8.3 Unity Power Factor Operation of DFIG

• 1st we shall derive steady-state equivalent impedance for rotor-side converter(RSC).

Based on steady-state equivalent impedance for rotor-side converter(RSC):

• Analysis of DFIG based WECS under unity power factor operation will be performed.

• Torque-slip characteristics of DFIG with rotor-side converter taken into account shall also be developed & analysed.

In order to investigate steady-state performance of DFIG based WECS rotor-side converter(RSC) can be modelled by an equivalent impedance(Zeq/s).

• Fig. shows a steady-state equivalent circuit of DFIG WECS.

This equivalent circuit is developed by adding converter equivalent impedance Zeq/S to SCIG steady-state model

SCIG steady-state model

DFIG steady-state model

When Angular slip frequency=Stator frequency? i.e

$$\omega_{sl} = \omega_s$$

Equivalent impedance of conv $\overline{Z}_{eq} = R_{eq} + jX_{eq} = R_{eq} + j\omega_{s}L_{eq}$

where ωsl is angular slip frequency & Leq is equivalent inductance of RSC.

• Note: Frequency of rotor current in actual rotor winding flowing into converter is ω_{sl} (angular slip frequency), not stator frequency ω_{s} .

$$\omega_{sl} = s\omega_s$$

How to integrate converter equivalent impedance \overline{Z}_{eq} into steady-state model with stator frequency ω_s ?

Ans. Equivalent impedance \bar{Z}_{eq} should be divided by slip s.

Equivalent impedance \overline{Z}_{eq} referred to stator side is then given by:

$$\overline{Z}_{eq} = R_{eq} + jX_{eq} = R_{eq} + j\omega_{sl}L_{eq}$$

where ω_{sl} is angular slip frequency given by:

$$\omega_{sl} = s\omega_s$$

$$\overline{Z}_{eq}/s = R_{eq}/s + j\omega_{sl}L_{eq}/s = R_{eq}/s + j\omega_{s}L_{eq} \qquad \omega_{s} = \frac{\omega_{sl}}{s}$$

Air-gap power of generator

Assuming that stator operates at a unity power factor, air-gap power of generator?

Air-gap power of generator

Assuming that stator operates at a unity power factor, air-gap power of generator:

$$P_{ag} = 3(V_s - I_s R_s)I_s$$

From induction machine theory, air-gap power can also be calculated by

$$P_{ag}=rac{\omega_s T_m}{P}$$

where T_m is mechanical torque & P is the number of pole pairs of the generator.

By equating following equations:

$$P_{ag} = 3(V_s - I_s R_s)I_s \qquad P_{ag} = \frac{\omega_s T_m}{P}$$

$$\frac{\omega_s T_m}{P} = 3(V_s - I_s R_s)I_s$$

from which

$$R_s I_s^2 - V_s I_s + \frac{\omega_s T_m}{3P} = 0$$

Obtain value of Is

$$R_s I_s^2 - V_s I_s + \frac{\omega_s T_m}{3P} = 0$$

Applying quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

$$R_s I_s^2 - V_s I_s + \frac{\omega_s T_m}{3P} = 0$$
 $ax^2 + bx + c = 0$

$$I_s = \frac{V_s \pm \sqrt{V_s^2 - \frac{4R_s \omega_s T_m}{3P}}}{2R_s}$$

How to find rotor voltage V_r & rotor $\overline{I_r}$ current

$$I_s = \frac{V_s \pm \sqrt{V_s^2 - \frac{4R_s \omega_s T_m}{3P}}}{2R_s}$$

With magnitude of stator current I_s calculated, we can use equivalent circuit of Fig. to find rotor voltage \overline{V}_r & rotor current \overline{I}_r .

Voltage across magnetizing branch \bar{V}_m ?

Voltage across magnetizing branch \bar{V}_m

$$\overline{V}_m = \overline{V}_s - \overline{I}_s (R_s + j\omega_s L_{ls})$$

where stator voltage & current are given by

$$\overline{V}_s = V_s \angle 0^\circ$$
 and $\overline{I}_s = I_s \angle 180^\circ$

Q. What information we can get if stator voltage & current are 180° out of phase? $\bar{V}_s = V_s \angle 0^\circ$ and $\bar{I}_s = I_s \angle 180^\circ$

Answer. If stator voltage & current are 180° out of phase then:

1. DFIG is in generating mode &

2. Stator power factor (PFs) is unity[Cos(180°)=-1].

Write equation for Magnetizing current Im?

Magnetizing current by

can be determined

$$\overline{I}_m = \frac{V_m}{j\omega_s L_m}$$

Rotor current I_r

$$\overline{I}_r = \overline{I}_s - \overline{I}_m$$

$$I_s = \frac{V_s \pm \sqrt{V_s^2 - \frac{4R_s \omega_s T_m}{3P}}}{2R_s}$$

$$\overline{I}_m = \frac{\overline{V}_m}{j\omega_s L_m}$$

Rotor voltage Vr can be calculated by?

Rotor voltage Vr can be calculated by:

from which

$$\overline{V}_r = s \overline{V}_m - \overline{I}_r (R_r + js \omega_s L_{lr})$$

Rotor voltage & current relate to equivalent resistance R_{eq} equivalent X_{eq} by

$$\frac{\overline{\overline{V}_r / s}}{\overline{\overline{I}_r}} = R_{eq} / s + jX_{eq} / s$$

$$R_{eq} + jX_{eq} = \frac{V_r}{\overline{I}_r}$$

Fig. shows rotor current(Ir), rotor voltage(Vr) & equivalent impedance(Zeq) of rotor-side converter when slip of DFIG varies from +0.3 to -0.3.

Rotor current Ir increases whether slip is +ve or -ve

Rotor voltage Vr decreases when slip varies from 0.3 to 0, (at s = 0, Vr = 0). Vr increases with a -ve slip.

Phase angle of rotor voltage, rotor current, & rotor power factor angle ϕ_r ($\phi r = \angle V r - \angle I r$) are also shown.

When DFIG operates in super-synchronous mode, equivalent resistance R_{eq} of RSC is +ve, indicating that an active power is delivered from rotor to converter.

When generator is in sub-synchronous mode, *Req* is -ve, signifying that converter transfers an active power to rotor.

Case Study 8-1 Equivalent Impedance of Rotor-Side Converter

- •Consider a 1.5MW/690V/50Hz/1750rpm DFIG wind energy system.
- Parameters of generator are given in Table B-5 of Appendix B.

Generator Type	DFIG, 1.5MW/690V/50Hz	
Rated Mechanical Power	1.5 MW	1.0 pu
Rated Stator Line-to-line Voltage	690 V (rms)	
Rated Stator Phase Voltage	398.4 V (rms)	1.0 pu
Rated Rotor Phase Voltage	67.97 V (rms)	0.1706 pu
Rated Stator Current	1068.2 A (rms)	0.8511 pu
Rated Rotor Current	1125.6 A (rms)	0.8968 pu
Rated Stator Frequency	50 Hz	1.0 pu
Rated Rotor Speed	1750 rpm	1.0pu
Nominal Rotor Speed Range	1200–1750 rpm	0.686-1.0pu
Rated Slip	-0.1667	
Number of Pole Pairs	2	
Rated Mechanical Torque	8.185 kN.m	1.0 pu
Stator Winding Resistance R_s	$2.65 \text{ m}\Omega$	0.0084 pu
Rotor Winding Resistance R_r	$2.63~\mathrm{m}\Omega$	0.0083 pu
Stator Leakage Inductance L_{ls}	0.1687 mH	0.167 pu
Rotor Leakage Inductance L_{lr}	0.1337 mH	0.1323 pu
Magnetizing Inductance L_m	5.4749 mH	5.419 pu
Base Current $I_B = 1.5 \text{MW} / (\sqrt{3} \times 690 \text{V})$	1255.1 A (rms)	1.0 pu
Base Flux Linkage Λ_B	1.2681 Wb (rms)	1.0 pu
Base Impedance Z_B	0.3174 Ω	1.0 pu
Base Inductance L_B	1.0103 mH	1.0 pu
Base Capacitance C_B	10028.7 μF	1.0 pu

Generator operates with an MPPT scheme, & its mechanical torque *Tm* is proportional to square of rotor speed.

- Stator power factor is unity.
- This case study is to investigate relationship between:
- rotor voltage,
- rotor current, &
- equivalent impedance of rotor-side converter when DFIG operates at
- 1.Super-synchronous 2.Synchronous, & 3. subsynchronous speeds.

i) Converter Equivalent Impedance at 1750rpm (Super-synchronous mode)

Stator current *Is* is calculated by:

$$I_s = \frac{V_s \pm \sqrt{V_s^2 - \frac{4R_s T_m \omega_s}{3P}}}{2R_s} = -1068.2 \text{ A} \quad \text{(the other solution } I_s = 1.514 \times 10^5 \text{ A omitted)}$$

where
$$V_s = 690/\sqrt{3} \text{ V}$$
, $T_m = -8185.1 \text{ N.m}$, $\omega_s = 2\pi \times 50 \text{ rad/sec}$, $R_s = 6.25 \text{ m}\Omega$ and $P = 2$

In super synchronous, or synchronous or sub-synchronous modes Is would be -ve

Using equivalent circuit voltage across magnetizing branch *Vm* is

$$\overline{V}_{m} = \overline{V}_{s} - \overline{I}_{s} \left(R_{s} + j\omega_{s} L_{ls} \right)$$

$$= 690 / \sqrt{3} \angle 0^{\circ} - 1068.2 \angle 180^{\circ} \times (0.00625 + j100\pi \times 0.1687 \times 10^{-3})$$

$$= 401.2 + j56.6 = 405.2 \angle 8^{\circ} \text{ V}$$

Magnetizing current is calculated by

$$\overline{I}_m = \frac{\overline{V}_m}{j\omega_s L_m} = 32.92 - j233.26 = 235.6 \angle -82.0^{\circ} \text{ A}$$

The rotor current is

$$\overline{I}_r = \overline{I}_s - \overline{I}_m = -1101.1 + j233.26 = 1125.6 \angle 168.0^{\circ} \text{ A}$$

The rotor voltage is

$$\overline{V}_r = s \overline{V}_m - \overline{I}_r (R_r + js \omega_s L_{lr}) = 67.97 \angle -164.9^{\circ} \text{ V}$$

where
$$s = (\omega_s - \omega_r)/\omega_s = -0.1667$$

Equivalent impedance for rotor-side converter is given by

$$\overline{Z}_{eq} = \overline{V}_r / \overline{I}_r = 0.05375 \ \Omega + j0.2751 \ \Omega$$

From which

$$\begin{cases} R_{eq} = 0.05375 \ \Omega \\ X_{eq} = 0.02751 \ \Omega \end{cases}$$

ii) Converter Equivalent Impedance at 1500rpm (Synchronous Speed)

When generator operates at 1500 rpm, stator current is

$$I_s = \frac{V_s \pm \sqrt{V_s^2 - \frac{4R_s T_m \omega_s}{3P}}}{2R_s} = -786.3 \text{ A} \quad \text{(the other solution } I_s = 1.511 \times 10^5 \text{ A omitted)}$$

where
$$T_m = -(1500/1750)^2 \times 8.1851 = -6.0135$$
 kN.m

Voltage across magnetizing branch(Vm) is:

$$\overline{V}_m = \overline{V}_s - \overline{I}_s (R_s + j\omega_s L_{ls}) = 400.5 + j41.7 = 402.6 \angle 5.9^{\circ} \text{ V}$$

Magnetizing current(Im) can be determined by

$$\overline{I}_m = \frac{\overline{V}_m}{j\omega_s L_m} = 24.23 - j232.82 = 234.1 \angle -84.1^{\circ} \text{ A}$$

Rotor current(Ir) is

$$\overline{I}_r = \overline{I}_s - \overline{I}_m = -810.50 + j232.82 = 843.28 \angle 164.0^{\circ} \text{ A}$$

Rotor voltage
$$\overline{V}_r = s \overline{V}_m - \overline{I}_r (R_r + js\omega_s L_{lr}) = -\overline{I}_r R_r = 2.2178 \angle -16^{\circ} \text{ V}$$

Equivalent resistance & reactance for rotor-side converter are

$$\overline{Z}_{eq} = \overline{V}_r / \overline{I}_r = 0.00263 \angle -180^\circ = -0.00263 + j \ 0.0 \ \Omega$$

Alternatively, following equation can be established

$$\overline{V}_m - \overline{I}_r (R_r / s + j\omega_s L_{lr}) = \overline{I}_r (R_{eq} / s + jX_{eq} / s)$$

From which

$$s\overline{V}_m - \overline{I}_r(R_r + js\omega_s L_{lr}) = \overline{I}_r(R_{eq} + j\omega_{sl}L_{eq})$$

$$s\overline{V}_m - \overline{I}_r(R_r + js\omega_s L_{lr}) = \overline{I}_r(R_{eq} + j\omega_{sl}L_{eq})$$

• At synchronous speed slip s=0 & slip frequency $\omega s l=0$, the above equation is simplified to

$$-\,\overline{I}_rR_r=\overline{I}_rR_{eq}$$

Thus equivalent resistance and reactance for rotor-side converter are

$$\begin{cases} R_{eq} = -R_r = -0.00263 \ \Omega \\ X_{eq} = \omega_{sl} L_{eq} = 0 \end{cases}$$

When DFIG operates at synchronous speed, both slip s=0 & slip frequency $\omega s = 0$.

• This implies that a dc current flows through rotor circuit, & rotor leakage reactance *XIr* & equivalent reactance *Xeq* are both 0.

In this case, induction generator operates just like a wound rotor synchronous generator, where rotor flux is produced by a dc current through a dc exciter.

• In DFIG wind energy system, dc excitation is provided by rotorside converter

iii) Converter Equivalent Impedance at Subsynchronous Speed

- Following same procedure, calculated rotor voltage, rotor current, & equivalent impedance of rotor-side converter in sub-synchronous mode (1200 & 1350 rpm) are summarized in Table.
- For convenience of comparison, calculated results for DFIG operating in synchronous (1500 rpm) & super-synchronous (1650 &1750 rpm) modes are also given in table.

Equivalent impedance of RSC in 1.5MW/690V DFIG WECS (PFs = 1)

		Sub-synchronous		(Synchronous Speed)	(Super-synchronous mode)	
Rotor Speed (rpm)		1200	1350	1500	1650	1750 (rated)
Slip		0.2	0.1	0	-0.1	-0.1667 (rated)
T_m	[kN.m]	3.849	4.871	6.014	7.276	8.185
\overline{V}_r	[V]	83.756∠6.2°	43.068∠7.4°	2.218∠−16.0°	39.711∠−165.8°	67.965∠−164.9°
\bar{I}_r	[A]	569.285∠155.9°	697.103∠160.5°	843.281∠164.0°	1006.991∠166.6°	1125.566∠168.0°
R_{eq}	[Ω]	-0.126989	-0.055113	-0.00263	0.034942	0.053751
X_{eq}	$[\Omega]$	-0.074293	-0.027918	0	0.018281	0.027513