EXERCICE 1:

La fonction f est définie sur $\mathbb{R} \setminus \{4\}$ par $f(x) = \frac{x^2 - 3x + 2}{x - 4}$ et on note C_f sa courbe représentative dans un repère orthogonal.

- 1. Déterminer les coordonnées du ou des point(s) d'intersection de C_f et de l'axe des abscisses.
- 2. Déterminer les coordonnées du point d'intersection de C_f et de l'axe des ordonnées.
- 3. Déterminer les points d'intersection de C_f avec la droite d'équation y=x-1.
- 4. Étudier le signe de f(x)

EXERCICE 2:

Soit f la fonction définie sur IR \ {1}.par : $f(x) = \frac{x^2 - 4x - 5}{1 - x}$ et soit Cf la courbe représentative de la fonction dans un repère orthogonal.

- 1. Étudier le signe de f(x) . (3 points) 2. Déterminer les images de 0 et de -2. (1 point) 3. Déterminer les antécédents (s'ils existent ...) de 1. (2 points)
- 4. Déterminer les points d'intersection de Cf avec la droite d'équation $y = -\frac{2}{3}x$.

EXERCICE 3:

La courbe C_f de la figure ci-dessous est la représentation graphique d'une fonction f définie sur IR dans un repère orthogonal.

- 1. Déterminer graphiquement : f(-2)f(1)f(3)
- 2. Déterminer l'équation de la tangente T₁ au point d'abscisse 1 et celle de la tangente T₀ au point d'abscisse 3.
- 3. La droite T tangente à la courbe C_f au point d'abscisse -2 et d'ordonnée 3 passe par le point de coordonnées (-1 ; 5). Déterminer par le calcul une équation de T.

