SGGW (29.01.2011) Sprawdzian z matematyki

${\bf Numer\ indeksu:}$																						 	 	
Imie i nazwisko:														 							 		 	

Test składa się z dwudziestu zadań. W każdym z zadań podane sa trzy punkty a, b i c. W każdym podpunkcie należy skreślić **nieprawidłowa** odpowiedź; przykład poniżei. Brak skreślenia traktowany jest jako błedna odpowiedź.

Przykład

0. Iloczyn $2 \cdot 2$ jest równy

Obliczanie punktów:

za każdą prawidłową odpowiedź na pytanie TAK lub NIE przyznawany jest mały punkt; jeżeli w danym pytaniu uzyskano trzy małe punkty, to przyznawany jest jeden duży punkt (w powyższym przykładowym pytaniu uzyskano trzy małe punkty i jeden duży).

Wynik testu = suma dużych punktów +
$$\frac{\text{suma malych punktów}}{100}$$

UWAGA: żadne poprawki nie będą uwzględniane!

1. Niech
$$F(x) = \int 4\sqrt{x} dx$$
.

TAK NIE a.
$$F(x) = \frac{1}{8\sqrt{x}} + c$$

TAK NIE **a.**
$$F(x) = \frac{1}{8\sqrt{x}} + c$$
TAK NIE **b.** $F(x) = \frac{8}{3x\sqrt{x}} + c$

TAK NIE c.
$$F(x) = \frac{4}{3x\sqrt{x}} + c$$

2. Niech
$$f(x) = 5 - x + \frac{1}{x} \ln x$$
. Wówczas

TAK NIE **a.**
$$f''(x) = -\frac{2}{x^3}(1 - \ln x) - \frac{1}{x^3}$$

TAK NIE **b.**
$$\int f(x) dx = 5x - 0.5x^2 + \ln[\ln x]$$

TAK NIE c.
$$f'(x) = \frac{1}{x^2}(1 - \ln x) - 1$$

3. Niech $f(x) = x^2 + 3x$

TAK NIE a. Funkcja f(x) jest wklęsła

TAK NIE **b.** Funkcja f(x) jest rosnąca w przedziale $(-1.5, \infty)$

TAK NIE c. f'(x) = 2x + 3

4. Niech $f(x) = x/(1 + \ln x)$. Wówczas

TAK NIE **a.** $f'(x) = \frac{1}{n} \cdot \ln x$

TAK NIE b. $f'(x) = \ln x/(1 + \ln x)^2$

TAK NIE c. $f'(x) = \frac{1}{1+1/x}$

5. Niech funkcja $f(x) = x^3 - 2x + 4$. Wówczas

TAK NIE a. funkcja f(x) ma dwa punkty przegiecia.

TAK NIE **b.** funkcja f(x) jest rosnąca w przedziale $(\sqrt{2/3}, \infty)$.

TAK NIE c. funkcja f(x) jest wypukła w przedziale $(0,\infty)$.

6. Niech $f(x) = \sin(x^2 + \sqrt{\ln(x)})$. Wówczas

TAK NIE **a.** $f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{2x\sqrt{\ln(x)}}\right)$ TAK NIE **b.** $f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{\sqrt{\ln(x)}}\right)$

TAK NIE c. $f'(x) = \cos(x^2 + \sqrt{\ln(x)})$

7. Całka $\int_{0}^{1} \int_{0}^{1} xy \, dx dy$ wynosi:

TAK NIE a. 4

TAK | NIE | **b.** 1/4

TAK NIE c. 1

8. Niech $f(x) = x^2 + \operatorname{tg}(x+1)$. Niech g(y) jest funkcją odwrotną do f(x) w otoczeniu punktu $x = \pi - 1$. Pochodna $q'(y_0)$, dla $y_0 = f(\pi - 1)$ wynosi

TAK NIE a. 2π

TAK NIE **b.** π

TAK NIE c. $\pi + 1$

9. Niech
$$w = \int_0^\pi x \sin(x) dx$$

TAK NIE a.
$$w=2\pi$$

TAK NIE b.
$$w=1$$

TAK NIE
$$\mathbf{c.} \ w = \pi$$

10. Funkcja
$$f(x) = \frac{(x-2)(8-x)}{x^2}$$

TAK	NIE	a.	$_{\mathrm{ma}}$	w	punkcie	x =	3.2	${\it maksimum}$	globalne
-----	-----	----	------------------	---	---------	-----	-----	------------------	----------

TAK NIE **b.** ma w punkcie
$$x = 3.2$$
 minimum lokalne

TAK NIE c. ma w punkcie
$$x = 3.2$$
 ekstremum lokalne

11. Równanie stycznej do krzywej
$$K=\{(x,y)|\ y=\arcsin\left(\frac{x-1}{2}\right)\}$$
 w punkcie przecięcia tej krzywej z osia OX ma postać

TAK NIE **a.**
$$3x - 2y + 10 = 0$$

TAK NIE **b.**
$$y = x$$

TAK NIE **c.**
$$x - 2y - 1 = 0$$

12. Niech
$$w = \int_{0}^{\pi} x e^{x} dx$$

TAK NIE **a.**
$$w = 1 + e^{x\pi} (-2 + \pi)$$

TAK NIE **b.**
$$w = 1 + e^{\pi} (-1 + \pi)$$

TAK NIE c.
$$w = e^{\pi} (-1 + \pi)$$

13. Całka
$$\int_{0}^{1} x \sin(x^2 + 5) dx$$
 wynosi:

TAK NIE a.
$$\sqrt{2}/2$$

TAK NIE **b.**
$$\cos 5 - \cos 6$$

14. Funkcja
$$f(x) = (\sin(x) + 1)^2$$

TAK NI	E a.	jest	okresowa
--------	------	------	----------

TAK	NIE	b. jest	nieparzysta
-----	-----	----------------	-------------

15. Niech
$$w = \int_{1}^{2} (-3 + \frac{1}{3}x^2 - \frac{1}{4}x^3) dx$$

TAK NIE **a.**
$$w < -5$$

TAK NIE **b.**
$$w > 3$$

TAK NIE c.
$$w > 0$$

16. Niech
$$f(x) = [\sin(\ln x)]^2$$
. Funkcja $f'(x)$ wyraża się wzorem

TAK NIE **a.**
$$\frac{2}{x}\sin(\ln x) \cdot \cos(\ln x)$$

TAK NIE **b.**
$$2\cos(1/x)$$

TAK NIE **c.**
$$2\sin(\ln x)$$

17. Przy wyznaczaniu całki
$$\int x \sin(x^2 + 4) dx$$
 zastosowano podstawienie $y = x^2 + 4$.

TAK NIE a. Czy
$$\int x \sin(x^2 + 4) dx = \int \sin y dy$$
?

TAK NIE **b.** Czy
$$\int x \sin(x^2 + 4) dx = \int \sqrt{y - 4} \sin y dy$$
?

TAK NIE c. Czy
$$\int x \sin(x^2 + 4) dx = \frac{1}{2} \int \sin y \, dy$$
?

18. Niech
$$F(x) = \int x\sqrt{x} dx$$
. Wtedy zachodzi:

TAK NIE **a.**
$$F'(x) = x\sqrt{x}$$

TAK NIE b.
$$F'(x) = \sqrt{x} + \frac{x}{2\sqrt{x}}$$

TAK NIE **b.**
$$F'(x) = \sqrt{x} + \frac{x}{2\sqrt{x}}$$
TAK NIE **c.** $F(x) = (2.5)^{-1}x^{2.5} + c$, gdzie $c \in R$

19. Równanie stycznej do krzywej $K = \{(x,y)|\ y = x^2\}$ w punkcie (1,1) ma postać

TAK NIE **a.**
$$y = 2x - 1$$

TAK NIE **b.**
$$y = x + 1$$

$$\overline{\text{TAK} \mid \text{NIE} \mid} \mathbf{c.} \ y = 2x$$

20. Niech $f(x) = \sin(\ln x)$. Wówczas

TAK NIE **a.**
$$f'(x) = \cos(\ln x)$$

TAK NIE **b.**
$$f'(x) = \frac{\cos(\ln x)}{x}$$

TAK NIE **c.**
$$f'(x) = \cos(1/x)$$

SGGW (29.01.2011) Sprawdzian z matematyki

Numer indeksu:																										
Imię i nazwisko:																	 									

Test składa się z dwudziestu zadań. W każdym z zadań podane są trzy punkty **a**, **b** i **c**. W każdym podpunkcie należy skreślić **nieprawidłową** odpowiedź; przykład poniżej. Brak skreślenia traktowany jest jako błędna odpowiedź.

Przykład

0. Iloczyn $2 \cdot 2$ jest równy

Obliczanie punktów:

za każdą prawidłową odpowiedź na pytanie TAK lub NIE przyznawany jest mały punkt; jeżeli w danym pytaniu uzyskano trzy małe punkty, to przyznawany jest jeden duży punkt (w powyższym przykładowym pytaniu uzyskano trzy małe punkty i jeden duży).

Wynik testu = suma dużych punktów +
$$\frac{\text{suma małych punktów}}{100}$$

UWAGA: żadne poprawki nie będą uwzględniane!

1. Równanie stycznej do krzywej $K = \{(x,y)|\ y = x^2\}$ w punkcie (1,1)ma postać

		a. $y = 2x$
TAK	NIE	b. $y = 2x - 1$
TAK	NIE	c. $y = x + 1$

2. Funkcja $f(x) = \frac{(x-2)(8-x)}{x^2}$

TAK NIE	a. ma w punkcie $x = 3.2$ ekstremum lokalne
	b. ma w punkcie $x = 3.2$ minimum lokalne
TAK NIE	\mathbf{c} ma w punkcie $x = 3.2$ maksimum globalne

3. Niech $f(x) = x/(1 + \ln x)$. Wówczas

		, , ,
TAK	NIE	$\mathbf{a.} \ f'(x) = \frac{1}{x} \cdot \ln x$
		b. $f'(x) = \ln x/(1 + \ln x)^2$
TAK	NIE	c. $f'(x) = \frac{1}{1+1/x}$

4. Niech $f(x) = 5 - x + \frac{1}{x} \ln x$. Wówczas

TAK NIE **a.**
$$f'(x) = \frac{1}{x^2}(1 - \ln x) - 1$$
TAK NIE **b.** $f''(x) = -\frac{2}{x^3}(1 - \ln x) - \frac{1}{x^3}$
TAK NIE **c.** $\int f(x) dx = 5x - 0.5x^2 + \ln[\ln x]$

5. Całka $\int_{0}^{1} \int_{0}^{1} xy \, dx dy$ wynosi:

	NIE	
		b. 1/4
TAK	NIE	c. 1

6. Funkcja $f(x) = (\sin(x) + 1)^2$

TAK	NIE	a. jest parzysta
TAK	NIE	b. jest nieparzysta
TAK	NIE	c. jest okresowa

7. Niech
$$w = \int_{0}^{\pi} xe^{x} dx$$

TAK NIE **a.**
$$w = 1 + e^{\pi} (-1 + \pi)$$
TAK NIE **b.** $w = 1 + e^{x\pi} (-2 + \pi)$
TAK NIE **c.** $w = e^{\pi} (-1 + \pi)$

8. Niech $F(x) = \int 4\sqrt{x} dx$.

TAK NIE **a.**
$$F(x) = \frac{1}{8\sqrt{x}} + c$$
TAK NIE **b.** $F(x) = \frac{4}{3x\sqrt{x}} + c$
TAK NIE **c.** $F(x) = \frac{8}{3x\sqrt{x}} + c$

9. Niech
$$w = \int_{0}^{\pi} x \sin(x) dx$$

TAK NIE **a.**
$$w = \pi$$

TAK NIE **b.**
$$w = 1$$
TAK NIE **c.** $w = 2\pi$

10. Niech
$$f(x)=x^2+\operatorname{tg}(x+1)$$
. Niech $g(y)$ jest funkcją odwrotną do $f(x)$ w otoczeniu punktu $x=\pi-1$. Pochodna $g'(y_0)$, dla $y_0=f(\pi-1)$ wynosi

TAK	NIE	a.	π	+]
-----	-----	----	-------	---	---

TAK NIE **b.**
$$\pi$$

TAK NIE
$$\mathbf{c}. 2\pi$$

11. Niech funkcja
$$f(x) = x^3 - 2x + 4$$
. Wówczas

TAK	NIE	a.	funkcia	f(x)	ma	dwa	punkty	przegięcia
11111	1,11	·	ranneja	.) ()	, 11100	ama	Parity	przegięcia.

TAK NIE **b.** funkcja
$$f(x)$$
 jest wypukła w przedziale $(0, \infty)$.

TAK NIE c. funkcja
$$f(x)$$
 jest rosnąca w przedziale $(\sqrt{2/3}, \infty)$.

12. Równanie stycznej do krzywej
$$K=\{(x,y)|\ y=\arcsin\left(\frac{x-1}{2}\right)\}$$
 w punkcie przecięcia tej krzywej z osia OX ma postać

TAK NIE **a.**
$$3x - 2y + 10 = 0$$

TAK NIE **b.**
$$x - 2y - 1 = 0$$

$$\boxed{\text{TAK NIE } \mathbf{c.} \ y = x}$$

13. Niech $F(x) = \int x \sqrt{x} \, dx$. Wtedy zachodzi:

TAK NIE a.
$$F'(x) = x\sqrt{x}$$

TAK NIE **b.**
$$F(x) = (2.5)^{-1}x^{2.5} + c$$
, gdzie $c \in R$

TAK NIE c.
$$F'(x) = \sqrt{x} + \frac{x}{2\sqrt{x}}$$

14. Niech
$$f(x) = \sin(x^2 + \sqrt{\ln(x)})$$
. Wówczas

TAK NIE b.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)})$$

TAK NIE c.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{\sqrt{\ln(x)}}\right)$$

15. Przy wyznaczaniu całki $\int x \sin(x^2 + 4) dx$ zastosowano podstawienie $y = x^2 + 4$.

TAK NIE a. Czy
$$\int x \sin(x^2 + 4) dx = \frac{1}{2} \int \sin y dy$$
?

TAK NIE **b.** Czy
$$\int x \sin(x^2 + 4) dx = \int \sin y dy$$
?

TAK NIE c. Czy
$$\int x \sin(x^2 + 4) dx = \int \sqrt{y - 4} \sin y dy$$
?

16. Niech
$$f(x) = [\sin(\ln x)]^2$$
. Funkcja $f'(x)$ wyraża się wzorem

TAK NIE a.
$$2\cos(1/x)$$

TAK NIE **b.**
$$\frac{2}{x}\sin(\ln x) \cdot \cos(\ln x)$$

TAK NIE **c.**
$$2\sin(\ln x)$$

17. Niech
$$w = \int_{1}^{2} (-3 + \frac{1}{3}x^2 - \frac{1}{4}x^3) dx$$

ГАК	NIE	a.	u	>	3

TAK NIE
$$| \mathbf{a}. w > 3 |$$

TAK NIE c.
$$w < -5$$

18. Niech
$$f(x) = x^2 + 3x$$

TAK NIE a.
$$f'(x) = 2x + 3$$

TAK NIE **b.** Funkcja
$$f(x)$$
 jest rosnąca w przedziale $(-1.5, \infty)$

TAK NIE c. Funkcja
$$f(x)$$
 jest wklęsła

19. Całka
$$\int_{0}^{1} x \sin(x^2 + 5) dx$$
 wynosi:

TAK NIE b.
$$\sqrt{2}/2$$

TAK NIE
$$\mathbf{c} \cdot \cos 5 - \cos 6$$

20. Niech
$$f(x) = \sin(\ln x)$$
. Wówczas

TAK NIE a.
$$f'(x) = \frac{\cos(\ln x)}{x}$$

TAK NIE **b.**
$$f'(x) = \cos(\ln x)$$

TAK NIE c.
$$f'(x) = \cos(1/x)$$

SGGW (29.01.2011) Sprawdzian z matematyki

${\bf Numer\ indeksu:}$		 																	 						
Imię i nazwisko:																									

Test składa się z dwudziestu zadań. W każdym z zadań podane są trzy punkty a, b i c. W każdym podpunkcie należy skreślić **nieprawidłowa** odpowiedź; przykład poniżej. Brak skreślenia traktowany jest jako błedna odpowiedź.

Przykład

0. Iloczyn $2 \cdot 2$ jest równy

Obliczanie punktów:

za każda prawidłowa odpowiedź na pytanie TAK lub NIE przyznawany jest mały punkt; jeżeli w danym pytaniu uzyskano trzy małe punkty, to przyznawany jest jeden duży punkt (w powyższym przykładowym pytaniu uzyskano trzy małe punkty i jeden duży).

Wynik testu = suma dużych punktów +
$$\frac{\text{suma malych punktów}}{100}$$

UWAGA: żadne poprawki nie będą uwzględniane!

1. Niech $F(x) = \int 4\sqrt{x} dx$.

TAK NIE **a.**
$$F(x) = \frac{4}{3x\sqrt{x}} + c$$
TAK NIE **b.** $F(x) = \frac{1}{8\sqrt{x}} + c$
TAK NIE **c.** $F(x) = \frac{8}{3x\sqrt{x}} + c$

TAK NIE **b.**
$$F(x) = \frac{1}{8\sqrt{x}} + c$$

TAK NIE c.
$$F(x) = \frac{8}{3x\sqrt{x}} + c$$

2. Całka $\int_{0}^{1} \int_{0}^{1} xy \, dx dy$ wynosi:

TAK	NIE	a.	4

3. Niech $f(x) = \sin(x^2 + \sqrt{\ln(x)})$. Wówczas

TAK NIE **a.**
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)})$$

TAK NIE **b.**
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{\sqrt{\ln(x)}}\right)$$
TAK NIE **c.** $f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{2x\sqrt{\ln(x)}}\right)$

4. Funkcja
$$f(x) = \frac{(x-2)(8-x)}{x^2}$$

TAK NIE a. ma w punkcie x = 3.2 maksimum globalne

TAK NIE **b.** ma w punkcie x = 3.2 ekstremum lokalne

TAK NIE c. ma w punkcie x = 3.2 minimum lokalne

5. Niech $f(x) = x^2 + \operatorname{tg}(x+1)$. Niech g(y) jest funkcja odwrotna do f(x) w otoczeniu punktu $x = \pi - 1$. Pochodna $q'(y_0)$, dla $y_0 = f(\pi - 1)$ wynosi

TAK	NIE	a.	π	+	1
-----	-----	----	-------	---	---

TAK NIE b. π

TAK NIE \mathbf{c} . 2π

6. Niech $f(x) = [\sin(\ln x)]^2$. Funkcja f'(x) wyraża się wzorem

TAK NIE **a.** $\frac{2}{\pi}\sin(\ln x) \cdot \cos(\ln x)$

TAK NIE **b.** $2\sin(\ln x)$

TAK NIE c. $2\cos(1/x)$

7. Funkcja $f(x) = (\sin(x) + 1)^2$

TAK NIE a. jest parzysta

TAK NIE b. jest nieparzysta

TAK NIE c. jest okresowa

8. Niech $w = \int_{0}^{\infty} x \sin(x) dx$

TAK NIE a.
$$w = \pi$$

TAK NIE **b.**
$$w=1$$

TAK NIE c.
$$w = 2\pi$$

9. Niech
$$f(x) = x^2 + 3x$$

TAK	NIE	a.	Funkcja	f(x)	jest	wklęsła

TAK NIE **b.**
$$f'(x) = 2x + 3$$

TAK NIE c. Funkcja
$$f(x)$$
 jest rosnaca w przedziale $(-1.5, \infty)$

10. Niech
$$f(x) = x/(1 + \ln x)$$
. Wówczas

TAK NIE a.
$$f'(x) = \frac{1}{1+1/x}$$

TAK NIE b.
$$f'(x) = \ln x/(1 + \ln x)^2$$

TAK NIE c.
$$f'(x) = \frac{1}{x} \cdot \ln x$$

11. Równanie stycznej do krzywej $K = \{(x,y)| y = x^2\}$ w punkcie (1,1) ma postać

TAK NIE **a.**
$$y = 2x - 1$$

TAK NIE b.
$$y = x + 1$$

TAK NIE
$$\mathbf{c.}\ y = 2x$$

12. Niech funkcja
$$f(x) = x^3 - 2x + 4$$
. Wówczas

Γ	TAK	NIE	a.	funkcja	f(x)	jest	wypukła	w	przedziale	(0,	∞).
	IAK	NIE	լa.	гипксја	J(x)	jest	wypukia	w	przedz	ziaie	ziaie (u,	ziaie ($0, \infty$)

TAK NIE **b.** funkcja
$$f(x)$$
 jest rosnąca w przedziale $(\sqrt{2/3}, \infty)$.

TAK NIE
$$\mathbf{c}$$
. funkcja $f(x)$ ma dwa punkty przegięcia.

13. Niech
$$f(x) = 5 - x + \frac{1}{x} \ln x$$
. Wówczas

TAK NIE a.
$$\int f(x) dx = 5x - 0.5x^2 + \ln[\ln x]$$

TAK NIE **b.**
$$f''(x) = -\frac{2}{x^3}(1 - \ln x) - \frac{1}{x^3}$$

TAK NIE c.
$$f'(x) = \frac{1}{x^2}(1 - \ln x) - 1$$

14. Niech $f(x) = \sin(\ln x)$. Wówczas

TAK NIE a.
$$f'(x) = \cos(1/x)$$

TAK NIE **b.**
$$f'(x) = \cos(\ln x)$$

TAK NIE c.
$$f'(x) = \frac{\cos(\ln x)}{x}$$

15. Całka $\int_{0}^{1} x \sin(x^2 + 5) dx$ wynosi:

TAK NIE a.
$$\sqrt{2}/2$$

TAK NIE **b.**
$$\cos 5 - \cos 6$$

16. Niech
$$w = \int_{0}^{\pi} x e^{x} dx$$

TAK NIE **a.**
$$w = e^{\pi} (-1 + \pi)$$

TAK NIE **b.**
$$w = 1 + e^{\pi} (-1 + \pi)$$

TAK NIE **c.**
$$w = 1 + e^{x\pi} (-2 + \pi)$$

17. Przy wyznaczaniu całki $\int x \sin(x^2 + 4) dx$ zastosowano podstawienie $y = x^2 + 4$.

ΓΑΚ NII	a. Czv	$\int x \sin(x^2 + 4)$	dx = 0	$\int \sin y dy$?
---------	--------	------------------------	--------	---------------------

TAK NIE b. Czy
$$\int x \sin(x^2 + 4) dx = \int \sin y dy$$
?

TAK NIE c. Czy
$$\int x \sin(x^2 + 4) dx = \frac{1}{2} \int \sin y dy$$
?

18. Niech $F(x) = \int x\sqrt{x} dx$. Wtedy zachodzi:

TAK NIE a.
$$F'(x) = x\sqrt{x}$$

TAK NIE **b.**
$$F'(x) = \sqrt{x} + \frac{x}{2\sqrt{x}}$$

TAK NIE c.
$$F(x) = (2.5)^{-1}x^{2.5} + c$$
, gdzie $c \in R$

19. Niech
$$w = \int_{1}^{2} (-3 + \frac{1}{3}x^2 - \frac{1}{4}x^3) dx$$

TAK NIE **a.**
$$w < -5$$

TAK NIE **b.**
$$w > 3$$

TAK NIE
$$\mathbf{c.} \ w > 0$$

20. Równanie stycznej do krzywej $K=\{(x,y)|\ y=\arcsin\left(\frac{x-1}{2}\right)\}$ w punkcie przecięcia tej krzywej z osia OX ma postać

TAK NIE **a.**
$$3x - 2y + 10 = 0$$

TAK NIE **b.**
$$x - 2y - 1 = 0$$

TAK NIE
$$\mathbf{c.} \ y = x$$

SGGW (29.01.2011) Sprawdzian z matematyki

${\bf Numer\ indeksu:}$																						 	 	
Imie i nazwisko:														 							 		 	

Test składa się z dwudziestu zadań. W każdym z zadań podane sa trzy punkty a, b i c. W każdym podpunkcie należy skreślić **nieprawidłowa** odpowiedź; przykład poniżei. Brak skreślenia traktowany jest jako błedna odpowiedź.

Przykład

0. Iloczyn $2 \cdot 2$ jest równy

Obliczanie punktów:

za każdą prawidłową odpowiedź na pytanie TAK lub NIE przyznawany jest mały punkt; jeżeli w danym pytaniu uzyskano trzy małe punkty, to przyznawany jest jeden duży punkt (w powyższym przykładowym pytaniu uzyskano trzy małe punkty i jeden duży).

Wynik testu = suma dużych punktów +
$$\frac{\text{suma malych punktów}}{100}$$

UWAGA: żadne poprawki nie będą uwzględniane!

1. Niech $F(x) = \int 4\sqrt{x} dx$.

TAK NIE **a.**
$$F(x) = \frac{8}{3x\sqrt{x}} + c$$
TAK NIE **b.** $F(x) = \frac{4}{3x\sqrt{x}} + c$

TAK NIE **b.**
$$F(x) = \frac{4}{3x\sqrt{x}} + c$$

TAK NIE c.
$$F(x) = \frac{1}{8\sqrt{x}} + c$$

2. Niech $f(x) = 5 - x + \frac{1}{x} \ln x$. Wówczas

TAK NIE **a.**
$$\int f(x) dx = 5x - 0.5x^2 + \ln[\ln x]$$

TAK NIE **b.**
$$f''(x) = -\frac{2}{x^3}(1 - \ln x) - \frac{1}{x^3}$$

TAK NIE c.
$$f'(x) = \frac{1}{x^2}(1 - \ln x) - 1$$

3. Niech funkcja $f(x) = x^3 - 2x + 4$. Wówczas

TAK NIE	a. funkcja $f(x)$) jest wypukła w	przedziale $(0, \infty)$.
---------	--------------------------	------------------	----------------------------

TAK NIE **b.** funkcja
$$f(x)$$
 ma dwa punkty przegięcia.

TAK NIE c. funkcja
$$f(x)$$
 jest rosnąca w przedziale $(\sqrt{2/3}, \infty)$.

4. Niech $f(x) = x^2 + 3x$

TAK NIE a.
$$f'(x) = 2x + 3$$

TAK NIE **b.** Funkcja
$$f(x)$$
 jest wklęsła

TAK NIE c. Funkcja
$$f(x)$$
 jest rosnaca w przedziale $(-1.5, \infty)$

5. Równanie stycznej do krzywej $K = \{(x,y)| y = x^2\}$ w punkcie (1,1) ma postać

TAK NIE **a.**
$$y = x + 1$$

TAK NIE **b.**
$$y = 2x$$

TAK NIE c.
$$y = 2x - 1$$

6. Niech $f(x) = \sin(\ln x)$. Wówczas

TAK NIE **a.**
$$f'(x) = \cos(1/x)$$

TAK NIE **b.**
$$f'(x) = \frac{\cos(\ln x)}{x}$$

TAK NIE c.
$$f'(x) = \cos(\ln x)$$

7. Równanie stycznej do krzywej $K = \{(x,y)|\ y = \arcsin\left(\frac{x-1}{2}\right)\}$ w punkcie przecięcia tej krzywej z osią OX ma postać

TAK NIE **a.**
$$y = x$$

TAK NIE **b.**
$$x - 2y - 1 = 0$$

TAK NIE c.
$$3x - 2y + 10 = 0$$

8. Funkcja $f(x) = (\sin(x) + 1)^2$

-	TAK	NIE	a.	jest	parzysta
---	-----	-----	----	------	----------

9. Funkcja
$$f(x) = \frac{(x-2)(8-x)}{x^2}$$

TAK	NIE	a. ma w punkcie $x = 3.2$ ekstremum lo	kalne
1111	1111	a. Ha w pulkere $x = 5.2$ exstremum to	Maine

TAK NIE b. ma w punkcie
$$x = 3.2$$
 minimum lokalne

TAK NIE c. ma w punkcie
$$x = 3.2$$
 maksimum globalne

10. Całka
$$\int_{0}^{1} x \sin(x^2 + 5) dx$$
 wynosi:

TAK NIE **a.**
$$\cos 5 - \cos 6$$

TAK NIE b.
$$\sqrt{2}/2$$

11. Całka
$$\int_{0}^{1} \int_{0}^{1} xy \, dx dy$$
 wynosi:

TAK	NIE	a.	1/

12. Niech
$$F(x) = \int x\sqrt{x} dx$$
. Wtedy zachodzi:

TAK NIE **a.**
$$F(x) = (2.5)^{-1}x^{2.5} + c$$
, gdzie $c \in R$

TAK NIE **b.**
$$F'(x) = \sqrt{x} + \frac{x}{2\sqrt{x}}$$

TAK NIE **c.**
$$F'(x) = x\sqrt{x}$$

13. Niech
$$w = \int_{1}^{2} (-3 + \frac{1}{3}x^2 - \frac{1}{4}x^3) dx$$

TAK NIE a.
$$w > 0$$

TAK NIE **b.**
$$w > 3$$

TAK NIE c.
$$w < -5$$

14. Niech
$$w = \int_{0}^{\pi} x \sin(x) dx$$

TAK NIE **a.**
$$w = 1$$

TAK NIE **b.**
$$w = 2\pi$$

TAK NIE
$$\mathbf{c.} \ w = \pi$$

15. Przy wyznaczaniu całki $\int x \sin(x^2 + 4) dx$ zastosowano podstawienie $y = x^2 + 4$.

TAK NIE a. Czy
$$\int x \sin(x^2 + 4) dx = \int \sin y dy$$
?

TAK NIE **b.** Czy
$$\int x \sin(x^2 + 4) dx = \int \sqrt{y - 4} \sin y dy$$
?

TAK NIE c. Czy
$$\int x \sin(x^2 + 4) dx = \frac{1}{2} \int \sin y dy$$
?

16. Niech $f(x) = x^2 + \operatorname{tg}(x+1)$. Niech g(y) jest funkcją odwrotną do f(x) w otoczeniu punktu $x = \pi - 1$. Pochodna $q'(y_0)$, dla $y_0 = f(\pi - 1)$ wynosi

TAK NIE **a.**
$$\pi + 1$$

TAK NIE **b.**
$$2\pi$$

TAK NIE c.
$$\pi$$

17. Niech
$$w = \int_{0}^{\pi} xe^{x} dx$$

TAK NIE **a.**
$$w = 1 + e^{\pi} (-1 + \pi)$$

TAK NIE b.
$$w = e^{\pi} (-1 + \pi)$$

TAK NIE **c.**
$$w = 1 + e^{x\pi} (-2 + \pi)$$

18. Niech $f(x) = [\sin(\ln x)]^2$. Funkcja f'(x) wyraża się wzorem

TAK NIE a. $2\cos(1/x)$	TAK	NIE	a.	$2\cos($	1	/x
-------------------------	-----	-----	----	----------	---	----

TAK NIE **b.**
$$\frac{2}{x}\sin(\ln x) \cdot \cos(\ln x)$$

TAK NIE **c.**
$$2\sin(\ln x)$$

19. Niech
$$f(x) = \sin(x^2 + \sqrt{\ln(x)})$$
. Wówczas

TAK NIE **a.**
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{2x\sqrt{\ln(x)}}\right)$$
TAK NIE **b.** $f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{\sqrt{\ln(x)}}\right)$

TAK NIE b.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{\sqrt{\ln(x)}}\right)$$

TAK NIE c.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)})$$

20. Niech
$$f(x) = x/(1 + \ln x)$$
. Wówczas

TAK NIE a.
$$f'(x) = \frac{1}{1+1/x}$$

TAK NIE **b.**
$$f'(x) = \frac{1}{x} \cdot \ln x$$

TAK NIE c.
$$f'(x) = \ln x/(1 + \ln x)^2$$

EEEEEEEEEEEEEEEEEEEEEEEEEEEE

SGGW (29.01.2011) Sprawdzian z matematyki

Numer indeksu:																				 				
Imie i nazwisko:																		 	 	 	 			

Test składa się z dwudziestu zadań. W każdym z zadań podane są trzy punkty **a**, **b** i **c**. W każdym podpunkcie należy skreślić **nieprawidłową** odpowiedź; przykład poniżej. Brak skreślenia traktowany jest jako błędna odpowiedź.

Przykład

0. Iloczyn $2 \cdot 2$ jest równy

TAK		4
TAK		$\log_2 16$
	NIE	7

Obliczanie punktów:

za każdą prawidłową odpowiedź na pytanie TAK lub NIE przyznawany jest mały punkt; jeżeli w danym pytaniu uzyskano trzy małe punkty, to przyznawany jest jeden duży punkt (w powyższym przykładowym pytaniu uzyskano trzy małe punkty i jeden duży).

Wynik testu = suma dużych punktów +
$$\frac{\text{suma malych punktów}}{100}$$

$\ensuremath{\mathbf{UWAGA}}$: żadne poprawki nie będą uwzględniane!

1. Niech $F(x) = \int x\sqrt{x} dx$. Wtedy zachodzi:

		, J	
TAK	NIE	a. $F'(x) = x\sqrt{x}$	
TAK	NIE	b. $F(x) = (2.5)^{-1}x^{2.5} + c$,	gdzie $c \in R$
TAK	NIE	c. $F'(x) = \sqrt{x} + \frac{x}{2\sqrt{x}}$	

2. Funkcja $f(x) = (\sin(x) + 1)^2$

		$f(x) = (\sin(x) + 1)$
TAK	NIE	a. jest okresowa
TAK	NIE	\mathbf{b} . jest parzysta
TAK	NIE	c. jest nieparzyst

3. Niech $f(x) = x/(1 + \ln x)$. Wówczas

0. 1.10	J (c) w/(1 111 w). Welland
TAK	NIE	$\mathbf{a.} \ f'(x) = \frac{1}{1+1/x}$
		b. $f'(x) = \ln x/(1 + \ln x)^2$
TAK	NIE	$\mathbf{c.}\ f'(x) = \frac{1}{x} \cdot \ln x$

4. Funkcja $f(x) = \frac{(x-2)(8-x)}{x^2}$

TAK	NIE	a. ma w punkcie $x = 3.2$ maksimum globalne
TAK	NIE	b. ma w punkcie $x = 3.2$ minimum lokalne
TAK	NIE	c. ma w punkcie $x = 3.2$ ekstremum lokalne

5. Niech $f(x) = x^2 + 3x$

] a. Funkcja $f(x)$ jest rosnąca w przedziale $(-1.5,\infty)$
TAK	NIE	b. $f'(x) = 2x + 3$
TAK	NIE	\mathbf{c} . Funkcja $f(x)$ jest wklesła

6. Przy wyznaczaniu całki $\int x \sin(x^2 + 4) dx$ zastosowano podstawienie $y = x^2 + 4$.

TAK NIE	a. Czy $\int x \sin(x^2 + 4) dx = \frac{1}{2} \int \sin y dy$?
TAK NIE	b. Czy $\int x \sin(x^2 + 4) dx = \int \sin y dy$?
TAK NIE	c. Czy $\int x \sin(x^2 + 4) dx = \int \sqrt{y - 4} \sin y dy$

7. Równanie stycznej do krzywej $K = \{(x,y)| y = x^2\}$ w punkcie (1,1) ma postać

TAK	NIE	$\mathbf{a.}\ y = 2x - 1$
		b. $y = 2x$
TAK	NIE	$\mathbf{c.}\ y = x + 1$

8. Niech
$$w = \int_{0}^{\pi} x \sin(x) dx$$

TAK	NIE	a. $w = 1$
TAK	NIE	$\mathbf{b.}\ w=\pi$
TAK	NIE	$\mathbf{c.}\ w=2\pi$

- 9. Niech $f(x) = x^2 + \operatorname{tg}(x+1)$. Niech g(y) jest funkcja odwrotna do f(x) w otoczeniu punktu $x = \pi - 1$. Pochodna $q'(y_0)$, dla $y_0 = f(\pi - 1)$ wynosi
- TAK NIE \mathbf{a} , π
- TAK NIE b. 2π
- TAK NIE c. $\pi + 1$
- 10. Całka $\int_{0}^{1} x \sin(x^2 + 5) dx$ wynosi:
- TAK NIE a. $\sqrt{2}/2$
- TAK NIE b. 3
- TAK NIE $\mathbf{c} \cdot \cos 5 \cos 6$
- 11. Całka $\int_{0}^{1} \int_{0}^{1} xy \, dx \, dy$ wynosi:
- TAK NIE a. 4
- TAK NIE b. 1
- TAK NIE c. 1/4
- 12. Równanie stycznej do krzywej $K = \{(x,y)|\ y = \arcsin\left(\frac{x-1}{2}\right)\}$ w punkcie przecięcia tej krzywej z osia OX ma postać
- TAK NIE **a.** x 2y 1 = 0
- TAK NIE b. y = x
- TAK NIE **c.** 3x 2y + 10 = 0
- 13. Niech funkcja $f(x) = x^3 2x + 4$. Wówczas
- TAK NIE a. funkcja f(x) jest rosnaca w przedziale $(\sqrt{2/3}, \infty)$.
- TAK NIE **b.** funkcja f(x) ma dwa punkty przegięcia.
- TAK NIE c. funkcja f(x) jest wypukła w przedziale $(0, \infty)$.
- **14.** Niech $F(x) = \int 4\sqrt{x} dx$.
- TAK NIE **a.** $F(x) = \frac{8}{3x\sqrt{x}} + c$ TAK NIE **b.** $F(x) = \frac{4}{3x\sqrt{x}} + c$
- TAK NIE c. $F(x) = \frac{1}{8\sqrt{x}} + c$

- **15.** Niech $f(x) = 5 x + \frac{1}{x} \ln x$. Wówczas
- TAK NIE a. $\int f(x) dx = 5x 0.5x^2 + \ln[\ln x]$
- TAK NIE **b.** $f''(x) = -\frac{2}{x^3}(1 \ln x) \frac{1}{x^3}$
- TAK NIE c. $f'(x) = \frac{1}{x^2}(1 \ln x) 1$
- **16.** Niech $f(x) = \sin(\ln x)$. Wówczas
- TAK NIE a. $f'(x) = \frac{\cos(\ln x)}{x}$
- TAK NIE **b.** $f'(x) = \cos(1/x)$
- TAK NIE c. $f'(x) = \cos(\ln x)$
- 17. Niech $w = \int_{0}^{\pi} x e^{x} dx$
- TAK NIE **a.** $w = 1 + e^{\pi} (-1 + \pi)$
- TAK | NIE | **b.** $w = 1 + e^{x\pi} (-2 + \pi)$
- TAK NIE $\mathbf{c} \cdot w = e^{\pi} (-1 + \pi)$
- **18.** Niech $w = \int_{1}^{2} (-3 + \frac{1}{3}x^2 \frac{1}{4}x^3) dx$
- TAK NIE **a.** w < -5
- $\overline{\text{TAK} \mid \text{NIE} \mid \mathbf{b.} \ w > 3}$
- TAK NIE $\mathbf{c}. w > 0$
- 19. Niech $f(x) = \sin(x^2 + \sqrt{\ln(x)})$. Wówczas
- TAK NIE a. $f'(x) = \cos(x^2 + \sqrt{\ln(x)})$
- TAK NIE b. $f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{\sqrt{\ln(x)}}\right)$
- TAK NIE c. $f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{2x\sqrt{\ln(x)}}\right)$
- **20.** Niech $f(x) = [\sin(\ln x)]^2$. Funkcja f'(x) wyraża się wzorem
- TAK NIE a. $2\sin(\ln x)$
- TAK NIE **b.** $2\cos(1/x)$
- TAK NIE c. $\frac{2}{\pi}\sin(\ln x) \cdot \cos(\ln x)$

SGGW (29.01.2011) Sprawdzian z matematyki

${\bf Numer\ indeksu:}$																									
Imię i nazwisko:																				 					

Test składa się z dwudziestu zadań. W każdym z zadań podane są trzy punkty a, b i c. W każdym podpunkcie należy skreślić **nieprawidłowa** odpowiedź; przykład poniżej. Brak skreślenia traktowany jest jako błedna odpowiedź.

Przykład

0. Iloczyn $2 \cdot 2$ jest równy

TAK		4
TAK		$\log_2 16$
	NIE	7

Obliczanie punktów:

za każda prawidłowa odpowiedź na pytanie TAK lub NIE przyznawany jest mały punkt; jeżeli w danym pytaniu uzyskano trzy małe punkty, to przyznawany jest jeden duży punkt (w powyższym przykładowym pytaniu uzyskano trzy małe punkty i jeden duży).

Wynik testu = suma dużych punktów +
$$\frac{\text{suma małych punktów}}{100}$$

UWAGA: żadne poprawki nie będą uwzględniane!

1. Niech
$$w = \int_{1}^{2} \left(-3 + \frac{1}{3}x^2 - \frac{1}{4}x^3\right) dx$$

TAK	NIE	a. $w > 3$
		b. $w < -5$
TAK	NIE	$ \mathbf{c.} \ w > 0 $

2. Przy wyznaczaniu całki $\int x \sin(x^2 + 4) dx$ zastosowano podstawienie $y = x^2 + 4$.

TAK NIE **a.** Czy
$$\int x \sin(x^2 + 4) dx = \int \sqrt{y - 4} \sin y dy$$
?
TAK NIE **b.** Czy $\int x \sin(x^2 + 4) dx = \frac{1}{2} \int \sin y dy$?

TAK NIE c. Czy
$$\int x \sin(x^2 + 4) dx = \int \sin y dy$$
?

3. Niech $F(x) = \int x\sqrt{x} dx$. Wtedy zachodzi:

TAK NIE	a. $F(x) = (2.5)^{-1}x^{2.5} + c$,	gdzie $c \in R$
CD A T. L D. TT.		

TAK NIE **b.**
$$F'(x) = \sqrt{x} + \frac{x}{2\sqrt{x}}$$
TAK NIE **c.** $F'(x) = x\sqrt{x}$

TAK NIE c.
$$F'(x) = x\sqrt{x}$$

4. Niech
$$w = \int_{0}^{\pi} x \sin(x) dx$$

TAK NIE a.
$$w = 2\pi$$

TAK NIE **b.**
$$w = \pi$$

TAK NIE
$$\mathbf{c.} \ w = 1$$

5. Niech $f(x) = x^2 + \operatorname{tg}(x+1)$. Niech g(y) jest funkcja odwrotna do f(x) w otoczeniu punktu $x = \pi - 1$. Pochodna $q'(y_0)$, dla $y_0 = f(\pi - 1)$ wynosi

TAK	NIE	۰
IMI	TATES	a. 7

TAK NIE b.
$$2\pi$$

TAK NIE c.
$$\pi + 1$$

6. Całka $\int_{0}^{1} x \sin(x^2 + 5) dx$ wynosi:

TAK NIE **a.**
$$\sqrt{2}/2$$

TAK NIE b.
$$\cos 5 - \cos 6$$

7. Równanie stycznej do krzywej $K = \{(x,y)| y = x^2\}$ w punkcie (1,1) ma postać

TAK	NIE	a. $y = 2x - 1$
-----	-----	------------------------

TAK NIE **b.**
$$y = x + 1$$

TAK NIE
$$\mathbf{c}. y = 2x$$

8. Funkcja
$$f(x) = \frac{(x-2)(8-x)}{x^2}$$

TAK NIE a. ma w punkcie $r = 3.2$ ekstremum	'AKINIH'	n lokalna
---	----------	-----------

TAK NIE b. ma w punkcie
$$x = 3.2$$
 minimum lokalne

TAK NIE c. ma w punkcie
$$x = 3.2$$
 maksimum globalne

9. Niech
$$w = \int_{0}^{\pi} x e^{x} dx$$

TAK NIE **a.**
$$w = 1 + e^{x\pi} (-2 + \pi)$$

TAK NIE **b.**
$$w = 1 + e^{\pi} (-1 + \pi)$$

TAK NIE c.
$$w = e^{\pi} (-1 + \pi)$$

10. Niech
$$f(x) = \sin(x^2 + \sqrt{\ln(x)})$$
. Wówczas

TAK NIE **a.**
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{2x\sqrt{\ln(x)}}\right)$$
TAK NIE **b.** $f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{\sqrt{\ln(x)}}\right)$

TAK NIE c.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)})$$

11. Niech
$$f(x) = \sin(x^2 + \sqrt{\ln(x)})$$
. Wówczas

TAK NIE **a.**
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{\sqrt{\ln(x)}}\right)$$
TAK NIE **b.** $f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{2x\sqrt{\ln(x)}}\right)$

TAK NIE c.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)})$$

12. Niech
$$f(x) = 5 - x + \frac{1}{x} \ln x$$
. Wówczas

TAK NIE **a.**
$$f'(x) = \frac{1}{x^2}(1 - \ln x) - 1$$

TAK NIE **b.**
$$f''(x) = -\frac{2}{x^3}(1 - \ln x) - \frac{1}{x^3}$$

TAK NIE c.
$$\int f(x) dx = 5x - 0.5x^2 + \ln[\ln x]$$

13. Niech
$$f(x) = \sin(\ln x)$$
. Wówczas

TAK NIE **a.**
$$f'(x) = \cos(\ln x)$$

TAK NIE b.
$$f'(x) = \frac{\cos(\ln x)}{x}$$

TAK NIE c.
$$f'(x) = \cos(1/x)$$

14. Niech
$$f(x) = [\sin(\ln x)]^2.$$
 Funkcja $f'(x)$ wyraża się wzorem

TAK NIE **a.**
$$\frac{2}{x}\sin(\ln x) \cdot \cos(\ln x)$$

TAK NIE **b.**
$$2\sin(\ln x)$$

TAK NIE c.
$$2\cos(1/x)$$

15. Równanie stycznej do krzywej $K = \{(x,y)|\ y = \arcsin\left(\frac{x-1}{2}\right)\}$ w punkcie przecięcia tej krzywej z osia OX ma postać

TAK NIE **a.**
$$x - 2y - 1 = 0$$

TAK NIE **b.**
$$3x - 2y + 10 = 0$$

TAK NIE c.
$$y = x$$

16. Funkcja $f(x) = (\sin(x) + 1)^2$

$\Gamma \Delta K$	NIE	اما	ioet	okresowa
IAN	INIE	a.	est	okresowa

17. Niech
$$f(x) = x^2 + 3x$$

TAK NIE b. $f'(x) = 2x + 3$		a. Funkcja $f(x)$ jest rosnąca w przedziale $(-1.5, \infty)$
* ` '	TAK NIE	$\int \mathbf{b.} \ f'(x) = 2x + 3$

TAK NIE **b.**
$$f'(x) = 2x + 3$$

TAK NIE c. Funkcja
$$f(x)$$
 jest wklęsła

18. Niech funkcja $f(x) = x^3 - 2x + 4$. Wówczas

TAK NIE	a. funkcia $f(x)$) iest wypukła w	przedziale $(0, \infty)$.
---------	--------------------------	------------------	----------------------------

TAK NIE a. minkcja
$$f(x)$$
 jest wypukia w przedziale $(0,\infty)$.

TAK NIE c. funkcja
$$f(x)$$
 ma dwa punkty przegięcia.

19. Całka $\int_{0}^{1} \int_{0}^{1} xy \, dx dy$ wynosi:

20. Niech $f(x) = x/(1 + \ln x)$. Wówczas

TAK NIE **a.**
$$f'(x) = \frac{1}{x} \cdot \ln x$$

TAK NIE **a.**
$$f'(x) = \frac{1}{x} \cdot \ln x$$
TAK NIE **b.** $f'(x) = \frac{1}{1+1/x}$

TAK NIE c.
$$f'(x) = \ln x/(1 + \ln x)^2$$

SGGW (29.01.2011) Sprawdzian z matematyki

Numer indeksu:																										
Imię i nazwisko:																										

Test składa się z dwudziestu zadań. W każdym z zadań podane są trzy punkty **a**, **b** i **c**. W każdym podpunkcie należy skreślić **nieprawidłową** odpowiedź; przykład poniżej. Brak skreślenia traktowany jest jako błędna odpowiedź.

Przykład

0. Iloczyn $2 \cdot 2$ jest równy

Obliczanie punktów:

za każdą prawidłową odpowiedź na pytanie TAK lub NIE przyznawany jest mały punkt; jeżeli w danym pytaniu uzyskano trzy małe punkty, to przyznawany jest jeden duży punkt (w powyższym przykładowym pytaniu uzyskano trzy małe punkty i jeden duży).

Wynik testu = suma dużych punktów +
$$\frac{\text{suma malych punktów}}{100}$$

UWAGA: żadne poprawki nie będą uwzględniane!

1. Niech
$$f(x) = 5 - x + \frac{1}{x} \ln x$$
. Wówczas

		a. $f'(x) = \frac{1}{x^2}(1 - \ln x) - 1$
		$\int f(x) dx = 5x - 0.5x^2 + \ln[\ln x]$
TAK	NIE	$\mathbf{c.} \ f''(x) = -\frac{2}{x^3}(1 - \ln x) - \frac{1}{x^3}$

2. Niech
$$f(x) = \sin(\ln x)$$
. Wówczas

TAK NIE a.
$$f'(x) = \cos(1/x)$$

TAK NIE b.
$$f'(x) = \frac{\cos(\ln x)}{x}$$
TAK NIE c. $f'(x) = \cos(\ln x)$

3. Równanie stycznej do krzywej $K=\{(x,y)|\ y=\arcsin\left(\frac{x-1}{2}\right)\}$ w punkcie przecięcia tej krzywej z osią OX ma postać

		$\mathbf{a.}\ 3x - 2y + 10 = 0$
TAK	NIE	$\mathbf{b.}\ y = x$
TAK	NIE	$\mathbf{c.} \ x - 2y - 1 = 0$

4. Funkcja $f(x) = (\sin(x) + 1)^2$

20 1 dillioja j (a) (bill(a) + 1)					
TAK	NIE	a. jest okresowa			
TAK	NIE	b. jest parzysta			
TAK	NIE	c. jest nieparzysta			

5. Niech $f(x) = [\sin(\ln x)]^2$. Funkcja f'(x) wyraża się wzorem

		$\mathbf{a.} \frac{2}{x} \sin(\ln x) \cdot \cos(\ln x)$
TAK	NIE	b. $2\cos(1/x)$
TAK	NIE	$\mathbf{c.} \ 2\sin(\ln x)$

6. Niech funkcja $f(x) = x^3 - 2x + 4$. Wówczas

TAK N	NIE	a. funkcja $f(x)$ jest wypukła w przedziale $(0,\infty)$.
TAK N	NIE	b. funkcja $f(x)$ jest rosnąca w przedziale $(\sqrt{2/3}, \infty)$.
TAK N	NIE	c. funkcja $f(x)$ ma dwa punkty przegięcia.

7. Przy wyznaczaniu całki $\int x \sin(x^2 + 4) dx$ zastosowano podstawienie $y = x^2 + 4$.

TAK NIE	a. Czy $\int x \sin(x^2 + 4) dx = \int \sqrt{y - 4} \sin y dy$?
TAK NIE	b. Czy $\int x \sin(x^2 + 4) dx = \int \sin y dy$?
TAK NIE] c. Czy $\int x \sin(x^2 + 4) dx = \frac{1}{2} \int \sin y dy$?

8. Niech
$$w = \int_{0}^{\pi} x \sin(x) dx$$

TAK	NIE	a. $w = 1$
TAK	NIE	b. $w = 2\pi$
TAK	NIE	$\mathbf{c.}\ w=\pi$

9. Niech
$$f(x) = \sin(x^2 + \sqrt{\ln(x)})$$
. Wówczas

TAK NIE **a.**
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{\sqrt{\ln(x)}}\right)$$
TAK NIE **b.** $f'(x) = \cos(x^2 + \sqrt{\ln(x)})$

TAK NIE b.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)})$$

TAK NIE c.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{2x\sqrt{\ln(x)}}\right)$$

10. Niech
$$F(x) = \int 4\sqrt{x} dx$$
.

TAK NIE a.
$$F(x) = \frac{8}{3x\sqrt{x}} + c$$

TAK NIE b.
$$F(x) = \frac{1}{8\sqrt{x}} + c$$

TAK NIE b.
$$F(x) = \frac{1}{8\sqrt{x}} + c$$
TAK NIE c. $F(x) = \frac{4}{3x\sqrt{x}} + c$

11. Niech
$$w = \int_{0}^{\pi} x e^{x} dx$$

TAK NIE **a.**
$$w = e^{\pi} (-1 + \pi)$$

TAK NIE **b.**
$$w = 1 + e^{x\pi} (-2 + \pi)$$

TAK NIE **c.**
$$w = 1 + e^{\pi} (-1 + \pi)$$

12. Niech $f(x) = x^2 + \operatorname{tg}(x+1)$. Niech g(y) jest funkcją odwrotną do f(x) w otoczeniu punktu $x = \pi - 1$. Pochodna $q'(y_0)$, dla $y_0 = f(\pi - 1)$ wynosi

TAK NIE **a.**
$$\pi + 1$$

TAK NIE **b.**
$$\pi$$

TAK NIE c.
$$2\pi$$

13. Niech
$$f(x) = x^2 + 3x$$

TAK NIE a.
$$f'(x) = 2x + 3$$

TAK NIE b. Funkcja
$$f(x)$$
 jest rosnąca w przedziale $(-1.5, \infty)$

TAK NIE **c.** Funkcja f(x) jest wklęsła

14. Funkcja
$$f(x) = \frac{(x-2)(8-x)}{x^2}$$

TAK NIE a. ma w punkcie
$$x = 3.2$$
 minimum lokalne

TAK NIE **b.** ma w punkcie
$$x = 3.2$$
 ekstremum lokalne

TAK NIE c. ma w punkcie
$$x = 3.2$$
 maksimum globalne

15. Niech $F(x) = \int x\sqrt{x} dx$. Wtedy zachodzi:

TAK NIE a.
$$F'(x) = \sqrt{x} + \frac{x}{2\sqrt{x}}$$

TAK NIE **b.**
$$F(x) = (2.5)^{-1}x^{2.5} + c$$
, gdzie $c \in R$

TAK NIE c.
$$F'(x) = x\sqrt{x}$$

16. Całka
$$\int_{0}^{1} x \sin(x^{2} + 5) dx$$
 wynosi:

TAK NIE **b.**
$$\cos 5 - \cos 6$$

TAK NIE c.
$$\sqrt{2}/2$$

17. Niech $f(x) = x/(1 + \ln x)$. Wówczas

TAK NIE a.
$$f'(x) = \frac{1}{x} \cdot \ln x$$

TAK NIE **b.**
$$f'(x) = \ln x/(1 + \ln x)^2$$

TAK NIE **c.**
$$f'(x) = \frac{1}{1+1/x}$$

18. Niech
$$w = \int_{1}^{2} (-3 + \frac{1}{3}x^2 - \frac{1}{4}x^3) dx$$

TAK NIE **a.**
$$w < -5$$

TAK NIE **b.**
$$w > 0$$

TAK NIE
$$\mathbf{c.} \ w > 3$$

19. Równanie stycznej do krzywej $K = \{(x,y)|\ y = x^2\}$ w punkcie (1,1) ma postać

TAK NIE **a.**
$$y = 2x - 1$$

TAK NIE a.
$$y = 2x - 1$$

TAK NIE b. $y = x + 1$

TAK NIE
$$\mathbf{c}. y = 2x$$

20. Całka
$$\int_{0}^{1} \int_{0}^{1} xy \, dx \, dy$$
 wynosi:

SGGW (29.01.2011) Sprawdzian z matematyki

Numer indeksu:	
Imię i nazwisko:	

Test składa się z dwudziestu zadań. W każdym z zadań podane są trzy punkty a, b i c. W każdym podpunkcie należy skreślić **nieprawidłowa** odpowiedź; przykład poniżej. Brak skreślenia traktowany jest jako błedna odpowiedź.

Przykład

0. Iloczyn $2 \cdot 2$ jest równy

Obliczanie punktów:

za każda prawidłowa odpowiedź na pytanie TAK lub NIE przyznawany jest mały punkt; jeżeli w danym pytaniu uzyskano trzy małe punkty, to przyznawany jest jeden duży punkt (w powyższym przykładowym pytaniu uzyskano trzy małe punkty i jeden duży).

Wynik testu = suma dużych punktów +
$$\frac{\text{suma małych punktów}}{100}$$

UWAGA: żadne poprawki nie będą uwzględniane!

1. Niech
$$f(x) = \sin(x^2 + \sqrt{\ln(x)})$$
. Wówczas

TAK NIE a.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{\sqrt{\ln(x)}}\right)$$

TAK NIE b.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)})$$

TAK NIE **b.**
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)})$$

 $TAK NIE c. $f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{2x\sqrt{\ln(x)}}\right)$$

2. Niech $f(x) = \sin(\ln x)$. Wówczas

TAK NIE a.
$$f'(x) = \cos(\ln x)$$

TAK NIE b.
$$f'(x) = \frac{\cos(\ln x)}{x}$$
TAK NIE c. $f'(x) = \cos(1/x)$

TAK NIE c.
$$f'(x) = \cos(1/x)$$

3. Przy wyznaczaniu całki $\int x \sin(x^2 + 4) dx$ zastosowano podstawienie $y = x^2 + 4$.

TAK NIE a. Czy
$$\int x \sin(x^2 + 4) dx = \frac{1}{2} \int \sin y dy$$
?

TAK NIE b. Czy $\int x \sin(x^2 + 4) dx = \int \sin y dy$?

TAK NIE c. Czy $\int x \sin(x^2 + 4) dx = \int \sqrt{y - 4} \sin y dy$?

4. Niech $f(x) = [\sin(\ln x)]^2$. Funkcja f'(x) wyraża się wzorem

		$\mathbf{a.} \ 2\sin(\ln x)$
TAK	NIE	b. $\frac{2}{x}\sin(\ln x)\cdot\cos(\ln x)$
TAK	NIE	c. $2\cos(1/x)$

5. Niech
$$w = \int_0^\pi x e^x dx$$

		a. $w = e^{\pi} (-1 + \pi)$
TAK	NIE	b. $w = 1 + e^{\pi} (-1 + \pi)$
TAK	NIE	c. $w = 1 + e^{x\pi} (-2 + \pi)$

6. Niech
$$w = \int_{1}^{2} (-3 + \frac{1}{3}x^2 - \frac{1}{4}x^3) dx$$

TAK	NIE	a. $w > 0$
TAK	NIE	b. $w > 3$
TAK	NIE	c. $w < -5$

7. Funkcja
$$f(x) = \frac{(x-2)(8-x)}{x^2}$$

		a. ma w punkcie $x = 3.2$ maksimum globalne
TAK	NIE	b. ma w punkcie $x = 3.2$ ekstremum lokalne
TAK	NIE	c. ma w punkcie $x = 3.2$ minimum lokalne

8. Równanie stycznej do krzywej $K = \{(x,y)| y = x^2\}$ w punkcie (1,1) ma postać

TAK	NIE	a. $y = 2x - 1$
		b. $y = x + 1$
TAK	NIE	$\mathbf{c.}\ y=2x$

9. Niech $F(x) = \int x\sqrt{x} dx$. Wtedy zachodzi:

TAK	NIE	a.	F'	(x)) =	$x_{\mathbf{v}}$	\sqrt{x}

TAK NIE **b.**
$$F(x) = (2.5)^{-1}x^{2.5} + c$$
, gdzie $c \in R$

TAK NIE c.
$$F'(x) = \sqrt{x} + \frac{x}{2\sqrt{x}}$$

10. Niech $f(x) = 5 - x + \frac{1}{x} \ln x$. Wówczas

TAK NIE	a. J	$\int f(x) dx =$	$5x - 0.5x^2$	$+\ln[\ln x]$
---------	-------------	------------------	---------------	---------------

TAK NIE **b.**
$$f''(x) = -\frac{2}{x^3}(1 - \ln x) - \frac{1}{x^3}$$

TAK NIE c.
$$f'(x) = \frac{1}{x^2}(1 - \ln x) - 1$$

11. Niech $f(x) = x/(1 + \ln x)$. Wówczas

TAK	NIE	a. ;	f'(x)) =	1	$\cdot \ln a$

TAK NIE **a.**
$$f'(x) = \frac{1}{x} \cdot \ln x$$
TAK NIE **b.** $f'(x) = \ln x/(1 + \ln x)^2$
TAK NIE **c.** $f'(x) = \frac{1}{1+1/x}$

TAK NIE c.
$$f'(x) = \frac{1}{1+1/x}$$

12. Niech $w = \int_{0}^{\pi} x \sin(x) dx$

TAK	NIE	a.	w	=	2

TAK NIE b.
$$w = 1$$

TAK NIE **c.**
$$w = \pi$$

13. Niech funkcja $f(x) = x^3 - 2x + 4$. Wówczas

TAK NIE	a. funkcja	f(x)	ma dwa	punkty	przegięcia
---------	------------	------	--------	--------	------------

TAK NIE **b.** funkcja f(x) jest wypukła w przedziale $(0, \infty)$.

TAK NIE c. funkcja f(x) jest rosnąca w przedziale $(\sqrt{2/3}, \infty)$.

14. Całka $\int_{0}^{1} \int_{0}^{1} xy \, dx \, dy$ wynosi:

TAK	NIE	a.	4
-----	-----	----	---

15. Funkcja $f(x) = (\sin(x) + 1)^2$

TAK NIE a. jest okresowa

TAK NIE b. jest parzysta

TAK NIE c. jest nieparzysta

16. Niech $F(x) = \int 4\sqrt{x} \, dx$.

TAK NIE **a.**
$$F(x) = \frac{8}{3x\sqrt{x}} + c$$
TAK NIE **b.** $F(x) = \frac{1}{8\sqrt{x}} + c$

TAK NIE c. $F(x) = \frac{4}{3x\sqrt{x}} + c$

17. Niech $f(x) = x^2 + 3x$

TAK NIE **a.** Funkcja f(x) jest wklęsła

TAK NIE **b.** f'(x) = 2x + 3

TAK NIE c. Funkcja f(x) jest rosnąca w przedziale $(-1.5, \infty)$

18. Niech $f(x) = x^2 + \operatorname{tg}(x+1)$. Niech g(y) jest funkcja odwrotna do f(x) w otoczeniu punktu $x = \pi - 1$. Pochodna $q'(y_0)$, dla $y_0 = f(\pi - 1)$ wynosi

TAK NIE $\mathbf{a}. \pi$

TAK NIE **b.** 2π

TAK NIE c. $\pi + 1$

19. Równanie stycznej do krzywej $K = \{(x,y)|\ y = \arcsin\left(\frac{x-1}{2}\right)\}$ w punkcie przecięcia tej krzywej z osią OX ma postać

TAK NIE **a.** 3x - 2y + 10 = 0

TAK NIE **b.** x - 2y - 1 = 0

TAK NIE $\mathbf{c} \cdot y = x$

20. Całka $\int_{0}^{1} x \sin(x^{2} + 5) dx$ wynosi:

TAK NIE a. 3

TAK NIE b. $\cos 5 - \cos 6$

TAK NIE c. $\sqrt{2}/2$

.....

SGGW (29.01.2011) Sprawdzian z matematyki

Odpowiedzi

SGGW (29.01.2011) Sprawdzian z matematyki

SGGW (29.01.2011) Sprawdzian z matematyki

Odpowiedzi

.....

SGGW (29.01.2011) Sprawdzian z matematyki

EEEEEEEEEEEEEEEEEEEEEEEEEE

SGGW (29.01.2011) Sprawdzian z matematyki

Odpowiedzi

SGGW (29.01.2011) Sprawdzian z matematyki

......

SGGW (29.01.2011) Sprawdzian z matematyki

Odpowiedzi

......

SGGW (29.01.2011) Sprawdzian z matematyki

