Optimisation

Local vs global minimum

Local vs global minimum

 $\mathbf{\theta}^*$ = local minimiser if $\exists \epsilon > 0$ such that $\mathbf{\theta}^*$ is a global minimizer of L in the ball $B_{\epsilon}(\mathbf{\theta}^*)$

Local characterization

First-order Taylor expansion for $L \in \mathcal{C}^1$

$$L(\mathbf{\theta} + \mathbf{d}) = L(\mathbf{\theta}) + \nabla L(\mathbf{\theta})^T \mathbf{d} + \mathcal{O}(\|\mathbf{d}\|^2)$$

Let θ^* local minimiser of L and $\theta = \theta^* - \alpha \nabla L(\theta^*)$ small $\alpha > 0$

$$0 \leq \frac{1}{\alpha} (L(\mathbf{\theta}) - L(\mathbf{\theta}^*)) = \frac{1}{\alpha} (L(\mathbf{\theta}^* - \alpha \nabla L(\mathbf{\theta}^*)) - L(\mathbf{\theta}^*))$$

$$= \frac{1}{\alpha} (-\alpha \nabla L(\mathbf{\theta})^T \nabla L(\mathbf{\theta}^*) + \mathcal{O}(\|\alpha \nabla L(\mathbf{\theta}^*)\|^2))$$

$$= -\|\nabla L(\mathbf{\theta}^*)\|^2 + \alpha^2 \mathcal{O}(\|\nabla L(\mathbf{\theta}^*)\|^2) \leq 0 \quad \alpha \downarrow 0$$

Necessary condition

$$\theta^*$$
 local minimizer of $L \Rightarrow \nabla L(\theta^*) = 0$

Second-order characterization

Taylor expansion for $L \in \mathcal{C}^2$

$$L(\mathbf{\theta} + \mathbf{d}) = L(\mathbf{\theta}) + \nabla L(\mathbf{\theta})^T \mathbf{d} + \left(\frac{1}{2} (\mathbf{d}^T \mathbf{d} \mathbf{v})^2 L(\mathbf{\theta}) \mathbf{d} + \mathcal{O}(\|\mathbf{d}\|^3)\right)$$

Hessian matrix
$$\mathbf{H} = \nabla^2 L = \left(\frac{\partial^2 L}{\partial \theta_i \partial \theta_j}\right)$$

Curvature in direction $\mathbf{d}: \kappa_{\mathbf{d}} \propto \mathbf{d}^T \mathbf{H} \mathbf{d}$

Second-order characterization

Local minimum

 $\kappa_{\mathbf{d}} \geq 0$ for every **d**

H ≥ 0 positivesemidefinite (non-negative eigenvalues)

Local maximum

 $\kappa_{\mathbf{d}} \leq 0$ for every **d**

H ≤ 0 negative semidefinite (non-positive eigenvalues)

Saddle point

 $\kappa_{\mathbf{d}} > 0$ for some \mathbf{d} $\kappa_{\mathbf{d}} < 0$ for some other

H has both positive and negative eigenvalues

Sufficient condition

 θ^* local minimizer of L iff

$$\nabla L(\mathbf{\theta}^*) = 0$$
 and $\nabla^2 L(\mathbf{\theta}^*) \geqslant 0$

Local vs global minimum

Convexity

Convex combination of $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$

$$\lambda \mathbf{u} + (1 - \lambda)\mathbf{v}$$
 with $\lambda \in [0,1]$

= line segment connecting u and v

 $A \subseteq \mathbb{R}^n$ is **convex set** if closed under convex combinations

$$\lambda \mathbf{u} + (1 - \lambda)\mathbf{v} \in A$$

 $\forall \mathbf{u}, \mathbf{v} \in A \text{ and } \lambda \in [0,1]$

Convexity

Convex combination of $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$

$$\lambda \mathbf{u} + (1 - \lambda)\mathbf{v}$$
 with $\lambda \in [0,1]$

= line segment connecting u and v

 $A \subseteq \mathbb{R}^n$ is **convex set** if closed under convex combinations

$$\lambda \mathbf{u} + (1 - \lambda) \mathbf{v} \in A$$

 $\forall \mathbf{u}, \mathbf{v} \in A \text{ and } \lambda \in [0,1]$

Non-convex

Convex functions

L is a **convex function** iff

$$L(\lambda \mathbf{\theta}_1 + (1 - \lambda)\mathbf{\theta}_2)$$

 $\leq \lambda L(\mathbf{\theta}_1) + (1 - \lambda)L(\mathbf{\theta}_2)$

for every θ_1 , θ_2 and $\lambda \in [0,1]$

graph always below a chord

Convex functions

L is a **convex function** iff

$$L(\lambda \mathbf{\theta}_1 + (1 - \lambda)\mathbf{\theta}_2)$$

 $\leq \lambda L(\mathbf{\theta}_1) + (1 - \lambda)L(\mathbf{\theta}_2)$

for every θ_1 , θ_2 and $\lambda \in [0,1]$

graph always below a chord

Convex functions

L is a **convex function** iff

$$L(\lambda \mathbf{\theta}_1 + (1 - \lambda)\mathbf{\theta}_2)$$

$$\leq \lambda L(\mathbf{\theta}_1) + (1 - \lambda)L(\mathbf{\theta}_2)$$

for every θ_1 , θ_2 and $\lambda \in [0,1]$

- graph always below a chord
- epigraph epi(L) is a convex set

Global optimality

Let θ^* be a **local minimizer** of a convex function L. Then θ^* is also the **global minimizer** of L

Convex vs Non-convex functions

- No negative curvature
- Local min = global min

 Global minimizer found by descent algorithms

- Possibly negative curvature
- Possibly local minima that are not global
- Nearly impossibly to guarantee global optimality

Deep learning is non-convex

Deep learning is non-convex

Descent method: general recipe

Initialization: start with some $\mathbf{\theta}^{(0)}$

For k = 0, ... until convergence

Choose descent direction $\mathbf{d}^{(k)}$

Choose **step size** $\alpha^{(k)}$

Update $\theta^{(k+1)} \leftarrow \theta^{(k)} + \alpha^{(k)} \mathbf{d}^{(k)}$

Gradient descent

Select step ${\bf d}$ producing **biggest decrease** in the value of the loss function ${\hat L}$

$$\mathbf{d} = \arg\min_{\mathbf{d}} \hat{L}(\mathbf{\theta} + \mathbf{d}) - \hat{L}(\mathbf{\theta}) \quad \text{such that } \|\mathbf{d}\| = 1$$

$$\approx \arg\min_{\mathbf{d}} \nabla \hat{L}(\mathbf{\theta})^{\mathrm{T}} \mathbf{d} \quad \text{such that } \|\mathbf{d}\| = 1$$

Choice of L_2 metric ball:

$$\mathbf{d} = \arg\min_{\mathbf{d}} \nabla \widehat{L}(\mathbf{\theta})^T \mathbf{d} \qquad \text{such that } \|\mathbf{d}\|_2 = 1$$
$$= -\nabla \widehat{L}(\mathbf{\theta}) \qquad \qquad \mathbf{Gradient descent}$$

Gradient descent convergence rate

Strong convexity
$$\nabla^2 \hat{L}(\boldsymbol{\theta}) \geqslant m\mathbf{I} \quad m > 0$$

Lipschitz gradient
$$\nabla^2 \hat{L}(\boldsymbol{\theta}) \leq MI$$

Constant step size
$$\alpha \le \frac{2}{m+N}$$

$$\widehat{L}(\boldsymbol{\theta}^{(k)}) - \widehat{L}(\boldsymbol{\theta}^*) \le c^k \cdot \frac{M}{2} \|\boldsymbol{\theta}^0 - \boldsymbol{\theta}^{(k)}\|$$

"Linear" convergence

To get
$$\hat{L}(\boldsymbol{\theta}^{(k)}) - \hat{L}(\boldsymbol{\theta}^*) \le \epsilon$$
 one needs $\mathcal{O}\left(\log \frac{1}{\epsilon}\right)$ iterations

Gradient descent convergence rate

Computational complexity

$$\widehat{L}(\mathbf{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell_i(f_{\mathbf{\theta}}(\mathbf{x}_i), y_i) \quad \text{single iteration} \\ \text{complexity: } \mathcal{O}(n)$$

Gradient descent convergence rate:

$$\widehat{L}(\mathbf{\theta}^{(k)}) - \widehat{L}(\mathbf{\theta}^*) = \mathcal{O}(c^k)$$

- ϵ -optimality requires $\mathcal{O}\left(\log \frac{1}{\epsilon}\right)$ iterations
- overall complexity: $O\left(n\log\frac{1}{\epsilon}\right)$

Stochastic gradient descent

Regular ("batch") optimization

$$\mathbf{\theta}^{(k+1)} \leftarrow \mathbf{\theta}^{(k)} - \alpha^{(k)} \nabla \hat{L}(\mathbf{\theta}^{(k)})$$

- deterministic trajectory
- $-\nabla \hat{L}(\mathbf{\theta}^{(k)})$ always descent direction
- iteration cost $\mathcal{O}(n)$

Stochastic optimization

$$\mathbf{\theta}^{(k+1)} \leftarrow \mathbf{\theta}^{(k)} - \alpha^{(k)} \nabla \ell_k(\mathbf{\theta}^{(k)})$$
 sample picked at random

- stochastic process
- $-\mathbb{E} \mathbb{V}_{\mathcal{K}}(\mathbb{Q}(\mathbb{Q}^{(k)}))$ in ideal and weaves at different interpolation
- Iteration cost $\mathcal{O}(1)$

Stochastic gradient convergence rate

Stochastic gradient descent:

$$\begin{split} & \mathbb{E}\left(\hat{L}\left(\mathbf{\theta}^{(k)}\right) - \hat{L}(\mathbf{\theta}^*)\right) = \mathcal{O}\left(\frac{1}{k}\right) \\ & \text{To get } \mathbb{E}\left(\hat{L}\left(\mathbf{\theta}^{(k)}\right) - \hat{L}(\mathbf{\theta}^*)\right) \leq \epsilon \end{split}$$

"sub-linear" convergence

requires $\mathcal{O}\left(\frac{1}{\epsilon}\right)$ complexity

Big advantage for large n

Compare to gradient descent:

$$\widehat{L}\big(\mathbf{\theta}^{(k)}\big) - \widehat{L}(\mathbf{\theta}^*) = \mathcal{O}\big(c^k\big)$$
 To get
$$\widehat{L}\big(\mathbf{\theta}^{(k)}\big) - \widehat{L}(\mathbf{\theta}^*) \leq \epsilon$$

"linear" convergence

requires $\mathcal{O}\left(n\log\frac{1}{\epsilon}\right)$ complexity

(Batch) stochastic gradient convergence

For m -strongly convex \hat{L} with M -Lipschitz gradient and fixed step size $\alpha \leq \frac{1}{M}$

$$\mathbb{E}\left(\hat{L}(\boldsymbol{\theta}^{(k)}) - \hat{L}(\boldsymbol{\theta}^*)\right) \leq \frac{\alpha\sigma^2}{2m} + (1 - \alpha m)^k \left(\hat{L}(\boldsymbol{\theta}^{(0)}) - \hat{L}(\boldsymbol{\theta}^*)\right)$$

where $\sigma^2 = \mathcal{O}\left(\frac{1}{b}\right)$ is a bound on the gradient estimator variance and b is batch size

Linear (fast) convergence in the beginning

Gradient noise σ prevents further progress

Convergence

Convergence

Convergence

Stochastic gradient convergence

$$\mathbb{E}\left(\widehat{L}\left(\mathbf{\theta}^{(k)}\right) - \widehat{L}(\mathbf{\theta}^*)\right) \leq \frac{\alpha\sigma^2}{2m} + (1 - \alpha m)^k \left(\widehat{L}\left(\mathbf{\theta}^{(0)}\right) - \widehat{L}(\mathbf{\theta}^*)\right)$$

Small step size

Large step size

Slower initial convergence
Stalls at more accurate result

Faster initial convergence
Stalls at less accurate result

Small batch size -

Large batch size

Stalls at less accurate result Lower iteration cost

Stalls at more accurate result Higher iteration cost