

Nombre:	Calificación
Apellidos:	
DNI/Alias	
Titulación	

1	2	3	4	5	6	7	8	9	10

Examen Enero (180 minutos): Jueves 11 de Enero de 2024

Instrucciones: Se deberá entregar únicamente este block con seis hojas con la solución del ejercicio. Podéis utilizar todas la hojas de sucio que deseéis pero sólo recogeré este block. Deberéis escribir tanto vuestro nombre como el alias con el que queráis que aparezca vuestra calificación. Podéis usar los enunciados de apartados no resueltos para resolver otros siempre que no hagáis bucles. Los móviles deberán estar apagados durante la realización del exámen.

Ejercicio. Consideramos los polinomios $f_1 := \mathbf{t}^4 - 10\mathbf{t}^2 - 4\mathbf{t} + 6 \in \mathbb{Q}[\mathbf{t}]$ y $f_2 := \mathbf{t}^2 + 1 \in \mathbb{Q}[\mathbf{t}]$. Sea L_1 el cuerpo de descomposición de f_1 sobre \mathbb{Q} y L el cuerpo de descomposición de f_1f_2 sobre \mathbb{Q} . Denotamos $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ las raíces de f_1 e $\mathbf{i} := \sqrt{-1}$ una de las raíces de f_2 .

- (1) Demostrar que tanto f_1 como su resolvente $g_1 := \mathbf{t}^3 + 20\mathbf{t}^2 + 76\mathbf{t} + 16$ son polinomios irreducibles de $\mathbb{Q}[\mathbf{t}]$.
- (2) Demostrar que el grupo de Galois de f_1 es \mathcal{A}_4 . Ayuda: puede ser útil saber que $\Delta(f_1) = 473344 = 2^8 \cdot 43^2$.
- (3) Demostrar que A_4 tiene exactamente un elemento de orden 1, tres elementos de orden 2 y ocho elementos de orden 3.
- (4) Demostrar que $L_1 = \mathbb{Q}(\alpha_i, \alpha_j)$ para cualquier par de raíces α_i, α_j de f y que las raíces de g_1 son $\beta_1 := -(\alpha_1 + \alpha_2)^2$, $\beta_2 := -(\alpha_1 + \alpha_3)^2$ y $\beta_3 := -(\alpha_1 + \alpha_4)^2$. Ayuda: Puede ser útil tener en cuenta que el coeficiente del monomio \mathbf{t}^3 de f_1 es cero.
- (5) Demostrar que A_4 tiene exactamente un subgrupo de orden 1, tres subgrupos de orden 2, cuatro subgrupos de orden 3, un único subgrupo de orden 4 y un subgrupo de orden 12. Determinar cuáles de ellos son normales.
- (6) Calcular todas las subextensiones de $L_1|\mathbb{Q}$, indicar un sistema finito de generadores para cada una de ellas y explicar cuáles son de Galois. Ayuda: Puede ser útil demostrar que $\mathbb{Q}(\alpha_1 + \alpha_2)|\mathbb{Q}(\beta_1)$ es una extensión de grado 2.
- (7) Demostrar que todas las raíces de f_1 son reales. Ayuda: Puede ser útil utilizar el teorema de Bolzano.
- (8) Demostrar que el grupo de Galois $G(L : \mathbb{Q})$ es isomorfo a $\mathcal{A}_4 \times \mathbb{Z}_2$ y que $\mathcal{A}_4 \times \mathbb{Z}_2$ tiene exactamente un elemento de orden 1, siete elementos de orden 2 y ocho elementos de orden 3 y ocho elementos de orden 6.
- (9) Demostrar que $A_4 \times \mathbb{Z}_2$ tiene exactamente un subgrupo de orden 1, siete subgrupos de orden 2, siete subgrupos de orden 4, un subgrupo de orden 8, cuatro subexpuso de orden 3, cuatro subgrupos de orden 6, un subgrupo de orden 12 y un subgrupo de orden 24. Determinar cuáles de ellos son normales.
- (10) Calcular todas las subextensiones de $L|\mathbb{Q}$, indicar un sistema finito de generadores para cada una de ellas y explicar cuáles son de Galois. Ayuda: Puede ser útil demostrar que $\mathbb{Q}((\alpha_1 + \alpha_2)\mathbf{i})|\mathbb{Q}(\beta_1)$ es una extensión de grado 2.