一.计算方法及结果

1.Newton 迭代法

1. 初始值 x0=0.0

迭代步数 k	x_k	f (x_K)
0	0.00000000000000e+00	1.000000000000000e+00
1	6. 250000000000000e-02	2. 441711425781250e-01
2	9. 267514482259233e-02	6. 035782170991100e-02
3	1.075091602298661e-01	1. 499476015163659e-02
4	1. 148532337630462e-01	3. 724889874780923e-03
5	1. 184836815217452e-01	9. 162606433632536e-04
6	1. 202426067744978e-01	2. 157726880186450e-04
7	1. 210258178987533e-01	4. 284768185225385e-05
8	1. 212838327058685e-01	4. 653095935891471e-06
9	1. 213196266733557e-01	8. 956906283330568e-08
10	0. 121320343272188	3. 590072683579137e-11

2. 初始值 x0=1.0

迭代步数 k	x_k	f(x_K)
0	1.000000000000000e+00	7. 200000000000000e+01
1	6. 129032258064516e-01	1. 991614267569444e+01
2	3.857131772104702e-01	5. 325335197644391e+00
3	2. 596036488718693e-01	1. 386360679277504e+00
4	1. 925129685566582e-01	3. 545098794691199e-01
5	1. 577981765911962e-01	8. 968654972281587e-02
6	1. 401281446850926e-01	2. 254753819569033e-02
7	1. 312211106523800e-01	5. 640836772055957e-03
8	1. 267683504527241e-01	1. 398662165777331e-03
9	1. 245798350718595e-01	3. 365432712847394e-04
10	1. 235651039652907e-01	7. 221204915142110e-05
11	1. 231837476806297e-01	1. 019051840489560e-05
12	1. 231087710564429e-01	3. 937825602262635e-07
13	1. 231056311435804e-01	6. 905834792902965e-10

迭代步数 k	x_k	f(x_K)
14	0. 123105625617678	2. 109423746787797e-15

2.弦截法,

1. 初始值 x0=0 , x1=0.1

迭代步数 k	x_k	f(x_K)
0	0.000000000000000e+00	1.000000000000000e+00
1	1.000000000000000e-01	3. 42000000000001e-02
2	1. 035411058190102e-01	2. 417951833042820e-02
3	1. 120858281072353e-01	7. 095473154010934e-03
4	1. 156346859438016e-01	2. 965518222787566e-03
5	1. 181829468230801e-01	1. 079222604558838e-03
6	1. 196409053300360e-01	4. 068164063683044e-04
7	1. 205229933328385e-01	1. 440173238524967e-04
8	1. 210063890599083e-01	4. 610054781695183e-05
9	1. 212339783324780e-01	1. 130775027646802e-05
10	1. 213079454418150e-01	1.559168087528207e-06
11	1. 213197755884117e-01	7. 095743470575400e-08
12	1. 213203396462305e-01	4. 887535931530351e-10
13	0. 121320343558398	1. 554312234475219e-13

2. 初始值 x0=0.5 , x1=1.0

迭代步数 k	x_k	f (x_K)
0	5. 000000000000000e-01	1. 137500000000000e+01
1	1.000000000000000e+00	7. 200000000000000e+01
2	4. 061855670103093e-01	6. 228027101351925e+00
3	3. 499565652205555e-01	3. 929954963899061e+00
4	2. 537988158195038e-01	1. 269117150683200e+00
5	2. 079352730173661e-01	5. 300085908305792e-01
6	1.750469085585565e-01	1. 989823493760023e-01
7	1. 552774667209789e-01	7. 735363552613217e-02

迭代步数 k	x_k	f (x_K)
8	1. 427044636030916e-01	2. 954315328493617e-02
9	1. 349353271930080e-01	1. 132206511795264e-02
10	1. 301078071492485e-01	4. 318021695917107e-03
11	1. 271316211049350e-01	1. 640106488912663e-03
12	1. 253088367125381e-01	6. 156158190977479e-04
13	1. 242135266820752e-01	2. 244667452041549e-04
14	1. 235849666420880e-01	7. 600081203396059e-05
15	1. 232632020969761e-01	2. 143188696301923e-05
16	1. 231368294159937e-01	3. 967781373903634e-06
17	1. 231081180017610e-01	3. 119115794536498e-07
18	1. 231056684006906e-01	5. 346778686465825e-09
19	0. 123105625677342	7. 458478279431802e-12

二.算法分析

1. 公式的选取

公式即选取 newton 迭代公式和弦截法迭代公式.按照公式编程即可。

$$x_{k+1} = \phi(x_k) = x_k - \frac{f(x_k)}{f'(x_k)}$$

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}$$

2. 误差限说明

|f(x0)|<1e-10 时停止迭代

3. 编程实现的说明

使用 matlab 编程实现。按照实验要求,要编写牛顿迭代法和弦截法的通用程序,故将待积分函数 f(x)单独列为一个函数模块 f.m ,将 f(x)的导数单独列为一个函数模块 $f_1.m$,在主程序中调用。牛顿迭代函数主程序实现为newton.m 函数,弦截法主程序实现为 secant.m 函数。运行时将四个文件放于同一目录下,分别运行 newton.m 和 secant.m,即可分别从命令行窗口得到输出

三.结果分析

- 1. 由两种方法的结果都可以看出,初始值的选取对迭代次数和迭代结果都有影响。初始值与最终值相差越小则迭代次数越少。
- 2. 两种方法抛去初值的影响,牛顿迭代法的迭代次数较少,弦截法的迭代次数较多。一定程度上可以说明牛顿迭代法收敛速度较快。

四.小结

- 1. Newton 迭代法收敛速度快,但是也存在一些缺点,比如计算量大,每次迭代都要计算函数值和导数值,且当导数很小时,可能发生除数为0的情况。
- 2. 牛顿迭代法对初值的要求较苛刻,只有适当选取初值,才能保证其收敛性
- 3. 弦截法在牛顿法的基础上用差商代替导数,既有较高收敛速度,又不需计算导数值。但是收敛速度稍慢于牛顿法。