# Exercícios de Simulação de Circuitos usando o software Logisim

Para este laboratório será utilizado o Simulador de Circuitos Lógicos - Logisim, o qual permite o projeto e a simulação de circuitos lógicos através de uma interface gráfica.

O download do Logisim pode ser obtido no endereço: http://sourceforge.net/projects/circuit/

#### 1. Criar uma pasta com o nome de IIR







2. Copiar o endereço http://sourceforge.net/projects/circuit/ para a barra do navegador

# 3. Clicar no botão Download para baixar o arquivo logisim-generic-2.7.1.jar na pasta criada IIR





Selecionar a pasta criada e clicar em Salvar (ou Save)

#### 4. Abrir um terminal





5. Se posicionar na pasta criada IIR, usando o comando cd IIR

```
julio@julio-Lenovo:~$ cd IIR

julio@julio-Lenovo
julio@julio-Lenovo:~$ cd IIR
julio@julio-Lenovo:~/IIR$
```

6. Abrir o logisim, com o comando java -jar logisim-generic-2.7.1.jar

```
julio@julio-Lenovo: ~/IIR Q =
julio@julio-Lenovo:~$ cd IIR
julio@julio-Lenovo:~/IIR$ java -jar logisim-generic-2.7.1.jar
```



7. Para entender como criar os circuitos usando o logisim, assista ao vídeo https://www.youtube.com/watch?v=TdDCWG2inoY

**8. Exercícios:** Construir, simular e determinar a **tabela verdade** dos circuitos representados pelas **expressões lógicas** abaixo:





| A | В | С | A+B | ~B | ~B+C | S |
|---|---|---|-----|----|------|---|
| 0 | 0 | 0 | 0   | 1  | 1    | 0 |
| 0 | 0 | 1 | 0   | 1  | 1    | 0 |
| 0 | 1 | 0 | 1   | 0  | 0    | 0 |
| 0 | 1 | 1 | 1   | 0  | 1    | 1 |
| 1 | 0 | 0 | 1   | 1  | 1    | 1 |
| 1 | 0 | 1 | 1   | 1  | 1    | 1 |
| 1 | 1 | 0 | 1   | 0  | 0    | 0 |
| 1 | 1 | 1 | 1   | 0  | 1    | 1 |

2. 
$$S = A.C + ^(B.C) + ^A.B.C$$



| A | В | С | A·C | B·C | ~( <b>B</b> · <b>C</b> ) | ~A | ~A·B·C | S |
|---|---|---|-----|-----|--------------------------|----|--------|---|
| 0 | 0 | 0 | 0   | 0   | 1                        | 1  | 0      | 1 |
| 0 | 0 | 1 | 0   | 0   | 1                        | 1  | 0      | 1 |
| 0 | 1 | 0 | 0   | 0   | 1                        | 1  | 0      | 1 |
| 0 | 1 | 1 | 0   | 1   | 0                        | 1  | 1      | 1 |
| 1 | 0 | 0 | 0   | 0   | 1                        | 0  | 0      | 1 |
| 1 | 0 | 1 | 1   | 0   | 1                        | 0  | 0      | 1 |
| 1 | 1 | 0 | 0   | 0   | 1                        | 0  | 0      | 1 |
| 1 | 1 | 1 | 1   | 1   | 0                        | 0  | 0      | 1 |

#### 3. $S = A.B + {^{\sim}C} + {^{\sim}(C.D)}$



| A | В | C | D | A·B | ~C | C·D | ~(C·D) | S |
|---|---|---|---|-----|----|-----|--------|---|
| 0 | 0 | 0 | 0 | 0   | 1  | 0   | 1      | 1 |
| 0 | 0 | 0 | 1 | 0   | 1  | 0   | 1      | 1 |
| 0 | 0 | 1 | 0 | 0   | 0  | 0   | 1      | 1 |
| 0 | 0 | 1 | 1 | 0   | 0  | 1   | 0      | 0 |
| 0 | 1 | 0 | 0 | 0   | 1  | 0   | 1      | 1 |
| 0 | 1 | 0 | 1 | 0   | 1  | 0   | 1      | 1 |
| 0 | 1 | 1 | 0 | 0   | 0  | 0   | 1      | 1 |
| 0 | 1 | 1 | 1 | 0   | 0  | 1   | 0      | 0 |
| 1 | 0 | 0 | 0 | 0   | 1  | 0   | 1      | 1 |
| 1 | 0 | 0 | 1 | 0   | 1  | 0   | 1      | 1 |
| 1 | 0 | 1 | 0 | 0   | 0  | 0   | 1      | 1 |
| 1 | 0 | 1 | 1 | 0   | 0  | 1   | 0      | 0 |
| 1 | 1 | 0 | 0 | 1   | 1  | 0   | 1      | 1 |
| 1 | 1 | 0 | 1 | 1   | 1  | 0   | 1      | 1 |
| 1 | 1 | 1 | 0 | 1   | 0  | 0   | 1      | 1 |
| 1 | 1 | 1 | 1 | 1   | 0  | 1   | 0      | 1 |

## 4. $Z = X.(^{\sim}Y + W)$



| X | Y | W | ~Y | ~Y + W | Z |
|---|---|---|----|--------|---|
| 0 | 0 | 0 | 1  | 1      | 0 |
| 0 | 0 | 1 | 1  | 1      | 0 |
| 0 | 1 | 0 | 0  | 0      | 0 |
| 0 | 1 | 1 | 0  | 1      | 0 |
| 1 | 0 | 0 | 1  | 1      | 1 |
| 1 | 0 | 1 | 1  | 1      | 1 |
| 1 | 1 | 0 | 0  | 0      | 0 |
| 1 | 1 | 1 | 0  | 1      | 1 |

5. Construir e simular o circuito da figura abaixo e comparar seu funcionamento com a





## $S=(\sim A \cdot B) + (A \cdot \sim B)$

| A | В | ~A | ~B | (~A·B) | (A·~B) | S |
|---|---|----|----|--------|--------|---|
| 0 | 0 | 1  | 1  | 0      | 0      | 0 |
| 0 | 1 | 1  | 0  | 1      | 0      | 1 |
| 1 | 0 | 0  | 1  | 0      | 1      | 1 |
| 1 | 1 | 0  | 0  | 0      | 0      | 0 |

S=A\(\theta\)B

| 5-1 <b>U</b> B |   |                     |  |  |  |
|----------------|---|---------------------|--|--|--|
| A              | В | $S = A \bigoplus B$ |  |  |  |
| 0              | 0 | 0                   |  |  |  |
| 0              | 1 | 1                   |  |  |  |
| 1              | 0 | 1                   |  |  |  |
| 1              | 1 | 0                   |  |  |  |

6. Construir e simular o circuito da soma de dois bits. Observe que nesse caso são necessárias duas entradas e duas saídas. Uma saída para o bit menos significativo e outra para o bit mais significativo (segunda casa).



| A | В | Soma $(S = A \oplus B)$ | Carry $(C = A \cdot B)$ |
|---|---|-------------------------|-------------------------|
| 0 | 0 | 0                       | 0                       |
| 0 | 1 | 1                       | 0                       |
| 1 | 0 | 1                       | 0                       |
| 1 | 1 | 0                       | 1                       |