

Advanced Predictive Analytics 2016

Introduction to R

Outline

- 1. Introduction
- 2. Why R?
- 3. R vs. SAS
- 4. Objective of this course

- Teacher: Prof. Dr. Dirk Van den Poel
- Teaching assistants:
 - Matthias Bogaert
 - Steven Hoornaert
- Questions?
 - Help your fellow students and use the Minerva forum!
 - Mail: <u>matthias.bogaert@ugent.be</u> and <u>steven.hoornaert@ugent.be</u>
 - Appointment? Send an e-mail first!

- Software:
 - R base: http://cran.r-project.org/
 - R Studio: http://www.rstudio.com/

- Purpose of this session: go over the skills we require you to have in R before the start of *Advanced Predictive* Analytics (9 Feb 2016).
- The material given in this session, will not be revisited as such during the course. We assume that you are proficient in R before the start of the first course of Advanced Predictive Analytics.

- Extra training material is available:
 - Coursera course: 'R programming'
 - https://www.coursera.org/course/rprog
 - A lot of other interesting courses in the 'Data Science'-specialization.

2. Why R?

Strengths

- Open-source: a lot of packages available (especially for predictive analytics)
- Computing environment & low-level programming language
- Efficient & fast syntax writing
- Great for plotting
- Matrix computing

Weaknesses

- Limited scalability (works on system memory)
 - Can be problematic when working with very large datasets!
- Data manipulation is not always easy.
- Steep learning curve!

Why is R hard to learn?

- Too many commands
- Inconsistent syntax
- Poor ability to select variables
- Inconsistent in analyzing multiple variables
- Too many ways to transform & select variables
- Loop-a-phobia

So why R?

Generally speaking, the pros outweigh the cons. Nowadays, R is gaining **more** and more importance in today's business world in favor of SAS. Furthermore, R is perfectly suited for modeling purposes and contains a lot of packages for predictive and prescriptive analytics. Hence R is considered the 'lingua franca' of statistics.

3. R vs SAS

SAS

DATA step in SAS works with a built-in loop.
SAS reads one row of data, evaluates the code line-by-line, executes and goes to the next row.

• R

 R doesn't have a built-in loop. R applies functions to columns i.e. R works in a vectorlogic.

SAS

R

Conclusion: SAS vs R

- SAS
 - The basic building blocks are ROWS
- R
 - The basic building blocks are COLUMNS

R vs SAS vs Python

WINNER

10210		
2	5	5
4.5	2.5	3.5
4	4	4
3	4.5	4
4	4.5	4
4.5	3.5	2.5
4	3.5	3
	4 3 4 4.5	4 4 3 4.5 4.5 4.5 3.5

4. Objectives

- Data understanding
 - Basic data structures, data read-in, data exploration.
- Data preparation
 - Manipulate and transform data; combine into a basetable
 - 'The basetable is the beating heart of predictive modeling.'

5. Basetable

- What is a basetable?
 - Every row = unique observation
 - e.g. Customer ID
 - Columns
 - Dependent variable: what you want to predict
 - ◆ E.g. churn (binary), cross-sell (binary or multi-label), CLV (numeric), ...
 - Independent variables (or *predictors*): data characteristics
 - ★ E.g. recency, frequency and monetary value

5. Basetable

Churn	Recency	Frequency	Monetary Value	Gender
1	20	50	300	1
1	36	12	600	0
0	5	5	200	0
1	45	1	50	1
0	5	60	1000	1

5. Basetable

- How to create a basetable?
 - Often different tables are involved
 - Ask yourself: What do you want to model? What is your unique ID? How are the tables connected?
 - ♦ An entity-relationship diagram (ERD) is informative.
 - Process every table seperately.
 - Create variables for every unique ID
 - ♦ A code flowchart can be informative.
 - Merge the different tables into one basetable
 - Handle missings after merging

In this session:

- DataUnd.R
- DataPrepPART1.R
- DataPrepPART2.R
- Extra_Exercises.R
- Assignment 'Weibo'
 - Deadline: 9 Feb 2016, before the start of the course
 - Hand in the assignment via dropbox (minerva)
 - Syntax: StudentName_Assignment_Weibo.R