Chapitre 2.1 : Introduction aux séries numériques

I Séries et sommes d'une série

Définition : Soit (u_n) une suite dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On considère $\forall N \in \mathbb{N}, S_N = \sum_{n=0}^N u_n \in \mathbb{K}$.

On a donc une suite $(S_N)_{N\in\mathbb{N}}$ associée à la suite $(u_n)_{n\in\mathbb{N}}$.

Définition : On appelle série de terme général u_n que l'on note $\sum_{n\geq 0} u_n$ la suite $(S_N)_{N\in\mathbb{N}}$.

- Note de rédaction : Les deux définitions précédentes gagneraient à être fusionnées.
- \bigcirc Vocabulaire : On dit que (S_N) est la suite des sommes partielles de la série.
- **1** Remarque: (S_N) correspond aux N+1 premiers termes de la suite.

A Correspondance suite - série

Raisonnement : Par définition une série est une suite. Expliquons comment une suite peut-être vue comme une série.

Si (u_n) est une suite, considérons la série de terme général $v_n=u_n-u_{n-1} \forall n \in \mathbb{N}$ (avec la convention $v_0=u_0$). Ainsi, $u_n=\sum_{k=0}^n v_k$.

 $oldsymbol{0}$ Remarque : Cependant la série associée à une suite (u_n) va s'étudier en tant que telle (que série) grâce à u_n .

B Opérations sur les séries

Propriété: Opérations sur les séries (admise)

Soient $\sum_{n\geq 0}u_n$ et $\sum_{n\geq 0}v_n$ deux séries. Alors, pour tout $\lambda\in\mathbb{K}$:

- Somme : $\sum_{n\geq 0}(u_n+v_n)=\sum_{n\geq 0}u_n+\sum_{n\geq 0}v_n$ définie comme (S_N+S_N')
- Produit par un scalaire : $\sum_{n\geq 0}\lambda u_n=\lambda\sum_{n\geq 0}u_n$ définie comme (λS_N)
- **?** Exemple : Si $u_n=0, \forall n\in\mathbb{N}$, alors $\sum_{n\geq 0}u_n=0$ est la série nulle.

C Troncature d'une série

 $\begin{array}{l} \textbf{D\'efinition:} \quad \text{Si } (u_n) \text{ est une suite d\'efinie pour } n \geq n_0 \mid n_0 \in \mathbb{N}. \text{ On peut consid\'erer la s\'erie } \sum_{n \geq n_0} u_n \text{ où } \\ u_0 = u_1 = \ldots = u_{n_0-1} = 0, \text{ ou bien on peut \'ecrire } \sum_{n \geq n_0} u_n. \\ \text{Si } \sum_{n \geq 0} u_n \text{ est une s\'erie de terme g\'en\'eral } u_n, \text{ une } \textbf{troncature} \text{ de la s\'erie est } \sum_{n \geq n_0} u_n. \\ \text{C'est la suite } (S_N) \text{ où } \\ S_N = \sum_{n = n_0}^N u_n. \end{array}$

- Note de rédaction : Cette définition pourraît être synthétisée.
- Exemple :

- · la série nulle
- la série géométrique de raison $q\in\mathbb{C}^*$: $\sum_{n\geq 0}q^n$ de terme général q^n ;
- la série harmonique : $\sum_{n\geq 1} \frac{1}{n}$ de terme général $\frac{1}{n}$;
- la série $\sum_{n\geq 1} \frac{1}{n^{\alpha}}, \alpha \in \mathbb{R}$.

Il Convergence d'une série

A Définitions et nature d'une série

Définition : Soit $\sum_{n\geq 0} u_n$ une série.

On dit que la série converge, si la suite (S_N) converge, et on note S la limite de S_N .

S s'appelle la somme de la série.

Dans ce cas, on écrit : $\sum_{n=0}^{\infty} u_n = S \in \mathbb{R}$ (c'est une "somme infinie", un objet-limite).

- $igoplus extsf{Vocabulaire}: extsf{Si} \ (S_N) \ ext{diverge}, \ ext{alors on dit que la série} \ \sum_{n\geq 0} u_n \ ext{diverge}.$
- imes Attention imes Si S n'existe pas, alors on écrit **jamais** la notation avec ∞
- De Vocabulaire : La convergence ou la divergence d'une série s'appelle la nature de la série.

Proposition : Stabilité de la limite par troncature (admis)

La nature d'une série n'est pas modifée par troncature.

Preuve:

Note de rédaction : Indication : les premiers termes n'influencent pas la convergence.

B Quelques applications...

© Exemple :

• Si (u_n) est nulle à partir d'un rang N_0 alors la série $\sum_{n>0} u_n$ est converge, et $\sum_{n=0}^{\infty} u_n = \sum_{n=0}^{N_0} u_n$.

• Série géométrique $\sum_{n>0} q^n$:

On considère la suite des sommes partielles (S_N) où $S_N=\sum_{n=0}^N q^n$ = $\frac{1-q^{N+1}}{1-q}$ avec $q\neq 1$. On a plusieurs cas :

- Si |q| < 1, $q^{N+1} \xrightarrow[N \to \infty]{} 0$ donc $S_N \xrightarrow[N \to \infty]{} \frac{1}{1-q} \Leftrightarrow \sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$. La série $\sum_{n>0} q^n$ converge et on arrive à trouver S!
- Si |q| > 1, alors $\sum_{n>0} q^n$ diverge.
- Si q=1, alors $\sum_{n\geq 0}q^n=N+1\Rightarrow \sum_{n\geq 0}q^n$ diverge.
- $\sum_{n>1} log(1+1/n)$:

On a $\forall N \geq 1, S_N = \sum_{n=1}^N log(\frac{n+1}{n}) = log(N+1)$ (télescopage). Or $log(N+1) \xrightarrow[N \to \infty]{} +\infty$, donc la série $\sum_{n\geq 1} log(1+1/n)$ diverge.

On a
$$\forall N \geq 1, S_N = \sum_{n=1}^N \frac{1}{n(n+1)} = \sum_{n=1}^N (\frac{1}{n} - \frac{1}{n+1}) = 1 - \frac{1}{N+1}$$
 (télescopage). Or $1 - \frac{1}{N+1} \xrightarrow[N \to \infty]{} 1$, donc la série $\sum_{n \geq 1} \frac{1}{n(n+1)}$ converge et $\sum_{n=1}^\infty \frac{1}{n(n+1)} = 1$.

- Important, démontré plus tard : $\sum_{n\geq 1}\frac{1}{n}$ (série harmonique) diverge.
- $\sum_{n\geq 1} \frac{(-1)^n}{n}$ converge. (idée : montrer que S_N converge en montant $A_N=S_{2N}$ et $B_N=S_{2N+1}$ sont adjacentes)
- **X** Attention **X** Ces six exemples sont à connaître et comprendre parfaitement.
- **Application**: Étudier la convergence de la série géométrique pour |q|=1 et q=-1 $(q\in\mathbb{C})$.

Propriétés des séries convergentes

Propriété : Convergence de la combinaison linéaire (admise)

Soient $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ deux séries convergentes. Alors $\forall \lambda, \mu \in \mathbb{K}$: $\sum_{n\geq 0} (\lambda u_n + \mu v_n) = \lambda \sum_{n\geq 0} u_n + \mu \sum_{n\geq 0} v_n$, cette série converge (vers la combinaison linéaire des limites).

1 Remarque: En d'autres termes, la somme de deux séries convergentes est une série $\sum_{n\geq 0}(u_n+v_n)$ qui converge.

Preuve:

La suite de sommes partielles associée à $\sum_{n\geq }(u_n+v_n)$ est $\sum_{n=0}^N(u_n+v_n)=\sum_{n=0}^N(u_n)+\sum_{n=0}^N(v_n)$ Comme $\sum_{n=0}^N(u_n)$ et $\sum_{n=0}^N(v_n)$ sont convergentes, on a $\sum_{n=0}^N(u_n+v_n)$ est convergente et sa limite est $\sum_{n=0}^\infty(u_n+v_n)=\sum_{n=0}^\infty(u_n)+\sum_{n=0}^\infty(v_n)$.

 \P Exemple: Retour: Divergence de la série harmonique $\sum_{n\geq 1}rac{1}{n}$

But : minorer $\sum_{n\geq 1}^{N} \frac{1}{n} \forall N \in \mathbb{N}$.

$$n \le t \in \mathbb{R} \le n + 1 \Rightarrow \frac{1}{n+1} \le \frac{1}{t} \le \frac{1}{n}$$

But : minorer $\sum_{n\geq 1}^{N} \frac{1}{n} \forall N \in \mathbb{N}$. $n \leq t \in \mathbb{R} \leq n+1 \Rightarrow \frac{1}{n+1} \leq \frac{1}{t} \leq \frac{1}{n}$ Intégrons entre n et $n+1: \int_{n}^{n+1} \frac{1}{t} dt \leq \frac{1}{n}$ Donc en sommant : $\sum_{n=1}^{N} \int_{n}^{n+1} \frac{1}{t} dt \leq \sum_{n=1}^{N} \frac{1}{n}$ donc par Chasles : $\int_{1}^{N+1} \frac{1}{t} dt \leq \sum_{n=1}^{N} \frac{1}{n} \forall n \in \mathbb{N}$ Or $\int_{1}^{N+1} \frac{1}{t} dt = \ln(N+1) \xrightarrow[N \to \infty]{N \to \infty} + \infty$ donc $\sum_{n=1}^{N} \frac{1}{n} \xrightarrow[N \to \infty]{N \to \infty} + \infty$.

Donc la série harmonique diverge.

Propriété : Divergence de la combinaison linéaire (admise)

Soient $\sum_{n\geq 0} u_n$ une série convergente et $\sum_{n\geq 0} v_n$ une série divergente. Alors $\sum_{n>0}^{-} (u_n + v_n)$ diverge.

Preuve:

$$\sum_{n=0}^{N} (u_n + v_n) = \sum_{n=0}^{N} (u_n) + \sum_{n=0}^{N} (v_n)$$

 $\begin{array}{l} \sum_{n=0}^N (u_n+v_n) = \sum_{n=0}^N (u_n) + \sum_{n=0}^N (v_n) \\ \text{Comme } \sum_{n=0}^N (u_n) \text{ est convergente et } \sum_{n=0}^N (v_n) \text{ est divergente, on a } \sum_{n=0}^N (u_n+v_n) \text{ est divergente.} \end{array}$

X Attention X Quand on considère deux séries divergentes, la situation est à étudier au cas par cas.

© Exemple : Considérons $\sum_{n\geq 1}u_n$ avec $u_n=1\forall n\in\mathbb{N}$ et $\sum_{n\geq 1}v_n$ avec $v_n=-1\forall n\in\mathbb{N}$. D'une part $\sum_{n\geq 1}u_n$ diverge, et $\sum_{n\geq 1}v_n$ diverge aussi. Mais $\sum_{n\geq 1}(u_n+v_n)=\sum_{n\geq 1}0=0$ converge.

Mais si on considère $v_n = u_n$, alors $\sum_{n \ge 1} (u_n + v_n) = \sum_{n \ge 1} 2u_n$ diverge.

X Attention **X** Source d'erreur classique : Si $\sum_{n\geq 0} u_n + v_n$ est convergente, **a** priori on ne peut pas écrire que $\sum_{n=0}^{\infty}u_n+v_n=\sum_{n=0}^{\infty}u_n+\sum_{n=0}^{\infty}v_n$ car les séries de termes généraux u_n et v_n peuvent être divergentes (il faut donc vérifier leur convergence).

Proposition: (admis)

Soit $\sum_{n\geq 0}u_n$ une série numérique où $u_n\in\mathbb{C}\ \forall n\in\mathbb{N}.$ On a $\sum_{n\geq 0}u_n$ converge \Leftrightarrow les suites $(Re(u_n))$ et $(Im(u_n))$ sont convergentes.

Application : Montrer la proposition précédente.

Indication pour la preuve:

écrire $u_n = Re(u_n) + iIm(u_n)$ et utiliser la propriété sur les combinaisons linéaires.

Théorème : Lien entre convergence et limite des termes

Si $\sum_{n\geq 0} u_n$ converge, alors $u_n \xrightarrow[n\to\infty]{} 0$.

Preuve:

Considérons (S_N) la suite des sommes partielles associée à $\sum_{n\geq 0} u_n.$

On a $S_{N+1} - S_N = u_{N+1} \ \forall N \in \mathbb{N}$.

Or $\sum_{n\geq 0} u_n$ converge \Rightarrow (S_N) converge. Donc $\lim_{N\to\infty} S_N - \lim_{N\to\infty} S_{N+1} = 0 \Rightarrow \lim_{N\to\infty} u_N = 0$.

X Attention X La réciproque est fausse. Par exemple la série harmonique $\sum_{n\geq 1}\frac{1}{n}$ diverge mais $\frac{1}{n}$ $\longrightarrow 0$.

Description Vocabulaire: Si $u_n \nrightarrow 0$, on dit que la série $\sum_{n>0} u_n$ diverge grossièrement.

D Reste d'une série

Définition : On suppose que $\sum_{n\geq 0}u_n$ converge. On note $S=\sum_{n=0}^\infty u_n$ sa somme et (S_N) la suite des sommes partielles.

Le **reste** de la série au rang N est $R_N = S - S_N = \sum_{n=N+1}^{\infty} u_n$.

Proposition: Comportement du reste

Si
$$\sum_{n\geq 0} u_n$$
 converge, alors $R_N \xrightarrow[N\to\infty]{} 0$.

Preuve:

Par définition,
$$R_N = S - S_N$$
. Or $S_N \xrightarrow[N \to \infty]{} S$. Donc $R_N \xrightarrow[N \to \infty]{} 0$.