900.45210X00

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s):

Jorgen ZACHARIASSEN et al.

Serial No.:

Not Yet Assigned

Filed:

July 22, 2005

For:

METHOD AND SYSTEM FOR GAS

STUNNING OF POULTRY FOR SLAUGHTER

CLAIM FOR PRIORITY

Commissioner of Patents P.O. Box 1450 Alexandria, VA 22313-1450 July 22, 2005

Sir:

Under the provisions of 35 U.S.C. 119 and 37 CFR 1.55, the applicant(s) hereby claim(s) the right of priority based on:

Denmark Application PA 2003 00084 filed January 22, 2003

Respectfully submitted,

Donald E. Stout

Registration No. 26,422

ANTONELLI, TERRY, STOUT & KRAUS, LLP

DES/dc (703) 312-6600

REC'D 2'3 FEB 2004

PCT WIPO

Kongeriget Danmark

Patent application No.:

(Name and address)

PA 2003 00084

Date of filing:

22 January 2003

Applicants:

LINCO FOOD SYSTEMS A/S

Vestermøllevej 9 DK-8380 Trige

Denmark

Title: Fremgangsmåde og anlæg til gasbedøvning af slagtefjerkræ.

IPC: A 22 B 3/08; A 22 B 3/06; A 22 C 21/00

Tis is to certify that the attached documents are exact copies of the above mentioned patent application as originally filed.

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH RULE 17.1(a) OR (b)

Patent- og Varemærkestyrelsen Økonomi- og Erhvervsministeriet

06 February 2004

Bo Z. Tidemann

CERTIFIED COPY OF PRIORITY DOCUMENT

2 2 JAN. 2003

1

PVS

Den foreliggende opfindelse angår en fremgangsmåde til gasbedøvning af fjerkræ og af den i indledningen til krav 1 angivne art.

Gennem tiderne har der uden bemærkelsesværdig succes været foreslået mange forskellige fremgangsmåder til at gasbedøve slagtefjerkræ, når disse i transportkasser ankommer til et fjerkræslagteri. I praksis skal man imidlertid tilgodese adskillige parametre for at kunne optimere en fremgangsmåde til gasbedøvning af slagtefjerkræ.

For at optimere fremgangsmåden skal følgende parametre tilgodeses:

10

15

20

5

22/01/2003

- Transporthastighed (anlæggets kapacitet).
- Størrelse og antal af fjerkræ i transportkasserne.
- Fjerkræflokkens fysiske tilstand, der bestemmes ved løbende at observere variationer i fjerkræets stresstilstand eller modstandskraft som har betydning for at bestemme nødvendig tid for at bedøve fjerkræet, som yderligere kan variere på grund af forhold i kyllingehuse, temperaturer, transporttid samt ventetid på slagteriet.

For at kunne optimere gasbedøvningen er det desuden nødvendigt løbende at kunne tage hensyn til alle disse parametre før og under gasbedøvning af de fjerkræleverancer, der leveres til slagteriet, og løbende at anvende de mest fordelagtige parametre for at opnå optimal gasbedøvning af den til enhver tid aktuelle kyllingeflok, der skal bedøves henholdsvis slagtes.

- 25 For at optimere disse parametre kan man arbejde med forskellige bedøvningstider, men der skal også tages hensyn til variationer i gaskoncentrationen samt variationer af gaskoncentrationen i forskellige delafsnit af transportvejen i afhængighed af længden af transportvejen og dennes placering i bedøvekummeret.
- 30 Gaskoncentrationen kan overvåges og styres ved hjælp af sensorer med forskellige placeringer og en PLC-styring. Regulering af bedøvetiden og sæmtidig variation af gaskoncentration kræver en ændring i de tidligere anvendte fremgangsmåder, hvor en given slagtekapacitet i antal fjerkræ per minut, nødvendiggjorde en fast transporttid

-10

15

20

25

30

2

gennem bedøvekammer. En given slagtehastighed (slagtekapacitet), vil altid være bestemt af andre efterfølgende parametre, som ikke uden videre kan ændres, hvorfordisse fastholdes. Derfor vil det desuden blive nødvendigt, at kunne ændre bedøvningsgraden i afhængighed af den tilstand som fjerkræets har ved ankomst til slagteriet og aflæsning til slagtning.

På den baggrund er det formålet med opfindelsen at angive en forbedret fremgangsmåde til gasbedøvning af slagtefjerkræ, hvilken fremgangsmåde ved hjælp af enkle foranstaltninger og midler gør det muligt at optimere bedøvningen ved at kunne tage hensyn til samtlige nævnte parametre.

Fremgangsmåden ifølge opfindelsen er kendetegnet ved, at gaspåvirkningen for bedøvning af dyrene reguleres ved at forkorte eller forlænge transporttiden og/eller transportvejen for dyrene på nævnte transportører igennem bedøvekammeret. Det har overraskende vist sig, at man ved hjælp af så enkle foranstaltninger kan gøre det muligt at optimere bedøvningen og samtidigt tage hensyn til samtlige nævnte parametre. Som noget særligt vigtigt skal det nævnes, at det samtidigt er muligt at tilgodese dyrenes velfærd ved at observere dyrenes bedøvningstilstand, inden de når frem til selve slagtningen. Hvis dyrenes bedøvningstilstand ikke er optimal vil det være nemt at forlænge eller afkorte transporttiden og/eller transportvejen gennem bedøvekammeret.

En optimal bedøvningstilstand vil være, at dyrene er så godt bedøvede, at de med sikkerhed ikke vågner op, inden de når frem til slagtningen. Det er på den anden side også vigtigt, at dyrene ikke dør ved bedøvningen, fordi det er vigtigt at hjertets pumpefunktion bibeholdes for at kunne medvirke til udpumpning af blod, når dyrenes hals skæres over ved selve slagtningen.

Hensigtsmæssigt anvendes der ved opfindelsen en fremgangsmåde, at reguleringen af transporttiden igennem bedøvekammeret foregår ved at forøge eller formindske hastigheden af nævnte transportører.

15

20

25

30

3

Ved fremgangsmåden ifølge opfindelsen kan det desuden være fordelagtigt, at reguleringen af transportvejen igennem bedøvekammeret foregår ved at formindske eller forlænge de aktive transportørstrækninger af de respektive transportører.

Desuden kan fremgangsmåden ifølge opfindelsen være modificeret ved, at gaspåvirkning for bedøvning af dyrene desuden reguleres ved at variere gaskoncentrationen i varierende højder af bedøvekammeret, idet der arbejdes med stigende gaskoncentration i retning nedefter i bedøvekammeret.

Opfindelsen angår tillige et anlæg til gasbedøvning af slagtefjerkræ jf. fremgangsmåden ifølge krav I og omfattende en i hovedsagen vandret transportør, der er indrettet til at modtage og indføre slagtefjerkræ til et gasfyldt bedøvekammer, hvori er arrangeret en nedadførende transportør, som er indrettet til successivt at føre fjerkræet nedad i bedøvekammeret, samt en opadførende transportør, der er indrettet til successivt at føre fjerkræet opad og ud af bedøvekammeret, hvilket anlæg er kendetegnet ved, at nævnte nedadførende transportør enten udgøres af en transportør med et nedadførende forløb og et vandret forløb, samt af en nedadførende transportør, hvilke transportører omfatter indbyrdes samvirkende teleskopiske dele til regulering af den aktive transportlængde, eller udgøres af en spiralformet transportør, der samvirker med en vandret, teleskopisk transportør.

Fortrinsvis er anlæget ifølge opfindelsen udformet således, at nævnte opadførende transportør udgøres af transportører med indbyrdes samvirkende teleskopiske dele, nemlig en vandret transportør og en opadførende transportører med et skråt forløb.

Hensigtsmæssigt er anlægget ifølge opfindelsen således udformet, at bedøvekæmmeret er inddelt i et antal vandrette zoner, f.eks. en nederste zone med en gaskoncentration (CO²) på 50% (ca. 45 - 51%), en mellemste zone med en gaskoncentration (CO²) på 25% (ca. 32 - 46%), og en øverste zone med en gaskoncentration (CO²) på 5% (ca. 8 - 10%), idet der ud for de respektive øvre zoneafgrænsninger findes sensorer til kontrol af henholdsvis styring af gaskoncentrationen i nævnte zoner. Den aktuelle gas procent svinger noget i forbindelse med pause til drift og ved ændret bevægelseshastighed af transportkasserne. Denne variation af gaskoncentrationen har ikke ret stor indflydelse

4

på bedøvningsresultatet, derimod har opholdstiden navnlig i første zone samt den totale opholdstid i bedøvekammeret stor indflydelse.

Anlægget ifølge opfindelsen er fortrinsvis indrettet således, at det omfatter en PLCstyring til styring af et antal indbyrdes afhængige mekaniske parametre, f.eks. hastighed af transportører, indstilling (176 m/sek), antal fjerkræ (kyllinger) på transportører, hastighed af slagtelinie, indstilling (148 dyr/sek).

Hvis man ændrer én indstilling så ændres de andre indstillinger tilsvarende, f.eks. hvis fjerkræet er større, betyder det, at der er færre dyr på transportørerne, men hastigheden af slagtelinie er fortsat den samme. Derfor bliver det nødvendig at køre flere dyr igennem bedøvekammeret per minut, dvs. forøget transporthastighed. Samtidigt er det enkelte fjerkræ større, hvorfor det bedøves i længere tid, dvs. at der derfor kræves en længere transporttid henholdsvis -længde igennem bedøvekammeret.

15

20

25

30

10

Opfindelsen forklares i det følgende nærmere med henvisning til tegningen, på hvilken:

- Fig. 1 viser et længdesnitbillede delvis i snit gennem en udførelsesform for et anlæg til gasbedøvning af slagtefjerkræ ifølge opfindelsen, og
 - fig. 2 viser et ovenbillede af en anden udførelsesform for et anlæg til gasbedøvning af slagtefjerkræ.
- Det i fig. 1 viste anlæg 2 til gasbedøvning af slagtefjerkræ omfatter en ikke vist tilførselstranspotør for tilførsel af fjerkræ der eksempelvis ankommer til fjerkræslagteriet ved hjælp af lastbil og som inden de overføres til bedøvningsanlægget 2 er udtaget af eventuelle transportkasser. Fjerkræet 4 overføres successiv til en bedøvetransportør 6, som i virkeligheden består af et system af endeløse transportører med et antal delstrækninger, der forløber nedad i et bedøvekammer 8, der for størstedelen består af en i forhold til gulvniveau nedsænket betongrube 10, der er fyldt med bedøvelsesgas, f.eks. CO² med varierende gaskoncentration, nemlig en øverste eller første zone 12 med en gaskoncentration på ca. 5% (8-10%), en mellemste eller anden zone 14 med en

10

15

20

25

30

gaskoncentration på ca. 25% (32-46%) og en nederste og tredje zone 16 med en gaskoncentration på ca. 50% (45-51%).

Gaskoncentrationen i nævnte zoner 12, 14, 16 kan varieres yderligere efter behov. f.eks. i afhængighed af fjerkræstørrelse, eller -type. Gaskoncentrationen i de respektive zoner 12, 14, 16 styres ved hjælp af af egnede gascensorer og et i og for sig kendt gasfylde-/styresystem med tilhørende fyldeventiler.

Fra bedøvetransportøren 4 ledes fjerkræet 4 successivt ind på en nedadførende transportørstrækning 18, der fortsætter i en vandret transportørstrækning 20, hvis aktive længde kan varieres ved hjælp af et teleskopsystem 22. Fra transportørstrækningen 20 overføres fjerkræet 4 til en nedadførende transportørstrækning 24, hvis aktive længde kan varieres ved hjælp af et teleskopsystem 26, som samvirker med teleskopsystemet 22 for transportørstrækningen 20. Fra transportørstrækningen 24 overføres fjerkræet 4, som nu er bedøvet til en vandret forløbende transportør 28, hvis aktive transportlængde ligeledes kan varieres ved hjælp af et teleskopsystem 30. Det bedøvede fjerkræ 4 føres derefter opad og ud fra bedøvekammeret 8 ved hjælp af en opadførende transportør 32, der ligeledes - for at kunne samvirke med transportøren 26 - omfatter et teleskopsystem 34 til variation af den aktive transportlængde af transportøren 28.

Fra transportøren 32 overføres de bedøvede fjerkræ 4 til ekstern transportør for ophængning deraf på slagtelinie. Kort efter de bedøvede kyllinger er blevet ophæng i benene i slagtebøjler passerer kyllingerne fordi en slagteposition, hvor de får halsen skåret over, således at kyllingerne afbløder, idet deres hjerters pumpefunktion fortsat er intakt, hvis gasbedøvningen har været optimal.

Hvis det kan konstateres, at gasbedøvningen enten er for dyb, dvs. at kyllingerne allerede er døde, skal bedøvningen justeres ved at afkorte transportvejen og/eller transporttiden igennem bedøvekammeret, således at bedøvningen bliver lettere. Hvis kyllingerne omvendt viser tegn på for let bedøvning, skal bedøvningen ligeledes justeres, således at transportvejen og/eller transporttiden igennem bedøvekammeret forøges.

б

I begge situationer kan regulering foretages ved at forkorte eller ved at forlænge transportvejen ved at ændre de aktive transportlængder transportørerne 20, 24, 28, 32 ved hjælp af teleskopsystemerne 22, 26, 30, 34.

Sensorer med en given placering sikrer, at de respektive transportører er i korrekt position til f.eks. små, mellemstore eller store kyllinger. En vigtig ting der også har betydning for bedøvningsresultatet er, at fjerkræet 4 føres nedad i trin og starter i en lav gaskoncentration på ca. 5-10%. Den trinmæssige nedadføring sikre at fjerkræet ved start og stop løfter hovederne og derved frit kan indånde den relative lave gaskoncentration. Dette hindre fjerkræet i at blive stresset og skader undgås.

For at forkorte eller -længe transporttiden igennem bedøvekammeret 8 kan man naturligvis også regulere på hastigheden af de respektive transportører.

Efter den første del af nedadbevægelsen, er fjerkræet "sovet ind" og fortsætter længere ned, hvor gaskoncentrationen er max. 50% i bunden af kabinen. Herved sikres det, at fjerkræet ikke vågner op før det har fået halsen skåret over og er afblødt. Det er desuden sikkerhedsmæssigt en fordel at forsænke bedøvekammeret til under gulvniveau, således at man undgår udsivning af gas over hovedhøjde.

20

25

15

Det i fig. 2 skitserede anlæg 36 omfatter et bedøvekammer 38, der i lighed med det ovenfor beskrevne anlæg 2 (fig. 1) omfatter en i forhold til gulvniveau nedsænket betongrube 40. Efter aflæsning tilføres fjerkræ til bedøvekammeret 38 via en vandret tilførselstransportør 42, der afleverer fjerkræet til en nedadførende, spiralformet transportør 44, som i bunden af bedøvekammeret 38 igen afleverer det nu bedøvede fjerkræ til en vandret, teleskopisk transportør 46, hvorfra det bedøvede fjerkræ overføres til en opadførende transportør 48, der sørger for at det bedøvede fjerkræ transporteres opad og ud af bedøvekammeret 38 for videretransport til ophængning på slagtelinie osv.

Transportørerne 42, 44, 46 har en relativ stor bredde på eksempelvis ca. 800 mm, dvs. at kapaciteten af disse transportører ved en given hastighed er stor. På enkel måde kan bredden af transportørerne 42, 44, 46 og dermed kapaciteten af disse reduceres ved hjælp af sideforskydelige vægge 43, 45, 47. Ved denne sideforskydning af væggene

PATRADE A/S

- 43, 45, 47 varieres transportlængden desuden, idet længden af den spiralformede transportbane forlænges ved at tvinge fjerkræet udad i banen og omvendt ved at tvinge fjerkræet indad i banen.
- Alternativi kan kapaciteten af de samarbejdende transportører 42, 44, 46 varieres veil at varierer transportbastigheden eller transportlængden, idet antallet af "snoninger" af den spiralformede transportør 44 kan tilpasses det aktuelle transportbehov, ligesom den aktive længde den teleskopiske transportør 46 kan varieres. I den forbindelse skan nævnes, at skråstillingen af den opadførende transportør tilsvarende kan varieres. Der opadførende transportør 48 er forsynet med tværstillede medbringere 50, som hvis transportøren 48 har et meget stejlt forløb kan erstattes af kopper, således at det bedøvede fjerkræ med sikkerhed kan transporteres opad og ud af bedøvekammeret 38.

20

25

30

Modtaget

8

22 JAN. 2003

PATENTKRAV

PVS

- 1. Fremgangsmåde til gasbedøvning af slagtefjerkræ, der ankommer til fjerkræslagteri eksempelvis i transportkasser, hvor gasbedøvning af dyrene foregår efter disse er udtaget af transportkasserne, og hvor dyrene ved hjælp af et antal transportører successivt føres igennem et bedøvekammer, kendet eg net ved, at gaspåvirkningen for bedøvning af dyrene reguleres ved at forkorte eller forlænge transporttiden og/eller transportvejen for dyrene på nævnte transportører igennem bedøvekammeret.
- 2. Fremgangsmåde ifølge krav 1, k e n d e t e g n e t ved, at reguleringen af transporttiden igennem bedøvekammeret foregår ved at forøge eller formindske hastigheden af nævnte transportører.
- 3. Fremgangsmåde ifølge krav 1, k e n d e t e g n e t ved, at reguleringen af transportvejen igennem bedøvekammeret foregår ved at formindske eller forlænge de aktive transportørstrækninger af de respektive transportører.
 - 4. Fremgangsmåde ifølge krav 1, k e n d e t e g n e t ved, at gaspåvirkning for bedøvning af dyrene desuden reguleres ved at variere gaskoncentrationen i varierende højder af bedøvekammeret, idet der arbejdes med stigende gaskoncentration i retning nedefter i bedøvekammeret.
 - 5. Anlæg til gasbedøvning af slagtefjerkræ jf. fremgangsmåden ifølge krav 1 og omfattende en i hovedsagen vandret transportør, der er indrettet til at modtage og indføre slagtefjerkræ til et gasfyldt bedøvekammer, hvori er arrangeret en nedadførende transportør, som er indrettet til successivt at føre fjerkræet nedad i bedøvekammeret, samt en opadførende transportør, der er indrettet til successivt at føre fjerkræet opad og ud af bedøvekammeret k e n d e t e g n e t ved, at nævnte nedadførende transportør enten udgøres af en transportør med et nedadførende forløb og et vandret forløb, samt af en nedadførende transportør, hvilke transportører omfatter indbyrdes samvirkende teleskopiske dele til regulering af den aktive transportængde, eller udgøres af en spiralformet transportør, der samvirker med en vandret, teleskopisk transportør.

9

- 6. Anlæg ifølge krav 5, k e n d e t e g n e t ved, at nævnte opadførende transportør: udgøres af transportører med indbyrdes samvirkende teleskopiske dele, nemlig en vandret transportør og en opadførende transportører med et skråt forløb.
- 7. Anlæg ifølge krav 5, k e n d e t e g n e t ved, at bedøvekammeret er inddelt i et antal vandrette zoner, f.eks. en nederste zone med en gaskoncentration (CO²) på 50% (ca. 45 51%), en mellemste zone med en gaskoncentration (CO²) på 25% (ca. 32 46%), og en øverste zone med en gaskoncentration (CO²) på 5% (ca. 8 -10%), idet der ud for de respektive øvre zoneafgrænsninger findes sensorer til kontrol af henholdsvis styring af gaskoncentrationen i nævnte zoner.
 - 8. Anlæg ifølge krav 5, kendetegnet ved, at det omfatter en PLC-styring til styring af et antal indbyrdes afhængige mekaniske parametre, f.eks. hastighed af transportører, indstilling (176 m/sek), antal fjerkræ (kyllinger) på transportører, hastighed af slagtelinie, indstilling (148 dyr/sek).

15

10

Modtaget

10

22 JAN. 2003

SAMMENDRAG

PVS

Der beskrives en fremgangsmäde til gasbedøvning af slagtefjerkræ, der ankommer til fjerkræslagteri eksempelvis i transportkasser, hvor gasbedøvning af dyrene foregår efter disse er udtaget af transportkasserne, og hvor dyrene ved hjælp af et antal transportører (18, 20, 24, 28, 32) successivt føres igennem et bedøvekammer (8), hvor gaspåvirkningen for bedøvning af dyrene reguleres ved at forkorte eller forlænger transportiden og/eller transportvejen for dyrene på nævnte transportører igennem bedøvekammeret (8). Det har overraskende vist sig, at man ved hjælp af så enkle foranstaltninger kan gøre det muligt at optimere bedøvningen og samtidigt tage hensyn til samtlige nævnte parametre. Hvis dyrenes bedøvningstilstand ikke er optimal vil det være nemt at forlænge eller afkorte transporttiden og/eller transportvejen igennem bedøvekammeret.

(Fig. 1)

Modtaget .

1/2

2 2 JAN. 2003

