5. Álgebra Booleana

5.1. Introdução a Àlgebra de Boole

Em 1854, o matemático inglês George Boole (1815-1864) apresentou um sistema matemático de análise lógica conhecido como **Álgebra de Boole** ou **Álgebra Booleana**. Em 1938, o engenheiro americano Claude Shannon utilizou as teorias da álgebra de Boole para a solução de problemas de circuitos de telefonia com relés, introduzindo na área tecnológica o campo da eletrônica digital, que emprega em seus sistemas um pequeno grupo de circuitos básicos padronizados conhecidos como portas lógicas (IDOETA & CAPUANO, 1998). As portas lógicas são a base dos circuitos lógicos utilizados em sistemas digitais e têm por finalidade combinar as diferentes expressões booleanas de modo a realizar determinada função (DAGHLIAN, 1995). Assim, a Álgebra Booleana foi fundamental para o desenho dos circuitos dos computadores eletrônicos modernos.

Por Álgebra Booleana entende-se um conjunto **B={a, b, c, ...}** junto com duas operações binárias + e • em B, uma operação singular em B e dois elementos distintos **0** e **1** de B (GERSTING, 1995), tais que valem as seguintes propriedades: (para todo a , b , c em B):

Associativa (ASSOC)	(a + b) + c = a + (b + c) = a + b + c	(a . b) . c = a . (b . c) = a . b . c
Comutativa (COMUT)	a + b = b + a	a.b=b.a
Distributiva (DISTRIB)	a + (b . c) = (a + b) . (a + c)	a . (b + c) = (a . b) + (a . c)
	a + 0 = a	a . 0 = 0
Identidade e Idempetente (IDE)	a + 1 = 1	a . 1 = a
Identidade e Idempotente (IDE)	a + a' = 1	a . a' = 0
	a + a = a	a.a=a
	a + (a . b) = a	a. (a + b) = a
Absorção (ABS)	a + (a . b') = a	a. (a + b') = a
	a + (a' . b) = a+b	a. (a' + b) = a.b
De Morgan (MORGAN)	(a+b)' = a' . b'	(a.b)' = a' + b'

Aplicações da Álgebra Booleana

A Álgebra Booleana pode ser aplicada a circuitos de interruptores e a circuito de portas lógicas. A seguir, será apresentada a representação gráfica de funções booleanas através de

circuito de portas lógicas. Após, a sua representação na Forma Normal Conjuntiva e Disjuntiva e um exemplo de aplicação envolvendo esses conceitos.

5.2. Portas Lógicas

A representação gráfica das funções booleanas é feita mediante símbolos padronizados por normas internacionais chamados blocos ou portas lógicas. As portas lógicas são a base dos circuitos lógicos utilizados em sistemas digitais e têm por finalidade combinar as diferentes expressões booleanas de modo a realizar determinada função (DAGHLIAN, 1995).

As seguintes são as portas lógicas padrão:

NOT

É a porta inversora. Seu símbolo e tabela-verdade são:

AND

A porta AND mais simples possui 2 entradas e 1 saída.

OR

A porta **OR** mais simples possui, também, 2 entradas e 1 saída.

NAND

É equivalente à 1 (uma) porta AND seguida de 1 (uma) porta NOT.

NOR

É equivalente à 1 (uma) porta OR seguida de 1 (uma) porta NOT.

XOR é o "OU exclusivo"

XNOR

Equivalente à porta **XOR** seguida da porta **NOT**.

1	0	0	
1	1	1	

Exemplos:

Exercício1 – Construir a tabela verdade das seguintes funções booleanas:

- a) a'+b
- b) f= ab' + c
- c) f= a.(b+c)'
- d) f= (ab')'

Exercício2 – Represente o diagrama lógico das seguintes funções booleanas:

c) f = abc + d

5.3. Formas Normais

A partir de uma tabela verdade, pode-se obter uma expressão booleana que a represente. Para isso, usam-se as Formas Normais Disjuntiva (FND) ou Conjuntiva (FNC).

Para se obter uma **Forma Normal Disjuntiva** (FND ou soma de produtos):

- 1. Observamos todas as linhas da tabela que possuem 1 na última coluna;
- 2. Construímos para cada uma destas linhas as conjunções (produtos) correspondentes, sendo que quando ocorrer a situação 0, a variável fica negada;
- 3. Fazemos a disjunção (soma) destas conjunções obtendo uma fórmula em **FND** que satisfaz a tabela verdade.

Exemplo: Determine uma fórmula que satisfaça a tabela verdade abaixo:

Α	В	?	
0	0	1	A'.B'
0	1	0	
1	0	0	
1	1	1	A.B

Resposta: Expressão obtida (A'.B') + (A.B)

Exercício3 – Encontre a Forma Normal Disjuntiva (FND) das seguintes funções representadas pelas tabelas verdade abaixo:

a)

b)

c)

d)

Α	В	?
0	0	0
0	1	1
1	0	0
1	1	1

Α	В	?
0	0	0
0	1	0
1	0	1
1	1	1

Α	В	?
0	0	1
0	1	0
1	0	1
1	1	1

Α	В	С	?
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Exercício4 – Construir o diagrama lógico das funções representadas pelas tabelas verdades do exercício anterior.

Para se obter uma Forma Normal Conjuntiva (FNC ou produto das somas):

- 1. Observamos todas as linhas da tabela que possuem **0** na última coluna;
- 2. Construímos para cada uma destas linhas as disjunções (somas) correspondentes, sendo que quando ocorrer a situação 1, a variável fica negada;
- 3. Fazemos a conjunção (produto) destas disjunções obtendo uma fórmula em **FNC** que satisfaz a tabela verdade.

Exemplo: Determine uma fórmula que satisfaça a tabela verdade abaixo:

Α	В	?	
0	0	1	
0	1	0	A+B'
1	0	0	A'+B
1	1	1	

Resposta: Expressão obtida (A+B') . (A'+B)

Observação: as expressões obtidas (A'.B') + (A.B) e (A+B') . (A'+B) são equivalentes, isto é, possuem o mesmo resultado lógico: (A'.B') + (A.B) = (A+B') . (A'+B)

Exercício5 – Encontre a Forma Normal Conjuntiva (FNC) das seguintes funções representadas pelas tabelas verdade abaixo:

a)

Α	В	?
0	0	0
0	1	0
1	0	1
1	1	1

b)

Α	В	С	?
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Exercício6 – Encontre a FNC das funções do exercício 1. Após verifique a equivalência entre a FND e a FNC de cada uma das funções booleanas.

5.4. Exemplo de aplicação da Álgebra Booleana

Um exemplo de uma aplicação da Álgebra de Boole: considere um sistema de segurança de uma loja em um shopping. Há um sensor de contato que, ligado, (on, V ou 1), indica que a porta está fechada; e outro sensor infravermelho que, ligado, indica que não há pessoas ou coisas se movendo no interior da loja. Há, também, um alarme que é acionado quando um dos dois sensores é desligado. Isto é, basta um único sensor ser desativado para soar o alarme. Denomine cada sensor pelos símbolos A e B,

A = "sensor de contato"

B = "sensor infravermelho"

A tabela-verdade para a função alarme, f(A,B), é dada por

Α	В	f(A,B)
0	0	1
0	1	1
1	0	1
1	1	0

onde 0 e 1 significam desligado e ligado, respectivamente.

A tabela-verdade é um excelente instrumento para a especificação da função alarme, em particular, e de funções lógicas, em geral. Mas essa função também pode ser representada através de uma expressão booleana na sua forma normal, ou através de portas lógicas.

A função alarme, acima, pode ser escrita na sua forma normal disjuntiva:

$$f(A,B) = A'.B' + A'.B + A.B'$$

Sua tabela-verdade é construída da seguinte maneira:

Α	В	A.B	A'.B'+ A'.B + A.B'
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Simplificando essa função com o uso das propriedades da Álgebra Booleana, obtemos a seguinte função $f(A,B) = (A.B)^t$, que pode ser especificada através do seguinte diagrama lógico:

isto é, através da porta lógica NAND.

5.5. Simplificação de Funções Booleanas

Podemos usamos as propriedades da Álgebra Booleana para **minimizar ou simplificar** algebricamente uma função.

Associativa (ASSOC)	(a + b) + c = a + (b + c) = a + b + c	(a . b) . c = a . (b . c) = a . b . c
Comutativa (COMUT)	a + b = b + a	a.b=b.a
Distributiva (DISTRIB)	a + (b . c) = (a + b) . (a + c)	a . (b + c) = (a . b) + (a . c)
Identidade e Idempotente (IDE)	a + 0 = a	a . 0 = 0
	a + 1 = 1	a . 1 = a
	a + a' = 1	a . a' = 0
	a + a = a	a.a=a
Absorção (ABS)	a + (a . b) = a	a. (a + b) = a
	a + (a . b') = a	a. (a + b') = a
	a + (a' . b) = a+b	a. (a' + b) = a.b
De Morgan (MORGAN)	(a+b)' = a' . b'	(a.b)' = a' + b'

Exemplo - Simplificar a função abaixo:

f= a'b'+a'b+ab'

= b'(a'+a) + a'b DISTRIB = b'.(1) + a'b IDE = b' + a'b IDE = b'+a' ABS = (b.a)' MORGAN

Exercício7 – Simplifique as funções abaixo usando a propriedade Identidade e Idempotente (IDE):

a)
$$b.0.1 =$$

b) a+1+a' =

c) b'.1 =

d)
$$a.1.a' =$$

e) b+0+b'=

f) c'+0+c=

Exercício8 – Simplifique as funções abaixo usando a propriedade Distributiva (DISTRIB):

- a) x(y+z)=
- b) a(b+c')=
- c) a'(b'+a)=
- d) ab(c+d)
- e) bc+ac=
- f) a'b' + ab'=
- g) abc+ade=
- h) xz+x'z
- i) a'b'c+a'b'c'=

Exercício9 – Simplificar as funções abaixo. Após, verificar a equivalência com a tabela verdade ou Diagramas de Venn.

- a) f= ab+ab'
- b) f= ab+a'b
- c) f=a'b+a'b'
- d) f=abc+ab'c
- e) f=ab+a'b+a'b'

Exercício10 – Simplificar as funções abaixo usando a propriedade **DeMorgan**:

- a) (a+b)'.(b+c)'=
- b) (ab+c)'=
- c) (ac+c')'=
- d) [(p+q)'.rp'] '=
- e) [(p+q)'+r'+q]'=
- f) [(pq)'.r.p']'=

Exercício11 – Simplificar as funções abaixo usando a propriedade Absorção (ABS):

a)
$$x.(x+y) =$$

b)
$$x'.(x'+y) =$$

c)
$$(y+x').x' =$$

d)
$$x.(x+y') =$$

e)
$$x'.(x'+y') =$$

f)
$$xy'.(xy'+z) =$$

g)
$$y'x.(x'z+xy')=$$

h)
$$x.(x'+y) =$$

i)
$$x'.(x+y) =$$

$$j) x.(x'+y') =$$

k)
$$x'.(x+y') =$$

I)
$$x.y.((x.y)'+z) =$$

m)
$$x'.y.(z.w+(x'.y)') =$$

n)
$$(x+y)'.(x+y+z) =$$

o)
$$(x'+y).((x'+y)'+z) =$$

Exercício12 – Simplificar as funções abaixo usando a propriedade Absorção (ABS):

- a) x+xy =
- b) xy+x =
- c) x+xy' =
- d) xz+xzy =
- e) xz'+xz'y =
- f) x+xzy =
- g) x+xz'y =
- h) x' + x'y =
- i) x'y+x'yz =
- j) yx+xyz =
- k) y'x+zxy' =
- I) x+x'y =
- m) x'+xy =
- n) x'+xy' =
- o) (xy)'+xyz =
- p) $xy+(xy)^2w =$

Exercício13 – Simplificar as funções abaixo usando as propriedades booleanas:

- a) f= ab+ab'+a'b
- b) f= ab+a'b'+ab'
- c) f=ab'c+abc'+abc
- d) f= abc+ab'c+a'bc+abc'+a'bc'
- e) f= a'b'c'+a'bc+a'bc'+ab'c'+abc'
- f) f= abc+ab'c'+ab'c
- g) f= ab'+a'b+a'b'
- h) f= ab'c+ab'c'+a

Exercício14 – Encontre a FND correspondente a seguinte tabela verdade e a simplifique. Após, desenhe o circuito lógico e verifique a equivalência:

a)

Α	В	С	?
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

b)

Α	В	С	?
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

6. Equivalências Lógicas com Diagramas de Venn

É possível estabelecer uma relação entre a Lógica Proposicional, a Teoria dos Conjuntos e a Álgebra Booleana, no que tange as operações de conjunção, disjunção e negação.

Uma *fórmula proposicional* e uma *expressão na álgebra dos conjuntos*, são correspondentes se substituirmos " \sim , \vee , Λ , \Leftrightarrow , F, V "por " $^{\prime}$, \cup , \cap , =, \varnothing , U "ou, na álgebra booleana " $^{\prime}$, +, \bullet , =, 0, 1 ", Considerando-se **a**, **b** e **c** como variáveis proposicionais ou de conjuntos ou booleanas, respectivamente, tem-se o exemplo abaixo.

$$\sim$$
($\sim a \lor (b \land c)$) corresponde a ($a' \cup (b \cap c)$)' ou a ($a' + (b \cdot c)$)'

Assim, os DIAGRAMAS DE VENN podem ser usados para verificar a equivalência entre fórmulas proposicionais.

Exemplos de representação gráfica de funções booleanas:

c) p'

b) p.q

d) q'

e) p + q'

f) p.q'

Exercício15 – Desenhar o Diagrama de Venn das seguintes expressões:

a)
$$P + (P.Q)$$

d) P + (Q'.P')

c)
$$Q' + (P.Q)$$

Exercício16 - Verifique a equivalência lógica das seguintes expressões, usando Diagramas de Venn:

a)
$$(P + Q) \cdot Q' \equiv Q' \cdot P$$

d)
$$(P'+Q) \cdot Q' \equiv Q' \cdot P'$$

b)
$$(P+Q) \cdot P' \equiv P' \cdot Q$$

e)
$$(P.Q) + P' \equiv P' + Q$$

c)
$$P.Q+Q'\equiv Q'+P$$

f)
$$(P+Q) \cdot (P+Q') \equiv P$$

Exercício17 – Desenhar o Diagrama de Venn das seguintes expressões:

c)
$$A + B + C'$$

d)
$$A + (B'.C)$$

f)
$$(P' + Q') \cdot R$$

g)
$$(P'.Q) + P + Q' + R$$

h)
$$(P'.Q') + (R.P) + (Q.R')$$

Exercício18 - Verifique a equivalência lógica das seguintes expressões, usando Diagramas de Venn:

a) A
$$\cdot$$
 (B+C) \equiv (A.B)+(A.C)

b)
$$A + (B.C) \equiv (A+B).(A+C)$$

7. Referências

Esse material foi elaborado baseado na seguinte bibliografia:

- 1) SOUZA, João Nunes. **Lógica para Ciência da Computação: uma introdução concisa.** Rio de janeiro: Elsevier, 2008.
- 2) NOLT, John; ROHATYN, Dennis. Lógica. Makron Books, 1991.
- 3) GERSTING, Judith L. *Fundamentos Matemáticos para Ciência da Computação*. 3.ed. LTC, 1995.
- 4) POFFAL, Cristiana Andrade; RENZ, Sandra Pacheco. **Fundamentos de Lógica Matemática.** Porto Alegre: La Salle, 2003.
- 5) COPI, Irving M. Introdução à lógica. 2 ed. São Paulo:Mestre Jou, 1978.
- 6) DAGHLIAN, Jacob. Lógica e álgebra de Boole. 4. ed. São Paulo: Atlas, 1995