

Spatial Randomness-Based Anomaly Detection Approach for Monitoring Local Variations in Multimode Surface Topography

한양대학교 산업공학과 IDSL 석사과정 고경준

Contents

- 1. Introduction
- 2. Proposed Method
- 3. Simulation Study
- 4. Case Study: in Paper Surface
- 5. Conclusions

1. Intorduction

Anomaly detection of 3D topographic data

- 부자재 surface topography 상태는 완제품의 상태 및 성능에 큰 영향을 끼침
- 특히 종이 산업에서는 surface topography가 제품의 품질 자체
- 3D topographic data monitoring에서 spatial autocorrelation 문제를 고려해야 함
- Complex manufacturing procedures에서는 대부분 multi-mode in-control topographic

2.0 data description

2.1 Multimode Surface Binarization

Surface topographic data $Z = [z_{ij}]$ 라고 할 때, $(z_{ij} = \text{height value})$ single mode prediction model은 (1)과 같음.

$$z_{ij} = f(\mathbf{y}_{ij}) + \varepsilon_{ij}, \qquad \varepsilon_{ij} \sim iid \ N(0, \ \sigma^m)$$
 (1)

Multi mode prediction model은 (2)와 같음.

$$\mathbf{z}_{ij}^{(m)} = f_m(\mathbf{y}_{ij}^{(m)}) + \varepsilon_{ij}^{(m)}, \qquad \varepsilon_{ij}^{(m)} \sim iid \ N(0, \ \sigma_m^2)$$
 (2)

- 이 때, $y_{ij}^{(m)}$ 는 $z_{ij}^{(m)}$ 의 neighboring height values 중 spatial distance l_m 내에 있는 값
- Cross-validated R 2 를 이용해 optimal l_m 를 결정

^{*} y_{ij} = set of adjacent height values, $f(\cdot)$ = appropriate regression model with $\{y_{ij}, z_{ij}\}$

2.1 Multimode Surface Binarization

■ Residual matrix $R^{(m)} = [r_{ij}^{(m)}]$ 은 (3)과 같음.

$$r_{ii}^{(m)} = Z_{ii} - f_{m}(\mathbf{y}_{ii}^{(m)}) \tag{3}$$

- Residual의 pattern을 통해 mode를 구분하고 topographic variations를 확인할 수 있음
- 하지만 residual patterns는 defective area의 크기가 작으면 파악하기 어려움
- → local change description 향상을 위해 mode-specific binary representation 제안.
- Binarized surface matrix $B^{(m)} = [b_{ij}^{(m)}]$ 는 (4)과 같음.

$$\mathbf{B}^{(m)} = [b_{ij}^{(m)}], \ b_{ij}^{(m)} = \begin{cases} 1, \ \left| r_{ij}^{(m)} \right| \ge T^{(m)} \\ 0, \text{ otherwise} \end{cases}$$
 (4)

• 이 때 $b_{ij}^{(m)}$ = 1인 경우 'suspicious residual'로 표현

2.2 Comparing Spatial Randomness Based on Kullback-Leibler Divergence

- 만약 B안의 suspicious residuals가 spatially randomly distributed 되었다면 complete spatial randomness(CSR)라고 함
- CRS인 경우 suspicious residual는 Poisson point process를 따른다고 가정
- D_k= B에서 무작위로 선택된 suspicious residual과 K개의 NN과의 거리를 나타내는 rv
- D_k의 cumulative probability는 (5)와 같음

$$F_{D_K}(d) = P(D_K \le d) = 1 - \sum_{k=0}^{K-1} P(N[C_d(s)] = k \mid \lambda_K) = 1 - \sum_{k=0}^{K-1} \frac{\left(\pi \lambda_K d^2\right)^k}{k!} e^{-\lambda_K \pi d^2}$$
 (5)

 $C_d(s)$ = circular area with radius 'd' around 's'. (s = coordinate of suspicious residual) $N[C_d(s)]$ = the total number of suspicious residuals in $C_d(s)$

 λ_K = expected density of suspicious residuals

2.2 Comparing Spatial Randomness Based on Kullback-Leibler Divergence

■ Density f_{D_k} 는 F_{D_k} 의 미분으로 (6)처럼 계산

$$f(x;a,d,p) = rac{(p/a^d)x^{d-1}e^{-(x/a)^p}}{\Gamma(d/p)}$$

$$f_{D_K}(d) = F'_{D_K}(d) = \frac{e^{-\lambda_K \pi d^2} 2(\pi \lambda_K)^K d^{2K-1}}{(K-1)!}.$$
 (6)

- $D_k \sim GG(\frac{1}{\sqrt{\lambda_K \pi}}, 2K, 2)$. (Generalized Gamma distribution)
- B₁, B₂를 비교하기 위해 KL Divergence idea를 활용. KL(f₁| f₂)

$$D_{KL}(f_1, f_2) = \mathbf{E}_{f_1} \left[\log \frac{f_1(x)}{f_2(x)} \right] = \int f_1(x) (\log f_1(x) - \log f_2(x)) dx$$
 (8)

2.2 Comparing Spatial Randomness Based on Kullback-Leibler Divergence

spatial randomness Kullback-Leibler(SRKL) divergence를 제시

$$D_{SRKL}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right) = \mathbf{E}_{f_{D_{K,1}}} \left[\log \frac{f_{D_{K,1}}\left(x \mid 1/\sqrt{\lambda_{K,1}\pi}, 2K, 2\right)}{f_{D_{K,2}}\left(x \mid 1/\sqrt{\lambda_{K,2}\pi}, 2K, 2\right)} \right]$$
(9)

$$D_{SRKLS}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right) = D_{SRKL}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right) + D_{SRKL}\left(\mathbf{B}_{2}, \mathbf{B}_{1}\right). \tag{10}$$

$$D_{SRKLS}\left(\mathbf{B}_{1},\mathbf{B}_{2}\right) = \left(\frac{KT_{1}/\pi\sum_{t_{1}=1}^{T_{1}}d_{t_{1}}^{2}}{KT_{2}/\pi\sum_{t_{2}=1}^{T_{2}}d_{t_{2}}^{2}}\right)^{K} + \left(\frac{KT_{2}/\pi\sum_{t_{2}=1}^{T_{2}}d_{t_{2}}^{2}}{KT_{1}/\pi\sum_{t_{1}=1}^{T_{1}}d_{t_{1}}^{2}}\right)^{K} - 2K$$

$$= K\left\{\left(\frac{T_{1}\sum_{t_{2}=1}^{T_{2}}d_{n_{S_{2}}}^{2}}{T_{2}\sum_{t_{1}=1}^{T_{1}}d_{t_{1}}^{2}}\right)^{K} + \left(\frac{T_{2}\sum_{t_{1}=1}^{T_{1}}d_{t_{1}}^{2}}{T_{1}\sum_{t_{2}=1}^{T_{2}}d_{t_{2}}^{2}}\right)^{K}\right\} - 2K. \tag{11}$$

- (11) is Closed form of (10)
- B_1 , B_2 의 spatial pattens가 같을 경우 $T_1 \sum_{t_2=1}^{T_2} d_{t_2}^2 = T_2 \sum_{t_1=1}^{T_1} d_{t_1}^2$

2.3 Identifying the Variations in Surface Topography

- Historical surface data $\mathbf{D}_{IC}^{(m)} = \{\mathbf{Z}_1^{(m)},...,\mathbf{Z}_n^{(m)}...,\mathbf{Z}_{N_m}^{(m)}\}$
- **Binary representation** $\mathbf{L}_{IC}^{(m)} = \{\mathbf{B}_{1}^{(m)},...,\mathbf{B}_{N_{m}}^{(m)}\}$
- new data Z_{new} , $B_{new}^{(m)}$
- 위 상황에 대해 average SRKLS를 계산하여 최적 mode 파악 및 anomaly detection

$$S_{SRKL} = \min_{m} \left\{ \frac{1}{N_m} \sum_{n=1}^{N_m} D_{SRKLS} \left(\mathbf{B}_{new}^{(m)}, \mathbf{B}_{n}^{(m)} \right) \right\}. \tag{12}$$

$$m^* = \arg\min_{m} \left\{ \frac{1}{N_m} \sum_{n=1}^{N_m} D_{SRKLS} \left(\mathbf{B}_{new}^{(m)}, \mathbf{B}_{n}^{(m)} \right) \right\}.$$
 (13)

■ 기준값과 비교하여 abnormal 여부 판단 $S_{SRKL} > U^{(m^*)}$

3.1 Simulation Setup

Normal surface data with size 250×250를 (14)번 식에 따라 생성

$$z_{ij} = \phi_1 z_{i-1j} + \phi_2 z_{ij-1} + \varepsilon_{ij} \text{ where } \varepsilon_{ij} \sim iid N(0, \sigma^2).$$
 (14)

- 3가지 모드를 $\phi_{1,}$ ϕ_{2} = (0.13, 0.01), (0.01, 0.13), (0.20, 0.19), σ^{2} 는 동일하게 가정
- Local defect는 2%, 5%, 8%의 size로 3가지 종류 생성 ϕ_1, ϕ_2 = (0.40, 0.40), (0.43, 0.43), (0.46, 0.46), σ^2 는 동일하게 가정

3.2 Performance Comparison

- 300개의 normal, abnormal surfaces 생성. (각 모드별 100개씩)
- Classification accuracy(17)와 Overall accuracy(18)를 비교

Classification accuracy =
$$E\left(\frac{\sum_{m=1}^{M} I_{m} + I_{A}}{\sum_{m=1}^{M} N_{m} + N_{A}}\right)$$
(17)

Overall accuracy =
$$E\left(\frac{I_N + I_A}{\sum_{m=1}^{M} N_m + N_A}\right)$$
 (18)

- I_m= true identification of normal under mth in-control mode
- I_A = true identification of abnormal under mth in-control mode
- N_m= total number of normal under mth in-control mode
- N_A = total number of abnormal under mth in-control mode

3.2 Performance Comparison

Comparison of the overall accuracy with single/multi mode AD models

	Size of	Surface monitoring approaches							
Variation	defect (Söderfjäll et al.)	Single mode approaches					Multimode approaches		
type		S_a	S_{ds}	S_{w}	S_{PSD}	$S_{\scriptscriptstyle AD}$	$S_{{\scriptscriptstyle MAD}}$	S_{MF}	$S_{\it SRKL}$
Mild	2	0.537	0.507	0.520	0.562	0.515	0.533	0.509	0.604
variation $(\phi_1 = 0.40, \phi_2 = 0.40)$	5	0.613	0.547	0.568	0.621	0.604	0.697	0.538	0.830
	8	0.620	0.587	0.619	0.623	0.763	0.836	0.559	0.909
Moderate variation	2	0.568	0.512	0.530	0.597	0.544	0.580	0.530	0.719
$(\phi_1 = 0.43,$	5	0.622	0.563	0.597	0.624	0.748	0.824	0.573	0.926
$\phi_2 = 0.43$)	8	0.622	0.611	0.635	0.637	0.930	0.909	0.598	0.966
Severe variation	2	0.607	0.523	0.545	0.620	0.628	0.694	0.577	0.875
$(\phi_1 = 0.46,$	5	0.626	0.589	0.625	0.669	0.937	0.930	0.651	0.967
$\phi_2 = 0.46$)	8	0.780	0.631	0.644	0.948	0.968	0.962	0.694	0.969

3.2 Performance Comparison

Comparison of the classification accuracy with multi mode AD models

Variation	Size of	Multimode approaches					
type	defect	$S_{M\!A\!D}$	S_{MF}	$S_{ m SRKL}$			
Mild variation	2	0.533	0.250	0.602			
$(\phi_1 = 0.40,$	5	0.697	0.273	0.828			
$\phi_2 = 0.40)$	8	0.837	0.296	0.907			
Moderate variation	2	0.580	0.271	0.715			
$(\phi_1 = 0.43,$	5	0.824	0.304	0.924			
$\phi_2 = 0.43)$	8	0.908	0.336	0.963			
Severe variation	2	0.694	0.313	0.873			
$(\phi_1 = 0.46,$	5	0.930	0.383	0.963			
$\phi_2 = 0.46$)	8	0.962	0.436	0.967			

3.3 Selection of the Parameter K

■ K = Suspicious residual과 비교될 주변 점의 개수 (KNN)

Variation	Size of	Values of k					
type	defect	K = 1	K = 5	K = 10	K=15		
Mild variation	2	0.565	0.598	0.605	0.605		
$(\phi_1 = 0.40,$	5	0.645	0.738	0.738	0.713		
$\phi_2 = 0.40)$	8	0.795	0.868	0.877	0.863		
Moderate variation	2	0.768	0.807	0.825	0.810		
$(\phi_1 = 0.44,$	5	0.873	0.913	0.930	0.923		
$\phi_2 = 0.44)$	8	0.965	0.977	0.970	0.965		
Severe variation	2	0.867	0.888	0.902	0.898		
$(\phi_1 = 0.48,$	5	0.953	0.960	0.965	0.960		
$\phi_2 = 0.48$)	8	0.977	0.977	0.970	0.965		
Average overall accuracy		0.823	0.858	0.865	0.856		

4. Case Study: in Paper Surface

4.1 Multimode Surface Topography in Paper Surface

- Paper industry에서는 surface status가 매우 중요한 issue
- Multi mode가 존재한다.

4. Case Study: in Paper Surface

4.2 Monitoring Local Variations in Paper Surface

- Normal surface data with size 200×200
- Normal and abnormal 각 20개씩 실험

~: 0	Surface monitoring approaches							
Size of	Single mode approaches					Multimode approaches		
defect	S_a	S_{ds}	S_{w}	$S_{\it PSD}$	$S_{\scriptscriptstyle AD}$	$S_{{\scriptscriptstyle MAD}}$	S_{MF}	$S_{\it SRKL}$
2	0.600	0.500	0.500	0.675	0.575	0.600	0.600	0.700
5	0.725	0.500	0.475	0.925	0.725	0.750	0.675	0.950
8	0.925	0.500	0.525	0.925	0.850	0.875	0.750	0.975

Size of	Multimode approaches					
defect	$S_{\it MAD}$	S_{MF}	$S_{\scriptscriptstyle SRKL}$			
2	0.600	0.375	0.700			
5	0.750	0.450	0.950			
8	0.875	0.525	0.975			

5. Conclusions

Contributions

- Multimode surface binarization model를 제안하여 작은 defect도 파악 가능
- Spatial randomness KL divergence 방법 제안하여 surfaces를 비교 가능
- Simulation 및 실제 데이터에서 좋은 성능을 보이는 AD model 제안

Further study

- Defective regions의 root cause를 파악하는 모델 개발
- 더 복잡한(multi features) 3D topographic data에 활용가능한 모델 개발

감사합니다.