#### Estruturas Discretas - Lógica

2019/2020

Lógica Matemática:

#### Lógica Matemática:

• formalização precisa de conceitos e propriedades/proposições;

#### Lógica Matemática:

- formalização precisa de conceitos e propriedades/proposições;
- justificação da correção de provas (inferências de novas proposições a partir de um conjunto de proposições);

#### Lógica Matemática:

- formalização precisa de conceitos e propriedades/proposições;
- justificação da correção de provas (inferências de novas proposições a partir de um conjunto de proposições);
- para fins diversos podem usar-se lógicas diferentes.

#### Lógica Matemática:

- formalização precisa de conceitos e propriedades/proposições;
- justificação da correção de provas (inferências de novas proposições a partir de um conjunto de proposições);
- para fins diversos podem usar-se lógicas diferentes.

#### Algumas aplicações em CC:

- Desenho de circuitos digitais.
- Expressar condições em programas.
- 'Queries' a bases de dados e motores de pesquisa.

### Cálculo Proposicional (CP)

O Cálculo Proposicional formaliza o raciocínio lógico atribuindo uma semântica às conectivas booleanas.

- Afirmações primitivas são representadas por variáveis proposicionais p, q, r, s, t, . . . e podem ser verdadeiras ou falsas.
- Os dois valores de verdade s\(\tilde{a}\)o respectivamente representados por \(\mathbf{v}\) e \(\mathbf{f}\).

## Cálculo Proposicional (CP)

O Cálculo Proposicional formaliza o raciocínio lógico atribuindo uma semântica às conectivas booleanas.

- Afirmações primitivas são representadas por variáveis proposicionais p, q, r, s, t, . . . e podem ser verdadeiras ou falsas.
- Os dois valores de verdade são respectivamente representados por  $\mathbf{v}$  e  $\mathbf{f}$ . Em alternativa usa-se também 1 e 0, e ainda  $\top$  e  $\bot$ .
- As fórmulas do CP são construídas a partir das variáveis proposicionais usando conectivas.

# Conectivas lógicas

| $\neg P$              | não <i>P</i>        | NEGAÇÃO             |
|-----------------------|---------------------|---------------------|
| $P \wedge Q$          | <i>P</i> e <i>Q</i> | CONJUNÇÃO           |
| $P \lor Q$            | P ou Q              | DISJUNÇÃO           |
| $P \oplus Q$          | ou P ou Q           | DISJUNÇÃO EXCLUSIVA |
| P 	o Q                | se P então Q        | IMPLICAÇÃO          |
| $P \leftrightarrow Q$ | P se e só se Q      | EQUIVALÊNCIA        |

#### Conectivas lógicas

| $\neg P$              | não <i>P</i>        | NEGAÇÃO             |
|-----------------------|---------------------|---------------------|
| $P \wedge Q$          | <i>P</i> e <i>Q</i> | CONJUNÇÃO           |
| $P \lor Q$            | P ou Q              | DISJUNÇÃO           |
| $P \oplus Q$          | ou P ou Q           | DISJUNÇÃO EXCLUSIVA |
| P 	o Q                | se $P$ então $Q$    | IMPLICAÇÃO          |
| $P \leftrightarrow Q$ | P se e só se Q      | EQUIVALÊNCIA        |

Os símbolos  $\neg, \land, \lor, \oplus, \rightarrow, \leftrightarrow$  chamam-se conectivas lógicas.

As conectivas lógicas permitem-nos obter proposições/fórmulas partindo de proposições/fórmulas mais pequenas.

O valor de verdade de uma proposição/fórmula depende do valor de verdade das suas componentes.

Dada uma proposição P, a negação de P é a proposição "P é falso".

Dada uma proposição P, a negação de P é a proposição "P é falso".

É verdade se P é falso, e é falso se P é verdade

Dada uma proposição P, a negação de P é a proposição "P é falso".

É verdade se P é falso, e é falso se P é verdade

| Р | $\neg P$ |
|---|----------|
| v | f        |
| f | V        |

Dada uma proposição P, a negação de P é a proposição "P é falso".

É verdade se P é falso, e é falso se P é verdade

| P | $\neg P$ |
|---|----------|
| V | f        |
| f | V        |

#### **Exemplos:**

- $\neg (5 < 10) \Leftrightarrow ?$
- ¬("O Porto é a maior cidade de Portugal") ⇔ ?

Dada uma proposição P, a negação de P é a proposição "P é falso".

É verdade se P é falso, e é falso se P é verdade

| P | $\neg P$ |
|---|----------|
| V | f        |
| f | V        |

#### **Exemplos:**

- $\neg (5 < 10) \Leftrightarrow ?$
- ¬("O Porto é a maior cidade de Portugal") ⇔ ?

#### Dupla negação:

| P | $\neg P$ | $\neg \neg P$ |
|---|----------|---------------|
| V | f        | v             |
| f | v        | f             |



Conjunção ( $P \in Q$ ):  $P \wedge Q$ 

Verdade se **ambos** P e Q são verdade

## Conjunção ( $P \in Q$ ): $P \wedge Q$

Verdade se **ambos** P e Q são verdade

| Р | Q | $P \wedge Q$ |
|---|---|--------------|
| V | ٧ | ٧            |
| V | f | f            |
| f | v | f            |
| f | f | f            |

### Conjunção ( $P \in Q$ ): $P \wedge Q$

Verdade se **ambos** P e Q são verdade

| Р | Q | $P \wedge Q$ |
|---|---|--------------|
| V | ٧ | V            |
| v | f | f            |
| f | v | f            |
| f | f | f            |

#### **Exemplos:**

• 
$$(5 < 10) \land (5 > 10) \Leftrightarrow ?$$

## Disjunção (P ou Q): $P \lor Q$

Verdade se ou P ou Q (ou ambos) são verdade

# Disjunção (P ou Q): $P \lor Q$

Verdade se ou P ou Q (ou ambos) são verdade

| Р | Q | $P \lor Q$ |
|---|---|------------|
| V | v | V          |
| V | f | V          |
| f | v | V          |
| f | f | f          |

### Disjunção (P ou Q): $P \lor Q$

Verdade se ou P ou Q (ou ambos) são verdade

| Р | Q | $P \lor Q$ |
|---|---|------------|
| v | V | v          |
| V | f | v          |
| f | v | v          |
| f | f | f          |

#### **Exemplos:**

• 
$$(5 < 10) \lor (10 \le 5) \Leftrightarrow ?$$

# Ou exclusivo (P ou Q): $P \oplus Q$

Verdade se ou P ou Q são verdade (mas não ambos)

# Ou exclusivo (P ou Q): $P \oplus Q$

Verdade se ou P ou Q são verdade (mas não ambos)

| Р | Q | $P \oplus Q$ |
|---|---|--------------|
| V | v | f            |
| V | f | V            |
| f | V | V            |
| f | f | f            |

# Ou exclusivo (P ou Q): $P \oplus Q$

Verdade se ou P ou Q são verdade (mas não ambos)

| Р | Q | $P \oplus Q$ |
|---|---|--------------|
| V | v | f            |
| V | f | v            |
| f | v | v            |
| f | f | f            |

#### **Exemplos:**

• 
$$(5 < 10) \oplus (5 < 8) \Leftrightarrow ?$$

Verdade se P falso (falso implica qualquer coisa);

Verdade se P falso (falso implica qualquer coisa); verdade se Q verdade (tudo implica verdade);

Verdade se P falso (falso implica qualquer coisa); verdade se Q verdade (tudo implica verdade); senão falso

Verdade se P falso (falso implica qualquer coisa); verdade se Q verdade (tudo implica verdade); senão falso

| Р | Q | P 	o Q |
|---|---|--------|
| V | v | \ \    |
| V | f | f      |
| f | v | V      |
| f | f | V      |

Verdade se P falso (falso implica qualquer coisa); verdade se Q verdade (tudo implica verdade); senão falso

| Р | Q | P 	o Q |
|---|---|--------|
| V | v | v      |
| V | f | f      |
| f | v | v      |
| f | f | V      |

#### **Exemplos:**

- $(5 < 10) \rightarrow (2 * 3 = 5) \Leftrightarrow ?$
- $(2*3=5) \rightarrow (5<10) \Leftrightarrow ?$
- $(2*3=5) \rightarrow (5>10) \Leftrightarrow ?$

# $P \rightarrow Q$

| P implica Q               | Q é implicado por P       |
|---------------------------|---------------------------|
| se $P$ então $Q$          | Q se P                    |
| P é mais forte do que $Q$ | Q é mais fraco do que $P$ |
| P é suficiente para Q     | Q é necessário para P     |

# $P \rightarrow Q$

| P implica Q               | Q é implicado por P       |
|---------------------------|---------------------------|
| se $P$ então $Q$          | Q se P                    |
| P é mais forte do que $Q$ | Q é mais fraco do que $P$ |
| P é suficiente para Q     | Q é necessário para P     |

### Equivalência (P se e só se Q): $P \leftrightarrow Q$

Verdade se P e Q tem o mesmo valor boleano; caso contrário é falso

### Equivalência (P se e só se Q): $P \leftrightarrow Q$

Verdade se P e Q tem o mesmo valor boleano; caso contrário é falso

| Р | Q | $P \leftrightarrow Q$ |
|---|---|-----------------------|
| V | V | v                     |
| V | f | f                     |
| f | v | f                     |
| f | f | V                     |

## Equivalência (P se e só se Q): $P \leftrightarrow Q$

Verdade se P e Q tem o mesmo valor boleano; caso contrário é falso

| Р | Q | $P \leftrightarrow Q$ |
|---|---|-----------------------|
| V | v | v                     |
| V | f | f                     |
| f | v | f                     |
| f | f | v                     |

#### **Exemplos:**

- $(5 < 10) \leftrightarrow (10 < 5) \Leftrightarrow ?$
- $(2*3=5) \leftrightarrow (6=6) \Leftrightarrow ?$
- $(2*3=5) \leftrightarrow (5>10) \Leftrightarrow ?$

#### P o Q

Verdade quando P é falso ou Q é verdade.

#### P o Q

Verdade quando P é falso ou Q é verdade.

| Р | Q | $\neg P$ | $\neg P \lor Q$ |
|---|---|----------|-----------------|
| V | v | f        | V               |
| V | f | f        | f               |
| f | v | v        | V               |
| f | f | V        | V               |

#### P o Q

Verdade quando P é falso ou Q é verdade.

| P | Q | $\neg P$ | $\neg P \lor Q$ |
|---|---|----------|-----------------|
| V | v | f        | V               |
| V | f | f        | f               |
| f | v | v        | V               |
| f | f | V        | V               |

Logo,

a proposição  $\neg P \lor Q$  é equivalente a  $P \to Q$ .

#### $P \rightarrow Q$

Verdade quando P é falso ou Q é verdade.

| Р | Q | $\neg P$ | $\neg P \lor Q$ |
|---|---|----------|-----------------|
| V | v | f        | V               |
| V | f | f        | f               |
| f | v | v        | V               |
| f | f | V        | V               |

Logo,

a proposição  $\neg P \lor Q$  é equivalente a  $P \to Q$ .

Note-se que P o Q é falso quando P é verdade e Q é falso,

#### $P \rightarrow Q$

Verdade quando P é falso ou Q é verdade.

| Р | Q | $\neg P$ | $\neg P \lor Q$ |
|---|---|----------|-----------------|
| V | v | f        | V               |
| V | f | f        | f               |
| f | v | v        | V               |
| f | f | V        | V               |

Logo,

a proposição  $\neg P \lor Q$  é equivalente a  $P \to Q$ .

Note-se que P o Q é falso quando P é verdade e Q é falso, logo

a proposição  $\neg(P \to Q)$  é equivalente a  $P \land \neg Q$ .

(verificar com uma tabela de verdade)

• Contrário:  $Q \rightarrow P$ 

- Contrário:  $Q \rightarrow P$
- Inverso:  $\neg P \rightarrow \neg Q$

- Contrário:  $Q \rightarrow P$
- Inverso:  $\neg P \rightarrow \neg Q$
- Contrapositivo:  $\neg Q \rightarrow \neg P$

- Contrário:  $Q \rightarrow P$
- Inverso:  $\neg P \rightarrow \neg Q$
- Contrapositivo:  $\neg Q \rightarrow \neg P$

**Questão:** Um dos três tem o mesmo significado de  $P \rightarrow Q$ . Qual?

• Contrário:  $Q \rightarrow P$ 

• Inverso:  $\neg P \rightarrow \neg Q$ 

• Contrapositivo:  $\neg Q \rightarrow \neg P$ 

**Questão:** Um dos três tem o mesmo significado de  $P \rightarrow Q$ . Qual?

| Р | Q | $\neg P$     | $\neg Q$ | P 	o Q | $Q \rightarrow P$ | $\neg P \rightarrow \neg Q$ | $\neg Q \rightarrow \neg P$ |
|---|---|--------------|----------|--------|-------------------|-----------------------------|-----------------------------|
| V | v | <del>-</del> | f        | V      |                   |                             |                             |
| v | f | f            | v        | f      |                   |                             |                             |
| f | v | v            | f        | V      |                   |                             |                             |
| f | f | V            | V        | V      |                   |                             |                             |

**Definição:** Uma expressão lógica é uma *tautologia* se é verdadeira quaisquer que sejam os valores de verdade dos seus termos.

**Definição:** Uma expressão lógica é uma *tautologia* se é verdadeira quaisquer que sejam os valores de verdade dos seus termos.

**Definição:** Uma expressão lógica é uma *contradição* se é falsa quaisquer que sejam os valores de verdade dos seus termos.

**Definição:** Uma expressão lógica é uma *tautologia* se é verdadeira quaisquer que sejam os valores de verdade dos seus termos.

**Definição:** Uma expressão lógica é uma *contradição* se é falsa quaisquer que sejam os valores de verdade dos seus termos.

Se P é uma tautologia, então  $\neg P$  é uma contradição e vice-versa.

**Definição:** Uma expressão lógica é uma *tautologia* se é verdadeira quaisquer que sejam os valores de verdade dos seus termos.

**Definição:** Uma expressão lógica é uma *contradição* se é falsa quaisquer que sejam os valores de verdade dos seus termos.

Se P é uma tautologia, então  $\neg P$  é uma contradição e vice-versa.

Uma expressão que pode ser verdadeira (dependendo dos valores de verdade dos seus termos) é chamada *satisfazível*.

**Definição:** Uma expressão lógica é uma *tautologia* se é verdadeira quaisquer que sejam os valores de verdade dos seus termos.

**Definição:** Uma expressão lógica é uma *contradição* se é falsa quaisquer que sejam os valores de verdade dos seus termos.

Se P é uma tautologia, então  $\neg P$  é uma contradição e vice-versa.

Uma expressão que pode ser verdadeira (dependendo dos valores de verdade dos seus termos) é chamada *satisfazível*.

**Exemplo:**  $P \lor \neg P$  é uma tautologia e também satisfazível, enquanto  $P \land \neg P$  é uma contradição.

#### **Exemplos:**

**Exercício:** Será possível satisfazer simultaneamente as instruções seguintes?

- Se caminhar em silêncio, então não tenha um revólver carregado ou use óculos escuros.
- Se tiver um revólver carregado, então caminhe em silêncio ou não use óculos escuros.
- Se usar óculos escuros ou tiver um revólver carregado, então caminhe em silêncio.
- Caminhe em silêncio ou tenha um revólver carregado, e se tiver um revólver carregado então não caminhe em silêncio.

**Definição:** Duas proposições  $P_1$  e  $P_2$  são logicamente equivalentes e escrevemos  $P_1 \Leftrightarrow P_2$ , quando  $P_1$  é verdadeira (respectivamente falsa) se e só se  $P_2$  é verdadeira (respectivamente falsa).

**Definição:** Duas proposições  $P_1$  e  $P_2$  são *logicamente equivalentes* e escrevemos  $P_1 \Leftrightarrow P_2$ , quando  $P_1$  é verdadeira (respectivamente falsa) se e só se  $P_2$  é verdadeira (respectivamente falsa).

 $P_1 \Leftrightarrow P_2$  se e só se  $P_1 \leftrightarrow P_2$  é uma tautologia.

**Definição:** Duas proposições  $P_1$  e  $P_2$  são logicamente equivalentes e escrevemos  $P_1 \Leftrightarrow P_2$ , quando  $P_1$  é verdadeira (respectivamente falsa) se e só se  $P_2$  é verdadeira (respectivamente falsa).

 $P_1 \Leftrightarrow P_2$  se e só se  $P_1 \leftrightarrow P_2$  é uma tautologia.

$$P \rightarrow Q \qquad \Leftrightarrow \neg P \lor Q$$

**Definição:** Duas proposições  $P_1$  e  $P_2$  são logicamente equivalentes e escrevemos  $P_1 \Leftrightarrow P_2$ , quando  $P_1$  é verdadeira (respectivamente falsa) se e só se  $P_2$  é verdadeira (respectivamente falsa).

 $P_1 \Leftrightarrow P_2$  se e só se  $P_1 \leftrightarrow P_2$  é uma tautologia.

$$\begin{array}{ccc} P \rightarrow Q & \Leftrightarrow & \neg P \lor Q \\ \neg (P \rightarrow Q) & \Leftrightarrow & P \land \neg Q \end{array}$$

**Definição:** Duas proposições  $P_1$  e  $P_2$  são logicamente equivalentes e escrevemos  $P_1 \Leftrightarrow P_2$ , quando  $P_1$  é verdadeira (respectivamente falsa) se e só se  $P_2$  é verdadeira (respectivamente falsa).

 $P_1 \Leftrightarrow P_2$  se e só se  $P_1 \leftrightarrow P_2$  é uma tautologia.

$$\begin{array}{ccc} P \rightarrow Q & \Leftrightarrow & \neg P \vee Q \\ \neg (P \rightarrow Q) & \Leftrightarrow & P \wedge \neg Q \\ P \rightarrow Q & \Leftrightarrow & \neg Q \rightarrow \neg P \end{array}$$

**Definição:** Duas proposições  $P_1$  e  $P_2$  são logicamente equivalentes e escrevemos  $P_1 \Leftrightarrow P_2$ , quando  $P_1$  é verdadeira (respectivamente falsa) se e só se  $P_2$  é verdadeira (respectivamente falsa).

 $P_1 \Leftrightarrow P_2$  se e só se  $P_1 \leftrightarrow P_2$  é uma tautologia.

$$\begin{array}{cccc} P \rightarrow Q & \Leftrightarrow & \neg P \vee Q \\ \neg (P \rightarrow Q) & \Leftrightarrow & P \wedge \neg Q \\ P \rightarrow Q & \Leftrightarrow & \neg Q \rightarrow \neg P \\ \neg \neg P & \Leftrightarrow & P \end{array}$$

**Definição:** Duas proposições  $P_1$  e  $P_2$  são logicamente equivalentes e escrevemos  $P_1 \Leftrightarrow P_2$ , quando  $P_1$  é verdadeira (respectivamente falsa) se e só se  $P_2$  é verdadeira (respectivamente falsa).

 $P_1 \Leftrightarrow P_2$  se e só se  $P_1 \leftrightarrow P_2$  é uma tautologia.

Exemplos:

$$\begin{array}{cccc} P \rightarrow Q & \Leftrightarrow & \neg P \vee Q \\ \neg (P \rightarrow Q) & \Leftrightarrow & P \wedge \neg Q \\ P \rightarrow Q & \Leftrightarrow & \neg Q \rightarrow \neg P \\ \neg \neg P & \Leftrightarrow & P \end{array}$$

Podemos usar equivalência lógica para simplificar expressões lógicas.

| Identidade | $P \land T \Leftrightarrow P$ $P \lor F \Leftrightarrow P$ |
|------------|------------------------------------------------------------|
|            |                                                            |

| Identidade    | $P \wedge T \Leftrightarrow P$ |
|---------------|--------------------------------|
|               | $P \lor F \Leftrightarrow P$   |
| E. absorvente | $P \lor T \Leftrightarrow T$   |
|               | $P \wedge F \Leftrightarrow F$ |
|               |                                |

| Identidade    | $P \wedge T \Leftrightarrow P$ |
|---------------|--------------------------------|
|               | $P \lor F \Leftrightarrow P$   |
| E. absorvente | $P \lor T \Leftrightarrow T$   |
|               | $P \wedge F \Leftrightarrow F$ |
| Idempotência  | $P \lor P \Leftrightarrow P$   |
|               | $P \wedge P \Leftrightarrow P$ |
|               | 1 / (1 (7 )                    |

| Identidade    | $P \wedge T \Leftrightarrow P$ |
|---------------|--------------------------------|
|               | $P \lor F \Leftrightarrow P$   |
| E. absorvente | $P \lor T \Leftrightarrow T$   |
|               | $P \wedge F \Leftrightarrow F$ |
| Idempotência  | $P \lor P \Leftrightarrow P$   |
|               | $P \wedge P \Leftrightarrow P$ |
| Dupla negação | $\neg\neg P \Leftrightarrow P$ |
|               |                                |

| Identidade     | $P \wedge T \Leftrightarrow P$          |
|----------------|-----------------------------------------|
|                | $P \lor F \Leftrightarrow P$            |
| E. absorvente  | $P \lor T \Leftrightarrow T$            |
|                | $P \wedge F \Leftrightarrow F$          |
| Idempotência   | $P \lor P \Leftrightarrow P$            |
|                | $P \wedge P \Leftrightarrow P$          |
| Dupla negação  | $\neg\neg P \Leftrightarrow P$          |
| Comutatividade | $P \lor Q \Leftrightarrow Q \lor P$     |
|                | $P \wedge Q \Leftrightarrow Q \wedge P$ |
|                |                                         |

| Identidade      | $P \wedge T \Leftrightarrow P$                                |
|-----------------|---------------------------------------------------------------|
|                 | $P \lor F \Leftrightarrow P$                                  |
| E. absorvente   | $P \lor T \Leftrightarrow T$                                  |
|                 | $P \wedge F \Leftrightarrow F$                                |
| Idempotência    | $P \lor P \Leftrightarrow P$                                  |
|                 | $P \wedge P \Leftrightarrow P$                                |
| Dupla negação   | $\neg\neg P \Leftrightarrow P$                                |
| Comutatividade  | $P \lor Q \Leftrightarrow Q \lor P$                           |
|                 | $P \wedge Q \Leftrightarrow Q \wedge P$                       |
| Associatividade | $(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$         |
|                 | $(P \wedge Q) \wedge R \Leftrightarrow P \wedge (Q \wedge R)$ |
|                 |                                                               |

| Identidade       | $P \wedge T \Leftrightarrow P$                                       |
|------------------|----------------------------------------------------------------------|
|                  | $P \lor F \Leftrightarrow P$                                         |
| E. absorvente    | $P \lor T \Leftrightarrow T$                                         |
|                  | $P \wedge F \Leftrightarrow F$                                       |
| Idempotência     | $P \lor P \Leftrightarrow P$                                         |
|                  | $P \wedge P \Leftrightarrow P$                                       |
| Dupla negação    | $\neg\neg P \Leftrightarrow P$                                       |
| Comutatividade   | $P \lor Q \Leftrightarrow Q \lor P$                                  |
|                  | $P \wedge Q \Leftrightarrow Q \wedge P$                              |
| Associatividade  | $(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$                |
|                  | $(P \wedge Q) \wedge R \Leftrightarrow P \wedge (Q \wedge R)$        |
| Distributividade | $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$     |
|                  | $P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge R)$ |
|                  |                                                                      |

| Identidade       | $P \wedge T \Leftrightarrow P$                                       |
|------------------|----------------------------------------------------------------------|
|                  | $P \lor F \Leftrightarrow P$                                         |
| E. absorvente    | $P \lor T \Leftrightarrow T$                                         |
|                  | $P \wedge F \Leftrightarrow F$                                       |
| Idempotência     | $P \lor P \Leftrightarrow P$                                         |
|                  | $P \wedge P \Leftrightarrow P$                                       |
| Dupla negação    | $\neg\neg P \Leftrightarrow P$                                       |
| Comutatividade   | $P \lor Q \Leftrightarrow Q \lor P$                                  |
|                  | $P \wedge Q \Leftrightarrow Q \wedge P$                              |
| Associatividade  | $(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$                |
|                  | $(P \wedge Q) \wedge R \Leftrightarrow P \wedge (Q \wedge R)$        |
| Distributividade | $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$     |
|                  | $P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge R)$ |
| De Morgan's      | $\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$                |
|                  | $\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$                |
|                  |                                                                      |

| Identidade       | $P \wedge T \Leftrightarrow P$                                       |
|------------------|----------------------------------------------------------------------|
|                  | $P \lor F \Leftrightarrow P$                                         |
| E. absorvente    | $P \lor T \Leftrightarrow T$                                         |
|                  | $P \wedge F \Leftrightarrow F$                                       |
| Idempotência     | $P \lor P \Leftrightarrow P$                                         |
|                  | $P \wedge P \Leftrightarrow P$                                       |
| Dupla negação    | $\neg\neg P \Leftrightarrow P$                                       |
| Comutatividade   | $P \lor Q \Leftrightarrow Q \lor P$                                  |
|                  | $P \wedge Q \Leftrightarrow Q \wedge P$                              |
| Associatividade  | $(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$                |
|                  | $(P \wedge Q) \wedge R \Leftrightarrow P \wedge (Q \wedge R)$        |
| Distributividade | $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$     |
|                  | $P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge R)$ |
| De Morgan's      | $\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$                |
|                  | $\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$                |
| Taut./contr.     | $P \lor \neg P \Leftrightarrow T$                                    |
|                  | $P \land \neg P \Leftrightarrow F$                                   |
|                  |                                                                      |

| Identidade       | $P \wedge T \Leftrightarrow P$                                       |
|------------------|----------------------------------------------------------------------|
|                  | $P \lor F \Leftrightarrow P$                                         |
| E. absorvente    | $P \lor T \Leftrightarrow T$                                         |
|                  | $P \wedge F \Leftrightarrow F$                                       |
| Idempotência     | $P \lor P \Leftrightarrow P$                                         |
|                  | $P \wedge P \Leftrightarrow P$                                       |
| Dupla negação    | $\neg\neg P \Leftrightarrow P$                                       |
| Comutatividade   | $P \lor Q \Leftrightarrow Q \lor P$                                  |
|                  | $P \wedge Q \Leftrightarrow Q \wedge P$                              |
| Associatividade  | $(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$                |
|                  | $(P \wedge Q) \wedge R \Leftrightarrow P \wedge (Q \wedge R)$        |
| Distributividade | $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$     |
|                  | $P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge R)$ |
| De Morgan's      | $\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$                |
|                  | $\neg(P\lor Q)\Leftrightarrow \neg P\land \neg Q$                    |
| Taut./contr.     | $P \lor \neg P \Leftrightarrow T$                                    |
|                  | $P \land \neg P \Leftrightarrow F$                                   |
| Impl./Equiv.     | $P 	o Q \Leftrightarrow \neg P \lor Q$                               |
|                  | $(P \leftrightarrow Q) \Leftrightarrow (P \to Q) \land (Q \to P)$    |

# Equivalência lógica - Leis de DeMorgan

•  $\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$ 

| P | Q | $\neg P$ | $\neg Q$ | $\neg (P \lor Q)$ | $\neg P \wedge \neg Q$ | $\neg (P \lor Q) \leftrightarrow \neg P \land \neg Q$ |
|---|---|----------|----------|-------------------|------------------------|-------------------------------------------------------|
| V | V | f        | f        |                   |                        |                                                       |
| v | f | f        | v        |                   |                        |                                                       |
| f | v | v        | f        |                   |                        |                                                       |
| f | f | ٧        | v        |                   |                        |                                                       |

# Equivalência lógica - Leis de DeMorgan

•  $\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$ 

| P | Q | $\neg P$ | $\neg Q$ | $\neg (P \lor Q)$ | $\neg P \wedge \neg Q$ | $\neg (P \lor Q) \leftrightarrow \neg P \land \neg Q$ |
|---|---|----------|----------|-------------------|------------------------|-------------------------------------------------------|
| ٧ | v | f        | f        |                   |                        |                                                       |
| V | f | f        | v        |                   |                        |                                                       |
| f | v | v        | f        |                   |                        |                                                       |
| f | f | ٧        | v        |                   |                        |                                                       |

•  $\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$ 

| P | Q | $\neg P$ | $^{ ho}$ | $\neg (P \land Q)$ | $\neg P \lor \neg Q$ | $\neg (P \land Q) \leftrightarrow \neg P \lor \neg Q$ |
|---|---|----------|----------|--------------------|----------------------|-------------------------------------------------------|
| V | v | f        | f        |                    |                      |                                                       |
| V | f | f        | ٧        |                    |                      |                                                       |
| f | v | v        | f        |                    |                      |                                                       |
| f | f | V        | V        |                    |                      |                                                       |

#### Exercício:

Para cada um dos pares de fórmulas seguintes, justifique se são ou não equivalentes. Se não forem escolha valores lógicos para as variáveis envolvidas que tornam uma fórmula verdadeira e a outra falsa. Se forem equivalentes, mostre a equivalência por manipulação algébrica.

1. 
$$(p \rightarrow r) \land (q \rightarrow r)$$
 e  $(p \land q) \rightarrow r$ ;

2. 
$$(p \rightarrow q) \land (p \rightarrow r)$$
 e  $p \rightarrow (q \land r)$ .

## Lógica de Primeira Ordem (LPO)

 As fórmulas da lógica de primeira ordem permitem formalizar noções matemáticas (e não só) mais complexas.

# Lógica de Primeira Ordem (LPO)

- As fórmulas da lógica de primeira ordem permitem formalizar noções matemáticas (e não só) mais complexas.
- As fórmulas podem conter variáveis  $x, y, z, \ldots$  que são interpretadas, símbolos para funções  $f, g, h, \ldots$  e símbolos para relações/predicados  $P, Q, S, \ldots$

# Lógica de Primeira Ordem (LPO)

- As fórmulas da lógica de primeira ordem permitem formalizar noções matemáticas (e não só) mais complexas.
- As fórmulas podem conter variáveis  $x, y, z, \ldots$  que são interpretadas, símbolos para funções  $f, g, h, \ldots$  e símbolos para relações/predicados  $P, Q, S, \ldots$
- Podem ainda conter os quantificadores  $\forall$  e  $\exists$ .

# Lógica de Primeira Ordem (LPO)

- As fórmulas da lógica de primeira ordem permitem formalizar noções matemáticas (e não só) mais complexas.
- As fórmulas podem conter variáveis  $x, y, z, \ldots$  que são interpretadas, símbolos para funções  $f, g, h, \ldots$  e símbolos para relações/predicados  $P, Q, S, \ldots$
- Podem ainda conter os quantificadores ∀ e ∃.
- As fórmulas são interpretadas num domínio, a que corresponde um universo onde as variáveis tomam os seus valores e interpretações para os símbolos para funções e predicados.

# Lógica de Primeira Ordem

**Exemplo:**  $\varphi = \forall x P(x)$ 

• Se o universo for  $\mathbb{N}$  e P(x) representar a propriedade  $x \geq 0$ , então  $\varphi$  tem o valor lógico  $\mathbf{v}$ .

# Lógica de Primeira Ordem

### **Exemplo:** $\varphi = \forall x P(x)$

- Se o universo for  $\mathbb{N}$  e P(x) representar a propriedade  $x \geq 0$ , então  $\varphi$  tem o valor lógico  $\mathbf{v}$ .
- Se o universo for  $\mathbb{Z}$  e P(x) representar a propriedade  $x \geq 0$ , então  $\varphi$  tem o valor lógico  $\mathbf{f}$ .

# Lógica de Primeira Ordem

**Exemplo:**  $\varphi = \forall x P(x)$ 

- Se o universo for  $\mathbb{N}$  e P(x) representar a propriedade  $x \geq 0$ , então  $\varphi$  tem o valor lógico  $\mathbf{v}$ .
- Se o universo for  $\mathbb{Z}$  e P(x) representar a propriedade  $x \geq 0$ , então  $\varphi$  tem o valor lógico  $\mathbf{f}$ .

Para fixar o domínio em que uma fórmula deve ser interpretada podemos incluir a interpretação dos símbolos na própria fórmula, escrevendo por exemplo:

$$\forall x \in \mathbb{N} \ x \ge 0$$

oи

$$\forall x \in \mathbb{Z} \ x \ge 0$$

Seja P(x) um predicado em x, com  $x \in A$ . Podemos estabelecer as seguintes proposições:

Seja P(x) um predicado em x, com  $x \in A$ . Podemos estabelecer as seguintes proposições:

•  $\forall x \in A$ . P(x), é verdade se e só se P(x) é verdade para todo  $x \in A$ .

Seja P(x) um predicado em x, com  $x \in A$ . Podemos estabelecer as seguintes proposições:

•  $\forall x \in A$ . P(x), é verdade se e só se P(x) é verdade para todo  $x \in A$ . Esta proposição pode ser lida como "Para todo  $x \in A$ , P(x)".

Seja P(x) um predicado em x, com  $x \in A$ . Podemos estabelecer as seguintes proposições:

- $\forall x \in A$ . P(x), é verdade se e só se P(x) é verdade para todo  $x \in A$ . Esta proposição pode ser lida como "Para todo  $x \in A$ , P(x)".
- $\exists x \in A$ . P(x), é verdade se e só se P(x) é verdade para pelo menos um  $x \in A$ .

Seja P(x) um predicado em x, com  $x \in A$ . Podemos estabelecer as seguintes proposições:

- $\forall x \in A$ . P(x), é verdade se e só se P(x) é verdade para todo  $x \in A$ . Esta proposição pode ser lida como "Para todo  $x \in A$ , P(x)".
- $\exists x \in A$ . P(x), é verdade se e só se P(x) é verdade para pelo menos um  $x \in A$ . Esta proposição pode ser lida como "Existe  $x \in A$ , tal que P(x)".

Seja P(x) um predicado em x, com  $x \in A$ . Podemos estabelecer as seguintes proposições:

- $\forall x \in A$ . P(x), é verdade se e só se P(x) é verdade para todo  $x \in A$ . Esta proposição pode ser lida como "Para todo  $x \in A$ , P(x)".
- $\exists x \in A$ . P(x), é verdade se e só se P(x) é verdade para pelo menos um  $x \in A$ . Esta proposição pode ser lida como "Existe  $x \in A$ , tal que P(x)".

Quando for claro qual o universo, este pode ser omitido das proposições.

# Exemplos

Seja  $\mathcal{U} = \mathbb{R}$ , conjunto dos números reais e  $P(x, y) : x \cdot y = 0$ .

## Exemplos

Seja  $\mathcal{U}=\mathbb{R}$ , conjunto dos números reais e  $P(x,y):x\cdot y=0$ . Qual das seguintes proposições é falsa?

- 1.  $\forall x \forall y. P(x, y)$ .
- 2.  $\forall x \exists y . P(x, y)$ .
- 3.  $\exists x \forall y. P(x, y)$ .
- 4.  $\exists x \exists y . P(x, y)$ .

Quais das seguintes equivalências são válidas:

$$\left[\forall x \in A \ \forall y \in B.P(x,y)\right] \Leftrightarrow \left[\forall y \in B \ \forall x \in A.P(x,y)\right]$$

Quais das seguintes equivalências são válidas:

$$\left[\forall x \in A \ \forall y \in B.P(x,y)\right] \Leftrightarrow \left[\forall y \in B \ \forall x \in A.P(x,y)\right]$$

Válida!!!

Quais das seguintes equivalências são válidas:

$$\left[\forall x \in A \ \forall y \in B.P(x,y)\right] \Leftrightarrow \left[\forall y \in B \ \forall x \in A.P(x,y)\right]$$

#### Válida!!!

$$\left[\forall x \in A \ \exists y \in B.P(x,y)\right] \Leftrightarrow \left[\exists y \in B \ \forall x \in A.P(x,y)\right]$$

Quais das seguintes equivalências são válidas:

$$\left[\forall x \in A \ \forall y \in B.P(x,y)\right] \Leftrightarrow \left[\forall y \in B \ \forall x \in A.P(x,y)\right]$$

#### Válida!!!

$$\left[\forall x \in A \ \exists y \in B.P(x,y)\right] \Leftrightarrow \left[\exists y \in B \ \forall x \in A.P(x,y)\right]$$

#### Não Válida!!!

Quais das seguintes equivalências são válidas:

$$[\forall x \in A \ \forall y \in B.P(x,y)] \Leftrightarrow [\forall y \in B \ \forall x \in A.P(x,y)]$$

#### Válida!!!

$$\left[\forall x \in A \ \exists y \in B.P(x,y)\right] \Leftrightarrow \left[\exists y \in B \ \forall x \in A.P(x,y)\right]$$

#### Não Válida!!!

### Exemplo:

$$\left[\forall n \in \mathbb{Z} \ \exists m \in \mathbb{Z} \ m > n\right] \not\Leftrightarrow \left[\exists m \in \mathbb{Z} \ \forall n \in \mathbb{Z} \ m > n\right]$$



 $\neg \forall x \in A.P(x)$ 

$$\neg \forall x \in A.P(x) \Leftrightarrow \exists x \in A.\neg P(x)$$

$$\neg \forall x \in A.P(x) \Leftrightarrow \exists x \in A.\neg P(x)$$

$$\neg \exists x \in A.P(x)$$

$$\neg \forall x \in A.P(x) \Leftrightarrow \exists x \in A.\neg P(x)$$

$$\neg \exists x \in A.P(x) \Leftrightarrow \forall x \in A. \neg P(x)$$

$$\neg \forall x \in A.P(x) \Leftrightarrow \exists x \in A.\neg P(x)$$

$$\neg \exists x \in A.P(x) \Leftrightarrow \forall x \in A. \neg P(x)$$

Vários quantificadores: lidos da esquerda para a direita!

$$\neg \forall x \in A.P(x) \Leftrightarrow \exists x \in A.\neg P(x)$$

$$\neg \exists x \in A.P(x) \Leftrightarrow \forall x \in A. \neg P(x)$$

Vários quantificadores: lidos da esquerda para a direita!

$$\neg \forall n \in \mathbb{Z} \ \exists m \in \mathbb{Z} \ m > n \ \Leftrightarrow \ ?$$

Qualquer tautologia da forma  $A \to B$  pode ser usada para construir uma regra de inferência da forma  $A \Rightarrow B$ .

Qualquer tautologia da forma  $A \to B$  pode ser usada para construir uma regra de inferência da forma  $A \Rightarrow B$ .

De uma forma geral, uma regra de inferência tem a seguinte forma:

Qualquer tautologia da forma  $A \to B$  pode ser usada para construir uma regra de inferência da forma  $A \Rightarrow B$ .

De uma forma geral, uma regra de inferência tem a seguinte forma:

$$P_1 \wedge P_2 \wedge ... \wedge P_n \Rightarrow Q$$

onde  $P_i$  são chamadas as hipóteses (ou premissas) e  $\mathbf{Q}$  é a conclusão.

Qualquer tautologia da forma  $A \rightarrow B$  pode ser usada para construir uma regra de inferência da forma  $A \Rightarrow B$ .

De uma forma geral, uma regra de inferência tem a seguinte forma:

$$P_1 \wedge P_2 \wedge ... \wedge P_n \Rightarrow Q$$

onde  $P_i$  são chamadas as hipóteses (ou premissas) e  $\mathbf{Q}$  é a conclusão.

Notação alternativa:

$$P_1$$
 $P_2$ 
 $\vdots$ 
 $P_n$ 
 $Q$ 

## Exemplo: modus ponens

Com base na tautologia

$$P \wedge (P \rightarrow Q) \rightarrow Q$$

## Exemplo: modus ponens

Com base na tautologia

$$P \wedge (P \rightarrow Q) \rightarrow Q$$

ou

$$P \rightarrow Q \over Q$$

## Exemplo: modus ponens

Com base na tautologia

$$P \wedge (P \rightarrow Q) \rightarrow Q$$

ou

$$egin{array}{c} P \ P 
ightarrow Q \ \hline Q \end{array}$$

Significa que se P e  $P \to Q$  são válidos podemos concluir que Q é válido.

$$\frac{P}{P \vee Q}$$
 (Adição)

$$\begin{array}{c} \displaystyle \frac{P}{P \vee Q} & \text{(Adição)} \\ \\ \displaystyle \frac{P \wedge Q}{P} & \text{(Simplificação)} \end{array}$$

$$\begin{array}{c} \displaystyle \frac{P}{P \vee Q} & \text{(Adição)} \\ \\ \displaystyle \frac{P \wedge Q}{P} & \text{(Simplificação)} \\ \\ \displaystyle \frac{P}{Q} & \text{(Conjunção)} \\ \\ \hline \end{array}$$

$$\begin{array}{c} \displaystyle \frac{P}{P \vee Q} & \text{(Adição)} \\ \\ \displaystyle \frac{P \wedge Q}{P} & \text{(Simplificação)} \\ \\ \displaystyle \frac{P}{Q} & \text{(Conjunção)} \\ \\ \displaystyle \frac{P \rightarrow Q}{P \wedge Q} & \\ \hline P \rightarrow R & \text{(Transitividade)} \\ \hline \end{array}$$

### Provas formais

Para provar que um argumento é válido ou a conclusão pode ser obtida "logicamente" a partir das hipóteses:

#### Provas formais

Para provar que um argumento é válido ou a conclusão pode ser obtida "logicamente" a partir das hipóteses:

• Assumimos que as hipóteses são verdadeiras

#### Provas formais

Para provar que um argumento é válido ou a conclusão pode ser obtida "logicamente" a partir das hipóteses:

- Assumimos que as hipóteses são verdadeiras
- Usamos regras de inferência e equivalências lógicas para determinar se a conclusão é verdadeira.

$$\begin{array}{c}
P \to Q \\
 \hline
\neg Q \\
 \hline
\neg P
\end{array} \qquad \text{(Modus Tollens)}$$

$$\begin{array}{c}
\neg P \to \mathbf{F} \\
\hline
P
\end{array} \qquad \text{(Contradição)}$$

$$\begin{array}{c} P \to Q \\ \hline \neg Q \\ \hline \neg P \end{array} \qquad \text{(Modus Tollens)}$$
 
$$\frac{\neg P \to \mathbf{F}}{P} \qquad \text{(Contradição)}$$
 
$$\begin{array}{c} P \to R \\ \hline Q \to R \\ \hline P \lor Q \to R \end{array} \qquad \text{(Prova por casos)}$$

$$\begin{array}{c} P \to Q \\ \hline \neg Q \\ \hline \neg P \end{array} \qquad \text{(Modus Tollens)}$$
 
$$\begin{array}{c} \hline P \to \mathbf{F} \\ \hline P \end{array} \qquad \text{(Contradição)}$$
 
$$\begin{array}{c} P \to R \\ Q \to R \\ \hline P \lor Q \to R \end{array} \qquad \text{(Prova por casos)}$$
 
$$\begin{array}{c} P \to R \\ Q \to S \\ \hline P \lor Q \\ \hline R \lor S \end{array} \qquad \text{(Dilema construtivo)}$$

São úteis em demonstração automática de teoremas

São úteis em demonstração automática de teoremas Existem algoritmos (eficientes) para determinar a satisfazibilidade de fórmulas em forma normal disjuntiva.

São úteis em demonstração automática de teoremas Existem algoritmos (eficientes) para determinar a satisfazibilidade de fórmulas em forma normal disjuntiva.

As *fórmulas de Horn* são um tipo especial de fórmulas normais conjuntivas e estão na base da programação lógica.

São úteis em demonstração automática de teoremas Existem algoritmos (eficientes) para determinar a satisfazibilidade de fórmulas em forma normal disjuntiva.

As fórmulas de Horn são um tipo especial de fórmulas normais conjuntivas e estão na base da programação lógica.

Uma fórmula está em forma normal disjuntiva se é da forma:

$$(\alpha_{11} \wedge \cdots \wedge \alpha_{1k_1}) \vee \cdots \vee (\alpha_{n1} \wedge \cdots \wedge \alpha_{nk_n})$$

onde cada  $\alpha_{ij}$  é um literal (uma variável proposicional ou a sua negação).

# Método para encontrar uma fórmula equivalente em DNF

**Exemplo:** encontrar a DNF de  $(p \lor q) \rightarrow \neg r$ .

# Método para encontrar uma fórmula equivalente em DNF

**Exemplo:** encontrar a DNF de  $(p \lor q) \rightarrow \neg r$ .

| р | q | r | $(p \lor q) \to \neg r$ |
|---|---|---|-------------------------|
| f | f | f | V                       |
| f | f | V | V                       |
| f | v | f | V                       |
| f | v | v | f                       |
| V | f | f | V                       |
| V | f | V | f                       |
| V | V | f | V                       |
| V | V | V | f                       |

# Método para encontrar uma fórmula equivalente em DNF

**Exemplo:** encontrar a DNF de  $(p \lor q) \to \neg r$ .

| р | q | r | $(p \lor q) \to \neg r$ |
|---|---|---|-------------------------|
| f | f | f | V                       |
| f | f | V | V                       |
| f | ٧ | f | V                       |
| f | V | v | f                       |
| V | f | f | V                       |
| V | f | v | f                       |
| V | ٧ | f | V                       |
| V | V | V | f                       |

$$\begin{array}{l} (p \vee q) \rightarrow \neg r \Leftrightarrow \\ (\neg p \wedge \neg q \wedge \neg r) \vee (\neg p \wedge \neg q \wedge r) \vee (\neg p \wedge q \wedge \neg r) \vee (p \wedge \neg q \neg r) \vee (p \wedge q \wedge \neg r) \end{array}$$

## Forma normal conjuntiva (CNF)

Uma fórmula está em forma normal conjuntiva se é da forma:

$$(\alpha_{11} \vee \cdots \vee \alpha_{1k_1}) \wedge \cdots \wedge (\alpha_{n1} \vee \cdots \vee \alpha_{nk_n})$$

onde cada  $\alpha_{ij}$  é uma variável proposicional, ou a sua negação.

# Forma normal conjuntiva (CNF)

Uma fórmula está em forma normal conjuntiva se é da forma:

$$(\alpha_{11} \vee \cdots \vee \alpha_{1k_1}) \wedge \cdots \wedge (\alpha_{n1} \vee \cdots \vee \alpha_{nk_n})$$

onde cada  $\alpha_{ij}$  é uma variável proposicional, ou a sua negação.

Método para encontrar uma fórmula equivalente em CNF:

- Usar as linhas da tabela de verdade em que a proposição é falsa.
- Descrever o valor lógico das variáveis nessa linha.
- Negar estas 'descrições', aplicar as leis de Morgan e formar a conjunção dessas 'descrições' (já transformadas em disjunções).

#### Exercícios

- 1. Determine o valor lógico da proposição  $\forall x \exists y. (xy = 1)$  sendo o universo a considerar
  - 1.1 os números reais diferentes de zero.
  - 1.2 os inteiros diferentes de zero.
  - 1.3 os números reais positivos.
- Escreva a seguinte proposição, de forma a que as negações só apareçam em predicados (ou seja, nenhuma negação esteja fora de um quantificador ou de uma expressão envolvendo conectivas).

$$\neg \exists y. (Q(y) \land \forall x. \neg R(x, y))$$

3. Determine uma fórmula normal conjuntiva (disjuntiva) equivalente a  $(p \lor r) \leftrightarrow (q \land \neg p)$ .



Formule cada uma das seguintes afirmações através de uma fórmula matemática. Ou seja, é permitido o uso de quantificadores e conectivas lógicas, operações aritméticas, de teoria de conjuntos e de teoria dos números, assim como os conjuntos  $\mathbb{Q}$ ,  $\mathbb{R}$ , etc., mas não o uso da linguagem natural.

- Qualquer inteiro múltiplo de 4 pode ser escrito como a diferença de dois quadrados perfeitos.
- Existe uma infinidade de números primos.
- Dois inteiros são primos relativos se e só se qualquer inteiro pode ser escrito como a sua combinação linear.
- Conjectura de Goldbach. ("Qualquer inteiro par maior que 2 pode ser escrito como a soma de dois primos.")

- 1. Prove a validade ou falsidade das seguintes afirmações, sendo A, B e C conjuntos quaisquer. Identifique as regras aplicadas em cada um dos passos das provas que apresentar, escrevendo uma afirmação da forma  $x \notin X$  como  $\neg(x \in X)$ .
  - a)  $A \setminus (B \cap C) = (A \setminus B) \cap (A \setminus C)$ ;

a) 
$$A \setminus (B \cap C) = (A \setminus B) \cap (A \setminus C)$$
;

b) 
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

a) 
$$A \setminus (B \cap C) = (A \setminus B) \cap (A \setminus C)$$
;

b) 
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

c) Se 
$$A \subseteq B$$
 e  $B \subseteq C$ , então  $A \subseteq C$ .

a) 
$$A \setminus (B \cap C) = (A \setminus B) \cap (A \setminus C)$$
;

b) 
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

c) Se 
$$A \subseteq B$$
 e  $B \subseteq C$ , então  $A \subseteq C$ .

d) Se 
$$A \subseteq B$$
 e  $B \not\subseteq C$ , então  $A \not\subseteq C$ .

a) 
$$A \setminus (B \cap C) = (A \setminus B) \cap (A \setminus C)$$
;

b) 
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

- c) Se  $A \subseteq B$  e  $B \subseteq C$ , então  $A \subseteq C$ .
- d) Se  $A \subseteq B$  e  $B \not\subseteq C$ , então  $A \not\subseteq C$ .
- e) Se  $A \subseteq B$  e  $B \not\subseteq C$ , então  $A \subseteq C$ .

a) 
$$A \setminus (B \cap C) = (A \setminus B) \cap (A \setminus C)$$
;

b) 
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

- c) Se  $A \subseteq B$  e  $B \subseteq C$ , então  $A \subseteq C$ .
- d) Se  $A \subseteq B$  e  $B \not\subseteq C$ , então  $A \not\subseteq C$ .
- e) Se  $A \subseteq B$  e  $B \not\subseteq C$ , então  $A \subseteq C$ .
- f) Se  $A \not\subseteq B$  e  $B \subseteq C$ , então  $A \not\subseteq C$ .