DEMAND ESTIMATION AND FORECASTING

Small Business Development (EP60029)

Empirical Demand Functions

- Demand equations derived from actual market data
- Useful in making pricing & production decisions
- Representative sample: a sample usually drawn randomly, that has characteristics that accurately reflect the population as a whole
- Response bias: the difference between the response given by an individual to a hypothetical question and the action the individual takes when the situation actually occurs

Linear Empirical Demand Specification

In *linear* form, an empirical demand function can be specified:

$$Q = a + bP + cM + dP_R + eN$$

where, Q is quantity demanded, P is the price of good/service, M is consumers' income, P_R is the price of related good R, & N is the number of buyers

- In above linear form
 - \Box b = $\triangle Q/\triangle P$, assumed to be negative
 - $c = \Delta Q/\Delta M > 0$, normal good
 - $c = \Delta Q/\Delta M < 0$, inferior good
 - \Box $d = \Delta Q/\Delta P_R > 0$, substitute good
 - \Box d = $\Delta Q/\Delta P_R > 0$, complement good
 - \Box d = $\Delta Q/\Delta N$, assumed to be positive

Nonlinear Empirical Demand Functions

 Most common nonlinear demand specification is log-linear (or constant elasticity)

$$Q = aP^bM^cP_R^{d}N^e$$

 The linear function to be estimated is converted using natural logarithms

$$ln Q = ln a + b ln P + c ln M + d ln P_R + e ln N$$

DEMAND: Basic Estimation Techniques

Simple Linear Regression

 Simple linear regression model relates dependent variable Y to one independent (or explanatory) variable X

$$Y = a + bX$$

- Intercept parameter (a) gives value of Y where regression line crosses Y-axis (value of Y when X is zero)
- Slope parameter (b) gives the change in Y associated with a one-unit change in X, $b = \Delta Y / \Delta X$

Method of Least Squares

- Parameter estimates are obtained by choosing values of a & b that minimize the sum of squared residuals
 - The residual is the difference between the actual & fitted values of Y, $Y_i \hat{Y_i}$
- The sample regression line is an estimate of the true regression line

$$\hat{Y} = \hat{a} + \hat{b}X$$

Sample Regression Line

Unbiased Estimators

- The estimates of \hat{a} & \hat{b} do not generally equal the true values of a & b
 - \hat{a} & \hat{b} are random variables computed using data from a random sample
- The distribution of values the estimates might take is centered around the true value of the parameter
- An estimator is unbiased if its average value (or expected value) is equal to the true value of the parameter

Relative Frequency Distribution*

^{*}Also called a probability density function (pdf)

Statistical Significance

- □ Must determine if there is sufficient statistical evidence to indicate that Y is truly related to X (i.e., $b \neq 0$)
- Even if b = 0 it is possible that the sample will produce an estimate \hat{b} that is different from zero
- Test for statistical significance using t-tests or p-values

Performing a t-Test

- □ First determine the level of significance
 - Probability of finding a parameter estimate to be statistically different from zero when, in fact, it is zero
 - Probability of a Type I Error
- □ 1 level of significance = level of confidence

Performing a t-Test

• *t*-ratio is computed as $t = \frac{\hat{b}}{S_{\hat{b}}}$

where $S_{\hat{b}}$ is the standard error of the estimate \hat{b}

- $lue{}$ Use t-table to choose critical t-value with n-k degrees of freedom for the chosen level of significance
 - \square n = number of observations
 - $\square k$ = number of parameters estimated

Performing a t-Test

 \square If absolute value of t-ratio is greater than the critical t, the parameter estimate is statistically significant

Using p-Values

- $\hfill\Box$ Treat as statistically significant only those parameter estimates with p-values smaller than the maximum acceptable significance level
- □ p-value gives exact level of significance
 - Also the probability of finding significance when none exists

Coefficient of Determination

- \square R^2 measures the percentage of total variation in the dependent variable that is explained by the regression equation
 - Ranges from 0 to 1
 - lacksquare High R^2 indicates Y and X are highly correlated

F-Test

- Used to test for significance of overall regression equation
- $\ \square$ Compare F-statistic to critical F-value from F-table
 - \blacksquare Two degrees of freedom, n-k & k-1
 - Level of significance
- \square If F-statistic exceeds the critical F, the regression equation overall is statistically significant

Multiple Regression

- Uses more than one explanatory variable
- Coefficient for each explanatory variable measures the change in the dependent variable associated with a one-unit change in that explanatory variable

Quadratic Regression Models

□ Use when curve fitting scatter plot is U-shaped or ∩-shaped

$$\bullet Y = a + bX + cX^2$$

- For linear transformation compute new variable $\mathbf{Z} = \mathbf{X}^2$
- Estimate Y = a + bX + cZ

Log-Linear Regression Models

• Use when relation takes the form: $Y = aX^bZ^c$

•
$$b = \frac{\text{Percentage change in } Y}{\text{Percentage change in } X}$$

•
$$c = \frac{\text{Percentage change in } Y}{\text{Percentage change in } Z}$$

- Transform by taking natural logarithms: ln Y = ln a + b ln X + c ln Z
- ullet b and c are elasticities

Market Determined vs. Manager Determined Prices

- Method of estimating parameters of an empirical demand function depends on whether price of the product is market-determined or manager-determined
- Price-taking firms do not set the price of their product
 - Prices are endogenous, or market-determined by the intersection of demand & supply
- For price-setting firms
 - Prices are manager-determined, or exogenous

Industry Demand for a Price-taker

- To estimate industry demand function for a pricetaking firm:
 - Step 1: Specify industry demand & supply equations
 - Step 2: Check for identification of industry demand
 - Step 3: Collect data for the variables in demand and supply
 - Step 4: Estimate industry demand

Estimating Demand for a Price-setting Firm

Step 1: Specify the price-setting firm's demand function

Step 2: Collect data on the variable in the firm's demand function

Step 3: Estimate the price-setting firm's demand

Time Series Forecasts

 Time-series is a statistical model that shows how a time-ordered sequence of observations on a variable is generated

- Simplest form is linear trend forecasting
 - \square Sales in each time period (Q_t) are assumed to be linearly related to time (t)

$$Q_t = a + b_t$$

Linear Trend Forecasting

Linear Trend Forecasting

Linear relation between Sales and Time

$$\hat{Q}_t = a + bt$$

□ The estimated trend line

$$\hat{Q}_{t} = \hat{a} + \hat{b} t$$

Forecast for Sales in specific year

$$\hat{Q}_{2007} = a + b \times (2007)$$

Seasonal (or Cyclical) Variations

- Regular variation that time-series data exhibit frequently
- Can bias the estimation of parameters in linear trend forecasting
- To account for such variation, dummy variables are added to the trend equation
 - Shift trend line up or down depending on the particular seasonal pattern
 - □ Significance of seasonal behavior determined by using *t*-test or *p*-value for the estimated coefficient on the dummy variable

Sales with Seasonal Variation

Effect of Seasonal Variation

Creating a Dummy Variable

- $Q_t = a + bt + cD$
- □ For quarters I, II, and III the estimated intercept is $\widehat{\alpha}$
- □ For the IVth quarter the estimated intercept is $\hat{a} + \hat{c}$
- □ For any future period t (=1, II, & III), the sales forecast would be, $\hat{Q}_t = \hat{a} + \hat{b}t$
- sales forecast would be, $\hat{Q}_t = \hat{a} + \hat{b}t$ \square For period IV, $\hat{Q}_t = \hat{a} + \hat{b}t + \hat{c} = \begin{pmatrix} \hat{a} + \hat{c} \\ \hat{a} + \hat{c} \end{pmatrix} + \hat{b}t$
- If there exists quarter-to-quarter
 differences in sales, then equation is

$$Q_t = a + bt + c_1 D_1 + c_2 D_2 + c_3 D_3$$

Q_{t}	t	D
Q _{2004(I)}	1	0
$Q_{2004(II)}$	2	0
$Q_{2004(\mathrm{III})}$	3	0
$Q_{2004(IV)}$	4	1
$Q_{2005(I)}$	5	0
$Q_{2005(II)}$	6	0
$Q_{2005(III)}$	7	0
$Q_{2005(IV)}$	8	1
$Q_{2006(I)}$	9	0
$Q_{2006(II)}$	10	0
$Q_{2006(III)}$	11	0
$Q_{2006(IV)}$	12	1
$Q_{2007(I)}$	13	0
$Q_{2007(II)}$	14	0
$Q_{2007({ m III})}$	15	0
$Q_{2007(IV)}$	16	1

Dummy Variables

- A variable that takes only values of 0 and 1
- □ To account for *N* seasonal time periods
 - □ N 1 dummy variables are added
- Each dummy variable accounts for one seasonal time period
 - Takes value of 1 for observations that occur during the season assigned to that dummy variable
 - □ Takes value of 0 otherwise

Example: Jean Reynolds, the sales manager of Statewide Trucking Co. wishes to predict sales for all four quarter of 2008. The sales are subject to seasonal variation & also have a trend over time. Reynolds obtain sales data for 2004-07 by quarter. Jean knows that obtaining the desired sales forecast requires to estimate an equation containing three dummy variables — one less than the no. of time periods in the annual cycle. Graphically show the trend and forecast sales for all the four quarters for 2008.

V	0	C 1 (f)		D1	D 0	D 0
Year	Quarter	Sales (\$)	t t	D1	D2	D3
2004	I	72,000	1	1	0	0
	II	87,000	2	0	1	0
	III	87,000	3	0	0	1
	IV	150,000	4	0	0	0
2005	I	82,000	5	1	0	0
	II	98,000	6	0	1	0
	III	94, 000	7	0	0	1
	IV	162,000	8	0	0	0
2006	1	97,000	9	1	0	0
	II	105,000	10	0	1	0
	III	109,000	11	0	0	1
	IV	176,000	12	0	0	0
2007	I	105,000	13	1	0	0
	II	121,000	14	0	1	0
	III	119,000	15	0	0	1
	IV	180,000	16	0	0	0

-	nt Variable: QT	R-square	t ratio	p-value on F
Observ	ations: 16	0.9965	794.126	0.0001
Variable	Parameter	Standard		
	Estimate	Error	t - ratio	p - value
Intercept	139625.0	1743.6	80.08	0.0001
T	2737.5	129.96	21.06	0.0001
D1	- 69788.0	1689.5	- 41.31	0.0001
D2	- 58775.0	1664.3	- 35.32	0.0001
D3	- 62013.0	1649.0	- 37.61	0.0001

Trend Projection

$$S_t = S_0 + bt$$

- S_t is the value of the time series for period t, S_0 is the estimated value of the time series in the base period (at t=0), b is the absolute amount of growth per period and t is the time period in which the time series is to be forecast. E.g. $S_t = 11.90 + 0.394t$ substituting the value of t, we get the forecast value in period t.
- In many cases the constant percentage growth rate model is appropriate:
- $S_t = S_0 (1+g)^t$, to estimate g first transform time series data into their natural logarithm in linear form. Hence, the equation will be as follows:
- In $S_t = \ln S_0 + t \ln(1+g)$ where value of $\ln S_0$ is its antilog (e.g. antilog of $\ln S_0 = 2.49$ is $S_0 = 12.06$ and antilog of $\ln (1+g) = 0.026$ gives (1+g) = 1.026). Substituting these values back into equation, we get $S_t = 12.06(1.026)^t$ where $S_0 = 12.06$ (at t=0) and estimated growth rate is 1.026 (2.6%)
- For future estimates the value of t is substituted.

Smoothing Techniques

Moving Averages

- Forecast value of a time series in a given period is equal to the average value of the time series in a no. of previous periods
- E.g. with a 3 time period MA, forecast value for next time period is given by avg. value of time series in previous 3 periods
- More useful when more erratic/random time series data
- □ To decide which MA forecast is better we calculate root mean square error (RMSE) where A_t is actual value of time series in period t, F_t is forecast value and n is no. of time periods / obs.

$$RMSE = \sqrt{\frac{\sum (A_t - F_t)^2}{n}}$$
 On comparing RMSE value, the lower the error value, the better is forecast

Smoothing Techniques

Exponential Smoothing

- Forecast for period t+1 (i.e., F_{t+1}) is a weighted avg. of the actual and forecast values of the time series in period t
- □ The value of time series at period t (A_t) is assigned a wt. (w) between 0 and 1 inclusive, and the forecast for period t (i.e., F_t) is assigned the wt. of 1-w
- □ The greater the value of w the greater is the wt. given to the value of time series in period t as opposed to previous periods. Thus:

$$F_{t+1} = wA_t + (1-w)F_t$$

Different values of w are tried, the one leading to smallest RMSE is actually used in forecasting

Some Final Warnings

 Model misspecification, either by excluding an important variable or by using an inappropriate functional form, reduces reliability of the forecast

 Forecasts are incapable of predicting sharp changes that occur because of structural changes in the market

THEBIND