Time series forecasting: predviđanje rezervacija hotelskih soba

18.12.2019.

Romeo Šajina

Prije svega

- Slikanje, snimanje?
- Iza ove grupe ne stoji nikakva firma (iako je Kristijan osnovao Meetup i ima firmu)
- Okupljamo se da radimo na zanimljivim i novim stvarima, zatim to prezentiramo
- Želite prezentirati nešto vezano za IT što pruža neku vrijednost ostalima? Dobrodošli.
- Ako imate ideje, trebate pomoć na nekom vašem području javite se, bacite poruku na Facebook grupu, pošaljite poruku nekome od nas - vrlo je vjerojatno da vam možemo dati savijet, pomoći ili vas makar usmjeriti prema ljudima koji znaju kako to riješiti
- Dugoročni cilj: oformljavanje grupa koja rješava tekuće probleme ljudi

Vremenski niz

- Najjednostavnija definicija: kronološki niz vrijednosti
- Zapravo sve što se može promatrati sekvencijalno tijekom vremena
- Najpoznatiji primjeri:
 - o cijena dionica
 - o količina proizvedene električne energije
 - o broj turista u zemlji ili nekoj drugoj jedinici
 - o potrošnja određenih proizvoda
 - o vrijednost BDP-a u zemlji
 - 0 ...

Zašto predviđati

- Točno predviđanje vremenskog niza je vrlo korisno jer omogućava poduzimanje pravovremenih mjera kako bi proces kojeg vremenski niz predstavlja bio što efikasniji
- Proizvođači električne energije žele što bolje predvidjeti koliko će se u nekom razdoblju potrošiti struje
- Kod rezervacija hotelskih soba je cilj prodati sobe po najvišim cijena ovisno o tržištu, odnosno ponudi i potražnji

Korišteni podaci

- Podaci predstavljaju rezervacije soba za X hotela vodeće Hrvatske tvrtke kroz tri godine
- Podaci su organizirati tako da se rezervacije promatraju samo za neki određeni dan (npr. 1.7.)
- Zapravo, da bi se rezervacija uključila u promatrani skup, boravišno vrijeme gosta mora uključivati promatrani datum
- Napomena: jedna rezervacija može uključivati više soba, što je zapravo podatak koji se promatra

Korišteni podaci - rezervacije za 01.07.

Što ćemo predviđati

- Konkretan zahtjev tvrtke: previđanje rezervacija 60, 30 i 7 dana unatrag od promatranog datuma
- Ako promatramo datum 1.7., predviđanja će se raditi na datume 2.5., 1.6. i 24.7. sa dotada prikupljenim podacima.

Što ćemo predviđati

Što ćemo predviđati

Trend, sezonalnost i cikličnost

Trend

- Može se prepoznati kada postoji dugoročno povećanje ili smanjenje u podacima
- U većini slučajeva jasno uočljiv, ali kada nije odmah uočljiv, to ne daje naznaku da trend ne postoji

Sezonalnost

- Nastaje kada na vremenski niz utječu sezonalni čimbenici kao što su doba godine ili dan u tjednu
- Uvijek ima fiksnu ili poznatu učestalost, odnosno frekvenciju
- U primjeru vremenskog niza rezervacija jasno se može vidjeti da postoji godišnja sezonalnost

Sezonalnost

Cikličnost

- Pojavljuje se kada se u podacima pojavljuju porast ili pad koji nisu fiksne učestalosti, odnosno frekvencije.
- Obično posljedica ekonomskih uvjeta i čestu su povezana sa "poslovnim ciklusom"
- Cikličnost je slična sezonalnosti u aspektu periodičnog ponavljanja uzorka, dok
 je različita u aspektu frekvencije, odnosno sezonalnost ima fiksnu frekvenciju
 dok cikličnost nema
- Nema slike :)

Mjere točnosti

• Mean Absolute Error (MAE):

$$\circ MAE = rac{1}{n} \sum_{t=1}^n |e_t|$$

• Forecasting Attainment (FA):

$$\circ \ FA = rac{\displaystyle\sum_{t=1}^n y_t'}{\displaystyle\sum_{t=1}^n y_t}$$
, gdje je y_t' predviđena, a y_t stvarna vrijednost

Metode predviđanja

```
{
    "01.01.2019.": 1,
    "01.02.2019.": 2,
    "01.03.2019.": 2,
    "01.04.2019.": 3,
    "01.05.2019.": 2,
}
```


• Postoje dvije glavne metode predviđanja: jednokoračno i višekoračno

Jednokoračno (engl. one-step)

ullet Za vremenski okvir y_0,\ldots,y_n predviđa y_{n+1}

Višekoračno (engl. multi-step)

ullet Za vremenski okvir y_0,\ldots,y_n iterativnim korištenjem jednokoračne metode predviđa $y_{n+1,\ldots,y_{n+k}}$

Modeli predviđanja

- Postoji mnogo različitih metoda modeliranja vremenskih nizova
- Odabir pravog modela nije jednostavan
- Često se kod analize vremenskih nizova testira više različitih modela i promatraju njihove performanse
- Naive, AR, MA, ARIMA, Prophet, NN

Naivni (engl. Naive/Persistent) modeli

Naivni model

 Najjednostavnija izvedba naivnog modela: za predviđanje uzima posljednja dostupna vrijednost

•
$$y_t = y_{t-1}$$

• Metoda radi izuzetno dobro za mnogo ekonomskih i financijskih vremenskih nizova

Naivni model

Sezonalni naivni model

- Za predviđanje se može iskoristiti vrijednost iz prošle sezone u istom trenutku
- Npr. za predviđanje vrijednosti za dan 1.7.2019. može se koristiti vrijednost na dan 1.7.2018.
- $ullet \ y_t = y_{t-m}$, gdje je m trajanje sezonalnog razdoblja

Sezonalni naivni model

Statistički modeli

Autokorelacija

- Autokorelacija je blisko vezana sa korelacijom
- Kao što korelacija mjeri opseg linearnog odnosa između dvije varijable, tako autokorelacija mjeri linearni odnos između prethodnih vrijednosti vremenskog niza
- Može se izračunati prema prethodnim vrijednostima koje se zovu vremenski pomaci (engl. lags)
- Prikaz autokorelacije vremenskog niza prema vremenskom pomaku zove se AutoCorrelation Function (ACF)

Autokorelacija: ACF (Pearson)

Autokorelacija & Parcijalna autokorelacija

Parcijalna autokorelacija

- Autokorelacija za promatranu vrijednost i vrijednost u nekom prethodnom koraku se sastoji od direktne korelacije i indirektne korelacije
- $ullet \ y_{t-3}$ ima indirektnu korelaciju sa y_{t-2} koji ima indirektnu korelaciju sa korakom y_{t-1} koji ima direktnu korelaciju sa y_t
- ullet Parcijalna autokorelacija želi ukloniti indirektne korelacije kako bi se mogla izračunati samo direktna korelacija između y_t i y_{t-k} gdje k vremenski pomak
- Prikaz parcijalne autokorelacije vremenskog niza prema vremenskom pomaku zove se Partial AutoCorrelation Function (PACF)

Parcijalna autokorelacija: PACF

Bijeli šum (engl. White noise)

- Vremenski niz koji nema autokorelaciju
- ullet Kada je vremenski niz bijeli šum, autokorelacija će biti blizu 0 i 95% vrijednosti autokorelacije će biti unutar granica ACF prikaza
- Kod vremenskog niza rezervacija može se primijetiti da **nije** bijeli šum jer:
 - o postoji značajna autokorelacija do vremenskog pomaka 25
 - \circ više od $5\,\%$ vrijednosti je izvan granice ACF prikaza
- lako nije daleko da bude samo šum, onda nastavak prezentacije nema smisla

Dekompozicija vremenskog niza

- Vremenski niz se sastoji od tri komponente:
 - trend-cikličnost
 - o sezonalnosti
 - preostalo (sadrži ostatak vremenskog niza)
- Ova metoda se većinom koristi zbog boljeg razumijevanja vremenskog niza i izgradnje boljeg predikcijskog modela

Dekompozicija vremenskog niza

Stacionarnost

- Stacionarni vremenski niz je onaj čija svojstva ne ovise o vremenu u kojem se vremenski niz promatra
- Provjera stacionarnosti je nužna kod izgradnje statističkog predikcijskog modela
- Ispitivanje kroz Augmented Dickey and Fuller (ADF) test
 - o p-value > 0.05: prihvaća se hipotezada niz nije stacionaran
 - o p-value <= 0.05: odbacuje se hipoteza da niz nije stacionaran
- Ako niz nije stacionaran potrebno je napraviti potrebne transformacije (npr. diferenciranje)

Diferenciranje

- Diferenciranje izvršava transformaciju podataka izračunavajući razlike između uzastopnih opservacija
- Diferenciranje može pomoći stabilizirati srednju vrijednost vremenskog niza
- $egin{array}{ll} ullet & y_{t-2} = y_{t-3} y_{t-4} \ & y_{t-1} = y_{t-2} y_{t-3} \ & y_t = y_{t-1} y_{t-2} \end{array}$

Diferenciranje

Vremenski niz rezervacija stacionaran?

- ullet ADF test za primjer rezervacija iznosi 0.0013
- Prihvaća se hipoteza da je vremenski niz stacionaran
- Nije potrebno izvršiti nikakvu transformaciju

Autoregresivni model

- U autoregresivnim modelima predviđamo željenu varijablu koristeći linearnu kombinaciju njenih prethodnih vrijednosti
- Pojam autoregresija ukazuje da je to regresija varijable sa samom sobom
- $y_t=c+\phi_1y_{t-1}+\phi_2y_{t-2}+\ldots+\phi_py_{t-p}+\epsilon_t$, gdje je c konstanta, ϕ_1,\ldots,ϕ_p su parametri vremenskih pomaka $y_{t-1},\ldots y_{t-p}$, a ϵ_t opisuje bijeli šum
- model = AR(9)

Autoregresivni model

Model pomičnih prosjeka

- Koriste greške dobivene previđanjem varijable u prošlosti, time dobivajući model sličan regresijskom modelu
- $y_t=c+\epsilon_t+ heta_1\epsilon_{t-1}+ heta_2\epsilon_{t-2}+\ldots+ heta_q\epsilon_{t-q}$, gdje je c konstanta, ϵ_t opisuje bijeli šum, $heta 1,\ldots, heta_q$ su parametri grešaka $\epsilon_{t-1},\ldots,\epsilon_{t-q}$ predviđanja vremenskih pomaka, modela razine q
- model = MA(25)

Model pomičnih prosjeka

ARIMA model

- Kombinacija diferenciranja, autoregresijskih modela i modela pomičnih prosjeka
- $y_t'=c+\phi_1y_{t-1}'+\ldots+\phi_py_{t-p}'+\theta_1\epsilon_{t-1}+\ldots+\theta_q\epsilon_{t-q}+\epsilon_t$, gdje je y_t' diferencirani niz koji može biti diferenciran više puta
- Formula definira **ARIMA(p, d, q)** model autoregresivnog dijela razine **p**, dijela pomičnih prosjeka razine **q** i stupnja diferenciranja **d**
- model = ARIMA(9, 0, 25)

ARIMA model

SARIMA model

- Generalizirani ARIMA model koji može raditi sa sezonalnim vremenskim nizovima
- Formiran uključivanjem dodatnih sezonskih izraza u ARIMA model
- ARIMA(p,d,q,)(P,D,Q)m, gdje je m broj opservacija godišnje
- Zbog jednostavnosti i smanjivanja potrebe za ogromnim resursima prilikom treniranja koristiti će se model ARIMA(1,0,1)(1,0,1)

SARIMA model

Prophet model

- Razvio Facebook u svrhu predviđanja kretanja različitih vremenskih nizova:
 - o predviđanje broja izrađenih događaja na Facebook-u grupirano po danima u tjednu
- Koristi dekompozicijski model vremenskih nizova sa tri glavne komponente: trend, sezonalnost i praznici
- $y(t) = g(t) + s(t) + h(t) + \epsilon_t$
- Značajnije prednosti:
 - o može pratiti više trendova
 - o zapaža sezonalnost u podacima
 - o uzima u obzir praznike i događaje

Prophet model

Neuronske mreže

Neuronske mreže

- Neuronske mreže (engl. Neural Network NN) su trenutno možda i najpoznatija tehnika strojnog učenja
- Već uspješno primijenjene na probleme prepoznavanja slika, prepoznavanja govora, pretvaranja teksta u govor, a u novije vrijeme neuronske mreže su sposobne i generirati novi sadržaj (slika, tekst, zvuk)
- Good news: mogu se koristiti i za modele vremenskih nizova

Neuronske mreže

Priprema podataka za treniranje NN

Multilayer perceptron

- Najpoznatija i najjednostavnija vrsta neuronske mreže
- U MLP-u su svi neuroni sloja povezani sa svim neuronima sljedećeg sloja (engl. fully connected)

Multilayer perceptron

Convolutional neural networks

- CNN su mreže specijalizirane za obradu podataka oblika rešetke
- Slike su idealan primjer takve strukture podataka, dok se tu mogu uvrstiti i vremenski nizovi koji se mogu promatrati kao jednodimenzionalni podaci
- Glavna prednosti CNN-a je mogućnost izvlačenja glavnih značajki kroz konvolucijske slojeve bez prethodne analize i pripreme podataka, već će one biti naučene kroz treniranje
- Sposobnost mreže da nauči prepoznavati ponovljene obrasce u vremenskom nizu, koje dalje može koristiti za predviđanje budućih vrijednosti

Convolutional neural networks

Convolutional neural networks

Recurrent Neural Network

- Vrsta neuronske mreže koja je specijalizirana za obradu sekvencijskih nizova
- Omogućavaju obradu puno dužih nizova nego što bi to bilo moguće sa neuronskim mrežama koje nisu specijalizirane za obradu sekvencijskih nizova
- RNN sadrži sakrivena stanja koja su distribuirana kroz vrijeme, što omogućava spremanje mnogo informacija o prošlosti
- Izlaz ovisi o trenutnom ulazu, prethodnim ulazima, prethodnim izlazima i/ili skrivenim stanjima unutar mreže
- Dvije poznate implementacije: LSTM i GRU

Recurrent Neural Network

LSTM

GRU

Autoencoder

Autoencoder

- Neuronska mreža koja se trenira da kopira ulaz u izlaz
- Sastoji od dvije komponente: encoder koji enkodira podatke i decoder koji rekonstruira podatke
- Najpoznatiji način izvedbe *autoencoder-*a je mreža sa slojem između dvije komponente (*encoder* i *decoder*) koji ima manje dimenzije nego ulazni podaci
- Ideja je blisko vezana sa PCA (engl. Principal Component Analysis)

Ulazni sloj Reprezentacijski sloj Izlazni sloj

Autoencoder MLP

Autoencoder CNN

Autoencoder MPL&LSTM

Autoencoder MPL&GRU

Konačni rezultati

Model	AVG(MAE)	AVG(FA)
SARIMA	19.12	0.63
Prophet	9.38	1.09
MLP	10.99	0.90
CNN	9.55	0.94
LSTM	12.59	0.88
GRU	11.80	0.99
AutoencoderMLP	9.39	1.08
AutoencoderMLPLSTM	8.52	1.11
AutoencoderMLPGRU	7.96	1.00