Page 1

Problem Set 9

Problem 1

- 1. Which of the following combinations of quantum numbers are allowed for a single-particle hydrogenic state?
 - $n = 3, \ell = 2, m_{\ell} = 1, \text{ and } m_s = 0$
 - $n=2, \ell=0, m_{\ell}=0, \text{ and } m_s=-\frac{1}{2}$
 - $n = 7, \ell = 2, m_{\ell} = -2, \text{and } m_s = \frac{1}{2}$
 - $n = 3, \ell = -3, m_{\ell} = -2, \text{ and } m_s = -\frac{1}{2}$

2. Determine the electronic configurations for the following elements:

$$B, F, Na, P, C, Cr, Mn, Fe, Cu$$
, and Kr

3. Using the rules for the addition of angular momenta (i.e., do not worry about exchange symmetry), determine all the possible electronic states for the elements B, C, and N in terms of their possible "term symbols", i.e., $^{2S+1}L_J$, where S is the total electronic spin, L is the total orbital angular momentum, and J is the total angular momentum.

Quantum Mechanics Page 3

Problem 2

1. What are L, S, and J for a filled d subshell (i.e., nd^{10})? What is the corresponding term symbol?

Quantum Mechanics Page 4

2. Use Hund's rules to determine the ground state for carbon.

Quantum Mechanics Page 5