Notes of "The Limit of A Function"

Jinxin Wang

1 Definition of the Limit of a Function

Definition 1 (The Limit of a Function (Basic Type)). $(\epsilon - \delta)$

Remark 1. Based on the definition, we can see that limits are a kind of local characteristic of a function. With that, when using the definition to prove the limit of a function at $x = x_0$, we can discuss it within a certain neighborhood $O(x_0, \delta_0)$.

2 Properties of the Limit of a Function

3 方法与技巧

3.1 证明与研究函数极限

- 定义法
- 变量代换

Remark 2. 在研究函数极限时使用变量代换是否总是成立? 这个问题使用数学语言来描述如下: Suppose that $\lim_{x\to a} g(x) = A$, $\lim_{x\to A} f(x) = B$, is it true that

$$\lim_{x \to a} f(g(x)) = \lim_{y \to A} f(y)$$

Here are two propositions related to this problem:

Proposition 1. Suppose that $\lim_{x\to a} g(x) = A$, $\lim_{x\to A} f(x) = B$. If any of the following conditions is true:

- $\exists \delta_0 > 0 \text{ such that } \forall x \in O(a, \delta_0) \setminus \{a\}: g(x) \neq A.$
- $\lim_{x\to A} f(x) = f(A)$.
- $A = \infty$, and $\lim_{x \to \infty} f(x)$ is defined.

3 方法与技巧 2

then the following is true:

$$\lim_{x \to a} f(g(x)) = \lim_{y \to A} f(y)$$

证明. Hint:

• Notice the difference between the conclusion of the definition of $\lim_{x\to a} g(x) = A$, and the condition of the definition of $\lim_{x\to A} f(x) = B$.

• Notice what change the fact of continuity brings to the definition of $\lim_{x\to A} f(x) = B$.

Proposition 2. If $\lim_{x\to a} g(x) = A$, $\lim_{x\to A} f(x) = B$, then exact one of the following situation is true:

- $\lim_{x\to a} f(g(x)) = B$
- $\lim_{x\to a} f(g(x)) = g(A)$
- $\lim_{x\to a} f(g(x))$ is not defined

证明. Hint: Using the first condition of the previous proposition to discuss different kinds of g(x).