1 Cross-validating a Bayesian Regression.

By running OpenBUGS code, we have the result shown in Figure 1. The OpenBUGS code is attached in Appendix A. The Bayesian estimator of β_0 , β_1 , β_2 and σ are close to the true

Figure 1: OpenBUGS result for problem 1

values.

2 Body Fat from Linear Regression.

(a) We consider five different models with single predictor and compare the Bayesian R^2 of each model. The result is shown in Table 1. We choose BAI as the single best predictor.

Predictor	Bayesian R^2	b_0	b_1	au
Age	0.08494	19.31	0.2206	0.01638
BAI	0.5474	-5.97	1.183	0.03311
BMI	0.2965	3.611	0.9619	0.0213
BB	0.4763	11.95	0.02161	0.02862
Gender	0.232	23.7	7.883	0.01951

Table 1: The result of Bayesian R^2 for five models with single predictor

The OpenBUGS code of both models are attached in Appendix B.

(b) We obtain the result for the prediction based on two model. The result of the predicted BF is shown in 2 and 3, respectively. The predicted BF is 15.12 and 24.81 based on the first and second model, respectively.

Node stat	istics								<u>ı×</u>
	mean	sd	MC_error	val2.5pc	median	val97.5pc	start	sample	_
BFpredict	15.12	4.057	0.0159	7.157	15.13	23.02	1001	100000	
BR2	0.7521	0.006201	2.101E-5	0.7397	0.7522	0.764	1001	100000	
b0	-33.01	1.808	0.09751	-36.5	-33.11	-29.25	1001	100000	
b1	0.07333	0.007253	1.544E-4	0.05913	0.07331	0.08759	1001	100000	
b2	0.7737	0.06177	0.003224	0.6439	0.7744	0.8928	1001	100000	
b3	1.896	0.07539	0.004006	1.739	1.901	2.036	1001	100000	
b4	-0.02403	0.002109	1.138E-4	-0.0281	-0.02413	-0.01967	1001	100000	
b5	10.61	0.2212	0.007157	10.18	10.6	11.04	1001	100000	
sigma2	16.55	0.4141	0.001403	15.76	16.54	17.38	1001	100000	ŀ

Figure 2: Predicted BF based on the first model

Node statistics							x		
BFpredict BR2 b0 b1 sigma2	mean 24.81 0.5474 -5.971 1.183 30.22	sd 5.509 0.01132 0.55 0.01888 0.7556	MC_error 0.01785 3.655E-5 0.01347 4.624E-4 0.00244	14.06	median 24.82 0.5476 -5.97 1.183 30.21	val97.5pc 35.61 0.569 -4.893 1.22 31.73	start 1001 1001 1001 1001 1001	sample 100000 100000 100000 100000 100000	4

Figure 3: Predicted BF based on the second model

3 Shocks.

By the description, we model the responses via a logistic regression as:

$$p(x) \sim \operatorname{logit}(\beta_0 + \beta_1 \cdot x),$$

where x denotes the shocks time. The OpenBUGS code is provided in Appendix C. Eventually, we obtain the following result:

Figure 4: 95% Credible Set for the Population Proportion under the New Setting.

A Code for Problem 1

```
model {
# train the linear regression model
for (i in 1:20) {
y[i] ~ dnorm(mu[i], tau)
mu[i] \leftarrow b0 + b1 * x1[i] + b2 * x2[i]
}
b0 ~ dnorm(0, 0.001)
b1 ~ dnorm(0, 0.001)
b2 ~ dnorm(0, 0.001)
tau ~ dgamma(0.001, 0.001)
sigma2 <- 1/tau
# evaluate the model
for (i in 21:40) {
mu_hat[i] <- b0 + b1 * x1[i] + b2 * x2[i]
y_hat[i-20] ~ dnorm(mu_hat[i], tau)
se[i-20] <- pow((y_hat[i] - y[i]), 2)
mse_y <- (1/20)*sum(se[])
DATA
x1[] x2[] y[]
0.0356 3 0.1020
0.8862 9 3.1455
0.2469 5 0.3497
0.0089 9 -2.3172
0.8149 1 7.9718
0.1405 9 -1.0208
0.8799 1 7.6091
0.0954 9 -0.0395
0.3526 9 0.5557
0.5934 6 2.8787
0.5852 2 6.0721
0.6677 2 4.2824
0.6480 8 1.3424
0.4334 9 1.7148
0.1398 1 2.7020
0.7519 8 2.4779
0.2418 10 -1.1827
```

```
0.6505 4 3.6914
0.8574 7 3.4107
0.0844 4 0.1968
0.9721 3 5.8893
0.0315 8 -2.5662
0.8354 8 2.9645
0.8357 3 5.0545
0.0499 6 0.4526
0.5459 5 2.9637
0.9432 1 7.9761
0.3215 1 3.3170
0.8065 5 4.2736
0.6014 3 5.1150
0.7896 4 5.9125
0.7992 3 5.3215
0.0496 2 2.6514
0.2832 4 2.0798
0.6535 7 2.7156
0.4897 3 5.1915
0.9729 7 5.5657
0.7485 5 4.7167
0.5678 5 3.2289
0.2990 2 2.3631
END
INITS
list(b0=1, b1=0, b2=0, tau=1)
```

B Code for Problem 2

```
model{
for(i in 1:N){
BF[i] ~ dnorm(mu[i], tau)
BB[i] <- BAI[i] * BMI[i]

# model 1
mu[i] <- b0 + b1 * Age[i] + b2*BAI[i] + b3*BMI[i] + b4*BB[i] + b5* Gender[i]

# model 2</pre>
```

```
mu[i] <- b0 + b1 * BAI[i]
# find a prediction
Age.new <- 35
BAI.new <- 26
BMI.new <- 20
Gender.new <- 0</pre>
BB.new <- 520
# model 1
BFmean <- b0+b1*Age.new+b2*BAI.new+b3*BMI.new+b4*BB.new+b5*Gender.new
# model 2
#BFmean <- b0 + b1 * BAI.new
BFpredict ~ dnorm(BFmean, tau)
b0 ~ dnorm(0, 0.001)
b1 ~ dnorm(0, 0.001)
b2 ~ dnorm(0, 0.001)
b3 ~ dnorm(0, 0.001)
b4 ~ dnorm(0, 0.001)
b5 ~ dnorm(0, 0.001)
tau ~ dgamma(0.001, 0.001)
sigma2 <- 1/tau
p <- 6
# Bayesian R^2
nminusp <- N-p
sse <- nminusp * sigma2</pre>
for (i in 1:N) {
CBF[i] <- BF[i] - mean(BF[])</pre>
}
sst <- inprod(CBF[], CBF[])</pre>
BR2 <- 1 - sse/sst
}
```

C Code for Problem 3

```
model{
for (i in 1:N){
    Y[i] ~ dbin(p[i], 70)
    logit(p[i]) <- beta0 + beta1 * X[i]
}
beta0 ~ dnorm(0.0, 1.0E-6)
beta1 ~ dnorm(0.0, 1.0E-6)

# New subject
X_new <- 2.5
logit(pstart) <- beta0 + beta1 * X_new
}

DATA
list(N=6, X=c(0,1,2,3,4,5), Y=c(0,9,21,47,60,63))

INITS
list(beta0=0,beta1=0)</pre>
```