Project Development Phase Model Performance Test

Date	27 June 2025
Team ID	LTVIP2025TMID44008
Project Name	Transfer Learning-based Classification of Poultry
	Diseases for Enhanced Health Management
Maximum Marks	

Model Performance Testing:

Model Summary

When using a pre-trained model like ResNet50 or EfficientNet in transfer learning, the model.summary() displays:

- The layer-wise architecture of the model
- Number of trainable and non-trainable parameters
- The input and output shapes at each layer

Training Accuracy

- This reflects how well the model fits the training data.
- Ideally, it should increase over epochs.
- Too high (>98%) training accuracy might indicate overfitting, especially if validation accuracy is much lower.

Validation Accuracy

- Indicates the model's generalization on unseen data.
- It should ideally track close to training accuracy.
- A large gap implies overfitting.

S.No.	Parameter	Values	Screenshot
1.	Model Summary	-	

model.summary()

Model: "functional_2"

Layer (type)	Output Shape	Param #
input_layer_3 (InputLayer)	(None, 224, 224, 3)	9
block1_conv1 (Conv2D)	(None, 224, 224, 64)	1,792
block1_conv2 (Conv2D)	(None, 224, 224, 64)	36,928
block1_pool (MaxPooling2D)	(None, 112, 112, 64)	9
block2_conv1 (Conv2D)	(None, 112, 112, 128)	73,856
block2_conv2 (Conv2D)	(None, 112, 112, 128)	147,584
block2_pool (MaxPooling2D)	(None, 56, 56, 128)	9
block3_conv1 (Conv2D)	(None, 56, 56, 256)	295,168
block3_conv2 (Conv2D)	(None, 56, 56, 256)	590,080
block3_conv3 (Conv2D)	(None, 56, 56, 256)	590,080
block3_pool (MaxPooling2D)	(None, 28, 28, 256)	9
block4_conv1 (Conv2D)	(None, 28, 28, 512)	1,180,160
block4_conv2 (Conv2D)	(None, 28, 28, 512)	2,359,808
block4_conv3 (Conv2D)	(None, 28, 28, 512)	2,359,808
block4_pool (MaxPooling2D)	(None, 14, 14, 512)	9
block5_conv1 (Conv2D)	(None, 14, 14, 512)	2,359,808
block5_conv2 (Conv2D)	(None, 14, 14, 512)	2,359,808
block5_conv3 (Conv2D)	(None, 14, 14, 512)	2,359,808
block5_pool (MaxPooling2D)	(None, 7, 7, 512)	0
global_average_pooling2d_1 (GlobalAveragePooling2D)	(None, 512)	0
dense_9 (Dense)	(None, 1024)	525,312
dense_10 (Dense)	(None, 1024)	1,049,600
dense_11 (Dense)	(None, 512)	524,800
batch_normalization_2 (BatchNormalization)	(None, 512)	2,048
dropout_2 (Dropout)	(None, 512)	0
dense_12 (Dense)	(None, 512)	262,656
dense_13 (Dense)	(None, 512)	262,656
dense_14 (Dense)	(None, 512)	262,656
batch_normalization_3 (BatchNormalization)	(None, 512)	2,048
dropout_3 (Dropout)	(None, 512)	0
dense_15 (Dense)	(None, 4)	2,052

Total params: 23,392,078 (89.23 MB)
Trainable params: 2,891,780 (11.03 MB)
Non-trainable params: 14,716,736 (56.14 MB)
Optimizer params: 5,783,562 (22.06 MB)

2.	Accuracy	Training Accuracy - Validation Accuracy -	Final Training Accuracy: 0.8070 Final Validation Accuracy: 0.6435
3.	Fine-Tuning Result(if Done)	Validation Accuracy -	Trial 30 Complete [000 01m 57s] val_accuracy: 0.3700000047683716 Best val_accuracy So Far: 0.386999945163727 Total elapsed time: 000 34m 56s The Optimal number of units in the dense layer is 512 and the optimal learning rate for the optimizer is 0.0003018648711268866. Epoch 1/10 63/63

Training Accuracy per epoch: [0.8040000200271606, 0.7994999885559082, 0.8050000071525574, 0.8234999775886536, 0.7985000014305115, 0.8069999814033508]
Validation Accuracy per epoch: [0.6399999856948853, 0.6420000195503235, 0.6424999833106995, 0.6430000066757202, 0.6434999704360962, 0.6434999704360962]

Final Training Accuracy: 0.8070 Final Validation Accuracy: 0.6435