NELINEARNO PROGRAMIRANJE I EVOLUTIVNI ALGORITMI

Računarski ispit	Ime i prezime:
Broj indeksa:	Datum:

1. Skicirati funkciju f(x) za dve promenljive u intervalu [-10, 10].

$$f(x) = 20 + e - 20e^{-\frac{1}{5}\sqrt{\frac{1}{n}\sum_{i=1}^{n}x_i^2}} - e^{\frac{1}{n}\sum_{i=1}^{n}\cos(2\pi x_i)}$$

2.	Koristeći PSO odrediti minimum funkcije f za slučaj 4 promenljive, sa tolerancijom od 10^{-15} i 200 čestica.
	Optimum se nalazi u tački xopt:

u kojoj funkcija ima vrednost:_____

- 3. Koristeći PSO odrediti optimum funkcije f za slučaj 3 promenljive, ako je pretraga ograničena na tačke **unutar** sfere sa centrom u (4, 5, 6) i poluprečnikom 1 (ostaviti toleranciju 10^{-15} i broj čestica 200).
- a) Napišite funkciju ograničenja:

		 	
atimum sa nalazi u tački vant	optimum se nalazi u tački xopt:		

- b) Optimum se nalazi u tački xopt: _____ u kojoj funkcija ima vrednost:_____
- 4. Kompanija koja se bavi distribucijom mleka u Novom Sadu nabavlja mleko od tri mlekare: A, B, C. Ukupne količine mleka koje distributer dobija dnevno od mlekara su 100, 200 i 300 litara, respektivno. Mleko se transportuje do 5 radnji čije dnevne potrebe su date u sledećoj tabeli:

K1	K2	К3	K4	K5
80	90	120	180	130

Cene transporta i distribucije cij u dinarima za litar mleka date su u sledećoj tabeli:

Ci,j	K1	K2	К3	K4	K5
A	1	2	2	1	3
В	4	3	2	3	2
С	4	2	1	2	3

	Broj promenljivin je:
b)	Kriterijum optimalnosti:
	Jednačine ograničenja:
d)	Minimalna cena transporta:

e) Optimalan plan transporta:

	K1	K2	K3	K4	K5
A					
В					
С					