

LIBRARY
RESEARCH REPORTS DIVISION
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93943

AP-4138240

ON SOLVING A
DYNAMIC OPTIMAL BUDGETING PROBLEM

by

James E. Falk
Garth P. McCormick

THE
GEORGE
WASHINGTON
UNIVERSITY

STUDENTS FACULTY STUDY R
ESEARCH DEVELOPMENT FUT
URE CAREER CREATIVITY CC
MMUNITY LEADERSHIP TECH
NOLOGY FRONTIERS DESIGN
ENGINEERING APPRENTICESHIP
GEORGE WASHINGTON UNIV

INSTITUTE FOR MANAGEMENT
SCIENCE AND ENGINEERING
SCHOOL OF ENGINEERING
AND APPLIED SCIENCE

ON SOLVING A
DYNAMIC OPTIMAL BUDGETING PROBLEM

by

James E. Falk
Garth P. McCormick

RESOURCE DYNAMICS
GWU/IMSE/Serial T-474/83
9 June 1983

THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Washington, DC 20052
Institute for Management Science and Engineering

Research Supported
by
Contract N00014-83-K-0215
Project NR 047 624
Office of Naval Research

This document has been approved for public sale
and release; its distribution is unlimited.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER GWU/IMSE/Serial T-474/83	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) ON SOLVING A DYNAMIC OPTIMAL BUDGETING PROBLEM		5. TYPE OF REPORT & PERIOD COVERED SCIENTIFIC
7. AUTHOR(s) JAMES E. FALK GARTH P. McCORMACK		6. PERFORMING ORG. REPORT NUMBER GWU/IMSE/Serial T-474/83 8. CONTRACT OR GRANT NUMBER(s) N00014-83-K-0215
9. PERFORMING ORGANIZATION NAME AND ADDRESS THE GEORGE WASHINGTON UNIVERSITY INSTITUTE FOR MANAGEMENT SCIENCE AND ENGINEERING WASHINGTON, DC 20052		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS OFFICE OF NAVAL RESEARCH CODE 411 S&P ARLINGTON, VA 22217		12. REPORT DATE 9 June 1983 13. NUMBER OF PAGES 23
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)		15. SECURITY CLASS. (of this report) UNCLASSIFIED 15e. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) APPROVED FOR PUBLIC SALE AND RELEASE; DISTRIBUTION UNLIMITED.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) OPTIMAL BUDGETING NONCONVEX PROGRAMMING GLOBAL SOLUTION		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) We present the formulation of a Dynamic Optimal Budgeting Problem based on the Resource Dynamics work. The development of an approximate and solvable model is given. An illustrative example is completely solved.		

THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Washington, DC 20052

Institute for Management Science and Engineering

ON SOLVING A
DYNAMIC OPTIMAL BUDGETING PROBLEM

by

James E. Falk
Garth P. McCormick

Abstract
of
RESOURCE DYNAMICS
GWU/IMSE/Serial T-474/83
9 June 1983

We present the formulation of a Dynamic Optimal Budgeting Problem based on the Resource Dynamics work. The development of an approximate and solvable model is given. An illustrative example is completely solved.

Research Supported
by
Contract N00014-83-K-0215
Project NR 047 624
Office of Naval Research

THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Washington, DC 20052
Institute for Management Science and Engineering

ON SOLVING A
DYNAMIC OPTIMAL BUDGETING PROBLEM

by

James E. Falk
Garth P. McCormick

RESOURCE DYNAMICS
GWU/IMSE/Serial T-474/83
9 June 1983

1. Introduction and Summary

In this paper we wish to establish a solution procedure designed to solve a model which seeks to maximize a measure of asset value of owned resources. These resources are updated over time, and change according to the amount of manpower and/or maintenance supplied.

The specific model which we address is a slight modification of a model formulated by Rolf Clark in a pair of notes ([1], [2]). It is a dynamic model with a system of difference equations linking the variables in adjacent time periods. The objective function (to be maximized) is a discounted sum over time periods of a measure of the "effective asset value" of the owned resources.

Viewed as a mathematical optimization problem, the model appears to be a difficult nonconvex optimization problem. In Section 2, we will establish the notation and the equations describing the model.

The nature of the problem is such that we were able to accurately approximate the objective function and design a branch and bound method to solve the problem. The details of this "decoupling" are presented in Section 3.

A moderately expensive way to implement the algorithm suggested by the results of Section 3 would be to design (or, perhaps, modify) a code specifically for the problem. Fortunately, we were able to effect a solution of a small model by means of a 0-1 code existing at GWU (LINDO). The results are presented in Section 4.

2. The Model

The model presented here is based on Clark's notes [1] and [2], and also on a Technical Memorandum by one of the author [3].

State Variables

B_t	budget at time t
P_t	procurement at time t
MXS_t	maintenance supplied at time t
$MBLOG_t$	maintenance backlog at time t
MX_t	maintenance demand during year t
MS_t	manpower supplied during year t
M_t	manpower demand during year t
AV_t	asset value at time t
R_t	assets retired at time t
EAV_t	effective asset value at time t

The state variables are determined by a system of difference equations, initial values, and settings of the control variables.

Control Variables

$F1_t$ fraction of maintenance supplied/maintenance demanded

$F2_t$ fraction of manpower supplied/manpower demanded

The model to be presented has a number of parameters which are set exogenously. These parameters are listed below, with values set for the illustrative example of Section 4.

Parameters

c	=	1000	}
α_1	=	0.03	
α_2	=	2	
α_3	=	29/30	
α_4	=	0.04	
α_5	=	-0.01	
α_6	=	25×10^{-6}	
α_7	=	0.5	current values

$T = 5$ (number of time periods)

Initial Values

$B_0 = 10$

$AV_0 = 100$

$MBLOG_0 = 1$

The relations which link the variables over the time periods are now presented. The basic assumptions underlying and defining the model are exhibited in these relations, and are briefly discussed after the relations are displayed. The reader might note that a number of these relations do not represent constraints on the problem but are definitional. Indeed, the first order of business will be to simplify the relations.

Relations

The maintenance and manpower relations are

$$(1) \quad B_t = B_0 (1 + \alpha_1)^t$$

$$(2) \quad P_t = B_t - MXS_t - MS_t$$

$$(3) \quad MXS_t = F1_t (MBLOG_{t-1} + MX_t)$$

$$(4) \quad MBLOG_t = \alpha_3^2 MBLOG_{t-1} + MX_t - MXS_t$$

$$(5) \quad MX_t = \alpha_4 (AV_{t-1} - \alpha_7 MBLOG_{t-1})$$

$$(6) \quad MS_t = F2_t M_t$$

$$(7) \quad M_t = c(1 + \alpha_5)^t (AV_{t-1}) \alpha_6$$

$$(8) \quad AV_t = AV_{t-1} + P_t - R_t$$

$$(9) \quad R_t = AV_{t-1} (1 - \alpha_3)$$

Relation (1) implies that the budget at time t is a result of an initial budget growing at a yearly rate of α_1 . Relation (2) defines procurement at time t to be the difference between the budget at t and the amounts allocated to manpower and maintenance during time period t .

Relations (3) and (6) are best interpreted as defining the ratios $F1_t$ and $F2_t$ as the fraction of maintenance and manpower supplied over the amounts of these quantities demanded.

The maintenance backlog at time t defined by (4) is interpreted as a fraction of the backlog in the previous time period plus the maintenance demand during time t minus the maintenance supplied during this time period. The maintenance demand during period t is interpreted by (5) to be a fixed fraction α_4 of asset value minus a fraction $\alpha_4 \cdot \alpha_7$ of the maintenance backlog of the previous time period.

The manpower demand as defined in (7) is a multiple of the asset value of the previous time period, and the asset value in (8) is updated from the asset value of the previous time period by adding total procurements and subtracting assets retired.

Finally, assets retired in time period t are assumed to be some fixed fraction of the asset value of the previous time period.

The reader should note that an extension of this model which allowed for time-dependent parameters could easily be incorporated, if meaningful parameters could be estimated.

We are now in a position to simplify the relations, by eliminating variables which are dependent and not constrained.

First, we may let MXS_t and MS_t denote the control variables (instead of $F1_t$ and $F2_t$). We note that the above system can be simplified considerably if we let $MBLOG_t$ and AV_t be state variables.

For we may rewrite (4) as

$$\begin{aligned} MBLOG_t &= \alpha_3^2 MBLOG_{t-1} + \alpha_4 (AV_{t-1} - \alpha_7 MBLOG_{t-1}) \\ &\quad - MXS_t \quad \text{by (5)} \\ &= (\alpha_3^2 - \alpha_4 \alpha_7) MBLOG_{t-1} + \alpha_4 AV_{t-1} - MXS_t \end{aligned}$$

and we can rewrite (8) as

$$\begin{aligned} AV_t &= AV_{t-1} + (B_t - MXS_t - MS_t) - (1-\alpha_3)AV_{t-1} \quad \text{by (2) and (9)} \\ &= \alpha_3 AV_{t-1} + B_0 (1+\alpha_1)^t - MXS_t - MS_t \quad \text{by (1)} \end{aligned}$$

In order to simplify notation, we set

$$\begin{aligned} MXS_t &= x_t \\ MS_t &= s_t \\ AV_t &= a_t \\ MBLOG_t &= m_t \end{aligned}$$

and get

$$(10) \quad a_t = \alpha_3 a_{t-1} - x_t - s_t + B_0(1+\alpha_1)^t$$

$$(11) \quad m_t = \alpha_4 a_{t-1} + (\alpha_3^2 - \alpha_4 \alpha_7) m_{t-1} - x_t$$

$$(12) \quad 0 \leq x_t \leq \alpha_4 a_{t-1} + (1-\alpha_4 \alpha_7) m_{t-1}$$

$$(13) \quad 0 \leq s_t \leq c(1+\alpha_5)^t \alpha_6 a_{t-1}$$

where (12) and (13) come from the restrictions $F1_t, F2_t \in [0,1]$ together with the defining relations (3), (5), (6), and (7). We can simplify notation further, by re-defining the coefficients above so that

$$(14) \quad a_t = k_1 a_{t-1} - x_t - s_t + B_0(1+\alpha_1)^t$$

$$(15) \quad m_t = k_2 a_{t-1} + k_3 m_{t-1} - x_t$$

$$(16) \quad 0 \leq x_t \leq k_4 a_{t-1} + k_5 m_{t-1}$$

$$(17) \quad 0 \leq s_t \leq k_6 a_{t-1}$$

Note that (14) and (15) define the state variables a_1, \dots, a_t and m_1, \dots, m_t as linear functions of the control variables. Also (16) and (17) represent a system of state constrained upper bounds on the control variables.

Equations (14) and (15), inequalities (16) and (17), and initial conditions $a_0 = AV_0$, $m_0 = MBLOG_0$ constitute a set of linear constraints.

We are now in a position to address the objective function.

Empirical evidence has suggested that a meaningful objective might have the form

$$(18) \quad \sum_{t=1}^T w_t EAV_t$$

where w_1, \dots, w_T are preassigned "weights" and EAV_t is some measure of the "effective asset value" at time t . It has been suggested (Clark [2]) that EAV_t should be the asset value AV_t at time t , diminished by some function of (a) the ratio of the maintenance backlog over the asset value, and (b) the ratio of the manpower supplied over the asset value. We assume that

$$EAV_t = AV_t \min \{f(MBLOG_t/AV_t), g(MS_t/M_t)\}$$

or, in the simplified notation,

$$EAV_t = a_t \min \{f(m_t/a_t), g(s_t/l_t a_{t-1})\}$$

where f and g are to be described, and $l_t = c(1+\alpha_5)^t \alpha_6$ (see equation (7)).

At this point, we wish to emphasize that the exact form of f and g is immaterial to the algorithm which follows. The algorithm applies to any given function f and g .

A function f which has a form compatible with the current problem ($f(0) = 1$ when there is no backlog, $f(1) = 0$ when the asset value equals the backlog) is

$$(19) \quad f(v) = (1+58v)(1-v)^{58}$$

and the function g which we use here is

$$(20) \quad g(r) = r^5(6-5r)$$

(following Soland's note [5]). These functions are depicted in Figure 1.

Figure 1. Example Functions f and g

In summary, the model which we address has the form

$$\text{maximize} \quad \sum_{t=1}^T w_t a_t \min \{f(m_t/a_t), g(s_t/\ell_t a_{t-1})\}$$

$$x_t, s_t \geq 0$$

subject to constraint (14), (15), (16), (17).

Note that this problem is equivalent to the problem P:

$$\text{maximize} \quad v$$

$$x_t, s_t, t_t, v$$

$$\text{subject to} \quad v \leq \sum_{t=1}^T t_t$$

$$(21) \quad t_t \leq w_t a_t f(m_t/a_t) \quad \left. \right\} \quad t=1, \dots, T$$

$$(22) \quad t_t \leq w_t a_t g(s_t/\ell_t a_{t-1})$$

and constraints (14), (15), (16) and (17).

We note that this is a nonconvex optimization problem as the functions on the right-hand side of the above inequalities are generally not concave.

3. Solving the Model

In this section, we define an approximation to problem P which can be solved globally, and indicate a method that could be used to solve the problem.

We first address the function $f(v)$. Let $0 = \bar{v}_0 < \bar{v}_1 < \bar{v}_2 < \dots < \bar{v}_n = 1$ be a set of $n+1$ points partitioning the interval $[0,1]$ into n subintervals. We wish to define the piecewise linear approximation to $f(v)$ which agrees with f at $\bar{v}_0, \dots, \bar{v}_n$, and linearly interpolates adjacent values. Figure 2 exhibits the approximation desired.

Figure 2. Approximation of f

We introduce variables $\theta_{t0}, \theta_{t1}, \dots, \theta_{tn}$ associated with the points $\bar{v}_0, \bar{v}_1, \dots, \bar{v}_n$, and note that

$$f(v_t) \underset{\approx}{=} \sum_{j=0}^n \theta_{tj} f(\bar{v}_j)$$

where

$$(23) \quad v_t = \sum_{j=0}^n \theta_{tj} \bar{v}_j$$

$$(24) \quad 1 = \sum_{j=0}^n \theta_{tj}$$

$$\theta_{tj} \geq 0 \quad (j=0,1,\dots,n)$$

and at most two θ_{tj} 's can be positive, and if two are positive, they must correspond to adjacent grid points bordering v_t . This latter restriction is known as the adjacent weights restriction (AWR), and is used in [4].

We wish to replace the function f in problem P by its piecewise linear approximation. Thus, the term

$$a_t f(m_t/a_t)$$

becomes

$$\sum_{j=0}^n [\theta_{tj} a_t] f(\bar{v}_j)$$

and the new constraint (23) becomes

$$\frac{m_t}{a_t} = \sum_{j=0}^n \theta_{tj} \bar{v}_j$$

i.e.,

$$m_t = \sum_{j=0}^n [\theta_{tj} a_t] \bar{v}_j$$

Setting

$$(25) \quad z_{tj} = \theta_{tj} a_t$$

constraint (21) becomes

$$(26) \quad t_t \leq w_t \sum_{j=0}^n z_{tj} f(\bar{v}_j)$$

$$(27) \quad m_t = \sum_{j=0}^n z_{tj} \bar{v}_j$$

$$(28) \quad a_t = \sum_{j=0}^n z_{tj}$$

where the latter constraint results by summing (25) over j , and using (24).

We use similar manipulations to handle constraint (22), but we need to make an additional approximation. We replace a_{t-1} by a_t in (22) in order that the construct parallel to (25) will result in linear equations similar to (26), (27), and (28).

Let $0 = \bar{r}_0 < \bar{r}_1 < \dots < \bar{r}_m = 1$ be a set of $m+1$ points partitioning the interval $[0,1]$ into m subintervals. Introducing variables ω_{tj} corresponding to these subdivision points for each time period, we have

$$g_t(r_t) \approx \sum_{j=0}^m \omega_{tj} \bar{r}_j$$

if

$$r_t = \sum_{j=0}^m \omega_{tj} \bar{r}_j$$

$$1 = \sum_{j=0}^m \omega_{tj}$$

$$\omega_{tj} \geq 0$$

and $\omega_{t0}, \dots, \omega_{tm}$ satisfy the AWRs.

Then constraint (22) becomes (replacing a_{t-1} by a_t)

$$(29) \quad t_t \leq w_t \sum_{j=0}^m w_{tj} g(\bar{r}_j)$$

$$(30) \quad s_t = \lambda_t \sum_{j=0}^m w_{tj} \bar{r}_j$$

$$(31) \quad a_t = \sum_{j=0}^m w_{tj}$$

where we have defined $w_{tj} = a_t w_{tj}$. Note that the w_{tj} satisfy the AWRs if and only if the w_{tj} do.

Summarizing, the problem which we seek to solve is Problem AP:

$$\begin{aligned} & \text{maximize } v \\ & \text{subject to } v \leq \sum_{t=1}^T t_t \end{aligned}$$

$$(26) \quad t_t \leq w_t \sum_{j=0}^n z_{tj} f(\bar{v}_j)$$

$$(27) \quad m_t = \sum_{j=0}^n z_{tj} \bar{v}_j$$

$$(28) \quad a_t = \sum_{j=0}^n z_{tj}$$

$$(29) \quad t_t \leq w_t \sum_{j=0}^m w_{tj} g(\bar{r}_j)$$

$$(30) \quad s_t = \lambda_t \sum_{j=0}^m w_{tj} \bar{r}_j$$

$$(31) \quad a_t = \sum_{j=0}^m w_{tj}$$

$$(14) \quad a_t = k_1 a_{t-1} - x_t - s_t + b_0 (1+\alpha_1)^t$$

$$(15) \quad m_t = k_2 a_{t-1} + k_3 m_{t-1} - x_t$$

$$(16) \quad 0 \leq x_t \leq k_4 a_{t-1} + k_5 m_{t-1}$$

$$(17) \quad 0 \leq s_t \leq k_6 t a_{t-1}$$

over nonnegative variables v , t_t , z_{tj} , m_t , a_t , s_t , w_{tj} , and x_t for $t=1, \dots, T$, and $j=1, \dots, n$ (for the z_{tj} 's) and $j=1, \dots, m$ (for the w_{tj} 's).

Also, the sets of variables

$$\{z_{t0}, \dots, z_{tn}\}_{t=1}^T \quad \text{and} \quad \{w_{t0}, \dots, w_{tm}\}_{t=1}^T$$

must satisfy the AWRs.

It is this latter restriction which allows us to classify the above problem AP as a nonconvex problem. An algorithm [4] for a somewhat similar problem was developed at GWU, but assumes that the variables which are required to satisfy the AWRs must sum to 1. Undoubtedly, the methodology of that algorithm could be extended to encompass our problem, but would require some delicate reprogramming of the working code, and, although it would be a very useful addition to our current tools, it would also take several months to complete.

In order to illustrate the solvability of problem AP, we decided to employ LINDO (see [6]), which solves problems with 0-1 variables, and adds constraints to insure that the AWRs are satisfied.

We note that equation (28):

$$a_t = \sum_{j=0}^n z_{tj}$$

must be satisfied by a set of variables $\{z_{t0}, \dots, z_{tn}\}$ which satisfy the AWRs. For this set of variables, we introduce 0-1 variables y_{t1}, \dots, y_{tn} and the restrictions

$$(32) \quad 200y_{tj} + z_{t,j-1} + z_{t,j} \geq a_t \quad (j=1, \dots, n)$$

$$(33) \quad \sum_{j=1}^n y_{tj} = n-1$$

$$y_{tj} = 0, 1$$

Equation (33) guarantees that exactly one variable y_{tj} will be 0, i.e., exactly one of the constraints (32) will be binding. Because of constraint (28), the z_{tj} 's not involved in the binding constraint will be zero.

4. Solution of an Illustrative Example

We solved problem AP with the 0-1 option of LINDO. The following data were used on the example problem.

The parameter values as given in Section 2.

$$(w_1, w_2, w_3, w_4, w_5) = (1, 2, 1, 1, 2)$$

$$(\bar{v}_0, \bar{v}_1, \bar{v}_2, \bar{v}_3, \bar{v}_4) = (0, 0.0005, 0.05, 0.1, 1.0)$$

$$(\bar{r}_0, \bar{r}_1, \bar{r}_2, \bar{r}_3, \bar{r}_4) = (0, 0.1, 0.5, 0.9, 1.0)$$

The solution obtained is exhibited in Table 1, and a listing of the program used and all solution values is copied in the appendix. The problem had 102 constraints and 136 variables, 20 of which were 0-1. This is a relatively large problem for LINDO, and took 5529 iterations and 377 branches, involving 10613 pivots.

Table 1
Solution of Example Problem

<u>Time Period</u>	<u>Maintenance Supplied (x_t)</u>	<u>Manpower Supplied (s_t)</u>	<u>Asset Value (a_t)</u>	<u>Maintenance Backlog (m_t)</u>
1	4.86	2.48	100.00	0.05
2	3.91	2.45	101.29	0.14
3	4.05	2.46	102.61	0.13
4	4.07	2.46	104.12	0.16
5	4.17	2.47	105.75	0.00

optimal value = 711.19

APPENDIX

PROBLEM LISTING

and

COMPLETE SOLUTION

Problem Listing

MAX EAV
SUBJECT TO

2) $X_1 + M_1 = 4.9144$
 3) $X_1 \leq 4.98$
 4) $-0.96667 A_1 + A_2 + X_2 = 8.4872$
 5) $-0.04 A_1 - 0.91444 M_1 + X_2 + M_2 = 0$
 6) $-0.04 A_1 - 0.98 M_1 + X_2 \leq 0$
 7) $-0.96667 A_2 + A_3 + X_3 = 8.7418$
 8) $-0.04 A_2 - 0.91444 M_2 + X_3 + M_3 = 0$
 9) $-0.04 A_2 - 0.98 M_2 + X_3 \leq 0$
 10) $-0.96667 A_3 + A_4 + X_4 = 9.0041$
 11) $-0.04 A_3 - 0.91444 M_3 + X_4 + M_4 = 0$
 12) $-0.04 A_3 - 0.98 M_3 + X_4 \leq 0$
 13) $-0.96667 A_4 + A_5 + X_5 = 9.2742$
 14) $-0.04 A_4 - 0.09144 M_4 + M_5 + X_5 = 0$
 15) $-0.04 A_4 - 0.98 M_4 + X_5 \leq 0$
 16) $0.0005 Z_{11} + 0.05 Z_{12} + 0.1 Z_{13} - M_1 + Z_{14} = 0$
 17) $0.0005 Z_{21} + 0.05 Z_{22} + 0.1 Z_{23} - M_2 + Z_{24} = 0$
 18) $0.0005 Z_{31} + 0.05 Z_{32} + 0.1 Z_{33} - M_3 + Z_{34} = 0$
 19) $0.0005 Z_{41} + 0.05 Z_{42} + 0.1 Z_{43} - M_4 + Z_{44} = 0$
 20) $0.0005 Z_{51} + 0.05 Z_{52} + 0.1 Z_{53} - M_5 + Z_{54} = 0$
 21) $Z_{10} + Z_{11} + Z_{12} + Z_{13} - A_1 + Z_{14} = 0$
 22) $Z_{20} + Z_{21} + Z_{22} + Z_{23} - A_2 + Z_{24} = 0$
 23) $Z_{30} + Z_{31} + Z_{32} + Z_{33} - A_3 + Z_{34} = 0$
 24) $Z_{40} + Z_{41} + Z_{42} + Z_{43} - A_4 + Z_{44} = 0$
 25) $Z_{50} + Z_{51} + Z_{52} + Z_{53} - A_5 + Z_{54} = 0$
 26) $200 Y_{11} + Z_{10} + Z_{11} - A_1 \geq 0$
 27) $200 Y_{12} + Z_{11} + Z_{12} - A_1 \geq 0$
 28) $200 Y_{13} + Z_{12} + Z_{13} - A_1 \geq 0$
 29) $200 Y_{14} + Z_{13} - A_1 + Z_{14} \geq 0$
 30) $Y_{11} + Y_{12} + Y_{13} + Y_{14} = 3$
 31) $200 Y_{21} + Z_{20} + Z_{21} - A_2 \geq 0$
 32) $200 Y_{22} + Z_{21} + Z_{22} - A_2 \geq 0$
 33) $200 Y_{23} + Z_{22} + Z_{23} - A_2 \geq 0$
 34) $200 Y_{24} + Z_{23} - A_2 + Z_{24} \geq 0$
 35) $Y_{21} + Y_{22} + Y_{23} + Y_{24} = 3$
 36) $200 Y_{31} + Z_{30} + Z_{31} - A_3 \geq 0$
 37) $200 Y_{32} + Z_{31} + Z_{32} - A_3 \geq 0$
 38) $200 Y_{33} + Z_{32} + Z_{33} - A_3 \geq 0$
 39) $200 Y_{34} + Z_{33} - A_3 + Z_{34} \geq 0$
 40) $Y_{31} + Y_{32} + Y_{33} + Y_{34} = 3$
 41) $200 Y_{41} + Z_{40} + Z_{41} - A_4 \geq 0$
 42) $200 Y_{42} + Z_{41} + Z_{42} - A_4 \geq 0$
 43) $200 Y_{43} + Z_{42} + Z_{43} - A_4 \geq 0$
 44) $200 Y_{44} + Z_{43} - A_4 + Z_{44} \geq 0$
 45) $Y_{41} + Y_{42} + Y_{43} + Y_{44} = 3$
 46) $200 Y_{51} + Z_{50} + Z_{51} - A_5 \geq 0$
 47) $200 Y_{52} + Z_{51} + Z_{52} - A_5 \geq 0$
 48) $200 Y_{53} + Z_{52} + Z_{53} - A_5 \geq 0$
 49) $200 Y_{54} + Z_{53} - A_5 + Z_{54} \geq 0$
 50) $Y_{51} + Y_{52} + Y_{53} + Y_{54} = 3$

Problem Listing - Continued

51) EAV - T1 - T2 - T3 - T4 - T5 <= 0
 52) Z10 + 0.99958 Z11 + 0.19908 Z12 + 0.01509 Z13 - T1 >= 0
 53) 2 Z20 + 1.99916 Z21 + 0.39816 Z22 + 0.03018 Z23 - T2 >= 0
 54) Z30 + 0.99956 Z31 + 0.19908 Z32 + 0.01509 Z33 - T3 >= 0
 55) Z40 + 0.99958 Z41 + 0.19908 Z42 + 0.01509 Z43 - T4 >= 0
 56) 2 Z50 + 1.99916 Z51 + 0.39816 Z52 + 0.03018 Z53 - T5 >= 0
 57) A1 + X1 = 104.91
 58) - A1 + W10 + W11 + W12 + W13 + W14 = 0
 59) - A2 + W20 + W21 + W22 + W23 + W24 = 0
 60) - A3 + W30 + W31 + W32 + W33 + W34 = 0
 61) - A4 + W40 + W41 + W42 + W43 + W44 = 0
 62) - A5 + W50 + W51 + W52 + W53 + W54 = 0
 63) - T1 + 0.00006 W11 + 0.10938 W12 + 0.88574 W13 + W14 >= 0
 64) - T2 + 0.00011 W21 + 0.21875 W22 + 1.77147 W23 + 2 W24 >= 0
 65) - T3 + 0.00006 W31 + 0.10938 W32 + 0.88574 W33 + W34 >= 0
 66) - T4 + 0.00006 W41 + 0.10938 W42 + 0.88574 W43 + W44 >= 0
 67) - T5 + 0.00011 W51 + 0.21875 W52 + 1.77147 W53 + 2 W54 >= 0
 68) 0.1 W11 + 0.5 W12 + 0.9 W13 + W14 - 40.404 S1 = 0
 69) 0.1 W21 + 0.5 W22 + 0.9 W23 + W24 - 40.81219 S2 = 0
 70) 0.1 W31 + 0.5 W32 + 0.9 W33 + W34 - 41.2244 S3 = 0
 71) 0.1 W41 + 0.5 W42 + 0.9 W43 + W44 - 41.6408 S4 = 0
 72) 0.1 W51 + 0.5 W52 + 0.9 W53 + W54 - 42.0614 S5 = 0
 73) S1 <= 2.475
 74) - 0.02425 A1 + S2 <= 0
 75) - 0.02426 A2 + S3 <= 0
 76) - 0.02401 A3 + S4 <= 0
 77) - 0.02377 A4 + S5 <= 0
 78) - A1 + W10 + W11 + 200 YW11 >= 0
 79) - A1 + W11 + W12 + 200 YW12 >= 0
 80) - A1 + W12 + W13 + 200 YW13 >= 0
 81) - A1 + W13 + W14 + 200 YW14 >= 0
 82) YW11 + YW12 + YW13 + YW14 = 3
 83) - A2 + W20 + W21 + 200 YW21 >= 0
 84) - A2 + W21 + W22 + 200 YW22 >= 0
 85) - A2 + W22 + W23 + 200 YW23 >= 0
 86) - A2 + W23 + W24 + 200 YW24 >= 0
 87) YW21 + YW22 + YW23 + YW24 = 3
 88) - A3 + W30 + W31 + 200 YW31 >= 0
 89) - A3 + W31 + W32 + 200 YW32 >= 0
 90) - A3 + W32 + W33 + 200 YW33 >= 0
 91) - A4 + W33 + W34 + 200 YW33 + 200 YW34 >= 0
 92) YW31 + YW32 + YW33 + YW34 = 3
 93) - A4 + W40 + W41 + 200 YW41 >= 0
 94) - A4 + W41 + W42 + 200 YW42 >= 0
 95) - A4 + W42 + W43 + 200 YW43 >= 0
 96) - A4 + W43 + W44 + 200 YW44 >= 0
 97) YW41 + YW42 + YW43 + YW44 = 3
 98) - A5 + W50 + W51 + 200 YW51 >= 0
 99) - A5 + W51 + W52 + 200 YW52 >= 0
 100) - A5 + W52 + W53 + 200 YW53 >= 0
 101) - A5 + W53 + W54 + 200 YW54 >= 0
 102) YW51 + YW52 + YW53 + YW54 = 3

END

NUMBER INTEGER VARIABLES= 20

The Complete Solution

OBJECTIVE FUNCTION VALUE

1) 711.193726

VARIABLE	VALUE	REDUCED COST
Y11	0.000000	-426.513763
Y12	1.000000	0.000000
Y13	1.000000	0.000000
Y14	1.000000	0.000000
Y21	1.000000	0.000000
Y22	0.000000	-137.946289
Y23	1.000000	0.000000
Y24	1.000000	0.000000
Y31	1.000000	0.000000
Y32	0.000000	-204.508804
Y33	1.000000	0.000000
Y34	1.000000	0.000000
Y41	1.000000	0.000000
Y42	0.000000	-384.489441
Y43	1.000000	0.000000
Y44	1.000000	0.000000
Y51	0.000000	0.000000
Y52	1.000000	0.000000
Y53	1.000000	0.000000
Y54	1.000000	0.000000
YW11	1.000000	-28.529999
YW12	1.000000	-28.529995
YW13	1.000000	-28.529995
YW14	0.000000	0.000000
YW21	1.000000	-55.762081
YW22	1.000000	-55.762081
YW23	1.000000	-55.762081
YW24	0.000000	0.000000
YW31	1.000000	0.000000
YW32	1.000000	0.000000
YW33	1.000000	0.000000
YW34	0.000000	0.000000
YW41	1.000000	-24.913073
YW42	1.000000	-24.913073
YW43	1.000000	-24.913073
YW44	0.000000	0.000000
YW51	1.000000	-57.059765
YW52	1.000000	-57.059765
YW53	1.000000	-57.059765
YW54	0.000000	0.000000
EAV	711.193726	0.000000

The Complete Solution - Continued

Z10	0.000000	0.001067
Z11	100.045631	0.000000
Z12	0.000000	2.026954
Z13	0.000000	1.920272
Z20	0.000000	0.690080
Z21	99.566626	0.000000
Z22	1.717557	0.000000
Z23	0.000000	0.661322
Z30	0.000000	1.023061
Z31	101.011032	0.000000
Z32	1.595954	0.000000
Z33	0.000000	0.980426
Z40	0.000000	1.923419
Z41	102.013145	0.000000
Z42	2.1111281	0.000000
Z43	0.000000	1.843263
Z50	105.746558	0.000000
Z51	0.000000	0.000143
Z52	0.000000	0.014265
Z53	0.000000	0.028530
A1	100.045631	0.000000
X1	4.864372	0.000000
M1	0.050026	0.000000
A2	101.286194	0.000000
X2	3.912110	0.000000
M2	0.135460	0.000000
A3	102.607109	0.000000
X3	4.045224	0.000000
M3	0.130316	0.000000
A4	104.124428	0.000000
X4	4.066876	0.000000
M4	0.136571	0.000000
A5	105.746550	0.000000
M5	0.000001	0.000000
X5	4.177297	0.000000
Z14	0.000000	0.000000
Z24	0.000000	0.000000
Z34	0.000006	0.000000
Z44	0.000000	0.000000
Z54	0.000000	0.285299
T1	99.993393	0.000000
T2	199.737488	0.000000
T3	101.286430	0.000000
T4	102.370617	0.000000
T5	207.765612	0.000000
W10	0.000000	0.000000
W11	0.000000	0.114210
W12	0.000000	0.461950
W13	0.457153	0.000000
W14	99.586478	0.000000

The Complete Solution - Concluded

W20	0.000000	0.000000
W21	0.000000	0.223225
W22	0.000000	0.702888
W23	12.404925	0.000000
W24	86.881271	0.000000
W30	1.520671	0.000000
W31	0.000000	0.093206
W32	0.000000	0.364284
W33	0.000000	0.013303
W34	101.286430	0.000000
W40	0.000000	0.000000
W41	0.000000	0.099731
W42	0.000000	0.403385
W43	15.173573	0.000000
W44	88.950859	0.000000
- W50	0.000000	0.000000
W51	0.000000	0.228420
W52	0.000000	0.923899
W53	16.239845	0.000000
W54	89.508703	0.000000
S1	2.475000	0.000000
S2	2.451368	0.000000
S3	2.456957	0.000000
S4	2.464099	0.000000
S5	2.475537	0.000000

REFERENCES

- [1] Clark, Rolf H. (1982). Note to Resource Dynamics Group,
October 15.
- [2] Clark, Rolf H. (1982). Note to Resource Dynamics Group,
November 30.
- [3] Falk, James E. (1983). "On Solving Toy Model 1a," TM Serial 69310/83.
- [4] Falk, James E. (1972). An Algorithm for Locating Approximate
Solutions of Nonconvex, Separable Programs, Technical Paper
Serial T-262.
- [5] Soland, Richard M. (1983). Note to Resource Dynamics Group,
February 18.
- [6] Soland, Richard M. (1980) LINDO User's Guide, TM Serial 68184.

OFFICE OF NAVAL RESEARCH
STATISTICS AND PROBABILITY PROGRAM

BASIC DISTRIBUTION LIST
FOR
UNCLASSIFIED TECHNICAL REPORTS

FEBRUARY 1982

Copies	Copies
Statistics and Probability Program (Code 411(SP)) Office of Naval Research Arlington, VA 22217 3	Navy Library National Space Technology Laboratory Attn: Navy Librarian Bay St. Louis, MS 39522 1
Defense Technical Information Center Cameron Station Alexandria, VA 22314 12	U. S. Army Research Office P.O. Box 12211 Attn: Dr. J. Chandra Research Triangle Park, NC 27706 1
Commanding Officer Office of Naval Research Eastern/Central Regional Office Attn: Director for Science Barnes Building 495 Summer Street Boston, MA 02210 1	Director National Security Agency Attn: R51, Dr. Maar Fort Meade, MD 20755 1
Commanding Officer Office of Naval Research Western Regional Office Attn: Dr. Richard Lau 1030 East Green Street Pasadena, CA 91101 1	ATAA-SL, Library U.S. Army TRADOC Systems Analysis Activity Department of the Army White Sands Missile Range, NM 88002 1
U. S. ONR Liaison Office - Far East Attn: Scientific Director APO San Francisco 96503 1	ARI Field Unit-USAREUR Attn: Library c/o ODCSPER HQ USAEREUR & 7th Army APO New York 09403 1
Applied Mathematics Laboratory David Taylor Naval Ship Research and Development Center Attn: Mr. G. H. Gleissner Bethesda, Maryland 20084 1	Library, Code 1424 Naval Postgraduate School Monterey, CA 93940 1
Commandant of the Marine Corps (Code AX) Attn: Dr. A. L. Slafkosky Scientific Advisor Washington, DC 20380 1	Technical Information Division Naval Research Laboratory Washington, DC 20375 1
	OASD (I&L), Pentagon Attn: Mr. Charles S. Smith Washington, DC 20301 1

Copies		Copies	
Director AMSAA Attn: DRXSY-MP, H. Cohen Aberdeen Proving Ground, MD 21005	1	Reliability Analysis Center (RAC) RADC/RBRAC Attn: I. L. Krulac Data Coordinator/ Government Programs Griffiss AFB, New York 13441	1
Dr. Gerhard Heiche Naval Air Systems Command (NAIR 03) Jefferson Plaza No. 1 Arlington, VA 20360	1	Technical Library Naval Ordnance Station Indian Head, MD 20640	1
Dr. Barbara Bailar Associate Director, Statistical Standards Bureau of Census Washington, DC 20233	1	Library Naval Ocean Systems Center San Diego, CA 92152	1
Leon Slavin Naval Sea Systems Command (NSEA 05H) Crystal Mall #4, Rm. 129 Washington, DC 20036	1	Technical Library Bureau of Naval Personnel Department of the Navy Washington, DC 20370	1
B. E. Clark RR #2, Box 647-B Graham, NC 27253	1	Mr. Dan Leonard Code 8105 Naval Ocean Systems Center San Diego, CA 92152	1
Naval Underwater Systems Center Attn: Dr. Derrill J. Bordelon Code 601 Newport, Rhode Island 02840	1	Dr. Alan F. Petty Code 7930 Naval Research Laboratory Washington, DC 20375	1
Naval Coastal Systems Center Code 741 Attn: Mr. C. M. Bennett Panama City, FL 32401	1	Dr. M. J. Fischer Defense Communications Agency Defense Communications Engineering Center 1860 Wiehle Avenue Reston, VA 22090	1
Naval Electronic Systems Command (NELEX 612) Attn: John Schuster National Center No. 1 Arlington, VA 20360	1	Mr. Jim Gates Code 9211 Fleet Material Support Office U. S. Navy Supply Center Mechanicsburg, PA 17055	1
Defense Logistics Studies Information Exchange Army Logistics Management Center Attn: Mr. J. Dowling Fort Lee, VA 23801	1	Mr. Ted Tupper Code M-311C Military Sealift Command Department of the Navy Washington, DC 20390	1

Copies

Copies

Mr. F. R. Del Priori
Code 224
Operational Test and Evaluation
Force (OPTEVFOR)
Norfolk, VA 23511

1