

Trabajo Práctico 1 - Imágenes

$\begin{array}{c} 67.61 \\ \text{Grupo 4} \\ \text{Primer cuatrimestre de 2021} \end{array}$

Alumno:	Carol Lugones, Ignacio
Número de padrón:	100073
Email:	icarol@fi.uba.ar
Alumno:	Torresetti, Lisandro
Número de padrón:	99846
Email:	ltorresetti@fi.uba.ar

nD	1	т .	α 1	т	т 1	m	173	1 7 /	1 1	T7	D 1 44	DITID A
LP	1 -	Ignacio	Carol	Lugones,	Lisandro	Torresetti	Fun	a Mat	ae 1a	ı vision	Robótica -	· FIUBA

${\bf \acute{I}ndice}$

1. Objetivo	2

2. Resultados 2

1. Objetivo

El objetivo del primer trabajo práctico es encontrar la estrella más brillante de la figura 1.

Figura 1: Imagen a analizar

2. Resultados

En primer lugar se iteró sobre la matriz que devuelve el comando cv.imread() y se buscó en esta iteración el pixel que poseía el valor más alto. Una vez identificado se marcó con un círculo esta región y el resultado se puede ver en la figura 2.

Figura 2: Primer resultado

Como se puede apreciar en la figura, este punto no es el más brillante.

Para encontrar efectivamente la estrella más brillante se utilizó el siguiente código:

```
img = cv.imread('Estrellas.bmp',cv.IMREAD_GRAYSCALE) #Loaded again because cv.circle is in-place
secondImg = cv.threshold(img, 150, 255, cv.THRESH_BINARY)[1]
secondImg = cv.erode(secondImg, None, iterations = 2)
secondImg = cv.dilate(secondImg, None, iterations = 4)
```

La imagen se vuelve a cargar dado que el círculo marcado anteriormente queda en ella. Luego se utiliza el método cv.threshold(), este comando lo que hace es para aquellos pixeles con un valor mayor o igual a 150 los setea en 255 y para los menores que este valor los setea en 0. Con los comandos siguiente se buscó resaltar más los puntos con mayor brillo y tamaño, el resultado se ve en la siguiente figura.

Figura 3: Resaltando puntos de mayor tamaño y brillo

Por último, de la figura 3 se obtuvo las coordenadas de la estrella con mayor tamaño y brillo, el resultado se muestra a continuación.

Figura 4: Resultado final