Data Structure

http://smartlead.hallym.ac.kr

Instructor: Jin Kim

010-6267-8189(033-248-2318)

jinkim@hallym.ac.kr

Office Hours:

Non Linear Data Structure

- Data structure we will consider this semister:
 - Tree
 - Binary Search Tree
 - Graph
 - Weighted Graph
 - Sorting

Balanced Search Tree

Balanced Search Trees 균형 탐색 트리

Balanced Search Trees

◆ Binary Search Tree(이진탐색트리)

Balanced Search Trees(균형탐색트리)

- ◆ Balanced search tree: A search-tree data structure for which a height of O(lgn) is guaranteed when implementing a dynamic set of n items. (탐색시 탐색시간 O(lgn) 을 보장)
- Examples:
 - AVL Tree
 - 2-3-4 Tree
 - B Tree
 - Red-black Tree

1. What is a Balanced Binary Search Tree?

◆ A balanced search tree is one where all the branches from the root have almost the same height.(균형탐색트리는 어느 단말에서도 루트까지 높이가 거의같은 트리)

balanced

unbalanced

- ◆ As a tree becomes more unbalanced, search running time decreases from O(log n) to O(n)(불균형이진탐색트리는 탐색시간이 O(n))
 - because the tree shape turns into a list

 We want to keep the binary search tree balanced as nodes are added/removed, so searching/insertion remain fast.

Unbalanced Search Trees

(불균형탐색트리)

Skewd bst(경사이진트리)

이진 탐색트리

- □ 이진 탐색 트리의 문제점
 - O 이진 탐색 트리에는 새로운 노드들이 무작위로 삽입/삭제가 됨
 - 이때, 다음 그림과 같이 탐색 트리가 한 방향으로 기울어질 수 있음
 - 이진 탐색 트리가 한 방향으로 기울어지면 비교횟수가 평균 n/2회로 증가하여 선형 탐색의 경우처럼 됨
 - → 이러한 문제를 해결하기 위해 <u>균형 탐색트리(balanced search tree)</u>가 사용

Balanced Search Trees

◆ Balanced(균형잡힌)

Why care about advanced implementations?

Same entries, different insertion sequence (같은데이터, 다른 입력순서)

- (a) Skewd bst 불균형 (b) complete bst
- → Not good! Would like to keep tree balanced.

순서

- 1 AVL 트리
- 2 스플레이 트리
- 3 2-3 트리
- 4 2-3-4 트리
- 5 레드-블랙 트리

AVL Trees (AVL 트리)

AVL Trees

- First-invented self-balancing binary search tree (최초의 균형탐색트리 시도)
- Named after its two inventors,
 - 1. G.M. Adelson-Velsky and
 - 2. E.M. Landis,
 - published it in their 1962 paper "An algorithm for the organization of information."

AVL Trees: Formal Definition

- 1. All empty trees are AVL-trees
- 2. If T is a non-empty binary search tree with T_L and T_R as its left and right sub-trees, then T is an AVL tree iff
 - 1. T_L and T_R are AVL trees
 - 2. $|h_L h_R| \le 1$, where h_L and h_R are the heights of T_L and T_R respectively

AVL Trees

- AVL trees are height-balanced binary search trees
- ◆ Balance factor(균형인수) of a node = height(left subtree) height(right subtree)
- ◆ An AVL tree can only have balance factors of −1, 0, or 1 at every node
- For every node, heights of left and right subtree differ by no more than 1

An AVL Tree

Red numbers are Balance Factors

AVL Trees: Examples and Non-Examples

Red numbers are Balance Factors

Good News about AVL Trees

- ◆ Can prove: Height of an AVL tree of N nodes is always O(log N) (높이는 항상)
- How? Can show:
 - Height $h = 1.44 \log(N)$
 - Prove using recurrence relation for minimum number of nodes
 S(h) in an AVL tree of height h:
 - S(h) = S(h-1) + S(h-2) + 1
 - Use Fibonacci numbers to get bound on S(h) bound on height h

An AVL Tree

Red numbers are Balance Factors

Good and Bad News about AVL Trees

- Good News:
 - Search takes O(h) = O(log N)
- Bad News
 - Insert and Delete may cause the tree to be unbalanced!

Restoring Balance in an AVL Tree

- ◆ Problem: Insert may cause balance factor to become 2 or −2 for some node on the path from root to insertion point(AVL트리에 원소삽입하면 AVL트리가 아니게 될 수 있음)
- Idea: After Inserting the new node
 - 1. Back up towards root updating balance factors along the access path
 - 2. If Balance Factor of a node = 2 or –2, adjust the tree by rotation around deepest such node.

Restoring Balance: Example

- After Inserting the new node
 - 1. Back up towards root updating heights along the access path
 - 2. If Balance Factor of a node = 2 or -2, adjust the tree by rotation around deepest such node.

◆ Is this an AVL Tree?(yes!)

Which is an AVL Tree?

Is this an AVL Tree?(yes!)

◆ Is this an AVL Tree?(No!)

• No

• Did this fix the problem?

◆ Is this an AVL Tree?(No!)

Correcting Imbalance(불균형 해소)

- 1. After every insertion
- 2. Check to see if an imbalance was created.
 - All you have to do backtrack(단말에서루트로 이동함) up the tree
- 3. If you find an imbalance, correct it.
- 4. As long as the original tree is an AVL tree, there are only 4 types of imbalances that can occur.

Insertions in AVL Trees

Let the node that needs rebalancing be α .

There are 4 cases:

Outside Cases (require single rotation):

- 1. Insertion into left subtree of left child of α . (LL)
- 2. Insertion into right subtree of right child of α .(RR)

Inside Cases (require double rotation):

- 3. Insertion into right subtree of left child of α .(RL)
- 4. Insertion into left subtree of right child of α .(LR)

The rebalancing is performed through four separate rotation algorithms.

AVL Insertion: Left-Left

AVL Insertion: Outside Case

AVL Insertion: Outside Case

Single right rotation

Outside Case Completed

AVL property has been restored!

AVL Insertion: Right-Right

Exact same process as LL

AVL Insertion: Right-Right

Exact same process as LL

Single left rotation

Exact same process as LL

AVL Insertion: Inside Case

AVL Insertion: Left-Right

AVL Insertion: Right-Left

AVL Insertion: Double Rotation 이중회전

AVL Insertion: Inside Case

AVL Insertion: Inside Case

Double rotation: first rotation(첫번째회전)

Double rotation: second rotation(두번째회전)

Double rotation : second rotation

right rotation complete

AVL Trees

(Adelson – Velskii – Landis)

AVL tree: yes

AVL Trees

AVL tree: No

Example 1

Single rotations: insert 14, 15, 16, 13, 12, 11, 10

• First insert 14 and 15:

• Now insert 16.

Single rotations:

• Inserting 16 causes AVL violation:

• Need to rotate.

Single rotations:

• Inserting 16 causes AVL violation:

Need to rotate.

Single rotations:

• Rotation type:

Single rotations:

• Rotation restores AVL balance:

Single rotations:

• Now insert 13 and 12:

• AVL violation - need to rotate.

Single rotations:

• Rotation type:

Single rotations:

• Now insert 11.

Single rotations:

• AVL violation – need to rotate

Single rotations:

Single rotations:

• Now insert 10.

Single rotations:

• AVL violation – need to rotate

Single rotations:

Rotation type:

Single rotations:

• AVL balance restored.

Continue

Double rotations: insert 1, 2, 3, 4, 5, 7, 6, 9, 8

• First insert 1 and 2:

Double rotations:

• AVL violation - rotate

Double rotations:

• AVL violation - rotate

Double rotations:

• AVL balance restored:

• Now insert 3.

Double rotations:

• AVL violation – rotate:

Double rotations:

• AVL violation – rotate:

Double rotations:

• AVL balance restored:

• Now insert 4.

Double rotations:

• AVL violation - rotate

Double rotations:

• Rotation type:

• Now insert 5.

Double rotations:

• AVL violation – rotate.

Single rotations:

• Rotation type:

Single rotations:

• AVL balance restored:

• Now insert 7.

Single rotations:

• AVL violation – rotate.

Single rotations:

• Rotation type:

Double rotations:

• AVL balance restored.

• Now insert 6.

Double rotations:

• AVL violation - rotate.

Double rotations:

• Rotation type:

Double rotations:

• AVL balance restored.

• Now insert 9 and 8.

Double rotations:

• AVL violation - rotate.

Double rotations:

• Rotation type:

Final tree:

• Tree is almost perfectly balanced

Deletion(삭제)

Deletion is similar to insertion

- First do regular BST deletion keeping track of the nodes on the path to the deleted node
- After the node is deleted, simply backup the tree(이진트리재구성) and update balance factors
 - If an imbalance is detected, do the appropriate rotation to restore the AVL tree property
 - You may have to do more than one rotation as you backup the tree

Deletion Example (1)

Initial AVLTree

Tree after deletion of 20

Now, backup the tree updating balance factors

Idenfitied 10 as the pivot

Classify the type of imbalance

AVL Tree after LL Correction

- LL Imbalance:
 - bf of P(10) is 2
 - bf of L(4) is 0 or 1

Deletion Example (2)

Back 2 10 Rotate 5 0
up

-1 4 2 0 4 10 0

AVL Tree after LL Correction

Initial AVLTree

Tree after deletion of 20

Now, backup the tree updating balance factors

Idenfitied 10 as the pivot

Classify the type of imbalance

- LR Imbalance:
 - bf of P(10) is 2
 - bf of L(4) is -1

Deletion Example (3)

Now, backup the tree updating balance factors

Deletion Example (3) - continued

Classify the type of imbalance

- RR Imbalance:
 - bf of P(20) is -2
 - bf of R(30) is 0 or -1

Is this an AVL tree?

Continue backing up the tree updating balance factors

Deletion Example (3) - continued

Classify the type of imbalance

- LL Imbalance:
 - bf of P(15) is 2
 - bf of L(5) is 0 or 1

Example 2

• Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL tree

• Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL tree

• Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL

• Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL

• Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL

• Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL

• Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL

• Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL

Now insert 12

Now insert 12

Now the AVL tree is balanced.

Second rotation(두번째회전)

Now insert 8

Now insert 8

First rotation(첫번째회전)

Now the AVL tree is balanced.

Second rotation(두번째회전)

• Now remove 53(53제거)

Now remove 53, unbalanced

Balanced! Remove 11

• Remove 11, replace it with the largest in its left

branch

Remove 8, replace it with the largest in its left

branch

Remove 8, unbalanced

Remove 8, unbalanced

First rotation(첫번째회전)

· Balanced!!

Second rotation(두번째회전)

Example 3

Example

• Build an AVL tree with the following values: 15, 20, 24, 10, 13, 7, 30, 36, 25

, **20**, **24**, 10, 13, 7, 30, 36, 25

15, 20, 24, **10**, **13**, 7, 30, 36, 25

15, 20, 24, 10, 13, 7, 30, 36, 25

15, 20, 24, 10, 13, 7, <mark>30, 36</mark>, 25

15, 20, 24, 10, 13, 7, 30, 36, 25

15, 20, 24, 10, 13, 7, 30, 36, <mark>25</mark>

Remove 24 and 20 from the AVL tree.

Search (Find)

• Since AVL Tree is a BST(이진탐색트리), search algorithm is the same as BST search and runs in guaranteed O(logn) time

Pros and Cons of AVL Trees 장점/단점

Arguments for AVL trees: 삽입,삭제,탐색 모두 O(log N) 보장

- Search is O(log N) since AVL trees are always balanced.
- 2. Insertion and deletions are also O(logn)
- 3. The height balancing adds no more than a constant factor to the speed of insertion.

Arguments against using AVL trees:

- 1. Difficult to program & debug프로그램하기어려움; more space for balance factor.
- 2. Asymptotically faster but rebalancing costs time. 균형유지비용 공간소모
- 3. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).
- May be OK to have O(N) for a single operation if total run time for many consecutive operations is fast (e.g. Splay trees).

Splay Trees (스플레이트리)

splay: 벌리다. 펼치다.

Motivation for Splay Trees

Problems with AVL Trees

- extra storage/complexity for height fields
- ugly delete code

Solution: splay trees

- blind adjusting version of AVL trees
- amortized time for all operations is O(log n)
- worst case time is O(n)
- insert/find always rotates node *to the root*!

Splay Trees

- Splay trees are binary search trees (BSTs) that:
 - ◆ Are not perfectly balanced all the time (완전균형이 아님)
 - ◆ Allow search and insertion operations to try to balance the tree so that future operations may run faster (삽입,삭제원소를 루트로 가져와 다음 탐색이 빠르도록 함)

• Based on the heuristic:

- If X is accessed once, it is likely to be accessed again. (한번 탐색되었던 원소는 다시 탐색되기 쉽다는 가정을 기반)
- After node X is accessed, perform "splaying" operations to bring X up to the root of the tree.
- Do this in a way that leaves the tree more or less balanced as a whole.

Motivating Example

Initial tree

- Not only splaying with 12 makes the tree balanced, subsequent accesses for 12 will take O(1) time.
- Active (recently accessed) nodes will move towards the root and inactive nodes will slowly move further from the root

Splay Tree Idea

Splaying Cases

Node being accessed (n) is:

- Root
- Child of root
- Has both parent (p) and grandparent (g)
 - Zig-zig pattern: $g \rightarrow p \rightarrow n$ is left-left or right-right
 - Zig-zag pattern: $g \rightarrow p \rightarrow n$ is left-right or right-left

Access root: Do nothing (that was easy!)

Access child of root: Zig (AVL single rotation)

Access (LR, RL) grandchild:

Zig-Zag (AVL double rotation)

Access (LL, RR) grandchild:

Zig-Zig

Splaying Example: Find(6)

... still splaying ...

... 6 splayed out!

Splay it Again, Sam! Find (4)

Find(4)

... 4 splayed out!

Why Splaying Helps

- If a node n on the access path is at depth d before the splay, it's at about depth d/2 after the splay
 - Exceptions are the root, the child of the root, and the node splayed
- Overall, nodes which are below nodes on the access path tend to move closer to the root
- ◆ Splaying gets amortized O(log n) performance. (Maybe not now, but soon, and for the rest of the operations.)

Splay Tree: Splaying

CASE: Zig-zig

 Work out an Example: Insert node 1 in the following Splay tree

Delete Example

Splay Tree: Remove

Example: Remove 6

Do it yourself exercise

- ◆ Insert the keys 1, 2, ..., 7 in that order into an empty splay tree.(1~7까지 차례로 원소를 삽입하면 어떤 스플레이트리가 만들어지는가?)
- What happens when you access "3"?(Final exam)

스플레이 트리

- ◆ 스플레이 트리의 시간 복잡도
 - ◆ 각 연산(탐색, 삽입, 삭제, 조인, 분할)은 O(logn) 상환 시간에 수행할 수 있음
 - ◆ 상환 시간(amortized time)
 - 일련의 연산 수행에서 시간이 많이 걸리는 연산의 시간을 적게 걸리는 연산에 전가시킨 뒤의 시간
 - 개개 연산의 최악의 경우에 걸리는 시간이 짧아짐
 - ◆ m번의 삽입, 삭제 연산을 수행 → O(mlogn) 상환 시간

Summary of Splay Trees

- Examples suggest that splaying causes tree to get balanced.
- Result of Analysis: Any sequence of M operations on a splay tree of size N takes O(M log N) time. So, the amortized running time for one operation is O(log N).
- This guarantees that even if the depths of some nodes get very large, you cannot get a long sequence of O(N) searches because each search operation causes a rebalance.
- Without splaying, total time could be O(MN).

감사합니다.

