Survey on Hierarchical and Modular Reinforcement Learning

Shun Zhang

September 25, 2014

Markov Decision Process

MDP:

• State: *S*.

• Action: A.

• Transition: $P: S \times A \times S \rightarrow \mathcal{R}$.

• Reward: $R: S \times A \times S \rightarrow \mathcal{R}$.

Abstraction on MDP

- Aggregate states: feature extraction.
- Aggregate actions: **option**.
- Factorize transition: factored MDP.
- Abstract MDP: HAM, hierarchical RL, modular RL.

MDP with Option

4 stochastic primitive actions

8 multi-step options (to each room's 2 hallways)

MDP with Option

MDP:

• State: S.

• Action: *A*, *O*.

• Transition: $P: S \times \{A, O\} \times S \rightarrow \mathcal{R}$.

• Reward: $R: S \times \{A, O\} \times S \rightarrow \mathcal{R}$.

Hierarchies of Abstract Machines (HAM)

Hierarchical RL

Hierarchical RL

MDP:

• State: S.

• Action: A.

• Transition: \mathcal{T} .

• Reward: R.

Layered RL

Layered RL

MDP:

• State: $S_1 \times S_2 \cdots \times S_M$.

• Action: $A_1 \times A_2 \cdots \times A_M$.

• Transition: $P_1 \times P_2 \cdots \times P_M$.

• Reward: $R_1 \times R_2 \cdots \times R_M$.

Modular RL

Fig. 1. MMRL.

Modular RL

MDP:

• State: $S_1 \times S_2 \cdots \times S_M$.

• Action: A.

• Transition: $P_1 \times P_2 \cdots \times P_M$.

• Reward: $R_1 \times R_2 \cdots \times R_M$.

Topics for Future Work

- Learning task hierarchies.
- Dynamic abstraction.
- Integrating Deep Learning.