Loan Approval Optimization Report

1. Introduction

This report summarizes the results of two machine learning approaches to optimize loan approvals using Lending Club accepted loans data.

2. Model Results

- Deep Learning Model: AUC = 0.7116, F1-Score = 0.0591
- Offline Reinforcement Learning Agent: Estimated Policy Value = 3.1885

3. Analysis of Results

Deep Learning Model Metrics:

- AUC indicates reasonable risk ranking ability.
- Low F1-score reflects difficulty in binary default classification due to class imbalance.

Offline RL Agent Policy Value:

- Positive policy value shows learned approval strategy maximizes expected profit.

4. Model Comparison

Aspect	Deep Learning Model	Offline RL Agent
Objective	Default risk prediction	Maximize expected financial return
Metric	AUC, F1-Score	Estimated Policy Value
Strengths	Good ranking accuracy	Direct profit optimization
Weaknesses	Low binary prediction quality	Sensitive to reward design
Business Relevance	Risk quantification	Decision policy optimization

5. Future Steps

- Improve DL handling of imbalanced data (oversampling, focal loss).
- Refine RL reward function and hyperparameters.
- Incorporate rejected loan data to reduce bias.
- Explore hybrid approaches combining DL risk scores with RL policy.
- Validate models with real-world trials.
- Address regulatory and fairness considerations.

This report highlights the potential and limitations of each modeling approach in fintech loan decision-making.		