JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日 Date of Application:

2002年 7月18日

REC'D 14 MAR 2003

V. PO

POT

出願番号

Application Number:

特顧2002-208987

[ST.10/C]:

[JP2002-208987]

出 願 人 Applicant(s):

ヤマサ醤油株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年 2月25日

特許庁長官 Commissioner, Japan Patent Office 人和信一郎

BEST AVAILABLE COPY

出証番号 出証特2003-3010618

【書類名】

特許願

【整理番号】

YP2002-011

【あて先】

特許庁長官殿

【国際特許分類】

C12P 19/26

【発明者】

【住所又は居所】

千葉県銚子市春日町35-3-205

【氏名】

浜本 智樹

【発明者】

【住所又は居所】

千葉県銚子市栄町2-1-12

【氏名】

野口 利忠

【特許出願人】

【識別番号】

000006770

【住所又は居所】

千葉県銚子市新生町2丁目10番地の1

【氏名又は名称】

ヤマサ醤油株式会社

【代表者】

濱口 道雄

【先の出願に基づく優先権主張】

【出願番号】

特願2001-219242

【出願日】

平成13年 7月19日

【手数料の表示】

【予納台帳番号】

056030

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】

明細書

【発明の名称】

CMP-N-アセチルノイラミン酸の製造法

【特許請求の範囲】

【請求項1】 Nーアセチルグルコサミン(G1cNAc)、ピルビン酸およびシチジン5'ーモノリン酸(CMP)を含有する反応系に、酵母菌体、Nーアセチルグルコサミンー6リン酸 2ーエピメラーゼ(G1cNAc-6P 2ーエピメラーゼ)活性を有する菌体またはその処理物、Nーアセチルノイラミン酸リアーゼ(NeuAcリアーゼ)活性を有する菌体またはその処理物およびCMP-Nーアセチルノイラミン酸シンセターゼ(CMP-NeuAcシンセターゼ)活性を有する菌体またはその処理物を添加し、反応させることを特徴とする、CMP-N-アセチルノイラミン酸(CMP-NeuAc)の製造法。

【請求項2】 Nーアセチルグルコサミン(G1cNAc)およびピルビン酸を含有する反応系に、Nーアセチルグルコサミンー6リン酸 2ーエピメラーゼ(G1cNAcー6P 2ーエピメラーゼ)活性を有する菌体またはその処理物およびNーアセチルノイラミン酸リアーゼ(NeuAcリアーゼ)活性を有する菌体またはその処理物を添加してNーアセチルノイラミン酸(NeuAc)を合成し、続けて、この反応系にシチジン5'ーモノリン酸(CMP)、酵母菌体およびシチジン5'ーモノリン酸Nーアセチルノイラミン酸シンセターゼ(CMPーNeuAcシンセターゼ)活性を有する菌体またはその処理物を添加してCMPーNーアセチルノイラミン酸(CMPーNeuAc)を合成する、請求項1記載の製造法。

【請求項3】 Nーアセチルグルコサミン(G1cNAc)およびシチジン5'ーモノリン酸(CMP)を含有する反応系に、酵母菌体、Nーアセチルグルコサミンー6リン酸2ーエピメラーゼ(G1cNAcー6P2ーエピメラーゼ)活性を有する菌体またはその処理物、Nーアセチルノイラミン酸シンセターゼ(NeuAcシンセターゼ)活性を有する菌体またはその処理物およびCMPーNーアセチルノイラミン酸シンセターゼ(CMPーNeuAcシンセターゼ)活性を有する菌体またはその処理物を添加し、反応させることを特徴とする、CMPーNーアセチルノイラミン酸(CMPーNeuAc)の製造法。

[0001]

【発明の属する技術分野】

本発明は、糖鎖合成の重要な原料であるCMP-N-アセチルノイラミン酸(CMP-NeuAc)の改良された製造法に関するものである。

[0002]

【従来の技術】

近年、糖鎖に関する構造及び機能に関する研究が急速に進み、生理活性を有するオリゴ糖、糖脂質、糖蛋白質などの医薬品または機能性素材としての用途開発が注目を集めている。中でもその末端にNーアセチルノイラミン酸(NeuAc)を含むシアル酸含有糖鎖は、細胞接着やウィルスの感染の際の受容体となる等の重要な機能を有する糖鎖である。

[0003]

シアル酸含有糖鎖は、一般にシアル酸転移酵素の触媒により合成される。シアル酸転移酵素はCMP-N-アセチルノイラミン酸(CMP-NeuAc)を糖供与体として、受容体となる糖鎖にシアル酸を転移する酵素である。

【発明が解決しようとする課題】

[0004]

しかしながら、糖供与体として用いるCMP-NeuAcは非常に高価で、かつ量的にも試薬レベルの僅かな供給量でしか供給され得ないのが現状である。

CMP-NeuAcの製造法としては、シチジン5'-トリリン酸(CTP)とNeuAcを基質としてCMP-NeuAcシンセターゼの触媒により合成する方法(Appl. Microbiol. Biotechnol.,44,59-67(1995))が知られているが、その原料となるCTP及びNeuAcは高価であるため、それらを直接原料として合成されたCMP-NeuAcも高価な試薬とならざるを得ない。

[0005]

最近、小泉らにより、オロチン酸からウリジン 5'ートリリン酸(UTP)への変換を行うBrevibacterium ammoniagenes菌体、UTPからCTPへの変換反応を触媒するCTP合成酵素を生産する組換え大腸菌体およびCMP-Neu

A c 合成酵素を生産する組換え大腸菌体を組み合わせて、オロチン酸とNeuAcを原料としてCMP-NeuAcを合成する方法が開発された(Appl.Microbiol.Biotechnol.,53,257-261,(2000))。該方法は、高価なCTPを使用しない方法ではあるが、複数種の菌体を調製しなければならないなど工程が煩雑であるとともに、それを実施するための大型の設備を準備しなければならず、また依然として高価なNeuAcを原料としていることからも実用的な方法とは言い難かった。

[000.6]

NeuAcの製造法に関しては、従来、ウミツバメの巣などからの抽出する方法 (Carbohydrate Research,56,423(1977)) や、シアル酸の多量体であるコロミン酸を微生物から回収し、これを化学分解し回収する方法 (Agric.Biol.Chem.,37,2105-2110(1973)) が知られているが、最近になって酵素を利用した方法が開発されている。

[0007]

酵素を利用した方法としては、(1)NeuAcリアーゼまたはNeuAcシンセターゼを用いて、N-アセチルマンノサミン(ManNAc)から製造する方法(J.Am.Chem.Soc.,110,6481(1988)、J.Am.Chem.Soc.,110,7159(1988)、特開平10-4961)、(2)アルカリ条件下で、N-アセチルグルコサミン(G1cNAc)をN-アセチルマンノサミン(ManNAc)に変換させ、これにNeuAcリアーゼまたはNeuAcシンセターゼを作用させてNeuAcを製造する方法(特開平5-211884、Biotechnology And Bioengineering,Vol.66,No.2(1999)、Enzyme Microb.Technol.,Vol.20(1997))、(3)G1cNAcからManNAcへの変換を触媒するN-アセチルグルコサミン(G1cNAc)2-エピメラーゼとNeuAcリアーゼまたはNeuAcシンセターゼを用いて、G1cNAcから製造する方法(W095/26399、特開平3-180190、特開2001-136982)が報告されている。

[0008]

しかしながら、(1)の方法は原料であるManNAcが高価であり、(2)の方法は、安価なG1cNAcを原料とする方法ではあるが、G1cNAcとM

anNAcの混合物からManNAcを精製する工程が煩雑であるという問題があった。また、下記に示すように、(3)の方法で用いるGlcNAc2ーエピメラーゼが高い触媒活性を示すためにはATPが必要であるため、高価なATPを添加するかあるいは微生物を用いてATPの前駆体であるアデニンからATPを生成させる必要があり、この方法も満足いく方法とはいい難かった。

[0009]

(3) の方法

ATPまたはその前駆体 ピルビン酸またはホスホエノールピルビン酸

GlcNAc → ManNAc → NeuAc

イ

ア:GlcNAc2-エピメラーゼ

ア

イ:NeuAcリアーゼまたはNeuAcシンセターゼ

[0010]

【課題を解決するための手段】

本発明者らは、GlcNAcを基質とした大腸菌の生体内酵素によるNeuAc合成を検討したところ、NeuAcはほとんど合成されなかったが、GlcNAcがGlcNAc 6-リン酸 (GlcNAc-6P) に変換されたことから、下に示す経路によるGlcNAcからのNeuAc合成系の構築を試みた。

その結果、GlcNAc-6P 2-エピメラーゼ (EC5.1.3.9) およびNeuAcリアーゼまたはNeuAcシンセターゼ活性を増強させるとNeuAcを高収率で生成できること、また該合成系には高価なATPを必要としないことを見出した。

[0011]

☆ (i

GlcNAc→ GlcNAc 6-リン酸 → ManNAc 6-リン酸
☆ ②または③

→ ManNAc → NeuAc

†ピルビン酸またはホスホエノールピルビン酸

☆: 生体反応

①: G1cNAc-6P 2-エピメラーゼ

②:NeuAcリアーゼ

③:NeuAcシンセターゼ

[0012]

次に、CMP-NeuAc合成反応を行うためのCTP合成系について、安価なCMPを原料としての微生物によるCTPへの変換系を上記NeuAc合成系と組み合わせるべく、種々の微生物を用いて検討を行った。すると、大腸菌その他の微生物を用いたときにはCMP-NeuAcがわずかしか合成されなかったのに対して、酵母菌体を用いると高収率でCMP-NeuAcを合成できることを見出した。特に、NeuAcシンセターゼ反応に必要なホスホエノールピルビン酸(PEP)は、酵母菌体内のものを利用することができ、反応系に新たに添加する必要がないことを確認し、本発明を完成させた。

[0013]

すなわち、本発明は、Nーアセチルグルコサミン(G1cNAc)、ピルビン酸およびシチジン5'ーモノリン酸(CMP)を含有する反応系に、酵母菌体、Nーアセチルグルコサミンー6リン酸 2ーエピメラーゼ(G1cNAc-6P2ーエピメラーゼ)活性を有する菌体またはその処理物、Nーアセチルノイラミン酸リアーゼ(NeuAcリアーゼ)活性を有する菌体またはその処理物、およびCMP-Nーアセチルノイラミン酸シンセターゼ(CMP-NeuAcシンセターゼ)活性を有する菌体またはその処理物を添加し、反応させることを特徴とする、CMP-Nーアセチルノイラミン酸(CMP-NeuAc)の製造法に関するものである。

[0014]

また、本発明は、N-Pセチルグルコサミン (G1cNAc) およびシチジン 5'-モノリン酸 (CMP) を含有する反応系に、酵母菌体、N-Pセチルグルコサミン-6リン酸 2-エピメラーゼ (G1cNAc-6P 2-エピメラーゼ) 活性を有する菌体またはその処理物、N-Pセチルノイラミン酸シンセターゼ (NeuAcシンセターゼ) 活性を有する菌体またはその処理物およびCMP-

N-アセチルノイラミン酸シンセターゼ(CMP-NeuAcシンセターゼ)活性を有する菌体またはその処理物を添加し、反応させることを特徴とする、CMP-N-アセチルノイラミン酸(CMP-NeuAc)の製造法に関するものである。

[0015]

【発明の実施の形態】

本発明のCMP-NeuAcの合成反応経路を模式的に示すと、以下の(A) NeuAcリアーゼを用いた方法と(B) NeuAcシンセターゼを用いた方法である。なお、(B) の反応系に必須のホスホエノールピルビン酸(PEP) は、グルコースから酵母並びに大腸菌の生体(代謝) 反応により合成、供給されるので、反応系にホスホエノールピルビン酸(PEP) を添加する必要はない。

[0016]

(A) NeuAcリアーゼを用いた方法

[0017]

(B) NeuAcシンセターゼを用いた方法

[0018]

上記模式図(A)及び(B)における記号は以下のことを意味する。

- ①:GlcNAc-6P 2-エピメラーゼ
- ②: NeuAcリアーゼ
- ③: CMP-NeuAcシンセターゼ
- ④:NeuAcシンセターゼ

[0019]

(1) 酵素等の調製

上記(A)及び(B)の反応系に添加するNーアセチルグルコサミン-6リン酸 2-エピメラーゼ(G1cNAc-6P 2-エピメラーゼ)活性を有する菌体またはその処理物とは、上記①のG1cNAc 6-リン酸からManNAc 6-リン酸への変換反応を触媒する活性を有するものを意味し、上記(A)の反応系に添加するNーアセチルノイラミン酸リアーゼ(NeuAcリアーゼ)活性を有する菌体またはその処理物とは、上記②のManNAcとピルビン酸を基質としてNeuAcを合成する反応を触媒する活性を有するものを意味し、上記(B)の反応系に添加するNーアセチルノイラミン酸シンセターゼ(NeuAcシンセターゼ)活性を有する菌体またはその処理物とは、上記④のMaNAcとホ

スホエノールピルビン酸(PEP)を基質としてNeuAcを合成する反応を触媒する活性を有するものを意味し、上記(A)及び(B)の反応系に添加するCMP-N-アセチルノイラミン酸シンセターゼ(CMP-NeuAcシンセターゼ)活性を有する菌体またはその処理物とは、上記③のNeuAcとCTPを基質としてCMP-NeuAcを合成する反応を触媒する活性を有するものを意味する。

[0020]

これらの酵素活性を有する菌体またはその処理物は、調製の簡便性などの点から、微生物由来のものを使用するのが好都合である。微生物由来のG1cNAc-6P2-エピメラーゼ、N-アセチルノイラミン酸リアーゼ、N-アセチルノイラミン酸シンセターゼ及びCMP-NeuAcシンセターゼは公知の酵素であり、常法により調製することができる。

[0021]

また、当該酵素活性を増強させるための手段として、該酵素遺伝子群(J.Bacteriol.,181,47-54,1999、J.Bacteriol.,181,4526-4532,1999、Nucleic Acids.Res.,13,8843-8852,1985、Agric.Biol.Chem.,50,2155-2158,1986、FEMS Microbiol.Lett.,75,161-166,1992、J.Biol.Chem.,271,15373-15380,1996、J.Biol.Chem.,264,14769-14774,1989、J.Bacteriol.,177,312-319,1995、Mol.Microbiol.,35,1120-1134,2000)をクローン化し、菌体内でこれを大量発現させた微生物種を用いる、いわゆる組換えDNA手法を用いた方法を用いるのが好適である。その際に、2つ以上の遺伝子を共発現させて得られる菌体またはその処理物を用いることもできる。

[0022]

遺伝子のクローニング、クローン化したDNA断片を用いた発現ベクターの調製、発現ベクターを用いた目的とする酵素活性を有する酵素タンパク質の調製などは、分子生物学の分野に属する技術者にとっては周知の技術であり、具体的には、例えば「Molecular Cloning」(Maniatisら編、Cold Spring Harbor Labora tories, Cold Spring Harbor、New York(1982))に記載の方法に従って行うことができる。

[0023]

たとえば、報告されている塩基配列をもとにプローブを合成し、微生物の染色体DNAより目的とする酵素活性を有する酵素タンパク質をコードする遺伝子を含有するDNA断片をクローニングすればよい。クローン化に用いる宿主は特に限定されないが、操作性及び簡便性から大腸菌を宿主とするのが適当である。

[0024]

クローン化した遺伝子の高発現系を構築するためには、たとえばマキザムーギルバートの方法 (Methods in Enzymology, 65, 499(1980)) もしくはダイデオキシチェインターミネーター法 (Methods in Enzymology, 101, 20 (1983)) などを応用してクローン化したDNA断片の塩基配列を解析して該遺伝子のコーディング領域を特定し、宿主微生物に応じて該遺伝子が菌体中で自発現可能となるように発現制御シグナル (転写開始及び翻訳開始シグナル) をその上流に連結した組換え発現ベクターを作製する。

[0025]

ベクターとしては、種々のプラスミドベクター、ファージベクターなどが使用可能であるが、大腸菌菌体内で複製可能であり、適当な薬剤耐性マーカーと特定の制限酵素切断部位を有し、菌体内のコピー数の高いプラスミドベクターを使用するのが望ましい。具体的には、pBR322 (Gene, 2, 95 (1975))、pUC18, pUC19 (Gene、33, 103(1985)) などを例示することができる。

[0026]

作製した組換えベクターを用いて大腸菌を形質転換する。宿主となる大腸菌としては、例えば組換えDNA実験に使用されるK12株、C600菌、JM105菌、JM109菌(Gene, 33, 103-119(1985))などが使用可能である。ピルビン酸のNeuAc合成以外での代謝を減らすため、ピルビン酸代謝に関するlip遺伝子変異などが導入された大腸菌(例えばW1485lip2(ATCC25645))を宿主として使用することもできる。

大腸菌を形質転換する方法はすでに多くの方法が報告されており、低温下、塩化カルシウム処理して菌体内にプラスミドを導入する方法(J. Mol. Biol., 53, 159 (1970)) などにより大腸菌を形質転換することができる。

[0027]

得られた形質転換体は、当該微生物が増殖可能な培地中で増殖させ、さらにクローン化した目的とする酵素活性を有するタンパク質の発現を誘導して菌体内に当該酵素タンパク質が大量に蓄積するまで培養を行う。形質転換体の培養は、炭素源、窒素源などの当該微生物の増殖に必要な栄養源を含有する培地を用いて常法に従って行えばよい。例えば、培地としてブイヨン培地、LB培地(1%トリプトン、0.5%イーストエキストラクト、1%食塩)または2×ΥT培地(1.6%トリプトン、1%イーストエキストラクト、0.5%食塩)などの大腸菌の培養に常用されている培地を用い、30~50℃の培養温度で10~50時間程度必要により通気攪拌しながら培養することができる。また、ベクターとしてプラスミドを用いた場合には、培養中におけるプラスミドの脱落を防ぐために適当な抗生物質(プラスミドの薬剤耐性マーカーに応じ、アンピシリン、カナマイシンなど)の薬剤を適当量培養液に加えて培養する。

[0028]

目的の酵素活性を有する菌体としては、上記の方法で得られる培養液から遠心分離、膜分離などの固液分離手段で回収したものを例示することができる。また、回収した菌体を、機械的破壊(ワーリングブレンダー、フレンチプレス、ホモジナイザー、乳鉢などによる)、凍結融解、自己消化、乾燥(凍結乾燥、風乾などによる)、酵素処理(リゾチームなどによる)、超音波処理、化学処理(酸、アルカリ処理などによる)などの一般的な処理法に従って処理して得られる処理物、もしくは該菌体処理物から目的の酵素活性を有する画分を通常の酵素の精製手段(塩析処理、等電点沈澱処理、有機溶媒沈澱処理、透析処理、各種クロマトグラフィー処理など)を施して得られる粗酵素または精製酵素も菌体処理物として利用することができる。

[0029]

次にCMPからCTPへの変換に使用する酵母としては、市販のパン酵母、あるいはワイン酵母でよく、菌体製造の過程が省略できる点で極めて有利である。 また、酵母生菌体、酵母乾燥菌体いずれの形態も利用可能であるが、反応収率、 取扱いの容易性などの点からは、乾燥酵母菌体を用いるのが好ましい。 [0030]

(2) CMP-NeuAcの合成

CMP-NeuAc合成反応に使用するG1cNAc、ピルビン酸およびCMPは市販されており、この市販品を使用することができる。使用濃度としては、例えばそれぞれ $1\sim5000$ mM、好ましくは $10\sim1000$ mMの範囲から適宜設定することができる。

[0031]

(NeuAcリアーゼを用いた方法)

CMP-NeuAcの合成反応は、GlcNAc、CMPおよびピルビン酸を含有する反応系に、GlcNAc-6P 2-エピメラーゼ活性を有する菌体またはその処理物、NeuAcリアーゼ活性を有する菌体またはその処理物、およびCMP-NeuAcシンセターゼ活性を有する菌体またはその処理物を反応液1ml当たりそれぞれ0.2mg以上、好ましくは2~100mg、乾燥酵母を1~20% (w/v)添加し、50C以下、好ましくは15~40Cで1~150時間程度、必要により撹拌しながら反応させることにより実施できる。

[0032]

また、上記反応においては、G1cNAcおよびピルビン酸を含有する反応系に、G1cNAc-6P 2ーエピメラーゼ活性を有する菌体またはその処理物およびNeuAcリアーゼ活性を有する菌体またはその処理物を添加して、50 で以下、好ましくは $15\sim40$ で $1\sim50$ 時間程度反応させてNeuAcを合成し、次いでCMP、酵母菌体およびCMP-NeuAcシンセターゼ活性を有する菌体またはその処理物を添加し、 $5\sim50$ 時間程度反応させてCMP-NeuAcを合成する2段階の反応を行うことでCMP-NeuAcの合成収率を向上させることができる。なお、CMPはあらかじめNeuAc合成時に反応系に添加しておいてもかまわない。

[0033]

(NeuAcシンセターゼを用いた方法)

CMP-NeuAcの合成反応は、GlcNAc及びCMPを含有する反応系に、GlcNAc-6P 2-エピメラーゼ活性を有する菌体またはその処理物

、NeuAcシンセターゼ活性を有する菌体またはその処理物、およびCMP-NeuAcシンセターゼ活性を有する菌体またはその処理物を反応液 1 m 1 当たりそれぞれ 0.2m g以上、好ましくは $2\sim100$ mg、乾燥酵母を $1\sim20$ % (w/v)添加し、50 C 以下、好ましくは $15\sim40$ C c $1\sim150$ 時間程度、必要により撹拌しながら反応させることにより実施できる。

[0034]

上記のいずれのCMP-NeuAc合成系においても、必要に応じて無機リン酸、マグネシウムおよびエネルギー源を添加するのが好ましい。

無機リン酸としては、リン酸カリウムなどをそのまま使用することもできるが、好ましくはリン酸緩衝液の形態で使用するのが好ましい。使用濃度は、たとえば $1\sim1000\,\mathrm{mM}$ 、好ましくは $10\sim400\,\mathrm{mM}$ の範囲から適宜設定することができる。また、リン酸緩衝液の形式で使用する場合、緩衝液の $p\,\mathrm{H}$ は $5\sim10$ の範囲から適宜設定すればよい。

[0035]

マグネシウムとしては、硫酸マグネシウム、硝酸マグネシウム、塩化マグネシウム等の無機酸のマグネシウム塩、クエン酸マグネシウム等の有機酸のマグネシウム塩を使用することができ、その使用濃度としては1~1000mMの範囲から適宜設定することができる。

エネルギー源としては、グルコース、フラクトース、ショ糖などの糖類、酢酸、クエン酸などの有機酸を使用することができ、その使用濃度としては、 $1\sim5$ 000mM、好ましくは $10\sim1000$ mMの範囲から適宜設定することができる。

[0036]

このようにして得られたCMP-NeuAcは、糖ヌクレオチドの通常の単離精製手段(イオン交換クロマトグラフィー、吸着クロマトグラフィー、塩析、アフィニティクロマトグラフィーなど)を用いて単離精製することができる。

[0037]

【発明の効果】

本発明のNeuAcリアーゼを用いる方法は、高価なATPを必要とせず、安

価なGlcNAc、CMP及びピルビン酸から効率的にCMP-NeuAcを製造することが初めて可能となり、CMP-NeuAcの大量合成法として極めて有意義な方法である。

[0038]

また、本発明のNeuAcシンセターゼを用いる方法は、高価なATPを必要とせず、反応系に必須のホスホエノールピルビン酸(PEP)はグルコースから酵母並びに大腸菌の生体(代謝)反応により合成・供給されるので、反応系にホスホエノールピルビン酸(PEP)を添加する必要がなく、安価なGlcNAc及びCMPから効率的にCMP-NeuAcを製造することが初めて可能となり、CMP-NeuAcの大量合成法として極めて有意義な方法である。

特に、本発明のNeuAcシンセターゼを用いる方法は、本発明のNeuAc リアーゼを用いる方法で用いられる2段階の反応を必要としない点で、より簡便 で優れた方法である。

[0039]

【実施例】

以下、実施例を示し、本発明を具体的に説明するが、本発明がこれに限定されないことは明らかである。なお、実施例におけるDNAの調製、制限酵素による切断、T4DNAリガーゼによるDNA連結、並びに大腸菌の形質転換法は全て「Molecular Cloning, A Laboratory Manual, Second Edition」(Sambrookら編、Cold spring Harbor Laboratory, Cold Spring Harbor, New York(1989))に従って行った。また、制限酵素、AmpliTagDNAポリメラーゼ、T4DNAリガーゼは宝酒造(株)より入手した。

[0040]

さらに、反応液中のCMP-NeuAcの定量はHPLC法により行った。具体的には、分離にはYMC社製のODS-HS302カラムを用い、溶出液として1mM テトラブチルアンモニウム硫酸塩、50mM 酢酸マグネシウム溶液を用いた。また、NeuAc等の糖の定量にはHPAE-PAD法によるHPLCにより行った。具体的には、分離、検出にはダイオネクス社製のCarboPac PA1カラム、ED40を用い、溶出液としてA液;0.1N NaOH

[0041]

実施例1

(1) N-アセチルノイラミン酸リアーゼをコードする n a n A 遺伝子のクローニング

H. influenzae Rd株の染色体DNA (ATCC51907D) をテンペレートとして、以下に示す2種類のプライマーDNAを常法に従って合成し、PCR法によりH. influenzaeのNーアセチルノイラミン酸リアーゼ (nanA) 遺伝子を増幅した。

プライマー (A):5' - CACCATGGCGAAGATATTGCCGCTCAAACTA -3'
プライマー (B):5' - CCGAATTCATTTATGACAAAAATTTCGCTTTCAAG -3'

PCRによるnanA遺伝子の増幅は、反応液 $100\mu1$ 中(50mM 塩化カリウム、10mM トリス塩酸(pH8.3)、1.5mM 塩化マグネシウム、0.001% ゼラチン、テンペレートDNAO. $1\mu g$ 、プライマーDNA(A)(B)各々 $0.2\mu M$ 、AmpliTaq DNAポリメラーゼ 2.5ユニット)をPerkin-Elmer Cetus Instrument社製 DNA Thermal Cyclerを用いて、熱変性(94%、1分)、アニーリング(55%、1.5分)、ポリメライゼーション(72%、3分)のステップを25回繰り返すことにより行った。

[0043]

遺伝子増幅後、反応液をフェノール/クロロホルム(1:1)混合液で処理し、水溶性画分に2倍容のエタノールを添加しDNAを沈殿させた。沈殿回収したDNAを文献 (Molecular Cloning、前述)の方法に従ってアガロースゲル電気 泳動により分離し、1.2kb相当のDNA断片を精製した。該DNAを制限酵素Ncol及びEcoRIで切断し、同じく制限酵素Ncol及びEcoRIで消化したプラスミドpTrc99A (Pharmacia Biotech.社より入手)とT4DNAリガーゼを用いて連結した。連結反応液を用いて大腸菌JM109株(ATCC53323)を形質転換し、得られたアンピシリン耐性形質転換体よりプラ

スミドpTrcnanAを単離した。pTrcnanAは、pTrc99Aのtrcプロモーター下流のNcoI-EcoRI切断部位にH. influenzaeのnanA遺伝子の構造遺伝子を含有するDNA断片が挿入されたものである。

[0044]

(2) GlcNAc-6P 2-エピメラーゼをコードするnanE遺伝子のクローニング

H. influenzae Rd株の染色体DNAをテンペレートとして、以下に示す2種類のプライマーDNAを常法に従って合成し、PCR法によりH. influenzaeのGlcNAc-6P 2-エピメラーゼ (nanE) 遺伝子を増幅した。

プライマー (C):5' - GGTCTAGATTTAAATGAGGGGTGTTATATGT -3'

プライマー (D):5' - TCGTCGACTTATCTTGCAGATTTCACTGAATTAGCAAACCA -3'

[0045]

PCRによるnanE遺伝子の増幅は、反応液 $100\mu1$ 中(50mM 塩化カリウム、10mM トリス塩酸(pH8.3)、1.5mM 塩化マグネシウム、0.001%ゼラチン、テンペレートDNAO. $1\mu g$ 、プライマーDNA(C)(D)各々 $0.2\mu M$ 、AmpliTaq DNAポリメラーゼ 2.5ユニット)をPerkin-Elmer Cetus Instrument社製 DNA Thermal Cyclerを用いて、熱変性(94%、1分)、アニーリング(55%、1.5分)、ポリメライゼーション(72%、3分)のステップを25回繰り返すことにより行った。

[0046]

遺伝子増幅後、反応液をフェノール/クロロホルム(1:1)混合液で処理し、水溶性画分に2倍容のエタノールを添加しDNAを沈殿させた。沈殿回収したDNAを文献の方法(Molecular Cloning、前述)に従ってアガロースゲル電気 泳動により分離し、720b相当のDNA断片を精製した。該DNAを制限酵素 XbaI及びSalIで削断し、同じく制限酵素 XbaI及びSalIで消化したプラスミドpTrc99AとT4DNAリガーゼを用いて連結した。連結反応 液を用いて大腸菌 JM109株を形質転換し、得られたアンピシリン耐性形質転

換体よりプラスミドpTrc-nanEを単離した。pTrc-nanEは、pTrc99Aのtrcプロモーター下流のXbaI-SalI切断部位にH.influenzaeのnanE遺伝子の構造遺伝子を含有するDNA断片が挿入されたものである。

[0047]

(3) nanA、nanE遺伝子共発現プラスミドの構築

上記(1)で得られたpTrcnanAプラスミドを制限酵素NcoI、EcoRIで切断し、nanA遺伝子を含むNcoIーEcoRI断片をアガロースゲル電気泳動を用いて回収した。これを同じくNcoI、EcoRIで消化した上記(2)で得られたpTrcーnanEプラスミドとT4DNAライゲースを用いて連結した。この連結反応液を用いて大腸菌JM109株を形質転換し、得られたアンピシリン耐性形質転換体よりプラスミドpTrcAEを単離した。pTrcAEは、pTrc99Aのtrcプロモーター下流のNcoIーSalI切断部位にH.influenzaeのnanA、nanE遺伝子の構造遺伝子を含有するDNA断片が挿入されたものである。

[0048]

(4) NeuAcの合成

(3)で構築したプラスミドpTrcAEを保持する大腸菌W14851ip2 (ATCC25645)を、100μg/m1のアンピシリンを含有する2×YT培地500m1に植菌し、37℃で振とう培養した。菌体数が1×10⁸個/m1に達した時点で、培養液に最終濃度0.2mMになるようにイソプロピルβ-D-チオガラクトピラノシド(IPTG)を添加し、さらに37℃で26時間振とう培養を続けた。培養終了後、遠心分離(9,000×g、10分)により25m1培養液分の菌体50mgを回収し、これに100mM G1cNAc、20mM 塩化マグネシウム、50mM グルコース、300mM ピルビン酸ナトリウム、0.5%(v/v)キシレンを含有する200mM リン酸カリウム緩衝液(pH8.0)5m1を添加し、28℃で攪拌しながら反応を行った。14、24時間後に110mgのピルビン酸ナトリウムを添加し、48時間で反応液を100℃、5分間の熱処理をすることで反応を停止させた。得られた反

応液を糖分析用HPLC(HPAE-PAD、ダイオネクス社)で分析したところ、43.7mMのNeuAcの生成が確認された。

なお、対照菌(pTrc99Aプラスミドを保持する大腸菌W1485lip 2)を用いて同様の反応を行ったが、NeuAcの生成を検出することは出来なかった(0.5mM以下の生成)。

[0049]

(4) CMP-NeuAcシンセターゼをコードするneuA遺伝子のクローニング

H. influenzae HI914菌の染色体DNAをテンペレートとして、以下に示す2種類のプライマーDNAを常法に従って合成し、PCR法によりH. influenzaeのCMP-NeuAcシンセターゼ(neuA)遺伝子を増幅した。

プライマー (E):5' - TGCCATGGTGAAAATAATAATGACAAGAA -3' プライマー (F):5' - AACTGCAGTGCAGATCAAAAGTGCGGCC -3'

PCRによるneuA遺伝子の増幅は、反応液 100μ 1中(50mM 塩化カリウム、10mM トリス塩酸(pH8.3)、1.5mM 塩化マグネシウム、0.001%ゼラチン、テンペレートDNA 0.1μ g、プライマーDNA (E) (F) 各々 0.2μ M、AmpliTaq DNAポリメラーゼ 2.5ユニット)をPerkin-Elmer Cetus Instrument社製 DNA Thermal Cyclerを用いて、熱変性(94%、1分)、アニーリング(55%、1.5分)、ポリメライゼーション(72%、3分)のステップを25回繰り返すことにより行った。

[0051]

[0050]

遺伝子増幅後、反応液をフェノール/クロロホルム(1:1)混合液で処理し、水溶性画分に2倍容のエタノールを添加しDNAを沈殿させた。沈殿回収したDNAを文献の方法(Molecular Cloning、前述)に従ってアガロースゲル電気 泳動により分離し、720b相当のDNA断片を精製した。該DNAを制限酵素 NcoI及びPstIで切断し、同じく制限酵素NcoII及びPstIで消化したプラスミドpTrc99AとT4DNAリガーゼを用いて連結した。連結反

応被を用いて大腸菌 JM109株を形質転換し、得られたアンピシリン耐性形質 転換体よりプラスミド p T r c s i a B N P を単離した。 p T r c s i a B N P は、 p T r c 9 9 A の t r c プロモーター下流のN c o I ー P s t I 切断部位に H. influenzaeoneu A 遺伝子の構造遺伝子を含有する D N A 断片 が挿入されたものである。

[0052] .

(5) CMP-NeuAcシンセターゼの調製

プラスミド p T r c s i a B N P を保持する大腸菌 J M 1 0 9 菌を、100 μ g / m 1 のアンピシリンを含有する2×Y T 培地100 m 1 に植菌し、37℃で振とう培養した。4×10 ⁸ 個 / m 1 に達した時点で、培養液に最終濃度0.2 5 m M になるように I P T G を添加し、さらに37℃で6時間振とう培養を続けた。培養終了後、遠心分離(9,000×g,10分)により菌体を回収し、5 m 1 の緩衝液(100 m M トリス塩酸(p H 7.8)、10 m M M g C 12) に懸濁した。超音波処理を行って菌体を破砕し、さらに遠心分離(20,000×g、10分)により菌体残さを除去した。

[0053]

このように得られた上清画分を酵素液とし、酵素液におけるCMP-NeuAcシンセターゼ活性を測定した結果を対照菌(pTrc99Aを保持する大腸菌K-12株 JM109)と共に下記表1に示す。なお、本発明におけるCMP-NeuAcシンセターゼ活性の単位(ユニット)は、以下に示す方法で5'-CMPとN-アセチルノイラミン酸からのCMP-NeuAcの合成活性を測定、算出したものである。

[0054]

(CMP-NeuAcシンセターゼ活性の測定と単位の算出法)

50mM トリス塩酸緩衝液(pH8.0)、20mM 塩化マグネシウム、5mM CTPおよび10mM Nーアセチルノイラミン酸に、CMP-NeuAcシンセターゼを添加して37℃で5分反応させる。また、CMP-NeuAcシンセターゼの代わりにpTrc99Aを保持する大腸菌JM109株の菌体破砕液を用い同様の反応を行い、これをコントロールとした。

反応液に 2 倍量の 70% エタノールを添加して反応を停止し、これを希釈した後 HPL Cによる分析を行った。分離には YMC 社製 HS -302 カラムを用い、溶出液として 50 mM 酢酸マグネシウムと 1 mM テトラブチルアンモニウム水溶液の混合液を用いた。 HPL C分析結果から反応液中の CMP - Neu Acの量を算出し、 37%で1分間に 1μ moleの CMP - Neu Acを合成する活性を1単位(ユニット)として CMP - Neu Acシンセターゼ活性を算出した

[0055]

【表1】

歯/プラスミド	CMP-NeuAcシンセターゼ活性		
	(units/mg protein)		
JM109 / pTrc99A	< 0. 01		
JM109 / pTrcsiaBNP	2.45		

[0056]

(6) CMP-NeuAcの合成

上記(3)で構築したプラスミドpTrcAEを保持する大腸菌 K-12株 ME8417 (FERM BP-6847:平成11年8月18日 特許生物 寄託センターに寄託)を、100μg/mlのアンピシリンを含有する2×YT 培地500mlに植菌し、37℃で振とう培養した。菌体数が4×10⁸個/m lに達した時点で、培養液に最終濃度0.2mMになるようにIPTGを添加し、さらに37℃で8.5時間振とう培養を続けた。培養終了後、遠心分離(9、000×g、10分)により25ml培養液分の菌体50mgを回収し、これに50mM CMP、100mM GlcNAc、20mM 塩化マグネシウム、50mM グルコース、250mM ピルビン酸ナトリウム、0.5%(v/v)キシレンを含有する200mM リン酸カリウム緩衝液(pH8.0)5mlを添加し、28℃で攪拌しながら反応を行った。

[0057]

反応開始24時間後に乾燥パン酵母 (オリエンタル酵母社製) 250mg、上

記 (5) で調製したCMP-NeuAcシンセターゼ活性(3.4units/m1反応液)を有する酵素調製物及び1M 塩化マグネシウム溶液 100μ1 を添加し、合計62時間反応させた。なお、反応開始14時間後に110mgのピルビン酸ナトリウムを、24、38時間後に110mgピルビン酸ナトリウム、180mgグルコースを、48時間後に55mgピルビン酸ナトリウム、180mgグルコースをそれぞれ添加した。

反応液上清をHPLCにより分析したところ、 $21.4 mM \sigma CMP-Neu$ A c が生成することが認められた。

[0058]

比較例1

(1) СМРカイネースをコードする c m k 遺伝子のクローニング

大腸菌 JM 1 0 9 株の染色体 DN A を斉藤と三浦の方法 (Biochim. Biopys. A cta., 72, 619 (1963)) で調製した染色体 DN A をテンペレートとして、以下に示す 2 種類のプライマー DN A を常法に従って合成し、 PC R 法により大腸菌のCM Pカイネース (cmk) 遺伝子を増幅した。

プライマー (G):5'- TTGAATTCTAAGGAGATAAAGATGACGGCAATT-3' プライマー (H):5'- TTGAGCTCTGCAAATTCGGTCGCTTATGCG-3'

PCRによるcmk遺伝子の増幅は、反応液 $100\mu1$ 中(50mM 塩化カリウム、10mM トリス塩酸(pH8.3)、1.5mM 塩化マグネシウム、0.001%ゼラチン、テンペレートDNA $0.1\mu g$ 、プライマーDNA(G)(H)各 $40.2\mu M$ 、AmpliTaq DNAポリメラーゼ 2.5ユニット)をPerkin-Elmer Cetus Instrument社製 DNA Thermal Cyclerを用いて、熱変性(94%、1分)、アニーリング(55%、1.5分)、ポリメライゼーション(72%、3分)のステップを25回繰り返すことにより行った。

[0060]

遺伝子増幅後、反応液をフェノール/クロロホルム(1:1)混合液で処理し、水溶性画分に2倍容のエタノールを添加しDNAを沈殿させた。沈殿回収したDNAを文献の方法(Molecular Cloning、前述)に従ってアガロースゲル電気

泳動により分離し、720b相当のDNA断片を精製した。該DNAを制限酵素 EcoRI及びSacIで切断し、同じく制限酵素EcoRI及びSacIで消化したプラスミドpTrc99AとT4DNAリガーゼを用いて連結した。連結 反応液を用いて大腸菌JM109株を形質転換し、得られたアンピシリン耐性形質転換体よりプラスミドpTrcCMKABを単離した。pTrcCMKABは、pTrc99Aのtrcプロモーター下流のEcoRI-SacI切断部位に 大腸菌のcmk遺伝子の構造遺伝子を含有するDNA断片が挿入されたものである。

[0061]

(2) cmk、neuA遺伝子共発現プラスミドの構築

実施例2で得られたpTrcsiaBNPプラスミドを制限酵素NcoI、EcoRIで切断し、neuA遺伝子を含むNcoIーEcoRI断片をアガロースゲル電気泳動を用いて回収した。これを同じくNcoI、EcoRIで消化した上記比較例(1)のpTrcCMKABプラスミドとT4ライゲースを用いて連結した。この連結反応液を用いて大腸菌JM109株を形質転換し、得られたアンピシリン耐性形質転換体よりプラスミドpTrcSBCKを単離した。pTrcSBCKは、pTrc99Aのtrcプロモーター下流のNcoIーSacI切断部位にH.influenzaeのneuA遺伝子及び大腸菌のcmk遺伝子の構造遺伝子を含有するDNA断片が挿入されたものである。

[0062]

(3) CMP-NeuAcの合成

実施例1で調製した大腸菌ME 8 4 1 7 / p T r c A E の 2 5 m 1 培養分の集 菌体 5 0 m g に、1 0 0 m M G 1 c N A c、2 0 m M 塩化マグネシウム、5 0 m M グルコース、2 5 0 m M ピルビン酸ナトリウム、0.5% (v / v) キシレンを含有する 2 0 0 m M リン酸カリウム緩衝液 (p H 8.0) 2.5 m 1 を添加し、2 8 ℃で攪拌しながら 2 4 時間反応を行った。

上記 (2) で構築したプラスミドp T r c S B C K を保持する大腸菌M E 8 4 1 7株の25m1培養分の集菌体50mgと100mM CMP、20mM 塩 化マグネシウム、250mM ピルビン酸ナトリウムを含有する200mM リ

ン酸カリウム緩衝液(pH8.0)2.5m1を添加後、超音波処理を行った。

[0063]

反応開始24時間後、上記の超音波処理液2.5mlを添加し、更に28℃で 攪拌しながら反応を行った。なお、反応開始14、24時間後に55mg、38 時間後に110mgのピルビン酸ナトリウムを添加した。

合計48時間反応後、反応液上清をHPLCにより分析したところ、CMP-NeuAcの生成量は6.28mMであった。

[0064]

実施例2

(1) N-アセチルノイラミン酸シンセターゼをコードするneuB1遺伝子の クローニング

Campylobacter jejuni 1652株の染色体DNAをテンペレートとして、以下に示す2種類のプライマーDNAを常法に従って合成し、PCR法によりN-アセチルノイラミン酸シンセターゼ (neuB1) 遺伝子を増幅した。

プライマー (I):5' - TACGATTATTTTCCTGATGCTC -3'

プライマー (J):5' - TCTCCAAGCTGCATTAAACGCC -3'

[0065]

PCRによるneuB1遺伝子の増幅は、反応被 $100\mu1$ 中(50mM 塩化カリウム、10mM トリス塩酸(pH8.3)、1.5mM 塩化マグネシウム、0.001%ゼラチン、テンペレートDNAO. $1\mu g$ 、プライマーDNA (A) (B) 各々 $0.2\mu M$ 、AmpliTaq DNAポリメラーゼ 2.5229 をPerkin-Elmer Cetus Instrument社製 DNA Thermal Cyclerを用いて、熱変性(94%、1分)、アニーリング(55%、1.5分)、ポリメライゼーション(72%、3分)のステップを30回繰り返すことにより行った。

[0066]

遺伝子増幅後、反応液をフェノール/クロロホルム(1:1)混合液で処理し、水溶性画分に2倍容のエタノールを添加しDNAを沈殿させた。沈殿回収したDNAを文献 (Molecular Cloning、前述)の方法に従ってアガロースゲル電気

泳動により分離し、2.2kb相当のDNA断片を精製した。該DNA断片をテンプレートとして、以下に示す2種類のプライマーDNAを常法に従って合成し、再度PCR法によりC.jejuniのneuB1遺伝子を増幅した。

プライマー (K) :5' -AAGGATCCTCTAGTGAGGCTTATGGAA-3'

プライマー (L):5'-GTCTGCAGATTTAATCTTAGAATAATCAGCCC-3'

[0067]

PCRによるneuB1遺伝子の増幅は、反応液 $100\mu1$ 中(50mM 塩化カリウム、10mM トリス塩酸(pH8.3)、1.5mM 塩化マグネシウム、0.001%ゼラチン、テンペレートDNAO. $1\mu g$ 、プライマーDNA (A) (B) 各々 $0.2\mu M$ 、AmpliTaq DNAポリメラーゼ 2.5229ト)をPerkin-Elmer Cetus Instrument社製 DNA Thermal Cyclerを用いて、熱変性(94%、1分)、アニーリング(55%、1.5分)、ポリメライゼーション(72%、3分)のステップを25回繰り返すことにより行った。

[0068]

遺伝子増幅後、反応液をフェノール/クロロホルム(1:1)混合液で処理し、水溶性画分に2倍容のエタノールを添加しDNAを沈殿させた。沈殿回収したDNAをアガロースゲル電気泳動により分離し、1.2kb相当のDNA断片を精製した。該DNAを制限酵素BamHI及びPstIで切断し、同じく制限酵素BamHI及びPstIで切断し、同じく制限酵素BamHI及びPstIで切断し、同じく制限酵素BamHI及びPstIで消化したプラスミドpTrc99A(Pharmacia Biotech.社より入手)とT4DNAリガーゼを用いて連結した。連結反応液を用いて大腸菌JM109株を形質転換し、得られたアンピシリン耐性形質転換体よりプラスミドpTrcneuB1を単離した。pTrcneuB1は、pTrc99Aのtrcプロモーター下流のBamHI-PstI切断部位にС. jejuniのneuB1遺伝子の構造遺伝子を含有するDNA断片が挿入されたものである(FERM P-18905:平成14年6月25日特許生物寄託センターに寄託)。

[0069]

(2) nanE、neuBl遺伝子共発現プラスミドの構築

上記(1)で得られたpTrcneuB1プラスミドを制限酵素BamHIで

切断後、T4DNAポリメラーゼを用いて切断面を平滑化した。これを制限酵素PstIで切断し、neuB1遺伝子を含む(BamHI)ーPstI断片をアガロースゲル電気泳動を用いて回収した。続いて実施例1の(2)で得られたPTrcnanEプラスミドを制限酵素SalIで切断後、T4DNAポリメラーゼを用いて切断面を平滑化し、更に制限酵素PstIで切断した。これと上記で得られたneuB1遺伝子を含む(BamHI)ーPstI断片とをT4DNAライゲースを用いて連結した。この連結反応液を用いて大腸菌JM109株を形質転換し、得られたアンピシリン耐性形質転換体よりプラスミドpTrcNENBを単離した。pTrcNENBは、pTrc99Aのtrcプロモーター下流のXbaIーPstI切断部位にH.influenzaeのnanE遺伝子、並びにC.jejuniのneuB1遺伝子の構造遺伝子を含有するDNA断片が挿入されたものである。

[0070]

(3) CMP-NeuAcの合成

上記(2)で調製したプラスミドpTrcNENBを保持する大腸菌MC1061株(ATCC53338)の25m1培養液分の菌体50mgに50mMCMP、100mM G1cNAc、30mM 塩化マグネシウム、200mMグルコース、100mM ピルビン酸ナトリウム、0.5%(v/v)キシレン、4%(w/v)乾燥パン酵母(オリエンタル酵母社製)、並びに実施例1の(5)で調製したCMP-NeuAcシンセターゼ活性(1.7units/m1反応液)を有する酵素調製物を含有する175mM リン酸カリウム緩衝液(pH8.0)5m1を添加し、28℃で攪拌しながら72時間反応を行った。なお、反応開始14、24、38、48、62時間後に180mgグルコースをそれぞれ添加した。

反応液上清をHPLCにより分析したところ、25.6mMのCMP-Neu Ac生成が認められた。

[0071]

【配列表】

SEQUENCE LISTING

- <110> Yamasa Corporation
- <120> Process for producing cytidine 5'-monophospho-N-acetylneuraminic
 acid
- <130> YP2002-011

<140>

<141>

<160> 12

<170> PatentIn Ver. 2.1

<210> 1

⟨211⟩ 31

<212> DNA

<213> Artificial Sequence

<220>

<223> primer for amplification of nanA gene

<400> 1

caccatggcg aagatattgc cgctcaaact a

31

<210> 2

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> primer for amplification of nanA gene

<400> 2

ccgaattcat ttatgacaaa aatttcgctt tcaag

35

<210> 3

<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> primer for amplification of manE gen
<400> 3
ggtctagatt taaatgaggg gtgttatatg t
<210> 4
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<pre><223> primer for amplification of nanE ge</pre>
<400> 4
tcgtcgactt atcttgcaga tttcactgaa ttagcaaa
<210> 5
⟨211⟩ 29
<212> DNA
<213> Artificial Sequence
<220>
<223> primer for amplification of neuA ge
<400> 5
tgccatggtg aaaataataa tgacaagaa
<210> 6

<211> 28

<212> DNA

anE gene	31
nanE gene tagcaaacc a	41
neuA gene	29

<213> Artificial Sequence
<220>
<223> primer for amplification of neuA gene
<400> 6
aactgcagtg cagatcaaaa gtgcggcc
<210> 7
⟨211⟩ 33
<212> DNA
<213> Artificial Sequence
⟨220⟩
<223> primer for amplification of cmk gene
⟨400⟩ 7
ttgaattcta aggagataaa gatgacggca att
<210> 8
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> primer for amplification of cmk gene
<400> 8
ttgagctctg caaattcggt cgcttatgcg
<210> 9
<211> 22

<212> DNA

. <220>

<213> Artificial Sequence

<223> primer for amplification of neuBl gene
<400> 9
tacgattatt ttcctgatgc tc 22
<210> 10
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> primer for amplification of neuB1 gene
<400> 10
tctccaagct gcattaaacg cc
<210> 11
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> primer for amplification of neuB1 gene
<400> 11
aaggatcctc tagtgaggct tatggaa
<210> 12

22 27

<212> DNA

<213> Artificial Sequence

<220>

<223> primer for amplification of neuBl gene

<400> 12

32

gtctgcagat ttaatcttag aataatcagc cc

[0072]

【受託証】

2、数额国

INTERNATIONAL FORM

W

-特許手続上の像生物の券託の国際的承認 に関するプタペスト条約

下記国際冷託当局によって規則7.1に従い 発行される。

原客託についての受託証

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT

issued pursuant to Ru.e 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page.

殿

氏名(名称)

ヤマサ脅油株式会社

取締役社長

雅江 江旗

资准省

あて名 〒

千葉県銚子市新生町277日10番地の1

1. 微生物の表示 (受抗番号) (寄託者が付した識別のための表示) FERM BP- 6847 B. coli K-12株 ME8417 2. 科学的性質及び分類学上の位置 1個の微生物には、次の事項を記載した文書が添付されていた。 科学的性質 分類学上の位置 3. 受領及び受託 本国際寄託書局は、 平成 11 年 8 月 18 日 (原寄託日) に受領した1欄の優生物を受託する。 4. 移管間求の受領 日(原裔託日)に1棚の微生物を受償した。 本国際容託当局は、 日 に原容化よりブダベスト条約に基づく容能への移音請求を受領した。 そして、 5. 国際寄託当局 通商產業省工業技術院生命工学工業技術研究所 National In the Composition of Bioscience and Human-Technology
Agendy 2年記載即 rial Science and Technology
系 及 人名 信 记记 2月 名 称: Dr. Shin あて名: 日本国茨城県つく(南海東 (市田) (郵便番号305-8566) 1-3, Higashi 1 chome Tsukuba-shi Ibaraki-kea 305-8566. JAPAN 平成11年(1999) 8月23日 杏式 7

託 証 受

通知番号 : 14 産生寄 第 8 7 0 号

通知年月日: 平成 14年 6月 25日

ヤマサ醤油株式会社 取締役社長 濱口 道雄

殿

独立行政法人產業技術総合研究所 特許生物

(受託番号) FERM P- 18905		
2. 科学的性質及び分類学上の位置 1 欄の微生物には、次の事項を記象した文書が添付されていた。		
3. 受領及び受託		
当センターは、平成 14 年 6 月 25 日に受領した1棚の敬生物を受託する。		

要約書

【要約】

【課題】

本発明は、糖鎖合成の重要な原料であるCMP-NeuAcの改良された製造法を提供する。

【解決手段】

本発明は、G1cNAc、ピルビン酸およびCMPを含有する反応系に、酵母菌体、G1cNAc-6P2ーエピメラーゼ活性を有する菌体またはその処理物、NeuAcリアーゼ活性を有する菌体またはその処理物およびCMP-NeuAcシンセターゼ活性を有する菌体またはその処理物を添加し、反応させることを特徴とする、CMP-NeuAcの製造法に関する。

また、本発明は、G1cNAcおよびCMPを含有する反応系に、酵母菌体、G1cNAc-6P2ーエピメラーゼ活性を有する菌体またはその処理物、NeuAcシンセターゼ活性を有する菌体またはその処理物およびCMP-NeuAcシンセターゼ活性を有する菌体またはその処理物を添加し、反応させることを特徴とする、CMP-NeuAcの製造法に関する。

認定・付加情報

特許出願の番号

特願2002-208987

受付番号

50201051084

書類名

特許願

担当官

第五担当上席

0094

作成日

平成14年 7月23日

<認定情報・付加情報>

【提出日】

平成14年 7月18日

出 願 入 履 歴 情 報

識別番号

[000006770]

1. 変更年月日 1990年 8月 6日

[変更理由] 新規登録

住 所 千葉県銚子市新生町2丁目10番地の1

氏 名 ヤマサ醤油株式会社