Task 1

Using the diagrams given in the presentation calculate how much (%) is the effect of applying different modifications (changing the gas, adding an extra pane, using a low emissivity coating) on the U value with respect to a benchmark case of double layer with air and no coating? (keep the gap thickness to be 13 mm)

low emissivity coating: For effective emissivity of a double layered glass as you see in the diagram with changing the emissivity of window (ϵ = 0.72) by using a coat of film (ϵ = 0.01) we can reduce the $\epsilon_{\text{effective}}$ from 5.7 $^{\text{w}}/_{\text{m2}}$ to 2.5 $^{\text{w}}/_{\text{m2}}$

		h	space, W	/m ² - °(2*			h _{spece} , W/m² - °C *						
T _{avg} , ΔT, °C	ΔT_{r}			ective		$T_{\rm avg}$	ΔΤ,			lective				
		0.72	0.4	0.2	0.1	°C	°C	0.72	0.4	0.2	0.			
0	5 15	5.3 5.3	3.8	2.9	2.4	0	5 50	7.2 7.2	5.7 5.7	4.8 4.8	4.3			
0	30	5.5	4.0	3.1	2.6	10	5 50	7.7	6.0	5.0	4.			
10 10 10	15 30	5.7	4.1 4.3	3.1	2.5	30 30	5 50	8.8 8.8	6.8	5.5 5.5	4.9			
30 30	5 15	5.7 5.7	4.6	3.4	2.7	50 50	5 50	10.0 10.0	7.5 7.5	6.0 6.0	5.2			

changing the gas:

In the following diagram there are 3 different curves that compares the thickness of the fluid between double layered glass and type of fluid.

So by interpreting the diagram we understand that by Krypton is the most efficient gas that we can use for the window to reduce the heat transfer.

In 13mm double layered window ($\epsilon_{effective}$ = 0.84) when we change the gass between the layers of glass from Air to Krypton U-factor is reduced from 2.8 $^{\rm w}/_{\rm m2}$ to 2.58 $^{\rm w}/_{\rm m2}$

adding an extra pane:

By analyzing the diagram and comparing to the previous diagram we conclude that in 13mm double layered window with the emissivity of 0.84 by adding another pane we can reduce U-factor from 2.8 $^{\rm w}/_{\rm m2}$ to 1.8 $^{\rm w}/_{\rm m2}$ and consequently reduce thermal transfer.

Task 2

Consider the house that we analyzed in the last two examples, calculate the heating and cooling load of the other windows which are fixed 14.4 m2 on the west, fixed 3.6 m2 on the south and an operable 3.6 m2 on the south (the same window and frame type). How much does the total value change if I change the frame of the window from wooden one to aluminum?

$$q_{fen} = A \times \text{CF}_{fen}$$

$$\text{CF}_{fen} = U(\Delta t - 0.46\,\text{DR}) + \text{PXI} \times \text{SHGC} \times \text{IAC} \times \text{FF}_s$$

 q_{fen} = fenestration cooling load, W A = fenestration area (including frame), m²

 CF_{fen} = surface cooling factor, W/m^2 U = fenestration NFRC heating U-factor, $W/(m^2 \cdot K)$

 Δt = cooling design temperature difference, K

PXI = peak exterior irradiance, including shading modifications,

W/m² [see Equations (26) or (27)]

SHGC = fenestration rated or estimated NFRC solar heat gain coefficient

IAC = interior shading attenuation coefficient, Equation (29)

 FF_s = fenestration solar load factor, <u>Table 13</u>

$$PXI_{window_{east}} = T_x E_t = 747 \ ^w/_{m2}$$

Table 10 Peak Irradiance, W/m²

		Latitude												
Exposure		20°	25°	30°	35°	40°	45°	50°	55°	60°				
North	E_D	125	106	92	84	81	85	96	112	136				
	E_d	128	115	103	93	84	76	69	62	55				
	E_t	253	221	195	177	166	162	164	174	191				
Northeast/Northwest	E_D	460	449	437	425	412	399	386	374	361				
	E_d	177	169	162	156	151	147	143	140	137				
	E_t	637	618	599	581	563	546	529	513	498				
East/West	E_D	530	543	552	558	560	559	555	547	537				
	E_d	200	196	193	190	189	188	187	187	187				
	E_t	730	739	745	748	749	747	742	734	724				
Southeast/Southwest	E_D	282	328	369	405	436	463	485	503	517				
	E_d	204	203	203	204	205	207	210	212	215				
	E_t	485	531	572	609	641	670	695	715	732				
South	E_D	0	60	139	214	283	348	408	464	515				
	E_d	166	193	196	200	204	209	214	219	225				
	E_t	166	253	335	414	487	557	622	683	740				
Horizontal	E_D	845	840	827	806	776	738	691	637	574				
	E_d	170	170	170	170	170	170	170	170	170				
	E_t	1015	1010	997	976	946	908	861	807	744				

SHGC = 0.54

				Center of Glazing	Frame											
			Property ^{c,d}				Operable			Fixed						
Glazing Type	Glazing Layers	IDb			Aluminum	Aluminum with Thermal Break	Reinforced Vinyl/Aluminum Clad Wood	Wood/Vinyl	Insulated Fiberglass/Vinyl	Aluminum	Aluminum with Thermal Break	Reinforced Vinyl/Aluminum Clad Wood	Wood/Vinyl	Insulated Fiberglass/Vinyl		
Clear	1	la	U	5.91	7.24	6.12	5.14	5.05	4.61	6.42	6.07	5.55	5.55	5.35		
			SHGC	0.86	0.75	0.75	0.64	0.64	0.64	0.78	0.78	0.75	0.75	0.75		
	2	5a	U	2.73	4.62	3.42	3.00	2.87	5.83	3.61	3.22	2.86	2.84	2.72		
			SHGC	0.76	0.67	0.67	0.57	0.57	0.57	0.69	0.69	0.67	0.67	0.67		
	3	29a	U	1.76	3.80	2.60	2.25	2.19	1.91	2.76	2.39	2.05	2.01	1.93		
			SHGC	0.68	0.60	0.60	0.51	0.51	0.51	0.62	0.62	0.60	0.60	0.60		
Low-e, low-solar	2	25a	U	1.70	3.83	2.68	2.33	2.21	1.89	2.75	2.36	2.03	2.01	1.90		
			SHGC	0.41	0.37	0.37	0.31	0.31	0.31	0.38	0.38	0.36	0.36	0.36		
	3	40c	U	1.02	3.22	2.07	1.76	1.71	1.45	2.13	1.76	1.44	1.40	1.33		
			SHGC	0.27	0.25	0.25	0.21	0.21	0.21	0.25	0.25	0.24	0.24	0.24		
Low-e high-solar	2	17c	II	1 99	4.05	2.89	2.52	2 39	2.07	2.99	2.60	2.26	2.24	2.13		

									Fr	Frame							
							Operable					Fixed					
Glazing Type	Glazing Layers	IDb	Property ^{c,d}	Center of Glazing	Aluminum	Aluminum with Thermal Break	Reinforced Vinyl/Aluminum Clad Wood	Wood/Vinyl	Insulated Fiberglass/Vinyl	Aluminum	Aluminum with Thermal Break	Reinforced Vinyl/Aluminum Clad Wood	Wood/Vinyl	Insulated Fiberglass/Vinyl			
Clear	1	1a	U	5.91	7.24	6.12	5.14	5.05	4.61	6.42	6.07	5.55	5.55	5.35			
	2	5a	SHGC U SHGC	0.86 2.73 0.76	0.75 4.62 0.67	0.75 3.42 0.67	0.64 3.00 0.57	0.64 2.87 0.57	0.64 5.83 0.57	0.78 3.61 0.69	0.78 3.22 0.69	0.75 2.86 0.67	0.75 2.84 0.67	0.75 2.72 0.67			
	3	29a	U SHGC	1.76 0.68	3.80	2.60 0.60	2.25 0.51	2.19 0.51	1.91 0.51	2.76	2.39 0.62	2.05	2.01	1.93			
Low-e, low-solar	2	25a	U SHGC	1.70 0.41	3.83 0.37	2.68 0.37	2.33 0.31	2.21 0.31	1.89 0.31	2.75 0.38	2.36 0.38	2.03 0.36	2.01 0.36	1.90 0.36			
	3	40c	U SHGC	1.02 0.27	3.22 0.25	2.07 0.25	1.76 0.21	1.71 0.21	1.45 0.21	2.13 0.25	1.76 0.25	1.44 0.24	1.40 0.24	1.33 0.24			
Low-e, high-solar	2	17c	U SHGC	1.99 0.70	4.05 0.62	2.89 0.62	2.52 0.52	2.39 0.52	2.07 0.52	2.99 0.64	2.60 0.64	2.26 0.61	2.24 0.61	2.13 0.61			
	3	32c	U SHGC	1.42 0.62	3.54 0.55	2.36 0.55	2.02 0.46	1.97 0.46	1.70 0.46	2.47 0.56	2.10 0.56	1.77 0.54	1.73 0.54	1.66 0.54			
Heat-absorbing	1	1c	U SHGC	5.91 0.73	7.24 0.64	6.12 0.64	5.14 0.54	5.05 0.54	4.61 0.54	6.42 0.66	6.07 0.66	5.55 0.64	5.55 0.64	5.35 0.64			
	2	5c	U SHGC	2.73 0.62	4.62 0.55	3.42 0.55	3.00 0.46	2.87 0.46	2.53 0.46	3.61 0.56	3.22 0.56	2.86 0.54	2.84 0.54	2.72 0.54			
	3	29c	SHGC	1.76 0.34	3.80 0.31	2.60 0.31	2.25 0.26	2.19 0.26	1.91 0.26	2.76 0.31	2.39 0.31	2.05 0.30	2.01 0.30	1.93 0.30			
Reflective	1	11	USHGC	5.91 0.31	7.24 0.28	6.12 0.28	5.14 0.24	5.05 0.24	4.61 0.24	6.42 0.29	6.07 0.29	5.55 0.27	5.55 0.27	5.35 0.27			
	2	5p	U SHGC	2.73 0.29	4.62 0.27	3.42 0.27	3.00 0.22	2.87 0.22	2.53 0.22	3.61 0.27	3.22 0.27	2.86 0.26	2.84 0.26	2.72 0.26			
	3	29c	U SHGC	1.76 0.34	3.80 0.31	2.60 0.31	2.25 0.26	2.19 0.26	1.91 0.26	2.76 0.31	2.39 0.31	2.05 0.30	2.01 0.30	1.93 0.30			

No internal shading so IAC = 1

 $FFs_{west} = 0.56$

Table 13 Fenestration Solar Load Factors FF_s

Exposure	Single Family Detached	Multifamily
North	0.44	0.27
Northeast	0.21	0.43
East	0.31	0.56
Southeast	0.37	0.54
South	0.47	0.53
Southwest	0.58	0.61
West	0.56	0.65
Northwest	0.46	0.57
Horizontal	0.58	0.73

						P	IACENZ	A, Italy						WMO#:	160840
Lat:	44.92N	Long:	9.73E	Elev:	138	StdP:	99.68		Time Zone:	1.00 (EU	W)	Period:	89-10	WBAN:	99999
nnual He	ating and H	umidification	on Design C	conditions											
2-144	11	DD.		Hum	idification DF	/MCDB and	HR		T 0	oldest mon	th WS/MCD	В	MCWS	/PCWD	ř
5500 500		Heating DB			9.6% 99%				0.4%			%	to 99.6	6% DB	
Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	
1	-6.2	-4.8	-11.6	1.4	3.1	-8.8	1.8	1.8	8.8	5.6	7.7	6.2	2.1	250	
nual Co	oling, Dehu	midificatio	n, and Enth	alpy Design	Conditions										
	Hottest			Cooling D	B/MCWB					Evaporation	WB/MCDE	3		MCWS	PCWD
lottest Month	Month	0.4	1%	-	%	29	6	0	.4%	1	%	2	2%	to 0.4	% DB
Nonan	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)
8	11.9	33.1	22.7	31.9	22.4	30.3	21.8	24.6	30.2	23.7	29.2	22.9	28.3	2.4	90

Based on ASHRAE Standard 55 typical practices are the following:

☑For cooling: 24°C db and a maximum of 50 to 65% rh.

☑For heating: 20°C db and 30% rh

$$\Delta\,t_{cooling} = 31.9\,-24 = 7.9\,^{\circ}C$$

$$\Delta t_{heating} = 20 - (-4.8) = 24.8 \,^{\circ}C$$

West (fixed)

 $\mathsf{CF}_{\mathsf{window}_{\mathsf{west_Irradiation}}} = \mathsf{PXI} \times \mathsf{SHGC} \times \mathsf{IAC} \times \mathsf{FF}_{\mathsf{S}} = 747 \times 0.54 \times 1 \times 0.56 = 225.9 \times 10^{-2} \times 10^{$

$$CF_{windwo_{west}} = U(\Delta t - 0.46 DR) + PXI \times SHGC \times IAC \times FF_S$$

= 2.84(7.9 - 0.46 × 11.9) + 225.9 = 6.9 + 225.9 = 232.8

$$Q_{\text{window}_{\text{west}}} = CF_{\text{window}_{\text{west}}} \times A_{\text{window}_{\text{west}}} = 232.8 \times 14.4 = 3352.32 \text{ W}$$

$$\begin{split} HF_{window_{west}} &= U_{window_{west}} \times \Delta T_{heating} = 2.84 \times 24.8 = 70.4 \frac{W}{m2} \\ Q_{window_{west}} &= HF_{window_{west}} \times A_{window_{west}} = 70.4 \times 14.4 = 1014.2 \ W \end{split}$$

South (fixed)

$$\begin{split} & CF_{windwo_{west}} = U(\Delta t - 0.46 \ DR) + PXI \times SHGC \times IAC \times FF_S \\ & = \ 2.84(7.9 - 0.46 \times 11.9) + 662 \times 0.54 \times 1 \times 0.47 = 6.9 + 168 = 174.9 \end{split}$$

$$Q_{window_{west}} = CF_{window_{west}} \times A_{window_{west}} = 174.9 \times 3.6 = 629.7 \text{ W}$$

$$HF_{window_{west}} = U_{window_{west}} \times \Delta T_{heating} = 2.84 \times 24.8 = 70.4 \frac{W}{m^2}$$

 $Q_{window_{west}} = HF_{window_{west}} \times A_{window_{west}} = 70.4 \times 3.6 = 253.44 W$

				Frame										
							Operable					Fixed		
Glazing Type	Glazing Layers	IDb	Property ^{c,d}	Center of Glazing	Aluminum	Aluminum with Thermal Break	Reinforced Vinyl/Aluminum Clad Wood	Wood/Vinyl	Insulated Fiberglass/Vinyl	Aluminum	Aluminum with Thermal Break	Reinforced Vinyl/Aluminum Clad Wood	Wood/Vinyl	Insulated Fiberglass/Vinyl
Clear	1	1a	U	5.91	7.24	6.12	5.14	5.05	4.61	6.42	6.07	5.55	5.55	5.35
	2	5a	SHGC U SHGC	0.86 2.73 0.76	0.75 4.62 0.67	0.75 3.42 0.67	0.64 3.00 0.57	0.64 2.87 0.57	0.64 5.83 0.57	0.78 3.61 0.69	0.78 3.22 0.69	0.75 2.86 0.67	0.75 2.84 0.67	0.75 2.72 0.67
	3	29a	USHGC	1.76 0.68	3.80 0.60	2.60 0.60	2.25 0.51	2.19 0.51	1.91 0.51	2.76 0.62	2.39 0.62	2.05 0.60	2.01 0.60	1.93 0.60
Low-e, low-solar	2	25a	U SHGC	1.70 0.41	3.83 0.37	2.68 0.37	2.33 0.31	2.21 0.31	1.89	2.75 0.38	2.36 0.38	2.03 0.36	2.01 0.36	1.90 0.36
	3	40c	USHGC	1.02 0.27	3.22 0.25	2.07 0.25	1.76 0.21	1.71 0.21	1.45 0.21	2.13 0.25	1.76 0.25	1.44 0.24	1.40 0.24	1.33 0.24
Low-e, high-solar	2	17c	U SHGC	1.99 0.70	4.05 0.62	2.89 0.62	2.52 0.52	2.39 0.52	2.07 0.52	2.99 0.64	2.60 0.64	2.26 0.61	2.24 0.61	2.13 0.61
	3	32c	USHGC	1.42 0.62	3.54 0.55	2.36 0.55	2.02 0.46	1.97 0.46	1.70 0.46	2.47 0.56	2.10 0.56	1.77 0.54	1.73 0.54	1.66 0.54
Heat-absorbing	1	1c	U SHGC	5.91 0.73	7.24 0.64	6.12 0.64	5.14 0.54	5.05 0.54	4.61 0.54	6.42 0.66	6.07 0.66	5.55 0.64	5.55 0.64	5.35 0.64
	2	5c	U SHGC	2.73 0.62	4.62 0.55	3.42 0.55	3.00 0.46	2.87 0.46	2.53 0.46	3.61 0.56	3.22 0.56	2.86 0.54	2.84 0.54	2.72 0.54
	3	29c	U SHGC	1.76 0.34	3.80 0.31	2.60 0.31	2.25 0.26	2.19 0.26	1.91 0.26	2.76 0.31	2.39 0.31	2.05 0.30	2.01 0.30	1.93 0.30
Reflective	1	11	USHGC	5.91 0.31	7.24 0.28	6.12 0.28	5.14 0.24	5.05 0.24	4.61 0.24	6.42 0.29	6.07 0.29	5.55 0.27	5.55 0.27	5.35 0.27
	2	5p	USHGC	2.73 0.29	4.62 0.27	3.42 0.27	3.00 0.22	2.87 0.22	2.53 0.22	3.61 0.27	3.22 0.27	2.86 0.26	2.84 0.26	2.72 0.26
	3	29c	U SHGC	1.76 0.34	3.80 0.31	2.60 0.31	2.25 0.26	2.19 0.26	1.91 0.26	2.76 0.31	2.39 0.31	2.05 0.30	2.01 0.30	1.93 0.30

South(Operable)

$$CF_{windwo_{west}} = U(\Delta t - 0.46 DR) + PXI \times SHGC \times IAC \times FF_S$$

= $2.87(7.9 - 0.46 \times 11.9) + 662 \times 0.46 \times 1 \times 0.47 = 7 + 143.12 = 150.12$

$$2.87 (7.9 \hbox{-} 0.46 \times 11.9) + 662 \times 0.46 \times 1 \times 0.47 = 6.9 + 225.9$$

$$Q_{window_{west}} = CF_{window_{west}} \times A_{window_{west}} = 150.12 \times 3.6 = 540.43 \text{ W}$$

$$\begin{split} HF_{window_{west}} &= U_{window_{west}} \times \Delta T_{heating} = 2.87 \times 24.8 = 71.18 \frac{W}{m^2} \\ Q_{window_{west}} &= HF_{window_{west}} \times A_{window_{west}} = 71.18 \times 3.6 = 256.23 \ W \end{split}$$

Aluminum frame

West (fixed)

 $CF_{window_{west_Irradiation}} = PXI \times SHGC \times IAC \times FF_S = 747 \times 0.54 \times 1 \times 0.56 = 225.9$

$$CF_{windwo_{west}} = U(\Delta t - 0.46 DR) + PXI \times SHGC \times IAC \times FF_S$$

= $3.61(7.9 - 0.46 \times 11.9) + 747 \times 0.56 \times 1 \times 0.56 = 8.7 + 234.3 = 243$

$$Q \equiv_{window_{west}} = CF_{window_{west}} \times A_{window_{west}} = 232.8 \times 14.4 = 3500.2W$$

$$HF_{window_{west}} = U_{window_{west}} \times \Delta T_{heating} = 3.61 \times 24.8 = 89.53 \frac{W}{m2}$$

$$Q_{window_{west}} = HF_{window_{west}} \times A_{window_{west}} = 89.53 \times 14.4 = 1289.2 W$$

South (fixed)

$$CF_{windwo_{west}} = U(\Delta t - 0.46 DR) + PXI \times SHGC \times IAC \times FF_S$$

= $3.61(7.9 - 0.46 \times 11.9) + 662 \times 0.56 \times 1 \times 0.47 = 8.7 + 174.23 = 182.93$

$$Q_{window_{west}} = CF_{window_{west}} \times A_{window_{west}} = 182.93 \times 3.6 = 658.55 \text{ W}$$

$$\begin{split} HF_{window_{west}} &= U_{window_{west}} \times \Delta T_{heating} = 2.84 \times 24.8 = 70.4 \frac{W}{m2} \\ Q_{window_{west}} &= HF_{window_{west}} \times A_{window_{west}} = 70.4 \times 3.6 = 253.44 \ W \end{split}$$

South(Operable)

$$\begin{split} & CF_{windwo_{west}} = U(\Delta t - 0.46 \ DR) + PXI \times SHGC \times IAC \times FF_S \\ & = 4.62(7.9 - 0.46 \times 11.9) + 662 \times 0.55 \times 1 \times 0.47 = 11.18 + 171.12 = 182.31 \end{split}$$

$$Q_{window_{west}} = CF_{window_{west}} \times A_{window_{west}} = 182.31 \times 3.6 = 656.3 \text{ W}$$

$$HF_{window_{west}} = U_{window_{west}} \times \Delta T_{heating} = 2.87 \times 24.8 = 71.18 \frac{W}{m^2}$$

$$Q_{window_{west}} = HF_{window_{west}} \times A_{window_{west}} = 71.18 \times 3.6 = 256.23 W$$