

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problems Mailbox.**

THIS PAGE BLANK (USPTO)

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : G01N 33/574, C12Q 1/68		A2	(11) International Publication Number: WO 98/53319 (43) International Publication Date: 26 November 1998 (26.11.98)
(21) International Application Number: PCT/US98/10277		(74) Agents: KAGAN, Sarah, A. et al.; Banner & Witcoff, Ltd., 11th floor, 1001 G Street, N.W., Washington, DC 20001-4597 (US).	
(22) International Filing Date: 20 May 1998 (20.05.98)			
(30) Priority Data: 60/047,352 21 May 1997 (21.05.97) US		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application US Filed on 60/047,352 (CON) 21 May 1997 (21.05.97)			
(71) Applicant (<i>for all designated States except US</i>): THE JOHNS HOPKINS UNIVERSITY [US/US]; Suite 2-100, 2024 E. Monument Street, Baltimore, MD 21205 (US).		Published <i>Without international search report and to be republished upon receipt of that report.</i>	
(72) Inventors; and (75) Inventors/Applicants (<i>for US only</i>): VOGELSTEIN, Bert [US/US]; The Johns Hopkins University, Suite 2-100, 2024 E. Monument Street, Baltimore, MD 21205 (US). KINZLER, Kenneth, W. [US/US]; The Johns Hopkins University, Suite 2-100, 2024 E. Monument Street, Baltimore, MD 21205 (US).			

(54) Title: GENE EXPRESSION PROFILES IN NORMAL AND CANCER CELLS

(57) Abstract

As a step towards understanding the complex differences between normal and cancer cells, gene expression patterns were examined in gastrointestinal tumors. More than 300,000 transcripts derived from at least 45,000 different genes were analyzed. Although extensive similarity was noted between the expression profiles, more than 500 transcripts that were expressed at significantly different levels in normal and neoplastic cells were identified. These data provide insights into the extent of expression differences underlying malignancy and reveal genes that are useful as diagnostic or prognostic markers.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

Gene Expression Profiles in Normal and Cancer Cells

This invention was made with support from the National Institutes of Health, Grant No. GM07309, CA57345, and CA62924. The U.S. government therefore retains certain rights in the invention.

5

TECHNICAL FIELD OF THE INVENTION

This invention is related to the diagnosis of cancer, and tools for carrying out such diagnosis.

BACKGROUND OF THE INVENTION

Much of cancer research over the past 50 years has been devoted to the analyses of genes that are expressed differently in tumor cells compared to their normal counterparts. Although hundreds of studies have pointed out differences in the expression of one or a few genes, no comprehensive study of gene expression in the cancer cell has been reported. It is therefore not known how many genes are expressed differentially in tumor versus normal cells, whether the bulk of these differences are cell autonomous rather than being dependent on the tumor microenvironment, and whether most differences are cell-type specific or tumor specific. Thus there is a need in the art for information on the molecular changes that occur in cells during cancer development and progression.

SUMMARY OF THE INVENTION

According to one embodiment of the invention, a method is provided for diagnosing colon cancer in a sample suspected of being neoplastic. The method comprises the steps of:

5 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 3;

10 identifying the first sample as neoplastic when the level of the at least one transcript is found to be lower in the first sample than in the second sample.

15 According to another embodiment of the invention, another method is provided for diagnosing colon cancer in a sample suspected of being neoplastic. The method comprises the steps of:

20 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 2;

 identifying the first sample as neoplastic when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

25 In another embodiment of the invention an isolated and purified human nucleic acid molecule is provided. The molecule comprises a SAGE tag selected from SEQ ID NO:1-732.

30 In yet another aspect of the invention an isolated nucleotide probe is provided. The probe comprises at least 12 nucleotides of a human nucleic acid molecule, wherein the human nucleic acid molecule comprises a SAGE tag selected from SEQ ID NO: 1-732.

According to another aspect of the invention a method is provided for diagnosing pancreatic cancer in a sample suspected of being neoplastic. The method comprises the steps of:

5 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a pancreatic tissue suspected of being neoplastic and the second sample is of a normal human colon tissue, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 4;

10 identifying the first sample as neoplastic when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

According to still another embodiment of the invention a method of diagnosing cancer in a sample suspected of being neoplastic is provided. The method comprises the steps of:

15 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a tissue suspected of being neoplastic and the second sample is of a normal human tissue, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 5;

20 identifying the first sample as neoplastic when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

According to another embodiment of the invention a method is provided to aid in the determination of a prognosis for a colon cancer patient.

25 The method comprises the steps of:

comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic colonic tissue and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 3;

determining a poorer prognosis if the level of the at least one transcript is found to be lower in the first sample than in the second sample.

According to another aspect of the invention a method to aid in determining a prognosis for a patient with colon cancer is provided. The method comprises the steps of:

comparing the level of at least one transcript in a first tissue sample to a second sample, wherein the first sample is of a colonic cancer tissue and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 2;

determining a poorer prognosis if the level of the at least one transcript is found to be higher in the first sample than in the second sample.

In yet another embodiment of the invention a method is provided for diagnosing colon cancer in a sample suspected of being neoplastic. The method comprises the steps of:

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 3;

identifying the first sample as neoplastic when the level of expression of the protein is found to be lower in the first sample than in the second sample.

In another aspect of the invention a method of diagnosing colon cancer in a sample suspected of being neoplastic is provided. The method comprises the steps of:

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the protein is encoded by a transcript

identified by a tag selected from the group consisting of those shown in Table 2;

identifying the first sample as neoplastic when expression of the protein is found to be higher in the first sample than in the second sample.

5 According to another embodiment of the invention a method is provided to aid in determining a prognosis of a patient having pancreatic cancer. The method comprises the steps of:

10 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic pancreatic tissue and the second sample is of a normal human colon tissue, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 4;

determining a poorer prognosis if transcription is found to be higher in the first sample than in the second sample.

15 In yet another aspect of the invention a method to aid in providing a prognosis for a cancer patient is provided. The method comprises the steps of:

20 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic tissue and the second sample is of a normal human tissue of the same tissue type, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 5;

determining a poorer prognosis if transcription is found to be higher in the first sample than in the second sample.

25 According to still another aspect of the invention, a method is provided for diagnosing pancreatic cancer in a sample suspected of being neoplastic. The method comprises the steps of:

30 comparing the level of expression of at least one protein encoded by a transcript in a first sample of a tissue to a second sample, wherein the first sample is of a pancreatic tissue suspected of being neoplastic and the second sample is of a normal human colon tissue, wherein said protein is

encoded by a transcript identified by a tag selected from the group consisting of those shown Table 4;

identifying the first sample as neoplastic when expression of the protein is found to be higher in the first sample than in the second sample.

5 According to yet another aspect of the invention a method is provided for diagnosing cancer in a sample suspected of being neoplastic. The method comprises the steps of:

10 comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a tissue suspected of being neoplastic and the second sample is of a normal human tissue, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 5;

identifying the first sample as neoplastic when expression of the protein is found to be higher in the first sample than in the second sample.

15 In still another embodiment of the invention a method is provided to aid in the determination of a prognosis of a colon cancer patient. The method comprises the steps of:

20 comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic colonic tissue and the second sample is of a normal human colonic tissue, and wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 3;

determining a poorer prognosis if the level of expression is found to be lower in the first sample than in the second sample.

25 In still another embodiment of the invention a method is provided to aid in determining a prognosis for a patient with colon cancer. The method comprises the steps of:

30 comparing the level of expression of at least one protein in a first tissue sample to a second sample, wherein the first sample is of a colonic cancer tissue and the second sample is of a normal human colonic tissue, and

wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 2;

determining a poorer prognosis if the level of expression is found to be higher in the first sample than in the second sample.

5 In still another aspect of the invention a method is provided to aid in determining a prognosis of a patient having pancreatic cancer. The method comprises the steps of:

10 comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic pancreatic tissue and the second sample is of a normal human colon tissue, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 4;

determining a poorer prognosis if the level of expression is found to be higher in the first sample than in the second sample.

15 According to even a further aspect of the invention a method is provided to aid in providing a prognosis for a cancer patient. The method comprises the steps of:

20 comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic tissue and the second sample is of a normal human tissue of the same tissue type, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 5;

determining a poorer prognosis if the level of expression is found to be higher in the first sample than in the second sample.

25 In still another embodiment of the invention a method of treating a cancer cell is provided. The method comprises the step of:

30 administering to a cancer cell an antibody which specifically binds to a protein encoded by a transcript identified by a tag selected from the group consisting of those shown in Tables 2, 4, and 5, wherein the antibody is linked to a cytotoxic agent.

In another aspect of the invention an antibody linked to a cytotoxic agent is provided. The antibody specifically binds to a protein encoded by a transcript identified by a tag selected from the group consisting of those shown in Tables 2, 4, and 5.

5 According to another aspect of the invention, a method of detecting colon cancer in a patient is provided. The method comprises the steps of:

10 comparing the level of at least one protein or transcript in a first body sample to a second body sample, wherein the first sample is a body sample of the patient and the second sample is of a normal human, wherein the protein is encoded by a transcript and the transcript is identified by a tag selected from the group consisting of those shown in Table 2, wherein the first and second body sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

15 identifying neoplasia when the level of the at least one protein or transcript is found to be higher in the first sample than in the second sample.

In another aspect of the invention a method of detecting pancreatic cancer in a patient is provided. The method comprises the steps of:

20 comparing the level of at least one protein or transcript encoded by a transcript in a first sample of a tissue to a second sample, wherein the first sample is of the patient and the second sample is of a normal human, wherein said protein is encoded by a transcript and the transcript is identified by a tag selected from the group consisting of those shown Table 4, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

25 identifying neoplasia when the level of the at least one protein or transcript is found to be higher in the first sample than in the second sample.

Also provided by the present invention is a method of detecting cancer in a patient. The method comprises the steps of:

30 comparing the level of at least one protein or transcript in a first sample to a second sample, wherein the first sample is of patient and the second sample is of a normal human, wherein said protein is encoded by a

transcript and the transcript is identified by a tag selected from the group consisting of those shown Table 5, wherein the first and second body sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

5 identifying neoplasia when the level of the at least one protein or transcript is found to be higher in the first sample than in the second sample.

Additionally provided by the present invention is a method to aid in the determination of a prognosis for a colon cancer patient. The method comprises the steps of:

10 comparing the level of at least one protein or transcript in a first sample to a second sample, wherein the first sample is of a colon cancer patient and the second sample is of a normal human, wherein the protein is encoded by a transcript and the transcript is identified by a tag selected from the group consisting of those shown in Table 3, wherein the first and second body sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

15 determining a poorer prognosis if the level of the at least one protein or transcript is found to be lower in the first sample than in the second sample.

20 Provided by another embodiment of the invention is a method to aid in determining a prognosis for a patient with colon cancer. The method comprises the steps of:

25 comparing the level of at least one protein or transcript in a first sample to a second sample, wherein the first sample is of a colonic cancer patient and the second sample is of a normal human, wherein the protein is encoded by a transcript and the transcript is identified by a tag selected from the group consisting of those shown in Table 2, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

determining a poorer prognosis if the level of the at least one protein or transcript is found to be higher in the first sample than in the second sample.

5 According to still another aspect of the invention, a method to aid in determining a prognosis of a patient having pancreatic cancer is provided. The method comprises the steps of:

10

comparing the level of at least one protein or transcript in a first sample to a second sample, wherein the first sample is of a pancreatic cancer patient and the second sample is of a normal human, wherein said protein is encoded by a transcript and the transcript is identified by a tag selected from the group consisting of those shown Table 4, wherein said first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

15

determining a poorer prognosis if the level of the at least one protein or transcript is found to be higher in the first sample than in the second sample.

20

Also provided by the present invention is a method to aid in providing a prognosis for a cancer patient. The method comprises the steps of:

25

comparing the level of expression of at least one protein or transcript in a first sample to a second sample, wherein the first sample is of a cancer patient and the second sample is of a normal human, wherein said protein is encoded by a transcript and the transcript is identified by a tag selected from the group consisting of those shown Table 5, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

30

determining a poorer prognosis if the level of the at least one protein or transcript is found to be higher in the first sample than in the second sample.

The present invention further includes antisense oligonucleotides complementary in whole or in part to SEQ ID NOS:1-732.

5

This invention also provides a method for screening for candidate agents that modulate the expression of a polynucleotide selected from the group consisting of the polynucleotides in SEQ ID NOS.1-732 or their respective complements, by contacting a test agent with a pancreatic or colon cell and monitoring expression of the polynucleotide, wherein the test agent which modifies the expression of the polynucleotide is a candidate agent.

10

The present invention provides the art with new methods and reagents for diagnosing and prognosing cancers. In addition, some of the newly disclosed genes may play an important role in the development of cancers.

15

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1. Comparison of expression patterns in colorectal cancers and normal colon epithelium. (**FIG. 1A**) A semi-logarithmic plot reveals 51 tags that were decreased more than 10 fold in primary CR cancer cells whereas 32 tags were increased more than 10 fold. 62,168 and 60,878 tags derived from normal colon epithelium and primary CR cancers, respectively, were used for this analysis. The relative expression of each transcript was determined by dividing the number of tags observed in tumor and normal tissue as indicated. To avoid division by 0, a tag value of 1 was used for any tag that was not detectable in one of the samples. These ratios were then rounded to the nearest integer and their distribution plotted on the abscissa. The number of genes displaying each ratio was plotted on the ordinate. Tu: CR tumors; NC: Normal colon. (**FIG. 1B** and **FIG. 1C**) Differentially expressed genes in colorectal cancers. The number of transcripts found to be differentially expressed ($P < 0.01$) are presented as Venn diagrams. Diagrams of transcripts that were decreased (**FIG. 1B**) or increased (**FIG. 1C**) in CR cancers compared to normal colon epithelium. Comparisons were between primary tumors and cells in culture as indicated.

20

Fig. 2. Northern blot analysis of genes differentially expressed in gastrointestinal neoplasia. Northern blot analysis was performed on total RNA (5 μ g isolated from primary CR carcinomas (T) and matching normal colon epithelium (N), or pancreatic carcinomas. The top panel in each case show an

25

30

example of the ethidium bromide stained gels prior to transfer. The number of SAGE tags observed in the original analysis is indicated to the right of each blot. (FIG. 2A) Examples of transcripts that were decreased or increased in CR cancers. (FIG.2B) Examples of transcripts increased in pancreatic cancers (10). (FIG.2C) Examples of transcripts elevated in cancer which were or were not cancer type specific. Probes used for Northern blot analysis were as follows (Human SAGE Tag unique identifier, gene name, (GenBank accession number)): (FIG. 2A) H204104, Guanylin (M95714); H259108, (see Table 2); H1000193, (see Table 2); H998030, (see Table 2). (FIG. 2B) H294155, RIG-E (U42376); H560056, TIMP-1 (S68252). (FIG. 2C) H802810, EST338411 (W52120); H85882, 1-8D (X57351); H618841, GA733-1 (X13425).

Tables 2-5. Transcripts Differentially Expressed in Human Cancer.

Tag sequence represents the NlaIII site plus the adjacent 11 bp SAGE tag. Tag number indicates a SAGE UID (unique identifier). NC, TU, CL, PT, PC, refers to the number of the indicated tag observed in RNA isolated from normal colorectal epithelium, primary colorectal cancers, colorectal cancer cell lines, primary pancreatic cancers, or pancreatic cancer cell lines, respectively. The Accession and Gene Name refer to representative GenBank entries that contain the tag sequence.

Table 2 Transcripts increased in colorectal cancer.

Table 3 Transcripts decreased in colorectal cancer.

Table 4 Transcripts increased in pancreatic cancer.

Table 5 Transcripts increased in pancreatic and colorectal cancer.

DETAILED DESCRIPTION

The inventors have discovered sets of human genes which are either upregulated or downregulated in cancer cells, as compared to normal cells. Specifically, certain genes have been found to be upregulated or downregulated in colorectal and/or pancreatic cancer cells, when compared to normal colon

cells. These sets of differentially regulated genes can be used as diagnostic markers, either individually or in sets of, for example, 2, 5, 10, 20, or 30.

5

Genes whose expression was detected to be increased in colorectal cancer are shown in Table 2. Genes whose expression was detected to be decreased in colorectal cancer are shown in Table 3. Genes whose expression was detected as increased in pancreatic cancer are shown in Table 4. Genes whose expression was detected as increased in both pancreatic cancer and colorectal cancer are shown in Table 5. These latter genes likely play a role in neoplastic development generally.

10

Tag sequences, as provided herein, uniquely identify genes. This is due to their length, and their specific location (3') in a gene from which they are drawn. The full length genes can be identified by matching the tag to a gene data base member, or by using the tag sequences as probes to physically isolate previously unidentified genes from cDNA libraries. The methods by which genes are isolated from libraries using DNA probes are well known in the art. See, for example, Veculescu et al., *Science* 270: 484 (1995), and Sambrook et al. (1989), MOLECULAR CLONING: A LABORATORY MANUAL, 2nd ed. (Cold Spring Harbor Press, Cold Spring Harbor, New York). Once a gene or transcript has been identified, either by matching to a data base entry, or by physically hybridizing to a cDNA molecule, the position of the hybridizing or matching region in the transcript can be determined. If the tag sequence is not in the 3' end, immediately adjacent to the restriction enzyme used to generate the SAGE tags, then a spurious match may have been made. Confirmation of the identity of a SAGE tag can be made by comparing transcription levels of the tag to that of the identified gene in certain cell types.

15

In addition to the sequences shown in SEQ ID NOS: 1-732, or their complements, this invention also provides the anti-sense polynucleotide stand, e.g. antisense RNA to these sequences or their complements. One can obtain an antisense RNA using the sequences provided in SEQ ID NOS: 1-732 and the methodology described in Vander Krol et al. (1988) BioTechniques 6:958.

20

25

30

5

10

15

20

25

30

The invention also encompasses polynucleotides which differ from that of the polynucleotides described above, but which produce the same phenotypic effect, such as the allele. These altered, but phenotypically equivalent polynucleotides are referred to "equivalent nucleic acids." This invention also encompasses polynucleotides characterized by changes in non-coding regions that do not alter the phenotype of the polypeptide produced therefrom when compared to the polynucleotide herein. This invention further encompasses polynucleotides, which hybridize to the polynucleotides of the subject invention under conditions of moderate or high stringency.

The polynucleotides can be conjugated to a detectable marker, e.g., an enzymatic label or a radioisotope for detection of nucleic acid and/or expression of the gene in a cell. A wide variety of appropriate detectable markers are known in the art, including fluorescent, radioactive, enzymatic or other ligands, such as avidin/biotin, which are capable of giving a detectable signal. In preferred embodiments, one will likely desire to employ a fluorescent label or an enzyme tag, such as urease, alkaline phosphatase or peroxidase, instead of radioactive or other environmental undesirable reagents. In the case of enzyme tags, colorimetric indicator substrates are known which can be employed to provide a means visible to the human eye or spectrophotometrically, to identify specific hybridization with complementary nucleic acid-containing samples. Briefly, this invention further provides a method for detecting a single-stranded polynucleotide identified by SEQ ID NOS.1-732 or its complement, by contacting target single-stranded polynucleotides with a labeled, single-stranded polynucleotide (a probe) which is at least 10 nucleotides of the complement of SEQ ID NOS: 1-732 (or the corresponding complement) under conditions permitting hybridization (preferably moderately stringent hybridization conditions) of complementary single-stranded polynucleotides, or more preferably, under highly stringent hybridization conditions. Hybridized polynucleotide pairs are separated from un-hybridized, single-stranded polynucleotides. The hybridized polynucleotide

pairs are detected using methods well known to those of skill in the art and set forth, for example, in Sambrook et al. (1989) *supra*.

The polynucleotides of this invention can be isolated using the technique described in the experimental section or replicated using PCR. The PCR technology is the subject matter of United States Patent Nos. 4,683,195, 4,800,159, 4,754,065, and 4,683,202 and described in PCR: The Polymerase Chain Reaction (Mullis et al. eds, Birkhauser Press, Boston (1994)) or MacPherson et al. (1991) and (1994), *supra*, and references cited therein. Alternatively, one of skill in the art can use the sequences provided herein and a commercial DNA synthesizer to replicate the DNA. Accordingly, this invention also provides a process for obtaining the polynucleotides of this invention by providing the linear sequence of the polynucleotide, nucleotides, appropriate primer molecules, chemicals such as enzymes and instructions for their replication and chemically replicating or linking the nucleotides in the proper orientation to obtain the polynucleotides. In a separate embodiment, these polynucleotides are further isolated. Still further, one of skill in the art can insert the polynucleotide into a suitable replication vector and insert the vector into a suitable host cell (procaryotic or eucaryotic) for replication and amplification. The DNA so amplified can be isolated from the cell by methods well known to those of skill in the art. A process for obtaining polynucleotides by this method is further provided herein as well as the polynucleotides so obtained.

RNA can be obtained by first inserting a DNA polynucleotide into a suitable host cell. The DNA can be inserted by any appropriate method, e.g., by the use of an appropriate gene delivery vector or by electroporation. When the cell replicates and the DNA is transcribed into RNA, the RNA can then be isolated using methods well known to those of skill in the art, for example, as set forth in Sambrook et al. (1989) *supra*. For instance, mRNA can be isolated using various lytic enzymes or chemical solutions according to the procedures set forth in Sambrook et al. (1989), *supra* or extracted by nucleic-acid-binding resins following the accompanying instructions provided by manufacturers.

5

Polynucleotides having at least 10 nucleotides and exhibiting sequence complementarity or homology to SEQ ID NOS: 1-732 find utility as hybridization probes. In some aspects, the full coding sequence of the transcript, i.e., for SEQ ID NOS: 1-732, are known. Accordingly, any portion of the known sequences available in GenBank, or homologous sequences, can be used in the methods of this invention.

10

15

It is known in the art that a "perfectly matched" probe is not needed for a specific hybridization. Minor changes in probe sequence achieved by substitution, deletion or insertion of a small number of bases do not affect the hybridization specificity. In general, as much as 20% base-pair mismatch (when optimally aligned) can be tolerated. Preferably, a probe useful for detecting the aforementioned mRNA is at least about 80% identical to the homologous region of comparable size contained in the previously identified sequences identified by SEQ ID NOS:1-732, which correspond to previously characterized genes or SEQ ID NOS:1-732, which correspond to known ESTs. More preferably, the probe is 85% identical to the corresponding gene sequence after alignment of the homologous region; even more preferably, it exhibits 90% identity.

20

25

These probes can be used in radioassays (e.g. Southern and Northern blot analysis) to detect, prognose, diagnose or monitor various pancreatic or colon cells or tissue containing these cells. The probes also can be attached to a solid support or an array such as a chip for use in high throughput screening assays for the detection of expression of the gene corresponding to one or more polynucleotide(s) of this invention. Accordingly, this invention also provides at least one of the transcripts identified as SEQ ID NOS:1-732, or its complement, attached to a solid support for use in high throughput screens.

30

The total size of fragment, as well as the size of the complementary stretches, will depend on the intended use or application of the particular nucleic acid segment. Smaller fragments will generally find use in hybridization embodiments, wherein the length of the complementary region may be varied,

such as between about 10 and about 100 nucleotides, or even full length according to the complementary sequences one wishes to detect.

Nucleotide probes having complementary sequences over stretches greater than 10 nucleotides in length are generally preferred, so as to increase stability and selectivity of the hybrid, and thereby improving the specificity of particular hybrid molecules obtained. More preferably, one can design polynucleotides having gene-complementary stretches of more than 50 nucleotides in length, or even longer where desired. Such fragments may be readily prepared by, for example, directly synthesizing the fragment by chemical means, by application of nucleic acid reproduction technology, such as the PCR technology with two priming oligonucleotides as described in U.S. Pat. No. 4,603,102 or by introducing selected sequences into recombinant vectors for recombinant production. A preferred probe is about 50-75 or more preferably, 50-100, nucleotides in length.

The polynucleotides of the present invention can serve as primers for the detection of genes or gene transcripts that are expressed in pancreatic or colon cells. In this context, amplification means any method employing a primer-dependent polymerase capable of replicating a target sequence with reasonable fidelity. Amplification may be carried out by natural or recombinant DNA-polymerases such as T7 DNA polymerase, Klenow fragment of E.coli DNA polymerase, and reverse transcriptase.

A preferred amplification method is PCR. However, PCR conditions used for each reaction are empirically determined. A number of parameters influence the success of a reaction. Among them are annealing temperature and time, extension time, Mg²⁺ ATP concentration, pH, and the relative concentration of primers, templates, and deoxyribonucleotides. After amplification, the resulting DNA fragments can be detected by agarose gel electrophoresis followed by visualization with ethidium bromide staining and ultraviolet illumination.

The invention further provides the isolated polynucleotide operatively linked to a promoter of RNA transcription, as well as other regulatory

5 sequences for replication and/or transient or stable expression of the DNA or RNA. As used herein, the term "operatively linked" means positioned in such a manner that the promoter will direct transcription of RNA off the DNA molecule. Examples of such promoters are SP6, T4 and T7. In certain embodiments, cell-specific promoters are used for cell-specific expression of the inserted polynucleotide. Vectors which contain a promoter or a promoter/enhancer, with termination codons and selectable marker sequences, as well as a cloning site into which an inserted piece of DNA can be operatively linked to that promoter are well known in the art and commercially available.

10 For general methodology and cloning strategies, see Gene Expression Technology (Goeddel ed., Academic Press, Inc. (1991)) and references cited therein and Vectors: Essential Data Series (Gacesa and Ramji, eds., John Wiley & Sons, N.Y. (1994)), which contains maps, functional properties, commercial suppliers and a reference to GenEMBL accession numbers for various suitable

15 vectors. Preferable, these vectors are capable of transcribing RNA in vitro or in vivo.

20 Fragment of the sequences shown in SEQ ID NOS:1-732 or their respective complements also are encompassed by this invention, preferably at least 10 nucleotides and more preferably having at least 18 nucleotides. Larger polynucleotides, e.g., cDNA or genomic DNA, which hybridize under moderate or stringent conditions to the polynucleotide sequences shown in SEQ ID NOS:1-732, or their respective complements, also are encompassed by this invention.

25 In one embodiment, these fragments are polynucleotides that encode polypeptides or proteins having diagnostic and therapeutic utilities as described herein as well as probes to identify transcripts of the protein which may or may not be present. These nucleic acid fragments can be prepared, for example, by restriction enzyme digestion of the polynucleotide of SEQ ID NOS:1-732, or their complements, and then labeled with a detectable marker. Alternatively, random fragments can be generated using nick translation of the molecule. For

methodology for the preparation and labeling of such fragments, see Sambrook et al., (1989) supra.

Expression vectors containing these nucleic acids are useful to obtain host vector systems to produce proteins and polypeptides. It is implied that these expression vectors must be replicable in the host organisms either as episomes or as an integral part of the chromosomal DNA. Suitable expression vectors include viral vectors, including adenoviruses, adeno-associated viruses, retroviruses, cosmids, etc. Adenoviral vectors are particularly useful for introducing genes into tissues *in vivo* because of their high levels of expression and efficient transformation of cells both *in vitro* and *in vivo*. When a nucleic acid is inserted into a suitable host cell, e.g., a procaryotic or a eucaryotic cell and the host cell replicates, the protein can be recombinantly produced. Suitable host cells will depend on the vector and can include mammalian cells, animal cells, human cells, simian cells, insect cells, yeast cells, and bacterial cells constructed using well known methods. See Sambrook et al. (1989) supra. In addition to the use of viral vector for insertion of exogenous nucleic acid into cells, the nucleic acid can be inserted into the host cell by methods well known in the art such as transformation for bacterial cells; transfection using calcium phosphate precipitation for mammalian cells; or DEAE-dextran; electroporation; or microinjection. See Sambrook et al. (1989) supra for this methodology. Thus, this invention also provides a host cell, e.g. a mammalian cell, an animal cell (rat or mouse), a human cell, or a procaryotic cell such as a bacterial cell, containing a polynucleotide encoding a protein or polypeptide or antibody.

When the vectors are used for gene therapy *in vivo* or *ex vivo*, a pharmaceutically acceptable vector is preferred, such as a replication-incompetent retroviral or adenoviral vector. Pharmaceutically acceptable vectors containing the nucleic acids of this invention can be further modified for transient or stable expression of the inserted polynucleotide. As used herein, the term "pharmaceutically acceptable vector" includes, but is not limited to, a vector or delivery vehicle having the ability to selectively target

and introduce the nucleic acid into dividing cells. An example of such a vector is a "replication-incompetent" vector defined by its inability to produce viral proteins, precluding spread of the vector in the infected host cell. An example of a replication-incompetent retroviral vector is LNL6 (Miller, A.D. et al. (1989) *BioTechniques* 7:980-990). The methodology of using replication-incompetent retroviruses for retroviral-mediated gene transfer of gene markers is well established (Correll et al. (1989) *PNAS USA* 86:8912; Bordignon (1989) *PNAS USA* 86:8912-52; Culver, K. (1991) *PNAS USA* 88:3155; and Rill, D.R. (1991) *Blood* 79(10):2694-700. Clinical investigations have shown that there are few or no adverse effects associated with the viral vectors, see Anderson (1992) *Science* 256:808-13.

Compositions containing the polynucleotides of this invention, in isolated form or contained within a vector or host cell are further provided herein. When these compositions are to be used pharmaceutically, they are combined with a pharmaceutically acceptable carrier.

This invention further encompasses genes, either genomic or cDNA, which code for a polypeptide or protein in the cell of interest. The genes specifically hybridize under moderate or stringent conditions to a polynucleotide identified by SEQ ID NOS: 1-732 or their respective complements. The process of identification of larger fragment or the full-length coding sequence to which the partial sequence depicted in SEQ ID NOS:1-732 hybridizes preferably involves the use of the methods and reagents provided in this invention, either singularly or in combination.

Five methods are disclosed herein which allows one of skill in the art to isolate the gene or cDNA corresponding to the transcripts of the invention.

RACE-PCR Technique

One method to isolate the gene or cDNA which code for a polypeptide or protein and which corresponds to a transcript of this invention, involves the 5'-RACE-PCR technique. In this technique, the poly-A mRNA that contains the coding sequence of particular interest is first identified by hybridization to

a sequence disclosed herein and then reverse transcribed with a 3'-primer comprising the sequence disclosed herein. The newly synthesized cDNA strand is then tagged with an anchor primer of a known sequence, which preferably contains a convenient cloning restriction site attached at the 5'end. The tagged cDNA is then amplified with the 3'-primer (or a nested primer sharing sequence homology to the internal sequences of the coding region) and the 5'-anchor primer. The amplification may be conducted under conditions of various levels of stringency to optimize the amplification specificity. 5'-RACE-PCR can be readily performed using commercial kits (available from, e.g., BRL Life Technologies Inc, Clotech) according to the manufacturer's instructions.

Identification of known genes or ESTs

In addition, databases exist that reduce the complexity of ESTs by assembling contiguous EST sequences into tentative genes. For example, TIGR has assembled human ESTs into a datable called THC for tentative human consensus sequences. The THC database allows for a more definitive assignment compared to ESTs alone. Software programs exist (give examples) that allow for assembling ESTs into contiguous sequences from any organism.

Isolation of cDNAs from a library by probing with the SAGE transcript or tag

Alternatively, mRNA from a sample preparation was used to construct cDNA library in the ZAP Express vector following the procedure described in Velculescu et al. (1997) Science 270:484. The ZAP Express cDNA synthesis kit (Stratagene) was used accordingly to the manufacturer's protocol. Plates containing 250 to 2000 plaques are hybridized as described in Rupert et al. (1988) Mol. Cell. Bio. 8:3104 to oligonucleotide probes with the same conditions previously described for standard probes exxcept that the hybridization temperature is reduced to room temperature. Washes are performed in 6X standard-saline-citrate 0.1% SDS for 30 minutes at room temperature. The probes are labeled with 32P-ATP through use of T4 polynucleotide kinase.

Table 2 - Transcripts increased in colon cancer

**Transcripts increased in only colon primary tumors
compared to normal colon (61 genes)**

NC: Normal Colon
 TU: Colon Primary Tumor
 CL: Colon Cancer Cell Line
 PT: Pancreatic Primary Tumor
 PC: Pancreatic Cancer Cell Line

#	Tag Sequence	Tag Number	NC	TU	CL	PT	PC	Accession	Gene Name
1	CATGCCACCTAATTGG	H285759	612	755	411	161	333	Fl5516	H.sapiens mitochondrial EST sequence (1-12) from Human cytochrome c oxidase subunit III (COIII) pse
2	CATGTGATTCACTT	H933704	452	595	235	80	314	U35430	Human cytochrome c oxidase subunit III (COIII) pse
3	CATGCCCTGTAATCCC	H388150	433	549	380	443	197	Z70701	H.sapiens mRNA (fetal brain cDNA c2_1).
								X71347	H.sapiens HNF1-C mRNA.
								X71346	H.sapiens HNF1-B mRNA.
								U09500	Human mitochondrion cytochrome b gene, partial cds
4	CATGCCACTACTCACC	H291282	293	527	78	14	83		Human mitochondrion cytochrome b gene, partial cds
5	CATGGTGAAACCCCA(G)	H753750	392	517	389	453	194	X66785	H.sapiens mRNA for transacylase (DBT).
								X17648	Human mRNA for granulocyte-macrophage colony-stimulating factor.
								U09087	Human thymopoietin beta mRNA, complete cds.
								U09088	Human thymopoietin gamma mRNA, complete cds.
								U20770	Human metastasis suppressor (KAI1) mRNA, complete cds.
								W15552	zb91h11.s1 Soares parathyroid tumor NblIPa Homo sap
6	CAIGGGCTTTAGGGA	H687915	37	372	6	29	11		zc05d03.s1 Soares parathyroid tumor NblIPa Homo sap
								W32091	Y11d07.r1 Homo sapiens cDNA clone 138925_S.
								R62866	H.sapiens mitochondrial DNA for loop attachment sequence.
								X89839	H.sapiens mitochondrial DNA for loop attachment sequence.
7	CA'GACCTTCAAA	H130369	32	272	32	23	20	T11555	A1486F Homo sapiens cDNA clone A1486 similar to Mi
8	CATGTGGTGTATGCA	H965434	53	271	6	30	5	T11573	IB1870 Homo sapiens cDNA 3' end similar to Human mi
9	CATGAGGGTGTTC	H175872	26	218	7	20	10	X12544	Human mRNA for HLA class II DR-beta (HLA-DR B).
10	CATGAGGTAGGAGAT	H177315	93	213	113	148	58	S73483	Phosphorylase kinase catalytic subunit PHKG2 homol
								X74301	H.sapiens mRNA for MHC class II transactivator.
11	CATGTTGGCCAGGCT	H1023322	124	194	63	111	51	U28687	Human zinc finger containing protein ZNF157 (ZNF15)
								U29119	Human leiomyoma LM-196.4 ectopic sequence from HMG
								U36236	Human Fc alpha receptor b mRNA, complete cds.
								W03751	za62h11.r1 Soares fetal liver spleen INF1S Homo sa
12	CATGATCACGCCCTC	H214616	97	186	17	41	49	W03770	za63h10.r1 Soares fetal liver spleen INF1S Homo sa

16	CATGGTAAACCCA	H753749	9	31	22	30	4	T95857	ye42f01.s1 Homo sapiens cDNA clone 120409 3' simil
								W03237	za5b09.r1 Soares fetal liver spleen INFSL Homo sa
								W03326	za61g03.r1 Soares fetal liver spleen INFSL Homo sa
17	CATGGAAACTGAACA	H526210	6	26	17	5	3	X54195	Human line-1 element DNA, host sequence flanking t
								U29607	Human methionine aminopeptidase mRNA, complete cds
								H95100	yw57610.r1 Homo sapiens cDNA clone 256315 S' simil
18	CATGACTTTAAAAA	H131009	1	22	4	1	0		
19	CATGGACTGGCTGCC	H555450	0	21	7	9	12	D29062	Human keratinocyte cDNA, clone 067
								D29563	Human keratinocyte cDNA, clone 713.
40	CATGTCAGGGTAGT	H863923	4	21	2	2	1	T03196	FB3B5 Homo sapiens cDNA clone FB3B5 3'end.
41	CATGAAACTGTGGTT	H7916	2	20	2	2	1	Z57093	H.sapiens CpG DNA, clone 164a10, reverse read cpg l
								Z60184	H.sapiens CpG island DNA genomic MseI fragment, cl
								Z63649	H.sapiens CpG island DNA genomic MseI fragment, cl
								W31349	zb95d06.s1 Soares parathyroid tumor NbHPA Homo sap
42	CATGGGGGGGGT	H699051	0	19	0	0	0		
43	CATGGTGCCCCGTGCC		2	19	1	0	0	W31448	zb96h01.s1 Soares parathyroid tumor NbHPA Homo sap
								W47282	zc40b06.r1 Soares senescent fibroblasts Nb13Sf Homo
44	CATGGGGGTAACTA	H699144	3	19	15	12	5	X71428	H.sapiens fus mRNA.
								SG2140	TLS=translocated in liposarcoma [human, mRNA, 1824
								W31782	zb96a06.r1 Soares parathyroid tumor NbHPA Homo sap
45	CATGTCCTGCCCCAT	H883029	3	19	14	27	16	M24398	Human parathymosin mRNA, complete cds.
46	CATGAAGTGGCAAGA	H47683	0	16	0	0	0	U33317	Human defensin 6 (HD-6) gene, complete cds.
47	CATGGGTATTAAACCA	H708358	0	16	0	0	0	M98331	Homo sapiens defensin 6 mRNA, complete cds.
								D32027	Human mRNA for T cell receptor V beta 14 CDR3, par
48	CATGGGCTACACCTT	H684312	2	16	0	2	1	T11701	A1225F Homo sapiens cDNA clone A1225 similar to Mi
								DS1783	Human fetal brain cDNA 5'-end GEN·051G02.
49	CATGAGGGTTTCCC	H1175870	1	15	0	0	0	D13138	Human mRNA for dipeptidase.
50	CATGCAAGGACCAGC	H272467	0	13	0	2	0		Homo sapiens (clones MDPA, MDPT) microsomal dipeptidase
									RDP=renal dipeptidase [human, kidney, Genomic, 357
51	CATGTGGAAATGACC	H950498	0	13	0	167	0	M10629	Human alpha-1 collagen gene, 3' end with polyA sit
52	CATGATCCGCCCTGCC	H219514	1	13	3	4	1	H11641	ym17e04.s1 Homo sapiens cDNA clone 47962 3' simila
53	CATGTCCTGACAC	H875282	1	13	0	0	1	R95667	yq51a09.s1 Homo sapiens cDNA clone 199288 3' simili
54	CATGATGTAAAAAT	H241665	0	11	0	12	14	M74090	Human TB2 gene mRNA, 3' end.

					103801	Human lysozyme mRNA, complete cds with an Alu repe
					M19045	Human lysozyme mRNA, complete cds.
55	CATGCCAGCCCCGTC	H337244	0	11	0	0
56	CATGACCAATTCTGCT	H85882	0	10	1	26
					3	X57351 Human I-8D gene from interferon-inducible gene fam
					X02490	Human interferon-inducible mRNA (cDNA 1-8).
57	CATCAGGACCATCGC	H165175	0	10	0	0
58	CATGATGTGAAGAGTA)	H243747	0	10	0	165
59	CATGCAGTGGTTGT	H310975	0	10	6	7
60	CATGGCCCTCTGCCA	H613862	0	10	2	15
61	CATGTTAGATAAGCA	H992010	0	10	3	3
					6	M94083 Human chaperonin-like protein (HTR3) mRNA, complet
						L27706 Human chaperonin protein (Tcp20) gene complete cds

Transcripts increased in both colon primary tumors and colon cancer cell lines compared to normal colon (47 genes)

NC: Normal Colon

TU: Colon Primary Tumor

CL: Colon Cancer Cell Line

PT: Pancreatic Primary Tumor

PC: Pancreatic Cancer Cell Line

#	Tag Sequence	Tag Number	NC	CT	CL	PT	PC	Accession	Gene Name
1	CATGCCAGCCATCCG	H599350	87	180	230	72	138	U14969	Human ribosomal protein L28 mRNA, complete cds.
2	CATGATGGCTGGTAT	H239533	52	153	318	80	294	X17206	Human mRNA for L1Rcp3.
3	CATGCCGTCCGGAA	H355689	87	142	246	178	250	X64707	H.sapiens BBC1 mRNA
4	CATGAGGCACGGAA	H171113	44	117	167	86	147	X56932	H.sapiens mRNA for 23 kD highly basic protein
5	CATGAGCACCTCCAG	H148949	42	116	197	103	190	Z11692	H.sapiens mRNA for elongation factor 2.
6	CATGCTGGTTAATA	H502724	29	115	160	75	134	M81757	H.sapiens S19 ribosomal protein mRNA, complete cds
7	CATGGGATTGGCT	H671654	55	108	222	73	185	M17887	Human acidic ribosomal phosphoprotein P2 mRNA, com
8	CATGTACCATCAATA	H807748	46	107	98	64	189	X53778	H.sapiens hnRNP mRNA for uracil DNA glycosylase.
9	CATGTOGGCAAGCC	H959498	51	103	156	45	152	Z11531	Human glyceraldehyde 3-phosphate dehydrogenase mRNA
								J02642	Human glyceraldehyde 3-phosphate dehydrogenase mRNA, 3' en
								M55409	Human pancreatic tumor-related protein mRNA, 3' en
10	CATGAATCCTGTGGA	H55227	30	95	102	48	156	Z28407	H.sapiens mRNA for ribosomal protein L8.
11	CATGGGACCACTGAA	H666601	36	92	114	43	63	X73460	H.sapiens mRNA for ribosomal protein L3.
12	CATGAGGCCTCCAA	H174037	47	91	167	91	155	M1791	Human novel gene mRNA, complete cds.
								M64241	Human Wilms tumor-related protein (Q/M) mRNA, comp
								S35960	Laminin receptor homolog (3' region) [human, mRNA
13	CATGAAGGGAGGA	H44683	48	91	182	113	215	X80822	H.sapiens mRNA for ORF.
14	CATGTGCACTTTTC	H935680	45	87	105	61	122	X03342	Human mRNA for ribosomal protein L32
15	CATGTCAAGATCTTG	H861056	37	81	93	50	92	M58458	Human ribosomal protein S4 (RPS4X) isoform mRNA, c
16	CATGTGGTGTGAGG	H965603	42	79	83	55	250	X69150	Human scar protein mRNA, complete cds.
								L06432	Human sapiens 18S ribosomal protein (HKE3) mRNA seq
17	CATGCCTAGCTGGAT	H379369	28	77	80	46	143	Y00052	Human mRNA for T-cell cyclophilin.
18	CATGCTGGGTTTTG	518912	0	73	42	0	0	X07868	Human DNA for insulin-like growth factor II (IGF-2);
19	CATGCTCCTCACCTG	H482584	12	72	41	34	50	U16811	Human Bak mRNA, complete cds.

20	CATGGCTGTGGTGAT	H507577	17	65	116	48	103	D14530	Human homolog of yeast ribosomal protein S28, comp
21	CATGGGCCGAAACAC	H416261	28	62	183	55	94	X73974	H.sapiens HRPL4 mRNA.
22	CATGCAATAATGTT	H274492	9	60	73	55	119	D23661	Human mRNA for ribosomal protein L27, complete cds.
23	CATGACATCACTCGAT	H79065	15	57	82	42	118	L06505	Human ribosomal protein L12 mRNA, complete cds.
24	CATGTTCAATAAAA	H1000193	12	56	154	49	99	M17886	Human acidic ribosomal phosphoprotein P1 mRNA, com
25	CATGGAACACATCCA	H528594	24	56	71	24	146	X63527	H.sapiens mRNA for ribosomal protein L19.
26	CATGTTATGGGATCT	H998030	7	55	78	35	77	M24194	Human MHC protein homologous to chicken B complex
27	CATGGCATAATAGCT	H18	53	50	19	61	U14967	Human ribosomal protein L21 mRNA, complete cds.	
28	CATGATTCTCCAGTA	H253260	23	50	103	49	120	X55954	Human mRNA for HL23 ribosomal protein homologue.
29	CATGACTCCAAAAA	H119809	15	49	64	21	64	H38868	Human mRNA for ribosomal protein L17.
								yp61a04,r1	Homo sapiens cDNA clone 191886 5' simili
								H71935	Y51f12,r1 Homo sapiens cDNA clone 214895 5'.
								Z43914	H. sapiens partial cDNA sequence; clone c-1od03.
								T48545	hb63221 Homo sapiens cDNA clone hbc3221 5' end.
30	CATGCTGTGATTGC	H507455	9	44	54	22	40	X04347	Human liver mRNA fragment DNA binding protein UPI
31	CATGTACAAATCGA	802871	0	42	20	0	0	X00910	Human mRNA for IGF-II precursor (insulin-like grow
32	CATGGAAAAATGGTT	H524524	14	41	81	15	57	X61156	H.sapiens mRNA for laminin-binding protein mRNA
33	CATGAAAGAGATAGA	H33331	9	39	69	30	56	J03799	Human colin carcinoma laminin-binding protein mRNA
34	CATGGCTTCCGAGATC	H390632	12	36	51	25	86	U02032	Human ribosomal protein L23a mRNA, partial cds.
35	CATGACTGGTCTAT	H125661	5	29	25	25	38	U14970	Human ribosomal protein S5 mRNA, complete cds.
								X58965	H.sapiens RNA for nm23-H2 gene.
								M36981	Human putative NDP kinase (nm23-H2S) mRNA, complet
								L16785	Homo sapiens c-myb transcription factor (pu) mRNA
								L10376	Human (clone CTG-B31) mRNA sequence.
36	CATGCAGCTCACTGA	H302367	9	29	40	27	31	S80520	CAG1sl 7 trinucleotide repeat-containing sequenc
37	CATGGCTGTGGTTGTA	H769020	0	24	15	22	8	M77749	Human transforming growth factor-beta induced gene
38	CATGGGCGCTGAGC	H760291	0	22	17	44	18	X58536	Human mRNA for HLA class I locus C heavy chain.
39	CATGGCTCACATTAG	H774461	3	22	25	141	10	X00497	Human mRNA for HLA-DR antigens associated invariant
40	CATGTCAAATAAAC	H918273	2	18	37	8	22	X16934	Human hb23 gene for B23 nucleophosmin.
41	CATGAAAAGAAACTT	H2056	1	16	27	11	25	Y00345	Human mRNA for polyA binding protein.
42	CATGTTGCTGGCTGTT	H948604	1	15	16	11	3	X81005	H.sapiens HCG IV mRNA.
								D28137	Human mRNA for BST-2, complete cds.
									Soares senescent fibroblasts NbHSF Homo sapiens cDNA clone
43	CATGCTGATGGCAGA	H495251	0	14	15	8	6	W46476	324128 3'.
								X72718	H.sapiens DNA for orphan TCR V-beta segment (allel

Soares fetal heart NbHH19W Homo sapiens cDNA clone 342926									
41	C ¹ TG ^A CTCGCTCTGT	H121311	0	12	16	5	7	H121311	3'
								EST 76663	Colon carcinoma (Caco-2) cell line II Homo sapiens
								AA305589	cDNA 5' end
45	CA ^T GCCCCAAGGACC	H610466	0	12	19	82	17	X53416	Human mRNA for actin-binding protein (filamin) (AB
46	CA ^T GATCTTGTTACT	H229106	0	11	28	67	0	X02761	Human mRNA for fibronectin (FN precursor).
47	CATGAAGCTGCTGGAA	H40571	0	10	17	6	6	Z26305	H.sapiens isoform 1 gene for L-type calcium channel

**Transcripts increased in only colon cancer
cell lines compared to normal colon (181 genes)**

NC: Normal Colon

TU: Colon Primary Tumor

CL: Colon Cancer Cell Line

PT: Pancreatic Primary Tumor

PC: Pancreatic Cancer Cell Line

#	Tag Sequence	Tag Number	NC	TU	CL	PT	PC	Accession	Gene Name
1	CATGTGTTGGAGAG	H978825	71	79	487	136	412	X16869	Human mRNA for elongation factor 1-alpha
2	CATGGCCAGGAAGC	H615043	72	66	265	105	125	X53505	Human ribosomal protein S12.
3	CATGCAAACCATCCA	H263478	137	83	245	36	502	X12883	Human cyokeratin 18.
4	CATGCCACAAACGGTA	H278636	63	53	201	74	179	L19739	Homo sapiens metallopanstimulin (MPS1)
5	CATGAAAAAAAGAAA	H1	31	48	186	66	102	X83412	H.sapiens B1 mRNA for mucin.
								232564	H.sapiens FRGAMMA mRNA (819bp) for folate receptor
								X76180	H.sapiens mRNA for lung amiloride sensitive Na+ ch
								U08470	Human FR-gamma' mRNA, complete cds.
								U08471	Human folate receptor 3 mRNA, complete cds.
6	CATGTTGGTCCCTCG	H1027448	115	128	179	104	358	S64030	Human L41 ribosomal protein
7	CATGTCCTCATACCC	H906438	0	0	176	48	0	T91925	ye0202_r1 Homo sapiens cDNA clone I16571 S.
8	CATGAAGACAG'GCC	I-133979	59	61	172	55	252	X66699	H.sapiens ribosomal protein L37a.
9	CATGCCG'CCCAAGGC	H1374027	50	39	138	60	108	M60854	Human ribosomal protein S16
10	CATGGGGGAAATCCC	H696375	90	90	136	203	231	M92381	Human thymosin beta 10
11	CATGAAGGAGATGGG	H41531	30	37	133	38	161	X69181	H.sapiens mRNA for ribosomal protein L31.
12	CATGGAGGGAGTTTC	H567488	38	53	112	65	142	U14968	Human ribosomal protein L27a
13	CATGGCGTGGTTCGA	H424694	42	64	111	53	49	X79234	H.sapiens ribosomal protein L11.
14	CATGGCCGTGTCGGC	H618199	56	39	109	28	120	J03337	Human ribosomal protein S6
15	CATGGACGGACCGAG	H549145	32	59	105	44	70	U58682	Human ribosomal protein S28 mRNA, complete cds
16	CATGTCACCCACAC	H857362	36	48	103	44	65	X52839	Human mRNA for ribosomal protein L17
17	CATGGCGCCGGGCT	H416106	39	43	90	52	184	U12465	Human ribosomal protein L35
18	CATGCTCAACATCTC	H475448	27	41	89	27	145	M17885	Human acidic ribosomal phosphoprotein P0
19	CATGTGGCCCCACCC	H955718	20	30	80	46	55	M23725	Human M2-type pyruvate kinase mRNA, complete cds.
20	CATGCCCTGGTTCT	H359102	34	49	78	92	145	M11147	Human ferritin L chain

21	CATGAGCATCTCCAG	H150997	0	0	77	0	0	H09058	y196f1.r1 Homo sapiens cDNA clone 45943 5'.
								244640	H. sapiens partial cDNA sequence; clone c-26805.
								N75111	y229e01.r1 Homo sapiens cDNA clone 284472 5'.
22	CATGGCCTCTATGAG	H621369	24	32	77	33	99	M31520	Human ribosomal protein S24 mRNA.
23	CATGAGCTCTCCCTG	H161624	33	39	76	21	67	X533777	Human L23 mRNA for putative ribosomal protein.
24	CATGCCAGGAGGAAT	H338081	27	12	74	23	87	AA223340	gb AA223340 AA223340 Homo sapiens cDNA clone 650651 3' similar to HEAT SHOCK COGNATE 71 KD PROTEIN (HUMAN)
25	CATGGCCAAGCCCCA	H672342	30	55	72	27	61	U12404	Human Csa-19
26	CATGAGGAAAGCTGC	H163999	31	42	70	32	146	F16378	H.sapiens EST sequence (135-18) from skeletal muscle
27	CATGAACCGGGCCAA	H26261	29	46	69	54	79	Z23063	Homo sapiens macrophage migration inhibitory factor
28	CATGCCAGAACAGAC	H335945	23	39	66	42	148	X79238	H.sapiens ribosomal protein L30.
29	CATGGCCGCCATCTC	H615736	7	10	65	10	22	U55017	Human transketolase (TKT)
30	CATGGGTAAACCAG	H769045	16	19	65	17	76	L258999	Human ribosomal protein L10
31	CATGCCCTCGGAAAAAT	H383489	9	13	64	23	46	Z26876	H.sapiens ribosomal protein L38.
32	CATGAGGTCTAGCC	H177610	15	27	63	43	41	X06547	Human class Pi glutathione S-transferase
33	CATGGTCCCTGGCC	H775658	31	26	63	32	96	X65923	H.sapiens fau mRNA.
34	CATGTAAGGAGCTGA	H796831	32	58	62	42	68	X77770	H.sapiens RPS26
35	CATGAACCTAAAAAA	H28673	7	14	60	17	39	W52460	zca45el1.r1 Soates senescent fibroblasts NbHSF Homo
								N92893	z671f03.s1 Homo sapiens cDNA clone 309077 3'.
36	CATGATTGTCCCCAG	H260949	17	13	57	9	91	X14957	Human hmg1 mRNA for high mobility group protein I.
37	CATGATAATTCTTTG	H200576	13	27	53	30	69	U14973	Human ribosomal protein S29
38	CATGCCCAAGCCAGT	H348756	18	23	53	5	85	U14990	Human XPIPO ribosomal protein S3 (rpS3)
39	CATGGAGTOGACAT	H6667269	15	13	49	13	45	L11566	Human ribosomal protein L18 (RPL18)
40	CATGTAAAAAAAGAA	H786433	13	8	48	10	26	H08238	y187a01.r1 Homo sapiens cDNA clone 44932 5'.
41	CATGGGTGGCACAA	H769605	19	21	48	21	47	X79239	H.sapiens ribosomal protein S13.
42	CATGGCCAGCCCCAGC	H6083595	6	21	47	11	15	U31657	Human unknown protein mRNA, partial cds.
								H41030	yn92a10.r1 Homo sapiens cDNA clone 175866 5'.
43	CATGGGCTCCACTG	H685384	14	24	47	23	15	M16660	Human 90-kDa heat-shock protein
44	CATGTCAACTCTGG	H853983	0	0	46	2	0	N57419	yw82e04.r1 Homo sapiens cDNA clone 258750 5' simil
45	CATGGATGCTGCCAA	H583573	6	12	46	27	18	X59357	Human mRNA for Epstein-Barr virus small RNAs (EBER)
								L21736	Homo sapiens acute myeloid leukemia associated protein
								D17652	Human mRNA for HBPI5/L22, complete cds.
46	CATGAAATAGGTCCAA	H51925	13	31	46	47	53	M64716	Human ribosomal protein S25
47	CATGGCTTTAAGGA	H653115	8	26	45	22	63	L06498	Human sapiens ribosomal protein S20 (RPS20)
48	CATGAATGCCAGCAG	H58533	2	12	44	6	27	M61831	Human S-adenosylhomocysteine hydrolase (AHCY)

49	CATGCCCAAGCTGGAA	H610939	8	18	43	0	22	Z21507	Human elongation factor 1 delta (EF 1 delta)
50	CATGGCCCGCCTTCG	H678334	6	6	42	8	18	M13392	Human ribosomal protein S17 mRNA
51	CATGTGAGGGATAA	H928269	14	26	42	15	42	M10036	Human triosephosphate isomerase
52	CATGTGACCTGTAA	H968173	14	24	42	35	49	K00558	human alpha-tubulin
53	CATGGCAAGAAGAA	H672265	8	7	41	12	87	L19527	Hom sapiens ribosomal protein L27 (RPL27)
54	CATGAACAAACAAA	H28737	6	14	40	14	15	X65237	H.sapiens Uba80 mRNA for ubiquitin.
55	CATGTATACGCTCAG	H837237	0	0	38	0	9	Unknown	
56	CATGTACAAAGAGAA	H801369	7	17	38	14	42	X69391	H.sapiens ribosomal protein L6.
57	CATGGTTAACGTCGC	H770486	8	17	38	12	25	H11182	yml14a02.r1 Homo sapiens cDNA clone 47866 5'
58	CATGGAAQACTCCTGC	H556943	13	12	38	32	10	T40302	ya31g04.r5 Homo sapiens cDNA clone 62262 5'
59	CATGATCACATCGC	H217399	3	10	37	10	14	H93371	yw54d05.r1 Homo sapiens cDNA clone 116240 5'
								T89480	yd98a05.r1 Homo sapiens cDNA clone 147370 5'
								T49412	ya75b09.r1 Homo sapiens cDNA clone 67481 5'.
								T51058	yb55a12.r1 Homo sapiens cDNA clone 75070 5'.
									Human heat shock protein hsp86.
60	CATGGAAAGCTTTGCA	H534522	11	13	37	14	25	X07270	Human ubiquitin carrier protein (E2-EFP)
61	CATGCTGGCGAGGCC	H501287	2	9	36	3	18	M91670	Human ubiquitin carrier protein (E2-EFP)
62	CATGCTGAGACAAAG	H493633	13	8	36	8	26	X74070	H.sapiens transcription factor BTTF 3.
63	CATGAACGACCTCGT	H24951	7	13	35	22	40	V00599	Human beta-tubulin
64	CATGGCATAGGCTGC	H602783	9	16	35	2	17	X84694	H.sapiens mRNA for elongations factor Tu-mitochondria
								L38995	Homo sapiens nuclear-encoded mitochondrial elongation factor homolog [human]
								S75463	P43=mitochondrial elongation factor homolog [human]
65	CATGCATCTTCACCA	H319302	12	14	35	9	16	H48893	yq80b12.r1 Homo sapiens cDNA clone 202079 5'
66	CATGCCCTGGCTGGCC	H621035	10	5	32	18	107	X71973	H.sapiens GPx-4 mRNA for phospholipid hydroperoxidase
67	CATGACAGGCTACGG	H762231	0	5	31	64	0	M95587	Human 22kDa smooth muscle protein (SM22)
68	CATGAAATGTAAGA	H528067	5	12	31	14	25	H80394	yu59g01.s1 Homo sapiens cDNA clone 230448 3'
								R74294	y157f06.r1 Homo sapiens cDNA clone 143363 5'.
69	CATGGAAAGCCAGCCA	H5333798	1	3	30	9	11	L36055	Human 4E-binding protein 1
70	CATGT'TACCATATCA	H988366	10	28	30	19	86	F17005	H.sapiens EST sequence (011-T1-18) from skeletal muscle
71	CATGTTGCTCACAAA	H1023249	1	2	29	1	2	H10519	Unknown
72	CATGTCCTGGCTCGA	H874103	0	6	29	0	0	Unknown	
73	CATGATTAACAAAGC	H246019	8	9	29	25	26	X04409	Human coupling protein G(s) alpha-subunit
74	CATGGAGATCTTTGT	H298495	2	7	28	8	24	X56698	Human UbAS2 adrenal mRNA for ubiquitin-52 amino acid
75	CATGGTCTGGCCAA	H777109	9	28	28	17	46	F19234	H.sapiens EST sequence (005-X3-16) from skeletal m
76	CATGGACGCTGGGGC	H552663	3	4	27	2	16	X52317	Human histone H2A.Z.

77	CATGCTAAACAAAAA	H458753	4	8	27	19	8	MJ33680	Human 26-kDa cell surface protein TAPA-1
78	CATGGGGTTTTATT	H704500	4	1	27	6	18	L28809	Homo sapiens dbpB-like protein
79	CATGCCGATCACCGG	H363799	7	9	27	7	15	M29536	Human translational initiation factor 2 beta subunit
80	CATGCCAACAAAGAA	H594051	6	9	26	7	29	W07137	2292a11.r1 Soares fetal lung NbHL19W Homo sapiens
								D20503	Human HL60 3'directed Mbol cDNA, HUMGS01477, clone
								N91592	Soares fetal lung NbHL19W Homo sapiens cDNA clone 303055 3'.
								yy84c07.s1	Homo sapiens cDNA clone 249420 3' similar to contains Alu repetitive element;
								H83884	
81	CATGCTCTACCCAC	H908373	7	11	26	11	13	Z22572	H.sapiens CDEI binding protein mRNA.
								L09209	Homo sapiens amyloid protein homologue mRNA, comp]
								L19597	Human binding protein mRNA, partial cds.
								S60099	APPH=amyloid precursor protein homolog [human, pla
								z506f02.r1	Soares fetal lung NbHL19W Homo sapiens
82	CATGGTTCCCCAAG	H733697	1	0	25	3	0	W07587	z506f02.r1 Soares fetal lung NbHL19W Homo sapiens
								N28502	yx36f06.r1 Homo sapiens cDNA clone 263843 5'
								N35630	yx62a03.r1 Homo sapiens cDNA clone 266284 5'
83	CATGCCCTGTCAGGCC	H358426	2	3	25	3	13	Z40265	H. sapiens partial cDNA sequence; clone c-1xe03.
								W02723	zc65c03.s1 Soares fetal heart NbHH19W Homo sapiens
								N24893	yx99h09.s1 Homo sapiens cDNA clone 269921 3'.
								N32178	yy25b09.s1 Homo sapiens cDNA clone 272249 3'.
								H21873	yj34b10.s1 Homo sapiens cDNA clone 160123 3' simili
84	CATGTCACTCATCTGA	H8655303	5	15	25	5	7	H26394	yj48e12.s1 Homo sapiens cDNA clone 161518 3' simili
								H69837	yj88d02.s1 Homo sapiens cDNA clone 212355 3' simili
								H70714	yu69b11.s1 Homo sapiens cDNA clone 239037 3' simili
									Human mRNA for neurite outgrowth-promoting protein.
85	CATGCCCTGCTTGT	H358783	5	8	25	16	31	X55110	
86	CATGCCGGGGCCCTC	H617048	1	1	24	0	1	X03168	Human mRNA for S-protein.
								zo32d09.s1	Stratagene colon (#937204) Homo sapiens cDNA clone 5688593
								3' similar to contains LTR7.11	LTR7 repetitive element
87	CATGTTGCTAAAAA	H1023233	2	1	24	2	2	AA143561	zo01g11.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 566468
								AA152342	3' similar to contains LTR7.13
								AA115727	LTR7 repetitive element;
								zj86h11.s1	Stratagene colon (#937204) Homo sapiens cDNA clone 511557
								yj61109.r1	3' similar to contains LTR7.11
88	CATGCCAAATCAGGA	H262987	6	2	24	5	15	R76502	LTR7 repetitive element
								T32681	EST52915 Homo sapiens cDNA 5' end similar to None.
								T34662	EST72468 Homo sapiens cDNA 5' end similar to None.
89	CATGGAAAGATGTGGC	H533435	1	5	23	4	7	H04634	yj49n03.r1 Homo sapiens cDNA clone 152117 5'.

							F00364	H. sapiens partial cDNA sequence; clone 76D12; ver	
90	CATGGTGCCTCATICA	H761150	0	8	23	6	H01503	yj21c05.s1 Homo sapiens cDNA clone 149384 3'.	
							H84813	yv86c02.s1 Homo sapiens cDNA clone 249602 3' simil	
							H84956	yv88107.s1 Homo sapiens cDNA clone 249829 3' simil	
91	CATGGCTTTACTTTCG	H654464	4	5	23	9	L38961	Homo sapiens putative transmembrane protein (BS)	
92	CATGTTTCTGAAAA	H106401	6	13	23	10	J04026	Human thioredoxin (TXN) mRNA	
93	CATGGTGCACACA	H1023250	1	4	22	0	D11078	Human RGH2 gene.	
94	CATGGATTCTCAGC	H589267	0	0	22	0	X53279	Human mRNA for placental-like alkaline phosphatase	
95	CATGAGGAGGGAGGC	H166539	2	3	22	2	M77836	Human pyrrole 5-carboxylate reductase mRNA,	
96	CATGGCTTAACCTGG	H651359	3	4	22	2	X07674	Human glutamate dehydrogenase.	
97	CATGCTCTCGAGAA	H490889	4	8	22	27	Y00433	Human mRNA for glutathione peroxidase	
98	CATGAGAACAAAACC	H132098	1	7	21	9	X67951	H. sapiens mRNA for proliferation-associated gene	
99	CATGCCCAAGGAGAA	H346761	3	3	21	2	U38846	Human stimulator of TAR RNA binding (SRB)	
100	CATGCACTTCAAGGC	H294155	0	3	20	47	D16933	Human HepG2 3' region cDNA, clone hmd4f11.	
101	CATGGGGAGAGAGG	H631131	2	3	20	4	U42376	Human retinoic acid induced RIG-E	
102	CATGTTACCTCCITC	H1989024	4	7	20	3	22	F17524	H. sapiens EST sequence (012-T2-32) from skeletal m
103	CAV'GACTCTGCCAAG	H1224449	4	7	20	3	7	Unknown	
104	CAV'G1C\GATGGCGT	H1861095	1	6	19	12	7	W52942	zc03105.r1 Soares parathyroid tumor NbHPA Homo sap
105	CATGGGCCCTT\TTT	H1679936	1	3	19	5	3	R21316	yg48111.r1 Homo sapiens cDNA clone 35517 5' simila
106	CAT'GTCGACGGCGTG	H951912	0	0	19	0	0	X00566	Human lipoprotein apoA1.
107	CATGCCCTGCTCCCTG	H386904	0	5	19	6	5	M80244	Human E16 mRNA
108	CATGGCCACACCCAC(C)	H1607318	2	6	18	18	H27927	yl58c11.s1 Homo sapiens cDNA clone 162452 3' simil	
109	CATGATTATT\TTCT	H249854	2	3	18	5	20	X57959	H. sapiens ribosomal protein L7.
110	CATGGAACCTGGGA	H529899	2	7	18	5	15	AA299898	EST12509 Uterus tumor 1 Homo sapiens cDNA 5' end
111	CATGGGGCTGATGTGG	H6866319	3	5	18	8	17	U09510	Human glycyl-tRNA synthetase.
112	CATGTCATAAAACAA	H855049	3	10	18	4	4	X76013	H. sapiens QRSHs mRNA for glutaminyl-tRNA synthetas
113	CATG\AAAGT\AAAGAT	H111785	0	7	17	0	5	W16529	zb10a1.r1 Soares fetal lung NbHHL19W Homo sapiens
							W35192	zc70bd5.r1 Soares fetal heart NbHHH19W Homo sapiens	
							W52451	zc45d09.r1 Soares senescent fibroblasts NbHSF Homo	
114	CATGCCACGGCTCAA	H288373	0	1	17	0	3	D38251	Human mRNA for RPBS (XAP4)
115	CATGAACTAATACTA	H28872	1	6	17	13	31	DS2570	Human fetal brain cDNA 5'-end GEN-08/G12.
							DS27558	Human fetal brain cDNA 5'-end GEN-087A08.	
116	CATGCTGTACCTGGAA	H504187	1	0	17	12	6	M22490	Human bone morphogenetic protein-2B (BMP-2B)

117	CATGGGACCCCCACCC	H398663	2	6	17	48	0	M12529	Human apolipoprotein E
118	CATGTAGAAAAATAA	H819213	0	1	16	2	7	X16539	H.sapiens RNA for neuroleukin gene.
								M27691	Human transactivator protein (CREB) mRNA, complete
119	CATGATCTTGAAGC	H228867	0	0	16	5	3	M86667	H.sapiens NAP (nucleosome assembly protein)
120	CATGCAGCTGGCCAT	H302741	0	1	16	14	0	X53743	H.sapiens mRNA for fibulin-1 C.
121	CATGATCTTGAAGC	H228867	0	0	16	5	3	Z2628	H.sapiens partial cDNA sequence; clone HEC059
121	CATGATCTTGAAGC	H228867	0	0	16	5	3	Z2628	H.sapiens partial cDNA sequence; clone HEC059
121	CATGATCTTGAAGC	H228867	0	0	16	5	3	Z2628	H.sapiens partial cDNA sequence; clone HEC059
122	CATGGTGAGGTGCC	H762554	2	10	16	3	5	U22055	Human 100 kDa coactivator mRNA
123	CATGGTGACCCCCAA	H762197	1	5	15	7	10	R91724	yp98e02.r1 Homo sapiens cDNA clone 195482 5' simili
								WS1770	zc48e02.r1 Soares senescent fibroblasts NbHSF Homo
								N42086	yy05603.r1 Homo sapiens cDNA clone 270317 5'
								Y94e02.r1	Homo sapiens cDNA clone 146882 5'
124	CATGGGACGAGCTGGA	H561787	0	5	15	2	4	R80990	y944f01.r1 Homo sapiens cDNA clone 198649 5' simili
125	CATGGGGCAGGGCT	H633002	1	6	15	8	7	F16507	H.sapiens EST sequence (147-09) from skeletal musc
								T50201	yb77n05.r1 Homo sapiens cDNA clone 77241 5' simila
								R95056	y944f01.r1 Homo sapiens cDNA clone 198649 5' simili
								S85655	Human prohibitin
126	CATGATTGGCTTAAA	H256497	1	8	15	0	16	S85655	Human unknown protein from clone pHGR74 mRNA, comp
127	CATGGAAAAATTAA	H524541	0	3	15	4	0	M38188	Human unknown protein from clone pHGR74 mRNA, comp
128	CATGGATCACAGTTT	H577840	0	5	15	0	0	Y07111	Human lactate dehydrogenase B (LDH-B).
129	CATGAGCCTTTGTTG	H155632	1	2	15	23	5	D83174	Human collagen binding protein 2.
130	CATGTCGACCTCC	H910430	0	0	15	0	2	X70940	H.sapiens elongation factor 1 alpha-2.
131	CATAACAGAACCAA	H18469	0	2	15	3	11	T30623	EST19638 Homo sapiens cDNA 5' end similar to None.
								HUMGS004747	Human Gene Signature, 3'-directed cDNA
								C01011	sequence.
								zm62d06.s1	Stratagene fibroblast (#937212) Homo sapiens cDNA clone
								AA111865	530219 3'
								W56516	2d16c08.r1 Soares fetal heart NbHH19W Homo sapiens
132	CATGTCAGGACC	H980130	1	1	14	5	11	H30299	yo77d04.r1 Homo sapiens cDNA clone 183943 5' simili
133	CATGTAGATAATGCC	H822331	1	4	14	6	14	H50265	yo28c02.r1 Homo sapiens cDNA clone 179234 5'.
								W01702	za37a06.r1 Soares fetal liver spleen INF1S Homo sa
								W04495	za58b10.r1 Soares fetal liver spleen INF1S Homo sa
								W23528	ze71g11.s1 Soares fetal heart NbHH19W Homo sapiens
134	CATGCTTAATCCTGA	H508767	0	6	14	6	12	D11838	Human HepG2 3'-directed Mbol cDNA, clone hm02e09.
135	CATGGGAGAGGACC	H673954	0	6	14	5	11	X75598	H.sapiens nm23H1 gene.
136	CATGTGACTGAAGCC	H925194	0	5	14	3	0	T35470	EST83850 Homo sapiens cDNA 5' end similar to None.
								T35536	EST86951 Homo sapiens cDNA 5' end similar to None.

			T35545	EST87066 Homo sapiens cDNA 5' end similar to None.
137	CATGGATAGTTGTOG	H576495	0 1 14 2 1	H01694 yj33g11.s1 Homo sapiens cDNA clone 150596 3'.
				N78851 zb17d08.s1 Homo sapiens cDNA clone 302319 3'.
				N78931 za921n06.s1 Homo sapiens cDNA clone 300059 3'.
138	CATGGTGGGACAC	H765573	1 4 13 6 13	H90469 yv01e06.r1 Homo sapiens cDNA clone 241474 5' simil
				R76765 yi63g01.r1 Homo sapiens cDNA clone 143952 5' simil
			T35045	EST79335 Homo sapiens cDNA similar to None..
139	CATGTGGGTACCTT	H961304	0 6 13 2 9	H51447 yo31a05.r1 Homo sapiens cDNA clone 179504 5'.
				W46469 zc32c05.r1 Soares senescent fibroblasts NbHSF Homo
				W51800 zc48e04.r1 Soares senescent fibroblasts NbHSF Homo
				R33196 yh77f08.r1 Homo sapiens cDNA clone 135783 5'.
140	CATGTTCAATTATAAT	H1003313	1 10 13 8 10	J04799 Human prothymosin-alpha
141	CATGCTTCTGTACTT	H515821	0 5 13 8 12	D80012 Human KIAA0190 protein
142	CATGACTGGCGAACGT	H125315	1 5 13 2 5	U02389 Human hLON ATP-dependent protease mRNA
			T29819	EST96617 Homo sapiens cDNA 5' end similar to ATP-d
				X14850 Human histone H2A.X.
143	CATGGAAAGAGCTGA	H526495	1 3 13 1 6	EST28e05 Homo sapiens cDNA clone 28c05
144	CATGCAACTCTATGG	H269775	0 1 13 1 2	J04088 Human DNA topoisomerase II (top2) mRNA
145	CATGAAATTGGTGC	H16303	0 0 13 0 0	K01891 Human beta globin retrovirus-like repetitive element
				X74796 H.sapiens p85Mc1 mRNA.
146	CATGCTGGCACTTACT	H406114	1 2 13 1 8	D28480 Human mRNA for hMCM2, complete cds.
				D55716 Human B lymphoma mRNA for PIcdc47, complete cds.
				T30327 EST14849 Homo sapiens cDNA 5' end similar to None.
147	CATGAAATTGGAGAA	H53129	0 5 13 6 11	T34394 EST66542 Homo sapiens cDNA 5' end similar to None.
				T47475 yb14c03.r1 Homo sapiens cDNA clone 71140 5'.
				T50289 yb14h08.r1 Homo sapiens cDNA clone 71199 5'.
				Unknown
148	CATGTCGGGGGGCC	H890535	0 1 13 2 1	Unknown
149	CATGGGGCAGCCG	H697495	0 2 13 2 7	H55914 Unknown
150	CATGCCAAGAAAGAA	H329737	0 6 12 4 4	U33818 Human inducible poly(A)-binding protein
151	CATGTTTTGATAAA	H1048113	0 5 12 4 12	D16891 Human HepG2 3' region cDNA, clone 1mnd2c11.
152	CATGTCGGAGGCC	H977034	0 0 12 0 0	M29882 Human apolipoprotein A-II
153	CATGCCCACGGTTAG	H345789	0 5 12 5 4	Z49216 H.sapiens mitoxantrone-resistance associated mRNA.
154	CATGAAATTCTCCCTAA	H63325	0 1 12 1 1	Unknown
155	CATGGACCTCCGGGC	H548203	0 0 12 0 0	Unknown
156	CATGTGAATCTGGGT	H921067	0 2 11 7 8	M93631 Human set gene

157	CATGTCCTTCTCCAC	H88418I	0	5	11	14	8	X15804	Human alpha-actinin.
158	CATGTATCTGCTAC	H83348S	0	4	11	2	3	T19569	609F Homo sapiens cDNA clone 609 similar to SET protein
159	CATGACGGTTCTTTC	H114144	0	0	11	1	17	Z36249	HHEA18W H. sapiens partial cDNA sequence; clone HEA18W;
160	CATGCCCTGAGTCAG	H33858I	0	0	11	0	0	AA207189	zq73e07.r1 Stratagene neuroepithelium (#93723) Homo sapiens cDNA clone 647268 5' similar to TR:E16910 E16910 ENDONUCLEASE.;
161	CATGGAATTCTCGAA	H540023	0	3	11	3	1	[N]80776	zq8h04.s1 Homo sapiens cDNA clone 300631 3'.
								ze90d01.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone	
								AA025809	3666241 3'
								z885h05.s1 Soares NbHTGBC Homo sapiens cDNA clone	704313
								AA279492	3'
162	CATGGACGCCGAACT	H550274	0	1	11	6	0	Unknown	
163	CATGGGGGACTGGGC	H631275	0	0	11	1	0	AA098867	z834f04.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone 489933 3' similar to SW:A5 XENLA P28824 A5 PROTEIN PRECURSOR
164	CATGGAACACACAG	H656453	0	1	11	0	2	R48460	yj67c12.r1 Homo sapiens cDNA clone 153814 S.
								zp01c02.r1 Stratagene ovarian cancer (#937219) Homo sapiens cDNA clone 595106 5'	
								AA171819	
165	CATGTTGGAGCCC	H1022502	0	2	11	2	1	L19183	HUMMAC30X Human MAC30 mRNA, 3' end.
								H61710	yj24a07.s1 Homo sapiens cDNA clone 2061196 3'
								H77330	yu1lf12.s1 Homo sapiens cDNA clone 233519 3'.
								N6982	zal8d05.s1 Homo sapiens cDNA clone 292905 3'.
								H41078	yp52e11.s1 Homo sapiens cDNA clone 191060 3' simili
166	CATGGCAGACATTGA	H598335	0	7	10	4	9	yp52e11.s1	Homo sapiens cDNA clone 152116 5'.
167	CATGCCACTGGAAAA	H294601	0	1	10	5	0	H04630	yj49g03.r1 Homo sapiens cDNA clone 144238 5'.
168	CATGGGTTGGCAGG	H719035	0	0	10	24	0	R77027	yj66e12.r1 Homo sapiens cDNA clone 144238 5'.
169	CATGTTCTGGGGC	H1007018	0	1	10	4	12	R32331	yh68g02.s1 Homo sapiens cDNA clone 14930 3' simili
170	CATGCTGCCGAGCT	-497192	0	8	10	1	10	T86666	yd77g07.r1 Homo sapiens cDNA clone 114300 5' simili
171	CATGGTCAAAAAAA	H753665	0	2	10	3	7	S77357	transcript ch111 [human, RF1, RF48 stomach cancer c
172	CATGCTGTCAGCCA	H506149	0	6	10	6	1	M34338	Human spermidine synthase
173	CATGTA GTT TGG	-835515	0	1	10	0	2	U03911	Human mutator gene (hMSH2)
174	CATGATGTTAGTAGTG	H242380	0	5	10	9	7	D55671	Human heterogeneous nuclear ribonucleoprotein
175	CATGGACCCACTACC	H545906	0	1	10	3	1	J03369	Human lymphocyte activation antigen 4E2 large subunit
176	CATGAAATAGGTTT	H12992	0	1	10	6	3	DS3402	Human fetal brain cDNA 5'-end GEN-108D03.
								T61971	yb96f02.r1 Homo sapiens cDNA clone 79035 5'.
								D61243	Human fetal brain cDNA 5'-end GEN-171G06.
								N77240	yv4402.r1 Homo sapiens cDNA clone 255571 5'.
177	CATGGGGGGCTGGT	H371131	0	0	10	1	2	T35761	EST90898 Homo sapiens cDNA 5' end similar to EST c

		H555168	0	8	10	3	T31901	EST40719 Homo sapiens cDNA 5' end similar to None.
178	CATGGACTGAGCTTG	H6481	0	2	10	1	X98264	IHSMP41 H.sapiens mRNA for M-phase phosphoprotein, mpp4, 1523bp
179	CATGAAACGCCAAT	H232027	0	4	10	7	1	Unknown
180	CATGATGAGCCCGG	H610614	0	9	10	6	2	D87433 Human mRNA for KIAA0246 gene, partial cds
181	CATGGCCACATCCC(A)							

Table 3 - Transcripts decreased in colon cancer

**Transcripts decreased in only colon primary tumors
compared to normal colon (51 genes)**

NC: Normal Colon
 TU: Colon Primary Tumor
 CL: Colon Cancer Cell Line
 PT: Pancreatic Primary Tumor
 PC: Pancreatic Cancer Cell Line

#	Tag sequence	Tag Number	NC	CT	CL	PT	PC	Accession	Gene Name
1	CATGGCTTTATTGT	H654591	184	110	185	203	111	X00351	Human mRNA for beta-actin.
2	CATGCTAGCCTCACG	H468434	170	61	130	80	75	X04098	Human mRNA for cytoskeletal gamma-actin.
3	CATGCAAACCATCCA	H263478	137	83	245	36	502	X12883	Human mRNA for cytokeratin 18.
4	CATGCTTCAGCTAA	H513181	64	23	36	53	104	D0017	Human lipocortin II mRNA.
5	CATGCCCAAGTTGCT	H348922	61	27	38	37	46	X04106	Human mRNA for calcium dependent protease (small subunit)
6	CATGGATGACCCCCC	H581974	53	4	42	6	32	Z65513	H.sapiens CpG Island DNA genomic MseI fragment, cl
7	CATGCTGTACAGACA	H504098	50	22	26	6	32	W61077	z30302.r1 Soares fetal heart NbHL19W Homo sapiens
8	CATGGGGACTCACTG	H427848	47	15	26	18	4	D60944	Human fetal brain cDNA 5'-end GEN-141D02.
9	CATGCCCGGGAA	H349801	47	10	21	15	8	Unknown	
10	CATGCCTGAAAGGG	H387107	46	19	39	47	14	J02783	Human thyroid hormone binding protein (p55) mRNA,
11	CATGCCCTGCCATC	H621140	46	19	24	16	20	N33042	Y05d05.s1 Homo sapiens cDNA clone 270345.3'
12	CATGAGCAGGACAG	H150053	43	12	26	24	20	W07627	zb06a05.r1 Soares fetal lung NbHL19W Homo sapiens
13	CATGAACGTGCAAGGG	H28235	42	6	57	2	10	X01630	Human mRNA for argininosuccinate synthetase.
14	CATGGCCGCCCTGCA	H615802	40	12	16	17	8	D43682	Human mRNA for very-long-chain acyl-CoA dehydrogen
15	CATGTGGGAGAGGA	H960651	40	5	36	10	5	D29146	Human keratinocyte cDNA, clone 173.
16	CATGGCTGCCCTTGA	H648575	38	10	20	6	39	K00557	human alpha-tubulin mRNA, 3' end.
17	CATGCGGCACTGCC	H955615	37	5	15	19	18	AA341633	A341633 EST7188 Fetal kidney II Homo sapiens cDNA 5' end
18	CATGCGTCCCTGGGG	H456167	35	4	36	8	0	X77956	H.sapiens 1d1 mRNA.
19	CATGTGTCATCTGGTC	H937452	33	9	14	13	10	X87949	H.sapiens mRNA for BiP protein.
20	CATGGTGACCTCCTT	H755160	33	7	12	6	31	J04823	Human cytochrome c oxidase subunit VIII (COX8) mRNA
21	CATGTTAGCTCTATGG	H826831	33	5	18	9	13	U16798	Human Na,K-ATPase alpha-1 subunit mRNA, complete c
22	CATGGTGGCTAGGG	H760267	29	7	26	19	27	RS0350	gb R50350 RS0350 y159c04.s1 Homo sapiens cDNA clone 153030 3'.
								RS0013	y159c04.r1 Homo sapiens cDNA clone 153030 5'.
								C02981	Human Heart cDNA, clone 3NHC0642.

23	CATGGGGCGCTGTGG	H694767	28	6	20	6	26	T31329	EST30445 Homo sapiens cDNA 5' end similar to ubiquinol cytochrome-c reductase, 6.4 kDa.
		H382130	27	6	12	3	19	Unknown	
24	CATGCCTCCAGTAC	H388627	27	3	14	8	7	H63643	yr34d11.r1 Homo sapiens cDNA clone 207189 5' simili
25	CATGCCCTGACAGC	H856806	24	5	8	17	11	W60924	zd27c08.r1 Soares fetal heart NbHH19W Homo sapiens
26	CATGTCACAGTGCT	H49320	23	5	7	11	13	L25081	Human GTPase (rhoC) mRNA, complete cds.
27	CATGAATAAAGGCTA	H1031929	23	5	13	15	25	D45887	Human mRNA for calmodulin, complete cds.
28	CATGTTGGTTGAA	H44179	23	4	10	16	12	N62815	yy66b11.s1 Homo sapiens cDNA clone 278493 3'.
29	CATGAAGGTAGCAGA	H769707	21	2	5	14	10	R68653	yl1b06.s1 Homo sapiens cDNA clone 139187 3'.
30	CATGGTGTGGGGT	H936344	21	1	5	7	13	X90858	H.sapiens mRNA for uridine phosphorylase.
31	CATGTCAGGGCCTG	H238697	20	2	4	0	3	H19458	yn54c02.s1 Homo sapiens cDNA clone 172226 3' simili
32	CATGATGGCACGGAG	H608326	20	1	6	1	9	T30468	EST17149 Homo sapiens cDNA 5' end similar to None.
33	CATGGCCAGACACCC	H515990	20	0	17	3	0	V00491	Human gene for alpha 1 globin.
34	CATGCTTCTTGCCCC	H86453	19	2	7	22	9	X51345	Human jun-B mRNA for JUN-B protein.
35	CATGACCCACGTCAG	H686458	18	3	4	5	8	R72429	yj90e08.s1 Homo sapiens cDNA clone 156038 3'.
36	CATGGCTGCCCTGCC							R48449	yj67b10.s1 Homo sapiens cDNA clone 153787 3'.
								R52128	yj72b03.s1 Homo sapiens cDNA clone 154253 3'.
37	CATGGAGGGCGCGGTG	H567660	18	2	14	6	16	X12910	Human Na ⁺ ,K ⁺ ATPase gene exons 1 - 3 (alpha III is
38	CATGGATGAAATCCGG	H581847	17	1	3	2	2	Unknown	
39	CATGAGCCCGACCAC	H153109	16	2	11	7	5	X81006	H.sapiens HCG I mRNA.
40	CATGGTTAGCTGTC	H774780	16	2	12	3	12	L08666	Homo sapiens porin (por) mRNA, complete cds and tr
41	CATGCCCTCGCTCACT	H383443	16	1	8	6	7	U04627	Human 78 kDa gastrin-binding protein mRNA, complet
42	CATGCAAATAAAAGT	H265219	15	1	8	9	0	U17077	Human BENE mRNA, partial cds.
43	CATGTCGCCGCCGCA	H940378	15	1	8	0	3	U28369	Human semaphorin V mRNA, complete cds.
44	CATGGCAAGGGCCTC	H601752	15	0	6	4	3	D12038	Human HepG2 3'-directed Mbol cDNA, clone s150.
45	CATGCTGGCCCTGAA	H502137	14	0	3	3	18	U77396	Human TNF-alpha inducible responsive element mRNA,
46	CATGGCCATTGGAG	H611305	13	1	6	13	17	Z229093	H.sapiens EDDR1 gene for receptor tyrosine kinase.
47	CATGAAGAAAACCTC	H32792	12	0	2	2	0	T94990	yj38a04.s1 Homo sapiens cDNA clone 119982 3'.
								N69310	za25g05.s1 Homo sapiens cDNA clone 293624 3'.
								zb86e03.s1 Soares senescent fibroblasts NbHSF Homo sapiens cDNA	
								N98502	clone 310492 3'.
48	CATGGAATGATTCT	H538878	12	0	6	6	14	F18838	H.sapiens EST sequence (007-X1-01) from skeletal m
49	CATGGCCTGGCTCTT	H621272	12	0	3	3	8	AA226928	zz21b10.s1 Stratagene NT2 neuronal precursor 937230 Homo sapiens
50	CCATGGCCACACAG	H610579	11	0	1	0	0	M60047	cDNA clone 664027 3'.

Si | CATGGGATTCCAGTT H671052 11 0 4 3 2 WS2456 zc45e09.r1 Soares senescent fibroblasts NbHSF Homo

Transcripts decreased in both colon primary tumors and colon cancer cell lines compared to normal colon (130 genes)

NC: Normal Colon
 TU: Colon Primary Tumor
 CL: Colon Cancer Cell Line
 PT: Pancreatic Primary Tumor
 PC: Pancreatic Cancer Cell Line

#	Tag Sequence	Tag Number	NC	TU	CL	PT	PC	Accession	Gene Name
1	CATGCCCTCAGGCTAC	H382109	803	191	304	136	663	X12882	Human mRNA for cytokeratin 8.
2	CATGCTTAAGACTTCA	H460926	708	282	402	142	497	F15636	H.sapiens mitochondrial EST sequence (002T15)
3	CATGGCCCAGGTCAC	H610997	705	58	2	2	1		Unknown
4	CATGACCCCTGGCCA	H90022	512	348	93	43	235	F16940	H.sapiens mitochondrial EST sequence (009-T1-2) f
5	CATGACATGGGTGA	H81583	504	92	4	0	0	M10050	Human liver fatty acid binding protein (FABP) mRNA
6	CATGGCGAACCCCTG	H622680	486	108	27	30	13	S61953	c-erbB3=receptor tyrosine kinase (alternatively sp
7	CATGAGCCCTACAAA	H153361	367	242	132	71	204	F15506	H.sapiens mitochondrial EST sequence (1-t-02) from
8	CATGGACCCAAGATA	H545828	276	131	0	7	0	T39321	ya01c01.r2 Homo sapiens cDNA clone 60480 5'.
								H24673	y41a01.s1 Homo sapiens cDNA clone 160776 3'.
								HUMGS02706	Human colon 3'directed Mbol cDNA, HUMGS02706,
								D25586	clone cm1673.
								T96160	ye09b02.s1 Homo sapiens cDNA clone 117195 3'.
9	CATGGCCGGTGGGC	H617195	256	88	148	144	178	X64364	H.sapiens mRNA for M6 antigen.
10	CATGTTGGGTTTCC	H1026814	202	75	84	235	369	M11146	Human ferritin H chain mRNA, complete cds.
11	CATGCTCCACCGAA (or G)	H479577	201	120	0	11	3	L15203	Human secretory protein (P1.B) mRNA, complete cds.
12	CATGGCAGGCCCTCA	H600670	196	68	6	32	19	X93036	H.sapiens mRNA for MAT8 protein..
13	CATGATCGTGGGGGG	H224923	194	24	97	40	39	H93844	yv07b09.r1 Homo sapiens cDNA clone 242081 5' similar to SP:A39484
14	CATGCAAGCATCCCC	H271574	190	99	101	30	139	F17001	A39484 ANDROGEN-WITHDRAWAL APOPTOSIS PROTEIN RVPI.
15	CATGGACATCAAGTC	H544012	189	33	76	57	219	Y00503	H.sapiens mitochondrial EST sequence (011-T1-13) f
16	CATGCTTGTGGTTAA	H782013	178	110	14	340	139	W16632	z605a11.r1 Soares fetal lung N6H19W Homo sapiens cDNA clone 301148 5' similar to gb:V00567 BETA-2-MICROGLOBULIN PRECURSOR (HUMAN).
								AA143804	z031h04.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 588535 3'

71	CATGCCAAAGCTATA	H328308	38	11	6	2	18
72	CATGGGGGAGTCGGG	H434907	38	8	6	0	M35252 Human CO-029.
73	CATGGCCGTGGAGAG	H618121	38	9	5	17	R87448 ym89c10.s1 Homo sapiens cDNA clone 166098 3'.
74	CATGGCCCCGGAAGCC	H349706	37	6	0	0	X79882 H.sapiens lrp mRNA.
75	CATGATTTCAAAGATG	H259108	37	1	0	0	Unknown
76	CATGGCCCAGTGGCT	H611050	37	3	0	2	Unknown
77	CATGATGGTGGGGGA	H241323	36	2	6	25	H.sapiens zinc finger transcriptional regulator mRNA
78	CATGCCTGCCCCCT	H386390	35	12	7	7	Human ERK1 mRNA for protein serine/threonine kinase
79	CTAGTGGAAAGTGAA	H950457	34	1	1	12	Human cellular oncogene c-fos (complete sequence).
80	CATGGTCATCACCAAC	H740629	34	0	0	0	U34279 Human utroguanylin mRNA, complete cds.
81	CATGCTTATGGTCCC	H511670	34	1	0	3	I AA287021 z557c03.s1 Soares NbHTGBC Homo sapiens cDNA clone 701572 3'
82	CATGCTGGCCCTCTG	H502136	34	3	4	11	5 T55226 repetitive element
							yf536e10.s1 Homo sapiens cDNA clone 26129 3' similar to gb:X07173
							R37446 INTER-ALPHA-TRYPSIN INHIBITOR COMPLEX COMPONENT II
							AA406180 zug65c08.s1 Soares testis NHT Homo sapiens cDNA clone 742262 3'
83	CATGGCCCAGGGCCC	H610982	33	3	0	0	R09752 Unknown
84	CATGTTTTACTGAT	H1047673	33	7	0	4	R81530 Yf02b10.r1 Homo sapiens cDNA clone 147547 5'
							T32348 EST47211 Homo sapiens cDNA 3' end similar to None..
							zd17802.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone
							W57810 340946 3'
							z147e12.s1 Soares ovary tumor NbHOT Homo sapiens cDNA clone
							AA398327 725518 3'
85	CATGCCCTGCTTGTGCG	H387054	32	2	1	6	X63187 H.sapiens HE4 mRNA for extracellular proteinase inhibitor homologue
86	CATGACCTGGGGAGC	H96931	32	6	4	8	Unknown
87	CATGCCCTCAAATCA	H390158	31	1	0	0	yg52g07.s1 Homo sapiens cDNA clone 36232 3' similar to gb:M33987
88	CATGTCGGAGCTGTT	H893564	30	1	4	7	R46266 CARBONIC ANHYDRASE 1
							H98618 yx12a06.s1 Homo sapiens cDNA clone 261490 3'.
							z097h01.s1 Striagene ovarian cancer (#937219) Homo sapiens cDNA
							AA171705 clone 594865 3'
							H99212 yx15g08.s1 Homo sapiens cDNA clone 261854 3'.

								zk10e12.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone
89	CATGGGAGGTGGGGC	H666539	30	6	5	32	22	AA029975.470158 3'
90	CATGTTCACTAAC	H1003970	30	7	3	16	17	M75161 H.sapiens granulin mRNA, complete cds.
91	CATGGTCTGGGGAT	H752297	29	1	3	9	3	T060135 gb U67963 HSU67963 Human lysophospholipase homolog (HU-K5)
								T30403 mRNA
92	CATGTTAACCCCTCC	H984414	29	5	0	18	0	R23395 RIBONUCLEASE PANCREATIC PRECURSOR (HUMAN)
								R69445 RIBONUCLEASE PANCREATIC PRECURSOR (HUMAN):
								yj82c08.s1 Homo sapiens cDNA clone 55342 3' similar to gb:D26129
								yj82b01.s1 Homo sapiens cDNA clone 45969 3' similar to gb:D26129
								R79191 RIBONUCLEASE PANCREATIC PRECURSOR (HUMAN);
								yj56c03.s1 Homo sapiens cDNA clone 52740 3' similar to gb:D26129
								R49965 RIBONUCLEASE PANCREATIC PRECURSOR (HUMAN);
								zv35h12.r1 Soares ovary tumor NbHOT Homo sapiens cDNA clone
								755687 5' similar to TR:G459890 G459890 OVEREXPRESSED IN
93	CATGATGACGCTCAC	H231029	28	5	5	4	6	AA410947 TESTICULAR TUMORS
								H02320 yj40c11.r1 Homo sapiens cDNA clone 51220 5'
								zv12g08.r1 Stratagene colon (#937204) Homo sapiens cDNA clone
								\$86718 5' similar to TR:G459890 G459890 OVEREXPRESSED IN
								AA130551 TESTICULAR TUMORS.
								zk69e08.s1 Soares fetal heart NbHH19V Homo sapiens cDNA clone
94	CATGCACCTGTCATC	H286420	28	5	0	5	4	zd33c10.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone
								AA053322 488102 3' similar to contains Alu repetitive element
								V00594 Human mRNA for metallothionein from cadmium-treated cells
95	CATGGATCCCAACTG	H578824	27	1	1	24	17	yp21d05.r1 Homo sapiens cDNA clone 188073 5' similar to gb:J05021
								EZRIN
96	CATGCTTAGAGGGCT	H510123	27	1	5	9	6	emb Y09616 HSICE H.sapiens mRNA for putative carboxylesterase
97	CATGATGCCCATAC	H238925	27	4	3	1	0	
98	CATGGCAAGAAAGTG	H591884	27	1	0	2	0	V00497 Human messenger RNA for beta-globin.

99	CATGTTACCTCTGATT	H810468	27	5	7	11	12	X65614	H.sapiens mRNA for calcium-binding protein S100P.
100	CATGATGATGGCACC	H233106	26	0	2	0	2		
101	CATGTTCTGTAGCCC	H1014566	25	5	0	4	0		emb Z69881 HSERCA3M H.sapiens mRNA for adenosine triphosphatase, calcium
102	CATGCCCTGTCGCCA	H388382	24	1	2	1	3	T96568	ye65c02.r1 Homo sapiens cDNA clone 122594 5'.
								T87539	yd89f09.s1 Homo sapiens cDNA clone 115433 3'.
103	CATGTATGATGAGCCA	H844682	23	4	0	1	0		gb AA367726 AA347726 EST54132 Fetal heart II Homo sapiens cDNA 5' end similar to transmembrane secretory component
104	CATGGCTGCCAAAGCT	H500747	23	0	0	0	0		
105	CATGGCTGATTCCCA	H517078	23	4	4	17	7	L42379	Homo sapiens bone-derived growth factor (BPGF-1) m
106	CATGGCTTGACATACC	H516402	22	0	0	7	2	X668277	H.sapiens CL 100 mRNA for protein tyrosine phosphatase hydrolase
									Human N-benzoyl-L-tyrosyl-p-amino-benzoic acid
107	CATGGCTGGCACATT	H649492	22	5	0	0	0	M82962	alpha subunit (PPH alpha) mRNA, complete cds
108	CATGTCCTGAATTATG	H909556	21	1	1	1	1	X16354	Human mRNA for transmembrane carnoembryonic antigen (CEA)
									H.sapiens mRNA for Gal-beta(1-3/1-4)GlcNAcAlpha-2,3-sialyltransferase
109	CATGGGAAGGCACT	H657554	21	1	1	3	3	X74570	yo45d01.s1 Homo sapiens cDNA clone 180865 3' similar to contains PTRS repetitive element
110	CATGGCTCTCCCCA	H646998	20	2	0	1	0	R87768	yo36g07.s1 Homo sapiens cDNA clone 180060 3' similar to contains PTRS repetitive element
									R83880
111	CATGAAATCTGGCAC	H114245	20	2	0	4	3	L20826	Human I-plastin mRNA, complete cds.
112	CATGTAATTGCATT	H802708	19	2	0	1	7	Z50731	HS34BMR H.sapiens mRNA for B4B
									U77085
									Human epithelial membrane protein (CL-20) mRNA, complete cds
									Y075909
									HSPAPR H.sapiens mRNA for Progression Associated Protein
113	CATGGTGGGGCCC	H764570	18	1	1	8	2	R48329	yj64g10r1 Homo sapiens cDNA clone 153570 5'.
									EST10a24 Clontech adult human fat cell library HU 1108A Homo
114	CATGTTATGGTGTGA	H998127	17	0	0	1	0	T27534	sapiens cDNA clone 10a24.
115	CATGGGAGAAACAGC	H6633571	17	1	2	4	0	T86124	yd84b04.s1 Homo sapiens cDNA clone 114895 3'.
									z015g05.s1 Stratagene colon (#937204) Homo sapiens cDNA clone
									AA131008 587000 3'
									R49845 yj56g11.s1 Homo sapiens cDNA clone 152996 3'.
									T57044 ya84h01.s1 Homo sapiens cDNA clone 68401 3'.
116	CATGCCAACACCCAGC	H328787	17	1	0	0	0		
117	CATGAGGTGACTGGG	H178299	17	0	0	0	0		
118	CATGGCCATCCTCCA	H609654	16	0	0	0	0		gb R73013 R73013 yj94a09.r1 Homo sapiens cDNA clone 156376 5'.

119	CATGTTCTCGTCGC	H1039799	15	1	0	4	4	M69013	Human guanine nucleotide-binding regulatory protein
120	CATGTCAGAGCCCTG	H860776	15	1	1	0	0	Unknown	
								yy72h06.s1 Soares fetal liver spleen INFLS Homo sapiens	
								cDNA clone 248315 3' similar to contains element PTR7 repetitive element	
121	CATGTTCCGGCTTCC	H1006014	14	1	0	0	2	N58523	
122	CATGTTACGGTGTGGG	H814011	14	1	0	0	0	Unknown	
123	CATGGCTCAGAACTTG	H477216	14	0	1	4	13	Unknown	
124	CATGGGACTAAATGA	H662343	13	1	0	1	0	M29540	Human carinoembryonic antigen mRNA (CEA), complete cds.
								HUMGS04154 Human colon 3'directed Mbol cDNA, HUMGS04154,	
125	CATGGCTTGGGATT	H653988	12	0	0	0	1	D23786	yc36e02.r1 Homo sapiens cDNA clone 82778 5' similar to gb:L07765 clone cm0215.
								T73613	LIVER CARBOXYLESTERASE PRECURSOR
126	CATGACCCAAC TGCC	H86138	12	0	0	0	1	Unknown	
127	CATGCTGAA CCTCCC	H491894	12	0	0	2	2	bbiT95615 T95615 ye40e03.s1 Homo sapiens cDNA clone I 20220 3'.	
128	CATGCAAAGACTTCT	H271102	11	0	0	2	0	AA226797	zr19b11.s1 Stratagene NT2 neuronal precursor 937230 Homo sapiens cDNA clone 663837 3'
								AA218730	AA218730 cDNA clone 649969 3'
129	CATGGTCCGAGTGCA	H743610	11	0	0	8	5	yp57f10.r1	Homo sapiens cDNA clone 191563 5' similar to gb:M90657
130	CATGTTGGTTTCACT	H1043445	11	0	0	0	0	Unknown	TUMOR-ASSOCIATED ANTIGEN L6 (HUMAN);

**Transcripts decreased in only colon cancer
cell lines compared to normal colon (78 genes)**

NC: Normal Colon
TU: Colon Primary Tumor
CL: Colon Cancer Cell Line
PT: Pancreatic Primary Tumor
PC: Pancreatic Cancer Cell Line

#	Tag sequence	Tag Number	NC	TU	CL	PT	PC	Accession	Gene Name
1	CATGCCACCTTAATTGG	H285759	612	755	411	161	333	F15516	H.sapiens mitochondrial EST sequence (1-t-12)
2	CATGATTTGAGAACG	H260227	603	566	158	249	173	F12396	H. sapiens partial cDNA sequence; clone c-39e04.
3	CATGTGATTTCACCT	H933704	452	595	235	80	314	L08441	Human autonomously replicating sequence (ARS) mRNA
4	CATGTTCAACACCT	H1002566	444	357	114	64	191	F15553	H.sapiens mitochondrial EST sequence (001T14)
5	CATGCCACTGCACTC	H335432	385	402	223	278	132	X51525	Human cortex mRNA containing an Alu repetitive element
6	CATGACTAACACCTT	H114966	369	446	171	76	161	F16402	H.sapiens mitochondrial EST sequence (141-20)
7	CATGCACTACTCACC	H291282	293	527	78	14	83	U09500	Human mitochondrial cytochrome b gene, partial cds
8	CATGAAAACATTCTC	H11272	200	169	98	17	223	F15744	H.sapiens mitochondrial EST sequence (101-03)
9	CATGCCTATAAGGAA	H478249	184	127	70	21	75	F15511	H.sapiens mitochondrial EST sequence (022T19)
10	CATGTCGAAGCCCCC	H885334	147	183	94	49	57	F18587	H.sapiens mitochondrial EST sequence (022T19)
11	CATGACGGAGGGAGA	H103075	145	160	91	69	47	H03983	yJ47a08.s1 Homo sapiens cDNA clone 151862 3'
12	CATGTTGCCAGGCT	H1025322	124	194	63	111	51	X74301	H.sapiens mRNA for MHC class II transactivator.
13	CATGTTGGTAAGGA	H1027395	98	106	17	183	107	M17733	Human thymosin beta-4 mRNA, complete cds.
14	CATGATCACGCCCTC	H214616	97	186	17	41	49	U66913	Human EST overexpressed in pancreatic cancer (x31)
15	CATGTGCCCTGCCAAC	H941638	67	48	25	75	34	X05607	Human mRNA for cysteine proteinase inhibitor precursor
16	CATGAGACCCACAAC	H136465	64	121	28	24	15	D54113	Human fetal brain cDNA 5'-end GEN-129B05.
17	CATGAGTTGTTAGT	H196339	60	33	17	13	15	X14758	Human mRNA for adenocarcinoma-associated antigen
18	CATGGAAACAAACAG	H656389	56	41	4	31	3	L33930	Human CD24 signal transducer mRNA
19	CATGTGGTGATGCA	H96434	53	271	6	30	5	D50954	Human fetal brain cDNA 3'-end GEN-002A10.
20	CATGGAAATACAGTT	H527436	49	35	10	100	36	M11233	Human cathepsin D mRNA, complete cds.
21	CATGGGGCTCACGC	H765719	49	37	21	27	15	U22801	Human Tax1 binding protein mRNA, partial cds.
22	CATGGGGTGACAC	H765509	45	26	18	23	15	U31215	Human metabotropic glutamate receptor 1 alpha
23	CATGGGGTTGGCTG	H704160	44	56	2	6	1	S79597	tRNAser(UNC) [human, muscle, MERRF/MELAS overlap s
24	CATGGGGGGGTGCG	H7633567	42	32	15	20	5	T48809	y605e03.r1 Homo sapiens cDNA clone 70276 5' contai
25	CATGTAGACTAGCAA	H821029	39	23	1	23	10	M69023	Human globin gene.

26	CATGGCTAGGTTTAT	H641789	38	144	13	25	13	D51017	Human fetal brain cDNA 3'-end GEN-007C04.
27	CATGGCTTTAGGGA	H687915	37	372	6	29	11	W15552	zb91h11.s1 Soares parathyroid tumor NbHPA Homo sap
28	CATGGGGTCAGGG	H699691	37	170	11	16	9	F16326	H.sapiens mitochondrial EST sequence (132-20) from skeletal muscle
29	CATGATTTCATAAA	H261569	33	13	11	8	2	AA315049	EST186995 HCC cell line (metastasis to liver in mouse) II Homo sapiens cDNA 5' end
30	CATGCACCTGCCCT	H2944488	33	18	11	17	36	F01150	H. sapiens partial cDNA sequence; clone A6A03; ver
31	CATGCCTGCTGGAG	H386963	32	13	0	6	2	N29971	yw53h101.s1 Homo sapiens cDNA clone 255985 3'.
32	CATGAGAACCTTCCA	H132598	32	14	3	16	12	K02833	Human MHC class I HLA-A2 gene, complete cds.
33	CATGCTCTGCCCTC	H489822	32	32	7	20	5	R09140	y225f12.s1 Homo sapiens cDNA clone l27919 3'.
								R76005	y22c10.s1 Homo sapiens cDNA clone 158994 3'.
								T33596	EST58371 Homo sapiens cDNA 3' end similar to None..
34	CATGGCCATCCCCCT	H609624	29	73	7	14	16	F16449	H.sapiens mitochondrial EST sequence (129-09)
35	CATGCCCAAGGGCC	H610922	28	9	1	1	7	AA2929591	z54f10.s1 Soares ovary tumor NbHOT Homo sapiens cDNA clone T26187 3'
36	CATGTGGCGCTGTC	H956860	26	8	1	1	2	AA292466	z31c11.l1 Soares ovary tumor NbHOT Homo sapiens cDNA clone z33956 5' similar to TR:G205858 G205858 RAT ORF
								z862d07.s1	Soares fetal lung NbHL19W Homo sapiens cDNA clone 308173 3' similar to PIR:A39484 A39484 androgen-withdrawal apoptosis protein RVPI, prostatic - rat
								N92384	zb19c06.s1 Homo sapiens cDNA clone 302506 3' similar to PIR:A39484 A39484 androgen-withdrawal apoptosis protein RVPI, prostatic - rat ;
								N80203	zk39d06.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone 485195 3' similar to PIR:A39484 A39484 androgen-withdrawal apoptosis protein RVPI,
								AA039223	with CCA repeat region
37	CATGGGGTTTTTC	H175872	26	218	7	20	10	U21468	Human partial cDNA sequence with CCA repeat region
38	CATGCCCTGGGAAGTG	H387596	25	10	0	45	17	M34088	Human episialin variant A mRNA, 3' end.
39	CATGAGTCTGCTGGA	H188027	24	9	1	0	0	Unknown	
40	CATGCCGGCCCTTC	H353760	24	11	2	3	4	T10098	seq816 Homo sapiens cDNA clone b4HB3MA-COT8-HAF-Ft
41	CATGAAAAGAGTGGT	H2235	22	9	2	0	7	X83228	H.sapiens mRNA for L1-cadherin.
42	CATGGCCACGTGGAG	H601977	21	7	1	2	2	L27415	Homo sapiens huntingtin (HD) gene, exon 66.
43	CATGAGGATGTGG	H167659	21	5	4	1	3	C00470	dbJ C00470 C00470 HUMGS0007620, Human Gene Signature, 3'-directed cDNA sequence.
								N63531	yy62g08.s1 Homo sapiens cDNA clone 278174 3'.

						AA165679	z08004.s1 Stratagene ovarian cancer (#937219) Homo sapiens cDNA clone 59215 3'
44	CATGTTAGTCCTCT	H838494	20	7	1	3	AA411012 756074 3'
							z192808.s1 Stratagene colon (#937204) Homo sapiens cDNA clone AA133595 512126 3'
							z156b12.s1 Soares ovary tumor NbHOT Homo sapiens cDNA clone AA292774 726335 3'
45	CATGGGTCTCTCTT	H710520	20	7	2	2	R33216 yj73h02.r1 Homo sapiens cDNA clone 154419 5' simili
46	CATGATGGCTTGAT	H240121	19	4	0	3	D20113 Human HL60 3'directed MboI cDNA, HUMGS01086, clone Unknown
47	CATGCTGCCCAT	H496981	19	5	0	1	4
48	CATGTTCTACACA	H1013522	19	4	1	8 ₁	U35048 Human TSC-22 protein mRNA, complete cds.
49	CATGAAGAACGGGG	H333555	18	4	2	2	R81767 yj05g03.r1 Homo sapiens cDNA clone 147892 5'
50	CATGAGTAGGTGGCC	H183018	18	131	2	17	D51021 Human fetal brain cDNA 3'-end GEN-007D07.
51	CATGACAGTGTGT	H77551	18	5	3	0	D26146 Human DNA for putative protein kinase.
52	CATGGGAAAGTGGT	H665547	18	13	3	70	1
53	CATGAAAGAGCTC	H32926	17	4	0	5	1
54	CATGACACCCATCAC	H70965	17	4	0	0	M22406 Human intestinal mucin mRNA, partial cds, clone SM
55	CATGAGATCCCAAGG	H144707	17	18	0	0	T24507 EST1082 Homo sapiens cDNA clone 3E6.
							z263a11.s1 Homo sapiens cDNA clone 297212 3' similar to N92237 PIRSA49589 S49589 cortical granule lectin - African clawed frog.
							T31354 EST30893 Homo sapiens cDNA 5' end similar to None..
56	CATGAATAGTTTCCC	H52214	16	4	0	0	H54696 yq92e02.s1 Homo sapiens cDNA clone 203258 3' simili
57	CATGCCGAAGGCATC	H295060	16	9	0	0	M22430 Human RASF-A PLA2 mRNA, complete cds.
58	CATGGCTTGTGCTTG	H654976	16	4	2	8	1 AA374631 EST86866 HSC172 cells I Homo sapiens cDNA 5' end
							zn93e08.r1 Stratagene lung carcinoma 937218 Homo sapiens
							AA137163 cDNA clone 565790 5'
							zk10f05.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA
							A029320 clone 470145 3'
59	CATGCTGCTGATTGA	H9488543	15	2	0	1	D22681 Human colon 3'directed MboI cDNA, HUMGS04047, clon
							AA253331 3'
							z772g02.s1 Soares NtHMPu S1 Homo sapiens cDNA clone 43778 3'.
60	CATGCCATCGTCCTT	H341720	15	8	1	1	H05110 y75f07.s1 Homo sapiens cDNA clone Unknown
61	CATGGAACAGCTCAC	H529013	14	23	0	0	AA297150 EST112734 Colon I Homo sapiens cDNA 5' end

62	CATGGGCTACGTCC	H65406	14	4	0	1	0	M25629	Human kallikrein mRNA, complete cds, clone clone p
63	CATGCCGGCTCCCTC	H334776	14	7	1	5	2	H18836	ym45d10.s1 Homo sapiens cDNA clone S1262 3'
								2k01e10.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone 469290 3'	
								AA026974	
									zu12c12.r1 Soares testis NHT Homo sapiens cDNA clone 731638 5'
									similar to gb:M61900 Human prostaglandin D synthase gene, complete cds. (HUMAN);
									gb U66834 HSU668394 Human epithelium-restricted Ets protein ESX AA405031
64	CATGAGGTACTACTA	H176584	13	9	0	9	8	U66894	mRNA, Human epithelial-specific transcription factor ESE-1b (ESE-1)
								U73843	mRNA, complete cds
65	CATGCAAATAAAATTA	H265232	13	3	0	1	0	D255996	Human colon 3'directed Mbol cDNA, HUMGS06772
66	CATGCTGTAAAAAA	H503809	13	6	0	1	1	Unknown	
67	CATGGTTCAATCCCT	H774358	13	3	0	2	0	AA071520	ze88g07.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone 366108 3'
								N90742	za90h10.s1 Soares fetal lung NbHL19W Homo sapiens cDNA clone 29875 3'
									zn12h06.s1 Stratagene muscle 937209 Homo sapiens cDNA clone AA086292
									561851 3'
68	CATGAATAAGCCTT	H49304	12	4	0	0	0	D11499	Human HepG2 3'-directed Mbol cDNA, clone a-35.
69	CATGGGAAGGTTAC	H658173	12	2	0	1	0	T16031	IB2474 Homo sapiens cDNA 3'end.
70	CATGGGATGGCTTAT	H670333	12	1	0	6	1	T74426	yc82e01.r1 Homo sapiens cDNA clone 22306 5'
71	CATGGGGCCGGG	H715099	12	2	0	3	2	N73771	za61h02.s1 Homo sapiens cDNA clone 297075 3'
									zh75f08.s1 Soares fetal liver spleen INFLS1 Homo sapiens cDNA clone 417927 3'
									W90388
								F03786	H. sapiens partial cDNA sequence, clone c-29h08.
72	CATGTACTGTACTTC	H817952	12	2	0	0	0	U14631	Human 11 beta-hydroxysteroid dehydrogenase type II repetitive element..
									ya31a06.s5 Homo sapiens cDNA clone 62194 3' contains Alu
73	CATGCCCTTGGCACTC	H360008	11	6	0	3	3	T41121	
74	CATGGGGGGGACCA	H440966	11	4	0	2	0	Unknown	
75	CATGGCCCCAACCA	H611590	11	2	0	0	0	Unknown	
76	CATGGGGGGGGCTC	H616862	11	2	0	0	0	Z58486	Unknown
77	CATGGGAGGGCGCTCA	H666014	11	1	0	0	0	Unknown	

zd42c12.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone										
78	CATGTCGGTTACA	H87426	11	11	0	0	0	W68073	343318 3'	similar to contains Alu repetitive element;

Table 4 - Transcripts increased in pancreas_cancer -
SAGE Tags elevated only in Pancreatic Tumor

PC: Pancreatic Cell Line										Accession	Gene Name
	Tag	Sequence	Tag Number	NC	Tu	CC	PT	PC	Examples	R38305	yh59b04.s1 Homo sapiens cDNA clone 137455 3'
1	CATGAAAGCAACCA		H9222	0	6	1	3	11		AA126719	zK95b03.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone 490341 3'
										AA044296	zK51c03.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone 486340 3'
										AA131586	zL33c08.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone 503726 3'
										AA159306	zo71h12.s1 Stratagene pancreas (#937208) Homo sapiens cDNA clone 592391 3'
2	CATGAAAGCAGTTA		H9408	1	5	2	21	3	Examples AA157983	zL54e04.s1 Soares ovary tumor NbHOT Homo sapiens cDNA clone 726174 3'	
										AA292229	zo78c07.s1 Stratagene pancreas (#937208) Homo zo78c07.s1 Stratagene pancreas (#937208) Homo
										AA159306	yJ70h01.s1 Homo sapiens cDNA clone 154129 3'
										IR54012	yb99f08.s1 Homo sapiens cDNA clone 793335 3'
										T62936	H. sapiens mRNA for cytokeratin 13
3	CATGAAAGGGGCT		H9898	0	0	0	0	13	Examples XS2426	XS2426	H. sapiens mRNA for cytokeratin 13
4	CATGAAATCCTGGT		H13803	0	1	16	2	2	Examples XS1698	XS1698	H. sapiens spasmolytic polypeptide (SP) mRNA.
5	CATGAAATGGACARC		H14865	0	0	1	0	13	Examples N70419	za61d12.s1 Homo sapiens cDNA clone 297047 3'	
										AA411599	AA411599 zv16g01.r1 Soares NbHPU S1 Homo sapiens cDNA clone 753840 5'
										AA410508	zv16g01.s1 Soares NbHPU S1 Homo sapiens cDNA clone 753840 3'
										AA115723	zL86g12.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 511558 3'
6	CATGAACCAGTTCT		H21247	1	1	6	8	13	Examples AA132875	AA132875	zL86g12.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 587358 3'
										AA147677	zD44a06.s1 Stratagene endothelial cell 937223 Homo sapiens cDNA clone 589714 3'

						AA279290	zs84a06.s1 Soares NbHTGBC Homo sapiens cDNA clone 704146 3'
						AA046253	zf12a02.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone 3766682 3'
15	CATGACAACTCAATA	H67396	2	7	16	37	Examples Z58016 H.sapiens CpG DNA, clone 26c7,
							z029cc2.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 588290 3' similar to SW.B13 MOUSE P28662 BRAIN PROTEIN 13
							za07e06.r1 Soares melanocyte 2NbHM Homo sapiens cDNA clone 291874 5'
						W02958	z070e05.s1 Stratagene pancreas (#937208) Homo sapiens cDNA clone 592256 3'
16	CATGACACCCCTGTGC	H71151	0	1	0	14	Examples AA1556464 zeg0h9.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone
							AA025673 366305 3'
						N70895	za89h12.s1 Homo sapiens cDNA clone 299783 3'
17	CATGACCATTTGGATT	H85924	0	8	5	13	4 Examples X02491 Human interferon-inducible mRNA (cDNA 9-27); membrane
							J04164 Human interferon-inducible protein 9-27 mRNA
							X84958 H.sapiens mRNA for interferon-induced 17kDa membra
							H.sapiens HLAE gene.
18	CATGACCCCTTAACA	H90050	1	4	2	13	7 Examples X56841 H.sapiens mRNA for HLAE heavy chain (exons 4 - 7)
							X64879 Human neutrophil cytochrome b light chain p22A
19	CATGACCCCGCTGGT	H91579	49	22	45	70	94 Examples M21186 Human p22-phox (CYBA) gene, exons 3 and 4
							M61107 Human Pro-urokinase gene.
20	CATGACCTGTGACCA	H97158	0	3	0	28	17 Examples D00244 Human pro-urokinase gene, 3' end
							K02286 Human urokinase gene, 3' end
							M15476 Human pro-urokinase mRNA, complete cds
							X02419 Human uPA gene for urokinase-plasminogen activator
21	CATGACCCCTGGTC	H103912	0	1	0	11	2 Examples L08835 Human myotonic dystrophy kinase (DM kinase) gene
							M87313 Homo sapiens myotonin protein kinase (DM) mRNA
22	CATGACCTGGTGATG	H113380	2	4	4	5	20 Examples H44451 y07506.s1 Homo sapiens cDNA clone 183779 3'
							z042f07.s1 Stratagene endothelial cell 937223 Homo sapiens cDNA clone 589573 3' similar to SW.L10K RAT Q05310 LEYDIG CELL TUMOR 10
							AA157329 KD PROTEIN
							zc32g06.s1 Soares senescent fibroblasts NbHSF Homo sapiens cDNA clone 324058 3' similar to SW.L10K RAT Q05310 LEYDIG CELL TUMOR 10
							W46455 KD PROTEIN

23	CATGACTCAGCCCCG	H119353	0	0	3	21	3	Examples M92357	Homo sapiens B94 protein mRNA, complete cds.
24	CATGACTGAGGAAG	H123521	0	0	53	22	Examples X64875	H.sapiens mRNA for insulin-like growth factor binding protein 3	
								M31159	Human growth hormone-dependent insulin-like growth factor binding protein 3
								M35878	Human insulin-like growth factor-binding protein 3
								S56205	insulin-like growth factor binding protein 3 (3' region)
25	CATGACTGCCGGCTG	H124264	1	0	0	22	9	Examples U65932	Human extracellular matrix Protein 1 (ECM1) mRNA
								U65937	Human extracellular matrix protein 1 (ECM1) gene, exon 9
								Z00309.s1	Stratagene colon (#937204) Homo sapiens cDNA clone 566633
26	CATGACTGTATTTC	H126208	3	4	9	2	22	Examples AA148916	Z012a11.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 586652
								AA129137	Z185g09.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 511456
								AA115437	Z187e07.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 511620
								AA126967	Z'
27	CATGAGGCACTGCAGC	H149395	1	2	6	3	16	Examples R24613	yh36c03.r1 Homo sapiens cDNA clone 131812
28	CATGAGGAGGGT	H150055	1	0	0	0	15	Examples H43243	yp05e05.r1 Homo sapiens cDNA clone 186560 S'
29	CATGAGGCTGTATTCT	H162622	0	2	0	1	11	Examples X54942	H.sapiens ckshs2 mRNA for Cks1 protein homologue
30	CATGAGGGATGACCCC	H167446	1	7	12	10	13	Examples AA044081	Zk50g07.s1 Soares pregnant uterus NbHPV Homo sapiens cDNA clone
								486300	3'
								Zk50g07.r1	Soares pregnant uterus NbHPV Homo sapiens cDNA clone
								486300	5' similar to PIR: A40533 A40533 cAMP-dependent protein kinase
								AA044211	major membrane substrate
31	CATGAGGCTCTCAAT	H178129	4	2	0	60	2	Examples X14787	Class A, Human mRNA for thrombospondin.
32	CATGAGGTGGGGGG	H178603	0	2	2	1	11	Examples R27738	yh64f11.s1 Homo sapiens cDNA clone 134541 3'
								H00276	yh2f12.s1 Homo sapiens cDNA clone 149519 3' similar to SPZK637.5
								CE00436 ARSA	zml19d07.s1 Stratagene pancreas (#937208) Homo sapiens cDNA clone
33	CATGAGTATCTGGGA	H183387	3	3	1	15	73	Examples AA076235	526093 3'
								H13159	yj6c04.s1 Homo sapiens cDNA clone 148902 3'
								zo7f11.s1	Stratagene pancreas (#937208) Homo sapiens cDNA clone
								AA146632	5923364 3'
34	CATGATACTTTAATT	H204740	1	0	3	18	9	Examples X80062	H.sapiens SA mRNA.
								U01691	Human annexin V (ANX5) gene

			X12454	Human mRNA for vascular anticoagulant
			M18366	Human placental anticoagulant protein (PAP) mRNA
			M21751	Human lipocortin-V mRNA, complete cds
			J03745	Human endonexin II mRNA, complete cds
				GAMMA-INTERFERON-INDUCIBLE PROTEIN IP-30 PRECURSOR (HUMAN)
15	CATGATCAAAGAATCC	H213518	2 1 5 25 1	Examples J03909 EST97384 Thymus II Homo sapiens cDNA 3' end similar to interferon, gamma transducer 1
16	CATGATCAAAGGGTGT	H213679	12 9 25 12 156	aa383911 U09953 Human ribosomal protein L9 mRNA Human ribosomal protein L9 mRNA, complete cds
				D14531 Human mRNA for human homologue of rat ribosomal protein zrn03a05.s1 Stratagene corneal stroma (#937222) Homo sapiens cDNA clone 513008 3'
17	CATGATCAAAGTTCGA	H213751	0 2 8 3 10	Examples AA063259 RNA polymerase II transcription factor SIII p18 subunit mRNA
18	CATGATCCGGGCCCA	H219750	16 7 14 12 40	U21138 RNA polymerase II transcription factor SIII p18 subunit mRNA
19	CATGATGAAACTTCG	H229502	1 0 0 17 4	Examples L42856 Z59242 H.sapiens CpG DNA, clone 13a10, reverse read cp81
40	CATGATCCGAAAGGC	H235531	2 3 12 3 22	Examples Z25820 H.sapiens mRNA for mitochondrial dodecenoyl-CoA dehydrogenase
				L24774 Homo sapiens delta3, delta2-CoA-isomerase mRNA
41	CATGATGTCTCGTT	H243676	0 0 1 0 14	Examples M84711 40S RIBOSOMAL PROTEIN S3A (HUMAN)
42	CATGATGTCTTTCT	H243710	1 2 1 14 2	Examples M62403 Human insulin-like growth factor binding protein 4
				Human insulin-like growth factor binding protein-4 (IGFBP4) gene, promoter and complete cds
43	CATGATGTGTAACGA	H244487	0 4 5 44 94	Examples U20982 H.sapiens mts1 gene.
				Z33457 M80563 Human CAPL protein mRNA, complete cds
44	CATGCCAACTTAAAGC	H270083	0 1 2 10 1	Examples N23207 yx70809.s1 Homo sapiens cDNA clone 267065 3' similar to gb:L12750 THROMBOSPONDIN 2 PRECURSOR (HUMAN)
				z125e11.s1 Seares ovary tumor NbHOT Homo sapiens cDNA clone 714188 3' similar to gb:M33680 CD81 ANTIGEN (HUMAN)
45	CATGCCACCTGTCCTT	H286424	0 4 2 10 1	Examples AA285023 M33680 CD81 antigen
46	CATGCCACTCAATAAA	H291889	0 0 2 3 19	Examples D78203 U62801 Neurosin protease M

47 CATTGAGCCCTGGGGC	H300971	0	0	0	10	Examples AA149942	2068d04.s1 Stratagene pancreas (#937208) Homo sapiens cDNA clone S92039 3' similar to TR.E218488 E218488 TRYPTASE
							zp66b09.r1 Stratagene endothelial cell 937223 Homo sapiens cDNA clone 625145 5' similar to gb:M16937 HOMEobox PROTEIN HOX-B7 (HUMAN); contains element MER22 repetitive element
48 CATGCCAGCCGCCCT	H301462	4	11	12	10	Examples AA187553	Homeobox protein HOX-B7
						M16937	
49 CATGCCAGGGTTGTCCCT	H307126	0	0	4	0	No Match	
50 CATGCCAGTCTCTCAA	H309109	2	6	6	2	Examples U14972	Human ribosomal protein S10 mRNA
51 CATGCCATCCCCGTGAC	H316857	0	3	3	13	Examples U27293	Human leukotriene A4 hydrolase gene
						J03459	Human leukotriene A-4 hydrolase mRNA, complete cds
						J02959	Human leukotriene A-4 hydrolase mRNA, complete cds
52 CATGCCATTCCCTCTT	H325080	0	2	5	13	Examples X82434	H.sapiens mRNA for emerin
53 CATGCCACCCCCACC	H333138	3	7	17	18	2	Examples M88338
						U14971	Human serum constituent protein (MSE55) mRNA
54 CATGCCAGTGCCCCG	H339606	23	11	37	22	56	Human ribosomal protein S9 mRNA
55 CATGCCATTCTCTGG	H344031	0	2	6	1	10	Examples L01697
56 CATGCCCAAGCTAGCTGC	H344691	19	8	8	18	44	Human sappiens alpha-1 type XV collagen mRNA
						X54079	Human mRNA for heat shock protein HSP27.
						Z233090	Human sappiens mRNA for 28 kDa heat shock protein
						X16477	Human mRNA fragment for estrogen-regulated 24k protein
						S74571	estrogen receptor-related protein=27-kda heat shock protein L26.
57 CATTGCCCATCCGAAA	H347489	20	15	43	19	61	Examples X69392
						L07287	Human ribosomal protein L26 (RPL26) gene
58 CATGCCCTGGAGA	H350099	0	1	6	14	25	Examples U40434
						D49441	Human mesothelin or CAK1 antigen precursor mRNA
							Human mRNA for pre-pro-megakaryocyte potentiating factor, complete cds.
59 CATGCCCGCATAGAT	H353481	0	0	0	8	11	Examples U12819
						U38945	Human p16-Ink4 (p16) gene
						S69804	Human hypothetical 18.1 kDa protein (CDKN2A) mRNA
						S69822	MTS1=multiple tumor suppressor 1/cyclin-dependent kinase 4 inhibitor p16
						S78535	CDK41=cyclin-dependent kinase 4 inhibitor
							tumor suppressor gene, P16/MTS1/CDKN2=cell cycle negative regulator beta form
60 CATGCCCTCCCTGGGG	H357867	8	2	5	14	34	Examples Z47319
							H.sapiens mRNA for expressed sequence tag (clone 2f7119)

						AA398406	z160h12.s1 Soares testis NHT Homo sapiens cDNA clone 726791 3'
6.1	CATGGCGGCCCTTAC	H370034	4	4	14	19	Examples U21049 Human DD96 mRNA
6.2	CATGGCCTGGTCCCAA	H387925	0	2	30	99	Examples X03212 KERATIN, TYPE II CYTOSKELETAL 7 zp73f01.s1 Stratagene HeLa cell s3 937216 Homo sapiens cDNA clone
							zp73f01.s1 Stratagene muscle 937209 Homo sapiens cDNA clone 611492 625849 3'
6.3	CATGCCCTTTGAAACAG	H392709	5	3	6	2	23 Examples AA176457 zp35g11.s1 Stratagene muscle 937209 Homo sapiens cDNA clone 611492 3' similar to TR: G663269 G663269 BOLA.
							zp35e11.s1 Stratagene muscle 937209 Homo sapiens cDNA clone 611468 3' similar to TR: G663269 G663269 BOLA.
6.4	CATGGGCCGACGATG	H415844	21	13	45	75	Examples AA176541 Human interferon-inducible mRNA fragment
6.5	CATGGCTAACAGCAA	H475429	2	5	10	6	17 Examples X02492 ya88g05.s1 Homo sapiens cDNA clone 68792 3'
							zd47g08.s1 Soares fetal heart NbFH19W Homo sapiens cDNA clone 343838 3' similar to PIR: S24168 S24168 hypothetical protein - human
							W69493 343838 3' similar to PIR: S24168 S24168 hypothetical protein - human
							Human mRNA for LDL-receptor related protein
6.6	CATGGCTAACCCCCC	H475478	1	4	2	23	1 Examples XI3916 H.sapiens (24) Feruin H pseudogene.
6.7	CATGGCTGAGAAACTG	H493576	2	3	1	8	18 Examples X80353 Human mRNA for G(I) protein alpha-subunit
6.8	CATGGCTGAGTCTCCC	H494454	1	4	4	21	13 Examples X04828 Human ribosomal protein L5 mRNA
6.9	CATGGCTGTATAACGA	H498887	16	30	28	30	44 Examples UI4966 yc41g08.s1 Homo sapiens cDNA clone 110846 3'
7.0	CATGGCTGCTGAGTGA	H499247	1	3	4	13	13 Examples T90665 EST43791 Fetal brain I Homo sapiens cDNA 3' end similar to steroid hormone receptor hERR1
							AA3318799 H97236 yy98b06.s1 Homo sapiens cDNA clone 250739 3'
							Human fetal brain cDNA 3'-end GEN-018D10
7.1	CATGGCTGGCGCGAT	H501337	0	0	4	0	10 Examples C14084 Human lipocortin II mRNA
7.2	CATGGCTTCCAGCTAA	H513181	64	23	36	53	104 Examples D00017 H.sappiens gene for cytokeratin 17.
7.3	CATGGCTTCCCTTGCT	H514022	0	3	4	89	7 Examples Z19574 H.sappiens mRNA for keratin-related protein
							X672571 X05803 Human radiated keratinocyte mRNA 266
7.4	CATGGCTTTCTCCCT	H522198	0	2	1	16	4 Examples X79067 H.sappiens ERF-1 mRNA 3' end.
7.5	CATGGAAAAAAA	H524289	7	14	21	26	37 Examples X51779 Human mRNA containing an Alu repeat
							X82240 H.sappiens mRNA for T-cell leukemia/sympthoma 1
7.6	CATGGAAACAAAGATG	H525348	4	7	14	8	22 Examples V00572 Human mRNA encoding phosphoglycerate kinase.
							D29018 Human keratinocyte cDNA, clone 001
							L00160 Human phosphoglycerate kinase (pgk) mRNA
7.7	CATGGAAATAACAGTT	H527436	49	35	10	100	36 Examples X03344 Human mRNA for cathepsin D

						M11233	Human cathepsin D mRNA, complete cds
"N CATGGAAATGATGAG	H527929	4	7	5	14	26	Examples T90296
"N CATGGAAATGATGAG	H533436	3	7	16	6	28	Examples AA320942
"N CATGGAAATGATGAG	H540621	6	3	10	9	28	Examples AA148508
"N CATGGACAAAAAAA	H540673	1	2	10	3	17	No Match
"N CATGGACCACCTTA	H545152	0	1	0	11	2	Examples U19718
"N CATGGACCAGCCCT	H545630	0	3	0	20	18	Examples M75165
"N CATGGACCTGCCT	H546710	31	36	20	71	65	Examples M12125
"N CATTGACCTATCTCT	H548062	0	1	0	13	1	Examples N90046
"N CATGGACCCCAAGGC	H546059	2	5	9	16	10	Examples M74092
"N CATGGACCCCTGCCCT	H546710	31	36	20	71	65	Examples L37033
"N CATTGACCTATCTCT	H561807	0	0	0	1	12	No Match
"N CATGGACGGCGCAGG	H551315	3	4	5	32	3	Examples M63193
"N CATGGACTCTCTGT	H554876	1	4	3	0	14	Examples M61764
"N CATGGAGGCTTGC	H559615	0	0	0	2	10	Examples D17793
"N CATGGAGGAGTGTCTG	H560056	0	5	8	32	11	Examples S68252
"N CATGGAGGAGTGTCTG	H561807	0	0	0	1	12	No Match
"N CATGGAGGAGTGTCTG	H567486	1	1	0	4	13	Examples AA214523
"N CATGGAGGAGTGTCTG	H570787	0	0	2	1	10	Examples N30324
"N CATGGAGTCCGGAGC	H572656	0	0	3	0	10	Examples X70070
"N CATGGAGTGTGTG	H57673	0	0	3	0	10	Examples H57673
							"z889c01.s1 Soares NbHTGBC Homo sapiens cDNA clone 682848 3'
							"yw75d01.s1 Homo sapiens cDNA clone 258049 3'
							"H.sapiens mRNA for neurotensin receptor.
							"y727a10.s1 Homo sapiens cDNA clone 206490 3'

95	CATGGAGTTGCACCT	H572806	7	3	7	15	29	No Match		ze12c08.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone 338766 3' similar to SW:YA94_SCHPO Q09783 HYPOTHETICAL 11.4 KD PROTEIN C13G6.04 IN CHROMOSOME 1
96	CATGGATTAAAGTGGAG	H585913	3	5	2	2	19	Examples AA046631 R91942	W94333	2k72d06.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone 488363 3' yq06g03.s1 Homo sapiens cDNA clone 196180 3'
97	CATGGATTGAACCTC	H587800	1	0	5	1	12	Examples U602055 AA040439		2k46c12.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone 485878 3' methyl sterol oxidase (ERG25)
98	CATGGCAAAAAAAA	H589825	17	13	29	73	38	No Match		
99	CATGGCATTAAATA	H605956	2	10	8	3	55	Examples X60489 X60656		Human mRNA for elongation factor-1-beta. H.sapiens mRNA for elongation factor 1-beta
100	CATGGCCAACACCGA	H606471	0	0	0	12	1	Examples U08021		Human nicotinamide N-methyltransferase (NNMT) mRNA, 0
101	CATGGCCCCAAATAA	H611597	1	4	1	47	9	Examples X15256 X14829		Human mRNA for 14kDa beta-galactoside-binding lectin Human mRNA for beta-galactoside-binding lectin
								J04456		Human 14 kd lectin mRNA, complete cds
								S44881		HL14-beta-galactoside binding protein
										2k82d04.r1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone 489319 5' similar to contains Alu repetitive element
102	CATGGCCGGCTACRTC	H616224	0	0	1	3	16	Examples AA054483 AA243725		2k68g12.s1 Soares NHMPU S1 Homo sapiens cDNA clone 668614 3' similar to gb:X02492 INTERFERON-INDUCED PROTEIN 6-16 PRECURSOR (HUMAN)
103	CATGGCCGGTGGAGG	H617891	8	5	2	44	3	Examples XI3425		Human mRNA for pancreatic carcinoma marker GA73-1, 0
104	CATGGCCTACCCGAG	H618841	0	4	4	23	39			2l02b03.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone 491117 3'
105	CATGGGGGGGGGGAG	H633577	3	8	5	27	6	Examples AA136985		
106	CATGGCTCAGCTGGA	H643707	12	29	24	35	35	Examples AA053346 U43368		z170n04.s1 Strategene colon (#937204) Homo sapiens cDNA clone S10007 3' similar to gb:Z211507 ELONGATION FACTOR 1-DELTA
107	CATGGCTTTTCAGAC	H655177	1	6	7	13	10	Examples U52819		Human VEGF related factor isoform VRF186 precursor, 0
108	CATGGCAAAAAAAA	H655361	11	8	30	16	38	Examples M38759 M60748		Human vascular endothelial growth factor B 186 Human cytochrome c oxidase subunit VII Human histone H1 (HIF4) gene, complete cds

				M73239	Human (clone SF1) hepatocyte growth factor (HGF)
				M73240	Human (clone SF2) hepatocyte growth factor (HGF)
109	CATGGAAAAAGTGGT	H655347	18 13 3 70 1	Examples X02920	Human mRNA for alpha 1-antitrypsin carboxyterminal, 0
				X01683	Human mRNA for alpha 1-antitrypsin
				V00496	Human messenger RNA for alpha-1-antitrypsin
				J00067	Human alpha-1 antitrypsin gene, 3' end
				z122b01.s1	Soares pregnant uterus NbHPU Homo sapiens cDNA clone
110	CATGGGAAGGGAGGC	H658059	0 0 4 6 16	Examples AA127040	502633 3'
				W81387	zd8606.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone
				H45477	347555 3'
				y072h08.s1	Homo sapiens cDNA clone 183519 3'
				D26598	y072h08.s1 Homo sapiens cDNA clone 183519 3'
111	CATGGGAGTCATTGT	H666943	6 5 6 10 32	Examples N74310	Human mRNA for proteasome subunit HsC10-II, 0
112	CATGGGAGTGTCGCT	H667367	0 0 1 1 10	H92750	za78e01.s1 Homo sapiens cDNA clone 298656 3'
					za78e01.s1 Homo sapiens cDNA clone 231768 3'
				T24084	seq2272 Homo sapiens cDNA clone ssb4HB3MA(extended-ft-6) 3'
113	CATGGGATTGTCTGG	H671455	3 7 13 5 21	Examples X17567	H. sapiens RNA for snRNP protein B
				M34081	Human small nuclear ribonucleoprotein particle SmB
114	CATGGGCCCTCACCC	H677330	0 0 2 9 22	Examples M69054	Human insulin-like growth factor binding protein 6, 0
				M62402	Human insulin-like growth factor binding protein 6
115	CATGGGCCCTCTGAG	H677753	0 1 4 7 14	Examples N74323	za78d08.s1 Homo sapiens cDNA clone 298671 3'
				H46766	y018f08.s1 Homo sapiens cDNA clone 178311 3'
				H41102	yn88aa8.s1 Homo sapiens cDNA clone 175478 3'
				zm84b09.s1	Stratagene ovarian cancer (#937219) Homo sapiens cDNA
				AA04a04.s1	clone 544601 3'
116	CATGGGCTGGTCTGG	H686815	0 1 3 13 22	Examples AA074777	zm84b09.s1 Stratagene corneal stroma (#937222) Homo sapiens cDNA
				AA062735	clone 513102 3'
				AA112905	zm63f12.s1 Stratagene fibroblast (#937212) Homo sapiens cDNA
					clone 530351 3'
117	CATGGGAAAGCAGAT	H688713	25 7 9 0 72	No Match	
118	CATGGGAGGGTGG	H690863	2 3 1 16 2	No Match	
119	CATGGGAGGTAGCA	H690890	1 0 1 14 1	No Match	
120	CATGGGGCCATCTCTT	H693112	1 1 3 39 2	Examples V00523	Human mRNA for histocompatibility antigen HLA-DR
				X00274	Human gene for HLA-DR alpha heavy chain a class II
				K01171	Human HLA-DR alpha-chain mRNA

1.1	CATGGTGGGAGAT	H715401	1	4	10	10	14			J00202	human hia-dr heavy chain gene; 3' flank
1.2								Examples U18009	T33413	Human chromosome 17q21 mRNA clone LF113.	
1.3									T33339	EST 57778 Homo sapiens cDNA 3' end similar to None	
1.4	CATGGTACTGTAGCA	H728778	3	3	1	16	30	Examples M59911		EST 57474 Homo sapiens cDNA 3' end similar to None	
1.5	CATGGTACTGTGGCT	H728810	23	10	16	15	50	Examples X87689		Human integrin alpha-3 chain mRNA	
1.6	CATGGTCAAATTTC	H737344	0	0	0	10	1	Examples L12350		H.sapiens mRNA for putative p64 CLCP protein	
1.7	CATGGTCCTGGGCTT	H75296	25	35	45	76	29	Examples D21261		Human thrombospondin 2 (THBS2) mRNA	
1.8	CATGGTCCTGGGCTT	H75296	25	35	45	76	29	Examples D21261		Human mRNA (HA1756) for ORF	
1.9	CATGGTCCTGGGCTT	H75296	25	35	45	76	29	D22543		Human keratinocyte cDNA, clone 686	
1.10	CATGGTCCTGGGCTT	H75296	25	35	45	76	29			yp07a05.s1 Homo sapiens cDNA clone 186704 3'	
1.11	CATGGTCCTGTGAGAG	H752521	0	5	7	12	2	Examples H51290	N20338	yx44g12.s1 Homo sapiens cDNA clone 264646 3'	
1.12	CATGGTCCTGTGAGAG	H752521	0	5	7	12	2			z076e09.s1 Stratagene pancreas (#937208) Homo sapiens cDNA clone	
1.13	CATGGTCCTGTGAGAG	H752521	0	5	7	12	2			AA155271	592840 3'
1.14	CATGGTCTGTGCAGG	H752531	0	0	0	1	13	No Match			
1.15	CATGGTCTGTGAAGGCC	H753162	0	1	2	1	10	No Match			
1.16	CATGGTGAAGGCAGT	H754323	25	14	42	15	89	Examples X87373		Class C, H.sapiens RPS2a gene	
1.17	CATGGTGAATGACGG	H754567	0	2	8	1	10	Examples X098058		GLUTATHIONE S-TRANSFERASE P (HUMAN)	
1.18	CATGGTGGGAGGAC	H760361	0	3	2	11	25	Examples X51439		Human mRNA for serum amyloid A (SAA) protein	
1.19	CATGGTGGCTGGGAA	H761481	2	9	9	13	26	Examples UI5008		Human SnRNP core protein Sm D2 mRNA	
1.20	CATGGTGGCTGGGAA	H762533	1	1	3	6	34	Examples U62800		Cystatin M (CST16)	
1.21	CATGGTGGAGGGCAC	H765003	14	17	15	39	30	Examples H46430	y012h12.s1 Homo sapiens cDNA clone 177767 3'		
1.22	CATGGTGGTACAGGA	H765003	14	17	15	39	30			zfl13a06.s1 Soares fetal heart NbfH19W Homo sapiens cDNA clone	
1.23	CATGGTGGTACAGGA	H765003	14	17	15	39	30			AA047563	376786 3'
1.24	CATGGTGGTACAGGA	H765003	14	17	15	39	30				z013f02.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 586779
1.25	CATGGTGGTACAGGA	H774629	0	2	1	13	3	Examples X59288	AA130701	3'	
1.26	CATGGTGGTACAGGA	H774629	0	2	1	13	3			H.sapiens gene for intercellular adhesion molecule	
1.27	CATGGTGGTACAGGA	H774629	0	2	1	13	3	M24283		Human major group rhinovirus receptor (HRV) mRNA	
1.28	CATGGTGGTACAGGA	H774629	0	2	1	13	3	J03132		Human intercellular adhesion molecule-1 (ICAM-1)	
1.29	CATGGTGGTACAGGA	H774629	0	2	1	13	3	M55100		Human cell surface glycoprotein P3.58 mRNA	
1.30	CATGGTGGTACAGGA	H774629	0	2	1	13	3	K02765		Human complement component C3 mRNA, alpha and beta	
1.31	CATGGTGGTGGCTGG	H781823	1	1	6	30	24	Examples K02765			
1.32	CATGGTGGTGGCTGG	H782013	178	110	14	340	139	Examples M17987		Human beta-2-microglobulin gene	
1.33	CATGGTGGTGGCTGG	H782391	1	6	12	4	14	Examples D00760		Human mRNA for proteasome subunit HC3	
1.34	CATGGTGGTGGCTGG	H797169	0	0	6	1	12	Examples XS7025		INSULIN-LIKE GROWTH FACTOR IA PRECURSOR (HUMAN)	
1.35	CATGGTGGTGGCTGG	H802793	0	2	5	2	10	No Match			

1.8	CATGTGATGTCGGT	H932731	0	8	3	11	12	Examples AA027860	zk0507.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone 469693 3'
1.9	CATGTGCCATCTGA	H938876	1	3	7	3	16	Examples M25753	G2/MUTOTIC-SPECIFIC CYCLIN B1 (HUMAN)
								T60151	yc2264.s1 Homo sapiens cDNA clone 81414 3'
								R67989	y129g08.s1 Homo sapiens cDNA clone 140702 3'
									zo9103.s1 Stratagene ovarian cancer (#937219) Homo sapiens cDNA clone 594269 3' similar to SW. NGAL_HUMAN P80188 NEUTROPHIL GELATINASE-ASSOCIATED LIPOCALIN PRECURSOR
16.0	CATGTGCCCTAAAA	H939841	11	13	3	13	43	Examples AA169614	zb15d08.s1 Homo sapiens cDNA clone 302127 3' similar to SW. NGAL_HUMAN P80188 NEUTROPHIL GELATINASE-ASSOCIATED LIPOCALIN PRECURSOR
16.1	CATGTGCCCTCAGAA	H939849	3	4	0	11	19	Examples N79823	zm90h04.s1 Stratagene ovarian cancer (#937219) Homo sapiens cDNA clone 545239 3' similar to SW. NGAL_HUMAN P80188 NEUTROPHIL GELATINASE-ASSOCIATED LIPOCALIN PRECURSOR
16.2	CATGTGCCCTCAGGA	H939851	13	31	10	25	83	Examples AA0753896	zb18e07.s1 Stratagene colon (#937204) Homo sapiens cDNA clone 511044 3'
16.2	CATGTGCCCTCAGGC	H920392					No Match		
16.3	CATGTGCCCTTACTTT	H941856	0	3	1	2	12	Examples AA100279	
16.4	CATGTGCCGCTGGCCC	H944038	2	5	2	17	3	No Match	
16.5	CATGTGCTTCATCTG	H949560	2	6	6	4	16	Examples AA029262	zk10a01.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone 470088 3'
								N54281	yv66e10.s1 Soares fetal liver spleen INF1S Homo sapiens cDNA clone 247722 3'
									zn76c02.s1 Stratagene NT2 neuronal precursor 937230 Homo sapiens cDNA clone 564098 3'
									AA114075
16.6	CATGTGGAGTGGAGG	H953251	18	15	7	22	48	Examples L76200	Homo sapiens guanylate kinase (GUK1) mRNA
16.7	CATGTGGCCCCAGGT	H955723	0	3	3	37	4	Examples X00570	Human mRNA for precursor of apolipoprotein C1
16.8	CATGTGGGTGACCCA	H962086	13	15	13	76	27	Examples L16510	Homo sapiens cathepsin B mRNA
								M14221	Human cathepsin B proteinase mRNA, complete cds
									Human enigma gene
16.9	CATGTGTTGAGCCCT	H975446	3	3	22	8	Examples L35240		
17.0	CATGTGTCATAATG	H976644	8	21	26	18	50	Examples L38941	Homo sapiens ribosomal protein L34 (RPL34) mRNA
17.1	CATGTGTTGTTGT	H978887	6	7	16	25	15	Examples X03473	Human gene for histone H1(0).
									2k23g08.s1 Soares pregnant uterus NbHPU Homo sapiens cDNA clone 471422 3'
17.2	CATGTGTTATGGATCTC	H997944	0	1	1	21	1	Examples AA034505	

Human brain-type clathrin light-chain a mRNA									
I ¹	CATGTTCCCTCCTT	H1038296	0	6	3	7	17	Examples	M20471
I ²									M20472
I ³	CATGTTGCACCTT	H1041504	2	0	0	16	1	Examples	X78947
I ⁴	CATGTTGGTAAAGA	H1044225							U14750
									H06492
									y178608.s1 Homo sapiens cDNA clone 44273 3'
									T35952
									EST94173 Homo sapiens cDNA 3' end similar to None
									AA253218
									zr53g10.s1 Soares NthNtPn S1 Homo sapiens cDNA clone 667170 3'

Table 5 - Transcripts increased in pancreas and colorectal cancer
**SAGE tag that were elevated in both in colorectal and pancreatic tumor,
and are likely to be specific for tumor in general.**

	Tag_Sequence	Tag_Number	Accession	Description
1	CATG TGAAATGAC C	-950498	M10629	Human alpha-1 collagen gene, 3' end with polyA sit
2	CATG CACITCAAGG G	-294155	U42376	Human retinoic acid induced RIG-E precursor (E) mRNA
		U56145		Human thymic shared antigen-1/stem cell antigen-2
3	CATG ATGTGAAGAG T(A)	-243747	J03040	Human SPARC/osteonectin mRNA, complete cds.
		M25746		Human osteonectin gene exon 10, complete cds.
4	CATG GCCCAAGGAC C	-610466	X53416	Human mRNA for actin-binding protein (filamin) (AB
5	CATG ATCTTGTAC T	-229106	X02761	Human mRNA for fibronectin (FN precursor).
		K00799		human fibronectin (fn) 3' coding region and flank.
6	CATG GTGCCTGAG C	-760291	X58536	Human mRNA for HLA class I Locus C heavy chain.
		M26132		Human MHC Class I HLA-C.1 gene, complete cds.
7	CATG ACAGGCTACG G	-76231	M95787	Human 22kDa smooth muscle protein (SM22) mRNA, com
		M83106		Human SM22 mRNA, 5' end.
8	CATG GTGTGTTGT A	-769020	M77349	Human transforming growth factor-beta induced gene
9	CATG GATTCTCAG C	-589267	X53279	Human mRNA for placental-like alkaline phosphatase
		X55958		H. sapiens mRNA for alkaline phosphatase.
		J04948		Human alkaline phosphatase (ALP-1) mRNA, complete
10	CATG ACCATTCTGCC T	-85882	X57351	Human 1-8D gene from interferon-inducible gene fam
		X02490		Human interferon-inducible mRNA (CDNA 1-8).
11	CATG TCCCTTCCTCCA C	-864181	X15804	Human mRNA for alpha-actinin.
		-515821	D80012	Human mRNA for KIAA0190 protein.
12	CATG CTTCCTGTTA C,T	-241665	M74090	Human TB2 gene mRNA, 3' end.
13	CATG ATGTAAAAAA T		J03801	Human lysozyme mRNA, complete cds with an Alu repe
			M19045	Human lysozyme mRNA, complete cds.
14	CATG GGCAGAGGAC C	-673954	X17620	Human mRNA for Nm23 protein, involved in developme
		X75598		H.sapiens nm23H1 gene.
15	CATG ATATTTGAGA A	-531129	U62962	Human Int-6 mRNA, complete cds.
16	CATG TTTTGATAA A	-1048113	D16891	Human KepG2 3' region cDNA, clone hmd2c11.
17	CATG CAGCTGGCCA T	-302741	X53743	H.sapiens mRNA for fibulin-1 C.

18	CATG GTTCACATTA G	-774461	X00497	Human mRNA for HLA-DR antigens associated invariant chain gene, ex
		M13560		Human La-associated invariant gamma-chain gene, ex
19	CATG AAAAGAAACT T	-2056	Y00345	Human mRNA for polyA binding protein.
20	CATG AATGCCGGCA G	-58533	M61831	Human S-adenosylhomocysteine hydrolase (AHCY) mRNA
		M61832		Human S-adenosylhomocysteine hydrolase (AHCY) mRNA
21	CATG TGAAATAAAA C	-918273	X16934	Human hB23 gene for B23 nucleophosmin.
		M28699		Homo sapiens nucleolar phosphoprotein B23 (NPM1) m
		M23613		Human nucleophosmin mRNA, complete cds.
		M26697		Human nucleolar protein (B23) mRNA, complete cds.
22	CATG TTATGGATC T	-998030	M24194	Human MHC Protein homologous to chicken B complex
23	CATG CATAAAATGT T	-274492	D23661	Human mRNA for ribosomal protein L37, complete cds
		L11567		Homo sapiens ribosomal protein L37 mRNA, complete
24	CATG AGCCTTTGTT G	-155632	D83174	Human mRNA for collagen binding protein 2.
25	CATG ACCCTGTATCC C	-97078	X57352	Human 1-8U gene from interferon-inducible gene fam
26	CATG TTCAATAAAA A	-1000193	M17886	Human acidic ribosomal phosphoprotein P1 mRNA, com
		J05068		human transcobalamin I mRNA, complete cds.
27	CATG CGACCCCCACCG C	-398663	M12529	Human apolipoprotein E mRNA, complete cds.
		K00396		Human apolipoprotein E (epsilon 2 and 3 alleles) m
28	CATG CAGATCTTIG T	-298495	X56998	Human UbAS2 adrenal mRNA for ubiquitin-52 amino ac
		X56999		Human UbAS2 placental mRNA for ubiquitin-52 amino
29	CATG CTGGCGAGGG C	-501287	X07491	Human DNA inserts showing sperm-specific hypomethyl
30	CATG ATTGGCTTAA A	-256497	L14272	Human ubiquitin carrier protein (E2-EPEF) mRNA, com
		S85655		prohibitin [human, mRNA, 1043 nt].
31	CATG GTGGGGACCA C	-765573	U62435	Human nicotinic acetylcholine receptor alpha6 subu
		U68041		Human breast and ovarian cancer susceptibility pro
32	CATG TCCTGCCCA T	-883029	M24398	Human parathymosin mRNA, complete cds.
33	CATG ACTGGGTCTA T	-125661	X58965	H. sapiens RNA for nm23-H2 gene.
		M36981		Human putative NDP kinase (nm23-H2S) mRNA, complet
		L16785		Homo sapiens c-myc transcription factor (puf) mRNA
34	CATG AGAACAGTAG A	-333331	U02032	Human ribosomal protein L23a mRNA, partial cds.
		U37230		Human ribosomal protein L23a mRNA, complete cds.
		U43701		Human ribosomal protein L23a mRNA, complete cds.

		L13799	Homo sapiens (clone 01) liver expressed protein mRNA
35	CATG ACATCATCGA	T -79065	Human ribosomal protein L12 mRNA, complete cds.
36	CATG CTGGTGGTGA	T -507577	Human homolog of yeast ribosomal protein S28, complete cds.
37	CATG ATTATTTTC	T -249854	X57959 H. sapiens mRNA for ribosomal protein L7.
		X57958	H. sapiens mRNA for ribosomal protein L7.
		X52967	Human mRNA for ribosomal protein L7.
		L16558	Human ribosomal protein L7 (RPL7) mRNA, complete c
38	CATG GCTTTAAAGG	A -672265	Hom sapiens ribosomal protein S20 (RPS20) mRNA, C
39	CATG GGCAAGARGA	A -672265	Hom sapiens ribosomal protein L27 (RPL27) mRNA, C
40	CATG CTCTTCGAGA	A -490889	Hom sapiens ribosomal protein L27 (homologue of r
		L25346	Hom sapiens mRNA for glutathione peroxidase (EC 1.11.1.9)
		Y00433	Human mRNA for glutathione peroxidase (EC 1.11.1.9)
		Y00483	Human gene for glutathione peroxidase.
		X13710	H. sapiens unspliced mRNA for glutathione peroxidase
		X13709	Human gpXL mRNA for glutathione peroxidase.
		M21304	Human glutathione peroxidase (GPX1) mRNA, complete
41	CATG CTGTGATTG	C -507455	Human liver mRNA fragment DNA binding protein UPI
		X04347	Human clone C4E 3.2 (CAC)n/(GTG)n repeat-containin
		U00947	Human acute myeloid leukemia associated pro
42	CATG CTGGTTAAT	A -502724	M81757 H.sapiens S19 ribosomal protein mRNA, complete cds
		X17206	Human mRNA for LILRep3.
43	CATG ATGGCTGGTA	T -239533	X17206 Human mRNA for Epstein-Barr virus small RNAs (EBER)
44	CATG GATGCTGCAC	A -583573	X59357 Human mRNA for acute myeloid leukemia associated pro
		L21756	L21756 Homo sapiens acute myeloid leukemia associated pro
		D17652	D17652 Human mRNA for HBp15/L122, complete cds.
		S76343	AML1...EAP (translocation breakpoint) [human, chro
		U14970	Human ribosomal protein S5 mRNA, complete cds.
45	CCTTCGAGAT	C -390692	-482584 U16811 Human Bak mRNA, complete cds.
46	CATG CCTCTCACCT	G U23765	Human Bak protein mRNA, complete cds.
47	CATG TGTGTTGAGA	G -9778825	X16869 Human mRNA for elongation factor 1-alpha (clone CE
		X16872	D17182 Human HepG2 3' region MboI cDNA, clone hm02h03m3.
			D17245 Human HepG2 3' region MboI cDNA, clone hm04h05m3.
			D17259 Human HepG2 3' region MboI cDNA, clone hm05d07m3.
			D17276 Human HepG2 3' region MboI cDNA, clone hm06a12m3.

		M27364	Human elongation factor 1 alpha mRNA, 3' end.
		M29548	Human e' zygation factor 1-alpha (EF1A) mRNA, parti
		L41490	Homo sapiens oncogene PTI-1 mRNA, complete cds.
		L41498	Homo sapiens oncogene PTI-1 mRNA, complete cds.
48	CATG TTACCATATC A	-988366 U57846	Human ribosomal protein L39 mRNA, complete cds.
49	CATG GCCTGGCTGGG C	-621035 X71973	H.sapiens GFx-4 mRNA for phospholipid hydroperoxid
50	CATG CCTCGGGAAA T	-383489 226876	H.sapiens gene for ribosomal protein L38.
51	CATG TACAAGAGGA A	-803369 X69391	H.sapiens mRNA for ribosomal protein L6.
		-803369 D17564	Human mRNA for DNA-binding Protein, TAXREB107, com
		-803369 S71022	neoplasm-related C140 product [human, thyroid carc
52	CATG AACGACCTCG T	-24951 V00598	Human beta-tubulin Pseudogene.
		-24951 V00599	Human mRNA fragment encoding beta-tubulin. (from c
53	CATG CCCTGCCCTTG T	-358783 X55110	Human mRNA for neurite outgrowth-promoting protein
54	CATG CCCAGGGAGA A	-346761 U38846	Human stimulator of TAR RNA binding (SRB) mRNA, co
		D16933	Human HepG2 3' region cDNA, clone hmd4f11.
55	CATG AGCACCTCCA G	-148949 Z11692	H.sapiens mRNA for elongation factor 2.
56	CATG CGGGGAAACA C	-416261 X73974	H.sapiens HRPL4 mRNA.
		D23660	Human mRNA for ribosomal protein, complete cds.
57	CATG CTAAAAAAA A	-458753 M333680	Human 26-kDa cell surface protein TAPA-1 mRNA, com
58	CATG GGCTGATGTG G	-686319 U09510	Human glycyl-tRNA synthetase mRNA, complete cds.
		U09587	Human glycyl-tRNA synthetase mRNA, complete cds.
		D30658	Human T-cell mRNA for glycyl tRNA synthetase, comp
59	CATG ATTCTCCAGT A	-253260 X55954	Human mRNA for HL23 ribosomal protein homologue.
		X52839	Human mRNA for ribosomal Protein L17.
60	CATG GAAAAATGGT T	-524524 X61156	H.sapiens mRNA for laminin-binding protein.
		X15005	Human mRNA for potential laminin-binding protein (
		U43901	Human 37 kD laminin receptor precursor/p40 ribosom
		J03799	Human colin carcinoma laminin-binding protein mRNA
		M14199	Human laminin receptor (2H5 epitope) mRNA, 5' end.
61	CATG CAGCTCACTG A	-302367 D87735	Human mRNA for ribosomal protein L14, complete cds
		L10376	Human (clone CTG-B33) mRNA sequence.
		S80520	CAG-isl 7 (trinucleotide repeat-containing sequenc
62	CATG ATATTCTTT G	-200576 U14973	Human ribosomal protein S29 mRNA, complete cds.

		L31610	Homo sapiens (clone cori-1c15) S29 ribosomal prote
63	CATG AATCCGTGG	A	-55227 Z28407 H.sapiens mRNA for ribosomal protein L8.
64	CATG AATAGGTCCA	A	-51925 M64716 Human ribosomal protein S25 mRNA, complete cds.
65	CATG AAAA.....AA	A (C, G, T)	-1 X83412 H.sapiens B1 mRNA for mucin.
			Z32564 H.sapiens FRGAMMA mRNA (819bp) for folate receptor (817bp
			Z32633 H.sapiens FRGAMMA' mRNA for folate receptor (817bp
			X76180 H.sapiens mRNA for lung amiloride sensitive Na+ ch
			U08470 Human FR-gamma' mRNA, complete cds.
			U08471 Human folate receptor 3 mRNA, complete cds.
			U48697 Human marinier-like element-containing mRNA, clone
			D28532 Human mRNA for renal Na+-dependent phosphate cotra
			M55914 Human c-myc binding protein (MBP-1) mRNA, complete
			L06175 Homo Sapiens PS-1 mRNA, complete cds.
			S73775 calmitine=mitochondrial calcium-binding protein [h
			S77393 transcript ch138 (human, RF1, RF48 stomach cancer C
			X60036 H.sapiens mRNA for mitochondrial phosphate carrier
			66 CATG CCAGAACAGA C -335945 X792338 H.sapiens mRNA for ribosomal protein L30.
			L16991 Human thymidylylate kinase (CDC8) mRNA, complete cds
			-44683 X80822 H.sapiens mRNA for ORF.
67	CATG AAGGTGGAGG	A	-379369 X52856 Human cyclophilin-related processed pseudogene.
68	CATG CCTAGCTGGA	T	X52857 Human cyclophilin-related processed pseudogene.
			X52854 Human cyclophilin-related processed pseudogene.
			X52851 Human cyclophilin gene for cyclophilin (EC 5.2.1.8
			Y00052 Human mRNA for T-cell cyclophilin.
			-528694 X63527 H.sapiens mRNA for ribosomal protein L19.
69	CACACATCC	A	S56985 ribosomal protein L19 (human, breast cancer cell 1
			X69181 H.sapiens mRNA for ribosomal protein L31.
70	CATG AAGGGAGATGG	G	X15940 Human mRNA for ribosomal protein L31.
			Z29650 H.sapiens SMCX mRNA.
71	CATG AGGCTACGGA	A	D17233 Human HepG2 3' region MboI cDNA, clone hmd4cl2m3.
72	CATG AGGTCCCTAGC	C	-177610 X08096 Human GST pi gene for glutathione S-transferase pi

	X06547	Human mRNA for class Pi glutathione S-transferase
	X15480	Human mRNA for anionic glutathione-S-transferase (
	X08058	Human glutathione S-transferase pi gene.
	U12472	Human glutathione S-transferase (GST phi) gene, co
	U21689	Human glutathione S-transferase-Plc gene, complete
	U62589	Human glutathione S-transferase PiC (GSTPiC) mRNA,
	M69113	Human fatty acid ethyl ester synthase-III mRNA seq
	M24485	Homo sapiens (clone pHGST-pi) glutathione S-transf
73	CATG TGGTGTGAG G	-963603 X69150 H.sapiens mRNA for ribosomal protein S18.
	M96153	Homo sapiens apolipoprotein B gene sequence,
	L06432	Homo sapiens 18S ribosomal protein (HKE3) mRNA seq
	-475448 M17885	Human acidic ribosomal phosphoprotein P0 mRNA, com
74	CATG CTCAAACATCT C	-769045 L25899 Human ribosomal protein L10 mRNA, complete cds.
75	CATG GTGTTAACCA G	-174037 X58125 Human (D9S55) DNA segment containing (TG)24 repeat
76	CATG AGGGCTTCCA A	D17268 Human HepG2 3' region MboI cDNA, clone hmd5h09m3.
	M73791	Human novel gene mRNA, complete cds.
	M64241	Human Wilm's tumor-related protein (QM) mRNA, comp
	S35960	Laminin receptor homolog (3' region) [human, mRNA
77	CATG GGATTGGCC T	-671654 M17887 Human acidic ribosomal phosphoprotein P2 mRNA, com
	M11147	M11147 Human ferritin L chain mRNA, complete cds.
	M12938	M12938 Human ferritin light subunit mRNA, partial cds.
	M10119	M10119 Human ferritin light subunit mRNA, complete cds.
78	ATTAACAAAG C	-246019 X04409 Human mRNA for coupling protein G(s) alpha-subunit
	X04408	X04408 Human mRNA for coupling protein G(s) alpha subunit
	X56009	X56009 Human GSA mRNA for alpha subunit of GsGTP binding
	X07036	X07036 Human mRNA stimulatory GTP-binding protein alpha s
	M21142	M21142 Human guanine nucleotide-binding protein alpha-sub
	M14631	M14631 Human guanine nucleotide-binding protein G-s, alph
79	CATG TTACCTGTA A	-968173 Z36832 H.sapiens (xs31) mRNA, 835bp.
	K00558	human alpha-tubulin mRNA, complete cds.
80	CATG TGGCCCCACC C	-955718 X56494 H.sapiens M gene for M1-type and M2-type pyruvate
	M23725	M23725 Human M2-type pyruvate kinase mRNA, complete cds.
	M26252	M26252 Human TCB gene encoding cytosolic thyroid hormone-

81	CATG TAATAAGGT	G	-798764	X67247	H. sapiens rps8 gene for ribosomal protein S8.
82	CATG GCATAATAGG	T	-602315	X89401	H. sapiens mRNA for large subunit of ribosomal prot.
			U14967		Human ribosomal protein L21 mRNA, complete cds.
			U25789		Human ribosomal protein L21 mRNA, complete cds.
			L38826		Homo sapiens L21 ribosomal protein gene, partial c
			X53778		H. sapiens hng mRNA for uracil DNA glycosylase.
83	CATG TACCATCAAT	A	-807748	X53778	Human normal keratinocyte subtraction library mRNA
			U34995		mRN
			J02642		Human glyceraldehyde 3-phosphate dehydrogenase mRNA
			M36164		Human glyceraldehyde-3-phosphate dehydrogenase (GA
			M33197		Human hmgI mRNA for high mobility group protein I.
84	CATG ATTGGTCCCCA	G	-260949	X14957	Human hmgI mRNA for high mobility group protein Y.
			X14958		Human hmgI mRNA for high mobility group protein Y.
			M23614		Human HMG-I protein isoform mRNA (HMG1 gene), clon
			M23619		Human HMG-I protein isoform mRNA (HMG1 gene), clon
			L17131		Human high mobility group protein (HMG-I(Y)) gene
			M23615		Human HMG-Y protein isoform mRNA (HMG1 gene), clon
			M23616		Human HMG-Y protein isoform mRNA (HMG1 gene), clon
			M23617		Human HMG-Y protein isoform mRNA (HMG1 gene), clon
			M23618		Human HMG-Y protein isoform mRNA (HMG1 gene), clon
			U14968		Human ribosomal protein L27a mRNA, complete cds.
85	CATG GAGGGAGTT	C	-567488	U14968	Human ribosomal protein L35 mRNA, complete cds.
			-416106	U12465	Human ribosomal protein L35 mRNA, complete cds.
86	CATG CGCCGCCGGC	T	-753749	Z63072	H. sapiens CpG island DNA genomic MseI fragment, cl
87	CATG GTGAAACCCA	ALL	-753749	X16294	Human repetitive DNA containing interspersed repea
88	CATG GTGAAACCCA	ALL	-753749	X16294	Human repetitive DNA containing interspersed repea
89	CATG AAGACAGTGG	C	-33979	X66699	H.sapiens mRNA for ribosomal protein L37a.
			L06499		Homo sapiens ribosomal protein L37a (RPL37A) mRNA,
			L22154		Human ribosomal protein L37a mRNA sequence.
			-348755	X55715	Human Hums3 mRNA for 40S ribosomal protein S3.
90	CATG CCCAGCCAG	T	U14990		Human XPIPO ribosomal protein S3 (rpS3) mRNA, comp
			U14991		Human KP2NE ribosomal protein S3 (rpS3) mRNA, comp
			U14992		Human IMR-90 ribosomal Protein S3 (rpS3) mRNA, com
			S42658		S3 ribosomal protein [human, colon, mRNA, 826 nt].
			-959498	X63526	H.sapiens mRNA for protein homologous to elongatio
91	CATG TGGCAAAGC	C	-91531		H.sapiens mRNA for elongation factor-1-gamma.

		M55409	Human pancreatic tumor-related protein mRNA, 3' en
92	CATG TGAGGAATA A	-928269 M10036	Human triosephosphate isomerase mRNA, complete cds
93	CATG GACGACACGA G	-549145 U58682	Human ribosomal protein S28 mRNA, complete cds.
		M58458	Human ribosomal protein S4 (RPS4X) isoform mRNA, C
		M22146	Human scar protein mRNA, complete cds.
94	CATG AACGGGCCA A	-26261 Z23063	Homo sapiens macrophage migration inhibitory facto
		L10612	Human glycosylation-inhibiting factor mRNA, comple
		M95775	Homo sapiens macrophage migration inhibitory facto
		L19686	Homo sapiens macrophage migration inhibitory facto
		M25639	Human migration inhibitory factor (MIF) mRNA, comp
95	CATG TGCACGTTT C	-935680 X03342	Human mRNA for ribosomal protein L32.
		K03002	Human mRNA from chromosome 15 gene with homology t
96	CATG CACAAACGGT A	-278636 U57847	Human ribosomal protein S27 mRNA, complete cds.
		L19739	Homo sapiens metallopanstimulin (MPSS1) mRNA, compl
97	CATG GGAGTGGACA T	-667269 L11566	Homo sapiens ribosomal protein L18 (RPL18) mRNA, C
98	CATG CCCGAGGAAG G	-615043 Z54999	H.sapiens Cpg island DNA genomic MseI fragment, cl
		257572	H.sapiens Cpg island DNA genomic MseI fragment, cl
		Z56073	H.sapiens Cpg island DNA genomic MseI fragment, cl
		X53505	Human mRNA for ribosomal protein S12.
99	CATG GGGAAATCG C	-696375 M92381	Human thymosin beta 10 mRNA, complete cds.
		M20259	Human thymosin beta-10 mRNA, complete cds.
100	CATG GCAGCCATC G	-599350 U14969	Human ribosomal protein L28 mRNA, complete cds.
101	CATG TAAGGAGCTG A	-796831 X77770	Human HepG2 3' region MboI cDNA, clone hmd5d04m3.
102	CATG GCAGCCCC A	-672342 U12404	Human Csa-19 mRNA, complete cds.
		X79239	H.sapiens mRNA for ribosomal protein S13.
		L01124	Human ribosomal protein S13 (RPS13) mRNA, complete
103	CATG GTTCCCTGGC C	-775658 X65923	H.sapiens fau mRNA.
		U02523	Human FAU1P pseudogene, trinucleotide repeat regio
104	CATG CGTCCCAAAGG G	-374027 M60854	Human ribosomal protein S16 mRNA, complete cds.
		Z12962	H.sapiens mRNA for homologue to yeast ribosomal pr
		S61030	L41 ribosomal protein homolog (clone 7B6) [human,

105	CATG CAAACCATCC	A	-263478	X12883	Human mRNA for cytokeratin 18.
			X12876	Human mRNA fragment for cytokeratin 18.	
			X12881	Human mRNA for cytokeratin 18.	
			M24842	Human keratin 18 (K18) gene, complete cds.	
			M26325	Human cytokeratin 18 mRNA, 3' end.	
			M26326	Human keratin 18 mRNA, complete cds.	
			M26327	Human cytokeratin 18 mRNA, 3' end.	
106	CATG AGCTCTCCCT	G	-161624	X53777	Human L23 mRNA for putative ribosomal protein.
107	CATG AGGTCAGGAG	A(T)	-177315	D86979	Human male bone marrow myeloblast mRNA for KIAA022
			X55923	Human DNA for Alu element PIN6.	
			X79699	H sapiens Alu repeat, 230bp.	
			X12544	Human mRNA for HLA class II DR-beta (HLA-DR B).	
			Z77989	H sapiens flow-sorted chromosome 6 HindIII fragment	
			U11831	Human clone 2102V-1 chromosome 18p telomeric sequence	
			U12580	Human Alu repeat sequence A3.	
			U12582	Human Alu repeat sequence B2.	
			U12583	Human Alu repeat sequence D1.	
			U14694	Human Alu-Sb2 repeat, clone HALUSB08.	
			U14695	Human Alu-Sb2 repeat, clone HALUSB15.	
			U14696	Human Alu-Sb2 repeat, clone HALUSB27.	
			U14697	Human Alu-Sb2 repeat, clone HUM-11.	
			U14698	Human Alu-Sb2 repeat, clone HSB-8P.	
			U14699	Human Alu-Sb2 repeat, clone HUM-9.	
			U14700	Human Alu-Sb2 repeat, clone HALUSB35.	
			U14701	Human Alu-Sb2 repeat, clone HSB-2P.	
			U14704	Human Alu-Sb2 repeat, clone HUM-3.	
			U14706	Human Alu-Sb2 repeat, clone HUM-10.	
			U14707	Human Alu-Sb2 repeat, clone HUM-7.	
			J00120	Human (Lawn) c-myc proto-oncogene, complete coding	
			L34653	Homo sapiens platelet/endothelial cell adhesion molecule	
			M37521	Human XV2C gene.	
			S61789	NFL-neurofibromatosis type 1 (deletion breakpoint,	
			ST3483	phosphorylase kinase catalytic subunit PHKG2 homol	

		S75201	cholinesterase (Alu element) [human, Insertion Mut
		S75337	(Y Alu polymorphism, YAP, Polymorphic subfamily-3)
108	CATG GGGCTGGGT	-695980	Human ribosomal protein L29.
	C	249148	H. sapiens mRNA for ribosomal protein L29.
		U10248	Human ribosomal protein L29 (humrpl29) mRNA, compl
		U49083	Human cell surface heparin binding protein HIP mRN
		D16992	Human HepG2 partial cDNA, clone hmd2d02m5.
		D16911	Human HepG2 3' region cDNA, clone hmd3b09.
		J03537	Human ribosomal protein S6 mRNA, complete cds.
		M20020	Human ribosomal protein S6 mRNA, complete cds.
109	CATG ACGTTCTCTT	C	-114144
110	CATG TCTCCATACC	C	-906438
111	CATG GACTGGGTGC	C	-555450
112	CATG CTTAATCCTG	A	-508767
113	CATG GTGGGCAGG	G	-719435
114	CATG GCCCTCTGCC	A	-613862
115	CATG ACAGAAAGCA	A	-18469
116	CATG CTGCCGAGCT	C	-497192
117	CATG TTCCCTCGGGC	A	-1007018
118	CATG AACTAATACT	A	-28872
119	CATG TAGATAATGG	C	-822331
120	CATG GCCACACCCC	A,C	-607318
121	CATG GAACCTCTGG	A	-529899
122	CATG AACTAAAAAA	A	-28673
123	CATG GAAATGTAAG	A	-528067
124	CATG ACTCCAAAAA	A	-119809
125	CATG GTTCGTGCCA	A	-771109
126	CATG TTACCTCCT	C	-989024
127	CATG GCACAAGAAG	A	-594051
128	CATG CCCTGGGTT	T	-359102
129	CATG GCCTGTATGA	G	-621369
130	CATG CCCGTCCGGG	A	-355689
131	CATG AGGAAAGCTG	C	-163999
132	CATG TCAGATCTT	G	-861056

			EST
133	CATG	CCAGGAGGAA	T
134	CATG	TCACCCACAC	C
135	CATG	GTGTTGCACA	A
136	CATG	GCCGTGTCG	C

Isolation of partial cDNA (3' fragment) by 3' directed PCR reaction

This procedure is a modification of the protocol described in Polyak et al. (1997) Nature 389:300. Briefly, the procedure uses SAGE tags in PCR reaction such that the resultant PCR product contains the SAGE tag of interest as well as additional cDNA, the length of which is defined by the position of the tag with respect to the 3' end of the cDNA. The cDNA product derived from such a transcript driven PCR reaction can be used for many applications.

RNA from a source believed to express the cDNA corresponding to a given tag is first converted to double-stranded cDNA using any standard cDNA protocol. Similar conditions used to generate cDNA for SAGE library construction can be employed except that a modified oligo-dT primer is used to drive the first strand synthesis. For example, the oligonucleotide of composition 5'-B-TCC GGC GCG CCG TTT T CC CAG TCA CGA(30)-3', contains a poly-T stretch at the 3' end for hybridization and priming from poly-A tails, an M13 priming site for use in subsequent PCR steps, a 5' Biotin label (B) for capture to streptavidin-coated magnetic beads, and an AscI restriction endonuclease site for releasing the cDNA from the streptavidin-coated magnetic beads. Theoretically, any sufficiently-sized DNA region capable of hybridizing to a PCR primer can be used as well as any other 8 base pair recognizing endonuclease.

cDNA constructed utilizing this or similar modified oligo-dT primer is then processed exactly as described in U.S. Patent No. (insert) up until adapter ligation where only one adapter is ligated to the cDNA pool. After adapter ligation, the cDNA is released from the streptavidin-coated magnetic beads and is then used as a template for cDNA amplification.

Various PCR protocols can be employed using PCR priming sites within the 3' modified oligo-dT primer and the SAGE tag. The SAGE tag-derived PCR primer employed can be of varying length dictated by 5' extension of the tag into the adaptor sequence. cDNA products are now available for a variety of applications.

5

This technique can be further modified by: (1) altering the length and/or content of the modified oligo-dT primer; (2) ligating adaptors other than that previously employed within the SAGE protocol; (3) performing PCR from template retained on the streptavidin-coated magnetic beads; and (4) priming first strand cDNA synthesis with non-oligo-dT based primers.

10

15

20

25

Isolation of cDNA using GeneTrapper or modified GeneTrapper Technology

The reagents and manufacturer's instructions for this technology are commercially available from Life Technologies, Inc., Gaithersburg, Maryland. Briefly, a complex population of single-stranded phagemid DNA containing directional cDNA inserts is enriched for the target sequence by hybridization in solution to a biotinylated oligonucleotide probe complementary to the target sequence. The hybrids are captured on streptavidin-coated paramagnetic beads. A magnet retrieves the paramagnetic beads from the solution, leaving nonhybridized single-stranded DNAs behind. Subsequently, the captured single-stranded DNA target is released from the biotinylated oligonucleotide. After release, the cDNA clone is further enriched by using a nonbiotinylated target oligonucleotide to specifically prime conversion of the single-stranded target to double-stranded DNA. Following transformation and plating, typically 20% to 100% of the colonies represent the cDNA clone of interest. To identify the desired cDNA clone, the colonies may be screened by colony hybridization using the 32P-labeled oligonucleotide as described above for solution hybridization, or alternatively by DNA sequencing and alignment of all sequences obtained from numerous clones to determine a consensus sequence.

30

The genes which are identified herein as being differentially expressed in normal and cancer cells can be used diagnostically and prognostically. Transcription levels in a test sample suspected of being neoplastic can be determined and compared to the levels in normal colon cells. The test sample may be from any tissue suspected of neoplasia, and particularly from either suspected colorectal or suspected pancreatic cancer cells. The control cells for

5

the purposes of comparison are normal cells, preferably of the same tissue type as the test sample, e.g., colon cells, or pancreatic duct epithelial cells. Upregulation of transcription or downregulation of transcription is therefore diagnostic of the neoplastic state, depending on what gene is used as a test reagent. Similarly, transcription levels can be monitored to assess patient responses to anti-tumor therapies. Transcription levels will also provide prognostic information. For example, the level of transcription in a test sample can be compared to levels found in *bona fide* normal and tumor cells. More extreme deviations from normal expression levels indicate a poorer prognosis.

10

Transcription levels can be determined according to any means known in the art. These include, without limitation, Northern blots, nuclear run-on assays, *in vitro* transcription assays, primer extension assays, quantitative reverse transcriptase-polymerase chain reactions (RT-PCR), and hybrid filter binding assays. These techniques are well known in the art. See J.C. Alwine, D.J. Kemp, G.R. Stark, *Proc. Natl. Acad. Sci. U.S.A.* 74, 5350 (1977); K. Zinn, D. Di-Maio, T. Maniatis, *Cell* 34, 865 (1983); G. Veres, R.A. Gibbs, S.E. Scherer, C.T. Caskey, *Science* 237, 415 (1987).

15

Similarly, upregulated genes and downregulated genes can be detected by measuring expression of their protein products. This can be done by any means known in the art, including but not limited to Western (immuno) blot, enzyme linked immunoassay, radioimmunoassay, and enzyme assay. Such techniques are well known in the art. Protein products can be detected in tissue samples of a test patient, using a suspect sample as a test sample, and a matched normal tissue sample from the same tissue type as a control. If normal tissue is not available then a closely related tissue type can be used. Desirably both the samples being compared will be from the same individual. Alternatively, aberrant expression levels of protein products can be detected in body samples, such as blood, serum, feces, urine, sputum. As a control, a normal matched sample can be used from a healthy individual. Aberrant expression levels of transcripts can also be detected in such body samples, particularly in blood and serum.

20

25

30

5

Probes for use in the assays for transcription levels of particular genes or sets of genes may be RNA or DNA. The probes will be isolated substantially free of other cellular RNAs or DNAs. If the reagent contains one probe then it will comprise at least 50% of the nucleic acids in the reagent composition. If the reagent contains more than one probe, then the proportion will decrease accordingly, so that specific probes will still comprise at least 50% of the nucleic acids in the reagent composition.

10

Probes can be labeled according to any means known in the art. These may include radioactive labels, fluorescent labels, enzymatic labels, and binding partner labels such as biotin. Means for labeling and detecting probes are well known in the art. Probes comprise at least 10, 11, 12, 15, 20, or 30 contiguous nucleotides of a selected gene.

15

This invention provides proteins or polypeptides expressed from the polynucleotides of this invention, which is intended to include wild-type and recombinantly produced polypeptides and proteins from prokaryotic and eukaryotic host cells, as well as muteins, analogs and fragments thereof. In some embodiments, the term also includes antibodies and anti-idiotypic antibodies.

20

It is understood that functional equivalents or variants of the wild-type polypeptide or protein also are within the scope of this invention, for example, those having conservative amino acid substitutions. Other analogs include fusion proteins comprising a protein or polypeptide.

25

The proteins and polypeptides of this invention are obtainable by a number of processes well known to those of skill in the art, which include purification, chemical synthesis and recombinant methods. Full length proteins can be purified from a colon or pancreatic cell or tissue lysate by methods such as immunoprecipitation with antibody, and standard techniques such as gel filtration, ion-exchange, reversed-phase, and affinity chromatography using a fusion protein as shown herein. For such methodology, see for example Deutscher et al. (1999) Guide To Protein Purification: Methods In Enzymology (Vol. 182, Academic Press). Accordingly, this invention also

provides the processes for obtaining these proteins and polypeptides as well as the products obtainable and obtained by these processes.

The proteins and polypeptides also can be obtained by chemical synthesis using a commercially available automated peptide synthesizer such as those manufactured by Perkin Elmer/Applied Biosystems, Inc., Model 430A or 431A, Foster City. The synthesized protein or polypeptide can be precipitated and further purified, for example by high performance liquid chromatography (HPLC). Accordingly, this invention also provides a process for chemically synthesizing the proteins of this invention by providing the sequence of the protein and reagents, such as amino acids and enzymes and linking together the amino acids in the proper orientation and linear sequence.

Alternatively, the proteins and polypeptides can be obtained by well-known recombinant methods as described, for example, in Sambrook et al., (1989), *supra*, using the host cell and vector systems described above.

Also provided by this application are the polypeptides and proteins described herein conjugated to a detectable agent for use in the diagnostic methods. For example, detectably labeled proteins and polypeptides can be bound to a column and used for the detection and purification of antibodies. They also are useful as immunogens for the production of antibodies as described below. The proteins and fragments of this invention are useful in an in vitro assay system to screen for agents or drugs, which modulate cellular processes.

The proteins of this invention also can be combined with various liquid phase carriers, such as sterile or aqueous solutions, pharmaceutically acceptable carriers, suspensions and emulsions. Examples of non-aqueous solvents include propyl ethylene glycol, polyethylene glycol and vegetable oils. When used to prepare antibodies, the carriers also can include an adjuvant that is useful to non-specifically augment a specific immune response. A skilled artisan can easily determine whether an adjuvant is required and select one. However, for the purpose of illustration only, suitable adjuvants include, but

are not limited to Freund's Complete and Incomplete, mineral salts and polynucleotides.

This invention also provides a pharmaceutical composition comprising any of a protein, analog, mutein, polypeptide fragment, antibody, antibody fragment or anti-idiotypic antibody of this invention, alone or in combination with each other or other agents, and an acceptable carrier. These compositions are useful for various diagnostic and therapeutic methods.

Antibodies can be generated using the proteins encoded by the transcripts identified by the tags disclosed herein. Use of all or portions of the protein as immunogens is routine in the art. Similarly, fusion proteins can be used as immunogens. Antibodies can be affinity purified using the proteins or portions thereof used as immunogens. Similarly, monoclonal antibodies specifically immunoreactive with the protein sequences of the invention can be generated according to techniques which are well known in the art.

Antibodies can be used analytically to quantitate the expression of particular transcripts identified herein as upregulated or downregulated in cancer. In addition, antibodies can be conjugated or non-covalently linked to cytotoxic agents, such as cytotoxins, radionuclides, chemotherapeutic drugs, etc. Such antibodies can be used therapeutically to specifically target cancer cells in which the protein antigens are upregulated. These include the proteins encoded by the transcripts identified by the tags shown in Tables 2, 4, and 5. Means of making such linked cytotoxic antibodies and of administering the same are well known in the art.

Also provided by this invention is an antibody capable of specifically forming a complex with the proteins or polypeptides as described above. The term "antibody" includes polyclonal antibodies and monoclonal antibodies. The antibodies include, but are not limited to mouse, rat, and rabbit or human antibodies.

Laboratory methods for producing polyclonal antibodies and monoclonal antibodies, as well as deducing their corresponding nucleic acid sequences, are known in the art, see Harlow and Lane (1988) *supra* and

5

Sambrook et al. (1989) supra. The monoclonal antibodies of this invention can be biologically produced by introducing protein or a fragment thereof into an animal, e.g., a mouse or a rabbit. The antibody producing cells in the animal are isolated and fused with myeloma cells or heteromyeloma cells to produce hybrid cells or hybridomas. Accordingly, the hybridoma cells producing the monoclonal antibodies of this invention also are provided.

10

Thus, using the protein or fragment thereof, and well known methods, one of skill in the art can produce and screen the hybridoma cells and antibodies of this invention for antibodies having the ability to bind the proteins or polypeptides.

15

If a monoclonal antibody being tested binds with the protein or polypeptide, then the antibody being tested and the antibodies provided by the hybridomas of this invention are equivalent. It also is possible to determine without undue experimentation, whether an antibody has the same specificity as the monoclonal antibody of this invention by determining whether the antibody being tested prevents a monoclonal antibody of this invention from binding the protein or polypeptide with which the monoclonal antibody is normally reactive. If the antibody being tested competes with the monoclonal antibody of the invention as shown by a decrease in binding by the monoclonal antibody of this invention, then it is likely that the two antibodies bind to the same or a closely related epitope. Alternatively, one can pre-incubate the monoclonal antibody of this invention with a protein with which it is normally reactive, and determine if the monoclonal antibody being tested is inhibited in its ability to bind the antigen. If the monoclonal antibody being tested is inhibited then, in all likelihood, it has the same, or a closely related, epitopic specificity as the monoclonal antibody of this invention.

20

The term "antibody" also is intended to include antibodies of all isotypes. Particular isotypes of a monoclonal antibody can be prepared either directly by selecting from the initial fusion, or prepared secondarily, from a parental hybridoma secreting a monoclonal antibody of different isotype by using the sib selection technique to isolate class switch variants using the

25

procedure described in Steplewski et al. (1985) Proc. Natl. Acad. Sci. 82:8653 or Spira et al. (1984) J. Immunol. Methods 74:307.

This invention also provides biological active fragments of the polyclonal and monoclonal antibodies described above. These "antibody fragments" retain some ability to selectively bind with its antigen or immunogen. Such antibody fragments can include, but are not limited to:

- (1) Fab,
- (2) Fab',
- (3) F(ab')2,
- (4) Fv, and
- (5) SCA

A specific example of "a biologically active antibody fragment" is a CDR region of the antibody. Methods of making these fragments are known in the art, see for example, Harlow and Lane, (1988) *supra*.

The antibodies of this invention also can be modified to create chimeric antibodies and humanized antibodies (Oi, et al. (1986) BioTechniques 4(3):214). Chimeric antibodies are those in which the various domains of the antibodies' heavy and light chains are coded for by DNA from more than one species.

The isolation of other hybridomas secreting monoclonal antibodies with the specificity of the monoclonal antibodies of the invention can also be accomplished by one of ordinary skill in the art by producing anti-idiotypic antibodies (Herlyn, et al. (1986) Science 232:100). An anti-idiotypic antibody is an antibody which recognizes unique determinants present on the monoclonal antibody produced by the hybridoma of interest.

Idiotypic identity between monoclonal antibodies of two hybridomas demonstrates that the two monoclonal antibodies are the same with respect to their recognition of the same epitopic determinant. Thus, by using antibodies to the epitopic determinants on a monoclonal antibody it is possible to identify other hybridomas expressing monoclonal antibodies of the same epitopic specificity.

It is also possible to use the anti-idiotype technology to produce monoclonal antibodies which mimic an epitope. For example, an anti-idiotypic monoclonal antibody made to a first monoclonal antibody will have a binding domain in the hypervariable region which is the mirror image of the epitope bound by the first monoclonal antibody. Thus, in this instance, the anti-idiotypic monoclonal antibody could be used for immunization for production of these antibodies.

5

As used in this invention, the term "epitope" is meant to include any determinant having specific affinity for the monoclonal antibodies of the invention. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics.

10

The antibodies of this invention can be linked to a detectable agent or label. There are many different labels and methods of labeling known to those of ordinary skill in the art.

15

The antibody-label complex is useful to detect the protein or fragments in a sample, using standard immunochemical techniques such as immunohistochemistry as described by Harlow and Lane (1988) *supra*. Competitive and non-competitive immunoassays in either a direct or indirect format are examples of such assays, e.g., enzyme linked immunoassay (ELISA) radioimmunoassay (RIA) and the sandwich (immunometric) assay. Those of skill in the art will know, or can readily discern, other immunoassay formats without undue experimentation.

20

The coupling of antibodies to low molecular weight haptens can increase the sensitivity of the assay. The haptens can then be specifically detected by means of a second reaction. For example, it is common to use haptens such as biotin, which reacts avidin, or dinitrophenyl, pyridoxal, and fluorescein, which can react with specific anti-hapten antibodies. See Harlow and Lane (1988) *supra*.

25

30

5

The monoclonal antibodies of the invention also can be bound to many different carriers. Thus, this invention also provides compositions containing the antibodies and another substance, active or inert. Examples of well-known carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, agaroses and magnetite. The nature of the carrier can be either soluble or insoluble for purposes of the invention. Those skilled in the art will know of other suitable carriers for binding monoclonal antibodies, or will be able to ascertain such, using routine experimentation.

10

Compositions containing the antibodies, fragments thereof or cell lines which produce the antibodies, are encompassed by this invention. When these compositions are to be used pharmaceutically, they are combined with a pharmaceutically acceptable carrier.

15

The present invention also provides a screen for various agents which modulate the expression of a gene in a pancreatic or colon cell. To practice the method in vitro, suitable cell cultures or tissue cultures are first provided. The cell can be a cultured cell or a genetically modified cell in which a transcript from SEQ ID NOS:1-732, or their complements, is expressed. Alternatively, the cells can be from a tissue biopsy. The cells are cultured under conditions (temperature, growth or culture medium and gas (CO₂)) and for an appropriate amount of time to attain exponential proliferation without density dependent constraints. It also is desirable to maintain an additional separate cell culture; one which does not receive the agent being tested as a control.

20

As is apparent to one of skill in the art, suitable cells may be cultured in microtiter plates and several agents may be assayed at the same time by noting genotypic changes, phenotypic changes or cell death.

25

When the agent is a composition other than a DNA or RNA, the agent may be directly added to the cell culture or added to culture medium for addition. As is apparent to those skilled in the art, an "effective" amount must be added which can be empirically determined. When the agent is a polynucleotide, it may be directly added by use of a gene gun or

electroporation. Alternatively, it may be inserted into the cell using a gene delivery vehicle or vector as described above.

An agent is a potential therapeutic if it alters the expression of gene in the cell. Altered expression can be detected by assaying for altered mRNA expression or protein expression using the probes, primers and antibodies as described herein.

For the purposes of this invention, an "agent" is intended to include, but not be limited to a biological or chemical compound such as a simple or complex organic or inorganic molecule, a peptide, a protein (e.g. antibody) or a polynucleotide (e.g. anti-sense). A vast array of compounds can be synthesized, for example polymers, such as polypeptides and polynucleotides, and synthetic organic compounds based on various core structures, and these are also included in the term "agent". In addition, various natural sources can provide compounds for screening, such as plant or animal extracts, and the like. It should be understood, although not always explicitly stated that the agent is used alone or in combination with another agent, having the same or different biological activity as the agents identified by the inventive screen. The agents and methods also are intended to be combined with other therapies.

The above disclosure generally describes the present invention. A more complete understanding can be obtained by reference to the following specific examples which are provided herein for purposes of illustration only, and are not intended to limit the scope of the invention.

EXAMPLE 1

This example demonstrates the characterization of the general transcription of human colorectal epithelium, colorectal cancers, and pancreatic cancers.

We used the recently developed SAGE (serial analysis of gene expression) method to identify and quantify a total of 303,706 transcripts derived from human colorectal (CR) epithelium, CR cancers or pancreatic cancers (Table 1A) (3). These transcripts represented approximately 48,741

different genes (4) that ranged in average expression from 1 copy per cell to as many as 5,300 copies per cell (5). The number of different transcripts observed in each cell population varied from 14,247 to 20,471. The bulk of the mRNA mass (75%) consisted of transcripts expressed at more than five copies per cell
5 on average (Table 1B). In contrast, the majority (86%) of transcripts were expressed at less than 5 copies per cell, but in aggregate this low abundance class represented only 25% of the mRNA mass. This distribution was consistently observed among the different samples analyzed and was consistent with previous studies of RNA abundance classes based on RNA-DNA reassociation kinetics (Rot curves). Monte Carlo simulations revealed that our analyses had a 92% probability of detecting a transcript expressed at an
10 average of three copies per cell (7).

Table 1 - Summary of SAGE Analysis

A. Overall Summary

	Normal	Colon	Colon	Pancreatic	Pancreatic	
	Colon	Tumors	Cell Lines	Tumors	Cell Lines	Total
Total Tags	62,168	60,878	60,373	61,592	58,695	303,706
Unique Genes¹	14,721	19,690	17,092	20,471	14,247	48,741
GenBank²	8,753 (59)	10,490 (53)	10,193 (60)	11,547 (56)	8,922 (63)	26,339 (54)

¹ Indicates the number of different genes represented by the total tags analyzed (4).

² Indicates the number of genes that matched an entry in GenBank. The number in parentheses indicates the corresponding percentage of total unique tags.

Table 1 - Summary of SAGE Analysis

B. Summarized by Abundance Classes*

<u>Copies/Cell</u>	<u>Colon</u>	<u>Tumors</u>	<u>Cell Lines</u>	<u>Tumors</u>	<u>Lines</u>	<u>Total</u>
> 500						
Unique Genes	62 (29)	54 (25)	54 (19)	32 (11)	70 (26)	55 (19)
GenBank	59 (95)	52 (96)	53 (98)	32 (100)	70 (100)	54 (98)
> 50 and ≤ 500						
Unique Genes	645 (28)	470 (21)	618 (27)	657 (29)	585 (27)	595 (26)
GenBank	545 (84)	429 (91)	579 (94)	609 (93)	529 (90)	553 (93)
> 5 and ≤ 50						
Unique Genes	4,569 (27)	5,011 (29)	5,733 (34)	6,146 (36)	4,895 (31)	6,209 (30)
GenBank	2,893 (63)	3,204 (64)	3,682 (64)	4,054 (66)	3,168 (65)	4,241 (68)

<u>≤ 5</u>	Unique Genes	9,445 (16)	14,155 (25)	10,687 (20)	13,636 (24)	8,697 (16)	41,882 (25)
GenBank	5,256 (56)	6,805 (48)	5,879 (55)	6,852 (50)	5,155 (59)	21,491 (51)	

*For unique genes, the first number denotes the number of different genes (4) represented in the indicated abundance class. The number in parentheses indicates the mass fraction (X100) of total transcripts represented by the indicated abundance class. For GenBank entries, the first number indicates the number of different genes that matched an entry in GenBank in the indicated abundance class. The number in parentheses indicates the corresponding percentage of total genes.

Many of the SAGE tags appeared to represent previously undescribed transcripts, as only 54% of the tags matched entries in GenBank (Table 1). Twenty percent of these matching transcripts corresponded to characterized mRNA sequence entries in GenBank, whereas 80% matched uncharacterized EST entries. As expected, the likelihood of a tag being present in the databases was related to abundance; GenBank matches were identified for 98% of the transcripts expressed at more than 500 copies per cell but for only 51% of the transcripts expressed at ≤ 5 copies per cell. Because the SAGE data provide a quantitative assay of transcript abundance, unaffected by differences in cloning or PCR efficiency, these data provide an independent and relatively unbiased estimate of the current completeness of publicly available EST databases.

EXAMPLE 2

This example demonstrates a comparison of the expression pattern of normal colon epithelium and primary colon cancers.

Comparison of expression patterns between normal colon epithelium and primary colon cancers revealed that the majority of transcripts were expressed at similar levels (Fig. 1A). However, the expression profiles also revealed 289 transcripts that were expressed at significantly different levels [$P < 0.01$, (8)]. Of these 289, 181 were decreased in colon tumors compared to normal colon (average decrease 10-fold; Fig. 1B; examples in Fig. 2A). Conversely, 108 transcripts were expressed at higher levels in the colon cancers than in normal colon (average increase 13-fold; Fig. 1C; examples in Fig. 2A). Monte Carlo simulations indicated that the analysis would have detected over 95% of those transcripts expressed at a 6-fold or greater level in normal vs. tumor cells or vice versa (9). Because relatively stringent criteria were used for defining differences [$P < 0.01$, (8)], the number of differences reported above is likely to be an underestimate.

EXAMPLE 3

This example demonstrates the similarities and differences between cancer cell line transcription and transcription of primary cancer tissues.

To determine how many of the 289 differences were independent of the cellular microenvironment of cancers *in vivo*, SAGE data from CR cancer cell lines was compared to that from primary CR cancer tissues (Fig. 1B, 1C). Perhaps surprisingly, the majority of transcripts (130 of 181) that were expressed at reduced levels in cancer cells *in vivo* were also expressed at significantly lower levels in the cell lines (Fig. 1B). Likewise, a significant fraction of the transcripts expressed at increased levels in primary cancers were also expressed at higher levels in the CR cancer cell lines (Fig. 1C). Thus, many of the gene expression differences that distinguish normal from tumor cells *in vivo* persist during *in vitro* growth. However, despite these similarities there were also many differences. For example, only 47 of 228 genes expressed at higher levels in CR cancer cell lines were also expressed at high levels in the primary CR cancers.

In combination, comparing the expression pattern of CR cancer cells (*in vivo* or *in vitro*) to normal colon revealed 548 differentially expressed transcripts (Fig. 1B,C, Tables 2 and 3). The average difference in expression for these transcripts was 15 fold. Although the ability to detect differences is influenced by the magnitude of the variance with the power to detect smaller differences being less, 92 transcripts that were less than three fold different were identified among the 548 transcripts. However, those genes exhibiting the greatest differences in expression are likely to be the most biologically important.

EXAMPLE 4

This example demonstrates the similarities and differences between colorectal cancer transcription and pancreatic cancer transcription.

5 To determine whether the changes noted in CR cancers were neoplasia or cell type specific, we performed SAGE on mRNA derived from pancreatic cancers. A total of 404 transcripts were expressed at higher levels in pancreatic cancers compared to normal colon epithelium (examples in Fig. 2B). The majority (268) of these transcripts were pancreas-specific (10) (Example in Fig. 2C) although 136 were also expressed at high levels in CR cancers. These 136 transcripts constituted 47% of the 289 transcripts increased in CR cancers relative to normal colon and are likely to be related to the neoplastic process 10 rather than to the specific cell type of origin.

EXAMPLE 5

15 This example demonstrates the reproducibility of the transcription patterns observed among a larger number of cancer samples.

One question that arose from these data is the potential heterogeneity 20 of expression between individual tumors. The SAGE data were acquired from two examples of each tissue type (normal colon, primary CR cancer, CR cancer cell line, etc.). To examine the generality of these expression profiles, we arbitrarily selected 27 differentially expressed transcripts and evaluated them in six to twelve samples of normal colon and primary cancers by Northern blot analysis (11). In general, expression patterns were very reproducible among 25 different samples. Of 10 genes with elevated expression in normal colon relative to CR cancers as determined by SAGE, each was detected in the normal colon samples and was expressed at considerably lower levels in tumors (examples in Fig. 2A). Similarly, most of the genes identified by SAGE as increased in CR or pancreatic cancers were confirmed to be reproducibly expressed in the majority of primary cancers examined by Northern blot 30 (examples in Fig. 2A). It is important to note, however, that there were differences among the cancers, with a few cancers exhibiting particularly high or low levels of individual transcripts. Such differences in gene expression

undoubtedly contribute to the observed heterogeneity in biological properties of cancers derived from the same organ .

EXAMPLE 6

This example demonstrates the identities of some of the transcripts which were found to be differentially expressed in tumor and normal tissues.

5 What are the identities of the differentially expressed genes? Of the 548 differentially expressed transcripts, 337 were tentatively identified through database comparisons. When tested, the great majority (93%) of these identifications proved to be legitimate (13), as expected from previous SAGE analyses . Although a large number of differentially expressed genes were identified, some simple patterns did emerge. For example, genes that were expressed at higher levels in normal colon epithelium than in CR tumors were often differentiation-related. These genes included liver fatty acid binding protein , cytokeratin 20 , carbonic anhydrase , guanylin and uroguanylin ,

10 which are known to be important for the normal physiology or architecture of the colon epithelium (Table 2). On the other hand, genes that were increased in CR cancers were often related to the robust growth characteristics that these cells exhibit. For example, gene products associated with protein synthesis, including 48 ribosomal proteins, five elongation factors, and five genes involved in glycolysis were observed to be elevated in both CR and pancreatic

15 cancers compared to normal colon cells. Although the majority of the transcripts could not have been predicted to be differentially expressed in cancers, several have previously been shown to be dysregulated in neoplastic cells. The latter included IGFII , B23 nucleophosmin, the Pi form of glutathione S-transferase, and several ribosomal proteins which were all increased in cancer cells as previously reported. Likewise, Dra and gelsolin

20 were both decreased in cancer as previously reported. Surprisingly, two widely studied oncogenes, *c-fos* and *c-erbb3*, were expressed at much higher levels in normal colon epithelium than CR cancers, in contrast to their up-regulation in

25 transformed cells .

In summary, these data provide basic information necessary for understanding the gene expression differences that underlie cancer phenotypes. They additionally provide a necessary framework for interpreting the significance of individual differentially expressed genes. Although this study
5 demonstrated that a large number of such differences exist (approximately 500 at the depth of analysis employed), it was equally remarkable that the fraction of transcripts exhibiting significant differences was relatively small, representing 1.5 % of the transcripts detected in any given cell type (26). The fact that many, but not all, of the differences were preserved during in vitro culture demonstrates the utility of cultured lines for examination of some aspects of gene expression, but also provides a note of caution in relying on such lines to perfectly mimic tumors in their natural environment. Finally, the finding that hundreds of specific genes are expressed at different levels in CR cancers, and that some of these are also expressed differentially in pancreatic
10 cancers, provides a wealth of new reagents for future biologic and diagnostic experimentation.
15

REFERENCES AND NOTES

1. M. D. Adams, *et al.*, *Nature* **377**, supp. **28**, 3 (1995); M. Schena, D. Shalon, R. W. Davis, P. O. Brown, *Science* **270**, 467 (1995); J. Derisi, *et al.*, *Nature Genetics* **14**, 457 (1996); T. M. Gress, *et al.*, *Oncogene* **13**, 1819 (1996); D. J. Lockhart, *et al.*, *Nature Biotechnology* **14**, 1675 (1996); M. Schena, *et al.*, *Proc Natl Acad Sci U S A* **93**, 10614 (1996).
2. V. E. Velculescu, L. Zhang, B. Vogelstein, K. W. Kinzler, *Science* **270**, 484 (1995); V. E. Velculescu, *et al.*, *Cell* **88**, 243 (1997).
3. To minimize individual variation, approximately equal numbers of tags (30,000) were derived from two different patients for each tissue. For primary tumors (two CR carcinomas and two pancreatic adenocarcinomas), RNA was isolated from portions of tumors judged to contain 60%-90% tumor cells by histopathology. The cells grown in vitro were derived from CR (SW837, Caco2) and pancreatic (ASPC-1, PL45) cancer cell lines. CR epithelial cells were isolated from sections of normal colon mucosa from two patients using EDTA as previously described [S. Nakamura, I. Kino, S. Baba, *Gut* **34**, 1240 (1993)]. Histopathology confirmed that the isolated cells were greater than 90% epithelial. Isolation of Poly-A RNA and SAGE was performed as previously described (2). SAGE data was analyzed by means of SAGE software and GenBank Release 95 as previously described (2).
4. A total of 69,393 different SAGE tags were identified among the 303,706 tags analyzed. A small fraction of these different tags were likely due to sequencing errors. SAGE analysis of yeast (2), wherein the entire genomic sequence is known, demonstrated a sequencing error rate of ~ 0.7%, translating to a SAGE tag error rate of 6.8% ($1 - 0.993^{10}$). Because these sequencing mistakes are essentially random, they do not substantially affect the analysis although they could artificially inflate the number of unique genes identified. Therefore, to be conservative, we reduced our estimate of unique genes identified by this maximum tag error rate (e.g., 6.8% of 303,706 total tags). The number of different tags derived from the same gene due to alternative splicing was assumed to be negligible.

5. Abundances can be simply determined by dividing the observed number of tags for a given transcript by the total number of tags obtained. An estimate of approximately 300,000 transcripts per cell was used to convert the abundances to copies per cell [N. D. Hastie, J. O. Bishop, *Cell* 9, 761 (1976)].

5 6. J. O. Bishop, J. G. Morton, M. Rosbash, M. Richardson, *Nature* 250, 199 (1974); B. Lewin, *Gene Expression Vol 2* (John Wiley and sons, New York 1980).

10 7. Computer simulations indicated that analysis of 300,000 tags would yield a 92 % chance of detecting a tag for a transcript whose expression was at least three copies per cell on average among the tissues examined and assuming 300,000 transcripts per cell.

15 8. To minimize the number of assumptions and to account for the large number of comparisons being made, Monte Carlo analysis was used for determining statistical significance. The null hypothesis was that the level, kind, and distribution of transcripts were the same for cancer and normal cells. For each transcript, 100,000 simulations were performed to determine the relative likelihood due to chance alone ("p-chance") of obtaining a difference in expression equal to or greater than the observed difference, given the null hypothesis. This likelihood was converted to an absolute probability value by simulating 40 experiments in which a representative number of transcripts (27,993 transcripts in each experiment) was identified and compared. The distribution of transcripts used for these simulations was derived from the average level of expression observed in the original samples. The distribution of the p-chance scores obtained in the 40 simulated experiments (false positives) was then compared to those obtained experimentally. Based on this comparison, a maximum value of 0.0005 was chosen for p-chance. This yielded a false positive rate that was no higher than 0.01 for the least significant p-chance value below the cutoff.

20 25

9. Two hundred simulations assuming an abundance of 0.0001 in one sample and 0.0006 in a second sample revealed a significant difference ($P < 0.01$, [8]) 95% of the time.

10. It is not possible to obtain pancreatic ductal epithelium, from which pancreatic carcinomas arise, in sufficient quantities to perform SAGE. It is therefore not possible to determine whether these transcripts were derived from genes that were highly expressed only in pancreatic cancers or were also expressed in pancreatic duct cells.
- 5
11. Total RNA isolation and Northern blot analysis was performed as described [W. S. el-Deiry, *et al.*, *Cell* **75**, 817 (1993)].
12. A. H. Owens, D. S. Coffey, S. B. Baylin, Eds., *Tumor Cell Heterogeneity: Origins and Implications* (Academic Press, New York, 1982).
- 10 13. Northern blot analyses were done on 45 of the 337 differentially expressed transcripts with tentative database matches. In three cases, the pattern of expression was not differentially expressed as predicted by SAGE and, for the purposes of this calculation, were presumed to represent incorrect database matches.
- 15 14. D. C. Rubin, D. E. Ong, J. I. Gordon, *Proc Natl Acad Sci U S A* **86**, 1278 (1989); K. Okubo, J. Yoshii, H. Yokouchi, M. Kameyama, K. Matsubara, *DNA Res* **1**, 37 (1994).
- 15 15. R. Moll, *et al.*, *Differentiation* **53**, 75 (1993).
16. J. Sowden, S. Leigh, I. Talbot, J. Delhanty, Y. Edwards, *Differentiation* **53**, 67 (1993).
- 20 17. F. J. de Sauvage, *et al.*, *Proc Natl Acad Sci U S A* **89**, 9089 (1992).
18. R. C. Wiegand, *et al.*, *FEBS Lett* **311**, 150 (1992).
19. J. V. Tricoli, *et al.*, *Cancer Res* **46**, 6169 (1986); S. Lambert, J. Vivario, J. Boniver, R. Gol-Winkler, *Int J Cancer* **46**, 405 (1990).
- 25 20. W. Y. Chan, *et al.*, *Biochemistry* **28**, 1033 (1989).
21. J. D. Hayes, D. J. Pulford, *Crit Rev Biochem Mol Biol* **30**, 445 (1995).
22. G. F. Barnard, *et al.*, *Cancer Res* **52**, 3067 (1992); P. J. Chiao, D. M. Shin, P. G. Sacks, W. K. Hong, M. A. Tainsky, *Mol Carcinog* **5**, 219 (1992); N. Kondoh, C. W. Schweinfest, K. W. Henderson, T. S. Papas,
- 30

Cancer Res **52**, 791 (1992); G. F. Barnard, *et al.*, *Cancer Res* **53**, 4048 (1993); M. G. Denis, *et al.*, *Int J Cancer* **55**, 275 (1993); J. M. Frigerio, *et al.*, *Hum Mol Genet* **4**, 37 (1995).

5 23. C. W. Schweinfest, K. W. Henderson, S. Suster, N. Kondoh, T. S. Papas, *Proc Natl Acad Sci USA* **90**, 4166 (1993).

24. M. Tanaka, *et al.*, *Cancer Res* **55**, 3228 (1995); D. Medina, F. S. Kittrell, C. J. Oborn, M. Schwartz, *Cancer Res* **53**, 668 (1993).

10 25. A. D. Miller, T. Curran, I. M. Verma, *Cell* **36**, 51 (1984); M. H. Kraus, W. Issing, T. Miki, N. C. Popescu, S. A. Aaronson, *Proc Natl Acad Sci USA* **86**, 9193 (1989).

26. In the case of normal and neoplastic colon cancer tissue, 548 differentially transcripts were identified among the 36,125 unique transcripts.

27. All references cited are hereby incorporated by reference herein.

15 28. Sequences tags in Tables 2-4 are consecutively numbered to form SEQ ID NOS: 1-732.

CLAIMS

1. A method of diagnosing colon cancer in a sample suspected of being neoplastic, comprising the steps of:

5 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 3;

10 identifying the first sample as neoplastic when the level of the at least one transcript is found to be lower in the first sample than in the second sample.

2. A method of diagnosing colon cancer in a sample suspected of being neoplastic, comprising the steps of:

15 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 2;

20 identifying the first sample as neoplastic when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

3. The method of claim 1 wherein a comparison of at least two of said transcripts is performed.

25 4. The method of claim 2 wherein a comparison of at least two of said transcripts is performed.

5. The method of claim 1 wherein a comparison of at least five of said transcripts is performed.
6. The method of claim 2 wherein a comparison of at least five of said transcripts is performed.
- 5 7. The method of claim 1 wherein a comparison of at least ten of said transcripts is performed.
8. The method of claim 2 wherein a comparison of at least ten of said transcripts is performed.
9. The method of claim 1 wherein a comparison of at least twenty of said transcripts is performed.
- 10 10. The method of claim 2 wherein a comparison of at least twenty of said transcripts is performed.
11. The method of claim 1 wherein a comparison of at least thirty of said transcripts is performed.
- 15 12. The method of claim 2 wherein a comparison of at least thirty of said transcripts is performed.
13. An isolated and purified human nucleic acid molecule which comprises a SAGE tag selected from SEQ ID NO:1-732.
14. The nucleic acid molecule of claim 13 which is a cDNA molecule.

15. The nucleic acid molecule of claim 13 wherein the SAGE tag is located at the 3' end of the molecule, adjacent to the 3'-most NlaIII restriction enzyme site.
- 5 16. An isolated nucleotide probe comprising at least 10 nucleotides of a human nucleic acid molecule, wherein the human nucleic acid molecule comprises a SAGE tag selected from SEQ ID NO: 1-732.
17. The probe of claim 16 which comprises the selected SAGE tag.
18. A diagnostic reagent for evaluating neoplasia of a colorectal tissue, comprising at least 2 probes according to claim 16.
- 10 19. The diagnostic reagent of claim 18 which comprises at least 5 probes according to claim 16.
20. The diagnostic reagent of claim 18 which comprises at least 10 probes according to claim 16.
- 15 21. The diagnostic reagent of claim 18 which comprises at least 20 probes according to claim 16.
22. The diagnostic reagent of claim 18 which comprises at least 30 probes according to claim 16.
23. A diagnostic reagent for evaluating neoplasia of a colorectal tissue, comprising at least 2 probes according to claim 17.
- 20 24. A method of diagnosing pancreatic cancer in a sample suspected of being neoplastic, comprising the steps of:

5

comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a pancreatic tissue suspected of being neoplastic and the second sample is of a normal human colon tissue, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 4;

10

identifying the first sample as neoplastic when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

25. A method of diagnosing cancer in a sample suspected of being neoplastic, comprising the steps of:

15

comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a tissue suspected of being neoplastic and the second sample is of a normal human tissue of the same tissue type, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 5;

20

identifying the first sample as neoplastic when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

25

26. A method to aid in the determination of a prognosis for a colon cancer patient, comprising the steps of:

comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic colonic tissue and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 3;

determining a poorer prognosis if the level of the at least one transcript is found to be lower in the first sample than in the second sample.

27. A method to aid in determining a prognosis for a patient with colon cancer, comprising the steps of:

5

comparing the level of at least one transcript in a first tissue sample to a second sample, wherein the first sample is of a colonic cancer tissue and the second sample is of a normal human colonic tissue, and wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 2;

determining a poorer prognosis if the level of the at least one transcript is found to be higher in the first sample than in the second sample.

10

28. A method of diagnosing colon cancer in a sample suspected of being neoplastic, comprising the steps of:

15

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 3;

identifying the first sample as neoplastic when the level of expression of the protein is found to be lower in the first sample than in the second sample.

20

29. A method of diagnosing colon cancer in a sample suspected of being neoplastic, comprising the steps of:

25

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a colonic tissue suspected of being neoplastic and the second sample is of a normal human colonic tissue, and wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 2;

identifying the first sample as neoplastic when expression of the protein is found to be higher in the first sample than in the second sample.

30. A method to aid in determining a prognosis of a patient having pancreatic cancer, comprising the steps of:

5 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic pancreatic tissue and the second sample is of a normal human colon tissue, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 4;

determining a poorer prognosis if the level of the at least one transcript is found to be higher in the first sample than in the second sample.

10 31. A method to aid in providing a prognosis for a cancer patient, comprising the steps of:

15 comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic tissue and the second sample is of a normal human tissue of the same tissue type, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 5;

determining a poorer prognosis if the level of the at least one transcript is found to be higher in the first sample than in the second sample.

20 32. A method of diagnosing pancreatic cancer in a sample suspected of being neoplastic, comprising the steps of:

25 comparing the level of expression of at least one protein encoded by a transcript in a first sample of a tissue to a second sample, wherein the first sample is of a pancreatic tissue suspected of being neoplastic and the second sample is of a normal human colon tissue, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 4;

identifying the first sample as neoplastic when expression of the protein is found to be higher in the first sample than in the second sample.

33. A method of diagnosing cancer in a sample suspected of being neoplastic, comprising the steps of:

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a tissue suspected of being neoplastic and the second sample is of a normal human tissue, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 5;

identifying the first sample as neoplastic when expression of the protein is found to be higher in the first sample than in the second sample.

10 34. A method to aid in the determination of a prognosis for a colon cancer patient, comprising the steps of:

comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic colonic tissue and the second sample is of a normal human colonic tissue, and wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 3;

determining a poorer prognosis if the level of expression is found to be lower in the first sample than in the second sample.

20 35. A method to aid in determining a prognosis for a patient with colon cancer, comprising the steps of:

comparing the level of expression of at least one protein in a first tissue sample to a second sample, wherein the first sample is of a colonic cancer tissue and the second sample is of a normal human colonic tissue, and wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 2;

determining a poorer prognosis if the level of expression is found to be higher in the first sample than in the second sample.

36. A method to aid in determining a prognosis of a patient having pancreatic cancer, comprising the steps of:

5 comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic pancreatic tissue and the second sample is of a normal human colon tissue, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 4;

determining a poorer prognosis if the level of expression is found to be higher in the first sample than in the second sample.

10 37. A method to aid in providing a prognosis for a cancer patient, comprising the steps of:

15 comparing the level of expression of at least one protein in a first sample of a tissue to a second sample, wherein the first sample is of a neoplastic tissue and the second sample is of a normal human tissue of the same tissue type, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 5;

determining a poorer prognosis if the level of expression is found to be higher in the first sample than in the second sample.

38. A method of treating a cancer cell, comprising the step of:

20 administering to a cancer cell an antibody which specifically binds to a protein encoded by a transcript identified by a tag selected from the group consisting of those shown in Tables 2, 4, and 5, wherein the antibody is linked to a cytotoxic agent.

25 39. An antibody linked to a cytotoxic agent, wherein the antibody specifically binds to a protein encoded by a transcript identified by a tag selected from the group consisting of those shown in Tables 2, 4, and 5.

40. A method of detecting colon cancer in a patient, comprising the steps of:

comparing the level of at least one protein in a first body sample to a second body sample, wherein the first sample is a body sample of the patient and the second sample is of a normal human, wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 2, wherein the first and second body sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

10 identifying neoplasia when the level of the at least one protein is found to be higher in the first sample than in the second sample.

41. A method of detecting pancreatic cancer in a patient, comprising the steps of:

comparing the level of at least one protein encoded by a transcript in a first sample of a tissue to a second sample, wherein the first sample is of the patient and the second sample is of a normal human, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 4, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

20 identifying neoplasia when the level of the at least one protein is found to be higher in the first sample than in the second sample.

42. A method of detecting cancer in a patient, comprising the steps of:

comparing the level of at least one protein in a first sample to a second sample, wherein the first sample is of patient and the second sample is of a normal human, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown Table 5, wherein the first and second body sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

identifying neoplasia when the level of the at least one protein is found to be higher in the first sample than in the second sample.

43. A method to aid in determining a prognosis for a patient with colon cancer, comprising the steps of:

5 comparing the level of at least one protein in a first sample to a second sample, wherein the first sample is of a colonic cancer patient and the second sample is of a normal human, wherein the protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 2, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

10 determining a poorer prognosis if the level of the at least one protein is found to be higher in the first sample than in the second sample.

44. A method to aid in determining a prognosis of a patient having pancreatic cancer, comprising the steps of:

15 comparing the level of at least one protein in a first sample to a second sample, wherein the first sample is of a pancreatic cancer patient and the second sample is of a normal human, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those shown in Table 4, wherein said first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

20 determining a poorer prognosis if the level of the at least one protein is found to be higher in the first sample than in the second sample.

45. A method to aid in providing a prognosis for a cancer patient, comprising the steps of:

25 comparing the level of expression of at least one protein in a first sample to a second sample, wherein the first sample is of a cancer patient and the second sample is of a normal human, wherein said protein is encoded by a transcript identified by a tag selected from the group consisting of those

shown Table 5, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

determining a poorer prognosis if the level of at least one protein is found to be higher in the first sample than in the second sample.

5

46. A method of detecting colon cancer in a patient, comprising the steps of:

comparing the level of at least one transcript in a first body sample to a second body sample, wherein the first sample is a body sample of the patient and the second sample is of a normal human, wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 2, wherein the first and second body sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

identifying neoplasia when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

10

15

47. A method of detecting pancreatic cancer in a patient, comprising the steps of:

comparing the level of at least one transcript in a first sample of a tissue to a second sample, wherein the first sample is of the patient and the second sample is of a normal human, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 4, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

identifying neoplasia when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

20

25

48. A method of detecting cancer in a patient, comprising the steps of:

comparing the level of at least one transcript in a first sample to a second sample, wherein the first sample is of patient and the second sample is of a normal human, wherein said transcript is identified by a tag selected

from the group consisting of those shown Table 5, wherein the first and second body sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

5 identifying neoplasia when the level of the at least one transcript is found to be higher in the first sample than in the second sample.

49. A method to aid in determining a prognosis for a patient with colon cancer, comprising the steps of:

10 comparing the level of at least one transcript in a first sample to a second sample, wherein the first sample is of a colonic cancer patient and the second sample is of a normal human, wherein the transcript is identified by a tag selected from the group consisting of those shown in Table 2, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

15 determining a poorer prognosis if the level of the at least one transcript is found to be higher in the first sample than in the second sample.

50. A method to aid in determining a prognosis of a patient having pancreatic cancer, comprising the steps of:

20 comparing the level of at least one transcript in a first sample to a second sample, wherein the first sample is of a pancreatic cancer patient and the second sample is of a normal human, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 4, wherein said first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

25 determining a poorer prognosis if the level of the at least one transcript is found to be higher in the first sample than in the second sample.

51. A method to aid in providing a prognosis for a cancer patient, comprising the steps of:

5

comparing the level of expression of at least one transcript in a first sample to a second sample, wherein the first sample is of a cancer patient and the second sample is of a normal human, wherein said transcript is identified by a tag selected from the group consisting of those shown Table 5, wherein the first and second sample is a sample selected from the group consisting of blood, urine, feces, sputum, and serum;

determining a poorer prognosis if the level of the at least one transcript is found to be higher in the first sample than in the second sample.

10

52. A method for screening for candidate agents that modulate the expression of a polynucleotide selected from the group consisting of the polynucleotides in SEQ ID NOS:1-732 or their respective complements, comprising contacting a test agent with a colon or pancreatic cell and monitoring expression of the polynucleotide, wherein the test agent which modifies the expression of the polynucleotide is a candidate agent.

B.

C.

FIG. 2

A.**B.****C.**

THIS PAGE BLANK (USPTO)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		A3	(11) International Publication Number: WO 98/53319
C12Q 1/68, G01N 33/574			(43) International Publication Date: 26 November 1998 (26.11.98)
(21) International Application Number:	PCT/US98/10277		(74) Agents: KAGAN, Sarah, A. et al.; Banner & Witcoff, Ltd., 11th floor, 1001 G Street, N.W., Washington, DC 20001-4597 (US).
(22) International Filing Date:	20 May 1998 (20.05.98)		
(30) Priority Data:	60/047,352	21 May 1997 (21.05.97)	US
(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application	US	60/047,352 (CON)	(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
Filed on	21 May 1997 (21.05.97)		
(71) Applicant (for all designated States except US):	THE JOHNS HOPKINS UNIVERSITY [US/US]; Suite 2-100, 2024 E. Monument Street, Baltimore, MD 21205 (US).		
(72) Inventors; and			Published
(75) Inventors/Applicants (for US only):	VOGELSTEIN, Bert [US/US]; The Johns Hopkins University, Suite 2-100, 2024 E. Monument Street, Baltimore, MD 21205 (US). KINZLER, Kenneth, W. [US/US]; The Johns Hopkins University, Suite 2-100, 2024 E. Monument Street, Baltimore, MD 21205 (US).		With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.
(88) Date of publication of the international search report:			8 July 1999 (08.07.99)

(54) Title: GENE EXPRESSION PROFILES IN NORMAL AND CANCER CELLS

(57) Abstract

As a step towards understanding the complex differences between normal and cancer cells, gene expression patterns were examined in gastrointestinal tumors. More than 300,000 transcripts derived from at least 45,000 different genes were analyzed. Although extensive similarity was noted between the expression profiles, more than 500 transcripts that were expressed at significantly different levels in normal and neoplastic cells were identified. These data provide insights into the extent of expression differences underlying malignancy and reveal genes that are useful as diagnostic or prognostic markers.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Republic of Korea	RO	Romania		
CU	Cuba	KZ	Kazakhstan	RU	Russian Federation		
CZ	Czech Republic	LC	Saint Lucia	SD	Sudan		
DE	Germany	LI	Liechtenstein	SE	Sweden		
DK	Denmark	LK	Sri Lanka	SG	Singapore		
EE	Estonia	LR	Liberia				

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 98/10277

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C12Q1/68 G01N33/574

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C12Q G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	SUGIO K ET AL.: "Differential expression of c-myc gene and c-fos gene in premalignant and malignant tissues." CANCER RESEARCH, vol. 48, no. 17, 1988, pages 4855-4861, XP002089885 see the whole document ---	1,3,13, 16,17,28
X	VAN BELZEN N ET AL.: "Detection of different gene expression in differentiating colon carcinoma cells by differential display" JOURNAL OF PATHOLOGY, vol. 178, no. Suppl., - 1996 page 2A XP002089886 see abstract ---	1,3,5,7, 9,11
Y	---	26,28,34 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason, as specified
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

13 January 1999

Date of mailing of the international search report

24 05 1999

Name and mailing address of the ISA

European Patent Office, P. O. Box 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2242, Telex 31 651 epo nl.
Fax: (+31-70) 340-3215

Authorized officer

Knehr, M

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 98/10277

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 95 21944 A (SMITHKLINE BEECHAM CORP ; ROSENBERG MARTIN (US); DEBOUCK CHRISTINE) 17 August 1995 see the whole document ---	26,28,34
Y	EP 0 284 362 A (ICI PLC) 28 September 1988 see abstract see page 2, line 44 - line 51 see page 10, line 12 - line 15; claims 1,9; figure 2 ---	1,3,5,7, 9,11, 13-23, 26,28, 34,52
Y	EP 0 761 822 A (UNIV JOHNS HOPKINS MED) 12 March 1997 see the whole document ---	1,3,5,7, 9,11, 13-23, 26,28, 34,52
Y	WO 95 11923 A (DANA FARBER CANCER INST INC ; CHEN LAN BO (US); BAO SHIDENG (CN); L) 4 May 1995 see the whole document ---	1,3,5,7, 9,11, 13-18, 23,26, 28,34,52
Y	VELCULESCU V E ET AL: "SERIAL ANALYSIS OF GENE EXPRESSION" SCIENCE, vol. 270, 20 October 1995, pages 484-487, XP002053721 cited in the application see the whole document ---	1,3,5,7, 9,11, 13-18, 23,26, 28,34,52
Y	SCHWEINFEST C W ET AL.: "Subtraction hybridization cDNA libraries from colon carcinoma and hepatic cancer" GENETIC ANALYSIS TECHNIQUES AND APPLICATIONS, vol. 7, 1990, pages 64-70, XP002089887 see the whole document ---	1,3,5,7, 9,11, 13-18, 23,26
Y	WO 97 14812 A (CHIRON CORP) 24 April 1997 see the whole document ---	52
A	GRESS T M ET AL.: "A pancreatic cancer-specific expression profile" ONCOGENE, vol. 13, 1996, pages 1819-1830, XP002089888 see the whole document ---	

-/-

INTERNATIONAL SEARCH REPORT

Inte	nal Application No
PCT/US 98/10277	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 95 19369 A (UNIV VANDERBILT) 20 July 1995 see the whole document ---	
A	GRESS T ET AL.: "Identification of genes with pancreatic cancer specific expression by use of cDNA representational difference analysis" GASTROENTEROLOGY, vol. 110, no. 4 Suppl., 1996, XP002089889 see abstract ---	
P,X	ZHANG L E AL.: "Gene expression profiles in normal and cancer cells." SCIENCE, vol. 276, 1997, pages 1268-1272, XP002089890 see the whole document ---	1,3,5,7, 9,11, 13-23, 26,28, 34,52
P,X	VAN BELZEN N ET AL.: "A novel gene which is up-regulated during colon epithelial cell differentiation and down-regulated in colorectal neoplasms" LABORATORY INVESTIGATION, vol. 77, no. 1, 1997, pages 85-92, XP002089891 see the whole document ----- --	1,3,5,7, 9,11,13, 14, 16-18, 23,26, 28,34

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 98/ 10277

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see FURTHER INFORMATION sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

see FURTHER INFORMATION sheet, subject 1.

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International Application No. PCT/ US 98/10277

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1,3,5,7,9,11,13-23,26,28,34,52 (partial)

INVENTION 1:

An isolated and purified human nucleic acid molecule comprising SEQ ID NO:291 of table 3 (INVENTION 1), an isolated nucleotide probe hybridizing to it, a diagnostic reagent comprising at least two of such probes, methods of diagnosing or prognosing colon cancer using them, and a method for screening for agents modulating the expression of such a sequence using them.

2. Claims: 1,3,5,7,9,11,13-23,26,28,34,52 (partial)

INVENTION 2 to INVENTION 259:

An isolated and purified human nucleic acid molecule comprising SEQ ID NO:292 of table 3 (INVENTION 2), an isolated nucleotide probe hybridizing to it, a diagnostic reagent comprising at least two of such probes, methods of diagnosing or prognosing colon cancer using them, and a method for screening for agents modulating the expression of such a sequence using them.

...ibidem for each of the SEQ ID Nos:293 to 549 (INVENTION 3 to INVENTION 259) as specified in table 3, separately.

3. Claims: 2,4,6,8,10,12-23,27,29,35,38-40,43,46,49, 52 (partial)

INVENTION 260 to INVENTION 549:

An isolated and purified human nucleic acid molecule comprising SEQ ID NO:1 of table 2 (INVENTION 260), an isolated nucleotide probe hybridizing to it, a diagnostic reagent comprising at least two of such probes, methods of diagnosing or prognosing colon cancer using them, a method of treating a cancer cell using them, an antibody linked to a cytotoxic agent used in such a method, and a method for screening for agents modulating the expression of such a sequence using them.

...ibidem for each of the SEQ ID Nos:2 to 290 (INVENTION 261 to INVENTION 549) as specified in table 2, separately.

4. Claims: 13-24,30,32,36,38,39,41,44,47,50,52 (partial)

INTERNATIONAL SEARCH REPORT

International Application No. PCT/ US 98/10277

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

INVENTION 550 to INVENTION 732:

An isolated and purified human nucleic acid molecule comprising SEQ ID NO:550 of table 4 (INVENTION 550), an isolated nucleotide probe hybridizing to it, a diagnostic reagent comprising at least two of such probes, methods of diagnosing or prognosing pancreatic cancer using them, a method of treating a cancer cell using them, an antibody linked to a cytotoxic agent used in such a method, and a method for screening for agents modulating the expression of such a sequence using them.

...ibidem for each of the SEQ ID Nos:551 to 732 (INVENTION 551 to INVENTION 732) as specified in table 4, separately.

5. Claims: 24,30,32,36,38,39,41,44,47,50 (partial)

INVENTION 733 to INVENTION 734:

Methods of diagnosing or prognosing pancreatic cancer relying on a human nucleic acid molecule comprising SEQ ID NO:733 of table 4 (INVENTION 733), a method of treating a cancer cell using it, and an antibody linked to a cytotoxic agent used in such a method.

...ibidem for SEQ ID Nos:734 (INVENTION 734) as specified in table 4.

6. Claims: 25,31,33,37-39,42,45,48,51 (partial)

INVENTION 735 to INVENTION 870:

Methods of diagnosing or prognosing cancer relying on a human nucleic acid molecule comprising SEQ ID NO:735 of table 5 (INVENTION 735), a method of treating a cancer cell using it, and an antibody linked to a cytotoxic agent used in such a method.

...ibidem for each of the SEQ ID Nos:736 to 870 (INVENTION 736 to INVENTION 870) as specified in table 5, separately.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte. .onal Application No

PCT/US 98/10277

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9521944	A	17-08-1995	EP	0743989 A	27-11-1996
			JP	9508800 T	09-09-1997
EP 0284362	A	28-09-1988	AU	625169 B	02-07-1992
			AU	1337888 A	22-09-1988
			DK	159788 A	24-09-1988
			FI	881388 A	24-09-1988
			JP	1034291 A	03-02-1989
			PT	87055 A,B	01-04-1988
EP 0761822	A	12-03-1997	US	5695937 A	09-12-1997
			US	5866330 A	02-02-1999
			AU	6561496 A	20-03-1997
			AU	7018896 A	01-04-1997
			CA	2185379 A	13-03-1997
			GB	2305241 A	02-04-1997
			IE	80465 B	12-08-1998
			JP	10511002 T	27-10-1998
			WO	9710363 A	20-03-1999
WO 9511923	A	04-05-1995	CA	2175380 A	04-05-1995
			EP	0725799 A	14-08-1996
			US	5889159 A	30-03-1999
			US	5872235 A	16-02-1999
WO 9714812	A	24-04-1997	AU	7264196 A	07-05-1997
			EP	0862651 A	09-09-1998
WO 9519369	A	20-07-1995	US	5677125 A	14-10-1997
			AU	1831795 A	01-08-1995
			CA	2210396 A	20-07-1995
			EP	0804453 A	05-11-1997

THIS PAGE BLANK (verso)