

GRAPHS

Algorithms and Data Structures 2 Exercise – 2023W Martin Schobesberger, Markus Weninger, Markus Jäger, Florian Beck, Achref Rihani

Institute of Pervasive Computing Johannes Kepler University Linz

teaching@pervasive.jku.at

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria jku.at

VERTICES AND EDGES

$$G = (V, E)$$

- V... Set of vertices (or nodes)
- E... Set of edges

Example:

$$\circ V = \{a, b, c, d\}$$

$$\circ$$
 E = {{a, b}, {b, d}, {c, d}, {c, b}}

Two vertices are adjacent, if they are connected by an edge.

An edge *e* connecting two vertices *x* and *y* is called **incident** to *x* and *y*.

MOTIVATION

Graphs are one of the most basic data structures. Many problems can be characterized by graphs, such as:

- Electric power grid
 - Nodes: power distributors, transformer stations, etc.
 - Edges: wires
 - No defined direction → undirected graph
 - Cycles are possible
- Material flow in manufacturing companies
 - Nodes: workstations
 - Edges: band-conveyors
 - Raw materials only flow in one direction → directed graph
 - Limited capacity of band-conveyors → weighted graph
 - No cycles
- Social distance in a set of persons
 - Nodes: Humans
 - Edges: Relations

Degree of a vertex:

Number of vertices that are adjacent to it
 (which is not necessarily equal to the number of edges)

Path: Sequence of adjacent vertices

- simple: No vertex occurs more than once.
- cyclic: At least one vertex occurs more than once.

Cyclic graph:

Contains at least one cyclic path (otherwise: acyclic graph)

Directed edge: Connection from a to b

Directed graph: Contains only directed edges

Loop:

Edge (v, v) for vertex v

Component: connected part of a graph

Connectivity (1)

- Two vertices are called connected if there is a path (i.e., a sequence of edges) between them.
- Connected graph: Each pair of vertices in the graph is connected. This means that there is a path between every pair of vertices.
- Complete graph: Each pair of vertices is adjacent to each other (number of edges= n(n-1)/2)

counter example

example

counter example

Connectivity (2)

- Strongly connected directed graph is a directed graph in which a directed path between every pair of vertices exists
- Weakly connected directed graph is a directed graph whose underlying *undirected* graph is connected, i.e., if replacing all directed edges with undirected edges leads to a connected graph.

Tree: Connected, acyclic, undirected graph

Forest: Set of trees

Weighted graph: Contains weighted edges.

Example:

In-degree		Out-degree
Degree("C"):	(2,1)	
Weighted:	yes	
Directed:	yes	
Cyclic:	no	
Loops:	0	
Connected:	weak	
Tree:	no	

Graphs can be represented in form of a:

- Edge list
- Adjacency matrix

DATA STRUCTURES

Edge list

- Principle: 2 data structures (for vertices and edges)
 - Array/List for vertices (add new vertices at the end)

```
class Vertex {
   Object content
   toString() {...}
}
Vertex vertices[] // in Graph class
```


index	0	1	2	3	4	5
vertex	Α	В	С	D	Ε	F

DATA STRUCTURES

Edge list

- Principle: 2 data structures (for vertices and edges)
 - Array/List for vertices (add new vertices at the end)

```
class Vertex {
   Object content
   toString() {...}
}
Vertex vertices[] // in Graph class
```

index	0	1	2	3	4	5
vertex	Α	В	C	D	E	F

Array/List for edges

```
class Edge {
    Vertex first, second // the edge's vertices
    int weight // edge weight
}
Edge edges[] // in Graph class
```

index	0	1	2	3	4	5
edge	A B 2	B C 1	C E 4	D C 5	D E 7	F D 2

DATA STRUCTURES

Adjacency matrix

- Principle: Graph with n vertices is represented by an n x n matrix
 - Each vertex is assigned to an index.
 - Relation of the vertices are entered in the matrix.
 - True is entered in the *i*th row and *j*th column if vertices *i* and *j* are connected by an **unweighted edge**, otherwise false.
 - For weighted graphs enter the edge weight
 - The adjacency matrix is symmetrical if the graph does not contain any directed edges.
 - The main diagonal remains free if the graph contains no loops
 - If there is no edge, for example -1 can be entered.

<u> </u>						
	A	В	C	D	E	F
A	/	2				
В		//	1			
C				4		
D			5		7	
E					//	
F				2		

TRAVERSAL

Two ways of traversing graphs (i.e., visiting all edges):

- Breadth First Search (BFS)
- Depth First Search (DFS)

DFS/BFS can be used to check:

- Is a graph G connected?
- Number of components in *G*?
- Is G cyclic?

TRAVERSAL :: DEPTH FIRST SEARCH (DFS)

Principle

- Start with any vertex v:
 - Visit v
 - Traverse (recursively) any unvisited vertex connected to v.

Implementation hint

Usage of an auxiliary array/set to note which vertices have already been visited.

HINT

The following slides only account for undirected graphs

- In the example, we also want to ignore "trivial cycles"
 (a single edge in an undirected graph automatically forms a "trivial cycle")
- Directed graphs can use similar techniques, yet certain details may need to be adjusted

Is graph G connected (method boolean isConnected())?

Does graph G contain cycles (method boolean isCyclic())?

- 1. Mark **node (v)** as **visited**(Set value in auxiliary array at index of v to true).
- 2. Determine the set of all vertices AD(v) that are adjacent to v (How to create AD(v): Iterate over edge list and determine adjacent vertices).
- 3. For **each vertex n in AD(v), if n has not yet been visited,** go back to step 1 (v = n). (Can be implemented recursively. If we encounter an already visited node, the graph contains a cycle. In the following example we also have cycle_candidates(v) which are all vertices connected to v, except for the one that called DFS(v)).
- → If the auxiliary array is completely filled at the end, the graph is connected.

index	1	2	3	4	5	6
vertex	Α	В	С	D	Е	F
Visited	F	F	F	F	F	F

DFS(A): start vertex A

Auxiliary array for visited nodes

index	1	2	3	4	5	6
vertex	Α	В	С	D	Е	F
Visited	Т	F	F	F	F	F

DFS(A): start vertex A

mark A / check B (not visited yet)

index	1	2	3	4	5	6
vertex	Α	В	С	D	Е	F
Visited	Т	Т	F	F	F	F

DFS(B): A \rightarrow B

mark B / check A (already visited), C

index	1	2	3	4	5	6
vertex	Α	В	С	D	Е	F
Visited	Т	Т	Т	F	F	F

DFS(C): A \rightarrow B \rightarrow C

mark C / check B (already visited), D, E

No general visiting order

→ Implementation dependent

index	1	2	3	4	5	6
vertex	Α	В	С	D	Е	F
Visited	Т	Т	Т	Т	F	F

 $DFS(D): A \rightarrow B \rightarrow C \rightarrow D$

mark D / check C (already visited), E, F

index	1	2	3	4	5	6
vertex	Α	В	С	D	E	F
Visited	Т	Т	Т	Т	Т	F

DFS(E): A \rightarrow B \rightarrow C \rightarrow D \rightarrow E

mark E / check C, D (cycle candidates ("visited without last"): A, B, C.

D is no candidate because it was the last one visited – this is to prevent trivial cycles)

index	1	2	3	4	5	6
vertex	Α	В	С	D	E	F
Visited	Т	Т	Т	Т	Т	F

overlap

mark E / check C, D (cycle candidates ("visited without last"): A, B, C)

index	1	2	3	4	5	6
vertex	Α	В	С	D	E	F
Visited	Т	Т	Т	Т	Т	F

not last) → cyclic graph!

mark E / check C, D (cycle candidates ("visited without last"): A, B, C)

index	1	2	3	4	5	6
vertex	Α	В	С	D	Е	F
Visited	Т	Т	Т	Т	Т	F

DFS(E): A \rightarrow B \rightarrow C \rightarrow D \rightarrow E

overlap

Overlap between the vertex to be checked (adjacent) and cycle candidate (visited but not last) → cyclic graph!

mark E / check C, D (cycle candidates ("visited without last"): A, B, C)

Vertices C, D already marked, therefore go back in recursion to vertex D and visit F from there.

index	1	2	3	4	5	6
vertex	Α	В	С	D	Е	F
Visited	Т	Т	Т	Т	Т	F

 $DFS(\mathbf{D}): A \rightarrow B \rightarrow C \rightarrow \mathbf{D} \rightarrow E$

mark D / check E (already visited), F

index	1	2	3	4	5	6
vertex	Α	В	С	D	E	F
Visited	Т	Т	Т	Т	Т	Т

$$DFS(F): A \rightarrow B \rightarrow C \rightarrow D \rightarrow E$$

 $\rightarrow F$

mark F / check D (cycle candidate: A,C,B,E)

Vertex D already marked, therefore:

- go back in recursion to D (no more unvisited neighbors to visit from E)
 - go back in recursion to C (no more unvisited neighbors to visit from C)
 - **go back in recursion to B** (no more unvisited neighbors to visit from B)
 - go back in recursion to A (no more unvisited neighbors to visit from A)
 - end DFS

index	1	2	3	4	5	6
vertex	Α	В	С	D	Е	F
Visited	Т	Т	Т	Т	Т	Т

 $DFS(F): A \rightarrow B \rightarrow C \rightarrow D \rightarrow E$ $\rightarrow F$

mark F / check E (cycle candidate: A,C,B,D)

Auxiliary array filled completely

→ graph connected!

Vertex E already marked, **therefore**:

- go back in recursion to E (no more unvisited neighbors to visit from E)
 - **go back in recursion to** C (no more unvisited neighbors to visit from C)
 - go back in recursion to B (no more unvisited neighbors to visit from B)
 - go back in recursion to A (no more unvisited neighbors to visit from A)
 - end DFS

What is the number of components in the graph (method int getNumOfComponents())?

 DFS is called once (starting with vertex A) and return the following array (= 1. component)

vertex	Α	В	С	D	Е	F
visited	T	T	T	F	F	F

Then call DFS until all fields are marked (continuing with the next unmarked vertex, here D)

- DFS ends for the 2. time (= 2. component)
- DFS ends for the 3. time (= 3. component)

vertex	Α	В	С	D	Е	F
visited	Т	T	T	T	F	F

vertex	Α	В	С	D	Е	F
visited	T	T	T	T	T	T

GRAPHS:: DIJKSTRA

Edsger Wybe Dijkstra (1930-2002)

Dutch Computer Scientist

1972 Turing Award

"Computer science is no more about computers than astronomy is about telescopes."

Find the shortest path in weighted graphs from vertex x to all accessible vertices.

GRAPHS :: DIJKSTRA

Edsger Wybe Dijkstra (1930-2002) **Dutch Computer Scientist**

1972 Turing Award

"Computer science is no more about computers than astronomy is about telescopes."

Find the shortest path in **weighted graphs** from vertex *x* to all accessible vertices.

GRAPHS :: DIJKSTRA

Edsger Wybe Dijkstra (1930-2002)

Dutch Computer Scientist

1972 Turing Award

"Computer science is no more about computers than astronomy is about telescopes."

Find the shortest path in weighted graphs from vertex x to all accessible vertices.

Shortest Path = Path with the minimum total edge weight

Preconditions:

Edge weights must not be negative

Example application:

Routing protocols

Continue with unvisited vertex that has smallest dist

Edsger Wybe Dijkstra (1930-2002)

Dutch Computer Scientist

Dutch Computer Scientist 1972 Turing Award

"Computer science is no more about computers than astronomy is about telescopes."

Find the shortest path in weighted graphs from vertex x to all accessible vertices.

Shortest Path = Path with the minimum total edge weight

Preconditions:

Edge weights must not be negative

Example application:

Routing protocols

Edsger Wybe Dijkstra (1930-2002)

Dutch Computer Scientist 1972 Turing Award

"Computer science is no more about computers than astronomy is about telescopes."

Find the shortest path in weighted graphs from vertex x to all accessible vertices.

Shortest Path = Path with the minimum total edge weight

Preconditions:

Edge weights must not be negative

Example application:

Routing protocols

	Α	В	С	D	Е	F	G
Α		2					
В							
С		9			4		
D						2	
Е	9		3	3		7	
F							2
G	1	9	6				

Edsger Wybe Dijkstra (1930-2002)

Dutch Computer Scientist 1972 Turing Award

"Computer science is no more about computers than astronomy is about telescopes."

Find the shortest path in **weighted graphs** from vertex *x* to all accessible vertices.

Shortest Path = Path with the minimum total edge weight

Preconditions:

Edge weights must not be negative

Example application:

Routing protocols

	Α	В	С	D	Ε	F	G
Α		2					
В							
С		9			4		
D						2	
Е	9		3	3		7	
F							2
G	1	9	6				

The matrix is to be read line by line. For example, in the 1st line there is a directed edge with weight 2 from vertex *A* to the vertex *B*.

Three set of vertices (either VV or NV is optional, can be calculated on the fly):

- All vertices (V) → Given by graph
- Already visited vertices (VV) → "Cloud of Vertices" (in the end contains all reachable vertices)
- Not yet visited vertices (NV)

1. Search starts with some vertex x

- x is put into the set VV and removed from set NV
- Determine the distances to adjacent vertices
- Store current minimum distances in array d (length of d = number of vertices)
- ° Initialization: d(i) = ∞
- First step: d(i) = weight(x, i) ... for vertices i that are adjacent to x

2. Next step

- Select vertex from NV with smallest minimum distance (that is not ∞) as new start vertex w.
- Continue until the set NV is empty (or all vertices in NV have a minimum distance of ∞).
- As soon as a vertex is in set **VV**, its minimum distance is never changed anymore.

In each step: d(i) = min(d(i), d(w) + weight(w,i)) ... for all nodes i in NV adjacent to w d(i) ... Current minimum distance from vertex i to the start vertex x. d(w) ... Minimum distance from current vertex w to the start vertex x.

2. Next step

- Select vertex from NV with smallest minimum distance (that is not ∞) as new start vertex x.
- Continue until the set NV is empty.
- As soon as a vertex is in set VV, its minimum distance is never changed anymore.

In each step: d(i) = min(d(i), d(w) + weight(w,i)) ... for all nodes i in NV adjacent to w d(i) ... Current minimum distance from vertex i to the start vertex x. d(w) ... Minimum distance from current vertex w to the start vertex x.

Example:

Calculate the distances of the shortest paths from vertex **E** to all other vertices in the graph, using the shortest path algorithm of Dijkstra.

Current vertex	Already visited (VV)	Not yet visited (NV)	d (A)	d (B)	d (C)	d (D)	d (E)	d (F)	d (G)	Local min.
E	{E}	$\{A,B,C,D,F,G\}$	9	∞	3	3	0	7	∞	3

- Initialize: For each vertex *i* adjacent to start vertex *x* → *d(i)* = weight(*x*, *i*), shortest_path(*i*) = [*x*, *i*]
 others → *d(i)* = ∞, shortest_path(*i*) = []
- Next vertex → NV vertex with local min
 - ° Local min: NV with min. distance < ∞
 - ∘ In this case: C or D

Current vertex	Already visited (VV)	Not yet visited (NV)	d (A)	d (B)	d (C)	d (D)	d (E)	d (F)	d (G)	Local min.
Е	{E}	$\{A,B,C,D,F,G\}$	9	∞	3	3	0	7	∞	3
С	{E,C}	{A,B,D,F,G}	9	12		3		7	∞	3

- d(B) = min(d(B), d(C) + 9) = min(∞, 12) = 12
 shortest_path(B) changes from [] to [E,C,B] (which is shortest_path(C) + B)
- d(E): Vertex E is already in *VV*; therefore no changes anymore

Current vertex	Already visited (VV)	Not yet visited (NV)	d (A)	d (B)	d (C)	d (D)	d (E)	d (F)	d (G)	Local min.
Е	{E}	$\{A,B,C,D,F,G\}$	9	∞	3	3	0	7	∞	3
С	{C,E}	$\{A,B,D,F,G\}$	9	12		3		7	∞	3
D	{C,D,E}	{A,B,F,G}	9	12				5	∞	5

- d(F): min(d(F), d(D) + 2) = min(7, 3 + 2) = 5
 - shortest_path(F) changes from [E,F] to [E,D,F] (which is shortest_path(D) + F)

Current vertex	Already visited (VV)	Not yet visited (NV)	d (A)	d (B)	d (C)	d (D)	d (E)	d (F)	d (G)	Local min.
Е	{E}	$\{A,B,C,D,F,G\}$	9	∞	3	3	0	7	∞	3
С	{C,E}	$\{A,B,D,F,G\}$	9	12	•	3	•	7	∞	3
D	{C,D,E}	{A,B,F,G}	9	12				5	∞	5
F	{C,D,E,F}	{A,B,G}	9	12		•			7	7

- $d(G) = min(d(G), d(F) + 2) = min(\infty, 7) = 7$
 - shortest_path(G) changes from [] to [E,D,F,G] (which is shortest_path(F) + G)

Current vertex	Already visited (VV)	Not yet visited (NV)	d (A)	d (B)	d (C)	d (D)	d (E)	d (F)	d (G)	Local min.
Е	{E}	{A,B,C,D,F,G}	9	∞	3	3	0	7	∞	3
С	{C,E}	$\{A,B,D,F,G\}$	9	12	•	3	•	7	∞	3
D	$\{C,D,E\}$	$\{A,B,F,G\}$	9	12				5	∞	5
F	$\{C,D,E,F\}$	$\{A,B,G\}$	9	12					7	7
G	{C,D,E,F,G}	{A,B}	8	12	•	•	•	•	•	8

• d(A): min(d(A), d(G) + 1) = min(9, 7 + 1) = 8

shortests_path(A) changes from [E,A] to [E,D,F,G,A] (which is shortest_path(G) + A)

•	d(B)	: d	(A) +	2
---	----	----	-----	----	-----	---

shortests_path(B) changes from [E,C,B] to [E,D,F,G,A,B]

Current vertex	Already visited (VV)	Not yet visited (NV)	d (A)	d (B)	d (C)	d (D)	d (E)	d (F)	d (G)	Local min.
E	{E}	$\{A,B,C,D,F,G\}$	9	∞	3	3	0	7	∞	3
С	{C,E}	$\{A,B,D,F,G\}$	9	12		3		7	∞	3
D	{C,D,E}	{A,B,F,G}	9	12			•	5	∞	5
F	$\{C,D,E,F\}$	{A,B,G}	9	12			•		7	7
G	{C,D,E,F,G}	{A,B}	8	12			•			8
А	{A,C,D,E,F,G}	{B}		10				•	•	10

Current vertex	Already visited (VV)	Not yet visited (NV)	d (A)	d (B)	d (C)	d (D)	d (E)	d (F)	d (G)	Local min.
E	{E}	{A,B,C,D,F,G}	9	∞	3	3	0	7	∞	3
С	$\{C,E\}$	$\{A,B,D,F,G\}$	9	12	-	3	-	7	∞	3
D	$\{C,D,E\}$	$\{A,B,F,G\}$	9	12	•	•	•	5	∞	5
F	$\{C,D,E,F\}$	$\{A,B,G\}$	9	12	-	-	-		7	7
G	$\{C,D,E,F,G\}$	{A,B}	8	12	-	-	-		•	8
Α	$\{A,C,D,E,F,G\}$	{B}		10	-	-	-			10
В	{*}	{}				•	•		•	-

Shortest Paths from starting vertex *E* to all other vertices in the directed, weighted graph by Dijkstra

Current vertex	Already visited (VV)	Not yet visited (NV)	d (A)	d (B)	d (C)	d (D)	d (E)	d (F)	d (G)	Local min.
Е	{E}	$\{A,B,C,D,F,G\}$	9	∞	3	3	0	7	∞	3
С	{C,E}	{A,B,D,F,G}	9	12		3		7	∞	3
D	{C,D,E}	{A,B,F,G}	9	12				5	∞	5
F	{C,D,E,F}	{A,B,G}	9	12					7	7
G	{C,D,E,F,G}	{A,B}	8	12						8
Α	{0,2,3,4,5,6}	{B}		10						10
В	{*}	{}	-		•	•				-

ASSIGNMENT 04

ASSIGNMENT 04

HINTS FOR ASSIGNMENT 04 (CS)

For the implementation of this assignment a method such as the following is recommended: void dijkstra(V cur, HashSet<V> visited, HashMap<V, Integer> distances, HashMap<V, ArrayList<V>> paths)

- ° cur ... current vertex
- visited ... a HashSet which notes already visited vertices
- distances ... Map (nVertices entries), which stores the min. distance to each vertex.
 (Suggestion: initialize all vertices with Integer.MAX_VALUE except "from" vertex with 0)
- paths ... the shortest path (i.e., the list of vertices on the path) to each vertex (Hint: when visiting vertex x and updating the minimum distances to its neighbors if a new minimum distance is found for neighbor y, then the shortest path to y is (shortest path to x, followed by y)

HINTS FOR ASSIGNMENT 04 (AI)

For the implementation of this assignment a method such as the following is recommended: def dijkstra(cur: Vertex, visited_set, distances: dict, paths: dict)

- cur ... current vertex
- visited_set ... a set which notes already visited vertices
- distances ... Dictionary (number of vertices entries), which stores the min. distance to each vertex. (Suggestion: initialize all vertices with sys.maxsize except "from" vertex with 0)
- paths ... the shortest path (i.e., the list of vertices on the path) to each vertex (Hint: when visiting vertex x and updating the minimum distances to its neighbors if a new minimum distance is found for neighbor y, then the shortest path to y is (shortest path to x, followed by y)

GRAPHS

Algorithms and Data Structures 2 Exercise – 2023W Martin Schobesberger, Markus Weninger, Markus Jäger, Florian Beck, Achref Rihani

Institute of Pervasive Computing Johannes Kepler University Linz

teaching@pervasive.jku.at

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria jku.at