# МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ ФАКУЛЬТЕТ КІБЕРБЕЗПЕКИ, КОМП'ЮТЕРНОЇ ТА ПРОГРАМНОЇ ІНЖЕНЕРІЇ КАФЕДРА КОМП'ЮТЕРИЗОВАНИХ СИСТЕМ УПРАВЛІННЯ

## КУРСОВИЙ ПРОЕКТ

3 дисципліни «Технології проектування комп'ютерних систем» Варіант: 12 (2)

 Виконавець:
 СП-425
 Щербина Артем

 № групи
 ПІБ студента

Київ 2020

## 3MICT

| 1.             | Постановка задачі                                                                         | 3             |
|----------------|-------------------------------------------------------------------------------------------|---------------|
| 2.             | Побудова математичної моделі.                                                             | 3             |
| a.             | Структурна схема системи.                                                                 | 3             |
| b.             | Граф переходів станів системи                                                             | 3             |
| c.             | Математичні методи для побудови моделі.                                                   | 3             |
| 3.             | Визначення (аналітичне) показників ефективності функціонуванн                             | ı <b>я.</b> 4 |
| a.             | Навантаження системи.                                                                     | 4             |
| b.             | Середній час обслуговування.                                                              | 4             |
| c.             | Ймовірність того, що процесори вільні (доля часу простою систе                            | еми)4         |
| 4.             | Комп'ютерне моделювання системи                                                           | 4             |
| a.             | Короткий опис пакету QTS plus EXEL                                                        | 4             |
| b.<br>xcel.    | Визначення показників функціонування системи за допомогою 4                               | qtsplus-      |
| с.<br>характеј | Візуалізація результатів, побудова залежностей ймовірносно-чристик від певних параметрів. |               |
| 5.             | Аналіз та інтерпретація результатів                                                       | 7             |
| вис            | СНОВКИ                                                                                    | 8             |
| пт             | EDATVDA                                                                                   | 0             |

#### 1. Постановка задачі.

Побудувати математичну модель системи масового обслуговування для комп'ютерної системи та визначення показників ефективності її функціонування.

До комп'ютерної системи надходить найпростіший потік завдань з параметром  $\lambda$ . Час обслуговування одного завдання процесором розподілений за експоненціальним законом з параметром  $\mu$ . Комп'ютерна система може мати один або декілька процесорів (m), а також може мати накопичувач (буфер) для завдань (K).

Побудувати аналітичну модель та визначити показники ефективності функціонування: стаціонарні ймовірності перебування в системі k завдань, ймовірність того, що завдання потрапить в чергу і т.д.

Для аналізу системи використати *QTS plus EXEL*, отримати показники функціонування системи та порівняти їх з аналітичними. Проаналізувати отримані результати.

#### 2. Побудова математичної моделі.

#### а. Структурна схема системи.



#### **b.** Граф переходів станів системи.



Стан S0 означає, що всі канали вільні, стан Sm (m = 1,3) означає, що обслуговуванням заявок зайняті m каналів. Перехід з одного стану в інший сусідній правий відбувається стрибкоподібно під впливом вхідного потоку завдань інтенсивністю  $\lambda$  незалежно від числа працюючих каналів. Для переходу системи з одного стану в сусідній лівий неважливо, який саме канал звільниться. Величина m\* $\mu$  характеризує інтенсивність обслуговування заявок при роботі в СМО m каналів.

#### с. Математичні методи для побудови моделі.

Дана СМО описується наступними параметрами:

 $\lambda$  – інтенсивність вхідного потоку задач. Характеризує кількість нових задачі в системі, що прибувають за одиницю часу.

 $\mu$  — інтенсивність обслуговування задачі процесом (час обслуговування одного завдання процесором розподілений за експоненціальним законом). Характеризує кількість задач, яка може бути обслуженою за одиницю часу.

т – кількість процесорів в системі, які можуть обробляти задачі.

K – накопичувач (буфер) завдань. Характеризує кількість задач, які можуть перебувати в черзі одночасно.

#### 3. Визначення (аналітичне) показників ефективності функціонування.

#### а. Навантаження системи.

Завантаженість системи r визначається відношенням інтенсивності вхідного потоку завдань  $\lambda$  до добутку кількості процесорів m та часу обслуговування однієї задачі  $\mu$ .

$$r = \frac{\lambda}{m * \mu} * 100\% = \frac{0.1}{3*0.1} * 100\% = 33.3\%$$

#### b. Середній час обслуговування.

Визначається за формулою

$$\frac{1}{\mu} = \frac{1}{0.1} = 10$$

## с. Ймовірність того, що процесори вільні (доля часу простою системи).

Визначається за формулою:

$$\frac{1}{\sum_{m!}^{pm}} = \frac{1}{\frac{10}{0!} + \frac{11}{1!} + \frac{12}{2!} + \frac{13}{3!} + \frac{13+1}{3!(3-1)}} = 0.364$$

Де p – інтенсивність навантаження та дорівнює  $\frac{\lambda}{\mu}=1$ 

### 4. Комп'ютерне моделювання системи.

#### а. Короткий опис пакету QTS plus EXEL.

Qtsplus-xcel – це пакет програм розрахунку показників функціонування СМО. Пакет містить вісім категорій заснованих на типу моделі. Після того, як модель обрана з'являється нове Excel вікно з таблицею, розбитою на дві частини: вхідні дані та результати розрахунків показників функціонування СМО.

#### b. Визначення показників функціонування системи за допомогою qtsplusxcel.

Спочатку обрав відповідну модель CMO у меню QtsPlus.



Відкрилась таблиця, в яку вписав свої вхідні дані

| Input Parameters:                                       |           |
|---------------------------------------------------------|-----------|
| Arrival rate (λ)                                        | 0,1       |
| Mean service time (1/μ)                                 | 10        |
| Number of servers in the system (c)                     | 3         |
| Plot Parameters:                                        |           |
| Maximum size for probability chart                      | 3         |
| Total time horizon for probability plotting             | 2,        |
| Results:                                                |           |
| Mean interarrival time (1/λ)                            | 10        |
| Service rate (µ)                                        | 0,1       |
| Average # arrivals in mean service time (r)             | 1         |
| Server utilization (p)                                  | 33,33%    |
| Fraction of time all servers are idle (p <sub>0</sub> ) | 0,363636  |
| Mean number of customers in the system (L)              | 1,045455  |
| Mean number of customers in the queue (Lq)              | 0,045455  |
| Mean wait time (W)                                      | 10,454545 |
| Mean wait time in the queue (Wq)                        | 0,454545  |
| Probability arriving customer is delayed in             | 0,090909  |

Отримали такі значення показників функціонування СМО:

- Середній час обробки задачі: 10
- Середній час прибуття задачі: 10
- Середня кількість нових задач в середній час обробки: 1

- Навантаженість системи: 33.33%
- Доля часу простою системи: 0.363636
- Середня кількість задач в системі: 1.045455
- Середня кількість задач в черзі: 0.045455
- Середній час очікування: 10.454545
- Середній час очікування в черзі: 0.454545
- Ймовірність затримання в черзі нової задачі: 0.090909

## с. Візуалізація результатів, побудова залежностей ймовірносно-часових характеристик від певних параметрів.

Відкрив згенеровану діаграму SizeDistributionChart.



Ця діаграма відображає ймовірність зайнятості m процесорів. При наведенні на стовпець бачимо точну ймовірність.

Ймовірність зайнятості 0 каналів:



Відкрив згенерований графік TimeDistributionChart

#### **Queue-Wait Distribution CDF**



Графік відображає ймовірність того, що нова задача не затримається в черзі в залежності від часу.

#### 5. Аналіз та інтерпретація результатів.

Дана система має навантаженість 33.3%. Це означає, що переважно обробкою задач займається тільки один процесор (система має 3).

Так як інтенсивність потоку задач дорівнює часу обслуговування однієї задачі, середня кількість нових задач в середній час обробки дорівнює одиниці.

Доля часу, коли всі процесори простоюють (0.363636) означає, що приблизно 36% часу роботи системи вона простоює, тобто якщо система неперервно працює годину, то час простою буде 21-22 хвилини.

Середня кількість задач в черзі (0.045455) набагато менше одиниці. Це означає що задачі переважно не затримуються в черзі і вона пуста більшу долю часу роботи системи.

Середня кількість задач в системі (1.045455) дорівнює сумі середньої кількості задач в черзі та середньої кількості нових задач в середній час обробки.

Середній час очікування (10.45455) знайдений як відношення середньої кількості задач в системі до інтенсивності потоку вхідних задач означає середній час перебування задачі в системі.

Середній час очікування в черзі (0.45455), знайдений як різниця середнього часу очікуванн та відношення одиниці до часу обслуговування однієї задачі процесором, означає середній час, на який нова задача затримується в черзі.

Ймовірність затримання в черзі нової задачі (0.090909), тобто приблизно 9%.

#### **ВИСНОВКИ**

Під час виконання курсової роботи була проведена побудова моделі СМО, а саме: структурна схема, граф переходу станів та математичний опис моделі.

Було проведено визначення показників ефективності функціонування системи. Аналітичне:

навантаження системи,

середній час обслуговування задачі,

ймовірність того, що процесори вільні (система простоює).

За допомогою пакета QTS plus EXEL:

середній час обробки задачі,

середній час прибуття задачі,

середня кількість нових задач в середній час обробки,

навантаженість системи,

доля часу простою системи,

середня кількість задач в системі,

середня кількість задач в черзі,

середній час очікування,

середній час очікування в черзі,

ймовірність затримання в черзі нової задачі.

Пакет QTS plus EXEL являє собою набір функції для обрахування основних показників ефективності функціонування систем масового обслуговування та  $\epsilon$  додатком до програми Microsoft Excel.

Були проведені аналіз та інтерпретація отриманих результатів, які показали, що процес обслуговування в даній системі буде стабільним (інтенсивність навантаження системи менше за кількість процесорів).

#### ЛІТЕРАТУРА

- 1. «Математичні моделі дискретних систем» [https://books.ifmo.ru/file/pdf/469.pdf] 77-99с.
- 2. «Моделювання систем масового обслуговування» [https://studme.org/188004139303/ekonomika/modelirovanie sistem massovogo obsluz hivaniya]
- 3. Лаврусь О.Е., Міронов Ф.С. «Теорія масового обслуговування», 2002 г. 6-21 с.