LTI systems and the convolution operation

Pablo M. Olmos (olmos@tsc.uc3m.es) Emilio Parrado (emipar@tsc.uc3m.es)

May 7, 2018

uc3m

Index

- Introduction to LTI systems
- ② Discrete-time LTI systems
- 3 Continuous-time LTI systems
- Properties of the Convolution operation

original

filter (3 x 3)

vertical edge detector

https://docs.gimp.org/en/plug-in-convmatrix.html

0_{1}	٠٦٠٠ <u>٠</u>	·· <u>1</u>	1	0	.0.	.0.]									
Q _o	Q_1	$\frac{1}{x_0}$	1	1	0	0.		·	(trees			1	4	3	4	1
Q_{1}	$0^{\times 0}$	0_{1}	1	1	1	0		1	0	1		1	2	4	3	3
0	.0.	·0.	1	1	·0.	.0	*	0	1	0	=/	1	2	3	4	1
0	0	1	1	0	0.	.0.		1	0	1		1	3	3	1	1
0	1	1	0	0	0	0						3	3	1	1	0
1	1	0	0	0	0	0										
	n				K					Y						

$$Y[1,1] = X[1,1] * K[1,1] + X[1,2] * K[1,2] + X[1,3] * K[1,3] + X[2,1] * K[2,1] + X[2,2] * K[2,2] + X[2,3] * K[2,3] + X[3,1] * K[3,1] + X[3,2] * K[3,2] + X[3,3] * K[3,3]$$

0	$1 \\ 1 \\ \times 1$	" <u>†</u>	<u>1</u>	0	.0.	.0.										
0	Ö°0	$\frac{1}{x_1}$	$\frac{1}{\infty}$	1	0	0.		٠	770	ec;;;		1	4	3	4	1
0	0,1	0^{80}	1,	1	1	0		1	0	1		1	$\cdot 2$	4	3	3
0	0	.0.	-1.	1	.0.	·0.	*	0	1	0	~~ [~]	1	2	3	4	1
0	0	1	1	0	0	.0.		1	0	1	, and the same of	1	3	3	1	1
0	1	1	0	0	0	0						3	3	1	1	0
1	1	0	0	0	0	0										
	n				K					Y						

$$Y[1,2] = X[1,2] * K[1,1] + X[1,3] * K[1,2] + X[1,4] * K[1,3]$$

$$+ X[2,2] * K[2,1] + X[2,3] * K[2,2] + X[2,4] * K[2,3]$$

$$+ X[3,2] * K[3,1] + X[3,3] * K[3,2] + X[3,4] * K[3,3]$$

$$Y[i,j] = \sum_{k_1=1}^n \sum_{k_2=1}^n X[k_1,k_2] K[i-k_1,j-k_2], \quad K[u,q] = 0 \text{ para } u > 3, q > 3$$

Linear operator, the result does not depend on the position of the image

original

filter (3 x 3)

vertical edge detector

https://docs.gimp.org/en/plug-in-convmatrix.html

original

filter (3 x 3)

all edge detector

original

filter (5 x 5)

sharpen

- The theory of LTI systems has direct applications in a wide set of technical areas:
 - Nuclear magnetic resonance spectroscopy
 - Seismology
 - Electric circuit design
 - Control Theory
 - Any application that involves Signal Processing
- Our goal in Systems and Circuits: predict the output of a given LTI system for a given input.
- In future courses you will face the design of LTI systems according to certain specifications.

Time Invariance

A system is time-invariant if a time shift in the input signal causes a time shift in the output signal.

- Given y[n] = f(x[n]), the system is time-invariant if $f(x[n n_0]) = y[n n_0] \forall n_0$.
- Given y(t) = f(x(t)), the system is time-invariant if $f(x(t t_0)) = y(t t_0)$ $\forall t_0$.

Linearity

Linear system posses the important property of superposition.

For any system, consider two arbitrary inputs and their respective outputs:

$$x_1(t) \rightarrow y_1(t)$$

 $x_2(t) \rightarrow y_2(t)$,

the system is linear if

$$ax_1(t) + bx_2(t) \rightarrow ay_1(t) + by_2(t)$$

for any two complex constant $a, b \in \mathbb{C}$.

Linear discrete-time signals

$$ax_1[n] + bx_2[n] \to ay_1[n] + by_2[n]$$

Analysis of LTI systems

$$x(t) \longrightarrow \bigsqcup y(t)$$
?

Decompose input signal by means of a linear combination of simpler signals

$$x(t) = \dots a_{-1}\phi_{-1}(t) + a_{-2}\phi_0(t) + a_0\phi_0(t) + a_1\phi_1(t) + a_2\phi_2(t) + \dots$$

- These "basic" signals are chosen to provide a certain degree of analytical convenience, so we can analyze the system's properties and its response to arbitrary input signals:
 - ▶ Delayed Impulses ⇒ Convolution
 - ► Complex exponential signals ⇒ Fourier analysis

Index

- Introduction to LTI systems
- Discrete-time LTI systems
- 3 Continuous-time LTI systems
- Properties of the Convolution operation

$$x[n] \longrightarrow \boxed{\text{LIT}} \longrightarrow y[n]?$$

Remember that any discrete-time sequence x[n] can be decomposed as a linear combination of unit impulses:

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

$$= \dots + x[-20]\delta[n+20] + x[-19]\delta[n+19] + \dots$$

$$+ x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + \dots$$

If the system is linear and we are able to compute

$$\delta[n] \longrightarrow \text{Lineal} \longrightarrow h_0[n]$$

$$\delta[n+1] \longrightarrow \text{Lineal} \longrightarrow h_{-1}[n]$$

$$\delta[n-1] \longrightarrow \text{Lineal} \longrightarrow h_1[n]$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\delta[n-k] \longrightarrow \text{Lineal} \longrightarrow h_k[n]$$

then we can make use of the superposition property!

$$x[n] \longrightarrow \boxed{\text{Lineal}} \longrightarrow y[n] = \sum_{k=-\infty}^{\infty} x[k]h_k[n]$$

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h_k[n]$$

- This is just a consequence of the system linearity.
- The problem is reduced to evaluate the system's output for any $\delta[n-k]$.
- The problem can be further reduced by exploiting that the system is time-invariant.

$$\delta[n] \longrightarrow \boxed{\text{LIT}} \longrightarrow h_0[n] = h[n]$$

$$\delta[n+1] \longrightarrow \boxed{\text{LIT}} \longrightarrow h_{-1}[n] = h[n+1]$$

$$\delta[n-1] \longrightarrow \boxed{\text{LIT}} \longrightarrow h_1[n] = h[n-1]$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\delta[n-k] \longrightarrow \boxed{\text{LIT}} \longrightarrow h_k[n] = h[n-k]$$

Therefore, for any input x[n], if h[n] is known then the system output is given by

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h_k[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

- h[n] is the system's **impulse response**.
- Any LTI system is **completely defined** by h[n]!

$$x[n] \longrightarrow \boxed{h[n]} \longrightarrow y[n]$$

Convolution

Given two discrete-time signals x[n] and h[n]:

$$\sum_{k=-\infty}^{\infty} x[k]h[n-k] = x[n] * h[n]$$

is the convolution operation between them.

Problem

•
$$x[n] = \alpha^n u[n]$$
 with $\alpha \in (0,1)$

$$\bullet \ h[n] = u[n]$$

$$x[n] \longrightarrow \boxed{h[n]} \longrightarrow y[n]$$

Sol.

$$y[n] = \begin{cases} 0 & n < 0 \\ \frac{1 - \alpha^{n+1}}{1 - \alpha} & n \ge 0 \end{cases}$$

Index

- Introduction to LTI systems
- 2 Discrete-time LTI systems
- 3 Continuous-time LTI systems
- Properties of the Convolution operation

The discussion for continuous-time LTI systems is just a generalization of the discrete-time case.

$$x(t) \longrightarrow \Box \Box \Box \to y(t)$$
?

Remember that any continuous-time signal x(t) can be decomposed as a linear combination of an infinite number of impulses:

$$x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t - \tau) d\tau$$

Approximate x(t) by a combination of scaled and equally spaced versions $\delta_{\Delta}(t)$

$$x(t) \approx x_{\Delta}(t) = \sum_{k=-\infty}^{\infty} x(k\Delta)\delta_{\Delta}(t-k\Delta)\Delta$$

$$\delta_{\Delta}(t - k\Delta) \longrightarrow \boxed{\text{Lineal}} \longrightarrow h_{k\Delta}(t)$$

Then applying the superposition property

$$x_{\Delta}(t) \longrightarrow \boxed{\text{Lineal}} \longrightarrow y_{\Delta}(t) = \sum_{k=-\infty}^{\infty} x(k\Delta)h_{k\Delta}(t)\Delta$$

If the system is also time-invariant:

$$\delta_{\Delta}(t - k\Delta) \longrightarrow \boxed{\text{LIT}} \longrightarrow h_{k\Delta}(t) = h_0(t - k\Delta)$$

$$x_{\Delta}(t) \longrightarrow \boxed{\text{LIT}} \longrightarrow y_{\Delta}(t) = \sum_{k=-\infty}^{\infty} x(k\Delta)h_0(t - k\Delta)\Delta$$

Taking the limit $\Delta \rightarrow 0$:

- $k\Delta \to \tau$
 - $\sum \rightarrow \int$
 - $\Delta \rightarrow d\tau$
 - $h_0(t) = h(t)$

$$y(t) = \lim_{\Delta \to 0} y_{\Delta}(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

- h(t) is the system's response to the impulse $\delta(t)$.
- Any LTI system is **completely defined** by h(t)!

$$x(t) \longrightarrow h(t) \longrightarrow y(t)$$

Continuous-time Convolution

Given two signals x(t) and h(t):

$$\int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = x(t)*h(t)$$

is the continuous-time convolution operation between them.

Problem 43

Consider the two signals x(t) and h(t) given by:

$$x(t) = \left\{ egin{array}{ll} 1 & 0 < t < T \\ 0 & ext{otherwise} \end{array}
ight.,$$

$$h(t) = \left\{ egin{array}{ll} t & 0 < t < 2T \\ 0 & ext{otherwise} \end{array}
ight. .$$

If h(t) is the impulse response of an LTI system, compute the system's output when x(t) is the input signal.

$$x(t) \longrightarrow h(t) \longrightarrow y(t)$$

$$y(t) = \begin{cases} 0 & t < 0 \\ \frac{t^2}{2} & 0 \le t < T \\ tT - \frac{T^2}{2} & T \le t < 2T \\ Tt + \frac{3}{2}T^2 - \frac{t^2}{2} & 2T \le t < 3T \\ 0 & t \ge 3T \end{cases},$$

Index

- 1 Introduction to LTI systems
- ② Discrete-time LTI systems
- 3 Continuous-time LTI systems
- Properties of the Convolution operation

Commutative property

$$x[n] * h[n] = h[n] * x[n]$$

Proof .:

Given

$$x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

define v = n - k, thus

$$x[n] * h[n] = \sum_{v=+\infty}^{-\infty} x[n-v]h[v] = \sum_{v=-\infty}^{+\infty} h[v]x[n-v] = h[n] * x[n]$$

Commutative property

Therefore,

is equivalent to

Commutative property for the continuous-time convolution

$$x(t)*h(t) = h(t)*x(t) \Rightarrow \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$

Associative property

$$x(t)*\left(h(t)*z(t)\right)=\left(x(t)*h(t)\right)*z(t)$$

$$x[n] * \left(h[n] * z[n]\right) = \left(x[n] * h[n]\right) * z[n]$$

Therefore, the following configurations are equivalent:

Distributive property with respect to the sum

$$x[n] * \left(y[n] + z[n]\right) = x[n] * y[n] + x[n] * z[n]$$

$$x(t) * (y(t) + z(t)) = x(t) * y(t) + x(t) * z(t)$$

The following configurations are equivalent:

Convolution with an impulse signal

Remember that any signal can be decomposed as a linear combination of an infinite number of unit impulses:

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k],$$

$$x(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t-\tau)d\tau$$

Therefore

$$x[n] * \delta[n] = x[n],$$

$$x(t) * \delta(t) = x(t).$$

Convolution with a delayed impulse (discrete-time)

$$x[n] * \delta[n - n_0] = \sum_{k=-\infty}^{\infty} x[k]\delta[n - k - n_0]$$

Define $v = k + n_0$, thus

$$x[n] * \delta[n - n_0] = \sum_{v = -\infty}^{\infty} x[v - n_0] \delta[n - v]$$

= $x[n - n_0] * \delta[n] = x[n - n_0].$

Therefore,

$$x[n] * \delta[n - n_0] = x[n - n_0],$$

Convolution with a delayed impulse (continuous-time)

$$x(t)*\delta(t-t_0) = \int_{ au=-\infty}^{\infty} x(au)\delta(t- au-t_0)\mathsf{d} au$$

Define $v = \tau + t_0$ and $x'(t) = x(t - t_0)$, thus

$$x(t) * \delta(t - t_0) = \int_{v = -\infty}^{\infty} x(v - t_0)\delta(t - v)dv$$
$$= \int_{v = -\infty}^{\infty} x'(v)\delta(t - v)dv = x'(t) * \delta(t) = x'(t)$$

Therefore,

$$x(t) * \delta(t - t_0) = x(t - t_0),$$

