Dummit & Foote Ch. 3.4: Composition Series and the Hölder Program

Scott Donaldson

Nov. 2023

1. (11/2/23)

Prove that if G is an abelian simple group then $G \cong \mathbb{Z}_p$ for some prime p (do not assume G is a finite group).

Proof. Since G is simple, the only normal subgroups of G are 1 and G itself. However, since G is abelian, any subgroup of G must be normal, so it follows that G contains no subgroups other than 1 and itself.

If $x_1, x_2 \in G$ are distinct generators for G, then $\langle x_1 \rangle$ and $\langle x_2 \rangle$ would be distinct subgroups of G; therefore G is generated by a single element and is a cyclic group. Let us write $G = \langle x \rangle$. If G were infinite, then for any n > 1, $\langle x^n \rangle$ would be a distinct subgroup of G, so G must be finite.

Finally, if n divides |G|, then from Chapter 2, Theorem 7.(3), G contains a proper subgroup of order n. Therefore |G| has no divisors other than 1 and itself, so we have |G| = p for some prime p. We conclude that $G \cong \mathbb{Z}_p$ for some prime p.

2. (11/3/23)

Exhibit all 3 composition series for Q_8 and all 7 composition series for D_8 . List the composition factors in each case.

The 3 composition series for Q_8 are:

- 1. $1 \le \langle -1 \rangle \le \langle i \rangle \le Q_8$
- 2. $1 \le \langle -1 \rangle \le \langle j \rangle \le Q_8$
- 3. $1 \le \langle -1 \rangle \le \langle k \rangle \le Q_8$

In each series, each composition factor is isomorphic to Z_2 (thus each N_i is normal in N_{i+1} ; since there is only one left coset it must equal the only right coset).

The 7 composition series for D_8 are:

1.
$$1 \le \langle s \rangle \le \langle s, r^2 \rangle \le D_8$$

- 2. $1 \leq \langle sr^2 \rangle \leq \langle s, r^2 \rangle \leq D_8$
- 3. $1 \le \langle r^2 \rangle \le \langle s, r^2 \rangle \le D_8$
- 4. $1 \le \langle r^2 \rangle \le \langle r \rangle \le D_8$
- 5. $1 \leq \langle r^2 \rangle \leq \langle sr, r^2 \rangle \leq D_8$
- 6. $1 \leq \langle sr \rangle \leq \langle sr, r^2 \rangle \leq D_8$
- 7. $1 \leq \langle sr^3 \rangle \leq \langle sr, r^2 \rangle \leq D_8$

Again each composition factor is isomorphic to Z_2 .

3. (11/3/23)

Find a composition series for the quasidihedral group of order 16 (cf. Exercise 11, Section 2.5). Deduce that QD_{16} is solvable.

Solution. Recall that $QD_{16} = \langle \sigma, \tau \mid \sigma^8 = \tau^2 = 1, \sigma\tau = \tau\sigma^3 \rangle$. A composition series for QD_{16} is:

$$1 \le \langle \sigma^4 \rangle \le \langle \sigma^2 \rangle \le \langle \sigma \rangle \le QD_{16},$$

where each composition factor is isomorphic to Z_2 . Since Z_2 is abelian, each composition factor is solvable, and so QD_{16} is solvable.

4. (11/4/23)

Use Cauchy's Theorem and induction to show that a finite abelian group has a subgroup of order n for each positive divisor n of its order.

Proof. Let G be a finite abelian group. Let us suppose that, for all groups H, |H| < |G|, H has a subgroup of order n for each positive divisor n of its order.

Let p be a prime dividing |G|. From Cauchy's Theorem, there is an $x \in G$ with |x| = p. Since G is abelian, $\langle x \rangle$ is normal in G. So the quotient group $G/\langle x \rangle$ is well-defined and has order |G|/p < |G|, thus it has a subgroup of order n for each n dividing |G|/p.

Let n be a positive divisor of |G|. Since $|G| = p \cdot \frac{|G|}{p}$, n divides $\frac{|G|}{p}$. From the induction hypothesis, let \overline{K} be a subgroup of $G/\langle x \rangle$ of order n. For each $\overline{k} \in \overline{K}, \overline{k} \neq \overline{1}$, we must have $k \notin \langle x \rangle$, or else we would have $\overline{k} = k \cdot \langle x \rangle = \langle x \rangle$. Then there is a bijection from \overline{K} onto K given by $\overline{k} \mapsto k$. Thus K is a subgroup of G of order n.

5. (11/7/23)

Prove that subgroups and quotient groups of a solvable group are solvable.

Proof. Let G be a solvable group. Then there exists a chain of subgroups

$$1 = G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft ... \triangleleft G_s = G$$

such that G_{i+1}/G_i is abelian for each $i \in \{0, ..., s-1\}$.

Let $N \leq G$ and let G_i be the smallest subgroup in the above series such that $N \leq G_i$. Since $G_{i-1} \subseteq G_i$, we have $G_i \leq N_G(G_{i-1})$ and so $N \leq N_G(G_{i-1})$. Then by the Diamond Isomorphism Theorem it follows that

$$NG_{i-1} \leq G_i, \ N \cap G_{i-1} \leq N, \ \text{and} \ NG_{i-1}/G_{i-1} \cong N/N \cap G_{i-1}.$$

Since the quotient group G_i/G_{i-1} is abelian, its subgroup NG_{i-1}/G_{i-1} is as well. Then, since $N/N \cap G_{i-1} \cong NG_{i-1}/G_{i-1}$, it follows that $N/N \cap G_{i-1}$ is abelian

We can repeat the above process with $N \cap G_{i-1} \leq G_{i-1}$ to conclude that $N \cap G_{i-2} \leq N \cap G_{i-1}$, with $N \cap G_{i-1}/N \cap G_{i-2}$ abelian. Continuing this way we produce the chain

$$1 = N \cap G_0 \leq N \cap G_1 \leq \dots \leq N \cap G_{i-1} \leq N \cap G_i = N$$

where $N \cap G_{i+1}/N \cap G_i$ is abelian for $i \in \{0, ..., i-1\}$, which shows that N is solvable.

6. (11/9/23)

Prove part (1) of the Jordan-Hölder Theorem by induction on |G|.

Proof. Part (1) of the Jordan-Hölder Theorem states that if G is a finite group, $G \neq 1$, then G has a composition series. Suppose that for all groups H, |H| < G, H has a composition series.

If G is a simple group, then $1 \leq G$ is a composition series, since $G/1 \cong G$ is simple.

Therefore assume that G contains at least one proper normal subgroup N. Then we have |N| < |G|, so by assumption N has a composition series

$$1 = N_0 \le N_1 \le \dots \le N_{k-1} \le N_k = N,$$

where the quotient group N_{i+1}/N_i is simple for $i \in \{0, ..., k-1\}$. And, the quotient group G/N has order $|G/N| = \frac{|G|}{|N|} < |G|$, so it also contains a composition series

$$N/N = G_0/N \le G_1/N \le \dots \le G_{m+1}/N \le G_m/N = G,$$

where each $(G_{i+1}/N)/(G_i/N)$ is simple for $i \in \{0, ..., m-1\}$. By the Third Isomorphism Theorem, this implies that each G_{i+1}/G_i is simple.

We now have a chain

$$1 = N_0 \le N_1 \le \dots \le N_{k-1} \le N_k = N = G_0 \le G_1 \le \dots \le G_{m+1} \le G_m = G_0 \le G_1 \le \dots \le G_{m+1} \le G_m = G_0 \le G_1 \le \dots \le G_{m+1} \le G_m = G_0 \le G_1 \le \dots \le G_{m+1} \le G_m = G_0 \le G_1 \le \dots \le G_{m+1} \le G_m = G_0 \le G_1 \le \dots \le G_{m+1} \le G_m = G_0 \le G_1 \le \dots \le G_{m+1} \le G_m = G_0 \le G_1 \le \dots \le G_{m+1} \le G_m = G_0 \le G_1 \le \dots \le G_{m+1} \le G_0 \le G_1 \le \dots \le G_0 \le G_1 \le$$

where the quotient of each successive subgroup by the previous is a simple group. Thus it is a composition series for G.

7. (11/9/23)

If G is a finite group and $H \subseteq G$ prove that there is a composition series for G, one of whose terms is H.

Proof. By the Jordan-Hölder Theorem, H and the quotient group G/H both have composition series. Then we can construct a chain (identical to the immediately above proof) such that

$$1 = H_0 \le H_1 \le \dots \le H_{k-1} \le H_k = H = G_0 \le G_1 \le \dots \le G_{m+1} \le G_m = G$$

is a composition series for G, one of whose terms is H.