Algorithm PA1 Report

B07901069 電機二 劉奇聖

1. Running time table

Input size	IS		MS		QS		HS	
	CPU time(ms)	Memory(KB)						
4000.case2	0	12500	1	12500	5.999	12500	0	12500
4000.case3	9.999	12500	1	12500	5.999	12520	1	12500
4000.case1	4	12500	2	12500	0	12500	1	12500
16000.case2	0	12648	4	12648	162.975	12648	2	12648
16000.case3	144.978	12648	4	12648	164.975	12948	2	12648
16000.case1	72.989	12648	5.999	12648	3	12648	3	12648
32000.case2	0	12648	8.999	12648	592.91	12648	5	12648
32000.case3	586.911	12648	7.999	12648	527.919	13308	3.999	12648
32000.case1	290.956	12648	11.998	12648	4.999	12648	4.999	12648
1000000.case2	2.999	18668	240.963	20524	too long	N/A	146.978	18668
1000000.case3	too long	N/A	246.962	20524	too long	N/A	107.984	18668
1000000.case1	too long	N/A	323.952	20524	202.97	18668	241.963	18668

2. Running time curves

(Assume the CPU time for "too long" is 60000 ms (1 min). For clearity, I take symmetrical log scale for input size and running time.)

In case1(random order), insertion sort is the slowest, it is a direct result that insertion sort runs in $O(n^2)$ in average. And we can find that quick sort is the fastest among three $O(n \lg n)$ algorithms.

In case2(sorted order), insertion sort is the fastest because it is O(n) in this case. Quick sort is the slowest because it is the worst case, which is $O(n^2)$, for quick sort.

In case3(reversed sorted order), insertion sort and quick sort are all slow because they are $O(n^2)$.