	
	Woman Is a Woman,	•		Musical	•	
	Into the Woods (1			Musical	•	
	True Stories (1986)			Musical	•	
	'Salem's Lot (2004)	•		Mystery	•	
	The Adventures of 7 Faces of Dr. La	•		Mystery	•	
	Moscow Does Not B	•		Mystery Romance		
	Crossing Delancey	•		Romance	•	
	My Left Eye Sees			Romance	•	
	SORI: Voice from			Sci-Fi	•	
	Mystery of the Th			Sci-Fi	•	
	A Detective Story			Sci-Fi	•	
	Supercop 2 (Proje		Т	Thriller	•	
	Hellbenders (2012)			Thriller	•	
	ACCEDENACIS (2012)	I	'	1	3.0	ı <u>-</u>

Maniac Cop 2 (1990)	Thriller	5.0	3
Mephisto (1981)	War	5.0	1
Come and See (Idi	War	5.0	2
Battle Royale 2:	War	5.0	3
Duel in the Sun (Western	5.0	1
Trinity and Sarta	Western	5.0	2
7 Faces of Dr. La	Western	5.0	3
			+

Part D

- Code Function: Identifies users who have rated the most movies.
- Implementation:
 - Groups ratings by userID and counts total ratings per user
 - Sorts in descending order by count
- Key Findings:
 - User 414: Most active with 2,698 ratings
 - User 599: Second with 2,478 ratings
 - User 474: Third with 2,108 ratings
 - Top 10 users range from 1,055 to 2,698 ratings
- Insight: Shows significant variation in user engagement, with power users rating hundreds more movies than typical users.

```
In [15]: ratings = datasources['ratings']

user_movies = (
    ratings.select('userID', 'movieID')
    .groupBy('userID')
    .agg(count('movieID').alias('count_rated')) # count num ratings for each
    .sort('count_rated', ascending=False) # sort by num ratings
)

user_movies.show(10)
```

```
|userID|count_rated|
    414|
                2698|
    599 I
                2478
    474|
                2108|
    448|
                1864|
    274
                1346
    610|
                1302|
    68|
                1260|
    380|
                1218|
    606
                1115|
    288|
                1055|
```

only showing top 10 rows

Part E

- Code Function: Finds pairs of users with the most movies rated in common (collaborative filtering foundation).
- Implementation:
 - Creates user-movie lists using collect_list() aggregation
 - Performs cross-join between users to create all possible user pairs
 - Uses array_intersect() to find common movies between user pairs
 - Calculates intersection cardinality and ranks by similarity
- · Key Findings:
 - Users 414 & 599: Highest similarity with 1,338 movies in common
 - Users 414 & 474: Second highest with 1,077 movies in common
 - User 414 appears frequently in top pairs (consistent with being most active)
 - Technical Significance: This analysis forms the basis for collaborative filtering recommender systems, where users with similar viewing histories receive similar recommendations.

```
In [16]: ratings = datasources['ratings']
         print('num_users:',ratings.select('userID').agg(countDistinct('userID')).col
         # first we get a dataframe with (userID, list_of_movies_rated)
         user movies = (
             ratings.select('userID', 'movieID')
             .groupBy('userID')
             .agg(collect_list('movieID').alias('movies_rated'))
         # now we need to check for every user pair what the intersection of their mo
         # first do a cross join and remove rows where user1 == user2
         user_pairs = (
             user_movies.alias('u1')
             .crossJoin(user movies.alias('u2'))
             .filter('u1.userID != u2.userID')
             .select(
                 col('u1.userID').alias('userID_u1'),
                 col('u1.movies rated').alias('movies rated u1'),
                 col('u2.userID').alias('userID_u2'),
                 col('u2.movies_rated').alias('movies_rated_u2')
         # now we need to create another column with the intersection between movies
         # also get the cardinality of the intersection
         user_pairs = (
             user pairs
             .withColumn(
                 'movies_rated_intersection',
                 array_intersect('movies_rated_u1', 'movies_rated_u2')
```

```
.withColumn(
         'intersection cardinality',
         size('movies_rated_intersection')
     )
 # rename cols and drop unnessary columns. sort by intersection_cardinality
 user pairs = (
     user_pairs
     .withColumnRenamed('userID_u1', 'user_1')
     .withColumnRenamed('userID_u2', 'user_2')
     .drop('movies_rated_u1', 'movies_rated_u2', 'movies_rated_intersection')
     .sort('intersection_cardinality', ascending=False)
 user_pairs.show(10)
num_users: 610
[Stage 77:>
                                                                       (0 + 1)
/ 1]
|user_1|user_2|intersection_cardinality|
    414|
           599|
                                    1338|
    599|
           414|
                                    1338|
    414|
           474|
                                    1077|
    474|
           414
                                    1077
    68|
           414|
                                     950|
    414|
            68|
                                     950|
    414|
           448|
                                     914|
    448|
           414|
                                     914|
    274|
           414|
                                     856|
    4141
           2741
                                     856|
only showing top 10 rows
```