

WELTORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁵: C07D 295/185, C07K 5/06 C07K 5/08, C07D 211/60 C07D 211/62, A61K 31/445 A61K 31/195, C07D 295/205 C07D 217/26, 215/50 C07C 311/19

(11) Internationale Veröffentlichungsnummer:

WO 92/08709

A1

(43) Internationales Veröffentlichungsdatum:

29. Mai 1992 (29.05.92)

(21) Internationales Aktenzeichen:

PCT/CH91/00235

(22) Internationales Anmeldedatum:

15. November 1991 (15.11.91)

(30) Prioritätsdaten:

15. November 1990 (15.11.90) CH 3634/90-8 -CH 0171/91-8 22. Januar 1991 (22.01.91) 0797/91-6 15. März 1991 (15.03.91) CH CH 13. Mai 1991 (13.05.91) 1424/91-5

(71) Anmelder (für alle Bestimmungsstaaten ausser US): PENTA. PHARM AG [CH/CH]; Engelgasse 109, CH-4052 Basel (CH).

(72) Erfinder; und

(75) Erfinder, and (75) Erfinder/Anmelder (nur für US): STÜRZEBECHER, Jörg [DE/DE]; Hubertusstr. 38, D-5089 Erfurt-Rhoda (DE). VIEWEG, Helmut [DE/DE]; In den Grundmatten 36, D-7888 Rheinfelden 3 (DE). WIKSTROEM, Peter [SE/ CH]; Stallenmattstr. 49, CH-4104 Oberwil (CH).

(74) Anwalt: BRAUN, Andre; Murtengasse 5, Ch-4051 Basel (CH).

PI Patent), CM (OAPI Patent), CS, DE, DE (europäisches Patent), DK, DK (europäisches Patent), ES, ES (europäisches Patent), FI, FR (europäisches Patent), GA tent), SU+,TD (OAPI Patent), TG (OAPI Patent), US.

Veröffentlicht

Mit internationalem Recherchenbericht.

(54) Title: META-SUBSTITUTED PHENYL ALANINE DERIVATIVES

(54) Bezeichnung: META-SUBSTITUIERTE PHENYLALANIN-DERIVATE

(57) Abstract

D, L-, L- and D-phenyl alanine derivatives of formula (I) defined in claim 1 in which R₁ is an amidino-, guanidino-, oxamidino-, aminomethyl- or amino group have been discovered which effectively prevent blood coagulation or thrombosis. The antithrombotically active compounds have low toxicity and may be administered by mouth, subcutaneously or intravenously.

(57) Zusammenfassung

D,L-, L- und D-Phenylalanin-Derivate der im Patentanspruch 1 definierten Formel (I), in denen R1 für eine Amidino-, Guanidino-, Oxamidino-, Aminomethyl- oder Aminogruppe steht, wurden gefunden, die blutgerinnungshemmend resp. antithrombotisch wirksam sind. Die antithrombotisch wirksamen Verbindungen weisen eine geringe Toxizität auf und können peroral, subkutan oder intravenös verabreicht werden.

+ BENENNUNGEN VON "SU"

Es ist noch nicht bekannt, für welche Staaten der früheren Sowjetunion eine Benennung der S wjetunion gilt.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

ΑT	Österreich	ES	Spanien	ML	Mali
AU	Austenline	PI	Finnland	MN	Mongolci
BB	Barbudos	FR	Frankreich	MR	Mauritanien
BE	Belgien	GA	Gabon	MW	Malawi
BF	Burkina Faso	CB	Vereinigtes Königreich	NL	Niederlande
BG	Bulgarion	GN	Guinea	NO	Norwegen
BJ	Benin	GR	Griechenland	PL	Polen
BR	Brasilion	HU	Ungarn	RO	Rumānien
CA	Kanada	IT ·	Italien	SD	Sudan
CF	Zentrale Afrikanische Republik	JP	Japan	SE	Schweden
CC	Kongo	KP	Demokratische Volksrepublik Korea	SN	Senegal
CH	Schweiz	KR	Republik Korea	SU+	Saviet Union
CI	Côte d'Ivoire	LI	Licchtenstein	TD	Tschad .
CM	Kamerun	LK	Sri Lanka	TG	Togo
cs	Tschechosłowakei ,	LU	Luxemburg	US	Vereinigte Staaten von Amerika
DE	Deutschland	MC	Monaco		
DK	Dänemark	MG	Madagaskar		

Meta-substituierte Phenylalanin-Derivate

Die vorliegende Erfindung betrifft neue Proteinasen-Inhibitoren, die ein am Phenylrest substituiertes Phenylalanin enthalten. Insbesondere durch Variation des Substituenten am Phenylrest und Einführung von hydrophob substituierten sekundären Aminosäuren wurden Inhibitoren mit verbesserter Bioverfügbarkeit gefunden.

Proteinase-Inhibitoren sind potentielle Arzneimittel, die zur Steuerung physiologischer Prozesse, welche Proteinasen ausgelöst und unterhalten werden, verwendet werden können. Für zahlreiche endogene bzw. natürlich vorkommende Hemmstoffe ist gezeigt worden, dass sie in vivo die Aktivität von Proteinasen beeinflussen und hyperproteolytische Zustände dämpfen können [Siehe Hörl, W.H. Design of Enzyme Inhibitors as Drugs, S. 573-581, (Sandler, M. and Smith, H.J., Eds.) Oxford, New York, Tokyo: Oxford University Press, 1989]. Der therapeutische Einsatz dieser relativ hochmolekularen Hemmstoffe ist allerdings wegen ihrer besonderen Proteinstruktur begrenzt. Da diese stoffe einerseits nach oraler Verabreichung im Darm resorbierbar sind und andererseits eine antigene Aktivität ausüben, wurde nach synthetischen kleinmolekularen Enzym-Inhibitoren Ausschau gehalten.

Die vier Klassen von Enzymen, die für Proteinase-abhängige Prozesse verantwortlich sind, umfassen die Serin-, Thiol-, Metallo-, und Aspartat-Proteinasen. Serin-Proteinasen sind proteolytische Enzyme, die einen reaktiven Serin-Rest im aktiven Zentrum besitzen. Zur Trypsin-Familie der Serin-Proteinasen gehören Enzyme, die wie Trypsin solches C-terminale Peptidbindungen der basischen Aminosäuren Arginin und Lysin spalten. In dieser Gruppe sind diejenigen Enzyme von besonderer physiologischer Bedeutung, welche an den Abwehrsystemen des Blutes beteiligt sind. Das sind insbesondere die Enzyme des Gerinnungssystems, daneben aber auch solche, die die Fibrinolyse auslösen, Kinin freisetzen und die Komplement-Aktivierung bewirken oder solche, die selber Komponenten der genannten Enzymsysteme sind.

Die Blutgerinnung wird über zwei unterschiedliche Wege durch Zymogen-Aktivierung ausgelöst. Der erste, endogene Weg, führt über eine durch Blutkomponenten vermittelte Reaktionskette zur Blutgerinnung. Der zweite, exogene Weg führt über eine kürzere, auf einer Wechselwirkung zwischen Blut- und Gewebekomponenten beruhenden Reaktionskette zur Gerinnung. Beide Wege bewirken die Aktivierung des Zymogens Faktor X zur Serin-Proteinase Faktor Xa, welche ihrerseits die Aktivierung des Prothrombins zur Fibrinogen-koagulierenden Serin-Proteinase Thrombin katalysiert. Als gemeinsames Produkt sowohl des endogenen als auch des exogenen Aktivierungsablaufs erscheint Faktor Xa als ein bevorzugtes Zielenzym für hemmende Eingriffe in den Blutgerinnungsvorgang.

Zur Entwicklung von synthetischen Inhibitoren für trypsinähnliche Serin-Proteinasen sind Derivate des Benzamidins vielfach untersucht worden (J. Stürzebecher et al., Acta Biol. Med. Germ. 35, 1665-1676, 1976). Dabei haben sich Aminosäure-Derivate mit Benzamidin-Struktur als besonders günstige Grundstrukturen erwiesen (G. Wagner et al., Pharmazie 36, 597 - 603, 1981 und J. Stürzebecher et al., ibid, 639-641; UK Patent Application 2 007 663 A).

Unter diesen Verbindungen sind Derivate des Phenylalanins mit meta-ständiger Amidinogruppe selektive Faktor X_a -Inhibitoren, während analoge Verbindungen mit para-ständiger Amidinogruppe Grundstrukturen für die Entwicklung von selektiven Thrombin-Inhibitoren sind.

Als selektiv Faktor X_a -hemmendes Aminosäure-Derivat mit Benzamidinstruktur und meta-ständiger Amidinogruppe wurde N α -Tosylglycyl-3-amidinophenylalanin-methylester (TAPAM; K_i = 8,4 x 10⁻⁷ mol/l) vorgeschlagen (J. Stürzebecher et al., Thromb. Res. <u>54</u>, 245 - 252, 1989). Der wirksamste Thrombin-Hemmstoff ist das Phenylalanin-Derivat N α -(2-Naphthyl-sulfonyl)-glycyl-4-amidinophenylalanin-piperidid (K_i = 6 x 10⁻⁹ mol/l) mit para-ständiger Amidinogruppe, das als NAPAP bezeichnet wird (J. Stürzebecher et al., Thromb. Res. <u>29</u>, 635-642, 1983).

Es sind noch weitere Typen von Inhibitoren bekannt, die Faktor X bezw. Thrombin ebenfalls selektiv hemmen: Eine erste Gruppe beinhaltet Peptidyl-arginin-chlormethylketone, z.B. Ile-Glu-Gly-Arg-CH2Cl, welches Faktor X hemmt (C. Kettner et al., Thromb. Res. 22, 645-652, 1981) bezw. H-D-Phe-Pro-Arg-CH2Cl, welches Thrombin selektiv hemmt (C. Kettner et al., Thromb. Res. 14, 969-973, zweite Gruppe beinhaltet Peptidylargininaldehyde, Ile-Glu-Gly-Arg-H (S. Bajusz, Folia Haematol. 109, 16-21, 1982) und H-D-Phe-Pro-Arg-H (S. Bajusz, Int. J. Peptide Protein Res. 12, 217-221, 1978), welche Faktor X bzw. Thrombin hemmen. Diese Inhibitoren sind jedoch relativ instabil und können wegen ihrer Reaktionsfähigkeit unerwünschte Nebenreaktionen verursachen. Als weitere selektive Thrombininhibitoren sind (2R,4R)-4-Methyl-1-[Na-(3-methyl-1,2,3,5-tetrahydro-8-chinolinsulfonyl)-L-arginin]-2-pipecolin-carbonsaure (R. Kikumoto et al., Biochemistry 23, 85-90, 1984) und das Boronsäurederivat BOC-D-Phe-Pro-Boro-Arg-C₁₀H₁₆ (s. Europ. Patentanmeldung No. 0 293 881) beschrieben worden.

Als therapeutisch verwendbare, nicht-selektive Inhibitoren von Thrombin und der Plasmagerinnungsfaktoren X_a

und XII_a sowie von Kallikreinen, enzymatischen Komplementfaktoren und Trypsin sind das Methansulfonsäuresalz des 4-(6-Guanidino-hexanoyloxy)-benzoesäure-ethylesters (M. Muramatu et al., Biochim. Biophys. Acta <u>268</u>,
221-224, 1972) und das Dimethansulfonsäuresalz der 6-Amidino-2 -naphthyl-p-guanidinobenzoesäure (s. US Patent Nr. 4
454 338) beschrieben.

Die gerinnungshemmende und antithrombotische Wirksamkeit ist in vivo für alle der genannten Inhibitoren gezeigt worden. Dagegen wurde eine Resorbierbarkeit nach oraler Verabreichung bisher nur für den Aldehyd N-Methyl-D-Phe-Pro-Arg-H (Bagdy et al., Thromb. Haemostas. 62, 535, 1989) und das Boronsäurederivat BOC-D-Phe-Pro-Boro-Arg-C₁₀H₁₆ (s. Europ. Patentanmeldung No. 0 293 881) beobachtet.

Alle bisher geprüften Thrombin-Hemmstoffe vom Benzamidin-Typ besitzen für eine therapeutische Anwendung ungünstige pharmakodynamische und pharmakokinetische Eigenschaften. Mit einer LD₅₀ zwischen 10 - 50 mg/kg ist ihre Toxizität relativ hoch (B. Kaiser et al., Pharmazie 42, 119 - 121, 1987). Die Verbindungen werden schneller aus der Zirkulation eliminiert als z. B. das Argininderivat $(2R, 4R)-4-Methyl-1-[N\alpha-(3-methyl-1, 2, 3, 5-tetrahydro-8$ chinolinsulfonyl)-L-arginin]-2-pipecolin-carbonsäure das Boronsäurederivat BOC-D-Phe-Pro-Boro-Arg-C₁₀H₁₆ (J. Hauptmann et al., Pharmazie 46, 57-58, 1991). Bei oraler Applikation werden sie nicht im Darm resorbiert (B. et al., Biomed. Biochim. Acta <u>44</u>, 1201-1210, 1985). Verantwortlich für die unzureichenden pharmakologischen Eigenschaften ist wahrscheinlich die durch die stark basische Amidinofunktion herabgesetzte Hydrophobizität (B. Kaiser et al., Pharmazie 42, 119-121, 1987). Versuche, die stark basische Amidinofunktion in hochwirksamen Inhibitoren durch schwächer basische Gruppen zu ersetzen, schlugen fehl; solche Veränderungen hatten einen bedeutenden Verlust Wirkungsstärke zur Folge (J. Stürzebecher et al., Pharmazie 43, 782-783, 1988).

Es wurde versucht, therapeutisch verwendbare Inhibitoren von Gerinnungsfaktoren mit guten pharmakologischen Eigenschaften zu konzipieren. Dazu wurde von Phenylalaninderivaten mit meta-ständiger Amidinogruppe ausgegangen, die sich als selektive Faktor Xa-Inhibitoren erwiesen hatten (J. Stürzebecher et al., Thromb. Res. <u>54</u>, 245 - 252, 1989). Ausgehend von der Erkenntnis, dass eine Erhöhung der Hydrophobizität eine Veränderung der pharmakologischen Eigenschaften bewirken könnte, sollten bei Erhalt der Anti-Faktor X_a-Aktivität neue Inhibitor-Grundstrukturen gefunden werden. Dazu wurden die basische Amidino-Gruppe verändert bzw. hydrophob substituierte sekundäre Aminosäuren eingeführt. In diesem Rahmen wurde beispielsweise die Verbindung Na-2-Naphthylsulfonyl-3-amidinophenylalanyl-prolin hergestellt. Es wurde nun gefunden, dass diese Verbindung nicht wie erwartet Faktor X selektiv hemmt, sondern überraschenderweise Thrombin. Es wurde festgestellt, dass diese Verbindung ausgezeichnete pharmakokinetische Eigenschaften besitzt. Nach subkutaner Applikation an Ratten wird ein relativ hoher Blutspiegel erhalten, der über einen längeren Zeitraum in wirksamer, blutgerinnungshemmender Konzentration verfügbar bleibt. Nach peroraler Verabreichung an Ratten wird die Verbindung durch den Darm resorbiert. Dies trifft auch für analoge Verbindungen zu, in denen die Amidino-Gruppe verändert wurde, beispielsweise bei Derivaten mit einer Oxamidino-Gruppe. Die neuen Derivate zeichnen sich auch durch eine verminderte Toxizität aus.

Damit sind derartige direkt wirksame Inhibitoren geeignet, als Antikoagulantien bei verschiedenartiger Applikationsart eingesetzt zu werden.

Die vorliegende Erfindung betrifft neue Proteinasenhemmende D,L-, L- und D-Phenylalanin-Derivate der Formel

$$CH_2$$
 - CH - CO - R^2
 CH_2 - CH - CO - R^2
 CH_2 - CH - CO - C

in welcher

R¹ eine basische Gruppe der Formel

(a)
$$NH = C - N$$

 R^{5}
(b) $NH = C - N$
 $NH = C - N$

- (c) $NH_2 C = N OH$ Oxamidino
- (d) $CH_2 NH_2$ oder (e) NH_2 Aminomethyl Amino

darstellt, wobei R⁵ und R⁶ in den Formeln (a) und (b) je Wasserstoff oder einen geradkettigen oder verzweigten niedrigen Alkylrest bezeichnen,

R² (f) OH, O-Alkyl, O-Cycloalkyl, O-Aralkyl, n=0 sein kann,

(g) eine Gruppe der Formel

darstellt, in welcher R⁷ Wasserstoff oder einen geradkettigen oder verzweigten niedrigen Alkylrest und R⁸ einen geradkettigen oder verzweigten niedrigen Alkylrest, einen 1- oder 2-Hydroxyethylrest, einen Methylmercaptoethylrest, einen Aminobutylrest, einen Guanidinopropylrest, einen Carboxy(niedrigen)alkylrest, einen Carboxamido(niedrigen)alkylrest, einen

Phenyl(niedrigen)alkylrest, dessen Ring gegebenenfalls mit OH, Halogen, niedrig-Alkyl oder Methoxy substituiert ist, einen Cyclohexyl- oder Cyclohexylmethylrest, dessen Ring gegebenenfalls mit OH, Halogen, niedrig-Alkyl oder Methoxy substituiert ist, oder einen N-Heteroaryl(niedrigen)alkylrest mit 3 bis 8 Kohlenstoffatomen im Heteroaryl, z.B. Imidazolylmethyl oder Indolylmethyl, bezeichnen, wobei die Gruppe (e) racemisch oder D- bzw. L-konfiguriert sein kann,

(h) eine Gruppe der Formel

darstellt, in welcher m die Zahl 1 oder 2 bezeichnet, und in welcher eine der Methylengruppen gegebenenfalls mit einem Hydroxyl-, Carboxyl-, niederen Alkyl- oder Aralkyl-rest substituiert ist, wobei die Gruppe (h) racemisch oder D- bzw. L-konfiguriert sein kann,

(i) eine Gruppe der Formel

$$(CH_2)_p - CH - CO - R^9$$
- N $(CH_2)_r - CH_2$

darstellt, in welcher p = r = 1, p = 1 und r = 2 oder p = 2 und r = 1 sind und in welcher eine der Methylengruppen gegebenenfalls mit einem Hydroxyl-, Carboxyl-, niederen Alkyl- oder Aralkyl-rest substituiert ist,

(k) eine Piperidylgruppe darstellt, die gegebenenfalls in einer der Stellungen 2, 3 und 4 mit einem niederen Alkyl- oder Hydroxyl-rest substituiert ist,

wobei an die heterocycloaliphatischen Ringe der Formeln (h), (i), (k) ein weiterer aromatischer oder cycloaliphatischer Ring, vorzugsweise Phenyl oder Cyclohexyl, in 2,3 oder 3,4 Stellung, bezogen auf das Heteroatom, ankondensiert sein kann,

(1) eine Piperazylgruppe, die gegebenenfalls in p-Stellung mit einem niederen Alkylrest, einem Arylrest oder einem Alkoxycarbonylrest substituiert ist,

(m) eine Gruppe der Formel

$$-\frac{N}{10} - (CH_2)_n$$
, $-CO - R^9$

darstellt, in welcher n' die Zahlen 1 bis 6 und R^{10} Wasserstoff oder den Methyl- oder Cyclohexylrest bezeichnen,

(n) eine Gruppe der Formel

$$- \text{NH} - \text{CH}_2 - \left(\text{H} \right) - \text{CO} - \text{R}^9$$

darstellt, wobei R⁹ in den Formeln (g), (h), (i), (l), (m) und (n) eine Hydroxyl-, geradkettige oder verzweigte niedrige Alkoxy- oder eine Benzyloxy-Gruppe bezeichnet,

oder

(o) eine Kombination von 2 bis 20, vorzugsweise 2 bis 5, insbesondere 2 oder 3, der von den unter (g), (h), (i), (k), (1), (m) und (n) definierten Gruppen abgeleiteten, durch Amidbindungen verknüpften Resten (\mathbb{R}^9 = Einfachbindung) darstellt, wobei der C-terminale Rest gegebenenfalls mit einem Rest \mathbb{R}^9 verknüpft ist,

R³ Wasserstoff oder einen geradkettigen oder verzweigten niedrigen Alkyl- oder einen 1- oder 2-Hydroxyethyl-Rest darstellt, wobei n die Zahl 0 oder 1 bezeichnet, und

R⁴ einen Arylrest, z.B. Phenyl, Methylphenyl, α- oder β-Naphthyl oder 5-(Dimethylamino)-naphthyl, oder einen Heteroarylrest, z.B. Chinolyl, darstellt, wobei niedrig 1-4 Kohlenstoffatome bedeutet,

und deren Salze mit Mineralsäuren oder organischen Säuren.

Von den in den allgemeinen Ansprüchen definierten Phenylalanin-Derivaten sind Verbindungen, bei denen

R eine basische Gruppe der Formel (a) = Amidino, (b) = Guanidino, (c) = Oxamidino, (d) = Aminomethyl oder (e)

- = Amino darstellt,
- O-Alkyl, O-Cycloalkyl oder Aralkyl und n=0 sein kann, einen heterocycloaliphatischen Rest, der in den Formeln (h), (i), (k) und (l) näher erläutert ist und bei dem R⁹ in den Formeln (h) und (i) eine Hydroxyl-, geradkettige oder verzweigte niedrige Alkoxy-, Cycloalkoxy- oder Aralkoxy-Gruppe sein kann, darstellt,
- ${\ensuremath{\mathtt{R}}}^4$ einen Aryl- oder Heteroarylrest, vorzugsweise ß-Naphthyl, bezeichnet und
- n die Zahl 0 darstellt, von besonderer Bedeutung.

Die Verbindungen der allgemeinen Formel I mit R¹ = Amidino (a) können nach den nachfolgend beschriebenen, an sich bekannten Methoden hergestellt werden.

3-Cyanbenzyl-acylamino-malonsäurediester der allgemeinen Formel II,

in welcher Alk vorzugsweise - CH₃ oder - C₂H₅ bedeutet, werden in einer Mischung von 3 N HCl und Eisessig durch rückfliessendes Erhitzen zu 3-Cyanphenylalanin III

umgesetzt.

Durch Sulfonylierung der Verbindungen III mit einem Aryl- bzw. Heteroarylsulfonylchlorid oder Acylierung mit einem sulfonylierten Aminosäurehalogenid in Gegenwart einer Base werden die Verbindungen der allgemeinen Formel IV,

NC
$$- \text{CH}_2 - \text{CH} - \text{COOH}$$

NH

 $(\text{CO} - \text{CH} - \text{NH})_n - \text{SO}_2 - \text{R}^4$

in welcher n = 0 oder 1 ist und R^3 und R^4 die in der allgemeinen Formel I beschriebenen Bedeutungen besitzen, erhalten.

Die Verbindungen der allgemeinen Formel V,

NC
$$\longrightarrow$$
 - CH_2 - CH_2 - CH_2 - CH_3 - CH_4 - CH_4 - CH_5 - C

in welcher R^2 die in der allgemeinen Formel I unter (g), (h), (i), (k), (l), (m), (n) und (o) sowie R^3 und R^4 die in dieser Formel genannten Bedeutungen besitzen und R^9 eine geradkettige oder verzweigte Alkoxy-bzw. Benzyloxy-Gruppe

darstellt, werden gemäss einer ersten Methodenvariante durch Umsetzung der Verbindungen IV mit einem entsprechenden Aminosäureester nach dem Mischanhydridverfahren dargestellt, indem die Verbindungen der Struktur IV mit vorzugsweise Chlorameisensäureisobutylester in Gegenwart einer geeigneten tertiären Base, z.B. 4-Methylmorpholin, bei -15° bis -20°C in einem aprotischen Lösungsmittel zur Reaktion gebracht und anschliessend mit einem Aminosäureester oder Amin umgesetzt werden.

Gemäss einer zweiten Methodenvariante werden die Verbindungen der allgemeinen Formel IV nach dem DCC-Verfahren mit entsprechenden Aminosäureestern umgesetzt, indem die Verbindungen IV in einem geeigneten aprotischen Lösungsmittel mit Dicyclohexylcarbodiimid in Gegenwart von 1-Hydroxybenzotriazol zur Reaktion gebracht und mit den genannten Aminosäureestern oder Aminen zu V umgesetzt werden.

Gemäss einer dritten Methodenvariante werden die Verbindungen der Struktur IV nach Überführung in aktive Ester mit beispielsweise N-Hydroxysuccinimid, 2,3,4,5,6,-Pentafluorphenol oder p-Nitrophenol in Gegenwart von Dicyclohexylcarbodiimid isoliert bzw. ohne zwischenzeitliche Isolierung mit entsprechenden Aminosäureestern oder Aminen zu Verbindungen der allgemeinen Formel V umgesetzt.

Gemäss einer vierten Methodenvariante werden Verbindungen der Struktur IV, bei denen n = 0 ist, mit beispielsweise Thionylchlorid in Säurechloride übergeführt, die anschliessend mit entsprechenden Aminosäureestern oder Aminen zu Verbindungen der allgemeinen Formel V umgesetzt werden.

Durch milde alkalische oder saure Hydrolyse mit beispielsweise verdünnter NaOH oder Trifluoressigsäure von Verbindungen der Struktur V werden die Verbindungen mit Carbonsäurestruktur der allgemeinen Formel V, wobei R^2 , R^3 und R^4 die in der allgemeinen Formel I genannten Bedeutungen besitzen und das in R^2 definierte R^9 = OH ist.

Ausgehend von den Verbindungen mit Carbonsäurestruktur V können nach den vorher beschriebenen Verfahren weitere Aminosäuren gekoppelt werden.

Durch Addition von H₂S an V mit Carbonsäure- oder Carbonsäureesterstruktur in Pyridin in Gegenwart von Triethylamin werden die Thioamide der allgemeinen Formel VI

erhalten, wobei die Bedeutungen der Substituenten R^2 , R^3 und R^4 denen der allgemeinen Formel I entsprechen.

Durch Umsetzung der Verbindungen VI mit einem Alkylhalogenid, vorzugsweise Methyliodid, werden die Thioimidsäureesterhalogenide VII

Alks
HX.

C
HN

$$C = CH_2 - CH - CO - R^2$$
VII

 $CO - CH - NH)_n - SO_2 - R^4$
 $CO - CH - NH)_n - SO_2 - R^4$

erhalten. Die Bedeutungen von n und R² bis R⁴ entspricht denen der allgemeinen Formel I, Alk stellt niedrig Alkyl, vorzugsweise - CH₃, dar und X bedeutet Halogen, im allgemeinen Iod.

Ausserdem können die Verbindungen V mit einem niederen Alkohol, gegebenenfalls in Anwesenheit eines Lösungsmittels wie beispielsweise Dioxan oder Chloroform, in Gegenwart von wasserfreiem Halogenwasserstoff in Imidsäureesterhalogenide VIII

Alko

HN

C

$$CH_2 - CH_2 - CO - R^2$$

VIII

 $CO - CH_2 - NH)_n - SO_2 - R^4$

übergeführt werden, wobei Verbindungen mit freier -COOH-Gruppe gleichzeitig mit dem verwendeten Alkohol verestert werden. Die Bedeutungen von n und R^2 bis R^4 entsprechen denen der allgemeinen Formel I, Alk stellt niedrig Alkyl, vorzugsweise -CH $_3$ oder -C $_2$ H $_5$, dar und X bedeutet Halogen, im allgemeinen Chlor.

Zur Darstellung der Zielverbindungen IX, $\mathbf{R}^{\mathbf{5}}\mathbf{N}$

mit n = 0 oder 1 und den Bedeutungen der Substituenten R¹ bis R⁶ analog denen der allgemeinen Formel I und X = Halogen, werden die Thioimidsäureestersalze VII in alkoholischer Lösung mit Ammoniumacetat bzw. einem Alkylammoniumacetat oder die Imidsäureestersalze VIII in alkoholischer Ammoniaklösung zu IX umgesetzt.

Verbindungen IX mit einem t-Butoxy-Rest (R^9) im Substituenten R^2 können anschliessend durch Hydrolyse mit Trifluoressigsäure in Verbindungen IX mit Carbonsäurestruktur $(R^9 = OH)$ übergeführt werden.

Verbindungen IX mit einer OH-Gruppe (R^2 oder R^9) können anschliessend mit vorzugsweise niederen aliphatischen (C_1 - C_8), cycloaliphatischen oder araliphatischen Alkoholen, in Gegenwart von Chlorwasserstoff oder p-Toluolsulfonsäure in Verbindungen IX mit Carbonsäureesterstruktur (R^2 , R^9 = O-Alkyl, O-Cycloalkyl, O-Aralkyl) übergeführt werden.

Die Verbindungen der allgemeinen Formel I mit R¹ =

Oxamidino (c) werden auf dem gleichen Syntheseweg wie die Verbindungen mit R¹ = Amidino (a), über die Zwischenprodukte der Formeln II bis VII, dargestellt. Im letzten Syntheseschritt werden die Thioimidsäureestersalze VII mit Hydroxylammoniumacetat zu Verbindungen der allgemeinen Formel I umgesetzt, wobei R¹ die Oxamidino-Gruppe (c) darstellt.

Die Verbindungen der allgemeinen Formel I mit R¹ = Aminomethyl (d) werden ebenfalls auf diese Weise über die Zwischenprodukte der Formeln II bis V dargestellt. Um zu den Zielverbindungen der allgemeinen Formel I mit R¹ = - CH₂ - NH₂ zu gelangen, werden die Cyanverbindungen V katalytisch, beispielsweise mit Raney-Nickel/Wasserstoff in alkoholischer Lösung in Gegenwart von Ammoniak, zu den Aminomethylverbindungen reduziert. Die erhaltenen freien Basen werden in geeigneter Weise in Salze, vorzugsweise Hydrochloride, übergeführt.

Die Verbindungen der allgemeinen Formel I mit R^1 = Guanidino (b) können prinzipiell nach dem gleichen Syntheseschema wie die mit Amidinostruktur (a) dargestellt werden.

Dazu werden 3-Nitrobenzyl-acylamino-malonsäurediester der allgemeinen Formel X,

in welcher Alk vorzugsweise - CH₃ oder - C₂H₅ bedeutet, durch rückfliessendes Erhitzen in einer Mischung von 3 N HCl und Eisessig zu 3-Nitrophenylalanin XI

$$- CH2 - CH - COOH XI$$

umgesetzt.

Die Verbindungen XII und XIII

werden auf die gleiche Weise erhalten wie die entsprechenden Cyanverbindungen IV und V, wobei auch die Bedeutungen von n, R^2 , R^3 und R^4 entsprechend sind.

Durch katalytische Hydrierung mittels beispielsweise Raney-Nickel/Wasserstoff in einem geeigneten Lösungsmittel werden aus XIII die Aminoverbindungen der allgemeinen Formel XIV

$$^{H_{2}N}$$
 $- _{CH_{2}} - _{CH} - _{CO} - _{R}^{2}$ $\times _{NH}$ $^{!}_{(CO} - _{CH} - _{NH})_{n} - _{SO_{2}} - _{R}^{4}$

erhalten, die mittels eines geeigneten Guanylierungsreagenses, beispielsweise 1-Amidino-3,5-dimethyl-pyrazol-nitrat, zu den Guanidinoverbindungen der allgemeinen Formel I mit \mathbb{R}^1 = Guanidino (b) umgesetzt werden.

Verbindungen mit der allgemeinen Formel I mit R^1 = Guanidino (b), Oxamidino (c), Aminomethyl (d) bzw. Amino (e) und einem t-Butoxy-Rest (R^9) im Substituenten R^2 können durch Hydrolyse mit Trifluoressigsäure in Verbindungen mit Carbonsäurestruktur (R^9 = OH) übergeführt werden, die anschliessend durch Veresterung mit niederen Alkoholen, vorzugsweise Methanol, in Gegenwart von Chlorwasserstoff oder p-Toluolsulfonsäure zu Verbindungen mit Carbonsäureesterstruktur (R^9 = Alkoxy) umgesetzt werden können.

Die biologische Aktivität der erfindungsgemässen Verbindungen wurde sowohl <u>in vitro</u> als auch <u>in vivo</u> bestimmt. Zur Charakterisierung der Inhibitoraktivität <u>in vitro</u> wurden die Dissoziationskonstanten K_i für die Hemmung von Trypsin bzw. der verwandten Enzyme Thrombin, Plasmin, Faktor X_a, tPA, glanduläres Kallikrein, Faktor XII_a und Plasmakallikrein nach der Formel

in welcher [E] die Konzentration an freiem Enzym, [I] die Konzentration an freiem Inhibitor und [EI] die Konzentration an Enzym-Inhibitor-Komplex bezeichnen, gemessen (Dixon, Biochem. J. 55, 170-173, 1953). Je kleiner der K_i-Wert für ein geprüftes Enzym ist, desto grösser ist die Affinität des Inhibitors für das Enzym und desto kleiner ist die zur Hemmung des Enzyms, z.B. Thrombin, benötigte Menge Inhibitor.

In vitro wurden verschiedene Gerinnungstests benutzt, um die Wirksamkeit der Hemmstoffe gegenüber der durch Thrombin ausgelösten Gerinnung seines natürlichen Substrates Fibrinogen zu bestimmen. Dazu wurde in Human-Plasma die Thrombinzeit (TT), die aktivierte partielle Thromboplastinzeit (aPTT) und die Prothrombinzeit (PT, Quickwert) bestimmt.

Die Toxizität der erfindungsgemässen Verbindungen wurde durch Bestimmung der LD_{50} (= Dosis, die bei 50% der Versuchstiere während einer Beobachtungsdauer von einer Woche zum Tode führt) an der Maus nach intravenöser bzw. peroraler Verabreichung ermittelt.

Zur pharmakokinetischen Charakterisierung wurde die Plasmakonzentration ausgewählter Derivate nach intravenöser (i.v.), subkutaner (s.c.) und peroraler (p.o.) Applikation an Ratten nach folgendem dreistufigem Verfahren bestimmt:

1. Eine Lösung der zu prüfenden Substanz in physiolo-

gischer Kochsalzlösung wurde der Flüssigkeits-Hochdruckchromatographie (HPLC = high pressure liquid chromatography) unterworfen, um den für die zu prüfende Substanz charakteristischen Peak bei der unter den gewählten Versuchsbedingungen substanzspezifischen Retentionszeit zu ermitteln.

- 2. Die zu prüfende Substanz wurde in vitro in Rattenplasma gelöst. Diese Lösung wurde ebenfalls der HPLC unterworfen, um festzustellen, ob der für die Substanz charakteristische Peak bei der substanzspezifischen Retentionszeit erneut erscheinen würde.
- 3. Die zu prüfende Substanz wurde in physiologischer Kochsalzlösung gelöst und in einer Dosis von 1, 5 bzw. 100 mg pro kg Körpergewicht i.v., s.c. bzw. p.o. an Ratten verabreicht. In Zeitintervallen von 15 Minuten wurden Blutproben entnommen, aus denen durch Zentrifugation Plasmaproben hergestellt wurden, welche ihrerseits der HPLC unterworfen wurden, um festzustellen, ob der für die Substanz charakteristische Peak bei der substanzspezifischen Retentionszeit wiederum in Erscheinung treten würde.

Zum Nachweis der pharmakologischen Wirksamkeit wurde die zu prüfende Substanz in physiologischer Kochsalzlösung gelöst und in einer Dosis von 1,5 bzw. 100 mg pro kg Körpergewicht i.v., s.c. bzw. p.o. an Ratten verabreicht. In Zeitintervallen von 15 Minuten wurden Blutproben entnommen, aus denen durch Zentrifugation Plasmaproben hergestellt und im Gerinnungstest (Thrombin-induzierte Plasma-Gerinnung) geprüft wurden.

Als Beispiele der allgemeinen Formel I mit metaständiger basischer Gruppierung sind zu nennen:

Verbindungen mit R^1 = Amidino (a):

 $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanin-n-hexyl-, -cyclohexyl- und -n-octyl-ester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanin-4-hydroxypiperidid$

 $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D)-phenylalanyl-(D)-prolin und -methylester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanyl-(L)-prolin und -methylester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D)-phenylalanyl-(L)-prolin und -methylester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-prolin und -methylester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(L)-4-hydroxyprolin und -methylester$

N-α-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-prolyl-4-aminobuttersäure und -methylester

 $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanyl-(L)-pipecolinsäuremethylester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanyl-(D)-pipecolinsäuremethylester$

- N-α-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-pipecolinsäureethyl-, -n-butyl-, -n-hexyl- und -cyclohexyl-ester
- $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-pipecolyl-4-aminobuttersäure$
- $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-pipecolyl-6-aminocapronsäure$
- $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-pipecolyl-glycyl-glycin$
- $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-pipecolyl-glycyl-(D,L)-pipecolinsäure$
- $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-pipecolyl-glycyl-glycyl-(D,L)-pipecolinsäure$
- $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-pipecolyl-6-aminocaproyl-(D,L)-pipecolinsäure$
- $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-nipecotinsäureethyl-, -n-butyl-, -n-hexyl- und -cyclo-hexyl-ester$
- N-α-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanylisonipecotinsäureethyl-, -n-butyl-, -n-hexyl- und -cyclohexyl-ester
- $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-4-aminobuttersäure und -methylester$
- $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-6-aminocapronsäure und -methylester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-cyclohexyl-<math>\beta$ -alanin und -methylester

N-α-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-4-aminomethyl-cyclohexancarbonsäure und -methylester

 $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-3-carboxy-(D,L)-phenylalanin$

 $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-3-methoxycarbonyl-(D,L)-phenylalaninmethylester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-homophenylalanin und -methylester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-4-aminobutyryl-glycin und -methylester$

Verbindungen mit R¹ = Guanidino (b):

 $N-\alpha-(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanin-methyl-, -n-butyl-, -n-hexyl- und -cyclohexyl-ester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanin-4-methylpiperidid$

 $N-\alpha-(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanin-N-methylpiperazid$

 $N-\alpha-(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanin-N-phenylpiperazid$

 $N-\alpha-(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanin-N-ethoxycarbonylpiperazid$

 $N-\alpha-(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanyl-(D,L)-prolin und -methylester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanyl-(D,L)-pipecolinsäure, - methyl- und -n-butyl-ester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanyl-isonipecotinsäure, - methyl- und -n-butyl-ester$

N-α-(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanyl-4-methyl-(D,L)-pipecolinsäure, - methyl- und -n-butyl-ester

 $N-\alpha-(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanyl-2-methyl-nipecotinsäure, - methyl- und -n-butyl-ester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanyl-1,2,3,4-tetrahydroisochinolin-3-carbonsäure und -methylester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanyl-decahydrochinolin-4-carbonsäure und -methylester$

Verbindungen mit R^1 = Oxamidino (c):

 $N-\alpha-(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanin-methyl-, -n-butyl-, -n-hexyl- und -cyclohexyl-ester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanin-N-methylpiperazid$

 $N-\alpha-(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanin-N-phenylpiperazid$

 $N-\alpha-(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanin-N-ethoxycarbonylpiperazid$

 $N-\alpha-(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanyl-(D,L)-prolin und -methylester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanyl-(D,L)-pipecolinsäuremethyl- und -n-butyl-ester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanyl-isonipecotinsäuremethyl- und -n-butyl-ester$

N-α-(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanyl-4-methyl-(D,L)-pipecolinsäure, - methyl- und -n-butyl-ester

N-α-(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanyl-2-methyl-nipecotinsäure, - methyl- und -n-butyl-ester

 $N-\alpha-(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanyl-1,2,3,4-tetrahydroisochinolin-3-carbonsäuremethylester$

N-α-(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanyl-decahydrochinolin-4-carbonsäure und -methylester

Verbindungen mit R^1 = Aminomethyl (d):

 $N-\alpha-(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanin-methyl-, -n-butyl-, -n-hexyl- und -cyclohexyl-ester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanin-N-methylpiperazid$

 $N-\alpha-(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanin-N-phenylpiperazid$

 $N-\alpha-(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanin-N-ethoxycarbonylpiperazid$

 $N-\alpha-(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanyl-(D,L)-prolin und -methylester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanyl-(D,L)-pipecolinsäure-n-butyl-ester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanyl-isonipecotinsäure-n-butyl-ester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanyl-4-methyl-(D,L)-pipecolinsäure, - methyl- und -n-butyl-ester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanyl-2-methyl-nipecotinsäure, - methyl- und -n-butyl-ester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanyl-1,2,3,4-tetrahydroisochinolin-3-carbonsäure und -methyl-ester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanyl-decahydrochinolin-4-carbonsäure und -methylester$

Verbindungen mit R¹ = Amino (e):

 $N-\alpha-(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanin-methyl-, -n-butyl-, -n-hexyl- und -cyclohexyl-ester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanin-N-methylpiperazid$

 $N-\alpha-(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanin-N-phenylpiperazid$

 $N-\alpha-(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanin-N-ethoxycarbonylpiperazid$

 $N-\alpha-(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanyl-(D,L)-prolin und -methylester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanyl-(D,L)-pipecolinsäuremethyl- und -n-butyl-ester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanyl-isonipecotinsäuremethyl- und -n-butyl-ester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanyl-4-methyl-(D,L)-pipecolinsäure, - methyl- und -n-butyl-ester$

 $N-\alpha-(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanyl-2-methyl-nipecotinsäure, - methyl- und -n-butyl-ester$

N-α-(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanyl-1,2,3,4-tetrahydroisochinolin-3-carbonsäuremethylester

 $N-\alpha-(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanyl-decahydrochinolin-4-carbonsäure und -methylester$

Die als Racemate angegebenen Verbindungen können gegebenenfalls nach entsprechender Trennung als reine Enantiomere bzw. Diastereomere vorliegen.

In den folgenden Beispielen wird die Erfindung näher erläutert. Zum besseren Verständnis der Beispiele wird auf die nachstehende Legende verwiesen.

- 25 -

LEGENDE ZU TABELLEN 1 - 18 UND ZUSAMMENSTELLUNG

NR	-	Nummer der Verbindung
AV	-	Ausgangsverbindung
R^1 , R^2 , R^4 ,	-	Substituenten in Formel I
n	-	n in Formel I
AB(%)		Ausbeute in %
Smp. (°C)	-	Schmelzpunkt in °C
z.	-	Zersetzung
Rg	-	Reinigungsoperation, entweder durch
		Umkristallisation (UK)
		oder Säulenchromatographie (SC)
нх	-	Salzform, entweder Hydrochlorid (HCl) oder
		Hydroiodid (HI)
v .	-	Verfahren, entweder A oder B
DC	-	Dünnschichtchromatographie
LS		Lösungsmittelsystem (siehe unten)
R _f	-	Retentionsfaktor, bei Angabe von 2
•		R _f -Werten, Doppelfleckbildung durch
		Isomerie

Zur Durchführung der dünnschichtchromatographischen Untersuchungen wurden MERCK-Dünnschicht-Fertigplatten mit Kieselgel 60, F 254, als Beschichtung und die folgenden Lösungsmittelsysteme (LS) verwendet:

LS 1: organische Phase von Ethylacetat/Essigsäure/Wasser (4/1/2)

LS 2: Chloroform/Methanol (19/1)

LS 3: Chloroform/Methanol/Essigsäure (40/4/1)

LS 4: Toluol/Aceton/Methanol (7/2/1)

Sprühreagenzien: Ninhydrin - für primäre und sekundäre aliphatische Aminogruppen

4-Dimethylaminobenzaldehyd - für primäre aromatische Aminogruppen

Sakaguchi - für Guanidinogruppen

Zur Durchführung der Säulenchromatographie zwecks Reinigung der Rohprodukte wurde Kieselgel 60 mit einer Korngrösse von 0,035 - 0,070 mm verwendet.

ABKÜRZUNGEN in Beispielen 1 - 18

TEA - Triethylamin

HOBT - 1-Hydroxybenzotriazol
DCC - Dicyclohexylcarbodiimid

IBCF - Isobutylchloroformat

NMM - 4-Methylmorpholin
DMF - Dimethylformamid
THF - Tetrahydrofuran

TFA - Trifluoressigsäure

Pd/C - Palladium auf Aktivkohle

dc - dünnschichtchromatographisch

- 27 -

Beispiel 1

 $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanin und -ester (6-11, Tabelle 1)$

(3-Cyanbenzyl)-acetamino-malonsäure-diethylester (1)

10,0 g 3-Cyanbenzylbromid und 11,0 g Acetamino-malonsäure-diethylester wurden in 100 ml abs. Dioxan gelöst. Zu dieser Lösung wurde unter Rühren eine Lösung von 1,15 g Natrium in 50 ml abs. Ethanol gegeben. Der Ansatz wurde 5 Stunden auf dem siedenden Wasserbad erhitzt. Anschliessend wurde das Lösungsmittel im Vakuum weitestgehend abdestilliert, worauf der Rückstand in Chloroform aufgenommen und die Lösung mit verdünnter NaOH, HCl und anschliessend mit Wasser gewaschen wurde. Die organische Phase wurde über MgSO₄ getrocknet. Das Lösungsmittel wurde abdestilliert und der Rückstand aus Methanol/Wasser umkristallisiert. Ausbeute: 80%, Smp. 143-145°C.

3-Cyan-(D,L)-phenylalanin (2)

12,0 g der Verbindung 1 wurden in einer Mischung aus 32 ml Eisessig und 64 ml 3 N HCl 6 Stunden unter Rückfluss erhitzt. Anschliessend wurde das Lösungsmittel im Vakuum abdestilliert und der Rückstand getrocknet. Das erhaltene Produkt wurde in 80 ml 20%igem Methanol gelöst. Das pH der Lösung wurde durch Zugabe von 1 N NaOH auf 6,8 bis 7,0 eingestellt, wobei Verbindung 1 auskristallisierte. Ausbeute: 55%, Smp. 220-235°C.

$N-\alpha-(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanin (3)$

19,0 g der Verbindung 2 wurden in 230 ml 1 N KOH gelöst. Eine Lösung von 25,0 g 2-Naphthylsulfonylchlorid in 200 ml Ether wurde zugegeben und die Mischung 16 Stunden bei Raumtemperatur gerührt, wobei nach etwa 1 ½ Stunden das

Kaliumsalz des gewünschten Produktes auszukristallisieren begann. Anschliessend wurde der Niederschlag abgesaugt, mit Ether gewaschen, unter Erwärmen in Wasser gelöst und mit 3 N HCl angesäuert, wobei die Verbindung 3 auskristallisierte. Es wurde abgesaugt und aus Essigsäure/Wasser umkristallisiert. Ausbeute: 58%, Smp. 101-103°C.

$N-\alpha-(2-Naphthylsulfonyl)-3-thiocarboxamido-(D,L)-phenyl-alanin (4)$

1,5 g der Verbindung 3 wurden in 20 ml Pyridin und 1,5 ml TEA gelöst, in die Lösung 10 Minuten H₂S eingeleitet und der Ansatz 20 Stunden bei Raumtemperatur stehengelassen. Anschliessend wurde das Lösungsmittel abdestilliert, der Rückstand in Ethylacetat aufgenommen und mit 1 N HCl ausgeschüttelt. Die organische Phase wurde 1X mit Wasser gewaschen, über MgSO₄ getrocknet und das Lösungsmittel abdestilliert. Gelbes, amorphes Produkt. Ausbeute: 92%.

N-α-(2-Naphthylsulfonyl)-3-S-methyliminothiocarbonyl-(D,L)-phenylalanin-hydroiodid (5)

1,5 g der Verbindung 4 wurden in 25 ml Aceton gelöst, die Lösung mit 2,5 g Methyliodid versetzt und der Ansatz 15 Minuten im Wasserbad unter Rückfluss erhitzt. Nach dem Erkalten wurde Verbindung 5 durch Zusatz von Ether ausgefällt. Gelbliches, amorphes Pulver. Ausbeute: 93%.

$N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanin (6)$

1,86 g der Verbindung 5 wurden in 25 ml Methanol gelöst, die Lösung mit 0,4 g Ammoniumacetat versetzt und der Ansatz 3 Stunden bei 60°C im Wasserbad erwärmt, wobei die Verbindung 6 (Betain) bereits auszukristallisieren begann. Nach 24-stündigem Stehen wurde abgesaugt, mit Methanol gewaschen und getrocknet. Ausbeute: 71%, Smp. 274-275°C.

Zur Überführung in das Hydrochlorid wurden 0,5 g Betain in 5 ml Methanol suspendiert, die Suspension tropfenweise mit 2 N Ethylacetat/HCl bis zur klaren Lösung versetzt und das gebildete Hydrochlorid mit Ether ausgefällt. Ausbeute: 92%, amorphes Produkt.

$N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalaninester-hydrochloride (7-11, Tabelle 1)$

Jeweils 0,5 g des Betains 6 wurden in 5 ml des entsprechenden Alkohols suspendiert, die Suspensionen mit 0,36 g p-Toluolsulfonsäure versetzt und die erhaltenen Lösungen bis zur vollständigen Veresterung (dc Kontrolle) im siedenden Wasserbad erhitzt. Nach dem Erkalten wurden die Tosylate der gebildeten Ester durch Zugabe von Ether vollständig ausgefällt.

Zur Überführung in die Hydrochloride wurden die öligen Tosylate in Wasser gelöst, mit 0,5 N NaOH alkalisiert und die freigesetzten Basen mit Ethylacetat extrahiert. Nach Trocknen der Ethylacetatlösungen über Na₂SO₄ wurde das Lösungsmittel bis zu einem Rest von etwa 5 ml abdestilliert, mit 2 N Ethylacetat/HCl angesäuert und die Verbindungen 7-11 durch Zugabe von Ether ausgefällt.

TABELLE 1

N-a	- (Z - NA	-					
N R	NR AV	_~	R ²	R4	a	AB(%)	Smp.
7	9	Amidino	-осн ₃		0	16	ab 137
8	. 9	Amidino	-och(ch ₃) ₂	=	0	79	amorph
Ø.	9	Amidino	-n-0C4H9		0	7.1	amorph
10 6	9	Amidino	-och ₂ c ₆ H ₅		0	7.5	amorph
=	. 9	Amidino	-och ₂ ch ₂ c ₆ h ₅	. =	0	65	amorph

- 31 -

Beispiel 2

 $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanin-piperidid-bzw. piperazidsalze (32-38, Tabelle 5)$

N-α-(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanin-piperidide bzw. -piperazide (12-18, Tabelle 2)

Jeweils 5,5 mmol 2-, 3- und 4-Methylpiperidin sowie N-Methyl-, N-Phenyl-, N-Ethoxycarbonyl- und N-t-Butoxycarbonylpiperazin (AV, Tabelle 2) wurden in 5 ml abs. Dioxan gelöst. Nach Zugabe von 5 mmol NMM wurde eine Lösung des aus Verbindung 3 und Thionylchlorid erhaltenen Säurechlorids in 10 ml abs. Dioxan zugetropft und der Ansatz 2 Stunden bei Raumtemperatur gerührt, wobei die Verbindungen 14 und 15 bereits zum Teil auskristallisierten. Anschliessend wurde das Lösungsmittel abdestilliert und nach Zugabe von 25 ml Methanol zur Kristallisation stehengelassen. Die erhaltenen Produkte wurden abgesaugt und zur Reinigung umkristallisiert.

Thioamide (19-24, Tabelle 3)

1,0 g der Verbindungen 12-14 und 16-18 wurden in je 20 ml Pyridin und 1,5 ml TEA gelöst, in die Lösungen 10 Minuten H₂S eingeleitet und die Ansätze 20 Stunden bei Raumtemperatur aufbewahrt. Nach Abdestillieren des Lösungsmittels wurde der Rückstand in Ethylacetat aufgenommen, mit 1 N HCl ausgeschüttelt, die organische Phase 1X mit Wasser gewaschen und das Lösungsmittel abdestilliert. Die Verbindungen 21 und 22 kristallisierten beim Anreiben mit Methanol.

Thioimid- bzw. Imidsäureestersalze (25-31, Tabelle 4)

Thioimidsäuremethylester-hydroiodide (25-27, 30, 31, Tabelle 4)

0,7 g der Verbindungen 19-21 sowie 23 und 24 wurden in jeweils 20 ml Aceton und 5 ml Methanol gelöst, die Lösungen mit der 5-molaren Menge Methyliodid versetzt und die Ansätze 15 Minuten im Wasserbad unter Rückfluss erhitzt. Anschliessend wurde das Lösungsmittel abdestilliert und mit Ethanol angerieben, wobei die Verbindungen 25-27 und 30 kristallisierten. Verbindung 31 konnte nach Auflösen des Rückstandes in wenig abs. Ethanol mit Ether ausgefällt werden.

Imidsäuremethylesterhydrochloride (28, 29, Tabelle 4)

Jeweils 1,0 g der Verbindungen 15 und 16 wurden in einer Mischung aus 10 ml abs. Dioxan und 10 ml abs. Methanol suspendiert, in die Suspensionen 4 g getrocknetes HCl-Gas eingeleitet und die erhaltenen Lösungen 5 Tage im Kühlschrank aufbewahrt, wobei die Verbindungen 28 und 29 auskristallisierten. Die ausgefallenen Produkte wurden abgesaugt, mit Ether gewaschen und im Vakuum-Exsikkator (KOH/H_2SO_4) getrocknet.

N-α-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalaninpiperidid- bzw. -piperazid-salze (32-38, Tabelle 5)

Verbindungen 32-34, 37, 38

0,6 g der Thioimidsäuremethylester-hydroiodide 25-27 sowie 30 und 31 wurden in 15 ml Methanol gelöst bzw. suspendiert, die Ansätze mit der 1,5-molaren Menge Ammoniumacetat versetzt und 3 Stunden bei 60°C im Wasserbad erwärmt. Anschliessend wurde die Hälfte des Lösungsmittels abdestilliert und die Amidinhydroiodide 32-34, 37 und 38 durch Zugabe von Ether ausgefällt.

Verbindungen 35 und 36

0,5 g der Imidsäuremethylester-hydrochloride 28 und 29 wurden in je 10 ml abs. Ethanol suspendiert, die Suspensionen mit ethanolischer NH₃-Lösung versetzt, bis der Geruch nach NH₃ deutlich wahrnehmbar blieb und die Ansätze 3 Stunden im Wasserbad bei 60°C erwärmt, wobei schon nach kurzer Zeit klare Lösungen erhalten wurden. Anschliessend wurde filtriert und die Verbindungen 35 und 36 durch Zusatz von Ether ausgefällt.

$\frac{\text{TABELLE 2}}{\text{N-}\alpha-(2-\text{Naphthylsulfonyl})-3-\text{cyan-}(D,L)-\text{phenylalanin-piperidide bzwpiperazide}}$	Smp. $R^4 \qquad n AB(\$) (^\circ C) \qquad Rg$	$\begin{array}{c} CH_3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	CH ₃	-N 0 78 190 UK	-N 0 81 196 UK	$-N \longrightarrow N-CH_3$ " 0 80 181–190 UK	$-N \longrightarrow N-C_6H_5$ " 0 75 174-175 UK	$-N \longrightarrow N-COOC_2H_5$ " 0 71 162-163 UK	
1-pip									
_2 ylalanir	R ⁴			Ξ	z	Ξ	z ″	Ξ	=
TABELLE 1)-3-cyan-(D,L)-phen	. R ²	CH ₃	CH ₃	N-					-N-COOC(CH-)
ulfony	<u> </u>	CN		CN	CN	CZ	CN	CN	2
N-α-(2-Naphthyls	AV	CH ₃	CH ₃	NH	HN CH ₃	HN N-CH ₃	HN N-C6H5	HN N-COOC2H5	(HJ)JOJ-N NA
	NR	12			14	15	16	17	ā

<u>ارب</u>	٥
Į	ت
E)	
<u> </u>	Ε
3	~
I	ä
=	•
щ	٠.
< 1	
_	

Smp.	amorph		amorph	175-176	208-212	amorph	amorph
AB(%)	7.0		16	06	95	66	94
c	0		0	0	. •	0	0
R4			Ξ	Ξ	= .	Ξ.	1
R ²	CH ₃	CH ₃		$-N$ CH_3	$-N$ $N-C_6H_5$	-N N-COOC2H5	-N_N-COOC(CH ₃) ₃
L _A	S NH2	184	: .	=	= .	:	=
AV	12	•	1 3	14	. 91	17	18
NR	19	· ·	20	21	22	23	24

	1							
	Smp.	147-150	135-138	202-204	ab 168	ab 142	188-192	amorph
	AB(%)	89	72	73	78	75	89	81
	u	0		0	0	0	0	0
salze	НХ	H	H	HI	2 HC1	нсл	HI	HI
<u>LLE 4</u> id-säureester	R ⁴		· E	. =	, =		=	Ξ
TABELLE 4 Thioimid- bzw. Imid-säureestersalze	R2	CH ₃	CH ₃	-N-CH ₃	-N N-CH ₃	$-N$ $N-C_6H_5$	-N N-COOC ₂ H ₅	-N N-COOC(CH ₃) ₃
	_Г я	SCH ₃	Ξ	Ξ	осн3	HN :	SCH ₃	HZ =
	AV	19	; 20	21	15	. 91	23	24
	N .	25	26	27	28	53	30	31

N-a-	-2-Naph	ıthylsulfonyl)	$\frac{TABELLE~5}{N-\alpha-2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanin-piperidid~bzw.}$	<u>-tre 5</u> -phenylalanir	1-piper:	idid		-piperazid-salze	1ze
N	AV	_~	R ²	R4	НХ	C C	AB(%)	Smp.	
32	25	Amidino	CH ₃		H	. 0	69	248-251	
33	26	Amidino	CH ₃	=	H	0	7.0	226-228	
34	27	Amidino	-N CH ₃	Ξ	H	0	77	246-248	
35	28	Amidino	-N_N-CH ₃	· =	2 HC1	0	79	ab 130	
36	29	Amidino	$-N$ $N-C_6H_5$	=	HCl	0	78	232-244	
37	30	Amidino	-N N-COOC2H5	=	HI	0		225-227	
38	31	Amidino	-N N-COOC(CH ₃) ₃	= m	H	0	69	196-198	

- 38 -

Beispiel 3

 $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-piperidin-carbonsäuren (83-93, Tabelle 10)$

N-α-(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-(D,L)-piperidincarbonsäureester (39-49, Tabelle 6)

Die Darstellung der Verbindungen erfolgte nach Verfahren Aund B.

<u>Verfahren A:</u> 10 mmol des entsprechenden Piperidincarbonsäureesters (AV, Tabelle 6) wurden in 10 ml DMF gelöst, mit 11 mmol HOBT versetzt und auf 0° abgekühlt. Eine Lösung von 9 mmol der Verbindung 3 in 20 ml THF und 11 mmol DCC wurden zugegeben und über Nacht gerührt. Man filtrierte das gebildete Harnstoffderivat ab und destillierte das Lösungsmittel ab. Der Rückstand wurde in Ethylacetat gelöst, die Lösung mit Wasser, 10%iger Zitronensäure, gesättigter NaHCO₃-Lösung und gesättigter NaCl-Lösung gewaschen und anschliessend über MgSO₄ getrocknet. Nach Abdestillieren des Lösungsmittels wurden die Rohprodukte durch Umkristallisation bzw. Säulenchromatographie gereinigt.

<u>Verfahren B:</u> 5,5 mmol des entsprechenden Piperidincarbonsäureesters (AV, Tabelle 6) und 5 mmol NMM wurden in 10 ml Ethylacetat gelöst, eine Lösung von 5 mmol des aus Verbindung 3 und Thionylchlorid erhaltenen Säurechlorids in 20 ml Ethylacetat zugetropft und der Ansatz 2 Stunden bei Raumtemperatur gerührt. Anschliessend wurde das Lösungsmittel abdestilliert, der Rückstand in Ethylacetat aufgenommen, mit 1 N HCl, 10%iger Na₂CO₃-Lösung und Wasser ausgeschüttelt, die organische Phase über MgSO₄ getrocknet und das Lösungsmittel abdestilliert. Nach Zugabe von 20 ml Methanol wurde zur Kristallisation stehengelassen. Die Reinigung erfolgte durch Umkristallisation aus Methanol/Wasser bzw. säulenchromatographisch.

N-α-(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-(D,L)-piperidincarbonsäuren (50-60, Tabelle 7)

2 mmol der Verbindungen 39-49 wurden in 20 ml Methanol gelöst bzw. suspendiert, 10 ml 1 N NaOH zugefügt und die erhaltenen Lösungen bei Raumtemperatur gerührt bis vollständige Verseifung erfolgt war (dc Kontrolle). Danach wurden 100 ml Wasser zugesetzt, mit 1 N HCl angesäuert, die ausgefallenen Produkte isoliert und gegebenenfalls durch Umkristallisation oder säulenchromatographisch gereinigt.

Thioamide (61-71, Tabelle 8)

Je 1,0 g der Verbindungen 50-60 wurden in 20 ml Pyridin und 1,5 ml TEA gelöst, in die Lösungen 10 Minuten H₂S eingeleitet und die Ansätze 20 Stunden bei Raumtemperatur aufbewahrt. Anschliessend wurde das Lösungsmittel abdestilliert, die Rückstände in Ethylacetat aufgenommen und mit 1 N HCl ausgeschüttelt. Die organische Phase wurde 1% mit Wasser gewaschen, über MgSO₄ getrocknet und das Lösungsmittel abdestilliert. Die Verbindungen 61-71 wurden in der erhaltenen Form weiterverarbeitet.

Thioimidsäureesterhydroiodide (72-82, Tabelle 9)

Je 1,0 g der Thioamide 61-71 wurden in 25 ml Aceton gelöst, die Lösungen mit der 15-molaren Menge Methyliodid versetzt und die Ansätze 20 Stunden bei Raumtemperatur unter Lichtschutz aufbewahrt. Anschliessend wurden die Verbindungen 72-82 mit Ether ausgefällt und in der erhaltenen Form umgesetzt.

N-α-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-piperidincarbonsäure-hydrochloride (83-93, Tabelle 10)

0,5 g der Thioimidsäureesterhydroiodide 72-82 wurden in jeweils 10 ml Methanol gelöst, die Lösungen mit der 1,5-molaren Menge Ammoniumacetat versetzt und die Ansätze 3 Stunden bei 60°C im Wasserbad erwärmt. Anschliessend wurde noch 24 Stunden im Kühlschrank aufbewahrt, die auskristallisierten Betaine 83-93 abgesaugt, mit Methanol und Ether gewaschen und getrocknet.

Zur Überführung in die entsprechenden Hydrochloride wurden jeweils 0,2 g Betain in 3 ml Methanol suspendiert, die Suspension tropfenweise mit 2 N Ethylacetat/HCl bis zur klaren Lösung versetzt und die gebildete Salze mit Ether vollständig ausgefällt.

$\begin{array}{c} AV & R \\ COOC_2H_5 \\ HN \\ COOC_2H_5 \\ HN \\ COOCH_3 \\ HN \\ COOCH_3 \\ C$	$\frac{\text{TABELLE 6}}{\text{carbonsäureester}} = \frac{\text{TABELLE 6}}{\text{carbonsäureester}} = \frac{\text{Smp.}}{\text{carbonsäureester}} = \frac{\text{Smp.}}{\text{cocc}_2^{\text{H}_5}} = \frac{\text{Smp.}}{\text{cocc}_2^{\text{H}_5}} = \frac{\text{Smp.}}{\text{cocc}_2^{\text{H}_5}} = \frac{\text{cocc}_2^{\text{H}_5}}{\text{cocc}_2^{\text{H}_5}} = \frac{\text{cocc}_2^{\text{H}_5}}{\text{cocc}$	TABELLE 6 r1)-3-cyan-(D,L)-ph carbonsäureester R2 R4 R4 C2H5 C00C2H5 C00C2H	ester " " " " " " " " " " " " " " " " " " "	0 A/B	(D, L) -p AB(%) 78 60 68	Smp. (°C) (°C) 138-140 182-183	Rg UK UK
---	--	---	---	-------	--------------------------------------	--------------------------------	----------------

			TABELLE 6 (Fortsetzung)	setzung)					
Ä	AV	T. M.	R2	. R4	u	>	AB(%)	Smp.	Rg
43	COOCH ₃	- CN	$\begin{array}{c} \text{COOCH}_3 \\ -\text{N} \\ \end{array} - \text{C}_2 \text{H}_5$		0	. «	53	158-159	UK
44	$\frac{\text{COOCH}_3}{\text{HN}} - \text{C(CH}_3)_3$	-cn	$\frac{\text{COOCH}_3}{-\text{N}} - \text{C(CH}_3)_3$. =	0	4	12	102-104	S
. 54 	COOCH ₃ CH ₃	- CN	COOCH ₃ CH ₃	=	0	< .	34	188-190	SC
46	COOCH ₃	-CN	COOCH ₃ -N -CH ₃	Ξ	0	щ	45	195–197	SC

	_	4
	C	П
	c	:
	=	1
	7111	,
		•
•	i	,
	ŭ	(
	٠	:
•	110	1
	Έ	1
	C	7
į	Ξ.	ł
•	_	1
		ļ
١	2	١
		ı
1	Ť	1
	_	ì
ì	•	ì
ľ	-	3
	≂	:
Į	-	ı
1	٦	٠
ļ	_	п

			•	
	Rg	UK	UK .	SC
	Smp.	152-156	167-168	amorph
	AB(%)	38	47	42
	>	, m	Д	A
	E	•	0	0
tsetzung)	R.4		=	ε
TABELLE 6 (Fortsetzung)	R.2	COOCH ₃	CH ₃ C00C ₂ H ₅	COOCH ₃ COOCH ₃
	_ ~	- CN	-CN	CN
	NR AV	COOCH ₃ CH ₃	CH ₃ COOC ₂ H ₅ 48 HN	49 HN

TABELLE 7

	Rg	S	- 44 - .	UK	
bonsäuren	Smp.	177-181	204-205	188-189	amorph
eridincar	AB(%)	78	88	68	79
did-	u	0	0	0	0
lalanyl-(D,L)	R ⁴		=	=	=
-3-cyan-(D,L)-phenylalanyl-(D,L)-piperidincarbonsäuren	R 2	COOH	Z ₁	-и-	COOH -N
	۳,	-CN	UN -	-CN	- CN
N-α-(2-Naphthylsulfonyl)	AV	39	40	14	42
N-a-	ИR	20		22	33

	Rg	SC	လွ	1	1
	Smp.	ab 165	ab 110	amorph	181-185
	AB(%)	69	73	. 16	06
	c	•	0	. 0	0
rtsetzung)	4 A		= m	Ξ	=
TABELLE 7 (Fortsetzung)	R ²	COOH -N -C ₂ H ₅	соон -N -с(сH ₃) ₃	COOH CH ₃	COOH CH ₃
	₋ -	- CN	CN	N O I	-CN
	AV	43	44	45	9 4
:	NR	54	ន	99	57

			·	,
	Rg	1		S .
	Smp.	amorph	97-103	118-123
	AB(%)	69	6	7.7
	ជ	0	0	0
Fortsetzung)	R ⁴			Ξ.
TABELLE 7 (Fortsetzung)	R ²	COOH CH ₃		COOH COOH
	L¤	ND-	- CN	I CN
٠.	AV	47	4 8	49
	NR	5.88	 65 	09

- 47 -

TABELLE 8

Thioamide

NR .	AV	R^1	R^2 , R^4 , n	AB(%)	Smp.
61	50	-c NH ₂	wie 50	96	amorph
62	51	**	wie 51	93	amorph
63	52	11	wie 52	87	ab 126
64	53		wie 53	95	amorph
65	54	11	wie 54	96	amorph
66	55	11	wie 55	94	amorph
67	56	и.	wie 56	98	amorph
68	5 7	n	wie 57	94	amorph
69	58	. 11	wie 58	90	amorph
70	59	H ·	wie 59	97	amorph
71	60	u	wie 60	94	amorph

- 48 -<u>TABELLE 9</u>

Thioimidsäureesterhydroiodide

NR	AV	R ¹	R ² , R ⁴ , n	AB(%)	Smp. (°C)
72	61	-C NH	wie 50	52	192-194 (Z.)
73	62	ti	wie 51	67	ab 140 (2.)
74	63	•	wie 52	65	ab 185 (Z.)
75	64		wie 53	85	amorph
76	65	H .	wie 54	73	amorph
77	66	ti .	wie 55	61	amorph
78	67.	. 11	wie 56	79	amorph
79	68	11	wie 57	90	amorph
80	69	ti	wie 58	58	158-162 (Z.)
81	70		wie 59	94	ab 130 (Z.)
82	71	11	wie 60	88	amorph

- 49 -

TABELLE 10

 $N\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-piperidincarbonsäure-hydrochloride$

NR.	AV	R ¹	R ² , R ⁴ , n	AB(%)	Smp.(C°) Betain	Smp.(°C) Hydro- chlorid
83	72	Amidino	wie 50	92	208-212	ab 155
84	73	Amidino	wie 51	80	242-245	ab 148
85	74	Amidino	wie 52	86	247-248	ab 155
86	75	Amidino	wie 53	64	208-212	ab 145
87	76	Amidino	wie 54	53	225-227	ab 140
88	77	Amidino	wie 55	50	226-228	ab 155
89	78	Amidino	wie 56	86	214-218	ab 150
90	7 9	Amidino	wie 57	68	225-228	ab 153
91	80	Amidino	wie 58	66	204-210	ab 158
92	81	Amidino	wie 59	76	ab 245	ab 145
93	82	Amidino	wie 60	30	275-278	ab 110

- 50 -

Beispiel 4

N-α-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-piperidincarbonsäuremethylester-hydrochloride (94-101, Tabelle 11)

0,2 g der Betaine 83-87, 89, 90 und 92 wurden in jeweils 5 ml abs. Methanol suspendiert, die Suspension mit 1-2 ml 2 M Ethylacetat/HCl versetzt und die dabei erhaltenen Lösungen bis zur vollständigen Veresterung (dc Kontrolle) bei Raumtemperatur stehengelassen. Anschliessend wurden die Hydrochloride 94-101 (Tabelle 11) durch Zugabe von Ether ausgefällt.

	Smp.	ab 135	ab 130	ab 140	ab 125
ıy1 le	AB(%)	65	73	76	88
alar Iorić	ď	. 0	0	0	0
idino-pheny] ter-hydroch]	R.4		Ξ	· =	=
$\frac{\text{TABELLE 11}}{\text{N}\alpha\text{-}(2\text{-Naphthylsulfonyl})\text{-}(D,L)\text{-}3\text{-amidino-phenylalanyl-}} (D,L)\text{-piperidincarbonsäuremethylester-hydrochloride}$	R ²	COOCH ₃		-N-COOCH ₃	COOCH ₃
(2-Naphthylsul) L)-piperidinca	L _A	Amidino	Amidino	Amidino	Amidino
Να- (D,	AV	83	84	82	98
	NR	94	95	96	76

- 52 -

	Smp.	amorph	ab 130	amorph	ab 150
TABELLE 11 (Fortsetzung)	AB(%)	92	83	84	97
	а	0	0	0	0
	R4		=	=	· ±
	R ²	$\begin{array}{c} COOCH_3 \\ -N \\ \end{array}$	COOCH ₃ CH ₃	e de la constant de l	CH ₃ COOCH ₃
	Т	Amidino	Amidino	Amidino	Amidino
	AV	87	88	06	92
	NR	98	66	100	101

Beispiel 5

N-α-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanylisonipecotyl-4-aminobuttersäure und - 6-aminocapronsäure (110, 111, Tabelle 12)

N-α-(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-isonipecotyl-4-aminobuttersäureethylester und - 6-aminocapronsäuremethylester (102, 103, Tabelle 12)

Je 9 mmol der Verbindung 52 (Beispiel 3) und 10 mmol 4-Aminobuttersäureethylester sowie 6-Aminocapronsäuremethylester wurden analog Verfahren A (Beispiel 3) umgesetzt und aufgearbeitet. Die Reinigung erfolgte säulenchromatographisch über Kieselgel 60 mit Chloroform (für 102) und Chloroform/Methanol 98:2 (für 103) als Eluierungsmittel.

N-α-(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-isonipecotyl-4-aminobuttersäure und - 6-aminocapronsäure (104, 105, Tabelle 12)

2 mmol der Verbindungen 102 und 103 wurden nach der in Beispiel 3 (50-60) angegebenen Vorschrift verseift. Verbindung 104 wurde aus Ethylacetat umkristallisiert. Die Reinigung von 105 erfolgte säulenchromatographisch über Kieselgel 60 mit Chloroform/Methanol 95:5 als Eluierungsmittel.

Thioamide (106, 107, Tabelle 12)

Jeweils 1,0 g der Verbindungen 104 und 105 wurden analog Beispiel 3 (61-71) umgesetzt und aufgearbeitet.

Thioimidsäuremethylester-hydroiodide (108, 109; Tabelle 12)

0,7 g der Verbindungen 106 und 107 wurden in jeweils 20 ml Aceton gelöst, die Lösungen mit der 5-molaren Menge Methyliodid versetzt und die Ansätze 15 Minuten im Wasserbad unter Rückfluss erhitzt. Anschliessend wurde das Lösungsmittel abdestilliert, die Rückstände mit 2 ml abs. Ethanol versetzt und zur Kristallisation stehengelassen. Die kristallinen Produkte 108 und 109 wurden abgesaugt, mit Ether gewaschen und getrocknet.

N-α-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanylisonipecotyl-4-aminobuttersäure und - 6-aminocapronsäure-hydroiodid (110, 111; Tabelle 12)

0,5 g der Thioimidsäuremethylester-hydroiodide 108 und 109 wurden in je 10ml Methanol gelöst, die Lösungen mit der 1,5-molaren Menge Ammoniumacetat versetzt und die Ansätze 3 Stunden bei 60°C im Wasserbad erwärmt. Nach dem Erkalten wurden die Verbindungen 110 und 111 durch Zugabe von Ether ausgefällt. Zur Reinigung wurde aus Ethanol/Ether umgefällt.

- 55 -

TABELLE 12

NR	AV	R ¹	R ²	AB(%)	Smp.
102	52	-CN	-NH(CH ₂) ₃ -COOC ₂ H ₅	62	110-112
103	52	-CN	-NH(CH ₂) ₅ -COOCH ₃	60	130-135
104	102	-CN	-NH(CH ₂) ₃ -COOH	91	183-185
105	103	-CN	-NH(CH ₂) ₅ -СООН	63	amorph
106	104	-c s	-NH(CH ₂) ₃ -COOH	97	amorph
107	105	NH ₂	-NH(CH ₂) ₅ -СООН	93	amorph
108	106	-C •HI	-NH(CH ₂) ₃ -СООН	85	174-178
109	107	NH	-NH(CH ₂) ₅ -соон	66	160-162
110	108	NH -C •HI	-NH(CH ₂) ₃ -COOH	79	ab 152
111	109	NH ₂	-NH(CH ₂) ₅ -СООН	81	ab 110

Beispiel 6

N-a-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-pipecolyl-glycin und -methylester (116, 117)

 $N-\alpha-(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-(D,L)-pipecolyl-glycin-t-butylester (112)$

9 mmol der Verbindung 50 und 10 mmol Glycin-t-butylester wurden analog Verfahren A (Beispiel 3) umgesetzt und aufgearbeitet. Die Reinigung von 112 erfolgte säulenchromatographisch über Kieselgel 60 mit Chloroform als Eluierungsmittel. Ausbeute: 70%, Smp. 121-125°C.

 $N-\alpha-(2-Naphthylsulfonyl)-3-thiocarboxamido-(D,L)-phenyl-alanyl-(D,L)-pipecolyl-glycin-t-butylester (113)$

1,3 g der Verbindung 112 wurden analog Beispiel 3 (61-71) umgesetzt. Amorphes Produkt. Ausbeute: 95%.

N-α-(2-Naphthylsulfonyl)-3-S-methyliminothiocarbonyl-(D,L)-phenylalanyl-(D,L)-pipecolyl-glycin-t-butylesterhydroiodid (114)

1,3 g der Verbindung 113 wurden in 35 ml Aceton gelöst, die Lösung mit 4,3 g Methyliodid versetzt und der Ansatz 20 Stunden bei Raumtemperatur unter Lichtschutz aufbewahrt. Verbindung 104 wurde anschliessend durch Zugabe von Ether ausgefällt. Amorphes Produkt. Ausbeute: 76%.

N-α-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-pipecolyl-qlycin-t-butylester-hydroiodid (115)

1,2 g der Verbindung 114 wurden analog Beispiel 2 (32-34) umgesetzt und aufgearbeitet. Ausbeute: 96%, Smp. ab 90°C.

N-α-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-pipecolyl-glycin-hydrochlorid (116)

0,95 g der Verbindung 115 wurden in die freie Base übergeführt, indem die Substanz in 250 ml Ethylacetat suspendiert und mit 30 ml 0,2 N NaOH ausgeschüttelt wurde. Die organische Phase wurde mit Wasser gewaschen, über MgSO₄ getrocknet und das Lösungsmittel abdestilliert. Der Rückstand (0,77 g) wurde in 6 ml TFA gelöst, die Lösung 2 Stunden bei Raumtemperatur gerührt und danach das Lösungsmittel abdestilliert. Der Rückstand wurde in 8 ml Methanol gelöst, die Lösung mit 2 ml 2 N Ethylacetat/HCl versetzt und 116 mit Ether ausgefällt. Ausbeute: 68%, Smp. ab 155°C.

N-α-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-pipecolyl-glycin-methylester-hydrochlorid (117)

0,2 g der Verbindung 116 wurden analog Beispiel 4 umgesetzt. Ausbeute: 86%, Smp. ab 145°C.

Beispiel 7

 $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanyl-(D)-prolin- und -methylester (123, 124)$

 $N-\alpha-(2-Naphthylsulfonyl)-3-cyan-(D)-phenylalanyl-(D)-prolin-t-butylester und <math>N-\alpha-(2-Naphthylsulfonyl)-3-cyan-(L)-phenylalanyl-(D)-prolin-t-butylester (118, 119)$

11 mmol der Verbindung 3 und 12 mmol (D)-Prolin-t-butylester wurden analog Verfahren A (Beispiel 3) umgesetzt. Es wurden 4,9 g eines Gemisches der Verbindungen 118 und 119 erhalten. Durch säulenchromatographische Trennung über Kieselgel 60 mit Chloroform als Eluierungsmittel wurden erhalten: einerseits

N- α -(2-Naphthylsulfonyl)-3-cyan-(D)-phenylalanyl-(D)-prolin-t-butylester (118). Ausbeute: 28%, amorph, $\left[\alpha\right]_{D}^{20}$ +39° (1% in Methanol),

und andererseits

farblose Kristalle von N- α -(2-Naphthylsulfonyl)-3-cyan-(L)-phenylalanyl-(D)-prolin-t-butylester (119). Ausbeute: 33%, Smp. 139-141°C; [α]_D +35° (1% in Methanol).

N-α-(2-Naphthylsulfonyl)-3-thiocarboxamido-(L)-phenylalanyl-(D)-prolin-t-butylester (120)

1,0 g der Verbindung 119 wurde analog Beispiel 3 (61-71) umgesetzt und aufgearbeitet. Amorphes Produkt. Ausbeute: 92%.

 $N-\alpha-(2-Naphthylsulfonyl)-3-S-methyliminothiocarbonyl-(L)-phenylalanyl-(D)-prolin-t-butylester-hydroiodid (121)$

0,95 g der Verbindung 120 wurden in 30 ml Aceton, analog Beispiel 2 (25-31) umgesetzt und aufgearbeitet, wobei man ein kristallines Produkt erhielt. Ausbeute: 92%, Smp. ab 160°C.

N-α-(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanyl-(D)-prolin-t-butylester-hydroiodid (122)

1,0 g des Thioimidsäuremethylester-hydroiodids (121) wurde in 10 ml Methanol analog Beispiel 2 (32-34) umgesetzt und aufgearbeitet. Ausbeute: 96%, Smp. ab 130°C.

N-α-(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanyl-(D)prolin-hydrochlorid (123)

0,75 g der Verbindung 122 wurden in einer Mischung aus 5 ml TFA und 5 ml Isopropanol gelöst. Durch HPLC-Kontrolle wurde auf Vollständigkeit der Esterhydrolyse geprüft.

Anschliessend wurde das Lösungsmittel abdestilliert. Man löste den öligen Rückstand in 10 ml Methanol und setzte der Lösung unter pH-Kontrolle ethanolische Ammoniaklösung zu, bis der pH-Wert 7,4 erreicht war. Das ausgefallene Betain wurde nach 2 Stunden abgesaugt und getrocknet. Ausbeute: 56%, Smp. 215-223°C.

Zur Überführung in das Hydrochlorid löste man das erhaltene Betain in methanolischer Salzsäure und gab der Lösung Ether zu. Das ausgefallene Hydrochlorid wurde abgesaugt, mit Ether gewaschen und getrocknet. Ausbeute: 85%, Smp. ab 145°C.

$N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanyl-(D)-prolin-methylester-hydrochlorid (124)$

0,22 g Betain 123 wurden analog Beispiel 4 umgesetzt und aufgearbeitet. Ausbeute: 74%, Smp. ab 150°C.

Zum Strukturbeweis wurde darüber hinaus ausgehend 3-Cyan-(D,L)-phenylalaninmethylester durch Chymotrypsinspaltung 3-Cyan-(L)-phenylalanin (125) dargestellt, das mit 2-Naphthylsulfonylchlorid in Na-(2-Naphthylsulfonyl)-3übergeführt wurde. Die cyan-(L)-phenylalanin (126) Umsetzung von 126 mit (D)-Prolin-t-butylester nach DCC-Verfahren führte zu Nα-(2-Naphthylsulfonyl)-3-cyan-(L)-phenylalanyl-(D)-prolin-t-butylester (127), aus die Verbindungen 120-123 beschriebenen nach dem für Verfahren No-(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanyl-(D)-prolin gewonnen wurde. Die dabei erhaltenen Zwischenprodukte sowie das Endprodukt waren dünnschichtchromatographisch mit den Verbindungen 120-123 identisch. Die ermittelten Schmelzpunkte, Drehwerte sowie die K;-Werte stimmten überein.

3-Cyan-(L)-phenylalanin-hydrochlorid (125)

4,8 g des aus Verbindung 2 durch Veresterung mit Methanol in Gegenwart von p-Toluolsulfonsäure erhaltenen 3-Cyan-(D,L)-phenylalaninmethylesters wurden in 25 ml Toluol gelöst, eine Lösung von 0,2 g Chymotrypsin in 25 ml Wasser zugegeben und die Mischung 1 Stunde bei Raumtemperatur gerührt, wobei ein Niederschlag ausfiel, der abgesaugt, mit Wasser gewaschen und getrocknet wurde. Man suspendierte das trockene Produkt in 10 ml Methanol und säuerte die Suspension mit 2 N Ethylacetat/HCl an. Nach Filtration und Versetzen des Filtrats mit reichlich Ether konnten 0,55 g 125 erhalten werden. Das als Filtrat zurückbleibende Reaktionssystem Toluol/Wasser wurde 3X mit Ethylacetat ausgeschüttelt. Nach Phasentrennung wurde die wässrige Phase im Vakuum zur Trockne gebracht und der Rückstand in der oben beschriebenen Weise behandelt. Es wurden zusätzlich 1,8 g 125 erhalten. Gesamtausbeute: 88%, 211-212°C. $[\alpha]_D^{20}$ -10.3° (3% in Methanol).

Aus der nach Extraktion des Reaktionssystems Toluol/Wasser erhaltenen Ethylacetatlösung konnte 3-Cyan-(D)-phenylalaninmethylester in öliger Form gewonnen werden, dessen saure Hydrolyse (25 ml 0,5 N HCl, 6 Stunden Rückfluss) zu 3-Cyan-(D)-phenylalanin-hydrochlorid führte. Ausbeute: 72%, Smp. 210-212°C, [a]_D +10.0° (3% in Methanol).

$N-\alpha-(2-Naphthylsulfonyl)-3-cyan-(L)-phenylalanin (126)$

2,2 g der Verbindung 125 wurden in einer Mischung aus 10,4 ml 1 N KOH und 1,0 g NaHCO₃ in 12 ml Wasser gelöst, eine Lösung von 2,64 g 2-Naphthylsulfonylchlorid in 30 ml Ether zugefügt und 16 Stunden bei Raumtemperatur gerührt. Anschliessend wurde das ausgefallene Kaliumsalz von 126 abgesaugt und mit Ether gewaschen. Zur Überführung in die freie Säure wurde das Kaliumsalz in 50 ml Wasser suspendiert, die Suspension mit 1 N HCl angesäuert und mit

Ethylacetat ausgeschüttelt. Die organische Phase wurde 1X mit Wasser gewaschen, über $MgSO_4$ getrocknet und das Lösungsmittel abdestilliert. Amorphes Produkt. Ausbeute: 62%. $[\alpha]_D^{20}$ +8.2° (5% in Methanol).

 $N-\alpha-(2-Naphthylsulfonyl)-3-cyan-(L)-phenylalanyl-(D)-prolin-t-butylester (127)$

0,5 g der Verbindung 126 wurden in der für die Verbindungen 118,119 beschriebenen Weise (Verfahren A, Beispiel 3) mit (D)-prolin-t-butylester umgesetzt und aufgearbeitet. Nach säulenchromatographischer Reinigung über Kieselgel 60 mit Chloroform als Eluierungsmittel wurden farblose Kristalle der Verbindung 127 erhalten. Ausbeute: 80%, Smp. 139-141°C, $[\alpha]_D^{20}$ +35° (1% in Methanol).

Beispiel 8

N-α-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-1,2,-3,4-tetrahydroisochinolin-3-carbonsäure und -methylester (134,135)

N-α-(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-1,2,3,4tetrahydroisochinolin-3-carbonsäuremethylester (128, Tabelle 13)

11 mmol 1,2,3,4-Tetrahydroisochinolin-3-carbonsäuremethylester und 10 mmol des aus Verbindung 3 und Thionylchlorid erhaltenen Säurechlorids wurden analog Verfahren B (Beispiel 3) umgesetzt und aufgearbeitet. Die Reinigung erfolgte durch Umkristallisation aus Methanol.

N-α-(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-1,2,3,4tetrahydroisochinolin-3-carbonsäure (129, Tabelle 13)

2 mmol der Verbindung 128 wurden nach der in Beispiel 3 (50-60) angegebenen Vorschrift verseift. 129 wurde in der

erhaltenen Form weiterverarbeitet.

Thioamide (130, 131, Tabelle 13)

Je 1,0 g der Verbindungen 128 und 129 wurden analog Beispiel 3 (61-71) umgesetzt und aufgearbeitet.

Thioimidsäuremethylester-hydroiodide (132, 133, Tabelle 13)

Je 1,0 g der Verbindungen 130 und 131 wurden analog Beispiel 3 (72-82) umgesetzt und aufgearbeitet.

N-α-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-1,2,-3,4-tetrahydroisochinolin-3-carbonsäure und -methyl-ester-hydroiodide (134, 135, Tabelle 13)

Je 0,5 g der Thioimidsäuremethylester-hydroiodide 132 und 133 wurden analog Beispiel 2 (32-34) umgesetzt und aufgearbeitet.

- 63 -

Tabelle 13

R¹

Beispiel 9

 $N-\alpha-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-sarcosin und -methylester (140, 141)$

N-α-(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanylsarcosin-t-butylester (136)

9 mmol der Verbindung 3 und 10 mmol Sarcosin-t-butylester wurden analog Verfahren A (Beispiel 3) umgesetzt und aufgearbeitet. Die Reinigung erfolgte säulenchromatographisch über Kieselgel 60 mit Chloroform als Eluierungsmittel. Ausbeute: 82%; Smp. 141-142°C.

 $N-\alpha-(2-Naphthylsulfonyl)-3-thiocarboxamido-(D,L)-phenyl-alanyl-sarcosin-t-butylester (137)$

2,0 g der Verbindung 136 wurden analog Beispiel 3 (61-71) umgesetzt und aufgearbeitet. Ausbeute: 89%, Smp. 162-164°C.

N-α-(2-Naphthylsulfonyl)-3-S-methyliminothiocarbonyl-(D,L)-phenylalanyl-sarcosin-t-butylester (138)

1,8 g der Verbindung 137 wurden in 40 ml Aceton analog Beispiel 3 (72-82) umgesetzt und aufgearbeitet. Ausbeute: 92%, Smp. ab 105°C.

N-α-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanylsarcosin-t-butylester-hydroiodid (139)

2,0 g der Verbindung 138 wurden in 20 ml Methanol analog Beispiel 2 (32-34) umgesetzt und aufgearbeitet. Ausbeute: 74%, Smp. ab 103°C.

N-α-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-sarcosin-hydrochlorid (140)

0,57 g der Base von 139, die man wie in Beispiel 6 (116) beschrieben erhielt, wurden in 7 ml TFA gelöst, die Lösung 3 Stunden bei Raumtemperatur gerührt und danach das Lösungsmittel abdestilliert. Der Rückstand wurde in 5 ml Methanol gelöst, die Lösung mit 2 ml 2 N Ethylacetat/HCl versetzt und Verbindung 140 mit Ether ausgefällt. Ausbeute: 70%, Smp. ab 130°C.

N-α-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanylsarcosin-methylester-hydrochlorid (141)

0,2 g der Verbindung 140 wurden analog Beispiel 4 umgesetzt. Ausbeute: 75%, Smp. 125-135°C.

Beispiel 10

N-α-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-decahydrochinolin-4-carbonsäure (146)

N-α-(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-decahydrochinolin-4-carbonsäuremethylester (142)

5,5 mmol Decahydrochinolin-4-carbonsäuremethylester und 5 mmol des aus Verbindung 3 und Thionylchlorid erhaltenen Säurechlorids wurden analog Verfahren B (Beispiel 3) umgesetzt und aufgearbeitet. Die Reinigung erfolgte säulenchromatographisch über Kieselgel 60 mit Chloroform als Eluierungsmittel. Ausbeute: 28%, Smp. 193-195°C.

N-α-(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-decahydrochinolin-4-carbonsäure (143)

1,0 g der Verbindung 142 wurde analog Beispiel 3 (50-60) verseift. Die Reinigung erfolgte säulenchromatographisch

über Kieselgel 60 mit Chloroform als Eluierungsmittel. Ausbeute: 83%, Smp. 263-266°C.

 $N-\alpha-(2-Naphthylsulfonyl)-3-thiocarboxamido-(D,L)-phenyl-alanyl-decahydrochinolin-4-carbonsäure (144)$

0,95 g der Verbindung 143 wurden analog Beispiel 3 (61-71) umgesetzt und aufgearbeitet. Amorphes Produkt. Ausbeute: 87%.

N-α-(2-Naphthylsulfonyl)-3-S-methyliminothiocarbonyl-(D,L)-phenylalanyl-decahydrochinolin-4-carbonsäurehydroiodid (145)

0,87 g der Verbindung 144 wurden in 20 ml Aceton gelöst, die Lösung mit 3 g Methyliodid versetzt und der Ansatz 20 Stunden bei Raumtemperatur aufbewahrt, wobei Verbindung 145 auskristallisierte. Der Niederschlag wurde abgesaugt, mit Aceton/Ether 1:1 gewaschen und getrocknet. Ausbeute: 65%, Smp. 153-157°C.

N-α-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyldecahydrochinolin-4-carbonsäure-hydroiodid (146)

0,68 g der Verbindung 145 wurden analog Beispiel 3 (83-93) umgesetzt, wobei das Amidin-hydroiodid 146 auskristallisierte. Ausbeute: 54%, Smp. 188-192°C.

Beispiel 11

N-α-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyldecahydroisochinolin-3-carbonsäure (151)

N-α-(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-decahydroisochinolin-3-carbonsäuremethylester (147) 10 mmol Decahydroisochinolin-3-carbonsäuremethylester und 9 mmol der Verbindung 3 wurden analog Verfahren A (Beispiel 3) umgesetzt und aufgearbeitet. Die Reinigung erfolgte säulenchromatographisch über Kieselgel 60 mit Chloroform als Eluierungsmittel. Amorphes Produkt. Ausbeute: 29%.

$N-\alpha-(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-deca-hydroisochinolin-3-carbonsäure (148)$

0,77 g der Verbindung 147 wurden nach der in Beispiel 3 (50-60) angegebenen Vorschrift verseift. Die Reinigung erfolgte über Kieselgel 60 mit Chloroform/Methanol 90:10 als Eluierungsmittel. Ausbeute: 83%, Smp. ab 145°C.

N-α-(2-Naphthylsulfonyl)-3-thiocarboxamido-(D,L)-phenyl-alanyl-decahydroisochinolin-3-carbonsäure (149)

0,52 g der Verbindung 148 wurden analog Beispiel 2 (19-24) umgesetzt und aufgearbeitet. Amorphes Produkt. Ausbeute: 91%.

N-α-(2-Naphthylsulfonyl)-3-S-methyliminothiocarbonyl-(D,L)-phenylalanyl-decahydroisochinolin-3-carbonsäure (150)

0,5 g der Verbindung 149 wurden in 20 ml Aceton gelöst, die Lösung mit 2,0 g Methyliodid versetzt und der Ansatz 20 Stunden bei Raumtemperatur unter Lichtschutz aufbewahrt. Anschliessend wurde die Verbindung 150 mit Ether ausgefällt. Amorphes Produkt. Ausbeute: 69%.

N-α-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-decahydroisochinolin-3-carbonsäure-hydrochlorid (151)

0,4 g Thioimidsäuremethylester-hydroiodid 150 wurden analog Beispiel 3 (83-93) umgesetzt, wobei das entsprechende Betain erhalten wurde. Ausbeute: 64%, Smp. 214-218°C.

Zur Überführung in das Hydrochlorid wurde in der dort

beschriebenen Weise verfahren. Ausbeute: 92%, Smp. ab 168°C.

Beispiel 12

 $N-\alpha-(2-Naphthylsulfonyl)-glycyl-3-amidino-(D,L)-phenyl-alanin-4-methylpiperidid (156)$

 $N-\alpha-(2-Naphthylsulfonyl)-glycyl-3-cyan-(D,L)-phenylalanin$ (152)

20 mmol der Verbindung 3 wurden in 42 ml 1 N NaOH gelöst, eine Lösung von 22 mmol 2-Naphthylsulfonyl-glycylchlorid in 60 ml Ethylacetat zugegeben und der Ansatz 16 Stunden gerührt. Anschliessend wurde eine geringe Menge schwerlösliches Nebenprodukt abgesaugt, die wässrige Phase abgetrennt, mit 1 N HCl angesäuert und mit Ethylacetat ausgeschüttelt. Die organische Phase wurde 1X mit Wasser gewaschen, über MgSO₄ getrocknet und das Lösungsmittel abdestilliert. Der amorphe Rückstand kristallisierte beim Durcharbeiten mit Ether. Zur Reinigung wurde aus verdünnter Essigsäure umkristallisiert. Ausbeute: 72%, Smp. 157-158°C.

 $N-\alpha-(2-Naphthylsulfonyl)-glycyl-3-cyan-(D,L)-phenylalanin-4-methyl-piperidid (153)$

10 mmol der Verbindung 152 und 12 mmol 4-Methylpiperidin wurden nach Vefahren A (Beispiel 3) umgesetzt und aufgearbeitet. Die Reinigung erfolgte säulenchromatographisch über Kieselgel 60 mit Choroform/Methanol 90:10 als Eluierungsmittel. Ausbeute: 94%, Smp. 170-172°C.

 $N-\alpha-(2-Naphthylsulfonyl)-glycyl-3-thiocarboxamido-(D,L)-phenylalanin-4-methylpiperidid (154)$

2,6 g der Verbindung 153 wurden in 25 ml Pyridin und 1,5 ml TEA analog Beispiel 2 (19-24) umgesetzt. Nach Abdestil-

lieren des Lösungsmittels wurde der feste Rückstand mit 60 ml Methanol und 10 ml 1 N HCl durchgearbeitet, abgesaugt, mit Methanol gewaschen und getrocknet. Ausbeute: 96%, Smp. 190-192°C.

N-α-(2-Naphthylsulfonyl)-qlycyl-3-S-methyliminothiocarbonyl-(D,L)-phenylalanin-4-methylpiperidid-hydroiodid (155)

1,0 g der Verbindung 154 wurde unter Erwärmen in 2 ml DMF gelöst, die Lösung mit 40 ml Aceton und 3,5 g Methyliodid versetzt und 4 Stunden bei Raumtemperatur gerührt, wobei die Verbindung 155 auskristallisierte. Anschliessend wurde abgesaugt, mit Ether gewaschen und getrocknet. Ausbeute: 83%, Smp. 185-188°C (Z.).

N-α-(2-Naphthylsulfonyl)-glycyl-3-amidino-(D,L)-phenylalanin-4-methylpiperidid-hydroiodid (156)

0,8 g des Thioimidsäuremethylester-hydroiodids 155 wurden in einer Mischung aus 18 ml DMF und 9 ml Methanol gelöst, die Lösung mit 0,2 g Ammoniumacetat versetzt und der Ansatz 3 Stunden bei 60°C im Wasserbad erwärmt. Anschliessend wurde das Lösungsmittel abdestilliert, der Rückstand in Ethanol gelöst und Verbindung 156 mit Ether ausgefällt. Ausbeute: 78%, Smp. ab 125°C.

Beispiel 13

N-α-(2-Naphthylsulfonyl)-qlycyl-3-amidino-(D,L)-phenylalanyl-piperidincarbonsäuren (165,166, Tabelle 14)

N-α-(2-Naphthylsulfonyl)-qlycyl-3-cyan-(D,L)-phenylalanylpiperidincarbonsäureethylester (157,158, Tabelle 14)

Je 10 mmol der Verbindung 152 und 15 mmol des entsprechenden Piperidincarbonsäureethylesters wurden analog Verfahren

A (Beispiel 3) umgesetzt und aufgearbeitet. Die Reinigung erfolgte säulenchromatographisch über Kieselgel 60 mit Chloroform als Eluierungsmittel.

N-α-(2-Naphthylsulfonyl)-qlycyl-3-cyan-(D,L)-phenylalanyl-piperidincarbonsäuren (159,160, Tabelle 14)

Je 4 mmol der Verbindungen 157 und 158 wurden nach der im Beispiel 3 (50-60) angegebenen Vorschrift verseift. Die Reinigung erfolgte säulenchromatographisch über Kieselgel 60 mit Chloroform/Methanol 90:10 als Eluierungsmittel.

Thioamide (161, 162, Tabelle 14)

Jeweils 0,8 g der Verbindungen 159 und 160 wurden analog Beispiel 2 (19-24) in die Thioamide 161 und 162 übergeführt.

Thioimidsäuremethylester-hydroiodide (163, 164, Tabelle 14)

Je 0,7 g der Thioamide 161 und 162 wurden analog Beispiel 3 (72-82) zu den Verbindungen 163 und 164 umgesetzt.

N-α-(2-Naphthylsulfonyl)-qlycyl-3-amidino-(D,L)-phenylala-nyl-piperidincarbonsäure-hydroiodide (165,166, Tabelle 14)

Je 0,6 g der Thioimidsäuremethylester-hydroiodide 163 und 164 wurden analog Beispiel 2 (32-34) in die Amidin-hydroiodide 165 und 166 übergeführt.

ΑV

NR

- 71 -

157	152	-CN	-cooc ₂ H ₅	2	72	amorpn
158	152	-CN	-cooc ₂ H ₅	4	74	146-147
159	157	-CN	-COOH	2	53	ab 103
160	158	-CN	-СООН	4	60	194-198
161	159	-C NH ₂	-COOH	2	94	amorph
162	160		-соон	4	85	amorph
163	161	-C ·HI	-соон	2	58	amorph
.164	162	11	-COOH	4	68	amorph
165	163	NH -C ·HI NH ₂	-СООН	2	83	ab 123
166	164	u ·	-соон	. 4	74	ab 112

- 72 -

Beispiel 14

 $N-\alpha-(8-Chinolylsulfonyl)-3-amidino-(D,L)-phenylalanin-4-methylpiperidid (171)$

$N-\alpha-(8-Chinolylsulfonyl)-3-cyan-(D,L)-phenylalanin (167)$

10 mmol der Verbindung 3 wurden in 22 ml 1 N KOH gelöst, eine Lösung von 11 mmol Chinolyl-8-sulfochlorid in einer Mischung aus 27 ml Ether/DMF 2:1 zugefügt und 16 Stunden gerührt. Anschliessend wurde die Wasserphase abgetrennt, mit 10%iger Zitronensäurelösung angesäuert und mit Ethylacetat ausgeschüttelt. Die organische Phase wurde 1X mit Wasser gewaschen, über MgSO₄ getrocknet und das Lösungsmittel abdestilliert. Der Rückstand wurde aus Ethylacetat umkristallisiert. Ausbeute: 53%, Smp. 187-189°C.

$N-\alpha-(8-Chinolylsulfonyl)-3-cyan-(D,L)-phenylalanin-4-methylpiperidid (168)$

5 mmol der Verbindung 167 und 7,5 mmol 4-Methylpiperidin wurden analog Verfahren A (Beispiel 3) umgesetzt und aufgearbeitet. Die Reinigung erfolgte säulenchromatographisch über Kieselgel 60 mit Chloroform als Eluierungsmittel. Amorphes Produkt. Ausbeute: 61%.

N-α-(8-Chinolylsulfonyl)-3-thiocarboxamido-(D,L)-phenyl-alanin-4-methylpiperidid (169)

1,4 g der Verbindung 168 wurden analog Beispiel 3 (61-71) umgesetzt. Anstelle von 1 N HCl wurde bei der Aufarbeitung 10%ige Zitronensäurelösung verwendet. Amorphes Produkt. Ausbeute: 62%.

N-α-(8-Chinolylsulfonyl)-3-S-methyliminothiocarbonyl-(D,L)-phenylalanin-4-methylpiperidid (170)

0,9 g des Thioamids 169 wurden in 20 ml Aceton gelöst, die Lösung mit 1,3 g Methyliodid versetzt und der Ansatz 15 Minuten im Wasserbad unter Rückfluss erhitzt. Anschliessend wurde Verbindung 170 mit Ether ausgefällt. Amorphes Produkt. Ausbeute: 81%.

N-α-(8-Chinolylsulfonyl)-3-amidino-(D,L)-phenylalanin-4-methylpiperidid-hydroiodid (171)

0,9 g des Thioimidsäuremethylesters 170 wurden analog Beispiel 2 (32-34) umgesetzt und aufgearbeitet. Ausbeute: 81%, Smp. ab 135°C.

Beispiel 15

N-α-(8-Chinolylsulfonyl)-3-amidino-(D,L)-phenylalanylpiperidin-carbonsäuren (180, 181, Tabelle 15)

N-α-(8-Chinolylsulfonyl)-3-cyan-(D,L)-phenylalanyl-piperidin-carbonsäureethylester (172, 173, Tabelle 15)

Jeweils 5 mmol der Verbindung 167 und 7,5 mmol des entsprechenden Piperidincarbonsäureesters wurden analog Verfahren A (Beispiel 3) umgesetzt und aufgearbeitet. Die Reinigung der Verbindungen 172 und 173 erfolgte säulenchromatographisch auf Kieselgel 60 mit Chloroform als Eluierungsmittel.

N-α-(8-Chinolylsulfonyl)-3-cyan-(D,L)-phenylalanyl-piperidin-carbonsäuren (174, 175, Tabelle 15)

Je 4 mmol der Carbonsäureester 172 und 173 wurden nach der im Beispiel 3 (50-60) angegebenen Vorschrift verseift. Zur Aufarbeitung wurden die Ansätze mit 10%iger Zitronensäurelösung auf pH4 gebracht, einige Stunden im Kühlschrank aufbewahrt und die gebildeten Niederschläge abgesaugt. Die Reinigung der Carbonsäuren 174 und 175 erfolgte säulenchromatographisch über Kieselgel 60 mit Chloroform/Methanol 90:10 als Eluierungsmittel.

Thioamide (176,177, Tabelle 15)

Je 1,0 g der Verbindungen 174 und 175 wurden analog Beispiel 2 (19-24) umgesetzt und aufgearbeitet.

Thioimidsäuremethylester-hydroiodide (178, 179, Tabelle 15)

Zur Darstellung der Verbindungen 178 und 179 wurden jeweils 0,8 g der Thioamide 176 und 177 analog Beispiel 3 (72-82) umgesetzt und aufgearbeitet.

N-α-(8-Chinolylsulfonyl)-3-amidino-(D,L)-phenylalanylpiperidin-carbonsäure-hydroiodide (180, 181, Tabelle 15)

Je 0,5 g der Thioimidsäuremethylester-hydroiodide 178 und 179 wurden analog Beispiel 2 (32-34) umgesetzt und aufgearbeitet.

- 75 -

Stellung

			Stellung			Smp.
NR	AV	R ¹	R ²	R ²	AB(%)	
172	167	-CN	-cooc ₂ H ₅	2	7 9	amorph
173	167	-CN	-cooc ₂ H ₅	4	70	amorph
174	172	-CN	-соон	2	73	ab 128
175	173	-CN	-COOH	4	60	ab 142
176	174	-CNH ₂	-соон	2	86	amorph
177	175	•	-соон	4	86	amorph
178	176	-C •HI	-соон	2	57	amorph
179	177	••	-соон	4	66	amorph
180	178	-C •HI NH ₂	-соон	2	75	ab 168
181	179		-COOH	. 4	72	ab 175

- 76 -

Beispiel 16

 $N-\alpha-(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanyl-4-methylpiperidid (182),$

(D,L)-pipecolinsäure (185) und - ethylester (183), isonipecotinsäure (186) und - ethylester (184) (Tabelle 16)

N-α-(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanyl-4-methylpiperidid, - (D,L)-pipecolinsäure - und - isonipecotinsäureethylester als Hydrochloride (182-184, Tabelle 16)

2,0 g der Verbindungen 14, 39 und 41 wurden in jeweils 40 ml einer Mischung Dioxan/Methanol 1:1 unter Erwärmen gelöst, die Lösungen mit 5 g Raney-Nickel-Katalysator und 10 ml 1 N ethanolischer Ammoniaklösung versetzt und unter Normalbedingungen hydriert, wobei die berechnete Wasserstoffmenge nach etwa 45 Minuten aufgenommen war. Anschliessend wurde vom Katalysator abfiltriert, mit 100 ml Methanol gewaschen und das Lösungsmittel abdestilliert. Die öligen Rückstände wurden in 5 ml Methanol gelöst, mit 2 N Ethylacetat/HCl angesäuert und die Hydrochloride 182, 183 und 184 mit Ether ausgefällt.

N-α-(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanyl-(D,L)-pipecolinsäure - und - isonipecotinsäure -hydrochlorid (185, 186, Tabelle 16)

0,8 g der Carbonsäureethylester-hydrochloride 183 und 184 wurden in je 20 ml 0,36 N methanolischer Kalilauge gelöst und die Lösungen bis zur vollständigen Verseifung (dc Kontrolle) bei Raumtemperatur gerührt. Anschliessend wurde mit 2 N Ethylacetat/HCl angesäuert, 20 ml Ether zugefügt und ausgefallenes Kaliumchlorid abfiltriert. Die Verbindungen 185 und 186 wurden aus den Filtraten durch Zugabe von reichlich Ether ausgefällt.

- 77 - . Tabelle 16

			Stellun	g	Smp.
NR	AV	R	R	AB(%)	(°C)
182	14	-CH ₃	4	52	273-275
183	39	-cooc ₂ H ₅	2	59	ab 105
184	41	-cooc ₂ H ₅	4	86	204-208
185	183	-соон	2	76	ab 115
186	184	-COOH	4	76	155-162

- 78 -

Beispiel 17

Verbindungen mit Oxamidinstruktur (187-190, Tabelle 17)

1,0 g der Verbindungen 27, 72, 74 und 132 wurden in jeweils 20 ml Methanol gelöst bzw. suspendiert, die Ansätze mit der 1,3-molaren Menge Hydroxylammoniumacetat versetzt und 2 Stunden bei Raumtemperatur gerührt. Anschliessend wurde filtriert, das Lösungsmittel abdestilliert, die Rückstände in 3-4 ml abs. Ethanol gelöst und die Oxamidin-hydroiodide 187-190 mit Ether ausgefällt.

Tabelle 17

	~ \)	Smp.
AV	· R	AD(6)	
27	-и	59	ab 105
	соон		
7.2	-N	73	ab 122
74	-и	71	ab 126
132	HOOC	83	ab 112
	72 74	27 -N -CH ₃ COOH 72 -N -COOH 74 -N -COOH	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Auf diese Weise wurden dargestellt:

 $N-\alpha-(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanin-4-methylpiperidid-hydroiodid (187),$

 $N-\alpha-(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanyl-(D,L)-pipecolinsäure-hydroiodid (188),$

N-α-(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanylisonipecotinsäure-hydroiodid (189),

 $N-\alpha-(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanyl-1,2,3,4-tetrahydroisochinolin-3-carbonsäure-hydroiodid (190).$

Beispiel 18

N-α-(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanylpiperidid (202), -4-methylpiperid (203),
-(D,L)-pipecolinsäure (204), -isonipecotinsäure (205) und
-1,2,3,4-tetrahydroisochinolin -3-carbonsäure (206)

(3-Nitrobenzyl)-acetamino-malonsäure-diethylester (191)

11,0 g 3-Nitrobenzylbromid und 11,0 g Acetaminomalonsäurediethylester wurden in 80 ml abs. Dioxan gelöst. Zu dieser
Lösung wurde unter Rühren eine Lösung von 1,15 g Natrium in
20 ml abs. Ethanol gegeben. Das Gemisch wurde 4 Stunden auf
dem siedenden Wasserbad erhitzt, nach dem Erkalten 500 ml
Wasser zugesetzt, der gebildete Niederschlag abgesaugt, mit
Wasser gewaschen und aus Methanol/Wasser umkristallisiert.
Ausbeute: 80%, Smp. 153-154°C.

3-Nitro-(D,L)-phenylalanin-hydrochlorid (192)

14 g der Verbindung 191 wurden in einer Mischung aus 26 ml Eisessig und 26 ml 6 N HCl 4 Stunden unter Rückfluss erhitzt. Beim Erkalten kristallisierte der grösste Teil der Verbindung 192 aus. Die Kristalle wurden abfiltriert und getrocknet. Das Filtrat wurde im Vakuum eingeengt, wobei eine zusätzliche Menge der Verbindung 192 anfiel. Man löste die beiden erhaltenen Fraktionen in Methanol und fällte die Verbindung 192 mit Ether aus. Der gebildete Niederschlag wurde abgesaugt, mit Ether gewaschen und getrocknet. Ausbeute: 75%, Smp. 247-248°C.

$N-\alpha-(2-Naphthylsulfonyl)-3-nitro-(D,L)-phenylalanin (193)$

19,8 g der Verbindung 192 wurden in 252 ml 1 N KOH gelöst und mit einer Lösung von 20 g 2-Naphthylsulfonylchlorid in 240 ml Ether analog Beispiel 1 (3) umgesetzt und aufgearbeitet. Die Umkristallisation erfolgte aus Methanol/Wasser. Ausbeute: 71%, Smp. 173-174°C.

N-α-(2-Naphthylsulfonyl)-3-nitro-(D,L)-phenylalanylverbindungen (194-201)

$N-\alpha-(2-Naphthylsulfonyl)-3-nitro-(D,L)-phenylalanin-pipe-ridide (194, 195)$

7,5 mmol Piperidin bzw. 4-Methylpiperidin und 5 mmol NMM wurden in 10 ml abs. Dioxan gelöst, eine Lösung von 5 mmol des aus Verbindung 193 und Thionylchlorid erhaltenen Säurechlorids in 10 ml abs. Dioxan zugetropft und der Ansatz 2 Stunden bei Raumtemperatur gerührt, wobei die Verbindungen 194 und 195 ausfielen. Anschliessend wurde abgesaugt, mit 50%igem Methanol gewaschen und getrocknet.

N-α-(2-Naphthylsulfonyl)-3-nitro-(D,L)-phenylalanyl-carbonsäureester (196-198)

Je 5 mmol der Verbindung 193 und 6 mmol (D,L)-Pipecolinsäureethylester, Isonipecotinsäureethylester sowie 1,2,3,4 -Tetrahydroisochinolin-3 -carbonsäuremethylester wurden analog Verfahren A (Beispiel 3) umgesetzt und aufgearbeitet. Die Reinigung erfolgte säulenchromatographisch über Kieselgel 60 mit Chloroform als Eluierungsmittel.

N-α-(2-Naphthylsulfonyl)-3-nitro-(D,L)-phenylalanyl-carbonsäuren (199-201)

5 mmol der Verbindungen 196-198 wurden analog Beispiel 3 (50-60) verseift. Die isolierten Produkte wurden in der erhaltenen Form zur Reduktion eingesetzt.

Aminoverbindungen (202-206)

Je 3 mmol der Nitroverbindungen 194, 195, 199-201 wurden in der zum Lösen notwendigen Menge DMF gelöst, die Lösungen mit einer Suspension von 0,4 g Pd/C (10%) in 10 ml Ethanol und 0,5 ml Essigsäure versetzt und unter Normalbedingungen hydriert, bis die berechnete Wasserstoffmenge aufgenommen war. Anschliessend wurde der Katalysator abfiltriert, das Lösungsmittel abdestilliert und die erhaltenen Rohprodukte säulenchromatographisch über Kieselgel 60 mit Chloroform/Methanol 90:10 als Eluierungsmittel gereinigt.

Die zu stärkerer Verfärbung neigenden Aminoverbindungen 204 und 205 wurden in der unter Beispiel 3 (83-93) beschriebenen Weise in Hydrochloride übergeführt.

- 82 -Tabelle 18

NR	ΑV	R ¹	R ²	AB(%)	Smp. (°C)
194	193	NO ₂	-N	85	238-240
195	193	NO ₂	-N CH3	95	182-184
	•		COOC ₂ H ₅		
196	193	NO ₂	-N	60	172-176
197	193	NO ₂	$-N$ $-\cos c_2 H_5$	93	161-163
198	193	NO ₂	-N	67	121-127
-	·	H.	3cooc		

- 83 - .

<u>Tabelle 18 (Fortsetzung)</u>

NR	AV	R ¹	R ²	AB(%)	Smp.
•			СООН		
199	196	NO ₂	-N	82	amorph
200	197	NO ₂	-исоон	98	amorph
201	198	NO ₂	-N	92	amorph
			ноос		
202	194	NH ₂	-N	59	148-150
203	195	. ^{NH} 2	-NCH ₃	72	amorph
			СООН		
204	199	NH ₂ ·HCl	-N	65	ab 153
205	200	NH ₂ ·HCl	-исоон	82	112-115
206	201	NH ₂ ·	-N	72	ab 150
			HOOC		

Beispiel 19

Verbindungen mit Guanidinstruktur (207, 208)

$N-\alpha-(2-Naphthylsulfonyl)-3-quanidino-(D,L)-phenylalanin-piperidid-hydrochlorid (207)$

Eine Lösung von 1,09 g der Verbindung 202, 0,83 ml NMM und 0,51 g 1-Amidino-3,5-dimethyl-pyrazol-nitrat in 20 ml THF wurde 30 Stunden unter Rückfluss erhitzt. Nach Abdestillieren des Lösungsmittels wurde das erhaltene Rohprodukt säulenchromatographisch über Kieselgel 60 mit Chloroform/Methanol 95:5 als Eluierungsmittel gereinigt. Ausbeute: 28%, Smp. ab 122°C.

Zur Überführung in das Hydrochlorid wurde in der im Beispiel 3 (83-93) angegebenen Weise verfahren. Ausbeute: 83%, Smp. ab 110°C.

N-α-(2-Naphthylsulfonyl)-3-quanidino-(D,L)-phenylalanin-(D,L)-pipecolinsäure-hydrochlorid (208)

0,69 g der freien Aminoverbindung 204 wurden in 12 ml THF gelöst, die Lösung mit 0,47 ml NMM und 0,44 g 1-Amidino-3,5-dimethyl-pyrazol-nitrat versetzt und der Ansatz 50 Stunden unter Rückfluss erhitzt. Nach Abdestillieren des Lösungsmittels wurde das erhaltene Rohprodukt säulenchromatographisch über Kieselgel 60 mit Chloroform/Methanol 75:25 gereinigt. Die isolierte Guanidinverbindung wurde analog Beispiel 3 (83-93) in das Hydrochlorid 208 übergeführt. Ausbeute: 40%, Smp. ab 100°C.

ZUSAMMENSTELLUNG VON

ELEMENTARANALYSEN- und DC-DATEN								
NR	FORMEL	M.G.		С	H	N	S	DC R (LS)
1	C ₁₇ H ₂₀ N ₂ O ₅	332.361	Ber. Gef.	61.44 61.72	6.07 6.11	8.43 8.34	<u>-</u> .	0.40(4)
2	C ₁₀ H ₁₀ N ₂ O ₂	190.204	Ber. Gef.	63.15 63.34	5.30 5.47	14.73 14.52	-	0.31(1)
3	$^{\text{C}}_{20}^{\text{H}}_{16}^{\text{N}}_{2}^{\text{O}}_{4}^{\text{S}}$	380.426	Ber. Gef.	63.15 63.40	4.24 4.48	7.36 7.66	8.43 8.30	0.32(3)
6	C ₂₀ H ₁₉ N ₃ O ₄ S·HCl	433.918	Ber. Gef.	55.36 54.89	4.65 5.09	9.68 9.32	7.39 7.42	0.36(1)
7	C ₂₁ H ₂₁ N ₃ O ₄ S·HCl	447.945	Ber. Gef.	56.31 55.98	4.95 5.10	9.38 9.22	7.16 7.65	0.53(3)
8	C ₂₃ H ₂₅ N ₃ O ₄ S·HCl	475.999	Ber. Gef.	58.04 57.63	5.51 5.61	8.83 8.84	6.74 6.72	0.55(1)
9	C ₂₄ H ₂₇ N ₃ O ₄ S·HCl	490.026	Ber. Gef.	58.83 58.89	5.76 5.92	8.58 8.58	6.54 6.70	0.55(1)
10	C ₂₇ H ₂₅ N ₃ O ₄ S·HCl ·0.5H ₂ O	533.051	Ber. Gef.	60.83 60.54	5.11 5.60	7.88 8.17	6.02 6.22	0.63(1)
11	C ₂₈ H ₂₇ N ₃ O ₄ S·HCl · 0.5H ₂ O	547.078	Ber. Gef.	61.47 61.66	5.34 5.16	7.68 7.81	5.86 5.71	0.64(1)
12	C ₂₆ H ₂₇ N ₃ O ₃ S	461.587	Ber. Gef.	67.65 67.58	5.90 5.75	9.10 9.22	6.95 6.72	0.76(3)
13	C ₂₆ H ₂₇ N ₃ O ₃ S	461.587	Ber. Gef.	67.65 67.82	5.90 5.91	9.10 9.08	6.95 6.85	0.76(3)
14	C ₂₆ H ₂₇ N ₃ O ₃ S	461.587	Ber. Gef.	67.65 67.73	5.90 5.91	9.10 9.13	6.95 7.03	0.76(3)
15	C ₂₅ H ₂₆ N ₄ O ₃ S	462.575	Ber. Gef.	64.91 65.08		12.11 12.11	6.93 6.98	0.21(2)
16	C30H28N4O3S	524.646	Ber. Gef.	68.68 68.38		10.68 10.70	6.11	0.58(2)
17	C ₂₇ H ₂₈ N ₄ O ₅ S	520.613	Ber. Gef.	62.29 62.78		10.76 10.38	6.16	0.69(3)
18	C29H32N4O5S	548.667	Ber. Gef.	63.48 63.71		10.21 10.33	5.84 5.82	0.88(3)

				C	н'	N	S	DC R_(LS)
NR	FORMEL	M.G.						
32	C ₂₆ H ₃₀ N ₄ O ₃ S·HI	606.531	Ber. Gef.	51.49 51.63	5.15 5.23	9.24 9.16	5.29 5.16	0.54(1)
33	C ₂₆ H ₃₀ N ₄ O ₃ S·HI	606.531	Ber. Gef.	51.49 51.32	5.15 5.31	9.24 9.32	5.29 5.32	0.54(1)
34	C ₂₆ H ₃₀ N ₄ O ₃ S·HI	606.531	Ber. Gef.	51.49 51.40	5.15 5.05	9.24 9.30	5.29 5.40	0.46(1)
35	C ₂₅ H ₂₉ N ₅ O ₃ S·2HCl	552.528	Ber. Gef.	54.35 54.73	5.66 5.52		5.80 5.93	0.08(1)
36	C30H31N5O3S-HCl	578.138	Ber. Gef.	62.33 62.21	5.58 5.61		5.55 5.70	0.44(1)
37	C ₂₇ H ₃₁ N ₅ O ₅ S·HI	665.557	Ber. Gef.	48.73 48.18	4.85 4.99		4.82 4.93	0.36(1)
38	C ₂₉ H ₃₅ N ₅ O ₅ S·HI	693.611	Ber. Gef.	50.22 49.97		10.10 10.08	4.62 4.92	0.45(1)
39	C ₂₈ H ₂₉ N ₃ O ₅ S	519.625	Ber. Gef.	64.72 64.70	5.63 5.66	8.09 8.11	6.17 6.16	0.88(3)
40	C ₂₈ H ₂₉ N ₃ O ₅ S	519.625	Ber. Gef.	64.72 64.30	5.63 5.66	8.09 8.37	6.17 6.32	0.86(3)
41	C ₂₈ H ₂₉ N ₃ O ₅ S	519.625	Ber. Gef.	64.72 64.70	5.63 5.66	8.09 8.08	6.17 6.30	0.86(3)
42	C ₂₈ H ₂₉ N ₃ O ₅ S	519.625	Ber. Gef.	64.72 64.37	5.63 5.32	8.09 7.82	6.17 6.30	0.83(3)
43	C ₂₉ H ₃₁ N ₃ O ₅ S	533.652	Ber. Gef.	65.27 65.20	5.86 5.92	7.87 8.01	6.01 6.32	0.39(4)
44	C31H35N3O5S	561.706	Ber. Gef.	66.29 66.70	6.28 6.53	7.48 7.59	5.71 5.81	0.82(3)
45	C ₂₈ H ₂₉ N ₃ O ₅ S	519.625	Ber. Gef.		5.63 5.48		6.17 6.32	0.89(3)
46	с ₂₈ н ₂₉ n ₃ о ₅ s	519.625	Ber. Gef.					0.84(3)
47	C ₂₉ H ₃₁ N ₃ O ₅ S	533.652	Ber. Gef.				6.01 6.19	0.79(3)
48	3 C29H31N3O5S	533.652	Ber. Gef.			7.87 8.00		

				•				
NR	FORMEL	M.G.		С	H	N	S	DC R (LS)
49	C ₂₉ H ₂₉ N ₃ O ₇ S	563.636	Ber. Gef.	61.80 62.39	5.19 5.14	7.46 7.77	5.69 5.75	0.78(3)
50	C ₂₆ H ₂₅ N ₃ O ₅ S	491.571	Ber. Gef.	63.53 63.22	5.13 5.15	8.55 8.39	6.52 6.56	0.58 0.54(3)
51	C ₂₆ H ₂₅ N ₃ O ₅ S	491.571	Ber. Gef.	63.53 63.26	5.13 5.20	8.55 8.34	6.52 6.55	0.58(3)
52	^C 26 ^H 25 ^N 3 ^O 5 ^S	491.571	Ber. Gef.	63.53 62.98	5.13 5.27	8.55 8.56	6.52 6.28	0.58(3)
53	C ₂₇ H ₂₇ N ₃ O ₅ S _{2H₂O}	541.630	Ber. Gef.	59.87 59.93	5.77 5.75	7.76 7.88	5.92 5.98	0.52 0.48 ⁽³⁾
54	C ₂₈ H ₂₉ N ₃ O ₅ S	519.625	Ber. Gef.	64.72 64.58	5.63 5.39	8.09 8.36	6.17 6.23	0.54 (3)
55	C ₃₀ H ₃₃ N ₃ O ₅ S	547.679	Ber. Gef.	65.79 65.69	6.07 6.13	7.67 7.52	5.85 5.53	0.52 0.48 ⁽³⁾
56	C ₂₇ H ₂₇ N ₃ O ₅ S	505.598	Ber. Gef.	64.14 64.32	5.38 5.52	8.31 8.33	6.34 6.68	0.68 0.65 ⁽³⁾
57	^C 27 ^H 27 ^N 3 ^O 5 ^S	505.598	Ber. Gef.	64.14 63.52	5.38 5.72	8.31 7.98	6.34 6.18	0.58(3)
58	C ₂₈ H ₂₉ N ₃ O ₅ S	519.625	Ber. Gef.	64.72 64.97	5.63 5.77	8.09 8.23	6.17 6.60	0.50(3)
59	C ₂₇ H ₂₇ N ₃ O ₅ S	505.598	Ber. Gef.	64.14 63.91	5.38 5.30	8.31 8.21	6.34 6.61	0.60(3)
60	C ₂₇ H ₂₅ N ₃ O ₇ S H ₂ O	553.598	Ber. Gef.	58.58 58.81	4.92 4.62	7.59 8.03	5.79 6.12	0.23(3)
83	C ₂₆ H ₂₈ N ₄ O ₅ S·HCl	563.079	Ber. Gef.	55.46 55.96	5.55 5.90	9.95 9.71	5.69 5.36	0.42
84	C26 ^H 28 ^N 4 ^O 5 ^{S·HC1}	545.063	Ber. Gef.	57.29 56.89		10.28	5.88 6.17	0.38(1)
85	C ₂₆ H ₂₈ N ₄ O ₅ S·HC1	545.063	Ber. Gef.	57.29 56.85		10.28 10.02	5.88 6.38	0.35(1)
86	C ₂₇ H ₃₀ N ₄ O ₅ S·HCl	559.090	Ber. Gef.	58.00 58.72	5.59 5.86	10.02	5.74 5.82	0.41 0.35 ⁽¹⁾
87	C28H32N4O5S-HC1	573.117	Ber. Gef.	58.68 58.77	5.80 6.01		5.59 5.88	0.44(1)
88	C30H36N4O5S·HC1	601,171	Ber. Gef.	59.94 59.61		9.32 9.28	5.33 5.68	0.50 0.45 ⁽¹⁾

NR	FORMEL	M.G.		Ç	<u>H</u>	N	_S	DC R (LS)
89	^С 27 ^Н 30 ^N 4 ^О 5 ^{S·HC1} ·H ₂ O	577.106	Ber. Gef.	56.19 56.22	5.76 5.66	9.71 9.80	5.56 5.81	0.57 0.53 ⁽¹⁾
90	C ₂₇ H ₃₀ N ₄ O ₅ S·HCl ·H ₂ O	577.106	Ber. Gef.	56.19 56.18	5.76 5.67	9.71 9.62	5.56 5.52	0.41(1)
91	C28H32N4O5S·HC1	573.117	Ber. Gef.	58.68 58.49	5.80 5.78	9.78 9.57	5.59 6.03	0.49(1)
92	^С 27 ^Н 30 ^N 4 ^О 5 ^{S・HC1} •H ₂ O	577.106	Ber. Gef.	56.19 55.96	5.76 5.50	9.71 9.52	5.56 5.36	0.48(1)
93	C ₂₇ H ₂₈ N ₄ O ₇ S·HC1 ·0.5H ₂ O	598.082	Ber. Gef.	54.22 54.00	5.06 4.96	9.37 9.44	5.36 5.77	0.34(1)
94	C ₂₇ H ₃₀ N ₄ O ₅ S·H ₂ O	577.106	Ber. Gef.	56.19 55.96	5.76 5.90	9.71 9.71	5.56 5.36	0.47(1)
95	C ₂₇ H ₃₀ N ₄ O ₅ S·HCl	559.090	Ber. Gef.	58.00 57.58	5.59 5.63	10.02 9.87	5.74 5.97	0.43(1)
96	C ₂₇ H ₃₀ N ₄ O ₅ S·HCl	5 59.090	Ber. Gef.	58.00 57.54	5.59 5.58	10.02 9.79	5.74 5.48	0.40(1)
97	C ₂₈ H ₃₂ N ₄ O ₅ S•HCl	573.117	Ber. Gef.	58.68 58.72	5.80 5.86	9.78 9.54	5.59 5.58	0.55(1)
98	C ₂₉ H ₃₄ N ₄ O ₅ S·HCl	587.144	Ber. Gef.	59.32 59.23	6.01 6.23	9.54 9.61	5.46 5.56	0.53(1)
99	C ₂₈ H ₃₂ N ₄ O ₅ S·HC1 ·H ₂ O	591.133	Ber. Gef.	56.89 56.72	5.97 5.53	9.48 9.58	5.42 5.70	0.59(1)
100	C ₂₈ H ₃₂ N ₄ O ₅ S·HCl ·H ₂ O	591.133	Ber. Gef.	56.89 56.60	5.97 5.82	9.48 9.14	5.42 5.19	0.48(1)
10	1 C ₂₈ H ₃₂ N ₄ O ₅ S·HC1 ·H ₂ O	591.133	Ber. Gef.	56.89 56.87	5.97 5.83	9.48 9.45	5.42 5.30	0.55(1)
10	2 C32H36N4O6S	604.732	Ber. Gef.	63.56 63.66			5.30 5.54	0.60(3)
10	3 C ₃₃ H ₃₈ N ₄ O ₆ S	618.759	Ber. Gef.	64.06 64.13		9.05 9.16	5.18 5.45	0.34(3)
10	4 C ₃₀ H ₃₂ N ₄ O ₆ S	576.678	Ber. Gef.	62.48 62.13		9.72 9.63		0.28(3)
.10	5 C32H36N4O6S·H2O	622.748	Ber. Gef.			9.00 8.83		0.15(3)
11	o C30H35N5O6S-HI	721.622	Ber. Gef.					

NR	PORMEL	M.G.		С	Н .	N	S	DC R _f (LS)
111	с ₃₂ н ₃₉ м ₅ 0 ₆ s·ні	749.676	Ber. Gef.	51.27 51.59	5.38 5.35	9.34 9.64	4.28 4.30	0.30(1)
112	C32H36N4O6S	604.732	Ber. Gef.	63.56 63.25	6.00 6.58	9.26 9.74	5.30 4.92	0.79(3)
115	C ₃₂ H ₃₉ N ₅ O ₆ S•HI •1.5H ₂ O	776.700	Ber. Gef.	49.49 49.08	5.58 5.36	9.02 9.17	4.13 4.36	0.51(1)
116	C ₂₈ H ₃₁ N ₅ O ₆ S·HCl ·0.5H ₂	0611.124	Ber. Gef.	55.03 55.04		11.46 10.89	5.25 5.11	0.29(1)
117	^С 29 ^Н 33 ^N 5 ^O 6 ^{S·HC1} ·н ₂ O	634.159	Ber. Gef.	54.93 54.77		11.04 10.88	5.06 5.15	0.33(1)
118	C ₂₉ H ₃₁ N ₃ O ₅ S	533.652	Ber. Gef.	65.27 65.29	5.86 5.81	7.87 7.89	6.01	0.68(2)
119	C ₂₉ H ₃₁ N ₃ O ₅ S	533.652	Ber. Gef.	65.27 65.39	5.86 6.17	7.87 8.21	6.01 5.83	0.58(2)
123	C ₂₅ H ₂₆ N ₄ O ₅ S (Betain)	512.591	Ber. Gef.	58.58 58.42		10.93 10.50	6.26 5.98	0.30(1)
124	C ₂₆ H ₂₈ N ₄ O ₅ S·HCl ·H ₂ O	563.080	Ber. Gef.	55.46 55.62	5.55 5.75	9.95 9.74	5.69 5.83	0.38(1)
125	C ₁₀ ^H 10 ^N 2 ^O 2·HCl	226.665	Ber. Gef.	52.99 53.03		12.36 12.13	<u>-</u>	0.31(1)
126	^С 20 ^Н 16 ^N 2 ^O 4 ^S 0.5 н ₂ 0	389.434	Ber. Gef.	61.68 61.39	4.40 4.31	7.19 6.94	8.23 8.57	0.33(3)
127	C ₂₉ H ₃₁ N ₃ O ₅ S	533.652	Ber. Gef.	65.27 65.49	5.86 6.03	7.87 8.15	6.01 5.92	0.58(2)
128	C ₃₁ H ₂₇ N ₃ O ₅ S	553.642	Ber. Gef.	67.25 67.25	4.92 5.33	7.59 7.39	5.79 5.49	0.88(3)
129	C ₃₀ H ₂₅ N ₃ O ₅ S	539.615		66.78 66.78				0.61(3)
134	C ₃₀ H ₂₈ N ₄ O ₅ S·HI	684.559	Ber. Gef.	52.64 52.94		8.18 8.62	4.68 4.82	0.42 0.39 ⁽¹⁾
135	C ₃₁ H ₃₀ N ₄ O ₅ S·HI	698.586	Ber. Gef.	53.30 53.53	4.47 4.77	8.02 7.70	4.59 5.04	0.54(1)
136	C ₂₇ H ₂₉ N ₃ O ₅ S	507.614	Ber. Gef.	63.89 64.07			6.32 6.65	0.84(3)
139	^С 27 ^Н 32 ^N 4 ^О 5 ^{S・НІ}	652.558	Ber. Gef.	49.70 49.28	5.10 5.16			0.55(1)

				•				
NR	FORMEL	M.G.		С	H	N	S	DC R _f (LS)
140	^С 23 ^Н 24 ^N 4 ^O 5 ^{S・HC1} •н ₂ O	523.014	Ber. Gef.	52.82 53.44	5.20 4.92		6.13 6.01	0.31(1)
141	^С 24 ^Н 26 ^N 4 ^О 55 Н ₂ О	528.033	Ber. Gef.	54.59 54.96	5.35 5.41	10.61 10.20	6.07 5.96	0.44(1)
142	C ₃₁ H ₃₃ N ₃ O ₅ S	559.690	Ber. Gef.	66.53 66.09	5.94 5.74	7.51	5.73 5.93	0.83(3)
143	C ₃₀ H ₃₁ N ₃ O ₅ S	545.663	Ber. Gef.	66.04 66.42	5.73 5.28	7.70 8.12	5.88 5.76	0.65 0.62 ⁽³⁾
146	C ₃₀ H ₃₄ N ₄ O ₅ S·HI	690.607	Ber. Gef.	52.18 52.43	5.11 5.25	8.11 8.21	4.64 5.06	0.45(1)
147	C ₃₁ H ₃₃ N ₃ O ₅ S	559.690	Ber. Gef.	66.53 66.74	5.94 6.05	7.51 7.44	5.73 5.51	0.84(3)
148	C ₃₀ H ₃₁ N ₃ O ₅ S	545.663	Ber. Gef.	66.04 65.83	5.73 5.43	7.70 7.49	5.88 5.54	0.56 0.49 ⁽³⁾
151	C30 ^H 32 ^N 4 ^O 5 ^{S-HCl}	599.155	Ber. Gef.	60.14 60.43	5.89 5.53	9.35 9.63	5.35 5.70	0.48 0.40 ⁽¹⁾
152	C ₂₂ H ₁₉ N ₃ O ₅ S	437.479	Ber. Gef.	60.40 60.12	4.38 4.18	9.61 9.23	7.33 7.37	0.17(3)
153	C ₂₈ H ₃₀ N ₄ O ₄ S	518.640	Ber. Gef.	64.84 64.72		10.80 11.17	6.18 6.22	0.79(3)
156	C ₂₈ H ₃₃ N ₅ O ₄ S·HI	663.584	Ber. Gef.	50.68 51.12		10.55	4.83 4.71	0.46(1)
157	C ₃₀ H ₃₂ N ₄ O ₆ S	576.678	Ber. Gef.	62.48 62.49	5.59 5.61	9.72 9.64	5.56 5.62	0.83(3)
158	3 C30H32N4O6S	576.678	Ber. Gef.	62.48 62.94	5.59 5.16	9.72 9.52	5.56 5.71	0.76(3)
159	C ₂₈ H ₂₈ N ₄ O ₆ S	548.624		61.30 61.78				0.57 0.40 ⁽³⁾
160	0 C28H28N4O6S	548.624		61.30 61.52				
. 16!	5 C28H31N5O6S·HI	693.568		48.49 48.12		10.10		
16	6 C28H31N5O6S·HI	693.568		48.49 48.93		5 10.10 2 9.73		
16	7 C19H15N3O4S	381.414		59.83 59.68				

NR	FORMEL	M.G.		C	H .	N	S_	DC R _f (LS)
1 68	C ₂₅ H ₂₆ N ₄ O ₃ S	462.575	Ber. Gef.	64.91 64.59		12.11 12.30	6.93 6.73	0.90(3)
171	C ₂₅ H ₂₉ N ₅ O ₃ S·HI	607.519	Ber. Gef.	49.43 49.66	-	11.53 11.43	5.28 5.61	0.32(1)
172	C ₂₇ H ₂₈ N ₄ O ₅ S	520.613	Ber., Gef.	62.29 61.85		10.76 10.90	6.16 6.40	0.77(3)
-173	C ₂₇ H ₂₈ N ₄ O ₅ S	520.613	Ber. Gef.	62.29 61.58	_	10.76 10.68	6.16 6.38	0.83(3)
174	C ₂₅ H ₂₄ N ₄ O ₅ S	492.559	Ber. Gef.	60.96 61.58		11.37 11.17	6.51 6.66	0.51 0.47 ⁽³⁾
175	C ₂₅ H ₂₄ N ₄ O ₅ S	492.559	Ber. Gef.	60.96 60.47		11.37 11.30	6.51 6.21	0.57(3)
180	с ₂₅ н ₂₇ м ₅ 0 ₅ s·ні	637.503	Ber. Gef.	47.10 47.58		10.99 11.31	5.03 5.38	0.40 0.34 ⁽¹⁾
181	C ₂₅ H ₂₇ N ₅ O ₅ S·HI	637.503	Ber. Gef.	47.10 47.53		10.99 11.72	5.03 5.43	0.20(1)
182	C ₂₆ H ₃₁ N ₃ O ₃ S·HCl	502.080	Ber. Gef.	62.20 62.64	6.42 6.01	8.37 8.78	6.39 6.07	0.43(1)
183	C ₂₈ H ₃₃ N ₃ O ₅ S·HCl	560.118	Ber. Gef.	60.04 59.94	6.12 6.43	7.50 7.12	5.72 5.97	0.56(1)
184	C ₂₈ H ₃₃ N ₃ O ₅ S·HCl	560.118	Ber. Gef.	60.04 59.80	6.12 6.25	7.50 7.87	5.72 5.38	0.41(1)
185	C ₂₆ H ₂₉ N ₃ O ₅ S·HC1	532.064	Ber. Gef	58.69 58.22	5.68 5.99	7.90 7.61	6.03 6.34	0.50(1)
186	C ₂₆ H ₂₉ N ₃ O ₅ S·HCl	532.064	Ber. Gef.	58.69 59.12	5.68 5.43	7.90 7.64	6.03 6.17	0.32(1)
187	C ₂₆ H ₃₀ N ₄ O ₄ S·HI	622.531	Ber. Gef.	50.16 50.65	5.02 5.19	9.00 9.08	5.15 5.37	0.92(1)
188	C ₂₆ H ₂₈ N ₄ O ₆ S·HI	652.515	Ber. Gef.	47.86 48.16	4.48 4.83	8.59 8.51	4.91 4.95	0.61(1)
189	C ₂₆ H ₂₈ N ₄ O ₆ S·HI	652.515	Ber. Gef.	47.86 48.24	4.48 4.67	8.59 9.01	4.91 5.23	0.72(1)
190	C ₃₀ H ₂₈ N ₄ O ₆ S·HI	700.559	Ber. Gef.	51.43 50.99	4.17 4.65	8.00 8.21	4.58 4.93	0.71(1)
191	C ₁₆ H ₂₀ N ₂ O ₇	352.350	Ber. Gef.	54.54 54.31	5.72 5.52	7.95 7.92	 -	0.52(4)

NR_	FORMEL	M.G.	·	C	н.	N	S	DC R _F (LS)
192	C9 ^H 10 ^N 2 ^O 4·HCl	246.654	Ber. Gef.	43.83 43.91	4.50 4.52	11.36 11.28	- -	0.25(1)
193	C ₁₉ H ₁₆ N ₂ O ₆ S	400.415	Ber. Gef.	56.99 57.17	4.03 4.28	7.00 6.97	8.00 8.32	0.28(3)
194	$^{\mathrm{C}}_{24}^{\mathrm{H}}_{25}^{\mathrm{N}}_{3}^{\mathrm{O}}_{5}^{\mathrm{S}}$	467.549	Ber. Gef.	61.65 61.54	5.39 5.49	8.99 8.90	6.86 6.91	0.67(3)
195	$^{\text{C}}_{25}^{\text{H}}_{27}^{\text{N}}_{3}^{\text{O}}_{5}^{\text{S}}$	481.576	Ber. Gef.	62.35 62.77	5.65 6.04	8.73 9.01	6.66 6.35	0.73(3)
196	C ₂₇ H ₂₉ N ₃ O ₇ S	539.614	Ber. Gef.	60.10 60.03	5.42 5.22	7.79 7.84	5.94 5.90	0.83(3)
197	C ₂₇ H ₂₉ N ₃ O ₇ S	539.614	Ber. Gef.	60.10 60.07	5.42 5.43	7.79 7.97	5.94 6.20	0.85(3)
198	C ₃₀ H ₂₇ N ₃ O ₇ S	573.631	Ber. Gef.	62.82 62.65	4.74 4.36	7.33 7.46	5.59 5.23	0.85(3)
199	^C 25 ^H 25 ^N 3 ^O 7 ^S	511.560	Ber. Gef.	58.70 59.05	4.93 4.63	8.21 8.02	6.27 6.10	0.59 0.57 ⁽³⁾
200	C ₂₅ H ₂₅ N ₃ O ₇ S	511.560	Ber. Gef.	58.70 58.80	4.93 4.94	8.21 8.31	6.27 6.51	0:61(3)
201	C ₂₉ H ₂₅ N ₃ O ₇ S ·H ₂ O	577.620.	Ber. Gef.	60.30 60.45	4.71 4.46	7.28 7.65	5.55 6.03	0.59 0.56 ⁽³⁾
202	2 C24 ^H 27 ^N 3 ^O 3 ^S	437.565	Ber. Gef.	65.88 65.44	6.22 5.98	9.60 9.82	7.33 7.71	0.28(2)
203	3 C ₂₅ H ₂₉ N ₃ O ₃ S	451.592	Ber. Gef.	66.49 66.52	6.47 6.38	9.31 9.52	7.10 7.38	0.54(3)
204	C ₂₅ H ₂₇ N ₃ O ₅ S·HCl 1.5 H ₂ O	545.061	Ber. Gef.	55.09 55.34	5.73 5.91	7.71 8.31	5.88 5.88	0.34 0.30 ⁽³⁾
205	5 C ₂₅ H ₂₇ N ₃ O ₅ S·HCl	527.045	Ber. Gef.		5.55 5.88	7.97 7.62		0.30(3)
206	5 C ₂₉ H ₂₇ N ₃ O ₅ S 2.5H ₂ O	574.660	Ber. Gef.	60.61 60.32	5.61 5.23	7:31 7.45	5.58 5.05	0.25(3)
207	7 C ₂₅ H ₂₉ N ₅ O ₃ S·HCl	516.067	Ber. Gef.	58.19 58.02		13.57 13.79	6.21 6.02	0.46(1)
208	3 C ₂₆ H ₂₉ N ₅ O ₅ S·HCl	596.110	Ber. Gef.	52.39 52.41		11.75 11.69		0.43(1)

Im folgenden sind die biologischen Eigenschaften von repräsentativen erfindungsgemässen Verbindungen aufgeführt:

In Tabelle 19 - 25 ist die Hemmung der Gerinnungsenzyme Thrombin und Faktor X_a anhand der Dissoziationskonstante K_i (ausgedrückt in μ mol/l) durch die genannten Verbindungen angegeben. Alle untersuchten Verbindungen hemmen die durch beide Enzyme bewirkte Substratspaltung kompetitiv. Unter den in Tabelle 19 aufgeführten Derivaten des 3-Amidinophenylalanins finden sich eine Reihe von Verbindungen mit hoher Antithrombinaktivität, d. h. mit K_i -Werten unter 1 μ mol/l. Die Thrombinhemmung ist vergleichsweise stärker als die Hemmung von Faktor X_a . Die K_i -Werte für die Hemmung von Faktor X_a liegen gewöhnlich 2 Grössenordnungen höher als die für die Thrombinhemmung.

Die Verbindungen, die sich vom 3-Guanidinophenylalanin (Tabelle 20), 3-Oxamidinophenylalanin (Tabelle 21), 3-Aminophenylalanin (Tabelle 22) und 3-Aminomethylphenylalanin (Tabelle 23) ableiten, bewirken geringere AntithrombinAktivität, einige von ihnen haben aber brauchbare K_i-Werte für die Thrombin-Hemmung im micromolaren Bereich.

Auch bei Austausch der 2-Naphthylsulfonyl-Schutzgruppe durch einen Chinolylsulfonyl-Rest (Tabelle 24) bzw. einen 2-Naphthylsulfonyl-Glycyl-Rest (Tabelle 25) werden Verbindungen mit einer Antithrombin-Aktivität im mikromolaren Bereich gefunden.

- 94 -

Tabelle 19

Hemmung von Thrombin und Faktor X_a durch Derivate des $N-\alpha-(2-Naphthylsulfonyl)-3-amidinophenylalanins <math>R^1$ = Amidino, n = 0, R^4 = 2-Naphthyl

		K _i in	µmol/l
Verbindung	R ²	Thrombin	Faktor X _a
NAPAP	*	0,006	7,9
TAPAM		66	. 0,84
7	OMe	0,28	2,5
123	Pro-OH	0,68	220
124	Pro-OMe	0,27	104
. 83	Pip-OH	0,26	38
94	Pip-OMe	0,07	46
116	Pip-Gly-OH	1,3	110
117	Pip-Gly-OMe	0,88	38
84	Nip-OH	1,1	44
95	Nip-OMe	0,15	18
85	iNip-OH	0,57	43
96	iNip-OMe	0,017	43
32	Ppd(2-Me)	0,13	74
33	Ppd(3-Me)	0,13	32
34	Ppd(4-Me)	0,0086	41
86	Pip(4-Me)-OH	0,12	96
97	Pip(4-Me)-OMe	0,096	58
35	Pzd(4-Me)	0,036	. 30
134	THICH-3-COOH	0,018	42
151	DHICH-3-COOH	0,12	54

Pro-OH = Prolin, Pip-OH = Pipecolinsäure, Nip-OH = Nipecotinsäure, iNip-OH = Isonipecotinsäure, Ppd = Piperidid, Pzd = Piperazid, Gly = Glycin, OMe = Methylester, THICH-3-COOH = Tetrahydroisochinolin-3-carbonsäure, DHICH-3-COOH = Decahydroisochinolin-3-carbonsäure **-** 95 -

Tabelle 20

Hemmung von Thrombin und Faktor X_a durch Derivate des $N-\alpha-(2-Naphthylsulfonyl)-3-guanidinophenylalanins <math>R^1$ = Guanidino, n=0, R^4 = 2-Naphthyl

		K _i in)	umol/l
Verbindung	R ²	Thrombin	Faktor X _a
208	Pip-OH	29	82
207	Ppd	0,40	107

Tabelle 21

Hemmung von Thrombin und Faktor X_a durch Derivate des $N-\alpha-(2-Naphthylsulfonyl)-3-oxamidinophenylalanins <math>R^1$ = Oxamidino, n=0, R^4 = 2-Naphthyl

		K _i in μmol/l			
Verbindung	R ²	Thrombin	Faktor X _a		
. 188	Pip-OH	330	410		
189	iNip-OH	270	670		
187	Ppd(4-Me)	2,8	>1000		
190	THICH-3-COOH	2,4	130		

- 96 -

Tabelle 22

Hemmung von Thrombin und Faktor X_a durch Derivate des $N-\alpha-(2-Naphthylsulfonyl)-3-aminophenylalanins <math>R^1=Amino,\ n=0,\ R^4=2-Naphthyl$

		K _i in p	umol/l
Verbindung	R ²	Thrombin	Faktor X _a
204	Pip-OH	130	450
205	iNip-OH	720	720
203	Ppd(4-Me)	8,9	210

Tabelle 23

Hemmung von Thrombin und Faktor X_a durch Derivate des $N-\alpha-(2-Naphthylsulfonyl)-3-aminomethylphenylalanins <math>R^1$ = Aminomethyl, n = 0, R^4 = 2-Naphthyl

		K _i in	µmol/l
Verbindung	R ²	Thrombin	Faktor X _a
185	Pip-OH	50	140
186	iNip-OH	0,5	230
182	Ppd(4-Me)	1,9	500

- 97 -

Tabelle 24

Hemmung von Thrombin und Faktor X_a durch Derivate des $N-\alpha-(8-Chinolylsulfonyl)-3-amidinophenylalanins <math>R^1$ = Amidino, n = 0, R^4 = 8-Chinolyl

		K, in)	umol/l
Verbindung	R ²	Thrombin	Faktor X _a
180	Pip-OH	16	380
181	iNip-OH	127	260
171	Ppd(4-Me)	0,34	180

Tabelle 25

Hemmung von Thrombin und Faktor X_a durch Derivate des $N-\alpha-(2-Naphthylsulfonyl)-glycyl-3-amidinophenylalanins <math>R^1$ = Amidino, n = 1, R^3 = H, R^4 = 2-Naphthyl

	4.	K _i in)	umol/l
Verbindung	R ²	Thrombin	Faktor X _a
165	Pip-OH	61	48
166	iNip-OH	46	97
156	Ppd(4-Me)	3,6	25

In Tabelle 26 sind für einige repräsentative, erfindungsgemässe Verbindungen auch ihre Hemmwirkung gegenüber Trypsin, Plasmin, Faktor XIIa, Plasmakallikrein, tPA und glandulärem Kallikrein dargestellt. Gewöhnlich wird Trypsin schwächer gehemmt, die K_i -Werte sind eine Grössenordnung höher. Wesentlich schwächer wirksam sind die Verbindungen gegenüber Plasmin, Plasmakallikrein und Faktor X_a (K_i 2 Grössenordnungen grösser). Praktisch unwirksam sind die Derivate gegenüber Faktor XIIa, tPA und glandulärem Kallikrein. Für die Mehrzahl der Verbindungen kann man daher von selektiven Thrombinhemmstoffen sprechen.

Zum Vergleich dazu werden die entsprechenden Werte für die zum Stand der Technik gehörenden NAPAP und TAPAM dagegengehalten.

Tabelle 26

Hemmung von Thrombin, Trypsin, Plasmin, Faktor Xa, Faktor XIIa, tPA, glandulärem und Plasmakallikrein durch ausgewählte, erfindungsgemässe Derivate (κ_1 in $\mu mol/l)$

Ver- bindung	.—	77	4 H	-	Thrombin	Trvosin	Dlasmin	Faktor	Faktor	Ag +	gland. Kalli	nd. Plasma Kallikrein
,		,					-					
NAPAP					900'0	69'0	30	7,9	200	70	. 93	5,6
TAPAM	•				99	16	160	0,84	180	27	890	15
	Am	ОМе	R R	0	0,28	2,5	5,2	. 2,5	190	120	210	18
123	Am	Pro-OH	Na	0	0,68	96'0	95	220	1000	300	1000	59
124	Am	Pro-OMe	Na	Ö	0,27	3,4	11	104	009	225	1000	29
83	Am	Pip-OH	Na	0	0,26	0,63	34	38	1000	205	≈ 1000	32 +
94	Am	Pip-OMe	N S	0	0,07	1,9	10,5	46	200	220	1000	35 6
34	Am	Ppd(4-Me)	Na	0	0,0086	0,14	4,0	41	1000	460	1000	16
98	Am	Pip(4-Me)-0H	H Na	0	0, 12	1,2	42	96	1000	470	1000	. 84
. 35	Am	Pzd(4-Me)	Na Na	0	0,036	1,3	31	30	1000	430	1000	85
134	Am	тнісн-3-соон	H Na	0	0,018	0,13	0,67	42.	1000	1000	390	1,5
207	ัช	Ppd	Z Z	0	0,40	4,1	17	107	1000	1000	1000	> 1000
190	ŏ	тнісн-3-соон	H Na	. 0	2,4	27	120	130	460	1000	1000	1000
203	×	Ppd(4-Me)	Na	0	8,9	>1000	>1000	210	270	1000	, 1000	1000
182	AMe	Ppd(4-Me)	Na	0	1,9	3,4	27	200	< 1000	1000	16	1000
171	Am	Ppd(4-Me)	පි		0,34	3,6	100	180	780	1000	260	1000
156	Am	Ppd(4-Me)	ø Z	-	3,6	. 46	46	25	350	340	1000	89

Am = Amidino, Gu = Guanidino, Ox = Oxamidino, A = Amino, AMe = Aminomethyl, Na = 2-Naphthyl, Ch = 8-Chinolyl

In Tabelle 27 sind die an der Maus bestimmten Toxizitätswerte von repräsentativen erfindungsgemässen Verbindungen und zum Vergleich NAPAP und TAPAM zusammengestellt.

Tabelle 27
Approximative LD₅₀ an der Maus

Verbindung	R ¹	_R 2	LD ₅₀ p.o. mg/kg KG	LD ₅₀ i.v. mg/kg KG
NAPAP			> 800	54
TAPAM		•	> 1000	103
123	Am	Pro-OH	> 3000	188
124	Am	Pro-OMe	> 3000	80
83	Am	Pip-OH	> 3000	272 .
85	Am	iNip-OH	> 3000	43
134	Am	THICH-3-COOH	> 3000	29
190	Ож	THICH-3-COOH	> 3000	> 150
208	Gu	Pip-OH	> 1000	> 50
186	AMe	iNip-OH	> 3000	100

Im Vergleich zu früher geprüften Derivaten von Benzamidin-enthaltenden Aminosäuren (LD $_{50}$ 10 - 50 mg/kg nach i.v.-Applikation) ist die Toxizität bei einer Reihe von erfindungsmässigen Verbindungen deutlich geringer, d.h. es werden Werte für die LD $_{50}$ nach i.v.-Gabe von > 50 mg/kg gefunden. Das wird besonders deutlich bei dem Vergleich von NAPAP mit solchen Verbindungen, die auch verbesserte pharmakokinetische Daten zeigen (123, 83, 186 und 190).

In Tabelle 28 - 30 sind die Ergebnisse von Untersuchungen zur Pharmakokinetik von repräsentativen, erfindungsgemässen Verbindungen und als Vergleich dazu die Werte mit NAPAP zusammengestellt. Die zu prüfenden Verbindungen wurden intravenös (Tabelle 28), subcutan (Tabelle 29) bzw. peroral (Tabelle 30) an Ratten verabreicht. Nach der Verabreichung wurde den Versuchstieren in Zeitabständen von

2 bis maximal 360 Minuten Blutproben entnommen, in welchen der Blutspiegel der zu prüfenden Verbindungen mittels HPLC bestimmt wurde.

Tabelle 28

Konzentration (ng/ml) ausgewählter Verbindungen im Plasma
von Ratten nach intravenöser Verabreichung von 1 mg/kg

701+	Verbindung										
Zeit (min)	NAPAP	123	83	85	134	190	186				
2	4028	2330	1903	2348	4441	3262	1840				
5	2111	1180	928	1238	1680	1606	1256				
10	1307	660	496	526	775	806	653				
15	933	440	243	334	621	496	426				
30	413	260	.150	240	79	477	225				
45	106	185	115	176	78	134	205				
60	78	160	85	99	10	0	193				
90		68	45	52	0	-	53				
120	0	32	0	28	-	-	228				
180	_ ·	22	0	_	_	_	-				
240	-	0	. 0	14	_ :	. -	- -				

- 102
<u>Tabelle 29</u>

Konzentration (ng/ml) ausgewählter Verbindungen im Plasma
von Ratten nach subkutaner Verabreichung von 5 mg/kg

Zeit (min)	Verbindung									
	NAPAP	123	83	85	134	190	186			
15	294	792	402	1330	0	340	251			
30	375	1340	620	1027	35	330	368			
45	324	1381	626	860	72	374	444			
60	361	-	568	834	79	492	558			
90	33.0	1781	467	913	92	354	629			
120	327	1603	415	977	145	270	534			
180	230	1135	314	815	285	165	533			
240	173	927	. 297	676	268	152	669			
300	. <u> </u>	_	_	550	248	138	455			
360	-	-	-	-	_	126	340			

Tabelle 30

Konzentration (ng/ml) ausgewählter Verbindungen im Plasma von Ratten nach oraler Verabreichung von 100 mg/kg

Zeit (min)	Verbindung									
	NAPAP	123	83	85	134	190	186			
15	0.	230	133	870	188	481	996			
30	0	170	79	541	260	1113	800			
45	0	-	_	345	297	796	769			
60	0	100	50	120	260	574	1246			
90	0	133	37	-	_	-	877			
120	0	-	38	103	234	542	619			
180	0	96	25	104	236	217	357			
240	_	67	. 23	0	210	113	328			
300		-	-	-	157	50	370			
360	-	. -	٠ ــ	•	86	-	326			

Im Vergleich zu NAPAP zeigen die geprüften Derivate ein verbessertes pharmakokinetisches Verhalten. Zwar werden die Verbindungen nach intravenöser Gabe mit vergleichbarer Geschwindigkeit eliminiert (Abb. 1), nach Verabreichung werden aber relativ hohe, lang andauernde Blutspiegel gefunden (Abb. 2). Nach oraler Gabe kann NAPAP nicht im Plasma nachgewiesen werden, während einige der beispielhaft geprüften erfindungsmässigen Verbindungen verhältnismässig hohe Konzentrationen erreichen (Abb. 3). In vitro sind eine Reihe von repräsentativen erfindungsgemässen Verbindungen gerinnungshemmend wirksam. In allen Fällen wurde die Thrombinzeit (TT) am effektivsten verlängert. Dies entspricht der Selektivität dieser Inhibitoren, die unter den Gerinnungsfaktoren Thrombin am stärksten hemmen. Eine Verlängerung der aktivierten partiellen Thromboplastinzeit (aPTT), bei der neben Thrombin auch die an der Frühphase der Gerinnung beteiligten Enzyme Tragen kommen, wird durch höhere Konzentrationen Inhibitoren erreicht. Das gilt auch für die Beeinflussung der Prothrombinzeit (PT), die den extrinsischen Gerinnungsweg repräsentiert. Beispielhaft ist das für Verbindung 34 in Abb. 4 gezeigt.

Der gerinnungshemmende Effekt der Verbindungen lässt sich auch in vivo nachweisen. Nach i.v.-, s.c.- und p.o.- Verabreichung der zu prüfenden Verbindungen wurde im Plasma der Versuchstiere der gerinnungshemmende Effekt bestimmt. Beispielhaft ist das für die Verbindung 123 in Abb. 5 gezeigt. Ganz entsprechend dem mittels HPLC bestimmten Konzentrationsverlauf im Plasma ist die Antithrombinwirkung im Gerinnungstest nachzuweisen.

Zweckmässig werden die nach einer der erfindungsgemässen Verfahren hergestellten Phenylalanin-Derivate als solche oder als Salze mit einer physiologisch verträglichen anorganischen oder organischen Säure unter Verwendung geeigneter pharmazeutischer Hilfstoffe in geeignete

Applikationsformen überführt. Entsprechend dem pharmakokinetischen Verhalten sind das insbesondere transdermale Therapie-Systeme wie Pflaster, aber auch Tabletten, Dragees, Kapseln, Suppositorien, Lösungen usf.

Die Dosierung hängt ab von der Antithrombinaktivität, der Toxizität, den möglichen Blutspiegelwerten, der Bioverfügbarkeit und der Applikationsart der verwendeten erfindungsgemässen Verbindung sowie ganz allgemein von den Blutwerten, dem Gewicht und dem Allgemeinzustand des Patienten, so dass die Dosierung letztlich vom praktizierenden Arzt bestimmt werden muss. Im Prinzip entspricht die Dosierung derjenigen bekannter thrombinhemmender Verbindungen und liegt zwischen ungefähr 0,2 mg/kg und ungefähr 20 mg/kg Körpergewicht, wobei gegebenenfalls auch höhere Dosen verabreicht werden können. Bei einem erwachsenen Patienten ergeben sich somit tägliche Dosierungen einer erfindungsgemässen Verbindung von ungefähr 50 mg bis ungefähr 1600 mg oder mehr.

Anhand von Verbindung 186 soll beispielhaft die Überführung in 5 pharmazeutische Darreichungsformen gezeigt werden.

Beispiel_1

Tabletten mit 50 mg der Verbindung 186 als Wirkstoff
Zusammensetzung:

1 Tablette enthält 50 mg Wirkstoff, 40 mg Lactose, 30 mg Maisstärke, 4 mg PVP und 1 mg Magnesiumstearat.

<u>Herstellungsverfahren</u>

Der mit Lactose und Maisstärke vermischte Wirkstoff wird mit einer 20%igen ethanolischen Lösung von Polyvinylpyrrolidon gleichmässig durchfeuchtet, durch ein Sieb der Maschenweite 1,5 mm gedrückt und bei 40°C getrocknet. Das so erhaltene Granulat wird mit Magnesiumstearat vermischt und zu Tabletten verpresst.

Beispiel 2

Dragees mit 25 mg der Verbindung 186 als Wirkstoff Zusammensetzung:

1 Dragee enthält 25 mg Wirkstoff, 20 mg Lactose und 15 mg Maisstärke.

Herstellungsverfahren

Der mit Lactose und Maisstärke vermischte Wirkstoff wird in der unter Beispiel 1 beschriebenen Weise granuliert und zu ovalen Tablettenkernen verpresst, die anschliessend dragiert werden. Für den Dragiervorgang wird eine Zuckermischung, bestehend aus 36,09 % Puderzucker, 13,54 % Gummi arabicum, 36,09 % Weizenstärke und 3,00% g Magnesiumstearat sowie als Bindemittel 11,28 % einer Mischung aus gleichen Teilen Mucilago Gummi arabici und Wasser verwendet.

Beispiel 3

Kapseln mit 50 mg der Verbindung 186 als Wirkstoff Zusammensetzung:

1 Kapsel enthält 50 mg Wirkstoff und 100 mg Lactose.

<u>Herstellungsverfahren</u>

Der fein gepulverte Wirkstoff wird anteilweise mit Lactose verrieben und die Mischung in Stärkekapseln, die paarweise ineinanderschiebbare, einseitig verschlossene Zylinder darstellen, in der angegebenen Dosierung eingebracht.

Beispiel 4

Suppositorien (Zäpfchen) mit 50 mg der Verbindung 186 als Wirkstoff

Zusammensetzung:

1 Zäpfchen enthält 50 mg Wirkstoff und 0,95 g Cetylphthalat als Grundlage.

<u>Herstellungsverfahren</u>

Der feinst gepulverte Wirkstoff wird mit der doppelten Menge der verflüssigten Grundlage verrieben. Die Verreibung wird mit dem Rest der verflüssigten Grundlage anteilweise gemischt und bis zur gleichmässigen Beschaffenheit bearbeitet. Nahe der Grenze der Giessbarkeit wird die Mischung

in eine geeignete Form gegossen und bis zum Erkalten stehengelassen.

Beispiel 5

Injektions- bzw. Infusionslösung mit 5 mg/ml der Verbindung 186 als Wirkstoff

Herstellungsverfahren

Der Wirkstoff wird in 100 ml Aqua ad injectionem gelöst, die Lösung filtriert und gegebenenfalls in Ampullen zu je 2 ml abgefüllt. Die mit der Wirkstofflösung gefüllten und verschlossenen Gefässe (Infusionsflaschen, Ampullen) werden der Dampfsterilisation bei 121 bis 124°C unterzogen.

Patentansprüch

1. D,L-, L- und D-Phenylalanin-Derivate der Formel

$$CH_{2} - CH - CO - R^{2}$$

$$CH_{2} - CH - CO - R^{2}$$

$$NH$$

$$(CO - CH - NH)_{n} - SO_{2} - R^{4}$$

in welcher

R¹ eine basische Gruppe der Formel

- (c) $NH_2 C = N OH$ Oxamidino
- (d) $CH_2 NH_2$ oder (e) NH_2 Aminomethyl Amino

darstellt, wobei R^5 und R^6 in den Formeln (a) und (b) je Wasserstoff oder einen geradkettigen oder verzweigten niedrigen Alkylrest bezeichnen,

- R² (f) OH, O-Alkyl, O-Cycloalkyl oder O-Aralkyl darstellt, wobei n=0 ist,
 - (g) eine Gruppe der Formel

 N CH CO R⁹

 17 R⁸

darstellt, in welcher R⁷ Wasserstoff oder einen geradkettigen oder verzweigten niedrigen Alkylrest und R⁸ einen geradkettigen oder verzweigten niedrigen Alkylrest, einen 1- oder 2-Hydroxyethylrest, einen Methylmercaptoethylrest, einen Aminobutylrest, einen

Carboxy(niedrigen)alkyl-Guanidinopropylrest, einen einen Carboxamido(niedrigen)alkylrest, Phenyl(niedrigen)alkylrest, dessen Ring gegebenenfalls mit OH, Halogen, niedrig-Alkyl oder Methoxy substituiert ist, einen Cyclohexyl- oder Cyclohexylmethylrest, dessen Ring gegebenenfalls mit OH, Halogen, niedrig-Alkyl oder Methoxy substituiert ist, oder einen N-Heteroaryl(niedrigen)alkylrest mit 3 bis 8 Kohlenstoffatomen im Heteroaryl, z.B. Imidazolylmethyl oder Indolylmethyl, bezeichnen, wobei die Gruppe (g) racemisch oder D- bzw. L-konfiguriert sein kann,

(h) eine Gruppe der Formel

$$\begin{array}{c} \text{CO - R}^9 \\ \text{CH - (CH}_2)_{\text{m}} \\ \text{CH}_2 - \text{CH}_2 \end{array}$$

darstellt, in welcher m die Zahl 1 oder 2 bezeichnet, und in welcher eine der Methylengruppen gegebenenfalls mit einem Hydroxyl-, Carboxyl-, niederen Alkyl- oder Aralkyl-rest substituiert ist, wobei die Gruppe (h) racemisch oder D- bzw. L-konfiguriert sein kann,

(i) eine Gruppe der Formel

darstellt, in welcher p = r = 1, p = 1 und r = 2 oder p = 2 und r = 1 sind und in welcher eine der Methylengruppen gegebenenfalls mit einem Hydroxyl-, Carboxyl-, niederen Alkyl- oder Aralkyl-rest substituiert ist,

(k) eine Piperidylgruppe darstellt, die gegebenenfalls in einer der Stellungen 2, 3 und 4 mit einem niederen Alkyl- oder Hydroxyl-rest substituiert ist, wobei an die heterocycloaliphatischen Ringe Formeln (h), (i), (k) gegebenenfalls ein weiterer aromatischer oder cycloaliphatischer Ring, vorzugsweise Phenyl oder Cyclohexyl, in 2,3 oder 3,4 Stellung, bezogen auf das Heteroatom, ankondensiert ist,

(1) eine Pip razylgruppe, die g geb nenfalls in p-Stellung mit einem niederen Alkylrest, einem Arylrest oder einem Alkoxycarbonylrest substituiert ist,

(m) eine Gruppe der Formel

$$-N - (CH_2)_n - CO - R^9$$

darstellt, in welcher n' die Zahlen 1 bis 6 und R¹⁰ Wasserstoff oder den Methyl- oder Cyclohexylrest bezeichnen,

(n) eine Gruppe der Formel

- NH -
$$CH_2$$
 - H - CO - R^9

darstellt, wobei R⁹ in den Formeln (g), (h), (i), (l), (m) und (n) eine Hydroxyl-, geradkettige oder verzweigte niedrige Alkoxy- oder eine Benzyloxy-Gruppe bezeichnet,

oder

(o) eine Kombination von 2 bis 20, vorzugsweise 2 bis 5, insbesondere 2 oder 3, der von den unter (g), (h), (i), (k), (l), (m) und (n) definierten Gruppen abgeleiteten, durch Amidbindungen verknüpften Resten (R⁹ = Einfachbindung) darstellt, wobei der C-terminale Rest gegebenenfalls mit einem Rest R⁹ verknüpft ist,

R³ Wasserstoff oder einen geradkettigen oder verzweigten niedrigen Alkyl- oder einen 1- oder 2-Hydroxyethyl-Rest darstellt, wobei n die Zahl 0 oder 1 bezeichnet,

und R⁴ einen Arylrest, z.B. Phenyl, Methylphenyl, α- oder B-Naphthyl oder 5-(Dimethylamino)-naphthyl, oder einen Heteroarylrest, z.B. Chinolyl, darstellt, wobei niedrig 1-4 Kohlenstoffatome bedeutet, und deren Salze mit Mineralsäuren oder organischen Säuren.

2. Phenylalanin-Derivate nach Patentanspruch 1, in welchen

- R¹ eine basische Gruppe der Formel (a) = Amidino, (b) =
 Guanidino, (c) = Oxamidino, (d) = Aminomethyl oder (e)
 = Amino,
- O-Alkyl, O-Cycloalkyl oder Aralkyl oder einen heterocycloaliphatischen Rest der Formeln (h), (i), (k) und (l), wobei R⁹ in den Formeln (h) und (i) eine Hydroxyl-, geradkettige oder verzweigte niedrige Alkoxy-, Cycloalkoxy- oder Aralkoxy-Gruppe sein kann,
- \mathbb{R}^4 einen Aryl- oder Heteroarylrest, vorzugsweise \mathbb{B} -Naphthyl, und
- n die Zahl 0 darstellt.
- 3. Verwendung der Phenylalanin-Derivate nach Patentanspruch 1 oder 2 zur Herstellung von oral, subkutan, oder intravenös verabreichbaren antithrombotisch wirksamen Arzneimitteln.
- 4. Oral, subkutan oder intravenös verabreichbares antithrombotisches Arzneimittel, gekennzeichnet durch eine wirksame Menge mindestens eines Phenylalanin-Derivates nach Patentanspruch 1 oder 2 und geeignete pharmazeutische Hilfsstoffe.
- 5. Antithrombotisch wirksames Arzneimittel nach Patentanspruch 4, in Form von Tabletten, Dragees, Kapseln, Pellets, Suppositorien, Lösungen oder transdermalen Systemen, wie Pflaster.
- 6. Verfahren zur Blutgerinnungs- resp. Thrombinhemmung bei Lebewesen, insbesondere bei Menschen, durch Verabreichung einer wirksamen Menge mindestens einer Verbindung nach einem der Patentansprüche 1 oder 2 resp. eines Arzneimittels nach einem der Patentansprüche 4 oder 5.

Plasmaspiegel von NAPAP, 85, 186 und 190 nach s.c.-Gabe von 5 mg/kg bei Ratten Abbildung 2

Plasmaspiegel von NAPAP, 85, 186 und 190 nach i.v.-Gabe von 1 mg/kg bei Ratten Abbildung

Plasmaspiegel von NAPAP, 85, 186 und 190 nach p.o.-Gabe von 100 mg/kg bei Ratten Abbildung 3

4/5

Abbildung 4
Verlängerung der Gerinnungszeiten durch
Verbindung 34 <u>in vitro</u>

5/5

Abbildung 5 Ex vivo Thrombin-Zeiten nach i.v.-, s.c.- und p.o.-Gabe von Verbindung 123

100 mg/kg p.o.

INTERNATIONAL SEARCH REPORT

International Application No PCT/CH91/00235

			nternational Application No PCT/C	,H91/00235
I. CLASSII	FICATION	OF SUBJECT MATTER (If several classifica	tion symbols apply, indicate all)	
According to	o Internatio	onal Patent Classification (IPC) or to both National	CO7K 5/08 CO7D 211/60) CO7D 211/62
Int.C	1.5	A61K 31/195 C07D 295/205	CO7D 217/26 CO7D /21	5/50 C07C311/19
HOTE.	SEARCH	FD		
II. PIELDS	<u> </u>	Minimum Documentat	ion Searched 7	
lassification	System	Cla	ssification Symbols	
ABBIII CALIO	10,0.0 1	CO7D 295/00 CO7K 5/00	CO7D 211/00 CO7D 2	
Int.Cl	.5	CO7C 311/00 CO7D 217/00	CO7D 215/00 CO7D 40	01/00
	ļ		·	
		Documentation Searched other than to the Extent that such Documents ar	n Minimum Documentation e Included in the Fields Searched •	
III. DOCU	MENTS C	ONSIDERED TO BE RELEVANT		Relevant to Claim No. 13
ategory •	Citat	on of Document, 11 with Indication, where appro-	priate, of the relevant passages 12	Kelevalit to Glassis
		A, 2007663 (V.E.B. ARZNEIN		1-6
X	GD,	1070 cae the whole docume	Mil. Ili pai ciculai	
		claims 1,10-16,30-34(cited	in the application)	
				1
x	Di∈	Pharmazie, Vol. 36, Brochu	ire 9, September 1981,	1-6
^		Parlin (DD) G Wadner et	al. Sylichese	ł .
		+invotoolytisch wirksame	er Naibha-aryisuiiony-	
		lierter Amidinophenylalani	inamide", pages	
		597-603, see the whole are	CICIE	
		(cited in the application))	
		Pharmazie, Vol. 36, Broch	ure 9 Sentember 1981.	1-6
X.	Die	Berlin (DD), J. Stürzebeck	her et al:	
		"Synthetische Inhibitoren	der Serinproteinasen"	
		pages 639-641, see the who	ole article	
•		(cited in the application)	
X	Th	rombosis Research, Vol. 54,	No. 3, 1 May 1989	1-6
^	•"	Dorgamon Press New YORK	[US], U. Starzeseone.	
		o+ al."Synthetic inhiboto	rs of povine ractor	
	Ì	valoba and thrombin compa	rison of their	,
	1	anticoagulant efficiency	, pages 245-252,	•
•		see the whole artical		
•		(cited in the application		the international filing date
* Speci	al categori	es of cited documents: 10	"T" tater document published after or priority date and not in cont	flict with the application but
"A" do	cument det	ining the general state of the art which is not be of particular relevance	cited to understand the princip	3.0 0. 1
"E" ea	rlier docum	ent but published on or after the international	"X" document of particular releva	nce; the claimed invention or cannot be considered to
fiji	ng date		involve an inventive step	and the claimed invention
wh	alch is cite	her special reason (as specified)	cannot be considered to illyon	or more other such docu-
"O" do	cument ref	erring to an oral disclosure, use, exhibition or	ments, such combination being	obvious to a person skilled
oti	her means	blished prior to the international filing date but	in the art. "&" document member of the same	
lat	er than the	phority date claimed		
IV. CER	TIFICATI	ON Control Course	Date of Malling of this International	Search Report
Date of t	he Actual (Completion of the International Search	27 February 1992 (2	7.02.92)
/ FE	epruary	1992 (07.02.92)		
Internation	onal Search	ning Authority	Signature of Authorized Officer	
				•
turc	pean r	Patent Office		

Category *	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
х	Die Pharmazie, Vol. 42, Brochure 4, April 1987, Berlin(DD), H. Vieweg et al: "Synthese von N-alpha (Arylsulfonylglycyl)-3-amidinopheny- lalanine stern als aktive und relativ spezifische Inhibitoren von Faktor Xal", page 268, see the whole artical	1,3-6
X .	Thrombosis and Haemostasis, Vol. 63, No. 2, 12. April 1990, R.K. Schattauer Verlagsgesell- schaft mbH, Stuttgart (DE), J. Hauptmann et al: "Comparison of the anticoagulant and antithrombotic effects of synthetic thrombin and factor Xa inhibitors", pages 220-223, see the whole artical	1-6
X	Chemical Abstracts, Vol. 107, No. 5, 3 August 1987,(Columbus, Ohio US), see page 758, abstract 40333v, & DD, A, 242404 (KARL-MARX -UNIVERSITAT LEIPZIG) 28 January 1987	1,3-6
X	Chemical Abstracts, Vol. 98, Nr. 13, 28 March 1983, Columbus, (US), see page 645, abstract 107770b, & DD, A, 155954 (WAGNER et al) 21 July 1982	1,3-6
Α .	US, A, 4125604 (OKAMOTO et al.) 14 November 1978 see examples; claims	1-6
A	GB, A, 2153825 (MITSUBISHI) 29 August 1985	
. ^	see examples, claims	1-6
		1-6
		1-6
		1-6
		1-6
		1-6
		1-6
		1-6
		1-6
		1-6
		1-6
		1-6
		1-6
		1-6
		1-6
		1-6

The additional search fees were accompanied by applicant's protest.

No protest accompanied the payment of additional search fees.

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

CH 9100235 53111 SA

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 18/02/92

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report		Publication date	Patent family member(s)		Publication date	
GB-A- 2007	7663	23-05-79	DE-A-	2845941	10-05-79	
			FR-A,B	2407915	01-06-79	
			JP-A-	54106448	21-08-79	
		·	SE-A	7811454	08-05-79	
US-A- 4125	604	14-11-78	JP-C-	1167853	08-09-83	
			JP-A-	51105046	17-09-76	
			JP-B-	57047990	13-10-82	
		•	JP-C-	1165631	26-08-83	
			JP-A-	51105047	17-09-76	
•	•		JP-B-	57047991	13-10-82	
			JP-C-	1052091	30-06-81	
•			JP-A-	51125052	01-11-76	
			JP-B-	55042981	04-11-80	
,			JP-C-	1052092	30-06-81	
			JP-A-	51125053	01-11-76	
		,	JP-B-	55042982	04-11-80	
		.•	JP-C-	1047480	28-05-81	
			JP-A-	51125051	01-11-76	
•		•	JP-B-	55037992	01-10-80	
			JP-C-	1067772	23-10-81	
		•	JP-A-	51125260	01-11-76	
	•	•	JP-B-	56008832	25-02-81	
			CA-A-	1073914	18-03-80	
			DE-A-	2550088	20-05-76	
			FR-A,B	2290193	04-06-76	
			GB-A-	1516668	05-07-78	
			NL-A-	7512637	11-05-76	
,			SE-B-	431204	23-01-84	
	•	,	SE-A-	7512530	10-05-76	
•		,	US-A-	4055636	25-10-77	
		•	US-A-	4055651	25-10-77	
			US-A-	4041156	09-08-77	
·			ÚS-A-	4046876	06-09-77	
			US-A-	4070457	24-01-78	
•			US-A-	4062963	13-12-77	
•			US-A-	4066758	03-01-78	
			US-A-	4049645	20-09-77	
			US-A-	4069323	17-01-78	
		•				
					•	
		• :			•	
					-2-	

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

CH 9100235

SA

53111

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 18/02/92
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US-A- 4125604		US-A- 4073914 US-A- 4096255 US-A- 4104392 US-A- 4066759 US-A- 4072757 US-A- 4108986 US-A- 4073913 US-A- 4093712 US-A- 4125619 US-A- 4093712 US-A- 4069317 US-A- 4069317 US-A- 4069318 US-A- 4069318 US-A- 4069318	20-06-78 01-08-78 07-02-78 03-01-78 07-02-78 22-08-78 14-02-78 14-02-78 14-11-78 27-06-78 17-01-78 17-01-78
GB-A- 2153825	29-08-85	JP-A- 60163855 DE-A- 3503846 FR-A,B 2559151 US-A- 4764618	08-08-85 09-08-85

INTERNATIONALER RECHERCHENBERICHT

Þ			Internationales Aktenzeichen	PCT/CH 91/00235
Γ	I. KLASSIFIKATION DES ANN	IELDUNGSGEGENSTANDS (bei mehreren I	lassifikationssymbolen sind alle anzu	geben)°
	Nach der Internationalen Patenti	dassifikation (IPC) oder nach der nationalen K C 07 D 295/185 C 07 C 07 D 211/62 A 61 5 C 07 D 217/26 C 0	Jassifikation und der IPC K 5/06 C 07 K	5/08 31/195
ł	II. RECHERCHIERTE SACHGE	RIETE		
ŀ		Recherchierter Min	ndestprüfstoff ⁷	
ł	Klassifikationssytem	Kia	essifikationssymbole	
	Int.C1.5	C 07 D 295/00 C		7 D 211/00 7 D 217/00
		Recherchierte nicht zum Mindestprüfstoff geh unter die recherchierten	örende Veröffentlichungen, soweit die Sachgebiete fallen ⁸	se
ł	III. EINSCHLAGIGE VEROFFE	ENTLICHUNGEN ⁹		
ł	Art.º Kennzeichnung de	r Veröffentlichung 11 , soweit erforderlich unter	Angabe der maßgeblichen Teile 12	Betr. Anspruch Nr. 13
	ARZNE: Dokume	2007663 (V.E.B. [MITTELWERK) 23. Mai 1979 ent, insb. Ansprüche 1,10 dung erwähnt)	, siehe das ganze -16,30-40 (In der	1-6
	X Die Ph Berlin antiph Nalpha	narmazie, Band 36, Heft 9 n (DD), G. Wagner et al.: roteolytisch wirksamer a-arylsulfonylierter nophenylalaninamide", Sei anzen Artikel (In der Anm	ten 597-603, siehe	1-6
	X Die Pl Berlii "Syntl >Seite	narmazie, Band 36, Heft 9 n (DD), J. Stürzebecher e netische Inhibitoren der en 639-641, siehe den gan dung erwähnt)	, September 1981, t al.: Serinproteinasen",	1-6
	"A" Veröffentlichung, die de definiert, aber nicht als "E" älteres Dokument, das it tionalen Abmeldedatum "L" Veröffentlichung, die ge- zweifelhaft erscheinen zu fentlichungsdatum einer nannten Veröffentlichun anderen besonderen Gru "O" Veröffentlichung, die sie eine Benutzung, eine At bezieht "P" Veröffentlichung, die vo tum, aber nach dem bea licht worden ist	besonders bedeutsam anzusehen ist edoch erst am oder nach dem internaveröffentlicht worden ist eigner ist, einen Prioritätsanspruch i lassen, oder durch die das Veröfanderen im Recherchenbericht gegebelegt werden soll oder die aus einem nd angegeben ist (wie ausgeführt) ch auf eine mündliche Offenbarung, isstellung oder andere Maßnahmen	"T" Spätere Veröffentlichung, die na meldedatum oder dem Prioritäts ist und mit der Anmeldung nicht Verstandnis des der Erfindung z oder der ihr zugrundeliegenden "X" Veröffentlichung von besonderer te Erfindung kann nicht als neu keit beruhend betrachtet werden "Y" Veröffentlichung von besonderer te Erfindung kann nicht als auf ruhend betrachtet werden, wenn einer oder menreren anderen Ve gorie in Veröffentlichung, die Mitglied des "&" Veröffentlichung, die Mitglied des "&" Veröffentlichung, die Mitglied des sies und met den der Mitglied des "&" Veröffentlichung, die Mitglied des sies und met dem der Mitglied des sies und met dem der Mitglied des sies und dem dem dem dem dem dem dem dem dem de	t kollidiert, sondern nur zum ugrundeliegenden Prinzips Theorie angegeben ist Bedeutung: die beanspruch- ader auf erfinderischer Tatig- Bedeutung: die beanspruch- erfinderischer Tatigkeit be- die Veröffentlichung mit eröffentlichungen dieser kate- rid und diese Verbindung für
	IV. BESCHEINIGUNG	ingle Posterske	Absendedatum des internationale	en Recherchenberichts
	Datum des Abschlusses der inter			2 7 FEB 1992
	Internationale Recherchenbehord	AISCHES PATENTAMT	Unterschrift des bevollmachtigte	A Bediensreten

III. EINSCHLA	GIGE VEROFFENTLICHUNGEN (Fortsetzung von Biatt 2)	
Art °	Kennzeichnung der Veröffentlichung, soweit erforderlich unter Angabe der maßgeblichen Teile	Best. Anspruch Nr.
х	Thrombosis Research, Band 54, Nr. 3, 1. Mai 1989, Pergamon Press, New York (US), J. Stürzebecher et al.: "Synthetic inhibotors of bovine factor Xalpha and thrombin comparison of their anticoagulant efficiency", Seiten 245-252, siehe den ganzen Artikel (In der Anmeldung erwähnt)	1-6
X	Die Pharmazie, Band 42, Heft 4, April 1987, Berlin (DD), H. Vieweg et al.: "Synthese von N-alpha(Arylsulfonylglycyl)-3-amidinophenylalanine stern als aktive und relativ spezifische Inhibitoren von Faktor Xal", Seite 268, siehe den ganzen Artikel	1,3-6
x	Thrombosis and Haemostasis, Band 63, Nr. 2, 12. April 1990, R.K. Schattauer Verlagsgesellschaft mbH, Stuttgart (DE), J. Hauptmann et al.: "Comparison of the anticoagulant and antithrombotic effects of synthetic thrombin and factor Xa inhibitors", Seiten 220-223, siehe den ganzen Artikel	1-6
x	Chemical Abstracts, Band 107, Nr. 5, 3. August 1987, (Columbus, Ohio US), siehe Seite 758, Zusammenfassung 40333v, & DD, A, 242404 (KARL-MARX -UNIVERSITÄT LEIPZIG) 28. Januar 1987	1,3-6
X	Chemical Abstracts, Band 98, Nr. 13, 28. März 1983, Columbus, (US), siehe Seite 645, Zusammenfassung 107770b, & DD, A, 155954 (WAGNER et al.) 21. Juli 1982	1,3-6
A	US,A,4125604 (OKAMOTO et al.) 14. November 1978, siehe Beispiele; Ansprüche	1-6
A	GB,A,2153825 (MITSUBISHI) 29. August 1985, siehe Beispiele; Ansprüche	1-6
·		
•		
	·	•

Formblatt PCT/ISA/210 (Zasztzbogen) (Januar 1985)

internationales Aktenzeichen PCT/ CH91/00235

WEITERE	NGABEN ZU BLATT 2	
-15115/15		
	·	•
		•
	· ·	
	·	
	•	
		······································
V	IERKUNGEN ZU DEN ANSPRÜCHEN, DIE SICH ALS NICHT RECHERCHIERBAR ER	WIESEN HABEN
⊠ BE	SERRUNGEN ZU DEN ANSFROGNEN, DER STEINE AUS folgende Gründen nicht Gegenstand der interna	tionalen Recherche gewesen:
mäß Artik	17 Absatz 2 Buchstabe a sind bestimmte Anspruche aus tolgelide Grandell Management	. meharchieren die Rehorde nic
Ansp	il ain sich auf Genenstände beziehen. Qie Zi	1 ISCUSICINATED DIE DENS 38 INC
Vero	ichtet ist, nämlich:	•
	a it to an und for the sitt of the vericularity	
Reh	erkung: Obwohl Anspruch o Stellauf Ethiopers beziehen and Ming des menschlichen/tierischen Körpers beziehen	6**bb
DE1	de die Recherche durchgefuhrt und gründete sich auf die a	ngefunrten
Wui	Le die Mecher che dur enge	•
Wil	kungen der Verbindungen.	
	weil sie sich auf Teile der internationalen Ann	neldung beziehen, die den mediatet werden kann namlich:
Ansp	weil sie sich auf Teile der internationalen Ann üche Nr schnebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durch	igeidilit war oan talling
9019	Schillebellan	
•		•
	·	
	·	
	weil sie abhängige Ansprüche und nicht entsp	rechand Satz 2 und 3 der
Ansp لــــا . Pan	üche Nr I 6.4(a) PCT abgefaßt sind.	
Ley	0.46/10100/	
	THE PROPERTY IS USED TO THE PROPERTY OF THE PR	
i B	MERKUNGEN BEI MANGELNDER EINHEITLICHKEIT DER ERFINDUNG 2	
in Internati	mate Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält	•
is colesions.	Halls Meditoral Areas and	
		•
		• :
_	- hereitin entrichtet hat erstreckt sich	der Internationale
Da o	r Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich (er Anmelder alle erforderlichen zusätzlichen Ansprüche der Internationalen Anmeldung.	
Rec	erchenbaricht auf alle recherchierbaren Politich	
	er Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstr Begrechte der entrechte der Internationalen Anmeldung, für die Gebühren gezahlt worden stre	eckt sich der Internationale
L Da d	ir Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren fechtzeitig entrichtet hat, eiste erchenbericht nur auf die Ansprüche der Internationalen Anmeldung, für die Gebühren gezahlt worden sin	d, namtich
Rec	archenbericht nur auf die Anspruche der thiefinde	
	unmelder hat die erforderlichen zusätzlichen Recherchengebührennicht rechtzeitig entrichtet. Der Internation Ansprüchen zusätzlichen zuerst erwahnte Erfindung; sie ist in folgenden Ansprüchen e	nate Recherchenbericht
	onmelder hat die erfordarlichen zusätzlichen Recherchengebührennicht rechtzenig entrichtet. Der interhation hrankt sich daher auf die in den Ansprüchen zuerst erwahnte Erfindung; sie ist in folgenden Ansprüchen e	
Der		rfaßt:
Der bes	hrankt sich daner auf die in Gen Politice	rfaBt:
Der bes	hrankt sich daner zur die in den reispesanze	rfaßt:
bes		
bes	and durchastibut worden konnts	der eine zusätzliche
bes Da f	r alle recherchierbaren Ansprüche eine Recherche ohne einen Arbeitsaufwand durchgeführt werden konnts erchennebühr gerechtfertigt hätte, hat die Internationale Recherchenbehörde eine solche Gebühr nicht verl	der eine zusatzliche
bes Da f	r alle recherchierbaren Ansprüche eine Recherche ohne einen Arbeitsaufwand durchgeführt werden konnts erchennebühr gerechtfertigt hätte, hat die Internationale Recherchenbehörde eine solche Gebühr nicht verl	der eine zusätzliche
Da f Rec Bernerku	r alle recherchierbaren Ansprüche eine Recherche ohne einen Arbeitsaufwand durchgeführt werden konnts erchengebühr gerechtfertigt hätte, hat die Internationale Recherchenbehörde eine solche Gebühr nicht verl ig hinsichtlich eines Widerspruchs	der eine zusätzliche
Da f Rec Bernerku	r alle recherchierbaren Ansprüche eine Recherche ohne einen Arbeitsaufwand durchgeführt werden konnts erchengebühr gerechtfertigt hätte, hat die Internationale Recherchenbehörde eine solche Gebühr nicht verl ig hinsichtlich eines Widerspruchs	der eine zusätzliche
bes Da f Rec Bemerku	r alle recherchierbaren Ansprüche eine Recherche ohne einen Arbeitsaufwand durchgeführt werden konntt erchengebühr gerechtfertigt hätte, hat die Internationale Recherchenbehörde eine solche Gebühr nicht verl eg hinsichtlich eines Widerspruchs usätzlichen Gebühran wurden vom Anmelder unter Widerspruch gezahlt.	der eine zusätzliche
Da f Rec Jemerku	r alle recherchierbaren Ansprüche eine Recherche ohne einen Arbeitsaufwand durchgeführt werden konnts erchengebühr gerechtfertigt hätte, hat die Internationale Recherchenbehörde eine solche Gebühr nicht verl ig hinsichtlich eines Widerspruchs	der eine zusätzliche
bes Da f Rec Bemerku	r alle recherchierbaren Ansprüche eine Recherche ohne einen Arbeitsaufwand durchgeführt werden konntt erchengebühr gerechtfertigt hätte, hat die Internationale Recherchenbehörde eine solche Gebühr nicht verl eg hinsichtlich eines Widerspruchs usätzlichen Gebühran wurden vom Anmelder unter Widerspruch gezahlt.	der eine zusätzliche
bes Da f Rec Bemerku	r alle recherchierbaren Ansprüche eine Recherche ohne einen Arbeitsaufwand durchgeführt werden konntt erchengebühr gerechtfertigt hätte, hat die Internationale Recherchenbehörde eine solche Gebühr nicht verl eg hinsichtlich eines Widerspruchs usätzlichen Gebühran wurden vom Anmelder unter Widerspruch gezahlt.	der eine zusätzliche

ANHANG ZUM INTERNATIONALEN RECHERCHENBERICHT ÜBER DIE INTERNATIONALE PATENTANMELDUNG NR.

CH 9100235

53111 SA

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben. Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am 18/02/92 Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

	Im Recherchenbericht Datum der eführtes Patentdokument Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung	
GB-A-	2007663	23-05-79	DE-A- 2845941 FR-A,B 2407915 JP-A- 54106448 SE-A- 7811454	10-05-79 01-06-79 21-08-79 08-05-79	
US-A-	4125604	14-11-78	JP-C- 1167853 JP-A- 51105046 JP-B- 57047990 JP-C- 1165631 JP-A- 51105047 JP-B- 57047991 JP-C- 1052091 JP-C- 1052091 JP-A- 51125052 JP-B- 55042981 JP-C- 1052092 JP-A- 51125053 JP-B- 55042982 JP-C- 1047480 JP-A- 51125051 JP-B- 55037992 JP-C- 1067772 JP-A- 51125260 JP-B- 56008832 CA-A- 1073914 DE-A- 2550088 FR-A, B 2290193 GB-A- 1516668 NL-A- 2550088 FR-A, B 2290193 GB-A- 1516668 NL-A- 7512637 SE-B- 431204 SE-A- 4055636 US-A- 4055651 US-A- 4046876 US-A- 4046876 US-A- 4046876 US-A- 4066758 US-A- 4066758 US-A- 4069323	08-09-83 17-09-76 13-10-82 26-08-83 17-09-76 13-10-82 30-06-81 01-11-76 04-11-80 30-06-81 01-11-76 04-11-80 28-05-81 01-11-76 01-10-80 23-10-81 01-11-76 25-02-81 18-03-80 20-05-76 04-06-76 05-07-78 11-05-76 23-01-84 10-05-76 23-01-84 10-05-76 25-10-77 09-08-77 09-08-77 09-08-77 06-09-77 24-01-78 13-12-77 03-01-78 20-09-77 17-01-78	
EPO FORM P043				·	

ANHANG ZUM INTERNATIONALEN RECHERCHENBERICHT ÜBER DIE INTERNATIONALE PATENTANMELDUNG NR.

CH 9100235

SA 53111

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben. Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am 18/02/92 Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

lm Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung	
US-A- 4125604		US-A- US-A- US-A- US-A- US-A- US-A- US-A- US-A- US-A- US-A- US-A- US-A- US-A-	4073914 4096255 4104392 4072744 4066759 4072757 4108986 4073891 4073913 4093712 4125619 4097472 4069317 4073916 4069318 4073892	14-02-78 20-06-78 01-08-78 07-02-78 03-01-78 07-02-78 22-08-78 14-02-78 14-02-78 14-11-78 27-06-78 17-01-78 14-02-78 14-02-78	
GB-A- 2153825	29-08-85	JP-A- DE-A- FR-A,B US-A-	60163855 3503846 2559151 4764618	- 26-08-85 08-08-85 09-08-85 16-08-88	

THIS PAGE BLANK (SPTO)