Молдавский Государственный Университет Молдовы Факультет Математики и Информатики Департамент Информатики

Лабораторная работа №4

по предмету "Компьютерные сети" тема: "IPv4-адресация и разделение сетей на подсети"

Проверила: п. Кузнецова Елена

Выполнила: Павлышина Александра 12302

Введение.

Целью данной лабораторной работы является я формирование практических навыков планирования IP-адресов и масок сети, разделение на подсети (subnetting) и разработка схемы IPv4 адресации VLSM.

Задания:

Для начала строю логическую топологию сети, необходимую для выполнения следующих заданий. Она состоит из 2 роутеров модели 2911, 4 свитчей модели 2960-24TT и 4 PC.

Блоки IP адресов, для которых нужно выполнить требования пунктов :

I. 192.168.21.30/24 II. 172.16.20.238/20 III. 10.10.32.0/18 а) Используя, как модель, задачу, рассмотренную в примере 3, разработать схему разделения на подсети IPv4, так чтобы подсети имели одинаковую маску.

Количество хостов, подключенных к 4 коммутаторам, для пунктов а и b :

Количество хостов подключённых	Количество хостов
к коммутатору	
Switch1	26-16=10
Switch2	32-16=16
Switch3	36-16=20
Switch4	41-16=25

В соответствии с конфигурацией, показанной на схеме выше, я определяю количество сетей, которые необходимо создать. В итоге получаются 4 подсети для локальных сетей и 1 для связи между роутерами. Вычисляю сколько битов нужно позаимствовать для того, чтобы обеспечить пять, как ранее определила, подсетей:

$$2^{1} = 2 < 5$$

 $2^{2} = 4 < 5$
 $2^{3} = 8 > 5$

Конечный ответ - 3 бита. В данном случае будет создано 8 подсетей, так как $2^3 = 8$. По формуле $2^5 - 2 = 32 - 2 = 30$, высчитываю сколько IP адресов будут назначены для хостов в каждой подсети. Для расширенной маски подсети определяю двоичное представление и десятичное с точкой и также вычисляю шаг для последующего действия:

I. 192.168.21.30/24

Первый байт	Второй байт	Третий байт	Биты расширенной маски				
11111111	11111111	11111111	1 1 1 0 0 0 0			0	0
Первый байт в десятичном формате	Второй байт в десятичном формате	Третий байт в десятичном формате	Четвертый байт в десятичном формате		М		
255	255	255	224				

Шаг подсети : 256 – 224 = 32

Первый байт	Второй байт		Биты расширенной маски						Чертвертый байт	
11111111	11111111	1	1	1	1	1	1	1	0	00000000

Первый байт в десятичном формате	Второй байт в десятичном формате	Третий байт в десятичном формате	Четвертый байт в десятичном формате
255	255	254	0

Шаг подсети : 256 – 254 = 2

III. 10.10.32.0/18

Первый байт	Второй байт		Биты расширенной маски							Чертвертый байт
11111111	11111111	1	1	1	1	1	0	0	0	00000000
Первый байт в десятичном формате	Второй байт в десятичном формате	Третий байт в десятичном формате							Четвертый байт в десятичном формате	
255	255	248							0	

Шаг подсети : 256 - 248 = 8

Для пяти подсетей определяю двоичные представления для каждого IP адреса в зависимости от ранее вычисленного шага в следующих таблицах:

I. 192.168.21.30/24

Подсеть	Адрес сети	Биты из 4 байта							
0	192.168.21.0		0	0	0	0	0	0	0
1	192.168.21.32		0	1	0	0	0	0	0
2	192.168.21.64		1	0	0	0	0	0	0
3	192.168.21.96		1	1	0	0	0	0	0
4	192.168.21.128		0	0	0	0	0	0	0

Подсеть	Адрес сети	Биты из 3 байта							
0	172.16.0.0		0	0	0	0	0	0	0
1	172.16.2.0		0	0	0	0	0	1	0
2	172.16.4.0	0	0	0	0	0	1	0	0
3	172.16.6.0	0	0	0	0	0	1	1	0
4	172.16.8.0	0	0	0	0	1	0	0	0

III. 10.10.32.0/18

Подсеть	Адрес сети	Биты из 3 байта							
0	10.10.0.0		0	0	0	0	0	0	0
1	10.10.8.0	0	0	0	0	1	0	0	0
2	10.10.16.0	0	0	0	1	0	0	0	0
3	10.10.24.0		0	0	1	1	0	0	0
4	10.10.32.0	0	0	1	0	0	0	0	0

Заполняю таблицу с информацией о подсетях: десятичные значения с точкой, соответствующие доступным подсетям, первый и последний адрес хоста, который можно назначать, и широковещательный адрес:

I. 192.168.21.30/24

Номер подсети	Адрес подсети	Первый адрес хоста, который можно назначить	Последний адрес хоста, который можно назначить	Широковещател ьный адрес
0	192.168.21.0	192.168.21.1	192.168.21.30	192.168.21.31
1	192.168.21.32	192.168.21.33	192.168.21.62	192.168.21.63
2	192.168.21.64	192.168.21.65	192.168.21.94	192.168.21.95
3	192.168.21.96	192.168.21.97	192.168.21.126	192.168.21.127
4	192.168.21.128	192.168.21.129	192.168.21.158	192.168.21.159
5	192.168.21.160	192.168.21.161	192.168.21.190	192.168.21.191
6	192.168.21.192	192.168.21.193	192.168.21.222	192.168.21.223
7	192.168.21.224	192.168.21.225	192.168.21.254	192.168.21.255

Номер подсети	Адрес подсети	Первый адрес хоста, который можно назначить	Последний адрес хоста, который можно назначить	Широковещательный адрес
0	172.16.0.0	172.16.0.1	172.16.1.254	172.16.1.255
1	172.16.2.0	172.16.2.1	172.16.3.254	172.16.3.255
2	172.16.4.0	172.16.4.1	172.16.5.254	172.16.5.255
3	172.16.6.0	172.16.6.1	172.16.7.254	172.16.7.255
4	172.16.8.0	172.16.8.1	172.16.9.254	172.16.9.255
5	172.16.10.0	172.16.10.1	172.16.11.254	172.16.11.255

6	172.16.12.0	172.16.12.1	172.16.13.254	172.16.13.255
7	172.16.14.0	172.16.14.1	172.16.15.254	172.16.15.255

III. 10.10.32.0/18

Номер подсети	Адрес подсети	Первый адрес хоста, который можно назначить	Последний адрес хоста, который можно назначить	Широковещательный адрес
0	10.10.0.0	10.10.0.1	10.10.1.248	10.10.1.255
1	10.10.8.0	10.10.8.1	10.10.9.248	10.10.9.255
2	10.10.16.0	10.10.16.1	10.10.17.248	10.10.17.255
3	10.10.24.0	10.10.24.1	10.10.25.248	10.10.25.255
4	10.10.32.0	10.10.32.1	10.10.33.248	10.10.33.255
5	10.10.40.0	10.10.40.1	10.10.41.248	10.10.41.255
6	10.10.48.0	10.10.48.1	10.10.49.248	10.10.49.255
7	10.10.52.0	10.10.52.1	10.10.53.248	10.10.53.255

Схема адресации:

I. 192.168.21.30/24

Устройство	Интерфей	IP адрес	Маска подсети	Адрес маршрутизатора по умолчанию
	G0/1	192.168.21.1	255.255.255.224	N/A
Router1	G0/0	192.168.21.33	255.255.255.224	N/A
	G0/2	192.168.21.129	255.255.255.224	N/A
	G0/1	192.168.21.65	255.255.255.224	N/A
Router0	G0/2	192.168.21.97	255.255.255.224	N/A
	G0/0	192.168.21.158	255.255.255.224	N/A
PC0	NIC	192.168.21.30	255.255.255.224	192.168.21.1
PC1	NIC	192.168.21.62	255.255.255.224	192.168.21.33
PC2	NIC	192.168.21.94	255.255.255.224	192.168.21.65
PC3	NIC	192.168.21.126	255.255.255.224	192.168.21.97

Устройство	Интерфей	IP адрес	Маска подсети	Адрес маршрутизатора по умолчанию
	G0/1	172.16.0.1	255.255.254.0	N/A
Router1	G0/0	172.16.2.1	255.255.254.0	N/A
	G0/2	172.16.8.1	255.255.254.0	N/A
Router0	G0/1	172.16.4.1	255.255.254.0	N/A

	G0/2	172.16.6.1	255.255.254.0	N/A
	G0/0	172.16.9.254	255.255.254.0	N/A
PC0	NIC	172.16.1.254	255.255.254.0	172.16.0.1
PC1	NIC	172.16.3.254.	255.255.254.0	172.16.2.1
PC2	NIC	172.16.5.254	255.255.254.0	172.16.4.1
PC3	NIC	172.16.7.254	255.255.254.0	172.16.6.1

III. 10.10.32.0/18

Устройство	Интерфей	IP адрес	Маска подсети	Адрес маршрутизатора по умолчанию
	G0/1	10.10.0.1	255.255.248.0	N/A
Router1	G0/0	10.10.8.1	255.255.248.0	N/A
	G0/2	10.10.32.1	255.255.248.0	N/A
	G0/1	10.10.16.1	255.255.248.0	N/A
Router0	G0/2	10.10.24.1	255.255.248.0	N/A
	G0/0	10.10.33.248	255.255.248.0	N/A
PC0	NIC	10.10.1.248	255.255.248.0	10.10.0.1
PC1	NIC	10.10.9.248	255.255.248.0	10.10.8.1
PC2	NIC	10.10.17.248	255.255.248.0	10.10.16.1
PC3	NIC	10.10.25.248	255.255.248.0	10.10.24.1

b) Назначить IP адреса, полученные в пункте а), устройствам сети и проверить соединение между устройствами.

Устанавливаю на устройствах сети ІР адреса, указанные в предыдущих таблицах.

По этому же примеру, устанавливаются и другие ІР-адреса.

Конфигурирую IP адреса и маску во всех интерфейсах Router1 и Router2 и настраиваю статический маршрут по умолчанию.

Physical Config CLI Attributes IOS Co Router>en Router#conf ter Enter configuration commands, one per line. End with CNTL/Z. Router(config)#int G0/1 Router(config-if) #ip address 192.168.21.1 255.255.255.224 Router(config-if)#no shutdown Router(config-if)# %LINK-5-CHANGED: Interface GigabitEthernet0/1, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/1, changed state to up Router(config-if) #exit Router(config) #int G0/0 Router(config-if) #ip address 192.168.21.33 255.255.255.224 Router(config-if) #no shutdown Router(config-if)# %LINK-5-CHANGED: Interface GigabitEthernet0/0, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0, changed state to up Router(config-if) #exit Router(config) #int G0/2 Router(config-if)#ip address 192.168.21.129 255.255.255.224 Router(config-if) #no shutdown Router(config-if)# %LINK-5-CHANGED: Interface GigabitEthernet0/2, changed state to up Router#conf ter Enter configuration commands, one per line. End with CNTL/Z. Router(config) #ip route 0.0.0.0 0.0.0.0 192.168.21.158 Router(config)#

Router1

Config CLI Attributes Physical IOS Cor Router>en Router#conf ter Enter configuration commands, one per line. End with CNTL/Z. Router(config) #int G0/1 Router(config-if) #ip address 192.168.21.65 255.255.255.224 Router(config-if) #no shutdown Router(config-if)# %LINK-5-CHANGED: Interface GigabitEthernet0/1, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/1, changed state to up Router(config-if)#exit Router(config) #int G0/2 Router(config-if) #ip address 192.168.21.97 255.255.255.224 Router(config-if) #no shutdown Router(config-if)# %LINK-5-CHANGED: Interface GigabitEthernet0/2, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/2, changed state to up Router(config-if) #exit Router(config) #int G0/0 Router(config-if) #ip address 192.168.21.158 255.255.255.224 Router(config-if) #no shutdown Router(config-if)# %LINK-5-CHANGED: Interface GigabitEthernet0/0, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0, changed state to up Router#conf ter Enter configuration commands, one per line. End with CNTL/2. Router(config)#ip route 0.0.0.0 0.0.0.0 192.168.21.129 Router(config)#

Router0

Проверяю есть ли соединения между хостами из разных подсетей, поэтому пингую PC0 PC2 и с PC1 PC3.

с) Используя, как модель, задачу, рассмотренную в примере 4, разработать схему VLSM разделения на подсети IPv4.

Количество хостов, подключенных к 4 коммутаторам, для пунктов с и d :

Количество хостов подключённых	Количество хостов
к коммутатору	
Switch1	24-16=8
Switch2	33-16=17
Switch3	48-16=32

Switch4	78-16=62
---------	----------

Следуя информации из таблицы:

Подсети Switch1 нужно 8 IP адреса для хостов Подсети Switch2 нужно 17 IP адреса для хостов Подсети Switch3 нужно 32 IP адреса для хостов Подсети Switch4 нужно 62 IP адреса для хостов

Необходимо создать пять подсетей в соответствии кофигурацией, представленной на схеме, поэтому я определяю какая маска подсети подходит и количество хостов адреса, которые будут поддерживать каждую подсеть:

$$2^4 - 2 = 16 - 2 = 14$$
 адресов хостов > 8 - /28

$$2^5 - 2 = 32 - 2 = 30$$
 адресов хостов $> 17 - /27$

$$2^{6} - 2 = 64 - 2 = 62$$
 адресов хостов $> 32 - /26$

$$2^6 - 2 = 64 - 2 = 62$$
 адресов хостов ≥ $62 - /26$

И определяю какой маски подсети будет достаточно для необходимого числа IP адресов для связи между роутерами Router1 и Router0 :

$$2^2 - 2 = 4 - 2 = 2$$
 адресов хоста - /30

Далее разрабатываю схему разделения на подсети(адресации) VLSM.

Для того чтобы предоставить необходимое количество адресов в локальной сети с
наибольшим количеством хостов использую первую подсеть.

I. 192.168.21.30/24

Данный IP адрес в двоичном представлении: 11000000.11000000.00010101.00011110

Для сети с наибольшим количеством хостов требуется 62 хоста. Чтобы обеспечить такое количество адресов для хостов, необходимо, чтобы идентификатор хоста в IP-адресе был на 6 бит (2⁶=62), а тогда расширенная маска сети будет на 26 бит:

Появляется возможность сгенерировать $2^2 = 4$ подсети, варьируя битами 25 и 26 IP адреса сети (маска была расширена с 24 до 26):

Подсеть 1: 11000000.10101000.01001000.00000000 = 192.168.21.0/26

Подсеть 2: 11000000.10101000.01001000.01000000 = 192.168.21.64/26

Подсеть 3: 11000000.10101000.01001000.10000000 = 192.168.21.128/26

Подсеть 4: 11000000.10101000.01001000.11000000 = 192.168.21.192/26

Таким образом, первой подсети из 62 хостов (Switch4) мы можем присвоить следующий адрес подсети - 192.168.21.0/26.

Данный IP адрес в двоичном представлении: 10101100.00010000.00010100.11101110

Для сети с наибольшим количеством хостов требуется 62 хоста. Чтобы обеспечить такое количество адресов для хостов, необходимо, чтобы идентификатор хоста в IP-адресе был на 6 бит (2⁶=64), а тогда расширенная маска сети будет на 26 бит:

Появляется возможность сгенерировать 2^6 = 62 подсети, варьируя битами 21- 26 IP адреса сети (маска была расширена с 20 до 25) :

Подсеть 1: 10101100.00010000.0000**000**.**00**0000000 = 172.16.0.0/26 Подсеть 2: 10101100.00010000.0000**0000.01**000000 = 172.16.0.64/26 Подсеть 3: 10101100.00010000.0000**0000.10**000000 = 172.16.0.128/26

...

Подсеть 62: 10101100.00010000.00001111.11000000 = 172.15.15.192/26

Таким образом, первой подсети из 62 хостов (Switch4) мы можем присвоить следующий адрес подсети - 172.16.0.0/26.

III. 10.10.32.0/18

Данный IP адрес в двоичном представлении: 00001010.00001010.00100000.00000000

Для сети с наибольшим количеством хостов требуется 62 хоста. Чтобы обеспечить такое количество адресов для хостов, необходимо, чтобы идентификатор хоста в IP-адресе был на 6 бит (2⁶=64), а тогда расширенная маска сети будет на 26 бит:

Появляется возможность сгенерировать $2^8 = 256$ подсети, варьируя битами 19-26 IP адреса сети (маска была расширена с 18 до 25) :

Подсеть 1:00001010.00001010.00**000000.00**0000000 = 10.10.0.0/26 Подсеть 2:00001010.00001010.00**000000.01**000000 = 10.10.0.64/26 Подсеть 3:00001010.00001010.00**000000.10**000000 = 10.10.0.128/26

...

Подсеть 256: 00001010.00001010.00111111.11000000 = 10.10.63.192/26

Таким образом, первой подсети из 62 хостов (Switch4) мы можем присвоить следующий адрес подсети - 172.16.0.0/26.

Использую вторую подсеть выше вычисленную для каждлго IP адреса, чтобы обеспечить необходимое количество адресов в локальной сети, которая занимает второе место по количеству хостов.

I. 192.168.21.30/24

Вторая подсеть - 192.168.21.64/26

В двоичном представлении: 11000000.10101000.00010101.01000000

Для подсети из 32 хостов нужно 5 битов (2⁵=32) для того, чтобы обеспечить IP адресами эти хосты, тогда мы используем расширенную маску сети на 27 битах

11111111.11111111.11111111.11100000 - 255.255.255.224

Получается возможность сгенерировать $2^2 = 4$ подсети, варьируя битом 27 IP адреса:

Подсеть 1: 11000000.10101000.00010101.01**0**000000 = 192.168.21.64/27

Подсеть 2: 11000000.101101000.0001011.01**1**00000 = 192.168.21.96/27 из которых первая 192.168.21.64/27 ассоциируется с Switch3, а вторая 192.168.21.96/27 будет использоваться далее.

Для того чтобы обеспечить нужное число адресов в LAN-е который находится на 3-м месте по числу хостов (17 хостов в Switch2) нужно 5 битов (2⁵ = 32) для идентификатора сети адреса 192.168.21.96/27. Таким образом используется 27-битная расширенная маска, потому что уже есть адрес подсети /27 - 192.168.21.96/27, она присваивается ее подсети Switch2.

Далее следует четвертое значение из таблицы с количеством хостов Switch1, которое включает 8 хостов, то есть нужно 4 бита (2⁴ = 16), чтобы обеспечить IP адресами эти хосты. Таким образом используется расширенная маска /28.

11111111111111111111111111111110000 - 255.255.255.240

Используется третья подсеть первой подсети Switch4 - 192.168.21.128/26. Двоичное представление : 11000000.101000.01001000.10000000 Получается $2^2 = 4$ подсети, варьируя битами 27 и 28 IP адреса :

Подсеть 1: 11000000.10101000.01001000.10000000 = 192.168.21.128/28 Подсеть 2: 11000000.10101000.01001000.1000000 = 192.168.21.144/28 Подсеть 3: 11000000.10101000.01001000.10100000 = 192.168.21.160/28 Подсеть 4: 11000000.10101000.01001000.10110000 = 192.168.21.176/28

из которых первая подсеть 192.168.21.128/28 ассоциируется с Switch1, а вторая 192.168.21.144/28 будет использоваться далее.

Для того чтобы обеспечить нужное число адресов в LAN-е который обеспечивает связь между роутерами Router1 и Router2 (2 IP адреса для интерфейсов роуетров) нужно 2 бита ($2^2 = 4$) для идентификатора хоста. Таким образом используется 30-битная расширенная маска :

11111111.111111111111111111100 - 255.255.255.252

Используя IP адрес 192.168.21.144/28, получаются $2^2 = 4$ подсети (маска была увеличена с 28 до 30) :

Подсеть 1: 11000000.10101000.01001000.1001**00**00 = 192.168.21.144/30 Подсеть 2: 11000000.10101000.01001000.1001**01**00 = 192.168.21.148/30 Подсеть 3: 11000000.10101000.01001000.1001**10**00 = 192.168.21.152/30 Подсеть 4: 11000000.10101000.01001000.1001**11**00 = 192.168.21.156/30

Первый IP адрес подсети 192.168.21.148/30 присваиваем LAN-у между роутерами.

II. 172.16.20.238/20

Вторая подсеть: 172.16.0.64/26

Двоичное представление: 10101100.00010000.00000000.01000000

Для подсети из 32 хостов нужно 5 битов (2⁵=32) для того, чтобы обеспечить IP адресами эти хосты, тогда мы используем расширенную маску сети на 27 битах

11111111.1111111111111111111100000 - 255.255.255.224

Получается возможность сгенерировать $2^2 = 4$ подсети, варьируя битом 27 IP адреса:

Подсеть 1: 10101100.00010000.00000000.01000000 = 172.16.0.64/27

Подсеть 2: 10101100.00010000.00000000.01100000 = 172.16.0.96/27

из которых первая 172.16.0.64/27 ассоциируется с Switch3, а вторая 172.16.0.96/27 будет использоваться далее.

Для того чтобы обеспечить нужное число адресов в LAN-е который находится на 3-м месте по числу хостов (17 хостов в Switch2) нужно 5 битов (2^5 = 32) для идентификатора сети адреса 172.16.0.96/27. Таким образом используется 27-битная расширенная маска, потому что уже есть адрес подсети /27 - 172.16.0.96/27, она присваивается ее подсети Switch2.

Далее следует четвертое значение из таблицы с количеством хостов Switch1, которое включает 8 хостов, то есть нужно 4 бита (2⁴ = 16), чтобы обеспечить IP адресами эти хосты. Таким образом используется расширенная маска /28.

111111111.11111111.1111111.11110000 - 255.255.255.240

Используется третья подсеть первой подсети Switch4 - 172.16.0.128/26. Двоичное представление : 10101100.00010000.00000000.10000000 Получается $2^2 = 4$ подсети, варьируя битами 27 и 28 IP адреса :

Подсеть 1: 10101100.00010000.000000000.10**00**0000 = 172.16.0.128/28 Подсеть 2: 10101100.00010000.000000000.10**01**0000 = 172.16.0.144/28 Подсеть 3: 10101100.00010000.000000000.10**10**0000 = 172.16.0.160/28 Подсеть 4: 10101100.00010000.000000000.10**11**0000 = 172.16.0.176/28

из которых первая подсеть 172.16.0.128/28 ассоциируется с Switch1, а вторая 172.16.0.144/28 будет использоваться далее.

Для того чтобы обеспечить нужное число адресов в LAN-е который обеспечивает связь между роутерами Router1 и Router2 (2 IP адреса для интерфейсов роуетров) нужно 2 бита ($2^2 = 4$) для идентификатора хоста. Таким образом используется 30-битная расширенная маска :

11111111.111111111111111111100 - 255.255.255.252

Используя IP адрес 172.16.0.144/28, получаются $2^2 = 4$ подсети (маска была увеличена с 28 до 30) :

Подсеть 1: 10101100.00010000.000000000.10010000 = 172.16.0.144/30 Подсеть 2: 10101100.00010000.000000000.10010100 = 172.16.0.148/30 Подсеть 3: 10101100.00010000.000000000.10011000 = 172.16.0.152/30 Подсеть 4: 10101100.00010000.000000000.10011100 = 172.16.0.156/30

Первый IP адрес подсети 172.16.0.148/30 присваиваем LAN-у между роутерами.

III. 10.10.32.0/18

Вторая подсеть: 10.10.0.64/26

Двоичное представление: 00001010.00001010.00000000.01000000

Для подсети из 32 хостов нужно 5 битов (2^5 =32) для того, чтобы обеспечить IP адресами эти хосты, тогда мы используем расширенную маску сети на 27 битах

11111111.11111111111111111111100000 - 255.255.255.224

Получается возможность сгенерировать $2^2 = 4$ подсети, варьируя битом 27 IP адреса:

Подсеть 1:00001010.00001010.00000000.01**0**00000 = 10.10.0.64/27

Подсеть 2: 00001010.00001010.00000000.01**1**00000 = 10.10.0.96/27

из которых первая 10.10.0.64/27 ассоциируется с Switch3, а вторая 10.10.0.96/27 будет использоваться далее.

Для того чтобы обеспечить нужное число адресов в LAN-е который находится на 3-м месте по числу хостов (17 хостов в Switch2) нужно 5 битов (2⁵ = 32) для идентификатора сети адреса 10.10.0.96/27. Таким образом используется 27-битная расширенная маска, потому что уже есть адрес подсети /27 - 10.10.0.96/27, она присваивается ее подсети Switch2.

Далее следует четвертое значение из таблицы с количеством хостов Switch1, которое включает 8 хостов, то есть нужно 4 бита (2⁴ = 16), чтобы обеспечить IP адресами эти хосты. Таким образом используется расширенная маска /28.

1111111111111111111111111111110000 - 255,255,255,250

Используется третья подсеть первой подсети Switch4 - 10.10.0.128/26. Двоичное представление : 00001010.00001010.0000000.10000000 Получается $2^2 = 4$ подсети, варьируя битами 27 и 28 IP адреса :

 Подсеть 4: 10101100.00010000.00000000.10**11**0000 = 10.10.0.176/28

из которых первая подсеть 10.10.0.128/28 ассоциируется с Switch1, а вторая 10.10.0.144/28 будет использоваться далее.

Для того чтобы обеспечить нужное число адресов в LAN-е который обеспечивает связь между роутерами Router1 и Router2 (2 IP адреса для интерфейсов роуетров) нужно 2 бита ($2^2 = 4$) для идентификатора хоста. Таким образом используется 30-битная расширенная маска :

11111111.111111111111111111100 - 255.255.255.252

Используя IP адрес 10.10.0.144/28, получаются $2^2 = 4$ подсети (маска была увеличена с 28 до 30):

Подсеть 1: 10101100.00010000.00000000.10010000 = 10.10.0.144/30 Подсеть 2: 10101100.00010000.000000000.1001000 = 10.10.0.148/30 Подсеть 3: 10101100.00010000.00000000.10011000 = 10.10.0.152/30 Подсеть 4: 10101100.00010000.000000000.10011100 = 10.10.0.156/30

Первый IP адрес подсети 10.10.0.148/30 присваиваем LAN-у между роутерами.

Далее документирую VSLM подсети в таблицу, которая содержит описание каждой подсети, необходимое количество хостов, адрес подсети, первый и последний применяемый адрес хоста и широковещательный адрес.

I. 192.168.21.30/24

Описание подсети	Необходимое количество хостов	Адрес сети/CIDR	Первый применяемый адрес хостов	Последний применяемый адрес хоста	Широковещат ельный адрес
PC-0	8	192.168.21.128 /28	192.168.21.129	192.168.21.142	192.168.21.143
PC-1	17	192.168.21.96 /27	192.168.21.97	192.168.21.126	192.168.21.127
PC-2	32	192.168.21.64 /27	192.168.21.65	192.168.21.94	192.168.21.195
PC-3	62	192.168.21.0 /26	192.168.21.1	192.168.21.62	192.168.21.63
Связь WAN	2	192.168.21.148/ 30	192.168.21.149	192.168.21.150	192.168.21.15

II. 172.16.20.238/20

Описан	Необходим		Первый	Последний	
ие	oe	Адрес	применяем	применяемы	Широковещатель
подсети	количество	сети/CIDR	ый адрес	й адрес	ный адрес
Подсети	хостов		хостов	хоста	
		172.16.0.1	172.16.0.12	172.16.0.14	
PC-0	8	28	9	2	172.16.0.143
		/28	9	2	
		172.16.0.9		172.16.0.12	
PC-1	17	6	172.16.0.97	6	172.16.0.127
		/27		0	
		172.16.0.6			
PC-2	32	4	172.16.0.65	172.16.0.94	172.16.0.195
		/27			
PC-3	62	172.16.0.0	172.16.0.1	172.16.0.62	172.16.0.63
F C-3	02	/26	172.10.0.1	172.10.0.02	172.10.0.03
Связь		172.16.0.1	172.16.0.14	172.16.0.15	
WAN	2	48	9	0	172.16.0.151
VVAIN		/30	<u> </u>	0	

III. 10.10.32.0/18

Описани	Необходим	Адрес	Первый	Последний	
е	oe	сети/CID	применяем	применяемы	Широковещательн
	количество	R	ый адрес	й адрес	ый адрес
подсети	хостов	IX.	хостов	хоста	
		10.10.0.1			
PC-0	8	28	10.10.0.129	10.10.0.142	10.10.0.143
		/28			
		10.10.0.9			
PC-1	17	6	10.10.0.97	10.10.0.126	10.10.0.127
		/27			
		10.10.0.6			
PC-2	32	4	10.10.0.65	10.10.0.94	10.10.0.195
		/27			
PC-3	62	10.10.0.0	10.10.0.1	10.10.0.62	10.10.0.63
F U-3	02	/26	10.10.0.1	10.10.0.02	10.10.0.03

Chaoi		10.10.0.1			
Связь WAN	2	48	10.10.0.149	10.10.0.150	10.10.0.151
VVAIN		/30			

И заполняю таблицу адресов топологии сети :

1.192.168.21.30/24

				Адрес
Устройство	Интерфейс	IP адрес	Маска подсети	маршрутизатора по
				умолчанию
	G0/1	192.168.21.129	255.255.255.240	N/A
Router1	G0/2	192.168.21.97	255.255.255.224	N/A
	G0/0	192.168.21.149	255.255.255.252	N/A
	G0/1	192.168.21.65	255.255.255.224	N/A
Router0	G0/2	192.168.21.1	255.255.255.192	N/A
	G0/0	192.168.21.150	255.255.255.252	N/A
PC0	NIC	192.168.21.142	255.255.255.240	192.168.21.129
PC1	NIC	192.168.21.126	255.255.255.224	192.168.21.97
PC2	NIC	192.168.21.94	255.255.255.224	192.168.21.65
PC3	NIC	192.168.21.62	255.255.255.192	192.168.21.1

				Адрес
Устройство	Интерфейс	IP адрес	Маска подсети	маршрутизатора по
				умолчанию
	G0/1	172.16.0.129	255.255.255.240	N/A
Router1	G0/2	172.16.0.97	255.255.255.224	N/A
	G0/0	172.16.0.149	255.255.255.252	N/A
	G0/1	172.16.0.65	255.255.255.224	N/A
Router0	G0/2	172.16.0.1	255.255.255.192	N/A
	G0/0	172.16.0.150	255.255.255.252	N/A
PC0	NIC	172.16.0.142	255.255.255.240	172.16.0.129
PC1	NIC	172.16.0.126	255.255.255.224	172.16.0.97
PC2	NIC	172.16.0.94	255.255.255.224	172.16.0.65
PC3	NIC	172.16.0.62	255.255.255.192	172.16.0.1

III. 10.10.32.0/18

Устройство				Адрес
	Интерфейс	IP адрес	Маска подсети	маршрутизатора по
				умолчанию
Router1	G0/1	10.10.0.129	255.255.255.240	N/A
	G0/2	10.10.0.97	255.255.255.224	N/A
	G0/0	10.10.0.149	255.255.255.252	N/A
Router0	G0/1	10.10.0.65	255.255.255.224	N/A
	G0/2	10.10.0.1	255.255.255.192	N/A
	G0/0	10.10.0.150	255.255.255.252	N/A
PC0	NIC	10.10.0.142	255.255.255.240	10.10.0.129
PC1	NIC	10.10.0.126	255.255.255.224	10.10.0.97
PC2	NIC	10.10.0.94	255.255.255.224	10.10.0.65
PC3	NIC	10.10.0.62	255.255.255.192	10.10.0.1

d) Назначить IP адреса, полученные в пункте с), устройствам сети и проверить соединение между устройствами.

Устанавливаю ІР адреса, шлюзы и маски сети для РС, указанные в таблице выше.

Далее конфигурирую IP адреса и маску сети в двух роутерах Router1 и Router2

Router(config-if) #exit

Router(config) #ip route 0.0.0.0 0.0.0.0 192.168.21.150

Physical Config CLI Attributes IOS Command Line Interface Router>en Router#conf ter Enter configuration commands, one per line. End with CNTL/Z. Router(config) #int G0/1 Router(config-if) #ip address 192.168.21.129 255.255.255.240 Router(config-if) #no shutdown Router(config-if)# %LINK-5-CHANGED: Interface GigabitEthernet0/1, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/1, changed state to up Router(config-if)#exit Router(config) #int G0/2 Router(config-if) #ip address 192.168.21.97 255.255.255.224 Router(config-if) #no shutdown Router(config-if)# %LINK-5-CHANGED: Interface GigabitEthernet0/2, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/2, changed state to up Router(config-if)#exit Router(config) #int G0/0 Router(config-if) #ip address 192.168.21.149 255.255.255.252 Router(config-if) #no shutdown Router(config-if)# %LINK-5-CHANGED: Interface GigabitEthernet0/0, changed state to up


```
Physical
         Config
                 CLI
                       Attributes
                                      IOS Command Line Interface
Enter configuration commands, one per line. End with CMTL/2.
Router(config) #int G0/1
Router(config-if) #ip address 192.168.21.65 255.255.255.224
Router(config-if) #no shutdown
Router(config-if)#
%LINK-5-CHANGED: Interface GigabitEthernet0/1, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/1, changed state to up
Router(config-if) #exit
Router(config) #int G0/2
Router(config-if) #ip address 192.168.21.1 255.255.255.192
Router(config-if) #no shutdown
Router(config-if)#
%LINK-5-CHANGED: Interface GigabitEthernet0/2, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/2, changed state to up
Router(config-if)#ecit
% Invalid input detected at '^' marker.
Router(config-if) #exit
Router(config) #int G0/0
Router(config-if) #ip address 192.168.21.150 255.255.255.252
Router(config-if) #no shutdown
Router(config-if)#
%LINK-5-CHANGED: Interface GigabitEthernet0/0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0, changed state to up
Router(config-if) #exit
Router(config) #ip route 0.0.0.0 0.0.0.0 192.168.21.149
```

Проверяю соединения между хостами из разных подсетей, пингуя с PC0 PC3 и с PC1 PC2.

- е) Для схемы разделения на подсети из пункта а), а также для схемы из пункта с), указать значения, которые характеризуют нераспределенное адресное пространство (резерв IP адресов):
- ✓ ІР-адреса, которые не были назначены.
- ✓ отношение (в процентах) количества IP-адресов, не назначенных сетевым устройствам, к общему количеству изначально доступных адресов.

а) Используются 5 подсетей каждая из 30 хостов, 3 подсети остаются в резерве без того, чтобы иметь присвоенный адрес :

Первая подсеть Switch1: 30 - 10 = 20 неприсвоеных адресов. Последние 20 адресов:

Вторая подсеть Switch2: 30 – 16 = 14 неприсвоеных адресов. Последние 14 адресов:

Третья подсеть Switch3: 30 – 20 = 10 неприсвоеных адресов. Последние 10 адресов:

Четвертая подсеть Switch4: 30 – 25 = 5 неприсвоеных адресов. Последние 5 адресов:

Пятая подсеть (Связь WAN) : 30 - 2 = 28 неприсвоеных адресов. Последние 28 адресов:

с) Используются 5 подсетей, каждая с определенным количеством адресов для хостов. Существует большое количество подсетей, из которых не было использовано ни одного адреса.

Первая подсеть Switch1 – 14: 14 – 8 = 6 неприсвоеных адресов. Последние 6 адресов:

192.168.21.137 - 192.168.21.142 172.16.0.137 - 172.16.0.142 10.10.0.137 - 10.10.0.142 6 / 30 * 100% = 20%

Вторая подсеть Switch2 – 30:30-17=13 неприсвоеный адрес. Последние 13 адресов:

192.168.21.114 - 192.168.21.126 172.16.0.114 - 172.16.0.126 10.10.0.114 - 10.10.0.126 13 / 30 * 100% = 43,3%

Третья подсеть Switch3 – 62 : 62 – 32 = 30 неприсвоеных адресов. Последние 30 адресов :

192.168.21.65 - 192.168.21.94 172.16.0.65 - 172.16.0.94 10.10.0.65 - 10.10.0.94 30 / 30 * 100% = 100%

Четвертая подсеть Switch4 – 62:62-62=0 неприсвоеных адресов. 0/30*100%=0%

Пятая подсеть Связь WAN : 2-2=0 неприсвоеных адресов; 0/30*100% = 0%