Computational Microelectronics Lecture 15 Poisson Equation

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Nonlinear Poisson Equation

Abrupt PN junction

- Consider a 400-nm-long structure.
 - -The metallurgical junction is located at 200 nm.
 - -Assume that $N_D \ge N_A \ge 10^{17}$ cm⁻³.

Boundary condition

- Ohmic contacts at both sides
 - Assume the local charge neutrality at those contacts.

$$\phi_0 = V_T \operatorname{asinh} \frac{N_D - N_A}{2n_{int}}$$

-Then, the electrostatic potential is fixed at a contact.

$$\phi - \phi_0 = 0$$

N⁺P junction

- When $N_D = 10^{20}$ cm⁻³, try various N_A values.
 - With a higher acceptor density, the depletion width is reduced.
 - Check your results.

HW#13

- Due: AM08:00, November 6
- Problem#1
 - Reproduce the graph shown in Slice 8, Lecture 14.
- Problem#2
 - Reproduce the graph shown in Slice 5, Lecture 15 (This lecture).

Term project

- It is now time to start the term project!
 - -Theme: Your own choice
 - Due: AM08:00, December 18, 2023 (Send a recorded video.)
 - Watch the previous term projects in 2022:

https://youtu.be/Clh75LwePOs?si=vXRnLCFXWnAc31pF

https://youtu.be/xr6NoV-Xxqw?si=gm_UMh1x7SzlFw9n

https://youtu.be/V-wDRYQCIsY?si=d5HtwItEnIWa5WBP

HW#13

- Problem#3
 - Write down your plan for the final term project.

Thank you!