EGo1用户手册

1 FPGA

EGo1采用Xilinx Artix-7系列XC7A35T-1CSG324C FPGA, 其资源如下:

	Part Number	XC7A12T	XC7A15T	XC7A25T	XC7A35T
	Logic Cells	12,800	16,640	23,360	33,280
Logic Resources	Slices	2,000	2,600	3,650	5,200
Resources	CLB Flip-Flops	16,000	20,800	29,200	41,600
	Maximum Distributed RAM (Kb)	171	200	313	400
Memory Resources	Block RAM/FIFO w/ ECC (36 Kb each)	20	25	45	50
nesources	Total Block RAM (Kb)	720	900	1,620	1,800
Clock Resources	CMTs (1 MMCM + 1 PLL)	3	5	3	5
1/0 8	Maximum Single-Ended I/O	150	250	150	250
I/O Resources	Maximum Differential I/O Pairs	72	120	72	120
	DSP Slices	40	45	80	90
Embedded	PCIe* Gen2 ⁽¹⁾	1	1	1	1
Hard IP	Analog Mixed Signal (AMS) / XADC	1	1	1	1
Resources	Configuration AES / HMAC Blocks	1	1	1	1
	GTP Transceivers (6.6 Gb/s Max Rate) ⁽²⁾	2	4	4	4
	Commercial	-1, -2	-1, -2	-1, -2	-1, -2
Speed Grades	Extended	-2L, -3	-2L, -3	-2L, -3	-2L, -3
	Industrial	-1, -2, -1L	-1, -2, -1L	-1, -2, -1L	-1, -2, -1L

2 板卡供电

EGo1提供两种供电方式: Type-C和外接直流电源。EGo1提供了一个Type-C接口,功能为UART和JTAG,该接口可以用于为板卡供电。板卡上提供电压转换电路将Type-C输入的5V电压转换为板卡上各类芯片需要的工作电压。上电成功后红色LED灯(D18)点亮。

3 系统时钟

EGo1搭载一个100MHz的时钟芯片,输出的时钟信号直接与FPGA全局时钟输入引脚(P17)相连。若设计中还需要其他频率的时钟,可以采用FPGA内部的MMCM生成。

名称	原理图标号	FPGA IO PIN
时钟引脚	SYS_CLK	P17

4 FPGA配置

EGo1在开始工作前必须先配置FPGA,板上提供以下方式配置FPGA:

- USB转JTAG接口J6
- 6-pin JTAG连接器接口J3

• SPI Flash上电自启动

FPGA的配置文件为后缀名.bit的文件,用户可以通过上述的三种方法将该bit文件烧写到FPGA中,该文件可以通过Vivado工具生成,BIT文件的具体功能由用户的原始设计文件决定。

在使用SPI Flash配置FPGA时,需要提前将配置文件写入到Flash中。Xilinx开发工具Vivado提供了写入Flash的功能。板上SPI Flash型号为N25Q32,支持3.3V电压配置。FPGA配置成功后D24将点亮。

5 通用I/O接口

通用I/O接口外设包括2个专用按键、5个通用按键、8个拨码开关、1个8位DIP开关、16个LED灯、8个七段数码管。

5.1 按键

两个专用按键分别用于逻辑复位RST(S6)和擦除FPGA配置PROG(S5),当设计中不需要外部触发复位时,RST按键可以用作其他逻辑触发功能。

名称 原理图标号 FPGA IO PIN

名称	原理图标号	FPGA IO PIN
复位引脚	FPGA_RESET	P15

五个通用按键,默认为低电平,按键按下时输出高电平。

管脚约束如下:

名称	原理图标号	FPGA IO PIN
SO	PB0	R11
S1	PB1	R17
S2	PB2	R15
S3	PB3	V1
S4	PB4	U4

5.2 开关

开关包括8个拨码开关和一个8位DIP开关。

名称	原理图标号	FPGA IO PIN
SW0	SW_0	P5
SW1	SW_1	P4
SW2	SW_2	P3
SW3	SW_3	P2
SW4	SW_4	R2
SW5	SW_5	M4
SW6	SW_6	N4
SW7	SW_7	R1
	SW_DIP0	U3
	SW_DIP1	U2
	SW_DIP2	V2
SW8	SW_DIP3	V5
3000	SW_DIP4	V4
	SW_DIP5	R3
	SW_DIP6	Т3
	SW_DIP7	T5

5.3 LED灯

LED在FPGA输出高电平时被点亮。

LEDO	R93 1560R 1%	D1
LED1	R97 1560R 1%	// D2
LED2	R98 AAA 560R 1%	// D3
LEDS	R99 AAA 560R 1%	// D4
LED4	R100 100 560R 1%	// D5
LED5	R101 10560R 1%	// D6
LED6	R102 1560R 1%	// D7
LED7	R103 AAA 560R 1%	// D8
LED8	R104560R 1%	// D9
LED9	R105 1%	// D10
LED10	R106 AAA 560R 1%	// D11
LED11	R107 560R 1%	// D12
LED12	R108 1%	// D13
LED13	R109 1560R 1%	// D14
LED14	R33560R 1%	// D15
LED15	R64 1%	// D16

名称	原理图标号	FPGA IO PIN	颜色
D0	LED0	F6	Green
D1	LED1	G4	Green
D2	LED2	G3	Green
D3	LED3	J4	Green
D4	LED4	H4	Green
D5	LED5	J3	Green
D6	LED6	J2	Green
D7	LED7	K2	Green
D8	LED8	K1	Green
D9	LED9	Н6	Green
D10	LED10	H5	Green
D11	LED11	J5	Green
D12	LED12	K6	Green
D13	LED13	L1	Green
D14	LED14	M1	Green
D15	LED15	K3	Green

5.4 七段数码管

数码管为共阴极数码管,即公共极输入低电平。共阴极由三极管驱动,FPGA需要提供正向信号。同时段选端连接高电平,数码管上的对应位置才可以被点亮。因此,FPGA输出有效的片选信号和段选信号都应该是高电平。

名称	原理图标号	FPGA IO PIN
A0	LED0_CA	B4
ВО	LED0_CB	A4
C0	LED0_CC	A3
D0	LED0_CD	B1
EO	LED0_CE	A1
FO	LED0_CF	B3
G0	LED0_CG	B2
DP0	LED0_DP	D5
A1	LED1_CA	D4
B1	LED1_CB	E3

名称	原理图标号	FPGA IO PIN
C1	LED1_CC	D3
D1	LED1_CD	F4
E1	LED1_CE	F3
F1	LED1_CF	E2
G1	LED1_CG	D2
DP1	LED1_DP	H2
DN0_K1	LED_BIT1	G2
DN0_K2	LED_BIT2	C2
DN0_K3	LED_BIT3	C1
DN0_K4	LED_BIT4	H1
DN1_K1	LED_BIT5	G1
DN1_K2	LED_BIT6	F1
DN1_K3	LED_BIT7	E1
DN1_K4	LED_BIT8	G6

6 VGA接口

EGo1上的VGA接口(J1)通过14位信号线与FPGA连接,红、绿、蓝三个颜色信号各占4位,另外还包括行同步和场同步信号。

名称	原理图标号	FPGA IO PIN
	VGA_RO	F5
DED.	VGA_R1	C6
RED	VGA_R2	C5
	VGA_R3	В7
GREEN	VGA_G0	B6
	VGA_G1	A6
GKLLIN	VGA_G2	A5
	VGA_G3	D8
	VGA_B0	C7
BLUE	VGA_B1	E6
BLUE	VGA_B2	E5
	VGA_B3	E7
H-SYNC	VGA_HSYNC	D7
V-SYNC	VGA_VSYNC	C4

7音频接口

EGo1上的单声道音频输出接口(J12)由下图所示的低通滤波器电路驱动。滤波器的输入信号(AUDIO_PWM)是由FPGA产生的脉冲宽度调制信号(PWM)或脉冲密度调制信号(PDM)。低通滤波器将输入的数字信号转化为模拟电压信号输出到音频插孔上。

脉冲宽度调制

脉冲宽度调制信号是一连串频率固定的脉冲信号,每个脉冲的宽度都可能不同。这种数字信号在通过一个简单的低通滤波器后,被转化为模拟电压信号,电压的大小跟一定区间内的平均脉冲宽度成正比。这个区间由低通滤波器的3dB截止频率和脉冲频率共同决定。例如,脉冲为高电平的时间占有效脉冲周期的10%的话,滤波电路产生的模拟电压值就是Vdd电压的十分之一。

下图是一个简单的PWM信号波形:

低通滤波器3dB频率要比PWM信号频率低一个数量级,这样PWM频率上的信号能量才能从输入信号中过滤出来。例如,要得到一个最高频率为5KHz的音频信号,那么PWM信号的频率至少为50KHz或者更高。通常,考虑到模拟信号的保真度,PWM信号的频率越高越好。下图是PWM信号整合之后输出模拟电压的过程示意图,可以看到滤波器输出信号幅度与Vdd的比值等于PWM信号的占空比。

名称	原理图标号	FPGA IO PIN
AUDIO PWM	AUDIO_PWM	T1

名称	原理图标号	FPGA IO PIN
AUDIO SD	SUDIO_SD#	M6

8 USB-UART/JTAG接口

该模块将UART/JTAG转换成USB接口。用户可以非常方便的直接采用USB线缆连接板卡与PC 机USB接口,通过Xilinx的配置软件如Vivado完成对板卡的配置。同时也可以通过串口功能与上位机进行通信。

管脚约束如下:

名称	原理图标号	FPGA IO PIN
UART RX	UART_RX	T4(FPGA串口发送端)
UART TX	UART_TX	N5(FPGA串口接收端)

UATR的全称是通用异步收发器,是实现设备之间低速数据通信的标准协议。"异步"指不需要额外的时钟线进行数据的同步传输,双方约定在同一个频率下收发数据,此接口只需要两条信号线(RXD、TXD)就可以完成数据的相互通信,接收和发送可以同时进行,也就是全双工。

收发的过程,在发送器空闲时间,数据线处于逻辑1状态,当提示有数据要传输时,首先使数据线的逻辑状态为低,之后是8个数据位、一位校验位、一位停止位,校验一般是奇偶校验,停止位用于标示一帧的结束,接收过程亦类似,当检测到数据线变低时,开始对数据线以约定的频率抽样,完成接收过程。本例数据帧采用:无校验位,停止位为一位。

UART的数据帧格式,如下:

9 USB转PS2接口

为方便用户直接使用键盘鼠标,EGo1直接支持USB键盘鼠标设备。用户可将标准的USB键盘鼠标设备直接接入板上J4 USB接口,通过PIC24FJ128,转换为标准的PS/2协议接口。该接口不支持USB集线器,只能连接一个鼠标或键盘。鼠标和键盘通过标准的PS/2接口信号与FPGA进行通信。

PIC24J128标号	原理图标号	FPGA IO PIN
15	PS2_CLK	K5
12	PS2_DATA	L4

10 SRAM接口

板卡搭载的IS61WV12816BLL SRAM 芯片,总容量2Mbit。该SRAM为异步式SRAM,最高存取时间可达8ns。操控简单,易于读写。

SRAM写操作时序如下(详细请参考SRAM用户手册):

SRAM读操作时序如下(详细请参考SRAM用户手册):

SRAM引脚标号	原理图标号	FPGA IO PIN
1/00	MEM_D0	U17
I/O1	MEM_D1	U18
I/O2	MEM_D2	U16
I/O3	MEM_D3	V17
1/04	MEM_D4	T11
1/05	MEM_D5	U11
1/06	MEM_D6	U12
1/07	MEM_D7	V12
I/O8	MEM_D8	V10
1/09	MEM_D9	V11
I/O10	MEM_D10	U14
I/O11	MEM_D11	V14

SRAM引脚标号	原理图标号	FPGA IO PIN
I/O12	MEM_D12	T13
I/O13	MEM_D13	U13
I/O14	MEM_D14	Т9
I/O15	MEM_D15	T10
A00	MEM_A00	T15
A01	MEM_A01	T14
A02	MEM_A02	N16
A03	MEM_A03	N15
A04	MEM_A04	M17
A05	MEM_A05	M16
A06	MEM_A06	P18
A07	MEM_A07	N17
A08	MEM_A08	P14
A09	MEM_A09	N14
A10	MEM_A10	T18
A11	MEM_A11	R18
A12	MEM_A12	M13
A13	MEM_A13	R13
A14	MEM_A14	R12
A15	MEM_A15	M18
A16	MEM_A16	L18
A17	MEM_A17	L16
A18	MEM_A18	L15
OE	SRAM_OE#	T16
CE	SRAM_CE#	V15
WE	SRAM_WE#	V16
UB	SRAM_UB	R16
LB	SRAM_LB	R10

11 模拟电压输入

Xilinx 7系列的FPGA芯片内部集成了两个12bit位宽、采样率为1MSPS的ADC,拥有多达17个外部模拟信号输入通道,为用户的设计提供了通用的、高精度的模拟输入接口。

下图是XADC模块的框图:

XADC模块有一专用的支持差分输入的模拟通道输入引脚(VP/VN),另外还最多有16个辅助的模拟通道输入引脚(ADxP和ADxN,x为0到15)。

XADC模块也包括一定数量的片上传感器用来测量片上的供电电压和芯片温度,这些测量转换数据存储在一个叫状态寄存器(status registers)的专用寄存器内,可由FPGA内部叫动态配置端口(Dynamic Reconfiguration Port (DRP))的16位的同步读写端口访问。 ADC转换数据也可以由JTAG TAP访问,这种情况下并不需要去直接例化XADC模块,因为这是一个已经存在于FPGA JTAG结构的专用接口。此时因为没有在设计中直接例化XADC模块,XADC模块就工作在一种预先定义好的模式叫缺省模式,缺省模式下XADC模块专用于监视芯片上的供电电压和芯片温度。

XADC模块的操作模式是由用户通过DRP或JTAG接口写控制寄存器来选择的,控制寄存器的初始值有可能在设计中例化XADC模块时的块属性(block attributes)指定。模式选择是由控制寄存器41H的SEQ3到SEQ0比特决定,具体如下图示:

SEQ3	SEQ2	SEQ1	SEQ0	Function
0	0	0	0	Default Mode
0	0	0	1	Single pass sequence
0	0	1	0	Continuous sequence mode
0	0	1	1	Single Channel mode (Sequencer Off)
0	1	Х	X	Simultaneous Sampling Mode
1	0	Х	X	Independent ADC Mode
1	1	Х	Х	Default Mode

XADC模块的使用方法,一是直接用FPGA JTAG专用接口访问,这时XADC模块工作在缺省模式;二是在设计中例化XADC模块,这是可以通过FPGA逻辑或ZYNQ器件的PS到ADC模块的专用接口访问。(详细请参考XADC用户手册ug480_7Series_XADC.pdf)

EGo1通过电位器(W1)向FPGA提供模拟电压输入,输入的模拟电压随着电位器的旋转在0~1V之间变化。输入的模拟信号与FPGA的C12引脚相连,最终通过通道1输入到内部ADC。

12 DAC输出接口

EGo1上集成了8位的模数转换芯片(DAC0832), DAC输出的模拟信号连接到接口J2上。

下面是DAC0832的操作时序图(详细请参考DAC0832用户手册)

DAC0832引脚标号	原理图标号	FPGA IO PIN
DIO	DAC_D0	Т8
DI1	DAC_D1	R8
DI2	DAC_D2	Т6
DI3	DAC_D3	R7
DI4	DAC_D4	U6
DI5	DAC_D5	U7
DI6	DAC_D6	V9
DI7	DAC_D7	U9
ILE(BYTE2)	DAC_BYTE2	R5
CS	DAC_CS#	N6
WR1	DAC_WR1#	V6
WR2	DAC_WR2#	R6
XFER	DAC_XFER#	V7

13 蓝牙模块

EGo1上集成了蓝牙模块(BLE-CC41-A), FPGA通过串口和蓝牙模块进行通信。波特率支持 1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600, 115200和230400bps。串口缺省波特率为9600bps。该模块支持AT命令操作方法。

BLE-CC41-A标号	原理图标号	FPGA IO PIN
UART_RX	BT_RX	N2(FPGA串口发送端)
UART_TX	BT_TX	L3(FPGA串口接收端)

14 通用扩展I/O

EGo1上为用户提供了灵活的通用接口(J5)用来作I/O扩展,共提供32个双向IO,每个IO支持过流过压保护。

2x18标号	原理图标号	FPGA IO PIN
1	AD2P_15	B16
2	AD2N_15	B17
3	AD10P_15	A15
4	AD10N_15	A16
5	AD3P_15	A13
6	AD3N_15	A14
7	AD11P_15	B18
8	AD11N_15	A18
9	AD9P_15	F13
10	AD9N_15	F14

2x18标号	原理图标号	FPGA IO PIN
11	AD8P_15	B13
12	AD8N_15	B14
13	AD0P_15	D14
14	AD0N_15	C14
15	IO_L4P	B11
16	IO_L4N	A11
17	IO_L11P	E15
18	IO_L11N	E16
19	IO_L12P	D15
20	IO_L12N	C15
21	IO_L13P	H16
22	IO_L13N	G16
23	IO_L14P	F15
24	IO_L14N	F16
25	IO_L15P	H14
26	IO_L15N	G14
27	IO_L16P	E17
28	IO_L16N	D17
29	IO_L17P	K13
30	IO_L17N	J13
31	IO_L18P	H17
32	IO_L18N	G17