Matrix Algebra

Ch.8

econMath.namun+2016su@gmail.com

2016년 7월 1일

Table of Contents

- Matrix Algebra
- Special Kinds of Matrices
- Elementary Matrices
- 4 Algebra of Square Matrices
- Partitioned Matrices

Matrix

Definition (Matrix)

Matrix is a rectangular array of numbers (scalars)

Let $a_{ij} \in \mathbb{R}$ or $A_{ij} \in \mathbb{R}$ be the ith row and jth column element of matrix A

Definition (Equal)

$$A = B \iff \begin{cases} \mathsf{same \ size} \\ a_{ij} = b_{ij} \quad \forall i, j \end{cases}$$

Addition, Subtraction

Let A, B be $n \times k$ matrices and $r \in \mathbb{R}$

Definition (Addition)

$$(A+B)_{ij} := a_{ij} + b_{ij} \quad \forall i, j$$

Important note: the first + and the second + are not same operators

Definition (Subtraction)

$$(A-B)_{ij} := a_{ij} - b_{ij} \quad \forall i, j$$

Multiplications of Matrices

Definition (Scalar Multiplication)

$$(rA)_{ij} := rA_{ij} \quad \forall i, j$$

Let A be $n \times k$ matrix and B be $k \times m$ matrix. Then AB is $n \times m$ matrix.

Definition (Matrix Multiplication)

$$(AB)_{ij} := A_{i1}B_{1j} + A_{i2}B_{2j} + \dots + A_{ik}B_{kj} = \sum_{r=1}^{k} A_{ir}B_{rj}$$

For $n \times n$ matrices, identity matrix I_n is a multiplicative identity.

$$AI = IA = A$$

Laws of Matrix Algebra

Laws of Matrix Algebra

$$(A+B)+C=A+(B+C)$$
 (Associative Law for Addition)
$$(AB)C=A(BC)$$
 (Associative Law for Multiplication)
$$A+B=B+A$$
 (Commutative Law for Addition)
$$A(B+C)=AB+AC$$
 (Distributive Law)
$$(A+B)C=AC+BC$$
 (Distributive Law)

Important Note: $AB \neq BA$

조남운

Transpose

Definition (Transpose)

 A^{\intercal} $(n \times m)$ is a transpose of A $(m \times n)$ if:

$$(A^{\mathsf{T}})_{ij} := A_{ji} \quad \forall i, j$$

$$(A \pm B)^{\mathsf{T}} = A^{\mathsf{T}} \pm B^{\mathsf{T}}$$
$$(A^{\mathsf{T}})^{\mathsf{T}} = A$$
$$(rA)^{\mathsf{T}} = rA^{\mathsf{T}}$$
$$(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}$$

(Theorem 8.1)

Special Kinds of Matrices (1)

Suppose A is $k \times n$ matrix. Then,

Definition (Special Kinds of Matrices (1))

- A is a <u>square matrix</u> if k = n
- A is a column matrix if n=1
- A is a row matrix if k=1
- A is a <u>diagonal matrix</u> if k = n and $a_{ij} = 0$ $\forall i \neq j$
- A is a scalar matrix if $A = tI_n$
- A is an upper-triangular matrix if $a_{ij} = 0 \quad \forall i > j$
- A is a lower-triangular matrix if $a_{ij} = 0 \quad \forall i < j$

Special Kinds of Matrices (2)

Definition (Special Kinds of Matrices (2))

- A is a <u>symmetric matrix</u> if A is sugare matrix and $a_{ij} = a_{ji} \quad \forall i, j$. $Or, A^{\intercal} = A$
- A is an <u>Idempotent matrix</u> if AA = A
- A is a permutation matrix if A is the result of I_n with ERO_1 (row exchange)
- ullet A is a <u>nonsingular matrix</u> if rankA = #row = #column

If a coefficient matrix of a system of linear equations is nonsignular, this system has only one solution ${\bf x}=A^{-1}{\bf b}$

Elementary Matrix

Let E be an elementary matrix of some EROs. Then,

Theorem (8.3)

ERO with a matrix A is equivalent to EA

Theorem (8.2)

- Let $E1_{ij}$ be the permutation matrix with interchanging R_i and R_j of I_n , then $E1_{ij}$ is equivalent to $ERO_1(i,j)$
- Let $E2_{k,j,i}$ be the result of $ERO_2(k,j,i)$ from I_n , then $E2_{k,j,i}$ is equivalent to $ERO_2(k,j,i)$
- Let $E3_{k,i}$ be the result of $ERO_3(k,i)$ from I_n , then $E3_{k,i}$ is equivalent to $ERO_3(k,i)$

Elementary Matrix

Definition (Elementary Matrix)

E1, E2, E3 are elementary matrices corresponding to their EROs

Theorem (8.4)

Let $A \in M_n$ (set of $n \times n$ matrices), $E_i \in EM$ (set of elementary matrices), and (R)REFM be the set of (R)REF matrices. Then:

$$\exists E_i \quad i = 1, 2, \cdots, m \quad s.t. \quad \prod_{i=m}^{1} E_i A \in (R) REFM$$

or

$$E_m E_{m-1} \cdots E_2 E_1 A \in (R) REFM$$

Inverse of Matrices

Suppose $A, B \in M_n$

Definition (Inverse, Invertible)

B is (left, or right) inverse for A if:

$$\underbrace{AB}_{B: \ Right \ inverse} = \underbrace{B: \ Left \ inverse}_{B: \ Right \ inverse} = I$$

A is invertible if $\exists B$

Notation: $B = A^{-1}$

Theorem (8.5:Uniquenes of Inverse)

 $A \in M_n$ can have at most one inverse. (left inverse = right inverse)

Inverse Matrices and the Solution of Linear Systems

Theorem (8.6)

For $A \in M_n$,

$$\exists A^{-1} \quad \Rightarrow \quad \begin{cases} A \text{ is nonsingular} \\ \text{Unique solution of } A\mathbf{x} = \mathbf{b} \quad \Rightarrow \quad \mathbf{x} = A^{-1}\mathbf{b} \end{cases}$$

Proof: easy

Theorem (8.7: inverse of Th8.6)

$$A \in M_n$$
 is nonsignual $\Rightarrow \exists A^{-1}$

Proof: difficult

Calculation of Inverse Matrix

Calculation of Inverse Matrix

$$[A|I] \xrightarrow{EROs} [I|A^{-1}]$$

If RREF is not I_n , $\nexists A^{-1}$

Theorem (8.8)

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2$$
. A is nonsingular iff $ad - bc \neq 0$

For general case $(A \in M_n)$, see Ch.9

조남운

Equivalent statements

Theorem (8.9)

For $A \in M_n$, the following statements are equivalent

- \bullet $\exists A^{-1}$
- A has right inverse
- A has left inverse
- $\mathbf{0}$ $A\mathbf{x} = \mathbf{b}$ has at least one solution for every \mathbf{b}
- \mathbf{o} $A\mathbf{x} = \mathbf{b}$ has at most one solution for every \mathbf{b}
- A is nonsingular
- o rankA = n

Properties of Inverse Matrices and Their Exponentials

Theorem (8.10)

If $A, B \in M_n$ and $\exists A^{-1}, B^{-1}$,

- $(A^{-1})^{-1} = A$
- $(A^{\mathsf{T}})^{-1} = (A^{-1})^{\mathsf{T}}$
- $\exists (AB)^{-1} \wedge (AB)^{-1} = B^{-1}A^{-1}$

Definition (Matrix Exponential)

$$A^m := \prod_{i=1}^m A$$

$$A^{-m} := (A^{-1})^m$$

□▶ ◆圖▶ ◆臺▶ ◆臺▶ ○臺 ○ 夕久②

Expoenetial Properties of Invertible Matrices

Theorem (8.11)

$$\exists A^{-1} \quad \Rightarrow \quad \begin{cases} \exists A^{-m} \quad \forall m \in \mathbb{N} \\ A^r A^s = A^{r+s} \quad \forall r, s \in \mathbb{N} \\ \forall r \in \mathbb{R} - \{0\}, \quad \exists (rA)^{-1} \wedge (rA)^{-1} = \frac{1}{r} A^{-1} \end{cases}$$

Important Note: $(AB)^k \neq A^k B^k$

남운 Matrix Algebra 2016년 7월 1일 17 / 19

Partitioned Matrices

Somtimes, matrix of matrices can be more convenient.

Definition (Submatrix, Partitioned matrix)

- ullet A $\underline{\mathit{submatrix}}$ of matrix A is a matrix obtained by deleting some R_i or C_j
- A <u>partitioned matrix</u> is a matrix partitioned into submatrices by horizontal and/or vertical lines which extended along entire rows or columns of a matrix A

Partitioned Matrices

Theorem (8.15)

Let A be a square matrix partitioned as

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$

and $A_{11}, A_{22} \in M_n$. Then,

$$\exists A_{22}^{-1} \land \exists D^{-1} \land D = A_{11} - A_{12} A_{22}^{-1} A_{21}$$

$$\Rightarrow A^{-1} = \begin{pmatrix} D^{-1} & -D^{-1} A_{12} A_{22}^{P-1} \\ -A_{22}^{-1} A_{21} D^{-1} & A_{22}^{-1} (I + A_{21} D^{-1} A_{12} A_{22}^{-1}) \end{pmatrix}$$