# Optimisation Différentiable Théorie et Algorithmes Partie I

### Exemple de résumé du cours

J. Ch. GILBERT

14 novembre 2020

#### **Informations pratiques**

- 14 séances, échappatoire possible à mi-parcours.
- Objectif du cours : l'optimisation
  - aspects théoriques : convexité, CO, dualité, ...,
  - aspects pratiques: algorithmes.
- Organisation:
  - Partie I: 7 séances, dont 1/2 pour l'examen.
  - CM: 6 séances d'1h15++,
  - TD + TP: 4+3 séances d'2h00--,
  - TP: projet d'optimisation (Matlab),
  - travail personnel.
- Supports de cours
  - syllabus [site]: ne pas voir les sections avec ⊝,
  - planches [pdf]: points importants du cours [§],
  - notes manuscrites [SP]: 1 document par séance,
  - exercices : en TD (+sol), dans le syllabus (-sol).
- Contrôle des connaissances
  - TP: rapport et code incrémental à remettre,
  - Séance 7 : résolution de problèmes (1h30).

#### Plan du cours I

- 1. Introduction: optimisation et analyse convexe TD1 (rappels, concepts de base)
- 2. Conditions d'optimalité I : méthode et outils TP1
- 3. Conditions d'optimalité II : égalités et inégalités TD2 (conditions d'optimalité)
- Conditions d'optimalité III : CO2 égalités et Méthode de descente : RL TP2
- Méthodes newtoniennes : N et qN
   TD3 (recherche linéaire, moindres-carrés)
- 6. Dualité
  TD4 (dualité)
- 7. Contrôle des connaissances TP3

# I Introduction

#### Vocabulaire de l'optimisation (§ 1.1)

Le problème à résoudre :

$$(P_X) \quad \inf_{x \in X} f(x).$$

Quelques définitions et conventions :

- $f: X \to \overline{\mathbb{R}}$  est appelée critère ou fonction-coût ou fonction-objectif,
- X est appelé ensemble admissible,
- un point de X est dit admissible,
- $\operatorname{val}(P_X) := \inf_{x \in X} f(x) \in \overline{\mathbb{R}}$  est la valeur optimale,
- $(P_X)$  est dit réalisable si  $X \neq \emptyset$ ,
- convention:  $\inf_{x \in \emptyset} f(x) = +\infty$ ,
- $\sup_{x \in X} f(x) = -\inf_{x \in X} [-f(x)]$  (mêmes solutions),
- $(P_X)$  est dit non borné si  $\operatorname{val}(P_X) = -\infty$ , i.e.,  $\exists \{x_k\} \subset X$  telle que  $f(x_k) \to -\infty$ .

Si  $X \neq \emptyset$ , il existe une suite minimisante  $\{x_k\}$ , laquelle vérifie

- $\{x_k\} \subset X$ ,
- $f(x_k) \to \operatorname{val}(P_X)$ .

On dit que  $x_*$  est solution de  $(P_X)$  si

- $x_* \in X$ ,
- $\forall x \in X : f(x_*) \leq f(x)$ .

On dit aussi minimum ou minimiseur.

On note l'ensemble des solutions

$$Sol(P_X)$$
 ou  $\underset{x \in X}{\operatorname{arg min}} f(x)$ .

On dit que  $x_*$  est solution stricte de  $(P_X)$  si

- $x_* \in X$ ,
- $\forall x \in X \setminus \{x_*\}: f(x_*) < f(x).$

Si X topologique, on dit que  $x_*$  est solution locale de  $(P_X)$  s'il existe un voisinage V de  $x_*$  tel que

- $x_* \in X$ ,
- $\forall x \in X \cap V : f(x_*) \leq f(x)$ .

Si X topologique, on dit que  $x_*$  est solution locale stricte de  $(P_X)$  s'il existe un voisinage V de  $x_*$  tel que

- $x_* \in X$ ,
- $\forall x \in (X \cap V) \setminus \{x_*\}: f(x_*) < f(x).$

#### Existence de solution (§ 1.2)

Le problème à résoudre  $(f: X \to \mathbb{R} \cup \{+\infty\})$ :

$$(P_X) \quad \begin{cases} \inf f(x) \\ x \in X. \end{cases}$$

On dit que f est fermée si (epi f) est fermé.

 $\underline{\text{alors}}(P_X)$  a (au moins) une solution.

En dimension finie (c'est notre cas):

- X compact  $\iff$  X fermé borné.
- On peut remplacer l'hypothèse

X compact

par

X fermé et f coercive sur X.

#### Unicité de solution (§ 3.1)

• Soient X un <u>convexe</u> de  $\mathbb{E}$  et  $f: X \to \mathbb{R}$ .

Définitions : f est convexe sur X si pour tout  $x, y \in X, x \neq y, \text{ et } t \in [0, 1[:$ 

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y).$$

f est strictement convexe si on a inégalité stricte ci-dessus.

• Le problème à résoudre :

$$(P_X) \quad \begin{cases} \min f(x) \\ x \in X. \end{cases}$$

 $\underline{Si} \cdot X$  est convexe,

• f est strictement convexe sur X,

 $\underline{\text{alors}} (P_X)$  a au plus une solution.

#### Différentiabilité première (§§ C.1, C.2.1)

Soient  $\mathbb{E}$  et  $\mathbb{F}$  deux espaces normés,  $\Omega$  un ouvert de  $\mathbb{E}$  et  $f:\Omega\to\mathbb{F}$ .

1. Différentiabilité directionnelle suivant  $h \in \mathbb{E}$ :

$$f'(x;h) := \lim_{t \to 0+} \frac{1}{t} \Big( f(x+th) - f(x) \Big)$$
 existe.

- 2. Différentiabilité au sens de Gâteaux :
  - f'(x; h) existe pour tout  $h \in \mathbb{E}$  et
  - $h \mapsto f'(x; h)$  est linéaire (continue).

On note f'(x) l'application linéaire (continue).

3. Différentiabilité au sens de Fréchet : il existe  $L : \mathbb{E} \to \mathbb{F}$ , linéaire (continue) :

$$f(x+h) = f(x) + Lh + o(||h||).$$

On note f'(x) := L (même opérateur qu'en 2).

Soit  $\langle \cdot, \cdot \rangle$  un produit scalaire sur  $\mathbb{E}$  et  $\mathbb{F} = \mathbb{R}$ . On définit le gradient de f en x comme l'unique vecteur  $\nabla f(x) \in \mathbb{E}$ :

$$\langle \nabla f(x), h \rangle = f'(x) \cdot h, \quad \forall h \in \mathbb{E}.$$

#### Différentiabilité seconde (§ C.2.2)

Supposons que  $f: \Omega \to \mathbb{F}$  soit 2 fois différentiable (pour une définition rigoureuse, voir le syllabus).

#### Propriétés:

•  $f''(x) \cdot (h, k)$  est la dérivée directionnelle de  $x \mapsto f'(x) \cdot h$  dans la direction k:

$$f''(x) \cdot (h, k) = \lim_{t \to 0+} \frac{1}{t} (f'(x+tk) \cdot h - f'(x) \cdot h).$$

• l'application

$$(h,k) \mapsto f''(x) \cdot (h,k)$$

est bilinéaire symétrique.

Soit  $\langle \cdot, \cdot \rangle$  un produit scalaire sur  $\mathbb{E}$  et  $\mathbb{F} = \mathbb{R}$ . On définit le hessien de f en x comme l'unique opérateur linéaire symétrique  $\nabla^2 f(x)$  sur  $\mathbb{E}$  tel que

$$\langle \nabla^2 f(x)h, k \rangle = f''(x) \cdot (h, k), \quad \forall (h, k) \in \mathbb{E}^2.$$

# II | Analyse convexe

#### Ensemble convexe (§ 2.1)

Soit  $\mathbb{E}$  un espace vectoriel.

• **Dfn**. Soient  $x, y \in \mathbb{E}$ . Un segment de  $\mathbb{E}$ :

$$[x,y] := \{(1-t)x + ty : t \in [0,1]\}.$$

• **Dfn**. Un ensemble  $C \subset \mathbb{E}$  est convexe si

$$\forall x, y \in C \implies [x, y] \subset C.$$



convexe



non convexe



convexe



non convexe

#### Aspects topologiques (§ 2.3)

- **Dfn**. L'enveloppe affine d'une partie  $P \subset \mathbb{E}$  est le plus petit espace affine contenant P. On le note aff  $P = \bigcap \{A : A = \text{ espace affine contenant } P\}$ .
- **Dfn**. L'intérieur relatif d'une partie  $P \subset \mathbb{E}$  est son intérieur dans aff A (muni de la topologie induite de celle de  $\mathbb{E}$ ). On le note

intr P ou  $P^{\circ}$ .

#### Polyèdre convexe (§ 2.4)

Soient  $\mathbb{E}$  et  $\mathbb{F}$  des espaces vectoriels ( $\mathbb{E} = \mathbb{R}^n$  et  $\mathbb{F} = \mathbb{R}^m$  parfois).

• **Dfn**. Description primale d'un polyèdre convexe :

$$P := co\{x_1, \dots, x_p\} + cone\{y_1, \dots, y_q\},$$

où les  $x_i$  et  $y_i \in \mathbb{E}$ .

Description duale d'un polyèdre convexe :

$$P := \{ x \in \mathbb{E} : Ax \leqslant b \},\$$

où  $A: \mathbb{F} \to \mathbb{F}$  linéaire et  $b \in \mathbb{F}$ .

• Prop.

Si P polyèdre convexe et  $L: \mathbb{F} \to \mathbb{F}$  linéaire, alors L(P) polyèdre convexe.

#### Projection sur un convexe fermé (§ 2.5.2)

 $\mathbb{E}$  muni d'un produit scalaire  $\langle \cdot, \cdot \rangle = \| \cdot \|^2$ .

 $\underline{\text{Si}}\ C \subset \mathbb{E}\ \text{convexe ferm\'e non vide et}\ x \in \mathbb{E},$   $\underline{\text{alors}}\ \text{le problème}$ 

$$\min \{ \|y - x\| : y \in C \} \qquad (1)$$

a une unique solution.

- **Dfn**: l'unique solution de (1) est appelée projection/projeté de x sur C et est notée  $P_C x$ .
- **Prop**: Soit  $\bar{x} \in C$ . Alors

$$\bar{x} = P_C x \iff \forall y \in C, \ \langle y - \bar{x}, \bar{x} - x \rangle \geqslant 0$$

$$\iff \forall y \in C, \ \langle y - \bar{x}, y - x \rangle \geqslant 0$$

$$\iff \forall y \in C, \ \langle y - x, \bar{x} - x \rangle \geqslant \|\bar{x} - x\|^2.$$

#### Séparation des convexes (§ 2.5.4)

 $\mathbb{E}$  muni d'un produit scalaire  $\langle \cdot, \cdot \rangle$ .

• **Dfn**: On peut séparer  $C_1, C_2 \subset \mathbb{E}$  s'il existe  $\xi \in \mathbb{E}$ non nul tel que

$$\sup_{x_1 \in C_1} \langle \xi, x_1 \rangle \leqslant \inf_{x_2 \in C_2} \langle \xi, x_2 \rangle.$$

La séparation est stricte si l'inégalité ci-dessus est stricte (alors  $\xi$  est nécessairement non nul).

- Théor (Hahn-Banach):
  - Si  $C_1$  et  $C_2$  convexes, non vides, disjoints,
    - $\dim \mathbb{E} < \infty$ ,

alors on peut séparer  $C_1$  et  $C_2$ .

- $\underline{\mathbf{Si}} \cdot C_1$  et  $C_2$  convexes, non vides, disjoints,
- $C_1$  ou  $C_2$  est d'intérieur non vide, alors on peut séparer  $C_1$  et  $C_2$ .
- $\underline{\mathbf{Si}} \cdot C_1$  et  $\overline{C_2}$  convexes, non vides, disjoints,
- l'un est fermé, l'autre est compact, alors on peut séparer  $C_1$  et  $C_2$  strictement.

#### **Cône dual (§ 2.5.6)**

 $\mathbb{E}$  muni d'un produit scalaire  $\langle \cdot, \cdot \rangle$ .

• **Dfn**: Le cône dual de  $P \subset \mathbb{E}$  est défini par

$$P^+ := \{ y \in \mathbb{E} : \langle y, x \rangle \geqslant 0, \ \forall x \in P \}.$$

C'est un cône, convexe, fermé, non vide.

- Lemme de Farkas (généralisé)
  - $\underline{Si} \cdot \mathbb{E}$  et  $\mathbb{F}$  deux espaces euclidiens,
  - K un cône convexe  $\neq \varnothing$  de  $\mathbb{E}$ ,  $A: \mathbb{E} \to \mathbb{F}$  linéaire,

alors 
$$\{y \in \mathbb{F} : A^*y \in K^+\}^+ = \overline{A(K)}$$
.

• Cas particulier: Soit A une matrice. Alors

$$\{Ax : x \geqslant 0\}$$
 = cône, convexe, fermé,  $\neq \emptyset$   
 $\{y : A^{\top}y \geqslant 0\}^{+}$  =  $\{Ax : x \geqslant 0\}$ .

 $(\cdot)^+$  = dual pour le produit scalaire euclidien. [c'est une généralisation de  $N(A^{\top})^{\perp} = R(A)$ ]

#### Fonction convexe (§ 3.1)

Soient  $\mathbb{E}$  un espace vectoriel et  $f: \mathbb{E} \to \overline{\mathbb{R}}$ .

• **Dfn**. Le domaine de f est l'ensemble

$$\operatorname{dom} f := \{ x \in \mathbb{E} : f(x) < +\infty \}.$$

On peut avoir  $f(x) = -\infty$  pour  $x \in \text{dom } f$ .

• **Dfn**. L'épigraphe de f est l'ensemble

$$\operatorname{epi} f := \{(x, \alpha) \in \mathbb{E} \times \mathbb{R} : f(x) \leqslant \alpha\}.$$

• **Dfn**. f est convexe  $\iff$  epi f est convexe.

$$f \text{ est convexe } \iff \forall x, y \in \text{dom } f, \forall t \in ]0,1[:]$$
 
$$f\Big((1-t)x + ty\Big) \leqslant (1-t)f(x) + tf(y).$$

#### Différentiabilité directionnelle (§ 3.3.2)

Soient  $f \in \text{Conv}(\mathbb{E}), x \in \text{dom } f \text{ et } d \in \mathbb{E}$ .

- 1)  $t \in ]0, +\infty[ \mapsto \frac{f(x+td)-f(x)}{t}$  est croissante, 2) f'(x;d) existe dans  $\overline{\mathbb{R}}$ , 3)  $f'(x;d) = +\infty \iff f(x+td) = +\infty, \forall t > 0$ ,

- 4)  $f'(x;-d) \ge -f'(x;d)$ ,
  5)  $f'(x;\cdot)$  est convexe,
- 5)  $f'(x;\cdot)$  est convexe,

6) 
$$x \in (\operatorname{dom} f)^{\circ} \implies \begin{cases} f'(x; \cdot) \in \mathbb{R}, \\ f'(x; \cdot) \text{ Lipschitz}, \\ f'(x; \cdot) \in \operatorname{Conv}(\mathbb{E}). \end{cases}$$

## Reconnaître une fonction convexe par ses dérivées (§ 3.3.3)

#### Enveloppe supérieure (§ 3.4.2)

• Enveloppe supérieure d'une famille de  $f_i : \mathbb{E} \to \overline{\mathbb{R}}$ ,  $i \in I$  (quelconque):

$$\left(\sup_{i\in I} f_i\right)(x) := \sup_{i\in I} \left(f_i(x)\right).$$

- epi  $(\sup_{i \in I} f_i) = \bigcap_{i \in I} (\operatorname{epi} f_i)$ .  $f_i$  convexes  $\implies \sup_{i \in I} f_i$  convexe.  $f_i$  fermées  $\implies \sup_{i \in I} f_i$  fermée.

Soient X un convexe de  $\mathbb{E}$  et  $f: X \to \mathbb{R}$ .

• Si f est 1 fois dérivable et X ouvert

Les propriétés suivantes sont équivalentes :

- f est convexe sur X[resp. strictement convexe],
- $\forall x, y \in X, x \neq y$ :

$$- \forall x, y \in X, x \neq y:$$

$$f(y) \geqslant f(x) + f'(x) \cdot (y - x)$$
[resp. >],
$$- \forall x, y \in X, x \neq y:$$

$$(f'(y) - f'(x)) \cdot (y - x) \geqslant 0$$
[resp. >].

$$(f'(y) - f'(x)) \cdot (y - x) \geqslant 0$$

- Si f est 2 fois dérivable et X ouvert :

   f est convexe sur  $X \iff$   $\forall x \in X, \forall h \in \mathbb{E}, f''(x) \cdot h^2 \geqslant 0,$  f est strictement convexe sur  $X \iff$   $\forall x \in X, \forall h \in \mathbb{E} \text{ non nul, } f''(x) \cdot h^2 > 0.$

Contre-exemple:  $f(x) = x^4$ .

# III | Conditions d'optimalité (CO)

Le problème à résoudre :

$$(P_X) \quad \begin{cases} \min f(x) \\ x \in X, \end{cases}$$

où  $X \subset E$  (espace euclidien, produit scalaire  $\langle \cdot, \cdot \rangle$ ).

- **But**. L'optimalité s'exprime par un nombre infini de conditions  $x_* \in X$  et  $\forall x \in X : f(x_*) \leq f(x)$ . Peut-on exprimer cela avec un nombre fini de conditions?
- Qu'est-ce? Des = et  $\leq$  décrivant les solutions de  $(P_X)$ .
- Utilité des CO:
  - donner des renseignements sur  $(P_X)$ ,
  - vérifier qu'un point est solution,
  - calculer la solution analytiquement (parfois),
  - définir des algorithmes de résolution.
- Il y a des CO nécessaires (notées CN) et des CO suffisantes (notées CS).
- Il y a des CO du 1<sup>er</sup> ordre (CN1, CS1) et des CO du 2<sup>ième</sup> ordre (CN2, CS2).

#### CO sans contrainte (rappel, § 4.2)

Le problème à résoudre :

$$\begin{cases} \min f(x) \\ x \in \mathbb{E}. \end{cases}$$

On note  $\nabla f(x)$  et  $\nabla^2 f(x)$  les gradient et hessien de f en x pour  $\langle \cdot, \cdot \rangle$ .

• CN1:

$$x_* \min local \implies \nabla f(x_*) = 0.$$

(Si f est convexe, c'est une **CS1** globale.)

• CN2:

$$x_* \text{ min local} \implies \begin{cases} \nabla f(x_*) = 0 \\ \nabla^2 f(x_*) \geq 0. \end{cases}$$

• CS2 pour un minimum local strict:

$$\begin{cases} \nabla f(x_*) = 0 \\ \nabla^2 f(x_*) > 0 \end{cases} \implies x_* \text{ min local strict.}$$

#### CN1 de Peano-Kantorovitch (§ 4.1)

Le problème à résoudre :

$$(P_X) \quad \begin{cases} \min f(x) \\ x \in X. \end{cases}$$

**Dfn.** Cône tangent :  $d \in T_x X \iff$ 

$$\exists \{x_k\} \subset X, \quad \exists \{t_k\} \downarrow 0: \quad \frac{x_k - x}{t_k} \to d.$$





#### Prop

- $T_x X$  est fermé.
- X convexe et  $x \in X \implies T_x X$  convexe.

#### Conditions d'optimalité

• **CN1 de Peano-Kantorovitch**. On exprime plus ou moins le fait que *f* croît si on se déplace "vers l'intérieur" de *X*:

$$f'(x_*) \cdot d \geqslant 0, \quad \forall d \in T_{x_*} X,$$
 (2)

où  $T_{x_*}$  X est le cône tangent à X en  $x_*$ , ce qui s'écrit aussi

$$\nabla f(x_*) \in (\mathcal{T}_{x_*} X)^+, \tag{3}$$

• **CN1**. Lorsque *X* est <u>convexe</u>, la relation (2) se simplifie en :

$$f'(x_*) \cdot (x - x_*) \geqslant 0, \quad \forall x \in X. \tag{4}$$

• CS1. Si X est <u>convexe</u>, f est <u>convexe</u> et (4), alors  $x_*$  est un minimum <u>global</u>.

#### CO avec contraintes d'= (§ 4.3)

Le problème en  $x \in \mathbb{E}$  (e.v. euclidien) à résoudre :

$$(P_E) \quad \left\{ egin{array}{l} \min f(x) \\ c(x) = 0 \in \mathbb{F} \quad ext{(e.v. euclidien)}. \end{array} 
ight.$$

Ensemble admissible noté  $X_E$ .

Le lagrangien du problème :

$$\ell(x,\lambda) = f(x) + \langle \lambda, c(x) \rangle$$
.

• CN1: si  $c'(x_*)$  est surjective, il existe  $\lambda_* \in \mathbb{F}$ , unique, tel que

$$\begin{cases} \nabla_x \ell(x_*, \lambda_*) = 0 \\ c(x_*) = 0. \end{cases}$$
 (5)

(Si c affine,  $\lambda_*$  existe, pas néc. unique.) (Si f est convexe et  $X_E$  est convexe, ce sont des **CS1** globales.)

Si  $\mathbb{F} = \mathbb{R}^m$ , la première condition de (5) s'écrit

$$\nabla f(x_*) + \sum_{i=1}^m (\lambda_*)_i \nabla c_i(x_*) = 0.$$

• CN2: si  $x_*$  minimum local et  $c'(x_*)$  est surjective, alors il existe  $\lambda_*$  tel que

$$\begin{cases} \nabla_x \ell(x_*, \lambda_*) = 0 \\ c(x_*) = 0 \\ \nabla^2_{xx} \ell(x_*, \lambda_*) \geq 0 \text{ sur } N(c'(x_*)). \end{cases}$$

• CS2: si  $(x_*, \lambda_*)$  vérifie

$$\begin{cases} \nabla_x \ell(x_*, \lambda_*) = 0 \\ c(x_*) = 0 \\ \nabla_{xx}^2 \ell(x_*, \lambda_*) > 0 \text{ sur } N(c'(x_*)), \end{cases}$$

alors  $x_*$  est un minimum local strict.

# CO avec contraintes d'= et $d' \le (§ 4.4)$

Le problème à résoudre en  $x \in \mathbb{E}$  :

$$(P_{EI}) \begin{cases} \min f(x) \\ c_E(x) = 0 \in \mathbb{R}^{m_E} \\ c_I(x) \leq 0 \in \mathbb{R}^{m_I}. \end{cases}$$

Ensemble admissible noté  $X_{EI}$ .

Le lagrangien du problème ( $c := (c_E, c_I)$ ):

$$\ell(x,\lambda) = f(x) + \lambda^{\top} c(x).$$

On note  $I^0(x) := \{i \in I : c_i(x) = 0\}.$ 

• CN1: si les contraintes sont qualifiées en  $x_*$ , il existe  $\lambda_* \in \mathbb{R}^m$  tel que

(KKT) 
$$\begin{cases} \nabla_x \ell(x_*, \lambda_*) = 0 \\ c_E(x_*) = 0 \\ 0 \leqslant (\lambda_*)_I \perp c_I(x_*) \leqslant 0. \end{cases}$$

(Si f est convexe et  $X_{EI}$  est convexe, ce sont des **CS1** globales.)

#### Qualification des contraintes (§ 4.4.3)

• **Dfn**: on dit que les contraintes de  $(P_{EI})$  sont qualifiées en x si

$$T_x X = T_x' X, (6)$$

οù

$$T'_x X := \{ d : c'_E(x) \cdot d = 0, \ c'_{I^0(x)}(x) \cdot d \le 0 \}.$$

On a toujours :  $T_x X \subset T'_x X$ .

• **Conditions suffisantes** de qualification des contraintes. Régularité + l'une des conditions suivantes :

(QC-A)  $c_{E \cup I^0(x)}$  est affine dans un voisinage de x.

 $\begin{array}{c} \text{(QC-S)} \ \ c_E \ \text{est affine}, \\ c_{I^0(x)} \ \ convexe, \\ \exists \ \check{x} \in X \ \text{tel que} \ c_{I^0(x)}(\check{x}) < 0. \end{array}$ 

(QC-IL) les gradients  $\{\nabla c_i(x)\}_{i \in E \cup I^0(x)}$  sont linéairement indépendants.

 $\begin{array}{c} \text{(QC-MF)} \ \sum_{i \in E \cup I^0(x)} \alpha_i \nabla c_i(x) = 0 \text{ et } \alpha_{I^0(x)} \geqslant 0 \quad \Longrightarrow \\ \alpha_{E \cup I^0(x)} = 0. \end{array}$ 

(QC-MF')  $c_E'(x)$  surjective et  $\exists$   $d\in\mathbb{E}$  tel que  $c_E'(x)\cdot d=0$  et  $c_{I_0^0}'(x)\cdot d<0$ .

#### Démarche suivie pour obtenir (KKT)

- On part de (2) [i.e., f croît de  $x_*$  vers l'intérieur de X].
- On suppose que les contraintes sont qualifiées en  $x_*$  (on a (6) avec  $x = x_*$ ). Dès lors

$$\nabla f(x_*) \in \left(\mathbf{T}'_{x_*} X\right)^+. \tag{7}$$

• Lemme de Farkas:

Données :  $A : \mathbb{E} \to \mathbb{F}$  linéaire et K cône de  $\mathbb{E}$ .

$$\{y \in \mathbb{F} : A^*y \in K^+\}^+ = \overline{A(K)}.$$

C'est une généralisation de  $N(A)^{\perp} = R(A^{\top})$ .

• Le lemme de Farkas permet d'exprimer (7) autrement :  $\exists \lambda_* \in \mathbb{R}^m$  tel que l'on ait (KKT).

#### Signification des multiplicateurs optimaux (§ 4.6.1)

• Problème perturbé : pour  $p \in \mathbb{R}^m$ , on définit

$$(P_{EI}^p) \begin{cases} \min f(x) \\ c_E(x) + p_E = 0 \\ c_I(x) + p_I \leqslant 0. \end{cases}$$

• **Dfn**. La fonction valeur associée à  $(P_{EI}^p)$  est  $v: p \in \mathbb{R}^m \to \overline{\mathbb{R}}$  définie par

$$v(p) = \inf_{x \in X^p} f(x),$$

où  $X^p$  est l'ensemble admissible de  $(P_{EI}^p)$ .

$$(P_{EI})$$
 convexe  $\implies v$  convexe.

• Cas différentiable régulier.

 $\underline{Si} \cdot (x_*, \lambda_*) \text{ solution PD de } (P_{EI}),$   $\cdot (\bar{x}(p), \bar{\lambda}(p)) \text{ solution PD de } (P_{EI}^p),$   $\cdot p \mapsto \bar{x}(p) \text{ différentiable en } 0, \bar{x}(0) = x_*,$   $\cdot p \mapsto \bar{\lambda}(p) \text{ continue en } 0, \bar{\lambda}(0) = \lambda_*,$   $\underline{alors} \ \lambda_* = \nabla v(0) = \nabla (f \circ \bar{x})(0).$ 

• On note

$$\Lambda := \{ \lambda \in \mathbb{R}^m : \lambda_I \geqslant 0 \}.$$

• **Dfn**. On dit que  $(x_*, \lambda_*) \in \mathbb{R}^n \times \Lambda$  est un point-selle de  $\ell$  sur  $\mathbb{R}^n \times \Lambda$ , si  $\forall (x, \lambda) \in \mathbb{R}^n \times \Lambda$ :

$$\ell(x_*, \lambda) \leqslant \ell(x_*, \lambda_*) \leqslant \ell(x, \lambda_*).$$

• Cas convexe non différentiable.

```
\underline{Si} \cdot x_* est solution de (P_{EI}),
     • v \in \operatorname{Conv}(\mathbb{R}^m),
alors
 \partial v(0)
  = \{\lambda_*: (x_*, \lambda_*) \text{ est point-selle de } \ell \text{ sur } \mathbb{R}^m \times \Lambda\}.
```

Remarque: Ci-dessus,  $\partial v(0)$  peut être vide! Avec qualification de Slater :  $\partial v(0) \neq \emptyset$ .

• CN et CS d'existence de solution PD globale.

CN d'optimalité (cas convexe non diff.).

 $\underline{Si} \cdot (P_{EI})$  convexe (avec f et c finies), - (Slater) :  $c_E'$  surjective,  $\exists \hat{x} \in X$  t.q.  $c_I(\hat{x}) < 0$ ,

•  $x_*$  solution de  $(P_{EI})$ ,

alors 1) v est loc. lipschitzienne dans un vois. de 0,

2)  $\partial v(0) \neq \emptyset$ .

#### CS d'optimalité globale.

Peu de chance d'être applicable si  $(P_{EI})$  non convexe.

 $\underline{\underline{Si}} \cdot (x_*, \lambda_*) \in \mathbb{R}^n \times \Lambda$  est un point-selle de  $\ell$  sur  $\mathbb{R}^n \times \Lambda$ , alors  $x_*$  solution (globale) de  $(P_{EI})$ .

#### IV

#### Méthodes à directions de descente

#### Schéma des algorithmes (§ 6.1)

• **Dfn**: d est direction de descente de f en x si

$$f'(x) \cdot d < 0.$$

 $\implies$  f décroît en x le long de d.

- Algorithme à directions de descente : il génère une suite  $\{x_k\}\subset \mathbb{E}$  comme suit
  - Calcul d'une direction de descente  $d_k$ ;
  - Recherche linéaire : on détermine un pas  $\alpha_k > 0$  le long de  $d_k$ ;
  - Nouvel itéré :  $x_{k+1} := x_k + \alpha_k d_k$ .



#### Exemples d'algorithmes à DD (§ 6.2)

On note  $g_k := \nabla f(x_k)$ .

• Algorithme du gradient.

$$d_k = -g_k.$$

• Algorithme du gradient conjugué.

$$d_k = \begin{cases} -g_1 & \text{si } k = 1\\ -g_k + \beta_k d_{k-1} & \text{si } k \geqslant 2. \end{cases}$$

• Algorithme de Newton.

$$d_k = -\nabla^2 f(x_k)^{-1} g_k.$$

• Algorithme de quasi-Newton.

$$d_k = -M_k^{-1} g_k.$$

• Algorithme de Gauss-Newton

pour 
$$f(x) = \frac{1}{2} ||r(x)||_2^2$$
 et  $J(x) := r'(x)$  injective :

$$d_k = -(J(x_k)^*J(x_k))^{-1}J(x_k)^*r(x_k).$$

#### La recherche linéaire (§ 6.3)

Deux techniques souvent utilisées : RL d'Armijo et RL de Wolfe.

Soient  $d_k$  une direction de descente et

$$h_k(\alpha) := f(x_k + \alpha d_k).$$

• RL d'Armijo  $(0<\omega_1<\frac{1}{2},\ 0<\tau<1)$ 

$$h_k(\alpha_k) \leqslant h(0) + \omega_1 \alpha_k h'_k(0), \quad \alpha_k = \tau^{i_k},$$

où  $i_k$  est le plus petit dans  $\{0, 1, 2, \ldots\}$ .



Valeurs typiques :  $\omega_1 = 10^{-4}$  et  $\tau = \frac{1}{2}$ .

• RL de Wolfe  $(0<\omega_1<\frac{1}{2},\ \omega_1<\omega_2<1)$   $h_k(\alpha_k)\leqslant h(0)+\omega_1\alpha_kh_k'(0),$ 



 $h'_{k}(\alpha_{k}) \geqslant \omega_{2}h'_{k}(0).$ 

Valeurs typiques:  $\omega_1 = 10^{-4}$  et  $\omega_2 = 0.99$ .

#### Convergence avec la RL de Wolfe (§ 6.3.4)

- **Dfn**:

$$\cos \theta_k := \frac{-\langle g_k, d_k \rangle}{\|g_k\| \|d_k\|}.$$

- Théor:

$$\underline{Si} \cdot f \in C^{1,1},$$

$$\cdot \text{ RL de Wolfe}$$

$$\cdot \exists C, \quad \forall k \geqslant 0, \quad f(x_k) \geqslant C,$$

$$\underline{alors}$$

$$\sum_{k \geqslant 0} \|g_k\|^2 \cos^2 \theta_k < +\infty.$$

- Convergence:
  - \* Algo du gradient :  $\theta_k = 0$ , donc  $g_k \to 0$ .
  - \* Plus généralement :  $\cos \theta_k \geqslant c > 0$ , donc  $g_k \to 0$ .

# V Méthodes newtoniennes pour équations

#### Vitesse de convergence des suites (§ 5.1.1)

Soit  $\{x_k\}$  une suite convergeant vers  $x_* \in \mathbb{E}$ . On suppose que  $x_k \neq x_*$ , pour tout  $k \geqslant 1$ .

• Convergence linéaire : il existe une norme  $\|\cdot\|$ , un indice  $k_0$  et  $\tau \in [0, 1[$  tels que  $\forall k \ge k_0$  :

$$\frac{\|x_{k+1} - x_*\|}{\|x_k - x_*\|} \leqslant \tau.$$

• Convergence superlinéaire :

$$\frac{\|x_{k+1} - x_*\|}{\|x_k - x_*\|} \to 0.$$

• Convergence quadratique : il existe une constante C > 0 telle que  $\forall k \ge 1$  :

$$\frac{\|x_{k+1} - x_*\|}{\|x_k - x_*\|^2} \leqslant C.$$

 $\sigma_k$  = nombre de chiffres significatifs corrects.

|    | superlinéaire                    |            | quadratique                      |            |
|----|----------------------------------|------------|----------------------------------|------------|
| k  | $x_k$                            | $\sigma_k$ | $x_k$                            | $\sigma_k$ |
| 1  | 2.000000000000000                | 0          | 2.000000000000000                | 0          |
| 2  | 1.500000000000000                | 0          | <b>0</b> .86666666666667         | 1          |
| 3  | 0.61224489795918                 | 1          | <b>-0</b> .32323745064862        | 1          |
| 4  | - <mark>0</mark> .16202797536640 | 1          | <b>-0</b> .92578663808031        | 1          |
| 5  | - <mark>0</mark> .92209500449059 | 1          | - <mark>0.8</mark> 2332584261905 | 2          |
| 6  | - <mark>0</mark> .78540447895661 | 1          | - <mark>0.8177</mark> 4699537697 | 5          |
| 7  | - <mark>0.81</mark> 609056319699 | 3          | -0.81773167400186                | 9          |
| 8  | <b>-0.8177</b> 5774021392        | 5          | -0.81773167388682                | 15         |
| 9  | -0.81773165292101                | 8          |                                  |            |
| 10 | -0.81773167388656                | 13         |                                  |            |
| 11 | -0.81773167388682                | 15         |                                  |            |

$$\begin{array}{ccc} \text{Lin\'eaire} &\Longrightarrow & \begin{cases} \exists \underline{\sigma} > 0, \ \forall k \ \text{grand} : \\ \sigma_{k+1} - \sigma_k \geqslant \underline{\sigma}. \end{cases} \\ \text{Superlin\'eaire} &\Longrightarrow & \sigma_{k+1} - \sigma_k \rightarrow \infty. \\ \text{Quadratique} &\Longrightarrow & \liminf_{k \rightarrow \infty} \frac{\sigma_{k+1}}{\sigma_k} \geqslant 2. \end{cases}$$

#### Algorithme de Newton pour systèmes non linéaires

Soit  $F: \mathbb{E} \to \mathbb{F}$ , avec dim  $\mathbb{E} = \dim \mathbb{F} < \infty$ . On cherche à résoudre en x:

$$F(x) = 0.$$

- Algorithme de Newton. De  $x_k$  à  $x_{k+1}$ :
  - Résoudre en  $d_k$  l'équation de Newton :

$$F'(x_k)\frac{\mathbf{d}_k}{\mathbf{d}_k} = -F(x_k). \tag{8}$$

- Nouvel itéré:

$$x_{k+1} = x_k + d_k.$$

• Exemple 1D.



- Propriétés de l'algorithme de Newton.
- ⊕⊕ Convergence quadratique *locale* :

Si •  $x_*$  vérifie  $F(x_*) = 0$ , • F est  $C^{1,1}$  dans un voisinage de  $x_*$ , •  $F'(x_*)$  est inversible,

alors il existe un voisinage V de  $x_*$  tel que si  $x_1 \in V$ , l'algorithme de Newton (8) est bien défini et génère une suite  $\{x_k\} \subset V$  qui converge quadratiquement vers

- $\ominus$  En général ne converge pas si  $x_1$  n'est pas proche d'une solution.
- $\ominus$  Il faut calculer les dérivées premières de F.

# Globalisation de l'algorithme de Newton par recherche linéaire (§ 9.3.1)

- **Dfn**: « globaliser » = forcer la convergence lorsque  $x_1$  n'est pas voisin d'une solution.
- Une solution miracle?

Si  $F(x) \neq 0$ , la direction de Newton en x,

$$d^{N} = -F'(x)^{-1}F(x),$$

est une direction de descente de

$$f(x) = \frac{1}{2} ||F(x)||_2^2.$$

On a 
$$f'(x) \cdot d^{N} = -\|F(x)\|_{2}^{2} < 0$$
.

• RL sur f le long de  $d^{\rm N}$ :  $x_+:=x+\alpha d^{\rm N}$ , avec  $\alpha>0$  tel que (ici  $\omega_1\in ]0,\frac12[)$ 

$$f(x_+) \leqslant f(x) + \alpha \omega_1 f'(x) \cdot d^{N}$$
.

• Un résultat de convergence :

 $\underline{\operatorname{Si}} \left\{ F'(x_k) \right\}$  et  $\left\{ F'(x_k)^{-1} \right\}$  sont bornées, alors l'algorithme de Newton avec une RL « convenable » converge vers un point stationnaire de f:  $\nabla f(x_k) \to 0$ .

 Cette approche ne converge pas toujours!
 C'est la raison pour laquelle on a inventé la technique des régions de confiance (voir un cours plus avancé).

#### v,

#### Méthodes newtoniennes en optimisation (§ 9.1.2)

Soit le problème

$$\min_{x \in \mathbb{E}} f(x).$$

• On se déclare satisfait avec  $x_*$  vérifiant

$$\nabla f(x_*) = 0.$$

La relation  $F = \nabla f$  permet d'adapter l'algorithme de Newton  $(F'(x) = \nabla^2 f(x)$  est symétrique).

- Algorithme de Newton. De  $x_k$  à  $x_{k+1}$ :
  - Résoudre en  $d_k$  l'équation de Newton :

$$\nabla^2 f(x_k) \, \frac{\mathbf{d_k}}{\mathbf{d_k}} = -\nabla f(x_k). \tag{9}$$

- Nouvel itéré:

$$x_{k+1} = x_k + \mathbf{d_k}.$$

#### • Le problème quadratique osculateur.

Le pas de Newton  $d_k$  est aussi un point *stationnaire* du problème quadratique

$$\min_{\mathbf{d} \in \mathbb{E}} \left( f(x_k) + \nabla f(x_k)^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} \nabla^2 f(x_k) \mathbf{d} \right).$$



#### • Propriétés de l'algorithme de Newton.

⊕⊕ Convergence quadratique *locale*:

 $\underline{Si} \cdot x_*$  vérifie  $\nabla f(x_*) = 0$ ,

- f est C<sup>2,1</sup> dans un voisinage de x<sub>\*</sub>,
  ∇<sup>2</sup>f(x<sub>\*</sub>) est inversible,

alors il existe un voisinage V de  $x_*$  tel que si  $x_1 \in V$ , l'algorithme de Newton est bien défini et génère une suite  $\{x_k\} \subset V$  qui converge quadratiquement vers  $x_*$ .

- $\ominus$  En général ne converge pas si  $x_1$  n'est pas proche d'un point stationnaire.
- ⊖ Pas de distinction entre min, max, point stationnaire.
- → Les directions ne sont pas nécessairement de descente.
- $\ominus$  Il faut calculer les dérivées secondes de f.

#### Algorithmes de quasi-Newton (§§ 10.1.1, 10.2.1, 10.2.2)

Soit le problème

$$\min_{x \in \mathbb{R}^n} f(x).$$

• Les algorithmes de qN génèrent 2 suites :

$$\{x_k\} \subset \mathbb{R}^n$$
 et  $\{M_k\} \subset \mathbb{R}^{n \times n}$  sym. dfn. pos.

- 1)  $d_k := -M_k^{-1} q_k$ ;
- 2)  $\alpha_k > 0$  par recherche linéaire;
- 3)  $x_{k+1} := x_k + \alpha_k d_k$ ;
- 4)  $M_{k+1} := U(M_k, y_k, s_k),$ où  $y_k := g_{k+1} - g_k$  et  $s_k := x_{k+1} - x_k$ .
- Mise à jour de  $M_k$ . On cherche à ce que  $M_{k+1}$  soit proche de  $M_k$  (stabilité), tout en vérifiant :
  - l'équation de qN:  $y_k = M_{k+1}s_k$ ;
  - la symétrie :  $M_{k+1}^{\top} = M_{k+1}$ ;
  - la définie positivité :  $M_{k+1} \succ 0$ .

Cela conduit à la formule de BFGS.

$$M_{k+1} = M_k + \frac{y_k y_k^\top}{y_k^\top s_k} - \frac{M_k s_k s_k^\top M_k}{s_k^\top M_k s_k}.$$

# VI Problèmes de moindres-carrés

• Ce sont des problèmes de la forme

$$\min_{x \in \mathbb{R}^n} ||F(x)||,$$

où  $F: \mathbb{R}^n \to \mathbb{R}^m$ . En général  $m \gg n$ .

• Exemple : la régression linéaire.



#### Moindres-carrés linéaire (§ 17.1)

• **Problème**: on cherche une solution de

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_2,\tag{10}$$

où A est  $m \times n$  et  $b \in \mathbb{R}^m$ .

• Équation normale : x est solution ssi

$$A^{\top} A x = A^{\top} b. \tag{11}$$

- Existence de solution :
  - Le problème (10) a toujours une solution.
  - $\circ$  Solution unique  $\iff$  A est injective.
  - $\circ$  Ensemble des solutions  $= x_p + N(A)$ .
- Méthodes numériques :
  - Factorisation de Cholesky de  $A^{T}A$ .
  - GC sur (11).
  - Factorisation QR de A.
  - Factorisation SVD de A.

#### Moindres-carrés non linéaire (§ 17.3)

• **Problème** : on cherche une solution de

$$\min_{x \in \mathbb{R}^n} \left( f(x) := \frac{1}{2} ||r(x)||_2^2 \right), \tag{12}$$

où  $r: \mathbb{R}^n \to \mathbb{R}^m$  est non linéaire (les résidus). Jacobienne  $J \equiv J(x) \equiv r'(x)$ , qui est  $m \times n$ .

• Algorithme de Gauss-Newton : RL le long de

$$d_k^{\text{GN}} \in \operatorname*{arg\,min}_{d \in \mathbb{R}^n} \, rac{1}{2} \| r(x_k) + J(x_k) d \|_2^2.$$

On a 
$$f'(x_k) \cdot d_k^{\text{GN}} \leq 0 \ (< 0 \text{ si } \nabla f(x_k) \neq 0).$$

#### Résultat de convergence :

 $\underline{Si} \{J(x_k)\}$  est bornée et unif. injective, i.e.,

$$\exists C > 0, \ \forall k \geqslant 1, \ \forall v \in \mathbb{R}^n :$$
  
 $C\|v\|_2 \leqslant \|J(x_k)v\|_2 \leqslant C^{-1}\|v\|_2,$ 

alors l'algorithme de Gauss-Newton avec RL converge vers un point stationnaire de f (c'est-à-dire  $J(x_k)^{\top}r(x_k) \to 0$ ).

• Algorithme de Levenberg-Marquardt (révisé) : RC avec le modèle quadratique

$$\varphi_k(s) := \frac{1}{2} \|r(x_k) + J(x_k)s\|_2^2.$$

#### Résultat de convergence :

 $\underline{Si} \{J(x_k)\}$  est bornée,

alors l'algorithme de Levenberg-Marquardt avec RC converge vers un point stationnaire de f (c'est-à-dire  $J(x_k)^{\top} r(x_k) \to 0$ ).

# VII Dualité (§ 13)

• Un premier problème :

$$(P) \quad \begin{cases} & \inf x_2 \\ & x \in X \\ & x_1 = 0. \end{cases}$$



• Un second problème :

$$(D) \quad \sup_{\lambda \in \mathbb{R}} \, \delta(\lambda)$$



- (P) et (D) sont duaux l'un de l'autre.
- Intérêts de la dualité :
  - obtenir des propriétés sur un problème à partir des propriétés d'un pbl dual (e.g., une borne sur la valeur optimale);
  - construire des pbls duaux équivalents au pbl primal, mais plus faciles à résoudre;
  - algorithmique : recherche de point-selle, du multiplicateur optimal.

#### Dualité min-max (§ 13.1)

Soient X un ensemble,  $f: X \to \overline{\mathbb{R}}$  et

$$(P) \quad \inf_{x \in X} f(x).$$

• Récriture du problème primal.

On suppose que

$$f(x) = \sup_{y \in Y} \varphi(x, y),$$

où  $\varphi:X\times Y\to\overline{\mathbb{R}}$ . Donc

(P) 
$$\inf_{x \in X} \sup_{y \in Y} \varphi(x, y) = \operatorname{val}(P).$$

• Le problème dual : on inverse l'inf et le sup

(D) 
$$\sup_{y \in Y} \inf_{x \in X} \varphi(x, y) = \operatorname{val}(D).$$

On peut aussi l'écrire  $\inf_{y \in Y} \delta(y)$ , où

$$\delta(y) := -\inf_{x \in X} \varphi(x, y). \tag{13}$$

 $\circ \delta \equiv$  fonction duale,

 $\circ$  (13)  $\equiv$  problème interne en  $y \in Y$ .

#### Liens entre (P) et (D)

• Dualité faible :

$$val(D) \leq val(P)$$
.

Saut de dualité :=  $val(P) - val(D) \ge 0$ .

• **Dfn**: On dit que  $(\bar{x}, \bar{y})$  est un point-selle de  $\varphi$  sur  $X \times Y$ , si  $\forall x \in X$  et  $\forall y \in Y$ 

$$\varphi(\bar{x}, y) \leqslant \varphi(\bar{x}, \bar{y}) \leqslant \varphi(x, \bar{y}).$$

- **Théor** :  $(\bar{x}, \bar{y})$  est un point-selle de  $\varphi$  sur  $X \times Y$  SSI
  - 1)  $\bar{x}$  est solution de (P),
  - 2)  $\bar{y}$  est solution de (D),
  - 3) il n'y a pas de saut de dualité.
- Coroll: Si  $\varphi$  a un point-selle et  $\bar{y} \in \operatorname{Sol}(D)$ :

$$\varnothing \neq \operatorname{Sol}(P) \subset \operatorname*{arg\,min}_{x \in X} \varphi(x, \bar{y}).$$

#### **Dualisation de contraintes fonctionnelles (§ 13.5)**

On cherche à écrire un problème dual du problème d'optimisation avec contraintes :

$$(P_{X,EI}) \begin{cases} \min f(x) \\ x \in X \\ c_E(x) = 0 \\ c_I(x) \leq 0. \end{cases}$$

où  $X \subset \mathbb{E}$ , sans qu'il y ait de saut de dualité.

#### Dualité lagrangienne

(problèmes convexes)

On prend pour  $\varphi$ , le lagrangien (ici  $y \equiv \lambda$ )

$$\varphi(x,\lambda) \equiv \ell(x,\lambda) = f(x) + \lambda^{\top} c(x),$$

$$X \subset \mathbb{E} \text{ et } Y := \mathbb{R}^{m_E} \times \mathbb{R}^{m_I}_+.$$

• Problème primal:

$$(P_{X,EI}) \equiv \inf_{x \in X} \sup_{\lambda \in Y} \ell(x,\lambda).$$

• Problème dual :

$$\sup_{\lambda \in Y} \inf_{x \in X} \ell(x, \lambda).$$

• Résultat de dualisation :

$$\underline{\mathbf{Si}} \cdot X = \mathbb{E},$$

- $(P_{X,EI})$  est «  $\underline{\text{convexe}}$  » (i.e., f et  $c_I$  convexes et  $c_E$  affine),  $(\bar{x}, \bar{\lambda})$  vérifie (KKT),

alors  $(\bar{x}, \bar{\lambda})$  est point-selle de  $\ell$  sur  $\mathbb{E} \times Y$ .

#### • Relaxation lagrangienne (Uzawa)

On passe de  $\lambda_k$  à  $\lambda_{k+1}$  par :

- 1.  $x_k \in \operatorname{arg\,min}_{x \in \mathbb{R}} \ell(x, \lambda_k)$ ,
- 2. arrêt si  $(x_k, \lambda_k)$  est satisfaisant,
- 3.  $\lambda_{k+1} = P_Y [\lambda_k + \alpha_k c(x_k)].$

Explications de la formule de mise à jour de  $\lambda_k$ (algorithme du gradient avec projection):

- $\circ P_Y$  est le projecteur orthogonal sur Y (permet de maintenir les  $\lambda_k$  dans Y),
- $\alpha_k > 0$  est déterminé de manière à faire croître  $\delta$ ,
- $\circ$   $-c(x_k)$  est un sous-gradient de  $\delta$ .

#### Résultat de convergence :

- Si f fortement convexe,  $c_E$  affine et  $c_I$  convexe,
  - $(\bar{x}, \bar{\lambda})$  vérifie (KKT),  $\alpha_k > 0$  « petit »,

 $\underline{\text{alors}}\ x_k \to \bar{x}.$ 

#### Dualité lagrangienne augmentée

(problèmes non convexes)

On prend pour  $\varphi$ , le lagrangien augmenté

$$\ell_r(x,\lambda) = f(x) + \sum_{i \in E} \left[ \lambda_i c_i(x) + \frac{r}{2} c_i(x)^2 \right]$$

$$+ \sum_{i \in I} \left[ \lambda_i \max\left(\frac{-\lambda_i}{r}, c_i(x)\right) + \frac{r}{2} \left( \max\left(\frac{-\lambda_i}{r}, c_i(x)\right) \right)^2 \right].$$

• Problème primal:

$$\inf_{x \in X} \sup_{\lambda \in \mathbb{R}^m} \ell_r(x, \lambda).$$

• Problème dual:

$$\sup_{\lambda \in \mathbb{R}^m} \inf_{x \in X} \ell_r(x, \lambda).$$

• Résultat de dualisation :

$$\underline{\mathbf{Si}} \cdot X = \mathbb{E},$$
  
  $\cdot (\bar{x}, \bar{\lambda})$  vérifie les CS2,

alors il existe un voisinage V de  $\bar{x}$  et un seuil  $r_0 > 0$  tels que, pour tout  $r \geqslant r_0$ ,  $(\bar{x}, \bar{\lambda})$  est point-selle de  $\ell_r$  sur  $V \times \mathbb{R}^m$ .

• Relaxation lagrangienne augmentée (méthode des multiplicateurs)

On passe de  $(\lambda_k, r_k)$  à  $(\lambda_{k+1}, r_{k+1})$  par :

- 1.  $x_k \in \operatorname{arg\,min}_{x \in \mathbb{E}} \ell_{r_k}(x, \lambda_k)$ ,
- 2. arrêt si  $(x_k, \lambda_k)$  est satisfaisant,
- 3.  $\lambda_{k+1} = P_Y [\lambda_k + r_k c(x_k)]$  (pas besoin de RL!),
- 4. adapter  $r_k \wedge r_{k+1}$  (heuristique).