

Communication Theory (5ETB0) Module 2.1

Alex Alvarado
a.alvarado@tue.nl

Information and Communication Theory Lab Signal Processing Systems Group Department of Electrical Engineering Eindhoven University of Technology, The Netherlands

www.tue.nl/ictlab/

Presentation Outline

Part I Signals and Systems Review

Part II Notation Convention

Part III Discrete Random Variables

Signals and Systems Review: Fourier Transform (Appendix A)

The Fourier Transform

The Fourier Transform pair is defined as

$$\mathcal{F}\{x(t)\} = X(f) \triangleq \int_{-\infty}^{\infty} x(t) e^{-j2\pi f t} dt \iff x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi f t} df,$$

or alternatively,

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \Longleftrightarrow x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega.$$

Fourier Transform Properties

- Linearity, i.e., $\mathcal{F}\{ax_1(t)+bx_2(t)\}=aX_1(f)+bX_2(f)$
- Transform of a convolution: $\mathcal{F}\{x_1(t)*x_2(t)\}=X_1(f)\cdot X_2(f)$
- \blacksquare If $x(t) \in \mathbb{R}$, its Fourier transform satisfies $X(f) = X^*(-f)$
- If $x(t) \in \mathbb{R}$ and even (i.e., symmetric respect to zero: x(-t) = x(t)) its Fourier transform is real $(X(f) \in \mathbb{R})$ and even (X(f) = X(-f))

Signals and Systems Review: LTI System (Appendix C)

An LTI system

- lacktriangle The impulse response of the LTI system is given by h(t)
- In the time domain, y(t) = x(t) * h(t)
- In the frequency domain, Y(f) = X(f)H(f)

An LTI system. The output y(t) is the convolution between the input x(t) and the impulse response h(t).

Signals and Systems Review: Parseval Relation (Appendix A)

Parseval's Theorem

Parseval's Relation states that for two real signals $g_1(t)$ and $g_2(t)$

$$\int_{-\infty}^{\infty} g_1(t)g_2(t) \, dt = \int_{-\infty}^{\infty} G_1(f)G_2^*(f) \, df,$$

which for the particular case of $g_1(t)=g_2(t)=g(t)$ translates into

$$\int_{-\infty}^{\infty} g^2(t)\,dt = \int_{-\infty}^{\infty} |G(f)|^2\,d\!f,$$

where

$$E_g \triangleq \int_{-\infty}^{\infty} g^2(t) dt$$

is the energy of the signal.

Presentation Outline

Part I Signals and Systems Review

Part II Notation Convention

Part III Discrete Random Variables

Mathematical Notation (1/3)

lacksquare Sets are denoted by calligraphic letters: ${\cal M}$

lacksquare The *cardinality* of a set is denoted by $|\mathcal{M}|$

lacksquare A *definition* is denoted by $\stackrel{\Delta}{=}$

Mathematical Notation (2/3)

lacksquare A set definition is therefore: $\mathcal{M} \stackrel{\Delta}{=} \{1,2,\cdots,|\mathcal{M}|\}$

lacktriangle Exceptions include the sets of real numbers $\Bbb R$ and complex numbers $\Bbb C$

lacksquare Cartesian product of sets: $\mathcal{M}^2 = \mathcal{M} \times \mathcal{M}$

 \blacksquare Notation $\mathcal{M}\subset\mathbb{R}$ means \mathcal{M} is a subset of \mathbb{R}

Mathematical Notation (3/3)

lacktriangle Estimated variables are denoted using a hat: \hat{m}

lacksquare Scalars are denoted by small letters: x

lacktriangle Vectors are denoted using underlined letters: \underline{x}

 \blacksquare The function $\min_{m\in\mathcal{M}}\{\cdot\}$ is not the same as $\operatorname{argmin}_{m\in\mathcal{M}}\{\cdot\}$

Presentation Outline

Part I Signals and Systems Review

Part II Notation Convention

Part III Discrete Random Variables

Discrete Random Variables (1/4)

lacktriangle Random Variables (RVs) are denoted by capital letters and their realizations by small letters: X is not the same as x

 $\Pr\{X=x\} \ge 0$ denotes the probability that the r.v. X takes the value x

■ The support of the r.v. X will be denoted by a set: $\mathcal{X} = \{x_1, x_2, \dots, x_{|\mathcal{X}|}\}$

Discrete Random Variables (2/4)

■ The probability mass function (PMF) of a random variable is denoted by $Pr\{X = x\}$ for all $x \in \mathcal{X}$.

PMFs satisfy

$$\sum_{x \in X} \Pr\{X = x\} = 1$$

Discrete Random Variables (3/4)

■ Joint PMFs are denoted by $Pr\{X = x, Y = y\}$

lacksquare Conditional PMFs are denoted by $\Pr\{Y=y|X=x\}$.

Conditional PMFs satisfy

$$\begin{split} \Pr\{Y=y,X=x\} &= \Pr\{Y=y|X=x\} \cdot \Pr\{X=x\} \\ &= \Pr\{X=x|Y=y\} \cdot \Pr\{Y=y\} \end{split}$$

Discrete Random Variables (4/4)

Bayes' Rule:

$$\Pr\{Y = y | X = x\} = \frac{\Pr\{X = x | Y = y\} \cdot \Pr\{Y = y\}}{\Pr\{X = x\}}$$

■ Law of total probability:

$$\begin{split} \Pr\{Y = y\} &= \sum_{x \in \mathcal{X}} \Pr\{X = x, Y = y\} \\ &= \sum_{x \in \mathcal{X}} \Pr\{Y = y | X = x\} \cdot \Pr\{X = x\} \end{split}$$

Independence

$$\Pr\{Y=y|X=x\}=\Pr\{Y=y\}$$

Presentation Outline

Part I Signals and Systems Review

Part II Notation Convention

Part III Discrete Random Variables

Continuous Random Variables (1/2)

- \blacksquare Just like for discrete RVs, continuous RVs are denoted by capital letters and their realizations by small letters: R and r
- lacktriangle The support of the random variable is denoted by a calligraphic letter \mathcal{R} (\mathbb{R} for real numbers)
- lacksquare The probability density function (PDF) of a random variable is $p_R(r)$ for all $r\in\mathcal{R}$
- $p_R(r)dr$ denotes the probability that the r.v. R takes a value between r and r+dr

Continuous Random Variables (2/2)

PDFs satisfy

$$\int_{r \in \mathcal{R}} p_R(r) dr = 1$$

lacksquare Joint PDFs are denoted by $p_{R,S}(r,s)$ and also satisfy

$$\int_{r \in \mathcal{R}} \int_{s \in \mathcal{S}} p_{R,S}(r,s) ds dr = 1$$

lacksquare Conditional PDFs are $p_R(r|X=x)$. Law of total probability is

$$p_R(r) = \sum_{r \in \mathcal{X}} \Pr\{X = x\} \cdot p_R(r|X = x)$$

Summary Module 2.1

Take Home Messages

- Often used in the course:
 - Fourier Transforms
 - Convolutions
- LTI Systems
- Notation Convention
- Discrete and Continuous Random Variables

Communication Theory (5ETB0) Module 2.1

Alex Alvarado a.alvarado@tue.nl

Information and Communication Theory Lab Signal Processing Systems Group Department of Electrical Engineering Eindhoven University of Technology, The Netherlands

www.tue.nl/ictlab/