

What is claimed is:

1. Use of a compound of formula

R₂ is hydrogen; C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; unsubstituted or C₁-C₆alkyl- or C₁-C₆alkoxy-substituted C₆-C₂₀aryl; or a cyano group;

R₄ is a cyano group; or -Q₁-R₅;

Q₁ is -COO-; -CONH-; -CO-; -SO₂-; or -CONR₆-;

R₅ is C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; or unsubstituted or C₁-C₆alkyl-substituted C₆-C₂₀aryl;

R₆ is hydrogen; C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; unsubstituted or C₁-C₆alkyl- or C₁-C₆alkoxy-substituted C₆-C₂₀aryl;

the cyclohexene radical C is not substituted or substituted by one or more C₁-C₅alkyl;

n is from 2 to 4;

o is from 2 to 4;

if n = 2, in formula (1a)

R₁ is an alkylene, cycloalkylene or phenylene-radical; or R₁ and R₂ simultaneously form an alkylene, cycloalkylene or phenylene radical; and

R₃ is a cyano group or -Q₁-R₅; or R₃ and R₄ together form a 5- to 7-membered, monocyclic carbocyclic ring, which is optionally interrupted by -O- or -NR₇;

If o = 2, in formula (1b)

R₃ is an alkylene, cycloalkylene or phenylene radical, which is optionally substituted with C₁-C₄alkyl, C₁-C₄alkoxy, -COR₆, -COOR₆ or -CONHR₆; and

R₁ is hydrogen; a cyano group; C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; unsubstituted or C₁-C₆alkyl- or C₁-C₆alkoxy-substituted C₆-C₂₀aryl; or R₁ and R₂ together with the nitrogen atom linking them form a -(CH₂)_m- ring which is optionally interrupted by -O- or by -NR₇;

R₇ is hydrogen; C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; unsubstituted or C₁-C₆alkyl- or C₁-C₆alkoxy-substituted C₆-C₂₀aryl;

m is a number from 3 to 7;

if n = 3, in formula (1a)

- R₁ is a trivalent alkyl group, which is optionally interrupted by one or more -O- or -NR₇₋groups; and
- R₃ is a cyano group or -Q₁-R₅; or R₃ and R₄ together form a 5- to 7-membered, monocyclic carbocyclic ring;
- if o = 3, in formula (1b)
- R₃ is an alkylidene, cycloalkylidene or phenylidene radical; and
- R₁ is hydrogen; a cyano group; C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; unsubstituted or C₁-C₆alkyl- or C₁-C₆alkoxy-substituted C₆-C₂₀aryl; or R₁ and R₂ together with the nitrogen atom linking them form a -(CH₂)_m- ring which is optionally interrupted by -O- or by -NR₇₋;
- if n = 4, in formula (1a)
- R₁ is a tetravalent alkyl group; and
- R₃ is a cyano group; or -Q₁-R₅; or R₃ and R₄ together form a 5- to 7-membered, monocyclic carbocyclic ring;
- if n = 4, in formula (1b)
- R₃ is a tetravalent alkyl group; and
- R₁ is hydrogen; a cyano group; C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; unsubstituted or C₁-C₆alkyl- or C₁-C₆alkoxy-substituted C₆-C₂₀aryl; or R₁ and R₂ together with the nitrogen atom linking them form a -(CH₂)_m- ring which is optionally interrupted by -O- or by -NR₇₋;
- in protecting human and animal hair and skin from UV radiation.

2. Use according claim 1, wherein in formula (1a)

- R₁ is defined as in formula (1a);
- R₂ is hydrogen;
- R₃ is a cyano group;
- R₄ is -CONHR₅; and
- R₅ is C₁-C₂₂alkyl; or C₆-C₂₀aryl.

3. Use according to claim 1, wherein

- if n = 2,
- compounds of formula

- 53 -

R_1 is a $\text{--}(\text{CH}_2)_m\text{--}$ group, not substituted or substituted with one or more than one $C_1\text{-}C_5$

radicals; a bivalent radical of formula (1a₁)

formula (1a₂)

; or R_1 and R_2 together with the 2 linking nitrogen atoms form

R_8 is hydrogen; or $C_1\text{-}C_5$ alkyl;

R_3 is a cyano group; or $-Q_1\text{-}R_5$;

p is a number from 0 to 3;

the cyclohexene radical C is not substituted or substituted by one or more $C_1\text{-}C_5$ alkyl; and

R_2 , R_4 , R_5 , Q_1 and m are defined as in claim 1.

4. Use according to claim 1, wherein compounds of formula

are used, wherein

R_1 is a trivalent radical of formula (1d₁) $*-(H_2C)_p-C-\overset{R_{11}}{\underset{(CH_2)_p}{\underset{*}{|}}}-\overset{*}{(CH_2)_p}$; or

R_2 is hydrogen; or C₁-C₅alkyl;

R_3 and R_4 , independently from each other are a cyano group; or $-Q_1-R_5$;

Q_1 is -COO-; -CONH-; -CO-; -SO₂-; -CONR₁₂-;

R_5 is C₁-C₅alkyl;

R_9 and R_{10} independently from each other are C₁-C₄alkyl;

R_{11} and R_{12} independently from each other are hydrogen; or C₁-C₅alkyl; and

p is a number from 0 to 5.

5. Use according to claim 1, wherein compounds of formula

are used, wherein

R_1 and R_2 are each independently of the other C₁-C₂₂alkyl; or a cyano group; or R_1 and R_2 together with the nitrogen atom linking them form a -(CH₂)_m-ring which is optionally interrupted by -O- or by -NR₇-;

R_4 is a cyano group; or $-Q_1-R_5$;

o is 3; or 4;

if $o = 3$

R_2 is a trivalent alkyl radical;

if $o = 4$

R_2 is a tetravalent alkyl radical;

R_5 , R_7 , Q_1 and m are defined as in claim 1; and

R_9 and R_{10} are defined as in claim 4.

6. Use according to any of claims 1 to 5, wherein an additional UV absorber is used.

7. Use according to claim 6 wherein the additional UV absorber is selected from the triazine compounds of formula

R_1 and R_5 are hydrogen; C₁-C₁₈alkyl; or C₆-C₁₂aryl; and

R_6 , R_7 and R_8 , independently from each other are hydrogen; hydroxy; halogen; C₁-C₁₈alkyl; C₁-C₁₈alkoxy; C₆-C₁₂aryl; biphenylyl; C₆-C₁₂aryloxy; C₁-C₁₈alkylthio; carboxy; -COOM; C₁-C₁₈-alkylcarboxyl; aminocarbonyl; or mono- or di-C₁-C₁₈alkylamino; C₁-C₁₀acylamino; or -COOH.

8. Use according to claim 6 or 7, wherein a UV filter combination comprising

(t₃) the compound of formula

(t₄) 1,3,5-Triazine, 2,4,6-tris[1,1'-biphenyl]-4-yl- (9CI).

is used.

9. Use of a monomeric, oligomeric or polymeric compound comprising structural elements of formula

- 56 -

at least one of the asterix-marked radicals may be bound to the momomeric, oligomeric or polymeric radical;
 the cyclohexene radical C is not substituted or substituted by one or more C₁-C₅alkyl; and
 R₂ and R₄ are defined as in claim 1;
 as UV chromophores in protecting human and animal hair and skin from UV radiation.

10. Use according to claim 9, wherein the momomeric, oligomeric or polymeric compound corresponds to formula

Z is a radical of formula (2);

R₁₃ is hydrogen; halogen; or C₁-C₅alkyl;

R₁₄ is —CONH-; —COO-; or a phenylene radical;

R₁₅ is C₁-C₂₀alkylene; or C₆-C₂₀arylene;

R₁₆ is —COO-; —OCO-; —CONH-; —NH-CO-O-; —NH-CO-; —SO₂NH-; —NHSO₂-; —SO₂- or —O-;

q is 0; or an integer; and

r is 0; or an integer.

11. Compounds of formula

R'₂ is hydrogen; C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; unsubstituted or C₁-C₆alkyl- or C₁-C₆alkoxy-substituted C₆-C₂₀aryl; a cyano group; or R'₁ and R'₂ together with the nitrogen atom linking them form a -(CH₂)_m- ring which is optionally interrupted by -O- or by —NR'₇—;

R'₄ is —Q'₁-R'₅;

Q'₁ is —COO-; —CONH-; —COO-; —SO₂-; or —CONR'₆-;

R'₅ is C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; or unsubstituted or C₁-C₆alkyl-substituted C₆-C₂₀aryl;

R'_6 is hydrogen; $C_1\text{-}C_{22}\text{alkyl}$; $\text{cyclo-}C_3\text{-}C_8\text{alkyl}$; unsubstituted or $C_1\text{-}C_6\text{alkyl-}$ or $C_1\text{-}C_6\text{alkoxy-}$ substituted $C_6\text{-}C_{20}\text{aryl}$;

R'_7 is hydrogen; $C_1\text{-}C_{22}\text{alkyl}$; $\text{cyclo-}C_3\text{-}C_8\text{alkyl}$; unsubstituted or $C_1\text{-}C_6\text{alkyl-}$ or $C_1\text{-}C_6\text{alkoxy-}$ substituted $C_6\text{-}C_{20}\text{aryl}$;

the cyclohexene radical C is not substituted or substituted by one or more $C_1\text{-}C_5\text{alkyl}$;

m is from 3 to 7;

n is from 2 to 4;

o is from 2 to 4;

if $n = 2$, in formula (1'a)

R'_1 is an alkylene, cycloalkylene or phenylene-radical; or R'_1 and R'_2 simultaneously form an alkylene, cycloalkylene or phenylene radical; and

R'_3 is a cyano group or $-Q'_1\text{-}R'_5$; or R'_3 and R'_4 together form a 5- to 7-membered, mono-cyclic carbocyclic ring;

If $o = 2$, in formula (1'b)

R'_3 is an alkylene, cycloalkylene or phenylene radical; and

R'_1 is hydrogen; a cyano group; $C_1\text{-}C_{22}\text{alkyl}$; $\text{cyclo-}C_3\text{-}C_8\text{alkyl}$; unsubstituted or $C_1\text{-}C_6\text{alkyl-}$ or $C_1\text{-}C_6\text{alkoxy-}$ substituted $C_6\text{-}C_{20}\text{aryl}$; or R'_1 and R'_2 together with the nitrogen atom linking them form a $-(CH_2)_m-$ ring which is optionally interrupted by $-O-$ or by $-NR'_7-$;

if $n = 3$, in formula (1'a)

R'_1 is a trivalent alkyl group, which is optionally interrupted by one or more $-O-$ or $-NR'_7-$ groups; and

R'_3 is a cyano group or $-Q'_1\text{-}R'_5$; or R'_3 and R'_4 together form a 5- to 7-membered, mono-cyclic carbocyclic ring;

if $o = 3$, in formula (1'b)

R'_3 is an alkylidene, cycloalkylidene or phenylidene radical; and

R'_1 is hydrogen; a cyano group; $C_1\text{-}C_{22}\text{alkyl}$; $\text{cyclo-}C_3\text{-}C_8\text{alkyl}$; unsubstituted or $C_1\text{-}C_6\text{alkyl-}$ or $C_1\text{-}C_6\text{alkoxy-}$ substituted $C_6\text{-}C_{20}\text{aryl}$; or R'_1 and R'_2 together with the nitrogen atom linking them form a $-(CH_2)_m-$ ring which is optionally interrupted by $-O-$ or by $-NR'_7-$;

if $n = 4$, in formula (1'a)

R'_1 is a tetravalent alkyl group; and

R'_3 is a cyano group or $-Q'_1\text{-}R'_5$; or R'_3 and R'_4 together form a 5- to 7-membered, monocyclic carbocyclic ring;

if $o = 4$, in formula (1'b)

R'_3 is a tetravalent alkyl group; and

R'_1 is hydrogen; a cyano group; C_1 - C_{22} alkyl; cyclo- C_3 - C_8 alkyl; unsubstituted or C_1 - C_6 alkyl- or C_1 - C_6 alkoxy-substituted C_6 - C_{20} aryl; or R'_1 and R'_2 together with the nitrogen atom linking them form a $-(CH_2)_m-$ ring which is optionally interrupted by $-O-$ or by $-NR'_7-$.

12. Compounds of formula

R_2 is hydrogen; C_1 - C_{22} alkyl; cyclo- C_3 - C_8 alkyl; unsubstituted or C_1 - C_6 alkyl- or C_1 - C_6 alkoxy-substituted C_6 - C_{20} aryl; or R_1 and R_2 together with the nitrogen atom linking them form a $-(CH_2)_m-$ ring which is optionally interrupted by $-O-$ or $-NR_3-$;

R_3 is hydrogen; C_1 - C_{22} alkyl; cyclo- C_3 - C_8 alkyl; or unsubstituted or C_1 - C_6 alkyl-substituted C_6 - C_{20} aryl;

m is from 3 to 7;

n is from 2 to 4;

the cyclohexene radical C is not unsubstituted or substituted by one or more C_1 - C_5 alkyl;

when $n = 2$,

R_1 and R_2 simultaneously form an alkylene, cycloalkylene or phenylene radical;

when $n = 3$,

R_1 is a trivalent alkyl group, which is optionally interrupted by one or more $-O-$ or $-NR_3-$ groups;

when $n = 4$,

R_1 is a tetravalent alkyl group which is optionally interrupted by one or more $-O-$ or $-NR_3-$ groups.

13. Use of the compounds of formula (4) according to claim 12 as UV-B absorbers in protecting human and animal hair and skin from UV radiation.

14. Use of the compounds of formula (4) according to claim 12 as intermediates for the preparation of UV absorbers.

15. A cosmetic preparation comprising at least one or more compounds of formula (1a), (1b) or (4) according to claim 1 or 12 with cosmetically acceptable carriers or adjuvants.