Homework 1

In [1]: # Python 3.8.10
%matplotlib inline

In [2]: import numpy as np
import os
import matplotlib.pyplot as plt

Only to save the pics in

Problem 1

1.1 Inner Product of Vectors

$$<\mathbf{y},\mathbf{z}>= egin{bmatrix} 0 & 1 & 0\end{bmatrix} egin{bmatrix} 5 \ 6 \ 0 \end{bmatrix} = 6$$

1.2 Inner Product of Matrix and vector

$$\mathbf{X} \cdot \mathbf{y} = egin{bmatrix} 1 & 2 & 4 \ 4 & 1 & 2 \ 0 & 1 & 2 \end{bmatrix} = egin{bmatrix} 2 \ 1 \ 1 \end{bmatrix}$$

1.3 Inverse of the Matrix

To see if the matrix ${f X}$ is invertiable, we can compute its determinant

$$\det(\mathbf{X}) = (2+0+16) - (16+0+2) = 0,$$

for the determinant of X is 0, the matrix has no inverse.

1.4 Solution of a Linear Functions System

The given function can be rewritten as follows:

$$\mathbf{x} = \mathbf{X}^{-1}\mathbf{y}$$
 and $\mathbf{x} = \mathbf{X}^{-1}\mathbf{z}$

as already seen, matrix ${f X}$ has no inverse, the functions has no solution.

1.5 Eigenvectors and Eigenvalues

Let \vec{x} and λ be the eigenvector and eigenvalue for \mathbf{Y} , we have:

$$\mathbf{Y} \cdot \vec{x} = \lambda \cdot \vec{x}$$

 $\Rightarrow (\mathbf{Y} - \lambda \mathbf{I})\vec{x} = 0$
 $\Rightarrow \det(\mathbf{Y} - \lambda \mathbf{I}) = 0$

which leads to:

$$(1-\lambda)^2-4=0 \quad \Rightarrow \quad \lambda_1=3; \; \lambda_2=-1 \ ec{x}_1=egin{bmatrix}1\1\end{bmatrix}, \quad ec{x}_2=egin{bmatrix}1\-1\end{bmatrix}$$

1.6 Partial Derivative and Gradient

The partial derivative of f over x_1 can be given as

$$egin{aligned} rac{\partial f(\mathbf{x})}{\partial (x_1)} &= 2(y - \mathbf{z}^ op \mathbf{x}) \cdot rac{\partial y - \mathbf{z}^ op \mathbf{x}}{\partial x_1} \ &= 2z_1(\mathbf{z}^ op \mathbf{x} - y) \end{aligned}$$

The gradient of f over ${f x}$ is

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} \mathbf{x} f(\mathbf{x}) = 2\mathbf{z}(\mathbf{z}^{ op}\mathbf{x} - y) \end{aligned}$$

1.7 Minimizer

To find the minimizer of f , we have to find the ${f x}$ such that $riangledown_{f x} f({f x}) = 0$

Problem 2

2.1 Mean and Variance

The sample mean is

$$\frac{5}{10} = 0.5$$

and sample variance is

$$ext{var} = rac{1}{10} \sum_{i=1}^{n} (x_i - 0.5)^2 \ = rac{1}{10} \sum_{i=1}^{10} 0.25^2 \ = 0.25$$

2.2 Probability of Observation if p=0.5

The probability of observing the given data under the specified circumstance can be calculated as

$$Cinom{10}{5}*2^{-10}pprox 0.246$$

2.3 p that Maximize the Observation

Let p be the probability to be found, we have:

$$P = p^5 \times (1-p)^5$$

and thus

$$rac{\partial P}{\partial p} = 5p^4 imes (1-p)^5 imes 5(1-p)^4$$

to solve the problm, let $rac{\partial P}{\partial p}=0$, we have

$$egin{aligned} 0 &= 5p^4 imes (1-p)^5 imes 5(1-p)^4 \ (1-p)^5 &= p(1-p)^4 \ (1-p) &= p \ p &= 0.5 \end{aligned}$$

2.4 Distribution of a Combined Variable

X+aY is still a Gaussian random variable

2.5 Inpendency Verification of a Combined Variable

The new variable Z=XY is independent on Y.

Because Y is a random varible with $Y\in\{1,-1\}$, if Y=1 it is intuitive that Z=X. If Y=-1, even though we have Z=-X, but since $X\sim\mathcal{N}(0,\sigma^2)$, X is symmetric around 0, we can still say that Z=X.

Problem 3

3.1

(a)

Both, the answer depends on the choice of \mathcal{C} , to the given functions we can apply the change of base fomular for logarithms, which gives us

$$\log_2(x) = rac{\log_e(x)}{\log_e(2)},$$

indicating if $C=rac{1}{\log_e(2)}$, then f(x)=O(g(x)) , and if $C=\log_e(2)$, g(x)=O(f(x))

(b)

Assuming f(x) = O(g(x)), which gives us

$$egin{aligned} |e^x| & \leq C2^x \ \log_e(e^x) & \leq \log_e(C2^x) \ x & \leq \log_e(C2^x) \ & \leq \log_eC + log_e2^x \ & \leq \log_eC + xlog_e2 \end{aligned}$$

for $log_e 2 < 1$, there exists no valid x_0 and C.

Likely we can also asumme g(x) = O(f(x)), and the following should hold

$$egin{aligned} |2^x| & \leq Ce^x \ \log_2(2^x) & \leq \log_2(Ce^x) \ x & \leq \log_2(Ce^x) \ & \leq \log_2C + log_2e^x \ & \leq \log_2C + xlog_2e \end{aligned}$$

The inequality can be true if we simply set C=1 because $\log_2\!e>1$

Thus for this task, g(x) = O(f(x)).

(c)

Assuming f(x) = O(g(x)), which gives us

$$|x| \leq C(10x + \log_2 x) \ \leq (10Cx + C\log_2 x)$$

valid solution can be found if we simply set C=1, so f(x)=O(g(x)).

3.2

The calculation goes:

$$\mathbf{X}\mathbf{y} \mapsto \mathbb{R}^{m \times n} \times \mathbb{R}^n$$

in every array of ${\bf X}$ there are n multiplications and n-1 additions, and we have m such procedures, so we have the complexity of O(m(2n-1))

Problem 4

4.1 Scatter Plot

create the required x array

```
In [3]: x = np.arange(0, 1, 0.001) print("Size of the x:", x.size) Size of the x: 1000 print("Size of the x: 1000) print("Size of the x: 1000) print("Size of the epsilon:", epsilon.size) Size of the epsilon: 1000 print("Size of the epsilon: 1000) print("Size of the epsilon: 1000)
```

```
In [5]: y = x + epsilon
```

```
In [6]: plt.scatter(x, y)
    plt.xlabel('X')
    plt.ylabel('Y')
    plt.title('Scatter Plot')
    plt.savefig("/home/yueyangzhang/TUM/MLO/Problem4_1.png")
```

Scatter Plot

4.2 Compute \boldsymbol{a} and Plot

The minimum of $f(a)=\sum_{i=1}^n(x_ia-y_i)^2$ can be represented as $rgmin_a\sum_{i=1}^n(x_ia-y_i)^2$, regarding to proposition 1 in lecture_note_1_2, a can be calculated as $(\underline{x}^{\top}\underline{x})^{-1}\underline{x}^{\top}\underline{y}$

```
In [7]: a = np.dot(pow(np.dot(x, x), -1), np.dot(x, y))
    print("minimizer of f w.r.t. a is a =", a)
```

minimizer of f w.r.t. a is a = 1.0114032989249062

add the estimated linear model to the data

```
In [8]: g = np.dot(a, x)
plt.scatter(x, y)
plt.plot(x, g, color = "red")
# plt.savefig("/home/yueyangzhang/TUM/MLO/Problem4_2.png")
```

Out[8]: [<matplotlib.lines.Line2D at 0x7fa902629400>]

4.3 Close Form Solution

The gievn function can be rewritten as:

$$p_d(\mathbf{x}) = \mathbf{X} \cdot \mathbf{a}$$

where

$$\mathbf{X} = egin{bmatrix} x_1^0 & \cdots & x_1^d \ dots & \ddots & dots \ x_n^0 & \cdots & x_n^d \end{bmatrix} \in \mathbb{R}^{n imes (d+1)}$$

and $a = [a_0 \ \cdots \ a_d]^ op \in \mathbb{R}^{d+1}.$ Consequently, $f(\mathbf{a})$ can be written as:

$$f(\mathbf{a}) = \left\| \mathbf{X} \mathbf{a}^ op - y
ight\|_2^2$$

and thus the close form solution can be refered to the lecture note and given as

$$\mathbf{a} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}y$$

4.4 Upgraded y and Plot

as requested change the ground truth of y, denoted as y_1

```
In [9]: xi = np.random.normal(0, 0.01, 1000)

y_1 = 30 * ((x - 0.25) ** 2 * (x - 0.75) ** 2) + xi

plt.scatter(x, y_1)
```

Out[9]: <matplotlib.collections.PathCollection at 0x7fa94414e2e0>

For the new curve, applies the closed form of the least square solution

```
In [10]: a_1 = np.dot(pow(np.dot(x, x), -1), np.dot(x, y_1))
    g_1 = a_1 * x
    plt.scatter(x, y_1)
    plt.plot(x, g_1, color = "red")
# plt.savefig("/home/yueyangzhang/TUM/MLO/Problem4_4.png")
```

Out[10]: [<matplotlib.lines.Line2D at 0x7fa9024b87f0>]

Problem 5

5.1 Perpandicularity Proof

Set b=0, we can get $<\mathbf{w},\mathbf{x}>=0$, in this case $\mathbf{w}\perp\mathbf{x}$. We can further translate \mathbf{x} by an arbitrary distance \mathbf{a} , because this is just a pure translation, we get $<\mathbf{w},(\mathbf{x}+\mathbf{a})>=0$, alternatively

$$\begin{aligned} \mathbf{w}^{\top}(\mathbf{x} + \mathbf{a}) &= 0 \\ \Rightarrow \ \mathbf{w}^{\top}\mathbf{x} + \mathbf{w}^{\top}\mathbf{a} &= 0, \end{aligned}$$

for that ${\bf a}$ is arbitrary, we can let $b={\bf w}^{\top}{\bf a}$, the result is still a translation of ${\bf x}$, so the relationship holds ${\bf w}\perp{\bf x}$

5.2 Distance

Follow the steps in 5.1 and w.l.o.g. let ${\bf a}$ perpandicular to the hyperplane, which is the shortest vector between ${\bf w}$ and ${\bf x}$, the distance can be calculated as ${\rm distance} = \|{\bf a}\|$, i.e.,

$$\|\mathbf{a}\| = \frac{\|\mathbf{b}\|}{\|\mathbf{w}\|}$$

Problem 6

6.1 Variance

$$\mathrm{Var}(Y) = a^2 imes \mathrm{Var}(X) \ = a^2 \sigma^2$$

6.2 (a) CLT

If n is large enough, according to the Central Limit Theorem (CLT), Y is converging to a standard normal distribution, i.e. $Y \sim \mathcal{N}(0, \sigma^2)$.

6.2 (b) Interval

Follow the result of 6.2 (a) we have $Y\sim\mathcal{N}(0,0.25)$ and thus $Y\sim\mathcal{N}(0,1)$. For such a distribution, 95% lies in the inverval (-1.96,1.96). For the solution, the interval is given as

$$\frac{1}{n}(\frac{n}{2}\pm 1.96\cdot \frac{\sqrt{n}}{2}) \quad \Rightarrow \quad (0.490.51)$$

6.3 Test and Sickness

Define the following events

- 1. A: person is sick
- 2. B: test result is positive
- 3. C: person is health
- 4. D: test result is negative

and according to the given information we have P(A)=0.5%, P(B|A)=95% and P(B|C)=10%

(a)

To be found is P(B)

$$PB = P(B|A)P(A) + P(B|C)P(C)$$

= $0.005 \times 0.95 + (1 - 0.005) \times 0.1$
 $\approx 10\%$

(b)

To be found is P(A | B), we can utilize Bayes' rule

$$PA|B = \frac{P(B|A)P(A)}{P(B)}$$
$$= \frac{0.95 \times 0.005}{0.1}$$
$$\approx 4\%$$

(c)

To be found is P(C|D)

$$P(C|D) = 1 - P(A|D)$$

= $1 - \frac{P(D|A)P(A)}{P(D)}$ = $1 - \frac{(1 - P(B|A))P(A)}{1 - P(B)} \approx 99\%$

(d)

To be found can be formulated as

$$P(B|C)P(C) + P(D|A)P(A) = 0.1(1 - 0.005) + (1 - 0.95)0.005$$

 $\approx 10\%$

Problem 7

7.1 Global Minimum of Convex Function

Let \mathbf{x}^* be the local minimum of f, assume it is not the global minimum, which meams there exist a \mathbf{x}_0 such that $f(\mathbf{x}_0) < f(\mathbf{x}^*)$.

By definition, for a convex function, for any $heta \in (0,1)$ we have

$$egin{aligned} f(heta \mathbf{x}^* + (1- heta)\mathbf{x}_0) & \leq heta f(\mathbf{x}^*) + (1- heta)f(\mathbf{x}_0) \ & < heta f(\mathbf{x}^*) + (1- heta)f(\mathbf{x}^*) \ \Rightarrow f(heta \mathbf{x}^* + (1- heta)\mathbf{x}_0) < f(\mathbf{x}^*) \end{aligned}$$

Now, if $\theta \to 1$, $\theta {\bf x}^* + (1-\theta) {\bf x}_0 \to {\bf x}^*$, in such case, ${\bf x}^*$ cannot be the local minimum neither.

Therefore local minimum \mathbf{x}^* of a convex function must also be the global minimum.