시스템위험

2018. 03. 00

CONTENTS

- I 시스템위험분석 및 관리
- Ⅱ 시스템위험분석기법
- Ⅲ 예상문제

- 시스템 위험성의 분류
 - 시스템 안전의 정의
 - ❖ 어떤 시스템에 있어서 가능시간, 코스트(cost) 등의 제약조건하에서 인원 및 설비가 당하는 상해 및 손상을 최소한으로 줄이는 것이다.
 - ❖시스템의 계획→설계→제조→운용 등의 단계를 통하여 시스템의 안전관리 및 시스템 안전공학을 정확히 적용시키는 것 이 필요하다.
 - 시스템 안전성 확보책
 - ❖ 위험 상태의 존재 최소화
 - ❖ 안전 장치의 채택
 - ❖ 경보 장치의 채택
 - ❖특수 수단 개발, 표식의 규격화
 - 시스템 안전관리
 - ❖ 안전 활동의 계획 및 조직과 관리
 - ❖ 다른 시스템 프로그램 영역과 조정
 - ❖시스템 안전에 필요한 사항의 통일성의 식별
 - ❖시스템 안전에 대한 프로그램의 해석과 검토 및 평가 등의 시스템 안전 업무

- 시스템 위험성의 분류
 - 시스템안전 프로그램의 목표사항
 - ❖시스템 목표 및 필요사항과 모순되지 않는 안전성의 시스템 설계에 의한 구체화
 - ❖ 신재료 및 신제조, 시험기술의 채용 및 사용에 따른 위험의 최소화
 - ❖유사한 시스템 프로그램에 의하여 작성된 과거 안전성 데이터의 고찰 및 이용
 - 시스템 안전 프로그램 계획에 포함사항
 - ❖시스템 안전을 확보하기 위한 기본지침으로 프로그램의 작성 내용에 포 함되어야 할 내용은 다음과 같다.
 - ❖계획의 개요
 - ❖ 안전조직
 - ❖계약관련
 - ❖ 관련부문과의 조정
 - ❖안전기준
 - ❖ 안전해석
 - ❖ 안전성의 평가
 - ❖ 안전데이터의 수집과 분석
 - ❖경과 및 결과의 분석

- 시스템 위험성의 분류
 - 위험처리기술 (*)
 - ❖ 위험의 제거(위험감축) : 위험 요소를 적극적으로 예방하고 경감하려는 것을 말한다.
 - ❖ 위험의 회피 : 위험한 작업 자체를 하지 않거나 작업방법을 개선하는 것을 말한다.
 - ❖ 위험의 보유 : 위험의 일부 또는 전부를 스스로 인수하는 것을 말한다.
 - ❖ 위험에 대한 무지에서 무의식적으로 위험에 노출되는 소극적 보유와 위험을 의식하면서 보유하는 적극적 보유가 있다.
 - ❖ 위험의 전가 : 위험을 보험, 보증, 공제기금제도 등으로 분산시키는 것을 말한다.

- 시스템 위험성의 분류
 - 위험성을 예측, 평가하는 단계
 - ❖1단계 : 평가대상 공정 선정
 - ▶ 평가대상 공정이나 작업을 선정하는 단계로 평가대상 공정의 안전 보건상 위험 정보에 대한 사전 파악을 포함한다.
 - ❖ 2단계 : 위험요인 도출
 - ▶ 위험요인을 인적, 기계적, 물질 · 환경적, 관리적으로 구분하여 도출하는 단계 이다.
 - ❖ 3단계 : 위험도 계산
 - ▶ 사고 빈도와 사고 강도의 곱으로 위험도 수준을 결정하는 단계이다.
 - ❖ 4단계 : 위험도 평가
 - ▶ 현재의 위험도가 허용할 수 있는 위험인지 위험도를 평가하는 단계이다.
 - ❖ 5단계 : 개선대책 수립
 - ▶ 위험도 평가 결과에 따라 개선대책을 수립하고 실시하여 도출한 위험 요인 을 허용 가능한 위험도로 낮추는 단계이다.

- 시스템 수명주기 단계별 특성
 - 구상(Concept) 단계
 - ❖ 구상 단계는 시스템을 제작하기 위한 시작 단계로서, 시스템의 사용목적과 기능, 앞으로 생산할 시스템을 개발함에 있어 일반적인 진행과정이 결정된다.
 - 정의 (Definition) 단계
 - ❖ 예비 설계안과 생산 기술과의 비교를 통해 시스템 개발의 가능성과 타당 성을 확인하고, 시스템 개발상의 일반적인 설계가 이루어지는 단계이다.
 - 개발(Development) 단계
 - ❖시스템 개발의 공식적인 시작단계이다. 이미 시스템 안전 프로그램에 계획된 대로 개발단계에서 시도되어야 하는 시스템 안전 업무들이 시작된다.
 - 제조(Production) 단계
 - ❖제조 단계에서 수행되는 거의 모든 업무는 주로, 이전 단계에서 획득된 시스템의 안전수준이 생산단계에서도 유지되는가를 확인하기 위한 것이다.

- 시스템 수명주기 단계별 특성
 - 배치 (Deployment) 단계, 운용 단계
 - ❖ 운용 단계는 시스템 개발, 생산의 다음 단계로서, 사용자가 최초의 시스템을 사용하기 위해 수용하는 순간부터 시작한다.
 - 폐기 (Disposal) 단계
 - ❖폐기 단계는 시스템이 갖는 특정한 설계요인 때문에 매우 중요할 수도 있다. 시스템의 유해위험요인이 있는 부분, 예를 들어 부식성 · 유해성 물질, 방사능 폐기물, 가연성 물질, 방향성 물질 등을 폐기하는 절차는 시스템 개발 초기에, 주로 개발단계에서 검토되고 결정 되어야 한다.

- 시스템 위험분석 기법
 - 예비 위험 분석 (PHA: Preliminary Hazards Analysis)
 - ❖모든 시스템 안전 프로그램의 최초 단계(설계단계, 구상단계)에서 실시하는 분석법으로서 시스템내의 위험요소가 얼마나 위험한 상태에 있는가를 정성적으로 평가하는 기법이다. (**)
 - ❖ PHA의 4가지 주요목표
 - ▶ 시스템의 모든 주요한 사고를 식별하고 대략적인 말로 표시할 것
 - ▶ 사고를 유발하는 요인을 식별할 것
 - ▶ 사고가 발생한다고 가정하고 시스템에 생기는 결과를 식별하고 평가할 것
 - ▶ 식별된 사고를 다음 4가지 범주로 분류할 것

[PHA 카테고리 분류☆]

Class 1. 파국적(catastrophic)	사망, 시스템 손상
Class 2. 위기적(critical)	심각한 상해, 시스템 중대 손상
Class 3. 한계적(marginal)	경미한 상해, 시스템 성능 저하
Class 4. 무시(negligible)	경미한 상해 및 시스템 저하 없음

- 시스템 위험분석 기법
 - 결함위험분석 (FHA : Fault Hazards Analysis)
 - ❖ 한 계약자만으로 모든 시스템의 설계를 담당하지 않고 몇 개의 공동 계약자가 분담할 경우 서브시스템 (subsystem)의 해석에 사용되는 분석법이다. (**)
 - ❖ FHA의 기재사항 (*)
 - ▶ 서브시스템의 요소
 - ▶ 그 요소의 고장형
 - ▶ 고장형에 대한 고장률
 - ▶ 요소 고장 시 시스템의 운용 형식
 - ▶ 서브시스템에 대한 고장의 영향
 - ▶ 2차 고장
 - ▶ 고장형을 지배하는 뜻밖의 일
 - ▶ 위험성의 분류
 - ▶ 전 시스템에 대한 고장의 영향
 - ▶기타

- 시스템 위험분석 기법
 - 고장형태와 영향분석(FMEA: Failure Modes and Effects Analysis)
 - ❖시스템에 영향을 미치는 모든 요소의 고장을 형태별로 분석하여 그 영향을 검토하는 정성적 귀납적 분석법이다. (**)
 - ❖ FMEA 위험성 분류 (*)

발생확률 (β) 에 따른 분류	위험성 분류 표시
• 실제손실 $\beta = 1.00$	• category 1 : 생명 또는 가옥의 상실
 예상되는 손실 0.1< β < 1.00 	• category 2 : 임무 수행의 실패
• 가능한 손실 $0<\beta\leq 0.1$	• category 3 : 활동의 지연
• 영향 없음 $\beta=0$	• category 4 : 손실과 영향없음

- 시스템 위험분석 기법
 - 고장형태와 영향분석(FMEA: Failure Modes and Effects Analysis)
 - ❖ FMEA의 실시절차 (*)

1단계 : 대상 시스템의 분석	 기기 및 시스템의 구성 및 기능의 전반적 파악 FMEA의 실시를 위한 기본방침의 설정 기능 BLOCK과 신뢰성 BLOCK도의 작성
2단계 : 고장형과 그 영향의 검토	 고장 모드의 예측과 설정 고장 원인의 상정 상위 아이템에 대한 고장 영향의 검토 고장 검지법의 검토 고장에 대한 보상법과 대응법의 검토 FMEA WORK SHEET에 관한 기입 고장등급의 평가
3단계 : 치명도 해석과 개선책의 검토	• 치명도 해석 • 해석결과의 정리

- 시스템 위험분석 기법
 - 고장형태와 영향분석(FMEA: Failure Modes and Effects Analysis)
 - ❖ FMEA의 기재사항
 - ▶ 요소의 명칭
 - ▶ 고장의 형
 - ▶ 다른 요소 및 전 시스템에 대한 고장의 영향
 - ▶ 위험성의 분류
 - ▶ 고장의 발견 방법
 - ▶ 시정방법
 - ❖ FMEA의 장 · 단점
 - ▶ 장점
 - ✓ 서식이 간단하고 적은 노력으로도 분석이 가능하다
 - ▶ 단점
 - ✓ 논리성이 부족하다.
 - ✓ 각 요소간의 영향을 분석하기 어렵기 때문에 동시에 두 개 이상의 고장이 날 경우 해석이 곤란하다.
 - ✓ 요소가 물체로 한정되어 있어 인적 원인 분석이 곤란하다.

- 시스템 위험분석 기법
 - ETA(Event Tree Analysis)와 DT(Dicision Trees)
 - ❖ ETA(Event Tree Analysis) : 사건수(사상수)분석법
 - ▶ 시장의 안전도를 사용하여 시스템의 안전도 나타내는 귀납적, 정량적인 분석 법이다. (**)
 - 재해의 확대 요인을 분석하는데 적합하며 디시전 트리를 재해사고의 분석에 이용할 경우의 분석법이다.
 - ➤ ETA 작성법
 - ✓ 좌에서 우로 진행한다.
 - ✓ 요소의 성공사상은 위쪽에 실 패사상은 아래쪽으로 분기한다.
 - ✓ 분기마다 안전도와 불안전도의 발생확률이 표시된다.
 - ✓ 분기된 각 사상의 합은 항상 1 이다.
 - DT(decision Trees)
 - ▶ 요소의 신뢰도를 이용하여 시스템의 신뢰도를 나타내는 기법으로 귀납적이고, 정량적인 분석 방법이다.

- 시스템 위험분석 기법
 - 치명도 분석 (CA: Critically Analysis)
 - ❖고장이 직접 시스템의 손실과 인명의 사상에 연결되는 높은 위험도를 가 진 요소나 고장의 형태에 따른 분석법이다.
 - ❖고장이 시스템에 얼마나 치명적인 영향을 끼치는 지에 대한 고장을 정량 적으로 분석하는 기법이다. (**)
 - ❖ 정성적 방법에 의한 FMEA에 대해 정량적 성격을 부여한다.
 - ❖고장 등급의 평가

치명도(Cr)=
$$C_1 \times C_2 \times C_3 \times C_4 \times C_5$$

여기서, C_1 : 고장 영향의 중대도 C_2 : 고장의 발생 빈도

 C_3 : 고장 검출의 곤란도 C_4 : 고장 방지의 곤란도

C₅: 고장 시정시간의 여유도

- 시스템 위험분석 기법
 - 인간에러율 예측기법 (THERP : Technique of Human Error Rate Prediction)
 - ❖ 인간의 과오(human error) 를 정량적으로 평가하기 위하여 1963년 Swain 등에 의해 개발된 기법이다. (**)
 - ❖ 인간의 과오율 추정법 등 5 개의 스텝으로 되어 있다.
 - MORT(Management Oversight and Risk Tree) (**)
 - ❖ 1970 년 이후 미국의 W. G Johnson 등에 의해 개발된 최신 시스템 안전 프로그램으로서 원자력 산업의 고도 안전 달성을 위해 개발된 분석 기법 이다.
 - ❖ 관리, 설계, 생산, 보전 등의 광범위한 안전을 도모하기 위한 연역적이고, 정량적인 분석법이다. (*)
 - 운용 및 지원위험 분석 (O&S: operating & support 또는 OSHA)
 - ❖시스템의 모든 사용단계에서 생산, 보전, 시험, 운반, 구출, 구조, 훈련 및 폐기 등에 사용되는 인원, 순서, 설비에 관하여 위험을 동정하고 그것들 의 안전요건을 결정하기 위한 분석법이다. (**)
 - ❖시스템이 저장되어 이동되고 실행됨에 따라 발생하는 작동시스템의 기능이나 과업, 활동으로부터 발생되는 위험에 초점을 맞춘 위험분석차트이다.

- 시스템 위험분석 기법
 - FAFR(Fatality Accident Frequency Rate)
 - ❖ 위험도를 표시하는 단위로 108(1억)시간당 사망자 수를 나타낸다.

$$FAFR = \frac{\text{사망자수}}{\text{총작업시간수}} \times 10^8$$

- HAZOP(위험 및 운전성 검토)
 - ❖ 각각의 장비에 대해 잠재된 위험이나 기능저하 등 시설에 결과적으로 미칠 수 있는 영향을 평가하기 위하여 공정이나 설계도 등에 체계적인 검토를 행하는 것을 말한다.
 - ❖용어의 정의
 - ▶ 의도 : 어떤 부분이 어떻게 작동되리라고 기대된 것을 의미하는 것으로 서술 적일 수도 있고 도면화 될 수도 있다.
 - 이상 : 의도에서 벗어난 것을 의미하며 유인어를 체계적으로 적용하여 얻어 진다.
 - ▶ 원인 : 이상이 발생한 원인을 의미한다.
 - ▶ 결과 : 이상이 발생할 경우 그것에 대한 결과이다.
 - ▶ 위험 : 손실, 손상, 부상 등을 초래할 수 있는 결과를 의미한다.
 - ▶ 유인어 : 간단한 용어로서 창조적 사고를 유도하고 이상을 발견하고 의도를 한정하기 위해 사용된다.

- 시스템 위험분석 기법
 - HAZOP(위험 및 운전성 검토)
 - ❖유인어의 종류

[유인어의 종류와 뜻화]

완전한 부정	
양의 증가 및 감소	
성질상의 증가	
일부변경, 성질상의 감소	
설계의도의 논리적인 역	
완전한 대체	

- 시스템 안전 접근 방법 중 귀납적, 정량적 방법인 것은? (05.03.20)
 - ① OS
 - (2) ETA
 - ③ FTA
 - 4 FMEA

- 2. 다음 중 1970 년대에 산업안전을 목적으로 개발된 시스템 안전 프로그램으로 ERDA(미 에너지 연구 개발청)에서 개 발된 것으로 관리, 설계, 생산, 보전 등의 넓은 범위의 안전 성을 검토하기 위한 기법은? (05.03.20)
 - ① FTA
 - ② MORT
 - ③ FMEA
 - (4) FHA

- 3. 위험분석상의 강도를 분류할 시에 환경, 운전원의 과오, 절차의 결함, 요소의 고장 또는 기능 불량이 시스템의 성능을 저하시키지만 인적, 물적의 중대한 손해를 초래하지 않고 대처 또는 제어할 수 있는 상태는? (05.03.20)
 - ① 파국적 (Catastrophic)
 - ② 중대 (Critical)
 - ③ 한계적 (Marginal)
 - ④ 무시가능(Negligible)

- 4. 사상의 안전도를 사용한 시스템의 안전도를 나타내는 시스템 모델의 하나로서 귀납적이기는 하나 정량적 분석수법이며, 재해의 확대요인의 분석 등에 적합한 기법은? (05.08.07)
 - ① OS
 - ② FTA
 - (3) **ETA**
 - 4 FMEA

- 5. 시스템의 구상단계에서 시스템 고유의 위험 상태를 식별하고 예상되는 재해의 위험 수준을 결정하는 시스템 안전 분석 기법은? (06.05.14)
 - ① FTA
 - (2) PHA
 - ③ FMEA
 - 4 ETA

6. 다음 시스템 안전해석 방법 중 틀린 것은? (06.08.06)

① THERP: 정량적 해석방법

② ETA: 귀납적, 정량적 해석방법

③ PHA: 정성적 해석방법

④ FMEA: 연역적, 정량적 해석방법

- 7. 예비위험분석(PHA)의 설명으로 옳은 것은? (06.08.06)
 - ① 시스템안전 위험분석을 수행하기 위한 예비적인 최초의 작업으로 위험요소가 얼마나 위험한지를 평가
 - ② 손실과 인명의 사상에 연결되는 높은 위험도를 가진 요소나 고장의 형태에 따른 분석법
 - ③ 각 서브 시스템 및 전 시스템의 안전성에 악영향을 끼치지 않게 하기 위한 분석기법
 - ④ 관리, 설계, 생산, 보존 등에 대해서 광범위하게 안전성을 확보하기 위한 기법

- 8. 시스템안전분석에 대한 설명 중 틀린 것은? (07.05.13)
 - ① 해석의 수리적 방법에 따라 정성적, 정량적 해석 방법이 있다.
 - ② 해석의 논리적 견지에 따라 귀납적, 연면적 해석 방법이 있다.
 - ③ FTA는 연역적, 정량적 분석이 가능한 방법이다.
 - ④ 예비사고분석(PHA)은 운용사고 해석이라고 말할 수 있다.

- 9. 시스템이나 서브시스템 위험분석을 위하여 일반적으로 사용되는 전형적인 정성적, 귀납적 분석기법으로 시스템에 영향을 미치는 모든 요소의 고장을 형태별로 분석하여 그 영향을 검토하는 분석기법은? (07.05.13)
 - ① PHA
 - ② FMEA
 - ③ SSHA
 - (4) ETA

10. 다음 중 인간의 과오를 평가하기 위한 정량적 해석방법은? (08.03.02)

- ① THERP
- (2) **FTA**
- 3 CA
- 4 PHA

11.5000개의 베어링을 품질검사하여 400개의 불량품을 처리 하였으나 실제로는 1000개의 불량 베어링이 있었다면 이러 한 상황의 HEP(Human error probability)는? (08.03.02)

- ① 0.04
- ② 0.08
- ③ 0.12
- **4** 0.16

12. 다음 중 신뢰도 구조상으로 직렬구조에 해당되는 것은? (08.05.11)

- ① 3발 자전거의 바퀴
- ② 건물내의 스프링클러
- ③ 검사인원의 중복 투입
- ④ 자동차의 브레이크 시스템

13. [그림]과 같은 시스템의 신뢰도는 얼마인가? (08.05.11)

- ① 0.6261
- ② 0.7371
- ③ 0.8481
- 4 0.9591

14. 다음 중 직렬 구조를 갖는 시스템의 특성으로 틀린 것은? (08.07.27)

- ① 요소(要素) 중 어느 하나가 고장이면 시스템은 고장이다.
- ② 요소의 수가 적을수록 시스템의 신뢰도는 높아진다.
- ③ 요소의 수가 많을수록 시스템의 수명은 짧아진다.
- ④ 시스템의 수명은 요소 중에서 수명이 가장 긴 것으로 정해진다.

15.시스템 안전해석 방법 중 고장이 직접 시스템의 손실과 인명의 사상에 연결되는 높은 위험도를 가진 요소나 고장의형태에 따른 분석법은? (09.05.10)

- ① CA
- (2) **ETA**
- 3 PHA
- 4 FMEA

16. 고장형태 및 영향분석(FMEA: Failure Mode and Effect Analysis)에서 평가요소에 해당되지 않는 것은? (09.05.10)

- ① C₁: 기능적 고장 영향의 중요도
- ② C₂: 영향을 미치는 시스템의 범위
- ③ C₃: 고장발생의 빈도
- ④ C₄: 고장의 영향 크기

17. 그림과 같은 시스템에서 펌프 A 의 신뢰도는 0.999, 밸브 B 와 C 의 신뢰도가 모두 0.99 일 경우 전체의 신뢰도는 얼마 인가? (09.07.26)

- ① 0.9810909
- ② 0.9820101
- ③ 0.9867204
- (4) 0.9989001

- 18. 다음 중 예비위험분석 (PHA)에 관한 설명으로 가장 적절한 것은? (10.03.07)
 - ① 시스템안전 위험분석을 수행하기 위한 예비적인 최초의 작업으로 위험요소가 얼마나 위험한지를 평가한다.
 - ② 손실과 인명의 사상에 연결되는 높은 위험도를 가진 요소나 고장의 형태에 따른 분석법이다.
 - ③ 각 서브 시스템 및 전시스템의 안전성이 악영향을 끼치지 않게 하기 위한 분석기법이다.
 - ④ 원자력 발전과 같이 관리, 설계, 생산, 보존 등에 대해서 광범위하게 안전성을 확보하기 위한 기법 이다.

19. 시스템의 평가척도 중 시스템의 목표를 잘 반영하는가를 나타내는 척도를 무엇이라 하는가? (10.05.09)

- ① 신뢰성
- ② 타당성
- ③ 측정의 민감도
- ④ 무오염성

20. 위험조정을 위한 필요한 기술은 조직형태에 따라 다양하며 4가지로 분류하였을 때 이에 속하지 않는 것은? (10.05.09)

- ① 보류(retention)
- ② 위험감축(reduction)
- ③ 전가(transfer)
- ④ 계속(continuation)

- 21. 다음 중 시스템 안전을 위한 업무의 수행 요건이 아닌 것은? (10.05.09)
 - ① 안전활동의 계획 및 관리
 - ② 시스템 안전에 필요한 사람의 동일성 식별
 - ③ 시스템 안전에 대한 프로그램 해석 및 평가
 - ④ 다른 시스템 프로그램과 분리 및 배제

- 22. 시스템안전 분석기법 중 FMEA에 관한 설명으로 옳은 것은? (10.07.25)
 - ① 화학설비에 적용하기 위해 개발되었고 전문가와 브레인스토밍 팀을 구성하여 분석한다.
 - ② 휴먼에러와 휴먼에러에 의한 영향을 예견하기 위해 사용되면 HAZOP과 함께 사용할 수 있다.
 - ③ 그래픽 모델을 사용하여 분석과정을 가시화시키는 분석방법이며 논리기호를 사용한다.
 - ④ 시스템을 구성요소로 나누어 고장의 가능성을 정하고 그 여향을 결정하여 분석하는 방법이다.

Thank you