biostatistical methods homework 5

```
library(knitr)
library(tidyverse)
library(faraway)
library(broom)
library(leaps)
library(modelr)
library(caret)
```

R dataset 'state.x77' from library(faraway) contains information on 50 states from 1970s collected by US Census Bureau. The goal is to predict 'life expectancy' using a combination of remaining variables.

```
life_data = as.data.frame(state.x77) %>%
  janitor::clean_names()
```

1. Explore the dataset and generate appropriate descriptive statistics and relevant graphs

```
attach(life_data)

par(mfrow = c(2, 4))
boxplot(population, main = 'population')
boxplot(income,main = 'income' )
boxplot(illiteracy, main = 'illiteracy')
boxplot(life_exp, main = 'life_exp')
boxplot(murder, main = 'murder')
boxplot(hs_grad, main = 'hs_grad')
boxplot(frost, main = 'frost')
boxplot(area, main = 'area')
```

population

20000

10000

frost

Population

summary(population)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 365 1080 2838 4246 4968 21198

Income

summary(income)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 3098 3993 4519 4436 4814 6315

Illiteracy

summary(illiteracy)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.500 0.625 0.950 1.170 1.575 2.800

Life Exp

summary(life_exp)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 67.96 70.12 70.67 70.88 71.89 73.60

Murder

summary(murder)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 1.400 4.350 6.850 7.378 10.675 15.100

HS Grad

```
summary(hs_grad)
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
##
    37.80 48.05
                   53.25
                            53.11
                                    59.15
                                            67.30
Frost
summary(frost)
     Min. 1st Qu. Median
##
                             Mean 3rd Qu.
                                             Max.
     0.00 66.25 114.50 104.46 139.75 188.00
##
Area
summary(area)
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
     1049
            36985
                   54277
                            70736
                                  81162 566432
##
```

2. Use automatic procedures to find a 'best subset' of the full model. Present the results and comment on the following:

Backward elimination

```
backward_fit <- lm(life_exp ~ ., data=life_data)
step(backward_fit, direction='backward') %>%
   summary()
```

```
## Start: AIC=-22.18
## life_exp ~ population + income + illiteracy + murder + hs_grad +
      frost + area
##
##
               Df Sum of Sq
                               RSS
                     0.0011 23.298 -24.182
## - area
                1
                     0.0044 23.302 -24.175
## - income
                1
## - illiteracy 1
                     0.0047 23.302 -24.174
## <none>
                            23.297 -22.185
## - population 1
                     1.7472 25.044 -20.569
## - frost
                1
                     1.8466 25.144 -20.371
## - hs_grad
                     2.4413 25.738 -19.202
                1
## - murder
                    23.1411 46.438 10.305
                1
##
## Step: AIC=-24.18
## life_exp ~ population + income + illiteracy + murder + hs_grad +
##
      frost
##
##
               Df Sum of Sq
                               RSS
## - illiteracy 1
                     0.0038 23.302 -26.174
            1
                     0.0059 23.304 -26.170
## - income
## <none>
                            23.298 -24.182
## - population 1
                    1.7599 25.058 -22.541
## - frost
                     2.0488 25.347 -21.968
                1
## - hs_grad
                1
                    2.9804 26.279 -20.163
## - murder
                1
                    26.2721 49.570 11.569
##
## Step: AIC=-26.17
```

```
## life_exp ~ population + income + murder + hs_grad + frost
##
               Df Sum of Sq
##
                               RSS
                    0.006 23.308 -28.161
## - income
                1
## <none>
                             23.302 -26.174
## - population 1
                      1.887 25.189 -24.280
## - frost
                1
                      3.037 26.339 -22.048
## - hs_grad
                1
                      3.495 26.797 -21.187
## - murder
                1
                     34.739 58.041 17.456
##
## Step: AIC=-28.16
## life_exp ~ population + murder + hs_grad + frost
               Df Sum of Sq
##
                               RSS
                                       AIC
## <none>
                             23.308 -28.161
## - population 1
                      2.064 25.372 -25.920
## - frost
                      3.122 26.430 -23.877
                1
## - hs grad
                1
                     5.112 28.420 -20.246
## - murder
                1
                     34.816 58.124 15.528
## Call:
## lm(formula = life_exp ~ population + murder + hs_grad + frost,
      data = life data)
##
## Residuals:
                 1Q Median
       Min
                                   3Q
                                           Max
## -1.47095 -0.53464 -0.03701 0.57621 1.50683
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 7.103e+01 9.529e-01 74.542 < 2e-16 ***
                                      1.996 0.05201 .
## population 5.014e-05 2.512e-05
## murder
              -3.001e-01 3.661e-02 -8.199 1.77e-10 ***
## hs_grad
               4.658e-02 1.483e-02
                                      3.142 0.00297 **
## frost
              -5.943e-03 2.421e-03 -2.455 0.01802 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7197 on 45 degrees of freedom
## Multiple R-squared: 0.736, Adjusted R-squared: 0.7126
## F-statistic: 31.37 on 4 and 45 DF, p-value: 1.696e-12
Forward elimination
fit1 <- lm(life_exp ~ population, data=life_data)</pre>
tidy(fit1)
## # A tibble: 2 x 5
   term
                   estimate std.error statistic p.value
##
     <chr>>
                       <dbl>
                                 <dbl>
                                          <dbl>
                                                    <dbl>
## 1 (Intercept) 71.0
                            0.265
                                         267.
                                                7.90e-78
                                         -0.473 6.39e- 1
                 -0.0000205 0.0000433
## 2 population
fit2 <- lm(life_exp ~ income, data=life_data)</pre>
tidy(fit2)
```

```
## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 67.6 1.33
                                  50.9 1.98e-43
## 2 income 0.000743 0.000297
                                   2.51 1.56e- 2
fit3 <- lm(life_exp ~ illiteracy, data=life_data)</pre>
tidy(fit3)
## # A tibble: 2 x 5
## term estimate std.error statistic p.value
##
   <chr>
             <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 72.4
                        0.338 214. 3.47e-73
## 2 illiteracy -1.30 0.257
                                  -5.04 6.97e- 6
fit4 <- lm(life_exp ~ murder, data=life_data)</pre>
tidy(fit4)
## # A tibble: 2 x 5
## term
            estimate std.error statistic p.value
## <chr>
             <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 73.0
                         0.270
                                  270. 4.72e-78
              -0.284 0.0328
                                  -8.66 2.26e-11
## 2 murder
fit5 <- lm(life_exp ~ hs_grad, data=life_data)</pre>
tidy(fit5)
## # A tibble: 2 x 5
## term estimate std.error statistic p.value
              <dbl> <dbl> <dbl> <dbl> <dbl>
                                  62.8 9.92e-48
## 1 (Intercept) 65.7
                        1.05
## 2 hs_grad 0.0968 0.0195
                                   4.96 9.20e- 6
fit6 <- lm(life_exp ~ frost, data=life_data)</pre>
tidy(fit6)
## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr>
          <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 70.2
                        0.419
                                  168. 4.33e-68
## 2 frost
            0.00677 0.00360
                                  1.88 6.60e- 2
fit7 <- lm(life_exp ~ area, data=life_data)
tidy(fit7)
## # A tibble: 2 x 5
## term
                 estimate std.error statistic p.value
##
    <chr>
                  ## 1 (Intercept) 71.0 0.249
                                     285. 3.46e-79
               -0.00000169 0.00000226 -0.748 4.58e- 1
forward1 <- lm(life_exp ~ murder, data = life_data)</pre>
tidy(forward1)
## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr>
              <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 73.0 0.270
                                  270. 4.72e-78
```

```
-0.284 0.0328 -8.66 2.26e-11
## 2 murder
fit1 <- update(forward1, . ~ . +population)</pre>
tidy(fit1)
## # A tibble: 3 x 5
               estimate std.error statistic p.value
## term
   <chr>
                <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 72.9 0.258
                                    282. 1.55e-77
## 2 murder -0.312 0.0332
                                    -9.42 2.15e-12
## 3 population 0.0000683 0.0000274
                                     2.49 1.64e- 2
fit2 <- update(forward1, . ~ . +income)</pre>
tidy(fit2)
## # A tibble: 3 x 5
## term
              estimate std.error statistic p.value
                <chr>
## 1 (Intercept) 71.2 0.967
                                    73.6 3.32e-50
## 2 murder
               -0.270 0.0328
                                    -8.21 1.22e-10
                0.000370 0.000197
## 3 income
                                     1.88 6.66e- 2
fit3 <- update(forward1, . ~ . +illiteracy)</pre>
tidy(fit3)
## # A tibble: 3 x 5
## term
              estimate std.error statistic p.value
   <chr>
                <dbl> <dbl>
                                <dbl> <dbl>
                         0.286
## 1 (Intercept) 73.0
                                 256. 1.56e-75
## 2 murder -0.264 0.0464 -5.69 7.96e- 7
## 3 illiteracy -0.172 0.281
                                 -0.613 5.43e- 1
fit4 <- update(forward1, . ~ . +hs_grad)</pre>
tidy(fit4)
## # A tibble: 3 x 5
## term estimate std.error statistic p.value
   <chr>
               <dbl> <dbl> <dbl> <dbl> <dbl>
              70.3 1.02
-0.237 0.0353
## 1 (Intercept) 70.3
                                 69.2 5.91e-49
## 2 murder
                                  -6.72 2.18e- 8
## 3 hs_grad
               0.0439 0.0161
                                  2.72 9.09e- 3
fit5 <- update(forward1, . ~ . +frost)</pre>
tidy(fit5)
## # A tibble: 3 x 5
## term
               estimate std.error statistic p.value
##
    <chr>
               <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 73.9
                         0.500
                                 148. 2.36e-64
## 2 murder
               -0.328 0.0375
                                  -8.74 2.05e-11
               -0.00578 0.00266
                                  -2.17 3.52e- 2
## 3 frost
fit6 <- update(forward1, . ~ . +area)</pre>
tidy(fit6)
## # A tibble: 3 x 5
## term estimate std.error statistic p.value
## <chr>
                   <dbl>
                          <dbl> <dbl>
```

```
## 1 (Intercept) 72.9 0.275
## 2 murder -0.290 0.0338
                                      265. 2.73e-76
## 2 murder
                                      -8.58 3.47e-11
## 3 area
               0.00000118 0.00000146
                                      0.806 4.24e- 1
forward2 <- update(forward1, . ~ . + hs_grad)</pre>
tidy(forward2)
## # A tibble: 3 x 5
## term
              estimate std.error statistic p.value
    <chr>
               69.2 5.91e-49
                        1.02
## 1 (Intercept) 70.3
## 2 murder -0.237 0.0353
                                  -6.72 2.18e- 8
## 3 hs grad
               0.0439 0.0161
                                   2.72 9.09e- 3
fit1 <- update(forward2, . ~ . +population)</pre>
tidy(fit1)
## # A tibble: 4 x 5
## term
                 estimate std.error statistic p.value
    <chr>
                 <dbl> <dbl>
                                     <dbl> <dbl>
## 1 (Intercept) 70.4
                                      72.7 3.95e-49
                       0.969
## 2 murder
              -0.266
                         0.0357
                                     -7.45 1.91e- 9
               0.0407
                         0.0154
                                     2.64 1.12e- 2
## 3 hs_grad
## 4 population 0.0000625 0.0000259
                                     2.41 1.99e- 2
fit2 <- update(forward2, . ~ . +income)</pre>
tidy(fit2)
## # A tibble: 4 x 5
## term estimate std.error statistic p.value
## <chr>
                 <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 70.1 1.10
                                    64.0 1.33e-46
## 2 murder -0.239
                         0.0358
                                    -6.66 2.92e- 8
               0.0391 0.0203
## 3 hs_grad
                                     1.92 6.05e- 2
## 4 income
               0.0000953 0.000239
                                     0.398 6.92e- 1
fit3 <- update(forward2, . ~ . +illiteracy)</pre>
tidy(fit3)
## # A tibble: 4 x 5
## term
              estimate std.error statistic p.value
##
    <chr>>
               <dbl> <dbl>
                                <dbl> <dbl>
## 1 (Intercept) 69.7
                        1.22
                                  57.1 2.41e-44
                                  -5.93 3.63e- 7
## 2 murder
               -0.258 0.0435
                                   2.76 8.25e- 3
## 3 hs_grad
                0.0518
                         0.0188
## 4 illiteracy
                0.254
                         0.305
                                   0.833 4.09e- 1
fit4 <- update(forward2, . ~ . +frost)</pre>
tidy(fit4)
## # A tibble: 4 x 5
## term
             estimate std.error statistic p.value
##
   <chr>
                <dbl> <dbl> <dbl>
                                          <dbl>
## 1 (Intercept) 71.0 0.983
                                  72.2 5.25e-49
              -0.283 0.0367
                                  -7.71 8.04e-10
## 2 murder
## 3 hs_grad
                                   3.29 1.95e- 3
               0.0499 0.0152
## 4 frost
               -0.00691 0.00245
                                   -2.82 6.99e- 3
```

```
fit5 <- update(forward2, . ~ . +area)</pre>
tidy(fit5)
## # A tibble: 4 x 5
## term
                 estimate std.error statistic p.value
## <chr>
               <dbl>
## 1 (Intercept) 69.9 1.16
                                    60.1 2.30e-45
## 2 murder -0.224
                        0.0404
                                    -5.56 1.30e- 6
## 3 hs_grad
               0.0504
                        0.0190
                                     2.65 1.10e- 2
## 4 area
              -0.00000106 0.00000162 -0.658 5.14e- 1
forward3 <- update(forward2, . ~ . + frost)</pre>
tidy(forward3)
## # A tibble: 4 x 5
## term
              estimate std.error statistic p.value
               <dbl> <dbl> <dbl> <dbl>
   <chr>
## 1 (Intercept) 71.0 0.983
                                 72.2 5.25e-49
## 2 murder
              -0.283 0.0367
                                 -7.71 8.04e-10
               0.0499 0.0152
                                  3.29 1.95e- 3
## 3 hs_grad
## 4 frost
               -0.00691 0.00245
                                  -2.82 6.99e- 3
fit1 <- update(forward3, . ~ . +population)</pre>
tidy(fit1)
## # A tibble: 5 x 5
## term
               estimate std.error statistic p.value
##
   <chr>
                <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 71.0 0.953
                                   74.5 8.61e-49
## 2 murder -0.300
                       0.0366
                                   -8.20 1.77e-10
## 3 hs_grad
                                    3.14 2.97e- 3
               0.0466 0.0148
## 4 frost -0.00594 0.00242
                                   -2.46 1.80e- 2
## 5 population 0.0000501 0.0000251 2.00 5.20e- 2
fit2 <- update(forward3, . ~ . +income)</pre>
tidy(fit2)
## # A tibble: 5 x 5
## term
              estimate std.error statistic p.value
## <chr>
               <dbl> <dbl> <dbl>
                                         <dbl>
                                  67.4 7.53e-47
## 1 (Intercept) 70.8 1.05
              -0.286 0.0373
## 2 murder
                                 -7.66 1.07e- 9
               0.0436 0.0190
## 3 hs_grad
                                  2.30 2.64e- 2
               -0.00698 0.00247
## 4 frost
                                  -2.83 6.96e- 3
## 5 income
               0.000127 0.000223
                                   0.571 5.71e- 1
fit3 <- update(forward3, . ~ . +illiteracy)</pre>
tidy(fit3)
## # A tibble: 5 x 5
## term
          estimate std.error statistic p.value
##
   <chr>
               <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 71.5 1.32 54.2 1.28e-42
## 2 murder -0.273 0.0411
                                -6.64 3.50e- 8
               0.0450 0.0178
## 3 hs_grad
                                 2.53 1.49e- 2
## 4 frost -0.00768 0.00283 -2.72 9.36e- 3
## 5 illiteracy -0.182 0.328
                                 -0.554 5.82e- 1
```

```
fit4 <- update(forward3, . ~ . +area)</pre>
tidy(fit4)
## # A tibble: 5 x 5
                     estimate std.error statistic p.value
   term
##
     <chr>
                        <dbl>
                                  <dbl>
                                             <dbl>
                                                      <db1>
## 1 (Intercept) 70.9
                              1.15
                                            61.7
                                                   3.92e-45
## 2 murder
                              0.0427
                                            -6.52 5.34e- 8
                 -0.279
## 3 hs_grad
                  0.0519
                              0.0179
                                             2.91 5.66e- 3
                                            -2.71 9.40e- 3
## 4 frost
                 -0.00682
                              0.00251
## 5 area
                 -0.000000329 0.00000154
                                            -0.214 8.32e- 1
forward_fit <- lm(life_exp ~ murder + hs_grad + frost, data = life_data) %>%
 summary()
Stepwiese regression
stepwise_fit <- lm(life_exp ~ ., data=life_data)</pre>
step(stepwise_fit, direction='both') %>%
summary()
## Start: AIC=-22.18
## life_exp ~ population + income + illiteracy + murder + hs_grad +
##
      frost + area
##
##
               Df Sum of Sq
                               RSS
                                       AIC
                     0.0011 23.298 -24.182
## - area
## - income
                     0.0044 23.302 -24.175
                1
## - illiteracy 1
                   0.0047 23.302 -24.174
## <none>
                            23.297 -22.185
## - population 1
                    1.7472 25.044 -20.569
## - frost 1
                    1.8466 25.144 -20.371
## - hs_grad
                     2.4413 25.738 -19.202
                1
                    23.1411 46.438 10.305
## - murder
                1
##
## Step: AIC=-24.18
## life_exp ~ population + income + illiteracy + murder + hs_grad +
##
      frost
##
               Df Sum of Sq
                               RSS
## - illiteracy 1
                     0.0038 23.302 -26.174
## - income
                1
                     0.0059 23.304 -26.170
## <none>
                            23.298 -24.182
## - population 1
                    1.7599 25.058 -22.541
                     0.0011 23.297 -22.185
## + area
                1
                     2.0488 25.347 -21.968
## - frost
                1
## - hs_grad
                1
                    2.9804 26.279 -20.163
## - murder
                1
                    26.2721 49.570 11.569
##
## Step: AIC=-26.17
## life_exp ~ population + income + murder + hs_grad + frost
##
##
               Df Sum of Sq
                               RSS
## - income
                   0.006 23.308 -28.161
                1
## <none>
                            23.302 -26.174
```

```
## - population 1
                       1.887 25.189 -24.280
## + illiteracy
                 1
                       0.004 23.298 -24.182
## + area
                 1
                       0.000 23.302 -24.174
## - frost
                       3.037 26.339 -22.048
                 1
## - hs grad
                 1
                       3.495 26.797 -21.187
## - murder
                      34.739 58.041 17.456
##
## Step: AIC=-28.16
## life_exp ~ population + murder + hs_grad + frost
##
##
                Df Sum of Sq
                                RSS
                                         AIC
                             23.308 -28.161
## <none>
## + income
                       0.006 23.302 -26.174
                 1
                       0.004 23.304 -26.170
## + illiteracy
                 1
## + area
                 1
                       0.001 23.307 -26.163
## - population
                 1
                       2.064 25.372 -25.920
## - frost
                       3.122 26.430 -23.877
                 1
## - hs grad
                       5.112 28.420 -20.246
                 1
## - murder
                      34.816 58.124 15.528
                 1
##
## Call:
## lm(formula = life_exp ~ population + murder + hs_grad + frost,
##
       data = life data)
##
## Residuals:
##
       Min
                  1Q
                       Median
                                    3Q
                                             Max
## -1.47095 -0.53464 -0.03701 0.57621
                                        1.50683
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                7.103e+01
                           9.529e-01
                                      74.542
                                              < 2e-16 ***
## population
                5.014e-05
                           2.512e-05
                                       1.996 0.05201 .
## murder
               -3.001e-01
                           3.661e-02
                                      -8.199 1.77e-10 ***
## hs_grad
                4.658e-02
                           1.483e-02
                                       3.142
                                              0.00297 **
## frost
               -5.943e-03
                           2.421e-03
                                      -2.455
                                              0.01802 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7197 on 45 degrees of freedom
## Multiple R-squared: 0.736, Adjusted R-squared: 0.7126
## F-statistic: 31.37 on 4 and 45 DF, p-value: 1.696e-12
```

a) Do the procedures generate the same model?

Using backward elimination, the model we obtained is: life_exp \sim population + murder + hs_grad + frost. Using forward elimination, the model we obtained is: life_exp \sim murder + hs_grad + frost. Using stepwise regression, the model we obtained is: life_exp \sim population + murder + hs_grad + frost. However, we generated the model using different function/code, so the inclusion/exclusion criterion might be different. For instance, using stepwise() function in backward elimination and stepwise regression, the variable-population would be automatically included in the model, but the p-value is not that significant. If we discard population in backward and stepwise models, or, we include population in forward models, then these 3 procedures generate the same model. We will discuss this problem in the next question.

b) Is there any variable a close call? What was your decision: keep or discard? Provide arguments for your choice. (Note: this question might have more or less relevance depending on the 'subset' you choose).

Using stepwise() function, as we talked about before, in backward elimination or stepwise regression, population is a close call variable with p-value of 0.05201.

```
bw s = lm(life exp ~ murder + hs grad + frost, data = life data)
bw_l = lm(life_exp ~ murder + hs_grad + frost + population, data = life_data)
summary(bw_s)
##
## Call:
## lm(formula = life_exp ~ murder + hs_grad + frost, data = life_data)
## Residuals:
      Min
               10 Median
                               30
                                      Max
## -1.5015 -0.5391 0.1014 0.5921
                                  1.2268
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 71.036379
                          0.983262 72.246 < 2e-16 ***
                          0.036731 -7.706 8.04e-10 ***
## murder
              -0.283065
## hs_grad
               0.049949
                          0.015201
                                     3.286 0.00195 **
              -0.006912
                          0.002447 -2.824 0.00699 **
## frost
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7427 on 46 degrees of freedom
## Multiple R-squared: 0.7127, Adjusted R-squared: 0.6939
## F-statistic: 38.03 on 3 and 46 DF, p-value: 1.634e-12
summary(bw_1)
##
## Call:
## lm(formula = life_exp ~ murder + hs_grad + frost + population,
##
      data = life_data)
##
## Residuals:
##
       Min
                 1Q
                     Median
                                   3Q
                                           Max
## -1.47095 -0.53464 -0.03701 0.57621 1.50683
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.103e+01 9.529e-01 74.542 < 2e-16 ***
              -3.001e-01 3.661e-02
                                     -8.199 1.77e-10 ***
## murder
## hs_grad
               4.658e-02 1.483e-02
                                      3.142 0.00297 **
## frost
              -5.943e-03 2.421e-03 -2.455
                                             0.01802 *
## population
              5.014e-05 2.512e-05
                                      1.996 0.05201 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7197 on 45 degrees of freedom
## Multiple R-squared: 0.736, Adjusted R-squared: 0.7126
```

```
## F-statistic: 31.37 on 4 and 45 DF, p-value: 1.696e-12
```

Judging from the Adjusted R-square, the differences between two models are less than 6%. So according to the principle of parsimony, I choose to discard population.

```
backward_fit = lm(life_exp ~ murder + hs_grad + frost, data = life_data)
```

c) Is there any association between 'Illiteracy' and 'HS graduation rate'? Does your 'subset' contain both?

```
cor.test(illiteracy, hs_grad, method="pearson")

##

## Pearson's product-moment correlation

##

## data: illiteracy and hs_grad

## t = -6.0408, df = 48, p-value = 2.172e-07

## alternative hypothesis: true correlation is not equal to 0

## 95 percent confidence interval:

## -0.7908657 -0.4636561

## sample estimates:

## cor

## -0.6571886
```

Yes, there is association between illiteracy and hs_grad. The subset we got from forward elimination contains both.

3. Use criterion-based procedures studied in class to guide your selection of the 'best subset'. Summarize your results (tabular or graphical).

```
life_data = life_data %>%
  select(life_exp, everything())
# Printing the 1 best models of each size, using the Cp criterion:
leaps(x = life_data[,2:8], y = life_data[,1], nbest=1, method="Cp")
## $which
##
              2
                                     6
                                           7
        1
                    3
                               5
## 1 FALSE FALSE FALSE TRUE FALSE FALSE
## 2 FALSE FALSE TRUE TRUE FALSE FALSE
## 3 FALSE FALSE FALSE TRUE TRUE TRUE FALSE
## 4 TRUE FALSE FALSE TRUE TRUE TRUE FALSE
     TRUE
          TRUE FALSE TRUE TRUE TRUE FALSE
## 6
     TRUE
           TRUE TRUE TRUE
                            TRUE TRUE FALSE
## 7
     TRUE TRUE TRUE TRUE TRUE TRUE TRUE
##
## $label
                                  "2"
                                                "3"
                                                             "4"
## [1] "(Intercept)" "1"
                                  "7"
## [6] "5"
##
## $size
## [1] 2 3 4 5 6 7 8
##
```

```
## $Cp
## [1] 16.126760 9.669894 3.739878 2.019659 4.008737 6.001959 8.000000
# Printing the 1 best models of each size, using the adjusted R 2 criterion:
leaps(x = life_data[,2:8], y = life_data[,1], nbest=1, method="adjr2")
## $which
##
               2
                     3
                          4
                                5
## 1 FALSE FALSE FALSE TRUE FALSE FALSE
## 2 FALSE FALSE TRUE TRUE FALSE FALSE
## 3 FALSE FALSE FALSE TRUE TRUE TRUE FALSE
## 4 TRUE FALSE FALSE TRUE TRUE
                                   TRUE FALSE
## 5 TRUE TRUE FALSE TRUE TRUE TRUE FALSE
## 6 TRUE TRUE
                 TRUE TRUE TRUE TRUE FALSE
     TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## 7
## $label
## [1] "(Intercept)" "1"
                                    "2"
                                                                "4"
                                    "7"
## [6] "5"
                     "6"
##
## $size
## [1] 2 3 4 5 6 7 8
##
## $adjr2
## [1] 0.6015893 0.6484991 0.6939230 0.7125690 0.7061129 0.6993268 0.6921823
# Summary of models for each size (one model per size)
b<-regsubsets(life_exp ~ ., data=life_data)</pre>
   (rs<-summary(b))</pre>
## Subset selection object
## Call: regsubsets.formula(life_exp ~ ., data = life_data)
## 7 Variables (and intercept)
##
              Forced in Forced out
## population
                  FALSE
                             FALSE
                  FALSE
                             FALSE
## income
## illiteracy
                  FALSE
                             FALSE
## murder
                  FALSE
                             FALSE
## hs_grad
                  FALSE
                             FALSE
                  FALSE
                             FALSE
## frost
                  FALSE
## area
                             FALSE
## 1 subsets of each size up to 7
## Selection Algorithm: exhaustive
##
            population income illiteracy murder hs_grad frost area
## 1 (1)""
                       11 11
                              11 11
                                         "*"
                                                 11 11
## 2 (1)""
                                          "*"
                                                 "*"
## 3 (1)""
                       11 11
                              11 11
                                          "*"
                                                 "*"
                                                         "*"
## 4 (1) "*"
                                          11 * 11
                                                 11 * 11
                                                         11 * 11
## 5 (1)"*"
                       "*"
                              11 11
                                          "*"
                                                 "*"
                                                         "*"
                       11 * 11
                              "*"
                                                 11 * 11
## 6 (1) "*"
                                          "*"
                                                         11 * 11
                              "*"
                                                 "*"
## 7 (1)"*"
# Plots of Cp and Adj-R2 as functions of parameters
par(mar=c(4,4,1,1))
par(mfrow=c(1,2))
```

```
plot(2:8, rs$cp, xlab="No of parameters", ylab="Cp Statistic")
abline(0,1)
plot(2:8, rs$adjr2, xlab="No of parameters", ylab="Adj R2")
                                                                                       0
              0
                                                                                             0
                                                              0.70
                                                                                                   0
       4
                                                                                 0
                                                                                                         0
                                                              0.68
      12
Cp Statistic
      10
                                                              99.0
                                                       Adj R2
                   0
       \infty
                                                                           0
                                                              0.64
                                           0
       9
                                                              0.62
       4
                                     0
                                                              0.60
       \alpha
                                0
                                                                                       5
              2
                    3
                               5
                                     6
                                           7
                                                 8
                                                                     2
                                                                           3
                                                                                 4
                                                                                             6
                                                                                                   7
                                                                                                         8
                         4
```

Judging from the Cp statistics and Adjusted R-square, models with 4~8 parameters are better.

No of parameters

```
# AIC of the 3-predictor model:
pre_3 <- lm(life_exp ~ murder + hs_grad + frost, data = life_data)</pre>
AIC(pre_3)
## [1] 117.9743
# BIC
AIC(pre_3, k = log(length(life_exp)))
## [1] 127.5344
# AIC of the 4-predictor model:
pre_4 <- lm(life_exp ~ murder + hs_grad + frost + population, data = life_data)</pre>
AIC(pre_4)
## [1] 115.7326
AIC(pre_4, k = log(length(life_exp)))
## [1] 127.2048
# AIC of the 5-predictor model:
pre_5 <- lm(life_exp ~ murder + hs_grad + frost + population + income, data = life_data)</pre>
```

No of parameters

```
AIC(pre_5)
## [1] 117.7196
# BIC
AIC(pre_5, k = log(length(life_data$life_exp)))
## [1] 131.1038
# AIC of the 6-predictor model:
pre_6 <- lm(life_exp ~ murder + hs_grad + frost + population + income + illiteracy, data = life_data)</pre>
AIC(pre 6)
## [1] 119.7116
AIC(pre_6, k = log(length(life_data$life_exp)))
## [1] 135.0077
# AIC of the 7-predictor model:
pre_7 <- lm(life_exp ~ murder + hs_grad + frost + population + income + illiteracy + area, data = life_exp - murder + hs_grad + frost + population + income + illiteracy + area, data = life_exp - murder + hs_grad + frost + population + income + illiteracy + area, data = life_exp - murder + hs_grad + frost + population + income + illiteracy + area, data = life_exp - murder + hs_grad + frost + population + income + illiteracy + area, data = life_exp - murder + hs_grad + frost + population + income + illiteracy + area, data = life_exp - murder + hs_grad + frost + population + income + illiteracy + area, data = life_exp - murder + hs_grad + frost + population + income + illiteracy + area, data = life_exp - murder + hs_grad + frost + population + income + illiteracy + area, data = life_exp - murder + hs_grad + frost + population + income + illiteracy + area, data = life_exp - murder + hs_grad + frost + population + income + illiteracy + area, data = life_exp - murder + hs_grad + frost + population + illiteracy + area, data = life_exp - murder + hs_grad + frost + population + illiteracy + area, data = life_exp - murder + hs_grad + frost + population + illiteracy +
AIC(pre_7)
## [1] 121.7092
# BIC
AIC(pre_7, k = log(length(life_data$life_exp)))
## [1] 138.9174
```

No of parameter	4	5	6	7	8
Adjusted R-square	0.6939230	0.7125690	0.7061129	0.6993268	0.6921823
Ср	3.7399	2.0197	4.0087	6.0020	8.0000
AIC	117.974	115.733	117.720	119.712	121.709
BIC	127.534	127.205	131.104	135.008	138.917

The model with 5 parameters (4 predictors) has the highest Adjusted R-square and lowest AIC and BIC. So the best model is the one with 5 parameters.

4. Compare the two 'subsets' from parts 2 and 3 and recommend a 'final' model. Using this 'final' model do the following:

Comparing model with 3 perdictors with model with 4 perdictors, since the differences between Adjusted R-square, AIC and BIC are pretty small, according to the principle of parsimony, I choose model with 3 perdictors, which is life_exp \sim murder + hs_grad + frost.

a) Identify any leverage and/or influential points and take appropriate measures.

```
par(mfrow=c(2,2))
plot(pre_3)
```


According to the Residuals vs Leverage plot, there is no leverage or influential points.

b) Check the model assumptions.

Judging from the QQ plot, the residuals are almost normally distributed. Judging from the Residuals vs Fitted values plot and Scale-Location plot, the residuals have constant variance. There is no certain pattern in Residuals vs Fitted values plot, so the model is linear, and the residuals are independent.

5. Using the 'final' model chosen in part 4, focus on MSE to test the model predictive ability:

a) Use a 10-fold cross-validation (10 repeats).

```
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 44, 44, 45, 45, 45, ...
## Resampling results:
##
## RMSE Rsquared MAE
## 0.759794 0.7869101 0.642568
##
## Tuning parameter 'intercept' was held constant at a value of TRUE
The RMSE is 0.759794.
```

b) Experiment a new, but simple bootstrap technique called "residual sampling".

```
boot_res = lm(life_exp ~ murder + hs_grad + frost, data=life_data)

pred = predict(boot_res)

resid = residuals(boot_res)

res_data = tibble(resid = residuals(boot_res))

boot_sample = function(df) {
    sample_frac(df, replace = TRUE)
}
```

Repeat 10 times

```
set.seed(1)
list = ls()
i = 1

for (i in 1:10){
    res_boot = boot_sample(res_data)
    y_star = res_boot$resid + pred
    life_boot_data = bind_cols(life_data, tibble(y_star))
    boot_res_reg = lm(y_star ~ murder + hs_grad + frost, data=life_boot_data)
    list[i] = rmse(boot_res_reg, life_boot_data)
    i = i + 1
}

repeat_10 = tibble(rMSE = list[1:10])
repeat_10
```

```
## 7 0.755885751965547
## 8 0.769793897157417
## 9 0.777938189350777
## 10 0.733343726196286
repeat_10 %>%
  mutate(rMSE = as.numeric(rMSE)) %>%
  summary()
##
        rMSE
## Min. :0.5811
## 1st Qu.:0.6550
## Median :0.7221
## Mean
         :0.7043
## 3rd Qu.:0.7503
## Max. :0.7779
Repeat 1000 times
set.seed(1)
list = ls()
i = 1
for (i in 1:1000){
  res_boot = boot_sample(res_data)
  y_star = res_boot$resid + pred
  life_boot_data = bind_cols(life_data, tibble(y_star))
  boot_res_reg = lm(y_star ~ murder + hs_grad + frost, data=life_boot_data)
  list[i] = rmse(boot_res_reg, life_boot_data)
  i = i + 1
}
repeat_1000 = tibble(rMSE = list[1:1000])
repeat_1000
## # A tibble: 1,000 x 1
##
     rMSE
##
      <chr>>
## 1 0.704451873543589
## 2 0.581079840881366
## 3 0.638528072155515
## 4 0.637400021055365
## 5 0.728060056647469
## 6 0.71606216374113
## 7 0.755885751965547
## 8 0.769793897157417
## 9 0.777938189350777
## 10 0.733343726196286
## # ... with 990 more rows
repeat 1000 %>%
  mutate(rMSE = as.numeric(rMSE)) %>%
  summary()
##
        rMSE
## Min. :0.4972
```

```
## 1st Qu::0.6459
## Median :0.6813
## Mean :0.6809
## 3rd Qu::0.7192
## Max::0.8220
```

c) In a paragraph, compare the MSE values generated by the two methods a) and b). Briefly comment on the differences and your recommendation for assessing model performance.

Comparing rMSEs generating from different methods, we can see that the rMSEs of CV are higer than the rMSE of residual sampling. The rMSE of 1000 repeat residual sampling is lower than 10 repeat. Residual sampling is used when the residual is not independent. If the model assumptions are not satisfied, the residual sampling procedure is recommended. When doing the model diagnostics the model assumptions are all satisfied. So in this case, I recommend CV.