Ejercicios 16-31

Luis Gerardo Arruti Sebastian Sergio Rosado Zúñiga

Lema 1. Sea f un morfismo en Sets, entonces

- a) $f: A \hookrightarrow B$ es un mono en Sets si y sólo si f es inyectiva;
- b) $f: A \rightarrow B$ es un epi en Sets si y sólo si f es suprayectiva.

Así en partícular se tiene que los monomorfismos, respectivamente epimorfismos, categóricos en $Mod\left(R\right)$ son los monomorfismos, respectivamente epimorfismos, de R-módulos.

Demostración. a) Notemos primeramente que una función vacía \varnothing_C , $C \in Sets$, es inyectiva por la vacuidad de su dominio. Más aún, es un mono en Sets, en efecto: si $g,h \in Sets$ son tales que $\varnothing_C f = \varnothing_A g$, entonces necesariamente $D = \varnothing_A g$ y así, dado que existe una única función de \varnothing en \varnothing , f = g. Con lo cual la afirmación es válida para funciones vacía y podemos suponer sin pérdida de generalidad que $A \neq \varnothing$ (y en consecuencia que $B \neq \varnothing$).

 $a) \implies$ Sean $a, b \in A$ tales que f(a) = f(b), entonces las funciones

$$g: A \to A$$
$$x \mapsto a,$$
$$h: A \to A$$
$$x \mapsto b.$$

satisfacen que fg = fh, luego g = h por ser f mono y por tanto a = b.

 $a) \longleftarrow$ Supongamos que $g, h \in$ son tales que fg = fh. Si $A' = \emptyset$ entonces $g = \emptyset_A = h$; en caso contrario sea $a \in A'$, así

$$\begin{split} f\left(g\left(a\right)\right) &= fg\left(a\right) = fh\left(a\right) = f\left(h\left(a\right)\right) \\ &\Longrightarrow g\left(a\right) = h\left(a\right), & f \text{ es inyectiva} \\ &\Longrightarrow g = h. \end{split}$$

b) Verificaremos primero que la función \varnothing_\varnothing i.e. la única función cuyo dominio y contradominio es \varnothing es epi y suprayectiva. Si $g,h\in$ son tales que $g\varnothing_\varnothing=h\varnothing_\varnothing$, entonces $g=\varnothing_Z=h$; por su parte la suprayectividad de \varnothing_\varnothing se sigue por la vacuidad de su contradominio. Así, en adelante podemos suponer sin pérdida

de generalidad que $B \neq \emptyset$.

 $b) \Longrightarrow$ Notemos que necesariamente $A \neq \emptyset$, pues en caso contrario las aplicaciones

$$\phi: B \to \{0, 1\}$$

$$x \mapsto 0,$$

$$\psi: B \to \{0, 1\}$$

$$x \mapsto 1,$$

son funciones bien definidas, pues $B \neq \emptyset$, las cuales satisfacen que $\phi \neq \psi$ y sin embargo $\phi f = \emptyset_{\{0,1\}} = \psi f$, lo cual contradeciría que f es epi. Así $1_B|_{f(A)}$ no es una función vacía y más aún satisface que

$$\begin{aligned} \mathbf{1}_{B}|_{f(A)} \, f &= f = \mathbf{1}_{B} f \\ &\Longrightarrow \, \mathbf{1}_{B} = \mathbf{1}_{B}|_{f(A)} \,, & f \text{ es epi} \\ &\Longrightarrow \, f \, (A) = B \\ &\Longrightarrow \, f \text{ es suprayectiva.} \end{aligned}$$

b) \Leftarrow Sean $g, h \in Hom_{Sets}(B, C)$ tales que gf = hf y $b \in B$. Como f es suprayectiva $\exists a \in A \ f(a) = b$, así

$$g(b) = gf(a) = hf(a) = h(b)$$

 $\implies g = h.$

Ej 16. La categoría Sets tiene uniones.

 $\begin{array}{l} Demostración. \text{ Sea } \{u_i:A_i\hookrightarrow A\} \text{ una familia de subobjetos de un conjunto } A \text{ y } U:=\bigcup_{i\in I}\Im\left(u_i\right). \text{ Si } I=\varnothing \text{ entonces } U=\varnothing \text{ y la función vacía } \varnothing_A:\varnothing\to A \text{ es un subobjeto de } A \text{ que satisface por vacuidad que } \forall i\in I \\ u_i\le\varnothing_A. \text{ Resta verificar que } \varnothing_A \text{ satisface la propiedad universal de la unión, para lo cual por vacuidad basta con verificar que si } f\in Hom\left(Sets\right) \\ \text{y } \mu\in Mon_{Sets}\left(-,A\right), \text{ entonces } \varnothing_A \text{ es llevado a } \mu \text{ vía } f. \text{ Si consideramos la función vacía } \varnothing_B:\varnothing\to B, \text{ entonces el siguiente diagrama} \end{array}$

$$\begin{array}{ccc} \varnothing_A & \xrightarrow{\varnothing_B} & B' \\ \varnothing_A & & \downarrow^{\mu} \\ A & \xrightarrow{f} & B \end{array}$$

conmuta en Sets puesto que $f\varnothing_A, \mu\varnothing_B \in Hom_{Sets}(\varnothing, B)$ y existe una única función de \varnothing en B.

En adelante supondremos que $I \neq \emptyset$. Si $U = \emptyset$ entonces $\forall i \in I$ $A_i = \emptyset$ y por lo tanto cada u_i coincide con la función vacía \varnothing_A . De modo que se satisface que $\forall i \in I$ $u_i \leq \varnothing_A$ y en forma análoga al caso $I = \emptyset$ se verifica que si $f: A \to B$ y $\mu: B' \hookrightarrow B$ son tales que cada u_i es llevado a μ vía f, entonces \varnothing_A es llevado a μ vía f, y así \varnothing_A es una unión para la familia $\{u_i\}_{i\in I}$.

Finalmente si $U \neq \emptyset$ entonces necesariamente $\exists i \in I$ tal que $A_i \neq \emptyset$. Así consideremos inc la inclusión de U en A, la cual es un mono en Sets y para cada $i \in I$ las funciones dadas por

$$\gamma_i: A_i \to U$$

$$a \mapsto u_i(a),$$

en caso que $A_i \neq \emptyset$, o bien $\gamma_i := \emptyset_U$ si $A_i = \emptyset$. Así, si $A_i = \emptyset$, como \emptyset_A es la única función de \emptyset en A, entonces

$$u_i = \varnothing_A = inc \varnothing_U = inc \gamma_i.$$

Si ahora $A_i \neq \emptyset$, entonces

$$u_i(a) = inc\gamma_i(a),$$
 $\forall a \in A_i$
 $\implies u_i = inc\gamma_i.$

Con lo cual se ha verificado que $\forall i \in I \ u_i \leq inc$. Supongamos ahora que $f: A \to B \ y \ \mu: B' \hookrightarrow B$ son funciones tales que cada u_i es llevado a μ vía f, es decir para cada $i \in I$ el siguiente diagrama conmuta en Sets

$$\begin{array}{ccc}
A_i & \xrightarrow{\exists g_i} B' \\
u_i \downarrow & & \downarrow^{\mu} . \\
A & \xrightarrow{f} B
\end{array}$$

Notemos que para cada $y \in U \exists i \in I \ y \ x \in A_i$ tales que $y = u_i(x)$, así consideremos la aplicación

$$h: U \to B'$$

 $u_i(x) \mapsto g_i(x)$.

Sea $y \in U$ con $i, j \in I$ y $x \in A_i, z \in A_j$ tales que $u_i(x) = y = u_j(z)$, entonces de la conmutatividad de los diagramas anteriores se tiene que

$$\mu(g_j(z)) = fu_j(b) = f(x) = f(u_i(x))$$

= $fu_i(x) = \mu(g_i(x))$.

Lo anterior, en conjunto a que μ es inyectiva por ser un mono en Sets, garantiza que $g_i(z) = g_i(x)$ y así h está bien definida.

Sea $y \in U$, con $i \in I$ y $x \in A_i$ tales que $y = u_i(x)$. Se tiene que

$$finc(y) = f(y) = f(u_i(x)) = \mu g_i(x) = \mu (h(y))$$
$$= \mu h(y)$$
$$\implies finc = \mu h.$$

Con lo cual inc es llevado a μ vía f y por tanto es una unión para la familia $\{u_i\}_{i\in I}$.

Ej 17. Pruebe que, para un anillo R, La categoría Mod(R) tiene uniones.

Demostración. Sean $A \in Mod(R)$, $\{\alpha_i : A_i \hookrightarrow A\}_{i \in I}$ en Mod(R) y la inclusión de submódulos

$$\nu \colon \sum_{i \in I} Im(\alpha_i) \longrightarrow A.$$

Recordemos que $\left(x \in \sum_{i \in I} Im(\alpha_i) \iff x = \sum_{i \in J} \alpha_j(a_j)\right)$ con J finito y $a_j \in A_j$ para cada $j \in J$.

$$U_1$$
 $(\alpha_i \le \nu \ \forall i \in I)$

Como $\alpha_i(x) \in Im(\alpha_i) \ \forall x \in A_i$, entonces definimos $\nu_i : A_i \to Im(\alpha_i)$

como $\nu_i(x) = \alpha_i(x)$. Observemos que $\nu_i(x) \in \sum_{i \in I} Im(\alpha_i)$ pues si $J = \{i\}$ entonces $\sum_{i \in J} \alpha_i(x) = \alpha_i(x) = \nu(x)$. Por lo tanto $\alpha_i(x) = \nu \circ \nu_i(x)$ y así $\alpha_i \leq \nu \ \forall i \in I$.

Supongamos $f:A\to B$ en $\mathscr C$ es tal que cada u_i es llevado via \overline{f} , a algún subobjeto $\mu: B' \hookrightarrow B$. Tal como se muestra en el siguiente diagrama:

Como para todo
$$x \in \sum_{j \in I} Im(\alpha_j), \quad x = \alpha_{i_0}(x_0) + \ldots + \alpha_{i_n}(x_n)$$
 donde $x_n \in A_{i_n}$ e $i_n \in J \ \forall i \in \{1, \ldots, n\}$, así definimos $g : \sum_{j \in I} Im(\alpha_j) \longrightarrow B'$ como $g(x) = f'_{i_0}(x_o) + \ldots + f'_{i_n}(x_n)$. Observemos que es morfismo de módulos:

Sean $r \in R$, $a, b \in \sum_{i \in I} Im(\alpha_i)$ y supongamos que

$$a = \alpha_{h_0}(a_0) + \ldots + \alpha_{h_n}(a_n)$$

$$b = \alpha_{k_0}(b_0) + \ldots + \alpha_{k_m}(b_m) \qquad n, m \in \mathbb{N}.$$

Así

$$g(ra+b) = g(r\alpha_{h_0}(a_0) + \dots + r\alpha_{h_n}(a_n) + r\alpha_{k_0}(b_0) + \dots + r\alpha_{k_m}(b_m))$$

$$= g(\alpha_{h_0}(ra_0) + \dots + \alpha_{h_n}(ra_n) + \alpha_{k_0}(b_0) + \dots + \alpha_{k_m}(b_m))$$

$$= f'_{h_0}(ra_0) + \dots + f'_{h_n}(ra_n) + f'_{k_0}(b_0) + \dots + f'_{k_m}(b_m)$$

$$= (rf'_{h_0}(a_0) + \dots + rf'_{h_n}(a_n)) + f'_{k_0}(b_0) + \dots + f'_{k_m}(b_m)$$

$$= r(f'_{h_0}(a_0) + \dots + f'_{h_n}(a_n)) + f'_{k_0}(b_0) + \dots + f'_{k_m}(b_m)$$

$$= rg(a) + g(b).$$

Por lo tanto es morfismo.

Así
$$\forall x \in \sum_{i \in I} Im(\alpha_i)$$
 se tiene que

$$\mu g(x) = \mu \left(\sum_{k=0}^{n} f'_{i_k}(x_k) \right) = \sum_{k=0}^{n} \mu f'_{i_k}(x_k)$$
$$= \sum_{k=0}^{n} f \alpha_{i_k}(x_k) = f \left(\sum_{k=0}^{n} \alpha_{i_k}(x_k) \right)$$
$$= f \nu(x).$$

Por lo tanto $\sum_{i \in I} Im(\alpha_i)$ es la unión categorica.

Ej 18. Sean
$$\mathscr C$$
 una categoría con ecualizadores $\alpha, \beta \colon A \to B$ y $\{\mu_i : A_i \hookrightarrow A\}_{i \in I}$ tal que existe $\mu : \bigcup_{i \in I} A_i \longrightarrow A$. Pruebe que $(\alpha \mu_i = \beta \mu_i \ \forall i \in I) \Rightarrow (\alpha \mu = \beta \mu)$.

Demostración. Supongamos $\alpha \mu_i = \beta \mu_i \ \forall i \in I$ y que $I \neq \emptyset$ entonces se tiene el siguiente diagrama:

$$\begin{array}{c}
A_i \\
\downarrow^{\mu_i} \\
A \xrightarrow{\beta} B
\end{array}.$$

Como $\mathscr C$ tiene ecualizadores, existe $\eta: K \to A$ tal que $\alpha \eta = \beta \eta$ y si $f: X \to A$ en $\mathscr C$ es tal que $\beta f = \alpha f$, entonces $\exists ! f': X \to K$ tal que $\eta f' = f$.

Así como $\alpha \mu_i = \beta \mu_i \ \forall i \in I$, entonces para cada $i \in I \ \exists ! \mu'_i : A_i \to K$ tal que $\eta \mu'_i = \mu_i$, es decir, se tiene que para cada $i \in I$ el siguiente diagrama commuta:

$$A_{i}$$

$$A_{i}$$

$$\mu_{i}$$

$$K \xrightarrow{\eta} A \xrightarrow{\beta} B$$

entonces, $\eta f_i = \mu_i$. Con esto en mente, tenemos el siguiente diagrama para cada $i \in I$:

Entonces por la propiedad (U_2) de la unión, existe $f:\bigcup_{i\in I}A_i\longrightarrow K$ tal

que $\eta f = \mu$. Así

$$\alpha\mu = \alpha\eta f = \beta\eta f = \beta\mu.$$

En el caso en que $I=\emptyset, \ \eta: K\to A$ el ecualizador de (α,β) cumple que $\forall i\in I \quad \mu_i\leq \eta$ (por vacuidad), entonces por la observación 1.3.4(2) $\mu\leq \eta$, es decir, existe $\gamma:\bigcup_{i\in I}A_i\longrightarrow K$ tal que $\mu=\eta\gamma$ así

$$\alpha\mu = \alpha\eta\gamma = \beta\eta\gamma = \beta\mu.$$

Ej 19. Si $f:A\hookrightarrow B$ está en una categoría $\mathscr C,$ entonces $f:A\hookrightarrow B$ es una imagen de f.

Demostración. Se tiene que f es un subobjeto y que $f = f1_A$. Si $g: C \hookrightarrow B$ es un subobjeto para el cual $\exists h: A \to C$ tal que f = gh, entonces $f \leq g$ y por tanto $Im(f) \simeq f$ en $Mon_{Sets}(-, B)$.

Ej 20. Mod(R) y Sets tienen imágenes epimórficas.

Demostración. Sea $f:A\to B$ en Sets. Si f es la función vacía \varnothing_B entonces por el Lema 1 se tiene que f es mono y por tanto es una imagen para sí mismo. Así supongamos sin pérdida de generalidad que $A\neq\varnothing$. Luego $B\neq\varnothing$ y se tiene que $inc:f(A)\to B$ es una función no vacía e inyectiva, por tanto un mono en Sets, la cual satisface que, si

$$g: A \to F(A)$$

 $a \mapsto f(A)$,

f = incg.

Ahora supongamos que $\mu: C \hookrightarrow B$ y $h: A \to C$ son tales que $f = \mu h$. Notemos que para cada $y \in f(A) \exists a \in A$ tal que y = f(a), así consideremos la aplicación

$$k: f(A) \to C$$

 $f(a) \mapsto h(a)$.

Si $a, b \in A$ son tales que x = f(a) = f(b), entonces

$$\mu h(a) = f(a) = x = f(b) = \mu h(b)$$

 $\Longrightarrow h(a) = h(b),$ μ es mono

con lo cual k es una función bien definida y satisface que, dados $y \in f(A)$ y $x \in A$ tal que y = f(x),

$$\mu k(y) = \mu(h(x)) = f(x) = y = inc(y)$$

$$\implies inc = \mu k.$$

Con lo anterior se ha verificado que Sets tiene imágenes, más aún, tiene imágenes epimórficas puesto que la función g así construida es suprayectiva y por tanto epi.

Dado que todo R-módulo es en partícular un conjunto no vacío, en forma análoga a lo anterior se verifica que Mod(R) tiene imágenes epimórficas, puesto que si ahora $f:A\to B$ en Mod(R) entonces la inclusión de módulos es un morfismo de R-módulos, g también lo es al serlo f, y k lo es al serlo f y h.

Ej 21. Pruebe que Sets tiene coimagenes.

Demostración. Sea $f: A \to B$ en Sets. Consideremos la relación \sim_f en A, donde $x \sim_f y$ si y sólo si f(x) = f(y).

Esta relación (que denotaremos por \sim por simplicidad) es una relación de equivalencia como se muestra a continuación:

Reflexividad Sea $x \in A$, como f(x) = f(x) entonces $x \sim x$.

Simetría Sean $a, b \in A$ tales que $a \sim b$, entonces f(a) = f(b), por lo que f(b) = f(a) y así $b \sim a$.

Transitividad Sean $x, y, z \in A$ tales que $x \sim y, y \sim z$, entonces f(x) = f(y) = f(z) por lo tanto f(x) = f(z) y en consecuencia $x \sim z$.

Sea $\pi: a \to A/\sim$ el epi canonico donde $\pi(a) = [a] := \{x \in A \mid x \sim a\}$, se afirma que es una coimagen de f.

Observemos que, si $A, B \neq \emptyset$, para toda $b \in B$ tal que b = f(a) con $a \in A$ se tiene que $\pi(a) = [a]$ por lo que se puede definir $f' : A / \sim B$ como f'([a]) = f(a). Así se tiene que:

(1) f' está bie definida.

Sean $[a][b] \in [x]$ con $[x] \in A/\sim$, entonces $a \sim x \sim b$, por lo que f(a) = f(x) = f(b), es decir, f'([a]) = f'([b]).

(2) $(f = f'\pi)$.

Sea $a \in A$. $f'\pi(a) = f'([a]) = f(a)$.

Para ver que $(CoIm_2)$ se cumple, supongamos que existe $p': A \to J'$ un objeto cociente de A tal que $\exists f'': J' \to B$ donde f = f''p'. Sea $a \in A$, entonces $\pi(a) = [a]$ y $p'(a) = a' \in J'$. Como p' es epi en Sets entonces es supra, así para todo $x \in J'$ existe $a_x \in A$ tal que $p'(a_x) = x$, así definimos $\nu: J' \to A/\sim \text{como } \nu(x) = \pi(a_x)$.

Se tiene entonces que $\forall a \in A$, $\nu p'(a) = \nu(p'(a)) = \pi(a)$.

En el caso de que B sea el conjunto vacio, entonces A tiene que ser el conjunto vacio y $f: A \to B$ es la función vacia, así f = p tiene que ser su coimagen pues si $f': B \to B$ es la función identidad en B, entonces

f = f'p y si $p' : B \rightarrow B$ es un objeto cociente de A tal que $f'' : J' \rightarrow B$ con f''p' = f entonces $f'' : J' \rightarrow B$ es la función vacia y J' es el conjunto vacio. Así $p' : A \rightarrow J'$ es la función vacia y por lo tanto p' = p y $Id_{J'} \circ p' = p$.

En caso de que A sea el conjunto vacio y B sea distinto del vacio, entonces $(CoIm_1)$ se cumple igual que en el caso anterior, tomando a $p: \emptyset \to \emptyset$.

Para probar $(CoIm_2)$ supongamos que $p': A \to J'$ es un objeto cociente de A tal que $existsf'': J' \to B$ tal que f = f''p', pero p' es epi, y como $A = \emptyset$ entonces $J' = \emptyset$. Así, si definimos u como la identidad en el vacio se tiene que p = up'.

Ej 22. Pruebe que Mod(R) tiene coimagenes.

Demostración. Sea $A \in Obj(Mod(R))$, entonces $A \neq \emptyset$. Se afirma que el epi canonico $\pi: A \to A/Ker(f)$ es una coimagen.

Sea $a \in A$, entonces $f(a) \in B$. Definimos $f': \frac{A}{Ker(f)} \to B$ como f'([a]) = f(a).

Probemos que está bien definido. Sean $a, b \in [x]$ entonces $a + k_1 = b + k_2 = x$ con $k_1, k_2 \in Ker(f)$, asi

$$f'([a]) = f(a) = f(a) + f(K_1) = f(a + K_1)$$

= $f(b + K_2) = f(b) + f(K_2) = f(b) = f'([b]).$

Veamos que es morfismo. Sean $r \in R$, $[a], [b] \in {}^{A}/_{Ker(f)}$ entonces

$$f'(r[a] + [b]) = f'([ra + b]) = f(ra + b) = rf(a) + f(b) = f'(r[a]) + f'([b]).$$

En consecuencia se tiene que π cumple ($CoIm_1$).

Ahora supongamos que $p':A \to J'$ es un objeto cociente de A tal que existe $f'':J'\to B$ que cumple que f=f''p'. Como p' es epi, entonces es suprayectiva en Mod(R), porlo que para cada $x\in J'$ existe $a\in A$ tal que p'(a)=x.

Definimos $\nu: J' \to {}^A\!/_{Ker(f)}$ como $\nu(x) = [a]$ donde p'(a) = x. Esta función está bien definida pues si $a, b \in A$ son tales que p'(a) = p'(b) entonces

f''p'(a) = f''p'(b) y así f(a) = f(b), entonces f(a - b) = 0, por lo que $a - b \in Ker(f)$ y en consecuencia [a] = [b].

Veamos que ν es morfismo. Si $r \in R$ $a, b \in J'$ donde $\nu(a) = [x], \nu(b) = [y], a = p'(x)$ y b = p'(y), entonces

$$\nu(ra+b) = \nu(rp'(x) + p'(y)) = \nu(p'(rx+y))$$

= $[rx+y] = r[x] + [y] = r\nu(a) + \nu(b).$

Así se tiene que $\forall a \in A \ \nu p'(a) = \nu(p'(a)) = [a] = \pi(a)$ por lo que $(CoIm_2)$ se cumple y Mod(R) tiene coimagenes.

Ej 23. Sean \mathscr{C} una categoría balanceada, con imágenes epimórficas y

$$A \xrightarrow{f} B \xrightarrow{g} C$$

en \mathscr{C} . Si $\mu: A' \hookrightarrow A$ en \mathscr{C} , entonces g(f(A')) = gf(A') en $\overline{Mon_{\mathscr{C}}(-,C)}$.

Demostración. Dado que $\mathscr C$ tiene imágenes epimórficas existen subobjetos

$$\nu: Im(f\mu) \hookrightarrow B,$$
 $\eta: Im(g\nu) \hookrightarrow B,$
 $\psi: Im((gf)\mu) \hookrightarrow B,$

que son imágenes respectivamente de $f\mu, g\nu$ y $(gf)\mu$, y existen epimorfismos $\alpha_1: A' \twoheadrightarrow Im(f\mu)$ y $\alpha_2: Im(f\mu) \twoheadrightarrow Im(g\nu)$ tales que

$$f\mu = \nu\alpha_1, g\nu = \eta\alpha_2.$$
 (*)

Notemos que por ser ν imagen de $f\mu$ y subobjeto de B se tiene que $g\left(f\left(A'\right)\right)=g\left(Im\left(f\mu\right)\right)=Im\left(g\nu\right)$, mientras que $gf\left(A'\right)=Im\left((gf)\mu\right)$. Así pues basta con verificar que η es una imagen para $(gf)\mu$, ya que en tal caso $Im\left(g\nu\right)\simeq Im\left((gf)\mu\right)$ en $Mon_{\mathscr{C}}\left(-,C\right)$. De (*) se tiene que

$$qf(\mu) = q(f\mu) = q(\nu\alpha_1) = (\eta\alpha_2)\alpha_1 = \eta(\alpha_2\alpha_1).$$

En la última igualdad η es un mono, mientras que $\alpha_2\alpha_1$ es un epi al serlo α_1 y α_2 , de modo que al ser $\mathscr C$ balanceada (ver Proposición 1.4.3) se tiene que η es una imagen para $(gf) \mu$.

Ej 24. Sea el siguiente diagrama

conmutativo en una categoría \mathscr{C} , con μ y α subobjetos. Si β_1 es una imagen inversa por f de α_1 , entonces también lo es de $\alpha\mu$.

Demostración. Notemos que de la conmutatividad del diagrama anterior se tiene que

$$(\alpha \mu) f' = \alpha (\mu f') = \alpha \beta_2$$

= $f \beta_1$,

i.e. el siguiente cuadrado conmuta

$$P \xrightarrow{f'} B''$$

$$\beta_1 \downarrow \qquad \qquad \downarrow \alpha \mu .$$

$$A \xrightarrow{f} B$$

$$(*)$$

Sean $\gamma_1:P'\to A$ y $\gamma_2:P'\to B''$ tales que $f\gamma_1=(\alpha\mu)\,\gamma_2=\alpha\,(\mu\gamma_2).$ Como

$$P \xrightarrow{\beta_2} B'$$

$$\beta_1 \downarrow \qquad \qquad \downarrow \alpha$$

$$A \xrightarrow{f} B$$

$$(**)$$

es un pull-back por ser β_1 imagen inversa por f de α , de la propiedad universal del pull-back se sigue que $\exists !\ \delta:P'\to P$ tal que el siguiente diagrama conmuta

De modo que δ es tal que $\gamma_1=\beta_1\delta$ y además

$$(\alpha\mu)(f'\delta) = \alpha(\beta_2)\delta = \alpha(\mu\gamma_2) = (\alpha\mu)\gamma_2$$

 $\implies \gamma_2 = f'\delta.$ $\alpha\mu$ es mono

Sea $\delta':P'\to P$ en ${\mathscr C}$ tal que el diagrama

conmuta, luego δ' es tal que $\gamma_1 = \beta_1 \delta'$ y

$$\mu \gamma_2 = (\mu f') \, \delta' = \beta_2 \delta'.$$

Por lo tantto, aplicando la propiedad universal del pull-back a (**) se tiene que $\delta'=\delta$, con lo cual se tien que existe un único morfismo δ tal que el siguiente diagrama conmuta

i.e. (*) es un pull-back y así se tiene lo deseado.

Ej 25. Considere el siguiente diagrama conmutativo en una categoría $\mathscr C$

Pruebe que: si $\exists f^{-1}(B')$ y $B' \cap Y$, entonces $f^{-1}(I \cap B') = f^{-1}(B')$ en $Mon_{\mathscr{C}}(-,A)$.

Demostración. Como $f^{-1}(B')$ y $B'\cap I$ existen, entonces se tienen los siguientes diagramas conmutativos:

Así se tiene que este diagrama

$$\begin{array}{c|c}
f^{-1}(B') \xrightarrow{f'\beta_1} I \\
\beta_2 \downarrow & f\beta_1 \downarrow \mu \\
B' \xrightarrow{h} B
\end{array}$$

es conmutativo. Por lo tanto, como $I\cap B'$ es pull-back existe un único $\gamma:f^{-1}(B')\to I\cap B'$ tal que el siguiente diagrama conmuta:

Sean $\eta: X \to I \cap B'$, $\eta_2: X \to A$ tales que $i\eta_1 = f\eta_2$.

Observamos que, entonces, $\nu_2\eta_1:X\to B'$ y es tal que $h(\nu_2\eta_1)=i\eta_1=f\eta_2.$

Así, como $f^{-1}(B')$ es pull-back de $A \xrightarrow{f} B \xleftarrow{\mu} B'$, existe una única $\gamma': X \to f^{-1}(B')$ tal que $\nu_2 \gamma \gamma' = \nu_2 \eta_1$ y $\beta_1 \gamma' = \eta_2$ pero ν_2 es mono por ser i mono. Entonces $\gamma \gamma' = \eta_1$ y $\beta_1 \gamma' = \eta_2$.

Ahora, si existiera $\alpha: X \to f^{-1}(B')$ tal que $\beta_1 \alpha = \eta_2$ y $\gamma \alpha = \eta_1$, entonces $\nu_2 \gamma \alpha = \gamma_2 \eta_1$ y por lo anterior $\alpha = \gamma'$ pues es el único con esas propiedades. Por lo tanto $f^{-1}(B')$ es un pull-back, del diagrama (1), e implica que $f^{-1}(I \cap B')$ existe y sea igual a $f^{-1}(B)$ con los morfismos γ y β_1 .

 $f^{-1}(I \cap B')$ existe y sea igual a $f^{-1}(B)$ con los mornsmos γ y β_1 .

Ej 26. Sea $f:A\to B$ en una categoría $\mathscr C$. Consideremos subobjetos $A_1\subseteq A_2\subseteq A$ y $B_1\subseteq B_2\subseteq B$. Pruebe que se satisfacen las siguientes relaciones cada vez que ambos lados estén definidos.

$$a)$$
 $f(A_1) \subseteq f(A_2)$

b)
$$f^{-1}(B_1) \subseteq f^{-1}(B_2)$$

c)
$$A_1 \subseteq f^{-1}(f(A_1))$$

$$d) \quad f(f^{-1}(B_1)) \subseteq B_1$$

Demostraci'on. Comenzaremos por nombrar monomorfismos correspondientes como subobjetos de Ay de B

$$A_1 \xrightarrow{\mu_1} A_2 \xrightarrow{\mu_2} A$$

$$B_1 \xrightarrow{\gamma_1} B_2 \xrightarrow{\gamma_2} B$$

a) Sabemos que $f(A_1) = Im(f\mu_2\mu_1)$ y $f(A_2) = Im(f\mu_2)$. Llamaremos

$$\mu'_1: Im(f\mu_2\mu_1) \to B$$
, $\alpha_1: A_2 \to Im(f\mu_2\mu_1)$, $\mu'_2: Im(f\mu_2) \to B$ y $\alpha_2: A_2 \to Im(f\mu_2)$

a los morfismos tales que $f\mu_2 = \mu_2'\alpha_2$ y $f\mu_2\mu_1 = \mu_1'\alpha_1$. Entonces $f\mu_2\mu_1 = (\mu_2'\alpha_2)\mu_1$. Por la propiedad universal de la imagen en $Im(f\mu_2\mu_1)$ existe $\gamma: Im(f\mu_2\mu_1) \to Im(f\mu_2)$ tal que $\mu_2'\gamma = \mu_1$. En particular γ es mono, entonces $Im(f\mu_2\mu_1) \subseteq Im(f\mu_2)$ y así $f(A_1) \subseteq f(A_2)$.

b) Como se tienen los siguientes diagramas conmutativos

en particular se tiene que $f\beta_1 = \nu_2(\nu_1\beta_2)$ y este diagrama es conmutativo:

$$\begin{array}{ccc}
f^{-1}(B_1) & \xrightarrow{\nu_1 \beta_2} & B_2 \\
& & \downarrow & \downarrow \\
& & A & \xrightarrow{f} & B
\end{array}$$

Entonces $\exists \eta: f^{-1}(B_1) \to f^{-1}(B_2)$ tal que $\beta_2' \eta = \nu \beta_2$ y $\beta_1' \eta = \beta_1$

Como $f^{-1}(B_2)$ es pull-back, y ν_2 es mono, entonces β_1' es mono y por lo tanto η es mono. Así $f^{-1}(B_1) \subseteq f^{-1}(B_2)$.

c) Puesto que $f^{-1}(f(A_1))$ es un pull back, tenemos un diagrama conmutativo de la siguiente forma:

$$\begin{array}{ccc}
f^{-1}(f(A_1)) & \xrightarrow{f_2} & f(A_1) \\
\downarrow^{f_1} & & \downarrow^{\mu'_1} \\
A & \xrightarrow{f} & B
\end{array}$$

Además (apoyandonos con la notación del inciso a)) tenemos que el siguiente diagrama conmuta $\,$

$$A_{1} \xrightarrow{\alpha_{1}} f(A_{1})$$

$$\downarrow^{\mu_{2}\mu_{1}} \downarrow^{\mu'_{1}}$$

$$A \xrightarrow{f} B$$

Entonces, por ser $f^{-1}(f(A_1))$ un pull-back, $\exists ! g: A_1 \to f^{-1}(f(A_1))$ tal que $f_2g = \alpha_1$ y $f_1g = \mu_2\mu_1$.

Como $\mu_2\mu_1$ es mono por ser μ_2 y μ_1 monos, entonces g es mono y así $A_1 \subseteq f^{-1}(f(A_1))$.

d) Observemos que, como $f^{-1}(B_1)$ es pull-back, el diagrama

$$\begin{array}{ccc}
f^{-1}(B_1) & \xrightarrow{\beta_2} & B_1 \\
& & \downarrow \\
\beta_1 & & \downarrow \\
A & \xrightarrow{f} & B
\end{array}$$

conmuta, entonces por propiedades de las imagenes, existen $\mu::Im(f\beta_1)\hookrightarrow B$ y $f':f^{-1}(B_1)\to Im(f\beta_1)$ tales que el siguiente diagrama

es un diagrama conmutativo, por lo que existe un único $g': Im(f\beta_1) \to B_1$, tal que $\nu_2\nu_1g' = \mu$ y $gf' = \beta_2$ dado por la propiedad universal de las imagenes. Mas aún, notemos que g' es mono, pues μ es mono y $\mu = \nu_2\nu_1g'$. Así $f\beta_1 = \nu_2\nu_1\beta_2$. Por lo que $Im(f\beta_1) = f(f^{-1}(B_1)) \subseteq B_1$.

Ej 27. Sea $\mathscr C$ una categoría con objeto cero. Entonces $\bigcup_{i\in I}A_i\simeq 0,$ si $I=\varnothing.$

Demostración. Afirmamos que en este caso el morfismo $0_{0,A}$ en $\mathscr C$ (el cual existe y es único por ser 0 un objeto cero de la categoría $\mathscr C$) es una unión para la familia de subobjetos $\mu_i:A_i\to A$. En efecto: Notemos que $0_{A,0}0_{0,A},0_{0,A}0_{A,0},Id_0\in Hom_{\mathscr C}(0,0)$ y que $|Hom_{\mathscr C}(0,0)|$, luego $0_{A,0}0_{0,A}=Id_0=0_{0,A}0_{A,0}$ y por tanto μ es un iso en $\mathscr C$, así que en

partícular es un subobjeto de A.

Sean $f:A\to B$ y $\mu:B'\hookrightarrow B$ en $\mathscr C$, por ser $I=\varnothing$ basta con verificar que $0_{0,A}$ es llevado a μ vía f. Se tiene que

$$f0_{0,A} = 0_{0,B} = \mu 0_{0,B'},$$

con lo cual el diagrama

$$\begin{array}{c}
0 \xrightarrow{0_{0,B'}} B' \\
\downarrow^{\mu} \\
a \xrightarrow{f} B
\end{array}$$

conmuta y así se tiene lo deseado.

Ej 28. Mod(R) es una categoría con objeto cero, en tanto que Sets no lo es.

Demostración. $\boxed{Mod(R)}$ Sea R un anillo. Consideremos un conjunto de la forma $A = \{*\}$, i.e. un conjunto de un sólo elemento. Notemos que por medio de las operaciones

$$\begin{aligned} +: A \times A &\rightarrow A \\ (*,*) &\mapsto *, \\ \cdot: R \times A &\rightarrow R \\ (r,*) &\mapsto *, \end{aligned}$$

se tiene que $(A, +, \cdot) \in Mod(R)$.

Sea $M \in Mod(R)$. Como $\forall B \in Sets | Hom_{Sets}(B,A)| = 1$, y todo morfismo de R-módulos en partícular es una función, se tiene que $|Hom_{Mod(R)}(M,A)| \leq 1$. Así pues para verificar que A es objeto inicial en Mod(R) resta verificar que existe un morfismo de R-módulos de M en A. Sean $r \in R$, $m, n \in M$ y

$$f_M: M \to A$$

 $m \mapsto *,$

entonces $f(rm+n)=*=*+*=r\cdot *+*=rf(m)+f(n)$, y así $f_M\in Hom_{Mod(R)}(M,A)$.

Por otro lado, si 0_M es el neutro aditivo de M, entonces la función

$$g_M: A \to M$$

 $* \mapsto 0_M$

satisface $g_M \in Hom_{Mod(R)}(A, M)$. Más aún, si $h \in Hom_{Mod(R)}(A, M)$, entonces necesariamente h es un morfismo de grupos y así

$$h(0_A) = h(*) = 0_M = g_M(*)$$

$$\implies h = g_M.$$

$$A = \{*\}$$

Por lo tanto A también es un objeto final y así es un objeto cero para $Mod\left(R\right).$

Sets Supongamos que existe un conjunto A tal qu A es objeto cero de Sets. Luego $\exists ! \ f \in Hom_{Sets}(A,\varnothing)$, y así necesariamente $A=\varnothing$, lo cual es absurdo ya que \varnothing no es un objeto final en Sets, puesto que si $B \neq \varnothing$ no existen funciones cuyo dominio sea B y contradominio sea \varnothing .

Ej 29. Pruebe que Mod(R) tiene kerneles.

Demostración. Sea $f: A \to B$ morfismo en Mod(R), $K = \{x \in A \mid f(x) = 0\}$ y $\mu: K \to A$ la función inclusión.

Primero demostraremos que $K \leq A$.

Sean $r \in R$ $a, b \in K$, entonces $f(ra + b) = rf(a) + f(b) = r \cdot 0 + 0 = 0$, por lo tanto $ra + b \in K$, entonces $K \in Mod(R)$ y μ es morfismo.

 Ker_1 Como $f\mu: K \to B$ y para toda $x \in K$ se tiene que $f\mu(x) = f(\mu(x)) = f(x) = 0$ entonces $f\mu = 0$.

 Ker_2 Supongamos $g: X \to A$ es un morfismo tal que fg = 0, entonces $g(x) \in K$ pues f(g(x)) = 0. Así definimos el morfismo $h: X \to K$ tal que h(x) = g(x), entonces $\mu h(x) = \mu(g(x)) = g(x) \ \forall x \in X$, por lo tanto $\mu h = g$ y así K es kernel de f.

Por lo tanto Mod(R) tiene kernels.

Ej 30. Pruebe que Mod(R) tiene cokernels.

Demostración. Sea $f: M \to N$ en Mod(R). Como f es morfismo de R- módulos, entonces $im(f) \leq N$.

Consideremos $\pi: N \to N/_{Im(f)}$, donde $\pi(k) = k + Im(f)$ es la proyección canónica. Se afirma que π es un cokernel de f.

CoKer₁ Para toda $x \in M$ se tiene que $\pi f(x) = \pi(f(x)) = 0$ pues $f(x) \in Im(f)$.

Sean $[x], [y] \in N/Im(f)$ y $r \in R$, entonces

$$g'(r[x] + [y]) = g'([rx + y]) = g(rx + y) = rg(x) + g(y) = rg'(x) + g'(y).$$

Observamos que g' está bien definida, pues si $a, b \in [x]$, etonces existen $k_1, k_2 \in Im(f)$ tales que $a + k_1 = b + k_2 = x$ y $g(k_1) = g(k_2) = 0$, entonces

$$g'([a]) = g(a) = g(a) + g(k_1) = g(a+k_1) = g(b+k_2) = g(b) + g(k_2) = g(b) = g([b]).$$

Por lo tanto g' es un morfismo de R-módulos y $g'\pi(x)=g'([x])=g(x)$ por lo que $g'\pi=g$ y así π es Cokernel.

Ej 31. Sets y Mod(R) son categorías localmente pequeñas.

Demostraci'on. Sea $A\in Sets.$ Afirmamos que si $\varphi:B\hookrightarrow A,\,\psi:C\hookrightarrow A\in Mon_{Sets}\,(-,A)$ entonces

$$\varphi \simeq \psi \text{ en } Mon_{Sets}\left(-,A\right) \iff Im\left(\varphi\right) = Im\left(\psi\right).$$
 (A)

 \Longrightarrow Se tiene que $\psi \leq \varphi$ y $\varphi \leq \psi$, luego $\exists g : C \to B$ y $h : B \to C$ tales que

$$\psi = \varphi g, \tag{*}$$

$$\varphi = \psi g \tag{**}$$

De (*) se sigue que

$$\begin{split} \psi\left(C\right) &= \varphi\left(g\left(C\right)\right) \subseteq \varphi\left(B\right) \\ \Longrightarrow & \operatorname{Im}\left(\psi\right) \subseteq \operatorname{Im}\left(\varphi\right). \end{split}$$

Análogamente, de (**) se obtiene que $Im(\varphi) \subseteq Im(\psi)$.

Notemos que si $B = \emptyset$, entonces $Im(\psi) = Im(\varphi) = \emptyset$, y por lo tanto $C = \emptyset$, con lo cual $\varphi = \emptyset_A = \psi$; similarmente en caso que $C = \emptyset$. Por lo tanto en adelante supondremos que $B \neq \emptyset \neq C$.

Afirmamos que $\forall c \in C \exists ! b_c \in B \text{ tal que } \psi(c) = \varphi(b)$. En efecto la existencia se sigue de que en partícular $Im(\psi) \subseteq Im(\varphi)$, mientras que la

unicidad se sigue del hecho que φ es un mono y por tanto inyectiva (ver Lema 1). Lo previamente demostrado garantiza que la aplicación

$$g: C \to B$$

 $c \mapsto b_C$

está bien definida y satisface que $\psi = \varphi g$. En forma análoga, empleando ahora que $Im(\psi) \supseteq Im(\varphi)$ y el que ψ es un mono en Sets, se verifica que $\exists \ h: B \to C$ tal que $\varphi = \psi h$ y así $\psi \simeq \varphi$ en $Mon_{Sets}(-, A)$.

La caracterización dada por (A) garantiza que la aplicación dada por

$$f: \overline{Mon_{Sets}(-, A)} \to \mathscr{P}(A)$$

 $[\varphi] \mapsto Im(\phi).$

está bien definida y es inyectiva. Más aún, f es biyectiva puesto que si $D \subseteq A$ e i es la inclusión conjuntista de B en A, entonces $i \in Mon_{Sets}(-,A)$. La inyectividad de f garantiza que la clase $\overline{Mon_{Sets}(-,A)}$ es un conjunto, puesto que $\mathscr{P}(A)$ lo es. Por tanto Sets es localmente pequeña.

Por su parte, el que $Mod\left(R\right)$ sea localmente pequeña se sigue de que si $M\in Mod\left(R\right)$, entonces

$$k_M: \overline{Mon_{Mod(R)}(-, M)} \to \overline{Mon_{Mod(R)}(-, M)}$$

 $[\varphi] \mapsto [\varphi]$

está bien definida y es inyectiva.