eGaN® FET DATASHEET EPC2090

# **EPC2090 – Enhancement Mode Power Transistor**

 $V_{DS}$  , 100 V  $R_{DS(on)} \, , \, \, 5.2 \; m\Omega \; max \\ I_D \, , \, \, 125 \; A$ 









Revised December 19, 2024

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low  $R_{DS(on)}$ , while its lateral device structure and majority carrier diode provide exceptionally low  $Q_G$  and zero  $Q_{RR}$ . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

### **Application Notes:**

- Easy-to-use and reliable gate, Gate Drive ON = 5 V typical, OFF = 0 V (negative voltage not needed)
- Top of FET is electrically connected to source

Questions: Ask a GaN Expert



|                  | Maximum Ratings                                              |            |      |  |  |
|------------------|--------------------------------------------------------------|------------|------|--|--|
|                  | PARAMETER                                                    | VALUE      | UNIT |  |  |
| V                | Drain-to-Source Voltage (Continuous)                         | 100        | V    |  |  |
| V <sub>DS</sub>  | Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150 °C) | 120        | V    |  |  |
| I <sub>D</sub>   | Continuous (T <sub>J</sub> ≤ 125°C)                          | 46         | ^    |  |  |
|                  | Pulsed (25°C, T <sub>PULSE</sub> = 300 μs)                   | 125        | A    |  |  |
| Vee              | Gate-to-Source Voltage                                       | 6          | W    |  |  |
| VGS              | Gate-to-Source Voltage                                       | -4         | V    |  |  |
| TJ               | Operating Temperature -40 to 150                             |            | °C   |  |  |
| T <sub>STG</sub> | Storage Temperature                                          | -40 to 150 | 1    |  |  |

| Thermal Characteristics |                                                     |      |      |  |
|-------------------------|-----------------------------------------------------|------|------|--|
| PARAMETER TYP           |                                                     |      |      |  |
| $R_{\theta JC}$         | Thermal Resistance, Junction-to-Case (Case TOP)     | 1.07 | °C/W |  |
| $R_{\theta JB}$         | Thermal Resistance, Junction-to-Board (Case BOTTOM) | 2.9  | C/VV |  |

| Static Characteristics ( $T_j = 25^{\circ}$ C unless otherwise stated) |                                           |                                                                              |     |       |       |    |  |
|------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------|-----|-------|-------|----|--|
|                                                                        | PARAMETER TEST CONDITIONS MIN TYP MAX UNI |                                                                              |     |       |       |    |  |
| BV <sub>DSS</sub>                                                      | Drain-to-Source Voltage                   | $V_{GS} = 0 \text{ V, I}_{D} = 0.045 \text{ mA}$                             | 100 |       |       | ٧  |  |
|                                                                        | Drain-Source Leakage                      | $V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V}$                                |     | 0.004 | 0.045 | mA |  |
| I <sub>DSS</sub>                                                       | Drain-Source Leakage                      | $V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V},$<br>$T_J = 90^{\circ}\text{C}$ |     | 0.02  | 0.17  |    |  |
|                                                                        | Gate-to-Source Forward Leakage            | $V_{GS} = 5 V$                                                               |     | 0.01  | 1.5   |    |  |
| I <sub>GSS</sub>                                                       | Gate-to-Source Forward Leakage#           | $V_{GS} = 5 \text{ V, T}_{J} = 125 ^{\circ}\text{C}$                         |     | 0.3   | 4     |    |  |
|                                                                        | Gate-to-Source Reverse Leakage            | $V_{GS} = -4 V$                                                              |     | 0.03  | 4     |    |  |
| $V_{GS(TH)}$                                                           | Gate Threshold Voltage                    | $V_{DS} = V_{GS}$ , $I_D = 4.2 \text{ mA}$                                   | 0.8 | 1.1   | 2.5   | V  |  |
| R <sub>DS(on)</sub>                                                    | Drain-Source On Resistance                | $V_{GS} = 5 \text{ V}, I_D = 16 \text{ A}$                                   |     | 3.8   | 5.2   | mΩ |  |
| $V_{SD}$                                                               | Source-Drain Forward Voltage#             | $I_S = 0.5 A, V_{GS} = 0 V$                                                  |     | 1.5   |       | V  |  |

<sup>#</sup> Defined by design. Not subject to production test.



Die Size: 2.3 x 1.45 mm

**EPC2090** eGaN® FETs are supplied in passivated die form with copper pillars.

# **Applications**

- Copper Pillars for Package Integration
- DC-DC Converters
- Isolated DC-DC Converters
- Lidar
- Sync Rectification for AC-DC and DC-DC
- Point-of-Load Converters
- USB-C
- · Class-D Audio
- LED Lighting
- eMobility

#### **Benefits**

- Ultra High Efficiency
- · No Reverse Recovery
- Ultra Low Q<sub>G</sub>
- Small Footprint

EPC2090 eGaN® FET DATASHEET

| Dynamic Characteristics $^{\#}$ (T $_{J}$ = 25 $^{\circ}$ C unless otherwise stated) |                                                       |                                                                   |  |      |      |    |
|--------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|--|------|------|----|
|                                                                                      | PARAMETER TEST CONDITIONS MIN TYP MAX                 |                                                                   |  |      |      |    |
| C <sub>ISS</sub>                                                                     | Input Capacitance                                     |                                                                   |  | 1046 | 1328 |    |
| $C_{RSS}$                                                                            | Reverse Transfer Capacitance                          | $V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$                     |  | 2.9  |      |    |
| C <sub>OSS</sub>                                                                     | Output Capacitance                                    |                                                                   |  | 364  | 478  | рF |
| C <sub>OSS(ER)</sub>                                                                 | Effective Output Capacitance, Energy Related (Note 1) | V 0+= F0VV 0V                                                     |  | 441  |      |    |
| C <sub>OSS(TR)</sub>                                                                 | Effective Output Capacitance, Time Related (Note 2)   | $V_{DS} = 0 \text{ to } 50 \text{ V}, V_{GS} = 0 \text{ V}$       |  | 548  |      |    |
| $R_G$                                                                                | Gate Resistance                                       |                                                                   |  | 0.4  |      | Ω  |
| $Q_{G}$                                                                              | Total Gate Charge                                     | $V_{DS} = 50 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 16 \text{ A}$ |  | 7.3  | 9.3  |    |
| $Q_GS$                                                                               | Gate-to-Source Charge                                 |                                                                   |  | 2.8  |      |    |
| $Q_{GD}$                                                                             | Gate-to-Drain Charge                                  | $V_{DS} = 50 \text{ V}, I_D = 16 \text{ A}$                       |  | 0.7  |      |    |
| $Q_{G(TH)}$                                                                          | Gate Charge at Threshold                              |                                                                   |  | 2.1  |      | nC |
| Qoss                                                                                 | Output Charge                                         | $V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$                     |  | 27   | 35   |    |
| Q <sub>RR</sub>                                                                      | Source-Drain Recovery Charge                          |                                                                   |  | 0    |      |    |

<sup>#</sup> Defined by design. Not subject to production test.

All measurements were done with substrate connected to source.

Figure 1: Typical Output Characteristics at 25°C



**Figure 2: Typical Transfer Characteristics** 



Figure 3: R<sub>DS(on)</sub> vs. V<sub>GS</sub> for Various Drain Currents



Figure 4: Typical  $R_{DS(on)}\, vs.\, V_{GS}\, for\, Various\, Temperatures$ 



Note 1:  $C_{OSS(ER)}$  is a fixed capacitance that gives the same stored energy as  $C_{OSS}$  while  $V_{DS}$  is rising from 0 to 50% BV<sub>DSS</sub>. Note 2:  $C_{OSS(TR)}$  is a fixed capacitance that gives the same charging time as  $C_{OSS}$  while  $V_{DS}$  is rising from 0 to 50% BV<sub>DSS</sub>.

eGaN® FET DATASHEET **EPC2090** 





Figure 5b: Typical Capacitance (Log Scale)



Figure 6: Typical Output Charge and Coss Stored Energy



Figure 7: Typical Gate Charge



**Figure 8: Reverse Drain-Source Characteristics** 



Figure 9: Normalized On-State Resistance vs. Temperature



**Note:** Negative gate drive voltage increases the reverse drain-source voltage.

EPC recommends 0 V for OFF.

eGaN® FET DATASHEET EPC2090



Figure 11: Safe Operating Area

1000

Limited by R<sub>DS(on)</sub>

Pulse Width

1 100 100 1000

 $V_{DS}$  - Drain-Source Voltage (V)  $T_J = Max \, Rated, \, T_C = +25 \, ^{\circ}C, \, Single \, Pulse$ 

**Figure 12: Transient Thermal Response Curves** 



t<sub>1</sub>, Rectangular Pulse Duration, seconds



t<sub>1</sub>, Rectangular Pulse Duration, seconds

EPC2090 eGaN® FET DATASHEET



4 mm pitch, 8 mm wide tape on 7" reel





| d Tape Feed Direction                                                  |                                  |  |  |  |  |  |
|------------------------------------------------------------------------|----------------------------------|--|--|--|--|--|
| •                                                                      | Die orientation dot              |  |  |  |  |  |
| ZZZZ<br>አለአለ<br>060Z                                                   | Pin 1<br>is under<br>this corner |  |  |  |  |  |
| Die is placed into pocket<br>solder bump side down<br>(face side down) |                                  |  |  |  |  |  |

|                   | Dimension (mm) |       |       |  |
|-------------------|----------------|-------|-------|--|
| EPC2204A (Note 1) | Target         | MIN   | MAX   |  |
| a                 | 12.00          | 11.90 | 12.30 |  |
| b                 | 1.75           | 1.65  | 1.85  |  |
| <b>c</b> (Note 2) | 5.50           | 5.45  | 5.55  |  |
| d                 | 4.00           | 3.90  | 4.10  |  |
| е                 | 4.00           | 3.90  | 4.10  |  |
| f (Note 2)        | 2.00           | 1.95  | 2.05  |  |
| g                 | 1.50           | 1.50  | 1.60  |  |
| h                 | 0.50           | 0.45  | 0.55  |  |

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/  ${\it JEDEC\ industry\ standard.}$ 

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

# **DIE MARKINGS**



| Dout           | Laser Markings           |                                 |                                 |  |
|----------------|--------------------------|---------------------------------|---------------------------------|--|
| Part<br>Number | Part #<br>Marking Line 1 | Lot_Date Code<br>Marking Line 2 | Lot_Date Code<br>Marking Line 3 |  |
| EPC2090        | 2090                     | YYYY                            | ZZZZ                            |  |

eGaN® FET DATASHEET EPC2090



|     | Micrometers     |      |      |  |  |
|-----|-----------------|------|------|--|--|
| DIM | MIN Nominal MAX |      |      |  |  |
| Α   | 2270            | 2300 | 2330 |  |  |
| В   | 1420            | 1450 | 1480 |  |  |
| c   |                 | 150  |      |  |  |
| d   |                 | 180  |      |  |  |

Pad 1 is Gate;

Pads 2-4,9-13, 18-22, 27-31 are Source; Pads 5-8, 14-17, 23-26, 32-35 are Drain



Note: solder cap height is post reflow

# **Additional resources available:**

- $\bullet \ Assembly \ resources-https://epc-co.com/epc/Portals/0/epc/documents/product-training/Appnote\_GaNassembly.pdf$
- Library of Altium footprints for production FETs and ICs https://epc-co.com/epc/documents/altium-files/EPC%20Altium%20Library.zip (for preliminary device Altium footprints, contact EPC)

**Note:** Cu pillar dies are not intended for mounting on a PCB, they are intended for use in a package. Terms of die usage: The die represented by this data sheet are intended for initial evaluation for integration to buyer defined package. EPC does not guarantee reliability in the buyer specific package. To ensure reliability, the die may need redesign to be optimized to buyers specific package. NRE may apply

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN  $^{\circ}$  is a registered trademark of Efficient Power Conversion Corporation.

EPC Patent Listing: https://epc-co.com/epc/about-epc/patents

Information subject to change without notice.
Revised July, 2024