- 1. (9 pontos) Seja X uma v.a. com f.d.p. $f(x) = \begin{cases} 2xe^{-x^2}, & x \geq 0 \\ 0, & x < 0 \end{cases}$
 - (a) Calcule P(1 < X < 2) e assinale esta probabilidade num esboço do gráfico de f. $P(1 < X < 2) = \int_1^2 2x \, e^{-x^2} dx = -e^{-x^2} \Big|_1^2 = e^{-1} e^{-2^2} = 0.3496 \; ; \; \text{ver figura 1 com a probabilidade assinalada.}$
 - (b) Deduza a f.d. F da v.a. X. Para x < 0 temos $P(X \le x) = \int_{-\infty}^{x} 0 \, dt = 0$; e para $x \ge 0$ temos $P(X \le x) = \int_{-\infty}^{x} f(t) \, dt = 0 + \int_{0}^{x} 2 \, t \, e^{-t^{2}} dt = -e^{-t^{2}} \Big|_{0}^{x} = e^{-x^{2}}. \quad \text{Logo } F(x) = \begin{cases} 1 - e^{-x^{2}}, \ x \ge 0 \\ 0, \ x < 0 \end{cases}$
 - (c) Prove que a correspondente f.d. inversa é $F^{-1}(y) = \sqrt{-\log(1-y)}$.

 Para obter a função inversa de F, resolve-se y = F(x) em ordem a x (x > 0):
 - $y = F(x) \iff y = 1 e^{-x^2} \iff e^{-x^2} = 1 y \iff -x^2 = \log(1 y) \iff x = \sqrt{-\log(1 y)} = F^{-1}(y)$ (d) Calcule os quartis de X e assinale-os de forma clara no gráfico da alínea (a).

Os quartis $\chi_{i/4}$ (i=1,2,3) são a solução de $F(x)=\frac{i}{4}$, ou seja, são dados por $\chi_{i/4}=F^{-1}(\frac{1}{4})$. Pela alínea anterior, a solução é $\chi_{1/4}=0.5364$ (1° quartil), $\chi_{2/4}=0.8326$ (mediana), $\chi_{3/4}=1.1774$ (3° quartil), conforme o código sqrt(-log(1-1:3/4))

[1] 0.5363600 0.8325546 1.1774100

Figura 1: gráfico de f com probabilidade (área) assinalada e quartis (pontos vermelhos)

(e) Enuncie o resultado que permite simular NPA com dada f.d. F e aplique-o a este caso.

Resultado a aplicar: Se F é uma dada f.d. contínua, então

$$U \frown U[0,1] \implies X = F^{-1}(U)$$
 tem f.d. F .

Para simular uma amostra de n valores da v.a. X do enunciado, simulamos dados u de NPA com distribuição U[0,1] e calculamos $F^{-1}(u)$. Por exemplo, no caso n=100, faremos

- (f) Determine e identifique a distribuição de $Y=X^2$. Sugira novo processo para simular a v.a. X e exemplifique. Calcula-se a f.d. G da v.a. $Y=X^2$ como segue (note-se que Y tem suporte $[0,+\infty[)$. Para y>0, temos $G(y)=P(Y\leq y)=P(X^2\leq y)=P(-\sqrt{y}\leq X\leq \sqrt{y})=F(\sqrt{y})-F(-\sqrt{y})=F(\sqrt{y})-0=1-e^{-\sqrt{y}^2}=1-e^{-y}$. Logo, $Y \frown Exp(1)$. Então, podemos simular valores de X extraindo a raiz quadrada de valores simulados da distribuição Exp(1). Por exemplo, para uma simulação de 100 dados da v.a. X, executamos
- 2. (6 pontos) Considere n v.a., X_1, \ldots, X_n , mutuamente independentes, com distribuição uniforme no intervalo [-1,1]. Seja $S_n = X_1 + \ldots + X_n$. Determine, explicando o raciocínio,

 $x \leftarrow sqrt(rexp(100,1))$

(a) a f.d.p. conjunta do par (X_1, X_2) , e a partir daí, obtenha $P(X_1 + X_2 > 1)$ Como X_1 e X_2 são independentes, a f.d.p. conjunta é o produto das marginais; cada marginal é U[-1, 1], com f.d.p. $f(x) = \frac{1}{2}I_{[-1,1]}(x)$. Logo a f.d.p. conjunta é $f(x,y) = \begin{cases} \frac{1}{4}, & \text{se } -1 \leq x \leq 1, -1 \leq y \leq 1 \\ 0, & \text{c.c.} \end{cases}$

Figura 2: gráfico do quadrado Q (riscas), a recta y = 1 - x e o domínio de integração T (azul)

Na figura 2 encontra-se assinalado a azul o triângulo $T=\{(x,y):x+y>1,x<1,y<1\}$, essencial para o cálculo de $P(X_1+X_2>1)$. Como a f.d.p. é uniforme no quadrado $Q=[-1,1]\times[-1,1]$, a probabilidade pretendida é a fracção entre a área de T e a de Q, ou seja, $\frac{1}{8}$ (equivalentemente, é o volume do prisma que tem por base esse triângulo, cuja área é $\frac{1}{2}$, e que tem altura $\frac{1}{4}$, ou seja, é $\frac{1}{2}\times\frac{1}{4}=\frac{1}{8}$).

- (b) o valor médio e a variância de S_n no caso n=75Temos $\mu=E(X_i)=0$ e $\sigma^2={\rm Var}(X_i)=\frac{(1+1)^2}{12}=\frac{1}{3}$, visto que $X_i \cap U[-1,1]$. Ora o valor médio da soma de v.a. quaisquer é igual à soma dos valores médios dessas v.a. (desde que estes existam), logo $E(S_n)=n\times 0=0$. E como a variância da soma de v.a. independentes é igual à soma das respectivas variâncias (desde que estas existam), temos ainda ${\rm Var}(S_n)=n\times\frac{1}{3}=25$.
- (c) um valor aproximado de $P(|S_n| > 1)$, no caso n = 75, usando o TLC

 Uma vez que as v.a. X_i são simétricas, estamos em condições de aplicar o TLC com n = 75 (pois neste caso a condição n > 30 é suficiente para que a aproximação seja boa). Logo a f.d. da v.a. S_n é bem aproximada pela f.d. de $W \cap N(0,5)$, donde $P(|S_n| > 1) \simeq P(|W| > 1) = 2 \times P(W < -1) = 0.8415$, que se obtém executando 2*pnorm(-1,0,5)
- (d) um valor aproximado de $P(|S_n| > 1)$, no caso n = 4Como este n é muito pequeno, não se aplica o TLC. A aproximação terá que ser obtida por simulação, com

```
r <- 10^7
d <- matrix(runif(4*r,-1,1),nr=4)
somas <- colSums(d)
sum(abs(somas)>1)/r
[1] 0.4008638
```

resultado aproximado por 0.401, conforme segue:

- 3. (5 pontos) Seja λ uma constante positiva. Considere uma v.a. X com f.d.p. $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$
 - (a) Deduza a transformada de Laplace de X.

(resolvido no Exemplo 1.1. do texto de apoio "Transformadas" e no slide nº6 de "4.5 Transformadas")

Temos $X \frown Exp(\lambda)$. A transformada de Laplace L existe na vizinhança da origem $]-\lambda,+\infty[$ visto que

$$L(t) = E(e^{-tX}) = \int_0^{+\infty} e^{-tx} \lambda e^{-\lambda x} dx = \lambda \int_0^{+\infty} e^{-(t+\lambda)x} dx = \frac{-\lambda}{\lambda+t} \left. e^{-(\lambda+t)x} \right|_0^{+\infty} = \frac{\lambda}{\lambda+t},$$

se $t+\lambda>0$, i.e., se $t>-\lambda$. Note-se que, se $t+\lambda<0$, o integral não converge pois então $\lim_{x\to+\infty}e^{-(\lambda+t)x}=+\infty$; e para $t+\lambda=0$ também não pois nesse caso fica $L(t)=\int_0^{+\infty}\lambda\,dx=+\infty$.

(b) Calcule o valor médio de X à custa da transformada de Laplace.

Recorrendo à fórmula geral do momento de ordem n à custa da transformada de Laplace, $E(X^n) = (-1)^n L^{(n)}(0)$, temos em particular, para n = 1, $L'(t) = -\frac{\lambda}{(\lambda + t)^2}$, donde $E(X) = (-1) L'(0) = \frac{\lambda}{\lambda^2} = \frac{1}{\lambda}$.

- (c) "Há duas distribuições discretas que estão relacionadas com esta v.a. X". Explique do que se trata.
 - (i) Uma das distribuições discretas em causa é a Poisson. De facto, esta distribuição e a $Exp(\lambda)$ encontram-se interligadas no processo de Poisson. Trata-se de um processo de chegadas ao longo do tempo t (t > 0) em que os intervalos de tempo até à 1^a chegada e entre chegadas consecutivas são v.a. i.i.d. $Exp(\lambda)$; neste processo, o nº de chegadas no intervalo]0,t] tem distribuição $Poisson(\lambda t)$.
 - (ii) A outra distribuição discreta é a Geom(p). A relação entre esta distribuição e a $Exp(\lambda)$ é que são as únicas (sendo a primeira discreta e a segunda contínua) que satisfazem à propriedade de "falta de memória", i.e., $P(X > x + y \mid X > y) = P(X > x)$, para x > 0, y > 0.