You will need to observe:

- A binary system with separation between 15" and 60" consisting of two medium-bright stars (m_v < 10)
- A bright (m_v < 6) A-star
- A bright (m_v < 6) M-star
- A spectrophotometric standard star with m_v < 12
- A bright nebula
- · A dense star cluster

Your plan needs to include:

- · Magnitude estimates in the blue, visual, and red filters
- · Optical finder charts with a field of view of 15'

Remember this can be quite tricky for our selection of bright sources; if the DSS doesn't have a good image, we will need to search for alternatives;

https://nova.astrometry.net/user_images/location (https://nova.astrometry.net/user_images/location) (Links to an external site.) may be a good option

- Contingency plans for observations in September, October, or November. (Plan for September, but say what changes if you observe in late November instead). Plan to observe from sunset to ~3.5 hours after sunset.
- A planned list of exposures and when you will take them. What CCD images do you need?

Spectrophotometric standard star lists

<u>https://www.eso.org/sci/observing/tools/standards/spectra.html</u> (https://www.eso.org/sci/observing/tools/standards/spectra.html (Links to an external site.)

https://www.eso.org/sci/observing/tools/standards/spectra/wdstandards.html (https://www.eso.org/sci/observing/tools/standards/spectra/wdstandards.html) (Links to an external site.)

https://mingus.mmto.arizona.edu/~bjw/mmt/spectro_standards.html (https://mingus.mmto.arizona.edu/~bjw/mmt/spectro_standards.html) (Links to an external site.)

https://www.naoj.org/Observing/Instruments/FOCAS/Detail/UsersGuide/Observing/StandardStar/Spe(https://www.naoj.org/Observing/Instruments/FOCAS/Detail/UsersGuide/Observing/StandardStar/Spe(Links to an external site.)

https://noirlab.edu/science/observing-noirlab/observing-ctio/Spectrophotometric-Standards (https://noirlab.edu/science/observing-noirlab/observing-ctio/Spectrophotometric-Standards) (Links to an external site.)

Binary star lists:

https://www.astroleague.org/files/u220/DS-MasterObjectList2021.pdf (https://www.astroleague.org/files/u220/DS-MasterObjectList2021.pdf) (Links to an external site.)

<u>http://www.ianridpath.com/binaries.html</u> (<u>http://www.ianridpath.com/binaries.html</u>) (Links to an external site.) (no separations listed)

```
In [30]: # Libraries
    from astropy import coordinates, units
    from astropy import units as u # shortcut

    from astroplan import Observer
        from astroplan import FixedTarget
        from astroplan.plots import plot_airmass
        from astroplan.plots import plot_finder_image
        from astroplan.plots import plot_sky
        from astropy.time import Time
        from astroquery.vizier import Vizier
        import matplotlib.pyplot as plt

In [2]: from astropy.utils import iers
        iers.conf.IERS_A_URL = 'ftp://cddis.gsfc.nasa.gov/pub/products/iers/finals2000A.ai
        iers.conf.IERS_A_URL = 'ftp://cddia.gsfc.nasa.gov/pub/products/iers/finals2000A.ai
```

Setting up time

download_IERS_A()

from astroplan import download IERS A

Visual Binary

checking rise and set time

Eta CrB has a magnitude of 5.02 and a current separation of 0".38

https://www.webbdeepsky.com/double-stars/object/eta+CrB (https://www.webbdeepsky.com/double-stars/object/eta+CrB) says, "From the current (2009) separation of 0".56 the stars widen to 0".67 in 2014 before closing to 0".38 in 2020 and then widening to 1".0 in 2032."

Magnitude estimates in the blue, visual, and red

filters

```
In [35]: Simbad.reset_votable_fields()
    Simbad.add_votable_fields('flux(R)', 'flux(V)', 'flux(B)')
    EtaCrB_simbad = Simbad.query_object('Eta CrB')
    EtaCrB_simbad
```

Out[35]: Table length=1

MAIN_ID	RA	DEC	RA_PREC	DEC_PREC	COO_ERR_MAJA	COO_ERR_MINA	COO_ERR_A
	"h:m:s"	"d:m:s"			mas	mas	
object	str13	str13	int16	int16	float32	float32	
* eta CrB	15 23 12.3053	+30 17 16.170	9	9	4.310	3.510	
4		1					

Optical finder charts with a field of view of 15'

```
In [36]: ## Finder chart ##

# where the objects are at sunset
sunset = CTO.sun_set_time(now)

# hour after sunset
onehour_after_sunset = sunset + 1*u.hour
twohours_after_sunset = sunset + 2*u.hour

targets = [EtaCrB_target]
plot_sky(target=targets, observer=CTO, time=sunset)
plot_sky(target=targets, observer=CTO, time=onehour_after_sunset)
plot_sky(target=targets, observer=CTO, time=twohours_after_sunset)
```

Out[36]: <PolarAxesSubplot:>


```
In [37]: ## sky chart Eta CrB ##
ax, hdu = plot_finder_image(EtaCrB_target, survey='DSS', fov_radius=15*u.arcmin)
```


Contingency

Sabik, will be visible throughout semester

A bright (m v < 6) A-star

```
In [45]: | ald coord = coordinates.SkyCoord.from name('Alderamin')
         ald coord
Out[45]: <SkyCoord (ICRS): (ra, dec) in deg
             (319.6448847, 62.58557446)>
In [46]: |ald_coord.to_string('hmsdms')
Out[46]: '21h18m34.77232728s +62d35m08.0680704s'
In [51]: | ald target = FixedTarget(ald coord, name="Alderamin")
         CTO.target is up(now, ald target)
Out[51]: True
In [52]: (eastern(CTO.target rise time(time=now, target=ald target)),
          eastern(CTO.target_set_time(time=now, target=ald_target)))
         ValueError
                                                    Traceback (most recent call last)
         <ipython-input-52-ea4b7695c29b> in <module>
         ----> 1 (eastern(CTO.target rise time(time=now, target=ald target)),
               2 eastern(CTO.target set time(time=now, target=ald target)))
         <ipython-input-8-dd43bd415693> in eastern(time)
               1 def eastern(time):
                     est = time.to datetime(timezone=CTO.timezone)
         ---> 2
                     return est.strftime('%H:%M:%S')
               4
         ~\AppData\Roaming\Python\Python38\site-packages\astropy\time\core.py in to date
         time(self, timezone)
                         # had an **kwargs part that was just passed on to time.
            2114
            2115
                         tm = self.replicate(format='datetime')
                         return tm. shaped like input(tm. time.to value(timezone))
         -> 2116
            2117
                     to datetime. doc = TimeDatetime.to value. doc
            2118
         ~\AppData\Roaming\Python\Python38\site-packages\astropy\time\formats.py in to v
         alue(self, timezone, parent, out subfmt)
            1020
                                                   .format((iy, im, id, ihr, imin, isec,
          ifracsec)))
                              if timezone is not None:
            1021
                                 out[...] = datetime.datetime(iy, im, id, ihr, imin, ise
         -> 1022
         c, ifracsec,
            1023
                                                               tzinfo=TimezoneInfo()).ast
         imezone(timezone)
            1024
                             else:
         ValueError: year -4713 is out of range
```

The above code results in errors, meaning it does not set nor rise.

Magnitude estimates in the blue, visual, and red filters

```
In [54]: Simbad.reset_votable_fields()
    Simbad.add_votable_fields('flux(R)', 'flux(V)', 'flux(B)')
    ald_simbad = Simbad.query_object('Alderamin')
    ald_simbad
```

Out[54]: Table length=1

MAIN_ID	RA	DEC	RA_PREC	DEC_PREC	COO_ERR_MAJA	COO_ERR_MINA	COO_ERR_A
	"h:m:s"	"d:m:s"			mas	mas	
object	str13	str13	int16	int16	float32	float32	
* alf Cep	21 18 34.7723	+62 35 08.068	9	9	0.790	0.790	

Plots

```
In [55]: targets = [ald_target]
    plot_sky(target=targets, observer=CTO, time=sunset)
    plot_sky(target=targets, observer=CTO, time=onehour_after_sunset)
    plot_sky(target=targets, observer=CTO, time=twohours_after_sunset)
```

Out[55]: <PolarAxesSubplot:>


```
In [134]: ## sky chart Alderamin ##
ax, hdu = plot_finder_image(ald_target, survey='DSS', fov_radius=15*u.arcmin)
```


Contingency

None needed, this star is visible throughout the semester

A bright (m_v < 6) M-star

Magnitude estimates in the blue, visual, and red filters

```
In [131]: Simbad.reset_votable_fields()
Simbad.add_votable_fields('flux(R)', 'flux(V)', 'flux(B)')
bar_simbad = Simbad.query_object("Barnard's Star")
bar_simbad
```

Out[131]: Table length=1

Magnitude M5.5 Ve

MAIN_ID	RA	DEC	RA_PREC	DEC_PREC	COO_ERR_MAJA	COO_ERR_MINA	COO_ERR_A
	"h:m:s"	"d:m:s"			mas	mas	
object	str13	str13	int16	int16	float32	float32	
NAME Barnard's star	17 57 48.4984	+04 41 36.113	14	14	0.026	0.029	

Plots

```
In [132]: targets = [bar_target]
    plot_sky(target=targets, observer=CTO, time=sunset)
    plot_sky(target=targets, observer=CTO, time=onehour_after_sunset)
    plot_sky(target=targets, observer=CTO, time=twohours_after_sunset)
```

Out[132]: <PolarAxesSubplot:>

In [135]: ## sky chart Barnard's Star ##
ax, hdu = plot_finder_image(bar_target, survey='DSS', fov_radius=15*u.arcmin)

https://nova.astrometry.net/user_images/location?

thumbnail_size=&sort=&calibrated=on&ra=269.45207696&dec=4.69336497&radius=0.25 (https://nova.astrometry.net/user_images/location?

thumbnail_size=&sort=&calibrated=on&ra=269.45207696&dec=4.69336497&radius=0.25)

A spectrophotometric standard star with m_v < 12

Magnitude estimates in the blue, visual, and red filters

```
In [183]: Simbad.reset_votable_fields()
    Simbad.add_votable_fields('flux(R)', 'flux(V)', 'flux(B)')
    vega_simbad = Simbad.query_object("Barnard's Star")
    vega_simbad
```

Out[183]: Table length=1

MAIN_ID	RA	DEC	RA_PREC	DEC_PREC	COO_ERR_MAJA	COO_ERR_MINA	COO_ERR_A
	"h:m:s"	"d:m:s"			mas	mas	
object	str13	str13	int16	int16	float32	float32	
NAME Barnard's star	17 57 48.4984	+04 41 36.113	14	14	0.026	0.029	

Plots

```
In [184]: targets = [vega_target]
    plot_sky(target=targets, observer=CTO, time=sunset)
    plot_sky(target=targets, observer=CTO, time=onehour_after_sunset)
    plot_sky(target=targets, observer=CTO, time=twohours_after_sunset)
```

Out[184]: <PolarAxesSubplot:>


```
In [185]: ## sky chart Vega ##
ax, hdu = plot_finder_image(vega_target, survey='DSS', fov_radius=15*u.arcmin)
```


https://nova.astrometry.net/user_images/location?
thumbnail_size=&sort=&calibrated=on&ra=279.23473479&dec=38.78368896&radius=0.25
(https://nova.astrometry.net/user_images/location?
thumbnail_size=&sort=&calibrated=on&ra=279.23473479&dec=38.78368896&radius=0.25)

A bright nebula

Magnitude estimates in the blue, visual, and red filters

```
In [196]: Simbad.reset_votable_fields()
    Simbad.add_votable_fields('flux(R)', 'flux(V)', 'flux(B)')
    naneb_simbad = Simbad.query_object("North America Nebula")
    naneb_simbad
```

Out[196]: Table length=1

MAIN_ID	RA	DEC	RA_PREC	DEC_PREC	COO_ERR_MAJA	COO_ERR_MINA	COO_ERR_A
	"h:m:s"	"d:m:s"			mas	mas	
object	str13	str13	int16	int16	float32	float32	
NGC 7000	20 58 47	+44 19.8	4	4			

Visual magnitude of 4 - from google search

Plots

```
In [200]: targets = [naneb_target]
    plot_sky(target=targets, observer=CTO, time=sunset)
    plot_sky(target=targets, observer=CTO, time=onehour_after_sunset)
    plot_sky(target=targets, observer=CTO, time=twohours_after_sunset)
```

Out[200]: <PolarAxesSubplot:>

In [201]: ## sky chart North America Nebula ##
ax, hdu = plot_finder_image(naneb_target, survey='DSS', fov_radius=15*u.arcmin)

https://nova.astrometry.net/user_images/location?
thumbnail_size=&sort=&calibrated=on&ra=314.6958&dec=44.33&radius=0.25
(https://nova.astrometry.net/user_images/location?
thumbnail_size=&sort=&calibrated=on&ra=314.6958&dec=44.33&radius=0.25)

Contingency

None neeved, visible throughout semester

A dense star cluster

Magnitude estimates in the blue, visual, and red filters

```
In [252]: Simbad.reset_votable_fields()
Simbad.add_votable_fields('flux(R)', 'flux(V)', 'flux(B)')
arch_simbad = Simbad.query_object("Arches Cluster")
arch_simbad
```

Out[252]: Table length=1

MAIN_ID	RA	DEC	RA_PREC	DEC_PREC	COO_ERR_MAJA	COO_ERR_MINA	COO_ERR_A
	"h:m:s"	"d:m:s"			mas	mas	
object	str13	str13	int16	int16	float32	float32	
NAME Arches Cluster	17 45 50.5	-28 49 28	5	5			

Plots

```
In [253]: targets = [arch_target]
    plot_sky(target=targets, observer=CTO, time=sunset)
    plot_sky(target=targets, observer=CTO, time=onehour_after_sunset)
    plot_sky(target=targets, observer=CTO, time=twohours_after_sunset)
```

Out[253]: <PolarAxesSubplot:>

In [254]: ## sky chart Barnard's Star ##
ax, hdu = plot_finder_image(arch_target, survey='DSS', fov_radius=15*u.arcmin)

https://nova.astrometry.net/user_images/location?

thumbnail_size=&sort=&calibrated=on&ra=266.46042&dec=-28.82444&radius=0.25 (https://nova.astrometry.net/user_images/location?

thumbnail_size=&sort=&calibrated=on&ra=266.46042&dec=-28.82444&radius=0.25)

Contingency

None neeved, visible throughout semester

```
In [256]: targets = [arch_target,naneb_target,vega_target,bar_target,EtaCrB_target]
    plot_sky(target=targets, observer=CTO, time=sunset)
    plot_sky(target=targets, observer=CTO, time=onehour_after_sunset)
    plot_sky(target=targets, observer=CTO, time=twohours_after_sunset)
```

Out[256]: <PolarAxesSubplot:>

Exposure plan

- 1. 6 pm to 7 pm Set up at CTO before twilight
- 2. 7 pm to 8 pm Begin taking flat/dark/bright/twilight images as the sun is setting
- 3. 8 pm to 8:30 pm After twilights, align telescope on three known objects
- 4. 8:40 pm Messier 7
 - ten exposures each at 1s and 10 s long. Longer exposure times if needed
- 5. 9:10 pm Arches Cluster
 - ten exposures each at 1s and 10 s long. Longer exposure times if needed
- 6. 10 pm Eta CrB
 - ten exposures each at 1s and 10 s long. Longer exposure times if needed
- 7. 10:30 pm Alpha Lyr
 - ten 0.4 s exposures
- 8. 11 pm North America Nebula
 - ten exposures each at 10 s, 30 s, and 1 min long exposure
- 9. 11:30 pm Break down equipment

```
In [ ]:
```