

COPIE INTERNE 21/08/2025

Dr NGUYEN DAN TRUC

Prescripteur: Dr NGUYEN DAN TRUC

CHU Brugmann Médecine interne Place Van Gehuchten 4 1020 Bruxelles

Centre d'Anatomie Pathologique H.U.B.

Rue Meylemeersch 90 - 1070 Anderlecht Mijlemeerschstraat 90 – 1070 Anderlecht

> **Directrice de Service** Pr Myriam Remmelink

Equipe Médicale

Dr Nicolas de Ŝaint Aubain
Pr Nicky D'Haene
Dr Maria Gomez Galdon
Dr Chirine Khaled
Pr Denis Larsimont
Pr Laetitia Lebrun
Dr Calliope Maris
Pr Jean-Christophe Noël
Dr Anne-Laure Trépant
Dr Marie Van Eycken
Pr Laurine Verset

Consultant (e) s

Dr Sarah Bouri Dr Xavier Catteau Dr Roland de Wind Dr Marie-Lucie Racu Dr Valérie Segers Dr Anne Theunis Dr Marie-Paule Van Craynest

Secrétariat Médical T. +32 (0)2 541 73 23

+32 (0)2 555 33 35 +32 (0)2 555 33 35

SecMed.AnaPath@hubruxelles.be

Secrétariat Direction T. +32 (0)2 555 31 15 Mme Kathia El Yassini Kathia.elvassini@hubruxelles.be

Mme Véronique Millecamps veronique.millecamps@hubruxelles.be

PATIENT:

ID:

Réf. Externe : 25H04680 EXAMEN : 25EM02139

Prélevé le 16/05/2025 à 16/05/2025

Reçu le 30/05/2025

RECHERCHE PAR « NEXT GENERATION SEQUENCING » DE MUTATIONS DANS 22 GENES IMPLIQUES DANS LES CANCERS COLORECTAUX ET PULMONAIRES (COLON & LUNG CANCER PANEL)

HUB – Centre d'Anatomie Pathologique – est accrédité par BELAC sous le numéro de certificat B-727 MED

I. Renseignements anatomopathologiques

N° du prélèvement : 25H04680-03a

Date du prélèvement : 16/05/2025

Origine du prélèvement : Brugmann

Type de prélèvement : Adénocarcinome colique (métastase hépatique)

II. Evaluation de l'échantillon

- % de cellules tumorales : 40%

- Qualité du séquençage : Optimale (coverage moyen > 1000x)
- Les exons à considérer comme non contributifs sont détaillés dans le tableau ci-dessous (point III).
- Commentaires : /

III. Méthodologie (effectué par : NADN, THMA)

- Extraction ADN à partir de coupes paraffinées après macrodissection des zones tumorales ou à partir de frottis.
- Détection par « Next Generation Sequencing » (sur Ion Gene Studio S5, Ion Torrent avec Kit AmpliSeq colon & lung cancer panel) de mutations dans 22 gènes liés aux cancers colorectaux et pulmonaires :

Gene	RefSeq	Exons testés	Exons Non Contributif (coverage < 250x)*	
AKT1	NM_05163	3		
ALK	NM_004304	22, 23, 25		
BRAF	NM 004333	11, 15		
CTNNB1	NM 001904	3		
DDR2	NM_001014796	6, 9, 13-16, 18		
EGFR	NM_005228	12, 18-21		
ERBB2	NM_004448	19-21		
ERBB4	NM_005235	3, 4, 6-9, 15, 23		
FBXW7	NM_033632	5, 8-11	8	
FGFR1	NM_023110	4, 7		
FGFR2	NM 022970	7, 9, 12		

Gene	RefSeq	Exons testés	Exons Non Contributif (coverage < 250x)*
FGFR3	NM_000142	7, 9, 14, 16, 18	
KRAS	NM_033360	2-4	
MAP2K1	NM 002755	2	
MET	NM 001127500	2, 14, 16, 19	
NOTCH1	NM_017617	26, 27	
NRAS	NM_002524	2, 3, 4	
PIK3CA	NM_006218	9, 13, 20	
PTEN	NM_000314	1, 3, 6-8	
SMAD4	NM_005359	3, 5, 6, 8, 9, 10, 12	
STK11	NM_000455	1, 4-6, 8	
TP53	NM_000546	2, 4-8, 10	

^{*} Un coverage < 250x induit une perte de sensibilité et de spécificité de la méthode.

- Sensibilité: la technique utilisée détecte une mutation si l'échantillon contient > 4% d'ADN mutant. Seules les mutations rapportées dans COSMIC et avec une fréquence supérieure à 4% et un variant coverage >30x sont rapportées.

IV. Résultats

Liste des mutations détectées :

Gène	Exon	Mutation	Coverage	% d'ADN muté			
Mutations avec impact clinique avéré							
KRAS	2	p.G13D	1995	40%			
Mutations avec impact clinique potentiel							
PIIK3CA	20	p.H1047R	2000	41%			

V. Discussion:

Les mutations dans les exons 2, 3 et 4 du gène KRAS sont associées à une résistance aux anti-FGFR

Amado RG et al., J Clin Oncol 2008, 26 :1626-34 Douillard JY et al., N Engl J Med 2013, 369 :1023-34

Les mutations du gène PIK3CA sont décrites dans 10 à 30 % des cancers colorectaux. Leur impact pronostique et thérapeutique n'est pas encore avéré. Il existe des essais cliniques avec des thérapies ciblant la voie PI3K/mTOR. Leur efficacité n'est cependant pas encore avérée.

Samuels Y et al., Science 2004, 304:554 Clarke PA and Workman p, J Clin Oncol 2012, 30:331-33

VI. Conclusion:

Présence de la mutation G13D du gène KRAS. Présence de la mutation H1047R du gène PIK3CA.

N.B. Pour les prélèvements d'histologie et de cytologie ainsi que pour les examens complémentaires de biologie moléculaire, merci d'utiliser les nouvelles prescriptions disponibles sur le site internet du HUB: https://www.hubruxelles.be/sites/default/files/2024-03-04 demande%20analyse%20anapath%20cytologie%20v3.pdf https://www.hubruxelles.be/sites/default/files/FO-HUB-BM-11%20Demande%20de%20biologie%20mol%C3%A9culaire-IPD%20v1.doc

Dr N D'HAENE

 $\begin{array}{cc} cc: & Dr \ LECOMTE \ SYLVIE \\ & Dr \ DUTTMANN \ R. \end{array}$