

Habib University - City Campus Instructors: Aeyaz Jamil Keyani

Course: MATH 307 Mathematical Foundations and Reasoning

Examination: Quiz 1 – Spring 2025 Exam Date: Thursday, January 15, 2025

Exam Time: 10:05 - 10:20

Total Marks: 10 Marks Duration: 15 Minutes

عشرتِ قطرہ ہے دریا میں فنا ہوجانا درد کا حد سے گزرنا ہے دوا ہو جانا

(مرزا غالب)

Name: Syed Mujtaba Hassan

Student ID: 4242

Section: 42

1. Show that if $n \in \mathbb{N}$ and $q \in \mathbb{N}$ such that $q \neq 0$, then there exits $m \in \mathbb{N}$ and $r \in \mathbb{N}$ such that $0 \leq r < q$ and n = mq + r.

Solution: Let $q \in \mathbb{Z}^+$, we will show by induction that for any $n \in \mathbb{N}$ there exists $m, r \in \mathbb{N}$ such that $0 \le r < q$ and n = mq + r.

Base case: n = 0

We have that 0 = 0 + 0, we know that $0 \times q = 0$ and so $0 = 0 \times q + 0$. Here m = 0 and r = 0, and we have that $0 \le r < q$ and n = mq + r. So the base case holds.

Induction hypothesis: Suppose for n = k, there exists $m, r \in \mathbb{N}$ such that $0 \le r < q$ and n = mq + r.

Inductive step: We show that for n = k + +, there exists $m', r' \in \mathbb{N}$ such that $0 \le r < q$ and n = k + + = m'q + r'.

We have that k++=k+1, from inductive hypothesis, k++=k+1=mq+r+1=mq+(r+1) (by using associativity). As $0 \le r < q$ then $r+1 \le q$. If r+1 < q then we are done as we have found m'=m and r'=r+1 that satisfies our conditions. If r+1=q then we have that k++=mq+q=(m+1)q=(m+1)q+0 (by using distributivity). In this case we have found our m'=m+1 and r'=0 such that $0 \le r < q$ and n=k++=m'q+r'.

And therefore by the principle of mathematical induction we have that, if $n, q \in \mathbb{N}$ such that $q \neq 0$, then there exists $m, r \in \mathbb{N}$ such that $0 \leq r < q$ and n = mq + r.

2. Show that for sets A, B and X, such that $A \cup B = X$ and $A \cap B = \emptyset$, then $A = X \setminus B$ and $B = X \setminus A$.

Solution: By definition $X \setminus B = \{x \in X | x \notin B\}$, and $A \cup B = \{x | x \in A \lor x \in B\} = X = \{x \in X\}$.

Let $x \in X \setminus B \implies x \in X \land x \notin B \implies x \in A \cup B \land x \notin B \implies (x \in A \lor x \in B) \land x \notin B \implies x \in A \land x \notin B$. As $A \cap B = \emptyset$, we have for any object $x, x \notin A \cap B$, therefore there does not exist an object x such that $x \in A$ and $x \in B$. And so an object x is in A iff x is not in B. Therefore $\forall x \in A, x \in A \land x \notin B$. And so from above we have that $x \in X \setminus B \implies x \in A \land x \notin B \implies x \in A$ and so $X \setminus B \subseteq A$.

Conversely, let $x \in A$, then we have that $x \in A \land x \notin B$, as $A \cup B = X$, we have $\forall x \in A \cup B$, $x \in X$, and $\forall x \in A$, $x \in A \cup B$, we have that $A \subseteq X$. So we have that $x \in A \implies x \in A \land x \notin B \implies x \in X \land x \notin B \implies x \in X \setminus B$. So we have that $A \subseteq X \setminus B$. And therefore $A = X \setminus B$. As set union is commutative, the same argument follows for $B = X \setminus A$ by switching A and B.

3. Show that the axiom of replacement implies the axiom of specification.

Solution: Let A be some set and let P(x) be some property pertaining to elements of A. Then the set set $X = \{x \in A | P(x)\}$ can be constructed by axiom of replacement as follow: $X = \{y | \exists x \in A, \ Q(x,y)\}$, where Q(x,y) : x = y and P(x), as we have at most one y for each $x \in A$.