Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP2005/016324

International filing date: 06 September 2005 (06.09.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-326182

Filing date: 10 November 2004 (10.11.2004)

Date of receipt at the International Bureau: 20 October 2005 (20.10.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

Date of Application:

2004年11月10日

出 願 番 号

Application Number:

特願2004-326182

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

JP2004-326182

出 願 人

松下電器産業株式会社

Applicant(s):

2005年10月 5日

特許庁長官 Commissioner, Japan Patent Office

【書類名】 特許願 【整理番号】 2032460276 【提出日】 平成16年11月10日 【あて先】 特許庁長官殿 【国際特許分類】 G11B 11/08 【発明者】 【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式会社内 【氏名】 西原 孝史 【発明者】 【住所又は居所】 大阪府門真市大字門真1006番地 松下電器產業株式会社内 【氏名】 槌野 晶夫 【発明者】 【住所又は居所】 大阪府門真市大字門真1006番地 松下電器產業株式会社內 【氏名】 児島 理恵 【発明者】 【住所又は居所】 大阪府門真市大字門真1006番地 松下電器產業株式会社內 山田 昇 【氏名】 【特許出願人】 【識別番号】 0 0 0 0 0 5 8 2 1 【氏名又は名称】 松下電器産業株式会社 【代理人】 【識別番号】 100097445 【弁理士】 【氏名又は名称】 岩橋 文雄 【選任した代理人】 【識別番号】 100103355 【弁理士】 【氏名又は名称】 坂口 智康 【選任した代理人】 【識別番号】 100109667 【弁理士】 【氏名又は名称】 内藤 浩樹 【手数料の表示】 【予納台帳番号】 0 1 1 3 0 5 【納付金額】 16,000円 【提出物件の目録】 【物件名】 特許請求の範囲 1 【物件名】 明細書 【物件名】 図面 1 【物件名】 要約書

【包括委任状番号】 9809938

【書類名】特許請求の範囲

【請求項1】

レーザビームの照射または電流の印加によって情報を記録及び/または再生し得る記録層と、誘電体層とを少なくとも備え、

前記誘電体層が、M1 (但し、M1 はSc 、Y 、La 、Gd 、Dy 及びYb から選ばれる少なくとも一つの元素)とOを含むことを特徴とする情報記録媒体。

【請求項2】

少なくとも二つの情報層を備えた情報記録媒体において、少なくとも一つの情報層が、レーザビームの照射または電流の印加によって情報を記録及び/または再生し得る記録層と、誘電体層とを少なくとも備え、

前記誘電体層が、M1(但し、M1はSc、Y、La、Gd、Dy及びYbから選ばれる少なくとも一つの元素)とOを含むことを特徴とする情報記録媒体。

【請求項3】

前記誘電体層が、さらにM2(但し、M2はZr、Hf及びSiから選ばれる少なくとも一つの元素)を含むことを特徴とする請求項1または2に記載の情報記録媒体。

【請求項4】

前記誘電体層が、さらにM3(但し、M3はA1、Ga、Mg、Zn、Ta、Ti、Ce、In、Sn、Te、Nb、Cr 、Bi 、A1 、Cr 、Ge 、Si 、N 及びC から選はれる少なくとも一つの元素)を含むことを特徴とする請求項1 から3 のいずれか一項に記載の情報記録媒体。

【請求項5】

前記誘電体層が、組成式

M 1_a M 2_b O 1_0 O -a-b (但し、1 O < a < 4 O 、0 < b < 2 5 (原子%))と表される請求項 3 に記載の情報記録媒体。

【請求項6】

前記誘電体層が、組成式

M 1 $_{C}$ M 3 $_{d}$ O $_{1}$ O $_{0}$ - $_{c}$ - $_{d}$ (但し、5 < c < 4 5 、0 < d < 8 5 、2 5 < c + d < 9 5 (原子%))

と表される請求項4に記載の情報記録媒体。

【請求項7】

前記誘電体層が、組成式

 $M\,1_{\,\,e}\,M\,2_{\,\,f}\,M\,3_{\,\,g}\,O\,_{\,1\,\,0\,\,0\,-\,e\,-\,f\,-\,g}$ (但し、5 < e < 4 0 、0 < f < 2 5 、0 < g < 8 5 、2 5 < e + f + g < 9 5 (原子%))

と表される請求項4に記載の情報記録媒体。

【請求項8】

前記誘電体層が、M1203を含むことを特徴とする請求項1または2に記載の情報記録媒体。

【請求項9】

前記誘電体層が、M1203-M202と表される請求項8に記載の情報記録媒体。

【請求項10】

前記誘電体層が、さらにD(但し、DはAl₂O₃、Ga₂O₃、MgO、ZnO、Ta₂O₅、TiO₂、CeO₂、In₂O₃、SnO₂、TeO₂、Nb₂O₅、Cr₂O₃、Bi₂O₃、AlN、Cr-N、Ge-N、Si₃N₄及びSiCから選ばれる少なくとも一つの化合物)を含むことを特徴とする請求項8または9に記載の情報記録媒体。

【請求項11】

前記誘電体層が、組成式

 $(M \ 1 \ 2 \ 0 \ 3)_x (M \ 2 \ 0 \ 2)_{1 \ 0 \ 0 - x} (但し、 2 \ 0 \le x \le 9 \ 5 \ (mo\ 1 \ \%))$ と表される請求項 9 に記載の情報記録媒体。

【請求項12】

前記誘電体層が、組成式

 $(M 1_2 O_3)_y (D)_{100-y} (但し、20 \le y \le 95 (mo1%))$ と表される請求項10に記載の情報記録媒体。

【請求項13】

前記誘電体層が、組成式

(M l 2 O 3) z (M 2 O 2) w (D) l 0 0 - z - w (但し、2 0 \leq z \leq 9 0 、5 \leq w \leq 7 5 、2 5 \leq z + w \leq 9 5 (m o l %))

と表される請求項10に記載の情報記録媒体。

【請求項14】

前記誘電体層と前記記録層の間に、界面層をさらに備える請求項1から13のいずれか一項に記載の情報記録媒体。

【請求項15】

前記記録層が、結晶相と非晶質相との間で相変化を起こすことを特徴とする請求項1から14のいずれか一項に記載の情報記録媒体。

【請求項16】

前記記録層が、Sb、Bi、In 及びSn から選ばれる少なくとも一つの元素とGeとTe を含むことを特徴とする請求項 1.5 に記載の情報記録媒体。

【請求項17】

【請求項18】

前記界面層が、Zr、Hf、Y及びSi から選ばれる少なくとも一つの元素と、Ga、In 及びCr から選ばれる少なくとも一つの元素と〇を含むことを特徴とする請求項 14 から 17 のいずれか一項に記載の情報記録媒体。

【請求項19】

前記界面層が、Z r O $_2$ 、H f O $_2$ 、Y $_2$ O $_3$ 及びS i O $_2$ から選ばれる少なくとも一つの酸化物と、G a $_2$ O $_3$ 、I n $_2$ O $_3$ 及びC r $_2$ O $_3$ から選ばれる少なくとも一つの酸化物を含むことを特徴とする請求項 1 4 から 1 7 のいずれか一項に記載の情報記録媒体。

【請求項20】

M1がDyである請求項1から19のいずれか一項に記載の情報記録媒体。

【請求項21】

M1がDyとYの混合物である請求項1から19のいずれか一項に記載の情報記録媒体。

【請求項22】

記録層を成膜する工程及び誘電体層を成膜する工程を少なくとも含む情報記録媒体の製造 方法であって、

前記誘電体層を成膜する工程において、少なくともM1(但し、M1はSc、Y、La、Gd、Dy及びYbから選ばれる少なくとも一つの元素)とOを含むスパッタリングターゲットを用いることを特徴とする情報記録媒体の製造方法。

【請求項23】

少なくとも二つの情報層を成膜する工程を含む情報記録媒体の製造方法であって、

少なくとも一つの前記情報層を成膜する工程が、記録層を成膜する工程及び誘電体層を 成膜する工程を少なくとも含み、

前記誘電体層を成膜する工程において、少なくともM1(但し、M1はSc、Y、La、Gd、Dy及びYbから選ばれる少なくとも一つの元素)とOを含むスパッタリングターゲットを用いることを特徴とする情報記録媒体の製造方法。

【請求項24】

前記誘電体層を成膜する工程で用いるスパッタリングターゲットが、さらにM2(但し、M2はZr、Hf及びSiから選ばれる少なくとも一つの元素)を含むことを特徴とする

請求項22または23に記載の情報記録媒体の製造方法。

【請求項25】

前記誘電体層を成膜する工程で用いるスパッタリングターゲットが、さらにM3(但し、M3はA1、Ga、Mg、Zn、Ta、Ti、Ce、In、Sn、Te、Nb、Cr、Bi、A1、Cr、Ge、Si、N及びCから選ばれる少なくとも一つの元素)を含むことを特徴とする請求項22から24のいずれか一項に記載の情報記録媒体の製造方法。

【請求項26】

前記誘電体層を成膜する工程で用いるスパッタリングターゲットが、組成式

 $M1_hM2_iO_{100-h-i}$ (但し、5 < h < 45、0 < i < 30 (原子%)) と表される請求項24に記載の情報記録媒体の製造方法。

【請求項27】

前記誘電体層を成膜する工程で用いるスパッタリングターゲットが、組成式

 $M\ 1\ _{\bf j}\ M\ 3\ _{\bf k}\ O\ _{\bf 1}\ O\ O\ _{\bf j}\ -{\bf k}$ (但し、 $0<{\bf j}<5\ O$ 、 $0<{\bf k}<9\ O$ 、 $2\ O<{\bf j}+{\bf k}<1\ O\ O$ (原子%))

と表される請求項25に記載の情報記録媒体の製造方法。

【請求項28】

前記誘電体層を成膜する工程で用いるスパッタリングターゲットが、組成式

M 1 $_1$ M 2 $_m$ M 3 $_n$ O $_1$ O 0 - 1 - m - n (但し、 0 < 1 < 4 5 、 0 < m < 3 0 、 0 < n < 9 0 、 2 0 < 1 + m + n < 1 0 0 (原子%))

と表される請求項25に記載の情報記録媒体の製造方法。

【請求項29】

前記誘電体層を成膜する工程で用いるスパッタリングターゲットが、 $M \ 1 \ 2 \ O \ 3$ を含むことを特徴とする請求項 $2 \ 2$ または $2 \ 3$ に記載の情報記録媒体の製造方法。

【請求項30】

前記誘電体層を成膜する工程で用いるスパッタリングターゲットの組成が、 $M1_2O_3-M2O_2$ と表される請求項29に記載の情報記録媒体の製造方法。

【請求項31】

【請求項32】

前記誘電体層を成膜する工程で用いるスパッタリングターゲットが、組成式 $(M \ 1 \ 2 \ 0 \ 3)$ $_s$ $(M \ 2 \ 0 \ 2)$ $_1 \ 0 \ 0 - s$ (但し、 $1 \ 5 \le s < 1 \ 0 \ 0$ $(m \ o \ 1 \ \%)$) と表される請求項 $3 \ 0$ に記載の情報記録媒体の製造方法。

【請求項33】

【請求項34】

前記誘電体層を成膜する工程で用いるスパッタリングターゲットが、組成式

 $(M\,1\,_2\,O\,_3\,)_u$ $(M\,2\,O\,_2\,)_v$ $(D)_{1\,0\,0\,-\,u\,-\,v}$ (但し、 $1\,5\,{\leq}\,u\,{\leq}\,9\,5$ 、 $0\,{<}\,v\,{\leq}\,8\,0$ 、 $1\,5\,{<}\,u\,{+}\,v\,{<}\,1\,0\,0$ $(m\,o\,1\,\%)$)

と表される請求項31に記載の情報記録媒体の製造方法。

【請求項35】

前記記録層を成膜する工程と前記誘電体層を成膜する工程の間に、界面層を成膜する工程 をさらに備える請求項22から34のいずれか一項に記載の情報記録媒体の製造方法。

【請求項36】

前記誘電体層を成膜する工程において、Arガスを用いるか、またはArガスと〇2ガス

との混合ガスを用いることを特徴とする請求項22から35のいずれか一項に記載の情記録媒体の製造方法。	事 報

【書類名】明細書

【発明の名称】情報記録媒体とその製造方法

【技術分野】

$[0\ 0\ 0\ 1\]$

本発明は、光学的にまたは電気的に情報を記録、消去、書き換え、及び/または再生する情報記録媒体及びその製造方法に関するものである。

【背景技術】

[00002]

従来の情報記録媒体として、その記録層(相変化材料層)が結晶相と非晶質相との間で 相変化を生じる現象を利用する相変化形情報記録媒体がある。この相変化形情報記録媒体 の中で、レーザビームを用いて光学的に情報を記録、消去、書き換え、再生するのが光学 的相変化形情報記録媒体である。この光学的相変化形情報記録媒体は、レーザビームの照 射により発生する熱によって記録層の相変化材料を結晶相と非晶質相との間で状態変化さ せ、結晶相と非晶質相との間の反射率の違いを検出して情報として読みとるものである。 光学的相変化形情報記録媒体のうち、情報の消去や書き換えが可能な書き換え型光学的相 変化形情報記録媒体においては、一般に記録層の初期状態は結晶相であり、情報を記録す る場合には高バワー(記録パワー)のレーザビームを照射して記録層を溶融して急激に冷 却することによって、レーザ照射部を非晶質相にする。一方、情報を消去する場合には、 記録時より低いバワー(消去バワー)のレーザビームを照射して記録層を昇温して徐冷す ることにより、レーザ照射部を結晶相にする。従って、書き換え型光学的相変化形情報記 録媒体では、高パワーレベルと低パワーレベルとの間でパワー変調させたレーザビームを 記録層に照射することによって、記録されている情報を消去しながら新しい情報を記録ま たは書き換えすることが可能である。また、光学的相変化形情報記録媒体のうち、一回だ け情報の記録が可能で情報の消去や書き換えが不可能な追記型光学的相変化形情報記録媒 体においては、一般に記録層の初期状態は非晶質相であり、情報を記録する場合には高バ ワー(記録バワー)のレーザビームを照射して記録層を昇温して徐冷することによってレ ーザ照射部を結晶相にする。

[0003]

上記レーザビームを照射する代わりに、電気的エネルギー(たとえば電流)の印加により発生するジュール熱によって記録層の相変化材料を状態変化させることによって情報を記録する電気的相変化形情報記録媒体もある。この電気的相変化形情報記録媒体は、電流の印加により発生するジュール熱によって記録層の相変化材料を結晶相(低抵抗)と非晶質相(高抵抗)との間で状態変化させ、結晶相と非晶質相との間の電気抵抗の違いを検出して情報として読みとるものである。

[0004]

光学的相変化形情報記録媒体の例として、発明者らが商品化した4.7 G B / D V D - R A M が挙げられる。4.7 G B / D V D - R A M の構成は、図12の情報記録媒体12に示すように、基板1上に、レーザ入射側から見て、第1誘電体層2、第1界面層3、記録層4、第2界面層5、第2誘電体層6、光吸収補正層7、反射層8を順に備えた7層構成である。

[0005]

第1誘電体層 2 と第2誘電体層 6 は、光学距離を調節して記録層 4 への光吸収効率を高め、結晶相と非晶質相との反射率変化を大きくして信号強度を大きくする光学的な働きと、記録時に高温となる記録層 4 から熱に弱い基板 1 、ダミー基板 1 0 等を断熱する熱的な働きがある。以前より使用している、(乙nS)80(SiO2)20(mol%)は、透明且つ高屈折率であり、低熱伝導率で断熱性も良く、機械特性及び耐湿性も良好な優れた誘電体材料である。なお、第1誘電体層 2 と第2誘電体層 6 の膜厚は、マトリクス法に基づく計算により、記録層 4 の結晶相である場合とそれが非晶質相である場合の反射光量の変化が大きく、且つ記録層 4 での光吸収が大きくなる条件を満足するように厳密に決定することができる。

[0006]

記録層4には、化合物である $GeTeESb_2Te_3$ を混合した $GeTe-Sb_2Te_3$ 擬二元系相変化材料においてGeo-部をSnで置換した(Ge-Sn) $Te-Sb_2Te_3$ を含む高速結晶化材料を用いることにより、初期記録書き換え性能のみならず、優れた記録保存性(記録した信号を、長期保存後に再生できるかの指標)、及び書き換え保存性(記録した信号を、長期保存後に消去または書き換えできるかの指標)をも実現している。

[0007]

第1界面層3と第2界面層5は、第1誘電体層2と記録層4、及び第2誘電体層6と記録層4との間で生じる物質移動を防止する機能を有する。この物質移動とは、第1誘電体層2及び第2誘電体層6に(ZnS)80(SiO2)20(mol%)を使用した場合に、レーザビームを記録層4に照射して記録・書き換えを繰り返す際、S(硫黄)が記録層に拡散していく現象のことである。Sが記録層に拡散すると、繰り返し書き換え性能が悪化する。この繰り返し書き換え性能の悪化を防ぐには、Geを含む窒化物を第1界面層3及び第2界面層5に使用すると良い(例えば、特許文献1参照)。

[0008]

以上のような技術により、優れた書き換え性能と高い信頼性を達成し、4.7~G~B/D~V~D-R~A~Mを商品化するに至った。

[0009]

また、情報記録媒体をさらに大容量化するための技術として、さまざまな技術が検討されている。例えば、光学的相変化形情報記録媒体においては、従来の赤色レーザより短波長の青紫色レーザを用いたり、レーザビームが入射する側の基板の厚さを薄くして開口数(NA)が大きい対物レンズを使用したりすることによって、レーザビームのスポット径をより小さくして高密度の記録を行う技術が検討されている。スポット径を小さくして記録を行うと、レーザビームが照射される領域がより小さく限定されるため、記録層で吸収されるパワー密度が増大して体積変動が大きくなる。従って、物質移動が生じやすくなり、 $ZnS-SiO_2$ のようなSを含む材料を記録層に接して用いると、繰り返し書き換え性能が悪化する。

$[0\ 0\ 1\ 0]$

また、2つの情報層を備える光学的相変化形情報記録媒体(以下、2層光学的相変化形情報記録媒体という場合がある)を用いて記録容量を2倍に高め、且つその片側から入射するレーザビームによって2つの情報層の記録再生を行う技術も検討されている(例えば、特許文献2及び特許文献3参照)。この2層光学的相変化形情報記録媒体では、レーザビームの入射側に近い情報層(以下、第1の情報層という)を透過したレーザビームを用いて、レーザビームの入射側から遠い情報層(以下、第2の情報層という)の記録再生を行うため、第1の情報層では記録層の膜厚を極めて薄くして透過率を高めている。しかし、記録層が薄くなると、記録層に接している層からの物質移動の影響が大きくなるため、 $ZnS-SiO_2$ のようなSを含む材料を記録層に接して用いると、繰り返し書き換え性能が急激に悪化する。

$[0\ 0\ 1\ 1\]$

従来、発明者らは上記のような場合、界面層に4.7GB/DVD-RAMと同様にGeを含む窒化物を記録層の両側に配置して、物質移動の影響を軽減し、繰り返し書き換え性能の悪化を防いでいた。

【特許文献 1 】 特開平 1 0 - 2 7 5 3 6 0 号公報 (第 2 - 6 頁、図 2)

【特許文献2】特開2000-36130号公報(第2-11頁、図2)

【特許文献 3 】 特開 2 0 0 2 - 1 4 4 7 3 6 号公報(第 2 - 1 4 頁、図 3)

【発明の開示】

【発明が解決しようとする課題】

$[0\ 0\ 1\ 2]$

しかしながら、レーザビームのスポット径をより小さくして高密度の記録を行う光学的

相変化形情報記録媒体では、情報を記録する際により大きなエネルギー(レーザパワー)が記録層に照射される。このため、従来のGeを含む窒化物を界面層に用いると、記録層で発生した熱で界面層の膜破壊が生じ、それに伴って誘電体層からのSの拡散を抑制できなくなるために繰り返し書き換え性能が急激に悪化するという課題があった。

$[0\ 0\ 1\ 3]$

また、Geを含む窒化物は熱伝導率が高いため、誘電体層からのSの拡散を抑制するために界面層を厚くした構成では熱が拡散しやすくなっていた。このことから、記録感度が低下するという課題をも有していた。

$[0\ 0\ 1\ 4]$

本発明は、前記従来の課題を解決するもので、繰り返し書き換え性能及び記録感度を同時に向上した相変化形情報記録媒体を提供することを目的とする。

【課題を解決するための手段】

[0015]

前記従来の課題を解決するために、本発明の情報記録媒体は、レーザビームの照射または電流の印加によって情報を記録及び/または再生し得る記録層と、誘電体層とを少なくとも備え、誘電体層が、M1(但し、M1はSc、Y、La、Gd、Dy及びYbから選ばれる少なくとも一つの元素)とOを含むことを特徴とする。このことにより、相変化形情報記録媒体の繰り返し書き換え性能及び記録感度を向上することができる。

[0016]

また、少なくとも二つの情報層を備えた情報記録媒体において、少なくとも一つの情報層が、レーザビームの照射または電流の印加によって情報を記録及び/または再生し得る記録層と、誘電体層とを少なくとも備え、誘電体層が、M1とOを含んでもよい。このことにより、相変化形情報記録媒体において、繰り返し書き換え性能及び記録感度を向上した情報層を得ることができる。

$[0\ 0\ 1\ 7]$

また、本発明の情報記録媒体において、誘電体層が、さらにM2(但し、M2はZr、Hf及びSiから選ばれる少なくとも一つの元素)を含んでもよい。このことにより、相変化形情報記録媒体の繰り返し書き換え性能をさらに向上することができる。

[0018]

また、本発明の情報記録媒体において、誘電体層が、さらにM3(但し、M3はA1、Ga、Mg、Zn、Ta、Ti、Ce、In、Sn、Te、Nb、Cr、Bi、A1、Cr、Ge、Si、N及びCから選ばれる少なくとも一つの元素)を含んでもよい。このことにより、相変化形情報記録媒体の繰り返し書き換え性能及び記録感度を向上することができる。

$[0\ 0\ 1\ 9\]$

また、本発明の情報記録媒体において、誘電体層の組成が、組成式M 1_a M 2_b O 1_0 O -a-b (但し、 1_0 C a C

[0020]

$[0\ 0\ 2\ 1]$

[0022]

また、本発明の情報記録媒体において、誘電体層が、M1203を含んでもよい。この

ことにより、相変化形情報記録媒体の繰り返し書き換え性能及び記録感度を向上することができる。

[0023]

また、本発明の情報記録媒体において、誘電体層が、M 1 2 O 3 - M 2 O 2 と表されてもよい。このことにより、相変化形情報記録媒体の繰り返し書き換え性能をさらに向上することができる。

[0024]

また、本発明の情報記録媒体において、誘電体層が、さらにD(但し、DはAl $_2$ O $_3$ 、Ga $_2$ O $_3$ 、MgO、ZnO、Ta $_2$ O $_5$ 、TiO $_2$ 、CeO $_2$ 、In $_2$ O $_3$ 、SnO $_2$ 、TeO $_2$ 、Nb $_2$ O $_5$ 、Cr $_2$ O $_3$ 、Bi $_2$ O $_3$ 、AlN、Cr $_2$ N、Ge $_3$ N、Si $_3$ N $_4$ 及びSiCから選ばれる少なくとも一つの化合物)を含んでもよい。このことにより、相変化形情報記録媒体の繰り返し書き換え性能及び記録感度を向上することができる。

[0025]

また、本発明の情報記録媒体において、誘電体層の組成が、組成式(M 1_2 O $_3$) $_x$ (M 2 O $_2$) $_1$ O $_0$ $_ _x$ (但し、2 O \le x \le 9 5 (m o 1 %))と表されてもよい。このことにより、相変化形情報記録媒体の繰り返し書き換え性能を向上することができる。

[0026]

また、本発明の情報記録媒体において、誘電体層の組成が、組成式(M l $_2$ O $_3$) $_y$ (D) $_1$ O O $_y$ (但し、 2 O \le y \le 9 5 (m o l %))と表されてもよい。このことにより、相変化形情報記録媒体の繰り返し書き換え性能及び記録感度を向上することができる

[0027]

また、本発明の情報記録媒体において、誘電体層の組成が、組成式(M $_1$ $_2$ O $_3$) $_z$ (M $_2$ O $_2$) $_w$ (D) $_1$ O O $_2$ $_ _w$ (但し、 $_2$ O $_3$ $_2$ $_5$ $_5$ $_8$ $_8$ $_7$ $_5$ 、 $_2$ $_5$ $_5$ $_2$ $_7$ $_8$ $_8$ $_8$ $_9$ $_5$ (m o $_1$ %))と表されてもよい。このことにより、相変化形情報記録媒体の繰り返し書き換え性能及び記録感度を向上することができる。

[0028]

また、本発明の情報記録媒体において、誘電体層と記録層の間に、界面層をさらに備えてもよい。このことにより、相変化形情報記録媒体の繰り返し書き換え性能をさらに向上することができる。

[0029]

[0030]

また、本発明の情報記録媒体において、界面層が、Zr、Hf、Y及びSi から選ばれる少なくとも一つの元素と、Ga、In及びCr から選ばれる少なくとも一つの元素とOを含んでもよい。このことにより、相変化形情報記録媒体の繰り返し書き換え性能をさらに向上することができる。

$[0\ 0\ 3\ 1]$

また、本発明の情報記録媒体において、界面層が、 ZrO_2 、 HfO_2 、 Y_2O_3 及び SiO_2 から選ばれる少なくとも一つの酸化物と、 Ga_2O_3 、 In_2O_3 及び Cr_2O_3 から選ばれる少なくとも一つの酸化物を含んでもよい。このことにより、相変化形情報記録媒体の繰り返し書き換え性能をさらに向上することができる。

[0032]

また、本発明の情報記録媒体において、M1がDyであってもよい。また、M1がDyとYの混合物であってもよい。このことにより、相変化形情報記録媒体の繰り返し書き換え性能及び記録感度を向上することができる。

[0033]

また、前記従来の課題を解決するために、本発明の情報記録媒体の製造方法は、記録層を成膜する工程及び誘電体層を成膜する工程を少なくとも含み、誘電体層を成膜する工程において、少なくともM1とOを含むスパッタリングターゲットを用いることを特徴とする。このことにより、繰り返し書き換え性能及び記録感度が向上した相変化形情報記録媒体を作製できる。

$[0\ 0\ 3\ 4]$

また、本発明の情報記録媒体の製造方法において、少なくとも二つの情報層を成膜する工程を含み、少なくとも一つの情報層を成膜する工程が、記録層を成膜する工程及び誘電体層を成膜する工程を少なくとも含み、誘電体層を成膜する工程において、少なくともM1とOを含むスパッタリングターゲットを用いてもよい。このことにより、相変化形情報記録媒体において、繰り返し書き換え性能及び記録感度が向上した情報層を作製できる。

[0035]

また、本発明の情報記録媒体の製造方法において、誘電体層を成膜する工程で用いるスパッタリングターゲットが、さらにM2を含んでもよい。このことにより、繰り返し書き換え性能が向上した相変化形情報記録媒体を作製できる。

[0036]

また、本発明の情報記録媒体の製造方法において、誘電体層を成膜する工程で用いるスパッタリングターゲットが、さらにM3を含んでもよい。このことにより、繰り返し書き換え性能及び記録感度が向上した相変化形情報記録媒体を作製できる。

[0037]

また、本発明の情報記録媒体の製造方法において、誘電体層を成膜する工程で用いるスパッタリングターゲットが、組成式M 1_h M 2_i O 1_0 O-h-i(但し、5<h<45、0<i<30(原子%))と表されてもよい。このことにより、繰り返し書き換え性能が向上した相変化形情報記録媒体を作製できる。

[0038]

また、本発明の情報記録媒体の製造方法において、誘電体層を成膜する工程で用いるスパッタリングターゲットが、組成式M 1_j M 3_k O 1_0 0 0-j-k (但し、0 < j < 5 0 、0 < k < 9 0 、2 0 < j + k < 1 0 0 (原子%))と表されてもよい。このことにより、繰り返し書き換え性能及び記録感度が向上した相変化形情報記録媒体を作製できる。

[0039]

また、本発明の情報記録媒体の製造方法において、誘電体層を成膜する工程で用いるスパッタリングターゲットが、組成式M $_1$ M $_2$ m M $_3$ n O $_1$ O 0 $_2$ O $_1$ C $_2$ O $_3$ O $_4$ O $_5$ D $_5$ されてもよい。このことにより、繰り返し書き換え性能及び記録感度が向上した相変化形情報記録媒体を作製できる。

[0040]

また、本発明の情報記録媒体の製造方法において、誘電体層を成膜する工程で用いるスパッタリングターゲットが、M1203を含んでもよい。このことにより、繰り返し書き換え性能及び記録感度が向上した相変化形情報記録媒体を作製できる。

$[0\ 0\ 4\ 1]$

また、本発明の情報記録媒体の製造方法において、誘電体層を成膜する工程で用いるスパッタリングターゲットの組成が、M12O3-M2O2と表されてもよい。このことにより、繰り返し書き換え性能が向上した相変化形情報記録媒体を作製できる。

$[0 \ 0 \ 4 \ 2]$

また、本発明の情報記録媒体の製造方法において、誘電体層を成膜する工程で用いるスパッタリングターゲットが、さらにDを含んでもよい。このことにより、繰り返し書き換

之性能及び記録感度が向上した相変化形情報記録媒体を作製できる。

[0043]

また、本発明の情報記録媒体の製造方法において、誘電体層を成膜する工程で用いるスパッタリングターゲットが、組成式(M l 2 O 3) $_{\rm S}$ (M 2 O 2) $_{\rm 100-S}$ (但し、 l 5 \leq s < 1 0 0 (m o 1 %))と表されてもよい。このことにより、繰り返し書き換え性能が向上した相変化形情報記録媒体を作製できる。

[0044]

また、本発明の情報記録媒体の製造方法において、誘電体層を成膜する工程で用いるスパッタリングターゲットが、組成式(M1203) $_t$ (D) $_{100-t}$ (但し、 $_{15} \le t$ < $_{100}$ ($_{mo1}$ %))と表されてもよい。このことにより、繰り返し書き換え性能及び記録感度が向上した相変化形情報記録媒体を作製できる。

[0045]

[0046]

また、本発明の情報記録媒体の製造方法において、記録層を成膜する工程と誘電体層を成膜する工程の間に、界面層を成膜する工程をさらに備えてもよい。このことにより、繰り返し書き換え性能がさらに向上した相変化形情報記録媒体を作製できる。

[0047]

また、本発明の情報記録媒体の製造方法において、誘電体層を成膜する工程において、Ar ガスを用いるか、またはAr ガスと O_2 ガスとの混合ガスを用いてもよい。このことにより、繰り返し書き換え性能及び記録感度が向上した相変化形情報記録媒体を作製できる。

【発明の効果】

[0048]

本発明の相変化形情報記録媒体によれば、繰り返し書き換え性能及び記録感度を向上することができる。また、本発明の相変化形情報記録媒体の製造方法によれば、本発明の相変化形情報記録媒体を容易に製造することができる。

【発明を実施するための最良の形態】

$[0\ 0\ 4\ 9]$

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態は一例であり、本発明は以下の実施の形態に限定されない。また、以下の実施の形態では、同一の部分については同一の符号を付して重複する説明を省略する場合がある。

[0050]

(実施の形態1)

実施の形態1では、本発明の情報記録媒体の一例を説明する。実施の形態1の情報記録 媒体15の一部断面図を図1に示す。情報記録媒体15は、レーザビーム11の照射によって情報の記録再生が可能な光学的情報記録媒体である。

$[0\ 0\ 5\ 1]$

情報記録媒体15では、基板14上に成膜された情報層16、及び透明層13により構成されている。透明層13の材料は、光硬化性樹脂(特に紫外線硬化性樹脂)や遅効性樹脂等の樹脂、あるいは誘電体等からなり、使用するレーザビーム11に対して光吸収が小さいことが好ましく、短波長域において光学的に複屈折が小さいことが好ましい。また、透明層13は、透明な円盤状のポリカーボネートまたはアモルファスポリオレフィンまたはPMMA等の樹脂またはガラスを用いてもよい。この場合、透明層13は、光硬化性樹脂(特に紫外線硬化性樹脂)や遅効性樹脂等の樹脂によって第1誘電体層102に貼り合わせることが可能である。

[0052]

レーザビーム 1 1 の 波長 λ は、レーザビーム 1 1 を集光した際のスポット径が波長 λ によって決まってしまう(波長 λ が短いほど、より小さなスポット径に集光可能)ため、高密度記録の場合、特に 4 5 0 n m以下であることが好ましく、また、 3 5 0 n m未満では透明層 1 3 等による光吸収が大きくなってしまうため、 3 5 0 n m \sim 4 5 0 n m o 範囲内であることがより好ましい。

[0053]

基板14は、透明で円盤状の基板である。基板14は、例えば、ポリカーボネートやアモルファスポリオレフィンやPMMA等の樹脂、またはガラスを用いることができる。

$[0\ 0\ 5\ 4]$

基板14の情報層16側の表面には、必要に応じてレーザビームを導くための案内溝が形成されていてもよい。基板14の情報層16側と反対側の表面は、平滑であることが好ましい。基板14の材料としては、転写性・量産性に優れ、低コストであることから、ポリカーボネートが特に有用である。なお、基板14の厚さは、十分な強度があり、且つ情報記録媒体15の厚さが1.2mm程度となるよう、0.5mm~1.2mmの範囲内であることが好ましい。なお、透明層13の厚さが0.6mm程度(NA=0.6で良好な記録再生が可能)の場合、5.5mm~6.5mmの範囲内であることが好ましい。また、透明層13の厚さが0.1mm程度(NA=0.85で良好な記録再生が可能)の場合、1.05mm~1.15mmの範囲内であることが好ましい。

[0055]

以下、情報層16の構成について詳細に説明する。

[0056]

情報層16は、レーザビーム11の入射側から順に配置された第1誘電体層102、第1界面層103、記録層104、第2界面層105、第2誘電体層106、及び反射層108を備える。

[0057]

第1誘電体層102は、誘電体からなる。この第1誘電体層102は、記録層104の酸化、腐食、変形等を防止する働きと、光学距離を調整して記録層104の光吸収効率を高める働き、及び記録前後の反射光量の変化を大きくして信号強度を大きくする働きとを有する。第1誘電体層102には、例えばTi02、Zr02、Hf02、Zn0、Nb205、Ta205、Si02、Sn02、A1203、Bi203、Cr203、Ga203、Mg0、Ce02、Te02などの酸化物を用いることができる。また、ZnN、Ti-N、Zr-N、Nb-N、Ta-N、Si-N、Ge-N、Cr-N、A1-N、Ge-Si-N、Ge-Cr-Nなどの窒化物を用いることもできる。また、ZnSなどの硫化物やSiCなどの農化物、LaF3などの弗化物、及びCを用いることもできる。また、上記材料の混合物を用いることもできる。例えば、ZnSとSi02との混合物であるZnS-Si02は、第1誘電体層102の材料として特に優れている。ZnS-Si02は、非晶質材料で、屈折率が高く、成膜速度が速く、機械特性及び耐湿性が良好である。

[0058]

第1誘電体層102の膜厚は、マトリクス法に基づく計算により、記録層104の結晶相である場合とそれが非晶質相である場合の反射光量の変化が大きくなる条件を満足するように厳密に決定することができる。

[0059]

第1界面層103は、繰り返し記録によって第1誘電体層102と記録層104との間で生じる物質移動を防止する働きがある。第1界面層103は、光の吸収が少なく記録の際に溶けない高融点な材料で、且つ、記録層104との密着性が良い材料であることが好ましい。記録の際に溶けない高融点な材料であることは、高パワーのレーザビーム11を照射した際に、溶けて記録層104に混入しないために必要な特性である。第1界面層1

03の材料が混入すると、記録層104の組成が変わり、書き換え性能が著しく低下する。また、記録層104と密着性が良い材料であることは、信頼性確保に必要な特性である

[0060]

第1界面層 103 には、第1誘電体層 102 と同様の系の材料を用いることができる。その中でも、特に Cr とO を含む材料を用いると、記録層 104 の結晶化をより促進するため好ましい。その中でも、Cr とO が Cr 203 を形成した酸化物を含むことが好ましい。 Cr 203 は記録層 104 との密着性が良い材料である。

 $[0\ 0\ 6\ 1]$

また、第1界面層103には、特にGaとOを含む材料を用いることもできる。その中でも、GaとOがGa2O3 を形成した酸化物を含むことが好ましい。Ga2O3 は記録層104との密着性が良い材料である。

[0062]

また、第1界面層103には、特にInとOを含む材料を用いることもできる。その中でも、InとOがIn2O3 を形成した酸化物を含むことが好ましい。In2O3 は記録層104との密着性が良い材料である。

[0063]

また、第1界面層103には、CrEO、GaEO、またはInEOの他に、Zr、HfDびYから選ばれる少なくとも一つの元素をさらに含んでもよい。 ZrO_2 及びHfO2は、透明で融点が約2700~2800℃と高く、且つ酸化物の中では熱伝導率が低い材料で、繰り返し書き換え性能が良い。また、 Y_2O_3 は透明な材料で、且つ ZrO_2 及び HfO_2 を安定化させる働きがある。この3種類の酸化物を混合することによって、記録層104と部分的に接して形成しても、繰り返し書き換え性能に優れ、信頼性の高い情報記録媒体15が実現できる。

 $[0\ 0\ 6\ 4]$

記録層 $1\ 0\ 4$ との密着性を確保するため、第 1 界面層 $1\ 0\ 3$ 中の C r 2 O 3 、 G a 2 O 3 、 または I n 2 O 3 の含有量は 1 0 m o 1 %以上あることが好ましい。さらに、第 1 界面層 1 0 3 中の C r 2 O 3 の含有量は第 1 界面層 1 0 3 での光吸収を小さく保つため 7 0 m o 1 %以下であることが好ましい(C r 2 O 3 が多くなると光吸収が増加する傾向にある)。

[0065]

第1界面層103には、Cr、Ga、In、Zr、Hf、Y及びOの他に、さらにSiを含む材料を用いても良い。Si O 2 を含ませることにより、透明性が高くなり、記録性能に優れた第1情報層16を実現できる。第1界面層103中のSi O 2 の含有量は5m o 1 %以上あることが好ましく、記録層104との密着性を確保するため5 0 m o 1 %以下であることが好ましい。より好ましくは、1 0 m o 1 %以上4 0 m o 1 %以下であることが好ましい。

[0066]

第1界面層 103 の膜厚は、第1界面層 103 での光吸収によって情報層 16 の記録前後の反射光量の変化が小さくならないよう、0.5 nm~15 nmの範囲内であることが望ましく、1 nm~7 nmの範囲内にあることがより好ましい。

 $[0\ 0\ 6\ 7]$

第2界面層105は、第1界面層103と同様に、繰り返し記録によって第2誘電体層106と記録層104との間で生じる物質移動を防止する働きがある。第2界面層105には、第1誘電体層102と同様の系の材料を用いることができる。その中でも、特にGaとOを含む材料を用いることが好ましい。その中でも、GaとOがGa203を形成した酸化物を含むことが好ましい。また、第2界面層105には、特にCrとOを含む材料を用いることもできる。その中でも、CrとOがCr203を形成した酸化物を含むことが好ましい。また、第2界面層105には、特にInとOを含む材料を用いることもできる。その中でも、InとOがIn203を形成した酸化物を含むことが好ましい。また、

第2界面層105と同様に、CrとO、GaとO、またはInとOの他に、Zr、Hf及びYから選ばれる少なくとも一つの元素をさらに含んでもよいし、Cr、Ga、In、Zr、Hf、Y及VOの他に、さらにSi を含む材料を用いても良い。第2界面層105は第1界面層103より密着性が悪い傾向にあるため、第2界面層105中の105中の105中の 105中の 105中の

[0068]

第2界面層105の膜厚は、第1界面層103と同様に、0.5 n m \sim 15 n m の範囲内であることが望ましく、1 n m \sim 7 n m の範囲内にあることがより好ましい。

[0069]

第 2 誘電体層 1 0 6 には、第 1 誘電体層 1 0 2 と同様の系の材料を用いることができる。その中でも、特にM 1 (但し、M 1 はS c、Y、L a、G d、D y 及びY b から選ばれる少なくとも一つの元素)と 0 を含む材料を用いることが好ましい。その中でも、M 1 と 0 がM 1 2 0 3 を形成した酸化物を含むことが好ましい。 M 1 2 0 3 は、熱伝導率が低く且つ S を含まない材料であるため、第 2 誘電体層 1 0 6 として優れた材料であり、もちろん第 1 誘電体層 1 0 2 としても使用可能である。

[0070]

また、第2誘電体層106には、M1と0の他に、さらにM2(但し、M2はZr、Hf及びSiから選ばれる少なくとも一つの元素)を含む材料を用いることもできる。その中でも、M2とOがM2O $_2$ を形成した酸化物を含むことが好ましい。なお、第2誘電体層106の組成を、組成式M1 $_a$ M2 $_b$ O $_1$ 00 $_a$ - $_a$ - $_b$ (原子%)と表した場合、a及びbはそれぞれ、10<a<40、0<b<25の範囲にあることが好ましく、15<a<39、1

く39、1

く21の範囲にあることがより好ましい。また、第2誘電体層106の組成を、組成式(M1 $_2$ O $_3$) $_x$ (M2O $_2$) $_1$ 00 $_x$ (mo1%)と表した場合、xは20 $_2$ x $_3$ 0 $_3$ x(M2O $_3$) $_3$ 0 $_4$ x($_3$ 0 $_4$ x)の範囲にあることがより好ましい。

$[0\ 0\ 7\ 1]$

また、第2誘電体層106には、M1と0の他に、さらにM3(但し、M3はA1、Ga、Mg、Zn、Ta、Ti、Сe、In、Sn、Te、Nb、Cr、Bi、A1、Cr、Ge、Si、N及びCから選ばれる少なくとも一つの元素)を含む材料を用いることもできる。その中でも、D(但し、DはA1203、Ga203、Mg0、Zn0、Ta205、Ti02、Ce02、In203、Sn02、Te02、Nb205、Cr203、Bi203、A1N、Cr-N、Ge-N、Si3N4及びSiCから選ばれる少なくとも一つの化合物)を含むことが好ましい。なお、第2誘電体層106の組成を、組成式M1cM3d0100-c-d(原子%)と表した場合、c、d及びc+dはそれぞれ、5<c<45、0<d<85、25<c+d<95の範囲にあることが好ましく、8<c<39、1<d<77、26<c+d<90の範囲にあることがより好ましい。また、第2誘電体層106の組成を、組成式(M1203)g(D)100-g(mol%)と表した場合、yは20≤y≤95の範囲にあることが好ましく、30≤ x ≤ 9 0 の範囲にあることがより好ましい。

[0072]

また、第2誘電体層106には、M1と0の他に、さらにM2及びM3を含む材料を用いることもできる。その中でも、M2と0がM202を形成し、M3がDで表される化合物を形成していることが好ましい。なお、第2誘電体層106の組成を、組成式M1 $_e$ M2 $_f$ M3 $_g$ O100 $_e$ e $_f$ e $_g$ (原子%)と表した場合、e、f、g及びe+f+gはそれぞれ、5<e<40、0<f<25、0<g<85、25<e+f+g<95の範囲にあることが好ましい。また、第2誘電体層106の組成を、組成式(M1 $_2$ O3) $_z$ (M2O2) $_w$ (D)100 $_e$ z $_w$ (mo1%)と表した場合、z、w及びz+wはそれぞれ、20≤z≤90、5≤w≤75、25≤z+w≤95の範囲にあることが好ましい

[0073]

第 2 誘電体層 1 0 6 の膜厚は、 2 n m \sim 7 5 n m の範囲内であることが好ましく、 2 n m \sim 4 0 n m の範囲内であることがより好ましい。第 2 誘電体層 1 0 6 の膜厚をこの範囲内で選ぶことによって、記録層 1 0 4 で発生した熱を効果的に反射層 1 0 8 側に拡散させることができる。

$[0\ 0\ 7\ 4]$

記録層104の材料は、レーザビーム11の照射によって結晶相と非晶質相との間で相変化を起こす材料からなる。記録層104は、例えばGe、Te、M4(但し、M4はSb、Bi及びInの少なくともいずれか一つの元素)を含む可逆的な相変化を起こす材料で形成できる。具体的には、記録層104は、GeAM2BTe3+Aで表される材料で形成でき、非晶質相が安定で低い転送レートでの記録保存性が良好で、融点の上昇と結晶化速度の低下が少なく高い転送レートでの書き換え保存性が良好となるよう0<A≦60の関係を満たすことが望ましく、4≦A≦40の関係を満たすことがより好ましい。また、非晶質相が安定で、結晶化速度の低下が少ない1.5≦B≦7の関係を満たすことが好ましく、2≦B≦4の関係を満たすことがより好ましい。

[0075]

[0076]

また、記録層104では、例えばSbとM6(但し、M6はV、Mn、Ga、Ge、Se、Ag、In、Sn、Te、Pb、Bi、Tb、Dy及びAuから選ばれる少なくとも一つの元素)を含む可逆的な相変化を起こす材料で形成することもできる。具体的には、記録層104は、SbX M6100-X (原子%)で表される材料で形成できる。X が、 $50 \le X \le 95$ を満たす場合には、記録層104が結晶相の場合と非晶質相の場合との間の情報記録媒体15の反射率差を大きくでき、良好な記録再生特性が得られる。その中でも、 $75 \le X \le 95$ の場合には、結晶化速度が特に速く、高い転送レートにおいて良好な書き換え性能が得られる。また、 $50 \le X \le 75$ の場合には、非晶質相が特に安定で、低い転送レートにおいて良好な記録性能が得られる。

$[0\ 0\ 7\ 7]$

記録層104の膜厚は、情報層16の記録感度を高くするため、6nm~15nmの範囲内であることが好ましい。この範囲内においても、記録層104が厚い場合には熱の面内方向への拡散による隣接領域への熱的影響が大きくなる。また、記録層104が薄い場合には情報層16の反射率が小さくなる。したがって、記録層104の膜厚は、8nm~13nmの範囲内であることがより好ましい。

[0078]

また、記録層104には、不可逆な相変化を起こすTe-Pd-Oと表される材料で形成することもできる。この場合、記録層104の膜厚は $10nm\sim40nm$ の範囲内であることが好ましい。

[0079]

反射層108は、記録層104に吸収される光量を増大させるという光学的な機能を有する。また、反射層108は、記録層104で生じた熱を速やかに拡散させ、記録層104を非晶質化しやすくするという熱的な機能も有する。さらに、反射層108は、使用する環境から多層膜を保護するという機能も有する。

[0800]

反射層108の材料には、例えはAg、Au、Cu及びA1といった熱伝導率が高い単

体金属を用いることができる。また、A1-Cr、A1-Ti、A1-Ni、A1-Cu、Au-Pd、Au-Cr、Ag-Pd、Ag-Pd-Cu、Ag-Pd-Ti、Ag-Ru-Au、Ag-Cu-Ni、Ag-Pd-Cu、Ag-Pd-Ti、Ag-Ru-Au、Ag-Cu-Ni、Ag-Zn-Al、Ag-Nd-Au、Ag-Nd-Cu、Ag-Bi、Ag-Ga、Ag-Ga-In、Ag-In, Ag-In Ag-In Bi0 Bi1 Bi2 Bi3 Bi4 Bi5 Bi6 Bi7 Bi7 Bi7 Bi8 Bi8 Bi9 Bi9 Bi9 Bi9 Bi9 Bi10 Bi10

[0081]

反射層 108 と第 2 誘電体層 106 の間に、界面層 107 を配置してもよい。この場合、界面層 107 には、反射層 108 について説明した材料より熱伝導率の低い材料を用いることができる。反射層 108 にAg 合金を用いた場合、界面層 107 に例えば 108 になん 108 合金を用いた場合、界面層 107 に似えば 108 になん 108 にないできる。また、界面層 107 には、108 にないできる。また、界面層 107 には、108 にないできる。また、108 にないのののです。こともできる。また、108 にないのののです。こともできる。また、108 にないののです。こともできる。また、108 にないののです。こともできる。また、上記材料の混合物を用いることもできる。また、膜厚は 108 にないののです。こともできる。また、膜厚は 108 にないののです。ことは 108 にないののです。ことが好ましい。

[0082]

情報層 1 6 において、記録層 1 0 4 が結晶相である場合の反射率 R_{C} (%)、及び記録層 1 0 4 が非晶質相である場合の反射率 R_{a} (%)は、 R_{a} < R_{C} を満たすことが好ましい。このことにより、情報が記録されていない初期の状態で反射率が高く、安定に記録再生動作を行うことができる。また、反射率差(R_{C} $-R_{a}$)を大きくして良好な記録再生特性が得られるように、 R_{C} 、 R_{a} は、0. $2 \le R_{a} \le 1$ 0 且つ 1 $2 \le R_{C} \le 4$ 0 を満たすことが好ましく、0. $2 \le R_{a} \le 5$ 且つ 1 $2 \le R_{C} \le 3$ 0 を満たすことがより好ましい

[0083]

情報記録媒体15は、以下に説明する方法によって製造できる。

(0.084)

まず、基板 1 4 (厚さが例えば 1 . 1 mm)上に情報層 1 6 を積層する。情報層は、単層膜、または多層膜からなり、それらの各層は、成膜装置内で材料となるスパッタリングターゲットを順次スパッタリングすることによって形成できる。

[0085]

具体的には、まず、基板 1.4 上に反射層 1.0.8 を成膜する。反射層 1.0.8 は、反射層 1.0.8 を構成する金属または合金からなるスパッタリングターゲットを、Ar ガス雰囲気中、またはAr ガスと反応ガス $(O_2$ ガス及び N_2 ガスから選ばれる少なくとも一つのガス)との混合ガス雰囲気中でスパッタリングすることによって形成できる。

[0086]

続いて、反射層 108 上に、必要に応じて界面層 107 を成膜する。界面層 107 は、界面層 107 を構成する元素または化合物からなるスパッタリングターゲットを、Ar ガス雰囲気中、またはAr ガスと反応ガスとの混合ガス雰囲気中でスパッタリングすることによって形成できる。

[0087]

続いて、反射層108、または界面層107上に、第2誘電体層106を成膜する。第 2誘電体層106は、第2誘電体層106を構成する化合物からなるスパッタリングター

ゲット (例えば、M 1 2 0 3) を、A r ガス雰囲気中、または<math>A r ガスと反応ガス (特に O 2 ガス)との混合ガス雰囲気中でスパッタリングすることによって形成できる。また、 第2誘電体層106は、第2誘電体層106を構成する金属からなるスパッタリングター ゲットを、Arガスと反応ガスとの混合ガス雰囲気中で反応性スパッタリングすることに よっても形成できる。なお、第2誘電体層106を成膜する際のスパッタリングターゲッ トは、組成式M 1 h M 2 i O 1 0 0 - h - i (原子%)と表される場合、h 及び i はそれ ぞれ、5 < h < 4 5 、0 < i < 3 0 の範囲にあることが好ましく、2 0 < h < 4 4 、0 < iく26の範囲にあることがより好ましい。また、第2誘電体層106を成膜する際のス パッタリングターゲットが、組成式 $M1_iM3_kO_{100-i-k}$ (原子%) と表される 場合、j、k及びj+kはそれぞれ、0 < j < 50、0 < k < 90、20 < j+k < 100の範囲にあることが好ましく、3<j<44、0<k<82、21<j+k<95の範</p> 囲にあることがより好ましい。また、第2誘電体層106を成膜する際のスパッタリング ターゲットが、組成式M 1 1 M 2 m M 3 n O 1 0 0 - 1 - m - n (原子%) と表される場 合、1、m、n及び1+m+nはそれぞれ、0<1<45、0<m<30、0<n<90 、20<1+m+n<100の範囲にあることが好ましい。また、第2誘電体層106を 成膜する際のスパッタリングターゲットが、組成式(M 1 2 O 3) s (M 2 O 2) 1 0 0_ 、(m o 1 %)と表される場合、 s は 1 5 ≦ s < 1 0 0 の範囲にあることが好ましく、 25≤ s≤ 95の範囲にあることがより好ましい。また、第2誘電体層106を成膜する 際のスパッタリングターゲットが、組成式($M1_20_3$) $_t$ (D) $_{100-t}$ (mo1%)と表される場合、tは $1.5 \le t < 1.0.0$ の範囲にあることが好ましく、 $2.5 \le t \le 9.5$ の範囲にあることがより好ましい。また、第2誘電体層106を成膜する際のスパッタリ ングターゲットが、組成式 $(M1203)_{11}$ $(M202)_{2}$ $(D)_{100-11-2}$ $(mo)_{2}$ 1%)と表される場合、u、v及びu+vはそれぞれ、 $15 \le u \le 95$ 、 $0 < v \le 80$ 、 15 < u + v < 100の範囲にあることが好ましい。

[0088]

また、第2誘電体層106は、M12O3、M2O2、またはDの各々のスパッタリングターゲットを複数の電源を用いて同時にスパッタリングすることによって形成することもできる。また、第2誘電体層106は、M12O3、M2O2、またはDのうちいずれかの化合物を組み合わせた2元系スパッタリングターゲットや3元系スパッタリングターゲットなどを、複数の電源を用いて同時にスパッタリングすることによって形成することもできる。これらの場合でも、Ar ガス雰囲気中、またはAr ガスと反応ガス(特にO2 ガス)との混合ガス雰囲気中でスパッタリングすることによって形成することができる。

[0089]

続いて、反射層108、界面層107、または第2誘電体層106上に、必要に応じて第2界面層105を成膜する。第2界面層105は、第2誘電体層106と同様の方法で形成できる。

[0090]

続いて、第2誘電体層106、または第2界面層105上に、記録層104を成膜する。記録層104は、その組成に応じて、Ge-Te-M4合金からなるスパッタリングターゲット、Ge-M5-Te-M4合金からなるスパッタリングターゲット、Sb-M6合金からなるスパッタリングターゲット、またはTe-Pd合金からなるスパッタリングターゲットを、一つの電源を用いてスパッタリングすることによって形成できる。

$[0 \ 0 \ 9 \ 1]$

スパッタリングの雰囲気ガスには、Ar ガス、Kr ガス、Ar ガスと反応ガスとの混合ガス、またはKr ガスと反応ガスとの混合ガスを用いることができる。また、記録層 104 は、Ge、Te、M4、M5、Sb、M6、またはPdの各々のスパッタリングターゲットを複数の電源を用いて同時にスパッタリングすることによって形成することもできる。また、記録層 104 は、Ge、Te、M4、M5、Sb、M6、またはPdのうちいずれかの元素を組み合わせた 2 元系スパッタリングターゲットや 3 元系スパッタリングターゲットなどを、複数の電源を用いて同時にスパッタリングすることによって形成すること

もできる。これらの場合でも、Arガス雰囲気中、Krガス雰囲気中、Arガスと反応ガスとの混合ガス雰囲気中、またはKrガスと反応ガスとの混合ガス雰囲気中でスパッタリングすることによって形成する。

[0092]

続いて、記録層104上に、必要に応じて第1界面層103を成膜する。第1界面層1 03は、第2誘電体層106と同様の方法で形成できる。

[0093]

続いて、記録層104、または第1界面層103上に、第1誘電体層102を成膜する。第1誘電体層102は、第2誘電体層106と同様の方法で形成できる。

[0094]

最後に、第1誘電体層102上に透明層13を形成する。透明層13は、光硬化性樹脂(特に紫外線硬化性樹脂)または遅効性樹脂を第1誘電体層102上に塗布してスピンコートしたのち、樹脂を硬化させることによって形成できる。また、透明層13には、透明な円盤状のポリカーボネートまたはアモルファスポリオレフィンまたはPMMA等の樹脂またはガラスなどの基板を用いてもよい。この場合、透明層13は、光硬化性樹脂(特に紫外線硬化性樹脂)や遅効性樹脂等の樹脂を第1誘電体層102上に塗布して、基板を第1誘電体層102上に密着させてスピンコートしたのち、樹脂を硬化させることによって形成できる。また、基板に予め粘着性の樹脂を均一に塗布し、それを第1誘電体層102に密着させることもできる。

[0095]

なお、第1誘電体層102を成膜したのち、または透明層13を形成したのち、必要に応じて、記録層104の全面を結晶化させる初期化工程を行ってもよい。記録層104の結晶化は、レーザビームを照射することによって行うことができる。

[0096]

以上のようにして、情報記録媒体15を製造できる。なお、本実施の形態においては、各層の成膜方法としてスパッタリング法を用いたが、これに限定されず真空蒸着法、イオンプレーティング法、CVD法、MBE法等を用いることも可能である。

[0097]

(実施の形態2)

実施の形態2では、本発明の情報記録媒体の一例を説明する。実施の形態2の情報記録 媒体22の一部断面図を図2に示す。情報記録媒体22は、片面からのレーザビーム11 の照射によって情報の記録再生が可能な多層光学的情報記録媒体である。

[0098]

情報記録媒体22では、基板14上に光学分離層20、19、17等を介して順次積層されたN組(NはN≥2を満たす自然数)の情報層21、18、第1情報層23、及び透明層13により構成されている。ここで、レーザビーム11の入射側から数えて(N-1)組目までの第1情報層23、情報層18(以下、レーザビーム11の入射側から数えてN組目の情報層を「第N情報層」と記す。)は、光透過形の情報層である。基板14、及び透明層13には、実施の形態1で説明したものと同様の材料を用いることができる。また、それらの形状及び機能についても、実施の形態1で説明した形状及び機能と同様である。

[0099]

光学分離層20、19、17等は、光硬化性樹脂(特に紫外線硬化性樹脂)や遅効性樹脂等の樹脂、あるいは誘電体等からなり、使用するレーザビーム11に対して光吸収が小さいことが好ましく、短波長域において光学的に複屈折が小さいことが好ましい。

$[0\ 1\ 0\ 0\]$

 の80%を仮定した場合、 ΔZ は ΔZ = λ /{2(NA)²}で近似できる。 λ =405 nm、NA=0.85のとき、 ΔZ =0.280 μ mとなり、±0.3 μ m以内は焦点深度内となる。そのため、この場合には、光学分離層20、19、17等の厚さは0.6 μ m以上であることが必要である。第1情報層23、情報層18、21等との間の距離は、対物レンズを用いてレーザビーム11を集光可能な範囲となるようにすることが望ましい。したがって、光学分離層20、19、17等の厚さの合計は、対物レンズが許容できる公差内(例えば50 μ m以下)にすることが好ましい。

$[0\ 1\ 0\ 1\]$

光学分離層20、19、17等において、レーザビーム11の入射側の表面には、必要に応じてレーザビームを導くための案内溝が形成されていてもよい。

[0102]

[0103]

なお、第1情報層から第N情報層のいずれかを、再生専用タイプの情報層(ROM(Read Only Memory))、あるいは1回のみ書き込み可能な追記型の情報層(WO(Write Once))としてもよい。

$[0\ 1\ 0\ 4\]$

以下、第1情報層23の構成について詳細に説明する。

[0105]

第1情報層23は、レーザビーム11の入射側から順に配置された第3誘電体層202、第3界面層203、第1記録層204、第4界面層205、第1反射層208、及び透過率調整層209を備える。

[0106]

第3誘電体層202には、実施の形態1の第1誘電体層102と同様の材料を用いることができる。また、それらの機能についても、実施の形態1の第1誘電体層102と同様である。

$[0\ 1\ 0\ 7]$

第3誘電体層202の膜厚は、マトリクス法に基づく計算により、第1記録層204の結晶相である場合とそれが非晶質相である場合の反射光量の変化が大きく、且つ第1記録層204での光吸収が大きく、且つ第1情報層23の透過率が大きくなる条件を満足するように厳密に決定することができる。

(0108)

第3界面層203には、実施の形態1の第1界面層103と同様の材料を用いることができる。また、それらの機能及び形状についても、実施の形態1の第1界面層103と同様である。

[0109]

第4界面層 205は、光学距離を調整して第1記録層 204の光吸収効率を高める働き、及び記録前後の反射光量の変化を大きくして信号強度を大きくする働きを有する。第4界面層 205には、実施の形態 1の第2界面層 105 または第2誘電体層 106 と同様の系の材料を用いることができる。また、第4界面層 205 の膜厚は、0.5 nm~75 nmの範囲内であることが好ましく、1 nm~40 nmの範囲内であることがより好ましい。第4界面層 205 の膜厚をこの範囲内で選ぶことによって、第1記録層 204 で発生した熱を効果的に第1反射層 208 側に拡散させることができる。

$[0\ 1\ 1\ 0\]$

なお、第4界面層205と第1反射層208の間に、第4誘電体層206を配置してもよい。第4誘電体層206には、実施の形態1の第2誘電体層106と同様の系の材料を用いることができる。

第1記録層204の材料は、レーザビーム11の照射によって結晶相と非晶質相との間で相変化を起こす材料からなる。第1記録層204は、例えばGe、Te、M4を含む可逆的な相変化を起こす材料で形成できる。具体的には、第1記録層104は、GeAM4BTe3+Aで表される材料で形成でき、非晶質相が安定で低い転送レートでの記録保存性が良好で、融点の上昇と結晶化速度の低下が少なく高い転送レートでの書き換え保存性が良好となるよう0<A≦60の関係を満たすことが望ましく、4≦A≦40の関係を満たすことがより好ましい。また、非晶質相が安定で、結晶化速度の低下が少ない1.5≦B≦7の関係を満たすことがより好ましい。

[0112]

また、第1記録層 2 0 4 は、組成式(Ge-M5) $_AM4$ $_BTe_{3+A}$ で表される可逆的な相変化を起こす材料で形成しても良い。この材料を用いた場合、Ge を置換した元素M 5 が結晶化能を向上させるため、第1記録層 2 0 4 の膜厚が薄い場合でも十分な消去率が得られる。元素M 5 としては、毒性がない点でSn がより好ましい。この材料を用いる場合も、 $0 < A \le 6$ 0(より好ましくは $4 \le A \le 4$ 0)、且つ1.5 $\le B \le 7$ (より好ましくは $2 \le B \le 4$)であることが好ましい。

[0113]

第1情報層23は、レーザビーム11の入射側から第1情報層23より遠い側にある情報層に記録再生の際に必要なレーザ光量を到達させるため、第1情報層23の透過率を高くする必要がある。このため、第1記録層204の膜厚は、9nm以下であることが好ましく、2nm~8nmの範囲内であることがより好ましい。

[0114]

また、第1記録層204には、不可逆な相変化を起こすTe-Pd-Oと表される材料で形成することもできる。この場合、第1記録層204の膜厚は $5nm\sim30nm$ の範囲内であることが好ましい。

[0115]

第1反射層208は、第1記録層204に吸収される光量を増大させるという光学的な機能を有する。また、第1反射層208は、第1記録層204で生じた熱を速やかに拡散させ、第1記録層204を非晶質化しやすくするという熱的な機能も有する。さらに、第1反射層208は、使用する環境から多層膜を保護するという機能も有する。

$[0\ 1\ 1\ 6\]$

第1反射層208の材料には、実施の形態1の反射層108と同様の材料を用いることができる。また、それらの機能についても、実施の形態1の反射層108と同様である。特にAg合金は熱伝導率が大きいため、第1反射層208の材料として好ましい。第1反射層208の膜厚は、第1情報層23の透過率をできるだけ高くするため、3nm~15nmの範囲内であることが好ましく、8nm~12nmの範囲内であることがより好ましい。第1反射層208の膜厚がこの範囲内にあることにより、その熱拡散機能が十分で、且つ第1情報層23の反射率が確保でき、さらに第1情報層23の透過率も十分となる。

$[0\ 1\ 1\ 7]$

透過率調整層 209 は誘電体からなり、第1情報層 23 の透過率を調整する機能を有する。この透過率調整層 209 によって、第1記録層 204 が結晶相である場合の第1情報層 23 の透過率 $T_{\rm C}$ (%) と、第1記録層 204 が非晶質相である場合の第1情報層 23 の透過率 $T_{\rm a}$ (%) とを共に高くすることができる。具体的には、透過率調整層 209 を備える第1情報層 23 では、透過率調整層 209 が無い場合に比べて、 $2\% \sim 10\%$ 程度透過率が上昇する。また、透過率調整層 209 は、第1記録層 204 で発生した熱を効果的に拡散させる効果も有する。

[0118]

透過率調整層 2 0 9 の屈折率 n_t 及び消衰係数 k_t は、第 1 情報層 2 3 の透過率 T_c 及び T_a を高める作用をより大きくするため、 2 . 0 \leq n_t 且 n_t \leq 0 . 1 を満たすことが好ましく、 2 . 4 \leq n_t \leq 3 . 0 且 n_t \leq 0 . 0 5 を満たすことがより好ましい。

$[0\ 1\ 1\ 9]$

[0120]

透過率調整層 209には、例えばTi0 $_2$ 、Z r O_2 、H f O_2 、Z n O、N b $_2$ O_5 、T a $_2$ O_5 、S i O_2 、A l $_2$ O_3 、B i $_2$ O_3 、C e O_2 、C r $_2$ O_3 、G a $_2$ O_3 、S r - O などの酸化物を用いることができる。また、T i - N、Z r - N、N b - N、T a - N、S i - N、G e - N、C r - N、A l - N、G e - S i - N、G e - C r - N C r - N0 S i S

[0121]

第 1 情報層 2 3 の透過率 T_c 及び T_a は、記録再生の際に必要なレーザ光量を、レーザビーム 1 1 の入射側から第 1 情報層 2 3 より遠い側にある情報層に到達させるため、4 0 < T_c 且つ4 0 < T_a を満たすことが好ましく、4 6 < T_c 且つ4 6 < T_a を満たすことがより好ましい。

[0122]

第1情報層 2 3 の透過率 T_c 及び T_a は、 $-5 \le (T_c - T_a) \le 5$ を満たすことが好ましく、 $-3 \le (T_c - T_a) \le 3$ を満たすことがより好ましい。 T_c 、 T_a がこの条件を満たすことにより、レーザビーム 1 1 の入射側から第1情報層 2 3 より遠い側にある情報層の記録再生の際、第1情報層 2 3 の第1記録層 2 0 4 の状態による透過率の変化の影響が小さく、良好な記録再生特性が得られる。

[0123]

第1情報層 2 3 において、第1記録層 2 0 4 が結晶相である場合の反射率 R $_{c 1}$ (%)、及び第1記録層 2 0 4 が非晶質相である場合の反射率 R $_{a 1}$ (%)は、R $_{a 1}$ < R $_{c 1}$ を満たすことが好ましい。このことにより、情報が記録されていない初期の状態で反射率が高く、安定に記録再生動作を行うことができる。また、反射率差(R $_{c 1}$ $_{--}$ R $_{a 1}$)を大きくして良好な記録再生特性が得られるように、R $_{c 1}$ 、R $_{a 1}$ は、0 $_{--}$ 1 $_{--}$ R $_{a 1}$ $_{--}$ 5 且つ 4 $_{--}$ R $_{--}$

[0124]

情報記録媒体22は、以下に説明する方法によって製造できる。

[0125]

まず、基板14(厚さが例えば1.1mm)上に(N-1)層の情報層を、光学分離層を介して順次積層する。情報層は、単層膜、または多層膜からなり、それらの各層は、成膜装置内で材料となるスパッタリングターゲットを順次スパッタリングすることによって形成できる。また、光学分離層は、光硬化性樹脂(特に紫外線硬化性樹脂)または遅効性樹脂を情報層上に塗布して、その後基板14を回転させて樹脂を均一に延ばし(スピンコート)、樹脂を硬化させることによって形成できる。なお、光学分離層がレーザビーム11の案内溝を備える場合には、溝が形成された基板(型)を硬化前の樹脂に密着させたのち、基板14とかぶせた型を回転させてスピンコートし、樹脂を硬化させた後、基板(型)をはがすことによって案内溝を形成できる。

[0126]

このようにして、基板 1 4 上に(N-1)層の情報層を、光学分離層を介して積層したのち、光学分離層 1 7 を形成したものを用意する。

[0127]

続いて、光学分離層17上に第1情報層23を形成する。具体的には、まず(N-1)層の情報層を、光学分離層を介して積層したのち、光学分離層17を形成した基板14を成膜装置内に配置し、光学分離層17上に透過率調整層209を成膜する。透過率調整層209は、実施の形態1の第2誘電体層106と同様の方法で形成できる。

[0128]

続いて、透過率調整層209上に、第1反射層108を成膜する。第1反射層108は、実施の形態1の反射層108と同様の方法で形成できる。

[0129]

続いて、第1反射層208上に、必要に応じて第4誘電体層206を成膜する。第4誘電体層206は、実施の形態1の第2誘電体層106と同様の方法で形成できる。

[0130]

続いて、第1反射層208または第4誘電体層206上に、第4界面層205を成膜する。第4界面層205は、実施の形態1の第2誘電体層106と同様の方法で形成できる

[0131]

続いて、第4界面層205上に、第1記録層204を成膜する。第1記録層204は、その組成に応じたスパッタリングターゲットを用いて、実施の形態1の記録層104と同様の方法で形成できる。

[0132]

続いて、第1記録層204上に、第3界面層203を成膜する。第3界面層203は、 実施の形態1の第2誘電体層106と同様の方法で形成できる。

[0133]

続いて、第3界面層203上に、第3誘電体層202を成膜する。第3誘電体層202 は、実施の形態1の第2誘電体層106と同様の方法で形成できる。

$[0\ 1\ 3\ 4\]$

最後に、第3誘電体層202上に透明層13を形成する。透明層13は、実施の形態1 で説明した方法で形成できる。

[0135]

なお、第3誘電体層202を成膜したのち、または透明層13を形成したのち、必要に応じて、第1記録層204の全面を結晶化させる初期化工程を行ってもよい。第1記録層204の結晶化は、レーザビームを照射することによって行うことができる。

[0136]

以上のようにして、情報記録媒体22を製造できる。なお、本実施の形態においては、各層の成膜方法としてスパッタリング法を用いたが、これに限定されず真空蒸着法、イオンプレーティング法、CVD法、MBE法等を用いることも可能である。

$[0\ 1\ 3\ 7\]$

(実施の形態3)

実施の形態3では、実施の形態2における本発明の多層光学的情報記録媒体において、N=2、すなわち2組の情報層によって構成された情報記録媒体の一例を説明する。実施の形態3の情報記録媒体24の一部断面図を図3に示す。情報記録媒体24は、片面からのレーザビーム11の照射によって情報の記録再生が可能な2層光学的情報記録媒体である。

[0138]

情報記録媒体24は、基板14上に順次積層した、第2情報層25、光学分離層17、第1情報層23、及び透明層13により構成されている。基板14、光学分離層17、第1情報層23、及び透明層13には、実施の形態1及び2で説明したものと同様の材料を

用いることができる。また、それらの形状及び機能についても、実施の形態 1 及び 2 で説明した形状及び機能と同様である。

[0139]

以下、第2情報層25の構成について詳細に説明する。

[0140]

第2情報層25は、レーザビーム11の入射側から順に配置された第1誘電体層302、第1界面層303、第2記録層304、第2界面層305、第2誘電体層306、及び第2反射層308を備える。第2情報層25は、透明層13、第1情報層23、及び光学分離層17を透過したレーザビーム11によって記録再生が行われる。

$[0\ 1\ 4\ 1]$

第1誘電体層302には、実施の形態1の第1誘電体層102と同様の材料を用いることができる。また、それらの機能についても、実施の形態1の第1誘電体層102と同様である。

[0142]

第1誘電体層302の膜厚は、マトリクス法に基づく計算により、第2記録層304の結晶相である場合とそれが非晶質相である場合の反射光量の変化が大きくなる条件を満足するように厳密に決定することができる。

[0143]

第1界面層303には、実施の形態1の第1界面層103と同様の材料を用いることができる。また、それらの機能及び形状についても、実施の形態1の第1界面層103と同様である。

[0144]

第2界面層305には、実施の形態1の第2界面層105と同様の材料を用いることができる。また、それらの機能及び形状についても、実施の形態1の第2界面層105と同様である。

[0145]

第2誘電体層306には、実施の形態1の第2誘電体層106と同様の材料を用いることができる。また、それらの機能及び形状についても、実施の形態1の第2誘電体層106と同様である。

$[0\ 1\ 4\ 6\]$

第2記録層304には、実施の形態1の記録層104と同様の材料で形成することができる。第2記録層304の膜厚は、その材料が可逆的な相変化を起こす材料(例えば、GeAM4BTe3+A)の場合、第2情報層25の記録感度を高くするため、6nm~15nmの範囲内であることが好ましい。この範囲内においても、第2記録層304が厚い場合には熱の面内方向への拡散による隣接領域への熱的影響が大きくなる。また、第2記録層304が薄い場合には第2情報層25の反射率が小さくなる。したがって、第2記録層304の膜厚は、8nm~13nmの範囲内であることがより好ましい。また、第2記録層304に、不可逆な相変化を起こす材料(例えば、Te-Pd-O)を用いる場合は、実施の形態1と同様、第2記録層304の膜厚は10nm~40nmの範囲内であることが好ましい。

[0147]

第2反射層308には 、実施の形態1の反射層108と同様の材料を用いることができる。また、それらの機能及び形状についても、実施の形態1の反射層108と同様である。

[0148]

第2反射層308と第2誘電体層306の間に、界面層307を配置してもよい。界面層307には、実施の形態1の界面層107と同様の材料を用いることができる。また、それらの機能及び形状についても、実施の形態1の界面層107と同様である。

[0149]

情報記録媒体24は、以下に説明する方法によって製造できる。

[0150]

まず、第2情報層25を形成する。具体的には、まず、基板14(厚さが例えば1.1 mm)を用意し、成膜装置内に配置する。

$[0\ 1\ 5\ 1\]$

続いて、基板14上に第2反射層308を成膜する。このとき、基板14にレーザビーム11を導くための案内溝が形成されている場合には、案内溝が形成された側に第2反射層308を成膜する。第2反射層308は、実施の形態1の反射層108と同様の方法で形成できる。

[0152]

続いて、第2反射層308上に、必要に応じて界面層307を成膜する。界面層307 は、実施の形態1の第2誘電体層106と同様の方法で形成できる。

[0153]

続いて、第2反射層308または界面層307上に、第2誘電体層306を成膜する。 第2誘電体層306は、実施の形態1の第2誘電体層106と同様の方法で形成できる。

[0154]

続いて、第2反射層308、界面層307、または第2誘電体層306上に、必要に応じて第2界面層305を成膜する。第2界面層305は、実施の形態1の第2誘電体層106と同様の方法で形成できる。

[0155]

続いて、第2誘電体層306、または第2界面層305上に、第2記録層304を成膜する。第2記録層304は、その組成に応じたスパッタリングターゲットを用いて、実施の形態1の記録層104と同様の方法で形成できる。

[0156]

続いて、第2記録層304上に、必要に応じて第1界面層303を成膜する。第1界面層303は、実施の形態1の第2誘電体層106と同様の方法で形成できる。

$[0\ 1\ 5\ 7\]$

続いて、第2記録層304、または第1界面層303上に、第1誘電体層302を成膜する。第1誘電体層302は、実施の形態1の第2誘電体層106と同様の方法で形成できる。

[0158]

このようにして、第2情報層25を形成する。

[0159]

続いて、第2情報層25の第1誘電体層302上に光学分離層17を形成する。光学分離層17は、光硬化性樹脂(特に紫外線硬化性樹脂)または遅効性樹脂を第1誘電体層302上に塗布してスピンコートしたのち、樹脂を硬化させることによって形成できる。なお、光学分離層17がレーザビーム11の案内溝を備える場合には、溝が形成された基板(型)を硬化前の樹脂に密着させたのち、樹脂を硬化させ、その後、基板(型)をはがすことによって案内溝を形成できる。

[0160]

なお、第2誘電体層302を成膜したのち、または光学分離層17を形成したのち、必要に応じて、第2記録層304の全面を結晶化させる初期化工程を行ってもよい。第2記録層304の結晶化は、レーザビームを照射することによって行うことができる。

$[0\ 1\ 6\ 1]$

続いて、光学分離層17上に第1情報層23を形成する。具体的には、まず、光学分離層17上に、透過率調整層209、第1反射層208、第4界面層205、第1記録層204、第3界面層203、及び第3誘電体層202をこの順序で成膜する。このとき、必要に応じて第1反射層208と第4界面層205の間に第4誘電体層206を成膜してもよい。これらの各層は、実施の形態2で説明した方法で形成できる。

[0162]

最後に、第3誘電体層202上に透明層13を形成する。透明層13は、実施の形態1

で説明した方法で形成できる。

[0163]

なお、第3誘電体層202を成膜したのち、または透明層13を形成したのち、必要に応じて、第1記録層204の全面を結晶化させる初期化工程を行ってもよい。第1記録層204の結晶化は、レーザビームを照射することによって行うことができる。

[0164]

また、第3誘電体層202を成膜したのち、または透明層13を形成したのち、必要に応じて、第2記録層304、及び第1記録層204の全面を結晶化させる初期化工程を行ってもよい。この場合、第1記録層204の結晶化を先に行うと、第2記録層304を結晶化するために必要なレーザバワーが大きくなる傾向にあるため、第2記録層304を先に結晶化させることが好ましい。

[0165]

以上のようにして、情報記録媒体24を製造できる。なお、本実施の形態においては、各層の成膜方法としてスパッタリング法を用いたが、これに限定されず真空蒸着法、イオンプレーティング法、CVD法、MBE法等を用いることも可能である。

$[0\ 1\ 6\ 6\]$

(実施の形態4)

実施の形態4では、本発明の情報記録媒体の一例を説明する。実施の形態4の情報記録媒体29の一部断面図を図4に示す。情報記録媒体29は、実施の形態1の情報記録媒体15と同様、レーザビーム11の照射によって情報の記録再生が可能な光学的情報記録媒体である。

$[0\ 1\ 6\ 7\]$

情報記録媒体29は、基板26上に積層した情報層16とダミー基板28が、接着層27を介して密着された構成である。

[0168]

基板26、及びダミー基板28は、透明で円盤状の基板である。基板26、及びダミー基板28には、実施の形態1の基板14と同様に、例えば、ポリカーボネートやアモルファスポリオレフィンやPMMA等の樹脂、またはガラスを用いることができる。

$[0\ 1\ 6\ 9\]$

基板 26 の第 1 誘電体層 102 側の表面には、必要に応じてレーザビームを導くための案内溝が形成されていてもよい。基板 26 の第 1 誘電体層 102 側と反対側の表面、及びダミー基板 28 の接着層 27 側と反対側の表面は、平滑であることが好ましい。基板 26 及びダミー基板 28 の材料としては、転写性・量産性に優れ、低コストであることから、ポリカーボネートが特に有用である。なお、基板 26 、及びダミー基板 28 の厚さは、十分な強度があり、且つ情報記録媒体 29 の厚さが 1.2 mm程度となるよう、0.3 mm ~ 0.9 mmの範囲内であることが好ましい。

[0170]

接着層 27 は、光硬化性樹脂(特に紫外線硬化性樹脂)や遅効性樹脂等の樹脂からなり、使用するレーザビーム 11 に対して光吸収が小さいことが好ましく、短波長域において光学的に複屈折が小さいことが好ましい。なお、接着層 27 の厚さは、光学分離層 19、17 等と同様の理由により、 0.6μ m~ 50μ mの範囲内にあることが好ましい。

$[0\ 1\ 7\ 1]$

その他、実施の形態1と同一の符号を付した部分については、その説明を省略する。

[0172]

情報記録媒体29は、以下に説明する方法によって製造できる。

[0 1 7 3]

まず、基板26(厚さが例えば0.6mm)上に、情報層16を形成する。このとき、基板26にレーザビーム11を導くための案内溝が形成されている場合には、案内溝が形成された側に情報層16を形成する。具体的には、基板26を成膜装置内に配置し、第1誘電体層102、第1界面層103、記録層104、第2界面層105、第2誘電体層1

06、反射層108を順次積層する。なお、必要に応じて第2誘電体層106と反射層108の間に界面層107を成膜してもよい。各層の成膜方法は、実施の形態1と同様である。

$[0 \ 1 \ 7 \ 4]$

次に、情報層16が積層された基板26及びダミー基板28(厚さが例えば0.6 mm)を、接着層27を用いて貼り合わせる。具体的には、光硬化性樹脂(特に紫外線硬化性樹脂)や遅効性樹脂等の樹脂をダミー基板28上に塗布して、情報層16が積層された基板26をダミー基板28上に密着させてスピンコートしたのち、樹脂を硬化させるとよい。また、ダミー基板28上に予め粘着性の樹脂を均一に塗布し、それを情報層16が積層された基板26に密着させることもできる。

[0175]

なお、基板26及びダミー基板28を密着させた後、必要に応じて、記録層104の全面を結晶化させる初期化工程を行ってもよい。記録層104の結晶化は、レーザビームを 照射することによって行うことができる。

[0176]

以上のようにして、情報記録媒体29を製造できる。なお、本実施の形態においては、各層の成膜方法としてスパッタリング法を用いたが、これに限定されず真空蒸着法、イオンプレーティング法、CVD法、MBE法等を用いることも可能である。

[0177]

(実施の形態5)

実施の形態5では、本発明の情報記録媒体の一例を説明する。実施の形態5の情報記録媒体31の一部断面図を図5に示す。情報記録媒体31は、実施の形態2の情報記録媒体22と同様、片面からのレーザビーム11の照射によって情報の記録再生が可能な多層光学的情報記録媒体である。

[0178]

情報記録媒体31は、基板26上に光学分離層17、19等を介して順次積層したN組の第1情報層23、情報層18と、基板30上に積層した情報層21が、接着層27を介して密着された構成である。

[0179]

基板30は透明で円盤状の基板である。基板30には、基板14と同様に、例えば、ポリカーボネートやアモルファスポリオレフィンやPMMA等の樹脂、またはガラスを用いることができる。

$[0\ 1\ 8\ 0]$

基板30の情報層21側の表面には、必要に応じてレーザビームを導くための案内溝が形成されていてもよい。基板30の情報層21側と反対側の表面は、平滑であることが好ましい。基板30の材料としては、転写性・量産性に優れ、低コストであることから、ポリカーボネートが特に有用である。なお、基板30の厚さは、十分な強度があり、且つ情報記録媒体31の厚さが1.2mm程度となるよう、0.3mm~0.9mmの範囲内であることが好ましい。

[0181]

その他、実施の形態2、及び4と同一の符号を付した部分については、その説明を省略する。

[0182]

情報記録媒体31は、以下に説明する方法によって製造できる。

[0183]

まず、基板26(厚さが例えば0.6 mm)上に、第1情報層23を形成する。このとき、基板26にレーザビーム11を導くための案内溝が形成されている場合には、案内溝が形成された側に第1情報層23を形成する。具体的には、基板26を成膜装置内に配置し、第3誘電体層202、第3界面層203、第1記録層204、第4界面層205、第1反射層208、透過率調整層209を順次積層する。なお、必要に応じて第4界面層2

05と第1反射層208の間に第4誘電体層206を成膜してもよい。各層の成膜方法は、実施の形態2と同様である。その後(N-2)層の情報層を、光学分離層を介して順次積層する。

[0184]

また、基板30(厚さが例えば0.6mm)上に、情報層21を形成する。情報層は、 単層膜、または多層膜からなり、それらの各層は、実施の形態2と同様、成膜装置内で材料となるスパッタリングターゲットを順次スパッタリングすることによって形成できる。

[0185]

最後に、情報層が積層された基板26及び基板30を、接着層27を用いて貼り合わせる。具体的には、光硬化性樹脂(特に紫外線硬化性樹脂)や遅効性樹脂等の樹脂を情報層21上に塗布して、第1情報層23を成膜した基板26を情報層21上に密着させてスピンコートしたのち、樹脂を硬化させるとよい。また、情報層21上に予め粘着性の樹脂を均一に塗布し、それを基板26に密着させることもできる。

[0186]

なお、基板26及び基板30を密着させた後、必要に応じて、第1記録層204の全面を結晶化させる初期化工程を行ってもよい。第1記録層204の結晶化は、レーザビームを照射することによって行うことができる。

[0187]

以上のようにして、情報記録媒体31を製造できる。なお、本実施の形態においては、各層の成膜方法としてスパッタリング法を用いたが、これに限定されず真空蒸着法、イオンプレーティング法、CVD法、MBE法等を用いることも可能である。

[0188]

(実施の形態6)

実施の形態6では、実施の形態5における本発明の多層光学的情報記録媒体において、N=2、すなわち2組の情報層によって構成された情報記録媒体の一例を説明する。実施の形態6の情報記録媒体32の一部断面図を図6に示す。情報記録媒体32は、実施の形態3の情報記録媒体24と同様、片面からのレーザビーム11の照射によって情報の記録再生が可能な2層光学的情報記録媒体である。

[0189]

情報記録媒体32は、基板26上に第1情報層23、基板30上に第2情報層25を積層し、接着層27を介して密着した構成である。

[0190]

基板30の第2反射層308側の表面には、必要に応じてレーザビームを導くための案内溝が形成されていてもよい。基板30の第2反射層308側と反対側の表面は、平滑であることが好ましい。

[0191]

その他、実施の形態3、実施の形態4、及び実施の形態5と同一の符号を付した部分については、その説明を省略する。

$[0 \ 1 \ 9 \ 2]$

情報記録媒体32は、以下に説明する方法によって製造できる。

[0193]

まず、基板26(厚さが例えば0.6mm)上に、実施の形態5と同様の方法により第1情報層23を形成する。

$[0\ 1\ 9\ 4\]$

なお、透過率調整層 2 0 9 を成膜したのち、必要に応じて、第 1 記録層 2 0 4 の全面を結晶化させる初期化工程を行ってもよい。第 1 記録層 2 0 4 の結晶化は、レーザビームを照射することによって行うことができる。

[0195]

また、基板30(厚さが例えば0.6 mm)上に、第2情報層25を形成する。このとき、基板30にレーザビーム11を導くための案内溝が形成されている場合には、案内溝

が形成された側に第2情報層25を形成する。具体的には、基板30を成膜装置内に配置し、第2反射層308、第2誘電体層306、第2界面層305、第2記録層304、第1界面層303、第1誘電体層302を順次積層する。なお、必要に応じて第2反射層308と第2誘電体層306の間に界面層307を成膜してもよい。各層の成膜方法は、実施の形態3と同様である。

[0196]

なお、第1誘電体層302を成膜したのち、必要に応じて、第2記録層304の全面を結晶化させる初期化工程を行ってもよい。第2記録層304の結晶化は、レーザビームを 照射することによって行うことができる。

[0197]

最後に、第1情報層23を積層した基板26と第2情報層25を積層した基板30を、接着層27を用いて貼り合わせる。具体的には、光硬化性樹脂(特に紫外線硬化性樹脂)や遅効性樹脂等の樹脂を第1情報層23または第2情報層25上に塗布して、基板26と基板30を密着させてスピンコートしたのち、樹脂を硬化させるとよい。また、第1情報層23または第2情報層25上に予め粘着性の樹脂を均一に塗布し、基板26と基板30を密着させることもできる。

[0198]

その後、必要に応じて第2記録層304、及び第1記録層204の全面を結晶化させる初期化工程を行ってもよい。この場合、実施の形態3と同様の理由により、第2記録層304を先に結晶化させることが好ましい。

[0199]

以上のようにして、情報記録媒体32を製造できる。なお、本実施の形態においては、各層の成膜方法としてスパッタリング法を用いたが、これに限定されず真空蒸着法、イオンプレーティング法、CVD法、MBE法等を用いることも可能である。

[0200]

(実施の形態7)

実施の形態7では、実施の形態1、2、3、4、5、及び6で説明した本発明の情報記録媒体の記録再生方法について説明する。

[0201]

本発明の記録再生方法に用いられる記録再生装置38の一部の構成を図7に模式的に示す。図7を参照して、記録再生装置38は、情報記録媒体37を回転させるためのスピンドルモータ33と、半導体レーザ35、及び半導体レーザ35から出射されるレーザビーム11を集光する対物レンズ34を備える光学へッド36を備える。情報記録媒体37は、実施の形態1、2、3、4、5、及び6で説明した情報記録媒体であり、単数(例えば情報層16)、または複数の情報層(例えば第1情報層23、第2情報層25)を備える。対物レンズ34は、レーザビーム11を情報層上に集光する。

[0202]

[0203]

また、ピークパワー、バイアスパワーのパワーレベルよりも低く、そのパワーレベルで

[0204]

[0205]

二つの情報層を備えた情報記録媒体24、及び情報記録媒体32において、第1情報層23に対して記録を行う際には、レーザビーム11の焦点を第1記録層204に合わせ、透明層13を透過したレーザビーム11によって第1記録層204に情報を記録する。再生は、第1記録層204によって反射され、透明層13を透過してきたレーザビーム11を用いて行う。第2情報層25に対して記録を行う際には、レーザビーム11の焦点を第2記録層304に合わせ、透明層13、第1情報層23、及び光学分離層17を透過したレーザビーム11によって情報を記録する。再生は、第2記録層304によって反射され、光学分離層17、第1情報層23、及び透明層13を透過してきたレーザビーム11を用いて行う。

[0206]

なお、基板14、光学分離層20、19、及び17に、レーザビーム11を導くための 案内溝が形成されている場合、情報は、レーザビーム11の入射側から近い方の溝面(グ ルーブ)に行われてもよいし、遠い方の溝面(ランド)に行われてもよい。また、グルー ブとランドの両方に情報を記録してもよい。

[0207]

[0208]

[0209]

さらに、繰り返し書き換え回数は、レーザビーム11を $0\sim P_p$ (mW)の間でパワー変調し、マーク長 $0.149\mu m$ (2T)から $0.596\mu m$ (8T)までのランダム信号を同じグルーブに連続記録し、各記録書き換え回数における前端間、及び後端間ジッターをタイムインターバルアナライザーで測定することによって評価した。1回目の前端間と後端間の平均ジッター値に対し3%増加する書き換え回数を上限値とした。なお、 P_p 、 P_b 、 P_c 、 P_B は、平均ジッター値が最も小さくなるように決定した。

[0210]

(実施の形態8)

実施の形態8では、本発明の情報記録媒体の一例を説明する。実施の形態8の電気的情報記録媒体44の一構成例を図8に示す。電気的情報記録媒体44は、電気的エネルギー(特に電流)の印加によって情報の記録再生が可能な情報記録媒体である。

[0211]

基板39の材料としては、ポリカーボネート等の樹脂基板、ガラス基板、A1203等のセラミック基板、Si等の各種半導体基板、Cu等の各種金属基板を用いることができる。ここでは、基板としてSi基板を用いた場合について説明する。電気的情報記録媒体44は、基板39上に下部電極40、第1誘電体層401、第1記録層41、第2記録層42、第2誘電体層402、上部電極43を順に積層した構造である。下部電極40、及び上部電極43は、第1記録層41、及び第2記録層42に電流を印加するために形成する。なお、第1誘電体層401は第1記録層41に印加する電気エネルギー量を調整し、第2誘電体層402は第2記録層42に印加する電気エネルギー量を調整するために設置される。

[0212]

第1誘電体層401および第2誘電体層402の材料は、実施の形態1の第2誘電体層106と同様の材料を用いることができる。

[0213]

第1記録層41、及び第2記録層42は、電流の印加により発生するジュール熱によって結晶相と非晶質相との間で可逆的な相変化を起こす材料であり、結晶相と非晶質相との間で抵抗率が変化する現象を情報の記録に利用する。第1記録層41の材料は実施の形態2の第1記録層204と同様の材料、第2記録層42の材料は実施の形態3の第2記録層304と同様の材料を用いることができる。

[0214]

第1記録層41、及び第2記録層42は、それぞれ実施の形態2の第1記録層204、 及び実施の形態3の第2記録層304と同様の方法で形成できる。

[0215]

また、下部電極40、及び上部電極43には、A1、Au、Ag、Cu、Pt等の単体金属材料、あるいはこれらのうちの1つまたは複数の元素を主成分とし、耐湿性の向上あるいは熱伝導率の調整等のために適宜1つまたは複数の他の元素を添加した合金材料を用いることができる。下部電極40、及び上部電極43は、Arガス雰囲気中で材料となる金属母材または合金母材をスパッタリングすることによって形成できる。なお、各層の成膜方法としては、真空蒸着法、イオンプレーティング法、CVD法、MBE法等を用いることも可能である。

$[0\ 2\ 1\ 6]$

電気的情報記録媒体44に、印加部45を介して電気的情報記録再生装置50を電気的に接続する。この電気的情報記録再生装置50により、下部電極40と上部電極43の間には、第1記録層41、及び第2記録層42に電流バルスを印加するためにバルス電源48がスイッチ47を介して接続される。また、第1記録層41、及び第2記録層42の相変化による抵抗値の変化を検出するために、下部電極40と上部電極43の間にスイッチ49を介して抵抗測定器46が接続される。非晶質相(高抵抗状態)にある第1記録層41または第2記録層42を結晶相(低抵抗状態)に変化させるためには、スイッチ47を閉じて(スイッチ49は開く)電極間に電流バルスを印加し、電流バルスが印加される部分の温度が、材料の結晶化温度より高く、且つ融点より低い温度で、結晶化時間の間保持されるようにする。結晶相から再度非晶質相に戻す場合には、結晶化時よりも相対的に高されるようにする。結晶相から再度非晶質相に戻す場合には、結晶化時よりも相対的に高されるようにする。結晶相から再度非晶質相に戻す場合には、結晶化時よりも相対的に高されるようにする。結晶相から再度非晶質相に戻す場合には、結晶化時よりも相対的に高されるようにする。なお、電気的情報記録再生装置50のバルス電源48は、図11の記録・消去バルス波形を出力できるような電源である。

[0217]

ここで、第1記録層 4 1 が非晶質相の場合の抵抗値を r_{al} 、第1記録層 4 1 が結晶相の場合の抵抗値を r_{cl} 、第2記録層 4 2 が非晶質相の場合の抵抗値を r_{a2} 、第2記録

[0218]

この電気的情報記録媒体44をマトリクス的に多数配置することによって、図9に示すような大容量の電気的情報記録媒体51を構成することができる。各メモリセル54には、微小領域に電気的情報記録媒体44と同様の構成が形成されている。各々のメモリセル54への情報の記録再生は、ワード線52、及びビット線53をそれぞれ一つ指定することによって行う。

[0219]

図10は電気的情報記録媒体51を用いた、情報記録システムの一構成例を示したものである。記憶装置56は、電気的情報記録媒体51と、アドレス指定回路55によって構成される。アドレス指定回路55により、電気的情報記録媒体51のワード線52、及びビット線53がそれぞれ指定され、各々のメモリセル54への情報の記録再生を行うことができる。また、記憶装置56を、少なくともバルス電源58と抵抗測定器59から構成される外部回路57に電気的に接続することにより、電気的情報記録媒体51への情報の記録再生を行うことができる。

【実施例】

[0220]

本発明のより具体的な実施の形態について、実施例を用いてさらに詳細に説明する。

[0221]

(実施例1)

実施例1では、図1の情報記録媒体15を作製し、第2誘電体層106の材料と、情報層16の記録感度、及び繰り返し書き換え性能との関係を調べた。具体的には、第2誘電体層106の材料が異なる情報層16を含む情報記録媒体15のサンプルを作製し、情報層16の記録感度、及び繰り返し書き換え性能を測定した。

[0222]

サンプルは以下のようにして製造した。まず、基板 14 として、レーザビーム 11 を導くための案内溝(深さ 20 n m、トラックピッチ 0.32 μ m)が形成されたポリカーボネート基板(直径 120 m m、厚さ 1.1 m m)を用意した。そして、そのポリカーボネート基板上に、反射層 108 として 10 R 10

[0223]

最後に、紫外線硬化性樹脂を第1誘電体層102上に塗布し、ポリカーボネートシート(直径120mm、厚さ90 μ m)を第1誘電体層102に密着し回転させることによって均一な樹脂層を形成したのち、紫外線を照射して樹脂を硬化させることによって、厚さ100 μ mの透明層13を形成した。その後、記録層104をレーザビームで結晶化させる初期化工程を行った。以上のようにして、第2誘電体層106の材料が異なる複数のサンプルを製造した。

[0224]

このようにして得られたサンプルについて、図7の記録再生装置38を用いて、情報記録媒体15の情報層16の記録感度、及び繰り返し書き換え性能を測定した。このとき、レーザビーム11の波長は405nm、対物レンズ34の開口数NAは0.85、測定時

のサンプルの線速度は4.9 m/s、及び9.8 m/s、最短マーク長(2 T)は0.1 49 μ mとした。また、情報はグルーブに記録した。

[0225]

情報記録媒体 15 の情報層 16 の第 2 誘電体層 106 の材料と、情報層 16 の記録感度、及び繰り返し書き換え性能の評価結果について、線速度が 4.9 m/s の場合(1 X)の結果を(表 1)に、線速度が 9.8 m/s の場合(2 X)の結果を(表 2)に示す。なお、1 Xでの記録感度については、6 mW未満を〇、6 mW以上 7 mW未満を〇、7 mW以上をXとした。また、2 Xでの記録感度については、7 mW未満を〇、7 mW以上 8 mW未満を△、8 mW以上をXとした。さらに、繰り返し書き換え性能については、繰り返し書き換え回数が 1000 回以上を〇、500 回以上 1000 回未満を△、100 回来満を×とした。

[0226]

【表 1】

サンプル No.	第2誘電体層106 の材料	記録 感度	繰り返し 書き換え 性能
1 - 1	(ZnS) ₈₀ (SiO ₂) ₂₀	0	×
1 - 2	Dy ₂ O ₃	0	0
1 - 3	$(Dy_2O_3)_{95}(Y_2O_3)_{5}$	0	0
1 - 4	$(Dy_2O_3)_{95}(ZrO_2)_5$	0	0
1 - 5	(Dy ₂ O ₃) ₅₀ (ZrO ₂) ₅₀	0	0
1 - 6	$(D y_2 O_3)_{50} (Y_2 O_3)_{6} (Z r O_2)_{45}$	0	0
1 - 7	$(Dy_2O_3)_{50}(SiO_2)_{50}$	0	0
1 - 8	$(Dy_2O_3)_{50} (HfO_2)_{50}$	0	0
1 - 9	$(Dy_2O_3)_{50} (Y_2O_3)_{5} (HfO_2)_{45}$	0	0
1 - 1 0	$(Dy_2O_3)_{50}(ZrO_2)_{25}(SiO_2)_{25}$	0	0
1 - 1 1	(Dy ₂ O ₃) ₅₀ (Y ₂ O ₃) ₅ (ZrO ₂) ₂₀ (SiO ₂) ₂₅	0	0
1 - 1 2	$(D y_2 O_3)_{50} (H f O_2)_{25} (S i O_2)_{25}$	0	
1 - 1 3	(Dy ₂ O ₃) ₅₀ (Y ₂ O ₃) ₅ (HfO ₂) ₂₀ (SiO ₂) ₂₅	0	0
1 - 1 4	$(D y_2 O_3)_{20} (Z r O_2)_{80}$	Δ	0
1 - 15	$(Dy_2O_3)_{10}(ZrO_2)_{90}$	×	00
1 - 16	(Dy ₂ O ₃) ₉₅ (In ₂ O ₃) ₅	0	0
1 - 1 7	(Dy ₂ O ₃) ₅₀ (In ₂ O ₃) ₅₀	Ō	0
1 - 1 8	(Dy ₂ O ₃) ₂₀ (In ₂ O ₃) ₈₀	Δ	0
1 - 19	(Dy ₂ O ₃) ₁₀ (In ₂ O ₃) ₉₀	×	0
1 - 2 0	$(Dy_2O_3)_{90}(ZrO_2)_5(In_2O_3)_5$	0	0 0
1 - 2 1	$(Dy_2O_3)_{50} (ZrO_2)_{25} (In_2O_3)_{25}$	0	0
1 - 2 2	$(Dy_2O_3)_{50}(Y_2O_3)_5$	0	0
1 9 9	$(Z r O_2)_{20} (I n_2 O_3)_{25}$	Δ	\vdash
$1 - 2 \ 3$ $1 - 2 \ 4$	$(Dy_2O_3)_{20} (ZrO_2)_5 (In_2O_3)_{75}$		0
1 - 24 $1 - 25$	$(D y_2 O_3)_{20} (Z r O_2)_{75} (I n_2 O_3)_{5}$ $(D y_2 O_3)_{10} (Z r O_2)_{80} (I n_2 O_3)_{10}$	Δ ×	0
$\frac{1-2.5}{1-2.6}$	$(Dy_2O_3)_{10}(ZIO_2)_{80}(III_2O_3)_{10}$	×	0

[0227]

サンプル No.	第2誘電体層106 の材料	記録感度	繰り返し 書き換え 性能
1 - 1	(ZnS) ₈₀ (SiO ₂) ₂₀	0	×
1 - 2	Dy ₂ O ₃	0	0
1 - 3	$(Dy_2O_3)_{95}(Y_2O_3)_5$	0	0
1 - 4	$(Dy_2O_3)_{95}(ZrO_2)_5$	0	0
1 - 5	$(Dy_2O_3)_{50}(ZrO_2)_{50}$	0	0
1 - 6	$(Dy_2O_3)_{50}(Y_2O_3)_{5}(ZrO_2)_{45}$	0	0
1 - 7	$(D y_2 O_3)_{50} (S i O_2)_{50}$	0	0
1 - 8	$(Dy_2O_3)_{50} (HfO_2)_{50}$	0	0
1 - 9	$(Dy_2O_3)_{50}(Y_2O_3)_{5}(HfO_2)_{45}$	0	0
1 - 1 0	$(Dy_2O_3)_{50}(ZrO_2)_{25}(SiO_2)_{25}$	0	0
1 - 1 1	$(D y_2 O_3)_{50} (Y_2 O_3)_{6} (Z r O_2)_{20} (S i O_2)_{25}$	0	0
1 - 1 2	$(Dy_2O_3)_{50} (HfO_2)_{25} (SiO_2)_{25}$	0	0
1 - 1 3	$(D y_2 O_3)_{50} (Y_2 O_3)_5$ $(H f O_2)_{20} (S i O_2)_{25}$	0	0
$1 - 1 \ 4$	$(D y_2 O_3)_{20} (Z r O_2)_{80}$	0	0
1 - 1 5	$(D y_2 O_3)_{10} (Z r O_2)_{90}$	Δ	Ö
1 - 1 6	(Dy ₂ O ₃) ₉₅ (In ₂ O ₃) ₅	0	0
1 - 1 7	$(Dy_2O_3)_{50}(In_2O_3)_{50}$	ŏ	0
1 - 1 8	$(D y_2 O_3)_{20} (I n_2 O_3)_{80}$	ŏ	ŏ
1 - 19	$(Dy_2O_3)_{10} (In_2O_3)_{90}$	Δ	Ŏ
1 - 2 0	$(Dy_2O_3)_{90}(ZrO_2)_5(In_2O_3)_5$	0	0
1 - 2 1	(Dy ₂ O ₃) ₅₀ (ZrO ₂) ₂₅ (In ₂ O ₃) ₂₅	0	0
1 - 2 2	$(Dy_2O_3)_{50}(Y_2O_3)_5$	0	0
1 - 2 3	$(Z r O_2)_{20} (I n_2 O_3)_{25}$ $(D y_2 O_3)_{20} (Z r O_2)_{5} (I n_2 O_3)_{75}$	0	0
$1 - 2 \ 3$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	
$\frac{1-2}{1-2}$ 5	$(D y_2 O_3)_{10} (Z r O_2)_{80} (I n_2 O_3)_{10}$	Δ	$\stackrel{\smile}{\sim}$
1 - 2.6	$(D y_2 O_3)_{10} (Z r O_2)_{2} (I n_2 O_3)_{88}$	Δ	0

[0228]

この結果、第2誘電体層106に(ZnS)80(SiO_2)20 を用いたサンブル1ー1では、ZnSに含まれる硫黄が記録層に拡散してしまうため、1X、及び2Xでの繰り返し書き換え性能が悪いことがわかった。また、第2誘電体層106に Dy_2O_3 を用いたサンブル1ー2、及び(Dy_2O_3)95 (Y_2O_3) 5 を用いたサンブル1ー3では、1X、及び2Xでの記録感度と繰り返し書き換え性能がともに良好であることがわかった。また、第2誘電体層106に Dy_2O_3 、 Y_2O_3 、 ZrO_2 、 HfO_2 、 SiO_3 、及び In_2O_3 の混合物を用いた場合、 Dy_2O_3 が10mo1%のサンブル1ー15、1-19、1-25、及び1-26では、1Xでの記録感度が悪く、且つ2Xでの記録感度が若干劣っていることがわかった。また、 Dy_2O_3 が20mo1%のサンブル1ー14、1-18、1-23、及び1-24では、1Xでの記録感度が若干劣っているが使用可能であることがわかった。また、 Dy_2O_3 が20mo1%より多く95mo1%以下のサンブル1ー4から1-13、1-16、1-17、及び1-200から1-22では、1X、及び2Xでの記録感度と繰り返し書き換え性能がともに良好であることがわかった。

[0229]

なお、 In_2O_3 の代わりに、 Al_2O_3 、 Ga_2O_3 、MgO、ZnO、 Ta_2O_5 、 TiO_2 、 CeO_2 、 SnO_2 、 TeO_2 、 Nb_2O_5 、 Cr_2O_3 、 Bi_2O_3 、 Al_N 、Cr-N、Ge-N、 Si_3N_4 、または SiC_5 用いたところ、同様の結果が得られた。また、 In_2O_3 の代わりに、 Al_2O_3 、 Ga_2O_3 、MgO、ZnO、 Ta_2O_5 、 TiO_2 、 CeO_2 、 In_2O_3 、 SnO_2 、 TeO_2 、 Nb_2O_5 、 Cr_2O_3 、 Bi_2O_3 、 Al_N 、Cr-N、Ge-N、 Si_3N_4 、Q USiC USiC

[0230]

(実施例2)

実施例2では、図3の情報記録媒体24を作製し、第2誘電体層306の材料と、第2情報層25の記録感度、及び繰り返し書き換え性能との関係を調べた。具体的には、第2誘電体層306の材料が異なる第2情報層25を含む情報記録媒体24のサンプルを作製し、第2情報層25の記録感度、及び繰り返し書き換え性能を測定した。

[0231]

[0232]

[0233]

その後、光学分離層 1 7 の上に、透過率調整層 2 0 9 としてTi0 $_2$ 層(厚さ: 2 0 n m)、第 1 反射層 2 0 8 としてAg-Pd-Cu層(厚さ: 1 0 n m)、第 4 界面層 2 0 5 として(Zr0 $_2$) $_2$ 5 (Si0 $_2$) $_2$ 5 (Ga $_2$ 0 $_3$) $_5$ 0 層(厚さ: 1 0 n m)、第 1 記録層 2 0 4 としてGe $_2$ 8 S n $_3$ B i $_2$ T e $_3$ 4 層(厚さ: 6 n m)、第 3 界面層 2 0 3 として(Zr0 $_2$) $_2$ 5 (Si0 $_2$) $_2$ 5 (Cr $_2$ 0 $_3$) $_5$ 0 層(厚さ: 5 n m)、第 3 誘電体層 2 0 2 として(ZnS) $_8$ 0 (Si0 $_2$) $_2$ 0 層(厚さ: 4 0 n m)を順次スパッタリング法によって積層した。

[0234]

最後に、紫外線硬化性樹脂を第3誘電体層202上に塗布し、ポリカーボネートシート(直径120mm、厚さ65 μ m)を第3誘電体層202に密着し回転させることによって均一な樹脂層を形成したのち、紫外線を照射して樹脂を硬化させることによって、厚さ75 μ mの透明層13を形成した。その後、第2記録層304、及び第1記録層204をレーザビームで結晶化させる初期化工程を行った。以上のようにして、第2誘電体層306の材料が異なる複数のサンプルを製造した。

[0235]

このようにして得られたサンプルについて、図 7 の記録再生装置 3 8 を用いて、情報記録媒体 2 4 の第 2 情報層 2 5 の記録感度、及び繰り返し書き換え性能を測定した。このとき、レーザビーム 1 1 の波長は 4 0 5 n m、対物レンズ 3 4 の開口数 N A は 0 . 8 5 、測定時のサンプルの線速度は 4 . 9 m/s、及び 9 . 8 m/s、最短マーク長(2 T)は 0 . 1 4 9 μ m とした。また、情報は グルーブに記録した。

[0236]

情報記録媒体 24 の第 2 情報層 25 の第 2 誘電体層 306 の材料と、第 2 情報層 25 の記録感度、及び繰り返し書き換え性能の評価結果について、線速度が 4.9 m/s の場合(1 X)の結果を(表 3)に、線速度が 9.8 m/s の場合(2 X)の結果を(表 4)に示す。なお、1 X での記録感度については、12 mW未満を〇、12 mW以上 14 mW未満を△、14 mW以上を×とした。また、2 X での記録感度については、14 mW未満を〇、14 mW以上16 mW未満を△、16 mW以上を×とした。さらに、繰り返し書き換え性能については、繰り返し書き換え回数が 1000 回以上を〇、100 回以上1000

回未満を△、500回未満を×とした。

【0237】 【表3】

サンプル	第 2 誘電体層 3 0 6	記録	繰り返し
No.	の材料	感度	書き換え
			性能
2 - 1	$(Z n S)_{80} (S i O_2)_{20}$	Õ	×
2 - 2	Dy ₂ O ₃	0	0
2 - 3	$(Dy_2O_3)_{95}(Y_2O_3)_5$	0	0
2 - 4	$(Dy_2O_3)_{95}(ZrO_2)_5$	0	0
2 - 5	$(D y_2 O_3)_{50} (Z r O_2)_{50}$	0	0
2 - 6	$(Dy_2O_3)_{50}(Y_2O_3)_{5}(ZrO_2)_{45}$	0	0
2 - 7	$(Dy_2O_3)_{50}(SiO_2)_{50}$	0	0
2 - 8	(Dy ₂ O ₃) ₅₀ (HfO ₂) ₅₀	0	0
2 - 9	$(Dy_2O_3)_{50}(Y_2O_3)_5(HfO_2)_{45}$	0	0
$2 - 1 \ 0$	$(Dy_2O_3)_{50}(ZrO_2)_{25}(SiO_2)_{25}$	0	0
2 - 1 1	$(Dy_2O_3)_{50}(Y_2O_3)_5$	0	0
	(ZrO ₂) ₂₀ (SiO ₂) ₂₅		
$2 - 1 \ 2$ $2 - 1 \ 3$	$(Dy_2O_3)_{50} (HfO_2)_{25} (SiO_2)_{25}$	0	0
2 - 1 3	$(Dy_2O_3)_{50}(Y_2O_3)_5$	0	0
	$(H f O_2)_{20} (S i O_2)_{25}$		
2 - 1 4	$(Dy_2O_3)_{20}(ZrO_2)_{80}$. 0
$2 - 1 \ 5$	$(Dy_2O_3)_{10}(ZrO_2)_{90}$	×	0
2 - 16	$(Dy_2O_3)_{95}(In_2O_3)_{5}$	0	0
2 - 1 7	$(D y_2 O_3)_{50} (I n_2 O_3)_{50}$	0	0
2 - 1 8	$(Dy_2O_3)_{20} (In_2O_3)_{80}$	Δ	0
2 - 19	$(Dy_2O_3)_{10} (In_2O_3)_{90}$	×	0
$2 - 2 \ 0$	$(Dy_2O_3)_{90}(ZrO_2)_{5}(In_2O_3)_{5}$	0	
2 - 2 1	$(Dy_2O_3)_{50}(ZrO_2)_{25}(In_2O_3)_{25}$	0	0
2 - 2 2	$(Dy_2O_3)_{50}(Y_2O_3)_5$	0	0
	$(Z r O_2)_{20} (I n_2 O_3)_{25}$		
$2 - 2 \ 3$	$(Dy_2O_3)_{20}(ZrO_2)_5(In_2O_3)_{75}$	Δ	0
$2 - 2 \ 4$	$(Dy_2O_3)_{20}(ZrO_2)_{75}(In_2O_3)_{5}$	Δ	0
2 - 25	$(Dy_2O_3)_{10}(ZrO_2)_{80}(In_2O_3)_{10}$	×	0
2 - 2 6	$(Dy_2O_3)_{10} (ZrO_2)_2 (In_2O_3)_{88}$	×	0

[0238]

サンプル No.	第2誘電体層306 の材料	記録感度	繰り返し 書き換え 性能
2 - 1	$(Z n S)_{80} (S i O_2)_{20}$	0	×
2 - 2	Dу ₂ О ₃	0	0
2 - 3	$(Dy_2O_3)_{95}(Y_2O_3)_5$	0	0
2 - 4	$(Dy_2O_3)_{95}(ZrO_2)_5$	0	0
2 - 5	$(Dy_2O_3)_{50}(ZrO_2)_{50}$	0	0
2 - 6	(Dy ₂ O ₃) ₅₀ (Y ₂ O ₃) ₅ (ZrO ₂) ₄₅	0	0
2 - 7	$(Dy_2O_3)_{50}(SiO_2)_{50}$	0	0
2 - 8	$(Dy_2O_3)_{50}$ $(HfO_2)_{50}$	0	0
2 - 9	$(Dy_2O_3)_{50} (Y_2O_3)_{5} (HfO_2)_{45}$	0	0
2 - 1 0	$(Dy_2O_3)_{50}(ZrO_2)_{25}(SiO_2)_{25}$	0	0
2 - 1 1	$(D y_2 O_3)_{50} (Y_2 O_3)_5 (Z r O_2)_{20} (S i O_2)_{25}$	0	0
2 - 1 2	$(Dy_2O_3)_{50} (HfO_2)_{25} (SiO_2)_{25}$	0	0
$2 - 1 \ 3$	$(Dy_2O_3)_{50}(Y_2O_3)_5$	ŏ	0
2 - 14	$(H f O_2)_{20} (S i O_2)_{25} (D y_2 O_3)_{20} (Z r O_2)_{80}$	0	0
$\frac{2}{2-15}$	$(D y_2 O_3)_{10} (Z r O_2)_{90}$	$\overline{}$	0
$\frac{2}{2-1} \frac{1}{6}$	(Dy ₂ O ₃) ₉₅ (In ₂ O ₃) ₅	0	0
$\frac{2-10}{2-17}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0
$\frac{2}{2-18}$	$(D y_2 O_3)_{50} (I II_2 O_3)_{50}$	Ö	$\stackrel{\sim}{\sim}$
$\frac{2}{2-1}$ 9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Δ	<u> </u>
$\frac{2}{2-20}$	$(D y_2 O_3)_{90} (Z r O_2)_5 (I n_2 O_3)_5$	0	0
$\frac{2}{2-2}$ 1	$(D y_2 O_3)_{50} (Z r O_2)_{25} (1 n_2 O_3)_{25}$	ŏ	0
$\frac{2}{2-2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ŏ	ŏ
	(ZrO ₂) ₂₀ (In ₂ O ₃) ₂₅	_	_
$2 - 2 \ 3$	$(Dy_2O_3)_{20}(ZrO_2)_5(In_2O_3)_{75}$	0	0
$2 - 2 \ 4$	$(Dy_2O_3)_{20}(ZrO_2)_{75}(In_2O_3)_{5}$	0	0
2 - 2 5	$(Dy_2O_3)_{10} (ZrO_2)_{80} (In_2O_3)_{10}$	Δ	0
2 - 2 6	$(Dy_2O_3)_{10} (ZrO_2)_2 (1n_2O_3)_{88}$		0

[0239]

この結果、第2誘電体層306に(ZnS)₈₀(SiO_2)₂₀を用いたサンブル2 -1では、ZnSに含まれる硫黄が記録層に拡散してしまうため、1X、及び2Xでの繰り返し書き換え性能が悪いことがわかった。また、第2誘電体層306にDy203を用いたサンブル2 -2、及び(Dy203)95(Y203)5を用いたサンブル2 -3では、1X、及び2Xでの記録感度と繰り返し書き換え性能がともに良好であることがわかった。また、第2誘電体層306にDy203、Y203、 ZrO_2 、 HfO_2 、 SiO_2 、及び $In2O_3$ の混合物を用いた場合、Dy2 O_3 が10mo1%のサンブル2 -15、2 -19、2 -25、及び2 -26では、1Xでの記録感度が悪く、且つ2Xでの記録感度が若干劣っていることがわかった。また、Dy2 O_3 が20mo1%のサンブル2 -14、2 -18、2 -23、及び2 -24では、1Xでの記録感度が若干劣っているが使用可能であることがわかった。また、Dy2 O_3 が20mo1%より多く95mo1%以下のサンブル2 -4 から2 -13、2 -16、2 -17、及び2 -20 から1 -22では、1X、及び2Xでの記録感度と繰り返し書き換え性能がともに良好であることがわかった。

[0240]

なお、 In_2O_3 の代わりに、 Al_2O_3 、 Ga_2O_3 、MgO、ZnO、 Ta_2O_5 、 TiO_2 、 CeO_2 、 SnO_2 、 TeO_2 、 Nb_2O_5 、 Cr_2O_3 、 Bi_2O_3 、 Al_N 、Cr-N、Ge-N、 Si_3N_4 、または SiC_5 用いたところ、同様の結果が得られた。また、 In_2O_3 の代わりに、 Al_2O_3 、 Ga_2O_3 、MgO、ZnO、 Ta_2O_5 、 TiO_2 、 CeO_2 、 In_2O_3 、 SnO_2 、 TeO_2 、 Nb_2O_5 、 Cr_2O_3 、 Bi_2O_3 、 Al_N 、Cr-N、Ge-N、 Si_3N_4 、Q USiC USiC

[0241]

(実施例3)

[0242]

(実施例4)

実施例4では、図3の情報記録媒体24を作製し、第4誘電体層206の材料と、第1情報層23の記録感度、及び繰り返し書き換え性能との関係を調べた。具体的には、第4誘電体層206の材料が異なる第1情報層23を含む情報記録媒体24のサンプルを作製し、第1情報層23の記録感度、及び繰り返し書き換え性能を測定した。

[0243]

サンプルは以下のようにして製造した。まず、基板 14 として、レーザビーム 11 を導くための案内溝(深さ 20 n m、トラックピッチ 0. 32 μ m)が形成されたポリカーボネート基板(直径 120 m m、厚さ 1. 1 m m)を用意した。そして、そのポリカーボネート基板上に、第2反射層 208 としてAgーPdーCu層(厚さ:80 n m)、第2誘電体層 306 としてDy 203 層(厚さ:15 n m)、第2界面層 305 として(2 r 02) 50(1 n 203) 50 層(厚さ:5 n m)、第2記録層 304 としてGe 28 S n 3 B i2 T e34 層(厚さ:10 n m)、第1界面層 303 として(2 r 03) 50 層(厚さ:5 n m)、第1 誘電体層 302 として(2 n S) 20 層(厚さ:60 n m)を順次スパッタリング法によって積層した。

[0244]

次に、第1誘電体層 3 0 2 上に紫外線硬化性樹脂を塗布し、その上に案内溝(深さ 2 0 n m、トラックピッチ 0 . 3 2 μ m)を形成した基板をかぶせて密着し回転させることによって均一な樹脂層を形成し、樹脂を硬化させた後に基板をはがした。この工程によって、レーザビーム 1 1 を導く案内溝が第1情報層 2 3 側に形成された厚さ 2 5 μ m の光学分離層 1 7 を形成した。

[0245]

その後、光学分離層 17 の上に、透過率調整層 209 としてTi02 層(厚さ: 20n m)、第 1 反射層 208 としてAg-Pd-Cu 層(厚さ: 10n m)、第 4 誘電体層 206 (厚さ: 5n m)第 4 界面層 205 として(Zr02) 25 (Si02) 25 (In203) 50 層(厚さ: 5n m)、第 1 記録層 204 として Ge_{28} Sn_3 Bi_2 Te_{34} 層(厚さ: 6n m)、第 3 界面層 203 として(Zr02) 25 (Si02) 25 (Cr_{203}) 50 層(厚さ: 5n m)、第 3 誘電体層 202 として(ZnS) 80 (Si02) 20 層(厚さ: 40n m)を順次スパッタリング法によって積層した。

[0246]

最後に、紫外線硬化性樹脂を第3誘電体層202上に塗布し、ボリカーボネートシート(直径120mm、厚さ65 μm)を第3誘電体層202に密着し回転させることによって均一な樹脂層を形成したのち、紫外線を照射して樹脂を硬化させることによって、厚さ75 μm の透明層13を形成した。その後、第2記録層304、及び第1記録層204をレーザビームで結晶化させる初期化工程を行った。以上のようにして、第4誘電体層206の材料が異なる複数のサンプルを製造した。

[0247]

このようにして得られたサンプルについて、図7の記録再生装置38を用いて、情報記録媒体24の第1情報層23の記録感度、及び繰り返し書き換え性能を測定した。このと

[0248]

情報記録媒体 24 の第 1 情報層 23 の第 4 誘電体層 206 の材料と、第 1 情報層 23 の記録感度、及び繰り返し書き換え性能の評価結果について、線速度が 4.9 m/s の場合(1 X)の結果を(表 5)に、線速度が 9.8 m/s の場合(2 X)の結果を(表 6)に示す。なお、1 X での記録感度については、12 W 未満を〇、12 W 以上 14 W 未満を 14 W 以上 14 W 未満を 14 C 以上 14 W 未満を 14 C 以上 16 W 未満を 16 C 、16 W 以上 16 W 未満を 16 C 、16 C 以上 16 C 以

[0249]

【表5】

サンプル	第 4 誘電体層 2 0 6	記録	繰り返し
No.	の材料	感度	書き換え
			性能
3 - 1	(ZnS) ₈₀ (SiO ₂) ₂₀		×
3 - 2	Dу ₂ О ₃	0	Δ
3 - 3	$(Dy_2O_3)_{95}(Y_2O_3)_5$	Ô	Δ
3 – 4	$(Dy_2O_3)_{95}(ZrO_2)_5$	0	Δ
3 - 5	$(Dy_2O_3)_{50}(ZrO_2)_{50}$	0	0
3 - 6	$(Dy_2O_3)_{50}(Y_2O_3)_{5}(ZrO_2)_{45}$	0	0
3 - 7	$(Dy_2O_3)_{SO}(SiO_2)_{SO}$	0	0
3 - 8	$(Dy_2O_3)_{50}$ $(HfO_2)_{50}$	0	0000
3 - 9	$(Dy_2O_3)_{50} (Y_2O_3)_{5} (HfO_2)_{45}$	0	0
3 - 1 0	$(Dy_2O_3)_{50}(ZrO_2)_{25}(SiO_2)_{25}$	0	0
3 - 1 1	$(D y_2 O_3)_{50} (Y_2 O_3)_5$	0	
	$(Z r O_2)_{20} (S i O_2)_{25}$ $(D y_2 O_3)_{50} (H f O_2)_{25} (S i O_2)_{25}$		
$3 - 1 \ 2$	$(Dy_2O_3)_{50} (HfO_2)_{25} (SiO_2)_{25}$	0	00
3 - 1 3	$(D y_2 O_3)_{50} (Y_2 O_3)_{5}$	0	
	(H f O ₂) ₂₀ (S i O ₂) ₂₅		
3 - 14	$(Dy_2O_3)_{20}(ZrO_2)_{80}$	Δ	0
$3 - 1 \ 5$	$(Dy_2O_3)_{10}(ZrO_2)_{90}$	×	
3 - 1 6	$(Dy_2O_3)_{95}(In_2O_3)_5$	0	Δ
3 - 1 7	$(D y_2 O_3)_{50} (I n_2 O_3)_{50}$	0	0
3 - 1 8	$(Dy_2O_3)_{20}(In_2O_3)_{80}$	Δ	0
3 - 19	$(Dy_2O_3)_{10} (In_2O_3)_{90}$	×	0
$3 - 2 \ 0$	$(Dy_2O_3)_{90}(ZrO_2)_5(In_2O_3)_5$. 0	
3 - 2 1	$(Dy_2O_3)_{50}(ZrO_2)_{25}(In_2O_3)_{25}$	0	0
$3 - 2 \ 2$	$(Dy_2O_3)_{50}(Y_2O_3)_5$	0	
	(ZrO2)20 (In2O3)25		
$3 - 2 \ 3$	$(Dy_2O_3)_{20} (ZrO_2)_5 (In_2O_3)_{75}$	Δ	0
$3 - 2 \ 4$	$(D y_2 O_3)_{20} (Z r O_2)_{75} (I n_2 O_3)_{5}$	Δ	0
3 - 25	$(Dy_2O_3)_{10}(ZrO_2)_{80}(In_2O_3)_{10}$	×	0
3 - 2 6	$(Dy_2O_3)_{10} (ZrO_2)_2 (ln_2O_3)_{88}$	×	0
		t .	

[0250]

サンプル No.	第4誘電体層206 の材料	記録感度	繰り返し 書き換え 性能
3 - 1	(ZnS) ₈₀ (SiO ₂) ₂₀	0	×
3 - 2	Dy ₂ O ₃	0	0
3 - 3	$(Dy_2O_3)_{95}(Y_2O_3)_5$	0	0
3 – 4	(Dy ₂ O ₃) ₉₅ (ZrO ₂) ₅	0	0
3 - 5	$(Dy_2O_3)_{50}(ZrO_2)_{50}$	0	0
3 - 6	$(Dy_2O_3)_{50}(Y_2O_3)_{5}(ZrO_2)_{45}$	0	0
3 - 7	$(Dy_2O_3)_{50}(SiO_2)_{50}$	0	0
3 - 8	$(Dy_2O_3)_{50}(HfO_2)_{50}$	0	0
3 - 9	$(Dy_2O_3)_{50}(Y_2O_3)_{5}(HfO_2)_{45}$	0	0
$3 - 1 \ 0$	$(Dy_2O_3)_{50}(ZrO_2)_{25}(SiO_2)_{25}$	0	0
3 - 1 1	$(D y_2 O_3)_{50} (Y_2 O_3)_5 (Z r O_2)_{20} (S i O_2)_{25}$	0	0
3 - 1 2	$(Dy_2O_3)_{50} (HfO_2)_{25} (SiO_2)_{25}$	0	0
3 - 1 3	$(D y_2 O_3)_{50} (Y_2 O_3)_{5} (H f O_2)_{20} (S i O_2)_{25}$	0	00
3 - 1 4	$(Dy_2O_3)_{20}(ZrO_2)_{80}$	0	0
3 - 15	(Dy ₂ O ₃) ₁₀ (ZrO ₂) ₉₀	Δ	0
3 - 16	(Dy ₂ O ₃) ₉₅ (In ₂ O ₃) ₅	0	0
3 - 1 7	(Dy ₂ O ₃) ₅₀ (In ₂ O ₃) ₅₀	0	0
$3 - 1 \ 8$	$(D y_2 O_3)_{20} (I n_2 O_3)_{80}$	0	0
3 - 1 9	$(Dy_2O_3)_{10}(In_2O_3)_{90}$	Δ	0
$3 - 2 \ 0$	$(Dy_2O_3)_{90}(ZrO_2)_5(In_2O_3)_5$	0	
3 - 2 1	$(Dy_2O_3)_{50}(ZrO_2)_{25}(In_2O_3)_{25}$	0	0
3 - 2 2	$(D y_2 O_3)_{50} (Y_2 O_3)_5 (Z r O_2)_{20} (I n_2 O_3)_{25}$	0	0
$3 - 2 \ 3$	$(Dy_2O_3)_{20} (ZrO_2)_5 (In_2O_3)_{75}$	0	0
$3 - 2 \ 4$	$(Dy_2O_3)_{20} (ZrO_2)_{75} (In_2O_3)_{5}$	0	0
$3 - 2 \ 5$	$(Dy_2O_3)_{10}(ZrO_2)_{80}(In_2O_3)_{10}$	Δ	0
3 - 2 6	$(Dy_2O_3)_{10}(ZrO_2)_2(In_2O_3)_{88}$	Δ	0

[0251]

この結果、第4誘電体層 2 0 6 に(ZnS) $_{80}$ (SiO_2) $_{20}$ を用いたサンブル3 $_{-1}$ では、ZnSに含まれる硫黄が記録層に拡散してしまうため、 $_1X$ 、及び $_2X$ での繰り返し書き換え性能が悪いことがわかった。また、第4誘電体層 2 0 6 に D $_{y}$ $_{20}$ $_{3}$ を用いたサンブル3 $_{-2}$ 、(D $_{y}$ $_{20}$ $_{3}$) $_{95}$ (Y $_{20}$ $_{3}$) $_{5}$ を用いたサンブル3 $_{-3}$ 、(D $_{y}$ $_{20}$ $_{3}$) $_{95}$ (Z $_{10}$ $_{20}$ $_{30}$) $_{5}$ を用いたサンブル3 $_{-4}$ 、及び(D $_{y}$ $_{20}$ $_{30}$) $_{95}$ (Z $_{10}$ $_{20}$ $_{30}$) $_{5}$ を用いたサンブル3 $_{20}$ $_{20}$ $_{30}$ $_{20}$ $_{30}$ $_{20}$ $_{30}$ $_{20}$ $_{30}$ $_{20}$ $_{20}$ $_{30}$ $_{20}$ $_{20}$ $_{30}$ $_{20}$

[0252]

なお、 I n_2 O_3 の代わりに、 A 1_2 O_3 、 G a_2 O_3 、 M g O 、 Z n O 、 T a_2 O_5 、 T i O_2 、 C e O_2 、 S n O_2 、 T e O_2 、 N b a_2 O_5 、 C r a_2 O_3 、 B a_2 O_3 、 B a_3 A a_4 、 a_5 a_5 a_5 a_6 a_5 a_6 a_7 a_8 a_8 a_7 a_8 a_8

なくとも二つの化合物を用いても、同様の結果が得られた。

[0253]

(実施例5)

実施例5では、図4の情報記録媒体29を作製し、実施例1と同様の実験を行った。

[0254]

サンプルは以下のようにして製造した。まず、基板 26 として、レーザビーム 11 を導くための案内溝(深さ 40 n m、トラックピッチ 0.344 μ m)が形成されたポリカーボネート基板(直径 120 m m、厚さ 0.6 m m)を用意した。そして、そのポリカーボネート基板上に、第 1 誘電体層 102 として(2 n S)80(Si 02)20 層(厚さ:60 n m)、第 1 界面層 103 として(2 r 02)50(C r 203)50 層(厚さ:5 n m)、記録層 104 として 10 C 10 C 10 S 10 C 1

[0255]

その後、紫外線硬化性樹脂をダミー基板 28 上に塗布し、基板 26 の反射層 108 をダミー基板 28 に密着し回転させることによって均一な樹脂層(厚さ 20μ m)を形成したのち、紫外線を照射して樹脂を硬化させることによって、接着層 27 を介して基板 26 とダミー基板 28 を接着させた。最後に、記録層 104 の全面をレーザビームで結晶化させる初期化工程を行った。

[0256]

[0257]

この結果、実施例1と同様に、第2誘電体層106に(ZnS) $_{80}$ (SiO_2) $_{20}$ を用いた場合は、ZnSに含まれる硫黄が記録層に拡散してしまうため、1X、及び2Xでの繰り返し書き換え性能が悪いことがわかった。また、第2誘電体層106に Dy_2O_3 、及び(Dy_2O_3) $_{95}$ (Y_2O_3) $_{5}$ を用いた場合、1X、及び2Xでの記録感度と繰り返し書き換え性能がともに良好であることがわかった。また、第2誘電体層106に Dy_2O_3 、 Y_2O_3 、 ZrO_2 、 HfO_2 、 SiO_2 、及び In_2O_3 の混合物を用いた場合、 Dy_2O_3 が20mo1%以上、95mo1%以下の範囲にある場合、1X、及び2Xでの記録感度と繰り返し書き換え性能がともに良好であることがわかった。

[0258]

[0259]

(実施例6)

実施例6では、図6の情報記録媒体32を作製し、実施例2と同様の実験を行った。

[0260]

サンプルは以下のようにして製造した。まず、基板 2.6 として、レーザビーム 1.1 を導くための案内溝(深さ 4.0 n m、トラックピッチ 0.3 4.4 μ m)が形成されたポリカーボネート基板(直径 1.2.0 m m、厚さ 0.6 m m)を用意した。そして、そのポリカーボネート基板上に、第 3 誘電体層 2.0.2 として(2 n S) 8.0(8 i 0.0) 0.0 層(厚さ:

 $40\,n\,m$)、第 3 界面層 $20\,3$ として($Z\,r\,O_{\,2}$) $_{\,2\,5}$ ($S\,i\,O_{\,2}$) $_{\,2\,5}$ ($C\,r_{\,2}\,O_{\,3}$) $_{\,5\,0}$ 層(厚き: $5\,n\,m$)、第 1 記録層 $2\,0\,4$ として $G\,e_{\,2\,8}\,S\,n_{\,3}\,B\,i_{\,2}\,T\,e_{\,3\,4}$ 層(厚き: $6\,n\,m$)、第 4 界面層 $2\,0\,5$ として ($Z\,r\,O_{\,2}$) $_{\,2\,5}$ ($S\,i\,O_{\,2}$) $_{\,2\,5}$ ($G\,a_{\,2}\,O_{\,3}$) $_{\,5\,0}$ 層(厚き: $1\,0\,n\,m$)、第 $1\,$ 反射層 $2\,0\,8$ として $A\,g\,-P\,d\,-C\,u\,$ 層(厚き: $1\,0\,n\,m$)、透過率調整層 $2\,0\,9$ として $T\,i\,O_{\,2}$ 層(厚き: $2\,0\,n\,m$)を順次スパッタリング法によって 積層 した。

[0261]

[0262]

その後、紫外線硬化性樹脂を基板30の第1誘電体層302上に塗布し、基板26の透過率調整層209を基板30に密着し回転させることによって均一な樹脂層(厚さ20μm)を形成したのち、紫外線を照射して樹脂を硬化させることによって、接着層27を介して基板26と基板30を接着させた。最後に、第2記録層304、及び第1記録層204の全面をレーザビームで結晶化させる初期化工程を行った。

[0263]

このようにして得られたサンプルについて、実施例 2 と同様の方法によって、情報記録媒体 3 2 の第 2 情報層 2 5 の記録感度、及び繰り返し書き換え性能を測定した。このとき、レーザビーム 1 1 の波長は 4 0 5 n m、対物レンズ 3 4 の開口数 N A は 0 . 6 5 、測定時のサンプルの線速度は 8 . 6 m / s 、及び 1 7 . 2 m / s 、最短マーク長は 0 . 2 9 4 μ m とした。また、情報は グルーブに記録した。

[0264]

この結果、実施例 2 と同様に、第 2 誘電体層 3 0 6 に(Z n S) 8 0 (S i O $_2$) $_2$ 0 を用いた場合は、Z n S に含まれる硫黄が記録層に拡散してしまうため、1 X、及び 2 X での繰り返し書き換え性能が悪いことがわかった。また、第 2 誘電体層 3 0 6 に D $_2$ O $_3$ 、及び (D $_2$ O $_3$) $_3$ 5 (Y $_2$ O $_3$) 5 を用いた場合、 $_1$ X、及び $_2$ X での記録感度と繰り返し書き換え性能がともに良好であることがわかった。また、第 2 誘電体層 $_3$ O $_4$ に D $_2$ O $_3$ 、 Y $_2$ O $_3$ 、 $_4$ Z r O $_2$ 、 H f O $_2$ 、 $_4$ S i O $_4$ 、 及び $_4$ I n $_4$ O $_4$ の混合物を用いた場合、D $_4$ O $_3$ が $_4$ O $_4$ の $_4$ 以上、 $_4$ S m o $_4$ 以下の範囲にある場合、 $_4$ X、及び $_4$ X での記録感度と繰り返し書き換え性能がともに良好であることがわかった。

[0265]

なお、 In_2O_3 の代わりに、 Al_2O_3 、 Ga_2O_3 、 MgO、 ZnO、 Ta_2O_5 、 TiO_2 、 CeO_2 、 SnO_2 、 TeO_2 、 Nb_2O_5 、 Cr_2O_3 、 Bi_2O_3 、 Al_N 、 Cr-N、 Ge-N、 Si_3N_4 、 または SiCe 用いたところ、 同様の結果が得られた。 また、 In_2O_3 の代わりに、 Al_2O_3 、 Ga_2O_3 、 MgO、 ZnO、 Ta_2O_5 、 TiO_2 、 CeO_2 、 In_2O_3 、 SnO_2 、 TeO_2 、 Nb_2O_5 、 Cr_2O_3 、 Bi_2O_3 、 AlN、 Cr-N、 Ge-N、 Si_3N_4 、 及び SiC から選ばれる少なくとも二つの化合物を用いても、 同様の結果が得られた。

[0266]

(実施例7)

実施例5において、第2界面層105を配置したところ、情報記録媒体29の情報層16の繰り返し書き換之回数が向上した。同様に、実施例6において、第2界面層305を配置したところ、情報記録媒体32の第2情報層25の繰り返し書き換之回数が向上した。なお、第2界面層105、及び第2界面層305の材料は、Zr、Hf、Y及びSiか

ら選ばれる少なくとも一つの元素と、Ga、In及びCrから選ばれる少なくとも一つの元素とOを含むことが好ましく、この場合、 ZrO_2 、 HfO_2 、 Y_2O_3 及び SiO_2 から選ばれる少なくとも一つの酸化物と、 Ga_2O_3 、 In_2O_3 及び Cr_2O_3 から選ばれる少なくとも一つの酸化物を含むことが好ましいこともわかった。

[0267]

(実施例8)

実施例8では、図6の情報記録媒体32を作製し、実施例4と同様の実験を行った。

[0268]

サンプルは以下のようにして製造した。まず、基板 2.6 として、レーザビーム 1.1 を導くための案内溝(深さ 4.0 n m、トラックピッチ 0.3 4.4 μ m)が形成されたポリカーボネート基板(直径 1.2 0 m m、厚さ 0.6 m m)を用意した。そして、そのポリカーボネート基板上に、第 3 誘電体層 2.0 2 として(Z n S) $_{8.0}$ (Si 0 $_2$) $_2$ $_0$ 層(厚さ:4.0 n m)、第 3 界面層 2.0 3 として(Z r 0 $_2$) $_2$ $_5$ (Si 0 $_2$) $_2$ $_5$ (Cr $_2$ 0 $_3$) $_5$ $_0$ 層(厚さ: $_5$ n m)、第 $_1$ 記録層 $_2$ $_0$ $_4$ として $_5$ $_2$ $_3$ $_3$ Bi $_2$ T $_3$ $_4$ 層(厚さ: $_5$ n m)、第 $_4$ 界面層 $_2$ $_3$ $_5$ $_4$ 表記 (厚さ: $_5$ n m)、第 $_5$ $_4$ 表記 (厚さ: $_5$ n m)、第 $_5$ $_6$ 高電 (厚さ: $_5$ n m)を順次スパッタリング法によって積層した。

[0269]

また、基板30として、レーザビーム11を導くための案内溝(深さ40nm、トラックピッチ0.344 μ m)が形成されたポリカーボネート基板(直径120mm、厚さ0.58mm)を用意した。そして、そのポリカーボネート基板上に、第2反射層208としてAg-Pd-Cu層(厚さ:80nm)、第2誘電体層306としてDy203層(厚さ:15nm)、第2界面層305として(ZrO2)50(In2O3)50層(厚さ:5nm)、第2記録層304としてGe28Sn3Bi2Te34層(厚さ:10nm)、第1界面層303として(ZrO2)50(Cr2O3)50層(厚さ:5nm)、第1誘電体層302として(ZnS)80(SiO2)20層(厚さ:60nm)を順次スパッタリング法によって積層した。

[0270]

その後、紫外線硬化性樹脂を基板30の第1誘電体層302上に塗布し、基板26の透過率調整層209を基板30に密着し回転させることによって均一な樹脂層(厚さ20μm)を形成したのち、紫外線を照射して樹脂を硬化させることによって、接着層27を介して基板26と基板30を接着させた。最後に、第2記録層304、及び第1記録層204の全面をレーザビームで結晶化させる初期化工程を行った。

[0271]

このようにして得られたサンプルについて、実施例 4 と同様の方法によって、情報記録媒体 3 2 の第 1 情報層 2 3 の記録感度、及び繰り返し書き換え性能を測定した。このとき、レーザビーム 1 1 の波長は 4 0 5 n m、対物レンズ 3 4 の開口数 N A は 0 . 6 5 、測定時のサンプルの線速度は 8 . 6 m/s 、及び 1 7 . 2 m/s 、最短マーク長は 0 . 2 9 4 μ m とした。また、情報は グルーブに記録した。

[0272]

[0273]

なお、 In_2O_3 の代わりに、 $A1_2O_3$ 、 Ga_2O_3 、 MgO 、 ZnO 、 Ta_2O_5 、 TiO_2 、 CeO_2 、 SnO_2 、 TeO_2 、 Nb_2O_5 、 Cr_2O_3 、 Bi_2O_3 、 A1N、 Cr-N 、 Ge-N 、 Si_3N_4 、 または SiCe 用いたところ、 同様の結果が得られた。 また、 In_2O_3 の代わりに、 $A1_2O_3$ 、 Ga_2O_3 、 MgO 、 ZnO 、 Ta_2O_5 、 TiO_2 、 CeO_2 、 In_2O_3 、 SnO_2 、 TeO_2 、 Nb_2O_5 、 Cr_2O_3 、 Bi_2O_3 、 A1N 、 Cr-N 、 Ge-N 、 Si_3N_4 、 及び SiC から選ばれる少なくとも二つの化合物を用いても、 同様の結果が得られた。

[0274]

(実施例9)

[0275]

(実施例10)

[0276]

(実施例11)

実施例 1 0 では、図 8 の電気的情報記録媒体 4 4 を製造し、その電流の印加による相変化を確認した。

[0277]

基板39として、表面を窒化処理したSi基板を準備し、その上に下部電極40としてPtを面積6 μ m×6 μ mで厚さ0.1 μ m、第1誘電体層401としてDy203を4.5 μ m×5 μ mで厚さ0.01 μ m、第1記録層41としてGe22Bi2Te25を面積5 μ m×5 μ mで厚さ0.1 μ m、第2記録層42としてSb70Te25Ge5を面積5 μ m×5 μ mで厚さ0.1 μ m、第2誘電体層402としてDy203を4.5 μ m×5 μ mで厚さ0.01 μ m、上部電極43としてPtを面積5 μ m×5 μ mで厚さ0.1 μ m、上部電極43としてPtを面積5 μ m×5 μ mで厚さ0.1 μ mに順次スバッタリング法により積層した。第1誘電体層401、及び第2誘電体層402は絶縁体である。従って、第1記録層41、及び第2記録層42に電流を流すため、第1誘電体層401、及び第2誘電体層402を第1記録層41、及び第2記録層42、及び上部電極43が接する部分を設けている。

[0278]

その後、下部電極40、及び上部電極43にAuリード線をボンディングし、印加部45を介して電気的情報記録再生装置50を電気的情報記録媒体44に接続した。この電気的情報記録再生装置50により、下部電極40と上部電極43の間には、バルス電源48がスイッチ47を介して接続され、さらに、第1記録層41及び第2記録層42の相変化による抵抗値の変化が、下部電極40と上部電極43の間にスイッチ49を介して接続された抵抗測定器46によって検出される。

[0279]

ここで、第1記録層 4 1 の融点 $T_{m\,1}$ は 6 3 0 $\mathbb C$ 、結晶化温度 $T_{x\,1}$ は 1 7 0 $\mathbb C$ 、結晶化時間 $t_{x\,1}$ は 1 0 0 n s である。また、第 2 記録層 4 2 の融点 $T_{m\,2}$ は 5 5 0 $\mathbb C$ 、結晶化温度 $T_{x\,2}$ は 2 0 0 $\mathbb C$ 、結晶化時間 $t_{x\,2}$ は 5 0 n s である。さらに、第 1 記録層 4 1

が非晶質相での抵抗値 $\mathbf{r}_{a 1}$ は $\mathbf{5}$ 0 0 $\mathbf{\Omega}$ 、結晶相での抵抗値 $\mathbf{r}_{c 1}$ は $\mathbf{1}$ 0 $\mathbf{\Omega}$ であり、第 2 記録層 4 2 が非晶質相での抵抗値 $\mathbf{r}_{a 2}$ は $\mathbf{8}$ 0 0 $\mathbf{\Omega}$ 、結晶相での抵抗値 $\mathbf{r}_{c 2}$ は $\mathbf{2}$ 0 $\mathbf{\Omega}$ である。

[0280]

第1記録層41及び第2記録層42が共に非晶質相の状態1のとき、下部電極40と上部電極43の間に、図11の記録波形501において $I_{c1}=5$ mA、 $t_{c1}=1$ 50 n s の電流バルスを印加したところ、第1記録層41のみが非晶質相から結晶相に転移した(以下、状態2とする)。また、状態1のとき、下部電極40と上部電極43の間に、図11の記録波形502において $I_{c2}=1$ 0 mA、 $t_{c2}=1$ 00 n s の電流バルスを印加したところ、第2記録層42のみが非晶質相から結晶相に転移した(以下、状態3とする)。また、状態1のとき、下部電極40と上部電極43の間に、図11の記録波形503において $I_{c2}=1$ 0 mA、 $t_{c1}=1$ 50 n s の電流バルスを印加したところ、第1記録層41及び第2記録層42が共に非晶質相から結晶相に転移した(以下、状態4とする)。

[0281]

次に、第1記録層41及び第2記録層42が共に結晶相で低抵抗状態の状態4のとき、下部電極40と上部電極43の間に、図11の記録波形504において I_{a1} =20mA、 I_{c2} =10mA、 t_{c2} =100nsの電流バルスを印加したところ、第1記録層41のみが結晶相から非晶質相に転移した(状態3)。また、状態4のとき、下部電極40と上部電極43の間に、図11の記録波形505において I_{a2} =15mA、 t_{a2} =50nsの電流バルスを印加したところ、第2記録層42のみが結晶相から非晶質相に転移した(状態2)。また、状態4のとき、下部電極40と上部電極43の間に、図11の消去波形506において I_{a1} =20mA、 t_{a1} =50nsの電流バルスを印加したところ、第1記録層41及び第2記録層42が共に結晶相から非晶質相に転移した(状態1)

[0282]

[0283]

以上の結果から、図8の電気的相変化形情報記録媒体44では、第1記録層41及び第2記録層42のそれぞれを結晶相と非晶質相との間で電気的に可逆変化させることができ、4つの状態(状態1:第1記録層41と第2記録層42が共に非晶質相、状態2:第1記録層41が結晶相で第2記録層42が非晶質相、状態3:第1記録層41が非晶質相で第2記録層42が結晶相、状態4:第1記録層41と第2記録層42が共に結晶相)を実現できることがわかった。

[0284]

また、電気的相変化形情報記録媒体44の繰り返し書き換え回数を測定したところ、第1誘電体層401、及び第2誘電体層402が無い場合に比べ10倍以上向上できることがわかった。これは、第1誘電体層401、及び第2誘電体層402が、第1記録層41及び第2記録層42への下部電極40及び上部電極43からの物質移動を抑制しているた

めである。

【産業上の利用可能性】

[0285]

本発明にかかる情報記録媒体は、記録した情報を長時間保持できる性質(不揮発性)を有し、高密度の書き換之型及び追記型の光ディスク等として有用である。また電気的不揮発性メモリ等の用途にも応用できる。

【図面の簡単な説明】

[0286]

- 【図1】本発明の1層の情報層を備えた情報記録媒体について層構成の一例を示す一部断面図
- 【図2】本発明のN層の情報層を備えた情報記録媒体について層構成の一例を示す一部断面図
- 【図3】本発明の2層の情報層を備えた情報記録媒体について層構成の一例を示す一部断面図
- 【図4】本発明の1層の情報層を備えた情報記録媒体について層構成の一例を示す一部断面図
- 【図5】本発明のN層の情報層を備えた情報記録媒体について層構成の一例を示す一部断面図
- 【図 6 】本発明の 2 層の情報層を備えた情報記録媒体について層構成の一例を示す一部断面図
- 【図7】本発明の情報記録媒体の記録再生に用いられる記録再生装置について構成の 一部を模式的に示す図
- 【図8】本発明の情報記録媒体、及び電気的情報記録再生装置について構成の一部を模式的に示す図
- 【図9】本発明の大容量の電気的情報記録媒体について構成の一部を模式的に示す図
- 【図10】本発明の電気的情報記録媒体とその記録再生システムについて構成の一部 を模式的に示す図
- 【図11】本発明の電気的情報記録媒体の記録・消去パルス波形の一例を示す図
- 【図12】4.7GB/DVD-RAMについて層構成の一例を示す一部断面図

【符号の説明】

[0287]

- 1,14,26,30,39 基板
- 2,102,302,401 第1誘電体層
- 3,103,303 第1界面層
- 4,104 記録層
- 5,105,305 第2界面層
- 6,106,306,402 第2誘電体層
- 7 光吸収補正層
- 8,108 反射層
- 9,27 接着層
- 10,28 ダミー基板
- 11 レーザビーム
- 12,15,22,24,29,31,32,37 情報記録媒体
- 13 透明層
- 16,18,21 情報層
- 17,19,20 光学分離層
- 23 第1情報層
- 25 第2情報層
- 33 スピンドルモータ
- 3 4 対物レンズ

```
3 5
    半導体レーザ
3 6
    光学ヘッド
  記録再生装置
3 8
4 0
   下部電極
41,204 第1記録層
4 2 , 3 0 4 第 2 記録層
4 3
   上部電極
44,51
       電気的情報記録媒体
4 5
   印加部
46,59
      抵抗測定器
47,49
       スイッチ
48,58 パルス電源
5 0
    電気的情報記録再生装置
5 2
    ワード線
5 3
    ビット線
5 4
    メモリセル
5 5
    アドレス指定回路
5 6
    記憶装置
5 7
    外部回路
107,307 界面層
    第3誘電体層
2 0 2
2 0 3
     第3界面層
2 0 5
     第4界面層
2 0 6
     第4誘電体層
2 0 8
     第1反射層
    透過率調整層
```

501,502,503,504,505,508,509 記録波形

2 0 9

308 第2反射層

506,507 消去波形

【書類名】図面【図1】

【図4】

【図12】

【書類名】要約書

【要約】

【課題】情報を記録する際の記録感度が高く、且つ繰り返し書き換え性能に優れた情報記録媒体を提供する。

【解決手段】基板 1.4 上に、レーザビームの照射または電流の印加によって情報を記録及び/または再生し得る記録層 1.0.4 と、第 2 誘電体層 1.0.6 とを少なくとも備えた情報記録媒体 1.5 において、第 2 誘電体層 1.0.6 が M.1 (但し、M.1 はS.c. 、Y.c. La、G.d. Dy 及び Y.b から選ばれる少なくとも一つの元素)と O.E. を含む。また、第 2.E. 誘電体層 1.0.E. が、さらに M.2 (但し、M.2 は Z.r. 、H.f. 及び S.i. から選ばれる少なくとも一つの元素)を含む。また、第 2.E. 誘電体層 1.0.6 が、さらに M.3 (但し、M.3 は A.1 、G.a. 、M.g. Z.n. 、T.a. 、T.i. 、C.e. 、I.n. 、S.n. 、T.e. 、N.b. 、C.r. 、S.i. 、A.1. 、C.r. 、G.e. 、S.i. 、N.B. び C.r. から選ばれる少なくとも一つの元素)を含む。

【選択図】図1

000000582119900828

大阪府門真市大字門真 1 0 0 6 番地 松下電器産業株式会社