## STA 35C Statistical Data Science III

(Mock exam for midterm 1)

Instructor: Dogyoon Song

| Name: | Student ID: |  |
|-------|-------------|--|

**Instructions:** This mock exam is designed to illustrate the structure, length, and style of questions to expect on Midterm 1. However, the actual Midterm 1 is not guaranteed to be the same or similar to this practice exam.

- Make sure your name and ID are clearly written above.
- The actual Midterm 1 will be a **closed-book** exam. You may bring a pen/pencil, one letter-sized sheet of handwritten notes (both sides), and a non-graphing calculator; no other materials are allowed.
- You have 50 minutes to complete all problems. The total score is 100 points.
- You must show all relevant steps clearly in your solutions for full credit; partial credit can only be given if your thoughts can be followed by the grader.
- If necessary, please round all numbers to three decimal places.

| Problem   | Score |
|-----------|-------|
| Problem 1 |       |
| Problem 2 |       |
| Problem 3 |       |
| Problem 4 |       |
| Problem 5 |       |
| Total     |       |

#### Problem 1 (20 points in total).

(a) (4 points) Let X be a random variable with pdf  $f_X$  defined by

$$f_X(x) = \begin{cases} 3x^2, & \text{if } 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

- (i) Compute  $\mathbb{E}[X]$ .
- (ii) Compute Var(X).
- (b) (8 points) Suppose X and Y are two random variables with

$$\mathbb{E}[X] = 2$$
,  $\operatorname{Var}(X) = 4$ ,  $\mathbb{E}[Y] = 5$ ,  $\operatorname{Var}(Y) = 1$ .

- (i) If X and Y are independent, compute  $\mathbb{E}[X+2Y]$  and Var(X+2Y).
- (ii) Now assume  $\operatorname{corr}(X,Y) = 0.5$ . Recompute  $\mathbb{E}[X+2Y]$  and  $\operatorname{Var}(X+2Y)$ .
- (iii) Compare these two results, and briefly comment on why knowledge of correlation matters.
- (c) (8 points) Let S denote the event "email is spam." A filter flags an email as spam (F) if it detects suspicious terms.
  - (i) Suppose Pr(S) = 0.05,  $Pr(F \mid S) = 0.90$ , and  $Pr(\text{not } F \mid \text{not } S) = 0.95$ . If an email is flagged, what is  $Pr(S \mid F)$ , the conditional probability of the flagged email being a spam?
  - (ii) Why might this probability be lower than one would intuitively expect (say, at a similar level to  $Pr(F \mid S) = 0.90$ ), despite the filter's seemingly good performance?

# Problem 2 (15 points in total).

| Problem 2 (15 points in total).                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) (6 points) Prediction vs. Inference:                                                                                                                          |
| (i) In your own words, succinctly differentiate "prediction" and "inference" in building a statistical model                                                      |
| (ii) Give an example where <i>prediction</i> accuracy is crucial, and another where <i>inference</i> is more important                                            |
| (b) (6 points) Regression vs. Classification: For each scenario, decide if it is a regression problem of a classification problem. Briefly justify your decision. |
| (i) Predicting a patient's blood pressure.                                                                                                                        |
| (ii) Predicting whether a customer will default on a loan.                                                                                                        |
| (iii) Forecasting the number of phone calls to a hotline.                                                                                                         |
| (iv) Predicting which of three cell phone plans (basic, advanced, or unlimited) a new user will choose.                                                           |

(c) (3 points) Parametric vs. Nonparametric: Suppose you have a small dataset but a strong theoretical reason to expect a linear relationship. Would you prefer a parametric linear model or a more flexible nonparametric method (e.g., kNN)? Name one advantage and one drawback of your choice.

STA 35C Spring 2025 Practice Midterm 1

#### Problem 3 (20 points in total).

Consider a response variable Y and four possible predictors  $X_1, X_2, X_3, X_4$ . You are exploring these relationships with plots and basic statistical measures.

(a) (9 points) You have four scatterplots:



- (i) For what variables does the linear assumption look reasonable?
- (ii) In each plot, do the errors (not prediction residuals) appear to be independent of the predictors?
- (iii) What can you comment on the variances of the errors by comparing the plots? (e.g., one looks larger than another, seems to depend on  $X_i$ , etc.)
- (b) (5 points) Suppose that the correlation matrix among  $X_1, X_2, X_3, X_4$  in part (a) is given as follows. Choose two best predictor variables to include in a linear regression model for Y. Explain your choice.

|       | $X_1$ | $X_2$ | $X_3$ | $X_4$ |
|-------|-------|-------|-------|-------|
| $X_1$ | 1.00  | 0.08  | -0.95 | -0.06 |
| $X_2$ |       | 1.00  | 0.11  | 0.27  |
| $X_3$ |       |       | 1.00  | 0.18  |
| $X_4$ |       |       |       | 1.00  |

(c) (6 points) Three candidate models  $(f_1, f_2, f_3)$  yield:

| Model        | $f_1$ | $f_2$ | $f_3$ |
|--------------|-------|-------|-------|
| Training MSE | 4.0   | 3.2   | 2.1   |
| Test MSE     | 3.2   | 2.8   | 5.4   |

(i) If only training data were available, which model would you choose?

(ii) Does that choice remain optimal once you see the test MSE? Why or why not?

### Problem 4 (20 points in total).

(a) (6 points) You fit a simple linear regression of Y on X:

$$\hat{Y} = -2.0 + 1.5 X.$$

(i) Suppose X = 6. What is the predicted value of Y?

(ii) Now suppose that you have a fresh training dataset as below. Sketch the regression line you would obtain by least squares on this scatter plot of (X,Y) data. Also, visualize how you predict value of Y at X=6 using the regression line.



(b) (6 points) A partial regression output is given:

| Coefficient | Estimate | Std. Error | t-statistic | <i>p</i> -value |
|-------------|----------|------------|-------------|-----------------|
| Intercept   | -2.0     | 0.5        | ??          | ??              |
| X           | +1.5     | 0.4        | ??          | ??              |

For reference, here are approximate two-sided p-values for standard normal z (or large-sample t) at several points:

| z   | Approx. p-value | z   | Approx. p-value    |
|-----|-----------------|-----|--------------------|
| 0.5 | 0.6171          | 3.0 | 0.0027             |
| 1.0 | 0.3173          | 3.5 | 0.000465           |
| 1.5 | 0.1336          | 4.0 | $6.3\times10^{-5}$ |
| 2.0 | 0.0455          | 4.5 | $6.8\times10^{-6}$ |
| 2.5 | 0.0124          | 5.0 | $5.7\times10^{-7}$ |

- (i) Compute the t-statistic and the p-value for the two regression coefficient above.
- (ii) Interpret the slope 1.5. Is X significantly associated with Y at the 5% level? Briefly explain.

- (c) (8 points) You then add a second predictor,  $X_2$  (e.g., competitor's marketing spend). In this new two-predictor model, the estimated slope for  $X_1$  changes sign from +1.5 to -0.2.
  - (i) How can adding  $X_2$  cause the direction of X's effect to reverse?
  - (ii) Explain how you would interpret the new slope -0.2 in a two-predictor model.
  - (iii) What does this reveal about relationships among  $X, X_2$ , and Y?

STA 35C Spring 2025

#### Problem 5 (25 points in total).

A dataset of website visitors is labeled Y = 1 (subscriber) or Y = 0 (non-subscriber). Two predictors,  $X_1$  and  $X_2$ , measure user behavior (e.g., time on page, pages viewed).



- (a) (6 points) Suppose you fit a logistic model and decide Y = 1 if  $\hat{p}(X_1, X_2) \geq p^*$ . The figure above shows the dataset in the  $(X_1, X_2)$  plane.
  - (i) On the scatterplot, sketch the decision boundary assuming  $p^*$  is appropriately chosen (e.g., 0.5).
  - (ii) Mark the points A = (6,2) and B = (1,3) on the plot, and predict whether Y = 1 or Y = 0 for each.
- (b) (6 points) Define a false positive and a false negative in this context. Identify one example datapoint of each in the scatterplot above. (Otherwise, construct a hypothetical point that would illustrate each.)

(c) (6 points) Let TPR = True Positive Rate, FPR = False Positive Rate. Suppose your current model yields the confusion matrix:

|       | Pred = 1 | Pred = 0 |
|-------|----------|----------|
| Y = 1 | 54       | 6        |
| Y = 0 | 5        | 35       |

(i) Compute TPR and FPR from this confusion matrix.

(ii) If you lower the decision threshold from 0.5 to 0.1, do you expect TPR to increase or decrease? What about FPR?

- (d) (7 points) Suppose a false negative (missing a potential subscriber) is more costly than a false positive.
  - (i) Would you keep the cutoff at  $p^* = 0.5$  or choose another value? Explain briefly.

(ii) If you want the false negative rate to stay below 0.1, how would you pick  $p^*$  using the ROC curve? Describe it verbally, or draw a hypothetical ROC curve and mark the operating point you would choose along with a brief justification.