rator of the adjoint weak*-semigroup, then $P\sigma(A) \cap i\mathbb{R} = \emptyset$, while $P\sigma(A') \cap i\mathbb{R} = i\mathbb{R}$. For that reason we cannot expect a simple connection between these two sets. But as we shall see below, if a semigroup on the predual of a W*-algebra has sufficiently many invariant states, then the point spectra of A and A' contained in $i\mathbb{R}$ are identical. Helpful for these investigations will be the next lemma.

<u>Lemma</u> 1.6. Let R be a pseudo-resolvent on $D = \{\lambda \in \mathbb{C} : \operatorname{Re}(\lambda) > 0\}$ with values in a Banach space E such that $\|\mu R(\mu + i\alpha)\| \le 1$ for all $(\mu,\alpha) \in \mathbb{R}_+ \times \mathbb{R}$. Then

$$\dim \operatorname{Fix}(\lambda R(\lambda + i\alpha)) \leq \dim \operatorname{Fix}(\lambda R(\lambda + i\alpha))$$

for all $\lambda \in D$.

<u>Proof.</u> Let $(\mu,\alpha) \in \mathbb{R}_+^{\times}\mathbb{R}$ and $S := \mu\mathbb{R}(\mu + i\alpha)$. Since S is a contraction, its adjoint S' maps the dual unit ball E'_1 into itself. Let \mathcal{U} be a free ultrafilter on $[1,\infty)$ which converges to 1. Since E'_1 is $\sigma(E',E)$ -compact,

$$\psi_{\Omega} := \lim_{U} (\lambda - 1) R(\lambda, S) \psi$$

exists for all $\psi \in E'_1$. Since S' is $\sigma(E',E)$ -continuous and since S'R(λ ,S)' = λ R(λ ,S')-Id we conclude $\psi_O \in Fix(S')$.

Take now $0 \neq x_0^{\text{E}}(S)$ and choose $\psi \in E'_1$ such that $\psi(x_0)$ is different from zero. From the considerations above it follows

$$\psi_{o}(x_{o}) = \lim_{U}(\lambda - 1) \psi(R(\lambda, S)x_{o}) = \psi(x_{o}) \neq 0 ,$$

hence 0 \neq $\psi_{0}^{}$ (Fix(S) . Therefore Fix(S') separates the points of Fix(S) . From this it follows that

$$\dim Fix(S) \leq \dim Fix(S')$$
.

Since R and R' are pseudo-resolvents, the assertion is proved.

Corollary 1.7. Let \mathcal{T} be a semigroup of contractions on a Banach space E with generator A . Then

$$\dim \ker(i\alpha - A) \leq \dim \ker(i\alpha - A')$$

for all $\alpha \in \mathbb{R}$.