

automi

alberto ferrari - fondamenti di informatica

automa

- o automa: macchina astratta
- o realizza un certo algoritmo, secondo un modello di calcolo
- o algoritmo definito nel "linguaggio macchina" dell'automa
- o riceve ed elabora dei dati di ingresso

automi e linguaggi

o *riconoscimento* di linguaggi

- o problema dell'appartenenza (membership)
- o data una stringa x, stabilire se essa appartiene ad L

linguaggi e automi

Tipo 0 Macchina di Turing
Illimitato

Tipo 1 Automa lineare (MT)
Sensibile al contesto
(Contestuale)

Tipo 2 Automa a pila ND
Libero dal contesto
(Non contestuale)

lineare

Tipo 3
Regolare

Automa a stati finiti

linguaggi e automi

- o linguaggi di tipo 3 (regular)
 - o riconosciuti da *automi a stati finiti* (Finite State Machine)
 - o es.: $\{a^nb : n \ge 0\}$ generato da $S \to aS \mid b$
- o linguaggi di tipo 2 (context-free)
 - o ric. da *automi a pila non deterministici* (Nondeterministic PushDown Automata)
 - o es.: $\{a^nb^n : n\ge 1\}$ generato da $S \to aSb \mid ab$
- o linguaggi di *tipo 1* (context-sensitive)
 - o riconosciuti da *automi limitati linearmente* (Linear Bounded Automata)
 - o Es.: $\{a^nb^nc^n : n \ge 1\}$
- o linguaggi di *tipo 0 (recursively enumerable)*
 - o riconosciuti da *macchine di Turing* (Turing Machine)
 - o x ∉ L, semidecidibile: il processo può non terminare!

automi e linguaggi

MACCHINE (AUTOMI) A STATI FINITI

esempi di automi a stati finiti

o semafori

- o insieme di stati (verde, giallo, rosso)
- o il passaggio da uno stato a un altro avviene in base a un timer o a un sensore

o distributori automatici

- o passano tra stati in base agli input degli utenti
 - o inserimento di monete, selezione e erogazione del prodotto
 - o ogni input produce un cambiamento di stato

o ascensori

- o vari stati (piani)
- o gli input dei pulsanti e le condizioni delle porte stabiliscono il passaggio da uno stato a un altro

personaggi non giocanti

- i personaggi non giocanti (PNG) sono figure in un videogioco o in un gioco di ruolo che non sono controllate direttamente da un giocatore, ma dal game master o dall'intelligenza artificiale.
- o il "cervello" di un nemico in un videogame può essere implementato utilizzando un automa a stati finiti
 - o ogni stato rappresenta un'azione
 - o attaccare, eludere, trovare aiuto, muovere
 - o nel grafo i nodi sono gli stati
 - o i collegamenti sono le transizioni definiti dalle situazioni di gioco
 - o player is near (il giocatore è vicino)
 - o healthpoints are low (i punti salute sono bassi) ...

macchina a stati finiti (FSM)

- o automa a stati finiti (Finite State Machine) definito come M
 - o $M = \langle \Sigma, Q, \delta, q_0, F \rangle$ dove:
 - $\Sigma = \{\sigma_1,...,\sigma_n\}$: *alfabeto* di input
 - $\circ Q = \{q_0,...,q_n\}$: insieme finito non vuoto di *stati*
 - \circ F ⊆ Q: insieme di stati *finali*
 - $o q_0 \in Q$: stato *iniziale*
 - \circ δ : $Q \times \Sigma \rightarrow Q$: funzione di transizione
 - o in base allo stato e al simbolo di input attuali ...
 - o determina lo stato successivo

FSM riconoscono tutti e soli i linguaggi regolari

esempio

$$\circ$$
 M = $\langle \Sigma, Q, \delta, q_0, F \rangle$

o $\Sigma = \{a,b\}$: alfabeto di input

 $Q = \{q_1, q_2, q_3, q_4, q_5\}$: insieme degli stati

- o {q₁,q₂,q₄} ⊆ Q: insieme di stati finali
- o q₀ ∈ Q: stato iniziale
- o δ : Q x $\Sigma \to Q$: funzione di transizione
 - o in base allo stato e al simbolo di input attuali
 - o determina lo stato successivo
 - o rappresentata da:
 - o tabella di transizione
 - o diagramma degli stati

δ	а	b
$ ightarrow q_0$	q_3	q_1
$*q_1$	q_2	q_5
$*q_2$	q_2	q_5
q_3	q_0	q_4
$*q_4$	q_2	q_5
q_5	q_5	q_5

esempio

$M = \{a, b\}, \{qS, qA, qB, qC\}, \delta, qS, \{qS\} >$

δ	a	b
q s	QΑ	qв
QΑ	qs	q _C
q в	q c	qs
q c	q _B	q _A

grammatica equivalente:

$$S \rightarrow aA \mid bB \mid \epsilon$$

$$A \rightarrow aS \mid bC$$

$$B \rightarrow aC \mid bS$$

$$C \rightarrow aB \mid bA$$

quali fra seguenti stringhe sono accettate? aaabbb, abab, aabb, babba

https://fondinfo.github.io/play/?c19 fsm.py

Stringhe con a in numero pari e b in numero pari

stati trappola

- o se nella tabella di transizione una cella è vuota la computazione si blocca in quel punto
- o la stringa viene rifiutata, perché l'automa non riesce a consumare tutto l'input
 - si può introdurre uno stato trappola che raccoglie tutte le transizioni mancanti: ogni cella vuota viene sostituita con una transizione verso lo stato trappola
- o nell'automa di esempio in figura
- o **q2** è uno **stato trappola** (dead state)
 - o non esiste via d'uscita
 - o qualsiasi sequenza successiva non è riconosciuta
- o rappresenta spesso condizioni di errore
 - o es. simbolo di input non previsto

macchina a stati finiti non deterministica

- o Nondeterministic Finite Automaton
- \circ M = $\langle \Sigma, Q, \delta_N, q_0, F \rangle$
- o $\Sigma = {\sigma_1, ..., \sigma_n}$: alfabeto di input

- \circ F \subseteq Q: insieme di stati finali
- o $q_0 \in Q$: stato iniziale
- o δ_N : Q x $\Sigma \to P(Q)$: funzione di transizione
 - o determina insieme di stati successivi
 - o P(Q) è l'insieme delle parti di Q, ossia l'insieme di tutti i possibili sottoinsiemi di Q

comportamento NFSM

o un simbolo può attivare più transizioni

o l'automa sviluppa tutti i possibili rami di computazione

la stringa è accettata se almeno una delle computazioni termina in uno stato finale

accettante

FSM - NFA

δ	a	b
q ₀	$\{q_0\}$	$\{q_0, q_1\}$
q 1	{}	{}

$$M' = \{a, b\}, \{q'_0, q'_1\}, \delta', q'_0, \{q'_1\} >$$

δ'	a	b
q'0	q' ₀	q' 1
q'1	q' ₀	q' ₁

Per ogni automa a stati finiti non deterministico è possibile costruire un automa a stati finiti deterministico in grado di riconoscere lo stesso linguaggio

accetta qualsiasi stringa terminante con b

automi a stati finiti

esercizi

FSA - tabella di transizione

- o costruire la tabella di transizione dell'automa rappresentato mediante diagramma degli stati
 - o lo stato finale è q3
- o per ognuna delle seguenti stringhe dire se viene riconosciuta o meno dall'automa
 - o abbab
 - o bbabbaaa
 - o ababbbab
 - o aaabbb

FSA - riconoscimento

- o l'automa con
 - $\circ \ alfabeto: \{a,b\}; \ stati: \{q1,\,q2,\,q3,\,q4\}; \ stato\ iniziale: \ q1; \ stati\ finali\ accettanti: \{q4\}$
 - o tabella di transizione:

	а	b
→ q1	q2	q4
q2	q3	q4
q3	q4	q2
q4	q2	q1

- o quali stringhe riconosce fra le seguenti?
 - o baab, abbab, ba, bbaaa

NFSA - riconoscimento

- o l'automa con
 - o alfabeto: {a, b}; stati: {q1, q2, q3, q4}; stato iniziale: q1; stati finali accettanti: {q1,q2}
 - o tabella di transizione:

	а	b
→q1	{q2,q3}	
q2	{q2,q3}	
q3		{q2,q4}
q4	{q2,q3}	

- o quali stringhe riconosce fra le seguenti?
 - o abba, ε, aabb, bbb, aa