

### **SwissNeutronics AG**

Bruehlstrasse 28 CH-5313 Klingnau Switzerland

Phone +41 56 245 0202 Fax +41 56 245 0204

Email tech@swissneutronics.ch
Homepage http://www.swissneutronics.ch

## Oak Ridge National Laboratory Spallation Neutron Source

Dr. Malcom Cochran Laue Diffractometer

Structure and Dynamics of Soft Matter

Oak Ridge, TN 37831, USA

### **Quotation Reference**

Number QU20053-CP-00

Title SNS, Cochran – Polarizing V-Cavity
Date Slingnau, June 25, 2020

### Your Request for Quotation

Solicitation number NA

Equipment specification Your request for quotation: email from 29-Apr-2020

### Dear Dr. Cochran

Thank you very much for your interest in a polarizing V-cavity of the type offered to Dr. Crow in 2017.

SwissNeutronics offers as follows:

### A. V-Cavity Polarizer: 1.5 Å

| Pos. | Item                                                                                                                                                                                                                |                                                                                                                                                                    | Price |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| 1.1  | Neutron guide body                                                                                                                                                                                                  |                                                                                                                                                                    |       |  |
|      | ■ Design:                                                                                                                                                                                                           | guide element for the integration of 4 polarizing V-cavities arranged parallel to each other (Fig. 1)                                                              |       |  |
|      | <ul> <li>Guide axis/profile:</li> <li>Axis (hor. / vert.):</li> <li>Profile (hor. / vert.):</li> <li>Cross section:</li> <li>Entrance:</li> <li>Exit:</li> <li>Dimensional tolerance:</li> <li>Waviness:</li> </ul> | straight / straight parallel / parallel   50.00 mm (h) $\times$ 30.00 mm (w) 50.00 mm (h) $\times$ 30.00 mm (w) $\pm$ 0.02 mm, 0.01 mm (RMS) $\eta$ < 1.5·10-4 rad |       |  |
|      | Length of guide:                                                                                                                                                                                                    | <i>L</i> = 550 mm                                                                                                                                                  |       |  |
|      | <ul><li>Coating:</li><li>Sides:</li><li>Top/bottom:</li></ul>                                                                                                                                                       | $m = 1.0, R_{ave} = 99\%$ , non-magnetic $m = 2.0, R_{ave} = 93\%$ , non-magnetic                                                                                  |       |  |
|      | <ul><li>Substrates</li><li>Material of substrates:</li><li>Thickness of substrates:</li></ul>                                                                                                                       | borofloat<br>9 mm                                                                                                                                                  |       |  |
|      | <ul> <li>Reinforcement plates</li> </ul>                                                                                                                                                                            | not applicable                                                                                                                                                     |       |  |
|      | ■ Contact pads                                                                                                                                                                                                      | none                                                                                                                                                               |       |  |
|      | <ul><li>Alignment features</li><li>Scratch marks:</li><li>Location of scratch marks:</li></ul>                                                                                                                      | yes<br>center of entrance and exit                                                                                                                                 |       |  |
|      | Remarks: The choice of a non-mag                                                                                                                                                                                    | netic Ni-coating (m = 1.0) for the sides of the guide body allows                                                                                                  |       |  |

# Neutron Optical Components & Instruments



|     | the transmission of neutrons with is a constant, $m = 1.0$ the index of                                                                                                                                                                                                                                        |                                                                             |            |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------|
| 1.2 | Dividing blades                                                                                                                                                                                                                                                                                                |                                                                             |            |
|     | <ul><li>Substrates</li><li>Material of substrates:</li><li>Thickness of substrates:</li></ul>                                                                                                                                                                                                                  | boron containing glass d = 0.3 mm                                           |            |
|     | Coating:                                                                                                                                                                                                                                                                                                       | $m = 1.0$ , $R_{ave} = 99\%$ , non-magnetic (on both sides)                 |            |
|     | Number of blades:                                                                                                                                                                                                                                                                                              | 3                                                                           |            |
|     | Remark:     The blades are integrated into the                                                                                                                                                                                                                                                                 |                                                                             |            |
| 1.3 | Polarizing Vs                                                                                                                                                                                                                                                                                                  |                                                                             |            |
|     | Design:                                                                                                                                                                                                                                                                                                        | Si-wafer with Fe/Si polarizing coatings (on both sides)                     |            |
|     | Critical wavelength:                                                                                                                                                                                                                                                                                           | $\lambda^*$ = 1.5 Å (design value to warrant a good polarization at 2.41 Å) |            |
|     | <ul><li>Substrates</li><li>Material of substrates:</li><li>Thickness of substrates:</li></ul>                                                                                                                                                                                                                  | Si-wafer<br>0.3 mm                                                          |            |
|     | Coating:                                                                                                                                                                                                                                                                                                       | Fe/Si, $m = 4.0$ , $R_{ave} = 80\%$ (on both sides)                         |            |
|     | Magnetizing field:                                                                                                                                                                                                                                                                                             | 500 G                                                                       |            |
|     | <ul> <li>Remarks:         <ul> <li>The polarizing Si-wafer are integrated into the guide body (Pos. 1.1).</li> <li>The critical wavelength is strongly decreased in order to obtain a reasonably high polarization at λ ≅ 2.41 Å. This is the wavelength where the cavity will be used.</li> </ul> </li> </ul> |                                                                             |            |
| 1.4 | Total price for Pos. 1.1 – 1.3                                                                                                                                                                                                                                                                                 |                                                                             | CHF 69'390 |

### B. Magnetic Casing

| Pos. | Item                                                                                   |                                                                                                                            | Price      |
|------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------|
| 2.1  | Magnetic casing for polarizer                                                          |                                                                                                                            |            |
|      | ■ Design:                                                                              | magnetic casing to provide magnetization field for Fe/Si                                                                   |            |
|      | Structure of casing:                                                                   | the magnetic housing comprises steel plates at top/bottom and an Al-frame at the sides to accommodate the magnets (Fig. 2) |            |
|      | <ul><li>Materials</li><li>Yoke (top/bottom):</li><li>Sides:</li><li>Magnets:</li></ul> | steel ST37, Ni-plated<br>aluminum<br>NdFeB                                                                                 |            |
|      | <ul><li>Dimensions</li><li>Maximum cross section:</li><li>Length:</li></ul>            | to be determined $L \cong 550 \text{ mm (tbd.)}$                                                                           |            |
|      | Magnetic field:                                                                        | B = 500 G                                                                                                                  |            |
| 2.2  | Total price for Pos. 2.1                                                               |                                                                                                                            | CHF 10'540 |





**Fig. 1:** Polarization (left hand side) and transmission (right hand side) of the V-cavity designed for the beamline HB2A at HFIR. The data was calculated using the program McStas. The critical wavelength of the cavity is  $\lambda = 1.5$  Å that is significantly smaller than the wavelength where the cavity is operated in order to achieve a high polarization.





**Fig. 2:** Mechanical design of the magnetic housing (rotated by 90°). The NdFeB-magnets are mechanically fixed by means of grooved Al-plates. The polarizing cavity is aligned by means of adjustment screws. The housing protects the cavity against damage.

### C. Packaging & Transport

| Pos. | Item                                                                                  | Price     |
|------|---------------------------------------------------------------------------------------|-----------|
| 3.1  | Packaging & Transport Destination: ORNL, Oak Ridge, USA Excluding import duty and tax | CHF 1'050 |

| General terms |
|---------------|
|---------------|

Validity of quotation: 60 days

Delivery: 14 months after receiving the order

Guarantee: 24 months after delivery; guarantee covers damages of the coatings and

the mechanical structure of the polarizer and the mechanical equipment

under normal operating conditions.

Terms of Dispatch:

Terms of Payment:

General Terms and Conditions:

ORNL, Oak Ridge, USA

30 days after delivery

GTC SwissNeutronics AG

## Neutron Optical Components & Instruments



We hope this quotation is of interest and look forward to hearing from you. Please inform us, if you need any further information.

Yours sincerely

Prof. Dr. P. Böni CEO SwissNeutronics Dr. C. Schanzer COO SwissNeutronics



## **Appendix**

### A. Performance specifications

### A1. Fe/Si polarizing supermirrors

SwissNeutronics produces polarizing coatings providing excellent performances in terms of reflectivity, transmission and polarization (see Figure A1). General properties are:

- polarizing Fe/Si and FeCoV/TiN (remanent) supermirror
- high reflectivity and polarization
- large m-values
- highly reproducible large scale fabrication



Figure A1: Fe/Si polarizing coatings: a) spin-dependent reflectivity and polarization of Fe/Si with m = 5.5 on glass, b) spin-dependent transmission and polarization of Fe/Si with m = 5.0 on Si-wafer with thickness t = 0.3 mm (double-sided coating).



### **B.** References

SwissNeutronics produced polarizing devices (cavities, bender, reflectors, filters, etc.) for various laboratories. The key element of the devices are Fe/Si polarizing supermirrors with excellent reflectivity and polarization up to large m-values (currently up to m = 5.5). In combination with precise mechanics a wide range of devices is available, which are customized to the specific individual requirements. In the following a few selected polarizing devices are briefly described, which are similar to the present proposal.

### B1. Synopsis of recently fabricated polarizing devices

# Multichannel V-cavity polarization analyser – KOMPASS @ FRM-II (2013)

#### V-cavity design

Number of serial V: 1
 Number of channels: 15
 Taper angle of V: 1.4°
 Length of V: 560 mm

Substrate: single crystal Si, t = 0.3 mm
 Coating: Fe/Si, m = 4, double-sided

• Critical wavelength:  $\lambda^* = 2.15 \text{ Å}$ 

### **Body design**

• Cross-section:  $100 \text{ mm } (w) \times 214 \text{ mm } (h)$  $\rightarrow 52 \text{ mm } (w) \times 214 \text{ mm } (h)$ 

Length: 642 mm Width of channel: 14 mm

Substrate dividing walls: borosilicate glass, t = 0.3 mm

Coating: none

### Specials:

■ Magnetic casing with B = 450 G





## Multichannel V-cavity polarizer – BL15 @ JPARC (2013)

### V-cavity design

Number of serial V: 1
Number of channels: 25
Taper angle of V: 1.38°
Length of V: 154 mm

Substrate: single crystal Si, t = 0.3 mm
 Coating: Fe/Si, m = 4.5, double-sided

• Critical wavelength:  $\lambda^* = 1.5 \text{ Å}$ 

### **Body design**

• Cross-section: 60 mm (w) × 60 mm (h)

Length: 185 mmCoating: TiB

### Specials:

3 identical cavities were delivered





# Logarithmic V-cavity polarizer – SELENE @ PSI (2013)

### V-cavity design

Number of serial V: 1Number of channels: 1

■ Taper angle of V: logarithmic spiral

Length of V: 225 mm

Substrate: single crystal Si, t = 0.3 mm
 Coating: Fe/Si, m = 4.2, double-sided
 Measured reflectivity: Rove = 0.79 @ m = 4.2

• Critical wavelength:  $\lambda^* = 2 \text{ Å}$ 

### **Body design**

• Cross-section: 50 mm (w) × 50 mm (h)

Length: 225 mmCoating: none

### **Specials:**

 Additional Ni coating on top of polarizing supermirror as frame overlap mirror







#### **Customer reference list B2**.

| Instrument / laboratory   | Contact                                        | Type of polarizer                        | Year      |
|---------------------------|------------------------------------------------|------------------------------------------|-----------|
| NSE @ SNS                 | Dr. Michael Ohl                                | Kink polarizer                           | 2015      |
| 1102 @ 5115               | M.Ohl@fz-juelich.de                            | Nink polarizer                           | 2015      |
| ORNL                      | Dr. Bill Hamilton                              | 3-channel double V-cavity polarizer      | 2015      |
|                           | hamiltonwa@ornl.gov                            |                                          |           |
| POLANO @ JPARC            | Toshi Karasawa                                 | Wide Angle Polarization Analyzer         | 2015      |
|                           | avance@mva.biglobe.ne.jp                       |                                          |           |
| SuperAdam @ ILL           | Dr. Alexei Vorobiev                            | Reflection polarizer                     | 2014      |
|                           | avorobiev@ill.fr                               |                                          |           |
| PONTA @ JRR-3M            | Toshi Karasawa                                 | 2 multichannel V-cavity polarizer        | 2014      |
|                           | avance@mva.biglobe.ne.jp                       |                                          |           |
| SELENE @ PSI              | Dr. Jochen Stahn                               | Logarithmic V-cavity polarizer           | 2013      |
|                           | jochen.stahn@psi.ch                            |                                          |           |
| KOMPASS @ FRM2            | Dr. Alexander Grünwald                         | Multichannel V-cavity polarization       | 2013      |
|                           | Alexander.Gruenwald@frm2.tum.de                | analyzer                                 |           |
| Tomography station        | Prof. Wolfgang Treimer                         | Polarizing solid state bender            | 2013      |
| @ HZB                     | treimer@helmholtz-berlin.de                    | 51                                       | 2042      |
| Tomography station        | Dr. Nikolay Kardjilov                          | Polarizing solid state bender            | 2013      |
| @ HZB                     | kardjilov@helmholtz-berlin.de                  | Mulkish and Marking a lade of            | 2042      |
| BL22 @ JPARC              | Toshi Karasawa                                 | Multichannel V-cavity polarizer          | 2013      |
| DLOE & IDADC              | avance@mva.biglobe.ne.jp                       | Ci wafan wikh nalaninina aaskina na . F  | 2012      |
| BL05 @ JPARC              | Toshi Karasawa                                 | Si-wafer with polarizing coating $m = 5$ | 2013      |
| DUMA @ FDM II             | avance@mva.biglobe.ne.jp  Dr. Vladimir Hutanu  | Solid state reflectors                   | 2012      |
| PUMA @ FRM-II             | vladimir.hutanu<br>vladimir.hutanu@frm2.tum.de | Solid State reflectors                   | 2013      |
| KOMPASS @ FRM2            | Dr. Alexander Grünwald                         | Multichannel triple-V-cavity             | 2013      |
| KOIVIFASS @ FKIVIZ        | Alexander.Gruenwald@frm2.tum.de                | polarization analyzer                    | 2013      |
| FLEX @ HZB                | Dr. Klaus Habicht                              | Heusler analyzer                         | 2013      |
| TELX @ TIZB               | habicht@helmholtz-berlin.de                    | rieusiei anaryzei                        | 2013      |
| ZOOM @ ISIS               | Dr. Robert Dalgliesh                           | Double-V-cavity                          | 2013      |
| 200111 @ 1010             | robert.dalgliesh@stfc.ac.uk                    | Bouble V davie,                          | 2013      |
| LARMOR @ ISIS             | Dr. Robert Dalgliesh                           | Double-V-cavity polarizer & bender       | 2013      |
|                           | robert.dalgliesh@stfc.ac.uk                    | analyzer                                 |           |
| VSANS @ NIST              | Don Pierce                                     | Double-V-cavity polarizer                | 2013      |
| •                         | donald.pierce@nist.gov                         | ,,                                       |           |
| NIST                      | Dr. Jeffrey NIco                               | 2 Bender polarizers                      | 2013      |
|                           | jeffrey.nico@nist.gov                          | ·                                        |           |
| NSE @ JCNS, FRM-II        | Dr. Olaf Holderer                              | Solid state reflector                    | 2012      |
|                           | o.holderer@fz-juelich.de                       |                                          |           |
| MIRA @ FRM-II             | Dr. Robert Georgii                             | Multichannel double-V-cavity             | 2012      |
|                           | robert.georgii@frm2.tum.de                     | polarizer                                |           |
| RESEDA @ HZG,             | Dr. Jean-Francois Moulin                       | Double-V-cavity polarizer                | 2012      |
| FRM-II                    | jean-francois.moulin@frm2.tum.de               |                                          |           |
| IN12 @ ILL                | Dr. Karin Schmalzl                             | Double-V-cavity polarizer                | 2012      |
|                           | schmalzl@ill.fr                                |                                          |           |
| LLB                       | Sylvain Desert                                 | Double-V-cavity polarizer                | 2012      |
|                           | sylvain.desert@cea.fr                          |                                          |           |
| NSE @ NIST                | Don Pierce                                     | Double-V-cavity polarizer                | 2012      |
|                           | donald.pierce@nist.gov                         |                                          |           |
| 30mSANS @ NIST            | Don Pierce                                     | Double-V-cavity polarizer                | 2012      |
|                           | donald.pierce@nist.gov                         |                                          |           |
| BL17 @ JPARC              | Toshi Karasawa                                 | Bender for polarization analysis         | 2011      |
| Solicitation reference en | mail from M. Cochran from 29-Apr-2020          | Date of issue                            | 25-Jun-20 |

# Neutron Optical Components & Instruments



|                     | avance@mva.biglobe.ne.jp       |                                      |      |
|---------------------|--------------------------------|--------------------------------------|------|
| BL17 @ JPARC        | Toshi Karasawa                 | Z-cavity polarizer                   | 2011 |
|                     | avance@mva.biglobe.ne.jp       |                                      |      |
| RESEDA @ FRM-II     | Dr. Wolfgang Häussler          | Multichannel double-V-cavity         | 2011 |
|                     | wolfgang.haeussler@frm2.tum.de | polarizer                            |      |
| N-REX @ MPI, FRM-II | Dr. Thomas Keller              | Transmission polarizer & analyzer    | 2011 |
|                     | thomas.keller@frm2.tum.de      |                                      |      |
| SANS @ HANARO       | Dr. Young-Soo Han              | V-cavity polarizer                   | 2011 |
|                     | <u>yshan@kaeri.re.kr</u>       |                                      |      |
| NIST                | Dr. Michael Huber              | 3-channel double-V-cavity polarizer  | 2011 |
|                     | michael.huber@nist.gov         |                                      |      |
| BL15 @ JPARC        | Toshi Karasawa                 | Multichannel V-cavity polarizer      | 2010 |
|                     | avance@mva.biglobe.ne.jp       |                                      |      |
| MIRA @ FRM-II       | Dr. Robert Georgii             | Polarizing bandpass monochromator    | 2010 |
|                     | robert.georgii@frm2.tum.de     |                                      |      |
| HYSPEC @ SNS        | David Anderson                 | Heusler monochromator                | 2010 |
|                     | andersondc@ornl.gov            |                                      |      |
| BL04 @ SNS          | Dr. Valeria Lauter             | Reflection polarizer                 | 2010 |
|                     | <u>lauterv@ornl.gov</u>        |                                      |      |
| BL04 @ SNS          | Dr. Valeria Lauter             | Blades for polarization analyzer     | 2010 |
|                     | <u>lauterv@ornl.gov</u>        |                                      |      |
| SuperAdam @ ILL     | Dr. Andrew Wildes              | Reflection analyzer                  | 2010 |
|                     | <u>wildes@ill.fr</u>           |                                      |      |
| KWS1 @ JCNS, FRM-   | Dr. Henrich Frielinghaus       | Multichannel V-cavity polarizer      | 2009 |
| II                  | h.frielinghaus@fz-juelich.de   |                                      |      |
| FUND @ SNS          | Prof. Geoff Greene             | Bender polarizer                     | 2009 |
|                     | greenegl@ornl.gov              |                                      |      |
| BL05 @ JPARC        | Toshi Karasawa                 | Polarizing bender                    | 2008 |
|                     | avance@mva.biglobe.ne.jp       |                                      |      |
| OFFSPEC @ ISIS      | Dr. Robert Dalgliesh           | Reflection @ transmission polarizer, | 2008 |
|                     | robert.dalgliesh@stfc.ac.uk    | bender analyzer                      |      |
| TAS @ HFIR          | Dr. Taylor Brent               | Heusler monochromator                | 2008 |
|                     | taylorgb@ornl.gov              |                                      |      |