Temas das aulas

Karl Jan Clinckspoor

01/08/2018

Conteúdo que será explorado

- 0. Introdução
 - 1. Objetivo
 - 2. Motivação
 - Automatizar tarefas repetitivas
 - Análise exploratória de dados
 - Tratamento de dados
 - 3. Ferramentas específicas para tarefas específicas
 - 4. Por que Python
 - Simples, alto nível, muito suporte, muitos pacotes
 - 5. Instalação do Python e testes
 - Uso do console/terminal
 - Variável PATH
 - Início de um servidor
 - 6. Sobre aprender programação
 - 7. Recursos para aprendizado
 - Software Carpentry, Stack Overflow, Documentação oficial, tutoriais no Youtube.
 - 8. Promessas
- 1. Hello World
 - 1. print
 - 2. Funções
 - 3. Argumentos
 - $\bullet~*{\tt args},$ sem valores padrão
 - **kwargs, opcionais, valores padrão
 - 4. Obtenção de ajuda com Shift+Tab (1x,2x,4x).
 - 5. Strings
 - 1. Aspas simples '', duplas, triplas (''')
 - 2. Escape Sequences: \n, \t, \r
 - $3. \ raw \ strings$

- 6. dir, help, ?.
- 7. Tudo é um objeto em Python
 - Métodos e propriedades internas de objetos
- 8. Funções retornam valores
- 2. Operações matemáticas
 - 1. +, -, *, /
 - 2. ints e floats.
 - 3. Tipos de objetos, type.
 - 4. Resto %, divisão sem decimal //, potenciação **.
 - 5. Operadores matemáticos em objetos não numéricos (overloading)
 - str1 + str2
 - 6. Erros e como lidar com eles. Tipos de erros
 - 7. Variáveis, declaração e atribuição.
 - 8. Conversão entre tipos de variáveis.
 - float, int, str.
 - 9. Junção de dois tipos incompatíveis: strings e números
 - %s% e %
 - {} e .format
 - {} e f'
 - Arredondando números com round e {:.2f}
 - 10. Comparações entre objetos
 - ==, !=, >, >=, <, <=, a < b < c.
 - 11. Valores booleanos True e False.
- 3. Estruturas de dados (listas, dicionários, tuplas)
 - 1. Listas:
 - 1. Declaração: [item1, item2], list().
 - 2. Indexação: lista[índice].
 - Começa do zero, 0.
 - Índices negativos
 - 3. Comparação com strings.
 - 4. Listas aninhadas, [] []
 - 5. Seccionamento (slicing)
 - 1. início:fim (não incluso):passo
 - 2. Valores padrão (tudo:tudo:1)
 - 3. Valores negativos para o passo
 - 6. len, max, min
 - 7. Remoção de elementos com del
 - 8. Métodos internos:
 - append, sort, pop, reverse, extend.
 - +
 - Alguns métodos operam diretamente na lista e retornam None!
 - 9. Mutabilidade e Imutabilidade
 - 2. Dicionários:
 - 1. Declaração: {chave1:valor1, chave2:valor2}, dict
 - 2. Indexação: dict1[chave1]

- 3. Métodos internos: keys, values, items
- 3. Tuples:
 - 1. Declaração: (item1, item2), (item1,), tuple
 - 2. unpacking e expressões com asteriscos.
- 4. Condicionais e loops
 - 1. Condicionais:
 - 1. if, elif, else.
 - 2. Blocos de código precedidos por :.
 - 3. Junção de condicionais: and, or, not, all, any.
 - 4. Aninhamento de condicionais.
 - 5. Outros valores interpretados como verdadeiros e falsos
 - Conjuntos vazios, 0.
 - 6. in
 - 2. Loops:
 - 1. while e for, loops infinitos.
 - 2. Utilizando mais de um valor para um loop for.
 - 3. enumerate, range
 - 4. break e continue.
 - 5. Aninhamento
 - 3. List comprehension
 - 4. Abrindo um arquivo de texto e separando os valores necessários.
 - 1. open, split, unpacking, continue, float
- 5. Instalando e carregando módulos
 - 1. pip install
 - 2. conda install
 - 3. import
 - import pacote
 - import pacote as apelido
 - from pacote import parte
 - 4. Exemplos do uso de pacotes:
 - 1. uncertainties para o cálculo e propagação de incertezas.
 - $2.\,$ sympy para matemática simbólica.
 - 3. glob para criação de listas com nomes de arquivos
 - 4. os para funções básicas do sistema operacional.
- 6. Definindo funções
 - 1. Declaração: def nome(argumentos, opcionais=padrão)
 - 2. return
 - 3. Funções anônimas com lambda.
 - 4. Documentação, docstrings
 - 5. Lidando com erros e exceções com try e except
 - 6. Escopo de variáveis
 - 7.
- 7. Numpy:
 - 1. import numpy as np
 - 2. np.lookfor
 - 3. Numpy arrays, linspace

- Operações afetam arrays por inteiro.
- 4. Funções trigonométricas sin, cos, tan
- 5. Valores e índices de mínimos com min e argmin
- 6. logspace, log10
- 7. Criação de arrays 1D e 2D a partir de listas.
- 8. Indexação e slicing de arrays 2D
 - [linha][coluna], [linha, coluna]
 - [l_i:l_f, col_i:col_f]
- 9. Pacote random
- 10. Constantes pi, e
- 11. Multiplicação de arrays
 - Termo a termo
 - Matricial, np.dot, @
 - Transformação de vetores sem dimensão para vetores linha e coluna

8. Pandas:

- 1. import pandas as pd
- 2. Carregando arquivos com read_csv
 - Objeto criado e chamado de DataFrame se tiver mais de duas colunas, ou Series se tiver só uma.
 - sep
 - decimal
 - names
 - engine
 - header
 - na values
 - encoding
- 3. head, info
- 4. Indexação retorna colunas.
 - df['col1'] retorna uma coluna
 - df[['col1, col2']] retorna duas colunas
- 5. loc retorna linhas e colunas com base em seus nomes.
 - df.loc[l_i:l_f, col_i:col_f]
- 6. iloc retorna linhas e colunas com base em seus índices.
 - df.iloc[l_i:l_f, col_i:col_f]
- 7. Máscaras lógicas
 - Criação de um dataframe seguindo uma condição: filtro = df['y'] < media
 - 2. Aplicação do filtro no dataframe inicial. filtrado = df[filtro]
- 9. Criação de gráficos com matplotlib e pyplot:
 - 1. import matplotlib.pyplot as plt
 - 2. plot, xlabel, ylabel, title, text
 - 3. Customizando linhas
 - color
 - linestyle

- linewidth
- marker
- markersize
- markerfacecolor
- 4. plots múltiplos colocam mais linhas
- 5. figure, figsize, dpi
- 6. ylim, xlim, axhline, axvline
- 7. Alterando o separador decimal
- 8. label e legend
- 9. savefig e formatos.
- 10. Método implícito (plt.plot) e método explícito (ax.plot)
- 11. Subplots com subplot (imp) e subplots (exp).
- 12. twinx
- 13. xscale, yscale
- 14. errorbar
- 15. Junção de pandas e pyplot.
- 16. imshow e mapas de cor.
- 10. Algumas ferramentas para tratamento de dados
 - 1. Processo de tratamento
 - 2. scipy
 - find_peaks_cwt
 - savgol_filter
 - curve_fit
 - uncertainties e plots
 - integrate.quad
 - 3. scikit-image
 - 4. lmfit
 - 5. Expressões regulares com re.
 - 6. Outras ferramentas de visualização: Seaborn e Altair