Geometria Riemanniana

Índice

_	Aula 1 1.1 Lembrando	1
2	Exercícios de do Carmo	5
	2.1 Capítulo 0	5
	2.2 Capítulo 1	

1 Aula 1

1.1 Lembrando

Definição Variedade diferenciável

- 1. M espaço topológico Hausdorff (T²), base enumerável. Essas duas condições são equivalentes à existência de partições da unidade.
- 2. M localmente euclídeo, i.e. $\mathcal{A} = \{(\chi_{\lambda}, U_{\lambda})\}, \chi_{\lambda} : U_{\lambda} \subset M \to \chi_{\lambda}(U_{\lambda}) \subset \mathbb{R}^{n}$, com $M = \bigcup_{\lambda} U_{\lambda}$. Dizemos que n é a *dimensão* de M.
- 3. Restringindo dois abertos U_{λ} , U_{μ} com $U_{\lambda} \cap U_{\mu} \neq \varnothing$, a *mudança de coordenadas* $\chi_{\mu} \circ \chi_{\lambda}^{-1} : \chi_{\lambda}(U_{\lambda} \cap U_{\mu}) \to \chi_{\mu}(U_{\lambda} \cap U_{\mu})$ deve ser diferenciável. (Nesse curso diferenciável é C^{∞} a menos que especifiquemos).
- 4. Maximalidade, i.e. \mathcal{A} é maximal.

Definição (Mapa diferenciável) $f: M^n \to N^m$ se para todo ponto com cartas (x, U) de M e (y, V) de N o mapa $y \circ f \circ x^{-1}$ é diferenciável. Denotaremos o conjunto de funções diferenciaveis por $\mathcal{F}(M, N)$. Em particular $\mathcal{F}(M) := \mathcal{F}(M, \mathbb{R})$.

Definição (Espaço tangente) $\mathcal{G}_p(M)$ é o espaço de funções definidas num aberto de p identificando duas delas se coincidem em qualquer aberto contendo p.

$$\mathsf{T}_{\mathfrak{p}} \mathsf{M} := \{ \mathsf{v} \in \mathscr{T}_{\mathfrak{p}}(\mathsf{M})^* : \mathsf{v}(\mathsf{f} \mathsf{g}) = \mathsf{f}(\mathsf{p}) \mathsf{v}(\mathsf{g}) + \mathsf{g}(\mathsf{p}) \mathsf{v}(\mathsf{f}) \}$$

Pergunta $\mathcal{F}_p(M)$ es el stalk de la gavilla de funciones suaves? Qué pasa si definimos algo como las derivaciones en $\mathcal{F}(U)$.

A la hora de definir base de T_pM con los operadores ∂_i necesitamos fijar una carta, así que en realidad no hay una base canónica de T_pM .

Definição (Diferencial de uma função)

$$df_p: T_pM \to T_{f(p)}N$$

definida para $g \in T_{f(p)}N$ como

$$df_p(\nu)(g)=\nu(g\circ f)$$

Observação A regra da cadeia é uma tautologia dessa definição!

Definição (Base canônica do espaço tangente) Definimos

$$\partial_i|_p = \frac{\partial}{\partial x_i}\Big|_p \in T_pM$$

como, para $g \in T_p M$,

$$\frac{\partial}{\partial x_i}\Big|_p(g) = \frac{\partial (g\circ x^{-1})}{\partial u_i}$$

Exercício Mostre que $\{\partial_1|_p, \dots, \partial_n|_p\}$ é uma base de T_pM .

Solution. Primeiro note que $\{\partial_i|_{\mathfrak{p}}\}$ é linearmente independente. Suponha que

$$\sum a_i \partial_i|_p = 0$$

Then for every function this gives zero, so in particular for coordinate functions $x_i:U\to\mathbb{R}$, so

$$0 = \Big(\sum \alpha_i \partial_i\Big) x_j = \sum \alpha_i \delta_{ij} = \alpha_j \qquad \text{for all } j.$$

Now let's check span $\partial_i|_p=T_pM$. Choose a vector $\nu\in T_pM$ and let

$$w := \nu - \sum_{i} \nu(x_i) \partial_i|_{p}.$$

We wish to show that w = 0.

Then there's the following trick: a function $g:\mathbb{R}\to\mathbb{R}$ with g(0)=0 can be written g(t)=th(t) for some continuous function h (subexercise: construct h, it's an integral). So if we define $\tilde{g}(t)=g(t)-g(0)$ we can write for any $g:\mathbb{R}\to\mathbb{R}$ (without asking that g(0)=0) just g(t)=g(0)+th(t)

Subexercise Mostre que para toda $g: \mathbb{R} \to \mathbb{R}$ existe $h: \mathbb{R} \to \mathbb{R}$ contínua tal que g(t) = g(0) - th(t). **Solution.** Let $m_x: \mathbb{R} \to \mathbb{R}$ be the function that multiplies t times a fixed number x. Notice that, for a fixed x, by fundamental theorem of Calculus

$$\int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} (g \circ \mathfrak{m}_x)(t) \mathrm{d}t = g(x) - g(0)$$

and also

$$\int_0^1 \frac{d}{dt} (g \circ m_x)(t) dt = \int_0^1 g'(xt) \cdot x = x \int_0^1 g'(xt) dt$$

Then we define

$$h(x) := \int_0^1 g'(xt) dt$$

and immediately we get g(x) = g(0) - xh(x).

Subsubexercise Now do that for $g: \mathbb{R}^n \to \mathbb{R}$. I think the correct claim is that there exists $h: \mathbb{R}^n \to \mathbb{R}^n$ such that for every $\vec{x} \in \mathbb{R}^n$ we have $g(\vec{x}) = g(\vec{0}) + \vec{x} \cdot h(\vec{x})$. **Solution.** Now m_x multiplies the vector x times the real number t, it is a function $m_x: \mathbb{R} \to \mathbb{R}^n$. We get

$$\int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} (g \circ \mathfrak{m}_{\chi})(t) \mathrm{d}t = g(\vec{x}) - g(\vec{0}).$$

And also

$$\int_0^1 \frac{d}{dt} (g \circ m_x)(t) dt = \int_0^1 \nabla_{t\vec{x}} g \cdot \vec{x} dt = \int_0^1 \sum \frac{\partial}{\partial x_i} g \Big|_{t\vec{x}} x_i dt = \sum x_i \cdot \int_0^1 \frac{\partial g}{\partial x_i} \Big|_{t\vec{x}}.$$

Definimos

$$h(\vec{x}) := \left(\int_0^1 \frac{\partial g}{\partial x_1} \bigg|_{t\vec{x}} dt, \ldots, \int_0^1 \frac{\partial g}{\partial x_n} \bigg|_{t\vec{x}} dt \right)$$

Back to the original exercise... Let's try to use this trick to conclude that w(g) = 0 for all $g \in \mathcal{F}_p$. Since it's a local statement I just suppose that g is a function $g : \mathbb{R}^n \to \mathbb{R}$. Then there is a function $h : \mathbb{R}^n \to \mathbb{R}^n$ such that for every $x \in \mathbb{R}^n$, $g(x) = g(0) + x \cdot h(x)$.

Right so remember that I chose an arbitrary vector $v \in T_pM$ and defined $w = v - \sum v(x_i)\partial_i|_p$. I can see that $w(x_i) = 0$ for all coordinate functions x_i . But also for g as above I get

$$w(g) = w(g(0) + x \cdot h(x)) = w(x \cdot h(x)) = w\left(\sum x_i h_i(x)\right) = \sum w(x_i h_i(x))$$
$$= \sum w(x_i) h_i(x) + x_i h_i(x)$$

and the second term also vanishes if we suppose that the coordinates of our point, x_i , are all zero. Which makes me think: I think that's the point of the trick, that it somehow manages to put the coordinates of the point inside the whole thing, and then we can suppose the coordinates are 0 and simplify everything.

Definição (Fibrado tangente) Como os $\mathcal{F}_p(M)$ são disjuntos, porque M é Hausdorff, os espaços tangentes são disjuntos para pontos distintos.

$$TM := \bigsqcup_{p \in M} T_p M$$

com a estrutura diferenciável que você já conhece.

A projeção natural $\pi: TM \to M$ é uma sumersão no sentido da seguinte definição. (Exercício?)

Definição (Imersão e sumersão)

- 1. Imersão se para todo $p \in M$, df_p é injetiva (e isso implica que $n \leq m$).
- 2. *Sumersão* de df_p é sobrejetiva para todo p, implicaq ue $n \ge m$.
- 3. *Difeomorfismo local* se para todo ponto df_p é um isomorfismo. Isso é equivalente a que para todo ponto existe um aberto tal que $f|_U:U\to V$ é um difemorfismo (teo. função inversa). (Checar.)

Note que $f:M\to N$ contínua é como dizer que a topologia induzida por $f,\tau_f\subset\tau_M$. Mas a igualdade nem sempre tem (e.g. figura 8). f é um mergulho se $\tau_f=\tau_M$. Isso é equivalente a que $f(M)\subset N$ seja uma subvariedade e $f:M\overset{\text{difeo}}{\simeq} f(M)\subset N$.

Definição (Campo coordenado) Numa vizinhança U de p,

$$\begin{split} \partial: U &\longrightarrow TU \subset TM \\ p &\longmapsto \frac{\partial}{\partial x_i} \Big|_p \in T_pM \end{split}$$

Observação Podemos quase extender esse campo. Num aberto $V \subset U$ cujo fecho $\bar{V} \subset U$. Pega a coberta $\{M \setminus \bar{V}, U\}$. Então existe part. unidade (ξ, ϕ) . Por definição, $\phi|_V = 1$. Defina $x = \phi \partial_i$.

Definição (Fibrado vetorial) Um *fibrado vetorial* E^k sobre M^n de posto $k \in \mathbb{N} \cup \{0\}$ é

- 1. $\pi: E \to M^n$ submersão sobrejetiva.
- 2. $\forall p \in M$, $E_p = \pi^{-1}(p)$ é um \mathbb{R} -e.v. de dimensão k.
- 3. $\forall p \in M$, existe $p \in U \subset M$ y ϕ_U tal que
 - (a) $\varphi_{11}: \pi^{-1}(U) \stackrel{\text{dif}}{\simeq} U \times \mathbb{R}^k$.
 - (b) ϕ_U conmuta con la proyección, i.e.

(c) $\forall q \in U, \, \phi|_{E_q} : E_q \to \{q\} \times \mathbb{R}^k \cong \mathbb{R}^k$ é um isomorfismo linear.

Isso é equivalente a pedir que exista um *atlas trivializante* de E. É $\{(\phi,\underbrace{\pi(U)}_{\subseteq E}:$

 $U\in\Lambda\subset\tau_M\}$ es decir una familia de abiertos en E indexada por una familia de

abiertos de M. Considere dos de estos abiertos con $W := U \cap V \neq \emptyset$.

onde estamos parametrizando numa variedade! Ou seja, implícitamente estamos pegando cartas nela, mas podemos deixá-lo assim.

Temos as funções de transição

$$\phi_{VU} = \phi_{V} \circ \phi_{U}^{-1}|_{W \times \mathbb{R}^{k}} : W \times \mathbb{R}^{k} \to W \times \mathbb{R}^{k}$$

que realmente estão determinadas por a parte linear:

$$\varphi_{VU}(Q, \nu) = (Q, \xi_{VU}(Q)(\nu)$$

onde

$$\xi_{VU}: W \to GL(k, \mathbb{R})$$

e são chamadas de *funções de transição* de E. Elas satisfacem

$$\xi_{VU} \circ \xi_{SV} = \xi_{SU}$$
 cocycle condition

no seria...
$$\xi_{VU} \circ \xi_{US} = \xi_{VS}$$

Então podemos formar um fibrado vetorial a partir das funções de transição só.

2 Exercícios de do Carmo

2.1 Capítulo 0

Exercise 2 Prove que o fibrado tangente de uma variedade diferenciável M é orientável (mesmo que M não seja).

Solution. Es porque la diferencial de los cambios de coordenadas está dada por la identidad y una matriz lineal. Sí, porque por definición las trivializaciones locales de TM preservan la primera coordenada y son isomorfismos lineales en la parte del espacio vectorial. Entonces queda que

$$d(\phi_U \circ \phi_V^{-1}) = \begin{pmatrix} Id & 0 \\ 0 & \xi \in \text{GL}(n) \end{pmatrix}$$

pero no estoy seguro de por qué ξ preservaría orientación, i.e. que tenga determinante positivo... a menos de que...

2.2 Capítulo 1

Exercise 1 Prove que a aplicação antípoda $A: S^n \to S^n$ dada por A(p) = -p é uma isometria de S^n . Use este fato para introduzir uma métrica Riemanniana no espaço projetivo real $\mathbb{R}P^n$ tal que a projeção natural $\pi: S^n \to \mathbb{R}P^n$ seja uma isometria local.

Solution. Lembre que a métrica de S^n é a induzida pela métrica euclidiana, onde pensamos que $T_pS^n \hookrightarrow T_p\mathbb{R}^{n+1}$. É claro que A é uma isometría de \mathbb{R}^n , pois ela é a sua derivada (pois ela é linear), de forma que $\langle \nu, w \rangle_p = \langle -\nu, -w \rangle_{A(p)} = \langle \nu, w \rangle_{-p}$.

É um fato geral que se as transformações de coberta preservam a métrica, obtemos uma métrica no quociente de maneira natural, i.e. para dois vetores $v, w \in T_p \mathbb{R}P^n$ definimos $\langle v, w \rangle_p^{\mathbb{R}P^n} := \langle \tilde{v}, \tilde{w} \rangle_{\tilde{p} \in \pi^{-1}(p)}$.

Para ver que a projeção natural é uma isometria local basta ver que a diferencial de A é um isomorfismo em cada ponto. Mas como ela é -A, isso é claro.