

Finding Patterns in the Stream:
A Machine Learning Analysis of Netflix Movie Data

AGENDA

VALUE

DATASETS USED

ANALYTICAL QUESTIONS

FUTURE WORK

Netflix Management wants to increase...

Customer satisfaction

Quality

Customer retention

Netflix Management wants to know!

Is the Netflix movie plot description sufficient for us to know the **topic** of the movie?

What is the <u>IMDb rating</u> for a Netflix movie, given its information and rating from Netflix?

What are the <u>features</u> of the movies which receive the highest and lowest ratings from our customers?

What movies do users **frequently watch together**?

Netflix Data Merging Process & Tasks Performed

Q1. Is the Netflix movie description sufficient for us to know the topic of the movie?

No, Netflix description was too short (insufficient data)

As her father nears the end of his life, filmmaker Kirsten
Johnson stages his death in inventive and comical ways to help
them both face the inevitable.

Maybe... Wikipedia plot description?

Q1. Is the Netflix movie description sufficient for us to know the topic of the movie?

Countplot of genres

Methods

Text Pre-Processing

- Stop Words
- Bigrams
- Lemmatization

Modeling

- LDA
- LSA
- NMF

Tuning

• # of topics

Evaluation

Coherence score

Model Evaluation

- -Interpretable
- -Coherent

10%

2. relevance(term w | topic t) = $\lambda * p(w | t) + (1 - \lambda) * p(w | t)/p(w)$; see Sievert & Shirley (2014)

Intertopic Distance Map (via multidimensional scaling)

10%

Top-30 Most Relevant Terms for Topic 3 (14.6% of tokens)

Q2. What is the **IMDb rating** for a Netflix movie, given its information and rating from Netflix?

Target Variable: IMDb Rating

Guiding Algorithm

- Exploratory Analysis
- Feature Engineering
- One-Hot & Ordinal Encoding
- Scaling
- Splitting
- Modeling
- Model Evaluation

Feature Engineering

High correlations

- -Number of Votes
- -Runtime

Results from Predictive Modeling

• Baseline - mean of training data (RMSE 0.923)

Model	RMSE
Decision Tree Regressor	$1.004 * e^{-11}$
Random Forest Regressor	$3.77 * e^{-12}$
Gradient Boosting Regressor	0.183
XGBoost Regressor	0.001

Hyperparameter Tuning

GridSearchCV (Parameters Used)

- Number of Estimators
- Minimum Samples Leaf
- Maximum Leaf Nodes

[OOB Score = True] for Validation

Best Model: Random Forest Regressor

- Hyperparameters
 - max_leaf_nodes = 100
 - min_samples_leaf = 2
 - n_estimators = 300
- RMSE = 0.069
- Test $R^2 = 0.994$

Q3. What are the features of the movies which receive the highest and lowest ratings from our customers?

Models Explored

KMeans Clustering Agglomerative Clustering

Gaussian Mixture Methods

Spectral Clustering

Results - The Bad Models

Gaussian Mixture Model

Agglomerative Clustering

Results - The Good Models

Spectral Clustering Model

KMeans Clustering Model

Note: PC1 and PC2 just explains 60%

Best Model:

KMeans Clustering

Q4. What movies do users frequently watch together?

Models Explored

Results - Top 10 Rules

Support Metric Pruning

consequents	antecedents	
(Kill Bill: Vol. 2)	(Kill Bill: Vol. 1)	
(Kill Bill: Vol. 1)	(Kill Bill: Vol. 2)	
(American Beauty)	(The Matrix)	
(The Matrix)	(American Beauty)	
(The Matrix)	(Men in Black)	
(Men in Black)	(The Matrix)	
(American Beauty)	ris Bueller's Day Off)	(Fer
(Ferris Bueller's Day Off)	(American Beauty)	
(American Beauty)	(Men in Black)	
(Men in Black)	(American Beauty)	

Lift Metric Pruning

consequents

antecedente

consequents	antecedents
(Kill Bill: Vol. 1, The Matrix)	(Kill Bill: Vol. 2, Men in Black)
(Kill Bill: Vol. 2, Men in Black)	(Kill Bill: Vol. 1, The Matrix)
(Kill Bill: Vol. 1, Men in Black)	(Kill Bill: Vol. 2, The Matrix)
(Kill Bill: Vol. 2, The Matrix)	(Kill Bill: Vol. 1, Men in Black)
(Kill Bill: Vol. 2, Ferris Bueller's Day Off)	(Kill Bill: Vol. 1, The Matrix)
(Kill Bill: Vol. 1, The Matrix)	(Kill Bill: Vol. 2, Ferris Bueller's Day Off)
(Kill Bill: Vol. 1, Indiana Jones and the Last	(Kill Bill: Vol. 2, The Matrix)
(Kill Bill: Vol. 2, The Matrix)	(Kill Bill: Vol. 1, Indiana Jones and the Last
(Kill Bill: Vol. 1, The Matrix)	(Kill Bill: Vol. 2, Indiana Jones and the Last
(Kill Bill: Vol. 2, Indiana Jones and the Last	(Kill Bill: Vol. 1, The Matrix)

Results - Parallel Plots

Confidence vs Support Border of Association Rules

Future Work

Develop a **recommendation system** based on our work on association rule mining and LDA

Incorporate **customer demographic data** to better our predictive model

Any Questions?

