# FP1: Control of the Variable Length Pendulum

#### Michele Cipriano, Karim Ghonim, Khaled Wahba

Control Design and Analysis for Underactuated Robotics:

Variable Length Pendulum

Authors: Xin Xin, Yannian Liu

Elective in Robotics: Underactuated Robotics

Department of Computer Control and Manage

Department of Computer, Control and Management Engineering

Sapienza University of Rome

#### Introduction

- the main goal of this work is to study the Variable Length
   Pendulum and present controllers designed to make it achieve
   a desired swing motion given a desired energy and a desired
   length of the pendulum
- based on Control Design and Analysis for Underactuated Robotics: Variable Length Pendulum by Xin Xin, Yannian Liu
- · main points in this work
  - · motion equation
  - problem formulation
  - · controller design
  - motion analysis
  - · simulation results

### **Motion Equation**

- friction at pivot O and viscous friction of the rod are absent
- · the rod is massless
- the angle  $\theta(t)$  to be between the pendulum and the vertical axis
- the length of the pendulum l(t) starts from the origin O to the mass of the pendulum m
- f(t) is the force acting on the mass



### **Motion Equation**

$$x_G = l(t)\sin\theta(t)$$
  $y_G = -l(t)\cos\theta(t)$ 

kinetic energy defined as

$$T = \frac{1}{2}m(\dot{x}_G^2 + \dot{y}_G^2) = \frac{1}{2}m(l(t)\dot{\theta}(t))^2 + \frac{1}{2}m(\dot{l}(t))^2$$

potential energy as

$$P = mgy_G = -mgl(t)\cos\theta(t)$$

the Lagrangian equation of the VLP

$$L = T - P$$

Euler-Lagrangian operator

$$\frac{\partial L}{\partial q} - \frac{dL}{dt} \left( \frac{\partial L}{\partial \dot{q}} \right) = \tau$$

with  $q = [l, \theta]^T$  and  $\tau$  applied generalized forces

3

## **Motion Equation**

Euler-Lagrange equation

$$\ddot{\theta}(t) + \frac{2\dot{l}(t)\dot{\theta}(t)}{l(t)} + \frac{g\sin\theta(t)}{l(t)} = 0$$
  
$$\ddot{l}(t) - ml(t)\dot{\theta}^2(t) - mg\cos\theta(t) = f(t)$$

control input

$$u = \ddot{l}(t)$$

#### **Problem Formulation**

let m = 1, total mechanical energy

$$E_T = \frac{1}{2}\dot{l}^2(t) + \frac{1}{2}(l(t)\dot{\theta}(t))^2 - gl(t)\cos\theta(t)$$

desired trajectory of swing described by

$$E_r = \frac{1}{2} (l_r \dot{\theta}(t))^2 - g l_r \cos \theta(t)$$

with  $E_r$  and  $l_r$  desired energy and length of the VLP  $E_r = -gl_r\cos\theta_{max}, \theta_{max} \in (0, \pi]$ 

Trajectory tracking control problem

$$\lim_{t\to\infty} E_T = E_r \quad \lim_{t\to\infty} \dot{l} = 0 \quad \lim_{t\to\infty} l = l_r$$

5

# Controller Design: Total Energy Shaping

Lyapunov candidate with  $k_P > 0$ ,  $k_D > 0$ 

$$V_{c} = \frac{1}{2}(E_{T} - E_{r})^{2} + \frac{1}{2}k_{P}(l - l_{r})^{2} + \frac{1}{2}k_{D}\dot{l}^{2}$$

$$\dot{V}_{c} = \dot{l}((E_{T} - E_{r} + k_{D})u - (E_{T} - E_{r})(l\dot{\theta}^{2} + g\cos\theta) - k_{P}(l - l_{r}))$$

controller

$$u = \frac{(E_T - E_r)(l\dot{\theta}^2 + g\cos\theta) - k_P(l - l_r) - k_V\dot{l}}{E_T - E_r + k_D}$$

with  $k_V > 0$ , then

$$\dot{V}_c = -k_V \dot{l}^2 \le 0$$

which holds only if

$$E_T - E_r + k_D \neq 0 \quad \forall t \geq 0$$

consider the trajectory tracking control problem defined previously and  $l_r=3$ m,  $\theta_{\rm max}=2\pi/5$ , g=9.81m/s²

let 
$$k_D = 12$$
,  $k_P = 30$  and  $k_V = 12$ 

Time responses of V,  $E_T-E_r$ ,  $E_T-E_r+k_D$  and u with initial state  $(\theta(0),l(0),\dot{\theta}(0),\dot{l}(0))=(-\pi/6,2,0,0)$ 



Time reponses of  $(\theta, l, \dot{\theta}, \dot{l})$  with initial state  $(\theta(0), l(0), \dot{\theta}(0), \dot{l}(0)) = (-\pi/6, 2, 0, 0)$ 



The controller encountered a singular point for initial state  $(\theta(0), l(0), \dot{\theta}(0), \dot{l}(0)) = (-\pi/6, 2, 0, 4)$ 





# Controller Design: Partial Energy Shaping

 $E_P$  sum of kinetic energy of rotation and potential energy of VLP

$$E_P = \frac{1}{2}(l(t)\dot{\theta}(t))^2 - gl(t)\cos\theta(t)$$

since  $(E_T, l, \dot{l}) \equiv (E_r, l_r, 0)$  equivalent to  $(E_P, l, \dot{l}) \equiv (E_r, l_r, 0)$ Lyapunov candidate

$$V = \frac{1}{2}(E_P - E_r)^2 + \frac{1}{2}k_P(l - l_r)^2 + \frac{1}{2}k_D\dot{l}^2$$

$$\dot{V} = (-(E_P - E_r)(l\dot{\theta}^2 + g\cos\theta) + k_P(l - l_r)) + k_Du)\dot{l}$$

controller

$$u = \frac{(E_P - E_r)(l\dot{\theta}^2 + g\cos\theta) - k_P(l - l_r) - k_V\dot{l}}{k_D}$$

which is free of singular points

$$\dot{V} = -k_V \dot{l}^2 \le 0, \quad k_V > 0$$

# Controller Design: Partial Energy Shaping

consider

$$\Gamma_{c} = \left\{ (\theta, l, \dot{\theta}, \dot{l}) | V(\theta, l, \dot{\theta}, \dot{l}) \leq c \right\}, \quad c > 0$$

since  $\dot{V} \leq 0,$  any closed-loop solution starting in  $\Gamma_c$  remains in  $\Gamma_c$  for all t>0

let W be the largest invariant set in

$$S = \{ (\theta, l, \dot{\theta}, \dot{l}) \in \Gamma_c | \dot{V} = 0 \}$$

using LaSalle's invariant principle, every closed-loop solution starting in  $\Gamma_c$  approaches W as  $t \to \infty$ 

# Controller Design: Partial Energy Shaping

since  $\dot{V} = 0$  holds for all elements of W, then

$$V \equiv V^*$$
  $l \equiv l^*$ 

moreover, since V is a constant in W,  $E_P$  is also a constant in W

$$\lim_{t\to\infty} E_P = E^* \quad \lim_{t\to\infty} \dot{l} = 0 \quad \lim_{t\to\infty} l = l^*$$

thus, the largest invariant set W can be defined as

$$W = \left\{ (\theta, l, \dot{\theta}, \dot{l}) \middle| \frac{1}{2} (l^* \dot{\theta})^2 - g l^* \cos \theta \equiv E^*, l \equiv l^* \right\}$$

Trajectory Tracking Control Problem achieved iff  $V^* = 0$ , with

$$V^* = \frac{1}{2}(E^* - E_r)^2 + \frac{1}{2}k_P(l^* - l_r)^2$$

consider  $E_P \equiv E^*$ ,  $l \equiv l^*$ ,  $\dot{l} \equiv 0$  and  $u = \ddot{l} \equiv 0$ , then, from the controller based on partial energy shaping

$$(E^* - E_r)(l^*\dot{\theta}^2 + g\cos\theta) - k_P(l^* - l_r) \equiv 0$$

Case 1:  $E^* = E_r$ 

 $l^* = l_r$ , the largest invariant set W becomes

$$W_r = \left\{ (\theta, l, \dot{\theta}, \dot{l}) \middle| \frac{1}{2} (l_r \dot{\theta})^2 - g l_r \cos \theta \equiv E_r, l \equiv l_r \right\}$$

hence, as  $t \to \infty$ , the closed-loop solution  $(\theta(t), l(t), \dot{\theta}(t), \dot{l}(t))$  achieves the tracking control objective

Case 2  $E^* \neq E_r$ 

$$l^*\dot{\theta}^2 + g\cos\theta \equiv \frac{k_P(l^* - l_r)}{E^* - E_r}$$

since  $E_P \equiv E^*$ ,  $l \equiv l^*$ , from the definition of  $E_P$ 

$$l^*\dot{\theta}^2 - 2g\cos\theta \equiv \frac{2E^*}{l^*}$$

taking the difference between the two shows that  $\theta$  is a constant

$$\theta \equiv \theta^*$$

since  $E_r = -gl_r \cos \theta_{\text{max}}$ 

$$l^* = \frac{l_r(k_P + g^2 \cos \theta_{\text{max}} \cos \theta^*)}{k_P + g^2}$$

from the dynamics of the VLP  $\sin \theta^* = 0$ , which admits a solution only in  $\{0, \pi\}$ , hence, either  $(\theta^*, l^*) = (\pi, l_{ue})$  or  $(\theta^*, l^*) = (0, l_{de})$  where

$$l_{ue} = l^*|_{\theta^* = \pi} = \frac{l_r(k_P - g^2 \cos \theta_{\text{max}})}{k_P + g^2}$$
$$l_{de} = l^*|_{\theta^* = 0} = \frac{l_r(k_P + g^2 \cos \theta_{\text{max}})}{k_P + g^2}$$

to guarantee that  $l_{ue}$ ,  $l_{de} > 0$  assume

$$k_P > g^2 |\cos \theta_{\sf max}|$$

considering also that 0  $< \theta_{\rm max} \le \pi$ , it is easy to prove that

$$0 < l_{ue} \leq l_r$$

$$0 < l_{de} < l_{r}$$

let  $\Omega$  be the equilibrium point set (invariant set) defined as

$$\Omega = \{(\pi, l_{ue}, 0, 0), (0, l_{de}, 0, 0)\}$$

let the state variable vector be  $x = (\theta, l, \dot{\theta}, \dot{l})^T$ , considering the dynamics of the VLP and the controller based on partial energy shaping, the state space representation is

$$\begin{aligned} \dot{x}_1 &= x_3 \\ \dot{x}_2 &= x_4 \\ \dot{x}_3 &= -\frac{2x_3x_4 + g\sin x_1}{x_2} \\ \dot{x}_4 &= \frac{(E_P - E_r)(x_2x_3^2 + g\cos x_1) - k_P(x_2 - l_r) - k_Vx_4}{k_D} \end{aligned}$$

where 
$$E_P = x_2^2 x_3^2 / 2 - g x_2 \cos x_1$$

characteristic equation of the Jacobian evaluated at  $x_{ue} = (\pi, l_{ue}, 0, 0)^T$ 

$$det(sI - A_{ue}) = \left(s^2 + \frac{k_V}{k_D}s + \frac{g^2 + k_P}{k_D}\right)\left(s^2 - \frac{g}{l_{ue}}\right)$$

 $A_{ue}$  has three eigenvalues in open LHP and one in open RHP  $x_{ue}$  is unstable and hyperbolic

characteristic equation of the Jacobian evaluated at  $x_{de} = (0, l_{de}, 0, 0)^T$ 

$$det(sI - A_{de}) = \left(s^2 + \frac{k_V}{k_D}s + \frac{g^2 + k_P}{k_D}\right)\left(s^2 + \frac{g}{l_{ue}}\right)$$

 $A_{de}$  has two eigenvalues in open LHP and two on imaginary axis  $x_{de}$  is non-hyperbolic

consider the Lyapunov function V used for partial energy shaping

$$V = \frac{1}{2}(E_P - E_r)^2 + \frac{1}{2}k_P(l - l_r)^2 + \frac{1}{2}k_D\dot{l}^2$$

consider the following set

$$\Gamma_d = \left\{ (\theta, l, \dot{\theta}, \dot{l}) \mid V(\theta, l, \dot{\theta}, \dot{l}) < V(0, l_{de}, 0, 0) \right\}$$

let the values of V at  $x_{de}$  and at  $(\delta, l_{de}, 0, 0)$  respectively be

$$V_{de} = V(0, l_{de}, 0, 0) = \frac{1}{2} (gl_{de} + E_r)^2 + \frac{1}{2} k_P (l_{de} - l_r)^2$$

$$V_{\delta} = V(\delta, l_{de}, 0, 0) = \frac{1}{2} (gl_{de} \cos \delta + E_r)^2 + \frac{1}{2} k_P (l_{de} - l_r)^2$$

$$V_{\delta} - V_{de} = -\frac{g^2 l_{de} l_r (1 - \cos \delta) \Xi}{k_P + g^2}$$

$$\Xi = k_P (1 - \cos \theta_{\text{max}}) - (k_P + g^2 \cos \theta_{\text{max}}) \sin^2 \left(\frac{\delta}{2}\right)$$
using  $k_P > -g^2 \cos \theta_{\text{max}}$  and  $|\sin \delta| < |\delta|$  for  $\delta \neq 0$ 

$$\Xi > k_P (1 - \cos \theta_{\text{max}}) - \frac{(k_P + g^2 \cos \theta_{\text{max}}) \delta^2}{4}$$

with  $\delta \neq 0$ 

23

if  $\delta$  satisfies

$$0 < |\delta| \le \delta_m = 2\sqrt{\frac{k_P(1-\cos\theta_{\max})}{k_P + g^2\cos\theta_{\max}}}$$

then  $\Xi > 0$ , which, using  $V_{\delta} - V_{de}$ , implies

$$V_{\delta} < V_{de}, \quad (\delta, l_{de}, 0, 0) \in \Gamma_{d}$$

which itself implies that  $\Gamma_d \neq \emptyset$ 

 $x_{de}$  is **unstable** in the Lyapunov sense

every closed-loop solution under the closed-loop system consisted of the dynamic equation of the VLP and the controller based on partial energy shaping, supposing

$$0 < \theta_{\rm max} \leq \pi$$
 
$$k_P > g^2 |\cos\theta_{\rm max}|, \quad k_D > 0, \quad k_V > 0$$

approaches  $W = W_r \cup \Omega$ 

consider the trajectory tracking control problem defined previously and  $l_r = 3\text{m}$ ,  $\theta_{\text{max}} = 2\pi/5$ ,  $g = 9.81\text{m/s}^2$ 

the condition on  $k_P$  is

$$k_P > g^2 |\cos\theta_{\text{max}}| = 29.74$$

which yields  $l_{de} = 1.42$ m

let 
$$k_D = 12$$
,  $k_P = 30$  and  $k_V = 12$ 

Time responses of V,  $E_P-E_r$  and u with initial state  $(\theta(0),l(0),\dot{\theta}(0),\dot{l}(0))=(-\pi/6,2,0,0)$ 



Time responses of  $(\theta, l, \dot{\theta}, \dot{l})$  with initial state  $(\theta(0), l(0), \dot{\theta}(0), \dot{l}(0)) = (-\pi/6, 2, 0, 0)$ 



Time responses of V,  $E_P - E_r$  and u with initial state  $(\theta(0), l(0), \dot{\theta}(0), \dot{l}(0)) = (-\pi/3, l_{de}, 0, 0)$ , which satisfied  $V_{\delta} < V_{de}$ 



Time responses of  $(\theta, l, \dot{\theta}, \dot{l})$  with initial state  $(-\pi/3, l_{de}, 0, 0)$ 





#### References



X. Xin and Y. Liu, Control Design and Analysis for Underactuated Robotic Systems.

Springer Science & Business Media, 2014.