TESI DI LAUREA PARTI FINITE

Federica Narciso

Università degli studi di Torino Facoltà di Scienze MM.FF.NN. Corso di laurea in Matematica

Introduzione

Sia g una funzione reale di variabile reale. Nostro scopo \tilde{A} " dare un significato a $\int_a^b g(x)\,dx$, dove (a,b) \tilde{A} " un intervallo finito, nel caso in cui la definizione di integrale improprio di Riemann non sia sufficiente. Supporremo, in particolare, che nel punto a tale integrale sia divergente. Secondo un'idea introdotta da Hadamard nel 1932 si osserva che, sotto certe ipotesi,

$$\int_{a+\epsilon}^b g(x)\,dx$$

E' somma di alcune quantit \tilde{A} che divergono per $\epsilon \to 0$ e di altre che, al contrario, per $\epsilon \to 0$ convergono. Indicate queste ultime con $F(\epsilon)$, sar \tilde{A}

$$\lim_{\epsilon \to 0} F(\epsilon)$$

la parte finita dell'integrale.

Le Parti Finite

Definizione

Sia $g:(a,b)\subset \mathbf{R}\to \mathbf{R}$ con (a,b) intervallo finito. Sia la funzione g integrabile su ogni intervallo finito $(a+\epsilon,b)$ per ogni $\epsilon>0$, ma non integrabile su tutto (a,b).

Supponiamo che g sia rappresentabile come somma di una funzione h integrabile su (a,b) e di un polinomio in $\frac{1}{x-a}$, ovvero:

$$g(x) = P\left(\frac{1}{x-a}\right) + h(x) = \sum_{\nu} \frac{A_{\nu}}{(x-a)^{\lambda_{\nu}}} + h(x)$$
 (1)

 $con A_{\nu} \in \mathbf{R}, \lambda_{\nu} \in \mathbf{R}.$

Allora si definisce la parte finita dell'integrale $\int_a^b g(x) dx$ come:

$$F = Pf. \int_{a}^{b} g(x) dx = -\sum_{\nu} \frac{A_{\nu}}{\lambda_{\nu} - 1} \left(\frac{1}{b - a}\right)^{\lambda_{\nu} - 1} + \int_{a}^{b} h(x) dx$$

Le Parti Finite

Definizione

per λ_{ν} non interi,

$$F = Pf. \int_{a}^{b} g(x) dx =$$

$$= -\sum_{\nu \neq 1} \frac{A_{\nu}}{\lambda_{\nu} - 1} \left(\frac{1}{b - a} \right)^{\lambda_{\nu} - 1} + A_{1} \log(b - a) + \int_{a}^{b} h(x) dx$$

per λ_{ν} interi, dove A_1 \tilde{A} il coefficiente del termine di primo grado del polinomio P.

Bibliografia

- I.M. Gel'fand & G.E. Shilov, *Generalized functions*, Academic Press, 1964.
- M. Bouix, Les fonctions généralisées ou distributions, Masson Editore, 1964.
- F.G. Tricomi, Istituzioni di analisi superiore, Cedam, 1970.
- F.J. Bureau *Divergent integrals and partial differential* equations, Communications on Pure and Applied Mathematics, 1955.