Lecture Title: Recursion (Cont.)

Dept. of Computer Science Faculty of Science and Technology

Lecture No:	04	Week No:	04	Semester:	
Lecturer:	Name & email:				

Recurrences & Master Method

MD. MANZURUL HASAN

SLIDES ARE ADOPTED FROM MASHIOUR RAHMAN [ASSO DEAN, FST]

Lecture Outline

- 1. Divide and Conquer (Previous Week)
- 2. Recurrences in Divide and Conquer and methodologies for recurrence Solutions (Previous Week)
- 3. Repeated Backward Substitution Method (Previous Week)
- 4. Substitution Method (Previous Week)
- 5. Recursion Tree
- 6. Master Method

Recursion Tree

- A recursion tree is a convenient way to visualize what happens when a recurrence is iterated.
 - ▶ Good for "guessing" asymtotic solutions to recurrences

$$T(n) = T(n/4) + T(n/2) + n^2$$

$$T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2) \qquad T(n) = 3T(n/4) + cn^2$$

$$T(n) \qquad cn^{2} \qquad cn^{2} \qquad \\ T\left(\frac{n}{4}\right) T\left(\frac{n}{4}\right) T\left(\frac{n}{4}\right) \qquad c\left(\frac{n}{4}\right)^{2} \qquad c\left(\frac{n}{4}\right)^{2} \qquad c\left(\frac{n}{4}\right)^{2} \qquad \\ T\left(\frac{n}{16}\right) T\left(\frac{n}{16}\right) T\left(\frac{n}{16}\right) T\left(\frac{n}{16}\right) T\left(\frac{n}{16}\right) T\left(\frac{n}{16}\right) T\left(\frac{n}{16}\right) T\left(\frac{n}{16}\right) T\left(\frac{n}{16}\right) \qquad (c)$$

Total: $O(n^2)$

Height and leaves of a recursion tree

Height

The top of the tree begins with \mathbf{n} and for every step down it is divided by \mathbf{b} . So it goes \mathbf{n} , \mathbf{n}/\mathbf{b} , \mathbf{n}/\mathbf{b}^2 ,...,1. To find the height we need to find a \mathbf{k} such that $\mathbf{n}/\mathbf{b}^k = 1$ or $\mathbf{b}^k = \mathbf{n}$, which gives $\mathbf{k} = \log_b \mathbf{n}$.

Number of leaves

For every step down the tree, the leaves are multiplied by **a** times. The number of leaves is $\mathbf{a}^{\mathbf{k}}$, where k is the number of steps or height of the tree. **The** number of leaves = $\mathbf{a}^{\log_b n}$.

It is easy to see that the tree has $a^{\log_b n}$ leaves. Indeed, since the height is $\log_b n$, and the tree branching factor is a, the number of leaves is

$$a^h = a^{\log_b n} = a^{\frac{\log_a n}{\log_a b}} = n^{\frac{1}{\log_a b}} = n^{\log_b a}$$

For real
$$x \neq 1$$
, the summation
$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n}$$

When the summation is infinite and |x| < 1, we have the infinite decreasing geo-

(A.5)

(A.6)

 $= \frac{(3/16)^{\log_4 n} - 1}{(3/16) - 1} cn^2 + \Theta(n^{\log_4 3})$ (by equation (A.5)).

 $T(n) = cn^2 + \frac{3}{16}cn^2 + \left(\frac{3}{16}\right)^2cn^2 + \dots + \left(\frac{3}{16}\right)^{\log_4 n - 1}cn^2 + \Theta(n^{\log_4 3})$

 $= \sum_{i=1}^{\log_4 n - 1} \left(\frac{3}{16}\right)^i c n^2 + \Theta(n^{\log_4 3})$

is a geometric or exponential series and has the value

Geometric series

 $\sum_{k=1}^{n} x^{k} = \frac{x^{n+1} - 1}{x - 1} \, .$

metric series

 $\sum x^k = \frac{1}{1-x} \, .$

$$T(n) = \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

$$< \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

$$= \frac{1}{1 - (3/16)} cn^2 + \Theta(n^{\log_4 3})$$

$$= \frac{16}{13} cn^2 + \Theta(n^{\log_4 3})$$

$$= O(n^2).$$

Verify our guess [substitution]

$$T(n) \leq 3T(\lfloor n/4 \rfloor) + cn^{2}$$

$$\leq 3d \lfloor n/4 \rfloor^{2} + cn^{2}$$

$$\leq 3d(n/4)^{2} + cn^{2}$$

$$= \frac{3}{16}dn^{2} + cn^{2}$$

$$\leq dn^{2},$$

where the last step holds as long as $d \geq (16/13)c$.

Master Method

The idea is to solve a class of recurrences that have the form

$$T(n) = aT(n/b) + f(n)$$

- ▶ Assumptions: $a \ge 1$ and b > 1, and f(n) is asymptotically positive.
- Abstractly speaking, T(n) is the runtime for an algorithm and we know that
 - a number of subproblems of size n/b are solved recursively, each in time T(n/b).
 - ▶ f(n) is the cost of dividing the problem and combining the results. e.g., In merge-sort $T(n) = 2T(n/2) + \Theta(n)$

...Master Method

Split problem into a parts. There are $\log_b n$ levels. There are $a^{\log_b n} = n^{\log_b a}$ leaves.

Total:
$$\Theta\left(n^{\log_b a}\right) + \sum_{j=0}^{\log_b n-1} a^j f(n/b^j)$$

...Master Method

Iterating the recurrence (expanding the tree) yields

```
T(n) = f(n) + aT(n/b)
= f(n) + af(n/b) + a^2T(n/b^2)
= f(n) + af(n/b) + a^2f(n/b^2) + ...
a^{\log_b n-1}f(n/b^{\log_b n-1}) + a^{\log_b n}T(1)
```

$$T(n) = \sum_{j=0}^{\log_b n - 1} a^j f(n / b^j) + \Theta(n^{\log_b a})$$

- The first term is a division/recombination cost (totaled across all levels of the tree).
- The second term is the cost of doing all subproblems of size 1 (total of all work pushed to leaves).

Master Method, Intuition

- Three common cases:
 - Running time dominated by cost at leaves.
 - 2. Running time evenly distributed throughout the tree.
 - 3. Running time dominated by cost at the root.
- To solve the recurrence, we need to identify the dominant term.
- In each case compare f(n) with $O(n^{\log_b a})$

Master Method, Case 1

- ▶ If $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$ then
 - \blacktriangleright f(n) grows polynomially slower than $n^{\log_b a}$ (by factor n^{ε}).
- The work at the leaf level dominates

Cost of all the leaves $\Theta(n^{\log_b a})$

Master Method, Case 2

- If $f(n) = \Theta(n^{\log_b a})$ then $f(n) = \int_0^{\log_b a} f(n) dn dn$ and $\int_0^{\log_b a} f(n) dn dn$ are asymptotically the same
 - The work is distributed equally throughout the tree

(level cost) (number of levels)

$$T(n) = \Theta(n^{\log_b a} \lg n)$$

Master Method, Case 3

- $lacktriangleq f(n) = \overline{\Omega(n^{\log_b a + \varepsilon})}$ for some constant $\varepsilon > 0$ then
 - ▶ Inverse of Case 1
 - \blacktriangleright f(n) grows polynomially faster than $n^{\log_b a}$
 - Also need a "regularity" condition

$$\exists c < 1 \text{ and } n_0 > 0 \text{ such that } af(n/b) \le cf(n) \ \forall n > n_0$$

The work at the root dominates

division/recombination cost

$$T(n) = \Theta(f(n))$$

Master Theorem, Summarized

Given: recurrence of the form T(n) = aT(n/b) + f(n)

$$T(n) = aT(n/b) + f(n)$$

1.
$$f(n) = O(n^{\log_b a - \varepsilon})$$

$$\Rightarrow T(n) = \Theta(n^{\log_b a})$$

- 2. $f(n) = \Theta(n^{\log_b a})$ $\Rightarrow T(n) = \Theta(n^{\log_b a} \lg n)$
- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ and $af(n/b) \le cf(n)$, for some $c < 1, n > n_0$ $\Rightarrow T(n) = \Theta(f(n))$

Strategy

- 1. Extract a, b, and f(n) from a given recurrence
- 2. Determine nlogb a
- 3. Compare f(n) and $n^{\log_b a}$ asymptotically
- 4. Determine appropriate MT case and apply it

Merge sort:
$$T(n) = 2T(n/2) + \Theta(n)$$

- 1. a=2, b=2, $f(n) = \Theta(n)$
- 2. $n^{\log_{2^2}} = n$
- 3. $\Theta(n) = \Theta(n)$
- → Case 2: $T(n) = \Theta(n^{\log_b a} \log n) = \Theta(n \log n)$

Examples of Master Method

```
BinarySearch(A, 1, r, q):
    m := (1+r)/2
    if A[m] = q then return m
    else if A[m] > q then
        BinarySearch(A, 1, m-1, q)
    else BinarySearch(A, m+1, r, q)
```

$$T(n) = T(n/2) + 1$$
1. $a=1$, $b=2$, $f(n) = 1$
2. $n^{\log_2 1} = 1$
3. $1 = \Theta(1)$
→ Case 2: $T(n) = \Theta(n^{\log_2 1} \log_2 n) = \Theta(\log_2 n)$

...Examples of Master Method

$$T(n) = 9T(n/3) + n$$

1.
$$a=9$$
, $b=3$, $f(n)=n$

2.
$$n^{\log_3 9} = n^2$$

3.
$$n = \Theta(n^{\log_3 9 - \varepsilon})$$
 with $\varepsilon = 1$

$$\rightarrow$$
 Case 1: $T(n) = \Theta(n^2)$

...Examples of Master

Method $T(n) = 3T(n/4) + n \log n$

1.
$$a=3$$
, $b=4$, $f(n) = n \log n$

2.
$$n^{\log_4 3} = n^{0.792}$$

3.
$$n \log n = \Omega(n^{\log_4 3 + \varepsilon})$$
 with $\varepsilon = 0.208$

→ Case 3:

```
regularity condition: af(n/b) <= cf(n)

af(n/b) = 3(n/4)log(n/4) <= (3/4)nlog n = cf(n)

;with c=3/4
```

$$T(n) = \Theta(n \log n)$$

$$T(n) = 8T(n/2) + n^3$$

References & Readings

- CLRS
 - ► Chapter: 4 (4.1-4.3)
 - 4.4 for bedtime reading
 - Exercises
 - 4.1, 4.2, 4.3
 - Problems
 - 4-1, 4-4
- ► HSR
 - ► Chapter: 3 (3.1-3.6)
 - ► Examples: 3.1-3.5
 - ► Exercises: 3.1 (1, 2), 3.2 (1, 3-6),