1.
$$\int x \sin x \ dx =$$

A)
$$-x\cos x + C$$

$$\mathsf{B)} \ -x\cos x - \sin x + C$$

C)
$$-x\cos x + \sin x + C$$

D)
$$\frac{1}{2}x^2 \sin x + C$$

E)
$$-x\cos x - \cos x + C$$

$$2. \int_1^e \frac{\ln x}{x} \ dx =$$

- A) undefined
- B) $\frac{1}{2}$
- **C)** 2
- D) $\frac{1}{2}(e-1)$
- E) None of these

3. The area of the region bounded by the lines x=0, x=2, y=0, and the curve $y=e^{x/2}$ is

- A) $\frac{1}{2}(e-1)$
- **B)** *e* − 1
- C) 2(e-1)
- D) 2e 1
- E) 2e

- **4.** $\lim_{h\to 0} \frac{-1+e^{-h}}{h} =$
 - **A)** 1
 - **B)** 0
 - C) -1
 - D) $\frac{1}{e}$
 - E) ∞
- **5.** Evaluate $\int_1^\infty x^{-1/2} dx$.
 - **A)** 3
 - **B)** 2
 - **C**) 1
 - D) $\frac{1}{2}$
 - E) divergent
- **6.** $\int \frac{1}{x^2 + x} dx =$
 - A) $\frac{1}{2}\arctan(x+\frac{1}{2}) + C$
 - B) $\ln |x^2 + x| + C$
 - C) $\ln \left| \frac{x+1}{x} \right| + C$
 - D) $\ln \left| \frac{x}{x+1} \right| + C$
 - E) None of these

7.
$$\int \frac{x}{x+2} \ dx =$$

A)
$$x \ln |x+2| + C$$

B)
$$x + 2 \ln |x + 2| + C$$

C)
$$x - 2 \ln |x + 2| + C$$

D)
$$x - \ln|x + 2| + C$$

E)
$$x - \arctan x + C$$

8. A particle moves on the x-axis in such a way that its position at time t, for t > 0, is given by $x(t) = (\ln x)^2$. At what value of t does the velocity of the particle attain its maximum?

- **A)** 1
- B) $e^{1/2}$
- **C**) *e*
- D) $e^{3/2}$
- E) e^2

9. The substitution of $x = \sin \theta$ in the integrand of $\int_0^{1/2} \frac{x^2}{\sqrt{1-x^2}} dx$ results in

A)
$$\int_0^{1/2} \frac{\sin^2 \theta}{\cos \theta} \ d\theta$$

$$\mathsf{B)} \ \int_0^{1/2} \sin^2 \theta \ d\theta$$

C)
$$\int_0^{\pi/6} \sin^2 \theta \ d\theta$$

D)
$$\int_0^{\pi/3} \sin^2 \theta \ d\theta$$

E)
$$\int_0^{1/2} \frac{\cos^2 \theta}{\sin \theta} \ d\theta$$

10. The area of the region in the first quadrant under the curve $y = \frac{1}{\sqrt{1-x^2}}$, bounded on the left by $x = \frac{1}{2}$, and on the right by x = 1 is

- **A**) ∞
- **B**) π
- C) $\pi/2$
- D) $\pi/3$
- E) None of these

11. The length of the curve $y = \int_0^x \sqrt{\frac{t}{3}} dt$ from x = 0 to x = 9 is

- **A)** 16.
- B) 14.
- C) $\frac{31}{3}$.
- D) $9\sqrt{3}$.
- E) $\frac{14}{3}$.

12. Evaluate $\int_{-5}^{5} \sqrt{25 - x^2} \ dx$.

- **A)** 0
- **B)** 5
- C) $25\pi/2$
- D) 25π
- **E)** 50π

13. Consider the function g defined by $g(x) = \int_1^x (t^3 - 3t^2 + 2t) dt$. The number of relative extrema of g is

- A) 1.
- B) 2.
- C) 3.
- D) 4.
- E) more than 4.

14. The function $t(x) = 2^x - \frac{|x-3|}{x-3}$ has

- A) a removable discontinuity at x = 3.
- B) an infinite discontinuity at x = 3.
- C) a jump discontinuity at x = 3.
- D) no discontinuities.
- E) a removable discontinuity at x = 0 and an infinite discontinuity at x = 3.

15. Find the values of c so that the function

$$h(x) = \begin{cases} c^2 - x^2 & x < 2\\ x + c & x \ge 2 \end{cases}$$

is continuous everywhere.

- A) -3, -2
- B) 2,3
- C) -2, 3
- D) -3, 2
- E) There are no such values.