РЕШЕНИЕ НА КУРСОВАТА ЗАДАЧА:

Направете 70% случайна извадка от файла RED_Wine_4.sav. Запишете данните в нов файл с име «ФNo_фамилия»:

- Сваляне на файла *RED_Wine_4.sav* и отварянето му в SPSS.
 File -> Open -> Data...
- 2. Генериране на случайна извадка <u>70% от генералната съвкупност</u> и записването й в нов Dataset с име *Глухова.sav*.

Data -> Select Cases...

- /5 т./ Направете описателна статистика променливата Алкохол на виното. Запишете мерките за централна тенденция и мерките за разсейване. Тълкувайте значението на коефициентите от гледна точка на нормалност на разпределението.
 - 1) Тъй като са дадени в негрупиран ред ще се наложи да ги подредим по променливата алкохол във възходящ ред или както е наименованието му в статистиката вариационен ред.

Data -> Sort Cases...

2) Записвам мерките на алкохола:

Мерки на централна тенденция:

Mean — извадково средно(средния процент на алкохол във виното) -> \bar{X} = 10,4696%

Median – медиана -> M_e = 10,4600

Mode – мода -> $M_0 = 9,68$ (не е многомодна)

Мерки на разсейване:

Std. deviation – стандартно отклонение -> s = 1,03527

Variance – извадкова дисперсия -> $s^2 = 1,072$

Range – размах -> R = 6,52

Minimum – най-малката стойност -> $X_{min} = 7,07$

Maximum – най-голямата стойност -> $X_{max} = 13,59$

Percentiles – квантили -> $Q_1 = 9,7650$; $M_e = Q_2 = 10,4600$; $Q_3 = 11,2200$

Коефициент на асиметрия: $S_k = -0.40$

Има малко повече ниски стойности на алкохола и леко струпване на данни в лявата част, но може да се каже че *разпределението е нормално*.

Коефициент на ексцес: $K_u = -0.029$

Тази отрицателна стойност не е много далеч от о-лата, така че може да се счете че **разпределението е симетрично**.

Нормалност:

$$\frac{|S_k|}{SE(S_k)} $u = \frac{|K_u|}{SE(K_u)}$$$

При ниво на значимост α = 0.05, p = 1.96 **разпределението се счита за нормално**.

II. /5 т./ Начертайте хистограма, бокс-плот и Q-Q plot на изследваната променлива. Тълкувайте графиките от гледна точка на нормалност на разпределението.

Хистограма:

Кривата почти изпълва графиката на хистограмата, което е признак за нормалност.

Бокс-плот:

Забелязва се че извадката е симетрична.

Q-Q plot:

Данните са близко до кривата това значи че разпределението е нормално.

III. /5 т./ Направете тестове за нормалност и установете вида на разпределението на променливата Алкохол на виното.

Analyze -> Descriptive Statistics -> Explore... Plots... -> Normality plots with tests

Case Processing Summary

Cases

	Va	Valid		sing	Total		
	N	Percent	N	Percent	N	Percent	
Алкохол в проценти	849	100.0%	0	0.0%	849	100.0%	

От тази таблица можем да получим информация за това колко от данните ще бъдат анализирани и колко няма, поради липсващи стойности.

Валидни – 100% Липсващи – 0%

Descriptives

			Statistic	Std. Error
Алкохол в проценти	Mean	10.4696	.03553	
	95% Confidence Interval	Lower Bound	10.3998	
	for Mean	Upper Bound	10.5393	
	5% Trimmed Mean	10.4707		
	Median		10.4600	
	Variance	1.072		
	Std. Deviation	1.03527		
	Minimum	7.07		
	Maximum	13.59		
	Range	6.52		
	Interquartile Range		1.46	
	Skewness		040	.084
	Kurtosis		029	.168

Описателната статистика съдържа мерките и коефициентите на искана статистика.

Tests of Normality

	Kolm	ogorov-Smir	nov	Shapiro-Wilk			
	Statistic	df	Sig.	Statistic df Sig.			
Алкохол в проценти	.018	849	.200	.999	849	.947	

^{*.} This is a lower bound of the true significance.

Разпределението на променливата е близко до нормалното, защото $p > \alpha$ (sig > 0.05) => нямаме причина да отхвърлим нулевата хипотеза - H_{\circ} . **Използвам теста за нормалност на Шапиро-Уилк, защото нямам над 2000 наблюдения.**

- IV. /5 т./ Проверете хипотезата, че средната стойност на алкохолното съдържание на виното е 11 срещу алтернативната двустранна хипотеза.
 - 1) Проверявам дали средната стойност на алкохолното съдържание на виното е 11 по следния начин:

Analyze -> Compare Means -> One-Sample T Test... -> Избирам съответната променлива(алкохол) и стойността 11.

Генерира ми се следното съдържание във view-a:

a. Lilliefors Significance Correction

T-Test

[DataSet1] C:\Users\User\Desktop\Статистика_Даниела_1901321068\1901321068_Глухова.sav

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
Алкохол в проценти	849	10.4696	1.03527	.03553

One-Sample Test

Test Value = 11

					Mean	95% Confidence Interval of the Difference	
		t	df	Sig. (2-tailed)	Difference	Lower	Upper
A	Алкохол в проценти	-14.928	848	.000	53041	6002	4607

От първата таблица разбирам че извадковото средно е 10,4696. А от втората мога да тълкувам какъв е извода от теста:

Sig. =
$$o.ooo$$
; $\alpha = o.o5$
Sig. < α ;

тоест отхвърлям нулевата хипотеза $H_o \to \mu = 11$ и приемам алтернативната, която $e => H_1 \to \mu \neq 11$.

V. /5 т./ Установете има ли статистическа значимо различие в алкохолното съдържание на виното при оценка за качеството под и над 8.

Analyze -> Compare Means -> Independent-Samples T Test... (за 2 независими променливи)
Избирам да тествам променливата алкохол, като я групирам по оценка на качеството под и над 8(стойността на точката на деление):

Описателна статистика:

T-Test

Group Statistics

	качество	N	Mean	Std. Deviation	Std. Error Mean
Алкохол в проценти	>= 8.00	46	12.0759	.61592	.09081
	< 8.00	803	10.3776	.97750	.03450

Първата група се определя от всички резултати, които са **по-големи или равни на точката на деление** (≥8). Втората група се определя от всички резултати, които са **по-ниски от точката на деление** (< 8).

Статистика за изводи:

Independent S	amples	Test
---------------	--------	------

		Levene's Test Variar				t-test for Equality	of Means			
							Mean	Std. Error	95% Confidence Differ	ence
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Алкохол в проценти	Equal variances assumed	13.490	.000	11.648	847	.000	1.69830	.14580	1.41212	1.98447
	Equal variances not assumed			17.482	58.854	.000	1.69830	.09714	1.50390	1.89269

1) Тест на Levene - проверявам за равенство между дисперсии:

$$H_0 -> Sig_1^2 = sig_2^2$$
 или $H_1 -> Sig_1^2 \neq sig_2^2$

 $Sig(p) = 0.000 < 0,05 => отхвърлям <math>H_o$ (нулевата хипотеза) и приемам алтернативната $H_1 -> Sig_1^2 \neq sig_2^2 =>$ дисперсията на едната извадка е различна от дисперсията на другата.

Следователно попадам във втория ред (за неравенство между дисперсии).

2) Проверка за равни средни:

$$H_0 \rightarrow \mu_1 = \mu_2$$
 или $H_1 \rightarrow \mu_1 \neq \mu_2$

 $Sig(2 ext{-}tailed) = 0.000 < 0.05 => приемам алтернативната хипотеза <math>H_1 -> \mu_1 \neq \mu_2$. =>има различие в алкохолното съдържание когато стойностите на качеството са \geq или < от 8. Алкохола в проценти за първата група (с качество \geq 8) е значително по-голям (Mean₁>Mean₂) от алкохола за втора група (с качество < 8). Качеството влияе на алкохолния процент. Използвах effect size calculator за да изчисля колко е ефекта на разликата (Chen's d=2.07 > 0.80 => огромна разлика).

VI. /5 т./ Изследвайте със статистически анализи наличието на възможни зависимости на алкохолното съдържание на виното от останалите променливи. Запишете всички корелационни коефициенти и тълкувайте техните знаци, стойности и тяхната значимост. Определете факторите, от които алкохолното съдържание се влияе най-силно.

Изчисляване на корелационния коефициент между данните(корелационна матрица):

Analyze -> Correlate -> Bivariate...

that year continue > Bivariate	
Bivariate Correlations	X
Variables: Phant Phant	Options Style Bootstrap
Test of Significance © <u>T</u> wo-tailed © One-tailed	
▼ Elag significant correlations	
OK Paste Reset Cancel Help	

Тъй като данните ми са от тип scale, ще бъдат пресмятани по метода на Pearson. Избирам също двустранен тест за значимост и да има означение за значимостта(* α = 0,05; ** α = 0,01). Извадков корелационен коефициент се означава с "r".

1) Анализ за значимост:

- > знака на r < o -> обратно пропорционална зависимост (ръста на X води до намаляване на Y)
- > знака на r > o -> пропорционална зависимост (ръста на X води до ръст на Y)
- |r| < 0.3 няма корелационна зависимост
- ightharpoonup 0.3 < |r| < 0.5 ... слаба корелационна зависимост
- ightharpoonup 0.5 < |r| < 0.7 ... умерена корелационна зависимост
- > 0.7 < | r | силна корелационна зависимост
- ightharpoonup sig < 0,05 > корелационния коефициент е значим при ниво на доверие α = 0,05
- \rightarrow sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01
- > sig ≥ 0,05 > корелационния коефициент е незначим при ниво на доверие α = 0,05

Корелационна матрица (12х12):

				Correla	tions								
		качество	pН	Алкохол в проценти	плътност	фиксирана киселинност	летлива киселинност	лимонена киселина	остатъчна захар	хлориди	свободен серен диоксид	общ серен диоксид	сулфати
качество	Pearson Correlation	1	.064	.729**	343**	.028	367**	.174**	007	227**	057	202**	.200
	Sig. (2-tailed)		.061	.000	.000	.424	.000	.000	.839	.000	.098	.000	.000
	N	849	849	849	849	849	849	849	849	849	849	849	849
pH	Pearson Correlation	.064	1	.221	324	684	.244	560 ^{**}	091**	278	.086	054	216
	Sig. (2-tailed)	.061		.000	.000	.000	.000	.000	.008	.000	.012	.114	.000
	N	849	849	849	849	849	849	849	849	849	849	849	849
Алкохол в проценти	Pearson Correlation	.729**	.221**	1	509	089	178**	.046	036	264	054	204	.073
	Sig. (2-tailed)	.000	.000		.000	.010	.000	.176	.300	.000	.116	.000	.034
	N	849	849	849	849	849	849	849	849	849	849	849	849
плътност	Pearson Correlation	343**	324**	509**	1	.655**	.023	.367**	.374**	.238**	.000	.093**	.157**
	Sig. (2-tailed)	.000	.000	.000		.000	.500	.000	.000	.000	.990	.007	.000
	N	849	849	849	849	849	849	849	849	849	849	849	849
фиксирана киселинност	Pearson Correlation	.028	684**	089**	.655**	1	270**	.680**	.121**	.108**	160**	116	.184
	Sig. (2-tailed)	.424	.000	.010	.000		.000	.000	.000	.002	.000	.001	.000
	N	849	849	849	849	849	849	849	849	849	849	849	849
летлива киселинност	Pearson Correlation	367**	.244**	178**	.023	270**	1	583**	.012	.068	.019	.099	268
	Sig. (2-tailed)	.000	.000	.000	.500	.000		.000	.721	.048	.584	.004	.000
	N	849	849	849	849	849	849	849	849	849	849	849	849
лимонена киселина	Pearson Correlation	.174**	560**	.046	.367**	.680	583	1	.133	.211**	069	.015	.316
	Sig. (2-tailed)	.000	.000	.176	.000	.000	.000		.000	.000	.045	.656	.000
	N	849	849	849	849	849	849	849	849	849	849	849	849
остатъчна захар	Pearson Correlation	007	091**	036	.374**	.121**	.012	.133***	1	.106**	.248**	.207**	.023
	Sig. (2-tailed)	.839	.008	.300	.000	.000	.721	.000		.002	.000	.000	.509
	N	849	849	849	849	849	849	849	849	849	849	849	849
хлориди	Pearson Correlation	227**	278**	264***	.238**	.108**	.068	.211***	.106**	1	.027	.046	.374
	Sig. (2-tailed)	.000	.000	.000	.000	.002	.048	.000	.002		.436	.181	.000
	N	849	849	849	849	849	849	849	849	849	849	849	849
свободен серен диоксид	Pearson Correlation	057	.086"	054	.000	160**	.019	069*	.248**	.027	1	.663**	.039
	Sig. (2-tailed)	.098	.012	.116	.990	.000	.584	.045	.000	.436		.000	.262
	N	849	849	849	849	849	849	849	849	849	849	849	849
общ серен диоксид	Pearson Correlation	202**	054	204	.093	116**	.099**	.015	.207**	.046	.663**	1	.037
	Sig. (2-tailed)	.000	.114	.000	.007	.001	.004	.656	.000	.181	.000		.287
	N	849	849	849	849	849	849	849	849	849	849	849	849
сулфати	Pearson Correlation	.200**	216"	.073	.157**	.184	268	.316**	.023	.374**	.039	.037	
	Sig. (2-tailed)	.000	.000	.034	.000	.000	.000	.000	.509	.000	.262	.287	-
	N (2-tailed)	849	849	849	849	849	849	849	849	849	849	849	849

^{**.} Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

2) Корелационни знаци, стойности и значимост:

Корелация между pH и качество -> r = 0.064; sig = 0.061

- ❖ знака на r > o -> пропорционална зависимост (ръста на рН води до ръст на качество)
- **⋄** |r| < 0.3 − няма **корелационна зависимост**
- sig ≥ 0,05 > корелационния коефициент е незначим при ниво на доверие α = 0,05

Корелация между алкохол в проценти и качество -> $r = 0,729**(\alpha = 0,01)$; sig = 0.000

- ❖ знака на r > o -> пропорционална зависимост (ръста на алкохол в проценти води до ръст на качество)
- ❖ 0.7 < | r | силна корелационна зависимост</p>
- 💠 sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между алкохол в проценти и pH -> $r = 0,221**(\alpha = 0,01)$; sig = 0.000

- **знака на r > o -> пропорционална зависимост (ръста на** алкохол в проценти **води до ръст на** качество)
- 💠 sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между плътност и качество -> $r = -0.343**(\alpha = 0.01);$ sig = 0.000

- ❖ знака на r < o -> обратно пропорционална зависимост (ръста на плътност води до намаляване на качество)
- ❖ 0.3 < | r | < 0.5 ... слаба корелационна зависимост</p>
- ❖ sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между плътност и pH -> $r = -0.324** (\alpha = 0.01); sig = 0.000$

- ❖ знака на r < o -> обратно пропорционална зависимост (ръста на плътност води до намаляване на рН)
- ❖ 0.3 < | r | < 0.5 ... слаба корелационна зависимост</p>
- \circ sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между плътност и алкохол в проценти -> $r = -0.509**(\alpha = 0.01);$ sig = 0.000

- ❖ знака на r < o -> обратно пропорционална зависимост (ръста на плътност води до намаляване на алкохол в проценти)
- **❖** 0.5 < | *r* | < 0.7 ... умерена корелационна зависимост
- \circ sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между фиксирана киселинност и качество -> r = 0,028; sig = 0,424

- ❖ знака на r > o -> пропорционална зависимост (ръста на фиксирана киселинност води до ръст на качество)
- |r| < 0.3 няма **корелационна зависимост**
- **⋄** sig ≥ 0,05 > корелационния коефициент е незначим при ниво на доверие α = 0,05

Корелация между фиксирана киселинност и pH -> $r = -0.684** (\alpha = 0.01)$; sig = 0.000

- **знака на r < o -> обратно пропорционална зависимост (ръста на** фиксирана киселинност **води до намаляване на** pH)
- ❖ 0.5 < | r | < 0.7 ... умерена корелационна зависимост</p>
- ❖ sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между фиксирана киселинност и алкохол в проценти -> $r = -0.089** (\alpha = 0.01)$; sig = 0.10

- **знака на r < o -> обратно пропорционална зависимост (ръста на** фиксирана киселинност **води до намаляване на** алкохол в проценти**)**
- ❖ | r | < 0.3 няма корелационна зависимост
 </p>
- **⋄** sig ≥ o, o5 -> корелационния коефициент е незначим при ниво на доверие α = 0,05

Корелация между фиксирана киселинност и плътност -> $r = 0,665** (\alpha = 0,01)$); sig = 0,000

❖ знака на r > o -> пропорционална зависимост (ръста на фиксирана киселинност води до ръст на плътност)

- **❖** 0.5 < | *r* | < 0.7 ... умерена корелационна зависимост
- \circ sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между летлива киселинност и качество -> $r = -0.367** (\alpha = 0.01)$; sig = 0.000

- **знака на r < o -> обратно пропорционална зависимост (ръста на** летлива киселинност **води до намаляване на** качество)
- **❖** 0.3 < | *r* | < 0.5 ... слаба корелационна зависимост
- ❖ sig < o,o1 > корелационния коефициент е значим при ниво на доверие α = o,o1

Корелация между летлива киселинност и pH -> $r = 0,244**(\alpha = 0,01)$); sig = 0,000

- ❖ знака на r > o -> пропорционална зависимост (ръста на летлива киселинност води до ръст на рН)
- |r| < 0.3 − няма корелационна зависимост

Корелация между летлива киселинност и алкохол в проценти -> $r = -0,178**(\alpha = 0,01)$); sig = 0,000

- **знака на r < o -> обратно пропорционална зависимост (ръста на** летлива киселинност **води до намаляване на** алкохол в проценти)
- **⋄** |r| < 0.3 − няма **корелационна зависимост**

Корелация между летлива киселинност и плътност -> r = 0,023); sig = 0,500

- ❖ знака на r > o -> пропорционална зависимост (ръста на летлива киселинност води до ръст на плътност)
- **⋄** $sig ≥ o,o_5 -> корелационния коефициент е незначим при ниво на доверие <math>α = o,o_5$

Корелация между летлива киселинност и фиксирана киселинност -> $r = -0,270**(\alpha = 0,01); sig = 0,000$

- **знака на r < o -> обратно пропорционална зависимост (ръста на** летлива киселинност **води до намаляване на** фиксирана киселинност)
- ❖ |r| < 0.3 няма корелационна зависимост
- ❖ sig < o,o1 > корелационния коефициент е значим при ниво на доверие α = o,o1

Корелация между лимонена киселина и качество -> $r = o_1 74** (\alpha = o_1 o_1); sig = o_1 o_0 o_1$

- ❖ знака на r > o -> пропорционална зависимост (ръста на лимонена киселина води до ръст на качество)
- \circ sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между лимонена киселина и pH -> $r = -0.560**(\alpha = 0.01); sig = 0.000$

- знака на r < o -> обратно пропорционална зависимост (ръста на лимонена киселина води до намаляване на pH)
- ❖ 0.5 < | r | < 0.7 ... умерена корелационна зависимост</p>

Корелация между лимонена киселина и алкохол в проценти -> r = 0,046); sig = 0,176

- **знака на r > o -> пропорционална зависимост (ръста на** лимонена киселина **води до ръст на** алкохол в проценти)
- **⋄** |r| < 0.3 − няма **корелационна зависимост**
- **⋄** sig ≥ 0,05 > корелационния коефициент е незначим при ниво на доверие α = 0,05

Корелация между лимонена киселина и плътност -> $r = 0.367** (\alpha = 0.01)$; sig = 0.000

- **знака на r > o -> пропорционална зависимост (ръста на** лимонена киселина **води до ръст на** плътност)
- ❖ 0.3 < | r | < 0.5 ... слаба корелационна зависимост</p>
- ❖ sig < o,o1 > корелационния коефициент е значим при ниво на доверие α = o,o1

Корелация между лимонена киселина и фиксирана киселинност -> $r = 0.680**(\alpha = 0.01)$; sig = 0.000

- ❖ знака на r > o -> пропорционална зависимост (ръста на лимонена киселина води до ръст на фиксирана киселинност)
- **❖** 0.5 < | *r* | < 0.7 ... умерена корелационна зависимост
- ❖ sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между лимонена киселина и летлива киселинност -> $r = -0.583** (\alpha = 0.01)$; sig = 0.000

- **знака на r < o -> обратно пропорционална зависимост (ръста на** лимонена киселина **води до намаляване на** летлива киселинност)
- ❖ 0.5 < | r | < 0.7 ... умерена корелационна зависимост</p>
- ❖ sig < o,o1 > корелационния коефициент е значим при ниво на доверие α = o,o1

Корелация между остатъчна захар и качество -> $r = -o,oo_7$); sig = o,839

- **знака на r < o -> обратно пропорционална зависимост (ръста на** остатъчна захар **води до намаляване на** качество)
- **❖** |r| < 0.3 − няма **корелационна зависимост**
- **❖** sig ≥ 0,05 > корелационния коефициент е незначим при ниво на доверие α = 0,05

Корелация между остатъчна захар и pH -> $r = -0.091**(\alpha = 0.01)$; sig = 0.008

- ❖ знака на r < o -> обратно пропорционална зависимост (ръста на остатъчна захар води до намаляване на рН)
- ❖ sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между остатъчна захар и алкохол в проценти -> r = -0.036; sig = 0.300

- **знака на r < o -> обратно пропорционална зависимост (ръста на** остатъчна захар **води до намаляване на** алкохол в проценти)
- **❖** |r| < 0.3 − няма **корелационна зависимост**
- **⋄** sig ≥ 0,05 > корелационния коефициент е незначим при ниво на доверие α = 0,05

Корелация между остатъчна захар и плътност -> $r = 0,374** (\alpha = 0,01)$; sig = 0,000

- **знака на r > o -> пропорционална зависимост (ръста на** остатъчна захар **води до ръст на** плътност)
- ❖ 0.3 < |r| < 0.5 ... слаба корелационна зависимост
- ❖ sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между остатъчна захар и фиксирана киселинност -> $r = 0,121**(\alpha = 0,01)$; sig = 0,000

- **знака на r > o -> пропорционална зависимост (ръста на** остатъчна захар **води до ръст на** фиксирана киселинност)
- **❖** |r| < 0.3 − няма **корелационна зависимост**
- ❖ sig < o,o1 > корелационния коефициент е значим при ниво на доверие α = o,o1

Корелация между остатъчна захар и летлива киселинност -> r = 0,012; sig = 0,721

- ❖ знака на r > o -> пропорционална зависимост (ръста на остатъчна захар води до ръст на летлива киселинност)
- **⋄** |r| < 0.3 − няма **корелационна зависимост**
- ❖ sig ≥ 0,05 > корелационния коефициент е незначим при ниво на доверие α = 0,05

Корелация между остатъчна захар и лимонена киселина -> $r = 0,133**(\alpha = 0,01)$; sig = 0,000

- **знака на r > o -> пропорционална зависимост (ръста на** остатъчна захар **води до ръст на** лимонена киселина)
- ❖ | r | < 0.3 няма корелационна зависимост</p>
- 💠 sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между хлориди и качество -> $r = -0,227**(\alpha = 0,01)$; sig = 0,000

- ❖ знака на r < o -> обратно пропорционална зависимост (ръста на хлориди води до намаляване на качество)
- ❖ | r | < 0.3 няма корелационна зависимост</p>
- ❖ sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между хлориди и pH -> $r = -0.278**(\alpha = 0.01)$; sig = 0.000

- ❖ знака на r < o -> обратно пропорционална зависимост (ръста на хлориди води до намаляване на рН)
- ❖ sig < o,o1 > корелационния коефициент е значим при ниво на доверие α = o,o1

Корелация между хлориди и алкохол в проценти -> $r = -0.264**(\alpha = 0.01)$; sig = 0.000

- ❖ знака на r < o -> обратно пропорционална зависимост (ръста на хлориди води до намаляване на алкохол в проценти)
- |r| < 0.3 няма **корелационна зависимост**
- \circ sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между хлориди и плътност -> $r = 0.238** (\alpha = 0.01)$; sig = 0.000

- ❖ знака на r > o -> пропорционална зависимост (ръста на хлориди води до ръст на плътност)
- **⋄** |r| < 0.3 − няма **корелационна зависимост**
- \circ sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между хлориди и фиксирана киселинност -> $r = 0,108** (\alpha = 0,01)$; sig = 0,002

- *** знака на r > o -> пропорционална зависимост (ръста на** хлориди **води до ръст на** фиксирана киселинност)
- ❖ |r| < 0.3 няма корелационна зависимост</p>
- \circ sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между хлориди и летлива киселинност -> $r = 0,068* (\alpha = 0,05)$; sig = 0,048

- ❖ знака на r > o -> пропорционална зависимост (ръста на хлориди води до ръст на летлива киселинност)
- ❖ | r | < 0.3 няма корелационна зависимост</p>
- ❖ sig ≥ 0,05 > корелационния коефициент е незначим при ниво на доверие α = 0,05

Корелация между хлориди и лимонена киселина -> $r = 0,211**(\alpha = 0,01)$; sig = 0,000

- ❖ знака на r > o -> пропорционална зависимост (ръста на хлориди води до ръст на лимонена киселина)
- |r| < 0.3 няма **корелационна зависимост**
- ❖ $sig < o_0oline > sig ≤ o_0oline >$

Корелация между хлориди и остатъчна захар -> $r = 0,106** (\alpha = 0,01)$; sig = 0,002

- *** знака на r > o -> пропорционална зависимост (ръста на** хлориди **води до ръст на** остатъчна захар)
- |r| < 0.3 няма **корелационна зависимост**
- 💠 sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между свободен сериен диоксид и качество -> r = -0.057; sig = 0.098

- **знака на r < o -> обратно пропорционална зависимост (ръста на** свободен сериен диоксид **води до намаляване на** качество)
- ❖ |r| < 0.3 няма корелационна зависимост
- ❖ sig ≥ 0,05 > корелационния коефициент е незначим при ниво на доверие α = 0,05

Корелация между свободен сериен диоксид и pH -> $r = o_0 \cdot o_0 \cdot o_1 \cdot o_2 \cdot o_3 \cdot$

- **знака на r > o -> пропорционална зависимост (ръста на** свободен сериен диоксид **води до ръст на** р**H)**
- ❖ sig < 0.05 > корелационния коефициент е значим при ниво на доверие α = 0.05

Корелация между свободен сериен диоксид и алкохол в проценти -> r = -0.054; sig = 0.116

- **знака на r < o -> обратно пропорционална зависимост (ръста на** свободен сериен диоксид **води до намаляване на** алкохол в проценти**)**
- ❖ sig ≥ 0,05 > корелационния коефициент е незначим при ниво на доверие α = 0,05

Корелация между свободен сериен диоксид и плътност -> r = 0,000; sig = 0,990

- ❖ r = o -> НЯМА КОРЕЛАЦИЯ
- ❖ sig ≥ 0,05 > корелационния коефициент е незначим при ниво на доверие α = 0,05
- **❖** |r| < 0.3 − няма **корелационна зависимост**

Корелация между свободен сериен диоксид и фиксирана киселинност -> r = - **0,160****($\alpha = 0,01$); **sig = 0,000**

- **знака на r < o -> обратно пропорционална зависимост (ръста на** свободен сериен диоксид **води до намаляване на** фиксирана киселинност)
- **❖** |r| < 0.3 − няма **корелационна зависимост**
- \circ sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между свободен сериен диоксид и летлива киселинност -> r = 0,019; sig = 0,584

- **знака на r > o -> пропорционална зависимост (ръста на** свободен сериен диоксид **води до ръст на** летлива киселинност)
- **❖** |r| < 0.3 − няма **корелационна зависимост**
- **⋄** $sig ≥ o_1o_5 -> корелационния коефициент е незначим при ниво на доверие α = <math>o_1o_5$

Корелация между свободен сериен диоксид и лимонена киселина -> r = -0.069* ($\alpha = 0.05$); sig = 0.045

- **знака на r < o -> обратно пропорционална зависимост (ръста на** свободен сериен диоксид **води до намаляване на** лимонена киселина)
- |r| < 0.3 няма **корелационна зависимост**
- sig < 0.05 > корелационния коефициент е значим при ниво на доверие $\alpha = 0.05$

Корелация между свободен сериен диоксид и остатъчна захар -> $r = 0,248** (\alpha = 0,01)$; sig = 0,000

- **знака на r > o -> пропорционална зависимост (ръста на** свободен сериен диоксид **води до ръст на** остатъчна захар)
- **⋄** |r| < 0.3 − няма **корелационна зависимост**
- ❖ sig < o,o1 > корелационния коефициент е значим при ниво на доверие α = o,o1

Корелация между свободен сериен диоксид и хлориди -> r = 0,027; sig = 0,436

- **знака на r > o -> пропорционална зависимост (ръста на** свободен сериен диоксид **води до ръст на** хлориди)
- **⋄** |r| < 0.3 − няма **корелационна зависимост**
- sig ≥ 0,05 > корелационния коефициент е незначим при ниво на доверие α = 0,05

Корелация между общ сериен диоксид и качество -> $r = -0,202**(\alpha = 0,01)$; sig = 0,000

- ❖ знака на r < o -> обратно пропорционална зависимост (ръста на общ сериен диоксид води до намаляване на качество)
- ❖ | r | < 0.3 няма корелационна зависимост
 </p>
- 💠 sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между общ сериен диоксид и pH -> r = -0.054; sig = 0.114

- ❖ знака на r < o -> обратно пропорционална зависимост (ръста на общ сериен диоксид води до намаляване на pH)
- ❖ sig ≥ 0,05 > корелационния коефициент е незначим при ниво на доверие α = 0,05

Корелация между общ сериен диоксид и алкохол в проценти -> $r = -0,204**(\alpha = 0,01)$; sig = 0,000

- ❖ знака на r < o -> обратно пропорционална зависимост (ръста на общ сериен диоксид води до намаляване на алкохол в проценти)
- ❖ sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между общ сериен диоксид и плътност -> $r = 0,093** (\alpha = 0,01)$; sig = 0,007

- ❖ знака на r > o -> пропорционална зависимост (ръста на общ сериен диоксид води до ръст на плътност)
- **⋄** |r| < 0.3 − няма **корелационна зависимост**
- ❖ sig < o,o1 > корелационния коефициент е значим при ниво на доверие α = o,o1

Корелация между общ сериен диоксид и фиксирана киселинност -> $r = -0,116**(\alpha = 0,01)$; sig = 0,001

- ❖ знака на r < o -> обратно пропорционална зависимост (ръста на общ сериен диоксид води до намаляване на фиксирана киселинност)
- ❖ | r | < 0.3 няма корелационна зависимост</p>
- \circ sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между общ сериен диоксид и летлива киселинност -> $r = 0,099**(\alpha = 0,01)$; sig = 0,004

- **знака на r > o -> пропорционална зависимост (ръста на** общ сериен диоксид **води до ръст на** летлива киселинност)
- ❖ | r | < 0.3 няма корелационна зависимост</p>
- \circ sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между общ сериен диоксид и лимонена киселина -> r = **0,015**; **sig = 0,656**

- ❖ знака на r > o -> пропорционална зависимост (ръста на общ сериен диоксид води до ръст на лимонена киселина)
- ❖ | r | < 0.3 няма корелационна зависимост</p>
- ❖ sig ≥ 0,05 > корелационния коефициент е незначим при ниво на доверие α = 0,05

Корелация между общ сериен диоксид и остатъчна захар -> $r = 0,207**(\alpha = 0,01)$; sig = 0,000

- ❖ знака на r > o -> пропорционална зависимост (ръста на общ сериен диоксид води до ръст на остатъчна захар)
- **⋄** |r| < 0.3 − няма **корелационна зависимост**
- ❖ sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между общ сериен диоксид и хлориди -> r = 0,046; sig = 0,181

- **❖** знака на r > o -> пропорционална зависимост (ръста на общ сериен диоксид води до ръст на хлориди)
- **⋄** |r| < 0.3 − няма **корелационна зависимост**
- **⋄** sig ≥ 0,05 > корелационния коефициент е незначим при ниво на доверие α = 0,05

Корелация между общ сериен диоксид и свободен сериен диоксид -> $r = 0,663**(\alpha = 0,01)$; sig = 0,000

- ❖ знака на r > o -> пропорционална зависимост (ръста на общ сериен диоксид води до ръст на свободен сериен диоксид)
- 0.5 < |r| < 0.7 ... умерена корелационна зависимост
- ❖ sig < o,o1 > корелационния коефициент е значим при ниво на доверие α = o,o1

Корелация между сулфати и качество -> $r = 0,200**(\alpha = 0,01)$; sig = 0,000

- ❖ знака на r > o -> пропорционална зависимост (ръста на сулфати води до ръст на качество)
- ❖ | r | < 0.3 няма корелационна зависимост</p>
- \circ sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между сулфати и pH -> $r = -0.216**(\alpha = 0.01)$; sig = 0.000

- ❖ знака на r < o -> обратно пропорционална зависимост (ръста на сулфати води до намаляване на рН)
- **❖** |r| < 0.3 − няма **корелационна зависимост**
- \circ sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между сулфати и алкохол в проценти -> $r = 0.073* (\alpha = 0.05); sig = 0.034$

- **знака на r > o -> пропорционална зависимост (ръста на** сулфати **води до ръст на** алкохол в проценти)
- ❖ sig < 0.05 > корелационния коефициент е значим при ниво на доверие α = 0.05

Корелация между сулфати и плътност -> $r = 0,157**(\alpha = 0,01)$; sig = 0,000

- *** знака на r > o -> пропорционална зависимост (ръста на** сулфати **води до ръст на** плътност)
- **❖** sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между сулфати и фиксирана киселинност -> $r = 0,184** (\alpha = 0,01)$; sig = 0,000

- ❖ знака на r > o -> пропорционална зависимост (ръста на сулфати води до ръст на фиксирана киселинност)
- |r| < 0.3 − няма корелационна зависимост

Корелация между сулфати и летлива киселинност -> $r = -0,268**(\alpha = 0,01)$; sig = 0,000

- ❖ знака на r < o -> обратно пропорционална зависимост (ръста на сулфати води до намаляване на летлива киселинност)
- ❖ sig < o,o1 > корелационния коефициент е значим при ниво на доверие α = o,o1

Корелация между сулфати и лимонена киселина -> $r = 0.316** (\alpha = 0.01)$; sig = 0.000

- ❖ знака на r > o -> пропорционална зависимост (ръста на сулфати води до ръст на лимонена киселина)
- ♦ 0.3 < | r | < 0.5 ... слаба корелационна зависимост</p>

Корелация между сулфати и остатъчна захар -> r = 0,023; sig = 0,509

- **знака на r > o -> пропорционална зависимост (ръста на** сулфати **води до ръст на** остатъчна захар)
- **⋄** sig ≥ 0,05 > корелационния коефициент е незначим при ниво на доверие α = 0,05

Корелация между сулфати и хлориди -> $r = 0,374** (\alpha = 0,01)$; sig = 0,000

- ❖ знака на r > o -> пропорционална зависимост (ръста на сулфати води до ръст на хлориди)
- ❖ 0.3 < | r | < 0.5 ... слаба корелационна зависимост</p>
- ❖ sig < 0,01 > корелационния коефициент е значим при ниво на доверие α = 0,01

Корелация между сулфати и свободен сериен диоксид -> r = 0,039; sig = 0,262

- **знака на r > o -> пропорционална зависимост (ръста на** сулфати **води до ръст на** свободен сериен диоксид)
- ❖ | r | < 0.3 няма корелационна зависимост</p>
- **❖** sig ≥ 0,05 > корелационния коефициент е незначим при ниво на доверие α = 0,05

Корелация между сулфати и общ сериен диоксид -> r = 0.037; sig = 0.287

- **❖ знака на r > o -> пропорционална зависимост (ръста на** сулфати **води до ръст на** общ сериен диоксид**)**
- ❖ | r | < 0.3 няма корелационна зависимост</p>
- siq ≥ 0,05 > корелационния коефициент е незначим при ниво на доверие α = 0,05

Извод: Най - силно алкохолното съдържание се влияе от: качеството и плътността.

VII. /5 т./ Постройте адекватен многомерен линеен регресионен модел за алкохолното съдържание на виното, като за предиктори изберете всички останали променливи. Опишете регресионния модел детерминация, адекватност на модела, значимост на коефициентите и др. Интерпретирайте получените резултати.

Analyze -> Regression -> Linear...

Таблица, която описва кои променливи участват:

Variables Entered/Removeda

Model	Variables Entered	Variables Removed	Method
1	сулфати, остатъчна захар, качество, фиксирана киселинност, свободен серен диоксид, летлива киселинност, хлориди, общ серен диоксид, рН, лимонена киселина, плътност вахара на пратност ва пратност		Enter

- a. Dependent Variable: Алкохол в проценти
- b. All requested variables entered.

Таблица на коефициентите на корелация и детерминация:

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.850ª	.722	.719	.54926

- a. Predictors: (Constant), сулфати, остатъчна захар, качество, фиксирана киселинност, свободен серен диоксид, летлива киселинност, хлориди, общ серен диоксид, рН, лимонена киселина, плътност
- **R** коефициент на множествената корелация (Pearson)

- $Arr R^2$ коефициент на детерминация -> R^2 = 72,2% (процента на дисперсията в зависимата променлива, който може да се обясни с независимите променливи)
 - o $R^2 = Sum \ of \ Squares(Regression) / Sum \ of \ Squares(Total)$
- > Adjusted R² подобрения коефициент

Извод 1: Независимите променливи обясняват 72,2% от променливостта на зависимата променлива.

Анализ на дисперсията:

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	656.361	11	59.669	197.784	.000 ^b
	Residual	252.514	837	.302		
	Total	908.875	848			

- a. Dependent Variable: Алкохол в проценти
- Predictors: (Constant), сулфати, остатъчна захар, качество, фиксирана киселинност, свободен серен диоксид, летлива киселинност, хлориди, общ серен диоксид, рН, лимонена киселина, плътност
- > F тества дали общият регресионен модел е подходящ за данните (Sig.(p) < 0.0005)

Извод 2: Регресионния модел е подходящ за данните (статистически значим).

Коефициенти:

Coefficients^a

Model		Unstandardize	d Coefficients	Standardized Coefficients		Sig.
		В	Std. Error	Beta	t	
1	(Constant)	361.541	17.445		20.725	.000
	качество	.778	.043	.448	18.169	.000
	pH	2.853	.207	.412	13.784	.000
	плътност	-371.659	17.844	729	-20.828	.000
	фиксирана киселинност	.360	.027	.589	13.204	.000
	летлива киселинност	.832	.149	.143	5.602	.000
	лимонена киселина	.521	.173	.099	3.008	.003
	остатьчна захар	.131	.014	.196	9.037	.000
	хлориди	485	.489	023	992	.322
	свободен серен диоксид	001	.002	015	601	.548
	общ серен диоксид	.000	.001	003	130	.897
	сулфати	.546	.133	.090	4.102	.000

a. Dependent Variable: Алкохол в проценти

- \triangleright Unstandardized Coefficients (B) резултата от регресионното уравнение ($\hat{y} = a_1 * x a_0$)
- > Standardized Coefficients Beta вероятността на факторите
 - Увеличаването на плътността води до намаляване на общата детерминация (тъй като най- влиятелния фактор – плътността е с отрицателен знак).
- t статистики на константите в модела (получава се когато разделим В на Std. Error)
- Sig. стойността на р, която ми помага да определя дали коефициента е значим и има влияние върху модела (ако е незначим може да бъде премахнат с цел подобряване на детерминацията)

Проверка за значимост на корелационния коефициент:

- Н₀: а = о или алтернативната хипотеза Н₁: а ≠ о (която ме интересува при доказване тоест трябва да се заяви че има промяна/влияние върху модела)
- O Siq.(p) < α -> коефициента е значим
- Sig.(p) > α -> коефициента е незначим
- **❖** Корелационен коефициент $a_0 = 0,778 \neq 0$; Sig.(0,000) < $\alpha = >$ коефициента е значим и има влияние върху модела.
- **⋄** Корелационен коефициент $a_1 = 361,541 \neq 0$; Sig.(0,000) < $\alpha = >$ коефициента е значим и има влияние върху модела.
- **❖** Корелационен коефициент $a_2 = 2,853 ≠ 0$; Sig.(0,000) < $\alpha = >$ коефициента е значим и има влияние върху модела.
- **⋄** Корелационен коефициент $a_3 = -371,659 \neq 0$; Sig.(0,000) < $\alpha = >$ коефициента е значим и има влияние върху модела.
- **❖** Корелационен коефициент $a_4 = 0,360 \neq 0$; Sig.(0,000) < $\alpha = >$ коефициента е значим и има влияние върху модела.
- **❖** Корелационен коефициент $a_5 = 0.832 ≠ 0$; Sig.(0,000) < $\alpha = >$ коефициента е значим и има влияние върху модела.
- **❖** Корелационен коефициент $a_6 = 0,521 \neq 0$; Sig.(0,003) < $\alpha = >$ коефициента е значим и има влияние върху модела.
- **❖** Корелационен коефициент $a_7 = 0,131 ≠ 0$; Sig.(0,000) < $\alpha = >$ коефициента е значим и има влияние върху модела.
- **❖** Корелационен коефициент a_8 = -0,485 ≠ 0; Sig.(0,322) > α => коефициента е значим, но няма влияние върху модела.
- **❖** Корелационен коефициент a_9 = -0,001 = 0; Sig.(0,548) > α => коефициента е незначим и няма влияние върху модела.
- **❖** Корелационен коефициент $a_{10} = 0,000 = 0$; Sig.(0,897) < α => коефициента е незначим и няма влияние върху модела.
- **❖** Корелационен коефициент a_{11} = 0,546 ≠ 0; Sig.(0,000) < α => коефициента е значим и има влияние върху модела.

Извод 3: Ще е добре да се премахнат факторите – хлориди, свободен сериен диоксид и общ сериен диоксид, тъй като нямат влияние върху модела и това ги прави незначими.

VIII. /5 т./ Постройте нов многомерен линеен регресионен модел за алкохолното съдържание на виното, като отстраните незначимите предиктори, установени в модела от т.7, ако има такива. Опишете показателите на новия регресионен модел. Коментирайте го - подобриха ли се?

Отново повтарям: Analyze -> Regression -> Linear... ще отстраня - хлориди, свободен сериен диоксид и общ сериен диоксид.

Model Std. Error of the Estimate 1 .849a .722 .719 .54886

- a. Predictors: (Constant), фиксирана киселинност, качество, остатъчна захар, сулфати, летлива киселинност, pH, лимонена киселина, плътност
- Има намаление на коефициента на множествената корелация и стандартното отклонение на грешката.
- Няма разлика в процента на дисперсията на зависимата променлива, който може да се обясни с независимите променливи.
- Няма разлика в подобрения коефициент.

ANOVA ^a								
Model		Sum of Squares	df	Mean Square	F	Sig.		
1	Regression	655.830	8	81.979	272.133	.000 ^b		
	Residual	253.046	840	.301				
	Total	908.875	848					

- a. Dependent Variable: Алкохол в проценти
- Predictors: (Constant), фиксирана киселинност, качество, остатъчна захар, сулфати, летлива киселинност, рН, лимонена киселина, плътност
- Има увеличение в стойностите на регресията, тоест има статистически разлики от промяната.

Coefficients ^a								
		Unstandardized Coefficients		Standardized Coefficients				
Model		В	Std. Error	Beta	t	Sig.		
1	(Constant)	363.802	17.109		21.264	.000		
	качество	.788	.042	.453	18.751	.000		
	pH	2.909	.194	.420	14.976	.000		
	плътност	-374.258	17.441	734	-21.459	.000		
	летлива киселинност	.802	.142	.138	5.645	.000		
	лимонена киселина	.476	.163	.091	2.917	.004		
	сулфати	.490	.123	.081	3.970	.000		
	остатьчна захар	.128	.014	.192	9.092	.000		
	фиксипана кисепинност	369	025	605	14 715	000		

a. Dependent Variable: Алкохол в проценти

При факторите вероятността се е увеличила, но все още имам обратна пропорционална зависимост.

IX. /5 т./ Запазете предсказаните данни от модела и запишете уравнението на регресия, което е с по-добри показатели.

Analyze -> Regression -> Curve Estimilation

Качество: $\hat{y} = 0.42 * x + 2.64$

Х. /5 т./ Изследвайте разпределението на остатъците с тестове и графики. Направете изводи.

Analyze -> Regression -> Linear... -> Save... (Predicted Values -> Unstandardized ; Residuals -> Unstandardized) и Plots... (Histogram и Normal probability plot; ZPRED – X; ZPRESID - Y) – за остатъците

- ✓ Кривата почти изпълва графиката на хистограмата, което е признак за **нормалност**.
- √ Данните са близко до кривата това значи че **разпределението е нормално**.

Извод: Разпределението на остатъците е нормално.