Goldbach's proof of infinitude of primes

Miliyon T. (written in a letter to Euler, July 1730)

August 28, 2015

Lemma 1. The Fermat numbers $F_n = 2^{2^n} + 1$ are pairwise relatively prime.

Proof. It's easy to show by induction that

$$F_m - 2 = F_0 F_1 \cdots F_{m-1}$$

This means that if d divides both $F_n\&F_m$ (with n < m), then d also divides $F_m - 2$; so d divides 2. But every Fermat number is odd. So d is 1.

Theorem 1. There are infinitely many primes

Proof. Choose a prime divisor p_n of each Fermat number F_n . By () we know these primes are all distinct, showing that there are infinitely many primes.