autoNomous, self-Learning, **OPTI**mal and compLete **U**nderwater **S**ystems **NOPTILUS**

FP7-ICT-2009.6: Information and Communication Technologies

Webinar

Situation Understanding (WP6)

E. Orfanoudakis, N. Kofinas, and M. G. Lagoudakis Telecommunication Systems Institute (TSI), Greece

June 10, 2015 http://tinyurl.com/NOPTILUS

NOPTIL

Situation Understanding

> Definition

 cognitive ability of inferring high-level descriptions and representations of the current state of the environment

Noptilus SU Goal

- recognize interesting events in streams of observations
- observations: (abstracted) sensor data
- events: patterns in observation streams

Quiz: what kind of event is this one?

 get eggs, break eggs, discard eggshells, stir eggs, pan on fire, eggs in pan, stir, flip, serve

Yes! This is the making of an omelet!

Noptilus SU Technology

> Models

Probabilistic Context-Free Grammars (PCFGs)

Task 1: Event Recognition

real-time, hierarchical parsing for on-line recognition

Task 2: Grammar Learning

off-line learning of PCFGs from past AUV mission logs

PCFG

Probabilistic Context-Free Grammars

Probabilistic CFGs

Context-Free Grammars (CFG)

- formal models for specifying syntax (sequences)
- components:
 - terminal symbols, non-terminal symbols, start symbol
 - production rules

CFG example

- terminals {a,b}, non-terminals {S, A, B}, start symbol S
- rules = $\{S \rightarrow A, S \rightarrow B, A \rightarrow aAb, B \rightarrow bBa, A \rightarrow ab, B \rightarrow ba\}$
- encodes/produces all sequences anbn or bnan for n>0
- producing bbbaaa: $S \rightarrow B \rightarrow bBa \rightarrow bbBaa \rightarrow bbbaaa$

Probabilistic CFGs (PCFG)

CFG with a probability value to each production rule

A Simple PCFG

Grammar	Prob	Lexicon	
$S \rightarrow NP \ VP$ $S \rightarrow Aux \ NP \ VP$ $S \rightarrow VP$ $NP \rightarrow Pronoun$ $NP \rightarrow Proper-Noun$ $NP \rightarrow Det \ Nominal$ $Nominal \rightarrow Noun$ $Nominal \rightarrow Nominal \ Nominal \ PP$ $VP \rightarrow Verb$ $VP \rightarrow Verb \ NP$ $VP \rightarrow VP \ PP$ $PP \rightarrow Prep \ NP$	0.8 0.1 0.1 0.2 0.2 0.6 0.3 0.2 0.5 0.2 0.5 0.3 1.0 1.0	Noun \rightarrow book flight meal money 0.1 0.5 0.2 0.2 Σ Verb \rightarrow book include prefer 0.5 0.2 0.3 Σ Pronoun \rightarrow I he she me 0.5 0.1 0.1 0.3 Σ Proper-Noun \rightarrow Houston NWA 0.8 0.2 Σ Aux \rightarrow does	E = 1.0 $E = 1.0$
		$0.25 0.25 0.1 0.2 \qquad 0.2$:=1 (

PCFG Parsing

Derivation

- sequential application of rules to the start symbol
- probability: product of the probabilities of the rules used

>Sequence

- sequence of terminal symbols derived from start symbol
- probability: sum of the probabilities of all its derivations

Sequence parsing

- given a sequence, find a derivation, if one exists
- useful for uncovering the structure of the sequence

Sequence likelihood

- compute the probability of a derivable sequence
- useful for classifying and ordering sequences

PCFG Benefits

>Representation

- compact and hierarchical representation of sequences
- human-readable, self-explanatory production rules

Algorithms

- a variety of parsers for various types of sequences
- algorithms for learning the probabilities of the rules
- algorithms for grammatical inference

Applications

- natural language processing
- visual human activity recognition
- •

PCFG Event Recognition

on-line, real-time, on-board parsing

AUV Mission Log

PCFGs for Noptilus

>Goal

- simple event recognition regarding diving behavior
- focus on joint patterns in depth and pitch

>Hierarchy

- level 1: independent grammars for depth and pitch events
- level 2: grammar for the combination of Level-1 events

Depth Observation Generation

quantization: average rate of change (+, 0, -), averaging window s=15

Level-1 Event Recognition

Level-1 events

- depth : **D**own, **U**p, **H**over, **C**hange
- pitch : **D**own, **U**p, **H**over

Level-1 parsing

- input: observations over a rolling window
- output: most probable depth/pitch event occurred

Grammar for Depth Events

$E \rightarrow C$	[0.10]
$E \to U$	[0.30]
$E \to D$	[0.30]
$E \to H$	[0.30]

$$\begin{array}{ccc} \mathsf{D} \to & \mathsf{D} \; \mathsf{D} \\ \mathsf{D} \to & \mathsf{d} \end{array} \quad \begin{bmatrix} 0.50 \end{bmatrix}$$

$$\begin{array}{ccc} U \rightarrow & U & U & [0.50] \\ U \rightarrow & u & [0.50] \end{array}$$

$$C \rightarrow U H D$$
 [0.50]
 $C \rightarrow D H U$ [0.50]

$$H \to H H$$
 [0.34]
 $H \to U H D$ [0.16]
 $H \to D H U$ [0.16]
 $H \to h$ [0.34]

$$d \rightarrow '+'$$
 [0.85]
 $d \rightarrow '0'$ [0.15]
 $u \rightarrow '-'$ [0.85]
 $u \rightarrow '0'$ [0.15]
 $h \rightarrow '0'$ [1.00]

Recognize event E by choosing the derivation that maximizes production probability

Level-1 Parsing: Depth

Level-1 Annotated Depth

Diving Behavior Event Recognition

PCFG Learning from Logs

off-line, off-board grammatical inference

Normal/Abnormal Events

Considerations

- what is an interesting event? what do we care about?
- likely interesting events are unusual and unexpected
- in most missions almost nothing abnormal occurs
- *idea*: instead of looking for the abnormal and rare, ...
- ... why not look after the normal and frequent?
- easier to define normal as opposed to abnormal

Normal Operation

typical patterns in motion and measurements (PCFG!)

Abnormal Operation

any pattern that does not occur in normal operation

Grammar Learning

Structured Prediction

make a prediction about a structured object

Grammatical Inference

infer a PCFG (symbols, rules, probabilities) from words

>Training Data

- corpus of positive (normal) examples only
- must generalize (but not too much) and must not overfit

Challenges

- the space of grammars cannot be generated systematically
- the space of grammars is not a vector space
- the neighborhood of a grammar is hard to define
- cannot tell if the best possible grammar has been reached

Our Bayesian Approach

>Learning objective

given a corpus O, find G* that maximizes the posterior

$$G^* = \arg\max_{G} P(G|O)$$

Bayes Rule

$$G^* = \arg\max_{G} \frac{P(G)P(O|G)}{P(O)} = \arg\max_{G} P(G)P(O|G)$$

Prior of G

$$P(G) = \frac{1}{2^{|G|}}$$

Likelihood of O over G

$$P(O|G) = \prod_{w \in O} P(w|G)$$

PCFG Initialization (Example)

$$G_{init} = (V, \Sigma, R, P, S)$$

Chunk and Merge Operations

Chunk

creates a new non-terminal to replace a sub-sequence

>Merge

combines two existing non-terminals into one

$$N_1 \rightarrow a \quad N_2 \quad a \quad N_3 \quad c \quad (15)$$
 $N_1 \rightarrow a \quad N_2 \quad a \quad N_2 \quad c \quad (15)$ $N_2 \rightarrow a \quad N_1 \quad a \quad N_3 \quad d \quad (6) \implies N_2 \rightarrow a \quad N_1 \quad a \quad N_2 \quad d \quad (6)$ $N_3 \rightarrow d \quad N_2 \quad d \quad c \quad d \quad (32)$

Grammar Learning Approach

Local Search

Beam Search strategy to avoid local minima

Posterior Gain

incremental computation over previous grammar

Probabilities

- merge operation invalidates the counts of the rules
- fix: Inside-Outside algorithm over the corpus

>Incremental Learning

- learning over a batch of the most frequent words
- elimination of parsed words from training corpus
- repeat learning and elimination until corpus is empty

AUV Normal and Abnormal Behavior

Learned Grammar on AUV Yaw

```
Start Rules:
N24
All Rules:
    N12 -> j (1)
    N13 -> k (1)
    N23 -> d (1)
    N24 \rightarrow N29 N29 (0.367347)
         -> N26 N26 N26 (0.27551)
         -> N27 N27 N27 (0.122449)
         -> N25 N25 (0.0612245)
    N25 \rightarrow N33 N14 (0.842105)
         -> N13 N19 N20 (0.157895)
    N26 \rightarrow N21 N21 (0.53795)
```

Recognition with Learned Grammar

data stream: yaw (z-angle) of the AUV

training corpus: 129 examples

Integration

Putting everything together

AUV+Dune+Neptus+Parser

AUV Mission Integration

>Off-line (before)

- identify type of event
- identify related data
- collect normal data
- learn grammar(s)

On-line (during)

- execute parser onboard
- recognize events
- signal detection(s)

>Off-line (after)

- parse past mission logs
- event detection

Event

- loss of orientation
- gyro (z-angle, yaw)
- normal mission data
- rules and probabilities

Mission

- use learned grammar
- detect abnormality
- reset state, notify

Investigation

- detect past occurrences
- extract event statistics

Thank you!

