In the claims:

Please add new claims 22-24:

- The process of claim 1, wherein R is a member of group (i), and said secondary metal ions are selected from the group consisting of: Li[†], Na[†], K[†], Rb[†], Cs[†], Be²⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, B³⁺, Al³⁺, Al³⁺, Ga³⁺, In³⁺, Tl³⁺, Sn²⁺, Sn⁴⁺, Pb²⁺, Sb⁴⁺, Sc³⁺, Ti³⁺, V³⁺, Cr³⁺, Mn²⁺, Fe²⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Y³⁺, Zrⁿ⁺, Nbⁿ⁺, Moⁿ⁺, Tcⁿ⁺, Ru³⁺, Rhⁿ⁺, Pd²⁺, Ag⁺, Cd²⁺, lanthanides, Pt²⁺, Au³⁺ and Hg²⁺.
- 23. The process of claim 22, wherein R is a member of group (i), and said secondary donors are selected from the group consisting of: O, N, S, Cl, F, Br, I, C, and P.
- 24. The process of claim 12, said secondary metal ion is selected from the group consisting of: Li^+ , Na^+ , K^+ , Rb^+ , Cs^+ , Be^{2^+} , Mg^{2^+} , Ca^{2^+} , Sr^{2^+} , Ba^{2^+} , B^{3^+} , Al^{3^+} , Al^{3^+} , Ga^{3^+} , In^{3^+} , Tl^{3^+} , Sn^{2^+} , Sn^{4^+} , Pb^{2^+} , Sb^{4^+} , Sc^{3^+} , Ti^{3^+} , V^{3^+} , Cr^{3^+} , Mn^{2^+} , Fe^{2^+} , Co^{2^+} , Ni^{2^+} , Cu^{2^+} , Zr^{n^+} , Nb^{n^+} , Mo^{n^+} , Tc^{n^+} , Ru^{3^+} , Rh^{n^+} , Pd^{2^+} , Ag^+ , Cd^{2^+} , lanthanides, Pt^{2^+} , Au^{3^+} and Hg^{2^+} .
- 25. The process of claim 24, said secondary donor is selected from the group consisting of: O, N, S, Cl, F, Br, I, C, and P.
- 26. The process of claim 13, wherein R is a member of group (i), and said secondary metal ions are selected from the group consisting of: Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, Be²⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, B³⁺, Al³⁺, Al³⁺, Ga³⁺, In³⁺, Tl³⁺, Sn²⁺, Sn⁴⁺, Pb²⁺, Sb⁴⁺, Sc³⁺, Ti³⁺, V³⁺, Cr³⁺, Mn²⁺, Fe²⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Y³⁺, Zrⁿ⁺, Nbⁿ⁺, Moⁿ⁺, Tcⁿ⁺, Ru³⁺, Rhⁿ⁺, Pd²⁺, Ag⁺, Cd²⁺, lanthanides, Pt²⁺, Au³⁺ and Hg²⁺.
- 27. The process of claim 26, wherein R is a member of group (i), and said secondary donors are selected from the group consisting of: O, N, S, Cl, F, Br, I, C, and P.

Please amend claims 1, 8, 12, 13, 16 and 21 as follows:

94

1. (Once Amended) A process for selectively adsorbing a component of a gas mixture, which comprises contacting the mixture with a solid state, selective adsorbent material comprising a porous framework of a plurality of transition element complexes (TECs) having the formula shown below:

whercin:

(a) M is a primary transition metal ion;

- (b) D to D₄ are primary donors and m is zero or one, at least three of D to D₄ occupying primary donor coordination sites on M but leaving at least one open coordination site on M for the component to react with M;
- (c) G to G₄ are functional groups and n is zero or one, at least one of G to G₄ being intramolecularly bonded to at least three adjacent primary donors to form at least one 5 or 6 member chelate ring on the primary transition metal ion and providing at least three donors thereto;
- (d) M, D to D_4 and G to G_4 together define one or more transition metal complexes, wherein said complexes are the same or different and wherein k is from 0 to 4;
 - (e) R is an intermolecular connecting group selected from
 (i) secondary metal ions coordinated with secondary donors bonded to one or more of groups G to G₄ on the respective TECs;
- (ii) multifunctional organic groups forming covalent bonds with one or more of groups G to G₄ on the respective TECs;

(iii) non-coordinating counter-ions spaced between and separating the respective TECs;

wherein z is from 1 to 8, and wherein R may be the same or different when z is greater than 1; and

(f) y is an integer sufficient to provide said porous framework of the plurality of TECs for the selective adsorption of the desired component thereon.

8. (Once amended) The process of claim 1 for selectively adsorbing a component of a gas mixture, wherein R is a member of group (ii) and has the formula

0

or mixtures thereof, and wherein R¹ is a substituted or unsubstituted acyclic or carbocyclic group and is unsubstituted or is substituted by F, Cl, Br, O, N, P, S, Si or B.

12. (Once amended) A process for selectively adsorbing oxygen from a gas mixture, which comprises contacting the mixture with a solid state, selective adsorbent material comprising a porous framework of a plurality of transition element complexes (TECs) having the formula shown below,

wherein:

- (a) M is a primary transition metal ion selected from Co(II), Fe(II) or Mn(II);
- (b) D to D₄ are primary donors occupying primary donor coordination sites on M but leaving one open coordination site on M for an oxygen molecule to react with M;
- (c) G to G₄ are functional groups and n is zero or one, at least one of G to G₄ being intramolecularly bonded to at least three adjacent primary donors to form at least one 5 or 6 member chelate ring on the primary transition metal ion and providing at least three donors thereto;
- (d) M, D to D₄ and G to G₄ together define one or more transition metal complexes TEC A, TEC B and TEC C, wherein said complexes are the same or different;
- (e) D' is a secondary donor or a group of secondary donors bonded to a chelate ring on a coordination site on M,;
- (f) M' is a secondary metal ion coordinated with secondary donors D',

the group bonding the respective TECs to one another to maintain them in a porous framework and wherein z is from 1 to 8 and x is from 0 to 6; and

- (g) y is an integer sufficient to provide said porous framework of the plurality of TECs for the selective adsorption of oxygen thereon.
- 13. (Once amended) A composition for selectively adsorbing a component of a gas mixture, which comprises a solid state, selective adsorbent material comprising a porous framework of a plurality of transition element complexes (TECs) having the formula shown below,

wherein:

- M is a primary transition metal ion; (a)
- D to D₄ are primary donors and m is zero or one, at least three of D to **(b)** D4 occupying primary donor coordination sites on M but leaving at least one open coordination site on M for the component to react with
- G to G4 are functional groups and n is zero or one, at least one of G to (c) G4 being intramolecularly bonded to at least three adjacent primary donors to form at least one 5 or 6 member chelate ring on the primary transition metal ion and providing at least three donors thereto; (d)
- M, D to D₄ and G to G₄ together define one or more transition metal complexes, wherein said complexes are the same or different and k is from 0 to 4;
- R is an intermolecular connecting group selected from (e)
 - secondary metal ions coordinated with secondary donors bonded to one or more of groups G to G₄ on the respective TECs:
 - multifunctional organic groups forming covalent bonds with (ii) one or more of groups G to G4 on the respective TECs; (or
 - (iii) non-coordinating counter-ions spaced between and separating the respective TECs;

wherein z is from 1 to 8, and wherein R may be the same or different when z is greater than 1; and

- y is an integer sufficient to provide said porous framework of the plurality of TECs for the selective adsorption of the desired component thereon.
- 16. (Once amended) The composition of claim 13 for selectively adsorbing a component of a gas mixture, wherein R is a member of group (ii) and has the formula

M6

