Aufgabe 1.

- 1. Zeigen Sie, dass für alle $n,m\geq 1$ der Körper $\mathbb{Q}(\sqrt[n]{2})$ genau dann ein Unterkörper von $\mathbb{Q}(\sqrt[n]{2})$ ist, wenn $n\mid m$ gilt.
- 2. Es sei p prim und L/K eine Erweiterung vom Grad [L:K]=p. Zeigen Sie, dass die Erweiterung L/K einfach ist, und bestimmen Sie alle $a \in L$ mit L = K(a).
- 3. Es sei K(a)/K eine einfache Erweiterung mit ungeraden Grad [K(a):K]. Zeigen Sie, dass $K(a) = K(a^2)$ gilt.
- 4. Es sei L/K eine Körpererweiterung vom Grad $[L:K]=2^n$ und $f\in K[t]$ ein kubisches Polynom, das eine Nullstelle in L hat. Zeigen Sie, dass f bereits eine Nullstelle in K hat.

Aufgabe 2.

Zeigen Sie, dass es für alle $n \geq 1$ ein Element $a \in \overline{\mathbb{Q}}$ mit $[\mathbb{Q}(a) : \mathbb{Q}] = n$ gibt. Folgern Sie, dass $[\overline{\mathbb{Q}} : \mathbb{Q}] = \infty$ gilt.

Aufgabe 3.

- 1. Bestimmen Sie das Minimalpolynom von $\sqrt[3]{2}$ über \mathbb{Q} .
- 2. Bestimmen Sie das Minimalpolynom von $\zeta_3 := e^{2\pi i/3}$ über \mathbb{Q} .
- 3. Bestimmen Sie den Grad der Erweiterung $\mathbb{Q}(\sqrt[3]{2},\zeta_3)/\mathbb{Q}$.

Aufgabe 4.

Es sei $a := \sqrt[4]{2}$.

- 1. Zeigen Sie, dass $[\mathbb{Q}(a) : \mathbb{Q}] = 4$ gilt.
- 2. Zeigen Sie, dass es genau zwei Körperisomorphismen $\mathbb{Q}(a) \to \mathbb{Q}(a)$ gibt.
- 3. Entscheiden Sie, ob die Erweiterung $\mathbb{Q}(a)/\mathbb{Q}$ normal ist.

Aufgabe 5.

Es sei L/K eine algebraische Körpererweiterung, so dass jedes Polynom $f \in K[t]$ über L in Linearfaktoren zerfällt. Zeigen Sie, dass L bereits ein algebraischer Abschluss von K ist.

Aufgabe 6.

- 1. Es sei L/K eine Körpererweiterung vom Grad [L:K]=2. Zeigen Sie, dass L der Zerfällungskörper eines quadratischen Polynoms $f\in K[t]$ ist, und die Erweiterung L/K somit normal ist.
- 2. Folgern Sie, dass die Erweiterungen $\mathbb{Q}(\sqrt[4]{3})/\mathbb{Q}(\sqrt{3})$ und $\mathbb{Q}(\sqrt{3})/\mathbb{Q}$ normal sind.
- 3. Zeigen Sie, dass die Erweiterung $\mathbb{Q}(\sqrt[4]{3})/\mathbb{Q}$ allerdings nicht normal ist.

Lösungen

Lösung 5.

Da die Körpererweiterung L/K nach Annahme algebraisch ist, genügt es zu zeigen, dass L algebraisch abgeschlossen ist. Hierfür zeigen wir, dass für jede algebraische Körpererweiterung L'/L bereits L'=L gilt:

Es sei $a \in L'$. Dann sind L(a)/L und L/K algebraisch, und somit ist auch L(a)/K algebraisch. Nach Annahme zerfällt das Minimalpolynom $m_a \in K[t]$ bereits über L in Linearfaktoren; insbesondere muss deshalb die Nullstelle a von m_a bereits in L liegen.

Lösung 6.

1. Es sei $a \in L$ mit $a \notin K$. Dann gilt

$$2 = [L:K] = [L:K(a)][K(a):K]$$

mit [K(a):K] > 1; es gilt deshalb [L:K(a)] = 1 und [K(a):K] = 2, und somit insbesondere L = K(a). (Wir haben hier den Beweis von Aufgabe 1, 2. wiederholt.) Das Minimalpolynom $m_a \in K[t]$ ist quadratisch, da

$$\deg(m_a) = [K(a) : K] = [L : K] = 2$$

gilt. Da das quadratische Polynom m_a eine Nullstelle in L hat, zerfällt m_a über L bereits in Linearfaktoren. Zusammen mit L=K(a) folgt, dass L ein Zerfällungskörper von m_a ist.

- 2. Für alle $n \geq 1$ ist $t^n 3 \in \mathbb{Q}[t]$ das Minimalpolynom von $\sqrt[n]{3}$ über \mathbb{Q} , wobei sich die Irreduziblität aus dem Eisenstein-Kriteraum ergibt. Es gilt also stets $[\mathbb{Q}(\sqrt[n]{3}):\mathbb{Q}] = n$.
 - Es gilt somit $[\mathbb{Q}(\sqrt{3}) : \mathbb{Q}] = 2$.
 - Es gilt $[\mathbb{Q}(\sqrt[4]{3}):\mathbb{Q}]=4$, und aus der Multiplikativität des Grades ergibt sich

$$4 = [\mathbb{Q}(\sqrt[4]{3}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt[4]{3}) : \mathbb{Q}(\sqrt{3})][\mathbb{Q}(\sqrt{3}) : \mathbb{Q}] = 2[\mathbb{Q}(\sqrt[4]{3}) : \mathbb{Q}(\sqrt{3})],$$

und somit $[\mathbb{Q}(\sqrt[4]{3}) : \mathbb{Q}(\sqrt{3})] = 2$.

Nach dem vorherigen Aufgabenteil sind $[\mathbb{Q}(\sqrt[4]{3}):\mathbb{Q}(\sqrt{3})]$ und $[\mathbb{Q}(\sqrt{3}):\mathbb{Q}]$ somit normal

3. Das irreduzible Polynom $f := t^4 - 3 \in \mathbb{Q}[t]$ besitzt in $\mathbb{Q}(\sqrt[4]{3})$ genau zwei Nullstellen, nämlich $\sqrt[4]{3}$ und $-\sqrt[4]{3}$. Also besitzt f zwar eine Nullstelle in $\mathbb{Q}(\sqrt[4]{3})$, zerfällt dort aber noch nicht. Deshalb ist $\mathbb{Q}(\sqrt[4]{3})/\mathbb{Q}$ nicht normal.