Frederick National Laboratory for Cancer Research

sponsored by the National Cancer Institute

Predicting Drug Function Using Small-Molecule Structure Information

S. Ravichandran, Ph.D BIDS, FNLCR July 16, 2020

Supporting link: https://github.com/ravichas/ML-predict-drugclass

- DrugTypeClassModeling.pdf
 PPT slides in PDF
- Predict-drugclass-toolsreview.pdf is the pdf version of the Jupyter Notebook
- **3. predict-drugclass.ipynb**Jupyter notebook python code
- 4. Clone the repo

Supporting link: https://github.com/ravichas/ML-predict-drugclass

Generating Molecular Features for Drug Function Classification

Presented by S. Ravichandran, Ph.D., BIDS, Frederick National Laboratory for Cancer Research (FNLCR)

To begin:

• Click the launch Binder button below to begin tutorial using the dynamic version of predict-drugclass.ipynb.

- Please note that Binder server setup on the cloud will take < 3 minutes at most. You will first see a Binder page with some log messages. After the setup, you will see an instance of Jupyer notebook in your browser. Click the Jupyter notebook, predict-drugclass.ipynb, to begin the tutorial.
- Binder does not work with Safari on Mac OS, instead use the Chrome browser. If you are on Windows, please use Chrome.
- If you have trouble with Binder, click predict-drugclass.ipynb above to view a static Python JupyterNotebook.

Supporting Link: ftp://helix.nih.gov/pub

Index of /pub

1	parent	directory	1
	parcin	uncettery	J

Name	Size Date Modified
HAIBIN/	7/15/20, 12:07:00 PM
MIB-DREADDs/	7/10/20, 1:20:00 PM
ML-pred-drugclass/	/ 7/16/20, 4:05:00 AM
NEI/	7/10/20, 10:33:00 AM
NHGRI/	7/13/20, 12:30:00 PM
RE_do/	7/15/20, 2:34:00 PM
■ VERNON/	7/13/20, 11:23:00 AM
bcbb/	7/10/20, 8:49:00 AM
oc/	7/15/20, 11:59:00 AM
h chuan/	7/13/20, 7:04:00 AM
kchen/	7/10/20, 4:24:00 PM
kchen123/	7/10/20, 4:21:00 PM
kchen1234/	7/10/20, 4:27:00 PM
kodalivk/	7/10/20, 10:26:00 AM
poorani/	7/8/20, 12:38:00 PM
weidong/	7/9/20, 8:07:00 AM

Scripts

Python code SLURM script Data

- Make sure you read the README.txt file for some preliminary setup
- Files will be available only for few days. So, download them in the next few days.

Acknowledgements

- NCI-DOE Pilot, ATOM Teams
 - NCI-DOE: https://datascience.cancer.gov/collaborations/joint-design-advanced-computing
 - ATOM: https://pubmed.ncbi.nlm.nih.gov/32243153/

- BIDS
 - Dr. Eric Stahlberg
 - Drs. Andrew Weissman, George Zaki, Amar Khalsa, Lynn Borkon
 - Hue Reardon, Anney Che
 - Colleagues who reviewed the material

Introduction

- This is part of the NCI-DOE knowledge/capability transfer efforts
 - Knowledge-transfer of reproducible Machine-Learning frameworks for modeling drug-discovery problems
- We often take a test-case and provide tools (code/scripts) to accomplish the tasks.
 - We
 - ✓ consider this as a starting point
 - ✓ hope you can tune the shared tools to your needs
 - ✓ believe the test-cases can be extended/modified to address advanced topics.
- Please send us your feed-back
 - <u>ravichandrans@mail.nih.gov</u>

Objectives

 Identify drugs that belong to a Pharmacological Class using chemical properties (in-silico)

- Example
 - Given a drug (ex. Imatinib) in the form of chemical structure, can we predict, its function?

Antineoplastic Agents: Substances that inhibit or prevent the proliferation of NEOPLASMS.

CC1=C(C=C(C=C1)NC(=O)C2=CC=C(C=C2)CN3CCN(CC3)C)NC4=NC=CC(=N4)C5=CN=CC=C5.CS(=O)(=O)O

Test case example

with CC-BY license

https://pubmed.ncbi.nlm.nih.gov/31518132/

Why are we interested in this problem?

Closely related to another area in Drug-Discovery called Drug repurposing

"Drug repurposing is a strategy for identifying new uses for approved or investigational drugs that are outside the scope of the original medical indication" Nat. Rev. 18, 41, 2019

Drug-repurposing/Repositioning/Reprofiling/Re-tasking

"Drug repurposing is a strategy for identifying new uses for approved or investigational drugs that are outside the scope of the original medical indication" Nat. Rev. 18, 41, 2019

Drug-repurposing/Repositioning/Reprofiling/Re-tasking

Zhou et al. Cell Discovery (2020)6:14 https://doi.org/10.1038/s41421-020-0153-3 Cell Discovery

ARTICLE

Open Access

Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2

Yadi Zhou¹, Yuan Hou¹, Jiayu Shen¹, Yin Huang¹, William Martin ¹ and Feixiong Cheng ^{1,2,3}

Drug repurposing: progress, challenges and recommendations

Sudeep Pushpakom¹, Francesco Iorio², Patrick A. Eyers³, K. Jane Escott⁴, Shirley Hopper⁵, Andrew Wells⁶, Andrew Doig⁷, Tim Guilliams⁸, Joanna Latimer⁹, Christine McNamee¹, Alan Norris¹, Philippe Sanseau¹⁰, David Cavalla¹¹

and Munir Pirmohamed¹ * NATURE REVIEWS | DRUG DISCOVERY | VOLUME 18 | JANUARY 2019 | 41

Drug-repurposing/Repositioning/Reprofiling/Re-tasking

NATURE REVIEWS | DRUG DISCOVERY

VOLUME 18 | JANUARY 2019 | 41

Drug Name	Original Indication	New Indication	Date of Approval	Repurposing approach used	Comments
Zidovudine	Cancer	HIV/AIDS	1987	In vitro screening of compound libraries	First anti-HIV drug to be approved by the FDA
Minoxidil	Hypertension	Hair-loss	1988	Retrospective clinical analysis (identification of hair growth as an adverse effect)	Global sale for minoxidil were US \$860 million in 2016

Minoxidil; Brand Name: Rogaine

Drug Repurposing Effort

Choice of host receptors gleaned via P-P network

- D. E. Gordon et al., https://www.nature.com/articles/s41586-020-2286-9 (2020).
 - "cloned, tagged and expressed 26 of the 29 viral proteins in human cells and identified the human proteins physically associated with each using Affinity-Purification Mass Spectrometry (AP-MS)"
 - we identify 67 druggable human proteins or host factors targeted by 69 existing FDA-approved drugs, drugs in clinical trials and/or preclinical compounds,

Viral host

Here is an example of how targeting BRD2/4 can possibly interrupt virus infections

Drugs that can target either one of them

Chloroquine, a malarial drug, against Coronavirus?

The New Hork Times

HN N

This Photo by Unknown Author is licensed under CC BY-SA

MATTER

Scientists Identify 69 Drugs to Test Against the Coronavirus

Two dozen of the medicines are already under investigation. Also on the list: chloroquine, a drug used to treat malaria.

https://www.nytimes.com/2020/03/22/science/coronavirus-drugs-chloroquine.html

Objectives → ?s

- Where do we begin and ?s
 - 1. We want to predict outcome (Class), what <u>estimator</u> will be appropriate?
 - Imatinib ← → Antineoplastic agent

2. Where do we get drug-class (outcome) and the chemical structure of compounds?

- 3. How can we calculate Feature/property for drug molecules?
- We will provide some tools (software libraries) that can accomplish the above tasks

1. We want to predict outcome (Class), what estimator will be appropriate?

Predicting a class/category?

Have labelled data

→ Supervised

Learning

Classifiers; Ensemble Classifiers

✓ Supervised Learning; Random Forest Classifier

2. Where do we get drug-class (outcome) and the chemical structure of compounds?

2. Where do we get drug-class (outcome) and the chemical structure of compounds?

- We need structure to compute chemical properties.
- SMILES (Simplified Molecular Input Line Entry System)
- "SMILES is a line notation (a typographical method using printable characters) for entering and representing molecules and reactions."

SMILES	Names
CC	Ethane
O=C=O	Carbon dioxide
C#N	Hydrogen Cyanide
CC(=O)OC1=CC=CC=C1C(=O)O	Aspirin

2. Where do we get drug-class (outcome) and the chemical structure of compounds?

CID	Name	SMILES	Class
45291	Imatinib	CC1=C(C=C(C=C1)NC(=O)C2=CC=C(C=C2)CN3CCN(CC3)C)NC4=NC=CC(=N4)C5=CN=CC=C5	Antineoplastic
20055107	gamma- Promedol	CCC(=O)OC1(CC(N(CC1C)C)C)C2=CC=CC	CNS
5362119	lisinopril	C1=CC(=CC(=C1)C(=O)NCCO)C2=CC(=NC=N2)NC3=CC=C(C=C3)OC(F)(F)F	Cardio
4848	Pirenzepine	CN1CCN(CC1)CC(=O)N2C3=CC=CC=C3C(=O)NC4=C2N=CC=C4	GI

Lisinopril

Frederick National Laboratory for Cancer Research

3. How can we calculate Feature/property for drug molecules?

				Propertie	s or Finge	rprint		
								Outcome
ID	SMILES	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Class
1	SMILES1							cns
2	SMILES2							cns
3	SMILES3							Cardiovascular
3	SMILES4							Antineoplastic
4	SMILES5							Dermatologic
•••	•••							•••
•••	•••							•••

- ✓ Supervised Learning; Random Forest Classifier
- ✓ PubChem to gather data
- Fingerprints for descriptors

3. How can we calculate Feature/property for drug molecules?

				Properties or Fingerprint			Only the firs	t 6 bits for 5 molecules are sho	owr
							<i></i>	Outcome	
ID	SMILES	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Class	
1	SMILES1	1	1	0	1	0	1	cns	
2	SMILES2	0	0	0	1	1	0	cns	
3	SMILES3	1	0	0	1	0	0	Cardiovascular	
3	SMILES4	1	0	0	1	1	0	Antineoplastic	
4	SMILES5	1	1	0	1	1	1	Dermatologic	
•••	•••	•••	•••	•••	•••	•••		•••	
•••	•••	•••	•••	•••	•••	•••		•••	

- ✓ Supervised Learning; Random Forest Classifier
- ✓ PubChem to gather data
- ✓ Fingerprints for descriptors

Recent efforts have showed that Molecular Fingerprints can Serve an Effective Feature Set for Machine-Learning

Molecular Fingerprints

2010 May 24 Extended-connectivity Fingerprints Affiliations + expand PMID: 20426451 DOI: 10.1021/ci100050t

Get rights and content

Morgan 2048-bit FingerPrint for Paracetamol

0000000

[191, 245, 530, 650, 745, 807, 843, 849, 1017, 1057, 1077, 1152, 1313, 1380, 1602, 1750, 1778, 1816, 1873, 1917]

843

1917

191

Morgan 2048-bit FingerPrint

Turned-on bits for Paracetamol [191, 245, 530, 650, 745, 807, 843, 849, 1017, 1057, 1077, 1152, 1313, 1380, 1602, 1750, 1778, 1816, 1873, 1917]

Underline marks common bits

Turned-bits for Pheacetin [69, 80, 102, <u>191</u>, 237, <u>245</u>, 294, 322, <u>530</u>, <u>650</u>, 695, 718, <u>807</u>, <u>843</u>, <u>849</u>, <u>1017</u>, <u>1057</u>, <u>1077</u>, <u>1152</u>, 1238, <u>1380</u>, 1452, <u>1750</u>, <u>1816</u>, <u>1873</u>, <u>1917</u>]

Paracetamol fingerprint collection

Part-I: SMILES → Structure → SubFragments → Fingerprint

Part-II: Outcome labels to numerical quantities

Antineoplastic Agents (antineoplastic)
Cardiovascular Agents (cardio)
Central Nervous Systems (cns)

- O: Antineoplastic Agents (antineoplastic)
- 1: Cardiovascular Agents (cardio)
- 2: Central Nervous Systems (cns)

Tools Review

https://github.com/ravichas/ML-predict-drugclass

Machine Learning using Supervised Learning as an example

- Randomly split the data into Training (ex. 60%) and Test set (ex. 40%)
- Using the training dataset we would like to:
 - Accurately(??) predict <u>new or unseen</u> case labels
 - Try to understand which inputs affect (& how) the outcome (i.e. Cancer or not)
 - Evaluate (<u>using test set</u>) the correctness of our predictions and inferences

Machine-learner: Classification

- Qualitative variables: unordered set, C,
 - Eye-color ∈ { black, brown, blue }
 - Given a feature vector X (fingerprint) and a qualitative outcome Y (taking values from the set in C, the task is to identify a function C(X) that predicts a value for Y
 - $C(X) \in C$
 - Takes in X and outputs one of the elements of C
 - One can also compute the probabilities of what X belongs to C

CART: Classification motivation

ID	SMILES	sFP1	sFP2	Class
1	SMILES1	1	1	cns
2	SMILES2	0	0	cns
3	SMILES3	1	0	Cardiovascular
3	SMILES4	1	0	Cardiovascular
4	SMILES5	1	1	cns
•••			•••	•••
•••	•••	•••	•••	•••

CART/binary-trees: Classification motivation

Split using single feature (x) and a cut-off ($t_x >= 84$)

Choice of feature/cutoff is based on a COST function (that attempts of find pure nodes)

Decision-trees: Classification motivation

Terminal/Leaf nodes: R1, R2, R3

Internal nodes: Predictor space splitting

points

CART produces binary tree; other algorithms (not common) can produce more than 2 children

Decision-trees: Important points

- Does trees explore all possible combinations
 - No? It uses something called top-down, greedy (best split at the particular step)
 approach; Not optimal but reasonably good
 - Recursive binary splitting

- Trees identify a predictor X_j and a cut-point c such that the splitting the predictor space leads to lower variance
 - Region1: {X|X_j < c}; Region2: {X|X_j ≥ c}
- Tree splitting will continue from the above cut regions and will continue to split

Decision-trees: Important points

- Trees usually are grown bushier and pruned back to find a best sub-tree
 - Check Rob Tibshirani book or Google for details.

- Process will continue will our criteria is reached
 - We call this Hyperparameters
 - Bucket size, depth of tree etc.

https://hpc.nih.gov/apps/candle/index.html

Hyperparameters

- Hyperparameters
 - Set <u>before training</u> a model
 - Drive the training process
 - Tuned between training iteration
- Examples
 - RandomForest
 - # of observations in a leaf etc.
 - KNN
 - Number of neighbors

Decision-tree: Summary

Outcomes: Categorical (unordered) variables

- Tree or decision tree is a set of Yes/No questions
- Predictions are given by the nodes (or ends)
 - That is which class is most common within the partition

 Trees work by partitioning/segmenting the predictor space (lines or boxes) with the hope of getting a pure space (ie of one class)

Tree building metrics: Measure of the quality of a split

- Gini index or node purity for a node, m
 - $G_m = \sum_{k=1}^K \widehat{P}_{mk} (1 \widehat{P}_{mk})$
 - mth region and kth class
 - A small value indicates a region that contains predominantly of one class
 - Pure node: G = 0; Mixed class node: G = 0.5 (equal proportions)

Cross-entropy a similar measure to Gini index

•
$$D = -\sum_{k=1}^{K} \hat{P}_{mk} \log(\hat{P}_{mk})$$

Decision-Tree

Pros:

- Easy to explain
- Interpretable
- No preparation/scaling/centering
- Non-linear method

Cons

- High variance
- Unstable with small changes in the data
- Perform poorly when compared to ensemble based methods (Random Forest)

Ensemble Methods: Random Forest

Law of Large Numbers

Wisdom of the crowd

This Photo by Unknown Author is licensed under CC BY

For each observation, record the class prediction from each of the B trees and take a majority vote

This Photo by Unknown Author is licensed under CC BY-SA

Random Forest

- Combining a large number of trees result in improvements in accuracy
 - n independent measurements $Z_1, ..., Z_n$ each with variance of σ^2 , variance of the mean \bar{Z} will be $\frac{\sigma^2}{n}$

- Scikit-learn
 - Random sampling (with replacement; bootstrapping) of training data points when building trees
 - Random subsets
 - Usually $\sqrt{(n_{\text{features}})}$ considered when splitting nodes

Evaluation of binary classifiers

Confusion Matrix and Balanced Accuracy (BA) Score

$$TPR = \frac{TP}{TP + FN}$$

$$TNR = \frac{TN}{TN + FP}$$

$$\mathbf{BA} = \frac{\mathrm{TPR} + \mathrm{TNR}}{2}$$

	Actual: Yes	Actual: No
Predicted: Yes	TP	FP
Predicted: No	FN	TN

$$\frac{\textbf{Accuracy}}{\textbf{P} + \textbf{N}}$$

Overview of Classification Process

Respiratory System Agent

Reproductive Control Agent

Lipid Regulating Agent

GI Agent

Cardiovascular Agent

Anti-neoplastic Agent

CNS Agent

Anti-infective Agent

Anti-inflammatory Agent

Dermatologic Agent

Hematologic Agent

Urological Agent

Therapeutic Class Labels (MeSH Classification)

SMILES String of Drug Data

Fingerprints

1000010000......10000010 1100010000......00001010 0001010000......11000010

Test Data

SMILES String of Drug Data

Thanks

- Contact Info
 - <u>ravichandrans@mail.nih.gov</u>

This Photo by Unknown Author is licensed under CC BY-SA-NC

Extra

Evaluating Trees

- Classification Error Rate
 - $E = 1 \max_{k} (\hat{P}_{mk})$
 - \hat{P}_{mk} : proportion of training observations in the mth region that belong to kth class
 - But, this is not sensitive, noisy and not commonly used