关于"拍照赚钱"任务定价问题的分析与评价

摘要

本文基于层次分析法、优化模型对影响"拍照赚钱"任务的各因素进行数据 化处理分析,并建立出能简便操作的模型以实现合理的定价。

对于问题一,利用 Excel 将定价按高低分类后利用 Photoshop 进行任务位置 散点图与卫星图叠加。根据其直观图像对定价规律的初步分析,公路的分布以及 市中心的位置可以判断得,城市发展程度越高,任务定价越低;然后利用任务位 置与会员位置散点图叠加进行分析,判断得会员密度高的地方任务未完成率越高, 任务定价不等。由于城市发展情况与会员密度存在相关性,图像叠加分析时两种 原因均考虑,但主要分析所占比例较大的一种原因。

对于问题二,定价问题需要考虑任务的会员数量及会员的信誉值,首先要取得任务与所有会员之间的距离,再选择四个对新标价 W_1 有影响的因素:任务与会员之间的距离、会员任务开始时间、会员信誉值、会员任务限额,并利用 MATLAB 进行层次分析处理,分别得出权重,并得出模型:

$$W = W_0 + \sum_{i=1}^n S_i ,$$

$$S_i = 0.5541d_i + 0.1679t_i + 0.1987k_i + 0.0793b_i$$
,

代入相应数据,并计算得出所有会员对该任务的影响度的平均值,再通过调节 W_0 控制最低及最高价格。最后,利用控制变量法调整定价模型,根据定价做 SVM 预测并讨论任务完成率并与原方案进行比较。

对于问题三,要将任务打包发布就要先求出每个任务有效范围内的任务数,将任务范围内的经纬度进行方格式划分打包,然后再取与问题二中相同的四个因素作层次分析,得到权重并得出模型:

$$W' = W'_0 + \sum_{i=1}^n S'_i + \omega_5 m - c \bullet m$$
,

$$S_i = 0.2547d_i + 0.0801t_i + 0.0985k_i + 0.0427b_i$$
,

再代入相关数据可得出新的定价模型,根据 SVM 预测,讨论任务完成率与原方案的不同。

对于问题四,描绘散点图与卫星图后观察得,附件三的经纬度坐标主要分布自广州以及深圳的市中心的位置,因此本题与问题二的情况相似。因此,我们在问题二的基础上对数据进行修改和编辑,得出新的定价方案,并且根据支持向量机 SVM 的方式对新任务完成度的预测,再进行相关性分析。

关键词: 层次分析法; 优化; MATLAB; 支持向量机(SVM);任务定价

1 问题重述

"拍照赚钱"APP 是基于移动互联网下的自助服务模式而产生的新商业运行方式,用户通过线上注册会员、线上领取任务并获得酬金的方式实现与企业的劳务众包合作,为企业实现收集商业资料的目标。对企业来说,利用 APP 进行线上市场调研,这种方式能够缩减成本、减短周期,对公司的发展有较大帮助,因此,作为该平台运行的核心,在 APP 内合理定价以提升会员积极性、提高任务的完成率至关重要。

题目中给出该"拍照赚钱"APP 相关三个附件,其中附件一包含任务位置、任务定价、以及任务完成情况;附件二给出会员经纬度位置、任务开始时间、任务限额以及信誉值(原则上信誉值越高,开始时间越早、配额越高);附件三给出新项目的任务位置。

根据题目给出的三个附件,通过分析题目建立数学模型解决下列问题:

- (1) 研究附件一中项目的任务定价规律,分析任务未完成的原因;
- (2) 为附件一中的项目设计新的任务定价方案,并和原方案进行比较;
- (3) 考虑将任务联合打包发布,修改前面的定价模型,分析对最终的任务 完成情况有什么影响;
- (4) 对附件三中的新项目给出你的任务定价方案,并评价该方案的实施效果。

2 问题分析

2.1 问题一的分析

分析所给的附件,发现任务的标价范围在 65-85 区间内、经纬度范围主要在广东地区内。根据对卫星图的观察,可以初步分析得出定价规律与会员分布密集程度相关性(某种程度上与该区域的发达情况有关)。

因此,先将任务及会员位置按照经纬度绘出散点图,再将标价按照高低进行数据分类。将分类后的标价为 60-65、65-70、70-75、75-80 的四个任务分布图像与卫星图像进行经纬度的匹配。然后将图表叠放对比,观察任务定价与其周边发达情况以及会员密集度的关系,从而进行判断。

同理,分析附件,将完成与未完成的任务分别利用 MATLAB 进行散点图描绘, 联系任务、会员位置以及定价规律分析任务未完成的原因。

2.2 问题二的分析

重新定价需要考虑所有会员到任务点的距离。首先在利用 MATLAB 计算出所有的距离后,需要再针对建立的模型利用层次分析法对影响定价的因素进权重的选择,从而将一个复杂的多目标决策问题作为一个系统来分析。我们通过建立的模型,将数据代入以计算会员对任务定价的影响度。最终确定定价。

与原方案的比较主要利用新的标价与原位置进行匹配并利用 SVM 预测完成情况以及总酬金的金额,与原总酬金进行比较后得出结果。

2.3 问题三的分析

问题三的任务打包问题主要通过对任务范围内经纬度的划分实现,将地图划分为固定边长的正方形网格,网格内的任务自动打包成一个新的任务包并进行新

的定价。利用 MATLAB 对多个假定的边长数据进行模拟,再利用 SVM 进行检验,将所得出的模型完成度以及酬金总额进行比较,选择最合适的边长进行任务打包捆绑。建立合适的模型,再根据层次分析法对任务与会员之间的距离、会员任务开始时间、会员信誉值、会员任务限额进行新的权重分配,并将计算得的数据导入,获得打包后的总酬金以及完成度,再与原定价方案进行对比与分析。

2.4 问题四的分析

问题四需要在问题二的假设下计算每个会员到新项目任务的距离,结合已标准化的会员的信誉值、已处理的任务开始预订时间和预订限额,我们将运用问题二的模型计算上述问题。首先,问题需要计算每个会员到新项目任务的距离,得到一个 2066*1877 的距离矩阵。然后使用问题二的模型计算出每个新项目任务的定价。然后用支持向量机(SVM),以附件一中的所有已结束项目任务数据为训练集,对 SVM 进行训练。用训练好的 SVM 对新项目任务数据进行分类,得出新项目任务的预测完成情况。再利用每个新项目任务的定价和完成情况,计算总共支出的酬金,并且根据预测完成情况计算完成率,与附件一中的已结束项目任务数据计算出的成本和完成率进行比较分析。

3 模型假设

- (1) 假设附件数据中所有的经纬度位置表示的都是东经与北纬;
- (2) 假设地球是个完美的球体;
- (3) 假设所有的数据的收集方式不存在误差问题;

4 符号说明

符号	含义	单位	备注
d_{i}	任务与会员之间的距离	km	层次分析法中为指标 A _i
t_{i}	会员的任务开始时间	h	层次分析法中为指标 A2
k_{i}	会员的信誉值	\	层次分析法中为指标 A3
b_{i}	会员的任务限额	个	层次分析法中为指标 A4
W	原标价	\	
$W_{_1}$	新标价	\	在问题二中出现
S_{i}	会员对任务的影响度	\	
m	任务有效范围内的任务数	个	

5 模型的建立与求解

通过在八九网的中国卫星地图查询可以发现,在北纬和东经的假设条件下,附件一中的区域主要集中在广东地区。因此我们在解题过程中对广东相关地区的卫星图进行截取,并进行相关处理。

5.1 研究附件一中项目的任务定价规律,分析任务未完成的原因。

5.1.1 研究附件一中项目的任务定价规律。 利用 matlab 以经纬度为 X,Y 轴,定价为 Z 轴作三维图像作初步了解如下:

图 5-1-1

(1) 研究定价与城市各位置发展状况之间的关系。

考虑到城市发展状况(如交通状况、商业发展状况)可能对任务定价造成的影响,将已知数据按照定价为 65-69.5、70-74.5、75、80-85 的区间分成四类并分别利用 Excel 作散点图。分别将四个散点图与卫星图像的经纬度截图利用 Photoshop 进行匹配叠加后得到的图像如下:

图 5-1-2 定价为 65-69.5 的任务分布情况(左)

图 5-1-3 定价为 70-74.5 的任务分布情况 (右)

图 5-1-5 定价为 80-85 的任务分布情况 (右)

②分析:可以观察到,65-69.5 标价区间内的任务数量非常多,且主要密集地集中于广州、深圳、佛山、东莞的市中心位置以及城市主干道位置,该位置交通较为发达、城市发展水平高,因此任务的完成也会相对容易与便捷;70-74.5 标价区间内的任务数量较多,但密集程度不高,主要分散地分布在非市中心的城市干道上(如公路、地铁沿线等),是城市的次中心区域,因此任务的完成相对具有一些难度;标价为75的任务主要沿公路发展到城郊地区,99%的任务都集中在城市发展程度不高的区域;80-85 标价区间的任务反而集中在以佛山为主的市中心以及东莞的次中心区域。

对于 80-85 标价区间的任务,我们随机选择部分位置进行进一步的放大研究, 卫星图截取如下:

图 5-1-6 任务编码为 A0815 的任务位置及其周边环境(上左)图 5-1-7 任务编码为 A0793 的任务位置及其周边环境(上右)

图 5-1-8 任务编码为 A0790 的任务位置及其周边环境

◎分析:从卫星图上看,该标价区间的任务位置虽然在较为市中心的区域,

但附近区域发展情况差,任务完成难度非常高。

(2)研究定价与会员分布密集程度之间的关系。 通过观察会员位置的散点图,我们可以发现一个较大偏差点,找到其信息如下:

表一

	会员位置				
会员编号	(GPS)纬度	经度	预订任务限额	预订任务开始时间	信誉值
B1175	113. 131483	23. 031824	1	6:36:00	19. 9231

可以推断,该数据的经度与纬度填写位置相反,为了确保信息的准确度,对该会员信息进行清洗处理。同样的,为将会员位置散点图与任务位置散点图进行有效的比对,将会员位置的经纬度区间限制在(22.4N~23.8N,112.6E~114.6E)范围内,并将范围外的会员进行信息清洗处理。

处理后,根据附件对会员位置的经纬度进行散点图的描绘如下:

图 5-1-9 会员位置的散点图

将任务位置关于标价分类并描绘散点图,再将散点图与会员位置的散点图利用 Photoshop 软件通过调整透明度进行叠加,得到效果图如下:

图 5-1-12 会员(红)-标价(75)散点叠加图 图 5-1-13 会员(红)-标价(80-85)散点叠加图

②分析:通过叠加图可以看到,65-69.5 标价区间的任务分布在会员数量比较密集的区域;标价区间在 70-74.5 的任务分布在会员数量次密集的区域; 75-85 标价区间的任务主要分布区域内的会员数量相比较少。

◎总结分析:由于会员分布位置与所在区域的发展程度有正相关性,即所在区域越发达、繁华,会员数量越多,因此任务所在地的发展情况是主要因素。任务所在地越发达、人均 GDP、交通越便捷、任务完成越简便,标价会越低;反之,标价越高。另外,在会员分布较少的市中心区域定价也会相对升高。

5.1.2 分析任务未完成的原因

将附件一数据分为完成与未完成两大类进行散点图描绘,再利用 Photoshop 与卫星图叠加、与会员分布散点图叠加如下:

22 (Author) (Eq. (Author) (Eq.

图 5-1-14 未完成(左)

图 5-1-15 已完成(右)

②总结分析:从两张叠加图的对比中观察得,东莞市区、广州市番禺区、东莞市虎门镇的任务几乎全部完成,而广州、深圳、佛山市区的任务完成情况较差;总体看来,已完成的任务分布在省内各地,但未完成的任务主要分布在较为发达的区域以及任务量较密集的区域。

可以推测,发达区域的市场发达,需要调研的任务多,但居民人口少,且定价较低,能够完成任务的会员少,导致任务未完成量大。

5.2 为附件一中的项目设计新的任务定价方案,并和原方案进行比较。

5.2.1 为附件一中的项目设计新的定价方案。

◎利用附件一、二中会员与任务的位置经纬度,在会员与任务的位置中各取一点,分别记作 $A(\varphi_1,\lambda_1)$, $B(\varphi_2,\lambda_2)$, φ 是纬度, λ 是经度(MATLAB 中的角度需要转化为弧度制,因此先对附件中的数据进行了转换),利用 MATLAB 计算 A、B 两点之间的距离(单位 km),公式如下:

$$\Delta = 6371.233 \left\{ (\varphi_1 - \varphi_2)^2 + (\lambda_1 - \lambda_2)^2 \cos^2 \left[\frac{90}{\pi} (\varphi_1 + \varphi_2) \right] \right\}^{\frac{1}{2}}.$$

根据公式求得的任务-会员距离表见附录 8.2.1 (由于数据量较大,篇幅限制,附录一只摘取完整表格的一部分,完整部分存放在支撑材料 1 中,下面的所有表格

附录同理)。

©假设每个会员对所有任务的定价都有影响,选择四个对新标价 W_1 有影响的因素:任务与会员之间的距离 A_1 、会员的任务开始时间 A_2 、会员的信誉值 A_3 、会员的任务限额 A_4 ,求所有会员的影响度的平均值,建立模型如下:

$$W = W_0 + \frac{\sum_{i=1}^{1877} S_i}{1877}$$

$$S_i = \omega_1 d_i + \omega_2 t_i + \omega_3 k_i + \omega_4 b_i.$$

◎利用层次分析法对各因素进行层次排序与分配,

图 5-2-1

多次试验并进行一致性检验后得出下表:

	$A_{_{\mathrm{I}}}$	A_2	A_3	A_4
$A_{\rm l}$	1	2	4	8
A_2	$\frac{1}{2}$	1	$\frac{1}{2}$	2
A_3	$\frac{1}{4}$	2	1	2
A_4	$\frac{1}{8}$	$\frac{1}{2}$	$\frac{1}{2}$	1

②计算各指标对标价的权重分配得, ω_1 =0.5541, ω_2 =0.1679, ω_3 =0.1987,

 ω_4 =0.0793,其中一致性检验比例 CR=0.0687<0.10,因此该矩阵通过一致性检验。

最终得出该模型的方程如下:

$$S_i = 0.5541d_i + 0.1679t_i + 0.1987k_i + 0.0793b_i$$

◎为了使数据基本上处在相近数量级,先对原数据进行处理(处理后的数据 见附录 8.2.2):

(1) 将开始时刻调整为以小时(×10⁻¹)为单位的数字如下图:

图 5-2-2

(2) 将会员信誉值进行标准化处理:

新信誉值=标准化后的信誉值×1000

- ◎求得的总会员影响度数值见附录 8.2.3。
- ◎调整指标W。使新标价最低为65,此时W0=32

为了避免标价过高,对标价超过 85 的任务价格进行调整: 调整后标价在 85 以上的任务差值统一缩小一半,所产生的方案记为方案一; 调整后标价在 85 以上的任务统一标价为 85 的方案记为方案二。

得出的两个具体定价方案见附录 8.2.4, 结果分别如下:

表三

	方案一	方案二
完成个数	468 个	468 个
完成率	56.04%	56.04%

总成本	33042.63	33011.80

考虑到在 APP 在实际使用中的巨大数据量,在完成率相同的情况下选择成本 更低的方案二以定价更合理。

5.2.2 将新方案与原方案讲行比较。

表四

	原方案	新方案
完成个数	522 个	468 个
完成率	62.36%	56.04%
总成本	36446	33011.80

从表格可以见得,新方案的完成度下降了6%左右,成本同比下降了3400元左右,在成本的下降幅度较大的情况下完成度变化较小。相比起来新方案能够为该 APP 公司节省更多地成本、获得更多利润,在全国甚至全世界的任务分布当中能够节省非常大的一笔资金,并投入到其他需要发展方面当中。

- 5.3 考虑将任务联合打包发布,修改前面的定价模型,分析对最终的任务完成情况有什么影响。
 - 5.3.1 考虑将任务联合打包发布,修改前面的定价模型。

©假设每个任务范围内有 n 个其他任务,选择五个对新标价 W_1 有影响的因素:任务与其有效范围内会员之间的距离 A_1 、会员的任务开始时间 A_2 、会员的信誉值 A_3 、会员的任务限额 A_4 、该任务范围内的其他任务数 A_5 ,建立模型如下:

$$W' = W_0 + \sum_{i=1}^n S'_i + \omega_5 m$$
,

$$S'_{i} = \omega'_{1} d_{i} + \omega'_{2} t_{i} + \omega'_{3} k_{i} + \omega'_{4} b_{i}.$$

◎利用层次分析法对各因素进行层次排序与分配,示意图如下:

图 5-3-1

多次试验并进行一致性检验后得出下表:

表五

	$A_{\rm l}$	A_2	A_3	A_4	A_5
$A_{\rm l}$	1	2	4	8	$\frac{1}{3}$
A_2	$\frac{1}{2}$	1	$\frac{1}{2}$	2	$\frac{1}{7}$
A_3	$\frac{1}{4}$	2	1	2	$\frac{1}{5}$
A_4	$\frac{1}{8}$	$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{9}$
A_5	3	7	5	9	1

©计算各指标对标价的权重分配得 ω_1 =0.2547, ω_2 =0.0801, ω_3 =0.0985,

 ω_4 =0.0427, ω_5 =0.5239,其中一致性检验指标CR=0.0453<0.10,因此该矩阵通过一致性检验.

最终得出该模型的方程如下:

$$S_i = 0.2547d_i + 0.0801t_i + 0.0985k_i + 0.0427b_i$$

◎利用 MATLAB 根据地球上两点的经纬度公式进行计算,公式如下:

$$\Delta = 6371.233 \left\{ (\varphi_1 - \varphi_2)^2 + (\lambda_1 - \lambda_2)^2 \cos^2 \left[\frac{90}{\pi} (\varphi_1 + \varphi_2) \right] \right\}^{\frac{1}{2}},$$

所有的距离从 MATLAB 里导出成为一个 877*877 的矩阵(任务-任务距离数据表),输出至 Excel 存放在附录 8.2.5 中。

由于所有的任务分布在经纬度为(22.4N~23.8N,112.6E~114.5E)的距离范

围内,通过多次的数据测试对比如下(详细见支撑材料9):

表六

打包区间长度	0.02	0.04	0.06	0.08
完成率	59.5%	57.9%	65.1%	66.7%
总成本	19275.9	7629.25	12916.89	6331.96

由于 0.04 所对应的完成率与总成本相比于其他区间长度效果最好,我们将其合理地划分区域为 0.04 度的网格正方形。

划分后的每个正方形形成了一个打包范围,打包后的任务包,选取打包范围内的正中心点的经纬度作为任务包的经纬度。

将范围内打包的任务价格进行叠加处理,以代表打包后任务的整体定价,将 定价导出至附录 8.2.6。

打包范围

图 5-3-2

5.3.2 分析打包对最终的任务完成情况的影响。

本题的完成度预测选择采用支持向量机(SVM)的训练与使用,利用附件一中的经纬度与标价数据进行训练后,导入打包后的经纬度与标价进行预测,再通过 Excel 进行求和运算,得到打包后的方案数据如下表:

表七

	原方案	打包方案
总任务个数	877 个	276 个
完成个数	522 个	167 个
完成率	62.36%	60.72%
总成本	36446	32643.36

对任务进行打包,实现了在完成率基本持平的情况下总成本大幅度降低的目标,对模型二进行了进一步的优化与改进。与原方案相比,体现出了打包对实现控制成本的有效性与优越性。

5.4 对附件三中的新项目给出你的任务定价方案,并评价该方案的实施效果。

◎用 Excel 对附件三中的经纬度位置进行散点图的描绘,然后用 Photoshop 对散点图与卫星图进行叠加,效果如下:

图 5-4-1

可以观察到,附件三的坐标主要分布在广州市以及深圳市,由于这两个位置 人均 GDP 较高,城市发展状况较好,人口流动量较大,不应该对任务进行打包 处理。因此,利用模型二中层次分析法所得到的相关因素权重,建立模型如下:

$$W = W_0 + \frac{\sum_{i=1}^{1877} S_i}{1877}$$

$$S_i = \omega_1 d_i + \omega_2 t_i + \omega_3 k_i + \omega_4 b_i.$$

- ◎利用 MATLAB 对会员位置与新任务位置进行距离的测量,具体数据见附录8.2.7。
 - ◎将附件中的相关数据代入得到关于附件三的定价,具体数据见附录 8.2.8。

完成率 24.3% 成本 34751.48

◎分析: 该模型成本较高,但完成度率较低,主要是由于未对新任务进行打

包,而新任务主要分散在发达城市的市中心区域,居民人口少且闲时兼职时间少,完成任务的几率降低;另外,该任务分布过于集中,不利于大部分会员进行任务的完成。

6 模型的评价与改进

6.1 模型的优点

- (1)使用的模型简单,通俗易懂,充分利用已有的信息,综合考虑题目中的所有因素,得出结果;
- (2)该模型对于问题二以及问题三中利用层次分析法所得到的判断矩阵的一致性检验效果很好:
- (3) 模型中使用到的支持向量机预测的数据误判率比较理想;
- (4)任务打包问题中,由于任务数太多,不选用计算两两任务的距离从而判断哪些任务需要捆绑打包的方法,而利用计算机写出循环算法得出适宜的区间长度, 简化的计算过程,贴近 "用最简单的方法解决最难问题"的思想;

6.2 模型的缺点

(1)模型中的某些数据处理上存在主观性,不够严谨。

6.3 模型的改进

(1)接下来定价时,可以将城市的人均 GDP 作为参考指标之一,从而进行更精确的层次分析。

7 参考文献

- [1] 余胜威, MATLAB 优化算法案例分析与应用[M],清华大学出版社,2015;
- [2] 司守奎, 孙玺菁, 数学建模算法与应用[M], 国防工业出版社, 2011;
- [3] 温欣研. MATLAB R2016a 从入门到精通[M]. 清华大学出版社, 2017.

8 附录

8.1 编程代码:

8.1.1 SVM 代码

a0 = load('C:\Users\admin\Desktop\SVM1.1.txt'); % 载入处理后的已完成任务的经度,纬度,定价以及需要预测的任务的经度,纬度,定价

a = a0;

a = zscore(a); % 进行标准化

b0 = a([1:835],:);dd0 =a([836:end],:);%提取已分类和待分类的数据

group = [zeros(313,1);ones(522,1)]; % 已知样本点的类别标号

s = svmtrain(b0',group,'Method','QP','Kernel Function','rbf')% 训练支持向量分类器

sv_index = s.SupportVectorIndices % 返回支持向量的标号

beta = s.Alpha % 返回分类函数的权系数

bb=s.Bias % 返回分类函数的常数项

```
mean_and_std_trans = s.ScaleData % 第 1 行返回的是已知样本点均值向量的相反数,第 2 行返回的是标准差向量的倒数 check = svmclassify(s,b0) % 验证已知样本点 err rate = 1-sum(group==check)/length(group) % 计算已知样本点的错判率
```

solution = svmclassify(s,dd0) % 对待判样本点进行分类

8.1.2 GPS 代码

```
MemberGps=zeros(1, 1);
%导入任务、会员坐标矩阵
TaskGps=xlsread('TaskGps.xlsx');
MemberGps=xlsread('MemberGps.xlsx');
%绘制任务、会员坐标矩阵,控制横坐标在[112.6,114.6],纵坐标[224,23.8]
subplot(2, 2, 1);
scatter (MemberGps(:,2), MemberGps(:,1), 'r', 'DisplayName', '会员坐标散点图');
title('会员 GPS 坐标图');
xlabel(' ° (E)');
ylabel('° (N)');
axis([112.6 114.6 22.4 23.8]);
hold on;
subplot(2, 2, 2);
scatter(TaskGps(:,2), TaskGps(:,1), 'b', 'DisplayName', '任务坐标散点图');
title('任务 GPS 坐标图');
xlabel(' ° (E)');
ylabel(' ° (N)');
axis([112.6 114.6 22.4 23.8]);
hold on:
subplot(2, 1, 2);
scatter(MemberGps(:,2), MemberGps(:,1), 'r', 'DisplayName', '会员坐标散点图');
title('会员 GPS 坐标图');
xlabel('° (E)');
ylabel(' ° (N)');
axis([112.6 114.6 22.4 23.8]);
   hold on;
scatter(TaskGps(:,2), TaskGps(:,1), 'b', 'DisplayName', '任务坐标散点图');
title('任务 GPS 坐标图');
xlabel(' ° (E)');
ylabel(' ° (N)');
axis([112.6 114.6 22.4 23.8]);
```

8.1.3 三维图代码

```
clc, clear;
TaskGps=zeros(1, 1);
Price=zeros(0, 1);
%导入任务、会员坐标矩阵
TaskGps=x1sread('TaskGps.x1sx');
Price = xlsread('Price.xlsx');
%生成二维矩阵
[X, Y]=meshgrid(112.5:0.1:114.6, 22.7:0.1:23.5)
Z=griddata(TaskGps(:, 2), TaskGps(:, 1), Price, X, Y)
meshc(X, Y, Z)
8.1.4 问题二的代码
Distance=zeros (835, 1877);
%TaskIa、TaskLong 分别为任务的纬度和经度
%MemIa、MemLong 分别为会员的经度和纬度
%计算每个任务对所有会员的距离并存放在 Distance 矩阵内
for i=1:835
    for j=1:1877
        Distance (i+1, j+1)
=6374.233*((TaskIa(i)-MemberIa(j))^2+(TaskLong(i)-MemberLong(j))^2*(cos((TaskIa(i)+
MemberIa(j))*90/pi))^(2))^(1/2);
    end
end
S = [];
s = 0;
n = 0;
for i=1:835
   %设定
   a = TaskIa(i) - 0.0135
   b = TaskIa(i) + 0.0135
   c = TaskLong(i) - 0.0135
   d = TaskLong(i) + 0.0135
   Temp = 0;
   for j=1:1877
                   %根据定价模型公式计算定价
s=0.5541*A(i+1, j+1)+0.1679*MemStarTime(j)+0.1987*MemReputation(j)...
                      +0.0793*MemLim(j);
                  Temp = Temp + s;
                   s = 0:
```

```
end
   %求出每个任务对所有会员的定价均值
     Temp = Temp/1877
     n=0;
     S = [S; Temp];
end
8.1.5 问题三进行会员与新任务距离的代码
%Price3 用于保存打包后任务的总定价
%averagePrice 用于保存打包后任务的定价均值
%locationIa 保存打包后任务的纬度坐标点
%locationlong 保存打包后任务的经度坐标点
Price3 = [];
averagePrice = [];
locationIa =[];
locationLong = [];
a = 22.493083 :0.1:23.878398 %纬度区间
b = 112.683258:0.1:114.493609 %经度区间
for i = 1:13 %i 控制纬度区间
   for j=1:18 %j 控制经度区间
       totalPrice = 0;
       packValue = 0;
       for n=1:835
          %将所有的任务点与某一区间对比,若任务在该区间内则被打包
(TaskIa(n) >= a(i)) && (TaskIa(n) < a(i+1)) && (TaskLong(n) > b(j)) && (TaskLong(n) <= b(j+1))
             totalPrice = totalPrice + TaskNewPrice(n);
             packValue = packValue+1;
          end
       %将所有被打包好的数据存放在 Price3 列向量
       if totalPrice~=0
          Price3 = [Price3;totalPrice];
          averagePrice = [averagePrice; (totalPrice/packValue)];
          locationIa = [locationIa;a(i)];
          locationLong = [locationLong;b(j)];
       end
```

end

8.1.6 问题四的代码

```
S = [];
s = 0;
n = 0;
for i=1:2066
    a = protaskIa(i) - 0.0135
    b = protaskIa(i) + 0.0135
    c = protaskLong(i)-0.0135
    d = protaskLong(i) + 0.0135
    Temp = 0;
    for j=1:1877
s=0.5541*E(i+1, j+1)+0.1679*MemStarTime(j)+0.1987*MemReputation(j)...
                       +0.0793*MemLim(j);
                   Temp = Temp + s;
                    s = 0;
    end
      Temp = Temp/1877
      n=0;
      S = [S; Temp];
end
```

8.2 表格数据

(由于数据量较大,附录中仅摘录表格的部分,完整数据在支撑文件中对应存档)

8.2.1 会员-任务距离数据表(略)(对应支撑材料 1)

		******	(河左久)	<u> </u>			
74.70169	80.07774	81.84741	96.19867	11.18549	86.65365	10.37652	14.23662
60.81211	66.24	67.51281	81.51814	9.383463	72.08431	7.467007	22.91708
72.4676	77.75246	79.69694	94.36279	11.45826	84.62369	10.22533	16.55229
89.46001	95.78317	95.06329	104.9316	20.97665	98.10594	22.94518	10.76099
73.92455	79.14745	81.27433	96.17802	13.37761	86.30888	12.23072	17.01663
89.84388	96.15531	95.50464	105.4898	21.06897	98.59699	23.01149	10.39536
75.9979	81.30632	83.27436	97.89669	13.24978	88.20102	12.43938	15.00871
73.82154	79.07926	81.12059	95.89971	12.70523	86.10215	11.59266	16.47879
77.33173	82.16412	85.20439	101.3571	21.78391	90.78023	20.54502	23.24382
74.15794	79.22067	81.71943	97.16126	16.25406	86.982	14.96705	19.60796
76.42321	81.48752	84.0267	99.48272	17.56674	89.30553	16.46103	19.25958
77.25485	82.33474	84.85592	100.2704	17.85493	90.12095	16.82694	18.92915
76.3866	81.71966	83.63661	98.17377	13.11913	88.5295	12.39161	14.48163
78.37022	83.40541	86.04463	101.6099	19.31144	91.37775	18.31238	19.72058
79.287	84.33764	86.96105	102.4876	19.71109	92.28177	18.78759	19.48148

74.49585	79.55057	82.0736	97.54362	16.57479	87.34962	15.30895	19.67767
76.16185	81.19397	83.79821	99.35299	17.92486	89.11744	16.76846	19.84281
77.64993	82.49468	85.51545	101.6356	21.78926	91.07883	20.57821	23.04303
76.43416	81.75041	83.70947	98.30911	13.4323	88.62879	12.67652	14.77285
79.5218	84.57357	87.199	102.7244	19.86125	92.52023	18.95362	19.47786
79.40379	84.39634	87.14482	102.8497	20.68172	92.54076	19.70385	20.5489
77.57168	82.64533	85.1863	100.6236	18.16593	90.46233	17.15374	19.02925
77.89314	82.99909	85.47554	100.8132	17.87233	90.71112	16.91973	18.43758
79.10918	84.62042	86.15408	100.0461	12.59156	90.79127	12.5198	10.59431
77.78405	83.20639	84.93478	99.15561	12.7699	89.70235	12.36247	12.54876
79.92899	84.96535	87.63121	103.2083	20.38851	92.97575	19.48845	19.79854
75.86172	80.86526	83.52543	99.16611	18.20499	88.87951	17.001	20.36169
74.75407	79.93164	82.18245	97.25112	14.65281	87.29056	13.5319	17.55733
74.90564	80.28465	82.05181	96.39462	11.27611	86.85558	10.49642	14.11439
82.64012	88.7085	88.65876	99.87049	13.15299	92.20781	14.96296	4.257689
85.09056	91.04059	91.49265	103.5049	14.88164	95.38461	16.26027	0.782687
77.12418	82.25088	84.666	99.9284	17.01613	89.8666	16.0322	18.09787
75.02033	80.25855	82.37307	97.23487	13.78245	87.39544	12.76504	16.46235
82.00781	88.04709	88.07559	99.43739	12.42328	91.68238	14.19748	3.958908
84.47802	90.4351	90.84171	102.7904	14.30887	94.70418	15.73297	0.087755
76.52913	81.61857	84.10459	99.48157	17.22699	89.35066	16.1555	18.80881

8.2.2 标准化及调整后的会员信息数据(略)(对应支撑材料 2)

	会员位置				
会员编号	(GPS)纬度	经度	预订任务限额	开始时间	信誉值
B0001	22.947097	113.679983	114	65	130. 248665
B0002	22. 577792	113. 966524	163	65	72. 6481067
B0003	23. 192458	113. 347272	139	65	53. 5439056
B0004	23. 255965	113. 31875	98	65	48. 0515342
B0005	33. 65205	116. 97047	66	65	40. 0703709
B0006	22. 262784	112. 79768	72	65	34. 934091
B0007	29. 560903	106. 239083	15	65	30. 1295131
B0014	23. 054911	113. 768888	232	65	28. 4804336
B0016	23.054769	113.65272	171	65	25. 9667502
B0020	23. 012667	113.839206	94	65	25. 5296258
B0022	27. 124487	111.017906	1	65	21. 7391267
B0025	22.724052	113. 922057	38	65	20. 9891935
B0033	22. 993463	114. 728544	29	65	19. 9742839
B0039	21. 679227	110. 922443	88	65	19. 5585014
B0041	23. 039077	113. 133736	55	65	19. 5145869
B0043	22. 698914	113.818848	26	65	18. 189183
B0046	22. 736419	114. 275272	64	65	17. 3656994
B0048	20. 335061	110. 178827	30	65	16. 3774037

B0074	23. 107633	113. 934697	48	65	13. 5128387
B0091	22. 805765	113.580688	58	65	13.0718209
B0099	22. 957762	113.885591	40	65	12. 4699888
B0104	22. 557073	114. 093619	1	65	12. 4399473
B0115	23. 019708	113.088886	1	65	11.6944918
B0135	22. 999192	114. 343194	42	65	9. 97558234
B0140	23. 626787	113. 43641	13	65	8. 17592503
B0149	22.845506	113. 269551	63	65	8. 11507587
B0154	22. 919953	113. 213961	1	65	8. 01124014
B0161	22. 741636	114. 266652	1	65	7. 34797561
B0163	22. 674691	113.796497	1	65	6. 823387
B0175	22. 506225	113.945301	1	65	5.82291871
B0201	23. 558419	113.614671	30	65	5.60067836
B0244	22.801349	113.714482	1	65	5. 27884568
B0256	23. 041392	113.75766	1	65	5. 0484685
B0312	23. 151009	113. 551515	1	65	4. 35772237
B0337	23. 173781	112.864304	1	65	4. 11587003
B0343	23. 287294	113.625475	12	65	4. 07426778
B0347	22. 979873	113. 314866	1	65	3. 79432122
B0472	21. 498823	111. 106315	1	65	3.71113606
B0473	22. 794154	113. 385011	1	65	3. 23920632
B0501	23. 230059	113.08838	10	65	3. 16101677

8. 2. 3 所有会员影响度(从 1 到 1877)(略)(对应支撑材料 3)

43. 9746156468211	44. 8115188690946	47. 6708542073394
38. 8964594671038	45. 6235282018901	45. 7625510116570
43. 2805654802517	46. 9271275922641	44. 4877542356799
49. 9256245164291	44. 8929274190009	46. 1746496746498
44. 0598066996093	47. 1246740351684	47. 3609581865502
50. 0896048765926	47. 2600040857772	45. 6064140321211
44. 7200410962892	46. 1353718470475	38. 4046725007642
43. 9176985672149	46. 1832767913166	52. 9886117001032
46. 8221185882062	45. 6002245451930	39. 9779367209414
44. 6399425424457	45. 2189785177642	44. 5700861619126
45. 6377933565577	47. 3690588788397	41. 3987272881977
45. 9689112569791	45. 5820574422065	
44. 8253730247167	44. 5485124926842	
46. 6323977296041	44. 0544783258274	
47. 0163319132181	46. 4757663701892	

8. 2. 4 问题二中的两个定价方案(略)(对应支撑材料 4)

方案一					
任务号码	任务 gps 纬度	任务 gps 经度	新定价1	预测结果	
A0504	23.00567603	113.7076519	65.00		1

40405				
A0495	23.01025416	113.6817199	65.00	1
A0533	22.98744806	113.725147	65.00	1
A0515	23.01478583	113.6858529	65.01	1
A0534	22.99313225	113.7323716	65.02	1
A0782	22.97333327	113.730314	65.03	1
A0536	22.97417485	113.7345883	65.03	1
A0766	23.00877683	113.7381856	65.05	1
A0753	22.962945	113.6786409	65.07	1
A0780	22.99587084	113.7621434	65.09	1
A0636	22.96921119	113.7638371	65.10	1
A0634	22.99889137	113.6206429	65.10	1
A0738	22.9870642	113.7689429	65.10	1
A0512	23.00064852	113.6154402	65.11	1
A0518	22.99142805	113.7725018	65.12	1
A0828	23.01280811	113.7603122	65.13	1
A0772	23.02609965	113.746608	65.15	1
A0530	23.01465206	113.7680676	65.16	1
A0497	23.0416214	113.7119223	65.17	1
A0701	22.94434236	113.6771283	65.19	1
方案二				
任务号码	任务 gps 纬度	任务 gps 经度	新定价 2	预测结果
A0504	23.00568	113.7077	65.00	1
40405				
A0495	23.01025	113.6817	65.00	1
A0495 A0533	23.01025 22.98745	113.6817 113.7251	65.00 65.00	1 1
A0533	22.98745	113.7251	65.00	1
A0533 A0515	22.98745 23.01479	113.7251 113.6859	65.00 65.01	1 1
A0533 A0515 A0534	22.98745 23.01479 22.99313	113.7251 113.6859 113.7324	65.00 65.01 65.02	1 1 1
A0533 A0515 A0534 A0782	22.98745 23.01479 22.99313 22.97333	113.7251 113.6859 113.7324 113.7303	65.00 65.01 65.02 65.03	1 1 1 1
A0533 A0515 A0534 A0782 A0536	22.98745 23.01479 22.99313 22.97333 22.97417	113.7251 113.6859 113.7324 113.7303 113.7346	65.00 65.01 65.02 65.03	1 1 1 1
A0533 A0515 A0534 A0782 A0536 A0766	22.98745 23.01479 22.99313 22.97333 22.97417 23.00878	113.7251 113.6859 113.7324 113.7303 113.7346 113.7382	65.00 65.01 65.02 65.03 65.03	1 1 1 1 1
A0533 A0515 A0534 A0782 A0536 A0766 A0753	22.98745 23.01479 22.99313 22.97333 22.97417 23.00878 22.96295	113.7251 113.6859 113.7324 113.7303 113.7346 113.7382 113.6786	65.00 65.01 65.02 65.03 65.03 65.05	1 1 1 1 1 1
A0533 A0515 A0534 A0782 A0536 A0766 A0753 A0780	22.98745 23.01479 22.99313 22.97333 22.97417 23.00878 22.96295 22.99587	113.7251 113.6859 113.7324 113.7303 113.7346 113.7382 113.6786 113.7621	65.00 65.01 65.02 65.03 65.03 65.05 65.07	1 1 1 1 1 1 1
A0533 A0515 A0534 A0782 A0536 A0766 A0753 A0780 A0636	22.98745 23.01479 22.99313 22.97333 22.97417 23.00878 22.96295 22.99587 22.96921	113.7251 113.6859 113.7324 113.7303 113.7346 113.7382 113.6786 113.7621 113.7638	65.00 65.01 65.02 65.03 65.03 65.05 65.07 65.09	1 1 1 1 1 1 1 1
A0533 A0515 A0534 A0782 A0536 A0766 A0753 A0780 A0636 A0634	22.98745 23.01479 22.99313 22.97333 22.97417 23.00878 22.96295 22.99587 22.96921 22.99889	113.7251 113.6859 113.7324 113.7303 113.7346 113.7382 113.6786 113.7621 113.7638 113.6206	65.00 65.01 65.02 65.03 65.03 65.05 65.07 65.09 65.10	1 1 1 1 1 1 1 1 1
A0533 A0515 A0534 A0782 A0536 A0766 A0753 A0780 A0636 A0634 A0738	22.98745 23.01479 22.99313 22.97333 22.97417 23.00878 22.96295 22.99587 22.96921 22.99889 22.98706	113.7251 113.6859 113.7324 113.7303 113.7346 113.7382 113.6786 113.7621 113.7638 113.6206 113.7689	65.00 65.01 65.02 65.03 65.03 65.05 65.07 65.09 65.10 65.10	1 1 1 1 1 1 1 1 1
A0533 A0515 A0534 A0782 A0536 A0766 A0753 A0780 A0636 A0634 A0738 A0512	22.98745 23.01479 22.99313 22.97333 22.97417 23.00878 22.96295 22.99587 22.99587 22.99889 22.98706 23.00065	113.7251 113.6859 113.7324 113.7303 113.7346 113.7382 113.6786 113.7621 113.7638 113.6206 113.7689 113.6154	65.00 65.01 65.02 65.03 65.03 65.05 65.07 65.09 65.10 65.10 65.10	1 1 1 1 1 1 1 1 1 1
A0533 A0515 A0534 A0782 A0536 A0766 A0753 A0780 A0636 A0634 A0738 A0512 A0518	22.98745 23.01479 22.99313 22.97333 22.97417 23.00878 22.96295 22.99587 22.96921 22.99889 22.98706 23.00065 22.99143	113.7251 113.6859 113.7324 113.7303 113.7346 113.7382 113.6786 113.7621 113.7638 113.6206 113.7689 113.6154 113.7725	65.00 65.01 65.02 65.03 65.03 65.05 65.07 65.09 65.10 65.10 65.11 65.12	1 1 1 1 1 1 1 1 1 1
A0533 A0515 A0534 A0782 A0536 A0766 A0753 A0780 A0636 A0634 A0738 A0512 A0518 A0828	22.98745 23.01479 22.99313 22.97333 22.97417 23.00878 22.96295 22.99587 22.99587 22.99889 22.98706 23.00065 22.99143 23.01281	113.7251 113.6859 113.7324 113.7303 113.7346 113.7382 113.6786 113.7621 113.7638 113.6206 113.7689 113.6154 113.7725 113.7603	65.00 65.01 65.02 65.03 65.03 65.05 65.07 65.09 65.10 65.10 65.11 65.12 65.13	1 1 1 1 1 1 1 1 1 1 1 1 1
A0533 A0515 A0534 A0782 A0536 A0766 A0753 A0780 A0636 A0634 A0738 A0512 A0518 A0828 A0772	22.98745 23.01479 22.99313 22.97333 22.97417 23.00878 22.96295 22.99587 22.96921 22.99889 22.98706 23.00065 22.99143 23.01281 23.0261	113.7251 113.6859 113.7324 113.7303 113.7346 113.7382 113.6786 113.7621 113.7638 113.6206 113.7689 113.6154 113.7725 113.7603 113.7466	65.00 65.01 65.02 65.03 65.03 65.05 65.07 65.09 65.10 65.10 65.11 65.12 65.13 65.15	1 1 1 1 1 1 1 1 1 1 1 1

8.2.5任务-任务距离数据表(略)(对应支撑材料5)

0	0	0	0	0	0	0
49.45913	16.16792	16.29737	13.16866	34.37645	19.99011	9.146274
53.72995	14.88437	21.53144	14.87731	36.22742	24.39329	10.08734
20.40466	22.2366	13.75785	20.52491	12.40331	10.94879	25.14934
52.85846	18.99039	19.70913	16.29592	37.75359	23.4002	11.8603
20.84989	22.17523	13.51869	20.36801	12.89823	10.81797	24.93863
52.17622	18.27298	19.00356	15.55809	37.01914	22.6877	11.14674
59.63013	27.17194	27.04327	24.38446	45.46693	30.79466	20.02797
55.41686	22.71738	22.61068	19.8534	40.9467	26.35232	15.59589
54.93954	22.68766	22.24305	19.71895	40.63612	25.99055	15.59187
59.34551	27.04593	26.801	24.22001	45.24128	30.55336	19.90513
54.29777	22.42234	21.6882	19.3618	40.11774	25.43808	15.36181
45.40674	15.55236	12.79591	11.79268	31.25769	16.54024	9.557927
47.69753	16.49604	14.89136	13.0225	33.28375	18.63656	9.903432
49.3415	16.17802	16.19558	13.1438	34.30068	19.89362	9.175501
29.88944	13.98653	4.075584	11.31283	16.63175	3.402411	15.49196
33.09446	15.2025	5.132877	11.68985	20.76082	7.013731	14.72654
54.03918	21.77846	21.30114	18.77874	39.68	25.04707	14.69862

8.2.6 打包后的的定价、均价以及经纬度、预测完成情况(略)(对应支撑材料 6)

打包后总定价	打包后区域中心点纬度	打包后区域中心点纬度	定价均价	预测完成情况
310.9739358	22.513083	113.903258	77.74348	0
1010.816384	22.513083	113.943258	77.75511	0
77.49706871	22.513083	113.983258	77.49707	0
156.7361644	22.513083	114.063258	78.36808	0
451.3617018	22.553083	113.903258	75.22695	0
455.1114734	22.553083	113.943258	75.85191	0
607.5911946	22.553083	113.983258	75.9489	0
231.5874936	22.553083	114.023258	77.19583	0
233.6183419	22.553083	114.063258	77.87278	0
312.2547545	22.553083	114.103258	78.06369	0
157.9138924	22.553083	114.143258	78.95695	0
79.18133835	22.553083	114.183258	79.18134	0
81.53064488	22.553083	114.223258	81.53064	0
81.36666452	22.553083	114.263258	81.36666	0
292.7168906	22.593083	113.863258	73.17922	0
370.5590318	22.593083	113.903258	74.11181	0
149.189202	22.593083	113.943258	74.5946	0
74.34464195	22.593083	113.983258	74.34464	0
74.09690194	22.593083	114.023258	74.0969	0
74.75577123	22.593083	114.063258	74.75577	0
462.5996817	22.593083	114.143258	77.09995	0

73.07437712	22.633083	113.623258	73.07438	1
71.96314136	22.633083	113.863258	71.96314	0
142.9659751	22.633083	113.943258	71.48299	0
72.3678755	22.633083	114.023258	72.36788	0
513.6139946	22.633083	114.063258	73.37343	0
74.97183921	22.633083	114.103258	74.97184	0
303.8709092	22.633083	114.143258	75.96773	0

8.2.7 由于 2067*1877 的数据量过大,我们截取前半部分放于附录中

	252.204 149.8053 894.2887 250.961 155.1839 897.0051
51 85132 33 63135 79 2656 83 27727 12	250 961 155 1839 897 0051
	100.001
49.63834 27.38074 78.88563 83.36866 12	255.405 149.0927 902.4943
50.61127 32.90225 78.08803 82.13864 12	250.743 153.9933 895.029
49.80244 30.03331 78.19144 82.46686 1	1252.98 151.3172 898.2355
55.33285 41.06508 80.41392 83.84182 12	245.992 162.6507 891.5561
50.30471 31.41128 78.28154 82.45186 12	251.999 152.6648 897.0311
50.73032 31.26847 78.82487 83.01395	1252.46 152.7625 898.4403
47.16863 28.69906 75.6791 80.03426 12	252.457 148.8583 893.8956
50.37637 30.76855 78.59333 82.81762 12	252.686 152.1897 898.4153
60.46066 35.47831 89.02153 93.14212 12	257.001 159.9686 919.2615
49.33892 29.16303 77.9614 82.30046 12	253.487 150.3877 898.5865
51.26769 33.32649 78.69503 82.72131 12	250.815 154.6568 895.9918
49.53877 33.54671 76.59554 80.57457	1249.31 153.9256 890.9259
51.03647 33.52004 78.35068 82.35619 12	250.442 154.6924 894.986
48.84565 32.6908 76.1263 80.16922 12	249.681 152.8895 890.7715
49.96806 30.8481 78.09527 82.30677 12	252.305 152.0488 897.1809
50.29817 31.52558 78.23272 82.39348 12	251.881 152.752 896.8
48.84565 32.6908 76.1263 80.16922 12	249.681 152.8895 890.7715
49.00488 33.91921 75.83128 79.77103 12	248.558 153.9133 888.8001
50.20744 31.50548 78.13522 82.29621 12	251.834 152.6903 896.5954
47.10371 28.65528 75.62192 79.98015 12	252.457 148.7873 893.8129
48.43119 32.88591 75.57591 79.5975 12	249.203 152.806 889.3286
50.42646 33.49271 77.64828 81.64555	1250.01 154.3576 893.3908
49.8637 30.61811 78.05692 82.28571 12	252.454 151.8136 897.3284
51.31175 33.17797 78.80262 82.84237 12	250.999 154.5618 896.3994
49.94566 32.84524 77.33636 81.38113 12	250.308 153.6035 893.3586
51.69813 34.09663 78.90751 82.87618 12	250.367 155.4748 895.6722
48.69692 32.83397 75.90062 79.92963 12	249.436 152.9161 890.1121

8.2.8 关于附件三的新模型结果 (略) (对应支撑材料8)

任务号 码	任务 GPS 纬度	任务 GPS 经度	定价	预测完成情 况
C0001	22. 73004117	114. 2408795	73. 93699850	0
C0002	22. 72704287	114. 2996199	75.88138567	0

C0003	22. 70131065	114. 2336007	74. 50507289	0
C0004	22. 73235925	114. 2866672	75. 31189528	0
C0005	22. 71839144	114. 2575495	74. 76230926	0
C0006	22. 75392493	114. 3819253	77. 95153014	0
C0007	22. 72404221	114. 2721836	75. 07020475	0
C0008	22. 71937803	114. 2732478	75. 23386107	0
C0009	22. 73028254	114. 2304955	73. 61911594	0
C0010	22.7187968	114. 267027	75. 05086439	0
C0011	22. 65746229	114. 3476957	79. 78945733	0
C0012	22. 71611614	114. 2474716	74. 51097591	0
C0013	22. 72986374	114. 2939012	75. 61530134	0
C0014	22.746174	114. 285869	74. 93156704	0
C0015	22. 7333086	114. 2943071	75. 53571922	0
C0016	22. 74551648	114. 2744633	74. 58493357	0
C0017	22. 72282036	114. 2654813	74. 89021419	0
C0018	22. 72492675	114. 2731306	75. 07630369	0
C0019	22. 74551648	114. 2744633	74. 58493357	0
C0020	22. 75335785	114. 285655	74. 74962116	1
C0021	22. 72554895	114. 2724564	75. 03774448	0
C0022	22. 73048185	114. 2297108	73. 59070282	0
C0023	22. 75031119	114. 2734629	74. 43710529	1
C0024	22. 73832325	114. 2906521	75. 28468386	0
C0025	22. 72204702	114. 2629243	74. 83057551	0