

Universidad Tecnológica de la Mixteca

Maestría en Inteligencia Artificial

00032

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA	
CÓMPUTO CIENTÍFICO EN PROBLEMAS GEOESPACIALES	

Segundo	341207GC	80
SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Conocer los temas actuales de Inteligencia Artificial (IA), algunos de los métodos más utilizados en las diferentes áreas de la Inteligencia Artificial con el objetivo de que el alumno adquiera la capacidad de aplicar técnicas de IA mediante el desarrollo y programación de modelos matemáticos, estadísticos y de simulación a la solución de problemas complejos de razonamiento automático, aprendizaje, clasificación,

TEMAS Y SUBTEMAS

1. Introducción

2. **Fundamentos**

- 2.1. Datos geogáficos
- 2.2. Operaciones entre atributos de datos
- 2.3. Operaciones en datos geoespaciales
- 2.4. Operaciones geométricas
- 2.5. Interacciones Raster-vector
- 2.6. Reproyección de datos geográficos
- 2.7. Entrada y salida de datos geográficos

3. Mapas

- 3.1. Generación de mapas con R 3.2.
 - Scripts, algoritmos y funciones

Interpolación y series de tiempo

- Series de tiempo 4.1.
- 4.2. Interpolación espacial
- 4.3. Ajustes y regresiones

ACTIVIDADES DE APRENDIZAJE

Exposición en clase por parte del profesor, tareas y proyectos individuales.

Universidad Tecnológica de la Mixteca

Clave DGP:

Maestría en Inteligencia Artificial

- 00033

PROGRAMA DE ESTUDIOS

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

El Capítulo II, De las Evaluaciones, del Reglamento General de Posgrado establece que, Artículo 33, la calificación final del alumno se obtendrá de tres evaluaciones parciales (50%) y un examen ordinario (50%), Artículo 32. Para cada evaluación parcial se indicará al inicio de semestre la modalidad de evaluación a utilizar, Artículo 24.

BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- 1. Geocomputation with R. Lovelace, R., Nowosad, J., & Muenchow, J. Chapman and Hall/CRC, 2019.
- 2. **Applied spatial data analysis with R.** Bivand, R. S., Pebesma, E. J., Gómez-Rubio, V., & Pebesma, E. J. (Vol. 747248717, pp. 237-268). New York: Springer, 2008.
- 3. R: Mapping and Geospatial. Duke University https://guides.library.duke.edu/r-geospatial, Accesado el 16 de marzo de 2022

Consulta:

- Remote sensing and GIS for ecologists: using open source software. Wegmann, M., Leutner, B., & Dech, S. (Eds.). Pelagic Publishing Ltd, 2016.
- 2. CRAN task view: Analysis of spatial data. Bivand, R.. http://www2.uaem.mx/r-mirror/web/views/Spatial.html, 2016.
- sf: Simple Features for R. E. Pebesma. URL https://CRAN.R-project.org/package=sf. R package version 0.6-1. [p439], 2018.

PERFIL PROFESIONAL DEL DOCENTE

Estudios mínimos de Doctorado en Matemáticas o Matemáticas Aplicadas con conocimientos en Inteligencia Artificial.

Vo.Bo

DR. JOSÉ ANÍBAL ARIAS AGUITAR ASION DE ESTUDIOS JEFE DE LA DIVISIÓN DE ESTUDIOS POSGRADO DE POSGRADO

DR. AGUSTÍN SANTIAGO ALVARADO 2

VICE-RECTOR ACADÉMICO CE-RECTORIA

ACADÉMICA