

https://github.com/tkappe/scoringp7.git

Présenté par Thiery KAPPE

Plan

- Contexte, objectifs et données
- 02 Modélisation
- Pipeline de déploiement
- O4 API de prédiction
- O5 Analyse data drift

Contexte, objectifs et données

Contexte et objectifs

La société financière Prêt à dépenser propose des crédits à la consommation pour des personnes ayant peu ou pas du tout d'historique de prêt.

L'entreprise souhaite mettre en œuvre un outil de scoring crédit qui calcule la probabilité qu'un client rembourse son crédit, puis classifie la demande en crédit accordé ou refusé. ceci passera par:

- La construction d'un modèle de prédiction du score client;
- L'analyse des features (contribution globale et locale);
- Mise en production du modèle via une API;
- Mise en œuvre d'une approche globale MLOps (tracking, analyse data drift).

Les données originales sont téléchargeables sur Kaggle ici

Contexte, objectifs et données

Les données

• 7 fichiers pour environ 200 variables

 Application "train" regroupe 307 511 clients dont on connaît la décision de « Prêt à Dépenser » sur l'octroi du crédit (variable "Target")

Répartition des étiquettes de la variable cible

• Application "test" regroupe 48 744 clients dont on ne connaît pas cette décision.

Contexte, objectifs et données

Features engineering

Jointure des fichiers de données

> Suppression des variables ayant plus de 60% de valeurs manquantes

> > Création de nouvelles variables (ratio)

> > > Encodage de variables catégorielles

Nous nous
appuyons sur le
notebook
d'exemple fourni
ici

Agrégation (somme, moyenne, max,...)

Imputation des valeurs manquantes
SimpleImputer

Standardisation des données MinMaxScaler

training data (307507, 564) testing data (48744, 563)

Choix métrique d'évaluation et modèle

Train / Test Split : 80% / 20%

Chaque sous-échantillon contient le même mélange d'exemples par classe, c'est-à-dire environ 92% de classe 0 et 8% de classe 1

Évaluation des modèles candidats à l'aide d'une validation croisée stratifiée répétée k-fold.

Equilibrage des classes

SMOTE Imblearn.over_sampling

Problématique : Classification sur des données déséquilibrées

La difficulté ici réside dans le fait que les faux négatifs sont plus dommageables que les faux positifs. Les faux négatifs sur cet ensemble de données sont des cas où un mauvais client est marqué comme un bon client et se voit accorder un prêt alors que les faux positifs sont des cas où un bon client est marqué comme un mauvais client et la société de crédit ne lui accorde pas de prêt.

	Model	Business score	Accuracy	Precision	Recall	F-1 score	AUC score
0	Dummy	0.857208	0.502488	0.500933	0.503148	0.395134	0.503148
1	LogisticRegression	0.540552	0.706465	0.563048	0.684964	0.541158	0.753695
2	RandomForest	0.729505		0.592370	0.549633	0.560817	0.718714
3	LightGBM	0.720871		0.652074	0.553916	0.571435	0.766116

Evaluation des modèles de base et choix du modèle à optimiser minimisation du score métier

minimisation du score métier maximisation de l'AUC

Optimisation du modèle LightGBM

Obtenu par validation croisée en minimisant le score métier

Courbe ROC et Seuil optimal de classification

Interprétation globale

Interprétation locale

• Cas du client d'indice 0 , client numéro 100001

• Cas du client d'indice 1, client numéro 100005

Tracking des expériences : présentation de l'interface ML Flow UI

Pipeline de déploiement

Présention de Git, GitHub et test unitaires : Repo GitHub

API de prédiction

Lien de l'API déployé sur le cloud via Heroku : ICI

Lien tableau HTML analyse data drift : data drift

120 Columns		9 Drifted Columns			0.075 Share of Drifted Columns							
Data Drift Summary												
ft is detected for 7.5% of colu	mns (9 out of 120).					Q. Search						
Column	Type	Reference Distribution	Current Distribution	Data Oriffi	Stat Test	On Ph Score						
TRO_UNERUR_THGENO_ORR_THAN	num		la.	Detected	Wassentein distance (nonned)	0.359052						
ANT_REQ_CHEDIT_BUREAU_NON	nun.	L	I	Detected	Wassentein distance (normed)	0.281765						
ANTI_00005_PHICE	nm	II	II	Detected	Wassentein distance (normed)	0.210785						
ANT_CHIDIT	nan	II	Ili	Detected	Wassentein distance (normed)	0.207334						
ANTI-ANNUTY	non.	li	ıl.	Detected	Wasserdein distance (normed)	0.140302						
ANT_REQ_CHEDIT_BUREAU_VEEK	num.	L	1	Detected	Wassentein distance (normed)	0.15426						

Conclusion et points d'amélioration

Limites et améliorations possibles

- Méconnaissance du milieu bancaire ==> vérification de la cohérence du pré-processing
- Amélioration des performances de la modélisation
- Il serait intéressant de développer un dashboard avec une page « banque » et une page « client ». Cela permettrait au chargé clientèle d'avoir accès à certaines données permettant d'expliquer la réponse, sans nécessairement pouvoir les montrer au client.
- Par ailleurs, il serait intéressant de rajouter une partie interactive qui permettrait au client de voir quelle valeur sur quelle variable aurait pu lui permettre d'obtenir son crédit.
- En ce sens, on pourrait envisager une page « scenario » où l'on pourrait changer une ou plusieurs valeurs du profil du client et voir l'impact sur la réponse de la banque.

• •

• •

• •

Merci

