1 Differential Privacy

1.1 Setting: Collecting and Providing Statistical Data

- Census bureau: Income distributions, "How many people earn > \$100,000?". Hospitals: Statistics about medical conditions, "How many smokers among pancreatic-cancer patients?", etc.
- Problem: Gender, age, weight, ethnicity, and marital status (for example) may be sufficient for identification among 1000 patients. Illustrative example: "AOL search data scandal"

1.2 An Utopian Goal [3]

- Ideally: Cannot learn anything about an individual that could not be learned without access to statistical database [1]. Similar to *semantic security*: Nothing can be learned about a plaintext from the ciphertext that could not be learned without seeing the ciphertext [6].
- Impossible in this generality (while semantic security is possible). Example: Statistical information on average income. Auxiliary information: 20% higher than average. Note: Additional information gives solution regardless of person is in database.

1.3 The Differential-Privacy Approach [4]

- Other approach to privacy: (Non-)Participating in a statistical database does not substantially affect the outcome of any analysis.
- Model: A database d is a string d_1, \ldots, d_n of length n over some set D. Each d_i is called a row in d. Two databases are neighbors if they coincide in (n-1) rows. A query is a function $f: D^n \to \mathcal{R}$. For now, assume $\mathcal{R} \subset \mathbb{R}$ bounded. A privacy mechanism K_f adds noise to the true answer f(d) to produce the response $K_f(d) = f(d) + \Delta$, where Δ is a random variable.
- **Definition**: K_f gives ε -differential privacy if for all neighboring $d, d' \in D^n$ and all $S \subseteq \mathcal{R}$, $\Pr[K_f(d) \in S] \leq \exp(\varepsilon) \cdot \Pr[K_f(d') \in S]$.
- **Definition**: The sensitivity of a query $f: D^n \to \mathcal{R}$ is $\Delta f := \max_{\text{neighbors } \boldsymbol{d}, \boldsymbol{d}'} |f(\boldsymbol{d}) f(\boldsymbol{d}')|$.
- Typical privacy mechanism: Let $K_f = f(\mathbf{d}) + \Delta$, where $\Delta \sim \text{Lap}(0, b)$ (Laplacian distribution with mean 0 and variance $2b^2$) and $b = \Delta f/\varepsilon$, i.e., with density

$$x \mapsto \frac{1}{2b} \exp\left(\frac{-|x|}{b}\right)$$

and cumulative distribution function $\Pr[\Delta \leq x] = \frac{1}{2} \left[1 + \operatorname{sgn}(x) \left(1 + \exp\left(\frac{-|x|}{b}\right) \right) \right]$.

• This gives ε -differential privacy:

$$\Pr[K_f(\boldsymbol{d}) \in S] = \int_S \frac{\varepsilon}{2\Delta f} \exp\left(\varepsilon \frac{-|f(\boldsymbol{d}) - r|}{\Delta f}\right) d\lambda(r)$$

$$\leq \int_S \frac{\varepsilon}{2\Delta f} \exp\left(\varepsilon \frac{\Delta f - |f(\boldsymbol{d}') - r|}{\Delta f}\right) d\lambda(r)$$

$$\left[-\Delta f - |f(\boldsymbol{d}) - r| \leq -|f(\boldsymbol{d}') - f(\boldsymbol{d})| - |f(\boldsymbol{d}) - r| \leq -|f(\boldsymbol{d}') - r|\right]$$

$$= \exp(\varepsilon) \cdot \Pr[K_f(\boldsymbol{d}') \in S]$$

• Querying multiple values: If $f: D^n \to \mathcal{R}^k$, let $\Delta f = \max_{\text{neighbors } \boldsymbol{d}, \boldsymbol{d}'} \| f(\boldsymbol{d}) - f(\boldsymbol{d}') \|_1$.

1.4 Count Queries Are Powerful [2]

- Special case: $D = \{0, 1\}$, consider only subset-sum (count) queries $f_Q : D^n \to [n]_0$, where $Q \subseteq [n]$ and $f_Q(\mathbf{d}) := \sum_{i \in Q} d_i$.
- Theorem: Answering $O(n \log^2 n)$ randomly chosen queries with error $\mathcal{E} = o(\sqrt{n})$ allows an adversary to reconstruct most of the rows (all if $n \to \infty$) with the following algorithm:
- i) [Query phase] For $j=1,\ldots,t$, choose $Q_j\subseteq [n]$ uniformly at random. Set $a_Q:=K_f(\boldsymbol{d})$ where $f=f_{Q_j}$
- ii) [Weeding phase] Solve linear program with unknowns c_1, \ldots, c_n :

$$a_{Q_j} - \mathcal{E} \le \sum_{i \in Q_j} c_i \le a_{Q_j} + \mathcal{E} \qquad \forall j \in [t]$$

 $0 < c_i < 1 \qquad \forall i \in [n]$

- iii) [Rounding Phase] Let $c'_i = 1$ if $x_i > \frac{1}{2}$ and $c'_i = 0$ otherwise.
 - ullet Note first: LP has solution because $oldsymbol{d}$ is feasible solution
 - For $x \in [0,1]^n$, denote by \bar{x} rounding each coordinate to the nearest multiple of $\frac{1}{n}$.
 - We say x is ε -far away from d if $|x_i d_i| \ge \frac{1}{3}$ for more than an ε -share of all rows i.
 - If an x satisfies the LP, we have for any query Q_j selected by the algorithm

$$\left| \sum_{i \in Q_j} (\bar{x}_i - d_i) \right| \le \left| \sum_{i \in Q_j} (\bar{x}_i - x_i) \right| + \left| \sum_{i \in Q_j} x_i - a_{Q_j} \right| + \left| a_{Q_j} - \sum_{i \in Q_j} d_i \right| \le \frac{|Q_j|}{n} + \mathcal{E} + \mathcal{E} \le 1 + 2\mathcal{E}.$$

Conversely, we say a query $Q \subseteq [n]$ disqualifies \bar{x} if $\left| \sum_{i \in Q} (\bar{x}_i - d_i) \right| > 1 + 2\mathcal{E}$.

• **Disqualifying Lemma** (without proof here, based on Azuma's inequality): Suppose $x, d \in [0,1]^n$, $\mathcal{E} = o(\sqrt{n})$. If x is ε -far away from d then there is $\delta > 0$ so that

$$\Pr_{Q} \left[\left| \sum_{i \in Q} (x_i - d_i) \right| > 2\mathcal{E} + 1 \right] = \delta.$$

• For any \bar{x} that is far away from d, lemma says that \bar{x} is disqualified by one of the queries picked by the algorithm with probability $1 - (1 - \delta)^t$. With the union bound,

$$\Pr_{Q_1,\dots,Q_t}[\forall \bar{\boldsymbol{x}}: \exists j: Q_j \text{ disqualifies } \bar{\boldsymbol{x}}] > 1 - (n+1)^n (1-\delta)^t > 1 - o(1/n^k)$$

for any $k \in \mathbb{N}$, when choosing, say, $t = n \log^2 n$.

• Now, \bar{c} was not disqualified by any Q_j , so \bar{c} is not far away from d. Hence, also c' and d differ in at most an ε -share of the rows.

2

1.5 Tightness

- This is tight in the following sense: If an attacker must assume that the database is random (uniform distribution), then there is a mechanism with perturbation $\mathcal{E} = \sqrt{n} \cdot (\log n)^{1+\varepsilon}$ that does reveal almost nothing by answering polynomially many queries:
- Input: Query $Q \subseteq [n]$
- i) Compute $a_Q := \sum_{i \in Q} d_i$
- ii) Return $\frac{|Q|}{2}$ if $|a_Q \frac{|Q|}{2}| < \mathcal{E}$ and return a_Q otherwise
- Of course, this mechanism is useless. Remedy: Allow only sublinear number of queries [2, 5]

1.6 Non-Numerical Queries [7]

• **Definition**: Given a database $d \in D^n$, let $q: D^n \times \mathcal{R} \to \mathbb{R}$ be a measurable scoring (weighting) function. Then define the exponential privacy mechanism K_f by

$$\Pr[K_f(\boldsymbol{d}) \in S] := \frac{\int_S \exp(\varepsilon q(\boldsymbol{d}, r)) \, d\lambda(r)}{\int_{\mathcal{R}} \exp(\varepsilon q(\boldsymbol{d}, r)) \, d\lambda(r)}.$$
 (1.1)

(We require that q is such that the integral is bounded.)

- Define $\Delta q := \max_{r \in \mathcal{R}.\text{neighbors } \boldsymbol{d}.\boldsymbol{d}'} |q(\boldsymbol{d},r) q(\boldsymbol{d}',r)|$.
- Lemma: As defined above, K_f gives $(2\varepsilon\Delta q)$ -differential privacy.
- For neighboring d, d' the change in both numerator and denominator of (1.1) can be at most $\exp(\varepsilon \Delta q)$ each, i.e., at most $\exp(2\varepsilon \Delta q)$ in total.

1.7 Privacy as a Solution Concept for Mechanism Design [7]

- A player's strategy is said to be ε -dominant if no other strategy ever provides this player with more than ε additional utility.
- Lemma: A mechanism satisfying ε -differential privacy makes truth-telling an $(\exp(\varepsilon) 1)$ -dominant strategy for any player with a utility function that maps \mathcal{R} to [0, 1].
- Notation: Let $\mu_{K,f,\mathbf{d}}$ be the probability distribution of $K_f(\mathbf{d})$, i.e., $\mu_{K,f,\mathbf{d}}(S) = \Pr[K_f(\mathbf{d}) \in S]$. When unambiguous, we omit indices.
- Even stronger: Regardless of the utility function $u: \mathcal{R} \to \mathbb{R}_{\geq 0}$, no player can cause a relative change of more than $\exp(\varepsilon)$ in its utility because $\mathrm{E}[u(K_f(\boldsymbol{d}))] = \int_{\mathcal{R}} u(r) \, d\mu_{\boldsymbol{d}}(r) \leq \exp(\varepsilon) \cdot \int_{\mathcal{R}} u(r) \, d\mu_{\boldsymbol{d}'}(r) = \exp(\varepsilon) \cdot \mathrm{E}[u(K_f(\boldsymbol{d}'))].$

1.7.1 Unlimited Supply Auctions

• Consider auctioneer with endless supply of arbitrarily divisible good. The outcome (response) is a price $p \in \mathcal{R} := [0,1]$. Each bidder i will reveal a non-increasing demand curve $b_i : \mathcal{R} \to \mathbb{R}_{>0}$, mapping prices to desired units. Requirement: $pb_i(p) \leq 1$

- For bid vector (database) \boldsymbol{b} and price p, we sell $\sum_i b_i(p)$ items, yielding revenue $q(\boldsymbol{b},p) = p \sum_i b_i(p)$. Let OPT denote the maximum revenue.
- **Theorem**: The exponential mechanism gives 2ε -differential privacy and has expected revenue at least $OPT \frac{3}{\varepsilon} \ln(e + \varepsilon^2 OPTm)$, where m is the number of items sold in OPT.
- Privacy follows from above lemma, as a bidder can change q(b, p) by at most $pb_i(p) \leq 1$
- Let $S_t := \{r \in \mathcal{R} \mid q(\boldsymbol{d}, r) > OPT t\}$. Note:

$$\mu(\overline{S_{2t}}) \leq \frac{\mu(\overline{S_{2t}})}{\mu(S_t)} = \frac{\int_{\overline{S_{2t}}} \exp(\varepsilon q(\boldsymbol{d}, r)) \, d\lambda(r)}{\int_{S_t} \exp(\varepsilon q(\boldsymbol{d}, r)) \, d\lambda(r)} \leq \frac{\exp(\varepsilon OPT - \varepsilon 2t) \cdot \lambda(\overline{S_{2t}})}{\exp(\varepsilon OPT - \varepsilon t) \cdot \lambda(S_t)}$$

$$\left[q(\boldsymbol{d}, r) \leq OPT - 2t \text{ in numerator, } \geq OPT - t \text{ in denominator} \right]$$

$$\leq \frac{\exp(-\varepsilon t)}{\lambda(S_t)} \qquad \left[\lambda(\overline{S_{2t}}) \leq 1 \right]$$

• Suppose $t \geq \frac{1}{\varepsilon} \ln \left(\frac{OPT}{t\lambda(S_t)} \right)$. Then

$$E[q(\boldsymbol{d}, K_f(\boldsymbol{d}))] \ge \left(1 - \frac{\exp(-\varepsilon t)}{\lambda(S_t)}\right) \cdot (OPT - 2t) \qquad \text{[by previous item]}$$
$$= \left(1 - \frac{t}{OPT}\right) \cdot (OPT - 2t) \ge OPT - 3t$$

- Assume, w.l.o.g., that OPT > t (otherwise trivial). Set $t = \frac{1}{\varepsilon} \ln(e + \varepsilon^2 OPTm)$. Since $t \geq \frac{1}{\varepsilon}$, we have $t \geq \frac{1}{\varepsilon} \ln\left(\frac{OPTm}{t^2}\right)$. Hence, by previous item, it remains to show that $\frac{t}{m} \leq \lambda(S_t)$.
- Note that for all prices $\geq OPT \frac{t}{m}$ less than the optimal price, the same m items would continue to be sold (demand non-increasing as price increase), and for all these m items the loss is at most $\frac{t}{m}$ each. Hence, the total profit would still be at least OPT t. Hence, the measure of all prices giving revenue at least OPT t (i.e., $\lambda(S_t)$) is at least as large as the measure of all prices $\geq OPT \frac{t}{m}$ (that is, $\lambda([OPT \frac{t}{m}, OPT]) = \frac{t}{m}$).

References

- [1] T. Dalenius. Towards a methodology for statistical disclosure control. Statistisk Tidskrift, 15, 1977.
- [2] I. Dinur and K. Nissim. Revealing information while preserving privacy. In *Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS'03)*, pages 202–210, 2003. DOI: 10.1145/773153.773173.
- [3] C. Dwork. Differential privacy. In *Proceedings of the 33th International Colloquium on Automata, Languages, and Programming, Part II (ICALP'06)*, volume 4052 of *LNCS*, pages 1–12, 2006. DOI: 10.1007/11787006_1.
- [4] C. Dwork. Differential privacy: A survey of results. In *Proceedings of the 5th International Conference on Theory and Applications of Models of Computation (TAMC'08)*, volume 4978 of *LNCS*, pages 1–19, 2008. DOI: 10.1007/978-3-540-79228-4_1.
- [5] C. Dwork and K. Nissim. Privacy-preserving datamining on vertically partitioned databases. In *Proceedings of the 24th Annual International Cryptology Conference (CRYPTO'04)*, pages 528–544, 2004.
- [6] S. Goldwasser and S. Micali. Probabilistic encryption. *Journal of Computer and System Sciences*, 28(2): 270–299, 1984. DOI: 10.1016/0022-0000(84)90070-9.
- [7] F. McSherry and K. Talwar. Mechanism design via differential privacy. In *Proceedings of the 48th Annual Symposium on Foundations of Computer Science (FOCS'07)*, pages 94–103, 2007. DOI: 10.1109/FOCS. 2007.66.