[Aula 01] Abstrações e tecnologias computacionais

Prof. João F. Mari joaof.mari@ufv.br

Roteiro

- Introdução
- Por baixo do seu programa
- Sob as tampas
- Vida real: fabricando chips de Pentium 4

- Uma aplicação típica pode consistir em centenas de milhares a milhões de linhas de código e se basear em bibliotecas de software sofisticadas.
- Aplicações envolvem várias camadas de software:

- Existe um variedade de softwares de sistema, mas dois tipos são fundamentais: compilador e o sistema operacional
 - O sistema operacional fornece a interface entre o usuário e o hardware e disponibiliza vários serviços e funções de supervisão:
 - Manipulação de operações de E/S;
 - Alocação e armazenamento de memória;
 - Gerenciamento de processos:
 - Possibilita controlar o compartilhamento do computador entre diversas aplicações que o utilizam simultaneamente.
 - O compilador realiza a tradução de um programa escrito em uma linguagem de alto nível, como C ou Java, em instruções que o hardware possa executar.

Digito binário:

 O computador entende <u>instruções de máquinas</u>, formadas por lotes (sequências) de bits.

Montador (assembler):

 Converte os programas em linguagem de montagem (assembly) para a linguagem binária.

Linguagens de alto nível:

 Permitem a escrita de programas em uma linguagem mais próxima as notações lógicas e algébricas utilizadas.

Compilador

Por baixo do seu programa (em C)

Programa em linguagem de alto nível (em C)

(para o MIPS)

Programa em linguagem de máquina (para o MIPS)

FORMATOS DE INSTRUÇÃO - MIPS32

	31 – 26	25 – 21	20 – 16	15 – 11	10 – 6	5-0
R	opcode	rs	rt	rd	shamt	funct
,	31 – 26	25 – 21	20 – 16		15 – 0	•
I	opcode	rs	rt	end	lereço/imedi	ato
,	31 – 26			25 – 0		
J	opcode	endereço				

	31 – 26	25 – 21	20 – 16	15 – 11	10 – 6	5 – 0
multi \$2 \$5, 4	000000	00101	00010	00000	00100	011000
add \$2, \$4, \$2	000000	00100	00010	00010	00001	000001
lw \$15, 0(\$2)	100011	01111	00010	0000 0000 0000 0000		
lw \$16, 4(\$2)	100011	10000	10010	0000	0000 0000	0100
sw \$16, 0(\$2)	101011	10000	10010	0000 0000 0000 0000		
sw \$15, 4(\$2)	101011	01111	00010	0000 0000 0000 0100		
jr \$31	000000	11111	00000	00000	00000	000000

- Abstrações:
 - Uma das abstrações mais importantes é a interface entre o hardware e o software no nível mais baixo, chamada de arquitetura do conjunto de instruções, ou simplesmente arquitetura de uma máquina.
 - Inclui o que os programadores necessitam saber para que os programas em linguagem binária funcionem corretamente.
 - Arquitetura de instruções inclui operações aritméticas, movimentação de dados, lógicas, deslocamento e E/S.

- Os cinco componentes de um computador:
 - Entrada
 - Saída
 - Memória
 - Caminho de dados
 - Controle
- Caminho de dados e controle = processador
- Classificação independente da tecnologia de hardware

Microprocessador AMD Barcelona: 4 núcleos

 Tecnologias para a construção de processadores e memórias:

Tecnologia usada nos computadores	Desempenho relativo/custo unitário
Válvula	1
Transistor	35
Circuito integrado	900
Circuito VLSI (Very Large Scale Integrated)	2.400.000
Circuito ULSI (Ultra Large Scale Integrated)	6.200.000.000
	Válvula Transistor Circuito integrado Circuito VLSI (Very Large Scale Integrated)

- A fabricação do chip começa com o silício, substância encontrada na areia e semicondutora.
- Através de processos químicos, pode-se construir minúsculas áreas que podem se tornar:
 - Excelentes condutores;
 - Excelentes isolantes;
 - Áreas que podem conduzir ou isolar corrente elétrica (chaves).
- O processo inicia com um lingote de silício, de 20 a 30 cm de diâmetro e 30 a 60 cm de comprimento que é fatiado em lâminas (wafers) de menos de 0,25 cm de espessura
- Dies bons são conectados aos pinos de entrada e saída de um encapsulamento (soldagem).

- Consumo de energia como limitação de projeto:
 - Corrente precisa ser trazida para o chip e distribuída
 - Energia dissipada pelo calor precisa ser removida
- A potência é proporcional ao produto do número de transistores pela frequência pela qual esses transistores são chaveados
- Intel Itanium = 4 x o número de transistores do Pentium 4
 - Pentium 4: 82 watts
 - Itanium: 132 watts

Material complementar (Vídeos)

- How a CPU is made
 - https://www.youtube.com/watch?v=qm67wbB5Gml
- AMD CPU Manufacturing
 - https://www.youtube.com/watch?v=qLGAoGhoOhU
- How do they make Silicon Wafers and Computer Chips?
 - https://www.youtube.com/watch?v=aWVywhzuHnQ

Material complementar (Podcasts)

- Scicast #71: Introdução à informática
 - http://www.scicast.com.br/71-introducao-a-informatica/
- Comentado no episódio:
 - Demonstração da Máquina de Diferença de Charles Babbage:
 - https://www.youtube.com/watch?v=BlbQsKpq3Ak
 - Palestra no TED sobre a Máquina Analítica:
 - https://www.youtube.com/watch?v=4rzAL5YwFow
 - Grandes Nomes da Ciência: Ada Lovelace:
 - http://ceticismo.net/2011/12/10/grandes-nomes-da-ciencia-adalovelace/
 - A história do ENIAC:
 - https://www.youtube.com/watch?v=gQbTeayG6Dg
 - https://www.youtube.com/watch?v=k4oGl_dNaPc
 - Colossus: The World's First Electronic Computer:
 - https://www.youtube.com/watch?v=EdxBO9jfU8k

Material complementar (Podcasts)

- Scicast #86: Arquitetura de computadores
 - http://www.scicast.com.br/86-arquitetura-de-computadores/
- Documentários citados no podcast:
 - Vale do Silício A História dos Revolucionários:
 - https://www.youtube.com/watch?v=OvceOWrmSel
 - Arquivo N Globo News Computador: O Parceiro do Homem:
 - https://www.youtube.com/watch?v=vtVxC9ocEu4
 - Viagem Dentro do Computador:
 - https://www.youtube.com/watch?v=0A4CxxJ9h24
 - A História do Computador em Minutos:
 - https://www.youtube.com/watch?v=F3qWg1JBPZg
 - História dos Computadores:
 - https://www.youtube.com/watch?v=slHVnhh9IW0
 - Fabricação de Microprocessadores:
 - https://www.youtube.com/watch?v=Ugaxym42s04
 - Como Funciona um Computador:
 - https://www.youtube.com/watch?v=NF2pPpAucvs
 - Como Surgiu e Como Funciona o Computador:
 - https://www.youtube.com/watch?v=QrFIvig2Kns

Material complementar (Podcasts)

- Nerdcast #377: Armazenamento: Da Pedra ao Blu-ray
 - http://jovemnerd.com.br/nerdcast/nerdcast-377- armazenamento-da-pedra-ao-blu-ray/

BIBLIOGRAFIA

- PATTERSON, D. A.; HENNESSY, J. L. Organização e Arquitetura de computadores: a interface hardware/software. 3. ed. Rio de Janeiro: Elsevier, 2005.
 - CAPÍTULO 1

[FIM]

- FIM:
 - [AULA 01] Abstrações e tecnologias computacionais
- Próxima aula:
 - [AULA 02] Conjunto de instruções 1