

Logistic Regression I

Dr. Chelsea Parlett-Pelleriti

Outline

- Linear Regression in Disguise
- Linear Probability Models
- Link Functions
- Maximum Likelihood Estimation
- Loss Function

Regression vs. Classification

Regression

What is the temperature going to be tomorrow?

Classification

Will it be Cold or Hot tomorrow?

Linear Regression in Disguise

Linear Regression

Continuous Variable (can be -∞ to ∞)

Logistic Regression

Binary Categorical Variable (can be 0 or 1)

Probabilities

Linear Probability Model $p(y = 1|x) = \beta_0 + \beta_1 * x$

https://en.wikipedia.org/wiki/Logistic_regression

Two Ways to Use "Linear Regression" But Get Non-Linearity

- 1. Create New Features (Polynomial, GAMs...)
- 2. Link Functions \uparrow

$$y = X\beta$$

$$y = g^{-1}(X\beta)$$

$$y = X\beta$$

$$y = g^{-1}(X\beta)$$

$$E(Y|X) = X\beta$$

$$E(Y|X) = g^{-1}(X\beta)$$

https://en.wikipedia.org/wiki/Logistic_regression

Probabilities, Odds, Log Odds

Attempt 1: probabilities

Attempt 2: odds

$$\frac{p}{-n} = \beta_0 + \beta_1 * x$$

= 0 + 1 * dogs in stadium

Attempt 2: odds

 $\log \operatorname{odds} = \log(\frac{P}{1-n})$

Probabilities, Odds, Log Odds

 $log(\frac{P}{1-n}) = \beta_0 + \beta_1 * x$

Attempt 1: probabilities

Attempt 2: odds

Attempt 3: log odds

Attempt 3: log odds

 $log(\frac{P}{1-n}) = 0 + 1 * dogs in stadium$

Probabilities, Odds, Log Odds

Attempt 1: probabilities

Attempt 2: odds

 $\log \text{ odds} = log(\frac{p}{1-p})$

Logistic Regression

$$\log(\frac{1-p}{1-p}) = \beta_0 + \beta_1 * x$$

$$0.75$$

$$0.50$$

$$0.00$$

$$-3$$

$$-2$$

$$-1$$

$$0$$

The Final Formula

$$log(\frac{p}{1-p}) = \beta_0 + \beta_1 * x_1$$

$$p = \frac{e^{\beta_0 + \beta_1 * x_1}}{1 + e^{\beta_0 + \beta_1 * x_1}}$$

The Final Formula

$$log \ \ \, \text{Do a little algebra to prove this to yourself!} * x_1$$

$$p = \frac{e^{\beta_0 + \beta_1 * x_1}}{1 + e^{\beta_0 + \beta_1 * x_1}} \ \, p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 * x_1)}}$$

Link Functions (Again)

$$y = g^{-1}(X\beta)$$

General case

$$p = \frac{e^{A\beta}}{1 + e^{X\beta}}$$

Our link function is

$$g(x) = log(\frac{x}{1-x})$$

which is the inverse of

$$g^{-1}(x) = \frac{e^x}{1 + e^x}$$

Specific case

Other Link Functions

Distribution	Support of distribution	Typical uses	Link name	Link function, $\mathbf{X}oldsymbol{eta}=g(\mu)$	Mean function
Normal	real: $(-\infty, +\infty)$	Linear-response data	Identity	$\mathbf{X}oldsymbol{eta}=\mu$	$\mu = \mathbf{X}\boldsymbol{eta}$
Exponential	real: $(0,+\infty)$	Exponential-response data, scale parameters	Negative inverse	$\mathbf{X}oldsymbol{eta} = -\mu^{-1}$	$\mu = -(\mathbf{X}\boldsymbol{eta})^{-1}$
Gamma					
Inverse Gaussian	real: $(0,+\infty)$		Inverse squared	$\mathbf{X}oldsymbol{eta}=\mu^{-2}$	$\mu = (\mathbf{X}oldsymbol{eta})^{-1/2}$
Poisson	integer: $0,1,2,\ldots$	count of occurrences in fixed amount of	Log	$\mathbf{X}oldsymbol{eta} = \ln(\mu)$	$\mu = \exp(\mathbf{X}oldsymbol{eta})$
		ume/space			
Bernoulli	integer: $\{0,1\}$	outcome of single yes/no occurrence		$\mathbf{X}oldsymbol{eta} = \ln\!\left(rac{\mu}{1-\mu} ight)$	
Binomial	integer: $0,1,\ldots,N$	count of # or "yes" occurrences out of N yes/no occurrences		$\mathbf{X}oldsymbol{eta} = \ln\!\left(rac{\mu}{n-\mu} ight)$	
Categorical	${\it integer:}\ [0,K)$		Logit	$\mathbf{X}oldsymbol{eta} = \ln\!\left(rac{\mu}{1-\mu} ight)$	
	K-vector of integer: $[0,1]$, where exactly one element in the vector has the value 1	outcome of single K-way occurrence			$\mu = rac{\exp(\mathbf{X}oldsymbol{eta})}{1 + \exp(\mathbf{X}oldsymbol{eta})} = rac{1}{1 + \exp(-\mathbf{X}oldsymbol{X})}$
Multinomial	${\it K} ext{-vector of integer: }[0,N]$	count of occurrences of different types (1 K) out of N total K-way occurrences			

$$\prod_{i; y_i=1} p(x_i) \qquad \prod_{i; y_i=0} 1 - p(x_i)$$

$$L(\beta_0, \beta_1) = \prod_{i; y_i = 1} p(x_i) * \prod_{i; y_i = 0} 1 - p(x_i)$$

$$L(\beta_0, \beta_1) = \prod_{i=1}^{n} p(x_i)^{y_i} * (1 - p(x_i))^{1 - y_i}$$

$$\prod_{i; y_i=0} 1 - p(x_i) \qquad \prod_{i; y_i=1} p(x_i)$$

$$L(\beta_0, \beta_1) = \prod_{i; y_i = 1} p(x_i) * \prod_{i; y_i = 0} 1 - p(x_i)$$

$$L(\beta_0, \beta_1) = \prod_{i=1}^{n} p(x_i)^{y_i} * (1 - p(x_i))^{1 - y_i}$$

$$\prod_{i; y_i=0} 1 - p(x_i) \qquad \prod_{i; y_i=1} p(x_i)$$

$$L(\beta_0, \beta_1) = \prod_{i; y_i = 1} p(x_i) * \prod_{i; y_i = 0} 1 - p(x_i)$$

$$L(\beta_0, \beta_1) = \prod_{i=1}^{n} p(x_i)^{y_i} * (1 - p(x_i))^{1 - y_i}$$

$$L(\beta_0, \beta_1) = \prod_{i=1}^{n} p(x_i)^{y_i} * (1 - p(x_i))^{1 - y_i}$$

i=1

$$l(\beta_0, \beta_1) = \sum_{i=1}^{n} y_i * log(p(x_i)) + (1 - y_i) * log(1 - p(x_i))$$

i=1

$$L(\beta_0, \beta_1) = \prod_{i=1}^n p(x_i)^{y_i} * (1 - p(x_i))^{1 - y_i}$$

$$l(\beta_0, \beta_1) = \sum_{i=1}^n y_i * \log(p(x_i)) + (1 - y_i) * \log(1 - p(x_i))$$

$$L(\beta_0, \beta_1) = \prod_{i=1}^{n} p(x_i)^{y_i} * (1 - p(x_i))^{1 - y_i}$$

$$l(\beta_0, \beta_1) = -\frac{1}{N} \sum_{i=1}^{n} y_i * log(p(x_i)) + (1 - y_i) * log(1 - p(x_i))$$

Loss Function

that assesses performance, smaller is better

$-\frac{1}{N}\sum_{i=1}^{n} y_i * log(p(x_i)) + (1 - y_i) * log(1 - p(x_i))$

Loss Function

