Linear Independence

Linear Independence (1)

Definition:

A set of vectors $\{v_1, v_2, v_3, ..., v_k\}$ is **linearly independent** if the vector equation

$$x_1v_1 + x_2v_2 + \dots + x_kv_k = 0$$

has only the trivial solution $x_1 = x_2 = x_3 = \dots = x_k = 0$. Otherwise, we say that the set $\{v_1, v_2, v_3, \dots, v_k\}$ is **linearly dependent**.

Example 1

Is the set
$$\left\{\begin{bmatrix}1\\1\\1\end{bmatrix}, \begin{bmatrix}1\\-1\\2\end{bmatrix}, \begin{bmatrix}3\\1\\4\end{bmatrix}\right\}$$
 linearly independent?

$$\begin{bmatrix}
1 & 1 & 3 \\
1 & -1 & 1
\end{bmatrix}
\xrightarrow{R_2 - R_1}
\begin{bmatrix}
1 & 1 & 3 \\
0 - 2 - 2
\end{bmatrix}
\xrightarrow{-\frac{1}{2}R_2}
\begin{bmatrix}
1 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - R_2}
\begin{bmatrix}
1 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - R_2}
\begin{bmatrix}
1 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - R_2}
\begin{bmatrix}
1 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - R_2}
\begin{bmatrix}
1 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - R_2}
\begin{bmatrix}
1 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - R_2}
\begin{bmatrix}
1 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - R_2}
\begin{bmatrix}
1 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - R_2}
\begin{bmatrix}
1 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - R_2}
\begin{bmatrix}
1 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - R_2}
\begin{bmatrix}
1 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - R_2}
\begin{bmatrix}
1 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - R_2}
\xrightarrow{R_3 - R_2}
\begin{bmatrix}
1 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - R_2}
\xrightarrow{R_3 - R_2}
\begin{bmatrix}
1 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - R_2}
\xrightarrow{R_3 - R_2}
\begin{bmatrix}
1 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - R_2}
\xrightarrow{R_3 - R_2}
\begin{bmatrix}
1 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - R_2}
\xrightarrow{R_3 - R_3}
\xrightarrow{R_3 - R_3}$$

Linear Independence (2)

Example 2

Is the set
$$\left\{ \begin{bmatrix} 1\\1\\-2 \end{bmatrix}, \begin{bmatrix} 1\\-1\\2 \end{bmatrix}, \begin{bmatrix} 3\\1\\4 \end{bmatrix} \right\}$$
 linearly independent?

$$\begin{bmatrix}
1 & 1 & 3 \\
1 & -1 & 1 \\
-2 & 2 & 4
\end{bmatrix}
\xrightarrow{R_2 - R_1}
\begin{bmatrix}
1 & 1 & 3 \\
0 & -2 & -2 \\
0 & 4 & 10
\end{bmatrix}
\xrightarrow{-1 - 2 R_2}
\begin{bmatrix}
11 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - 4R_2}
\begin{bmatrix}
0 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - 4R_2}
\begin{bmatrix}
0 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - 4R_2}
\begin{bmatrix}
0 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - 4R_2}
\begin{bmatrix}
0 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - 4R_2}
\begin{bmatrix}
0 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - 4R_2}
\begin{bmatrix}
0 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - 4R_2}
\begin{bmatrix}
0 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - 4R_2}
\begin{bmatrix}
0 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - 4R_2}
\begin{bmatrix}
0 & 1 & 3 \\
0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_3 - 4R_2}
\begin{bmatrix}
0 & 1 & 3 \\
0 & 0 & 1
\end{bmatrix}
\xrightarrow{R_3 - 4R_2}
\xrightarrow{R_3 - 4R_2}
\begin{bmatrix}
0 & 1 & 3 \\
0 & 0 & 1
\end{bmatrix}
\xrightarrow{R_3 - 4R_2}
\xrightarrow{R_3 - 4R_2}
\begin{bmatrix}
0 & 1 & 3 \\
0 & 0 & 1
\end{bmatrix}
\xrightarrow{R_3 - 4R_2}
\xrightarrow{R_3 - 4R_3}
\xrightarrow{R_$$

the est is linearly independent!

Linear Independence (3)

Vectors coming from the parametric vector form of the solution of the equation Ax = 0

Example 3

Solve the equation Ax = 0 where $A = \begin{bmatrix} 1 & -3 & 2 \\ -2 & 6 & -4 \end{bmatrix}$. Express your answer in parametric vector form. Explain why the two vectors in the solution are linearly independent.

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 6 & -4 \end{bmatrix} \xrightarrow{R_2 + 2R_1} \begin{bmatrix} 1 & -3 & 2 \\ 0 & 0 & 0 \end{bmatrix} \Longrightarrow \frac{x_1 - 3x_2 + 2x_3}{x_1 = 3x_2 - 2x_3}$$

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} -2 \\ 0 \end{bmatrix} = \begin{bmatrix} 3x_2 - 2x_3 \\ x_3 \end{bmatrix} \Longrightarrow \begin{cases} x_1 - 3x_2 + 2x_3 = 0 \\ x_1 = 3x_2 - 2x_3 \end{cases}$$

$$\begin{cases} x_2 = x_2 + 0 \\ x_3 = 0 + x_3 \end{cases}$$

$$\begin{cases} x_1 \\ x_2 = x_2 \end{bmatrix} = x_3 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} -2 \\ 0 \end{bmatrix} = \begin{bmatrix} 3x_2 - 2x_3 \\ x_3 \end{bmatrix} \Longrightarrow \begin{cases} x_1 - 3x_2 + 2x_3 = 0 \\ x_2 = x_2 + 0 \end{cases}$$

$$\begin{cases} x_1 \\ x_2 = x_2 \end{bmatrix} = x_2 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} -2 \\ 0 \end{bmatrix} = \begin{bmatrix} 3x_2 - 2x_3 \\ x_3 \end{bmatrix} \Longrightarrow \begin{cases} x_1 - 3x_2 + 2x_3 = 0 \\ x_2 = x_2 + 0 \end{cases}$$

$$\begin{cases} x_1 \\ x_2 = x_2 \end{bmatrix} = x_2 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} -2 \\ 0 \end{bmatrix} = \begin{bmatrix} 3x_2 - 2x_3 \\ x_3 \end{bmatrix} \Longrightarrow \begin{cases} x_1 - 3x_2 + 2x_3 = 0 \\ x_2 = x_2 + 0 \end{cases}$$

$$\begin{cases} x_1 \\ x_2 = x_2 \end{bmatrix} = x_2 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} -2 \\ 0 \end{bmatrix} = \begin{bmatrix} 3x_2 - 2x_3 \\ x_3 \end{bmatrix} \Longrightarrow \begin{cases} x_1 - 3x_2 + 2x_3 = 0 \\ x_2 = x_2 + 0 \end{cases}$$

$$\begin{cases} x_1 \\ x_2 = x_2 \end{bmatrix} = x_2 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} -2 \\ 0 \end{bmatrix} = \begin{bmatrix} 3x_2 - 2x_3 \\ x_3 \end{bmatrix} \Longrightarrow \begin{cases} x_1 - 3x_2 + 2x_3 = 0 \\ x_2 = x_2 \end{bmatrix}$$

$$\begin{cases} x_1 \\ x_2 = x_2 \end{bmatrix} = x_2 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} -2 \\ 0 \end{bmatrix} = \begin{bmatrix} 3x_2 - 2x_3 \\ x_3 \end{bmatrix} \Longrightarrow \begin{cases} x_1 - 3x_2 + 2x_3 = 0 \\ x_2 = x_3 \end{bmatrix}$$

$$\begin{cases} x_1 \\ x_2 = x_3 \end{bmatrix} = x_2 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} -2 \\ 0 \end{bmatrix} = x_3 \begin{bmatrix} 3x_2 - 2x_3 \\ x_3 \end{bmatrix} \Longrightarrow \begin{cases} x_1 - 3x_2 + 2x_3 = 0 \\ x_2 = x_3 \end{bmatrix}$$

$$\begin{cases} x_1 \\ x_2 = x_3 \end{bmatrix} = x_2 \begin{bmatrix} 3x_2 - 2x_3 \\ x_3 = x_3 \end{bmatrix}$$

$$\begin{cases} x_1 \\ x_2 = x_3 \end{bmatrix} = x_3 \begin{bmatrix} 3x_2 - 2x_3 \\ x_3 = x_3 \end{bmatrix}$$

$$\begin{cases} x_1 \\ x_2 = x_3 \end{bmatrix} = x_3 \begin{bmatrix} 3x_2 - 2x_3 \\ x_3 = x_3 \end{bmatrix}$$

$$\begin{cases} x_1 \\ x_2 = x_3 \end{bmatrix} = x_3 \begin{bmatrix} 3x_2 - 2x_3 \\ x_3 = x_3 \end{bmatrix}$$

$$\begin{cases} x_1 \\ x_2 = x_3 \end{bmatrix} = x_3 \begin{bmatrix} 3x_2 - 2x_3 \\ x_3 = x_3 \end{bmatrix}$$

$$\begin{cases} x_1 \\ x_2 = x_3 \end{bmatrix} = x_3 \begin{bmatrix} 3x_2 - 2x_3 \\ x_3 = x_3 \end{bmatrix}$$

$$\begin{cases} x_1 \\ x_3 = x_3 \end{bmatrix} = x_3 \begin{bmatrix} 3x_2 - 2x_3 \\ x_3 = x_3 \end{bmatrix}$$

$$\begin{cases} x_1 \\ x_2 = x_3 \end{bmatrix} = x_3 \begin{bmatrix} 3x_2 - 2x_3 \\ x_3 = x_3 \end{bmatrix}$$

$$\begin{cases} x_1 \\ x_2 = x_3 \end{bmatrix} = x_3 \begin{bmatrix} 3x_2 - 2x_3 \\ x_3 = x_3 \end{bmatrix}$$

$$\begin{cases} x_1 \\ x_2 = x_3 \end{bmatrix} = x_3 \begin{bmatrix} 3x_2 - 2x_3 \\ x_3 = x_3 \end{bmatrix}$$

$$\begin{cases} x_1 \\ x_2 = x_3 \end{bmatrix}$$

$$\begin{cases} x_1 \\ x_3 = x_3 \end{bmatrix}$$

$$\begin{cases} x_1 \\ x_2 = x_3 \end{bmatrix}$$

$$\begin{cases} x_1 \\ x_3 = x_3 \end{bmatrix}$$

$$\begin{cases} x_1 \\ x_2 = x_3 \end{bmatrix}$$

$$\begin{cases} x_1 \\ x_3 = x_3 \end{bmatrix}$$

$$\begin{cases} x_1 \\ x_2 = x_3 \end{bmatrix}$$

$$\begin{cases} x_1 \\ x_3 = x_3 \end{bmatrix}$$

Linear Independence (4)

Checking Linear Independence

A set of vectors $\{v_1, v_2, v_3, ..., v_k\}$ is linearly independent if and only if the vector equation $x_1v_1 + x_2v_2 + \cdots + x_kv_k = 0$

has only the trivial solution, if and only if the corresponding matrix equation Ax = 0, where

$$A = \begin{bmatrix} | & | & | & | \\ v_1 & v_2 & \dots & v_k \\ | & | & | & | \end{bmatrix}, \text{ has only the trivial solution, and, if and only if } A \text{ has a pivot position in }$$

every column, that is, every column is a pivot column, which results in no free variables. Free variables would give rise to a linear dependence relation (as in Example 2)

Wide Matrices

A wide matrix is one with more columns than rows. Note that such a matrix cannot have a pivot in every column, so its columns are automatically <u>linearly dependent</u>. For example, four vectors in \mathbb{R}^3 are automatically linearly dependent.

Linear Independence (5)

Some facts about linear independence

- 1. Two vectors are linearly dependent if and only if they are collinear, that is, one is a scalar multiple of another.
- 2. Any set containing the zero vector is linearly dependent.
- 3. If a subset of $\{v_1, v_2, ..., v_k\}$ is linearly dependent, then the entire set $\{v_1, v_2, ..., v_k\}$ is linearly dependent as well.

Proof

- 1. If $v_1 = cv_2$, then $v_1 cv_2 = 0$, showing that $\{v_1, v_2\}$ is linearly dependent. In the other direction, if $x_1v_1 + x_2v_2 = 0$ with $x_1 \neq 0$ (let's say), then $v_1 = -\frac{x_2}{x_1}v_2$.
- 2. For example, if $v_1 = 0$ then $1v_1 + 0v_2 + \cdots + 0v_k = 0$ (this is a linear dependence relation)
- 3. After reordering, suppose that $\{v_1, v_2, ..., v_r\}$ is linearly dependent with r < k. This means we can construct a linear dependence relation $x_1v_1 + x_2v_2 + \cdots + x_rv_r = 0$ where at least one x_i is not zero. Now take the coefficients of $v_{r+1}, ..., v_k$ to be all zero and add to the left side of the linear dependence relation above. This will still be a linear dependence relation making the entire set $\{v_1, v_2, ..., v_k\}$ linearly dependent.

Linear Independence (6)

Some facts about linear independence

Theorem: A set of vectors $\{v_1, v_2, ..., v_k\}$ is linearly dependent if and only if one of the vectors is in the span of the other ones. Any such vector can be removed without affecting the span.

Proof

We'll use an example to illustrate the proof. Suppose v_3 is in Span $\{v_1, v_2, v_4\}$, so we can express v_3 as $v_3 = 2v_1 - 3v_2 + 4v_4$, for example. Subtracting v_3 from both sides we get

$$0 = 2v_1 - 3v_2 - v_3 + 4v_4$$

This is a linear dependence relation \rightarrow the set is linearly dependent.

Continuing with this case, any linear combination of v_1 , v_2 , v_3 , v_4 is already a linear combination of v_1 , v_2 , v_4 :

 $x_1v_1 + x_2v_2 + x_3v_3 + x_4v_4 = x_1v_1 + x_2v_2 + x_3(2v_1 - 3v_2 + 4v_4) + x_4v_4 =$ $(x_1 + 2x_3)v_1 + (x_2 - 3x_3)v_2 + (x_4 + 4x_3)v_4 \rightarrow \text{Span}\{v_1, v_2, v_3, v_4\}\text{is contained in Span}\{v_1, v_2, v_3, v_4\}.$ On the other hand, any linear combination of v_1, v_2, v_4 is also a linear combination of v_1, v_2, v_3, v_4 (just let the coefficient of v_3 be zero), so $\text{Span}\{v_1, v_2, v_4\}$ is contained in $\text{Span}\{v_1, v_2, v_3, v_4\}$, and thus they are equal.

In the other direction, assume a linear dependence relation like $0 = 2v_1 - 3v_2 - v_3 + 4v_4$, then we can solve for any vector v_i . For example, $v_1 = \frac{3}{2}v_2 + \frac{1}{2}v_3 - 2v_4$, making v_1 in the Span $\{v_1, v_2, v_3, v_4\}$

Linear Independence (7)

Some facts about linear independence

Theorem: (Increasing Span Criterion) A set of vectors $\{v_1, v_2, ..., v_k\}$ is linearly independent if and only if, for every j < k, the vector v_j is not in the $Span\{v_1, v_2, ..., v_{j-1}\}$

If you make a set of vectors by adding one vector at a time, and if the span got bigger every time you added a vector, then your set is linearly independent.

Theorem: Let $v_1, v_2, ..., v_k$ be vectors in \mathbb{R}^n , and consider the matrix $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ v_1 & v_2 & ... & v_k \end{bmatrix}$. Then

we can delete the columns of A <u>without pivot positions</u> (the columns corresponding to the free <u>variables</u>), without changing the Span $\{v_1, v_2, ..., v_k\}$.

The pivot columns are linearly independent, so we cannot delete any more columns without changing the span.

Linear Independence (8)

Some facts about linear independence

Theorem: Let $v_1, v_2, ..., v_k$ be vectors in \mathbb{R}^n , and consider the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ v_1 & v_2 & ... & v_k \end{bmatrix}$. Then

we can delete the columns of A without pivot positions (the columns corresponding to the free variables), without changing the Span $\{v_1, v_2, ..., v_k\}$.

The pivot columns are linearly independent, so we cannot delete any more columns without changing the span.

Proof

Let's take an example matrix in RREF:
$$A = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
. It is easy to see that the non-pivot column is in the span of the pivot columns: $\begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 0 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ and the pivot columns are

linearly independent:
$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_4 \end{bmatrix} \implies x_1 = x_2 = x_3 = 0.$$

Linear Independence (9)

Proof

What if the matrix is not in RREF? Let's look at our RREF example. One solution to the vector

equation
$$x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 is $x_1 = 2, x_2 = 3, x_3 = -1, x_4 = 0$. What if we start with the matrix $B = \begin{bmatrix} 1 & 7 & 23 & 3 \\ 2 & 4 & 16 & 0 \\ -1 & -2 & -8 & 4 \end{bmatrix}$ where $B \xrightarrow{RREF} A = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. So, B and A are row equivalent and, therefore have the same solution set. So, the solution above also works for B , the

equivalent and, therefore, have the same solution set. So, the solution above also works for *B*, that

is,
$$2\begin{bmatrix} 1\\2\\-1\end{bmatrix} + 3\begin{bmatrix} 7\\4\\-2\end{bmatrix} - 1\begin{bmatrix} 23\\16\\-8\end{bmatrix} + 0\begin{bmatrix} 3\\0\\4\end{bmatrix} = \begin{bmatrix} 0\\0\\0\end{bmatrix}$$
 and solving for the third vector we get

$$\begin{bmatrix} 23\\16\\-8 \end{bmatrix} = 2 \begin{bmatrix} 1\\2\\-1 \end{bmatrix} + 3 \begin{bmatrix} 7\\4\\-2 \end{bmatrix} + 0 \begin{bmatrix} 3\\0\\4 \end{bmatrix}$$

So, $\begin{bmatrix} 23 \\ 16 \\ -8 \end{bmatrix}$ lies in the span of the other three vectors. Furthermore, the other three vectors are linearly independent.

Linear Independence (10)

Example 4

Find the RREF of
$$A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ -2 & -3 & 4 & 5 \\ 2 & 4 & 0 & -2 \end{bmatrix}$$
. Then find the smallest subset of column vectors of A whose span is equal to Span $\left\{ \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 4 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 5 \\ -2 \end{bmatrix} \right\}$.

$$\begin{bmatrix} 1 & 2 & 0 & -1 \\ -2 & -3 & 4 & 5 \\ 2 & 4 & 0 & -2 \end{bmatrix} \xrightarrow{P_2 + 2P_1} \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 4 & 3 \\ 2 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{P_2 + 2P_1} \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow Span \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 4 \end{bmatrix}, \begin{bmatrix} -1 \\ 5 \end{bmatrix} \right\}^{2}$$

$$Span \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ 4 \end{bmatrix} \right\}.$$

Linear Independence (11)

Pivot Columns and Dimension. Let *d* be the number of pivot columns in the matrix

$$A = \left(\begin{array}{cccc} | & | & & | \\ v_1 & v_2 & \cdots & v_k \\ | & | & & | \end{array} \right).$$

- If d = 1 then Span $\{v_1, v_2, \dots, v_k\}$ is a line.
- If d = 2 then Span $\{v_1, v_2, \dots, v_k\}$ is a plane.
- If d = 3 then Span $\{v_1, v_2, \dots, v_k\}$ is a 3-space.
- Et cetera.