NATIONAL INSTITUTE OF TECHNOLOGY CALICUT DEPARTMENT OF CHEMICAL ENGINEERING

MONSOON SEMESTER 2014

CH3001 CHEMICAL ENGINEERING THERMODYNAMICS II

TEST I

Max marks: 20

- 1. Using the Maxwell equation $\left(\frac{\partial T}{\partial v}\right)_s = -\left(\frac{\partial P}{\partial s}\right)_v$ and $\left(\frac{\partial x}{\partial y}\right)_z \cdot \left(\frac{\partial y}{\partial z}\right)_x \cdot \left(\frac{\partial z}{\partial x}\right)_y = -1$, Derive the remaining Maxwell relations. (4)
- 2. The P, v, T relation of a real gas is represented with reasonable accuracy by the relation $v = \frac{RT}{P} + b - \frac{a}{RT}$ where a and b are constants. For this gas, find the change in enthalpy and entropy along an isothermal path between pressures P₁ and P₂
- 3. Using Lee Kesler data, estimate the enthalpy and entropy departures for ethane at 215.5°C and 39.07 bar. (For ethane, $T_c = 305.43$ K and $P_c = 48.84$ bar, $\omega = 0.099$) (2)
- 4. Why are the departure functions important in the estimation of thermodynamic properties of a real gas? (1)
- 5. What is the change in entropy when $0.7~\text{m}^3$ of CO_2 and $0.3~\text{m}^3$ of N_2 , each at 1 bar and $25^\circ C$ blend to form a homogeneous gas mixture at the same conditions? Assume ideal gases.
- 6. At 303 K and 1 bar, the volumetric data for liquid mixtures of benzene (1) and cyclohexane (2) are represented by the simple quadratic expression $V = 109.4 - 16.8x_1 - 2.64x_1^2$, where x_1 is the mole fraction of benzene and V has units of cm³/mol. Find expressions for \overline{V}_1 and \overline{V}_2 at 303 K and I bar.
- 7. Determine the fugacity (MPa) of acetylene at

Time: I hour

Use the virial equation. Data: T_c = 308.3 K, P_c = 6.139, ω = 0.187, Z_c = 0.271, P^{sat} = 1.387 MPa Satd Liquid volume $V^{\text{sat,L}} = V_c Z c^{(1-Tr)^{0.2857}}$

$$B^{\circ} = 0.083 - \frac{0.422}{T_{\kappa}^{1.6}}$$
 $B^{\dagger} = 0.139 - \frac{0.172}{T_{\kappa}^{4.2}}$

(3).

Thermodynamic properties of real gases

