

Entrance Exam 2018 - 2019 The distribution of grades is over 50 Mathematics

Duration: 3 hours July 07, 2018

Exercise 1 (10 points)

ABCDEFGH is a cube of side 1; I and J are the respective mid points of [BC] and [CD]. Refer the space to the direct orthonormal system (A; AB, AD, AE).

1- a) Determine the coordinates of E, I and J and prove that EI = EJ.

b) Deduce that, for any point M on (CE), the triangle MIJ is isosceles at M.

2- The goal of this part is to determine the position of M on (CE) for which the angle IMJ is maximum. Let θ be the measure in radians of the angle IMJ.

a) Prove that $\sin \frac{\theta}{2} = \frac{IJ}{2MI}$.

- b) Justify that IMJ is maximum when MI is minimum.
- c) Prove that there exists a unique position M_0 of Mon (CE) for which the angle IMJ is maximum.

- 3- a) Determine the coordinates of M_0 .
 - b) Verify that M_0 belongs to the segment [CE].
 - c) Determine, the maximum value of θ .

Exercise 2 (8 points)

An urn contains 4 red balls and 2 green balls indistinguishable to the touch. A child draws simultaneously and at random two balls from the urn. For $n \in \{0; 1; 2\}$, let A_n be the event "the child got n green balls".

- 1- Calculate the probabilities $p(A_0)$, $p(A_1)$ and $p(A_2)$.
- 2- Knowing that the child has at least one red ball, calculate the probability that he has two red balls.

- 3- After the first draw, there remains 4 balls in the urn from which the child draws two balls simultaneously.
 - a) Knowing that the first two balls drawn were red , calculate the probability that the last two balls are also red .
 - b) Calculate the probability that the child got the 4 red balls in the two draws.
 - c) Calculate the probability that, in the second draw, the child gets 2 red balls.
- 4- Consider the event E: " it took exactly the two draws to draw the two green balls from the urn ". Prove that $p(E) = \frac{1}{3}$.

Exercise 3 (10 points)

The plane (P) is referred to a direct orthonormal system (O; u, v). Let f be the mapping of $(P) - \{O\}$ into (P) that, to each point M of affix z ($z \neq 0$), associates the point N of affix z' defined by : $z' = z - \frac{1}{z}$.

- 1- a) Determine the points whose image by f is O.
 - b) Determine the point whose image by f is the point E of affix 2i.
- 2- Prove that any point N of plane (P), except two points to be determined, has two antecedents (pre-images) by f.
- 3- Let $z = re^{i\theta}$ (r > 0) be the exponential form of the affix z of a point M.
 - a) Calculate the coordinates x' and y' of the image N of M in terms of r and θ .
 - b) Prove that, as M varies on the circle (C) of centre O and radius 2, N varies on an ellipse (E) to be determined with its eccentricity.
 - c) Prove that, as M varies on the semi straight line]Ot) of direction vector u + v, N varies on a hyperbola (H) of center O to be determined with its eccentricity.
- 4- a) Prove that (E) and (H) have the same foci F and F' to be determined.
 - b) Draw (E) and (H) in the same system (Graph unit : 2 cm)

Exercise 4 (14 points)

Let f be a function defined and two times differentiable on the set IR of real numbers, such that

$$\begin{cases} f'(0) = 1 \\ For \ all \ x \ in \ IR \ , \ (f'(x))^2 - (f(x))^2 = 1 \end{cases}$$
 (1)

Let (C) be the representative curve of f in an orthonormal system $(O; \overrightarrow{i}, \overrightarrow{j})$. (Graph unit: 1 cm)

- 1- Calculate f(0) and prove that (C) is tangent to the straight line (d) of equation y = x.
- 2- a) Prove that, for all x in IR, $f'(x) \neq 0$.
 - b) Deduce that, for all real numbers a and b, $f'(a) \times f'(b) > 0$.
 - c) Calculate $f'(x) \times f'(0)$. Deduce that, for all x in IR, f'(x) > 0.
 - d) By differentiating the two members of the relation (1), prove that for all x in IR, f''(x) = f(x).
- 3- Let g and h be the functions defined on IR by g = f' + f and h = f' f.
 - a) Calculate g(0) and h(0).
 - b) Justify that g and h are differentiable on IR and prove that g'=g and h'=-h.
 - c) Deduce the functions g and h, then prove that, for all x in IR, $f(x) = \frac{e^x e^{-x}}{2}$.
- 4- a) Set up the table of variations of f.
 - b) Prove that, for all values of λ in IR, the equation $f(x) = \lambda$ has a unique solution, then calculate this solution in terms of λ .
 - c) Draw (*C*).
- 5- a) Prove that f has an inverse function f^{-1} whose domain of definition is to be determined.
 - b) Draw the representative curve (C') of f^{-1} in the same system as (C).
- 6- Denote by α the ordinate of the point A of (C) with abscissa 2.

Let (Δ) be the straight line of slope -1 passing through A.

- a) Determine the coordinates of the point A' where (Δ) cuts (C') in terms of α .
- b) Prove that the area of the triangle *OAA*' is $S = \frac{\alpha^2 4}{2} cm^2$.
- c) Deduce the area of the domain bounded by (C), (C'), (Δ) and lying above the axis of abscissas.

Exercise 5 (8 points)

ABCD is a direct square of center O such that AB = 4. Let L, P and Q be the mid points of [DC], [AD] and [DP] respectively.

Let S be the similar transforms A into O and B into L. 1- Determine the ratio and the angle of S.

- 2- a) Determine the image of each of the straight lines (BC) and (AC) by S.
 - b) Deduce S(C).

- a) Determine S_2 o $S_1(A)$ and prove that S_2 o $S_1 = S$.
- b) Deduce S(D) and prove that S(L) = Q.

- a) Determine h(B) and h(C).
- b) Justify that h is a dilation to be determined.
- c) Deduce that I is the point of intersection of the two straight lines (BQ) and (CP).
- d) Prove that I belongs to the circle (γ) of diameter [DC] and that (BQ) is the tangent to (γ) at I.

Concours d'entrée 2018 - 2019 La distribution des notes est sur 50 **Mathematics Solution**

Durée: 3 heures 7 Juillet 2018

Exercise 1 (10 points)

1- a) In the system $(A; \overrightarrow{AB}, \overrightarrow{AD}; \overrightarrow{AE})$, E(0; 0; 1). $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$, then C(1; 1; 0).

I is the mid point of [BC] where B(1;0;0) and C(1;1;0), then $I(1;\frac{1}{2};0)$.

J is the mid point of [CD] where C(1;1;0) and D(0;1;0), then $J(\frac{1}{2};1;0)$.

Therefore, $EI = EJ = \frac{\sqrt{5}}{2}$.

b) $CI = CJ = \frac{1}{2}$ and EI = EJ, then C and E belong to the mediator plane (L) of [IJ], then (CE) lies in the plane (L); therefore M belongs to (L) and MI = MJ.

Consequently, the triangle MIJ is isosceles at M.

2- a) The triangle MIJ is isosceles at $\frac{M}{2}$ and θ is the measure of the angle \hat{IMJ} , then $\frac{\theta}{2}$ is the measure

of the angle IMK where K is the mid point of [IJ].

The triangle MIK is right at K, then $\theta = IK = IJ$

 $\sin\frac{\theta}{2} = \frac{IK}{MI} = \frac{IJ}{2MI}.$

b) IMJ is maximum when $\frac{\theta}{2}$ is maximum;

that is when $\sin \frac{\theta}{2}$ is maximum since

$$0 < \frac{\theta}{2} < \frac{\pi}{2} \ .$$

Therefore, IMJ is maximum when MI is minimum since IJ is constant.

- c) As M varies on (CE), I remaining fixed, MI is minimum when M is at M_0 , the orthogonal projection of I on (EC).
- 3- a) C(1;1;0), $\overrightarrow{CE}(-1;-1;1)$ and $\overrightarrow{CM} = \lambda \overrightarrow{CE}$, then a system of parametric equations of (CE) is : $(x = -\lambda + 1; y = -\lambda + 1; z = \lambda)$ where $\lambda \in IR$.

 $M \in (CE)$, then $M(-\lambda+1; -\lambda+1; \lambda)$ and $\overrightarrow{IM}(-\lambda; -\lambda+\frac{1}{2}; \lambda)$

 M_0 is such that \overrightarrow{CE} . $\overrightarrow{IM_0} = 0$; that is $\lambda + \lambda - \frac{1}{2} + \lambda = 0$; therefore $\lambda = \frac{1}{6}$ and $M_0(\frac{5}{6}; \frac{5}{6}; \frac{1}{6})$.

- b) $\lambda = \frac{1}{6}$, then $\overrightarrow{CM_0} = \frac{1}{6} \overrightarrow{CE}$; therefore, M_0 belongs to the segment [CE].
- c) The maximum of θ is such that $\sin \frac{\theta}{2} = \frac{IJ}{2IM_0}$ where $IJ = \frac{\sqrt{2}}{2}$ and $IM_0 = \sqrt{\frac{1}{36} + \frac{1}{9} + \frac{1}{36}} = \frac{\sqrt{6}}{6}$; therefore $\sin \frac{\theta}{2} = \frac{\sqrt{3}}{2}$ with $0 < \frac{\theta}{2} < \frac{\pi}{2}$, then $\frac{\theta}{2} = \frac{\pi}{3}$ rad; $\theta = \frac{2\pi}{3}$ rad.

Exercise 2 (8 points)

1- The sample space is equibrobable and consists of ${}_{6}C_{2}$ possible outcomes .

 $p(A_0) = \frac{{}_{4}C_2}{{}_{6}C_2} = \frac{6}{15} = \frac{2}{5}$; $p(A_1) = \frac{{}_{4}C_1 \times {}_{2}C_1}{{}_{6}C_2} = \frac{8}{15}$ and $p(A_2) = \frac{{}_{2}C_2}{{}_{6}C_2} = \frac{1}{15}$.

2- Let L be the event: "the child has at least one red ball" is the opposite of the event "no red ball is drawn".

which is the event A_2 , then $p(L) = 1 - p(A_2) = \frac{14}{15}$.

The required probability is $p(A_0/L) = \frac{p(A_0 \cap L)}{p(L)} = \frac{p(A_0)}{p(L)} = \frac{6}{14} = \frac{3}{7}$

- 3- After the first draw, there remains 4 balls in the urn from which the child draws two new balls.
 - a) If the first two balls were red, then, for the second draw, the urn will contain 2 red balls and 2 green balls; therefore, the required probability is $p_1 = \frac{{}_2C_2}{C} = \frac{1}{6}$.

- b) The required probability is $p_2 = p(A_0) \times p_1 = \frac{2}{5} \times \frac{1}{6} = \frac{1}{15}$.
 - c) Let B be the event: "the child get 2 red balls in the second draw" $P(B) = P(B \cap A) + P(B \cap A) + P(B \cap A)$

$$p(B) = p(B \cap A_0) + p(B \cap A_1) + p(B \cap A_2)$$

=
$$p(A_0) \times p(B/A_0) + p(A_1) \times p(B/A_1) + p(A_2) \times p(B/A_2)$$
.

$$= \frac{1}{15} + \frac{8}{15} \times \frac{{}_{3}C_{1} \times {}_{1}C_{1}}{{}_{4}C_{2}} + \frac{1}{15} \times 1 = \frac{1}{15} + \frac{4}{15} + \frac{1}{15} = \frac{6}{15} = \frac{2}{5}.$$

- 4- The event E is realized when either one of the following incompatible events is :
 - "he draws one green ball in each draw";
 - " he draws no green ball in the first draw and two green balls in the second ".

Therefore
$$p(E) = p(A_1) \times \frac{1 \times {}_{3}C_{1}}{{}_{4}C_{2}} + p(A_0) \times \frac{{}_{2}C_{2}}{{}_{4}C_{2}} = \frac{8}{15} \times \frac{1}{2} + \frac{2}{5} \times \frac{1}{6} = \frac{4}{15} + \frac{1}{15} = \frac{1}{3}$$
.

Exercise 3 (10 points)

- 1- a) The equation $z \frac{1}{z} = 0$ is equivalent to $z^2 = 1$; that is z = -1 or z = 1 then, the points whose image by f is the origin O are the points with affixes z = -1 and z = 1.
 - b) The equation $z \frac{1}{z} = 2i$ is equivalent to $z^2 2iz 1 = 0$; that is $(z i)^2 = 0$; z = i then, the point whose image by f is the point E is the point with affix z = i.
- 2- The affixes of the antecedents of a point N of affix z' are the solutions of the equation $z \frac{1}{z} = z'$ which is equivalent to $z^2 z'z 1 = 0$.

The equation $z^2 - z'z - 1 = 0$, which is of the second degree, has two roots except when $\Delta = 0$; that is $z'^2 + 4 = 0$; z = 2i or z = -2i.

Therefore, any point N of plane (P), except E(2i) and E'(-2i), has two antecedents by f.

- 3- Let $z = re^{i\theta}$ (r > 0) be the exponential form of z.
 - a) The affix of N is $z'=z-\frac{1}{z}=re^{i\theta}-\frac{1}{re^{i\theta}}=re^{i\theta}-\frac{1}{r}e^{-i\theta}=r(\cos\theta+i\sin\theta)-\frac{1}{r}(\cos\theta-i\sin\theta)$;

$$z' = \left(r - \frac{1}{r}\right)\cos\theta + i\left(r + \frac{1}{r}\right)\sin\theta$$
; therefore $x' = \left(r - \frac{1}{r}\right)\cos\theta$ and $y' = \left(r + \frac{1}{r}\right)\sin\theta$.

b) M varies on the circle (C) of centre O and radius 2, then OM = r = 2. therefore the coordinates of N become : $x' = \frac{3}{2}\cos\theta$ and $y' = \frac{5}{2}\sin\theta$.

Therefore, N varies on the ellipse (E) of equation $\frac{x^2}{\frac{9}{4}} + \frac{y^2}{\frac{25}{4}} = 1$.

For the ellipse (E), $a = \frac{5}{2}$ and $b = \frac{3}{2}$ then $c = \sqrt{a^2 - b^2} = 2$ and the eccentricity is $e = \frac{c}{a} = \frac{4}{5}$.

c) M varies on the semi straight line]Ot) of direction vector $\overrightarrow{u} + \overrightarrow{v}$, then $\theta = \frac{\pi}{4}$; therefore the coordinates of N become : $x' = \frac{\sqrt{2}}{2} \left(r - \frac{1}{r} \right)$ and $y' = \frac{\sqrt{2}}{2} \left(r + \frac{1}{r} \right)$. $x'^2 = \frac{1}{2} \left(r^2 + \frac{1}{r^2} - 2 \right) \text{ and } y'^2 = \frac{1}{2} \left(r^2 + \frac{1}{r^2} + 2 \right), \text{ then } y'^2 - x'^2 = 2.$

Therefore, N varies on the equilateral hyperbola (H) of equation $y^2 - x^2 = 2$.

(H) is an equilateral hyperbola, then its eccentricity is $e' = \sqrt{2}$.

4- a) The center of (E) is O; the focal axis is the axis of ordinates; c=2, then the foci of (E) are the points F(0;2) and F'(0;-2).

The center of (H) is O; the focal axis is the axis of ordinates, $a = b = \sqrt{2}$ then, $c = a\sqrt{2} = 2$ and the foci of (H) are also the points F and F'.

b) The vertices of (E) are $A(0; \frac{5}{2})$, $A'(0; -\frac{5}{2})$, $B(\frac{3}{2}; 0)$ and $B'(-\frac{3}{2}; 0)$.

The vertices of (H) are $C(0; \sqrt{2})$ and $C'(0; -\sqrt{2})$.

The asymptotes of (H) are the straight lines of equations y = x and y = -x. Drawing (E) and (H) in the same system.

Exercise 4 (14 points)

- 1- By applying the relation (1) to the real number 0, we find f(0) = 0. f(0) = 0 and f'(0) = 1, then an equation of the tangent to (C) at the point (0; 1) is y = x.
- 2- a) The relation (1) gives, $(f'(x))^2 = 1 + (f(x))^2 \neq 0$ then, for all x in IR, $f'(x) \neq 0$.
 - b) The function f' is differentiable, then it is continuous on IR.

If there exists two real numbers a and b such that f'(a)f'(b) < 0, then there exists a real number

 x_0 belonging to a; b[a < b] such that $f'(x_0) = 0$ which is impossible since for all a in a in a, a in a, a in a in

- c) f'(0) = 1, then f'(x)f'(0) = f'(x), then for all x in IR, f'(x) > 0.
- d) By differentiating the two members of the relation (1), we find: $f'(x) \times f''(x) f(x) \times f'(x) = 0$ where $f'(x) \neq 0$, then for all x in IR, f''(x) f(x) = 0; that is f''(x) = f(x).
 - 3- The functions g and h are defined on IR , by g=f'+f and h=f'-f .
 - a) g(0) = f'(0) + f(0) = 1 and h(0) = f'(0) f(0) = 1.
 - b) The two functions f and f 'are differentiable on IR, then g and h are differentiable on IR. g' = (f + f')' = f' + f'' = f' + f = g and h' = (f f')' = f' f'' = f' f = -h.
 - c) g' = g, then g is a solution of the differential equation y' y = 0, then $g(x) = Ce^x$. g(0) = 1, then C = 1; therefore, $g(x) = e^x$. Similarly, $h(x) = e^{-x}$.

g = f' + f and h = f' - f give g - h = 2f, then for all x in IR, $f(x) = \frac{e^x - e^{-x}}{2}$.

4- a)
$$\lim_{x \to +\infty} e^x = +\infty$$
 and $\lim_{x \to -\infty} e^x = 0$;

then $\lim_{x \to +\infty} f(x) = +\infty$.

Similarly,
$$\lim_{x \to -\infty} f(x) = -\infty$$
.

$$f'(x) > 0$$
.

Table of variations of f.

Figure 25

b) f is continuous and strictly increasing and f(IR) = IR, then for all values of λ in IR, the equation

 $f(x) = \lambda$ has a unique solution.

The equation $f(x) = \lambda$ is equivalent to $e^x - e^{-x} = 2\lambda$; that is $e^{2x} - 2\lambda e^x - 1 = 0$ with $e^x > 0$

The quadratic equation $t^2 - 2\lambda t - 1 = 0$ of discriminant $\Delta' = \lambda^2 + 1 > 0$ has only one positive root

 $t = \lambda + \sqrt{\lambda^2 + 1}$, then $e^x = \lambda + \sqrt{\lambda^2 + 1}$; therefore $x = \lambda n(\lambda + \sqrt{\lambda^2 + 1})$

c) $\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \left(\frac{e^x}{x} - \frac{e^{-x}}{x} \right) = +\infty$, then (C) has at $+\infty$ and at $-\infty$ an asymptotic

direction parallel to the axis of ordinates.

Drawing (C).

5- a) f is continuous and strictly increasing, then that f has an inverse function f^{-1} defined on f(IR) = IR.

b) Drawing (C') (by symmetry with respect to the straight line (d) of equation y = x).

6- $A(2;\alpha)$ belongs to (C); (Δ) is the straight line of slope -1 passing through A.

a) (C) and (C') are symmetric with respect to (d); then the straight line (Δ) which is the perpendicular to (d) passing through A will cut (C') at the point A' symmetric of A with respect to (d), then $A'(\alpha; 2)$.

b) The mid point of [AA'] is $H(\frac{\alpha+2}{2}; \frac{\alpha+2}{2})$.

The area of the triangle OAA' is $S = OH \times AH = cm^2$ where:

$$OH = \frac{\alpha + 2}{\sqrt{2}}$$
 and $AH = \frac{\alpha - 2}{\sqrt{2}}$, $(\alpha \approx 3.6 > 2)$; therefore $S = \frac{\alpha^2 - 4}{2}$ cm^2 .

c) The area of the domain bounded by (C), (C') and (Δ) is equal to S-2S' units of area where S' is the area of the domain bounded by (C), and the straight line (OA) lying above the axis of abscissas.

 $A(2; \alpha)$, then an equation of the straight line (OA) is $y = \frac{\alpha}{2}x$.

$$S' = \int_{0}^{2} \left(\frac{\alpha}{2} x - f(x) \right) dx = \frac{1}{2} \left[\frac{\alpha}{2} x^{2} - e^{x} - e^{-x} \right]_{0}^{2} = \frac{1}{2} \left(2\alpha - e^{2} - e^{-2} \right) - \frac{1}{2} \left(-1 - 1 \right) ;$$

$$S' = \frac{1}{2} (2\alpha - e^2 - e^{-2} + 2) cm^2$$
.

Therefore, the required area is $A = e^2 + e^{-2} + \frac{\alpha^2 - 4\alpha - 8}{2}$ cm^2 .

Exercise 5 (8 points)

1- S(A) = O and S(B) = L where

$$\frac{OL}{AB} = \frac{1}{2}$$
 and $(\overrightarrow{AB}; \overrightarrow{OL}) = \frac{\pi}{2}$ (2 π).

Therefore the ratio of S is $\frac{1}{2}$ and its angle is $\frac{\pi}{2}$.

2- S is a similar similar of angle $\frac{\pi}{2}$, then any straight

line and its image are perpendicular.

a)
$$S(B) = L$$
, then $S((BC)) = (DC)$.

$$S(A) = O$$
, then $S((AC)) = (DB)$.

b) C is the point of intersection of (AC) and (BC);

S((AC)) = (DB) and S((BC)) = (DC), then the image of C is the point of intersection D of (DB) and (DC);

$$S(C) = D$$
.

3- a)
$$S_1 = S(D; \frac{\sqrt{2}}{2}; \frac{\pi}{4})$$
 and $S_2 = S(O; \frac{\sqrt{2}}{2}; \frac{\pi}{4})$.
 $S_2 \circ S_1(A) = S_2(O) = O$.

$$S_2$$
 o S_1 is a similar similar of ratio $\left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2}$ and angle $2\left(\frac{\pi}{4}\right) = \frac{\pi}{2}$.

The similitudes S_2 o S_1 and S have same ratio, same angle and S_2 o $S_1(A) = S(A)$; therefore S_2 o $S_1 = S$.

b)
$$S(D) = S_2 \circ S_1(D) = S_2(S_1(D)) = S_2(D) = P$$
 since $OC = \frac{\sqrt{2}}{2}OD$ and $(\overrightarrow{OD}; \overrightarrow{OP}) = \frac{\pi}{4}$ (2π) .
 $S(C) = D$, $S(D) = P$ and L is the mid point of $[DC]$, then $S(L) = Q$, the mid point of $[DP]$.

4- a)
$$h(B) = S \circ S(B) = S(L) = Q$$
; $h(C) = S \circ S(C) = S(D) = P$.

b)
$$S = Sim(I; \frac{1}{2}; \frac{\pi}{2})$$
, then $h = SoS = Sim(I; \frac{1}{4}; \pi)$. Therefore h is the dilation $(I; -\frac{1}{4})$. $h(B) = Q$, then $I \in (BQ)$; $h(C) = P$, then $I \in (CP)$. Therefore, I is the point of intersection of the two straight lines (BQ) and (CP) .

c)
$$S(C) = D$$
, then $(\overrightarrow{IC}; \overrightarrow{ID}) = \frac{\pi}{2} (2\pi)$; therefore, I belongs to the circle (γ) .

d)
$$S(L) = Q$$
, then $(\overrightarrow{IL}; \overrightarrow{IQ}) = \frac{\pi}{2}$ (2 π); therefore, (LI) is perpendicular to (BQ) at I ; therefore

(BQ) is the tangent to (γ) at I.