Matematiske metoder (MM529)

Stephan Brandt

Syddansk Universitet, Odense

03.09.2013

Sets

A set is a gathering together into a whole of definite, distinct objects of our perception or of our thought – which are called elements of the set.

Sets: $\{1, 2, 3, 4\}$,

A set is a gathering together into a whole of definite, distinct objects of our perception or of our thought – which are called elements of the set.

Sets: $\{1, 2, 3, 4\}$, $\{1, a, B\}$,

A set is a gathering together into a whole of definite, distinct objects of our perception or of our thought – which are called elements of the set.

Sets: $\{1, 2, 3, 4\}$, $\{1, a, B\}$, $\{\clubsuit, \diamondsuit, \heartsuit, \spadesuit\}$.

A set is a gathering together into a whole of definite, distinct objects of our perception or of our thought – which are called elements of the set.

Sets: $\{1,2,3,4\}$, $\{1,a,B\}$, $\{\clubsuit,\diamondsuit,\heartsuit,\spadesuit\}$.

Elements: $1 \in \{1, 2, 3, 4\}$,

Sets:
$$\{1,2,3,4\}$$
, $\{1,a,B\}$, $\{\clubsuit,\diamondsuit,\heartsuit,\spadesuit\}$.

Elements:
$$1 \in \{1, 2, 3, 4\}, 1 \in \{1, a, B\},$$

Sets:
$$\{1,2,3,4\}$$
, $\{1,a,B\}$, $\{\clubsuit,\diamondsuit,\heartsuit,\spadesuit\}$.

Elements:
$$1 \in \{1, 2, 3, 4\}$$
, $1 \in \{1, a, B\}$, $1 \notin \{\clubsuit, \diamondsuit, \heartsuit, \spadesuit\}$.

Sets:
$$\{1, 2, 3, 4\}$$
, $\{1, a, B\}$, $\{\clubsuit, \diamondsuit, \heartsuit, \spadesuit\}$.
Elements: $1 \in \{1, 2, 3, 4\}$, $1 \in \{1, a, B\}$, $1 \notin \{\clubsuit, \diamondsuit, \heartsuit, \spadesuit\}$.
 $a \in \{1, a, B\}$,

Sets:
$$\{1,2,3,4\}$$
, $\{1,a,B\}$, $\{\clubsuit,\diamondsuit,\heartsuit,\spadesuit\}$.

Elements: 1 ∈ {1, 2, 3, 4}, 1 ∈ {1, a, B}, 1 ∉ {♣, ⋄.♡, ♠}.
$$a \in \{1, a, B\}, A \notin \{1, a, B\}.$$

Sets:
$$\{1, 2, 3, 4\}$$
, $\{1, a, B\}$, $\{\clubsuit, \diamondsuit, \heartsuit, \spadesuit\}$.
Elements: $1 \in \{1, 2, 3, 4\}$, $1 \in \{1, a, B\}$, $1 \notin \{\clubsuit, \diamondsuit, \heartsuit, \spadesuit\}$.
 $a \in \{1, a, B\}$, $A \notin \{1, a, B\}$.
Read \in : "is an element of"

A set is a gathering together into a whole of definite, distinct objects of our perception or of our thought – which are called elements of the set.

Sets:
$$\{1,2,3,4\}$$
, $\{1,a,B\}$, $\{\clubsuit,\diamondsuit,\heartsuit,\spadesuit\}$.

Elements: $1 \in \{1, 2, 3, 4\}, 1 \in \{1, a, B\}, 1 \notin \{\clubsuit, \diamondsuit, \heartsuit, \spadesuit\}.$ $a \in \{1, a, B\}, A \notin \{1, a, B\}.$

Read \in : "is an element of"

Strictly speaking no set:

A set is a gathering together into a whole of definite, distinct objects of our perception or of our thought – which are called elements of the set.

Sets: $\{1,2,3,4\}$, $\{1,a,B\}$, $\{\clubsuit,\diamondsuit,\heartsuit,\spadesuit\}$.

Elements: $1 \in \{1, 2, 3, 4\}, 1 \in \{1, a, B\}, 1 \notin \{\clubsuit, \diamondsuit, \heartsuit, \spadesuit\}.$ $a \in \{1, a, B\}, A \notin \{1, a, B\}.$

Read ∈: "is an element of"

Strictly speaking no set: $\{1, 1, 2, 3, 3, 3\}$.

A set is a gathering together into a whole of definite, distinct objects of our perception or of our thought – which are called elements of the set.

Sets:
$$\{1, 2, 3, 4\}$$
, $\{1, a, B\}$, $\{\clubsuit, \diamondsuit, \heartsuit, \spadesuit\}$.

Elements: $1 \in \{1, 2, 3, 4\}, 1 \in \{1, a, B\}, 1 \notin \{\clubsuit, \diamondsuit, \heartsuit, \spadesuit\}.$ $a \in \{1, a, B\}, A \notin \{1, a, B\}.$

Read \in : "is an element of"

Strictly speaking no set: $\{1, 1, 2, 3, 3, 3\}$.

Convention: $\{1, 1, 2, 3, 3, 3\} = \{1, 2, 3\}.$

A set is a gathering together into a whole of definite, distinct objects of our perception or of our thought – which are called elements of the set.

Sets:
$$\{1, 2, 3, 4\}$$
, $\{1, a, B\}$, $\{\clubsuit, \diamondsuit, \heartsuit, \spadesuit\}$.

Elements: $1 \in \{1, 2, 3, 4\}, 1 \in \{1, a, B\}, 1 \notin \{\clubsuit, \diamondsuit, \heartsuit, \spadesuit\}.$ $a \in \{1, a, B\}, A \notin \{1, a, B\}.$

Read \in : "is an element of"

Strictly speaking no set: $\{1, 1, 2, 3, 3, 3\}$.

Convention: $\{1, 1, 2, 3, 3, 3\} = \{1, 2, 3\}.$

Set equality: Two sets are equal, if they contain the same elements.

A set is a gathering together into a whole of definite, distinct objects of our perception or of our thought – which are called elements of the set.

Sets:
$$\{1, 2, 3, 4\}$$
, $\{1, a, B\}$, $\{\clubsuit, \diamondsuit, \heartsuit, \spadesuit\}$.

Elements:
$$1 \in \{1, 2, 3, 4\}, 1 \in \{1, a, B\}, 1 \notin \{\clubsuit, \diamondsuit, \heartsuit, \spadesuit\}.$$
 $a \in \{1, a, B\}, A \notin \{1, a, B\}.$

Read \in : "is an element of"

Strictly speaking no set: $\{1, 1, 2, 3, 3, 3\}$.

Convention: $\{1, 1, 2, 3, 3, 3\} = \{1, 2, 3\}.$

Set equality: Two sets are equal, if they contain the same elements. $\{1,2,3,4\} = \{2,1,4,3\}.$

Large sets:

Large sets:

 $\{A,B,C,\dots,Z\}$ slightly ambiguous (ancient Roman? No J, no U!)

Large sets:

 $\{A, B, C, ..., Z\}$ slightly ambiguous (ancient Roman? No J, no U!) More precise: $\{x \mid x \text{ is a capital letter of the English alphabet}\}$

Large sets:

 $\{A, B, C, ..., Z\}$ slightly ambiguous (ancient Roman? No J, no U!) More precise: $\{x \mid x \text{ is a capital letter of the English alphabet}\}$

Special sets:

```
Large sets:
```

 $\{A, B, C, ..., Z\}$ slightly ambiguous (ancient Roman? No J, no U!) More precise: $\{x \mid x \text{ is a capital letter of the English alphabet}\}$

Special sets:

Empty set:

 $\emptyset = \{\}$, the unique set with no element (remember set equality).

Large sets:

 $\{A, B, C, \dots, Z\}$ slightly ambiguous (ancient Roman? No J, no U!) More precise: $\{x \mid x \text{ is a capital letter of the English alphabet}\}$

Special sets:

Empty set:

 $\emptyset = \{\}$, the unique set with no element (remember set equality). Integers:

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\} = \{x \mid x \text{ is an integer}\}\$$

Large sets:

 $\{A,B,C,\ldots,Z\}$ slightly ambiguous (ancient Roman? No J, no U!) More precise: $\{x\mid x \text{ is a capital letter of the English alphabet}\}$

Special sets:

Empty set:

 $\emptyset = \{\}$, the unique set with no element (remember set equality). Integers:

$$\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\} = \{x \mid x \text{ is an integer}\}\$$

Natural numbers:

$$\mathbb{N} = \{1, 2, 3, \ldots\} = \{x \in \mathbb{Z} \mid x > 0\}$$

Large sets:

 $\{A, B, C, \dots, Z\}$ slightly ambiguous (ancient Roman? No J, no U!) More precise: $\{x \mid x \text{ is a capital letter of the English alphabet}\}$

Special sets:

Empty set:

 $\emptyset = \{\}$, the unique set with no element (remember set equality). Integers:

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\} = \{x \mid x \text{ is an integer}\}\$$

Natural numbers:

$$\mathbb{N} = \{1, 2, 3, \ldots\} = \{x \in \mathbb{Z} \mid x > 0\}$$

Rational numbers:

$$\mathbb{Q} = \{ rac{p}{q} \mid p \in \mathbb{Z} \; \mathsf{and} \; q \in \mathbb{N} \}$$
 (remember convention)

Large sets:

 $\{A, B, C, ..., Z\}$ slightly ambiguous (ancient Roman? No J, no U!) More precise: $\{x \mid x \text{ is a capital letter of the English alphabet}\}$

Special sets:

Empty set:

 $\emptyset = \{\}$, the unique set with no element (remember set equality). Integers:

$$\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\} = \{x \mid x \text{ is an integer}\}$$

Natural numbers:

$$\mathbb{N} = \{1, 2, 3, \ldots\} = \{x \in \mathbb{Z} \mid x > 0\}$$

Rational numbers:

$$\mathbb{Q} = \{ rac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{N} \}$$
 (remember convention)

Real numbers:

 $\mathbb{R} = \{x \mid x \text{ has a decimal representation}\}$.

Real numbers:

 $\mathbb{R} = \{x \mid x \text{ has a decimal representation}\}$

Real numbers:

 $\mathbb{R} = \{x \mid x \text{ has a decimal representation}\}$ Decimal Representation: $x = a_n a_{n-1} \dots a_2 a_1 a_0 . b_1 b_2 b_3 \dots$ $a_i, b_j \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Real numbers:

```
\mathbb{R} = \{x \mid x \text{ has a decimal representation}\} Decimal Representation: x = a_n a_{n-1} \dots a_2 a_1 a_0 . b_1 b_2 b_3 \dots a_i, b_j \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} e.g.: \pi = 3.1415926\dots
```

Real numbers:

```
\mathbb{R} = \{x \mid x \text{ has a decimal representation}\} Decimal Representation: x = a_n a_{n-1} \dots a_2 a_1 a_0 . b_1 b_2 b_3 \dots a_i, b_j \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} e.g.: \pi = 3.1415926\dots
```

Finitely many digits in front of decimal mark, (possibly) infinitely many behind.

 $\mathbb{R} = \{x \mid x \text{ has a decimal representation}\}$ Decimal Representation: $x = a_n a_{n-1} \dots a_2 a_1 a_0 . b_1 b_2 b_3 \dots a_i, b_j \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ e.g.: $\pi = 3.1415926\dots$

Finitely many digits in front of decimal mark, (possibly) infinitely many behind.

Attention: In general, decimal representation not unique:

```
\mathbb{R} = \{x \mid x \text{ has a decimal representation}\} Decimal Representation: x = a_n a_{n-1} \dots a_2 a_1 a_0 . b_1 b_2 b_3 \dots a_i, b_j \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} e.g.: \pi = 3.1415926\dots
```

Finitely many digits in front of decimal mark, (possibly) infinitely many behind.

Attention: In general, decimal representation not unique: 0.99999... = 1.0000... = 1 (why later!)

 $\mathbb{R} = \{x \mid x \text{ has a decimal representation}\}$

Decimal Representation: $x = a_n a_{n-1} \dots a_2 a_1 a_0 . b_1 b_2 b_3 \dots$

 $a_i, b_j \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

e.g.: $\pi = 3.1415926...$

Finitely many digits in front of decimal mark, (possibly) infinitely many behind.

Attention: In general, decimal representation not unique:

0.99999... = 1.0000... = 1 (why later!)

Real numbers visualized as points on the real line.

A, B sets:

A, B sets:

Union of sets: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$

A, B sets:

Union of sets: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$. Intersection of sets: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$.

A, B sets:

Union of sets: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$

Intersection of sets: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}.$

Difference of sets:

$$A \setminus B = \{x \mid x \in A \text{ and } x \notin B\} = \{x \in A \mid x \notin B\}.$$

```
A, B sets:
Union of sets: A \cup B = \{x \mid x \in A \text{ or } x \in B\}.
Intersection of sets: A \cap B = \{x \mid x \in A \text{ and } x \in B\}.
Difference of sets: A \setminus B = \{x \mid x \in A \text{ and } x \notin B\} = \{x \in A \mid x \notin B\}.
Examples: \{1, 2, 3, 4\} \cup \{1, a, B\} = \{1, 2, 3, 4, a, B\},
```

```
A, B sets:

Union of sets: A \cup B = \{x \mid x \in A \text{ or } x \in B\}.

Intersection of sets: A \cap B = \{x \mid x \in A \text{ and } x \in B\}.

Difference of sets:

A \setminus B = \{x \mid x \in A \text{ and } x \notin B\} = \{x \in A \mid x \notin B\}.

Examples:

\{1, 2, 3, 4\} \cup \{1, a, B\} = \{1, 2, 3, 4, a, B\},

\{1, 2, 3, 4\} \cap \{1, a, B\} = \{1\},
```

```
A, B sets:

Union of sets: A \cup B = \{x \mid x \in A \text{ or } x \in B\}.

Intersection of sets: A \cap B = \{x \mid x \in A \text{ and } x \in B\}.

Difference of sets:

A \setminus B = \{x \mid x \in A \text{ and } x \notin B\} = \{x \in A \mid x \notin B\}.

Examples:

\{1, 2, 3, 4\} \cup \{1, a, B\} = \{1, 2, 3, 4, a, B\},

\{1, 2, 3, 4\} \cap \{1, a, B\} = \{1\},

\{1, 2, 3, 4\} \setminus \{1, a, B\} = \{2, 3, 4\},
```

```
A, B sets: Union of sets: A \cup B = \{x \mid x \in A \text{ or } x \in B\}. Intersection of sets: A \cap B = \{x \mid x \in A \text{ and } x \in B\}. Difference of sets: A \setminus B = \{x \mid x \in A \text{ and } x \notin B\} = \{x \in A \mid x \notin B\}. Examples: \{1, 2, 3, 4\} \cup \{1, a, B\} = \{1, 2, 3, 4, a, B\}, \{1, 2, 3, 4\} \cap \{1, a, B\} = \{1\}, \{1, 2, 3, 4\} \cap \{4, a, B\} = \{2, 3, 4\}, \{1, 2, 3, 4\} \cap \{4, a, B\} = \{4, 2, 3, 4\}, \{1, 2, 3, 4\} \cap \{4, 4, 4\}, \{4, 2, 3, 4\} \cap \{4, 4\}, \{4, 4\} \cap \{4, 4\}
```

```
A. B sets:
Union of sets: A \cup B = \{x \mid x \in A \text{ or } x \in B\}.
Intersection of sets: A \cap B = \{x \mid x \in A \text{ and } x \in B\}.
Difference of sets:
A \setminus B = \{x \mid x \in A \text{ and } x \notin B\} = \{x \in A \mid x \notin B\}.
Examples:
\{1,2,3,4\} \cup \{1,a,B\} = \{1,2,3,4,a,B\},
\{1,2,3,4\} \cap \{1,a,B\} = \{1\},
\{1,2,3,4\} \setminus \{1,a,B\} = \{2,3,4\},
\{1,2,3,4\} \cap \{\clubsuit,\diamondsuit,\heartsuit,\spadesuit\} = \emptyset,
\{1,2,3,4\} \cap \mathbb{R} = \{1,2,3,4\}.
```

A, B sets:

A, B sets:

 $A \subseteq B$ (A is a subset of B), if B contains every element of A.

A, B sets:

 $A \subseteq B$ (A is a subset of B), if B contains every element of A.

Examples:

 $A \subseteq B$ (A is a subset of B), if B contains every element of A.

Examples:

$$\{1,3\} \subseteq \{1,2,3,4\}\text{,}$$

 $A \subseteq B$ (A is a subset of B), if B contains every element of A.

Examples:

$$\{1,3\}\subseteq\{1,2,3,4\},$$

 $\mathbb{N}\subseteq\mathbb{Q}\text{,}$

 $A \subseteq B$ (A is a subset of B), if B contains every element of A.

Examples:

$$\{1,3\}\subseteq\{1,2,3,4\}\text{,}$$

 $\mathbb{N}\subseteq\mathbb{Q}\text{,}$

 $\mathbb{Q} \not\subseteq \mathbb{N}$,

 $A \subseteq B$ (A is a subset of B), if B contains every element of A.

Examples:

 $\{1,3\}\subseteq\{1,2,3,4\}$,

 $\mathbb{N}\subseteq\mathbb{Q}\text{,}$

 $\mathbb{Q} \not\subseteq \mathbb{N}$,

 $\emptyset \subseteq A$ for every set A.

 $A \subseteq B$ (A is a subset of B), if B contains every element of A.

Examples:

 $\{1,3\}\subseteq\{1,2,3,4\}$,

 $\mathbb{N}\subseteq\mathbb{Q}$,

 $\mathbb{Q} \not\subseteq \mathbb{N}$,

 $\emptyset \subseteq A$ for every set A.

 $A \subseteq A$ for every set A.

```
A, B sets:
```

 $A \subseteq B$ (A is a subset of B), if B contains every element of A.

Examples:

$$\{1,3\}\subseteq\{1,2,3,4\},$$

 $\mathbb{N}\subseteq\mathbb{Q}$,

 $\mathbb{Q} \not\subseteq \mathbb{N}$,

 $\emptyset \subseteq A$ for every set A.

 $A \subseteq A$ for every set A.

Proper subset: $A \subsetneq B$, if $A \subseteq B$ and $A \neq B$.

```
A, B sets:
```

 $A \subseteq B$ (A is a subset of B), if B contains every element of A.

Examples:

$$\{1,3\}\subseteq\{1,2,3,4\}$$
,

$$\mathbb{N}\subseteq\mathbb{Q}$$
,

$$\mathbb{Q} \not\subseteq \mathbb{N}$$
,

$$\emptyset \subseteq A$$
 for every set A .

$$A \subseteq A$$
 for every set A .

Proper subset: $A \subsetneq B$, if $A \subseteq B$ and $A \neq B$.

Example:

$$\emptyset \subsetneq A$$
 for every set $A \neq \emptyset$

Cartesian product: $A \times B = \{(x, y) \mid x \in A \text{ and } y \in B\}.$

Cartesian product: $A \times B = \{(x, y) \mid x \in A \text{ and } y \in B\}$. Set of all ordered pairs (x, y), where $x \in A$ and $y \in B$.

Cartesian product: $A \times B = \{(x, y) \mid x \in A \text{ and } y \in B\}$. Set of all ordered pairs (x, y), where $x \in A$ and $y \in B$. $\{1, 2\} \times \{1, a, B\} = \{(1, 1), (1, a), (1, B), (2, 1), (2, a), (2, B)\}$,

Cartesian product: $A \times B = \{(x,y) \mid x \in A \text{ and } y \in B\}$. Set of all ordered pairs (x,y), where $x \in A$ and $y \in B$. $\{1,2\} \times \{1,a,B\} = \{(1,1),(1,a),(1,B),(2,1),(2,a),(2,B)\}$, $(1,a) \in \{1,2\} \times \{1,a,B\}$,

Cartesian product: $A \times B = \{(x,y) \mid x \in A \text{ and } y \in B\}$. Set of all ordered pairs (x,y), where $x \in A$ and $y \in B$. $\{1,2\} \times \{1,a,B\} = \{(1,1),(1,a),(1,B),(2,1),(2,a),(2,B)\}$, $(1,a) \in \{1,2\} \times \{1,a,B\}$, $(a,1) \notin \{1,2\} \times \{1,a,B\}$.

Cartesian product: $A \times B = \{(x,y) \mid x \in A \text{ and } y \in B\}$. Set of all ordered pairs (x,y), where $x \in A$ and $y \in B$. $\{1,2\} \times \{1,a,B\} = \{(1,1),(1,a),(1,B),(2,1),(2,a),(2,B)\}$, $(1,a) \in \{1,2\} \times \{1,a,B\}$, $(a,1) \notin \{1,2\} \times \{1,a,B\}$.

More than two sets: $A_1 \times A_2 \times A_3 \times ... \times A_n = \{(a_1, a_2, a_3, ..., a_n) \mid a_i \in A_i \text{ for all } i \in \{1, 2, 3, ..., n\}\}.$

Cartesian product: $A \times B = \{(x,y) \mid x \in A \text{ and } y \in B\}$. Set of all ordered pairs (x,y), where $x \in A$ and $y \in B$. $\{1,2\} \times \{1,a,B\} = \{(1,1),(1,a),(1,B),(2,1),(2,a),(2,B)\}$, $(1,a) \in \{1,2\} \times \{1,a,B\}$, $(a,1) \notin \{1,2\} \times \{1,a,B\}$.

More than two sets: $A_1 \times A_2 \times A_3 \times \ldots \times A_n = \{(a_1, a_2, a_3, \ldots, a_n) \mid a_i \in A_i \text{ for all } i \in \{1, 2, 3, \ldots, n\}\}.$ Set of all ordered *n*-tuples,

Cartesian product: $A \times B = \{(x, y) \mid x \in A \text{ and } y \in B\}$. Set of all ordered pairs (x, y), where $x \in A$ and $y \in B$.

$$\{1,2\} \times \{1,a,B\} = \{(1,1),(1,a),(1,B),(2,1),(2,a),(2,B)\},\ (1,a) \in \{1,2\} \times \{1,a,B\},\ (a,1) \notin \{1,2\} \times \{1,a,B\}.$$

More than two sets: $A_1 \times A_2 \times A_3 \times \ldots \times A_n = \{(a_1, a_2, a_3, \ldots, a_n) \mid a_i \in A_i \text{ for all } i \in \{1, 2, 3, \ldots, n\}\}.$ Set of all ordered *n*-tuples,

Important Cartesian product:

$$\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R} = \{(a_1, a_2, a_3, \ldots, a_n) \mid a_i \in \mathbb{R} \text{ for all } i \in \{1, 2, 3, \ldots, n\}\}.$$

A function $f: A \to B$ is a rule that assigns a unique element $f(a) \in B$ to every element $a \in A$ (where A, B are sets).

A function $f: A \to B$ is a rule that assigns a unique element $f(a) \in B$ to every element $a \in A$ (where A, B are sets). Written:

$$f: A \rightarrow B$$
 or $f: A \rightarrow B$
 $a \mapsto f(a)$ $f(a) = b$

A function $f:A\to B$ is a rule that assigns a unique element $f(a)\in B$ to every element $a\in A$ (where A,B are sets). Written:

$$f: A \rightarrow B$$
 or $f: A \rightarrow B$
 $a \mapsto f(a)$ $f(a) = b$

b is the image (or function value) of a under f

A function $f:A\to B$ is a rule that assigns a unique element $f(a)\in B$ to every element $a\in A$ (where A,B are sets). Written:

$$f: A \rightarrow B$$
 or $f: A \rightarrow B$
 $a \mapsto f(a)$ $f(a) = b$

b is the image (or function value) of a under f Domain A, Codomain B,

A function $f:A\to B$ is a rule that assigns a unique element $f(a)\in B$ to every element $a\in A$ (where A,B are sets). Written:

$$f: A \rightarrow B$$
 or $f: A \rightarrow B$
 $a \mapsto f(a)$ $f(a) = b$

b is the image (or function value) of a under f Domain A, Codomain B, Range of $f: \mathcal{R}(f) = f(A) = \{y \in B \mid f(x) = y \text{ for an } x \in A\}.$

A function $f:A\to B$ is a rule that assigns a unique element $f(a)\in B$ to every element $a\in A$ (where A,B are sets). Written:

$$f: A \rightarrow B$$
 or $f: A \rightarrow B$
 $a \mapsto f(a)$ $f(a) = b$

b is the image (or function value) of a under f Domain A, Codomain B, Range of $f: \mathcal{R}(f) = f(A) = \{y \in B \mid f(x) = y \text{ for an } x \in A\}.$

Preimage of $y \in B$: $f^{-1}(y) = \{x \in A \mid f(x) = y\}$.

A function $f:A\to B$ is a rule that assigns a unique element $f(a)\in B$ to every element $a\in A$ (where A,B are sets). Written:

$$f: A \rightarrow B$$
 or $f: A \rightarrow B$
 $a \mapsto f(a)$ $f(a) = b$

b is the image (or function value) of a under f Domain A, Codomain B,

Range of $f: \mathcal{R}(f) = f(A) = \{y \in B \mid f(x) = y \text{ for an } x \in A\}.$

Preimage of $y \in B$: $f^{-1}(y) = \{x \in A \mid f(x) = y\}$.

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2.$$

A function $f:A\to B$ is a rule that assigns a unique element $f(a)\in B$ to every element $a\in A$ (where A,B are sets). Written:

$$f: A \rightarrow B$$
 or $f: A \rightarrow B$
 $a \mapsto f(a)$ $f(a) = b$

b is the image (or function value) of a under f

Domain A, Codomain B,

Range of $f: \mathcal{R}(f) = f(A) = \{ y \in B \mid f(x) = y \text{ for an } x \in A \}.$ Preimage of $y \in B: f^{-1}(y) = \{ x \in A \mid f(x) = y \}.$

Examples:

 $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$.

Domain \mathbb{R} ; codomain \mathbb{R} ; range $f(A) = \{x \in \mathbb{R} \mid x \geq 0\}$.

A function $f:A\to B$ is a rule that assigns a unique element $f(a)\in B$ to every element $a\in A$ (where A,B are sets). Written:

$$f: A \rightarrow B$$
 or $f: A \rightarrow B$
 $a \mapsto f(a)$ $f(a) = b$

b is the image (or function value) of a under f

Domain A, Codomain B,

Range of $f: \mathcal{R}(f) = f(A) = \{ y \in B \mid f(x) = y \text{ for an } x \in A \}.$ Preimage of $y \in B: f^{-1}(y) = \{ x \in A \mid f(x) = y \}.$

Examples:

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$$
.

Domain \mathbb{R} ; codomain \mathbb{R} ; range $f(A) = \{x \in \mathbb{R} \mid x \ge 0\}$.

$$g: \{1,2,3\} \rightarrow \{1,a,B\}$$

 $g(1) = B, g(2) = 1, g(3) = B.$

A function $f: A \to B$ is a rule that assigns a unique element $f(a) \in B$ to every element $a \in A$ (where A, B are sets). Written:

$$f: A \rightarrow B$$
 or $f: A \rightarrow B$
 $a \mapsto f(a)$ $f(a) = b$

b is the image (or function value) of a under f

Domain A, Codomain B,

Range of $f: \mathcal{R}(f) = f(A) = \{ y \in B \mid f(x) = y \text{ for an } x \in A \}.$ Preimage of $y \in B$: $f^{-1}(y) = \{x \in A \mid f(x) = y\}$.

Examples:

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$$
.

Domain \mathbb{R} ; codomain \mathbb{R} ; range $f(A) = \{x \in \mathbb{R} \mid x > 0\}$.

$$g: \{1,2,3\} \rightarrow \{1,a,B\}$$

 $g(1) = B, g(2) = 1, g(3) = B.$

Domain $\{1, 2, 3\}$; codomain $\{1, a, B\}$; range of $g: \{1, B\}$; preimage $g^{-1}(a) = \emptyset; g^{-1}(B) = \{1, 3\}.$

A function $f: A \to B$ is a rule that assigns a unique element $f(a) \in B$ to every element $a \in A$.

A function $f: A \to B$ is a rule that assigns a unique element $f(a) \in B$ to every element $a \in A$. The graph of the function f is the point set $\{(x, f(x)) \mid x \in A\}$.

A function $f: A \to B$ is a rule that assigns a unique element $f(a) \in B$ to every element $a \in A$. The graph of the function f is the point set $\{(x, f(x)) \mid x \in A\}$.

$$f: \mathbb{R} \to \mathbb{R}$$
, $x \mapsto x^2$.

A function $f: A \to B$ is a rule that assigns a unique element $f(a) \in B$ to every element $a \in A$. The graph of the function f is the point set $\{(x, f(x)) \mid x \in A\}$.

Examples:

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$$
.

Graph of $f: \{(x, x^2) \mid x \in \mathbb{R}\}.$

A function $f: A \to B$ is a rule that assigns a unique element $f(a) \in B$ to every element $a \in A$. The graph of the function f is the point set $\{(x, f(x)) \mid x \in A\}$.

Examples:

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$$
.

Graph of $f: \{(x, x^2) \mid x \in \mathbb{R}\}$. (for functions $f: \mathbb{R} \to \mathbb{R}$ graphically representable as point set in the plane).

A function $f: A \to B$ is a rule that assigns a unique element $f(a) \in B$ to every element $a \in A$. The graph of the function f is the point set $\{(x, f(x)) \mid x \in A\}$.

Examples:

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$$
.

Graph of $f: \{(x, x^2) \mid x \in \mathbb{R}\}.$

(for functions $f: \mathbb{R} \to \mathbb{R}$ graphically representable as point set in the plane).

$$g: \{1,2,3\} \rightarrow \{1,a,B\}, g(1) = B, g(2) = 1, g(3) = B.$$

A function $f: A \to B$ is a rule that assigns a unique element $f(a) \in B$ to every element $a \in A$.

The graph of the function f is the point set $\{(x, f(x)) \mid x \in A\}$.

Examples:

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$$
.

Graph of $f: \{(x, x^2) \mid x \in \mathbb{R}\}.$

(for functions $f: \mathbb{R} \to \mathbb{R}$ graphically representable as point set in the plane).

$$g: \{1,2,3\} \rightarrow \{1,a,B\}, g(1) = B, g(2) = 1, g(3) = B.$$

Graph of $g: \{(1, B), (2, 1), (3, B)\}.$

Given two functions

$$f: A \rightarrow B$$
 $g: B \rightarrow C$
 $a \mapsto f(a)$ $b \mapsto g(b)$

Given two functions

$$f: A \rightarrow B$$
 $g: B \rightarrow C$
 $a \mapsto f(a)$ $b \mapsto g(b)$

The function composition $g \circ f$ is the function

$$g \circ f : A \rightarrow C$$

 $a \mapsto g(f(a))$

Given two functions

$$f: A \rightarrow B$$
 $g: B \rightarrow C$
 $a \mapsto f(a)$ $b \mapsto g(b)$

The function composition $g \circ f$ is the function

$$g \circ f : A \rightarrow C$$

 $a \mapsto g(f(a))$

Given two functions

$$f: A \rightarrow B$$
 $g: B \rightarrow C$
 $a \mapsto f(a)$ $b \mapsto g(b)$

The function composition $g \circ f$ is the function

$$g \circ f : A \rightarrow C$$

 $a \mapsto g(f(a))$

Example:
$$f: \mathbb{R} \to \mathbb{R}$$
 $g: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^2$ $x \mapsto 2x$

Given two functions

$$f: A \rightarrow B$$
 $g: B \rightarrow C$
 $a \mapsto f(a)$ $b \mapsto g(b)$

The function composition $g \circ f$ is the function

$$g \circ f : A \rightarrow C$$

 $a \mapsto g(f(a))$

Example:
$$f: \mathbb{R} \to \mathbb{R}$$
 $g: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^2$ $x \mapsto 2x$ $g \circ f(x) = g(f(x)) = g(x^2) = 2x^2$.

Given two functions

$$f: A \rightarrow B$$
 $g: B \rightarrow C$
 $a \mapsto f(a)$ $b \mapsto g(b)$

The function composition $g \circ f$ is the function

$$g \circ f : A \rightarrow C$$

 $a \mapsto g(f(a))$

Example:
$$f: \mathbb{R} \to \mathbb{R}$$
 $g: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^2$ $x \mapsto 2x$ $g \circ f(x) = g(f(x)) = g(x^2) = 2x^2$. But: $f \circ g(x) = f(g(x)) = f(2x) = (2x)^2 = 4x^2$.

Given two functions

$$f: A \rightarrow B$$
 $g: B \rightarrow C$
 $a \mapsto f(a)$ $b \mapsto g(b)$

The function composition $g \circ f$ is the function

$$g \circ f : A \rightarrow C$$

 $a \mapsto g(f(a))$

Read: "g after f" or "g of f".

Not commutative in general!

Example:
$$f: \mathbb{R} \to \mathbb{R}$$
 $g: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^2$ $x \mapsto 2x$ $g \circ f(x) = g(f(x)) = g(x^2) = 2x^2$. But: $f \circ g(x) = f(g(x)) = f(2x) = (2x)^2 = 4x^2$.

Powers

kth power of x

Function
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^k = \underbrace{x \cdot x \cdot \cdot \cdot x}_{k \text{ times}}$.

kth power of x

Function
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^k = \underbrace{x \cdot x \cdot \cdot \cdot x}_{k \text{ times}}$.

x: basis. k: exponent.

kth power of x

Function
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^k = \underbrace{x \cdot x \cdot \cdot \cdot x}_{k \text{ times}}$.

x: basis. k: exponent.

 $x \in \mathbb{R}$, x > 0:

Power rules

$$x^{n} \cdot x^{m} = x^{n+m}.$$

$$x^{n} : x^{m} = x^{n-m}.$$

$$x^{-n} = \frac{1}{x^{n}}.$$

$$x^{\frac{n}{m}} = \sqrt[m]{x^{n}} = (\sqrt[m]{x})^{n}, \text{ if } m > 0.$$

$$x^{0} = 1.$$

Multiplication/division of powers with the same basis: addition/subtraction of the exponents.

Polynomial

A (real) polynomial is a function $p: \mathbb{R} \to \mathbb{R}$

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

where the coefficients $a_i \in \mathbb{R}$ for $i \in \{0, 1, ..., n-1, n\}$ and $a_n \neq 0$.

Polynomial

A (real) polynomial is a function $p: \mathbb{R} \to \mathbb{R}$

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

where the coefficients $a_i \in \mathbb{R}$ for $i \in \{0, 1, ..., n-1, n\}$ and $a_n \neq 0$.

The number a_n is called the leading coefficient.

Polynomial

A (real) polynomial is a function $p: \mathbb{R} \to \mathbb{R}$

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

where the coefficients $a_i \in \mathbb{R}$ for $i \in \{0, 1, ..., n-1, n\}$ and $a_n \neq 0$.

The number a_n is called the leading coefficient.

The degree $n = \deg p$ of p is the index of the leading coefficient.

Polynomial

A (real) polynomial is a function $p: \mathbb{R} \to \mathbb{R}$

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

where the coefficients $a_i \in \mathbb{R}$ for $i \in \{0, 1, ..., n-1, n\}$ and $a_n \neq 0$.

The number a_n is called the leading coefficient.

The degree $n = \deg p$ of p is the index of the leading coefficient.

The zero-polynomial p(x) = 0 is the function mapping every $x \in \mathbb{R}$ to 0.

Its degree is defined to be $-\infty$.

Polynomial

A (real) polynomial is a function $p: \mathbb{R} \to \mathbb{R}$

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

where the coefficients $a_i \in \mathbb{R}$ for $i \in \{0, 1, ..., n-1, n\}$ and $a_n \neq 0$.

The number a_n is called the leading coefficient.

The degree $n = \deg p$ of p is the index of the leading coefficient.

The zero-polynomial p(x) = 0 is the function mapping every $x \in \mathbb{R}$ to 0.

Its degree is defined to be $-\infty$.

$$p(x) = x^4 - 4x^3 + \frac{3}{2}x + 1.$$

Polynomial

A (real) polynomial is a function $p: \mathbb{R} \to \mathbb{R}$

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

where the coefficients $a_i \in \mathbb{R}$ for $i \in \{0, 1, ..., n-1, n\}$ and $a_n \neq 0$.

The number a_n is called the leading coefficient.

The degree $n = \deg p$ of p is the index of the leading coefficient.

The zero-polynomial p(x) = 0 is the function mapping every $x \in \mathbb{R}$ to 0.

Its degree is defined to be $-\infty$.

Example:

$$p(x) = x^4 - 4x^3 + \frac{3}{2}x + 1.$$

Coefficients:

Polynomial

A (real) polynomial is a function $p: \mathbb{R} \to \mathbb{R}$

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

where the coefficients $a_i \in \mathbb{R}$ for $i \in \{0, 1, ..., n-1, n\}$ and $a_n \neq 0$.

The number a_n is called the leading coefficient.

The degree $n = \deg p$ of p is the index of the leading coefficient.

The zero-polynomial p(x) = 0 is the function mapping every $x \in \mathbb{R}$ to 0.

Its degree is defined to be $-\infty$.

Example:

$$p(x) = x^4 - 4x^3 + \frac{3}{2}x + 1.$$

Coefficients: $a_4 = 1$,

Polynomial

A (real) polynomial is a function $p: \mathbb{R} \to \mathbb{R}$

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

where the coefficients $a_i \in \mathbb{R}$ for $i \in \{0, 1, ..., n-1, n\}$ and $a_n \neq 0$.

The number a_n is called the leading coefficient.

The degree $n = \deg p$ of p is the index of the leading coefficient.

The zero-polynomial p(x) = 0 is the function mapping every $x \in \mathbb{R}$ to 0.

Its degree is defined to be $-\infty$.

$$p(x) = x^4 - 4x^3 + \frac{3}{2}x + 1.$$

Coefficients:
$$a_4 = 1$$
, $a_3 = -4$,

Polynomial

A (real) polynomial is a function $p: \mathbb{R} \to \mathbb{R}$

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

where the coefficients $a_i \in \mathbb{R}$ for $i \in \{0, 1, ..., n-1, n\}$ and $a_n \neq 0$.

The number a_n is called the leading coefficient.

The degree $n = \deg p$ of p is the index of the leading coefficient.

The zero-polynomial p(x) = 0 is the function mapping every $x \in \mathbb{R}$ to 0.

Its degree is defined to be $-\infty$.

$$p(x) = x^4 - 4x^3 + \frac{3}{2}x + 1.$$

Coefficients:
$$a_4 = 1$$
, $a_3 = -4$, $a_2 = 0$,

Polynomial

A (real) polynomial is a function $p: \mathbb{R} \to \mathbb{R}$

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

where the coefficients $a_i \in \mathbb{R}$ for $i \in \{0, 1, \dots, n-1, n\}$ and $a_n \neq 0$.

The number a_n is called the leading coefficient.

The degree n = deg p of p is the index of the leading coefficient.

The zero-polynomial p(x) = 0 is the function mapping every $x \in \mathbb{R}$ to 0.

Its degree is defined to be $-\infty$.

$$p(x) = x^4 - 4x^3 + \frac{3}{2}x + 1.$$

Coefficients:
$$a_4 = 1$$
, $a_3 = -4$, $a_2 = 0$, $a_1 = \frac{3}{2}$,

Polynomial

A (real) polynomial is a function $p: \mathbb{R} \to \mathbb{R}$

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

where the coefficients $a_i \in \mathbb{R}$ for $i \in \{0, 1, \dots, n-1, n\}$ and $a_n \neq 0$.

The number a_n is called the leading coefficient.

The degree $n = \deg p$ of p is the index of the leading coefficient.

The zero-polynomial p(x) = 0 is the function mapping every $x \in \mathbb{R}$ to 0.

Its degree is defined to be $-\infty$.

$$p(x) = x^4 - 4x^3 + \frac{3}{2}x + 1.$$

Coefficients:
$$a_4 = 1$$
, $a_3 = -4$, $a_2 = 0$, $a_1 = \frac{3}{2}$, $a_0 = 1$.

Polynomial

A (real) polynomial is a function $p: \mathbb{R} \to \mathbb{R}$

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

where the coefficients $a_i \in \mathbb{R}$ for $i \in \{0, 1, \dots, n-1, n\}$ and $a_n \neq 0$.

The number a_n is called the leading coefficient.

The degree n = deg p of p is the index of the leading coefficient.

The zero-polynomial p(x) = 0 is the function mapping every $x \in \mathbb{R}$ to 0.

Its degree is defined to be $-\infty$.

$$p(x) = x^4 - 4x^3 + \frac{3}{2}x + 1.$$

Coefficients:
$$a_4 = 1$$
, $a_3 = -4$, $a_2 = 0$, $a_1 = \frac{3}{2}$, $a_0 = 1$. $\deg p = 4$.

Two polynomials:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

$$q(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0,$$

$$\deg p = n \ge m = \deg q.$$

Two polynomials:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

$$q(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0,$$

$$\deg p = n > m = \deg q.$$

Addition

$$p(x) + q(x) = a_n x^n + \ldots + a_{m+1} x^{m+1} + (a_m + b_m) x^m + \ldots + (a_1 + b_1) x + a_0 + b_0.$$

Two polynomials:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

$$q(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0,$$

$$\deg p = n > m = \deg q.$$

Addition

$$p(x) + q(x) = a_n x^n + \ldots + a_{m+1} x^{m+1} + (a_m + b_m) x^m + \ldots + (a_1 + b_1) x + a_0 + b_0.$$

Degree $deg(p+q) \leq max\{deg p, deg q\}$.

Two polynomials:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

$$q(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0,$$

$$\deg p = n > m = \deg q.$$

Addition

$$p(x) + q(x) = a_n x^n + \ldots + a_{m+1} x^{m+1} + (a_m + b_m) x^m + \ldots + (a_1 + b_1) x + a_0 + b_0.$$

Degree
$$\deg(p+q) \le \max\{\deg p, \deg q\}$$
.
 $\deg(p+q) < \max\{\deg p, \deg q\}$ if $m=n$ and $a_n = -b_m$.

Two polynomials:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

$$q(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0,$$

$$\deg p = n > m = \deg q.$$

Addition

$$p(x) + q(x) = a_n x^n + \ldots + a_{m+1} x^{m+1} + (a_m + b_m) x^m + \ldots + (a_1 + b_1) x + a_0 + b_0.$$

Degree $\deg(p+q) \le \max\{\deg p, \deg q\}$. $\deg(p+q) < \max\{\deg p, \deg q\}$ if m=n and $a_n = -b_m$.

$$p(x) = x^4 - 4x^3 + \frac{3}{2}x + 1$$
, $q(x) = 2x^2 + x + 4$, $r(x) = -2x^2 - x + 1$.