Useful equation, constants and conversions:

density =
$$\frac{\text{mass}}{\text{volume}}$$

 $c = \lambda v (\lambda \text{ is wavelength; } v \text{ is frequency; } c = 2.998 \times 10^8 \text{ m/s})$

$$E = hv$$
 $E = \frac{hc}{\lambda}$; $\lambda = \frac{hc}{E} = \frac{hc}{mc^2} = \frac{h}{mc} = \frac{h}{mu}$

$$\frac{1}{\lambda} = \left(1.097 \times 10^{-2} \text{nm}^{-1}\right) \left(\frac{1}{{n_1}^2} - \frac{1}{{n_2}^2}\right) \Delta E = -2.178 \times 10^{-18} \text{ J} \left(\frac{1}{{n_{\text{final}}}^2} - \frac{1}{{n_{\text{initial}}}^2}\right)$$

 $h = 6.626 \times 10-34 \text{ J} \cdot \text{s}$ (Planck's constant); Avogadro's number $N = 6.022 \times 10^{23} / \text{mol}$ $KE_{electron} = hv - \Phi$, where $\Phi = work$ function.

Mean:
$$\frac{\overline{x}}{x} = \frac{\sum_{i} (x_i)}{n}$$
; Standard deviation(s): $s = \sqrt{\frac{\sum_{i} (x_i - \overline{x})^2}{n-1}}$

Percent Yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100\%$$

Beer's aw: $A = \varepsilon \cdot b \cdot c$

$$M = \frac{n}{V}$$

Molarity: $M = \frac{n}{V}$

Bond Order = $(\# bonding e^- - \# antibonding e^-)/2$

Mass solute: $m_{\text{solute}} = V \times M \times M$

Dilution equation: $V_{\text{initial}} \times M_{\text{initial}} = V_{\text{dilute}} \times M_{\text{dilute}}$

Potential energy (PE): $PE = m \times g \times h$

(m = mass; g = acceleration due to gravity; h = vertical distance)

Kinetic energy (KE): $KE = \frac{1}{2}mu^2$ (m = mass; u = velocity)

Total energy = PE + KE

$$E_{el} \propto \frac{\left(Q_1 \times Q_2\right)}{d}$$

Electrostatic Potential Energy:

Internal energy: $\Delta E = q + w = q - P\Delta V$

$$\Delta H = \Delta E + P\Delta V$$
; $\Delta H_{\text{rxn}} = \frac{q_{\text{rxn}}}{\text{mol rxn}}$

Heat capacity: $q = C \Delta T$

Specific heat (c_s): $q = mc_s \Delta T$

Molar heat capacity (c_p): $q = nc_p\Delta T$

Phase change: $q = n\Delta H_{\text{fus}}$; $q = n\Delta H_{\text{vap}}$

Clapeyron Equation
$$\ln \left(\frac{P_2}{P_1}\right) = \frac{\Delta H_{\text{vap}}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$
 Gas constant: R = 8.314 J/(mol K) = 0.08206 atm L/(mol K)
 $h = \frac{2T\cos\theta}{r\rho g}$ $q = \text{acceleration} = 9.8 \text{ m/s}^2$; ρ is the density; $T = \text{surface tension}$; $r = \text{radius of the tube}$;

 ϑ = contact angle between the liquid and the tube.

	87 Fr (223)	55 Cs 132.9	37 Rb 85.47	19 K 39.10	11 Na 22.99	3 Li 6.939	1 Н 1.008
	88 Ra (226)	56 Ba 137.3	38 Sr 87.62	20 Ca 40.08	12 Mg 24.31	4 Be 9.012	
	89 Ac (227)	57 La 138.9	39 Y 88.91	21 Sc 44.96			
	104 Rf (267)	72 Hf 178.5	40 Zr 91.22	22 TI 47.90			
58 Ce 140.1 90 Th 232.0	105 Ha (268)	73 Ta 180.9	41 Nb 92.91	23 V 50.94			
59 Pr 140.1 91 Pa 231	106 Sg (271)	74 W 183.9	42 Mo 95.94	24 Cr 52.00			
60 Nd 144.2 92 U	107 Bh (272)	75 Re 186.2	43 Tc (99)	25 Mn 54.94			
61 Pm 144.9 93 Np (237)	108 Hs (270)	76 Os 190.2	44 Ru 101.1	26 Fe 55.85			
62 Sm 150.4 94 Pu (244)	109 Mt (276)	77 Ir 192.2	45 Rh 102.9	27 Co 58.93			
63 Eu 152.0 95 Am (243)	110 Ds (281)	78 Pt 195.1	46 Pd 106.4	28 Ni 58.71			
64 Gd 157.3 96 Cm (247)	111 Rg (280)	79 Au 197.0	47 Ag 107.9	29 Cu 63.54			
65 Tb 158.9 97 Bk (247)	112 Cn (285)	80 Hg 200.6	48 Cd 112.4	30 Zn 65.37			_
66 Dy 162.5 98 Cf (251)	113 Uut (284)	81 Ti 204.4	49 In 114.8	31 Ga 69.72	13 Al 26.98	5 B 10.81	
67 Ho 164.9 99 Es (252)	114 FI (289)	82 Pb 207.2	50 Sn 118.7	32 Ge 72.59	14 Si 28.09	6 C 12.01	
68 Er 167.3 100 Fm (257)	115 Uup (288)	83 Bi 209.0	51 Sb 121.8	33 As 74.92	15 P 30.97	7 N 14.01	
69 Tm 168.9 101 Md (258)	116 Lv (293)	84 Po (209)	52 Te 127.6	34 Se 78.96	16 S 32.06	8 O 16.00	
70 Yb 173.0 102 No (259)	117 Uus (294)	85 At (210)	53 	35 Br 79.91	17 CI 35.45	9 F 19.00	1 Н 1.008
71 Lu 175.0 103 Lw (262)	118 Uuo (294)	86 Rn (222)	54 Xe 131.3	36 Kr 83.80	18 Ar 39.95	10 Ne 20.18	2 He 4.003