Aman Choudhary SR.No: 17920

http://printpaper.us

ASSIGNMENT-1

1/3=10401112101		
det us consider the set of real numbers between	m 0	and 1,
$A = [0,1] \subseteq R$		
We define a partial order on A using ≤,		
V		
$P = (A, \leq)$ \leq is replaxive as $\infty \leq \infty$, $\forall \infty \in A$ \leq is anti-symptotic as $(\infty \leq y \text{ AND } y \leq x) \Rightarrow \infty = y$, \forall \leq is transitive as $(\infty \leq y \text{ AND } y \leq z) \Rightarrow \infty \leq z$,		
\leq is reflexive as $\infty \leq \infty$, $\forall \infty \in \mathbb{N}$		
\leq is anti-symptotic as $(x \leq y \text{ AND } y \leq x) \Rightarrow x = y, t$	/ x	,y∈ A
\leq is transitive as $(\propto \leq y \text{ AND } y \leq z) \Rightarrow \propto \leq z$	٧x,	y,zeA
	_	O
Now.		
P is a lattice because ∀ x,y ∈ A,		
Now, P is a lattice because $\forall x, y \in A$, $x \sqcup y = \max(x, y)$ $x \sqcap y = \min(x, y)$		
$x \Pi y = \min(x, y)$		
Alus		
0 is the least element for P, as $\forall x \in A$	١, 0	<x< th=""></x<>
0 is the least element for P, as $\forall x \in A$ 1 is the greatest element for P, as $\forall x \in A$	A\	X (
0 0		
det us consider the interval,		
$B = [0,1) \subset A$		
If we assume, l∈B to be the lub of B, then we can always show l'∈B such that Hence, there exists no lub for BCA. Hence, F a complete lettice.		
then we can always show I' = B such that	Ls	€ l'.
Hence, there exists no lub for BCA. Hence, F	ai c	not
a complete lattice.		
Hence we cannot say that a lattice will be com	glete	J of
Hence, we cannot say that a lattice will be com there exists both a least and a greatest elemen	nt.	
O		

4	
(a)	NOTATION:
	Var -> Set of variables in the Sproman
	Var → Set of variables in the program Val → Set of values that the variables can assume Num → Set of statement numbers in the program
	Num - Set of victors of the hyperson
	Sure - Les of sacrometre for the first the following
	State in defined as 1/as - 1/al
	State is defined as Var → Val VDez is defined as Var → Num
	VEG 15 OCCINED OF VIEW NAME
	that - Ct+ Y VDof
	Extestate - State X VDef
•	Concrete Transfor junctions are defined as,
	nstateExt _{MN} : ExtState -> 2 ExtState
	nstateExt _{MN} : 2 = ExtState = ExtState
	Ext State,
	nstate Ext' _{MN} (E E 2) = I netate Ext _{MN} (e)
	eeE
•	Collecting semantics is defined as,
	CS: Program Points -> 2
	CS (t = Program Points) = U nstate Extp (E0)
	I to t
	p poth from I to t where Eo is the set of initial concrete states.
	b b b

http://printpaper.us

•	Concrete Transfer junction for assignment statement	
	V V V	
	Let us consider an assignment statement Smn between	Program
	let us consider an assignment statement SMN between foints M and N, whose LHS is variable V; E	Vor
	· ·	
	Let en E Extistate be a concrete	state at
	Vi = expr boint M We need to calculate E	, ∈ 2 Ext State
	Let em E Extestate be a concrete V' = expr point M. We need to calculate E per point N. For that we will the concrete transfer function Fig. 1.	duine
	the concrete transfer function	such that,
	Fig 1.	,,,,,
	nstateExt_ASSIGN _{MN} (e _M) = E _N	
	Now, we will use the 'n state' transfer junction the 'State' component of $e_{\rm m}$.	to tronder
	the 'State' combonent of em.	D
	·	
	nstate: State $\rightarrow 2^{\text{State}}$	
	Se	
	So, nutati _{MN} (e _m . State) = E _{N_State}	
	Next, we need to transfer the VDef' component	of em.
		U ·
	det, En-voet be a singleton set such that,	
	$E_{N_VDef} = x x \in VDef$, and	
	$E_{N_VDef} = \begin{cases} x \mid x \in VDef, \text{ and } \\ x[v_i] = \text{stintNum}(S_{HN}) \text{ and } \\ \forall v_j \neq v_i, x[v_j] = e_{HN} VDef \end{cases}$	<u> </u>
	Vj = Vi, x[vi] = em. VDet	} [V ₂] }
	Now, we can define notate Ext_ASSIGN as	
	LATT A AGAINN (A.) - V	
	nstateExt_AssIGN _{MN} (e _M) = E _{N_State} X E _{N_}	VDet - FN

http://printpaper.us

(b)	Now, $D = 2^{Num}$. We need to define transfer jut $f_n : D \to D$	metions
•	Transfer junction for assignment state (rejor	Fig1)
	det $d_N \in D$ and $d_N \in D$ be the abstract state M and N respectively. Then,	s at bomt
	$f_{MN}(d_M) = d_M - S_{V_i} U $ { strdNum (S	
	Here, Sv;∈D is the set of statements whose definitions of statements whose definitions.	ition for
	variable v; reaches M.	
•	Transpor junction por condition node (rejor F	ia 2)
	dit dm, da, dB = D be the abstract states M, A and B respectively. Then,	at points
	19, A who B respectively. Herr,	
	Ix condition at node Sn evaluates to TRUE,	
	$f_{MA}(d_M) = d_M = d_A$	
	$f_{MA}(d_M) = d_M = d_A$ $f_{MB}(d_M) = 0 = d_B$	
	Ix condition at node SM evaluates to FALSE	,
	$t_{MA}(d_M) = 0 = d_A$ $f_{MB}(d_M) = d_M = d_B$	
	+мв (dn) = dn = dв	
•	For the abstract lattice D, the order would !	se defined
	For the abstract lattice D, the order would by \subseteq i.e for $d_1, d_2 \in D$, $d_1 \le d_2$ if $d_1 \le d_2$ and the join operation would be union a	$\equiv d_2$.
	Also, the join operation would be union a	uch that
	d, L) d2 = d1 U d2	
	• — — — h	ttp://printpaper.us

(c) $Y_D: D \rightarrow 2$ det d = D be un abstract state at point 't'. Yp(d) = Se = ExtState, 3v = Vor, 3s = Num, ? e. VDef[v] = S The outfut of the above function is a set of concrete states which will over-approximate the identing semantics at that point.

http://printpaper.us

