MATLAB:

University of California, Davis

Computer LAB for Linear Algebra

Dr. Daddel

MATH 22AL

LAB # 6

20 How to Find Basis for ROW SPACE of AB Using Column Space of $(AB)^t = (AB)'$

Let AB be defined as before.
$$AB = \begin{bmatrix} 3 & 9 & -7 & -2 & 6 & -3 & -1 \\ 2 & 6 & 0 & 8 & 4 & 12 & 4 \\ 2 & 6 & 5 & 18 & 4 & 33 & 11 \\ 3 & 9 & -2 & 8 & 6 & 18 & 6 \end{bmatrix}$$

Note that row space of AB = column space of (AB)'.

Use MATLAB to find a basis for the row space of AB consist of row vectors of AB. Then enter your basis vectors as:

21 How to Find independent Columns of Matrix AB

Let AB be defined as before. $AB = \begin{bmatrix} 3 & 9 & -7 & -2 & 6 & -3 & -1 \\ 2 & 6 & 0 & 8 & 4 & 12 & 4 \\ 2 & 6 & 5 & 18 & 4 & 33 & 11 \\ 3 & 9 & -2 & 8 & 6 & 18 & 6 \end{bmatrix}$

To see the Reduced Row-Echelon Form of AB. Use ABR to find a basis for Column space of AB

Then enter your basis vectors as:

type	% ABW1 = your first row vector of basis of space of AB
type	% ABW2 = your second row vector of basis of space of AB
type	% ABW3 = your third row vector of basis of space of AB

Now type

This command will provide you rref(AB) and pivot columns of AB. The columns of AB that are independent and form a basis for the column space.

You can use MATLAB to give you a matrix composed of the independent columns of AB