

SEQUENCE LISTING

<110> Brennan, Thomas J.

<120> TRANSGENIC MICE CONTAINING DISRUPTIONS
IN GENES ENCODING A2D2 CALCIUM ION CHANNEL SUBUNIT PROTEINS

<130> R-10

<150> US 60/299,668
<151> 2001-06-19

<150> US 60/282,685
<151> 2001-04-09

<150> US 60/254,802
<151> 2000-12-11

<160> 4

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 2552
<212> DNA
<213> Mus musculus

<400> 1
aactcttct acacccgaaa ggaatcttat gactatcagg cagcctgtgc ccctcagcct 60
cctggaaacc tgggtgctgc accccggggt gtcttgc ccaccattgc agatttcctt 120
aacttggcct ggtggacctc tgctgccccc tggccttat tccagcagct actctatgg 180
ctcatctatc acagctggtt ccaggcagac ccggcagaag ctgagggcag ccccgagacg 240
cgcgagagca gctgcgtcat gaaacagacc cagtaactact tcggctcggt gaacgcattcc 300
tataatgccca tcattgactg cgaaaaactgc agcaggctgt tccatgcgcga gagactgacc 360
aacaccaatc tcctgttcgt ggtggccgag aagccgctgt gcagccagtgc cgaggcgggc 420
cggtctgtc agaaggagac acactcgac ggcccgagc agtgtgagct ggtgcagaga 480
ccgagatacc gaagaggtcc gcacatctgt tttgactaca atgcgacggaa agataacctca 540
gactgtggcc gcggagccctc cttccctccg tcgctggcgc tcttggtttc ctgcagctt 600
ttgtctctcc tgggcctgcc acctcgcccg caggctcaag tccactcctt cgctgcctct 660
cgccacctct gagcggaccca cacacacaca tcatacccccc gccttgcctt cctagccttt 720
cgctcaccc cccattccac attccccat cttagcctt ggccactctc tcctgaagga 780
cctgggtccc ttccccccga gcctgtgcct tggggcaggg gaacccaaa gtaagggtgcc 840
atgggttttgcactcaaga tttagctcac ctttgcactg tccaagtgc cgcagtcctc 900
agactcatcc cctgtggctaa ggacaggagg ccactagtagc tgatgcacaaa ccaggcctcc 960
accgacccac ctgcctggag atttcctcta tgttagcaac cctgcaactg ctgggcaccc 1020
ctaactggcc ctttggccccc acccaagccc aaacttaccc tctctggggg aaaaaaaaaaag 1080
gaaagatggtaatagtgaga gattcgaaaaa gcacccccc cccattgggt tctggccctt 1140
tcaggctaca accccccccagc cttgcagggt tcagaacagt ctcacaatga catcagttta 1200
gacacatgcc atatacactt ggatctctga gagcagaaaac ccaactctca cttagacatac 1260
ctgtgatggaa acacacaaaac agacacgcac catgggggtt ggcacccaaa gccttacaca 1320
aggcggatgtcataatgaaagg ggttggcctg tgggttccat ctctgcac ccctgcctct 1380
actctgagat gcagcctggc tgatcctccc atctctaaaa ctgaatgtca aaccgtgcca 1440
aatgctgggg ggggggggag acctctctgt ttcaccccta gccaccagtgc tccccaaagtgc 1500
cccctcaccc tgccagggtgc tcattgttaac catcgccac cagtgccgg ccccttagtag 1560
gaccacacat cactgcctga actccttgg cagaagaacc ccaccagaca ttgagacatt 1620
gtatttgcc ttagcaggaa tgagttggc tctctggct gggccatccc atccccaaatc 1680
tggttctgc acactcaggc ctaattccct ctgcacacac acacacacac acacacacac 1740
acacacacac acacacacac agtccctgccc cctaggaggc caaattaccc ctcccttgct 1800
gaacacaccc ttgcaccatg cacatgtcta accaaccgtac ctgcacacac agaggctgaa 1860

cctgggacac atctcttac acctttcatt ctgtcatttc tcccaaaggc atcgtaactt 1920
gggggcagg aggggactga ggggcagggg ggaggggtgt agctgtgagg ctcagatgga 1980
ctgggaggag gggggagggt gatacattaa ttaatggctt cgtaattaa tgtcatgttg 2040
cttgtgctt tctcagtgtg tgtatggcc atgcccagtg ctggtgacag ggtgggtatc 2100
catgatgtgt gcccagcctg gatgtcagct gtgcctgtg ggggcgtgtg tctaactgt 2160
gttagtca gtagtcaacg gagaatataa aaaaaaaaaa aagaaacaaa cgatacaga 2220
aaaataaatg tatatttaa gtttaagac aaatgaaacc agacaaaaca atccccatca 2280
ggtagttgtc caaccccaag ctgggttcaa cccttcatt acccacctga cctagctgtc 2340
cccttactgt gggctgggg acttggggc catttcctt gcccctttt tttgttgtta 2400
ttctatttt tacagacaag ttggaaaac aacagcgaca aaaaaaagtc gagaaactt 2460
gtaaaatatt gtgtgtgtga ttccctgtaa aatatttca aatggttat tacagaagat 2520
cagttattaa ataatgttca tatttcact tc 2552

<210> 2
<211> 223
<212> PRT
<213> Mus musculus

<400> 2
Asn Ser Phe Tyr Thr Arg Lys Glu Ser Tyr Asp Tyr Gln Ala Ala Cys
1 5 10 15
Ala Pro Gln Pro Pro Gly Asn Leu Gly Ala Ala Pro Arg Gly Val Phe
20 25 30
Val Pro Thr Ile Ala Asp Phe Leu Asn Leu Ala Trp Trp Thr Ser Ala
35 40 45
Ala Ala Trp Ser Leu Phe Gln Gln Leu Leu Tyr Gly Leu Ile Tyr His
50 55 60
Ser Trp Phe Gln Ala Asp Pro Ala Glu Ala Glu Gly Ser Pro Glu Thr
65 70 75 80
Arg Glu Ser Ser Cys Val Met Lys Gln Thr Gln Tyr Tyr Phe Gly Ser
85 90 95
Val Asn Ala Ser Tyr Asn Ala Ile Ile Asp Cys Gly Asn Cys Ser Arg
100 105 110
Leu Phe His Ala Gln Arg Leu Thr Asn Thr Asn Leu Leu Phe Val Val
115 120 125
Ala Glu Lys Pro Leu Cys Ser Gln Cys Glu Ala Gly Arg Leu Leu Gln
130 135 140
Lys Glu Thr His Ser Asp Gly Pro Glu Gln Cys Glu Leu Val Gln Arg
145 150 155 160
Pro Arg Tyr Arg Arg Gly Pro His Ile Cys Phe Asp Tyr Asn Ala Thr
165 170 175
Glu Asp Thr Ser Asp Cys Gly Arg Gly Ala Ser Phe Pro Pro Ser Leu
180 185 190
Gly Val Leu Val Ser Leu Gln Leu Leu Leu Leu Gly Leu Pro Pro
195 200 205
Arg Pro Gln Pro Gln Val His Ser Phe Ala Ala Ser Arg His Leu
210 215 220

<210> 3
<211> 200
<212> DNA
<213> Artificial Sequence

<220>
<223> Targeting vector

<400> 3
acgggttagg tcagagcctt ctagagcatg ccctgtgact atggatctct ccctgcattcc 60
ccaggttggc agattttca gtgaggtgga tgccaacctg atgctggcac tgtacaataa 120
ctccttctac acccgaaagg aatcctatga ctatcaggca gcctgtgccc ctcagcctcc 180

200

tggAACCTG GGTGCTGCAC

<210> 4

<211> 200

<212> DNA

<213> Artificial Sequence

<220>

<223> Targeting vector

<400> 4

ccagcagcta ctctatggtc tcatactatca cagctggttc caggcaggta agtagggttt 60
aggatgcttg gccccaaatc tgtgtccagg gcgggaacag atgctcgat cacaaggaga 120
gtggggctta gggctgcgcc aagctgaggc ggacgattgt ctgtgggcgg ggctgaggcg 180
tctggggcccc gcagaccgg 200