Lara J. Martin (she/they)

https://laramartin.net/interactive-fiction-class

Slides modified from Dr. Daphne Ippolito

Learning Objectives

Intuit what query, key, and value components are in the transformer algorithm

Distinguish encoder-decoder attention from self-attention

Investigate what information self-attention might capture

Compare sequence-to-sequence RNNs to transformers

What is a language model?

Review: Sequence-to-Sequence / Encoder-Decoder Models

https://jeddy92.github.io/JEddy92.github.io/ts_seg2seg_intro

I. Sutskever, O. Vinyals, and Q. V. Le, "Sequence to Sequence Learning with Neural Networks," in *Conference on Advances in Neural Information Processing Systems (NeurIPS)*, Montréal, Canada, 2014, pp. 3104–3112. https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

Review:

Turning **y**t into a Probability Distribution

We can multiply the predicted embedding \widehat{yt} by our vocabulary embedding matric to get a score for each vocabulary word. These scores are referred to as logits.

The softmax function then lets us turn the logits into probabilities.

Review: Attention

Better approach: an attention mechanism

Compute a linear combination of the encoder hidden states.

$$= \alpha_1 \left[+\alpha_2 \left[+\alpha_3 \right] + \ldots + \alpha_T \right]$$

$$\mathbf{c}_t$$

Decoder's prediction at position *t* is based on both the context vector and the hidden state outputted by the RNN at that position.

$$\hat{\mathbf{e}}_t = f_{\theta}(\mathbf{h}_t^{\mathrm{dec}} \mathbf{c}_t)$$

Review: Attention Decoder

https://pytorch.org/tutorials/intermediate/seq2seq translation tutorial.html

Review: What are some of the limitations of RNNs?

Since 2018, the field has rapidly standardized on the Transformer architecture

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to

Neural Language Model Timeline

The Transformer is a **non-recurrent** non-convolutional (feed-forward) neural network designed for language understanding

 introduces <u>self-attention</u> in addition to encoderdecoder attention

Output Probabilities

Softmax

Linear

Attention Mechanism

Output Probabilities

Softmax

Multi-Head Attention

Self-attention between a sequence of hidden states and that same sequence of hidden states.

Output Probabilities

Softmax

Multi-Head Attention

Output

Attention Mechanism

Output Probabilities

Softmax

Scaled Dot-Product Attention

The scaled dot-product attention mechanism is almost identical to the one we looked at, but let's turn it into matrix multiplications.

The query: $Q \in R^{Txdk}$

The key: $K \in R^{T'xdk}$

The value: $V \in R^{Txdk}$

Attention(Q,K,V) = softmax $\left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_{\nu}}}\right)\mathbf{V}$

An analogy...

3Blue1Brown Explanation of Q,K,V (~6 minutes)

https://youtu.be/eMlx5fFNoYc?si=1sXvOHytbTUPqnE8&t=366

6:06 - 9:28 = 3:22

And then skip ahead to values

https://youtu.be/eMlx5fFNoYc?t=790&si=uNLE2TOpFtxkdDEj

13:10 - 15:43

Scaled Dot-Product Attention

Attention(Q,K,V) = softmax
$$\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

The rough algorithm:

- For each vector in Q (query matrix), take the linear sum of the vectors in V (value matrix)
- The amount to weigh each vector in V is dependent on how "similar" that vector is to the query vector
- "Similarity" is measured in terms of the dot product between the vectors

Output Probabilities

Softmax

MatMul

Scaled Dot-Product

Attention

Scaled Dot-Product Attention

Attention(Q,K,V) = softmax
$$\left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_k}}\right)\mathbf{V}$$

For self-attention:

Keys, queries, and values all come from the outputs of the previous layer

For encoder-decoder attention:

Keys and values come from encoder's final output. Queries come from the previous decoder layer's outputs.

Output Probabilities

Softmax

Multi-Head Attention

Attention(Q,K,V) = softmax
$$\left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_k}}\right)\mathbf{V}$$

MultiHeadAtt(\mathbf{Q} , \mathbf{K} , \mathbf{V}) = Concat(head₁, ... head_h) \mathbf{W} ^O

Instead of operating on **Q**, **K**, and **V** mechanism projects each input into a smaller dimension. This is done h times.

The attention operation is performed on each of these "heads," and the results are concatenated.

Multi-head attention allows the model to jointly attend to information from different representation subspaces at different positions.

Knowledge Check

Run first three cells.

For the cell visualizing the "cat sentence", look at the different layers of attention. (You can change the layer using the drop-down menu next to "Layer").

- 1. Are there any patterns that you see between the layers? (e.g., What words are connected to what other words for each layer?)
- 2. Come up with a guess for what type of information each layer could be capturing.
- 3. Change the sentence on the inputs = tokenizer.encode() line and run the cell again. Does this break what you thought for question #2? Explain.

Multi-Head Attention

Two different self-attention heads:

Output Probabilities

Softmax

Linear

Inputs to the Encoder

The input into the encoder looks like:

= token embeddings + position embeddings

How does the transformer compare to the seq2seq RNN?

Think-Pair-Share

Why do you think we don't need recurrence anymore (i.e., why is "attention all you need")?

If you want more details, check out the following slides

Multi-Head Attention

= MultiHeadAtt(\mathbf{H}_{i}^{enc} , \mathbf{H}_{i}^{enc} , \mathbf{H}_{i}^{enc})

Output

= token embeddings + position embeddings

Masked Multi-Head Attention = MaskedMultiHeadAtt(\mathbf{H}_{i}^{dec} , \mathbf{H}_{i}^{dec} , \mathbf{H}_{i}^{dec})

Output Probabilities

Softmax

9/5/2024

Output

