CS33503: 数据库系统

邹兆年

哈尔滨工业大学 计算机科学与技术学院 海量数据计算研究中心 电子邮件: znzou@hit.edu.cn

2019年春

邹兆年 (CS@HIT)

CS33503: 数据库系统

2019年春 1 / 54

为什么要学习数据库系统?

- 当你得到一个数据库,并需要对它进行管理时,你需要了解数据库 系统的基本概念,掌握数据库语言,具备数据库系统的使用技能。
- 当你面对一个数据密集型应用设计与开发需求时, 你需要掌握数据 库的设计方法,了解如何评估设计方案的优劣,具备数据库系统应 用开发能力。
- 当你接手一个性能低下的数据密集型应用时,你需要了解数据库系 统的工作原理,知道如何对系统进行优化和重新设计。
- 当你参与一种新型数据库管理系统的研发时,你需要了解多种数据 库管理系统的工作原理和设计方案,并具备一定的研究能力。

《□》《圖》《意》《意》 意 90 Q

邹兆年 (CS@HIT)

2019年春

授课安排

课堂授课

- 20节课, 共40学时
- 第1-6, 8-11周, 周一, 第1-2节, 正心34
- 第1-6, 8-11周, 周三, 第1-2节, 正心34

实验

- 2次实验, 共8学时
- 第8、12周,周六,第1-4节,格物208 (1603101、1603102、1603103班)
- 第8、12周, 周日, 第5-8节, 格物207 (1637101、1637102班)

<ロ > < @ > < 量 > < 量 > < 量 > のQ @

邹兆年 (CS@HIT)

CS33503: 数据库系统

2019年春

2 / 5/

教学团队

主讲: 邹兆年 副教授、博导

• 办公室: 综合楼810

• 电子邮件: znzou@hit.edu.cn

• QQ: 12943596

助教: 张子超、袁怡轮、刘丹丹

• QQ群: 544017070 (请将成员昵称修改为"学号-姓名")

教材与参考书

- Ramez Elmasri, and Shamkant B. Navathe. Fundamentals of Database Systems (Fourth Edition)
- Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom.
 Database System Implementation (Second Edition)
- Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System Concepts (Sixth Edition)
- Jeffrey D. Ullman, and Jennifer Widom. A First Course in Database Systems (Third Edition)
- 王珊, 萨师煊. 数据库系统概论(第5版).
- Peter Bailis, Joseph M. Hellerstein, and Michael Stonebraker.
 Readings in Database Systems (Fifth Edition).
 http://www.redbook.io/

◆□▶◆昼▶◆昼▶ 昼 か9へで

邹兆年 (CS@HIT)

CS33503: 数据库系统

2019年春

5 / 54

考核方式

• 期末考试: 占60%, 考试时间待定

• 实验: 占20%

• 作业: 占20%

4□ ▶ 4Ē ▶ 4Ē ▶ Ē ∽9

第1章: 绪论

邹兆年

哈尔滨工业大学 计算机科学与技术学院 海量数据计算研究中心 电子邮件: znzou@hit.edu.cn

2019年春

◆□▶◆□▶◆≣▶◆≣▶ ■ か9へで

邹兆年 (CS@HIT)

[1章: 绪论

2019年春

7 / 54

Outline¹

- Basic Concepts
- Functions of Database Systems
- Features of Database Systems
- Data Models
- Database Schemas
- DBMS Languages
- DBMS Architectures

What is Data?

Data: known facts that can be recorded and have an implicit meaning

- "Chomolungma": the name of the highest mountain in the world
- 8,848: the height of the Chomolungma in metres
- 29,029: the height of the Chomolungma in feet
- "Asia": the continent where the Chomolungma locates

邹兆年 (CS@HIT)

1章: 绪论

2019年春

9 / 54

Types of Data

- Structured data: relational data
- Semi-structured data: XML, JSON
- Text data: documents, news reports, papers
- Time series: stock market data
- Sequence data: DNA sequence
- Spatial data: maps, GIS
- Graph data: social networks, knowledge graphs
- Sensor data: Internet of Things (IoT), sensor networks
- Multimedia data: images, audio, video
- Web data: Web pages, Web graph, Web logs

...

Many applications need to manage data

What is Data Management?

- **1** Defining data types, structures, and constraints
- Constructing or loading initial data on a non-volatile storage medium
- Manipulating data
 - ▶ Data retrieval: Querying, generating reports
 - ▶ Data modification: Insertions, deletions and updates to its content
- Processing and sharing data by a set of concurrent users and application programs-yet, keeping all data valid and consistent
- 5 Security, access control, archiving, etc.

∢御▶∢陰▶∢陰▶ 蹇

邹兆年 (CS@HIT)

2019年春

11 / 54

Data Management Approaches

- File system approach
- Database system approach
- ullet NoSQL (No SQL o Not Only SQL o Not yet SQL) approach
- Big data approach (data science)

Memory Hierarchy

File System Approach

邹兆年 (CS@HIT)

- Data is stored in *files*
- Data is managed by application programs

200

2019年春

13 / 54

File System Approach: Example

student.txt

Alice	F	CS	001	90
Alice	F	CS	002	91
Bob	Μ	CS	001	60
Jack	Μ	MA	001	85
Jill	F	MA	002	80

course.txt

course	
001	'Database Systems'
002	'Data Mining'

- Find all girls
- Find all students in Department of Computer Science (CS)
- Find all students who study the course # 001
- Find all students who study the course "Database Systems"

Programs have to be changed when data change

◆□ ▶ ◆■ ▶ ◆ ■ ◆ 9 Q ©

邹兆年 (CS@HIT)

1章: 绪论

2010年春

15 / 54

Limitations of File System Approach

student txt

<u>student.</u>	・レヘレ			
Alice	F	CS	001	90
Alice	F	CS	002	91
Bob	М	CS	001	60
Jack	М	MA	001	85
Jill	F	MA	002	80

course.txt

001 'Database Systems' 002 'Data Mining'

- Data redundancy
- Data inconsistency
- Data integrity problems
- Difficulty in accessing data: no indexes
- Security problems: no access control
- Concurrency problems: no concurrency control

Database System Approach

- Data is stored in databases
- Data is managed by database management systems (DBMS)

File System Approach vs. Database System Approach

	File system approach	DB approach
Data redundancy	High	Low
Data consistency	No	Yes
Accessing methods	No	Yes
Data integrity	No	Yes
Access control	No	Yes
Concurrency control	No	Yes

Big Data Approach

Big Data Ecosystem

990

邹兆年 (CS@HIT)

第1章:绪论

2019年春

19 / 54

1.1 Basic Concepts

Databases (DB)

A database (DB) is a set of related data that is organized, shared, and persistent.

	Organization	Sharing	Persistence
Database	Organized	High	Yes
File	Unorganized	Low	Yes

 4 □ ▶ 4 回 ▶ 4 豆 ▶ 4 豆 ▶ 豆 少 Q ○

 郵兆年 (CS@HIT)
 第1章: 绪论
 2019年春
 21 / 54

Database Management Systems (DBMS)

A database management system (DBMS) is a general-purpose system software that facilates the organization, storage, manipulation, control, and maintainence of databases among various users and application programs.

邹兆年 (CS@HIT)

第1章: 绪论

2019年春 22 / 54

Database Users

- Database administrators (DBA): responsible for authorizing access to the database, coordinating and monitoring its use, acquiring software and hardware resources, controlling its use and monitoring efficiency of operations
- Database designers: responsible for defining the content, the structure, the constraints, and functions or transactions against the database
- End users: use the data for queries, reports and some of them update the database content
 - Casual end users
 - Naive or parametric end users
 - Sophisticated end users
 - Stand-alone users

4□ > 4□ > 4 = > 4 = > = 9 < 0</p> 2019年春 23 / 54

邹兆年 (CS@HIT)

Database Systems (DBS)

- A database system (DBS) is a system composed by DB's, a DBMS, application programs, users, and DBA
- Database systems are normally known as databases

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ ma a 2019年春

1.2 Functions of DBMS

2019年春 25 / 54

1.2 Functions of DBMS

邹兆年 (CS@HIT)

- Data definition: defining data schemas
- Data storage: storage structures and access methods
- Data manipulation: data queries, data updates
- Data control: transaction management, data integrity, data security, concurrency control, failure recovery
- Data maintenance: data entry, data transformation, data archiving, data restoring, performance monitoring

1.3 Features of Database Systems

2019年春 27 / 54

1.3 Features of Database Systems

- Structured data organization
- Data sharing

邹兆年 (CS@HIT)

- Low data redundancy
- Data independency: physical independency and logical independency
- Data is managed by the DBMS

1.4 Data Models

2019年春 29 / 54

Data Abstraction

邹兆年 (CS@HIT)

Data abstraction is the processes of mapping the real world to the computer world

- Real world: human, animals, machines, ...
- Information world: entities, attributes, relationships
- Computer world: records, fields, references

Data Models

Data models are important tools for data abstraction.

- A set of concepts to describe the structure of a database
- the operations for manipulating these structures
- certain constraints that the database should obey

4 ロ ト 4 団 ト 4 星 ト 4 星 ト 星 夕 4 〇 〇 2019年春 31 / 54

Categories of Data Models

邹兆年 (CS@HIT)

- Conceptual (high-level, semantic) data models: provide concepts that are close to the way many users perceive data
- Physical (low-level, internal) data models: provide concepts that describe details of how data is stored in the computer.
- Implementation (representational) data models: provide concepts that fall between the above two, used by many commercial DBMS implementations (e.g. relational data models used in many commercial systems)

Categories of Implementation Data Models

- Hierarchical data model
- Network data model
- Relational data model
- Object-oriented data model
- Relational-object data model
- Semi-structured data model
- Document data model
- Graph data model

邹兆年 (CS@HIT)

1章: 绪论

2019年春

33 / 54

Constraints

- Entity constraints
- Referential constraints
- User-defined constraints

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	04	King
92	CS1310	Fall	04	Anderson
102	CS3320	Spring	05	Knuth
112	MATH2410	Fall	05	Chang
119	CS1310	Fall	05	Anderson
135	CS3380	Fall	05	Stone

GRADE_REPORT

Student_number	Section_identifier	Grade
17	112	В
17	119	С
8	85	Α
8	92	Α
8	102	В
8	135	Α

PREREQUISITE

Figure 1.2
A database that stores student and course information.

PREREGOISTIE	
Course_number	Prerequisite_number
CS3380	CS3320
CS3380	MATH2410
CS3320	CS1310

1.5 Database Schemas

 *ロト * 同ト * 星ト * 星 * りへで

 第1章: 緒论
 2019年春 35 / 54

Database Schemas

邹兆年 (CS@HIT)

A database schema is the description of a database including the descriptions of the database structure, data types, and the constraints on the database

Database Instances

A database instance (database state or snapshot) is the actual data stored in a database at a particular moment in time

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	04	King
92	CS1310	Fall	04	Anderson
102	CS3320	Spring	05	Knuth
112	MATH2410	Fall	05	Chang
119	CS1310	Fall	05	Anderson
135	CS3380	Fall	05	Stone

GRADE_REPORT

Student_number	Section_identifier	Grade
17	112	В
17	119	С
8	85	Α
8	92	Α
8	102	В
8	135	Α

PREREQUISITE

Figure 1.2
A database that stores student and course

Course_number	Prerequisite_number
CS3380	CS3320
CS3380	MATH2410
CS3320	CS1310

邹兆年 (CS@HIT)

←□ → ←□ → ← = → ← = → = = 990 2019年春

37 / 54

Database Schemas vs. Database Instances

- The database schema is the "type"
- The database instance is the "value"
- The database schema changes very infrequently
- The database instance changes every time the database is updated

Three-Schema Architecture

In the three-schema architecture, DBMS schemas are defined at three levels

Three Levels of Schemas

Internal schema (storage schema)

- Describe physical storage structures and access methods
- There is only one internal schema
- Typically use a physical data model

Conceptual schema

- Describe the structure and constraints for the whole database for a community of users
- There is only one conceptual schema
- Use a conceptual or an implementation data model

External schema

- Describe various user views
- There can be more than one external schemas
- Usually use the same data model as the conceptual schema

Three-Schema Architecture: Example

 第1章: 绪论
 2019年春
 41 / 54

Schema Mappings

Mappings among schema levels are needed to transform requests and data

- Request transformation: Programs refer to an external schema, and are mapped by the DBMS to the internal schema for execution
- Data transformation: Data extracted from the internal DBMS level is reformatted to match the user's external view

4□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

□▶◀圖▶◀臺▶◀臺▶ 臺

990

Categories of Schema Mappings

- External/conceptual mapping: mapping from an external schema to the conceptual schema
- Conceputual/internal mapping: mapping from the conceptual schema to the internal schema

邹兆年 (CS@HIT)

1章: 绪论

⟨□⟩ ⟨□⟩ ⟨□⟩ ⟨□⟩ ⟨□⟩ ⟨□⟩
2019年春

43 / 54

Data Independence

- When a schema at a lower level is changed, only the mappings between this schema and the high-level schemas need to be changed
- The high-level schemas themselves are unchanged
- The application programs referring to the external schemas need not to be changed

Categories of Data Independence

- Logical data independence: the capability to change the conceptual schema without having to change the external schemas as well as the application programs referring to them
- Physical data independence: the capability to change the internal schema without having to change the conceptual schema

 ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□
 第1章: 绪论

 2019年春
 45 / 54

1.6 Database Languages

Categories of Database Languages

- Data definition languages (DDL): used by the DBA and database designers to specify the conceptual schema of a database
- Data manipulation languages (DML): used to specify queries and updates to a database

邹兆年 (CS@HIT)

1章: 绪论

Data Definition Languages (DDL)

- The DDL is used by the DBA and database designers to specify the conceptual schema of a database
- In many DBMSs, the DDL is also used to define internal and external schemas (views), e.g., SQL
- In some DBMSs, separate storage definition language (SDL) and view definition language (VDL) are used to define internal and external schemas

◆ロト ◆昼 ▶ ◆ 種 ▶ ◆ 種 ● り へ ○

Data Manipulation Languages (DML)

- The DML is used to specify database retrievals and updates
- DML commands (data sublanguage) can be embedded in a general-purpose programming language (host language)
- Stand-alone DML commands can be applied directly (called a query language)

邹兆年 (CS@HIT)

1章: 绪论

2019年春

10 / 51

1.7 DBMS Architectures

DBMS Archetictures

Syllabus

Part I: Fundamentals of Database Systems

- Chapter 1: Introduction
- Chapter 2: Relational Databases
- Chapter 3: Structured Query Language (SQL)

Part II: Database Design

- Chapter 4: Conceptual Database Design (The E-R Model)
- Chapter 5: Logical Database Design
- Chapter 6: Physical Database Design

Part III: Implementations of Database Management Systems

- Chapter 7: Storage Management
- Chapter 8: Query Processing
- Chapter 9: Query Optimization
- Chapter 10: Concurrency Control
- Chapter 11: Failure Recovery

Summary

▲御▶▲豊▶▲豊▶ 豊

邹兆年 (CS@HIT)

2019年春

53 / 54

Summary

- Basic Concepts
- Functions of Database Systems
- Features of Database Systems
- Data Models
- Database Schemas
- DBMS Languages
- DBMS Architectures