Schneider Electric Hackathon Data Science

Paso1: Recolectar DataSet

- train1.csv
- train2.csv

- train3.json
- train4.json
- train5.json

DataFrame

82

- pdfs81515.pdf
- pdfs81516.pdf
- ...
- Pdfs81596.pdf

"Esta parte del proceso consiste en juntar todo los Datasets a una tabla en pandas con las variables de Interes para la clasificación"

Paso2: Limpiar dataset

	countryName	eprtrSectorNa	ame I	EPRTRAnnexIMainActivityLabe	-1	Facilit	yInspireID	facilityName	City	targetR						
0	Germany	Mineral indus	stry	Installations for the production cement cli	of https://registry. 	gdi-de.org/id/de.ni.n	nu/062217	Holcim (Deutschland) GmbH Werk Höver	Sehnde							
1	Italy	Mineral indus	stry	Installations for the production cement cli		IT.CAED/2406020	21.FACILITY	Stabilimento di Tavernola Bergamasca	TAVERNOLA BERGAMASCA							
2	Spain	Waste a wastewa managem	ater	Landfills (excluding landfills inert waste		ES.CAED/0019660	00.FACILITY	COMPLEJO MEDIOAMBIENTAL DE ZURITA	PUERTO DEL ROSARIO			1				
3	Czechia	Energy sec	ctor	Thermal power stations and other combustion in		MZP.U422/CZ347368	41.FACILITY	Elektrárny Prunéřov	Kadaň							
4	Finland	Waste a wastewa managem	ater	Urban waste-water treatme plan		dot.fi/so/1002031/pf	/Productio	TAMPEREEN VESI LIIKELAITOS, VIINIKANLAHDEN	Tampere			↓				
i				reportingYear	pollutant	MONTH	D	AY max_wi	nd_speed	avg_	wind_speed	min_wind_speed	max_temp	avg_temp	min_temp	 eprtrSe
			0	0.666667	1	0.818182	0.7037	04	0.641688		0.626823	0.699173	0.249436	0.314744	0.366280	
			1	1.000000	0	0.727273	0.7407	41	0.848447		0.872242	0.711089	0.357326	0.448394	0.463555	
			2	1.000000	2	0.090909	0.1111	11	0.532941		0.645728	0.546712	0.193219	0.283346	0.322292	
			3	0.333333	0	0.636364	0.1851	85	0.493206		0.714689	0.562020	0.586043	0.559031	0.595002	
			4	1.000000	2	1.000000	0.7777	78	0.732404		0.912700	0.703303	0.619338	0.606565	0.630816	
			5 ro	ws × 21 columns												

"En esta parte del proceso se trabajó el desbalanceo de datos con SMOTE También se normalizaron las variables cuantitativas, además se aplicó un One-Hot-Encoding a las variables categóricas."

Paso3: Entrenamiento del modelo

```
modelos = {
    "XGB": XGBClassifier(),
    "LGB": LGBMClassifier(),
    "MLP": MLPClassifier(max iter=5000),
    "RFC": RandomForestClassifier(),
    "ABC": AdaBoostClassifier(),
    "DTC": DecisionTreeClassifier(),
    "KNC": KNeighborsClassifier()
for name, model in modelos.items():
 model.fit(X train, y train)
 y_pred = model.predict(X_test)
  f1 = f1 score(y test, y pred, average="macro")
  print(f"F1 {name:<5}: {f1:.3f}")</pre>
```

"De los 7 modelos entrenados, Es RandomForestClassifier el Que obtiene un F1 score mejor Al resto."

```
F1 XGB : 0.615
F1 LGB : 0.613
F1 MLP : 0.578
F1 RFC : 0.681
F1 ABC : 0.586
F1 DTC : 0.609
F1 KNC : 0.611
```

Paso4: Entrenamiento del modelo

"Este modelo de Random Forest puede clasificar categorias de contaminación (NOX, CO2, CH4) hasta con un 68% de certeza