Assessment 3

Problem 2: Write a program to implement the new CNN model. The model should contains following things (use any grayscale dataset with the 10 classes).

```
In [ ]:
import cv2
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
from keras.datasets import cifar10
from sklearn.preprocessing import OneHotEncoder
from sklearn.metrics import confusion matrix
from keras.layers import Conv2D, AveragePooling2D, Flatten, Dense
from keras.models import Sequential
In [ ]:
(X_train, y_train), (X_test, y_test) = cifar10.load data()
labels = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship
', 'truck']
In [ ]:
fig, axes = plt.subplots(ncols=5, nrows=2, figsize=(17, 8))
index = 0
for i in range(2):
    for j in range(5):
        axes[i,j].set title(labels[y train[index][0]])
        axes[i,j].imshow(X train[index])
        axes[i,j].get xaxis().set visible(False)
        axes[i,j].get yaxis().set visible(False)
        index += 1
plt.show()
       frog
                                             truck
                                                                deer
                                                                                 automobile
                          truck
     automobile
                                             horse
In [ ]:
import cv2
X train = np.array([cv2.cvtColor(image, cv2.COLOR BGR2GRAY) for image in X train])
```

In []:

X test = np.array([cv2.cvtColor(image, cv2.COLOR BGR2GRAY) for image in X test])

In []:

```
X_train = X_train/255
X_test = X_test/255
```

In []:

```
one_hot_encoder = OneHotEncoder(sparse=False)
one_hot_encoder.fit(y_train)
```

Out[]:

In []:

```
y_train = one_hot_encoder.transform(y_train)
y_test = one_hot_encoder.transform(y_test)
```

In []:

```
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], X_train.shape[2], 1)
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], X_test.shape[2], 1)
X_train.shape
```

Out[]:

(50000, 32, 32, 1)

In []:

```
input_shape = (X_train.shape[1], X_train.shape[2], 1)
input_shape
```

Out[]:

(32, 32, 1)

. . . .

```
Model
```

Convolution 1 --->input(32, 32, 1) --->no. of filters = 6 ---> filter(5, 5) --->strides = 1 --->activation(relu) --->output(28, 28, 6) SubSampling 1 Averagepooling2D --->input(28, 28, 6) ---> filter(2, 2) --->strides = 2 --->output(14, 14, 6) Convolution 2 --->input(14, 14, 6) --->no. of filters = 16 ---> filter(5, 5) --->strides = 1 --->activation(relu) --->output(10, 10, 16) SubSampling 2 Averagepooling2D --->input(10, 10, 16) ---> filter(2, 2) --->strides = 2 --->output(5, 5, 16) FullyConnected 1 --->input(5, 5, 16) --->activation(relu) --->output(120) FullyConnected 2 --->input(120) --->activation(relu) --->output(84) Output --->input(84) --->activation(softmax) --->output(10) In []: model = Sequential() model.add(Conv2D(6, kernel size=(5, 5), padding='valid', activation='relu', input shape= input shape)) model.add(AveragePooling2D(pool size=(2, 2), strides = 2)) model.add(Conv2D(16, kernel size=(5, 5), padding='valid', activation='relu')) model.add(AveragePooling2D(pool size=(2, 2), strides = 2)) model.add(Flatten()) model.add(Dense(120, activation='relu')) model.add(Dense(84, activation='relu')) model.add(Dense(10, activation='softmax')) model.summary() Model: "sequential" Layer (type) Output Shape Param # ______ (None, 28, 28, 6) conv2d (Conv2D) 156 average pooling2d (AveragePo (None, 14, 14, 6) (None, 10, 10, 16) conv2d 1 (Conv2D) 2416 average pooling2d 1 (Average (None, 5, 5, 16) flatten (Flatten) (None, 400) dense (Dense) (None, 120) 48120 (None, 84) 10164 dense 1 (Dense) dense 2 (Dense) (None, 10) 850 ______ Total params: 61,706 Trainable params: 61,706 Non-trainable params: 0 In []: model.compile(loss='categorical crossentropy', optimizer='adam', metrics=['acc']) In []: history = model.fit(X train, y train, epochs=20, batch size=32, validation data=(X test, y_test)) Epoch 1/20

val loss. 1 5926 - val acc. 0 4180

```
Epoch 2/20
val loss: 1.4377 - val acc: 0.4797
Epoch 3/20
val loss: 1.3832 - val acc: 0.5085
Epoch 4/20
val loss: 1.3103 - val acc: 0.5387
Epoch 5/20
val loss: 1.3023 - val acc: 0.5457
Epoch 6/20
val loss: 1.2634 - val acc: 0.5625
Epoch 7/20
val loss: 1.2593 - val_acc: 0.5618
Epoch 8/20
val loss: 1.2390 - val acc: 0.5724
Epoch 9/20
val loss: 1.2409 - val acc: 0.5749
Epoch 10/20
val loss: 1.2160 - val acc: 0.5808
Epoch 11/20
val loss: 1.2194 - val acc: 0.5856
Epoch 12/20
val_loss: 1.2296 - val_acc: 0.5841
Epoch 13/20
val loss: 1.2512 - val acc: 0.5803
Epoch 14/20
val loss: 1.2124 - val acc: 0.5890
Epoch 15/20
val loss: 1.2370 - val acc: 0.5941
Epoch 16/20
val loss: 1.2104 - val acc: 0.5983
Epoch 17/20
val loss: 1.2405 - val acc: 0.5887
Epoch 18/20
val_loss: 1.2414 - val_acc: 0.5990
Epoch 19/20
val loss: 1.2979 - val acc: 0.5837
Epoch 20/20
val loss: 1.3099 - val acc: 0.5838
In [ ]:
model.save('CustomCNNusingCIFAR 10.h5')
In [ ]:
plt.title('Training Accuracy')
plt.plot(history.history['acc'])
```

Training Accuracy

plt.plot(history.history['val_acc'])

plt.show()

var 1000. 1.0020

var_acc. 0.1100

In []:

```
predictions = model.predict(X_test)
predictions = one_hot_encoder.inverse_transform(predictions)
y_test = one_hot_encoder.inverse_transform(y_test)
cm = confusion_matrix(y_test, predictions)
plt.figure(figsize=(9,9))
sns.heatmap(cm, cbar=False, xticklabels=labels, yticklabels=labels, fmt='d', annot=True,
cmap=plt.cm.Blues)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.show()
```

	airplane	568	32	78	14	60	3	20	12	150	63
Actual	utomobile	24	680	10	10	15	8	18	3	71	161
	bird	73	22	458	56	140	61	92	26	41	31
	cat	26	26	91	292	146	130	107	42	45	95
	deer	40	14	79	42	589	33	84	61	33	25
	dog	21	12	86	138	110	436	74	66	21	36
	frog	16	29	46	44	66	14	699	8	24	54
	horse	34	10	35	24	113	66	23	619	10	66
	ship	75	47	27	12	13	3	9	6	749	59
	truck	26	102	13	15	12	7	20	15	42	748
		airplane	automobile	bird	cat	deer	g g	frog	horse	dihs	fruck

Predicted