元素及其化合物·四·「镁 (Mg) 及其化合物」

镁的性质

1. 物理性质: 具有银白色金属光泽的固体, 密度、硬度均较小, 熔点较低, 有良好的导电、传热和延展性

2. 化学性质

• 与非金属单质反应

 \blacksquare 与 N_2 反应: N_2+3 M_3 $\stackrel{ ext{fix}}{=\!=\!=\!=\!=}$ Mg_3N_2

■ 与S反应: $Mg + S \stackrel{\Delta}{=} MgS$

■ 与 O₂ 反应: O₂ + 2 Mg ^{点燃} 2 MgO (产生强烈白光)

• 与 CO_2 反应: $2\,\mathrm{Mg} + \mathrm{CO}_2 \stackrel{\mathrm{f.M.}}{=\!=\!=\!=} 2\,\mathrm{MgO} + \mathrm{C}$ (耀眼白光,黑色固体生成)

• 与 H_2O 反应: $Mg + H_2O \stackrel{\Delta}{=} Mg(OH)_2 + H_2 \uparrow$

与H⁺反应: Mg + H⁺ = Mg²⁺ + H₂↑

镁在空气中燃烧时会同时与 CO_2 、 N_2 、 O_2 反应

3. 工业制备
$$\begin{cases} \mathrm{Mg_2}^+ + 2\,\mathrm{OH}^- \ = \ \mathrm{Mg}(\mathrm{OH})_2 \downarrow \\ \mathrm{Mg}(\mathrm{OH})_2 + 2\,\mathrm{HCl} \ = \ \mathrm{MgCl_2} + \mathrm{H_2O} \\ \mathrm{MgCl_2}(\mathrm{l}) \ \stackrel{\mathrm{id}}{=\!\!\!=\!\!\!=} \ \mathrm{Mg} + \mathrm{Cl_2} \uparrow \end{cases}$$

用途

生产合金, 冶金工业上用作还原剂和脱氧剂

镁的重要化合物

- **1.** 氧化镁 MgO, 重要氧化物: $MgO + 6H^+ = Mg^{2+} + H_2O$
- 2. 氢氧化镁 Mg(OH)₂
 - 1. 中强酸: $Mg(OH)_2 + 2H^+ = Mg^{2+} + 2H_2O$
 - 2. 难溶于水: Mg₂⁺ + 2 OH⁻ = Mg(OH)₂ ↓
 - 3. 溶解度小于碳酸镁: $MgCO_3 + H_2O \stackrel{\Delta}{=\!\!\!=} Mg(OH)_2 + CO_2 \uparrow$
 - 1. MgO 熔点很高,可作耐火材料
 - $2. Mg(OH)_2$ 为难溶于水的白色沉淀,常用 NaOH 溶液检验 Mg^{2+}
 - 3. 由于 $Mg(OH)_2$ 的溶解度比 $MgCO_3$ 的小,故水垢的主要成分是 $Mg(OH)_2$

海水中镁的提取

- 1.制熟石灰: $CaCO_3 \stackrel{\overline{A}}{=\!=\!=\!=} CaO + CO_2 \uparrow ; CaO + H_2O = Ca(OH)_2$
- 2. 沉淀: $\mathrm{MgCl}_2 + \mathrm{Ca}(\mathrm{OH})_2 = \mathrm{Mg}(\mathrm{OH})_2 \downarrow + \mathrm{CaCl}_2$
- 3. 酸化: Mg(OH)₂ + 2 HCl=MgCl₂ + 2 H₂O
- 4. 蒸发浓缩, 冷却结晶: 析出 MgCl₂·6 H₂O
- 5. 脱水:在 HCl 气流中使 $MgCl_2 \cdot 6H_2O$ 脱水制得无水氯化镁
- **6.** 电解: 电解熔融氯化镁制得镁: MgCl₂(熔融) ⁼⁼⁼ Mg⁺ Cl₂↑