Econ 6190 Problem Set 5

Fall 2024

1. Consider a random variable \mathbb{Z}_n with the probability distribution

$$Z_n = \begin{cases} -n & \text{with probability } \frac{1}{n} \\ 0 & \text{with probability } 1 - \frac{2}{n} \\ 2n & \text{with probability } \frac{1}{n} \end{cases}$$

- (a) Does $Z_n \stackrel{p}{\to} 0$ as $n \to \infty$? Give your reasoning clearly.
- (b) Calculate $\mathbb{E}Z_n$. Does $\mathbb{E}Z_n \to 0$ as $n \to \infty$?
- (c) Calculate $var[Z_n]$.
- 2. Let X_n and Y_n be sequences of random variables, and let X be a random variable.
 - (a) If $X_n \stackrel{p}{\to} c$ and $X_n Y_n \stackrel{p}{\to} 0$, show $Y_n \stackrel{p}{\to} c$.
 - (b) If $X_n \stackrel{p}{\to} X$ and a_n is a deterministic sequence such that $a_n \to a$, show that $a_n X_n \stackrel{p}{\to} aX$.
 - (c) If $X_n \stackrel{p}{\to} 0$, show that $\frac{\sin X_n}{X_n} \stackrel{p}{\to} 1$.
- 3. Let X be a random variable and let A be a set in \mathbb{R} . Show that $\mathbb{E}[\mathbf{1}\{X \in A\}] = P\{X \in A\}$, where

$$\mathbf{1}\{X \in A\} = \begin{cases} 1 & \text{if } X \in A \\ 0 & \text{if } X \notin A \end{cases}.$$

- 4. Let $\{X_1 \dots X_n\}$ be random sample.
 - (a) Suppose X_i has pdf $f(x) = e^{-x+\theta} \mathbf{1}\{x \ge \theta\}$ for some constant θ . Show that

$$\min(X_1, X_2, \dots X_n) \stackrel{p}{\to} \theta.$$

(b) Suppose X_i is $U[0, \theta]$ for some constant $\theta > 0$. Show that

$$\max(X_1, X_2, \dots X_n) \stackrel{p}{\to} \theta.$$

5. [Hansen 7.6] Take a random sample $\{X_1, ..., X_n\}$. Which of the following statistics converge in probability by the weak law of large numbers and continuous mapping theorem? For each, which moments are needed to exist?

1

- (a) $\frac{1}{n} \sum_{i=1}^{n} X_i^2$,
- (b) $\frac{1}{n} \sum_{i=1}^{n} X_i^3$,
- (c) $\max_{i \le n} X_i$,
- (d) $\frac{1}{n} \sum_{i=1}^{n} X_i^2 \left(\frac{1}{n} \sum_{i=1}^{n} X_i\right)^2$,
- (e) $\frac{\sum_{i=1}^{n} X_i^2}{\sum_{i=1}^{n} X_i}$ (assuming $\mathbb{E}X > 0$),
- (f) $\mathbf{1}\{\frac{1}{n}\sum_{i=1}^{n}X_{i}>0\},$
- (g) $\frac{1}{n} \sum_{i=1}^n X_i Y_i$.
- 6. [Hansen 7.7] A weighted sample mean takes the form $\bar{X}_n^* = \frac{1}{n} \sum_{i=1}^n w_i X_i$ for some non negative constants w_i satisfying $\frac{1}{n} \sum_{i=1}^n w_i = 1$. Assume X_i is i.i.d.
 - (a) Show that \bar{X}_n^* is unbiased for $\mu = \mathbb{E}[X]$,
 - (b) Calculate var (\bar{X}_n^*) ,
 - (c) Show that a sufficient condition for $\bar{X}_n^* \stackrel{p}{\to} \mu$ is that $n^{-2} \sum_{i=1}^n w_i^2 \to 0$,
 - (d) Show that a sufficient condition for the condition in part (c) is $\frac{\max_{i \leq n} w_i}{n} \to 0$ as $n \to \infty$.

$$\leq \frac{2}{n} < \delta$$
 when $n > \frac{2}{\delta}$

then we know $z_n \stackrel{\rho}{\longrightarrow} 0$

(b).
$$E Z_n = -n \cdot \frac{1}{n} + 0 \cdot \left(1 - \frac{2}{n}\right) + 2n \cdot \frac{1}{n}$$

= $-1 + 2 = 1 \neq 0$ as $n \rightarrow \infty$

(c). Var
$$Z_n = E Z_n^2 - (E Z_n)^2$$

$$E Z_n^2 = n^2 \cdot \frac{1}{n} + 0 \cdot (E Z_n) + 4n^2 \cdot \frac{1}{n}$$

$$= 5n$$

Var Zn = 5n-1

2. (9) Let
$$Z_n = Y_n - X_n$$
, then $Y_n = X_n + Z_n$

$$Y_n = X_n + Z_n \xrightarrow{P} \text{plim}(X_n) + \text{plim}(Z_n)$$

$$= \text{plim}(X_n) + \text{plim}(Y_n - X_n)$$

$$= C + O = C$$

(b).
$$a_n \rightarrow a \Rightarrow a_n \xrightarrow{p} a$$

Since $x_n \xrightarrow{p} x$ and $a_n x_n$ is continuous in both a_n and x_n , then
$$a_n \times n \xrightarrow{p} a \times$$

(c) firstly
$$g(x) = \frac{\sin x}{x}$$
 is continuous at $x = 0$

secondly since
$$x_n \stackrel{\beta}{\rightarrow} 0$$

when $x_n \stackrel{\beta}{\rightarrow} 0$. $\frac{\sin x_n}{x_n} \stackrel{\beta}{\rightarrow} \frac{\cos 10}{1} = 1$

3. $E[1 \mid x \in A \mid] = 1 \cdot P(x \in A) + 0 \cdot P(x \notin A)$
 $= P(x \in A)$

4. (a). Let $Y_n = \min(X_1, \dots, X_n)$
 $P(\{Y_n - 0 \mid > \delta\}) = (-P(0 - \delta \leq Y_n \leq 0 + \delta))$
 $= 1 - F_{Y_n}(0 + \delta) + F_{Y_n}(0 - \delta)$
 $P(\min(X_1, \dots, X_n) \leq C)$
 $= 1 - P(\max(X_1, \dots, X_n) > C)$
 $= 1 - P(x_1 > C) \cdot P(x_2 > C) \cdot P(x_n > C)$
 $= 1 - \prod_{i=1}^{n} P(x_i > C)$
 $= 1 - \prod_{i=1}^{n} (-P(x_i \leq C))$
 $P(X_i \leq C) = \int_{-\infty}^{C} f(x) dx$
 $= \int_{0}^{C} e^{-x + \theta} dx$
 $= e^{\theta} (-e^{-c} + e^{-\theta}) [if c \geq \theta]$
 $= 1 - e^{\theta - C}$

then $P(\min(x_1, \dots, x_n) \leq C) [F_{Y_n}(C)]$

4. (a).

Than
$$F_{1n}(\theta-8)=0$$
 (since $\theta-8<\theta$)

$$F_{1n}(\theta+8)=1-e^{-nS} \rightarrow 1$$

then $P(|Y_{n}-\theta|>8) \rightarrow 0 \quad \#$

(b). Let $Z_{n}=\max(X_{1},X_{2},...,X_{n})$

$$P(|Z_{n}-\theta|>8)=1-F_{2n}(\theta+8)+F_{2n}(\theta-8)$$

$$F_{2n}(c)=P(\max(X_{1},...,X_{n})\leqslant c)$$

$$=\prod_{i=1}^{n}P(X_{i}\leqslant c)$$

$$=\frac{n}{i^{2}}\left(\frac{c}{\theta}\right) \quad \text{if } c\in[\theta,\theta]$$

Since $\theta+8>\theta$, then $F_{2n}(\theta+8)=1$

$$F_{2n}(\theta-8)=\left(\frac{\theta-8}{\theta}\right)^{n} \rightarrow 0 \quad (as n\to\infty)$$

$$P(|Z_{n}-\theta|>8) \rightarrow 0$$

then $Z_{n}\xrightarrow{P}\theta$.

#.

5.

The WLLN (or specifically, Khinchine's Weak Law of Large Numbers) says $\frac{1}{n}\sum_{i=1}^{n}X_{i}\stackrel{p}{\to}\mathbb{E}[X]$ if $\{X_i, i=1...n\}$ are i.i.d and $\mathbb{E}|X_i|=\mathbb{E}|X|<\infty$. Hence

- (a) $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} \stackrel{p}{\to} \mathbb{E}[X^{2}]$ if $\mathbb{E}X_{i}^{2} < \infty$. That is, we require the second moment to be finite (b) $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{3} \stackrel{p}{\to} \mathbb{E}[X^{3}]$ if $\mathbb{E}|X_{i}|^{3} < \infty$. We need third moment to be finite.
- (c) $\max_{i < n} X_i$ can not be written as an average and does not converge. If the support of X_i is bounded, say $|X_i| < \infty$, then for sure $\max_{i \le n} X_i$ is bounded too. In this case, we can say $\max_{i \le n} X_i = O_p(1).$
 - (d) If $\mathbb{E}X_i^2 < \infty$,

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 \stackrel{p}{\to} \mathbb{E}[X^2], \frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{p}{\to} \mathbb{E}[X]$$

and by continuous mapping theorem: $\frac{1}{n} \sum_{i=1}^{n} X_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} X_i\right)^2 \stackrel{p}{\to} \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \text{var}(X)$

(e) Similarly, if $\mathbb{E}X_i^2 < \infty$ and by WLLN and CMT:

$$\frac{\sum_{i=1}^{n} X_{i}^{2}}{\sum_{i=1}^{n} X_{i}} = \frac{\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}}{\frac{1}{n} \sum_{i=1}^{n} X_{i}} \xrightarrow{p} \frac{\mathbb{E}[X^{2}]}{(\mathbb{E}[X])^{2}},$$

provided $\mathbb{E}X > 0$

(f) If $\mathbb{E}|X_i| < \infty$, $\frac{1}{n} \sum_{i=1}^n X_i \to \mathbb{E}X$. Note the function $1\{u>0\}$ is continuous for all points except 0. By CMT (specifically in this case, Slutsky's Theorem), as long as $\mathbb{E}X \neq 0$,

$$\mathbf{1}\left\{\frac{1}{n}\sum_{i=1}^{n}X_{i}>0\right\} \stackrel{p}{\to} \mathbf{1}\left\{\mathbb{E}X>0\right\}$$

(g) $\frac{1}{n}\sum_{i=1}^n X_i Y_i \stackrel{p}{\to} \mathbb{E} XY$ if $\mathbb{E}|XY| < \infty$. Since by Cauchy-Schwarz inequality

$$\mathbb{E}|XY| \le \sqrt{\mathbb{E}X^2}\sqrt{\mathbb{E}Y^2}.$$

a sufficient condition for $\mathbb{E}|XY| < \infty$ is $\mathbb{E}X^2 < \infty$ and $\mathbb{E}Y^2 < \infty$. That is, we require both X and Y to have finite second moment.

6

(a) Note $\mathbb{E}\bar{X}_n^* = \mathbb{E}\frac{1}{n}\sum_{i=1}^n w_i X_i = \frac{1}{n}\sum_{i=1}^n w_i \mathbb{E}X_i = \frac{1}{n}\sum_{i=1}^n w_i \mu = \mu \frac{1}{n}\sum_{i=1}^n w_i = \mu \cdot 1 = \mu$, where the first equality is by definition of \bar{X}_n^* , the second equality holds by linearity of expectations and because w_i , $i = 1 \dots n$ are constants, the third equality holds by random sampling assumption $\mathbb{E}X_i = \mathbb{E}X = \mu$, the fourth equality holds since μ is a constant so we can take it out of the summation, and fifth equality holds by assumption $\frac{1}{n} \sum_{i=1}^{n} w_i = 1$. Thus \bar{X}_n^* is unbiased.

$$\operatorname{var}\left(\bar{X}_{n}^{*}\right) = \operatorname{var}\left(\frac{1}{n}\sum_{i=1}^{n}w_{i}X_{i}\right)$$

$$= \frac{1}{n^{2}}\operatorname{var}\left(\sum_{i=1}^{n}w_{i}X_{i}\right)$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{var}(w_{i}X_{i})$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}w_{i}^{2}\operatorname{var}(X_{i})$$

$$= \frac{\sigma^{2}}{n^{2}}\sum_{i=1}^{n}w_{i}^{2},$$

where the first equality holds by definition of \bar{X}_n^* , the second equality uses algebra of variance, the third equality holds because by random sampling, $w_i X_i$ and $w_j X_j$ are independent for $i \neq j$ so all covariance terms are zero. The fourth equality uses variance algebra again, and the final equality holds by assuming $\text{var}(X_i) = \sigma^2$ for some constant σ^2 .

(c) By Chebyshev's inequality, $\bar{X}_n^* \xrightarrow{p} \mu$ if $\mathbb{E}[(\bar{X}_n^* - \mu)^2] \to 0$ as $n \to 0$. Since

$$\mathbb{E}[(\bar{X}_n^* - \mu)^2] = \text{mse}(\bar{X}_n^*)$$

$$= (\text{bias}(\bar{X}_n^*))^2 + \text{var}(\bar{X}_n^*)$$

$$= 0 + \frac{\sigma^2}{n^2} \sum_{i=1}^n w_i^2$$

where the last equality holds by answers to (a) and (b). Hence $\mathbb{E}[(\bar{X}_n^* - \mu)^2] \to 0$ if $\frac{1}{n^2} \sum_{i=1}^n w_i^2 \to 0$ as $n \to \infty$.

(d) Note $w_i, i = 1 \dots n$ are non-negative constants and $\frac{1}{n} \sum_{i=1}^{n} w_i = 1$. It follows

$$\frac{1}{n^2} \sum_{i=1}^n w_i^2 = \frac{1}{n^2} \sum_{i=1}^n w_i \cdot w_i$$

$$\leq \frac{1}{n^2} \sum_{i=1}^n w_i \left(\max_{i \leq n} w_i \right)$$

$$= \left(\max_{i \leq n} w_i \right) \frac{1}{n^2} \sum_{i=1}^n w_i$$

$$= \left(\max_{i \leq n} w_i \right) \frac{1}{n} \frac{1}{n} \sum_{i=1}^n w_i$$

$$= \left(\max_{i \leq n} w_i \right) \frac{1}{n}$$

Hence a sufficient condition for $n^{-2} \sum_{i=1}^n w_i^2 \to 0$ is $(\max_{i \le n} w_i) \frac{1}{n} \to 0$, or $(\max_{i \le n} w_i) = o(n)$.