Practice 10 Novelty Detection

Problem

- > Classify which data is normal or pathologic(outlier) using Novelty Detection with Spark.
- Use predefined sklearn.svm.OneClassSVM()

https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM https://www.semanticscholar.org/paper/LGND%3A-a-new-method-for-multi-class-novelty-Tang-Tian/2b18f73596e24b8587eed014f1c9f242e8e5f727/figure/0

Dataset

- Cardiotocography
 - The dataset consists of measurements of fetal heart rate and uterine contraction features on cardiotocograms classified by expert obstetricians
- > Explanation
 - Data point has 21 features, and label
 - The label value was changed:

```
From
```

Label 0: inliers(normal) data points

Label 1: outlier(pathologic) data points

To

Label 1: inliers(normal) data points

Label -1: outlier(pathologic) data points

• Because it is convenient to compare the predicted label of Novelty Detection and Real label You can download dataset and see data description from below links.

Practice 10

1. Calculate accuracy, and f1score of prediction using Novelty Detection algorithm to test data points and get Confusion matrix of the result.

X Note that training dataset is all normal, but test dataset is half normal and half abnormal.

You can download this dataset on I-Campus.

Please use dataset from I-Campus, not from UCI or Stonybrook.

2. Use predefined classes in sklearn.svm.OneClassSVM

Parameters for the method

• nu: 0.1, gamma: 0.1,kernel: 'rbf' (Don't change the other parameters)

Practice 10

- 3. How to train the model using RDD data format
 - Before training the model, you need to save data into your memory using cache() function.
 - For example

```
trRDDs.cache()
tsRDDs.cache()
```

- In this example, trRDDs: training data points & tsRDDs: test data points
- Then, you can easily train NoveltyDetection model provided by scikit-learn using fit() function
- For example

```
novel = Novelty(nu=nu, kernel="rbf", gamma=gamma)
novel.fit(trRDDs.collect())
```

• In this example, nu & gamma: parameters for Novelty Detection algorithm

Practice 10

4. After training the models, get the accuracy & F1 score for test data points

5. Get confusion matrix of the result

6. You need to use predefined arguments we suggests

Number of partitions: 30

You can split data when you make it RDDs.

For example, " RDD = sc.parallelize(Data, numPartition) "

Submission

You need to submit result.txt

Write accuracy score of NoveltyDetection result, using sklearn.metrics.accuracy_score library

Then, write F1 score of NoveltyDetection result, using *sklearn.metrics.f1_score* library

Also, write confusion matrix of NoveltyDetection result, using sklearn.metrics.confusion_matrix library

When you calculate F1 score, you need to use parameter average = 'macro'

> Result

Novelty Detection Results:

ACC: 0.9345, F1Score: 0.9343

Confusion Matrix

172 20

3 156

```
Novelty Detection Results:
ACC: 0.9345, F1Score: 0.9343
Confusion Matrix
172 20
3 156
```

Windows Linux

> load libraries for Novelty Detection, and Spark Configuration

```
import numpy as np
from sklearn.svm import OneClassSVM as Novelty
from sklearn.metrics import accuracy_score,f1_score
from sklearn.metrics import confusion_matrix
from pyspark import SparkConf, SparkContext
```

This library is for Novelty Detection

Using these library, you can calculate accuracy, f1score and get Confusion matrix

> Load dataset and set parameters

```
train = np.loadtxt("train.data", delimiter=',')
test = np.loadtxt("test.data", delimiter=',')
```

```
u = 0.1 To find out what these parameters mean, go to below link
```

https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html

gamma = 0.1 numPartition = 30

> Configure spark & make dataset to have RDD format

```
conf = SparkConf()
sc = SparkContext(conf=conf)
Configure Spark and define
SparkContext
```

```
trRDDs = sc.parallelize(trData.tolist(), numPartition)
tsRDDs = sc.parallelize(tsData.tolist(), numPartition)
```

> Save RDD to memory and Train the model

```
Make numpy.ndarray data to have RDDs format
```

```
trRDDs.cache()——Save data to memory tsRDDs.cache()
```

```
novel = Novelty(nu=nu, kernel="rbf", gamma=gamma)
novel.fit(trRDDs.collect())
```

Define model with given parameters and train model using fit() function

> Broadcast model & predict the label of test datapoints

> Calculate accuracy and f1 score & Get confusion matrix of the result

```
prediction = [int(x[0]) for x in result]
real = tsLabel.copy()

accuracy = accuracy_score(real, prediction)
f1score = f1_score(real, prediction, average = 'macro')
tn, fp, fn, tp = confusion_matrix(prediction, real).ravel()
```

Using ".ravel()" we can get True Positive, False Positive, False Negative, True Positive value of Confusion Matrix

> Write the result to result.txt file & Stop Spark Context

> Result

```
Novelty Detection Results:
ACC: 0.9345, F1Score: 0.9343
Confusion Matrix
172 20
3 156
```

```
Novelty Detection Results:
ACC: 0.9345, F1Score: 0.9343
Confusion Matrix
172 20
3 156
```