This listing of claims will replace all prior versions and listings of claims in the

application:

LISTING OF CLAIMS:

1. (original): A camshaft (50), comprising a shaft (13) onto which one or more annular cams (30,

30'; 36, 36'; 46, 46') are slid and are fastened by positive and/or non-positive connection,

characterized in that the cams (30, 30'; 36, 36'; 46, 46') are produced from one or more profile

strips (17, 17'; 34, 34') by forming, in particular bending, into annular form and welding

together of the free ends.

2. (original): The camshaft as claimed in claim 1, characterized in that the shaft (13) is of tubular

configuration.

3. (currently amended): The camshaft as claimed in claim 1 one of claims 1 or 2, characterized in

that the shaft (13), in the sections in which the cams (30, 30'; 36, 36'; 46, 46') are placed, has an

enlarged external diameter.

4. (original): The camshaft as claimed in claim 3, characterized in that, in the sections having the

enlarged external diameter, circumferential beads (14, 15) are incorporated in the shaft.

Preliminary Amendment

Appln. No.: National Stage of PCT/CH2005/000050

5. (currently amended): The camshaft as claimed in <u>claim 3 one of claims 3 or 4</u>, characterized in that the cams (30', 46') have on the inner side of the ring means (12, 32) for creating a positive

connection to the shaft (13).

6. (original): The camshaft as claimed in claim 5, characterized in that the means for creating a

positive connection comprise projections (12) or ribs (32) which protrude radially inward.

7. (currently amended): The camshaft as claimed in claim 1 one of claims 1 to 6, characterized in

that the free ends of the cams (30, 30'; 36, 36'; 46, 46') are welded together by means of

resistance welding.

8. (original): The camshaft as claimed in claim 7, characterized in that the cams have a recess

(41) in the region of the weld seam (29) on the inner side of the ring, which recess receives the

bead (31) formed during the welding.

9. (currently amended): The camshaft as claimed in claim 1 one of claims 1 to 8, characterized in

that the cams (36, 36') are produced in such a way from a profile strip (34, 34') of thickness

which varies over the strip length that the cams (36, 36') enclose the shaft (13) with an angle of

enclosure (UW) which is greater than the angle of enclosure which is predefined by the cam

profile if the strip thickness is constant, and in particular measures 360°.

• • • •

Preliminary Amendment

Appln. No.: National Stage of PCT/CH2005/000050

10. (original): The camshaft as claimed in claim 9, characterized in that the profile strip (34') has

two shoulders (37, 38) disposed symmetrically to a center plane.

11. (original): The camshaft as claimed in claim 9, characterized in that the profile strip (34) has

in the middle a thickening (35).

12. (currently amended): The camshaft as claimed in claim 1 one of claims 1 to 8, characterized

in that the cams (46, 46') are produced from a profile strip (17, 17') of constant thickness, and in

that, on the inner side of the ring of the cam, the angle of enclosure (UW) is enlarged by a

forming process, in particular is brought to 360°.

13. (original): The camshaft as claimed in claim 12, characterized in that the cams (46, 46'), on

the inner side of the ring in the region of the elevation (49), have an indentation (45).

14. (currently amended): The camshaft as claimed in claim 1 one of claims 1 to 13, characterized

in that the cams (30, 30'; 36, 36'; 46, 46') are produced from a profile strip (17') which has two

layers (17a, 17b) of different material lying one above the other.

15. (original): A method for producing a camshaft as claimed in claim 1, in which method cams

(30, 30'; 36, 36'; 46, 46') are produced from one or more profile strips (17, 17'; 34, 34') by

bending and subsequent welding together of the free ends and are then fastened on a shaft (13) at

Preliminary Amendment

Appln. No.: National Stage of PCT/CH2005/000050

a predefined location and in a predefined alignment, characterized in that the cams (30, 30'; 36,

36'; 46, 46') are positively and/or non-positively connected to the shaft (13) by being slid onto

the shaft (13).

16. (original): The method as claimed in claim 15, characterized in that the shaft (13) is first

enlarged in terms of the external diameter in a section which is earmarked for the seat of a cam,

and in that the associated cam is subsequently slid onto this section of the shaft (13).

17. (original): The method as claimed in claim 16, characterized in that, for the enlargement of

the external diameter, circumferential beads (14, 15) are created on the shaft (13) by a rolling

operation.

18. (currently amended): The method as claimed in claim 15 one of claims 15 to 17, characterized

in that, for the production of the cams (36, 36'), a profile strip (34, 34') of varying thickness is

used, such that the cams (36, 36') enclose the shaft (13) with an angle of enclosure (UW) which

is greater than the angle of enclosure which is predefined by the cam profile if the strip thickness

is constant, and in particular measures 360°.

19. (currently amended): The method as claimed in claim 15 one of claims 15 to 17, characterized

in that, on the inner side of the ring of the cams (30', 46'), means (12, 32) for creating a positive

Appln. No.: National Stage of PCT/CH2005/000050

connection to the shaft (13) are produced by a forming process, which means comprise, in

particular, projections (12) or ribs (32) which protrude radially inward.

20. (currently amended): The method as claimed in claim 15 one of claims 15 to 19, characterized

in that, when the profile strips (17, 17') are transformed into the cams (46, 46') by an additional

forming step, in particular by the impression of an indentation (45), material is transported

outward in the axial direction in the region of the elevation (49) of the cam (46, 46') and is

heaped up there in such a way that the finished cam (46, 46') encloses the shaft (13) with an

angle of enclosure of 360°.

21. (original): The method as claimed in claim 20, characterized in that the additional forming

step is performed after the elevation of the cam (46, 46') has been configured by forming

methods.

22. (currently amended): The method as claimed in claim 15 one of claims 15 to 21, characterized

in that the profile strips (17, 17'; 34, 34' are created from a round wire by forming methods, in

particular by rolling methods.