In The Name Of God

Subject: MLP-CNN

Presenter: Reza Karimzadeh

Frameworks popularity!

New Medium Articles

Framework

CPU v.s. GPU v.s. TPU

Type Instructions per cycle $\sim 10^{0}$ **CPU** $\sim 10^{1}$ CPU (with vector extensions) $\sim 10^4$ **GPU** $\sim 10^5$ **TPU**

GPU

(Hundreds of cores)

CPU

(Multiple cores)

Core 1	Core 2
Core 3	Core 4

Compute Primitive

vector

tensor

Google Colaboratory

https://colab.research.google.com/

Perceptron

MLP (Multi Layer Perceptron)

- Input and output
- ❖ Network architecture
- Cost function
- Optimization Algorithm

5

Activation Functions

Dropout

- **❖** Learn different features
- **❖** Reduce nonlinearity

(b) After applying dropout.

Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$

// mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$

// normalize

$$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$$

// scale and shift

Batch normalization

Convolutional Neural Networks

❖ What is the CNNs origin?

* https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-

the-eli5-way-3bd2b1164a53

کسکای ایران مهودی اصلای ایران وزارت بهداشت، صان و آموزش بزشکو

10

Segmentation (DRIVE Dataset)

https://drive.grand-challenge.org/

Any Question?

❖ Contact me!!

Rezakarimzadeh1996@gmail.com

ببشرفته درحوزه سالمتوكاربردهاي هوش مع

2 1 The First International Congress on

Advanced Health Technologies-Artificial Intelligence in Medicine

