Donble Integrals:

The double integral of a nonnegative for f(x,y) defined on a origin in the plane is associated with the vol of the region under the graph of f(x,y).

Let $Q = [a_1b] \times [c,d]$, $f : Q \to \mathbb{R}$ be bounded. Let P_1 and P_2 be pewtitions of $[a_1b]$ and [c,d] resp., and suppose $P_1 = \{70,71,...,7n\}$ and $P_2 = \{70,71,...,7m\}$.

The partition $P = l_1 \times P_2$ decomposes Q into mn subsectingles. Define $m_{ij} = \inf \{f(n_i y) \mid (n_i y) \in [n_{i-1}, n_i] \times [y_{j-1}, y_{j}]^{\frac{1}{2}}$. $L(P_i f) = \sum_{i=1}^{N} \sum_{j=1}^{N} m_{ij} \Delta y_{j} \Delta n_{i}.$

 $M_{ij} = \sup_{i=1}^{n} \{f(\pi_{i}, \gamma) | (\pi_{i}, \gamma) \in [\pi_{i-1}, \pi_{i}] \times [\gamma_{i-1}, \gamma_{i}] \}$ $U(P_{i}, f) = \sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij} \Delta \gamma_{i} \Delta \gamma_{i}.$

Def": We say that f(rig) is integrable if both the upper and lower integral of f(mig) are equal.

OR, equivalently if sup L (P,f) = int U(P,f).

who denote the intered by [[f(n,y)dndy or [[f(n,y)dndy] or S

Theorem: If a for f(1,14) is earlineous on Q=[a,b] x [c,d] then fix intepable on Q.

Fulsini's Theorem! Let f: Q:=[a16] x[c1d] -> R be cont.

Then, SS(n,y) drdy= S(Sf(n,y)dx)dy = S(Sf(n,y)dy)dr.

Let $(x,y) > 0 + (x,y) \in \mathbb{G}$ and f and f and f and f and f and f are f and f are f and the surface f = f(x,y). Then, f(f(x,y)) dx dy is the f of f (almost).

For every $y \in [r,d]$ ## $A(y) = \int f(r,y) dr$ in the area of the error - certian of the rolid S cut by a plane II to $n \neq -$ plane . So, $\int \left(\int f(r,y) dx\right) dy = \int A(y) dy$ in the not^{n} of the rolid S, same for the other way.

Bropostics: . $\int \int f(r,y) dA = \int \int f(r,y) dA + \int \int f(r,y) dA$.

- · SS kfrydda = KS frydda, KER
- · SS[f(n,y) + g(n,y)]dA = SSf(n,y)dA + SSg(n,y)dA.
- · SSf(riy)dA > 0 4 f(riy)7,0 on R.
- · SS fair) dA 7/Sgary) dA is fair) 7/ gary) on R.

Ex: Calculate the volume under the plane 2=4-x-y over the region R, when $0 \le x \le 2$, $0 \le y \le 1$ in the reg-plane.

Solo but The vol_{1}^{m} is $\int_{1}^{\infty} A(x) dx$, $A(x) = \int_{1}^{\infty} (4-x-y) dy$.

So, $\int_{0}^{2} A(x)dx = \int_{0}^{1} (4-x-y)dydx = \int_{0}^{2} (4y-xy-y/2)dy$ = S.11. 9: \(\int \left(1-6x\forall y \right) dady = \int \left[\pi - 2x^3y \right]^2 dy = \int \left(2-16y \right) dy = 4.4.

Donth integral over general bounded regions: f(x,y) is a bold for idefined on a bold region D in the plane. Let & be a redangle s.t. D $\subseteq Q$. Define f(x,y) on Q as,

f(114) = { f(114) , (114) ∈ D . D.

If $f(\pi_1 y)$ is int. over Q we kay that $f(\pi_1 y)$ is int. over D, and $f(\pi_1 y)$ dady = $\iint \tilde{f}(\pi_1 y) d \pi dy$.

There is no general method of evaluating this for a general D. Fubbinis Therrem! Ket f(11,14) be a bold for over a region D.

(1) If $D = f(\pi_1 y) \mid \alpha \leq \pi \leq b$ and $f_1(\pi) \leq y \leq f_2(\pi)$ if for some cont. for $f_1, f_2 : [\alpha_1 b] \rightarrow IR$, then

 $\iint f(n,y) dn dy = \iint_{a} \left(\int_{a}^{b} f(n,y) dy \right) dn.$

(a) If $D = \{(\pi_1 Y) \mid C \leq Y \leq d \text{ and } g_1(Y) \leq x \leq g_2(Y)\}$ for some cont. $g_1 g_2 \colon [c_1 d] \to \mathbb{R}$, then $\iint f(\pi_1 Y) dx dy = \begin{cases} f(\pi_1 Y) dx \end{pmatrix} dy.$ $\int \int f(\pi_1 Y) dx dy = \begin{cases} f(\pi_1 Y) dx \end{pmatrix} dy.$

. The propostics of Ruch integrals are the same as in the frevious case.

(1)]=
$$\iint \sin \pi/\pi dA$$
, R is the triangle hald by $\pi - \alpha \times i\sigma$, $y = \pi$

and $\pi = 1$.

Solv. $I = \iint \int_{0}^{\pi} \sin \pi/\pi dy dx = \int_{0}^{\pi} (y \frac{\sin \pi}{\pi})^{\pi} dx = \int_{0}^{\pi} \sin \pi dx$

$$= -\cos(1+1)$$

(2)
$$I = \iint (x+y)^2 dxdy$$
, D is the region bold key the lines joing $(0,0)$, $(0,1)$ and $(2,2)$

We Fubini 1,
$$a=0, b=2$$
,
$$f_{1}(n)=2$$

$$f_{2}(n)=\frac{3}{2}+1$$

$$J = \int_{0}^{\infty} \left(\int_{0}^{\infty} (x+y)^{2} dy \right) dx.$$

(3)
$$I = \int_{0}^{2} \left(\int_{4/2}^{4} dx \right) dy = \iint_{D} f(x,y) dx dy, with$$

Pry Fubini Men, we have I =) (Sendy) dn = e-1./.

trea! The area of a closed, held me planar region Ris SdA.

eg: Find the area of the region R had by y= 7, y= n2 in

Change of Variables:

· We want something analogous to substitution for multiple integrals so that for regions where we cannot directly apply. Fubini's theorem we transform them into one where we can.

· We want to transform SS f(r,y) drdy oner a region Sin the rey-plane to SSF(regr) dudy, defined on a new region

Tim the uv-plane. To by g(b)For single integral we had $\int f(m)dx = \int f(g(t))g'(t)dt$.

Here we need too fire, x = X(u,v), y = Y(u,v).

. We arme that the mapping from T to Sie one- one.

. The fire X and Y are cont. and have cont. partial

duinatives, $\frac{\partial x}{\partial u}$, $\frac{\partial x}{\partial v}$, $\frac{\partial y}{\partial v}$ and $\frac{\partial y}{\partial v}$.

· The Jacobian $J(u,v) = \begin{vmatrix} 3x/3u & 3y/3u \\ 3x/3v & 3x/3v \end{vmatrix} \neq 0$

Then, $\iint f(x,y) dx dy = \iint f(x(u,v), Y(u,v)) |J(u,v)| dudv.$

eg: Find the area of the region S bounded by the hypololas ry = 1 and ry = 2 and the curius ry = 3 and ry = 4.

The regd. area is SSdndy.

Put u=xy, v=xy, = x= u/v, y= 1/u.

The region T is $1 \le u \le 2$ and $3 \le v \le 4$. The Jalthian = $\sqrt[4]{v}$.

So, we get the area as $\iint \frac{1}{v} du dv = \iint \frac{1}{v} du dv$.

We me the egis $r = X(r, 0) = x \cos 0$, $y = y(r, 0) = x \sin 0$. ble assure 770, QE[0,2x) or 0, < 0 < 0 < 0, +21 for arme Oo so that the mapping is 1-1.

() (u,v) = | wo 0 sin 0 | = r.

=) If f(r,y)drdy = If f(rwo, o, rrino) rdrdo.

eg: Find the not m of the sphere of radius a.

- The vol " is V = a SS Va2-x2-y2 drdy, with S={(7,4)| x7 y2 < 923.

In pular co-ordinates nee get,

V=2 (\ Va= 82 rd rdQ, with T= [0,a] x [0,27].

$$= 2 \int_{0}^{\pi} \int_{0}^{2\pi} \sqrt{a^{2} r^{2}} r dr dQ = 4\pi \int_{0}^{\pi} r \sqrt{a^{2} r^{2}} dr$$

$$=4\pi\left[\frac{(a^2-r^2)^{3/2}}{-3}\right]_0^q=\frac{4\pi a^3}{3} //.$$

Area in polar coordinates: Area of a dored and bounded region R is given by A = SS rdrdo.

eg! Find the area embred ky 82= 4 10,20.

- This is a lemniscale, so the area is

So, A = 4 S S rdrd0 = 4 S[\frac{\gamma^2}{2}] o do

Ex: Evaluate $\int \int e^{\eta^2 + y^2} dy dx$, where R is the reni-circle 3 bounded by y = 0 and $y = \sqrt{1-\eta^2}$.

 $\frac{S_0 I^{n:}}{\int_{R}^{n} e^{\frac{1}{2}y^{2}} dy dx} = \int_{0}^{\pi} \int_{0}^{1} e^{\frac{1}{2}y^{2}} r dx dx = \int_{0}^{\pi} \int_{0}^{2} \frac{e^{\frac{1}{2}y^{2}}}{2} \int_{0}^{1} dx = \int_{0}^{\pi} \frac{1}{2} (e^{-1}) dx = \frac{\pi}{2} \int_{0}^{1} \frac{1}{2} (e^{-1}) dx = \frac{\pi}{2} \int_{0}^{1$

Ket a u = x - y, v = x + y. Then, $I = \int \int e^{yv} |J| \, du \, dv$, where S is the region to in the uv-plane beaunded by u = -v, u = v $J = \frac{1}{2} \int \int e^{yv} \, du \, dv = \frac{1}{2} \, einh(1)$.

Ex: Snaturate $\iint \cos(q_{1}^{2} + 4y^{2}) dxdy$, when $R = \{(7, y) \mid 9x^{2} + 4y^{2} \leq 1\}$.

Solution: Ket x = 7/3 con Q, y = 7/2 sin Q. Then |3| = 7/6.

($\int \cos(q_{1}^{2} + 4y^{2}) dxdy = \int \int \cos(x^{2}) \sqrt{6} dxdQ = \int \int \cos u \frac{du}{12} dQ$.