Unit 1 - Combinatorics - Basic Methods Week 2 - Combinatorial Proof

Dr. Chapman

August 2024

Reading: AC 2.4, rest of chapter 2

1

AC 2.9.21:

Give a combinatorial proof that

$$\sum_{i=0}^{k} {m \choose j} {w \choose k-j} = {m+w \choose k}$$

Proof. Let X = set of subsets of $\{1, \cdots, m+w\}$ with size k. Let X_j = set of subsets of $\{1, \cdots, m+w\}$ with size k and j from $\{1, \cdots, m\}$. Let A_j = set of subsets of $\{1, \cdots, m\}$ with size j. Let B_j = set of subsets of $\{m, \cdots, m+w\}$ with size (k-j). So, $X_j = \{a \bigcup b | a \in A_j, b \in B_j\}$ Therefore, $|X_j| = |A_j| \cdot |B_j|$ Also, $X \sqcup_j X_j$ Therefore $|X| = |X \sqcup_j X_j| = \sum_{j=0}^k |X_j|$ So $\sum_{j=0}^k |A_j| \cdot |B_j|$ As a result, $\sum_{j=0}^k {m \choose j} {w \choose k-j} = {m+w \choose k}$ □

$\mathbf{2}$

AC 2.9.26:

How many lattice paths go from (0, 0) to (14, 73) which do not go through (6, 37)?

3

AC 2.9.32:

How many ways are there to color a set of 27 objects such that 7 are painted white, 6 are painted gold, 2 are painted blue, 7 are painted yellow, and 5 are painted green.