A Bayesian approach to decision making in early development clinical trials: An R solution

Audrey Yeo

Statisticians in Pharma Conference (PSI) 2024, Amsterdam, NL • This presentation has ALT text and as much as possible, uses colour-blind

Early oncology trials and why phase1b?

Prior and Posterior of Beta Distribution for response rate

- Conjugate Prior is $f(\pi)$, where $\pi \sim \text{Beta}(\alpha, \beta)$, same family of distribution of Posterior (see below)
- We know the mean response rate (RR) is:

$$\pi = \frac{\alpha}{\alpha + \beta}$$

- Likelihood is $f(x|\pi)$, where $x \sim Binomial(x,n)$
- The updated Posterior $f(\pi|x)$ is again a Beta distribution (same family as prior):

$$\pi \mid x \sim \text{Beta}(\alpha + x, \beta + n - x)$$

where x is the number of responders of current trials

History and how to install:

- 2015 : Started as a need in Roche's early development group, package development led by Daniel Sabanés Bové in 2015.
- 2023 : Refactoring, Renaming, adding Unit and Integration tests as current State-of-Art Software Engineering practice.
- 100% written in R and Open Source.
- website: genentech.github.io/phase1b/

```
library(devtools)
devtools::install_github("https://github.com/Genentech/phaselb")
library(phaselb)
```

Use case:

A single arm novel therapeutic with an assumed control response rate is at most 60%

Example	Interim	Final
Responders	16	23
n	23	40
Response rate	69.57 %	57.5 %
Posterior probability*	ask phase1b	ask phase1b
Predictive posterior probability*	ask phase1b	-
Decision to develop molecule further : Go/Stop/Grey Zone	ask phase1b	ask phase1b

^{*} Posterior Probability : $P(\pi > 60\% | \alpha + n, \beta + n - x)$

^{*} Predictive Posterior Probability: P(success or failure at final)

Updating the Posterior and making a decision

- The updated Posterior will have the parameters $\alpha + x$ and $\beta + n x$.
- With the prior of Beta(0.6, 0.4) and the result of our interim results our Posterior has these parameters: Beta(16.6, 7.4)

Historical prior and Updated posterior distribution from 16 responders of 23 at interim analysis for a single arm oncology trial

postprob() example (Lee & Liu, 2008)

Example	Interim	
Responders	16	
n	23	
Response rate	69.57 %	
Standard of Care Response rate	60 %	
Posterior probability	postprob() call from phase1b	

```
1 postprob(x = 16, n = 23, p = 0.60, par = c(0.6, 0.4))
```

[1] 0.8359808

predprob() example (Lee & Liu, 2008), lower threshold

Example Interim		
Responders	16	
n	23	
Response rate (%)	69.57 %	
Standard of Care Response rate (%)	60 %	
Predictive Posterior probability	predprob() call from phase1b	

predprob() example (Lee & Liu, 2008), higher threshold

Example Interim		
Responders	16	
n	23	
Response rate (%)	69.57 %	
Standard of Care Response rate (%)	60 %	
Predictive Posterior probability	predprob() call from phase1b	

```
1 thetaT_high = 0.9
2 result_high_thetaT <- predprob(
3    x = 16, n = 23, Nmax = 40, p = control, thetaT = thetaT_high,
4    parE = c(0.6, 0.4)
5 )
6 result_high_thetaT$result</pre>
```

[1] 0.5655589

Predictive Posterior Probability

(a)
$$P(\theta_T > 0.6 | data) > 60\%$$

With higher threshold : 35 of 40 responders needed to achieve a Go decision

(b)
$$P(\theta_T > 0.6 | data) > 90\%$$

Future successful reponders

Figure 1: Predictive Posterior CDF for different Efficacy Rules

Rules and Operating characteristics. A use case for ocPostprob():

- Look for Efficacy: Go if $P(\pi > 60\%) > 90\%$
- Look for Futility: Stop if $P(\pi < 60\%) > 60\%$
- Prior of treatment arm Beta(0.6, 0.4).

```
1  set.seed(2025)
2  res <- ocPostprob(
3    nnE = c(20, 40), truep = 0.60, p0 = 0.60, p1 = 0.60, tL = 0.60, tU = 0.90, parE = c(0.6, 0.4),
4    sim = 500, wiggle = TRUE, nnF = c(23, 40)
5  )
6  res$oc</pre>
```

ExpectedN PrStopEarly PrEarlyEff PrEarlyFut PrEfficacy PrFutility PrGrayZone 30.384 0.546 0.112 0.082 0.142 0.506 0.352

Expanded features

.... and wiggle room!

	SOC uncertainty	single-arm	two-arm	simulation	plotting	boundaries
postprob		√				
postprobDist	√	V				
predprob		√				
predprobDist	V	√				
ocPostprob		V		√		
ocPostprobDist	V	√		√		
ocPredprob		√		V		
ocPredprobDist	V	√		√		
ocRctPostprobDist	V	√	√	√		
ocRctPredprobDist	V	√	V	√		
plotBeta				√	√	
plotDecision					√	
plotOc					√	
plotBounds					√	
boundsPostprob						V
boundsPredprob						V

- Extension to other therapeutic areas that use response rate as endpoint if beta priors are appropriate
- Contact me to collaborate. Open issues here

References

- Thall P F, Simon R (1994), Practical Guidelines for Phase IIB Clinical Trials, Biometrics, 50, 337-349
- Lee J J, Liu D D (2008), A Predictive probability design for phase II cancer clinical trials, 5(2), 93-106, Clinical Trials
- Yeo, A T, Sabanés Bové D, Elze M, Pourmohamad T, Zhu J, Lymp J, Teterina A (2024). Phase1b: Calculations for decisions on Phase 1b clinical trials. R package version 1.0.0, https://genentech.github.io/phase1b
- Code for this presentation