## Нотатки до курсу Лінійної Алгебри 2

Єгор Коротенко

8 червня 2025 р.

## Анотація

Це мої нотатки, зроблені для курсу лінійної алгебри 2 в Університеті Париж-Сакле. Основна частина цих нотаток посилається на книгу 'Algèbre Linéaire', написану Жозефом Гріфоне [2].

Мої нотатки з інших предметів доступні на моєму сайті: dobbikov.com

## Зміст

| 1            | Евк               | лідові простори                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | 1.1               | Вступ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | 1.2               | Ортогональність                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | 1.3               | Ортонормовані базиси                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | 1.4               | Матриці та скалярні добутки                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 1.5               | Ортогональні проєкції                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | 1.6               | Ізометрії та Спряжені оператори                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   | 1.6.1 Ізометрії                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   | 1.6.2 Спряжений ендоморфізм                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 1.7               | Ортогональні групи                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>2</b>     | Dress             | вначники 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4            | <b>Биз</b>        | начники<br>Найбільш важливі властивості                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              | $\frac{2.1}{2.2}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   | The state of the s |
|              | 2.3               | Визначник трикутної матриці                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 2.4               | Коматриця та приєднана матриця                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | 2.5               | Обернена матриця                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3            | Зве               | дення ендоморфізмів                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | 3.1               | Вступ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | 3.2               | Власні вектори                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | 3.3               | Пошук власних значень                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | 3.4               | Пошук власних векторів                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | 3.5               | Діагоналізовані ендоморфізми                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 3.6               | Застосунки                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                   | 3.6.1 Обчислення потужності                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |                   | 3.6.2 Розв'язання системи рекурентних послідовностей                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |                   | 3.6.3 Розв'язання диференціальних рівнянь                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              | 3.7               | Тригоналізація                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                   | 3.7.1 Геометрична інтуїція діагоналізації                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                   | 3.7.2 Геометрична інтуїція тригонализації                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                   | 3.7.3 Теорія                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 3.8               | Анулюючі многочлени                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | 3.9               | Лема про ядра                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                   | Пошук анулюючих многочленів. Мінімальний многочлен                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\mathbf{A}$ | ppen              | dices 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1            | Наг               | адування про концепції Лінійної Алгебри 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              | 1                 | Матриці                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |                   | 1 Множення матриць                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                   | 2 Слід                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Г РОЗДІЛ Ј

Евклідові простори

## 1.1 Вступ

Векторні простори, розглянуті в цьому розділі, є дійсними. Припустимо, що E є  $\mathbb{R}$ -векторним простором. Скалярний добуток:

**Визначення** 1.1. Білінійна форма на E- це відображення

$$B: E \times E \longrightarrow \mathbb{R}$$
$$(u, v) \longmapsto B((u, v))$$

що задовольняє наступні умови  $\forall u, v, w \in E \ \forall \lambda \in \mathbb{R}$ :

1. 
$$B(u + \lambda v, w) = B(u, w) + \lambda B(v, w)$$

2. 
$$B(u, v + \lambda w) = B(u, v) + \lambda B(v, w)$$

В називається

- 1. симетрична якщо  $B(u,v)=B(v,u) \ \forall u,v \in E$
- 2. позитивна якщо  $B(.,u) \ge 0 \, \forall u \in E$
- 3. визначена якщо  $B(u,u)=0 \Leftrightarrow u=0$

**Позначення.** Скалярний добуток позначається: < u, v >

Приклад 1.2. .

1. 
$$E = \mathbb{R}^n$$
,  $X = (x_1, \dots, x_n)$ ,  $Y = (y_1, \dots, y_n) \in E$ 

$$\langle X, Y \rangle := \sum_{n=1}^{n} x_i y_i$$

Його називають "канонічним скалярним добутком" (або звичайним)

2. 
$$E = \mathbb{R}^2 \ i < X, Y > = 2x_1y_1 + x_2y_2$$

3. 
$$E=\mathcal{C}^0([-1,1],\mathbb{R})\ni f,g$$
 (простір неперервних функцій)

$$\langle f, g \rangle := \int_{-1}^{1} f(t) \cdot g(t) dt$$

4. 
$$E = \mathcal{M}_n(\mathbb{R}) \ni A, B$$

$$\langle A, B \rangle := Tr(A^t B)$$

**Твердження 1.3.** Ненульовий векторний простір має нескінченну кількість різних скалярних добутків

**Визначення 1.4.** Евклідовий простір — це пара (E, <.>), де  $E \in \mathbb{R}$ -векторним простором <u>скінченновимірним</u> та  $<.> \varepsilon$  скалярним добутком на E.

**Властивість.** Нехай (E, <.>) евклідів простір. Покладемо:

$$||X|| := \sqrt{\langle X, X \rangle} \qquad X \in E$$

норма (або довжина) X. (Вона добре визначена, оскільки <.,.> завжди позитивний)

**Властивість.** Нехай  $X, Y \in E$ , тоді:

$$||X + Y||^2 = ||X||^2 + 2\langle X, Y \rangle + ||Y||^2$$

Доведення.

$$\begin{split} \|X+Y\|^2 &= \sqrt{\langle X+Y,X+Y\rangle}^2 = \langle X+Y,X+Y\rangle \\ &= \langle X,X+Y\rangle + \langle Y,X+Y\rangle \\ &= \langle X,X\rangle + \langle X,Y\rangle + \langle Y,X\rangle + \langle Y,Y\rangle \\ &= \|X\|^2 + 2 \, \langle X,Y\rangle + \|Y\| \end{split}$$

Лема 1.5. нерівність Коші-Шварца Маємо

$$|\langle u, v \rangle| \le ||u|| \cdot ||v|| \quad \forall u, v \in E$$

з рівністю тоді і тільки тоді, якщо u та v колінеарні, тобто  $\exists\,t\in R$  такий, що u=tv або v=tu

**Доведення.** Якщо v=0, зрозуміло Якщо  $v\neq 0$  розглянемо  $\forall t\in \mathbb{R}$ 

$$\begin{split} \|u + tv\|^2 &= < u + tv, u + tv > \\ &= < u, u + tv > + t < v, u + tv > \\ &= < u, u > + t < u, v > + t < v, u > + t^2 < v, v > \\ &= \|u\|^2 + 2t < u, v > + t^2 \|v\|^2 = f(t) \end{split}$$



Випадок 1: f(t) не має різних коренів

$$\Delta = 4 < u, v >^{2} = 4||u||^{2}||v||^{2} \le 0$$

$$\Rightarrow < u, v >^{2} \le ||u||^{2} \cdot ||v||^{2}$$

$$\Rightarrow |< u, v > | \le ||u||||v||$$

Випадок 2: f(t) має лише один корінь:

$$\Delta = 0$$
 
$$\Rightarrow \exists t \in \mathbb{R} \text{ така що } ||u + tv||^2 = 0$$
 
$$\Rightarrow u + tv = 0 \Rightarrow u = -tv$$

Наступне визначення буде вивчено в курсі аналізу:

**Визначення 1.6.** Кажуть, що  $N: E \to \mathbb{R}_+$  є нормою, якщо:

- 1.  $N(\lambda u) = |\lambda| \cdot N(u) \quad \forall \lambda \in \mathbb{R}, \forall u \in E$
- $2. \ N(u) = 0 \Rightarrow u = 0$
- 3.  $N(u+v) \le N(u) + N(v) \quad \forall u, v \in E$

#### Лема 1.7. Відображення

$$\sqrt{\langle .,.\rangle} = \|.\|: E \to \mathbb{R}_+$$

називається евклідовою нормою.

Доведення. 1), 2) зроблено

3) 
$$||u+v||^2 = ||u||^2 + 2 < u, v > +||v||^2 \le ||u||^2 + 2||u|| ||v|| + ||v||^2 = (||u|| + ||v||)^2$$
  

$$\Rightarrow ||u+v||^2 \le ||u||^2 + ||v||^2$$

**Твердження 1.8.** Маємо наступні тотожності  $\forall u, v \in E$ 

1. Тотожність паралелограма:

$$||u + v||^2 + ||u - v||^2 = 2(||u^2|| + ||v||^2)$$

2. Тотожність поляризації:

$$\langle u, v \rangle = \frac{1}{4} (\|u + v\|^2 - \|u - v\|^2)$$

Доведення.

1.

$$||u + v||^2 = \langle u + v, u + v \rangle$$
  
=  $||u||^2 + 2 \langle u, v \rangle + ||v||^2$ 

2. 
$$||u - v||^2 = ||u||^2 - 2\langle u, v \rangle + ||v||^2$$

Маємо:

- (1) + (2):  $||u + v||^2 + ||u v||^2 = 2(||u||^2 + ||v||^2)$
- (1) (2):  $||u + v||^2 ||u v||^2 = 4 \langle u, v \rangle$

## 1.2 Ортогональність

Нехай  $E-\mathbb{R}$ -векторний простір та  $\langle , \rangle$  — скалярний добуток на E.

Визначення 1.9.  $u,v \in E$  називаються ортогональними якщо < u,v>=0. Позначають  $u\perp v$ 

• Дві підмножини A, B з E є ортогональними якщо:

$$\forall u \in A, \forall v \in B, \quad \langle u, v \rangle = 0$$

 $\bullet\,$  Якщо  $A\subseteq E$  називають **ортогональним до** A, що позначається  $A^\perp$  множину

$$A^{\perp} = \{u \in E \mid < u,v> = 0 \quad \forall v \in A\}$$

Також відомий як ортогональне доповнення А

• Сімейство  $(v_1, \ldots, v_n)$  векторів з E називається ортогональним, якщо  $\forall i \neq j, v_i \perp v_j$ . Воно називається ортонормованим, якщо воно ортогональне, і крім того  $||v_i|| = 1 \quad \forall i \in \{1, \ldots, n\}$ 

**Приклад 1.10.**  $E = \mathbb{R}^n, <,>$  канонічний скалярний добуток

$$v_i = (0, \dots, 0, \underbrace{1}_i, 0, \dots, 0)$$

$$< v_i, v_j > = \begin{cases} 1 \text{ якщо } i = j \\ 0 \text{ якщо } i \neq j \end{cases}$$

 $(v_1,\ldots,v_n)$  є канонічним базисом

**Твердження 1.11.** 1. Якщо  $A \subseteq E$  тоді  $A^{\perp}$  є векторним підпростором E

- 2. Якщо  $A\subseteq B$  тоді  $B^\perp\subseteq A^\perp$
- 3.  $A^{\perp} = Vect(A)^{\perp}$
- 4.  $A \subset (A^{\perp})^{\perp}$

Доведення. Вправа

Приклад 1.12. 1.  $E = \mathcal{C}^0([-1,1],\mathbb{R})$ 

$$< f, g > := \int_{-1}^{1} f(t) \cdot g(t) dt$$



Тоді,  $f(t) = \cos(t)$ ,  $g(t) = \sin(t)$  ортогональні:  $2\cos(t)\sin(t) = \sin(2t)$ 

$$\int_{-1}^{1} \cos(t) \sin(t) dt = \frac{1}{2} \int_{-1}^{1} \sin(2t) dt = 0$$

**Визначення 1.13.** Якщо E є евклідовим простором, ми називаємо "дуал E"множину

$$L(E,\mathbb{R}) = \{ f : E \to \mathbb{R} \mid f \in \pi$$
інійною $\}$ 

Його позначають  $E^*$ . Елемент  $f \in E^*$  називається лінійною формою.

Нагадаємо:

**Твердження 1.14.** Якщо F, F' — два скінченновимірні в.п., то  $dim(L(F, F')) = dim(F) \cdot dim(F')$  Зокрема,  $dim(F^*) = dim(F)$ . Справді, якщо  $n = (e_1, \dots, e_p)$  є базисом F є  $n' = (e'_1, \dots, e'_q)$  є базисом F', то відображення

$$: L(F, F') \longrightarrow Mat_{f \times p}(\mathbb{R})$$
$$f \longmapsto (f) = Mat_{n,n'}(f).$$

 $\epsilon$  ізоморфізмом. Отже dim(F,F)=qp

**Теорема 1.15.** Теорема про ранг: Якщо F є скінченновимірним векторним простором і  $f: F \to F'$  лінійне, тоді dim(F) = dim(Ker(f)) + dim(Im(f))

**Твердження 1.16.** Якщо F, F' є два векторні простори <u>скінченновимірні</u> такі що dim(F) = dim(F') і  $f: F \to F'$  лінійне, тоді f є ізоморфізмом  $\Leftrightarrow Ker(f) = \overline{0}$ 

**Доведення.** Нагадаємо, що якщо G, G' є скінченновимірними підпросторами в тому ж векторному просторі, тоді:

$$G = G' \Leftrightarrow G \subseteq G' \text{ i } dim(G) = dim(G')$$

- $\Rightarrow$ ) f ін'єктивне  $\Rightarrow Ker(f) = 0$
- $\Leftarrow$ ) Нехай Ker(f) = 0.

Тоді, обов'язково dim(Ker(f))=0 і за теоремою про ранг ми маємо dim(F)=dim(Im(f)), тому Im(f)=F'

**Лема 1.17.** лема Pica:

Нехай  $(E,\langle.,.\rangle)$  скінченновимірний евклідовий простір і  $f\in E^*$ . Тоді,  $\exists!u\in E$  такий що  $f(x)=\langle u,x\rangle$   $\forall x\in E$ . Лінійна форма f задається скалярним добутком з вектором.

**Позначення.** Для будь-якого  $v \in E$  позначаємо через  $f_v$  відображення:

$$f_v : E \longrightarrow \mathbb{R}$$
  
 $x \longmapsto f_v(x) = \langle v, x \rangle$ .

 $f_v$  є лінійним  $\forall v \in E$  тобто  $E^*$ 

**Доведення.** лема Ріса Розглянемо відображення

$$\phi: E \longrightarrow E^*$$

$$v \longmapsto \phi(v) = f_v.$$

 $\phi$  є лінійним (вправа).  $\phi$  є ін'єктивним:

$$v \in Ker(\phi) \Leftrightarrow f_v(x) = 0 \quad \forall x \in E$$

зокрема для x = v, маємо:

$$0 = f_v(v) = \langle v, v \rangle \Rightarrow v = 0$$

 $dim(E) = dim(E^*) \Rightarrow \phi$  є ізоморфізмом  $\Rightarrow \phi$  бієктивним

$$\forall f \in E^*, \exists ! n \in E$$
така що  $\phi(n) = f,$ тобто  $f(x) = < n, x > \, \forall x \in E$ 

У цьому випадку  $E = \mathbb{R}^n$ , лема Ріса дуже проста для розуміння:

Нехай  $f:\mathbb{R}^n\to\mathbb{R}$  лінійна форма. Якщо позначимо  $(e_1,\ldots,e_n)$  канонічний базис  $\mathbb{R}^n$ , будь-який  $x\in\mathbb{R}^n$  записується

$$x = \sum_{n=1}^{n} \alpha_i e_i$$
  $\alpha_i \in \mathbb{R}, \forall i \in \{1, \dots, n\}$ 

$$\Rightarrow f(x) = \sum_{n=1}^{n} \alpha_i f(e_i) = \langle (\alpha_1, \dots, \alpha_n), (a_1, \dots, a_n) \rangle = \langle (a_1, \dots, a_n), (\alpha_1, \dots, \alpha_n) \rangle$$

#### 1.3 Ортонормовані базиси

Нехай  $(E,\langle,\rangle)$  евклідів простір і  $F\subset E$  векторний підпростір  $(dim(F)<\infty)$  оскільки  $dim(E)<\infty$ .

Примітка.

$$F^{\perp} := \{ x \in E \mid \langle X, Z \rangle = 0 \, \forall z \in F \}$$

ортогонал до F.

**Теорема 1.18.** Маємо  $E=F\oplus F^{\perp}.$  Зокрема,  $dim(F^{\perp})=dim(E)-dim(F)$  і  $F=(F^{\perp})^{\perp}$ 

Доведення. Ми повинні показати, що:

- 1.  $F \cap F^{\perp} = \emptyset$
- 2.  $E = F + F^{\perp}$  тобто  $\forall x \in E, \exists x' \in F, x'' \in F^{\perp}$  такий що x = x' + x''
- 1. Нехай  $x\in F\cap F^\perp$   $\Rightarrow$   $\langle X,Z\rangle=0$   $\forall Z\in F$  оскільки  $x\in F\Rightarrow \langle X,X\rangle=0$   $\Rightarrow$   $x=0(\langle,\rangle)$  визначено)
- 2. Нехай  $x \in E$ . Розглянемо  $f_x \in E^*$ , тобто  $f_x : E \to \mathbb{R}, y \mapsto \langle x, y \rangle$  і  $f := f_{x|F} : F \to \mathbb{R} \Rightarrow f \in E^*$  Лема Ріса  $\Rightarrow \exists! x' \in F$  такий що  $f = f_{x'} : F \to \mathbb{R}, z \mapsto \langle x', z \rangle$   $\Rightarrow f_x(z) = f_{x'}(z) = f(z) \, \forall z \in F$  (Увага: не рівність для всіх  $z \in F$  Покладемо x'' := x x', тобто  $x = x' + x'' \in F$ . Доведемо  $x'' \in F^{\perp}$ . Якщо  $z \in F$ ,  $\langle x'', z \rangle = \langle x x', z \rangle = \langle x, z \rangle \langle x', z \rangle = 0$ . Отже  $x'' \in F^{\perp}$  і  $E = F \oplus F^{\perp}$  ( $dim(E) = dim(F) + dim(F^{\perp})$ )  $F \subseteq (F^{\perp})^{\perp}$  оскільки  $\langle x, z \rangle = 0 \, \forall x \in F \, \forall z \in F^{\perp}$

$$dim(F) = dim(E) - dim(F^{\perp})$$

оскільки  $E=G\oplus G^{\perp}$ , отже  $dim(G)=dim(E)-dim(G^{\perp})$  для  $G=F^{\perp},\,dim(F^{\perp})=dim(G)$ 

Визначення 1.19. Нехай E — векторний простір, оснащений скалярним добутком  $\langle, \rangle$ 

• Сім'я  $(v_i)_{i>0}$  векторів з E називається ортогональною, якщо для  $i\neq j$  ми маємо  $\langle v_i,v_j\rangle=0$ ,

тобто  $v_i \perp v_i$ 

• Ортонормальна сім'я з E — це ортогональна сім'я  $(v_i)_{i\geq 0}$ , така що до того ж  $\|v_i\|=1$  для  $i\geq 0$ 

**Приклад 1.20.** 1.  $E = \mathbb{R}^n$  оснащене стандартним скалярним добутком. Канонічний базис  $(e_1, \dots, e_n)$  є ортогональним, тому що

$$\langle e_i, e_j \rangle = \begin{cases} 1 \text{ якщо } i = j \\ 0 \text{ якщо } i \neq j \end{cases}$$

2. У  $E = \mathcal{C}^0([-1,1],\mathbb{R})$  оснащене  $\langle f,g \rangle = \int_{-1}^1 f(t)g(t)\,dt$ . Сімейство  $(\cos(t),\sin(t))$  є ортогональним. Сімейство  $(1,t^2)$  не є ортогональним:

$$\langle 1, t^2 \rangle = \int_{-1}^{1} 1t^2 dt = \frac{2}{3} \neq 0$$

**Твердження 1.21.** Ортогональна сім'я, що складається з <u>ненульових</u> векторів, є лінійно незалежною. Зокрема, ортонормована сім'я є лінійно незалежною.

**Доведення.** Припустимо,  $(v_1,\dots,v_n)$  ортогональні з  $v_i\neq 0$   $\forall i=1,\dots,n$  якщо  $\sum_{j=1}^n \alpha_i v_i=0$ , тоді

$$\forall i \in \{1, \dots, n\} 0 = \left\langle v_i, \sum_{j=1}^n \alpha_j v_j \right\rangle = \sum_{j=1}^n \alpha_j \left\langle v_i, v_j \right\rangle = \alpha_i \|v_i\|^2$$

Отже,  $\alpha_i = 0 \, \forall i = 1, \dots, n$ . Якщо  $(v_1, \dots, v_n)$  є ортонормальною, тоді  $\|v_i\| = 1$ . Отже,  $v_i \neq 0, \, \forall i = 1, \dots, n$ .

Інтуїція. Ортогональні (перпендикулярні) вектори ніколи не знаходяться один в одному (тобто  $e_i = \lambda e_j$  неможливо), якщо вектори лінійно залежні, або кут < 90 (отже, вектори не є ортогональними, абсурд), (вони знаходяться один в одному, вони не є ортогональними, абсурд). Отже, вони справді лінійно незалежні.

**Визначення 1.22.**  $(E,\langle,\rangle)$  евклідів простір. Сім'я  $B=(e_1,\ldots,e_n)$  є ортонормальним базисом (де БОН), якщо вона є базисом і ортонормальною сім'єю.

**Теорема 1.23.**  $(E, \langle, \rangle)$  евклідів простір. Тоді він допускає БОН.

**Доведення.** Нехай n:=dim(E). Нехай  $(e_1,\ldots,e_p)$  ортогональна сім'я (з точки зору потужності p) така що  $e_i\neq 0\ \forall i=1,\ldots,p$ . Припустимо суперечливо, що p< n. Покладемо  $F=Vect(e_1,\ldots,e_p)$ . Тоді,  $E=F\oplus F^\perp$  і  $dim(F)\leq p< n$ . Отже  $F^\perp\neq\{0\}$ . Нехай  $x\in F^\perp$ ,  $x\neq 0$ . Тоді,  $(e_1,\ldots,e_p,x)$  є ортогональною потужності >p. Отже, p=n і  $(e_1,\ldots,e_n)$  є базисом E. Щоб отримати ортонормальну сім'ю  $(e'_1,\ldots,e'_n)$  достатньо взяти  $e'_i=\frac{1}{\|e_i\|}e_i\ \forall i=\{1,\ldots,n\}$ .

**Твердження 1.24.** Нехай  $(E,\langle,\rangle)$  евклідів простір, і нехай  $(e_1,\ldots,e_n)$  ортонормальний базис E. Якщо

 $x \in E$ , маємо:

$$x = \sum_{i=1}^{n} \langle x, e_i \rangle e_i$$

Іншими словами, дійсне число  $\langle x, e_i \rangle$  є  $i^{\text{-та}}$  координата x у базисі  $(e_1, \dots, e_n)$ .

**Інтуїція.** Ортогональність базису спрощує нам життя. Але спочатку невеликий вступ. Нехай векторний простір  $E = \mathbb{R}^2$  і базис  $(e_1, e_2) = (\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix})$ . Нехай вектор  $\vec{v} = (2, 3)$ :



Отже, ми можемо записати  $\vec{v} = (\vec{2}, \vec{3}) = 2 \cdot \vec{e_1} + 3 \cdot \vec{e_2}$ . Значення x та y (координати v) показують, скільки частин кожного базисного вектора (число може бути  $\in \mathbb{R}$ ) потрібно взяти і просумувати, щоб отримати  $\vec{v}$ . (Простіше кажучи: наскільки далеко ми повинні піти вліво і вгору).

У ортонормальному базисі  $\langle v, e_i \rangle$  вказує, скільки потрібно взяти вектора  $e_i$ , щоб утворити вектор  $\vec{v}$ , а  $\vec{e_i}$  задає напрямок. Звідси  $\langle v, e_1 \rangle$  еквівалентно 2, і  $\langle v, e_2 \rangle$  до 3, потім:

$$\vec{v} = \underbrace{\langle v, e_1 \rangle}_{=2} \cdot \vec{e_1} + \underbrace{\langle v, e_2 \rangle}_{=3} \cdot \vec{e_2}$$

Зазвичай, щоб знайти координати в базисі, слід розв'язувати лінійну систему, тоді як ортонормальний базис дозволяє отримати їх шляхом обчислення скалярного добутку з кожним вектором базису, що значно простіше.

Доведення. Покладемо  $y := \sum_{i=1}^{n} \langle x, e_i \rangle e_i$  . Тоді,  $\forall j = 1, \dots, n, \\ \langle x - y, e_j \rangle \\ = \langle x, e_j \rangle - \langle y, e_j \rangle \\ = \langle x, e_j \rangle - \langle \sum_{i=1}^{n} \langle x, e_i \rangle e_i, e_j \rangle \\ = \langle x, e_j \rangle - \sum_{i=1}^{n} \langle x, e_i \rangle \langle e_i, e_j \rangle \\ = \langle x, e_j \rangle - \sum_{i=1}^{n} \langle x, e_i \rangle \langle e_i, e_j \rangle \\ = \langle x, e_j \rangle - \left( \langle x, e_i \rangle \langle e_i, e_j \rangle + \dots + \langle x, e_{j-1} \rangle \langle e_{j-1}, e_j \rangle + \langle x, e_j \rangle \langle e_j, e_j \rangle + \langle x, e_{j+1} \rangle \langle e_{j+1}, e_j \rangle + \dots + \langle x, e_n \rangle \langle e_n, e_j \rangle \\ - \left( \langle x, e_i \rangle \langle e_i, e_j \rangle = 0 \text{ оскільки це скалярний добуток ортогональних векторів} \right) \\ (\forall j \langle e_j, e_j \rangle = 1 \text{ оскільки це скалярний добуток того ж вектора}) \\ = \langle x, e_j \rangle - \langle x, e_j \rangle \langle e_j, e_j \rangle = 0 \\ = 1 \end{aligned}$ 

**Наслідок 1.25.**  $\forall x \in E, \|x\|^2 = \sum_{i=1}^n \langle x, e_i \rangle^2$ 

**Доведення.** Якщо  $x = \sum_{i=1}^{n} \langle x, e_i \rangle e_i = \sum_{i=1}^{n} x_i e_i$  тому

$$||x||^2 = \langle \sum_{i=1}^n x_i e_i, \sum_{j=1}^n x_j e_j \rangle = \sum_{i,j=1}^n x_i x_j \langle e_i, e_j \rangle = \sum_{i=1}^n x_i^2$$

## 1.4 Матриці та скалярні добутки

**Твердження 1.26.** Нехай  $(E, \langle, \rangle)$  евклідовий простір та  $\varepsilon = (e_1, \dots, e_n)$  ортонормований базис. Нехай  $f \in \mathcal{L}(E, E)$  та  $A = (a_{i,j})_{1 < i,j < n}$  матриця, що представляє f у  $\varepsilon$ , тобто,  $A = Mat_{\varepsilon}(f)$ 

$$a_{i,j} = \langle f(e_i), e_j \rangle \ \forall i, j = 1, \dots, n$$

**Доведення.** A  $\epsilon$  матрицею, стовпцями якої  $\epsilon$  вектори  $f(e_i)$ , записані в базисі  $\epsilon$ :

$$A = (f(e_1)|\dots|f(e_n)) \quad f(e_j) = \begin{pmatrix} a_{1,j} \\ \dots \\ a_{n,j} \end{pmatrix}$$

Оскільки  $\forall v \in E, v = c_1 e_1 + \dots c_n e_n$  тому  $f(v) = c_1 f(e_1) + \dots c_n f(e_n)$  за лінійністю, отже нам залишається дослідити кожен  $f(e_j)$ 

$$f(e_j) = a_{1,j}e_1 + \dots + a_{n,j}e_n \Rightarrow$$

$$\langle f(e_j), e_i \rangle = \left\langle \sum_{k=1}^n a_{k,j}e_k, e_i \right\rangle = \sum_{k=1}^n a_{k,j} \langle e_k, e_i \rangle = a_{k,j}$$

 $\operatorname{car}\, \langle e_k, e_j \rangle = egin{cases} 0 \ \text{якщо} \ k 
eq j \ 1 \ \text{якщо} \ k = j \end{cases}$  Отже:

$$a_{i,j} = \langle f(e_j), e_i \rangle$$

Матриця векторного добутку дуже корисна в лінійній алгебрі. Перш ніж дати визначення:

Нехай E — скінченновимірний векторний простір розмірності n, простір K та білінійна форма  $b: E \times E \longrightarrow K$ . Якщо  $\{e_1, \dots, e_n\}$  — базис E, тоді:  $x = \sum_{i=1}^n x_i e_i$  та  $y = \sum_{j=1}^n y_j e_j$ , тоді маємо:

$$b(x,y) = \sum_{i,j=1}^{n} x_i y_j b(e_i, e_j)$$

b отже, визначається знанням значень  $b(e_i, e_i)$  на базисі.

**Визначення 1.27.** Називається **матрицею** b у базисі  $\{e_i\}$  матриця:

$$M(b)_{e_i} = \begin{pmatrix} b(e_1, e_1) & b(e_1, e_2) & \dots & b(e_1, e_n) \\ b(e_2, e_1) & b(e_2, e_2) & \dots & b(e_2, e_n) \\ \dots & \dots & \dots & \dots \\ b(e_n, e_1) & \dots & \dots & b(e_n, e_n) \end{pmatrix}$$

10

Таким чином, елемент і-того рядка та j-того стовиця є коефіцієнтом  $x_i y_j$ .

**Приклад 1.28.** Матриця канонічного скалярного добутку в  $\mathbb{R}^3$  дорівнює:

$$\langle X, Y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3$$

$$Mat(\langle,\rangle)_{e_i} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

**Твердження 1.29.** скалярний добуток, представлений матрицею. Зазначимо:

$$\underbrace{A=M(b)_{e_i}}_{\text{матриця скалярного добутку}} \underbrace{X=M(x)_{e_i}}_{\text{координати } x} \underbrace{Y=M(y)_{e_i}}_{\text{координати } y} \tag{$x,y\in E$}$$

Тоді маємо:

$$b(x,y) = X^t A Y$$

**Приклад 1.30.** Знову розглянемо приклад з  $b=\langle,\rangle$  канонічний скалярний добуток в  $\mathbb{R}^3$ . Нехай  $X=\begin{pmatrix}1\\2\\-1\end{pmatrix}$  та  $Y=\begin{pmatrix}2\\3\\1\end{pmatrix}$  в канонічному базисі  $\mathbb{R}^3$ . Отже:

$$\langle x, y \rangle = X^t A Y = \overbrace{(1, 2, -1)}^{X^t} \times \overbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}^{X} \times \overbrace{\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}}^{Y}$$

$$= \underbrace{(1, 2, -1)}_{X} \times \underbrace{\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}}_{A \times Y}$$

$$= 1 \cdot 2 + 2 \cdot 3 + (-1) \cdot 1 = 2 + 6 - 1 = 7$$

**TODO.** зміна базису матриці білінійної форми

## 1.5 Ортогональні проєкції

Нехай  $(E,\langle,\rangle)$  евклідів простір,  $F\subseteq E$  векторний підпростір. Тоді,  $E=F\oplus F^{\perp}$ . Отже  $\forall x\in E$  записується

$$x = \underset{\in F}{x_F} + \underset{\in F^{\perp}}{x_{F^{\perp}}}$$

**Визначення 1.31. Ортогональна проєкція** з E в F — це проєкція  $p_F$  з E на F паралельно до  $F^\perp$ , тобто

$$p_F: E = F \oplus F^{\perp} \longrightarrow F$$
  
 $x = x_F + x_{F^{\perp}} \longmapsto p_F(x = x_F + x_{F^{\perp}}) = x_F.$ 

#### **Примітка 1.32.** 1. $p_F \in \text{лінійним}$

2.  $\forall x \in E \, p_F(x)$  повністю характеризується наступною властивістю: Нехай  $y \in E$ , тоді

$$y = p_F(x) \Leftrightarrow \left( y \in F \underset{\Rightarrow y = x_F}{\operatorname{Ta}} x - y \in F^{\perp} \right)$$

Зокрема  $\langle p_F(x), x-p_F(x) \rangle = 0$ . Тоді, якщо  $(v_1,\dots,v_R)$  є ортонормованим базисом F, маємо:

$$\forall x \in E, p_F(x) = \sum_{i=1}^k \langle x, v_i \rangle v_i$$

Дійсно, достатньо перевірити, що вектор  $y = \sum_{i=1}^k \langle x, v_i \rangle \, v_i$  задовольняє:

$$y \in F$$
 та  $x - y \in F^{\perp}$ 



Рис. 1.1: Проекція



Рис. 1.2: Проєкція з ОНБ

**Твердження 1.33.** Нехай  $x \in E$ . Тоді,

$$||x - p_F(x)|| = \inf\{||x - y|| \mid y \in F\}$$

тобто  $\|x-p_F(x)\|$  є відстань від x до F. Див. Figure 1.1

**Доведення.** Оскільки  $p_F(x) \in F$  достатньо довести, що, якщо  $y \in F$ , тоді

$$||x - p_F(x)|| \le ||x - y||$$

Але, 
$$\|x-y\|^2$$
 =  $\|x-p_F(x)\|^2 + 2\sqrt{x-p_F(x), p_F(x)-y} = 0 + \underbrace{\|p_F(x)-y\|^2}_{\geq 0} \geq \|x-p_F(x)\|^2$   $\square$ 

#### Теорема 1.34. Грам-Шмідт

Нехай E — векторний простір, оснащений скалярним добутком  $\langle,\rangle$ . Нехай  $(v_1,\ldots,v_n)$  — лінійно незалежна сім'я елементів  $\in E$ . Тоді, існує сім'я  $(w_1,\ldots,w_n)$  ортогональна така що

$$\forall i = 1, \dots, n \quad Vect(v_1, \dots, v_i) = Vect(w_1, \dots, w_i)$$

Крім того, ця теорема дає нам метод побудови ортонормованого базису з довільного базису.

**Доведення.** Теореми 1.34 Побудуємо ортогональний базис:  $\{w_1, \dots, w_p\}$ . Спершу покладемо:

$$\begin{cases} w_1=v_1\\ w_2=v_2+\lambda w_1, \qquad \text{де $\lambda$ такий, що } w_1\perp w_2 \end{cases}$$

Накладаючи цю умову, знаходимо:

$$0 = \langle v_2 + \lambda w_1, w_1 \rangle = \langle v_2, w_1 \rangle + \lambda ||w_1||^2$$

Оскільки  $w_1 \neq 0$ , отримуємо  $\lambda = -\frac{\langle v_2, w_1 \rangle}{\|w_1\|^2}$ . Зауважимо, що:

$$\begin{cases} v_1 = w_1 \\ v_2 = w_2 - \lambda w_1 \end{cases}$$

отже  $Vect\{v_1, v_2\} = Vect\{w_1, w_2\}.$ 

Після побудови  $w_2$ , будуємо  $w_3$ , поклавши:

$$w_3=v_3+\mu w_1+\nu w_2$$
 де  $\mu$  та  $\nu$  такі, що:  $w_3\perp w_1$  та  $w_3\perp w_2$ 

Можна розглядати  $w_3 = v_3 - \lambda' w_1 - \lambda'' w_2$  як  $w_3 = v_3 - proj_{F_2}v_3$  де  $F_i = Vect\{w_1, \dots, w_i\}$ 



Рис. 1.3: Вектор за допомогою проекції

Це дає

$$0 = \langle v_3 + \mu w_1 + \nu w_2, w_1 \rangle = \langle v_3, w_1 \rangle + \mu \langle w_1, w_1 \rangle + \nu \langle w_2, w_1 \rangle$$
$$= \langle v_3, w_1 \rangle + \mu \|w_1\|^2$$

звідки  $\mu=-\frac{\langle v_3,w_1\rangle}{\|w_1\|^2}$ . Аналогічно, накладаючи умову, що  $w_3\perp w_2$ , знаходимо  $\nu=-\frac{\langle v_3,w_2\rangle}{\|w_2\|^2}$ . Оскільки

$$\begin{cases} v_1 = w_1 \\ v_2 = w_2 - \lambda w_1 \\ v_3 = w_3 - \mu w_1 - \nu w_2 \end{cases}$$

добре видно, що  $Vect\{w_1, w_2, w_3\} = Vect\{v_1, v_2, v_3\}$ . Тобто,  $\{w_1, w_2, w_3\}$  є ортогональним базисом простору, породженого  $v_1, v_2, v_3$ . Тепер добре видно процес рекурсії.

Припустимо, що ми побудували  $w_1, \ldots, w_{k-1}$  для  $k \leq p$ . Покладемо:

$$w_k = v_k +$$
лінійна комбінація вже знайдених векторів   
=  $v_k + \lambda_1 w_1 + \ldots + \lambda_{k-1} w_{k-1}$ 

Умови  $w_k \perp w_i$  (для  $i \in \{1, \dots, k-1\}$ ) еквівалентні:

$$\lambda_i = -\frac{\langle v_k, w_i \rangle}{\|w_i\|^2}$$

як це негайно перевіряється. Оскільки  $v_k = w_k - \lambda_1 - \ldots - \lambda_{k-1} w_{k-1}$ , за індукцією бачимо, що  $Vect\{w_1,\ldots,w_k\} = Vect\{v_1,\ldots,v_k\} \Leftrightarrow \{w_1,\ldots,w_k\}$  є ортогональним базисом  $Vect\{v_1,\ldots,v_k\}$ .

Нам залишається лише нормувати її, тобто  $\forall i \in \{1, \dots, k\}$   $e_i = \frac{w_i}{\|w_i\|}$ , звідки  $\{e_1, \dots, e_k\}$  є ортонормальним базисом  $F = Vect\{v_1, \dots, v_k\}$ .

Твердження 1.35. Щоб зрозуміти цю пропозицію, раджу прочитати розділ 1.6

Будь-яка ортогональна проєкція є самоспряженою, тобто якщо p є ортогональною проєкцією, тоді:

$$p^* = p$$

У матричному записі: нехай A матриця проєкції p, тоді:

$$A^T = A$$

### 1.6 Ізометрії та Спряжені оператори

#### 1.6.1 Ізометрії

**Визначення 1.36. Ізометрія** з E (або **ортогональне перетворення**) є ендоморфізмом  $f \in \mathcal{L}(E) := \mathcal{L}(E,E)$ , що зберігає скалярний добуток, тобто:

$$\langle f(x), f(y) \rangle = \langle x, y \rangle \quad \forall x, y \in E$$

**Визначення 1.37.** Нехай  $x, y \in E$  — два ненульові вектори. Маємо, згідно з нерівністю Коші-Буняковського (див. лему 1.5):

$$\frac{|\langle x, y \rangle|}{\|x\| \cdot \|y\|} \le 1$$

Тоді існує єдиний  $\theta \in [0,\pi]$  такий, що:

$$\cos \theta = \frac{\langle x, y \rangle}{\|x\| \cdot \|y\|} \tag{1.1}$$

**Твердження 1.38.** Якщо f є ізометрією E, отже, маємо:

$$||f(x)|| = ||x|| \quad \forall x \in E$$

**Доведення.** Припустимо, що f є ізометрією E. Нехай  $x,y\in E$ . За визначенням:  $\langle f(x),f(y)\rangle=\langle x,y\rangle,$  отже, покладемо y:=x, тоді маємо:

$$\underbrace{\langle f(x), f(x) \rangle}_{\|f(x)\|^2} = \underbrace{\langle x, x \rangle}_{\|x\|^2}$$

$$\Leftrightarrow \|f(x)\|^2 = \|x\|^2$$

$$\Leftrightarrow \|f(x)\| = \|x\|$$

**Твердження 1.39.** Нехай f ізометрія в E, тоді:

- 1. f є бієктивною
- 2. f зберігає евклідову відстань та кути

**Доведення.** Нехай f — ізометрія в E і два вектори  $u,v\in E$ 

1.

$$||f(u) - f(v)|| = \sqrt{\langle f(u), f(v) \rangle} = \sqrt{\langle u, v \rangle} = ||u - v||$$

2. Нехай  $\theta_1$  — кут між f(u) і f(v), а  $\theta_2$  — кут між u і v, тому:

$$\cos \theta_1 := \frac{\langle f(u), f(v) \rangle}{\|f(u)\| \cdot \|f(v)\|}$$

$$\cos \theta_2 := \frac{\langle u, v \rangle}{\|u\| \cdot \|v\|}$$

За визначенням,  $\langle f(u), f(v) \rangle = \langle u, v \rangle$ , згідно з пропозицією 1.38,  $\forall x, ||f(x)|| = ||x||$ , тому:

$$\cos \theta_1 := \frac{\langle f(u), f(v) \rangle}{\|f(u)\| \cdot \|f(v)\|} = \frac{\langle u, v \rangle}{\|u\| \cdot \|v\|} = \cos \theta_2$$

**Визначення 1.40.** Нехай F — векторний підпростір E, отже  $E = F \oplus F^{\perp}$  звідки  $\forall v \in E, \exists v_1 \in F, v_2 \in F^{\perp}$  такий що  $v = v_1 + v_2$ . Покладемо:

$$s_F(v) = v_1 - v_2$$

і  $s_F$  називається ортогональною симетрією відносно осі  ${\bf F}.$ 



Рис. 1.4: Ортогональна симетрія відносно осі F

**Твердження 1.41.** Ортогональна симетрія є ізометрією.

Доведення. ЗРОБИТИ або не потрібно

**Твердження 1.42.** f є ізометрією тоді і лише тоді, якщо вона перетворює будь-який ортонормований базис на ортонормований базис.

**Доведення.** Нехай f — ізометрія, тоді вона перетворює будь-який базис на базис, оскільки f бієктивна за проп. 1.39.

• ( $\Rightarrow$ ) Припустимо, що f — ізометрія. Нехай  $\{e_i\}$  — ортонормований базис, тоді маємо:

$$\langle f(e_i), f(e_i) \rangle = \langle e_i, e_i \rangle = \delta_{i,j}$$

Отже,  $\{f(e_i)\}$  — ортонормований базис.

• ( $\Leftarrow$ ) Припустимо, що існує ортонормований базис  $\{e_i\}$  такий, що  $\{f(e_i)\}$  також є ортонормованим базисом. Крім того, нехай  $x=x_1e_1+\ldots x_ne_n$  та  $y=y_1e_1+\ldots +y_ne_n$  з  $x_i,y_i\in\mathbb{R}$  Оскільки  $\{e_i\}$  — ортонормований, то маємо:

$$\langle x, y \rangle = x_1 y_1 + \ldots + x_n y_n = \sum_{i=1}^n x_i y_i$$
 (1.2)

З іншого боку:

$$\begin{split} \langle f(x),f(y)\rangle &= \left\langle \sum_{i=1}^n x_i f(e_i), \sum_{i=1}^n y_i f(e_i) \right\rangle = \sum_{i,j=1}^n x_i y_j \left\langle f(e_i),f(e_j)\right\rangle \\ &= \sum_{i,j=1}^n x_i y_j \left\langle e_i,e_j \right\rangle \underset{\text{оскільки } \{e_i\} \text{ ортонормований}}{=} \sum_{i=1}^n x_i y_i \underset{\text{Згідно з 1.2}}{=} \left\langle x,y \right\rangle \end{split}$$

Отже f — ізометрія.

**Твердження 1.43.** Якщо  $\{e_i\}$  є ортонормованою базою, f ізометрія та  $A = M(f)_{e_i}$ , тоді  $A^T A = I = AA^T$ .

РОЗДІЛ 1. ЕВКЛІДОВІ ПРОСТОРИ

Доведення. Щоб довести це, ми використаємо пропозицію 1.29.

За визначенням ізометрії, маємо:

$$\begin{split} & \langle f(x), f(y) \rangle = \langle x, y \rangle \quad \forall x, y \in E \\ \Leftrightarrow & \underbrace{(AX)^T (AY)}_{\langle f(x), f(y) \rangle} = X^T A^T AY = \underbrace{X^T Y}_{\langle x, y \rangle} \\ \Leftrightarrow & A^T A = I \end{split}$$

**Твердження 1.44.** Якщо A є матрицею ізометрії в ортонормованому базисі, тоді  $det(A) = \pm 1$ 

**Доведення.** За пропозицією 1.43, маємо:  $A^T A = I$ , звідки:

$$det(A^TA) = det(I) = 1 \Rightarrow det(A)^2 = 1 \quad \text{(fo } det(A^T) = det(A))$$
 
$$\Rightarrow det(A) = \pm 1$$

**Інтуїція.** Ізометрія виконує обертання або відображення, вона зберігає відстані, тому площа (або об'єм) фігури, яка побудована на основі цього перетворення, дорівнює 1.

#### 1.6.2 Спряжений ендоморфізм

**Твердження 1.45.** Нехай E — евклідовий простір, а  $f \in End(E)$ . Існує один і лише один ендоморфізм  $f^* \in E$  такий, що

$$\langle f(x), y \rangle = \langle x, f^*(y) \rangle, \quad \forall x, y \in E$$

 $f^*$  називається **спряженим** до f.

Якщо  $\{e_i\}$  є ортонормованим базисом, а  $A=M(f)_{e_i}$ , тоді матриця  $A^*=M(f^*)_{e_i}$  є транспонованою до A, тобто  $A^*=A^T$ 

**Доведення.** Знову ж таки, для доказу ми використаємо пропозицію 1.29, яка є дуже корисною, тому я раджу вам опанувати цю концепцію.

Нехай  $\{e_i\}$  — ортонормований базис E, і позначимо

$$A = M(f)_{e_i}$$
  $A^* = M(f^*)_{e_i}$   $X = M(x)_{e_i}$   $Y = M(y)_{e_i}$ 

Оскільки ми знаходимося в ортонормованому базисі, твердження записується:

$$\underbrace{(AX)^TY}_{\langle f(x),y\rangle} = X^T A^T Y = \underbrace{X^T (A^*Y)}_{\langle x,f^*(y)\rangle} \quad \forall X,Y \in \mathcal{M}_{n,1}(\mathbb{R})$$

що означає, що  $A^* = A$ , і, крім того, демонструє єдиність такого спряженого.

#### 1.7 Ортогональні групи

Нагадування:

Визначення 1.46. Загальна лінійна група:

$$GL(n, \mathbb{R}) = \{ A \in \mathcal{M}_n(\mathbb{R}) \mid det(A) \neq 0 \}$$

це група всіх лінійних перетворень (квадратних матриць), які є оборотними (оскільки  $det(A) \neq 0$ ).

Визначення 1.47. Ортогональна група: Множина:

$$O(n,\mathbb{R}) := \{ A \in \mathcal{M}_n(\mathbb{R}) \mid A^T A = I \} = \{ A \in \mathcal{M}_n(\mathbb{R}) \mid AA^T = I \}$$

задовольняє наступні властивості:

- 1. якщо  $A, B \in O(n, \mathbb{R})$ , тоді  $AB \in O(n, \mathbb{R})$
- 2.  $I \in O(n, \mathbb{R})$
- 3. якщо  $A \in O(n, \mathbb{R})$  тоді  $A^{-1} \in O(n, \mathbb{R})$

Зокрема,  $O(n, \mathbb{R})$  є підгрупою  $GL(n, \mathbb{R})$  (група оборотних матриць) (див. визначення 1.46).

**Інтуїція.** Значення ортогональних матриць зрозуміле: вони представляють матриці ортогональних перетворень (ізометрії) в **ортонормованому базисі** (див. визн. 1.9).

Можна помітити, що якщо det(A)=1, ця ізометрія представляє обертання, крім того, ми маємо наступне визначення:

**Визначення 1.48.** Множина прямих ортогональних матриць (тобто таких, що det(A) = 1)

$$SO(n,\mathbb{R}) = \{ A \in O(n,\mathbb{R}) \mid det(A) = 1 \}$$

є групою, що називається спеціальною ортогональною групою.

Приклад 1.49. Матриця

$$A = \frac{1}{3} \begin{pmatrix} 2 & -1 & 2\\ 2 & 2 & -1\\ -1 & 2 & 2 \end{pmatrix}$$

є ортогональною. Можна перевірити, що  $A^TA = I$ , або достатньо показати, що  $c_1, c_2, c_3$  є ортонормованою сім'єю, тобто:

$$||c_i||^2 = 1$$
 та  $\langle c_i, c_i \rangle = 0$  якщо  $i \neq j$ 

Можна інтерпретувати A як матрицю перетворення f у канонічному базисі  $\{e_i\}$ , отже маємо:  $c_i = f(e_i)$ , згідно з пропозицією 1.42 f є ортогональним. Крім того, бачимо, що det(A) = +1. Отже, f є прямим ортогональним перетворенням.

**Твердження 1.50.** Матриця переходу від ортонормованого базису до ортонормованого базису  $\epsilon$  ортогональною матрицею.

**Доведення.** Я даю інтуїцію. Матриця переходу перетворює один базис на інший, вона переводить вектори базису, отже, вона перетворює базис БОН на вектори базису БОН, тому, згідно з пропозицією 1.42, ця матриця є ортогональною.

## розділ **2**

#### Визначники

Цей розділ  $\epsilon$  скоріше шпаргалкою з детермінантів, оскільки я не буду наводити докази, а лише корисні властивості, приклади та інтуїцію.

**Визначення 2.1.** Нехай  $A=[a_{i,j}]\in\mathcal{M}_n(\mathbb{R})$  квадратна матриця  $n\times n$ , тоді:

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{signe}(\sigma) \cdot \prod_{i=1}^n a_{i,\sigma(i)}$$

де

- $S_n$  це група всіх перестановок  $\{1,\ldots,n\}$
- $\operatorname{signe}(\sigma)$  це знак перестановки

Це визначення  $\epsilon$  дуже формальним, тому в кінці цього розділу ми переформулюємо це визначення. Спочатку ми вивчимо властивості детермінантів:

#### 2.1 Найбільш важливі властивості

**Твердження 2.2.** властивості визначника. Для цієї пропозиції, ми позначаємо  $\det(c_1,\ldots,c_n)$  визначник, де  $\forall i,\ r_i$  і  $\forall i,\ y_i$  представляють стовпець (або вектор-стовпець). І  $\forall i,\lambda_i\in\mathbb{R}$ .

1. Визначник одиничної матриці дорівнює 1:

$$\det(I_n) = 1$$

2. Визначник матриці рангу 1 є її єдиним елементом:

$$\det([a_{1,1}]) = a_{1,1}$$
 де  $a_{1,1} \in \mathbb{R}$ 

3. Лінійність 1:

$$\det(r_1,\ldots,r_i+y_i,\ldots,r_n)=\det(r_1,\ldots,r_i,\ldots,r_n)+\det(r_1,\ldots,y_i,\ldots,r_n)$$

Лінійність 2:

$$\det(r_1,\ldots,\lambda_i r_i,\ldots,r_n) = \lambda_i \det(r_1,\ldots,r_i,\ldots,r_n)$$

Примітка. Ось чому:

$$\det(\lambda A) = \lambda^n \det(A)$$

5. Однакові стовпці: Припустимо, що  $i \neq j$  і  $c_i = c_j$  тоді:

$$\det(c_1,\ldots,c_i,\ldots,c_i,\ldots,c_n)=0$$

Якщо  $\epsilon$  два однакових стовиці, тоді det дорівню $\epsilon$  0.

6. Переміщення стовпців:

$$\det(c_1,\ldots,c_i,\ldots,c_j,\ldots,c_n) = -\det(c_1,\ldots,\underbrace{c_j,\ldots,c_i}_{\text{permutation}},\ldots,c_n)$$

Інакше кажучи, перестановка стовпців змінює знак.

7. Визначник помножених матриць: Нехай  $A, B \in \mathcal{M}_n(\mathbb{R})$ 

$$\det(AB) = \det(A)\det(B)$$

8. Визначник транспонованої матриці: Нехай  $A \in \mathcal{M}_n(\mathbb{R})$ 

$$\det(A^T) = \det(A)$$

## 2.2 Розкладання відносно рядка/стовпця

Визначення 2.3. Soit  $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$  une matrice carrée, i.e:

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,i-1} & a_{1,i} & a_{1,i+1} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,i-1} & a_{2,i} & a_{2,i+1} & \dots & a_{2,n} \\ \vdots & \vdots \\ a_{j-1,1} & a_{j-1,2} & \dots & a_{j-1,i-1} & a_{j-1,i} & a_{j-1,i+1} & \dots & a_{j-1,n} \\ a_{j,1} & a_{j,2} & \dots & a_{j,i-1} & a_{j,i} & a_{j,i+1} & \dots & a_{j,n} \\ a_{j+1,1} & a_{j+1,2} & \dots & a_{j+1,i-1} & a_{j+1,i} & a_{j+1,i+1} & \dots & a_{j+1,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,i-1} & a_{n,i} & a_{n,i+1} & \dots & a_{n,n} \end{bmatrix}$$

Alors,  $A_{j,i}$  est une matrice où la ligne j et la colonne i sont supprimé, i.e.

$$A_{j,i} = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,i-1} & a_{1,i+1} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,i-1} & a_{2,i+1} & \dots & a_{2,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{j-1,1} & a_{j-1,2} & \dots & a_{j-1,i-1} & a_{j-1,i+1} & \dots & a_{j-1,n} \\ a_{j+1,1} & a_{j+1,2} & \dots & a_{j+1,i-1} & a_{j+1,i+1} & \dots & a_{j+1,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,i-1} & a_{n,i+1} & \dots & a_{n,n} \end{bmatrix} \in \mathcal{M}_{n-1}(\mathbb{R})$$

Це дозволяє нам розкласти визначник відносно рядка або стовпця:

**Твердження 2.4.** Нехай  $A=(a_{i,j})\in\mathcal{M}_n(\mathbb{R})$  квадратна матриця і нехай  $1\leq k\leq n$ 

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+k} a_{k,i} \det(A_{k,i})$$

 $\epsilon$  обчисленням детермінанта відносно  $k^{\text{го}}$  рядка.

#### Приклад 2.5. Нехай

$$A = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 9 & 8 \\ 3 & 7 & 6 \end{bmatrix} \in \mathcal{M}_3(\mathbb{R})$$



Рис. 2.1: Розклад по другому рядку

Тому:

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+2} a_{2,i} \det(A_{2,i})$$

$$= (-1)^{1+2} \cdot a_{2,1} \cdot \det(A_{2,1}) + (-1)^{2+2} \cdot a_{2,2} \cdot \det(A_{2,2}) + (-1)^{3+2} \cdot a_{2,3} \cdot \det(A_{2,3})$$

$$= (-1)^{1+2} \cdot 2 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 6 \end{vmatrix} + (-1)^{2+2} \cdot 9 \cdot \begin{vmatrix} 1 & 5 \\ 3 & 6 \end{vmatrix} + (-1)^{3+2} \cdot 8 \cdot \begin{vmatrix} 1 & 4 \\ 3 & 7 \end{vmatrix}$$

$$= (-1) \cdot 2 \cdot (-11) + 1 \cdot 9 \cdot (-9) + (-1) \cdot 8 \cdot (-5)$$

$$= 22 - 81 + 40$$

$$= -19$$

**Твердження 2.6.** Нехай  $A=(a_{i,j})\in\mathcal{M}_n(\mathbb{R})$  квадратна матриця і нехай  $1\leq k\leq n$ 

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+k} a_{i,k} \det(A_{i,k})$$

 $\epsilon$  обчисленням визначника відносно  $k^{\mathrm{i} \mathrm{m}}$  стовпця.

#### Приклад 2.7. Нехай

$$A = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 9 & 8 \\ 3 & 7 & 6 \end{bmatrix} \in \mathcal{M}_3(\mathbb{R})$$

$$A_{1,2} = \begin{pmatrix} 1 & 4 & 5 \\ 2 & 9 & 8 \\ 3 & 7 & 6 \end{pmatrix} \Rightarrow \begin{pmatrix} 2 & 8 \\ 3 & 6 \end{pmatrix}$$

$$A_{2,2} = \begin{pmatrix} 1 & 4 & 5 \\ 2 & 9 & 8 \\ 3 & 7 & 6 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 5 \\ 3 & 6 \end{pmatrix}$$

$$A_{3,2} = \begin{pmatrix} 1 & 4 & 5 \\ 2 & 9 & 8 \\ 3 & 7 & 6 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 5 \\ 2 & 8 \end{pmatrix}$$

Рис. 2.2: Розклад за другою колонкою

Отже:

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+2} a_{i,2} \det(A_{i,2})$$

$$= (-1)^{1+2} \cdot a_{1,2} \cdot \det(A_{1,2}) + (-1)^{2+2} \cdot a_{2,2} \cdot \det(A_{2,2}) + (-1)^{3+2} \cdot a_{3,2} \cdot \det(A_{3,2})$$

$$= (-1)^{1+2} \cdot 4 \cdot \begin{vmatrix} 2 & 8 \\ 3 & 6 \end{vmatrix} + (-1)^{2+2} \cdot 9 \cdot \begin{vmatrix} 1 & 5 \\ 3 & 6 \end{vmatrix} + (-1)^{3+2} \cdot 7 \cdot \begin{vmatrix} 1 & 5 \\ 2 & 8 \end{vmatrix}$$

$$= (-1) \cdot 4 \cdot (-12) + 1 \cdot 9 \cdot (-9) + (-1) \cdot 7 \cdot (-2)$$

$$= 48 - 81 + 14$$

$$= -19$$

## 2.3 Визначник трикутної матриці

**Наслідок 2.8.** Визначник трикутної матриці є добутком її діагональних елементів. Тобто, нехай трикутна матриця

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n-1} & a_{1,n} \\ 0 & a_{2,2} & \dots & a_{2,n-1} & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & a_{n,n} \end{bmatrix}$$

тоді

$$\det(A) = a_{1,1} \cdot a_{2,2} \cdot \ldots \cdot a_{n,n}$$

Приклад 2.9. Нехай

$$A = \begin{bmatrix} 1 & 4 & 5 \\ 0 & 9 & 8 \\ 0 & 0 & 6 \end{bmatrix} \in \mathcal{M}_3(\mathbb{R})$$

Розгорнемо цей визначник відносно першого стовпця:

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+2} a_{i,2} \det(A_{i,2})$$

$$= (-1)^{1+1} \cdot a_{1,1} \cdot \det(A_{1,1}) + (-1)^{2+1} \cdot a_{2,1} \cdot \det(A_{2,1}) + (-1)^{3+1} \cdot a_{3,1} \cdot \det(A_{3,1})$$

$$= (-1)^{2} \cdot 1 \cdot \begin{vmatrix} 9 & 8 \\ 0 & 6 \end{vmatrix} + \underbrace{(-1)^{3} \cdot 0 \cdot \begin{vmatrix} 4 & 5 \\ 0 & 6 \end{vmatrix}}_{=0} + \underbrace{(-1)^{4} \cdot 0 \cdot \begin{vmatrix} 4 & 5 \\ 9 & 8 \end{vmatrix}}_{=0}$$

$$= \underbrace{1}_{=a_{1,1}} \cdot \begin{vmatrix} 9 & 8 \\ 0 & 6 \end{vmatrix}$$

$$= \det(\begin{bmatrix} 9 & 8 \\ 0 & 6 \end{bmatrix} =: B)$$

$$= (-1)^{1+1} \cdot b_{1,1} \cdot \det(B_{1,1}) + (-1)^{2+1} \cdot b_{2,1} \cdot \det(B_{2,1}) \quad \text{ розклад відносно першого стовиця}$$

$$= 1 \cdot \underbrace{9}_{a_{2,2}} \cdot |6| + \underbrace{(-1) \cdot 0 \cdot |8|}_{=0}$$

$$= \underbrace{1}_{=a_{1,1}} \cdot \underbrace{9}_{=a_{2,2}} \cdot \underbrace{6}_{=a_{3,3}}$$

## 2.4 Коматриця та приєднана матриця

Спершу, нагадаємо визначення  $A_{i,j}$ . Це квадратна матриця, де  $i^{\text{ий}}$  рядок і  $j^{\text{ий}}$  стовпець видалено. (Див. визначення 2.3).

**Визначення 2.10.** Нехай квадратна матриця  $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ . Позначимо

$$b_{i,j} = (-1)^{i+j} \det(A_{i,j})$$

Потім, позначимо матрицю

$$N = \begin{bmatrix} b_{1,1} & \dots & b_{1,n} \\ \vdots & \ddots & \vdots \\ b_{n,1} & \dots & b_{n,n} \end{bmatrix} = \operatorname{Com}(A)$$

Матриця N називається **коматрицею** матриці A. Тоді, **спряжена матриця** матриці A визначається як транспонована коматриця:

$$A^* = N^T = \begin{bmatrix} b_{1,1} & \dots & b_{n,1} \\ \vdots & \ddots & \vdots \\ b_{1,n} & \dots & b_{n,n} \end{bmatrix}$$

**Теорема 2.11.** Нехай  $A \in \mathcal{M}_n \mathbb{R}$  квадратна матриця та  $A^*$  її спряжена матриця, тоді маємо:

$$A^*A = AA^* = \det(A)I_n = \begin{bmatrix} \det(A) & 0 & 0 & \dots & 0 & 0 \\ 0 & \det(A) & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & \det(A) \end{bmatrix}$$

Корисність такої матриці?

## 2.5 Обернена матриця

**Теорема 2.12.** Нехай  $A\in\mathcal{M}_n(\mathbb{R})$  квадратна матриця така що  $\det(A)\neq 0,$  тоді:

$$A^{-1} = \frac{1}{\det(A)} \cdot A^*$$

 $\epsilon$  оберненою матрицею до A.

**Наслідок 2.13.** Якщо  $A\in\mathcal{M}_n(\mathbb{R})$  оборотна квадратна матриця, тоді:

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

# **Г**розділ **3**

### Зведення ендоморфізмів

Пишучи цей розділ, я був натхненний відео каналу 3blue1brown які я вам раджу подивитися, принаймні плейлист, що стосується лінійної алгебри. Другим джерелом натхнення була книга Joseph Grifone [2].

Примітка 3.1. У цьому розділі багато використовуються наступні терміни:

- власний вектор
- власне значення
- власний простір

Термін власний є еквівалентом терміну айген (eigen), який може бути використаний в іншій літературі. Отже, власний вектор позначає айген вектор (eigen vector), тощо.

#### 3.1 Вступ

У попередньому розділі ми вивчали поняття ортонормального базису, корисність якого полягає в: спрощенні обчислення координат у базисі та обчисленні проекції. Це поняття  $\varepsilon$  одним з перших кроків до вивчення SVD  $^1$  що застосовується в кількох галузях, наприклад: зменшення розмірів зображень.

У цьому розділі ми продовжуємо вивчення основ, щоб зрештою зрозуміти SVD. Ми вивчимо редукцію ендоморфізмів, *щоб бути точнішим* діагоналізація та тригоналізація. Для початку: невелике завдання:

Вправа. Обчислити

$$\begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}^{15} = \underbrace{\begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \cdot \ldots \cdot \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}}_{15 \text{ pasib}}$$

Це не здається дуже легким, чи не так? Наприкінці цього розділу ми знайдемо спосіб спростити обчислення і зрештою розв'яжемо цю вправу.

З лінійної алгебри відомо, що матрицю відображення можна представити в різних базисах, тобто нехай  $\{e_i\}$  — базис E і f — відображення. Тоді це відображення в базисі  $\{e_i\}$  представлено:

$$A = M(f)_{e_i} = ||f(e_1), \dots, f(e_n)||$$

Нехай  $\{e_i'\}$  — інший базис E, тоді ми можемо представити відображення f і в цьому базисі, позначимо:  $P = P_{e_i \to e_i'}$  — матриця переходу від базису  $\{e_i\}$  до базису  $\{e_i'\}$ 

$$A' = M(f)_{e'_i} = P^{-1}AP = ||f(e'_1), \dots, f(e'_n)||_{e'_i}$$

 $<sup>^1\</sup>mbox{Posknag}$  за сингулярними значеннями

**Визначення 3.2.** Матриця  $A \in \mathbf{діагоналізованою}$  якщо існує подібна матриця A' діагональна:

$$A' = \begin{bmatrix} a_{1,1} & 0 & \dots & 0 \\ 0 & a_{2,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & a_{n,n} \end{bmatrix}$$

**Визначення 3.3.** Матриця A є **тригоналізованою** якщо існує подібна матриця A' трикутна (верхня/нижня)

$$A' = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ 0 & a_{2,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n-1,n} \\ 0 & \dots & 0 & a_{n,n} \end{bmatrix} \text{ afo } A' = \begin{bmatrix} a_{1,1} & 0 & \dots & 0 \\ a_{2,1} & a_{2,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ a_{n,1} & \dots & a_{n,n-1} & a_{n,n} \end{bmatrix}$$

Отже, проблеми цього розділу, які ми будемо вирішувати, такі:

- 1. Визначити, чи є ендоморфізм f діагоналізованим/тригоналізованим, тобто чи існує така матриця A'.
- 2. Визначити матрицю переходу P та матрицю A'.

У всьому розділі припускається, що векторний простір E має скінченну розмірність.

## 3.2 Власні вектори

Почнемо з уточнення поняття лінійного відображення та його матриці. Для цього візьмемо матрицю з вправи початку розділу:

$$A = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

Ця матриця перетворює векторний простір, який ми їй надаємо, або, спрощуючи, вона перетворює кожен вектор векторного простору. Візьмемо вектор  $v_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ , застосувавши A, отримаємо:

$$Av_3 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$



Зауважимо, що вектор  $Av_3$  більше не розташований на одній лінії з вектором  $v_3$ , що логічно, оскільки якби вектори залишалися на одній лінії після перетворення, це не мало б сенсу. Однак іноді бувають випадки, коли вектор, застосований до матриці, залишається на одній лінії, наприклад, вектор  $v_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ , причому

$$Av_2 = \begin{pmatrix} -2\\2 \end{pmatrix} = 2v_2$$

 $<sup>\</sup>overline{{}^a A}$  подібна до A' якщо існує матриця переходу P така що  $A' = P^{-1} A P$ 



I це не тільки випадок вектора  $\binom{-1}{1}$ , взявши будь-який вектор, породжений  $v=\binom{-1}{1}$ , ми отримаємо Av=2v. Такі вектори v і скаляри (тут: 2) називаються власними векторами та власними значеннями відповідно. Тоді маємо формальне визначення:

**Визначення 3.4.** Нехай f — ендоморфізм у E, а вектор  $v \in E$  називається **власним вектором** для f, якщо:

- 1.  $v \neq 0$
- 2. Існує дійсне число  $\lambda$  таке, що  $f(v) = \lambda v$

Скаляр  $\lambda \in \mathbb{R}$  називається власним значенням що відповідає v.

**Інтуїція.** Власні вектори — це вектори, які під дією f не змінюють напрямків, лише довжину (і навіть не завжди). Це спрощує обчислення таких векторів. Чи можете ви обчислити  $A^3v_3$ ? Не дуже легко, а вектор  $A^3v_2$ ?

$$Av_2 = 2v_2 \Rightarrow A^2v_2 = 2 \cdot 2v_2 = 4v_2 \Rightarrow A^3v_2 = 2 \cdot 4v_2 = 8v_2 = \begin{pmatrix} -8\\8 \end{pmatrix}$$

Це круто, чи не так?

Натомість, це не єдина корисність власних векторів, і ми повернемося сюди, щоб обговорити це, але спочатку, як знайти такі вектори?

## 3.3 Пошук власних значень

Ми шукаємо вектори, які під дією ендоморфізму f масштабуються з коефіцієнтом  $\lambda \in \mathbb{R}$ , тоді ми повинні розв'язати це рівняння:

$$f(v) = \lambda v$$
  $\Leftrightarrow$   $Av = \lambda v$  у матричній нотації  $\Leftrightarrow$   $Av = \lambda(Iv)$  де  $I$  є одиничною матрицею  $\Leftrightarrow$   $Av - \lambda Iv = 0$   $\Leftrightarrow$   $(A - \lambda I)v = 0$ 

Отже, ми повинні вивчити застосування  $(A-\lambda I)$  і пов'язати його з поняттям визначників. Нагадаємо: якщо визначник матриці не дорівнює нулю, ця матриця (тобто ендоморфізм) є ін'єктивною. У нашому випадку, якщо  $\det(A-\lambda I)$  дорівнював нулю, єдиний вектор v, який давав би  $(A-\lambda I)v=0$ , був би нульовим вектором v=0 оскільки  $(A-\lambda I)$  є лінійним і (як ми припустили) ін'єктивним.

Навпаки, згідно з визначенням, власні вектори не є нульовими, тоді ін'єктивний випадок не підходить, тому для того, щоб мати власні вектори, застосування  $(A - \lambda I)$  не повинно бути ін'єктивним, що

рівносильно тому, щоб сказати, що  $\det(A - \lambda I) = 0$ . Отже, ми повинні обчислити наступний визначник:

$$\det(A - \lambda I) = \det \begin{pmatrix} \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \dots & \dots & \dots & \dots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{bmatrix} - \begin{bmatrix} \lambda & 0 & \dots & 0 \\ 0 & \lambda & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda \end{bmatrix} \end{pmatrix} = \begin{vmatrix} a_{1,1} - \lambda & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} - \lambda & \dots & a_{2,n} \\ \dots & \dots & \dots & \dots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} - \lambda \end{vmatrix}$$

Розкладаючи цей визначник ми отримуємо рівняння типу:

$$(-1)^n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0$$

корінням якого є власні значення f (нагадаємо: власне значення — це фактор  $\lambda$ ). Поки що не надто зосереджуйтесь на цьому рівнянні, ми до нього ще повернемося.

**Твердження 3.5.** Нехай f — ендоморфізм у скінченновимірному векторному просторі E розмірності n, а A — матриця, що представляє f у базисі E. Власні значення f є коренями полінома:

$$P_f(\lambda) = \det(A - \lambda I)$$

Цей поліном називається характеристичним поліномом f.

**Визначення 3.6.** Множина власних значень f називається **спектром** f і позначається  $\operatorname{Sp}_K(f)$  або  $\operatorname{Sp}_K(A)$ , якщо A — матриця f.

Для уточнення:

**Приклад 3.7.** Нехай f ендоморфізм в  $\mathbb{R}^2$  матриця представлення якого в канонічному базисі  $\epsilon$ :

$$\begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

Обчислимо його власні значення:

$$\begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} v = \lambda v$$

$$\Leftrightarrow \qquad \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} v - \lambda I v = 0$$

$$\Leftrightarrow \qquad \left( \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} - \lambda I \right) v = 0$$

$$\Rightarrow \qquad \det \left( \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} - \lambda I \right) = 0$$

$$\Rightarrow \qquad \det \left( \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} - \lambda \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \right) = 0$$

$$\Rightarrow \qquad \det \left( \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} - \lambda \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \right) = 0$$

$$\Rightarrow \qquad \det \left( \begin{bmatrix} 3 - \lambda & 1 \\ 0 & 2 - \lambda \end{bmatrix} \right) = 0$$

Добре видно, що розв'язки:  $\lambda_1=3$  та  $\lambda_2=2$ 

Ми можемо знайти власні значення, однак, ми шукали вектори власні. І ось ми маємо:

#### 3.4 Пошук власних векторів

Припустимо, для  $q \in \mathbb{N}^*$  ми вже знайшли q власні значення матриці  $\{\lambda_1, \dots, \lambda_q\}$ , щоб знайти власні вектори, нам залишається знайти базис:

$$\ker(A - \lambda_i I) \quad \forall i \in \{1, \dots, q\}$$

що еквівалентно:

$$(A - \lambda_i I) v = 0 \quad \forall i \in \{1, \dots, q\}$$

Приклад 3.8. Ще раз матриця

$$A = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

в канонічному базисі  $\mathbb{R}^2$ . Ми вже знайшли її власні вектори:  $\lambda_1=3$  та  $\lambda_2=2$ . Тоді, шукаємо вектори:

$$\begin{bmatrix} 3 - \lambda_1 & 1 \\ 0 & 2 - \lambda_1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 - 3 & 1 \\ 0 & 2 - 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0 \Rightarrow \begin{cases} y = 0 \\ -y = 0 \\ x \in \mathbb{R} \end{cases}$$

Отже  $\ker(A-3I)=\binom{x}{0}=\mathrm{Vect}(\binom{1}{0}).$  Ось, наш перший власний вектор:  $\binom{1}{0}.$  Для другого:

$$\begin{bmatrix} 3-\lambda_2 & 1 \\ 0 & 2-\lambda_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3-2 & 1 \\ 0 & 2-2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0 \Rightarrow \left\{ x+y=0 \quad \Rightarrow \left\{ x=-y \right\} \right\} = 0$$

Отже  $\ker(A-2I) = \binom{-y}{y} = y \binom{-1}{1} = \operatorname{Vect}(\binom{-1}{1})$  і ось другий власний вектор:  $\binom{-1}{1}$  (це був наш вектор  $v_2$  на початку розділу).

Нарешті, корисна властивість:

**Твердження 3.9.** Нехай  $A \in \mathcal{M}_n(\mathbb{R})$  з його власними векторами:  $\{\lambda_1, \dots, \lambda_n\}$ , тоді:

$$\operatorname{Tr}(A) = \lambda_1 + \ldots + \lambda_n$$
  
 $\det(A) = \lambda_1 \cdot \ldots \cdot \lambda_n$ 

## 3.5 Діагоналізовані ендоморфізми

Повернімося до користі власних векторів. Нехай f ендоморфізм простору E основою якого є  $\{e_1, \ldots, e_n\}$  та  $\mathrm{Mat}_{e_i}(f) = A$  і матриця f у цьому базисі. Розглянемо наступний приклад:

**Приклад 3.10.** Маємо:  $A = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$  у канонічному базисі  $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$  та  $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ . Нагадаємо, що ми знайшли два власні вектори:

$$\begin{cases} v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ v_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \end{cases}$$

Зауважимо, що ці два вектори є лінійно незалежними і, отже, утворюють базис для  $\mathbb{R}^2$ . Спробуємо змінити базис для A, маючи два способи:

1. Можна обчислити координати  $f(v_1)$  та  $f(v_2)$  у базисі  $\{v_1, v_2\}$ , маємо:

$$f(v_1) = 3v_1 = 3 \cdot v_1 + 0 \cdot v_2$$
  
$$f(v_2) = 2v_2 = 0 \cdot v_1 + 2 \cdot v_2$$

I тоді 
$$\mathrm{Mat}_{v_i}(f) = \|f(v_1), f(v_2)\|_{v_i} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$$

2. Можна обчислити матрицю  $P = P_{e_i \to v_i}$  переходу від базису  $\{e_i\}$  до базису  $\{v_i\}$  та вивести з неї матрицю f у новому базисі. Маємо:

$$\begin{cases} v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1 \cdot e_1 + 0 \cdot e_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}_{e_i} \\ v_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} = -1 \cdot e_1 + 1 \cdot e_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}_{e_i} \end{cases}$$

отже  $P=\begin{bmatrix}1 & -1\\0 & 1\end{bmatrix}$  та  $P^{-1}=\begin{bmatrix}1 & 1\\0 & 1\end{bmatrix}$  (ви можете перевірити обчислення). І отже:

$$A' = P^{-1}AP = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \underbrace{\begin{bmatrix} 3 & -2 \\ 0 & 2 \end{bmatrix}}_{AB} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$$

І ось, магія, ми знайшли діагональну матрицю.

Потім, узагальнимо те, що ми зробили.

**Визначення 3.11.** Нехай  $\lambda \in K$ , позначимо:

$$E_{\lambda} := \{ v \in E \mid f(v) = \lambda v \}$$

 $E_{\lambda}$  є векторним простором E, який називається власним простором, що відповідає  $\lambda$ .

Примітка 3.12. 1. Якщо  $\lambda$  не є власним значенням f, тому  $E_{\lambda} = \{0\}$ 

2. Якщо  $\lambda$  є власним значенням, тоді:

 $E_{\lambda} = \{$  власні вектори, асоційовані з  $\lambda\} \cup \{0\}$  та  $\dim E_{\lambda} \geq 1$ 

**Твердження 3.13.** Нехай  $\lambda_1, \ldots, \lambda_p$  — попарно різні скаляри. Тоді власні простори  $E_{\lambda_1}, \ldots, E_{\lambda_p}$  знаходяться в прямій сумі. Інакше кажучи, якщо  $\mathcal{B}_1, \ldots, \mathcal{B}_p$  є базисами  $E_{\lambda_1}, \ldots, E_{\lambda_p}$ , то сім'я  $\{\mathcal{B}_1, \ldots, \mathcal{B}_p\}$  є лінійно незалежною (але не обов'язково породжуючою E).

**Доведення.** Нехай  $E_{\lambda_1}, \ldots, E_{\lambda_p}$  — власні підпростори, асоційовані з власними значеннями  $\lambda_1, \ldots, \lambda_p$  ендоморфізму f векторного простору E. Ми повинні показати, що ці підпростори знаходяться в прямій сумі, тобто, якщо вектор належить їхньому перетину, то він дорівнює нулю.

Візьмемо елемент v, що належить їхній сумі, тобто, він може бути записаний у формі:

$$v = v_1 + v_2 + \dots + v_p$$

де  $v_i \in E_{\lambda_i}$  для всіх i.

Оскільки кожен  $v_i$  є власним вектором для f, асоційованим з  $\lambda_i,$  маємо:

$$f(v_i) = \lambda_i v_i$$
.

Застосуємо f до суми:

$$f(v) = f(v_1 + v_2 + \dots + v_p) = f(v_1) + f(v_2) + \dots + f(v_p).$$

Використовуючи лінійність f, це дає:

$$f(v) = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_p v_p.$$

Проте, v також є комбінацією цих самих векторів:

$$v = v_1 + v_2 + \dots + v_p.$$

Отже, перегрупувавши:

$$(\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_p v_p) - (v_1 + v_2 + \dots + v_p) = 0.$$

Що дає:

$$(\lambda_1 - 1)v_1 + (\lambda_2 - 1)v_2 + \dots + (\lambda_p - 1)v_p = 0.$$

Факторизуємо кожен член:

$$(\lambda_1 - \lambda)v_1 + (\lambda_2 - \lambda)v_2 + \dots + (\lambda_p - \lambda)v_p = 0.$$

Проте,  $\lambda_i$  вважаються попарно різними. З цього випливає, що коефіцієнти є різними, і що сума дорівнює нулю лише тоді, коли всі  $v_i$  дорівнюють нулю (оскільки власні підпростори, як правило, знаходяться в прямій сумі).

Таким чином, v = 0, що доводить, що власні підпростори знаходяться в прямій сумі.

Отже, власні простори завжди знаходяться в прямій сумі, але не обов'язково дорівнюють E:

$$E_{\lambda_1} \oplus \ldots \oplus E_{\lambda_p} \subset_{\neq} E$$

що маємо, якщо:

$$\dim E_{\lambda_1} + \ldots + \dim E_{\lambda_p} < \dim E$$

**Теорема 3.14.** Нехай f ендоморфізм в E і  $\lambda_1, \ldots, \lambda_p$  його власні значення, тоді наступні властивості  $\epsilon$  еквівалентними:

- 1. f діагоналізовний
- 2. E є прямою сумою своїх власних просторів:  $E=E_{\lambda_1}\oplus\ldots\oplus E_{\lambda_p}$
- 3.  $\dim E_{\lambda_1} + \ldots + \dim E_{\lambda_p} = \dim E$

**Наслідок 3.15.** Якщо f є ендоморфізмом E з dim E=n і f має n власних значень, попарно відмінних, то f є діагоналізованим.

Але оскільки власні значення є коренями характеристичного многочлена (див. проп. 3.5) на:

**Твердження 3.16.** Нехай f ендоморфізм у E та  $\lambda$  власне значення порядку  $\alpha$  (тобто  $\alpha$   $\varepsilon$  коренем  $P_f(\lambda)$  порядку  $\alpha$ , тобто  $P_f(\lambda) = (X - \lambda)^{\alpha} Q(X)$ ). Тоді:

$$\dim E_{\lambda} \leq \alpha$$

**Теорема 3.17.** Нехай f — ендоморфізм у E з dim E=n. Тоді f є діагоналізованим тоді й лише тоді, якщо:

1.  $P_f(X)$  є розщеплюваним, тобто:

$$P_f(X) = (-1)^n (X - \lambda_1)^{\alpha_1} \cdot \ldots \cdot (X - \lambda_p)^{\alpha_p}$$

 $(\lambda_i \ \epsilon \$ коренями, отже, власними значеннями) і  $\alpha_1 + \ldots + \alpha_p = n$ . Тоді, якщо сума кратностей коренів дорівнює розмірності векторного простору.

2. Розмірності власних просторів є максимальними, тобто  $\forall i \in \{1,\dots,p\}$ 

$$\dim E_{\lambda_i} = \alpha_i$$

**Інтуїція.** Не завжди легко зрозуміти ідею через характеристичні поліноми, тому інший спосіб побачити пе:

- 1. Знаходимо власні значення:  $\lambda_1, ..., \lambda_p$
- 2. Потім знаходимо власні підпростори:  $E_{\lambda_i} = \ker(f \lambda_i I)$
- 3. Сумуємо розмірності:  $\dim E_{\lambda_1} + \ldots + \dim E_{\lambda_p} =: d$ .
  - Якщо  $d = \dim E$  тобто якщо сума розмірностей дорівнює розмірності простору E, власні підпростори породжують E і отже f діагоналізовний (бо його матриця може бути записана в базисі цих власних векторів).
  - ullet В іншому випадку кількості лінійних власних векторів недостатнью, щоб породити E.

### 3.6 Застосунки

#### 3.6.1 Обчислення потужності

Отже, ми повернулися туди, звідки почали, нагадую вам вправу з початку розділу:

Вправа. Обчислити

$$\begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}^{15} = \underbrace{\begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \cdot \dots \cdot \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}}_{15 \text{ pasis}}$$

Нагадаємо, що власні вектори A це:

$$v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 ta  $v_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ 

які є лінійно незалежними та породжують  $\mathbb{R}^2$ , отже, утворюють базис  $\mathbb{R}^2$ , тоді ми можемо записати в цьому новому базисі і, як ми вже знайшли:

$$A' = P^{-1}AP = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$$

в базисі  $(v_1, v_2)$  з матрицею переходу:

$$P = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \text{ ra } P^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Крім того, множачи A' на A', маємо:

$$A' \cdot A' = (P^{-1}AP)(P^{-1}AP) = P^{-1}A^2P = A'^2$$

звідки

$$A'^n = P^{-1}A^nP \Rightarrow PA'^nP^{-1} = PP^{-1}A^nPP^{-1} = A^n$$

Це дає нам можливість спочатку обчислити степінь A':

$$A'^{15} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}^{15} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}^{13} = \begin{bmatrix} 3^2 & 0 \\ 0 & 2^2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}^{13} = \begin{bmatrix} 3^{15} & 0 \\ 0 & 2^{15} \end{bmatrix}$$

Ось, набагато простіше, ніж обчислювати  $A^15$  безпосередньо, тоді нам залишається повернутися до канонічного базису:

$$P\begin{bmatrix} 3^{15} & 0 \\ 0 & 2^{15} \end{bmatrix} P^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3^{15} & 0 \\ 0 & 2^{15} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3^{15} & 3^{15} - 2^{15} \\ 0 & 2^{15} \end{bmatrix}$$

Що дуже корисно в діагональних матрицях, так це те, що степінь такої матриці дорівнює тій самій матриці з діагональними елементами, піднесеними до степеня, тобто:

$$A' = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} \Rightarrow A'^n = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}^n = \begin{bmatrix} \lambda_1^n & 0 & \dots & 0 \\ 0 & \lambda_2^n & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n^n \end{bmatrix}$$

Узагальнимо: Якщо  $A \in \mathcal{M}_n(K)$  діагоналізована (тобто існують P та A' такі, що  $A' = P^{-1}AP$ ), то:

$$A^{n} = P(A^{\prime n})P^{-1} = P \begin{bmatrix} \lambda_{1}^{n} & 0 & \dots & 0 \\ 0 & \lambda_{2}^{n} & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_{n}^{n} \end{bmatrix} P^{-1}$$

#### 3.6.2 Розв'язання системи рекурентних послідовностей

Нехай  $(u_n)_{n\in\mathbb{N}}$  і  $(v_n)_{n\in\mathbb{N}}$  дві послідовності такі що:

$$\begin{cases} u_{n+1} = u_n - v_n \\ v_{n+1} = 2u_n + 4v_n \end{cases}$$
 (3.1)

 $3 u_0 = 2 i v_n = 1$ . Покладемо  $X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$ , тоді система 3.1 записується як:

$$X_{n+1} = AX_n$$
  $3$   $A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$ 

за рекурентною формулою отримуємо:

$$X_n = A^n X_0 \quad \text{ 3 } X_0 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Отже, ми зводимося до обчислення степеня матриці:  $A^n$ , що ми бачили в розділі 3.6.1 . Ви можете перевірити, що існує  $P \in GL_2(\mathbb{R})$  така що

$$P = \begin{pmatrix} -1 & 1 \\ 1 & -2 \end{pmatrix} \quad 3 \quad A = P \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} P^{-1}$$

і тоді

$$A^n = P \begin{pmatrix} 2^n & 0 \\ 0 & 3^n \end{pmatrix} P^{-1} = \begin{pmatrix} -1 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 2^n & 0 \\ 0 & 3^n \end{pmatrix} \begin{pmatrix} -2 & -1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 2 \cdot 2^n - 3^n & 2^n - 3^n \\ -2 \cdot 2^n + 2 \cdot 3^n & -2^n + 2 \cdot 3^n \end{pmatrix}$$

Звідси

$$\begin{pmatrix} u_n \\ v_n \end{pmatrix} = \begin{pmatrix} 2 \cdot 2^n - 3^n & 2^n - 3^n \\ -2 \cdot 2^n + 2 \cdot 3^n & -2^n + 2 \cdot 3^n \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \cdot 2^n - 2 \cdot 3^n + 2^n - 3^n \\ -4 \cdot 2^n + 4 \cdot 3^n - 2^n + 2 \cdot 3^n \end{pmatrix}$$

тобто:

$$\begin{cases} u_n = 5 \cdot 2^n - 3 \cdot 3^n \\ v_n = -5 \cdot 2^n + 6 \cdot 3^n \end{cases}$$

#### 3.6.3 Розв'язання диференціальних рівнянь

Нехай потрібно розв'язати диференціальну систему

$$\begin{cases} \frac{dx_1}{dt} = a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ \frac{dx_n}{dt} = a_{n1}x_1 + \dots + a_{nn}x_n \end{cases}$$

з  $a_{ij} \in \mathbb{R}$  та  $x_i : \mathbb{R} \to \mathbb{R}$  диференційовні.

У матричній формі система записується:

$$\frac{dX}{dt} = AX$$
, де  $A = (a_{ij}), \quad X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$  (3.2)

Припустимо A діагоналізовна. Тоді існує A' діагональна матриця і P оборотна матриця такі, що:

$$A' = P^{-1}AP.$$

Якщо розглядати A як матрицю ендоморфізму в канонічному базисі, A' є матрицею f в базисі власних векторів  $\{v_i\}$ .

Аналогічно X є матрицею вектора  $\vec{x}$  у канонічному базисі і  $X' = M(\vec{x})_{v_i}$ , пов'язана з X за допомогою

$$X' = P^{-1}X$$

**Примітка**. Увага! У цьому розділі X' не описує похідну, а вектор, позначений X'!

Диференціюючи це співвідношення:

$$\frac{dX'}{dt} = P^{-1}\frac{dX}{dt}$$

(оскільки A має постійні коефіцієнти, P також матиме постійні коефіцієнти). Отже:

$$\frac{dX'}{dt} = P^{-1}AX = (P^{-1}AP)X' = A'X'$$

Система 3.2 є отже еквівалентною системі

$$\frac{dX'}{dt} = A'X'$$

Ця система легко інтегрується, оскільки A' є діагональною. Таким чином, можна розв'язати систему  $\frac{dX}{dt}=AX$  наступним чином :

- а) Діагоналізуємо A. Нехай  $A' = P^{-1}AP$  діагональна матриця, подібна до A;
- b) інтегруємо систему  $\frac{dX'}{dt} = A'X'$ ;
- с) повертаємося до X через X = PX'.

#### Приклад

Нехай система

$$\begin{cases} \frac{dx}{dt} = x - y\\ \frac{dy}{dt} = 2x + 4y \end{cases}$$

Маємо 
$$A' = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$
 і  $P = \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix}$ 

Система  $\frac{dX'}{dt} = A'X'$  записується:

$$\begin{cases} \frac{dx'}{dt} = 2x' \\ \frac{dy'}{dt} = 3y' \end{cases}$$

що одразу дає

$$\begin{cases} x' = C_1 e^{2t} \\ y' = C_2 e^{3t} \end{cases}$$

і отже, повертаючись до X через X = PX':

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} C_1 e^{2t} \\ C_2 e^{3t} \end{pmatrix} = \begin{pmatrix} C_1 e^{2t} + C_2 e^{3t} \\ -C_1 e^{2t} - 2C_2 e^{3t} \end{pmatrix}$$

тобто:

$$\begin{cases} x = C_1 e^{2t} + C_2 e^{3t} \\ y = -C_1 e^{2t} - 2C_2 e^{3t} \end{cases}$$

## 3.7 Тригоналізація

Матриця  $A \in \mathcal{M}_n(K)$  називається верхньою трикутною, якщо вона має вигляд:

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ 0 & a_{2,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n-1,n} \\ 0 & \dots & 0 & a_{n,n} \end{bmatrix}$$

відповідно, нижньою трикутною:

$$A = \begin{bmatrix} a_{1,1} & 0 & \dots & 0 \\ a_{2,1} & a_{2,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ a_{n,1} & \dots & a_{n,n-1} & a_{n,n} \end{bmatrix}$$

**Примітка 3.18.** Будь-яка верхня трикутна матриця A подібна до нижньої трикутної матриці.

Доведення. Нехай A верхня трикутна матриця та f ендоморфізм  $K^n$ , який у базисі  $\{e_1, \ldots, e_n\}$  представлений матрицею A, тоді:

$$\begin{cases} f(e_1) = a_{1,1}e_1 \\ f(e_2) = a_{1,2}e_1 + a_{2,2}e_2 \\ \vdots \\ f(e_n) = a_{1,n}e_1 + a_{2,n}e_2 + \dots + a_{n,n}e_n \end{cases} \Leftrightarrow A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ 0 & a_{2,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n-1,n} \\ 0 & \dots & 0 & a_{n,n} \end{bmatrix}$$

Розглянемо базис

$$\varepsilon_1 = e_n, \quad \varepsilon_2 = e_{n-1}, \quad \dots, \quad \varepsilon_n = e_1$$

тоді маємо:

$$\begin{cases} f(\underbrace{\varepsilon_1}) == a_{1,n} \underbrace{\varepsilon_n}_{e_1} + a_{2,n} \underbrace{\varepsilon_{n-1}}_{e_2} + \dots + a_{n,n} \underbrace{\varepsilon_1}_{e_n} \\ f(\underbrace{\varepsilon_2}) == a_{1,n-1} \underbrace{\varepsilon_n}_{e_1} + \dots + a_{n-1,n-1} \underbrace{\varepsilon_2}_{e_{n-1}} \\ \vdots \\ f(\underbrace{\varepsilon_n}) = a_{1,1} \underbrace{\varepsilon_n}_{e_1} \end{cases}$$

отже

$$A' = M(f)_{\varepsilon_i} = \begin{bmatrix} a_{n,n} & \dots & 0 \\ a_{n-1,n} & a_{n-1,n-1} & \dots & 0 \\ \vdots & & \ddots & \vdots \\ a_{1,n} & \dots & & a_{1,1} \end{bmatrix}$$

### 3.7.1 Геометрична інтуїція діагоналізації

Згадаймо діагоналізацію. Матриця A що представляє ендоморфізм f в  $K^n = \mathrm{Vect}(e_1, \ldots, e_n)$  є діагоналізованою, якщо існує достатньо векторних підпросторів  $\{F_1, \ldots, F_n\}$  розмірності 1 кожен, таких що  $K^n = F_1 \oplus \ldots \oplus F_n$  і  $\forall i \in \{1, \ldots, n\}, f(F_i) \subset F_i$  (вектор після застосування f залишається у просторі). Що можна побачити геометрично:

Перетворення власних векторів



Ми вже знаємо, що такий ендоморфізм дуже корисний, але нечасто трапляється, що його можна діагоналізувати, тому було б корисно мати щось більш загальне, але все ще схоже на діагоналізацію.

## 3.7.2 Геометрична інтуїція тригонализації

Геометрія тригоналізованого ендоморфізму схожа, але все ж таки відрізняється. Нехай A — матриця, що представляє ендоморфізм f у  $K^n$ . Він є тригоналізованим, якщо існує базис  $\{v_1,\ldots,v_n\}$  простору  $K^n$ , позначимо  $F_1=\mathrm{Vect}(v_1), F_2=\mathrm{Vect}(v_1,v_2),\ldots,F_n=\mathrm{Vect}(v_1,v_2,\ldots,v_n)$  такі що

$$F_1 \subset F_2 \subset \ldots \subset F_n$$

i

$$\forall i \in \{1, \dots, n\}, f(F_i) \subset F_i$$

Бачите схожість? Ендоморфізм є стабільним щодо підпростору! Вектор, застосований до f, ніколи не залишає свій підпростір. Візьмемо для прикладу наступну матрицю:

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix} = \text{Mat}(f)_{e_i}$$



Оскільки ми маємо інтуїцію щодо тригонізованого ендоморфізму, повернімося до чистої математики.

### 3.7.3 Теорія

**Теорема 3.19.** Ендоморфізм є тригонализованим в K тоді й тільки тоді, коли його характеристичний многочлен розкладається на лінійні множники в K.

Це означає, що характеристичний многочлен має рівно n коренів, де  $n=\dim(E)$ , і записується так:

$$P_f(X) = (-1)^n (X - \lambda_1)^{\alpha_1} \cdots (X - \lambda_p)^{\alpha_p}$$

#### Доведення. -

 $(\Rightarrow)$  Припустимо, ендоморфізм f тригонізується, і нехай буде базис  $\{e_1,\ldots,e_n\}$  такий що

$$M(f)_{e_i} = \begin{pmatrix} a_{1,1} & & * \\ 0 & a_{2,2} & \\ \vdots & & \ddots & \\ 0 & \dots & 0 & a_{n,n} \end{pmatrix}$$

Маємо:

$$P_f(X) = \det \begin{pmatrix} a_{1,1} - X & * & * \\ 0 & a_{2,2} - X & \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 & a_{n,n} - X \end{pmatrix} = (a_{1,1} - X) \cdots (a_{n,n} - X)$$

Отже,  $P_f(X)$  добре розщеплюється (можна помітити, що його корені— це власні значення f).

 $(\Leftarrow)$  Припустимо,  $P_f(X)$  розщеплюється, і доведемо за індукцією, що f тригонізується. Для n=1 тривіально.

Припустимо, що результат вірний для порядку n-1. Але  $P_f(X)$  розщеплюється, він має принаймні один корінь  $\lambda_1 \in K$  і отже власний вектор  $\varepsilon_1 \in E_{\lambda_1}$ . Доповнимо  $\{\varepsilon_1\}$  до базису  $\{\varepsilon_1,\ldots,\varepsilon_n\}$ , отже маємо:

$$A = M(f)_{\varepsilon_i} = \begin{pmatrix} \lambda_1 & b_2 & \dots & b_n \\ 0 & & & \\ \vdots & & B & \\ 0 & & & \end{pmatrix}, \quad \text{де:} B \in \mathcal{M}_{n-1}(K)$$

Нехай  $F = \mathrm{Vect}(\varepsilon_2, \dots, \varepsilon_n)$  і  $g: F \to F$  єдиний ендоморфізм F такий що  $M(g)_{\varepsilon_2, \dots, \varepsilon_n} = B$ , маємо:

$$P_f(X) = \det(A - XI_n) = (\lambda_1 - X)\det(B - XI_{n-1}) = (\lambda_1 - X)P_g(X)$$

Але  $P_f(X)$  розщеплюється,  $P_g(X)$  також, і згідно з індуктивним припущенням B тригонізується, отже існує базис  $\{v_2,\ldots,v_n\}$  в якому  $M(g)_{v_2,\ldots,v_n}$  є трикутною, і отже матриця f у базисі  $\{\varepsilon_1,v_2,\ldots,v_n\}$  є трикутною, отже f тригонізується.

**Наслідок 3.20.** Будь-яка матриця  $A \in \mathcal{M}_n(\mathbb{C})$  подібна до трикутної матриці з  $\mathcal{M}_n(\mathbb{C})$ .

**Інтуїція.** Згідно з курсом абстрактної алгебри, кожен многочлен у  $\mathbb{C}$  є розкладним.

### Примітка 3.21. -

- 1. Якщо A є тригонализовна і A' трикутна, подібна до A, тому A' має власні значення на діагоналях.
- 2. Будь-яка матриця  $A \in \mathcal{M}_n(K)$  є тригонализовна над замиканням K' з K. (напр.:  $A \in \mathcal{M}_n(\mathbb{R})$  є тригонализовна над  $\mathbb{C}$ ).

**Наслідок 3.22.** Нехай  $A \in \mathcal{M}_n(K)$  і  $\{\lambda_1, \ldots, \lambda_n\}$  її власні значення, тому

$$\operatorname{Tr}(A) = \lambda_1 + \ldots + \lambda_n$$
  
 $\det(A) = \lambda_1 \cdot \ldots \cdot \lambda_n$ 

Доведення. Маємо  $A' \in \mathcal{M}_n(K')$  трикутну, подібну до A (нагадування: замикання K' над K), отже власні значення знаходяться на діагоналях A'. Однак подібні матриці мають ті ж самі сліди та визначники, тому  $\operatorname{Tr}(A) = \operatorname{Tr}(A') = \lambda_1 + \ldots + \lambda_n$  та  $\det(A) = \det(A') = \lambda_1 \cdot \ldots \cdot \lambda_n$ .

Ми покажемо процес тригоналізації на наступному прикладі:

### Приклад 3.23. Нехай матриця

$$A = \begin{pmatrix} -4 & 0 & -2 \\ 0 & 1 & 0 \\ 5 & 1 & 3 \end{pmatrix}$$

Маємо характеристичний многочлен  $P_A(X) = -(X-1)^2(X+2)$ , який розщеплюється в  $\mathbb{R}$ , тому A є тригоналізованою (згідно з теоремою 3.19), отже, якщо розглядати A як ендоморфізм у канонічному базисі, ми знаємо, що існує базис  $\{v_i\}$  з  $\mathbb{R}^3$  такий що:

$$M(f)_{v_i} = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & -2 \end{pmatrix}$$

я нагадую, що це означає:

$$\begin{cases}
f(v_1) = v_1 \\
f(v_2) = av_1 + v_2 \\
f(v_3) = bv_1 + cv_2 - 2v_3
\end{cases}$$
(3.3)

Почнемо з пошуку  $v_1$ . Ми знаємо, що  $v_1$  є власним вектором, що відповідає власному значенню  $\lambda_1=1$ , тобто  $(f-\mathrm{Id})v_1=0$ , тому обчислимо  $(A-I)v_1=0$  (іншими словами, ми шукаємо  $v_1$ , який породжує  $\ker(A-I)$ ) :

$$(A-I) \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Leftrightarrow \begin{cases} -5x - 2z &= 0 \\ 5x + y + 2z &= 0 \end{cases}$$

Тоді ми можемо взяти  $v_1 = \begin{pmatrix} 2 \\ 0 \\ -5 \end{pmatrix}$  (іншими словами  $\ker(A - I) = \operatorname{Vect}\begin{pmatrix} 2 \\ 0 \\ -5 \end{pmatrix}$ )).

$$f(v_2) = av_1 + v_2$$
  

$$\Rightarrow f(v_2) - v_2 = av_1$$
  

$$\Rightarrow (f - I)v_2 = av_1$$
  

$$\Rightarrow (A - I)v_2 = av_1$$

Отже, маємо:

$$(A-I)\begin{pmatrix} x \\ y \\ z \end{pmatrix} = a \begin{pmatrix} 2 \\ 0 \\ -5 \end{pmatrix} \Leftrightarrow \begin{cases} -5x - 2z = 2a \\ 5x + y + 2z = -5a \end{cases}$$

Тоді, взявши a=1, маємо

$$\begin{cases}
-5x - 2z = 2 \\
5x + y + 2z = -5
\end{cases}$$

тому  $v_2 = \begin{pmatrix} -2 \\ -3 \\ 4 \end{pmatrix}$  (просто розв'язання системи).

Для  $v_3$  маємо два варіанти:

- 1. або діяти так само з розв'язанням системи
- 2. або зауважити, що існує власний вектор A, що відповідає власному значенню -2, тобто  $\exists v_3 \in \mathbb{R}^3$  такий що  $f(v_3) = -2v_3$ , тоді ми можемо взяти цей вектор  $v_3$  і, отже, покласти b = c = 0.

**Примітка 3.24.** Чому ми можемо так робити? Тому що для кожного власного значення f завжди існує власний простір кратності принаймні 1, отже, і для власного значення -2 теж.

Тоді шукаємо  $v_3$ :

$$(A+2I)v_3 = 0 \Leftrightarrow \begin{cases} -2x - 2z = 0\\ 3y = 0 \end{cases}$$

тому ми можемо взяти  $v_3=\begin{pmatrix}1\\0\\-1\end{pmatrix}.$ 

Отже, матриця A подібна до

$$A' = M(f)_{v_i} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

з матрицею переходу:

$$P = ||v_1, v_2, v_3|| = \begin{pmatrix} 2 & -2 & 1 \\ 0 & -3 & 0 \\ -5 & 4 & -1 \end{pmatrix}$$

# 3.8 Анулюючі многочлени

У попередніх розділах ми дізналися, що для того, щоб зрозуміти, чи можна діагоналізувати матрицю, потрібно вивчити власні простори, що не завжди дуже легко і не  $\epsilon$  найшвидшим способом. Отже, у цьому розділі ми розглянемо один з інших методів вивчення діагоналізовності, одним з таких методів  $\epsilon$  вивчення анулюючих поліномів.

**Примітка 3.25.** У цьому розділі я не пишу більшість доказів, а скоріше інтуїцію, чому це правда і чому це працює.

Визначення 3.26. Нехай  $f \in \mathbb{K}^n$  ендоморфізм. Поліном  $Q(X) \in K[X]$  є анулюючим поліномом для f якщо Q(f) = 0.

**Приклад 3.27.** Нехай f проєкція, тоді, ми знаємо, що  $f^2=f$ , звідки  $f^2-f=0$ , тому  $Q(X)=X^2-X=X(X-1)$  є анулюючим поліномом для f.

Важливо, що анулюючі поліноми тісно пов'язані з власними значеннями:

**Твердження 3.28.** Нехай Q(X) є анулюючим многочленом для f, тоді власні значення f знаходяться серед коренів Q, тобто:

$$\operatorname{Sp}(f) \subset \operatorname{Rac}(Q)$$

**Доведення.** Нехай  $Q(X) = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_0$  — анулюючий многочлен для f і  $\lambda$  — власне значення для f. Отже,  $\exists v \neq 0 \in E$  така що  $f(v) = \lambda v$ , більше того:

$$Q(f) = a_n f^n + a_{n-1} f^{n-1} + \ldots + a_0 \operatorname{Id} = 0$$

Але  $f(v)=\lambda v$ , тому  $f^2(v)=f(\lambda v)=\lambda^2 v$ , звідки  $f^k(v)=\lambda^k v \ \forall k\in\mathbb{N}$ , тоді:

$$Q(f(v)) = 0 = (a_n f^n + a_{n-1} f^{n-1} + \dots + a_0 \operatorname{Id})v = (a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_0 \operatorname{Id})v = 0$$

Але  $v \neq 0$ , тому  $a_n \lambda^n + a_{n-1} \lambda^{n-1} + \ldots + a_0 \operatorname{Id} = 0$ , звідки  $\lambda$  є коренем Q.

**Примітка.** Однак, рівність не є загалом вірною, наприклад  $\mathrm{Id}^2 = \mathrm{Id}$ , отже  $Q(X) = X^2 - X = X(X-1)$  обнуляє  $\mathrm{Id}$  з коренями 0 та 1, але 0 не є власним значенням для  $\mathrm{Id}$ .

**Теорема 3.29. Кайлі-Гамільтона**. Нехай  $f \in K^n$  ендоморфізм та  $P_f(X)$  його характеристичний поліном, тоді

$$P_f(f) = 0$$

Іншими словами, характеристичний поліном ендоморфізму є його анулюючим поліномом.

**Інтуїція.** Характеристичний поліном описує нам структуру f, тобто які операції потрібно виконати, щоб втратити принаймні один вимір, якщо ми отримуємо множники вигляду  $(X - \lambda)^n$ , отже, потрібно застосувати  $f(v) - \lambda v = v_r$ , а потім до результату  $v_r$  знову, тобто  $f(v_r) - \lambda v_r$ , і повторюємо n разів (це відбувається у випадках тригоналізованих матриць)

Теорема залишається вірною навіть у випадках, коли ендоморфізм не є тригоналізовним, оскільки ми можемо вибрати замикання K' поля K, в якому знаходиться наш ендоморфізм, і він стає тригоналізовним (наприклад,  $\mathbb C$  для  $\mathbb R$ ).

Крім того, характеристичний поліном дає нам  $\ker(P_f(X)) = E$ , тобто вектори, які стають нульовими під дією  $P_f(f)$ , цікавий факт полягає в тому, що всі вектори з E належать до цього ядра, і тому  $\forall v \in E$ ,  $p_f(f)v = 0$ , звідки  $p_f(f) = 0$ .

**Визначення 3.30.** Нехай Q — розкладений поліном:

$$Q(X) = (X - a_1)^{\alpha_1} \cdots (X - a_r)^{\alpha_r}$$

Поліном

$$Q_1 = (X - a_1) \cdots (X - a_r)$$

називається **радикалом** Q (тобто розкладений поліном (той самий поліном, але без степенів біля лужок).

Більше того,  $Q_1 \mid Q$ , тобто радикал полінома ділить сам поліном.

**Твердження 3.31.** Нехай  $f \in \text{ендоморфізмом i}$ 

$$P_f(X) = (-1)^n (X - \lambda_1)^{\alpha_1} \cdots (X - \lambda_p)^{\alpha_p}$$

є його характеристичним многочленом. Тоді, якщо f є діагоналізовним, радикал  $Q_1$  анулює f також, тобто

$$Q_1(f) = (f - \lambda_1) \cdots (f - \lambda_r) = 0$$

**Інтуїція.** Я даю інтуїцію доведення. Якщо f є діагоналізованою з характеристичним поліномом

$$P_f(X) = (-1)^n (X - \lambda_1)^{\alpha_1} \cdots (X - \lambda_n)^{\alpha_p}$$

з  $r:=\alpha_i>1$  це не означає, що потрібно застосовувати  $(f-\lambda_i\operatorname{Id})$  r разів для зменшення розмірності як

у випадку тригоналізованих матриць, але це означає, що  $E_{\lambda_i}$  власний простір власного значення  $\lambda_i$  має розмірність  $\alpha_i = r$  і тому  $\forall v \in E_{\lambda_i}, f(v) = \lambda_i v$ .

Оскільки  $E=E_{\lambda_1}\oplus\ldots\oplus E_{\lambda_p}$ , якщо  $v\in E$ , тоді  $\exists i\in\{1,\ldots,p\}$  така що  $v\in E_{\lambda_i}$  і тому  $f(v)-\lambda_i v=0$  тобто  $(f-\lambda_i\operatorname{Id})(v)=0$ . Звідси радикал  $P_f$  анулює f.

## 3.9 Лема про ядра

**Лема 3.32. про ядра** Нехай  $f \in K^n$  ендоморфізм і

$$Q(X) = Q_1(X) \cdots Q_p(X)$$

многочлен, розкладений у добуток попарно взаємно простих многочленів. Якщо Q(f)=0, то:

$$E = \operatorname{Ker} Q_1(f) \oplus \ldots \oplus \operatorname{Ker} Q_p(f)$$

Інтуїція. Оскільки Q(f) = 0, тому  $\forall v \in E, Q(f)(v) = 0$  отже  $\mathrm{Ker}(Q(f)) = E$ .  $\exists v_1, \ldots, v_p$  такі що  $v = v_1 + \ldots + v_p$ . Але усі поліноми попарно взаємно прості, тоді лише один з них анулює  $v_i$  тому  $v_i \in \mathrm{Ker}\,Q_i(f)$  і це залишається правдою для всіх  $v_1, \ldots, v_p$ . І оскільки поліноми взаємно прості, тож якщо  $k \neq j$  і  $Q_k(v_i) = 0$ , тоді  $Q_j(v_i) \neq 0$  бо  $Q_j$  і  $Q_k$  відрізняються. Тоді,  $\forall i, j \; \mathrm{Ker}\,Q_i \cap \mathrm{Ker}\,Q_j = \{0\}$ .

**Примітка 3.33.** Повернімося до прикладу f, яка є проєкцією, отже  $f^2 - f = 0$  і  $Q(X) = X^2 - X = X(X-1)$  анулює f. Проте X і X-1 є взаємно простими, тоді

$$E = \operatorname{Ker} f \oplus \operatorname{Ker} (f - \operatorname{Id})$$

Щоб бути більш загальною, нехай f є ендоморфізмом, і  $Q(X) = (X - \lambda_1) \cdots (X - \lambda_p)$  така що Q(f) = 0, маємо:

$$E = \underbrace{\operatorname{Ker}(f - \lambda_1 \operatorname{Id})}_{E_{\lambda_1}} \oplus \ldots \oplus \underbrace{\operatorname{Ker}(f - \lambda_p \operatorname{Id})}_{E_{\lambda_p}}$$

Звісно,  $\lambda_i \neq \lambda_i$ . І тоді  $f \in діагоналізованим, оскільки прямою сумою цих власних підпросторів.$ 

**Наслідок 3.34.** Ендоморфізм f є діагоналізованим тоді і тільки тоді, якщо існує анулюючий поліном Q для f, який є розкладним і має лише прості корені  $^a$ 

 $^a$ розкладний:  $(X-\lambda_i)^{\alpha_i}$  - X в степені 1! прості корені: якщо  $\alpha_i=1$  також, тобто множники  $(X-\lambda)$  в степені 1!

# 3.10 Пошук анулюючих многочленів. Мінімальний многочлен

**Визначення 3.35.** Називається **мінімальний многочлен** для f, позначений  $m_f(X)$  - нормалізований многочлен  $^a$  який анулює f найменшого степеня.

aтобто з коефіцієнтом 1 при члені найвищого степеня, тобто:  $1*X^n+a_{n-1}X^{n-1}+\ldots+a_0$ 

**Твердження 3.36.** Анулюючі многочлени f мають вигляд:

$$Q(X) = A(X)m_f(X)$$
 де  $A(X) \in K[X]$ 

тобто  $m_f(X)$  ділить Q(X).

**Твердження 3.37.** Корені мінімального полінома  $m_f(X)$  є точно коренями характеристичного полінома  $P_f(X)$ , тобто власні значення.

**Доведення.** Ми знаємо, що  $P_f(X) = A(X)m_f(X)$  тому якщо  $\lambda$  є коренем  $m_f(X)$ , тоді вона є коренем  $P_f(X)$  також. Навпаки, якщо  $\lambda$  є коренем  $P_f(X)$  тоді вона є власним значенням, а  $m_f(X)$  анулює f, отже  $\lambda$  також є коренем  $m_f(X)$ .

**Теорема 3.38.** Ендоморфізм  $f \in діагоналізовним тоді і тільки тоді, коли його мінімальний многочлен <math>\epsilon$  розкладним і всі його корені прості.

Приклад 3.39. 1.  $A=\begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$ .  $P_A(X)=-(X-1)(X+2)^2,$  отже, маємо дві можливості:

- $\bullet$   $m_A(X) = (X-1)(X+2)$  отже A діагоналізована
- $m_A(X) = (X-1)(X+2)^2$  отже A не діагоналізована

Обчислимо:

$$(A-I)(A+2I) = \begin{pmatrix} -2 & 1 & 1\\ 1 & -2 & 1\\ 1 & 1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

Отже,  $m_f(X) = (X-1)(X+2)$  і тому A є діагоналізованою.

2. 
$$A=\begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 2 \end{pmatrix}$$
. Маємо:  $P_A(X)=-(X-1)(X-2)^2,$  отже:

$$m_A(X) = egin{cases} (X-1)(X-2) & ext{тобто } A \ діагоналізована \ (X-1)(X-2)^2 & ext{тобто } A \ ext{не діагоналізована} \end{cases}$$

Обчислимо:

$$(A-I)(A-2I) = \begin{pmatrix} 2 & -1 & 1 \\ 2 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 2 & -2 & 1 \\ 1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 1 \\ 1 & -2 & 1 \\ 0 & -2 & 2 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Звідси  $m_A(X) \neq (X-1)(X-2)$  і тому A не є діагоналізованою.

# Appendices

| ДОДАТОК ]

# Нагадування про концепції Лінійної Алгебри

# 1 Матриці

## 1 Множення матриць

Визначення 1.1. Нехай  $A\in\mathcal{M}_{p,n}(\mathbb{R})$  та  $B\in\mathcal{M}_{n,q}(\mathbb{R})$  такі що  $A=(a_{j,i})$  та  $B=(b_{m,k}),$  тоді:

$$AB = C = (c_{j,k} = \sum_{i=1}^{n} a_{j,i}b_{i,k})$$

## 2 Слід

**Визначення 1.2.** Слід  $n \times n$  квадратної матриці A, позначений  $\operatorname{tr}(A)$ ,  $\varepsilon$  сумою діагональних елементів

$$tr(A) = a_{11} + a_{22} + \dots + a_{nn} = \sum_{i=1}^{n} a_{ii}$$

де  $a_{ii}$  є діагональними елементами матриці A.

Властивість. сліду.

• Лінійність:

$$tr(A+B) = tr(A) + tr(B)$$

$$\operatorname{tr}(cA) = c\operatorname{tr}(A), \quad c \in \mathbb{R} \text{ (afo } \mathbb{C})$$

• Транспонування:

$$\operatorname{tr}(A) = \operatorname{tr}(A^T)$$

• Множення матриць:

$$\operatorname{tr}(AB) = \operatorname{tr}(BA)$$
, (якщо  $A$  та  $B$  мають розмір  $n \times n$ )

Однак, слід не є дистрибутивним щодо множення:

$$tr(ABC) \neq tr(A)tr(BC)$$

• Власні значення:

$$\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_i$$

де  $\lambda_i$  є власними значеннями A. Це робить слід важливим інструментом у спектральному аналізі.

### • Слід Одиничної Матриці

$$\operatorname{tr}(I_n) = n$$

оскільки всі діагональні елементи дорівнюють 1.

## Приклад 1.3. Для

$$A = \begin{bmatrix} 3 & 2 & 1 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

слід дорівнює:

$$tr(A) = 3 + 5 + 9 = 17$$

### Приклад 1.4. Якщо

$$B = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}, \quad C = \begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix}$$

тоді

$$\operatorname{tr}(B+C) = \operatorname{tr}\begin{bmatrix} 6 & 3 \\ 1 & 8 \end{bmatrix} = 6 + 8 = 14$$

що відповідає

$$tr(B) + tr(C) = (2+3) + (4+5) = 14$$

таким чином підтверджуючи лінійність.

# ЛІТЕРАТУРА

- [1] Johannes Anschütz. Algèbre linéaire 2 (OLMA252). 2024-2025.
- [2] Grifone Joseph. Algèbre linéaire. fre. 4e édition. Toulouse: Cépaduès Éditions , DL 2011, 2011. ISBN: 978-2-85428-962-6.