ORAUX HEC 2012

I. Annales 2012

Exercice 1 (Exercice avec préparation)

1. La série de terme général (u_n) converge si la suite (S_n) des sommes partielles : $S_n = \sum_{k=1}^n nu_k$ admet une limite finie lorsque n tend vers $+\infty$.

La série de terme général $(\ln x)^n$ est géométrique donc converge si et seulement si $|\ln x| < 1 \Leftrightarrow$ $-1 < \ln x < 1 \Leftrightarrow \frac{1}{e} < x < e$ par stricte croissance de la fonction exponentielle. On a alors :

$$\sum_{n=0}^{+\infty} (\ln x)^n = \frac{1}{1 - \ln x}$$

2. a) f_n est de classe C2 sur $]0, +\infty[$ comme somme de produits de fonctions usuelles de classe C2 sur $]0,+\infty[.$

$$\forall x > 0, f_n'(x) = \frac{n}{x} (\ln x)^{n-1} - 1.$$
Ainsi, si $n = 1, f_1'(x) = \frac{1}{x} - 1$ donc $f_1''(x) = -\frac{1}{x^2}$;
si $n \ge 2, f_n''(x) = -\frac{1}{x^2} n (\ln x)^{n-1} + \frac{1}{x^2} n (n-1) (\ln x)^{n-2} = \frac{n}{x^2} (\ln x)^{n-2} [-\ln x + n - 1].$

b)

x	0	1 +∞
signe de $f_1''(x)$		
variations de f_1'		0
signe de $f_1'(x)$		+ 0 -
variations de f_1		-1

- c) $\lim_{x\to 0} f_2 = -\infty$ et $f_2(1) = -1$ donc d'après le théorème des valeurs intermédiaires (f_2 est continue) il existe $a \in]0,1[$ tel que $f_2(a)=0.$
- 3. a) $\frac{n}{x^2}(\ln x)^{n-2}$ est strictement positif sur]1, $+\infty$ [donc $f_n''(x)$ est du signe de $-\ln x + n 1$. $-\ln(x) + n - 1 \ge 0 \Leftrightarrow \ln x \le n - 1 \Leftrightarrow x \le e^{n-1}$ par croissance de exp.

x	1	α_n	e^{n-1}	β_n	$+\infty$
signe de $f_n''(x)$		+	0	_	
variations de f_n'	-1		> 0	0_	-1

On a $f_n'(e^{n-1}) > 0$, en effet : $f_n'(e^{n-1}) = n\left(\frac{n-1}{e}\right)^{n-1} - 1$ avec : si $n \ge 4$, $n-1 \ge e$ donc $\frac{n-1}{e} > 1$ donc $n\frac{n-1}{e} > 1$ d'où $f_n'(e^{n-1}) > 0$ et si n = 3, $f_3'(e^2) = 3\frac{2^2}{e^2} - 1 = \frac{12}{e^2} - 1 > 0$.

On cherche maintenant à étudier le signe de f'_n :

 f_n' est continue et strictement croissante sur $]1,e^{n-1}]$ donc définit une bijection de $]1,e^{n-1}]$ dans $]-1,f_n(e^{n-1})]$ qui contient 0 donc il existe un unique $\alpha_n\in]1,e^{n-1}[$ tel que $f_n'(\alpha_n)=0$. De même, il existe un unique β_n sur $]e^{n-1},+\infty[$ tel que $f_n'(\beta_n)=0$.

En effet, $f_n(\beta_n) > f_n(e^{n-1})$ avec $f_n(e^{n-1}) = (n-1)^n - e^{n-1} > (n-1)^{n-1} - e^{n-1} > 0$ si $n \ge 4$ car n-1 > e et la fonction puissance est strictement croissante sur R_+ . Et on vérifie que $f_3(e^2) > 0$.

 f_n est décroissante donc majorée par -1 sur $]1, \alpha_n]$ donc ne s'annule pas sur cet intervalle. Par deux théorèmes de la bijection sur $[\alpha_n, \beta_n]$ et $]\beta_n, +\infty[$ on démontre l'existence de deux racines u_n et v_n sur $]1, +\infty[$.

- **b**) $v_n > \beta_n > e^{n-1}$ or $\lim_{n \to +\infty} e^{n-1} = +\infty$ donc par comparaison, $\lim_{n \to +\infty} v_n = +\infty$.
- 4. Cette question est une vraie question de recherche. Il faut utiliser les méthodes habituelles d'étude des suites implicites :
 - On étudie les variations de la suite u_n en comparant $f_n(u_n)$ et $f_n(u_{n+1})$:

 $f_n(u_{n+1}) = (\ln u_{n+1})^n - u_{n+1}$ or $f_{n+1}(u_{n+1}) = 0$ donc $u_{n+1} = (\ln u_{n+1})^{n+1}$ d'où:

 $f_n(u_{n+1}) = (\ln u_{n+1})^n - (\ln u_{n+1})^{n+1} = (\ln u_{n+1})^n [1 - \ln(u_{n+1})].$ Avec $u_{n+1} \ge 1$ donc $\ln(u_{n+1}) \ge 0$. Etudions le signe de $1 - \ln u_{n+1}$: pour cela, comparons u_{n+1} et e:

 $\forall n \in \mathbb{N}, f_n(e) = (\ln e)^n - e = 1 - e < 0 \text{ donc d'après le tableau de variations de } f_n, e \in]1, u_n[$ ou $e \in]v_n, +\infty[$ or $v_n > e^{n-1} > e \text{ donc } \forall n \in \mathbb{N}, e < u_n.$

Ainsi, $e < u_{n+1} \text{ donc } 1 - \ln u_{n+1} < 0$

Donc $f_n(u_{n+1}) < 0 = f_n(u_n)$, ainsi $u_{n+1} \in]-\infty, u_n[$.

La suite (u_n) est décroissante

- On conclut que la suite (u_n) converge vers un certain réel $l:(u_n)$ est décroissante et minorée par 1 donc converge vers un réel $l \ge 1$
- On trouve l en passant à la limite dans la relation $f_n(u_n) = 0$:

 $u_n = (\ln u_n)^n : u_n \frac{1}{n} = \ln u_n \text{ donc } e^{\frac{1}{n} \ln u_n} = \ln u_n.$

avec $\ln u_n \to \ln l$ donc $\frac{1}{n} \ln u_n \to 0$ donc $e^{\frac{1}{n} \ln u_n} \to 1$

En passant à la limite on obtient donc $1 = \ln l$ c-a-d l = e.

Exercice sans préparation

1. a) $cov(Y_k, Y_{k+1}) = \frac{1}{2} (\mathbb{V}(Y_k + Y_{k+1}) - \mathbb{V}(Y_k) - \mathbb{V}(Y_{k+1})).$ Or $\mathbb{V}(Y_k + Y_{k+1}) = \mathbb{V}(X_k + 2X_{k+1} + X_{k+2}) = \mathbb{V}(X_k) + 4\mathbb{V}(X_{k+1}) + \mathbb{V}(X_{k+2})$ par indépendance des X_k ;

$$\mathbb{V}(Y_k+Y_{k+1})=6\mathbb{V}(X_1)$$
. et, de même, $\mathbb{V}(Y_k)=2\mathbb{V}(X_1)=\mathbb{V}(Y_{k+1})$ d'où : $cov(Y_k,Y_{k+1})=\mathbb{V}(X_1)=pq$.

- b) On étudie $p \to p(1-p)$ sur]0,1[.
- 2. si $l \ge k+2$ alors Y_k et Y_l sont fonctions de variables X_n distinctes : c'est variables étant indépendantes, Y_k et Y_l sont indépendantes donc $cov(Y_k, Y_l) = 0$ si l = k+1 alors $cov(Y_k, Y_l) = pq$ d'après 1.a).
- 3. On note $Y = \frac{1}{n} \sum_{k=1} nY_k$ alors d'après l'inégalité de Bienaymé-Tchebychev : $P\left(\left[\left|Y \mathbb{E}(Y)\right| > \varepsilon\right]\right) \left(\left[Y\right]\right) | > \varepsilon$ $\varepsilon \in \mathbb{V}(Y) = 0$ c-a-d $P\left(\left[\left|\frac{1}{n}\sum_{k=1} nY_k 2p\right| > \varepsilon\right]\right) \leq V\left(\frac{1}{n}\sum_{k=1} nY_k\right) / \varepsilon^2$. Avec $\mathbb{V}\left(\frac{1}{n}\sum_{k=1} nY_k\right) = \frac{1}{n^2}V\left(\sum_{k=1} nY_k\right) = \frac{1}{n^2}\left[\sum_{k=1} n\mathbb{V}(Y_k) + 2\sum_{k=1} n\sum_{l=k+1} ncov(Y_k, Y_l)\right] = \frac{1}{n^2}\left[\sum_{k=1} n\mathbb{V}(Y_k) + 2\sum_{k=1} n 1cov(Y_k, Y_{k+1})\right] = \frac{4n-2}{n^2}\mathbb{V}(X_1) \to 0$.

Exercice 2 (Exercice avec préparation)

1. Soit $(A_i)_{i \in I}$ un système complet d'évènements (c-a-d deux à deux incompatibles et dont la réunion fait l'univers) de probabilités non nulles, alors pour tout évènement B:

$$\mathbb{P}\left([B]\right) = \sum_{i \in I} \mathbb{P}(B \cap A_i) = \sum_{i \in I} P_{A_i}(B) \mathbb{P}\left([A_i]\right)$$

- 2. a) $I_{n,0} = \int_0^1 x^n dx = \frac{1}{n+1}$.
 - **b)** On pose u et v les fonctions définies sur [0,1] par $u(x) = \frac{x^{n+1}}{n+1}$ et $v(x) = (1-x)^{p+1}$. u et v sont de classe C1 sur [0,1] de dérivées, $u'(x) = x^n$ et $v'(x) = -(p+1)(1-x)^p$. Par intégration par parties, on obtient :

$$\int_0^1 x^n (1-x)^{p+1} dx = \left[\frac{x^{n+1}}{n+1} (1-x)^{p+1} \right]_0 1 + \int_0^1 \frac{x^{n+1}}{n+1} (p+1) (1-x)^p dx$$

soit:

$$I_{n,p+1} = \frac{p+1}{n+1} I_{n+1,p}$$

- c) On connait $I_{n,0}$, on part donc de $I_{n,p}$ et on se ramène par récurrence à un $I_{m,0}$: On démontrer par récurrence que $I_{n,p} = \frac{p!n!}{(n+p)!}I_{n+p,0} = \frac{p!n!}{(n+p+1)!}$.
- 3. On note U_k l'évènement "choisir l'urne U_k ". Il existe λ tel que pour tout $k \in [1, N]$, $\mathbb{P}([U_k]) = \lambda k$ (probabilité proportionnelle au nombre de boules rouges.

Or
$$\sum_{k=1} N\mathbb{P}([U_k]) = 1$$
 (les $(U_k)_{1 \leqslant k \leqslant N}$ forment un s.c.e) donc $\lambda \sum_{k=1} Nk = 1$, $\lambda = \frac{2}{N(N+1)}$.

$$\forall k \in [1, N], \ \mathbb{P}([U_k]) = \frac{2k}{N(N+1)}$$

4. a) La probabilité d'obtenir une boule rouge dépend de l'urne choisie, on décompose donc sur le système complet d'évènements $(U_k)_{1 \leqslant k \leqslant N}$:

$$\mathbb{P}\left([E_n]\right) = \sum_{k=1} N\mathbb{P}\left([U_k]\right) P_{U_k}(E_n)$$

Sachant que l'on tire dans l'urne U_k , Les tirages étant indépendants, le nombre de boules rouges obtenues au cours de 2n tirages suit une loi binomiale de paramètres 2n et $p=\frac{k}{N}$ donc $P_{U_k}(E_n)=\binom{2n}{n}\left(\frac{k}{N}\frac{N-k}{N}\right)^n$. Ainsi,

$$\mathbb{P}([E_n]) = \sum_{k=1}^{n} N \frac{2k}{N(N+1)} {2n \choose n} \frac{k^n (N-k)^n}{N^{2n}}$$

b) $P_{E_n}(R_{2n+1}) = \frac{\mathbb{P}(E_n \cap R_{2n+1})}{\mathbb{P}([E_n])}$ avec $\mathbb{P}(E_n \cap R_{2n+1}) = \sum_{k=1} N\mathbb{P}([U_k]) P_{U_k}(E_n \cap R_{2n+1}) = \sum_{k=1} N\mathbb{P}([U_k]) P_{U_k}(E_n) P_{U_k}(R_{2n+1}) = \sum_{k=1} N\frac{2k}{N(N+1)} {2n \choose n} \left(\frac{k}{N}\right) P_{U_k}(E_n) P_{U_k}(E_n)$

$$\mathbb{P}(E_n \cap R_{2n+1}) = \frac{\sum\limits_{k=1}^{N} N\left(\frac{k}{N}\right)^{n+2} \left(1 - \frac{k}{N}\right)^n}{\sum\limits_{k=1}^{N} N\left(\frac{k}{N}\right)^{n+1} \left(1 - \frac{k}{N}\right)^n}$$

$$\mathbb{P}(E_n \cap R_{2n+1}) = \frac{\frac{1}{N} \sum_{k=1}^{N} N \left(\frac{k}{N}\right)^{n+2} \left(1 - \frac{k}{N}\right)^n}{\frac{1}{N} \sum_{k=1}^{N} N \left(\frac{k}{N}\right)^{n+1} \left(1 - \frac{k}{N}\right)^n}$$

On reconnait les sommes de Riemann des fonctions $x \mapsto x^{n+2}(1-x)^n$ et $x \mapsto x^{n+1}(1-x)^n$ continues sur [0,1] donc :

•
$$\frac{1}{N} \sum_{k=1}^{\infty} N\left(\frac{k}{N}\right)^{n+2} \left(1 - \frac{k}{N}\right)^n \to \int_0^1 x^{n+2} (1-x)^{n} dx$$

•
$$\frac{1}{N} \sum_{k=1}^{\infty} N\left(\frac{k}{N}\right)^{n+1} \left(1 - \frac{k}{N}\right)^n \to \int_0^1 x^{n+1} (1-x)^{n} dx$$

$$\mathbb{P}(E_n \cap R_{2n+1}) \to \frac{I_{n+2,n}}{I_{n+1,n}} = \frac{n!(n+2)!}{(2n+3)!} \frac{(2n+2)!}{n!(n+1)!} = \frac{n+2}{2n+3}.$$

5.

Exercice sans préparation

- 1. On donne la base canonique de $\mathcal{M}_2(\mathbb{R}): \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)$
- 2. on prend des matrices inversibles (colonnes non colinéaires) les plus simples possibles en faisant attention qu'elles forment une famille libre : $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$
- 3. On prend une base des matrices symétriques : $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. On la complète en une base en prenant une matrice triangulaire à deux valeurs propres distinctes, exemple : $\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$.

Exercice 3 (Exercice avec préparation)

- 1. Un estimateur T de θ admettant une espérance est dit sans biais si $\mathbb{E}(T) = \theta$. Si T admet un moment d'ordre 2, son risque quadratique est défini par $r(T) = E((T - \theta)^2)$.
- 2. X est une variable bornée donc admet des moments de tous ordres

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} x f(x \ dx = \int_0^{\theta} 2\frac{x^2}{\theta^2} dx = \frac{2}{3}\theta.$$

$$\mathbb{E}(X^2) = \int_{-\infty}^{+\infty} x^2 f(x) dx = \int_0^{\theta} 2\frac{x^3}{\theta^2} dx = \frac{1}{2}\theta^2. \text{ Ainsi, d'après Koenig-Huygens, } \mathbb{V}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \frac{1}{18}\theta^2.$$

- 3. a) $\forall x \in \mathbb{R}, F(x) = \mathbb{P}\left(\left[\left[X \leqslant x\right]\right]\right) = \int_{-\infty}^{x} f(t)dt.$
 - si x < 0, F(x) = 0
 - si $0 \leqslant x \leqslant \theta$, $F(x) = \int_0^x f(t)dt = \frac{x^2}{\theta^2}$.

 - b)
- 4. a) $\mathbb{E}(\overline{X_n}) = \frac{1}{n} \sum_{k=1}^{n} \mathbb{E}(X_k) = \mathbb{E}(X) = \frac{2}{3}\theta$ (linéarité de l'espérance). Soit alors $T_n = \frac{3}{2}\overline{X_n}$. Par linéarité de l'espérance, T_n est un estimateur sans biais de θ .
 - **b**) $r(T_n) = \mathbb{V}(T_n) = \frac{c^2}{n^2} \mathbb{V}(\sum_{k=1}^n nX_k) = \frac{c^2}{n^2} \sum_{k=1}^n n\mathbb{V}(X_k) = \frac{c^2}{n} \mathbb{V}(X)$ par indépendance des X_k . $r(\overline{X_n}) = \mathbb{V}(\overline{X_n}) + (b(\overline{X_n}))^2 = \frac{(2n+1)\theta^2}{12n}$
- 5. a) $\forall x \in \mathbb{R}, G_n(x) = \mathbb{P}\left(\left[\left[M_n \leqslant x\right]\right]\right) = P\left(\left[X_1 \leqslant x\right] \cap \left[X_2 \leqslant x\right] \cap ... \cap X_n \leqslant x\right) = \mathbb{P}\left(\left[\left[X_1 \leqslant x\right]\right]\right) \mathbb{P}\left(\left[\left[X_2 \leqslant x\right]\right]\right) ... \mathbb{P}\left(\left[\left[X_2$

 M_n est une variable à densité de densité : $g_n(x) = \begin{cases} 0 & \text{si } x < 0 \\ \frac{2nx^{2n-1}}{\theta^{2n}} & \text{si } 0 \leqslant x \leqslant \theta \\ 0 & \text{si } x > \theta \end{cases}$

 $\boldsymbol{b})$ M_n est une variable finie donc admet des moments de tous ordres :

 $\mathbb{E}(M_n) = \int_0^{\sigma} 2nx^{2n}\theta^{2n}dx = \frac{2n}{2n+1}\theta$. On choisit donc $W_n = \frac{2n+1}{2n}M_n$ comme estimateur sans

- c) Comparons leur risque quadratique : calculer $r(W_n) = \mathbb{V}(W_n) = \frac{(2n+1)^2}{(2n)^2} \mathbb{V}(M_n)$ avec, $\mathbb{E}(M_n 2) = \frac{n}{n+1} \theta^2$ donc $\mathbb{V}(M_n) = \frac{n}{(n+1)(2n+1)^2} \theta^2$ d'où $r(W_n) = \frac{\theta^2}{4n(n+1)}$. W_n est meilleur estimateur que T_n car son risque quadratique est en $\frac{1}{n^2}$ au voisinage de $+\infty$ alors que celui de T_n est en $\frac{1}{n}$ (son risque quadratique tend plus vite vers 0).
- **6.** a) On résout l'équation $G_n(a\theta) = \frac{\alpha}{2} \Leftrightarrow a = \left(\frac{\alpha}{2}\right)^{\frac{1}{2n}}$ et on résout l'équation $G_n(\theta) G_n(b\theta) = \frac{\alpha}{2} \Leftrightarrow$ $b = (1 - \frac{\alpha}{2})^{\frac{1}{2n}}$
 - b) On isole θ dans les inégalité en renversant ces inégalités : On a $\mathbb{P}\left([M_n \leqslant a\theta]\right) = \frac{\alpha}{2} \Leftrightarrow \mathbb{P}\left(\left[\theta \geqslant \frac{M_n}{a}\right]\right) = \frac{\alpha}{2}$.

$$\mathbb{P}\left(\left[b\theta \leqslant M_{n}\right]\right) = \mathbb{P}\left(\left[b\theta \leqslant M_{n} \leqslant \theta\right]\right) = \frac{\alpha}{2} \text{ donc } \mathbb{P}\left(\left[\theta \leqslant \frac{M_{n}}{b}\right]\right) = \frac{\alpha}{2}.$$
Ainsi,
$$\mathbb{P}\left(\left[\frac{M_{n}}{b} \leqslant \theta \leqslant \frac{M_{n}}{a}\right]\right) = 1 - P\left(\left(\left[\theta \leqslant \frac{M_{n}}{b}\right]\right) \cup \left(\theta \geqslant \frac{M_{n}}{a}\right)\right) = 1 - \mathbb{P}\left(\left[\theta \leqslant \frac{M_{n}}{b}\right]\right) - P\left(\left[\theta \geqslant \frac{M_{n}}{a}\right]\right) = 1 - \alpha.$$

Exercice sans préparation

- 1. $A(A^2 + A + I) = 0$. Si A est inversible, on peut simplifier par A en multipliant par A^{-1} à gauche, on obtient : $A^2 + A + I = 0$ soit A(-A I) = (-A I)A = I donc $A^{-1} = -A I$.
- 2. Si A est symétrique alors elle est diagonalisable c'est-à-dire il existe P inversible et D diagonale tels que $A = PDP^{-1}$ où D a sur sa diagonale des valeurs propres de A. Or $X^3 + X^2 + X$ est un polynôme annulateur de A donc si λ est valeur propre de A alors $\lambda^3 + \lambda^2 + \lambda = 0$ donc $\lambda(\lambda^2 + \lambda + 1) = 0$ or l'équation de degré 2 n'a pas de solutions donc $\lambda = 0$ donc D = 0 d'où $A = P0P^{-1} = 0$.

Exercice 4 (Exercice avec préparation)

- 1. X et Y sont indépendantes si $\forall i \in X(\Omega), \forall j \in Y(\Omega), \mathbb{P}([X=i] \cap [Y=j]) = \mathbb{P}([[X=i]]) \mathbb{P}([[Y=j]])$.
- 2. a) faire un graphique pour représenter les différents déplacements possibles. On obtient : $T_n(\Omega) = \{-1,0,1\}, \mathbb{P}([[[T_n=-1]]]) = \mathbb{P}([[[T_n=1]]]) = \frac{1}{4} \text{ et } \mathbb{P}([[[T_n=0]]]) = \frac{1}{2} \text{ (équiprobabilité des quatre déplacements) } \mathbb{E}(T_n) = -1\mathbb{P}([[[T_n=-1]]]) + 0\mathbb{P}([[[T_n=0]]]) + 1\mathbb{P}([[[T_n=1]]]) = 0.$ $\mathbb{E}(T_n 2) = (-1)^2 \mathbb{P}([[[T_n=-1]]]) + 1^2 \mathbb{P}([[[T_n=1]]]) = \frac{1}{2} \text{ donc par K-H } \mathbb{V}(T_n) = \mathbb{E}(T_n 2) = \frac{1}{2}.$
 - **b)** $\sum_{k=1} nT_k = \sum_{k=1} n(X_k X_{k-1}) = X_n X_0 = X_n$ (télescopage).
 - c) $\mathbb{E}(T_k) = -1\mathbb{P}([[[T_k = -1]]]) + 0\mathbb{P}([[[T_k = 0]]]) + 1\mathbb{P}([[[T_k = 1]]]) = 0$ et donc par linéarité de l'espérance $\mathbb{E}(X_n) = \sum_{k=1}^n n\mathbb{E}(T_k) = 0$.
 - d) Commençons par calculer $\mathbb{V}(X_n)$ facile à calculer car somme de variables indépendantes donc $\mathbb{V}(X_n) = \sum_{k=1}^n n \mathbb{V}(T_k) = \frac{n}{2}$. Et par K-H : $\mathbb{E}(x_n 2) = \mathbb{V}(X_n) + \mathbb{E}(X_n)^2$ donc :

$$\mathbb{E}(X_n 2) = \frac{n}{2}$$

- 3. a) $\mathbb{P}([X_n = n] \cap [Y_n = n]) = 0$ car à chaque déplacement, l'abscisse et l'ordonnée ne se modifient pas simultanément donc il faudrait 2n déplacements et non n déplacements pour avoir cette configuration.
 - b) Il faut utiliser l'inégalité $\mathbb{E}(Z_n)^2 \leq \mathbb{E}(Z_n 2)$ vraie pour toute variable aléatoire : en effet, $\mathbb{V}(Z_n) \geq 0$ donc $\mathbb{E}(Z_n 2) \mathbb{E}(Z_n)^2 \geq 0$. Ainsi, $\mathbb{E}(Z_n)^2 \leq \mathbb{E}(Z_n 2)$ avec $Z_n 2 = X_n 2 + Y_n 2$ donc par linéarité de l'espérance $\mathbb{E}(Z_n 2) = \mathbb{E}(X_n 2) + \mathbb{E}(Y_n 2) = n$ par symétrie de X_n et Y_n . Ainsi, $\mathbb{E}(Z_n)^2 \leq n$ donc $\mathbb{E}(Z_n) \leq \sqrt{n}$ (Z_n distance donc positive)
- 4. a) Soit k le nombre total de déplacements à l'est et l le nombre total de déplacements au nord. Pour revenir à l'origine la puce doit faire k déplacements à l'ouest et l déplacements au sud soit au total 2(k+l) déplacements (nombre pair de déplacements) ainsi, si n impair, $p_n = 0$
 - b) D'après l'explication précédente, si la puce fait 2m déplacements alors la somme des déplacements à l'ouest et au nord vaut m.
 Notons N le nombre de déplacements au nord, E le nombre de déplacements à l'est, O le nombre

de déplacements à l'ouest et S le nombre de déplacements au sud.

 $[[N=k]]_{0\leqslant k\leqslant m}$ est un système complet d'évènements donc d'après la formule des probas totales :

$$\mathbb{P}\left([[M_n = 0]]\right) = \sum_{k=0} n \mathbb{P}([M_n = 0] \cap [N = k]) = \sum_{k=0} n \mathbb{P}([N = k] \cap [S = k] \cap [O = m - k] \cap [E = m - k]) \text{ (d' après in the problem)}$$

Calculons $\mathbb{P}([N=k]\cap [S=k]\cap [O=m-k]\cap [E=m-k])$:

- -on choisit la place des déplacements vers le nord au cours de 2m déplacements : on a $\binom{2m}{k}$ choix.
- ces emplacements étant choisis, on choisit la place des déplacements vers l'est parmi les places restantes : on a $\binom{2m-k}{m-k}$ choix.
- on choisit l'emplacement des déplacements vers le sud parmi les places restantes : $\binom{m}{k}$ choix. et il ne reste plus de choix pour les déplacements vers l'est.

La probabilité de chacun de ces déplacements possibles, par indépendance des déplacements est $\frac{1}{4^{2m}}$, on a donc au final :

$$\mathbb{P}([N=k]\cap[S=k]\cap[O=m-k]\cap[E=m-k]) = \binom{2m}{k}\binom{2m-k}{m-k}\binom{m}{k}\frac{1}{4^{2m}}$$

Or on montre facilement que $\binom{2m}{k}\binom{2m-k}{m-k} = \binom{2m}{m}\binom{m}{k}$ donc

$$\mathbb{P}([N = k] \cap [S = k] \cap [O = m - k] \cap [E = m - k]) = \binom{2m}{m} \binom{m}{k} 2\frac{1}{4^{2m}}$$

Ainsi,
$$\mathbb{P}([[M_n = 0]]) = {2m \choose m} \frac{1}{4^{2m}} \sum_{k=0} n {m \choose k} 2.$$

Exercice sans préparation

1. On se sait rien faire lorsque le premier indice tend vers l'infini, on va donc se ramener à ce que l'on connait (les séries) :

Soit M > n, $\sum_{k=n} M \frac{1}{k^3} = \sum_{k=1} M \frac{1}{k^3} - \sum_{k=1} n \frac{1}{k^3}$ or la première somme converge lorsque M tend vers $+\infty$ comme série de Riemann avec $\alpha = 3 > 1$ donc v_n existe bien et vaut :

$$v_n = \sum_{k=n} +\infty \frac{1}{k^3} = \sum_{k=1} +\infty \frac{1}{k^3} - \sum_{k=1} n \frac{1}{k^3}$$

On fait tendre n vers $+\infty$ dans la seconde expression, on obtient :

$$\lim_{n \to +\infty} v_n = \sum_{k=1}^{\infty} +\infty \frac{1}{k^3} - \sum_{k=1}^{\infty} +\infty \frac{1}{k^3} = 0$$

- ${\it 2.}$ On est clairement dans un exercice de comparaison série-intégrale.
 - a) La fonction $x\mapsto \frac{1}{x^3}$ est décroissante sur \mathbb{R}_+^* donc $\forall k\geqslant 1$, soit $x\in [k,k+1]$, alors : $\frac{1}{(k+1)^3}\leqslant \frac{1}{x^3}\leqslant \frac{1}{k^3}$. La fonction étant de plus continue, on peut intégrer l'inégalité sur [k,k+1]. (bornes croissantes) :

$$\int_{k}^{k+1} \frac{1}{(k+1)^3} dx \leqslant \int_{k}^{k+1} \frac{1}{x^3} dx \leqslant \int_{k}^{k+1} \frac{1}{k^3} dx$$
$$\frac{1}{(k+1)^3} \leqslant \int_{k}^{k+1} \frac{1}{x^3} dx \leqslant \frac{1}{k^3}$$

On somme alors l'encadrement pour k allant de n à n+m et on obtient le résultat.

b) Encadrons v_n grâce à la question précédente : • on a $\sum_{k=n} n + m \frac{1}{k^3} \geqslant \int_{n}^{n+m+1} \frac{1}{x^3} dx = \frac{1}{2n^2}$ $\frac{1}{2(n+m+1)^2}$, on fait tendre m vers $+\infty$, on obtient :

$$v_n \geqslant \frac{1}{2n^2}$$

• La seconde inégalité est : $\sum_{k=n}n+m\frac{1}{(k+1)^3}\leqslant \int_n^{n+m+1}\frac{1}{x^3}dx \text{ or par changement d'indice on a : }\sum_{k=n}n+m\frac{1}{(k+1)^3}=\sum_{k=n+1}n+m+1\frac{1}{k^3}=\sum_{k=n}n+m+1\frac{1}{k^3}-\frac{1}{n^3}.$ On passe alors à la limit $\frac{1}{n^3}$

On passe alors à la limite dans l'inégalité, on obtient :

$$v_n - \frac{1}{n^3} \leqslant \frac{1}{2n^2} \Leftrightarrow v_n \leqslant \frac{1}{2n^2} + \frac{1}{n^3}$$

D'où

$$\frac{1}{2n^2} \leqslant v_n \leqslant \frac{1}{2n^2} + \frac{1}{n^3}$$

Grâce à cet encadrement, on montre par le théorème d'encadrement que $\frac{v_n}{\frac{1}{2n^2}} \to 1$ donc $v_n \sim \frac{1}{2n^2}$.

Exercice 5 (Exercice avec préparation)

- 1. Deux matrices A et B de $\mathcal{M}_n(\mathbb{R})$ sont semblables s'il existe une matrice P de $\mathcal{M}_n(\mathbb{R})$ inversible telle que $A = PBP^{-1}$.
- 2. a) $f^2(i) = f(f(i)) = f(i-j+k) = f(i) f(j) + f(k) = 2j 2k$ (linéarité de f) donc $(f^2 2f + 2Id)(i) = f^2(i) 2f(i) + 2i = 0$ ainsi, $(2Id f)((f^2 2f + 2Id)(i)) = (2Id f)(0) = 0$ par linéarité de 2Id f. De même, on trouve: $(f^2-2f+2Id)(j) = i+j+k$ et $(2Id-f)((f^2-2f+2Id)(j)) = (2Id-f)(i+j+k) = 0$ et $(f^2-2f+2Id)(k) = i+j+k$ et $(2Id-f)((f^2-2f+2Id)(k)) = (2Id-f)(i+j+k) = 0$.
 - b) Montrons que f est surjective $\Leftrightarrow Im(f) = \mathbb{R}^3$. Im(f) = Vect(f(i), f(j), f(k)) = Vect(i - j + k, i + 2j, j + k). Vérifions la liberté de la famille (i - j + k, i + 2j, j + k): $a(i - j + k) + b(i + 2j) + c(j + k) = 0 \Leftrightarrow (a + b)i + (-a + 2b + c)j + (a + c)k = 0 \Leftrightarrow$ a+ b= 0 -a+ 2b+ c= 0 car (i,j,k) est une base de E donc une famille libre. -b+ c= 0

On résout le système par pivots, on obtient a=b=c=0. La famille est libre et génératrice de Im(f) donc c'est une base de Im(f) et dim(Im(f) = 3.

Im(f) est un sous-espace de E de dimension 3 donc Im(f) = E.

f est une endomorphisme de E (E de dim finie) surjectif donc bijectif.

f est un automorphisme de E

- c) La matrice de f dans la base (ij,k) est $A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$.
- d) D'après la question 2.a) $(2-X)(X^2-2X+2)$ est un polynôme annulateur de f. Donc si λ est valeur propre de f alors $(2 - \lambda)(\lambda^2 - 2\lambda + 2) = 0$ donc $\lambda = 2$. On résout l'équation (A-2I)X=0 on obtient $E_2(f)=Vect(i+j+k)$.

- 3. La somme des dimensions des sous-espaces propres de f est égale à 1 et non à 3 donc f n'est pas diagonalisable.
 - a) On résout l'équation $\alpha(-b, a, 0) + \beta(0, c, -b) + \gamma(-c, 0, a) = (0, 0, 0)$ en distinguant les cas $b \neq 0$ et b = 0 (alors a ou $c \neq 0$), et on obtient dans tous les cas que la famille est liée or les vecteurs ne sont pas colinéaires deux à deux donc Vect(U, V, W) = Vect(U, V) où (U, V) est une base de Vect(U, V, W).
 - b) On remarque que U, V et W appartiennent à P car ils vérifient l'équation de P donc comme P espace vectoriel alors $Vect(U, V, W) \subset P$. On vérifie facilement en trouvant une base de P que P est de dimension 2 donc :

$$P = Vect(U, V, W)$$

Calculons f(U), f(V) et f(W): f(U) = f(-bi + aj) = -bf(i) + af(j) = -b(i - j + k) + a(i + 2j) = (a - b)i + (b + 2a)j - bk. $f(V) = ci + (2c - b)j - bk \text{ et } f(W) = -ci + (c + a)j + (a - c)k. \text{ comme } f(P) \text{ est un espace vectorial alors } f(P) \subset P \text{ si et seulement si } f(U), f(V) \text{ et } f(W) \in P, \text{ si et seulement si } \begin{cases}
a(a - b) + b(b + 2a) - cb = 0 \\
ac + b(2c - b) - cb = 0
\\
-ac + b(c + a) + c(a - c) = 0
\end{cases}$ Il reste à résoudre ce système d'équations (bonne chance...)

Exercice sans préparation

1.
$$x(1-\Phi(ax)) = x\mathbb{P}\left([[X > ax]]\right) (clairement positif) = x \int_{ax}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-t^2} 2dt = \frac{1}{a} \int_{ax}^{+\infty} \frac{ax}{\sqrt{2\pi}} e^{-t^2} 2dt \le \frac{1}{a} \int_{ax}^{+\infty} \frac{t}{\sqrt{2\pi}} e^{-t^2} 2dt = \frac{1}{\sqrt{2\pi a}} e^{-a^2x^2/2} \le \sqrt{\frac{2}{\pi}} e^{\frac{-ax^2}{2}}.$$

2. La densité d'une variable centrée de variance $\frac{1}{a}$ est $f(x) = \sqrt{\frac{a}{2\pi}}e^{-ax^2/2}$. Cette densité étant paire, on a :

$$\int_0^{+\infty} \sqrt{\frac{a}{2\pi}} e^{-ax^2/2} dx = \frac{1}{2} \Leftrightarrow \int_0^{+\infty} \sqrt{\frac{2}{\pi}} e^{\frac{-ax^2}{2}} dx = \frac{1}{\sqrt{a}}$$

Ainsi, par croissance des bornes :

$$0 \leqslant \int_0^{+\infty} x(1 - \Phi(ax)) dx \leqslant \frac{1}{\sqrt{a}}$$

Et par le théorème d'encadrement, on obtient : $\lim_{a \to +\infty} \int_0^{+\infty} \ x(1-\Phi(ax)) dx = 0.$

Exercice 6 (Exercice avec préparation)

toutes ses cordes.

- 1. Une fonction f définie sur \mathbb{R} est convexe si elle est au dessus de toutes ses tangentes. Caractérisation : une fonction f définie sur \mathbb{R} est convexe si et seulement si elle est au dessous de
 - Si f est de classe $\mathcal{C}1$ sur \mathbb{R} alors elle est convexe si et seulement si sa dérivée f' est croissante.
 - Si f est de classe C2 sur \mathbb{R} alors elle est convexe si et seulement si sa dérivée seconde f'' est positive.

- 2. a) Si $x \ge 0$, $t \mapsto e^{t^2}$ est continue sur [0, x] donc $\int_0^x e^{t^2} dt$ existe; Si $x \le 0$, $t \mapsto e^{t^2}$ est continue sur [x, 0] donc $\int_0^x e^{t^2} dt$ existe.
 - b) $g: t \mapsto e^{t^2}$ est continue sur \mathbb{R} donc admet une primitive G sur cet intervalle. Ainsi, $\forall x \in \mathbb{R}$, f(x) = G(x) G(0) or G est de classe C2 sur \mathbb{R} en tant que primitive de g, fonction de classe C1 sur \mathbb{R} donc f est aussi de classe C_2 sur \mathbb{R} .
 - $\bullet \mathbb{R}$ est centré en 0.
 - Soit $x \in \mathbb{R}$, $f(-x) = \int_0^{-x} e^{t^2} dt$. On pose le changement de variable u = -t de classe $\mathcal{C}1$ sur [0,x] $(t \mapsto -t \text{ affine})$, alors $f(-x) = \int_0^x e^{(-u)^2} du = -\int_0^x e^{u^2} du = -f(x)$

$$f$$
 est impaire

. $\forall x \in \mathbb{R}, f'(x) = g(x) = e^{x^2}$ et $f''(x) = 2xe^{x^2}$ est du signe de 2x car exp > 0 donc f'' > 0 sur] − ∞, 0[et f'' > 0 sur]0, +∞[.

$$f$$
 est concave sur $]-\infty,0]$ et convexe sur $[0,+\infty[$

- c) f' > 0 sur \mathbb{R} donc f est strictement croissante sur \mathbb{R}
- 3. a) si t > 1 alors $t^2 > t$ donc $\exp(t^2) > \exp(t)$ donc $\int_1^x e^{t^2} dt > \int_1^x e_t = e^x e \to +\infty$ lorsque $x \to +\infty$.

Ainsi, $\lim_{x \to +\infty} f(x) = +\infty$ et par imparité, $\lim_{x \to -\infty} f(x) = -\infty$.

f est continue et strictement croissante sur \mathbb{R} donc réalise une bijection de \mathbb{R} dans $f(\mathbb{R}) = \mathbb{R}$ ainsi, pour tout $n \in \mathbb{N}^*$, il existe un unique réel u_n tel que $f(u_n) = \frac{1}{n}$.

b) $f(u_n) = \frac{1}{n}$ et $f(u_{n+1}) = \frac{1}{n+1}$ or $\frac{1}{n+1} < \frac{1}{n}$ par stricte décroissante de la fonction inverse sur $\mathbb{R}_+ *$ donc $f(u_{n+1}) < f(u_n)$ d'où $u_{n+1} < u_n$ en composant par f^{-1} strictement croissante.

$$(u_n)$$
 est décroissante

De plus, f(x) < f(0) = 0 si x < 0 donc $u_n > 0$.

La suite (u_n) est décroissante et minorée (par 0) donc convergente vers un certain réel l.

- c) On passe à la limite lorsque $n \to +\infty$ dans l'égalité $f(u_n) = \frac{1}{n}$. Par continuité de f sur \mathbb{R} donc en l, on obtient f(l) = 0. Or l'unique antécédent par f de 0 est 0 donc l = 0.
- 4. a) La fonction exp est convexe sur \mathbb{R} donc au dessus de sa tangente en 0 donc $\forall u \in \mathbb{R}$, $\exp(u) \geqslant 1+u$. Pour démontrer l'autre inégalité, on étudie la fonction $u \mapsto 1 + 2u e^u$ sur $[0, \ln(2)]$.
 - b) Soit $t \in [0, \sqrt{\ln(2)}]$, alors $t^2 \in [0, \ln(2)]$ donc en appliquant l'inégalité précédente pour $u = t^2$, on obtient $1 + t^2 \le e^{t^2} \le 1 + 2t^2$.

Pour pouvoir alors intégrer l'encadrement sur $[0, u_n]$, il faut que $u_n \leqslant \sqrt{\ln(2)}$ or $\lim_{n \to +\infty} u_n = 0$ donc en prenant la définition de la limite pour $\epsilon = \sqrt{\ln(2)}$, on sait qu'il existe n_0 tel que pour tout $n \geqslant n_0$, $|u_n| = u_n \leqslant \sqrt{\ln(2)}$.

Pour $n \ge n_0$, par croissance des bornes on obtient :

$$\int_0^{u_n} (1+t^2)dt \leqslant \int_0^{u_n} e^{t^2} dt = f(u_n) = \frac{1}{n} \leqslant \int_0^{u_n} (1+2t^2)dt$$

- c) On calcule les intégrales de cette inégalité, on obtient : $u_n + \frac{u_n 3}{3} \leq \frac{1}{n} \leq u_n + \frac{2u_n 3}{3}$ c-a-d $nu_n + \frac{nu_n 3}{3} \le 1 \le nu_n + \frac{2nu_n 3}{3}$.
 - En divisant par nu_n , on obtient déjà que $nu_n \sim 1$ car par le théorème d'encadrement $\lim_{n \to +\infty} \frac{1}{nu_n} = 1$

Ainsi, $\lim_{n \to +\infty} nu_n = 1$. Au passage, on a montré que $u_n \sim \frac{1}{n}$.

On renverse alors l'encadrement pour encadrer nu_n3 :

$$\frac{3}{2}(1 - nu_n) \leqslant nu_n 3 \leqslant 3(1 - nu_n)$$

Par encadrement, on obtient $nu_n 3 \to 0$.

Exercice sans préparation

• Y prend la valeur 0 et lorsque X prend toutes les valeurs paires supérieures à 2 alors $\frac{X}{2}$ prend toutes les valeurs entières supérieures à 1 donc

$$Y(\Omega) = \mathbb{N}$$

• Soit $k \geqslant 1$, $\mathbb{P}\left(\left[\left[Y=k\right]\right]\right) = \mathbb{P}\left(\left[\frac{X}{2}=k\right]\right) = \mathbb{P}\left(\left[\left[X=2k\right]\right]\right) = pq^{2k-1}$.

$$\mathbb{P}\left([[Y=0]]\right) = \mathbb{P}\left(\left[\bigcup_{k=0}^{} + \infty[X=2k+1]\right]\right) = \sum_{k=0}^{} + \infty\mathbb{P}\left([[[X=2k+1]]]\right) \text{ (incompatibilit\'e deux à deux des \'evènements de l'union)} = \sum_{k=0}^{} + \infty pq^{2k} = \frac{p}{1-q^2} = \frac{1}{1+q}.$$

Pour tout $k \in \mathbb{N}$, $k\mathbb{P}([[[Y=k]]]) \geqslant 0$ donc la série de terme général $k\mathbb{P}([[[Y=k]]])$ converge absolument si et seulement si elle converge.

Sous réserve de convergence, on a :

$$\mathbb{E}(Y) = 0\mathbb{P}([[[Y=0]]]) + \sum_{k=1}^{\infty} +\infty k\mathbb{P}([[[Y=k]]]) = \sum_{k=1}^{\infty} +\infty kpq^{2k-1} = pq\sum_{k=1}^{\infty} +\infty k(q^2)^{k-1}.$$
 On recon-

naît une série géométrique dérivée de raison q^2 avec $|q^2| = q^2 < 1$ donc la série converge et

$$\mathbb{E}(Y) = \frac{pq}{(1-q^2)^2} = \frac{q}{(1+q)^2(1-q)}$$

Exercice 7 (Exercice avec préparation)

- 1. Soient X et Y deux variables aléatoires discrètes. La loi du couple (X,Y) est déterminée par :
 - La donnée de $(X,Y)(\Omega)$: l'ensemble des valeurs prises par le couple.
 - La donnée, pour tout $(i,j) \in (X,Y)(\Omega)$ de $\mathbb{P}([X=i] \cap [Y=j])$.

Les lois marginales sont les lois de X et de Y. On déterminer la loi d'une variable en utilisant la formule des probas totales sur le sce des valeurs prises par l'autre variable :

$$\mathbb{P}\left(\left[\left[\left[X=i\right]\right]\right]\right) = \sum_{j \in Y(\Omega)} \mathbb{P}(\left[X=i\right] \cap \left[Y=j\right])$$

$$\mathbb{P}\left([[[Y=j]]]\right) = \sum_{i \in X(\Omega)} \mathbb{P}([X=i] \cap [Y=j])$$

Pour tout $j \in Y(\Omega)$, la loi de X sachant [Y=j] est définie par : Pour tout $i \in X(\Omega)$, $P_{[Y=j]}$ $[[X=i]] = \frac{\mathbb{P}([X=i] \cap [Y=j])}{\mathbb{P}([[Y=j]])}$

2. • $(X,Y)(\Omega) = \{(i,j) \in \mathbb{N}^2 | j \leq i \}.$

$$\bullet \ \forall (i,j) \in (X,Y)(\Omega), \ \mathbb{P}([X=i] \cap [Y=j]) = \mathbb{P}\left([[[X=i]]]\right) P_{[X=i]} \left[[Y=j]\right] = e^{-\lambda} \frac{\lambda^i}{i!} \binom{i}{j} p^j (1-p)^{i-j} = e^{-\lambda} \frac{1}{j!(i-j)!} (\lambda p)^j (1-p)^{i-j}$$

3.
$$\forall j \in \mathbb{N}, \mathbb{P}\left([[Y=j]) = \sum_{i=0}^{n} + \infty \mathbb{P}([X=i] \cap [Y=j]) = \sum_{i=j}^{n} + \infty \mathbb{P}([X=i] \cap [Y=j]) = \sum_{i=j}^{n} + \infty e^{-\lambda} \frac{1}{j!(i-j)!} (\lambda p)^{j} (1-p)^{i-j} = e^{-\lambda} \frac{(\lambda p)^{j}}{j!} \sum_{i=j}^{n} + \infty \frac{(1-p)^{i-j}}{(i-j)!}.$$
 On pose le changement d'indice $k=i-j$: $\mathbb{P}\left([[Y=j]]\right) = e^{-\lambda} \frac{(\lambda p)^{j}}{j!} \sum_{k=0}^{n} + \infty \frac{(1-p)^{k}}{k!} = e^{-\lambda} \frac{(\lambda p)^{j}}{j!} e^{\lambda(1-p)} = e^{-\lambda p} \frac{(\lambda p)^{j}}{j!}.$ Y suit une loi de Poisson de paramètre λp .

4. • $(X - Y)(\Omega) = \mathbb{N}$ (X peut prendre n'importe quelle valeur entière et de nombre de succès de la binomiale a tjrs une proba non nulle de valoir 0).

• Soit
$$n \in \mathbb{N}$$
, $\mathbb{P}([[[X-Y]=n]]) = \sum_{i=0}^{n} +\infty \mathbb{P}([X=i] \cap [Y=i-n]) = \sum_{i=n}^{n} +\infty \mathbb{P}([X=i] \cap [Y=i-n]) = \sum_{i=n}^{n} +\infty e^{-\lambda} \frac{1}{(i-n)!} n! (\lambda p)^{i-n} (1-p)^n = e^{-\lambda} \frac{(1-p)^n}{n!} \sum_{i=n}^{n} +\infty \frac{1}{(i-n)!} (\lambda p)^{i-n}$. On pose le changement d'indice $k=i-n$: $\mathbb{P}([[[X-Y]=n]]) = e^{-\lambda} \frac{(1-p)^n}{n!} \sum_{k=0}^{n} +\infty \frac{1}{k!} (\lambda p)^k = e^{\lambda(1-p)} \frac{(1-p)^n}{n!}$

- **5.** a) $\forall (j,n) \in \mathbb{N}^2$, $\mathbb{P}([Y=j] \cap [X-Y=n]) = \mathbb{P}([Y=j] \cap [X=j+n]) = e^{-\lambda} \frac{1}{j!n!} (\lambda p)^j (1-p)^n = e^{-\lambda p} \frac{(\lambda p)^j}{j!} \times e^{\lambda(1-p)} \frac{(1-p)^n}{n!} = \mathbb{P}([[[Y=j]]]) \mathbb{P}([[[X-Y=n]]]).$ Les variables Y et X-Y sont indépendantes.
 - b) Y et X-Y étant indépendantes, on a cov(Y,X-Y)=0 cad $cov(Y,X)-Cov(Y,Y)=Cov(X,Y)-\mathbb{V}(Y)=0$ (linéarité à droite et symétrie de la covariance). Ainsi, $Cov(X,Y)=\mathbb{V}(Y)$ donc $\frac{Cov(X,Y)}{\sigma(X)\sigma(Y)}=\frac{\sigma(Y)}{\sigma(X)}=\sqrt{p}$.

Exercice sans préparation

A est diagonalisable donc il existe $P \in \mathscr{M}_n(\mathbb{R})$ inversible et $D \in \mathscr{M}_n(\mathbb{R})$ diagonale constituée de valeurs propres de A telles que $A = PDP^{-1}$.

Or $X^k - 1$ est un polynôme annulateur de A donc si λ est valeur propre de A alors $\lambda^k = 1$.

- Si k est impair alors $\lambda = 1$ donc $D = I_n$ donc $A = PI_nP^{-1} = I_n$ donc $A^2 = I_n$.
- Si k est pair alors $\lambda=\pm 1$. Donc D est diagonale de coefficients diagonaux tous égaux à ± 1 donc $D^2=I_n$.

Ainsi,
$$A^2 = PDP^{-1}PDP^{-1} = PD^2P^{-1} = PI_nP^{-1} = I_n$$
.

Exercice 8 (Exercice avec préparation)

1. Une fonction est de classe Cp sur un intervalle I si elle est p fois dérivable et que sa dérivée p-ième est continue.

Toute fonction de classe Cp admet une formule de Taylor à l'ordre p-1 cad pour tout $a, b \in I$, $f(b) = \sum_{k=0}^{(p-1)} \frac{(b-a)^k}{k!} f^{(k)}(a) + \int_a^b (b-t)^{p-1} f^{(p)}(t) dt.$

- 2. a) Montrons que (f_1, f_2) est libre : Soit a et b deux réels tels que $\forall x \in \mathbb{R}$, $af_1(x) + bf_2(x) = 0$. Alors, en prenant des valeurs particulières (x = 0 et x = 1) on obtient a = 0 et a + b = 0 cad a = b = 0. La famille est libre et génératrice de E donc est une base de E.
 - b) La dérivation est linéaire donc Δ est linéaire. $\forall x \in \mathbb{R}, \ \Delta(f_1)(x) = f_1'(x) = \alpha f_1(x) \text{ donc } \delta(f_1) = \alpha f_1 \in E.$ $\forall x \in \mathbb{R}, \ \Delta(f_2)(x) = e^{\alpha x} + \alpha x e^{\alpha(x)} \text{ donc } \Delta(f_2) = f_1 + \alpha f_2 \in E.$ Par linéarité der Δ et par stabilité de E par combinaisons linéaires, on obtient, $\Delta(E) \subset E$.

Δ est un endomorphisme de E

La matrice de Δ dans la base (f_1, f_2) est $A = \begin{pmatrix} \alpha & 1 \\ 0 & \alpha \end{pmatrix}$

c) A est inversible car trig sup avec des coeff diag non nuls donc Δ est bijective et comme A est triangulaire, son unique valeur propre est α .

Si A était diagonalisable alors il existerait P inversible telle que $A = P\alpha I_n P^{-1} = \alpha I_n$: contradiction donc Δ n'est pas diagonalisable.

3. $A^{-1} = \begin{pmatrix} \frac{1}{\alpha} & -\frac{1}{\alpha^2} \\ 0 & \frac{1}{2} \end{pmatrix}$.

Soit $f \in E$, si $\Delta^{-1}(f) = g$ alors $\Delta(g) = f$ cad g' = f cad g est une primitive de f. Δ^{-1} associe donc à f une primitive de f (celle qui est dans E).

$$A^{-1} \begin{pmatrix} -3 \\ 2 \end{pmatrix} = \begin{pmatrix} -\frac{3\alpha+2}{\alpha^2} \\ \frac{2}{\alpha} \end{pmatrix} \text{ donc } \Delta^{-1} (-3f_1 + 2f_2) = -\frac{3\alpha+2}{\alpha^2} f_1 + \frac{2}{\alpha}.$$
Les primitive de f sont donc les fonctions de la forme $-\frac{3\alpha+2}{\alpha^2} f_1 + \frac{2}{\alpha} + constante$

4. a) On calcule les premières puissances, on trouve $A^2 = \begin{pmatrix} \alpha^2 & 2\alpha \\ 0 & \alpha^2 \end{pmatrix}$, $A^3 = \begin{pmatrix} \alpha^3 & 3\alpha^2 \\ 0 & \alpha^3 \end{pmatrix}$, $A^4 = \begin{pmatrix} \alpha^4 & 4\alpha^3 \\ 0 & \alpha^4 \end{pmatrix}$. On fait alors l'hypothèse que $\forall n \in \mathbb{N}, A^n = \begin{pmatrix} \alpha^n & n\alpha^{n-1} \\ 0 & \alpha^n \end{pmatrix}$ et on démontrer cette relation par

b)
$$A^n {\binom{-3}{2}} = {\binom{-3\alpha^n + 2n\alpha^{n-1}}{2\alpha^n}} \text{ donc } \Delta^n(f) = \alpha^{n-1}[(-3\alpha + 2n)f_1 + 2\alpha f_2].$$

Exercice sans préparation

1. si X pair alors $(-1)^X = 1$ et si X impair alors $(-1)^X = -1$ donc $Y(\Omega) = \{-1, 1\}$. D'après le théorème de transfert, sous réserve de convergence absolue, on a :

$$\mathbb{E}(Y) = \sum_{k=0} +\infty (-1)^k \mathbb{P}\left([[X=k]]\right)$$

Montrons la convergence absolue de cette série : la série de terme général $|(-1)^k \mathbb{P}([[[X=k]]])| =$ $\mathbb{P}([[X=k]])$ converge (sce) donc la série converge bien absolument.

$$\mathbb{E}(Y) = \sum_{k=0}^{\infty} +\infty (-1)^k e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} +\infty \frac{(-\lambda)^k}{k!} = e^{-2\lambda}$$

2. on a $\mathbb{E}(Y)=1\mathbb{P}\left(\left[\left[\left[Y=1\right]\right]\right]\right)-1\mathbb{P}\left(\left[\left[\left[Y=-1\right]\right]\right]\right)=e^{-2\lambda}$ et $\mathbb{P}\left(\left[\left[\left[Y=1\right]\right]\right]\right)+\mathbb{P}\left(\left[\left[\left[Y=-1\right]\right]\right]\right)=1.$ On résout ce système de deux équations à deux inconnues, on obtient : $\mathbb{P}\left(\left[\left[\left[Y=1\right]\right]\right]\right)=\frac{e^{-2\lambda}+1}{2}$ et $\mathbb{P}\left([[[Y=-1]]]\right) = \frac{1-e^{-2\lambda}}{2}$

Exercice 9 (Exercice avec préparation)

1. Si $\int_{0}^{b} f(t)dt$ converge absolument, alors elle converge.

Théorèmes de comparaison si f est positif et continue par morceaux sur [a, b]:

• Si $f \leq g$ avec $\int_{a}^{b} g(t)dt$ converge alors $\int_{a}^{b} f(t)dt$ converge.

- Si $f = o_a(g)$ avec $\int_a^b g(t)dt$ converge alors $\int_a^b f(t)dt$ converge.
- Si $f \sim g$ alors $\int_a^b g(t)dt$ converge si et seulement si $\int_a^b f(t)dt$ converge.
- 2. Si $x \le 0$ alors $t \to t^{-x} \sqrt{1+t}$ est continue sur [0,1] donc l'intégrale converge. Si x > 0, la fonction intérieure est positive et l'intégrale est impropre en 0 or $\frac{1}{t^x} \sqrt{1+t} sim \frac{1}{t^x}$ avec $\int_0^1 \frac{1}{t^x} dt$ converge si et seulement si x < 1 (intégrale de Riemann) donc d'après les théorèmes de comparaison, f(x) existe si et seulement si x < 1.
- 3. On ne sait pas dériver f donc on revient à la définition des variations d'une fonction : soient a < b < 1, alors -a > -b donc pour tout t ∈]0,1[, -a ln(t) < -b ln(t) car ln(t) < 0 donc e^{-a ln(t)} < e^{-b ln(t)} par stricte croissance de l'exponentielle. On a donc t^{-a} < t^{-b} donc t^{-a}√1+t < t^{-b}√1+t. On intègre l'inégalité sur]0,1[, par croissance des bornes, on obtient f(a) < f(b). f est strictement croissante sur D.</p>
- 4. a) $\forall t \in]0,1], 1 \leq 1+t \leq 2$ et $1 \leq \sqrt{1+t} \leq \sqrt{2}$ par croissance de la fct racine sur \mathbb{R}_+ . d'où $t^{-x} \leq t^{-x}\sqrt{1+t} \leq \sqrt{2}t^{-x}$. En intégrant cet encadrement sur $t \in]0,1]$, on obtient (croissance des bornes):

$$\frac{1}{1-x} \leqslant f(x) \leqslant \frac{\sqrt{2}}{1-x}$$

- b) $\lim_{x \to -\infty} \frac{1}{1-x} = 0$ donc d'après le théorème d'encadrement, $\lim_{x \to -\infty} f(x) = 0$. $\lim_{x \to 1^-} \frac{1}{1-x} = +\infty$ donc d'après le théorème de comparaison, $\lim_{x \to 1^-} f(x) = +\infty$.
- **5.** a) $f(0) = \int_0^1 t^0 \sqrt{1+t} dt = \int_0^1 (1+t)^{\frac{1}{2}} dt = \frac{2}{3}(2^{\frac{3}{2}}-1).$
 - **b)** $f(x) = \int_0^1 t^{-x} \sqrt{1+t} dt$.

On pose u et v définies sur [0,1] par $u(t) = t^{-x}$ et $v(t) = \frac{2}{3}(1+t)\sqrt{1+t}$. u et v sont de classe $\mathcal{C}1$ sur [0,1] de dérivées $u'(t) = xt^{-(x+1)}$ et $v'(t) = \sqrt{1+t}$. Ainsi, pour tout 0 < M < 1, on a, par I.P.P. :

$$\int_{M}^{1} t^{-x} \sqrt{1+t} dt = \left[\frac{2}{3} t^{-x} (1+t) \sqrt{1+t} \right]_{M} 1 + x \frac{2}{3} \int_{M}^{1} t^{-(x+1)} (1+t) \sqrt{1+t} dt$$
 avec
$$\int_{M}^{1} t^{-(x+1)} (1+t) \sqrt{1+t} dt = \int_{M}^{1} (t^{-x} + t^{-(x+1)}) \sqrt{1+t} dt = \int_{M}^{1} t^{-x} \sqrt{1+t} dt + \int_{M}^{1} t^{-(x+1)} \sqrt{1+t} dt.$$
 On fait tendre M vers 0, on obtient :

$$f(x) = \frac{4\sqrt{2}}{3} + \frac{2}{3}x(f(x) + f(x+1))$$

On isole f(x+1), on obtient:

$$f(x+1) = \frac{1}{x} [f(x)(\frac{3}{2} - x) - 2\sqrt{2}]$$

- c) On obtient $f(x+1) \underset{x\to 0}{\sim} \frac{1}{x}[f(0)frac32 2\sqrt{2}] = -\frac{1}{x}$ à condition que f soit continue en 0 (*]. Alors $f(X) \underset{X\to 1}{\sim} \frac{1}{1-X}$ en posant X=x+1.
 - $|f(x) f(0)| = \left| \int_0^1 (t^{-x} 1) \sqrt{1 + t} dt \right| \leqslant \int_0^1 |t^{-x} 1| \sqrt{1 + t} dt \leqslant \sqrt{2} \int_0^1 |t^{-x} 1| dt = \sqrt{2} |\frac{1}{1 x} 1| \to 0 \text{ lorsque } x \text{ tend vers } 0 \text{ d'où } f \text{ est continue en } 0.$

6

Exercice sans préparation

1. L'univers est l'ensemble des n-listes d'urnes, avec répétitions donc $card(\Omega) = n^n$. On note A l'évènement "chaque urne reçoit exactement 1 boule", alors A est constitué de l'ensemble des permutations des n urnes donc card(A) = n!. Par équiprobabilité des choix, on :

$$p_n = \mathbb{P}\left([A]\right) = \frac{n!}{n^n}$$

.

- 2. $\forall n \in \mathbb{N}^*, \frac{p_{n+1}}{p_n} = \frac{(n+1)!n^n}{n!(n+1)^{n+1}} = \frac{(n+1)!}{n!} \frac{n^n}{(n+1)^{n+1}} = (n+1) \frac{n^n}{(n+1)^{n+1}} = \frac{n^n}{(n+1)^n} = \left(\frac{n}{n+1}\right)^n < 1$ La suite (o_n) est donc décroissante et minorée (par 0 car chaque terme est une proba) donc convergente.
- 3. $p_n = \frac{n}{n} \frac{n-1}{n} \frac{n-2}{n} \dots \frac{1}{n} < \frac{1}{n}$ donc $0 \le p_n \le \frac{1}{n}$ et par le théorème d'encadrement, on trouve $p_n \to 0$.