Nyström matrix approximation

an overview and new results

Alex Gittens

Department of Computing and Mathematical Sciences California Institute of Technology gittens@caltech.edu

October 11, 2011

Motivation

 $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a huge matrix. Given $k \ll \min\{m, n\}$, we would like either:

- a low-rank approximation to A, or
- 2 approximations of the top k eigenvectors (or singular vectors) of \mathbf{A} .
- This abstract problem is ubiquitous in modern data processing: machine learning, image processing, statistical analysis ...
- Traditional approaches (via truncated SVD) cost at least O(mnk) flops, as do methods based on random projections.
- ▶ Column/row-sampling based methods provide faster alternatives, up to $O(k^3 + (n+m)k^2)$.

Motivation from Eigenvector approximation viewpoint

Nyström extension is a method used in numerical PDEs to approximate eigenfunctions/values of integral operators.

$$\int_0^1 K(x,y) f_{\ell}(y) \, dy = \lambda_{\ell} f_{\ell}(x), \quad x \in [0,1], \ell \in \mathbb{N}.$$

Discretize the interval and solve the linear algebra problem

$$\frac{1}{m} \sum_{j=1}^{m} K(x_i, x_j) v_{\ell}(x_j) = \lambda_{\ell} v_{\ell}(x_i)$$

Extend by interpolation to estimate the eigenfunction

$$\hat{f}_{\ell}(x) = \frac{1}{m} \sum_{j=1}^{m} K(x, x_j) \frac{v_{\ell}(x_j)}{\lambda_{\ell}}.$$

In the matrix Nyström method, "discretization" consists of sampling columns. WLOG, take

$$\mathbf{K} = egin{pmatrix} \mathbf{A} & \mathbf{B} \ \mathbf{B}^T & \mathbf{C} \end{pmatrix} \in \mathbb{R}^{n imes n}$$

to be SPSD, and assume $\mathbf{A} = \mathbf{U}\Lambda\mathbf{U}^t$ is invertible. Extend the eigenvectors of \mathbf{A} to \mathbf{K} by

$$\tilde{\mathbf{U}} = \begin{pmatrix} \mathbf{U} \\ \mathbf{B}^T \mathbf{U} \mathbf{\Lambda}^{-1} \end{pmatrix}.$$

The columns of $\tilde{\mathbf{U}}$ can be orthogonalized in $\mathrm{O}(nm^2)$ time.

Overview

Traditional methods of nonasymptotic random matrix theory bound the tails of maximum eigenvalues,

$$\lambda_1(\mathbf{A}) = \max_{\|\vec{x}\|=1} \|\mathbf{A}\vec{x}\|.$$

They are less useful for addressing interior eigenvalues,

$$\lambda_k(\mathbf{A}) = \min_{\substack{\mathbf{V} \in \mathbb{C}^{p \times (p-k+1)} \\ \mathbf{V}^*\mathbf{V} = \mathbf{I}}} \lambda_1(\mathbf{V}^*\mathbf{A}\mathbf{V}) = \max_{\substack{\mathbf{V} \in \mathbb{C}^{p \times k} \\ \mathbf{V}^*\mathbf{V} = \mathbf{I}}} \lambda_k(\mathbf{V}^*\mathbf{A}\mathbf{V}).$$

- The Matrix Laplace Transform, introduced by Ahlswede and Winter (2002), is easily adaptable to address interior eigenvalues, as it is already a variational method.
- We illustrate this by using this technique to bound the number of samples needed to estimate the dominant eigenvalues of a covariance matrix to relative precision.

A. Gittens

Problem Statement: Covariance Estimation

Let $\mathbf{x} \in \mathbb{R}^p$ be a zero-mean random vector. Information on the dependency structure of \mathbf{x} is captured by the covariance matrix

$$\Sigma = \mathbb{E} \mathbf{x} \mathbf{x}^*$$
.

The sample covariance matrix is a classical estimator for Σ :

$$\widehat{\Sigma}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^*,$$

where \mathbf{x}_i are independent samples of \mathbf{x} .

How many samples n of \mathbf{x} are required so that $\widehat{\boldsymbol{\Sigma}}_n$ accurately estimates $\boldsymbol{\Sigma}$?

Covariance Estimation in Spectral Norm

Accuracy is typically measured in spectral norm.

How many samples n of \mathbf{x} ensure that

$$\|\mathbf{\Sigma} - \widehat{\mathbf{\Sigma}}_n\|_2 \le \varepsilon \|\mathbf{\Sigma}\|_2$$
?

- for log-concave distributions $\Omega(p)$ samples suffice (Adamczak et al. 2011),
- for distributions with finite fourth moments, $\tilde{\Omega}(p)$ samples suffice (Vershynin 2011a),
- for distributions with finite $2 + \varepsilon$ moments that satisfy a regularity condition, $\Omega(p)$ samples suffice (Vershynin 2011b),
- for distributions with finite second moments, $\Omega(p \log p)$ samples suffice (Rudelson 1999).

Estimation of dominant eigenvalues of Σ

A relative spectral error bound,

$$\|\mathbf{\Sigma} - \widehat{\mathbf{\Sigma}}_n\|_2 \le \varepsilon \|\mathbf{\Sigma}\|_2,$$

allows estimation of the top eigenvalue $\lambda_1(\Sigma), \ldots$

but does *not* allow estimation of the remaining eigenvalues:

$$|\lambda_k(\mathbf{\Sigma}) - \lambda_k(\widehat{\mathbf{\Sigma}}_n)| < \varepsilon ||\mathbf{\Sigma}||_2$$

is not a useful estimate if $\lambda_k \ll \lambda_1$.

Established bounds on relative spectral error require that $n = \Omega(\kappa(\Sigma_{\ell})^2 p)$ measurements be taken to ensure relative error recovery of the top ℓ eigenvalues.

and the unsatisfactory dimensional dependence

In practice, Σ often has a decaying spectrum. What if we want accurate estimates of its dominant eigenvalues?

> How many samples n of x ensure the top $\ell \ll p$ eigenvalues are estimated with relative accuracy,

$$|\lambda_k(\mathbf{\Sigma}) - \lambda_k(\widehat{\mathbf{\Sigma}}_n)| \le \varepsilon \lambda_k(\mathbf{\Sigma})$$
?

Do we really need O(p) measurements to recover just a few of the top eigenvalues?

Reduced dimensional dependence, assuming decay

Theorem

Consider n independent samples of a $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$ distribution. Assume $\{\lambda_k\}$ decays sufficiently fast for $k > \ell$. If $\varepsilon \in (0, 1]$ and

$$n = \Omega(\varepsilon^{-2}\kappa(\Sigma_{\ell})^2\ell\log p),$$

then with high probability, for each $k = 1, ..., \ell$,

$$|\lambda_k(\widehat{\Sigma}_n) - \lambda_k(\Sigma)| \le \varepsilon \lambda_k(\Sigma).$$

Compare to previous estimate of $n = \Omega(\varepsilon^{-2}\kappa(\Sigma_{\ell})^2p)$:

- ▶ Takes advantage of the decay in the residual eigenvalues.
- Requires $O\left(\frac{p}{\ell \log p}\right)$ fewer samples

Decay condition

"Sufficient" decay means

$$\sum_{k>\ell} \lambda_k/\lambda_1 \le C.$$

This condition is satisfied if, e.g., the tail eigenvalues $(k > \ell)$

- decay like $k^{-(1+\delta)}$ for some $\delta > 0$, or
- correspond to low-power white noise.

Other decay assumptions may be used.

Estimation of individual eigenvalues

We control, for each k, the probabilities that $\hat{\lambda}_k$ upper/lower-bounds λ_k .

$$\mathbb{P}\left\{\frac{\hat{\lambda}_k}{1-\epsilon} > \lambda_k\right\} > 1 - p^{-\beta} \text{ when}$$

$$n \ge \frac{1}{32\varepsilon^2} \kappa(\mathbf{\Sigma}_k) \frac{\sum_{i \le k} \lambda_i}{\lambda_k} (\log k + \beta \log p)$$

$$\mathbb{P}\left\{\frac{\hat{\lambda}_k}{1+\varepsilon} < \lambda_k\right\} > 1 - p^{-\beta} \text{ when}$$

$$n \ge \frac{1}{32\varepsilon^2} \frac{\sum_{i \ge k} \lambda_i}{\lambda_k} (\log(p-k+1) + \beta \log p)$$

Assuming decay (necessary only for the lower bounds), the number of samples needed:

	upper bound	lower bound
λ_1	$O(\log p)$	$O(\ell \log p)$
λ_ℓ	$O(\kappa^2(\mathbf{\Sigma}_\ell)\ell\log p)$	$O(\kappa(\mathbf{\Sigma}_{\ell})\log p)$

A. Gittens

October 11, 20

Proof sketch

It suffices to show

$$\mathbb{P}\left\{\hat{\lambda}_k \geq (1+\varepsilon)\lambda_k\right\} \quad \text{ and } \quad \mathbb{P}\left\{\hat{\lambda}_k \leq (1-\varepsilon)\lambda_k\right\}$$

decay like $C \exp(-cn\epsilon^2)$ when ϵ is sufficiently small.

- **1** Reduce the probability of each case occurring to the probability that the norm of an appropriate matrix is large.
- Use matrix Bernstein bounds to estimate the decay of these norms.
- **3** Take a union bound over the indices k.

Reduction for $\hat{\lambda}_k \geq \lambda_k + t$

Let **B** have orthonormal columns and span the bottom (p-k+1)-dimensional invariant subspace of Σ .

Claim

$$\mathbb{P}\left\{\hat{\lambda}_k \geq \lambda_k + t\right\} \leq \mathbb{P}\left\{\lambda_1(\mathbf{B}^*\widehat{\boldsymbol{\Sigma}}_n\mathbf{B}) \geq \lambda_1(\mathbf{B}^*\boldsymbol{\Sigma}\mathbf{B}) + t\right\}.$$

Proof.

By Courant-Fischer,

$$\lambda_k(\mathbf{\Sigma}) = \lambda_1(\mathbf{B}^*\mathbf{\Sigma}\mathbf{B})$$

and

$$\lambda_k(\widehat{\mathbf{\Sigma}}_n) = \min_{\substack{\mathbf{V} \in \mathbb{C}^{p \times (p-k+1)} \\ \mathbf{V}^* \mathbf{V} = \mathbf{I}}} \lambda_1(\mathbf{V}^* \widehat{\mathbf{\Sigma}}_n \mathbf{V}) \le \lambda_1(\mathbf{B}^* \widehat{\mathbf{\Sigma}}_n \mathbf{B}).$$

Using the reduction

Need to control RHS of

$$\mathbb{P}\left\{\hat{\lambda}_k \geq \lambda_k + t\right\} \leq \mathbb{P}\left\{\lambda_1(\mathbf{B}^*\widehat{\boldsymbol{\Sigma}}_n\mathbf{B}) \geq \lambda_1(\mathbf{B}^*\boldsymbol{\Sigma}\mathbf{B}) + t\right\}$$

Note $\mathbf{B}^*\widehat{\boldsymbol{\Sigma}}_n\mathbf{B} = \sum_i \mathbf{B}^*\mathbf{x}_i\mathbf{x}_i^*\mathbf{B}$ is a sum of independent rank-one Wishart matrices — naturally suggests use of matrix analogues of classical probability inequalities.

Use estimates of the matrix moments of the summands:

$$\mathbb{E}(\mathbf{B}^*\mathbf{x}\mathbf{x}^*\mathbf{B})^m \leq 2^m m! \left(\sum_{i>k} \lambda_i\right)^{m-1} \cdot \mathbf{B}^* \mathbf{\Sigma} \mathbf{B}.$$

Matrix Bernstein Inequality

We use the following moment-based matrix analog of Bernstein's inequality.

Theorem (Matrix Moment-Bernstein Inequality)

Suppose the d-dimensional self-adjoint matrices $\{G_i\}$ are i.i.d. copies of G and

$$\mathbb{E}(\mathbf{G}^m) \leq \frac{m!}{2} A^{m-2} \cdot \mathbf{C}^2 \quad \text{for } m = 2, 3, 4, \dots$$

Set

$$\mu = n\lambda_1(\mathbb{E}\mathbf{G})$$
 and $\sigma^2 = n\lambda_1(\mathbf{C}^2)$.

Then, for any $t \geq 0$,

$$\mathbb{P}\left\{\lambda_1\left(\sum_i \mathbf{G}_i\right) \ge \mu + t\right\} \le d \cdot \exp\left(-\frac{t^2/2}{\sigma^2 + At}\right).$$

A. Gittens

Finishing the argument

For the summands $\mathbf{B}^*\mathbf{x}_i\mathbf{x}_i^*\mathbf{B}$, we have

$$A = \sum_{i \geq k} \lambda_i \quad \text{and} \quad \sigma^2 = n \Big(\sum_{i \geq k} \lambda_i \Big) \cdot \lambda_1(\mathbf{B}^* \mathbf{\Sigma} \mathbf{B}) = n \lambda_k \cdot \Big(\sum_{i \geq k} \lambda_i \Big).$$

Thus, the Bernstein inequality gives

$$\mathbb{P}\left\{\hat{\lambda}_k \ge \lambda_k + t\right\} \le (p - k + 1) \cdot \exp\left(\frac{-nt^2}{32\lambda_k \sum_{i \ge k} \lambda_i}\right) \quad \text{for } t \le 4n\lambda_k.$$

Finally, take $t = \varepsilon \lambda_k$ to see

$$\mathbb{P}\left\{\hat{\lambda}_k \ge (1+\varepsilon)\lambda_k\right\} \le (p-k+1) \cdot \exp\left(\frac{-n\varepsilon^2}{32\sum_{i\ge k} \frac{\lambda_i}{\lambda_k}}\right) \quad \text{for } \varepsilon \le 4n.$$

The proof for the case $\hat{\lambda}_k \leq \lambda_k - t$ is similar.

A. Gitten

yström matrix

Octob

tober 11, 2011

17/18

Details

Paper "Tail Bounds for All Eigenvalues of A Sum of Random Matrices", Gittens and Tropp, 2011. Preprint, arXiv:1104.4513.

- ▶ Elaboration on the relative-error covariance eigenvalue estimation results.
- ▶ Similar arguments to find tail bounds for all eigenvalues of a sum of arbitrary random matrices.
- An application to column subsampling.

Contact Alex Gittens gittens@caltech.edu http://users.cms.caltech.edu/~gittens