Comparing single-cell RNA-seq datasets

Ken Lau, Assistant Professor of Cell and Developmental Biology ken.s.lau@vanderbilt.edu
CQS Summer Academy (8/14/2018)

http://www.mc.vanderbilt.edu/vumcdept/cellbio/laulab/index.html
Twitter: @KenLauLab

Single cell suspension***

Single-cell encapsulation/ Library preparation

Sequencing and alignment (Bioinformatics I)

Table of genes and barcodes

Barcodes

Common graph terms

- Common terms:
 - o nodes are cells

Common graph terms

- Common terms:
 - o nodes are cells
 - edges are connections between nodes

Common graph terms

- Common terms:
 - o nodes are cells
 - edges are connections between nodes
 - topology refers to overall structure of the graph

Introduction of k Nearest Neighbor (kNN) networks

Rules

- Connect each node to its k nearest neighbors
- Nearest Neighbor refers to "closest" cell in distance (can be in expression space, not in necessarily in physical space)
- Robust when k reaches a certain number

scRNA-seq processing steps

9. Differential expressed genes analysis

1. Cell identification

1a. Doublet discrimination – DoubletDecon (DePasquale et al.)

- Identify cell clusters, and then generate synthetic doublets by mixing reference cell profiles. Match cells to synthetic doublets.
- "Rescue" cells with unique expression profiles to the reference clusters.
- Performance not super great.

2. Processing – standard

 Total transcript (UMI) different even among same cell type due to stochastic sampling

	1
1	7145
2	6819
3	7403
4	6975
5	6560
6	5917
7	6040
8	6915
9	6383
10	6208
11	6220
12	5172
13	5796
14	6151
15	5804
16	5144
17	4939
18	5120
19	5321
20	4605

Data processing:

- 1. Separate mouse and human cells (if spike in)
- 2. Normalize UMI counts to total UMI counts (to get a fraction expression for each gene)
- 3. Variance normalization (most people use log+1 transform or asinh)

Ways to work with zero-inflated data without normalization also available (mostly using fits of negative binomial distributions and then breaking out the zero and negative binomial components)

zingeR: unlocking RNA-seq tools for zero-inflation and single cell applications

Koen Van den Berge^{1,2}, Charlotte Soneson^{3,4}, Michael I. Love⁵, Mark D. Robinson^{3,4}, and Lieven Clement^{1,2,*}

A general and flexible method for signal extraction from single-cell RNA-seq data

Davide Risso 1, Fanny Perraudeau², Svetlana Gribkova³, Sandrine Dudoit^{2,4} & Jean-Philippe Vert 5,6,7,8

3. Feature selection

What is feature selection?

- Feature selection from ~25000 genes, select a subset for further analysis
- This is inherently done in candidate-based approaches
- We want to do this in a unsupervised way (aka instead of us handpicking genes)

Why feature select?

- Not all features reliable (drop out/noisy)
- Not all features relate to process of study

Unsupervised approaches for feature selection relies on specific patterns of gene expression over entire ensemble of cells.

Simple solution – pick features with highest variances

PCA (Principal Component Analysis)

- Principle of PCA is to maximize the Variance of X with the least amount of principal components (latent variables)
- What is variance? Spread of the data, information content, change etc.
- Variance is the covariance of a dataset with itself, i.e. $Var(X) = Cov(X,X) \rightarrow Maximize$
- What are principal components? Linear combinations of original variables

PCA

Problem: Technical variance may be bigger than real meaningful variance

Cluster-based feature selection (dpFeature)

Neighborhood variance feature selection

Feature selection performance depends upon distribution of the data

3a. Data Imputation

What is imputation?

- Fill in zero or low expression entries with values
- Rely on what a cell neighbor is expressing

Why imputation?

- "Rescue" unreliable genes instead of throwing them out
- Low expressing genes are important, such as transcription factors

MAGIC – data manifold imputation (van Djik et al., 2018)

Dangerous (but useful) as data is being "made up".

4 (8). Batch Correction (Alignment)

Replicates grouping by samples/runs indicate technical effects

"Mixing" of data points from multiple replicates on t-SNE plot

UniFrac – comparing two evolutionary trees (ecology/microbiome)

the sum of all tree branch lengths

UniFrac is a statistically robust way to compare trees between two samples with differing membership

sc-UniFrac to quantify local and global "mixing" between samples

Degree of similarity between replicates and outgroup organ quantified

Adding samples without redoing entire analysis

sc-UniFrac can be used to quantitatively group different samples (brain regions by developmental origins – Marques et al.)

Automatically blasting against reference cell atlases based on shifting branch structures

MNN (Haghverdi et al.)

Using mutual nearest neighbors to correct for batch

Seurat-CCA (Butler et al.)

Canonical Correlation Analysis

- Instead of looking at mutually neighboring cells, look for gene patterns that are maximally correlated between data sets (basically identifying a set of marker genes for populations that do not change over batches)
- Use these genes for data embedding (like PCA, orthogonal axes etc.)

Alignment via dynamic time warping

- Linear transform the CCA axes initially, then scale according to dynamic time warping (DTW)
- DTW takes two sequences of signals that maybe out of sync with different "acceleration" and matches them, producing a new aligned axis

Dynamic Time Warping Matching

Assessing alignment/mixing using sc-UniFrac

Summary

- Significant batch effects exist in scRNA-seq data
 - Differences in cell isolation
 - Differences in library preparation
 - Differences in sequencing
- Alignment can be used for correcting batch effects
- Alignment can be extended to different experimental conditions (untreated and treated experimental samples)
- One must be able to quantitatively assess quality of alignment. AKA to address the question of "Would anything align to anything"?