Euler Bèzier 曲线与 Euler B-Spline 曲线

王庶霖

目录

摘	6要	2
1	二维 Euler Bèzier 曲线与 Euler B-Spline 曲线	3
2	利用 Euler Bèzier 曲线和 Euler B-Spline 曲线构造 G2 连续圆角曲线	3
	2.1 二维 Euler Bèzier 曲线	3
	2.2 二维 Euler B-Spline 曲线	4
3	三维 Euler Bèzier 曲线与 Euler B-Spline 曲线	7
	3.1 二维到三维的方法	7
	3.2 三维 Euler Bèzier 曲线	7
	3.3 三维 Euler B-Spline 曲线	7
参	考文献	7

摘要

这里是摘要内容。这里是摘要内容。这里是摘要内容。这里是摘要内容。这里是摘要内容。这里是摘要内容。这里是摘要内容。这里是摘要内容。

关键词: 关键词 1 关键词 2 关键词 3 ...

1 二维 Euler Bèzier 曲线与 Euler B-Spline 曲线

定义 1.1 (Euler Bèzier 曲线) 记平面 Bèzier 曲线 $P(t) = \sum_{i=0}^{n} P_i B_{i,n}(t), t \in [0,1]$, 记向量 $P_i P_{i+1}$ 到向量 $P_{i+1} P_{i+2}$ 的角为 $\theta_{i+1} (i=0,1,\ldots,n-2)$. 如果 P(t) 满足

(1).
$$\|P_iP_{i+1}\|(i=0,1,\ldots,n-1)$$
是定值;
(2). $\theta_i(i=1,2,\ldots,n-1)$ 是等差数列,

则称曲线 P(t) 是 Euler Bèzier 曲线, 其控制多边形称为 Euler 多边形.

定义 1.2 (Euler B-Spline 曲线) 记平面上的 k 阶均匀节点 B-Spline 曲线 $P(t) = \sum_{i=0}^{n} P_i N_{i,k}(t), t \in [t_{k-1}, t_{n+1}]$, 节点向量 $t_i = i$ (i = 0, 1, ..., n+k). 如果其控制多边形 P_i 是 Euler 多边形 (见定义 (1.1)),则称曲线 P(t) 是 Euler B-Spline 曲线.

Figure 1: Euler Bezier 曲线

2 利用 Euler Bèzier 曲线和 Euler B-Spline 曲线构造 G2 连续圆 角曲线

2.1 二维 Euler Bèzier 曲线

对于一个给定的多边形, 对转角做圆角处理是非常常见的需求, 传统的方法是使用圆弧, 通过确定圆弧的半径来控制圆角的程度. 由于圆弧是固定曲率的, 这种传统的方法只能构造 G^1 连续的圆角, 使用 Euler Bèzier 曲线则可以构造出 G^2 连续的圆角曲线, 并且可以保证有且仅有一个曲率极值点.

考虑多边形的一个转角 ABC,向量 AB 到向量 BC 的旋转角为 α , $|\alpha| \in (0,\pi)$,我们对转角 B 构造圆角曲线。由于 Euler Bèzier 螺线是曲率单调的,而多边形的圆角曲线要达到 G^2 连续需要保证两端的曲率为 0,所以我们使用对称的两条 Euler Bèzier 螺线拼接得到圆角曲线。设圆角曲线的起点 P_S 在边 AB 上,由于要构造对称的两条曲线,我们把一边曲线的终点 P_E 取在多边形的内角平分线上。为保证 G^1 连续,起点 P_S 处的切方向为向量 AB 的方向,记为 $T_S = AB/\|AB\|$. 终点 P_E 处的切向 T_E 应

当与多边形的内角平分线垂直. 假设 Bèzier 曲线 $P(t) = \sum_{i=0}^{n} P_i B_{i,n}(t), t \in [0,1]$ 插值了这两个边界条件, $P_i P_{i+1}$ 到 $P_{i+1} P_{i+2}$ 的角为 $\theta_{i+1} (i=0,1,\ldots,n-2)$. 那么可以得到

$$\prod_{i=1}^{n-1} R(\theta_i) T_S = T_E$$
 (2)

其中 $R(\theta)$ 表示旋转角为 θ 的旋转矩阵. 根据定义 (1.1), θ_i 应当为等差数列. 考虑 Bèzier 曲线的起点曲率

$$\kappa(0) = \frac{n-1}{n} \frac{\sin(\theta_1)}{l}$$

保证 G^2 连续要令 $\kappa(0) = 0$, 则有 $\theta_1 = 0$, 故设 $\theta_i = (i-1)\Delta\theta(i=1,\ldots,n-1)$, 为了保证对称性, T_E 应 当与多边形内角平分线垂直, 则 T_S 到 T_E 的夹角为 $\alpha/2$, 所以有

$$\sum_{i=1}^{n-1} \theta_i = \frac{(n-2)(n-1)}{2} \Delta \theta = \frac{\alpha}{2}$$
 (3)

计算得 $\Delta\theta = \frac{\alpha}{(n-2)(n-1)}$, 从而计算每个 θ_i . Euler 多边形顶点的序列可以递推给出:

$$P_0 P_1 = l T_S$$

$$P_1 P_2 = R(\theta_1) P_0 P_1$$

$$\cdots$$

$$P_i P_{i+1} = R(\theta_i) P_{i-1} P_i$$
(4)

根据起点终点条件有 $P_0 = P_S, P_n = P_E$, 结合递推式 (4) 得到:

$$\mathbf{P}_{S}\mathbf{P}_{E} = \sum_{i=0}^{n-1} \mathbf{P}_{i}\mathbf{P}_{i+1} = l[\sum_{i=0}^{n-1} R(\phi_{i})]\mathbf{T}_{S}$$
(5)

其中 $\phi_i = \sum_{j=1}^i \theta_j (i=1,\ldots,n-1), \phi_0 = 0.$ 对于一个给定正整数 n, 我们可以计算出向量 $\mathbf{D} = \sum_{i=0}^{n-1} \mathrm{R}(\phi_i) \mathbf{T}_S$, 这是一个常向量, 从起点到终点的连线必须与它平行. 将向量 \mathbf{D} 与向量 \mathbf{T}_S 的夹角记为 β (注意 β 也是有符号角, 应当与 α 符号相同), 则有

$$\frac{\|\mathbf{O}\mathbf{P}_S\|}{\cos(\frac{\alpha}{2} - \beta)} = \frac{\|\mathbf{O}\mathbf{P}_E\|}{\sin(\beta)} = \frac{\|\mathbf{P}_S\mathbf{P}_E\|}{\cos(\frac{\alpha}{2})} \tag{6}$$

根据方程 (6), 我们可以在给定圆角起点 P_S 或者给定角平分线上的经过点 P_E 时求得唯一的 Euler 多 边形, 以它们为控制顶点的 Bèzier 曲线即为一半的 Euler Bèzier 圆角曲线. 再将该曲线沿着转角的平分 线作对称变换即可得到另一半圆角曲线, 该算法的伪代码实现见 Algorithm 1.

图22是对正六边形 (黑色直线段) 应用 Algorithm 1的结果, 六个圆角曲线 (品红色) 的圆角起点与终点都是六边形边的三等分点. 图中的浅蓝色曲率梳表明了该圆角的 G^2 连续性, 并且每一个圆角曲线自身对称, 有且仅有一个曲率极值点, 位于对称轴上.

2.2 二维 Euler B-Spline 曲线

利用二维 Euler B-Spline 曲线构造圆角大体与 Bèzier 曲线的构造一致, 只有一些细节的不同. 我们使用常用的四阶 (三次) 均匀 B-Spline, 设所求曲线为 $P(t) = \sum_{i=0}^{n} P_i N_{i,4}(t)$, 节点向量为 $t_j = j, j = 0$

```
Data: 构成 Corner 的三个顶点 A, B, C, BP_S 的长度 L_S 或 BP_E 的长度 L_E
   Result: Bezier 曲线 P(t) 的控制顶点序列 P_0, P_1, ..., P_n 和对称的顶点序列
1 n = 4;
2 初始化 Bèzier 曲线P(t);
3 T_S = Normalize(B - P_S);
4 D = T_S;
5 temp = T_S;
6 while EulerBèzierSpiralCheck(P(t)) = FALSE and n < 20 do
      计算 AB 与 BC 的夹角 \alpha;
      \Delta \theta = \frac{\alpha}{(n-2)(n-1)};
8
      for i = 0, 1, ..., n-2 do
9
         temp.Rotate(i * \Delta \theta);
10
         D+=temp;
11
      end
12
      计算 AB 与 D 的夹角 \beta;
13
      length = \cos(\alpha/2)/\cos(\alpha/2 - \beta) * ||B - P_S||/||D||;
14
      temp = T_S * length;
15
      P_0 = P_S;
16
      for i = 1, ..., n - 1 do
17
         P_i = P_{i-1} + temp;
18
         temp.Rotate((i-1)*\Delta\theta);
19
20
      end
      n++;
\mathbf{21}
22 end
```

Algorithm 1: Euler Bèzier 圆角

Figure 2: 算法 (1) 得到的 G² 连续 Euler Bèzier 螺线圆角

 $0,1,\ldots,n+4$. 事实上, 控制多边形 P_i 仍然要为 Euler 多边形, 它的构造思路与 Bèzier 曲线的构造一致, 唯一变化的是边界条件.

在 Euler Bèzier 圆角的构造中, 我们将起点 P_0 设置在圆角起点 P_S 上, 我们令向量 P_0P_1 与 T_S 同向, 令 $P_0P_1P_2$ 三点共线, 这些都是基于 Bèzier 曲线的端点各阶导数与控制顶点的关系得到的. 而对于所求的均匀节点 B-Spline 曲线 P(t), $t \in [3, n+1]$, 我们有

$$P(3) = \frac{P_0 + 4P_1 + P_2}{6}$$

$$P'(3) = \frac{P_2 - P_0}{2}$$

$$P''(3) = P_0 - 2P_1 + P_2$$
(7)

为满足 G^2 连续条件, 必须有

$$\frac{P_0 + 4P_1 + P_2}{6} = P_S$$

$$P_2 - P_0 = \lambda T_S, \text{ for some } \lambda > 0$$

$$P_0 P_2 \times (P_1 P_2 - P_0 P_1) = 0$$
(8)

第三个条件等价于 $P_0P_2 \times P_0P_1 = 0$, 所以等式成立当且仅当 P_0, P_1 与 P_2 三点共线. 注意到 Euler 多 边形各边等长, 故方程 (8) 的解为

$$\begin{cases}
\mathbf{P}_0 = \mathbf{P}_S - l\mathbf{T}_S \\
\mathbf{P}_1 = \mathbf{P}_S \\
\mathbf{P}_2 = \mathbf{P}_S + l\mathbf{T}_S
\end{cases} \tag{9}$$

其中 l > 0 为多边形的边长.

另外 $\Delta\theta$ 与常向量 D 的定义也会发生变化, 由于终点的导数为

$$P'(n+1) = \frac{P_n - P_{n-2}}{2} \tag{10}$$

所以 θ_i 与 α 的关系变为

$$\sum_{i=2}^{n-2} \theta_i + \frac{1}{2} \theta_{n-1} = \frac{\alpha}{2} \tag{11}$$

结合 $\theta_i = (i-1)\Delta\theta$, 得到

$$\Delta\theta = \frac{\alpha}{(n-2)^2} \tag{12}$$

记 $\phi_i = \sum_{j=1}^i \theta_j (i=1,\ldots,n-1), \phi_0 = 0$. 可以表示控制多边形每一个顶点的坐标

$$P_k = P_0 + l \sum_{i=0}^{k-1} R(\phi_i) T_S, \quad k \ge 1$$

$$(13)$$

根据终点处的边界条件

$$P_E = \frac{1}{6}(P_{n-2} + 4P_{n-1} + P_n) \tag{14}$$

结合式 (13), (14) 和 (9) 得到

$$P_S P_E = l[\frac{1}{6}(D_{n-2} + 4D_{n-1} + D_n) - T_S]$$
(15)

其中

$$\mathbf{D}_k = \sum_{i=0}^{k-1} \mathrm{R}(\phi_i) \mathbf{T}_S, \quad k = 1, \dots, n$$
(16)

对于给定的 n, 每个 D_k 都是定值, 最后我们求解 l, 只需要和 Bèzier 的方法类似, 确定了 P_S 或 P_E 的位置后, 通过求解三角形得到 P_SP_E 的长即可.

3 三维 Euler Bèzier 曲线与 Euler B-Spline 曲线

3.1 二维到三维的方法

三维空间中插值 G^1 边界条件的曲率 (以及挠率) 单调曲线的存在性不像二维的情形有简单且完整的理论证明

- 3.2 三维 Euler Bèzier 曲线
- 3.3 三维 Euler B-Spline 曲线

参考文献

- [1] 第一篇文献.
- [2] 第二篇文献.
- [3] 第三篇文献.
- [4] 第四篇文献.