

Department of Chemistry

		In Semester Assessment (ISA) - II (P, Q & R Divisions)			
Course	v. Engineering Chemist		Course Code: 155CHP102		
	Ouration: 75 Minutes. Date: 25-07-2022 Max.		Course Code: 15ECHB102		
Duratio			Max. Marks:40		
		Time: 10:00 AM to 11.15 AM			
		Scheme and solution			
Q1 (a)	Manufacture of EGS by CVD process – Diagram and Explanation				
	(i) Reduction: 2 HSiCl _{3(g)} + 2 H ₂ (g) \rightarrow 2Si(s) + 6 HCl(g) at 1400°C		0°C 2 M		
	(ii) Pyrolysis: $SiH_4 \rightarrow$	Si + 2H ₂ (g) at 900°C	2 M		
(b)	Electroplating of gold by acid cyanide bath: Explanation and bath composition: Potassium gold cyanide: 6.0-18.0g/dm³; Potassium citrate: 50.0g/dm³; Mono potassium dihydrogen phosphate: 20.0g/dm³; pH: 3–6; Temp.: 40-70°C; Current density: 1-20A/ft²; Cathode efficiency: 80-90%; Leveler: Sodium allyl sulphonate; Anode: Pt, Platinized Ti; Cathode: Object to be electroplated (free from dirt. Oil and grease, etc.).				
	and external surfaces	circuits, transistors, integrated circuit parts, in exposed to radiation in space are gold platch cases, pen points, hallow ware, etc.,	_		
(c)	(i) Concentration of 'P' atoms in the melt, C _I :				
	• Segregation constant, K _o = C _s / C _I				
	$C_1 = C_s / K_o = 3X10^{15} / 0.32 = 9.375X10^{15} \text{ atoms/cm}^3 \dots$				
	(ii) Weight of "P" atoms to be added for 25X10 ³ g of Si, W _P :				
	 Volume of Silicon, V_{si}: 				
	V_{Si} = Weight of	f Si / Density of Si = $25X10^3 / 2.33 = 10.72$	96X10³ cm ³ 1M		
	 Total number of 'P' atoms in the given volume of Si, T_P: 				
	$T_P = C_I \times V_{si} = 9.375 \times 10^{15} \times 10.7296 \times 10^3 = 100.59 \times 10^{18}$ atoms				
	 Weight of 'P' atoms to be added, W_P: 				
	$W_B = \underline{Atomic\ w}$	veight of 'P' X Total number of 'P' atoms of	grams		
		Avogadro Number			
	$W_P = (30.97 X)$	(100.59 X 10 ¹⁸) / 6.023 X 10 ²³ grams			
	$W_P = 517.23$	$X \cdot 10^{-5} g$. = 517.23 $X \cdot 10^{-5} X \cdot 1000 \text{ mg}$			
	$W_P = 5.1723 \text{ m}$	<u>ıg</u>	2 M		
Q2 (a)	Thermal Oxidation: Dia	agram and Explanation	3 M		

4 M

Dry oxidation and Wet Oxidation - Reactions.

Department of Chemistry

(b)	The electro optic effect of liquid crystals controls brightness/darkness of the light emerging from its elements and this property of liquid crystals are used in information displays. Numerical display has 7 segments, whereas alphabets are displayed using 14 segments.		
	7 segment LCD for a digit . Consider a typical LCD cell and the electrical circuit with 4 rows and 2 columns for a digit to appear. Each row is connected to two segments and each column is connected to 3 or 4 segments and a, b, c, d, e, f and g are LCD cells.	3M	
	a: R1C1; b: R1C2; c: R2C2; d: R2C1; e: R3C1; f: R3C2; g: R4C2		
	Display of number 1 (c f); 7 (a c f); 6 (a b d e f g) and explanation		
(c)	Throwing Power: Ability of the bath to produce uniform and even deposit on the entire surface of the substrate.		
	X = d1/d2 = d1/4.8; $d1 = 4.8 * X$; $Y = W2/W1 = 68/64 = 1.0625$		
	% of TP = $((X-Y)/(X+Y-2)) * 100 = 75\%$		
	d1 = 6.9 cm	2M	
Q3 (a)	(a) Czhochralski crystal pulling technique: Single crystalline electronic grade Si is use as a seed to grow single crystal Si from polycrystalline Si. When the Si melt is pulle out, the atoms of polycrystalline Si solidifies and reproduces the same orientation ar crystal structure as that of the single crystalline electronic grade silicon seed.		
	The puller rate is maintained at around 50-100 mm/hour with rotation of 100 rpm at a pressure of 2-50 atmospheres .		
	Diagram, explanation of process, segregation constant		
(b)	Liquid crystals - Meaning		
	Thermotropic liquid crystals: The class of compounds that exhibit liquid crystal		
	behaviour on variation of temperature alone. Example: Cholesteryl benzoate is said to exist as liquid crystal between 145.5°C and 178.5°C.		
	•	3M	
	Lyotropic liquid crystals : Obtained by mixing the two components and increasing the concentration of one of the components till liquid crystal phase in observed. Example: Soap molecules (Soap - water mixture).		
	Micelles: Diagram and Formation of micelle - explanation.	3M	
(c)		3M	
	ā.		
	Thickness of SiO ₂ grown = $\frac{\text{Thickness of Silicon consumed}}{0.44}$ = $\frac{88}{0.44}$ = 200 Å	2M	

Dr. S. Dhanalakshmi Course coordinator, Chemistry Department.