Detaillierte Resultate

Kurs	2020W703062 SL Einführung in die Theoretische Informatik
Test	20w-eti-sl

a Question

Status Beantwortet

Erreichte Punktzahl

Antwort

Betrachten Sie folgende Menge von Gleichungen mit der Konstante **e**, den Funktionen \cdot und **inv** und den Variablen x, y und z:

$$E = \{ \mathsf{e} \cdot x \approx x, \; x \cdot \mathsf{e} \approx x, \; \mathsf{inv}(x) \cdot x \approx \mathsf{e}, \; (x \cdot y) \cdot z \approx x \cdot (y \cdot z) \}$$

Vervollständigen Sie den folgenden Beweisbaum. Aus Platzgründen teilen wir diesen in vier Teile auf, die wir mit römischen Ziffern kennzeichnen.

$$\frac{\operatorname{inv}(x) \cdot x \approx \operatorname{e} \in E}{E \vdash \operatorname{inv}(x) \cdot x \approx \operatorname{e}} \xrightarrow{(\operatorname{a})} \frac{E \vdash \operatorname{inv}(\operatorname{inv}(x)) \cdot \operatorname{inv}(x) \approx \operatorname{e}}{E \vdash \operatorname{inv}(\operatorname{inv}(x)) \cdot \operatorname{inv}(x) \approx \operatorname{e}} \xrightarrow{(\operatorname{s})} \frac{E \vdash x \approx x}{E \vdash x \approx x} \xrightarrow{(\operatorname{r})} \frac{E \vdash x \approx x}{E \vdash x \approx \operatorname{e} \cdot x} \xrightarrow{(\operatorname{k})} \frac{E \vdash x \approx x}{E \vdash x \approx \operatorname{e} \cdot x} \xrightarrow{(\operatorname{inv}(\operatorname{inv}(x)) \cdot \operatorname{inv}(x)) \cdot x} \xrightarrow{(\operatorname{k})} \frac{E \vdash x \approx \operatorname{inv}(\operatorname{inv}(x))}{E \vdash x \approx \operatorname{inv}(\operatorname{inv}(x))} \xrightarrow{(\operatorname{t})} \frac{E \vdash x \approx \operatorname{inv}(\operatorname{inv}(x))}{E \vdash x \approx \operatorname{inv}(\operatorname{inv}(x))} \xrightarrow{(\operatorname{t})} \frac{\operatorname{inv}(x) \cdot x \approx \operatorname{e}}{E \vdash x \approx \operatorname{inv}(\operatorname{inv}(x))} \xrightarrow{(\operatorname{t})} \frac{\operatorname{inv}(x) \cdot x \approx \operatorname{e}}{E \vdash x \approx \operatorname{inv}(\operatorname{inv}(x))} \xrightarrow{(\operatorname{t})} \frac{\operatorname{inv}(x) \cdot x \approx \operatorname{e}}{E \vdash x \approx \operatorname{inv}(\operatorname{inv}(x))} \xrightarrow{(\operatorname{t})} \frac{\operatorname{inv}(x) \cdot x \approx \operatorname{e}}{E \vdash x \approx \operatorname{inv}(\operatorname{inv}(x))} \xrightarrow{(\operatorname{t})} \frac{\operatorname{inv}(x) \cdot x \approx \operatorname{e}}{E \vdash x \approx \operatorname{inv}(\operatorname{inv}(x))} \xrightarrow{(\operatorname{t})} \frac{\operatorname{inv}(x) \cdot x \approx \operatorname{e}}{E \vdash x \approx \operatorname{inv}(\operatorname{inv}(x))} \xrightarrow{(\operatorname{t})} \frac{\operatorname{inv}(x) \cdot x \approx \operatorname{e}}{E \vdash x \approx \operatorname{inv}(\operatorname{inv}(x))} \xrightarrow{(\operatorname{t})} \frac{\operatorname{inv}(x) \cdot x \approx \operatorname{e}}{E \vdash x \approx \operatorname{inv}(\operatorname{inv}(x))} \xrightarrow{(\operatorname{t})} \frac{\operatorname{inv}(x) \cdot x \approx \operatorname{e}}{E \vdash x \approx \operatorname{inv}(\operatorname{inv}(x))} \xrightarrow{(\operatorname{t})} \frac{\operatorname{inv}(x) \cdot x \approx \operatorname{e}}{E \vdash x \approx \operatorname{inv}(\operatorname{inv}(x))} \xrightarrow{(\operatorname{t})} \frac{\operatorname{inv}(x) \cdot x \approx \operatorname{e}}{E \vdash x \approx \operatorname{inv}(\operatorname{inv}(x))} \xrightarrow{(\operatorname{t})} \frac{\operatorname{inv}(x) \cdot x \approx \operatorname{e}}{E \vdash x \approx \operatorname{inv}(\operatorname{inv}(x))} \xrightarrow{(\operatorname{t})} \frac{\operatorname{inv}(x) \cdot x \approx \operatorname{e}}{E \vdash x \approx \operatorname{inv}(\operatorname{inv}(x))} \xrightarrow{(\operatorname{t})} \frac{\operatorname{inv}(x) \cdot x \approx \operatorname{e}}{E \vdash x \approx \operatorname{inv}(\operatorname{inv}(x))} \xrightarrow{(\operatorname{t})} \frac{\operatorname{inv}(x) \cdot x \approx \operatorname{e}}{E \vdash x \approx \operatorname{inv}(\operatorname{inv}(x))} \xrightarrow{(\operatorname{t})} \xrightarrow{(\operatorname{t})} \frac{\operatorname{inv}(x) \cdot x \approx \operatorname{e}}{E \vdash x \approx \operatorname{inv}(\operatorname{inv}(x))} \xrightarrow{(\operatorname{t})} \xrightarrow$$

I:

$$\frac{\boxed{2} \text{ (a)}}{\boxed{3}} \text{ (a)}$$

$$\frac{E \vdash (\mathsf{inv}(\mathsf{inv}(x)) \cdot \mathsf{inv}(x)) \cdot x \approx \boxed{5}}{E \vdash (\mathsf{inv}(\mathsf{inv}(x)) \cdot \mathsf{inv}(x)) \cdot x \approx \mathsf{inv}(\mathsf{inv}(x))} \text{ (t)}$$

 Π :

$$\frac{III}{E \vdash x \cdot \mathbf{e} \approx x} \underbrace{\frac{x \cdot \mathbf{e} \approx x}{E \vdash x \cdot \mathbf{e} \approx x}}_{\text{(a)}} \underbrace{(\mathbf{a})}_{\text{(t)}} \underbrace{\frac{\sigma = [6]}{E \vdash \mathsf{inv}(\mathsf{inv}(x)) \cdot \mathbf{e} \approx \mathsf{inv}(\mathsf{inv}(x))}}_{\text{(t)}} \underbrace{(\mathbf{a})}_{\text{(t)}}$$

 $\Pi I:$

$$\frac{ \text{Inv}(x) \cdot x \approx \mathsf{e} \in E }{ 9 } \text{ (a)}$$

$$E \vdash \boxed{10} \approx \mathsf{Inv}(\mathsf{inv}(x)) \cdot \mathsf{e} } \text{ (b)}$$

					_
a e ·	\boldsymbol{x}	gehört	in	Lücke	7
u. c	w	Schole	• • •	Lacite	•

$$\square$$
 b. $x \cdot \mathbf{e}$ gehört in Lücke $\boxed{5}$

$$\Box$$
 d. $x \cdot \mathbf{e}$ gehört in Lücke $\boxed{10}$

$$\square$$
 e. $\{\mathsf{inv}(\mathsf{inv}(x)) \mapsto x, \mathsf{inv}(x) \mapsto y, x \mapsto z\}$ gehört in Lücke $\boxed{4}$

$$egin{array}{ll} \Box & ext{f.} \ E dash x pprox \mathsf{inv}(\mathsf{inv}(x)) \ \mathsf{geh\"{o}rt} \ \mathsf{in} \ \mathsf{L\"{u}cke} \ \boxed{8} \end{array}$$

$$f g$$
 g. $\{x\mapsto {\sf inv}({\sf inv}(x))\}$ gehört in Lücke $f 6$

Question

Status

Beantwortet

Erreichte Punktzahl

Antwort

Welche der folgenden Wörter werden von der Grammatik $G=(\{S,T,U\},\{\mathsf{a},\mathsf{b},\mathsf{c}\},R,S)$ erzeugt? (Es sind maximal 5 Ableitungsschritte notwendig.)

Regeln der Grammatik:

$$S
ightarrow \mathsf{a} T\mathsf{b} \mid \mathsf{a} U \mid \epsilon \ \mathsf{a} T
ightarrow \mathsf{a} T\mathsf{b} \mid S\mathsf{b} \mathsf{b} \ U
ightarrow \mathsf{b} U \mid \mathsf{a} S$$

$$\square$$
 a. $S \Rightarrow^* \mathsf{bbcbbb} \in L(G)$

$$\ \square$$
 b. $S \Rightarrow^* \mathsf{a} \in L(G)$

$$\ \square \ \ \mathsf{c.}\ S \Rightarrow^* \mathsf{baabbb} \in L(G)$$

$$\quad \ \ \, \Box \ \ \, \mathrm{d.} \, S \Rightarrow^* \mathrm{ab} T \mathrm{ba} \in L(G)$$

$$\ \square$$
 e. $S\Rightarrow^*\mathsf{abab}\in L(G)$

$$\square$$
 f. $S \Rightarrow^* \mathsf{abbb} \in L(G)$

$\ \square \ \ g.\ S \Rightarrow^* bbb \in L(G)$
$\ \square$ h. $S \Rightarrow^* \epsilon \in L(G)$
$\ \square$ i. $S \Rightarrow^* aabbbbb \in L(G)$
$\ \square$ j. $S \Rightarrow^* aaaa \in L(G)$
□ a.
□ b.
□ c.
□ d.
□ e.
□ f.
☑ g.
☑ h.
☑ i.
☑ j.