Apprentissage statistique

Chapitre 2 : Enjeux et concepts de l'apprentissage statistique

Lucie Le Briquer

18 février 2018

Table des matières

1	Formulation mathématique	2
2	Classifieur de Bayes	3
3	Règles d'apprentissage	3
4	Consistance	4

L'enjeu principal de l'apprentissage statistique est de "prédire" certains évènements. Pour cela on a un certain nombre d'observations (x_1, \ldots, x_n) . On distingue deux types d'apprentissage :

- 1. Apprentissage supervisé. En plus des observations (X_i) , on a une étiquette ou label (Y_i) pour chacune. Dans ce cadre, on va chercher à prédire le prochain label Y d'une nouvelle observation X. Moralement, on veut donc comprendre la dépendance entre X et Y.
- 2. Cadre non supervisé. Dans ce cadre les labels (Y_i) sont soit "cachés" ou inexistants. Cependant, on veut toujours discriminer/trier en un certain sens les (X_i) .

Exemples.

- 1. AS supervisé
 - (a) prédiction des températures à partir de la pression, prédiction de trafic routier
 - (b) classification de formes
 - (c) images de chiffres manuscrits \rightarrow quel chiffre ces images représentent? (data set : MNIST)
- 2. AS non supervisé : détection d'anomalie (défauts, d'usinage, tissus sains ou non dans une IRM)

1 Formulation mathématique

Soit deux ensembles mesurables (X, X) et (Y, Y).

Deux cas particuliers:

- 1. $\mathbb{Y} = \mathbb{R}$ et $\mathcal{Y} = \mathcal{B}(\mathbb{R})$. On dit que l'on est dans le cas de la régression.
- 2. $\mathbb{Y} = \{0,1\}, \mathcal{Y} = \mathcal{P}(\mathbb{Y})$. On dit que l'on est dans le cas de la classification.

À partir de ces deux espaces, on considère une expérience statistique :

$$(\Omega, \mathcal{F}, \mathbb{X} \times \mathbb{Y}, \mathcal{X} \otimes \mathcal{Y}, \mathcal{P}, (X, Y))$$

où X et Y sont des v.a. $\Omega \longrightarrow \mathbb{X} \times \mathbb{Y}$.

La différence maintenant entre les statistiques "classiques" et l'apprentissage est qu'en apprentissage on cherche, à partir de nouvelles observations X, à prédire Y. On ne cherche plus à déterminer le modèle/la probabilité qui a généré X. Contrairement aux statistiques où l'on s'intéresse à la probabilité qui explique le mieux X et Y.

Ce qui peut paraître alors plus intéressant en apprentissage, c'est à partir de $\mathbb{P} \in \mathcal{P}$ de connaître la loi conditionnelle de Y|X. En général, ce n'est pas évident, on est plutôt amenés à s'intéresser aux fonctions $\mathbb{X} \longrightarrow \mathbb{Y}$, qui peuvent dépendre de \mathbb{P} .

Définition 1 (classifieur/prédicteur) —

On appelle classifieur/prédicteur toute application mesurable $f: \mathbb{X} \longrightarrow \mathbb{Y}$. On note l'ensemble des classifieurs $\mathcal{F}(\mathbb{X}, \mathbb{Y})$.

Définition 2 (fonction de coût) —

On appelle fonction de coût toute fonction $c \colon \mathbb{Y} \times \mathbb{Y} \longrightarrow \mathbb{R}_+$ mesurable et vérifiant :

$$y = y' \implies c(y, y') = 0$$

Remarque. Les fonctions de coût vont permettre de mesurer l'efficacité d'un classifieur.

Définition 3 (risque) –

On définit le risque de f pour la fonction de coût c par :

$$\mathbb{P} \in \mathcal{P} \longmapsto \mathbb{E}_{\mathbb{P}}[c(Y, f(X))]$$

On la note $R^c_{\mathbb{P}}(f)$ ou R(f) (ou encore L(f)).

Remarque. On peut étendre ces définitions à des fonctions de coût qui dépendent de X.

2 Classifieur de Bayes

Pour l'instant on se fixe $\mathbb{P} \in \mathcal{P}$ et on cherche $f \in \mathcal{F}(\mathbb{X}, \mathbb{Y})$ un classifieur qui minimise $R^c_{\mathbb{P}}(f)$.

- **Définition 4** (risque de Bayes) —

Soit $R_{\mathbb{P}}^c \colon \mathcal{F}(\mathbb{X}, \mathbb{Y}) \longrightarrow \mathbb{R}_+ \cup \{+\infty\}$. On appelle risque de Bayes :

$$(R_{\mathbb{P}}^{c})^{*} = \inf_{f \in \mathcal{F}(\mathbb{X}, \mathbb{Y})} R_{\mathbb{P}}^{c}(f)$$

si $f \in \underset{\tilde{t} \neq 0}{\operatorname{argmin}}(R^c_{\mathbb{P}}(\tilde{f}))$, on dit que f est un classifieur de Bayes. On le note en général $f^*_{\mathbb{P}}$.

On appelle excès de risque noté $e(f, f^*)$ la quantité $R_{\mathbb{P}}^c(f) - (R_{\mathbb{P}}^c)^*$.

3 Règles d'apprentissage

On se place dans le cas de n observations $(X_i, Y_i)_{1 \leqslant i \leqslant n}$ i.i.d. (cadre d'une expérience statistique répétée).

Définition 5 (règle d'apprentissage) —

Une règle d'apprentissage est fonction mesurable :

$$\hat{f} \colon \bigcup_{n \geqslant 1} \{\mathbb{X} \times \mathbb{Y}\}^n \longrightarrow \mathcal{F}(\mathbb{X}, \mathbb{Y})$$

Notation. $(X_i, Y_i)_{1 \le i \le n} = D_n, \hat{f}(D_n, .) \longrightarrow \hat{f}_n(.)$

Définition 6

Soit \hat{f} une règle d'apprentissage. On définit le risque de \hat{f} par rapport aux données D_n par :

$$\mathbb{P} \longmapsto \hat{R}^c_{\mathbb{P}}(\hat{f}, D_n) = \mathbb{E}_{\mathbb{P}}[c(\hat{f}_n(X), Y) | D_n]$$

pour une fonction de coût c.

Remarque. Si D_n est une v.a. alors $\hat{R}^c_{\mathbb{P}}(\hat{f}, D_n)$ est $\sigma(D_n)$ -mesurable.

Définition 7 (risque moyen) —

On appelle risque moyen de la règle d'apprentissage \hat{f} pour le coût c :

$$\mathbb{P} \longmapsto \mathbb{E}_{\mathbb{P}} \big[\mathbb{E}_{\mathbb{P}} \big[c(\hat{f}_n(X), Y) | D_n \big] \big] = \mathbb{E}_{\mathbb{P}} \big[c(\hat{f}_n(X), Y) \big]$$

pour un $n \geqslant 1$. On le note $R_n^{\mathbb{P}}(\hat{f})$.

4 Consistance

Une règle d'apprentissage va être considérée comme efficace si le risque moyen $R_n^{\mathbb{P}}(\hat{f}) \xrightarrow[n \to +\infty]{} R_{\mathbb{P}}^*$ le risque de Bayes associé à \mathbb{P} , et cela pour tout $\mathbb{P} \in \mathcal{P}$ (\mathcal{P} est suffisamment riche).

- **Définition 8** (faiblement consistant) —

Soit \hat{f} une règle d'apprentissage et $\mathbb{P}\in\mathcal{P}$. On dit que \hat{f} est faiblement consistante si $\lim_{n\to+\infty}R_n^{\mathbb{P}}(\hat{f})=R_{\mathbb{P}}^*$

- **Définition 9** (fortement consistant) —

On dit que \hat{f} est fortement consistant pour \mathbb{P} si :

$$\hat{R}^c_{\mathbb{P}}(\hat{f}, D_n) \xrightarrow[n \to +\infty]{} R^*_{\mathbb{P}}$$

Remarque. Si c est borné et \hat{f} est fortement consistante pour \mathbb{P} alors par T.C.D. on a \hat{f} faiblement consistante.

- **Définition 10** (universellement consistant) —

Si \hat{f} est faiblement/fortement consistante pour tout $\mathbb{P} \in \mathcal{P}$, alors \hat{f} est dite faiblement/fortement universellement consistante.