CUDA编程模型

编程结构

• Host: CPU和CPU内存

• Device: GPU和GPU内存

Unified memory (CUDA 6)

内存管理

- cudaMalloc
- cudaFree
- cudaMemcpy(阻塞CPU线程)
- cudaMemset

线程组织

- Grid: 一个kernel启动的所有线程,共享global memory,以多个block的形式组织起来
- Block: 一组线程,可以通过同步或者shared memory进行合作

FIGURE 2-5

调用kernel函数

- kernel_name<<<grid,block>>>(argument list)
- 与CPU线程异步
 - cudaDeviceSynchronize()

函数限定符

- __global___
 - Device上执行,由host或device调用,返回void类型
- __device___
 - Device上执行, 由device调用
- __host___
 - 可省略, host上执行, 由host调用

CUDA API错误处理

- •返回类型cudaError_t
 - cudaSuccess, cudaErrorMemoryAllocation...
- char* cudaGetErrorString(cudaError_t error);

性能分析

• \$ nvprof [nvprof_args] <application> [application args]