Q2.1 $J(\theta) = \frac{1}{2} \sum_{i=1}^{m} w(i) \left(\Theta^{T} \chi^{(i)} - y^{(i)} \right)^{2}$ = = = (\(\int \n^{\text{(i)}} - \int \n^{\text{(i)}} \) Because $\sum A_{\bar{i}}^2 = A^T A$ = = (W= X 0 - W = Y) T (W = X 0 - W = Y) = = (OT NT WET - YT WET) (WEX O - W = 4) Because wint = WI = 5 (OTXTWXO - OTXTWY-YTWXO+YTWY) = = [OTXTW (XO-4) - YTW (XO-4)] = = ((() XT-YT) W (X () - 4) = = (XO-Y) W (XO-4) Wis a mxm diagnal matrix with with or wi

in diagnal terms that represent weighting terms for (non-negative) least square error of each training data.