확률_통계

Statistic

저녁이 있는 프로젝트 오상훈 6 Hours, 1 Month

평균과 중앙값

- ❖ 평균:대표값 가장 많이 사용.
- ❖ 중앙값:이상한 값 의한 보완, 크기순 나열

$$\frac{3+5+10+7+5+12+63}{7} = \frac{105}{7} = \frac{15}{(4)}$$

❖ 빈도가 가장 많은 값, 경우 따라 2개 이상.

대표값

❖ 평균, 중앙값, 최빈값 중 고르기 수학 성적

평균:
$$\frac{80+75+79+84+88+86}{6} = \frac{492}{6} = 82(점)$$

등교 시간

(단위 : 분)

신발의 크기

(단위: mm)

			The same of	1 STATE		
9	10	12	14	15	54	⇒중앙값
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

245	250	240	245	245	235		⇒최빈값
-----	-----	-----	-----	-----	-----	--	------

평균:
$$\frac{10+54+15+14+9+12}{6} = \frac{114}{6} = 19(분)$$

중앙값:
$$\frac{12+14}{2} = \frac{26}{2} = 13(분)$$

신발의 크기 (mm)	235	240	245	250	합계
사람 수 (명)	1	1	3	1	6

산포도와 편차

❖ 산포도:자료가 흩어진 정도를 하나의 수로 표시

➤ 편차 = 변량 - 평균

A	8	7	7	6	7	8	7	6	7	7	
B	5	8	10	7	8	7	6	7	6	6	

경기(회)	1	2	3	4	5	6	7	8	9	10	합계	평균
A의 점수	8	7	7	6	7	8	7	6	7	7	70	7
점수의 편차	1	0	0	-1	0	1	0	-1	0	0	0	0
B의 점수	5	8	10	7	8	7	6	7	6	6	70	7
점수의 편차	-2	1	3	0	1	0	-1	0	-1	-1	0	0

분산과 표준편차(1)

❖ 분산:각편차제곱평균

(분산) = (편차 제곱의 평균) = ((편차)²의 총합)) (변량의 개주)

❖ 표준편차: 분산 제곱근(분산해 원래값 변화 보완)

경기(회)	1	2	3	4	5	6	7	8	9	10	합계	평균
A의 점수	8	7	7	6	7	8	7	6	7	7	70	7
점수의 편차	1	0	0	-1	0	1	0	-1	0	0	0	0
(편차)2	1	0	0	1	0	1	0	1	0	0	4	0.4
B의 점수	5	8	10	7	8	7	6	7	6	6	70	7
점수의 편차	-2	1	3	0	1	0	-1	0	-1	-1	0	0
(편차)2	4	1	9	0	1	0	1	0	1	1	18	1.8

A의 편차 제곱의 평균: $\frac{1^{2}+(1)^{2}+(1)^{2}+(-1)^{2}+(1)^{2}+(1)^{2}+(-1)^{2}+(-1)^{2}+(-1)^{2}+0^{2}+0^{2}}{10}=\frac{4}{10}=0.4$

B의 편차 제곱의 평균: $\frac{(-2)^2 + 1^2 + 3^2 + 0^2 + 1^2 + 0^2 + (-1)^2 + 0^2 + (-1)^2 + (-1)^2}{10} = \frac{18}{10} = 1.8$

분산과 표준편차(2)

❖ 표준 편차 작을 수록 자료가 고르게 산포됨.

