

1D EJECTOR SIMULATION TOOL ONE DIMENSIONAL EJECTOR DESIGN FOR HEAT PUMPS

2022

Dr. Adam Buruzs (AIT)

AUSTRIAN INSTITUTE

EJECTORS FOR HEAT PUMPS

Pressure recovery ratio = $\frac{p_7}{p_9}$

higher Pressure recovery

Compressor less work

Better COP

Experiment: difficult and expensive. New Geometrie → new Fabrication Sensors influence the Fluid Flow

Therefore need for **Simulation**

CFD SIMULATION

Advantage:

- Precision: Turbulence etc,
- · Equilibrium and Non Equilibrium models.
- Axialsymmetry : 3D → 2D.

Disadvantage:

- Disadvantage: Time: Hours / Days
- · Often problems with convergence
- Great Know-how + Experience from the Engineer is needed

Need for fast, simple to use Simulation tool For Ejector design and optimization

From Smolka et al. 2013

20/11/2020

ONE DIMENSIONAL MODELS

Assumption of *Munday-Bagster*: no mixing before the hypothetic throat

Solving the equations for

- Mass conservation
- Momentum equation
- Energy Conservation
- Thermodynamics: Equilibrium, one or two phase flow with Homogeneus Equilibrium models..

Choking:

The Primary mass flow reaches a maximum value \rightarrow Primary nozzle works like a supersonic Laval-Nozzle.

Double Chocking:

The secondary nozzle mass flow als reaches critical maxium value **Single Choking**:

- The secondary mass flow below the critical maximal value.
- The mass flow will be governed by the pressure ratio.

20/11/2020

(b)

MOTIVE NOZZLE 1D MODELL

Mass conservation

$$\dot{M} = \rho A v = const.$$

Momentum	$-f\sqrt{\frac{\pi}{A}}\frac{\dot{M}}{A}v(x) = \frac{\dot{M}}{A}\frac{dv}{dx} + \frac{dp}{dx}$
Energy	$0 = v(x)\frac{dv}{dx} + \frac{dh}{dx}$
Homogeneus Equilibrium (HEM) Density from RefProp library	$\rho(x) = RP_{\rho}(p(x), h(x))$

Assumption:

- · Viscosity neglected
- Friction with Faktor f (Darcy Weisbach Eq.)
- Turbulence neglected
- Homogeneus Fluid after the phase transition

Solution:

- Initial value problem: from the speed by the prim nozzle inlet
 → Equation System of Differences (Forward differencial)
- Self made adaptive Solution method

MOTIVE NOZZLE II: CHOKING: CRITICAL MASS FLOW

Critical point: needs an artificial

Kick to flip over to supersonic state

Finding the critical Mass flow with Bisection method:

Experiment: Primary nozzle of a Butan Ejector from *Schlemminger et al. 2019*

 $P = 21.4 \text{ bar}, T = 114 \, {}^{0}\text{C}$

Primary nozzle Mass flow:

Simulation	Experiment
0.184 kg/sec	0.127 kg/sec

20/11/2020

PRE-MIXER (OLD) 0-DIMENSIONAL EQUATIONS

Secondary (Suction) Flow

Conservation	Primary (Motive) Flow	Secondary (Suction-) Flow
Mass	$\dot{m_P} = \rho_{pY} v_{pY} A_{pY}$	$\dot{m_S} = \rho_{SY} v_{SY} A_{SY}$
Energy	$h_o + \frac{v_o^2}{2} = h_{pY} + \frac{v_{pY}^2}{2}$	$h_{St} = h_{SY} + \frac{v_{SY}^2}{2}$
Entropy	$s_{po} = RP_{\rm s}(p_{pY}, h_{pY})$	$s_{St} = RP_s(p_{SY}, h_{SY})$
Density	$\rho_{pY} = RP_{\rho}(p_{pY}, h_{pY})$	$\rho_{SY} = RP_{\rho}(p_{SY}, h_{SY})$
Cross section	$A_m = A_{SY} + A_{PY}$	

Drimary (Mativa) Flow

Munday-Bagster Hypothesis:

- No mixing until cross section Y

Pressure balance: $p_Y = p_{PY} = p_{SY}$

Critical Operating mode (Double Choking mode):

Secondary flow reaches the speed of sound by Y:

 $v_{SY} = RP_c(p_Y, h_{SY})$ (RefProp)

 $\dot{m_S}$ is calculated from that.

Subcritical Operating mode(single Choking mode):

 $\dot{m_S}$ is an external Parameter

PRE-MIXING UPDATE

• **Subcritical Operating mode**(single Choking mode):

From the solution of the equations we get $(p_y, v_{pY}, A_{pY}, v_{sY}, h_{sY})$ and **also** $\dot{m_S}$!

Conservation	Primary (Motive) Flow	Secondary (Suction-) Flow
Mass	$\dot{m_P} = \rho_{pY} v_{pY} A_{pY}$	$\dot{m_S} = ho_{SY} v_{SY} A_{SY}$
Energy	$h_o + \frac{v_o^2}{2} = h_{pY} + \frac{v_{pY}^2}{2}$	$h_{St} = h_{SY} + \frac{v_{SY}^2}{2}$
Entropy	$s_{po} = RP_{\rm S}(p_{pY}, h_{pY})$	$s_{St} = RP_s(p_{SY}, h_{SY})$
Momentum		$\int_{x_{Si}}^{Y} \rho A v \frac{dv}{dx} dx = -\int_{x_{Si}}^{Y} A(x) \frac{dp}{dx} dx$
Density	$\rho_{pY} = RP_{\rho}(p_{pY}, h_{pY})$	$\rho_{SY} = RP_{\rho}(p_{SY}, h_{SY})$
Cross section	$A_m = A_{SY} + A_{PY}$	
Pressure	$p_Y = p_{PY} = p_{SY}$	

20/11/2020 8

MIXER AND DIFFUSER

Assumptions after Banasiak and Hafner (2011):

Coaxial Flow in the Mixer:

Mass, Momentum and Energy equations

Coefficients for the Mass and Momentum exchange

Outlet Pressure

Normal Shock Wave Position

COMPARISON WITH EXPERIMENT

 Experiment: Butan Ejector (Single Choking)

Schlemminger et al 2019

→ good agreement of the pressure values.

 \rightarrow 7-50% deviation of predicted

mass flow rates

MFR g/s	Experiment	Our 1D Simulation
Motive Nozzle	127 g/s	190 g/s
Suction Nozzle	58 g/s	54 g/s

20/11/2020

AUSTRIAN INSTITUTE OF TECHNOLOGY

SUMMARY

- I have developed : 1D Ejector Simulation tool.
- Soon will be freely available on Github (open-source!)
- Geometry, Thermodynamic state, refrigerant flexible variable.
- Simulation takes only 20-40 seconds (on 1 CPU core)
- Python Package (run on every Operating System, and every server, you can connect it to any other post-processing tool)
- First experimental validation performed.

Outlook and open points:

- Further Tests/Comparisons with Experiments/CFD simulation needed. (Parameter Settings)
- Integration into Heat Pump Models (Dymola, Modellica)
- Graphical User Interface
- More precise calculation (Viscosity, Non-Equilibrium models, etc.)
- Still potential for speed up (currently runs on 1 CPU core)

20/11/2020 11

THANKS FOR WATCHING/LISTENING!

Dr Adam Buruzs, 06.10.2022.

adam.buruzs@ait.ac.at

