#### ML02 — Risk, Model Selection and k-NN example

Romain Gautron

Big Data Platform

March 5, 2019



#### In that chapter

- $\rightarrow$  notions of loss, real and empirical risk
- $\rightarrow$  bias-variance trade-off
- ightarrow model tuning and model training
- $\rightarrow$  k-NN algorithm illustration
- → k-fold cross validation and nested cross validation

#### **Notations**

h the hypothesis i.e. the model

$$\mathbf{X} = \begin{pmatrix} 1 & x_{11} & \dots & x_{1d} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & \dots & x_{nd} \end{pmatrix}, \mathbf{X}_i = \begin{pmatrix} 1 \\ x_{i1} \\ \vdots \\ x_{id} \end{pmatrix}$$

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

$$\Theta = \begin{pmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{pmatrix}$$



- Loss and Risk
- 2 Model complexity and overfitting
- The k-NN algorithm
- 4 Generalization error estimation in practice



### Training process





#### Loss function & Risk

#### Loss function (Cost function)

$$\hat{y} = h(X, \Theta), \mathbf{L}(y, \hat{y})$$
 loss function

#### Regression example

$$y \in \mathbb{R}$$
  
  $L(y, \hat{y}) = (y - \hat{y})^2$ 

#### Classification example

$$y \in \{-1, +1\}$$
  
 $L(y, \hat{y}) = \frac{1}{4}(y - \hat{y})^2$ 

"How do cost diverging from real value predictions?"

#### Risk and Empirical Risk

$$\mathcal{R}_{real} = \mathbb{E}(L) = \int_{X \in \mathcal{X}, y \in \mathcal{Y}} \mathbf{L}(y, h(X, \Theta)) dP_{\mathcal{X}\mathcal{Y}}, dP_{\mathcal{X}\mathcal{Y}}$$
 joint distribution  $(X, y)$ 

We only have  $(X_1, y_1), ..., (X_n, y_n)$  drawn from  $P_{XY}$ :

$$\mathcal{R}_{emp} = \frac{1}{N} \sum_{i=1}^{n} \mathbf{L}(y_i, h(X_i, \Theta))$$

In other words,  $\mathcal{R}_{emp} \equiv$  apparent error

For a given X in the training set, we want to predict  $\hat{y}$  as close as possible of its real value, so we want to minimize the empirical risk?



 $\wedge$ ! Minimizing  $\mathcal{R}_{emp}$  is not sufficient!

### Minimizing $\mathcal{R}_{emp}$ is not sufficient!





### Empirical risk, Real risk and training set size





## Minimizing $\mathcal{R}_{\textit{emp}}$ is not sufficient!



### Minimizing $\mathcal{R}_{emp}$ is not sufficient!

How to measure  $\mathcal{R}_{real}$ ???



#### We want an unbiased estimator of $\mathcal{R}_{real}$ : basic idea



- Loss and Risk
- 2 Model complexity and overfitting
- The k-NN algorithm
- 4 Generalization error estimation in practice

### Bias-Variance trade-off: complexity and risk



### Bias-Variance Decomposition (1)

#### $\mathsf{Square}\ \mathsf{Loss} \Rightarrow \mathsf{Empirical}\ \mathsf{Risk} \equiv \mathsf{Mean}\ \mathsf{Square}\ \mathsf{Error}$

$$MSE = \frac{1}{N} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\mathbb{E}((y_i - \hat{y}_i)^2) = \mathbb{V}(y_i) + \mathbb{V}(\hat{y}_i) + [\mathbb{E}(y_i) - \mathbb{E}(\hat{y}_i)]^2$$

generalization error = intrinsic error + model variance + bias<sup>2</sup> = intrinsic error + confidence interval + empirical error

See Vapnik-Chervonenkis theory



### Bias-Variance Decomposition (2)





#### To have in mind

- $\,\rightarrow\,$  measuring an apparent error is not sufficient
- $\rightarrow$  the more complex the model the more prone to overfitting
- $\rightarrow\,$  an high complexity has to be compensated by a high number of learning example

### Remark: complexity vs interpretability





- Loss and Risk
- 2 Model complexity and overfitting
- The k-NN algorithm
- 4 Generalization error estimation in practice



#### The k-NN algorithm

#### k-nearest neighbours classifier

- $\to$  For each new point, take the majority of labels of the k-nearest points (given norm such as euclidean) in the training set.
- ightarrow If there is no majority, random drawing of the class within the k-NN

### The k-NN algorithm





# The k-NN algorithm How to choose an optimal k (hyperparameter)???







### Hyperparameters defintion

#### Hyperparameters

Some parameters defining the 'setup' of an algorithm and fixed before training



### Model tuning and model training

- $\rightarrow$  Model tuning: Adjusting hyperparameters of the model
- → Model training: For given hyperparameters, run the algorithm (once or several iterations) to minimize loss



- Loss and Risk
- Model complexity and overfitting
- The k-NN algorithm
- 4 Generalization error estimation in practice

#### k-fold cross-validation



#### k-fold cross-validation and model tuning

Knn k=1 
$$\xrightarrow{\text{CV}} E_{\text{knn1}}$$

Knn k=2  $\xrightarrow{\text{E}} E_{\text{knn2}}$ 

Knn k=4  $\xrightarrow{\text{E}} E_{\text{knn4}}$ 

Knn k=16  $\xrightarrow{\text{E}} E_{\text{knn16}}$ 

### If we want to compare different models?

 $\rightarrow$  k-fold CV for hyperparameter tuning  $\checkmark$ 



 $\rightarrow$  k-fold CV for model selection X



#### Are we safe?

- ightarrow CV for tuning hyper-parameters **BUT** we biased the estimator by over-fitting data (Cawley, Talbot 2010)
  - → Generalization performance will be optimistic!

#### Nested CV: unbiased generalization measure



#### Use of Nested CV

- ightarrow Measure generalization error with hyper-parameter tuning
- $\rightarrow$  Fair comparison of different algorithms
- → Having a good idea of how model will perform



#### Model selection



### Good practices

- ightarrow never present performances based on training set (resubstitution)
- $\rightarrow$  use at least a hold out test set
- $\rightarrow$  better use CV
- $\rightarrow$  best use nested cross validation performances if hyperparameter tuning needed
- → choose relevant metrics

#### What did we learn?

- $\rightarrow\,$  minimizing the empirical risk is not enough
- ightarrow the more complex a model the more prone to overfiting
- ightarrow a hyper-parameter is a 'structural' parameter to determine before training
- ightarrow we adjust hyper-parameters by cross-validation
- ightarrow an unbiased generalization performance measure for a model with hyper-parameters requires nested cross-validation
- $\rightarrow$  we compare models with nested-cross-validation