Zusammenfassung für Analysis I

(Prof. Dr. Schnürer)

Wintersemester 2014/2015

von Dagmar Sorg

Grundlagen: Logik, Mengenlehre

UND REELLE ZAHLEN

KAP. 1

LOGISCHE GRUNDLAGEN

PART 1.1

Definition (Aussage)

- D. 1.1
- (i) Eine Aussage ist etwas, dem der Wahrheitsgehalt "wahr" oder "falsch" zugeordnet ist.
- (ii) Eine **Aussageform** ist eine Aussage, die eine noch unbestimmte oder freie Variable enthält.

Definition (Negation, Verneinung)

D. 1.3

Ist p eine Aussage, so bezeichnet $\neg p$ die Negation dieser Aussage.

Definition (Konjunktion)

D. 1.5

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \wedge q$ ("p und q") mittels der folgenden Wahrheitstabelle:

$$\begin{array}{c|ccc} p & q & p \wedge q \\ \hline w & w & w \\ w & f & f \\ f & w & f \\ f & f & f \end{array}$$

Definition (Disjunktion)

D. 1.6

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \vee q$ ("p oder q") mittels der folgenden Wahrheitstabelle:

p	q	$p \lor q$
w	w	w
w	f	w
f	w	w
f	f	f

Definition (Kontravalenz)

D. 1.7

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \lor q$ ("entweder p oder q") mittels der folgenden Wahrheitstabelle:

$$\begin{array}{c|ccc} p & q & p \lor q \\ \hline w & w & f \\ w & f & w \\ f & w & w \\ f & f & f \end{array}$$

Definition (Implikation)

D. 1.8

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \Rightarrow q$ ("p impliziert q") mittels der folgenden Wahrheitstabelle:

$$\begin{array}{c|cccc} p & q & p \Rightarrow q \\ \hline w & w & w \\ w & f & f \\ f & w & w \\ f & f & w \end{array}$$

- (i) p heißt Voraussetzung, Prämisse oder hinreichende Bedingung für q
- (ii) q heißt Behauptung, Konklusion oder notwendige Bedingung

Definition

D. 1.10

(i) Seien p,q Aussagen. Definiere $p\Leftrightarrow q$ ("p und q sind äquivalent", "genau dann, wenn p gilt, gilt auch q") durch

p	q	$p \Leftrightarrow q$
w	w	w
w	f	f
f	w	f
f	f	w

(ii) p_1, p_2, \ldots heißen äquivalent, falls für je zwei dieser Aussagen, p und $q, p \Leftrightarrow q$ gilt.

Proposition

P. 1.11

Seien p, q, r Aussagen. Dann gelten

- (i) $\neg \neg p \Leftrightarrow p$
- (ii) $p \lor \neq p$
- (iii) $(p \wedge q) \Leftrightarrow (q \wedge p)$

(Symmetrie)

(iv) $(p \lor q) \Leftrightarrow (q \lor p)$

(Symmetrie)

(v) $(p \Leftrightarrow q) \Leftrightarrow (q \Leftrightarrow p)$

(Symmetrie) (Idempotenz)

(vi) $(p \land p) \Leftrightarrow p$ (vii) $(p \lor p) \Leftrightarrow p$

(Idempotenz)

- (viii) $(p \land q) \Rightarrow p$
- (ix) $p \Rightarrow (p \lor q)$
- (x) $(p \Leftrightarrow q) \Rightarrow ((p \lor r) \Leftrightarrow (q \lor r))$
- (xi) $(p \Leftrightarrow q) \Rightarrow ((p \land r) \Leftrightarrow (q \land r))$
- (xii) $(p \Leftrightarrow q) \Rightarrow ((p \Leftrightarrow r) \Leftrightarrow (q \Leftrightarrow r))$

(Assoziativität)

(xiii) $((p \land q) \land r) \Leftrightarrow (p \land (q \land r))$

(Assoziativität)

(xiv) $((p \lor q) \lor r) \Leftrightarrow (p \lor (q \lor r))$ (xv) $(p \lor (q \land r)) \Leftrightarrow ((p \lor q) \land (p \lor r))$

(Distributivität)

(xvi) $(p \land (q \lor r)) \Leftrightarrow ((p \land q) \lor (p \land r))$

(Distributivität)

(xvii) $\neg (p \land q) \Leftrightarrow (\neg p) \lor (\neg q)$

(De Morgan) (De Morgan)

- (xviii) $\neg (p \lor q) \Leftrightarrow (\neg p) \land (\neg q)$
- (xix) $(p \Leftrightarrow q) \Leftrightarrow ((p \Rightarrow q) \land (q \Rightarrow p))$
- $(xx) ((p \Leftrightarrow q) \land (q \Leftrightarrow r)) \Rightarrow (p \Leftrightarrow r)$ $(xxi) ((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$
- (xxii) $(p \Rightarrow q) \Leftrightarrow ((\neg p) \lor q)$
- (xxiii) $(p \Rightarrow q) \Leftrightarrow ((\neg q) \Rightarrow (\neg p))$
- (xxiv) $p \Leftrightarrow ((p \land r) \lor (p \land \neg r))$

(Fallunterscheidung)

Erste Mengenlehre

PART 1.2

Definition (naive Definition einer Menge)

D. 1.12

Eine Menge ist eine Zusammenfassung von Objekten, Elemente genannt. Ist A eine Menge, x ein Objekt, so schreiben wir $x \in A$, falls x ein Element von A ist. $x \notin A : \Leftrightarrow \neg(x \in A)$ Für eine Menge A, die genau die Elemente a,b und c enthält, schreiben wir $A = \{a,b,c\}$. Es ist irrelevant, ob a mehrfach auftaucht oder wie die Elemente angeordnet werden.

Definition

D. 1.13

Seien A, B Mengen.

- (i) Dann ist A eine Teilmenge von B ($A \subset B$ oder $A \subseteq B$), falls aus $x \in A$ auch $x \in B$ folgt
- (ii) A und B heißen gleich (A=B), falls $A\subset B$ und $B\subset A$ gelten. $A\neq B:\Leftrightarrow \neg(A=B)$ (Extensionalitätsaxiom)
- (iii) Schreibe $A \subseteq B$ für $A \subset B$ und $A \neq B$.

Lemma		L. 1.14
Seien A, B, C Mengen. Dann gelten:		
(i) $A \subset A$	(Reflexivität)	
(ii) $x \in A$ und $A \subset B$ implizieren $x \in B$ (iii) $A \subset B \subset C \Rightarrow A \subset C$	(Transitivität)	
Axiom (Aussonderungsaxiom)	(Transitivität)	A. 1.15
Sei A eine Menge und $a(x)$ eine Aussageform. Dann gibt es ein genau die $x \in A$ sind, die $a(x)$ erfüllen. Schreibe $B = \{x \in A : a(x)\}.$	e Menge B , deren Elemente	A. 1.13
Bemerkung	Be	em. 1.1 <mark>7</mark>
Zu jeder Menge A gibt es eine Menge B und eine Aussageforn Nehme $B=A, a(x)=(x\in A).$	$a(x): A = \{x \in B : a(x)\}.$	
Bemerkung (Russelsche Antinomie)	Be	em. 1.18
Nimmt man im Aussonderungsaxiom statt A die "Allmenge" (Bekommt man Probleme: Sei $A =$ Allmenge, $B = \{X \in A : X \notin X\}$. Es gilt $y \in B \Leftrightarrow G$ ilt $B \in B$? \to Widerspruch.	,	
Lemma (Existenz der leeren Menge)		L. 1.19
 Es gibt eine Menge ∅, die leere Menge, die kein Element enth (i) ∅ ⊂ A für alle Mengen A (ii) ∅ ist eindeutig bestimmt. 	ält. Sie erfüllt:	
QUANTOREN	Par	т 1.3
QUANTOREN Definition	Par	т 1.3 <mark>D.1.20</mark>
Definition Sei A eine Menge, $a(x)$ eine Aussageform.		
Definition Sei A eine Menge, $a(x)$ eine Aussageform. (i) Existenzquantor: Wir schreiben $\exists x \in A : a(x)$ oder		
Definition Sei A eine Menge, $a(x)$ eine Aussageform. (i) Existenzquantor: Wir schreiben $\exists x \in A : a(x)$ oder der Menge A , sodass dieses x $a(x)$ erfüllt." Schreibe $\exists ! x \in A : a(x)$ für es gibt genau ein $x \in A$ mit $a(x)$	$\exists_{\in A} a(x)$ für "Es gibt ein x in $a(x)$. Dies zeigt man, indem	
Definition Sei A eine Menge, $a(x)$ eine Aussageform. (i) Existenzquantor: Wir schreiben $\exists x \in A : a(x)$ oder der Menge A , sodass dieses x $a(x)$ erfüllt."	$\exists_A a(x)$ für "Es gibt ein x in $a(x)$. Dies zeigt man, indem $x=y$ zeigt.	
Definition Sei A eine Menge, $a(x)$ eine Aussageform. (i) Existenzquantor: Wir schreiben $\exists x \in A : a(x)$ oder der Menge A , sodass dieses x $a(x)$ erfüllt." Schreibe $\exists ! x \in A : a(x)$ für es gibt genau ein $x \in A$ mit $a(x)$ man $\exists x \in A : a(x)$ und für alle $x, y \in A$ mit $a(x), a(y) :$ (ii) Allquantor: Schreibe $\forall x \in A : a(x)$ oder $\forall x \in A : a(x)$ man	$\exists_A a(x)$ für "Es gibt ein x in $a(x)$. Dies zeigt man, indem $x=y$ zeigt.	
 Definition Sei A eine Menge, a(x) eine Aussageform. (i) Existenzquantor: Wir schreiben ∃x ∈ A : a(x) oder and der Menge A, sodass dieses x a(x) erfüllt." Schreibe ∃!x ∈ A : a(x) für es gibt genau ein x ∈ A mit and man ∃x ∈ A : a(x) und für alle x, y ∈ A mit a(x), a(y) : (ii) Allquantor: Schreibe ∀x ∈ A : a(x) oder ∀ a(x) man 	$\exists_A a(x)$ für "Es gibt ein x in $a(x)$. Dies zeigt man, indem $x=y$ zeigt.	
Definition Sei A eine Menge, $a(x)$ eine Aussageform. (i) Existenzquantor: Wir schreiben $\exists x \in A : a(x)$ oder der Menge A , sodass dieses x $a(x)$ erfüllt." Schreibe $\exists ! x \in A : a(x)$ für es gibt genau ein $x \in A$ mit $a(x)$ man $\exists x \in A : a(x)$ und für alle $x, y \in A$ mit $a(x), a(y) :$ (ii) Allquantor: Schreibe $\forall x \in A : a(x)$ oder $\forall x \in A : a(x)$ man "Für alle $x \in A$ gilt $a(x)$."	$\exists_{\in A} a(x)$ für "Es gibt ein x in $a(x)$. Dies zeigt man, indem $x=y$ zeigt. chmal auch $a(x) \forall x \in A$ für	D. 1.20
Definition Sei A eine Menge, $a(x)$ eine Aussageform. (i) Existenzquantor: Wir schreiben $\exists x \in A : a(x)$ oder der Menge A , sodass dieses x $a(x)$ erfüllt." Schreibe $\exists ! x \in A : a(x)$ für es gibt genau ein $x \in A$ mit $a(x)$ man $\exists x \in A : a(x)$ und für alle $x, y \in A$ mit $a(x), a(y) :$ (ii) Allquantor: Schreibe $\forall x \in A : a(x)$ oder $\forall a(x)$ man "Für alle $x \in A$ gilt $a(x)$." Lemma	$\exists_{\in A} a(x)$ für "Es gibt ein x in $a(x)$. Dies zeigt man, indem $x=y$ zeigt. chmal auch $a(x) \forall x \in A$ für	D. 1.20
Definition Sei A eine Menge, $a(x)$ eine Aussageform. (i) Existenzquantor: Wir schreiben $\exists x \in A : a(x)$ oder der Menge A , sodass dieses x $a(x)$ erfüllt." Schreibe $\exists ! x \in A : a(x)$ für es gibt genau ein $x \in A$ mit $a(x), a(y) : a(y)$ (ii) Allquantor: Schreibe $\forall x \in A : a(x)$ oder $a(x)$ oder $a(x)$ man $a(x)$. Für alle $a(x)$ eine $a(x)$ der $a(x)$ eine $a(x)$	$\exists_{\in A} a(x)$ für "Es gibt ein x in $a(x)$. Dies zeigt man, indem $x=y$ zeigt. chmal auch $a(x) \forall x \in A$ für	D. 1.20
Definition Sei A eine Menge, $a(x)$ eine Aussageform. (i) Existenzquantor: Wir schreiben $\exists x \in A : a(x)$ oder der Menge A , sodass dieses x $a(x)$ erfüllt." Schreibe $\exists ! x \in A : a(x)$ für es gibt genau ein $x \in A$ mit $a(x), a(y) : a(x)$ (ii) Allquantor: Schreibe $\forall x \in A : a(x)$ oder $\forall x \in A : a(x)$ man "Für alle $x \in A$ gilt $a(x)$." Lemma Seien A, B Mengen. $p(x), p(x, y)$ Aussageformen. Dann gelter $a(x) : a(x) :$	$\exists_{\in A} a(x)$ für "Es gibt ein x in $a(x)$. Dies zeigt man, indem $x=y$ zeigt. chmal auch $a(x) \forall x \in A$ für	D. 1.20
Definition Sei A eine Menge, $a(x)$ eine Aussageform. (i) Existenzquantor: Wir schreiben $\exists x \in A : a(x)$ oder der Menge A , sodass dieses x $a(x)$ erfüllt." Schreibe $\exists ! x \in A : a(x)$ für es gibt genau ein $x \in A$ mit $a(x), a(y) : a(x)$ (ii) Allquantor: Schreibe $\forall x \in A : a(x)$ oder $a(x)$ oder $a(x)$ man $a(x)$. Für alle $a(x)$ eine $a(x)$	$\exists_{\in A} a(x)$ für "Es gibt ein x in $a(x)$. Dies zeigt man, indem $x=y$ zeigt. chmal auch $a(x) \forall x \in A$ für	D. 1.20

Weitere Mengenlehre	Part 1.4
Axiom (Existenz einer Obermenge) Sei \mathcal{M} eine Menge von Mengen. Dann gibt es eine Menge M (=Obermenge) mit $A \in \mathcal{M} \Rightarrow A \subset M$. Bemerkung: M ist eindeutig bestimmt.	A. 1.24
 Definition (Vereinigung und Durchschnitt) Seien A, B Mengen mit Obermenge X. (i) Dann ist die Vereinigung von A und B (A∪B) definiert durch A∪B := {x ∈ X : x ∈ A ∨ x ∈ B} (ii) der (Durch-) Schnitt von A und B (A∩B) ist definiert durch A∩B := {x ∈ X : x ∈ A ∧ x ∈ B} 	D. 1.25
Sei \mathcal{M} eine Menge von Mengen mit Obermenge X . (i) Vereinigung: $\bigcup_{A \in \mathcal{M}} A := \{x \in X : (\exists A \in \mathcal{M} : x \in A)\}$	
(ii) Schnitt: $\bigcap_{A \in \mathcal{M}} A := \{ x \in X : (\forall A \in \mathcal{M} : x \in A) \}$	
Bemerkung Enthält \mathcal{M} keine Menge, so gelten $\bigcup_{A \in \mathcal{M}} A = \emptyset$ sowie $\bigcap_{A \in \mathcal{M}} A = X$	Bem. 1.26
Definition (Disjunkte Mengen) Seien A, B Mengen.	D. 1.27
 (i) A und B heißen disjunkt, falls A∩B = Ø. Schreibe in diesem Fall A∪B statt A∪B (ii) Sei M eine Menge von Mengen. Dann heißen die Mengen in M disjunkt, falls für A, B ∈ M, A ≠ Ø stets A∩B = Ø gilt. Schreibe ∪ A statt ∪ A. 	
Definition (Komplement) Seien A, B Mengen mit fester Obermenge X . (i) Definiere das Komplement von A in B durch $B \setminus A := \{x \in B : x \notin A\}$ (ii) Definiere das A Komplement von A durch A and A and A are A are A are A are A and A are A and A are A and A are A are A are A are A and A are A and A are	D. 1.28
(ii) Definiere das Komplement von A durch $\mathcal{C}A \equiv A^{\mathcal{C}} := \{x \in X : x \notin A\}$ Proposition	P. 1.29
Seien A, B, C Mengen mit Obermenge X . Dann gelten:	
$\begin{array}{lll} \text{(i)} & A \cup B = B \cup A & \text{(Kommutativität)} \\ \text{(ii)} & A \cap B = b \cap A & \text{(Kommutativität)} \\ \text{(iii)} & (A \cup B) \cup C = A \cup (B \cup C) & \text{(Assoziativität)} \\ \text{(iv)} & (A \cap B) \cap C = A \cap (B \cap C) & \text{(Assoziativität)} \\ \text{(v)} & (A \cap B) \cup C = (A \cup C) \cap (B \cup C) & \text{(Distributivität)} \\ \text{(vi)} & (A \cup B) \cap C = (A \cap C) \cup (B \cap C) & \text{(Distributivität)} \\ \text{(vii)} & (A \cup B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(viii)} & (A \cap B) = (A \cup C) B & \text{(De Morgansche Regel)} \\ \text{(ix)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(ix)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(Ix)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text{(De Morgansche Regel)} \\ \text{(IX)} & (A \cap B) = (A \cap C) B & \text$	
(xi) $A \setminus B = A \cap CB$ Axiom (Potenzmenge)	A. 1.30
Sei A eine beliebige Menge. Dann gibt es die Menge $\mathcal{P}(A)$ (oder 2^A), die Potenzmenge von A . Die Elemente von $\mathcal{P}(A)$ sind genau die Teilmengen von A .	
Axiom (Kartesisches Produkt)	A. 1.32
Seien A, B Mengen. Dann gibt es eine Menge, das Kartesische Produkt von A und B $(A \times B)$, die aus allen geordneten Paaren (a, b) mit $a \in A, b \in B$ besteht. a heißt erste, b heißt zweite Komponente des Paares (a, b) . $A \times B := \{(a, b) : a \in A \land b \in B\}$	

Bemerkung	Bem. 1.33
$(a,b) \equiv \{a,\{a,b\}\} \in \mathcal{P}(A \cup \mathcal{P}(A \cup B))$ Definition (Funktion, Abbleitung)	D. 1.34
Seien A, B Mengen.	D. 1.54
(i) Eine Funktion (oder Abbildung) f von A nach $B, f: A \to B$, ist eine Teilmenge von	
$A \times B$, sodass es zu jedem $a \in A$ genau ein $b \in B$ mit $(a, b) \in f$ gibt: $\forall a \in A \exists b \in B : (a, b) \in f$.	
Schreibe $b = f(a), a \mapsto b$.	
Definiere den Graphen von f :	
$graph \ f := \{(x, f(x)) \in A \times B : x \in A\} = f \subset A \times B$ $(ii) A haith Profession beautiful and for D(f)$	
(ii) A heißt Definitionsbereich von f , $D(f)$. $f(A) := \{f(x) : x \in A\} \equiv \{y \in B : (\exists x \in A : \underbrace{f(x) = y})\} = im \ f = R(f)$	
heißt $oldsymbol{Bild}$ oder $oldsymbol{Wertebereich}$ von $f.$	
(iii) Sei $M \subset A$ beliebig.	
$f(M) := \{ y \in B : (\exists x \in M : f(x) = y) \} \equiv \{ f(x) : x \in M \}$ Somit induziert $f: A \to B$ eine Funktion $\mathcal{P}(A) \to \mathcal{P}(B)$, die wir wieder mit f	
bezeichnen.	
(iv) Zu einer beliebigen Funktion $f: A \to B$ definieren wir die <i>Urbildabbildung</i> $f^{-1}: \mathcal{P}(B) \to \mathcal{P}(A)$ mit $F^{-1}(M) := \{x \in A: f(x) \in M\}, M \subset B$ beliebig. $f^{-1}(M)$ heißt <i>Urbild</i> von M unter f .	
Bemerkung	Bem. 1.35
$f:A\to B$ und $g:C\to D$ sind gleich, falls sie als Teilmengen von $A\times B$ bzw. $C\times D$ gleich sind, insbesondere $B=D$.	
Definition	D. 1.36
Sei $f: A \to B$.	
 (i) f heißt <i>injektiv</i>, falls für alle x, y ∈ A aus f(x) = f(y) auch x = y folgt. (ii) f heißt <i>surjektiv</i>, falls f(A) = B. Wir sagen, dass f die Menge A <u>auf</u> B abbildet. 	
Bei nicht-surjektiven Abbildungen sagt man A wird nach oder in B abgebildet.	
(iii) f heißt $bijektiv$, falls f injektiv und surjektiv ist. f ist eine $Bijektion$. (iv) ist f injektiv, so definieren wir die $Inverse$ von f durch	
(iv) let f injective, so definite in will the Theorise voil f durch $f^{-1}:R(f)\to A$ mit $f(x)\mapsto x$.	
Es gilt $f^{-1}(f(x)) = x$	
Bemerkung	Bem. 1.37
(i) $\mathcal{I}(f(x))$ bezeichnet die Inverse von $f(x)$.	
(ii) $U(\{f(x)\})$ bezeichnet die Umkehrabbildung der Menge $\{f(x)\}$, sie ist definiert durch $U(\mathcal{P}(R)) \to \mathcal{P}(A)$ mit $M \in R \to \{x \in A: f(x) \in M\}$	
$U: \mathcal{P}(B) \to \mathcal{P}(A) \text{ mit } M \subset B \mapsto \{x \in A : f(x) \in M\}$ (iii) $f: A \to B \text{ induziert } g: \mathcal{P}(A) \to \mathcal{P}(B)$	
$\Rightarrow \{f(x)\} = g(\{x\})$	
Definition (Komposition von Abbildungen)	D. 1.38
Seien $f:A \to B, g:B \to C$ Abbildungen. Dann heißt	
$g \circ f : A \to C \text{ mit } x \mapsto g(f(x)) \textit{\textbf{Komposition}} \text{ von } f \text{ und } g.$	
Bemerkung	Bem. 1.40
Seien $f: A \to B, g: B \to C, h: C \to D$ Abbildungen. Dann gilt	
$h \circ (g \circ f) = (h \circ g) \circ f$	
Sowie für Inverse und Umkehrabbildungen: $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$	

Definition (Relationen)		D. 1.41
Seien A, B Mengen. (i) $R \subset A \times B$ heißt Relation . Statt $(x, y) \in R$ sager (ii) $R \subset A \times A$ heißt (a) reflexiv , falls $R(x, x)$ für alle $x \in A$ gilt (b) symmetrisch , falls $R(x, y) \Rightarrow R(y, x)$ für all (c) antisymmetrisch , falls $R(x, y) \wedge R(y, x) \Rightarrow$ (d) transitiv , falls $R(x, y) \wedge R(y, z) \Rightarrow R(x, z)$ für	$\begin{array}{l} \text{le } x,y \in A \\ x=y \text{ für alle } x,y \in A \\ \text{\"{ur alle }} x,y,z \in A \end{array}$	D. 1.41
 (iii) R ⊂ A × A heißt Äquivalenzrelation, falls R refist. Schreibweise bei Äquivalenzrelationen: x ~ y s Definition Sei R ⊂ A × A eine Äquivalenzrelation. Sei x ∈ A. da Äquivalenzklasse von x. Schreibe y ≡ x (mod R) für A/R := {[x] : x ∈ A} ist die Menge aller Äquivalenzklasse 	statt $R(x,y)$ ann heißt $[x]:=\{y\in A:R(x,y)\}$ r $y\in [x].$	D. 1.42
Die reellen Zahlen	P	ART 1.5
 Definition Die reellen Zahlen, ℝ, sind eine Menge mit den folgende (A) ℝ ist ein Körper, d.h. es gibt die Abbildung 	en Eigenschaften:	D. 1.44
(i) $+: \mathbb{R} \times \mathbb{R}$, die Addition , schreibe $x + y$ für $x \in \mathbb{R}$ (ii) $\cdot: \mathbb{R} \times \mathbb{R}$, die Multiplikation , mit $(x, y) \mapsto$ ausgezeichneten Elementen: $0, 1$ mit $0 \neq 1$		
Es gilt, soweit nicht anders angegeben, für alle x, y (K1) $x + (y + z) = (x + y) + z$ (K2) $x + y = y + x$	$y,z\in\mathbb{R}$:	
(K3) $0 + x = x$ (K4) $\forall x \in \mathbb{R} \exists y \in \mathbb{R} : x + y = 0$, Schreibe $-x$ für y (K5) $(xy)z = x(yz)$ (K6) $xy = yx$	y: x + (-x) = 0	
(K7) $1x = x$ (K8) $\forall x \in \mathbb{R} \setminus \{0\} \exists y \in \mathbb{R} : xy = 1$, Schreibe x^{-1} for (K9) $x(y+z) = xy + xz$ (B) \mathbb{R} ist ein angeordneter Körper, d.h. es gibt eine Re	elation $R \subset \mathbb{R} \times \mathbb{R}$ (schreibe $x \leq y$	
für $R(x,y)$), die für alle $x,y,z \in \mathbb{R}$ folgendes erfüll (O1) $x \leq y \land y \leq z \Rightarrow x \leq z$ (O2) $x \leq y \land y \leq x \Rightarrow x = y$	(Transitivität) (Antisymmetrie)	

D. 1.45

Definition (Ordnung)

(O3) es gilt $x \leq y$ oder $y \leq x$ (O4) aus $x \le y$ folgt $x + z \le y + z$ (O5) aus $0 \le x$ und $0 \le y$ folgt $0 \le xy$.

besitzt ein Supremum in \mathbb{R} .

Eine transitive, antisymmetrische Relation \leq , für die stets $x \leq y$ oder $y \leq x$ gilt, heißt (totale) Ordnung.

(C) $\mathbb R$ ist vollständig, d.h. jede nicht-leere nach oben beschränkte Teilmenge von $\mathbb R$

Schreibe $y \geq x$ statt $x \leq y$ und x < ybzw. y > x für $x \leq y$ und $x \neq y$

Definition (Supremum, Infin	•		D. 1.46
(i) $A \subset \mathbb{R}$ heißt $nach \ oben \ beschröden$			
(ii) $x_0 \in \mathbb{R}$ ist eine <i>obere Schranke</i>			
(iii) $x_0 \in \mathbb{R}$ ist das $Supremum$ von A A stets $x \geq x_0$ gilt. x_0 heißt $klei$			
(iv) Ist $\sup A \in A$, so heißt $\sup A$ Ma		none.	
(v) Ist $A \subset \mathbb{R}$ nicht nach oben beschrä		$=+\infty$. Für alle $x\in\mathbb{R}$ vereinbaren	
	, 0 1		
(vi) Entsprechend: nach unten bes untere Schranke), Minimum.	·		
	so gilt inf $A = -$	∞ . Alternativ: $-A = \{-a : a \in$	
A }, $A \subset \mathbb{R}$. A heißt nach unten beschränkt $-x = \sup -A$.	, falls $-A$ nach ob	en beschränkt ist. $x = \inf A$, falls	
(vii) Ist $A \subset \mathbb{R}$ nach oben und unten b	eschränkt, so heiß	st A $beschränkt$.	
Bemerkung	.,,		Bem. 1.47
$\sup \emptyset = -\infty \text{ und inf } \emptyset = +\infty$			20 1111
Definition			D. 1.49
Seien $a, b \in \mathbb{R}, a < b$.			2.1.13
(i) $(a, b) := \{x \in \mathbb{R} : a < x < b\}$		(offenes Intervall)	
(ii) $(a, b] := \{x \in \mathbb{R} : a < x \le b\}$		(halboffenes Intervall)	
(iii) $[a, b) := \{x \in \mathbb{R} : a \le x < b\}$		(halboffenes Intervall)	
(iv) $[a, b] := \{x \in \mathbb{R} : a \le x \le b\}$		(abgeschlossenes Intervall)	
a,b heißen ${\it Endpunkte}$ der Intervalle	. .		
Lemma			L. 1.50
Sei $x \in \mathbb{R}$. Dann gilt $x0 = 0x = 0$.			
Lemma			L. 1.51
Sei $x \in \mathbb{R}$. Dann gelten			
(i) $(-1)x = -x$			
(ii) -(-x) = x			
(iii) $(-1)(-1) = 1$			
Lemma			L. 1.52
Sei $x \in \mathbb{R}$. Dann ist die additive Inve	erser $-x$ eindeutig	bestimmt.	
Lemma			L. 1.53
Es gelten $0 < 1$ und $-1 < 0$.			
Lemma			L. 1.54
Seien $x, y \in \mathbb{R}$. Dann gilt genau ein d	ler drei folgenden	Aussagen:	
x < y,	x = y,	x > y	
Lemma			L. 1.55
Gelte $0 < x < y$. Dann gelten:			
(i) $0 < x^{-1}$			
(ii) $0 < y^{-1} < x^{-1}$			1 1 50
Lemma			L. 1.56
$x, y \in \mathbb{R}$. Gilt $xy = 0 \Rightarrow x = 0$ oder y	y=0.		1 1 57
Lemma			L. 1.57
Seien $a, b \in \mathbb{R}$.			
 (i) Aus 0 ≤ a ≤ b folgt a² ≤ b² (ii) Aus a² ≤ b² und b ≥ 0 folgt a ≤ 	- h		
(ii) Aus $a \leq b^2$ und $b \geq 0$ folgt $a \leq b^2$	≥ 0 .		
9			

 $Mit \ a^2 = a \cdot a.$

Definition (Natürliche Zahlen)		D. 1.58
Die natürlichen Zahlen $\mathbb N$ sind die kleinste Teilmer	age $A \subset \mathbb{R}$ mit	
$\begin{array}{ll} (\mathrm{N1}) & = \in A \\ (\mathrm{N2}) & a+1 \in A, \forall a \in A \end{array}$		
	:	
\mathbb{N} ist die kleinste Menge mit (N1), (N2) in dem S (N1) und (N2) auch $\mathbb{N} \subset \mathcal{N}$ gilt.	mn , dass für ane $\mathcal{N} \subset \mathbb{R}$ $\operatorname{mit} \mathcal{N}$ erfüllt	
Lemma		L. 1.59
Es gibt die natürlichen Zahlen. Sie sind eindeutig	bestimmt.	
Lemma (Peanoaxiome) Es gelten:		L. 1.60
(i) $0 \in \mathbb{N}$		
(ii) jedes $a \in \mathbb{N}$ besitzt genau einen Nachfolger a	$\iota^+ \in \mathbb{N}$	
(iii) 0 ist kein Nachfolger einer natürlichen Zahl (iv) $\forall n, m \in \mathbb{N} : m^+ = n^+ \Rightarrow n = m$		
(v) Sei $X \subset \mathbb{R}$ beliebig mit $0 \in X$ und $n^+ \in X$,	$\forall n \in X$. Es folgt $\mathbb{N} \subset X$	
Der Nachfolger von $a \in \mathbb{N}$ ist die Zahl $a^+ := a + 1$	$i \in \mathbb{N}$.	
Theorem		T. 1.61
\mathbb{R} ist archimedisch , d.h. zu jedem $x \in \mathbb{R}$ gibt es $x \in \mathbb{R}$	$i_0 \in \mathbb{N}$, sodass für alle $\mathbb{N} \ni n \ge n_0$ auch	
$n \ge x$ gilt. Korollar		K. 1.62
Sei $x \in \mathbb{R}$ beliebig und sei $a > 0$.		
(i) Dann gibt es $n \in \mathbb{N}$ mit $an \ge x$		
(ii) Dann gibt es $m \in \mathbb{N}$ mit $0 < \frac{1}{n} \le a$		
(iii) Ist $a \leq \frac{1}{n}$ für alle $n \in \mathbb{N}$ (oder alle $n \in \mathbb{N}$ mix	t $n \ge n_0$), so ist $a \le 0$.	
Theorem (Vollständige Induktion)		T. 1.63
Erfüllt $M \subset \mathbb{N}$ die Bedingungen	(T. 1.14;	
(i) $0 \in M$ (ii) $n \in M \Rightarrow n+1 \in M$	$(Induktions an fang) \ (Induktions schritt)$	
so gilt $M = \mathbb{N}$.	(1114411010111100)	
Theorem		T. 1.64
Sei p eine Aussageform auf \mathbb{N} . Gelten		
(i) $p(0)$ und (ii) $p(n) \Rightarrow p(n+1)$ für alle $n \in \mathbb{N}$,		
so gilt $p(n)$ für alle $n \in \mathbb{N}$.		D 167
Definition (Familie, Folge)		D. 1.67
(i) Seien \mathcal{I}, X Mengen, $f: \mathcal{I} \to X$ eine Abbildung mit $x_i = f(i), \forall i \in \mathcal{I}$ (\mathcal{I} bezeichnet die Indexm		
(ii) Ist $\mathcal{I} = \mathbb{N}$, so heißt $(x_i)_{i \in \mathcal{I}}$ Folge: $(x_i)_{i \in \mathbb{N}} \subset X$	· ·	
(iii) Ist $J \subset \mathcal{I}$, so heißt $(x_j)_{j \in J}$ Teilfamilie von $(x \text{ men.})$	$i_i)_{i\in\mathcal{I}}$, falls die Werte auf J übereinstim-	
(iv) Ist $\mathcal{I} = \mathbb{N}, J \subset \mathbb{N}$ unendlich, so heißt $(x_j)_{j \in J}$ eine Folge mit $j_{k+1} > j_k, \forall k$ und $J = \bigcup_{i \in J} \{j_k\},$		
(v) Sei $(x_i)_{i\in\mathcal{I}}$ eine Familie. Ist $\mathcal{I} = \{1, 2, \dots, n\}$ (
(a) $n=2$: Die Familie heißt $\boldsymbol{Paar}\ (x_1,x_2)$		
(b) $n = 3$: Die Familie heißt Triple (x_1, x_2, x_3)	(2)	

(c) n beliebig: Die Familie heißt n-Tupel (x_1, x_2, \ldots, x_n)

Definition	D. 1.68
Sei $(A_i)_{i\in\mathcal{I}}$ eine Familie von Mengen mit Obermenge X . (i) $\bigcup A_i := \{x \in X : (\exists i \in \mathcal{I} : x \in A_i)\}$	
(ii) $\bigcap_{i \in \mathcal{I}} A_i := \{ x \in X : (\forall i \in \mathcal{I} : x \in A_i) \}$	
(iii) $\mathcal{I} = \{1, 2, \dots, n\} : \bigcup_{i=1}^{n} A_i = \bigcup_{i \in \mathcal{I}} A_i$, sowie $\bigcap_{i=1}^{n} A_i = \bigcap_{i \in \mathcal{I}} A_i$	
Definition	D. 1.69
Ist $(x_i)_{i\in\mathcal{I}}$ eine Familie reeller Zahlen, so gilt $\sup_{i\in\mathcal{I}} x_i : i\in\mathcal{I}$, sowie	
$\inf_{i \in \mathcal{I}} x_i := \inf\{x_i : i \in \mathcal{I}\}.$	
Proposition	P. 1.70
 (i) Seien A, B ⊂ R, A ⊂ B. ⇒ sup A ≤ sup B, inf A ≥ inf B. (ii) Sei (A_i)_{i∈I} eine Familie von Mengen A_i ⊂ R, ∀i ∈ I. Dann definiere A := ∪ A_i 	
$\Rightarrow \sup_{i \in \mathcal{I}} A = \sup_{i \in \mathcal{I}} \sup_{i \in \mathcal{I}} A_i \text{ und inf } A = \inf_{i \in \mathcal{I}} \inf_{i \in \mathcal{I}} A_i.$	
	D. 1.71
(i) Sei A eine Menge, $f: A \to \mathbb{R}$ eine Funktion. f heißt $nach \ oben \ (unten) \ beschränkt$, falls für $f(A)$ gilt:	
(a) $\sup f(A) = \sup_{x \in A} f(x)$	
(b) $\inf f(A) = \inf_{x \in A} f(x)$	
(ii) Sei A eine Menge und $f_i: A \to \mathbb{R}$ eine Familie von Funktionen. Gilt für alle $x \in A$, dass $\sup_{i \in \mathcal{I}} f_i(x) < \infty$, so definieren wir die Funktion	
$\sup_{i\in\mathcal{I}}f_i:A\to\mathbb{R}$	
$(\sup_{i \in \mathcal{I}} f_i)(x) := \sup_{i \in \mathcal{I}} f_i(x)$	
$i\in\mathcal{I}$ (iii) Ohne $\sup f_i(x) < \infty$ erhalten wir mit derselben Definition $\sup f_i: A \to \mathbb{R} \cup \{+\infty\}$	
$i\in\mathcal{I}$ (iv) Analog für $\inf_{i\in\mathcal{I}}f_i$.	
(v) Ist $\mathcal{I} = \{1, \dots, n\}$ gilt $\sup_{i \in \mathcal{I}} f_i = \sup_{i \in \mathcal{I}} (f_1, \dots, f_n) = \max_{i \in \mathcal{I}} (f_1, \dots, f_n).$	
$i \in \mathcal{I}$ Entsprechend für Infimum/Minimum.	
Definition (Kartesisches Produkt)	D. 1.72
(i) Sei $\mathcal{I} \neq \emptyset$ und $(A_i)_{i \in \mathcal{I}}$ eine Familie von Mengen. Definiere das <i>kartesische Produkt</i> wie folgt:	
$\prod_{i \in \mathcal{I}} A_i := \{ (x_i)_{i \in \mathcal{I}} : (\forall i \in \mathcal{I} : x_i \in A_i) \}$	
(ii) Zu $j \in \mathcal{I}$ definieren wir die j -te Projektionsabbildung $\pi_j : \prod_{i \in \mathcal{I}} A_i \to A_j \text{ mit } \pi_j((x_i)_{i \in \mathcal{I}}) := x_j$	
Axiom	A. 1.74
Sei $(A_i)_{i\in\mathcal{I}}$ eine Familie von Mengen $A_i\neq\emptyset, \forall i\in\mathcal{I}$. Dann gilt $\prod_{i\in\mathcal{I}}A_i\neq\emptyset$, d.h. es gibt	
eine Familie $(x_i)_{i\in\mathcal{I}}$ mit $x_i\in A_i, \forall i\in\mathcal{I}.$	

Proposition Sei $\mathcal{I} \neq \emptyset$ und $(A_i)_{i \in \mathcal{I}}$ eine Familie von Mengen. Dann gilt $\prod A_i = \emptyset \iff \exists i \in \mathcal{I} : A_i \neq \emptyset$.	P. 1.75
Lemma (Zornsches Lemma) Sei $M \neq \emptyset$ mit einer Teilordnung (= partielle Ordnung) \leq . Nehme an, jede total geordnete Teilmenge $\Lambda \subset M$ (= Kette) besitzt eine obere Schranke $b \in M$, d.h. $x \leq b, \forall x \in \Lambda$. Dann enthält M ein maximales Element x_0 , d.h. $\exists x_0 \in M : x \geq x_0 \Rightarrow x = x_0$.	L. 1.76
Definition (Ausschöpfung, Partition, Überdeckung) Sei A eine Menge. (i) Eine \ddot{U} berdeckung von A ist eine Familie $(A_i)_{i \in \mathcal{I}}$ mit $\bigcup_{i \in \mathcal{I}} \supset A$.	D. 1.77
(ii) Eine Partition von A ist eine Überdeckung $(A_i)_{i\in\mathcal{I}}$ mit $A_i \subset A$ und $A_i \cap A_j = \emptyset, \forall i \neq j \in \mathcal{I}, A = \bigcup_{i\in\mathcal{I}} A_i$. (iii) Eine Ausschöpfung von A ist eine aufsteigende Folge $(A_n)_{n\in\mathbb{N}}$ von Teilmengen von	
$A, \ \mathrm{die} \ A_m \subset A_n, orall m \leq n \ \mathrm{und} \ igcup_{n \in \mathbb{N}} A_n = A \ \mathrm{erf \ddot{u}llt}.$ Proposition	P. 1.78
 (i) Sei ~ eine Äquivalenzrelation auf A. Dann bilden die Restklassen von ~ eine Partition von A. (ii) Sei (A_i)_{i∈I} eine Partition von A. Dann ist ~ mit x ~ y :⇔ ∃i ∈ I : x, y ∈ A_i eine Äquivalenzrelation auf A. 	F. 1.70
Lemma Seien A, B Mengen. Sei $(A_n)_{n \in \mathbb{N}}$ eine Ausschöpfung von A . Sei $(f_n)_{n \in \mathbb{N}}$ eine Familie von Abbildungen $f_n : A_n \to B$ mit $f_n _{A_m} = f_m$ für alle $m \le n$. Dann gibt es genau eine Funktion $f : A \to B$ mit $f(x) = f_n(x), \forall x \in A_n$ oder $f _{A_n} = f_n, \forall n \in \mathbb{N}$.	L. 1.79
Proposition (Rekursive Definition) Sei $B \neq \emptyset$ eine Menge, $x_0 \in B$ und $F : \mathbb{N} \times B \to B$ eine Funktion. Dann gibt es genau eine Funktion $f : \mathbb{N} \to B$ mit den Ergebnissen: (i) $f(0) = x_0$ und (ii) $f(n+1) = F(n, f(n))$ für alle $n \in \mathbb{N}$.	P. 1.80
f ist eine rekursiv definierte Funktion.	
Kardinalität	Part 1.6
 Definition (Mächtigkeit) Seien A, B Mengen. (i) A, B heißen gleich mächtig (A ~ B), falls es eine Bijektion f: A → B gibt. (ii) B heißt mächtiger als A (B > A) oder A weniger mächtig als B (A ≺ B), falls es eine injektive Abbildung f: A → B gibt. (iii) A heißt abzählbar, falls A ~ N. (iv) A heißt höchstens abzählbar, falls A ≺ N. (v) A heißt überabzählbar, falls A nicht höchstens abzählbar ist. (vi) Sei A abzählbar, so heißt die Folge (x_i)_{i∈N} eine Abzählung von A, falls x_i ≠ x_j für 	D. 1.84

Bemerkung	Bem. 1.85
(i) \sim ist Äquivalenzrelation	
(ii) $A \prec B \prec C \Rightarrow A \prec C$	
(iii) $A \prec A$	
(iv) $G := \{2n : n \in \mathbb{N}\}, G \prec \mathbb{N} : 2n \mapsto 2n \text{ und } \mathbb{N} \prec G : n \mapsto 2n. \text{ Bijektiv: } \mathbb{N} \sim G$	T. 1.86
Theorem (Schröder-Bernstein) Aus $A \prec B$ und $B \prec A$ folgt $A \sim B$.	1.1.00
Proposition	P. 1.87
A,B,C sind Mengen. Seien $\varphi:A\to B,\psi:B\to C$ Abbildungen. Sei $f:A\to B$	11101
Abbildung. Dann gelten:	
(i) Ist $\psi \circ \varphi$ injektiv, so ist φ injektiv	
(ii) Ist $\psi \circ \varphi$ surjektiv, so ist ψ surjektiv	
(iii) f surjektiv $\Leftrightarrow \exists g : B \to A, f \circ g = id_B$ (iv) f injektiv $\Leftrightarrow \exists g : B \to A, g \circ f = id_A$	
Korollar	K. 1.88
$A \prec B \Leftrightarrow \exists f: B \to A, f \text{ ist surjektiv.}$	14. 1.00
Definition	D. 1.89
Sei A eine Menge.	
(i) A heißt endlich , falls es eine injektive Abbildung $f:A\to\mathbb{N}$ und $m\in\mathbb{N}$ mit $f(a)ym, \forall a\in A$ gibt.	
(ii) A heißt <i>unendlich</i> , falls A nicht endlich ist.	
(iii) Gibt es eine bijektive Abbildung $f: A \to \{0, 1,, m-1\} \subset \mathbb{N}$, so hat A die Kardinalität $m(A = m)$. Gibt es keine solche Abbildung, so gilt $ A = \infty$.	
(iv) Sei P eine Aussageform auf A . Dann gilt P für fast alle $i \in A$, falls $\{i \in A : \neg P(i)\}$ endlich ist.	
Lemma	L. 1.91
(i) Für jede endliche Menge A gilt $ A < \infty$, d.h. es gibt ein $m \in \mathbb{N}$ und eine Bijektion $f: A \to \{0, \dots, m-1\}$.	
(ii) Seien $m, n \in \mathbb{N}$ und $f : \{0, \dots, m\} \to \{0, \dots, n\}$ eine Bijektion. Dann gilt $n = m$. (\Rightarrow Kardinalität ist wohldefiniert).	
Lemma	L. 1.92
Sei $m \in \mathbb{N} \setminus \{0\}$ und $(a_i)_{1 \leq i \leq m}$ eine endliche Familie natürlicher Zahlen (oder reeller). Dann gibt es ein $i \in \{a, \dots, m\} : a_i \leq a_j, \forall 1 \leq j \leq m$. Schreibe $a_i = \min\{a_1, \dots, a_m\} \equiv \min(a_1, \dots, a_n)$. Entsprechend $\max\{a_1, \dots, a_m\} \equiv \max(a_1, \dots, a_n)$.	
Lemma	L. 1.93
Die natürlichen Zahlen sind wohlgeordnet, d.h. jede Menge $M \subset \mathbb{N}, M \neq \emptyset$, besitzt ein kleinstes Element, d.h. $\exists a \in M : a \leq b, \forall b \in M$.	
Lemma	L. 1.94
Sei A eine unendliche Menge. Dann besitzt A eine abzählbare Teilmenge.	
Lemma	L. 1.95
Sei A eine Menge. Dann ist A genau dann höchstes abzählbar, wenn A endlich ist oder $A \sim \mathbb{N}$.	
Lemma	L. 1.96
Sei A eine Menge. Dann ist A genau dann höchstens abzählbar, wenn es eine surjektive Abbildung $f: \mathbb{N} \to A$ gibt.	D 1 05
$\begin{array}{c} \textbf{Proposition} \\ \mathbb{N} \times \mathbb{N} \sim \mathbb{N}. \end{array}$	P. 1.97

P. 1.97

Proposition P. 1.98 Sei $k \in \mathbb{N}_{\geq 0}$. Dann ist $\prod_{i=1}^{\kappa} \mathbb{N} = \mathbb{N}^k$ abzählbar. Dies gilt auch, wenn wir \mathbb{N} überall durch $A \sim \mathbb{N}$ ersetzen. L. 1.99 Lemma Sei $(A_i)_{i\in\mathbb{N}}$ eine Folge abzählbarer Mengen. Dann ist $A:=\bigcup_{i\in\mathbb{N}}A_i$ abzählbar. Bem. 1.100 Bemerkung P. 1.98 und L. 1.99 gelten auch mit "höchstens abzählbar" statt abzählbar. T. 1.101 Theorem (Cantor) Sei A eine Menge $\Rightarrow \mathcal{P}(A) \succ A$ und $\mathcal{P}(A) \not\sim A$. Betrag und Wurzel PART 1.7 **Definition** D. 1.102 (i) Sei $x \in \mathbb{R}$. Definiere den $\textbf{\textit{Betrag}}$ von x wie folgt: $|x| := \left\{ \begin{array}{ll} x, & x \geq 0 \\ -x, & x \leq 0 \end{array} \right.$ (ii) Ist $I \subset \mathbb{R}$ ein Intervall mit Endpunkten a und b, so heißt |a-b| Länge von I. **Proposition** P. 1.104 Seien $x, a \in \mathbb{R}$. Dann gelten (i) $x \leq |x|$ (ii) $|x| \le a \Leftrightarrow -a \le x \le a$ (iii) $|x| < a \Leftrightarrow -a < x < a$ Korollar K. 1.105 Sei $A \subset \mathbb{R}$. Dann ist A genau dann beschränkt, wenn es ein $a \in \mathbb{R}$ mit $|x| \leq a, \forall x \in A$ T. 1.106 Theorem (Dreiecksungleichung) Seien $a, b \in \mathbb{R}$. Dann gilt (i) $|a+b| \le |a| + |b|$ (ii) $|a - b| \ge |a| - |b|$ (iii) $|a-b| \ge ||a|-|b||$ **Proposition (Existenz der** *m***-ten Wurzel)** P. 1.107 Seien $m \in \mathbb{N} \setminus \{0\}, a \in \mathbb{R}_{geq0}$. Dann gibt es genau ein $x \in \mathbb{R}_{\geq 0} : x^m = a$. Definition D. 1.108

(ii)
$$\sqrt[m]{a}$$
 oder $a^{\frac{1}{m}}$ ist die Zahl in \mathbb{R}_+ mit $(\sqrt[m]{a})^m = a$

(iii)
$$a^0 := 1, a^{\frac{n}{m}} := \left(a^{\frac{1}{m}}\right)^n$$

Weitere Zahlen und Mächtigkeit

PART 1.8

Definition

D. 1.109

- (i) Die Menge der $x \in \mathbb{R}$,sodass es $n, m \in \mathbb{N}$ mit m n = x gibt, heißt die Menge der ganzen Zahlen: $\mathbb{Z} := \{m n : m, n \in \mathbb{N}\}$
- (ii) Die *rationalen Zahlen* sind die Menge aller $x \in \mathbb{R}$, sodass es $m, n \in \mathbb{Z}$ mit $n \neq 0$ und $x = \frac{m}{n}$ gibt: $\mathbb{Q} := \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \right\}$
- (iii) $\mathbb{I} := \mathbb{R} \setminus \mathbb{Q}$ heißt die Menge der *irrationalen Zahlen*.
- (iv) Die **komplexen Zahlen** sind Paare reeller Zahlen : $\mathbb{C} := \{(a, b) : a, b \in \mathbb{R}\}.$

Addition: (a, b) + (c, d) := (a + c, b + d)

Multiplikation: $(a,b) \cdot (c,d) := (ac - bd, bc + ad)$

Schreibe $(a, b) \equiv a + ib$. Es gilt $i^2 = -1$.

Sei z = a + ib. Dann heißt $a = Re \ z$ Realteil von z und $b = Im \ z$ Imaginärteil von z.

 $\overline{a+ib} := a-ib$ heißt **konjugiert komplexe Zahl zu** a+ib.

 $|a+ib| := \sqrt{a^2 + b^2}$ heißt **Betrag von** a+ib.

Für $a, b \in \mathbb{R}, z, w \in \mathbb{C}$ gilt:

- $|a+ib|^2 = (a+ib)\overline{(a+ib)}$
- $\overline{z+w} = \overline{z} + \overline{w}$
- $\overline{zw} = \overline{z} \cdot \overline{w}$
- $|z|^2 = |Re\ z|^2 + |Im\ z|^2$
- $|z|^2 = |\overline{z}|$

Betrachte \mathbb{R} mithilfe von $\mathbb{R} \ni x \mapsto (x,0) \in \mathbb{C}$ als Teilmenge von \mathbb{C} . $x \in \mathbb{R} \Rightarrow \overline{x} = x$.

Bemerkung

Bem. 1.110

- (i) Summen, Differenzen und Produkte ganzer Zahlen sind ganze Zahlen.
- (ii) $\mathbb Q$ bildet einen angeordneten Körper, $\mathbb Q$ ist nicht vollständig.
- (iii) $\mathbb C$ ist ein Körper, $\mathbb C$ ist nicht angeordnet, $\mathbb C$ ist als metrischer Raum vollständig.

$$(a+ib)(a-ib) = a^2 + b^2$$
. Für $(a,b) \neq 0$ ist daher $\frac{a}{a^2 + b^2} + i\frac{-b}{a^2 + b^2} = (a+ib)^{-1}$

- (iv) Seien $z, w \in \mathbb{C} \Rightarrow |z+w| \le |z| + |w|$
- $(\mathbf{v}) |zw| = |z| \cdot |w|$

Theorem (Dichtheit von \mathbb{Q} in \mathbb{R})

Sei $I \subset (a,b) \subset \mathbb{R}$ ein Intervall mit $I \neq \emptyset$. Dann ist $I \cap \mathbb{Q}$ unendlich.

Proposition

 $\mathbb{Q} \sim \mathbb{N}$

Proposition

 $\mathbb{R} \sim \mathcal{P}(\mathbb{N})$

Bemerkung (Cantorsches Diagonalverfahren ($\mathbb{R} \succ \mathbb{N}, \mathbb{R} \not\sim \mathbb{N}$))

Bem. 1.114

T. 1.111

P. 1.112

P. 1.113

Alle reellen Zahlen werden untereinander aufgelistet. Man nimmt die Diagonale und schreibt eine neue Zahl unter die Liste, die zur Diagonale verschieden ist \rightarrow nicht in der Liste!

Bemerkung

 $\mathbb{R} \sim (\mathbb{R} \setminus \mathbb{Q})$

Bem. 1.115

Konvergenz KAP. 2 METRISCHE RÄUME Part 2.1 **Definition (Metrische Räume)** D. 2.1 Sei E eine Menge. (a) Eine Funktion $d: E \times E \to \mathbb{R}_+$ heißt **Metrik**, falls (i) d(x, y) = d(y, x)(Symmetrie) (ii) $d(x,y) = 0 \iff x = y$ ((positive) Definitheit) (iii) $d(x, z) \le d(x, y) + d(y, z)$ (Dreiecksungleichung) (b) Das Paar (E, d) heißt **metrischer Raum**. L. 2.2 Lemma Sei E ein metrischer Raum. Dann gilt die umgekehrte Dreiecksungleichung: $d(x,z) > |d(x,y) - d(y,z)|, \ \forall x,y,z \in E$ Bem. 2.3 Bemerkung \mathbb{K} sein \mathbb{R} oder \mathbb{C} . D. 2.4 **Definition (normierter Raum)** Sei E ein \mathbb{K} -Vektorraum. (a) Dann heißt $\|\cdot\|: E \to \mathbb{R}_+$ Norm, falls für alle $x, y, z \in E$ und $\lambda \in \mathbb{K}$ folgendes gilt: (i) $||x|| = 0 \Longrightarrow x = 0$ ((positive) Definitheit) (ii) $\|\lambda x\| = |\lambda| \cdot \|x\|$ (Homogenität) (iii) $||x + y|| \le ||x|| + ||y||$ (Dreiecksungleichung) (b) Das Paar $(E, \|\cdot\|)$ heißt normierter Raum. L. 2.5 Lemma Sei E ein normierter Raum. Dann gilt die umgekehrte Dreiecksungleichung: $||x - y|| \ge |||x|| - ||y|||, \ \forall x, y \in E$ **Definition** (Skalarproduktraum) D. 2.6 Sei E ein \mathbb{K} -Vektorraum. (a) Dann heißt $\langle \cdot, \cdot \rangle : E \times E \to \mathbb{K}$ **Skalarprodukt**, falls (i) $\langle \lambda x + y, z \rangle = \lambda \langle x, z \rangle + \langle y, z \rangle$ (Linearität im ersten Argument) (ii) $\langle x, y \rangle = \langle y, x \rangle$ (K: Symmetrie, C: Hermizität) (iii) $\langle x, x \rangle \ge 0$ und $(\langle x, x \rangle = 0 \leftrightarrow x = 0)$ (positive Definitheit) (b) $(E, \langle \cdot, \cdot \rangle)$ heißt Skalarproduktraum. T. 2.8 Theorem (Cauchy-Schwarzsche Ungleichung) Sei E ein Skalarproduktraum. Dann gilt $|\langle x,y\rangle|^2 \leq \langle x,x\rangle \cdot \langle y,y\rangle$, $\forall x,y\in E$ (bei Gleichheit gilt lineare Abhängigkeit von x und y). T. 2.9 Theorem Sei E ein Skalarproduktraum. Dann definiert $||x|| := \sqrt{\langle x, x \rangle}$ für $x \in E$ eine Norm auf E. T. 2.10 Theorem Sei E normierter Raum. Dann definiert d(x,y) := ||x|| - ||y|| für $x,y \in E$ eine Metrik auf **Beispiel** Bsp. 2.11 Seien $x, y \in \mathbb{R}^n, x = (x^1, \dots, x^n), y = (y^1, \dots, y^n)$. Dann definiert $\langle x, y \rangle := \sum_{i=1}^n x^i y^i$ ein

Skalarprodukt auf \mathbb{R}^n , das *euklidische Skalarprodukt*.

Dies induziert $||x|| = |x| = \left(\sum_{i=1}^n (x^i)^2\right)^{\frac{1}{2}}$ und $d(x,y) = |x-y| = \sqrt{\sum_{i=1}^n (x^i-y^i)^2}$

Proposition (Polarisationsformeln)		Р	. 2.12
(i) Sei E ein Skalarproduktraum über \mathbb{K} . Dann gilt $ x+y ^2 = $ (ii) ist E ein \mathbb{R} -Vektorraum mit Skalarprodukt	$x\ ^2 + \ y\ ^2 + 2Re \langle x, y \rangle$		
(ii) ist E ein \mathbb{R} -vektorraum init Skaiarprodukt $\Rightarrow \langle x, y \rangle = \frac{1}{2} (\ x + y\ ^2 - \ x\ ^2 - \ y\ ^2)$			
$= \frac{1}{2} (\ x\ ^2 + \ y\ ^2 - \ x - y\ ^2)$			
$= \frac{1}{4} (\ x + y\ ^2 - \ x - y\ ^2)$			
(iii) Ist E ein Skalarproduktraum über \mathbb{C} , so gilt $4\langle x,y\rangle=\ x+y\ ^2-\ x-y\ ^2+i\ x+iy\ ^2-i\ x-iy\ ^2$			
Proposition		Р	. 2.13
Sei E ein normierter Raum über \mathbb{R} . Dann ist die Norm genau dann induziert, falls die folgende Parallelogrammgleichung gilt: $2(\ x\ ^2 + \ y\ ^2) = \ x + y\ ^2 + \ x - y\ ^2$	von einem Skalarprodukt		
Theorem		Т	. 2.14
Seien $1 \leq p,q \leq \infty$ konjungierte Exponenten. D.h. es gelte $\frac{1}{p}$ Dann gelten	$+\frac{1}{q}=1$. Sei $x,y\in\mathbb{R}^n$.		
$\sum_{i=1}^{n} x^{i} y^{i} \le \ x\ _{p} \cdot \ y\ _{q} \tag{F}$	Höldersche Ungleichung)		
und $ x+y _p \le x _p + y _p$ (Minko	owskische Ungleichung)		
FOLGEN	3 3,	Part	2.2
Definition			ے.ے 2.15 .
Sei E ein metrischer Raum. Sei $x \in E, \varepsilon > 0$. Definiere $B_{\varepsilon}(x) := \text{die } \varepsilon\text{-Kugel}.$ $B_{\varepsilon}(x)$ heißt auch $\varepsilon\text{-Umgebung von } x$	$\{y \in E : d(y, x) < \varepsilon\}$	ט	. 2.13
Definition (Konvergenz)		D	. 2.16
 Sei (x_n)_{n∈ℕ} ⊂ E eine Folge in einem metrischen Raum E. (i) Dann konvergiert (x_n)_{n∈ℕ} gegen a ∈ E, falls für beliebige ε viele liegen außerhalb) Folgeglieder in B_ε(a) liegen (ii) Konvergiert (x_n)_{n∈ℕ} gegen a ∈ E, so heißt a Limes oder (x_n)_{n∈ℕ}: a = lim_{n→∞} x_n oder x_n → a für n → ∞ oder x_n → a. 			
Bemerkung		Rem	. 2.17
Die Definition von Konvergenz ist äquivalent zu (i) Für alle $\varepsilon > 0$ gibt es ein $n_0 \in \mathbb{N}$, sodass für $n \in \mathbb{N}$ mit $n \geq$, , –	Beili	
(ii) Für alle $\varepsilon > 0$ gibt es ein $n_0 \in \mathbb{N}$, sodass für $n \in \mathbb{N}$ mit $n \ge n$ Korollar (Bolzano-Weierstraß)	n_0 auch $a(x_n,a)<\varepsilon$ glit.	K	. 2.18
Sei $(x_k)_{k\in\mathbb{N}}\subset\mathbb{R}^n$ eine beschränkte Folge, d.h. $\exists r>0: x_k\in B_r(0,x_k)_{k\in\mathbb{N}}$ eine konvergente Teilfolge mit Grenzwert a und $ a \leq r$.	0), $\forall k \in \mathbb{N}$. Dann besitzt	· · ·	. 2.10
Bemerkung		Bem	. 2.19
In \mathbb{R}^n gilt: $(x_k)_{k\in\mathbb{N}}$ konvergiert $\Leftrightarrow (x_k^i)_{k\in\mathbb{N}}$ konvergiert für alle i .			
Definition (Cauchyfolge, Vollständigkeit)		D	. 2.20
 (i) Eine Folge (x_n)_{n∈N} in einem metrischen Raum E heißt Cau zu jedem ε > 0 ein n₀ ∈ N mit d(x_k, x_l) < ε, ∀k, l ≥ n₀ gibt. (ii) Ein metrischer Raum, in dem jede CF konvergiert, heißt voll 			
 Raum. (iii) Ein normierter Raum, in dem jede CF konvergiert, heißt voll Raum oder Banachraum (BR). (iv) Ein vollständiger Skalarproduktraum heißt Hilbertraum (H 			
Lemma		L	. 2.21
Sei E ein metrischer Raum. Sei $(x_n)_{n\in\mathbb{N}}\subset E$ konvergent. Dann i folge.	ist $(x_n)_{n\in\mathbb{N}}$ eine Cauchy-		
REIHEN		Part	2.3
Gleichmässige Konvergenz		Part	2 1