МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Нижегородский государственный университет им. Н.И. Лобачевского

Задачи по теории групп. Часть І

Практикум

Рекомендован методической комиссией механико-математического факультета для студентов ННГУ, обучающихся по специальности 010101 "Математика", по направлению 010100 "Математика", по направлению 010200 "Математика и компьютерные науки"

Нижний Новгород 2010 УДК 512.54 ББК 22.144 3-15

З-15. ЗАДАЧИ ПО ТЕОРИИ ГРУПП. ЧАСТЬ І. Составители : Кузнецов М.И., Муляр О.А., Хорева Н.А., Чебочко Н.Г.: Практикум. - Нижний Новгород: Нижегородский госуниверситет, 2010. - 23с.

Рецензент: д.ф.-м.н., профессор В.М. Галкин.

Практикум содержит задачи и все необходимые сведения для решения задач по теории групп (части курса "Алгебра") по темам: определение группы, подгруппы, циклические группы, гомоморфизмы групп и факторгруппы. Приводятся подробные решения типовых задач. Практикум предназначен для студентов-математиков второго курса механико-математического факультета.

Практикум издан в рамках развития НИУ "Разработка новых и модернизация существующих образовательных ресурсов"

Содержание

31 Понятие группы. Подгруппы 32 Циклические группы 33 Гомоморфизмы групп 34 Факторгруппа. Теоремы о гомоморфизмах	4 6 13
---	--------------

§1 Понятие группы. Подгруппы

Бинарной алгебраической операцией на множестве M называется любое отображение $*: M \times M \to M$. Результат применения операции * к паре элементов a, b из M будем обозначать a*b.

Операция * на множестве M называется ассоциативной, если для любых элементов $a, b, c \in M$ выполняется равенство (a * b) * c = a * (b * c).

Операция * на множестве M называется **коммутативной**, если для любых элементов $a, b \in M$ выполняется равенство a * b = b * a.

Определение. Множество G с заданной на нем бинарной операцией $*: G \times G \to G$ называется **группой**, если

- 1) операция * ассоциативна;
- 2) в G существует нейтральный элемент, т.е. такой элемент $e \in G$, что e*g=g*e=g для любого $g \in G$;
- 3) для любого $g \in G$ существует обратный элемент $g^{-1} \in G$, т.е. такой элемент, что $g * g^{-1} = g^{-1} * g = e$.

Для того чтобы подчеркнуть, что множество G рассматривается как группа относительно операции *, обычно пишут (G,*).

Если операция в группе обозначается как +, то она называется сложением, нейтральный элемент обозначается 0 и называется нулем, обратный элемент к g обозначается -g и называется противоположным к g.

Обычно операцию в группе называют умножением и обозначают знаком ·, нейтральный элемент называют единичным элементом или единицей группы. В дальнейшем мы будем придерживаться таких обозначений.

Если операция в группе коммутативна, то группу G называют коммутативной или абелевой. Мощность группы G называется порядком группы и обозначается через |G|.

В любой группе существует единственный единичный элемент. Для любого элемента группы существует единственный обратный элемент.

Отметим, что $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$ (именно в таком порядке).

Определение. Пусть (G,\cdot) - группа. Непустое подмножество H в G называется **подгруппой**, если H является группой относительно операции \cdot . Иными словами, H является подгруппой, если выполнены следующие условия:

1) H замкнуто относительно операции \cdot (то есть $a \cdot b \in H$ для любых $a,b \in H$);

2) H замкнуто относительно взятия обратного элемента $(a^{-1} \in H \text{ для } \text{любого } a \in H).$

Рассмотрев любой элемент $a \in H$, получим из свойств 1), 2), что $a \cdot a^{-1} = e \in H$. Т.е любая подгруппа содержит единицу группы G.

Условия 1), 2) можно заменить на одно: $a \cdot b^{-1} \in H$ для любых $a, b \in H$. Подмножество $H = \{e\}$ и сама группа G всегда являются подгруппами в G.

Упражнения.

- **1.1.** Выяснить, какими свойствами обладает операция * на множестве M, если
 - a) $M = \mathbb{N}, \ x * y = x^y;$
 - б) $M = \mathbb{N}, \ x * y = HOД(x, y);$
 - $B) M = \mathbb{N}, \ x * y = 2xy;$
 - Γ) $M = \mathbb{Z}, \ x * y = x y;$
 - д) $M = \mathbb{Z}, \ x * y = x^2 + y^2;$
 - e) $M = \mathbb{R}, \ x * y = \sin(x)\sin(y);$
 - ж) $M = \mathbb{R}^*, \ x * y = \frac{x}{y},$ где $\mathbb{R}^* = \mathbb{R} \setminus \{0\};$
 - 3) $M = \mathbb{R} \times \mathbb{R}, \ (x,y) * (a,b) = (x,b).$
- **1.2.** Какие из указанных числовых множеств с операциями являются группами:
 - а) (G, +), где $G = \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C};$
 - б) (G, \cdot) , где $G = \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C};$
 - в) (G^*,\cdot) , где $G=\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}$ (здесь $G^*=G\backslash\{0\});$
 - Γ) $(n\mathbb{Z},+)$, где $n\in\mathbb{N}$;
 - д) $(\{-1,1\},\cdot);$
 - e) $(\{a^n|n\in\mathbb{Z}\},\cdot)$, где $a\in\mathbb{R}$ и $a\neq 0$;
 - ж) (T^1, \cdot) , где $T^1 = \{z \in \mathbb{C} | |z| = 1\};$
 - 3) $(\{z \in \mathbb{C} | |z| > 1\}, \cdot).$
- **1.3.** Доказать, что [0,1) с операцией \oplus , где $a \oplus b = \{a+b\}$ дробная часть числа a+b, является группой.
- **1.4.** Доказать, что пары (a, b) вещественных чисел, $a \neq 0$, составляют группу относительно операции (a, b)(c, d) = (ac, ad + b).
- **1.5.** Пусть (G, \cdot) группа. Доказать, что G является группой относительно операции *, где $a*b=b\cdot a$.
- **1.6.** Какие из указанных множеств квадратных вещественных матриц фиксированного порядка образуют группу:
- а) множество симметрических (кососимметрических) матриц относительно сложения;

- б) множество симметрических (кососимметрических) матриц относительно умножения;
 - в) множество невырожденных матриц относительно сложения;
 - г) множество невырожденных матриц относительно умножения;
- д) множество матриц с фиксированным определителем d относительно умножения;
 - е) множество диагональных матриц относительно сложения;
 - ж) множество диагональных матриц относительно умножения;
- з) множество диагональных матриц, у которых все элементы на главной диагонали отличны от нуля, относительно умножения;
 - и) множество всех ортогональных матриц;
- к) множество ненулевых матриц вида $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$ $(x,y\in\mathbb{R})$ относительно умножения;
- л) множество ненулевых матриц вида $\begin{pmatrix} x & y \\ \lambda y & x \end{pmatrix}$ $(x, y \in \mathbb{R})$, где λ фиксированное вещественное число, относительно умножения;
 - м) множество матриц

$$Q_8 = \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \pm \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}, \ \pm \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, \ \pm \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \right\}$$

относительно умножения?

- **1.7.** Доказать, что множество функций вида $y = \frac{ax+b}{cx+d}$, где $a,b,c,d \in \mathbb{R}$ и $ad-bc \neq 0$, является группой относительно операции композиции функций.
- **1.8.** Доказать, что если $x^2 = e$ для любого элемента группы G, то G абелева.
- **1.9.** Для каждой из групп в задачах 1.2. и 1.6. приведите пример какойлибо подгруппы.
- **1.10.** Доказать, что во всякой группе пересечение любого набора подгрупп является подгруппой.
 - 1.11. Найти две подгруппы в группе из задачи 1.4.
- **1.12.** Найти все подгруппы а) в четверной группе Клейна; б) в S_3 ; в) в A_4 .

§2 Циклические группы

Пусть (G,\cdot) – группа, $g\in G,\,n\in Z$. Введем понятие n-ой степени элемента. Если n>0, то $g^n=\underbrace{gg\cdots g}$. Если n=0, то $g^n=e$. Если n<0,

TO
$$g^n = \underbrace{g^{-1}g^{-1}\cdots g^{-1}}_{p^n}$$
.

Если G – группа по сложению, то говорят не о степенях, а о кратных элемента группы. Если n>0, то $ng=\underbrace{g+g+\dots+g}$. Если n=0, то

$$ng = 0$$
. Если $n < 0$, то $ng = \underbrace{(-g) + (-g) + \dots + \binom{n}{-g}}_{-n}$.

Свойства степеней:

$$g^m g^n = g^{m+n},$$
$$(q^m)^n = q^{mn}.$$

Рассмотрим множество всех степеней элемента g:

$$\langle g \rangle = \{g^n | n \in \mathbb{Z}\}.$$

Множество < g > является подгруппой в G и называется **циклической** подгруппой, порожденной элементом g. Элемент g называют образующим элементом циклической подгруппы.

Если G – группа по сложению, то циклическая подгруппа – это множество всех кратных элемента g:

$$\langle g \rangle = \{ ng \mid n \in Z \}.$$

Рассмотрим примеры циклических подгрупп.

1) $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ с операцией умножения.

Так как $i^2=-1, i^3=-i, i^4=1$, то, $< i>= \{1,-1,i,-i\}$, т.е. < i>- подгруппа 4-го порядка. Так как $(-1)^2=1$, то $<-1>=\{1,-1\}$ подгруппа 2-го порядка.

2) $GL_2(\mathbb{R})$ – группа невырожденных матриц второго порядка с действительными элементами, $A=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\in GL_n(\mathbb{R}).$

Имеем
$$< A >= \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$$
, т.к. $A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E$.

Циклическая подгруппа, порождённая А, имеет порядок 2.

Если
$$B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
, то $B^2 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, $B^3 = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$, ..., $B^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$.

Все натуральные степени матрицы B различны, т.е. циклическая подгруппа < B > содержит бесконечное число элементов.

Группа G называется **циклической**, если существует элемент $g \in G$ такой, что G = < g >.

Иными словами, группа — циклическая, если все элементы группы являются степенями некоторого фиксированного элемента этой группы.

Любая циклическая группа абелева, так как любые две степени элемента перестановочны между собой:

$$g^m g^n = g^{m+n} = g^n g^m \ \forall m, n \in \mathbb{Z}.$$

Примеры циклических групп.

1) Пусть $G = (\mathbb{Z}, +)$ - группа целых чисел с операцией сложения. Тогда группа G - бесконечная циклическая. В качестве порождающего элемента можно выбрать 1 или -1. Действительно,

$$\forall n \in \mathbb{Z} \ n = n \cdot 1 = (-n) \cdot (-1)$$
. Следовательно, $G = <1> = <-1>$.

Другие элементы из \mathbb{Z} не являются образующими циклической группы \mathbb{Z} . Действительно, если $\mathbb{Z}=< t>$, то, в частности, 1=nt для некоторого целого n. Откуда, $n=t=\pm 1$.

- 2) Пусть G группа корней n-ой степени из единицы. Группа $G=\{\epsilon_k=\cos\frac{2\pi k}{n}+i\sin\frac{2\pi k}{n}\mid k=\overline{0,n-1}\}$ имеет порядок n. Очевидно, G циклическая группа: $\epsilon_k=\cos\frac{2\pi k}{n}+i\sin\frac{2\pi k}{n}=\left(\cos\frac{2\pi}{n}+i\sin\frac{2\pi}{n}\right)^k=\epsilon_1^k$. Следовательно, $G=<\epsilon_1>$.
- 3) Пусть $Z_m = \{\overline{0}, \overline{1}, \cdots, \overline{m-1}\}$ группа классов вычетов по модулю m. Так как $\overline{t} = \underbrace{\overline{1} + \cdots + \overline{1}}_{t} = t\overline{1}$, то $Z_m = <\overline{1}>$ циклическая группа.

Пусть G — произвольная группа, $g \in G$.

Порядком элемента g называется наименьшее натуральное число n, такое что $g^n = e.$

Обозначение: ord g = n.

Если такого натурального числа не существует, то говорят, что g имеет бесконечный порядок.

В группе по сложению порядком элемента g называется наименьшее целое положительное число n, такое что ng=0.

Единица группы – единственный элемент порядка 1.

Примеры.

- 1) $G=\mathbb{Z}, \ \mathrm{ord}\ 0=1, \ \mathrm{порядки}\ \mathrm{остальных}\ \mathrm{элементов}\ G$ бесконечны, так как если кратное nm=0 при $n\neq 0,$ то m=0.
- 2) $G = S_4, g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}, g^4 = id$, в меньших положительных степенях мы не получим тождественной подстановки, следовательно, ord g = 4.
- 3) $G = \mathbb{C}^*, g = \frac{1}{2} + \frac{\sqrt{3}}{2}i = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$. Используя формулу Муавра, получаем, что $m\pi$. . . $m\pi$

$$g^m = \cos\frac{m\pi}{3} + i\sin\frac{m\pi}{3}.$$

Поэтому, $g^m = 1 = \cos 0 + i \sin 0$ тогда и только тогда, когда $\frac{m\pi}{3} = 2\pi k$ для

некоторого $k \in \mathbb{Z}$, т.е. m = 6k. Наименьшее положительное m, кратное 6, это 6. Следовательно, $\operatorname{ord}(\frac{1}{2} + \frac{\sqrt{3}}{2}i) = 6.$

В данном примере модуль g равен 1, это необходимое условие, для того, чтобы комплексное число имело конечный порядок. Действительно, при возведении в степень комплексного числа, будет возводиться в степень модуль этого числа. Натуральная степень вещественного положительного числа равна 1, только если это число равно 1. Например, $|1+i\sqrt{3}|=2$. Следовательно, $\operatorname{ord}(1+i\sqrt{3}) = \infty$

Предложение.

- (1) $g^m = e \Leftrightarrow \operatorname{ord} g | m$. (2) $\operatorname{ord} g^k = \frac{\operatorname{ord} g}{(k, \operatorname{ord} g)}$.

Доказательство. Пусть $\operatorname{ord} q = n$.

(1) Разделим m с остатком на n: $m = nt + r, \, 0 \le r < n$. Тогда $g^m = g^{nt+r} = r$ $(g^n)^t g^r = g^r$, так как $g^n = e$ по определению порядка элемента. Далее, $q^m = e \Leftrightarrow q^r = e \Leftrightarrow ($ так как $r < n) r = 0 \Leftrightarrow n | m.$

(2) Пусть $d = (k, n), n = n_1 d, k = k_1 d, (n_1, k_1) = 1$. Для любого $m, (q^k)^m = k_1 d$ $e \Leftrightarrow g^{km} = e \Leftrightarrow$ (из (1)) $n|km \Leftrightarrow n_1|k_1m \Leftrightarrow n_1|m$. Таким образом, $(g^k)^m =$ $e \Leftrightarrow \frac{\operatorname{ord} g}{(k,\operatorname{ord} g)}|m$. Следовательно, $\operatorname{ord} g^k = \frac{\operatorname{ord} g}{(k,\operatorname{ord} g)}$. \square

Задача. Найти порядки всех элементов в $\mathbb{Z}_6 = \{\overline{0}, \ \overline{1}, \ \overline{2}, \ \overline{3}, \ \overline{4}, \ \overline{5}\}.$ Порядок 0 равен 1.

Образующим элементом в \mathbb{Z}_6 является, например, $\overline{1}$. Наименьшее положительное t, такое что $t\overline{1} = \overline{0}$ это 6, следовательно, $\operatorname{ord} \overline{1} = 6$.

Согласно утверждению (2) предложения имеем $\operatorname{ord} \overline{2} = \frac{6}{(6,2)} = \frac{6}{2} = 3$, $\operatorname{ord} \overline{3} = \frac{6}{(6,3)} = \frac{6}{3} = 2, \operatorname{ord} \overline{4} = \frac{6}{(6,4)} = \frac{6}{2} = 3, \operatorname{ord} \overline{5} = \frac{6}{(6,5)} = \frac{6}{1} = 6.$

Покажем, что порядок любой подстановки в $G = S_n$ равен наименьшему общему кратному длин независимых циклов, в произведение которых она раскладывается.

Пусть $\alpha = \alpha_1 \cdots \alpha_s$ – разложение подстановки в произведение независимых циклов длин k_1, \ldots, k_s , соответственно. Циклы $\alpha_1, \ldots, \alpha_s$ перестановочны между собой. Поэтому $\alpha^n = \alpha_1^n \cdots \alpha_s^n$. Множества элементов, которые действительно переставляются подстановками $\alpha_1^n, \ldots, \alpha_s^n$, не пересекаются между собой. Следовательно, $\alpha^n = id \Leftrightarrow \alpha_1^n = id, \ldots, \alpha_s^n = id$. Из утверждения (1) предложения следует, что $[\operatorname{ord} \alpha_1, \ldots, \operatorname{ord} \alpha_s] = \operatorname{ord} \alpha$. Так как порядок любого цикла равен длине этого цикла, то мы получаем, что $[k_1, \ldots, k_s] = \operatorname{ord} \alpha$.

Задача. Найти порядок подстановки

Так как $\alpha = (1, 2, 11, 12)(3, 4, 5, 6, 7)(8, 9)$, то ord $\alpha = [4, 5, 2] = 20$.

Задача. Сколько элементов порядка 12 содержится в \mathbb{C}^* , S_7 или A_7 .

Подстановка α имеет порядок 12 тогда и только тогда, когда наименьшее общее кратное длин независимых циклов, в которые она раскладывается равно 12. Так как α – подстановка на множестве из 7 элементов, то α – произведение цикла длины 3 на цикл длины 4. Найдем количество таких подстановок. Выбирая 3 элемента, составляющие цикл длины 3, мы автоматически выбираем 4 элемента (дополнительные к выбранным 3), составляющие независимый цикл длины 4.

Всего таких выборок $C_7^3=35$. Для выбранных элементов количество различных циклов длины 3, которые можно составить из данных элементов равно $2=\frac{3!}{3}$. Например, из выборки 2,5,7 можно составить циклы (2,5,7)=(5,7,2)=(7,2,5) и (7,5,2)=(5,2,7)=(2,7,5). Аналогично, из выбранных четырех чисел можно составить $\frac{4!}{4}=6$ различных циклов длины 4. Следовательно, в S_7 содержится ровно $35\cdot 2\cdot 6=420$ элементов порядка 12.

Так как произведение цикла длины 3 на цикл длины 4 является нечетной подстановкой, то в A_7 нет элементов порядка 12.

Элементы порядка 12 в \mathbb{C}^* удовлетворяют соотношению $z^{12}=1$, т.е. они являются корнями из единицы степени 12. По определению порядка наименьшая натуральная степень, при возведении в которую z получается 1, равна 12. Т.е. z является первообразным корнем из 1 единицы степени 12.

Пусть $\varepsilon_k = \cos \frac{\pi k}{12} + \sin \frac{\pi k}{12}$, k = 0, 1, ..., 11 – корни из единицы степени 12. Корень ε_k является первообразным тогда и только тогда, когда k и 12 взаимно просты. Следовательно, первообразными являются $\varepsilon_1, \varepsilon_5, \varepsilon_7, \varepsilon_{11}$. Поэтому в \mathbb{C}^* содержится ровно 4 элемента порядка 12.

Теорема 1. Порядок циклической подгруппы, порожденной элементом g, совпадает с порядком g. Если $ord\ g = n$, то $< g >= \{g^0,\ g^1,\ g^2,\dots,\ g^{n-1}\}$.

Следствие 1. Конечная группа G является циклической \Leftrightarrow в G существует элемент порядка |G|.

Необходимость следует из теоремы 1. Для доказательства достаточности рассмотрим циклическую подгруппу, порожденную элементом порядка |G|. По теореме она состоит из |G| элементов, а, следовательно, совпадает с G.

Следствие 2. Элемент g^k является образующим в группе $< g > \Leftrightarrow k$ взаимно просто с ord g.

Пусть $G = \langle g \rangle$, $|G| = \operatorname{ord} g = n$. Из теоремы 1, получаем, что циклическая подгруппа, порожденная элементом g^k , совпадает с G, т.е. состоит из n элементов тогда и только тогда, когда $\operatorname{ord} g^k = n$. Имеем, $\frac{\operatorname{ord} g}{(k,\operatorname{ord} g)} = n$, т.е. $\frac{n}{(k,n)} = n$. Поэтому, g^k является образующим $\Leftrightarrow (k,n) = 1$.

Количество натуральных чисел не превосходящих n и взаимно простых с n равно значению функции Эйлера $\varphi(n)$. Следовательно, количество образующих в циклической группе порядка n равно $\varphi(n)$.

Пример. Пусть $G = Z_{20}$. Количество образующих равно $\varphi(20) = 8$. Так как $Z_{20} = \langle \bar{1} \rangle$, то $\bar{t} = t\bar{1}$ - образующий, тогда и только тогда, когда (t,20) = 1. Т.е. образующими являются $\bar{1}, \bar{3}, \bar{7}, \bar{9}, \bar{11}, \bar{13}, \bar{17}, \bar{19}$.

Задача. В циклической группе порядка 20 найти все элементы a, такие что $a^5=e$ и все элементы порядка 5.

Пусть $G=< g>=\{e,g,g^2,...,g^{19}\}$. Имеем, $(g^k)^5=e\Leftrightarrow 20|5k$, т.е. 4|k. Откуда, k=0,4,8,12,16. Следовательно, элементы, которые в пятой степени равны единичному, это $g^0=e,g^4,g^8,g^{12},g^{16}$.

степени равны единичному, это $g^0=e,g^4,g^8,g^{12},g^{16}$. Так как $\operatorname{ord} g^k=\frac{\operatorname{ord} g}{(k,\operatorname{ord} g)}=\frac{20}{(k,20)},$ то $\operatorname{ord} g^k=5\Leftrightarrow \frac{20}{(k,20)}=5,$ т.е. (k,20)=4. Следовательно, k=4,8,12,16. Т.е. элементы порядка 5 в G это $g^4,g^8,g^{12},g^{16}.$

Теорема 2.

- (1) Любая подгруппа циклической группы сама является циклической.
- (2) Существует взаимно-однозначное соответствие между всеми подгруппами конечной циклической группы и всеми делителями порядка группы. \square

Если G=< g> и H - неединичная подгруппа в G, то $H=< g^m>$, где $m=\min_{g^k\in H}\{k>0\}$. Если G - конечная группа, то число m является делителем n=|G|. Более точно, $|H|=\frac{n}{m}$.

Задача. Найти все подгруппы в \mathbb{Z}_{15} .

В группе классов вычетов образующим элементом всегда является класс вычетов 1, но мы выберем другой образующий: $\bar{2}$, $\mathbb{Z}_{15} = <\bar{2}>$.

Делителями 15 являются 1, 3, 5, 15. Подгруппами в \mathbb{Z}_{15} являются $H_1 = < m_1 \bar{2} >$, $H_2 = < m_2 \bar{2} >$, $H_3 = < m_3 \bar{2} >$, $H_4 = < m_4 \bar{2} >$, где $m_1 = \frac{15}{1} = 15$, $m_2 = \frac{15}{3} = 5$, $m_3 = \frac{15}{5} = 3$, $m_4 = \frac{15}{15} = 1$. Таким образом, $H_1 = \{\bar{0}\}$, $H_2 = < 5(\bar{2}) > = < \overline{10} > = \{\bar{0}, \overline{10}, 2(\overline{10})\} = \{\bar{0}, \bar{5}, \overline{10}\}$, $H_3 = \{\bar{0}, \bar{3}, \bar{6}, \bar{9}, \overline{12}\}$, $H_4 = G$.

 $\mathbf{3a}$ дача. Найти все подгруппы в \mathbb{Z} .

 $\mathbb Z$ - бесконечная циклическая группа с операцией сложения, образующим

является 1 и -1. Т.е. $\mathbb{Z}=<1>$. Любая подгруппа, согласно теореме 2, имеет вид < a>, где a - некоторое кратное 1, т.е. $a=m1=m,\ m\in\mathbb{N}$ или a=0. Таким образом, подгруппы в \mathbb{Z} это $< m>=\{...,-2m,-m,0,m,2m,...\}=m\mathbb{Z}$, где $m\in\mathbb{N}\cup\{0\}$.

Упражнения.

- **2.1.** Доказать, что ordxy = ordyx и ord $x = \text{ord}yxy^{-1}$.
- 2.2. Найти порядок элемента группы:

a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 4 & 3 & 7 & 1 & 2 & 5 & 6 & 10 & 9 & 8 \end{pmatrix} \in S_{10};$$

6) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 7 & 5 & 4 & 1 & 6 & 2 & 3 & 9 & 8 & 11 & 12 & 10 \end{pmatrix} \in S_{12};$

B) $g = -\frac{1}{2} - \frac{\sqrt{3}}{2}i \in \mathbb{C}^*;$
 $g = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i \in \mathbb{C}^*;$
 $g = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i \in \mathbb{C}^*;$
 $g = \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$
 $g = \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \in \mathbb{C}^*;$

- 2.3. Сколько элементов порядка 6 содержится в группе:
- a) \mathbb{C}^* ; 6) S_5 ; B) A_5 .
- 2.4. Сколько элементов порядка 2 содержится в группе:
- a) S_5 ; 6) A_5 .
- **2.5.** Найти порядок каждого элемента в группах \mathbb{Z}_{12} , \mathbb{Z}_{8} , \mathbb{Z}_{12}^{*} , \mathbb{Z}_{8}^{*} , \mathbb{Z}_{7}^{*} (здесь через K^{*} обозначена группа обратимых элементов кольца K).
- **2.6.** В циклической группе порядка 24 найти все элементы a, такие что $a^6=e$, и все элементы порядка 6.
 - **2.7.** Найти все образующие группы \mathbb{Z}_{14} .
- **2.8.** Для каждой из следующих групп определите, является ли она циклической группой: \mathbb{Z} , $8\mathbb{Z}$, \mathbb{Q} , \mathbb{Q}^* , \mathbb{Z}_{10}^* , \mathbb{Z}_{13}^* , S_n $(n \geq 3)$.
- **2.9.** Найдите в группе \mathbb{C}^* циклическую подгруппу, порожденную элементом $-\frac{\sqrt{3}}{2}+\frac{1}{2}i$.
- **2.10.** Найдите в группе \mathbb{Z}_{30} циклическую подгруппу, порожденную элементом $\overline{25}$; в группе \mathbb{Z}_{42} циклическую подгруппу, порожденную элементом $\overline{30}$.

- **2.11.** Найдите в группе \mathbb{Z}_{14}^* циклическую подгруппу, порожденную элементом $\overline{5}$.
 - **2.12.** Найти все подгруппы в \mathbb{Z}_{10} , в \mathbb{Z}_{24} , в \mathbb{Z}_{100} .
 - **2.13.** Найти все конечные подгруппы в \mathbb{R}^* и \mathbb{C}^* .
- **2.14.** Доказать, что в группе кватернионов Q_8 все подгруппы, кроме самой Q_8 , являются циклическими.

* * *

- **2.15.** Доказать, что в группе четного порядка имеется элемент порядка 2.
- **2.16.** Доказать, что любая бесконечная группа имеет бесконечное число подгрупп.
- **2.17.** Доказать, что циклическая группа не может иметь более одного элемента порядка 2.

§3 Гомоморфизмы групп

Пусть (G,*) и (H,\circ) - группы. Отображение $f:G\to H$ называется гомоморфизмом групп, если для любых $a,b\in G$

$$f(a*b) = f(a) \circ f(b).$$

Ядром гомоморфизма групп $f:G \to H$ называется множество

$$Kerf = \{ g \in G \mid f(a) = e \},\$$

где e - единица в H.

Образом гомоморфизма f называется множество всех элементов вида f(q) :

$$Im f = \{b \in H \mid \exists \ a \in G, f(a) = b\}.$$

Инъективный гомоморфизм называется **мономорфизмом**, сюръективный - **эпиморфизмом**, биективный - **изоморфизмом**.

Примеры.

- 1. Пусть $G=(\mathbb{R}^n,+),\ H=(\mathbb{R}^m,+),\ f:\mathbb{R}^n\to\mathbb{R}^m-$ линейное отображение. Тогда f- гомоморфизм групп.
- 2. Пусть (G, *) и (H, \circ) произвольные группы. Отображение $f: G \to H$ определим следующим образом: f(g) = e для любого элемента $g \in G$. Здесь e— единица в H. Покажем, что f— гомоморфизм групп. Действительно,

$$f(a*b) = e = e \circ e = f(a) \circ f(b).$$

Ядро гомоморфизма Kerf = G, а образ $Imf = \{e\}$.

3. Пусть $G=(\mathbb{R},+),\ H=(\mathbb{R}^*,\cdot),\ f:G\to H,\ f(x)=2^x.$ Покажем, что f- гомоморфизм. Действительно,

$$f(x+y) = 2^{x+y} = 2^x \cdot 2^y = f(x) \cdot f(y).$$

Так как $2^x=1$ только при x=0, то $Kerf=\{0\}$ и, следовательно, f- мономорфизм.

Как известно, $2^x \in \mathbb{R}^+$ для любого $x \in \mathbb{R}$. Поэтому $Imf \subseteq \mathbb{R}^+$. Кроме того, любое положительное число y можно записать в виде $y = 2^x = f(x)$, где $x = \log_2 y \in \mathbb{R}$. Следовательно, $Imf = \mathbb{R}^+$.

4. Пусть $G = (GL_n(\mathbb{R}), \cdot), \ H = (\mathbb{R}^*, \cdot), \ f : G \to H, \ f(A) = \det A.$ Покажем, что f— гомоморфизм групп. В самом деле,

$$f(A \cdot B) = \det(A \cdot B) = \det A \cdot \det B = f(A) \cdot f(B).$$

Найдем ядро и образ гомоморфизма f:

$$Kerf = \{A \in GL_n(\mathbb{R}) \mid \det A = 1\} = SL_n(\mathbb{R}); Imf = \mathbb{R}^*.$$

В самом деле, для любого ненулевого действительного числа $\alpha \in \mathbb{R}^*$ существует невырожденная матрица A с определителем, равным α , например, такая:

$$A = \left(\begin{array}{cccc} \alpha & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{array}\right).$$

Таким образом, f – эпиморфизм.

Свойства гомоморфизмов групп

Пусть (G,*) и (H,\circ) – группы, $f:G\to H$ – гомоморфизм групп.

- (1) Единица группы G переходит в единицу группы H, то есть f(e) = e.
- (2) Для любого элемента $a \in G$ справедливо: $f(a^{-1}) = (f(a))^{-1}$.
- (3) Для любого элемента $a \in G$ выполняется: $f(a^n) = (f(a))^n$.
- (4) Гомоморфизм f инъективен тогда и только тогда, когда ядро Kerf тривиально, то есть состоит только из нейтрального элемента.
- (5) Ядро гомоморфизма является нормальной подгруппой в G, образ гомоморфизма является подгруппой в H.
 - (6) Композиция гомоморфизмов групп является гомоморфизмом групп.
- (7) Если $f: G \to H$ изоморфизм групп, то $f^{-1}: H \to G$ тоже изоморфизм групп (существует в силу биективности).

Изоморфизм $f:G\to G$ называется **автоморфизмом**. Множество Aut(G) всех автоморфизмов группы G образует группу относительно операции композиции отображений.

Пример. Пусть G – группа. Для произвольного элемента $g \in G$ зададим отображение $\tau_g : G \to G$ правилом $\tau_g(x) = gxg^{-1}$. Отображение τ_g является автоморфизмом группы G. Такие автоморфизмы называются внутренними.

Например, если $G = S_n$, $\alpha \in S_n$, $\sigma = (i_1, i_2, \dots, i_k) \in S_n$, то $\tau_{\alpha}(\sigma) = (\alpha(i_1), \alpha(i_2), \dots, \alpha(i_k))$. Т.е. автоморфизм τ_{α} сохраняет структуру независимых циклов в разложении подстановки.

Автоморфизм, который не является внутренним, называется внешним. Например, $\Phi: GL_n(\mathbb{R}) \to GL_n(\mathbb{R}), \ \Phi(A) = (A^{-1})^t$ является внешним автоморфизмом. Действительно, при внутреннем автоморфизме характеристические числа не меняются. Матрицы $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ и $\Phi(A) = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{3} \end{pmatrix}$ имеют различные характеристические числа, поэтому Φ не является внутренним автоморфизмом $GL_2(\mathbb{R})$

Если существует изоморфизм $f:G\to H$, то группы G и H называются изоморфными. Обозначение: $G\cong H$.

Предложение.

Пусть $f:G \to H$ – гомоморфизм групп. Тогда:

- 1) для любого $g \in G$ порядок элемента f(g) делит порядок g;
- 2) если f изоморфизм, то порядки g и f(g) совпадают;
- 3) циклические группы одного порядка изоморфны.

Доказательство. 1) Пусть g – любой элемент группы G. Обозначим порядок g через k : ord g=k. Тогда $g^k=e$, где e – единица группы G. Рассмотрим элемент $f(g^k)$. С одной стороны, $f(g^k)=f(e)=e$ – единица группы H, по свойству (1) гомоморфизмов групп. С другой стороны, $f(g^k)=f(g)^k$ по свойству (3) гомоморфизмов групп. Таким образом, $f(g)^k=e$. Согласно предложению из §2 $\operatorname{ord}(f(g))$ делит $k=\operatorname{ord} g$.

- 2) Пусть теперь $f: G \to H$ изоморфизм групп. Если h = f(g), то $f^{-1}(h) = g$. По 1) пункту ord h делит ord g. По свойству (7) $f^{-1}: H \to G$ тоже изоморфизм групп. Следовательно, по 1) $\operatorname{ord}(f^{-1}(h))$ делит ord h. Но $f^{-1}(h) = g$, то есть ord g делит ord h. Таким образом, получаем, что ord h ord g u ord g ord h. Поскольку порядок натуральное число, то ord $g = \operatorname{ord} h$.
- 3) Пусть G=< g>, H=< h>, |G|=|H|. Тогда $f:G\to H, f(g^k)=h^k$ изоморфизм. \square

 ${f 3}$ адача. Найти все гомоморфизмы из ${\Bbb Z}_n$ в ${\Bbb Z}_m$.

Пусть $f: \mathbb{Z}_n \to \mathbb{Z}_m$ гомоморфизм. Рассмотрим любой образующий в циклической группе \mathbb{Z}_n , например, $\overline{1}$. Имеем, $f(\overline{1}) = \overline{t} \in \mathbb{Z}_m$. Тогда по свойству (3) гомоморфизмов $f(\overline{k}) = kf(\overline{1}) = k\overline{t}$ для любого $\overline{k} \in \mathbb{Z}_n$. Поэтому для задания гомоморфизма f достаточно указать образ $\overline{1}$.

Так как порядок $\overline{1}$ в \mathbb{Z}_n равен n, то согласно предложению $\operatorname{ord} f(\overline{1})$ делит n. Из предложения §2 имеем ord $\overline{t} = \frac{m}{(m,t)}$. Таким образом, если $f: \mathbb{Z}_n \to \mathbb{Z}_m$ – гомоморфизм и $f(\overline{1}) = \overline{t}$, то $\frac{m}{(m,t)} | n$.

Условие $\operatorname{ord} t | n$ является достаточным для того, чтобы отображение f: $\mathbb{Z}_n \to \mathbb{Z}_m$, заданное правилом $f(\overline{k}) = k\overline{t}$, было определено корректно и являлось гомоморфизмом. Действительно, если $\overline{k}=\overline{s}$, то n|(k-s). Так как $\operatorname{ord} \overline{t}|n$, то $\operatorname{ord} \overline{t}|(k-s)$. Тогда из предложения §2 имеем $(k-s)\overline{t}=\overline{0}$ и, следовательно, $f(\overline{k}) = f(\overline{s})$. Поэтому отображение определено корректно. Так как $f(\overline{k_1} + \overline{k_2}) = f(\overline{k_1 + k_2}) = (k_1 + k_2)\overline{t} = k_1\overline{t} + k_2\overline{t} = f(\overline{k_1}) + f(\overline{k_2})$, то f является гомоморфизмом.

Например, найдем все гомоморфизмы из \mathbb{Z}_3 в \mathbb{Z}_{36} . Согласно сказанному выше, если $f(\overline{1})=\overline{t}$, то $\frac{36}{(36,t)}|3$. Поэтому (36,t)=36 или (36,t)=12, где $0 \le t \le 35$. Следовательно, $\bar{t} \in \{\bar{0}, \bar{12}, \bar{24}\}$. Таким образом, существует всего 3 гомоморфизма из \mathbb{Z}_3 в \mathbb{Z}_{36} : f_1 , f_2 и f_3 , где $f_1 \equiv \overline{0}$,

$$f_2(\overline{0}) = \overline{0}, f_2(\overline{1}) = \overline{12}, f_2(\overline{2}) = \overline{24},$$

 $f_3(\overline{0}) = \overline{0}, f_3(\overline{1}) = \overline{24}, f_2(\overline{2}) = \overline{12}.$

Упражнения.

- **3.1.** Проверить какие из отображений групп $f:\mathbb{C}^* \to \mathbb{R}^*$ являются гомоморфизмами:

- а) f(z)=|z|; б) f(z)=2|z|; в) $f(z)=\frac{1}{|z|};$ г) f(z)=1+|z|; д) $f(z)=|z|^2;$ е) f(z)=1;

- ж) f(z) = 2.
- 3.2. Проверить какие из отображений являются гомоморфизмами групп:
- а) $f: \mathbb{R} \to \mathbb{R}^*$, где $f(x) = e^x$;
- б) $f: \mathbb{R} \to \mathbb{C}^*$, где $f(x) = \cos 2\pi x + i \sin 2\pi x$;
- в) $f: M_n(\mathbb{R}) \to \mathbb{R}^*$, где $f(A) = a_{11}$;

$$\Gamma(x) : T_n(\mathbb{R}) \to D_n(\mathbb{R}),$$
где $f(\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}) = 0$

$$= \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}.$$

- 3.3. Найти ядро и образ гомоморфизмов из задач 3.1 и 3.2.
- 3.4. Какие из отображений задачи 3.1 являются изоморфизмами?
- **3.5.** Для каких групп G отображение $f: G \to G$, определенное правилом (a) $f(x) = x^2$ или (б) $f(x) = x^{-1}$, является гомоморфизмом? При каком условии эти отображения являются изоморфизмами?
 - 3.6. Построить изоморфизм между группами:
 - a) \mathbb{Z} и $n\mathbb{Z}$;
 - б) \mathbb{C} и $G = \{ \begin{pmatrix} x & y \\ -y & x \end{pmatrix} \mid x, y \in \mathbb{R} \}$ (относительно сложения).
- **3.7.** Доказать, что не существует эпиморфизма $f:\mathbb{Q} \to \mathbb{Z}$ аддитивных групп.
 - **3.8.** Доказать, что $\mathbb{R}^+ \cong \mathbb{R}$ и $\mathbb{Q}^+ \ncong \mathbb{Q}$. (Здесь $\mathbb{R}^+ = \{a \in \mathbb{R} \mid a > 0\}$).
 - 3.9. Доказать, что
- а) группа 4-го порядка либо циклическая, либо изоморфна четверной группе Клейна;
 - б) группа 6-го порядка либо абелева, либо изоморфна S_3 .
- 3.10. Выяснить, какие из перечисленных циклических групп < a >, порожденных элементом $a \in G$, изоморфны:

a)
$$G = \mathbb{C}^*, \ a = -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i;$$

б)
$$G = \mathbb{C}^*, \ a = \cos \frac{6\pi}{5} + i \sin \frac{6\pi}{5};$$

в) $G = \mathbb{C}^*, \ a = 2 - i;$

B)
$$G = \mathbb{C}^*, \ a = 2 - i;$$

$$\Gamma$$
) $G = GL_2(\mathbb{C}), \ a = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};$

д)
$$G = S_6$$
, $a = (3\ 2\ 6\ 5\ 1)$;

e)
$$G = \mathbb{Z}, \ a = 3;$$

ж)
$$G = \mathbb{R}^*, \ a = 10.$$

3.11. Найти все гомоморфные отображения:

a)
$$\mathbb{Z}_6 \to \mathbb{Z}_6$$
;

б)
$$\mathbb{Z}_6 \to \mathbb{Z}_{18};$$
 в) $\mathbb{Z}_{18} \to \mathbb{Z}_6;$

B)
$$\mathbb{Z}_{18} \to \mathbb{Z}_6$$
;

$$\Gamma$$
) $\mathbb{Z}_{12} \to \mathbb{Z}_{15};$ д) $\mathbb{Z}_6 \to \mathbb{Z}_{25};$ е) $\mathbb{Z}_5 \to S_3;$ ж) $\mathbb{Z}_6 \to S_3;$ з) $S_3 \to \mathbb{Z}_6.$

$$\mathbb{Z}_6 \to \mathbb{Z}_{25}$$

e)
$$\mathbb{Z}_5 \to S_3$$
;

ж)
$$\mathbb{Z}_6 \to S_3$$
;

$$3) S_3 \to \mathbb{Z}_6.$$

- **3.12.** Найти все изоморфизмы между группами $(\mathbb{Z}_4,+)$ и (\mathbb{Z}_5^*,\cdot) .
- 3.13. Найти группу автоморфизмов группы:
- a) \mathbb{Z}_5 ;
- б) \mathbb{Z}_6 ;
- B) \mathbb{Z}_8 ;
- Γ) \mathbb{Z}_9 .
- 3.14. Найти порядок группы автоморфизмов группы $Aut(Aut(Aut \mathbb{Z}_9)).$
 - 3.15. Найти группу автоморфизмов группы:
 - a) \mathbb{Z} ;
- б) \mathbb{Z}_p ; в) S_3 ;

- Γ) $V_4 = \{e, (12)(34), (13)(24), (14)(23)\};$
- д) Q_8 (группа кватернионов).

§4 Факторгруппа. Теоремы о гомоморфизмах

Пусть G – группа, H – подгруппа в G. Левым смежным классом элемента $g \in G$ называется множество $gH = \{gh|\ h \in H\} = \overline{g}$. Правым смежным классом элемента g называется множество $Hg = \{hg|\ h \in H\}$. Любой элемент из смежного класса называется его представителем.

Левые смежные классы либо не пересекаются, либо совпадают, причем $gH=\widetilde{g}H$ тогда и только тогда, когда $g^{-1}\widetilde{g}\in H$. Группа G является объединением непересекающихся левых смежных классов.

Все левые смежные классы группы G по подгруппе H имеют одинаковую мощность равную мощности подгруппы H. Отсюда следует

Теорема Лагранжа. Пусть G — конечная группа. H — подгруппа в G. Тогда порядок подгруппы H делит порядок группы $G.\square$

Соответствие $gH \mapsto Hg^{-1}$ является биекцией между множеством левых смежных классов и множеством правых смежных классов, следовательно, количество левых смежных классов равно количеству правых смежных классов группы G по подгруппе H. Оно называется **индексом** группы G по подгруппе G и обозначается G.

Следствие. G — конечная группа. H — подгруппа в G, тогда |G| = (G:H)|H|. \square

Подгруппа $H\subset G$ называется **нормальной подгруппой**, если для любого $g\in G$ gH=Hg.

Подгруппа H в группе G нормальна тогда и только тогда, когда для любого $g \in G$ и любого $h \in H$ $ghg^{-1} \in H$. Т. е. нормальная подгруппа – это подгруппа, которая сохраняется относительно любого внутреннего автоморфизма группы G.

Задача. Доказать, что $SL_n(\mathbb{R})$ нормальная подгруппа в $GL_n(\mathbb{R})$.

Возьмем $A \in GL_n(\mathbb{R})$ и $B \in SL_n(\mathbb{R})$. Найдем определитель матрицы ABA^{-1} .

 $\det ABA^{-1} = \det A \cdot \det B \cdot \det A^{-1} = \det A \cdot (\det A)^{-1} = 1$. Получаем, что $ABA^{-1} \in SL_n(\mathbb{R})$. Таким образом, $SL_n(\mathbb{R})$ – нормальная подгруппа.

Пусть H — нормальная подгруппа в G. Введем бинарную операцию на множестве смежных классов следующим образом: $\bar{a} \cdot \bar{b} = \bar{a} \bar{b}$. Множество смежных классов с введенной операцией является группой, которая называется факторгруппой группы G по подгруппе H и обозначается через

G/H.

Отображение $p:G\to G/H:a\mapsto \overline{a}$ является эпиморфизмом групп и называется **канонической проекцией**. Ядро канонической проекции совпадает с подгруппой H.

Подгруппа $H = \{e\}$ нормальна в G. Так как $Kerp = H = \{e\}$, то каноническая проекция в данном случае является изоморфизмом между G и $G/\{e\}$. Смежный класс \overline{g} любого элемента g по подгруппе H по определению состоит из одного элемента g: $\overline{g} = \{g\}$, поэтому G и $G/\{e\}$ отождествляют. Аналогично, G/G отождествляют с $\{e\}$.

Основная теорема о гомоморфизмах. Пусть $\varphi:G\to K$ – гомоморфизм групп с ядром $H=Ker\varphi$. Существует единственный гомоморфизм $\varphi^*:G/H\to K$, для которого коммутативна следующая диаграмма

$$G \xrightarrow{\varphi} K$$

$$\downarrow p \qquad \qquad \downarrow \varphi^*$$

$$G/H$$

 $\varphi^* \circ p = \varphi$. Гомоморфизм φ^* инъективен. Если φ сюръективно, то φ^* изоморфизм. \square

Задача. Доказать, что $GL_n(\mathbb{C})/H \cong \mathbb{R}^+$, где H подгруппа матриц модуль определителя которых равен 1.

Отметим, что H – нормальная подгруппа в $GL_n(\mathbb{C})$. Рассмотрим отображение $f: GL_n(\mathbb{C}) \to \mathbb{R}^+$, $f(A) = |\det(A)|$. Так как $|\det(AB)| = |\det(A)| |\det(B)|$, то f является гомоморфизмом групп. Для любого положительного вещественного числа r существует матрица A из $GL_n(\mathbb{C})$, например,

$$\begin{pmatrix} r & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 \end{pmatrix},$$

такая что $f(A) = |\det(A)| = r$. Следовательно, f – эпиморфизм групп. При этом Kerf = H. Тогда по основной теореме о гомоморфизмах $GL_n(\mathbb{C})/H \cong \mathbb{R}^+$.

Вторая теорема о гомоморфизмах. Пусть G — группа, H, K — подгруппы в G и K — нормальная подгруппа в G. Тогда:

- 1) HK = KH подгруппа, содержащая K;
- 2) $H \cap K$ нормальная подгруппа в H;
- 3) $HK/K \cong H/H \cap K$. \square

Задача. Найти факторгруппу S_4/V_4 , где $V_4 = \{e, (12)(34), (13)(24), (14)(23)\}$ – четверная группа Клейна.

В §3 было показано, что внутренние автоморфизмы сохраняют цикловую структуру подстановки, следовательно, V_4 — нормальная подгруппа в S_4 . Рассмотрим подгруппу H в S_4 , состоящую из подстановок, оставляющих на месте 4,

 $H = \{e, (12), (13), (23), (123), (132)\} \subset S_4$. Нетрудно видеть, что $S_4 = H \cdot V_4$ ($|S_4| = 24$, а $|S_3| = 6$, $|V_4| = 4$). По второй теореме о гомоморфизмах $H \cdot V_4/V_4 \cong H/H \cap V_4$, $H \cap V_4 = \{e\}$, поэтому $S_4/V_4 \cong H \cong S_3$.

Теорема о соответствии. Пусть $\varphi:G \to K$ — эпиморфизм, тогда:

- 1) $\sigma: H \mapsto \varphi(H)$ взаимно-однозначное соответствие между множеством подгрупп в G, содержащих ядро φ , и множеством подгрупп в K;
- 2) Если H нормальная подгруппа в G, то $\varphi(H)$ нормальная подгруппа в K;
- 3) H нормальная подгруппа в G, содержащая ядро φ , то $G/H\cong K/\varphi(H)$. \square

Задача. Найти факторгруппу $d\mathbb{Z}/n\mathbb{Z}$, где n=md.

Возьмем в теореме о соответствии $G=\mathbb{Z},\ K=d\mathbb{Z}.$ Отображение $\varphi:\mathbb{Z}\to d\mathbb{Z}:\ \varphi(k)=dk$ — эпиморфизм. Пусть $H=m\mathbb{Z},$ тогда $\varphi(H)=dm\mathbb{Z}=n\mathbb{Z}.$ По теореме о соответствии $d\mathbb{Z}/n\mathbb{Z}\cong \mathbb{Z}/m\mathbb{Z}\cong \mathbb{Z}_m.$

Терема о сокращении. Пусть G — группа, H, K — подгруппы в G и K — нормальная подгруппа в $G, K \subset H$. Тогда:

- 1) H/K подгруппа в G/K;
- 2) Существует взаимно-однозначное соответствие между подгруппами в G, содержащими K и подгруппами в G/K;
- 3) Если H нормальная подгруппа в G, то H/K нормальная подгруппа в G/K и $G/H\cong (G/K)/(H/K)$. \square

Упражнения.

- 4.1. Найти левые и правые смежные классы:
- а) группы S_3 по подгруппе $\{e, (12)\};$
- б) группы S_4 по подгруппе $H = \{e, (12), (13), (23), (123), (132)\};$
- в) группы \mathbb{C}^* по подгруппе \mathbb{R}^+ ;
- г) группы \mathbb{C}^* по подгруппе \mathbb{R}^* ;
- д) группы \mathbb{C}^* по подгруппе $\mathbb{T}^1 = \{z \in \mathbb{C} | |z| = 1\}.$
- **4.2.** Доказать, что подгруппа H нормальна в G, если
- а) G абелева, H любая ее подгруппа;
- 6) $G = S_n, H = A_n;$
- в) G произвольная группа, H подгруппа индекса 2 в G;

- г) $G = \{(a,b) \mid a, b \in \mathbb{Z}\}$ с операцией $(a,b)(c,d) = (a+(-1)^b c, b+d),$ $H = \{(a,0) \mid a \in \mathbb{Z}\};$
 - д) $G = GL_n(\mathbb{R}), H = \{A \in GL_n(\mathbb{R}) | \det(A) > 0\};$
 - e) $G = GL_n(\mathbb{C}), H = \{A \in GL_n(\mathbb{C}) | \det(A) \in \mathbb{R}^+ \}.$
- **4.3.** Доказать, что ядро гомоморфизма $f: G \to H$ является нормальной подгруппой в G.
 - 4.4. Найти факторгруппы:
 - a) $\mathbb{R}^*/\mathbb{R}^+$;
 - б) $\mathbb{C}^*/\mathbb{R}^+$;
 - в) $\mathbb{C}^*/\mathbb{T}^1$, где $\mathbb{T}^1 = \{z \in \mathbb{C} | |z| = 1\};$
 - г) $\mathbb{T}^1/\mathbb{U}_n$, где $\mathbb{U}^n = \{z \in \mathbb{C} | z^n = 1\};$
 - д) \mathbb{C}^*/H_n , где $H_n = \{z \in \mathbb{C} | arg(z) = \frac{2\pi k}{n}, k \in \mathbb{Z}\};$
 - e) $\mathbb{C}^*/\mathbb{U}_n$;
 - ж) H_n/\mathbb{R}^+ ;
 - $3) H_n/\mathbb{U}_n.$
 - **4.5.** Доказать, что
 - a) $GL_n(\mathbb{R})/SL_n(\mathbb{R}) \cong \mathbb{R}^*$;
 - $6)GL_n(\mathbb{C})/SL_n(\mathbb{C}) \cong \mathbb{C}^*;$
 - в) $GL_n(\mathbb{R})/H \cong \mathbb{Z}_2$, где $H = \{A \in GL_n(\mathbb{R}) | \det(A) > 0\};$
 - г) $GL_n(\mathbb{C})/H \cong \mathbb{T}^1$, где $H = \{A \in GL_n(\mathbb{C}) | \det(A) \in \mathbb{R}^+\};$
 - д) $GL_n(\mathbb{R})/H \cong \mathbb{R}^+$, где $H = \{A \in GL_n(\mathbb{R}) || \det(A) | = 1\};$
- **4.6.** Доказать, что если $f: G \to H$ эпиморфизм групп, то |H| делит |G|.
 - **4.7.** Найти факторгруппы: а) $4\mathbb{Z}/12\mathbb{Z}$; б) \mathbb{Z}_{12} по подгруппе порядка 3.
- **4.8.** В факторгруппе \mathbb{Q}/\mathbb{Z} найти наименьший неотрицательный представитель и порядок смежных классов:
 - a) $\overline{30,3}$;
- $6) \frac{47}{-\frac{47}{5}};$
- B) $\overline{1,37}$;
- Γ) $\overline{-1,25}$.

* * *

- **4.9.** Доказать, что подгруппа, индекс которой есть наименьший простой делитель порядка группы, нормальна.
 - **4.10.** Доказать, что в факторгруппе \mathbb{Q}/\mathbb{Z}
 - а) каждый элемент имеет конечный порядок;
 - б) для каждого $n \in \mathbb{N}$ существует единственная подгруппа порядка n.

Список литературы

- [1] Сборник задач по алгебре. Семестр 3./ Сост. С.А. Кириллов. Н.Новгород: ННГУ, 1997.-34 с.
- [2] Сборник задач по алгебре./Под ред. А.И. Кострикина. М.: ФИЗМАТ-ЛИТ, 2001. 464 с.
- [3] Кострикин А. И. Введение в алгебру. М.: Наука, 1977. 496 с.

ЗАДАЧИ ПО ТЕОРИИ ГРУПП. ЧАСТЬ І

Составители:

Михаил Иванович **Кузнецов** Ольга Александровна **Муляр** Надежда Александровна **Хорева** и др.

Практикум

Государственное образовательное учреждение высшего профессионального образования "Нижегородский государственный университет им. Н.И. Лобачевского".

603950, Нижний Новгород, пр. Гагарина, 23.

Подписано в печать . Формат 60x84 1/16.

Бумага офсетная. Печать офсетная. Гарнитура Таймс.

Усл.печ.л. Уч.-изд.л.

Заказ № . Тираж 100 экз.

Отпечатано в типографии Нижегородского госуниверситета им. Н.И. Лобачевского

603600, г. Нижний Новгород, ул. Большая Покровская, 37 Лицензия ПД № 18-0099 от 14.05.01