In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression
 from sklearn.preprocessing import StandardScaler
 import re
 from sklearn.datasets import load_digits

In [2]: a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\ma

Out[2]:

	date	BEN	CH4	CO	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2
0	2018-03-01 01:00:00	NaN	NaN	0.3	NaN	NaN	1.0	29.0	31.0	NaN	NaN	NaN	2.0
1	2018-03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0	3.0
2	2018-03-01 01:00:00	0.4	NaN	NaN	0.2	NaN	4.0	41.0	47.0	NaN	NaN	NaN	NaN
3	2018-03-01 01:00:00	NaN	NaN	0.3	NaN	NaN	1.0	35.0	37.0	54.0	NaN	NaN	NaN
4	2018-03-01 01:00:00	NaN	NaN	NaN	NaN	NaN	1.0	27.0	29.0	49.0	NaN	NaN	3.0
69091	2018-02-01 00:00:00	NaN	NaN	0.5	NaN	NaN	66.0	91.0	192.0	1.0	35.0	22.0	NaN
69092	2018-02-01 00:00:00	NaN	NaN	0.7	NaN	NaN	87.0	107.0	241.0	NaN	29.0	NaN	15.0
69093	2018-02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	28.0	48.0	91.0	2.0	NaN	NaN	NaN
69094	2018-02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	141.0	103.0	320.0	2.0	NaN	NaN	NaN
69095	2018-02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	69.0	96.0	202.0	3.0	26.0	NaN	NaN

69096 rows × 16 columns

```
In [3]:
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 69096 entries, 0 to 69095
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	date	69096 non-null	object
1	BEN	16950 non-null	float64
2	CH4	8440 non-null	float64
3	CO	28598 non-null	float64
4	EBE	16949 non-null	float64
5	NMHC	8440 non-null	float64
6	NO	68826 non-null	float64
7	NO_2	68826 non-null	float64
8	NOx	68826 non-null	float64
9	0_3	40049 non-null	float64
10	PM10	36911 non-null	float64
11	PM25	18912 non-null	float64
12	S0_2	28586 non-null	float64
13	TCH	8440 non-null	float64
14	TOL	16950 non-null	float64
15	station	69096 non-null	int64
dtyp	es: float	64(14), int64(1)	, object(1)

memory usage: 8.4+ MB

In [4]: b=a.fillna(value=333)

Out[4]:

	date	BEN	CH4	СО	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25
0	2018-03-01 01:00:00	333.0	333.00	0.3	333.0	333.00	1.0	29.0	31.0	333.0	333.0	333.0
1	2018-03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0
2	2018-03-01 01:00:00	0.4	333.00	333.0	0.2	333.00	4.0	41.0	47.0	333.0	333.0	333.0
3	2018-03-01 01:00:00	333.0	333.00	0.3	333.0	333.00	1.0	35.0	37.0	54.0	333.0	333.0
4	2018-03-01 01:00:00	333.0	333.00	333.0	333.0	333.00	1.0	27.0	29.0	49.0	333.0	333.0
69091	2018-02-01 00:00:00	333.0	333.00	0.5	333.0	333.00	66.0	91.0	192.0	1.0	35.0	22.0
69092	2018-02-01 00:00:00	333.0	333.00	0.7	333.0	333.00	87.0	107.0	241.0	333.0	29.0	333.0
69093	2018-02-01 00:00:00	333.0	333.00	333.0	333.0	333.00	28.0	48.0	91.0	2.0	333.0	333.0
69094	2018-02-01 00:00:00	333.0	333.00	333.0	333.0	333.00	141.0	103.0	320.0	2.0	333.0	333.0
69095	2018-02-01 00:00:00	333.0	333.00	333.0	333.0	333.00	69.0	96.0	202.0	3.0	26.0	333.0

69096 rows × 16 columns

```
In [5]:
```

In [6]: c=b.head(11)

Out[6]:

	date	BEN	CH4	СО	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2
0	2018-03-01 01:00:00	333.0	333.00	0.3	333.0	333.00	1.0	29.0	31.0	333.0	333.0	333.0	2.0
1	2018-03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0	3.0
2	2018-03-01 01:00:00	0.4	333.00	333.0	0.2	333.00	4.0	41.0	47.0	333.0	333.0	333.0	333.0
3	2018-03-01 01:00:00	333.0	333.00	0.3	333.0	333.00	1.0	35.0	37.0	54.0	333.0	333.0	333.0
4	2018-03-01 01:00:00	333.0	333.00	333.0	333.0	333.00	1.0	27.0	29.0	49.0	333.0	333.0	3.0
5	2018-03-01 01:00:00	0.3	333.00	0.3	0.2	333.00	1.0	27.0	29.0	57.0	8.0	333.0	6.0
6	2018-03-01 01:00:00	0.4	1.11	0.2	0.1	0.06	1.0	25.0	27.0	55.0	5.0	4.0	4.0
7	2018-03-01 01:00:00	333.0	333.00	333.0	333.0	333.00	1.0	37.0	39.0	54.0	333.0	333.0	333.0
8	2018-03-01 01:00:00	333.0	333.00	0.5	333.0	333.00	3.0	43.0	47.0	29.0	333.0	333.0	5.0
9	2018-03-01 01:00:00	333.0	333.00	0.2	333.0	333.00	2.0	26.0	29.0	333.0	4.0	333.0	6.0
10	2018-03-01 01:00:00	0.4	333.00	333.0	0.3	333.00	2.0	30.0	34.0	333.0	2.0	2.0	3.0

In [7]: d=c[['BEN','CO','EBE','NMHC','NO_2','O_3']]

Out[7]:

	BEN	СО	EBE	NMHC	NO_2	O_3
0	333.0	0.3	333.0	333.00	29.0	333.0
1	0.5	0.3	0.2	0.02	40.0	52.0
2	0.4	333.0	0.2	333.00	41.0	333.0
3	333.0	0.3	333.0	333.00	35.0	54.0
4	333.0	333.0	333.0	333.00	27.0	49.0
5	0.3	0.3	0.2	333.00	27.0	57.0
6	0.4	0.2	0.1	0.06	25.0	55.0
7	333.0	333.0	333.0	333.00	37.0	54.0
8	333.0	0.5	333.0	333.00	43.0	29.0
9	333.0	0.2	333.0	333.00	26.0	333.0
10	0.4	333.0	0.3	333.00	30.0	333.0

In [8]:

Out[8]: <AxesSubplot:>


```
In [14]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[14]:
                   Co-efficient
            BEN -3.104025e-13
             CO 1.000000e+00
            EBE 3.104587e-13
           NMHC
                 1.459823e-16
           NO_2 -1.066815e-15
In [15]: prediction=lr.predict(x_test)
Out[15]: <matplotlib.collections.PathCollection at 0x20f4b5f85b0>
           300
           250
           200
           150
           100
            50
                      50
                            100
                                  150
                                        200
                                              250
                                                     300
In [16]:
          1.0
In [17]: -
In [18]: rr=Ridge(alpha=10)
Out[18]: Ridge(alpha=10)
In [19]:
Out[19]: 0.9999999680867979
In [20]: la=Lasso(alpha=10)
Out[20]: Lasso(alpha=10)
In [21]: -
Out[21]: 0.9999998406945124
```

In [22]:	a1=b.	head(6500)												
Out[22]:		date	BEN	CH4	со	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SC
	0	2018-03-01 01:00:00	333.0	333.00	0.3	333.0	333.00	1.0	29.0	31.0	333.0	333.0	333.0	
	1	2018-03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0	;
	2	2018-03-01 01:00:00	0.4	333.00	333.0	0.2	333.00	4.0	41.0	47.0	333.0	333.0	333.0	33
	3	2018-03-01 01:00:00	333.0	333.00	0.3	333.0	333.00	1.0	35.0	37.0	54.0	333.0	333.0	33
	4	2018-03-01 01:00:00	333.0	333.00	333.0	333.0	333.00	1.0	27.0	29.0	49.0	333.0	333.0	;
	6495	2018-03-12 07:00:00	333.0	333.00	333.0	333.0	333.00	1.0	12.0	14.0	66.0	333.0	333.0	33
	6496	2018-03-12 07:00:00	333.0	333.00	333.0	333.0	333.00	22.0	19.0	52.0	333.0	1.0	1.0	33
	6497	2018-03-12 07:00:00	333.0	333.00	333.0	333.0	333.00	1.0	16.0	17.0	65.0	333.0	333.0	33
	6498	2018-03-12 07:00:00	0.4	1.24	333.0	0.1	0.04	1.0	14.0	16.0	333.0	6.0	333.0	33
	6499	2018-03-12 07:00:00	333.0	333.00	0.2	333.0	333.00	4.0	18.0	24.0	69.0	8.0	3.0	33
	6500 r	ows × 16 co	olumns											
In [23]:	e=a1[['BEN', '(20', '	EBE','I	NMHC',	'NO_:	2','0_3	8',						
In [24]:	f=e.i	loc[:,0:14	1]											
In [25]:		1 10 1	· · · ·	•		(6)								
In [26]:	logr=	LogisticRe	gress	ion(max	x_iter	=1000	a)							
Out[26]:	Logis	ticRegress	sion(m	ax_ite	r=1000	00)								
In [27]:	from	sklearn.mo	odel_s	electi	on imp	ort t	rain_te	est_s	plit			•		
In [28]:		2 22 24			4	4	•							
In [29]:	predi	ction=logr	.pred	ict(i)										
	[2807	9050]												
	[]													

8 of 13

```
In [30]: -
Out[30]: array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
              28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
              28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
              28079055, 28079056, 28079057, 28079058, 28079059, 28079060],
             dtype=int64)
In [31]:
Out[31]: 0.0
In [32]:
Out[32]: 0.0
In [33]:
Out[33]: 0.9492307692307692
In [34]: | from sklearn.linear_model import ElasticNet
        en=ElasticNet()
Out[34]: ElasticNet()
In [35]:
        [-0.41602473 0.99985562 0.41568003 -0.
                                                    0.
                                                             ]
In [36]:
        0.12191672042280288
In [37]: | prediction=en.predict(x_test)
        0.9999999016312336
In [38]: | from sklearn.ensemble import RandomForestClassifier
        rfc=RandomForestClassifier()
Out[38]: RandomForestClassifier()
In [39]: parameters={'max_depth':[1,2,3,4,5],
         'min_samples_leaf':[5,10,15,20,25],
         'n_estimators':[10,20,30,40,50]
```

```
In [43]: from sklearn.tree import plot tree
                            plt.figure(figsize=(80,50))
Out[43]: [Text(2189.076923076923, 2491.5, 'X[1] <= -0.167\ngini = 0.958\nsamples = 290
                             9\nvalue = [182, 169, 179, 212, 187, 186, 193, 202, 183, 200\n192, 203, 177,
                             199, 181, 191, 198, 204, 188, 184\n208, 182, 174, 176]'),
                               Text(1287.6923076923076, 2038.5, 'X[10] <= 1.065\ngini = 0.9\nsamples = 122
                             3\nvalue = [182, 169, 0, 212, 0, 186, 193, 0, 183, 200, 0\n202, 0, 0, 0, 0,
                             0, 0, 0, 184, 208, 0, 0, 0]'),
                               Text(1116.0, 1585.5, 'X[7] <= -0.054\ngini = 0.888\nsamples = 1092\nvalue =
                             [182, 169, 0, 212, 0, 186, 193, 0, 183, 200, 0\n202, 0, 0, 0, 0, 0, 0, 0, 18
                             4, 0, 0, 0, 0]'),
                               Text(686.7692307692307, 1132.5, 'X[3] <= -1.138\ngini = 0.833\nsamples = 70
                             8\nvalue = [182, 169, 0, 0, 0, 186, 193, 0, 179, 200, 0, 0\n0, 0, 0, 0, 0, 0,
                             0, 0, 0, 0, 0, 0]'),
                               Text(343.38461538461536, 679.5, 'X[1] \leftarrow -1.184 \text{ ngini} = 0.498 \text{ nsamples} = 23
                             1\nvalue = [0, 169, 0, 0, 0, 0, 193, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0,
                             0, 0, 0, 0]'),
                               Text(171.69230769230768, 226.5, 'gini = 0.294\nsamples = 131\nvalue = [0, 3
                             Text(515.0769230769231, 226.5, 'gini = 0.253\nsamples = 100\nvalue = [0, 13
                             2, 0, 0, 0, 0, 23, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0]'),
                               Text(1030.1538461538462, 679.5, 'X[0] <= -0.593 \setminus i = 0.75 \setminus i = 477 \setminus i = 0.75 \setminus i = 
                             nvalue = [182, 0, 0, 0, 0, 186, 0, 0, 179, 200, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0,
                             0, 0, 0, 0]'),
                               Text(858.4615384615383, 226.5, 'gini = 0.0\nsamples = 108\nvalue = [0, 0, 0,
                             0, 0, 158, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
                               Text(1201.8461538461538, 226.5, 'gini = 0.695\nsamples = 369\nvalue = [182,
                             0, 0, 0, 0, 28, 0, 0, 179, 200, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
                               Text(1545.230769230769, 1132.5, X[6] \le 0.148 = 0.67 = 384
                             value = [0, 0, 0, 212, 0, 0, 0, 0, 4, 0, 0, 202, 0, 0\n0, 0, 0, 0, 0, 184, 0,
                             0, 0, 0]'),
                               Text(1373.5384615384614, 679.5, 'gini = 0.0\nsamples = 116\nvalue = [0, 0,
                             0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \setminus 0, 0, 0, 0, 184, 0, 0, 0]'),
                               Text(1716.9230769230767, 679.5, X[1] <= -1.184 \ngini = 0.509 \nsamples = 26
                             8\nvalue = [0, 0, 0, 212, 0, 0, 0, 0, 4, 0, 0, 202, 0, 0\n0, 0, 0, 0, 0,
                             0, 0, 0, 0]'),
                               Text(1545.230769230769, 226.5, 'gini = 0.482\nsamples = 65\nvalue = [0, 0,
                             0, 41, 0, 0, 0, 0, 0, 0, 60, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0]'),
                               Text(1888.6153846153845, 226.5, 'gini = 0.508\nsamples = 203\nvalue = [0, 0, 0]
                             0, 171, 0, 0, 0, 0, 4, 0, 0, 142, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
                               Text(1459.3846153846152, 1585.5, 'gini = 0.0\nsamples = 131\nvalue = [0, 0,
                             0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 208, 0, 0, 0]'),
                               Text(3090.461538461538, 2038.5, 'X[10] <= 0.043 \setminus i = 0.928 \setminus i = 168
                             6\nvalue = [0, 0, 179, 0, 187, 0, 0, 202, 0, 0, 192, 1\n177, 199, 181, 191, 1
                             98, 204, 188, 0, 0, 182, 174\n176]'),
                               Text(2575.3846153846152, 1585.5, 'X[7] <= -0.168 \setminus gini = 0.75 \setminus gini = 48
                             0\nvalue = [0, 0, 179, 0, 187, 0, 0, 202, 0, 0, 192, 0, 0\n0, 0, 0, 0, 0, 0,
                             0, 0, 0, 0, 0]'),
                               Text(2232.0, 1132.5, 'X[6] \le 0.114 \setminus i = 0.5 \setminus i = 239 \setminus i = [0, i = 239 \setminus i = 239 \setminus
                             0, 0, 0, 187, 0, 0, 0, 0, 192, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0]'),
                               Text(2060.3076923076924, 679.5, 'gini = 0.0\nsamples = 122\nvalue = [0, 0,
                             0, 0, 0, 0, 0, 0, 0, 192, 0, 0, 100, 0, 0, 0, 0, 0, 0, 0, 0]'),
                               Text(2403.6923076923076, 679.5, 'gini = 0.0\nsamples = 117\nvalue = [0, 0,
```

0, 0, 187, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0]'),

Text(2918.7692307692305, 1132.5, $X[5] < 0.286 \le 0.498 \le 24$

```
1\nvalue = [0, 0, 179, 0, 0, 0, 0, 202, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0,
0, 0, 0, 0]'),
  Text(2747.076923076923, 679.5, 'gini = 0.0\nsamples = 126\nvalue = [0, 0, 0,
0, 0, 0, 0, 202, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
  Text(3090.461538461538, 679.5, 'gini = 0.0\nsamples = 115\nvalue = [0, 0, 17
9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0]'),
  Text(3605.5384615384614, 1585.5, X[8] <= -1.137 \setminus gini = 0.9 \setminus gini = 120
6\nvalue = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 177, 199\n181, 191, 198, 204,
188, 0, 0, 182, 174, 176]'),
  Text(3433.8461538461534, 1132.5, 'gini = 0.0\nsamples = 118\nvalue = [0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 188, 0, 0, 0, 0]'),
  Text(3777.230769230769, 1132.5, 'X[6] <= 0.175\ngini = 0.889\nsamples = 108
8\nvalue = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 177, 199\n181, 191, 198, 204,
0, 0, 0, 182, 174, 176]'),
  Text(3433.8461538461534, 679.5, 'X[7] <= -0.168 \setminus gini = 0.8 \setminus gini = 599 \setminus gini = 0.8 \setminus gini = 599 \setminus gini=
value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 177, 199\n181, 0, 189, 0, 0, 0,
0, 0, 0, 176]'),
  Text(3262.1538461538457, 226.5, 'gini = 0.0\nsamples = 115\nvalue = [0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 177, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0]'),
  Text(3605.5384615384614, 226.5, 'gini = 0.749 \nsamples = 484 \nvalue = [0, 0, 0]
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 199\n181, 0, 189, 0, 0, 0, 0, 0, 176]'),
  Text(4120.615384615385, 679.5, 'X[10] <= 0.668\ngini = 0.756\nsamples = 489\
nvalue = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0\n0, 191, 9, 204, 0, 0, 0,
182, 174, 0]'),
  Text(3948.9230769230767, 226.5, 'gini = 0.01\nsamples = 122\nvalue = [0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 \setminus 191, 0, 0, 0, 0, 0, 0, 0, 0]'),
  Text(4292.307692307692, 226.5, 'gini = 0.675\nsamples = 367\nvalue = [0, 0, 0]
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 9, 204, 0, 0, 0, 182, 174, 0]')]
```


From this observation I had observe that the RIDGE is a highest accuracy of 0.9999999680867979

Untitled30 - Jupyter Notebook

T 0 3				
In I I				

13 of 13