Euclidean Spaces Ch.10

econMath.namun+2016sp@gmail.com

April 4, 2016

Table of Contents

- 1 Points and Vectors in Euclidean Space
- 2 Vectors
- The Albevra of Vectors
- lack4 Length and Inner Product in \mathbb{R}^n
- 6 Lines and Planes
- 6 Economic Applications

Objects in Euclidean Spaces

Objects in n-dimensional Euclidean Spaces

Dimension	Object	Representation
0	point	\emptyset
1	line	$x_1 \in \mathbb{R}^1$
2	plane	$(x_1, x_2) \in \mathbb{R}^2$
3	3d space	$(x_1, x_2, x_3) \in \mathbb{R}^3$
n	n d space	$(x_1,\cdots,x_n)\in\mathbb{R}^n$

Definition ((Euclidean) Vector, displacement)

n-tuples of real numbers $\mathbf{x}=(x_1,x_2,\cdots,x_n)$ are <u>(Euclidean) Vectors</u> that represents displacement in \mathbb{R}^n space (or Cartesian coordinate system) Let coordination of $\mathbf{p}=(p_1,\cdots,p_n)$, $\mathbf{q}=(q_1,\cdots,q_n)$. Then the <u>displacement</u> from \mathbf{p} to \mathbf{q} is defined as $\overrightarrow{\mathbf{pq}}:=(q_1-p_1,\cdots,q_n-p_n)$. In this definition, \mathbf{p} is an origin, and \mathbf{q} is a destination.

Note: Any vector $\mathbf{p}=(p_1,\cdots,p_n)$ can be interpreted as a location $((p_1,\cdots,p_n))$ or, displacement with origin $\mathbf{0}:=(0,\cdots,0)$ (more explicit notation: $\begin{pmatrix} p_1 \\ \vdots \\ p_n \end{pmatrix}$)

Addition and Subtraction

Let \mathbf{u}, \mathbf{v} be the vectors in \mathbb{R}^n space and $u_i, v_i \in \mathbb{R}^1$ be their *i*-th element.

Definition (\pm of vectors)

$$(\mathbf{u} \pm \mathbf{v})_i := u_i \pm v_i \quad \forall i$$

or,

$$\mathbf{u} \pm \mathbf{v} := (u_1 \pm v_1, \cdots, u_n \pm v_n)$$

Geographically, addition of vectors means a sequence of displacements.

Figure: Geographical Meaning: Addition, Subtraction, and Scalar Multiplication

Scalar Multiplication

Let r, s be scalars (or real numbers). $i.e., r, s \in \mathbb{R}^1$.

Definition (Scalar Multiplication)

$$(r\mathbf{u})_i := ru_i \quad \forall i$$

Geographically, scalar multiplication means stretching or shrinking.

Albebraic Properties of Vector Operation

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 (Commutative Law)
$$(r+s)\mathbf{u} = r\mathbf{u} + s\mathbf{u}$$
 (Destributive Law 1)
$$r(\mathbf{u} + \mathbf{v}) = r\mathbf{u} + r\mathbf{v}$$
 (Destributive Law 2)

In fact, any set of objects with a vector addition and scalar multiplication satisfying above laws is called <u>vector space</u> and <u>vector</u> is defined as the element of <u>vector space</u>. (Vector is defined by operations and their laws)

Length and Direction

Definition (Length of Vector $||\overrightarrow{\mathbf{pq}}||$)

$$||\overrightarrow{pq}|| := \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}$$

Theorem (10.1)

$$||r\mathbf{v}|| = |r| \cdot ||\mathbf{v}|| \quad \forall r \in \mathbb{R} \land \forall \mathbf{v} \in \mathbb{R}^n$$

Any vector has two informations: (1) length, and (2) direction.

Definition (Unit Vector (Direction of a vector))

Unit vector of
$$\mathbf{v} := \frac{\mathbf{v}}{||\mathbf{v}||}$$

The Inner Product

Definition (Euclidean Inner Product (or dot product))

$$\mathbf{u} \bullet \mathbf{v} := \sum_{i}^{n} u_{i} v_{i} \in \mathbb{R}^{1}$$

Theorem (10.2: Properties of Inner Product)

- $\mathbf{0} \ \mathbf{u} \bullet \mathbf{v} = \mathbf{v} \bullet \mathbf{u}$

- $\mathbf{0} \quad \mathbf{u} \bullet \mathbf{u} \leq 0$

조남운

Inner Product and Angle between Two Vectors

Theorem (10.3)

Let θ be the angle between \mathbf{u}, \mathbf{v} . Then,

$$\mathbf{u} \bullet \mathbf{v} = ||\mathbf{u}|| \cdot ||\mathbf{v}|| \cos \theta$$

Theorem (10.4)

- **1** θ is acute if $\mathbf{u} \bullet \mathbf{v} > 0$
- **2** θ is obtuse if $\mathbf{u} \bullet \mathbf{v} < 0$
- **3** θ is right if $\mathbf{u} \bullet \mathbf{v} = 0$

Theorem (10.5: Triangle Inequality)

$$||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$$

 $|||\mathbf{u}|| - ||\mathbf{v}||| \le ||\mathbf{u} - \mathbf{v}||$

Norms

Definition (Norms)

Any operation (X) of a vector to a real number satisfying below three properties is norm. Length of vector is a norm.

- $2 X(r\mathbf{u}) = |r|X(\mathbf{u})$
- $(\mathbf{u} + \mathbf{v}) \le X(\mathbf{u}) + X(\mathbf{v})$

Norm is set of distance measures between two vectors.

조남운

1D,2D Objects in \mathbb{R}^n Spaces

Lines:One dimensional objects in \mathbb{R}^n Spaces

x representing a line passing $\overline{x_0}$ with direction \overline{v} is:

$$\mathbf{x} = \overline{\mathbf{x_0}} + t\overline{\mathbf{v}} \quad \forall t \in \mathbb{R}$$

(Parametric Representation)

 ${\bf x}$ representing a line passing $\overline{{\bf x_0}}, \overline{{\bf x_1}}$ is:

$$\mathbf{x} = (1-t)\overline{\mathbf{x_0}} + t\overline{\mathbf{x_1}} \quad \forall t \in \mathbb{R}$$

(Parametric Representation)

Planes: Two dimensional objects in \mathbb{R}^n Spaces

x representing a plane passing $\overline{x_0}$ with direction $\overline{v_1}$ and $\overline{v_2}$ is:

$$\mathbf{x} = \overline{\mathbf{x_0}} + t_1 \overline{\mathbf{v_1}} + t_2 \overline{\mathbf{v_2}} \quad \forall t_i \in \mathbb{R}$$

(Parametric Representation)

x representing a plane containing $\overline{x_0},\overline{x_1},\overline{x_2}$ is:

$$\mathbf{x} = (1 - t_1 - t_2)\overline{\mathbf{x_0}} + t_1\overline{\mathbf{x_1}} + t_2\overline{\mathbf{x_2}} \quad \forall t_i \in \mathbb{R} \text{ (Parametric Representation)}$$

조남운

Nonparametric Equations

Definition (Normal Vector)

A <u>normal vector</u> $\bar{\mathbf{n}}$ of a n-dimensional object \mathbf{X} is a vector which is perpendicular to any vectors in the object. Suppose \mathbf{x} , $\bar{\mathbf{p}}$ are location vectors in the object. Then,

$$\bar{\mathbf{n}} \bullet (\mathbf{x} - \bar{\mathbf{p}}) = 0 \quad \forall \mathbf{x}, \mathbf{p} \in \mathbf{X}$$

Finding Normal Vector

 $\ensuremath{\mathbf{0}}$ For linearly independent vectors $\mathbf{u_i},$ solve below systems of equations satisfying

$$\mathbf{n} \bullet \mathbf{u_i} = 0 \quad \forall i$$

 $\mathbf{0} \ \mathbf{n} = \mathbf{u} \times \mathbf{v}$ (Only for \mathbb{R}^3 space)

$$\mathbf{u} \times \mathbf{v} := \begin{pmatrix} \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \end{pmatrix}$$

Hyperplanes

Definition (Hyperplane)

 $\mathbf{x} \in \mathbb{R}^{n-1}$ object in \mathbb{R}^n space is a <u>hyperplane</u> with normal vector $ar{\mathbf{a}}$ if:

$$\bar{a}_1 x_1 + \bar{a}_2 x_2 + \cdots \bar{a}_n x_n = \bar{d}$$

or,

$$\bar{\mathbf{a}} \bullet \mathbf{x} = \bar{d}$$

Budget Constraint

Definition (Commotity Bundle, Price Vector, Budget Set)

Let $x_i \geq 0$ be the quantity of ith commodity.

$$\mathbf{x} := (x_1, \dots, x_n), \quad x_i \ge 0 \quad \forall i$$

(Commodity Bundle)

Let $p_i \geq 0$ be the preice of ith commodity.

$$\mathbf{p} := (p_1, \cdots, p_n), \quad p_i \ge 0 \quad \forall i$$

(Price Vector)

Then <u>budget set</u> x can be defined with given budget I:

$$\bar{\mathbf{p}} \bullet \mathbf{x} \leq \bar{I}$$

(Budget Constraint)