Report on the Experiment

No. 7

Subject トランジスタ各種増幅器の特性実験

Date 2020. 07. 30

Weather 曇り Temp 28.9 °C Wet 73.8 %

Class E4
Group 2
Chief
Partner 井上 隆治
重見 達也
宮崎 拓也
森 和哉

No 14 Name 小畠 一泰

Kure National College of Technology

1 目的

トランジスタによる小信号増幅器のうち, RC 結合増幅器, および, 負帰還増幅器について特性試験を行い, 実験地と理論値の比較検討を行い, 理解を深める. また, それぞれの増幅器の特性を習得する.

2 理論

2.1 RC 結合増幅器

小信号増幅器としては代表的なもので、RC 結合というのは、トランジスタと信号源や負荷とを結合したり、或いは、多段増幅でトランジスタ同士を結合するのに抵抗とキャパシタの回路を使用したりすることをいう。

2.1.1 RC 結合 1 段増幅器

増幅器の例として 図 1,2 にエミッタ接地自己バイアス回路を示す.

図 1: エミッタ接地自己バイアス回路-増幅回路

図 2: エミッタ接地自己バイアス回路-等価回路

2.1.2 RC 結合 2 段増幅器

図 3 は RC 結合 2 段増幅回路の例で、Tr1 による増幅回路と Tr2 による増幅回路の 2 段によって構成されている。回路中の R_1, R_2, R_4 が Tr1 のバイアス用抵抗, R_7, R_8, R_9 ,が Tr2 のバイアス回路用抵抗である。これらのバイアス抵抗は電流帰還がかかり、利得が減少するので、交流的に電流帰還がかからないように R_4, R_9 と並列にバイパス用コンデンサ C_2, C_4 が接続されている。また Tr1 のコレクタ電位と Tr2 のベース電位が異なるので、その接続には直流阻止用コンデンサ C_3 が用いられており、これを結合コンデンサという。 R_5 は Tr1 の負荷抵抗であるが、交流的な負荷は $R_5//R_7//R_8//R_{i2}(R_{i2}:Tr2$ の入力抵抗)の並列合成抵抗となる。このように次段の増幅回路が結合コンデンサによって結合されているばかりではなく、次段のバイアス抵抗、入力抵抗が前段の負荷となり、その容量と抵抗によって特性が大きな影響を受ける。このように、結合コンデンサ、バイパスようコンデンサを使用することで、低周波数ではそのインピーんダンスが高くなり、そのため利得が低下する。

図 3: RC 結合 2 段増幅器

図 4: RC 結合増幅器の周波数特性

また、高周波数ではトランジスタのもつ周波数特性のために利得が低下して、図 4 のようになる。中央の平坦な部分は、コンデンサのインピーダンスが抵抗に比べ無視できるため、利得が回路の抵抗分だけで決まり、この領域を中域という、低域、中域、高域それぞれの電圧増幅度は 表 1 のようになる.

表 1: 各帯域における電圧増幅度と遮断周波数

低域	中域	高域
$A_{vL} = \frac{A_{VM}}{1 - j\left(\frac{f_{CL}}{f}\right)}$		
C_3 による低域遮断周波数		
$f_{CL} = \frac{1}{2\pi C_3(R_5 + R_{i2})}$	$A_{vM} = \frac{h_{fe1}h_{fe2}}{h_{ie1}h_{ie2}}R_{01}R_{02}$	
$R_{i2} = R_7//R_8//Z_i$	1 段目の負荷	
C ₂ による遮断周波数	$R_{01} = \frac{1}{\frac{1}{R_5} + \frac{1}{R_7} + \frac{1}{R_8} + \frac{1}{h_{ie2}}}$	$A_{vH} = \frac{A_{vM}}{1 - j(\frac{f}{f_{CH}})}$
$f_{CL} \simeq \frac{h_{fe1}}{2\pi C_2(R_g + h_{ie1})}$	2 段目の負荷	コレクタ容量 $C_o b$ のミラー効果による高域遮断周波数
その他, C_1, C_4, C_5 も同様	$R_{02} = \frac{1}{\frac{1}{10} + \frac{1}{R_L}}$	$f_{CH} = rac{1}{2\pi C_{ob} h_{fe} \left(rac{R_g + h_{ie}}{R_L R_g} ight)}$

2.2 負帰還増幅器

帰還回路を持った全体の増幅回路は 図 5 のように表すことができる.

図 5: 負帰還増幅器

ここで、A は帰還がない場合の増幅度、 β は帰還率である. 総合の増幅度 $A_f (= \frac{v_0}{v_i})$ は、

$$A_f = \frac{A}{1 - \beta A}$$

 $|\beta A| \gg 1$ $\alpha \beta U$,

$$A_f = -\frac{1}{\beta}$$

となり、もし、 β が周波数特性を持たないものなら、全体の回路も周波数特性を持たなくなる.

2.2.1 電流帰還増幅器

図 6 は 図 3 の 1 段目を電流帰還増福器にしたものである.

帰還のない場合の増幅度 A_v は、

$$A_v = \frac{h_{fe1}}{h_{ie1}} R_{01}, \ R_{01} = R_5$$

また、帰還率 β は、

$$\beta = \frac{(1 + h_{fei}) \, R_3}{h_{fe1} R_{01}}$$

よって、増幅度 A_f は、

$$A_f = \frac{h_{fe1} R_{01}}{h_{fe1} + (1 + h_{fe1}) R_3} \tag{1}$$

図 6: 電流帰還増幅器

2.2.2 電圧帰還増幅器 (2 段)

図 7: 電圧帰還増幅器 (RC 結合 2 段増幅器)

図 7 は 図 3 の 1 段目に電流帰還をかけ、また、全体に電圧帰還をかけたものである。電圧帰還のない場合の 1 段目の 増幅度は式 1 で $R_{01}//R_5//R_7//R_8//h_{ie2}$ としたものであるから、全体の増幅度 A_v は、

$$A_v = \frac{h_{he1}}{h_{ie1} + (1 + h_{he1})R_3} \frac{h_{he2}}{h_{ie2}R_{01}R_{02}}$$

また、帰還率 β は、

$$\beta = \frac{R_3}{R_3 + R_6}$$

であるから、電圧帰還増幅器の増幅度 A_f は、

$$A_f = \frac{A_v}{1 + \beta A_v}$$

ただし, $R_{02}=R_{10}//R_L$

3 実験機器

- 1. 実験用プレート
- 2. Analog Discovery

図 8: 実験回路図

4 実験結果と処理

表 2: A-1, A-2 の入出力特性

A-1		A-2	
入力電圧 v_i [mV]	出力電圧 v_o [mV]	入力電圧 v_i [mV]	出力電圧 v_o [mV]
0.7117	74.7060	0.72586	663.31
1.0260	111.9300	1.04460	899.57
1.3285	149.2600	1.38610	1051.40
1.7829	198.8200	1.83150	1213.10
2.2300	248.6900	2.27580	1351.60
3.3372	371.8500	3.36080	1628.10
4.4181	494.3900	4.46480	1841.90
6.6257	734.9500	6.64670	2125.50
9.8098	996.5200	9.94900	2343.30
13.0030	1196.2000	13.24200	2456.40
17.3500	1435.0000	17.75600	2546.70
21.7300	1669.4000	22.17000	2601.70
32.3880	2054.6000	33.24100	2667.20
43.0950	2334.4000	44.23900	2683.00
70.5470	2706.4000	70.80700	2637.20
105.8200	2878.5000	105.31000	2520.70
141.0700	2976.8000	140.69000	2415.70
211.6700	3050.8000	211.56000	2263.40
317.4300	3069.8000	317.13000	2117.70
423.1800	3082.0000	423.21000	2023.50
564.1200	3068.5000	564.50000	1937.60
705.0100	3046.5000	705.04000	1877.20
1057.6000	2995.9000	1058.20000	1786.60
1405.6000	2993.8000	1408.60000	1721.00

表 3: B-1, B-2 の入出力特性

B-1		B-2	
入力電圧 v_i [mV]	出力電圧 v_o [mV]	入力電圧 v_i [mV]	出力電圧 v _o [mV]
0.71886	13.672	0.7450	121.67
1.02400	20.225	1.0654	182.42
1.37250	28.074	1.3646	243.05
1.78590	38.220	1.8084	324.10
2.26050	46.108	2.2540	405.07
3.36900	69.905	3.3704	606.17
4.46840	93.729	4.4860	799.92
6.65080	141.140	6.0744	1088.40
9.92090	211.310	9.9398	1479.80
13.22000	280.890	13.2090	1776.00
17.69800	372.110	17.7300	2056.90
22.15300	460.740	22.1870	2205.40
33.21400	672.160	33.2440	2387.60
44.19200	859.810	44.2210	2466.00
70.51300	1199.000	70.5110	2497.60
105.78000	1483.300	105.8500	2418.20
141.12000	1679.900	141.1300	2323.40
211.77000	1981.800	211.8000	2175.30
317.53000	2342.700	317.6200	2032.20
423.14000	2682.000	423.4900	1939.50
564.33000	3047.200	564.5300	1854.50
705.42000	3329.700	705.5700	1794.50
1057.00000	3446.900	1057.4000	1706.80
1408.10000	3433.200	1407.8000	1643.00

表 4: A-1, A-2 の周波数特性 $(v_{i2} = AT$ 有り, 0.15 [mV])

	11 2 47/41/XXX 13 IX (012 —	, []/
周波数 f [Hz]	A-1 電圧利得 G_v [dB]	A-2 電圧利得 G_v [dB]
5.0000	20.6387	38.5213
6.4716	24.2192	41.9412
8.3763	27.4704	44.7932
9.1285	28.3895	45.5999
9.9482	29.3659	46.4144
15.2926	33.3642	49.5156
16.6659	34.0307	50.0286
18.1625	34.6865	50.4530
19.7935	35.3127	50.7906
30.4269	37.7643	52.0777
33.1593	38.1841	52.2385
36.1370	38.5043	52.3493
71.9000	40.1946	53.0040
131.2679	40.7466	53.1797
239.6558	40.9280	53.2155
437.5397	40.9385	53.2205
798.8163	41.0635	53.2595
1458.3991	40.9563	53.1838
2662.5996	41.0764	53.0564
4861.1087	40.9687	52.9080
8874.9272	41.0304	52.3510
14867.8167	41.0591	51.0951
16202.9565	41.1116	50.8387
17657.9927	41.1236	50.4179
19243.6921	41.0891	50.1038
20971.7883	41.0989	49.6197
32238.2010	41.1440	47.1659
45473.5715	41.0393	45.4102
49557.1282	41.1827	44.9282
54007.3910	41.3057	44.5423
58857.2904	41.0251	43.9927
64142.7139	41.1663	43.3280
107455.7676	41.2329	39.4162
180016.4241	40.8322	34.7986
276724.4059	39.7214	30.9614
425385.6122	38.7946	27.4638
463585.5210	38.2476	26.6648
505215.8068	37.8453	25.8955
653910.2271	36.5985	23.6175
712631.7971	36.1246	22.9801
776626.6029	35.7082	22.2579
1193844.0410	32.5499	18.3977
1545214.5747	30.7156	16.0200
2000000.0000	28.7785	13.6457

表 5: B-1, B-2 の周波数特性 $(v_{i2} = AT$ 有り, 0.15 [mV])

χ θ. Β 1, Β 2 σ σημχχητι (σ ₁₂ = 11 η σ , σ.1σ [m σ])				
周波数 f [Hz]	B-1 電圧利得 G_v [dB]	B-2 電圧利得 G_v [dB]		
5.0000	20.5095	35.7221		
6.4716	22.3358	36.7824		
8.3763	23.6616	38.3398		
9.1285	24.0201	38.8793		
9.9482	24.3314	39.4100		
15.2926	25.4757	41.7362		
16.6659	25.6032	42.0959		
18.1625	25.7254	42.4617		
19.7935	25.8257	42.7792		
30.4269	26.1799	43.9226		
33.1593	26.2191	44.1006		
36.1370	26.2520	44.2381		
71.9000	26.3692	44.8497		
131.2679	26.4331	45.0142		
239.6558	26.4495	45.0826		
437.5397	26.5037	45.1216		
798.8163	26.5351	45.1463		
1458.3991	26.4760	45.1654		
2662.5996	26.5692	45.0954		
4861.1087	26.6932	45.0998		
8874.9272	26.7497	45.0676		
14867.8167	26.6668	44.7152		
16202.9565	26.5854	44.7839		
17657.9927	26.6813	44.7150		
19243.6921	26.7373	44.6078		
20971.7883	26.6818	44.5388		
32238.2010	26.6848	43.8775		
45473.5715	26.7294	42.9154		
49557.1282	26.7234	42.5316		
54007.3910	26.7135	42.1433		
58857.2904	26.7126	41.9432		
64142.7139	26.6684	41.5239		
107455.7676	26.7872	38.6879		
180016.4241	26.4055	34.7263		
276724.4059	26.3323	30.8768		
425385.6122	25.3800	27.2113		
463585.5210	25.1863	26.4811		
505215.8068	25.1603	25.8522		
653910.2271	24.2110	23.5855		
712631.7971	23.8916	22.8832		
776626.6029	23.6003	22.1709		
1193844.0410	21.2912	18.3268		
1545214.5747	19.5477	16.0248		
2000000.0000	17.5783	13.6833		
	1	10.0000		

図 10: 周波数特性

5 考察

1. 回路定数より, 各増幅器の電圧利得 (理論値) を求め, 実験値と比較, 吟味せよ. 後段に使用しているトランジスタが実験書と異なることから, B-1 ついてのみ述べる. 実験値より

$$A_f = 20.75, G_v = 20 \log_{10} A_f = 26.34 \text{ [dB]}$$

理論値は $h_{fe1} = 450, h_{ie1} = 39 \text{ [k}\Omega], R_{01} = R_5 = 3.9 \text{ [k}\Omega], R_3 = 100 \text{ [}\Omega\text{]}$ とすれば、式 1 より、

$$A_f = 20.87, G_v = 20 \log_{10} A_f = 26.39 \text{ [dB]}$$

理論値と実験を比較するとほぼ同じ電圧利得であることから、実験は成功であるといえ、誤差についてはトランジスタの性能誤差であると考える.

2. 回路定数より, 各増幅器の低域および高域遮断周波数 (理論値) を求め, 実験値と比較, 吟味せよ. 後段に使用しているトランジスタが実験書と異なることから, B-1 ついてのみ述べる. 実験値より $f_{CL}=9.1285$ [Hz], $f_{CH}=712631.7971$ [Hz] また理論値は次のとおりである.

$$C_1: f_{CL} = \frac{1}{2\pi C_1 R_i} = \frac{1}{2\pi \times 3.3 \times 10^{-6} \times 8.8 \times 10^3} = 5.4805 \text{ [Hz]}$$

$$C_2: f_{CL} = \frac{h_{fe1}}{2\pi C_2 (R_{g1} + h_{ie1'})} = \frac{450}{2\pi \times 220 \times 10^{-6} (9.8 \times 10^3 + 84.1 \times 10^3)} = 3.4669 \text{ [Hz]}$$

$$f_{CH} = \frac{1}{2\pi C_{ob1} h_{fe1}} \left\{ \frac{R_{g1} + h_{ie1}}{R_L R_{g1}} \right\} = \frac{1}{2\pi \times 1.6 \times 10^{-6} \times 450} \left\{ \frac{9.8 \times 10^3 + 39 \times 10^3}{1.92 \times 10^3 \times 9.8 \times 10^3} \right\} = 573297.6385 \text{ [Hz]}$$

理論値と実験値のずれは低域遮断周波数、高域遮断周波数ともにトランジスタの性能誤差や経年劣化、実験時の気温などによるものであると考えられる範囲であるので、実験は成功であるといえる.

- 3. 各増幅器の入出力特性, および, 周波数特性を対比し, それぞれの増幅器の特徴を述べよ.
 - 1. 入出力特性

最大出力電圧についてはどの増幅器もあまり変わらないが、A-2 はもっとも変化が少なく、B-1 はもっとも変化が大きい.

2. 周波数特性

A-1 がもっとも利得の変化量が大きく B-1 は変化量が小さい. また中域については B-1 がもっとも広く, A-2 がもっとも狭い.

6 研究

- 1. RC 結合増幅器とトランス結合増幅器の特徴を述べ、比較せよ.
 - 1. RC 結合增幅回路

コンデンサーを通して、前段増幅回路の出力を次段へ供給する回路を RC 結合増幅回路という。前段と次段の増幅回路はコンデンサーによって直流的に切り離すことができるため、バイアス回路を設計しやすく、周波数帯域が比較的広くとれる。

2. トランス結合増幅回路

トランスを用いて,前段増幅回路の出力を次段へ供給する回路をトランス結合増幅回路という.トランス結合増幅回路では,トランスのインピーダンスを前段や次段の負荷インピーダンスと整合させることで電力損失の少ない結合が可能となり,スピーカなどを接続した電力増幅回路に使用されることが多い.

図 11: 自己バイアス回路 (電圧帰還バイアス回路)

- 2. 帰還増幅器の特徴を列挙し, 詳しく説明せよ.
 - 裸利得のばらつきが抑えられる
 - ひずみが抑えられる
 - 出力インピーダンスを低くできる
 - 入力インピーダンスを高くできる
 - 利得一定で増幅可能な周波数帯幅が広がる

温度上昇が生じると

- 1. 温度上昇により, I_c が増加.
- 2. $V_{RC} = R_C I_C$ により V_{RC} が増加.
- $3. V_{RC}$ の増加により, V_{CE} が減少.
- $4.~I_B=rac{V_{CC}-V_{RC}-V_{BE}}{R_R}$ より, I_B が減少.
- 5. I_B が減少すれば, I_C も減少するので I_C の増加が抑えらえる.

出力側 I_C の変化を入力側に帰還させ出力側の変化を抑えるような働きを負帰還という.

7 参考文献

- 負帰還システムとその効果 | ローム株式会社 ROHM Semiconductor (https://www.rohm.co.jp/electronics-basics/opamps/op_what6)
- 多段・負帰還・電力増幅回路 (https://e-sysnet.com/色々な増幅回路/)
- R2 年度 第 5 回目 電子回路 講義資料 pp.8-9