Exercice 1

```
1.a) 11001101 complément 2
                              addition pour trouver décimal 32+16+2+1=51 la réponse est -51
  11001101-1=11001100 complément 1
  Inversement de tous les 0 et 1
  00110011
                le bit en vert indique si le nombre est positif ou négatif
b) <mark>0</mark>1101011 complément 2
                             addition pour trouver décimal 128+16+4+1=149 la réponse est +149
  01101011-1=01101010 complément 1
  Inversement de tous les 0 et 1
  10010101
c) 5726
  convertir tous les chiffres en écriture binaire addition pour trouver décimal 1040+32+8+2=1066
  101 111 010 110 complément 2
                                            la réponse est -1066
  101 111 010 110-1=101 111 010 101 complément 1
  Inversement de tous les 0 et 1
  010 000 101 010
d) FADE
  convertir tous les lettres en écriture binaire addition pour décimal 1024+256+32+2=1314
  1111 1010 1101 1110 complément 2
                                            la réponse est -1314
  Inversement de tous les 0 et 1
  0000 0101 0010 0010
  Inversement de tous les 0 et 1
  0000 0101 0010 0010
 e) 1000 0000 complément 2 addition pour décimal 128+64+32+16+8+4+2=254
   1000 0000-1=0000 0001 complément 1 La réponse est -254
   Inversement de tous les 0 et 1
   1111 1110
```

2.

Numéros	BIN	OCT	DEC	HEX
2586	Non	Oui	Oui	Oui
00000000	Oui	Non	Non	Non
11111	Oui	Oui	Oui	Non
514	Non	Oui	Oui	Oui
A626	Non	Non	Non	Oui

3.

- a) 5 << 4 signifie $5 \times 2^4 = 5 \times 16 = 80$
- b) X & (5<<4) signifie qu'il y a une vérification de type « AND » (opération bitwise)

4. a) -9876

9876/2=4938 reste=0, 4938/2=2469 reste=0, 2469/2=1234 reste=1, 1234/2=617 reste=0, 617/2=308 reste=1, 308/2=154 reste=0, 154/2=77 reste=0, 77/2=38 reste=1, 38/2=19 reste=0, 19/2=9 reste=1, 9/2=4 reste=1, 4/2=2 reste=0, 2/2=1 reste=0, 1/2=0 reste=1

Écrire tous les restes de la fin jusqu'au début

0010011010010100 représente +9876

Trouver son complément à 2 pour trouver la représentation de -9876

Inversement de tous les 0 et 1

1101100101101011

1101100101101011+1=1101100101101100 représente -9876

Trouver le complément à 2

Inversement de tous les 0 et 1

0010011010010011

0010011010010011+1=0010011010010100 complément à 2 de -9876

Représentation hex de -9876

Séparation à chaque 4 bits

1101 1001 0110 1100

Trouver la représentation de chaque en hex

b)-64

64/2=32 reste=0, 32/2=16 reste=0, 16/2=8 reste=0, 8/2=4 reste=0, 4/2=2 reste=0, 2/2=1 reste=0, 1/2=0 reste=1

Écrire tous les restes de la fin jusqu'au début et ajouter des 0 pour espace vide

000000001000000 représente +64

Trouver son complément à 2 pour trouver la représentation de -64

Inversement de tous les 0 et 1

1111111110111111

1111111111111111+1=1111111111000000 représente -64

Trouver le complément à 2

Inversement de tous les 0 et 1

000000000111111

000000000111111+1=000000001000000 complément à 2 de -64

Représentation hex de -64

Séparation à chaque 4 bits

1111 1111 1100 0000

Trouver la représentation de chaque en hex

FFCO

c)12345

12345/2=6172 reste=1, 6172/2=3086 reste=0, 3086/2=1543 reste=0, 1543/2=771 reste=1, 771/2=385 reste=1, 385/2=192 reste=1, 192/2=96 reste=0, 96/2=48 reste=0, 48/2=24 reste=0, 24/2=12 reste=0, 12/2=6 reste=0, 6/2=3 reste=0, 3/2=1 reste=1, 1/2=0 reste=0

Écrire tous les restes de la fin jusqu'au début et ajouter des 0 pour espace vide

0011000000111001 représente +12345

Trouver son complément à 2

Inversement de tous les 0 et 1

1100111111000110

1100111111000110+1=1100111111000111 complément à 2

Représentation hex de 12345

Séparation à chaque 4 bits

0011 0000 0011 1001

Trouver la représentation de chaque en hex

3039

5. a) 8B+6A

Convertir en écriture binaire

10001011+01101010=11110101

Séparation à chaque 4 bits

1111 0101=F5 représentation hex

aucun débordement signé car c'est l'addition d'un nombre signé positif avec un nombre signé négatif

b) 52+49

Convertir en écriture binaire

01010010+01001001=10011011

Séparation à chaque 4 bits

1001 1011=9B représentation hex

Débordement signé car cette addition de 2 nombre signé positif devient négatif

6.0861

a) Séparation et convertion en binaire

<mark>0</mark>000 1000 0110 0001

Addition pour decimal

2048+64+32+1=+2145

b) Inversion de l'ordre et suivre les mêmes étapes

1680

<mark>0</mark>001 0110 1000 0000

4096+1024+512+128=+5760

a) Séparation et convertion en binaire

1100 0010 1011 1011

Addition pour decimal

16384+512+128+32+16+8+2+1=17083

La réponse est -17083

b) Inversion de l'ordre et suivre les mêmes étapes

BB2C

1011 1011 0010 1100

8192+4096+2048+512+256+32+8+4=15148

La réponse est -15148

38A0

a) Séparation et convertion en binaire

<mark>0</mark>011 1000 1010 0000

Addition pour decimal

8192+4096+2048+128+32=+14496

La réponse est +14496

b) Inversion de l'ordre et suivre les mêmes étapes

0A83

<mark>0</mark>000 1010 1000 0011

2048+512+128+2+1=+2691

La réponse est +2691

9EEC

a) Séparation et convertion en binaire

<mark>1</mark>001 1110 1110 1100

Addition pour decimal

```
4096+2048+512+128+64+32+8+4=9688
```

La réponse est -9688

b) Inversion de l'ordre et suivre les mêmes étapes

CEE9

1100 1110 1110 1001

16384+2048+1024+512+128+64+32+8+1=20201

La réponse est -20201

Exercice 2

a) Zone 1

624 Pistes*792 secteurs/pistes*512 B/secteurs=253034496 B

Zone 2

1424 Pistes*780 secteurs/pistes*512 B/secteurs=568688640 B

Zone 3

1680 Pistes*760 secteurs/pistes*512 B/secteurs=653721600 B

Zone 4

1815 Pistes*760 secteurs/pistes*512 B/secteurs=706252800 B

Espace total=253034496+568688640+653721600+70625800

=1546070536 B

b) Zone 1

(5400/60)*792 secteurs/pistes*512*(8/2^20)=278,4375 Mb/s

Zone 2

(5400/60)*780 secteurs/pistes*512*(8/2^20)=274,21875 Mb/s

Zone 3

(5400/60)*760 secteurs/pistes*512*(8/2^20)=267,1875 Mb/s

Zone 4

(5400/60)*720 secteurs/pistes*512*(8/2^20)=253,125 Mb/s

Taux de transfert moy = (278,4375+274,21875+267,1875+253,125)/4

c) Taux de tranfert moy = (278,4375+274,21875+267,1875+253,125+4000)/5

d) Non car même si il y a plusieurs disques dur de même taille ils ont tous le même taux de transfert moyen et on ne tient pas compte du nombre de surface pour le taux de lecture.

Exercice 3

- 1) . $((IRb Ira)*8) \rightarrow Ira$ $IRa \leftarrow ((IR<21...17> IR<26...22>)*K) où k := 8$
- 2) $(IRop = 13) \rightarrow (IRa) \leftarrow (IRa 1) = (IRb) \leftarrow (IR-1)$
- 3) $(IR<31..27>=13) \rightarrow (IR<26..22>) \leftarrow (IR<26.22> K) \textcircled{IR}<21..17>) \leftarrow (IR<21.17>) AVEC K :=1$

Exercice 4

Instruction 1

a) Encodage possible

r1 := 001

r2 := 011

IR<3124>	IR<2321>	IR<2018>	IR<1715>	IR<1413>	IR<120>	
0x4a	r1	r3	0	0	0	
01001010	001	011	000	00	0000000000000	

4A2C0000

Selon l'énoncé du TP1 (voir l'énoncé), l'opcode 0x4a correspond à une addition (résultat de l'UAL).

b) RTN concret

T ← r3;

 $r1 \leftarrow Mem2[T] + T;$

c) Tableau des micro-instructions

Instruction	Α	В	С	D	Ε	F	G	UAL	ecrireT	ecrireEIP	ecrireRegistre
T ← r3;	0	01	0	0	1	0	0	0x0a	1	0	0
r1 ← Mem2[T] + T;	0	00	0	0	0	1	0	0x4a	0	0	1

Voir l'énoncé du TP1 pour 0x0a

Pour la justification de la question d), on peut bien voir que la somme de 0x1F et 0x6261605F est égale à 0x6261607E, ce qui justifie que la simulation est correcte.

d) Simulation avec Electric

La somme de 0x1F et 0x6261605F équivaut à 0x6261607E

Instruction 2

a) Encodage possible

r1 := 001

r2 := 010

r3 := 011

IR<3124>	IR<2321>	IR<2018>	IR<1715>	IR<1413>	IR<120>	
0x5b	r1	r3	r2	0	0x23	
01011011	001	011	010	00	0 000000100011	

5B2D0023

Selon l'énoncé du TP1 (voir l'énoncé), l'opcode 0x5b correspond à une addition de 0x11 (décalage vers la droite du registre X par Y bits) et 0x4a (voir l'instruction 1, a)).

b) RTN concret

T ← r3;

 $r1 \leftarrow Mem2[T];$

 $T \leftarrow 0x23;$

 $T \leftarrow r1 + T$;

 $r1 \leftarrow T >> r2$;

c) Tableau des micro-instructions

Instruction	Α	В	С	D	Ε	F	G	UAL	ecrireT	ecrireEIP	ecrireRegistre
T ← r3;	0	01	0	0	1	0	0	0x0a	1	0	0
r1 ← Mem2[T] + T;	0	00	0	0	0	1	0	0x0a	0	0	1
T ← 0x23;	0	00	0	1	0	0	0	0x0a	1	0	0
T ← r1 + T;	0	00	0	0	1	0	0	0x4a	1	0	0
r1 ← T >> r2;	0	10	0	0	1	0	0	0x11	0	0	1

Pour la justification de la question d), on peut bien voir que (0x6261605F+0x23)>>0xB est égale à 0xC4C2C, ce qui justifie que la simulation est correcte.

d) Simulation avec Electric