

PSC2945主板浪涌 测试fail分析

2021.10

上海芯导电子科技股份有限公司

异常描述(Complaint Description)

发生日期	2021/10	使用客户	诺行
物料批次	NA	产品型号	PSC2945

异常问题描述

客户反馈:客户主板VBUS浪涌±200V测试fail,失效现象是拔出充电器后充电图标不消失

不良品丝印信息

PSC2945 **0843**

现场初步对策

现场初步分析vbat-vbus电压倒灌导致系统识别到电压,从而出现图标不消失现象

客退样品进行电性验证:将失效IC在DEMO板上进行测试

测试电路:

客退样品进行电性验证: 将失效IC在DEMO板上进行测试(拆掉功率电感) 二极管特性测量:

	异常IC 1#	异常IC 2#	正常IC
VBUS(V)	0.589	0.59	0.607
BAT(V)	0.552	0.551	0.554
PMID(V)	0.589	0.59	0.558
VREF(V)	0.657	0.655	0.658
STAT(V)	0.653	0.654	0.65
SDA(V)	0.660	0.661	0.660
SCL(V)	0.655	0.650	0.654
DISABLE(V)	0.632	0.63	0.633
SW(V)	0.47	0.46	0.466
Cboot(V)	0.592	0.592	0.596
SYS(V)	0.554	0.556	0.557
NTC(V)	0.65	0.648	0.649

分析结果:失效IC二极管特性均不存在O/S现象

客退样品进行电性验证

功能验证: 异常IC均无法进行充电

异常IC各脚位电压与正常IC对比: (测试条件: VBAT=4.212V, VBUS Floating)

PIN	异常IC 1#	异常IC 2#	正常IC
VBAT (V)	4.212	4.212	4.212
PMID(V)	3.84	3.84	4.1
VBUS(V)	3.84	3.84	0

分析结果:异常IC的输入 RB MOSFET 在Vbus无效时导通,导致vbus下电后,vbat电压倒灌至vbus,出现充电图标还在的现象。 怀疑pmid-vbus之间的mos存在异常

取一颗客退样品进行I/V测试,pmid对VBUS

Good sample

fail sample

分析结果:从i/v 失效ic的输入MOSfet D/S之间已经呈现极小阻抗状态,推测已经击穿。

取一颗客退样品进行去层分析

输入功率管有损伤痕迹, 跟推测结果吻合

客户主板测试

- 1. 当电池满电(>4.2V以上), 浪涌+200v, 测试多颗样品, 必定fail。
- 2.在较低电量(小于3.8V以内),浪涌+200V,vbus大概大于6V以上,测试多颗样品必定fail。

分析结果: 客户主板测试在电池电量较高,输入电压较高时,能稳定复现异常现象。

Demo板失效模拟实验:

根据客户实际测试场景,进行浪涌测试模拟,输入加 tvs,最高+200v浪涌。

PSC2945 Demo

TVS-8/20浪涌发生器

示波器

Demo板失效模拟实验:

黄色 VBUS 紫色PMID

正常波形

失效波形

从失效波形来看,红圈处是pmid-vbus击穿的节点

- 1.根据模拟测试结果,不是由于vbus过压导致,并且VBUS直流耐压为20V。
- 2.从失效波形来看,击穿节点是pmid→vbus产生了瞬间较大的压差,导致击穿。 Q3为低压工艺(10v以内),并且在on时,击穿电压更低,推荐是浪涌测试过程中, Vbus掉落过程中,输入无效之后,Q3开始关闭,pmid供电切换到从vbat供电,此时vbus 继续跌落,在电压或者功率超极限的某一瞬间Q3被击穿。
- 3.通过拆掉pmid电容后,进行浪涌测试验证,异常现象无法复现,因为pimd没有存电荷能力时,Q3无法被击穿,间接说明损坏原因

在vbus和pmid之间加一颗PTVSHC3D4V5B的双向TVS管,钳位pmid到vbus之间的电压,来保证Q3不被击穿。

在客户主板增加该TVS后验证多次均没有出现异常现象。

增加PTVSHC3D4V5B对正常工作状态下没有影响,

- 1.因为vbus对pmid之间是导通或者二极管钳位状态
- 2. PTVSHC3D4V5B不会工作。

Pmid对vbus不会超过4.5V以上的直流电压,因为电池电压钳位在4.4V以内。

Thanks!