60/024,428

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

WO 98/07830

26 February 1998 (26.02.98)

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

US

(51) International Patent Classification 6: (11) International Publication Number: A2 **C12N** (43) International Publication Date: (21) International Application Number: PCT/US97/14900 (22) International Filing Date: 22 August 1997 (22.08.97) (30) Priority Data:

22 August 1996 (22.08.96)

(81) Designated States: CA, JP, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

Without international search report and to be republished upon receipt of that report.

- (71) Applicants: THE INSTITUTE FOR GENOMIC RESEARCH [US/US]; 9712 Medical Center Drive, Rockville, MD 20850 (US). THE BOARD OF TRUSTEES OF THE UNIVER-SITY OF ILLINOIS [US/US]; 506 S. Wright Street, Urbana, IL 61802 (US). JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE [US/US]; Department of Molecular Biology and Genetics, Baltimore, MD 21205 (US).
- (72) Inventors: BULT, Carol, J.; Box 525, Bar Harbor, ME 04609 (US). WHITE, Owen, R.; 886 Quince Orchard Boulevard # 202, Gaithersburg, MD 20878 (US). SMITH, Hamilton, O.; 8222 Carrbridge Circle, Baltimore, MD 21204 (US). WOESE, Carl, R.; 806 West Delaware Avenue, Urbana, IL 61801 (US). VENTER, J., Craig; 9708 Medical Center Drive, Rockville, MD 20850 (US).
- (74) Agents: STEFFE, Eric, K. et al.; Sterne, Kessler, Goldstein & Fox P.L.L.C., Suite 600, 1100 New York Avenue, N.W., Washington, DC 20005-3934 (US).
- (54) Title: COMPLETE GENOME SEQUENCE OF THE METHANOGENIC ARCHAEON, METHANOCOCCUS JANNASCHII

(57) Abstract

The present application describes the complete 1.66-megabase pair genome sequence of an autotrophic archaeon, Methanococcus jannaschii, and its 58- and 16-kilobase pair extrachromosomal elements. Also described are 1738 predicted proteincoding genes.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	Z.W	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	· NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Complete Genome Sequence of the Methanogenic Archaeon, *Methanococcus jannaschii*

Background of the Invention

Statement as to Rights to Inventions Made Under Federally-Sponsored Research and Development

Part of the work performed during development of this invention utilized U.S. Government funds. The U.S. Government may have certain rights in the invention - DE-FC02-95ER61962; DE-FC02-95ER61963; and NAGW 2554.

Field of the Invention

10

5

The present application discloses the complete 1.66-megabase pair genome sequence of an autotrophic archaeon, *Methanococcus jannaschii*, and its 58- and 16-kilobase pair extrachromosomal elements. Also identified are 1738 predicted protein-coding genes.

Related Background Art

15

20

25

The view of evolution in which all cellular organisms are in the first instance either prokaryotic or eukaryotic was challenged in 1977 by the finding that on the molecular level life comprises three primary groupings (Fox, G.E., et al., Proc. Natl. Acad. Sci. USA 74:4537 (1977); Woese, C.R. & Fox, G.E., Proc. Natl. Acad. Sci. USA 74:5088 (1977); Woese, C.R., et al., Proc. Natl., Acad. Sci. USA 87:4576 (1990)): the eukaryotes (Eukarya) and two unrelated groups of prokaryotes, Bacteria and a new group now called the Archaea. Although Bacteria and Archaea are both prokaryotes in a cytological sense, they differ profoundly in their molecular makeup (Fox, G.E., et al., Proc. Natl. Acad. Sci. USA 74:4537 (1977); Woese, C.R. & Fox, G.E., Proc. Natl. Acad. Sci. USA 74:5088 (1977); Woese, C.R., et al., Proc. Natl., Acad. Sci. USA 74:5088 (1977); Woese, C.R., et al., Proc. Natl., Acad. Sci. USA 87:4576 (1990)).

Several lines of molecular evidence even suggest a specific relationship between Archaea and Eukarya (Iwabe, N., et al., Proc. Natl. Acad. Sci. USA 86:9355 (1989); Gogarten J.P., et al., Proc. Natl. Acad. Sci. USA 86:6661 (1989); Brown, J.R. and Doolittle, W.F., Proc. Natl. Acad. Sci. USA 92:2441 (1995)).

5

WO 98/07830

The era of true comparative genomics has been ushered in by complete genome sequencing and analysis. We recently described the first two complete bacterial genome sequences, those of *Haemophilus influenzae* and *Mycoplasma genitalium* (Fleischmann, R.D., et al., Science 269:496 (1995); Fraser, C.M., et al., Science 270:397 (1995)). Large scale DNA sequencing efforts also have produced an extensive collection of sequence data from eukaryotes, including *Homo sapiens* (Adams, M.D., et al., Nature 377:3 (1995)) and Saccharomyces cerevisiae (Levy, J., Yeast 10:1689 (1994)).

15

10

20

M. jannaschii was originally isolated by J.A. Leigh from a sediment sample collected from the sea floor surface at the base of a 2600 m deep "white smoker" chimney located at 21°N on the East Pacific Rise (Jones, W., et al., Arch. Microbiol. 136:254 (1983)). M. jannaschii grows at pressures of up to more than 500 atm and over a temperature range of 48-94 °C, with an optimum temperature near 85 °C (Jones, W., et al., Arch. Microbiol. 136:254 (1983)). The organism is autotrophic and a strict anaerobe; and, as the name implies, it produces methane. The dearth of archaeal nucleotide sequence data has hampered attempts to begin constructing a comprehensive comparative evolutionary framework for assessing the molecular basis of the origin and diversification of cellular life.

Summary of the Invention

25

The present invention is based on whole-genome random sequencing of an autotrophic archaeon, *Methanococcus jannaschii*. The *M. jannaschii* genome consists of three physically distinct elements: (i) a large circular chromosome; (ii) a large circular extrachromosomal element (ECE); and (iii) a small circular extrachromosomal element (ECE). The nucleotide sequences generated, the *M*.

10

15

20

25

jannaschii chromosome, the large ECE, and the small ECE, are respectively provided on pages 152-585 (SEQ ID NO:1), pages 585-600 (SEQ ID NO:2), and pages 601-605 (SEQ ID NO:3).

The present invention is further directed to isolated nucleic acid molecules comprising open reading frames (ORFs) encoding *M. jannaschii* proteins. The present invention also relates to variants of the nucleic acid molecules of the present invention, which encode portions, analogs or derivatives of *M. jannaschii* proteins. Further embodiments include isolated nucleic acid molecules comprising a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical, to the nucleotide sequence of a *M. jannaschii* ORF described herein.

The present invention also relates to recombinant vectors, which include the isolated nucleic acid molecules of the present invention, host cells containing the recombinant vectors, as well as methods for making such vectors and host cells for *M. jannaschii* protein production by recombinant techniques.

The invention further provides isolated polypeptides encoded by the *M. jannaschii* ORFs. It will be recognized that some amino acid sequences of the polypeptides described herein can be varied without significant effect on the structure or function of the protein. If such differences in sequence are contemplated, it should be remembered that there will be critical areas on the protein which determine activity. In general, it is possible to replace residues which form the tertiary structure, provided that residues performing a similar function are used. In other instances, the type of residue may be completely unimportant if the alteration occurs at a non-critical region of the protein.

In another aspect, the invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention. The epitope-bearing portion is an immunogenic or antigenic epitope useful for raising antibodies.

-4-

Brief Description of the Figures

Figure 1. A schematic showing the relationship of the three domains of life based on sequence data from the small subunit of rRNA (Fox, G.E., et al., Proc. Natl. Acad. Sci. USA 74:4537 (1977); Woese, C.R. & Fox, G.E., Proc. Natl. Acad. Sci. USA 74:5088 (1977); Woese, C.R., et al., Proc. Natl., Acad. Sci. USA 87:4576 (1990)).

5

10

15

20

25

30

Figure 2. Structure of a putative family of insertion sequence (IS) elements in the M. jannaschii genome. The family of elements has been named ISAMJI and contains 11 members distributed among three groups (A, B, and C). The outer rectangle indicates the entire IS element; the interior rectangles indicate the predicted coding regions, oriented with the NH₂-termini to the left. DNA immediately adjacent to the NH₂-termini is 75 to 100% identical over 50 bp; DNA sequence similarity at the COOH-termini ends immediately after the stop codon. Black triangles indicate terminal inverted repeats. Fill patterns indicate which regions are missing from the elements in groups B and C. (A) Two copies of this family are 642 bp long and are 97% similar to each other at the nucleotide level. They appear to encode a protein 214 amino acids in length (ORFs MJ0017 and MJ1466) that are 27% identical to the IS240 transposase of Bacillus thuriengiensis (GenBank Accession number: M23741). (B) Eight copies of the family range in length from 358 to 360 bp and are missing a 342-bp internal region relative to the two members of group A. Some members of group B have putative frameshifts (indicated by solid arrows) and in-frame UGA codons (indicated by open arrows). (C) The single copy in group C is 265 bp in length and occurs on the large ECE. The 436 bp internal region missing from this element is different than that of the members of group B.

Figure 3. Structure of a multicopy repetitive element in the *M. jannaschii* genome. Of the 18 copies identified on the main chromosome, seven are oriented in one direction (plus strand) and 11 are oriented in the opposite strand. Each element consists of a long, 391- to 425-bp repeat segment (designated LR) followed by up to 25 short, 27- to 28-bp repeat segments (designated SR). Each

-5-

SR segment is separated by 31 to 51 bp of sequence that is unique within and between each complete repeat element. (A) The longest repeat element has an LR segment followed by 25 SR segments, and spans more than 2 kbp, and (B) the shortest complete element has an LR segment followed by two SR segments. (C) One element is present in the genome with five SR segments and no LR component. (D and E) The LR segments of two elements in the genome are truncated at the end adjacent to the SR segments, both are followed by a single SR segment.

5

10

15

20

25

Figure 4. Block diagram of a computer system 102 that can be used to implement the computer-based systems of present invention.

Detailed Description of the Invention

The present invention is based on whole-genome random sequencing of an autotrophic archaeon, *Methanococcus jannaschii*. The *M. jannaschii* genome consists of three physically distinct elements: (i) a large circular chromosome of 1,664,976 base pairs (bp) (shown on pages 152-585 and in SEQ ID NO:1), which contains 1682 predicted protein-coding regions and has a G+C content of 31.4%; (ii) a large circular extrachromosomal element (the large ECE) of 58,407 bp (shown on pages 585-600 and in SEQ ID NO:2), which contains 44 predicted protein-coding regions and has a G+C content of 28.2%; and (iii) a small circular extrachromosomal element (the small ECE) of 16,550 bp (shown on pages 601-605 and in SEQ ID NO:3), which contains 12 predicted protein-coding regions and has a G+C content of 28.8%.

The primary nucleotide sequences generated, the *M. jannaschii* chromosome, the large ECE, and the small ECE, are provided in SEQ ID NOs:1, 2, and 3, respectively. As used herein, the "primary sequence" refers to the nucleotide sequence represented by the IUPAC nomenclature system. The present invention provides the nucleotide sequences of SEQ ID NOs:1, 2, and 3, or a representative fragment thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan.

As used herein, a "representative fragment" refers to *M. jannaschii* protein-encoding regions (also referred to herein as open reading frames), expression modulating fragments, uptake modulating fragments, and fragments that can be used to diagnose the presence of *M. jannaschii* in a sample. A non-limiting identification of such representative fragments is provided in Tables 2(a) and 3. As described in detail below, representative fragments of the present invention further include nucleic acid molecules having a nucleotide sequence at least 90% identical, preferably at least 95, 96%, 97%, 98%, or 99% identical, to an ORF identified in Table 2(a) or 3.

10

15

20

5

As indicated above, the nucleotide sequence information provided in SEQ ID NOs:1, 2 and 3 was obtained by sequencing the M. jannaschii genome using a megabase shotgun sequencing method. The sequences provided in SEQ ID NOs:1, 2 and 3 are highly accurate, although not necessarily a 100% perfect, representation of the nucleotide sequence of the M. jannaschii genome. As discussed in detail below, using the information provided in SEQ ID NOs:1, 2 and 3 and in Tables 2(a) and 3 together with routine cloning and sequencing methods, one of ordinary skill in the art would be able to clone and sequence all "representative fragments" of interest including open reading frames (ORFs) encoding a large variety of M. jannaschii proteins. In rare instances, this may reveal a nucleotide sequence error present in the nucleotide sequences disclosed in SEO ID NOs: 1, 2, and 3. Thus, once the present invention is made available (i.e., once the information in SEQ ID NOs:1, 2, and 3 and in Tables 2(a) and 3 have been made available), resolving a rare sequencing error would be well within the skill of the art. Nucleotide sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssembler™ can be used as an aid during visual inspection of nucleotide sequences.

25

Even if all of the rare sequencing errors were corrected, it is predicted that the resulting nucleotide sequences would still be at least about 99.9% identical to the reference nucleotide sequences in SEQ ID NOs:1, 2, and 3. Thus, the present invention further provides nucleotide sequences that are at least 99.9% identical to the nucleotide sequence of SEQ ID NO:1, 2, or 3 in a form which can

30

-7-

be readily used, analyzed and interpreted by the skilled artisan. Methods for determining whether a nucleotide sequence is at least 99.9% identical to a reference nucleotide sequence of the present invention are described below.

Nucleic Acid Molecules

5

The present invention is directed to isolated nucleic acid fragments of the *M. jannaschii* genome. Such fragments include, but are not limited to, nucleic acid molecules encoding polypeptides (hereinafter open reading frames (ORFs)), nucleic acid molecules that modulate the expression of an operably linked ORF (hereinafter expression modulating fragments (EMFs)), nucleic acid molecules that mediate the uptake of a linked DNA fragment into a cell (hereinafter uptake modulating fragments (UMFs)), and nucleic acid molecules that can be used to diagnose the presence of *M. jannaschii* in a sample (hereinafter diagnostic fragments (DFs)).

15

10

By "isolated nucleic acid molecule(s)" is intended a nucleic acid molecule, DNA or RNA, that has been removed from its native environment. For example, recombinant DNA molecules contained in a vector are considered isolated for the purposes of the present invention. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells, purified (partially or substantially) DNA molecules in solution, and nucleic acid molecules produced synthetically. Isolated RNA molecules include in vitro RNA transcripts of the DNA molecules of the present invention.

20

25

In one embodiment, *M. jannaschii* DNA can be mechanically sheared to produce fragments about 15-20 kb in length, which can be used to generate a *M. jannaschii* DNA library by insertion into lambda clones as described in Example 1 below. Primers flanking an ORF described in Table 2(a) or 3 can then be generated using the nucleotide sequence information provided in SEQ ID NO:1, 2, or 3. The polymerase chain reaction (PCR) is then used to amplify and isolate the ORF from the lambda DNA library. PCR cloning is well known in the art. Thus, given SEQ ID NOs:1, 2, and 3, and Tables 2(a) and 3, it would be routine

to isolate any ORF or other representative fragment of the *M. jannaschii* genome. Isolated nucleic acid molecules of the present invention include, but are not limited to, single stranded and double stranded DNA, and single stranded RNA, and complements thereof.

5

10

15

20

Tables 2(a), 2(b) and 3 describe ORFs in the M. jannaschii genome. In particular, Table 2(a) (pages 67-115 below) indicates the location of ORFs (i.e., the position) within the M. jannaschii genome that putatively encode the recited protein based on homology matching with protein sequences from the organism appearing in parentheticals (see the fourth column of Table 2(a)). The first column of Table 2(a) provides a name for each ORF. The second and third columns in Table 2(a) indicate an ORF's position in the nucleotide sequence provided in SEQ ID NO:1, 2 or 3. One of ordinary skill in the art will appreciate that the ORFs may be oriented in opposite directions in the M. jannaschii genome. This is reflected in columns 2 and 3. The fifth column of Table 2(a) indicates the percent identity of the protein sequence encoded by an ORF to the corresponding protein sequence from the organism appearing in parentheticals in the fourth column. The sixth column of Table 2(a) indicates the percent similarity of the protein sequence encoded by an ORF to the corresponding protein sequence from the organism appearing in parentheticals in the fourth The concepts of percent identity and percent similarity of two polypeptide sequences are well understood in the art and are described in more detail below. The eighth column in Table 2(a) indicates the length of the ORF in nucleotides. Each identified gene has been assigned a putative cellular role category adapted from Riley (Riley, M., Microbiol. Rev. 57:862 (1993)).

25

Table 2(b) (page 116 below) provides the single ORF identified by the present inventors that matches a previously published *M. jannaschii* gene. In particular, ORF MJ0479, which is 585 nucleotides in length and is positioned at nucleotides 1,050,508 to 1,049,948 in SEQ ID NO:1, shares 100% identity to the previously published *M. jannaschii* adenylate kinase gene.

30

Table 3 (pages 117-150 below) provides ORFs of the *M. jannaschii* genome that did not elicit a homology match with a known sequence from either

-9-

M. jannaschii or another organism. As above, the first column in Table 3 provides the ORF name and the second and third columns indicate an ORF's position in SEQ ID NO:1, 2, or 3.

Table 4 (page 151 below) provides genes of *M. jannaschii* that contain inteins.

5

10

15

20

25

30

In the above-described Tables, there are three groups of ORF names. The one thousand six hundred and eighty two ORFs named "MJ-" (MJ0001-MJ1682) were identified on the *M. jannaschii* chromosome (SEQ ID NO:1). The forty four ORFs named "MJECL-" (MJECL01-MJECL44) were identified on the large ECE (SEQ ID NO:2). The twelve ORFs named "MJECS-" (MJECS01-MJES12) were identified on the small ECE (SEQ ID NO:3).

Further details concerning the algorithms and criteria used for homology searches are provided in the Examples below. A skilled artisan can readily identify ORFs in the *Methanococcus jannaschii* genome other than those listed in Tables 2(a), 2(b) and 3, such as ORFs that are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention.

Isolated nucleic acid molecules of the present invention include DNA molecules having a nucleotide sequence substantially different than the nucleotide sequence of an ORF described in Table 2(a) or 3, but which, due to the degeneracy of the genetic code, still encode a *M. jannaschii* protein. The genetic code is well known in the art. Thus, it would be routine to generate such degenerate variants.

The present invention further relates to variants of the nucleic acid molecules of the present invention, which encode portions, analogs or derivatives of a *M. Jannaschii* protein encoded by an ORF described in Table 2(a) or 3. Non-naturally occurring variants may be produced using art-known mutagenesis techniques and include those produced by nucleotide substitutions, deletions or additions. The substitutions, deletions or additions may involve one or more nucleotides. The variants may be altered in coding regions, non-coding regions, or both. Alterations in the coding regions may produce conservative or

non-conservative amino acid substitutions, deletions or additions. Especially preferred among these are silent substitutions, additions and deletions, which do not alter the properties and activities of the *M. jannaschii* protein or portions thereof. Also especially preferred in this regard are conservative substitutions.

5

10

15

20

25

30

As a practical matter, whether any particular nucleic acid molecule is at least 90%, 95%, 96%, 97%, 98% or 99% identical to the nucleotide sequence of a *M. jannaschii* ORF can be determined conventionally using known computer programs such as the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711). Bestfit uses the local homology algorithm

Further embodiments of the invention include isolated nucleic acid molecules comprising a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical, to (a) the nucleotide sequence of an ORF described in Table 2(a) or 3, (b) the nucleotide sequence of an ORF described in Table 2(a) or 3, but lacking the codon for the N-terminal methionine residue, if present, or (c) a nucleotide sequence complementary to any of the nucleotide sequences in (a) or (b). By a polynucleotide having a nucleotide sequence at least, for example, 95% identical to the reference M. jannaschii ORF nucleotide sequence is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the ORF sequence. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference ORF nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. These mutations of the reference sequence may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence.

WO 98/07830

5

10

15

20

25

30

-11-

PCT/US97/14900

of Smith and Waterman, Advances in Applied Mathematics 2: 482-489 (1981), to find the best segment of homology between two sequences. When using Bestfit or any other sequence alignment program to determine whether a particular sequence is, for instance, 95% identical to a reference sequence according to the present invention, the parameters are set, of course, such that the percentage of identity is calculated over the full length of the reference nucleotide sequence and that gaps in homology of up to 5% of the total number of nucleotides in the reference sequence are allowed.

Preferred are nucleic acid molecules having sequences at least 90%, 95%, 96%, 97%, 98% or 99% identical to the nucleic acid sequence of a *M. jannaschii* ORF that encode a functional polypeptide. By a "functional polypeptide" is intended a polypeptide exhibiting activity similar, but not necessarily identical, to an activity of the protein encoded by the *M. jannaschii* ORF. For example, the *M. jannaschii* ORF MJ1434 encodes an endonuclease that degrades DNA. Thus, a "functional polypeptide" encoded by a nucleic acid molecule having a nucleotide sequence, for example, 95% identical to the nucleotide sequence of MJ1434, will also degrade DNA. As the skilled artisan will appreciate, assays for determining whether a particular polypeptide is "functional" will depend on which ORF is used as the reference sequence. Depending on the reference ORF, the assay chosen for measuring polypeptide activity will be readily apparent in light of the role categories provided in Table 2(a).

Of course, due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large number of the nucleic acid molecules having a sequence at least 90%, 95%, 96%, 97%, 98%, or 99% identical to the nucleic acid sequence of a reference ORF will encode a functional polypeptide. In fact, since degenerate variants all encode the same amino acid sequence, this will be clear to the skilled artisan even without performing a comparison assay for protein activity. It will be further recognized in the art that, for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a functional polypeptide. This is because the skilled artisan is fully aware of amino acid substitutions that are either less likely or not

10

15

20

25

30

likely to significantly affect protein function (e.g., replacing one aliphatic amino acid with a second aliphatic amino acid).

For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie, J. U. et al., "Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions," Science 247:1306-1310 (1990), wherein the authors indicate that there are two main approaches for studying the tolerance of an amino acid sequence to change. The first method relies on the process of evolution, in which mutations are either accepted or rejected by natural selection. The second approach uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene and selections or screens to identify sequences that maintain functionality. As the authors state, these studies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at a certain position of the protein. For example, most buried amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Other such phenotypically silent substitutions are described in Bowie, J.U. et al., supra, and the references cited therein.

The present invention is further directed to fragments of the isolated nucleic acid molecules described herein. By a fragment of an isolated nucleic acid molecule having the nucleotide sequence of a *M. jannaschii* ORF is intended fragments at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt in length that are useful as diagnostic probes and primers as discussed herein. Of course, larger fragments 50-500 nt in length are also useful according to the present invention as are fragments corresponding to most, if not all, of the nucleotide sequence of a *M. jannaschii* ORF. By a fragment at least 20 nt in length, for example, is intended fragments that include 20 or more contiguous bases from the nucleotide sequence of a *M. jannaschii* ORF. Since *M. jannaschii* ORFs are listed in Tables 2(a) and 3 and the genome sequence has been provided, generating such DNA fragments would be routine to the skilled artisan. For

10

15

20

25

example, restriction endonuclease cleavage or shearing by sonication could easily be used to generate fragments of various sizes. Alternatively, such fragments could be generated synthetically.

Preferred nucleic acid fragments of the present invention include nucleic acid molecules encoding epitope-bearing portions of a *M. jannaschii* protein. Methods for determining such epitope-bearing portions are described in detail below.

In another aspect, the invention provides an isolated nucleic acid molecule comprising a polynucleotide that hybridizes under stringent hybridization conditions to a portion of the polynucleotide in a nucleic acid molecule of the invention described above, for instance, an ORF described in Table 2(a) or 3. By "stringent hybridization conditions" is intended overnight incubation at 42°C in a solution comprising: 50% formamide, 5x SSC (150 mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 g/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65°C.

By a polynucleotide that hybridizes to a "portion" of a polynucleotide is intended a polynucleotide (either DNA or RNA) hybridizing to at least about 15 nucleotides (nt), and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably about 30-70 nt of the reference polynucleotide. These are useful as diagnostic probes and primers as discussed above and in more detail below.

Of course, polynucleotides hybridizing to a larger portion of the reference polynucleotide (e.g., a *M. jannaschii* ORF), for instance, a portion 50-500 nt in length, or even to the entire length of the reference polynucleotide, are also useful as probes according to the present invention, as are polynucleotides corresponding to most, if not all, of a *M. jannaschii* ORF.

10

15

20

25

30

By "expression modulating fragment" (EMF), is intended a series of nucleotides that modulate the expression of an operably linked ORF or EMF. A sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments that induce the expression of an operably linked ORF in response to a specific regulatory factor or physiological event. EMF sequences can be identified within the M. jannaschii genome by their proximity to the ORFs described in Tables 2(a), 2(b), and 3. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in length, taken 5' from any one of the ORFs of Tables 2(a), 2(b) or 3 will modulate the expression of an operably linked 3' ORF in a fashion similar to that found with the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to the fragments of the M. jannaschii genome that are between two ORF(s) herein described. Alternatively, EMFs can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention.

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site 5' to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below.

A sequence that is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

By "uptake modulating fragment" (UMF), is intended a series of nucleotides that mediate the uptake of a linked DNA fragment into a cell. UMFs can be readily identified using known UMFs as a target sequence or target motif with the computer-based systems described below. The presence and activity of a UMF can be confirmed by attaching the suspected UMF to a marker sequence. The resulting nucleic acid molecule is then incubated with an appropriate host under appropriate conditions and the uptake of the marker sequence is determined. As described above, a UMF will increase the frequency of uptake of a linked marker sequence.

10

5

By a "diagnostic fragment" (DF), is intended a series of nucleotides that selectively hybridize to *M. jannaschii* sequences. DFs can be readily identified by identifying unique sequences within the *M. jannaschii* genome, or by generating and testing probes or amplification primers consisting of the DF sequence in an appropriate diagnostic format for amplification or hybridization selectivity.

15

Each of the ORFs of the *M. jannaschii* genome disclosed in Tables 2(a) and 3, and the EMF found 5' to the ORF, can be used in numerous ways as polynucleotide reagents. The sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence *M. jannaschii* in a sample. This is especially the case with the fragments or ORFs of Table 3, which will be highly selective for *M. jannaschii*.

20

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)).

25

30

-16-

Triple helix- formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide.

Vectors and Host Cells

5

10

15

20

25

The present invention further provides recombinant constructs comprising one or more fragments of the *M. jannaschii* genome. The recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which, for example, a *M. jannaschii* ORF is inserted. The vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. For vectors comprising the EMFs and UMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF operably linked to the EMF or UMF. Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLneo, pSV2cat, pOG44, pXT1, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia).

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda P_R, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the

WO 98/07830

appropriate vector and promoter is well within the level of ordinary skill in the art.

The present invention further provides host cells containing any one of the isolated fragments (preferably an ORF) of the *M. jannaschii* genome described herein. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or the host cell can be a procaryotic cell, such as a bacterial cell. Introduction of the recombinant construct into the host cell can be effected by calcium phosphate transfection, DEAE, dextran mediated transfection, or electroporation (Davis, L. et al., Basic Methods in Molecular Biology (1986)). Host cells containing, for example, a M. jannaschii ORF can be used conventionally to produce the encoded protein.

Polypeptides and Fragments

The invention further provides an isolated polypeptide encoded by a *M. jannaschii* ORF described in Tables 2(a) or 3, or a peptide or polypeptide comprising a portion of the isolated polypeptide. The terms "peptide" and "oligopeptide" are considered synonymous (as is commonly recognized) and each term can be used interchangeably as the context requires to indicate a chain of at least two amino acids coupled by peptidyl linkages. The word "polypeptide" is used herein for chains containing more than ten amino acid residues.

20

15

5

10

It will be recognized in the art that some amino acid sequence of the M. jannaschii polypeptide can be varied without significant affect of the structure or function of the protein. If such differences in sequence are contemplated, it should be remembered that there will be critical areas on the protein which determine activity. In general, it is possible to replace residues which form the tertiary structure, provided that residues performing a similar function are used. In other instances, the type of residue may be completely unimportant if the alteration occurs at a non-critical region of the protein.

25

Thus, the invention further includes variations of a M. jannaschii protein encoded by an ORF described in Table 2(a) or 3 that show substantial protein

activity. Methods for assaying such "functional polypeptides" for protein activity are described above. Variations include deletions, insertions, inversions, repeats, and type substitutions (for example, substituting one hydrophilic residue for another, but not strongly hydrophilic for strongly hydrophobic as a rule). Small changes or such "neutral" amino acid substitutions will generally have little effect on protein activity.

5

10

15

20

25

30

Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu and Ile; interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues Asp and Glu, substitution between the amide residues Asp and Gln, exchange of the basic residues Lys and Arg and replacements among the aromatic residues Phe, Tyr.

As indicated in detail above, further guidance concerning amino acid changes that are likely to be phenotypically silent (i.e., are not likely to have a significant deleterious effect on function) can be found in Bowie, J.U., *et al.*, "Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions," *Science* 247:1306-1310 (1990).

The fragment, derivative, variant or analog of a *M. jannaschii* polypeptide encoded by an ORF described in Table 2(a) or 3, may be (i) one in which one or more of the amino acid residues are substituted with a conserved or nonconserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) one in which the additional amino acids are fused to the polypeptide, such as an IgG Fc fusion region peptide or leader or secretory sequence or a sequence which is employed for purification of the polypeptide or a proprotein sequence. Such fragments, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.

Of particular interest are substitutions of charged amino acids with another charged amino acid and with neutral or negatively charged amino acids. The latter results in proteins with reduced positive charge to improve the characteristics of a *M. jannaschii* ORF-encoded protein. The prevention of aggregation is highly desirable. Aggregation of proteins not only results in a loss of activity but can also be problematic when preparing pharmaceutical formulations, because they can be immunogenic. (Pinckard *et al.*, *Clin. Exp. Immunol.* 2:331-340 (1967); Robbins *et al.*, *Diabetes* 36:838-845 (1987); Cleland *et al. Crit. Rev. Therapeutic Drug Carrier Systems* 10:307-377 (1993)).

10

15

5

As indicated, changes are preferably of a minor nature, such as conservative amino acid substitutions that do not significantly affect the folding or activity of the protein (see Table 1).

TABLE 1. Conservative Amino Acid Substitutions.

Aromatic	Phenylalanine Tryptophan Tyrosine	
Hydrophobic	Leucine Isoleucine Valine	
Polar	Glutamine Asparagine	
Basic	Arginine Lysine Histidine	
Acidic	Aspartic Acid Glutamic Acid	
Small	Alanine Serine Threonine Methionine Glycine	

20

Amino acids in a *M. jannaschii* ORF-encoded protein of the present invention that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis

10

15

20

25

30

(Cunningham and Wells, *Science 244*:1081-1085 (1989)). The latter procedure introduces single alanine mutations at every residue in the molecule.

The polypeptides of the present invention are preferably provided in an isolated form. By "isolated polypeptide" is intended a polypeptide removed from its native environment. Thus, a polypeptide produced and/or contained within a recombinant host cell is considered isolated for purposes of the present invention. Also intended as an "isolated polypeptide" are polypeptides that have been purified, partially or substantially, from a recombinant host cell. For example, a recombinantly produced version of a *M. jannaschii* ORF-encoded protein can be substantially purified by the one-step method described in Smith and Johnson, *Gene* 67:31-40 (1988).

The polypeptides of the present invention include the proteins encoded by (a) an ORF described in Table 2(a) or 3 or (b) an ORF described in Table 2(a) or 3, but minus the codon for the N-terminal methionine residue, if present, as well as polypeptides that have at least 90% similarity, more preferably at least 95% similarity, and still more preferably at least 96%, 97%, 98% or 99% similarity to a *M. jannaschii* ORF-encoded protein. Further polypeptides of the present invention include polypeptides at least 90% identical, more preferably at least 95% identical, still more preferably at least 96%, 97%, 98% or 99% identical to a *M. jannaschii* ORF-encoded protein.

By "% similarity" for two polypeptides is intended a similarity score produced by comparing the amino acid sequences of the two polypeptides using the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711) and the default settings for determining similarity. Bestfit uses the local homology algorithm of Smith and Waterman (Advances in Applied Mathematics 2:482-489, 1981) to find the best segment of similarity between two sequences.

By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a reference amino acid sequence of a *M. jannaschii* ORF-encoded protein is intended that the amino acid sequence of the polypeptide is

5

10

15

20

25

30

-21-

identical to the reference sequence except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the reference sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

As a practical matter, whether any particular polypeptide has an amino acid sequence at least 90%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of a *M. jannaschii* ORF-encoded protein can be determined conventionally using known computer programs such the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711). When using Bestfit or any other sequence alignment program to determine whether a particular sequence is, for instance, 95% identical to a reference sequence according to the present invention, the parameters are set, of course, such that the percentage of identity is calculated over the full length of the reference amino acid sequence and that gaps in homology of up to 5% of the total number of amino acid residues in the reference sequence are allowed.

As described in detail below, the polypeptides of the present invention can also be used to raise polyclonal and monoclonal antibodies, which are useful in assays for detecting *M. jannaschii* protein expression.

In another aspect, the invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention. The epitope of this polypeptide portion is an immunogenic or antigenic epitope of a polypeptide of the invention. An "immunogenic epitope" is defined as a part of

10

15

20

25

30

a protein that elicits an antibody response when the whole protein is the immunogen. These immunogenic epitopes are believed to be confined to a few loci on the molecule. On the other hand, a region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes. See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998-4002 (1983).

As to the selection of peptides or polypeptides bearing an antigenic epitope (i.e., that contain a region of a protein molecule to which an antibody can bind), it is well known in that art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein. See, for instance, Sutcliffe, J. G., Shinnick, T. M., Green, N. and Learner, R.A. (1983). Antibodies that react with predetermined sites on proteins are described in Science 219:660-666. Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (i.e., immunogenic epitopes) nor to the amino or carboxyl terminals. Peptides that are extremely hydrophobic and those of six or fewer residues generally are ineffective at inducing antibodies that bind to the mimicked protein; longer, peptides, especially those containing proline residues, usually are effective. Sutcliffe et al., supra, at 661. For instance, 18 of 20 peptides designed according to these guidelines, containing 8-39 residues covering 75% of the sequence of the influenza virus hemagglutinin HA1 polypeptide chain, induced antibodies that reacted with the HA1 protein or intact virus; and 12/12 peptides from the MuLV polymerase and 18/18 from the rabies glycoprotein induced antibodies that precipitated the respective proteins.

Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention. Thus, a high proportion of hybridomas obtained by fusion of spleen cells from donors immunized with an

10

15

20

25

30

antigen epitope-bearing peptide generally secrete antibody reactive with the native protein. Sutcliffe et al., supra, at 663. The antibodies raised by antigenic epitope-bearing peptides or polypeptides are useful to detect the mimicked protein, and antibodies to different peptides may be used for tracking the fate of various regions of a protein precursor which undergoes post-translational processing. The peptides and anti-peptide antibodies may be used in a variety of qualitative or quantitative assays for the mimicked protein, for instance in competition assays since it has been shown that even short peptides (e.g., about 9 amino acids) can bind and displace the larger peptides in immunoprecipitation assays. See, for instance, Wilson et al., Cell 37:767-778 (1984) at 777. The antipeptide antibodies of the invention also are useful for purification of the mimicked protein, for instance, by adsorption chromatography using methods well known in the art.

Antigenic epitope-bearing peptides and polypeptides of the invention designed according to the above guidelines preferably contain a sequence of at least seven, more preferably at least nine and most preferably between about 15 to about 30 amino acids contained within the amino acid sequence of a polypeptide of the invention. However, peptides or polypeptides comprising a larger portion of an amino acid sequence of a polypeptide of the invention, containing about 30 to about 50 amino acids, or any length up to and including the entire amino acid sequence of a polypeptide of the invention, also are considered epitope-bearing peptides or polypeptides of the invention and also are useful for inducing antibodies that react with the mimicked protein. Preferably, the amino acid sequence of the epitope-bearing peptide is selected to provide substantial solubility in aqueous solvents (i.e., the sequence includes relatively hydrophilic residues and highly hydrophobic sequences are preferably avoided); and sequences containing proline residues are particularly preferred.

The epitope-bearing peptides and polypeptides of the invention may be produced by any conventional means for making peptides or polypeptides including recombinant means using nucleic acid molecules of the invention. For instance, a short epitope-bearing amino acid sequence may be fused to a larger

WO 98/07830

5

10

15

20

25

30

-24-

polypeptide which acts as a carrier during recombinant production and purification, as well as during immunization to produce anti-peptide antibodies. Epitope-bearing peptides also may be synthesized using known methods of chemical synthesis. For instance, Houghten has described a simple method for synthesis of large numbers of peptides, such as 10-20 mg of 248 different 13 residue peptides representing single amino acid variants of a segment of the HA1 polypeptide which were prepared and characterized (by ELISA-type binding studies) in less than four weeks. Houghten, R. A. (1985) General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. USA 82:5131-5135. This "Simultaneous Multiple Peptide Synthesis (SMPS)" process is further described in U.S. Patent No. 4,631,211 to Houghten et al. (1986). In this procedure the individual resins for the solid-phase synthesis of various peptides are contained in separate solvent-permeable packets, enabling the optimal use of the many identical repetitive steps involved in solid-phase methods. A completely manual procedure allows 500-1000 or more syntheses to be conducted simultaneously. Houghten et al., supra, at 5134.

Epitope-bearing peptides and polypeptides of the invention are used to induce antibodies according to methods well known in the art. See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen. Virol. 66:2347-2354 (1985). Generally, animals may be immunized with free peptide; however, anti-peptide antibody titer may be boosted by coupling of the peptide to a macromolecular carrier, such as keyhole limpet hemacyanin (KLH) or tetanus toxoid. For instance, peptides containing cysteine may be coupled to carrier using a linker such as m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), while other peptides may be coupled to carrier using a more general linking agent such as glutaraldehyde. Animals such as rabbits, rats and mice are immunized with either free or carrier-coupled peptides, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about 100 g peptide or carrier protein and Freund's adjuvant. Several booster injections may be needed, for

-25-

instance, at intervals of about two weeks, to provide a useful titer of anti-peptide antibody which can be detected, for example, by ELISA assay using free peptide adsorbed to a solid surface. The titer of anti-peptide antibodies in serum from an immunized animal may be increased by selection of anti-peptide antibodies, for instance, by adsorption to the peptide on a solid support and elution of the selected antibodies according to methods well known in the art.

5

10

15

20

25

30

Immunogenic epitope-bearing peptides of the invention, i.e., those parts of a protein that elicit an antibody response when the whole protein is the immunogen, are identified according to methods known in the art. For instance, Geysen et al., supra, discloses a procedure for rapid concurrent synthesis on solid supports of hundreds of peptides of sufficient purity to react in an enzyme-linked immunosorbent assay. Interaction of synthesized peptides with antibodies is then easily detected without removing them from the support. In this manner a peptide bearing an immunogenic epitope of a desired protein may be identified routinely by one of ordinary skill in the art. For instance, the immunologically important epitope in the coat protein of foot-and-mouth disease virus was located by Geysen et al. with a resolution of seven amino acids by synthesis of an overlapping set of all 208 possible hexapeptides covering the entire 213 amino acid sequence of the protein. Then, a complete replacement set of peptides in which all 20 amino acids were substituted in turn at every position within the epitope were synthesized, and the particular amino acids conferring specificity for the reaction with antibody were determined. Thus, peptide analogs of the epitope-bearing peptides of the invention can be made routinely by this method. U.S. Patent No. 4,708,781 to Geysen (1987) further describes this method of identifying a peptide bearing an immunogenic epitope of a desired protein.

Further still, U.S. Patent No. 5,194,392 to Geysen (1990) describes a general method of detecting or determining the sequence of monomers (amino acids or other compounds) which is a topological equivalent of the epitope (i.e., a "mimotope") which is complementary to a particular paratope (antigen binding site) of an antibody of interest. More generally, U.S. Patent No. 4,433,092 to Geysen (1989) describes a method of detecting or determining a sequence of

WO 98/07830

monomers which is a topographical equivalent of a ligand which is complementary to the ligand binding site of a particular receptor of interest. Similarly, U.S. Patent No. 5,480,971 to Houghten, R. A. et al. (1996) on Peralkylated Oligopeptide Mixtures discloses linear C₁-C₇-alkyl peralkylated oligopeptides and sets and libraries of such peptides, as well as methods for using such oligopeptide sets and libraries for determining the sequence of a peralkylated oligopeptide that preferentially binds to an acceptor molecule of interest. Thus, non-peptide analogs of the epitope-bearing peptides of the invention also can be made routinely by these methods.

10

15

20

5

The entire disclosure of each document cited in this section on "Polypeptides and Peptides" is hereby incorporated herein by reference.

As one of skill in the art will appreciate, the polypeptides of the present invention and the epitope-bearing fragments thereof described above can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life *in vivo*. This has been demonstrated, e.g., for chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins (EPA 394,827; Traunecker *et al.*, *Nature 331*:84-86 (1988)). Fusion proteins that have a disulfide-linked dimeric structure due to the IgG part can also be more efficient in binding and neutralizing other molecules than the monomeric protein or protein fragment alone (Fountoulakis *et al.*, *J Biochem 270*:3958-3964 (1995)).

Protein Function

25

Each ORF described in Table 2(a) was assigned to biological role categories adapted from Riley, M., *Microbiology Reviews* 57(4):862 (1993)). This allows the skilled artisan to determine a function for each identified coding sequence. For example, a partial list of the *M. jannaschii* protein functions provided in Table 2(a) includes: methanogenesis, amino acid biosynthesis, cell

division, detoxification, protein secretion, transformation, central intermediary metabolism, energy metabolism, degradation of DNA, DNA replication, restriction, modification, recombination and repair, transcription, RNA processing, translation, degradation of proteins, peptides and glycopeptides, ribosomal proteins, translation factors, transport, tRNA modification, and drug and analog sensitivity. A more detailed description of several of these functions is provided in Example 1 below.

Diagnostic Assays

10

5

The present invention further provides methods to identify the expression of an ORF of the present invention, or homolog thereof, in a test sample, using one of the DFs or antibodies of the present invention. Such methods involve incubating a test sample with one or more of the antibodies or one or more of the DFs of the present invention and assaying for binding of the DFs or antibodies to components within the test sample.

15

20

Conditions for incubating a DF or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the DF or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the DFs or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G.R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985).

25

The test samples of the present invention include cells, protein or membrane extracts of cells. The test sample used in the above-described method

WO 98/07830

5

10

15

20

25

-28-

PCT/US97/14900

will vary based on the assay format, nature of the detection method and the cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention. Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers including comprising: (a) a first container comprising one of the DFs or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound DF or antibody.

A compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allow one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody or DF.

Types of detection reagents include labeled nucleic acid probes, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the enzymatic, or antibody binding reagents that are capable of reacting with the labeled antibody. One skilled in the art will readily recognize that the disclosed DFs and antibodies of the present invention can be readily incorporated into one of the established kit formats that are well known in the art.

Screening Assay for Binding Agents

Using the isolated proteins described herein, the present invention further provides methods of obtaining and identifying agents that bind to a protein encoded by a *M. jannaschii* ORF or to a fragment thereof.

The method involves:

- (a) contacting an agent with an isolated protein encoded by a M. jannaschii ORF, or an isolated fragment thereof; and
- (b) determining whether the agent binds to said protein or said fragment.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques. For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by an ORF of the present invention.

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides, In Synthetic Peptides, A User's Guide, W.H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly

5

10

15

20

25

screened or rationally designed and selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs that rely on the same EMF for expression control.

5

One class of DNA binding agents are those that contain nucleotide base residues that hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives having base attachment capacity.

10

Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251: 1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide and other DNA binding agents.

20

15

Computer Related Embodiments

25

The nucleotide sequence provided in SEQ ID NO:1, 2, or 3, a representative fragment thereof, or a nucleotide sequence at least 99.9% identical to the sequence provided in SEQ ID NO:1, 2, or 3, can be "provided" in a variety of mediums to facilitate use thereof. As used herein, provided refers to a manufacture, other than an isolated nucleic acid molecule, that contains a nucleotide sequence of the present invention, i.e., the nucleotide sequence provided in SEQ ID NO:1, 2, or 3, a representative fragment thereof, or a

10

15

20

25

30

nucleotide sequence at least 99.9% identical to SEQ ID NO:1, 2, or 3. Such a manufacture provides the *M. jannaschii* genome or a subset thereof (e.g., a *M. jannaschii* open reading frame (ORF)) in a form that allows a skilled artisan to examine the manufacture using means not directly applicable to examining the *M. jannaschii* genome or a subset thereof as it exists in nature or in purified form.

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium that can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention. A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of dataprocessor structuring formats

10

15

20

25

30

(e.g. text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

By providing the nucleotide sequence of SEQ ID NO:1, 2, or 3, a representative fragment thereof, or a nucleotide sequence at least 99.9% identical to SEQ ID NO:1, 2, or 3, in computer readable form, a skilled artisan can routinely access the sequence information for a variety of purposes. Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system can be used to identify open reading frames (ORFs) within the M. jannaschii genome that contain homology to ORFs or proteins from other organisms. Such ORFs are proteinencoding fragments within the M. jannaschii genome and are useful in producing commercially important proteins such as enzymes used in methanogenesis, amino acid biosynthesis, metabolism, fermentation, transcription, translation, RNA processing, nucleic acid and protein degradation, protein modification, and DNA replication, restriction, modification, recombination, and repair. comprehensive list of ORFs encoding commercially important M. jannaschii proteins is provided in Tables 2(a) and 3.

The present invention further provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify commercially important fragments of the *M. jannaschii* genome. As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based system are suitable for use in the present invention.

As indicated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means. As used herein, "data storage means" refers to memory that can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention. As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of the M. jannaschii genome that match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are available and can be used in the computer-based systems of the present invention. Examples of such software include, but are not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

20

15

5

10

As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that during searches for commercially important fragments of the *M. jannaschii* genome, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

30

25

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is

10

15

20

25

30

PCT/US97/14900

formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

Thus, the present invention further provides an input means for receiving a target sequence, a data storage means for storing the target sequence and the homologous *M. jannaschii* sequence identified using a search means as described above, and an output means for outputting the identified homologous *M. jannaschii* sequence. A variety of structural formats for the input and output means can be used to input and output information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the *M. jannaschii* genome possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the *M. jannaschii* genome. For example, implementing software which implement the BLAST and BLAZE algorithms (Altschul *et al.*, *J. Mol. Biol. 215*:403-410 (1990)) can be used to identify open reading frames within the *M. jannaschii* genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention.

One application of this embodiment is provided in Figure 4. Figure 4 provides a block diagram of a computer system 102 that can be used to implement the present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium

-35-

storage device 114. The removable medium storage device 114 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, etc. A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114 once inserted in the removable medium storage device 114.

A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108, any of the secondary storage devices 110, and/or a removable storage medium 116. Software for accessing and processing the genomic sequence (such as search tools, comparing tools, etc.) reside in main memory 108 during execution.

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

Experimental

Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii

20 Example 1

5

10

15

25

30

A whole genome random sequencing method (Fleischmann, R.D., et al., Science 269:496 (1995); Fraser, C.M., et al., Science 270:397 (1995)) was used to obtain the complete genome sequence for M. jannaschii. A small insert plasmid library (2.5 Kbp average insert size) and a large insert lambda library (16 Kbp average insert size) were used as substrates for sequencing. The lambda library was used to form a genome scaffold and to verify the orientation and integrity of the contigs formed from the assembly of sequences from the plasmid library. All clones were sequenced from both ends to aid in ordering of contigs during the sequence assembly process. The average length of sequencing reads was 481 bp. A total of 36,718 sequences were assembled by means of the TIGR

10

15

20

25

30

WO 98/07830 PCT/US97/14900

Assembler (Fleischmann, R.D., et al., Science 269:496 (1995); Fraser, C.M., et al., Science 270:397 (1995); Sutton G., et al., Genome Sci. Tech. 1:9 (1995)). Sequence and physical gaps were closed using a combination of strategies (Fleischmann, R.D., et al., Science 269:496 (1995); Fraser, C.M., et al., Science 270:397 (1995)). The colinearity of the in vivo genome to the genome sequence was confirmed by comparing restriction fragments from six, rare cutter, restriction enzymes (Aat II, BamHI, Bgl II, Kpn I, Sma I, and Sst II) to those predicted from the sequence data. Additional confidence in the colinearity was provided by the genome scaffold produced by sequence pairs from 339 largeinsert lambda clones, which covered 88% of the main chromosome. Open reading frames (ORFs) and predicted protein-coding regions were identified as described (Fleischmann, R.D., et al., Science 269:496 (1995); Fraser, C.M., et al., Science 270:397 (1995)) with some modification. In particular, the statistical prediction of M. jannaschii genes was performed with GeneMark (Borodovsky, M. & McIninch, J. Comput. Chem. 17:123 (1993)). Regular GeneMark uses nonhomogeneous Markov models derived from a training set of coding sequences and ordinary Markov models derived from a training set of noncoding sequences. Only a single 16S ribosomal RNA sequence of M. jannaschii was available in the public sequence databases before the whole genome sequence described here. Thus, the initial training set to determine parameters of a coding sequence Markov model was chosen as a set of ORFs >1000 nucleotides (nt). As an initial model for non-coding sequences, a zero-order Markov model with genomespecific nucleotide frequencies was used. The initial models were used at the first prediction step. The results of the first prediction were then used to compile a set of putative genes used at the second training step. Alternate rounds of training and predicting were continued until the set of predicted genes stabilized and the parameters of the final fourth-order model of coding sequences were derived. The regions predicted as noncoding were then used as a training set for a final model for noncoding regions. Cross-validation simulations demonstrated that the GeneMark program trained as described above was able to correctly identify coding regions of at least 96 nt in 94% of the cases and noncoding regions of the

10

15

20

25

30

same length in 96% of the cases. These values assume that the self-training method produced correct sequence annotation for compiled control sets. Comparison with the results obtained by searches against a nonredundant protein database (Fleischmann, R.D., et al., Science 269:496 (1995); Fraser, C.M., et al., Science 270:397 (1995)) demonstrated that almost all genes identified by sequence similarity were predicted by the GeneMark program as well. This observation provides additional confidence in genes predicted by GeneMark whose protein translations did not show significant similarity to known protein sequences. The predicted protein-coding regions were search against the Blocks database (Henikoff, S. & Henikoff, J.G., Genomics 19:97 (1994)] by means of BLIMPS (Wallace, J.C. & Henikoff, S., CABIOS 8:249 (1992)) to verify putative identifications and to identify potential functional motifs in predicted proteincoding regions that had no database match. Genes were assigned to known metabolic pathways. When a gene appeared to be missing from a pathway, the unassigned ORFs and the complete M. jannaschii genome sequence were searched with specific query sequences or motifs from the Blocks database. Hydrophobicity plots were performed on all predicted protein-coding regions by means of the Kyte-Doolittle algorithm (Kyte, J. & Doolittle, R.F., J. Mol. Biol. 157:105 (1982)) to identify potentially functionally relevant signatures in these sequences.

The *M. jannaschii* genome comprises three physically distinct elements: i) a large circular chromosome of 1,664,976 base pairs (bp) (SEQ ID NO:1), which contains 1682 predicted protein-coding regions and has a G+C content of 31.4%; ii) a large circular extrachromosomal element (ECE) (Zhao, H., *et al.*, *Arch. Microbiol. 150*:178 (1988)) of 58,407 bp (SEQ ID NO:2), which contains 44 predicted protein coding regions and has a G+C content of 28.2%; and iii) a small circular ECE (Zhao, H., *et al.*, *Arch. Microbiol. 150*:178 (1988)) of 16,550 bp (SEQ ID NO:3), which contains 12 predicted protein coding regions, and has a G+C content of 28.8%. With respect to its shape, size, G+C content, and gene density the main chromosome resembles that of *H. influenzae*. However, here the resemblance stops.

10

15

20

25

30

Of the 1743 predicted protein-coding regions reported previously for H. influenzae, 78% had a match in the public sequence database (Fleischmann, R.D., et al., Science 269:496 (1995); Fraser, C.M., et al., Science 270:397 (1995)). Of these, 58% were matches to genes with reasonably well defined function, while 20% were matches to genes whose function was undefined. Similar observations were made for the M. genitalium genome (Fleischmann, R.D., et al., Science 269:496 (1995): Fraser, C.M., et al., Science 270:397 (1995)). Eighty-three percent of the predicted protein coding regions from M. genitalium have a counterpart in the H. influenzae genome. In contrast, only 38% of the predicted protein-coding regions from M. jannaschii match a gene in the database that could be assigned a putative cellular role with high confidence; 6% of the predicted protein-coding regions had matches to hypothetical proteins (Tables 2-3). Approximately 100 genes in M. jannaschii had marginal similarity to genes or segments of genes from the public sequence databases and could not be assigned a putative cellular role with high confidence. Only 11% of the predicted protein-coding regions from H. influenzae and 17% of the predicted protein coding regions from M. genitalium matched a predicted protein coding region from M. jannaschii. Clearly the M. jannaschii genome, and undoubtedly, therefore, all archaeal genomes are remarkably unique, as the phylogenetic position of these organisms would suggest.

Energy production in *M. jannaschii* occurs via the reduction of CO₂ with H₂ to produce methane. Genes for all of the known enzymes and enzyme complexes associated with methanogenesis (DiMarco, A.A., *et al.*, *Ann. Rev. Biochem.* 59:355 (1990)) were identified in *M. jannaschii*, the sequence and order of which are typical of methanogens. *M. jannaschii* appears to use both H₂ and formate as substrates for methanogenesis, but lacks the genes to use methanol or acetate. The ability to fix nitrogen has been demonstrated in a number of methanogens (Belay, N., *et al.*, *Nature* 312:286 (1984)) and all of the genes necessary for this pathway have been identified in *M. jannaschii* (Tables 2-3). In addition to its anabolic pathways, several scavenging molecules have been

-39-

identified in *M. jannaschii* that probably play a role in importing small organic compounds, such as amino acids, from the environment (Tables 2-3).

Three different pathways are known for the fixation of CO₂ into organic carbon: the non-cyclic, reductive acetyl-coenzyme A-carbon monoxide dehydrogenase pathway (Ljungdahl-Wood pathway), the reductive trichloroacetic acid (TCA) cycle, and the Calvin cycle. Methanogens fix carbon by the Ljungdahl-Wood pathway (Wood, H.G., et al., TIBS 11:14 (1986)), which is facilitated by the carbon monoxide dehydrogenease enzyme complex (CODH) (Blaat, M., Antonie van Leewenhoek 66:187 (1994)). The complete Ljungdahl-Wood pathway, encoded in the M. jannaschii genome, depends on the methyl carbon in methanogenesis; however, methanogenesis can occur independently of carbon fixation.

5

10

15

20

25

30

Although genes encoding two enzymes required for gluconeogenesis (glucopyruvate oxidoreductase and phosphoenolpyruvate synthase) were found in the *M. jannaschii* genome, genes encoding other key intermediates of gluconeogenesis (fructose bisphosphatase and fructose 1,6-bisphosphate aldolase) were not been identified. Glucose catabolism by glycolysis also requires the aldolase, as well as phosphofructokinase, an enzyme that also was not found in *M. jannaschii* and has not been detected in any of the Archaea. In addition, genes specific for the Entner-Doudoroff pathway, an alternative pathway used by some microbes for the catabolism of glucose, were not identified in the genomic sequence. The presence of a number of nearly complete metabolic pathways suggests that some key genes are not recognizable at the sequence level, although we cannot exclude the possibility that *M. jannaschii* may use alternative metabolic pathways.

In general, *M. jannaschii* genes that encode proteins involved in the transport of small inorganic ions into the cell are homologs of bacterial genes. The genome includes many representatives of the ABC transporter family, as well as genes for exporting heavy metals (e.g., the chromate-resistance protein) and other toxic compounds (e.g., the norA drug efflux pump locus).

10

15

20

25

30

More than 20 predicted protein-coding regions have sequence similarity to polysaccharide biosynthetic enzymes. These genes have only bacterial homologs or are most closely related to their bacterial counterparts. The identified polysaccharide biosynthetic genes in M. jannaschii include those for the interconversion of sugars, activation of sugars to nucleotide sugars, and glycosyltransferases for the polymerization of nucleotide sugars into oligo- and polysaccharides that are subsequently incorporated into surface structures (Hartmann, E. and König, H., Arch. Microbiol. 151:274 (1989)). arrangement reminiscent of bacterial polysaccharide biosynthesis genes, many of the genes for M. jannaschii polysaccharide production are clustered together (Tables 2-3). The G+C content in this region is <95% of that in the rest of the M. jannaschii genome. A similar observation was made in Salmonella typhimurium (Jiang, X.M., et al., Mol. Microbiol. 5:695 (1991)) in which the gene cluster for lipopolysaccharide O antigen has a significantly lower G+C ratio than the rest of the genome. In that case, the difference in G+C content was interpreted as meaning that the region originated by lateral transfer from another organism.

Of the three main multicomponent information processing systems (transcription, translation, and replication), translation appears the most universal in its overall makeup in that the basic translation machinery is similar in all three domains of life. *M. jannaschii* has two ribosomal RNA operons, designated A and B, and a separate 5S RNA gene that is associated with several transfer RNAs (tRNAs). Operon A has the organization, 16S - 23S - 5S, whereas operon B lacks the 5S component. An alanine tRNA is situated in the spacer region between the 16S and 23S subunits in both operons. The majority of proteins associated with the ribosomal subunits (especially the small subunit) are present in both Bacteria and Eukaryotes. However, the relatively protein-rich eukaryotic ribosome contains additional ribosomal proteins not found in the bacterial ribosome. A smaller number of bacteria-specific ribosomal proteins exist as well. The *M. jannaschii* genome contains all ribosomal proteins that are common to eukaryotes and bacteria. It shows no homologs of the bacterial-specific ribosomal proteins, but does possess homologs of a number of the eukaryotic-specific ones.

WO 98/07830

-41-

PCT/US97/14900

Homologs of all archaea-specific ribosomal proteins that have been reported to date (Lechner, K., et al., J. Mol. Evol. 29:20 (1989); Köpke, A.K.E. and Wittmann-Liebold, B., Can. J. Microbiol. 35:11 (1989)) are found in M. jannaschii.

5

10

15

As previously shown for other archaea (Iwabe, N., et al., Proc. Natl. Acad. Sci. USA 86:9355 (1989); Gogarten J.P., et al., Proc. Natl. Acad. Sci. USA 86:6661 (1989); Brown, J.R. and Doolittle, W.F., Proc. Natl. Acad. Sci. USA 92:2441 (1995)), the Methanococcus translation elongation factors EF-1 α (EF-Tu in bacteria) and EF-2 (EF-G in bacteria) are most similar to their eukaryotic counterparts. In addition, the M. jannaschii genome contains 11 translation initiation factor genes. Three of these genes encode the subunits homologous to those of the eukaryotic IF-2, and are reported here in the Archaea for the first time. A fourth initiation factor gene that encodes a second IF-2 is also found in M. jannaschii. This additional IF-2 gene is most closely related to the yeast protein FUN12 which, in turn, appears to be a homolog of the bacterial IF-2. It is not known which of the two IF-2-like initiation factors identified in M. jannaschii plays a role in directing the initiator tRNA to the start site of the mRNA. The fifth identified initiation factor gene in M. jannaschii encodes IF-1A, which has no bacterial homolog. The sixth gene encodes the hypusinecontaining initiation factor eIF-5a. Two subunits of the translation initiation factor eIF-2B were identified in M. jannaschii. Finally, three putative adenososine 5'-triphosphate (ATP)-dependent helicases were identified that belong to the eIF-4a family of translation initiation factors.

25

30

20

Thirty-seven tRNA genes were identified in the *M. jannaschii* genome. Almost all amino acids encoded by two codons have a single tRNA, except for glutamic acid, which has two. Both an initiator and an internal methionyl tRNA are present. The two pyrimidine-ending isoleucine codons are covered by a single tRNA, while the third (AUA) seems covered by a related tRNA having a CAU anticodon. A single tRNA appears to cover the three isoleucine codons. Those amino acids encoded by four codons each have two tRNAs, one to cover the Y-, the other the R-ending, codons. Valine has a third tRNA, which is

specific for the GUG codon; and alanine has three tRNAs (two of which are in the spacer regions separating the 16S and 23S subunits in the two ribosomal RNA operons). Leucine, serine and arginine, all of which have six codons, each posses three corresponding tRNAs. The genes for the internal methionine and tryptophan tRNAs contain introns in the region of their anti-codon loops.

5

10

15

20

25

30

A tRNA also exists for selenocysteine (UGA codon). At least four genes in M. jannaschii contain internal stop codons that are potential selenocysteine codons: the α chain of formate dehydrogenase, coenzyme F420 reducing hydrognase, β -chain tungsten formyl methanofuran dehydrogenase, and a heterodisulfide reductase. Three genes with a putative role in selenocysteine metabolism were identified by their similarity to the sel genes from other organisms (Tables 2-3).

Recognizable homologs for four of the aminoacyl-tRNA synthetases (glutamine, asparagine, lysine, and cysteine) were not identified in the M. jannaschii genome. The absence of a glutaminyl-tRNA synthetase is not surprising in that a number of organisms, including at least one archaeon, have none (Wilcox, M., Eur. J. Biochem. 11:405 (1969); Martin, N.C., et al., J. Mol. Biol. 101:285 (1976); Martin, N.C., et al., Biochemistry 16:4672 (1977); Schon, A., et al., Biochimie 70:391 (1988); Soll, D. and RajBhandary, U., Eds. Am. Soc. for Microbiol. (1995)). In these instances, glutaminyl tRNA charging involves a post-charging conversion mechanism whereby the tRNA is charged by the glutamyl-tRNA synthetase with glutamic acid, which then is enzymatically converted to glutamine. A post-charging conversion is also involved in selenocysteine charging via the seryl-tRNA synthetase. A similar mechanism has been proposed for asparagine charging, but has never been demonstrated (Wilcox, M., Eur. J. Biochem. 11:405 (1969); Martin, N.C., et al., J. Mol. Biol. 101:285 (1976); Martin, N.C., et al., Biochemistry 16:4672 (1977); Schon, A., et al., Biochimie 70:391 (1988); Soll, D. and RajBhandary, U., Eds. Am. Soc. for Microbiol. (1995)). The inability to find homologs of the lysine and cysteine aminoacyl-tRNA synthetases is surprising because bacterial and eukaryotic versions in each instance show clear homology.

Aminoacyl-tRNA synthetases of *M. jannaschii* and other archaea resemble eukaryotic synthetases more closely than they resemble bacterial forms. The tryptophanyl synthetase is one of the more notable examples, because the *M. jannaschii* and eukaryotic version do not appear to be specifically related to the bacterial version (de Pouplana, R., *et al.*, *Proc. Natl. Acad. Sci.*, *USA 93*:166 (1996)). Two versions of the glycyl synthetase are known in bacteria, one that is very unlike the version found in Archaea and Eukaryote and one that is an obvious homolog of it (Wagner, E.A., *et al.*, *J. Bacteriol. 177*:5179 (1995); Logan, D.T., *et al.*, *EMBO J. 14*:4156 (1995)).

10

15

5

Eleven genes encoding subunits of the DNA-dependent RNA polymerase were identified in the *M. jannaschii* genome. The sequence similarity between the subunits and their homologs in *Sulfolobus acidocaldarius* supports the evolutionary unity of the archaeal polymerase complex (Woese, C.R. and Wolfe, R.S., Eds. *The Bacteria*, *vol. VIII* (Academic Press, NY, 1985); Langer, D., *et al.*, *Proc. Natl. Acad. Sci. 92*:5768 (1995); Lanzendoerfer, M. *et al.*, *System. Appl. Microbiol. 16*:656 (1994)). All of the subunits found in *M. jannaschii* show greater similarity to their eukaryotic counterparts than to the bacterial homologs. The genes encoding the five largest subunits (A', A'', B', B'', D) have homologs in all organisms. Six genes encode subunits shared only by Archaea and Eukaryotes (E, H, K, L, and N). The *M. jannaschii* homolog of the *S. acidocaldarius* subunit E is split into two genes designated E' and E''. *Sulfolobus acidocaldarius* also contains two additional small subunits of RNA polymerase, designated G and F, that have no counterparts in either Bacteria or Eukaryotes. No homolog of these subunits was identified in *M. jannaschii*.

25

30

20

The archaeal transcription initiation system is essentially the same as that found in Eukaryotes, and is radically different from the bacterial version (Klenk, H.P. and Doolittle, W.F., *Curr. Biol.* 4:920 (1994)). The central molecules in the former systems are the TATA-binding protein (TBP) and transcription factor B (TFIIB and TFIIIB in Eukaryotes, or simply TFB). In the eukaryotic systems, TBP and TFB are parts of larger complexes, and additional factors (such as

10

15

20

25

30

TFIIA and TFIIF) are used in the transcription process. However, the M. jannaschii genome does not contain obvious homologs of TFIIA and TFIIF.

Several components of the replication machinery were identified in M jannaschii. The M jannaschii genome appears to encode a single DNA-dependent polymerase that is a member of the B family of polymerases (Bernard, A., et al., EMBO J. 6:4219 (1987); Cullman, G., et al., Molec. Cell Biol. 15:4661 (1995); Uemori, T., et al., J. Bacteriol. 117:2164 (1995); Delarue, M., et al., Prot. Engineer. 3:461 (1990); Gavin, K.A., et al., Science 270:1667 (1995)). The polymerase shares sequence similarity and three motifs with other family B polymerases, including eukaryotic α , γ , and ϵ polymerases, bacterial polymerase II, and several archaeal polymerases. However, it is not homologous to bacterial polymerase I and has no homologs in H. influenzae or M. genitalium.

Primer recognition by the polymerase takes place through a structurespecific DNA binding complex, the replication factor complex (rfc) (Bernard, A., et al., EMBO J. 6:4219 (1987); Cullman, G., et al., Molec. Cell Biol. 15:4661 (1995); Uemori, T., et al., J. Bacteriol. 117:2164 (1995); Delarue, M., et al., Prot. Engineer. 3:461 (1990); Gavin, K.A., et al., Science 270:1667 (1995)). In humans and yeast, the rfc is composed of five proteins: a large subunit and four small subunits that have an associated adenosine triphosphatase (ATPase) activity stimulated by proliferating cell nuclear antigen (PCNA). Two genes in M. jannaschii are putative members of a eukaryotic-like replication factor complex. One of the genes in M. jannaschii is a putative homolog of the large subunit of the rfc, whereas the second is a putative homolog of one of the small subunits. Among Eukaryotes, the rfc proteins share sequence similarity in eight signature domains (Bernard, A., et al., EMBO J. 6:4219 (1987); Cullman, G., et al., Molec. Cell Biol. 15:4661 (1995); Uemori, T., et al., J. Bacteriol. 117:2164 (1995); Delarue, M., et al., Prot. Engineer. 3:461 (1990); Gavin, K.A., et al., Science 270:1667 (1995)). Domain I is conserved only in the large subunit among Eukaryotes and is similar in sequence to DNA ligases. This domain is missing in the large-subunit homolog in M. jannaschii. The remaining domains in the two M. jannaschii genes are well-conserved relative to the eukaryotic homologs. Two

features of the sequence similarity in these domains are of particular interest. First, domain II (an ATPase domain) of the small-subunit homolog is split between two highly conserved amino acids (lysine and threonine) by an intervening sequence of unknown function. Second, the sequence of domain VI has regions that are useful for distinguishing between bacterial and eukaryotic rfc proteins (Bernard, A., et al., EMBO J. 6:4219 (1987); Cullman, G., et al., Molec. Cell Biol. 15:4661 (1995); Uemori, T., et al., J. Bacteriol. 117:2164 (1995); Delarue, M., et al., Prot. Engineer. 3:461 (1990); Gavin, K.A., et al., Science 270:1667 (1995)); the rfc sequence for M. jannaschii shares the characteristic eukaryotic signature in this domain.

5

10

15

20

25

30

We have attempted to identify an origin of replication by searching the M. jannaschii genome sequence with a variety of bacterial and eukaryotic replication-origin consensus sequences. Searches with oriC, ColE1, and autonomously replicating sequences from yeast (Bernard, A., et al., EMBO J. 6:4219 (1987); Cullman, G., et al., Molec. Cell Biol. 15:4661 (1995); Uemori, T., et al., J. Bacteriol. 117:2164 (1995); Delarue, M., et al., Prot. Engineer. 3:461 (1990); Gavin, K.A., et al., Science 270:1667 (1995)) did not identify an origin of replication. With respect to the related cellular processes of replication initiation and cell division, the M. jannaschii genome contains two genes that are putative homologs of Cdc54, a yeast protein that belongs to a family of putative DNA replication initiation proteins (Whitbred, L.A. and Dalton, S., Gene 155:113 (1995)). A third potential regulator of cell division in M. jannaschii is 55% similar at the amino acid level to pelota, a Drosophila protein involved in the regulation of the early phases of meiotic and mitotic cell division (Eberhart, C.G. and Wasserman, S.A., Development 121:3477 (1995)).

In contrast to the putative rfc complex and the initiation of DNA replication, the cell division proteins from *M. jannaschii* most resemble their bacterial counterparts (Rothfield, L.I. and Zhao, C.R., *Cell 84*:183 (1996); Lutkenhaus, J., *Curr. Opp. Gen. Devel. 3*:783 (1993)). Two genes similar to that encoding FtsZ, a ubiquitous bacterial protein, are found in *M. jannaschii*. FtsZ

10

15

20

25

30

is a polymer-forming, guanosine triphosphate (GTP)-hydrolyzing protein with tubulin-like elements; it is localized to the site of septation and forms a constricting ring between the dividing cells. One gene similar to FtsJ, a bacterial cell division protein of undetermined function, also is found in *M. jannaschii*. Three additional genes (MinC, MinD, and MinE) function in concert in Bacteria to determine the site of septation during cell division. In *M. jannaschii*, three MinD-like genes were identified, but none for MinC or MinE. Neither spindle-associated proteins characteristic of eukaryotic cell division nor bacterial mechanochemical enzymes necessary for partitioning the condensed chromosomes were detected in the *M. jannaschii* genome. Taken together, these observations raise the possibility that cell division in *M. jannaschii* might occur via a mechanism specific for the Archaea.

The structural and functional conservation of the signal peptide of secreted proteins in Archaea, Bacteria, and Eukaryotes suggests that the basic mechanisms of membrane targeting and translocation may be similar among all three domains of life. The secretory machinery of M. jannaschii appears a rudimentary apparatus relative to that of bacterial and eukaryotic systems and consists of (i) a signal peptidase (SP) that cleaves the signal peptide of translocating proteins, (ii) a preprotein translocase that is the major constituent of the membrane-localized translocation channel, (iii) a ribonucleoprotein complex (signal recognition particle, SRP) that binds to the signal peptide and guides nascent proteins to the cell membrane, and (iv) a docking protein that acts as a receptor for the SRP. The 7S RNA component of the SRP from M. jannaschii shows a highly conserved structural domain shared by other Archaea, Bacteria, and Eukaryotes (Kaine, B.P. and Merkel, V.L., J. Bacteriol. 171:4261 (1989); Poritz, M.A. et al., Cell 55:4 (1988)). However, the predicted secondary structure of the 7S RNA SRP component in Archaea is more like that found in Eukaryotes than in Bacteria (Kaine, B.P. and Merkel, V.L., J. Bacteriol. 171:4261 (1989); Poritz, M.A. et al., Cell 55:4 (1988)). The SP and docking proteins from M. jannaschii are most similar to their eukaryotic counterparts; the translocase is most similar to the SecY translocation-associated protein in Escherichia coli.

A second distinct signal peptide is found in the flagellin genes of *M. jannaschii*. Alignment of flagellin genes from *M. voltae* (Faguy, D.M., *et al.*, *Can. J. Microbiol. 40*:67 (1994); Kalmokoff, M.L., *et al.*, *Arch. Microbiol. 157*:481 (1992)) and *M. jannaschii* reveals a highly conserved NH₂-terminus (31 of the first 50 residues are identical in all of the mature flagellins). The peptide sequence of the *M. jannaschii* flagellin indicates that the protein is cleaved after the canonical Gly-12 position, and it is proposed to be similar to type-IV pilins of Bacteria (Faguy, D.M., *et al.*, *Can. J. Microbiol. 40*:67 (1994); Kalmokoff, M.L., *et al.*, *Arch. Microbiol. 157*:481 (1992)).

10

5

Five histone genes are present in the *M. jannaschii* genome--three on the main chromosome and two on the large ECE. These genes are homologs of eukaryotic histones (H2a, H2b, H3, and H4) and of the eukaryotic transcription-related CAAT-binding factor CBF-A (Sandman, K., et al., Proc. Natl. Acad. Sci. USA 87:5788 (1990)). The similarity between archaeal and eukaryotic histones suggests that the two groups of organisms resemble one another in the roles histones play both in genome supercoiling dynamics and in gene expression. The five *M. jannaschii* histone genes show greatest similarity among themselves even though a histone sequence is available from the closely related species, *Methanococcus voltae*. This intraspecific similarity suggests that the gene duplications that produced the five histone genes occurred on the *M. jannaschii* lineage per se.

20

25

30

15

Self-splicing portions of a peptide sequence that generally encode a DNA endonuclease activity are called inteins, in analogy to introns (Kane, P.M., et al., Science 250:651 (1990); Hirata, R., et al., J. Biol. Chem. 265:6726 (1990); Cooper, A. and Stevens, T., TIBS 20:351 (1995); Xu, M.Q., et al., Cell 75:1371 (1993); Perler et al., Proc. Natl. Acad. Sci. USA 89:5577 (1992); Cooper et al., EMBO J. 12:2575 (1993); Michel et al., Biochimie 64:867 (1992); Pietrokovski S., Prot. Sci. 3:2340 (1994). Most inteins in the M. jannaschii genome were identified by (i) similarity of the bounding exteins to other proteins, (ii) similarity of the inteins to those previously described, (iii) presence of the dodecapeptide endonuclease motifs, and (iv) canonical intein-extein junction sequences. In two

instances (MJ0832 and MJ0043), the similarity to other database sequences did not unambiguously define the NH₂-terminal extein-intein junction, so it was necessary to rely on consensus sequences to select the putative site. The inteins in MJ1042 and MJ0542 have previously uncharacterized COOH-terminal splice junctions, GNC and FNC, respectively).

5

10

15

20

25

30

The sequences remaining after an intein is excised are called exteins, in analogy to exons. Exteins are spliced together after the excision of one or more inteins to form functional proteins. The biological significance and role of inteins are not clearly understood (Kane, P.M., et al., Science 250:651 (1990); Hirata, R., et al., J. Biol. Chem. 265:6726 (1990); Cooper, A. and Stevens, T., TIBS 20:351 (1995); Xu, M.Q., et al., Cell 75:1371 (1993); Perler et al., Proc. Natl. Acad. Sci. USA 89:5577 (1992); Cooper et al., EMBO J. 12:2575 (1993); Michel et al., Biochimie 64:867 (1992); Pietrokovski S., Prot. Sci. 3:2340 (1994)). Fourteen genes in the M. jannaschii genome contain 18 putative inteins, a significant increase in the approximately 10 intein-containing genes that have been described (Kane, P.M., et al., Science 250:651 (1990); Hirata, R., et al., J. Biol. Chem. 265:6726 (1990); Cooper, A. and Stevens, T., TIBS 20:351 (1995); Xu, M.O., et al., Cell 75:1371 (1993); Perler et al., Proc. Natl. Acad. Sci. USA 89:5577 (1992); Cooper et al., EMBO J. 12:2575 (1993); Michel et al., Biochimie 64:867 (1992); Pietrokovski S., Prot. Sci. 3:2340 (1994)) (Table 4). The only previously described inteins in the Archaea are in the DNA polymerase genes of the Thermococcales (Kane, P.M., et al., Science 250:651 (1990); Hirata, R., et al., J. Biol. Chem. 265:6726 (1990); Cooper, A. and Stevens, T., TIBS 20:351 (1995); Xu, M.Q., et al., Cell 75:1371 (1993); Perler et al., Proc. Natl. Acad. Sci. USA 89:5577 (1992); Cooper et al., EMBO J. 12:2575 (1993); Michel et al., Biochimie 64:867 (1992); Pietrokovski S., Prot. Sci. 3:2340 (1994)). The M. jannaschii DNA polymerase gene has two inteins in the same locations as those in Pyrococcus sp. strain KOD1. In this case, the exteins exhibit 46% amino acid identity, whereas intein 2 of the two organisms has only 33% identity. This divergence suggests that intein 2 has not been recently (laterally) transferred between the Thermococcales and M. jannaschii. In contrast, the intein 1

WO 98/07830

5

10

15

20

25

30

PCT/US97/14900

sequences are 56% identical, more than that of the gene containing them, and comparable to the divergence of inteins within the Thermococcales. This high degree of sequence similarity might be the result of an intein transfer more recent than the splitting of these species. The large number of inteins found in *M. jannaschii* led us to question whether these inteins have been increasing in number by moving within the genome. If this were so, we would expect to find some pairs of inteins that are particularly similar. Comparisons of these and other available intein sequences showed that the closest relationships are those noted above linking the DNA polymerase inteins to correspondingly positioned elements in the Thermococcales. Within *M. jannaschii*, the highest identity observed was 33% for a 380-bp portion of two inteins. This finding suggests that the diversification of the inteins predates the divergence of the *M. jannaschii* and *Pyrococcus* DNA polymerases.

-49-

Three families of repeated genetic elements were identified in the M. jannaschii genome. Within two of the families, at least two members were identified as ORFs with a limited degree of sequence similarity to bacterial transposases. Members of the first family, designated ISAMJI, are repeated 10 times on the main chromosome and once on the large ECE (Fig. 2). There is no sequence similarity between the IS elements in M. jannaschii and the ISMI mobile element described previously for Methanobrevibacter smithii (Hamilton, P.T. et al., Mol. Gen. Genet. 200:47 (1985)). Two members of this family were identified as ORFs and are 27% identical (at the amino acid sequence level) to a transposase from Bacillus thuringiensis (IS240; GenBank accession number M23741). Relative to these two members, the remaining members of the ISAMJ1 family are missing an internal region of several hundred nucleotides (Fig. 2). With one exception, all members of this family end with 16-bp terminal inverted repeats typical of insertion sequences. One member is missing the terminal repeat at its 5' end. The second family consists of two ORFs that are identical across 928 bp. The ORFs are 23% identical at the amino acid sequence level to the COOH-terminus of a transposase from Lactococcus lactis (IS982; GenBank

WO 98/07830

-50-

PCT/US97/14900

accession number L34754). Neither of the members of the second family contains terminal inverted repeats.

Eighteen copies of the third family of repeated genetic structures (Fig. 3) are distributed fairly evenly around the *M. jannaschii* genome. Unlike the genetic elements described above, none of the components of this repeat unit appears to have coding potential. The repeat structure is composed of a long segment followed by one to 25 tandem repetitions of a short segment. The short segments are separated by sequence that is unique within and among the complete repeat structure. Three similar types of short segments were identified; however, the type of short repeat is consistent within each repeat structure, except for variation of the last short segment in six repeat structures. Similar tandem repeats of short segments have been observed in Bacteria and other Archaea (Mojica, F.J.M., *et al.*, *Mol. Micro. 17*:85 (1995)) and have been hypothesized to participate in chromosome partitioning during cell division.

15

5

10

The 16-kbp ECE from *M. jannaschii* contains 12 ORFs, none of which had a significant full-length match to any published sequence. The 58-kbp ECE contains 44 predicted protein-coding regions, 5 of which had matches to genes in the database. Two of the genes are putative archaeal histones, one is a sporulation-related protein (SOJ protein), and two are type I restriction modification enzymes. There are several instances in which predicted protein-coding regions or repeated genetic elements on the large ECE have similar counterparts on the main chromosome of *M. jannaschii*. The degree of nucleotide sequence similarity between genes present on both the ECE and the main chromosome ranges from 70 to 90%, suggesting that there has been relatively recent exchange of at least some genetic material between the large ECE and the main chromosome.

25

30

20

All the predicted protein-coding regions from M. jannaschii were searched against each other in order to identify families of paralogous genes (genes related by gene duplication, not speciation). The initial criterion for grouping paralogs was >30% amino acid sequence identity over 50 consecutive amino acid residues. Groups of predicted protein-coding regions were then

10

15

20

25

30

aligned and inspected individually to ensure that the sequence similarity extended over most of their lengths. This curatorial process resulted in the identification of more than 100 gene families, half of which have no database matches. The largest identified gene family (16 members: MJ0625, MJECL28, MJ1076, MJ1006, MJ1659, MJ0075, MJ1609, MJECL19, MJECL18, MJ0147, MJ0801, MJ1301, MJ0632, MJ1010, MJ0074, and MJ0439) contains almost 1% of the total predicted protein-coding regions in *M. jannaschii*.

Despite the availability for comparison of two complete bacterial genomes and several hundred megabase pairs of eukaryotic sequence data, the majority of genes in M. jannaschii cannot be identified on the basis of sequence similarity. Previous evidence for the shared common ancestry of the Archaeal and Eukaryotic was based on a small set gene sequences (Iwabe, N., et al., Proc. Natl. Acad. Sci. USA 86:9355 (1989); Gogarten J.P., et al., Proc. Natl. Acad. Sci. USA 86:6661 (1989); Brown, J.R. and Doolittle, W.F., Proc. Natl. Acad. Sci. USA 92:2441 (1995)). The complete genome of M. jannaschii allows us to move beyond a "gene by gene" approach to one that encompasses the larger picture of metabolic capacity and cellular systems. The anabolic genes of M. jannaschii (especially those related to energy production and nitrogen fixation) reveal an ancient metabolic world shared largely by Bacteria and Archaea. That many basic autotrophic pathways appear to have a common evolutionary origin suggests that the most recent universal common ancestor to all three domains of extant life had the capacity for autotrophy. The Archaea and Bacteria also share structural and organizational features that the most recent universal prokaryotic ancestors also likely possessed, such as circular genomes and genes organized as operons. In contrast, the cellular information-processing and secretion systems in M. jannaschii demonstrate the common ancestry of Eukaryotes and Archaea. Although there are components of these systems are present in all three domains, their apparent refinement over time-especially transcription translation-indicate that the Archaea and Eukaryotes share a common evolutionary trajectory independent of the lineage of Bacteria.

Example 2

Preparation of PCR Primers and Amplification of DNA

Various fragments of the *Methanococcus jannaschii* genome, such as those disclosed in Tables 2(a), 2(b) and 3 can be used, in accordance with the present invention, to prepare PCR primers. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. The PCR primers are useful during PCR cloning of the ORFs described herein.

Example 3

5

10

15

20

25

Gene expression from DNA Sequences Corresponding to ORFs

A fragment of the *Methanococcus jannaschii* genome (preferably, a protein-encoding sequence) provided in Tables 2(a), 2(b) or 3 is introduced into an expression vector using conventional technology (techniques to transfer cloned sequences into expression vectors that direct protein translation in mammalian, yeast, insect or bacterial expression systems are well known in the art). Commercially available vectors and expression systems are available from a variety of suppliers including Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism, as explained by Hatfield *et al.*, U.S. Pat. No. 5,082,767, which is hereby incorporated by reference.

The following is provided as one exemplary method to generate polypeptide(s) from a cloned ORF of the *Methanococcus* genome whose sequence is provided in SEQ ID NOS: 1, 2 and 3. A poly A sequence can be

10

15

20

25

30

added to the construct by, for example, splicing out the poly A sequence from pSG5 (Stratagene) using BglI and Sal1 restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene) for use in eukaryotic expression systems. pXT1 contains the LTRs and a portion of the gag gene from Moloney Murine Leukemia Virus. The position of the LTRs in the construct allow efficient stable transfection. The vector includes the Herpes Simplex thymidine kinase promoter and the selectable neomycin gene. The Methanococcus DNA is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the Methanococcus DNA and containing restriction endonuclease sequences for PstI incorporated into the 5' primer and BgIII at the 5' end of the corresponding Methanococcus DNA 3' primer, taking care to ensure that the Methanococcus DNA is positioned such that its followed with the poly A sequence. The purified fragment obtained from the resulting PCR reaction is digested with PstI, blunt ended with an exonuclease, digested with BgIII, purified and ligated to pXT1, now containing a poly A sequence and digested BgIII.

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600 ug/ml G418 (Sigma, St. Louis, Missouri). The protein is preferably released into the supernatant. However if the protein has membrane binding domains, the protein may additionally be retained within the cell or expression may be restricted to the cell surface.

Since it may be necessary to purify and locate the transfected product, synthetic 15-mer peptides synthesized from the predicted *Methanococcus* DNA sequence are injected into mice to generate antibody to the polypeptide encoded by the *Methanococcus* DNA.

If antibody production is not possible, the *Methanococcus* DNA sequence is additionally incorporated into eukaryotic expression vectors and expressed as a chimeric with, for example, β -globin. Antibody to β -globin is used to purify the chimeric. Corresponding protease cleavage sites engineered between the β -globin

10

15

20

25

gene and the *Methanococcus* DNA are then used to separate the two polypeptide fragments from one another after translation. One useful expression vector for generating β-globin chimerics is pSG5 (Stratagene). This vector encodes rabbit β-globin. Intron II of the rabbit β-globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques as described are well known to those skilled in the art of molecular biology. Standard methods are available from the technical assistance representatives from Stratagene, Life Technologies, Inc., or Promega. Polypeptides may additionally be produced from either construct using in vitro translation systems such as In vitro ExpressTM Translation Kit (Stratagene).

Example 4

E. coli Expression of a M. jannaschii ORF and protein purification

A M. jannaschii ORF described in Table 2(a), 2(b), or 3 is selected and amplified using PCR oligonucleotide primers designed from the nucleotide sequences flanking the selected ORF and/or from portions of the ORF's NH₂- or COOH-terminus. Additional nucleotides containing restriction sites to facilitate cloning are added to the 5' and 3' sequences, respectively.

The restriction sites are selected to be convenient to restriction sites in the bacterial expression vector pD10 (pQE9), which is used for bacterial expression. (Qiagen, Inc. 9259 Eton Avenue, Chatsworth, CA, 91311). [pD10]pQE9 encodes ampicillin antibiotic resistance ("Ampr") and contains a bacterial origin of replication ("ori"), an IPTG inducible promoter, a ribosome binding site ("RBS"), a 6-His tag and restriction enzyme sites.

The amplified *M. jannaschii* DNA and the vector pQE9 both are digested with Sall and Xbal and the digested DNAs are then ligated together. Insertion of the *M. jannaschii* DNA into the restricted pQE9 vector places the *M. jannaschii* coding region downstream of and operably linked to the vector's IPTG-inducible

promoter and in-frame with an initiating AUG appropriately positioned for translation of the *M. jannaschii* protein.

The ligation mixture is transformed into competent *E. coli* cells using standard procedures. Such procedures are described in Sambrook *et al.*, Molecular Cloning: a Laboratory Manual, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989). *E. coli* strain M15/rep4, containing multiple copies of the plasmid pREP4, which expresses lac repressor and confers kanamycin resistance ("Kan"), is used in carrying out the illustrative example described herein. This strain, which is only one of many that are suitable for expressing *M. jannaschii* protein, is available commercially from Qiagen.

5

10

15

20

25

30

Transformants are identified by their ability to grow on LB plates in the presence of ampicillin and kanamycin. Plasmid DNA is isolated from resistant colonies and the identity of the cloned DNA confirmed by restriction analysis. Clones containing the desired constructs are grown overnight ("O/N") in liquid culture in LB media supplemented with both ampicillin (100 μ g/ml) and kanamycin (25 μ g/ml).

The O/N culture is used to inoculate a large culture, at a dilution of approximately 1:100 to 1:250. The cells are grown to an optical density at 600nm ("OD600") of between 0.4 and 0.6. Isopropyl-B-D-thiogalactopyranoside ("IPTG") is then added to a final concentration of 1 mM to induce transcription from *lac* repressor sensitive promoters, by inactivating the *lac*I repressor. Cells subsequently are incubated further for 3 to 4 hours. Cells then are harvested by centrifugation and disrupted, by standard methods. Inclusion bodies are purified from the disrupted cells using routine collection techniques, and protein is solubilized from the inclusion bodies into 8M urea. The 8M urea solution containing the solubilized protein is passed over a PD-10 column in 2X phosphate-buffered saline ("PBS"), thereby removing the urea, exchanging the buffer and refolding the protein. The protein is purified by a further step of chromatography to remove endotoxin followed by sterile filtration. The sterile filtered protein preparation is stored in 2X PBS at a concentration of 95 µ/ml.

10

15

20

25

Example 5

Cloning and Expression of a M. jannaschii protein in a Baculovirus Expression System

A *M. jannaschii* ORF described in Table 2(a), 2(b), or 3 is selected and amplified as above. The amplified DNA is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The DNA then is digested with Xbal and again purified on a 1% agarose gel. This DNA is designated herein as F2.

The vector pA2-GP is used to express the *M. jannaschii* protein in the baculovirus expression system as described in Summers *et al.*, A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures, Texas Agricultural Experimental Station Bulletin No. 1555 (1987). The pA2-GP expression vector contains the strong polyhedrin promoter of the *Autographa californica* nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites. The signal peptide of AcMNPV gp67, including the N-terminal methionine, is located just upstream of a BamHI site. The polyadenylation site from the simian virus 40 ("SV40") is used for efficient polyadenylation. For an easy selection of recombinant virus, the beta-galactosidase gene from *E. coli* is inserted in the same orientation as the polyhedrin promoter and is followed by the polyadenylation signal of the polyhedrin genc. The polyhedrin sequences are flanked at both sides by viral sequences for cell-mediated homologous recombination with wild-type viral DNA to generate viable virus that express the cloned polynucleotide.

Many other baculovirus vectors could be used in place of pA2-GP, such as pAc373, pVL941 and pAcIM1 provided, as those of skill readily will appreciate, that construction provides appropriately located signals for transcription, translation, trafficking and the like, such as an in-frame AUG and a signal peptide, as required. Such vectors are described in Luckow *et al.*, *Virology 170*: 31-39, among others.

The plasmid is digested with the restriction enzyme Xbal and then is dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.). This vector DNA is designated herein "V".

5

10

15

20

25

30

Fragment F2 and the dephosphorylated plasmid V2 are ligated together with T4 DNA ligase. *E. coli* HB101 cells are transformed with ligation mix and spread on culture plates. Bacteria are identified that contain the plasmid with the *M. jannaschii* gene by digesting DNA from individual colonies using Xbal and then analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing. This plasmid is designated herein pBac*M. jannaschii*.

5 μg of the plasmid pBac*M. jannaschii* is co-transfected with 1.0 μg of a commercially available linearized baculovirus DNA ("BaculoGoldTM baculovirus DNA", Pharmingen, San Diego, CA.), using the lipofection method described by Felgner *et al.*, Proc. Natl. Acad. Sci. USA 84: 7413-7417 (1987). 1μg of BaculoGoldTM virus DNA and 5 μg of the plasmid pBac*M. jannaschii* are mixed in a sterile well of a microtiter plate containing 50 μl of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards 10 μl Lipofectin plus 90 μl Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm tissue culture plate with 1 ml Grace's medium without serum. The plate is rocked back and forth to mix the newly added solution. The plate is then incubated for 5 hours at 27°C. After 5 hours the transfection solution is removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. The plate is put back into an incubator and cultivation is continued at 27°C for four days.

After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, cited above. An agarose gel with "Blue Gal" (Life Technologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained

plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10).

Four days after serial dilution, the virus is added to the cells. After appropriate incubation, blue stained plaques are picked with the tip of an Eppendorf pipette. The agar containing the recombinant viruses is then resuspended in an Eppendorf tube containing 200 µl of Grace's medium. The agar is removed by a brief centrifugation and the supernatant containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4°C. A clone containing properly inserted hESSB I, II and III is identified by DNA analysis including restriction mapping and sequencing. This is designated herein as V-M. jannaschii.

Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovirus V-M. *jannaschii* at a multiplicity of infection ("MOI") of about 2 (about 1 to about 3). Six hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc., Gaithersburg). 42 hours later, 5 µCi of ³⁵S-methionine and 5 µCi ³⁵S-cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then they are harvested by centrifugation, lysed and the labeled proteins are visualized by SDS-PAGE and autoradiography.

Example 6

Cloning and Expression in Mammalian Cells

25

5

10

15

20

Most of the vectors used for the transient expression of a *M. jannaschii* gene in mammalian cells should carry the SV40 origin of replication. This allows the replication of the vector to high copy numbers in cells (e.g., COS cells) which

express the T antigen required for the initiation of viral DNA synthesis. Any other mammalian cell line can also be utilized for this purpose.

5

10

15

20

25

30

A typical mammalian expression vector contains the promoter element, which mediates the initiation of transcription of mRNA, the protein-coding sequence, and signals required for the termination of trancription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription can be achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses, e.g., RSV, HTLVI, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular signals can also be used (e.g., human actin promoter). Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146) and pBC12MI (ATCC 67109). Mammalian host cells that could be used include, human Hela, 283, H9 and Jurkart cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, African green monkey cells, quail QC1-3 cells, mouse L cells and Chinese hamster ovary cells.

Alternatively, the gene can be expressed in stable cell lines that contain the gene integrated into a chromosome. The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.

The transfected gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) is a useful marker to develop cell lines that carry several hundred or even several thousand copies of the gene of interest. Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992)). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a

chromosome. Chinese hamster ovary (CHO) cells are often used for the production of proteins.

The expression vectors pC1 and pC4 contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al., Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart et al., Cell 41:521-530 (1985)). Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, XbaI and Asp718, facilitate the cloning of the gene of interest. The vectors contain in addition the 3' intron, the polyadenylation and termination signal of the rat preproinsulin gene.

Example 6(a): Cloning and Expression in COS Cells

5

10

15

20

25

The expression plasmid, p*M. jannaschii* HA, is made by cloning a cDNA encoding a *M. jannaschii* protein into the expression vector pcDNAI/Amp (which can be obtained from Invitrogen, Inc.).

The expression vector pcDNAI/amp contains: (1) an *E. coli* origin of replication effective for propagation in *E. coli* and other prokaryotic cells; (2) an ampicillin resistance gene for selection of plasmid-containing prokaryotic cells; (3) an SV40 origin of replication for propagation in eukaryotic cells; (4) a CMV promoter, a polylinker, an SV40 intron, and a polyadenylation signal arranged so that a cDNA conveniently can be placed under expression control of the CMV promoter and operably linked to the SV40 intron and the polyadenylation signal by means of restriction sites in the polylinker.

A DNA fragment encoding the *M. jannaschii* protein and an HA tag fused in frame to its 3' end is cloned into the polylinker region of the vector so that recombinant protein expression is directed by the CMV promoter. The HA tag corresponds to an epitope derived from the influenza hemagglutinin protein described by Wilson *et al.*, *Cell 37:767* (1984). The fusion of the HA tag to the target protein allows easy detection of the recombinant protein with an antibody that recognizes the HA epitope.

WO 98/07830

PCT/US97/14900

The PCR amplified DNA fragment (generated as described above) and the vector, pcDNAI/Amp, are digested with HindIII and XhoI and then ligated. The ligation mixture is transformed into *E. coli* strain SURE (available from Stratagene Cloning Systems, 11099 North Torrey Pines Road, La Jolla, CA 92037), and the transformed culture is plated on ampicillin media plates which then are incubated to allow growth of ampicillin resistant colonies. Plasmid DNA is isolated from resistant colonies and examined by restriction analysis and gel sizing for the presence of the *M. jannaschii* protein-encoding fragment.

10

5

For expression of recombinant *M. jannaschii*, COS cells are transfected with an expression vector, as described above, using DEAE-DEXTRAN, as described, for instance, in Sambrook *et al.*, Molecular Cloning: a Laboratory Manual, Cold Spring Laboratory Press, Cold Spring Harbor, New York (1989). Cells are incubated under conditions for expression of *M. jannaschii* protein by the vector.

15

20

25

Expression of the *M. jannaschii* HA fusion protein is detected by radiolabelling and immunoprecipitation, using methods described in, for example Harlow *et al.*, Antibodies: A Laboratory Manual, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1988). To this end, two days after transfection, the cells are labeled by incubation in media containing ³⁵S-cysteine for 8 hours. The cells and the media are collected, and the cells are washed and the lysed with detergent-containing RIPA buffer: 150 mM NaCl, 1% NP-40, 0.1% SDS, 1% NP-40, 0.5% DOC, 50 mM TRIS, pH 7.5, as described by Wilson *et al.* cited above. Proteins are precipitated from the cell lysate and from the culture media using an HA-specific monoclonal antibody. The precipitated proteins then are analyzed by SDS-PAGE gels and autoradiography. An expression product of the expected size is seen in the cell lysate, which is not seen in negative controls.

Example 6(b): Cloning and Expression in CHO Cells

5

10

15

20

25

30

The vector pC1 is used for the expression of a M. jannaschii protein. Plasmid pC1 is a derivative of the plasmid pSV2-dhfr [ATCC Accession No. 37146]. Both plasmids contain the mouse DHFR gene under control of the SV40 early promoter. Chinese hamster ovary- or other cells lacking dihydrofolate activity that are transfected with these plasmids can be selected by growing the cells in a selective medium (alpha minus MEM, Life Technologies) supplemented with the chemotherapeutic agent methotrexate. The amplification of the DHFR genes in cells resistant to methotrexate (MTX) has been well documented (see, e.g., Alt, F.W., Kellems, R.M., Bertino, J.R., and Schimke, R.T., 1978, J. Biol. Chem. 253:1357-1370, Hamlin, J.L. and Ma, C. 1990, Biochem. et Biophys. Acta, 1097:107-143, Page, M.J. and Sydenham, M.A. 1991, Biotechnology Vol. 9:64-68). Cells grown in increasing concentrations of MTX develop resistance to the drug by overproducing the target enzyme, DHFR, as a result of amplification of the DHFR gene. If a second gene is linked to the DHFR gene it is usually co-amplified and over-expressed. It is state of the art to develop cell lines carrying more than 1,000 copies of the genes. Subsequently, when the methotrexate is withdrawn, cell lines contain the amplified gene integrated into the chromosome(s).

Plasmid pC1 contains for the expression of the gene of interest a strong promoter of the long terminal repeat (LTR) of the Rouse Sarcoma Virus (Cullen, et al., Molecular and Cellular Biology, March 1985:438-4470) plus a fragment

isolated from the enhancer of the immediate early gene of human cytomegalovirus (CMV) (Boshart et al., Cell 41:521-530, 1985). Downstream of the promoter are the following single restriction enzyme cleavage sites that allow the integration of the genes: BamHI, Pvull, and Nrul. Behind these cloning sites the plasmid contains translational stop codons in all three reading frames

followed by the 3' intron and the polyadenylation site of the rat preproinsulin gene. Other high efficient promoters can also be used for the expression, e.g., the

human β-actin promoter, the SV40 early or late promoters or the long terminal

-63-

repeats from other retroviruses, e.g., HIV and HTLVI. For the polyadenylation of the mRNA other signals, e.g., from the human growth hormone or globin genes can be used as well.

Stable cell lines carrying the gene of interest integrated into the chromosomes can also be selected upon co-transfection with a selectable marker such as gpt, G418 or hygromycin. It is advantageous to use more than one selectable marker in the beginning, e.g., G418 plus methotrexate.

The plasmid pC1 is digested with the restriction enzyme BamHI and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.

The *M. jannaschii* protein-encoding sequence is is amplified using PCR oligonucleotide primers as described above. An efficient signal for initiation of translation in eukaryotic cells, as described by Kozak, M., J. Mol. Biol. 196:947-950 (1987) is appropriately located in the vector portion of the construct. The amplified fragments are isolated from a 1% agarose gel as described above and then digested with the endonucleases BamHI and Asp718 and then purified again on a 1% agarose gel.

The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 cells are then transformed and bacteria identified that contained the plasmid pC1 inserted in the correct orientation using the restriction enzyme BamHI. The sequence of the inserted gene is confirmed by DNA sequencing.

Transfection of CHO-DHFR-cells

5

10

15

20

25

Chinese hamster ovary cells lacking an active DHFR enzyme are used for transfection. 5 µg of the expression plasmid C1 are cotransfected with 0.5 µg of the plasmid pSVneo using the lipofecting method (Felgner *et al.*, *supra*). The plasmid pSV2-neo contains a dominant selectable marker, the gene neo from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml

-64-

G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) and cultivated from 10-14 days. After this period, single clones are trypsinized and then seeded in 6-well petri dishes using different concentrations of methotrexate (25 nM, 50 nM, 100 nM, 200 nM, 400 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (500 nM, 1 μ M, 2 μ M, 5 μ M). The same procedure is repeated until clones grow at a concentration of 100 μ M.

The expression of the desired gene product is analyzed by Western blot analysis and SDS-PAGE.

Example 7

Production of an Antibody to a Methanococcus jannaschii Protein

Substantially pure *M. jannaschii* protein or polypeptide is isolated from the transfected or transformed cells described above using an art-known method. The protein can also be chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows:

Monoclonal Antibody Production by Hybridoma Fusion

20

25

15

5

10

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., *Nature 256*:495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma

-65-

cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, E., *Meth. Enzymol.* 70:419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. *et al.* Basic Methods in Molecular Biology Elsevier, New York. Section 21-2 (1989).

Polyclonal Antibody Production by Immunization

5

10

15

20

25

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than other molecules and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall (See Ouchterlony, O. et al., Chap. 19 in: Handbook of Experimental Immunology, Wier, D., ed, Blackwell (1973)). Plateau

-66-

concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12 $_{\mu}$ M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: *Manual of Clinical Immunology*, second edition, Rose and Friedman, (eds.), Amer. Soc. For Microbio., Washington, D.C. (1980).

5

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample.

Table 2/

							•
			Amino acid biosynthesis				_
Aromatic amino acid family	iino acid fan	nily					
MJ1454	47830	48390	3-dehydroquinate dehydratasa (Escharickia, 113)				
MIDSON	10000		The state of the s	32.6	54.0	561	
2000thi	1029204	1027915	5-enolpyruvylshikimate 3-phosphate synthase {Haemophilus influenzae}	38.2	0 09	1290	
MJ1075	456842	458158	anthranilate synthase, subunit I {Clostridium thermocellum}	2 03	2.00	0671	
MJ0234	1247181	1246243	anthranilate complete	32.7	1.7/	1317	
Missass			distribution of minase, subunit 11 { Incrmotoga maritima}	44.1	64.3	939	
MJ0238	1242410	1241916	anthranilate synthase, subunit II" {Thermotoga maritima}	303	35.0	, 6	-,-
MJ0246	1238364	1238660	chorismate mutase subunit A {Erwinia herbicola}	3.2.0	0.6/	495	
M10612	020781	0.0000		57.4	59.4	297	
7100011	101676	27/87%	chorismate mutase subunit B (Escherichia coli)	33.2	262	1050	-
MJ1175	357469	358572	chorismate synthase {Synechocystis sn}			(501	.67
MJ0918	621924	623682	الماميات الماميات	48.8	66.5	1104	7-
	2	790770	IIIU016-3-glycerol phosphate synthase {Halobacterium volcanii}	42.7	67.7	759	
MJ0451	1068501	1067845	N-phosphoribosyl anthranilate isomerase {Haloferax volcanii}	1.0	3		
MJ0637	904569	905264	prephenate dehydratase {Lactococous lactis}	41.9	5.70	/59	
MJ1084	440533	440757		39.3	61.7	969	
	117733	440/3/	Shikimate 5-dehydrogenase {Escherichia coli}	38.9	57.4	777	PO
MJ1038	502619	501777	tryptophan synthase, subunit alpha {Methanobacterium thermoautotronhioum}	40.0	1.1.5	111	CT/U
MJ1037	503929	502808	frontonban conthace cultural Lange (A	49.8	69.3	843	J S9 7
			Propries 37 iterase, subuille deta (Acinetobacter calcoaceticus)	62.2	787	1122	//1

Asparlate family	ily L			34.0	5.4.3	1560
MJ1116	414120	415679	asparagine synthetase {Escherichia coli}	34.0	5.4.5	1300
MJ1056	476613	476170	asparagine synthetase {Bacillus subtilis}	33.0	54.6	444
M11391	132691	133833	aspartate aminotransferase {Sulfolobus solfataricus}	31.0	52.2	1143
MJ0684	859565	860632	aspartate aminotransferase {Sulfolobus solfataricus}	37.8	63.7	1068
MJ0001	1469369	1470142	aspartate aminotransferase {Sulfolobus solfataricus}	39.2	63.8	774
MJ0205	1273947	1274951	aspartate-semialdehyde dehydrogenase {Leptospira interrogans}	50.4	67.2	1005
MJ0571	963902	962544	aspartokinase I {Serratia marcescens}	37.0	56.7	1359
MJ1473	26812	27558	cobalamin-independent methionine synthase {Methanobacterium thermoautotrophicum}	47.7	65.3	747
MJ1097	433957	435159	diaminopimelate decarboxylase (Haemophilus influenzae)	43.2	9.99	1203
MJ1119	412913	412029	diaminopimelate epimerase (Haemophilus influenzae)	36.2	9.99	885
MJ0422	1090629	1091441	dihydrodipicolinate reductase {Haemophilus influenzae}	45.0	64.4	813
MJ0244	1239093	1239776	dihydrodipicolinate synthase {Haemophilus influenzae}	46.6	64.4	684
MJ1003	540278	539106	homoaconitase {Saccharomyces cerevisiae}	35.7	56.9	1173
MJ1602	1563296	1562289	homoserine dehydrogenase {Bacillus subtilis}	40.4	63.2	1008
MJ1104	427241	428128	homoserine kinase {Haemophilus influenzae}	30.1	53.9	888
MJ0020	1450056	1451210	L-asparaginase I {Haemophilus influenzae}	34.8	53.1	1155

-69-

					-	
MJ0161	1307199	1307702	acetolactate synthase, small subunit {Bacillus subtilis}	49.4	74.1	504
MJ1008	533323	534132	branched-chain amino acid aminotransferase {Escherichia coli}	42.6	59.0	810
MJ1276	250052	251710	dihydroxy-acid dehydratase {Lactococcus lactis}	44.6	65.1	1659
MJ1195	333450	335003	isopropylmalate synthase {Haemophilus influenzae}	42.9	63.7	1554
MJ1543	1615932	1614931	ketol-acid reductoisomerase {Bacillus subtilis}	53.7	77.0	1002
Serine family						
MJ1597	1568671	1567445	glycine hydroxymethyltransferase {Methanobacterium thermoautotrophicum}	8.69	80.7	1227
MJ1018	523454	524806	phosphoglycerate dehydrogenase {Bacillus subtilis}	42.7	65.4	1353
MJ1594	1571545	1571039	phosphoserine phosphatase {Haemophilus influenzae}	40.4	62.7	507
MJ0959	580672	581778	serine aminotransferase {Methanobacterium thermoformicicum}	54.5	74.9	1107
Histidine family	Į.					70-
MJ1204	324063	324878	ATP phosphoribosyltransferase {Escherichia coli}	34.0	57.3	816
MJ1456	46532	45354	histidinol dehydrogenase {Lactococcus lactis}	47.6	67.5	1179
MJ0955	586179	585073	histidinol-phosphate aminotransferase (Bacillus subtilis)	37.7	8.09	1107
MJ0698	848921	848364	imidazoleglycerol-phosphate dehydrogenase $\{Methanobacteriumthermoautotrophicum\}$	51.7	71.2	558
MJ0506	1024803	1025237	imidazoleglycerol-phosphate synthase (amidotransferase) {Lactococcus lactis}	45.6	62.1	435
MJ0411	1101451	1100636	imidazoleglycerol-phosphate synthase (cyclase) {Azospirillum brasilense}	61.5	78.8	816
MJ1430	71328	71047	phosphoribosyl-AMP cyclohydrolase {Methanococcus vannielii}	70.0	86.3	282

MJ0302	1186990	1187208	phosphoribosyl-ATP pyrophosphohydrolase {Azotobacter chroococcum}	54.1	68.9	219
MJ1532	1628155	1627745	phosphoribosylformimino-5-aminoimidazole carboxamide ribotide isomerase {Methanococcus thermolithotrophicus}	51.9	81.1	411
Biosynthesis (of cofactors,	Biosynthesis of cofactors, prosthetic groups, an	oups, and carriers			
MJ0603	937289	938566	glutamate-1-semialdehyde aminotransferase {Bacillus subtilis}	51.7	9.07	1278
MJ0569	966316	967137	porphobilinogen deaminase (Bacillus subtilis)	41.2	61.4	822
MJ0493	1035991	1036839	quinolinate phosphoribosyltransferase {Escherichia coli}	39.3	61.6	849
MJ0407	1105699	1104965	quinolinate synthetase {Cyanophora paradoxa}	37.2	58.8	735
MJ1388	136484	135309	S-adenosylhomocysteine hydrolase {Sulfolobus solfataricus}	61.7	78.5	1176
Biotin						
MJ1297	227704	227021	6-carboxyhexanoate-CoA ligase {Bacillus snhaericus}	17.7	627	
MJ1298	227005	225890	8-amino-7-oxononanoate synthase {Bacillus sphaericus}	7.27	7.70	1112
MJ1300	225025	223709	adenosylmethionine-8-amino-7-oxononanoate aminotransferase {Bacillus sphaericus}	39.9	64.2	1317
MJ1619	1543130	1543552	bifunctional protein {Haemophilus influenzae}	25.7	54.0	473
MJ1296	228286	228843	biotin synthetase {Bacillus sphaericus}	38.2	67.5	855
MJ1299	225741	225100	dethiobiotin synthetase (Bacillus sphaericus)	37.0	59.0	642
				-	· · · · ·	-

Heme and porphyrin	phyrin					
MJ1438	66330	65833	cobalamin (5'-phosphate) synthase {Escherichia coli}	26.1	48.7	498
MJ0552	983686	984417	cobalamin biosynthesis J protein {Salmonella typhimurium}	26.7	51.2	732
MJ1314	212528	211842	cobalamin biosynthesis protein D {Pseudomonas denitrificans}	38.0	61.0	687
MJ0022	1448163	1447273	cobalamin biosynthesis protein D {Salmonella typhimurium}	35.5	61.1	891
MJ1569	1592308	1591700	cobalamin biosynthesis protein M {Salmonella typhimurium}	29.5	54.7	609
MJ1091	442661	443239	cobalamin biosynthesis protein M {Salmonella typhimurium}	53.7	74.4	579
MJ0908	635150	631647	cobalamin biosynthesis protein N {Pseudomonas denitrificans}	37.5	57.6	3504
MJ0484	1046784	1045324	cobyric acid synthase {Methanococcus voltae}	73.7	86.8	1461
MJ1421	85381	86352	cobyrinic acid a,c-diamide synthase {Salmonella typhimurium}	32.1	55.0	972
MJ0143	1332080	1330965	glutamyl-tRNA reductase {Methanobacterium thermoautotrophicum}	47.8	6.99	9111
MJ0643	008668	016868	porphobilinogen synthase {Methanothermus sociabilis}	62.5	79.9	168
MJ0930	612059	611430	precorrin isomerase {Salmonella typhimurium}	38.7	62.0	630
MJ0771	780420	779932	precorrin-2 methyltransferase {Salmonella typhimurium}	30.4	55.9	489
MJ0813	734876	735547	precorrin-3 methylase {Salmonella typhimurium}	44.2	68.4	672
MJ1578	1583277	1582501	precorrin-3 methylase (Salmonella typhimurium)	54.6	76.5	777
MJ1522	1637017	1636385	precorrin-6Y methylase {Salmonella typhimurium}	30.6	52.3	633
MJ0391	1116729	1117202	precorrin-8W decarboxylase {Salmonella typhimurium}	23.9	49.1	474

MJ0965	573234	572509	uroporphyrin-III C-methyltransferase {Bacillus megaterium}	54.7	72.5	726
MJ0994	549022	549444	uroporphyrinogen III synthase (Bacillus subtilis)	27.8	49.4	423
Menaquinone and ubiquinone	and ubiqui	попе				
MJ1645	1509624	1508923	coenzyme PQQ synthesis protein III {Haemophilus influenzae}	32.2	53.3	702
Molybdopterin	u					
MJ0824	725986	726762	molybdenum cofactor biosynthesis moaA protein {Haemophilus influenzae}	30.0	57.3	777
MJ0167	1301836	1302162	molybdenum cofactor biosynthesis moaB protein {Escherichia coli}	46.4	9.69	327
MJ1135	396359	396781	molybdenum cofactor biosynthesis moaC protein {Haemophilus influenzae}	49.2	70.9	423
MJ0886	654158	656017	molybdenum cofactor biosynthesis moeA protein {Escherichia coli}	34.5	55.2	1860
MJ0666	879771	880943	molybdenum cofactor biosynthesis moeA protein {Haemophilus influenzae}	33.6	56.4	1173
MJ1663	1491265	1490831	molybdopterin-guanine dinucleotide biosynthesis protein A {Escherichia coli}	27.7	48.0	435
MJ1324	197777	920016	molybdopterin-guanine dinucleotide biosynthesis protein B {Escherichia coli}	32.2	57.7	
Pantothenate						
MJ0913	626982	627779	pantothenate metabolism flavoprotein {Haemophilus influenzae}	34.1	55.7	798

-73-

Riboflavin						
MJ0055	1416688	1417278	GTP cyclohydrolase II {Bacillus subtilis}	35.8	9.99	591
MJ0671	874773	875396	riboflavin-specific deaminase {Actinobacillus pleuropneumoniae}	43.0	65.3	624
Thioredoxin, glutaredoxin, and glutathione	gutaredoxin	1, and glutath	ione			
MJ1536	1622694	1623533	thioredoxin reductase {Mycoplasma genitalium}	38.5	58.0	840
MJ0530	1005917	1005420	thioredoxin-2 {Saccharomyces cerevisiae}	33.0	63.3	498
MJ0307	1184114	1184332	thioredoxin/glutaredoxin {Methanobacterium thermoautotrophicum}	48.7	69.5	219
Thiamine						
MJ1026	514172	515440	thiamine biosynthesis protein {Bacillus subtilis}	45.0	66.1	1269
MJ0601	940113	939400	thiamine biosynthetic enzyme {Zea mays}	35.1	53.0	714
Pyridine nucleotides	otides					
MJ1352	170567	171163	NH(3)-dependent NAD+ synthetase {Mycoplasma genitalium}	47.5	63.8	297
			Cell envelope			
Membranes, lipoproteins, and porins	poproteins,	and porins				
MJ0544	508686	990443	dolichyl-phosphate mannose synthase {Trypanosoma brucei}	35.1	57.1	639
MJ1057	475508	474981	glycosyl transferase {Neisseria gonorrhoeae}	25.8	50.0	528
MJ0611	931098	930679	membrane protein {Saccharum sp.}	50.0	57.2	420
MJ0827	724322	723900	membrane protein {Homo sapiens}	44.9	67.0	423

							V
Murein sacculus and peptidoglycan	ilus and pep	tidoglycan					O 98
MJ1160	371691	370390	amidase (Moraxella catarrhalis)	24.6	36.1	1302	/0 78 3
MJ0204	1276277	1275219	amidophosphoribosyltransferase {Bacillus subtillis}	52.0	72.0	1050	30 ———
Surface polysaccharides, lipopolysaccharides and	accharides,	lipopolysacch	arides and antigens				
MJ0924	617598	618035	capsular polysaccharide biosynthesis protein {Staphylococcus aureus}	31.3	46.9	438	-
MJ1061	469649	470293	capsular polysaccharide biosynthesis protein D {Staphylococcus aureus}	56.3	72.2	645	
MJ1055	478643	477735	capsular polysaccharide biosynthesis protein I {Staphylococcus aureus}	50.7	74.4	606	
MJ1059	472326	471904	capsular polysaccharide biosynthsis protein M {Staphylococcus aureus}	34.4	55.0	423	
MJ1607	1555624	1554455	LPS biosynthesis related rfbu-protein {Haemophilus influenzae}	33.4	57.6	1170	
MJ1113	417528	418352	N-acetylglucosamine-1-phosphate transferase {Sulfolobus acidocaldarius}	29.9	57.9	825	
MJ0399	1110873	1112204	phosphomannomutase {Vibrio cholerae}	37.0	\$7.8	1227	
MJ1068	462901	464265	putative O-antigen transporter {Shigella flexneri}	24.5	0.70	1326	75-
MJ1066	464369	465430	spore coat polysaccharide biosynthesis protein C {Bacillus subtillis}	55.3	75.8	1062	_
MJ1065	465444	466454	spore coat polysaccharide biosynthesis protein E {Bacillus subtillis}	37.9	59.0	1007	*
MJ1063	467331	467828	spore coat polysaccharide biosynthesis protein F {Bacillus subtillis}	36.0	55.4	1011	
MJ1062	467870	469279	spore coat polysaccharide biosynthesis protein G {Bacillus subtillis}	32.0	F.C.C.	1410	
MJ0211	1269601	1268732	UDP-glucose 4-epimerase {Streptococcus thermophilus}	35.1	54.8	01410	PCT/
MJ1054	481027	478712	UDP-glucose dehydrogenase {Xanthomonas campestris}	42.8	63.4	2316	US97
MJ0428	1087456	1088655	UDP-N-acetyl-D-mannosaminuronic acid dehydrogenase {Escherichia coli}	45.1	68.7	1200	/1490
			(7.7	7.00	7007	H

Surface structures	ures					
MJ0891	650616	650005	flagellin B1 {Methanococcus voltae}	55.4	71.6	612
MJ0892	649880	649269	flagellin B2 {Methanococcus voltae}	61.1	78.4	612
MJ0893	649163	648516	flagellin B3 {Methanococcus voltae}	59.1	78.7	648
			Cellular processes			
Cell division						
MJ1489	10595	8721	cell division control protein {Saccharomyces cerevisiae}	34.8	57.7	1875
MJ0363	1142460	1140220	cell division control protein 21 (Schizosaccharomyces pombe)	30.0	51.4	2241
MJ1156	375317	377947	cell division control protein CDC48 (Saccharomyces cerevisiae)	51.9	71.7	2631
MJ0169	1300988	1300329	cell division inhibitor (Bacillus subtillis)	28.8	51.2	099
MJ0579	957291	880856	cell division inhibitor {Bacillus subtillis}	31.8	53.2	798
MJ0547	988025	988732	cell division inhibitor {Bacillus subtillis}	32.8	57.7	708
MJ0084	1393471	1392869	cell division inhibitor minD {Escherichia coli}	32.1	50.4	603
MJ0174	1295971	1294976	cell division protein {Drosophila melanogaster}	28.4	54.6	966
MJ0370	1135876	1134956	cell division protein ftsZ {Anabaena 7120}	50.7	71.7	921
MJ1376	147975	147343	cell division protein J {Haemophilus influenzae}	39.8	58.5	633
MJ0622	920029	921168	cell division protein Z {Haloferax volcanii}	51.0	71.7	1140
MJ0148	1326798	1327538	centromere/microtubule-binding protein {Saccharomyces cerevisiae}	42.7	64.7	741

MJ1647	1508164	1507907	DNA binding protein (Methanococcus voltae)	54.7	80 3	258	
MJ1643	1513857	1510351	P115 protein {Mycoplasma hyorhinis}	303	55.4	3507	
Chaperones				2.22	1.7.7	1000	
MJ0999	543921	545471	chaneronin (Methanomyrang Londlog)				
MIDOS	9,00001		control of the contro	73.5	87.6	1551	
C970fM	1202058	1202459	heat shock protein {Clostridium acetobutylicum}	29.0	44.6	402	
MJ0278	1207276	1207548	rotamase, peptidyl-prolyl cis-trans isomerase {Haemophilus influenzae}	40.7	60.5	273	
MJ0825	725091	725765	rotamase, peptidyl-prolyl cis-trans isomerase {Pseudomonas fluorescens}	31.8	8 09	575	
Detoxification					2.23		
MJ0736	804803	805453	alkyl hydroperoxide reductase (Sulfolobus solfataricus)	66.1	84.8	159	
MJ1541	1618786	1619868	N-ethylammeline chlorohydrolase {Rhodococcus rubropertinctus}	29.2	563	1083	
Protein and peptide secretion	ptide secret	tion					-77
MJ0478	1051985	1050678	preprotein translocase secY {Methanococcus vannielii}	20.0	0 00	1200	7_
MJ0111	1365253	1364216	protein-export membrane protein {Streptomyces coelicolor}	25.0	51.7	1036	
MJ1253	276673	277377	protein-export membrane protein {Escherichia coli}	30.5	57.0	205	
MJ0260	1226090	1226644	signal peptidase {Canis familiaris}	32.6	54.5	565	
MJ0101	1376106	1377308	signal recognition particle protein {Haemophilus influenzae}	42.0	61.6	1203	•
MJ0291	1198470	1197244	signal recognition particle protein {Sulfolobus acidocaldarius}	48 3	60.4	1202	C1/(
					1:50	1771	<i>J</i>

Transformation	E.					
MJ0781	768702	770798	klbA protein {Plasmid RK2}	34.6	54.9	2097
MJ0940	602402	601929	transformation sensitive protein {Homo sapiens}	35.0	53.9	474
Cellular processes	sses					
MJECL17	20110	19889	archaeal histone (Pyrococcus sp.)	58.8	81.0	221
MJECL29	36456	26220	archaeal histone {Pyrococcus sp.}	64.2	83.6	236
MJ1258	271686	271486	archaeal histone {Pyrococcus sp.}	71.7	83.6	201
MJ0168	1301348	1301548	archaeal histone {Pyrococcus sp.}	67.2	9.98	201
MJ0932	610153	609953	archaeal histone {Pyrococcus sp.}	67.2	9.98	201
			Central intermediary metabolism			78
Amino sugars						
MJ1420	90244	86939	glutaminefructose-6-phosphate transaminase {Escherichia coli}	41.2	61.5	3306
Degradation of polysaccharides	f polysaccha	ırides				
MJ1611	1550816	1549542	alpha-amylase {Pyrococcus furiosus}	27.0	50.5	1275
MJ0555	981500	980529	endoglucanase {Homo sapiens}	44.1	8.99	972
MJ1610	1551992	1550967	glucoamylase {Clostridium sp}	28.0	49.2	1026

Other							ר טי
MJ1656	1498675	1497965	2-hvdrovvohente 2 d dieme 1 7 dieme 1 7				
2070174		╁	z il) di Ochingha-z, 4-diene-1, 7-dioate Isomerase {Escherichia coli}	40.2	9.19	711	
MJ0406	1106800	1105907	ribokinase {Escherichia coli}	23.2	46.3	894	
MJ0309	1182259	1183077	ureohydrolase {Methanothermus fervidus}	40.9	60.7	810	
Phosphorus compounds	spunodwo				ì	017	
MJ0963	575418	577049	N-methylhydantoinase {Arthrobacter sp.}	37.6	53.0	1233	
MJ0964	573516	575345	N-methylhydantoinase {Arthrobacter sp.}	27.7	0.00	1032	
Polyamine biosynthesis	osynthesis				70.4	1050	
MJ0535	1001006	1002031	acetylpolyamine aminohydolase {D01044 Mycoplana}	33.3	48.6	1026	
MJ0313	1179250	1179801	spermidine synthase {Homo sapiens}	32.3	57.7	557	
Polysaccharides-(cytoplasmic)	les-(cytoplas	mic)		25);;	700	79
MJ1606	1555858	1557354	glycogen synthase {Hordeum vulgare}	23.7	58.3	1407	÷
Nitrogen metabolism	bolism			7.55	00.5	149/	
MJ1187	345237	344335	ADP-ribosylglycohydrolase (draG) {Rhodospirillum rubrum}	20.8	8.05	000	
MJ0713	824113	826278	hydrogenase accessory protein {Azotobacter chroococcum}	33.8	54.8	2166	
MJ0214	1267658	1267314	hydrogenase accessory protein {Azotobacter chroococcum}	30.7	0.4.0	245	
MJ0676	869311	870276	hydrogenase expression/formation protein {Rhizobium leguminosarum}	700.7	55.2	243	C1/(
MJ0442	1075480	1076028	hydrogenase expression/formation protein B {Rhizobium leguminosarum}	1.0.1	64.0	300	0871
MJ0200	1279494	1279739	hydrogenase expression/formation protein C {Azotobacter vinelandii}	0.04	0.40	249	/1490
			(11774447717, 177477, 1		0.00	740	v

				ŀ	ĺ	
MJ0993	549539	550525	hydrogenase expression/formation protein D {Alcaligenes eutrophus}	44.7	63.5	786
MJ0631	914544	914089	hydrogenase maturation protease {Escherichia coli}	33.9	58.9	456
MJ1093	441468	440584	nifB protein {Anabaena sp}	43.1	67.2	885
MJ0879	667622	666984	nitrogenase reductase {Methanococcus voltae}	77.2	89.1	639
MJ0685	859442	858696	nitrogenase reductase related protein {Clostridium pasteurianum}	31.7	49.6	747
MJ1051	483344	484411	nodulation factor production protein {Bradyrhizobium japonicum}	32.1	51.1	1068
MJ1058	473947	473141	nodulation factor production protein {Bradyrhizobium japonicum}	37.7	58.0	807
Carbon Fixation	9					
MJ0152	1325036	1322820	carbon monoxide dehydrogenase, alpha subunit {Clostridium thermoaceticum}	42.1	65.6	2217
MJ0153	1322553	1320256	carbon monoxide dehydrogenase, alpha subunit {Methanothrix soehngenii}	47.9	67.3	2298
MJ0156	1319256	1317883	carbon monoxide dehydrogenase, alpha subunit {Clostridium thermoaceticum}	47.8	69.5	1374
MJ0728	809951	811783	carbon monoxide dehydrogenase, beta subunit {Rhodospirillum rubrum}	35.9	55.0	1833
MJ0112	1362285	1363667	corrinoid/iron-sulfur protein, large subunit {Clostridium thermoaceticum}	32.9	55.1	1383
MJ0113	1361128	1362030	corrinoid/iron-sulfur protein, small subunit {Clostridium thermoaceticum}	37.7	58.8	903
MJ1235	292453	293673	ribulose bisphosphate carboxylase, large subunit {Synechococcus sp}	42.4	60.3	1221

			Energy metabolism		į		
Aerobic							
MJ0649	896262	894919	NADH oxidase {Enterococcus faecalis}	28.0	50.4	1344	
MJ0520	1011104	1011892	NADH-ubiquinone oxidoreductase, subunit 1 {Paracentrotus lividus}	29.5	53.9	789	
Anaerobic							_
MJ0092	1385748	1384282	fumarate reductase {Thermoplasma acidophilum}	40.2	57.0	1467	, -
ATP-proton motive force interconversion	otive force	interconversi	OC .				
MJ0217	1263468	1265171	ATP synthase, subunit A {Enterococcus hirae}	60.3	76.6	1704	
MJ0216	1265356	1266615	ATP synthase, subunit B {Methanosarcina barkeri}	69.4	84.5	1260	_
MJ0219	1261985	1263040	ATP synthase, subunit C {Haloferax volcanii}	28.1	50.0	1056	
MJ0615	926124	926663	ATP synthase, subunit D {Enterococcus hirae}	34.8	56.8	540	8/-
MJ0220	1261297	1261737	ATP synthase, subunit E {Methanosarcina mazeii}	29.0	50.0	441	
MJ0218	1263054	1263347	ATP synthase, subunit F {Haloferax volcanii}	21.5	52.1	294	
MJ0222	1258252	1260294	ATP synthase, subunit I {Enterococcus hirae}	27.6	52.2	2043	
MJ0221	1260641	1261060	ATP synthase, subunit K {Enterococcus hirae}	34.6	59.8	420	

Electron transport	port					
MJ1446	57416	56646	cytochrome-c3 hydrogenase, gamma chain {Pyrococcus furiosus}	40.1	52.4	771
MJ0741	803000	803320	desulfoferrodoxin {Desulfovibrio vulgaris}	44.0	59.4	321
MJ0578	958094	006856	ferredoxin {Clostridium sticklandii}	49.1	6.95	807
MJ0061	1411998	1411759	ferredoxin {Methanococcus thermolithotrophicus}	42.9	59.0	240
MJ0722	815808	816038	ferredoxin {Methanobacterium thermoautotrophicum}	42.3	9.09	231
MJ0099	1379076	1379456	ferredoxin (Desulfovibrio desulfuricans)	40.0	62.0	381
MJ0199	1279976	1279791	ferredoxin {Methanococcus thermolithotrophicus}	74.6	84.8	186
MJ0533	1003408	1003575	ferredoxin 2[4Fe-4S] homolog (Methanosarcina thermophila)	36.9	54.4	891
MJ0624	918981	918808	ferredoxin 2[4Fe=4S] {Methanosarcina thermophila}	48.0	0.89	174
MJ0267	1217567	1218463	ferredoxin oxidoreductase, alpha subunit {Klebsiella pneumoniae}	29.4	50.2	897
MJ0276	1209645	1210727	ferredoxin oxidoreductase, alpha subunit {Halobacterium halobium}	44.5	63.0	1083
MJ0266	1218644	1219387	ferredoxin oxidoreductase, beta subunit {Klebsiella pneumoniae}	32.6	51.0	744
MJ0537	998693	999424	ferredoxin oxidoreductase, beta subunit {Halobacterium halobium}	41.3	61.1	732
MJ0268	1217015	1217272	ferredoxin oxidoreductase, delta subunit {Pyrococcus furiosus}	58.9	71.8	258
MJ0536	999441	086666	ferredoxin oxidoreductase, gamma subunit {Pyrococcus furiosus}	32.0	50.9	540
MJ0269	1216601	1216993	ferredoxin oxidoreductase, gamma subunit {Pyrococcus furiosus}	55.6	74.7	393
MJ0732	026908	808100	flavoprotein {Methanobacterium thermoautotrophicum}	40.4	62.3	1131
MJ1192	339066	338095	methylviologen-reducing hydrogenase, alpha chain {Methanococcus voltae}	75.0	9.88	972

		-				
MJ1191	340221	339385	methylviologen-reducing hydrogenase, gamma chain {Methanococcus voltae}	71.5	83.3	837
MJ1362	160414	161055	NADH dehydrogenase, subunit 1 {Mitochondrion Oncorhynchus}	23.1	50.0	642
MJ0514	1016474	1017223	polyferredoxin {Methanococcus voltae}	36.7	52.5	750
MJ0934	608147	607521	polyferredoxin {Methanothermus fervidus}	40.9	54.3	627
MJ1303	220214	221701	polyferredoxin {Methanobacterium thermoautotrophicum}	39.5	56.1	1488
MJ1193	337655	336591	polyferredoxin {Methanococcus voltae}	61.7	74.5	1065
MJ1227	301853	301257	pyruvate formate-lyase activating enzyme {Clostridium pasteurianum}	31.4	50.0	597
MJ0735	805546	805785	rubredoxin {Clostridium thermosaccharolyticum}	59.7	77.0	240
MJ0740	803522	803659	rubredoxin {Clostridium thermosaccharolyticum}	64.5	84.5	138
Fermentation						~83
MJ0007	1463447	1462359	2-hydroxyglutaryl-CoA dehydratase, subunit beta {Acidaminococcus fermentans}	22.6	48.2	6801
Gluconeogenesis	sis					
MJ1479	22527	21358	alanine aminotransferase 2 {Panicum miliaceum}	30.1	50.0	1170
MJ0542	991264	994794	phosphoenolpyruvate synthase {Pyrococcus furiosus}	60.3	78.3	3531

Glycolysis						
MJ1482	18946	18044	2-phosphoglycerate kinase {Methanothermus fervidus}	47.1	70.9	903
MJ0641	901393	902325	3-phosphoglycerate kinase {Methanothermus fervidus}	58.2	78.1	933
MJ0232	1248239	1249432	enolase {Bacillus subtilis}	57.7	78.2	1194
MJ1605	1557395	1558597	glucose-6-phosphate isomerase {Bacillus stearothermophilus}	32.3	54.6	1203
MJ1146	386093	387055	glyceraldehyde 3-phosphate dehydrogenase {Methanothermus fervidus}	59.5	77.6	963
MJ0490	1038560	1037697	lactate dehydrogenase {Thermotoga maritima}	39.9	63.2	864
MJ1411	100555	29166	NADP-dependent glyceraldehyde-3-phosphate dehydrogenase {L15191 Streptococcus}	39.2	59.6	1389
MJ0108	1367951	1366716	pyruvate kinase {Bacillus stearothermophilus}	39.1	60.5	1236
MJ1528	1631071	1631589	triosephosphate isomerase {Mycoplasma genitalium}	29.0	49.1	919
Pentose phosphate pathway	iate pathwa	ıy				84-
MJ0680	865484	866083	pentose-5-phosphate-3-epimerase {Solanum tuberosum}	44.2	62.5	009
MJ1603	1560724	1560047	ribose 5-phosphate isomerase (Mus musculus)	42.0	63.4	878
MJ0960	580121	580576	transaldolase {Bacillus subtilis}	60.7	79.5	456
MJ0681	864603	865355	transketolase' {Homo sapiens}	43.7	58.5	753
MJ0679	866375	867073	transketolase" (Homo sapiens)	36.0	61.3	669

Pyruvate dehydrogenase	ydrogenase						_
MJ0636	906464	905292	dihydrolinoamide dehydronengo (1121.2.2.2.1.2.1.2.2.2.1.2.1.2.2.2.2.1.2				
Sugare			and a composition of the control of	28.9	51.0	1173	
agais							
MJ1418	91211	69906	fuculose-1-phosphate aldolase (Haemophilus influenzae)	20.1	10 1		
TCA cycle				7.1	40./	543	
MJ0499	1031331	1032530	aconitase {Saccharomyces cerevisiae}	5 00			
MJ1294	229770	230381		7.67	49.8	1200	
MIOCIZ				35.1	55.7	612	
/ IODIN	925239	924778	fumarate hydratase, class I " {Bacillus stearothermophilus}	43.8	66.0	757	
MJ1596	1568967	1569998		_	00.0	704	
MJ0720	817433	818431		+	61.4	1032	
3611145	1300		cus}	48.0	64.7	666	
1473 [473	100//	/6299	malate dehydrogenase {Methanothermus fervidus}	113	77.6	753	_
MJ0033	1438609	1437116	Succinate dehydrogenase, flavoprotein subunit (Escherichia coli)	\dagger	2 3	557	- 83
MJ1246	282664	283449		\top	78.I	1494	;
M10210	1271210	100001	Control of the contro	9.69	74.8	982	
	12/1310	1710771	succinyi-CoA synthetase, beta subunit {Thermus aquaticus}	48.8	68.7	1092	

Mothomogenesis						
MJ0253	1232773	1232405	8-hydroxy-5-deazaflavin-reducing hydrogenase, delta subunit {Methanobacterium thermoautotrophicum}	47.1	71.0	369
MJ1035	505234	506022	coenzyme F420-dependent N5,N10-methylene-tetrahydromethanopterin dehydrogenase {Methanobacterium thermoautotrophicum}	66.5	79.8	789
MJ0727	811895	812725	coenzyme F420-reducing hydrogenase, alpha subunit {Methanobacterium thermoautotrophicum}	26.8	45.8	831
MJ0029	1442517	1441279	coenzyme F420-reducing hydrogenase, alpha subunit {Methanococcus voltae}	50.3	66.1	1239
M10030	1441022	1440558	coenzyme F420-reducing hydrogenase, alpha subunit {Methanococcus voltae}	66.5	83.3	465
MJ1349	175566	176222	coenzyme F420-reducing hydrogenase, beta subunit {Methanococcus voltae}	36.6	55.7	657
MJ0725	813779	814453	coenzyme F420-reducing hydrogenase, beta subunit {Methanobacterium thermoautotrophicum}	41.0	62.0	675
MJ0870	677657	679372	coenzyme F420-reducing hydrogenase, beta subunit {Methanobacterium thermoautotrophicum}	42.7	63.2	1716
MJ0032	1439835	1438990	coenzyme F420-reducing hydrogenase, beta subunit {Methanococcus voltae}	72.0	85.5	846
MJ0726	812987	813499	coenzyme F420-reducing hydrogenase, gamma subunit {Methanococcus voltae}	42.7	59.4	513
MJ0031	1440505	1439873	coenzyme F420-reducing hydrogenase, gamma subunit {Methanococcus voltae}	75.5	87.3	633
MJ0295	1192687	1193304	formate dehydrogenase (fdhD) {Wolinella succinogenes}	35.6	57.7	618
MJ0006	1463887	1465020	formate dehydrogenase, alpha subunit {Methanobacterium formicicum}	41.6	61.1	1134
MJ1353	168767	170344	formate dehydrogenase, alpha subunit {Methanobacterium formicicum}	54.2	70.9	1578
M10005	1465405	1466247	formate dehydrogenase, beta subunit {Methanobacterium formicicum}	49.5	72.1	843
*****	,					

13	1393880	methyl coenzyme M reductase II, alpha subunit {Methanothermus fervidus}	868	95.5	1440
1396351 methyl	met	coenzyme M reductase II, beta subunit {Methanothermus fervidus}	7.67	89.4	1350
1395538 methyl	meth	coenzyme M reductase II, gamma subunit {Methanothermus fervidus}	83.0	92.1	862
701465 methyl	meth	coenzyme M reductase operon, protein C {Methanococcus vannielii}	82.5	92.6	573
702069 methyl	methy	coenzyme M reductase operon, protein D {Methanococcus voltae}	58.0	81.4	327
1493201 methyl thermo	meth	coenzyme M reductase system, component A2 {Methanobacterium autotrophicum}	37.1	60.1	9991
286338 methyl thermo	methy therm	coenzyme M reductase system, component A2 {Methanobacterium autotrophicum}	6.09	77.8	1461
698880 methyl	methy	I coenzyme M reductase, alpha subunit {Methanococcus voltae}	86.1	92.1	1443
702576 methyl	methy	coenzyme M reductase, beta subunit {Methanococcus vannielii}	75.3	87.4	1332
700673 methyl	methyl	coenzyme M reductase, gamma subunit {Methanococcus vannielii}	78.7	91.3	717
1519128 N5,NI thermo	NS,N1 thermo	N5,N10-methenyl-tetrahydromethanopterin cyclohydrolase {Methanobacterium thermoautotrophicum}	9.69	82.3	927
1624534 N5,N1 thermo	N5,N l therm	N5,N10-methylene tetrahydromethanopterin reductase {Methanobacterium thermoautotrophicum}	66.2	79.7	993
695895 N5-m	N5-m (Meth	N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase {Methanobacterium thermoautotrophicum}	36.6	59.8	309
696216 N5-n	N5-n {Met	N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase {Methanobacterium thermoautotrophicum}	41.8	62.3	699
694914 NS-n {Met	N5-n (Met	N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase {Methanobacterium thermoautotrophicum}	37.1	64.6	204

-89-

MJ0851	998569	695138	N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase {Methanobacterium thermoautotrophicum}	55.2	73.5	729
MJ0847	698519	697749	N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase {Methanobacterium thermoautotrophicum}	58.3	76.4	177
MJ0854	694607	159869	N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase {Methanobacterium thermoautotrophicum}	62.1	77.5	957
MJ0848	969269	697043	N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase {Methanobacterium thermoautotrophicum}	63.5	77.8	654
MJ0853	694857	694639	N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase G {Methanobacterium thermoautotrophicum}	51.1	76.6	219
MJ1169	363822	362122	tungsten formylmethanofuran dehydrogenase, subunit A {Methanobacterium thermoautotrophicum}	69.4	81.5	1701
MJ1194	336096	335260	tungsten formylmethanofuran dehydrogenase, subunit B {Methanobacterium thermoautotrophicum}	71.1	84.0	837
MJ1171	361740	360973	tungsten formylmethanofuran dehydrogenase, subunit C {Methanobacterium thermoautotrophicum}	52.7	67.7	768
MJ0658	887575	886886	tungsten formylmethanofuran dehydrogenase, subunit C related protein {Methanobacterium thermoautotrophicum}	35.4	53.4	069
MJ1168	364202	363852	tungsten formylmethanofuran dehydrogenase, subunit D {Methanobacterium thermoautotrophicum}	55.2	74.8	351
MJ1165	366038	365637	tungsten formylmethanofuran dehydrogenase, subunit E {Methanobacterium thermoautotrophicum}	38.3	61.1	402
MJ1166	365484	364567	tungsten formylmethanofuran dehydrogenase, subunit F {Methanobacterium thermoautotrophicum}	47.6	67.4	918
					•	

							•
MJ1167	364516	364271	tungsten formylmethanofuran dehydrogenase, subunit G {Methanobacterium thermoautotrophicum}	43.1	58.5	246	/ 9 8/U /8.
Fatty acid and phospholipid metabolism	phospholip	oid metabolisn					
MJ0705	840072	838927	3-hydroxy-3-methylglutaryl coenzyme A reductase {Haloferax volcanii}	49.8	67.3	1146	
MJ1546	1612371	1611697	acyl carrier protein synthase {Pyrococcus furiosus}	63.1	78.0	675	
MJ0860	969889	689499	bifunctional short chain isoprenyl diphosphate synthase {Methanobacterium thermoautotrophicum}	49.5	71.7	804	
MJ1229	299478	300644	biotin carboxylase {Anabaena sp}	58.9	76.2	1167	
MJ1212	316229	316786	CDP-diacylglycerolserine O-phosphatidyltransferase {Bacillus subtilis}	45.5	63.7	558	
MJ1504	1661217	1662188	lipopolysaccharide biosynthesis protein (bplD) {Bordetella pertussis}	44.3	63.1	972	,
MJ1087	446091	445231	melvalonate kinase {Schizosaccharomyces pombe}	31.5	53.7	861	_
MJ1549	1610772	1609735	nonspecific lipid-transfer protein {Pyrococcus furiosus}	46.9	0.99	1038	90
			Purines, pyrimidines, nucleosides, and nucleotides				~
2'-Deoxyribonucleotide metabolism	ucleotide m	etabolism					
MJ0832	719820	714604	anaerobic ribonucleoside-triphosphate reductase {Escherichia coli}	28.1	49.9	5217	
MJ0430	1085497	1086009	deoxycytidine triphosphate deaminase {Desulfurolobus ambivalens}	40.4	61.5	513	
MJ1102	429115	428648	deoxycytidine triphosphate deaminase, putative {Desulfurolobus ambivalens}	32.1	53.2	468	
MJ0511	1019410	1020075	deoxyuridylate hydroxymethylase {Methanobacterium thermoautotrophicum}	39.4	59.6	999	1/05
MJ0937	606252	604921	glycinamide ribonucleotide synthetase {Homo sapiens}	37.1	55.0	1332	97/14

Purine ribonucleotide biosynthesis	icleotide bio	synthesis				
MJ0929	613484	612135	adenylosuccinate lyase {Bacillus subtilis}	42.6	67.4	1350
MJ0561	976592	975741	adenylosuccinate synthetase {Haemophilus influenzae}	41.0	59.1	852
MJ1575	1586386	1585823	GMP synthetase {Borrelia burgdorferi}	41.4	66.7	564
MJ1131	399509	400264	GMP synthetase {Haemophilus influenzae}	52.0	72.3	756
MJ1616	1545605	1544271	inosine-5'-monophosphate dehydrogenase {Pyrococcus furiosus}	61.8	80.4	1335
MJ1265	262116	262436	nucleoside diphosphate kinase (Haemophilus influenzae)	51.5	68.3	321
MJ0616	925486	925941	phosphoribosylaminoimidazole carboxylase {Methanobrevibacter smithii}	56.3	76.2	456
MJ1592	1572482	1572009	phosphoribosylaminoimidazolesuccinocarboxamide synthase {Bacillus subtilis}	51.0	69.1	474
MJ0203	1277597	1276734	phosphoribosylformylglycinamidine cyclo-ligase {Bacillus subtilis}	42.7	64.4	864
MJ1648	1507541	1507071	phosphoribosylformylglycinamidine synthase I {Bacillus subtilis}	52.9	71.5	471
MJ1264	262585	264714	phosphoribosylformylglycinamidine synthase II {Bacillus subtilis}	43.3	65.1	2130
MJ1486	13611	14633	phosphoribosylglycinamide formyltransferase 2 {Bacillus subtilis}	61.8	75.9	1023
MJ1366	155580	156431	ribose-phosphate pyrophosphokinase (Haemophilus influenzae)	34.1	55.5	852

Pyrimidine ri	bonucleotide	Pyrimidine ribonucleotide biosynthesis				,	
MJ1581	1581578	1580661	aspartate carbamoyltransferase catalytic chain {Escherichia coli}	50.0	7.07	816	
MJ1406	104548	104183	aspartate carbamoyltransferase regulatory chain {Escherichia coli}	39.1	65.1	366	
MJ1378	145461	144037	carbamoyl-phosphate synthase, large chain {Bacillus subtilis}	59.7	80.0	1425	
MJ1381	143097	141328	carbamoyl-phosphate synthase, pyrimidine-specific, large subunit {Bacillus caldolyticus}	54.7	75.7	1770	
MJ1019	523003	522041	carbamoyl-phosphate synthase, small chain {Bacillus subtilis}	49.6	69.1	963	
MJ1174	358774	360279	CTP synthase {Haemophilus influenzae}	56.7	74.0	1506	
MJ0656	888785	888306	cytidylate kinase {Bacillus subtilis}	31.9	59.5	480	
MJ1490	8032	6764	dihydroorotase {Bacillus caldolyticus}	34.5	56.3	1269	-9
MJ0654	889442	890284	dihydroorotase dehydrogenase (Bacillus subtilis)	43.1	9.99	843	<u>×</u> -
MJ0293	1196756	1196196	thymidylate kinase {Schizosaccharomyces pombe}	31.2	58.7	561	
MJ1109	421875	421348	uridine 5'-monophosphate synthase {Dictyostelium discoideum}	38.4	64.6	528	
MJ1259	271220	270543	uridylate kinase {Haemophilus influenzae}	27.5	48.7	829	

-92-

Salvage of nucleosides and nucleotides	cleosides an	d nucleotides					, <u>, , , , , , , , , , , , , , , , , , </u>
MJ1459	43987	42413	adenine deaminase {Bacillus subtilis}	35.0	61.7	1575	/U /83
MJ1655	1499440	1499075	adenine phosphoribosyltransferase {Haemophilus influenzae}	35.8	5.09	366	
MJ0060	1412894	1412139	methylthioadenosine phosphorylase {Homo sapiens}	413	63.2	756	
MJ0667	879550	878150	thymidine phosphorylase {Mycoplasma genitalium}	30.5	2.02	1401	
Sugar-nucleotide biosynthesis and conversions	tide biosyntl	nesis and conv	rersions				
MJ1101	430386	429235	glucose-1-phosphate thymidylyltransferase {Streptomyces griseus}	32.0	26.0	1163	
MJ1334	188314	189084	UDP-glucose pyrophosphorylase {Mycoplasma genitalium}	42.7	20.00	771	
Regulatory functions	nctions				2:5	1///	
MJ0800	748410	747352	activator of (R)-2-hydroxyglutaryl-CoA dehydratase {Acidaminococcus fermentans}	31.8	51.2	1059	
MJ0004	1466944	1466255	activator of (R)-2-hydroxyglutaryl-CoA dehydratase {Acidaminococcus fermentans}	39.0	61.1	069	93-
MJ1344	180975	181229	nitrogen regulatory protein P-II {Haemophilus influenzae}	5,95	73.0	356	
MJ0059	1413301	1413047	nitrogen regulatory protein P-II {Haemophilus influenzae}	3,95	75.3	250	
MJ0300	1188832	1188194	putative transcriptional regulator {Bacillus subtilis}	27.8	50.3	620	
MJ0151	1325766	1325323	putative transcriptional regulator {Pyrococcus furiosus}	51.0	65.0	444	
MJ0723	815573	815190	putative transcriptional regulator {Pyrococcus furiosus}	512	2.2	387	CT/U
				1::	5.7	100	_

Degradation of DNA MJ1434 68536 MJ0613 927393 MJ1439 65786 DNA replication, restriction MJ1029 510633 MJ0104 1373055	68048 928424 65208 0n, modification	Degradation of DNAMJ14346853668048endonuclease III {Bacillus subtilis}MJ0613927393928424endonuclease III {Bacillus subtilis}MJ14396578665208thermonuclease precursor {Staphylococcus hyicus}DNA replication, restriction, modification, recombination, and repair	28.7		9
MJ1434 68536 MJ0613 927393 MJ1439 65786 DNA replication, restriction MJ1029 510633 MJ0104 1373055	68048 928424 65208 0n, modificati	endonuclease III {Bacillus subtilis} endonuclease III {Bacillus subtilis} thermonuclease precursor {Staphylococcus hyicus} on, recombination, and repair	28.7	-	
MJ0613 927393 MJ1439 65786 DNA replication, restriction MJ1029 510633 MJ0104 1373055	928424 65208 on, modification 509875	endonuclease III {Bacillus subtilis} thermonuclease precursor {Staphylococcus hyicus} on, recombination, and repair	,	58.1	489
MJ1439 65786 DNA replication, restriction MJ1029 510633 MJ0104 1373055	65208 nr, modificatio 509875	thermonuclease precursor {Staphylococcus hyicus} on, recombination, and repair	41.3	66.3	1032
DNA replication, restriction MJ1029 \$10633 MJ0104 1373055	n, modification 509875	on, recombination, and repair	36.8	64.1	579
	509875				
		dimethyladenosine transferase {Bacillus subtilis}	38.4	58.8	759
	1371130	DNA helicase, putative (Homo sapiens)	35.2	56.7	1926
MJ0171 1297428	1299053	DNA ligase {Desulfurolobus ambivalens}	35.8	62.4	1626
MJ0869 680404	679445	DNA repair protein {Saccharomyces cerevisiae}	44.6	62.2	096
MJ1444 58945	58052	DNA repair protein RAD2 {Homo sapiens}	37.3	63.5	894
MJ0254 1232179	1231757	DNA repair protein RAD51 {Homo sapiens}	32.5	58.4	423
MJ0961 579580	577424	DNA replication initiator protein {Xenopus laevis}	28.1	40.0	2157
MJ1652 1503610	1501559	DNA topoisomerase I {Mycoplasma genitalium}	34.0	55.0	2052
MJ0885 656470	096099	DNA-dependent DNA polymerase family B {Pyrococcus sp.}	47.3	68.0	4491
MJ1529 1630880	1630413	methylated DNA protein cysteine methyltransferase {Haemophilus influenzae}	35.9	66.4	468
MJ1498 1548	715	modification methylase (Haemophilus parainfluenzae)	31.6	52.2	834
MJ0598 942522	941860	modification methylase {Haemophilus influenzae}	32.4	53.8	663
MJ1328 193775	192987	modification methylase {Haemophilus influenzae}	31.1	56.1	789

W	98/	/0 7 8	30											95		į					PC"	T/US	597 /:	149
	789	1075	1035	852	507	1887	624	157	/70	5424	1074	1683		540	699	2007	4839	639	1673	2477	34//	2115	3125	
	56.2	26.7	20.7	73.0	63.9	54.7	54.3	1 33	00.1	64.6	49.2	54 4		61.1	59.2	15	4.70	64.6	61.4	523	77.7	52.2	59.9	
	34.7	30.7	22.1	54.5	40.3	31.9	31.5	187	1.0.1	45.2	32.5	32.9		37.3	29.3	9 1 5	11.0	45.2	39.7	311		29.5	36.2	, 0,
		modification methylase {Desulfovibrio desulfuricans}	modification methylase (Methanobacterium therms. 6	mutator mut' protein {Fecharichia cali)	nrohahle ATD denendant Li	From the first and the first a	proliferating-cell nuclear antigen {Saccharomyces cerevisiae}	proliferating-cell nucleolar antigen, 120 kDa {Homo sapiens}	replication factor C {Homo sapiens}	replication factor Clares culturit (11		restriction modification enzyme, subunit M1 {Mycoplasma pulmonis}	restriction modification enzyme, subunit M1 (Myconlame)	restriction modification	test retion modification system S subunit {Spiroplasma citri}	reverse gyrase {Sulfolobus acidocaldarius}	ribonuclease HII (rnhB) {Escherichia coli}	type I restriction anyma ECOD104/0 134	Franciscus enjante ECOR124/3 I M protein {Haemophilus influenzae}	type I restriction enzyme {Haemophilus influenzae}	type I restriction enzyme {Haemonhilus influenzae}	type restriction anatimo (11	or control on your {nach opnilus influenzae}	Type I restriction enzyme CfrI, specificity subunit {Citrohacter freundi:
075300	COCCIA	327248	968555	384248	598916	1727277	776/671	1445224	84727	696099	210102	201016	1345548	1347179		1648742	1341939	54271	1253047	1407661	315828	49456	1670403	1028493
974571	73000	326214	555045	383742	600802	1237045	1444500	1444298	79304	662042	308/120	024000	1345009	1346511	1 (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1653580	1341301	55944	1340371	1/6/161	313714	52581	1620127	ᅥ
MJ0563	M11200	00716M	MJ0985	MJ1149	MJ0942	MJ0247	MIO026	0700711	MJ1422	MJ0884	MJ1220		MJ0132	MJ0130	Milera	71C1CIA	MJ0135	MJECL42	MJ0124		MJ1214	MJECL40	MJ1531	

MJ1218	310547	311776	type I restriction-modification enzyme, S subunit {Escherichia coli}	29.7	49.7	1230
MJ0984	556397	555909	type II restriction enzyme {Methanobacterium thermoformicicum}	45.9	67.2	489
MJ0600	940932	940315	type II restriction enzyme DPNII {Streptococcus pneumoniae}	46.0	67.4	618
			Transcription			
DNA-dependent RNA polymerases	nt RNA poly	ymerases				
MJ1042	497715	493732	DNA-dependent RNA polymerase, subunit A' {Methanococcus vannielii}	74.5	88.1	3984
MJ1043	493546	491078	DNA-dependent RNA polymerase, subunit A" {Methanococcus vannielii}	66.7	83.5	2469
MJ1041	499305	497866	DNA-dependent RNA polymerase, subunit B' {Methanococcus vannielii}	76.3	91.3	1440
MJ1040	501124	499862	DNA-dependent RNA polymerase, subunit B" {Methanococcus vannielii}	72.7	87.4	1263
MJ0192	1283621	1283148	DNA-dependent RNA polymerase, subunit D {Arabidopsis thaliana}	39.5	58.6	474
MJ0397	1113901	1114371	DNA-dependent RNA polymerase, subunit E' {Sulfolobus acidocaldarius}	47.9	70.8	471
MJ0396	1114384	1114560	DNA-dependent RNA polymerase, subunit E" {Sulfolobus acidocaldarius}	35.9	62.3	177
MJ1039	501599	501366	DNA-dependent RNA polymerase, subunit H {Methanococcus vannielii}	49.4	78.7	234
MJ1390	134111	134350	DNA-dependent RNA polymerase, subunit I {Sulfolobus acidocaldarius}	-0.9	-0.9	240
MJ0197	1281417	1281247	DNA-dependent RNA polymerase, subunit K {Haloarcula marismortui}	43.5	65.3	171
MJ0387	1119216	1119512	DNA-dependent RNA polymerase, subunit L {Sulfolobus acidocaldarius}	35.6	63.4	297
MJ0196	1281779	1281561	DNA-dependent RNA polymerase, subunit N {Haloarcula marismortui}	53.8	83.4	219

Transcription factors	n factors					
MJ0941	601867	600923	putative transcription initiation factor IIIC (Sechannes)			
MJ1045	490363	489848	nutative franceriation to	20.1	44.1	945
			vannielii)	47.9	73.7	516
MJ0372	1134509	1134123	putative transcription termination-antitermination factor and			
MJ0507	1024170	1024631	TATA-binding transcription initiation of the contraction of the contraction initiation of the contraction of	38.6	63.8	387
MJ0782	766586	768507	the state of the s	51.4	74.0	462
M11148	304227	7/200	uanscription initiation factor IIB {Pyrococcus woesei}	63.8	77.6	2007
0+11614	384277	384567	transcription-associated protein, ('TFIIS') {Thermococcus celer}	56.4	0 69	201
KNA processing	ing	i				177
MJ0697	849814	849125	fibrillarin-like nre-rRNA processing and it is a second			
Translation			Free Processing Protein (Wetnanococcus vannielii)	75.3	88.3	069
MIO160	130001					
0010014	1308036	1309265	PET112 protein {Saccharomyces cerevisiae}	13.3		
Amino acyl tRNA synthetases	NA synthet:	ases		32.3	53.7	1230
MJ0564	971657	974149	alanyl-fRNA cynthotoco (alano) (17			ì
MJ0237	1244137	1242641		28.0	53.1	2493
100000	1617721	1407471	arginyl-tRNA synthetase {Mycobacterium leprae}	31.3	52.7	1497
MJ1555	1605935	1604679	aspartyl-tRNA synthetase {Pyrococcus sp.}			161
MJ1377	145796	147325	glutamyi-tRNA synthetase (Methanokastasina 41	2/.8	75.6	1257
MJ0228	1253254	1251524	glvcvl-tRNA synthetics (Sch.	51.7	73.6	1530
MJ1000	243634	547306	Company (Schizosaccharomyces pombe)	45.8	65.2	1731
	+50515	045290	nistidyl-tRNA synthetase {Streptococcus equisimilis}	35.5	56.3	1239
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

MJ0947	591914	594817	isoleucyl-tRNA synthetase {Methanobacterium thermoautotrophicum}	52.1	70.0	2904
MJ0633	912642	910015	leucyl-tRNA synthetase {Saccharomyces cerevisiae}	34.4	54.9	2628
MJ1263	266697	264745	methionyl-tRNA synthetase {Haemophilus influenzae}	35.6	56.0	1953
MJ0487	1041343	1039994	phenylalanyl-tRNA synthetase, subunit alpha {Saccharomyces cerevisiae}	41.0	64.0	1350
MJ1108	423555	425198	phenylalanyl-tRNA synthetase, subunit beta {Saccharomyces cerevisiae}	31.6	55.4	1644
MJ1238	287985	289172	prolyl-tRNA synthetase {Homo sapiens}	39.3	59.5	1188
MJ1197	332116	330257	threonyl-tRNA synthetase {Synechocystis sp.}	29.1	52.1	1860
MJ1415	96418	698369	tryptophanyl-tRNA synthetase {Schizosaccharomyces pombe}	30.5	55.3	1050
MJ0389	1118380	1117616	tyrosyl-tRNA synthetase {Homo sapiens}	39.9	63.7	765
MJ1007	536642	534186	valy1-tRNA synthetase {Bacillus stearothermophilus}	36.1	9.99	2457
Degradation of proteins, peptides, and glycopepti	f proteins, p	eptides, and g	lycopeptides			-98
MJ1176	356300	357370	ATP-dependent 26S protease regulatory subunit 4 {Homo sapiens}	51.0	74.1	1071
MJ1494	4302	5123	ATP-dependent 26S protease regulatory subunit 8 {Methanobacterium thermoautotrophicum}	58.6	78.2	822
MJ1417	93716	91932	ATP-dependent protease La {Bacillus brevis}	32.8	54.3	1785
MJ0090	1387867	1386755	collagenase {Porphyromonas gingivalis}	32.6	55.2	1113
MJ1130	400455	401969	O-sialoglycoprotein endopeptidase {Saccharomyces cerevisiae}	50.6	6.79	1515
MJ0651	88168	892842	protease IV {Haemophilus influenzae}	35.0	56.2	855
MJ0591	947601	946861	proteasome, subunit alpha {Methanosarcina thermophila}	57.5	78.8	741

289440	289967	proteasome, subunit beta {Methanosarcina thermophila}	47.5	68.2	528	
	743364	xaa-pro dipeptidase {Lactobacillus delbrueckii}	36.1	65.2	984	
	546635	Zn protease {Haemophilus influenzae}	33.9	55.0	1353	
	734793	deoxyhypusine synthase {Homo sapiens}	50.0	707	000	
	254653	diphthine synthase {Saccharomyces cerevisiae}	40.7	5 19	779	
1296723	1297175	L-isoaspartyl protein carboxyl methyltransferase {Escherichia coli}	47.6	50 4	153	
192979	192098	methionine aminopeptidase {Saccharomyces cerevisiae}	26.7	1.55	667	
1630123	1629764	N-terminal acetyltransferase complex, subunit ARD1 {Homo sapiens}	30.7	1.00	360	
1573833	1573072	selenium donor protein {Homo sapiens}	34.3	57.1	260	
	Ribosomal proteins: synthesis and modification	lification	0.1.0	11.76	70/	
1022576	1023502	acidic ribosomal protein P0 (L10E) {Methanococcus vannielii}	63.7	87 1	027	, , -
1240163	1240228	ribosomal protein HG12 {Catus (cat)}	63.7	91.0	176	
325110	325460	ribosomal protein HS6-type {Haloarcula marismortui}	47.0	71.4	351	
1021912	1022460	ribosomal protein L1 {Methanococcus vannielii}	64.5	80.3	540	
1133926	1133540	ribosomal protein L11 {Sulfolobus solfataricus}	27.5	2.00	200	
1023632	1023937	ribosomal protein L12 {Methanococcus vannielii}	17.6	4.7/	38/	
1282568	1282260	ribosomal protein L13 {Haloarcula marismortui}	44.0	66.1	300	
1058694	1058452	ribosomal protein L14 {Methanococcus vannielii}	78.8	92.4	243	
			0.0	74.3	C+7	

-99-

WO 98/07830 PCT/US97/14900

MJ0657	888216	887977	ribosomal protein L14B {Saccharomyces cerevisiae}	36.4	59.8	240
MJ0477	1052625	1052302	ribosomal protein L15 {Methanococcus vannielii}	62.7	79.5	324
MJ0983	556982	557290	ribosomal protein L15B {Thermoplasma acidophilum}	62.3	78.6	309
MJ0474	1054523	1053939	ribosomal protein L18 (Methanococcus vannielii)	73.3	84.3	585
MJ0473	1054978	1054559	ribosomal protein L19 {Methanococcus vannielii}	67.0	86.4	420
MJ0179	1291786	1291052	ribosomal protein L2 {Methanococcus vannielii}	74.0	87.0	735
MJ0040	1431958	1432260	ribosomal protein L21 {Haloarcula marismortui}	54.5	62.3	303
MJ0460	1061493	1061089	ribosomal protein L22 {Haloarcula marismortui}	40.7	61.7	405
MJ0178	1292097	1291840	ribosomal protein L23 {Methanococcus vannielii}	8.69	616	258
MJ0467	1058340	1058062	ribosomal protein L24 {Methanococcus vannielii}	70.5	83.0	279
MJ1201	325929	326078	ribosomal protein L24E (Haloarcula marismortui)	54.6	66.7	150
MJ0462	1060388	1060212	ribosomal protein L29 {Halobacterium halobium}	51.0	6.69	177
MJ0193	1283076	1282705	ribosomal protein L29E {Haloarcula marismortui}	48.7	68.7	372
MJ0176	1293794	1292934	ribosomal protein L3 {Haloarcula marismortui}	45.2	63.9	861
MJ1044	490704	490399	ribosomal protein L30 {Methanococcus vannielii}	63.9	84.1	306
MJ0049	1421907	1422152	ribosomal protein L31 {Nicotiana glutinosa}	40.9	66.2	246
MJ0472	1055464	1055063	ribosomal protein L32 {Methanococcus vannielii}	58.0	77.4	402
MJ0655	889197	888931	ribosomal protein L34 {Aedes albopictus}	36.8	58.3	267
MJ0098	1380525	1380686	ribosomal protein L37 {Leishmania infantum,}	50.0	67.4	162
						_

								-	ı			-/	01-	-				, 	_			77/14
	376	0/7	756	108	282	156	537		546	393	198	303	222		300	450	501	351	1.45	14/	450	354
	58.7	70.7	66.3	2.99	58.1	70.0	84.5	6	\$7.5	9.88	66.7	91.0	0.08		0.96	71.0	48.2	82.4	0 00	60.9	68.5	73.3
	44.6		49.4	57.6	38.8	52.0	72.5	3	00.5	/0.3	38.9	67.0	67.2		87.0	49.4	21.7	71.6	65.4	4.00	42.3	56.9
	ribosomal protein L37a {Homo sapiens}	ribosomal protein L4 (human) {Haloarcula marismortuit	ribosomal protein I 40 (Saccharomyon)	ribosomal meddin 1 44 (11.1	i. c	Hoosomal protein L46 (Sulfolobus solfataricus,)	ribosomal protein L5 (Methanococcus vannielii)	ribosomal protein L6 {Methanococcus vannielii}	ribosomal protein L7 {Methanococcus vannielii}	ribosomal protein LX {Sulfolobus acidocaldarius)	ribosomal protein C10 (B.		ribosomal protein S11 {Haloarcula marismortui}	ribosomal protein S12 {Methanococcus vannielii}	ribosomal protein S13 (Brugia nahangi)	ribosomal protein C15 A (D.	ile committee of the second state of the second sec	I	ribosomal protein S17B (Saccharomyces cerevisiae)	ribosomal protein S18 {Arabidopsis thaliana}	ribosomal protein S19 (Haloarcula mariemostii)	
045703	942683	1292134	838229	1236448	855150	001000	1056723	1055526	1052745	944473	1173218	1,00,11,0	1263/33	489260	1434352	26054	1058883	000001	9688571	1284771	1290508	854046
076060	743730	1292889	838122	1236729	854995	1057250	667/501	1056071	1053137	944670	1172916	1782055	0020071	489559	1434801	26554	1059233	100000	1736/20	1285220	1290861	853669
MI0593	COCONI	MJ0177	MJ0707	MJ0249	MJ0689	M10460	14100403	MJ0471	MJ0476	MJ0595	MJ0322	MI0191		MJ1046	MJ0036	MJ1474	MJ0465	MI0245	C+70011	MJ0189	MJ0180	MJ0692

1115366	ribosomal protein S24 (Haloarcula marismortui)		64.4	303
ribosom	somal protein S27 {Saccharomyces cerevisiae}		53.8	186
ribos	ribosomal protein S27A {Caenorhabditis elegans}	\neg	8.89	180
ribosom	omal protein S3 {Haloarcula marismortui}		72.1	624
ribosom	omal protein S33 {Kluyveromyces lactis}		81.1	234
ribosom	omal protein S3a {Catharanthus roseus}		52.1	492
ribosom	mal protein S4 {Sulfolobus acidocaldarius}		68.4	199
ribosom	mal protein S4E {Methanococcus vannielii}		84.5	618
ribosom	mal protein S5 {Methanococcus vannielii}		9.88	603
ribosom	nal protein S6 {Homo sapiens}		58.0	393
ribosom	mal protein S6 modification protein {Haemophilus influenzae}		57.3	873
ribosom	mal protein S6 modification protein II {Haemophilus influenzae}		47.4	741
riboson	omal protein S7 {Methanococcus vannielii}		83.6	420
riboson	omal protein S8 {Methanococcus vannielii}		89.2	333
ribosom	omal protein S8E (Haloarcula marismortui)		69.7	387
ribos	ribosomal protein S9 {Haloarcula marismortui}		75.0	279

tRNA modification	cation					
MJ0946	595006	596040	N2,N2-dimethylguanosine tRNA methyltransferace (Society Constraints)	,		
MJ1675	1478684	1477755	Dseudouridy are conthace 1 / Hosmontill. : G	31.6	56.0	1035
MI0436	1001117	0000	free of including the facility of the facility	33.5	57.2	930
OCHOCIAI	1081110	1082732	queuine tRNA ribosyltransferase {Escherichia coli}	30.4	47.6	1617
Translation factors	actors	1			2	/ 101
MJ0829	723534	722260	peptide chain release factor, eRF, subunit 1 (Xenonus laevie)	33.0		
MJ1505	1659133	1661085	mitative ATD domand at Data 1 1:	33.0	57.3	1275
			putative Air-dependent KNA helicase, eIF-4A family {Saccharomyces cerevisiae}	30.8	51.9	1953
MJ1574	1587062	1588927	putative ATP-dependent RNA helicase el E 11 for il. (12. il.			
MJ0669	876636	767778		33.1	56.0	1866
	000/0	/ 60/ / 0	putative AIP-dependent RNA helicase, eIF-4A family {Bacillus subtilis}	44.5	65.8	1002
MJ0495	1035432	1034044	putative translation factor, EF-TU/I alpha family {Thermus aquations}	37.0		2001
MJ0262	1225060	7371771	{challenge aduations}	30.9	55.9	1389
	1223000	1221653	putative translation initiation factor, FUN12/bIF-2 family {Saccharomyces cerevisiae}	39.3	61.5	3408
MJ0324	1171724	1172830	translation elongation factor FE-1 alaba (Math.			
MJ1048	488471	486336	de la	78.9	8.06	1107
MIDAAE		OCCORT	uansiation elongation factor, EF-2 {Methanococcus vannielii}	74.8	88.5	2136
IVI20442	10/3262	1073483	translation initiation factor, eIF-1A {Thermoplasma acidophilum}	8 62	20%	,,,
MJ0117	1357516	1358196	translation initiation factor, eIF-2, subunit alpha (Saccharomics)		CO/ ;	777
MJ0097	1380885	1381313	translation initiation factor off 2 and 11 (2)	37.7	26.5	681
MJ1261	269396	768164	total time and a second to the	32.1	60.4	429
MIDAEA	Τ.	LOTO	danstation initiation factor, elf-2, subunit gamma {Homo sapiens}	52.6	71.9	1233
W100434	1066217	1067065	translation initiation factor, eIF-2B, subunit alpha {Saccharomyces cerevisiae}	37.9	56.4	840
			1			1

-103-

MJ0122	1353264	1354127	translation initiation factor, eIF-2B, subunit delta {Mus musculus}	29.4	54.6	864	98/0
MJ1228	300895	301236	translation initiation factor, eIF-5a {Sulfolobus acidocaldarius}	50.0	2.69	342	7830
Transport and binding proteins	binding pr	oteins					
MJ0719	818577	820289	ABC transporter ATP-binding protein {Saccharomyces cerevisiae}	49.6	6.99	1713	
MJ1023	918606	517821	ABC transporter ATP-binding protein {Bacillus firmus}	49.2	72.4	786	
MJ1572	1590114	1589518	ABC transporter ATP-binding protein {Mycoplasma genitalium}	50.0	87.5	597	
MJ0035	1435236	1435829	ABC transporter subunit {Cyanelle Cyanophora}	33.9	58.1	594	
MJ1508	1656015	1655446	ABC transporter, probable ATP-binding subunit {Haemophilus influenzae}	45.7	68.3	570	
MJ1332	189987	191117	GTP-binding protein {Saccharomyces cerevisiae}	38.7	8.69	1131	-,
MJ1326	196392	195292	GTP-binding protein {Schizosaccharomyces pombe}	51.4	71.5	1101	104-
MJ1408	103449	102430	GTP-binding protein, GTP1/OBG-family {Saccharomyces cerevisiae}	30.5	58.4	1020	•
MJ1464	39865	38858	hypothetical GTP-binding protein (SP:P40010) {Saccharomyces cerevisiae}	32.0	55.5	1008	
MJ1033	507274	506324	magnesium and cobalt transport protein {Haemophilus influenzae}	42.2	57.9	951	
MJ0091	1386551	1385751	Na+/Ca+ exchanger protein {Escherichia coli}	32.3	58.6	801	
MJ0283	1204330	1203563	nucleotide-binding protein (Homo sapiens)	47.5	0.89	768	

Amino acids, peptides and amines	peptides an	d amines				
MJ0609	933328	934587	amino acid transporter {Arabidopsis thaliana}	21.9	48.7	1260
MJ1343	181359	182519	ammonium transport protein AMT1 {Arabidopsis thaliana}	35.6	53.3	1161
MJ0058	1413598	1414770	ammonium transporter {Escherichia coli}	34.2	500	1173
MJ1269	258901	257993	branched-chain amino acid transport protein livH {Escherichia coli}	30.8	54.6	000
MJ1266	261404	260577	branched-chain amino acid transport protein livJ {Escherichia coli}	28.8	552	878
MJ1270	257896	256934	branched-chain amino acid transport protein livM {Escherichia coli}	28.7	2000	870
MJ1196	332430	333311	cationic amino acid transporter MCAT-2 {Mus musculus}	24.6	20.20	887
MJ0304	1185908	1186333	ferripyochelin binding protein {Pseudomonas aeruginosa}	55.6	747	476
MJ0796	752786	752118	glutamine transport ATP-binding protein Q {Escherichia coli}	47.9	67.2	074
MJ1267	260465	259707	high-affinity branched-chain amino acid transport ATP-binding protein {Pseudomonas aeruginosa}	34.2	8.09	759
MJ1268	259458	258973	high-affinity branched-chain amino acid transport ATP-binding protein {Salmonella typhimurium}	40.4	9.89	486
Anions						
MJ0412	1099862	1100608	nitrate transport ATP-binding protein {Synechococcus sp}	44.6	107	777
MJ0413	1099077	9286601	nitrate transport permease protein {Synechococcus sp}	34.2	50.4	750
MJ1012	529685	530431	phosphate transport system ATP-binding protein {Escherichia coli}	609	2002	747
MJ1013	528941	529642	phosphate transport system permease protein A {Haemophilus influenzae}	30 6	60.5	707
MJ1014	528397	528810	phosphate transport system permease protein C {Haemophilus influenzae}	40.0	66.5	414

-105-

MJ1009	532458	533165	phosphate transport system regulatory protein {Escherichia coli}	28.5	54.6	208	
MJ1015	526871	527698	phosphate-binding protein {Xanthomonas oryzae}	45.8	60.2	828	
Carbohydrates, organic alcohols, and acids	s, organic a	lcohols, and a	ids				
MJ0576	960439	959399	malic acid transport protein {Schizosaccharomyces pombe}	23.8	47.9	1041	
MJ0762	786703	787524	malic acid transport protein {Schizosaccharomyces pombe}	26.5	49.3	822	
MJ0121	1354728	1355291	SN-glycerol-3-phosphate transport ATP-binding protein {Escherichia coli}	33.4	51.7	564	
MJ1319	206861	205926	sodium-dependent noradrenaline transporter {Haemophilus influenzae}	37.8	61.0	936	
Cations							
MJ1088	444480	445223	cobalt transport ATP-binding protein O {Salmonella typhimurium}	46.1	9.99	744	
MJ1090	443372	443527	cobalt transport protein N {Salmonella typhimurium}	59.1	9.62	156	/
MJ1089	443778	444374	cobalt transport protein Q {Salmonella typhimurium}	28.9	55.6	597	06-
MJ0089	1388820	1388059	ferric enterobactin transport ATP-binding protein {Escherichia coli}	33.1	59.6	762	
MJ0873	674824	674123	ferric enterobactin transport ATP-binding protein {Escherichia coli}	31.5	60.3	702	
MJ0566	967842	28696	ferrous iron transport protein B {Escherichia coli}	35.8	61.2	2016	
MJ0877	670239	670442	hemin permease {Haemophilus influenzae}	27.9	62.3	204	
MJ0087	1390284	1389385	hemin permease {Yersinia enterocolitica}	40.6	67.7	006	
MJ0085	1392668	1391613	iron transport system binding protein {Bacillus subtilis}	32.9	53.3	1056	
MJ0876	119019	671498	iron(III) dicitrate transport system permease protein {Escherichia coli}	30.8	52.8	822	
MJ1441	64080	60403	magnesium chelatase subunit {Arabidopsis thaliana}	35.3	57.3	3678	

MJ0911	628932	629972	magnesium-chelatase subunit {Euglena gracilis}				Г
MJ1275	253661	252597	NA(+)/H(+) antinorter / Friends (Line)	54.9	73.4	1041	
MI0672	872740	074775	(Truchord (Truchord III. ac)	29.8	59.9	1065	
	04/6/0	0/4000	Na+ transporter {Haemophilus influenzae}	39.3	63.1	918	Т-
MJ1231	297233	298873	oxaloacetate decarboxylase, alpha subunit {Salmonella tynhimurium}			01/	
MJ1357	164247	165065	Diffative notaceium chonnel	22.0	68.7	1641	-1
MI1367	154660	155550	remove poussium channel protein {Bacillus cereus}	42.9	2.99	819	
	100461	133339	sultate permease (cysA) {Synechococcus sp}	38.5	64.5	891	1 -
MJ 1368	153995	154666	sulfate/thiosulfate transport protein {Escherichia coli}	0.00			-
MJ1485	16909	15713	TRK system notoscium	50.9	59.4	672	
M11105	300,00		the system potassium uptake protein {Escherichia coli}	29.5	58.5	1197	
COLLETA	470/07	427217	TRK system potassium uptake protein A {Methanosarcina mazei}	,0,			
Other				39.3	5/.6	516	
M11142	200044	20000					10
7111611	390044	389885	arsenical pump-driving ATPase {Escherichia coli}	24.7	3		7-
MJ0822	727897	729522	ATPase, vanadate-senstive (Methanoscon, 11.2)	34.7	9.55	960	
MI0719	00000		(incuration octus voltae)	48.1	0.69	1626	
01/00/10	820399	821523	chromate resistance protein A {Alcaligenes eutrophus}	3,5			
MJ1226	304219	301988	H+-transporting A T Pase { A rahidone is the line }	6//2	52.4	1125	
MJ1560	1600958	1,601074		45.1	63.7	2232	
	٥٥٥٥٥٥١	10017/4	quinolone resistance nor A protein protein {Staphylococcus aureus}	28.8	1 13	1017	

Villet categories	157333	156.458	nharomona chutdown protain (Entarococous faaralis)	31.2	577	876
0001011	SSISI					
MJECL24	28069	28845	SOJ protein {Bacillus subtilis}	34.0	62.1	776
Drug and analog sensitivity	og sensitivit	ý				
MJ1538	1621434	1620691	K. lactis toxin sensitivity protein KTI12 {Saccharomyces cerevisiae}	28.4	48.8	744
MJ0102	1375563	1375859	phenylacrylic acid decarboxylase {Saccharomyces cerevisiae}	50.0	74.0	297
Phage-related functions and prophages	functions ar	nd prophages				
MJ0630	915023	914598	sodium-dependent phosphate transporter {Cricetulus griseus}	32.6	8.09	426
Transposon-related functions	lated functi	ons				
MJ0367	1138754	1138080	integrase {Weeksella zoohelcum}	30.9	54.4	675
MJ0017	1455555	1454946	transposase {Bacillus thuringiensis}	29.5	55.0	610
Other					·	
MJ1064	466505	467095	acetyltransferase {Escherichia coli}	47.0	62.4	591
MJ1612	1549430	1548297	BcpC phosphonopyruvate decarboxylase {Streptomyces hygroscopicus}	31.1	48.9	1134
MJ0677	868213	869160	ethylene-inducible protein homolog {Hevea brasiliensis}	68.3	81.0	948
MJ0534	1003199	1002072	flavoprotein {Methanobacterium thermoautotrophicum}	34.6	57.2	1128
MJ0748	797504	798673	flavoprotein {Methanobacterium thermoautotrophicum}	67.0	82.6	1170
MJ0256	1230191	1229760	fom2 phosphonopyruvate decarboxylase {Streptomyces wedmorensis}	36.7	58.5	432
MJ1682	1472535	1473320	heat shock protein X {Haemophilus influenzae}	30.4	55.5	786

682367 HIT protein, member of the HIT-family {Saccharomyces cerevisiae}
1195817 large helicase related protein, LHR {Escherichia coli}
1459497 phosphonopyruvate decarboxylase {Streptomyces hygroscopicus}
806439 rubrerythrin {Clostridium perfringens}
977490 surE survival protein {Escherichia coli}
430489 urease operon protein {Mycobacterium leprae}
991100 Wilm's tumor suppressor homolog {Arabidopsis thaliana}
785549 [6Fe-6S] prismane-containing protein {Desulfovibrio desulfuricans}
1062518 hypothetical protein {Sulfolobus acidocaldarius}
1048250 hypothetical protein {Saccharomyces cerevisiae}
621357 hypothetical protein {Mycoplasma genitalium}
1075348 hypothetical protein {Saccharomyces cerevisiae}
1330962 hypothetical protein {Methanobacterium thermoautotrophicum}
1427241 hypothetical protein (GP:D38561_6) {Streptomyces wedmorensis}
681000 hypothetical protein (GP:D63999_31) {Synechocystis sp.}
1663714 hypothetical protein (GP:D64001_24) {Synechocystis sp.}
402382 hypothetical protein (GP:D64001_53) {Synechocystis sp.}
1416176 hypothetical protein (GP:D64003_36) {Synechocystis sp.}

MJ1335	187757	187593	hypothetical protein (GP:D64004_11) {Synechocystis sp.}	46.2	63.5	165
MJ0640	902502	903458	hypothetical protein (GP:D64005_53) {Synechocystis sp.}	33.9	58.8	957
MJ1347	177726	177280	hypothetical protein (GP:D64006_36) {Synechocystis sp.}	32.1	58.6	447
MJ0392	1116428	1115556	hypothetical protein (GP:D64006_95) {Synechocystis sp.}	29.1	54.3	873
MJ0590	950234	948222	hypothetical protein (GP:D64044_18) {Escherichia coli}	30.6	52.6	2013
MJ1178	355642	355956	hypothetical protein (GP:L47709_14) {Bacillus subtilis}	27.1	55.3	315
MJ0438	1080099	1079128	hypothetical protein (GP:L47838_15) {Bacillus subtilis}	29.6	55.8	972
MJ0644	898810	898223	hypothetical protein (GP:M18279_1) {Pseudomonas sp.}	28.3	53.4	588
MJ0828	723763	723668	hypothetical protein (GP:M35130_5) {M71467 M71468}	58.1	87.1	96
MJ1526	1632280	1632810	hypothetical protein (GP:M36534_1) {Methanobrevibacter smithii}	42.6	6.99	531
MJ0888	652964	653473	hypothetical protein (GP:U00011_3) {Mycobacterium leprae}	29.5	51.4	510
MJ0729	809665	809321	hypothetical protein (GP:U18744_1) {Bacillus firmus}	29.4	56.9	345
MJ0787	761402	760077	hypothetical protein (GP:U19363_11) {Methanobacterium thermoautotrophicum}	49.9	71.9	1326
MJ0693	852445	853059	hypothetical protein (GP:U19363_2) {Methanobacterium thermoautotrophicum}	42.8	61.9	615
MJ0489	1039414	1038686	hypothetical protein (GP:U19363_4) {Methanobacterium thermoautotrophicum}	41.3	57.5	729
MJ0446	1072662	1071784	hypothetical protein (GP:U19363_5) {Methanobacterium thermoautotrophicum}	29.8	50.7	879
MJ0076	1400741	1400403	hypothetical protein (GP:U19364_10) {Methanobacterium thermoautotrophicum}	25.3	56.1	339
MJ0034	1435995	1436921	hypothetical protein (GP:U19364_2) {Methanobacterium thermoautotrophicum}	23.9	49.7	927

277892	277392	hynothetical protein (CD-1110264 4) (Mothers 1				_
615694	994	hypothetical protein (GP:U19364 6) {Methanobacterium thermoautotronhicum}	37.0	61.0	501	
762923	923	hypothetical protein (GP:U19364_8) {Methanobacterium thermoautotrophicum}	57.5	2.1.5	1077	
795	799935	hypothetical protein (GP:U21086_2) {Methanobacterium thermoautotrophicum}	60.3	76.4	306	
38	380485	hypothetical protein (GP:U28377_114) {Escherichia coli}	40.0	63.7	1560	
∞	890359	hypothetical protein (GP:U31567_2) {Methanopyrus kandleri}	42.2	64.8	546	
\dashv	1004750	hypothetical protein (GP:U32666_1) {Methanosarcina barkeri}	39.3	59.5	1143	
 	871623	hypothetical protein (GP:X83963_2) {Thermococcus litoralis}	58.3	76.7	531	
	1608592	hypothetical protein (GP:X85250_3) {Pyrococcus furiosus}	48.5	0.89	393	
	835996	hypothetical protein (GP:X91006_2) {Pyrococcus sp.}	25.1	50.5	1200	
	1255389	hypothetical protein (GP:Z49569_1) {Saccharomyces cerevisiae}	39.0	9.09		-//
	24851	hypothetical protein (HI0380) {Haemophilus influenzae}	39.7	62.6		,
	1076125	hypothetical protein (HI0902) {Haemophilus influenzae}	29.2	51.1	735	
	150760	hypothetical protein (HI0920) {Haemophilus influenzae}	46.7	5 29	675	
	610298	hypothetical protein (MG372) {Mycoplasma genitalium}	34.9	59.0	1110	
	688532	hypothetical protein (MG423) {Mycoplasma genitalium}	33.0	53.0	1702	
	278609	hypothetical protein (PIR:B48653) {Lactococcus lactis}	32.5	47.2	623	
	1206147	hypothetical protein (PIR:S01072) {Desulfurococcus mobilis}	29.2	53.4	837	
1	1190600	E	62.1	76.6	981	
			1.	> .	701	

-///-

MJ1208	320842	319766	hypothetical protein (PIR:S21569) {Methanobacterium thermoautotrophicum}	55.4	74.8	1077	
MJ1533	1625982	1627727	hypothetical protein (PIR:S28724) {Methanococcus vannielii}	67.3	83.3	1746	,,,,,,
MJ0323	1172727	1172257	hypothetical protein (PIR:S38467) {Desulfurococcus mobilis}	60.7	71.7	471	
MJ1162	368773	369060	hypothetical protein (PIR:S41581) {Methanothermus fervidus}	48.3	6.79	288	
MJ0922	619284	619598	hypothetical protein (PIR:S41583) {Methanothermus fervidus}	48.6	73.4	315	
MJ0867	681124	682371	hypothetical protein (PIR:S49379) {Pseudomonas aeruginosa}	28.7	55.2	1248	
MJ0047	1423924	1424988	hypothetical protein (PIR:S51413) {Saccharomyces cerevisiae}	26.9	49.9	1065	
MJ1236	290570	292111	hypothetical protein (PIR:S51413) {Saccharomyces cerevisiae}	33.9	54.6	1542	
MJ0162	1306782	1305562	hypothetical protein (PIR:S51413) {Saccharomyces cerevisiae}	32.4	56.4	1221	
MJ0928	614493	614957	hypothetical protein (PIR:S51868) {Saccharomyces cerevisiae}	38.4	61.7	465	
MJ1625	1535098	1533113	hypothetical protein (PIR:S52522) {Saccharomyces cerevisiae}	27.6	50.4	9861	- /
MJ0862	686185	687054	hypothetical protein (PIR:S52979) {Erwinia herbicola}	35.5	59.2	870	12-
MJ1432	69872	69453	hypothetical protein (PIR:S53543) {Saccharomyces cerevisiae}	38.5	0.99	420	٤.
MJ0710	835912	834914	hypothetical protein (SP:P05409) {Methanococcus thermolithotrophicus}	59.2	6.62	666	
MJ0170	1299322	1300185	hypothetical protein (SP:P11666) {Escherichia coli}	30.1	54.8	864	
MJ1593	1571988	1571740	hypothetical protein (SP:P12049) {Bacillus subtilis}	40.3	9.69	249	
MJ0463	1060127	1059819	hypothetical protein (SP:P14021) {Methanococcus vannielii}	78.5	92.2	309	. 170
MJ0464	1059719	1059435	hypothetical protein (SP:P14022) {Methanococcus vannielii}	58.8	79.4	285	37//1
MJ0136	1340892	1340105	hypothetical protein (SP:P14027) {Methanococcus vannielii}	63.4	87.8	788	4700

-	//	3	_
---	----	---	---

MJ0388	1118696	1119244	hypothetical protein (SP:P15886) {Methanococcus vannielii}	46.0	7.77	640
MJ1225	305183	304425	hypothetical protein (SP:P15889) {Thermofilum pendens}	7.0.7	62.0	249
MJ1133	398771	397509	hypothetical protein (SP:P22349) {Methanohrevihacter emithii)	1.1	93.9	6C/
MJ1273	255725	254676	hypothetical profein (SP-D25125) (Thomas 2000)	45.9	6/.4	1263
MJ1426	76255	75812	hypothetical protein (SD-D25769) (A.C.)	41.4	60.2	1050
MJ0549	C87380	+-	-2 Former Process (St. 1.2.7.00) (Intellianobacterium Ivanovii)	47.3	69.3	444
2000174	79/00/	+	hypothetical protein (SP:P28910) {Escherichia coli}	33.9	59.3	423
MJ0982	557497	558078	hypothetical protein (SP:P29202) {Haloarcula marismortui}	55.9	75.4	582
MJ0990	552446	552658	hypothetical protein (SP:P31065) {Escherichia coli,}	39.2	62.4	213
MJ0326	1170026	6 1168809	hypothetical protein (SP:P31466) {Escherichia coli}	45.6	717	1010
MJ0812	736053	736679	hypothetical protein (SP:P31473) {Escherichia coli}	0.55	1.7	0171
MJ0079	1398567	7 1399694	hypothetical protein (SP-D31473) (Egypticities 113)	6.5.0	24.3	/79
M11586	9778078	╁		38.0	63.3	1128
0001011	7/00/61	12/0043	hypothetical protein (SP:P31806) {Escherichia coli}	32.4	52.1	1434
MJ1124	409920	406336	hypothetical protein (SP:P32639) {Saccharomyces cerevisiae} {Saccharomyces cerevisiae}	26.9	51.5	3585
MJ1081	451124	450726	hypothetical protein (SP:P32698) {Escherichia coli}	30 7	0 0	000
MJ1413	97390	97629	hypothetical protein (SP:P33382) {Listeria monocytogenes}		8.70	399
MJ1170	362086	361820	hynothetical protein (CD.D22200) (T	40.0	0.09	240
M10051	1410070	+-	"J Pomotical protein (SF.F33362) {Listeria monocytogenes}	42.2	63.9	267
	14177/0		hypothetical protein (SP:P34222) {Saccharomyces cerevisiae}	38.5	55.8	309
MJ1523	1636316	1635945	hypothetical protein (SP:P37002) {Escherichia coli}	43.0	65.0	372
					-	

MJ0608	934974	935750	hypothetical protein (SP:P37487) {Bacillus subtilis}	44.3	71.4	777	
MJ1661	1493414	1493809	hypothetical protein (SP:P37528) {Bacillus subtilis}	47.0	72.6	396	
MJ1582	1580646	1579909	hypothetical protein (SP:P37545) {Bacillus subtilis}	35.4	9.09	738	
MJ1375	148221	149408	hypothetical protein (SP:P37555) {Bacillus subtilis}	25.0	48.6	1188	
MJ0231	1249786	1250814	hypothetical protein (SP:P37869) {Bacillus subtilis}	40.0	44.0	1029	
MJ0882	664582	663910	hypothetical protein (SP:P37872) {Bacillus subtilis}	44.0	68.7	673	
MJ0043	1429606	1427252	hypothetical protein (SP:P38423) {Bacillus subtilis} {Bacillus subtilis}	45.5	58.4	2355	
MJ0048	1422159	1422842	hypothetical protein (SP:P38619) {Sulfolobus acidocaldarius}	36.6	59.1	684	
MJ0989	552670	553011	hypothetical protein (SP:P39164) {Escherichia coli}	29.0	51.8	342	
MJ1115	415733	416479	hypothetical protein (SP:P39364) {Escherichia coli}	27.1	48.3	747	/
MJ1649	1506277	1507068	hypothetical protein (SP:P39587) {Bacillus subtilis}	28.9	48.5	792	14-
MJ0577	959388	958903	hypothetical protein (SP:P42297) {Bacillus subtilis}	31.6	56.4	486	
MJ0531	1004977	1004759	hypothetical protein (SP:P42297) {Bacillus subtilis}	43.3	68.7	219	
MJ1247	282030	281677	hypothetical protein (SP:P42404) {Bacillus subtilis}	38.4	0.09	354	
MJ0486	1041905	1042681	hypothetical protein (SP:P45476) {Escherichia coli}	30.6	55.7	777	
MJ0449	1070080	1069565	hypothetical protein (SP:P46348) {Bacillus subtilis}	31.8	2.09	516	
MJ0682	861537	864374	hypothetical protein (SP:P46850) {Escherichia coli}	33.4	53.9	2838	
MJ1677	1476726	1476376	hypothetical protein (SP:P46851) {Escherichia coli}	40.3	62.0	351	
MJ0588	951068	952243	hypothetical protein GP:L07942_2 {Escherichia coli}	31.1	55.0	1176	

MJ0225	1256840	1256840 1256121	hypothetical protein GP:U00014 23 {Mycobacterium leprae}	027 400 720	40 0	77.0
76.0171					77.0	07/
MJ0134	1342043	1342043 1342792	hypothetical protein GP:U00017_21 {Mycobacterium leprae}	32.2	207	750
7550174				- 1	34.1	067
MJU3/6	1130650	1129130	hypothetical protein GP:U29579 58 {Escherichia coli}	30.1	51 5 1521	1521
000011				1.05	٠١٠	1771
MJ0028	1443023	1443844	hypothetical protein H11305 {Haemophilus influenzae}	27.0	0.05	رده
, , ,					20.0	770
MJ1136	395844	394486	hypothetical protein Lpg22p (GP:U43281 22) {Saccharomyces cerevisiae}	762	0361 8 89	1250
					0.50	1339
MJ0952	588063	588479	hypothetical protein PIR:S49633 {Saccharomyces cerevisiae}	76.8 55.0 417	65.0	717
00000				20.0	0.00	7
MJ0403	1109067	1108276	hypothetical protein PIR:S55196 (Saccharomyces cerevisiae)	27.6	681	70.7
					7.01	76/
MJ1031	509420	208206	hypothetical protein SP:P45869 {Bacillus subtilis}	210 113 890	1 13	016
				0.07		_

-116-

Table 2B

L	
	%0
	100.0%
	100.0%
	nnaschii}
	s ja
	noo
	DOC
	Metha
	(;)
	inas
	ate k
	enyk
	ade
	9 1,050,508 1,049,948
	1,049,92
	_
	508
) 50,
	1,
	MJ0479
	1104
	_

Table 3

		T
MJ0002	4071	3343
MJ0003	4911	5378
МЈ0008	10075	10734
МЈ0009	10743	11570
MJ0011	12983	13459
MJ0012	13927	13427
MJ0013	14836	14351
MJ0014	15455	14820
MJ0015	15514	15804
МЈ0016	16416	15866
MJ0018	17658	19229
МJ0019	21121	19232
МЈ0021	22762	23886
MJ0023	25284	25637
МЈ0024	26105	25689
MJ0025	27122	26109
MJ0027	28572	28021
МJ0037	38073	38786
MJ0038	39443	38793
МJ0039	39974	39654
MJ0041	41838	40477
MJ0042	42527	41883
MJ0045	46506	45907
MJ0046	47351	46569
MJ0050	52237	51050
MJ0052	53374	52709
MJ0053	54068	53388
MJ0054	55001	54159

MJ0056	56154	55759
MJ0062	60618	61238
MJ0063	61322	61855
MJ0064	61897	62454
MJ0065	63551	62463
МЈ0066	65078	63657
MJ0067	65160	65468
MJ0068	65861	65517
МJ0070	66966	67211
MJ0071	67211	67480
MJ0072	67562	67693
MJ0073	67729	68007
MJ0074	69089	68016
MJ0075	70324	69236
MJ0077	71539	70394
MJ0078	72674	72054
MJ0080	74182	73802
MJ0086	80788	81903
MJ0088	83019	83537
MJ0093	88517	88092
MJ0094	89481	88564
MJ0095	89828	89568
MJ0096	90752	89967
MJ0100	94823	93297
MJ0103	97958	99256
MJ0105	101649	101239
МJ0106	102541	101840
MJ0107	102733	104295
MJ0109	106419	105664
MJ0110	106880	106614

MJ0114	111874	112782
MJ0115	113249	112785
MJ0116	113931	113257
MJ0119	116397	115726
MJ0120	117070	116372
MJ0123	119524	119195
MJ0125	123378	123031
MJ0126	123685	123392
MJ0127	124034	123672
MJ0128	124341	124048
MJ0129	124487	124996
MJ0131	126783	126475
MJ0133	129427	128609
MJ0137	134976	134119
MJ0138	136566	135121
MJ0139	136616	138244
MJ0140	139150	139539
MJ0141	139529	139825
MJ0142	139797	140237
MJ0145	142991	142188
MJ0146	143409	143203
MJ0147	144813	143701
MJ0149	146003	145830
MJ0150	146069	146587
MJ0154	152143	152589
MJ0157	159807	160085
MJ0158	160155	161276
MJ0159	163046	161430
MJ0163	167378	166818
MJ0164	168614	167430

	T	7
MJ0165	169394	168627
MJ0166	170194	169430
МJ0173	175871	176341
MJ0175	178089	177475
MJ0181	182625	181918
MJ0182	183311	182730
MJ0183	183491	183348
MJ0184	183606	183827
MJ0185	183886	184032
MJ0187	185874	185440
MJ0188	186674	185880
MJ0198	191384	192259
MJ0201	193486	193007
MJ0202	193687	194454
МJ0206	198871	198467
МJ0207	198967	199419
MJ0208	200166	199429
MJ0209	200956	200159
MJ0212	203759	204019
MJ0213	204137	204583
MJ0215	205636	205190
MJ0223	214474	214163
MJ0224	215072	214566
MJ0227	218176	219099
MJ0229	221136	220852
MJ0230	221386	221144
MJ0233	224281	225111
MJ0235	226124	226369
MJ0236	226362	227639
MJ0239	230506	230988

MJ0240	231618	231094
MJ0241	232062	231628
MJ0243	232563	232318
MJ0248	235142	235651
MJ0251	238728	238288
MJ0252	238849	239487
MJ0255	241359	240607
MJ0257	242764	243696
MJ0258	245039	243840
MJ0259	245717	245112
MJ0261	247082	246423
MJ0263	251686	250727
MJ0270	256421	256188
MJ0271	256902	257441
MJ0272	257452	257649
MJ0273	258107	258412
MJ0274	260378	258819
MJ0275	261121	260516
MJ0280	266375	266758
MJ0281	267291	266761
MJ0282	267341	267787
MJ0284	269902	269174
MJ0286	270849	270499
MJ0287	271160	270870
MJ0288	271755	271222
MJ0289	272805	271801
MJ0290	273753	273121
MJ0292	275409	275137
MJ0296	279767	280360
MJ0297	281155	280406

MJ0298	281290	281739
MJ0301	285101	284220
MJ0303	285971	285558
MJ0305	286594	287778
МJ0306	287997	287818
MJ0308	289084	288386
МЈ0310	290609	290268
MJ0311	290981	290652
MJ0312	291845	291228
MJ0314	293767	294369
MJ0315	294826	294455
MJ0316	295458	294964
MJ0317	296374	295733
MJ0319	297675	297902
MJ0320	298001	298645
MJ0321	298675	299040
MJ0325	302095	301172
MJ0327	303625	303927
MJ0328	304755	304318
MJ0329	306607	304760
MJ0330	308266	306620
MJ0331	308670	308266
MJ0332	308995	308678
MJ0333	309670	309410
MJ0334	309816	310112
MJ0335	310179	310919
MJ0336	310932	311288
MJ0337	311299	312084
MJ0338	312100	312402
MJ0339	312374	312694

MJ0340	312697	313398
MJ0341	313411	313770
MJ0342	313918	314286
MJ0343	314270	316807
MJ0344	316820	317359
MJ0345	317314	318264
MJ0346	318277	318579
MJ0347	318593	319045
MJ0348	319620	321995
MJ0349	322367	322053
MJ0350	322681	322418
MJ0351	323154	322705
MJ0352	323901	323185
MJ0353	324142	323891
MJ0354	324296	324123
MJ0355	324661	324374
MJ0356	324957	324697
MJ0357	326407	325943
MJ0358	326796	326413
MJ0359	327449	326808
MJ0360	328174	327770
MJ0361	329502	329182
MJ0362	329659	329847
MJ0364	332163	332495
MJ0365	332503	333030
MJ0366	333033	333308
MJ0368	334581	334886
MJ0369	336040	334934
MJ0371	337418	337639
MJ0374	339873	338884
		

MJ0375	339920	340681
MJ0377	343243	343752
MJ0378	343921	344886
MJ0379	345500	344889
MJ0380	345657	345974
MJ0381	345977	346936
MJ0382	346955	347683
MJ0383	347677	349518
MJ0384	349546	350259
MJ0385	350252	351304
MJ0386	351648	351307
MJ0390	355149	354760
MJ0395	357787	357314
МJ0398	359111	359923
MJ0400	361593	362411
MJ0401	362717	362520
МJ0402	363046	362729
MJ0404	364804	364355
MJ0405	365385	365002
MJ0408	367518	367880
MJ0409	367946	370054
MJ0410	370074	370865
MJ0414	374603	373419
MJ0415	374712	375197
MJ0416	375222	375791
MJ0417	376510	375800
MJ0418	376627	377388
MJ0419	377369	378430
MJ0420	378394	379533
MJ0421	379640	380719

MJ0423 381855 382031 MJ0424 382046 382336 MJ0425 382317 382712 MJ0426 383243 382704 MJ0427 383719 383243 MJ0431 387350 387135 MJ0432 388127 387852 MJ0433 388663 388139 MJ0434 389342 388677 MJ0435 389620 389342 MJ0437 391903 391667 MJ0439 394280 393234 MJ0440 394492 395292 MJ0444 398609 397740 MJ0447 401037 400555 MJ0448 401168 401935 MJ0450 403277 403834 MJ0452 404962 404519 MJ0453 405287 404967 MJ0455 406863 406285 MJ0456 406888 407943 MJ0459 410088 410354 MJ0480 422470 423063	
MJ0425 382317 382712 MJ0426 383243 382704 MJ0427 383719 383243 MJ0431 387350 387135 MJ0432 388127 387852 MJ0433 388663 388139 MJ0434 389342 388677 MJ0435 389620 389342 MJ0437 391903 391667 MJ0439 394280 393234 MJ0440 394492 395292 MJ0444 398609 397740 MJ0447 401037 400555 MJ0448 401168 401935 MJ0450 403277 403834 MJ0452 404962 404519 MJ0453 405287 404967 MJ0456 406863 406285 MJ0459 410088 410354	
MJ0426 383243 382704 MJ0427 383719 383243 MJ0431 387350 387135 MJ0432 388127 387852 MJ0433 388663 388139 MJ0434 389342 388677 MJ0435 389620 389342 MJ0437 391903 391667 MJ0439 394280 393234 MJ0440 394492 395292 MJ0444 398609 397740 MJ0447 401037 400555 MJ0448 401168 401935 MJ0450 403277 403834 MJ0452 404962 404519 MJ0453 405287 404967 MJ0456 406863 406285 MJ0459 410088 410354	
MJ0427 383719 383243 MJ0431 387350 387135 MJ0432 388127 387852 MJ0433 388663 388139 MJ0434 389342 388677 MJ0435 389620 389342 MJ0437 391903 391667 MJ0439 394280 393234 MJ0440 394492 395292 MJ0444 398609 397740 MJ0447 401037 400555 MJ0448 401168 401935 MJ0450 403277 403834 MJ0452 404962 404519 MJ0453 405287 404967 MJ0455 406863 406285 MJ0459 410088 410354	
MJ0431 387350 387135 MJ0432 388127 387852 MJ0433 388663 388139 MJ0434 389342 388677 MJ0435 389620 389342 MJ0437 391903 391667 MJ0439 394280 393234 MJ0440 394492 395292 MJ0444 398609 397740 MJ0447 401037 400555 MJ0448 401168 401935 MJ0450 403277 403834 MJ0452 404962 404519 MJ0453 405287 404967 MJ0455 406863 406285 MJ0459 410088 410354	
MJ0432 388127 387852 MJ0433 388663 388139 MJ0434 389342 388677 MJ0435 389620 389342 MJ0437 391903 391667 MJ0439 394280 393234 MJ0440 394492 395292 MJ0444 398609 397740 MJ0447 401037 400555 MJ0448 401168 401935 MJ0450 403277 403834 MJ0452 404962 404519 MJ0453 405287 404967 MJ0455 406863 406285 MJ0459 410088 410354	
MJ0433 388663 388139 MJ0434 389342 388677 MJ0435 389620 389342 MJ0437 391903 391667 MJ0439 394280 393234 MJ0440 394492 395292 MJ0444 398609 397740 MJ0447 401037 400555 MJ0448 401168 401935 MJ0450 403277 403834 MJ0452 404962 404519 MJ0453 405287 404967 MJ0455 406863 406285 MJ0456 406888 407943 MJ0459 410088 410354	
MJ0434 389342 388677 MJ0435 389620 389342 MJ0437 391903 391667 MJ0439 394280 393234 MJ0440 394492 395292 MJ0444 398609 397740 MJ0447 401037 400555 MJ0448 401168 401935 MJ0450 403277 403834 MJ0452 404962 404519 MJ0453 405287 404967 MJ0455 406863 406285 MJ0456 406888 407943 MJ0459 410088 410354	
MJ0435 389620 389342 MJ0437 391903 391667 MJ0439 394280 393234 MJ0440 394492 395292 MJ0444 398609 397740 MJ0447 401037 400555 MJ0448 401168 401935 MJ0450 403277 403834 MJ0452 404962 404519 MJ0453 405287 404967 MJ0455 406863 406285 MJ0456 406888 407943 MJ0459 410088 410354	
MJ0437391903391667MJ0439394280393234MJ0440394492395292MJ0444398609397740MJ0447401037400555MJ0448401168401935MJ0450403277403834MJ0452404962404519MJ0453405287404967MJ0455406863406285MJ0456406888407943MJ0459410088410354	
MJ0439 394280 393234 MJ0440 394492 395292 MJ0444 398609 397740 MJ0447 401037 400555 MJ0448 401168 401935 MJ0450 403277 403834 MJ0452 404962 404519 MJ0453 405287 404967 MJ0455 406863 406285 MJ0456 406888 407943 MJ0459 410088 410354	
MJ0440 394492 395292 MJ0444 398609 397740 MJ0447 401037 400555 MJ0448 401168 401935 MJ0450 403277 403834 MJ0452 404962 404519 MJ0453 405287 404967 MJ0455 406863 406285 MJ0456 406888 407943 MJ0459 410088 410354	
MJ0444 398609 397740 MJ0447 401037 400555 MJ0448 401168 401935 MJ0450 403277 403834 MJ0452 404962 404519 MJ0453 405287 404967 MJ0455 406863 406285 MJ0456 406888 407943 MJ0459 410088 410354	
MJ0447 401037 400555 MJ0448 401168 401935 MJ0450 403277 403834 MJ0452 404962 404519 MJ0453 405287 404967 MJ0455 406863 406285 MJ0456 406888 407943 MJ0459 410088 410354	
MJ0448 401168 401935 MJ0450 403277 403834 MJ0452 404962 404519 MJ0453 405287 404967 MJ0455 406863 406285 MJ0456 406888 407943 MJ0459 410088 410354	
MJ0450 403277 403834 MJ0452 404962 404519 MJ0453 405287 404967 MJ0455 406863 406285 MJ0456 406888 407943 MJ0459 410088 410354	
MJ0452 404962 404519 MJ0453 405287 404967 MJ0455 406863 406285 MJ0456 406888 407943 MJ0459 410088 410354	
MJ0453 405287 404967 MJ0455 406863 406285 MJ0456 406888 407943 MJ0459 410088 410354	
MJ0455 406863 406285 MJ0456 406888 407943 MJ0459 410088 410354	
MJ0456 406888 407943 MJ0459 410088 410354	
MJ0459 410088 410354	
N40400	
MJ0480 422470 423063	
423003	\exists
MJ0481 423792 424085	ヿ
MJ0482 423793 423074	\exists
MJ0485 427056 428102	\exists
MJ0488 432390 432854	ヿ
MJ0491 434681 435106	\exists
MJ0492 435385 435101	\dashv
MJ0494 436499 436891	\exists

	 	<u> </u>
MJ0496	438482	438823
МJ0497	439219	438821
MJ0498	439679	439212
МЈ0500	442304	441537
МЈ0501	442990	442394
МЈ0504	445785	446372
МJ0505	446365	447117
MJ0512	453993	453292
МJ0513	454868	454149
МJ0517	459731	459321
MJ0518	460018	459737
MJ0519	460275	460033
MJ0521	461746	461549
MJ0522	462422	461769
MJ0523	463226	462534
MJ0524	463697	463239
MJ0525	463997	463 8 39
МЈ0526	464308	464123
MJ0527	465146	464655
MJ0528	465442	465149
MJ0529	466215	465520
MJ0538	474805	474026
MJ0539	476422	474833
MJ0540	476947	476693
MJ0541	477507	476971
MJ0545	483451	482711
MJ0546	483623	483456
MJ0548	485032	484589
MJ0550	487106	486012
MJ0551	487918	487106

MJ0553	489383	488925
MJ0554	490365	489910
MJ0556	492396	491875
MJ0557	493186	492572
MJ0558	493984	493202
MJ0560	495301	494891
MJ0562	496903	496691
MJ0565	502486	502046
MJ0567	504742	504497
MJ0568	504847	505221
МJ0570	506837	506112
MJ0572	509860	510117
MJ0573	510262	510828
MJ0574	510865	511143
MJ0575	511121	511807
MJ0580	515428	515075
MJ0581	515692	515937
MJ0582	515940	516323
MJ0583	516393	516563
MJ0584	516563	517657
MJ0585	517680	518294
MJ0586	518563	519057
MJ0587	519994	519536
MJ0589	521451	521768
MJ0592	525620	526357
MJ0594	526886	527392
MJ0596	528074	528475
MJ0597	528539	529612
MJ0599	530524	531120
MJ0602	533752	532970

MJ0604	535443	535144
MJ0605	535634	535443
MJ0606	536194	535922
MJ0607	536435	536199
MJ0610	540394	539093
MJ0614	545444	545061
MJ0618	547877	547584
MJ0619	549378	547861
MJ0621	551088	550573
MJ0623	552787	553362
MJ0625	553606	554613
MJ0626	554709	555335
MJ0627	555369	555719
MJ0628	555715	556203
MJ0629	556208	556849
MJ0632	558292	559380
MJ0634	562682	564565
MJ0635	564797	565636
MJ0638	568586	567912
MJ0639	568870	568586
MJ0642	571462	572451
MJ0645	574498	574743
MJ0646	574757	575248
MJ0647	575457	575296
MJ0648	575881	575441
MJ0650	577458	579521
MJ0652	580869	580471
MJ0659	585626	586039
MJ0660	586366	586136
MJ0661	587014	586496

MJ0662	587657	587007
MJ0664	589291	590163
MJ0665	590629	590180
MJ0668	594556	594314
MJ0670	596945	595887
MJ0675	601925	600753
MJ0678	605240	604263
MJ0683	611696	610920
MJ0686	615407	613668
MJ0687	616482	615478
MJ0688	616670	617110
MJ0690	617965	617375
MJ0691	618300	617974
MJ0694	620244	621365
MJ0695	621809	621486
MJ0696	622409	621933
MJ0699	625837	624698
MJ0700	625851	626822
MJ0701	626831	628063
MJ0702	628050	629831
MJ0703	629859	630536
MJ0704	631069	632199
MJ0706	633440	634081
MJ0708	634868	634425
MJ0711	643995	644960
MJ0712	645967	644963
MJ0714	648530	648880
MJ0716	650013	650270
MJ0717	650815	650459
MJ0724	657809	657189

MJ0730	663605	((2010
	003003	663048
MJ0731	664213	663620
MJ0733	665883	665521
MJ0737	667834	667652
MJ0738	668149	667877
MJ0739	668627	668175
MJ0742	669819	669496
MJ0745	672208	671675
MJ0747	673416	672961
MJ0749	675903	675151
MJ0750	676710	675997
MJ0751	677628	676795
MJ0752	677942	677715
MJ0753	678766	678146
МJ0754	679347	678775
MJ0755	680644	679619
MJ0756	681296	680889
MJ0757	682155	681424
MJ0758	682653	682213
MJ0759	683029	682700
MJ0760	683871	683047
MJ0761	684833	684072
MJ0763	686251	685889
MJ0764	686611	686264
MJ0766	688821	688729
MJ0767	689531	689100
MJ0768	689589	690335
MJ0769	690987	690481
MJ0770	691651	690983
MJ0772	692429	693487

MJ0773	694540	694016
MJ0774	695228	696454
MJ0775	696438	697379
MJ0776	697375	698523
MJ0777	698474	699046
MJ0778	699097	699603
MJ0779	700509	699613
MJ0780	701537	700533
MJ0783	706171	706737
MJ0786	710078	710620
MJ0788	712303	712539
MJ0789	712625	712972
MJ0790	713001	713696
MJ0792	715511	715777
MJ0793	716398	716931
MJ0794	716992	717405
MJ0795	717488	718999
MJ0797	720647	721759
MJ0798	721779	722780
MJ0799	722786	723667
MJ0801	725037	726173
MJ0802	726398	726961
MJ0803	726984	727499
MJ0804	727530	728387
MJ0805	728332	728994
MJ0807	730149	730670
MJ0808	730806	731804
MJ0809	733025	733525
MJ0810	733584	734255
MJ0811	735675	734359

MJ0815 739584 738697 MJ0816 740542 739652 MJ0817 741119 740502 MJ0818 741733 741125 MJ0819 742225 741899 MJ0820 742295 742191 MJ0821 742765 742598 MJ0823 744830 745600 MJ0826 747462 747875 MJ0830 750568 750101 MJ0831 750950 752245 MJ0833 758976 758239 MJ0834 759796 759083 MJ0835 760901 759822 MJ0836 762786 762430 MJ0837 762860 763606 MJ0838 764466 764816 MJ0840 765992 766972 MJ0841 768225 766981 MJ0856 780538 779996 MJ0857 781920 781099 MJ0859 782355
MJ0817 741119 740502 MJ0818 741733 741125 MJ0819 742225 741899 MJ0820 742295 742191 MJ0821 742765 742598 MJ0823 744830 745600 MJ0826 747462 747875 MJ0830 750568 750101 MJ0831 750950 752245 MJ0833 758976 758239 MJ0834 759796 759083 MJ0835 760901 759822 MJ0836 762786 762430 MJ0837 762860 763606 MJ0838 764466 764816 MJ0839 765906 764857 MJ0840 765992 766972 MJ0841 768225 766981 MJ0856 780538 779996 MJ0857 781920 781099 MJ0858 782318 781980
MJ0818 741733 741125 MJ0819 742225 741899 MJ0820 742295 742191 MJ0821 742765 742598 MJ0823 744830 745600 MJ0826 747462 747875 MJ0830 750568 750101 MJ0831 750950 752245 MJ0833 758976 758239 MJ0834 759796 759083 MJ0835 760901 759822 MJ0836 762786 762430 MJ0837 762860 763606 MJ0838 764466 764816 MJ0839 765906 764857 MJ0840 765992 766972 MJ0841 768225 766981 MJ0856 780538 779996 MJ0857 781920 781099 MJ0858 782318 781980
MJ0819 742225 741899 MJ0820 742295 742191 MJ0821 742765 742598 MJ0823 744830 745600 MJ0826 747462 747875 MJ0830 750568 750101 MJ0831 750950 752245 MJ0833 758976 758239 MJ0834 759796 759083 MJ0835 760901 759822 MJ0836 762786 762430 MJ0837 762860 763606 MJ0838 764466 764816 MJ0839 765906 764857 MJ0840 765992 766972 MJ0841 768225 766981 MJ0856 780538 779996 MJ0857 781920 781099 MJ0858 782318 781980
MJ0820 742295 742191 MJ0821 742765 742598 MJ0823 744830 745600 MJ0826 747462 747875 MJ0830 750568 750101 MJ0831 750950 752245 MJ0833 758976 758239 MJ0834 759796 759083 MJ0835 760901 759822 MJ0836 762786 762430 MJ0837 762860 763606 MJ0838 764466 764816 MJ0839 765906 764857 MJ0840 765992 766972 MJ0841 768225 766981 MJ0856 780538 779996 MJ0857 781920 781099 MJ0858 782318 781980
MJ0821 742765 742598 MJ0823 744830 745600 MJ0826 747462 747875 MJ0830 750568 750101 MJ0831 750950 752245 MJ0833 758976 758239 MJ0834 759796 759083 MJ0835 760901 759822 MJ0836 762786 762430 MJ0837 762860 763606 MJ0838 764466 764816 MJ0839 765906 764857 MJ0840 765992 766972 MJ0841 768225 766981 MJ0856 780538 779996 MJ0857 781920 781099 MJ0858 782318 781980
MJ0823 744830 745600 MJ0826 747462 747875 MJ0830 750568 750101 MJ0831 750950 752245 MJ0833 758976 758239 MJ0834 759796 759083 MJ0835 760901 759822 MJ0836 762786 762430 MJ0837 762860 763606 MJ0838 764466 764816 MJ0839 765906 764857 MJ0840 765992 766972 MJ0841 768225 766981 MJ0856 780538 779996 MJ0857 781920 781099 MJ0858 782318 781980
MJ0826 747462 747875 MJ0830 750568 750101 MJ0831 750950 752245 MJ0833 758976 758239 MJ0834 759796 759083 MJ0835 760901 759822 MJ0836 762786 762430 MJ0837 762860 763606 MJ0838 764466 764816 MJ0839 765906 764857 MJ0840 765992 766972 MJ0841 768225 766981 MJ0856 780538 779996 MJ0857 781920 781099 MJ0858 782318 781980
MJ0830 750568 750101 MJ0831 750950 752245 MJ0833 758976 758239 MJ0834 759796 759083 MJ0835 760901 759822 MJ0836 762786 762430 MJ0837 762860 763606 MJ0838 764466 764816 MJ0839 765906 764857 MJ0840 765992 766972 MJ0841 768225 766981 MJ0856 780538 779996 MJ0857 781920 781099 MJ0858 782318 781980
MJ0831 750950 752245 MJ0833 758976 758239 MJ0834 759796 759083 MJ0835 760901 759822 MJ0836 762786 762430 MJ0837 762860 763606 MJ0838 764466 764816 MJ0839 765906 764857 MJ0840 765992 766972 MJ0841 768225 766981 MJ0856 780538 779996 MJ0857 781920 781099 MJ0858 782318 781980
MJ0833 758976 758239 MJ0834 759796 759083 MJ0835 760901 759822 MJ0836 762786 762430 MJ0837 762860 763606 MJ0838 764466 764816 MJ0839 765906 764857 MJ0840 765992 766972 MJ0841 768225 766981 MJ0856 780538 779996 MJ0857 781920 781099 MJ0858 782318 781980
MJ0834 759796 759083 MJ0835 760901 759822 MJ0836 762786 762430 MJ0837 762860 763606 MJ0838 764466 764816 MJ0839 765906 764857 MJ0840 765992 766972 MJ0841 768225 766981 MJ0856 780538 779996 MJ0857 781920 781099 MJ0858 782318 781980
MJ0835760901759822MJ0836762786762430MJ0837762860763606MJ0838764466764816MJ0839765906764857MJ0840765992766972MJ0841768225766981MJ0856780538779996MJ0857781920781099MJ0858782318781980
MJ0836762786762430MJ0837762860763606MJ0838764466764816MJ0839765906764857MJ0840765992766972MJ0841768225766981MJ0856780538779996MJ0857781920781099MJ0858782318781980
MJ0837 762860 763606 MJ0838 764466 764816 MJ0839 765906 764857 MJ0840 765992 766972 MJ0841 768225 766981 MJ0856 780538 779996 MJ0857 781920 781099 MJ0858 782318 781980
MJ0838 764466 764816 MJ0839 765906 764857 MJ0840 765992 766972 MJ0841 768225 766981 MJ0856 780538 779996 MJ0857 781920 781099 MJ0858 782318 781980
MJ0839 765906 764857 MJ0840 765992 766972 MJ0841 768225 766981 MJ0856 780538 779996 MJ0857 781920 781099 MJ0858 782318 781980
MJ0840 765992 766972 MJ0841 768225 766981 MJ0856 780538 779996 MJ0857 781920 781099 MJ0858 782318 781980
MJ0841 768225 766981 MJ0856 780538 779996 MJ0857 781920 781099 MJ0858 782318 781980
MJ0856 780538 779996 MJ0857 781920 781099 MJ0858 782318 781980
MJ0857 781920 781099 MJ0858 782318 781980
MJ0858 782318 781980
MJ0859 782837 782355
MJ0865 788311 789585
MJ0871 795055 795975
MJ0872 797236 796022
MJ0874 798213 798491
MJ0875 798611 800854
MJ0878 803147 804388

MJ0880	805402	806325
MJ0883	808397	809404
MJ0887	818880	818209
MJ0889	819606	821000
MJ0890	821429	821019
MJ0894	824064	824486
MJ0895	824467	825492
MJ0896	825552	825953
MJ0897	825946	826362
MJ0898	826495	826932
MJ0899	826954	827643
MJ0900	827668	829308
MJ0901	829430	830998
MJ0902	831028	831729
MJ0903	831942	833855
MJ0904	834299	834547
MJ0905	834622	834954
MJ0906	834959	836056
MJ0907	836917	836072
MJ0909	840933	841220
МJ0910	841954	841433
MJ0912	843688	844416
MJ0914	845908	845783
MJ0915	847507	846707
MJ0916	847875	847609
MJ0917	847950	849671
MJ0919	850996	850550
MJ0921	852470	851571
MJ0923	853368	854258
MJ0925	855529	

MJ0926	856378	856638
MJ0933	862692	863390
MJ0935	864824	865447
MJ0936	865545	866042
MJ0938	868207	867473
МJ0939	868278	869102
MJ0943	875111	873870
MJ0944	875300	875659
MJ0945	876358	875687
MJ0948	881231	880668
MJ0949	881637	881269
MJ0950	882370	881684
MJ0951	883634	882570
MJ0953	884488	884787
МЈ0954	886106	884802
МJ0956	887437	888216
MJ0957	888219	889268
MJ0958	889276	890553
МJ0962	894937	895320
МЈ0966	899875	901197
МJ0967	901940	901326
MJ0968	901996	902814
MJ0969	903935	903126
МЈ0970	904627	904199
MJ0971	904756	905844
MJ0972	905808	906488
MJ0973	907728	906496
MJ0974	908172	907741
MJ0975	908365	908162
MJ0976	908463	909560

1410077	000504	1011000
MJ0977	909594	911000
MJ0978	911359	911688
MJ0979	912309	911719
MJ0981	914246	913641
MJ0986	917606	917373
MJ0987	917909	918247
MJ0988	918361	919347
MJ0991	920189	920608
МJ0992	920924	921142
MJ0995	924316	923636
MJ0997	925109	925719
MJ0998	926425	926012
МЈ1002	930965	931891
MJ1004	933349	933990
MJ1005	933994	934386
MJ1006	934412	935437
MJ1010	941079	939958
MJ1011	941860	941471
MJ1016	946060	946941
MJ1017	946934	947542
MJ1020	950418	951194
MJ1021	951732	951244
MJ1022	953674	951968
MJ1024	954536	955744
MJ1025	956917	955751
MJ1028	959569	961611
MJ1030	962492	962932
MJ1032	963985	965082
MJ1034	966050	966310
MJ1036	967587	968276

	T	
MJ1049	986885	987367
MJ1050	987438	987968
MJ1052	989793	989503
MJ1053	990349	989861
MJ1060	1000457	1002067
MJ1067	1008238	1008681
MJ1069	1010805	1009630
МЈ1070	1011399	1010929
MJ1071	1012337	1011399
MJ1072	1012709	1012362
МJ1073	1013688	1012879
MJ1074	1014135	1013800
MJ1076	1016646	1015636
MJ1077	1018245	1016683
MJ1078	1019039	1018338
MJ1079	1020506	1019316
MJ1080	1021091	1020687
MJ1082	1021657	1022016
MJ1083	1022089	1022667
MJ1085	1023633	1025159
MJ1086	1025159	1026178
MJ1092	1030102	1030743
МJ1094	1033051	1031897
МJ1095	1034350	1033088
MJ1098	1039265	1038627
MJ1099	1040323	1039619
MJ1103	1043990	1043727
MJ1106	1046606	1046052
MJ1107	1047073	1046627
MJ1110	1052574	1051117

MJ1111	1053691	1052540
MJ1112	1053818	1053645
MJ1114	1055795	1055220
MJ1117	1058450	1059037
MJ1118	1059065	1059331
MJ1120	1060339	1061175
MJ1121	1061532	1061251
MJ1122	1061729	1061508
MJ1123	1061809	1062423
MJ1125	1066578	1066399
MJ1126	1067325	1068140
MJ1127	1068204	1069043
MJ1128	1069964	1069050
MJ1132	1073401	1073048
MJ1134	1075567	1074881
MJ1137	1078625	1078035
MJ1138	1078694	1079215
MJ1139	1080031	1079336
MJ1140	1080732	1080049
MJ1141	1080810	1081406
MJ1143	1082498	1083604
MJ1144	1084575	1083607
MJ1145	1085112	1084918
MJ1147	1086431	1087786
MJ1150	1088688	1089230
MJ1151	1089352	1089681
MJ1152	1089693	1089902
MJ1153	1089902	1090087
MJ1154	1091598	1090246
MJ1157	1097614	1098636

		·········
MJ1158	1097631	1097245
MJ1159	1098676	1100610
MJ1161	1102129	1102629
MJ1163	1104052	1104747
MJ1164	1106045	1105095
MJ1172	1111539	1111781
MJ1173	1111785	1112066
MJ1177	1117451	1118467
MJ1179	1118839	1119285
MJ1180	1119545	1119979
MJ1181	1120081	1120677
MJ1182	1121087	1122184
MJ1183	1122200	1122670
MJ1184	1122741	1123160
MJ1185	1125032	1123167
MJ1186	1125194	1126231
MJ1188	1127047	1126238
MJ1189	1128908	1128060
MJ1198	1142323	1144605
MJ1199	1145059	1144631
MJ1205	1148679	1148371
MJ1206	1149937	1148675
MJ1207	1150577	1151254
MJ1209	1154047	1152613
MJ1210	1154918	1154148
MJ1211	1155290	1154943
MJ1213	1156520	1156191
MJ1215	1159884	1159639
MJ1216	1160233	1159871
MJ1217	1160540	1160247

MJ1219	1162177	1161875
MJ1221	1164080	1164958
MJ1222	1165703	1164984
MJ1223	1165956	1165681
MJ1224	1167016	1166600
MJ1230	1173450	1173235
MJ1232	1176334	1175447
MJ1233	1176475	1177311
MJ1234	1178669	1177947
MJ1239	1184644	1185318
MJ1240	1185617	1185327
MJ1241	1185877	1185644
MJ1243	1187992	1187624
МJ1244	1188410	1188087
MJ1245	1188760	1188425
MJ1248	1191184	1190723
MJ1249	1191367	1192449
MJ1250	1192973	1193731
MJ1254	1197164	1197400
MJ1255	1197430	1198611
MJ1256	1198911	1199543
MJ1257	1199543	1200589
MJ1262	1204364	1205530
MJ1272	1216145	1216633
MJ1278	1223720	1223184
MJ1279	1224266	1223724
MJ1280	1224460	1224930
MJ1281	1224854	1227994
MJ1282	1228714	1229769
MJ1283	1231676	1231017

MJ1284	1232029	1231667
MJ1285	1232580	1232029
MJ1286	1234269	1232587
MJ1287	1235086	1234319
MJ1288	1235901	1235155
MJ1289	1236778	1236284
MJ1290	1237713	1236778
MJ1291	1238448	1237729
MJ1292	1238662	1241124
MJ1293	1241174	1241866
MJ1295	1243251	1242847
MJ1301	1250120	1248921
MJ1302	1250541	1250149
MJ1304	1252617	1252162
MJ1305	1253036	1252596
MJ1306	1253300	1253052
MJ1307	1254110	1253325
MJ1308	1254426	1254115
MJ1309	1255877	1254459
MJ1310	1256325	1255942
MJ1311	1256457	1257287
MJ1312	1257321	1258283
MJ1313	1258388	1259596
MJ1315	1260519	1261589
MJ1316	1261606	1261833
MJ1317	1263015	1261822
MJ1318	1264868	1263063
MJ1320	1268194	1267802
MJ1321	1270356	1268218
MJ1322	1273392	1270378

MJ1323 1274489 1273392 MJ1325 1275428 1275694 MJ1327 1277081 1277815 MJ1330 1280424 1280792 MJ1331 1281220 1280801 MJ1333 1282515 1282766 MJ1336 1284800 1285282 MJ1337 1285743 1286216 MJ1339 1287389 1287850 MJ1340 1287925 1288266 MJ1341 1289221 1288286 MJ1342 1289457 1289798 MJ1345 1291918 1292841 MJ1348 1295149 1296126 MJ1350 1298227 1297454 MJ1354 1304338 1304772 MJ1355 1304858 1306531 MJ1356 1306729 1307295 MJ1358 1309040 1308648 MJ1360 1310249 1309953 MJ1361 1310355 1311230 MJ1364 1313354 1314619 MJ1370 1318564 1319028 MJ1371			
MJ1327 1277081 1277815 MJ1330 1280424 1280792 MJ1331 1281220 1280801 MJ1333 1282515 1282766 MJ1336 1284800 1285282 MJ1337 1285743 1286216 MJ1339 1287389 1287850 MJ1340 1287925 1288266 MJ1341 1289221 1288286 MJ1342 1289457 1289798 MJ1345 1291918 1292841 MJ1348 1295149 1296126 MJ1350 1298227 1297454 MJ1354 1304338 1304772 MJ1355 1304858 1306531 MJ1356 1306729 1307295 MJ1358 1309040 1308648 MJ1360 1310249 1309953 MJ1361 1310355 1311230 MJ1364 1313354 1314619 MJ1370 1318564 1319028 MJ1371 1320053 1320775 MJ1373 1321601 1322966 MJ1374	MJ1323	1274489	1273392
MJ1330 1280424 1280792 MJ1331 1281220 1280801 MJ1333 1282515 1282766 MJ1336 1284800 1285282 MJ1337 1285743 1286216 MJ1339 1287389 1287850 MJ1340 1287925 1288266 MJ1341 1289221 1288286 MJ1342 1289457 1289798 MJ1345 1291918 1292841 MJ1348 1295149 1296126 MJ1350 1298227 1297454 MJ1354 1304338 1304772 MJ1355 1304858 1306531 MJ1356 1306729 1307295 MJ1358 1309040 1308648 MJ1359 1309889 1309164 MJ1360 1310249 1309953 MJ1361 1310355 1311230 MJ1364 1313354 1314619 MJ1370 1318564 1319028 MJ1371 1320053 1320775 MJ1373 1321601 1322086 MJ1374	MJ1325	1275428	1275694
MJ1331 1281220 1280801 MJ1333 1282515 1282766 MJ1336 1284800 1285282 MJ1337 1285743 1286216 MJ1339 1287389 1287850 MJ1340 1287925 1288266 MJ1341 1289221 1288286 MJ1342 1289457 1289798 MJ1345 1291918 1292841 MJ1348 1295149 1296126 MJ1350 1298227 1297454 MJ1354 1304338 1304772 MJ1355 1304858 1306531 MJ1356 1306729 1307295 MJ1358 1309040 1308648 MJ1359 1309889 1309164 MJ1360 1310249 1309953 MJ1361 1310355 1311230 MJ1364 1313354 1314619 MJ1369 1318564 1319028 MJ1370 1319061 1320044 MJ1371 1320053 1320775 MJ1374 1322262 1322954 MJ1379	МЈ1327	1277081	1277815
MJ1333 1282515 1282766 MJ1336 1284800 1285282 MJ1337 1285743 1286216 MJ1339 1287389 1287850 MJ1340 1287925 1288266 MJ1341 1289221 1288286 MJ1342 1289457 1289798 MJ1345 1291918 1292841 MJ1348 1295149 1296126 MJ1350 1298227 1297454 MJ1354 1304338 1304772 MJ1355 1304858 1306531 MJ1356 1306729 1307295 MJ1358 1309040 1308648 MJ1359 1309889 1309164 MJ1360 1310249 1309953 MJ1361 1310355 1311230 MJ1364 1313354 1314619 MJ1370 1319061 1320044 MJ1371 1320053 1320775 MJ1373 1321601 1322086 MJ1374 1328524 1328524	MJ1330	1280424	1280792
MJ1336 1284800 1285282 MJ1337 1285743 1286216 MJ1339 1287389 1287850 MJ1340 1287925 1288266 MJ1341 1289221 1288286 MJ1342 1289457 1289798 MJ1345 1291918 1292841 MJ1348 1295149 1296126 MJ1350 1298227 1297454 MJ1354 1304338 1304772 MJ1355 1304858 1306531 MJ1356 1306729 1307295 MJ1358 1309040 1308648 MJ1359 1309889 1309164 MJ1360 1310249 1309953 MJ1361 1310355 1311230 MJ1364 1313354 1314619 MJ1370 1318564 1319028 MJ1370 1319061 1320044 MJ1371 1320053 1320775 MJ1373 1321601 1322986 MJ1374 1322262 1322954 MJ1379 1328524 1328823	MJ1331	1281220	1280801
MJ1337 1285743 1286216 MJ1339 1287389 1287850 MJ1340 1287925 1288266 MJ1341 1289221 1288286 MJ1342 1289457 1289798 MJ1345 1291918 1292841 MJ1348 1295149 1296126 MJ1350 1298227 1297454 MJ1354 1304338 1304772 MJ1355 1304858 1306531 MJ1356 1306729 1307295 MJ1358 1309040 1308648 MJ1359 1309889 1309164 MJ1360 1310249 1309953 MJ1361 1310355 1311230 MJ1364 1313354 1314619 MJ1370 1318564 1319028 MJ1371 1320053 1320775 MJ1373 1321601 1322086 MJ1374 1322262 1322954 MJ1379 1328524 1328823	МЈ1333	1282515	1282766
MJ1339 1287389 1287850 MJ1340 1287925 1288266 MJ1341 1289221 1288286 MJ1342 1289457 1289798 MJ1345 1291918 1292841 MJ1348 1295149 1296126 MJ1350 1298227 1297454 MJ1354 1304338 1304772 MJ1355 1304858 1306531 MJ1356 1306729 1307295 MJ1358 1309040 1308648 MJ1359 1309889 1309164 MJ1360 1310249 1309953 MJ1361 1310355 1311230 MJ1364 1313354 1314619 MJ1370 1318564 1319028 MJ1371 1320053 1320775 MJ1373 1321601 1322954 MJ1379 1328524 1328823	МЈ1336	1284800	1285282
MJ1340 1287925 1288266 MJ1341 1289221 1288286 MJ1342 1289457 1289798 MJ1345 1291918 1292841 MJ1348 1295149 1296126 MJ1350 1298227 1297454 MJ1354 1304338 1304772 MJ1355 1304858 1306531 MJ1356 1306729 1307295 MJ1358 1309040 1308648 MJ1359 1309889 1309164 MJ1360 1310249 1309953 MJ1361 1310355 1311230 MJ1364 1313354 1314619 MJ1369 1318564 1319028 MJ1370 1319061 1320044 MJ1371 1320053 1320775 MJ1373 1321601 1322954 MJ1379 1328524 1328823	MJ1337	1285743	1286216
MJ1341 1289221 1288286 MJ1342 1289457 1289798 MJ1345 1291918 1292841 MJ1348 1295149 1296126 MJ1350 1298227 1297454 MJ1354 1304338 1304772 MJ1355 1304858 1306531 MJ1356 1306729 1307295 MJ1358 1309040 1308648 MJ1359 1309889 1309164 MJ1360 1310249 1309953 MJ1361 1310355 1311230 MJ1364 1313354 1314619 MJ1369 1318564 1319028 MJ1370 1319061 1320044 MJ1371 1320053 1320775 MJ1373 1321601 1322986 MJ1374 1322262 1322954 MJ1379 1328524 1328823	МЈ1339	1287389	1287850
MJ1342 1289457 1289798 MJ1345 1291918 1292841 MJ1348 1295149 1296126 MJ1350 1298227 1297454 MJ1354 1304338 1304772 MJ1355 1304858 1306531 MJ1356 1306729 1307295 MJ1358 1309040 1308648 MJ1359 1309889 1309164 MJ1360 1310249 1309953 MJ1361 1310355 1311230 MJ1364 1313354 1314619 MJ1369 1318564 1319028 MJ1370 1319061 1320044 MJ1371 1320053 1320775 MJ1373 1321601 1322086 MJ1374 1322262 1322954 MJ1379 1328524 1328823	MJ1340	1287925	1288266
MJ1345 1291918 1292841 MJ1348 1295149 1296126 MJ1350 1298227 1297454 MJ1354 1304338 1304772 MJ1355 1304858 1306531 MJ1356 1306729 1307295 MJ1358 1309040 1308648 MJ1359 1309889 1309164 MJ1360 1310249 1309953 MJ1361 1310355 1311230 MJ1364 1313354 1314619 MJ1369 1318564 1319028 MJ1370 1319061 1320044 MJ1371 1320053 1320775 MJ1373 1321601 1322086 MJ1374 1322262 1322954 MJ1379 1328524 1328823	MJ1341	1289221	1288286
MJ134812951491296126MJ135012982271297454MJ135413043381304772MJ135513048581306531MJ135613067291307295MJ135813090401308648MJ135913098891309164MJ136013102491309953MJ136113103551311230MJ136413133541314619MJ136913185641319028MJ137013190611320044MJ137113200531320775MJ137313216011322086MJ137413222621322954MJ137913285241328823	MJ1342	1289457	1289798
MJ135012982271297454MJ135413043381304772MJ135513048581306531MJ135613067291307295MJ135813090401308648MJ135913098891309164MJ136013102491309953MJ136113103551311230MJ136413133541314619MJ136913185641319028MJ137013190611320044MJ137113200531320775MJ137313216011322086MJ137413222621322954MJ137913285241328823	MJ1345	1291918	1292841
MJ135413043381304772MJ135513048581306531MJ135613067291307295MJ135813090401308648MJ135913098891309164MJ136013102491309953MJ136113103551311230MJ136413133541314619MJ136913185641319028MJ137013190611320044MJ137113200531320775MJ137313216011322086MJ137413222621322954MJ137913285241328823	MJ1348	1295149	1296126
MJ135513048581306531MJ135613067291307295MJ135813090401308648MJ135913098891309164MJ136013102491309953MJ136113103551311230MJ136413133541314619MJ136913185641319028MJ137013190611320044MJ137113200531320775MJ137313216011322086MJ137413222621322954MJ137913285241328823	MJ1350	1298227	1297454
MJ135613067291307295MJ135813090401308648MJ135913098891309164MJ136013102491309953MJ136113103551311230MJ136413133541314619MJ136913185641319028MJ137013190611320044MJ137113200531320775MJ137313216011322086MJ137413222621322954MJ137913285241328823	MJ1354	1304338	1304772
MJ135813090401308648MJ135913098891309164MJ136013102491309953MJ136113103551311230MJ136413133541314619MJ136913185641319028MJ137013190611320044MJ137113200531320775MJ137313216011322086MJ137413222621322954MJ137913285241328823	MJ1355	1304858	1306531
MJ135913098891309164MJ136013102491309953MJ136113103551311230MJ136413133541314619MJ136913185641319028MJ137013190611320044MJ137113200531320775MJ137313216011322086MJ137413222621322954MJ137913285241328823	МЈ1356	1306729	1307295
MJ136013102491309953MJ136113103551311230MJ136413133541314619MJ136913185641319028MJ137013190611320044MJ137113200531320775MJ137313216011322086MJ137413222621322954MJ137913285241328823	MJ1358	1309040	1308648
MJ1361 1310355 1311230 MJ1364 1313354 1314619 MJ1369 1318564 1319028 MJ1370 1319061 1320044 MJ1371 1320053 1320775 MJ1373 1321601 1322086 MJ1374 1322262 1322954 MJ1379 1328524 1328823	MJ1359	1309889	1309164
MJ1364 1313354 1314619 MJ1369 1318564 1319028 MJ1370 1319061 1320044 MJ1371 1320053 1320775 MJ1373 1321601 1322086 MJ1374 1322262 1322954 MJ1379 1328524 1328823	MJ1360	1310249	1309953
MJ1369 1318564 1319028 MJ1370 1319061 1320044 MJ1371 1320053 1320775 MJ1373 1321601 1322086 MJ1374 1322262 1322954 MJ1379 1328524 1328823	MJ1361	1310355	1311230
MJ1370 1319061 1320044 MJ1371 1320053 1320775 MJ1373 1321601 1322086 MJ1374 1322262 1322954 MJ1379 1328524 1328823	MJ1364	1313354	1314619
MJ1371 1320053 1320775 MJ1373 1321601 1322086 MJ1374 1322262 1322954 MJ1379 1328524 1328823	MJ1369	1318564	1319028
MJ1373 1321601 1322086 MJ1374 1322262 1322954 MJ1379 1328524 1328823	MJ1370	1319061	1320044
MJ1374 1322262 1322954 MJ1379 1328524 1328823	MJ1371	1320053	1320775
MJ1379 1328524 1328823	MJ1373	1321601	1322086
	MJ1374	1322262	1322954
MJ1380 1328819 1329052	MJ1379	1328524	1328823
	MJ1380	1328819	1329052

MJ1382	1331473	1331036
MJ1383	1332364	1331597
MJ1384	1333177	1332596
MJ1385	1333741	1333205
MJ1386	1333877	1334008
MJ1387	1335433	1334297
MJ1389	1337813	1337412
MJ1393	1341979	1343802
MJ1394	1343895	1346852
MJ1395	1347176	1347571
MJ1396	1347707	1356388
МЈ1397	1356457	1357905
MJ1398	1358183	1359355
MJ1399	1359929	1359339
MJ1400	1360142	1359942
MJ1401	1360259	1362682
MJ1402	1364357	1363320
MJ1403	1365794	1364673
MJ1404	1366111	1367364
MJ1405	1367427	1367639
MJ1407	1368408	1368794
MJ1409	1370733	1369939
MJ1410	1371310	1370834
MJ1412	1373210	1374703
MJ1414	1375807	1375094
MJ1416	1378350	1376995
MJ1419	1382016	1381714
MJ1423	1394263	1393208
MJ1424	1394481	1395002
MJ1427	1396680	1397633

MJ1428	1397643	1399343
MJ1429	1399343	1400842
MJ1431	1401322	1402398
MJ1433	1402914	1403654
MJ1435	1404402	1404614
MJ1436	1404758	1405048
MJ1437	1405055	1405738
MJ1440	1407288	1408133
MJ1442	1412130	1412735
MJ1443	1412784	1413104
MJ1445	1414331	1414858
MJ1447	1415840	1416982
MJ1448	1416982	1418571
MJ1449	1418577	1419686
MJ1450	1419699	1420811
MJ1451	1420869	1422320
MJ1452	1422616	1423392
MJ1453	1423398	1423973
MJ1455	1425643	1424729
MJ1457	1427021	1427422
MJ1458	1427487	1428140
MJ1460	1430419	1429943
MJ1461	1431156	1430560
MJ1462	1431506	1431258
MJ1463	1432201	1431530
MJ1466	1436397	1435756
MJ1467	1436562	1437008
MJ1468	1437029	1440055
MJ1469	1440055	1440279
MJ1470	1440747	1442618

	,	· · · · · · · · · · · · · · · · · · ·
MJ1471	1442618	1443151
MJ1472	1443165	1444796
MJ1475	1446447	1446821
MJ1477	1447530	1448537
MJ1478	1449448	1448540
MJ1480	1451452	1452720
MJ1481	1452735	1453373
MJ1483	1454337	1454783
MJ1484	1454768	1455217
MJ1487	1459016	1460293
MJ1488	1460315	1461493
MJ1491	1465684	1466055
MJ1492	1466067	1466534
MJ1493	1466552	1467235
MJ1495	1468532	1469377
MJ1496	1469370	1469711
MJ1497	1469711	1470748
MJ1499	1472128	1471649
MJ1500	1472920	1472363
MJ1501	1473615	1472947
MJ1503	1474982	1474587
MJ1506	1479963	1478767
MJ1507	1480030	1481214
MJ1509	1482024	1482482
MJ1510	1483084	1482506
MJ1511	1483234	1483572
MJ1513	1489601	1488606
MJ1514	1489692	1490078
MJ1515	1490084	1491148
MJ1516	1491173	1491466

MJ1517	1492030	1492863
MJ1518	1492917	1493975
MJ1519	1494094	1497618
MJ1520	1498588	1497656
MJ1521	1498905	1500170
MJ1524	1501404	1501727
MJ1525	1501702	1504500
MJ1527	1505607	1505281
MJ1535	1512870	1513766
MJ1537	1515742	1514714
MJ1539	1516728	1517042
MJ1540	1517209	1517466
MJ1542	1521169	1518746
MJ1544	1523759	1522470
MJ1545	1523900	1524592
MJ1547	1525820	1526005
MJ1548	1526062	1526427
MJ1550	1527849	1528031
MJ1551	1528046	1528216
MJ1553	1528749	1529240
MJ1554	1529326	1531191
MJ1556	1532701	1533636
MJ1557	1533644	1534390
MJ1558	1534666	1534397
MJ1559	1534699	1535262
MJ1561	1538168	1536510
MJ1562	1539331	1538168
MJ1563	1539812	1539345
MJ1564	1540186	1540695
MJ1565	1540699	1542237

MJ1566	1543572	1542232
MJ1567	1544072	1543557
MJ1568	1544632	1544078
MJ1570	1545637	1545981
MJ1571	1546111	1546986
МЈ1573	1548452	1548270
MJ1576	1551559	1552164
MJ1577	1552197	1553990
MJ1579	1555146	1554937
MJ1580	1555498	1555127
MJ1583	1557431	1557808
MJ1584	1558268	1557816
MJ1585	1559172	1558255
MJ1587	1560732	1561265
MJ1588	1561285	1561620
MJ1589	1561657	1562379
MJ1590	1562770	1563084
MJ1595	1567357	1566332
MJ1598	1572075	1571026
MJ1599	1572924	1572094
MJ1600	1573002	1573532
MJ1601	1573539	1574018
MJ1604	1578693	1577308
MJ1608	1582917	1583126
MJ1609	1583168	1584289
MJ1613	1589822	1589058
MJ1614	1590582	1589830
MJ1615	1591350	1590586
MJ1617	1593103	1593381
MJ1618	1593786	1593397

MJ1620	1594531	1596084
MJ1621	1596297	1596127
MJ1622	1597169	1597719
MJ1623	1597939	1599474
MJ1624	1599991	1599602
MJ1626	1602381	1600087
MJ1627	1604683	1604231
MJ1628	1606127	1604784
MJ1629	1607293	1606418
МЈ1630	1610737	1607330
MJ1631	1611184	1612740
MJ1632	1612697	1613446
МJ1633	1614897	1613467
MJ1634	1615733	1615011
MJ1635	1615933	1617174
MJ1637	1618268	1619686
MJ1638	1620457	1619678
MJ1639	1620605	1621036
MJ1640	1621671	1621057
MJ1641	1622664	1621804
MJ1642	1623032	1623514
MJ1644	1627146	1627667
MJ1646	1628442	1629074
MJ1650	1632586	1631435
MJ1651	1633407	1632631
MJ1653	1635797	1636951
MJ1654	1637097	1637693
MJ1657	1639687	1640427
MJ1658	1640511	1640783
MJ1659	1640800	1641870

MJ1660	1641857	1643503
MJ1664	1646502	1647179
MJ1665	1648555	1647182
MJ1666	1650080	1648686
MJ1667	1651336	1650083
MJ1668	1652321	1651194
MJ1669	1653119	1652376
MJ1670	1653547	1653149
MJ1671	1653684	1653550
MJ1672	1656206	1653807
MJ1673	1656630	1656244
MJ1674	1658539	1656638
MJ1676	1659621	1660334
MJ1678	1660939	1662126
MJ1679	1662142	1662432
MJ1680	1662411	1662866
MJ1681	1663887	1662862
MJECS01	1268	432
MJECS02	4814	1272
MJECS03	5192	4851
MJECS04	5884	5459
MJECS05	6365	6814
MJECS06	7443	7009
MJECS07	8765	7428
MJECS08	11950	8738
MJECS09	12641	11925
MJECS10	14062	13181
MJECS11	14404	15030
MJECS12	16547	15411
MJECL01	275	1048

MJECL02	1474	1085
MJECL03	1700	1377
MJECL04	1865	3250
MJECL05	3235	3450
MJECL06	4170	3787
MJECL07	5844	4561
MJECL08	7415	5832
MJECL09	7780	8103
MJECL10	8107	8784
MJECL11	8788	9159
MJECL12	9150	9887
MJECL13	10678	12483
MJECL14	14468	15427
MJECL15	15420	16541
MJECL16	16599	16811
MJECL18	20873	21505
MJECL19	21456	22019
MJECL20	22829	23290
MJECL21	24596	23298
MJECL22	25120	24854
MJECL23	27628	25136
MJECL25	28835	29167
MJECL26	30215	29178
MJECL27	31077	30571
MJECL28	35352	31534
MJECL30	37621	37151
MJECL31	37811	37599
MJECL32	40153	38828
MJECL33	41381	40125
MJECL34	43121	42231

WO 98/07830

	- 	
MJECL35	45007	43115
MJECL36	45921	45394
MJECL37	46065	46865
MJECL38	47997	47197
MJECL39	49387	48329
MJECL41	53908	52613
MJECL43	57371	56187
MJECL44	58339	57341

Table 4

Genes of M. jannaschii that contain inteins.		
Gene No.	Putative identification	No. of inteins
MJ0043	Hypothetical protein (Bacillus subtilis)	1
MJ0262	Putative translation initiation factor, FUN12/IF-2 family	1
MJ0542	Phosphoenolpyruvate synthase	1
MJ0682	Hypothetical protein (Escherichia coli)	1 1
MJ0782	Tranascription initiation factor IIB	1
MJ0832	Anaerobic ribonucleoside-triphosphate reductase	2
MJ0885	DNA-dependent DNA polymerase, family B	2
MJ1042	DNA-dependent RNA polymerase, subunit A'	1
MJ1043	DNA-dependent RNA polymerase, subunit A"	1
MJ1054	UDP-glucose dehydrogenase	1
MJ1124	Hypothetical protein (Saccharomyces cerevisiae)	1
MJ1420	Glutamine-fructose-6-phosphate transaminase	1
MJ1422	Replication factor C, 37-kD subunit	3
MJ1512	Reverse gyrase	1

PCT1.WPD

The 1,664,976 *M. jannaschii* circular chromosome (SEQ ID NO:1) has the following sequence:

5	GGATTATTATGCTACTGGTTTTAAAATAATTGACTTATCTAAACTAAAAGGAGGAATTAA GAGAGAGTTTAACGCATCTAATAGAGAATTATATAAAAAAGGATTTGATTATTTAT
10	TGAAGCAGTAAAGTACTTATTAAATAATGGACATTGTGGGATAGATTGTAGGGCAAAAAT TAGCGATATTATAAAGGGAATAAATTATCCCAAAAATAGGGAAGCTTTCCAACATGAAGT GTTGATACCACTAAAACAGTATGGCATCATAGCAACATTGGTTTATCCAGGACGTAAAAGG AGGCGTATTTATCCCATGTAATAATGATGAAATAAAAAAAA
15	AAATTTAGCAAATTCTCTAAAAACGACTGTTCACAATCTTAAGAACACTATTTAAATAAA
20	TGGAGGAAATGTTGCAGGATGAGGTCTTTCTTTTTTTTTT
25	TATTGCAATTGATTTTACCCAATGTATAGTATTTTGTAATTTAAAATGTTTTCTTATAAC ATTAGCAACATCAAAGGCAATCCACGGGTCTTTTGCAGTATAGCCAACATTTATAAAAAA TGAGCCGTCATCTTTAATACCTCTTTTATTTCTTTGACAACCTTCTTCAATCCAATTTAA ATAATCTTCTCTACTTAAATTATCAGAGTATTTGTTGTATTTTATGCCAATATTATAGGG TGGAGACGTAACAACAACATCAACTGTCTTATCTTTTAACTGTTTCATTCCCTCTAAACA
30	ATCCATACAGTAGATTTTATTTATCTCCATTTTTAATCCCCATCATTATTTATTCTATCA TCAATTCTGCAAGCTTCTCTACTTCTTTAATTCCCCTATCAAAATCATTTAAGTTTAAAT ATTCTTCTTTAGAATGGGCAAGCTCTAATTTGCCAACACCATAAATAA
35	TTTCAGGATTTAATGAGCTTTTTATATGCTTTGAATAATTTTTTTGAGATAAAAAGTCGT CTATCTTTTTTATTATATCTTTTTCAACACTTCTAACATCAAATAAGACATAAT CTGGAATGATATTGCTTTGAATTCCTCCTTTTATTATGGTTTGGAGTTATTGAAGAACTGT AGATTTTATCAACCTTAATCTTTTCCAAAGGAAGATTTTTTTAAATCTAAAATAACTCTGC TTAAGATTTCTATTGGATTTAGGCCTTGAGATGAGGCATGCCTCCCCAAAACTTT
40	CAACAATATACTCAAATCTTCCTTTATGTCCAATACAAACATTTAAGTCAGTAGGCTCTC CAACTATGCATTTAATACCTCTTTGAATTTTATTTT
45	AATTTAATATCAAATCAAAGTTTTCTTTTTTTTTTTATATGCTACAAAGCATCCTTCAATGA TAGTATTTTTTATTCCTAAGTTATTGAAAAGATTAGATAAATATTTAAATGCCTTTTTAA CACCAATTCTATTATCCGTCCTAATTTTCACCAAATCCTCTAAGATTTTTAAATAATCCA TAATTATCATCTCATAAATTCTACTTTTTCTCCAATAATTTCATTTAAATCAATATCACT ACACTTAAATTCAAGCATTGCTGTTGAGTAATTTTTACATTTGTAGGTTTTCCATGGCTT
50	TAATCTTACAGCTTCGACAACCCTATTTTTATCAATAAAATTATATCAATAGGATAAAG CATAAAGAATGTATGCATAGCTATCTTTCTTCTTTTTGTATAGGAAAAGCATAGCTTTATC TCCAATATCTCTAAGCATAAACCAAAAGCTCTTTTAATAAAATTATCTGCCAATACAAC TTCAAATTCTAAATTTCCAACTTTAACTTTTTTAATTTTCTTATTTTGCATTTTTTCAC TTTCTTTTTTTGCATTTTTTCAC
55	GTGGATAAAGCTCTAATAACTCATAAACCTTTCTTGGAACATTTGTATTAACTTCAATAC CTAATTCTTTTAATTTACTAACTGTTAAAGGGTAATCATGTGTCCATGTTCCTGAAGTTA GTTTTTTTGCGATTTCTTTAGCTTTTCATCTCCATATTTATCTTTCAACAACTCATAAA CAAATTCTTCCATCTGTTTAATAGCTTTTTTTAGATATATCAACCAATATTAATGTCTCAT CACTTACTTTTCTCCCCTTCCTATAGTATGCCTCTAAGATAGAT
60	CAATCTGTGGATCTACTGGCCCCATTACAGCGTTTTTATCCATAATTATTTCATCTGCAG CTAAGGCAATTAAACTTCCTCCACTCATCGCATAATGTGGAATTATAACTGTTGTTTTTG CCTTATGTTCCTTTAAAGCTAAGGCTATCTTGCTCACTCGCTAAAGCTAAACCTCCAGGAG TATGAATGATTAAATCAATAGGCATATCTTCTGGTGTTAATCTAATAGCCCTCAAAATCT CTTCACTATCTTCAATAGTGATAAATTTATATATTGGTATCCCTAAGAATGTTAATGCTT
65	CTTGTCTATGTATCATAGCTATAACTCTTGTTCCCCTCTGTCTTTCAATCTCCCTTATAC ATCTCAACCTTTTCATTATCCTATATCTCATCATCATCTCTGGATAAATAA

GGTAAATTATTAATATCACTTCATGAATATAAATATAGTTGCCTTATTAATAGGACTTTC GCAGGAAAAATATTTTATTGAATATTGACACTCTTTGAGTGTCTAAGCTCCAAATTTAT ACATAAACTGCGAAAGTCCTATTTATCATCACTTAAACTGGTGATTGACTATGAGTAAAA 5 TTGGATTTAATCCAATAAAAATAAAATCTTTTTCAAAGATTAAAACTTACGATGATACAT TACCATCATTAAAGTACGTTGTATTAGAGCCTGCGGGATTCCCAATCAGGGTTAGTAGCG AGAACGTTAAAGTTTCTACTGATGATCCTATATTATTCAACATCTATGCGAGAGACCAGT GGATTGGCGAGATTGTTAAAGAGGGAGATTACTTATTTGATAACTCAATCCTTCCAGATT 10 TCTTTAAATTACAAACTCCTAAAAAAGTTCTTAGAACACAGTTTAAAAAAAGCTAAGTTCA GCGAGATTATTGGGCAGGAAGAGGCAAAGAAGAAGTGTAGAATTATTATGAAGTATTTAG AGAATCCAAAGCTCTTTGGAGAATGGGCTCCAAAGAATGTGTTGTTCTATGGTCCTCCAG GAACTGGAAAGACATTGATGGCAAGAGCTTTAGCTACAGAGACAAACTCCTCATTTATAT TGGTGAAAGCTCCAGAGCTTATTGGAGAGCATGTTGGAGATGCTTCTAAAATGATTAGGG 15 AGTTGTATCAAAGAGCATCTGAGAGTGCTCCATGTATAGTGTTTATTGATGAATTGGACG CTATAGGATTAAGTAGGGAATATCAATCATTGAGAGGAGATGTTTCTGAAGTAGTTAATG CACTATTAACTGAATTAGATGGAATTAAAGAAAATGAGGGAGTTGTAACTATAGCAGCGA CAAACAACCCAGCGATGTTAGACCCAGCAATTAGAAGTAGGTTTGAGGAAGAGTTGAGT TTAAGTTACCAAATGATGAGGAGAGATTGAAGATTATGGAGCTTTATGCTAAAAAAATGC 20 CACTTCCAGTTAAAGCTAACTTGAAGGAGTTTGTAGAGAAAACAAAAGGATTTAGCGGTA GAGATATCAAAGAGAAATTCCTAAAGCCAGCGTTACATAGAGCAATATTGGAAGACAGGG ATTACGTTAGCAAGGAAGATTTAGAATGGGCGTTGAAGAAATATTAGGCAATAGAAGAG AAGCTCCACAACACCTCTATCTCTAATCCTCATAATCAAAGTAATTATCATAATACTCTA 25 TTTTTATTGCTTCTTTATTTTCTCTTCTAAATATTTCGTCTAATATTATGGTTAATGCCT CAATAATATCAGAATTATTAAAATCCAAATCTGCCCTTATCATCTCATCAATAACCTTTA TCAACTCCTCATCATCAGCATTTTTAACAAACTGATTTCTTAAAAATGATTTAAATGTAT TGTCTGTATTTAAAAACTCATCCCATAGATAATATTTAACAACCAAATTTTTTAAAATTT 30 TTAAAATCTCTTTTAGGTTTATCTTCTATTTCTTTAAATATTTCTTCTTCTGCATCCACAT AGTTGTTGTTTCATAAGCTTCAATTAAAGCATAGGCATGTTTGCAGTTGTATTTGTATT GGCAGGTGCATAATCCAAAATAGTTATTATCTAAATCAACTTTAACTTTATAAGTATCTG AGCCAACAACCTCCCCAAATAAAAAATTTTTGTATTTTATGCAGTATTTGACTAAATTGT TTCTATAATATAGCTTTCCTCTTTCTATTATTTTTGGGTCGTAGTTCATGGTTATCACAA 35 AAATTATTTAAATTTTTTATAAATCATTTCAAAAAATATCGGCAGAATATAAAAAACTAC AGTAAATCCAGCAATAAAGCCAGTTATAAACCTCAACTCATTAAAACTTTCTCTCAATCC AATTAGTTGAGTGGTTCCATCAACTGCCATAGGAATTAATGCAATTATTAAATACCATTT AACCCCTGTATAAATCCCAAAACATCTTGCACACACGGCCATTTTATGTCCAAAGATAAA 40 AAAGCTTCTTTGTGGCATTTGATGGCATATAAGGGAATAAACAGCGTATAAACATATTGA AATAAACTTCCAAAAATTTGATGTTTCTCCCAAATATGCAAAATAAGGTGCTAAAAAAA ACTCAAATAAAAATAAGAAAAGAAATAAGGACTATTAAATAATATTTTTCATAACCCC ACTTATCTATTCTTTATAACAACATATATAACTCCACCAACAGCCCCGAGTATTGCTCCA AAGATGATTGCTGTAATAAATCCAATAATGAATGAGGCCCCAGTAAACATCGCCGCTTTT 45 AATCCAAGCGCTGATAGGTATGCAGACATAAATAAAAAGCTTAGAATTGAAGCGATAACT CCCCCTATAACTCCGGATATTGCTCCAACTAATCCACAGTTTTCATAATCGCAAATACCT ATAGCCCCCAATATACCGTTTATAATTCCTCCAATTACCGCTGGTTTTAACATTCTTTCC TGGTCAAAACTTACCATATATTTCACCGAGTTTATTTTTAATTATAATTACATTAAAATT 50 TTTATTTTTTGATTTTATATATTTTTCTATTTTTATATTATAACATTTACATCCATAAG CTTCATACAAAGTTCCATTAATCACTGTATAGATTGGAAATCCCTTAACTTCCCATCCGT CAAATGGACTAAATTTTGCCTTTGATTTAAACAGTTCAGCATTGATTTTTCCTTCTTTT TTAAATCAATAATTGTTAGATTTGCTAAATTGCCTTCTTCAATTTTGTTGTTTATGTTAA 55 TATTAACTAAATTTAAGGTTAAAGGAACTATCGTCTCAATTCCTGGAATCCCCGAAGGGC AGTTTTTGACATTTTTAAGTTTATCCTCTAATAAATGTGGGGCGTGGTCAGAGGCAATAA TATCAACATCTTTATTAACAATTCCTTTAATTAAAGCGATATTATCATCTTTTTCTCTTA TATGATGGGGAGTAACTTCAACAGTTATTTTTATATTTTTTAACTCTTGTCTTACTTTTT 60 TTATTAAATATAGAGCTTCTTTAGTTGAAATATGGCAAAAATGGACATGTGGTTTTTTAT TACTCTGCCTATCAATAATCTTTAAGTTTTTTATAACTTCTTTAACTGCTTCAACTTCTG ATTTTTCATCCCTAATTTTACAATGGTCTATCCAGCTGTTTAATTGATATTTCTTTAGAT TTTCATTTATTACATCTTTGTGTTCAGCATGGATGCAGAAAAGCTTATTTTGATTTAAAA TATCTTTTAATTTTGAATAATCCTCTATAAACAAATCTCCAACAGATTTAACCATAAATA

TCTTGTATGCTTTTGCATCTTCTACAGTTCCAAGGTAATTATTTTCAGTAACTCCAAAAT TCAAAAACACATTTATCTTACTATCCTTTTTTACAATCTTCAAGTTTTTTATAAAATAGTT CTTTTGTAGTTATTGGAGGTTTATTATTAGGCATGTCTATGGCAAAGCAAACTCCTCCAT TTATTCCAGCTAAGCTACCACTTAAAAAATCTTCCTTCTTTTCCTCTCCCCATCTAAAAT 5 GAACATGTGCATCAATAACTCCCGGAATAACTAAGGAGTTTTTTATATCTATTATTTCAT CATCTACTTTAATATCTTTGGCTATCTTTTTGATTCTACCATTTTCATCAATTAAAATAT CTCCTTCAATGATTTTGTTGTCTTTTATTATTCTACAGTTTTTTAATAGCATGGTATCAC ATCTTTAAGAGTTTAGAGGCTGGTAGTTATGCAATTGGGAAATGCAGAAGTATTTTATAT 10 AGCTATGGGAATTTATCTATTTTTATTATTTGCTATTGCATTTATGACTTATAGATGGGT TAATAAAGAAGTAAAACCAGCTAAAACATAACTTCAAACTTTTTTTAATTAGCTTACCTC CTAAAATCCAAAATATAACTATGCTAATGGCAAATATAAAGCATAATCTAATAGTAATGG CTTTTTTATACACAAATAAGTTAAATGTGCTTAGTAATAGACCATAATAGCTATGTTCAA CTAACACATTAAATATTTTCCAACTACATAGTTACGAAATGCTATTCTATCCTTTATTG 15 TTATTTGCCTATGCATTTCAAAACCATAACCCAATATGAATTGAAAAGCAAACAACAAAC CTAATCCAACAATAACCATAAATATAATGCATGGAATAGTAGGATACTGCAGAGGCTGAA ACATTATACCAATAGCTATAAGCAAATAAGTTATTAAGTTATTAAAGTTAGCTTTATTAT TGATACTGCATTATCTATGTAATATATTATTTATCGTTCATGAGCATCACAATTGGTTT TTTGACTAGAATTAAATTTATAACAATCTATACCTCCCTGGTTTTGGTTCATCTATATCT 20 CCATATTTAATTAATTTTTTAATAATATTTTCCAACTCATCCTCTTTAATACCTTTCTTT TTTGCTTCTTCAGCTATATCTTCATGTTCAACAAGTTCTGATTTTTCAGATAACTCCTTA TCAACATCAAATATTCCAGTCTCTGGGTCATAGGCAATTTCTTTTAAGCATTCAGTTATT ATATTTATTGCCTCCTTTGCATCTTCCTCATCAACACATCCTTTAACTTTGCCTTTGCA 25 TGAGCTTCAGCAATCCTTATAGCAGCCTCTAACTGCCTTGCAGTTATCTGATGTTTTTTT CTCATCTCTACATAATAATTAACAAATAATTCCTTAGCCTTTTCACTAATTATCGGCTTT TTCTGTCTTGCGTAGTAGATATTTTATTATAAATTCCTTGTCTATTTTAACTCCATCA ACCTCAAGGTAATCTAAACCCATCTCCCTGTTTATTTTCTCATCTAAATATGCTCTATGC AAATCTACAATGTATTCAGCGATATCTTTATCCTTATCCTTATCAGAAACATCTCTAATT 30 GGAAATATTAGGTCAAATCTACTCAATAATGGGGCTGGAATATTTATCTGCTCAGCTACA GAAACCTCTGGGTTGAATCTTCCCCATCTTGGATTGCAAGCGGCTAAAATTGCACATTCA GCTGGAAGTTTTGCATTTATTCCTCCTTTACTAATATGGATTGTCTGACTCTCCATAGCC TCCAAAACATAGCTCTGCAGTTCTTTATTAACAGTTAGCTCATCTATACATGCAGTTCCT TTGTGGGCTTTAACTAACAAACCTGGCTTAATAACCCATGTATCTTCACCAATCTCTGTC 35 TTCTCCCTAACAACAGCGGCAGTTAGCCCAACACCAGTGGCGGTAGTAACAGAACCGTAT AAATTTCCTGGGATTTCAGCAATCTTTCTTAGTATGACTGTTTTTCCAATTCCTGGGTCT GTGATTAATATATATGAATATCAGCCCTCTTTCCAGGTTTTTTAACTCCCTTTATCTGT GCAAGTATATTAACAACATCTTTTCTTTTAGCTATTTTTTTAATATTTTCAATATCTGAA 40 TTTGTTAATTTAATTTTACTTCCCCATCCAAAACCTCACAGTGTAGGGCTTTAACATGT ATGTCATAGATTGGTAGCTTTTTACTCTTCTTAACTTTTATTGGGATGCCAGTTATCTTC ACCCTTCCAGCATATATTCCAGGACTGTTTTCTAAGAACACAGTTATGTATTTTGGCGGC TCTTCAGGATTTTCCATTAAATCCAATGGCTGTTGAACTTTAATCTCTTGGAAGTCAGTA TATATTGATTTATGCTCAATTAGGTTTAACTCAGCTCCACATTCACAAACAGCTTTTTCA 45 GAGTCAGTGTTTAAGATATCTATTTCTCTAACAACTTCTCTTCCACATTTTGGACATATA TAATAAGCTTTTTTAAGCATTGGTCTTATTTTTGATGCCATAACAATGATTCCTTCAAAT TCAACTAATTTTCCTAAAGTTTTGCTCCTAATATCCTCTATTGTGAAAATTTTCCCTTTT CTTGTAGTTTTAAAAATTTTTGGGAGATTTTTTACAGCAATTATTACGTTTGTTGGATAT 50 TGTGGATTATTATTAAAAATTCTACAAATTCCATTAATCCGTAATTGTAGAGTTGATTT AAATCAACTACAACTCTTTCATTGTCTAAGATAATATCTTCCTGATGAATATTTCTTAAA TAGGCAGTTAAATAATCCCTAACTTCCTCTAAAATTAAGTCTTCATCTCTCAATTCCATA TCTACATCCCCATACGAAGAAATCAAATTTTAGAGAAATTTTAAAAACGAAAAATAGTTGA AATTTTGCTTTTAATCTTAATTATTATTTAGTAGTTGTTCTATTTATCTATTCTGTCA 55 TTTATTATAAACTATTTATATAATTAACAACCTTTAAAAACTCCCATGGCTATTCCTTCAA TATTGTCAATATCAGTTCCATTAGATGCATGATTTACAGGCCAATCATCCCTATATGACT GAATATGCAATATTTTGTAGTCTTTTCCTTTAAAGAGGTTTTCAATATCCTCTAATCCCA AATCAATTTCCTTTTTTACATTGTTGGTTAGCTGTGTTTGATGAGTCATAACTAAATGCC 60 ATCCTTCAGGAGCTAAGGATTTATCTACATTAGTTACTTGGTTTAAGCCGTTTATCCTCT CACATTCTGGGGTAAAGAGAACACCACCATGTTTTATAATTCCTTCTTTTGTGGCTATGC TTATCTTTATTCCTTTAGATGGCTTTGGCTTTGATTTCAAAAATTTTATATTGCATATTT TCTGGGTTTCAATTGGAGAGATGTTGCTTATAACAACATCGAATTCATAGTCATCAATAT

TCTTTTTAATAATCCTCGAAAGTTCATCAGTAACTGCCTTACATCCACCTATTGGTATTC CAGGTCCTCCAAATTTGTGGTAGTTTTTAGCTATCTCTATAATTTCACTCATAGGTGTTT CATAAGCTGTTAAACTCAAAGCCCATCCAGTAAATGCATTTCCAACCTTTAAAGCTAAAT CAATCTCTTCTAAAAACTCTCCAAATGAGATATTTTTATCAACTTTTCCCAACTTTAATT 5 TTGTAGCTAATTTAAATGCTTTTGCCTTTTCTTTAAAACCTAAGAGTGAAAACAGCTCTT TATATAAATACTCCTTCCCATTAATTAAAAATGTTCCATCTGGTTTTGAGTTTATTATTT TTACATTAGCTCCAGCCTTTCTTAAAGCTTGGGCTAAATAGCCATCATTTCCGTGTGGTA TCATGTGTAAAGCTCCTGTTGTTAGTTGAAAGCCCTCATACTTCAAGTTTGTAAATCTCC CTCCTAAGAATGGAAGTTTTTCAAATACAACAACTTCATGATTCTTAGATAACAATGCTC 10 CAGCTAATAATCCACCTAATCCGGCTCCAACAATACCAATTCTCATAATATCTCCCTTAT TTGTTTATAATTTCCCAGTTTTTAAATATTTTGATATCTTTTGAGCAATTATTTCCTGAT TATGCCATGTTCCGTGAAATATACCCTTAGGAATCTCATACCTCATAGCTCTTATTATCT TTTTATCAACTTTCCCAGGATTTGCCTTAGCAAAGGGTGTTTGTGGTAAAGGCATAAAAG TATGAGCATGTATTTTAGCACCCATTTTTTATTAAATCCTTCATAACCTTTATTGTCTTTT 15 CTACATCTTCCTCAGTTTCTCCAGGCAAACCAAAAATAAAATCTACATCTACTCCAAGTC CAGCTTTTCTCGCTACTCTTACAGCGTTATAGACATCTTCAACCGTATGTCCCCTATGGC ATAGTTCTAATACTTTTTCACTACCAGATTGAGCACCAATAACTAAATTCTTATTATCAG CATATCTTAAAATTAAATCTACCGTCTCAATATTCACATGCTCTGGTCTAACTTCAGAGG GAAATGTTCCAAAAAATATCCTTCCATTATTACCTAAAATTTCTCTAATACTTTCTAATA 20 GTTTTTCAATTTTATCAATATTTAATGTTTTTCCGTCTTTAGAACCATAGCCAAAGGCAT TTGGAGTTATAAACCTTATATCTTTCAAATTCCTTTCAGCCATTATTTCAACATATTTAT ATATATTTTCAACATCCCTATGCCTTATCTTTTTTCCAAAGATTCTTGGTGTTTGACAGA AATAGCATTTGTAAGGACAACCTCTCGTTATCTCTATATGTCCAAATTTATTATGCTTTA 25 CATTATCATTTAAATAGGCAATACCTTTAACTTTTTTATAATCCTCATCTTCATTAACCG CCTTTATAAATTCTGGAAACGTCTCTTCTCCCTCTCCAATGCAAACAACATCAAATCCCA GTTCAGTTGTAAAGAAAGATATGGCAATAACAACCTTGTCATATTTTTTTAAAACTTCCT 30 TTAAATTAAAAATATCTTTTTTTTTGGCAAAATATATTGGGAGGTTATCAAAATATTCAT CAATCTCTAAAGCTCCAATCAATGCATTGAAACTGTTTTTATGTAGTTTTGTATAATAAA CTACCAAAGCGGTGTTTTCTTCCATATTGCTCCCTAAACAATATTTATCTCAAATGAGAT AATTAACAAAAACTATATTAATGATTCCTTTAAAAGCTAAAGTATAGAATAAAATTTTA ATGCTAAAAATTTTTTGGTGAAATTTATGGCAATTGGGACACCTCTTTTGAAAGGAAGTA 35 GATTGGGAATTGAGTGTATAGCTGTTGATAGGTATCAAAACGCCCCAGCTATGCAGGTTG CTCACAAGAGCTATGTTATTGATATGAAAGATTACGATGCATTGATGGCAATTATTGAGA ATGCTGAAAAATGGGTTATACTGTTATTCCTACAGCTGAAGCTACAAAGATAACTATGA 40 ATAGGGAGTTAATAAGAAGATTGGCAGCTGAAAAATTAGGATTAAAAACTGCTAAGTATG AATTTGCAGATTCTTTAGAAGAGTTGAGAGATGCCGTAGAAAAACTTGGCTTGCCTTGTG TAGTTAAGCCAATTATGTCTTCATCTGGAAAGGGGCAGAGTGTAGTTAGAAGTGAAGAGG ATATAGAGAAAGCTTGGAAGATAGCTAAAGAAGGAGCAAGAGGAATAGGAAATAGGGTTA TTGTTGAAGAATTTATAAACTTTGATTATGAGATAACCTTATTAACCGCAAGAACTGCTG 45 AAGGAACTAAGTTTTGTGAGCCAATAGGTCATGTCCAAATAGATGGAGATTATCATGAAA GCTGGCAACCTCATAATATGTCTGCTGAATTAAAAGAACAAGCTCAAGATATAGCTAAGA AGGTTACCGATGCTTTAGGTGGTTATGGAATCTTTGGTGTTGAGTTGTTTAAAGGGG ATGAGGTTATATTTAGTGAAGTTTCACCAAGACCTCATGATACAGGAATGGTTACAATGA TAACTCAAGAAATGAGTGAGTTTGAAATTCATGTTAGGGCTATTTTAGGTTTGCCAGTAT 50 CTCCAAAGTATCATATAGAGGATGCTTTAAAAGTTCCAAATACTAAGTTGAGATTGTTTG GAAAGCCAAATGCAAAGGTTGGTAGAAGAATGGGAGTTGCTTTAGCTTATGCCGATTCTG TAGAGAAGGCAAGGGAATTGGCTGAAAAATGTGCTCATGCAGTTAGAATTGAATGATTGG ATATTTAGATAATATTTGTCTTGTAAAAAAATTTAAATCTATGTTTAATTAGCTTATAA 55 AATCTATTTCTTCATTTGAGAATTTTTTTTTATTTAATTTCTAAGGGTTTGCTGGTTTGATTA TTTAGAATATTTGAGTTTATTAAATTATTTAGATTTTTAAAAATTGAGATTAATTAGGTA AGTAAATAAGATTTCTCTAACTAATAAGTTAAATTTTTGAATTTAAGGAGATAAAAATGC TTAGTTTTAGTAAAGAGATAAAATTTTAAATACTAAAAGGTTTATATTGTAAGATGGTTA TTTATCCTTAGAAAAATATGGTATAGAAAAGCTTAAATATTAAGAGTGATGAAATATATT 60 ATGTTGTGAATGATTGCCCTGTTAAAATCAGACCTCTTGGAGGATGGAAATTTAAATGCT TTTACTAAATATTTTGTTAAATAATTCGTGTTAAAATCAGACCTCTTGGAGGATGGAAAT ACAAGTATATAAAGTGTATTGGTAGTATATAAATTTTTGTTAAAATCAGACCTCTTGG AGGATGGAAATCTGTTTTATCAATTTTTCAGCTTCATCTGGTGTTATTATGAATAATGTT AAAATCAGACCTCTTGGAGGATGGAAATCTGCCCGCTCTTACCTTTCACGGCAATATAAG

CATTAAACGGTTAAAATCAGACCTCTTGGAGGATGGAAACGTTAAACAATCTGCTATGAT AATCATAACTAAATTCATTTGTTAAAATCAGACCTCTTGGAGGATGGAAACGAAGTATCT TCATTTACTATTACTAATTGATAACCTTGTGCATCTTTAGTTAAAATCAGACCTCTTGGA GGATGGAAACTTATCTCCTCCATTTTTATCTGTAAAAATTTTATTAAAAATTAAAATAATT 5 AAAATAAGACCGTTTCGGAATGGAAATATAATTTAACTAAAAACTTGTATGCAACTGCAA CGTCATTTATTAAAAATAAGACCGTTTCGGAATGGAGATTAGCAGTTTTGTCAGCTAT TCATATATAAAATAAAAATCTTTTGAAGATTTAGACTTAAACATTTAGTTTATTTTTTA AAAGTCTCAGAGTTTTAAAATACAAAGTAGCAAATAAAACAAGCACTGGGATAATTTCCA ATCTACCAATCCACATTGCTATAATTCCAGCTATTTTTCCAATTACTGGAGTTTTTAAAG 10 TAACTACCCCTAAAGATATGCCTATATTTGAGGTAAAAGAAACAGCATCAAATATTGAAT CGTAAGGGTTATAACCTAAAGCTATAAATATTAAAGCTGTTAAGAACGAAGATAAACAGT ATAAAAAGAATACAAATGCTTCCCTAATTATTCTATAATTTAAGTCCATATCATCAA GATGTTCATGAATCACTGCTGATTTTGGATAAATAATTTCTTTTATTTCATATAAAAGTG CCTTCAGTATAACTAAAATCTAATTATCTTAACCCCTCCAGTTGTTGTCCCTGCCCCTC 15 CACCAATTAGCATTAAAAAATTATCAAAAATAGGGATAAGGATGAGAGATTACCTACAT TTATAGTTGTGAATCCAGTTGATGTCATTGCTGAAACTACTGTAAAGAGAGAATCTATTA TTGGAACTTTATCCTTTATTGAGATGATAATTGAAATAAAGGCAGTAACAATTAATGCAT ACTTTGTTTGAATGTCATTAAAATACTTGCCCGTTAGTAATTTGTGATGTATTGAAAATG ACATAACTCCTCCAACCATCATTATGCCAATCATAACAATTTTTTGCAAAATCGTTGTATG 20 GAAAGCTATAATTGCTTATACTCATTCCTCCAGTAGATATTCCAGTCATGGTTAAATTTA AAGCATCCCAAAAACTTAATCCAGATAAATATAACAAAAGAACCCCTAAAATAGTGTATA AAATATAAATCCAGATAATAGTTTTTATTGTTCCTATAGCACTTGGCATTATCCTCTCTT GTCTCGCCTCAGATGTATATAAAAGATAAGCAACAGTTCCAGACCTTGCTAAGACAAGAG CTGATAAAACCAATATTCCAACTCCACCAATCCACTGCTGAAAACTCCTCCAAAATAAAA 25 TAGATTTTGGTAAAACCTCAACATTAGGAATAAGAGTCATTCCAGTTGTTGTCCAGGCAG ACATGCTTTCATAAACTGCATCAACATAAGAAAAATAATCTATAGATAAATATAAAGGAA TGGCCCCTATAAATGAAGCTATAAGCCAAGCCAATGCAGAGGCAACCATGGTATGATGTA GTTTTAAATTTTTTGGTTTAGTAGCTCTCTTTAAAACAAATCCAAAAATAGAAAAAAATA AACCTGGAATTAAAAAATTTAAAAAAGGTGTTTTCATTGTAATAAACTGACACTATACATG 30 GAACTAATGTAAATATTCCAATAATTTGTATAATCCCCCCTAAAATATGTAAAATTCCTT CAATGTCTTTTTTTGTTAATCTACAGATTCCCATAATTCTCTAACCCATAGAAACATTTA TTTCTACCGAATAGTTTATTATCTCAGACATATTATAATATTTAAGCTTTGGATTTTTAT CAATGTAAGATTTGTTTCCATATTCTTTGAGCATTTTGTTATAAAACTTATCTGCTAAAC 35 TTTCATTTTTAAATATCCAAAAATTGGTTATAATTACTTCATTTTTACCAAAATATTTTT TGCACTCTCCTTTAAAATATATGCTGTTGTTATTAATATAATCAACACGTGAAATTCCCC CTATTCTAAAAAATCCGTTGCTATTGGACTCATAATAACTCTTTGTATTCTCCTTAAGTA TTTTATAAACCTTATCTCTCAAGGTTTTATTGGAAAATAAGGATGCATTATATTTTATTG TAAATATCTCCATCTAATCCCAGAAATATCATTCGCTTTAATTATTAAGTTATTTCCAAC 40 AATAATATATCTGTCAGAGAGTGCTTTTTCATTTTTGTAATAAAACGCCCCTACAACT TTCAACAGAGTAGCCATTTTCTATAAGTTCTTTTAAGATTTCTGTTTCATTGAAATCTCC TTTTTCTATTACTACTGCATCACTACCTATTATAACAGTTTCTATATTGTTGATGTTCCG TTCCCAATCAAATCCGTCTTTTTCATAATAGAATCTATCACAAACTTCTGGAACAAAAGT TAATATATTTCATCTCCAAAGTCATTTATTGTGCTTTTGTTTATCTCTACCTTTTTAAA 45 AATAACCGAAAGAGTTTTGTCCATATTAATCAACTCCAGCCTATAATCCCTCTTCTAACA TATCTTCCTCACTCAGCCCTTCTAACTCAATCATCGTTTTCAATCTTTCGGTAATTATAT TCAAACATTTATCAACAGTCTCACTAATCTTTATATTCTCAACCACTGGAATTCCCTTCT TTTTTGCAGTTTCAACCATGTAATCGTTTATCATTCTAATGATTTTAAAGTATTTTAAAT 50 ACCTCTCAGTAGGTCTGCTTGAAACTCTTCCCCTTGCGTAGAATCTCATTTTATGCAACT CTTCATTGTAGATTGTTAGCATAATAAAAACTACATGGGAATTTTCTAAATATTTATCTT TTAAAAGTGTTGGGACTAAGTGAGTTCCTTCGATAATTACACTCTGCCCCTCAACTAAGC ATCTATCTATAACTCCTTCCACTCCAGTTAATACTGCCTCAGAATGCCTCTCAAACCCTT TAATGTATTTATTGCCCTCATCATCTCTCAAAACCTTCCAAGCTGTATAACTTGATTCGT 55 AAAGTGTAGGGATTAAATCTCTTGATATAACCTTTCTCATAACTTCCCTTATAGAATCAG TTCCAATAACGCTTGGAATACCCAATCTTGAAGCTATCTCAAAGGCAATAGTTGAAGTTC CAACACCACTCGCTCCACCAATTAAGATAACTATCGGTCTTCTTCCTAAAACCATTCTCC ${ t ATAGTAGATATTTTTTAGCAACTTCATCGTAATTTTTTGAAATTAAGTAATAATAAACTC}$ TCCTCCTCAAATCAGCCTTATCTATAACTCTGATATTTTCCTTTTTTAACATCTCGTATA 60 TATCCCAGGCTATTCTATAGGCAATACTTGGTTTTAATCCAGCGGCTGTTAAAGACCTTG CCAAAATACCCTTTGAAAATGGCATCTCATAGGATTTTCCCCTCACAATAATATCATTCT GCAAATCCATTATTCCACCGAAATTTAATCTAAAATTTCATCAGCATCCAATTTTTCAGC ATTATAAAGATTTTTAGCCCTCAAATAGAGAAGTTCATCTTTATCATCCTCAACCACAAC AAAAATTTTTTCTGGTTTGTATTTTTCTATAAATCTCTCAACATTCTTTCGTGCTATCTC

AACCTTTTTCTTTAATCCTTCTAATGCTTTTTCTGGAACGCCTATAGCTCTCATATCTTC AATATCTAACATTCCCTCAGTGCATACAACTTTTAAATTAGGATTTTTGTTTTTAAGCTT TTTAAATAACTTTTTATTTGAGACAATGTATAATGCACCTTCATCTATTTCTTTTCTTC AAATTCAAACCCAAAGTTAGCTAAGATTTTATTTAAATGTTCTTGGCATTTTATAATCAA 5 TTTACAGAACTCTTTAGCTTCCTCTTCATTCAACTCATGCTTTGGGGGCTTTTTTATATAA CCCTGGCTTTGCATCTTTGTAGGATATTTTTTTTATCATCCTTTTTCTACTCTTATTTTAGC TTTTTTTTAGTTGGGAAATAGTTGAAATTCCCTTTCTTATCAAATCCTTTGAATATTCAAC TCTCATCTTCTCCTCTATTCTTCTCTCTTTTCAGATTTTTCCTTTTCTTTAAT 10 TTTTCCAACTCCTCAACAAGCATTGGTAAAAAGACACCAACATCAGTAACTATCCCCAAA GCTTGTGATGTCCCTCTATCCATTAACTTTGTTACAACCGCTGGATTTATATCAACGCAG ATGGTTTTAACCCATGAAGGTAATAAATTACCTGTAGCTATTGAGTGTAGCATAGTAGAA AGCATTAGAACCATATCCTTTCCTTTTAAAAGCTCTCTCATTTTTTCCTGAGCTTTAACA ACATCTGTAATAACATCTGGTAATGGGCCATCATCCCTGATACTTCCAGCTAAAACATAA 15 GCATCTTTTATGCTTCCAGCCCTCATTATTGTATTTATAGCCCTTAAATGATGACTATGC CCTCCTGGAACGCTCTTTCCAGTCTTTAAATCAACTCCTAAAGATGTCCCATATAAAACG CTCTCTATGTCATGAGTAGCTAAGGCATTTCCAGCAAATAGTGCTTGAACATACCCCATC CTAATAAGCTTAGCTAAAGCCCATCCAGCTCCAGTGTGAATTATAGCCGGACCTCCAACA 20 ACTACAATTCCTCCTTTACCTGTCTTTCTATATTTTTCTCTAATCTCATACATCTCCTTA GCTATTCTTCTAATAATTGTTTCTTTAGGCTTTTCTGAGGAGGCATCTGATTTCATAAAC TCAAATAACCCCCCTCCTTCTCTTGGTTTTTCTGGAGGGATGACTCTAACCCCTTTATGC CCAACAACAACTAAATCTCCTTTTTTGATATTTCTTATTGTCTTTACTTCAGCCCTCATT ${\tt TCATCTGGATAACCAACGATAGCTCCGTCCATTTTTTGGTTTTCAACCTCTATCCATTTG}$ 25 CCTTTGAACCTAATAAATGTTTTATGATTGGTTGTTGAATAAAAGCCCTCTGGTAAGACC ATATCCTTCTCAGCTGGCTGTAACTCAACCTCTTCAATCTCTGGAATCTCAGCTCCTAAA TCCCTCAACTCATTCAATATTTCATCTACATGCCTTTCATCTCTACCAATAACCAATATC TTTGCATAACTTGGGTCTGTTTTTCTCTTCCCAATCTCAAACTCTAAAACTTTATAATCT CCGCCCATATCTAAGATTTTATCAAAAACCTTAGGCAGGATTAAGCTGTCAATAATATGC 30 CCTCTCAATTCAATTTCTCTCATGAACATAAAATCCCCCAATAAATGTTATCTTAGGAT TAATTAACGATGATGAAGTATTTAACAATTGTCATCAAAACCTTTATATACTATTTTGAC AGTTTTTAATCCAATTTTTATCTACTTTACAAAGAGGGATAATTTGCATACATTAAGATT TAAAAAAGATAGAGCGATAAAAATAAGTGAAGAGCTATTTCCTGATGAGTTATGTGAGAG ATGTGGAAGATGTTGCATTTTACACGCTTACAAAACTGAAGATGGAATTAAAACAATATA 35 TTGTGAGCATTTAGACCCAGAAACAAAATTATGTAAAGTTTATAAAGATAGGTTTAAACA TAGATGCTTAACTGTAATGGAAGGAATCTTAGCTGGTGTTTTTCCAAAAGACTGCCCCTA TGTTAAAAATTTAAAAAATTATGAAGAGCCATGGTTTTATAGGCATTTGAGAGATTAGGT CTTTAAAAATTCATCTATTTTTTCAGCTAATGTGTCAAATATCCATTCAAACTTTTCGTC ATCTCTCTCTAACAATGTAACTCTAAATCCGTTAAGTTGAGAGCAGAATGAGGTTAGAGG 40 AACTACACAGATTCCAGTAGATGCTAAGAGATAATAAACAAATTTCTTATCTATAGATGC ATCTTTTATTTGGTGTTCTATAAATTCCTTCAATTTCTCATTCTCTATTTTATTGAATT GTTTCCATTTAAATAGTTATCTTCAAATACAACAGACATATAGAAAGCTCCATTGGCTTT ATTTGCTATAACACCATCTAAATCTTTTAGTTTTTTGTAGGCTGTGTTTGACCTTTTTTC AAAGAACCTATTCCTCTCCTCTAAGTATTTTTTGTAATTTCTATGCCCCATAATTCTTGG 45 AATAGCCATTTGTGGCAATGTAGTGGAGCAAACCTCTATCAATTTGGCTTTATAAATACT TCTTGCCCCTGGCCATGGAAGTTCTTTTGATATACCCTTTAAAGATAAACCGCAGACATC ATCTATAACCTCACATAGTAAATGCTGTTTTTTCCCATTATATACTAAGTTACAGTATAT TTCATCACAAATAATAAATAAATCATATTCATTGGCTAAATCAACAATCTCATTTAAGAT 50 TTTTTTTGGATATACTGCTCCAGTTGGGTTGTCAGGATTTATAACCAAAATTCCACTAAC TGCTGGGTTGTATTTAATCCTCTTCTCCAAATCATCAATGTCTGGATACCAGTAGTTGTA AGGGTCTAAGAAGTAAGTTACTGGAGGAGGAGCCAGCATGGGATGCCTCTGCAGAAGAATG GGTTGAGTATGATGGGGATGGGTTTATAACTCTAACCTGCCTCTTCAATAAACCATAAAT CTTTGCAATGGCATCTCCTAAGCCGTTAAAGAATATGATGTCTTCAGCAGTTATCTGAAC 55 TCCTCCTCTTTTATTTACTTGTTCGGCTAAAAATTCTCGTGTTTCTAATAAACCTTTAGT AGGACAGTAGGCATAAGAACAGTCGTTTTTAACAATCTCTGCTATAATATCTTTAATCCA ATCTGGAATTTTTTCCCCTTTAGCCACTGGGTCTCCTATGTTTTCCCATGTTATGTTTAT TCCAAACTCTTCTATTTTTTTAGCTACATCTACAATCTCCCTAATTTCATAACTCAATTC TTTAGCCCCTACATCTATTATAGGATTCCTCATGTTTTCATCTCAAAATGGAACTCTATT 60 TTGTATGACACTTTTGTGTAATTTACCATTATCCCAGTAGTATATAAACTTTACTCTTAA AATAGAGTTCTATTTTTTTATATGTTTGAAGTGTTATATATCGAATACTTATAGTGCGTT ACAAAAACTTACTATAGAAAAGGCACTTATAAAACCAAAGACTTTTATATTCTTACCTT AAAAATTGCAGTTAATTTTGAAAAGCACGATAAACGATAATTCCCTAAATATATGGTGAA AACAATGAAATGCAAATTTTGTGATAAAAAGGTTATATAAAGCTCAAATCACCAAAGAT

WO 98/07830 PCT/US97/14900

GTATCTATGCAAAGAGCATTTTGTTGAATATTTTGAAAATAAGGTTAAAAAATCAATAGA TAAGTATAAAATGCTAAGTAAAGATGAAAAAATCTTAGTTGCTGTTTCTGGAGGTAAGGA TGGGCATGCAGCTGCATGGGTTTTGAAAAAACTCGGCTATAATATTGAGTTATTCCACAT AAATTTAGGGATTGAGGGATTTTCTGAAGAATCTTTAAAGGCTGTAAAGGAGTTGGCTGA 5 AAAATTGGAAGTTCCTTTGCATGTTGTTAATTTAAAAGACATTACTGGAAAGACAATGGA GGATATTAGAGGTAAGAAATGCTCTATATGTGGAACAACTAAAAGATATTTAATGAACAA GTTTGGTTATGAAAATGGATTTGATGTCATCGTTACTGGGCATAATTTGGATGATGAAGT TTCCTTTATTTTAAACAACTTATTCAATTGGAATATTAGATATTTAGCTAAGCATGAGCC AGTTCTTCCAGCTCATGATAAATTTTTAAAGAAGGTTAAGATATTCTTTGAAATTGAGGA 10 AGAGTTAATTTTAAAGTATGCTGAAGCTGAAGAAATCCCATATACAACCGTTGAATGCAA ATATGCTGAGAGAGCTATAACCTTAAAGCATAGAGCTTATTTAAATGAGTTAGAAAAGGA AAGGCCAGGTATAAAGTATCAATTCCTATCTGGCTATATGAAAAATAGGCATCTGTTTAA AGTTGAGGAAGAGGATTTCCAATTTAGAGAGTGTGAGGTTTGTGGAATGACATCTGCTGG AAAAATCTGCTCATTCTGTAGAGTTTGGAAGCTCTATAAGAAAAGAAAAGAAAATAGAAA 15 TTAATTTATCAATTTTAGCCACCATGTATTTAGTTCGTCTAATTCTCTATCGGATTTAGC AACATAGGGGACATACCCTTTATCTAAGCTTTTATTAATAAAATCTTCAACTCTCTTCAA ATCTTTACTTTATCCAACAATTTTATTCTTTCATTTATCTCTTCCTCTGTCTTTTGCTC TACACCATCATAAAACAAATCTTCAACAGCCCATCCAGAAACTGTATTTAATAACTTTCC 20 ATGTTTATCGTACTCCAATAATCTTTCACCATTTTGTGGAATTATTATAAAGCTGTTGTT AGTTTTGTTTCTGCAGTAGTTTGATATCTCAACAATAAATTTAATCATCTCCTTTGCTGT AAAATCTTCATCATAGCCATTTTCTGCCCAGTATTCGAACTCATCAACCTTATCTAAATA AACTCCACAGAATCCTTGCTGAATAATTTTATCTAAATAGCTAAAAATTATTTTCTTCCA TTCTGGATGCCAATATTTCACAGCATAACAGCCCTCCCATTCTGGGTTTTCATCTCCTAA 25 CCACTTTGGAGGATTTTTTAGCCATTCATTGTCCCAATAGAACCTATAATCTTCAGCCTC TCCAATGCTGATATAGGCAATAGGTATTTTTCCAGCTTTTTTAAGCTTTTCTATCTCTTC TTCACTATATTTCCATTTTCAGTCCCATCTTTTGAATAATCTATAACAATTAAAGTAAA GTTTGAGTTTGCTATTTCATCAATATCTGCATTTTGAAGTTGATATGCCCATAAAAATTT TAAATTGTTAGAATTTTTGCTGATATTTGTAAGGTTTTCCGCATTTCTAATATTATTTTT 30 AGATTTAGACATCATTTTAGGGTTATCTAAAAAAGTACTATCAAATGAAATAAAAAATCC TACAATTAAAATAATGCAAATTATTATTCCTAAAATATGGCTTTTCTTCATGTTCTTTCC CCTAATTTTATTTAAATGCACTCATTAACGTCCATGCCTCCTTTCCACTTATAAAAGCCC CATTCTTGTCAATAAACTCATTAAATTTCCTTATCAATAGCTCTTTTGTCCTCTTTTGATG 35 AAATAACTGCAACAGCATGAGATAGGTTCATAATTGGATACTTTTCAGATGTTGGTATTG AGACAATCCCAATGTTTCCCTTAACCTCTAAGATTTTATCTGCCAACTCTTTTGGTGTTA TTGGAACTCTCTTTAAATTTCTATCTCCTCTCTTGCTCCTGAAGTGGCAATAACAAAAT 40 CTAAATCCCCTATAGCTTCATCAAAGGTGTTGTAGAATTTGGCATTGTCTAAAATCTCTC TTGCATGGACTGCCATCATATAGGCTTCATTATTTATTATGCTTTTATCTCCAACTATTC TAAGCTCTTCAAATCCAAAATTCATCATAACCCTTGCTATACTACCAACATTTCCACTGT ATTTTGGATTAACTAAGATGACAGAAATCATTATTATCACTGTTTTTTCCTTCTTTTTCAG CTTATAATAATGGTACTCAACGGTTTTTATATTAATCCCAGTAATTTCAGCTATTTCTTT 45 AGGTTTTTTATCTAAATACTTTTTAATAATCTTATCTACATTCGTAGGTCTTCCAGTCTT TGCCTTTATTGGAATAACTTCGACATCAACTCCTTCCAAAGCCTTTATAATCTTTTTTGA GCTTCTTTTATATTTTGATTTTGGTAAATATATCTTCTTTGGCTCACAACTTTCCAATAA AGCAATAGCTACATCCCTATCTAACTCTAAGTTTATATAAATCTCTTCTTCATTTTCACA TTCTTTAATTTTTCAATCAATTCTTCCTTTGTTTTTTGCTATTAATTTTTTCATAATACA 50 ATCACTTACTTTTTTTTTTCTTCCTTTTTTTAACCTCGATTTAACCATCTTTCTCTC CATAGGGCTTCGCCCTATTGGTATACCCGGGATGCACTGCCTCGTTTCACTCGGCAGTGC CTCTTATAAGTTATTTTTTCTTCCTTTTCTTCTTTAATCTCGATTTAACCATCTTCCTCT TTAAAGGGCTACCACAATCTCACATATATCTTCTTCATAATCTACTGGATAAAGTTTTT TACAACCTTCACAAATCTTTCTCCAAATAAAATCTTTATTTGTTGGTTCAAAAGCTATTC 55 CCCTAACTTCAATATTTAATTTTTTAGCTACATTTTGAATGCCATAATCGTCAGTATATA ATATGGCGTTTAAATTTAGAGCTAAAGCTAAGACACCAATATCTTGTTGAGACAAATTAT CTCCAGTTTTTTAACAACTTCTTCAACCTTTTTTTATATACTCCCTATTAGGACTCATTA CCAAAACTTCTGGGGTTGTGTAATGTTCCCCCTCCTCTATAATTGGGTTGTATCCATGAA 60 TAATAGCTGAAGCATCCAACACCTTAACCTTCATGATTCCACTCCTATAAATGTTAAATA ACTGATAAGGAGATTTATTAATAATCCATAATTTATAAAATTCTGGTGGTGGCAATGATA ACAACTGTAGTTGGTAGTTATCCAGTAGTTAAAAAGGAAGAACATTCTTAGATAAGGTA AAAAAGGTATTTGGCTTGTATGATGAATATAAATATGCCATAGAGAGGGCTGTTAAAGAC CAGGTTAAAGCTGGAGTTAATATTATAAGTGATGGACAGGTTAGAGGAGATATGGTTGAG

ATTTTCACAAACAACATGTATGGCTTTGATGGGAAGAGAGTTGTTGGTAGAGTGGAGTTT ATAAAACCAATAACACTAAAAGATATTTTATACGCTAAAAGTATAGCCAAAAAACTCAAT CCTAATGTTGAAATTAAAGGAATTATTACAGGGCCTTGCACTATAGCTTCATCTGTTAGA GTTGAGAGTTGTTATTCAGACAATAGAGATGAGAATCTAATTTATGATATTGCTAAAGCC 5 CTTAGAAAGGAAGTTGAAGCATTAAAAAAGCATGTCCCAATAATACAGATTGATGAGCCG GATGGATTAAATATTAAATTTGCCATGCATGTTTGTGGGAATGTTTATAATATTATTGAT TTGGTGATTTTAGAAAGTATGGAAAAGAAAGTTGGCTTTGGTTGTAAATACAAAAGTT 10 AAGAAAGTTGAAAGTGTTGAAGAGATAAAAAGCTTGATAGAAGAGGGAATTGAAATATTA AAAAACAATGAAAAATTGAATAAAATTTGTCTGATAATATTTTAATAGACCCCGATTGT GGAATGAGGTTATTGCCAATAGACGTCGCTTTTAATAAGTTAAAGAATATGGTTGAAGCA ACTAAATTAATAAAAATATAATTAATTTCCTCTATAAGTGGTTTATATCCTGGCATATT TGGATAAAGCCAGTAGTCAGTTTTGTTAGTATATAATCCAATGATAGAATACGTACTATT 15 ATAGACCAATATATTTCCCTGGTTCTCCATAGTATATAGTCCCAGTAAATGTTTTTGG TTTTTCTTCTTTATAGTCGAGATTTGGATATTCATCAACACCTATTGGAGGGACGGTAGT TGTAATATCATTTATATCTTTTAAAAATATCCAATCCACTGTAACATTAGTATTTAAATT TATAAGAGCAGTTATTGAAATTGGATAGTTATTTCCCTTATTTCCATTAGTAAATGAGTT GCTATATTCAATATCCAAAGTGTCATTAAATATTGTAAAGTTTAAGTCAGTGGTTGAAAT 20 CCCAATATCACTTCCACTGTATCCAACTCTCATATAAAGTTCTGGATTATTTCCAGTCCA ATCATACATATCCCAACCCACTCCATCGTTATCGCTTAATTGTGTAAAGAATCCTATAGT $\tt TTGGGCATGGGATGAAGTTTGCtCTAAATATTAATTCATATCTAGTTCCATAAGT$ TTGTTTTGTATATACGCTTGAnCCTGCTCCTGCAATTACCGTTATTTTACTATTATnnAT 25 GATAAAGTATCCAACAGAATCCCATTTATCTGGGTTAAAGTAATTGAaATCATCAAAGAA TATAAATGTGTGTCTCGGGTCTTGTCTATCTACCGGAGTAGTTGAATTGTAGAGTATGTA TATATACCCCTGCCCATTATTGTAGTTGTAAATTTCATTTTATTTTGCTCTAACCCAAAT TACTGATACATCGTTATTTCCTTCTCCAGGTTTGAACCCAGTAAGGTAAAAGAATAAT TTTGTTACTTACTGAATCCCAGCCAATTACTCTCAGCTCTGTTGGAGATTGAGGGTTATG 30 CATTTCACTATAGTTAAAGTTACTACTATTTAATATTATACAGAAAGTACGGTTGTAGTT ATCATTTGGAAAATTATATATTTTATCTTTTTTTCATAACCCCAGGTGTAGTAAAATTT ATTTAAATAGACATATGGGTCAGGAATTCTTGATAATTTTATGTCTCTGTTGATGACTAT TGGCTTTAATGCGATTAACTCACCATTATTTAATTTTTTTGAATATTTTATGTCAATTTC ACAATATAAATGTACTAATGGGTCGTATGTAGGTGAAATTTTAACAGAACTAATGTT 35 ATAGGATATTTGAGTAGCCATAATTCACATTATTTAGTGATTCTTTCGTTTCATTTTT TATATAGCTGGTTATATACGCAACTGCCTCACTTGAAGCTGTAAAAAATTTTcGTTCTTT CATTATTTTATAGCTTGCATTTACAAAGGCATCTTCTACAATTTTATCTATATTTCTATC TACTTCCTTTGTTTTGTAATCAATTGTTGCATAAAACACTGCAGATATCACAAACATTAG 40 CATAACTAAAATTATCGCATTTTGAGAGAAATACATGGCAATCCCCTTAATTTCCTAATA TATATAATTCAACCCTTGAAGAGGATACATTTTTTGAAAGATACACAGGCATATGTATAT CGTAGTTTCTATATTTTAGATAATTATAGGCGTCATCATAGTCAAGAAACCTCTCCTTGG ATATATTTACAAAGTCCTCATTTCCATAAATTACATACCACCCTTCACTTCTGTTTAAAG TTAAAACTGTTAAAATATATACACTATTACTATTATTAACCCCATTGGATTTATTATTA 45 GAAGGTTATTATCTATATAAAGAAGATAATGTTTAAGTGGAATTCTTTCCTCTAAAAGTT TTTTTGAATCATTAACTCTATCAAAATAATATAAAAGAACAGCATCTTGCAAAGTTCCAT CCTCTGATAGATGTTCCATAGTGCTTATTCCTTTATCAAAAATATAATCAGATTTTACAA TATCCACATAATTGTTGTTATGTTCGACAATAGATACTGTCCAATATGCCATCCCTATGA GAAGAATGGCAGTTCCAATTGCTAAATCAACGCTATTAATCATGGTTTCACCACAATGGT 50 AAACTCTACTGGAAGAGGTGAGCTTAAAATCCTTATTTCATTAATCCCCCACATTTAAATT ${\tt TACTGTAAAAATGACATCAGAAGATAGAAGCGTTACTGTTGGTTCTGGTTCTACATACTT}$ TCTAACAAATACCCAATCAATGCTAATATTTCCGTTTTGTTCGTCTTGAGGAACAGGATA 55 GTAACCATATTTTGTTGAATAATCATATTTTCTTGCATAGAATGAAATTGGTAAATCTCC AGTATATGTTTGAATATATGGTTTTATATATGGCATCATCTATTATGAAATTCACTGA ACTACCTCCATCTCTTTGAATCTCATAAGTGTGCCAATTATCGTATAAATCTGGGTCTTG TAAGATAATGTAACTATCGTAATCTTGATTTAATACAGAAGATTCAGCTCTTAGCCACTC TCCTCCCCAGTGATAGTTAGTTATAACCTCTCTGTTATAGTCATTTCCATTTATGTTTAT 60 ATAAAATCCGCCCCACTCCTCATATTTCTTATGGAAATTTGCATGGAATCTTACAGAAGT ATTATGATTATTGTAATAAGTATAATCTAAACTTAAATAAGTAAAATTAATCCCATTTGG ATAAGTGTCATTTACAAATAATGGATTATTAAAGTTGTAAGTCCATTTTGTATTATCCAA ATTACCTTTAGAAAAATCATCAAAGAATAGGGGGAAGGTATTATCTCCATTTGCAGTCGT

WO 98/07830 PCT/US97/14900

TGTAGCTGTTGGATTTCCATAAAGCATATATATTAGCTTATGTTCATTTGGAGCTAAATT TACCTTAACCCAGGCGACAGTATGCGGAGTATCTATTGTATTTGGCTCTATCCAATAACT TAATGGATTACCATCTTCATCAACAAACCTTACATCTCCACAATCTGTTCTCATCTCTCC AGAATTTATATAACTTTGAGAATCAAAAACAATTTTTACATCATAATCATTTAAATTTTG 5 ATTTAGGTTGTTTATTATTATTTGGAGTAGCATACCTCCAATTCTGCCAAGTAATAAA TGGATTACCATTATTTGTAACAACCCTCGCAGATGCTGAAATAATTTCGCTATTGACTTT AAAGTAAATGTGGTCTCCATTACAGCCATATAGATTTATAGAATCTCCATATTTCATTCC TAGGTTGGCGTTGTTAAATGTAGTATTTACATTTGAATAAATTTTAAATGTGTTGCTACT 10 GAAATTATATGTTATAGCCTGAAGTCCATCATTTGCACAAATTTCGTCTGAAATGTTGTC AAAATTATTAAATAAGTCGAAAGTTTTTTCTTTAATATCTAATTCATTTGTAAAATTATC CAAATATGTTTTGTTATAAAACTTTCCAGGAAATTTATTATTCCTTAAAAAATAATCTTT TAGTAACAAAGCTTTATGAAATTTTTCAGTATCCTTCTTTTCCTCTAATGCTGTGAGCAT 15 ATTATGACTATAAACCATATACCCTATATAAAAAACACTCAAGAAAATGAAGGCAATTAC TATTGCCTCATAAGTAAATATATACCCTCTTTTTGAAACAATTTTTCTAAACATATGCCA GGAACAAGCTATTGGGAAGATAATAAAACTTATGACATCATGAACTACATTATAATTTA TCATATTTGAATAATTTATTATTATTATTATCCTCAAAATATTTGAGATAGTAATAATTG 20 AAAGTCCAAATACTGAATATGAGATTTTATTTAATAGGAACATCAGGAGTCCCAAAGA TATAACCTAAAAATAAAGCCATTTCTAATGAACATGTGCATGGTGAGCTAATCTCTATAA TATTTTTGCCAACTATAATTTCATTCTTGTAAAATTTCAAATTTAAAAGTTTAGATAGGG TTATTGTTAATAAGTCCATTATGTTTCCTTCTAACATTTTTAAAATGTAATAAAATATAA AAAAATATATTAAAAATCTAAGTATGTATATAGCATTTTTATTGCCCATTTAAGGCCCTC 25 TTCACTTTGTATATTGTCCAATGCTTTATTCTTTGCAGCTAAGGTTATATTTTTTGAA ATACTTTCTGCTGTAGAGGTCCCTCTCGTAACTGATTTTAGATAATAGAATCCAACTATA GATGCTGCAACTACAAGAGCACCTAACAATAATGCCAATTCTAATGATATTTGAGCTTTA TTAGATATTATTTTTTAGGTTTCATTTTAATCCCCTTATAATTTGGAAGAAACAGAATA TTGTTGAAATAACTATCAATATCTCAATATATGGCGGTATTGGAACGCTATGTATAAATG 30 ATTCTCCTATATTTATTAACTTAGTTCTTGAATCTGAAAGATTATCATTATCTATAACTG TCAAGGTAACTGGATAAACCCCCTCTTTTTTATATTTGTGTATTATAATTGGATTTGTTG TTGTATTTGCTGGTGTTCCATCTCCAAAGTCCCAGATATAATATTTAATATATCCATCTT CATCGTATGATAAATTAGCGTTAAACTCTACAGTAGTTCCATTTATTACTTTATACGTAA AGTCAGCAACTGGAGGATATTTTGGAGGTGGAGAAATTATAACAATCTTTGTTACACTAT 35 CCGTTAAGTTTGTATCGCTTTTAACAGTTAAGGTTACAAAGTATGCCCCCTCCTTGCTGT AAGTATGGATAGGATTTTgTTCTGTTGATGTGCCCATCTCCAAAGTCCCAGTGCCAAC TAATTATTTCCCAGGGGCCACAACTGATGTATCTTCAAATCTTACAGTATTTTCATTTA TTATTTCATATGTAAAGTTAGCTAATATACCCCCAACTACTATTTGTTTTGATATTGAAC TACTTGCGTTATATTTGTCAAATACTGTTAAGGTAACTGTATAGTAGCCTGGTCTTTCAT 40 ATTTGTGATGAACTATCGTATCTGTTGTATTGATAACGGTCCCATCTCCAAAATTCCAAA TGTAATATGCAATTTCACCCTCCGGGTCATAAGACTGGGAAACGAATTCTACATCCTCAT TAGGTTCAGGTTTATCTGGATAGTATATAAATTGAGCCACAGGAGGTCTATTTATCACAC TAAACTTAACAGTTGTTGAATTAACTCCTCCCATTCCATCCCAAACTACCAATTTAGCAG TGTAATTCCCTATAGGAAAACTTTTGGATATAATAGTTAATTCATTTGATGAGTAATTCC 45 GTGAGTTTGGAGATATAGGATAATACCCTATTAAGGTGCCGTAGTAATTATACTCTGGAA TCATTCTATTAGCATCTGGGTCATAACTATTTATTGGACTAAAGGAAATTGTATCTTTAT AACTTGCAGGATTTGGATAAATATAGAGTTTGGCTATTGGGTTTTTATTGTCTATTACAT 50 AAGTGTATGTGTGAAAGTATATGGCGATTTTTTGGGTTTTATCCAAACACTGCCAC CATCTCCGAAATATATGATGCCAATACCAAGTCCACGATGCCGGCTCTACTATTGTTA TATTTATTGGATAGTAAGTAGGGGCTATTGTAGGAGAAGCATAAATTTGAGGATAACTGC TGTATCCTCCAACTCCAATTGGTGGTGGAATTCCAACCTCTATATTTCCATTATCATCTA TAACGAATACATGAGGATAGTATAGTCCACTTGAAGAATATCTATGAGTAGGGCTTTTTT 55 CAAATGAACATGTCCCATCTCCAAAACACCACATTATAAATATTGGATTTCCATAAGGCG AACAATCAAATCTAACGTTTTCATTTACACTAACTTGAGTTTTGTCAGCAGTTGCTGTTA TATCTATATATATCCATCTCTCAATTTTACATTAAATTTTGGAGTCGAAATTACATCTG AATAGTAGTATAAATTAACCGTATGGTTTTCTTTATTATATTCATAATCATAGTAAGTTT TATCATGAGCAGATGAAGGGTAAAAATTATATCTTGTGTTTTCTACATCGTCAACTACTA 60 GCCACATAAATGGAAACTTATATTGATGATGATGTAAGGTAAAGTAAGACTTATATGTAT AAGGAGTTTCTGTTCCATCTCCAAAATCCCACTTCCAATATTCTCCCCAAGCTCCACTCA TTTCAAATTTTATAGTGTCATTAACTTTATAGGTTATTTTATATGGGTCAGTGTATGCAT TTCCATTATTATTGTCATCTCCAGAGCTATTATATACATAAGTGTATGCCTCTCCAT

CATAGTGACTTGGTCCTGTAACCCAGTAAATATACCCCCCTCTTGCTCTTTTTACTTCAA TTCCTTCATCCAAATATCCAACCATTACCCTTCCAGAATCATCAACAACTAAAACTCTTG GATAATAAAGCCCTGACTTTGTATATGTATGTTCTGGAAATTTTTCAAAGGAAAAAGTTC CATCTCCAAAACTCCATACACAGAATATTATATTTCTACTAACTGAAAAATTAAATTTAA 5 CAGTATCTCCTTCTACAATTTCATCTCTGCTAACATTTACAGTTACTGAAGTTGTATCAA CACTTAAACCATTAAACTCCCTATCAACAGGGGTTTCTGAGTAATATTTTATTATAACAG TATTATTTGTGCTATTATAATAGACCTCCCAACTTGTCTTTGAATTCAACGGACTGCCAT TAAATACATACTTAGTATTTGCTACATCTCCAACAACAAGCCAGTTGTAAGTTAAAGCTT TCGAATAGCCAGTATTATTTAGATAACCGCACCATGCTACTGGATAAGGAAATGGAAATG 10 TATATGTATGGGTGGTTGTTCTATAATTCCCATAATCAGTCTCAGTTAAGTCACCAAAAT CCCATTTAACAACTCCATTATCTAATATATCCTGAGCTACAGAATCGGGGGCTAAAGCTT ${ t CAAATGTTATCGTGTCATTTACATTGTATGCAATGATATTGGGGTCTGTGTTATAAACTC}$ CAGAACTGTTAGTTATGTTCATAGTGTTAGGATGTATCACAATAACATATCCATTTACTA TTGAAATTATACCAAGAATGATTAATGGCATTAAAATCTTTAAAAGTTTCATAATAACCC 15 ACCAAAATTTTAAGTTATATTTATTGTCAATTCTTTACATATTGTTATATTTTTTTATC AATAGTCACAGTTATGCTTATATTTTTCCAATATCAACTGGGGCAGTTTCTATATTGCT TCCAGAAATTATGACACCGTTATCTGTTGGGGTAAATACGATAAGGGTTTTATAACTCAC ATTAATAATTTTATTCGAGACATGTATTACATACCCCAAATCTCCAATAGGTTTTAATTT CAAAACTATTGTTTCATTTTTGTATATGAAAGGATTGCATAGTTCTCAAATGTATCGGC 20 TATACTGTACATCCTATCCACTATCAAAGCATCCGTAGTGTTATTTGTAAATGTAAGTGC ATTGTAATAAATAAACAGTGAAACCAACATTAAAAATAATATTGCAAGTACAAAATCAAC TTTTACATTATCTTTTATGCTGAAATTAATACTATAATCATATAATAATATAGTATTATT CTTTCTTAATTTATATTTTCCACTAAAATTGGAGACTGTCAAGTTAAGTTTTATCAAA 25 ATATTGATAAAAAATAATAAAATATGAGGCTCACGATAGAAGTTATAAAGGAGAGAATCG TAGAGAGGAAGCTTTTTAAAAGGAATAGGAAATCGATAGAGGTTAAAATCTTAGCAGGGC TTTTGTATTACCTCGGATTATCGTTAAGGAAGGTAAGTTTATTCCTTTCCCAATTCGAAG ACATAAGCCACGAATCGGTTAGAATTTATTATCACAAGATTAAAGAAGTTTTAAACGAGC CAGAAAGAAAGGAAACTTAATTGCAATCGATGAGACTAAACTAAAGGTTGGAGACA 30 AATATATTTATGCATGGTCTGCCATCGATGTAGAAACGAAAGAATGCTTAGGAGTTTATA TATCGAAGACAAGAAATTACCTCGATACTATATTATTCGTTAAGAGTATATTAAAATTTT GCTCGAATAAGCCAAAGATTTTAGTTGACGGTGGAAAGTGGTATCCGTGGGCGTTGCGAA AATTAGGCTTAGAATTCGAAAGAGTCAAATTCGGACTAAGAAATTGCGTAGAAAGCTTCT TCTCAGTGCTCAAACGAAGAACTAAAGTATTCTACAATAGATTTCCAAATAATAGTAAAT 35 TCGATACGGTTATTAGCTGGATAAAAAGCTTCATGATGTTCTACAACTGGATGAAATCGT TAACTTGACAACCTCGATGGGAACTAATAAGGTTTTAAGATAACATCTCGTGTTTACTCT ATTTATAGATTCTAAATTTTTAATGCTAAATATTAGGTATTGCTATAAATATTTAATGCA TAAAGATTTAATAATACATGGTTACATAGTGGCATGTTTAATAATATGTAGCATTTTTCA AAAACTTAATAAAATTTTAAAGAATTAATATAAGCCTAAAAGTGCCTAATAGGACTTTCG 40 CAAGAATACAATTCTAATTGAATGATAACACCGTTAGATATCAAGTAACCTTAACAAATC TATAAACTGCAAAAGTCCTATTCAATGTTATGAGGTGGCATAATGTTACAAAGATGTATT AAATGTGGAAAAACTTACGATGTGGATGAGATAATCTACACCTGCGAATGTGGTGGCTTA TTGGAGATTATTATGATTATGAAGAGATTAAAGATAAAGTTTCAGAAGAAAAACTAAGA AAGAGAGAAATTGGAGTCTGGAGATATTTGGAATACTTACCAGTAAAAGACGAAAGTAAA 45 ATTGTAAGTCTATGTGAAGGAGGAACTCCATTATATAGATGTAACAACTTGGAAAAAGAG CTTGGAATTAAAGAACTCTATGTAAAAAATGAAGGGGCTAATCCAACTGGAAGCTTTAAA GATAGGGGGATGACTGTTGGAGTAACAAGGGCAAATGAGTTGGGTGTTGAGGTTGTTGGC TGTGCTTCAACAGGAAATACATCCGCTTCTTTAGCCGCTTACTCAGCAAGAAGTGGAAAG AAATGTATTGTTCTATTACCAGAAGGAAAAGTTGCCTTAGGAAAGTTAGCTCAAGCAATG 50 TTCTATGGAGCTAAGGTTATTCAAGTCAAAGGGAACTTTGATGATGCATTAGATATGGTT AAACAATTAGCAAAAGAGAAGTTGATTTATTTATTAAATTCAATAAATCCATTTAGATTA GAGGGACAGAAAACCATAGCATTTGAAATATGTGACCAATTAAACTGGCAAGTCCCAGAT AGAGTTATTGTTCCAGTTGGAAATGCTGGAAACATCTCAGCTATATGGAAAGGATTTAAA GAATTTGAAATTACTGGCATTATAGATGAACTCCCAAAAATGACCGGAATTCAGGCAGAT 55 GGAGCTAAGCCAATTGTTGAAGCATTTAGAAAGAGAGCTAAAGACATCATCCCATATAAA AATCCAGAGACAATTGCAACAGCTATAAGGATTGGAAATCCAGTAAATGCCCCAAAGGCT TTAGATGCCATATACTCCTCTGGAGGTTATGCTGAAGCAGTTACTGATGAAGAGATTGTT GAAGCTCAAAAGCTATTGGCAAGAAAAGAGGGAATTTTTGTTGAACCAGCTTCAGCTTCA TCAATAGCTGGGCTTAAAAAGTTATTAGAAGAAGGAATTATTGATAGAGATGAAAGAATT 60 GTTTGTATAACAACAGGGCATGGGTTGAAAGACCCAGATGCAGCTATAAGGGCAAGTGAA GAGCCGATAAAGATTGAATGTGATATGAATGTTTTAAAAAGAATTTTGAAAGAGTTATAA ACAATAATTTTTATTATTATTTTTTTTTTTTTTTTTTATGTCTCTAAAATAACTTCAAAATAACTCCAT AGAAATCATAAATCTATATAAATCTATATATACGGTCTTTAGAAAAGTTATTAAAATC AATATGGAATATTTAAACGTCTTCCAAAAGGAGGGTTCGAAACAGTTTTTAATTTTCTAT

AATAGTAATATGTATTGTTATATCATAATGTTAATGAGGAGGCTTTGCCTTCGAGACGAA ATGTTGATACTAAATATTAACGAAGTTTGGATTTTGGGGCTGTATCTGTTCAGTCCTAAG TCTGATGAACTTATAGTGAAGGGAATGGTGTTCCCGATGAAGCTATGGGCTGAGGACAAC 5 CCATTTCCATAGCTTACCGATTCGTATAGTAAGTTATTAAATGCTATGGTAAGCTATGGA AACGGGAAACGGTTAAATAGATCTTGGATTATATTAAACATTATCTAATTATTGAGATTT CTTCTTAATCTTTTAAAGGTTTTAATCATGTATTAAGAAAATTTGGATAAAAATAGAAAG CTATATATAGGAGTTTAGGTATAAAATAAGAGCAAAAAGTAAGGGTTTAAATCGATAGTC CATTAAAACAAGGATAAACTCTAAAAAAGCAAGATTATTCTTTAACTCTTTTACCAACAG 10 CTACGTATATGTTGGTTAGCTCCAATTTTATCTCCAAATTTGGATAAAACCTCTATATTTC TCTCTCTACACAGATTTTCTACCTTCTTCCTACAAGCATCTTTTGTTTTCTCCCCAAAAG ATACAACAACTATATTTCCATCTATTTCCTCAGAACCTAAGACAGGTTTTTTTATCTTTT TGTATAACCCATCAAAGTCCTTTAAATGTGTCACAATCATTTTAGCATCTTCAATAAATG GAAAGTCCTTTAAATACTTGGTTATAAATGATATATCCCTTTCTCTATCTTGCCCATACT 15 TCTTTAAATCTACTTTGTAGTAGTTGAGTTTTCCATCCTGATATTCTTTTATAATTGTCT TAGCTGTTCTAACTAAATCAACTTCTCCACCTTTGGTTAAATAACTCCTTTTATTTCCAA TCTTTTTTAATAACTCTTCATCAACCTCTTCATAATCAACTCCAAAGTATTCTTTTATTA TTGAGTTATCAAAGTTATTTATCCTACTTAAAATCTTTAAAGCTGGAGGAATAGGGTTTT CTACTTTTTCCAATCTCAAAGCTCCACTTATAACCAAATCATCCTCATCTCTCATCTCCA 20 AAACTCCAGGAGTGTCCATAAGCTTAATATTTTTAGTTAATCTAACCCACTGCTCTCTT TGGTTAAACCAGCTACACTTCCAGTTAAAGCTTTTCTTTTTCCAGTTAATGCGTTAATAA TGGATGATTTCCAACGTTTGGATAACCAACAATTCCAACTTTTCCTTCTTTTTTACCCA TTTCTTTTAAGGATTGTTTTATCATCTCTCTCAAAATTTTTGTTCCCAATCTTCTCTTAG CAGATACAAATACTGTATTTTCCCCAAAAACTTCTTTCCATTTTTCTAAAATATCTTTTG 25 GAACTAAATCAGCCTTATTTAATACATAGATTAGCTTTTTACCTTTTGCTTTGATTTTTT TCTCCAACTCTCTGTTTCTTGTCATCTCTGGGTCTCTTGCATCTAATACCAATAAGATGA CATCACATTCATCAATAATTTTATTAACTATTTTTTTAACTGGTACTTTCTTGTATCTCA TAACTCTCACCATCAAAAAAATGTTATATTCCTCTCATTTATATTTTTTTATCAATGAATA TGACAAAATTAAAATTTATAAATTTATCGATTATAGAAAATTTTTTATAGAACTTCAAACAC 30 ATTTACAAATAGTTAAATTTTCAATAAAAAATATGAATAAAAAGGTGATATTGTGGTTGT AGATGCAAAAGAAGTAGAGATGATAAATACCTTAGTTTTTGAGACATTAGGAAATCCAGA GAAGGAGAGAATTTAAGTTAAAATCATTGAAGAGATGGGGATTTGACTTAATATTTGG TAAGTTTTCAAAGGATGGAAAGGAGTATGAAGTTATCGAAGTTCTTCAAGAATTGCCAAA 35 ATTAAGAGATGAAGAAAAAACACAGAAGTTTTAAGAGTTCCAGCAGCTACTTTATT GTTAGCTTTCCTTAAAAAGAATAAATTAGCAAACATAATAAAAGCAATAAAGAACGTTGG AATTAGTTTAGAACTTTCCATGCAGAATGGTGTTGGAGGAAAGCCATTATCTTATGAAGA 40 TTTTGGAAGGTTGTCATTTGCATACTATGGAGAAACAAAAGATGGAGAACCAAGATATAG ATTTAGCTGGCTGTTGCCAACAATTGCCTTATTTGACTTAGATATAGCTAAAAAAGTAGA ATTTATGGGATTTTGTTAAATATTCCAGAAAAACATGCTACAAAGTATGAGGATTTAATT AGGAGAATAATTGGAGAAGGAATAGCAAGAGGAGATATCTTATCATTTACAGAGGCAAGA 45 TACAAAGGAGATGTCGCTTTTGTCATGCTTGCAAGGTCAAGGAGAGCGGCTGAGAAAGTT TATCAGCAACTTAAAGAGCATCCAATCCATGTAAAGGTTATAGAGATTGAAGGAAAAGGA GATTAATAGTTCATAATTTGTGAAAAAAAATTCTTAATATTTTTATACCATAATTTATAT TTTTTATATGTGAAGTATTTCATTATCGTGTAAGAGGGGAGAATATGGAGCAATTTGATT TTGATAGCATCTTCAATAATGCAGTAGGTAATATGAAAATATTTCATTAAAAAAGTTAAAA 50 AATACGAAGAGTTAAAAAGCATGAAGATATATTAAAAAAAGATTTATTAAACGCTGTAA ATGTGTTTATAGAGAGGTTTAGAAATAATCCATGCATCTGCAAAAATAGGAATAATCACA GTAGTTGCACCACAAACGCATGTGGGGAGATAGAAAATCGCATGAAAAACTGGGTTGAGA AAGATGCAATGAAATTTGTTGAGTTGGATTTTGAACCGTTGTATATTTTATGTGGATTGG 55 AGGAAATAAGAGAGGCAGGAAGAAAATTAAAAGAGGAACTACCAACTGAAGAGTATT TAAAAGTTATGGAAGAGTTTGATGATTTAATTGAAAGAATGTCTTTGGTTGCCACAGCTG TTTATATGGAGTTCGAAGATAGGGTTTTTGAAAGAATGGGCATAAACAAAAACTTAAAAT ATACCTATTTTTAATATTTATTATTACAAAGTTTTATATATTTTTGTTTTACATAGATGT 60 TATGGAAAAATCTTTCCAGACATTTTAGAAGCAATAAGAAATGAAGAGATAATAAAAGA AAGTAAAAAATTCCTATGCCATATTTTGGGTTGTTTGCATTGGTAATATTTGATAAAGT TAAAGAACTTGGTTCAGAAACCTCATTATATGAAATTGGTGAAGAATTTGGAAAAATGTT ATCTCCTAAAAATATTGAAGAATTGAAAAAAAATATTCAAATTAATGAATTTTGGAGATTT

GGAGATTGACGAAAATAAATACTTCTCAAAAATCCACCATATAAAATAAAGCTATCTAA TCCTCCATACCAATGGGTATCTAAAGAAGAACCAATTCATGATTTTATAGCTGGAATCTT 5 AATCAACCAACTGCATATCTTTAACCAAACCTTTATCAGTTATTTTTAGCTCAGGAATCA CAGGGAGAGAAAAAGCTCATACTTAAAAATGGGTTCTCAAAAGAACTCCAACCTTCTA TTTTTTTTATACAAAGCATTAATCTTCTCAGCTATGTATTTTCCATCATCTCCCATTATCC CTCCAACTGGTAGAGGAAGATATTCAACAACTTCCCCATCCTTAGCAGCTATAAATCCTC CACCAATATCTTTAATTTATTTACAGCTAAGGCTAAATCTTTCTCATTATTTCCTATGG 10 TGTATATTAAACCCTTTCCAATATTTCCAGTATTTTTATGCCTCTCTATAACGAAGATTT TATTTATAGCATTTTCATTCAGTAATATTTTTTATTTCTTCAGTGCTAAATATTAGCTCTT AATCAATCCCTTTAATTAAAAAATCACCTTCGTTTTTTGTATTGGTATTTTAAAGTATTCA 15 AGAATCTTCCTTTTATGACAATGTTATAAACTTTAAAATTGTCTAAATCTTCAAAGATTA CAAAACTTGCCTCATTTCCAGCTTTAATTCCTACATCAAACCCAAAATAATTTGCTGGAT TTATTGTAACCATTTGAATAGCTTCAATTGGAGAAACATAGTTTGTGGCTTTTCTTAAAA TATTTAACATGTAGCCGTCTAAATCTTTAATACAGACGTCATCACTAACCAACATTATAT 20 TCCTAAAATCTTTTATCTTTTTGCATATATTAAGCAAATAGATGTTTTTTGATGCTGTTC CTTCTCTAATCATTAATTTAATCCCAATCTAAGCTTTTCTAATGCCTCATCTTCATCAA CACTCTCATGGTCGCTCATTATTCCATGAGATATATATTTGTTTAACTCCCAACCTTTTA ATTTTGGACAATGCCCATCTATCAATTTATTGTATTTTTTAGCTACTTCTATCTTTTTTA ACATCTCTTCATCTTCATTTATTACTGCAGGATAGTTCATAACCTCTCCTAAACCTAAGA 25 CATTATCTAAAAGAATGAGTTCTTCAATATTCTCTGCTGTAATCTCAGCTCCACTTGTTT CTAAGTTTGTAGCTGGAACACAGGAAGGAAGCATAACATAGACATCTAAAATTTTGGCAT CATTCAACATAAACAAAATTCCTTCTTTTCCAGCAATATTTGCTATTTCATGCGGGTCTA TAACTACTTTGCTAACTCCGCTTTTTAATACAAATTTCTCAAACTCTGATGGGATGAGAT GGGAAGATTCTATATGTATATGCCCATCTATAAATGTTGGAGATAAATATTTTCCTTTTA 30 AATCCACAAAGGATATTTTATCCCTCTCAACTGCAACATTTCCTTTAACAACCTCTCCAG TATATACATCAATAATCTTTGTATTTTTGAAGACAATCATAGAGCTCTCCCTTTAACCTT ATTTATGTTAAAGAAACTTTTTAGGAGAAAATTAATAGGAAAAAATTAAATGAAAATCAT GGAGTTTCATAACCCAAAGCTAACGCTTCGGTTTCATCAAAAATTATTAAATTATCTTTA 35 TAGCACCCTACCTTTAACCTTATTTATATCAAATTTTGCTGTTTCAGCAATAGCCATAAC AGCTAAAACCCCTGCCTGCAATGGGTCTCCAACAACCAAATCAGCAACCTTAGGAACAGA GCCAAACATCTTTAAGCTTATCACGGGAATGCCAGTCTTTTCCTTTAATTCTTTAACTGC TTCAGTTATCTTCCCTCCCATTAAAGAGCCAGCTAAAACTAAAATTCCTACTCGTGGAAG AGTTGCTACAGCTTTAACAGCCTCATATAAATTTTCTTCACCAACTATTGGAAGAGTATC 40 TACGCTAATTCTCTCCCCTCTTATATTATGCCTGTCTGCCTCACTTATCGCCCCCTCTCGC AACTTCAGCAACTTGTGCCCCTCCACCAATAATAATAACTCTCTTACCATAAATCTTTTT TAATGAGCTGTGAATTTCAAAGCTCTTTACACACTCACAACTCTCCATTCTTCTCTTTAG 45 TTTGTGCAAAACTCCTACTTTATTTTCTGCCTCTATGCTGATTCCAATTTCCATGTTCTC ACATTAAATTTATTTAATATTGATGAAAATCATCAAAAATAATATTATTTAAAATTTAAA AGAAGCTATCGCCTATATCATTGGTAATGTTATCTATTTCATCAGTTATGTCCTCAATTA CATTATCTACTCCCTTGTCAATTTCTTCTATTGTGTCTTCTATTGTTGTTTCTATTCCTT CAGAATTATACCCATCAGCTTCGTTATTTTCGTTATTATCACATCTTCTATTGCAT 50 CAGTTATCAACTCTCCAGCTATAACTCCACCAGCAACAGCTGCAGCAGTTCCTAATAAAT TGCTACTATCTCTCAACTACAACTGTTCTATTGGCTGTTCCATTTACAGTCTTATTCT CAAAAAATAAAATTAATAAGGTTAGTGCTGTCATAACCATCACATAAAAATTATTTTAAT CTTCTTCTAACAGCTTCAGCATGCCCAAACAAACCTTCAGCTTCAGCTAATGTGATAACA 55 ATATCAGCAATATTTTTTAAGCTTTCCTTATCCAATTTTTGATATGTTATTTTCTTTAAA AATGTCTCTACATTCAAACCAGAACTCATTCTCGCAAACTGTGAAGTTGGCAGAACATGA TTAGTTCCAGAAGCATAATCTCCAACAGGAACTGGGCTATACTCTCCTAAAAATACACTT CCAGCATGTTTAATTTTAAAAACTTCCTCTGGATTTTTAGTTAATATTTCAAGATGT TCTGGGGCATATTTATTTGAGAATTCAATACACTCTTCTAAATCACCAATTAATATGGCA 60 GAGTTTTCTAAGGCTTTTAAAATAATCTCCTTTCTTTCAGCTTTTTCTATCTCTAAAT ATCTTGTTTTTAATCTCCTCTGCCTTCTTTTCAGATGTTGTTGTTATTACACAAGAGGCG TTAGGGTCGTGTTCAGCTTGGGCAATAAAATCTAAGGCAACAAACTCTGCATTAGCTGTT TCATCAGCAATAATTAAAACCTCTGAAGGACCTGCTAAGAAATCTATGGCAACTTCTCCA TAAACCATCTTTTTAGCTGTTGTTACATATATATTCCCAGGCCCTACAATAATATCAACC

TTTGGGATAGTCTCTGTTCCATAGGCTAATGCCCCTATAGCTTGAACTCCTCCAACCTTA TAAATAGCTGAAACTCCAACAATATCTCCTGCTATTAAGGTAGCTGGATTTCCTTTCCCA TCTTTTGTAGGTGGGGAGGTTATATATATCTCTTCACATCCAGCAACCTTTGCAGGAATT GTTGTCATTAAAACAGTTGAAGGATAAAATGCCCTTCCTCCAGGAACATAGCATCCAACT 5 TTTTCTATTGCTCTAACAACCTGTCCTAAAATTATTCCATTATTTTCAACATTTAAATCT TTTATTTGCTCCATCTGCTTTTTATGGAAGAAATAAATGTTTTCCTTAGCTCTCTCAATA GCTTCAACAACTTTATAATCAACTGAGTTATAAGCTTCTTCTATCTCCTCATCTGTAACT TTAAAATCTTCTATTCTACACCATCGAACTTTTTTGTATAATATTTTAATGCTTCATCC CCTTTTTCTTTAACATCCTTCAAAATCTCCATTACTGTTGGCAATATTTCCTCAAAGTTT 10 GCTTTATTCCTATTAATTATTTTCTCCTCTTCTTCCTTTGTTAATTCTTTAATTTTTTTA TATTATTTACTGTATAAGAAAAATCAAGGTGAGAAAATGATACTCTTCGAGTGGGGAAC TTATAACGCTTTATCAACATTAAAACAGGCAGCATTATTGGGGACAAGAATTACAGAAAT TCCACCAGCAGTGTTATCAAGAAGATTGCCATCCGGATACTATGAGAGTTATAAAAAGTT 15 AGGTGGGGAGTATTTCACATCAATCTTAGCTCATGGGCCTTATTATAGCTTATCATCAGA GAAGGGATTGAAAGGTCATCTTTCAGCCATAGAAAAAGCTACACTATGTGGAGCTGAGAT ATACAACTACCATCTTGGAAAAAGAGTGGGGGATGATTTAAACTACCACTTAGAAGTCTT AAAAAATTCAGTGAAGTTAATAATGAGATGATTTACTCTCCAGAGCCAGCAACAAATAT TGGAGAGTTTGGAACATTAGATGAGCTTGAAGAGTTAATAAAAGCGGCTAAAGAGGaAGA 20 TATAAAAATTATTCCATCATTACAGTTAGAAAACATATTCTTAAATGAATTGGGAGTTTA TGAGAAGGATGATTTAGATGAAGCAGCTGAAAAGGCAGATGTTGATTGGTGGCTAAAGAT TTTCAGAAGAATGGATAAAATATCAGATTATAAATGCATTTCAGATTTTCACAGGTTAT TGGGCTTAAATATGGAAAGAGATTCTATAAGAAGAGAGTTCCTTTAGGAAAAGGGTATCC ACCAGTTGAGCCATTAACTGAAGCTTTAGCTACATACTTAGTAGATAACGCTACAAGAGG 25 GGGATTTAAGAAAGTTCTATTTGTCTATACCGGATTGCCAGAGGTTAAGTATAGGGATTT CCAGGTTGAATATGGCGATTTCTATAAAGTTATGAGTTCAGAAGAGGAAGAATAAATTTT CTATTTTTTAGCTTAATTTTATATTGCATTAAATTTTAAAATATTTTGCTTTTTAATTTTT AATTAAATAAAACTTTTAAGGGGAGAGAATATGATATGTTTGCCAGTAGTTGAAGATAGT 30 GTAGAAAAAGCAATAAAAACAGCTGAAAAGTATTTAGAAATAGCAGATATTGTTGAATTT AGGATAGATATGCTTAAAGAAGTTAGTGAAGAAGATATAGAGAAATTTGCTAAGTATCCT TGCATAATAACTGTTAGAGCAGATTGGGAGGGTGGTTATTGGAAGGGAAATAATGAGGAA AGATTAAACTTAATAAAAAAGGCAATTGAATGCCAAATTTGTTGATATTGAATTG AGAGAGGAGAAAATAAAGAACTTGTAAAATTTAGAGATGAAATTGGTTCAAAAACAAAA 35 ATTATAATTTCTTATCATGATTTTGAAAAAACTCCTTCTAAGGAAAAATTGGTAGAGATT GTTGAAAAAGCTCTTAGCATTGGAGATATAGCAAAATTTGCAACAATGGCAAATAGTAAA GAAGATGTCCTCAATATCTTAGAAGTGATAAATAAATATCCTGGAAAGATTATTGGTATT GGAATGGGCGAGAAAGGGAAACTAACAAGAATCTTAGGGGTTTATTTTGGCTCAATATTA ACGTTTGCTTCATATAAAGGGAAAAGTTCTGCCCCTGGGCAGGTTGATATTGATACATTA 40 AAAGAAATCTGGAGACTAATGGATTTAAAGTAAATTTAAATTTCTTAGCATAATTTCAGC TAATTGTTTATGTTCTCTACCTCCAACTTTTTTAATTATTGAGAAATATTTTCTAATGTC GTAGATAACTGCTATCTCCACCAATAAGCCGTCTGCCCTATTGTATGGCTTTGGGATGTT 45 TTTATCTTCCCTATCAACAACTTTCTTTCGATAACTTTGTAAAATATAGCATAATAAGA GCTTTTTAGATAAGGAATGTCATTATAATAAAGATAATCATCCTCATCATCTAAAACTGC CTTTGCTATCTCAATTGGTGGAACCACATTAACTGAAAAATAATCTTCAGTTAAAAGATT TTCATAAGTATGAGAGCCAGAAAAAAGATGCATAATAACTTTTTTATCTTTAAAATAAAC ACCAATTGGGGCTTTATTGTCTCTATTATTTTTCTTGTTGTTACAACCACTTCACTTAT 50 CATGGTTATCCCAAATTTACTTTTATGCTCTCTAAATCTCCTCTCTTCTGTATGATAAA TTTATCTTAACTCTTCCCTTATCTACCTTTTTATTTAATGGAATTACCAATGGAGGATTC AGCATTGATGTTTGTCCAGCTACATGTTTATCATCCAATATTGTATAGGTTCTCAGCTTT ATTCCTAAGTTTTCACAGCTTTTTTCAAGCTCTAACTCTATATTATAGCTTACTTCAATA GGATTTGTCTTATGAAAATCAACTTCCTCATAAATAACCTCTTCAGAAACTTCCTCTGAT 55 TTAATATCTTCATCATAATAGATATGGCTCATTTTTGCCTCTACAAGTTGTATAGTTGAT TTCATAACTTTAACTTGTGGTTCAATAATTAAAGCAGTGTCTAAAAGCTCAGCTATAACC ACATCAGCCTTCTCTTTAAAGTTGTAAGTTGAGGCATCTCCTTCAATAATCTCAATGTTA TTAAATCCATTAACTTTTATATTTTCTTTAGCATAATCATAAGTAAAAGGGTCTAACTCA 60 ATGGCATAAACTTTTTTTGCTTTCTTTGCAGCAATCATTGCTAAAATTCCACTACCTGTT GCCAATCTCTCATAGTCAGTTAATAAAGAGTAATGCCATTGTGGAACCTTTAGTCTTAAT

ATAAGTTAATAATATTATCCTGTGGGGGAATAATACGAAATGTTTTGCTATTTTATCATA AACTTTGAGATATGGCTTAATTAGATAATGTTAAACATAAGGGGAGGGGTTTTACGCCTA AAACCATATTTATATAACATTTTTACAGACATAATTTAAAAATATAATTTTTGGTATTTA ATCTCTTATCATACCCCTTTCTTTTTGCCATTTTCTCCTTAAACCTAATATACACCCTCC 5 TCCCCTAACTCCTCCAATAGGCACTTGAGGAGTTCCCAAACAGTTCATACATCTTGCCAT AACTGAAGCACCTAAAGCTAAGCCATCCTCAACAAACACAACATTTTCCTCAACTTTATC CCAAATTTCTAAAGTTTTAAGCTTCTCAATAATTAATTCTGGCTTTCTGCCAGTAATCCC CTCTACCAACCTTCTAACAACTTCACTCATAACATGTCTAAACAGCACATCAACGTTGG 10 AATATCACTCTTTTCAACTAATTCCCTCCCCAATTCTTCCAATTTTATCAAATCACTACC ATTCTTACCAACATCACATCCAATTAATGTAGTTCCAGCCTTTTCAGCGGACTTTGGGTC TACTGGGACAGTTCCAAATCTATCAACATCTTTTGGGACTTCTTTAATAATTATATTT GTGCATTTCTTCAGCATATTCCTTAGCTAATTCTTCATTTGGCTTTCCTTTTATATTTGC TAAATCTAAAGCCGCTCCAGTCTTCTCATCTATTTTTCCAGAACCCCTTGCAATTGCATC 15 AGCTATAGCTCCAGCTAAACCGCATAAATTACCAATAACCTTTGCATAAGGTAAAGTGTC ATTAGTTATTCTACCAGCCAAGGTTGTTCCAAAGTCAATACTCATACAAGGATTTCTGAA ATCTACATCTGTCCATTTACTTCCAACTTTTATTCCTGCAGTTACAAGCTCTCCTTCCAT CTCGTTAGCTACAACCTCCTTTCCTGTAGGAGGCAGAACTCCAGTAACCGCTCCATCAAA TATAATCTTATCTAAAAAAGAATATTTATCAAACGGCTTTGGTATCTGTTCCTTAGTCAT 20 TGCTGGAGTCATCTTTGCTGGAGGAACTCCAGCTTTCATACATCCTTGAGCTAAGGCAAT AATCATCTCCCAACTTCTTCTGGAGATGCAAAACCTGCAGTAACTCCAGTACTTCTAAC AACAAAGTGTAAGTCATCAACAGTTAGTCCAGCTTTTTTTAAACTCTCCAACAAAACCTC TTTAACCATATCTGCAACTGCCTCTTTTTTTAATTCAACCCCCATAGTGTCTCTCCAAA 25 AATGTAGGTTTTACCAGTATCCATATTTGTTGCTGTTATGATGGATTTTGTTGTTGTATT ACTTTGTGACTTTGCATAGGCAATTTTTGGCTTCTTTTTAAACAGTCCTGAGATGACATC AAAGATTCCCATGCTACCCCTCTCTACAAAAATATTGCAATAAAATATTTATCTCTGGCT TATGGTTTATAAAATCTCCCTTACAAATTTTTTAGATAGTGCAATAATTGAAACTATTGG 30 CGGAACTCCCAAGGCTTCTTTAAATAAAGAGGCATCGCAAACATACAACCCCTCTCTAAC CTCAAACTCATCAACAACTAAGCTTAAACTCCCCCTGGATGAGAACCCCTTGGTATAGT TGTGTATATATCATCAACACCCAACTTGTATAAATATTTTGTTGCCTTACATATACCTCT TGCAAGAGTTTTGAAATCTTCCTTAGTTATCTCTTTTTTAACGTCGTTATCTAAAACCAC TCCATTGTTTTCATCCTTAATCTTTATCATAATCCCCACAATATCTTTCTCTTTCACATC 35 CTTATAATCTTTTTTTATTTCGTTAATTAGTAGTTTTGAATAATGAGTTGCCAGCATGAA AATCCCACCAACAGTAACAAAGGTATCTATAAATAAGTTTTTTCCAATATTCTCATCGTC AATCATTTTTTTTAGAATTCTTGGAGAATTAATGCCTCCAGCAGAGATTATGAGATTTTT AGCTTTAATCTTTCTACCTTTATCATCTAAGATTTCGTAATAATTGCTATAATTTATTGC 40 TTTTATGTTAAATTCAGTGATTATATTTGCATTTGATTCTTTTAGATAATTTAAAGGCGT CCATTTAGCTTTGCATATCTTTCTTGCACACTCTCCACATTTATTGCATCTATCAAAATC TATAAACTTCTCCATCTTTTCAAAGCCAAGTTCAATAAAGGCTTTATCAATATCATTTAA AAAATCATCTTTTGGAGCTTTAATTTTTAATTCTTCCCAAATTTCTTTATAGATATCTTT GTCTATTTTGTAGCCCTTAATTTCTGTTTTTATGGCATTTCCCAAGGAATAAACTCCACT 45 CCCTCCCAAGCCATAGACATAATTTATTTCTACATTCTTTCCTTCTGAAGCATAACTTGG CTTTTTTCCCTTTTCTATTACTGCCACTTTATACCTATATCTCAATTCCTTGGCTAAGGT GGCTCCAGCCACTCCAGAGCCGATAATGGCAAAATCATACATGGCTAATCCCTATTTTTG CATATATTTATTGTATAATTCTAATATTTTCATCTTCCTATTTTCATTATACTTGTTGTT ATTACTAAACATTGAGTTATTAATCAATCTTTCAAAAGTTCTTCTATCTCTTGAAGATAA 50 TTTTAATAAACTCAGCTCTTTTACAGCTTTTGCACATTCAATTTCAGAATAAAGTCTCCA TTCTTGAAGGATATCCATATATTTTTTGAATTTTTTGTTCATCAATAGCATCTTTGGTGTA TAATCTATCTTGATTAATGAATGGAAATGTATTTATAAAATCAAACTTTTCTTTAAAATC AGGTTTTGCTATTGAATTAATAATATCCAATATTTTTTTCATAGTATTTTCTTCTCCAGA TAAAAAACTCCACAATTCTTCTGCAATTAAAACCTCTCTTTTATCAAAATACTTGGAAAA 55 TTCTATTAAACTACTCATGAATCTATCTTTATCATATCCACAAGGATTTTCTGGATTTTC AGTAGGGTCATAGGGAAAGCCAATAAAATAATAAACTTTTTTATTTGGTTTTGTTTCCAT CATATAGGCTTTTCCATAAAGAATTTTTTTTTTTTTCTCCTCTCATTTCTCCAGCATTAGG TCTAACAGTTTTTAACTCAATCATTACAACTTTATCTTTATCTTCAAAATAAACATCTGC AGTAAATTCTAACCCATTTACATATTCAGAATTTTTTGAAGTAGCTTCTCTTAATTCTTT 60 ATTTTCTTTTTCCACATTTGGCAATCTTTCTCCACTTTTTAAATCATTTATAATCTCCGA TATTTTGTCTCTAACACTTCTTTTAATTTTTATAGTTTTTAAATGTCCTTTTTTCACCGTT AGATAAAATATGAGCAATATTTTCAAAGTAGCTCTGCCCCAATGTTGTGCTTAATCCATG AAACCACTGTGATAAAGTTAAAAACTTTAATGCTTCAGTATCATCGTTTATCCCAATCTT CCCATAAAAAGCCCTTAAAAAAGCCATATGGAATGGCATGTTTCTTATTTTTATGTCTTC

ATCTGATATTGTATCAAATCTTGATTTTAATACTCTTATTGTCTCAATGCTAATTTTTTC TATAACATTTTTACTTAGTGGCATAGCTATTCCTCCATTTTTAATTCAAAGATGCTTTCA TAGTATGGGTTTCTATCTCTTTCTGTTCTATTTAAGACCGGTCTTTTAAACTCTCTAACT AAAATAAGCCCACTTTTCTCAAAAATCTCTTTATATAGGTTCTTTTTATCATTAACTACA 5 ATGAAAATCTTTGCGTCTTCATTTAAAAATCTTTTCATGTTGATTAAAACATCGGATATG CCTTCAATATACTCTTTTTGTGCTTTTTTTGAACTACCTTTAAATTTAGGTCCTATCTCC AACTCATCCAATCTTGGAATGTCAAAAAGCTCATAAGCATAGGCATGCTGCTCATGATAA AGTTCATAAAAGTTTGGGTGTTTTTTTAGTTCTTCTTCAATATCAACAGTCCTTGAATCT 10 CCATTAATGATTAAATAATATGCATCTTTCCTAATCTTTGAAAATTCTTCTATTCTACTA ATTACATCATTTGTATATTCTTCTAAGTGTCTTAAAATTGTTTGAACTGGTCTGCAAATT TTTTTATGCTTATAGCAATAGTATGGGTCAAAAACTGGCTCTTTTAGTGTGGCTAAATCA AAATGAGTAGTTCCTCTAACAGACCTTGCCGTTCTACTCAAAATTATCATTGCCACTTTT 15 ATTCTTGGAGAATACCACTTATATAAAAATGGCTTATCTTTAAAAATGTCATCAAACTCA AAGGTAAAGTATTTTTTGTTGTATTTCTCAATTAATTTATCCATTTCTTTAACAAATTCA 20 TTTAATTTTTGAATATCATATTTCTGCAATTTAACTTCAGCAATTAAACAGTTAAATGGT GATATATCAATGCCAATAGAATTAATGCCCATCTCCATACATTGCACTAATGTTGTTCCA GAACCCATAAACGGGTCTATTATAATATCTCCAACGTTAAAATGCCTCTTTAAAAAATAC TCTACCAATTGTGGAATAAACTTTCCTTTGTATGGGTGAATTCCATGAACATGTTTAGTT CTCTCCTTCTCAGATAACAAATCAAATGCTAAATCCCAATCCAATTTAAATCCCAATTTT 25 ATATCTACATAAACCCTATTTTTGATTTTATACTTATTGACTCTTCCATACTGCACTAAA TATGAAATATTATGCTCTTTAATTTCCTTACCAAACTTTTTTGTTAATATTCTTGATGCC TCTTTTATTGTGTAAAGTTTTTTTGCTGGCTGTATATCTAACCATGCATCCAGATTCATA ATTCCTCCCCTATATCCTCATCCATCAAAATAAAGCCTATAAGTGTCTATATCATAAC 30 CCATCTTGTTTATAAACATCCTAATTACTCTTCCTGGGTCTTTTGATTTTGTAATTGCTC TACCAACGATTAATATTTGATATTCTTTTAAAAGCTCTTCAACATTCTCCACACCAACTC CTCCAGCAATTGCTAATAAGCAGTTTTCCTTAAATTTCCATTCCTTTTTAATTCCAAATG TCTCCTCAȚCAATCCCTCTATGCAAGATAACAACATCTGGCTTTAATTTAATGAATCAT ATAATTTTTGAGGTTCAGAGACGTTCATCATATCCAAATAGCTGATTAAACCACATTTTT 35 GACATTCGTGGATAGCTTTAATTATTGTTGATTTTGGTGCTACTCCACTTATTGCCACTG CATTAGCTGTTGCTTCAAATGCCAATCTTACCTCAACCCTTCCAGTGTCTAAGGTTTTTA AATCAGCAACAATAAAGCCATCAAAATATTCTCTCATTATTTCAATAACCTCTAAACCAA ACTTTTTAATTAGTGGTGTTCCAGCCTCTAAGATGATGTGGTCGCTATTTGGAATTGTTT GTAACAAAATTCCAAATTCTCCATAGTTGGGACATCCAAAGCAATTTGTAGATATGGAG 40 GATACTCCAATCTAACATCCCTAAATCCAACTAATGGATGCAAAGCTCTATATTTCTCTT TCTTTACCTTCTCTTTTGAAGGATATTCATTTAAAGCTCTGTTTATAGCTAACTTTGCTG AGGCATAGAAGTATTGGAAGAGTTTTCTTTTATTTAAATTGGTTATTGGAACCTCTGGGA CATTAACAGAGACAACCTTTAAATCTTCATCTAAATCTAAATCAGCAACTGCCTTGG CAACTGCATACTGAATAACTCCCTGAAATAGCTCATCCTGTATCTCACTCTCTATATTAT 45 GCCTTGGAACAACTAAGGTTAATGGTTTAACTATTAAATTAGGTCTTAAATTGGCAAAAA CACAATTTCCTCTTGTTAAAGCATTTGTAAAGGTATTCTCAATTAACTCTCCTTTCCCTA ATGCAACATTAACTATTGCCTTAATTTCATTTCCCAAAACTGCTTCTCCAAATTTTATCA TATTAATCCCTTGTAGCTATTTTATTTAAAATTTAACAATTTTCCACTCGCATCTCTATA TACTCCCCGAACAACCTTTTTAGAAAAGGTTGATCAAAACTAAATATCAATACCTTATAA 50 TGTTAATAATAAATCTTCTTACCGCTTGCATCTCTCTTATACTTCCCAAATTCTCTAATA AATTTCAACTTATCTCCCCAAAATACTGGCCCATCCTTACAAACACAAAGTCCCTCATCA TCTACACAACACTGCCCACAAATACCTATACCACACTTCATATACCTCTCCATTGAAACC TGAACTGGAATATTATATTCATTTGCTATTTCTACAACCTTTTTCATCATTATTTCTGGC CCACAAGTTATAATTAAATCAAATTTCTCTTCTTTAAGGACTTCTTTCATTTTTCAGTT 55 GTAAAACCTTTAAATCCAAAACTACCATCATCTGTGCAAATCTCTAATCTGCTAACTTTT TCAAATCTATCCAAAAATAATAACTCTTCTTTAGTTCTCGCCCCTAATATGGTTGTTATT TCAATTCCCTGCTTTGAAAATTCTTCAACTGCTGTTATAATTGGTGCAGCTCCAATACCT CCAGCAACTGCCAAAACCTTATCTCCTATTGGCTCAAAATATGTTCCATAAGGCCCTCTA 60 GCAACACTAAAACTATTTTTAGAAGAAAATCCAAATGGTTTTTCATCAACTCCCGGAAGC CAAAGCATTGCAAACTGTCCCGGCTTAAAATCAAAATCTTTATCTACTACAAATGTTTTT ACTGTTGGGCTTTCTTATTATTTCTTTTTTTTTTCTACATATAACTGGTTTTTCCATAATA TTAAATTTATTAAATACTTTTACAAATCATTTATTGTTCTAACGACTTTTCCTTTTTCTA

TAATACTCTTCCTTTTGGGATTAATAAATGGATATTCATCTAAATGGTTTGCGTGATGAT GCCCATGAATTATCCAACCATCGAAGTTTAAAGTATAAGAGCTGTCTGGATTATGAATTA GCATGAATTTATAGCCGTTATATTCAATAACTCTAAACTTCTCACCAAACTTGTCATGAT 5 CCTTATTTTTGCTTAAAATCAAGTCCCCTAAAAAATAAACAATATCCTTATCCCTAACCA CATTATTCCAATTTTTTTATTAGAGTTTTATTCATCTCCTCAACATTTGAAAAAGGTCTAT TGCAGTATTTTATAATATTTGCATGGTTAAAATGCGTATCAGAGATGAGGTAAATTTTTC TCATAGACATCCCACAAAATTATATAAATTATTTAAACCATGCATCTAATGTTTTTTGCT 10 TAGTTTTGTTTGCAATTAAGTTATAGAGTTTATCAACATGCTTTTTAACCCTATCATAAT TAAAGTCATTTCATCAACTAAGAATTTTATAATTCCCTCTTTATCTGGCAATTTTAGGC TTAATGAATAGTTATCGGTAACCTTTGGCTCTTTAAATATCCTCTTAATCTCATCGTAGT ATTCAACCTCTTTTTTCAAAACATCCTTAGCTACACCACTTCTAACCAATTCATAAGCCC TTTTAAATCCTATTCCTTTAACTCCTCCTGGATTATAGTCAGTTCCCATAAATATGGCTA 15 TATCTATCAAATCATCCAAAGAAATTCTTAAATCCTCTAAAACCTCATTTAATTCAATAA GTTCTGGCATCTCCTTTGTAGTTGTTAAATTTCTAACAACTCTCGGAGCTCCATATAACA AGGCATCATAATCTTGACTTACAACTGCCCAAACATCTCCCTTCTTTGCCATATAGCTTG CTTGTGCCTCTCCTCAGAGGGAGCTTCAACATACGGAATGCCCATCAAACTTAACAAAT ATTTGCAGTTTTCAACCATTTTCGGAGTTAGATAGCTAACCCTCTTTGCATACTTAGCAG 20 CTTCTTCAAAATCCTCCTTTTTAATTGCCTCTTTCATCTTAAGTTCAGCTTTCTCTTTCA TCTCTCTCCTAACTTTCCTTGTTTTCTCCTTTAACTTTGGTGGCTCACCATCAAAAACCC ${\tt AGATTGGAGTTATATCATTCTCTAACAAATGTATGGTTTTATAAAAAAACTCCGTTATATG}$ CTGAGGTTATCTCCCTTTTCTATTTCTCAATGGAGAACCATCTCTCAAACGTATAGATG TTAAAAACTGATATAATGCATTCATTCCATCAATAGCTACTTTTTTCCCTTTTAAATCTT 25 CAAAGGAGATAATATTTTTTGGAATAAAATCACCAAACTGCACTCCCATGTTATCCCCTA CATTTAATCTTAACTAAAAATTATAGTGTTTTTCAAAATTAATAAAATTTATTGATAAAG ATTTGAACGCCTTCCAAAGAAGGAGTTCATTAATACCTTAGTTATTTAAGAAGTTTGAAA AACACTATATAACTGCATAAAAGATATTTATAAAAAACGGTTTAATTTTTTAAATTTCTA TAGAAATCCATAAAAATAGACAAAAGTTAAAAATTATTGTGAATACTGCTCTGCTATATC 30 CAATATTATTGATAAAACCCAAAGTCCTCCGAATAGTATTATGGATTGAACTGCATGAAA TTTAACAAATTTACTTTCCTTTTCTAATATAGAACAATATTCCAGTTATTACTCCAAA TAGATAACATAACGCTCCTTCAATATTTTCATCTAAACCGAGTGAAGTTTTTCCCATAAA 35 TATCACCTATATATACGTAAATTTTTATAAAAAGGATGAATTTTATTGTGAAGAGTATAT CTTACCTTTGTAGTATCCAACAACGATTTCATTTGTATCTGGATATAAAATTATTTGTAT TGCAGATTTATTGTCTTTTGAAACATACCATAACACCATTCCTTCTCCAGATTGCCCTCC TTCAAAATCATTAGTGGTTATTTTTCTCTTTGGAACATAAGTCAATACAATAGACTCTCC 40 TTCATTTTGCTTTCCTGTTGAAACATATTCCATTAATTTAACTTCTCCAAACACTTCATT TAATATTGGTCTAATTTTCTCATCAGCTTCTTTTGCAGTTCCTATTGGCTGGACATCCCT TATTGAATTGTAATCAACCCCTTCATCTTCATTTTGATATTCTTCCTGGTTTTCATTTTG TTGTTGTTGCACTACCTGTTCTTGCATATTTTGAATCTCTTCAACATTCTTTCCTCCAAT GCATCCGCTAATGGTTATGCCACATCCTAAAACACTCAAAAATATTAAAAATATTAAAAA 45 TTTCCTCATAGTCCCACCGTAGAACTTTATAAAAATTCTTATGCTTGTCATGCTTATATA AATTTTCTATCTTTACAATTTTTAATTTTGGCTATGGAAATTATTGATAATAATACAAAT TGTGAAAATATTATCCAGCTAAAATATTATAAATAAGTAATTTAATTTTTTAAAGTTATA TAAAAGGTAAAAATTTTACAAAAATAAAAATAGTCCAATTTATCTCCCATTACTCATAAG CTTTTCCTTCCAAATCATGTCAATATCTACACTACCTCCTTGGAATTCACCAATATCTGC 50 TATACTACTATAGGTTTCTTCAATATCTCCCTCAATCTCTAAATAAGCCCTTTTTAGCTC CTCTATATTCCCTTCAGTTGTTTTCCACAATCCTCTTTGATAAGCCTCCAACAATCTCCT TGCAATCTCTTCTAAGGCATAGATGTTGTGTTCCTTAAAGAACTTTCTATTCTCTTCATT TTTCACGAACGTATTAAATATCTCATCAAATATCCAATTCTCAACCTCTTTTGTTGTAGC ACTCCAGCCATAAACTCTGCCAATTCTCTTGGCTATATCTCCAGCTCCTTTGTAGCCATG 55 CCTCTTCATTCCCTCAATCCACTTTGGATTTAAGAGTTTTGTTAAGCTAACTCTCTCAAT TTCTTCTTTTAAAGTTCTTACTTCAACATTGTTTGGATTTCTTGTATCTCCATAATATGC CTTAACCTCTTCTCCTTTTAAAACCCTTGCGGCATTTGTTAAACCTCCATGCGTTCCAAA GTAGCAACAACATCCAAATAAATCATACTCATCTGTAACAACTTTATTAAATGTTAAATC AACTGTCTTTAATATTTTCAAATGCATTAATCGCCTTCTTTCCATAGACATCCTTTCC 60 ${\tt ATAGGCATAGGAGTTCCAGTAGATAAATGCATCTTTTAAATCTTCATCATTTTCCCATGC}$ ACTTGCATACACTGCATATTTAACACCATTTCCATAAGTGCCAGGAGGAGAGCAGAAGAT TCTAAATGTTGATTCTCTAAATGATAGGCCTTTATTTAAGTTCTCAACAACATGCTTCTT TACAAAGTTCATCTCCAATGGCTCATCTAAGTTAGCAACTTTCATTATTGCCTCATCAAC AAGCTCTATGCAGTTTGGGAACATATCCCTTGTTATTCCACTAACTCTAATGGTTACATC

WO 98/07830

PCT/US97/14900

-168-

CCACATTATATCAGATGCCATCCAATATAGAGCTATGTTTTCAGGATACCTTCCCTCCTC CTCTAAATATCTATTAATTAATTTTCAGCTAATAAAACCCCTACTCTATAAGCAGATTT 5 GTTTCCTCTTGTTATCAGCCCAGAAGGCCCTGGCTCTATATATTTTGGCATCAATGCCTCT CAACAAAGAGCCAATCTCATCTGATTTTTCAATTCTCTCATTGATATCCTTAATCTTCTC CTCTAATTTTTTATCTTCTATACTCTTTCCATTTAATACATCTGAAACTTTCTTCTTTAG GTTTTTATCTTTATACTCAAACTCCATAGGGGGAAGCCCCCTATTGGGATACCCCGGATG 10 CATTGCCTCGCTTCGCTCGGCAATGCCTCTCCTTTTACTATTCATAGTATTATTCTGGAT GAATATCGCCTCTAAAATACTCTTTATAAACTCAACTCTCTTCTCCCACTTGGAAGTTC TCCAAAGATATGCATTCCATCATTGCACTTCGAGTTCTTTATCATCTCTAAGATATCTCT TAGCTCATCAAATATCTCTTTAAAGTTCTCATGGATTTTCCCTTCTTTTTCAATCTTCTC AATTTTTTCTTTAATTTTCAATAAATTGGTTTTTTTAACTTCCTCAACTATCAAATGCTC 15 TAACTGATGCCTTCTTGAAGCATCCATCTCCTTTAAATACTCCTCTATATAGCTATCTAA TGTCTCCAACTCTTCATAAAATGCATCAACCATAACTGTTTGCATGTGATCAATAATAGT TGCATAGCTTCTCTCTCTCTATAGTTCCCTCTGGTGGATTATCTGAATTATAAATATA GAGATGAGGAATATCTCCAATACAGATGTCTGGATAGCATTCGTTAGATAAACCAACGTT TTTTCCAGGTAAAAATTCCAAAGTTCCATGAGTACCAACGTGGATTATTATGTCAGCAAT 20 GTCATTAAAATATTTATATGATGCTATATATTGATGAGTTGGTGGGCAATAAGGGTCGTG TAATATCTTACAAACTCTTCCATCACATCTTGCCCCAGCACATCCTCTTTTTGGTTGAAC ACAAACATAGACATTCCCAAACTTTAAACCAGTTATAACTATCTTATTTTTCCATTAAC TTTATAAATCATTCCTGCTGGGATGTCTTTACCATTTAAATCTCCCCATGTTTCTAAAAT TTTATTTTTTACATTCTCTGGCAGTGTGTTGAAGTATTCATAATACTCTTCTTCATCCAT 25 TAAGTATAGATATCCTCCTTTAGCTATAATCTCATTTACGGTAGTCCATCTAAACTCTGA AATTGCCTTCTTCTGCATAATTAGCTGAGCTAACTCCTCTCCATTTTCTGGAATATTTTC TACATAGTAGCCCTCTTCCTTCAACTTCTTCATTATGTTTATAACACTTTGAAAGCTGTC TAAATGGGCAGCACTTCCCACAGTTGCCTCAACAGATGCACATGCATTGTTATGCAATAT AAATATAACCTTTCTATCTTTAGGTTTGTATTTTTAGCTCAATCCATCTCTTTATTCT 30 TCTAACAACTTTGTCTATCCTTTCCTCAATACCAAACTTCTTCTCTAAGCCGTTCTCATT TTCAGTAGTTCCAATGATAATCGGTTCTATAACCCCTTCAAACTCTGGCAAGGCTATAGT CCAACCAATATCTGCAGATAAACCTTGCTCATCTTTTTTCCAATCCTCATAGCTTTTATA ATAACTCATTATTGGATGAAATACTGGCACATCTAACTTTTTAAGTATCTCTACTCCAGA GATTTTGTTTAAATTAGCCTTATCTTTTACAGTTCCCAATGGAAATGACAGTAGATTGAT 35 TAAGGCGTCTATTATTGGCTTATCATCTTTAAGGAAGTATTTTAAAACACTCTCTCCACT ACCTAAGGCATTTAAATCCTCACACTTAGCTCCATAGGAAAATACTGGAATTACATTGAA TTCTTTGTCCAATCTATTTAATAGCTTCTCAATAACATCCATATCATCATTAACTAAATA ATGCCTTGAGAATAAAATCCCCACCGTATATTTTTATTAAACTCAACGTCTTTTAAAAA TTCTTCTAATTCTTCATAAATTTTGCCTCTATAATAGATACCTTGGAATGGATGCTTTAC 40 AACATCTTTATCTTTACCCATTAGATATAAAACCATATTTTTGAAGTTATCTAAACCTCC ATAAGTTATAAATAAATAACATTTAGCAGATTTTTCAGAATTCCAAAAGTTTGGGTCTTG GGCAACAACTATAACGTTTTCATTGAACTTCTTTATCTTCTCTAAATCAATATCATCTGA TGATGTTCTATAAATAAAAACTAAATCATAATCTTTTGCATCCTCTAAAAACTCATCATC AATTGGATTTCTGTTAGAATATTTTATATTCAACATCTACTCCTTCTTTTTTAAGCTC 45 ATCCAACGCCTTTTTTAATATTGAGCAATAAGATGCCCACATATAAAATGTGATTTTCAT AACACCACCGTAATATTAATAACTTATAATAACTACTTTAGTGCTAATTTTTTGTAGATT TTATTACTACATTATTACAATTTTAGTATTTATAATTTTGTCATTAAAAATCATGATAAAT TTCATAAAAAATAAAAATTAAAATTAGTAAATAGAAGCTCCATCATTGTTTGGTTTAGT TAAAATAACCTTTCCATACCTATTTAATTTTTTTTTTTACCTTTTCAACATTTTCATCTTC 50 AACCATGGCTATATAACTTGGACCTGTTCCAGATAAACCGGCTGTTATTGCCCCAGCATC TAATGCGTCTATTGCTATGTTTGTTGGAAAGTTTAAAGCTGATGCATAAAGAATTCCATT TAAAAATAAAGCTTTGAAATAGTTTCCATTTATAGCCTCATTAAAGGCAATTTCAACATA ATCCTTTATTAGCTTCATTCTATTTACATCAACATTCTTTTCTAAATTTGGAATTAATAT TAAGACGTTTAAATCATCTCTCATCTTATCTCTTTTTAAAATTTTTCTTTCTATATTGTC 55 AGTTATTGTTATTCCCCCATAGTATGATGCAGTAGCATCATAAGCTCCAGTAACAGT TAATTTTTCATCAAAACTTGATTTTATCCCTAAATTTAATATTAGCTCATCATCTATTTT TTCCCCTAATGCATCAAATGTTGCCAAAACAACTGCGTTAGAAGTGGCTGAACTACTACT CAATCCAGATTTTATAGGAATTTCTGTCTTTGTTTCAACATAGGCAGAGTAATTCAGCCC AAAATAATCTAAAGTATTTTTGACACATCTTACTATTAAATTTGGCTTAATGTTTGGATT 60 ATCTAAAACTTTACCCTCTATTTTGTTTTTTCCATCATCTATAAGTTTAACTTTGGCATA AACCTTTAAATCTAATCCAAAAGCTGAACCCTTACCTGTTGCTATAGCGTTTATTATTGT CCCAGATGCTAATGCATAGGCTTTTCCTTCCATAAAAAATCACTCCATTACTTTTGTAGC TATAAATAAAGTGGAGCTGAACGAAGTGAAGCCCCACTCATTTTGATGAACCTTTATTAA AGGTTCATGATAATGCATAAGTTCTCCCTTCCATAAAACTCCCCTTAGTTATTGCTCCAA

TTCCATAAACCCACTCTATTTTCTTTAGCTTCCCTCTCAACATTTAAGAATTCATCCTTT AACTCAAAATTACTTATATAAACCCTTGCATATCCATACTTTAAAAGCTCTTCATTGAAG TTTATTAAATTATTACTATTATTATAAAGATGTATGCTAAATATCTCCCATATTTATCT TTCTTTGGGGCTTCATTATCAAAGACAATTATAACTGTTTTATTTTTAAGTTCTTTTTCT 5 GCAAAATGCTTAGCCTTATAGCCCCATTCTTTTAAGTATTTTGTATCTGTTATCGGTGTT CCATTTAATAATAATATTCATACGGGTTGTTTCTCTTGTGAATTTCTGGAGTATCTACC CCTAAAAGCCTAATCTTCCATAATTCCCCATTAACTTCAACATAAACAGTGTCTCCATCT ACAACCTTAACAACCTTTCCGTAGTAGTGTTCATGAGTATCTACAAAAGAAGTGTAATTA TTATAACTCCAACTATCATGATAATAACCGTTAGAATTAGAGGATGAGAAATCAACACAG 10 CCACATAGAGTTGTGAAGATTAACATAGATAGTATTAGGAATTTTCTCATAATCCTCCCT CTAATCATTTTAACCTAATAAATATATACTAAATACTTTAATACTTGCTATAATTGATAA TAAAACAACAACTCTTGTTATTTCATTTGAAGCTCCTAAAACATCTCCATTAACTCCTCC AAAATGTCTTTTGGCTATTTTAGCCATACATAAGCCAGTAATTATTGTCGTTATTATGGC AATAATAACTATCTTCCTTTCAATCCCACTGAATATTAAAAGTAATGGGAGAGATAAAAT 15 AATACCAATTGTTAAAAATTTTTCATCTGCCTTTTTAACAAAGTATCTCCCAGTTCCTTC AATTAAAGGATTTCCAAAGGTTGAACAGCTTAGCATTCCAAGCTTTGCACAAACCTCTCC AACCAATAGATATAGGATATTAATGTCTAAAATATAAGATAATGATATGACTGCCATTAA TAATTTCTTTCTCTTATCTCCAACAGCCATCCACCCATCTCCAAAGTCAATTAAACCATC 20 TATATGGTGGAATCCGTTTAAATATTCAATAAAAAACAAAATTAAAACAGCAGATAAAAA ATTGGGGAGCAAAAAACTAAAAATATAACCTAATATCAAACTAAAAATTCCAAACACATA TCCAATTAAAATAATCAGATAAAAATAGTTGGCAATGTTTTCAAAATCAAAATCTTCTAC ATAGATTGGAATCCTTGTAAAAAATGACAACAGTGCTTTAAATTCCTTAAACATTGTTAT 25 GAAGGGAGTTTATTGTGTAATCGCTATATTCATCATCTTCCATGTCTTTATATTTGCCCT TCAATATCCTAACTGTTATCATCCCCAACTCTTTAGCTGGTTTTATATCCTTATCAACCC TATCTCCAACATATACTGTTTCTTCTGCTTTTAAACCCATTCTCTTTAATCCATATTTAA AAAACTCTAAGTGAGGCTTTCCTAAACCAAATTCCTCTGAGGTTATAACATCATCAAAGA ATGGATGAATTCCTAATCTAATAAGCTTTTCCCATTGCTTTATAGTTAATCCATCAGTTA 30 AAGGCCTTAATAATGCTACTTTAACGTTATGGTAGGTTATTATTCCAGTAGTTATTATTT TTGGGTCATATTTTCCTAAAACAGCTTTAACTAAATCATCAAAATGCTTTCCATAATTTG AACCTTTGTCCTTAATGATTTTGTTTAATATGTTCATTGCTTCTTCAAAATCTATATTTA AACCAGCATCTATCATTGATTTAACTGCTTCTCTTCTTGCAATCTCTACAAATTCTGATG 35 AATTATATAAGGTATCGTCTAAATCAAACAAAATTCCCTTTATCATATTTTATTCCCTTT TAGCATTTTTTACCTTCTCTTTGACCATTTGAAACAATCCAACAAGTCATCATCCTCAT TAACAGGAACAACTAATCCTAACTTTTTATGCCTCTCTATCCAACCTTCATTATAAG CAGGAACTTCTATCTTTATCGGTTCATCTGTTGGATTCCCAACTATAACATTTCTGTATG GGAAGGGCTTTACTTCATCATCCTCTTCATAAGGAAAGGTAGTTTCTCTAATATATCCTC 40 CTAAAGCCATTGTCATTCTTGGTAATAAAACCATCTTTGGCATATAATATCCCCCTTAAT CTACTTGCAAAAAATAATAATAACCTCCCAAAATTTAAACTTAACTAAAATAGTTTAT TATTTAGTATTCTATGTAGTCAATAGCATGTTTAAATACTAATAAGTTCCTGTCTCCAAC TTTTACCATTATTTCATAATTAGAGACTCCTGTAACTTCAGCATCTAAAACTTCCCCATT 45 TCTTAAGAATATCTTGACCTTCTTCCCATTTAATCTTCTTGCATATTCAAAGTTTGGGAT ${\tt GACTTTCTTTGGTTGCTGTTTTTTTACTGGCTTATTCATCTACTCCCACCTTTTGACATC}$ AAAATTACTTTGAGAGGCAGAATTCTTTAATTGGACAGTTATCACATAATGCCTTTTTCC TACAGAACTTTTTACAGTGCTCTACTATTAATGCGTGATATTCTTTGTATATTTCTAAAT 50 CTTTTGGTAAATTTTTTCAAATATTTCCTTAATCTCATCATATTTAGCTTTTTCGTTAA TTACTCCCAACCTACTAAACATTCTTTTGGTATAGGCATCAACAACAAAGCTCTCCCTAT CTAATGCATACAACAAAATACTATCAGCTGTTTCCTTTCCCACTCCATTTATTGATAAGA GCTCAGCCCTTAATATTAAAGTGTCTTTATCTGTCTTAGCCATCTCTTCTGTATTTCCAT AATTTTCAACAATAAATTTAGTTACATTTTTTAGACGCTTAGCTTTTAAATTATAAAATC 55 CAGCTGGCCTTATAAGTTCTTTAGTTTATCTTCATCAACATTTAGTATTTTTACTTCTT CCAACAAATCTTCCATCTTTAGATTATTTATAGCCCTCTCTACATTTTTCCAACTTGTAT TTTGAGTTAAAATTGCTCCAACGACAACCTCATACCTTGTTTCGGCAGGCCACCAATTTT GATGTCCATAATAATCTAATAAAATTTTGTATATTTTGTATATCATCTCAAATTTGTtCT CTTTCATTTATCATCCTCCTCTATAATAATGGACTTATTATCAAATGGATTTGCCCTTAA 60 ACATAATGAATACAGATATGGATAGTTATCTTTTAAGTGCATTAGGTAGTTTAGCCATTG AATAATCAATAATTTATAAACTCTAATAATATCGTTTTTTAAATGGTCTAAATCACTTTT TGGAAGGTTGCTTAAATCCTCTCTTCTATGTAGCTCATCAGCTAAATGAAATACTGCCAA TAGTAATTCGGTAAAGCTTTCATGCTCCAATAGCAAAGGATTTTCCATCAATCTTAAAAG AAATTCTTTATTTCTCTCTAATAGATTTTTTAAGCTTATATAAATCAATTTTTTCTATATC

TTCATCTGATATTTTTAAGTAATCCCTTATATTCCCAACATCTCCTTCTAAGATTATTTT TAAAAGTTCCTCCCAACACTATTAAAAAAAAGAACCAACGACCATATTTAATTTTTCCAA TATCTTCTTTTTTCCCTATAATCTAAAATTTTCTCAATGATTAAACTTACAAGCAAAAC 5 TTCAATAGGAACAAATGCCAAATGTAATAAAAAATAGCTTAATATGTAATCAACTTTTCC AAAGATTAAAAAATGTATTGAATAAACCAATATAGATAAAAAAATTAAACAAATAGCTAT TATTAACATATACCTTTTATCATTCATTTTTATCCCTTAAAATTCCAGATTTTGTCTCCT ACATAGTGAAGGTTTTTAATAGCTTTTCCTTTATCTGCTTCTTTCATCTCTTTTCCATTC ATTAATGCAATTCCAACACATATTGGCTTTTTGTGGTTTTCATCTACCACAAAAACAACA 10 TCCTCCTCTTTAATATTTTCATCTGCATCTACAATTCCTGGAGCCATTACATCTGCTCCA TTTAATAACAATTTTAATGTTGGAATTACTTTATCATCTTTTTTAAATGCAATTGGCTCT TTATCGACTAATATTATCTCAAAGTCATCAGTTATAGCTATCTCCACATTTCCTTTTTTT 15 TACTCTAAAATTTTATACAAAGTAGTTCTCTCCTTAGGAATTAATCCAACCCTTTTAATC ATGTCTCTAATCTCTTCAACACTCATATAAACTCCATGCTCAGCTCCTGCACTTCTTGAT ATACTCTCCTCTATCAAAGTGCCACCAACATCGTTAGCCCCCACATCTTAAAGCAACTTGA ACCATCTTTTTTCCTAATTTAACCCATGAAGCTTGGATATTTTTTTATCAAACCCTTAAAT 20 ATTATTCTGCTAACAGCAAAAACCTTTAAATCTTCAATTCCAGTAGCTCCAGCTTTTGCC TTTCCTTCTTTATAGATTGGAGCATATTTATGCATAAATGAGAGTGGAACAAATTCAGTA AAGCCGTTAGTCTCTTGAATCTCTTTAATTATAAAAAGATGATTTACCCAGTGTTTA TATTCTTCGATATGCCCATACATCATTGTTGCAGTTGTTGGAATGCCTAATTTATGAGCC 25 AATATTTTCAATGCTTCTTTAATATCTAAGCCAGCATTCTCAGCACCAAAATAAACCTCC ATTGGAGAAAAGGCATGTATGTGGATATCTCCGTAAGGTTTTGTTGCTTCATGCACAGCC TTTAAAATCTCCGCCTGATAATATGTATCTATCTTTGGATGCAATCCTCCCTGAATACAA ACCTCAGTGCAACCAAATTTTTTTGCTTCTACTGCCCTCTTAGCAATCTCATCTATATCT 30 AAAAAATAAGCATGTTTGTCATTTCATTGGCTCTGAAAGCACAAAATCTGCAATTTCCA ACGCATATATTTGTGAAGTTTATATTTCTATTTACCACGTAGGTAACTATATCTCCAACT TCCTCTCTCTCAAAGAATCTGCAAATTTAAACAACTCAAATATAATCTCATTATCTTCA TTCTCATCTTAGAGTAGTATTCTCCAGTTATTTTTAGTTCTCCATCTTCTATTTTATA 35 TAAAGCGTCTCCATCACAGTCCCTATAAAATTTTATTAATTTTTGAACATTTCCACTCTC TTCTCCTTTTCTCCATAACTTTTTTCTACTTGTTGAATAATAATGCATATATCCAGTTTC TAATGTCTTTTTTAATGCCTCTTCATTCATAAATGCAACCATTAACACATTTTTATTCTC ATCACAGGTTATTGCTAAAATTAATCTCTCTCTCTTCTATATTTCTGAATTTTAAATTTAG 40 GAAAGTCCTAACTTAATAGACGGGTGGTATACCAATAGGAGGTTTCCTCCTATGGTTACC AATCATCTAAACCCATCCATTCTCCGACTATGTTTATATCCTTTCCTCCATATACTCCAT CAAATTTGTCAATTTTGACTATTGATGGGAGGGATATTGCTGCTCCTACAATTACTGCTT CTCCAATACCCAAAGATGCCAAATCTTTTACCAAATCTTCTCCAAGTTCTTCTGAAGCTC 45 TCTGTATATTTTTTGGTCTTCTGGTTCGACTATTTTTAAAATTATCTTAGTGTTCGTTT GAGATAAAACATCAGGATGCAATTGCTTAGGTCTTTGGGATACTAAACCTAAACCAACAC CAAATTTTCTTCCCTCTCTTGCTATCTTCCCCAACCATAAGCTTGCTGAGTTTTGTTCAT TTACTGGAATAAATATATGAGCTTCTTCTACAATTAACAGGACAGGTTTTGTTACAACTT TGTAGTGTGATTCAATAATGTTTAAGTTTGATTGTGCAACTCTTCTAATTTCCTCATTAA 50 TACTATATACATCCTTTAATGATTTTAAGTAAGTTATCCTTTTTAAAAGAAGATGTTTAG CTATAAATCCCACAAAAGTAACCATCTGAGGAATCTCCAACCCACTTAAATTAACGATGT TTATTTTTCCAATTTCAAATTCTTCAATTACATCTCTATCCCCAATATTTAATGCATAAT CTAATTTGAATTTGCTAATAGTATCAATGAGAGACATCAATATAACGAAATCTTCCTTTT CTAATTTTCTTCTATCATAGTTCCTTCTTAATGGGTTGTAATATTTAATTTCCCATCCAA 55 CTGATGCTATCTTACTCCATTCATAGAGTAGATTTTCTATTTTTCAATAAACTCAATTC CTTTAGCATCTGGACATTCATGTTTTACAGTGTGGTATGCAAATTCCACATAAACTCTCT TCTCTATCTCATTATCGCCTATCCCAATTAAATTAGCAAATTCACTTGGAGCTAATAAAA CAGGGTTTATTATTGGATTTATTACCTTTATTTTCCCCTCCATGTCTTCATGATATAAAG AGATATACTCTCCATGGGGGTCTATCATTATTACAGTTCCATTTTTCTTTGCAAGTTCTC 60 TGCACAAAACAGATGCGGTATTTGATTTTCCCCCTCCAGTTATAGAGAGTATTGCAAAAT GTCTTGATACAAGTTTATTTGTGTCTAAATAAACTCTAACATTATCTCTTGTTAATAAAT GACCTATATTCAACCCATCTGGAGTTAGATATATTATTTAGGATTTCATCATCACACA ATACACCAATGACTTTAACTTCACCAACAAATTTCTCAACATCTGCAACTACATTTTTTA

TAACACCCAATACATCTCTGCCATCAACATTTTTTGCAATTACATACTCTCCAAATCTTA TCTTTTCAAGGGATTCAAAAGTAAAGTGTGTTGTTGTTGTTGTTCCTACAACCTTCATAA CATACACCCAAGTTTTTGGAGAAGCTCTTTTATTTGCATTAAAACGCTCTCATCAGATTT ATAATCATCAATTAATTCACAGTATCTGTACATCTCTAATGATAACTTGGACTTTATATC 5 ATATGCTCCAATAGGATTATTATTTGCCATATACTTCCATAGGTTTGATGCATAGAAACA AGTAATATTTGGTTTGTGATACATTACAGGAATATCAAATAAAACCGAAGGTATTTCAAG ATTTGTAGGTTTTCTACTTCTTAATTTTTCTAATATATTGTCGATTTCACATGTAAATTG ${ t CAAAGAATTGACAATTTTCAAAATTTTTGTGTATGTTGTTATCGCTTCATCGATTTTTCC}$ 10 AGATTTTTCAAGAACTATTGCAAGAGATTTTAATGTGCTAATATCTTTTGGATTCACTCT CCCTTTGACATACCACCATCTACTGCTGTTTTCCAGATTTATTAAATTATCTACATATTT CATAGCCTCATGATAGTATTTTGGGATTCCTGTTGTCTCAGCTTTTCCAATTAGGGAGTA TAAGTTGAGTGCGCTAATATCTTCCTCTGAGAGTTCTTCAAGGTATGTTTCTAAGACTTT 15 ATCAAAAAGTTTGAGGATTTTTCCAACTCTCCTTTTCTGTAATAAAGTATGGCCAATCC AAAATATGCATATGGATTTTGTGAATTTAGCTTAATTGCCTTGTTATATGCTTCTATAGC ATTAAATATTGATATCGATTTATCAATATATTCAAGGGCTTTTTTATATTCTTCAAAGAT 20 TTTATTAAAAATTTTTAATGCACCAATGTAATCTTTATTTTTTTATCATCGTAAGTCCATT ATTTAAATCTTCATAAGAGTTTATGGCATTTACAACGTTTTCCATACATTCAACAATTTT TTTACACTCATGGCTTGGATTTTGTTGTAATATTTCATTAAACGCATCATATGCTTTATC AATGTCTCCAAACAGTAGATAAATCTTTCCTGCCTTAAATAACGCATTGAGATTTTTTGA ATTTGCCATTTTATATGATTTTAAATAGTATTTTAAAGCCTCTTCGTATCTACCATATTT 25 TTTAAGATATTTATATGCTAAAATTATTTCCCCACGTTTATAGTGAATGAGTCCTTTAAG ATATGCAAAATATATGTTTGATGGAGATATTTTTAACGCCTCATTTATTGCCTCAAGTGC GGTATTTTTCTTTCTAATGCTTTTAAGTAGCATTCAACTGCTTTGTCATATATTCCTTC 30 ATCTAAGTAATAGTTAGCCTCAGTAACCCAATCTTCATAGGATTTAAGTTTTTCACTTAT CTTTCTGAACAAGTTCATTGTGAATCACCAAATTTTATGCCCCACATTATTTGCTTTAGT TATAATTATTTCTCCATAAACTCCATATTTATCAAAAATATCGTTGGCTTTTTCAACAAT TAATTTTTTTGTCTCCAAATGCATAAATTGTTGGGCCAAAGCTTGAAAGTCCTGCATAAAC ATCTTTATGCAATTCATTAATTAAATCTTTAACAATATCTGATTGTAAAGAGAGTTCAAC 35 TTTTTTAAAGCCTAAGTATTGAAGCTTGTTGATAACTTCTCCAAAATCATCTAAATTTTT TTCAACAACTGCTGGCATCATCTTCATTAAAACTAAATGGCAGATTTTTTCAACTTCATT TAAAGGAACTGGGCAGTATTTTTTAAATATATCCACTTCTTTTTTTCCATAGACATGTTC TCCTTTTGGAATTATTAAGATAGTTTCCCAATCAAAATCATGTCTAAATATTATTGGTGC TGGCTTAACTCCTTTTGAAGCAGATGAAGGTCTAAAATCTTCTTTATCCTTACCCTTGCC 40 AAAACTATGCCCTCCATCAATTAAAAATCCTCCATACTCAAAAGCCCCTATTCCAATGCC TGAAGTCCCTCCCCTTCCAGTAATTTTAGCAATATTGTAGGCGTTCATTTCTTATTGTA TATTTTTGATATTAATTTACCTACAGCCAAAGATAGCTGTGTTCCACTACCAAGACCAGA ATGGGCTGGAAATAGTGATAGGATTTTTAAATCAACTCCCTCTCCACCAATAACATCTAA AACTTTGATAGCTGTATTATATACTCTATCTCTAACAGATTTTATATAATCTTCTCCATA 45 TTTTATATTTGGCTCCTCTAAAGCCAAACCAATACCTCCATCAACTCTTCCAATAGAACC ATTCAAATCTATAAGCCCCATGTGAATCCTTGATGGTGTTTGAATTATCAAAATCTCACC ATTATTAAGGTTTTAAAGATAATAACAATAACAACCAGATGTTCTATAAATTATAAATAT TTACAACAAAAATAAAAAGTTTGAAGCTTAAATTAATGCCTCTATCAAATCCCCTCTTG 50 TAACAATACCAATTAAATTTCCTTCATCATCAACTACTGGCAATCTTTTGATGTTATTTT TAACCATCAACTTTGCTGCATCATTAATTGTCATATCTGGCTTAGCAACAATAACTTTTC TTGTCATCACATCCCTAACCTTTGTTTTTAATGCATTTTTTAAATCTTCCATAAATTCCT CTATCTTTAAAGCTGTTTTTAGTGGAAGTTCAATCAAATCCAATGGTGATGGTAAAATGA GATTTAAATCTTCATTATGTGTAACAATGGTTTTCACTATGTCACTCTCTGAGATTATTC 55 CCACTAACTTACCATCTTTATTTAATACTGGGGCTCCACTTATCTTATTTTTCCTAAATA ATCTTATTACATCGATTAAATCATTATCCTCATAAACCACAATGGGTTTTTTCATGATAT CTTTTATTAACATTATTTCACCATTTATATTTAATTTATTCAATATAGTCCTCAATATTT AATCCCAACTCATTACAAATTTCTTTTAATTGGTTGTATAAGTTTTTATCAATTTCAAAT CCATCCTTTCTTTCATTTATTCCTCTCTCTATTTCCCCAGGGATTAATATCTCAAAA 60 CCTTCTGCTGGCTCTGAGTTTTTAATTTCATCTAACAACTCATCAACTTTTCTTTTAAAC CTCTCCTCTGGATTAGCAGTCCCTTTAACCTTAGTCCCAACCTCAGCCCCACCGATAGCT GACAGCATTTCGATAGCTAATGCCAAACCATACCCCTTAGGTCCTCCAAATGGTAATATA CATCCTTCCAATGCTTTAGCAGGGTCTGTTGTTGGCTTTCCATCTTTATCTACTGCACAA

CCTTCTGGAATCTTTATTTTTTTTTTAAAGCTTCTAAAATCTTTCCTCTTGCAATTGAA GCAGTAGCCATGTCTAAGGAAAATTTATACTTATTTCCTTTAAATGCTATAGCAATTGGA ATTGTTATTCCAATCATATCTTGATTCATAGCTAACTCTGAATAATAGCCAGCGATACCA 5 AAGTGATTAGCATTTCTTGTAGCAACAACTCCAACTCCAACATTTTTTTGCCTTTTTTATA GCTAATTCCATGGCTTTTTTTCCAACAACTTGACCTAAACCCAAATCTCCATCTATAACT GCCGTTGCTGGGCTTTCTTTAACTATCTTTATATCTGGCTTTGGATTTATATTTCCTAAT TTTAAGGCAGTTATATACTGTGGAAACCTTCCAATTCCATGAGAAGTAAAACCCTTTAAA TCAGCATCAACAAAAACATCGGCAGTTATTTTGGCATCTTCCTCTGGAACACCAAATTTT 10 TTTAAGACATCAATTATTAACTTTTTTTCATTTTCTGGTTTTAAAATCATTATATCCCTC CAAAAATTTTTAATTTTATGGTTTTACATAGGTCATGTTATAATAGACAATATCCCCATC AGTTAGCTCACTTAATAGAAAAGAGCTATCTTCAGGAAATACCTTAACCAAATAAACAGA GTGTTCTTTATCTATGTTAGCTCCCCTCTCATAAAGCCTAAAATCAGCCCCATACTTCAA 15 ACCAGTCTTTACTATATAACCTCTTGTTCTTAAATCCTTATAAACTAAATATTTTAAACA TAGTCTTTCTTCAACATTTCTCGCATATTCATATAGTTCTTCAAAACTTAGAGGTTTGTT ATCTTTATATTTCACTTCCAACCATCCTAAATTTATCAAATAGAGGGCTTCAACTAAAGA TAGAGATAAAAAATTCCCTTCAACATTTCCATAATGCCTTGCTGATAACTTAGATATCCC ATTTTTGTCAAACACTATAACTCTATCTCCATCCAACAATCCAGTTATTTTTTTGCCCAT 20 TTTATCTCTCACCAAAGTTATTATTATAAAATCTTAAAATTTATTGTGGATAATAAAAT CAGTTTTTATATTAAAAAAGGTATTTAGATGCCTAAAGGCATCATTATTCAATAAATCATT ACCAATAGCTGCTGCAATGTATCAACTTAGGGATTTGGGTGTTGATGCTATAATTTTACA 25 TGGTCCAAGTGGTTGTTTCAGAACCGCAAGATTATTAGAGTTAGATGGAGTTAGAGT ATTTACAAGCAATATTGATGAAAAATGCTATTGTCTTTTGGAGCTTCAGAGAATTTAAAAAA AGGCATAGTTGGGGACGTGTGCAAGTATGATTATTGGTGAAGATTTGTGGGAATTTGTAGA TGATGATAGAGCCATAATTATCCCAGTTGAGGTGCATAGTGGAAGCGGTGATAATACAAT 30 AGGGGCAATAAAGGCTATGGAGTCAGCTTTAAAATTAGGAATAATTGATGAGAAAGAGTT AAAGAAAGAGTATATAAAGCCAACTTATGATGATGATTTAAATGAAGCTATAAAAGTTTT AAAGGATTTGAAAGAAAAAGATGGGAAAATAGCATGTGTGTTGAATGCTAAAAAAGAAAC TGCCTATTTGTTTGCTCATCCTCTAATTGTTTTAAATAAGTACTTTAACTGTGTAAATAT 35 AGCAAACTTAGATATAAATAAGGGACTTCCAAAGATAAGAAGAGAGGTGCACAAAATATATT AAGAAGGTTTAAAGCAGATTATATTACTGGTGGGTTAGATGAGTATCCAATAACCGGAGA GAGAGCAGTCGAAATATTAAAAGATTTGGATGTTGATGCTATTGTTGTCTCTGGTGTTCC TCATGCTTTACCAATTGAAGAGATAGATAAAGACATAATAAAGATAGGCATAAGTGATGG ACCAAGAACATATCATCCAATAAAAGAAATTTATGATTACGCAATTGTTGAATTAGATGC 40 ACATGCGAAGGTTTTAGGGAAAAGAGATATTGTAAAATCAAGATTTGGAGAAATATTGGA TTATGCATTGGAATAAAGTTTAAAAATTATTAATCCATAAAAAATTTTGGTGATAATAAT GGAAAAACCATGGGTAGAGAAGTATAGACCAAAAACATTGGATGATATTGTTGGACAGGA TGAAATAGTAAAGAGATTAAAGAAATATGTCGAAAAAAAGAGCATGCCGCATTTATTATT TAGCGGACCTCCAGGAGTTGGAAAGTGCTTAACAGGAGATACAAAAGTTATTGTAAATGG 45 AGAGATTAGAGAAATTGGAGAAGTTATTGAAGAGATAAGCAATGGAAAATTTGGAGTAAC TTTAACCAACAACTTAAAAGTTTTAGGAATTGATGAAGATGGAAAAATTAGAGAGTTTGA TGTGCAGTATGTCTATAAGGATAAAACCAACACGTTGATAAAAATAAAAACCAAAATGGG TAGGGAGCTAAAAGTAACAACTTACCATCCACTTTTAATAAACCACAAAAATGGAGAAAT AAAATGGGAGAAAGCAGAGAATTTAAAGGTTGGAGATAAATTAGCAACACCAAGATACAT 50 TTTATTTAATGAAAGTGATTATAATGAGGAATTAGCAGAATGGCTTGGGTATTTCATAGG AGATGGGCATGCAGACAAAGAATCAAATAAAATAACCTTCACAAACGGTGATGAAAAACT TAGAAAGAGGTTTGCAGAACTTACTGAAAAGTTGTTTAAGGATGCAAAAATAAAAGAGAG AATACACAAAGACAGAACACCAGATATTTATGTTAATTCAAAAGAAGCTGTTGAATTTAT TGACAAGCTTGGTTTAAGAGGAAAGAAAGCAGATAAAGTTAGAATTCCAAAAGAAATAAT 55 GAGAAGTGATGCATTAAGGGCATTTTTAAGAGCATACTTTGATTGTGATGGTGGTATTGA AAAACACTCAATAGTTTTATCAACTGCAAGTAAAGAAATGGCAGAGGATTTAGTTTATGC AGTATATTACCATATTGTTATCTCAAACTCTTCAAACTTAAGGACATTCTTGGACAACAT TGGATTTAGTCAAGAAAGAAAACTTAAAAAGCTCTTAGAAATCATAAAAGATGAAAATCC 60 GGTTAAATTAACAAGAGACATTGAAAAAGATAATTGGAGTTACAACAAGTGCAGAAAAAT CACTCAAGAACTTTTAAAAGAAATATACTACAGATTAGAAGAGTTAAAAGAAATTGAAAA TGCAGAAAAACTGGAATAAGAAGTGATAGGATTTTAGAATATATAAGAGGTAAAAGAAA

ACCAAGTTTAAAGAACTATATAAAAATTGCCAATACCCTTGGTAAAAATATTGAAAAAAT CATTGATGCAATGAGAATCTTTGCTAAAAAGTATTCAAGCTATGCAGAGATTGGAAAAAT GCTCAATATGTGGAATTCAAGTATAAAAATTTACTTAGAGAGCAATACCCAAGAAATTGA AAAACTTGAAGAAATTAGAAAAACTGAACTTAAACTTGTAAAAGAGATTCTTAACGATGA 5 AAAATTGATAGATAGCATTGGCTATGTATTATTCTTAGCATCTAACGAAATTTATTGGGA CGAAATTGTTGAAATTGAGCAATTAAATGGTGAATTCACAATCTATGACTTACACGTTCC AAGATACCACAACTTTATTGGTGGGAATTTACCAACTATACTGCACAATACAACCGCCGC TTTATGTTTAGCAAGAGATTTATTTGGAGAAAACTGGAGAGATAACTTTTTAGAGTTAAA TGCCTCTGTTTCAAAAGATACACCAATATTGGTTAAAATAGATGGAAAGGTAAAGAGAAC 10 AACCTTTGAAGAACTTGATAAGATATACTTTGAAACTAACGATGAAAATGAGATGTATAA GAAAGTTGATAACTTAGAGGTTTTAACTGTAGATGAAAACTTTAGAGTTAGATGGAGAAA ATATATAGAGCTAACTGGAAACCACTCAATTATGATGCTTGATGAAAATGGTTTAGTGGC AAAGAAAGCAAGTGATATAAAGGTTGGGGATTGTTTCTTAAGCTTTGTAGCCAATATTGA 15 AGGTGAAAAAGATAGGTTGGATTTAAAAGAGTTTGAACCAAAGGATATTACTTCAAGGGT TAAGATAATTAATGACTTTGACATTGATGAAGACACTGCATGGATGCTTGGATTGTATGT CAAATATGAAAACTTCACTGGCTCTGGATTTGATAGAAAAAGGTTATCTGCAAAGCAGAT 20 TAGAATATTAAATACCCAACTTGCGAGATTTGTTGAGGAAAACTTCTATGATGGTAATGG AAGAAGAGCAAGAATAAAAGAATTCCAGATATTATATTTGAATTAAAAGAAAATCTAAG AGTTGAATTCTTAAAAGGATTGGCTGATGGAGATAGTAGTGGAAATTGGAGAGAGTTGT TAGAATATCATCCAAATCAGATAATTTATTAATCGATACGGTATGGCTTGCAAGAATATC 25 GTGGAAGAAAGCAACTTACTACCGGCTGAGCCAATAATCAAAATGATTAAAAAGTTAGA GAATAAGATAAATGGAAACTGGAGATATATATTAAGACATCAACTCTATGAAGGTAAAAA GAGAGTTTCAAAAGATAAAATTAAGCAAATTTTAGAAATGGTCAATGTTGAGAAATTATC AGATAAAGAAAAAGATTTATGATTTATTGAAAAAGTTATCTAAAACAGAGTTATATGC GTTGGTTGTTAAAGAGATTGAAATTATTGACTACAACGACTTTGTTTATGATGTATCAGT 30 TCCAAACAATGAGATGTTCTTTGCTGGAAATGTGCCAATATTATTGCATAATTCTGATGA AAGAGGGATAGATGTAATTAGAACAAAAGTAAAAGATTTTGCAAGAACAAAGCCAATTGG GGATGTTCCATTTAAGATTATATTCTTAGATGAGAGCGATGCATTAACTGCAGATGCACA GAACGCTTTAAGAAGAACAATGGAGAAATATTCAGATGTTTGTAGATTTATCTTGAGCTG 35 TATAAAAATGTTTGAAGAAAGAAAGCTTAAACATGTTTTAAATAGAAATGGAGAGGATTT AGTTTTAGCAGGGGTTAAATTTAACTCAAAGATAGTTAATCATAAGGTTTATAGATTAGT TTTAGAAAGTGGTAGGGAGATAGAGGCAACAGGAGACCACAAGTTTTTAACAAGAGATGG ATGGAAGGAAGTTTATGAGCTAAAAGAGGATGATGAAGTATTGGTTTATCCAGCATTGGA ${\tt AGGAGTTGGGTTTGAAGTTGAAAGAAGGATAATTGGCTTAAATGAGTTCTACGAATT}$ 40 TTTAACAAACTATGAGATTAAACTTGGATATAAACCATTAGGTAAAGCAAAAAGCTATAA GGAATTAATAACAAGAGATAAGGAGAAAATATTAAGTAGAGTTTTGGAGCTCTCAGATAA ATACAGTAAATCAGAGATTAGAAGAAGATTGAGGAAGAATTTGGAATAAAAATATCACT AACAACTATAAAAAATCTTATAAATGGAAAAATTGATGGATTTGCTTTAAAATACGTTAG GAAAATTAAGGAACTTGGATGGGATGAGATAACTTATGATGATGAAAAAGCAGGAATCTT 45 AGGCATAAAAGCATCAAACATAATTGAAAAAGATATTGAACATAAATTGGATGGTAGAGA CTTCTGGGGAGTTGAAATTGGAAATAAAACCATAAACGGATATAACATTCCAAAATGGAT 50 AAAATACGGAAATAAATTTGTCAAGAGAGAGTTTTTTGAGAGGTTTATTTGGAGCTGATGG AACTAAACCGTATATCAAAAAATACAACATAAATGGAATTAAATTAGGGATAAGAGTCGA AAACATAAGTAAAGATAAGACATTAGAGTTCTTTGAGGAAGTTAAAAAAGATGTTAGAAGA GTTTGAAGTTGAATCATATATTAAAGTCAGTAAAATTGATAACAAAAACTTAACTGAGTT 55 TGAAAAAGACAACTTTGCAAGGTTAGTTGGAGAGTATCTAAGAATCAAGGAGGCATATAA GGATATAATCCTAAAAGAGATTGCTGAAAATGCATTGAAAGAAGCAGATGGTGAAAAATC TCTAAGAGAATTGGCAAGGAAATATAATGTTCCAGTTGATTTATAATAAATCAACTTAA AGGAAAAGACATTGGATTACCAAGAAACTTTATGACCTTTGAAGAGTTCTTAAAAGAAAA 60 AGATGTCTATGATATAACCTGCCATAAAGACCCTTCATTTATAGCAAATGGATTTGTGTC TAGGTTTTCTCCATTAAAGAAAGAGGATATTGCCAAAAAATTAAAAGAGATTGCTGAGAA AGAAGGTTTGAATTTAACTGAAAGTGGTTTAGAGGCAATAATTTATGTCTCTGAGGGAGA TATGAGAAAGGCAATAAATGTTTTACAGACAGCGGCAGCTTTGAGTGATGTTATAGATGA

PCT/US97/14900

TGAGATTGTTTATAAGGTCTCATCAAGAGCAAGACCTGAGGAAGTTAAGAAGATGATGGA ATTGGCTTTAGATGGAAAGTTCATGGAGGCAAGAGATTTATTGTATAAGCTTATGGTTGA GTGGGGAATGAGTGGGGAGGATATATTAAACCAGATGTTTAGAGAGATAAACAGTTTGGA TATTGATGAGAGGAAGAAGGTTGAGTTGGCAGATGCTATTGGTGAAACTGACTTTAGAAT 5 AGTTGAGGGAGCTAATGAACGAATTCAATTGAGTGCTTTATTAGCAAAAATGGCGTTAAT GGGAAGATAATTTAACCTTCTTTTTCATGAATAATTTTATTATTTCCATAAAnATAGACG TTGAAAATGCCCTCACCAAACAAATAAnCCAnTCTTTTAAATTTAAAGAGTAATTTTTTC AAGCCAATCATCAATATCACTGCAAAAAATGTATATGGCAATGTTTATAATTCACAACGT 10 ATAAACCTTTTTTAACATCCTATCATATTATGAAAAGGTTATTTTACACATAAAAAGTAG GAGATGATTATGAAAAGAGTTGTGATTGCCGGAACATCAAGTGAAGTTGGAAAGACAGTT ATCTCTACTGGAATTATGAAGGCATTATCAAAAAAATATAACGTTCAAGGCTATAAAGTT TTAGATTCTTTTTTTATGAATAAAGAACAAATAAAATATCTTTTTCAAAAACATTCAAAA 15 GATAAGGATATAAGTGTTATTGAGGGAGTTAGAGGGCTTTATGAGGGAATATCTGCAATA GATGATATTGGAAGCACAGCAAGCGTTGCCAAGGCTTTAGATAGCCCTATAATCCTGCTT GTGANTGCAAAGAGCTTAACAAGAAGTGCAATAGCAATAATAAAAGGTTTTATGAGTTTT GATAATGTGAAAATTAAAGGAGTTATTTTCAATTTTGTTAGAAGTGAAAACCACATAAAA AAATTAAAAGATGCAATGAGTTATTATCTTCCAGATATTGAAATAATTGGCTTTATCCCA 20 AGGAATGAAGATTTTAAAGTTGAAGGAAGGCATCTTGGTTTAGTCCCTACTCCAGAAAAC TTAAAGGAGATAGAGTAAGATAGTGTTATGGGGGGGAGTTGGTTGAAAAATATTTGGAT TTAGATAAGATTGTGGAGATAGCTGATGAGGGTTTTTGAAGAGGTTGATGATGTTTTTTA TGGGAGGTTAATGAAAATTACAAAAAAATAGCTGTTGCCTATGATAAGGCATTTAATTTT TATTATTGGGATAACTTTGAAGCTTTAAAAGAAAATAAAGCTAAGATAGAATTTTTCAGC 25 CCATTAAAAGATAGTGAAGTTCCAGATGCAGATATTTTGTATATAGGAGGAGGTTATCCA GAGCTGTTTAAAGAAGAATTAAGCAGAAATAAAGAGATGATTGAAAGCATTAAAGAGTTT GACGGCTATATCTATGGAGAATGTGGGGGCTTGATGTATAACAAAATCGATTGATAAT GTTCCAATGGTTGGTTTATTAAACTGCTCAGCTGTTATGACAAAGCACGTTCAAGGACTT AGCTATGTTAAAGCTGAGTTTTTAGAGGATTGTTTAATTGGAAGAAAGGGATTAAAGTTT 30 AAAGGGCATGAGTTCCATTACTCAAAGCTTGTCAATATAAAAGAGGAGAGTTTGCCTAT AAAATAGAAAGGGGGAGAGGAATTATCAATAACTTAGATGGGATTTTTAATGGTAAAGTT TTGGCTGGTTATTTACACAATCATGCTGTAGCTAATCCTTATTTTGCTTCATCTATGGTT AATTTTGGTGAGTAAATAGAAGATAAGAATGAAAGAAAATCTCATATGAGATTCCTGAA AAAATTTCCATTTTTGATTTTAGAAATTATTTCATGGATTTTTTGAGTTATTTTCATTTGT 35 ATTGATTATTTTTGGATTTTCTCTATCTTTAGGATTTTGGAAAGGAGATATTGTTGATAAA AAAATAATAAAATATGAGGCTCATGATAGAAGTTATAAAGGAGAAAATCGTAGAGAGGAA GCTTTTTAAAAGGAATAGGAATCGATAGAGGTTAAAATCTTAGCAGGGCTTTTATACTAC CTCGGATTATCGTTAAGGAAGGTAAGTTTATTCCTCTCCCAATTCGAAGACATAAGTCAC GAATCGATTAGAATTTATTATCACAAGATTAAAGAGGTTTTAAATAGATTTCCAAGTAAT 40 GGTAAATTCGATACGGTTGTTAGTTGAGTAAAAAGCTTCATAATGTTCTATAACTGGATG AAATCGCTAACTTAACAACCTCATAAGGATTTCACAGTTTATATATTAACTTTGGAGCTT AAGTACTAAGAATAAGAAAGGGTTATAAAAATTCATTCAATAAAATTCTAAAAACTTATT CAACAGTAACGCTCTTAGCTAAACCTCTTGGTTTATCAACATCTCTTCCCAATTCAACTG CCTTATAATAAGCTAACAACTGGAAGGCTGGAGCATAAACAATTGGAGAAATCTCTTCAA 45 TTACCTCTGGAACTAATATTTTCAGCTCCATCTATTTCAGTTGGAGTTATGGCTATAA CTTTTCCCCCTCTTGCTTTAACCTCTTCTATATTTGATAATATTGAGTTAAATACTGCAG AATCCCTTGGAGGAACTATTGCTACAGTATCCATATTTTCATCAATTAGGGAGATAGTTC CATGCTTTAACAGTCCCCCACTCATCCCCTCAGCATGTAAATAAGTTATTTCTTTAAATT TTAAGGCTCCTTCCAATGCACTTGCAATATTTATTCCTTTAGAGATGAATATGTAGTTAT 50 TTACTTTTAGATTGTTGGCTATTTCTTTAATTGTTTCTTTTTTTATCTAAAACCTCCTTTA TATAATTCGGAATTTTATCAATCTCTTTCTCATATTCACTCATATCTCTACCTAAAAGCT TTCCATATTCAATAACAACCTATACAGTATCATTAACTGGGATGTGTAAGTTTTAGTAG CACAGACAGCTATCTCTATCCCTGCTCCCATCATAACGGTTATATCCGCCTCTCTTGTAG CTGTGCTTCCCAAAACATTAACTATAGCTCCAGTTTTTTGCCTTATTTTTCTTAGCAAATC 55 TCAATGCCTTTAAAGTATCGTAGGTTTCTCCACTTTGTGTAATCCCTATAACTAAGGTTT TATCATCAACAACCCCTTTATTTAAAAATTCAGATGCATCACAAGCTATAACCAGCTTTC CAAGCTTTGCAAACAATACTCTACAACCATTGCCGCATGTAAGGAGGTTCCCATGGCTA CAAAATAAACCCTATCATAATCTTTTATACATTTTGCCAATTCTTTAATTTCTTCAGCGG ATATTTTGGCAGAGACTTTTAAAACCTCTGGCTGTTCCATAATTTCTTTTAGCATGAAGT 60 GAGGATAACCCATCTTTTCAGCAGAACTTATATCCCAATTGATTTCCATCATCTCTTTT CAACAACATCTCCATCCTCTAATGGAATTGCTTTATTTGTGTAATCTAAAAAGGCAGTTA TATCACTCCCTAAAAAATAGCCGTCATCATTAATTCCCAATATTAGGGGACTTTCATTTC TTGCCCCAATTAATAGGTTTGGGAAATTTTTATTATTATTAACTAATGCATAAGTTCCTT

TTAATTTTTAATTGCATTTTTAACGGCTTTTATGTAATTTCTTCATTAATTTCTTTAA ATTTTTTTAATTCTTCTTCAATTAAGTGAGGGACAACTTCAGTATCAGTTTCTGATTTAA ATTTATGCCCCTTCTTCATTAATTCATCTTTTAACTCTTTGTAGTTAGAGATGATTCCAT TATGAACTACTGCAATCTCTTTTTGCAGTCAGTATGGGGATGAGCGTTTTCTTTGCATA 5 GATAGTCCTCAACCTCTAAATCATAGACATATTCAACATCAGATTCAACCTCTTCAATTT TAAATTTTGTCCAAACTATATCAGCGTCTAAAAATCTTTTTAAATACTCTGCTTTATCAT ATAGTCCTTTACTGTTTAGTTCTTCAATAATCTTTTCTATTGTGTAATCGGTGCAATAGT TATCTCCATTTTTATTGTTTTTAATGGAACTCCTACAAATTCCCTAATCTCTTTTTTAG 10 TTAAAGGAATTGAAATATATCTAAAGTTAAGTCCTTTCATTTTGTTTAATATAGCCTCTA ATTTCTCCATTTTGTCCTTTGCAGTAAAACCAATGTATTTTTTAAATAATTCAAAGGATT TTTTATCACTTATAAGAAGCTTATGAGTATTGTTCCAATTTTCCTCTTTTCTTTTAATTT TTGAATATGATGCTAAAATTCCAAATCTCAACAACAAGAACTGAATCTCTTTTATAAAGC ATTTGGAAGTCATTCCTATACCAATTTGCTTAGCCTCAGCTCTTATATAACCTTCTGCAT 15 CAAATATTCCTCTTAAATATGATGCAACCAAATCATTATTTAATCTAAATACAAATTCTG GAGTTCTCTCATTACCGGTTTTATTAAATAACTCTGGAATGTTTTCTCTGAACCAATCAA TCAGGTATTTGCTGTTTATCTCTAATATATAATAATTGCCATCTCCTTTTTTGATATTCC $\tt CTTCTAAGTTAAAGACAGTTTTAAATAGTTGATTATATTCCTCTAAAACTTCTTTTCTTT$ CATCCTTCAATCTCAACATCCTATTTGAAGGGAAATGCCCATCTCCAATAATATAACCAA 20 TAATCTGCATTAATTCTGGAGTAGGAGTTTTTGGAAATTTAACAGGATTTGTGTAATGTA AGTTATCCCTATATATAATCTCTTCAAAGTTGATACCATAAAGAGAACATAATTTCTTTA TAACTCCACATAATTTTTCAACGTCTTTTCTTGTTAGTCCTAATTTTTCTCTAACTTTTC TTAGTTTATTTCTTATTGTTTCATCTAACTTATAATGCCTTTCAACATATACATCCTTAA 25 ACTCAACATTATCATTAAAGCTATAATTTAACTTCCTCACTACACCAATTAACTCACTTC GTTCTCCAGTTGTAATAAGTTCAGAAAAGGCAGTTTTTATCTTATATAATATCTTTGGTG CTTTATGTTTAAACTTTTTGATTTTTTTTTATTATATAGCTTTAAATCTTCAAAATTAACTG ATAAAACCTCATCTTCATCAATTTCAGAAATCTTTTTCATTCTTCCATCTGGCAATATAA 30 CATAAGTATCTGGATGCAAACAATGCCCTATCCCAATATTTCCATCAATATCCAAAAATC TCTCTTTTTTAGCAACCTCTTCAACTTTGCCCACATTCTTTTTAATAATTAGTTTATTAT TATCAACAACTCCAATTCCACAGCTATCATATCCTCTATATTCCAACCTTCTTAATCCAT TTAATAAGATTTTTGGAGCTTTATCATTACCTATATAGCCAATGATACCACACATAAATT TCACCGATAAACCTAAATATCTCCTAAAGTAATAAATAGTTAAAACCCATAAACAATAAT 35 TGAGAGTTATGGTATTTGGTAGTGCAGCGAGTGAGAAAACACCTGAGGAAATATTAAAAG GAGTTGCTTTGATGTTGGATGAGATAATTAACGATACAACCGTTCCAAGAAACATTAGAG CTGCTGCTGAAAAGGCTAAAGAAGCTGTTTTAAAAGAGGGGGGAGGAGCCAATCGTTAGAA GTGCAACAGCAATCCACATCTTAGATGAGATTAGCAACGACCCAAACATGCCACTTCACA 40 CAAGAACACAAATTTGGAGTATTGTTAGTGAATTAGAAAGAGTTAAATTAAAAAT CCCCACTATTTCTTTACAAGAAGGTTTAAAAGTGTAAGTTTAGCTTGTTCTTCTAAAACC AATATAATAACGTCCTCATCTCTTTTTGCTGTTTCTTCAGCTAATTTTAAACTACCTGCC TCATAGTAATCAACATAACCAATTTTCTTCAAAAATATTTTTCCTTCTGGTGTTAAAAGT 45 TCTATTTCTTTGTTTATTGTCGATAAAAAAGTTGATATAAGTGAATGAGTGTGGATTATT GCGTTTATGTCATTTCTTTTTCTATAAATCATTAAGTGGAGATTTTTTTCTGATGTAGGT TTTCCTTTTATAACATTACCATCCAAATCCATTTCAGCTATATCATCTTCCTTTAAAAAC CCTAAAATAGAGCCAGTTGGAGTCAGATATTTTTATCCCCCTCTTTAACTGATACATTG 50 TTATATAAAGAAATACAATTAAAATCCCTAAGATTATGATATTAATGCGGATTATTTTTA GGTTTCTTTTAAATCCTCCATGGTTTTTATGTATATTCCTAAAGCTAACAACGCCTCTT GTTTTAATATTTTATTAGTTTTTTCATCTAATTTTTTCTCATTTTTCTTTAGTTTTGCAT 55 CCTTTTCATCCATAGTAGCCCTTATTTAAATATTAAGTTAATAATTAGATAATAGTGATT TTAAATATTGAATAGCTATTTGTATATAATTAAAAAGCTGGGTAGATAAATATTCATTAT TTAATATTACCATATAGCTAATTGTAAGACCTATTGCAATTATTACTATGAGTAATAGCA ${\tt TAGATATTTGTTTTAATTTTCTTTCCATTCTATTTTTATGTTCTATGTCTTCTTTAACAT$ ATTTCTCCATTTCTTTAAAATTTCATTATTATTTTCAAGATATTTATCAATTTTTTGAT 60 TTAGCTCTTTTAACATATTTACATTTTGCCTCATAAATTCGTTTAATTGAACATTGGAAG AGTTGATATTTTTATCTTTAATCTCATCAAGTTGCTCATATAATTTCTTTATTTCATCTA ATATTTTATTAGTTAAATCTTTCTGCCCCCCCCCTATTATCCAAATCAAATACAAGAGGA ACTATCTCATCCAAGGTTTTTACAGGAATAATCTCTATTCCCTCTGTTTCAATAACATCT ATCATGTTTGCCTCTGGAATAATAACCCTCTTAAACCCGTATCTCTTAGCTGCCTCTATC

TTCTCATTAACTCCTCCAATAGCTAAAACATTCCCACTTAAATCTAAGCTTCCAGTTATT TTATTATATAGTCAATATCTTTCTTAGGTAGAGGAAGTTTCTTCTCAGCTACTAATTTT 5 TTTGACAATGCTGAAGCTAAAGTTATTGAATGCTTTGCAATATCTCCAGAAATATTTAAT AGATGAGTTCCTGGGTTTTTTGATTCTAATATTTGAACAATAATCTTTGTTACATCCCCT ATTCCTCCAGCTCCTAATACAGCTAAGCCGTATATAACTCCAACCTTTGGTTCATCATTT GGCACAATATGCTTGTATCTCTTGAAGTTTTTGATGTAGTTTAATGCCACCTGTTTTTCC 10 AATTCTTCAACATCTTTACCCATAGCTACATCATTTGCCATTTTTATAATATTTGCAAGC AATCTTAACCTTAAAGTTAATTTATCCTTTGAACCTGCCAAGTATTGAGCAATTCTGACA ACTTCACAACATCCATCGTAAGTCATTGGGTTTAAGTTGTTCTTTATCTCTTGAACT ATAAACTGTAATAACTTATCCCTATTTTCTAGGGTGTTGTCCATTTTATTCTTTAAAACT 15 ATCTTATAGTCAATCCTATCCAACAGTGGAGCTCTCAAATTATAAACATCATCCATGTTT CCAGACATTATTAGGATGAAGTCACATGGTATTGGGTTTTGTTTCTACAGTGGCTCCACTT GAATTTGGATTTCTCCCACTTATTGGAAGTTGTTTATCTTGTAGAGCAGTTAAAATGTAG TCCTGAACTTCCAAAGGCATTGTTTTTTTTTCATCAACGTATAAAATTCCTCTGTGTGCC TCGTGAATAGCTCCTAATATAATCCTCTTATGTGGAGGAGTTCCTAATGGAGGTCTTCCA 20 CCTAATGGACAGTGTTTATATCCCCTAACAACCTTGTTACGTTGTAAGCACTTGCTCTT ACAAGAGGTCTTTTTTTACATTCATATAAGAGGACTGGCTTTAAATCCATTGGATTTAGA TTATTTGGCATTGAAGCCCTTGAAGCCCCCATTATGCTTGTTAAAATAATTACAAATCCA TATTTTAAAAGATATTCTGACAGTAGTATAGCACCAATCATTATTAGAAGTAAAGTTGTT 25 GAGCTTGGAGCTTTAAAATCCAATTTTGGCATGTCTTTTGAGTCTTCTTTATACTCTCCA TCTATAACCTCAACTATTGGTCTCTCCATATTCTTTAAATTTGGTTTTGCAATTACATAA TAAGGAGTAAATTCACCAAAATCAGATAAAATTTCTCCAACTGCTTTAACTATCATTGAT TTTCCTACTCCAGGGTCTCCTAATAAAATAACATTTCTCTTATTTTTTACAGCAGACAAA ACAATTTTTACAGCTTCCTCTTGTCCAATAACTTGGTCAATTAACCTTGGTGATGGTTCT 30 GGCAATTCCTCAGTAGTTTTAAATTTTATTGAAAACATATTAACACCTTATAAAAATCTC TGTAAATATTGACATATATAAATCTTTTAAATTTTTAGTTACTATTAAAAGGAAGATG CCTTATCATAATATCATAATCTTATATTTTATAATTTTTAGTTATGGTGATATGATGGATT TAGAAGGATATGTTAGAAGATGCCTAAGAAAAAAATCCCAGAAAATAAGATTATTGAGG 35 TTATAAAGGCAATTTTAGAGGAGGTAAAGACAACTGAAAAATTTAGAGAGATTGATGATG AGAATTTAAAAACTCTACTAAAATATCCAAAATCTGGAGTAACAATGGGAAGAATGGGAG TTGGTAGTAGAGGAGAAGGAGATTTCTTTGTTCATAGAGAAATAGCAAGGATTGTTAAAA GCACTAAAGTTAAAGCCTATGTTTCAGCTGAAGAGCAAGATGATGCAGGGATTGTTAGAG 40 CATTTTTAGGAGGTTTTCATGTAACAAGAGCTGCTTTAAGAGATATCTATGTCATGGGAG CTGAGGCGGTTGCTTTAATTAGTGATGTGCATTTAGCTGATGATGGAGATGTAGGGAAGA TATTTGACTTCACAGCTGGAATTTGTGCTGTTTCTGAGGCTGTTAATGTTCCTTTAATAG GAGGAAGCACGCTGAGAGTTGGAGGGGGATATGGTAATTGGAGATAGGTTGGTTAGTGCTG TTGGTGCAATAGGAGTTATTAAAGAGGGAGAACCAACAGCAAGAAGAAACGCTGAAGTTG 45 GAGATGTTATTTTGATGACAGAGGGTAGTGGAGGAGGACGATAACAACAACTGCCCTGT ATTATGGATGGTTTGACGTGATTTATGAAACTTTAAATGTGGATTTTATAAAGGCATGTC AGAATTTGATTAGAAGCGGTTTAATTAAAAAGATTCACGCAATGACAGATGTCACAAATG GCGGTTTAAGAGGAGATGCTTATGAAATTTCAAAAACAGCTAAGGTCTCTTTAATATTTG ATAAAGAGAAGGTTTATAAAACAATCAATCCAAAGGTTTTAGAGATGCTTGAGGTATTGA 50 ATATAGACCCATTAGGAGTTTCAACAGATTCTTTAATGATTATCTGCCCTGAAGAGTATG AGAGTTATTTAGTTGATGGAAATAAAAAATCCCATTAAAACCAATGTTTAGAGAATCCG CATATACGCCAGTTAAAAAGGTTGTTGGTGAGAAAAACCTGGAGATTTTGAGGAGATGA 55 CCTTTGCTTGCTCTCTCTCTCAAATCTTTTAAAAACTCTACAACTCTTTCATAAG CCATTTTTTTGCATTTACCACAAGTTAGTTCTCCACTTCTACATTTTTGATATATTTCAG CTAATTCCTTATCATCTAAGATTAAGTGATATAAAAACAACTCATAAACAACACATTCCT CTGGAACTCCCCCATACTTCTTATGCTCTTCTAAAGTCTCTCTTCCCCCAGTTTTTGCTG 60 AGAATATTTCTTTTTAACAGTTTTTTCATCATCAGTCAAAAATATTGCTGTCTCTGGCT TTGAAGAACTCATTTTTCCTCCTAACAATCCAGTCATAAATCTGTGATAGGTTGAAGATG GAGGAATAAACTTAAACTCCTTAGCTCTATTTGCAATATCTCTTGTTAATCTTATATGCG GGTCTTGGTCAATTCCTACTGGAACAACAACGGGTTTTGGTTCTGGACTTAAGTTCTCAT CAAGTTGAGGATGTAAAATATCAGCAACTTGAACTATTGGGGCAAAGACGTGTCCAATGT

TTGTTTCTCCTTTAAATCCATAAATTGCCTTCATCTCACTCCAATTTGTTCTTTTAGATA AAATTAAAGCCAAATCTTTAACCTTTTGATATTTTGATTGTAAATACACATTAATTTTTT CTGGGTCTAAGCCAAGAGCTATGTAGTTGGTTATATACTCATTTAAAGCAAGTTCTTTTG TTGTTTCAAAGCTCATGTTTCTTGCCCAATATGCCTCTAAATCAGCTATTGGGATGTTTA 5 TATTGTCAGTGTATTTTTGATAAAACTTTAATAAATCTACCACCATTTTATGCCCAAAAT CATCAACTATTCTCTCAAAATCCCTATGCCCCAATATAATATTCCTCCTGAAGAAATGAT GTTCCTCTTTCAAATCTCCTAAAACATCAACTATTGGCTTAACTCCAAACTGCTCCATCG TCTTTTTGTAATCAATAACTGCTGGAGTTTCCCATGGTGTTAATTCCATTAGTTTCACCC 10 TAAGGTGTCACCTATGAGGTGGGCAATATTTTTGGTTTTATTAACTATAACATTCAGCGG GGTTAATATGAAAATGGATATTGACGGATACAGTGATGGAAAGTTATCAAAAGGGATTAT 15 ACATGTTTATTACAGTTAGATACTTTAATGGTAGGAATGAGACAATTCCTTTTTATGT AAATGAGGAAGGAACGTTTATAAAATTAGAGGGAAAATGGCAGAAAATAACAAATAATGA TTTAAGCAATCACACGTGGAATATATTAGCTTATATAAAAGACTTAATTGAAAAAAATGA CATAAAAATTGAGGAAGAAAACAATCATTATATATAAGGTTAAAGGATGAAAATGCTGA AAAACAATTAAATCCTTTCTTCTACAGAGGGATAAAAATCCCAGGAATAAATCTAAAAAT 20 CTCTGAAGAGGAAGTAGTTATTATATTAGATAAGTATGGAACTCCAATAAAAGTTATTAA AAAAGGAAAATTGTATGGAACTTCAAGTAAAGGAAACTTAGATGGAGTTATAGTTATAGA AACGGAGATTAAAGATATCAACAAAGATTTTGACTTCTCAATACCAGAAGATTTAAGTAT ATATAACTAACATAGGTTATTAACATCATTATTTAGTTTTATTAACTTATTTGTTTTTGG GTGGGTGGGATGATAACTACCACAACTCCTTATATTGAAGGAAAAAAGATAATCAAATAT 25 TTGGGCTTTGTGCATGGGGTTGCATCAGTTTATGTTACTGTTAAGTATTATGAAGATGTT AAAGATGCGTATGAAAGGGCATTAAGGGAGTCGGAGGATACTGCCCTAATTAGAATGGTA GATAATGCAAAGAAATTAGGAGCTAATGCAATTATTGGGATTAACTCAAATTATGCAATG GTTGGAGAAAAAGGAGACATGATAATGGTTGGCATCTATGGAACTGCGGTTGTTGTTGAA GAAGATGGATAATAAAATTAAAAAATTAAAGAATTACTTTTTTAGCAATACATAAACAT 30 CATCTCCAGTTTTTACATTTTTTAAATACTCTGCATTTTCAACTATTCCTCCAACAATAT TTGTTTTTCAAAGCTTTCTCCAGTAGGACCGAATTTATCACTCTCTCCCAATCTAACCC CAATCATTCCCTTATACCTACTAACCATGTTTGTTACTCCAATAGAGCAGGGTTCAACTT TATCCGTTGGGATGTTTTCAGGCAACAAGCCTTTAGCATACTCAGGATTCCCTTTAAACA TTACAATATCCTTATGTTTGAAATATACATGAAGCTTTCCAACTCTCTTTGTTGTTAATC 35 CAGTAGTTTTTCTGAAATACCATGCTGTAATTGGAGCTTTATCTTCAAACAACTCTATAA AGGTATATTCTGGCTCCTGnTCAACAACAATTGCATTTTCTAAATCTCCCTCTTTCTCnA CTTCTATATTGTATTTTTTAAACATCTCTTCAGCTTCCTCTATAGTTAGACCAATAGCAC ACAACCTCTCAGGAACTGnTTTTACAGACAAAACTCCAGAATCAGnAAAGTCAATAAGCT 40 CTATTCCTTCCTTAACCCTTCCAACAACTGTGTGAGATAAAGATGAACTCCTACTTTCTC TGnAGATATAAACTTTACCTTCTCCAACTCCATAGTTTCTGACAGTTATAAATCCTCTCT CCCTATCAATTAAATTTCCTTCCTCAATTTTTAATGTCTGCAGTCTGCAATCAGCAACGT AAGTATTTGTGTTTTCAGTTATCTCAAATATTCCATCCTCCATTAAAGCTAAACAATGCT CTACTGCTGAAGGAGTTCCATCAAACTCAGCTGTGAAATAAGTAAAGATTCTCCAGCCAT 45 CTTCTAATTTTAAATCTAAATCAGTTGTTACTAAGTAATCAACTGCCTCTTTCTCCTCTC TAATTGGCTCTATGTCAATAATTTTATCTCCAACCTCCAATCTATCAATAACCCACTTAC CTCCAACAACAATACCAATCTTTGGGTCTTTTAATCCATAAACTCCCTCAGTTTTTTTCT TTATGAATACCAATATGCCCCTCATCTTTATCTAAACCAGATATACTCAAAACAACATCCC ATTTTTTAAACTCTTTTGGTTCTGTTGAGATTTCTAAGTCAATTGTCGTTGAACCAAATG 50 AGAATTTTGCTGTCTCATTATTTTCAGTTATTGCTATTGTTATATTCCCCTTAGTTGTTT TAATTAAAAACTTCTTTGGTATTTTTTCAGCTTCTCTTTTAACTCCTTTTATTATTACGA TATTCGCTCCCTCATTATAGTATTCATCCTTTATAACCTCTCTTAAAGTTTCTCCAACCT TTTCCTTTCCATTTACAATTACCTTAGCCATAGTTTCACCAGATTATTTTGAGATTATTA 55 TCTTCTTAACTCCTCCAAATGGCATATTATCCTGCCTAAACAATGATGAATCATTTATAA TAGTTCTAATTATAGGAATTACTGGGGCAAATGTTTCAGTTTTGCATAAAATATTGTCTC 60 TATCAACTTCCAATATTGTTGGATAGAATAGAGCTTTATCTCTCTTTCCTCCTAATAATA ACTTACCTCCTTCATCTATAGCTTTTTCTACAACTTTTTCAACCCATTCTGCATGTTCAA CACTTATTAAAGGTCCTACATCAGTTTTCTCATCTAATGGGTTTCCTACGTTAAGTACTT TTGCCTTATTTACAAACATCTCTATGAACTTATCTGCTATACTCTCATCAACTAAAATCA TCCCTACAGAGATGCAAACCTGTCCAGCATATATAAAACTGCCTTTTATTAATGCATTAA

CTGCTTTATTTAAATCAGCATCTTTTAAAACGATATTTGGATTAACCCCTCCCAATTCCA AGGCAATTTTTTAAAGCCAGCTTTTTTAGTAATTAATTCTCCAACCTTTGAACTGCCTG TGAAGGATATCATATTAACCTTCTCATTAACAACTATCTCATCTCCTACAACCTCTCCAG CTCCAGTTAGCAAATTATAAACTCCCAGTGGAACATTATATTTCTTCAAAGCATTTTCTA 5 TGATTTTAGCCAACTCTATACAAACAAGAGGAGCTTTTGATGATGATGATGAACTATAA CATTCCCAGTGGCTATAGCTGGGGCTATTTTATGAGCTGATAAATTTAGAGGGAAATTGA AGGGTGTTATAGCCCCAACTATTCCAACTGGTTCTCTCTTGTAAAAATTAATCTATCAT CTGAAGGGATTACCTCATCTCTATGCTCTTTAACATAGAAAGCAGCTAATTTAAATGTTC CAATACTTCTTCAACCTCTACTCTTGCCTGTTTTATTGGTTTTCCTGCATCTATAGCCA 10 ATATTTTGGCAAGTTCTTCCTTCTTTTAATTTGTTTGGCAATATTCATTAAGATGT TGTATCTTTTAGGTGAGAGATTTTTCATAACTTCTTTATACTTTTCAGCCGTATCTA TAGCTTCTTTAGCTTCTTCCCTACTTAACGCAGGGATTTTTTTAATAACTTCTAATGAAT ATGGGTTAATAACATCCATATCTTCCCTATTTATCCACTTCCCATCTATGAACATGATTC CACCAAATAAAAAGAATGTTGTAACTAATTTATAATTTGTGCCTCTTTCATTTTAAATGT 15 TTTTAACAAACATTTAATGTTTATATTATGTGTGCTTATAATTATTAAGATTTTTAGG ATTTTTAATTTTGTTGTTTGGTTGATGGATTGTCTTGTTGAATATGTTTGAAATTTGAAA TGTTAATTTGATTATTTAGATTAAAATCAGACCGATTCGGAATGGAAACTTTTATAAATC CAATATTGTCTGTTATTAGAATTAAACCTCTCAAAGGGTTCAAAACAAGTGGAAATCTCT 20 TTTTATTAAAATGTTGATATTGTAAATCTAAATATTTATATTAGTTTATTTTTTTAATAGA GCTTTCACAATTTATATTAAATAATAATACATATAGATGCTAAGGAAATTAACTTCTCCTT GTTAAGTAAATATACTGATAAGGATTTTGTCAAAAGCTTTAAATATGaAAATCTAATAGT TTTGGAAGGAAAATGGCTAACAGTTTGTTATACAAATATAGAAACAATAAAAAAATTAAA 25 TATGTTTCAAGACATATTTTCAGTAGGTAATGTATTTGGTGAGATTAAGAGAAAATTTCG AAATGAAAAGCTGAAGCATTATTTTTATATGGAAGGGATATCTTTAAAGAATCAATAAT AGAAGTTAAAGGTTTTGGAAGAATTGCTGTTTTTAATAAAAATAGAGAGTTTTTAGGTAT TGGACTCTTTGACGGAAAGATAATTAAGAATATAAAAGATAAGGGATGGTATTTGAGAGA 30 GGGTGGATAATAATTATCAAGAGTAACTACATAATACTAAAATTTATATTTATCCAAAAT TAAATTTTACTATTAATTATAATCTGAATTTTTAATAGGTGGAAACAATGAAAGCAAAAG AATTAGCTCAAAAAATTTTATTAGATATTTACAGAAACTTAGATGAATTTTCAAAGGATA GAGAGAAGGCATATATTAGAAACTTAGATGACTTTGAAAATTTAAAAGATTTTGATGTAG 35 AGATGAGAAAATACAAATTAAAAAGTATAAATTTAAAGAACTTAGATGAGGGTTTAATGA TAATTAACTTATCTTCAAGGGTAAGTAAGGAATATAAGTTTGAAGCAAATGAATACTCAA ACTTAGAAGATGAATTAGATGAAAAAATTATAGAGTTTGACACAAAGATGAACGAGA TTCTTGAAGAGCTGTTGGAAGATGTTGAAGTTGAAGAAATTTCTGTCTATATTGATG 40 TATTTATGGATGTGAATAAAATAGAAAATTTTGTAGAAAAAGATGACGAAAGAATAATAA TCTGGATTCATCCTGTCTTTTTATTCTCAAACGATGATGTCTTAAGAGGACTTTTAGCTT ATGAACTTTCAAGATTCAAAAGCAGATTCTTAGAAGTAGGTTATAAAGATATAAAAT ACTGCAGAGAATTAAAAAAACTAACCAACAAAAAACCAAAAGTTCTTGAAAAAATTAAAG ATATTGCCAATAAATATGGAGATATAGACTCTTTAAACTTAATAAATGAAATTGAGAATG 45 AATAATTTAACATTCCAATTCTTTATTTTCCGCATCTTTATCCTTTAAAAATTCTTTTAT AGCAATTTTTTTAAGCCTTTCTTTTAACTCATCCAATCCAATATCTTTATCAGCAGAGAT CTCATCTACCAAATCAATTTTATTATAGCCACAACAATAGGAGCTTTAAACAAATCTTT TATCTCTTTTAATAGATTTATTTGCTCTTCTATTGTATAACCACAAAATTCACTGGCATC 50 TATTATAAATAAATCAAATTAGCTAAATAATTTAGAGCTAAAATTGCCTGTAACTCAAT ATCATTCCTCTCATACAGAGGCCTATCCAACAGTCCAGGAGTATCGACCATCTGAATCTC TCCTATATAACCAACATTTATTCCCTTAGTTGTGAAGGGATAGCTGTTTATTTCAACATC AGCTCCAGTGAGTTTTTCAATAGTGTTGATTTACCAACGTTTGGATAACCAGCTATAAC TACTGTTGGCAAATCCTTAAATGTTGGTAAATCTTTTAATTTCTCTCTTGCCACTGCAAC 55 AAATGCCATCTCTGGATGAATCTGCTCCAATATAGATTTAACTCTACCAACAAATTCCTT TCTTAACTTTCCTGCCTGTTGTGGAGTTCTTGCCTTTCTAATTTTTCTTGCATATTCATT TCCTAATTTCTGACCAATTCAGAAGCCCATTTAAATGCTCCCATCGACTTTTTAAAATC ATCTATCCCTACCAAGACCTCAACCATCTCCTGATAAAACTTAGGAAGTTTTCTTACTGG AGGCGTTTTATCTATAACCTTTTGTAAGTTATCTGCAACAACTGAAGCAATAGTTCTTAC 60 ATTTGCTACTTTTTCTCCTCTTTTAAGGCTTTAGCCATCAATTCATCAGGCATCAATAT TGTTGGCATTTTTTGAATGGATTAGCTTCTCTACTCATAATTATCACCAAAAAAGTTTT TAATAGATTTATCGATAAAATAAAATTAAAATAAATCTTCTAATAAAAGAATGATTTTTA TTTTCATTTATATAAAATTTTCACCACTCCTGTATTTCCATCAACAACAACCCTATCTCC

AGTTTTTATCTCCTCAATATCTATTTTATCAACTAAAGGAATTCCTCCTAAAATAGCCCC AGTGGCAACTATTGGCTCACATTCTTTATTAACTATACCCTTTTAAAATCCCTCTCTTTGC TAAACCATAAATAACATAGGAGCCAACAGTACTCCCCCTACCATAAGGAAATACAAAGAT TTTTCCTTTCAATGATTGTCCATATAAATCGCTATCTTTATCTATAATGTTGCCCTCTTC 5 ATCAACTCCTCCTAAAAAAGAGAATGGTTTTTTAGAAACGATTGCTATGCCTTCAATAAT ACCTTTTGATATACTTCTTCCTTTTAGTTCCATAATAATCCCTCAATCATAAGAAAATTT ACACCTCCGAGCGTTAGnAAGGGGAGTGTTAAGAGGGTATCCTCACTATAGAAGGGCTTTG CCCCTCTATTGGGATACTCCCCAGATAGAAAGTGGGGTTGCCTCTGGCAACCCCGCTCTG GAGTATAGCAATAGAGGCTTTGCCTCTATGCTTTGAAATACTTCTTCCTTTTAATTCCAT 10 ${\tt AGCATCTAATTTTAATGGGTTTTTACTTTCTATTTTAAATTTTCCTCTAACTTTTTCTT}$ TATTTGTTATGCAATTTGGATTTGTGCATTTTAATGTCCCTTCTATCTCATCTGGAATTT GTGGTTTAAGTTTTTCAACAACTTTTCCGTTTCTAATGATGTTGATAGTTACATCTGGAG AAATTAAAGATATTTTATCAACATCCTCCTTTTTTAATTCAATTCCTTCAATTTTTAAAA 15 TATCTTTCTTTCCTTTTTTTTGATGGGACATTAATGGCTATCATCACAGATGTCTCTT TTGGGACATTTAAAACCTTAAAAACCATTAATGCCTTTCCAGCATCTATATGGTCAATTA CAGTCCCATTTGTAATTTTTTTTAACTTTTAACTCCTCCATAGGAATCACTTAAAATTTAA AGCTTTTGTTCAATTTTCTCTAATATTTTTAGCATTTTTATTTGTGTTTTCTTTTATCTCA TTCAATACCTCTAATTTTTATTTACATTTTCTAACTCTCCAAAAATTAGTTTTATCCTT 20 GAATAATTTCTTTTCTTTCACTTGGAAAATTTGCCAAAATTCGAACAGTCCCATCTTC ATAGTTATACACAATTCCATCAATTCCTAAGGCATGTCCCAAGTTTTCAATCCTTTCTCT AANTCCAACATGCTGGATTCTACCGTAANTAATANTTTCATAAGTTGTAGGCATAAACTT TCTTTCTTAAACTCTTCTGGATTAAATTCTTCAGGGAACTGTCCTTTAACTACTTTACCA 25 GCATGTTTTGGATGATATTTATCATAATCAGCTTCTAACTGCCTCAATACTGATTCTAAT GACTCTTTTAAAACATCAATAAACTCCCATCTTTCATGTTCTGAAACATAAGCTATATCT TCACCTTCAGCCTCTAATTTGTTTGGTAATGATGCTTTTTGGCCTACCCTCCCCAACATAT AATTTATTTGGTGTCTTAACATAAGTTGTTATTCTATAATAAGGAACTCCTCCTTTATCT ${ t CTCTCTTTTTGATTGTTATTTTTTTCCAATGAATCTTTCCTGCATGTTTAACCATCTTT$ 30 TTAACTTCTGTTGCAATAATTCTTTCAGCAAGGTCTTTAAATTCTGGGTCTAACATACCG TGTAATTCAATTTCAATCATTGCCCCTTTCTTTAAATCAGCAATATATTTAATAATATCC AATCTTGTGACAATTCCCCTCAATGATTTTCCTTTAACAACTGGGACTCCTCTAATATCA TATTCTTGCATAACTCTTGCAGCATCTGCAGCACTTGCATCAACATCGACTGTTATTAAT GGAGTGTTCATAATTAATCTAACTGGCTGTCCCATTCTTGGAACTTTTTCTCCTTTAAAT 35 TCTCCAGCAGTCATCTTTTCTTAGGTTTAAAGACCTTTTTTAATATATCGACTTCAGTA ACCATTCCAACTGGGTTTCCTTCATCATCTACAACCAATCTACCGATGTTATTGTCT CTCATCAAAGCTCTCGCTTTACCAATTGAGTCATTTTCGTTTATTGTAATAACATTCCTT GTCATTATCTTTGTAACCTTTGTATCTTTCATTATTTTTGATTTTTGCAGCTCTTGCCATT ATATCATAGTCAGTTATAATTCCTACCATTTTTCCTACATTATTAACTATTGGAGCTGCT 40 CTCTGCCCACTATCCAACATCTCACATACAGCATCCAAAAATGGAGTATCTTCATGTACG CAGTGTGCTTTATACATTAACGACCTAACTTCTTCATCTGTTGATGATGCCAACAACAAA TCTCTCATGCTTATTAAGTAATATTCTTCCTTACCGTCTTTTTTATCAACAACTATTAAA TGATGAAATCCGTTCTCCTTCCATAATTCCTAATGCCTTTGAGACAGGTGTATCAGGTGTT ACTGTAACTACATCTTTTGTCATTATCTCTTTTACTGGTTCGTTTAACATTAATCTCACC 45 TTTTAACAGAAATTTTGATGATTGATATTATATCACATTTAATATTTTAAAGTTTAACAGC AGTTACGTATTAAGAAATGTGAATGTTTAATTTGGCTCTATTTTCCTAACAATATTAAAG GTAATAATATTTTTAAAAAATCGTAAGATTTATATATTATTTTGGCATGATATACTGCA 50 CTCCCGATGACGGTCTCCCATGGTGGGATACTTGAGGGAAGTAGTAGAGGTGGGAAGATG ATGGACTGGTTAAAGAATAAAAAGCAATCTCTCCAATCTTAGCCTTATTAATCGTGTTA GGAGTTACAATAGTCGTAGGAGCAGTATTCTACGCATGGGGAAGTAATTTATTCGGAAAC AGCCAAGAAAAGACACAGGCAGCAGTTGAAGGGACTGCAACAAATATGTTTTATGATGCT GGGGCAATTAGGGTTGCAGCAACATGTATTGACAAAATAAGATACCAAGATGCTGATGAT 55 AGTGATTCATGGTTAGGCTATCCAAATGGTAACGGAAAAATTGCAAAGCCATCTACTTCA AATGGATGTTATAATTCAACATACGGCACAGTATTCTATGACGAAAGATTTATTGTGGAA ATTCCAGTAACTATTGACACACAAGATTATAAATTAACTGGAGTTAAAGTTGTAGGAGGA ATCCCAAAAATAGTTGATATGGGTGGAACTTACACAAATGCCTTTGAAGATATATCTGCA 60 ACATTGTTCGTTGGATACGTAAATAAATCAGGAATGTTTGAAGTTAGTAATGGGTATGTA ATTGCATGGAATCAGACAAGAGACACCTATGGAAAATTGGCTTCTTCAGTTGGTGCAACA TCAGACTCCAGCTGGGATGCAGTTAATACAACAACTGGAGTAGCTCCACTTGTAGAGACT TCATGGCCATATTATGGAACATACTGTAGTAATGTTAAGTTATACACAGCTACTGGAGAA GAATTAAAACCAGGATTTGGAAGTGGAACATTGGTTGCACAATGGTTCTGCAGTTCTGCA

ACATACTTAGATAAACTATTCAACAACCCAGAATATGTTGTAGGAACATTACCAAAGAAC TCAGAAAAACTGTAAAAACCTACTTATTCTTCAATACATTATACTTGCCAAACTACAAA GGATCTACAAATGATGGATATGTGACATTTGAAGTTCCGTTAAAAGTTGTATCTAACGAA GGAGTAACTAAAGAAGTTAAAGTTAAATTTACGGTCTATGATGATGAGTAGATTTTCTAA 5 АААТТСТGAAAAAAATAAAATTTATGAAAAATAAATATTTTTTCATATAAAAATCATACT GTTAGTTAAATTTTCATATTTAAAATTTTCTTTATGAATTATAGAAAATTTTATATAG TATTTAATTCCAATGACGGTCTCCTGTAATAGGATACCCGAGGAAAGAACGAGGTGATGT 10 AATATGTTTGAATGGATGAAGAACAAAAAAGCAATCTCTCCAATCTTAGCCTTATTAATC GTGTTAGGAGTTACAATAGTCGTAGGAGCAGTATTCTACGCATGGGGAAGTGGATTATTT AATAACAGCCAGCAAAGTACTCAGTCAGCATTAGAAGGAACAACATCCACAATAACCTAC GCTGCAGGAGCCATAGGTGTTGGAGTTCCAAAAGAAATTGATGTTGAAGGAGATTTGGAT TTAACATATCCTACTCCAGATTACAAACTCTCTCACTTGACTACAACAGATTATGGCTCA 15 TATGATGAAAGATTAATCGTTCCAGTTCCATTAACTTTAGAAAACTACTATGATTCGACA TTAACAAATGTAAAAATAGAAAGTGACGGAGCCACAGAAGTTGCTGGTTTAACACTCAAA GGGACTCCATTTAAAGGTATATTAAATAGAACTGGAATATACCCAGATGCTACATGGACT GGAGATGATGGAAACAACTATACAAGTGTATACTACATATTAGCTCCAAACTCAGTTACT 20 GGAGTTGCAGCAGTAGATGGTAGTAAAGATTTATCAGTTACAACTGCTAAGAAATGGCCA TATTCACAAAATGATGTCCAAAGTATGAGGTTGTATGCAGGAGGATTCAACAATATGTGG TATGCATGTGCGGTTAATGGTTCATATTCAAGCTGGACAAATACATTAACAGCTACAAAA TTCATTGGATGGAACACTGCTCAAGCATTTTACAAATACAAAACACCAATCGATGCTAAG TTCTATACTTCAGAATGGGATGTTGGAACATTACATAAAGGAGAAAAAGTTTCAAAAGAA 25 ATATTCTTCTTTGGTTCAAGTATGGGTTTCCAAGAAGAGCCAAGTGGAGAAACAACT GTTAAAATCCCTGTAAAAGTTGTTTCCGACCAAGGAGTATATAAACAAGTTGATGTCAAT AGTTTTAAAGATTTAAATATAAAATAACCTTTAACTGCTAATATGTAATAAAATATATGC AATAAAATATTTCTTTTTGGATTAAAAAATAATTAGAATTTCAAAACAACCTTAAAATTA 30 TATTACTTTTCTAAAGGTGATAGAAGAGATTGTCAAGTTAAGTTTTATTAAATATTGA TAAAAAATAAAAATATGAGGCTCATGATAGAAGTTATAAAGGAGAGAATCGTAGAGAG GAAGCTTTTTAAAAGGAATAGGAATCGATAGAGGTTAAAATCTTAGCAGGGCTTTTATAC TACCTCGGATTATCATTGAGGAAAGTGGTTTATCCCCCTCCAAATTCGAAGATATAAGTC ACGAATCGATTAGAATTTATTATCATAAGATTAAAGAGGTTTTAAATAGATTTCCAAGTA 35 ATGGTAAATTCGATACGGTTGTTAGTTGAGTAAAAAGCTTCATAATGTTCTATAATTGGG AAAAAATAAAAATTTTTATATGTGTTATTATAAAATCATGTATCCAAATATTATCTATT TTGGATTTTCAATTTTCTCTTTTAGTTCTTTAACTTTCTCGGCATATCTCTTGTTAAATA TCCTCGCTATTCTCTGTAGCGTCTAAAAGATTTAATAACTGCTCTAAGTAATAGTAAA 40 TATCTCCAGAGTACGTTTGTATTTTAAACTCTTCATATAATGTCTTTGATATCTGTCCAG GAGTTTTTCCAGAAATCCTTAGATTAATAATCATCTCTAAAATTTTTTCTTCAACTTCAA CTCCCTCAAATTCCATAATAATTAAAGTTAAATCCTCCTTTAACTTCTTATCCTTAATTT TTTCCATCCCTCCCTAATAACTTCCAAAGCATCAAAAAACCTTGAAGGAACATTTATAT TCAAAATTTTTGAAAGCTTTATTTTTAAATTGTTTGATAAATAGACGTTTTCAAAGGGCA 45 CAGCAACCTTTGGATATAAAAATGAAATAGCAACTGCACTTCCATAATTTGTTAATTTCA CATCATTATTAGCTTTTATCATTCCATAACTCTCTAAATTACTCAAAATTTTGTTCAAAG AGATTGTAGCTAATATCTGCTCTTCCTCCTCATCCTCATTATATTCAACTTTAACATCTT 50 CAGGAACTGCGTTTAATAATTTAAATGCCACTTCATCCTCAGTATTTTCCATCTTTGCAT GATATTTCTTCCCTATTTCCACCAAAAGATAGACCTTCCCAATTTCATGCATCCCCTTTC TTCCAGCCCTCCCACACATTTGCTGGAATTCAGCAGGATTTAACCAATCAGCCCCCATAG CTAAACTCTCTAAGATAACAGTTGATGCTGGAAAATCAACCCCTGCAGATAAAGCGGCAG TTGTAACAACGCACTGAATTTTTTGATTTGCGAAATCATCTTCAACTTTCCTTCTTTTTA 55 TATATTCCATACCTCCATGATAGAACTCTGCTTTAATTCCTTTAGATTTTAAAGCTTTAG CTAAATACTCTGCTCTTTTCTTGAGTAAGTAAATATTAAGCACTGCCCTCTATATCCAA ATTTTGAAATGTTCTGCCATTCTCTTTTAACAATTTCTTTGATAATATTTAGTTTGGCAA AGTCATTTTTGCAGAAAATTATATGTCTCTCTAAAGGAACTGGCCTTCCATTATATAAAA CTAATTTGGCATTTAGTTGTTTAGCCAATTCCTTTGGATTTCCAATTGTTGCTGATAAAT 60 ATATTTTTTGTGCCTCTTTAAATAAAACCTCAGCCTACCAATTAAACCATCCAATCTTG CTCCTCTCTCTCTAAATTCAAAGAGTGGATTTCATCAATAACCACTGTTCCAATATCTT TTAATCTTTTAGTTCTAATTAAATAATCAATTCCTTCGTAAGTCCCAACGATAATATCAG TAACTTTAAAACCTAATTTTTCATATCTTTCTTTAAATTCTAAGTATTTTTGATTTGCTA

CTCCGTTTAACAAACCAGCTTTAACGGATAGTGTTTGAACAGGCAAAAGCTCTTCAATCC 5 CCAATGGATTTCTTATTCTCAACAAAGATAGAACTTTATCAACATCTTTAAATCTCTTTA AAAATTTCTCTATAAATTCTTCGCTAATTTTTACTTCCTCTTTGATTTCATTAATCCCGC AGATATTTTTTAATAAACAGAATGGGCAGAGTTCTATATAATCAAACTTTAAATTGTATG 10 ATTTTAAAACTTCTTCTATTTCTTCCTCATTTTCTTTTAATATAAATATTTTGTCAGATT TTAACAACTCCAAAACCTTAGACGGCTGAATTAACTTATCTCCTACTCTACATCTGTATA ATTTGTATTTATCTCCAACTTTTTTGTAATTTGCAAATATCTTCTGATTATTTTTAACTT TTGGCTTCCTAACAATAAGCATTATAAATCACCGTTCAAATAAACATTCAAATAAAGCTA 15 TGAATAAAATAAGTTATAAATAATTATAACTTTATAATAACTTATTAGTAAATTTAGTAA AACTTTTTTGGGGATATTATGAAATTTATAATGAAATTTATAAAATCCAATAAAGGACAA ATTTCTTTAGAATTTTCTTTGTTAGTTATGGTTGTTCTCTCAGCAATAATTGTTTCA TACTATTTGATAAAGACAGCTATCGAAACAAGAAATGCAAATATGGATGTTATAAATCAA AGTTCCAATGTTGCTGAAAAATCCTTAAGCAATGTAACGTAGTGTGAAACCATGCTGTTG 20 ATAGGTATTACAGGAATGCCAGGAGCGGGAAAAAGCTCAGCTTATGAAATTGCTAAAAAA TTAGAATTAACTCCAGAAAATGTTGGAAATACAGCTATAAAGCTAAGAGAGGAGTTTGGA AATGAGGCAATTGCAGTTGCATGTCTAAAATATATAGAAGAAAATTTAAAAGATAAAGAA ATAGTTATTGTTGAAGGTATAAGGAGCTTATATGAGGTTAATTATTTTAGAAAACATAAA 25 CCTTTGGTTTTAATAGCCATTCACTCTTCTCCATTAACAAGATTTGAGAGATTGAAAAAA AGAGGAAGGGAAGATTCAGCAAACTGGGAAGTATTTGTAGAGAGGGACTTGAGGGAG TTAGGATTTAGTATTGGACATGCTATTGCATTGGCTGATTTTGTAGTAGTTAATGAAAAA AGCTTTGAAGATTGTTTAAATCAATTAGACAACATTTTACAGGAAATTTTAAATAACTTG 30 ATACTATTCTGTTTCCCTCTTCTTTAGATTTTACAATTCCAAGATTTTCCAGTTTTTTTA CAGGACTTTTTAATAAATATTCAAATATGCTTTTTTGCGTTTCATTTTTTAAATATAACA GTGGCAAATCCCTCATATCCATATCTGCTGGATAGTAAATTAATCGATTACCAAATTTTT TACTTTTAATTAGATTTGCTTTTTCTAATATTCTTAAATGCCACGTAAGTGTTGATACTG 35 GTTTATTTAGGTTTTTAGAAAGTTCTCTTAAATGACATCCAGGATTGTCTAAAATATAAT TGTAAATTTCTCTTGTGTCATTTAGAAGGACTTTTTCTTCATCAAGAAGATTTATAC GAGAGAGGATAAATACTTTTACTGATGCTAGTGCAGATATTAGCTCCAAAAACTTCTTTT TTAGGGTTTCTTGAAAAGTTAGCATTAAAGATGCAAGAGTTAAGAAAACAGTAAAAAGTA 40 CATCCTCATCTGGCTTAAAACCAACATATATTTATTATTATCTTTATCGCCGCTGGTT TTCCGTCTTTATATCTTGCTATAACCTCTCCTTTTTCTGGTAATTCATATAATGCCTCAA CCTCTGATTGTTTTAATTTGAGTGGGTCTTTTATCCAGATAATTGTCTTATTGCCATTAA TCTTTGTAATGATAAGGTTATAACTTTTATTCTCTATTTTAAATCTTAGTTTTTTAATTA 45 AAGGAGCTATGTCTCTATCAACTTTTATATATGGAGGAATAATCACGAATTCTTTTTTCT GGTATTGACTAACATTTTCTAAGCTAACATTAATACCATAAATATGTACATAAATACCAT AAACATGAACGATGCAAAATAAGATTAAAATTATAAGTAATAAAGTGTCCTTTTTCATGA TTTCACTAATCTATGACTATAGGTGGAGGATACATGATTAAATAGAGCCCTAACGATAAA 50 AAAATTAACGAAATAAACAATAACAATCCAAAGCTTATGTCTATATTAAAAAACACCA ACAAATATAAACACTGAAATTTCAGAAATTATTATGGATGTTGAGACTAAAAATGAACCA ATGAGCGTTCTTCTCTTTGCATTTTTCTAATTTTCTTCAATTTTATTAATATTTCTTTA TTGTTTTCTTCTACCACATACTTCACCTCTATTTAAAAAAAGATATGCTTCAAGTCCTATT TCAACTGCCACATCATACGCCTTTTTATCACTTAAAAATACTCTACCTCCATACTTAACA 55 CCCAGTATAATGGCTTTTGCTGAATTTAGAGGAATATCATAAATTTCATGTAAGTCCCTT GCAAGGTCTTTTTCTACATCAGTAAGTTTAATAATAGTTATACCTCCAGGTAATATATTT CCTAACTTACAACCCTCTGGAACATATACTGTGCCACTTAGTAGTTCAAGGTCTTTAATT GAGAAAATCCCTTTATCAACAATATATGAACGTCTCCTAAATATTGGAGGAATCAACATA GCAGTTATTGAAGTAGTTGTAACTGTGGCTATAGCAGCAGCTACTTTTTTAAATTTTTCT 60 TCAATTATTAGTGGGTACTTTCTTTCTCTTTGTTTATTCATCTCATTTTTAGAAGGT TAGTTATAATATGGAATGTTAAAACTTAAACCTTCAACTTTTCCTATTCCAATAATGTAT GAATTATCAACCTTAATTGCTGGTTTTATTTTTTATAGTTTCATAAACATCTCGCCATGCA

TAAAATTTAAGATAAAAATAGGAACATAATCTGAAGTGATATTAAATGACTGTGATACA TTCTCATTAGGTTCTATAATATAGGAATAATTACCAAAATCTATTTTTGTATTATTAACA ACAGCCCAATAGCTTGCATTTACATTTAAAGAGACATTCTTATCATTTTTTATATAA ATAGCTGTCCATTCAATAGAACCATTACTTAAAATTTTATTTGACTTTATTATGGAAAAT 5 GGTATTGGCAGAGAATATCTTATCATCAATTTAGCGGGTACTTCAAAACTTATATTGCTA TTGGCAGGAACTAAGACTGATGCATTTTTAATGTTAAATCCTCCTGGAAAAGATATGTTA AATAAGATACTGTAGGGATAGTTATTGATTATTTTATAATATACCCTCCATTCATCTCTG 10 GTTATATTTTTGAATATGGAAGATAAAAGGAGGAGTTTCTATAAGATATATAGATGCTA AAAGCATCGGGATTTTCATAATCTATATGTAACTTAGATACATCAACTGTTTGAGAACCA GCAAAAAATAGTATAATAATAATTAAATATACCGATCTCATGGTCCCCAATTATTAG GTTTTATTTTTAAAGTATTTAAGATTTATAGAACAATTTTTTGACGAATTATTTTTTG 15 GGTCAATACCGATAATAAGTCCCTCAACTGTTGTTATATTGGTTGTTATTGATATGTTCA TTGTCTCATTTGCATTTATCACATTAAATTTAAACCAGTAGGTGTTTCCATAGGTTCCAT TTTCATCATAATCCCCTGAAATATTGATTACTTCAATATTATCTGGCTTATACCAATAAA CATAAACATCTCTTGTTGTATTATATGATTTTATTGTTATGTTGTAGCCGTTTGGAAGCA 20 CTGATGTTCCAATACCTTTTATCGTTGCTGTTGCAGTTAGTAAAGATTCATCTCCAACCC CTTTTCCAGAAACATTTATTGTTCCACTGAAAAATCCATTACTATCAGCAATCAAACTTC CCAAATAAATCCAACTTTCTCCATAGGTATCATTCAATACAGTGCCATCTGAAGAAATAT CATTTGCAAAGTTTGAACTGCCAGTTCCATTTCCAATGTATCCTTTAACTGTTAAGTTAT 25 AGTTCAATAGCCCATCATTTAGAGTTACATTATCATCATCTAAGTCAATTCCGAGTAGAG AGTTGTTGTAAATTGAGTTTTTGGAGATTATTATATTGTAAGGAACAAAATCCCAGTTTG TTGCCCCTATTAAAATTCCATAGGCAGAGTTGTTTGCTATGATATTCTTTGAGATATTAA 30 CATAAGTTGGATTTGGACAGAGATTGTTGTTTATTATTATTACCCTTCTATTATTATAT ATCCATTATCTTGATTATAAACTCCATAAGCCCCAACAGTTATTCCTGCGGTTATATTTC CTATTGTGACAGTTAATCCATTGTATTGAATTGTGTTGTTTATAATGGATATATTTGTTC CANTCCAATCCCAAGAATTCCATCCATTTGCCTCTTGAATTAAAATTGCCTGAGCATCGC 35 TGTATTGAATCGTGTTATTAAATATAGAGACATTCTCAACTCTTCCTCCTATGTATATTC CATTACCGCTATTTTCTTCAATACCATTATTTGAAATTATGTTGTTTTCAACTTTAACAT CACATAATGTTCTGCTCCACAACCCTTCTAAAGAAATACCATTACCCAAGTTGTGAGATA TATTGTTATTTAAAATTAAAACTCCCTTGGTATAGTTTCCACTGATTTTTATTCCACTTC CTGCTGGGTCTCCCAATCAAACCGTTATTGGTTATGTTATTATTAACTATGTTTATAG 40 CATTTACTCCATAGATGTAAATTCCATCTTTGTAGGAGCCGTTTATTAGTGATTTGGATA TATTTACATTTGAAGCACTTCCCAACGAATAGATAAACAACCCATAGCTTCCGCTGTTTA ATACACTTGAGTTATAAAGTTTTAAATTATTCAAAAATCCATCAGAAGGGACTTCAATAT CAATACTGTTGTTTATTGAATCTCTTAATAATGAATTCAACACACTGAGGTTTGATAAAT TACCATAAGAGAGTATTGAGTAATTGTTATTATACAATAGAGAGTTTTCAACACTTACAT 45 TTTCTCCATTAAATATTGCAATTCCATCTGTGCTTGCATTAAATATATTTGATGAATTTA TATATACGTTAGATGAATTAACTATTTCAATTCCATAGGCATTATATGAAATATTCGATT TTTGAATTTTTGAGATGTAGTTTTCTTTTAAATATATTCCTATGCTATTGTTCATTATAT TTGAATTCAATATTGAGGAGGATGAATTCTCTAATAATAAACCTTCATATCTATTTTTAT ATATAAGGGAATTATTCACCAATATGCTTGATATATTTTGCATAGATTCCAATAGAGTTAT 50 TAATTATTGAAGAGTTAAGTATTTCTAAAGTTGAGTTCTTTGAATACACTCCCTCATAAA CGGAATTCTTAATCTGAGAGTTTATTAGTTTTATTCCATTTTCCATCTTTATATAAAACCA ATCCTTGATTACATGAGCTTATAGTTATATTATAGATTGTTATGTTTCCAAAACCACCAG CCCAGTTTGCCCAATAAATCCCTACACCGTTTTTTAAAGATATTTGAGAGTTATACAACA TAGCCCATATTTTGTTCAACATTGAAATTCCATATCCTCCAGAGGCGTTTATTGTTAAAT 55 CATTTAATATTTTCCATAAATTCCACAACTCTTTAATGTTAAATTATTTAGCCCAGTTT CCCCCACATTGTCAATAATTGGATTTTGGAGATTTTCTTCGAGATTTAAAACATTATCCC CATTTTCACATATGTTGGCTTAACGTATTGTAGGTTTTTTGCTCCTCCTGTTCCTCCTG 60 TGAATCCGAAATAAGTTGAGTTTCCTATAATTTGGGTTATGTCTTTATTCCATGTTAATG CTAAATTGCCATCGAAATATACTTGGAGTGTTTTTGTTGTTGCATTCCATACGATTTTTA TTAAGTGTTCTCTTCCATCCTCAACATTACCTAAATCGTATGGGTTTTGGTGTTAAG TTAAGGAGTTGTAAGTGTGATTTAAGTTCCCATCAACATCTATTGCAATATGGTCGGTTG TTGCTGGGCTGTCAAAATCGTTAAGCCAAGTATCAACCTCCACCGCTACACTCGGAGAAA

TTCCACCATAACCCAAATCTCCTCCAGTTCCACCTAATTCGTTAGTCCCCAACGATTGCA AGGTAAAGGTTATACCATCTGCTCCATCAGGATTGTCTCCCAAATACGCATAAAACTCAA CAACCAAATCCTCAGATAGATTAACCGGCTTGTAATACCAAACACTACCTTTTTGGTTGT 5 TAGCTATCCATTGTAATCCTGATAAAATGATGGTTCCATTAATCTGAGTTGAACCATTGA CAATAGTCAAATTGTCTAATATTTTATTTCCACTTGTATAAATGTAGTGATTTCCATTCT TTGCGTCGATATTTGGTATTCTGAAATAACTCTCATCTTTCCCATAAATTGCATTTGCAT TTTTTATAAATTGGGAAAAACTACCCTGCCCGTAGATTTCGTATTTGTTATTACATCAA AGCTGAATCCAAATGTTATATTTTTCCCACTATATGAATTTAGATTTATCAAACAGTAGT 10 GTTCATATTTTCCATCTTCCCAATTATCTTCTTCATTAGGGTCTCTTCCTCCAAACATCT CAACTACTCCATAAGTTGGATTTATTATATACCCATCCCCATTTTTTTACGTATATTGGCT TAACATACTGGAGATTTTTTGCTCCTCCCGTTCCTCTGTGAATCCGAAGTAAGCTGAGT TTCCTATAATTTGGGTTATATCCTTATTCCATGTTAATGATAAATTGCCATCGAAATATA CTTGGAGTGTTTTTGTTGTTGCATTCCATACGATTTTTATTAAGTGTTCTCCATCCT 15 CAACATTACCTAAATCGTAAGGGTTTGGTGTTGGGTAAGTTAAGGAGTTGTAAGTGTGGT TTATGTTGCCGTTAACATCTATTGCAATATGGTCGGTTGTTGCTGGAGCATCAAAATCGT TGAGCCAAGTATCAACTTCAACCGCTACACTCGGAGAAATTCCACCATAACCCAAATCTC CTCCAGTTCCACCTAATTCGTTAGTTCCCAACGATTGCAAGGTAAAGGTTATACCATCTG 20 TAACCGGCTTGTAATACCAAACACTACCTGCTTCACCATAATCATCTGTTGTTAATAGAA GCTTATCTGGGAATATTGAAGCATTTCCGTTGGCAATCCATTGAGAAGAGTTTATTGGAG TATATACTGTTTGATATGTTTCTTCAGCCCAGATGTCATTTTTGCTATATTGAGGGTTTA TATAAACTAAGAAGGAATAATGACCAAAAATATCTGTTGTTGTTGAATTTACTATGGTAT 25 CTCCAATATCTGGAATACCATCATTATTGCTGTCTTCAAGTAGAGATACATTAACCCCAT ${\tt AAATTCCTTTATCTTCACTATCTTTTTCCAAGGGTTCCAAAGTCCTCTTTTACATAGC}$ CCTGAATTTCATATCCGCAGTATATGGTATAGTTTTTCTTCGAAATTACACCATTAGATT CGATTCCAGTTATTGTAATAAGATATTTTCCTGACTCTGGGAGGCTAAATGAGTAATTAT AGAGCTTCCAAAGTGATGGGGAGTTTTTATCTATTTCCTGTAGTAGCATTGAAGAGTTGA 30 TATATACACTACCGTTTGGATAATACACAGTTATATTTGCCCCGCTTATATCGTAAGAAC CAATAGGGTCTGTAATATTTGCAAATATTGTAACATTTTCATTTGGAAGATAAACGTTTT TATCTGAAAATATGTTATAAACATTAACATAAGTCGTAGTGTTTAGCGTTATATTGGATG AAACCAAATAGTAGTTTTTGGGTATTGTAATTATTGAATCTAAGGTTATATTGAAAATGT 35 AAGATTTTATAGTATCATCTAAGTATAGATACTCAACATCACTTCCTAAAGTAAAGGAAT CAATTCCATTTGTGGCCATTAACGAAACAACAATTTTATGCATTTCAGTTCCAAATATAA CGTTTGGGTCATTTATATAAAGCAAAATTGGAATTTTTCCTACAACTGTAAAGTTGTCTG CGAATCTTGGATATTGTATCCATGAAGCTAATGAATTGCTATTAATTGTTGTGTAGTTGT TAATTGTTGTAGGTATTGAAGTATTTAGAGTTCTTAAAGTATCTCCATGTAAATAGAAAG 40 TTTTTTGAACTGAAGGAGGATATGGTGTTGATGTCTGGAATGTTGTTTTTCCAAATATTG ATGGATTATTATATTAACAAATTTTAATGTAGTTGTATCAATCTCTCCTAATGGGGCTG TTGAAGGAATTGTCTTTGAGACAGTTAAATTTATCTCTCCAGTTGGCACATAGATATCTG GCAAATTATTTGAGTTTAAATCATAATTTGGGTTTATATAATCCCAGATTCCATCCCCAT TGGCATCTTCAGCTATTAAAATGGAGTTGTTGTATATTTTCGTTGTCCATCCTTTCGTTA 45 AGTAGGTTATATTATATCAAATCTTCCTCCAACTCCAAAGTTATATAATGTTATATTGT ATGTTATATAGATTATAATGCTTTTTTCATCGTTTGATGTATTCTGGTCATTTGGAAGAT TTGTCTTTATTGTTATTTGTAGGCTCCATAAGGCATATTTGAGATGTTTACTGGAAAGC TCACGAGTTTTTCTTCTTCATAAGGAACTGAGAGGTTTATTAAAGTTGAGTTTGTATAAA 50 TATAAGTTCCATTTATCTGTGTTATATTAATTGACACATTCAAGTTGTATGCATCTACCA ATCCATATAAGGCAATTGTTGAATTTATGTATATTATTGGGCCAATATTTGGGTTAAAGC TGTCTCCATTGTTTGGGTAATCTATACTTTTAACTCCAGTATCATATAACTGGCTTAAAC CCATATTTATTTCGTTCATCATGTCTGTATAGTTATAACCTAACCCCCAAATTATTGGCA CTACCCAAATTTCGCCAGGTTTTAATGAATCTTTAGTCCATGCTAATGCTGTCCCTGCAT 55 CACCCTCATATGATGAATCATTATTTAAATTATCATATCTAATATCAGACCACGTACTCC AGTACAAATTAACATCATGTTCGTAACTTGGGATATTTGATTTAAAACCTCCGTATTGTA TATCCCCAACAGGTGCGTTAGAATCGTAGCCATACACAACATCATCAATACTATTATAGT 60 TATTTCCTCTAATAATAACCTTTTGAGTAATATTTAGCTCATTATTATTCCAAGGAGCAT ACATATCTGTTATAATTACACTCTCTAAAATCCCATTTGGAACGGTATTTAAAGGAATAT CTGTCCTATTTATTTCAGATAGGTAATAATATGTCCACCATCCCAAACTACCTGCAGTTC CTAAAACCCCATACTGTCTTGTTAATGCTCCACTTGTATATTTTATCGCTATTTTTGAAC CAGCGTAAGCATCAATATTATTTGCATAATTGTAATCTCCAGTCCTCCCTGCATGGTCAT

PCT/US97/14900

AAGTAGCCACGGTAGTTTCATCATCCTCCTTATTATATGGAAAGACAATTGCTGAAATCT GCCCACACCACCATAATCTTGCCCATTATAAGATAATTCAACAGCTATTGAATGATTTG GAGCTGGAGGAATTAAAGATATATCATATCCATAAATAGGATCGTCGTAGAAGTATAGTG 5 AAATGTTATTCTTATTACTCTTCCATCATCTCCAACAATTTCTTTAACCCTATAACCTT TTGGAATCTTACAGCTGAATCTATACCAAACCCCATCTACTTTATTATTAACTTCAACTC TAATTTTATTACTGCTTATTTTTTTCACTATCTCAGTTGTATTTTAGAATATTTTCAGGTA AGTTGTAATCTTTTAGAATTTCTTTATCTGCTTTAAGTTTGATTTCTACAATACTATAAT 10 ACTTCTTAATCTCTTTTTCACTACCTTCAAGTTTAATAATTATCTCCTTATTGACTGGGT TTGCATTTCCACAAATTAAAATTATTTTTTTAATTTTTTCTGGTTTTGAGATATTTAACT TGGGTATTAAATAATCTAAAGGAATTTCAAAGGCCCCATTTATTAGTGAAATATTAATTT CTTTTTTATCTACAATGCAAGTTATAAACTTCGGTTCTTTAACATAGTAGGATACGTTTC 15 CAACGATAAATCTATTATCTATCAATTTTGCATTAATTTTGTAATAATCTACAGCAAAGG TTTTTTTAATCCCATCAACAACTACTGAGTAATTTCCTAATATAACATTCTTTTTTAGTT TAGGGGTTACAATATATGCAGTATGTGGCTTAAAATTTGTTTTTATAACTATTTTTTCTG ATGGGAAATAAACGTTTTTCAATATAACGGTTTTATTCGTTGTCGTATTTTCCTCGATAG 20 TAACTTTTATATTGAGGTCTAAATATTTAGCATAGGGTTTCCCATTTGTTTTAACAATCA CTTTTTTTCTTTTCTGGTTTTGTGTAATTTAAAATAACTGTTCTATGTAATATTTTAT 25 CATTGAATTTTGAGTAAATTTCTATTGGAACATTTAAAACTATTGGAGAGATTATATAT CGTTATCACCTATTTTGATAAACTTTAAGGGCGTTTTATTTGCAAATCCAAAAACTTCTC CATTAGTTTTTACTATAACTCTATAACCATTAATAGTAATGTTTAAATAACACTCATTTT TTTCTTTGTTTGTATCTGTTGTATTATTGATTATTATGCTACCACTATTATTAGTGGTGT TTGTTAAGGAATTGTTTAACTTATATATCAATGAATTATTTAATTCAAAATTACTGTTGT 30 TGTTTGTTGTTGATACATTTAAACCTAAACTCACGTTTGAAAGCAATAAAATAGTGAATA CAAATATTGAAATATTCTTTAAATAGGATTTCATATTATCCCATTGAAATTTTTAACACT GTTCAAAAGTAAAGTAATGTATAGGTAGTATATAAAATTTATAGAACAAATATTAGACAA TCAACTCAGTATAGACAAATATTATTATTAATATACACAATATGCTTAACCAAAACACCA 35 CATATCCATGAACTGGAAGTTTCGGTAATGGCAATATTGAAAACTCAGCATTTATAATAA GCAAAGTTTTTTTAGGGATTTGGAAATTATTTCCATCTGGTTCTTGGTAGGTTAGATAAT AAGGAGAGACAAAGTTTATATGGAAGTTTTTTATATTCAAATCCCCTCCAATAGGAATTG AGACAGTTTTAAACAATATTCCATTATCAACAATATCAGCATCATATTCAATTATTAGAG TTATATTTTTCCACCATCTATTGGCTCCCATACTTGATATGTTATAACTGAATAGGTAT 40 CTTTATAAGAGACATTTACATCCATTGGATATTTTTTATCCCCAATTATAATAACCCC TTAAATTCTCAATCTTTACAGGtTTTTTTTCTTTTGTAAATGGTATTGGAATAATCAGTAT TTTCTTTGACTCTTTTTTGTAATCTTAACTCCCCAATTCCTGGAACAAGAGGATACTT AACAAGATTTTGAATAGTTATAACATTTGTTATATGTGCAGGATTTTTTGTTAAATCAAC GGTCATATTATAGTTTGTTATTTCCTCAACATCTGCAAAAGTTGGTGTTATAAATGCAAG 45 TATATTCCTCTTTGTTAATATACCTAATCCAAAGATAACGTTTATCAGTATTAAAAATAT CTCAAAGTTGTTTCTACTGTTCCGGCTACTGTTGTTATTTTTGGTGAGGTTGTTGGTAG TAGTGAGTTTGTAGGGTCGATACCAACGATAAATGCGTCGCTTGGGTAGAATTCGCCAGT TCCGTTTAGTTTGTAGTGTATGACTACTGTTTTATTTGCAAGTATTTCAGCAGTGTCGTT 50 CCAGTTACCGTCCCCATCTGCTCCTGGATATATTGCATGTAACGCCCACCACATGCTTAA ATTATACCTTGGATTTGTTGTAATGGTGTGATTTCCTTCAGCAATCAACATACTTGATTG ATTAACCCACTCATCTGAGACGGTGAAGTTCTTAGGAATCAAATCATAAACATACACATA CTCAGGAGTCTTCACACTACCAATATTCTCCACACTATATAAATATCATAAGTCCCATC CGCATCCGGAACAATATGCTTAGTCACCTTAATCAAATAACTACCCACAACATAAATCTC 55 CTCAACAACAACATAGGAACTTCCTATTTGACTTACTTCATTTAAAAGGATATAATCTTT TTTTGACAGTGTAAATGAGCAGTTTGCCCAAACGATTGGAACTCCACTAAATGTGAAGTT GTAGGTTTTAGAGTTCCATACTTCTCCTGGAGGTATGTCAATATTTTGGAGTTATAGTGTA ATTACTCCCATCTATCCAGATAGATTTGTTAAATGGATTCCAATACAACTCATAAGCAGA 60 TTTAAATGTTACATTTTCTATCCAAATGTTTATTTCTCCCGTAGTTCCATGATCTGTTGA AATACTATAACTTCCAGATGCATAAACACCTTTTATAGATGTGTTTGTATTGGTCCCATT GTAATTAAATAGTATTTTAGCAAATCCATACTTTGCTAAAATATTATCCCTTTCACTATA TGAATAATTTCCCAATACATTAAATACCAAAGTTGCACTATCATTACTCCAATTTAAGGT AATATTTGTCCAATTTATTGCATTTAGATTTGAGGTATTGTAATCTTTTTTGAAATAGTC

CCCATCAAATAAAACTGCTGTTCCTTCACTTGAATTTGCAGATGTTATTTCAAGATACTT CCAGTTTTTATCTCCATAAAAGTCGAAGTTTTTTGAATTCACTTCCAAATCATCAACATA ATAAACATAACCTCCATGAATAACAACCCTATCAAACTTTGTATAGGTATTGTCTATTGT TGAGACAGTTGCGGCTAAGGAACCATTTTGATAATAAGTTGAGAATGTTATTGTTCCATT 5 TGAATAAATTTTTAGTTCGAAGTAATACCATTCATCCTCTGGAGGATTCCAATAAACTTC AGGACTAATTTCTGTAGGATTTCCATTAGTTCTTCTATCAATTGATATGTAATTACTGTA GTGATTTACCTCAAATGAATATCCATCAAAATTCTCATCCTCCAAACCAATCCTGTCTAT AGGGCCTCCTCCCAGTTGCTCGGTCTATATACCCATCCACTTATAACTACATCCCTTCC AATTTCTTTTGGAAGTAATTTGTACCCTCCATTTGGATCGTTGTTTAAACTTGTTGAAAT 10 CCCATATTTTTCTAAAGAGTAATTTCCAGAATGAGATTGAATAGATGACCATTGAACTAT CCCGTTCTTATACTGATTCCAACCAGTCCAATTTTCAAAGTTATCATAAAACTGCCCATT ACTTAGATATTTATAACATTAACATTGACATTTTCTCCATTAGGAACGAGATTTTTGTT TAAATATACAATTAAATTTACAGTCCATTCTGACATTTTATTTGCTGGTATTTTTGTAAC ATCGTAAGTTTCATTTACTAATATTGGTAGGGTTTGAGATGCATCGATATCAAACTCATA 15 GTTTGTATAAGCAGGAGCAGAACTCTCAATAAAAACCCCTTTTGGAGTTCCATTATAAAC TAATCTCAAACCACTTGCATTATTTTTTATATCCACTGCTACCCACACATCGTTTAAAGT ATCTTCTTTATAAGGGGCAGTATTTTCAATAATGATATGTCCCGTTAAACCATAGGAATA GTTTGTTTTTCCTGTTCCATCCACAGTAGCAGTTGCGTTGTACTCTTCAATATATCTTAC 20 CCTTAGTGGAGGATATAAATCTGAAATCCTCAAATCATCAACATAGTAATCTTGTCCTCC ATGCACAACAACTCTATCGAACTTAGTATAGATGTTATCTATTGCTGAGACAGTAGCTCC TAATGAACCATTCTCATAATAAACTTCTAATCTTAAAGTTCCATTTGAGTAGATATAAAA AGCAATACCATTTTCTCGAGTTTCTATTGCAATTTTGTTATAGTCGTGCTCTATTCTTAT 25 AGAGTATCCGTTGAAATTCTCGTCCTCAATACCTATTCTATCCCATCTTCCGCTAACATA TGGCAAAGGTCTATAAATCCAACCTTCCATTACAATATCCCTTCCAATTTCCTTCCCAAT TAGTTTGTATCCACCATTTGGGTCATCATTTAGAAACTTTCTAAGGGAATATATTCCTGA ATTTTCAAAATCATCGTAGAATATTGTTTTTAATCCAGAAACACTGTTTAACATTGATGC 30 ${ t CATAAATACGAACAGTAAATACATAAATATATGAATTTTAATTTTATATTTGGCATGCC}$ CCACATCACCCATATAATATCGATAAAATTAACTTAATGTCAAAAATCATATTTGAATTT AGAAAAAGAATTATAAAAAATAAAGAAAATTAGTTTTACATTACCCTTCTTATTATGATT CCCAACCCTACAAGTAGGGTCAATAATGCAAGGAATGGTTCTGAGTTGTTTTCTACTGTT CCGGCTACTGTTGTTATTTTTGGTGAGGTTGTTGGTAGTGAGTTTGTAGGGTCGATA 35 CCAACGATAAATGCGTCGCTTGGGTAGAATTCGCCAGTTCCGTTTAGTTTGTAGTGTATG ACTACTGTTTTATTTGCAAGTATTTCAGCAGTGTCGTTCCAGTTACCGTCCCCATCTGCT CCTGGATATATTGCATGTAACGCCCACCACATGCTTAAATTATACCTTGGATTTGTTGTA GTGAAGTTCTTAGGAATCAAATCATAAACATACACATACTCAGGAGTCTTCACACTACCA 40 ATATTCTCCACAACTATATAAATATCATAAGTCCCATCCGCATCCGGAACAATATGCTTA ${\tt CCGTACTTTGTTGAGTATTCATTAATACTTCTATTTATTAATGTTATGTTCTCGTCTGCT}$ ACCTTAAATGTACAGTTTGCCCAGACAACTGGAATTCCATCAAATGTGAAGGCATATTTA GTTGAACTCCAAACGCTTCCTGGAGATAATATTTCATTAGGTGAGGACGTCTGTTTTGAA 45 TTAGGGATTAATAATGTTATATTAAATGGGTCTAATATTACTGGATTACTACCATTTACA GCCCATATTGTCACATGAGTTAAGTTAAAGTAGTAACTTGATGCCTTGTTTGATACATTA GTTGCACTTACTCCACCATATCCTGTTGCATAAATCCCTTCAATTTTTGTTCCTGATTTA GTTCCATTGAATTCAAAGAAGATAACAGCAAAACCATATTTCATTAAGGTTCCTGTTCTA 50 TTTGTGTAAGTGTTGTTTCCTGTTATGTTGATTGTAATGGTTGCATTTTTAGTAGTATTT ATTACGACTCCTGTCCAGGTTAATGAATCGTTGTATCCTGGTAAGAAGTAAGGACCATCC CAGAGTGTTATTGAACCTTCGTTGGCTATAGCACCTGTTATATTTAAGAAATTCCAAGTG TCACTTCCATAATTATTTGGGTCGTTACTTAGATATTTTGTCATAATAACAGAAACTGGT GTATCTGTTGCCGGTAGTGCTGAAACATTTCTGCTTATGTTTAAATAGACACTCCAATTT 55 GATAATCTTTCTGATGGAATTTTAGTATCACTATATGTTTCGTTGATTATCAATGGAACT CCAGTTATTGATTTATCTATAGCAAATTTAATTATAACATAGCTGTTATTTGGTAGTATT GGGATGTGTATGTATGTGTTTGCATTTGGTAAGTTTGTATATGCAGGAGCTGAACTCTCA ATAAAAACCCCTTTTGGAGTTCCATTTACATAAACTTCTGGTCCAGTTATGTTGTTGGAT ATATTAACTGCCACCCAAACATCGTATAAAGTATCATTTATTGTAGTCCCAGTGTTGTTA 60 ATTACAATATATCCAGTTATACTTTCTATTGTTGAAGATACTAAGCCATCACCTGTAGTG TTACCTGTTATGTTATATTTTTCGTAATATGCCACATATAGTGGTCCATTATCTCCATAT CCAAATACAGTCCCAATAAACAGCAATGACATTAACAAGGCCATAAATATTAACTTTCTC TGTAATGTCTTCCGTTTGTATAAATAATTTATGGAACATTTTTTAGACATTTTTGATTTT

WO 98/07830

TCAAAAATTTAGAAAAAGAACCCAAAAAGTCCAAGGTTTTCAATTTGAAAATAATAACAG CCGATATATAAACCTTTTGATATTAAAATTATCAATACCTAATAAAACATTTTAAAATAA GCAAAAATATTAATTCAATAACATATTGATTCCTTCCATTACAGCATCTACAGAAGCCCT TATTATATCAGCGTCTGATTTTCTAACTTCAACAATTTCAGTTCCTTTTCTTAATTTAAC 5 AACAACCTCTATTAACGCATCAGTTCCTCCACCAATTGCTTCAACTCTATACTCTACCAA CTTAATATCTGCAACTCCACTTATTGCCTTTCTCACAGCATTTATTGCTGCATCTACCGG TCCAACACCATAAGCAGTTTCTATTAAAGTTATATCTTCTCCTTTATAATGGAGTTTAAC AGATGCAATTGGTGTTATTTTATTTCCAGATACAACAGTTAATTCATCTAATTTGATTTT CTCTTCTACCAATTTTCCAGTAACTTCTCTAACTATAGCCAACAAATCAGCGTCTGAAAT 10 GTATTTACCCAAATCCCCAAATTCTTTAACTCTTTCATATATTTTATTTAATTGCTCATC ACTAACGTTTATGCCCATCAAATCAAGTTTGTATTTTAAAGCTTTTCTACCAGAATGCTT ACCCAAAATAATTCTTCTTATTCCCAACCATTTCTGGTTTTATTGGCTCATAGGTTTC AGTATTTTTTTTATTAATCCATCAACATGTATTCCTGCTTCATGAGCAAATGCATTGTCCCC AACAATTGCTTTATTTGGTGGAACAGGAAGTTTCATCAATCTTGAGACAATTCTTGAAAC 15 CTCATATAACTTTTCCATCTTTATCTTAGTATCATAGCCATAGAGTATTTTTAAAGCAGC AACAACCTCTTCCAATGAGGCATTTCCTGCTCTCTCTCCAATACCATTAACTGTTACGTG GCACTGAACAGCTCCACCTAAAACTGCTGAGCAAGTATTAGCAGTAGCCATTCCAAAGTC GTTGTGGCAATGAACTGAGACCGGTAAATTAACATTTTCAGTTATTTTTTTAAATAATTC 20 AACCTTTTCCCCTTCATTAAATAGTTTTATTAAGAAATTTACATCACTTCTTGTTGCATC $\tt CTCTGCAGATAACTCAACAATCAATCCATGTTCTTTAGCATACTCTACAGCCTTTAAAGC$ TGTCTCTAAAACCTCATCTTCTGTTTTTCTAAGCTTATATTTCATGTGTATTGGAGATGT TGGCACTACTAAATGGACACTATCTACATCACATTCTAAGGCAGCATCAATATCTACAGG TAAAGCTCTAACAAATGAGCAGATTTCTGCATTTAAACCTTCTTTTGTTATTAATTTTAT 25 TCCTTCTCTCTCTTTTGAAGTTATAGCTGAACCTGCCTCTATAACATCAACTCCAAG CTCATCCAATTTTTTTGCTATCTCTAACTTATCATTTTGGTGTTAAAGAAACTCCTGGTGT TTGCTCTCCATCTCTAAGTGTTGTATCAAATATCCTTACCATCATAACAATCCCTCATAA AAAATAATTTAATGAAATTTAAATACTCATAATGAATCTGATGATAAAATTGAATCATCT CAAAGATATTTGATATTGTATATTTAAAATTTATGTGGGAAATAGTTCTGGACTAAAAAG 30 TTGGTAATATACATCTTTAAATTTAAATTTATAAATTAAGATTTCTTTTAAAGATTTTAT AGATACTATACGAAAGTCATAAAATACTCGCATTAAAGATTTAATACAAAACAATAGCGA AATTTTTATATTTGTTAAAATTTACTTACATTAAAACAAGTAGTTTTTGCAAAAGTTATT AAAATTAAAAAATACCTTACTAAAGGAAGGCATTCATTACTACCCATATATTCTTTTAAA 35 TTATTTGCTGAGAGATTGGTGGAAAGAAGTTTGGGAAAGAAGATGTAATTTACAAGTTT GATATGGGTGTTGGAGAACCAGATGAGATGGCAGACCCGGAGGTTATAAGAGTTTTGTGT GAGGAGGCTAAAAAATGGGAAAACAGAGGATATGCGGATAACGGAATACAGGAGTTAAAA 40 GATGCCGTTCCTCCATACATGGAGAAGGTTTATGGAGTTAAGGATATAGACCCAGTTAAT GAGGTTATACACTCAATAGGTTCAAAACCAGCTTTAGCTTATATAACATCAGCATTTATA AAATGGTATGGGGGAGAGGTTTATAATCTCCCATTATTAGAGGAGAATGACTTCTTACCA GATTTAGAGAGCATTCCAGAAGATATCAAGAAGAGAGCAAAGATATTATATCTCAATTAT 45 CCAAACAACCCTACTGGAGCACAAGCTACAAAGAAATTCTACAAAGAGGTTGTTGATTTT GCTTTTGAAAATGAGGTTATCGTTGTTCAAGATGCTGCTTATGGAGCTTTGGTTTATGAT GGAAAGCCTCTTTCATTCTTATCAGTTAAAGATGCTAAGGAGGTTGGAGTTGAAATCCAT ${ t CTTATAATTAAAGCGTTTGCAACAGTTAAAGACAACTTTGATAGTGGGCAGTTCATCCCA}$ 50 ATCCAAAAAGCTGGAATTTATTGTTTGCAACATCCAGAAATTACAGAAAGAGTTAGACAG AAGTATGAGAGAGGTTAAGAAAGATGGTTAAGATATTAAATGAAGTTGGATTTAAAGCA AGAATGCCTGGAGGAACTTTTTATTTATATGTAAAATCACCAACAAAAGCTAATGGTATT GTTCCATGGGATGATGCAGGGCATTATTTAAGATTAGCAGCATGCTTTGTTGCTAAAGAT 55 GAGAACGGCAATCCAACAACTGAAGAGAAGTATGAAGATATGGTATTAGAGGAGTTTAAG AGAAGATTGGAGGGAATGGATTTAGAATTTGAATAATTGATTTTTATTTATTTAAATTT TTCATATTTTTATTTTACTATTCTTTATTTATATATTCGGATTAATAAAAATATCTAAA ACCTGTTCTAAAATTTATTTATACTAAAATCTCCACTATATACAATCAAATAGAAAAAAA GAGGATGTAAAATTTTTCAAATTTTTGAAAGAAATGAAAAAAGGTGAAAGGTATGGATGA 60 GTATGAAAAATCATCAATGACTTAAATACCATAAACTCAAAAGCAAAATTTATTGGTAT TAAGATTATTATGGTAAGAAGAATTATCGATATGCATAAAGATAATGATAAATTAATAAA AAAGGTATTAGAGGGTATAAAAAATACTGATCTTTATGATTTAGTTTTAAATGCATGTCC CATTAAAAAGACAATGAGCAGTGAAAATACTGTATTGAAAAATGTGTTGATTAATGATGA

ATCTCCGCCCTAAAGATGGGAATTTTAGGAGATTATGGGTTAAACTTTCATCCTCTCTG CTCCATCAAAGCCATATTTCTGAATGCTTATGTCATAATAATAAACATCTTAGAAAGATA TTTATAGTACTACAAAGTCATAATAGGAACAAAATTACATGAATATTCAAAAAAATTACT AAAAAAATGAATCAATAGGCGATTAATATGAAGGCAACAGAAAACAGAAAAGTAAATGAA 5 ATAAATGAAATTCTTCTACCTCTATCAAAAAATTTAAAGAATGTTGAGGGATTTGTCATA GTCTCAAAGGATTCCCTTGTTAAAGTAGGAAATATTGACGGAGAAGATTTAGAAATAATA TCAAGGCATATGGCTGTTGTTATGGGTAGTTCAGAGATGCTCTATAAAAGATTTAATGAT GAAGTCGAATACATTGAAATTAAAGGAAAAAAGCATAAAATAATCTTATATAACTTAGAT ${\tt GATTTTATATTTGCAGTCGTTGGTAATATCAAAGCTGATGAAATAAAAGATAAGGTTATG}$ 10 GAATTAAAGTTTAAAGTTAATAACATTGACGGATTAACAGCTGAGAATATTATTGAAGAG ATTGCTCTTTAAATTTTAAAATTTTAATAGGACTTCATGGGAATAAACCATTATAAGGAA AAATACGGTTAAATGTGCTTAAAAATAGAAACATGGAATTTAAACTCTTTGTGATATTAT CAAACTAATATTTTAATGAATTTATAGGCATAAATAAACCAATAAACATATAGCTATATT GGAGTTATACCTACATAATATACTACACAGTAAATTACGCAAAAAGATTATATGTAATAA 15 AAACTATATGATAATAACAAGGGACTTTAAAAAATGATTAAGAAACAATTAAAATTGTGG GGGAGGGGTTAAATATATAACAATAGTCAAAGCAGCTTTTTTATTTTTAAAGAATCTA TCAATTTCAATACCCATAGCTTTCAATTTTAGAGAGGCAATCATTAAGTCCTGTTCGTAA GGAATGTTATAAACCCTTGGCTCTAACTTCTCATGATTTTTTAAGATGTATTCAGCCGCT 20 AAAGCTTGGTTGGCAAAACTCATGTCCATAACCTCACATGGATGCCCATCTGCACATGCC AAATTAACCAACCTACCCTCTCCCAATAAATATATTTtCTTATTTCCTAAGTCGTATTCA GTTACACAATTTCTAACTTCTTTTATTGATTTAGCTAACTCTTCTAAGTGCTTTTTATTA ATCTCATTGTCAAAGTGTCCAGCATTTGCTAAGATAGCTCCATTCCTCATCTTCAATATA TGTTCCTTTCTAATAACATCCTTACATCCAGTTGTTGTTATAAATATATCTCCAATCTCC 25 GCAGCTTTCTCCATCTTCATGACTCTAAATCCATCCATTCTTGCCTCTAAGGCTCTAATT GGATTAACTTCTGTAACTACGACCTCTGCTCCTAAGCCTTTAGCTCTCATTGCTACTCCT CTACCACCACCATCCATAACCAGCAACAACAACAGTCTTTCCAGCAATTAATAAGTTTGTA GCTCTCAGAATTCCATCTAAGGCACTTTGCCCAGTTCCATATCTGTTGTCAAATAGATGT TTCGTATATGCATCATTTACATCCATAACTGGAAATTTTAAAGCTCCTTCTTTTTCCATA 30 GCTTTTAATCTGATGATTCCAGTTGTAGTTTCTTCACAACCTCCCATTATGTTATCCAAA AGTTCAGTTCTCTTTGTATGCAATAAAAATATTAAATCACAGCCATCATCTATAACAATA TCTGGTTTGTGGTCTAAAACCTTGTTTAGGTTTTCATAATACTCCTCTACTGTCTCCT CTCCATGCATAAACATGCATTCCTTTTTTAGCACAAGCAGCGGCAACATCATCCTGAGTG GATAAAGGATTGCATCCAGTTATAGCAATCTCTGCCCCTCCTTCCATCAATGTCTCTGCT 35 ${\tt AAAACAGCTGTTTTTGCTTCTAAGTGTAGAGCCATTCCTATTGTTATTCCTTTAAATGGC}$ TTTTCTTCTTTAAATCTTTCTCTAATTAAATTTAAAACAGGCATGTGTTGTTTTGCCCAT ACCTTAAAGAATTAATTTTAAAAATTAGTAGGGTAGCAGAGATATATAAATTACTATTTT 40 GAAAATAAACCTTAAATTTTTATTCTGAATCGGTCTGATTTTAATCTTGTAGTTTCCAAA GAAGGACACCAGCTAATGTTTCCATTCCAAATCAGTCTGATTTTAATAGGACAATCATTC ACAACATAACTTATTTACTTAATTAATCTTAATTTTTAAGTGTGTGACAGTTAGGT TAAACTTTTTATTAGTATTATCAGTATATTAATAACTTAAACTCTAAAAAAATAGAGAGGA GATTTTTATGTTTCTATTAGACCCATTTTCTGGAATTAGTGGAGATATGTTCTTATCAGC 45 AATGATTGATTTGTTGATAAAGAAGATTTTATAAATACAATTAAAAAAGTTATTGATGT AGAGATTGAGATAAAAAAGGTAAAGAAATGTCATATATTAGCTAACAAAGTTAATATAAT CCCAAAGTGTATTAATTGTAATGCAAACACTTATAAAGATATTAAAAACGTTATTAAAAG TTCTGATATTCAAGAAGATATTAAAATTACTGCCTTAGAAATTCTAAAGATATTGGCTGA GGCAGAAAGCAAAGTGCATAATGTGGATGTTGAAAATGTTCATTTCCATGAAGTTGGGAA 50 TTATGATACAATTGCCGATATTGTTGGGGCAGCATATATTATAAACAAGTTAAATCTAAA AAATAACTGCTTATATAAGCCAATAAATGTTGGAAATGGTTTTGTAAGGACAGAACATGG ATTACTACCAGTTCCAGCTCCAGCTACGGCTGAGATATTGAAAGGACTTAAAATATTTTT TTCTGATATAAATGAAGAGCTAACAACACCTACTGGATCAGCTATTATAAAGTATATAAA TCCAAAATTAGCTAAAGGGGCTTTTATTATAAAAGAAGTTTCTTATGGAGCTGGAGATAA 55 TATAGTTTTATTAGAAACGAACGTTGATGACATTTCAGCAGAGATTTTAGGCTATTTATA TGAAGTTTTAGATGGAAAAGTTAGGGATTTGCATTTTATCCCTACATATATGAAGAAGAA CAGACCAGCTTATACAATTAGGGCTATTGTTGATAGAGATATAGCTGAGGAGGTAGCCAA AATTATAATGAGGGAGACTGGTAGTTTAGGGGTTAGAATATTTGATATAGAGAGAATAAC 60 AGCTGATAGAGAATTTAAAACTATAAAATTGTTTGATGAATCTGTTAGATTAAAAGTTGG GAGAGTTAATGATGAAAATAATCTCTCAAAAACCAGAGTTTGAGGATTTGAAGAACATTGC AAATTAGATTTACAAATCTTTTTTTAGATACCTTATTATAATCCAAAAACCAATACCTAA TAACGCTCCAGCTATAAAGTTATCTAATAACATTCCAACACCTAAACCTATGCATAAGAA

PCT/US97/14900

TCTCTTTCTTCCAAGATTTGGAGGATAATTTTTTATCTAATTCTTCATAGTCATCTATAA TCCCTTTATATTTTATAAGAGCTTATTAAAAGCCATATCCCTAAGCCTATTAAACATCCA GCCCAGCATCACCAAATATCATTCCAATCCCAAGACCTAAGACAGTAAATCCAAAAGTTA 5 TCATCCTTCTAATCTCTTTAATTCAGTGTAATTATTGACTGCAAATATTTCTGCCATTT TCATCCCCTTATAATCAAAAAAGTAAATATAATCAAAAAATATGGATGTAGAGATTTGGA TTTATGATGAGGGATTATTATGGTTGTTGAGGTTTTTAAGATTAGGACATAGAGGAGACAG AGATAAGAGGATATCAACCCACGTAGCTTTAACCGCAAGAGCCTTAGGAGCAGATAAAAT 10 AATTTTTACAACTGAAGATGAACACGTTGAAAATAGTGTTAAAAAAGTTGTAGAGAGTTG GGGAGGAAACTTTGAGTTTGTTGTTGAAAAACATTGGAGAAAATATATTAGAGAATTTAA AAAAAGAGGGATTGTAGTTCATCTAACAATGTATGGGGCTAATATAAATGAGATAATGCC AGAGATTAGAGAAATAAGCAGAGATAAAGATATATTAGTTATAGTTGGGGCTGAAAAAGT 15 CGAAGTTGCTGCTTTGGCAATCTTTTTAGATAGATTGTTTGAGGGTAAAACACTTTATAG AGATTTTGAAGATGCAAAGATAAAGATAGTCCCATCAAAAGATGGAAAAGTAGTTATAAG AGAAAAGCAAAATAAATAATCAAAATATATTGGGGGATACTATGGAAATCCAACTTCC TTGCTCATCTCCACTGACTTTGAGAGAACTTTCTCATATACTATTTGCTGCCTATGGAGT 20 AACTGATGAAAGGGGATTTAAAACTGTTCCCTCTGCTGGAGCAACGTATCCATTGGAAAT TTATGTAAATGTGAGGATGTTGTTGGAGTTGAGGAGGGAGTTTATAAATATATTCCAGA GAGGCACTCAATTGTTAGAATTTTAGATGAGGAAGTAGGGCACGAATTAGCTTTAGCAGC TTTAAAGCAGATGTTTATCGCCATAGCTCCAATTGTTTTAATTATAGCTGCTAACTATGA AAGAACTACAAGAGTTTATGGAGATAGAGGATTTAGATATGTGCATATGGAGGTTGGACA 25 TGTTGCTCAGAATGTATATTTAATGGCTACATCTTTAGGTTTAGGAACTGTATCAGTTGG GATGCCAGTTGGTAGGAAGATAGAGTAATAGTGTCTTTCAAAAAACAAAAAATAATAAAA GTTATTGAGAAAAATGGCAGGATTTTCACAGGTCATAAGTATTAAATAACGTGTTTATAT GTATGAGGTCATCAATATTCTTTATTAAAAATCAAAAATTTAATTTCTATAAAAGCCCTA 30 TGAACGCTTTTyCCTAAAGGATAGCGTTCATTAATACATTATTTATCTCATAAAAGACAC TATAAAGGGTGGGGATATGATAGACACTCACATACACTCAGATACAAGAGGTTTAGAGGA TTTGGAGTTAATGGCAATGTGCTTAGATGGAGTTATAACATTAGCTCATGACCCATTTGA GAGGGCTAAAAAGGTTGGATTGAATTTGTTTATTTGTGTAGGGATGCATCCAAGGGCTAT 35 TCCTCCAGAGATTGATGAGGCTTTAGATAAAATAAAGAGTTATATAAATTATAATAGTAG GGTTGTGGGTATTGGAGAGTTGGTTTGGAGAAGGCTACAAAGGAGGAGAAGGAGGTTTT TATAAAGCAGTTACTTTTAGCTGAAGAGTTAAATATGCCTGCAGTTGTGCATACGCCAAG AAGAAACAAGGAGGAGGTAACTAAAATCATATTGGATGAGATTTCCACTCTGAATTTGAA AAATAGGGATATAGTTATTGAACACTGCAATAAAGAGACAACAAAATGGGTTTTAGATGA 40 GGAGTTTTATGTTGGATTGACAATTCAGCCAGGAAAATTAACTCCATTAGAGGCTGTTGA GATAGTTAAAGAGTATAAGGACTTTGCTGATAAGATTCTATTGAATAGTGATTGCTCCTC AAACGCATCAGATGTTTTAGCTGTTCCAAGAACTGTTTTGAAGATGAAGATTAATGGTAT 45 AATAGTTAGGACTCTCCGTATATTTAATTTTACTCACAAAAAATAAACAGTTTTAAACGG CGATATTATGGCATACTGGCTTTGTATAACAAATGAAGATAATTGGAAGGTAATAAAAGA AGATAAACTAATTATTATGAGATTCAGAGAAGTGGGAAAGATTATAAACCACCATACAT AAGAGGAGTTTATGAAGTTGTTTCAGAGGTTTATAAAGATAGTTCAAAAATCTTTAAGCC 50 AACTCCAAGAAACCCTAATGAGAAATTCCCATATAGGGTTAAATTAAAAGAAGTTAAAGT AAAGAAGTGGAGTGGGCATTTGATGGGAAAAGCAATGAGAGAAATTCCAGAAGAGGATTA TAAGTTGATTATTGAAGCTAAAAGCTTAAAACCTATTTTTTATCCTTGCATCAAGCTCATC TAATGAATAAACACTTAACTCTCCAGTTTTTACAGCTTCTATTGCCTTAACAGCAGCTTT 55 TGCTCCAGGGATTGTAGTTATATAAGGAATACCCAAATCCACTGCTGCCCTTCTTATATA ATACCCGTCTGACTTTGCCTTCTTTCCAGAGGAAGTGTTTATTATTAAGTGCATCTTACC ATCTCTCATTAACTTTAGGATGTTATCATTTGGACTTTCAGATATCTTCTTAACAAGTAT TGCTGGAATTCCATTTTCTCTCAACACTTTAGCAGTTCCTTCTGTTGCGTATATTGTAAA GCCAAGCTCATGCAACTTTTTAGCAACATCTACGATATGCTTCTTATCCCTATCTCTAAC 60 ACTTATAAAGACATTTCCAACGATTGGCAATTCCATATTTGCAGATAACTGAGCTTTATA GTATGCCCTACCAAAGTCTTTATCTATTCCAATAGCCTCTCCAGTAGATTTCATCTCAGG CCCTAAAACAGGGTCTACTCCAGGCAATTTTTGGAATGGGAATACTGCCTCTTTAATTGA TACATACTTCGGCTTTGCAATCCAAACCTTCTCAGCAACTTTTTCAACATCATAATCTTT AATTAACTCCTCCAACTTTTTGCCGAGCATAATCTTTGTGGCTAACTTAGCCAATGGAAT

TCCAACTGATTTACTCACATAAGGAACAGTTCTTGAAGCCCTTGGGTTTGCTTCCAAAAC ATAAACAACTCCATCTTTAACTGCATACTGCACGTTTAAAAGCCCCCACTATGTTTAAAGC CCTTGCTAATTTGGCAGTGTAATCTATAACAGTATCAATTATCTCCTTTGGTAAAGTTTG AGGAGGAATAACTGTTGCTGAATCTCCACTATGCACTCCAGCCTCTTCAATATGCTCCAT 5 TATTGCCCCAATTAAAACACTCTCTCCATCACAAACAGCATCAACATCCAACTCAATAGC ATCTTCTAAAAATTTATCAATCAACACTGGATGCTCCTCTGAAACTTTAACTGCCTCTTC CATATACTCAATTAACTCATCCTCGCTATAAACAATTTGCATTGCCCTTCCTCCTAAAAC ATAGGAAGGCCTAACTAAAACAGGATAACCAATTCTTTTAGCTATCTCCAATGCCTCTTC TTTTGTATATGCTGTTCCTCCTTCAGCTTGAGGAATATTTAACTTCTTTAAAAGTTTTGA 10 AAACTCTTCTCTATCCTCAGCAGCATTTATATTCTCTGGAGTGGTTCCTAAGATATTAAC TCCCGCATTTTTTAATTTCATGGCTAAGTTTATTGCTGTTTGCCCACCAAATTGAACTAT AACTCCCAAAAGCTCTCCTTTCTCCTTTTCTCTTTCAGCAATATTTAATACCTCTTCAAA GGTTATTGGTTCAAAATAAAGCTTGTCTGATGTATCATAGTCGGTTGAAACTGTCTCTGG GTTGTTATTATGATTATAGCTTCAATTCCCATTTCCTTTAAAGCTAAAACTGCATGAAC 15 ACTTGAATAATCAAATTCTATCCCCTGACCAATCCTTATCGGCCCAGAACCGATGATTAT AACTTTTTTTCTATCTGATGGATTGCTTTCATCTTGCTCCTTATAAACAAATGTCTCATA GGCAGAGTAATAGTATGGGGTTTTTGCCTCAAACTCAGCAGCACAGGTATCTACCATTTT GTATAAAGGAATGATATTGAGCTTCTTTCTCAAGTCCCTAACTTCTATCTCATCCATTCC TAATAAATTAGCTATCTGTTTATCAGAGAATCCCAATTTTTTTGCTTTCAATAATATTTC 20 ATCTCAACTTCTTTCTTTATTTTAGGAACGTCTTCTTTAACTATCTTCCAAAGAAGGATA TAATCAATCCCAAAATATTTATGAATTAAATATTTCTTAATCCTACCATCTCTTTCCATG GGACGTTGGGAAACTTTTCCCTAAAATCATTATTTATGTATCTTGACGCTTCTCCAATAA TTTCTAAGGCTCTAATAACCGCATATCGTATCATTTTATTATTATAAACTCATTATAGT 25 CAATATCTTTAGTAAATTCAATAACATCATTAGCACTTTCTAAAATATCATATAGGAATG CTTTAACATCCCTCTTAGACATAAATTAAATCCTCCTCAATAGATTTTTTTACATAAGGA TTGTGGATTGATTTTTTGTAATTAAATCAACTTTTAATCCCAAAATCTTTTCTAAATAT TCAATTAGCTCCAAATACTCTGAAAATGAAGGATAGTTGTTTTCATCAAATTCAACCATA ATGTCTATATCACTTTCTTCTGTCTGCTCCCCTCTTGCATAACTACCAAATAAGGCAATA 30 GATTTAACCTTATATTTATCTTTAAGGATTTTTTTATGCTTTCTTAGGATTTCTTTATT TCGGAGAGTGTTTTCATGGTTTCACACTATATACTATATTTCTTATTCTTTAACCCT CTTTAATGCCAATAATCCATTAATTACACATATAATTCCAACTAAAGTTACCAATATTCT TCCAGTTATTAAAGCCAATAATGTTAATGCTACAAATATAAGATTCATCAAAATTAATAT ATTTATTTTGGTTTCTTTTTTCATAATTTCCCATTAAGCATTCAATTTCTTAATTTCTTC 35 TTCATCAATATCCGTTAGCTCAACTATTTTCTCAACACTCCAACCCTTCTCTAACGCCTT AGCAATAACAAAAATTCTTTCATCAGTTGGATTCTTTAATATTTCTTCTATCTCTTCATC CGTATAGTCTTTATCCTTTCCATCTCCAATTATGCCGAATCTTCCAATGTCTAAACTTCT AATTGCCTTTTGCAAAGCTTCTTCAAAGCTTCTACCTATAGCCATAACCTCTCCAGTGGA 40 CTTCATACTTGTTCCTAATTTTTTATCTACTGTTTTAAACTTATCAAATGGCCATCTTGG GATTTTTACAACAACATAATCTAAAGTTGGCTCAAAGCTTGCTGGTGTTTCCTTTGTAAC ATCATTTAATATCTCATCTAATGTTTTACCGATGGCTATTTTAGCGGCAATCCTTGCTAT TGGATAACCTGTAGCTTTACTTGCCAGGGCAGAGCTTCTTGAGACCCTTGGATTCACTTC 45 AATTCCCAAATGTCTTATAATCTTTATAGCAGCGTTTCTTAGCTTTTGATAAAACTCATC TGGTAGAGTTTGGATAGGTGAGACAACAATACTCTCCCAGTGTGTATTCCCATTGGGTC TATGTTCTCCATACCACAGACAATGATGCAAGTGTCTTTTCTATCTCTCATAACCTCAAG TTTTAATCCTTTTGAGGTAATATCTATTAACTCCTCTTTGTTATGGGCAATTCCTCCTCC 50 AGTTCCTCCTAAGGTAAATGCAGGTCTTACAATGACTGGATAGCCAATTTCCTCAGCAAA CTCAACTGCTTCATCAACAGAATTAACGGCCTTACACTTTGTAACTGGCTCATTAATTTC AGCCATTGCCTCGGCAAAAAGTTCTCTATCCTCAGCTATTTCAATAGTTCTAATATTAGA GCCGAGAAGCTTAATTCCATATTTATCTAAAATCCCTCTTCTATGTAATTCTAAAGCTAA GTTAAGACCTGTTTGTCCTCCCATTGTTGGTAAAATAGCATCTGGCCTCTCTTTCTCAAT 55 ATCTGTTTGAATAGTTGCAGGATTTGAATTCACTAAAATAGTATAAATTCCCTCTTCCTT CAAAGCTTTACATGCTTGAGAACCTGAAAAATCGAACTCTGCAGCTTGTCCAATAACTAT TATTTTACAATATTTATATTTAACTATTATTATTCAGATTATCTTAATATTGAGGATG 60 AGCTTTTAAAATTGCATAACTATATTTATGTTACTTAACTTTAAGTATCCTTTTCCTAAT ATTGCCAATTGCATTAAGAAATGCCATAAAATACAATGGAAAAGCTAATCCAAAGGCAGT TTTAGGGATATTTTTGTCAGAAAATCCAGAATATAGGAGTAAAGCAAAGGAGGTAATGCC AATTGTTGAGAAAGTTGTTGAAGAAGTTAATAAACTATCATTGGATGAAATTAAGAAAAA

ACCAAACGTTAAAGATAAGGTAGTTATGAGATTCGCTCCTAATCCATCAGGGCCTTTACA TATAGGGCATGCAAGAGCAGCAGTTTTAAATGACTACTTTGTTAAAAAATATGGTGGAAA GTTAATTTTAAGATTAGAGGATACAGACCCAAAGAGAGTTCTGCCAGAAGCTTATGACAT 5 GATTAAAGAAGATTTGGATTGGCTGGGGGTTAAAGTTGATGAAGTGGTTATACAATCAGA TTGTGACTGCAATCCAGAAGAATTTAGGGAATTGAGAAATAAAGGAGTTCCATGTAAGTG TAGAGATAGAGCCATTGAGGATAACTTAGAGCTTTGGGAAAAGATGCTGAATGGAGAACT TGAAAATGTAGCTGTTAGATTAAAAACAGACATAAAACACAAAAACCCATCAATTAGGGA 10 CTTTCCAATATTCAGAGTTGAAAAAACTCCACATCCAAGAACTGGAGATAAATACTGTGT ATATCCTTTAATGAACTTCTCTGTTCCAGTTGATGATCATCTTTTAGGAATGACTCATGT TGGTTGGGAAATGCCAGAATTCATCCACTATGGGATTTTGAAGATAGAGGACATTGTTTT **NAGCACTTCATCAATGTATAAAGGAATTAAAGAAGGTCTCTATAGTGGATGGGATGACGT** 15 TAGATTAGGAACTTTAAGAGCTTTAAGAAGAAGAGGGATTAAACCAGAGGCAATATATGA GATAATGAAAAGAATTGGAATTAAACAGGCAGATGTTAAGTTTTCTTGGGAGAATTTATA TGCAATAAATAAGGAGCTTATTGATAAAGATGCAAGGAGATTCTTCTTTGTCTGGAATCC AAAGAAACTTATTATCGAAGGGGCAGAGAAAAAGGTCTTAAAACTTAGAATGCATCCAGA 20 TGAGTTGGAAGAGAATAAGATGTATAGATTGATGGAGTTATTTAACATAGTTGTTGAAAA AGTTGATGATATAGCATTAGCTAAATATCACTCAGATGACTTTAAAATAGCAAGGAAGAA CAAAGCTAAGATTATACACTGGATTCCTGTAAAGGATAGTGTAAAGGTTAAAGTTTTAAT GCCTGATGGAGAGATAAAGGAAGGCTTTGCTGAAAAAGATTTTGCTAAAGTAGAGGTTGA 25 CCTAATCTCTTTAATTTTTTTAGCTAAAAGTTCATTATCTTCATTTTCAACTTTTTTAAC CCTTTTTATCTTATCCTCTTCTTCCCATTTTTTTCCAGTGTATCTCTTAGCTATAACATA AACCTCAGCACTTTCTTTTCTTGAAGCTTGAGGTTTTGTAATATAAACCTTTTCAAAGTA TTTTTTAACTAAATTTACATAATCATCTATCATGTCTCCATAAAATACCTTAGCTACAAA 30 ATTGCCTCTCTTTTTAGCATCTCAGTAGCTATTTGTAAGGCAGTAGTTACTAAATCTAT TGAACGAGCGTGGTCTATATCCCAATAACCGCTTATATTAGGGGAGGCGTCACTTATAAC CACATCCACCTTTTTTTCATCATTTGGAATTAGCTCTCTAATTTTGTTCAAATTTTCTTC TAAGGTGAAATCTCCTTTTATTGCAACTACATTATCATATTCAAATGGCTTAACTGGTTG TAAGTCAATACCAATAACAAAGCCTTTATCTCCTACAATCTCTCTTGCCACTTGCATCCA 35 TCCGCCTGGAGCACAACCCAAATCCAAAACTATCTTTCCTGGTTTAATAACGTTAAATTT TTCATTTAACTGCATGAGTTTAAAAGATGCTCTTGAACGATATTTAAGTTTTTTAGCTAA AAACTTAGGAAAAGCTGATTCTTATGAGTTTGTGTAAGGATAGTATTTACATCCTAATGT 40 GAACTGAAGCATTTGGTATCTTAAAGGGATTAATGCCAATAGCTGACACTCTAACAATAT TTTTCTCTTCTGGTATTCCTCCAGCCATAGCAAAATTCTTAGCTGAAGAAAAAAGAGGTAG ATATTAACAAATATTCCAATATTATATTTAATGATTTTGCTCTCAGTTGTTGGATTTA TCTTAACTCCTTATATAAAATACATTTTAGGAGGGCATTATTTAAATCTGCCAAATATTT 45 TGTATTTTGCAGTAGGTCTTTGTGTTGTAGCTTCAACAGTAATAGCATTTTCAAGAGGTA TTTTACAAGGATTGTTAAAGATGAAATATCTCTCCCTTACGTGGATTGTTGAATACACTG CAAAAGTCATATTGGTTTTTATTCTAACTCTATATTTGGGAATCTTTGGCTCTTTGTTAt CAATATCTTTGGCATATTTAGTAGGAGGGATTTTTTGGGCTATATTTGATTTATAAGGCAT TAAAAGGAAAATTTGATTTCAAAAAATTAATTGACATAAAAAATACAACAAAAAACATAT 50 TCTCTAATTTTAACTTAGACATTTTGAGATATTCAATCCCTATTGCTTTAACGTCATCAT CATACAGATTGTTTGGAGATATTGATAATATAGTTATAATGTCCATTATGGGAGGATTTT GGAGTGGGATTTATGGTTACTCCTCTCnAATATCAAGAGGAATATTTATGTTTGCTTCAG CTGTTAGCATCCCTTTACTTCCAAGAATATCTAAAACTAAAGATTTAAGCTTATTAAAAG 55 CTGAAATCCCATTGATAGCATTTTTTAAAACAGCTAATCCAGAAGGAATTTTATGCCTAA GAATTTTAGCAATCTCTTCTTTATTTATGAGCTATTATACTTTAATATCCTCTGCACTTC AAGGTTTAGGGTATGCAAAAATTTCTTTCTATATAATATTGTTTGGGTTGGTGTTAAATA TTATCTTAAATTTAATTTTGGTAAATGCTTATGGAATTGTTGGAGGAAGCTTAGCTACAT TANTAACATCAATATCTGTCTTTTTAATTGGTGTTTTTTGCTATTTTAAGAATAAAAAAGC 60 ATATTATTTAATTAGCTGATACTTATACTTTCCATTTAAAAGCTCAACTTTCAGTCCTAA TCTTGCTGGAATAACCTCTATTCCAGTATTTTGGGAAATATATTCTGCCTCTATTTGAGG ATTTGTCATCTTAACTCCCATGTGATTCATTATCAACAACTCTGGCTTTTTTGTTCATTGA GTTTATTAAATCAATGGCATCGTTAGAGCAGAGATGCCCTTTAATTCGCTCATTTTTCTT TCTAACAATATTCGCTATTAAAATTCTAACTCCATCAAAGTCTTCAATTAGCTGAGGGAT

AAATTCAGTATCTGAAGTGTAACCAATATCTCCATAAATTGTTGATAGTCTAAATCCAAT ACCAAACGGGTCTCCATGTTTTGTATGTGTTGCCTTTATTGTTGTATCATACAACTCTGC AACATACTCATATTCTCCAAAACCTTCAACAACTGATAAGCTACCTAAAAAAACTCCTCG 5 CTTTTTTGTCATTCCTTGAGTTATAGCTTCAACAATAATTTCTCCATCAGTGTAGTGGTC TGGATGGCAGTGAGATATAAACAGGGCATTAGTTCTCCATGGAGATATTTTTAGCTCGTT TAATCTCACTATCGCTCCCGGGCCAGGATCTACATGCATTCTAAGCTCATTTGTATGGAT TCTAAACCCTCCTGTTGCCTTTTTTTGTGTTATTGTTGCCCCATCTTCCACCACCACATCC 10 TTATATATTAAGCCAAAATTATTAAATCTTTTTATCTTACTTCCTTACACTCTACATTGT ATGTTCCATTTACAGATAGTTTTATATATGGATAAGTTACAACCATTGCTGCAAATTCTT TCTTTATTTTATATCCAGCGGTTGGCATCTCTTCCAAGTTTATGACTATTATAGTTTTGT TATCTTTGTAGTAATAATAATATCCCCTATTTTTCTCTCCAAAAGCTCCATAGGCAATTA 15 TTTCATAATTTAAAGTGTTTAAAATATTGGTATTATTATTACAATTTTATCACTGACAT TTTGGATAGTTTGATTTTTGGAAACATTTGAGTTTATACATGAATTATTTTTTTATATTAT AATTGCCTATTTGGGTTTTTTCAAAAGAGATACAACCACATAAAGTTATAGAACAAAGAA TAGCAGTAAATAGAAACAATATAATTATTTTCTTTTTCATTTTCCAAACCTCCGCTGTCT TCTTTGGTAATCTCTAACCGCCCTTAGAAAATCCACTCTTCTAAATAACGGCCAATATAT 20 ATCACAAAAATACAGCTCTGAATAAGAGCTCTGCCAAATTAAAAAATTACTAATTCTTTC CTCCCCAGAAGTTCTGATAATCAAATCAGGATTTGGAAATGGCAAATTTGCTGTGTATAA ATGTTTATCTATTAACTCTTTATCAATATCTTCTGGTTCTATTTCTCCTCTTTTAACCTT TTCAGCTATCTTTTTTACAGCATCTATTATTTCTTGCTGTCCTCCATAAGCTATTGCAAT ATTAACAAAAATTTGTTGTAGTTTTTTGTTCTCTCTCAGCGTATTTTATTGCTTTTTG 25 AACATTTTTTGGCAATAGATTAATTCTACCAATTGCTCTAACTCTAACTTCATATCTATG AATTTCTTCATCATCTGCAATCTCGTAAAACTTTTTTTCAAATAATTCCATTAATTTATC AACTTCTTCCTTAGGTCTTCTAAAATTTTCAGTAGAAAAGGCATATAGAGTAACAACATT TATGCCCAAATCCCTTGCCCATCTTAAGACTTCTCTAACCTTCTCAGCCCCCAAGTAATG 30 AGCTACATGTTTTGGTAAATTGTCTTTATCAATAGCCTCTTCTAAAATCTTCTCGTAAAT TTTTAAAACTCCGGAGTTGTCTAAAAATCTATAAAAATCAATTATTACTCTTTTTCCAAT ACTCTTTAATTTGTTTTTTATCTTACCCAAAATCCCCACCTATTAGGAATTTAATAGCGT TATAGTATCTCTCCCAATTAGCGTTTCTACTTGTATCAATAAAATTGACATTTTTATCTG ATAAAATAACTGCCCCATAACCAGGAATTTTGCAAATCAAACCTAAACATCTGAAAATTA 35 AATTTCCAGTAATTCCATCTACAGCTATAATAATATTGTATCCATCTTTTAAATATTCCT CTATTAATATACCATTATGTATAATATCCACATTTCCTTTAAAATGCTCAACTATTTCCT CAGCTTCATATTGTTTCATCCACTACTTTATTCCTTCCTAAATCTCCTAATCTTCCTC CAGAAAGGACTGCAACTTTTGCTTTAATATTATAATTTTTTAAAAAGTTAGATGCAAATT CTATAATCCTTATTTTATCTTTTATTCTCTCATTTTTTGTCTTCTGATATATCATCAATCC 40 CTACTGGAGATAGTAAAAGATTCCATTAGTAAAGGGATTCTTTAAAATTGATGCCCTAT AAAATTTTCCTATTCTTTTAAATAGAGAATTACTTTTGATGAAGATAAAGATCCCC TAACAGCCCCATCTATCTCCCATCCAATAGTTTATCTACTAAAAGTTTTGGATTGTCAA TTAATTCAACCTCTATTCCTTCTTTTAATTTTTCATAAGCCTTCAAAACTTCTTCTT TATTGTCTCCTATGCCTATAGCATACATAATTATCACTTAAACTCCACTTCTATTCCTAA 45 AATATCTCTCTCCCTTTTAAAATATCCTCTGCTATCAAAGCCCCCCCAATAGCCCCCACT TTCTCCATATAAGACAAATATCTTTGCCTCAACAACTCTTTAATTCTTTTTGGAATATC CAATAAAGGTAATAAGCTATTTATCTCCATAGAGACACTTAAAATTAAGCTATCAACTGC CAATCTACAATTTTCATCATTAAAATAGTTGTTAATTATCTCTTCTTTTGTATTTTCAAC 50 ACCTTTATAGAGCTTGGCTATTTTAACAGCCCCTGCCTTTGAAAATGCTTCATTTGCTGT AATTTTTCCAGCATCTATATCTCTAATCATTTCTAAATCTATAGGGCCATGTAACATTCC TACAGTATTTGAGGATATATCGGATAAAACAAAATCATTAAATCCAAATAATTTATATGC ATAATAAGCTATAGAAACCTTTTCTGGAGATGCTATATGGGAGTATAAAGCTCTAAACCT 55 CTCATCTAAGCATTCTATTCCTCTATGCAATCCTGGAATAACAACAGCTGGCAATCCAGA TTCTTTAATCTCATCATAAACCTTTGTTCCTCCTCCAACCTTTTCTCCAGCTCCTTCAAT ACTTAAAACTCCTCTATTTTTCACTTTTTCTATTGGTAGGATTTTGTTTATCCCATCTCC CATTGAGTAAGTTAAAGCAATCAAATCAATATCTTCCAATGAAATATGTTTCTCCAACTC CTCTAAGTAAGATTTTTCTTTGAGTTCTGTTCTCTTTAGTTTAAATATTATCTTTTTATC 60 ATTATCTTTTATGCATGTAGTTATTCCCGACGTTCCATGGTCTATTCCAACGGTTATCAT AGTTTCACCAATAATTTATGCAATTCTCTTTATTTTATAGAAATCATTCCAAATTTCTTT TGAAAGGCTTTTAAAATTTCATTAAAATCATGATGTTCAAGTTCTCCCAAACCATATCCA TCAATATAATCTTGTATTTTATAAATCTTTTTATTACAGCCTCTTTTGAGAAAATTATT

ATTGGTGTTTGGTCATCATAATATGTCTCTTTTATAACTCCAATAGCATGAATCTCTCCG GTTTTTGCAATTTGGAAAACGGCAACATCAAAAGGTTTTATTTGGTTATATTTTCTTATA AAACTTCTCCAATTCTTTTTCTGTTTCTCTCCAGCGTTTCTATCCCAAAATCCCCAAATC ATATGATTATAGCAGATTTCAATATTTCTTATATTGTTAGAGCTAAAGAGCCAATATGTC 5 ATAACTATATCCCTCATTTTAATAAATTTTTTAATGAAAATATTATACTATCAAATGTCAT CAATTTTGTTTAACACAAATTTTATATAATTAGGTAATTTAATTACCTTAAAAATGATTA AGATTGATTAGGGATAGGCATGGAGAAGTTCGATATTGCGATGACAGTGTTTTTTGGTAAT GATATTCTTATTCATATTTTTACCAATTATTTATATGCTATCAAATCCCGGAGATTTAAA ${\tt CCAATTGTTGGATAAAGAGGTTATAGAGGCGTTTAAAACTACTCTATTAGCTGGAGCTGT}$ 10 TGCTACTCTAATAGCTCTAATTTTTGGAATACCAACTGGCTATATTTTTGGCAAGGTATGA TTTTAAATTTAAAAGCTTTGTTGAGGCTGTTTTAGATTTACCGATGGCAATTCCTCACAG CGTTATAGGTATCATAATCCTATCCTTCATTTATGGTATTGATATTATAAATTTTATTGG TTTTATGGTTAATAGTATAAGAGATGGCTTTTTAAGTGTTGATGAAGAGATTGAGTATGT 15 CTCAAGAACCTTGGGGGCTTCAAAGATAAGGACGTTTTTTGAAATATCTCTCCCATTGAT AAAAAATAATATCATCTCTGGGATTATTTTGAGTTTTGCAAGAGGAATTAGTGAGGTTGG AGCAATATTGATAATAGCATATTATCCAAAAACAGTTCCTATCTTAATATATGAAAGATT TATGAGCTTTGGATTAGATGCTTCAAAACCAATATCTGTTGGAATGATTTTGATTAGCAT AGCGTTGTTTGCATTACTAAGGATGTTTGGGAGGATGAGGGGAGATAATGCTTAAAGTA 20 AATAATCTATCAAAGATTTGGAAAGATTTTAAATTAAAGAATGTCTCTTTTGAAATAGAT AGGGAGTATTGTGTAATTCTCGGTCCAAGTGGAGCTGGAAAATCTGTTTTAATAAAATGC ATAGCTGGGATATTAAAACCAGATTCTGGTAGAATTATTTTAAATGGAGAAGATATAACA AATCTACCACCAGAAAAAGGAATGTTGGTTATGTTCCACAAAATTATGCCCTATTTCCA 25 GAGATTGATAGAAAGGTTAAAGAGATAGCTGAGTTTTTAAATATTTCACATTTATTAAAT AGGGATGTTAAAACATTAAGTGGAGGAGAACAGCAGAGGGTAGCTTTAGCAAGGGCTTTA ATTCTAAATCCATCTATTTTACTTTTAGATGAACCAACATCTGCTGTAGATATTAAGATT AAAGAAAGCATTATATCTGAATTAAAAAAGATAAAGCATATCCCAGTTTTACATATAACC CATGATTTGGCTGAAGCAAGGACTTTGGGAGAAAAAGTAGGCATTTTTATGAATGGCGAG 30 CTTATAGCTTTTGGAGATAAAAGTATATTAAAAAAACCTAAGAATAAAAAGGTTGCTGAG TTTTTAGGGTTTAATATAATAGACGATAAGGCAATAGCTCCAGAGGATGTAATTATTAAG GATGGAAATGGAGGAGAGGTTGTAAATATCATAGATTATGGAAAATATAAAAAGGTGTTT GTCAAATATAATGGTTACATCATTAAAGCTTTTACAGAAAGAGATTTAAATATTGGAGAT AATGTTGGATTAGAGTTTAGAGAACAAACAAAATTAACATGAAATTTTTTGGTGATAAGA 35 TGATTGTAGTATCAGGAAGTCAATCCCAAAATTTGGCTTTTAAGGTAGCTAAGCTTTTAA ACACAAAATTAACAAGAGTAGAGTATAAAAGATTCCCAGACAACGAGATTTATGTTAGAA TAGTTGATGAAATCAACGACGATGAGGCAGTTATAATAAACACACAAAAAAATCAAAATG ATGCAATTGTAGAGACAATTTTgCTGTGTGATGCTTTAAGGGATGAAGGAGTTAAAAAA 40 AGGCAATAAGCATTAGAGCTTTAGCAAAAATCTACTCAAATATTGTTGATAAACTCATTA ATGCAGTTCCAAAGTTGGCAGAGTATGTTAAAGATAAATTAAACGACCCAATAGTTTTAG CTCCAGATAAAGGAGCTTTAGAATTTGCTAAAACTGCATCTAAAATCCTAAATGCAGAAT ACGACTACTTAGAAAAAACAAGACTCTCTCCAACAGAAATCCAAATAGCTCCAAAGACAT 45 TGGATGCTAAAGATAGGGATGTTTTTTTTTTTTGATGATATCATCTCTACAGGAGGAACAA TGGCTACAGCTGTTAAGTTATTAAAAGAGCAGGGAGCTAAAAAAATAATTGCTGCATGTG TGCATCCTGTTTTAATTGGAGATGCATTAAATAAGCTCTATTCAGCTGGAGTTGAGGAAG TTGTAGGGACTGATACATATTTATCAGAGGTTAGTAAGGTTAGTGTTGCAGAGGTTATTG TTGATTTATTATAATTTTTAAAATTTTTTAATTTTTTATCCTAAAAACCCAATAAACTTTC 50 CTAAGCAATAAAATACACCAATAGATGCCCCTAAATTTGAGAGAGTGGCAACTAACAAGA CTCTAAATAAATTGTTGTTTAAGAGCTCTTTAATTGATTCAGCATTTATTATTCCCACTA AATCTTTATCTGTTATCTCTATACTTTAACTCTACAAGTCCAGCTATCGTCCCCACAG CCGCTAATGGTAATGGGACGAGAGTAGTTATAGGGGCTGATAGAAAGGCAACTAATGCAG TTATCAACTTCCCTCTTGCCAATAAAACTCCCAAGGCAGATAAGCCCCCAGTAAATAATA 55 TCCATTGAAAAGTAATCATCTTTAATAATTCTGGATTATTTAGGGCGTAACATATCATAT ACAAAAAGATGCTAATTATAGTCAATGAAATACCATATGTTAAAAGCTTTTTTAATGATT TTTTTCTCTTTTTTACCTTTATTAATTCCATTAAATCAATATCATTTCCATTTTCAAGCT TTTTTAAATATCTTACAATTCCCTCAACATGTCCCGCTCCAACTACTGCCACCAAAGAAT 60 AGACCTCATATATTGTTGGAGATATCTCCTTTAGCAATTTAATAAATTTTTCAGGATTTT TAACCATATCGTTTAATAAATCATCTTAATTCCAAATCTTCCTCATCAGAATTTAATA GCTCCCAAAAATCTTCATTTTTTCTTTAAATGTCATTCTATCCATTAATCTTGATAAAG TAGCTTTTTTCATCTCACTACCTGGCTTTATTCCAAAACTCTCCCCTATCTTCTTTTGAG

 ${\tt TTAAATCCACTTTTTTCTCTTCATTTGTAATTAATGAGAAAAATCTTCTATCATCAAGCT}$ CTACTGCAATTCCTTCTGGAGAGACAGATGATATAATTTTTTCTACTTCTTCAATACTAT 5 CTCTAACATGTCTCAAAATAATCACCATCTATTTGTAAAAAGTGTCGTTGATATTTTTGT ATCTTTTTCTTTTTTTAGTTTTTACACCTAAGAAAGCCCTTTTTATTATAATTGTTGCAT AACTTCCTTTTTCCAATTCATAGCTTAAAGTTATTTTATATTTTCCTTTATTCAATTCAT 10 ATATGAACTTCCCTAACTCTCCTATATTATTTAGCTCTTCCATAGTAAGGCCTTCTCTCT TTAAGATTTCTTCAATAATTTCTTTTTCTTCTCCACTATATTCAATGTCTGGAGCTATTG TAAGGGTTCCACATTCATATTCATAATAAACCCTATCTTCTTCTGGAACATATTTTCTTA ATAACTCTTTTACACACTCATTCCATAGATAGCTTTGATAAGCAGCAACAAAAATTTTCT 15 TCAGCCTATCATCAACATAACTTAAAGCTTTTTTATAATCATTGCTTTTTTTAAGCTCTT TAACCATATTCACATATAATCTTGACTTTATATTTTTTCCTTAATATACTCCCAAATTT TATCCCAATCTCCCCAGTTTTTATCTATAAATCTCTTTAAATCTTTTATTAATTTCTTTT CAGATTTTTTATATTTCGTTAGCAATATTTTCACAGCTTCTTCATAATTGCCTTTTATAA CTTCTTTGGCAATGAATTTTTTATCAAAAACGCTTCCAAATCTCTGACTATCAAAATAAT 20 TTGGAGCTCCAAATTCTAAGTATTTTAAATTTTCTTTTATTTTTGGGATGTCTTCTTTTT TTAAACCCCTAACTGTTATTGTGAATCTATTTCCCTCTAAATCTCCCAACAATAGAAATT TTGATTCTCCGATTAACTCTAATTTTAAATTTGGTTCATCTAAGCTTAATTTTCCATATT TTTTTGGTATAGATATATTGAGTAGTTAAAGCATGCCTATCTTTAATCCACAGTATC CAATATCCTTCAATGGAATTTTAAATTTTTTTGCAATATAAGAGAATGCTTTCAAACTCT 25 CAATAATTTCTTCAACGATAAAATCCTCTGGCTTCATTCTAAGTTTCATAAAAGCACCCC TTTTCATAAAAAGACTTGAAAATTCACAGGAATTAGTTCCACAGAAAAAATAACCTAAAG GAATTTTTAACTTTCTTGGGTAATTTTTTAACTCTAAAATAGATGACGCGGGGGCCGGGA 30 CTTGAACCCGGGCTGGGCGTTGCCCAATGGGATTAGCAGTCCCACGCCGTACCAGGCTGG TTTACAATACAAGATATAGAAAATTAAAAACTATTTCGAACCCTAAAACATACAAAATAA AAACAAACTCATAAATTCTCTTAAAAATAAAACTTTAAAATTGAAAAATTAGTAATACTT TTTATTAATTTCCAATACCAAAATCAAACAACCTACTTATAATCTTAAAAATCCGAAAG 35 ATTTCTAAAACCTGTTCGCTATGCTCACAAGAAGCAAGAAATTAAATTAAAAATCTATT ATGCATATTAAAATTCTCAATAAAGCATAATCTATTTATATTTTATACATCACTATTTGT CATTAATGATAATGATAAATTACTGGTGACAGTGATGATTAAAAAAATCGCAAGGAAGAA GTGTATTCATGTAATGCTTGTTTATACTGGTGGATGTAACGCTTGTGATATTGAAGTTGT TAATGCTATATTCTCTCCATTTTATGATGCTGAGCAGTATAATGTTTTTTTAACATTTAA 40 TCCAAGAGAGGCAGATATTTTAGTTGTTACTGGTTGTTACTAAAGTTGTTGCAGAATC ATTAAGAAAATTTATGAGAAGATTCCAGAACCAAAGGCAGTTGTTGCTGTAGGAGCTTG CGCATTGATGGGAGGAGTTTATAAAAACATTGGAGGAGATTTAGGAACTTCAGATTTTGT TGCAGGACCTGTTGAAAACATTATTCCAGTTGATGTTAAAGTGCCTGGCTGTGCCCCAAG ACCAGAGGATATTATTGCTGGGATAGTTAAAGCTCTACCTAAGGTTATCGAAGGAAAATG 45 AGGTTTTTATAAAATTTTATGAGTGAGAATGATTTATGTTTGTAAAATTTCTTTAGTGAG GGATAGGTTATGATGAGGCTAATATCCATAATTGGCATTCCGGCTTTAGCATTTGCA ATCTCTACATATATTCCGGGAATTCAGAGAAAGATAGAGGCAAGGATACAACAAAGAATA GGGCCGAGTATATTAGCCCCAGGATTTTTGGGCATTTTTTAAGTTTTTAAAAGAGACA AAAGCTCCTGATGCAAATTTGCCAAAACTATATAATTTGCTGCCTTTGTTGTCTATAGTT 50 GTGTTGTGGGCATTGTTGTCTATAACATCATTAACATCCTTCCATATATTATCTAACGAG GCATTTTCAATTATGGGCTGGAAAATGCCGTTTATAGATGAATGCAAAGGCACACCGTTT ATAAAAACTTTAAAGCTTTCATTGGAGCAGTTAGGAGCTGTAAGAAGCTTTAAAATGATA ACTATAGGTTCATTTCCATTTTATTTAGCAACATTTTTTGCCATTTGTTCAAAAGAAGAGAGT 55 ATATTCTTAAAAGATATTGTTGGAGAACCATTTTTATTCTCATTGGCTGGGATATTTGGA GCTGCGTGTTATTTCATTGGATATGTGATAATGATTAAAGAATATCCATTCTCAATAACT TTATATTTAGCAAGTAAGGAACTTTTGTTAATAGCTTTAGGAAGTTTATTTGCAACTCTA TACTTAGGAATAGCTCCAGATATAGAGAATCCTATAACAATAGTTGAAAAACTTTGCTATA 60 ${\tt GCTTTGATATTCCCTATATTGGCCACATTTGTTAGGGCATTTTCGCCAGTACTTTTATTT}$ AAACAGATATATCCTATCTCCTATGTGGCAACACTAATTGGTGTTATTGGCTTTATATTT GCATTGCTTGGATGGTAAAGTATTTCAGAAAATATCTAATGAGTTATGAGAAAATGCTTA AAACAGCAATAATTATTTTTAAAAATTATCTTTGAGATTCTGGTTTATACTCTTCCTT AATTTTAACAACTACTGGAGTATGCTCCAATTTTTCCAAAATCTCTTCAGTTATAAC

ATAGGTGTTGTATTTTTCTAAAACTTCATTAATGTTTTTTATTGTTTTTATGCACTCTATC ACAAATAAAAGCTATCCTTGTAAGCTCACCAATAGAATACTTTTTATATACCTCATTTCC AGCTATTGCTAATGGTGTGCATCCAGCAAATCCACCAATCTTTAAAACATCTGCCAACCT TCCAAGAATGAAACCCAAAAACTCCAATACCACTTATTATTCCATCAATTGCATAGGGAAG 5 AGCGGTAAAATTGAAAACTCTATAAGTAGCATCAGTATCGGCAACCATAACAAC AGCATAAGGTTTTAAGGCATATCTTAATCCAACTATTTCTATAATTGTCTGTTTATGCTT 10 TAACTTTCCAAGCACATAGCCCCAAAGATATTTAGACCAATAATAGCAGAGATAAGCTAA AACTCCTGGTTTAAATTTACTCTCATCAATAAAATTTCCCTCAGCAGTTGAAACCATCTT AACAACAATTGGGATAAAATTTTCTCCCCTTTTTATGTATCTTGTTTTGATGGGATAAGC TCTCATATTCTCACATGTTAAAGTGTATCACCGTAGCAATATTGAATAGGATATTTATAA 15 ATATGGCTAATTAATAAATTATTTTTTTTTTGTTAGATAAAATCAAATTTAATTATGTGGGGG AGTATGCCAAGAAGGAAAATAGACAAATTGTATGTAAAAATCTATTTCGAAGGTAATGCA ATAGAAGGTGAATATGATTTTGACGCAGTTACACACTTAAAAAATGGCATATTAAAATAC CTATGGACTGGAAAAAAAGACCCAATAATAATTTGGAATATGGATAATAAGTCATTTACC ATTATTGACCCATCAAAGATATGTGCTGTAGAGGTTCAGGGTTCATTAATGTTCTTAGAT 20 GTAAAAACTGGAATTCCTGGGATGGATGAAATCTTACACGGTGGAATACCTGAAAGGAAT GTTGTTCTATTATCTGGAGGGCCTGGAACTGGAAAATCCATATTCTGTCAGCAATTTTTA TACAAGGGGGTTGTTGATTACAATGAACCAAGTATTTTAGTAGCTTTGGAGGAACATCCT 25 GTTCAAATTAGAGAGAATATGAGACAGTTTGGATGGGATATTAGAAAGTTAGAGGAAGAG GGAAAATTTGCTATAATCGATGCCTTTACATACGGAATAGGAAGTGCTGCAAAAAGAGAA AAATACGTTGTAAATGACCCAAATGATGAGAGAGAGTTAATAGACGTTTTAAAAACTGCT ATAAATGATATTGGAGCTAAGAGGATAGGAATTGATTCAGTCACTACCCTATACATAAAC AAGCCAATGCTGGCAAGAAGAACTGTCTTTTTTTTTATAAAAAGAGTCATCTCTGGTTTAGGA 30 TGTACTGCTATCTTCACTTCTCAAATATCCGTTGGAGAAAGAGGATTTGGAGGACCAGGA GTTGAGCATGCAGTTGATGGGATTATAAGATTAGATTTGGATGAAATTGATGGAGAGTTG TTTGACATAACCAATGAGGGAATAATTGTATATCCAGATAAGGTATTGAAGCTTAGATAA AATTTTAAGGGAGGAGGATGGAGTCATTTATCTTAATTTTATCTTAATTTTTTTG 35 GGAGTAGTGTTTGCTTTTGGATTTTATTTGATATTCATAAAGCTTACTGGATTAAAATTG ATGGATTATTTCCAAGATTTAAAGAGAATAGACTAAAAATGATTTTTAGTATTTTAAGT GTGAnTCTTGCCTTTCTCATAAATTGGTTGATTATGAAAAATTTTAGTTTTTTGATTGAG TTCTTATTCCTTAAAAGAGTCCCATTATCAAATTATGAAAAGAAATTCATGGGAAATATG 40 TCTGCAATAGCCATATTTCTTGAACTTTTAAAAATTATCGAATATGTGGATGAGCATAAT ATTGCCTCTCCAATAACAGTTGCTTTAGTGTTTTTTATCCCAGTTGTTGTTTTTTTAAT TGCAAGTATTTTTATGAAATGGAGTTGTCAAGTTAGCGATTTCATCCAGTTGTAGAACAT CATGAAGCTTTTTATCCAACTAACAACCATTAGGTTTTGTAAATACAGCAAAAAGGTTAT ATCCTATTAGTTGTTATCTATAAAATATGGCAAAATAGGGGGGCTGGTAGTTATGGAGAT 45 GTTCTATATTTGGGCTTTTAAGTTTGATAAAAAGTATTTGGCTAAGGAGTAGTAGAACCA TCTTTTTTAATCCTTAAAACCAAAAATTAATAATTAAAAGATTATCATGTGAAACCATGG AGACGTCAAAGAAGTTAGTTATTGTTGCAGTTCTCTCAATAACATTAATTTTAACTTATG CCTATTTAATAAGCATAATTGAGGGGGTTGATTATTTCACAGCTCTATATTTCAGTGTTA 50 TTACAATAACAACCACAGGTTATGGAGATTTTACTCCAAAAACATTTTTGGGGAGGACAT TAACTGTAGTTTACCTATGTGTTGGTGTGGGAATAGTGATGTATCTCTTCAGCTTAATAG AGATTAAAACTTTAAAAGACCATTATATTATCTGTGGATATGGAAGATTAGGGAAGGTTG TGGGGGAGAAGTTTATTGAAGAGAATATCCCATTTATTGCTATAGATATTAATGAAGATG 55 TCCTAAAGGAAGAGTATGAAAAATACCCAGATAAGTTTTTATACATTGTGGGGGATGCTA AAAAGGAGGAAGTATTGAAAAAAGCAAAAATTGATAAGGCAAAGGGATTAATTGCTACTC TTCCTTCTGATGCAGATAATGTGTTTTTAACCTTAACAGCAAGAGAATTAAATCCAAACA TTTTAATTACTGCTAAAGCAGATGAGAAGGCAAAGCCATAAGAAATTAAAAATAGCTGGGG CTAATAGAGTAGTGTCTCCGTATTTAATTGGCGGATTAAGAATGGCTGAGGTCTCTGTTA 60 GACCAGGGATTTTGGACTTTTTGAGCACATTTATTAAGATAGCTAAAGATGAATATGAGG AAGATATTGAGTTGAGAAAGTTTGTCATTGAAAAAGATTCTGAATTAGCATATAAAAGTT TAAAAGATGCGAATATTAGAGGAAAAACTGGGGCTACAATCTTAGGTATTCGAAGAGAAA AGGAGTTTTGTATAAATCCTTATCCAGAGTTTATTCTAAAACCTGGTGATGTAATATATG CATTTGGAACTGAAGAAACTTAAAATATTTGGAAAATCTTGTTAAAAAGAAAAAGAAAA

AGTTATAATCCCATCTTTTTTATTCCCAATTTAACGGCATTCTTTTTTAGGTTTTGGTTT ATCCCAATATAATCTAAAACCTTGCTCTCAAAGTTCATGTATGCAGCAACATTTAACAAT ATAACCCTCTTCAATAAATCGTCTAAAATATCAACAATCTCCTGGGCATCTTCTTTAAT TCCTCTTTTAATTTTTTCAATCTGTCTTCAATTTTAATAATTATTGCAGTTAAATAC 5 TCTGGTAGGAAATCTTTCTCTACGTATTTAATTCCTCTTTTTACAATTTCTTTATAAAAT TCATTTAAATCACTATCATTGGATATTTCAAATAAACCCTTTATCCAATTTTTAAAATCT TCCTCAAGTTCCTTTCTTTTACTCTCATCAAATAATGTCTTTGTTTTTTCATATGAGAAG ATATCATTAAATACCTCTTCAACCACTTCGTCTATTGTCTTACTAATTAAGTCCTTATAT TGTGTCAATTTAGAAAAATCCTTCTCTCAGATGCAAAGTGATGCATATTTTCAATAATT 10 TCGTTGTATATTCCATCGAATGTTACGTTCATTACTACCCCCTCCTCTATGTTAATTTTT TTTAGTTTAGTCTGGAGTTTTTTAAATAAAAAATTAAGAATAATAAGTTTCTATTTAACT GCATCTACTAAAAATATGATTTAGAAATGGTATAAATACTTATTGGTTATTGGTAGAAGT TTAGATAAGCTTCTACCAATTTAACTCCAGCGTCTGTTAATCCCTTCTTCCCTATGAATC 15 TAGCTAACAATACAATTTCATTTTCTTTATGTTCTTTACCCTCACTCTTCTCTTTCCAAA CTTTATCAAACTCTTCTTTATGGTCATAGATGGTTTTTAATATGTTGAATGTTGTTGGAG TTACAGCAAACTTTGTTGCCAACAATTCTTGGATTTTCGCCATTTCTATAGCTGTTTTAA CCTCTTCCCCTAATTCTGTTAATTTAATCATCTTGTTTTGCAACTCTTTAATGAATCCTT 20 TGGATTCTGCCTCACCTAAAGATTTAATGATTTCTTTTCTCATCTCCACCAACATGACCTT TTGAGATATCATATTTTGTTAAGTATGGCTTTCTTTTAATTGTTTTTGATAATTTTATTA AGTATTTTCCTTTTTCTGTTATTCCTCTTTTTTACAGTTCCTTCTTCTTTACCTTTAATTA CCCATTCAGCAATTGGCACATCTCCACTTTCTGGATAGGTTATAGCTTTCATTCCATCTG 25 TTGATACCTCTCTAAATCTTTAACCTTCTCCCAAACTCTGTCATCCAATATGTGTCTT ${\tt TATTTTTAACAACTTCTCTTTTATTAACTCTTTTGATTCTAAGGTGTGTAATACAGCCC}$ CTAAGTCATCAATATTTGTTCTCTTTTTAATTTCATCGTAAGTTGGTATAATTTCAGGGT TTGTTTCATACTTTTCCTTTATTTCTTCAATTGCCTTTAAAACCTTAATCTCATCCTCTA AGACATAGATTGGGAGGGTTTTCTCCTCAACCTTACCCATCTCTTTATAAGTGTCCATCA 30 TTGCTTGTCCTAATTCAGTAACTTTTCCTTCAGCATAGAAACCGCTTTCTGTCATCTCTT CAGTAGTTTCTCCTCTCCCAAAATTTCAAAGTCCTCTTTTCTCAATATTAAAGCCCTAC TTAAGTTTGGAACTAATGAAGCTACTTTTAAAACATAGTTCAATGCCTTTGTTGTAGAAA ATGCCTTTCCACTTTCTGTTTTTGGTGAAATTAAAAGCAATCTCATAGCTTGGAGTGCAT TAATTATGTTATCTCCATATTCTTTAGTGTTTTTGTAAGTTATTAGCTCATCATAAACTC 35 CAATCTTTGGCATATCTTTTATAAATGCCAATAATTCAGGAGTTAGATAAACAACTGGAT GTGTCTCTATATATCTTTAAAATCTCTTTTCCAATCTCTGTTAAACCATTTTCATCTG CTAAGAATCTCTCTTTTAACATTAACATCCAGTCCTCTGGAACATTTCCAGTTTCCTCCA ACAATTCCATAATTTTAATAATCTCAGAATCTACAAATATATCTGGAATCTTTTCTAAAT CAATTTTATCAACAATCTCCATCAATTTTTTTACCAGCTTCAGTGAATATTATCTTATCTC 40 CTTTTAATTCAGCAAATCCTAATATAAACAGCTCTAAAGCTCTTGTTTTAAACTCTTCTG GTAGAGCTTTTCTATCTCGTTCTGCATTTCTGTCTCTTTCATCTTTTTTAATATTTCCA AATCTAAGAATCCACAACATTATCATAAAAACTGTTGCTCCAAAGAATGTAACCCATACA 45 AGCAGGCTAAGATTTGGCACCAAATATAACGTTAAAGTTACTAAGAACAAAATTGAATAT CCAACATCAATTACATACCTGTATTTTTCCATCTCAAAGAGAAATATAGAAGTTAGTGTG CCTATAAGAATATGGCCTCCAATCCCTAAAAATACTAAAAAACCCATGGCTGAGAGAATT 50 CCAAGTATTATTCCTACATCCATTATTTTCCCCTATCATATTTTGTTCTAATATTGCTAA TTTATATTCATTTTTTACTAATTAAAGTTCTCACTTTTTTATGTCTATGAAGTTCTATAA AAACTTTTCTATAATCAATTAATTTAAATATGTTTAGAAATTTATAAACATAAAAATTAA AAAATAGGATAAAAATTTACAGTTTTTAAACTGATATAGCACCCGCCACCCTGCGAACCC AATATAAATAATACAAGGGAGCAGGTGGCGAAAAAAAGACCCGAAGCATGCACAAAAATAA 55 AAATTTAAAAGAATTAGGTGAAACCATGGAATTTAAGATTGTAAATACTATCTGCCCTTA TTGTGGAGTAGGTTGTGGTTTGGGGTTGGTAGTTAAAGATGGCAGAGTCATAGGTATTCA TCCTAACAAAAGACATCCAATAAATGAAGGAAAGTTATGTGCTAAAGGAAATTATTGCTA TGTTGAAACTACATGGAATAAAGCTTTAGAAGTAATTGCAGAAAATTTAAAGACCTATAA 60 GGATGAGATTGGCTTTTTTTCATCTGCAAGATGCACTAACGAAGATAACTACATTTTACA AAAATTTGCAAGGGTTGCTTTAAAGACAAACAATATTGACCATTGTGCAAGGTTGTGACA TTCAGCAACTGTTACTGGAATGAGTGCATGCTTCGGGTCCGGTGCTATGACAAACAGCAT AGAGGATATTGAATTAGCAGATTGTATATTGATAATTGGCTCAAACACCTTTGAACAACA CCCATTAATCGCAAGAAGATAATGAGAGCCAAAGATAAAGGAGCAAAAATAATAGTTAT

AGACCCAAGAAGAACAATAACTGCAAAAAACTCTGATATATCTACAAATAATTCCTGG AACTAATGTTGCCTTAATAAACGCCATGATTAATGTAATTATAAAAGAAAATTTGATAGA TAAAGAATTCATAAAAAATAGAACAGAAGGCTTTGAGAAATTAAAAGAAATTATTAAAAA ATATACACCAGAATATGCATCAAAAATATGCGGAGTTGATAAAGAACTGATAATTGAGAG 5 TGCTAAAATTTATGGAAATGCTGAAAGGGCATCTATCATATACTGCATGGGAGTAACACA ATTTACACACGGTGTTGATGCTGTCAAGGCATTGTGTAATTTAGCCATGATAACCGGAAA TATTGGTAAAGAAGGAACTGGGGTTAATCCATTAAGGGGGCAGAATAACGTTCAAGGAGC TTGTGATATGGGAGCTTTGCCAAATGTATTTCCTGGGTATCAAAAGGTTGAAGATGGCTA TAAATTATTTGAAGAGTATTGGAAAACTGACTTGAATCCAAATTCTGGTTTAACAATACC 10 AGAGATGATAGATGAATCTGGAAAAAATATTAAATTCCTATACATAATGGGAGAAAATCC AATAGTATCAGACCCGGATGTTAAGCATGTTGAAAAGGCATTAAAAAGCTTAGATTTTTT AGTAGTTCAAGATATTCTTAACTGAAACTGCAAAATTGGCAGATGTTGTTCTTCCAGC TGCATGTTGGGCAGAGAAGGATGGAACTTTTACAAACACTGAAAGGAGAGTTCAATTAAT AAGAAAAGCTGTAAATCCACCTGGAGAGGCTTTAGAGGATTGGATAATAATCAAAAAATT 15 AGCTGAAAAACTTGGTTATGGAGATAAATTTAACTACAATAAGGTAGAGGATATATTTAA CGAGATTAGAAAAGTTACGCCTCAATATAGAGGCATAACCTACAAAAGATTAAAAATTGA TGGCATTCATTGGCCTTGTTTAGATGAAAATCATTCAGGAACAAAAATCTTACATAAAGA TAAGTTTTTAACAGATAACGGTAGAGGAAAGATATTCCCAGTTGAGTATAGAGAAGTTGC AGAACTACCAGATAAAGATTATCCTTTCATTCTAACAACTGGAAGAATAATATTCCACTA 20 CCATACTGGAACCATGACAAGACGATGCAAAAATTTAGTTGAAGAGATTAATGAACCATT TATTGAAATAAATCCAGATGATGCCAAATCATTAAAAATTGAGAATGGTGATTAGTTAA GGTGATTTCAAGGAGAGAGAGATAACTGCCAAAGCAAGAATAACTGAAGACATTAAAAA AGGAGTTGTATTTATGCCATTCCACTTCGTTGAGGCAAATCCTAACGTATTAACCAATAC TGCGTTAGATGAGTTGTAAAATTCCAGAGCTTAAGGTGTGTGCTGTAAAGATTGAACG 25 **AATTTAATTTATAGAATTGTTTATATAATAGGAATCATATTTCCTAATGTTATGGGGTGA** GAGTATGGAAGAGATAGTTAATAAGATTACAAAATTTATCAGGGAGAAGGTTGAAGAAGC CAATGCCAATGGAGTTGTTGGATTAAGTGGGGGTATTGATTCTTCTGTTACAGCTTA TTTATGTGTTAAGGCACTTGGAAAAGATAAAGTTCTCGGCTTAATAATGCCAGAGAAGAA TACAAATCCAAAAGATGTTGAACATGCAAAGATGGTTGCTGAGAATTTAGGAATAAAGTA 30 TATTATCTCAGATATAACAGATATCTTAAAGGCATTTGGTGCTGGAGGTTATGTCCCAAC GAGAGAGTTTGATAAGATAGCGGATGGAAATTTAAAGGCAAGGATTAGGATGTGCATCCT CTATTACTTTGCAAATAAATATAATTTATTAGTTGCTGGAACTTCCAATAAATCTGAGAT TTATGTTGGATATGGAACAAAACATGGAGACATTGCTTGTGATATAAGACCAATAGGCAA TTTATTTAAAACAGAGGTTAAAAAACTTGCTAAATATATTGGTGTTCCAAAGGAAATTAT 35 TAAGTATGAAACTTTAGATACGATATTAAAGCTTTATGAGAAGGGCAAAACTCCAGAGGA AAAGAATGAGCATAAGAGAACTTTACCTCCAACACCAGAGATTTAATTTTTAATTTTAGT TTAAATATTTTATTTTAGTTATTCTATTTTAAAATTAAATTATTTTTATATATTGTAATAT 40 TCCAAATCATAAGTCTCAGACCATAATTATTTAAATATAACTTCAACCAATATTTAGAAA ACCCAAAAAACTATCTCTTTTATATCTCTACGGAGGGTTGTTCATGTGTGGTATTATCGG TTTTATGAGTAGAAAAAAAAGAATGATAAAAGGGGGATAAGATAGCGTTAGCGTTAGATAG TCTAAAAGAGAGAGTAATGGGAAGGGTTCTGGTTATGTAGGTTATGGAATATATCCAAC AAAGTATAAAGATTGCTATGCATTCCACATTTTAATTGACAACACACCAAAGTTTGAGAA 45 AATAAAGGTAGAGGTTGAGAATGTCTTAGAGCAGTATGGGACAATAGTTAAAGATGAGGA AATACCAACAGAAGATGGCATTATAGAAAAAACACAAATTCCTTGGAGATACTTTTATGA AGTTGATGAAAAATTTGCTGATAGAGAGGAAGATGTTGTCGTAGATATAGTTATGGAGAT TAATGACAAAATAGATGGAGCTTTTGTCATTTCAAGTGGTAAGGATTTAGGTGTTTTTAA GGCAGTAGGATGGCCTGATGAGGTTGCTAAATTCTATAGAATAGATAAATATGAAGGTTA 50 TATGTGGTTAGcACATGCAAGATATCCAACAAACACAAGAGCATGGTGGGGAGGAGCTCA CCCATTCAATTTATTAAATTGGAGTGTAGTGCATAATGGAGAGATAACAAGCTATGGAAC TGTTGCCTATATATTAGATTTATTGATGAGAAAACACAAAATCCCTGTTGAGTATGCCTT 55 GTTACATACAGCAATAAGATTGGCTTATGGAGGAGCTATGCTAAATGGTCCTTTCGCAAT AGCAGTTGGAACTCCTCAAGGTTTAATCTTTATGAATGGAGATATTGAGAAAGACACAAC AATGTTTGGTTTAACAGATAGAATTAAGTTAAGACCATTAATTGCAGCTGAAAAGGATGA TATGATATTTATTTCAAGTGAAGAATCTGCTATAAGAAGAATCTGCCCTGACTTAGATAG AGTTTGGATGCCTGACGCTGGAATGCCTGTTATAGCAAGACCTTGGAAATAAACAAAGAT 60 TAAAAGATTAAAAATAAAAACATGAGGAAGTGAAATCATGATTCCCAGCTATGTGCCACC AAAGTATAAAGTAGAGGTTGACCCAAACAGATGTATGCTATGTGAGAGATGTACAATAGA GTGTTCCTGGGGAGTTTATAGGAGGGAAGGAGATAGAATTATTAGCTACTCAAACAGATG TGGAGCTTGCCATAGATGTTGTTAATGTGTCCAAGGGATGCAATAACAATTAAAGAAAA TGCAATATCTTGGAGAAGCCACCCATTATGGGATGTAGATGCAAGGGTTGATATTTACAA

WO 98/07830

TCAAGCAAAAACCGGCTGTATTTTATTGAGTGGGATGGGTAATGCCAAAGAACACCCAAT GAGAGAGCCAATGGAATTAAGAACTTACATTGGTAAAAAACCAAAGCAGTTAGAGTTTGA ATTTGTTGAAGAAGAGTTGATGGCAAGAAGATTAAAAAAGCTAAGTTAAAAACAAAAAT 5 AGCTCCAAACTTAAAGTTAGATACCCCAATAATGATTGCCCATATGTCTTATGGAGCTTT GTCTTTAAACGCTCACCTATCATTTGCTAAGGCAGTTAAAGAATGTGGAACATTCATGGG AACTGGTGAAGGAGGATTGCCAAAAGCTCTCTACCCTTATGCAGACCACATAATTACCCA AGTTGCAAGTGGAAGATTTGGAGTTAATGAAGAGTATCTTATGAAAGGTTCTGCAATAGA GATTAAAATAGGGCAGGGAGCTAAGCCTGGAATTGGAGGGCACTTACCTGGAGAGAAGGT 10 TACAGCAGAAATTTCAGCAACAAGAATGATTCCTGAGGGAAGTGATGCTATCTCACCAGC AGCAACAAGATGGAAAAAGCCAGTGTTTGTTAAAATTGCAGCTGTCCATAATGCTCCAGC TATTGCTGTTGGAATAGCAACAAGTGATGCTGACGCAGTTGTTATAGATGGATATAAAGG AGGGACAGGGGCACCAAAGGTATTCAGAGACCATGTTGGAATCCCAATAGAAATGGC 15 TATTGCCGCAGTAGATCAAAGATTGAGAGAGGAAGGTTTGAGAAATGAAATTAGCATCAT AGCAAGTGGAGGAATCAGATGTTCAGCAGATGTATTTAAGGCTATAGCTTTAGGAGCAGA TGCTGTCTATATTGGAACTGCTGCAATGGTTGCTCTTGGCTGTAGAGTTTGTGGAAGATG TTATACTGGATTGTGTGCTTGGGGAATAGCAACACAAAGGCCAGAGTTGGTTAAGAGATT AGACCCAGAAGTTGGAGCAAGAAGAGTAGCTAACTTAATCAAGGCATGGACACATGAAAT 20 TAAAGAACTCTTAGGAGCTGCTGGAATTAACTCAATTGAAAGCTTAAGAGGAAACAGAGA TAGGTTAAGAGGAGTTGGCTTAAATGAGAAGGAGTTAGAAGTTTTAGGAATAAAAGCTGC TGGAGAATAAATAGAACTTTCACAAATAAAAATACTTTATTGAAGGGTGATGCCTTTGGC ATCTAAATTCCAAAATCAGCATATAAACTGTGAAAGTTCTATTTAAATTTTTTAATTTTT AAAGGTGAAAGGCATGGAAGAGGTTGTTATAGATGCAAAGGATATGCACTATAGAGAGCT 25 GAATGAAAAAATACATGAAATTTTAAGGGAAAATCCAGACATTAAAAAAATTGTCTTAAA AAACGTTTTAGGGCAGAGGTTTATTGCCGATGGAATACAGAAGAAGATTTAACTATAGA GATTTACGGCATTCCTGGTGGAGATTTAGGAATGTTTATGAGCGGCCCTACAATAATAGT TGGAAGTAGTGGGGATGTAACCGCCCACTCAATGAGAGGAGGAAAGGTTTTTGTTAGAGG 30 GGATGTTGGTTATAGAAGTGGAATTCACATGAAAGCTTATAAAGATAAAGTTCCAGTTCT TGTGATTGGTGGAAGAGCTAAGGATTTCTTAGGAGAATATATGGCTGGAGGTATTATAAT AACTGGAATTCATGGAGGGGCAATTTATATTAGAGGAGAGATAGACAAAGACCAATTAGG TGTTGCTGCAGATATAAAAGAATTTACTGAAGAGGATTTAGAAAAAATAAAACCATACAT 35 TGAAGAATTCTGCAAATGGTTTAATCTGCCAGAAGATGTTAAAAATAAACTATTGAATTC AAAATGGACAAAAATAGCACCAATCTCAAAAAGACCATTCGGTAAGTTATATACTCCTGA ${ t CTTAATGTGAAACTTTTAGTAAAAGTTTCATCAAAACTCGTCCATTAAGTTaGACTTTCA$ GTCCTAATTAATGTCCATTATTATAACAGTGGGACTGAACGCAGTGAAGCCCACTCTGGA GTATTCCAATAGGCGAAGCCCTATGGTTGCGGAAGCTCTATACTCCCCGACTTAATGTAA 40 TTTAATAGAAATTTTTATCAATTTTTAAAACTATTTAGAAGAAACACCAAAATGAGCCTT AGGTGAGATTAATGAAATCTTACAAAAACCTAAAAGAGGAAGTTTGGGATACTAATAGAT GTAGTGGTTGTGGAGCTTGTTGCAGTTTGTCCAGTAAATAACCTATATTTTAGAGAAG AAAGCCCAGTAAAGTTTGAGTGCGATGAATGTTCCTGTATAATAGTCCCAGCAGATATCG TTGAGCATCCAATTTCAGCAGAGTTCTGTAAGACAGTAGTTTATGACGTCCCTTGTGGAG 45 CTTGTTACGATGCCTGCCCAAGGATAAAAAAATCTGCTATTCCAAAACCAAAGGGATTGG GGAATATATTAAAGGCAGTTAGAGCTAAAGCATCAATAGAGATAAAGAATGCCCAAAATG GTGGAGTTGTAACAGCCATATTGGCAAATGCGTTTGATGAAGGATTAATAGATGGAGCCA TTGTAATGATGGATGACAAATGGACTTTAGAGCCAGAATCATATTTGGCGTTATCAAAAG AAGATGTTTTAAAGTCTGCTGGTAGCAAATACCTATGGAAAGGTCCAATATTAAAGGCGT 50 TAAAAACAGCAGTTATGGAAAAGAAACTTAAAAAATTAGCTGTTGTTGGGACTCCTTGTG TTATAAACGCTATCTATCAGATACTATCATCAGATAACGACTTATTAAAGCCATTCAGAG AAGCTATAAGATTAAAAATTGCCCTGTTCTGTTTTGAGACTTATGATTACAGCAAGATGA TTAAAAAGCTTAATGAAGATGGCATAGAGCCATGGGAAGTTAAAAAGATGGATATCGAAT CTGGTAAGTTAAAGATAACCTTAATCAATGGAAACACTGTTGAATATAAGCTTAAAGATG 55 TTGAGTCTGCAATGAGGAATGGTTGCAAGGTTTGCGGAGATTTCACTGGCTTAACATCAG ATATTTCAGTTGGTAATGTGGGAACTGAGAAAGGCTATTCAACAGTCTTAATAAGAAACA AGTGGGGAGAAGGATTCTTTAAGAGAGCAGTTTATAATGGTTATATAACCTATGATGAGA ACGTTGATTTAGAAGCAGTTGAAAAACTTGTTGAATTAAAGAAAAAGAGAGTTAAAAAGG 60 TCATTTAATAAATCATCATTATGGGCATCTTTATAGGTATTTGGTAATGGTCGTTTTATA TTTAAATTATATGCAATATCCACAATTAGATTAATCTTATTTTTCTCAATTTCATTAAAT TCTTTTAGTAGATGGGCAATAGCCAATAAATCACTCATTGATTTGTCAAATCTTTTAATG

ATTTCATTGACAATCTCATTAGATATTTGGCAACTTTTAATTTTATTTTTAAATTCCTCA TAAACTTCTAAAAATCTTTTCCAATTTCCAGCCCCTATAAAAAACATCATCATAAAATCA AAGAAATCTGAATTGAAATTATATATATTATCTTCAAATAGTTTTCTTAAATGAGGCTCT CTGTTTAAGATTTCTTTCTTTCTTCATAGCTAAAGTCAAAAGTTAAAACACTTTTTAAA 5 ATATCCTCTGAATTAGCATCTTTAATAACATCGTTATAAATCCACTCTCCCCCACTATTT AAAAAGTTTTTTGTAATATCTAATTTCCCAATCTTTGCAAATATTGAGGCAATAGTTGAT AACTCTCCACTTAAATTATAATAATCTCCATCTGCCAAAATCCCTTCAACAAACCAGTCG AATTTTTTAATTCCTTCTTCAATGTTGTTATTTAAAATTTCTTTATAAGCCTCTTCTCTA AGTCCATAATAATCACATTTTGGGACATTTTCTTTAAAGATTTTATTAGATAAACTAAAA 10 TACTCTATTGCTTTATCGTAGTCCTTTTTATTATAAAACTCACATCCTTTAAGCCAATAT TTGTATAGAAAATTTGACGAATCTTTGTTCATAATCTCCCAATTAAGCTCTAAACATCTC AAAATAAAAATCAACATATTAAAGAATCAATCTTCCTATTCAATATACTTTGTCTTATC TTCAACTCCAGCCATTAAAAAAGCTCTCTTCCTTCTCATACAGCTCTCACACTTCCCACA GTGTAAAAAGTCCTCCATTATCATGATAGCATGAATAACTATATTTCAAAACCTCAAC 15 ACCAAGCTTTTCTCCAATTCAGCCCCTAATTTAACAATCTCCTCCTTTGTTTTTGTCATA TAGAGGAGCTTCTATCTTAACCTTATTTAGTGTTCCATACTCCAAAACTTTATTAAATGC GAATATCTTCTCTGCATCCAATGCCTCAGCAAATCCGCTTGCTATACCAAACATGATTAC ATTCCTTGCTGGAACCCATACAGCCTTCATTGTTTCATAAGCTTTCTCACTATCTAACTC 20 TTCCATTTTAATGTTGGAATTTCCTTTTCAGTTATTAAAGAGCTTTTTCCAAACTGTTT AACGAATGGTAAATCTACAACAATGTGTTCAATACCCAAAATCTCACAAATCTTCTTTGC TGAATTAATCTCTCTTAGCCGCTCTTTGCCCATAGTTAAAAGTTATTGCCGTAACTTC ATAACCTAAATCTTTAGCTATCAGTGTGACTACTGTAGAATCTAATCCACCACTTAAAAC AGTTATTGCCTTCATAATAATCACCTTTTAAAATTATATTAAAATTAAATTAAATTGGAATC 25 TTTGGAATTTTGCTGTAATAAAAAAAGGTAAAAGAGAAGAAATTTTAGTAGATTAAGTAT TTACCTGTCTCCCAGTCAGTAACTGCTGTTCTGAAGTCATCCCACTCAGCTCTTTGATT TCCATGTAGTTTTCATATATGTGTTTTCCTAAAGCTTTCTGCAAGACTTCATCACATTCT AACTCATCCAATGCAGCAGCTAAGTTTGCAGGAACTGACTCAATTCCTAACTGCTTTTTC TCTTCTTCTGACATCTTGAAGATGTTTCTCTCAACTGGCTCTGGAGCTGTCATCTTCTTC 30 TTAATTCCATCTAATCCAGCAGCTAACATACATGCAAATGCTAAGTATGGGTTGCATGTT GGGTCTGGAGCTCTGAACTCGATTCTTGTAGCTTTTCCTCTTGCAGCTGGGACTCTGATG ATAGCACTTCTGTTCTTGTTTGCCCATGCGATATTTACAGGAGCTTCGTAACCTGGGACT AATCTCTTGTATGAATTAACTGTTGGGTTTGTTATAGCAACTAATGCCTTAGCGTGGCTT AAGATTCCAGCAATGTAGCTTAAACATGTTTCACTTAATCCATTGTAAGGCCCTTCTGGG 35 TCGTAGAATGATGGTTCTCCGTTAAACCAGACACTCTGGTGGCAGTGCATTCCGTTTCCG TTCATTCCAAAGAATGGTTTTGGCATGAATGTAGCTTTTAAACCGTGCTTCTTAGCAATG TTTTTGATTGTCATCTTGAATGTTATAACGCTATCAGCTGTCTTTAAAGCGTTGTCGAAT TTGAAATCAACTTCGTGCTGTCCTGGAGCGACTTCGTGGTGTGATGCCTCAACGTGGAAG CCGAGGTTTTCTAAAGCTAAGACGATATCTCTTCTAATGTCTGGAGCGTCGTCTAATGGT 40 TCAACATCAAAGTAACCTCCATCGTCAGCAGGAACCCATCTGTGTGGGTTGTGTGGGTCT TTTAATTCTTCTAAAATAGCTTTTAATCTGCTTCTTGGGTCTCCTTCGAATGGTGTCTTC TCATCTTTATAAACATCACAGATAACTCTTGCAACACTTTTCTCTTCAGGTCTCCATGGT AAAACAGAGAGTGTTGATAAATCTGGTTTTAATAACATATCTGATTCTTCAATACCAACA 45 AAACCGGTAATTGATGAACCATCAAACCAAACTCCATTTTCAAAGATTTCTCTTAATTCT TCGATTCCTTTTCTCCAGCCTTAACTGGGTATGCGACATTTTTTGGGAATCCTAAGATA TCTACGAACTGGAATCTTATGAACTTAACGTTGTTCTTTTACATATTCTATTGCTTGT TACTTCCATATATATATATTTACGGTATATTCAATTTAAATTAAAATATAAAAATTTAT 50 TCATAAATATCAAGTGCTCTATTGTAACACTCTATAGCTTCATTAATTTTTCCAAGTTTT TCGAGAGCTATGGCTTTCCCATTCCAAGCATCTGGAATATTTGGGTTAATTTCCAGCACT TTATCAAAATATTTTATAGCTTCATTATATTTTCCAAGCTTGTTTAGTATAATACCCTTG TATAGATAAAGTAATGGGTCATCTGGATTCAATTTTAAAGCTTTTTTAGTATATTCAAGG GCTTGATTTAATCTTCCAAGATAAATCAAAATTTGTATTATGTACATTAATGCACGAATA 55 TCTTTATTATTTCTTTCAAAAACTTTTTTTAGACATTTTTAATGCTTCTCCATATCTTCCA AAAGCATTATCAAAACATTCTAATGATTTTTTAAGTTTGCCTTCTCTATATAATATTTCC CCTTTTTCAGCCCAGGCAATAGCTGATTTTTGGATATTTTTTCAATATTTTATCAATAATT TTTAATGCATAATCATACTCTCCAAGTTTTTTTAGTATAAAGGCAGTTACATATTTAACA 60 GGTAAATCAGATTTTTCTAATCTGCATAATTTTAAGAATACCTCTTTTTGCTTCTTAAT TTACCCAAACTTACCAATAAAGCTCCTTTTAAAAAATTTGCTAAAATATATTTTGGTTTT AATTTTAACGCTTTATCAAAATATTCTAATGCTTTATCATTTTCCCCCAATGTTCTTAAT ATTCTTGCTTTTCTTACATAACATCGGGAGATTCCCTAACCTCTAAGATTTTGTCTATC AATAATAGGGCTTTTTCATAATTTCTTTTTTCAAGTGCATCAAAATATTCATCCCATAAA

ATGCTTTCATTATATTTCCATATTCACCCCCTCCCCAAGGTTTTAGCAATATGCGAT TTTAATCCCCCTATTTTACGAATTTCGTTAAATTATTATTACTATGATATTATTATTAA AATTATTTTAGTGTAAAATATAAATTTTTCTATCTGTGAATACTGGATATTTTCTTTTAT $\tt TTCCATATTATTTCCACATTAGTTTATTTAAAGTTAATAAGATTGGGGTATTAATTGTTT$ 5 TATGACATTATACGCTATAATATATATAAAATATAAAAATTTAATTATAAAAGTCCATA AATTACTTGTTTATCCCAATATTTGTTTATTTTGCATTTCCTACATTTTTATACTTGGCT CTATAAATTACCGAAAAGTTTTTATACTATTTTTAGAGTAGTTAGGAATGTAATTTCCTT TTCCCTAAGAATAAGATTTCCGTTTCCAAGTATATATATGGAGGCTGAAAAAAATGAAAA AAGTTGAAGCAATCATAAGACCGGAGAAGTTGGAGATTGTTAAAAAAGGCTTTGTCTGATG 10 CTGGATATGTTGGAATGACTGTTAGTGAGGTTAAGGGTAGGGGAGTTCAAGGTGGAATAG TTGAGAGGTATAGGGGGAGAGAGTATATTGTTGATTTAATTCCAAAGGTTAAGATTGAAT CAGGAAACCCAGGAGATGGAAAAATCTTCGTCATACCAGTAGAAAGAGTCGTAAGAGTAA GAACAAAAGAAGAGGGTAGAGATGTACTTTAAAAATTTAATTATGTAATTTAAAGAGAGT 15 ${\tt TGTGGGGTGAAAACATAGCTACTGCGGATTTGTTTGCGAATGCCACAGATATACATTCAA}$ TAGTTCAGGCATTGACCACCTTAGCAAATGCTTCAGATGTGTTCTTCCTTGTAGTAATGG GAGTTCTTGTCTTTATGATGCAGTGGGGCTTTGCGATGCTTGAAGGTGGTCAGGTAAGGA AGAAAAATGTTAATGATGATGAAGAACATGGTTGATTGGTTGATTGGTTGTTTG CATGGTTATTCATTGGTGGAATTTTATGTTCAAAAGGTTTTGATTTATCTGCATTTATAG 20 ATTGGTGGAAACAAATACTTGGAACAAACTGGCCAAATAATGGATTGGACTTAGCAAGCT GGTTCTTTGGTCTTGTGTGCTACTGCTGCAACAATTGTCTCTGGAGGAGTTGCAG AGAGAATAAAATTCAGTGCTTATGTTCTAATTTCATTGATTATTACAGGTCTATTATATC CTCTCTTCGTATATTTAGGACCTTGGGGAGCAAGTATAGTTCCATGGCATGACTATGCTG GAAGTTTGGTTGTTCATGGTTTAGGTGGTTTTTTAGCTTTGGGAGCAATTGCAGCATTAG 25 GTCCAAGAATTGGAAGATTTGTTGATGGAAGACCAGTTCCAATATTGGGACACAACATTC CAATGGCAGTATTTGGGGCATTTGCATTGGCAATTGGTTAGGATTCAACGTAGGTA GTTCATTGGCTTTAGGAGATATTTCAGGGCTTGTATGTGCTACAACTACAATGGCAATGG CTGGAGGAGGAATAGGGGCATTAATTGCTTCAAGAAATGATGTTCTATTTACAGCCAACG GAATAGTCGCTGGTTTAGTTGCAATCTGTTCAGGGACAGATGTTGTTAGCCCAATAGGTG 30 GATTAATAATTGGTTTAATTGCTGGATTGCAAGTTCCAATTGTCTATAAACTTGTTGAAA AAGCAGGATTGGATGTCTGTGGCGTAGTGCCTGTCCATGGAACTGCAGGTGTTATAG GAGCAATCTTAACTGGAATTTTAGGATTAAAAATATTTGGTGGAGCAGGAGGCGTTAGTT TAATAGACCAGATAATTGGAGCAGTATTTTGTATTATTATGGAACAGGGCTTGGATATA TTTTAGCGAAGATTGTTGGTATTGCATTAGGTGGATTAAGAGTTAGTGAAGAAGAAGAAA 35 AAATGGGATTGGATATGGCAGAACACAAAATGCCTGCTTATCCAGAAGAGACAGTTATCT AAAATTCTTAATTTAATTTAATTTTTTTGGACAATAATTATTTAATCCTAAACCAACA ATATCCGTTTTCTTTTATTATTACCTTATTTCCATCCCATAAATTTATTTTGTAATCTTT TTTAGTCAATTCTCTCATGCAGCTTGCCAATATTGAGGGAATTGGACATGCACTTCCTGG AATTTCTGCTTCTCCAATCTGCTTTGGACAATATTTACACTTATCAATTTTTATTCCTAT 40 TAATTCCTTATCTTCTATTTCTTTTGGATTAACTGTCTCTTTTAAACACTTTGCTATCTT TTTCCCACCCAGAACCCACACATTTGTTGTTCCTTGATTTAAAATCCCCAACCTTGAAA TAATTCTTTATATTTTACCCCAACCCCACCTAATAATTAAAAATACGTTAAATTTAATTA 45 AAATTGTTTTGTATTATAGGAGATATATAAAATATTTCTATGTCATATCGTTATCAAATAT GAATAAAGAGGGGAATAAAGAAGAAGTTGAGATGATAATTAACGAGTTATTAAATAGGGA TTATAAAATAACGTTCCTCCCTTCAGGAAGTTCAGCAGTCTTTTTATCAATGTGGATAGC AAAAATTTATAGTAACGAGATTTCAATCCCAGATATGGGAGGTTGGCAGGGATTTTTAAA 50 ATTTCCTAAATTATTGAATCTAAAAAATAATATGATAGAAACGAATTTGGGAATTATTGA TTTAGAAAAATTAGATGAAAGTTTAAAAGAAAACTCATCACTTATTTTAACATCTTTAGC TTTATTTATTGAAGATATTTCAGGAAAAATTGGAGGAGATTGTGGATATGGAGATATTGT TGTTTGCTCTACTGGAACTCCAAAGATATTAAACTGTGAATACGGTGGTTTTTTAGGAAT 55 TAGTAAAGAAATTGAAGAAAAATTAGGTAATGCTTTAAATGACATTAAAATTTTATCCAA AACATATAAAACAATAAACTATTTTGGACTTTTAAAAGAGGAGTTACTAAATGCTAAAAA AACGTATAAGAAATATGTAGAGGCATCTAAAATAATTAAAGATGAAAATTGAAAATGCCTA TTTTAGAGAGTTTGAGGGAATATCTGTATTTATTGAATGCGATAATCCAAAAAATATCTC TAAAAAAATAAACAGTTTAATAAAATTGGACAATAGAAAATCAATAACAACAATCTGTCC 60 AAACTATGATAGAATTTTAAAAAATGGGATTGTATTTGAAACAAAGAAAATTGATATCTC TGAATTGAACAGAGAAGTTATCAATGAAATTATTATAGCATTAAGCTCTATTTTATAATT ATAATATTATTTTAGAACATTGCTTTTATTTTTTCTGCGGCTCTTTTCATTGTTATTCTG ATTAAACCTAAATTAACTTTCGCATCAGTTAGGACTACTAAAATTCCCTCCTGCATCG

WO 98/07830 PCT/US97/14900

-200-

ATTTCTGCTGCTGTTCTTTCAGCAGCCCCAAATGCTGCTGAAGCCATAGCCCCAACTAAC TCAGCATCAACACTCCCAGGCAATTGAGAGGCAATAACTAAACCATCCTTACCAACAACC 5 TTATTTGTTATGTGTGGGACATAATTTTATTTATAAGTTCGTCAAGTCCATCTTTTTTCA CTGCACAACCTTTAACAATGAATTTTGGGTTGCAAAAGTTATAAACTTCGGAGGTATCGA TATCTCCAACATCTGTTTTATTATAAAAATTCCGTACGGGATTTTTTTAGATTCTAATA ATTTTATTATTTCTTCATCTTCTTTAGTTATTCCTTTTGATGCATCCAACACTACTAAAG CAAAATTAGTCCCTTTTAATGCCAATTCTCTCATGAACTCAAATCTTTTCTGCCCTGGAG 10 TCCCAAAGAAGTGTATCTTCTTATCTTTATTGTTAATGAACCATAGTCAATAGCTGTTG TAATTCCTTTGTATTCAACTTTTCCAATTTATCAATTAAATTTTCCATTAATGTTGTTT TTCCAACATCACTTGAACCAATAACTACAACCTTAACCTCATCTTTTTTCATGAATCTCC CCTAAAAATAAAATATTATAAGTTTAATGCTCAAATAATTTTCTTGCACTTCTTTTTATT GCCCCTCTGCAGCAGCCCCTCCTATTAAAGTTTTTATCTCCTTAACTAATGATTGAGCC 15 GCTACAAGTGTTGTTGGTTTTATTTCTGCTTTTTCTACTTCTGCCTTTAATGTTTCATCT GATGAAGCACTCCTTATTAATAACTCTGGATTTAATGCCTTTACCATCCCTTCAATACCT GATGTTTCAACAAGAGAAGCCATTGTCTGTAGGGTCATGATAACTTGCTGTTCAATCATC TTCTTAGGAGCATTTATAATCTTTCTTCCAACTGTATAGTAGTCCAGAACTCCCGATAAA 20 GCAACTGCAGTAACTAAACTCCCCATATCAGCAACAACTGAAGAAACATCAGCAGGAACA ACATAAGCCTCTTTTCCTGCACTTTTGGCAAGCTCTACAGCTTTTTTTATCTGTTCCTCA GTAGCCAATTCTTTCCATCAGTGGTTTTCCCACCAATCACATAATGTCCGTGTTGTGGA AATATTGGTTCTAATGAGTAGTATAACACTACAGGTGAAACAGTGCAGGTGTTACAAATA 25 ACAGCATTTTCAGGAACATGTTCAATAATTGTCTTTGCTATTCTAAATGTTGCCTTACCA AAAGGGGTAAATAAAACATGAATTTCCCCGTGCTTTGCAGCTTCGACATCATCACTAACA ACCTTAACCCCAGCATCTTCAACCTTTTTCCATAAATCATCACTCATTATGTTTTTATTT GGTTCAGCTAAAACAACATCATGCCCTGCCTCAGCAAATTCAATAGCCATCCTTGAACCG 30 TGATTCCCCGCTCCATATACGGATACCTTCATGTTATCAACCTTGATTTTTCTTATATTA TATGCTATTCACCGCCCTCAACTACTTTAATGTGTTCTCTAAAGCTTTTGGAATGGCGTT AATTATCTCTGTAATTTGAGTATTTGGATTAACATTAGCTATCTCTCCAAGTTTTCTATT TATTTTACATCCTAAACTCAGTGCTTCCTCTGTTTTAAAATCAACACTTATTAAAGATGA 35 TACTATCTCTGTTAAAGTATCTCCAGTTCCACCAATACATTCCATTGCCTTTATTTTTGG TTCTTTTATTTATCAATTATCTTTTCCTCTCTAATAGTATAGTCAGTTTCCCCTTTAAC AACCATATACTTTGGCATTTTTAGTTTATAATCCCTTTCAATGAGTTTTTGGCACTTCATT ATCGTCTATCTCAGATATAAAACCTCTAACATAAGCTGGATGAGAAGCTTTTTCATCTGC TAAGAATGCCAATTCACCAACATCAGGCAAAAAGAGATAAAATTTATCTCCAATATTTGC 40 TGCCTTTGCAGCATACATTCCTCCAGCATCTGCAATAATCTTTGGAGAGAAATTTATCTC TTTTAATGCGTCATAAATCTTTAAGCTTCCATCCCCTTCTCCAATATCCCCTGTAGTTAT TACTTTAACATCTTTTCATCAAAATACTCCAAAGTTTTTAAAACAGCCCCTATCAAAGC 45 TGGGTTTTCCAATAGTTAAATCTAAACCTTTTATTGGCATAGTTCCTGCTATAATCATTA CTTCTCTAACGCATAGCCCAAAACTGCGATAAATGTATCTCCAGCCCCTGAAACATCATG ACCTCTTTGACTTCTGTTGGAACATGGTAAATATTTCATCAACAGTTATTAATGTAGCTC CTTTTTCACCTCTCGTTATAACAAAGTTTGAATTGTATTTATCAACTGATTCCAATCCAG 50 ATTTTTCCAACTCATCTTTATTTTCTATCTCCCTTCCTAAAATTTGGGAAGCCTCTT TTAGATTCGGTTTTATTAAATAGACATCCTTATAAAAGTCATTTTTTGGTTTTTGGGTCAA CCTTTGCATAATCAGAGATTACTAATATCTGATTTTCCATTGAGATTTTTAATAACTC CCAAAATTTTACTGCTTAACTCATCGTTTATTGGATAGATTTTTTCATAATCAACCCTAA 55 GCAATTGCTGATTATAACCCATAGCAACAAATCTATGCTTTACTATTGTTGGCCTTCTTT CATATAACATGATAAATTGTTAGATGGCACTCTTGTATCCTTGCTGTCATTAGAAGGA ACCACCAATGCCAAATCAACAATATCCTTTAGCTTTCCTCCACCTTTTCCCAATAAACCA ATTGTATAAATCCCCATTTCCTTTGCTTTATTAGCTGCCTTTATAACGTTTTCTGAATTT 60 CCACTTGTTGATATACCGGCCAAAACATCTCCTTCTTTTCCCAAAGCTTCAACTTGCCTC TCAAAAATCCTATCAAAACCATAATCATTTCCTATAGCTGTTAAAATTGATATATCTGTT GTTAATGCAATTGCAGGCAATCCTTTCCTTTCTAACTTAAACCTTCCTACAATCTCAGCG GCAAAATGCTGAGAGTTAGCTGCACTCCTCCATTTCCACAAATTAAAATTTTATTTCCAT TTTTTAATGCATTATATATGACTTCAATAGCTTTTTTTAACTTTTCCTCATCTTCTAA

TGAATTTTAGTTTCACATTTGCACTTTCCTCGAAATACTTTTTCATAATCATCACCAAAT TACTAAAGGGAGGATGATAAGAAAGGCAGTAATTCCAGTGGCTGGTTTTTGGGACTCGA CTATTACCAATAACAAAGGCTCAACCGAAGGAGATGCTTCCAGTAGTTAATAAGCCAATA 5 $\tt GTGCAATATGTTGAAGATTTGGTAGAAGCAGGAGTAAAGGATATTTTATTTGTAACT$ GGGAAGGGAAAACAGGCAATAGAAAACCACTTTGACGTAAATTATGAGTTGGAGTGTAAA TTAGAGAAATCTGGAAAATATGAACTTCTAAAAATTATTAAAGAAATTGATAGGTTAGGG AATATATTTTATGTAAGACAGAAAGAGCAGAAAGGTTTAGGAGATGCTATTTTGTATGGG GAGGAATTTGTTGGGGAGGAATACTTTATAGCAATGGTTGGAGATACAATTTACTCTAAA 10 AATATTGTAAAAGATTTAATAAAAGCTCATGAAAAATACGGCTGTTCAGTTATTGCATTA GAGAGAGTTCCAAAAGAAGATGTTTATAAATATGGAGTAATTGATGGGGAAGAGATAGAA AAGGGCGTTTATAAAAATAAAAATATGGTAGAAAAACCAAAAGTTGAAGAGGCACCTTCA AATTTGATTATAACCGGGGCTTATTTATTATCTCCAAAGATATTTGAAAAAATTAGAGAA ACTCCTCCTGGAAGAGGAGGAGAGTTCAGATTACAGATGCTATGAATCTACTTTTAAAA 15 GAGGAAGATATTATAGGGGTTGAAATTAACTGTAAAAGATATGATATTGGGGACGCTCTT GGATGGTTAAAAGCAAATGTAGAAATTGGAGCTGAAAGATTCCCTGAATTTAGAGAATTC TTAAAAGAATTCGTTAAAAATTTATAATCTAATTTTATTTTTTTATTAAGTTGGGATAGTA TGGATACAGCAATAATATTGGGACTTTTAGTGGCTGTGTTTTATGGGGTTGGGACATTTT TTGCGAAAATTGTCTGTGAAAAAAACCCTTTATTTCAATGGATAGTGGTAAATATAGTTG 20 GGATTATATTATGTTTAATCATATTACTCAAATATAAAAATATAATTATTACTGACCAAA AAATTCTTACTTATGCAATAATATCAGCAGTCTTAGTAGTGATTGGTTCTCTATTGTTAT ATTATGCGTTATATAAAGGAAAAGCAAGCATTGTTGTGCCCTTATCATCAATAGGTCCAG CGATAACAGTAGCTCTGTCAATACTGTTTTTAAAAGAGACTCTAACACTTCCACAAATGA 25 AATTTATAAAGTTTAAATTTATAAGGTAATAAAAAATAAAGATAAAAATAGTTACTGCCC TTCTAAGGTTAATAAATATCTTCTTGCCCCTTGCATTCCAAGCTGTAATTTTATTGCCTT TATAAGTTCATAAACATCTTCAACAGTTTCAGCATCATATAACGCTTCCTTAAATTTCTC TTTCCTCTCTCTATTCATTAAGTTATCTAATTCATTTATTATCTCTTGAATTTTTGGAGA 30 CGGCATTCATTTCACCTATTGTGTAATTTTAAATATCATTACTACATAAAGTCATATAAA TATTTTAACACCATACTCAATATTTTTATGGTGAGAACTTGGCAATGATTGGTTTAGTAG GGAAACCAAACGTAGGGAAATCAACAATGTTCAATGCTTTAACTGAAAAAACCAGCAGAAA TTGGAAATTATCCATTTACAACAATACAACCAAATAAAGGTATCGCTTATATAACAAGCC CCTGTCCTTGTAAGGAATTGGGAGTTAAGTGTAATCCAAGAAATTCAAAATGTATAGATG 35 GGATTAGACATATTCCAGTTGAAGTTATAGATGTGGCTGGTTTAGTCCCAGGAGCACATG AAGGTAGAGGGATGGGAAACAAGTTTTTGGATGATTTAAGGCAAGCAGATGCATTTATAT TGGTTGTTGATGCCTCTGGAAAGACAGATGCTGAAGGAAATCCAACAGAAAACTATGACC CAGTTGAGGATGTTAAATTCTTATTAAATGAGATAGATATGTGGATTTATAGCATTTTGA CGAAAAATTGGGATAAGTTGGCAAGAAGAGCCCCAACAAGAGAAGAACATAGTTAAAGCTT 40 TAAAAGACCAATTAAGTGGATTGAATATAGATGAGGATGACATAAAGATGGCTATTAGAG ATATGGATGAAAGCCCAATTAAATGGACTGAAGAAGATTTGCTAAACTTGGCTAAAAAGC TTAGAAAAATTTCAAAACCAATGATTATCGCTGCAAATAAGGCAGACCACCCGGATGCAG AGAAGAATATTGAAAGGCTAAAGAAAGAGTTTAAGGACTATATAGTTATTCCAACATCTG CAGAGATAGAGTTAGCTTTAAAAAGAGCTGAAAAGGCTGGAATTATAAAAAGAAAAGAAA 45 ATGACTTTGAGATAATTGATGAAAGCAAAGTGAATGAACAGATGAGGAGAGCTTTTGATT CTTATTTTGATTTGTTGGATATGATTGTTGTCTATCCAGTTGAAGATGAGAACAAATTTT CAGATAAGCAAGGAAATGTATTACCAGATGCATTTTTGGTTAAAAAAGGAAGTACTGCAA GAGACTTAGCTTATAAGGTGCATACAGAGTTGGGAGAGAAATTTATCTATGCAATAGATG 50 CAAAGAAGAAGATTAGAGTAGGAGCTGATTACGAATTGAAGCATAATGATATTATTAAAA TTGTCTCTGCCGCAAAATAATTAAATTTTTGGTGGCCTCCATGGCTACAACTTATGAGCT GAGAATTTATGGAAATGTGGAGTGTGCTGAATTTATAGATAAAGTTGAGAGTTTAGGAAA ATTGTTGGATGTGAATGGGGTTGTTTATGTTTATAAAGACAGTGTTAGGATTTTGGCAAA CTTTCCCAATGAGAAAAAGACAGCTTTTTAAGGAAATCATTAAAGATTTAGAAGATGA 55 TGGTGGGTTAATAAAGGTTGAAAGGATAGAAGAAGAGATTTAAATACATATATTGAATT TCCTAATGGATTGAATAAGATTTCAACGAATGAGTTAAAAGAGATTAATAAAAAGTTGGA TAAAACAATTAGCTATTTAGAGAATATTTTTAATGCCTTAGAGAAGCAAATAAAAGTTTC AGAGGAGATTAGAGACATATTGAAAGATACCTTTGAAGTTTAACTTTATTCAAACACCTT ACTCATACACCCAGCCAACAAACCGGCTATAGCATCATCTAAGAACATAAAGCCTTTCCT 60 ATCTAACTCTCCAATTATTCCGGGTTTTTTAGCATCATAGAATCTAAAGTTAAATATTGC CTTAGTTCCAGCAATCTCATTTGCTATAGCTAATCCAATAACCTCATCAACATACACATA GTTTGGGTCTTCGTTGTAGTTGAATGGCAGATTGTTAGCTCTGCCTTCATTATCCAACAA AATTGCTGCAATTAAmAAAGTTGAGACATTAGGGTTAGACAACTGCTTTAAmAAAATCTC CTTAAGTTTCTCTTTAACTCTGTCTCTTTCTTCATTACTCCCAATATATAAATCCATTCC

AGCATCCAATAAGCTGTCAATAGTTATTCCAAACTCCTCTAATTTTTTnATAATnATTTT CTCACTTTAATATTTTGGATTTTATGGGCATATCTCTTATAATAAACATTAAAATAAAAT CTCATTTTTTATTAAAAAACTTAAATATTCTATACTATTTTqTTGTTATCTCAACACCAT TTTCAGTTATTAATATTGTGTGCTCAGCCTGGCCAACTATTCCATTCTCCCTCTCTTTTA 5 TCTCATTTTTAAAACCCATCTTTCAGCAAAGGGTAGATAAGGGTAATTTTTTTGATATAA CGTCTAAAAGTTTTCTTGCTTGTGGCAATCTAATTGGTCTTTTGGCTAAAAATTTATATA TGTTTCCAAGATTCCCATCTTTAACCATTCCAAAGCCATCTGTTGCAAACGGCTCTATAG CCACCAAATCTCCAACATCTATATATTGATTGGTTCTTTCATAGACATTTGGAATACTAA 10 TTCCTGTATGCAACTCATATCTATGCATCACATGTCCAGAGAGGTTGGATATTGGTTTAT AACCATAACTCTCAATAACCTCCTGAATAATCTTTCCCATCTCTCCAATGTTCATTGGAG GGTTTATCTCCTTAATAACTGTATATAGTGCATCTTCAGATGCCTTTACCAAATCTTTAT AAGAGTTTGATAAATCTACTGTTATAGCTGTATCTGCTATATATCCATCGACATGAGCTC CTAAATCTAATTTAACAACATCATCTTTAAACTCCAAGTTATCATTTAATTTTGGAG 15 TGTAATGAGCTGCTATCTCATTAATTGATATATTGCACGGAAATGCTGGCTCCCCkCCTA ATTCCCTAATTCTATTTTCAACAAATTCAGCAACTTCTAATAGCTTAACTCCTGGCVTTA TTAAtTTTACGGCCTCCTCtGACyTTAGATGCTATTTCCCTGCCTCTATAATCTTTT CATACCCYTCAATCTCCATACTTTCATCCTTTAAGTTTTTGGTTTTAATAAGTTTTTTAGT GTTGTTTGATAACCTTTAAATTGATTGTTATTTATTGCTGAAACTATAATATAATCAATT 20 TGTCTTTCTAAGTTLTCAATATCTTTCCCATTTTTTAAGLTGTAGATAATATCCTTGACT ATATTTTTTTTTCTCCTTAACTTCATCTGAGAACGTGGGAATTTTTTGCATTCTCTAAC AACTTTTGTGTAAATGCCACTCTCCCCCCCTCTTCTTCCACCATTTGCAAGATAATAATTT CTAAAAAATGAGCTGTTCAAATATCCTAACAAAAAGTATATGTCATCATCGTTGTAGGGT TGGATAAATATAACGTCTCCTGAAGGTAATAGTTCATCATCTCCTAAACTAAACCTATTA 25 TTCTCCATTCTGTCTTTAAACTTCAACAATTTTTTATATATGTTTGGATATTTGGTTTTA ACAAACCTTTTACAGTTTTTTGCCTTAACAAAATTTTTTATAAGTTGTTTTTCATCTTCA 30 TTTAGCTTTGAGATGTCATCTTCATTTAATAAAAATGCCTCATCAAATCCAGAAACTAAG CCCACTCCAACTTTTGCTATATCCTTTAATAACACATGAGGAAAATCTGGGATTTTTGTA AAAAAGGTAGACCAAGGTTTCTGGTGTAGTGTAATGAGGAATTTCCATGTATTCAAAAAT ATCGTTTGATTTTTTGCATTTAACACACTTAATAGCTTTTTCTTTTATCTCTTTTAATTT AACTTTTTTGAGATAATTCTAATAACATCAATTTTTTCAGATTTGTGGTTAAATTCTCC 35 TTTTTTAAACTTAAATATTATTGTTTCAGGATTTTCATTTTTAAATAGCCTAACTTCATC CAAATCAATAATTATTTCCAATTTTCCATGTTTTTAGAATGTTGTCTCTTACAATTTTTGC ATATGTGTTATAAAAAAGTGATATGGAACAATATAAATCAACTCTCCACCATCTTTTAA AAGATTTATTGATTTTATAATGAAAGCATAATAAATGTCCCCCTCACTTGTGCCTATAAT CCGTTTTACTTCTTTTTTATAAATTCTGGAAGACTGTTGAAATGGGCATAGGGAGGATT 40 TCCAATAATTAAATCAAATTTTTCTTTAAAGTTATAGCTTAAATAATCTCCTAAAATTAT CTCAAATTCATCAAATTTTGCCTTGCAGTGGTTGTATAAATCTTTATCTATTTCAATACC CACACAATTTTTGTATCCAAATTCTCTTAATACCTCTAAAAATATTCCTTTTCCGCATCC AGTGTCTAACACTAATCCATTTTTTGGGATTGTAGAAAGATTTATCATTAATTCAGCTAT TTCTTTTGGAGTTTCAACAAAGCTAATCTTCTCCATGTTTGCCCTCTTTAATATTAATCA 45 GTTGGATTTTATTGAGTTCAAGACAAGAATTTCTGTTTTTATTGAATTTAATGACTTTT CTAAAGATTCTAAAATTGCATCTATAAGTTTTTTAACAAAAGCAAAGTAATCTATTGGGT CACCAAGATTTGGGCTATACCTTATCTGAAACATGTTATTTCTTGGATTAACATAAAAAT CGTCCTTAATCTCTTCTAATAAGAAAAATTTGTATCCTCTTCTATACTTATCAACAACAA AAATTCCATAAGATACAATTTCATTACCTGAAATTCTATTATAGACCAATTCTCCATTTA 50 TGGTTATTTCTGACGTTAATCTCTGCCGTTTTATGCCCAAATATAAACGTAAGAGGTTAT TGTATGTTGCATCGTTTCTTGTATTACTTTTTAAATCACCAAATTTATTGTTTATGA ATATTAAAAAATTCTTTCCATTTATTATTCCATAGCATAATAAATCATAAGGTGTCCTTC TACCTTCATAGGAATATATTTCATCCTTTGGTTCAGAAAATTTAATTTTTAAGTTTTCTT CAGAGATTGTATAGTCTTTTAATAAACTTAAAACCTTATCGTCCAAATTTCTATCGTTAA 55 TATTCTCATCATTTTTTTTTTTTATTATAAATTTCCCTAAATATATCTCTTAATTTTCCCG ATAAAATTTTAAGTTCGTTATTAACCAATTTTACCACCATTTAATGCATTATCTCTTTAT GACAATTGTTAAAATGTCTCCATCCTCTAATTTATGGTCTAATCCAACTCTCTGCCCTGG ATGCTTTGCTGACTTCCCCCAAACTTGGGCATACCTGAAATTTCTAACGAAATCTTTATG CAGTTTTTCACAAACATCTTTTACAGTAGCTCCTCTCTCATAATTAGTGGTTCATCAAA 60 GTCTGGCTTTTTCCCCTGTGGTTTTAGATAAATCTTTATAAAACCCAATTTCTCATAGAT TTTCTCTTTCAATAAATCCAAGTTAATTCCTTTGTTACCAGAAACTAAGATATAATCCTT ACCAAATTCCTCTAACTTTTGTTTTATATATTTTAGATACTCCTCATCAGCTAAGTCTAT CTTATTAACTACCACCAAAGAAGGGATATAAACTCTGTTTCCAGCTACAACATCAATAAA CTGCTCTAAGGTTATATCCTCCCTTATAACAACATCTGCGTTGTGTATCCTATATTCATT

TAATATTGCTTCAATTGTATCTTCATCGATATGGGTTAATGGAACGGTTGAACTAACGTT AATCCCTCCTCTCTCTTAACTTTGATTTTAACATCTGGAGGAGTTTGGTCTAATCTAAT TCCAACATTGTAGAGTTCTTTTCAAGCACTGGTAGGTGGTCTAATGTGTAGATATCAAC TGTTAATAAAATCAAATCAGCACTTCTTACTGCAGATAAAACCTCTGTCCCCCTACCTTT 5 CCCTGATGAAGCACCAACAATAATTCCAGGAGCATCTAAAAGCTGAATTTTAGCTCCCTT ATATTCTAATATACCTGGAACAATTGTTAAAGTAGTGAAAGCATAAGCCCCAACTTCCGA TTTAGCATTTGTTAATTTATTTAGCAGGGTTGATTTCCCAACAGATGGAAATCCTACAAA GGCAGCTGTAGCGTCTCCACTTTTCTTTACAGCATAGCCCTTTCCTCCTCCACCTCCCCC TCTACTCTGAGCCTGCTCTCAACTTAGCTAATTTAGCCTTTAACCTACCAATGTGTTT 10 CTGTGTGGCTTTGTTATATGGTGTCTTTTTTAATTCTTCTTCTATCCTTCTAATTTCTTC TTCAATTCCCATAACATCACCAACAATATTAAATTTATGGTTTCTAAAAAATAAAAATCCT TTGCTACATTAAATAAATAGTTAAAAAAAGAGAAATTTATAGTTTCCTCTGACTACCTA AGAAGTCACATTCTTGTTCTTTATAGAGCTTGGACATTAATTGGGGCTGAAAGCCCCAAC 15 TTAATGGACGGGAGGTATCCCAATAGGAGGTCTCCTCCTATGGTTATAATTCATCAACTA ATTTAATAATCTCTTTAACTCTGTCATCTACGATGTAGTAGAAATTCCATGTTCCTTCTT TTCTTGCTTTAACTATTCCAGCCTTTTTTAAGATGTTTAAGTGGTGTGAGATTGTTGGCT GTGGCTTTTTTAGCTCATCTATTATTTTACAAACGCACATGCTTCCATTTTCAGCCAATA ACTTTAAAATCATCAATCTTGTTGGGTCTCCAAATGCCTTGAAAATTTCTGCCGCTTTTT 20 TATATTTAGACATATTTTTCCATATTGATGTTTAAATTGCAATCAACTTTACTATAAT ACATTACTAGTATTTAAATATTTTGGTTTTGTTTATTTCAGCTTGGATACGTCAATCTCA ACCTTGATAGTCTTTGGATTATCAACACCTTTCAAGGTTTCAATCATTGCTTTAATTGTG CTACCAACAATCTTAGAGACAAAAGGAACAGCAGGAATTATTTTACCATCAACAATTATT 25 TTTATACCTTTCGCTAATACACAATCATCCCATCTTGCTTCTCCTTTAACAACTGCCTTA ACAAATGTTCTGCAGTTATACCCACAATGTCCACAGTTTAAGTTCATTGTAGGAACTACG GCTTTTTCATAAATAACTTTTAAAACATCGTCAATGTTGTAGTTGTAATCTTCAATTATC ATTGCTGTATGGTCATCAATCAATCACTCCCATCTTTATCCTTAAGCATAACTATCTTA GGGATGTTTAACCTTTTTAAAGCCTCTTTAAAACCTTCTATAATAACAAAATCTATATTG 30 TTACTGTCAGTTGCTAAAACTGTTATTTTAGCTCCCGCGTTTGACAATCTGTAAGTATCA GTTCCTTTTTTATCTACTTCTACATCTTCTTTAGTGTGCTTGATAACTGCTATTTTTTTA TCAGAATGTTTTAGAATTTCTTCAATTAGGGTTGTTTTACCAGAATCTTTATAACCAATA ACGCCTATGACTCTCATGTTATCACCATAAATATAAAAACTGTAGGTTTAACATATTTAA 35 ATTTTATGCATTAATTATTCTATCACAAAATAAAAATTTGAGGGATAGTATATGATGTTC GTTCATATAGCTGATAATCACTTAGGTTATAGACAGTATAACTTGGATGATAGGGAAAAA GATATTTACGACTCATTTAAATTATGTATAAAAAAGATTTTAGAGATAAAGCCAGATGTT GTTTTACATAGTGGTGATTTATTTAACGATTTGAGACCTCCAGTAAAAGCTTTAAGAATA GCTATGCAGGCGTTTAAAAAATTACATGAAAATAATATAAAGGTTTATATTGTTGCAGGA 40 AACCATGAAATGCCAAGAAGGTTAGGGGAGGAATCTCCATTAGCCTTACTAAAAGATTAC GTTAAAATTTTAGATGGAAAAGATGTTATAAATGTAAATGGGGAAGAGATATTTATCTGT GGGACTTATTATCACAAAAAGAGCAAAAGAGAGGGGGGTGTTAGATAAATTAAAAAATTTT GAATCAGAAGCTAAAAACTATAAAAAAAAGATATTGATGCTTCATCAGGGAATAAATCCA TATATTCCACTTGACTATGAACTTGAACATTTTGATTTACCAAAATTTTCCTACTATGCG 45 TTGGGACATATTCACAAGAGGATTTTAGAGAGGTTTAATGATGGAATTTTAGCTTACAGT GGTTCAACAGAAATTATTATAGAAATGAATATGAGGACTATAAAAAAGAAGGAAAAGGA TTTTACTTAGTTGATTTTAGTGGAAATGATTTGGATATCTCTGATATAGAAAAAATTGAT ATTGAATGCAGAGAATTTGTAGAGGTAAATATTAAAGATAAGAAATCTTTTAATGAGGCA GTGAATAAAATTGAAAGATGTAAAAATAAGCCAGTTGTTTTTGGAAAAATTAAGAGAGAA 50 GATGACGAATTTATAGACATGCCAGATAATGTTGATATTGAGTCACTAAACATTAAAGAG CTTTTAGTGGATTATGCAAATAGGCAGGGAATTGATGGGGATTTAGTTTTAAGTTTATAT AAAGCTCTATTAAATAATGAAAATTGGAAAGAGTTATTGGATGAATATTACAACACTAAA TTTAGGGGATGAGTATGATACTAAAAGAAATAAGGATGAATAACTTTAAAAGTCATGTGA 55 ATTCAAGAATTAAGTTTGAAAAAGGGATTGTTGCAATTATTGGAGAGAATGGAAGTGGAA ${ t ACGACACAATAATAACCAAAGGAAAAAAATCCGTTTATGTTGAATTGGATTTTGAAGTCA$ ATAAGAATGGAAAGCCTTACGCTACTACAATTAGTGCAGTTAATAAAGCAGTAAATGAAA 60 CTAAATTTTTGAGTTTAAAACCCTCCGAAAAATTGGAAACAGTTGCGAAACTTTTGGGAA TAGATGAGTTTGAAAAATGCTATCAAAAAATGGGGGGAGATTGTTAAGGAATATGAAAAAA GATTAGAAAGAATTGAAGGAGAGTTGAATTACAAAGAAAATTATGAAAAAGAATTAAAAA ATAAAATGAGCCAATTAGAAGAAAAAATAAAAATTAATGGAAATTAATGATAAACTAA