

Beyond Singular:

Dealing with Multi-Case Notions in Process Mining

Amin Jalali, PhD.,
Associate Professor
Stockholm University
aj@dsv.su.se

https://www.linkedin.com/in/aminjalali/

https://twitter.com/amin_jalali

About us

Established 1878

Process Mining

Extensible Event Stream

How to export a log file?

We need a case identifier! Based on which, we flat the log!

		"	tem	
		i1		
		i2		
rde	rltem	i3		
	:4			

Item

o1, create_order, 2023-01-10T08:15:00, Amin i1, pick_item, 2023-01-10T08:20:00, Amin i1, confirm_item, 2023-01-10T08:22:00, Amin o1, confirm_order, 2023-01-10T08:50:00, Amin o2, create_order, 2023-01-11T08:15:00, Agnes i2, pick_item, 2023-01-11T08:20:00, Agnes i2, confirm_item, 2023-01-11T08:22:00, Agnes i3, pick_item, 2023-01-11T08:25:00, Agnes i3, confirm_item, 2023-01-11T08:27:00, Agnes o2, confirm_order, 2023-01-11T08:29:00, Agnes

Selecting Item as the identifier

Convergence (one event may be related to different cases)

```
# confirm_order = 3
```

i1, create order, 2023-01-10T08:15:00, Amin i1, pick item, 2023-01-10T08:20:00, Amin i1, confirm item, 2023-01-10T08:22:00, Amin i1, **confirm order**, 2023-01-10T08:50:00, Amin i2, create order, 2023-01-11T08:15:00, Agnes i2, pick item, 2023-01-11T08:20:00, Agnes i2, confirm item, 2023-01-11T08:22:00, Agnes i2, confirm order, 2023-01-11T08:29:00, Agnes i3, create order, 2023-01-11T08:15:00, Agnes i3, pick item, 2023-01-11T08:25:00, Agnes

i3, confirm item, 2023-01-11T08:27:00, Agnes

i3, **confirm_order**, 2023-01-11T08:29:00, Agnes

Map them to related

ones!

Not capturing the whole process!

i1, pick item, 2023-01-10T08:20:00, Amin

i1, confirm item, 2023-01-10T08:22:00, Amin

i2, pick_item, 2023-01-11T08:20:00, Agnes

i2, confirm item, 2023-01-11T08:22:00, Agnes

i3, pick item, 2023-01-11T08:25:00, Agnes

i3, confirm item, 2023-01-11T08:27:00, Agnes

o1, create order, 2023-01-10T08:15:00, Amin

i1, pick_item, 2023-01-10T08:20:00, Amin

i1, confirm item, 2023-01-10T08:22:00, Amin

o1, confirm order, 2023-01-10T08:50:00, Amin

o2, create order, 2023-01-11T08:15:00, Agnes

i2, pick item, 2023-01-11T08:20:00, Agnes

i2, confirm item, 2023-01-11T08:22:00, Agnes

i3, pick item, 2023-01-11T08:25:00, Agnes

i3, confirm item, 2023-01-11T08:27:00, Agnes

o2, confirm order, 2023-01-11T08:29:00, Agnes

o1, create_order, 2023-01-10T08:15:00, Amin o1, confirm_order, 2023-01-10T08:50:00, Amin o2, create_order, 2023-01-11T08:15:00, Agnes o2, confirm_order, 2023-01-11T08:29:00, Agnes

o1, create_order, 2023-01-10T08:15:00, Amin o1, pick_item, 2023-01-10T08:20:00, Amin o1, confirm_item, 2023-01-10T08:22:00, Amin o1, confirm_order, 2023-01-10T08:50:00, Amin o2, create_order, 2023-01-11T08:15:00, Agnes o2, pick_item, 2023-01-11T08:20:00, Agnes o2, confirm_item, 2023-01-11T08:22:00, Agnes o2, pick_item, 2023-01-11T08:25:00, Agnes o2, confirm_item, 2023-01-11T08:27:00, Agnes o2, confirm_order, 2023-01-11T08:29:00, Agnes

ones!

o1, create_order, 2023-01-10T08:15:00, Amin i1, pick_item, 2023-01-10T08:20:00, Amin i1, confirm_item, 2023-01-10T08:22:00, Amin o1, confirm_order, 2023-01-10T08:50:00, Amin o2, create_order, 2023-01-11T08:15:00, Agnes i2, pick_item, 2023-01-11T08:20:00, Agnes i2, confirm_item, 2023-01-11T08:22:00, Agnes i3, pick_item, 2023-01-11T08:25:00, Agnes i3, confirm_item, 2023-01-11T08:27:00, Agnes o2, confirm_order, 2023-01-11T08:29:00, Agnes

Selecting Order as the identifier

One analysis may need several Log Extraction

OCEL: A Standard for Object-Centric Event Logs

How our log will look like?

```
"ocel:objects": {
"ocel:events": {
 "1": {
                                                   <contains>
                                                                                                                                  "ocel:type": "Order",
                                                                    Object
    "ocel:activity": "create order",
                                                                                                                                  "ocel:ovmap": {}
    "ocel:timestamp": "2023-01-10T08:15:00",
    "ocel:vmap": {
                                                                                                                                 "o2": {
      "Customer": "Amin"
                                                                                                                                  "ocel:type": "Order",
                                                                                                                                  "ocel:ovmap": {}
                                                   < contains>
    "ocel:omap": [
                                                                    Event
      "ol"
                                                                                                                                "o3": {
                                                                                                                                  "ocel:type": "Order",
                                                                                                                                  "ocel:ovmap": {}
 "2": {
                                                                                                                     String
    "ocel:activity": "pick item",
    "ocel:timestamp": "2023-01-10T08:20:00"
                                                                                                                                  "ocel:type": "Item",
    "ocel:vmap": {
                                                                                                                                  "ocel:ovmap": {}
      "Customer": "Amin"
                                                                                                                   Timestam
                                                                          contains>
                                                                                                                                "i2": {
    "ocel:omap":
                                                                                                                                  "ocel:type": "Item",
      "ol",
                                                                                                                                  "ocel:ovmap": {}
      "il"
                                                                                                                    Integer
                                                                                                                                 "i3": {
                                                                        0..*
  },
                                                                                                                                  "ocel:type": "Item",
                                                                                                                                  "ocel:ovmap": {}
                                                                              0..*
                                                                                                                                },
                                                       0..*
                                                                                                                     Float
                                     Global-object
                                                                               1..1
                                                                                                                                  "ocel:type": "Item",
                                                                                         Key
                                                               Element
                                                                                                                                  "ocel:ovmap": {}
                                                                               0..1
                                                                                        Value
                                                                                                                    Boolean
                                                                                                                                "i5": {
                                                                                                                                  "ocel:type": "Item",
                                                                                                                                  "ocel:ovmap": {}
                                                           0..*
                                                      <contains>
```

DFG vs DFM (OC-DFG) to OC-Petri nets

Single case vs Multi-case notions

Feature	Traditional Process Mining	Object-Centric Process Mining
Tools Availability	+	-
Simplicity	+	-
Level of maturity	+	-
Convergence	-	+
Divergence	-	+
log extraction	-	+

Do we need to select one of them? Can they go hand in hand?

How to make a balance?

Received 21 November 2022, accepted 1 December 2022, date of publication 2 December 2022, date of current version 7 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3226573

Object Type Clustering Using Markov Directly-Follow Multigraph in Object-Centric Process Mining

https://ieeexplore.ieee.org/document/9969591/

Department of Computer and Systems Sciences, Stockholm University, 164 07 Kista, Sweden

e-mail: aj@dsv.su.se

A sample DFM

FIGURE 1. A Directly-Follows Multigraph (DFM), discovered from 39 events, indicates how process models incorporating all case notions can become complex.

approach.

FIGURE 3. A Markov DFM of the DFM presented in FIGURE 2.

Object Type
$$p\big((t,\theta,t')\big) \leftarrow \frac{f\big((t,\theta,t')\big)}{\sum_{\forall t'' \in t} \overset{\{\theta\}}{\bullet} f\big((t,\theta,t'')\big)} \tag{1}$$
 Source task

Markov Adjacency matrix for each object type

$$p((t,\theta,t')) \leftarrow \frac{f((t,\theta,t'))}{\sum_{\forall t'' \in t}^{\{\theta\}} f((t,\theta,t''))}$$
(1)

FIGURE 3. A Markov DFM of the DFM presented in FIGURE 2.

	ca	pi	po	sp	sr
ca	1/3	2/3	0	0	0
pi	0	0	0	0	0
po	1	0	0	0	0
sp	0	0	0	0	0
sr	0	0	0	0	0

⁽a) Probability of relations for Item

	ca	pi	po	sp	sr
ca	1/3	2/3	0	0	0
pi	1	0	0	0	0
po	1	0	0	0	0
sp	0	0	0	0	0
sr	0	0	0	0	0

⁽b) Probability of relations for Order

	ca	pi	po	sp	sr
ca	0	0	0	0	0
pi	0	0	0	0	0
po	0	0	0	0	0
sp	0	0	0	0	1
sr	0	0	0	0	0

(c) Probability of relations for Package

Calculating similarity

TABLE 2. Calculated Similarity Matrix that shows the similarity of the process for object type pairs.

$$sim(\theta_{1}, \theta_{2}) \leftarrow \frac{\sum_{\forall t, t' \in T} \left(p(t, \theta_{1}, t') * p(t, \theta_{2}, t') \right)}{\sum_{\forall t_{1}, t_{2} \in T} \left(\frac{p(t_{1}, \theta_{1}, t_{2})^{2} + p(t_{1}, \theta_{2}, t_{2})^{2}}{2} \right)}$$

$$(2)$$

	О	i	p
О	1.0	0.76	0.0
i	0.76	1.0	0.0
p	0.0	0.0	1.0

	ca	pi	po	sp	sr
ca	1/3	2/3	0	0	0
pi	0	0	0	0	0
po	1	0	0	0	0
sp	0	0	0	0	0
sr	0	0	0	0	0

(a) Probability	of re	lations	for l	Item
-----------------	-------	---------	-------	------

	ca	pi	po	sp	sr
ca	1/3	2/3	0	0	0
pi	1	0	0	0	0
po	1	0	0	0	0
sp	0	0	0	0	0
sr	0	0	0	0	0

⁽b) Probability of relations for Order

	ca	pi	po	sp	sr
ca	0	0	0	0	0
pi	0	0	0	0	0
po	0	0	0	0	0
sp	0	0	0	0	1
sr	0	0	0	0	0

(c) Probability of relations for Package

Identifying clusters by a threshold

TABLE 3. Filtered similarity matrix and Identified clusters for the running example by setting different thresholds.

	О	i	p
О	1.0	0.76	0.0
i	0.76	1.0	0.0
р	0.0	0.0	1.0

	О	i	p
О	1.0	0.76	
i	0.76	1.0	
p			1.0

	О	i	p
О	1.0		
i		1.0	
p			1.0

(a) 1 cluster when threshold=0, i.e.,
$$\{\{i, o, p\}\}$$

(b) 2 clusters when threshold=0.01, i.e.,
$$\{\{i,o\},\{p\}\}$$

(c) 3 clusters when threshold=0.77, i.e.,
$$\{\{i\}, \{o\}, \{p\}\}\}$$

Threshold Tuning

```
Algorithm 2: tuneClusters
 Data: (M, threshold, res) such that M is a
 Result: res such that
 begin
     if res = \{\} then
          res \leftarrow \{(0, discoverClusters(M, 0))\};
          res \leftarrow res \cup \{(1, discoverClusters(M, 1))\};
          return tuneClusters(M, 0.5, res);
     else
          if (threshold, \_) \in res then
               return res;
          else
               CT \leftarrow discoverClusters(M, threshold);
               res \leftarrow res \cup \{(threshold, CT)\};
               u \leftarrow min\{i \mid \forall_{(i,-) \in res} i > threshold\};
               l \leftarrow max\{i \mid \forall_{(i,-) \in res} i < threshold\};
               if |\{C|\forall_{(t,C)\in res} t = u\}| \neq |CT| then
                    t \leftarrow round((threshold + u)/2, 2);
                    res \leftarrow
                    res \cup \{(t, discoverClusters(M, t))\};
               if |\{C|\forall_{(t,C)\in res}\ t=l\}|\neq |CT| then
                    t \leftarrow round((threshold + l)/2, 2);
                    res \leftarrow
                    res \cup \{(t, discoverClusters(M, t))\};
               return res:
```


FIGURE 4. The cluster tuning result for DFM in FIGURE 1.

How to flat based on similar object types

(b) DFM for the cluster that include Package and Route object types

FIGURE 6. Discovered DFMs based on two identified clusters by a similarity threshold of 0.16. The figure is made intentionally small just to show supporting the separation of similar object types.

Let's try it together!

https://github.com/jalaliamin/ResearchCode/blob/main/Invited_Lectures/2023Bayreuth/Exercise.ipynb

The End

