

Stroke Prediction

Bhavesh Khanchandani

Problem Statement

 According to the World Health Organization (WHO) stroke is the 2nd leading cause of death globally, responsible for approximately 11% of total deaths. This dataset is used to predict whether a patient is likely to get a stroke based on the input parameters like gender, age, various diseases, and smoking status.

Proposed Solution

Data Preprocessing: This step performs all pre-processing steps such as data manipulation, data filling, converting categorical into numeric, and all processes.

The EDA process involves performing

- 1. Univariate Analysis
- 2. Bivariate analysis
- 3. Removing Missing values if any / Outlier treatment
- 4. Machine Learning: Apply Appropriate machine learning algorithm to Predict the probability of a candidate will work for the company. and also check if the model is to be underfitting or overfitting if it has then solves this by using cross-validation technique, or perform hyper parameters tuning to improve model performance.

Descriptive Analysis

df.head()

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
1	51676	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	NaN	never smoked	1
2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1
3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
4	1665	Female	79.0	1	0	Yes	Self-employed	Rural	174.12	24.0	never smoked	1

<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 5110 entries, 0 to 5109 Data columns (total 12 columns):</class></pre>								
#	Column	Non-Null Count	Dtype					
0	id	5110 non-null	int64					
1	gender	5110 non-null	object					
2	age	5110 non-null	float64					
3	hypertension	5110 non-null	int64					
4	heart_disease	5110 non-null	int64					
5	ever_married	5110 non-null	object					
6	work type	5110 non-null	object					
7	Residence type	5110 non-null	object					
8	avg_glucose_level	5110 non-null	float64					
9	bmi	4909 non-null	float64					
10	smoking status	5110 non-null	object					
11	stroke	5110 non-null	int64					
dtypes: float64(3), int64(4), object(5)								

<pre>df.isnull().sum()</pre>	
id	0
gender	0
age	0
hypertension	0
heart_disease	0
ever_married	0
work_type	0
Residence_type	0
avg glucose level	0
bmi	201
smoking_status	0
stroke	0
dtype: int64	

df.apply(lambda x:	<pre>len(x.unique()))</pre>
id	5110
gender	3
age	104
hypertension	2
heart_disease	2
ever_married	2
work_type	5
Residence_type	2
avg_glucose_level	3979
bmi	419
smoking_status	4
stroke	2
dtype: int64	

Data Preprocessing

- Drop Id column
- Replace the missing values with mean of bmi attribute
- Remove other gender because it has only 1 value

Exploratory Data Analysis

0.01

0

formerly smoked

never smoked

smokes

smoking_status

stroke 0

Unknown

Exploratory Data Analysis

Feature selection for algorithm

```
X = df.iloc[:,0:-1]
y = df.iloc[:,-1]
Selecting input and output features
```

Label encoding

Label encoded gender, ever_married and Residence_type columns

Split the data using Train test split

Model selection, scores and other stats

• Logistic Regression, model score= 0.7524461839530333 Accuracy: 0.7524461839530333

	precision	recall	f1-score	support
0 1	0.98 0.16	0.75 0.76	0.85 0.27	960 62
accuracy macro avg eighted avg	0.57 0.93	0.76 0.75	0.75 0.56 0.82	1022 1022 1022

KNN

	precision	recall	f1-score	support
0	0.98	0.75	0.85	960
1	0.16	0.76	0.27	62
accuracy macro avg weighted avg	0.57 0.93	0.76 0.75	0.75 0.56 0.82	1022 1022 1022

Random Forest Classifier

	precision	recall	f1-score	support
0 1	0.98 0.12	0.62 0.82	0.76 0.21	960 62
accuracy macro avg weighted avg	0.55 0.93	0.72 0.63	0.63 0.49 0.73	1022 1022 1022

DecisionTreeClassifier

	precision	recall	f1-score	support
0 1	0.98 0.14	0.71 0.73	0.82 0.23	960 62
accuracy macro avg weighted avg	0.56 0.92	0.72 0.71	0.71 0.53 0.79	1022 1022 1022

Hyperparameters Tuning

```
• KNN Best Score is 92.65384615384616

Best Parameters is {'metric': 'manhattan', 'n_neighbors': 5}
```

```
• Random Forest Best Score is 96.25641025641026
Best Parameters is {'criterion': 'entropy', 'n_estimators': 100}
```

Conclusion

Now Let's apply the highest accuracy model with best hyperparameters model = RandomForestClassifier(n_estimators=200, criterion='entropy')

model score= 0.6438356164383562 Accuracy: 0.6438356164383562

