

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

Кафедра «Электротехники, электроники и автоматики» Дисциплина «Электротехника»

Отчёт по лабораторной работе № 2 «Установившиеся режимы в линейных цепях с источниками сигналов синусоидальной формы »

Выполнил: студент группы АДБ-17-11	Антонов А.Б.
Проверил: преподаватель	Сорокин В.О.
Готт.	Пото

Исследование установившихся режимов в линейной RLCцепи с источником синусоидального сигнала

Цель работы: исследование установившихся режимов в линейных цепях с источниками синусоидальных сигналов.

Схема виртуального эксперимента для исследования статических режимов и линейной цепи с источником синусоидального сигнала:

Рис. 1

	V1	Ur	Uc	Ul	I	V1m	ULm	ψL	Im	ψi	ф	P	Cos	Z
	В	В	В	В	A	В	В	град.	A	град.	град.	Вт	_	Ом
Экспер	72.12	44.	70.7	13.9	4.4	102	19.7	216	6.28	306	-	197.5	0.6	16.2
имент	5	46	6	7	5		5				306	3	16	2
Расчет	72.12	44.	70.7	13.9	4.4	101.9	19.7	218	6.28	308	-	197.1	0.6	16.2
	5	4		4	4	8	1				308	9	16	3

Табл. 1

Показания ваттметра

Векторная диаграмма реакций и сигналов

Треугольник сопротивлений:

Треугольник мощностей

Вывод: экспериментальные и расчетные значения входного сопротивления, мощности, параметров сигнала и реакций оказались примерно одинаковыми, следовательно, мы можем использовать метод комплексных амплитуд для расчета реакций в линейных электрических цепях, с источниками напряжений (токов) синусоидальной формы одной частоты, в установившемся режиме.

Исследование установившихся режимов в линейной цепи с источниками синусоидальных сигналов разной частоты

Значения сигналов и реакций цепи

		Сигн	алы		Реакции					
	VI_m	fv	Jm	fi	I1	I2	I3	U3	f	P3
	В	Гц	Α	Гц	Α	Α	Α	В	Гц	Вт
Составляющие 1	0	0	5	150	1.414	1.414	0.707	14.142	150	9.99
Составляющие 2	102	50	0	0	4.327	2.885	1.443	28.85	50	41.616
Суперпозиция	102	50	5	150	5.741	4.3	2.15	42.992		51.606
Результат	102	50	5	150	4.553	3.213	1.606	32.13	50	51.731

Вывод: главная особенность применения принципа суперпозиции в случае значений сигналов и реаций цепи разной частоты заключается в том, что значения, полученные таким способом, отличаются от значений, полученных в ходе эксперимента.

При V=0 [В]

При I1=0 [А]

Графики зависимости V1(t), J(t), $i_3(t)$

Для колонки 'Результат':

Для колонки 'Составляющая 1':

Для колонки 'Составляющая 2':

 $i_3(t)$ Временные зависимости тока

	5	7	9	12	14
t, MC					
$ i_3 $					
, A					
Составляющие 1	-0.999	0.327	0.781	-0.947	0.618
(V1m=0)					
Составляющие 2	2.040	1.643	0.6	-1.206	-1.948
(Jm=0)					
Суперпозиция	1.040	1.970	1.382	-2.153	-1.33
Результат	1.040	1.970	1.382	-2.153	-1.33

Табл. 3

Вывод: принцип суперпозиций для временных зависимостей , даже несмотря на тот факт, что источники имеют разные частоты , работает.

Исследование установившихся режимов в линейной цепи с источниками синусоидальных сигналов одинаковой частоты

При V=0 [В]

При I = 0 [A]

Параметры сигналов и значения реакций цепи

	C	игналы	Реакции						
	VI_m	Jm	f	I1	I2	I3	U3	f	P3
	В	Α	Гц	Α	Α	Α	В	Гц	Вт
Составляющие 1	0	5	50	1.414	1.414	0.707	14.142	50	10
Составляющие 2	102	0	50	4.327	2.885	1.443	28.85	50	41.616
Суперпозиция	102	5	50	5.741	4.3	2.15	42.992	50	51.616
Результат	102	5	50	2.913	4.3	2.15	42.99	50	92.416

График зависимости V1(t), J(t), i₃(t) Для колонки 'Результат'

Для колонки 'Составляющая 1'

Временные зависимости тока в цепи с источниками одинаковой частоты

Бременные	Временные зависимости тока в цени с исто пиками одинаковой застоты									
	5	7	9	12	14					
t, MC										
i_3										
, A	0.999	0.805	0.205	-0.59	0.055					
Составляющие 1 (V1m=0)	0.999	0.605	0.295	-0.59	-0.955					
Составляющие 2	2.040	1.643	0.6	-1.206	-1.948					
(Jm=0)										
Суперпозиция	3.040	2.448	0.895	-1.796	-2.903					
Результат	3.040	2.448	0.895	-1.796	-2.903					

<u>Вывод</u>: принцип суперпозиции работает в случае значений сигналов и реакции, **кроме значений мощности Р3 и тока I1**, и в случае временных зависимостей тока в цепи с источниками одинакокой частотой.