Honors Mathematics IV RC 8

CHEN Xiwen

UM-SJTU Joint Institute

December 7, 2018

Table of contents

Power Series Solutions

The Power Series Ansatz
Euler's Equation
The Method of Frobenius

Bessel Functions

The Bessel Equations
Applications of Bessel Functions

Exercises

Power Series Solutions

The Power Series Ansatz

Euler's Equation
The Method of Frobenius

Bessel Functions

The Bessel Equations
Applications of Bessel Functions

Exercises

The Power Series Ansatz

Equation.

$$x'' + p(t)x' + q(t)x = 0$$

Solution.

1. Make power series ansatz of the solution:

$$x(t) = \sum_{k=0}^{\infty} a_k t^k.$$

2. Plug the ansatz into the equation using

$$x'(t) = \sum_{k=1}^{\infty} k a_k t^{k-1}, \quad x''(t) = \sum_{k=2}^{\infty} k(k-1) a_k t^{k-2}.$$

The Power Series Ansatz

Equation.

$$x'' + p(t)x' + q(t)x = 0$$

Solution.

- 3. Find the recurrence formula of a_k s.
- 4. Decide the first few terms (by initial conditions) to obtain two independent solutions $x_1(t), x_2(t)$.
- 5. Find x(t) by

$$x(t) = x_1(t) + x_2(t).$$

The Power Series Ansatz

Example 1. Determine the terms up to x^5 in each of the two linearly independent power series solutions to

$$y'' + (2 - 4x^2)y' - 8xy = 0$$

centered at x = 0. Also find the radius of convergence of these solutions.

Power Series Solutions

The Power Series Ansatz

Euler's Equation

The Method of Frobenius

Bessel Functions

The Bessel Equations
Applications of Bessel Functions

Exercises

Euler's equation.

$$t^2x'' + \alpha tx' + \beta x = 0, \quad \alpha, \beta \in \mathbb{R}.$$

Solution (t > 0). We make ansatz $x(t) = x^r$ and obtain

$$(r^2 + (\alpha - 1)r + \beta)t^r = 0, \quad r = -\frac{\alpha - 1}{2} \pm \frac{1}{2}\sqrt{(\alpha - 1)^2 - 4\beta}.$$

Then

•
$$(\alpha - 1)^2 - 4\beta > 0$$
. $r_1 \neq r_2 \in \mathbb{R}$.

$$x(t; c_1, c_2) = c_1 t^{r_1} + c_2 t^{r_2}, \qquad c_1, c_2 \in \mathbb{R}.$$

Euler's equation.

$$t^2x'' + \alpha tx' + \beta x = 0, \qquad \alpha, \beta \in \mathbb{R}.$$

Solution (t > 0). We make ansatz $x(t) = x^r$ and obtain

$$(r^2 + (\alpha - 1)r + \beta)t^r = 0, \quad r = -\frac{\alpha - 1}{2} \pm \frac{1}{2}\sqrt{(\alpha - 1)^2 - 4\beta}.$$

Then

•
$$(\alpha - 1)^2 - 4\beta = 0$$
. $r_1 = r_2 = \frac{1 - \alpha}{2}$.

$$x(t; c_1, c_2) = c_1 t^{r_1} + c_2 t^{r_1} \ln t, \qquad c_1, c_1 \in \mathbb{R}.$$

Euler's equation.

$$t^2x'' + \alpha tx' + \beta x = 0, \quad \alpha, \beta \in \mathbb{R}.$$

Solution (t > 0). We make ansatz $x(t) = x^r$ and obtain

$$(r^2 + (\alpha - 1)r + \beta)t^r = 0, \quad r = -\frac{\alpha - 1}{2} \pm \frac{1}{2}\sqrt{(\alpha - 1)^2 - 4\beta}.$$

Then

•
$$(\alpha - 1)^2 - 4\beta < 0$$
. $r_1 = \lambda + i\mu$, $r_2 = \lambda - i\mu \in \mathbb{C}$, where

$$\lambda = \frac{1-\alpha}{2}, \quad \mu = \frac{1}{2}\sqrt{4\beta - (\alpha - 1)^2}.$$

Then the two solutions are $x_1(t) = t^{r_1}, x_2(t) = t^{r_2}$ and

$$x(t; c_1, c_2) = c_1 t^{\lambda} \cos(\mu \ln t) + c^2 t^{\lambda} \sin(\mu \ln t), \quad c_1, c_2 \in \mathbb{R}.$$

Euler's equation.

$$t^2x'' + \alpha tx' + \beta x = 0, \quad \alpha, \beta \in \mathbb{R}.$$

General solution. For t > 0 or t < 0,

$$x(t;c_1,c_2) = \xi(-t;c_1,c_2) = \begin{cases} c_1 |t|^{r_1} + c_2 |t|^{r_2}, \\ c_1 |t|^{r_1} + c_2 |t|^{r_1} \ln |t|, \\ c_1 |t|^{\lambda} \cos(\mu \ln |t|) + c_2 |t|^{\lambda} \sin(\mu \ln |t|). \end{cases}$$

The solutions may not defined at t = 0.

Power Series Solutions

The Power Series Ansatz Euler's Equation

The Method of Frobenius

Bessel Functions

The Bessel Equations
Applications of Bessel Functions

Exercises

Regular Singular Points

Definition. The equation

$$x'' + p(t)x' + q(t)x = 0$$

has a regular singular point at t_0 if

- ▶ $(t t_0)p(t)$ and $(t t_0)^2q(t)$ are analytic in a neighborhood of t_0 or, equivalently,
- we have convergent power series such that

$$egin{aligned} p(t) &= rac{p_{-1}}{t-t_0} + \sum_{j=0}^{\infty} p_j (t-t_0)^j, \ q(t) &= rac{q_{-2}}{(t-t_0)^2} + rac{q_{-1}}{t-t_0} + \sum_{j=0}^{\infty} q_j (t-t_0)^j. \end{aligned}$$

in a neighborhood of t_0 .

$$t^2x'' + t(tp(t))x' + t^2q(t)x = 0,$$
 $t > 0$

Solution.

1. Make *Frobenius ansatz* and identify tp(t), $t^2q(t)$ and their coefficients,

$$x(t) = t^r \sum_{k=0}^{\infty} a_k t^k, \qquad a_0 \neq 0.$$

2. Plug in the ansatz (or memorize) to obtain the *indicial equation*

$$F(r) = 0, \quad F(x) := x(x-1) + p_0x + q_0,$$
 $a_m F(r+m) = -\sum_{k=0}^{m-1} (q_{m-k} + (r+k)p_{m-k})a_k, \quad m \ge 1.$

Find two independent solutions to the ODE. The first solution is (find by recurrent equation)

$$x_t(t) = t^{r_1} \sum_{k=0}^{\infty} a_k(r_1) t^k,$$

and

- ▶ $r_1 r_2 \notin \mathbb{N}$. Find x_1, x_2 by two different recurrent equations given by r_1 and r_2 .
- $ightharpoonup r_1 r_2 \in \mathbb{N}$.
 - ▶ Both sides vanish in the indicial equation for $N \in \mathbb{N}$: choose an arbitrary a_N and find the second independent solution.
 - ▶ One side does not vanish for $N \in \mathbb{N}$:

$$x_2(t) = \left. \frac{\partial}{\partial r} \left(t^r \sum_{k=0}^{\infty} a_k(r) t^k \right) \right|_{r=r_2} = c \cdot x_1(t) \ln t + t^{r_2} \sum_{k=0}^{\infty} a_k'(r_2) t^k,$$

where $c \in \mathbb{R}$ may vanish. If $r_1 = r_2$, then c = 1.

Example 2. Find a series solution about x = 0 of

$$x^2y'' - xy' + (1-x)y = 0.$$

Example 3. Find the first few terms of the second series solution about x = 0 of

$$x^2y'' - xy' + (1 - x)y = 0.$$

Power Series Solutions

The Power Series Ansatz
Euler's Equation
The Method of Frobenius

Bessel Functions

The Bessel Equations

Applications of Bessel Functions

Exercises

Bessel equations. The **Bessel equation** of order ν is given by

$$x^2y'' + xy' + (x^2 - \nu^2)y = 0, \quad x \in \mathbb{R}.$$

Equation.

$$t^{2}x'' + tx' + \left(t^{2} - \frac{1}{4}\right)x = 0.$$

Solution (Frobenius method).

1. Find tp(t) = 1, $t^2q(t) = t^2 - 1/4$, which are analytic at t = 0 and

$$p_0=1,$$
 $p_k=0 \ (k \ge 1),$ $q_0=-rac{1}{4},$ $q_1=0,$ $q_2=1,$ $q_k=0 \ (k \ge 3).$

2. Write and solve the indicial equation

$$F(r) = r(r-1) + p_0 r + q_0 = (r + \frac{1}{2})(r - \frac{1}{2}) = 0,$$

giving $r_1 = 1/2$ and $r_2 = -1/2$.

Equation.

$$t^2x'' + tx' + \left(t^2 - \frac{1}{4}\right)x = 0.$$

Solution (Frobenius method).

3. Write out the recurrent relation:

$$a_m F(r+m) = -\sum_{k=0}^{m-1} (q_{m-k} + (r+k)p_{m-k})a_k, \quad m \ge 1,$$

which gives

$$-a_1F(r+1) = 0$$
, $-a_mF(r+m) = a_{m-2}$

for m > 2. Set $a_0 = 1$.

Equation.

$$t^2x'' + tx' + \left(t^2 - \frac{1}{4}\right)x = 0.$$

Solution (Frobenius method).

- 4. Find the two independent solutions. $(r_1 r_2 = 1.)$
 - $r_1 = \frac{1}{2}$. For $m \ge 2$, the recurrent equation is

$$a_m=-\frac{a_{m-2}}{m(m+1)},$$

giving

$$a_{2k+1} = 0$$
, $a_{2k} = \frac{1}{2k(2k+1)} \frac{1}{(2k-2)(2k-1)} a_{2(k-2)}$.

Then $x_1(t)$ is given by

$$x_1(t) = t^{r_1} \sum_{n=0}^{\infty} a_m t^m = \frac{\sin t}{\sqrt{t}}.$$

Equation.

$$t^2x'' + tx' + \left(t^2 - \frac{1}{4}\right)x = 0.$$

Solution (Frobenius method).

- 4. Find the two independent solutions. $(r_1 r_2 = 1.)$
 - ▶ $r_2 = -\frac{1}{2}$. Both sides of the recurrent relation vanish for N = 1 in $F(r_2 + N)$. So a_1 is arbitrary (set to 0). For $m \ge 2$, the recurrent relation is

$$a_m=-\frac{a_{m-2}}{m(m-1)},$$

giving

$$a_{2k+1} = 0,$$
 $a_{2k} = \frac{(-1)^k}{(2k)!}.$

Then $x_2(t)$ is given by

$$x_2 = t^{r_2} \sum_{n=0}^{\infty} a_m t^m = \frac{\cos t}{\sqrt{t}}.$$

Equation.

$$t^2x'' + tx' + t^2x = 0.$$

Solution (Frobenius method).

1. Find tp(t) = 1, $t^2q(t) = t^2$, which are analytic at t = 0 and

$$p_0 = 1, \quad p_1 = 0,$$
 $p_k = 0 \ (k \ge 2),$ $q_0 = 0, \quad q_1 = 0,$ $q_2 = 1,$ $q_k = 0 \ (k \ge 3).$

2. Write and solve the indicial equation

$$F(r) = r(r-1) + p_0 r + q_0 = r^2 = 0,$$

giving $r_1 = r_2 = 0$.

Equation.

$$t^2x'' + tx' + t^2x = 0.$$

Solution (Frobenius method).

3. Write out the recurrent relation:

$$a_m F(r+m) = -\sum_{k=0}^{m-1} (q_{m-k} + (r+k)p_{m-k})a_k, \quad m \ge 1,$$

which gives

$$(r+1)^2 a_1 = 0$$
, $a_m(r+m)^2 = -a_{m-2}(r)$

for $m \ge 2$. Then we know $a_1 = 0$ and set $a_0 = 1$.

Equation.

$$t^2x'' + tx' + t^2x = 0.$$

Solution (Frobenius method).

- 4. Find the two independent solutions. $r_1 = r_2 = 0$.
 - \triangleright x_1 . From the recurrent relations we know that

$$a_{2k+1}=0, \quad a_{2k}=\frac{1}{(r+2k)^2}\frac{1}{(r+2k-2)^2}a_{2k-4}(r).$$

Then $x_1(t)$ is given by

$$x_1(t) = t^{r_1} \sum_{m=0}^{\infty} a_m t^m = \sum_{k=0}^{\infty} \frac{(-1)^k}{2^{2k} (k!)^2} t^{2k}.$$

Equation.

$$t^2x'' + tx' + t^2x = 0.$$

Solution (Frobenius method).

- 4. Find the two independent solutions. $r_1 = r_2 = 0$.
 - \triangleright x_2 . The second solution is given by

$$x_2(t) = \left. \frac{d}{dt} \left(t^r \sum_{k=0}^{\infty} a_k(r) t^k \right) \right|_{r=r_2=0}$$

$$= x_1(t) \ln t + \sum_{k=0}^{\infty} a'_k(0) t^k,$$

with

$$a_{2k}(r) = \frac{(-1)^k}{(2+r)^2(4+r)^2\cdots(2k+r)^2}.$$

Equation.

$$t^2x'' + tx' + t^2x = 0.$$

Solution (Frobenius method).

- 4. Find the two independent solutions. $r_1 = r_2 = 0$.
 - ► x₂. Then we have

$$\frac{a_{2k}'(r)}{a_{2k}(r)} = -2\sum_{j=1}^k \frac{1}{2j+r}.$$

evaluated at $r_2 = 0$,

$$a'_{2k}(0) = -\left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{k}\right) 2_{2n}(0).$$

Therefore,

$$x_2(t) = x_1(t) \ln t + \sum_{k=0}^{\infty} \left(\sum_{i=1}^k \frac{1}{i} \right) \frac{(-1)^{k+1}}{2^{2k} (k!)^2} t^{2k}.$$

Generating function. The function

$$\Psi(x,t)=e^{\frac{x}{2}(t-1/t)}.$$

is a *generating function* for the Bessel functions of the first kind and integer order. More precisely,

$$e^{\frac{x}{2}(t-1/t)} = \sum_{-\infty}^{\infty} J_n(x)t^n.$$

Bessel functions of integer order. For $n \in \mathbb{N}$ the function $J_n : \mathbb{R} \to \mathbb{R}$ is given by

$$J_n(x) := \sum_{r=0}^{\infty} \frac{(-1)^r}{(r+n)!r!} \left(\frac{x}{2}\right)^{2r+n}, \quad J_{-n} = (-1)^n J_n.$$

General Bessel functions. The Bessel functions $J_{\nu}(x)$ of order $\nu \in \mathbb{R}$ is given by

$$J_{\nu}(x) = \sum_{r=0}^{\infty} \frac{(-1)^r}{\Gamma(\nu+r+1)r!} \left(\frac{x}{2}\right)^{2r+\nu},$$

where Γ is the Gamma function.

Trigonometric approximation.

$$J_n(x) \sim \frac{1}{\sqrt{x}} \cos\left(x - \frac{2n+1}{4}\pi\right), \quad \text{as } x \to \infty.$$

Graph of some Bessel functions.

The graph shows

- ► *J*₀ (red),
- $ightharpoonup J_1$ (yellow),
- $ightharpoonup J_2$ (green),
- ► J₃ (light blue),
- ► J₄ (dark blue),
- ► *J*₅ (violet).

Recurrence relations.

$$2nJ_n(x) = xJ_{n+1}(x) + xJ_{n-1}(x),$$

$$J'_n(x) = \frac{1}{2}(J_{n-1}(x) - J_{n+1}(x)).$$

For $\nu \in \mathbb{R}$.

$$\frac{d}{dx}(x^{\nu}J_{\nu}(x)) = x^{\nu}J_{\nu-1}(x), \quad \frac{d}{dx}(x^{-\nu}J_{\nu}(x)) = -x^{-\nu}J_{\nu+1}(x).$$

Power Series Solutions

The Power Series Ansatz
Euler's Equation
The Method of Frobenius

Bessel Functions

The Bessel Equations
Applications of Bessel Functions

Exercises

Applications of Bessel Functions

 Use substitution or separation of variables ansatz to obtain a Bessel function

$$x^2y'' + xy' + (x^2 - \nu^2)y = 0, \quad x \in \mathbb{R}.$$

- 2. Once the Bessel function is obtained, we can directly write out the solution depending on the practical conditions:
 - Solution is finite (most common):

$$y(x)=c\cdot J_{\nu}(x).$$

Solution is infinite:

$$y(x) = c \cdot Y_{\nu}(x).$$

Substitute back for the original variables and insert boundary/initial conditions.

The Suspended Chain

Model equation. PDE with boundary condition at x = I:

$$\frac{1}{g}u_{tt}(x,t)=x\cdot u_{xx}(x,t)+u_{x}(x,t),\quad y(l)=0.$$

Solution.

1. Suppose *u* is periodic with respect to time:

$$u(x,t)=y(x)\cdot e^{i\omega t}$$

for some frequency ω , then we obtain the ODE

$$\frac{\partial}{\partial x}(x \cdot y') + \frac{\omega^2}{g}y = 0.$$

Use substitution

$$x = \frac{gz^2}{4\omega^2}, \qquad z = 2\omega\sqrt{\frac{x}{g}}.$$

The Suspended Chain

Model equation. PDE with boundary condition at x = I:

$$\frac{1}{g}u_{tt}(x,t)=x\cdot u_{xx}(x,t)+u_{x}(x,t),\quad y(l)=0.$$

Solution.

3. Obtain the Bessel equation of order zero:

$$zw'' + w' + zw = 0.$$

4. Write out the finite solution for the Bessel equation

$$w(z) = c \cdot J_0(z).$$

5. Substitute back for the original variables and insert the boundary conditions:

$$y(x) = c \cdot J_0\left(2\omega\sqrt{\frac{x}{g}}\right), \quad \omega = \frac{1}{2}\sqrt{\frac{g}{I}} \cdot \alpha_{0,n}.$$

Airy's Equation

Airy's equation.

$$y'' + xy = 0.$$

Solution.

1. Use substitution

$$u(t) = x^{-1/2}y(x),$$
 $t = \frac{2}{3}x^{3/2}$

to obtain the Bessel equation of order $\nu=1/3$:

$$\frac{du}{dt} = \frac{du}{dx} \cdot \frac{dx}{dt} = -\frac{1}{2}x^{-2}y + x^{-1}\frac{dy}{dx},$$

$$\frac{d^2u}{dt^2} = \frac{d}{dt}\left(\frac{du}{dt}\right) = x^{-7/2}y - \frac{3}{2}x^{-5/2}\frac{dy}{dx} + x^{-3/2}\frac{d^2y}{dx^2}.$$

Airy's Equation

Airy's equation.

$$y'' + xy = 0.$$

Solution.

1. Use substitution

$$u(t) = x^{-1/2}y(x), t = \frac{2}{3}x^{3/2}$$

to obtain the Bessel equation of order $\nu=1/3$: Then

$$\frac{dy}{dx^2} = x^{3/2} \frac{d^2 u}{dt^2} - \frac{1}{4} x^{-3/2} u + \frac{3}{2} \frac{du}{dt},$$

substituting $t = \frac{2}{3}x^{3/2}$, we then have

$$t^2u'' + tu' + (t^2 - \frac{1}{9})u = 0.$$

Airy's Equation

Airy's equation.

$$y'' + xy = 0.$$

Solution.

2. Write out the general solution using Bessel functions:

$$u(t) = c_1 J_{1/3}(t) + c_2 J_{-1/3}(t).$$

3. Substitute back for the original variables.

$$y(x) = c_1 \cdot x^{1/2} J_{1/3} \left(\frac{2}{3} x^{3/2} \right) + c_2 \cdot x^{1/2} J_{-1/3} \left(\frac{2}{3} x^{3/2} \right).$$

Transforming an Equation into a Bessel's Equation

A Bessel function is of the form

$$t^2u'' + tu' + (t^2 - \nu^2)u = 0.$$

Using the substitution $t = ax^b, u = yx^c$, we have

$$y = x^{-c}u(t(x)),$$
 $\frac{dt}{dx} = abx^{b-1}$

and thus

$$y' = -cx^{-c-1}u + abx^{b-c-1}u'$$

$$y'' = c(c+1)x^{-2}y + ab(b-2c-1)x^{b-c-2}u' + a^2b^2x^{2b-c-2}u''.$$

Transforming an Equation into a Bessel's Equation

Solving for u, u' and u'', we have

$$u = yx^{c}, \qquad u' = \frac{y' + cx^{-1}y}{abx^{b-c-1}},$$

$$u'' = \frac{y'' - c(c+1)yx^{-2} - ab(b-2c-1)x^{b-c-2} \cdot \frac{y' + cx^{-c-1}u}{abx^{b-c-1}}}{a^{2}b^{2}x^{2b-c-2}}$$

Therefore, we can transform the original equation into

$$x^{2}y'' + x(2c+1)y' + (a^{2}b^{2}x^{2b} - b^{2}\nu^{2} + c^{2})y = 0.$$

Differential equations of this form can be transformed into a Bessel's equation using substitution

$$t = ax^b$$
, $u = yx^c$.

Transforming an Equation into a Bessel's Equation

Example. For Airy's Equation, we have

$$x^2y'' + x^3y = 0,$$

where $c=-\frac{1}{2}$, $b=\frac{3}{2}$ and $a=\frac{2}{3}$, therefore, the transformation is

$$t = ax^b = \frac{2}{3}x^{3/2},$$
 $u(t) = yx^c = x^{-1/2}y.$

and the order is given by

$$c^2 = b^2 \nu^2 \quad \Rightarrow \quad \nu = \frac{1}{3}.$$

Exercises

Exercise 1. The Legendre differential equation of order $\lambda \in \mathbb{R}$ is given by

$$(1 - x^2)y'' - 2xy' + \lambda(\lambda + 1)y = 0.$$

- 1. Find the general solution of the equation in power series form.
- 2. Verify that if $\lambda \in \mathbb{N}$ there exists a non-zero polynomial solution.

Exercises

Exercise 2. Use the method of Frobenius to solve

$$5x^2y'' + x(1+x)y' - y = 0.$$

Thanks for your attention!