Solution

Section 2.8 – Row and Column Spaces

Exercise

List the row vectors and column vectors of the matrix

$$\begin{bmatrix} 2 & -1 & 0 & 1 \\ 3 & 5 & 7 & -1 \\ 1 & 4 & 2 & 7 \end{bmatrix}$$

Solution

Row vectors:

$$r_1 = \begin{bmatrix} 2 & -1 & 0 & 1 \end{bmatrix}, \quad r_2 = \begin{bmatrix} 3 & 5 & 7 & -1 \end{bmatrix}, \quad r_3 = \begin{bmatrix} 1 & 4 & 2 & 7 \end{bmatrix}$$

Column vectors:

$$c_1 = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}, \quad c_2 = \begin{bmatrix} -1 \\ 5 \\ 4 \end{bmatrix}, \quad c_3 = \begin{bmatrix} 0 \\ 7 \\ 2 \end{bmatrix}, \quad c_4 = \begin{bmatrix} 1 \\ -1 \\ 7 \end{bmatrix}$$

Exercise

Express the product $A\vec{x}$ as a linear combination of the column vectors of A. $\begin{vmatrix} 2 & 3 & 1 \\ -1 & 4 & 2 \end{vmatrix}$

Solution

$$\begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 1 \begin{bmatrix} 2 \\ -1 \end{bmatrix} + 2 \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

Exercise

Express the product $A\vec{x}$ as a linear combination of the column vectors of A. $\begin{vmatrix}
4 & 0 & -1 \\
3 & 6 & 2 \\
0 & -1 & 4
\end{vmatrix} \begin{bmatrix}
-2 \\
3 \\
5
\end{vmatrix}$ Solution

$$\begin{bmatrix} 4 & 0 & -1 \\ 3 & 6 & 2 \\ 0 & -1 & 4 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \\ 5 \end{bmatrix} = -2 \begin{bmatrix} 4 \\ 3 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 6 \\ -1 \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix}$$

Express the product $A\vec{x}$ as a linear combination of the column vectors of A. $\begin{vmatrix}
-3 & 6 & 2 \\
5 & -4 & 0 \\
2 & 3 & -1 \\
1 & 8 & 3
\end{vmatrix} \begin{bmatrix}
-1 \\
2 \\
5
\end{bmatrix}$

Solution

$$\begin{bmatrix} -3 & 6 & 2 \\ 5 & -4 & 0 \\ 2 & 3 & -1 \\ 1 & 8 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 5 \end{bmatrix} = -1 \begin{bmatrix} -3 \\ 5 \\ 2 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 6 \\ -4 \\ 3 \\ 8 \end{bmatrix} + 5 \begin{bmatrix} 2 \\ 0 \\ -1 \\ 3 \end{bmatrix}$$

Exercise

Determine whether \vec{b} is in the column space of A, and if so, express \vec{b} as a linear combination of the column vectors of A.

$$A = \begin{bmatrix} 1 & 3 \\ 4 & -6 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} -2 \\ 10 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & | & -2 \\ 4 & -6 & | & 10 \end{bmatrix} \qquad R_2 - 4R_1$$

$$\begin{bmatrix} 1 & 3 & | & -2 \\ 0 & -18 & | & 18 \end{bmatrix} \qquad -\frac{1}{18}R_2$$

$$\begin{bmatrix} 1 & 3 & -2 \\ 0 & 1 & -1 \end{bmatrix} \qquad \begin{array}{c|c} R_1 - 3R_2 \end{array}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -2\\10 \end{bmatrix} = \begin{bmatrix} 1\\4 \end{bmatrix} - \begin{bmatrix} 3\\-6 \end{bmatrix}$$

Determine whether \vec{b} is in the column space of A, and if so, express \vec{b} as a linear combination of the column vectors of A.

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 9 & 3 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 5 \\ 1 \\ -1 \end{bmatrix}$$

Solution

$$\begin{bmatrix} 1 & -1 & 1 & | & 5 \\ 9 & 3 & 1 & | & 1 \\ 1 & 1 & 1 & | & -1 \end{bmatrix} \quad R_2 - 9R_1 \\ R_3 - R_1$$

$$\begin{bmatrix} 1 & -1 & 1 & | & 5 \\ 0 & 12 & -8 & | & -44 \\ 0 & 2 & 0 & | & -6 \end{bmatrix} \quad \frac{1}{4}R_2$$

$$\begin{bmatrix} 1 & -1 & 1 & | & 5 \\ 0 & 12 & -8 & | & -44 \\ 0 & 2 & 0 & | & -6 \end{bmatrix} \quad 3R_1 + R_2$$

$$\begin{bmatrix} 1 & -1 & 1 & | & 5 \\ 0 & 3 & -2 & | & -11 \\ 0 & 2 & 0 & | & -6 \end{bmatrix} \quad 3R_3 - 2R_2$$

$$\begin{bmatrix} 3 & 0 & 1 & | & 4 \\ 0 & 3 & -2 & | & -11 \\ 0 & 0 & 4 & | & 4 \end{bmatrix} \quad \frac{1}{4}R_3$$

$$\begin{bmatrix} 3 & 0 & 1 & | & 4 \\ 0 & 3 & -2 & | & -11 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \quad \frac{1}{3}R_1$$

$$\begin{bmatrix} 3 & 0 & 0 & | & 3 \\ 0 & 3 & 0 & | & -9 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \quad \frac{1}{3}R_2$$

$$\begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & -3 \\ 0 & 0 & 1 & | & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & -3 \\ 0 & 0 & 1 & | & 1 \end{bmatrix}$$

$$\begin{bmatrix} 5 \\ 1 \\ -1 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 9 \\ 1 \end{bmatrix} - 3 \begin{bmatrix} -1 \\ 3 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

The system $A\vec{x} = \vec{b}$ is consistent and \vec{b} is in the column space of A.

Determine whether \vec{b} is in the column space of A, and if so, express \vec{b} as a linear combination of the column vectors of A.

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 3 \end{bmatrix} \quad \vec{b} = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}$$

Solution

$$\begin{bmatrix} 1 & 1 & 2 & | & -1 \\ 1 & 0 & 1 & | & 0 \\ 2 & 1 & 3 & | & 2 \end{bmatrix} \qquad \begin{array}{c} R_2 - R_1 \\ R_3 - 2R_1 \end{array}$$

$$\begin{bmatrix} 1 & 1 & 2 & | & -1 \\ 0 & -1 & -1 & | & 1 \\ 0 & -1 & -1 & | & 4 \end{bmatrix} \qquad \begin{array}{c} R_1 + R_2 \\ R_3 - R_2 \end{array}$$

$$\begin{bmatrix} 1 & 0 & 1 & | & 0 \\ 0 & -1 & -1 & | & 1 \\ 0 & 0 & 0 & | & 3 \end{bmatrix} \qquad \begin{array}{c} -R_2 \\ \frac{1}{3}R_3 \end{array}$$

$$\begin{bmatrix} 1 & 0 & 1 & | & 0 \\ 0 & 1 & 1 & | & -1 \\ 0 & 0 & 0 & | & 1 \end{bmatrix} \qquad \begin{array}{c} R_2 + R_3 \end{array}$$

$$\begin{bmatrix} 1 & 0 & 1 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{bmatrix}$$

The system $A\vec{x} = \vec{b}$ is inconsistent and \vec{b} is not in the column space of A.

Exercise

Determine whether \vec{b} is in the column space of A, and if so, express \vec{b} as a linear combination of the column vectors of A.

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 2 & 1 \\ 1 & 2 & 1 & 3 \\ 0 & 1 & 2 & 2 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 4 \\ 3 \\ 5 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 & 1 & | & 4 \\ 0 & 1 & 2 & 1 & | & 3 \\ 1 & 2 & 1 & 3 & | & 5 \\ 0 & 1 & 2 & 2 & | & 7 \end{bmatrix} R_3 - R_1$$

$$\begin{bmatrix} 1 & 2 & 0 & 1 & | & 4 \\ 0 & 1 & 2 & 2 & | & 7 \end{bmatrix} R_1 - 2R_2$$

$$\begin{bmatrix} 1 & 2 & 0 & 1 & | & 4 \\ 0 & 1 & 2 & 1 & | & 3 \\ 0 & 0 & 1 & 2 & | & 1 \\ 0 & 1 & 2 & 2 & | & 7 \end{bmatrix} R_4 - R_2$$

$$\begin{bmatrix} 1 & 0 & -4 & -1 & | & -2 \\ 0 & 1 & 2 & 1 & | & 3 \\ 0 & 0 & 1 & 2 & | & 1 \\ 0 & 0 & 0 & 1 & | & 4 \end{bmatrix} R_1 - 7R_4$$

$$\begin{bmatrix} 1 & 0 & 0 & 7 & | & 2 \\ 0 & 1 & 0 & -3 & | & 1 \\ 0 & 0 & 1 & 2 & | & 1 \\ 0 & 0 & 0 & 1 & | & 4 \end{bmatrix} R_1 - 7R_4$$

$$\begin{bmatrix} 1 & 0 & 0 & 7 & | & 2 \\ 0 & 1 & 0 & -3 & | & 1 \\ 0 & 0 & 1 & 2 & | & 1 \\ 0 & 0 & 0 & 1 & | & 4 \end{bmatrix} R_3 - 2R_4$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & | & -26 \\ 0 & 1 & 0 & 0 & | & 13 \\ 0 & 0 & 1 & 0 & | & -7 \\ 0 & 0 & 0 & 1 & | & 4 \end{bmatrix}$$

$$\begin{bmatrix} 4 \\ 3 \\ 5 \\ 7 \end{bmatrix} = -26 \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + 13 \begin{bmatrix} 2 \\ 1 \\ 2 \\ 1 \end{bmatrix} - 7 \begin{bmatrix} 0 \\ 2 \\ 1 \\ 2 \end{bmatrix} + 4 \begin{bmatrix} 1 \\ 1 \\ 3 \\ 2 \end{bmatrix}$$

The system $A\vec{x} = \vec{b}$ is consistent and \vec{b} is in the column space of A

Suppose that $x_1 = -1$, $x_2 = 2$, $x_3 = 4$, $x_4 = -3$ is a solution of a nonhomogeneous linear system $A\vec{x} = \vec{b}$ and that the solution set of the homogeneous system $A\vec{x} = \vec{0}$ is given by the formulas

$$x_1 = -3r + 4s$$
, $x_2 = r - s$, $x_3 = r$, $x_4 = s$

- a) Find a vector form of the general solution of $A\vec{x} = \vec{0}$
- b) Find a vector form of the general solution of $A\vec{x} = \vec{b}$

Solution

a)
$$x_1 = -3r + 4s$$
, $x_2 = r - s$, $x_3 = r$, $x_4 = s$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = r \begin{bmatrix} -3 \\ 1 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 4 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

b) Special Solution: $x_1 = -1$, $x_2 = 2$, $x_3 = 4$, $x_4 = -3$

$$x_p = \begin{pmatrix} -1\\2\\4\\-3 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 4 \\ -3 \end{pmatrix} + r \begin{pmatrix} -3 \\ 1 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} 4 \\ -1 \\ 0 \\ 1 \end{pmatrix}$$

Exercise

Find the vector form of the general solution of the given linear system $A\vec{x} = \vec{b}$; then use that result to find the vector form of the general solution of $A\vec{x} = \vec{0}$.

$$\begin{cases} x_1 - 3x_2 = 1 \\ 2x_1 - 6x_2 = 2 \end{cases}$$

$$\begin{bmatrix} 1 & -3 & 1 \\ 2 & -6 & 2 \end{bmatrix} \qquad R_2 - 2R_1$$

$$\begin{bmatrix} 1 & -3 & 1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \underline{x_1 = 1 + 3x_2}$$

The solution of $A\vec{x} = \vec{b}$ is

$$x_1 = 1 + 3t, \quad x_2 = t$$
 or

$$\vec{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

The general form of the solution $A\vec{x} = \vec{0}$ is $\vec{x} = t \begin{bmatrix} 3 \\ 1 \end{bmatrix}$

Exercise

Find the vector form of the general solution of the given linear system $A\vec{x} = \vec{b}$; then use that result to find the vector form of the general solution of $A\vec{x} = \vec{0}$.

$$\begin{cases} x_1 + x_2 + 2x_3 = 5 \\ x_1 + x_3 = -2 \\ 2x_1 + x_2 + 3x_3 = 3 \end{cases}$$

Solution

$$\begin{bmatrix} 1 & 1 & 2 & 5 \\ 1 & 0 & 1 & -2 \\ 2 & 1 & 3 & 3 \end{bmatrix} \quad R_2 - R_1 \\ R_3 - 2R_1$$

$$\begin{bmatrix} 1 & 1 & 2 & 5 \\ 0 & -1 & -1 & -7 \\ 0 & -1 & -1 & -7 \end{bmatrix} \quad R_1 + R_2 \\ R_3 - R_2$$

$$\begin{bmatrix} 1 & 0 & 1 & -2 \\ 0 & -1 & -1 & -7 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad R_2$$

$$\begin{bmatrix} 1 & 0 & 1 & -2 \\ 0 & -1 & -1 & -7 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \underbrace{x_1 = -2 - x_3}_{X_2 = 7 - x_3}$$

$$\Rightarrow \quad \underbrace{x_2 = 7 - x_3}_{X_2 = 7 - x_3}$$

The solution of $A\vec{x} = \vec{b}$ is

$$x_1 = -2 - t$$
, $x_2 = 7 - t$, $x_3 = t$ or $\vec{x} = \begin{bmatrix} -2 \\ 7 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$

The general form of the solution of $A\vec{x} = \vec{0}$ is

$$\vec{x} = t \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$

Exercise

Find the vector form of the general solution of the given linear system $A\vec{x} = \vec{b}$; then use that result to find the vector form of the general solution of $A\vec{x} = \vec{0}$.

$$\begin{cases} x_1 + 2x_2 - 3x_3 + x_4 = 4 \\ -2x_1 + x_2 + 2x_3 + x_4 = -1 \\ -x_1 + 3x_2 - x_3 + 2x_4 = 3 \\ 4x_1 - 7x_2 - 5x_4 = -5 \end{cases}$$

$$\begin{bmatrix} 1 & 2 & -3 & 1 & | & 4 \\ -2 & 1 & 2 & 1 & | & -1 \\ -1 & 3 & -1 & 2 & | & 3 \\ 4 & -7 & 0 & -5 & | & -5 \end{bmatrix} \qquad \begin{matrix} R_2 + 2R_1 \\ R_3 + R_1 \\ R_4 - 4R_1 \end{matrix}$$

$$\begin{bmatrix} 1 & 2 & -3 & 1 & | & 4 \\ 0 & 5 & -4 & 3 & | & 7 \\ 0 & 5 & -4 & 3 & | & 7 \\ 0 & -15 & 12 & -9 & | & 21 \end{bmatrix} \qquad \begin{matrix} 5R_1 - 2R_2 \\ R_3 - R_2 \\ R_4 + 3R_2 \end{matrix}$$

$$\begin{bmatrix} 5 & 0 & -7 & -1 & | & 6 \\ 0 & 5 & -4 & 3 & | & 7 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \qquad \begin{matrix} \frac{1}{5}R_1 \\ \frac{1}{5}R_2 \end{matrix}$$

The solution of $A\vec{x} = \vec{b}$ is

$$\vec{x} = \begin{bmatrix} \frac{6}{5} \\ \frac{7}{5} \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} \frac{7}{5} \\ \frac{4}{5} \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} \frac{1}{5} \\ -\frac{3}{5} \\ 0 \\ 1 \end{bmatrix}$$

The general form of the solution of $A\vec{x} = \vec{0}$ is

$$\vec{x} = s \begin{bmatrix} \frac{7}{5} \\ \frac{4}{5} \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} \frac{1}{5} \\ -\frac{3}{5} \\ 0 \\ 1 \end{bmatrix}$$

Exercise

Find the vector form of the general solution of the given linear system $A\vec{x} = \vec{b}$; then use that result to find the vector form of the general solution of $A\vec{x} = \vec{0}$.

$$\begin{cases} x_1 - 2x_2 + x_3 + 2x_4 = -1 \\ 2x_1 - 4x_2 + 2x_3 + 4x_4 = -2 \\ -x_1 + 2x_2 - x_3 - 2x_4 = 1 \\ 3x_1 - 6x_2 + 3x_3 + 6x_4 = -3 \end{cases}$$

$$\begin{bmatrix} 1 & -2 & 1 & 2 & | & -1 \\ 2 & -4 & 2 & 4 & | & -2 \\ -1 & 2 & -1 & -2 & | & 1 \\ 3 & -6 & 3 & 6 & | & -3 \end{bmatrix} \qquad \begin{matrix} R_2 - 2R_1 \\ R_3 + R_1 \\ R_4 - 3R_1 \end{matrix}$$

$$\begin{bmatrix} 1 & -2 & 1 & 2 & | & -1 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \qquad \underline{x_1 = -1 + 2x_2 - x_3 - 2x_4}$$

Let
$$x_2 = s$$
 $x_3 = t$ $x_4 = r$

The solution of $A\vec{x} = \vec{b}$ is

$$\vec{x} = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + r \begin{bmatrix} -2 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

The general form of the solution of $A\vec{x} = \vec{0}$ is

$$\vec{x} = s \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + r \begin{bmatrix} -2 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Exercise

Given the vectors $\vec{v}_1 = (1, 2, 0)$ and $\vec{v}_2 = (2, 3, 0)$

- a) Are they linearly independent?
- b) Are they a basis for any space?
- c) What space V do they span?
- d) What is the dimension of that space?
- e) What matrices A have V as their column space?
- f) Which matrices have V as their nullspace?
- g) Describe all vectors \vec{v}_3 that complete a basis \vec{v}_1 , \vec{v}_2 , \vec{v}_3 for \mathbb{R}^3 .

<u>Solution</u>

- a) \vec{v}_1 , \vec{v}_2 are independent the only combination to give $\vec{0}$ is $0.\vec{v}_1 + 0.\vec{v}_2$.
- b) Yes, they are a basis for whatever space V they span.
- c) That space V contains all vectors (x, y, 0). It is the xy plane in \mathbb{R}^3 .
- d) The dimension of V is 2 since the basis contains 2 vectors.
- e) This V is the column space of any 3 by n matrix A of rank 2, if every column is a combination of \vec{v}_1 and \vec{v}_2 . In particular A could just have columns \vec{v}_1 and \vec{v}_2 .

- This **V** is the nullspace of any m by 3 matrix \vec{B} of rank 1, if every row is a multiple of (0, 0, 1). In particular, take $B = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$. Then $B\vec{v}_1 = \vec{0}$ and $B\vec{v}_2 = \vec{0}$.
- g) Any third vector $\vec{v}_3 = (a, b, c)$ will complete a basis for \mathbb{R}^3 provided $c \neq 0$.

a) Let
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Show that relative to an *xyz*-coordinate system in 3-space the null space of *A* consists of all points on the *z*-axis and that the column space consists of all points in the *xy*-plane.

b) Find a 3 x 3 matrix whose null space is the x-axis and whose column space is the yz-plane.

Solution

a)
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 Interchange $R_1 \& R_2$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad x = 0$$

$$y = 0$$

$$z = t$$

The general form of the solution of $A\vec{x} = \vec{0}$ is,

$$t\begin{bmatrix} 0\\0\\1\end{bmatrix}$$

Therefore, the null space of A is the z-axis, and the column space is the span of

$$c_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad c_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 which is all linear combinations of y and x (xy-plane)

$$b) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

If we add an extra column \vec{b} to a matrix A, then the column space gets larger unless _____. Give an example where the column space gets larger and an example where it doesn't. Why is $A\vec{x} = \vec{b}$ solvable exactly when the column space doesn't get larger – it is the same for A and A are an analysis and A are an analysis and A and A

Solution

If we add an extra column \vec{b} to a matrix A, then the column space gets larger unless *it contains* \vec{b} that is a linear combination of the columns of A.

Let
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
; then the column space gets larger if $\vec{b} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and it doesn't if $\vec{b} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

The equation $A\vec{x} = \vec{b}$ is solvable exactly when \vec{b} is a (nontrivial) linear combination of the column of A.

The equation $A\vec{x} = \vec{b}$ is solvable exactly when \vec{b} lies in the column space, when the column space doesn't get larger.

Exercise

For which right sides (find a condition on b_1 , b_2 , b_3) are these solvable. (Use the column space C(A) and the equation $A\vec{x} = \vec{b}$)

a)
$$\begin{bmatrix} 1 & 4 & 2 \\ 2 & 8 & 4 \\ -1 & -4 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

b)
$$\begin{bmatrix} 1 & 4 \\ 2 & 9 \\ -1 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Solution

a) The column space consists of the vectors for

$$\begin{pmatrix} x_1 + 4x_2 + 2x_3 \\ 2x_1 + 8x_2 + 4x_3 \\ -x_1 - 4x_2 - 2x_3 \end{pmatrix} \text{ is } \begin{pmatrix} z \\ 2z \\ -z \end{pmatrix} = z \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

They are scalar multiples of
$$\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

b) By substituting $x_1 + 4x_2$ with new variable z, then the column space consists of the vectors

$$\begin{pmatrix} x_1 + 4x_2 \\ 2x_1 + 9x_2 \\ -x_1 - 4x_2 \end{pmatrix} = z \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

They are linear combinations of
$$\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

Exercise

Show that the matrices A and $\begin{bmatrix} A & AB \end{bmatrix}$ (with extra columns) have the same column space. But find a square matrix with $C(A^2)$ smaller than C(A). Important point: An n by n matrix has $C(A) = \mathbb{R}^n$ exactly when A is an _____ matrix.

Solution

Each column of AB is a combination of the columns of A (the combining coefficients are the entries in the corresponding column of B). So, any combination of the columns of A alone. Thus, A and AB have the same column space.

Let
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
; then $A^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, so $C(A^2) = Z$.

 $C(A)$ is the line through $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Any n by n matrix has $C(A) = \mathbf{R}^n$ exactly when A is an *invertible* matrix, because Ax = b is solvable for any given \mathbf{b} when A is invertible.

Exercise

The column of AB are combinations of the columns of A. This means: The column space of AB is contained in (possibly equal to) to the column space of A. Give an example where the column spaces A and AB are not equal.

Solution

The column space of AB is contained in (possibly equal to) to the column space of A. B = 0 and $A \neq 0$ is a case when AB = 0 has a smaller column space than A.

Find a square matrix A where $C(A^2)$ (the column space of A^2 is smaller than C(A).

Solution

For example,
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
; then $A^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Thus C(A) is generated by vector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, which is of one dimensional, but $C(A^2)$ is a zero space.

Hence, $C(A^2)$ is strictly smaller than C(A).

Exercise

Suppose $A\vec{x} = \vec{b}$ and $C\vec{x} = \vec{b}$ have the same (complete) solutions for every \vec{b} . Is true that A = C? Solution

Yes, if A = C, let \vec{y} be any vector of the correct size, and set $\vec{b} = A\vec{y}$. Then \vec{y} is a solution to

 $A\vec{x} = \vec{b}$ and it is also a solution to $C\vec{x} = \vec{b}$;

$$\vec{b} = A\vec{y} = C\vec{y}$$

Exercise

Apply Gauss-Jordan elimination to $U\vec{x} = 0$ and $U\vec{x} = c$. Reach $R\vec{x} = 0$ and $R\vec{x} = d$:

$$\begin{bmatrix} U & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 4 & 0 \end{bmatrix}$$

$$\begin{bmatrix} U & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 4 & 0 \end{bmatrix} \qquad \begin{bmatrix} U & c \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 4 & 8 \end{bmatrix}$$

Solve Rx = 0 to find x_n (its free variable is $x_2 = 1$).

Solve Rx = d to find x_p (its free variable is $x_2 = 0$).

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 4 & 0 \end{bmatrix} \qquad \frac{1}{4}R_2$$

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad R_1 - 3R_2$$

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
 $R_1 - 3R_2$

$$\begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

The free variable is x_2 , since it is the only one. We have to let $x_2 = 1$

$$\begin{cases} x_1 + 2x_2 = 0 \\ x_3 = 0 \end{cases} \rightarrow \begin{cases} x_1 = -2x_2 \\ x_1 = -2x_2 \\ x_2 = 0 \end{cases}$$

The special solution is $s_1(-2, 1, 0)$

$$\overline{x}_n = x_2 \begin{pmatrix} -2\\1\\0 \end{pmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 4 & 8 \end{bmatrix} \quad \frac{1}{4}R_2$$

$$\begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 1 & 2 \end{bmatrix} \quad R_1 - 3R_2$$

$$\begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 1 & 2 \end{bmatrix} \qquad \begin{array}{ccc} R_1 - 3R_2 \end{array}$$

$$\begin{bmatrix} 1 & 2 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

The free variable is x_2 that implies to $x_2 = 0$

$$\begin{cases} x_1 + 2x_2 = -1 \\ x_3 = 2 \end{cases} \to x_1 = -1$$

The particular solution is $\vec{x}_p = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$

Exercise

Which of the following subsets of \mathbb{R}^3 are actually subspaces?

- a) The plane of vectors (b_1, b_2, b_3) with $b_1 = b_2$
- The plane of vectors with $b_1 = 1$.
- The vectors with $b_1b_2b_3 = 0$.
- All linear combinations of v = (1, 4, 0) and w = (2, 2, 2).
- All vectors that satisfies $b_1 + b_2 + b_3 = 0$
- f) All vectors with $b_1 \le b_2 \le b_3$.

Solution

a) This is subspace

- For $\vec{v} = (b_1, b_2, b_3)$ with $b_1 = b_2$ and $\vec{w} = (c_1, c_2, c_3)$ with $c_1 = c_2$ the sum $\vec{v} + \vec{w} = (b_1 + c_1, b_2 + c_2, b_3 + c_3)$ is in the same set as $b_1 + c_1 = b_2 + c_2$
- For an element $\vec{v} = (b_1, b_2, b_3)$ with $b_1 = b_2$, $c\vec{v} = (cb_1, cb_2, cb_3)$ and $cb_1 = cb_2$, thus it is in the same set.
- **b)** This is not a subspace. For example, for $\vec{v} = (1, 0, 0)$ and $\vec{cv} = -\vec{v} = (-1, 0, 0)$ is not in the set.
- c) This is not a subspace. For example, for $\vec{v} = (1, 1, 0)$ and $\vec{w} = (1, 0, 1)$ are in the set, but their sum $\vec{v} + \vec{w} = (2, 1, 1)$ is not in the set.
- d) This is subspace, by definition of linear combination.
 - For 2 vectors $\vec{v}_1 = \alpha_1 \vec{v} + \beta_1 \vec{w}$ and $\vec{v}_2 = \alpha_2 \vec{v} + \beta_2 \vec{w}$ the sum $\vec{v}_1 + \vec{v}_2 = \alpha_1 \vec{v} + \beta_1 \vec{w} + \alpha_2 \vec{v} + \beta_2 \vec{w}$ $= (\alpha_1 + \alpha_2) \vec{v} + (\beta_1 + \beta_2) \vec{w}$

is still the linear combination of v and w.

- For an element $\vec{v}_1 = \alpha_1 \vec{v} + \beta_1 \vec{w}$, $c\vec{v}_1 = c\alpha_1 \vec{v} + c\beta_1 \vec{w}$ is still the linear combination of \vec{v} and \vec{w} , thus it is the same set
- e) This is subspace, these are the vectors orthogonal to (1, 1, 1)
 - For $\vec{v} = (b_1, b_2, b_3)$ with $b_1 + b_2 + b_3 = 0$ and $\vec{w} = (c_1, c_2, c_3)$ with $c_1 + c_2 + c_3 = 0$ The sum $\vec{v} + \vec{w} = (b_1 + c_1, b_2 + c_2, b_3 + c_3)$ is in the same set as $b_1 + c_1 + b_2 + c_2 + b_3 + c_3 = 0$
 - For an element $\vec{v} = (b_1, b_2, b_3)$ with $b_1 + b_2 + b_3 = 0$, $c\vec{v} = (cb_1, cb_2, cb_3)$ and $cb_1 + cb_2 + cb_3 = 0$, thus it is in the same set.
- f) This is not a subspace. For example, for $\vec{v} = (1, 2, 3)$ and $-\vec{v} = (-1, -2, -3)$ is not in the set.

We are given three different vectors \vec{b}_1 , \vec{b}_2 , \vec{b}_3 . Construct a matrix so that the equations $A\vec{x} = \vec{b}_1$ and $A\vec{x} = \vec{b}_2$ are solvable, but $A\vec{x} = \vec{b}_3$ is not solvable.

- a) How can you decide if this possible?
- b) How could you construct A?

Solution

The equations $A\vec{x} = \vec{b}_1$ and $A\vec{x} = \vec{b}_2$ will be solvable.

$$A\vec{x} = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \vec{b}_3 \text{ (solvable?)}$$

If $A\vec{x} = \vec{b}_3$ is not solvable, we have the desired matrix A.

If $A\vec{x} = \vec{b}_3$ is solvable, then it is not possible to construct A.

When the column space contains \vec{b}_1 and \vec{b}_2 , it will have to contain their linear combinations.

So \vec{b}_3 would necessarily be in that column space and $A\vec{x} = \vec{b}_3$ would necessarily be solvable.

Exercise

For which vectors (b_1, b_2, b_3) do these systems have a solution?

a)
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

c)
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

$$b) \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

a)
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \longrightarrow x_1 + x_2 + x_3 = b_1 \\ \longrightarrow x_2 + x_3 = b_2 \\ \longrightarrow x_3 = b_3$$

$$\begin{cases} x_1 = b_1 - b_2 - b_3 \\ x_2 = b_2 - b_3 \\ x_3 = b_3 \end{cases} \Rightarrow (b_1 - b_2 - b_3, b_2 - b_3, b_3)$$

Solution for every *b*.

b)
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \xrightarrow{\lambda x_1 + x_2 + x_3 = b_1} \xrightarrow{\lambda x_2 + x_3 = b_2} \xrightarrow{\lambda 0 x_3 = b_3}$$
$$\begin{cases} x_1 = b_1 - b_2 \\ x_2 = b_2 \\ 0 = b_3 \end{cases} \Rightarrow (b_1 - b_2, b_2, 0)$$

Solvable only if $b_3 = 0$

c)
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \qquad R_2 - R_3$$
$$\begin{bmatrix} 1 & 1 & 1 & b_1 \\ 0 & 0 & 0 & b_3 - b_2 \\ 0 & 0 & 1 & b_3 \end{bmatrix}$$
$$\Rightarrow b_3 - b_2 = 0$$
$$b_3 = b_2$$
$$\begin{cases} x_1 = b_1 - 2b_3 \\ 0 = 0 \\ x_3 = b_3 \end{cases} \Rightarrow (b_1 - 2b_3, 0, b_3)$$

Solvable only if $b_3 = b_2$

Find a basis for the null space of A. $A = \begin{bmatrix} 1 & -3 & 2 & 2 & 1 \\ 0 & 3 & 6 & 0 & -3 \\ 2 & -3 & -2 & 4 & 4 \\ 3 & -6 & 0 & 6 & 5 \\ -2 & 9 & 2 & -4 & -5 \end{bmatrix}$

$$\begin{bmatrix} 1 & -3 & 2 & 2 & 1 \\ 0 & 3 & 6 & 0 & -3 \\ 2 & -3 & -2 & 4 & 4 \\ 3 & -6 & 0 & 6 & 5 \\ -2 & 9 & 2 & -4 & -5 \end{bmatrix} \qquad \begin{matrix} R_3 - 2R_1 \\ R_4 - 3R_1 \\ R_5 + 2R_1 \end{matrix}$$

$$\begin{bmatrix} 1 & -3 & 2 & 2 & 1 \\ 0 & 3 & 6 & 0 & -3 \\ 0 & 3 & -6 & 0 & 2 \\ 0 & 3 & -6 & 0 & 2 \\ 0 & 3 & 6 & 0 & -3 \end{bmatrix} \qquad \begin{matrix} R_1 + R_2 \\ R_3 - R_2 \\ R_4 - R_2 \\ R_5 - R_2 \end{matrix}$$

$$\begin{bmatrix} 1 & 0 & 8 & 2 & -2 \\ 0 & 3 & 6 & 0 & -3 \\ 0 & 0 & -12 & 0 & 5 \\ 0 & 0 & -12 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad \frac{1}{3}R_2$$

$$Let x_4 = s \quad x_5 = t$$

$$\begin{cases} x_1 = -2x_4 - \frac{4}{3}x_5 = 2s - \frac{4}{3}t \\ x_2 = \frac{1}{6}x_5 = \frac{1}{6}t \\ x_3 = \frac{5}{12}x_5 = \frac{5}{12}t \end{cases}$$

The general form of the solution of $A\vec{x} = \vec{0}$ is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = s \begin{bmatrix} 2 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -\frac{4}{3} \\ \frac{1}{6} \\ \frac{5}{12} \\ 0 \\ 1 \end{bmatrix}$$

Therefore, the vectors $\begin{bmatrix} 2 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} -\frac{4}{3} \\ \frac{1}{6} \\ \frac{5}{12} \\ 0 \end{bmatrix}$ form a basis for the null space of A.

Exercise

Is it true that is m = n then the row space of A equals the column space.

Solution

False

Counterexample, let
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$$

We have m = n = 2, but the row space of A contains multiple of (1, 2) while the column space of A contains multiples of (1, 3).

If the row space equals the column space the $A^T = A$

Solution

False,

Counterexample, let
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
.

Here, the row space and column space are both equal to all of \mathbb{R}^2 (since A is invertible).

But
$$A \neq A^T$$

Exercise

If $A^T = -A$, then the row space of A equals the column space.

Solution

True,

The row space of A equals to the column space of A^T , which for this particular A equals the column space of -A.

Since A and -A have the same fundamental subsequences. We conclude that the row space of A equals the column space of A.

Exercise

Does the matrices A and -A share the same 4 subspaces?

Solution

True.

The nullspaces are identical because $A\vec{x} = 0 \iff -A\vec{x} = 0$

The column spaces are identical because any vector \vec{v} that can be expressed as $\vec{v} = A\vec{x}$ for some \vec{x} can also be expressed as $\vec{v} = (-A)(-\vec{x})$

Exercise

Is A and B share the same 4 subspaces then A is multiple of B.

Solution

False

Any invertible 2×2 matrix will have \mathbb{R}^2 as its column space and row space and zero vector as its (left and right) nullspace.

However, it is easy to produce 2 invertible 2×2 matrices that are not multiples of each other, as example

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

Exercise

Suppose $A\vec{x} = \vec{b}$ & $C\vec{x} = \vec{b}$ have the same (complete) solutions for every \vec{b} . Is it true that A = C

Solution

If $A\vec{x} = C\vec{x} = \vec{b}$ for all vectors \vec{x} of the correct size.

Then, it is true that A = C

Exercise

A and A^T have the same left nullspace?

Solution

False,

Counterexample, take any a 1×2 matrix, such as $A = \begin{bmatrix} 1 & 1 \end{bmatrix}$.

The left nullspace of A contains vectors in \mathbb{R} while the left nullspace of A^T , which is the right nullspace of A, contains vectors in \mathbb{R}^2 .

So, they can't be the same.