Human-Object Interaction in Retail

Max Tanski & Lauren Heintz 6.869 Computer Vision Final Project

Purpose

What are the others buying?

The Rise of Retail Cookies

Capturing human object interaction in grocery stores

State of the Art Approaches

< human, action, target >

Instance Segmentation & Pose Estimation

FacebookAl InteractNet

- < Person, Cut, Knife >
- < human, action, target >

Keypoints & Part State Relationships

head-inspect-rearview
right_hand-hold-wheel
left_hand-hold-wheel

torso-lay_on-chair_back

hip-sit_on-chair_seat

HAKE: Human Activity Knowledge Engine

- < Person, Drives, Car >
 - < human, action, target >

Approach

Our Approach

- A. Human Object Detection Branch
- B. Action Detection Branch
- C. Target Detection Branch
- D. Target Classification Branch

- 1. Person Label
- 2. Person Box
- 3. Person Mask
- 4. Object Label
- 5. Object Box
- 6. Object Mask

Branch A

Branch A

Branch B

Branch B

Branch C

Branch D

Branch D

Results

Experiment Parameters

Backbones
Types tested:
mask rcnn R 50

faster-rcnn R 50

retinament R 101

Epochs

Values tested:

100

300

500

1000

1200

Learning Rate

Values tested:

0.01

0.002

0.001

Data Sets

Types:

COCO

v-coco

V-COCO Agents

V-COCO Cutouts

Grocery Data

^{*}Cross Entropy Loss Solver and Adam's optimizer kept constant

Metrics for Action Detection and Object Detection

Average Precision

$$Precision = \frac{TP}{TP + FP}$$

TP = True positive

TN = True negative

FP = False positive

FN =False negative

Mean Average Precision

$$mAP = \frac{1}{|classes|} \sum_{c \in classes} \frac{|TP_c|}{|FP_c| + |TP_c|}$$

Branch mAP Best Results

Branch A

Model:

mask_rcnn_R_50

Data: COCO

Metrics:

AP = 53.6

mAP = 39.9

Branch B -

Model:

retinament R 101

Data: V-COCO Agent

Metrics:

AP = 14.973

mAP = 18.309

"Hold" AP = 37.947

Branch C

Model:

faster-rcnn_R_50

Data: V-COCO Cutout

Metrics:

AP = 12.776

mAP = 14.092

"Hold_obj" AP = 38.219

Branch D

Model:

faster-rcnn_R_50

Data: Groceries

Metrics:

AP = 23.377

mAP = 9.414

^{*}State of the art benchmarks $AP = \sim 48$

Example Output of Pipeline

Final Architecture

- A. Human Object Detection Branch
- B. Action Detection Branch
- C. Target Detection Branch
- D. Target Classification Branch

Thank you! Questions?