Funkcje, własności funkcji i działania na funkcjach

Niech X i Y będą niepustymi zbiorami.

<u>Funkcja</u> odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y.

Aby przyporządkowanie było funkcją, musi, zgodnie z definicją, spełniać dwa warunki:

- 1. Element ze zbioru Y musi być przyporządkowany każdemu elementowi zbioru X ,
- 2. Każdemu elementowi zbioru X musi być przyporządkowany dokładnie jeden element zbioru Y

Zamiast mówić

- odwzorowanie zbioru X w Y można też mówić
- przekształcenie zbioru X w Y lub
- funkcja odwzorowująca X w Y.

Słowa odwzorowanie, przekształcenie i funkcja mają więc to samo znaczenie. Odwzorowania jednego zbioru w drugi oznacza się najczęściej małymi literami alfabetu łacińskiego: f, g, h.

Zamiast zdania:

- f jest odwzorowaniem zbioru X w zbiór Y
- \triangleright piszemy symbolicznie: $f: X \rightarrow Y$.

Jeśli $f: X \to Y$, to

- element zbioru Y przyporządkowany przez przekształcenie f nazywamy wartością funkcji f dla argumentu x lub mówimy, że jest
- ➤ <u>obrazem elementu x przy przekształceniu f i oznaczamy</u> f(x).

Symbole f i f(x) mają różne znaczenie, pierwszy oznacza samą funkcję, drugi oznacza wartość funkcji dla argumentu x, czyli element zbioru Y.

 $\underline{\text{Dziedzina funkcji}}$ jest to zbiór X tych elementów, dla których funkcja została zdefiniowana.

<u>Przeciwdziedzina</u> jest to zbiór Y, do którego należą wartości funkcji, czyli zbiór tych elementów y zbioru Y, dla których istnieje $x \in X$, takie że y = f(x).

Ścisła definicja funkcji sformułowana za pomocą teorii mnogości pochodzi od G. Peano (1911 r.)

Niech X i Y będą dowolnymi zbiorami. Jeżeli relacja dwuczłonowa $f \subset X \times Y$ spełnia następujący warunek:

• jeżeli dla każdego $x \in X$ istnieje dokładnie jeden element $y \in Y$, taki że x f y, (co czytamy: x jest w relacji f z y lub zapisujemy (x, y) $\in f$. to relację tę nazywamy funkcją (odwzorowaniem).

Każdy element dziedziny relacji f pozostaje w tej relacji tylko z jednym elementem zbioru Y. To jedyne y, które pozostaje z x w relacji f, czyli takie że x f y, oznaczamy symbolem f(x) i nazywamy wartością funkcji f dla argumentu x. Wzór y = f(x) wyraża więc to samo co x f y.

Sposoby określania funkcji

Funkcję możemy przedstawić za pomocą:

- opisu słownego
- tabelki
- wzoru
- grafu
- zbioru par uporządkowanych
- wykresu

Opis słowny

Mamy daną funkcję określoną opisem słownym: Dane są zbiory $X = \{-2, -1, 0, 1, 2, 3, 4\}$ i $Y = \{0, 1, 4, 9, 16\}$, wówczas każdej liczbie ze zbioru X przyporządkowujemy kwadrat tej liczby.

Określenie za pomocą tabelki

x	-2	-1	0	1	2	3	4
y	4	1	0	1	4	9	16

Określenie za pomocą wzoru

$$y = x^2$$
, dla $x \in \{-2, -1, 0, 1, 2, 3, 4\}$
Używa się również zapisu $f(x) = x^2$, lub $f: x \to x^2$.

Określenie za pomocą grafu

Przedstawienie funkcji w postaci grafu nie jest wygodne, gdyż przyporządkowanie wraz ze zwiększającą się liczbą argumentów staje się nieczytelne.

Określenie za pomocą zbioru par uporządkowanych

{(-2,4), (-1,1), (0,0), (1,1), (2,4), (3,9), (4,16)}
Takie określenie funkcji również jest niewygodne dla większej ilości argumentów.

Określenie za pomocą wykresu

Określenie funkcji za pomocą wykresu jest bardzo wygodne, możemy szybko odczytać wiele różnych informacji o danej funkcji.

Mając dany wykres funkcji jednej zmiennej o wartościach rzeczywistych można odczytać miejsca zerowe funkcji, punkty ekstremalne i osobliwe oraz ustalić własności takie jak monotoniczność czy okresowość.

Wykresem funkcji f nazywamy zbiór tych wszystkich punktów $P=(x,\ y)$ płaszczyzny, których współrzędne spełniają warunek y=f(x) dla $x\in X$.

Własności funkcji

Równość funkcji

Dwie funkcje f i g są równe wtedy i tylko wtedy, gdy mają równe dziedziny i dla tych samych argumentów przyjmują równe wartości.

Ogólne własności funkcji

Funkcja na ...

- Funkcja może odwzorowywać zbiór X w Y lub
- przekształcać zbiór X na zbiór Y.

Różnica pomiędzy tymi dwoma pojęciami jest zasadnicza.

- Funkcja <u>odwzorowuje</u> zbiór <u>X w Y</u>, jeśli jej wartości należą do zbioru Y,
- Funkcja <u>przekształca</u> zbiór <u>X na Y</u>, jeśli jej zbiór wartości jest równy zbiorowi Y.

Funkcja $f: X \to Y$ przekształca zbiór X na zbiór Y, jeżeli przeciwdziedzina f(X) tej funkcji pokrywa się ze zbiorem Y, czyli gdy f(X) = Y.

Funkcja różnowartościowa

Funkcja różnowartościowa (iniekcja) jest to funkcja, która dla dowolnych dwóch różnych argumentów przyjmuje różne wartości.

Funkcję $f: X \to Y$ nazywamy różnowartościową, jeśli dla różnych argumentów przyjmuje różne wartości.

Określając różnowartościowość funkcji f sprawdzamy, czy spełniony jest warunek $f(x_1) - f(x_2) \neq 0$ przy założeniu $x_1 - x_2 \neq 0$. Wniosek:

<u>Jeżeli</u> funkcja f jest różnowartościowa, to każda prosta y = m (gdzie $m \in R$) ma co najwyżej jeden punkt wspólny wykresem funkcji f.

 \boldsymbol{z}

Przekształcenia różnowartościowe zbioru *X* na zbiór *X* nazywamy *permutacjami zbioru X*.

Liczba wszystkich przekształceń zbioru n-elementowego na zbiór n-elementowy jest równa n! Symbol n! (czytaj: n silnia) oznacza iloczyn kolejnych liczb naturalnych od 1 do n: $n! = 1 \cdot 2 \cdot ... \cdot n$. Więc liczba wszystkich permutacji zbioru n-elementowego jest równa n!

Funkcja wzajemnie jednoznaczna

Funkcję $f: X \to Y$, która jest jednocześnie "na" i różnowartościowa nazywamy wzajemnie jednoznaczną (bijekcją).

Funkcja ta jest więc odwzorowaniem swojej dziedziny na zbiór wartości.

Bijekcja przekształca wszystkie elementy obu zbiorów w stosunku jeden do jednego, czyli każdemu elementowi dziedziny odpowiada dokładnie jeden element obrazu, a każdemu elementowi obrazu odpowiada dokładnie jeden element przeciwobrazu.

Funkcja jest bijekcją wtedy i tylko wtedy, gdy istnieje funkcja do niej odwrotna, wtedy również i ona jest bijekcją.

Funkcja odwrotna

Funkcję $g: Y \rightarrow X$ nazywamy funkcją odwrotną do funkcji

 $f: X \to Y$, jeżeli Y = f(X), X = g(Y) i dla każdego $x \in X$ zachodzi równość: g(f(x)) = x.

Funkcję odwrotną do f oznaczamy przez f^{-1} .

Niech $f: X \to Y$ będzie funkcją różnowartościową odwzorowującą zbiór X na zbiór Y.

$$f^{-1}(y) = x \Leftrightarrow y = f(x)$$
, gdzie $y \in Y$, $x \in X$.

Jeżeli funkcja $g: Y \to X$ jest funkcją odwrotną do funkcji $f: X \to Y$, to spełnione są następujące <u>warunki:</u>

- f przekształca X na Y i g przekształca Y na X,
- $\triangleright (g(y) = x) \Leftrightarrow (f(x) = y)$ dla każdego $x \in X$ i $y \in Y$,
- ightharpoonup funkcje f i g są różnowartościowe.

Z definicji funkcji odwrotnej można wyciągnąć taki wniosek. Jeżeli funkcja g jest funkcją odwrotną do funkcji f, to funkcja f jest funkcją odwrotną do funkcji g.

Zachodzi więc następująca równość: $(f^{-1})^{-1} = f$. Dla każdej funkcji różnowartościowej $f: X \to Y$ przekształcającej X na Y istnieje dokładnie jedna funkcja odwrotna.

Funkcja odwracalna

Jeżeli funkcją f ma funkcję odwrotną f^{-1} , to funkcję f nazywamy funkcją odwracalną.

<u>Wniosek:</u> Jeżeli obrazem wykresu funkcji $f: X \to Y$ w symetrii względem prostej y = x jest wykres funkcji przekształcającej pewien podzbiór X w Y, to funkcja f jest odwracalna. Geometryczne będzie to oznaczać, że układ współrzędnych na płaszczyźnie odbity został względem prostej y = x.

Superpozycja funkcji

Niech dane będą funkcje $f: X \to Y$ i $g: Y \to Z$. Dla każdego elementu $x \in X$ istnieje wówczas dokładnie jeden element $z \in Z$, taki że z = g(f(x)).

Funkcje f i g wyznaczają więc nową funkcję h: $X \to Z$ określoną w następujący sposób: h(x) = g(f(x)) dla każdego $x \in X$. Funkcję h nazywamy superpozycją lub złożeniem funkcji f i g i oznaczamy symbolem $g \diamond f$.

Niech dane będą funkcje: $f: X \rightarrow Y$ i $g: Y \rightarrow Z$.

Funkcję h spełniającą warunek: h(x) = g(f(x)), dla każdego $x \in X$ nazywamy superpozycją (złożeniem) funkcji f i g. Funkcję f przyjęto nazywać funkcją wewnętrzną, g zaś funkcją zewnętrzną funkcji h.

Dla dowolnych funkcji $f: X \to Y$ i $g: Y \to Z$:

-jeżeli f przekształca Xna Yi g przekształca Yna Z to $g \diamond f$ przekształca Xna Z,

-jeżeli f i g są różnowartościowe, to $g \circ f$ jest funkcją różnowartościowa,

-jeżeli f i g są różnowartościowe i przekształcają odpowiednio zbiory X i Y na Y i Z, to zachodzi równość;

$$(g \diamond f)^{-1} = f^{-1} \diamond g^{-1}.$$

Podstawowe własności funkcji liczbowych

Funkcja $f: X \to Y$, gdzie $X \subset R$ i $Y \subset R$ nazywamy funkcją rzeczywistą zmiennej rzeczywistej.

Funkcje rzeczywiste zmiennej rzeczywistej odgrywają szczególnie ważną rolę w matematyce i jej zastosowaniach. Podstawowe własności tych funkcji przedstawione są poniżej.

Funkcja okresowa

Mówimy, że funkcja y = f(x) jest funkcją okresową o okresie t, jeśli istnieje taka liczba $t \neq 0$, która dodana do dowolnej dopuszczalnej wartości argumentu nie zmienia wartości funkcji tzn.

$$f(x+t)=f(x).$$

Najmniejszą liczbę dodatnią o tej własności (jeżeli istnieje) nazywamy okresem podstawowym (zasadniczym) funkcji.

Okresowość funkcji badamy sprawdzając, czy istnieje liczba $t \neq 0$, dla której f(x + t) = f(x), gdzie x należy do dziedziny funkcji.

Przykłady:

Przykładami funkcji okresowych są funkcje trygonometryczne oraz funkcja stała. Funkcja $y = \sin x$ jest okresowa o okresie podstawowym 2π .

2. Funkcja y = 2 jest okresowa, ale okresu podstawowego nie posiada.

Funkcja monotoniczna

Mówimy, że funkcja f jest monotoniczna w przedziale, jeśli posiada w nim jedną z czterech własności:

- jest rosnąca,
- jest malejąca,
- jest nierosnąca,
- jest niemalejąca.

Funkcja rosnąca

Funkcję f nazywamy **rosnącą** w zbiorze X, jeśli dla dowolnych argumentów $x_1, x_2 \in X$ prawdziwa jest implikacja

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$

Funkcja malejąca

Funkcję f nazywamy **malejącą** w zbiorze X, jeśli dla dowolnych argumentów $x_1, x_2 \in X$ prawdziwa jest implikacja

$$x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$$

Funkcja nierosnąca

Funkcję f nazywamy **nierosnącą** w zbiorze X, jeśli dla dowolnych argumentów $x_1, x_2 \in X$ prawdziwa jest implikacja

$$x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2)$$

Funkcja niemalejąca

Funkcję f nazywamy **niemalejącą** w zbiorze X, jeśli dla dowolnych argumentów $x_1, x_2 \in X$ prawdziwa jest implikacja

$$x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$$

Funkcja stała

Funkcję f nazywamy **stałą** w zbiorze X, jeśli dla dowolnych argumentów $x_1, x_2 \in X$ zachodzi równość $f(x_1) = f(x_2)$.

<u>Funkcje rosnące i malejące</u> są różnowartościowe (różnym argumentom odpowiadają różne wartości funkcji). O obu tych funkcjach mówimy, że są <u>ściśle monotoniczne</u>,

Funkcje nierosnące i niemalejące nazywamy <u>monotonicznymi</u> <u>w szerszym sensie.</u>

Twierdzenie

Jeżeli funkcja f określona i różniczkowalna w przedziale $A \subset D_f$ ma pochodną <u>dodatnią</u> w całym przedziale A, to jest w tym przedziale <u>rosnąca.</u>

Jeżeli funkcja f określona i różniczkowalna w przedziale $A \subset D_f$ ma pochodną ujemną w całym przedziale A, to jest w tym przedziale <u>malejąca</u>.

Wniosek

Jeżeli funkcja f określona i różniczkowalna w przedziale $(a, b) \subset D_f$ jest w tym przedziale rosnąca, to jej pochodna f'(x) przyjmuje wartość nieujemną, dla każdego $x \in (a, b)$.

Jeżeli funkcja f określona i różniczkowalna w przedziale $(a, b) \subset D_f$ jest w tym przedziale malejąca, to jej pochodna f'(x) przyjmuje wartość niedodatnią, dla każdego $x \in (a, b)$.

Określanie monotoniczności

Aby określić monotoniczność funkcji:

➤ Badamy znak różnicy $f(x_1)$ - $f(x_2)$, przy założeniu, że x_1 - x_2 > 0, gdzie x_1 , $x_2 \in A$ i $A \subset D_f$,

- Korzystamy z różniczkowego kryterium badania monotoniczności funkcji w zbiorze A (tzw. wnioski z twierdzenia Lagrange'a):
 - jeśli f'(x) = 0 dla każdego $x \in (a, b)$, to funkcja f jest stała w przedziale (a, b).
 - jeśli f'(x) > 0 dla każdego $x \in (a, b)$, to funkcja f jest rosnąca w przedziale (a, b).
 - jeśli f'(x) < 0 dla każdego $x \in (a, b)$, to funkcja f jest malejąca w przedziale (a, b).

Funkcja parzysta i nieparzysta

Funkcje parzyste i nieparzyste to funkcje, które zachowują symetrię względem znaku argumentu.

Funkcja parzysta

Funkcję f nazywamy funkcją parzystą, jeśli dla każdego x należącego do dziedziny funkcji, -x również należy do dziedziny oraz f(-x) = f(x).

Funkcja f jest parzysta wtedy i tylko wtedy, gdy zbiór D_f jest symetryczny względem zera oraz oś OY jest osią symetrii wykresu tej funkcji. Przykład – funkcja parzysta.

Wykres funkcji parzystej jest symetryczny względem osi OY.

Funkcja nieparzysta

Funkcję f nazywamy funkcją nieparzystą, jeśli dla każdego x należącego do dziedziny funkcji, -x również należy do dziedziny oraz f(-x) = -f(x).

Funkcja f jest nieparzysta wtedy i tylko wtedy, gdy zbiór D_f jest symetryczny względem zera oraz punkt 0 = (0, 0) jest środkiem symetrii wykresu tej funkcji.

Dziedzina funkcji parzystych i nieparzystych jest symetryczna, tzn. jeżeli x należy do dziedziny, to -x również.

Wykres funkcji nieparzystej jest symetryczny względem początku układu współrzędnych.

Jeśli 0 należy do dziedziny nieparzystej funkcji f, to f(0) = 0 czyli wykres funkcji przechodzi przez początek układu współrzędnych.

Przykłady, funkcje parzyste

- funkcja stała,
- funkcja trygonometryczna cosinus,
- wartość bezwzględna,
- funkcja potęgowa o parzystym wykładniku,
- wielomiany zawierające niezerowe współczynniki tylko przy parzystych potęgach zmiennej.

Przykłady; funkcje nieparzyste

- funkcja liniowa której wykres przechodzi przez początek układu współrzędnych, y=x
 - funkcja potęgowa o nieparzystym wykładniku,

- funkcje trygonometryczne sinus i tangens,
- wielomiany zawierające niezerowe współczynniki tylko przy nieparzystych potęgach zmiennej.

Jedynymi funkcjami będącymi jednocześnie parzystymi i nieparzystymi są funkcje stałe równe tożsamościowo zeru.

Funkcja ograniczona

Funkcję f, której zbiór wartości jest ograniczony, nazywa się funkcją ograniczoną, czyli taką, której wszystkie wartości należą do pewnego przedziału ograniczonego. , np. sinx, cosx

Funkcja ograniczona z dołu

Funkcję f nazywamy ograniczoną z dołu, jeśli istnieje taka liczba $m \in R$, że dla każdej liczby $x \in D_f$ spełniona jest nierówność

$$f(x) \ge m$$
, przykład $y=x^2$

Funkcja ograniczona z góry

Funkcję f nazywamy ograniczoną z góry, jeśli istnieje taka liczba $M \in R$, że dla każdej liczby $x \in D_f$ spełniona jest nierówność

$$f(x) \le M$$
 przykład: $y = -x^2$

Funkcja ograniczona

Funkcję f nazywamy ograniczoną, jeśli istnieją takie liczby $m, M \in R$, że dla każdej liczby $x \in D_f$ spełniona jest nierówność

$$m \le f(x) \le M$$
. Przykłąd $y = \sin x$,

<u>Przykład</u> Funkcje $y = \sin x$ i $y = \cos x$ są ograniczone, bo ich wartości zawarte są w przedziale <-1, 1>.

Funkcją nieograniczoną nazywa się funkcję, która nie jest ograniczona, czyli funkcję, której zbiór wartości nie zawiera się w żadnym przedziale. Funkcje trygonometryczne sinus i cosinus są ograniczone.

Wszystkie wielomiany stopnia niezerowego są nieograniczone.