Particle Filters

Ed Herbst

November 19, 2019

From Linear to Nonlinear (DSGE) Models

While DSGE models are inherently nonlinear, the nonlinearities are often small and decision rules are approximately linear.

- One can add certain features that generate more pronounced nonlinearities:
 - stochastic volatility;
 - markov switching coefficients;
 - asymmetric adjustment costs;
 - occasionally binding constraints.

From Linear to Nonlinear (DSGE) Models

Linear DSGE model leads to

$$y_t = \Psi_0(\theta) + \Psi_1(\theta)t + \Psi_2(\theta)s_t + u_t, \quad u_t \sim N(0, \Sigma_u),$$

$$s_t = \Phi_1(\theta)s_{t-1} + \Phi_{\epsilon}(\theta)\epsilon_t, \quad \epsilon_t \sim N(0, \Sigma_{\epsilon}).$$

Nonlinear DSGE model leads to

$$y_t = \Psi(s_t, t; \theta) + u_t, \quad u_t \sim F_u(\cdot; \theta)$$

$$s_t = \Phi(s_{t-1}, \epsilon_t; \theta), \quad \epsilon_t \sim F_\epsilon(\cdot; \theta).$$

Some nonlinear models in macro

Gust et al. (2017): estimates a nonlinear DSGE subject to the zero lower bound.

Bocola (2016): a nonlinear model of sovereign default.

Fernndez-Villaverde et al. (2009): a macroeconomic model with stochastic volatility.

Key question: how to estimate model using likelihood techniques?

Cannot use Kalman filter – instead use a particle filter.

Particle Filters

There are many particle filters...

We will focus on three types:

- Bootstrap PF
- 2. A generic PF
- 3. A conditionally-optimal PF

Filtering - General Idea

State-space representation of nonlinear DSGE model

Measurement Eq. : $y_t = \Psi(s_t, t; \theta) + u_t$, $u_t \sim F_u(\cdot; \theta)$

State Transition : $s_t = \Phi(s_{t-1}, \epsilon_t; \theta), \quad \epsilon_t \sim F_{\epsilon}(\cdot; \theta).$

Likelihood function: $p(Y_{1:T}|\theta) = \prod_{t=1}^{T} p(y_t|Y_{1:t-1},\theta)$

A <u>filter</u> generates a sequence of conditional distributions $s_t | Y_{1:t}$.

- 1. Initialization at time t-1: $p(s_{t-1}|Y_{1:t-1},\theta)$
- 2. Forecasting t given t 1:
 - ► Transition equation: $p(s_t|Y_{1:t-1},\theta) = \int p(s_t|s_{t-1},Y_{1:t-1},\theta)p(s_{t-1}|Y_{1:t-1},\theta)ds_{t-1}$
 - Measurement equation: $p(y_t|Y_{1:t-1},\theta) = \int p(y_t|s_t,Y_{1:t-1},\theta)p(s_t|Y_{1:t-1},\theta)ds_t$
- 3. Updating with Bayes theorem. Once y_t becomes available:

$$p(s_t|Y_{1:t},\theta) = p(s_t|y_t,Y_{1:t-1},\theta) = \frac{p(y_t|s_t,Y_{1:t-1},\theta)p(s_t|Y_{1:t-1},\theta)}{p(y_t|Y_{1:t-1},\theta)}$$

- 1. **Initialization.** Draw the initial particles from the distribution $s_0^j \stackrel{iid}{\sim} p(s_0)$ and set $W_0^j = 1, j = 1, ..., M$.
- **2. Recursion.** For t = 1, ..., T:
 - 2.1 **Forecasting** s_t . Propagate the period t-1 particles $\{s_{t-1}^j, W_{t-1}^j\}$ by iterating the state-transition equation forward:

$$\tilde{\mathbf{s}}_{t}^{j} = \Phi(\mathbf{s}_{t-1}^{j}, \epsilon_{t}^{j}; \theta), \quad \epsilon_{t}^{j} \sim F_{\epsilon}(\cdot; \theta). \tag{1}$$

An approximation of $\mathbb{E}[h(s_t)|Y_{1:t-1},\theta]$ is given by

$$\hat{h}_{t,M} = \frac{1}{M} \sum_{i=1}^{M} h(\tilde{s}_t^i) W_{t-1}^j.$$
 (2)

- 1. Initialization.
- **2. Recursion.** For t = 1, ..., T:
 - 2.1 Forecasting s_t .
 - 2.2 Forecasting y_t . Define the incremental weights

$$\tilde{\mathbf{w}}_t^j = \mathbf{p}(\mathbf{y}_t | \tilde{\mathbf{s}}_t^j, \theta). \tag{3}$$

The predictive density $p(y_t|Y_{1:t-1},\theta)$ can be approximated by

$$\hat{\rho}(y_t|Y_{1:t-1},\theta) = \frac{1}{M} \sum_{i=1}^{M} \tilde{W}_t^i W_{t-1}^i.$$
 (4)

If the measurement errors are $N(0, \Sigma_u)$ then the incremental weights take the form

$$\tilde{\mathbf{w}}_t^j = (2\pi)^{-n/2} |\Sigma_u|^{-1/2} \exp\left\{-\frac{1}{2} \left(\mathbf{y}_t - \Psi(\tilde{\mathbf{s}}_t^j, t; \theta)\right)' \Sigma_u^{-1} \left(\mathbf{y}_t - \Psi(\tilde{\mathbf{s}}_t^j, t; \theta)\right)\right\},$$

where n here denotes the dimension of y_t .

- 1. Initialization.
- **2. Recursion.** For t = 1, ..., T:
 - 2.1 Forecasting s_t .
 - 2.2 **Forecasting** y_t **.** Define the incremental weights

$$\tilde{\mathbf{w}}_t^j = \mathbf{p}(\mathbf{y}_t | \tilde{\mathbf{s}}_t^j, \theta). \tag{6}$$

2.3 **Updating.** Define the normalized weights

$$\tilde{W}_{t}^{j} = \frac{\tilde{w}_{t}^{j} W_{t-1}^{j}}{\frac{1}{M} \sum_{j=1}^{M} \tilde{w}_{t}^{j} W_{t-1}^{j}}.$$
 (7)

An approximation of $\mathbb{E}[h(s_t)|Y_{1:t},\theta]$ is given by

$$\tilde{h}_{t,M} = \frac{1}{M} \sum_{i=1}^{M} h(\tilde{s}_t^i) \tilde{W}_t^j. \tag{8}$$

- 1. Initialization.
- **2. Recursion.** For t = 1, ..., T:
 - 2.1 Forecasting s_t .
 - 2.2 Forecasting y_t .
 - 2.3 Updating.
 - 2.4 **Selection (Optional).** Resample the particles via multinomial resampling. Let $\{s_t^j\}_{j=1}^M$ denote M iid draws from a multinomial distribution characterized by support points and weights $\{\tilde{s}_t^j, \tilde{W}_t^j\}$ and set $W_t^j = 1$ for $j = 1, \dots, M$. An approximation of $\mathbb{E}[h(s_t)|Y_{1:t}, \theta]$ is given by

$$\bar{h}_{t,M} = \frac{1}{M} \sum_{i=1}^{M} h(s_t^i) W_t^i.$$
 (9)

Likelihood Approximation

The approximation of the log likelihood function is given by

$$\ln \hat{\rho}(Y_{1:T}|\theta) = \sum_{t=1}^{T} \ln \left(\frac{1}{M} \sum_{j=1}^{M} \tilde{w}_{t}^{j} W_{t-1}^{j} \right).$$
 (10)

- One can show that the approximation of the likelihood function is unbiased.
- This implies that the approximation of the log likelihood function is downward biased.

The Role of Measurement Errors

- Measurement errors may not be intrinsic to DSGE model.
- ▶ Bootstrap filter needs non-degenerate $p(y_t|s_t, \theta)$ for incremental weights to be well defined.
- Decreasing the measurement error variance Σ_u, holding everything else fixed, increases the variance of the particle weights, and reduces the accuracy of Monte Carlo approximation.

An empirical introduction to BSPF

Let's check the BSPF on a linear process

$$s_t = \rho s_{t-1} + \sigma_e \epsilon_t, \quad \epsilon_t \sim N(0,1)$$

 $y_t = 2s_t + \sigma_u u_t, \quad u_t \sim N(0,1)$

Let's also assume that $s_0 \sim N(1, 1)$.

$$\rho = 0.8.$$

$$\sigma_e = 0.1$$

We are going to go through one iteration as the particle filter, with M=1000 particles.

Initialization

To obtain draws from s_0 , we draw 1000 particles from a N(1, 1).

Forecasting s₁

For each of the 1000 particles, we simulate from $s_1^i = \rho s_0^i + \sigma_e e^i$ with $e^i \sim N(0, 1)$.

Updating s₁

Now it's time to reweight the particles based on the how well they actually predicted y_1 .

To predict y_1 , we simply multiply s_t^i by 2.

How good is this prediction, let's think about in the context of ME.

$$y_1 = 0.2, \quad \sigma_u \in \{0.05, 0.3, 0.5\}$$

If the ME is very small, the only particles that make very accurate predictions are worthwhile.

Predicting y₁

Updated s_1 , $\sigma_u = 0.3$

Updated s_1 , $\sigma_u = 0.5$

Updated s_1 , $\sigma_u = 0.05$

Generic Particle Filter

- Initialization. Same as BS PF
- **2. Recursion.** For t = 1, ..., T:
 - 2.1 Forecasting s_t . Draw \tilde{s}_t^l from density $g_t(\tilde{s}_t|s_{t-1}^l,\theta)$ and define

$$\omega_t^j = \frac{p(\tilde{\mathbf{s}}_t^j | \mathbf{s}_{t-1}^j, \theta)}{g_t(\tilde{\mathbf{s}}_t^j | \mathbf{s}_{t-1}^j, \theta)}.$$
 (11)

An approximation of $\mathbb{E}[h(s_t)|Y_{1:t-1},\theta]$ is given by

$$\hat{h}_{t,M} = \frac{1}{M} \sum_{i=1}^{M} h(\tilde{s}_{t}^{j}) \omega_{t}^{j} W_{t-1}^{j}.$$
 (12)

2.2 **Forecasting** y_t . Define the incremental weights $\tilde{w}_t^j = p(y_t|\tilde{s}_t^j, \theta)\omega_t^j$.

The predictive density $p(y_t|Y_{1:t-1},\theta)$ can be approximated by

$$\hat{p}(y_t|Y_{1:t-1},\theta) = \frac{1}{M} \sum_{i=1}^{M} \tilde{w}_t^j W_{t-1}^j.$$
 (13)

- 2.3 **Updating.** Same as BS PF
- 2.4 **Selection.** Same as BS PF

Asymptotics

► The convergence results can be established recursively, starting from the assumption

$$ar{h}_{t-1,M} \stackrel{a.s.}{\longrightarrow} \mathbb{E}[h(s_{t-1})|Y_{1:t-1}],$$

$$\sqrt{M}(ar{h}_{t-1,M} - \mathbb{E}[h(s_{t-1})|Y_{1:t-1}]) \implies N(0,\Omega_{t-1}(h)).$$

- ► Forward iteration: draw s_t from $g_t(s_t|s_{t-1}^j) = p(s_t|s_{t-1}^j)$.
- Decompose

$$\hat{h}_{t,M} - \mathbb{E}[h(s_t)|Y_{1:t-1}] \qquad (14)$$

$$= \frac{1}{M} \sum_{j=1}^{M} \left(h(\tilde{s}_t^j) - \mathbb{E}_{p(\cdot|s_{t-1}^j)}[h] \right) W_{t-1}^j$$

$$+ \frac{1}{M} \sum_{j=1}^{M} \left(\mathbb{E}_{p(\cdot|s_{t-1}^j)}[h] W_{t-1}^j - \mathbb{E}[h(s_t)|Y_{1:t-1}] \right)$$

$$= I + II.$$

Both I and II converge to zero (and potentially satisfy CLT).

Asymptotics

Updating step approximates

$$\mathbb{E}[h(s_t)|Y_{1:t}] = \frac{\int h(s_t)p(y_t|s_t)p(s_t|Y_{1:t-1})ds_t}{\int p(y_t|s_t)p(s_t|Y_{1:t-1})ds_t} \approx \frac{\frac{1}{M}\sum_{j=1}^{M}h(\tilde{s}_t^j)\tilde{w}_t^jW_{t-1}^j}{\frac{1}{M}\sum_{j=1}^{M}\tilde{w}_t^jW_{t-1}^j}$$
(15)

Define the normalized incremental weights as

$$v_t(s_t) = \frac{p(y_t|s_t)}{\int p(y_t|s_t)p(s_t|Y_{1:t-1})ds_t}.$$
 (16)

 Under suitable regularity conditions, the Monte Carlo approximation satisfies a CLT of the form

$$\sqrt{M}(\tilde{h}_{t,M} - \mathbb{E}[h(s_t)|Y_{1:t}]) \qquad (17)$$

$$\Longrightarrow N(0, \tilde{\Omega}_t(h)), \quad \tilde{\Omega}_t(h) = \hat{\Omega}_t(v_t(s_t)(h(s_t) - \mathbb{E}[h(s_t)|Y_{1:t}])).$$

▶ Distribution of particle weights matters for accuracy! ⇒ Resampling!

Adapting the Generic PF

Conditionally-optimal importance distribution:

$$g_t(\tilde{\mathbf{s}}_t|\mathbf{s}_{t-1}^j) = p(\tilde{\mathbf{s}}_t|\mathbf{y}_t,\mathbf{s}_{t-1}^j).$$

This is the posterior of s_t given s_{t-1}^j . Typically infeasible, but a good benchmark.

- Approximately conditionally-optimal distributions: from linearize version of DSGE model or approximate nonlinear filters.
- Conditionally-linear models: do Kalman filter updating on a subvector of s_t. Example:

$$y_t = \Psi_0(m_t) + \Psi_1(m_t)t + \Psi_2(m_t)s_t + u_t, \quad u_t \sim N(0, \Sigma_u), s_t = \Phi_0(m_t) + \Phi_1(m_t)s_{t-1} + \Phi_{\epsilon}(m_t)\epsilon_t, \quad \epsilon_t \sim N(0, \Sigma_{\epsilon}),$$

where m_t follows a discrete Markov-switching process.

More on Conditionally-Linear Models

- \triangleright State-space representation is linear conditional on m_t .
- Write

$$p(m_t, s_t | Y_{1:t}) = p(m_t | Y_{1:t}) p(s_t | m_t, Y_{1:t}),$$
 (18)

where

$$s_t|(m_t, Y_{1:t}) \sim N(\bar{s}_{t|t}(m_t), P_{t|t}(m_t)).$$
 (19)
 Vector of means $\bar{s}_{t|t}(m_t)$ and the covariance matrix $P_{t|t}(m)_t$

- are sufficient statistics for the conditional distribution of s_t .
- ▶ Approximate $(m_t, s_t)|Y_{1:t}$ by $\{m_t^j, \bar{s}_{t|t}^j, P_{t|t}^j, W_t^j\}_{i=1}^N$.
- ► The swarm of particles approximates

$$\int h(m_t, s_t) p(m_t, s_t, Y_{1:t}) d(m_t, s_t)$$

$$= \int \left[\int h(m_t, s_t) p(s_t | m_t, Y_{1:t}) ds_t \right] p(m_t | Y_{1:t}) dm_t$$

$$\approx \frac{1}{M} \sum_{i=1}^{M} \left[\int h(m_t^j, s_t^j) p_N(s_t | \bar{s}_{t|t}^j, P_{t|t}^j) ds_t \right] W_t^j.$$
(20)

More on Conditionally-Linear Models

▶ We used Rao-Blackwellization to reduce variance:

$$V[h(s_t, m_t)] = \mathbb{E}[V[h(s_t, m_t)|m_t]] + V[\mathbb{E}[h(s_t, m_t)|m_t]]$$

$$\geq V[\mathbb{E}[h(s_t, m_t)|m_t]]$$

► To forecast the states in period t, generate \tilde{m}_t^j from $g_t(\tilde{m}_t|m_{t-1}^j)$ and define:

$$\omega_t^j = \frac{p(\tilde{m}_t^j | m_{t-1}^j)}{g_t(\tilde{m}_t^j | m_{t-1}^j)}.$$
 (21)

▶ The Kalman filter forecasting step can be used to compute:

$$\tilde{S}_{t|t-1}^{j} = \Phi_{0}(\tilde{m}_{t}^{j}) + \Phi_{1}(\tilde{m}_{t}^{j}) S_{t-1}^{j}
P_{t|t-1}^{j} = \Phi_{\epsilon}(\tilde{m}_{t}^{j}) \Sigma_{\epsilon}(\tilde{m}_{t}^{j}) \Phi_{\epsilon}(\tilde{m}_{t}^{j})'
\tilde{y}_{t|t-1}^{j} = \Psi_{0}(\tilde{m}_{t}^{j}) + \Psi_{1}(\tilde{m}_{t}^{j}) t + \Psi_{2}(\tilde{m}_{t}^{j}) \tilde{S}_{t|t-1}^{j}
F_{t|t-1}^{j} = \Psi_{2}(\tilde{m}_{t}^{j}) P_{t|t-1}^{j} \Psi_{2}(\tilde{m}_{t}^{j})' + \Sigma_{u}.$$
(22)

More on Conditionally-Linear Models

Then,

$$\int h(m_{t}, s_{t}) p(m_{t}, s_{t}|Y_{1:t-1}) d(m_{t}, s_{t})$$

$$= \int \left[\int h(m_{t}, s_{t}) p(s_{t}|m_{t}, Y_{1:t-1}) ds_{t} \right] p(m_{t}|Y_{1:t-1}) dm_{t}$$

$$\approx \frac{1}{M} \sum_{i=1}^{M} \left[\int h(m_{t}^{i}, s_{t}^{j}) p_{N}(s_{t}|\tilde{s}_{t|t-1}^{j}, P_{t|t-1}^{j}) ds_{t} \right] \omega_{t}^{j} W_{t-1}^{j}$$

► The likelihood approximation is based on the incremental weights

$$\tilde{w}_{t}^{j} = p_{N}(y_{t}|\tilde{y}_{t|t-1}^{j}, F_{t|t-1}^{j})\omega_{t}^{j}.$$
(24)

Conditional on \tilde{m}_t^j we can use the Kalman filter once more to update the information about s_t in view of the current observation y_t :

$$\begin{array}{lll} \tilde{s}_{t|t}^{j} & = & \tilde{s}_{t|t-1}^{j} + P_{t|t-1}^{j} \Psi_{2}(\tilde{m}_{t}^{j})'(F_{t|t-1}^{j})^{-1}(y_{t} - \bar{y}_{t|t-1}^{j}) \\ \tilde{P}_{t|t}^{j} & = & P_{t|t-1}^{j} - P_{t|t-1}^{j} \Psi_{2}(\tilde{m}_{t}^{j})'(F_{t|t-1}^{j})^{-1} \Psi_{2}(\tilde{m}_{t}^{j}) P_{t|t-1}^{j}. \end{array}$$

Particle Filter For Conditionally Linear Models

- 1. Initialization.
- **2**. **Recursion.** For t = 1, ..., T:
 - 2.1 **Forecasting** s_t . Draw \tilde{m}_t^j from density $g_t(\tilde{m}_t|m_{t-1}^j,\theta)$, calculate the importance weights ω_t^j in (21), and compute $\tilde{s}_{t|t-1}^j$ and $P_{t|t-1}^j$ according to (22). An approximation of $\mathbb{E}[h(s_t,m_t)|Y_{1:t-1},\theta]$ is given by (24).
 - 2.2 **Forecasting** y_t . Compute the incremental weights \tilde{w}_t^j according to (24). Approximate the predictive density $p(y_t|Y_{1:t-1},\theta)$ by

$$\hat{p}(y_t|Y_{1:t-1},\theta) = \frac{1}{M} \sum_{i=1}^{M} \tilde{w}_t^j W_{t-1}^j.$$
 (26)

2.3 **Updating.** Define the normalized weights

$$\tilde{W}_{t}^{j} = \frac{\tilde{w}_{t}^{j} W_{t-1}^{j}}{\frac{1}{M} \sum_{i=1}^{M} \tilde{w}_{t}^{j} W_{t-1}^{j}}$$
(27)

and compute $\tilde{s}_{t|t}^{j}$ and $\tilde{P}_{t|t}^{j}$ according to (25). An approximation of $\mathbb{E}[h(m_t, s_t)|Y_{1:t}, \theta]$ can be obtained from

Nonlinear and Partially Deterministic State Transitions

Example:

$$s_{1,t} = \Phi_1(s_{t-1}, \epsilon_t), \quad s_{2,t} = \Phi_2(s_{t-1}), \quad \epsilon_t \sim N(0, 1).$$

- ▶ Generic filter requires evaluation of $p(s_t|s_{t-1})$.
- ▶ Define $\varsigma_t = [s_t', \epsilon_t']'$ and add identity $\epsilon_t = \epsilon_t$ to state transition.
- transition. • Factorize the density $p(\varsigma_t|\varsigma_{t-1})$ as
- $p(\varsigma_t|\varsigma_{t-1}) = p^{\epsilon}(\epsilon_t)p(s_{1,t}|s_{t-1},\epsilon_t)p(s_{2,t}|s_{t-1}).$ where $p(s_{1,t}|s_{t-1},\epsilon_t)$ and $p(s_{2,t}|s_{t-1})$ are pointmasses.
- $\dots \circ p(\sigma_{1,i}|\sigma_{i-1},\sigma_{i}) \text{ and } p(\sigma_{2,i}|\sigma_{i-1})$
- ▶ Sample innovation ϵ_t from $g_t^{\epsilon}(\epsilon_t|s_{t-1})$.

$$\begin{aligned} & \text{Then} \\ & \omega_t^j = \frac{p(\tilde{s}_t^j | s_{t-1}^j)}{g_t(\tilde{s}_t^j | s_{t-1}^j)} = \frac{p^\epsilon(\tilde{e}_t^j) p(\tilde{s}_{1,t}^j | s_{t-1}^j, \tilde{e}_t^j) p(\tilde{s}_{2,t}^j | s_{t-1}^j)}{g_t^\epsilon(\tilde{e}_t^j | s_{t-1}^j) p(\tilde{s}_{1,t}^j | s_{t-1}^j, \tilde{e}_t^j) p(\tilde{s}_{2,t}^j | s_{t-1}^j)} = \frac{p^\epsilon(\tilde{e}_t^j | s_{t-1}^j)}{g_t^\epsilon(\tilde{e}_t^j | s_{t-1}^j) p(\tilde{s}_{1,t}^j | s_{t-1}^j, \tilde{e}_t^j) p(\tilde{s}_{2,t}^j | s_{t-1}^j)} \end{aligned}$$

Degenerate Measurement Error Distributions

 Our discussion of the conditionally-optimal importance distribution suggests that in the absence of measurement errors, one has to solve the system of equations

$$y_t = \Psi(\Phi(s_{t-1}^j, \tilde{\epsilon}_t^j)),$$

to determine $\tilde{\epsilon}_t^j$ as a function of s_{t-1}^j and the current observation y_t .

Then define

$$\omega_t^j = p^{\epsilon}(\tilde{\epsilon}_t^j)$$
 and $\tilde{s}_t^j = \Phi(s_{t-1}^j, \tilde{\epsilon}_t^j)$.

- Difficulty: one has to find all solutions to a nonlinear system of equations.
- While resampling duplicates particles, the duplicated particles do not mutate, which can lead to a degeneracy.

Next Steps

- We will now apply PFs to linearized DSGE models.
- ► This allows us to compare the Monte Carlo approximation to the "truth."
- Small-scale New Keynesian DSGE model
- Smets-Wouters model

Illustration 1: Small-Scale DSGE Model

Parameter Values For Likelihood Evaluation

Parameter	θ^{m}	θ'	Parameter	θ^{m}	θ^I
$\overline{\tau}$	2.09	3.26	κ	0.98	0.89
ψ_{1}	2.25	1.88	ψ_{2}	0.65	0.53
$ ho_{ extsf{r}}$	0.81	0.76	$ ho_{oldsymbol{\mathcal{G}}}$	0.98	0.98
$ ho_{Z}$	0.93	0.89	$r^{(A)}$	0.34	0.19
$\pi^{(A)}$	3.16	3.29	$\gamma^{(Q)}$	0.51	0.73
$\sigma_{\it r}$	0.19	0.20	$\sigma_{m{g}}$	0.65	0.58
σ_{Z}	0.24	0.29	$\ln p(Y \theta)$	-306.5	-313.4

Likelihood Approximation

<u>Notes</u>: The results depicted in the figure are based on a single run of the bootstrap PF (dashed, M = 40,000), the conditionally-optimal PF (dotted, M = 400), and the Kalman filter (solid).

Filtered State

Notes: The results depicted in the figure are based on a single run of the bootstrap PF (dashed, M = 40,000), the conditionally-optimal PF (dotted, M = 400), and the Kalman filter (solid)

Distribution of Log-Likelihood Approximation Errors

Notes: Density estimate of $\hat{\Delta}_1 = \ln \hat{p}(Y_{1:T}|\theta) - \ln p(Y_{1:T}|\theta)$ based on $N_{run} = 100$ runs of the PF. Solid line is $\theta = \theta^m$; dashed line is $\theta = \theta^l$ (M = 40,000).

Distribution of Log-Likelihood Approximation Errors}

Notes: Density estimate of $\hat{\Delta}_1 = \ln \hat{p}(Y_{1:T}|\theta) - \ln p(Y_{1:T}|\theta)$ based on $N_{run} = 100$ runs of the PF. Solid line is bootstrap particle filter (M = 40,000); dotted line is conditionally optimal particle filter (M = 400).

Summary Statistics for Particle Filters

strap Co ,000	nd. Opt.	Auxiliary					
000							
,000	400	40,000					
100	100	100					
High Posterior Density: $\theta = \theta^m$							
1.39	-0.10	-2.83					
2.03	0.37	1.87					
0.32	-0.03	-0.74					
Low Posterior Density: $\theta = \theta^I$							
7.01	-0.11	-6.44					
4.68	0.44	4.19					
0.70	-0.02	-0.50					
	100 Density: <i>θ</i> 1.39 2.03 0.32	100 100 $\frac{100}{1.39} = \theta^{m}$ 1.39 -0.10 $\frac{100}{1.39} = \frac{100}{1.39}$ 0.37 $\frac{100}{1.39} = \frac{100}{1.39}$ 0.32 -0.03 $\frac{100}{1.39} = \frac{100}{1.39}$ 7.01 -0.11 $\frac{100}{1.39} = \frac{100}{1.39}$ 0.44					

Notes: $\hat{\Delta}_1 = \ln \hat{p}(Y_{1:T}|\theta) - \ln p(Y_{1:T}|\theta)$ and $\hat{\Delta}_2 = \exp[\ln \hat{p}(Y_{1:T}|\theta) - \ln p(Y_{1:T}|\theta)] - 1$. Results are based on $N_{run} = 100$ runs of the particle filters.

Great Recession and Beyond

<u>Notes</u>: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap particle filter (M = 40,000) and dotted lines correspond to conditionally-optimal particle filter (M = 400). Results are based on $N_{run} = 100$ runs of the filters.

Great Recession and Beyond

Mean of Log-likelihood Increments $\ln \hat{p}(y_t|Y_{1:t-1},\theta^m)$

<u>Notes</u>: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap particle filter (M = 40,000) and dotted lines correspond to conditionally-optimal particle filter (M = 400). Results are based on $N_{run} = 100$ runs of the filters.

Great Recession and Beyond

Log Standard Dev of Log-Likelihood Increments

<u>Notes</u>: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap particle filter (M = 40,000) and dotted lines correspond to conditionally-optimal particle filter (M = 400). Results are based on $N_{run} = 100$ runs of the filters.

SW Model: Distr. of Log-Likelihood Approximation Errors

Notes: Density estimates of $\hat{\Delta}_1 = \ln \hat{p}(Y|\theta) - \ln p(Y|\theta)$ based on $N_{run} = 100$. Solid densities summarize results for the bootstrap (BS) particle filter; dashed densities summarize results for the conditionally-optimal (CO) particle filter.

SW Model: Distr. of Log-Likelihood Approximation Errors

Notes: Density estimates of $\hat{\Delta}_1 = \ln \hat{p}(Y|\theta) - \ln p(Y|\theta)$ based on $N_{run} = 100$. Solid densities summarize results for the bootstrap (BS) particle filter; dashed densities summarize results for the conditionally-optimal (CO) particle filter.

SW Model: Summary Statistics for Particle Filters

	Boot	tstrap	Cond. Opt.					
Number of Particles M	40,000	400,000	4,000	40,000				
Number of Repetitions	100	100	100	100				
High Posterior Density: $\theta = \theta^m$								
Bias $\hat{\Delta}_1$	-238.49	-118.20	-8.55	-2.88				
StdD $\hat{\Delta}_1$	68.28	35.69	4.43	2.49				
Bias $\hat{\Delta}_2$	-1.00	-1.00	-0.87	-0.41				
Low Posterior Density: $\theta = \theta^I$								
Bias $\hat{\Delta}_1$	-253.89	-128.13	-11.48	-4.91				
StdD $\hat{\Delta}_1$	65.57	41.25	4.98	2.75				
Bias $\hat{\Delta}_2$	-1.00	-1.00	-0.97	-0.64				
·								

Notes: $\hat{\Delta}_1 = \ln \hat{p}(Y_{1:T}|\theta) - \ln p(Y_{1:T}|\theta)$ and $\hat{\Delta}_2 = \exp[\ln \hat{p}(Y_{1:T}|\theta) - \ln p(Y_{1:T}|\theta)] - 1$. Results are based on $N_{run} = 100$.

Tempered Particle Filter

Use sequence of distributions between the forecast and updated state distributions.

▶ Candidates? Well, the PF will work arbitrarily well when $\Sigma_u \to \infty$.

▶ Reduce measurement error variance from an inflated initial level $\Sigma_u(\theta)/\phi_1$ to the nominal level $\Sigma_u(\theta)$.

The Key Idea

Define

$$p_n(y_t|s_t,\theta) \propto \phi_n^{d/2} |\Sigma_u(\theta)|^{-1/2} \exp\left\{-\frac{1}{2}(y_t - \Psi(s_t,t;\theta))'\right.$$
$$\times \phi_n \Sigma_u^{-1}(\theta)(y_t - \Psi(s_t,t;\theta))\right\},$$

where:

$$\phi_1 < \phi_2 < \ldots < \phi_{N_{\phi}} = 1.$$

▶ Bridge posteriors given s_{t-1} :

$$p_n(s_t|y_t,s_{t-1},\theta) \propto p_n(y_t|s_t,\theta)p(s_t|s_{t-1},\theta).$$

▶ bridge posteriors given $Y_{1:t-1}$:

$$p_n(s_t|Y_{1:t}) = \int p_n(s_t|y_t,s_{t-1},\theta)p(s_{t-1}|Y_{1:t-1})ds_{t-1}.$$

Algorithm Overview

For each t we start with the BS-PF iteration by simulating the state-transition equation forward.

Incremental weights are obtained based on inflated measurement error variance Σ_u/ϕ_1 .

Then we start the tempering iterations...

After the tempering iterations are completed we proceed to t + 1...

Overview}

▶ If $N_{\phi} = 1$, this collapses to the Bootstrap particle filter.

- For each time period t, we embed a "static" SMC sampler used for parameter estimation Iterate over $n = 1, ..., N_{\phi}$:
 - Correction step: change particle weights (importance sampling)
 - Selection step: equalize particle weights (resampling of particles)
 - Mutation step: change particle values (based on Markov transition kernel generated with Metropolis-Hastings algorithm)
 - ▶ Each step approximates the same $\int h(s_t)p_n(s_t|Y_{1:t},\theta)ds_t$.

An Illustration: $p_n(s_t|Y_{1:t})$, $n = 1, ..., N_{\phi}$.

Choice of ϕ_n

Based on Geweke and Frischknecht (2014).

Express post-correction inefficiency ratio as

InEff(
$$\phi_n$$
) = $\frac{\frac{1}{M} \sum_{j=1}^{M} \exp[-2(\phi_n - \phi_{n-1})e_{j,t}]}{\left(\frac{1}{M} \sum_{j=1}^{M} \exp[-(\phi_n - \phi_{n-1})e_{j,t}]\right)^2}$

where

$$e_{j,t} = \frac{1}{2}(y_t - \Psi(s_t^{j,n-1}, t; \theta))' \Sigma_u^{-1}(y_t - \Psi(s_t^{j,n-1}, t; \theta)).$$

▶ Pick target ratio r^* and solve equation InEff(ϕ_n^*) = r^* for ϕ_n^* .

Small-Scale Model: PF Summary Statistics

	BSPF	TPF					
Number of Particles M	40k	4k	4k	40k	40k		
Target Ineff. Ratio r^*		2	3	2	3		
High Posterior Density: $\theta = \theta^m$							
Bias	-1.4	-0.9	-1.5	-0.3	05		
StdD	1.9	1.4	1.7	0.4	0.6		
$T^{-1}\sum_{t=1}^T N_{\phi,t}$	1.0	4.3	3.2	4.3	3.2		
Average Run Time (s)	8.0	0.4	0.3	4.0	3.3		
Low Posterior Density: $\theta = \theta^I$							
Bias	-6.5	-2.1	-3.1	-0.3	-0.6		
StdD	5.3	2.1	2.6	8.0	1.0		
$T^{-1}\sum_{t=1}^T N_{\phi,t}$	1.0	4.4	3.3	4.4	3.3		
Average Run Time (s)	1.6	0.4	0.3	3.7	2.9		

Embedding PF Likelihoods into Posterior Samplers

Likelihood functions for nonlinear DSGE models can be approximated by the PF.

 We will now embed the likelihood approximation into a posterior sampler: PFMH Algorithm (a special case of PMCMC).

The book also discusses SMC².

Embedding PF Likelihoods into Posterior Samplers}

▶ $\{p(Y|\theta), p(\theta|Y), p(Y)\}$, which are related according to:

$$p(\theta|Y) = \frac{p(Y|\theta)p(\theta)}{p(Y)}, \quad p(Y) = \int p(Y|\theta)p(\theta)d\theta$$

• $\{\hat{p}(Y|\theta), \hat{p}(\theta|Y), \hat{p}(Y)\}$, which are related according to:

$$\hat{p}(\theta|Y) = \frac{\hat{p}(Y|\theta)p(\theta)}{\hat{p}(Y)}, \quad \hat{p}(Y) = \int \hat{p}(Y|\theta)p(\theta)d\theta.$$

Surprising result (Andrieu, Docet, and Holenstein, 2010): under certain conditions we can replace $p(Y|\theta)$ by $\hat{p}(Y|\theta)$ and still obtain draws from $p(\theta|Y)$.

PFMH Algorithm

For i = 1 to N:

1. Draw ϑ from a density $q(\vartheta|\theta^{i-1})$.

2. Set $\theta^i = \vartheta$ with probability

$$\alpha(\vartheta|\theta^{i-1}) = \min\left\{1, \ \frac{\hat{p}(Y|\vartheta)p(\vartheta)/q(\vartheta|\theta^{i-1})}{\hat{p}(Y|\theta^{i-1})p(\theta^{i-1})/q(\theta^{i-1}|\vartheta)}\right\}$$

and $\theta^i=\theta^{i-1}$ otherwise. The likelihood approximation $\hat{p}(Y|\vartheta)$ is computed using a particle filter.

- At each iteration the filter generates draws \tilde{s}_t^l from the proposal distribution $g_t(\cdot|s_{t-1}^l)$.
- Let $\tilde{S}_t = (\tilde{s}_t^1, \dots, \tilde{s}_t^M)'$ and denote the entire sequence of draws by $\tilde{S}_{1:T}^{1:M}$.

Selection step: define a random variable A_t^l that contains this ancestry information. For instance, suppose that during the resampling particle j=1 was assigned the value \tilde{s}_t^{10} then $A_t^1=10$. Let $A_t=(A_t^1,\ldots,A_t^N)$ and use $A_{1:T}$ to denote the sequence of A_t 's.

▶ PFMH operates on an enlarged probability space: θ , $\tilde{S}_{1:T}$ and $A_{1:T}$.

▶ Use $U_{1:T}$ to denote random vectors for $\tilde{S}_{1:T}$ and $A_{1:T}$. $U_{1:T}$ is an array of *iid* uniform random numbers.

▶ The transformation of $U_{1:T}$ into $(S_{1:T}, A_{1:T})$ typically depends on θ and $Y_{1:T}$, because the proposal distribution $g_t(\tilde{s}_t|s_{t-1}^j)$ depends both on the current observation y_t as well as the parameter vector θ .

▶ E.g., implementation of conditionally-optimal PF requires sampling from a $N(\bar{s}_{t|t}^j, P_{t|t})$ distribution for each particle j. Can be done using a prob integral transform of uniform random variables.

 We can express the particle filter approximation of the likelihood function as

Define the joint distribution

$$p_g(Y_{1:T}, \theta, U_{1:T}) = g(Y_{1:T}|\theta, U_{1:T})p(U_{1:T})p(\theta).$$

▶ The PFMH algorithm samples from the joint posterior

$$p_g(\theta, U_{1:T}|Y_{1:T}) \propto g(Y|\theta, U_{1:T})p(U_{1:T})p(\theta)$$

and discards the draws of $(U_{1:T})$.

► For this procedure to be valid, it needs to be the case that PF approximation is unbiased:

$$\mathbb{E}[\hat{p}(Y_{1:T}|\theta)] = \int g(Y_{1:T}|\theta, U_{1:T}) p(U_{1:T}) d\theta = p(Y_{1:T}|\theta).$$

- ▶ We can express acceptance probability directly in terms of $\hat{p}(Y_{1:T}|\theta)$.
- ▶ Need to generate a proposed draw for both θ and $U_{1:T}$: ϑ and $U_{1:T}^*$.
- ► The proposal distribution for $(\vartheta, U_{1:T}^*)$ in the MH algorithm is given by $q(\vartheta|\theta^{(i-1)})p(U_{1:T}^*)$.
- No need to keep track of the draws (U^{*}_{1:T}).
- MH acceptance probability:

$$\begin{split} \alpha(\vartheta|\theta^{i-1}) &= \min \left\{ 1, \frac{\frac{g(Y|\vartheta, U^*)p(U^*)p(\vartheta)}{q(\vartheta|\theta^{(i-1)})p(U^*)}}{\frac{g(Y|\theta^{(i-1)}, U^{(i-1)})p(U^{(i-1)})}{q(\theta^{(i-1)}|\theta^*)p(U^{(i-1)})}} \right\} \\ &= \min \left\{ 1, \frac{\hat{p}(Y|\vartheta)p(\vartheta)/q(\vartheta|\theta^{(i-1)})}{\hat{p}(Y|\theta^{(i-1)})p(\theta^{(i-1)})/q(\theta^{(i-1)}|\vartheta)} \right\}. \end{split}$$

Small-Scale DSGE: Accuracy of MH Approximations

▶ Results are based on $N_{run} = 20$ runs of the PF-RWMH-V algorithm.

► Each run of the algorithm generates N = 100,000 draws and the first $N_0 = 50,000$ are discarded.

► The likelihood function is computed with the Kalman filter (KF), bootstrap particle filter (BS-PF, M = 40,000) or conditionally-optimal particle filter (CO-PF, M = 400).

"Pooled" means that we are pooling the draws from the N_{run} = 20 runs to compute posterior statistics.

Autocorrelation of PFMH Draws

Notes: The figure depicts autocorrelation functions computed from the output of the 1 Block RWMH-V algorithm based on the Kalman filter (solid), the conditionally-optimal particle filter (dashed) and the bootstrap particle filter (solid with dots).

Small-Scale DSGE: Accuracy of MH Approximations

	Posterior Mean (Pooled)			Inefficiency Factors			Std Dev of Means			
	KF	CO-PF	BS-PF	KF	CO-PF	BS-PF	KF	CO-PF	BS-	
$\overline{\tau}$	2.63	2.62	2.64	66.17	126.76	1360.22	0.020	0.028	0.0	
κ	0.82	0.81	0.82	128.00	97.11	1887.37	0.007	0.006	0.0	
ψ_{1}	1.88	1.88	1.87	113.46	159.53	749.22	0.011	0.013	0.0	
ψ_{2}	0.64	0.64	0.63	61.28	56.10	681.85	0.011	0.010	0.0	
$ ho_r$	0.75	0.75	0.75	108.46	134.01	1535.34	0.002	0.002	0.0	
$ ho_{\mathcal{g}}$	0.98	0.98	0.98	94.10	88.48	1613.77	0.001	0.001	0.0	
ρ_{z}	0.88	0.88	0.88	124.24	118.74	1518.66	0.001	0.001	0.0	
$r^{(A)}$	0.44	0.44	0.44	148.46	151.81	1115.74	0.016	0.016	0.0	
$\pi^{(A)}$	3.32	3.33	3.32	152.08	141.62	1057.90	0.017	0.016	0.0	
$\gamma^{(Q)}$	0.59	0.59	0.59	106.68	142.37	899.34	0.006	0.007	0.0	
σ_r	0.24	0.24	0.24	35.21	179.15	1105.99	0.001	0.002	0.0	
$\sigma_{m{g}}$	0.68	0.68	0.67	98.22	64.18	1490.81	0.003	0.002	0.0	
σ_z	0.32	0.32	0.32	84.77	61.55	575.90	0.001	0.001	0.0	
$\ln \hat{p}(Y)$	-357.14	-357.17	-358.32				0.040	0.038	0.9	

Computational Considerations

We implement the PFMH algorithm on a single machine, utilizing up to twelve cores.

► For the small-scale DSGE model it takes 30:20:33 [hh:mm:ss] hours to generate 100,000 parameter draws using the bootstrap PF with 40,000 particles. Under the conditionally-optimal filter we only use 400 particles, which reduces the run time to 00:39:20 minutes.

References I

- Bocola, L. (2016). The pass-through of sovereign risk. *Journal of Political Economy*, 124(4):879926.
- Fernndez-Villaverde, J., Guerrn-Quintana, P., Rubio-Ramrez, J., and Uribe, M. (2009). Risk matters: The real effects of volatility shocks.
- Gust, C., Herbst, E., Lpez-Salido, D., and Smith, M. E. (2017). The empirical implications of the interest-rate lower bound. *American Economic Review*, 107(7):19712006.