PONENTE	PLATICA	LINKS
	DESI	Little
JORGE CERVANTES	Se presentará el proyecto DESI, asi como su relevancia científica, en donde	
	se discuten los aspectos relevantes de la cosmología de fondo y perturbativa que	
	puede medir el proyecto, y su importancia para la cosmología moderna.	
CELIA ESCAMILLA	(Teoría) Mathematica: CosmoEstadística. Se mostrará como hacer uso de	https://www.wolfram.com/mathematica/trial/
	las herramientas de Mathematica Wolfram software para realizar cálculos es-	
	tadísticos con muestras de SNela y BAO. Además exploraremos el análisis de	
	parametrizaciones de la energía oscura y la influencia de los parámetros cos-	
	mológicos en efectos relativos como la tensión entre los datos.	
	(Ejercicios) Mathematica: CosmoEstadística.	
	- Implementacion de datos de CMB al análisis de parametrizaciones.	
	- Generación de datos usando Python/Mathematica (uso de GaPP).	
	- Introducción a reconstrucciones no paramétricas en Mathematica.	
	Estimación de parámetros cosmológicos con CosmoSIS	
FAVIO VAZQUEZ	En esta breve charla, se introducirá el paquete Cos-	https://github.com/FavioVazquez/cosmosis-mnec
	moSIS como una de las alternativas para la estimación	IMPORTANTE: REALIZAR LA ENCUESTA PREVIAMENTE AL TALLER.
	de parámetros cosmológicos. Es un framework open sour-	
	ce, el cual agrupa mucho de los códigos y conocimientos	
	computacionales en cosmología de los últimos años. Es un	
	software fácil de utilizar, entender y modificar, aparte que	
	hace muy sencilla la colaboración entre grupos de inves-	
	tigación y compartir códigos y módulos creados con otros	
	investigadores.	
	El rol del Big Data y Data Scientist en la	
	Cosmología	
FAVIO VAZQUEZ	Desde los principios de este siglo, las grandes compañías,	
	empresas, institutos de investigación, corporaciones científi-	
	cas y hasta gobiernos comenzaron a sacarle provecho a las	
	grandes cantidades de datos e información que habían re-	
	colectado durante su historia. Aunque el estudio, estadísti-	
	ca e inferencias a partir de los datos no es nada nuevo, las	
	nuevas metodologías y tecnologías del Big Data, nos han	
	permitido optimizar el modo en que analizamos y estu-	

	diamos grandes volúmenes de información. El Data Scien-			
	tist (o científico de datos) es el encargado de aplicar sus			
	conocimientos, experiencia y experticia para implementar			
	una infraestructura y el software necesario para obtener la			
	mayor cantidad de información relevante a partir de datos			
	recolectados de diversas fuentes. En esta charla se hablará			
	del conocimiento teórico, las metodologías, técnicas, len-			
	guajes y frameworks que deben manejarse para ser un Da-			
	ta Scientist. Se mostrará por último cómo estas tecnologías			
	y herramientas podrían ser aplicadas a la cosmología en			
	un futuro próximo.			
	CAMB para teorias tensoriales escalares			
	OAMS para teorias terisoriaios escalares			
ANA AVILEZ	En esta breve platica hablare sobre una modificacion del codigo CAMB			
	para teorias de gravedad modificada por un campo escalar.			
	Mostrare brevemente la implementacion de las			
	ecuaciones de movimiento asi como de una parametrizacion adecuaca			
	para teorias de este tipo. Mostrare la evolucion del campo			
	a nivel del background y sus perturbaciones calculada con CAMB.			
JUAN CARLOS	En esta plática revisaremos algunos fundamentos metodológicos	https://mini-taller.github.io/Mini-Taller-2017.github.io/assets/17-04.Cinvestav Taller.html		
MARTÍNEZ-OVANDO	asociados con el paradigma bayesiano de aprendizaje estadístico (inferencial y			
	predictivo). Prestaremos particular atención a la especificación de estructuras			
	de dependencia estocástica en modelación, así como a la revisión de herramientas			
	computacionales contemporáneas para su implementación práctica. La plática			
	intentará ser interactiva, por lo que varios ejemplos serán presentados en el			
	lenguaje de programación R junto con la revisión metodológica del paradigma.			
DUCLAN CARRACOV	Codest 2 co un ofdire de dessirie núblice con circulations de			
RUSLAN GABBASOV	Gadget-2 es un código de dominio público para simulaciones de	Las ligas a los programas para descargar:		
	N-cuerpos con la hidrodinámica SPH. Gadget-2 calcula las fuerzas	http://wwwmpa.mpa-garching.mpg.de/gadget/gadget-2.0.7.tar.gz		
	gravitacionales con un algoritmo de árbol jerárquico (opcionalmente en	http://wwwmpa.mpa-garching.mpg.de/gadget/n-genic.tar.gz		
	combinación con un esquema de partícula – malla para fuerzas	http://mirror.keystealth.org/gnu/gsl/gsl-1.16.tar.gz		
	gravitacionales largo alcance) y representa fluidos por medio de la	http://www.fftw.org/fftw-2.1.5.tar.gz		
	hidrodinámica de partículas suavizadas (SPH). Gadget-2 se puede	http://lastro.epfl.ch/misc/TP4/doc/_downloads/fof.tar.gz		
	utilizar para hacer frente a una ámplia gama de problemas	http://astro.dur.ac.uk/~jch/gadgetviewer/index.html		
	astrofísicamente interesantes que van desde sistemas de N-cuerpos,			
	medio interestelar turbulento, hasta interacción y colision de	Tutoriales:		

	galáxias y formación de estuctura del Universo a gran escala.		http://wwwmpa.mpa-garching.mpg.de/gadget/ http://obswww.unige.ch/lastro/misc/TP4/doc/rst/Exercices/Ex05.html			
		1				
	En la primer parte de la charla se darán a conocer las principales		https://astrobites.org/2011/04/02/installing-and-running-gadget-2/			
	características del código y	1	http://astro.phy.vanderbilt.edu/~sinham/tutorials.html			
	una descripción general de los algorítmos utilizados. La segunda parte					
	estará dedicada a la					
	instalación y ejecución de un ejemplo de simulación cosmológica.					
MARIANA JABER	En esta charla se introducirán códigos que permitan interpretar y			http://nbodykit	.readthedocs.io/en/latest/	
	analizar la salida de simulaciones de N cuerpos (como Gadget o COLA),			https://www.continuum.io/downloads		
	así como datos provenientes de catálogos sintéticos ("mocks") o de censos de	galaxias	3.	Readme		
	САМВ					
ERICK ALMARAZ	The Boltzmann code CAMB is a common tool used in cosmology					
	for solving the Einstein linear perturbation equations. It provides a complete					
	machinery for modeling the dynamical evolution of the universe considering all					
	its constituents. It is also the first step to be considered for making a MCMC					
	analysis in the CosmoMC framework. In this short talk I'll introduce the novice					
	to use the code. I'll give an overlook of the program to identify where the					
	physics is encoded, how to retrieve the outputs and what are the parts one has					
	to address if one wants to implement a non standard cosmology.					
	соѕмомс					
	CosmoMC is one of the most used tools in cosmology to test					
	theoretical models against observations. In this second talk I'll complete my					
	exposition on CAMB by giving the basics to perform a MCMC analysis to					
	constrain a cosmological model.					
	Materia oscura con un campo escalar en el código CLASS					
LUIS UREÑA	Durante el último año ha habido un gran interés en el modelo de materia		https://github.c	om/lesgourg/clas	s_public	
	oscura con un campo escalar ultra-ligero, lo que significa que tiene una masa d	е				
	alrededor de 10 -21 eV . Los estudios recientes del modelo incluyen, entre otro	s,				
	los efectos que tendría esta hipótesis en la formación de estructura cosmológic	a,				
	la estructura y evolución de galaxias enanas y de las galaxias en general, camb	oios				
	en la señal del Lyman-alpha forest, etc. En esta plática revisaremos brevement	е				
	algunos de estos aspectos para el modelo, para enfocarnos después en los del	alles				
	técnicos para incorporar un campo escalar de este tipo en el código CLASS					

	(Cosmic Linear Anisotropy Solving System) y obtener los perfiles característicos	
	de las anisotropias de temperatura y del mass power spectrum. Se recomienda	
	que antes de la plática se instale el código CLASS y se corran los ejemplos de	
	prueba recomendados para el mismo; tanto el código como la documentación	
	del mismo se pueden encontrar aquí:	
	Mejoras al algoritmo K-means y su aplicación en el área de Salud.	
	Mejoras ai algoritino K-ineans y su aplicación en el area de Salud.	
JOAQUIN PÉREZ	Esta pequeña charla tiene tres objetivos: a) Divulgar los trabajos realizados	
	para mejorar algoritmos de agrupamiento (clustering), en particular K-Means,	
	desarrollados en el Centro Nacional de Investigación y Desarrollo Tecnológico, b)	
	Mostrar un ejemplo del uso de las mejoras en una aplicación de Minería de Datos	
	en el área de epidemiología, y c) buscamos interactuar con los asistentes para	
	identificar posibles problemas reales en cuya solución puedan contribuir nuestros	
	algoritmos mejorados, ya que se sabe que los algoritmos de agrupamiento pueden	
	ser usados en otros dominios.	
JOSUÉ DE SANTIAGO	En cete teller ecosibiremes un programa cete que nos permitirá entender les	attract/mini taller github is/Mini Teller 2017 github is/secots/DEOUSITOS LOCUE adf
JUSUE DE SANTIAGO		https://mini-taller.github.io/Mini-Taller-2017.github.io/assets/REQUISITOS_JOSUE.pdf
	conceptos básicos de los métodos de Monte Carlo con cadenas de Markov y en	
	particular el método de Metropolis. Usaremos datos del catálogo "Union 2" de	
	supernovas tipo la del Supernova Cosmology Project, con las cuales acotaremos	
	el rango de parámetros de un modelo tipo LCDM plano.	
FRANCISCO LINARES		
OCTAVIO VALENZUELA		
ALBERTO VAZQUEZ		