#### Σπύρος Φρονιμός - Μαθηματικός

# ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ - ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ${\bf 3~Aυγούστου~2016}$

#### ΜΑΘΗΜΑΤΙΚΑ Γ΄ ΓΥΜΝΑΣΙΟΥ

## Τριγωνομετρία

### TPIΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ $\omega$ ME $0^{\circ} \le \omega \le 180^{\circ}$

#### ΟΡΙΣΜΟΙ

#### ΟΡΙΣΜΟΣ 1: ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ

Έστω  $AB\Gamma$  ένα ορθογώνιο τρίγωνο, με  $A=90^\circ$  τότε οι τριγωνομετρικοί αριθμοί των οξείων γωνιών του τριγώνου ορίζονται ως εξής :

#### 1. Ημίτονο

Ημίτονο μιας οξέιας γωνίας ενός ορθογωνίου τριγώνου ονομάζεται ο λόγος της απέναντι κάθετης πλευράς προς την υποτείνουσα.

Ημίτονο = 
$$\frac{Aπέναντι Κάθετη}{Υποτείνουσα}$$
 , ημ $\omega = \frac{A \Gamma}{B \Gamma}$ 



#### 2. Συνημίτονο

Συνημίτονο μιας οξέιας γωνίας ενός ορθογωνίου τριγώνου ονομάζεται ο λόγος της προσκείμενης κάθετης πλευράς προς την υποτείνουσα.

Συνημίτονο = 
$$\frac{\Pi \text{ροσκείμενη Κάθετη}}{\text{Υποτείνουσα}} \ \ , \ \ \text{συν} \omega = \frac{AB}{B\Gamma}$$

#### 3. Εφαπτομένη

Εφαπτομένη μιας οξέιας γωνίας ενός ορθογωνίου τριγώνου ονομάζεται ο λόγος της απέναντι κάθετης πλευράς προς την προσκείμενη κάθετη.

Εφαπτομένη = 
$$\frac{A$$
πέναντι Κάθετη  $}{Προσκείμενη Κάθετη}$  , εφ $\omega = \frac{A\Gamma}{AB}$ 

#### ΟΡΙΣΜΟΣ 2: ΤΡΙΓ. ΑΡ. ΓΩΝΙΑΣ ΣΕ ΣΥΣΤΗΜΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ

Έστω Oxy ένα ορθογώνιο σύστημα συντεταγμένων και M(x,y) ένα σημείο του. Ενώνοντας το σημείο M με την αρχή των αξόνων, το ευθύγραμμο τμήμα που προκύπτει δημιουργεί μια γωνία  $\omega$  με το θετικό οριζόντιο ημιάξονα Ox. Το μήκος του ευθύγραμμου τμήματος OM είναι :

$$OM = \rho = \sqrt{x^2 + y^2}$$

Οι τριγωνομετρικοί αριθμοί της γωνίας  $x \hat{O} y$  ορίζονται με τη βοήθεια των συντεταγμένων του σημείου και είναι

#### 1. Ημίτονο

Ημίτονο της γωνίας ονομάζεται ο λόγος της τεταγμένης του σημείου προς την απόσταση του από την αρχή των αξόνων.

$$\eta\mu\omega = \frac{AM}{OM} = \frac{y}{\rho}$$



#### 2. Συνημίτονο

Συνημίτονο της γωνίας ονομάζεται ο λόγος της τετμημένης του σημείου προς την απόσταση του από την αρχή των αξόνων.

$$συνω = \frac{BM}{OM} = \frac{x}{\rho}$$

#### 3. Εφαπτομένη

Εφαπτομένη της γωνίας ονομάζεται ο λόγος της τεταγμένης του σημείου προς την τετμημένη του.

$$\varepsilon\varphi\omega = \frac{AM}{BM} = \frac{y}{x} \ , \ x \neq 0$$

Στον παρακάτω πίνακα βλέπουμε το μέτρο μερικών βασικών γωνιών δοσμένο σε μοίρες και ακτίνια αλλά και τους τριγωνομετρικούς αριθμούς των γωνιών αυτών.

| Βασικές Γωνίες |          |                      |                      |                      |                 |             |
|----------------|----------|----------------------|----------------------|----------------------|-----------------|-------------|
| Μοίρες         | 0°       | 30°                  | 45°                  | 60°                  | 90°             | 180°        |
| Ακτίνια        | 0        | $\frac{\pi}{6}$      | $\frac{\pi}{4}$      | $\frac{\pi}{3}$      | $\frac{\pi}{2}$ | $\pi$       |
| Σχήμα          | $\oplus$ | $\bigoplus$          |                      | $\bigoplus$          | $\bigcirc$      | $\bigoplus$ |
| ημω            | 0        | 1/2                  | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1               | 0           |
| συνω           | 1        | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$        | 0               | -1          |
| εφω            | 0        | $\frac{\sqrt{3}}{3}$ | 1                    | $\sqrt{3}$           | Δεν<br>ορίζεται | 0           |

#### **ΘΕΩΡΗΜΑΤΑ**

#### ΘΕΩΡΗΜΑ 1: ΠΡΟΣΗΜΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΑΡΙΘΜΩΝ

Τα πρόσημα των τριγωνομετρικών αριθμών μιας γωνίας ω εξαρτόνται από το είδος της γωνίας:

- i. Αν η γωνία ω είναι οξεία τότε ημω > 0, συνω > 0, εφω > 0.
- ii. Αν η γωνία  $\omega$  είναι αμβλεία τότε ημ $\omega > 0$ , συν $\omega < 0$ , εφ $\omega > 0$ .