Appunti di

Nuclear and Particle Physics

Valerio Favitta vfavitta@gmail.com

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Indice

1	Intr	roduzione	3
	1.1	Particelle elementari ed interazione	3
	1.2	Evoluzione storica	4
	1.3	Sonde sperimentali	
	1.4	Scala di energia	5
	1.5	Relazioni importanti	6
	1.6	Evoluzione post-Rutherford	6
	1.7	Scoperta del neutrone di Chadwick	6
	1.8	Derivazione formula di Bethe-Bloch	8
	1.9	Equazione di Dirac ed esistenza delle antiparticelle	12
	1.10	beta-decay ed esistenza del neutrino	13
	1.11	Classificazione delle particelle	13
2	Cin	ematica relativistica	14
	2.1	Trasformazioni di Lorentz	14
	2.2	Esperimento CPP, muoni, pioni e Yukawa	15
	2.3	Scoperta dell'antiprotone	21
\mathbf{A}	Rev	voldiv	22
В	Ren	ninder	23
\mathbf{C}	Ese	rcizi	23
\cup		Cinematica relativistica	23
		Energia di soglia per una reazione	$\frac{23}{23}$

1 Introduzione

1.1 Particelle elementari ed interazione

Una particella si dice elementare se non possiede una struttura interna.

- Una particella elementare è tale in base al tempo in cui ci troviamo: cambia in base alle nostre conoscenze. Una volta l'atomo era considerato elementare, adesso sappiamo che c'è un nucleo, che è composto a sua volta da nucleoni che è composto a sua volta da quark. Questo è ciò a cui siamo arrivati oggi, non possiamo essere sicuri che i quark siano elementari e quindi che non abbiano una struttura interna.
- Con energie maggiori, siamo in grado di migliorare la nostra risoluzione e poter sondare strutture più piccole, cioè distanze piccole. Questo viene dalla meccanica quantistica e la relazione di De Broglie.
- Un sistema come il nucleo ha dei livelli e questo è dovuto intrinsecamente al fatto che c'è una struttura interna e i nucleoni possono ri-organizzarsisu livelli diverse.
- Oggi con LHC arriviamo a 14 TeV, e così siamo arrivati ai quark. Magari migliorando la risoluzione, cioè aumentando l'energia, scopriamo una struttura interna ai quark.
- L'interazione tra particelle avviene per scambio di particelle mediatrici (non materiali). Queste particelle mediatrici sono dette bosoni e hanno spin intero (uno).

Le scale di energia sono:

- Per cristalli e molecole si parla di cm a cui corrispondono decine di eV.
- Per atomi si parla di 10^{-10} m.
- Per i nuclei si parla di 10⁻¹⁵ m a cui corrispondono fino a centinaia di MeV.
- Per le particelle elementari fino ad 1 TeV. VEDERE SLIDE DIMENSIONI DEI QUARK, SE C'È

Parliamo del Modello Standard. Sappiamo che ci sono 3 famiglie o generazioni di particelle elementari della materia, che si suddividono in quark e leptoni (sono tutti fermioni). Ricordiamo inoltre che il Modello Standard è basato sul fatto che la massa del neutrino è nulla.

• Le famiglie di leptoni sono

$$L \colon \binom{\nu_e}{e^-}, \binom{\nu_\mu}{\mu^-}, \binom{\nu_\tau}{\tau^-}$$

• Mentre di quark sono

$$Q \colon \binom{u}{d}, \binom{c}{s}, \binom{t}{b}$$

• Sono raggruppati in doppietti perché è sottointesa una simmetria, dovuta alla interazione debole. Si può notare che la differenza di carica tra particella alta e bassa è sempre di 1. Inoltre la particella superiore ha sempre carica maggiore di quella inferiore. Questi fatti sono dovuti al atto che si passa da una all'altra tramite interazione debole con scambio di bosoni W[±], che è quindi "l'accoppiatore" di queste particelle di ciascuna famiglia. La massa delle famiglie va ad aumentare con il numero di famiglia, che comunque non è un parametro rilevante nella loro interazione.

- I leptoni sono sempre soggetti a forza debole, invece sono soggetti a forza elettromagnetica solo se carichi. Invece i quark sono sempre soggetti a forza forte, ed a forza elettromagnetica.
- I mediatori dell'interazione elettromagnetica sono i fotoni, quelli della interazione forte sono i gluoni (otto), quelli della interazione debole sono i bosoni W^{\pm} e Z.
- La gravità chiaramente agisce su ogni particella in quanto sono dotate di masse. Sul gravitone non si hanno evidenze sperimentali. Ci piacerebbe che esistesse così da poter descrivere la gravità al pari delle altre tre interazioni. Ad ogni modo la sua intensità è 39 ordini di grandezza più piccola rispetto alla interazione forte quindi è molto difficile da osservare.

1.2 Evoluzione storica

Vediamo come si è arrivati al Modello Standard.

- Inizialmente, tra il 1700 e il 1800 da studi di reazioni chimiche si ottennero le varie leggi di Dalton, Boyle etc. Daltone giunse alla conclusione che l'atomo fosse la particella costituente della materia e che fosse indistruttibile e indivisibile. In generale la materia è fatta da atomi diversi. Avogadro aggiunse l'esistenza delle molecole, aggregazioni di atomi.
- C'erano 92 elementi la cui massa si poteva sempre esprimere come multiplo del primo elemento cioè l'idrogeno. Questo ci fa pensare che dietro si nasconda una simmetria, ossia c'è qualcosa che si ripete.
- Si può stimare il raggio atomico conoscendo densità **rivedi slide** e assumendo volume di una sfera. Otteniamo $\left(\frac{3}{4\pi n}f\right)^{\frac{1}{3}}$ con n numero di atomi per unità di volume e f fattore che tiene conto dell'impacchettamento, cioè quanto sono vicini o lontane le particelle nell'atomo. Si ottiene una stima sui 10^{-10} m.

Parliamo della tavola periodica.

- Essa non può rappresentare le particelle elementari innanzitutto per una questione filosofica: non possono essere così tante le particelle elementari. In realtà niente lo vieta, ma semplicemente non ce lo aspettiamo.
- Un fattore più importante è la regolarità delle proprietà chimico-fisiche degli elementi in essa. Questo nasconde la presenza di struttura interna.
- Ad ogni modo ha molte informazioni. È difficile individuare questo tipo di simmetrie, però sappiamo che qualcosa che si ripete c'è.
- Dunque inizialmente la particella elementare era l'atomo di idrogeno, con tutti gli atomi proporzionali ad esso.
- Successivamente Thomson scoprì l'elettrone di massa 2000 volte minore rispetto all'idrogeno. Questo destabilizza la nostra conoscenza, perché l'atomo è neutrone ed è stato scoperta qualcosa di negativo al suo interno. Quindi qualcosa doveva compensare la carica negativa dell'elettrone all'interno dell'atomo. In effetti già questa era la prova che l'atomo non fosse elementare.

- Rutherford quindi testò il modello a panettone di Thomson e scoprì che l'atomo è composto da un nucleo e da elettroni che orbitano attorno ad esso. Questo è il modello planetario. Ciò era dovuto al fatto che mandando un fascio di α contro un foglio d'oro si osservava che la maggior parte delle particelle passava dritto, ma alcune venivano deviate di molto, alcune addirittura backscatterate. Questo è dovuto al fatto che l'atomo è composto da un nucleo molto piccolo rispetto al volume dell'atomo, mentre se fosse vero il modello di Thomson le particelle si sarebbero dovute deviare di poco. Questa scoperta fu possibile solo alla scoperta della radioattività naturale, infatti per generare il fascio di α si usò il polonio che è radioattivo.
- Approfondiamo questo aspetto. Se mandiamo un fascio di α contro un foglio d'oro, se la carica
 positiva è diffusa su tutto l'atomo allora in base al parametro d'impatto del fascio, esso vedrà
 una carica ridotta (cioè non tutta) secondo il teorema di Gauss in base al parametro d'impatto.
 Si ha che la carica dentro e fuori si compensano e quindi non si dovrebbe avere una grande
 deflessione, mentre si osservò l'opposto.

1.3 Sonde sperimentali

- Per la scelta di una sonda l'elemento chiave è la risoluzione. Il motivo è legato all'ottica. Quando mandiamo onde contro delle fenditure, si devono confrontare l'elemento geometrico (in questo caso l'apertura della fenditura) e la lunghezza d'onda dell'onda incidente. Questo è ciò che dobbiamo fare anche in meccanica quantistica. Minore sono le lunghezze d'onda, maggiore sarà la risoluzione e, ricordando la relazione di De Broglie, maggiore deve essere l'energia. Questa è la base della fisica degli acceleratori. C'è dunque un legame tra la lunghezza d'onda incidente e un fattore geometrico dell'oggetto da osservare.
- Grazie effetto fotoelettrico e relazione di De Broglie c'è completo legame tra onde e particelle.
- Rutherford infatti riuscì nel suo esperimento perché la lunghezza d'onda delle particelle α era vicina alle dimensioni che oggi sappiamo essere del nucleo, ossia 10^{-15} m. Quindi aveva risoluzione esatta. Impiegò $v_{\alpha} = 0.05$ c (vale espressione di impulso classica). $\lambda_{\alpha} = \frac{\hbar}{m_{\alpha}v_{\alpha}} \approx 10^{-15}$ m. Se di 1 MeV avesse usato energie del keV non avrebbe visto nulla.
- In generale quindi se ho lunghezze d'onda maggiori del raggio nucleare, le particelle incidenti non riescono a vedere il nucleo e interagiscono solo con nube elettronica, portando a debole scattering (cioè piccole deflessioni); se le due dimensioni sono comparabili, si osservano forte deflessioni come in Rutherford e si risolve la struttura nucleare; se la lunghezza d'onda è inferiore al raggio nucleare, non solo esploriamo il nucleo ma anche i costituenti dei nucleoni. Pertanto, la lunghezza d'onda gioca un ruolo chiave nel determinare cosa si possa "vedere" e quali fenomeni si osservano a livello nucleare o subnucleare.
- Tipicamente invece di parlare di lunghezza d'onda si parla di quadrimpulso trasferito q^2 . Esso è collegato al potere risolutivo (se q^2 è grande, la risoluzione è grande).

1.4 Scala di energia

• In fisica delle particelle l'energia la si dà in multipli di eV. Nel LHC un protone ha energia di 6.5 TeV. Questi corrispondono a 10⁻⁶ J, che in scala microscopica è enorme, mentre in scala macroscopica è una energia insignificante. Quindi è rilevante sapere il sistema di cui si sta parlando, oltre all'ordine di grandezza.

- Si usano unità naturali ecc. Mettere la tabella dalle slide.
- Un altro punto importante è la analisi dimensionale. Usiamo unità naturali. Al solito tempo e spazio sono omogenei e sono inversi all'energia. Inserire altra tabella.

1.5 Relazioni importanti

Al solito valgono le formule relativistiche (uso unità naturali).

- Sappiamo che $E=m=\frac{m_0}{\sqrt{1-v^2}}$. Se $v\ll 1$ (cioè $v\ll c$) allora $E\approx m_0+\frac{1}{2}m_0v^2$ sviluppando in serie.
- Inoltre $p = mv = \frac{m_0 v}{\sqrt{1-v^2}}$ e $E^2 = p^2 + m^2$. Per il fotone E = p.
- Facciamo un esempio numerico. Supponiamo di avere un elettrone (m=0.511 MeV con v=0.99. Quindi $\gamma=7.089$. Allora E=3.62 MeV e p=3.58 MeV, cioè sono molto vicini! Questo è dovuto al fatto che la massa è piccola rispetto all'energia. Questa approssimazione la facciamo **sempre**, cioè la massa la poniamo a zero perché trascurabile rispetto all'impulso che ha la particella.
- Se invece v = 0.999, l'energia e l'impulso erano ancora più vicini.

1.6 Evoluzione post-Rutherford

- Allora l'atomo è neutro. Si suppose inizialmente che avesse semplicemente tanti protoni quanti elettroni e che il responsabile della massa dell'atomo fosse il nucleo.
- Ma se fossi così, la massa non tornerebbe con le misure sperimentali. Deve esistere dunque altro. Deve essere neutro perché la carica è già a posto, e deve avere massa simile ai protoni perché la massa misurata era circa il doppio di quella prevista considerando solo protoni.
- Con l'idea del neutrone nasce anche l'idea di una nuova interazione, quella forte che si aggiunge a quella gravitazionale e quella elettromagnetica. Infatti fino ad ora quella elettromagnetica era responsabile di tutto, ma non può invece spiegare come mai i neutroni sono legati.
- Il problema era evidente considerando l'anomalia del ¹⁴N. **GUARDA QUADERNO RIZZO** Ma se l'atomo è composto da fermioni, allora nel sistema con 14 protoni e 7 elettroni, avendo 21 particelle avrò per forza spin semintero perché le accoppio a due a due, mentre si misura spin pari a 1.
- Se invece considero il neutrone, allora ho 7 protoni, 7 neutroni e 7 elettroni, quindi ho 28 particelle e quindi spin intero.

1.7 Scoperta del neutrone di Chadwick

Non approfondiremo l'apparato sperimentale più di tanto, ma ci concentreremo su altre questioni.

• L'esperimento per la scoperta del neutrone fu fatto già prima di Chadwick (1932) ma fu mal interpretato. Cerchiamo di capire perché.

- La reazione coinvolta è $\alpha + \frac{9}{4} Be \rightarrow_6^{12} C + n$, che sappiamo essere quella corretta (interpretabile come scattering $\gamma + n \rightarrow \gamma + n$). Sul canale d'ingresso non abbiamo dubbi, perché le particelle α le forniamo noi dalla sorgente di polonio e il target di berilio lo abbiamo scelto noi. I problemi sorgono sul canale di uscita.
- Nella interpretazione scorretta della reazione, senza considerare il neutrone, si supponeva che la reazione fosse $\alpha + {}_{4}^{9} Be \rightarrow {}_{6}^{13} C + \gamma$ (oppure $\gamma + p \rightarrow \gamma + p$). Infatti ai tempi si sapeva solo che ci fosse radiazione neutra molto penetrante.
- Quale è la differenza? Se fosse davvero un γ , avrebbe energia molto elevata, che in realtà non ho a disposizione (50 MeV)

Vediamo l'apparato sperimentale. METTI IMMAGINE SLIDE

- Se mandiamo un fascio di protoni contro un bersaglio, essi vengono rallentati e non penetrano più di tanto. Al contrario i neutroni è possibile che passino indisturbati (sono molto penetranti). Se i neutroni collidono con un nucleo, normalmente avviene una reazione di knock-out, ossia esce una particella, tipicamente il protone.
- Quindi serve il vuoto nella camera dei neutroni, si mette polvere di polonio per generare particelle α e si mette un bersaglio di berillio. Il neutrone penetra il bersaglio di berillio e arriva fino alla camera di ionizzazione. Inoltre si mette della paraffina tra bersaglio e camera a ionizzazione. La paraffina è ricca di protoni, faccio questo per massimizzare la sezione d'urto protone-neutrone, che è elevata perché hanno masse simili. Chiaramente nella camera a ionizzazione rivelo protoni e non neutroni.

Vediamo perché quella reazione è sbagliata.

- La reazione sbagliata che hanno considerato i Curie sarebbe stata $\alpha + {}_4^9 Be \rightarrow {}_6^{13} C + \gamma$, che possiamo esprimerla come $\gamma + p \rightarrow \gamma + p$, cioè effetto Compton, ma con il protone.
- Rivediamo velocemente l'effetto Compton.
- Si ha dalla conservazione dell'impulso lungo le due direzioni

$$\begin{cases} p_0 = p_1 \cos \vartheta + p \cos \varphi \\ 0 = p_1 \sin \vartheta - p \sin \varphi \end{cases} \begin{cases} p_0^2 + p_1^2 \cos^2 \vartheta - 2p_0 p_1 \cos \vartheta = p^2 \cos^2 \varphi \\ p_1^2 \sin^2 \vartheta = p^2 \sin^2 \varphi \end{cases} \begin{cases} p^2 = p_0^2 + p_1^2 - 2p_0 p_1 \cos \vartheta \\ p_1^2 \sin^2 \vartheta = p^2 \sin^2 \varphi \end{cases}$$

• Invece dalla conservazione dell'energia

$$E_0 + m_e c^2 = E_1 + T + m_e c^2 \Rightarrow E_0 - E_1 = T \Rightarrow c(p_0 - p_1) = T$$

• Vogliamo l'energia dell'elettrone: $E_{\mathrm{TOT}}^{\mathrm{elettrone}} = m_e c^2 + T = (m_e^2 + c^4 + c^2 p^2)^{\frac{1}{2}}$ (usando la relazione di mass-shell) ed elevando al quadrato troviamo $\frac{T^2}{c^2} + 2m_e T = p_0^2 + p_1^2 - 2p_0 p_1 \cos \vartheta$ da cui usando la conservazione dell'energia troviamo

$$\frac{p_0 - p_1}{p_0 p_1} = \frac{1}{m_e c} (1 - \cos \vartheta) \Rightarrow \frac{E_0 - E_1}{E_0 E_1} = \frac{1}{m_e c^2} (1 - \cos \vartheta)$$

dove E_0 è l'energia del fotone incidente e E_1 è l'energia del fotone diffuso. Possiamo ottenere

$$E_1 = \frac{E_0}{1 + \frac{E_0}{m_e c^2} (1 - \cos \theta)}$$

Adesso possiamo trovare l'energia dell'elettrone da $E=E_0-E_1$. Otteniamo

$$E = \frac{\frac{E_0^2}{m_e c^2} (1 - \cos \vartheta)}{1 + \frac{E_0}{m_e c^2} (1 - \cos \vartheta)} \Rightarrow E_{\text{MAX}}^{\text{elettrone}} = \frac{\frac{2E_0^2}{m_e c^2}}{1 + 2\frac{E_0}{m_e c^2}} = \frac{2E_0^2}{m_e c^2 + 2E_0}$$

• Tornando a Curie, al posto della massa dell'elettrone mettiamo la massa del protone. Dall'ultima relazione otteniamo l'equazione di secondo grado in E_0

$$2E_0^2 - 2E_0E_p^{\text{MAX}} - m_p c^2 E_p^{\text{MAX}} = 0$$

Avendo misurato $E_p^{\text{MAX}} \approx 5.3 \text{ MeV}$, si ottiene $E_0 \approx 52.6 \text{ MeV}$. Finora negli esperimenti erano abituati a qualche MeV di energia per i fotoni, quindi era una novità. Tuttavia, il problema non era questo. Con l'interpretazione di Curie avrebbero $E_\gamma = m(\alpha) + m\binom{9}{4}Be - m\binom{13}{6}C \approx 11$ MeV. Invece con Chadwick si ha $T_n = m(\alpha) + m\binom{9}{4}Be - m\binom{12}{6}C - m(n) = 945.3 MeV - m(n)$.

• Dunque con Curie¹ servirebbe un fotone di energia di circa 50 MeV che è incompatibile con l'energia a disposizione di soli 11 MeV. Invece se ho il neutrone, la sua energia cinetica sarà pari a $T_n \approx 945.3 MeV - m(n)$.

Ricaviamo la relazione che lega dati sperimentali con la massa del neutrone.

 Stiamo considerando un urto elastico neutrone-protone, quindi si conserveranno sia energia ed impulso.

$$\begin{cases} m_n v_n^{\text{MAX}} = m_p u_p - m_n v_n' \\ \frac{1}{2} m_n v_n^{\text{MAX},2} = \frac{1}{2} m_p u_p^2 + \frac{1}{2} m_n v_n'^2 \end{cases}$$
 (1)

Si ricava v'_n dalla prima e lo si sostituisce nella seconda. Alla fine si ottiene

$$u_p = \frac{2m_n}{m_n + m_p} v_n^{\text{MAX}}$$

Se ripetessimo l'esperimento con scattering di azoto, si trova la stessa formula ma con azoto $u_N=\frac{2m_n}{m_n+m_N}v_n^{\text{MAX}}.$

ullet Noi misuriamo u_p e u_N mentre m_N e m_p sono note, quindi facendo il rapporto si trova

$$\frac{u_p}{u_N} = \frac{m_N + m_n}{m_p + m_n} \Rightarrow m_n \approx m_p$$

Anche se in realtà la massa del neutrone è leggermente superiore di quella del protone.

• Abbiamo detto che si può misurare la velocità dal range della particella carica che attraversa il materiale. Questo è possibile grazie alla formula di Bethe-Bloch.

1.8 Derivazione formula di Bethe-Bloch

L'interazione radiazione-materia è alla base della rivelazione di particelle. Consideriamo solo particelle cariche.

• Interagiscono il campo della particella incidente con il campo del mezzo mediante ionizzazione ed eccitazione. Così costruisco diverse tipologie di rivelatori.

¹Majorana nel frattempo li perculava dicendo che non sapevano di aver già scoperto il neutrone.

- Sono rilevanti il tipo di materiale, il tipo e la velocità della particella incidente. Anche se nel nostro caso non proviene da un fascio da ma una reazione.
- Se $b > R_{\text{atomico}}$ eccito e/o ionizzo e vedo l'atomo come un blocco. Non c'è deflessione.
- Se $b \approx R_a$ uguale a prima ma l'elettrone atomico è come se fosse libero.
- Se $R_{\rm N} < b < R_{\rm a}$ vedo il nucleo e c'è forte deflessione.
- Le cariche possono: ionizzare, emettere luce di scintillazione, avere effetto Cherenkov o emettere radiazione di transizione. I γ possono interagire con effetto fotoelettrico, effetto Compton o produzione di coppie. I neutroni urtano un nucleo che rincula. Infine i neutrini possono diffondersi solo per interazione debole, con $\sigma \approx 10^{-41}$ cm² e quindi servono tonnellate di materiale per rivelarle.

Sappiamo che la perdita di energia $\frac{\mathrm{d}E}{\mathrm{d}x} \propto z^2 \cdot \frac{1}{\beta^2} \cdot \frac{Z}{A}$.

- Si usa di solito $\frac{1}{\rho} \frac{dE}{dx}$ per cui il *MIP* (Minimum Ionizing Particle) è simile per tutti i materiali ed è circa $1 2 \frac{\text{MeV g}}{\text{cm}^2}$.
- Da $\frac{dE}{dx}$ si può ricavare il range residuo della particella carica. Supponendo che E_0 perda energia solo da ionizzazione/eccitazione, possiamo esprimere il range come

$$R = \int_0^R \mathrm{d}x = \int_{E_0}^{mc^2} \left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)^{-1} \mathrm{d}E = m \cdot F(v)$$

quindi il range è funzione della velocità iniziale della particella. A quei tempi il range si misurava dalle camere a nebbia manualmente con un righello! E così si ottenevano informazioni sulla velocità della particella.

• Per le particelle neutre non abbiamo tracce, però possiamo guardare le cariche prodotte dalla collisione. Ad esempio se i prodotti sono $^{12}C + n$, mettiamo uno strato di paraffina così che dallo scattering n - p riveliamo il protone (lascia una traccia nella camera a nebbia, da cui ricaviamo il range).

Deriviamo la formula di Bethe-Bloch.

- Consideriamo un atomo con carica Z e massa A ed una particella incidente di carica ze e massa m. Supponiamo che la massa sia tale che $m \gg m_e$ e che l'elettrone sia fermo rispetto alla particella incidente in quanto la velocità è elevata.
- Mettere immagien da slide altrimenti da npp 04
- La particella incidente vedrà gli elettroni del mezzo muoversi con velocità -v. Possiamo calcolare la quantità di impulso trasferito nell'urto. La forza è dovuta al campo elettrico, quindi $F = e\varepsilon_{\perp}$ (uguale in sistema di riferimento del laboratorio e della particella), dove la componente longitudinale si elimina per simmetria nell'integrale.

$$\vec{p}'_e = \Delta \vec{p}_e = \int e\varepsilon_\perp dt = \int e\varepsilon_\perp \frac{dx}{v} = \frac{e}{v} \int \varepsilon_\perp dx$$

A questo punto applichiamo il teorema di Gauss, considerando superficie cilindrica di raggio b, parametro d'impatto. Otteniamo

$$\Phi(\vec{\varepsilon}) = \int_{S} \vec{\varepsilon} \cdot \hat{n} \, \mathrm{d}a = 2\pi b \int \varepsilon_{\perp} \, \mathrm{d}x = \frac{ze}{\varepsilon_{0}}$$

Dalle ultime due segue che

$$p_e=rac{ze^2}{2\piarepsilon_0v}rac{1}{b}=rac{ze^2}{4\piarepsilon_0b^2}rac{2b}{v}=$$
Forza di Coulomb·tempo di urto

Possiamo notare che l'impulso trasferito è invariante Infatti

$$\begin{cases} \varepsilon_{\perp} = \gamma \varepsilon_{\perp}' \\ \Delta t = \frac{\Delta t'}{\gamma} \end{cases}$$

Dunque $p_e \sim \Delta t \cdot \varepsilon_{\perp} \sim p'_e$ invariante.

• Quindi assumendo $m \gg m_e$ e che considero elettrone fermo perché particella incidente molto veloce, possiamo scrivere

$$T_e = \frac{p^2}{2m_e} = \left(\frac{ze^2}{4\pi\varepsilon_0 b}\right)^2 \frac{2}{m_e v^2} = 2z^2 \left(\frac{e^2}{4\pi\varepsilon_0 m_e c^2}\right)^2 \frac{\left(m_e c^2\right)^2}{b^2 m_e v^2} = 2m_e c^2 \frac{z^2}{\beta^2} \frac{r_e^2}{b^2}$$
(2)

con $r_e = \frac{e^2}{4\pi\epsilon_0 m_e c^2}$ raggio classico dell'elettrone. Questo valore di T_e è l'energia persa dalla particella in un singolo urto!

• Per generalizzare ad n urti, consideriamo la densità elettronica n_e in un tratto dx con parametro d'impatto tra b e b + db. Il numero di urti sarà $n = n_e 2\pi b \, db \, dx$. Quindi l'energia persa per numero di urti sarà

$$\frac{\partial^2 E}{\partial b \partial x} = n_e r_e^2 m_e c^2 \frac{4\pi}{b} \frac{z^2}{\beta^2} \implies \frac{\mathrm{d}E}{\mathrm{d}x} = \int_{b}^{b_{\mathrm{max}}} 4\pi n_e r_e^2 m_e c^2 \frac{z^2}{\beta^2} \frac{\mathrm{d}b}{b} \sim \ln \frac{b_{\mathrm{max}}}{b_{\mathrm{min}}}$$

• b_{max} corrisponde al Δt dell'urto, se esso è grande rispetto al tempo di rivoluzione degli elettroni allora non c'è trasferimento di energia.

$$\frac{b}{v\gamma} > T_e \implies b_{\text{max}} = v\gamma T_e$$

non capisco che cazzo è. spero nelle slide altrimenti consultare libri.

- Invece b non può essere inferiore alle dimensioni dell'elettrone visto dalla particella incidente, quindi da $\lambda = \frac{\hbar}{p_e} = \frac{\hbar}{m_e c \beta \gamma} \implies b_{\min} = \frac{\hbar}{m_e c \beta \gamma}$.
- Se materiale ha proprietà Z, A, ρ allora ho, considerando $n_e = \frac{N_a Z \rho}{A}$ e al posto di $\ln \frac{b_{\text{max}}}{b_{\text{min}}}$ metto el espressioni trovate:

$$\frac{\mathrm{d}E}{\mathrm{d}x} = 4\pi r_e^2 m_e c^2 \frac{N_a Z \rho}{A} \frac{z^2}{\beta^2} \ln\left(\frac{m_e c^2 \beta^2 \gamma^2 T_e}{\hbar \omega_e}\right)$$

chiamata formula di Bohr, che è il predecessore della formula di Bethe-Bloch in quanto è semiclassica. Da notare che poi per $\hbar\omega_e$ si mette l'energia di legame dell'elettrone, cioè il potenziale medio di ionizzazione I.

• Normalmente si passa da spessore dx a ρ dx così da avere quantità quasi indipendente dall'atomo. Infatti $\frac{dE}{\rho dx} \propto \frac{Z}{A} \ln \cos t$. e si definisce $C = 4\pi r_e^2 m_e c^2 N_A = 0.307 \text{ MeV g}^{-1} \text{ cm}^{-2}$, in modo da poter scrivere la formula di Bohr come

$$\frac{\mathrm{d}E}{\rho\,\mathrm{d}x} = C\frac{Z}{A}\frac{z^2}{\beta^2}\ln\left(\frac{m_e c^2 \beta^2 \gamma^2}{\langle I \rangle}\right)$$

• Dalla Equazione 2 abbiamo:

$$b^2 = 2r_e^2 \frac{z^2}{\beta^2} \frac{m_e c^2}{E_e} \implies |2b \, db| = 2r_e^2 \frac{z^2}{\beta^2} \frac{m_e c^2}{E_e^2} \, dE_e$$

e da questa possiamo ricavare la probabilità che percorrendo un tratto unitario la particella subisca una collisione con parametro urto tra $b \in b + db$, risulta

$$d\sigma = 2\pi b \, db \, n_e = \cdots \implies \frac{d\sigma}{dE} = 2\pi r_e^2 m_e c^2 n_e \frac{z^2}{\beta^2} \frac{1}{E_e^2}$$

quindi ho dipendenza da E_e^{-2} quindi collisioni con trasferimento di energia elevato sono rare!

- Consideriamo l'urto con un nucleo piuttosto che con elettrone. Per fare ciò dobbiamo considerare $\frac{Z}{1840A} \sim 10^{-4}$ quindi un contributo totalmente trascurabile!
- Le differenze con la formula di Bethe-Bloch sono i termini che tengono conto degli effetti di densità di carica e l'energia cinetica massima trasferita all'elettrone in un singolo urto.
- Dobbiamo tenere conto di due cose quando passiamo da Bohr a Bethe-Bloch: se abbiamo a che fare con elettroni e positroni il termine nel ln va modificato perché le masse delle due particelle sono uguali, detto termine delle fore di scambio; anche $T_{\rm max}$ possiamo ricavare dalla cinematica.
- Saltando passaggi matematici (vedi slide) sostituendo T_{max} e alla fine abbiamo

$$\frac{\mathrm{d}E}{\rho\,\mathrm{d}x} \propto z^2 \cdot \frac{Z}{A} \frac{1}{\beta^2}.$$

Da qui possiamo comprendere che la traccia dell'azoto è piccola rispetto a quella del protone a parità di energia, proprio per il termine z^2 . Inoltre visto che per la maggior parte dei materiali $\frac{Z}{A} \sim \frac{1}{2}$ allora abbiamo che il $MIP \sim 1 - 2$ MeV g⁻¹ cm⁻² (solo per l'idrogeno il rapporto vale 1).

- Questa formula non funziona ad energie elevate (> TeV) perché dovrei tenere conto di altri effetti relativistici, e non funziona neanche a basse energie cioè ad energie paragonabili a quelle degli elettroni atomici in quanto non posso più considerarli fermi.
- Quindi la perdita di energia è la stessa per tutti i materiali! Ad esempio un protone da 10 MeV perde la stessa energia attraversando 1 $\frac{g}{cm^2}$ di rame, alluminio ecc. Per energie minori del MIP ogni particella perde energia in modo diverso, quindi posso identificare la particella.
- Si può scrivere la legge di scala $-\frac{\mathrm{d}E_2}{\mathrm{d}x}=-\frac{z_2^2}{z_1^2}\cdot\frac{\mathrm{d}E_1}{\mathrm{d}x}$

• Code di Landauimmagine da slide: in generale qualunque rivelatore ha una granularità limitata. Misuro la perdita di energia in spessore finito. Se consideriamo uno spessore sottile (e bassa densità), si avranno mediamente poche collisioni e alcune saranno caratterizzate da grande energia trasferita. Se grafichiamo la distribuzione di energia trasferita sarà la distribuzione di Landau con una bella coda lunga. È importante perché di solito si prende il valor medio della distribuzione, ma funziona bene se è gaussiana o in generale simmetrica. In questo caso è asimmetrica ed ho grandi fluttuazioni per perdita di energia grande. Normalmente si tagliano le code iniziali e finali per minimizzare le fluttuazioni e si va il valor medio di quello che resta. Invece con grandi spessori abbiamo distribuzione simmetrica gaussiana, avendo molte collisioni.

Una volta che abbiamo la formula di Bethe-Bloch possiamo ricavare il range come già detto. Le fluttuazioni nella perdita di energia si riflettono nello straggling del range. Se volessimo ricavare range per mesoni K^+ va be mi secco esempio numerico speriamo slide.

1.9 Equazione di Dirac ed esistenza delle antiparticelle

Poi arrivo l'equazione di Dirac $(i\gamma^{\mu}\partial_{\mu} - \frac{mc}{\hbar})\psi = 0.$

- Al contrario dell'equazione di Schrödinger, questa è relativistica e del primo ordine. Le γ^{μ} sono le matrici di Dirac e sono 4×4 , quindi ψ non è uno scalare bensì uno spinore a quattro componenti, in cui le prime due sono per la particella e le altre due per antiparticella. Sono due per tenere conto dello spin up e down. Quindi ci sono quattro soluzioni.
- All'energia negativa quindi associò l'esistenza di una antiparticella. Ma questo doveva essere verificato. La verifica avvenne con la scoperta del positrone da parte di Anderson nel 1932.
- Come già detto, a quei tempi le uniche sonde disponibili per gli esperimenti in laboratorio erano le sorgenti radioattive naturali e i raggi cosmici. Per scoprire il positrone usarono raggi cosmici. Nella camera a nebbia arrivavano queste particelle e mettendo un campo magnetico avevano differente raggio di curvatura.
- Se ho un elettrone o un positrone la curvatura sarà la stessa, quindi solo con camera a nebbia e campo magnetico non posso distinguerli. Allora si mette un blocco di materiale per dare un ordine temporale, perché ogni particella che attraversa un blocco materiale esce con energia minore. Si misura quindi il raggio di curvatura prima e dopo il blocco e si ricava l'impulso dalla relazione $r = \frac{mv}{qB} = \frac{p}{qB} \implies p(GeV) = 0.3B(T)Rr(m)$.
- Una volta che siamo stati in grado di determinare la carica di tale particella (conoscendo B), resta ancora il dubbio se fosse il protone (o a questo punto qualunque altra particella nuova positiva). Per risolvere il problema si valuta $\frac{P}{E}$. Avendo misurato impulso iniziale di 63 MeV (dalla curvatura), Risulta $E_p \approx 1.13~{\rm GeV} \implies \frac{p}{E_p} \sim 0.05c$ e a questo valore, dalla formula di Bethe-Bloch si osserva un range $R \sim 5mm$. Il punto è che si osservava un range di 50mm, quindi c'è una forte discrepanza. Se invece ripetiamo il calcolo con il positrone, avendo massa trascurabile risulta $E_{e^+} \approx 63~{\rm MeV}$ stessi, e a questi corrispondono un range compatibile con quello sperimentale.
- Riepilogando, mettendo il blocco facciamo cambiare la curvatura alla traiettoria della particella e da ciò capiamo il segno della carica. Infine capisco che si tratta del positrone e non di altre particelle positive perché calcolando l'energia e vedendo poi la perdita di energia tramite Bethe-Bloch (ricorda che nelle ascisse c'è proprio $\beta\gamma$), risulta un range compatibile con quello misurato.

1.10 beta-decay ed esistenza del neutrino

• L'ipotesi dell'esistenza del neutrino nasce andando ad osservare lo spettro energetico dell'elettrone da β -decay. Essendo continuo, non può essere un decadimento a due corpi come si pensava, altrimenti si avrebbe uno spettro discreto come l' α -decay. Quindi deve essere un decadimento a tre corpi, e questa terza particella deve essere neutra ed a massa nulla. A livello nucleare si ha $n \to p + e^- + \overline{\nu}$.

Che conoscenze si avevano nel 1935?

• sta parte storica discorsiva la facciamo dopo che manda slide, lezione 5 e prima parte della lezione 6

1.11 Classificazione delle particelle

Le particelle si dividono in bosoni con spin intero e fermioni con spin semintero.

Fermioni:
$$\left\{ \begin{array}{l} \text{Leptoni } e^{\pm}, \mu, \tau \text{ e neutrini} \\ \text{Barioni } p, n, \Lambda, \dots \end{array} \right. \quad \text{Bosoni:} \quad \left\{ \begin{array}{l} \text{Mesoni } \pi, K \dots \\ \text{Di Gauge (vettori) } \gamma, W^{\pm}, Z^0, g \end{array} \right.$$

- I baroni sono costituiti da tre quark, quindi sono per forza fermioni con spin $\frac{1}{2}$ o $\frac{3}{2}$. Invece i mesoni sono costituiti da quark e antiquark e quindi sono bosoni con spin 0 o 1. In generale col termine adroni si indicano particelle soggette a interazione forte.
- [...] slide Per due particelle identiche vale $|\psi(1,2)|^2 = |\psi(2,1)|^2$, cioè se le scambio di posto la probabilità è la stessa. Per i bosoni vale la simmetria, per i fermioni l'antisimmetria $\psi(1,2) = -\psi(2,1)$ da cui ne segue il principio di Pauli cioè che fermioni identici non possono stare nello stesso stato quantistico.
- La materia è fatta da fermioni e sappiamo che ci sono tre generazioni di leptoni e quark, ma solo le prime generazioni compongono la materia. Ribadiamo che i leptoni subiscono sempre forza debole e quella carica solo se carichi, mentre i quark subiscono tutti i tipi di forza, anche quella forte.
- I bosoni vettori (o di Gauge) sono gluone, fotone, W^{\pm} , Z^0 e il gravitone. Hanno tutti $J^{\pi} = 1^-$ (eccetto W^+ per cui vale 1^+).
- I quark invece si suddivono in leggeri (u, d, s) e pesanti (c, b, t). Le masse sono:

Quark	Up	Down	Strange	Charm	Bottom	Top
Massa	7 MeV	9 MeV	$150~{ m MeV}$	$1.5 \mathrm{GeV}$	5 GeV	$175~{ m GeV}$

Quindi il quark top è la particella più pesante che conosciamo, quella che più si avvicina è il bosone di Higgs di 125 GeV.

• Invece per i leptoni le masse sono:

Leptone	Elettrone	Muone	Tauone	Neutrini
Massa	$0.511~\mathrm{MeV}$	$106~\mathrm{MeV}$	$1780~{ m MeV}$	0

Quindi $m_{\tau} \sim 3000\,m_e$ e $m_{\mu} \sim 200\,m_e$. Nel Modello Standard i neutrini hanno massa nulla, ma sperimentalmente da oscillazioni (cambiano flavour) sappiamo che in realtà hanno massa che non conosciamo, ma di cui abbiamo ottenuto dei limiti superiori. Si pensa siano tutti di qualche frazione di eV. $m_{\nu_e} < 3$ eV, $m_{\nu_{\mu}} < 0.19$ MeV, $m_{\nu_{\tau}} < 18$ MeV.

• I neutrini, come tutti i fermioni, sono caratterizzati da due stati di spin. In particolare per i neutrini si parla di elicità $\eta = \frac{\vec{\sigma} \cdot \vec{p}}{|\vec{p}|}$ cioè la proiezione dello spin sulla direzione del moto della particella. Notiamo che η è Lorentz invariante per particelle con m=0, anche se è comunque utilizzabile in prima approssimazione se $p \gg m$, cioè η si conserva. Per $\eta=1$ si dice che la particella è destra, per $\eta=-1$ si dice che è sinistra. Finora sono stati osservati solo neutrini sinistri e antineutrini destri. Esistono ν con $\eta=1$? Non lo possiamo sapere! Sappiamo che finora non li abbiamo rivelati, perché W interagisce solo con neutrini sinistri (e antineutrini destri). Se effettivamente esistono, non interagiscono con interazioni che conosciamo (oppure è con quella gravitazionale).

2 Cinematica relativistica

Riprenderei appunti di Russo e basta. Riportiamo cmq quello che dice lei. Ci sono quattro principi base nella relatività.

- Ogni legge fisica è invariante in ogni sistema di riferimento inerziale.
- Energia, impulso, momento angolare in ogni sistema fisica isolato si conservano.
- La velocità della luce è la stessa in ogni sistema di riferimento.
- Il tempo non è invariante (assoluto).
- I primi due sono legati alla meccanica classica, gli ultimi due alla relatività. Da ciò ne segue che le trasformazioni galileiane non valgono più, e al loro posto ci sono le trasformazioni di Lorentz. Nel limite $\beta \ll 1$ le trasformazioni di Lorentz diventano quelle di Galileo.

2.1 Trasformazioni di Lorentz

- Definiamo i quadrivettori come $A = (a_0, a_i) = (a_0, \vec{a})$, con a_0 componente temporale e a_i componente spaziale.
- Definiamo il prodotto scalare tra quadrivettori come $\tilde{A}\tilde{B}=a_0b_0-a_ib_i$. Questo prodotto è invariante sotto trasformazioni di Lorentz.
- Se consideriamo un sistema di riferimento S e un altro S', con S' che si muove rispetto a S con velocità v lungo l'asse x, allora le trasformazioni di Lorentz sono date da:

$$\begin{pmatrix} a'_0 \\ a'_1 \\ a'_2 \\ a'_3 \end{pmatrix} = \underbrace{\begin{pmatrix} \gamma & -\beta \gamma & 0 & 0 \\ -\beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{=L(\beta)} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} \gamma a_0 - \beta \gamma a_1 \\ -\beta \gamma a_0 + \gamma a_1 \\ a_2 \\ a_3 \end{pmatrix} \implies \begin{cases} ct' = \gamma(ct - \beta x) \\ x' = \gamma(x - \beta ct) \end{cases}$$

Una proprietà importante è $L(\beta)^{-1} = L(-\beta)$, da cui ne segue che per invertire le trasformazioni di Lorentz basta scambiare variabile con indice con quelle senza e $\beta \to -\beta$.

• Che si ha al limite non relativistico? Supponiamo $\beta \ll 1 \implies \gamma \approx 1 + \frac{\beta^2}{2} \approx 1$. Ne segue per il tempo che

$$ct' = \left(1 + \frac{\beta^2}{2}\right)(ct - \beta x) \approx ct - \beta x + \frac{\beta^2}{2}ct \approx ct \implies t' = t$$

e per lo spazio che

$$x' = \left(1 + \frac{\beta^2}{2}\right)(x - \beta ct) \approx x - \beta ct \implies x' = x - vt$$

• Se il moto non è solo lungo x, allora dobbiamo considerare $\vec{\beta} = \frac{\vec{v}}{c}$ e

$$\begin{cases} ct' = \gamma(ct - \beta x_{\parallel}) \\ x'_{\parallel} = \gamma(x_{\parallel} - \beta ct) \\ \vec{x}'_{\perp} = \vec{x}_{\perp} \end{cases}$$

• Dimostriamo che il prodotto scalare è invariante. Sia $A = (a_0, \vec{a})$ e $B = (b_0, \vec{b})$. Calcoliamo $A' \cdot B'$.

$$A' \cdot B' = a'_0 b'_0 - \vec{a}' \cdot \vec{b}' = \gamma^2 (a_0 - \beta a_1)(b_0 - \beta b_1) - \gamma^2 (a_1 - \beta a_0)(b_1 - \beta b_0) - a_2 b_2 - a_3 b_3 = \dots = A \cdot B$$

Vediamo alcune conseguenze in high energy physics.

- La contrazione delle lunghezze. Consideriamo un oggetto di lunghezza L che si muove con velocità v. Supponiamo che il sistema solidale ad esso sia S' e la lunghezza misurata sia d' = x'_2 x'_1 che avviene simultaneamente quindi t₂ = t₁. Se trasformiamo otteniamo d' = x'_2 x'_1 = γ(x₂ βct₂) γ(x₁ bct₁) = γ(x₂ x₁) γβc(t₂ t₁) = γ(x₂ x₁) = d ⇒ d' = γd. Ne segue che la lunghezza misurata da un osservatore in moto è contratta di un fattore γ, e la lunghezza propria, misurata nel sistema solidale all'oggetto è la massima possibile.
- La dilatazione temporale. Consideriamo due eventi che avvengono nello stesso punto nello spazio, ma in tempi diversi. Se trasformiamo otteniamo $c\Delta t = c(t_2 t_1) = \gamma c(t_2' t_1') + \beta \gamma (x_2' x_1') = \gamma c\Delta t'$. Ne segue che il tempo misurato da un osservatore in moto è dilatato di un fattore γ , e il tempo proprio, misurato nel sistema solidale all'oggetto è il minimo possibile. Da ciò si hanno varie conseguenze.

2.2 Esperimento CPP, muoni, pioni e Yukawa

- Nel 1912 Hess scoprì i raggi cosmici. Nel 1932 Anderson scoprì i positroni, predetti da Dirac nel 1928 (già discussa).
- Nel 1935 Yukawa introdusse la teoria delle interazioni forti, predicendo una massa mediatrice di ~ 100 MeV. Il mesone di Yukawa doveva decadere in elettrone e netruino con tempo di decadimento di ~ 1μs. Nel 1937 si scoprì il mesotrone (Anderson e Neddermeyer), con una massa di 110 MeV, associata alla particella di Yukawa. Nel 1940 si studiò assorbimento e decadimento delle proprietà di assorbimento del mesone di Yukawa.
- Il decadimento del mestrone (che in realtà è un μ) fu studiato diverse volte. Nel 1940 si osservò il suo decadimento in positroni; nel 1941 ci fu una misura da Rasetti che ottenne τ = (1.5±0.3)μs. Nel 1941 Piccioni e Conversi decisero di lavorare assieme e migliorare la precisione nella misura del tempo di decadimento (del mesone di Yukawa).

• Nel 1939 Montgomery fece un esperimento (Figura 1) per misurare il decadimento del μ

Figura 1: Esperimento di Montgomery. Volevano estrarre il tempo di decadimento dalle intensità delle coincidenze ritardate con e senza stopper. Purtroppo non riuscirono a misurare il tempo di decadimento del μ a causa del troppo rumore in B.

- Un altro tentativo fu fatto da Rasetti nel 1940, con un apparato più complicato (Figura 2). Nella procedura sperimentale si definisce un fascio di mestroni con la coincidenza ABCD. L'anticontatore G discrimina dagli sciami elettromagnetici. L'anticontatore F seleziona i mestroni che si sono fermati nell'assorbitore. Il contatore E rivela particelle emesse nell'assorbitore. Non si usarono coincidenze ritardate ma "immediate" con tempi di risoluzione diversi. Guardando le combinazioni dei tempi con cui il segnale arriva, hanno fatto un fit particolare ed estratto il tempo di decadimento. Ottennero $\tau = (1.5 \pm 0.3)\mu$ s.
- Successivamente l'esperimento fu riproposto da Conversi, Pancini e Piccioni con l'idea di effettuare una misura migliore (vedi Figura 3) Un mesotrone si ferma nell'assorbitore (Fe) e poi decade. Si usano coincidenze ritardate tra i contatori sopra e sotto e le anticoincidenze (A). Gli elettroni si fermano nell'assorbitore di Pb. Le anticoincidenze servono a scartare l'evento. Misurarono τ = (2.33 ± 0.15)μs, meglio di Rasetti.

Torniamo ai quadrivettori.

- La matrice della metrica la conosciamo è $g^{\mu\nu} = \text{diag}(1, -1, -1, -1)$. Un quadrivettore importante è quello di impulso $P^{\mu} = (E, \vec{p})$. Questo quadrivettore non è invariante ma il suo quadrato sì. Facendolo, scopriamo che vale $P^{\mu}P_{\mu} = m^2$ usando la relazione di mass-shell.
- Alcune relazioni utili sono: $p=\gamma mv,\, E=\gamma m,\, T=mc^2(\gamma-1),\, \beta=\frac{p}{E}.$
- Quando facciamo esperimento di fisica di particelle, ci mettiamo nel riferimento di laboratorio solidale all'osservatore e ai rivelatori. In questo riferimento tipicamente $v_{\rm T}=0$. Possiamo scrivere allora nel riferimento del laboratorio $P_1=(E_1,\vec{p}_1), P_2=(m_{\rm T},0)$ (1 = proiettile, 2 = target). Allora $P_{\rm tot}=sP_1+P_2=(E_1+m_{\rm T},\vec{p}_1)$.
- Un altro sistema di riferimento utile è quello del centro di massa, in cui $\vec{p}_{\text{tot}} = 0$. Se consideriamo una particella incidente in un target, avremo $P_1^* = (E_1^*, \vec{p})$ e $P_2^* = (E_2^*, -\vec{p})$. Allora $P_{\text{tot}}^* = (E_1^*, \vec{p})$

Figura 2: Disposizione dei contatori, illustrando le connessioni con gli amplificatori.

 $(E_1^*+E_2^*,0)$. Poichè è un invariante, $P_{\rm tot}^2$ sarà uguale nel riferimento del centro di massa e in quell del laboratorio. Ne segue che $P_{\rm tot}^{*,2}=E_{\rm CM}^2=P_{\rm tot}^{\rm lab,2}=(E_1+m_{\rm T})^2-p_1^2=E_1^2+m_{\rm T}^2+2E_1m_{\rm T}-p_1^2=m_1^2+2E_1m_{\rm T}+m_{\rm T}^2.$ ('sta roba è inutile?)

- Se consideriamo un fascio di n particelle allora dovremo considerare la sommatoria. $P_{\mu}P^{\mu} = (E_1 + E_2 + \dots + E_n)^2 (\vec{p}_1 + \vec{p}_2 + \dots + \vec{p}_n)^2$ in generale. Se consideriamo il sistema del centro di massa avremo $P^{\mu,*} = (E_{\rm CM}, 0)$. Quindi nel riferimento del centro di massa questo scalare è solo il quadrato dell'energia nel sistema del centro di massa.
- Riprendiamo la storia. Nel 1947 ci fu la scoperta del pione, usando le emulsioni nucleari. Decade
 in sequenza il pione in muone ed infine in elettrone. In tutti gli eventi il muone aveva energia di
 4.1 MeV a cui corrisponde il range misurato di 600 μm, le strisce sono tutte di uguale lunghezza
 (sappiamo da Bethe-Bloch che il range e l'impulso sono legati). In base a densità di ionizzazione
 (dE/dx) distinguiamo il tipo di particella.
- Visto che il range è sempre lo stesso, l'impulso del muone sarà sempre lo stesso 29 MeV. Visto che l'impulso è sempre lo stesso, il decadimento deve essere a due corpi (e non tre altrimenti si avrebbe spettro continuo).
- Supponendo che si abbia un decadimento a due corpi con la particella iniziale che si ferma, abbiamo $X \to \mu + \nu_{\mu}$ e il sistema del centro di massa coincide con il sistema solidale a X (il π). Da ciò ne segue che impulso di neutrino e muone sono uguali ed opposti, quindi

$$m_{\rm X}^2 = E_{\rm cm}^2 = (E_{\mu} + E_{\nu})^2 \implies m_{\rm X} = \sqrt{m_{\mu}^2 + p_{\mu}^2} + p_{\nu} = \dots = 138.9 \text{ MeV}$$

Figura 3:

- Il decadimento $\pi^- \to \mu^- + \overline{\nu}_{\mu}$ è dovuto alla forza debole, lo si capisce dal fatto che da quando avevo quark e antiquark, nei prodotti non li avrò più cioè non conservano il flavour. Un altro modo per capirlo è dai tempi di decadimento.
 - 1. Debole $10^{-8} 10^{-10}$ s.
 - 2. Elettromagnetico (come $\pi^0 \rightarrow \gamma + \gamma$) $10^{-17} 10^{-16}$ s.
 - 3. Forti $10^{-22} 10^{-23}$ s.

Parliamo di processi virtuali e reali.

- Supponiamo di avere $e^- \to \gamma + e^-$. Abbiamo inizialmente (nel riferimento solidale all'elettrone) $e^-(m_e c^2, \vec{0})$, invece dopo l'interazione abbiamo $e^-(E_k, -\vec{k}) + \gamma(c |\vec{k}|, \vec{k})$. Valutiamo $\Delta E = ck + \sqrt{(m_e c^2)^2 + (ck)^2} m_e c^2$ consderando i due casi limite:
 - 1. $ck \ll m_e c^2 \implies \Delta E \gtrsim ck$
 - 2. $ck \gg m_e c^2 \implies \Delta E \lesssim 2ck$

Ne segue che

$$kc \le \Delta E \le 2kc$$

ma ciò che importa è che $\Delta E \neq 0$. Questo è un processo virtuale che non può avvenire da isolato. È possibile per un tempo compatibile con il principio di indeterminazione $t < \frac{\hbar}{\Delta E}$, a cui corrisponde uno spazio percorso $l = ct = \frac{c\hbar}{\Delta E} \propto (\Delta E)^{-1}$.

- Consideriamo un generico processo di scambio $A + B \to A + B$ che avviene tramite X. Avremo inizialmente $A(m_Ac^2, \vec{0})$, invece dopo $A(E_p, \vec{p}) + X(E_X, -\vec{p})$ e uguale per B. Vediamo quanto vale $\Delta E = E_X + E_p m_Ac^2$ e i due casi limite:
 - 1. $p \to \infty \implies \Delta E = 2pc$
 - 2. $p \to 0 \implies \Delta E \ge m_X c^2$

ne segue che vale sempre $\Delta E \geq m_X c^2$. Abbiamo detto che si può violare la conservazione dell'energia per $t \sim \frac{\hbar}{\Delta E} \implies l = \frac{c\hbar}{\Delta E} \approx \frac{\hbar}{m_X}$, dove l è la massima distanza raggiungibile dal mediatore X prima di essere ri-assorbito, e corrisponde esattamente al range della interazione.

• Viceversa, se conosco il range della interazione posso trovare la massa del mediatore! La relazione dunque è $R = \frac{\hbar}{m_X c}$. Cerchiamo la massa del mediatore della interazione forte, supponendo che abbia $R \approx 1.2$ fm. Abbiamo

$$m_X = \frac{1}{R} = 140 \text{ MeV}$$

che è il mesotrone di Yukawa, chiamato così perché aveva massa intermedia tra p ed e^- (uniche particelle note oltre a n).

• Dunque se la massa del mediatore è nulla, il range dell'interazione è infinito (interazione elettromagnetica con fotoni). Se invece usiamo la massa del W, troviamo il range dell'interazione debole

$$R_{\text{debole}} = \frac{\hbar c}{m_W c^2} = \frac{1}{m_W} = \frac{200 \text{ MeV} \cdot \text{fm}}{80 \cdot 10^3 \text{ MeV}} = 2.5 \cdot 10^{-3} \text{ fm}$$

ben tre ordini di grandezza inferiori rispetto a quello nucleare.

• In passato si aveva una visione errata del β -decay, ad esempio $n \to p + e^- + \overline{\nu}$. In realtà questo avviene con uno scambio di W^- , cioè il neutrone (in realtà è tra quark) emette un W^- diventando un p, e contemporaneamente $W^- \to e^- + \overline{\nu}$. Tuttavia questo processo lo trascuriamo a basse energie (MeV) in quanto irrilevante.

Torniamo alla parte storica e all'esperimento CPP.

- Abbiamo detto che l'esperimento CPP è importante perché da una migliore misura di τ_{μ} , ma c'è un altro motivo per cui è importante.
- Nel 1940 Tomonaga e Araki proposero una teoria, che fu accettata da tutti, sull'interazione forte. Il mesone di Yukawa interagisce con il nucleo mediante interazione forte. Secondo i calcoli, la cattura nucleare dipende leggermente dallo Z del materiale. I mesotroni positivi sono respinti dal nucleo, mentre quelli negativi possono essere catturati, ne segue che i mesotroni positivi possono soltanto decadere.
- Per testare questa teoria che prevedeva una asimmetria tra mesotroni positivi e negativi, si usò lo stesso apparato CPP. La differenza stava in assorbitori più sottili (0.6 cm di Fe invece di 5 cm) per migliorare la efficienza di rivelazione degli elettroni. Misurarono il rapporto di mesotroni che decadono dentro il ferro che era in accordo con il valore aspettato (da raggi cosmici si aspettavano un eccesso del 20%).
- Poi ripetettero l'esperimento con un apparato migliore utilizzando le lenti magnetiche per separare mesotroni positivi e negativi. Con un assorbitore ad alto Z (ferro) ci fu conferma della teoria, con uno a basso Z (carbonio), per completezza e per rivelare i fotoni emessi da cattura nucleare dei mesotroni negativi, invece ci fu disaccordo. Quindi la differenza è il campo magnetico che distingue i mesotroni positivi e negativi e utilizzo di assorbitori con alto e basso Z.
- Attraverso assorbitori di 5 cm di Fe c'è accordo perché la frequenza di decadimento è maggiore per quelli positivi non catturati rispetto a quelli negativi, il cui risultato sperimentale è

compatibile con zero (vengono catturati dai nuclei prima di decadere). Il problema nasce con assorbitori di grafite, perché si trova che il rate di decadimento delle particelle negative non solo è diverso da zero, ma molto simile a quelle positive. Allora i mesotroni non sono le particelle di Yukawa, quelle che interagiscono fortemente.

- Fermi e altri discussero, e conclusero che ci sono circa 12 ordini di grandezza di differenza tra il tempo di cattura per una particella di Yukawa negativa e i risultati dell'esperimento. Quindi il mesotrone fu ribattezzato, come lo conosciamo oggi, mesone μ , ed oggi sappiamo che il pione è la particella di Yukawa.
- Quindi CPP è rivoluzionario perché scopre che il muone non è la particella di Yukawa, quindi è un altro leptone! Apre la strada alla seconda generazione di particelle, con cui si va oltre la materia ordinaria. Quindi è l'inizio della fisica delle particelle.

Vediamo il potenziale di Yukawa.

• Consideriamo $A + B \rightarrow A + B$ con particella mediatrice X. Questa particella è un bosone, se in più la consideriamo relativistica allora obbedisce all'equazione di Klein-Gordon. Nel caso statico (stazionario) si riduce a

$$\nabla^2 \phi(\vec{x}) = \frac{m_X^2 c^2}{\hbar^2} \phi(\vec{x})$$

se la massa è nulla ritroviamo l'equazione di Laplace e quindi il mediatore è il fotone e la soluzione è il campo elettrostatico $V(r)=-\frac{e^2}{4\pi\varepsilon_0}\frac{1}{r}$. Se invece la massa non è nulla otteniamo $V(r)=-\frac{g^2}{4\pi}\frac{e^{-r/R}}{r}$ che è il potenziale di Yukawa con il range $R=\frac{\hbar}{m_Xc}$. La forma del potenziale è simile a quello che si ottiene quando consideriamo effetti di schermaggio e vogliamo la carica effettiva subita dal sistema.

- Ci sono delle ipotesi su cui si basa il modello di Yukawa.
 - 1. I nucleoni sono le sorgenti del campo nucleare e l'interazione tra essi avviene tramite scambio di bosoni che quantizzano il campo nucleare (detti mesoni).
 - 2. L'interazione è a corto range, con range legato alla massa della particella mediatrice.
 - 3. L'interazione nucleare è indipendente dalla carica elettrica.
 - 4. Il potenziale è a simmetria sferica e dipende anche dagli spin dei nucleoni (che abbiamo ignorato).

Il modello di Yukawa serve anche a spiegare lo scattering p-n.

- La distribuzione angolare di scattering protone-neutrone ha un andamento a parabola con picchi in 0 e 180 gradi (e minimo in mezzo da qualche parte). Senza il modello di Yukawa non è spiegabile.
- Se lo scattering è elastico $|\vec{p_i}| = |\vec{p_f}|$. L'impulso trasferito varrà $\Delta p = |\vec{p_i} \vec{p_f}| = F_{\text{media}} \Delta t$. Considerando il potenziale nucleare come una buca, avremo $F_{\text{media}} = \frac{V_0}{R}$. La variazione di impulso è legata all'angolo soltanto visto che è elastico, quindi (usando $\Delta t = R/v$)

$$\Delta \vartheta \approx \frac{\Delta p}{p} = \frac{F_{\rm m} \Delta t}{p} = \frac{V_0}{vp} \implies \vartheta = \frac{V_0}{2E_{\rm cin}}$$

usando il valore tipico di $V_0 = 35 \text{ MeV}$ e 100 MeV $\leq E_{\text{cin}} \leq 600 \text{ MeV}$ (usati sperimentalmente) otteniamo $\vartheta = 10 \text{ gradi}$, che è in accordo con i dati sperimentali.

 Quindi con la cinematica spieghiamo il picco ad angoli bassi, ma non quello ad angoli alti. Per spiegarlo dobbiamo considerare il modello di Yukawa, si scambiano un pione quindi esiste uno stato intermedio (non è puntuale, pensando a diagramma di Feynman senza mediatore).

2.3 Scoperta dell'antiprotone

- Gli antiprotoni sono più difficili da rivelare rispetto ai positroni perché avranno una massa pari a quella del protone e quindi sono più difficile da produrre. Ovviamente ce li aspettiamo con massa negativa.
- Quindi come possiamo crearli? Da raggi cosmici non è possibile vederli. Serve un acceleratore e non deve essere collider. A quanta energia deve arrivare? Consideriamo la reazione $p+p \to p+p+\overline{p}+p$ e troviamo la energia di soglia.
- Calcoliamo l'energia di soglia nel caso in cui abbiamo inizialmente un proiettile *i* contro un target *T* fermo e si hanno *N* particelle finali.

Iniziale:
$$E^2 = (E_i + m_T)^2 - p_i^2 = \dots = m_i^2 + m_T^2 + 2m_T E_i$$

Finale:
$$E^2 = \left(\sum_{k=1}^N E_k + m_k\right)^2 \ge \left(\sum_k m_k\right)^2$$

perché visto che voglio l'energia di soglia basta la loro "massa". Ne segue che

$$m_i^2 + m_T^2 + 2m_T E_i \ge \left(\sum_k m_k\right)^2$$

Sostituendo $E_i = T_i + m_i$ risulta

$$T_i \ge \frac{(\sum_k m_k)^2 - (m_T + m_i)^2}{2m_T}$$

Questa relazione ci da l'idea di quanta energia devo dare alla particella incidente per produrre una certa reazione.

• Applichiamolo al nostro caso per produrre l'antiprotone.

$$T_i \ge \frac{(4m_p)^2 - (2m_p)^2}{2m_p} = 5.6 \text{ GeV}$$

Questo non va bene. Il problema è che abbiamo considerato il protone del target fermo, ma noi non abbiamo mai un protone libero.

• In questo particolare esperimento usarono rame come target, quindi il protone era confinato nel nucleo e si muove. Assumendo che in questa interazione interagiamo con quello della shell più esterna, questo avrà l'impulso di Fermi $p_F = 0.24$ GeV. Questo complica il calcolo perché adesso c'è una certa distribuzione di energia in quanto questo impulso può essere orientato casualmente. Studiamo i casi limite in cui è parallelo e antiparallelo all'impulso della particella incidente.

• Nel riferimento del laboratorio abbiamo $P^{\mu} = (E_i + E_F, \vec{p}_i + \vec{p}_F)$, dunque

Iniziale:
$$P^{\mu}P_{\mu} = (E_i + E_F)^2 - (\vec{p_i} + \vec{p_F})^2 = E_i^2 + E_F^2 + 2E_iE_F - p_i^2 - p_F^2 - 2\vec{p_i} \cdot \vec{p_F}$$

Applichiamo la relazione di mass-shell $E_{i,F}^2 - p_{i,F}^2 = m_{i,T}^2$ e consideriamo $\vec{p}_i \cdot \vec{p}_F = \pm p_i p_F$, dove il caso antiparallelo corrisponde al segno meno, che diventa positivo, e quindi corrisponde ad energia di soglia maggiore. Risulta

$$2m_p^2 + 2E_p E_F \pm 2p_p p_F \ge 16m_p^2$$

- Facciamo un paio di considerazioni.
 - 1. $E_F = m_p + \frac{p_F^2}{2m_p}$, cioè un approccio classico dovuto al fatto che l'energia di Fermi è bassa.
 - 2. $E_p \approx p_p$ che in realtà sarebbe p=6 GeV contro la massa del protone $m_p=1$ GeV ma approssimiamo lo stesso $p\gg m$.

Ne segue che

$$2m_p^2 + 2E_p\left(m_p + \frac{p_F^2}{2m_p}\right) \pm 2p_F E_p \ge 16m_p^2 \implies \cdots \implies$$

$$\implies E_p \ge \frac{7m_p}{1 + \frac{p_F^2}{2m_p^2} \pm \frac{p_F}{m_p}}$$

• A questo punto l'energia cinetica la ricaviamo da $T_p = E_p - m_p$ ottenendo

$$4.2 \text{ GeV} \leq T_p \leq 7.5 \text{ GeV}$$

Sono importanti sia il minimo che il massimo: il minimo perché altrimenti non riusciamo a vedere quello che desideriamo, il massimo perché costruire acceleratori che raggiungono alte energie è costoso (se possibile tecnologicamente). Segrè e l'altro fecero questo esperimento a 6.2 GeV, quindi non prendevano proprio tutti i casi in quanto non avevano la massima energia possibile, ma è un esperimento di scoperta quindi basta una rivelazione.

- Adesso che sappiamo che energia incidente serve, come riveliamo l'antiprotone? Tanto per cominciare dalla reazione p + p possono succedere tante cose.
- Come prima cosa distinguiamo il segno delle cariche usando un campo magnetico. Adesso serve distinguere i π⁻ da i p̄. I pioni veloci si possono tagliare tramite un rivelatore Cherenkov che dà un trigger solo se si ha una certa velocità e si scartano le particelle che lo attivano. Resta il problema dei pioni lenti. Per risolvere questo problema si misura il tempo di volo. Appunti di albergo non capisco e conoscendo tempo di volo e massa si può identificare l'antiprotone.

A Revoldiv

• Lezione 1 - sezione 1: Parte 1 - Parte 2

• Lezione 4 - sottosezione 1.8: Parte 1 - Parte 2

• Lezione 5 - - : Parte 1

B Reminder

- Relazione relativistica: $\beta \gamma = \frac{p}{E}$.
- Fare la parte storica appena manda slide. La ho skippata parla di guerra ecc (lezione 5 e lezione 6 prima parte)

C Esercizi

C.1 Cinematica relativistica

• $m_{\mu} = 106 \text{ MeV}$, $\tau_{\mu} = 2.2 \cdot 10^{-6} \text{s}$, $p_{\mu} = 10 \text{ GeV}$, l = 10km. Calcolare la probabilità di avere il muone sulla superficie nel riferimento del laboratorio e in quello solidale al muone. Si parte da $\frac{\text{dP}}{\text{d}t} = \frac{1}{\tau}e^{-t/\tau} \implies \frac{1}{\tau\beta c}e^{-x/\beta c\tau}$, con $t = \frac{x}{\beta c}$. Allora si ottiene (ricordiamo $\beta \gamma c = \frac{p}{m}$)

$$\mathbb{P} = \int_0^{d/\gamma} \frac{1}{\tau \beta c} e^{-x/\beta c\tau} \, \mathrm{d}x = \dots = 0.85$$

85% è la probabilità che il muone arrivi sulla superficie prima di decadere nel riferimento solidale. Classicamente non è possibile. Invece nel riferimento di laboratorio si fa lo stesso calcolo ma con tempo dilatato e lunghezza non contratta. Si ottiene esattamente lo stesso valore, questo è dovuto al fatto che la probabilità è indipendente dal sistema di riferimento.

• Stesso principio dello scorso esercizio, si usa in fisica degli acceleratori quando serve trasportare per lunghe distanze i fasci prima di collidere contro il bersaglio. $m_{\pi}=140~{\rm MeV},\, \tau_{\pi}=2.56\cdot 10^{-8}{\rm s},\, p_{\pi}=200~{\rm GeV}.$ Il limite galileiano $c\tau\approx 8{\rm m},$ poco rispetto ai 300 m del nostro problema. La ${\rm I\!P}_{\rm classica}=e^{-\frac{ct}{c\tau}}\sim 10^{-17}~{\rm bassissima}.$ Invece per quella relativistica ricaviamo $\gamma=\frac{E}{m}=1429.$ Ricaviamo il $\tau_{\rm lab}=\gamma\tau=3.71\cdot 10^{-5}{\rm s}$ e il tempo da attraversare $t=l=10^{-6}{\rm s}.$ Allora la probabilità vale ${\rm I\!P}_{\rm rel}=e^{-t/\tau_{\rm lab}}=0.97.$ Se volessi la distanza $d=\beta\gamma\tau=11{\rm km}.$

C.2 Energia di soglia per una reazione

Si possono risolvere in "due" modi:

1. Partendo dalla formula

$$T_p \ge \frac{\left(\sum_{\text{prodotti}} m_i\right)^2 - (m_T + m_i)^2}{2m_T}$$

2. Scrivendo P^{μ} nel riferimento del lab o del centro di massa e ponendolo maggiore o uguale alla somma delle masse dei prodotti.

Vediamo alcuni esempi:

• La reazione $\overline{p}+p\to \Lambda+\overline{\Lambda}$ può avvenire con $|\vec{p_p}|=0.65$ GeV?

$$T_p \ge \frac{(2m_\Lambda)^2 - (2m_p)^2}{2m_p}$$

?? vedere se fare con primo metodo