UP902897 M352 – Advanced Decision Modelling Coursework

Problem 1

a)

Decision variables:

• x_{ij} – number of products i to produce in j percentage range of demand for product i.

i = 1, 2, 3, where 1, 2, 3 is product A, B, C, respectively.

 $\mathbf{j} = 1, 2, 3$, where 1 is 0% to 90% range of demand.

2 is 90% to 100% range of demand.

3 is excess of demand (>100%).

The Total Profit of the company needs to be maximised. It depends on quantity of product i produced (Raw Material and Labour Cost) and their selling price (Total Revenue) which depends on percentage range of demand for products i.

Objective function:

Maximise Total Profit (in £) = Total Revenue – Raw Material Cost – Labour Cost

Total Revenue = sum of the sell price in j percentage range of demand for product i * number of products i in j to produce – penalty cost.

Total Revenue

$$= 2655(x_{11} + x_{12}) + 0.8(2655)x_{13} - 1000(1650 - x_{11} - x_{12}) + 6890(x_{21} + x_{22}) + 0.8(6890)x_{23} - 1000(3068 - x_{21} - x_{22}) + 1510(x_{31} + x_{32}) + 0.8(1510)x_{33} - 1000(700 - x_{31} - x_{32}) = 3655(x_{11} + x_{12}) + 7890(x_{21} + x_{22}) + 2510(x_{31} + x_{32}) + 2124x_{13} + 5512x_{23} + 1208x_{33} - 1000(5418)$$

Raw Material Cost = sum of the raw material cost to produce one product i * number of products i for all j.

Raw Material Cost

$$= [200(7) + 20(5)] \sum_{j=1}^{3} x_{1j} + [200(23) + 20(2.5)] \sum_{j=1}^{3} x_{2j}$$

$$+ [200(3.5) + 20(7.5)] \sum_{j=1}^{3} x_{3j}$$

$$= 1500 \sum_{j=1}^{3} x_{1j} + 4650 \sum_{j=1}^{3} x_{2j} + 850 \sum_{j=1}^{3} x_{3j}$$

Labour Cost = sum of the labour cost to produce one product i * overall number of products i.

Labour Cost =
$$\left(30 * \frac{1}{6} + 25 * \frac{1}{3} + 37 * \frac{3}{4} + 25 * \frac{1}{2}\right) \sum_{j=1}^{3} x_{1j}$$

 $+ \left(30 * \frac{1}{3} + 25 * \frac{7}{12} + 37 + 25 * \frac{1}{6}\right) \sum_{j=1}^{3} x_{2j}$
 $+ \left(30 * \frac{1}{4} + 25 * \frac{5}{12} + 37 * \frac{1}{3} + 25 * \frac{1}{3}\right) \sum_{j=1}^{3} x_{3j}$
 $= \frac{643}{12} \sum_{j=1}^{3} x_{1j} + \frac{263}{4} \sum_{j=1}^{3} x_{2j} + \frac{463}{12} \sum_{j=1}^{3} x_{3j}$

We could use only 6 variables, namely x_i and y_i for i=1,2,3 as we know that 90% of demand must be satisfied (1485 of A, 2762 of B and 630 of C), hence x_i would be production of each product i between 90% and 100% of demand and y_i would be production for each product i in excess of demand (>100%). However, this model is more general and if the guaranteed percentage of demand change, we just change the constraints and the domain for x_{i1} .

Constraints:

Resource constraints: sum of units of resource needed for product i*number of product i.

Stainless steel (kg)

$$7\sum_{j=1}^3 x_{1j} + 23\sum_{j=1}^3 x_{2j} + 3.5\sum_{j=1}^3 x_{3j} \le 150000$$

Rust protection (g)

$$5\sum_{j=1}^{3} x_{1j} + 2.5\sum_{j=1}^{3} x_{2j} + 7.5\sum_{j=1}^{3} x_{3j} \le 23000$$

Labour constraints: sum of activity hours needed for product i*number of product i.

(hours)

Assemble

$$\frac{1}{6} \sum_{j=1}^{3} x_{1j} + \frac{1}{3} \sum_{j=1}^{3} x_{2j} + \frac{1}{4} \sum_{j=1}^{3} x_{3j} \le 3000$$

Edit the steel

$$\frac{1}{3}\sum_{j=1}^{3} x_{1j} + \frac{7}{12}\sum_{j=1}^{3} x_{2j} + \frac{5}{12}\sum_{j=1}^{3} x_{3j} \le 5000$$

Chemical process

$$\frac{3}{4}\sum_{j=1}^{3} x_{1j} + \sum_{j=1}^{3} x_{2j} + \frac{1}{3}\sum_{j=1}^{3} x_{3j} \le 8000$$

Forge welding

$$\frac{1}{2}\sum_{j=1}^{3} x_{1j} + \frac{1}{6}\sum_{j=1}^{3} x_{2j} + \frac{1}{3}\sum_{j=1}^{3} x_{3j} \le 3000$$

Decision variable domain:

Guarantee at least 90% of the demand (j=1):

$$x_{11} = 0.9 * 1650$$

$$x_{21} = 0.9 * 3068$$

$$x_{31} = 0.9 * 700$$

Between 90% and 100% of the demand (j=2): (not 0.1*demand, due to rounding 0.9*3068)

$$x_{12} \le 1650 - 0.9 * 1650$$

$$x_{22} \le 3068 - 0.9 * 3068$$

$$x_{32} \le 700 - 0.9 * 700$$

$$x_{ij} \ge 0$$
 and integer for $i = 1,2,3$, $j = 1,2,3$

Extra constraints:

To set production in order is necessarily to make sure that $x_{i1} < \max x_{i1}$ implies $x_{i2} \le 0$, which is equivalent to

Either-or $x_{i1} \ge \max x_{i1}$, $x_{i2} \le 0$, so:

$$x_{12} \le M(1-p)$$

$$x_{21} \ge 0.9 * 3068 - Mr$$

$$x_{22} \le M(1-r)$$

 $x_{11} \ge 0.9 * 1650 - Mp$

$$x_{31} \ge 0.9 * 700 - Ms$$

$$x_{32} \leq M(1-s)$$

M must be big enough to not restrict production, we calculate $\max x_{ij}$ for i, j = 1, 2, 3. M=3453 (see calculations in excel file)

Excess of the demand (j=3):

We need to make sure that $x_{i2} < \max x_{i2}$ implies $x_{i3} \leq 0$, which is equivalent to

Either-or $x_{i2} \ge \max x_{i2}$, $x_{i3} \le 0$, so:

$$x_{12} \ge 0.1 * 1650 - Mt$$

$$x_{13} \le M(1 - t)$$

$$x_{22} \ge (3068 - 0.9 * 3068) - Mu$$

$$x_{23} \le M(1 - u)$$

$$x_{32} \ge 0.1 * 700 - Mw$$

$$x_{33} \le M(1 - w)$$

$$M = 3453.$$

$$p, r, s, t, u, w = binary \ variable(0 \ or \ 1)$$

b)

The optimal solution is to produce 1650 units of product A, 4010 units of product B and 630 units of product C, which according to estimated sale price per product would give £9559496.50 profit. The company would cover demand for product A, make 942 units in excess of demand for product B, and make 630 units, minimum required of product C, paying penalty of £70000.

Answer report:

Objective C	Cell (Max)			
	Cell	Name	Original Value	Final Value
\$F\$7	Total Profit		9559496.50	9559496.50

V/a	ria	ы	Cel	IIс

Cell	Name	Original Value	Final Value Integer
\$B\$2	Quantity to Produce (0% to 90% Demand) Product A	1485.00	1485.00 Integer
\$C\$2	Quantity to Produce (0% to 90% Demand) Product B	2761.00	2761.00 Integer
\$D\$2	Quantity to Produce (0% to 90% Demand) Product C	630.00	630.00 Integer
\$B\$3	Quantity to Produce (90% to 100% Demand) Product A	165.00	165.00 Integer
\$C\$3	Quantity to Produce (90% to 100% Demand) Product B	307.00	307.00 Integer
\$D\$3	Quantity to Produce (90% to 100% Demand) Product C	0.00	0.00 Integer
\$B\$4	Produce in Excess of Demand(>100%) Product A	0.00	0.00 Integer
\$C\$4	Produce in Excess of Demand(>100%) Product B	942.00	942.00 Integer
\$D\$4	Produce in Excess of Demand(>100%) Product C	0.00	0.00 Integer

Constraints

Cell	Name	Cell Value	Formula	Status	Slack
\$J\$18	Chemical Process Usage	5457.50	\$J\$18<=\$L\$18	Not Binding	2542.5
\$J\$17	Edit the Steel Usage	3151.67	\$J\$17<=\$L\$17	Not Binding	1848.33333
\$J\$19	Forge Welding Usage	1703.33	\$J\$19<=\$L\$19	Not Binding	1296.66667
\$J\$16	Assemble Usage	1769.17	\$J\$16<=\$L\$16	Not Binding	1230.83333
\$J\$14	Rust Protection Usage	23000.00	\$J\$14<=\$L\$14	Binding	0
\$J\$13	Stainless Steel Usage	105985.00	\$J\$13<=\$L\$13	Not Binding	44015
\$B\$2	Quantity to Produce (0% to 90% Demand) Product A	1485.00	\$B\$2>=0	Not Binding	1485.00
\$C\$2	Quantity to Produce (0% to 90% Demand) Product B	2761.00	\$C\$2>=0	Not Binding	2761.00
\$D\$2	Quantity to Produce (0% to 90% Demand) Product C	630.00	\$D\$2>=0	Not Binding	630.00
\$B\$3	Quantity to Produce (90% to 100% Demand) Product A	165.00	\$B\$3>=0	Not Binding	165.00
\$C\$3	Quantity to Produce (90% to 100% Demand) Product B	307.00	\$C\$3>=0	Not Binding	307.00
\$D\$3	Quantity to Produce (90% to 100% Demand) Product C	0.00	\$D\$3>=0	Binding	0.00
\$B\$4	Produce in Excess of Demand(>100%) Product A	0.00	\$B\$4>=0	Binding	0.00
\$C\$4	Produce in Excess of Demand(>100%) Product B	942.00	\$C\$4>=0	Not Binding	942.00
\$D\$4	Produce in Excess of Demand(>100%) Product C	0.00	\$D\$4>=0	Binding	0.00

Clearly, the most limiting Resource/Activity to the company is amount of Rust Protection, which is indicated by value zero under Slack column and Rust Protection Usage row. The net profit for this solution is £9559496.50.

Sensitivity report:

Variable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$2	Quantity to Produce (0% to 90% Demand) Product A	1485	0	2101.416667	1E+30	1E+30
\$C\$2	Quantity to Produce (0% to 90% Demand) Product B	2761	0	3174.25	1E+30	1E+30
\$D\$2	Quantity to Produce (0% to 90% Demand) Product C	630	0	1621.416667	1E+30	1E+30
\$B\$3	Quantity to Produce (90% to 100% Demand) Product A	165	0	2101.416667	1E+30	508.9166667
\$C\$3	Quantity to Produce (90% to 100% Demand) Product B	307	0	3174.25	1E+30	2378
\$D\$3	Quantity to Produce (90% to 100% Demand) Product C	0	-767.3333333	1621.416667	767.3333333	1E+30
\$B\$4	Produce in Excess of Demand(>100%) Product A	0	-1022.083333	570.4166667	1022.083333	1E+30
\$C\$4	Produce in Excess of Demand(>100%) Product B	942	0	796.25	254.4583333	255.7777778
SDS4	Produce in Excess of Demand(>100%) Product C	0	-2069.333333	319.4166667	2069.333333	1E+30

Constraints

	Final	Shadow	Constraint	Allowable	Allowable
Name	Value	Price	R.H. Side	Increase	Decrease
Chemical Process Usage	5457.5	0	8000	1E+30	2542.5
Edit the Steel Usage	3151.666667	0	5000	1E+30	1848.333333
Forge Welding Usage	1703.333333	0	3000	1E+30	1296.666667
Assemble Usage	1769.166667	0	3000	1E+30	1230.833333
Rust Protection Usage	23000	318.5	23000	4784.23913	2355
Stainless Steel Usage	105985	0	150000	1E+30	44015
	Name Chemical Process Usage Edit the Steel Usage Forge Welding Usage Assemble Usage Rust Protection Usage Stainless Steel Usage	Name Value Chemical Process Usage 5457.5 Edit the Steel Usage 3151.666667 Forge Welding Usage 1703.33333 Assemble Usage 1769.16667 Rust Protection Usage 23000	Name Value Price Chemical Process Usage 5457.5 0 Edit the Steel Usage 3151.666667 0 Forge Welding Usage 1703.333333 0 Assemble Usage 1769.166667 0 Rust Protection Usage 23000 318.5	Name Value Price R.H. Side Chemical Process Usage 5457.5 0 8000 Edit the Steel Usage 3151.666667 0 5000 Forge Welding Usage 1703.333333 0 3000 Assemble Usage 1769.166667 0 3000 Rust Protection Usage 23000 318.5 23000	Name Value Price R.H. Side Increase Chemical Process Usage 5457.5 0 800 1E+30 Edit the Steel Usage 3151.666667 0 500 1E+30 Forge Welding Usage 1703.33333 0 300 1E+30 Assemble Usage 1769.166667 0 300 1E+30 Rust Protection Usage 23000 318.5 2300 4784.23913

The shadow price for Rust Protection is 318.5 which means that extra gram of Rust Protection increases profit by £318.5 and this is valid for any availability between 20645 and 27784 grams. If the Rust Protection amount stays within this limit the current basis remains optimal, which means company should not produce more than 90% of demand of Product C and in excess of demand of product A. However, within this range for Rust Protection we can meet the demand for A and B and minimum required for product C.

If the amount of Rust Protection changes within the above range the production plan is not going to change, company will use the resources to make Product B in excess of demand and cover the demand for A and minimum required for C (reduced cost for all = 0) but total profit is going to change by £796.25(Objective coefficient for excess of demand C) for each change by 2.5 gram in Rust Protection.

d)

i)

We need to add three extra variables, namely d, e, f and add three constraints:

$$\sum_{j=1}^{3} x_{1j} = 1000 * d$$

$$\sum\nolimits_{j=1}^{3} {{x_{2j}}} = 1000 * e$$

$$\sum\nolimits_{j=1}^{3} {{x_{3j}}} = 1000 * f$$

 $d, e, f \ge 0$ and integers

ii)

Either-or $x_{13} \le 0$, $x_{23} \le 0$, so we need to add two constraints:

$$x_{13} \le My$$

$$x_{23} \leq M(1-y)$$

$$M = 3453$$

y = binary variable (0 or 1)

iii)

If $x_{13} > 0.2 * 1650$ then $x_{23} \le 0.2 * 3068$, which is equivalent to:

Either-or $x_{13} \le 0.2 * 1650$, $x_{23} \le 0.2 * 3068$, so we need to add two constraints:

$$x_{13} \le 330 + My$$

$$x_{23} \le 613 + M(1 - y)$$

$$M = 3453$$

$$y = binary \ variable \ (0 \ or \ 1)$$

iv)

In this case we should change our Total Revenue formula to:

Total revenue

$$= 2655(x_{11} + x_{12} + y_1 + y_2) + 0.8(2655)(x_{13} + y_3)$$

$$- 1000(1650 - x_{11} - x_{12} - y_1 - y_2) - 500000s - 1000 \sum_{i=1}^{3} y_i$$

$$+ +6890(x_{21} + x_{22}) + 0.8(6890)x_{23} - 1000(3068 - x_{21} - x_{22})$$

$$+ 1510(x_{31} + x_{32}) + 0.8(1510)x_{33} - 1000(700 - x_{31} - x_{32})$$

, where:

 y_i - number of products to buy in i percentage range of demand for product A

Also, we should change few decision variable domain constraints, namely:

$$x_{11} + y_1 = 0.9 * 1650$$

 $x_{12} + y_1 \le 1650 - 0.9 * 1650$

, add:

$$y_1 \le 1485 * s$$
$$y_2 \le 165 * s$$
$$y_3 \le M * s$$

There is no information about how many products A a third party can produce, neither how big is the budget of the company, M can be infinity.

$$y_i \ge 0$$
 and integer

Also, we should change few extra constraints, namely:

$$x_{11} + y_1 \ge 0.9 * 1650 - 1485 * p$$

$$x_{12} + y_2 \le 165(1 - p)$$

$$x_{12} + y_2 \ge 0.1 * 1650 - 1650 * t$$

$$x_{13} + y_3 \le M(1 - t)$$

M can be infinity.

Cost of producing product A by the company is £1553.58 (see excel file)

$$1553.58A = 500000 + 1000A$$
$$A = 903.21$$

If the company produce 903 of A, it will cost same as buying those from a third party. As we know minimum requirement for A is 1485 units, hence buying it makes sense, each product bought over 903 units saves roughly £553. Also, they will have more resources to use for products B and C. The company should definitely buy product A from a third party and do not manufacture them on them own as demand is big enough, it is cheaper to buy it and they need resources.

Problem 2

a)

Conceptual Model:

The Problem Situation:

Restaurant's order processing. Orders arrive and go through three service points, first is preparing, second cooking and the third arranging. If any of those is busy, orders wait in a queue. There are considered two queue priority rules: First-In-First-Out (FIFO) and Shortest Expected Processing Time First (SPT).

• Modelling Objectives:

The objective is to determine the processing rule required that will minimise the average throughput time of an order.

Model Inputs:

Orders

• Model Outputs/Responses:

Average throughput time of an order

• Experimental Factor:

Queuing priority will be set to FIFO or SPT

Model Scope

Component	Justification
Entity: Orders, Detail:	Flow through the service process
Activities: Preparation, Cooking,	Required for average throughput time of
Arranging (Servers)	an order
Queues:	Required for average throughput time of
Queue for Preparation	an order and queuing priority
Queue for Cooking	experimental factor
Queue for Arranging	
Resources:	Simplification: represented by servers
Kitchen personnel (excluded)	

• Model Level of Detail

Component	Detail	Justification
Entity: Orders	Arrival Pattern:	Required for flow of
	Different mean inter-	customers into the system
	arrival times which	
	depend on time of	
	the day. Different	
	type of orders	
	distribution.	
	Shift: No arrivals	
	between 10pm and	
	9am	
Activities: Preparation,	Service time:	Required for average
Cooking, Arranging	Different service time	throughput time of an order
(Servers)	which depends on	
	type of the order	
Queues:	Queue discipline:	Required for average
Queue for Preparation	FIFO, SPT	throughput time of an order
Queue for Cooking		and queuing priority
Queue for Arranging		experimental factor
Resources:		<u>Simplification:</u> represented
Kitchen personnel	<u>N/A</u>	by servers
(excluded)		

• Modelling Assumptions:

No breakdowns of servers. (Missing ingredients, energy, electricity, cutlery etc)

• Model Simplifications:

Service personnel (resource) not specifically modelled, but represented by the servers(activities).

No limit to the number of orders in the queue for service.

No balking or reneging from the queue.

Process Flow Diagram

b)

i)

As resources are not considered, I treated each operation (preparing, cooking, arranging) as one server and considered only the service time in the model. The clock runs for 24 hours, 7 days a week and order arrivals are constrained using shift pattern from 9 am to 10pm (after 10 pm restaurant does not accept orders). All the activities (processes) use the timing by label which is assigned to type of order at the start point (also probability profile assigned to the type of order).

Steady state is being achieved every night after orders stop coming through. Without shift between 10pm and 9 am implemented on order arrival, queueing time in the system increases linearly to infinity.

ii)

Limit used: 1000.

Average throughput time at 1000 limit: 282.12 minutes

Precision needed: $\frac{10}{282.12} = 0.035 (3.5\%)$

Number of runs required: 59

95% CI for average throughput: (290.21, 311.24)

iii)

Average throughput time of an order of all three types: 300.73 minutes

Average throughput time of an order for cold plates: 290.48 minutes

Average throughput time of an order for hot meals: 298.28 minutes

Average throughput time of an order for fish dishes: 312.39 minutes

c)

Expected processing times:

- Cold Meal 5+4+4=13 minutes
- Hot Meal 10+12+6=28 minutes
- Fish Meal 15+23+9=47 minutes

According to SPT rule, we need to prioritise every queue in the system in a way that Cold Meal leaves the queue first and Fish Meal leaves the queue last. By using Reverse Priority, we ensure that order is as required (1-CM, 2-HM, 3-FM, from 1 to 3).

Running our simulation with following parameters:

Order limit: 1000

Number of runs in trial: 59

, gives the following results:

Histogram of throughput time of an order for cold plates (59 runs):

Histogram of throughput time of an order for cold plates (59 runs):

So:

Average throughput time of an order of all three types: 224.99 minutes

Average throughput time of an order for cold plates: 45.47 minutes

Average throughput time of an order for hot meals: 131.8 minutes

Average throughput time of an order for fish dishes: 565.47 minutes

Comparing the result with the ones for FIFO rule from b)iii) we can see that average throughput time of an order for cold plate decreased from 290.48 minutes to 45.47 minutes (84.3%) and average throughput time of an order of all three types decreased from 300.73 minutes to 224.99 minutes (25.2%). While average throughput time of an order for hot meals decreased as well, we can observe that average throughput time of an order for fish dishes increased from 312.39 minutes to 546.47 minutes (74.9%).

Based on above calculations I would recommend using SPT queue priority rule.

In addition, the restaurant could use additional Cooking server, as the highest utilised process is Cooking (75.5%). It would significantly decrease order throughput time.

Highest Utilized Activity

 Cooking
 75.468%

 Preperation
 65.407%