CHAPTER 11 (Odd)

- Φ : CGS: 5×10^4 Maxwells, English: 5×10^4 lines 1. B: CGS: 8 Gauss, English: 51.616 lines/in.²
- $B = \frac{\Phi}{4} = \frac{4 \times 10^{-4} \text{ Wb}}{0.01 \text{ m}^2} = 0.04 \text{ T}$
- $\Re = \frac{\mathscr{F}}{\Phi} = \frac{400 \text{ At}}{4.2 \times 10^{-4} \text{ Wb}} = 952.4 \times 10^3 \text{ At/Wb}$
- 6 in. $\left[\frac{1 \text{ m}}{39.37 \text{ in.}}\right] = 0.1524 \text{ m}$ $H = \frac{\mathscr{F}}{l} = \frac{400 \text{ At}}{0.1524 \text{ m}} = 2624.67 \text{ At/m}$
- $B = \frac{\Phi}{A} = \frac{10 \times 10^{-4} \text{ Wb}}{3 \times 10^{-3} \text{ m}^2} = 0.333 \text{ T}$ $NI = Hl \Rightarrow I = Hl/N = (800 \text{ At/m})(0.2 \text{ m})/75 \text{ t} = 2.133 \text{ A}$
- a. $N_1I_1 + N_2I_2 = HI$ 11. $B = \frac{\Phi}{A} = \frac{12 \times 10^{-4} \text{ Wb}}{12 \times 10^{-4} \text{ m}^2} = 1 \text{ T}$ Fig. 11.23: $H \cong 750 \text{ At/m}$ $N_1(2 \text{ A}) + 30 \text{ At} = (750 \text{ At/m})(0.2 \text{ m})$ $N_1 = 60 \text{ t}$
 - b. $\mu = \frac{B}{H} = \frac{1 \text{ T}}{750 \text{ At/m}} = 13.34 \times 10^{-4} \text{ Wb/Am}$
- $N_1I + N_2I = \underline{Hl} + \underline{Hl}$ 13.

$$(20 \text{ t})I + (30 \text{ t})I = "$$

 $(50 \text{ t})I = "$

$$B = \frac{\Phi}{A} \text{ with } 0.25 \text{ j.e.}^2 \left[\frac{1 \text{ m}}{39.37 \text{ j.e.}} \right] \left[\frac{1 \text{ m}}{39.37 \text{ j.e.}} \right] = 1.6 \times 10^{-4} \text{ m}^2$$

$$B = 0.8 \times 10^{-4} \text{ Wb} = 0.5 \text{ T}$$

$$B = \frac{0.8 \times 10^{-4} \text{ Wb}}{1.6 \times 10^{-4} \text{ m}^2} = 0.5 \text{ T}$$

Fig. 11.24: $H_{\text{cast steel}} \cong 280 \text{ At/m}$ Fig. 11.23: $H_{\text{cast iron}} \cong 1500 \text{ At/m}$

$$l_{\text{cast steel}} = 5.5 \text{ j.d.} \left[\frac{1 \text{ m}}{39.37 \text{ j.d.}} \right] = 0.1397 \text{ m}$$

$$l_{\text{cast iron}} = 2.5 \text{ in.} \left[\frac{1 \text{ m}}{39.37 \text{ in.}} \right] = 0.0635 \text{ m}$$

$$(50 \text{ t})I = (280 \text{ At/m})(0.1397 \text{ m}) + (1500 \text{ At/m})(0.0635 \text{ m})$$

$$50I = 39.12 + 95.25 = 134.37$$

$$I = 2.687 \text{ A}$$

15.
$$4 \text{ cm} \left[\frac{1 \text{ m}}{100 \text{ cm}} \right] = 0.04 \text{ m}$$

$$f = \frac{1}{2} NI \frac{d\phi}{dx} = \frac{1}{2} (80 \text{ t})(0.9 \text{ A}) \frac{(8 \times 10^{-4} \text{ Wb} - 0.5 \times 10^{-4} \text{ Wb})}{\frac{1}{2} (0.04 \text{ m})} = \frac{36(7.5 \times 10^{-4})}{0.02}$$

$$= 1.35 \text{ N}$$

17. a.
$$0.2 \text{ cm}' \left[\frac{1 \text{ m}}{100 \text{ cm}'} \right] = 2 \times 10^{-3} \text{ m}$$

$$A = \frac{\pi d^2}{4} = \frac{(3.14)(0.01 \text{ m})^2}{4} = 0.785 \times 10^{-4} \text{ m}^2$$

$$NI = H_g l_g, H_g = 7.96 \times 10^5 B_g$$

$$(200 \text{ t})I = \left[(7.96 \times 10^5) \left[\frac{0.2 \times 10^{-4} \text{ Wb}}{0.785 \times 10^{-4} \text{ m}^2} \right] \right] 2 \times 10^{-3} \text{ m}$$

$$I = 2.028 \text{ A}$$

b.
$$F = \frac{1}{2} \frac{B_g^2 A}{\mu_o} = \frac{1}{2} \frac{(0.2548 \text{ T})^2 (0.785 \times 10^{-4} \text{ m}^2)}{4\pi \times 10^{-7}}$$

 $\approx 2 \text{ N}$

19.
$$NI = HI$$

$$l = 2\pi r = (6.28)(0.08 \text{ m}) = 0.5024 \text{ m}$$

$$(100 \text{ t})(2 \text{ A}) = H(0.5024 \text{ m})$$

$$H = 398.09 \text{ At/m}$$
Fig. 11.24: $B \cong 0.675 \text{ T}$

$$\Phi = BA = (0.675 \text{ T})(0.009 \text{ m}^2) = 0.0061 \text{ Wb}$$

$$\Phi = 6.1 \times 10^{-3} \text{ Wb}$$

21. a.
$$1\tau = 0.632 \text{ T}_{\text{max}}$$

 $T_{\text{max}} \cong 1.5 \text{ T for cast steel}$
 $0.632(1.5 \text{ T}) = 0.945 \text{ T}$
At 0.945 T, $H \cong 700 \text{ At/m}$ (Fig. 11.21)
 $\therefore B = 1.5(1 - e^{-H/700 \text{ At/m}})$

$$H = 900 \text{ At/m}:$$

$$B = 1.5 \left(1 - e^{-\frac{900 \text{ At/m}}{700 \text{ At/m}}} \right) = 1.085 \text{ T}$$
Graph: $\approx 1.1 \text{ T}$

$$H = 1800 \text{ At/m}:$$

$$B = 1.5 \left(1 - e^{-\frac{1800 \text{ At/m}}{700 \text{ At/m}}} \right) = 1.385 \text{ T}$$

(Odd)

Graph: ≅ 1.38 T

H = 2700 At/m:

$$B = 1.5 \left[1 - e^{-\frac{2700 \text{ At/m}}{700 \text{ At/m}}} \right] = 1.468 \text{ T}$$

Graph: ≅ 1.47 T

Excellent comparison!

c.
$$B = 1.5(1 - e^{-H/700 \text{ At/m}}) = 1.5 - 1.5e^{-H/700 \text{ At/m}}$$

 $B - 1.5 = -1.5e^{-H/700 \text{ At/m}}$
 $1.5 - B = 1.5e^{-H/700 \text{ At/m}}$
 $\frac{1.5 - B}{1.5} = e^{-H/700 \text{ At/m}}$

$$\log_e \left[1 - \frac{B}{1.5} \right] = \frac{-H}{700 \text{ At/m}}$$

and
$$H = -700 \log_e \left[1 - \frac{B}{1.5} \right]$$

d. B = 1 T:

$$H = -700 \log_e \left[1 - \frac{1}{1.5} \right] = 769.03 \text{ At/m}$$

Graph: \approx 750 At/m

$$B = 1.4 \text{ T}$$
:

$$H = -700 \log_e \left[1 - \frac{1.4}{1.5} \right] = 1895.64 \text{ At/m}$$

Graph: ≅ 1920 At/m

e.
$$H = -700 \log_e \left[1 - \frac{B}{1.5} \right]$$

 $= -700 \log_e \left[1 - \frac{0.2}{1.5} \right]$
 $= 100.2 \text{ At/m}$
 $I = \frac{Hl}{N} = \frac{(100.2 \text{ At/m})(0.16 \text{ m})}{400 \text{ t}} = 40.1 \text{ mA}$

vs 44 mA for Ex. 11.3

CHAPTER 11 (Even)

2. Φ : SI 6 × 10⁻⁴ Wb, English 60,000 lines B: SI 0.465 T, CGS 4.65 × 10³ Gauss, English 30,000 lines/in.²

4. a.
$$\Re = \frac{l}{\mu A} = \frac{0.06 \text{ m}}{\mu 2 \times 10^{-4} \text{ m}^2} = \frac{300}{\mu \text{m}}$$

b.
$$\Re = \frac{l}{\mu A} = \frac{0.0762 \text{ m}}{\mu 5 \times 10^{-4} \text{ m}^2} = \frac{152.4}{\mu \text{m}}$$

c.
$$\Re = \frac{l}{\mu A} = \frac{0.1 \text{ m}}{\mu 1 \times 10^{-4} \text{ m}^2} = \frac{1000}{\mu \text{m}}$$

from the above $\Re_{(c)} > \Re_{(a)} > \Re_{(b)}$

6.
$$\Re = \frac{\mathscr{F}}{\Phi} = \frac{120 \text{ gilberts}}{72,000 \text{ maxwells}} = 1.667 \times 10^{-3} \text{ rels (CGS)}$$

8.
$$\mu = \frac{2B}{H} = \frac{2(1200 \times 10^{-4} \text{ T})}{600 \text{ At/m}} = 4 \times 10^{-4} \text{ Wb/Am}$$

10.
$$B = \frac{\Phi}{A} = \frac{3 \times 10^{-4} \text{ Wb}}{5 \times 10^{-4} \text{ m}^2} = 0.6 \text{ T}$$

Fig. 11.23,
$$H_{iron} = 2500 \text{ At/m}$$

Fig. 11.24,
$$H_{\text{steel}} = 70 \text{ At/m}$$

$$M = Hl_{(iron)} + Hl_{(steel)}$$

$$(100 t)I = (H_{iron} + H_{steel})I$$

$$(100 \text{ t})I = (2500 \text{ At/m} + 70 \text{ At/m})0.3 \text{ m}$$

$$I = \frac{771 \text{ A}}{100} = 7.71 \text{ A}$$

12. a. 80,000 lines
$$\left[\frac{1 \text{ Wb}}{10^8 \text{ lines}}\right] = 8 \times 10^4 \times 10^{-8} \text{ Wb} = 8 \times 10^{-4} \text{ Wb}$$

$$l_{\text{(cast steel)}} = 5.5 \text{ jm}. \left[\frac{1 \text{ m}}{39.37 \text{ jm}.}\right] = 0.1397 \text{ m}$$

$$l_{\text{(sheet steel)}} = 0.5 \text{ jm}. \left[\frac{1 \text{ m}}{39.37 \text{ jm}.}\right] = 0.0127 \text{ m}$$

$$\text{Area} = 1 \text{ im}.^2 \left[\frac{1 \text{ m}}{39.37 \text{ jm}.}\right] \left[\frac{1 \text{ m}}{39.37 \text{ jm}.}\right] = 6.45 \times 10^{-4} \text{ m}^2$$

$$B = \frac{\Phi}{A} = \frac{8 \times 10^{-4} \text{ Wb}}{6.45 \times 10^{-4} \text{ m}^2} = 1.24 \text{ T}$$

Fig 11.24:
$$H_{\text{sheet steel}} \cong 460 \text{ At/m}$$
, Fig. 11.23: $H_{\text{cast steel}} \cong 1275 \text{ At/m}$
 $NI = Hl_{\text{(sheet steel)}} + Hl_{\text{(cast iron)}}$
= $(460 \text{ At/m})(0.0127 \text{ m}) + (1275 \text{ At/m})(0.1397 \text{ m})$
= $5.842 \text{ At} + 178.12 \text{ At}$
 $NI = 183.96$

b. Cast steel:
$$\mu = \frac{B}{H} = \frac{1.24 \text{ T}}{1275 \text{ At/m}} = 9.725 \times 10^{-4} \text{ Wb/Am}$$

Sheet steel: $\mu = \frac{B}{H} = \frac{1.24 \text{ T}}{460 \text{ At/m}} = 26.96 \times 10^{-4} \text{ Wb/Am}$

14. a.
$$l_{ab} = l_{ef} = 0.05 \text{ m}, \ l_{af} = 0.02 \text{ m}, \ l_{bc} = l_{de} = 0.0085 \text{ m}$$
 $NI = 2H_{ab}l_{ab} + 2H_{bc}l_{bc} + H_{fa}l_{fa} + H_{g}l_{g}$
 $B = \frac{\Phi}{A} = \frac{2.4 \times 10^{-4} \text{ Wb}}{2 \times 10^{-4} \text{ m}^{2}} = 1.2 \text{ T} \Rightarrow H \cong 360 \text{ At/m} \text{ (Fig. 11.24)}$
 $100I = 2(360 \text{ At/m})(0.05 \text{ m}) + 2(360 \text{ At/m})(0.0085 \text{ m}) + (360 \text{ At/m})(0.02 \text{ m}) + 7.97 \times 10^{5}(1.2 \text{ T})(0.003 \text{ m})$
 $= 36 \text{ At} + 6.12 \text{ At} + 7.2 \text{ At} + 2869 \text{ At}$
 $100I = 2918.32 \text{ At}$
 $I \cong 29.18 \text{ A}$

b. air gap: metal = 2869 At:49.72 At = 58.17:1
$$\mu_{\text{sheet steel}} = \frac{B}{H} = \frac{1.2 \text{ T}}{360 \text{ At/m}} = 3.33 \times 10^{-3} \text{ Wb/Am}$$
$$\mu_{\text{air}} = 4\pi \times 10^{-7} \text{ Wb/Am}$$
$$\mu_{\text{sheet steel}} : \mu_{\text{air}} = 3.33 \times 10^{-3} \text{ Wb/Am:} 4\pi \times 10^{-7} \cong 2627:1$$

 $C = 2\pi r = (6.28)(0.3 \text{ m}) = 1.884 \text{ m}$

$$B = \frac{\Phi}{A} = \frac{2 \times 10^{-4} \text{ Wb}}{1.3 \times 10^{-4} \text{ m}^2} = 1.538 \text{ T}$$
Fig. 11.23: $H_{\text{sheet steel}} \cong 2100 \text{ At/m}$

$$H_g = 7.97 \times 10^5 B_g = (7.97 \times 10^5)(1.538 \text{ T}) = 12.26 \times 10^5 \text{ At/m}$$

$$N_1 I_1 + N_2 I_2 = H_g I_g + H I_{\text{(sheet steel)}}$$

$$(200 \text{ t})I_1 + (40 \text{ t})(0.3 \text{ A}) = (12.26 \times 10^5 \text{ At/m})(2 \text{ mm}) + (2100 \text{ At/m})(1.884 \text{ m})$$

$$I_1 = 31.98 \text{ A}$$

18. Table:

16.

Section	Φ(Wb)	A(m ²)	B(T)	H	<i>l</i> (m)	Hl
a-b, g-h		5×10^{-4}			0.2	
b-c, f-g	2×10^{-4}	5×10^{-4}			0.1	
c-d, e-f	2×10^{-4}	5×10^{-4}			0.099	
a-h		5×10^{-4}			0.2	
b-g		2×10^{-4}			0.2	
d-e	2×10^{-4}	5×10^{-4}			0.002	

$$B_{bc} = B_{cd} = B_g = B_{ef} = B_{fg} = \frac{\Phi}{A} = \frac{2 \times 10^{-4} \text{ Mb}}{5 \times 10^{-4} \text{ m}^2} = 0.4 \text{ T}$$
Air gap: $H_g = 7.97 \times 10^5 (0.4 \text{ T}) = 3.188 \times 10^5 \text{ At/m}$
 $H_g I_g = (3.188 \times 10^5 \text{ At/m})(2 \text{ mm}) = 637.60 \text{ At}$

Fig 11.24: $H_{bc} = H_{cd} = H_{ef} = H_{fg} = 55 \text{ At/m}$
 $H_{bc}I_{bc} = H_{fg}I_{fg} = (55 \text{ At/m})(0.1 \text{ m}) = 5.5 \text{ At}$
 $H_{cd}I_{cd} = H_{ef}I_{ef} = (55 \text{ At/m})(0.099 \text{ m}) = 5.445 \text{ At}$

For loop 2: $\sum_{C} \mathscr{F} = 0$
 $H_{bc}I_{bc} + H_{cd}I_{cd} + H_{g}I_{g} + H_{ef}I_{ef} + H_{fg}I_{g} - H_{gb}I_{gb} = 0$
5.5 At + 5.445 At + 637.60 At + 5.445 At + 5.50 At - $H_{gb}I_{gb} = 0$
 $H_{gb}I_{gb} = 659.49 \text{ At}$
and $H_{gb} = \frac{659.49 \text{ At}}{0.2 \text{ m}} = 3297.45 \text{ At/m}$

Fig 11.23: $B_{gb} \approx 1.55 \text{ T}$
with $\Phi_2 = B_{gb}A = (1.55 \text{ T})(2 \times 10^{-4} \text{ m}^2) = 3.1 \times 10^{-4} \text{ Wb}$
 $\Phi_T = \Phi_1 + \Phi_2$
 $= 2 \times 10^{-4} \text{ Wb} + \Phi_{ab} = \Phi_{ha} = \Phi_{gh}$
 $B_{ab} = B_{ha} = B_{gh} = \frac{\Phi_T}{A} = \frac{5.1 \times 10^{-4} \text{ Wb}}{5 \times 10^{-4} \text{ m}^2} = 1.02 \text{ T}$
 $B - H \text{ curve: } \text{ (Fig 11.24):}$
 $H_{ab} = H_{ha} = H_{gh} \approx 180 \text{ At/m}$
 $H_{ab}I_{ab} = (180 \text{ At/m})(0.2 \text{ m}) = 36 \text{ At}$
 $H_{ha}I_{ha} = (180 \text{ At/m})(0.2 \text{ m}) = 36 \text{ At}$
which completes the table!

Loop #1: $\sum_{C} \mathscr{F} = 0$
 $NI = H_{ab}I_{ab} + H_{bg}I_{bg} + H_{gh}I_{gh} + H_{ah}I_{ah}$
 $(200 \text{ t})I = 36 \text{ At} + 659.49 \text{ At} + 36 \text{ At} + 36 \text{ At}$
 $I \cong 3.84 \text{ A}$
 $NI = H_{ab}(I_{ab} + I_{bc} + I_{de} + I_{ef} + I_{fa}) + H_{g}I_{g}$
 $Assuming 637.6 B_g > H_{ab}(0.7992 \text{ m}) + 637.6 B_g$

Assuming 637.6 B_g > $H_{ab}(0.7992 \text{ m})$
then 300 At $= 637.6 B_g$

 $\Phi = BA = (0.471 \text{ T})(2 \times 10^{-4} \text{ m}^2) = 0.942 \times 10^{-4} \text{ Wb}$

 $B_{ab} = B_g = 0.471 \text{ T} \Rightarrow H \approx 270 \text{ At/m (Fig. 11.24)}$ 300 At = (270 At/m)(0.7992 m) + 637.6(0.471 T)

and $B_o = 0.471 \text{ T}$

300 At \neq 516.09 At \therefore Poor approximation!

20.

$$\frac{300 \text{ At}}{516.09 \text{ At}} \times 100\% \cong 58\%$$

Reduce Φ to 58%

$$0.58(0.942 \times 10^{-4} \text{ Wb}) = 0.546 \times 10^{-4} \text{ Wb}$$

$$B = \frac{\Phi}{A} = \frac{0.546 \times 10^{-4} \text{ Wb}}{2 \times 10^{-4} \text{ m}^2} = 0.273 \text{ T} \Rightarrow H \cong 190 \text{ At/m} \text{ (Fig. 11.24)}$$

$$300 \text{ At} = (190 \text{ At/m})(0.7992) + 637.6(0.273 \text{ T})$$

 $300 \text{ At} \neq 325.91$

Reduce
$$\Phi$$
 another $10\% = 0.546 \times 10^{-4} \text{ Wb} - 0.1(546 \times 10^{-4} \text{ Wb})$
= $0.491 \times 10^{-4} \text{ Wb}$

$$B = \frac{\Phi}{A} = \frac{0.491 \times 10^{-4} \text{ Wb}}{2 \times 10^{-4} \text{ m}^2} = 0.246 \text{ T} \Rightarrow H \approx 175 \text{ At/m} \text{ (Fig. 11.24)}$$

300 At = (175 At/m)(0.7992) + 637.6(0.273 T)

300 At \neq 313.92 At but within 5% \therefore OK

 $\Phi \cong 0.546 \times 10^{-4} \text{ Wb}$