Propositional logic summary

Peter Rowlett

Sheffield Hallam University p.rowlett@shu.ac.uk

Reminder

NOT $\neg p$ true only if p is false

AND $p \land q$ true only if p is true and q is true.

OR $p \lor q$ true if p is true, q is true, or both p and q are true.

XOR $p \oplus q$ true if p is true or q is true, but not both.

Implication

- We say $p \implies q$ ("p implies q") to mean that if p is true, then q will also be true.
- \blacktriangleright We are not saying p causes q.
- $ightharpoonup p \implies q$ is true unless p is true when q is false.
- ▶ If both $p \implies q$ and $q \implies p$ we write $p \iff q$ and say "p is true if and only if q is true".

Implication

- ► Consider the statement "If x > 3, then $x^2 2y > 5$."
- ► There are two propositions:
 - ightharpoonup p: "x > 3";
 - $ightharpoonup q: "x^2 2y > 5".$
- ightharpoonup The statement says $p \implies q$.

Implication

- ► Consider the statement "If x > 3, then $x^2 2y > 5$."
- ► There are two propositions:
 - ightharpoonup p: "x > 3";
 - $ightharpoonup q: "x^2 2y > 5".$
- ▶ The statement says $p \implies q$.
- ▶ If we are to disprove this statement, we must find a situation where *p* is true and *q* is false.
- ightharpoonup Consider x=4 and y=6. Then

$$x = 4 \land y = 6 \implies x^2 - 2y = 4 < 5.$$

Since p is true and this does not correspond to a true q, we do not have $p \implies q$.

Arguments

- ▶ You had a go at some arguments.
- ► Arguments are a series of premises and a conclusion.
- ightharpoonup e.g. if we know that p is true and $p \implies q$ is true, then we know q is true.

- ► Find a conclusion from these premises:
 - 1. "All puddings are nice".
 - 2. "This dish is a pudding".
 - 3. "No nice things are wholesome".

- Find a conclusion from these premises:
 - 1. "All puddings are nice".
 - 2. "This dish is a pudding".
 - 3. "No nice things are wholesome".
- ▶ Let
 - p: "This dish is a pudding";
 - ► *n*: "This dish is nice";
 - ▶ w: "This dish is wholesome".

- Find a conclusion from these premises:
 - 1. "All puddings are nice".
 - 2. "This dish is a pudding".
 - 3. "No nice things are wholesome".
- ► Let
 - p: "This dish is a pudding";
 - ► *n*: "This dish is nice";
 - w: "This dish is wholesome".
- Statement 2 tells us p is true.

- Find a conclusion from these premises:
 - 1. "All puddings are nice".
 - 2. "This dish is a pudding".
 - 3. "No nice things are wholesome".
- ► Let
 - p: "This dish is a pudding";
 - ► *n*: "This dish is nice";
 - w: "This dish is wholesome".
- Statement 2 tells us p is true.
- ► Statement 1 says $p \implies n$.

- Find a conclusion from these premises:
 - 1. "All puddings are nice".
 - 2. "This dish is a pudding".
 - 3. "No nice things are wholesome".
- ▶ Let
 - p: "This dish is a pudding";
 - ► *n*: "This dish is nice";
 - w: "This dish is wholesome".
- Statement 2 tells us p is true.
- ► Statement 1 says $p \implies n$.
- ► Statement 3 says $n \implies \neg w$.

- Find a conclusion from these premises:
 - 1. "All puddings are nice".
 - 2. "This dish is a pudding".
 - 3. "No nice things are wholesome".
- ▶ Let
 - p: "This dish is a pudding";
 - ► *n*: "This dish is nice";
 - w: "This dish is wholesome".
- ► Statement 2 tells us *p* is true.
- ▶ Statement 1 says $p \implies n$.
- ▶ Statement 3 says $n \implies \neg w$.
- ightharpoonup Conclusion: $p \implies \neg w$, this dish is nice but not wholesome.