SEQUENCE LISTING

_	(1) GENE	RAL INFORMATION:
. 5	(i)	APPLICANTS: Wallner, Barbara P. Cooper, Kevin D.
10	(ii).	TITLE OF INVENTION: Method of Prophylaxis or Treatment of Antigen Presenting Cell Driven Skin Conditions Using Inhibitors of the CD2/LFA-3 Interaction
	(iii)	NUMBER OF SEQUENCES: 8
15	(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: LAHIVE & COCKFIELD (B) STREET: 60 State Street, Suite 510 (C) CITY: Boston
20		(D) STATE: Massachusetts (E) COUNTRY: USA (F) ZIP: 02109-1875
25	(v)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
30	(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE:
	, ,	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: PCT/US92/08755
35	····	(B) FILING DATE: 06-OCT-1992
	• •	PRIOR-APPLICATION DATA: (A) APPLICATION NUMBER: US 07/862,022 (B) FILING DATE: 12-APR-1992
40	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 07/770,969 (B) FILING DATE: 07-OCT-1991
45	•	ATTORNEY/AGENT INFORMATION: (A) NAME: Myers, Louis (PLM) (B) REGISTRATION NUMBER: 35,965 (C) REFERENCE/DOCKET NUMBER: BGP-111CP
50	(ix)	TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (617)227-7400 (B) TELEFAX: (617)227-5941
55	(2) INFOR	RMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 753 base pairs (B) TYPE: nucleic acid

					TRAN				gle									
5		(ii	.) MC	LECU	LE T	YPE:	cDN	A										
10		(ix		(A) N	RE: IAME/ OCAT									. ,				
10		(ix		(A) N	ee: Iame/ Ocat		_		tide									
15		(ix		A) N	E: IAME/ OCAT				tide						,			
20		(ix	(A) N B) L	AME/ OCAT	ION:	1	750			"Hur	man 1	trans	smeml	branc	e LFA	3"	.•
25	. <u>-</u>	(ix	(A) N B) L	AME/	ION:	646	_			"Ťra	ansme	embra	ane (doma:	in"		
30		(xi) SE	QUEN	CE D	ESCR:	IPTI(ON:	SEQ :	ED NO	0:1:							
35 ⁻					Ser					Ala					AGC Ser			48
															CAA Gln			96
40															AGC Ser			144
45															GTT Val 35			192
50					•										AAT Asn			240
55														Asn	TTA Leu			288
J															ACT Thr			336

		Met	AAG Lys	_			Tyr										384
5			TGT Cys			Thr											432
10			CAT His		Asn					Leu							 480
15			ATG Met 135	_	_								_				528
20			AAT Asn														576
20			AAT Asn														624
25			CAT His														672
30			ACA Thr														720
35	Asp	Arg	AAA Lys 215	Pro	Asp	Arg					TGA						753
40		INF	CEMAN	CION EQUE (A)	FOR INCE LEN	SEQ	ACTE	RIST ami	rics:		3						
45		(1	Li) M	(D)	TOE	OLOG	Y: 1	inea	ır				٠				
		()	ci) S	EQUE	NCE	DESC	RIPI	'ION :	SEÇ) ID	NO:2	2:					
50	Met -28	Val	Ala	Gly -25	Ser	Asp	Ala	Gly	Arg -20	Ala	Leu	Gly	Val	Leu -15	Ser	Val	
	Val	Сув	Leu -10	Leu	His	Cys	Phe	Gly -5	Phe	Ile	Ser	Cys	Phe 1	Ser	Gln	Gln	
55	Ile 5	Tyr	Gly	Val	Val	Tyr 10	Gly	Asn	Val	Thr	Phe 15	His	Val	Pro	Ser	Asn 20	
	Val	Pro	Leu	Lys	Glu 25	Val	Leu	Trp	Lys	Lys 30	Gln	Lys	Asp	Lys	Val 35	Ala	

Glu Leu Glu Asn Ser Glu Phe Arg Ala Phe Ser Ser Phe Lys Asn Arg 45 40 Val Tyr Leu Asp Thr Val Ser Gly Ser Leu Thr Ile Tyr Asn Leu Thr 60 Ser Ser Asp Glu Asp Glu Tyr Glu Met Glu Ser Pro Asn Ile Thr Asp 75 70 10 Thr Met Lys Phe Phe Leu Tyr Val Leu Glu Ser Leu Pro Ser Pro Thr Leu Thr Cys Ala Leu Thr Asn Gly Ser Ile Glu Val Gln Cys Met Ile 15 105 110 Pro Glu His Tyr Asn Ser His Arg Gly Leu Ile Met Tyr Ser Trp Asp 20 Cys Pro Met Glu Gln Cys Lys Arg Asn Ser Thr Ser Ile Tyr Phe Lys Met Glu Asn Asp Leu Pro Gln Lys Ile Gln Cys Thr Leu Ser Asn Pro 155 25 Leu Phe Asn Thr Thr Ser Ser Ile Ile Leu Thr Thr Cys Ile Pro Ser 170 Ser Gly His Ser Arg His Arg Tyr Ala Leu Ile Pro Ile Pro Leu Ala 30 190 Val Ile Thr Thr Cys Ile Val Leu Tyr Met Asn Gly Ile Leu Lys Cys 200 205 35 Asp Arg Lys Pro Asp Arg Thr Asn Ser Asn 215 220 (2) INFORMATION FOR SEQ ID NO:3: 40 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 723 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 45 (ii) MOLECULE TYPE: cDNA (ix) FEATURE: 50 (A) NAME/KEY: CDS (B) LOCATION: 1..720 (ix) FEATURE: (A) NAME/KEY: sig_peptide 55 (B) LOCATION: 1..84 (ix) FEATURE: (A) NAME/KEY: mat_peptide

(B) LOCATION: 85..720

5		(ix	(1	A) N	AME/I	ON:	1	720			"Hum	an P	7-li	nked	LFA	-3"	
10		(ix	(1	A) N	AME/I OCAT: THER	ION:	568 CRMA	720 FION:)		"Sig	mal	sequ	ence	for		
15		GTT		GGG	AGC	GAC	GCG	GGG	CGG	GCC	CTG			CTC Leu -15			48
20														TCC Ser			96
25														CCA Pro			144
30														AAA Lys			192
35	Glu	Leu	Glu	Asn 40	Ser	Glu	Phe	Arg	Ala 45	Phe	Ser	Ser	Phe	AAA Lys 50	Asn	Arg	240
	Val	Tyr	Leu 55	Asp	Thr	Val	Ser	Gly 60	Ser	Leu	Thr	Ile	Tyr 65	AAC Asn	Leu	Thr	288
40	Ser	Ser 70	Asp	Glu	Asp	Glu	Tyr 75	Glu	Met	Glu	Ser	Pro 80	Asn	ATT	Thr	Asp	336
45	Thr 85	Met	Lys	Phe	Phe	Leu 90	Tyr	Val	Leu	Glu	Ser 95	Leu	Pro	TCT	Pro	100	384
50	Leu	Thr	Cys	Ala	Leu 105	Thr	Asn	Gly	Ser	Ile 110	Glu	Val	Gln	TGC	Met 115	Ile	432
55	Pro	Glu	His	Tyr 120	Asn	Ser	His	Arg	Gly 125	Leu	Ile	Met	Tyr	TCA Ser 130	Trp	Asp	480 528
														TAT			328

			u As	T GAT														576	
5		ı Ph		T ACA			Ser											624	
10				r TC# s Sei		His												672	
15				A ACA Thr 200	Cys													720	
	TAA																	723	
20	(2)	INE	ORMA	TION	FOR	SEQ	ID I	NO:4:	:								٠		
25		((B) LE) TY) TO	NGTH PE: 6	: 240 amino GY:]	ami aci	ino a id ar		5								
30		(xi)	SEQU	ENCE	DESC	CRIPT	: NOI	: SEÇ	O ID	NO:4	l :							
50	Met -28	Val	Ala	Gly -25	Ser	Asp	Ala	Gly	Arg -20	Ala	Leu	Gly	Val	Leu -15	Ser	Val			
35	Val	Cys	Leu -10	Leu	His	Суз	Phe	Gly -5	Phe	Ile	Ser	Сув	Phe 1	Ser	Gln	Gln			
	Ile 5		Gly	Val	Val	Tyr 10	Gly	Asn	Val	Thr	Phe 15	His	Val	Pro	Ser	Asn 20			
40	Val	Pro	Leu	Lys	Glu 25		Leu	Trp	Lys	Lys 30	Gln	Lys	Asp	Lys	Val 35	Ala			
45	Glu	Leu	Glu	Asn 40	Ser	Glu	Phe	Arg	Ala 45	Phe	Ser	Ser	Phe	Lys 50	Asn	Arg			
43	Val	Tyr	Leu 55	Asp	Thr	Val	Ser	Gly 60	Ser	Leu	Thr	Ile	Tyr 65	Asn	Leu	Thr			
50	Ser	Ser 70	Asp	Glu	Asp	Glu	Tyr 75	Glu	Met	Glu	Ser	Pro 80	Asn	Ile	Thr	Asp			
	Thr 85	Met	Lys	Phe	Phe	Leu 90	Tyr	Val	Leu	Glu	Ser 95	Leu	Pro	Ser	Pro	Thr 100			
55	Leu	Thr	Cys		Leu 105	Thr	Asn	Gly	Ser	Ile 110	Glu	Val	Gln	Cys	Met 115	Ile			
	Pro	Glu	His	Tyr 120	Asn	Ser	His		Gly 125	Leu	Ile	Met	Tyr	Ser 130	Trp	Asp			

	Cys	Pro	Met 135	Glu	Gln	Сув	Lys	Arg 140	Asn	Ser	Thr	Ser	Ile 145	Tyr	Phe	Lys	
5	Met	Glu 150	Asn	Asp	Leu	Pro	Gln 155	Lys	Ile	Gln	Сув	Thr 160		Ser	Asn	Pro	
10	Leu 165	Phe	Asn	Thr	Thr	Ser 170	Ser	Ile	Ile	Leu	Thr 175	Thr	Сув	Ile	Pro	Ser 180	
	Ser	Gly	His	Ser	Arg 185	His	Arg	Tyr	Ala	Leu 190	Ile	Pro	Ile	Pro	Leu 195	Ala	
15	Val	Ile	Thr	Thr 200	Cys	Ile	Val	Leu	Tyr 205	Met	Asn	Gly	Met	Tyr 210	Ala	Phe	
20	(2)	INFO					•									•	
20		(i)	(B) LE) TY	NGTH PE:	: 10 nucl	56 b eic	ase acid	pair	ន		•					
25		(ii)) то	RAND POLO	GY:	line	ar	1e								
-			1102	-		EB.	CDNA										
30		(ix)		NA	: ME/KI CATIO			053									
35		(ix)	(A)	NA	: ME/KI CATIO				ide								
	*	(ix)			: 1E/KI	- 3 Y • n	nat r	nent:	ide			-	-				
40		(ix)	(B)	LO	CATIO	ON: 7	731	1053 	·	-	.						
			(A) (B)	NAN LOC	Œ/KE CATIO ER 1	N: 1	10	53		:e≈ '	"Huma	an C	D2#				
45	ı	(ix)	FEAT	URE :													
50	٠		(B)	LOC	ATIC	N: 6	28	702		:e= '	'Trai	ısmeı	mbra	ne d	omai:	n"	
-	((xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q II	NO:	5:			-			
55	ATG A Met S -24	GC T Ser P	TT C	ro C	GT A ys L 20	AA T ys P	TT G he V	TA G	la S	GC Ter F	TTC (Phe I	CTT (Leu)	CTG :	Ile :	TTC : Phe : -10	Asn	

GTT TCT TCC AAA GGT GCA GTC TCC AAA GAG ATT ACG AAT GCC TTG GAA

Val Ser Ser Lys Gly Ala Val Ser Lys Glu Ile Thr Asn Ala Leu Glu

-5 1 ACC TGG GGT GCC TTG GGT CAG GAC ATC AAC TTG GAC ATT CCT AGT TTT 144 Thr Trp Gly Ala Leu Gly Gln Asp Ile Asn Leu Asp Ile Pro Ser Phe 10 CAA ATG AGT GAT GAT ATT GAC GAT ATA AAA TGG GAA AAA ACT TCA GAC 192 Gln Met Ser Asp Asp Ile Asp Asp Ile Lys Trp Glu Lys Thr Ser Asp 10 AAG AAA AAG ATT GCA CAA TTC AGA AAA GAG AAA GAG ACT TTC AAG GAA 240 Lys Lys Lys Ile Ala Gln Phe Arg Lys Glu Lys Glu Thr Phe Lys Glu AAA GAT ACA TAT AAG CTA TTT AAA AAT GGA ACT CTG AAA ATT AAG CAT 288 Lys Asp Thr Tyr Lys Leu Phe Lys Asn Gly Thr Leu Lys Ile Lys His 60 65 CTG AAG ACC GAT GAT CAG GAT ATC TAC AAG GTA TCA ATA TAT GAT ACA 336 20 Leu Lys Thr Asp Asp Gln Asp Ile Tyr Lys Val Ser Ile Tyr Asp Thr 75 80 AAA GGA AAA AAT GTG TTG GAA AAA ATA TTT GAT TTG AAG ATT CAA GAG 384 Lys Gly Lys Asn Val Leu Glu Lys Ile Phe Asp Leu Lys Ile Gln Glu 25 90 AGG GTC TCA AAA CCA AAG ATC TCC TGG ACT TGT ATC AAC ACA ACC CTG 432 Arg Val Ser Lys Pro Lys Ile Ser Trp Thr Cys Ile Asn Thr Thr Leu 110 30 ACC TGT GAG GTA ATG AAT GGA ACT GAC CCC GAA TTA AAC CTG TAT CAA 480 Thr Cys Glu Val Met Asn Gly Thr Asp Pro Glu Leu Asn Leu Tyr Gln 125 GAT GGG AAA CAT CTA AAA CTT TCT CAG AGG GTC ATC ACA CAC AAG TGG 528 Asp Gly Lys His Leu Lys Leu Ser Gln Arg Val Ile Thr His Lys Trp 140 ---145 ACC ACC AGC CTG AGT GCA AAA TTC AAG TGC ACA GCA GGG AAC AAA GTC 40 Thr Thr Ser Leu Ser Ala Lys Phe Lys Cys Thr Ala Gly Asn Lys Val 155 160 AGC AAG GAA TCC AGT GTC GAG CCT GTC AGC TGT CCA GAG AAA GGT CTG 624 Ser Lys Glu Ser Ser Val Glu Pro Val Ser Cys Pro Glu Lys Gly Leu 45 170 175 GAC ATC TAT CTC ATC ATT GGC ATA TGT GGA GGA GGC AGC CTC TTG ATG 672 Asp Ile Tyr Leu Ile Ile Gly Ile Cys Gly Gly Ser Leu Leu Met 190 195 50 GTC TTT GTG GCA CTG CTC GTT TTC TAT ATC ACC AAA AGG AAA AAA CAG 720 Val Phe Val Ala Leu Leu Val Phe Tyr Ile Thr Lys Arg Lys Lys Gln 205 AGG AGT CGG AGA AAT GAT GAG GAG CTG GAG ACA AGA GCC CAC AGA GTA 768 Arg Ser Arg Arg Asn Asp Glu Glu Leu Glu Thr Arg Ala His Arg Val 220

GCT ACT GAA GAA AGG GGC CGG AAG CCC CAC CAA ATT CCA GCT TCA ACC

									20								
Ala	Thr	Glu 235	Glu	Arg	Gly	Arg	Lys 240	Pro	His	Gln	Ile	Pro 245	Ala	Ser	Thr		
					Thr	Ser										864	
																912	
																960	
																1008	
																1053	
	CCT Pro CGT Arg 265 CAG Gln CAC His	CCT CAG Pro Gln 250 CGT TCC Arg Ser 265 CAG CAC Gln His CAC CAG His Gln	CCT CAG AAT Pro Gln Asn 250 CGT TCC CAG Arg Ser Gln 265 CAG CAC CAG Gln His Gln CAC CAG CAG His Gln Gln CCT CCC CAT Pro Pro His	CCT CAG AAT CCA Pro Gln Asn Pro 250 CGT TCC CAG GCA Arg Ser Gln Ala 265 CAG CAC CAG CCT Gln His Gln Pro CAC CAG CAG AAA His Gln Gln Lys 300 CCT CCC CAT GGG Pro His Gly	235 CCT CAG AAT CCA GCA Pro Gln Asn Pro Ala 250 CGT TCC CAG GCA CCT Arg Ser Gln Ala Pro 265 CAG CAC CAG CCT CAG Gln His Gln Pro Gln 285 CAC CAG CAG AAA GGC His Gln Gln Lys Gly 300 CCT CCC CAT GGG GCA Pro Pro His Gly Ala	235	235	CCT CAG AAT CCA GCA ACT TCC CAA Pro Gln Asn Pro Ala Thr Ser Gln 250 CGT TCC CAG GCA CCT AGT CAT CGT Arg Ser Gln Ala Pro Ser His Arg 265 CAG CAC CAG CCT CAG AAG AGG CCT Gln His Gln Pro Gln Lys Arg Pro 285 CAC CAG CAG AAA GGC CCG CCC CTC His Gln Gln Lys Gly Pro Pro Leu 300 CCT CCC CAT GGG GCA GCA GAA AAC Pro Pro His Gly Ala Ala Glu Asn	CCT CAG AAT CCA GCA ACT TCC CAA CAT Pro Gln Asn Pro Ala Thr Ser Gln His 250 CGT TCC CAG GCA CCT AGT CAT CGT CCC Arg Ser Gln Ala Pro Ser His Arg Pro 270 CAG CAC CAG CCT CAG AAG AGG CCT CCT Gln His Gln Pro Gln Lys Arg Pro Pro 285 CAC CAG CAG AAA GGC CCG CCC CTC CCC His Gln Gln Lys Gly Pro Pro Leu Pro 300 CCT CCC CAT GGG GCA GCA GAA AAC TCA Pro Pro His Gly Ala Ala Glu Asn Ser	Ala Thr Glu Glu Arg Gly Arg Lys Pro His 235. CCT CAG AAT CCA GCA ACT TCC CAA CAT CCT CGI Asn Pro Ala Thr Ser Gln His Pro 255. CGT TCC CAG GCA CCT AGT CAT CGT CCC CCG Arg Ser Gln Ala Pro Ser His Arg Pro Pro 270. CAG CAC CAG CCT CAG AAG AGG CCT CCT GCT GIN His Gln Pro Gln Lys Arg Pro Pro Ala 285. CAC CAG CAG AAA GGC CCG CCC CTC CCC AGA His Gln Gln Lys Gly Pro Pro Leu Pro Arg 300. CCT CCC CAT GGG GCA GCA GAA AAC TCA TTG Pro Pro Pro His Gly Ala Ala Glu Asn Ser Leu	Ala Thr Glu Glu Arg Gly Arg Lys Pro His Gln CCT CAG AAT CCA GCA ACT TCC CAA CAT CCT CCT Pro Gln Asn Pro Ala Thr Ser Gln His Pro Pro 250 CGT TCC CAG GCA CCT AGT CAT CGT CCC CCG CCT Arg Ser Gln Ala Pro Ser His Arg Pro Pro 275 CAG CAC CAG CCT CAG AAG AGG CCT CCT GCT CCG Gln His Gln Pro Gln Lys Arg Pro Pro Ala Pro 285 CAC CAG CAG AAA GGC CCG CCC CTC CCC AGA CCT His Gln Gln Lys Gly Pro Pro Leu Pro Arg Pro 305 CCT CCC CAT GGG GCA GCA GAA AAC TCA TTG TCC Pro Pro His Gly Ala Ala Glu Asn Ser Leu Ser	Ala Thr Glu Glu Arg Gly Arg Lys Pro His Gln Ile CCT CAG AAT CCA GCA ACT TCC CAA CAT CCT CCA Pro Gln Asn Pro Ala Thr Ser Gln His Pro Pro 260 CGT TCC CAG GCA CCT AGT CAT CGT CCC CCG CCT CCT Arg Ser Gln Ala Pro Ser His Arg Pro Pro Pro 275 CAG CAC CAG CCT CAG AAG ACG CCT CCT CCT CCT Gln His Gln Pro Gln Lys Arg Pro Pro Ala Pro Ser CAC CAC CAG CCT CCG CCG CCG CCG CCG CCG CCG CCG CC	Ala Thr Glu Glu Arg Gly Arg Lys Pro His Gln Ile Pro 245 CCT CAG AAT CCA GCA ACT TCC CAA CAT CCT CCT CCA CCA Pro Gln Asn Pro Ala Thr Ser Gln His Pro Pro 260 CGT TCC CAG GCA CCT AGT CAT CGT CCC CCG CCT CCT GGA Arg Ser Gln Ala Pro Ser His Arg Pro Pro Pro Pro Pro Gly 270 CAG CAC CAG CCT CAG AAG AGG CCT CCT GCT CCG GGC Gln His Gln Pro Gln Lys Arg Pro Pro Ala Pro Ser Gly 285 CAC CAG CAG CAG AAA GGC CCG CCC CCC CCC	Ala Thr Glu Glu Arg Gly Arg Lys Pro His Gln Ile Pro Ala 245 CCT CAG AAT CCA GCA ACT TCC CAA CAT CCT CCT CCA CCA CCA C	Ala Thr Glu Glu Arg Gly Arg Lys Pro His Gln Ile Pro Ala Ser 245 CCT CAG AAT CCA GCA ACT TCC CAA CAT CCT CCT CCA CCA CCT GGT Pro Gln Asn Pro Ala Thr Ser Gln His Pro Pro Pro Pro Pro Gly 250 CGT TCC CAG GCA CCT AGT CAT CGT CCC CCG CCT CCT GGA CAC CGT Arg Ser Gln Ala Pro Ser His Arg Pro Pro Pro Gly 270 CAG CAC CAG CAC CAG AAG AAG AGG CCT CCT GCT CCT GGA CAC CAA GIN His Gln Pro Gln Lys Arg Pro Pro Ala Pro Ser Gln Lys Arg Pro Pro Ala Pro Ser Gln CAG CAA CAA CAA GIN Gln Gln Lys Gly Pro Pro Leu Pro Arg Pro Arg Val Gln Pro 300 CCT CCC CAT GGG GCA GCA GAA AAC TCA TTG TCC CCT TCC TCT AAT Pro Pro His Gly Ala Ala Glu Asn Ser Leu Ser Pro Ser Ser Asn	Ala Thr Glu Glu Arg Gly Arg Lys Pro His Gln Ile Pro Ala Ser Thr 235 CCT CAG AAT CCA GCA ACT TCC CAA CAT CCT CCT CCA CCA CCT GGT CAT Pro Gln Asn Pro Ala Thr Ser Gln His Pro Pro Pro Pro Pro Gly His 250 CGT TCC CAG GCA CCT AGT CAT CGT CCC CCG CCT CCT GGA CAC CGT GTT Arg Ser Gln Ala Pro Ser His Arg Pro Pro Pro Pro Gly His Arg Val 265 CAG CAC CAG CCT CAG AAG AGG CCT CAG AAG AGG CCT CCT GCT CCG GCT CCG GTT CGG CAC CAG CCT GTT AAT AND CCC CCG CAG CAG CAG CAG CAG CAG CAG CAG	Ala Thr Glu Glu Arg Gly Arg Lys Pro His Gln Ile Pro Ala Ser Thr 235 CCT CAG AAT CCA GCA ACT TCC CAA CAT CCT CCT CCA CCA CCA C

1056

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 351 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

35

55

5

10

15

20

25

30

TAA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Ser Phe Pro Cys Lys Phe Val Ala Ser Phe Leu Leu Ile Phe Asn
-24 -20 -15 -10

Val Ser Ser Lys Gly Ala Val Ser Lys Glu Ile Thr Asn Ala Leu Glu

Thr Trp Gly Ala Leu Gly Gln Asp Ile Asn Leu Asp Ile Pro Ser Phe 45 10 15 20

Gln Met Ser Asp Asp Ile Asp Asp Ile Lys Trp Glu Lys Thr Ser Asp 25 30 35 40

50 Lys Lys Ile Ala Gln Phe Arg Lys Glu Lys Glu Thr Phe Lys Glu
45 50 55

Lys Asp Thr Tyr Lys Leu Phe Lys Asn Gly Thr Leu Lys Ile Lys His 60 65 70

Leu Lys Thr Asp Asp Gln Asp Ile Tyr Lys Val Ser Ile Tyr Asp Thr

Lys Gly Lys Asn Val Leu Glu Lys Ile Phe Asp Leu Lys Ile Gln Glu

5	Arg 105	Val	Ser	Lys	Pro	Lys 110	Ile	Ser	Trp	Thr	Cys 115	Ile	Asn	Thr	Thr	Leu 120
,	Thr	Cys	Glu	Val	Met 125	Asn	Gly	Thr	Asp	Pro 130		Leu	Asn	Leu	Tyr 135	Gln
10	Asp	Gly	Lys	His 140	Leu	Lys	Leu	Ser	Gln 145	Arg	Val	Ile	Thr	His 150	Lys	Trp
	Thr	Thr	Ser 155	Leu	Ser	Ala	Lys	Phe 160	Lys	Cys	Thr	Ala	Gly 165	Asn	Lys	Val
15	Ser	Lys 170	Glu	Ser	Ser	Val	Glu 175	Pro	Val	Ser	Cys	Pro 180	Glu	Lys	Gly	Leu
20	Asp 185	Ile	Tyr	Leu	Ile	Ile 190	Gly	Ile	Cys	Gly	Gly 195	Gly	Ser	Leu	Leu	Met 200
20	Val	Phe	Val	Ala	Leu 205	Leu	Val	Phe	Tyr	Ile 210	Thr	Lys	Arg	Lys	Lys 215	Gln
25	Arg	Ser	Arg	Arg 220	Asn	Asp	Glu	Glu	Leu 225	Glu	Thr	Arg	Ala	His 230	Arg	Val
	Ala 	Thr	Glu 235	Glu	Arg	Gly	Arg	Lys 240	Pro	His	Gln	Ile	Pro 245	Ala	Ser	Thr
30	Pro	Gln 250	Asn	Pro	Ala	Thr	Ser 255	Gln	His	Pro	Pro	Pro 260	Pro	Pro	Gly	His
35	Arg 265	Ser	Gln	Ala	Pro	Ser 270	His	Arg	Pro	Pro	Pro 275	Pro	Gly	His	Arg	Val 280
55	Gln	His	Gln	Pro	Gln 285	Lys	Arg	Pro	Pro	Ala 290	Pro	Ser	Gly	Thr	Gln 295	Val
40	His	Gln	Gln	Lys 300	Gly	Pro	Pro	Leu	Pro 305	Arg	Pro	Arg	Val	Gln 310	Pro	Lys
	Pro	Pro	His 315	Gly	Ala	Ala	Glu	Asn 320	Ser	Leu	Ser	Pro	Ser 325	Ser	Asn	
45	(2)	INFO	ORMAT	MOI	FOR	SEQ	ID N	10:7:								
50		(i)	(<i>I</i> (E	QUENC A) LE B) TY C) SI	NGTH PE: RAND	I: 10 nucl	50 k eic SS:	ase ació sing	pai: i	rs						
		(ii)		ECUL				-			,		north.			

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 1..1041

(ix) FEATURE:

(A) NAME/KEY: sig_peptide

(B) LOCATION: 1..84

5 (ix) FEATURE:

10

- (A) NAME/KEY: mat_peptide
- (B) LOCATION: 85..1041

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
 - (B) LOCATION: 85..1041
 - (D) OTHER INFORMATION: /note- "LFA3TIP"

(ix) FEATURE:

- 15 (A) NAME/KEY: misc_feature
 - (B) LOCATION: 360..361
 - (D) OTHER INFORMATION: /note- "LFA-3/IgG fusion point"

20		(xi) SE	QUEN	CE D	ESCR:	IPTI	ON:	SEQ :	ID NO	0:7:				•
25		GTT Val												_	 48
		TGC Cys											_		 96
30		TAT Tyr													 144
35		CCT Pro													192
4 0		CTG Leu													240
45	GTT Val	TAT Tyr										 			 288
.5		TCA Ser 70										 			 336
50		ATG Met													384

TGC CCA GCA CCT GAA CTC CTG GGG GGA CCG TCA GTC TTC CTC TTC CCC

Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro

CCA AAA CCC AAG GAC ACC CTC ATG ATC TCC CGG ACC CCT GAG GTC ACA

Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr

432

120 125 130

5			GTG Val 135															528
10			GTG Val															576
			CAG Gln															624
15			CAG Gln															672
20			GCC Ala														٠	720
25			CCC Pro 215													GAT Asp		768
30			ACC Thr															816
			AGC Ser															864
35	Asn	Asn	TAC Tyr	Lys	Thr 265	Thr	Pro	Pro	Val	Leu 270	Asp	Ser	Asp	Gly	Ser 275	Phe		912
40			TAC Tyr															960
45			TTC Phe 295														:	1008
50			AAG Lys									TGA	GTGC(3G				1050

(2) INFORMATION FOR SEQ ID NO:8:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 347 amino acids

(B) TYPE: amino acid(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

5	Met -28		Ala	Gly -25		Asp	Ala	Gly	Arg -20	Ala	Leu	Gly	Val	Leu -15	Ser	Val
	Val	Сув	Leu -10		His	Cys	Phe	Gly -5	Phe	Ile	Ser	Сув	Phe 1	Ser	Gln	Gln
10	Ile 5	_	Gly	Val	Val	Tyr 10	Gly	Asn	Val	Thr	Phe 15	His	Val	Pro	Ser	Asn 20
15	Val	Pro	Leu	Lys	Glu 25	Val	Leu	Trp	Lys	Lys 30	Gln	Lys	Asp	Lys	Val 35	Ala
10	Glu	Leu	Glu	Asn 40		Glu	Phe	Arg	Ala 45	Phe	Ser	Ser	Phe	Lys 50	Asn	Arg
20	Val	Tyr	Leu 55	Asp	Thr	Val	Ser	Gly 60	Ser	Leu	Thr	Ile	Tyr 65	Asn	Leu	Thr
	Ser	Ser 70	Asp	Glu	Asp	Glu	Tyr 75	Glu	Met	Glu	Ser	Pro 80	Asn	Ile	Thr	Asp
25	Thr 85	Met	Lys	Phe	Phe	Leu 90	Tyr	Val	Asp	Lys	Thr 95	His	Thr	Cys	Pro	Pro 100
30	Cys	Pro	Ala	Pro	Glu 105	Leu	Leu	Gly	Gly	Pro 110	Ser	Val	Phe	Leu	Phe 115	Pro
30	Pro	Lys	Pro	Lys 120	Asp	Thr	Leu	Met	Ile 125	Ser	Arg	Thr	Pro	Glu 130	Val	Thr
35	Cys	Val	Val 135	Val	Asp	Val	Ser	His 140	<u>G</u> lu	Asp	Pro	Glu	Val 145	Lys	Phe	Asn
	Trp	Tyr 150	Val	Asp	Gly	Val	Glu 155	Val	His	Asn	Ala	Lys 160	Thr	Lys	Pro	Arg
40	Glu 165	Glu	Gln	Tyr	Asn	Ser 170	Thr	Tyr	Arg	Val	Val 175	Ser	Val	Leu	Thr	Val 180
45	Leu	His	Gln	Asp	Trp 185	Leu	Asn	Gly	Lys	Glu 190	Tyr	Lys	Сув	Lys	Val 195	Ser
73	Asn	Lys	Ala	Leu 200	Pro	Ala	Pro	Ile	Glu 205	Lys	Thr	Ile	Ser	Lys 210	Ala	Lys
50	Gly	Gln	Pro 215	Arg	Glu	Pro	Gln	Val 220	Tyr	Thr	Leu	Pro	Pro 225	Ser	Årg	Asp
	Glu	Leu 230	Thr	Lys	Asn	Gln	Val 235	Ser	Leu	Thr	Cys	Leu 240	Val	Lys	Gly	Phe
55	Tyr 245	Pro	Ser	Asp	Ile	Ala 250	Val	Glu	Trp	Glu	Ser 255	Asn	Gly	Gln	Pro	Glu 260
	Asn	Asn	Tyr	Lys	Thr 265	Thr	Pro	Pro	Val	Leu 270	Asp	Ser	Asp	Gly	Ser 275	Phe

Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly 280 285 290

5 Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr 295 300 305

Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 310 315