

ETC3550/ETC5550 Applied forecasting

Week 6: Non-seasonal exponential smoothing

Historical perspective

- Developed in the 1950s and 1960s as methods (algorithms) to produce point forecasts.
- Combine a "level", "trend" (slope) and "seasonal" component to describe a time series.
- The rate of change of the components are controlled by "smoothing parameters": α , β and γ respectively.
- Need to choose best values for the smoothing parameters (and initial states).
- Equivalent ETS state space models developed in the 1990s and 2000s.
- ETS and the PBS

ExponenTial Smoothing
Error Trend Seasonal

ExponenTial Smoothing Error Trend Seasonal

Error: Additive, Multiplicative

Trend: None, Additive, Additive damped

Seasonal: None, Additive, Multiplicative

ExponenTial Smoothing Error Trend Seasonal

Error: Additive, Multiplicative

Trend: None, Additive, Additive damped **Seasonal**: None, Additive, Multiplicative

■ ETS(A,N,N): Additive Error, No Trend, No Seasonality

ExponenTial Smoothing Error Trend Seasonal

Error: Additive, Multiplicative

Trend: None, Additive, Additive damped **Seasonal**: None, Additive, Multiplicative

- ETS(A,N,N): Additive Error, No Trend, No Seasonality
- ETS(M,A,N): Multiplicative Error, Additive Trend, No Seasonality

ExponenTial Smoothing Error Trend Seasonal

Error: Additive, Multiplicative

Trend: None, Additive, Additive damped **Seasonal**: None, Additive, Multiplicative

- ETS(A,N,N): Additive Error, No Trend, No Seasonality
- ETS(M,A,N): **M**ultiplicative Error, **A**dditive Trend, **N**o Seasonality
- ETS(M,A,M): **M**ultiplicative Error, **A**dditive Trend, **M**ultiplicative Seasonality

etc

$$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$$

$$y_t = \ell_{t-1} + \varepsilon_t$$

$$\hat{y}_{t+h|t} = \ell_t$$

State equation
$$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$$
Observation equation $y_t = \ell_{t-1} + \varepsilon_t$
Forecast equation $\hat{y}_{t+h|t} = \ell_t$

- Forecast errors: $\varepsilon_t = y_t \hat{y}_{t|t-1} \sim \text{NID}(0, \sigma^2)$
- "innovations" or "single source of error" because equations have the same error process, ε_t .

 $\hat{\mathbf{y}}_{t+1|t} = \ell_t = \ell_{t-1} + \alpha \varepsilon_t$

Note that ε_t = $y_t - \ell_{t-1}$. So

$$= \ell_{t-1} + \alpha (y_t - \ell_{t-1})$$

$$= \alpha y_t + (1 - \alpha)\ell_{t-1}$$

$$= \alpha y_t + (1 - \alpha)[\alpha y_{t-1} + (1 - \alpha)\ell_{t-2}]$$

$$= \alpha y_t + \alpha (1 - \alpha)y_{t-1} + (1 - \alpha)^2\ell_{t-2}$$
...
$$= \alpha \sum_{j=0}^{t-1} (1 - \alpha)^j y_{t-j} + (1 - \alpha)^t \ell_0$$

Note that
$$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$$
. So

$$y_{T+h} = \ell_{T+h-1} + \varepsilon_{T+h}$$

$$= \ell_{T+h-2} + \alpha \varepsilon_{T+h-1} + \varepsilon_{T+h}$$

$$= \ell_{T+h-3} + \alpha \varepsilon_{T+h-2} + \alpha \varepsilon_{T+h-1} + \varepsilon_{T+h}$$

$$\cdots$$

$$= \ell_{T} + \alpha \sum_{j=1}^{h-1} \varepsilon_{T+h-j} + \varepsilon_{T+h}.$$

Therefore
$$E(y_{T+h}|y_1,\ldots,y_T) = \ell_T$$

Note that $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$. So

$$y_{T+h} = \ell_{T+h-1} + \varepsilon_{T+h}$$

$$= \ell_{T+h-2} + \alpha \varepsilon_{T+h-1} + \varepsilon_{T+h}$$

$$= \ell_{T+h-3} + \alpha \varepsilon_{T+h-2} + \alpha \varepsilon_{T+h-1} + \varepsilon_{T+h}$$

$$\cdots$$

$$= \ell_{T} + \alpha \sum_{j=1}^{h-1} \varepsilon_{T+h-j} + \varepsilon_{T+h}.$$

Therefore $Var(y_{T+h}|y_1,...,y_T) = \alpha^2 \sum_{i=1}^{h-1} \sigma^2 + \sigma^2 = \sigma^2 \left[1 + \alpha^2 (h-1) \right].$

ETS(A,A,N): Holt's method with additive errors

State equations
$$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$$

$$b_t = b_{t-1} + \beta \varepsilon_t$$
 Observation equation
$$y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$$
 Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + hb_t$$

Forecast errors: $\varepsilon_t = y_t - \hat{y}_{t|t-1} \sim \text{NID}(0, \sigma^2)$

ETS(M,N,N): SES with multiplicative errors.

State equation
$$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$$
Observation equation
$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$
Forecast equation
$$\hat{y}_{t+h|t} = \ell_t$$

- Relative forecast errors: $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Same point forecasts as ETS(A,N,N) with additive errors and same α .
- Different prediction intervals from ETS(A,N,N).

ETS(M,A,N): Holt's method with multiplicative errors.

State equations
$$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$$

$$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$$
 Observation equation
$$y_t = (\ell_{t-1} + b_{t-1})(1 + \varepsilon_t)$$
 Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + hb_t$$

- Relative forecast errors: $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Same point forecasts as ETS(A,A,N) with additive errors and same α and β
- Different prediction intervals from ETS(A,A,N).

Summary of models so far

Simple exponential smoothing

ETS(A,N,N) – additive errors

ETS(M,N,N) – multiplicative errors

Holt's linear trend method

ETS(A,A,N) – additive errors, additive trend

ETS(M,A,N) – multiplicative errors, additive trend

ETS(A,Ad,N): Damped trend with additive errors

State equations
$$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$$

$$b_t = \phi b_{t-1} + \beta \varepsilon_t$$
 Observation equation
$$y_t = \ell_{t-1} + \phi b_{t-1} + \varepsilon_t$$
 Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$

- Forecast errors: $\varepsilon_t = y_t \hat{y}_{t|t-1} \sim \text{NID}(0, \sigma^2)$ Damping parameter $0 < \phi < 1$.
- If ϕ = 1, identical to Holt's linear trend.
- lacksquare As $h o\infty$, $\hat{y}_{T+h|T} o\ell_T+\phi b_T/(1-\phi)$.
- Short-run forecasts trended, long-run forecasts constant.

ETS(M,Ad,N): Damped trend with multiplicative errors

State equations
$$\ell_t = (\ell_{t-1} + \phi b_{t-1})(1 + \alpha \varepsilon_t)$$

$$b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1})\varepsilon_t$$
 Observation equation
$$y_t = (\ell_{t-1} + \phi b_{t-1})(1 + \varepsilon_t)$$
 Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$

- Relative forecast errors: $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$ Damping parameter $0 < \phi < 1$.
- If $\phi = 1$, identical to Holt's linear trend.
- As $h \to \infty$, $\hat{y}_{T+h|T} \to \ell_T + \phi b_T/(1-\phi)$.
- Short-run forecasts trended, long-run forecasts constant.

Non-seasonal ETS models

Simple exponential smoothing

ETS(A,N,N) – additive errors

ETS(M,N,N) - multiplicative errors

Holt's linear trend method

ETS(A,A,N) – additive errors, additive trend

ETS(M,A,N) – multiplicative errors, additive trend

Damped trend method

ETS(A,Ad,N) – additive errors, damped trend

ETS(M,Ad,N) – multiplicative errors, damped trend

Parameters

- α controls the flexibility of the **level**
 - If α = 0, the level never updates (mean)
 - If α = 1, the level updates completely (naive)
- β controls the flexibility of the **trend**
 - If β = 0, the trend is linear
 - If β = 1, the trend changes suddenly every observation
- ϕ controls the rate of **damping**
 - If ϕ = 1, there is no damping (trend is linear)
 - \blacksquare If 0 < ϕ < 1, the trend converges to constant

States

```
\ell_t = level at time t
```

 b_t = slope at time t