Soient H une sous-espace borné de $\mathbb{R}^+\setminus\{0\}$ pour lequel 0 est un point d'accumulation, $\tilde{\Omega}$ un polygone ouvert de \mathbb{R}^n tel que $\Omega\subset\tilde{\Omega}$ et, pour tout $h\in H$, on note $\tilde{\mathscr{T}}_h$ une triangulation sur $\tilde{\Omega}$ au moyen d'éléments K dont le diamètre h_K sont inférieurs ou égal à h et soit \tilde{V}_h un espace d'éléments finis construit sur $\tilde{\mathscr{T}}_h$ tel que :

$$\tilde{V}_h$$
 est un sous-espace de dimension fini de $H^m\left(\tilde{\Omega}\right)\cap C^k\left(\overline{\tilde{\Omega}}\right)$ (1)

(voir fig. 1)

FIGURE 1 – Définition des ensembles Ω , $\tilde{\Omega}$ et Ω_h

De plus, pour étudier la convergence de l'approximation, on suppose qu'il existe une famille d'opérateurs linéaires continus $(\tilde{\Pi}_h)_{h\in H}$ de $H^m(\Omega)$ dans \tilde{V}_h .