Lab 7: Decimated-in-frequency FFT using the Butterfly Technique

Name: Peng Guo GTID: 903424176

1. Tables

a) Resources

i. CLB Logic

Site Type	Used	Fixed	Available	Util%
+	+	+		++
CLB LUTs	433	0	663360	0.07
LUT as Logic	433	0	663360	0.07
LUT as Memory	0	0	293760	0.00
CLB Registers	662	0	1326720	0.05
Register as Flip Flop	662	0	1326720	0.05
Register as Latch	0	0	1326720	0.00
CARRY8	57	0	82920	0.07
F7 Muxes	0	0	331680	0.00
F8 Muxes	0	0	165840	0.00
F9 Muxes	j 0	0	82920	0.00

ii. IO and GT Specific

Site Type	Used	Fixed	Available	Util%
Bonded IOB	325	0	832	39.06
HPI0B	228	0	676	33.73
INPUT	50	İ		İ
OUTPUT	178	į i		İ
BIDIR	0	İ	İ	İ
HRI0	97	0	156	62.18
INPUT	17	İ		İ
OUTPUT	80		İ	İ
BIDIR	0	İ		İ
HPI0BDIFFINBUF	0	0	480	0.00
HPI0BDIFF0UTBUF	0	0	480	0.00
HRIODIFFINBUF	0	0	96	0.00
HRIODIFFOUTBUF	0	0	96	0.00
BITSLICE_CONTROL	0	0	192	0.00
BITSLICE_RX_TX	0	0	1248	0.00
BITSLICE_TX	0	0	192	0.00
RIU_OR	0	0	96	0.00

iii. Primitives

Ref Name	Used	Functional Category
+	t	
FDRE	662	Register
OBUF	258	I/0
LUT2	210	CLB
LUT1	74	CLB
INBUF	67	1/0
IBUFCTRL	67	Others
LUT6	66	CLB
CARRY8	57	CLB
LUT5	53	CLB
LUT3	48	CLB
I LUT4	43	CLB
DSP48E2	16	Arithmetic
BUFGCE	1	Clock

b) Power

+	++
Total On-Chip Power (W)	1.529
Dynamic (W)	0.196
Device Static (W)	1.333
Effective TJA (C/W)	0.8
Max Ambient (C)	98.8
Junction Temperature (C)	26.2
Confidence Level	Low
Setting File	
Simulation Activity File	
Design Nets Matched	NA
+	++

c) Worst Negative Slack

Design Timin	g Summary						
WNS(ns)	TNS(ns)	TNS Failing	Endpoints	TNS Total	Endpoints	WHS(ns)	THS(ns)
4,369	0,000		0		2209	0.036	0.000
THS Failing Endpo	ints THS Tot	al Endpoints	WPWS(ns)	TPWS(ns)	TPWS Failing		Total Endpoints
	0	2209	4.725	0.000		0	671

2. Question and Answer

What is the rationale behind choosing the values of the twiddle factor as given in the table? Note that the twiddle factors are signed numbers of resolution 1.8.

a) Write down the decimal fractional format of the twiddle factors.

- b) Consider what is the limit of such 1.8 resolution? It is not that precise to use 1.8 resolution, and we have no method to denote integer 1 multiplied by 256.
- c) Consider for some twiddle factor(s), is the value not precise as it could have been? And why are we doing that?
 Because we have to keep the modulus of the twiddle factors the same. The twiddle factor 256 is adjusted to 255, so the twiddle factor 181 is adjusted to 180 as well.