

Power Transistors

2N6178 2N6180 2N6179 2N6181

Silicon N-P-N & P-N-P **Power Transistors**

"Plastic TO-5" General-Purpose Types for Large-Signal, Medium-Power Applications

Features:

- Maximum area-of-operation curves
- Planar construction for low-noise and low-leakage characteristics
- Low saturation voltage (2N6178, 2N6180)
- High beta (2N6179, 2N6181)
- Fast switching (2N6178, 2N6179)
- "Plastic TO-5" package with insulated mounting hole

RCA types 2N6178, 2N6179, 2N6180, and 2N6181 are silicon power transistors intended for large-signal, mediumpower applications in industrial and commercial equipment.

The 2N6178 and 2N6179 are triple-diffused silicon n-p-n planar types. These types have features similar to the popular 2N2102 plus higher collector-current ratings and dissipation capability.

Types 2N6180 and 2N6181 (p-n-p complements of the 2N6178 and 2N6179, respectively) are double-diffused, epitaxial-planar devices. These types have features similar to the 2N4036 plus higher collector-current ratings and dissipation capability.

TERMINAL CONNECTIONS

Lead 1 - Emitter

Lead 2 - Base

Lead 3 - Collector

Rectangular Metal Slug-Collector

In addition, these types utilize the new RCA-developed "Plastic TO-5" package. This plastic package has an insulated mounting hole for ease of mounting and heat sinking for optimum thermal contact.

Formerly RCA Dev. Nos. TA7554-TA7557, respectively.

MAXIMUM RATINGS, Absolute-Maximum Values:	2N6179	2N6181	2N6178	2N6180
*COLLECTOR-TO-BASE VOLTAGE V _{CBO} COLLECTOR-TO-EMITTER VOLTAGE:	75	-75	100	-100
 With 1.5 volts (V_{BE}) of reverse bias V_{CEX} With external base-to-emitter resistance 	75	-75	100	-100
$(R_{BE}) = 100\Omega$, sustaining V_{CER} (sus)	65	-65	90	-90
With base open, sustaining VCEO(sus	50	-50	75	-75
*EMITTER-TO-BASE VOLTAGE VERO	5	-5	7	-7
*CONTINUOUS COLLECTOR CURRENT · · · · · · · IC	2	-2	2	-2
*CONTINUOUS BASE CURRENT IB *TRANSISTOR DISSIPATION: PT	1	-1	1	-1
At case temperatures up to 25°C	25	25	25	25
At case temperatures above 25°C		See Figs.	1, 2, & 3	
At case temperatures up to 100°C	10	10	10	10
At case temperatures above 100°C		See Figs. 3	3, 4, & 5	
*TEMPERATURE RANGE:				
Storage and operating (Junction)	-		5 to 150	
*LEAD TEMPERATURE (During soldering):				
At distance \geq 1/32 in (0.8 mm) from				
seating plane for 10 s max			230	

^{*}In accordance with JEDEC registration data format JS-6/RDF-1.

V

w

οс

oc.

ELECTRICAL CHARACTERISTICS, at case temperature $(T_C) = 25^{\circ}C$, unless otherwise specified.

1			TEST CONDITIONS						LIMITS							
	CHARACTERISTIC	SYMBOL	DC Voltage (V)		DC Current (mA)		Type 2N6178		Type 2N6179		Type 2N6180		Type 2N6181		UNITS	
			VCB	VCE	VBE	lc	IВ	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
	Collector-Cutoff Current With emitter open	ІСВО	80 60 -80 -60					- - -	0.5 - -		 0.5 	1 1 1	- -0.5 -	1111	- - - -0.5	μΑ
	With base open	CEO		60 45 -60 -45			0 0 0	- - -	1 - -		1 -	1 1 1	- - -1 -		- - - -1	mA
٠	With base reverse-bijased	ICEV		100 75 –100 –75	-1.5 -1.5 1.5 1.5			- - -	0.1 - - -		- 0.1 - -	1 1	- - -0.1 -	1 1 1	- - - -0.1	mA
•	With base reverse-biased and $T_C = 100^{\circ}C$	CEV		70 45 70 45	-1.5 -1.5 1.5 1.5			1 1 1	0.5 - - -	1111	0.5	1111	- -0.5 -	1111	- - - -0.5	
•	Emitter-Cutoff Current	¹ EBO			7 5 7 5	0 0 0			0.1 - -	1 1 1 1	- 0.1 - -	1 1 1 1	- - -0.1 -	1111	- - - -0.1	mA
	Emitter-to-Base Breakdown Voltage (I _E = 0.1 mA)	V(BR)EBO				0		7 -	-	5	-	- -7	-	- -5	-	v
•	Collector-to-Emitter Breakdown Voltage: With base-emitter junction reverse-biased	V _{(BR)CEV}			-1.5 1.5	0.1 -0.1		100 	-	75 -	1 1	_ _100	1 1	 75	1 1	>
•	With base open	V(BR)CEO				100 -100	0	75 –	-	50 	_	- -75		_ _50		٧
	Collector-to-Emitter Sustaining Voltage: With external base-to- emitter resistance (R _{BE}) = 100 Ω	VCER(sus)a				100 100		90 -	_	65 -	-	- 90	1 -	- -65	1 1	٧
	With base open	V _{CEO} (sus)a				100 -100	0	75 –	=	50 -	_	- -75		- -50	1 1	>
٠	Collector-to-Emitter Saturation Voltage	V _{CE} (sat)				500 -500	50 -50	-	0.5	-	0.8	-	_ -0.7	-	_ _1.2	>
٠	Base-to-Emitter Saturation Voltage	V _{BE} (sat)				500 -500	50 -50	-	1.2	-	1.5	1 1	- -1.2		_ _1.5	>
	Output Capacitance (At 1 MHz)	C _{obo}	10 –10					12 -	20 -	12 	20 –	- 25	- 40	_ 25	- 40	pF
•	DC Forward-Current Transfer Ratio	hFE		4 -4 2 -2 2 -2		50 -50 500b -500b 1000b		- 30 - 10	- 130 - -	30 40 	- 250 - -	- - 30 - 10	- - 130 - -	- 30 - 40 -	- - 250 -	
	Second-Breakdown Collector Current c, d (With base forward-biased)	I _{S/b}		V _{CC} = 50 –50				200 –	-	200	-	_ _150	-	_ _150	-	mA
	Gain-Bandwidth Product	fT		4 -4		50 -50		50 	-	50	_	- 50	-	- 50	-	MHz
•	Magnitude of Common Emitter, Small-Signal, Short- Circuit Forward-Current Transfer Ratio (f = 10 MHz)	h _{fe}		4 -4		50 –50		5 –	- -	5 -	-	- 5	-	 5	-	

Chart continued on page 3.

CHARACTERISTIC	SYMBOL	TEST CONDITIONS					LIMITS								
		DC Voltage (V)		DC Current (mA)		Type 2N6178		Type 2N6179		Type 2N6180		Type 2N6181		UNITS	
		VCB	VCE	VBE	lc	I _B	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Saturated Switching Time: (See Fig. 30 & 31) Turn-on Time	ton		V _{CC} = 30 −30		500 -500	50 -50	-	80	-	80	-	100	-	_ 100	ns
Turn-off Time	^t off		V _{CC} = 30 -30		500 -500	50 -50	-	800	_	800	-	1000	_	_ 1000	ns
Thermal Resistance: Junction-to-Case	R _θ JC						-	5	-	.5	-	5	-	5	°C/W
Junction-to-Ambient	R _{0JA}						-	156	-	156	-	156	_	156	°C/W

^{*} In accordance with JEDEC registration data format JS-6/RDF-1.

- ^c Safe operating regions for forward-bias operation are shown on Figs. 1, 2, 4, and 5.
- d Pulsed: 0.4s, non-repetitive pulse.

Fig.1—Maximum operating areas for 2N6178 and 2N6179 at T_C=25°C.

Fig.3-Derating curves for all types.

Fig.2—Maximum operating areas for 2N6180 and 2N6181 at T_C=25⁰C.

Fig.4-Maximum operating areas for 2N6178 and 2N6179 at T_C=100°C.

 $^{^{\}rm a}$ CAUTION: The sustaining voltages ${\rm V_{CEO}}({\rm sus})$ and ${\rm V_{CER}}({\rm sus})$ MUST NOT be measured on a curve tracer.

b Pulsed; pulse duration $\leq 300 \,\mu\text{s}$, duty factor ≤ 0.02 .

Fig.5-Maximum operating areas for 2N6180 and 2N6181 at T_C=100°C.

Fig.6—Thermal-cycling rating chart for all types.

Fig.7—Typical input characteristics for 2N6178 and 2N6179.

Fig.8-Typical input characteristics for 2N6180 and 2N6181.

Fig.9—Typical output characteristics for 2N6178 and 2N6179.

Fig.10—Typical transfer characteristics for 2N6178 and 2N6179.

Fig.11-Typical transfer characteristics for 2N6180 and 2N6181.

Fig.13-Typical saturation-voltage characteristics for 2N6178 and 2N6179.

Fig.15—Circuit used to measure sustaining voltages VCEO(sus) and VCER(sus).

Fig.12—Typical output characteristics for 2N6180 and 2N6181.

Fig.14—Typical saturation-voltage characteristics for 2N6180 and 2N6181.

Fig.16—Collector-to-emitter sustaining voltage characteristics for 2N6178 and 2N6179.

Fig.17—Collector-to-emitter sustaining voltage characteristics for 2N6180 and 2N6181.

Fig. 19—Typical dc beta characteristics for 2N6178 and 2N6179.

Fig.21—Typical gain-bandwidth product for 2N6178 and 2N6179.

NOTE: SUSTAINING VOLTAGES V_{CEO}(sus) AND V_{CEO}(sus) ARE ACCEPTABLE WHEN TRACES FALL TO THE RIGHT AND ABOVE POINTS "A" FOR TYPE 2N6178 POINTS "B" FOR TYPE 2N6178, TO THE LEFT AND BELOW POINTS "C" FOR TYPE 2N6181, AND POINTS "D" FOR TYPE 2N6180.

Fig.18—Oscilloscope display for measurement of sustaining voltages (test circuit shown in Fig.15).

Fig.20—Typical dc beta characteristics for 2N6180 and 2N6181.

Fig.22—Typical output capacitance vs. collector-to-base voltage for 2N6178 and 2N6179.

Fig. 23—Typical output capacitance vs. collector-to-base voltage for 2N6180 and 2N6181.

Fig.25-Typical turn on time for 2N6178 and 2N6179.

Fig.27—Maximum operating conditions, resistive-load switching between saturation and cutoff for 2N6178 and 2N6179.

Fig.24—Typical gain-bandwidth product for 2N6180 and 2N6181.

Fig.26—Typical turn-on time for 2N6180 and 2N6181.

Fig.28—Typical turn-off time for 2N6178 and 2N6179.

Fig.29—Typical turn-off time for 2N6180 and 2N6181.

- *FOR 2NG180 OR 2NG181, REVERSE DIRECTION OF ${\rm I_{B_1}}$ AND ${\rm I_{B_2}}$ AND REVERSE POLARITY OF ${\rm V_{BB}}$ AND ${\rm V_{CC}}$ AND CAPACITORS
- A IB, AND IB, MEASURED WITH TEKTRONIX CIRCUIT PROBE P6019 AND TYPE 134
 AMPLIFIER, OR EQUIVALENT

92CS-19913

Fig.31—Circuit used to measure switching times for all types.

Fig.30—Maximum operating conditions, resistive-load switching between saturation and cutoff for 2N6180 and 2N6181.

CURRENT AND COLLECTOR CURRENT WAVE FORMS.

92CS-19914

Fig.32—Phase relationship between input current and output voltage showing reference points for specification of switching times (test circuit shown in Fig.31).