

# CSC-257 Theory Of Computation (BSc CSIT, TU)

Ganesh Khatri kh6ganesh@gmail.com

# Backus-Naur Form(BNF)

- Another way of representing CFG.
- It is named after John Backus, who invented it, and Peter Naur, who refined it.
- The traditional notation used by computer scientists to represent a contextfree grammar
- Used to specify the syntactic rule of many computer languages, like Java
- Here, concept is similar to CFG, only the difference is instead of using symbol
   "→" in production, we use symbol ::=
- We enclose all non-terminals in angle brackets: <>
- An example of its use as a metalanguage would be in defining an arithmetic expression :

```
<expr> ::= <term> | <expr> <addop> <term>
```

### Backus-Naur Form(BNF)

• Example: The BNF for identifiers can be constructed as:

Here are some of the principal closure properties for context free languages

### 1. The context free language are closed under union

i.e. Given any two context free languages  $L_1$  and  $L_2$ , their union  $L_1$  U  $L_2$  is also context free language

- Proof : Let  $G_1 = (V_1, T_1, P_1, S_1)$  and  $G_2 = (V_2, T_2, P_2 \text{ and } S_2)$  be two context free grammars defining the languages  $L(G_1)$  and  $L(G_2)$ .
- Without loss of generality, let us assume that they have common terminal set T, and disjoint set of non-terminals. Because, the non-terminals are distinct so the productions P<sub>1</sub> and P<sub>2</sub>
- Let S be a new non-terminal not in  $V_1$  and  $V_2$ . Then, construct a new grammar G = (V, T, P, S) where :

$$V = V_1 \cup V_2 \cup \{S\}$$
  
 $P = P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}$ 

### 1. The context free language are closed under union

- G is clearly a context free grammar because the two new productions so added are also of the correct form, we claim that  $L(G) = L(G_1) \cup L(G_2)$
- For this, Suppose that  $x \in L(G_1)$ . Then there is a derivation of x as :  $S_1 \rightarrow x$
- But in G, we have production, S→ S<sub>1</sub>, so, there is a derivation of x also in G as:
   S → S<sub>1</sub> →\* x
- Thus,  $x \in L(G)$ . Therefore,  $L(G_1) \subseteq L(G)$ . A similar argument shows  $L(G_2) \subseteq L(G)$
- So, we have,  $L(G_1) \cup L(G_2) \subseteq L(G) \subseteq :$  is subset of ]

### 1. The context free language are closed under union

- Conversely, suppose that  $x \in L(G)$ . Then there is a derivation of x in G as :  $S \to \beta \to *x$
- Because of the way in which P is constructed, β must be either S<sub>1</sub> or S<sub>2</sub>
- Suppose  $\beta = S_1$ . Any derivation in G of the form  $S_1 \rightarrow *$  x must involve only productions of  $G_1$  so,  $S_1 \rightarrow *$  x is a derivation of x in  $G_1$ .
- Hence,  $\beta = S_1 \rightarrow x \in L(G_1)$
- Thus L(G) is subset of L(G<sub>1</sub>) U L(G<sub>2</sub>)
- It follows that L(G) = L(G1) U L(G2)

- Similarly following two closure properties of CFL can be proved as for the union we have proved.
  - 2. The CFLs are closed under concatenation
  - 3. The CFLs are closed under Kleene closure