SINGLE CHOICE QUESTION

1. Two blocks *A* and *B* of equal masses m are suspended with ideal pulley and string arrangement as shown. The acceleration of mass *B* is

- (A) $\frac{g}{3}$
- (B) $\frac{5g}{3}$
- (C) $\frac{2g}{3}$
- (D) $\frac{2g}{5}$
- In the arrangement shown, end A of light inextensible string is pulled up with constant velocity v. The velocity of block B is

- (A) v/2
- (B) v

- (D) 3v
- 3. In the arrangement shown in figure, thread is inextensible and massless. All the pulleys are also massless. If friction in all pulleys are negligible, then:

- (A) Tension in thread is equal to $\frac{mg}{2}$.
- (B) Acceleration of pulley C is equal to $\frac{g}{2}$ (downward).
- (C) Acceleration of pulley A is equal to $\frac{g}{2}$ (upward).
- (D) Acceleration of block of mass *m* is equal to *g* (downward).
- **4.** Block *A* moves upward with acceleration $\frac{1}{2}$ m/s². The acceleration of block *B* in downward direction will be

- (A) 2 m/s^2
- (B) 3 m/s^2

(D) 6 m/s^2

5. In the figure, pulleys are smooth and strings are massless, $m_1 = 1$ kg and $m_2 = \frac{1}{3}$ kg. To keep m_3 at rest, mass m_3 should be

- (A) 1 kg
- (B) $\frac{2}{3}$ kg
- (C) $\frac{1}{4}$ kg
- (D) 2 kg
- 6. In the system shown in figure $m_B = 4$ kg and $m_A = 2$ kg. The pulleys are massless and friction is absent everywhere. The acceleration of block A is $(g = 10 \text{ m/s}^2)$

- (A) $\frac{10}{3}$ m/s²
- (B) $\frac{20}{3}$ m/s² (D) 4 m/s²
- (C) $\frac{35}{9}$ m/s²
- 7. In the arrangement shown, the ends P and Q of an inextensible string move downwards with uniform speed v. The pulleys A and B are fixed. The mass M moves upward with a speed

- (A) $2 v \cos \theta$
- (B) $v \cos \theta$
- (C) $\frac{2v}{\cos\theta}$
- (D) $\frac{v}{\cos \theta}$
- **8.** Two blocks m_1 and m_2 of equal masses as shown in figure. Assume ideal pulleys and strings and neglect friction at all the surfaces. The acceleration of the two blocks will be

- (A) $\frac{4g}{13}, \frac{g}{13}$
- (B) $\frac{2g}{7}$, $\frac{g}{7}$
- (C) $\frac{3g}{10}$, $\frac{g}{10}$
- (D) $\frac{g}{4}$, $\frac{g}{4}$

The relation between velocity of two block V_1 and V_2 as shown in the figure is given by 9.

- (A) $7 V_1 V_2 = 0$ (B) $V_1 + V_2 = 0$

- Using constraint equations relation between a_1 and a_2 will be 10.

- (A) $a_1 = 3a_2$ (B) $a_2 = 3a_1$