Algebra e matematica discreta, a.a. 2021/2022,

Scuola di Scienze - Corso di laurea:

Informatica

ESERCIZIO TIPO 3

Si risolva il sistema lineare $\mathbf{A}(\alpha)\mathbf{x}=\mathbf{b}(\alpha)$ dipendente dal parametro complesso α dove

$$\mathbf{A}(\alpha) = \begin{pmatrix} 3 & 3\alpha & 3 \\ 1 & \alpha+1 & \alpha+1 \\ 1 & \alpha & \alpha+1-i \\ 0 & 2 & 2\alpha \end{pmatrix} \quad \mathbf{e} \quad \mathbf{b}(\alpha) = \begin{pmatrix} 3\alpha \\ \alpha+1 \\ \alpha \\ \alpha^2+3 \end{pmatrix}.$$

Troviamo una forma ridotta di Gauss della matrice aumentata del sistema.

$$(\mathbf{A}(\alpha)|\mathbf{b}(\alpha)) = \begin{pmatrix} 3 & 3\alpha & 3 & | & 3\alpha \\ 1 & \alpha+1 & \alpha+1 & | & \alpha+1 \\ 1 & \alpha & \alpha+1-i & | & \alpha \\ 0 & 2 & 2\alpha & | & \alpha^2+3 \end{pmatrix} \xrightarrow{E_{31}(-1)E_{21}(-1)E_{1}(\frac{1}{3})}$$

$$\rightarrow \begin{pmatrix}
1 & \alpha & 1 & | & \alpha \\
0 & 1 & \alpha & | & 1 \\
0 & 0 & \alpha - i & | & 0 \\
0 & 2 & 2\alpha & | & \alpha^2 + 3
\end{pmatrix} \xrightarrow{E_{42}(-2)} \begin{pmatrix}
1 & \alpha & 1 & | & \alpha \\
0 & 1 & \alpha & | & 1 \\
0 & 0 & \alpha - i & | & 0 \\
0 & 0 & 0 & | & \alpha^2 + 1
\end{pmatrix} = (\mathbf{B}(\alpha)|\mathbf{c}(\alpha)).$$

$$\boxed{ 1^0 \text{ CASO} } \qquad \alpha = i \qquad (\mathbf{B}(i)|\mathbf{c}(i)) = \begin{pmatrix} 1 & i & 1 & | & i \\ 0 & 1 & i & | & 1 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \text{ è una forma ridotta}$$

di Gauss per $(\mathbf{A}(i)|\mathbf{b}(i))$, quindi $\mathbf{A}(i)\mathbf{x} = \dot{\mathbf{b}}(i)$ è equivalente a $\mathbf{B}(i)\mathbf{x} = \mathbf{c}(i)$ che è una forma compatta per

$$\begin{cases}
 x_1 + ix_2 + x_3 & = i \\
 x_2 + ix_3 & = 1
\end{cases}$$

Poichè $\mathbf{c}(i)$ è libera, $\mathbf{B}(i)\mathbf{x} = \mathbf{c}(i)$ ammette soluzioni.

Poichè $\underline{B}(i)$ ha esattamente una colonna libera, $\underline{B}(i)\mathbf{x} = \underline{c}(i)$ ha ∞^1 soluzioni. Scegliamo come parametro la variabile corrispondente alla colonna libera di $\underline{B}(i)$ (la 3^a) e con la sostituzione all'indietro da (*) otteniamo

$$\begin{cases} x_3 = h \\ x_2 = -ix_3 + 1 = -ih + 1 \\ x_1 = -ix_2 - x_3 + i = -i(-ih + 1) - h + i = -h - i - h + i = -2h \end{cases}$$

L'insieme delle soluzioni del sistema $\mathbf{B}(i)\mathbf{x} = \mathbf{c}(i)$ (quindi di quelle del sistema $\mathbf{A}(i)\mathbf{x} = \mathbf{b}(i)$) è

$$\left\{ \begin{pmatrix} -2h \\ -ih+1 \\ h \end{pmatrix} | h \in \mathbb{C} \right\}.$$

2º CASO $\alpha \neq i$

$$(\mathbf{B}(\alpha)|\mathbf{c}(\alpha)) = \begin{pmatrix} 1 & \alpha & 1 & | & \alpha \\ 0 & 1 & \alpha & | & 1 \\ 0 & 0 & \alpha - i & | & 0 \\ 0 & 0 & 0 & | & \alpha^2 + 1 \end{pmatrix} \xrightarrow{E_3(\frac{1}{\alpha - i})}$$

$$\rightarrow \begin{pmatrix} 1 & \alpha & 1 & | & \alpha \\ 0 & 1 & \alpha & | & 1 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & \alpha^2 + 1 \end{pmatrix} = (\mathbf{C}(\alpha)|\mathbf{d}(\alpha)).$$

 1^0 Sottocaso $\alpha^2 + 1 = 0$

Siccome stiamo supponendo $\alpha \neq i$, questo può accadere solo se $\alpha = -i$

$$(\mathbf{C}(-i)|\mathbf{d}(-i)) \; = \; \begin{pmatrix} 1 & -i & 1 & | & -i \\ 0 & 1 & -i & | & 1 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ \end{pmatrix} \; \grave{\mathbf{e}} \; \, \mathrm{una} \; \, \mathrm{forma} \; \, \mathrm{ridotta} \; \, \mathrm{di} \; \, \mathrm{Gauss} \; \, \mathrm{per}$$

 $(\mathbf{A}(-i)|\mathbf{b}(-i))$, quindi $\underline{\mathbf{A}}(-i)\mathbf{x} = \mathbf{b}(-i)$ è equivalente a $\mathbf{C}(-i)\mathbf{x} = \mathbf{d}(-i)$ che è una forma compatta per

(*)
$$\begin{cases} x_1 - ix_2 + x_3 &= -i \\ x_2 - ix_3 &= 1 \\ x_3 &= 0 \end{cases}$$

Poichè $\mathbf{d}(-i)$ è libera, $\mathbf{C}(-i)\mathbf{x} = \mathbf{d}(-i)$ ammette soluzioni.

Poichè tutte le colonne di $\mathbf{C}(-i)$ sono dominanti, $\mathbf{C}(-i)\mathbf{x} = \mathbf{d}(-i)$ ammette un'unica soluzione. Con la sostituzione all'indietro da (*) otteniamo

$$\begin{cases} x_3 = 0 \\ x_2 = ix_3 + 1 = 1 \\ x_1 = ix_2 - x_3 - i = i - i = 0 \end{cases}$$

L'unica soluzione di $\mathbf{C}(-i)\mathbf{x} = \mathbf{d}(-i)$ (e quindi di $\mathbf{A}(-i)\mathbf{x} = \mathbf{b}(-i)$) è

$$\mathbf{v} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

2º Sottocaso
$$\alpha \notin \{i, -i\}$$

$$(\mathbf{C}(\alpha)|\mathbf{d}(\alpha)) = \begin{pmatrix} 1 & \alpha & 1 & | & \alpha \\ 0 & 1 & \alpha & | & 1 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & \alpha+i \end{pmatrix} \quad \xrightarrow{E_4(\frac{1}{\alpha+i})} \quad \begin{pmatrix} 1 & \alpha & 1 & | & \alpha \\ 0 & 1 & \alpha & | & 1 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{pmatrix} = (\mathbf{D}(\alpha)|\mathbf{e}(\alpha))$$

è una forma ridotta di Gauss per $(\mathbf{A}(\alpha)|\mathbf{b}(\alpha))$. Poichè $\mathbf{e}(\alpha)$ è dominante, $\mathbf{D}(\alpha)\mathbf{x} = \mathbf{e}(\alpha)$ (e quindi di $\mathbf{A}(\alpha)\mathbf{x} = \mathbf{b}(\alpha)$) non ammette soluzioni.