Lois stables

January 19, 2014

Proposition (TCL)

Soit $(X_n)_{n\in\mathbb{N}}$ une suite variables aléatoires iid telle que $\mathbb{E}(X_1^2)<\infty$. Alors $(X_1+\cdots+X_n-nm)/\sqrt{n}$ converge en loi vers $\mathcal{N}(0,\sigma^2)$, où $m=\mathbb{E}(X_1)$ et $\sigma^2=V(X_1)$.

Proposition (TCL)

Soit $(X_n)_{n\in\mathbb{N}}$ une suite variables aléatoires iid telle que $\mathbb{E}(X_1^2)<\infty$. Alors $(X_1+\cdots+X_n-nm)/\sqrt{n}$ converge en loi vers $\mathcal{N}(0,\sigma^2)$, où $m=\mathbb{E}(X_1)$ et $\sigma^2=V(X_1)$.

Définition

On dit que Y suit une loi stable s'il existe des suites de réels $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ et une suite $(X_n)_{n\in\mathbb{N}}$ de variables iid telles que $b_n<0$ pour tout $n\in\mathbb{N}$ et $(X_1+\cdots+X_n-a_n)/b_n)$ converge en loi vers Y.

Soit Y suivant une loi stable. Il existe des suites réelles $(c_n)_{n\geq 1}$ et $(d_n)_{n\geq 1}$ telles que $c_n>0$ pour tout $n\geq 1$ et pour toutes copies indépendantes Y_1,\ldots,Y_n de $Y,Y_1+\cdots+Y_n$ a même loi que c_nY+d_n . Lorsque $d_n\equiv 0$ on parle de loi stable stricte.

Soit Y suivant une loi stable. Il existe des suites réelles $(c_n)_{n\geq 1}$ et $(d_n)_{n\geq 1}$ telles que $c_n>0$ pour tout $n\geq 1$ et pour toutes copies indépendantes Y_1,\ldots,Y_n de $Y,Y_1+\cdots+Y_n$ a même loi que c_nY+d_n . Lorsque $d_n\equiv 0$ on parle de loi stable stricte.

Remarque: il suit de la proposition qu'une loi stable est infiniment divisible.

Soit Y suivant une loi stable. Il existe des suites réelles $(c_n)_{n\geq 1}$ et $(d_n)_{n\geq 1}$ telles que $c_n>0$ pour tout $n\geq 1$ et pour toutes copies indépendantes Y_1,\ldots,Y_n de $Y,Y_1+\cdots+Y_n$ a même loi que c_nY+d_n . Lorsque $d_n\equiv 0$ on parle de loi stable stricte.

Remarque: il suit de la proposition qu'une loi stable est infiniment divisible.

On peut montrer alors que $c_{mn}=c_mc_n$, puis que $c_n=\sigma n^\alpha$ pour tout $n\geq 1$ et enfin que nécessairement $0<\alpha\leq 2$. On appelle alors α le paramètre de la loi stable.

Soit μ une loi stable de paramètre $\alpha \in]0,2]$. Alors

(i) Si $\alpha=2$, la mesure de Lévy ν est nulle et μ est une loi normale.

Soit μ une loi stable de paramètre $\alpha \in]0,2]$. Alors

- (i) Si $\alpha=2$, la mesure de Lévy ν est nulle et μ est une loi normale.
- (ii) Si $\alpha \neq 2$, alors c = 0 et il existe $c_1, c_2 \geq 0$ avec $c_1 + c_2 > 0$ tels que $\nu(dx) = \frac{c_1}{x^{1+\alpha}} \mathbf{1}_{]0,+\infty[}(x) dx + \frac{c_2}{|x|^{1+\alpha}} \mathbf{1}_{]-\infty,0[}(x) dx$.

Soit μ une loi stable de paramètre $\alpha \in]0,2]$. Alors

- (i) Si $\alpha = 2$, la mesure de Lévy ν est nulle et μ est une loi normale.
- (ii) Si $\alpha \neq 2$, alors c = 0 et il existe $c_1, c_2 > 0$ avec $c_1 + c_2 > 0$ tels que $\nu(dx) = \frac{c_1}{x^{1+\alpha}} \mathbf{1}_{[0,+\infty[}(x) dx + \frac{c_2}{|x|^{1+\alpha}} \mathbf{1}_{]-\infty,0[}(x) dx.$

Théorème

Soit $0 < \alpha < 2$. Une variable aléatoire X est α -stable si et seulement si il existe $\sigma > 0$, $-1 \le \beta \le 1$, $\lambda \in \mathbb{R}$, telle que pour tout $t \in \mathbb{R}$.

(i) pour
$$\alpha = 2$$
, $\hat{\mu}(t) = \exp(i\lambda t - \sigma^2 t^2/2)$,

Soit μ une loi stable de paramètre $\alpha \in]0,2]$. Alors

- (i) Si $\alpha=2$, la mesure de Lévy ν est nulle et μ est une loi normale.
- (ii) Si $\alpha \neq 2$, alors c = 0 et il existe $c_1, c_2 \geq 0$ avec $c_1 + c_2 > 0$ tels que $\nu(dx) = \frac{c_1}{x^{1+\alpha}} \mathbf{1}_{]0,+\infty[}(x) dx + \frac{c_2}{|x|^{1+\alpha}} \mathbf{1}_{]-\infty,0[}(x) dx$.

Théorème

Soit $0 < \alpha \le 2$. Une variable aléatoire X est α -stable si et seulement si il existe $\sigma > 0$, $-1 \le \beta \le 1$, $\lambda \in \mathbb{R}$, telle que pour tout $t \in \mathbb{R}$,

- (i) pour $\alpha = 2$, $\hat{\mu}(t) = \exp(i\lambda t \sigma^2 t^2/2)$,
- (ii) pour $\alpha \neq 1, 2$, $\hat{\mu}(t) = \exp[i\lambda t \sigma^{\alpha}|t|^{\alpha}(1 i\beta \operatorname{sgn}(t) \tan(\frac{\pi\alpha}{2}))]$,

) d (*

Soit μ une loi stable de paramètre $\alpha \in]0,2]$. Alors

- (i) Si $\alpha=2$, la mesure de Lévy ν est nulle et μ est une loi normale.
- (ii) Si $\alpha \neq 2$, alors c = 0 et il existe $c_1, c_2 \geq 0$ avec $c_1 + c_2 > 0$ tels que $\nu(dx) = \frac{c_1}{x^{1+\alpha}} \mathbf{1}_{]0,+\infty[}(x) dx + \frac{c_2}{|x|^{1+\alpha}} \mathbf{1}_{]-\infty,0[}(x) dx$.

Théorème

Soit $0<\alpha\leq 2$. Une variable aléatoire X est α -stable si et seulement si il existe $\sigma>0$, $-1\leq \beta\leq 1$, $\lambda\in\mathbb{R}$, telle que pour tout $t\in\mathbb{R}$,

- (i) pour $\alpha = 2$, $\hat{\mu}(t) = \exp(i\lambda t \sigma^2 t^2/2)$,
- (ii) pour $\alpha \neq 1, 2$, $\hat{\mu}(t) = \exp[i\lambda t - \sigma^{\alpha}|t|^{\alpha}(1 - i\beta \operatorname{sgn}(t) \tan(\frac{\pi\alpha}{2}))],$
- (iii) pour $\alpha = 1$, $\hat{\mu}(t) = \exp[i\lambda t \sigma|t|(1 \frac{2i\beta}{\pi}\operatorname{sgn}(t)\log|t|]$.

) Q (4

Soit μ une loi stable de paramètre $\alpha \in]0,2]$. Alors

- (i) Si $\alpha=2$, la mesure de Lévy ν est nulle et μ est une loi normale.
- (ii) Si $\alpha \neq 2$, alors c = 0 et il existe $c_1, c_2 \geq 0$ avec $c_1 + c_2 > 0$ tels que $\nu(dx) = \frac{c_1}{x^{1+\alpha}} \mathbf{1}_{]0,+\infty[}(x) dx + \frac{c_2}{|x|^{1+\alpha}} \mathbf{1}_{]-\infty,0[}(x) dx$.

Théorème

Soit $0<\alpha\leq 2$. Une variable aléatoire X est α -stable si et seulement si il existe $\sigma>0$, $-1\leq \beta\leq 1$, $\lambda\in\mathbb{R}$, telle que pour tout $t\in\mathbb{R}$,

- (i) pour $\alpha = 2$, $\hat{\mu}(t) = \exp(i\lambda t \sigma^2 t^2/2)$,
- (ii) pour $\alpha \neq 1, 2$, $\hat{\mu}(t) = \exp[i\lambda t - \sigma^{\alpha}|t|^{\alpha}(1 - i\beta \operatorname{sgn}(t) \tan(\frac{\pi\alpha}{2}))],$
- (iii) pour $\alpha = 1$, $\hat{\mu}(t) = \exp[i\lambda t \sigma|t|(1 \frac{2i\beta}{\pi}\operatorname{sgn}(t)\log|t|].$

En particulier, toute mesure de probabilité α -stable admet une densité.

1. Loi gaussienne. $\alpha = 2$, $\mathcal{N}(\lambda, \sigma^2)$.

- **1.** Loi gaussienne. $\alpha = 2$, $\mathcal{N}(\lambda, \sigma^2)$.
- 2. Loi de Cauchy. $\alpha=1$, $\beta=0$, $\mu(\mathrm{d}x)=\frac{\sigma\mathrm{d}x}{\pi[(x-\lambda)^2+\sigma^2]}$.

- **1. Loi gaussienne.** $\alpha = 2$, $\mathcal{N}(\lambda, \sigma^2)$.
- 2. Loi de Cauchy. $\alpha=1,\ \beta=0, \qquad \mu(dx)=\frac{\sigma dx}{\pi[(x-\lambda)^2+\sigma^2]}$.
- 3. Loi de Lévy. $\alpha=1/2$, $\beta=1$

$$\mu(dx) = \left(\frac{\sigma}{\pi}\right)^{1/2} \frac{\exp\left[\frac{-\sigma}{2(x-\lambda)}\right]}{(x-\lambda)^{3/2}} \mathbf{1}_{\{x>\lambda\}} dx.$$

- **1. Loi gaussienne.** $\alpha = 2$, $\mathcal{N}(\lambda, \sigma^2)$.
- 2. Loi de Cauchy. $\alpha=1,\ \beta=0, \qquad \mu(dx)=\frac{\sigma dx}{\pi[(x-\lambda)^2+\sigma^2]}$
- 3. Loi de Lévy. $\alpha = 1/2$, $\beta = 1$

$$\mu(dx) = \left(\frac{\sigma}{\pi}\right)^{1/2} \frac{\exp\left[\frac{-\sigma}{2(x-\lambda)}\right]}{(x-\lambda)^{3/2}} \mathbf{1}_{\{x>\lambda\}} dx.$$

Proposition

Soit μ une loi stable de paramètre α , alors il existe K > 0 tel que $\tilde{\mu}(t) = \mathrm{e}^{-Kt^{\alpha}}$ pour tout $t \geq 0$ et, nécessairement, $\alpha \in]0,1]$.

Question : peut-on avoir $\alpha = 1$ dans la proposition ?

Définition

On appelle semi-groupe de convolution (sur \mathbb{R}^d) une famille de mesures de probabilités $(\mu_t)_{t\geq 0}$ sur $\mathcal{B}(\mathbb{R}^d)$ telle que pour tout $s,t\geq 0$, $\mu_s*\mu_t=\mu_{s+t}$.

Définition

On appelle semi-groupe de convolution (sur \mathbb{R}^d) une famille de mesures de probabilités $(\mu_t)_{t\geq 0}$ sur $\mathcal{B}(\mathbb{R}^d)$ telle que pour tout $s,t\geq 0$, $\mu_s*\mu_t=\mu_{s+t}$. On dit que $(\mu_t)_{t\geq 0}$ est mesurable si pour tout borélien A, l'application $t\to \mu_t(A)$ est mesurable.

Définition

On appelle semi-groupe de convolution (sur \mathbb{R}^d) une famille de mesures de probabilités $(\mu_t)_{t\geq 0}$ sur $\mathcal{B}(\mathbb{R}^d)$ telle que pour tout $s,t\geq 0$, $\mu_s*\mu_t=\mu_{s+t}$. On dit que $(\mu_t)_{t\geq 0}$ est mesurable si pour tout borélien A, l'application $t\to \mu_t(A)$ est mesurable. On dit que $(\mu_t)_{t\geq 0}$ est continue à droite en 0 pour la topologie de la convergence étroite si pour toute fonction continue bornée f, $\mu_t(f) \xrightarrow{} \mu_0(f)$.

(i) Soit $(\mu_t)_{t\geq 0}$ un semi-groupe de convolution. Alors pour tout $t\geq 0$, μ_t est infiniment divisible.

- (i) Soit $(\mu_t)_{t\geq 0}$ un semi-groupe de convolution. Alors pour tout $t\geq 0$, μ_t est infiniment divisible.
- (ii) A toute mesure de probabilité infiniment divisible on peut associer un semi-groupe de convolution $(\mu_t)_{t\geq 0}$ tel que $\mu_1=\mu$. De plus $(\mu_t)_{t\geq 0}$ est unique si l'on requiert qu'il soit mesurable.

- (i) Soit $(\mu_t)_{t\geq 0}$ un semi-groupe de convolution. Alors pour tout $t\geq 0$, μ_t est infiniment divisible.
- (ii) A toute mesure de probabilité infiniment divisible on peut associer un semi-groupe de convolution $(\mu_t)_{t\geq 0}$ tel que $\mu_1=\mu$. De plus $(\mu_t)_{t\geq 0}$ est unique si l'on requiert qu'il soit mesurable.

Lemme

Soit χ une fonction mesurable sur $\mathbb R$ telle que, pour tout $s,t\geq 0$. $\chi(s+t)=\chi(s)+\chi(t)$. Alors $\chi(t)=t\chi(1)$, pour tout $t\geq 0$.

- (i) Soit $(\mu_t)_{t\geq 0}$ un semi-groupe de convolution. Alors pour tout $t\geq 0$, μ_t est infiniment divisible.
- (ii) A toute mesure de probabilité infiniment divisible on peut associer un semi-groupe de convolution $(\mu_t)_{t\geq 0}$ tel que $\mu_1=\mu$. De plus $(\mu_t)_{t\geq 0}$ est unique si l'on requiert qu'il soit mesurable.

Lemme

Soit χ une fonction mesurable sur $\mathbb R$ telle que, pour tout $s,t\geq 0$. $\chi(s+t)=\chi(s)+\chi(t)$. Alors $\chi(t)=t\chi(1)$, pour tout $t\geq 0$.

Corollaire

Soit $(\mu_t)_{t\geq 0}$ un semi-groupe de convolution. Si $(\mu_t)_{t\geq 0}$ est mesurable, il est continue pour la topologie de la convergence étroite.

Exercices

Exercices

Soit μ une loi infiniment divisible. Montrer que pour tout $n \geq 1$, il existe une unique mesure μ_n telle que $\mu_n^{*n} = \mu$. En déduire que si μ est symétrique, alors μ_n est symétrique, de même que ν .

Exercices

Exercices

Soit μ une loi infiniment divisible. Montrer que pour tout $n \geq 1$, il existe une unique mesure μ_n telle que $\mu_n^{*n} = \mu$. En déduire que si μ est symétrique, alors μ_n est symétrique, de même que ν .

Exercices

Soit μ une loi infiniment divisible et $n \ge 1$. Montrer que μ admet un moment d'ordre 2n ssi $\int_{\{|x|>1\}} |x|^{2n} \nu(dx) < \infty$.

Exercices

Exercices

Soit μ une loi infiniment divisible. Montrer que pour tout $n \geq 1$, il existe une unique mesure μ_n telle que $\mu_n^{*n} = \mu$. En déduire que si μ est symétrique, alors μ_n est symétrique, de même que ν .

Exercices

Soit μ une loi infiniment divisible et $n \geq 1$. Montrer que μ admet un moment d'ordre 2n ssi $\int_{\{|x|\geq 1\}} |x|^{2n} \nu(dx) < \infty$.

Exercices

Montrer que la loi de Cauchy $\mu(dx)=\frac{dx}{\pi(1+x^2)}$ est une loi stable et identifier la mesure ν correspondante (dans la décomposition de Lévy-Khintchin).

