Solving Recurrences: Master Theorem

Solving Recurrences

- Iteration Method
- Master Method
- Recursion Tree Method

Solving Recurrences: Iteration Method

- Given: a *divide and conquer* algorithm
 - An algorithm that divides the problem of size n into a subproblems, each of size n/b, where $a \ge 1$, b > 1
 - The a subproblems are solved recursively, each in time T(n/b)
 - Let the cost of each stage (i.e., the work to divide the problem + combine solved subproblems) be described by cn
- Then, the recurrence is

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

Solving Recurrences: Iteration Method

- The "iteration method"
 - Expand the recurrence
 - Work some algebra to express as a summation
 - Evaluate the summation
- We show by using

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

•
$$T(n) =$$
 $aT(n/b) + cn$
 $a(aT(n/b/b) + cn/b) + cn$
 $a^2T(n/b^2) + cna/b + cn$
 $a^2T(n/b^2) + cn(a/b + 1)$
 $a^2(aT(n/b^2/b) + cn/b^2) + cn(a/b + 1)$
 $a^3T(n/b^3) + cn(a^2/b^2) + cn(a/b + 1)$
 $a^3T(n/b^3) + cn(a^2/b^2 + a/b + 1)$
...
 $a^kT(n/b^k) + cn(a^{k-1}/b^{k-1} + a^{k-2}/b^{k-2} + ... + a^2/b^2 + a/b + 1)$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

So we have

$$T(n) = a^{k}T(n/b^{k}) + cn(a^{k-1}/b^{k-1} + ... + a^{2}/b^{2} + a/b + 1)$$

• For $n/b^k = 1$

$$n = b^k \rightarrow k = \log_b n$$

■
$$T(n) = a^k T(1) + cn(a^{k-1}/b^{k-1} + ... + a^2/b^2 + a/b + 1)$$

 $= a^k c + cn(a^{k-1}/b^{k-1} + ... + a^2/b^2 + a/b + 1)$
 $= ca^k b^k/b^k + cn(a^{k-1}/b^{k-1} + ... + a^2/b^2 + a/b + 1)$
 $= cn a^k/b^k + cn(a^{k-1}/b^{k-1} + ... + a^2/b^2 + a/b + 1)$
 $= cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a = b?
 - T(n) = cn(k + 1) $= cn(\log_b n + 1)$ $= \Theta(n \log n)$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a < b?

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a < b?
 - Recall that $\Sigma(x^k + x^{k-1} + ... + x + 1) = (x^{k+1} 1)/(x-1)$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a < b?
 - Recall that $\Sigma(x^k + x^{k-1} + ... + x + 1) = (x^{k+1} 1)/(x-1)$
 - So:

$$\frac{a^{k}}{b^{k}} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{k+1} - 1}{(a/b) - 1} = \frac{1 - (a/b)^{k+1}}{1 - (a/b)} < \frac{1}{1 - a/b}$$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a < b?
 - Recall that $\Sigma(x^k + x^{k-1} + ... + x + 1) = (x^{k+1} 1)/(x-1)$
 - So:

$$\frac{a^{k}}{b^{k}} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{k+1} - 1}{(a/b) - 1} = \frac{1 - (a/b)^{k+1}}{1 - (a/b)} < \frac{1}{1 - a/b}$$

■
$$T(n) = cn \cdot \Theta(1) = \Theta(n)$$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a > b?

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a > b?

$$\frac{a^{k}}{b^{k}} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{k+1} - 1}{(a/b) - 1} = \Theta((a/b)^{k})$$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a > b?

$$\frac{a^{k}}{b^{k}} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{k+1} - 1}{(a/b) - 1} = \Theta((a/b)^{k})$$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a > b?

$$\frac{a^{k}}{b^{k}} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{k+1} - 1}{(a/b) - 1} = \Theta((a/b)^{k})$$

$$= cn \cdot \Theta(a^{\log_b n} / b^{\log_b n}) = cn \cdot \Theta(a^{\log_b n} / n)$$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a > b?

$$\frac{a^{k}}{b^{k}} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{k+1} - 1}{(a/b) - 1} = \Theta((a/b)^{k})$$

=
$$\operatorname{cn} \cdot \Theta(a^{\log_b n} / b^{\log_b n}) = \operatorname{cn} \cdot \Theta(a^{\log_b n} / n)$$

recall logarithm fact: $a^{\log_b n} = n^{\log_b n}$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a > b?

$$\frac{a^{k}}{b^{k}} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{k+1} - 1}{(a/b) - 1} = \Theta((a/b)^{k})$$

$$= \operatorname{cn} \cdot \Theta(\operatorname{a^{\log_b n}} / \operatorname{b^{\log_b n}}) = \operatorname{cn} \cdot \Theta(\operatorname{a^{\log_b n}} / \operatorname{n})$$

$$\operatorname{recall\ logarithm\ fact:\ } \operatorname{a^{\log_b n}} = \operatorname{n^{\log_b n}}$$

$$= \operatorname{cn} \cdot \Theta(\operatorname{n^{\log_b a}} / \operatorname{n}) = \Theta(\operatorname{cn} \cdot \operatorname{n^{\log_b a}} / \operatorname{n})$$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a > b?

$$\frac{a^{k}}{b^{k}} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{k+1} - 1}{(a/b) - 1} = \Theta((a/b)^{k})$$

$$= \operatorname{cn} \cdot \Theta(\operatorname{a^{\log_b n}}/\operatorname{b^{\log_b n}}) = \operatorname{cn} \cdot \Theta(\operatorname{a^{\log_b n}}/\operatorname{n})$$

$$\operatorname{recall\ logarithm\ fact:\ } \operatorname{a^{\log_b n}} = \operatorname{n^{\log_b a}}$$

$$= \operatorname{cn} \cdot \Theta(\operatorname{n^{\log_b a}}/\operatorname{n}) = \Theta(\operatorname{cn} \cdot \operatorname{n^{\log_b a}}/\operatorname{n})$$

$$= \Theta(\operatorname{n^{\log_b a}})$$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

• So...

$$T(n) = \begin{cases} \Theta(n) & a < b \\ \Theta(n \log_b n) & a = b \\ \Theta(n^{\log_b a}) & a > b \end{cases}$$

The Master Theorem

- Given: a divide and conquer algorithm
 - An algorithm that divides the problem of size n into a subproblems, each of size n/b, where $a \ge 1$, b > 1
 - The a subproblems are solved recursively, each in time T(n/b)
 - Let the cost of each stage (i.e., the work to divide the problem + combine solved subproblems) be described by the function f(n), where f is asymptotically positive
 - \blacksquare T(n) is monotonically increasing function
- Then, the Master Theorem gives us a *cookbook* for the algorithm's running time.

The Master Theorem: Pitfalls

- You cannot use the Master Theorem if
 - T(n) is not monotone, e.g. $T(n) = \sin(x)$
 - f(n) is not a polynomial, e.g., $T(n) = 2T(n/2) + 2^n$
 - b cannot be expressed as a constant, e.g.

$$T(n) = T(\sqrt{n})$$

 Note that the Master Theorem does not solve all recurrence equations

The Master Theorem

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence T(n) = a T(n/b) + f(n).

Then T(n) has the following asymptotic bounds:

- o If $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- o If $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_n n)$
- o If $f(n) = O(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$ then $T(n) = \Theta(f(n))$

Excuse me, what did it say ???

• Essentially, the Master theorem compares the function f(n) with the function $g(n) = n^{\log_b(a)}$.

Roughly, the theorem says:

- If $f(n) \ll g(n)$ then $T(n) = \Theta(g(n))$
- If $f(n) \approx g(n)$ then $T(n) = \Theta(g(n) \log_b n)$
- If f(n) >> g(n) then $T(n) = \Theta(f(n))$
- Now go back and memorize the theorem !!!

Idea of Master Theorem

Idea of Master Theorem

Let us iteratively substitute the recurrence:

$$T(n) = aT(n/b) + f(n)$$

$$= a(aT(n/b^{2})) + f(n/b)) + f(n)$$

$$= a^{2}T(n/b^{2}) + af(n/b) + f(n)$$

$$= a^{3}T(n/b^{3}) + a^{2}f(n/b^{2}) + af(n/b) + f(n)$$

$$= ...$$

$$= a^{\log_{b} n}T(1) + \sum_{i=0}^{(\log_{b} n) - 1} a^{i}f(n/b^{i})$$

$$= n^{\log_{b} a}T(1) + \sum_{i=0}^{(\log_{b} n) - 1} a^{i}f(n/b^{i})$$

Dr. Md. Abul Kashem Mia, Professor, CSE Dept, BUET

Idea of Master Theorem

Thus, we obtained

$$T(n) = n^{\log_b(a)} T(1) + \sum_i a^i f(n/b^i)$$

The proof proceeds by distinguishing three cases:

■ The first term is dominant:

$$f(n) = O(n^{\log_b(a)-\epsilon})$$

■ Each term of the summation is equally dominant:

$$f(n) = \Theta(n^{\log_b(a)})$$

The second term is dominant and can be bounded by a geometric series:

$$f(n) = \Omega(n^{\log_b(a) + \varepsilon})$$

Master Theorem: Three Common Cases

Compare f(n) with $n^{\log_b a}$

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log_b a}$

Solution:
$$T(n) = \Theta(n^{\log_b a}).$$

- 2. $f(n) = \Theta(n^{\log_b a})$
 - f(n) and $n^{\log_b a}$ grow at similar rates.

Solution:
$$T(n) = \Theta(n^{\log_b a} \log n)$$
.

- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log_b a}$

Solution:
$$T(n) = \Theta(f(n))$$
.

Master Theorem: Examples

Ex.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2$ $\Rightarrow n^{\log_b a} = n^2;$ $f(n) = n.$
CASE 1: $f(n) = O(n^{2-\epsilon})$ for $\epsilon = 1$.
 $\therefore T(n) = \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2$ $\Rightarrow n^{\log_b a} = n^2;$ $f(n) = n^2.$
CASE 2: $f(n) = \Theta(n^2).$
 $\therefore T(n) = \Theta(n^2 \log n).$

Ex.
$$T(n) = 4T(n/2) + n^3$$

 $a = 4, b = 2$ $\Rightarrow n^{\log_b a} = n^2;$ $f(n) = n^3.$
CASE 3: $f(n) = \Omega(n^{2+\epsilon})$ for $\epsilon = 1$
 $\therefore T(n) = \Theta(n^3).$