Topic 2: Exercise 1

Daniel Alonso

November 25th, 2020

Importing libraries

```
library(dplyr)
```

Importing data as described by exercise

```
d <- read.csv("../../datasets/Colleges.csv")</pre>
```

Replacing binary variable Private with 1 and 0

```
d$Private <- ifelse(d$Private == "Yes", 1, 0)
```

Selecting columns

```
data <- d %>% dplyr::select('Private','Apps','Accept','Enroll','F.Undergrad')
```

Calculating covariances

```
cov_matrix <- cov(data)
cov_matrix</pre>
```

```
##
                                                              Enroll F.Undergrad
                    Private
                                     Apps
                                                 Accept
## Private
                  0.1986559
                                -745.3552
                                              -519.2042
                                                           -235.1942
                                                                        -1330.764
## Apps
               -745.3552439 14978459.5301 8949859.8119 3045255.9876 15289702.474
## Accept
               -519.2042169 8949859.8119 6007959.6988 2076267.7627 10393582.435
## Enroll
               -235.1942393 3045255.9876 2076267.7627 863368.3923 4347529.884
## F.Undergrad -1330.7637175 15289702.4742 10393582.4355 4347529.8841 23526579.326
```

Calculating correlations

```
corr_matrix <- cov2cor(cov_matrix)</pre>
corr_matrix
##
                  Private
                                         Accept
                                                    Enroll F. Undergrad
                                Apps
## Private
                1.0000000 -0.4320947 -0.4752520 -0.5679078 -0.6155605
## Apps
               -0.4320947 1.0000000 0.9434506 0.8468221
                                                             0.8144906
               -0.4752520 0.9434506 1.0000000
## Accept
                                                 0.9116367
                                                             0.8742233
               -0.5679078 0.8468221 0.9116367
## Enroll
                                                1.0000000
                                                             0.9646397
## F.Undergrad -0.6155605 0.8144906 0.8742233 0.9646397
                                                             1.0000000
```

Experimenting a little bit with the private variable

Let's try changing the Yes to 0 and the No to 1 and checking the covariances and correlations

```
d <- read.csv("../../datasets/Colleges.csv")
d$Private <- ifelse(d$Private == "Yes", 0, 1)
data <- d %>% dplyr::select('Private','Apps','Accept','Enroll','F.Undergrad')
cov_matrix <- cov(data)
cov_matrix</pre>
```

```
##
                    Private
                                                Accept
                                                             Enroll F.Undergrad
                                    Apps
## Private
                  0.1986559 7.453552e+02 5.192042e+02
                                                           235.1942
                                                                        1330.764
## Apps
                745.3552439 1.497846e+07 8.949860e+06 3045255.9876 15289702.474
                519.2042169 8.949860e+06 6.007960e+06 2076267.7627 10393582.435
## Accept
                235.1942393 3.045256e+06 2.076268e+06 863368.3923 4347529.884
## Enroll
## F.Undergrad 1330.7637175 1.528970e+07 1.039358e+07 4347529.8841 23526579.326
corr_matrix <- cov2cor(cov_matrix)</pre>
corr_matrix
```

```
##
                Private
                              Apps
                                      Accept
                                               Enroll F.Undergrad
              1.0000000 0.4320947 0.4752520 0.5679078
                                                         0.6155605
## Private
              0.4320947 1.0000000 0.9434506 0.8468221
                                                         0.8144906
## Apps
              0.4752520 0.9434506 1.0000000 0.9116367
## Accept
                                                        0.8742233
              0.5679078 0.8468221 0.9116367 1.0000000
## Enroll
                                                        0.9646397
## F.Undergrad 0.6155605 0.8144906 0.8742233 0.9646397
                                                         1.0000000
```

We get the same numbers with reversed signs.

Let's try having the same amount of 1s and 0s and see how correlation and covariance change:

```
data$Private <- c(rep(0,length(data$Private)/2 + 1), rep(1,length(data$Private)/2))
cov_matrix <- cov(data)</pre>
cov_matrix
##
                   Private
                                                            Enroll F.Undergrad
                                    Apps
                                               Accept
## Private
                 0.2503218 3.387465e+02 2.189999e+02 8.109728e+01 4.358092e+02
## Apps
               338.7465453 1.497846e+07 8.949860e+06 3.045256e+06 1.528970e+07
               218.9998740 8.949860e+06 6.007960e+06 2.076268e+06 1.039358e+07
## Accept
## Enroll
                81.0972764 3.045256e+06 2.076268e+06 8.633684e+05 4.347530e+06
## F.Undergrad 435.8092186 1.528970e+07 1.039358e+07 4.347530e+06 2.352658e+07
corr_matrix <- cov2cor(cov_matrix)</pre>
corr_matrix
##
                                                 Enroll F.Undergrad
                 Private
                              Apps
                                       Accept
## Private
               1.0000000 0.1749412 0.1785793 0.1744452
                                                          0.1795840
## Apps
               0.1749412 1.0000000 0.9434506 0.8468221
                                                          0.8144906
## Accept
               0.1785793 0.9434506 1.0000000 0.9116367
                                                          0.8742233
               0.1744452 0.8468221 0.9116367 1.0000000
## Enroll
                                                          0.9646397
## F.Undergrad 0.1795840 0.8144906 0.8742233 0.9646397
                                                           1.0000000
```

What information does the sample covariance provide?

We know that because the Private variable (binary variable) has only 2 possible values, its covariance with other variables is always going to be relatively small and will not provide much information.

What information does the sample correlation provide?

Scatter plot of our quantitative variables and the Private binary variable

```
model = lm(Private ~ Apps, data=d)
summary(model)
##
## Call:
## lm(formula = Private ~ Apps, data = d)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -1.5167 -0.2087 -0.1613 0.1581 0.8649
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.235e-01 1.826e-02
                                     6.76 2.71e-11 ***
              4.976e-05 3.731e-06
                                   13.34 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4022 on 775 degrees of freedom
## Multiple R-squared: 0.1867, Adjusted R-squared: 0.1857
## F-statistic: 177.9 on 1 and 775 DF, p-value: < 2.2e-16
```