CP312 Algorithm Design and Analysis I

LECTURE 5: RECURRENCES

Recurrences

• A **recurrence** is an equation or inequality that describes a function in terms of its value on **smaller inputs**.

 Recurrences give us a natural way to analyze the running times of divide-and-conquer algorithms.

Examples of Recurrences

•
$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

•
$$T(n) = T(2n/3) + T(n/3) + \Theta(n)$$

•
$$T(n) \le 4T(n/4) + \Theta(n^2)$$

Unless otherwise stated you can always assume that the base case $T(1) = \Theta(1)$

Solving Recurrences

- We will study three Methods:
- 1. Substitution Method
- 2. Recursion Tree Method
- 3. The Master Method

1. Guess the form of the solution

2. Verify by induction

3. Solve for constants (n_0, c)

- Example: T(n) = 4T(n/2) + n
- We are given that $T(1) = \Theta(1) \le d$ for some constant d

- 1. Guess $T(n) = O(n^3)$
- 2. Assume that $T(k) \le ck^3$ for k < nProve $T(n) \le cn^3$ by induction

Inductive Hypothesis: $T(k) \le ck^3$ for k < n

The Substitution Method

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^3 + n$$

$$= (c/2)n^3 + n$$

$$= (c/2)n^3 + n + (c/2)n^3 - (c/2)n^3$$

$$= cn^3 - ((c/2)n^3 - n)$$

$$\leq cn^3 \text{ whenever } ((c/2)n^3 - n) \geq 0 \text{ which is when } c \geq 2$$

Inductive Hypothesis: $T(k) \le ck^3$ for k < n

The Substitution Method

Base Case
$$(k = n_0)$$
: Let $n_0 = 1$ Recall we are given that: $T(n_0) = T(1) \le d$
$$\le c(1)^3 \text{ (by inductive hypothesis)}$$

3. So the constants are $n_0 = 1$ and $c \ge d$

Thus,
$$T(n) = O(n^3)$$

But is this upper bound tight?

- Example: T(n) = 4T(n/2) + n
- Assume that $T(1) = \Theta(1) \le d$ for some constant d

- 1. Guess $T(n) = O(n^2)$
- 2. Assume that $T(k) \le ck^2$ for k < nProve $T(n) \le cn^2$ by induction

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^2 + n$$

$$= cn^2 + n$$

Inductive Hypothesis:

 $T(k) \le ck^2 \text{ for } k < n$

 $\leq cn^2$ for what value of c does this inequality hold?

For **no** value of c > 0

- Example: T(n) = 4T(n/2) + n
- Assume that $T(1) = \Theta(1) \le d$ for some constant d

- 1. Guess $T(n) = O(n^2)$
- 2. Assume that $T(k) \le ck^2$ for k < nProve $T(n) \le cn^2$ by induction

Idea: strengthen the inductive hypothesis

- Example: T(n) = 4T(n/2) + n
- Assume that $T(1) = \Theta(1) \le d$ for some constant d

- 1. Guess $T(n) = O(n^2)$
- 2. Assume that $T(k) \le c_1 k^2 c_2 k$ for k < nProve $T(n) \le c_1 n^2 - c_2 n$ by induction

Idea: strengthen the inductive hypothesis

$$T(n) = 4T(n/2) + n$$
 Inductive Hypothesis: $\leq 4c_1(n/2)^2 - 4c_2(n/2) + n$ $= c_1n^2 - 2c_2n + n$ $= c_1n^2 - c_2n - (c_2n - n)$ $\leq c_1n^2 - c_2n$ whenever $(c_2n - n) \geq 0 \Rightarrow c_2 \geq 1$

3. Pick c_1 large enough to cover the base case

Thus,
$$T(n) = O(n^2)$$

• Example of incorrect use:

Suppose we want to (incorrectly) prove that the recurrence

$$T(n) = 2T(n/2) + n$$
 can be solved to be $T(n) = O(n)$

- 1. Guess $T(n) \leq cn$
- 2. So $T(n) \le 2c(n/2) + n$ $\le cn + n = O(n)$

Recursion Tree Method

Needed summation rules:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=0}^{n} x^{k} = \frac{x^{n+1} - 1}{x - 1} = \frac{1 - x^{n+1}}{1 - x} \quad \text{where } x \neq 1$$

$$\sum_{k=0}^{\infty} x^{k} = \frac{1}{1 - x} \quad \text{for } |x| < 1$$

• Solve $T(n) = T(n/4) + T(n/2) + n^2$

$$T(n) = T(n/4) + T(n/2) + n^2$$

T(n)

$$T(n) = T(n/4) + T(n/2) + n^2$$

$$\sum_{i=0}^{\infty} x^i = \frac{1}{1-x}$$
 for $|x| < 1$

- Solve $T(n) = T(n/4) + T(n/2) + n^2$
- Summing up the cost (time) in each level:

•
$$T(n) = n^2 + \frac{5}{16}n^2 + \left(\frac{5}{16}\right)^2 n^2 + \left(\frac{5}{16}\right)^3 n^2 + \dots + \left(\frac{5}{16}\right)^h n^2$$

$$\leq n^2 + \frac{5}{16}n^2 + \left(\frac{5}{16}\right)^2 n^2 + \left(\frac{5}{16}\right)^3 n^2 + \dots$$

$$= n^2 \sum_{i=0}^{\infty} \left(\frac{5}{16}\right)^i$$

$$= \frac{16}{11}n^2 = O(n^2)$$

- Solve $T(n) = T(n/4) + T(n/2) + n^2$
- Is it also $\Omega(n^2)$?
 - Yes!
- So it is $\Theta(n^2)$ and you can verify it using the substitution method!

The Master Method

• This method applies to recurrences of the form:

$$T(n) = aT(n/b) + f(n)$$

Where $a \ge 1$, b > 1 are constants and f(n) is asymptotically positive

The Master Theorem

Given
$$T(n) = aT(\frac{n}{b}) + f(n)$$
 where $a \ge 1, b > 1$ are constants

- Case 1: $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$
 - $\circ f(n)$ grows polynomially slower than $n^{\log_b a}$ (by an n^ϵ factor)

$$T(n) = \Theta(n^{\log_b a})$$

The Master Theorem

Given
$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$
 where $a \ge 1, b > 1$ are constants

• Case 2: $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$ • f(n) and $n^{\log_b a}$ grow at similar rates

$$T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$$

The Master Theorem

Given
$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$
 where $a \ge 1, b > 1$ are constants

- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$
 - f(n) grows polynomially faster than $n^{\log_b a}$ (by an n^{ϵ} factor)
 - f(n) must satisfy the **regularity condition** that $af(n/b) \le cf(n)$ for some constant c < 1

$$T(n) = \Theta(f(n))$$

• Ex1: T(n)=4T(n/2)+n $n^{\log_b a}=n^2 \text{ and } f(n)=n$ Case 1: $f(n)=O\left(n^{2-\epsilon}\right)$ for $\epsilon=1$

$$a = 4, b = 2$$

$$\therefore T(n) = \Theta(n^2)$$

• Ex2: $T(n) = 4T(n/2) + n^2$ $n^{\log_b a} = n^2$ and $f(n) = n^2$ Case 2: $f(n) = \Theta(n^2 \lg^0 n)$, that is k = 0

$$a = 4, b = 2$$

$$\therefore T(n) = \Theta(n^2 \lg n)$$

• Ex3:
$$T(n)=4T(n/2)+n^3$$
 $a=4,b=2$ $n^{\log_b a}=n^2$ and $f(n)=n^3$ Case 3: $f(n)=\Omega(n^{2+\epsilon})$ for $\epsilon=1$ and $4(n/2)^3 \leq cn^3$ for $c=1/2$ (regularity condition)

$$\therefore T(n) = \Theta(n^3)$$

• Ex4:
$$T(n) = 4T(n/2) + \frac{n^2}{\lg n}$$
 $a = 4, b = 2$ $n^{\log_b a} = n^2$ and $f(n) = n^2/\lg n$

• None of the cases' conditions are fulfilled => Master Theorem cannot be applied here.