Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge Transfer

Bin Lu¹, Xiaoying Gan¹, Weinan Zhang¹, Huaxiu Yao², Luoyi Fu¹, Xinbing Wang¹

¹Shanghai Jiao Tong University, ²Stanford University

Introduction

> Background

- Graphs are ubiquitously used to reveal the interactions among various entities
- Spatio-temporal graph learning is a widely used method for urban computing

> Our Goal

- Transfer the cross-city knowledge in graph-based few-shot learning scenarios.
- Exploring the impact of knowledge transfer across multiple cities.

> Challenges

#1 How to adapt feature extraction in target city via the knowledge from multiple source cities?

#2 How to alleviate the impacts of varied graph structure on transferring among different cities?

Methodology

> Spatio-Temporal Neural Network (STNN)

Backbone for feature extractor (time series model, graph neural network, hybrid model, etc.)

> Cross-City Knowledge Transfer

1. ST-Meta Learner: obtain the node-level meta knowledge

$$\mathbf{Z}^{MK} = W^{\gamma}(\gamma \circ \mathbf{Z}^{tp} + (1 - \gamma) \circ \mathbf{Z}^{sp})$$

2. Parameter Generation: customize feature extraction among different cities

3. ST-Meta Graph Reconstruction: structure-aware learning

$$\mathbf{A}_{meta} = sigmoid[(\mathbf{Z}^{\mathbf{MK}})^T \cdot \mathbf{Z}^{\mathbf{MK}}] \qquad \mathcal{L}_g = \|\mathbf{A}_{meta} - \mathbf{A}\|^2$$

Overview of proposed ST-GFSL framework

Experiments

① Model Comparison: Non-transfer Methods & Transfer Method

	PEMS-BAY Dataset							METR-LA Dataset						
Baselines	MAE (↓)			RMSE (↓)			MAE (↓)			RMSE (↓)				
	5 min	15 min	30 min	5 min	15 min	30 min	5 min	15 min	30 min	5 min	15 min	30 min		
HA	4.373	4.373	4.373	6.745	6.745	6.745	6.021	6.021	6.021	9.483	9.483	9.483		
ARIMA	2.019	2.307	2.429	3.929	4.648	5.360	2.900	3.058	3.369	4.179	5.279	7.670		
Target-only	1.556	1.920	2.368	3.092	4.043	5.153	2.740	3.229	3.860	4.924	6.118	7.417		
Fine-tuned (Vanilla)	1.823	2.166	2.590	3.434	4.280	5.276	2.757	3.277	3.900	4.883	6.123	7.413		
Fine-tuned (ST-Meta)	1.371	1.791	2.277	2.699	3.747	4.920	2.647	3.188	3.800	4.368	5.759	7.110		
AdaRNN [29]	1.248	1.928	2.749	2.084	3.796	5.725	2.513	2.897	3.312	4.298	5.567	6.732		
MAML [14]	1.081	1.600	2.141	1.906	3.291	4.708	2.405	2.960	3.639	4.159	5.710	7.124		
ST-GFSL (ours)	1.073	1.560	2.073	1.865	3.180	4.584	2.355	2.896	3.557	4.099	5.588	6.961		

	Didi-Chengdu Dataset							Didi-Shenzhen Dataset						
Baselines	MAE (↓)			RMSE (↓)			MAE (↓)			RMSE (↓)				
	10 min	30 min	60 min	10 min	30 min	60 min	10 min	30 min	60 min	10 min	30 min	60 min		
HA	3.438	3.438	3.438	4.879	4.879	4.879	2.955	2.955	2.955	4.342	4.342	4.342		
ARIMA	2.825	3.305	4.317	3.889	4.253	5.597	2.888	3.056	3.596	4.489	4.764	5.575		
Target-only	2.386	2.700	3.085	3.516	4.017	4.569	2.071	2.454	2.834	3.154	3.793	4.422		
Fine-tuned (Vanilla)	2.586	2.877	3.246	3.746	4.213	4.751	2.117	2.490	2.867	3.196	3.831	4.442		
Fine-tuned (ST-Meta)	2.240	2.693	3.083	3.249	3.956	4.519	2.033	2.454	2.850	2.989	3.719	4.385		
AdaRNN [29]	2.260	2.724	3.036	3.231	3.942	4.324	2.107	2.473	2.807	3.041	3.674	4.231		
MAML [14]	2.215	2.599	2.956	3.215	3.858	4.399	1.917	2.330	2.673	2.825	3.546	4.158		
ST-GFSL (ours)	2.188	2.579	2.927	3.190	3.820	4.339	1.890	2.288	2.644	2.763	3.477	4.100		

2 Performance Comparison:

Different feature extractors

③ Case Study: Graph reconstruction loss

4 Ablation Study

	DiI	Di-Shenzl	nen	METR-LA			
Ablation Methods		MAE (↓)		MAE (↓)			
	10 min	30 min	60 min	10 min	30 min	60 min	
(M1a): Use temporal meta knowledge only	1.910	2.317	2.668	2.332	2.905	3.616	
(M1b): Use spatial meta knowledge only	1.872	2.300	2.649	2.364	2.915	3.604	
(M1c): Use random initialized vectors	1.937	2.332	2.680	2.422	2.949	3.697	
(M2): Remove parameter generator	1.917	2.330	2.673	2.405	2.960	3.639	
(M3): Remove graph reconstruction loss	2.286	2.652	3.000	3.087	3.585	4.140	
ST-GFSL (Ours)	1.856	2.290	2.634	2.387	2.895	3.546	

Conclusion

- We firstly propose a spatio-temporal graph few-shot learning framework called ST-GFSL for cross-city knowledge transfer.
- Extensive experimental results in the running case of traffic speed prediction demonstrate the superiority of ST-GFSL over other baselines.
- In the future, we will further explore source domain selection problem.

Contact Us

- Bin Lu: robinlu1209@sjtu.edu.cn
- Intelligent IoT Research Center: https://iiot.sjtu.edu.cn