MTH 372: Assignment I

Ashwin Sheoran 2020288

Ans 1)

Plotted the graphs using

```
1 ## AnS1
2 #a)
3 rm(list=ls())
4 catal num [1:1000] 0.8435 0.5766 1.3291 0.0316 0.0562 ...
5 set.seed(123) # set seed for reproducibility
6 sample_size <- 1000 # specify the sample size
7 data1 rexp(1000,1)
9 plot(data1, main="Exp dist , lambda =1", ylab="Y", xlab="X",)
10
11 data2 rexp(1000,2)
12 plot(data2, main="Exp dist , lambda =2", ylab="Y", xlab="X",)
13 data3 = rexp(1000,3)
15 plot(data4, main="Exp dist , lambda =3", ylab="Y", xlab="X",)
16
17 data4 = rexp(1000,4)
18 plot(data4, main="Exp dist , lambda =4", ylab="Y", xlab="X",)
19
10
11 data3 = rexp(1000,3)
12 plot(data2, main="Exp dist , lambda =3", ylab="Y", xlab="X",)
13 data4 = rexp(1000,4)
14 plot(data4, main="Exp dist , lambda =4", ylab="Y", xlab="X",)
15 data4 = rexp(1000,4)
16 plot(data4, main="Exp dist , lambda =4", ylab="Y", xlab="X",)
```

The rexp provides a set of random numbers obtained using the exponential distribution.

The graphs that we get are

Exp dist , lambda =3

Exp dist , lambda =4

1 b)

Now, we have to find the maximum likelihood estimate of the unknown parameter.

The function we have used

```
le.exp<-function(lambda,data){
  data_sum <- sum(data)
  val = 1000*(log(lambda)) - lambda*data_sum
  return(val)
}</pre>
```

Here our function is likelihood function and we have to use the result to calculate maximum likelihood.

Here, we are returning the log-likelihood function as given the pages attached, here n = 1000

Where μ is the mean of the data.

Since we are using nlimb, which gives the minimum value, we will multiply the result of function with (-1) and then pass it though nlimb to get the estimate.

According to the above proof, the value of estimate of parameter should be equal to 1/ mean(data)

For Lambda =1, we are getting estimate = 0.9708938 in all 3 cases

```
> ## Lambda = 1
> lambda_mom = 1/mean(data1)
> cat("Parameter using Method of Moments (MOM) when lambda = 1 is " , lambda_mom)
Parameter using Method of Moments (MOM) when lambda = 1 is 0.9708933>
> mlle.exp <-nlminb(1,objective=le.exp_nlminb,hessian=T,lower=0,upper=1, data=data1)
> # Print the MLE estimate
> cat("MLE estimate: for value-> 1 and lambda=1 is ", (mlle.exp)$par, "\n")
MLE estimate: for value-> 1 and lambda=1 is 0.9708938
> mlle.exp <-nlminb(0.5,objective=le.exp_nlminb,hessian=T,lower=0,upper=1, data=data1)
> cat("MLE estimate: for value-> 0.5 and lambda=1 is ", (mlle.exp)$par, "\n")
MLE estimate: for value-> 0.5 and lambda=1 is 0.9708938
> mlle.exp <-nlminb(lambda_mom,objective=le.exp_nlminb,hessian=T,lower=0,upper=1, data=data1)
> cat("MLE estimate: for value-> MOM and lambda=1 is ", (mlle.exp)$par, "\n")
MLE estimate: for value-> MOM and lambda=1 is ", (mlle.exp)$par, "\n")
```

For Lambda = 2, we are getting estimate = 2.012931 in all 3 cases

```
> #### Lambda = 2
> lambda_mom = 1/mean(data2)
> cat("Parameter using Method of Moments (MOM) when lambda = 2 is " , lambda_mom)
Parameter using Method of Moments (MOM) when lambda = 2 is 2.012931>
> mlle.exp <-nlminb(1,objective=le.exp_nlminb,hessian=T,lower=0,upper=4, data=data2)
> 
#### Lambda = 2

is ", lambda_mom)
Parameter using Method of Moments (MOM) when lambda = 2 is 2.012931>
> mlle.exp <-nlminb(1,objective=le.exp_nlminb,hessian=T,lower=0,upper=4, data=data2)
> cat("MLE estimate: for value-> 1 and lambda=2 is ", (mlle.exp)$par, "\n")
MLE estimate: for value-> 0.5 and lambda=2 is ", (mlle.exp)$par, "\n")
MLE estimate: for value-> 0.5 and lambda=2 is 2.012932
> mlle.exp <-nlminb(lambda_mom,objective=le.exp_nlminb,hessian=T,lower=0,upper=4, data=data2)
> cat("MLE estimate: for value-> MOM and lambda=2 is ", (mlle.exp)$par, "\n")
MLE estimate: for value-> MOM and lambda=2 is ", (mlle.exp)$par, "\n")
```

For lambda = 3, we are getting estimate = 2.92968 in all 3 cases

```
> #### Lambda = 3
> lambda_mom = 1/mean(data3)
> cat("Parameter using Method of Moments (MOM) when lambda = 3 is " , lambda_mom)
Parameter using Method of Moments (MOM) when lambda = 3 is 2.929678>
> mlle.exp <-nlminb(1,objective=le.exp_nlminb,hessian=T,lower=0,upper=4, data=data3)
>
> # Print the MLE estimate
> cat("MLE estimate: for value-> 1 and lambda=3 is ", (mlle.exp)$par, "\n")
MLE estimate: for value-> 1 and lambda=3 is 2.92968
> mlle.exp <-nlminb(0.5,objective=le.exp_nlminb,hessian=T,lower=0,upper=4, data=data3)
> cat("MLE estimate: for value-> 0.5 and lambda=3 is ", (mlle.exp)$par, "\n")
MLE estimate: for value-> 0.5 and lambda=3 is 2.929678
> mlle.exp <-nlminb(lambda_mom,objective=le.exp_nlminb,hessian=T,lower=0,upper=4, data=data3)
> cat("MLE estimate: for value-> MOM and lambda=3 is ", (mlle.exp)$par, "\n")
MLE estimate: for value-> MOM and lambda=3 is ", (mlle.exp)$par, "\n")
```

For lambda = 4, we are getting estimate = 4.200171 in all 3 cases

```
> #### Lambda = 4
> lambda_mom = 1/mean(data4)
> cat("Parameter using Method of Moments (MOM) when lambda = 4 is " , lambda_mom)
Parameter using Method of Moments (MOM) when lambda = 4 is 4.200171>
> mlle.exp <-nlminb(1,objective=le.exp_nlminb,hessian=T,lower=0,upper=5, data=data4)
> 
> # Print the MLE estimate
> cat("MLE estimate: for value-> 1 and lambda=4 is ", (mlle.exp)$par, "\n")
MLE estimate: for value-> 1 and lambda=4 is 4.200171
> 
> mlle.exp <-nlminb(0.5,objective=le.exp_nlminb,hessian=T,lower=0,upper=5, data=data4)
> cat("MLE estimate: for value-> 0.5 and lambda=4 is ", (mlle.exp)$par, "\n")
MLE estimate: for value-> 0.5 and lambda=4 is 4.200171
> 
> mlle.exp <-nlminb(lambda_mom,objective=le.exp_nlminb,hessian=T,lower=0,upper=5, data=data4)
> cat("MLE estimate: for value-> MOM and lambda=4 is ", (mlle.exp)$par, "\n")
MLE estimate: for value-> MOM and lambda=4 is ", (mlle.exp)$par, "\n")
```

1c) Verifying the above results graphically Here, as we can see that, for data generated by lambda = 1, we are getting maximum value for lambda = 1.

Here, as we can see that, for data generated by lambda = 2, we are getting maximum value for lambda = 2.

Here, as we can see that, for data generated by lambda = 3, we are getting maximum value for lambda = 3.

Here, as we can see that, for data generated by lambda = 4, we are getting maximum value for lambda = 4.

Ans 2) Here we have μ and $\sigma^2~$ as our Maximum parameters.

Nounal distillation
$1/(x-\mu)^2$
$\int (u) = \int e^{-\frac{\pi}{2}(\frac{\pi}{2})}$
Mero aun parameters and pandor
$ \chi = \frac{-1}{2} (\chi - \mu)^{-1/2}$
Mere over parameters and pand or $\frac{-1}{(x-y)^2/\sigma^2}$ $\frac{-1}{\sqrt{2\pi\sigma^2}} \left(\frac{x-y}{\sqrt{2\pi\sigma^2}}\right)^{\frac{1}{2}}$
Liklihood fuction
LLO) = T (ni) (iid variables) i=1 (wehere 0= 1/02)
i=1 (where 0= 1,02)
$= \frac{1}{\sqrt{2}} \left(\sum_{i=1}^{\infty} \pi_i^2 + \eta \mu^2 - 2\mu \sum_{i=1}^{\infty} \pi_i \right)$
(V2×02)n
log liklihood function for easier Calulations
$\ln(L10) = -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2} \left(\frac{2}{2} \pi^{\frac{1}{2}} + n\mu^2 - 2\mu \frac{2}{2} \pi_i \right)$
To Marinize
$\frac{d \left(\ln(L10) = 0\right)}{d p} = 0$ and $\frac{d \left(\ln(L10)\right) = 0}{d(\sigma^2)}$

The second secon	
E RESULT	
887	1
Noue ne have	
Ist condition	77, N
И	
d (en/10)) = \(\text{2} \) \(\text{d} \)	i - 2 n p = 0
dp 6	2 262
- 0 - 2	
=) n p= {ni	
μ= 2 <u>π</u> - 1 1h	is it sauple mean
n	
and landition	
2 nd condition	to be
	1 / / 2 · · · · · · · · · · · · · · · · ·
	+ 1 (\(\frac{1}{2}\)\
	+ 1 (\(\frac{1}{2}\)\ni^2 + n\(\rho^2 - 2\rho\)\frac{2}{1=1}\\ni\)=0
$\frac{d(\ln(110)) = -n}{d\sigma^2}$	+ 1 (\(\frac{2}{2}\)\ni^2 + n\(\rho^2 - 2\rho\)\xi\)=0
	+ 1 (½ ni + np2 - 2p & ni)=0
$\frac{d(\ln(110)) = -n}{d\sigma^2}$	+ 1 (\frac{\frac{1}{2}
$\frac{d(\ln(110)) = -n}{d\sigma^2}$ $\frac{n}{d\sigma^2} = \sum_{i=1}^{\infty} (\underline{n}_i - \underline{p})$	+ 1 (\(\frac{2}{2}\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
$\frac{d(\ln(110)) = -n}{d\sigma^2}$ $\frac{n}{d\sigma^2} = \sum_{i=1}^{\infty} (\underline{n}_i - \underline{p})$	$+ 1 \left(\frac{2}{2}\pi i^{2} + n \mu^{2} - 2\mu \leq \pi i\right) = 0$
$\frac{d(\ln(110)) = -n}{d\sigma^2}$ $\frac{n}{2\sigma^2} = \frac{\sum_{i=1}^{N} (n_i - \mu)}{\sigma^2}$ $\frac{n}{2\sigma^2} = \frac{\sum_{i=1}^{N} (n_i - \mu)}{\sum_{i=1}^{N} n}$	
$\frac{d(\ln(110)) = -n}{d\sigma^2}$ $\frac{n}{2\sigma^2} = \frac{\sum_{i=1}^{N} (n_i - \mu)}{\sigma^2}$ $\frac{n}{2\sigma^2} = \frac{\sum_{i=1}^{N} (n_i - \mu)}{\sum_{i=1}^{N} n}$	
$\frac{d(\ln(110)) = -n}{d\sigma^2}$ $\frac{n}{2\sigma^2} = \frac{\sum_{i=1}^{N} (n_i - \mu)}{\sigma^2}$ $\frac{n}{2\sigma^2} = \frac{\sum_{i=1}^{N} (n_i - \mu)}{\sum_{i=1}^{N} n}$	
$\frac{d(\ln(110)) = -n}{d\sigma^2}$ $\frac{n}{2\sigma^2} = \frac{\sum_{i=1}^{n} (n_i - \mu)}{\sigma^2}$ $\frac{n}{2\sigma^2} = \frac{\sum_{i=1}^{n} (n_i - \mu)}{2\sigma^2}$ Were μ is the law σ^2 is the sarple	ple mean Variance
$\frac{d(\ln(110)) = -n}{d\sigma^2}$ $\frac{n}{2\sigma^2} = \frac{\sum_{i=1}^{n} (n_i - \mu)}{\sigma^2}$ $\frac{n}{2\sigma^2} = \frac{\sum_{i=1}^{n} (n_i - \mu)}{2\sigma^2}$ Were μ is the law σ^2 is the sarple	ple mean Variance
$\frac{d(\ln(110)) = -n}{d\sigma^2}$ $\frac{n}{2\sigma^2} = \frac{\sum_{i=1}^{N} (n_i - \mu)}{\sigma^2}$ $\frac{n}{2\sigma^2} = \frac{\sum_{i=1}^{N} (n_i - \mu)}{\sum_{i=1}^{N} n}$	ple mean Variance

$$\begin{array}{lll}
N_{b(n,y)} & \frac{\partial^{2} b}{\partial n^{2}} & \frac{\partial^{2} b}{\partial n \partial y} \\
\frac{\partial^{2} b}{\partial y \partial x} & \frac{\partial^{2} b}{\partial y^{2}}
\end{array}$$
In our (ase It will be

Lonsidering

$$\begin{array}{lll}
\ln (L(0)) = L(0) \\
\text{ushere } 0 = \left(p_{1} e^{2} \right)
\end{array}$$

$$\begin{array}{lll}
H & = \left(\frac{\partial^{2} l(0)}{\partial y^{2}} & \frac{\partial^{2} l(0)}{\partial y^{2}} \right)
\end{array}$$

$$\frac{\partial^{2} l(0)}{\partial e^{2} \partial y} & \frac{\partial^{2} l(0)}{\partial e^{2} \partial y}$$

$$\frac{\partial^{2} l(0)}{\partial e^{2} \partial y} & \frac{\partial^{2} l(0)}{\partial e^{2} \partial y}$$

$$\frac{\partial^{2} l(0)}{\partial e^{2} \partial y} & \frac{\partial^{2} l(0)}{\partial e^{2} \partial y}$$

$$\frac{\partial^{2} l(0)}{\partial e^{2} \partial y} & \frac{\partial^{2} l(0)}{\partial e^{2} \partial y}$$

$$\frac{\partial^{2}(l(0))}{\partial \sigma^{2}} = -\frac{1}{2} \underbrace{\underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(l(0))}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(l(0))}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(l(0))}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

$$\frac{\partial^{2}(x_{i} - \mu)}{\partial \mu} = -\frac{1}{2} \underbrace{\underbrace{\xi(x_{i} - \mu)}}_{(x_{i} - \mu)}$$

20	Similiarly for	
		-
3	d[10) co should be Tense	
-	0(62)2	
4	C	_
9	n - 1 ξ(ni-μ)² should be - ve 264 66 =1	
)	264 66 (=1	
9	Nous us have $\frac{\sum (n_i - \mu)^2 = \sigma^2}{\sum_{i=1}^{N} n_i}$	
	i=1 N	
)		_
2 -	on - n 62 lipuld be - ve	
y.	204 06 should be - ve	
4	- n should be - 120	
	-> n should be - ve	٦.
	which is fell as $\frac{\pi}{264} \left(\frac{-1}{2} \right)$ is -4 .	7
	2(2(0)) < 2 + 1 = 2(2(0)) < 2	-
	$\frac{\partial (l(0))}{\partial v^2} < 0$ and $\frac{\partial (l(0))}{\partial (c^2)^2} < 0$	_
	0 02	_
	· p and o 2 are over that poremeters	_
	Manimum parameters	_

Now we have to find μ and σ^2 using R.

Here, we will construct a function.

```
le.normal_pos <- function(theta_param, data){
  mean <- theta_param[1]
  var <- theta_param[2]
  ll <- -(0.5)*length(data)*log(2*pi*var) - (0.5/var)*sum((data - mean)^2)
  return(ll)
}</pre>
```

Here, I have used the log-likelihood function that I have written on the pages attached above.

This provides the log likelihood of estimates of parameters.

When passing in the optim function, we will multiply the result of this function by (-1) to find the maximum value of the parameters.

```
> mean_data <- theta_param[1]
> sigma2 <- theta_param[2]
>
>
> cat( "Mean is " , mean_data )
Mean is 4000.044> cat ("variance is " , sigma2 )
variance is 15.55781>
```

Our Mean is 4000.044, and variance is 15.55781.

B) Here, I changed the mean value in each iteration of the log-likelihood function while keeping the variance constant σ^2 =1 . As we can see that we are getting the , maximum value of likelihood in case of $\mu = 4000.044$

C). Now we have to find ML estimate of $exp(-\mu)$.

This will be the ML estimate of $exp(-4000.044) = e^{(-4000.044)}$.

Here using the invariance property, as we have μ as a MLE, then $f_2(\mu)$ will also be MLE. Here $f_2(\mu)$ = $e^{(-4000.044)}$.