HW4

高嘉妤、柯堯珹、吳承恩、趙友誠

2024-10-28

Table of contents

資料簡介		2
7 · · · —		2 2 4
候選人支持率分析表		5
三號候選人的競選策略 (需在何 三號候選人之里 heatmap .	· 地、對何人進行拉票) 	6
受訪者政治熱衷程度之統計模型	型 (需說明使用此模型之理由)	8
三號候選人支持率預測模式 資料不平衡處理		13 13
<pre>if(!require(rio)){ install.packages("rio") library(rio) }</pre>	#read sav file	
<pre>if(!require(labelled)){ install.packages("label library(labelled)</pre>	<pre>#remove attribute of sav data led")</pre>	
<pre>install.packages("Hmisc library(Hmisc)</pre>	#describe ")	
<pre>} if(!require(dplyr)){ install.packages("dplyr library(dplyr) }</pre>	")	
<pre>if(!require(ggplot2)){ install.packages("ggplotlibrary(ggplot2)</pre>	t2")	
<pre>} if(!require(MASS)){ install.packages("MASS" library(MASS)</pre>)	
<pre>} if(!require(sf)){</pre>	#render map	

資料簡介

Dimension of the Data: 1671 samples × 15 columns

Table 1: 變數解釋

Variables	Explanation	remark
V1	District	
V2 · V3	Li	v2: 33 個里, v3: 20 個里
V4_1~V4_8	Candidate known	1~10 號
V5	Candidate supported	1~10 號
V6	Age	1:20 到 29 歲,2:30 到 39 歲,3:40 到 49 歲,4:50 到 59 歲,5:60 歲以上
V7	Education level	1: 小學, 2: 國中, 3: 高中, 4: 專科, 5: 大學以上
V8	Sex	1:male, 2:female

資料前處理

資料整理

pollcsv 15 Variables 1671 Observations

```
v1
 1671
        missing distinct
Value 1 2
Frequency 1107 564
Proportion 0.662 0.338
n missing distinct
lowest: 1 10 11 12 13, highest: 7 8 9 98 99
        missing distinct
lowest : 1 10 11 12 13, highest: 7 8 9 98 99
v4_1
                                                                                                                 L......
 n missing distinct 1671 0 12
Value 1 10 2 3 4 5 6 7 8 9 91 98 Frequency 328 11 5 214 43 27 38 47 4 1 14 939 Proportion 0.196 0.007 0.003 0.128 0.026 0.016 0.023 0.028 0.002 0.001 0.008 0.562
v4 2
n missing distinct 1671 0 10
n missing distinct 1671 0 9
n missing distinct
Value 10 4 5 6 7 8 9 99 Frequency 20 4 28 41 52 3 4 1519 Proportion 0.012 0.002 0.017 0.025 0.031 0.002 0.002 0.909
 n missing distinct 1671 0 7
Value 10 5 6 7 8 9 99
Frequency 15 3 14 38 4 3 1594
Proportion 0.009 0.002 0.008 0.023 0.002 0.002 0.954
 n missing distinct 1671 0 6
Value 10 6 7 8 9 99
Frequency 20 3 12 6 7 1623
Proportion 0.012 0.002 0.007 0.004 0.004 0.971
v4_7
 n missing distinct 1671 0 5
Value 10 7 8 9 99
Frequency 12 3 2 3 1651
Proportion 0.007 0.002 0.001 0.002 0.988
```

```
v4 8
 n
1671
        missing
                 distinct
Value 10 8 99
Frequency 4 1 1666
Proportion 0.002 0.001 0.997
                        99
1666
                                                                                                                         ı
                                                                                               that...
                 distinct
13
        missing
0
 1671
missing
0
                 distinct
 1671
Ш
        missing
0
                 distinct
 1671
Value 1 2 3 4 5 95 Frequency 292 165 431 198 520 65 Proportion 0.175 0.099 0.258 0.118 0.311 0.039
                 distinct 2
        missing
 1671
Value 1 2
Frequency 682 989
Proportion 0.408 0.592
```

Table 2: 遺失值定義

Variables	Missing
V1	98,99
V2 · V3	44,98,99
V4_1~V4_8	91,98,99
V5	91,98,99
V6	6,99
V7	95,99
V8	99

遺失值比例圖

將定義的遺失值轉換成 NA 並以遺失值比例圖 (by variable) 的方式呈現。考量到遺失值的性質,我們並未刪除任何資料,決定後續對不同變數分析時再移除。

```
pollcsv <- data.frame(
   t(apply(pollcsv,MARGIN = 1, FUN = function(row){
      row[row==99 | row==98 | row==95 | row==91 | row==44] <- NA
      return(row)
   }))
)
pollcsv$v6[pollcsv$v6==6] <- NA
DataExplorer::plot_missing(pollcsv, title = "Fig 1: Missing Value")</pre>
```

Fig 1: Missing Value

候選人支持率分析表

支持度定義:支持度 = 第五題出現次數 楼本數

```
# 計算總體支持度
count5.total <- sapply(1:11,function(x){</pre>
  if(x==11) return(sum(is.na(pollcsv$v5))/n)
  else return(sum(pollcsv$v5[!is.na(pollcsv$v5)]==x)/n)
} )
# 計算分區支持度(北區中西區) v1
support.district <- do.call(rbind, lapply(1:2,function(i){</pre>
  tempdata <- pollcsv[pollcsv$v1==i,]</pre>
  n.temp <- dim(tempdata)[1]</pre>
  return(sapply(1:11, function(x){
    if(x==11) return(sum(is.na(tempdata$v5))/n.temp)
    else return(sum(tempdata$v5[!is.na(tempdata$v5)]==x)/n.temp)
    }))
}))
# 計算性別支持度 v8
support.sex <- do.call(rbind, lapply(1:2,function(i){</pre>
  tempdata <- pollcsv[pollcsv$v8==i,]</pre>
  n.temp <- dim(tempdata)[1]</pre>
  return(sapply(1:11, function(x){
    if(x==11) return(sum(is.na(tempdata$v5))/n.temp)
    else return(sum(tempdata$v5[!is.na(tempdata$v5)]==x)/n.temp)
    }))
}))
# 計算年齡支持度 v6
support.age <- do.call(rbind, lapply(1:5,function(i){</pre>
  tempdata <- pollcsv[pollcsv$v6==i,]</pre>
  n.temp <- dim(tempdata)[1]</pre>
  return(sapply(1:11, function(x){
    if(x==11) return(sum(is.na(tempdata$v5))/n.temp)
```

```
else return(sum(tempdata$v5[!is.na(tempdata$v5)]==x)/n.temp)
   }))
}))
# 計算教育程度支持度 v7
support.edu <- do.call(rbind, lapply(1:5,function(i){</pre>
  tempdata <- pollcsv[pollcsv$v7==i,]</pre>
  n.temp <- dim(tempdata)[1]</pre>
  return(sapply(1:11, function(x){
    if(x==11) return(sum(is.na(tempdata$v5))/n.temp)
    else return(sum(tempdata$v5[!is.na(tempdata$v5)]==x)/n.temp)
}))
table.support <- rbind(</pre>
  count5.total,
  support.district,
  support.sex,
  support.age,
  support.edu
table.support <- data.frame(</pre>
  apply(table.support, 2, function(col) paste0(round(col,3)*100,"%"))
rownames(table.support) <- c(</pre>
  "北區","中西區",
  " 男性"," 女性",
  "20 到 29 歲", "30 到 39 歲", "40 到 49 歲", "50 到 59 歲", "60 歲以上",
  " 小學"," 國中"," 高中"," 專科"," 大學以上 ")
colnames(table.support) <- c(1:10," 沒決定")
latex(table.support, file = "",title="",
     rgroup = c("總計","分區","性別","年齡","學歷"),
     n.rgroup = c(1,2,2,5,5),
      caption = " 候選人支持度整理表"
)
```

三號候選人的競選策略 (需在何地、對何人進行拉票)

三號候選人之里 heatmap

```
# 計算三號候選人對於里的支持度
support.li_north <- data.frame(
    support = sapply(1:33, function(i){
        tempdata <- pollcsv[pollcsv$v2==i,]
        n.temp <- dim(tempdata)[1]
        return(sum(tempdata$v5[!is.na(tempdata$v5)]==3)/n.temp)}
),
    VILLNAME = names(attr(pollsav$v2,"labels"))[1:33]
)
support.li_midwest <- data.frame(
    support = sapply(1:20, function(i){
        tempdata <- pollcsv[pollcsv$v3==i,]
        n.temp <- dim(tempdata)[1]
```

Table 3: 候選人支持度整理表

	1	2	3	4	5	6	7	8	9	10	沒決定
總計											
	9.5%	0.5%	12.3%	4.7%	2%	5.9%	11.7%	0.4%	0.5%	3.2%	49.5%
分區											
北區	5.1%	0.6%	14.7%	2.9%	2.6%	7.5%	12.9%	0.3%	0.4%	2.7%	50.3%
中西區	18.1%	0.4%	7.4%	8.3%	0.7%	2.7%	9.2%	0.5%	0.7%	4.1%	47.9%
性別											
男性	9.8%	0.9%	12.9%	5.6%	2.5%	7.3%	11.6%	0.7%	0.3%	4%	44.4%
女性	9.2%	0.3%	11.8%	4.1%	1.6%	4.9%	11.7%	0.1%	0.6%	2.6%	53%
年龄											
20 到 29 歲	3.2%	1.1%	5.3%	3.2%	0%	1.1%	11.7%	1.1%	0%	1.1%	72.3%
30 到 39 歲	5.9%	1.5%	8.8%	1.5%	2.2%	4.4%	11.8%	1.5%	0.7%	2.9%	58.8%
40 到 49 歲	4.5%	1.2%	12.8%	4.5%	3.3%	5.3%	16%	0%	0.8%	1.2%	50.2%
50 到 59 歲	10.6%	0.8%	13.8%	5%	2.6%	5.8%	11.4%	0.3%	0.5%	1.9%	47.4%
60 歲以上	9.6%	0%	10.6%	4.5%	1.2%	5.7%	8.6%	0.2%	0.3%	3.8%	55.5%
學歷											
小學	8.7%	0%	7.6%	1.4%	0.6%	3.4%	5%	0.3%	0%	1.1%	72%
國中	7.8%	0%	11.3%	2.6%	1.3%	2.2%	7.4%	0%	0%	3%	64.3%
高中	9.1%	0%	12.9%	5%	2.6%	6.5%	9.5%	0.4%	0.8%	3.2%	50%
專科	7.2%	0.4%	11.8%	3.8%	2.3%	6.1%	7.6%	0%	0%	2.3%	58.6%
大學以上	7.2%	1.4%	9.7%	5.3%	1.5%	5.6%	15.4%	0.5%	0.7%	3.4%	49.2%

```
return(sum(tempdata$v5[!is.na(tempdata$v5)]==3)/n.temp)
 }),
 VILLNAME = names(attr(pollsav$v3,"labels"))[1:20]
myMap <- tw_village[</pre>
 tw_village$COUNTYNAME == " 臺南市" &
  (tw_village$TOWNNAME==" 中西區" | tw_village$TOWNNAME==" 北區") ,]
myMap <- merge(x = myMap, y = rbind(support.li_midwest, support.li_north), by = "VILLNAME")
showtext auto()
ggplot(data = myMap) +
 geom_sf(aes(fill = support)) + # 填充區域
  geom_sf(
   data = summarize(
     group_by(myMap,TOWNNAME),
     geometry = st_union(st_buffer(geometry,dist = 0.01))) , fill = NA, color = 'red') +
     #st_buffer 是為了解決 union 之後內部還有線條的問題
  geom_sf_text(aes(label=VILLNAME), size = 2, color = "white")+
  ggtitle("Fig 2: 三號候選人支持度熱區圖")+
  labs(fill = " 支持度")+
  theme_gray(base_family ="Arial", base_size = 10)
```

Fig 2: 三號候選人支持度熱區圖

受訪者政治熱衷程度之統計模型 (需說明使用此模型之理由)

```
pollcsv$known_count <- rowSums(!is.na(pollcsv[,c("v4_1", "v4_2", "v4_3", "v4_4", "v4_5", "v4_6", "v4_7"

count_da <- sapply(0:8,function(x){
    sum(pollcsv$known_count==x)
})

count_data <- data.frame(
    Times = factor(0:8),
    Values = count_da
)

ggplot(count_data, aes(x = Times, y = Values , fill = Times ))+
    geom_bar(stat = 'identity')+
    scale_x_discrete(breaks = 0:8)+
    labs(title='Known Times', x = 'Times', y = 'Frequency')+
    theme_minimal()+
    theme(plot.title = element_text(hjust = 0.5))</pre>
```


poiv4<-glm(known_count~v1+v6+v7+v8, data = pollcsv, family = poisson())
summary(poiv4)</pre>

Call:
glm(formula = known_count ~ v1 + v6 + v7 + v8, family = poisson(),
 data = pollcsv)

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-1.07370	0.22022	-4.876	1.09e-06	***
v12	-0.14837	0.05231	-2.836	0.004562	**
v62	0.78280	0.22353	3.502	0.000462	***
v63	0.89771	0.21085	4.258	2.07e-05	***
v64	0.99635	0.20653	4.824	1.41e-06	***
v65	0.92553	0.20504	4.514	6.37e-06	***
v72	0.25686	0.10656	2.411	0.015926	*
v73	0.50898	0.08480	6.002	1.95e-09	***
v74	0.51496	0.09952	5.174	2.29e-07	***
v75	0.49976	0.08920	5.602	2.11e-08	***
v82	-0.17905	0.04880	-3.669	0.000243	***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 3501.4 on 1600 degrees of freedom Residual deviance: 3383.9 on 1590 degrees of freedom (因為不存在,70 個觀察量被刪除了)

AIC: 5292

Number of Fisher Scoring iterations: 6

```
nbv4 <- glm.nb(known_count~v1+v6+v7+v8, data = pollcsv)</pre>
summary(nbv4)
Call:
glm.nb(formula = known_count ~ v1 + v6 + v7 + v8, data = pollcsv,
   init.theta = 0.6258750942, link = log)
Coefficients:
         Estimate Std. Error z value Pr(>|z|)
v12
        -0.14018 0.08591 -1.632 0.102753
v62
         0.29142 3.060 0.002213 **
v63
         0.89173
                 0.28303 3.569 0.000359 ***
v64
         1.01004
         v65
         v72
                0.13195 3.840 0.000123 ***
v73
         0.50668
v74
         v75
v82
         ___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Negative Binomial(0.6259) family taken to be 1)
   Null deviance: 1531.0 on 1600 degrees of freedom
Residual deviance: 1485.5 on 1590 degrees of freedom
 (因為不存在,70 個觀察量被刪除了)
AIC: 4584.9
Number of Fisher Scoring iterations: 1
          Theta: 0.6259
       Std. Err.: 0.0473
2 x log-likelihood: -4560.9200
if(!require(AER)){
 install.packages("AER")
 library(AER)
dispersiontest(poiv4)
   Overdispersion test
data: poiv4
z = 12.524, p-value < 2.2e-16
alternative hypothesis: true dispersion is greater than 1
sample estimates:
dispersion
 2.321796
```

```
Likelihood ratio test
```

```
Model 1: known_count ~ v1 + v6 + v7 + v8

Model 2: known_count ~ v1 + v6 + v7 + v8

#Df LogLik Df Chisq Pr(>Chisq)

1 11 -2635.0

2 12 -2280.5 1 709.13 < 2.2e-16 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

ggplot(count_data, aes(x = Times, y = Values , fill = Times ))+ # 建立次數圖
geom_bar(stat = 'identity')+
scale_x_discrete(breaks = 0:8)+
labs(title='Known Times', x = 'Times', y = 'Frequency')+
theme_minimal()+
theme(plot.title = element_text(hjust = 0.5))
```



```
if(!require(pscl)){
   install.packages("pscl")
   library(pscl)
}
zinb_model <- zeroinfl(known_count ~ v1 +v6+v7+v8, data = pollcsv, dist = "negbin")# 建立 zero-inflated
summary(zinb_model)</pre>
```

```
Count model coefficients (negbin with log link):
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.587285
                       0.399595 -1.470 0.14164
v12
           -0.094520
                       0.079076 -1.195 0.23196
                                 2.620 0.00880 **
v62
            1.043282
                       0.398262
v63
            1.081087
                       0.384695
                                 2.810 0.00495 **
                       0.382191
                                  3.102 0.00192 **
v64
            1.185464
v65
            1.240723
                       0.383341
                                  3.237 0.00121 **
                       0.158309 -0.057
v72
            -0.008993
                                         0.95470
v73
            0.162114
                       0.124789
                                  1.299 0.19391
v74
            0.201598
                       0.146656
                                 1.375 0.16925
v75
            0.254145
                       0.131547
                                  1.932 0.05336
v82
            -0.058140
                       0.072576 -0.801 0.42308
                       0.266200
                                 5.547 2.9e-08 ***
Log(theta)
            1.476716
Zero-inflation model coefficients (binomial with logit link):
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.7381
                        1.2734 -0.580 0.56219
v12
             0.1319
                        0.1521
                                 0.867 0.38574
v62
                                 0.607 0.54415
             0.7652
                        1.2615
v63
                        1.2510
                                 0.453 0.65042
             0.5669
v64
             0.5615
                        1.2538
                                 0.448 0.65428
v65
             0.8606
                        1.2597
                                 0.683 0.49447
v72
             -0.4869
                        0.2819 -1.727 0.08408 .
v73
            -0.6751
                        0.2189
                                -3.084 0.00204 **
v74
            -0.6209
                        0.2714 -2.288 0.02215 *
v75
            -0.4509
                        0.2308 - 1.954 \ 0.05070 .
v82
             0.2961
                        0.1477
                                 2.005 0.04496 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Theta = 4.3785
Number of iterations in BFGS optimization: 69
Log-likelihood: -2239 on 23 Df
lrtest(nbv4,zinb_model) # 決定要用 Negative 或 zero-inflated
```

Likelihood ratio test

```
Model 1: known_count ~ v1 + v6 + v7 + v8

Model 2: known_count ~ v1 + v6 + v7 + v8

#Df LogLik Df Chisq Pr(>Chisq)

1 12 -2280.5

2 23 -2238.9 11 83.162 3.599e-13 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

先將每位受訪者知道的候選人用計數的方式去呈現出政治熱忠程度,而這些資料就轉變成 count data,也因此 先使用 Poisson model 去做模型。然而在使用 Poisson model 之後並且去做 Dispersion test 時,可以發現這個模型有 Overdispersion 的情形產生,並且 Likelihood ratio test 的結果也建議我們使用 Negative binomial 的模型。在做出資料的分布圖後,可以發現受訪者完全不知道候選人的比例偏高,也就是 0 的資料,也因此想要使用 Zero-inflated negative binomial model 去解決 0 所帶來的問題。由 ZINB 的報表可以得知,在 count model 底下,也就是有講出候選人的受訪者中, $30_{39 \, \text{歲} \, ,40}$ 49 歲, $50_{59 \, \text{歲以及} \, 60 \, \text{歲以上} \, , 他們相較於 \, 20}$ 29 歲是顯著的,並且他們的係數是逐步提高的,因此我們可以認為隨著年齡提高,政治熱忠程度也會隨之提高。而在零膨脹模型,教育程度的變數當中,高中及專科相較於國小是顯著的,也代表著高中及專科的受訪者更可能出現非零值,也就是說他

們相較於教育程度只有國小的受訪者是更可能回答出候選人的。而在性別的部分,可以發現女性相較於男性是顯著的,藉由係數我們可以解釋成女性相較於男性較可能回答不出候選人,也就是說女性提高了結構性零的機率。

三號候選人支持率預測模式

資料不平衡處理