Nantes ML Meetup

Question Answering avec du Deep Learning

Sommaire

- 1. IA et Deep Learning
- 2. Langage
- 3. Objectifs de recherche
- 4. Méthodologie (QA)
- 5. Modèles
- 6. Implémentation
- 7. Résultats/Validation
- 8. Conclusion

"Intelligence Artificielle": de quoi parle-t-on?

Max Tegmark: intelligence is the "ability to accomplish complex goals"

Machine Learning

Apprentissage supervisé: entraînement de modèles à partir d'un ensemble de données étiquetées (ex: question answering)

Apprentissage non-supervisé: découverte de modèles à partir de données non étiquetées (ex: regrouper des documents similaires en fonction du contenu du texte [LDA])

+ **Apprentissage par renforcement**: apprentissage basé sur la récompense (ex: apprendre à jouer au Go en gagnant ou perdant des millions de parties)

Machine Learning

Source: Rita Waite

Machine Learning Framework

Apprentissage **supervisé** Machine Learning Labeled Data algorithm Training Prediction New data Learned Model Prediction

Réseaux neuronaux, formulation

Réseaux neuronaux

Function modeled by DNN:

$$f(x) = \sigma(W^{(2)} \cdot \sigma(W^{(1)} \cdot x))$$

Individual neurons in layer k

Langage

Natural Language Processing (NLP): ensemble de systèmes pour des interactions de bout en bout ("end-to-end") entre les humains et les machines

Natural Language Understanding (NLU): convertit des entrées non structurées en une représentation qui peut être interprétée par les machines

NLU with Deep Learning: a introduit d'énormes progrès dans la traduction automatique neuronale et le question answering

Motivations

- Interfaces conversationnelles
 - Extraire une représentation d'environnement
 - Interagir en fonction des connaissances et du contexte
- Développements dans l'industrie du langage
 - Traduction
 - Droit
 - Diagnostics
 - Le savoir, la connaissance

Objectifs

- 1. Literature review & choix de méthodes "état de l'art"
- 2. **Implémentation** de modèles QA:
 - i. Recurrent Entity Network (**EntNet**)
 - ii. Query-Reduction Network (QRN)
- 3. **Évaluer** les performances
- 4. Visualiser et comprendre le **processus d'apprentissage** (black-boxes)

Le bAbl Dataset

- benchmark
- 20 tâches QA
- 1k ou 10k échantillons par tâche

Task 5: Three Argument Relations	Task 6: Yes/No Questions	Task 15: Basic Deduction	Task 16: Basic Induction
Mary gave the cake to Fred. Fred gave the cake to Bill. Jeff was given the milk by Bill. Who gave the cake to Fred? Mary Who did Fred give the cake to? Bill	John moved to the playground. Daniel went to the bathroom. John went back to the hallway. Is John in the playground? no Is Daniel in the bathroom? yes	Cats are afraid of dogs. Mice are afraid of cats. Gertrude is a sheep.	Lily is a swan. Lily is white. Bernhard is green. Greg is a swan. What color is Greg? white
Task 7: Counting	Task 8: Lists/Sets	Task 17: Positional Reasoning	Task 18: Size Reasoning
Daniel picked up the football. Daniel dropped the football. Daniel got the milk. Daniel took the apple. How many objects is Daniel holding? two	Daniel picks up the football. Daniel drops the newspaper. Daniel picks up the milk. John took the apple. What is Daniel holding? milk, football	The triangle is to the right of the blue square. The red square is on top of the blue square. The red sphere is to the right of the blue square. Is the red sphere to the right of the blue square? yes Is the red square to the left of the triangle? yes	The football fits in the suitcase. The suitcase fits in the cupboard. The box is smaller than the football. Will the box fit in the suitcase? yes Will the cupboard fit in the box? no

Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNN)

L'architecture des **RNN** est particulièrement fondamentale aux modèles de QA.

Recurrent Neural Networks (RNN)

RNN: exemple simple

Framework

Neural network-based

methods

+

QA (contexte supervisé)

- story (observations)
- question (trigger)
- answer (target)

EntNet - Position Encoding

Ce module extrait:

- la représentation d'une phrase w
- l'information / de l'ordre des mots dans la phrase

$$f_{i} = \sum_{j} l_{j} \cdot w_{ij}$$

$$l_{kj} = (1 - j/J) - (k/d)(1 - 2j/J)$$

EntNet - Entity Memory Cells

Memory blocks:

- s_t sentence t of a story
- h_i memory j from block j
- w_i key vector j from block j

Memory update mechanism

$$g_j = \sigma(s_t^T h_j + s_t^T w_j)$$

$$\widetilde{h_j} = \phi(U h_j + V w_j + W s_t)$$
 Hidden state $\rightarrow h_j = h_j + g_j \odot \widetilde{h_j}$

EntNet

Memory update mechanism

$$g_j = \sigma(s_t^T h_j + s_t^T w_j)$$
 $\widetilde{h_j} = \phi(U h_j + V w_j + W s_t)$ Hidden state $\rightarrow h_j = h_j + g_j \odot \widetilde{h_j}$

Output module

$$p_{j} = \operatorname{Softmax}(q^{T}h_{j})$$

$$u = \sum_{j} p_{j}h_{j}$$

$$y = R\phi(q + Hu)$$

Framework - EntNet

information flow

21

Implémentations

Apprentissage

Le modèle est très instable: faire plusieurs simulations (x3) avec différentes initialisations aléatoires

Tri: des textes les plus courts aux plus longs pour un apprentissage progressif

Régularisation: L2-norm, dropout

RNN bi-directionnels : permet des rétro-inférences

Implémentations

Training

- bAbl dataset divisé avec un ratio de 0.9 pour l'apprentissage et le test
- batch_size: 32 pour le dataset 1k et 128 pour le dataset 10k
- embedding size des modules d'entrée et de sortie: 50
- fonction coût: cross entropy
- minimisée par SGD pour un maximum de 500 epochs
- learning rate contrôlé par AdaGrad

Un modèle réussit une tâche si son score est supérieur à 95%.

Experiments

EntNet

10k dataset : 13/20 tâches réussies

1k dataset:

Task ID	Epochs	Train Loss	Train Acc.	Test Loss	Test Acc.
Task 1	20	0.05	98.35	0.13	95.97
Task 2	200	0.17	97.96	3.51	32.71
Task 3	140	0.06	99.97	4.19	35.10
Task 4	20	0.00	100	0.00	100
Task 5	10	0.06	98.72	0.07	98.86
Task 6	50	0.01	99.78	0.16	95.21
Task 7	20	0.03	98.57	0.05	98.23
Task 8	20	0.02	99.19	0.07	97.60
Task 9	200	0.00	100	0.33	90.52
Task 10	40	0.01	99.85	0.17	$\boldsymbol{95.52}$
Task 11	50	0.00	100	0.29	95.31
Task 12	20	0.00	100	0.01	99.90
Task 13	50	0.00	100	0.24	$\boldsymbol{95.52}$
Task 14	200	0.00	100	0.63	79.06
Task 15	50	0.02	99.43	0.11	95.42
Task 16	200	0.49	80.78	0.88	47.60
Task 17	200	0.00	100	0.35	90.63
Task 18	40	0.06	96.73	0.07	95.83
Task 19	170	0.04	99.98	1.69	41.77
Task 20	20	0.03	98.43	0.03	98.97

Experiments

EntNet

10k dataset : 13/20 tâches réussies

1k dataset: 4/20 tâches réussies

Performe mieux que, mais **est similaire** à d'autres modèles de réseaux de mémoire sur le même dataset.

Ces architectures sont trop complexes et souffrent de:

- sur-apprentissage (overfitting) sur les petits datasets
- vanishing gradient descent (sur les phrases et textes longs)

Framework - QRN

information flow

26

QRN Cells

Réduction de la *question* avec chaque représentation de *phrase*.

QRN cell mechanism

$$z_t = \alpha(x_t, q_t) = \sigma(W^{(z)}(x_t \circ q_t) + b^{(z)})$$

$$\tilde{h}_t = \rho(x_t, q_t) = \tanh(W^{(h)}[x_t; q_t] + b^{(h)})$$

$$\text{Hidden state} \rightarrow h_t = z_t \tilde{h}_t + (1-z_t) h_{t-1}$$

THE SLIDE WAS CORRECT!

(sorry for the blurred explanation following the question, I focused too much on the 3^{rd} line) h_t is indeed updated using z_t the update gate and h_{t-1} the reduced query at time-step t-1. What is crucial here is that the gate z_t controlling the update is computed on the current memory slot <u>only</u>. Hence the gate is <u>locally defined</u> and allows the QRN cell to avoid vanishing gradient across the story when updating the hidden state in the 3^{rd} equation. If this raises more questions, don't hesitate to contact me: vannisfbe@gmail.com:-)

QRN

QRN cell mechanism

$$z_t = \alpha(x_t, q_t) = \sigma(W^{(z)}(x_t \circ q_t) + b^{(z)})$$
$$\tilde{h}_t = \rho(x_t, q_t) = \tanh(W^{(h)}[x_t; q_t] + b^{(h)})$$

Hidden state $\rightarrow h_t = z_t \tilde{h}_t + (1-z_t) h_{t-1}$

Output module

$$\hat{y} = softmax(W^y \hat{h})$$
 + argmax

Experiments

QRN

1k dataset : 15/20 tâches réussies

Pour rappel, EntNet:

10k dataset : 13/20 tâches réussies

Task ID	Epochs	$Train\ Loss$	$Train\ Acc.$	$Test\ Acc.$
Task 1	500	0.07	100	100
Task 2	500	0.29	100	100
Task 3	560	0.82	99.21	96.43
Task 4	500	0.14	100	100
Task 5	500	0.09	100	98.79
Task 6	500	0.07	100	100
Task 7	700	0.12	99.98	95.87
Task 8	500	0.15	99.88	99.20
Task 9	700	0.06	100	97.68
Task 10	500	0.08	100	97.78
Task 11	500	0.07	100	100
Task 12	500	0.10	100	100
Task 13	500	0.12	99.88	96.78
Task 14	500	0.16	100	82.76
Task 15	500	0.07	100	100
Task 16	500	0.43	100	46.17
Task 17	500	0.31	96.65	51.62
Task 18	500	0.16	95.09	92.74
Task 19	500	0.67	100	15.63
Task 20	500	0.11	98.44	97.98

Experiments

QRN

- Nos résultats sont proches des résultats du papier: 11,43 au lieu de 11,3 (average loss score).
- Surpasse les autres modèles basés sur la mémoire pour la petite et grande version du bAbl dataset.
- 3. h_t ne dépend pas de l'état caché précédent.
- La cellule QRN est à la fois un mécanisme d'attention et un RNN.

QRN cell

$$\begin{vmatrix} z_t = \alpha(x_t, q_t) = \sigma(W^z(x_t \circ q_t) + b^z) \\ r_t = \beta(x_t, q_t) = \sigma(W^r(x_t \circ q_t) + b^r) \\ \tilde{h}_t = \rho(x_t, q_t) = \tanh(W^h[x_t; q_t] + b^h) \\ h_t = z_t r_t \tilde{h}_t + (1 - z_t) h_{t-1} \end{vmatrix}$$

Visualize the learning

QRN

Cibler une entité (John)

			facts		1			2		3			
				z	rf	rb	z	rf	rb	z rf	rb		
				Sandra moved to the garden	0.01	0.98	0.27	0.00	0.54	0.35	0.03 0.00	00.0	
		 Sandra moved to the garden Daniel took the apple there 	Daniel took the apple there	0.98	0.81	0.94	0.92	0.90	0.96	0.00	00.0		
		3. Daniel dropped the apple	Daniel dropped the apple	0.97	0.65	0.94	0.99	0.09	0.89	0.04 0.00	00.0		
70 Where is the apple 02	4. Sandra travelled to the office	Sandra travelled to the office	0.06	0.92	0.31	0.00	0.31	0.29	0.02 0.00	00.0			
		5. John moved to the kitchen 6. Sandra moved to the garden 7. Daniel went back to the bathroom 8. Mary travelled to the hallway 9. Sandra went to the bathroom 10. John went back to the bedroom	John moved to the kitchen	0.04	0.84	0.26	0.00	0.38	0.52	0.94 0.00	00.0	yp = garden y = garden	
	02		Sandra moved to the garden	0.01	0.98	0.27	0.00	0.33	0.34	0.05 0.00	00.0		
	02		Daniel went back to the bathroom	0.01	0.68	0.19	0.00	0.21	0.33	0.03 0.00	00.0		
			Mary travelled to the hallway	0.04	0.84	0.19	0.00	0.38	0.30	0.07 0.00	00.0		
		11. Mary moved to the garden	Sandra went to the bathroom	0.00	0.94	0.18	0.00	0.55	0.21	0.02 0.00	00.0		
	12. John picked up the apple there John went back to the bedroom 0.03 0.85 0.27 0.00 0.	0.15	0.40	0.91 0.00	00.0								
		13. John went back to the kitchen14. John went back to the garden	Mary moved to the garden	0.01	0.99	0.29	0.00	0.19	0.43	0.09 0.00	00.0		
	John picked up the ap	14. John went back to the garden	John picked up the apple there	0.98	0.84	0.95	0.99	0.95	0.99	0.00 0.00	00.0		
		John went back to the kitchen	0.09	0.61	0.27	0.02	0.62	0.43	0.94 0.00	0.00			
			John went back to the garden	0.03	0.86	0.31	0.06	0.44	0.47	0.93 0.00	0.00		

Visualize the learning

QRN

Motivations

				facts	1		2				
885	Why did yann go to the garden	20	 Yann is bored Antoine is tired Yann moved to the garden 	A COLUMN TO STOLE SERVICE STOLE SERVICE STOLE SERVICE STOLE STOLE SERVICE SERV	0.12	0.54	0.48	0.96 0.78	0.00	rb 0.00 0.00 0.00	yp = bored y = bored

Connaissances

883	Where will yann go	20	1. Yann is bored	III IIZ IITI IITO IIZ IITI IITO II	yp = garden y = garden
884	Where will antoine go	20	 Yann is bored Antoine is tired 		yp = bedroom y = bedroom

Conclusion

- Memory-based networks (EntNet) extraient des "vecteurs" de mémoire pertinents avant de les confronter à la question. Mais ils nécessitent énormément de paramètres.
- QRN utilise une cellule récurrente à porte pour:
 - o extraire à chaque fenêtre de temps une représentation des faits pertinents d'une histoire
 - o tirer parti de la capacité récurrente des RNN pour modéliser des données séquentielles
 - o évite le problème de dépendance à long terme sur les longs textes
- RNN manifeste de fortes performances pour modéliser le langage:
 - question answering
 - machine translation
 - speech recognition

Future works

- Real-world datasets:
 - SQuAD
 - NewsQA

- Module d'entrée hybride:
 - character-level and word-level
 - le reste du modèle est partagé entre les modules d'entrée

References

M. Seo et al., "Query-Reduction Networks for Question Answering", June 2016. (https://arxiv.org/pdf/1606.04582.pdf)

M. Henaff, Y. LeCun et al., "Tracking the world state with recurrent entity networks", 2016. (https://arxiv.org/pdf/1612.03969.pdf)

A. Kumar et al., "Ask me anything: Dynamic memory networks for natural language processing", International Conference on Machine Learning, pp. 1378–1387, 2016. (https://arxiv.org/pdf/1506.07285.pdf)

S. Sukhbaatar, J. Weston et al., "End-to-end memory networks", Advances in neural information processing systems, pp. 2440–2448, 2015. (https://arxiv.org/pdf/1503.08895.pdf)

X. Zhang, Y. LeCun, "Text Understanding from Scratch", 2015. (https://arxiv.org/pdf/1502.01710.pdf)

Merci. Avez-vous des questions?