Problem Set 9

Economemtrics

3a.

```
library(stats)
library(AER)
## Loading required package: car
## Loading required package: carData
## Loading required package: lmtest
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
       as.Date, as.Date.numeric
##
## Loading required package: sandwich
## Loading required package: survival
load("Angrist804049.Rda")
Angrist804049$YOB <- factor(Angrist804049$YOB)</pre>
Angrist804049$QOB <- factor(Angrist804049$QOB)</pre>
dummies <- model.matrix(~ QOB - 1, data = Angrist804049)</pre>
```

```
dummies <- as.data.frame(dummies)
colnames(dummies) <- c("Q1", "Q2", "Q3", "Q4")
Angrist804049 <- cbind(Angrist804049, dummies)

dummies <- model.matrix(~ Y0B - 1, data = Angrist804049)
dummies <- as.data.frame(dummies)
Angrist804049 <- cbind(Angrist804049, dummies)

head(Angrist804049)</pre>
```

##		AGE	AGE	EQ v3	EDUC	E	ENOCE	ENT	ESO	CENT	v7		v8	LWK	ΚLΥW	IGE M	IARRIED	MIDATL	
##	247200	47	47.0	00 2	12	2		0		0	14	10.	197089	6.2	2458	346	1	0	
##	247201	46	46.2	25 2	12	2		0		0	14	9.	798405	5.8	3471	.61	1	0	
##	247203	47	47.0	0 2	16	3		0		0	18	10.	657377	6.7	7061	.33	1	0	
##	247204	42	42.2	25 2	14	Ļ		0		0	16	10.	309119	6.3	3578	376	1	0	
##	247205	44	44.2	25 2	12	2		0		0	14	9.3	393079	5.4	1418	35	1	0	
##	247206	42	42.0	0 2	12	2		0		0	14	10.	341904	6.3	3906	60	1	0	
##		MT I	NEWEN	IG v1	4 v15	5 C	ENSU	JS 7	v17	QOB 1	RACI	E SM	SA SOA	TL v	122	v23	WNOCENT	WSOCEN	Τ
##	247200	0		0	0 1	-	8	30	1	1		L	0	0	2	52	C)	0
##	247201	0		0	0 1	-	8	30	48	4		L	0	0	2	52	C)	0
##	247203	0		0	0 1	-	8	30	22	1		L	0	0	2	52	C)	0
##	247204	0		0	0 1	-	8	30	42	4		L	0	0	2	52	C)	0
##	247205	0		0	0 1	_	8	30	5	4		L	0	0	2	52	C)	0
##	247206	0		0	0 1	_	8	30	42	1		L	0	0	2	52	C)	0
##		v26	YOB	AGE	Q_SQ	Q1	. Q2	QЗ	Q4	YOB3	0 Y()B31	Y0B32	YOE	333	YOB3	4 YOB35	Y0B36	
##	247200	0	33	2209	.000	1	. 0	0	0	(0	0	0		1		0 0	0	
##	247201	0	33	2139	.062	0	0	0	1	(0	0	0		1		0 0	0	
##	247203	0	33	2209	.000	1	. 0	0	0	(0	0	0		1		0 0	0	
##	247204	0	37	1785	.062	0	0	0	1	(0	0	0		0		0 0	0	
##	247205	0	35	1958	.062	0	0	0	1	(0	0	0		0		0 1	. 0	

```
## 247206
           0 38 1764.000 1 0 0 0
                                       0
                                             0
                                                   0
                                                        0
                                                              0
                                                                   0
         YOB37 YOB38 YOB39 YOB40
##
                  0
## 247200
            0
                        0
                             0
## 247201
                  0
                        0
                             0
## 247203
            0
                  0
                        0
                             0
## 247204
                        0
            1
                  0
                             0
## 247205
            0
                  0
                        0
                             0
## 247206
                        0
                             0
            0
                  1
3b.
iv_1 \leftarrow lm(EDUC \sim Q1 + Q2 + Q3, data = Angrist804049)
print(coeftest(iv_1, vcov = vcovHC(iv_1, type = "HCO")))
##
## t test of coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
##
## Q1
             0.016366 -5.7873 7.158e-09 ***
## Q2
             -0.094716
## Q3
             -0.034018
                        0.015846
                                   -2.1467
                                            0.03181 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Being born in Q1 is associated with lower education levels.
yob dummies <- paste0("YOB", unique(Angrist804049$YOB))</pre>
yob dummies <- paste(yob dummies, collapse = " + ")</pre>
formula <- as.formula(paste(</pre>
 EDUC ~ Q1 + Q2 + Q3 + RACE + MARRIED + SMSA + NEWENG +
 MIDATL + ENOCENT + WNOCENT + SOATL + ESOCENT + WSOCENT + MT +
```

0

```
AGE + AGEQ +
 yob_dummies
))
iv_2 <- lm(
 formula,
 data = Angrist804049
)
print(coeftest(iv_2, vcov = vcovHC(iv_2, type = "HCO")))
##
## t test of coefficients:
##
##
            Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.43571000 0.21587930 76.1338 < 2.2e-16 ***
## Q1
          -0.06717663  0.01592117  -4.2193  2.451e-05 ***
## Q2
         ## Q3
          ## RACE
          -1.56482985 0.02130454 -73.4505 < 2.2e-16 ***
## MARRIED
         ## SMSA
          ## NEWENG
          ## MIDATL
          -0.68112255 0.01990698 -34.2153 < 2.2e-16 ***
## ENOCENT
          ## WNOCENT
          -0.72469285  0.02433567  -29.7790  < 2.2e-16 ***
## SOATL
          -1.09635926  0.02094968  -52.3330  < 2.2e-16 ***
## ESOCENT
          ## WSOCENT
          -0.93841557  0.02423990  -38.7137  < 2.2e-16 ***
```

```
## MT
            0.00473072 -12.6057 < 2.2e-16 ***
## AGE
            -0.05963431
## YOB33
             0.00564696
                      0.02491435
                                 0.2267 0.820692
                                -0.4895 0.624476
## YOB37
            -0.01347382
                      0.02752471
## YOB35
            -0.00622840
                      0.02435304 -0.2558 0.798141
## YOB38
             0.01269620 0.03008588
                                0.4220 0.673026
## YOB39
            -0.00039777 0.03321564 -0.0120 0.990445
## YOB36
            -0.02022262 0.02555575 -0.7913 0.428761
## YOB34
            ## YOB31
            0.00659285 0.02822459
                                0.2336 0.815307
## YOB30
            -0.03794129 0.03210385 -1.1818 0.237274
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Yes, there is an association between being born in Q1 and education levels.

3c.

```
means <- aggregate(
  cbind(EDUC, LWKLYWGE) ~ Q1,
  data = Angrist804049, FUN = mean
)

diff_educ <- means$EDUC[1] - means$EDUC[2]

diff_wage <- means$LWKLYWGE[1] - means$LWKLYWGE[2]

result <- diff_wage / diff_educ

print(result)</pre>
```

[1] 0.4433921

The Wald Estimator from the paper is 0.102. The result obstained here is higher at 0.443.

3d.

```
iv 3 <- ivreg(LWKLYWGE ~ EDUC | EDUC + Q1 + Q2 + Q3, data = Angrist804049)</pre>
summary(iv_3, vcov = vcovHC(iv_3, type = "HCO"))
##
## Call:
## ivreg(formula = LWKLYWGE ~ EDUC | EDUC + Q1 + Q2 + Q3, data = Angrist804049)
##
## Residuals:
        Min
                       Median
                                     30
##
                  10
                                             Max
## -8.75313 -0.23836 0.07355 0.33226 4.63850
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 4.9913306 0.0050866 981.3 <2e-16 ***
## EDUC
               0.0709998 0.0003815 186.1
                                               <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6376 on 330448 degrees of freedom
## Multiple R-Squared: 0.1172, Adjusted R-squared: 0.1172
## Wald test: 3.464e+04 on 1 and 330448 DF, p-value: < 2.2e-16
Compared to the Wald estimator above at 0.443, the Iv estimator is lower at 0.071.
3e.
yob dummies <- paste0("YOB", unique(Angrist804049$YOB))</pre>
interactions <- c()</pre>
for (yob in yob_dummies) {
  for (q in c("Q1", "Q2", "Q3")) {
    interactions <- c(interactions, pasteO(yob, ":", q))</pre>
```

```
}
}
interactions <- paste(interactions, collapse = " + ")</pre>
formula_string <- paste(</pre>
  LWKLYWGE ~ EDUC + RACE + MARRIED + SMSA + NEWENG +
    MIDATL + ENOCENT + WNOCENT + SOATL + ESOCENT + WSOCENT + MT + AGE + AGEQ +
  yob dummies,
  "| EDUC + RACE + MARRIED + SMSA +
      NEWENG + MIDATL + ENOCENT + WNOCENT + SOATL +
      ESOCENT + WSOCENT + MT + AGE + AGEQ +",
  interactions,
  " + ",
  yob_dummies
)
iv_4 <- ivreg(</pre>
  formula_string,
  data = Angrist804049
)
## Warning: Using formula(x) is deprecated when x is a character vector of length > 1.
     Consider formula(paste(x, collapse = " ")) instead.
##
summary iv 4 <- summary(iv 4, vcov = vcovHC(iv 4, type = "HCO"))</pre>
print(paste("IV estimator: ", summary iv 4$coef["EDUC", "Estimate"]))
## [1] "IV estimator: 0.0634209458967026"
```

```
print(paste("IV standard error: ", summary iv 4$coef["EDUC", "Std. Error"]))
## [1] "IV standard error: 0.000377385920475481"
The original paper has the Iv estimator at 0.0891 and the standard error at 0.0161. By
caomparison, the coefficient obtained here is lower at 0.0634 and the standard error is
significantly lower ay 0.000377.
3f.
ols <- lm(
  LWKLYWGE ~ EDUC + RACE + MARRIED + SMSA + NEWENG +
    MIDATL + ENOCENT + WNOCENT + SOATL + ESOCENT + WSOCENT + MT + AGE + AGEQ,
  data = Angrist804049
)
summary ols <- summary(ols)</pre>
print(paste("OLS estimator: ", summary_ols$coef["EDUC", "Estimate"]))
## [1] "OLS estimator: 0.0634212451232428"
print(paste("OLS standard error: ", summary_ols$coef["EDUC", "Std. Error"]))
## [1] "OLS standard error: 0.000339592370276197"
3g.
formula string <- paste(</pre>
  11
  LWKLYWGE ~ EDUC + RACE + MARRIED + SMSA + NEWENG +
    MIDATL + ENOCENT + WNOCENT + SOATL + ESOCENT + WSOCENT + MT + AGE + AGEQ +
```

yob_dummies

)

```
ols <- lm(
  formula_string,
  data = Angrist804049
)
## Warning: Using formula(x) is deprecated when x is a character vector of length > 1.
     Consider formula(paste(x, collapse = " ")) instead.
##
iv_interval <- confint(</pre>
  iv_4, "EDUC",
  level = 0.95, vcov = vcovHC(iv_4, type = "HCO")
)
ols_interval <- confint(</pre>
  ols, "EDUC",
  level = 0.95, vcov = vcovHC(ols, type = "HCO")
)
print(paste("IV 95% confidence interval: ", iv interval))
## [1] "IV 95% confidence interval: 0.0627553556809159"
## [2] "IV 95% confidence interval: 0.0640865361124894"
print(paste("OLS 95% confidence interval: ", ols interval))
## [1] "OLS 95% confidence interval: 0.0627553532428805"
## [2] "OLS 95% confidence interval: 0.064086538550525"
```

The confidence intervals for OLS and IVs are very similar.