Langages Formels Série 1 - Alphabets, Langages, Rappels Bases Mathématiques

23 Septembre 2024

Pensez à justifier vos réponses.

- 1. (a) Soit l'alphabet $\Sigma = \{a, b, c\}$. Construisez Σ^2 .
 - (b) Soit un langage $L = \{pika, chu\}$. Construisez le langage L^2 .
 - (c) Soit un langage $L = \{0, 11\}$. Construisez le langage L^3 .
 - (d) Soit un langage $L = \{\epsilon, a, ab\}$. Construisez le langage L^2 .
- 2. Montrez que:
 - (a) $(\Sigma^{+})^{*} = (\Sigma^{*})^{*}$
 - (b) $(L^*)^* = L^*$
 - (c) $(\Sigma^+)^* = (\Sigma^*)^+$
- 3. Pour chacun des langages suivants, donnez tous les mots de longueur inférieure ou égale à 4 qui appartiennent au langage.
 - (a) $L_A = \{a^n b^m \mid n, m \ge 0\}$
 - (b) $L_B = \{a^n b^n \mid n \ge 0\}$
 - (c) $L_C = \{(ab)^n \mid n \ge 0\}$
 - (d) $L_D = \{ab^n \mid n \ge 0\}$
 - (e) $L_E = \{\{a, b\}^n \mid n \ge 0\}$
- 4. Soit les langages $L_{Poke} = \{pikachu, joliflor, nigirigon\}$ et $L_{Jo} = \{joliflor, johncena, joehendry\}$. Donnez les langages suivants :
 - (a) $L_{Poke} \cup L_{Jo}$ (union)
 - (b) $L_{Poke} \cap L_{Jo}$ (intersection)
 - (c) $L_{Poke} \circ L_{Jo}$ (concaténation)

- 5. Soit les langages $L_1 = \{a^n b^m | 1 \le n \le m\}$ et $L_2 = \{a^n b^m | n \ge m \ge 1\}$. Donnez les langages suivants :
 - (a) $L_1 \cup L_2$ (union)
 - (b) $L_1 \cap L_2$ (intersection)
 - (c) $L_1 \circ L_2$ (concaténation)
- 6. **Arithmétique modulaire**: On rappelle que l'opération du modulo désigne le reste dans la division entière. Par exemple, 14 mod 5 = 4, car 14 = 2*5+4: lorsqu'on divise 14 par 5, on obtient un reste de 4. Lorsqu'on effectue des calculs modulo 5, on travaille donc avec 5 valeurs possibles: 0, 1, 2, 3 et 4. En général, quand on travaille modulo un nombre y, on a donc $x \mod y = k$ où k est le reste (compris entre 0 et y-1) de la division de x par y.

Donnez le résultat des calculs suivants :

- (a) 24 mod 7
- (b) $(4+8) \mod 5$
- (c) $(2*5) \mod 6$
- 7. Différence entre égalité et équivalence : lorsqu'on écrit " $a=1 \mod 4$ ", il s'agit d'une égalité : a est égal au résultat de l'opération posée à droite (c'est à dire $1 \mod 4 = 1$). a ne peut donc prendre comme valeur que le résultat de cette opération.

Lorsqu'on écrit $a \equiv 1 \mod 4$, il s'agit d'une équivalence. Cela signifie que a et 1 font partie de la même classe d'équivalence, i.e. qu'ils ont le même résultat modulo 4 (on parle également de congruences, et on dit que a est congru à 1 modulo 4). ici, il existe plein de valeurs possibles pour a, qui sont toutes celles ayant un reste de 1 modulo 4 (par exemple 1, 5, 9, etc, mais aussi -3, -7, etc).

Donnez la ou les valeur(s) possible(s) pour "a" et "b" (dans les entiers relatifs, i.e. positifs et négatifs) dans les cas suivants :

- (a) $a \equiv 3 \mod 5$
- (b) $a = 3 \mod 5$
- (c) $a = 12 \mod 7$
- (d) $a \equiv b \mod 4, b = i \mod 4, i \ge 1$
- 8. Donnez tous les mots de longueur inférieure ou égale à 6 appartenant aux langages suivants :
 - (a) $L_3 = \{a^n b^m | n \ge 0, m \equiv 2 \mod 3\}$
 - (b) $L_4 = \{a^n b^m | n \ge 0, m = 2 \mod 3\}$
 - (c) $L_5 = \{a^n b^n | n \equiv 1 \mod 2\}$
 - (d) $L_6 = \{a^n b^m | n \equiv m \equiv 1 \mod 2\}$
 - (e) $L_7 = \{a^n b^m | n \equiv m \mod 3\}$