Parcial 1

Julián Úsuga Ortiz - Ivan Santiago Rojas Martinez

1.

Sea X_t el proceso estocástico dado por:

$$X_t = w_{t-2} + 0.5w_{t-1} + 2w_t + 0.5w_{t+1} + w_{t+2}$$

donde los w_t son independientes con media 0 y varianza $\sigma_w^2=4.8.$

2.

Sea X_t el proceso estocastico estacionario dado por:

$$X_t = 3.1 + 0.9X_{t-1} - 0.6X_{t-2} + w_t$$

donde w_t es ruido blanco gaussiano con media 0 y varianza $\sigma_w^2=6.2.$

a).

$$\begin{split} X_t &= 3.1 + 0.9 X_{t-1} - 0.6 X_{t-2} + w_t \\ \mu_t &= 3.1 + 0.9 \mu_t - 0.6 \mu_t \\ \mu_t &= 0.9 \mu_t + 0.6 \mu_t = 3.1 \\ (1 - 0.9 + 0.6) \mu_t &= 3.1 \\ \mu_t &= \frac{3.1}{1 - 0.9 + 0.6} = 4.4285 \end{split}$$

b).

$$\begin{split} var[X_t] &= cov[X_t, X_t] = cov[X_t, 3.1 + 0.9X_{t-1} - 0.6X_{t-2} + w_t] \\ &= 0.9cov[X_t, X_{t-1}] * 0.6cov[X_t, X_{t-2}] + cov[X_t, w_t] \\ &= 0.9\gamma(-1) - 0.6\gamma(-2) + \sigma_w^2 \end{split}$$

Como $var[X_t] = \gamma(0) = \sigma_x^2$

$$=0.9\gamma(-1)-0.6\gamma(-2)$$

$$\gamma(0)=0.9\gamma(-1)-0.6\gamma(-2)$$

Dividiendo por $\gamma(0)$

$$\begin{split} 1 &= 0.9 \frac{\gamma(-1)}{\gamma(0)} - 0.6 \frac{\gamma(-2)}{\gamma(0)} + \frac{\sigma_w^2}{\gamma(0)} \\ 1 &= 0.9 \rho(1) - 0.6 \rho(2) + \frac{\sigma_w^2}{\gamma(0)} \\ 1 &= 0.9 \rho(1) + 0.6 \rho(2) = \frac{\sigma_w^2}{\rho(0)} \\ \sigma_x^2 &= \gamma(0) = \frac{\sigma_w^2}{1 - 0.9 \rho(1) + 0.6 \rho(2)} \\ \gamma(1) &= cov[X_{t-1}, 3.1 + 0.9X_{t-1} - 0.6X_{t-2} + w_t] \\ &= cov[X_{t-1}, X_{t-1}] 0.9 - 0.6 cov[X_{t-1}, X_{t-2}] \\ &= \gamma(0) 0.9 - 0.6 \gamma(1) \\ 1.6 \gamma(1) &= \gamma(0) \frac{0.9}{1.6} \\ \rho(1) &= \frac{\gamma(0) 0.9 / 1.6}{\gamma(0)} = \frac{0.9}{1.6} \\ \gamma(2) &= cov[X_{t-2}, 3.1 + 0.9X_{t-1} - 0.6X_{t-2} + w_t] \\ &= cov[X_{t-2}, X_{t-1}] 0.9 - 0.6 cov[X_{t-2}, X_{t-2}] \\ &= \gamma(1) 0.9 - 0.6 \gamma(0) \\ &= \gamma(0) \frac{0.9^2}{1.6} - 0.6 \gamma(0) \\ \rho(2) &= \frac{\gamma(2)}{\gamma(0)} = \frac{0.9^2}{1.6} - 0.6 = -0.09375 \end{split}$$

Por lo que:

$$\gamma(0) = \frac{6.2}{1 - \frac{0.9^2}{1.6} + 0.6(-0.09375)}$$
$$\gamma(0) = \sigma_x^2 \approx 14.1714$$

3.

Paquetes usados:

```
library(readx1)
library(tidyverse)
library(lubridate)
library(knitr)
library(xtable)
```

Lectura de la Base de datos:

a).

Las dimensiones de los datos de 2019 son 3563 filas y 23 columnas. Las dimensiones de los datos de 2020 son 3764 filas y 23 columnas. Las dimensiones de los datos de 2021 son 4122 filas y 23 columnas. b).

```
datos_juntos <- bind_rows(data_19, data_20, data_21)</pre>
```

Las dimensiones de los datos_juntos son 11449 filas y 23 columnas.

c).

Las dimensiones del data frame son 228980 filas y 10 columnas.

d).

Table 1: Linea A

fecha	linea	per.dia.tot	hora	per.num	dia	dia.sem	sem	mes	anio
2019-01-	línea a	183664	4H 0M	14	1	Tuesday	1	1	2019
01			0S						
2019-01-	línea a	183664	5H 0M	4554	1	Tuesday	1	1	2019
01			0S						
2019-01-	línea a	183664	6H 0M	5696	1	Tuesday	1	1	2019
01			0S						
2019-01-	línea a	183664	7H 0M	4893	1	Tuesday	1	1	2019
01			0S						
2019-01-	línea a	183664	8H 0M	4399	1	Tuesday	1	1	2019
01			0S						

Las dimensiones de los datos de la linea A son 21860 filas y 10 columnas.

Table 2: Linea B

fecha	linea	per.dia.tot	hora	per.num	dia	dia.sem	sem	mes	anio
2019-01-	línea b	25852	4H 0M	NA	1	Tuesday	1	1	2019
01			0S						
2019-01-	línea b	25852	5H 0M	678	1	Tuesday	1	1	2019
01			0S						

fecha	linea	per.dia.tot	hora	per.num	dia	dia.sem	sem	mes	anio
2019-01- 01	línea b	25852	6H 0M 0S	833	1	Tuesday	1	1	2019
2019-01-	línea b	25852	7H 0M	682	1	Tuesday	1	1	2019
01 2019-01-	línea b	25852	0S 8H 0M	676	1	Tuesday	1	1	2019
01			0S						

Las dimensiones de los datos de la linea B son 21860 filas y 10 columnas.

e).

El 23 de Marzo de 2020 el Gobierno de Colombia expidió el Decreto 457 para el período de aislamiento preventivo obligatorio a causa del virus del COVID-19.

Promedio de pasajeros por hora para la linea A

Se puede observar que después de la pandemia se disminuyo aproximadamente a la mitad la afluencia de pasajeros en la **linea A** y durante las semanas el comportamiento es muy similar para antes de la pandemia y despues de la pandemia.

Los dias con menor a fluencia de pasajeros son los dias ${f sabado}$ y ${f domingo}$

Promedio de pasajeros por hora para la linea B

Se puede observar que después de la pandemia se disminuyo aproximadamente a la mitad la afluencia de pasajeros en la **linea B** y durante las semanas el comportamiento es muy similar para antes de la pandemia y despues de la pandemia. Los dias con menor a fluencia de pasajeros son los dias ${\bf sabado}$ y ${\bf domingo}$

f).

```
sem = week(fecha), mes = month(fecha), anio = year(fecha),
per.dia.tot = sum(per.num, na.rm = TRUE))
```

Table 3: Linea A

fecha	dia	dia.sem	sem	mes	anio	per.dia.tot
2019-01-01	1	Tuesday	1	1	2019	183664
2019-01-01	1	Tuesday	1	1	2019	183664
2019-01-01	1	Tuesday	1	1	2019	183664
2019-01-01	1	Tuesday	1	1	2019	183664
2019-01-01	1	Tuesday	1	1	2019	183664
2019-01-01	1	Tuesday	1	1	2019	183664

Table 4: Linea B

fecha	dia	dia.sem	sem	mes	anio	per.dia.tot
2019-01-01	1	Tuesday	1	1	2019	25852
2019-01-01	1	Tuesday	1	1	2019	25852
2019-01-01	1	Tuesday	1	1	2019	25852
2019-01-01	1	Tuesday	1	1	2019	25852
2019-01-01	1	Tuesday	1	1	2019	25852
2019-01-01	1	Tuesday	1	1	2019	25852

g).

Se ve una caída(cisne negro) en marzo de 2020 y una lenta recuperación, no se ha llegado a niveles de 2019.

Se observa que la linea que cuenta con mayor afluencia de pasajeros es la linea A.

h).

Para antes de la pandemia la linea a y b tuvieron un comportamiento muy similar.

Se ve que es estacionaria alrededor de una media, ademas, en la ultima semana hay una baja afluencia de personas en ambas lineas muy probablemente a causa del covid.

Despues de la pandemia

en esta serie de tiempo se ve una recuperación en ambas lineas (a y b), no es estacionaria ya que se ve una clara tendencia de crecimiento positivo no lineal.

i).

regresion con lm para dos dataset: antes y despues de la pandemia

puede ser con las covariables: indicadora dia de la semana (lunes, martes etc), mes, hora?

son 4 modelos: antes pandemia linea a antes pandemia linea a despues pandemia linea b despues pandemia linea b

contrastar, dar una interpretación del summary del model

graficar el modelo vs real

Modelo linea A antes de pandemia:

```
df.lin.A <- dat_lin_A |> filter(pandemia == "no")
df.lin.A$dia.sem <- as.factor(df.lin.A$dia.sem)
acf(df.lin.A$per.dia.tot)</pre>
```

Series df.lin.A\$per.dia.tot

pacf(df.lin.A\$per.dia.tot)

Series df.lin.A\$per.dia.tot


```
serie <- ts(df.lin.A$per.dia.tot, start = 2019, frequency = 12)
decom <- decompose(serie)
plot(decom)</pre>
```

Decomposition of additive time series

model.lin.A <- lm(per.dia.tot ~ dia.sem, data = df.lin.A)
kable(xtable(summary(model.lin.A)))</pre>

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	732335.1719	3353.006	218.4115132	0.0000000
dia.semMonday	-66069.9814	4760.647	-13.8783627	0.0000000
dia.semSaturday	-144624.7500	4741.867	-30.4995378	0.0000000
dia.semSunday	-429790.9219	4741.867	-90.6374911	0.0000000
dia.semThursday	-18168.1094	4741.867	-3.8314254	0.0001283
dia.semTuesday	617.1406	4741.867	0.1301472	0.8964529
dia.semWednesday	-33569.0938	4741.867	-7.0792990	0.0000000

```
df.lin.A$pred <- predict(model.lin.A, newdata = df.lin.A)
df.lin.A$per.dia.tot <- as.numeric(df.lin.A$per.dia.tot)
df.lin.A$pred <- as.numeric(df.lin.A$pred)</pre>
```

```
ajust <- df.lin.A %>% gather(key="Linea", value="Cantidad", per.dia.tot, pred)
ajust %>% ggplot(aes(x=fecha, y=Cantidad,
col=Linea))+
geom_line()
```


Modelo linea A despues de pandemia:

```
df.lin.A.p <- dat_lin_A |> filter(pandemia == "si")
df.lin.A.p$dia.sem <- as.factor(df.lin.A.p$dia.sem)
acf(df.lin.A.p$per.dia.tot)</pre>
```

Series df.lin.A.p\$per.dia.tot

pacf(df.lin.A.p\$per.dia.tot)

Series df.lin.A.p\$per.dia.tot

serie <- ts(df.lin.A.p\$per.dia.tot, start = 2019, frequency = 12)
decom <- decompose(serie)
plot(decom)</pre>

Decomposition of additive time series

model.lin.A.p <- lm(per.dia.tot ~ dia.sem, data = df.lin.A.p)
kable(xtable(summary(model.lin.A.p)))</pre>

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	386976.97	3388.259	114.211146	0.0000000
dia.semMonday	-37648.75	4791.722	-7.857040	0.0000000
dia.semSaturday	-60998.05	4831.488	-12.625105	0.0000000
dia.semSunday	-227567.77	4804.725	-47.363324	0.0000000
dia.semThursday	16461.42	4804.725	3.426090	0.0006142
dia.semTuesday	13694.76	4791.722	2.858004	0.0042700
dia.semWednesday	14057.38	4791.722	2.933679	0.0033556

```
df.lin.A.p$pred <- predict(model.lin.A.p, newdata = df.lin.A.p)
df.lin.A.p$per.dia.tot <- as.numeric(df.lin.A.p$per.dia.tot)
df.lin.A.p$pred <- as.numeric(df.lin.A.p$pred)</pre>
```

```
ajust <- df.lin.A.p %>% gather(key="Linea", value="Cantidad", per.dia.tot, pred)
ajust %>% ggplot(aes(x=fecha, y=Cantidad,
col=Linea))+
geom_line()
```


Modelo linea B antes de pandemia:

```
df.lin.B <- dat_lin_B |> filter(pandemia == "no")
df.lin.B$dia.sem <- as.factor(df.lin.B$dia.sem)
acf(df.lin.B$per.dia.tot)</pre>
```

Series df.lin.B\$per.dia.tot

pacf(df.lin.B\$per.dia.tot)

Series df.lin.B\$per.dia.tot


```
serie <- ts(df.lin.B$per.dia.tot, start = 2019, frequency = 12)
decom <- decompose(serie)
plot(decom)</pre>
```

Decomposition of additive time series

model.lin.B <- lm(per.dia.tot ~ dia.sem, data = df.lin.B)
kable(xtable(summary(model.lin.B)))</pre>

	Estimate	Std. Error	t value	${\Pr(> \mathrm{t})}$
(Intercept)	107207.5938	492.7545	217.5679444	0.0000000
dia.semMonday	-10398.9906	699.6200	-14.8637694	0.0000000
dia.semSaturday	-16794.4531	696.8602	-24.1001768	0.0000000
dia.semSunday	-57116.0625	696.8602	-81.9620142	0.0000000
dia.semThursday	-2037.1562	696.8602	-2.9233358	0.0034717
dia.semTuesday	342.7969	696.8602	0.4919163	0.6227906
dia.semWednesday	-4182.1250	696.8602	-6.0013834	0.0000000

```
df.lin.B$pred <- predict(model.lin.B, newdata = df.lin.B)
df.lin.B$per.dia.tot <- as.numeric(df.lin.B$per.dia.tot)
df.lin.B$pred <- as.numeric(df.lin.B$pred)</pre>
```

```
ajust <- df.lin.B %>% gather(key="Linea", value="Cantidad", per.dia.tot, pred)
ajust %>% ggplot(aes(x=fecha, y=Cantidad,
col=Linea))+
geom_line()
```


Modelo linea B despues de pandemia:

```
df.lin.B.p <- dat_lin_B |> filter(pandemia == "si")
df.lin.B.p$dia.sem <- as.factor(df.lin.B.p$dia.sem)
acf(df.lin.B.p$per.dia.tot)</pre>
```

Series df.lin.B.p\$per.dia.tot

pacf(df.lin.B.p\$per.dia.tot)

Series df.lin.B.p\$per.dia.tot


```
serie <- ts(df.lin.B.p$per.dia.tot, start = 2019, frequency = 12)
decom <- decompose(serie)
plot(decom)</pre>
```

Decomposition of additive time series

model.lin.B.p <- lm(per.dia.tot ~ dia.sem, data = df.lin.B.p)
kable(xtable(summary(model.lin.B.p)))</pre>

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	55437.935	505.2586	109.721898	0.0000000
dia.semMonday	-4778.548	714.5436	-6.687553	0.0000000
dia.semSaturday	-7388.347	720.4735	-10.254848	0.0000000
dia.semSunday	-30073.718	716.4827	-41.974104	0.0000000
dia.semThursday	3028.119	716.4827	4.226367	0.0000239
dia.semTuesday	2507.774	714.5436	3.509617	0.0004503
dia.semWednesday	2696.419	714.5436	3.773625	0.0001616

```
df.lin.B.p$pred <- predict(model.lin.B.p, newdata = df.lin.B.p)
df.lin.B.p$per.dia.tot <- as.numeric(df.lin.B.p$per.dia.tot)
df.lin.B.p$pred <- as.numeric(df.lin.B.p$pred)</pre>
```

```
ajust <- df.lin.B.p %>% gather(key="Linea", value="Cantidad", per.dia.tot, pred)
ajust %>% ggplot(aes(x=fecha, y=Cantidad,
col=Linea))+
geom_line()
```

