Ранжирование экспертов при помощи линейного согласования.

Николай Савельев

Московский физико-технический институт

Постановка задачи

Заданы множество объектов $V=\{v_i\}_{i=1}^m$ и множество показателей $\Psi=\{\psi_j\}_{j=1}^n.$

Множество измерений показателей каждого объекта представлено в виде матрицы исходных данных $A = \{a_{ij}\}_{i,j=1}^{m,n}$.

Имеется K экспертов, и для каждого эксперта известны вектор его оценок объектов $q_0 \in \mathbb{R}^m$ (интегральные индикаторы) и вектор его оценок показателей $w_0 \in \mathbb{R}^n$.

Требуется на основе этих данных отранжировать экспертов по предпочтению.

Согласованность экспертных оценок

По исходным экспертным оценкам весов показателей w_0 можно вычислить значение вектора интегрального индикатора

$$q_1 = Aw_0, (1)$$

также по исходным экспертным оценкам значения вектора интегрального индикатора q_0 можно вычислить веса показателей

$$w_1 = A^+ q_0. (2)$$

В общем случае $q_0 \neq q_1$, $w_0 \neq w_1$.

Определение. Согласованными значениями интегрального индикатора и весов показателей называются такие значения \hat{q} и \hat{w} , для которых верно:

$$\hat{q} = A\hat{w}, \quad \hat{w} = A^{+}\hat{q}. \tag{3}$$

Линейное согласование

Построим на основе $q_0,\ q_1,\ w_0,\ w_1$ следующие оценки:

$$q_{\alpha} = \alpha q_0 + (1 - \alpha)q_1, \quad w_{\alpha} = (1 - \alpha)w_0 + \alpha w_1,$$
 (4)

где $\alpha \in [0,1]$ - параметр доверия экспертным оценкам интегральных индикаторов объектов.

Утверждение. Значения q_{α} и w_{α} являются согласованными.

Выбор α

Обозначим невязки между изначальными и согласованными векторами оценок:

$$\varepsilon^{2}(\alpha) = ||q_{\alpha} - q_{0}||^{2}, \quad \delta^{2}(\alpha) = ||w_{\alpha} - w_{0}||^{2}.$$
 (5)

В качестве критерия выбора параметра α возьмем условие минимальности этих невязок с учетом размерностей пространств векторов интегральных индикаторов и весов показателей.

$$\alpha^* = \operatorname{argmin}\left\{\frac{1}{m}\varepsilon^2(\alpha) + \frac{1}{n}\delta^2(\alpha)\right\}. \tag{6}$$

Ранжирование экспертов

Каждому из K экспертов сопоставим меру несогласованности его оценок:

$$R(k) = \frac{1}{m} \varepsilon_k^2(\alpha_k^*) + \frac{1}{n} \delta_k^2(\alpha_k^*), \quad k = 1, \dots, K.$$
 (7)

И отдадим предпочтение тем экспертам, чья мера несогласованности меньше.

Список литературы

9 *B. B. Стрижов.* Согласование экспертных оценок при посторении интегральных индикаторов, 2002.