2.8 Корреляционная функция

2.8.1 Ковариация и корреляция

Пусть $X = [x_1, x_2, ..., x_N]$ и $Y = [y_1, y_2, ..., y_N]$ — случайные величины (или последовательности). Требуется определить: являются ли X и Y независимыми либо между ними существует связь?

Это можно выяснить, рассчитав ковариацию между случайными величинами X и Y:

$$Cov(X,Y) = E\{(X - \mu_X)(Y - \mu_Y)\} = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_X)(y_n - \mu_Y), \tag{2.24}$$

где $\mu_X = E\{X\} = \frac{1}{N} \sum_{n=1}^{N} x_n$ — математическое ожидание X, а μ_Y — математическое ожидание Y.

Удобно рассматривать данную величину как показатель зависимости частного вида.

На рисунке 2.12 приведен пример расчета ковариации для двух последовательностей.

Рисунок 2.12 – Расчет ковариации для двух последовательностей

Отрицательное значение ковариации говорит о том, что имеет место обратная зависимость (при увеличении X значение Y уменьшается).

Если случайные величины изначально имеют нулевое мат. ожидание, т.е. $\mu_X = 0$ и $\mu_Y = 0$, то выражение для ковариации упрощается:

$$Cov(X,Y) = \frac{1}{N} \sum_{n=1}^{N} x_n y_n.$$
 (2.25)

Очевидно, что если две последовательности независимы, то сумма произведений $x_n y_n$ стремиться к исчезающе малому случайному числу по мере увеличения пар точек. Это объясняется тем, что все числа положительные и отрицательные равновероятны, так что пары произведений компенсируются при сложении

Если в качестве показателя зависимости использовать ковариацию Cov(X,Y), то серьезным недостатком является то, что её значение может меняться при изменении единиц, в которых измеряются исходные случайные величины. Данный эффект можно исключить, если разделить ковариацию произведение среднеквадратических отклонений (СКО) $\sigma_X \sigma_Y$:

$$r_{X,Y} = \frac{E\{(X - \mu_X)(Y - \mu_Y)\}}{\sigma_X \sigma_Y} = \frac{\sum_{n=1}^{N} (x_n - \mu_X)(y_n - \mu_Y)}{\sqrt{\sum_{n=1}^{N} (x_n - \mu_X)^2 \sum_{n=1}^{N} (y_n - \mu_Y)^2}}.$$
 (2.26)

Полученное отношение называется коэффициентом (линейной) корреляции между X и Y. Или просто корреляцией.

2.8.2 Корреляционная функция

В ЦОС дискретные сигналы в большинстве случаев нормированы, т.е. заключены в диапазоне [-1, 1], имеют среднее значение равное 0 и приблизительно одинаковые СКО, поэтому для оценки меры корреляции используют сумму произведений элементов последовательностей

$$r_{x,y} = \frac{1}{N} \sum_{n=1}^{N} x_n y_n$$

Часто сигналы являются неоднородными, т.е. на различные интервалы несут различную информацию. Для того, чтобы определять схожесть сигналов на различных временных интервалах вводится корреляционная функция:

$$r_{x,y}(\ell) = \sum_{n=-\infty}^{\infty} x(n+\ell)y^*(n) = \sum_{n=-\infty}^{\infty} x(n)y^*(n-\ell)$$
 (2.27)

Функция корреляции (2.27) не зависит от времени n, но зависит от временной задержки ℓ (англ. $time\ lag$). В случае, когда в (2.27) сигналы x(n) и y(n) различны функцию называют $\kappa pocc-\kappa oppen \pi uuohho u$. Если y(n)=x(n) функцию называют $asmokoppen \pi uuohho u$.

Чем более похожи два сигнала при конкретной временной задержке ℓ , тем больше значение корреляционной функции.

Корреляционная функция для последовательностей длины N позволяет оценить зависимость между их отсчетами при различных временных сдвигах по времени 9 ℓ :

$$r_{xy}(\ell) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) y^*(n-\ell), \qquad -(N-1) \le \ell \le (N-1).$$

Пример 2.7 Рассчитайте корреляционную функцию для сигналов:

$$x(n) = u(n) - u(n-4)$$
 и $y(n) = u(n-3) - u(n-9)$.

Построить график корреляционной функции (N = 10).

Решение.

$$r_{xy}(-(N-1)) = r_{xy}(-9) = 0$$
,

. . .

Рисунок 2.13 – Пример вычисления корреляции

Интерпретация: сигнал y(n) опережает сигнал x(n). Наибольшие значения корреляции достигается при значениях $\ell = \{-5, -4, -3\}$. Это значит, что если задержать сигнал y(n) на 5, 4 или 3 отсчета, то произойдет его максимальное совмещение (согласование) с сигналом x(n).

2.8.3 Автокорреляционная функция (АКФ)

АКФ последовательности длины N позволяет оценить зависимость между её отсчетами при различных временных сдвигах по времени ℓ :

$$r_{xx}(\ell) = \frac{1}{N} \sum_{n=0}^{N-1} x(n)x(n+\ell), -(N-1) \le \ell \le (N-1).$$

Для простоты будем считать, что сигнал x(n) принимает только действительные значения.

Говорят, что АКФ является мерой самоподобия (self-similarity, самоповторения) сигнала на различном временном удалении ℓ . Когда значение

⁹ Солонина А.И. и др. Цифровая обработка сигналов и Matlab, стр. 97.

¹⁰ Солонина А.И. и др. Цифровая обработка сигналов и Matlab, стр. 97.

 $r_{xx}(\ell)$ велико для какого-то ℓ , то говорят, что отсчеты расположенные на расстоянии ℓ имеют высокую корреляцию.

Рисунок 2.14 – Пример вычисления корреляционной функции дискретного сигнала

Рассмотрим процесс вычисления АКФ. На рисунке 2.14 показан сигнал x(n) и процесс расчета для него автокорреляционной функции. При временном лаге $\ell=0$ сигнал самосовмещается сам с собой. При $\ell=1$ сигнал x(n) сопоставляется со своей сдвинутой версией x(n+1), в последовательности x(n)x(n+1) появляются отрицательные члены, поэтому значение АКФ $r_{xx}(1) < r_{xx}(0)$. При дальнейшем увеличении ℓ вплоть до величины $\ell=5$ значения АКФ падает, что говорит о том, что в при увеличении сдвига сигнал вс меньше и меньше напоминает сам себя. Однако после $\ell=5$ АКФ начинает нарастать и достигает максимума при $\ell=16$. В этой точке происходит полное

совмещение первого и второго периода исходного сигнала. При дальнейшем увеличении ℓ значение АКФ убывает. Это обусловлено двумя факторами: 1) уменьшается число ненулевых отсчетов последовательности $x(n)x(n+\ell)$; 2) уменьшается степень схожести сигнала с самим собой при увеличении ℓ .