Wine Reviews --- Text Analytics

Group 6 - Quanxu Pang, Yichen Pan, Ying Hu, Ziyue Zhong

Business Goal

Provide customers with appropriate wine selection strategies and generate business insights of the wine market

Data Description

- The Wine Reviews dataset contains 130k wine reviews with variety, location, winery, price, and description.
- Dataset Source: Kaggle.com
- Data Source: Wine Enthusiast (multichannel marketer of a growing line of wine- and spirits-related products
- Date updated: 11/24/2017
- Columns: country, description, designation, points, price, province, region, taster, variety, and winery

Data sample

	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0
1	Unnamed:	country	description	designation	points	price	province	region_1	region_2	taster_nam	taster_twit	title	variety	winery
2	0	Italy	Aromas inc	Vulkà Biand	87	,	Sicily & Sar	r Etna		Kerin O'Kee	@kerinoke	Nicosia 20	White Blen	Nicosia
3	1	Portugal	This is ripe	Avidagos	87	15	Douro			Roger Voss	@vossroge	Quinta dos	Portuguese	Quinta dos
4	2	US	Tart and sn	appy, the fl	87	14	Oregon	Willamette	Willamette	Paul Gregu	@paulgwir	Rainstorm	Pinot Gris	Rainstorm
5	3	US	Pineapple r	Reserve La	87	13	Michigan	Lake Michi	gan Shore	Alexander	Peartree	St. Julian 2	Riesling	St. Julian
6	4	US	Much like t	Vintner's R	87	65	Oregon	Willamette	Willamette	Paul Gregu	@paulgwir	Sweet Che	Pinot Noir	Sweet Chee
7	5	Spain	Blackberry	Ars In Vitro	87	15	Northern S	Navarra		Michael Sc	@winescha	Tandem 20	Tempranill	Tandem
8	6	Italy	Here's a br	Belsito	87	16	Sicily & Sar	r Vittoria		Kerin O'Kee	@kerinoke	Terre di Gi	Frappato	Terre di Gi
9	7	France	This dry an	d restrained	87	24	Alsace	Alsace		Roger Voss	@vossroge	Trimbach 2	Gewürztra	Trimbach
10	8	Germany	Savory drie	Shine	87	12	Rheinhesse	en		Anna Lee C	. lijima	Heinz Eifel	Gewürztra	Heinz Eifel
11	9	France	This has gro	Les Nature	87	27	Alsace	Alsace		Roger Voss	@vossroge	Jean-Bapti	Pinot Gris	Jean-Baptis
12	10	US	Soft, supple	Mountain (87	19	California	Napa Valle	Napa	Virginie Bo	@vboone	Kirkland Si	Cabernet S	Kirkland Sig
13	11	France	This is a dry	wine, very	87	30	Alsace	Alsace		Roger Voss	@vossroge	Leon Beyer	Gewürztra	Leon Beyer
14	12	US	Slightly red	uced, this v	87	34	California	Alexander	Sonoma	Virginie Bo	@vboone	Louis M. M	Cabernet S	Louis M. M
15	13	Italy	This is dom	Rosso	87	1	Sicily & Sar	r Etna		Kerin O'Kee	@kerinoke	Masseria S	Nerello Ma	Masseria S
16	14	US	Building on	150 years	87	12	California	Central Co	Central Co	Matt Kettn	@mattkett	Mirassou 2	Chardonna	Mirassou
17	15	Germany	Zesty orang	Devon	87	24	Mosel			Anna Lee C	. lijima	Richard Bö	Riesling	Richard Bö
18	16	Argentina	Baked plun	Felix	87	30	Other	Cafayate		Michael Sc	@winescha	Felix Lavaq	Malbec	Felix Lavaq
19	17	Argentina	Raw black-	Winemake	87	13	Mendoza F	Mendoza		Michael Sc	@winescha	Gaucho An	Malbec	Gaucho An
20	18	Spain	Desiccated	Vendimia S	87	28	Northern S	Ribera del	Duero	Michael Sc	@winescha	Pradorey 2	Tempranill	Pradorey

Process Review


```
In [37]: scores.head(20)
Out[37]:
```

	compound	neg	neu	pos
0	0.1531	0.000	0.935	0.065
1	0.6486	0.000	0.868	0.132
2	-0.1280	0.053	0.947	0.000
3	0.3400	0.000	0.926	0.074
4	0.8176	0.000	0.805	0.195

```
In [64]: avg_points = wine.groupby('points')['Compoud_Score'].mean()
In [65]: avg_points
Out[65]: points
         80
                -0.009855
         81
                0.043990
         82
                 0.102415
                 0.190330
                 0.333103
                 0.406618
                 0.453449
         86
         87
                 0.492951
                0.515306
         88
                0.530699
         89
                 0.580637
         91
                 0.600757
                 0.630100
         92
         93
                0.661940
                 0.693255
         94
         95
                0.745709
         96
                 0.737685
         97
                 0.796876
                 0.862329
         99
                 0.881230
                 0.889621
         100
         Name: Compoud Score, dtype: float64
```


- This chart shows the relationship between wine variety and its accumulative compound score, showing the top 15 variety
- Chardonnay, Pinot Noir, and Cabernet Sauvignon are the top three in the rank
- Ranking higher in this chart is more likely to be welcomed by most customers, and more likely to achieve better sale in market.

- This chart shows the relationship between price and the compound score specified by colors according to different countries.
- We can get the cost performance of the wine in each country
- Wine from US-France, England and Luxembourg are of high price and high performance in score
- Wine from Japan, Ukraine, Slovakia,
 South Korea and Lithuania are of high performance and low price.
- They might be underpriced, there are more space for them to improve the marketing and pricing strategy.

 $\label{thm:map:special} \mbox{Map based on Longitude (generated) and Latitude (generated). Color shows average of Negative Score. Details are shown for Country. The data is filtered on Region 1, which keeps 1,237 of 1,237 members.$

- This chart shows the negative score worldwide
- China is the region with lowest negative score which reached 0,
 Czech and Ukraine are the region with the highest negative score, and then follows Mexico and Argentina
- Wine from North America and Australia are a moderate level in Negative score, which can be inferred their wine's review and quality are of a stable level.
- The wine from east Europe and South America requires more attentions when selecting.

Map based on Longitude (generated) and Latitude (generated). Color shows average of Compoud Score. The marks are labeled by average of Compoud Score. Details are shown for Country. The view is filtered on Country, which excludes China.

- Average compound sentimental score of wine in different regions.
- Egypt has the highest compound score.
 South Africa, U.S., Canada and part of
 European countries also have high quality wines. But wine from Latin
 America have relatively low compound
 scores implying low quality.
- geographic factor can have great impact on the quality of wine.

- Wine which has a price within the range from 0 to 500 do not have significant association with its quality.
- But for those wine whose price are higher than 500, they all have positive sentimental score.

- There is a strong positive correlation between compound score and points.
- For wine with lower point, their scale is larger compared to wine with high score.
- Business should pay attention to the wine that have low points but high sentimental score, because this may imply a low price with high quality.

Compoud Score for each Points

- This figure shows all the wine name that have compound higher higher than 0.9.
- This Ranking can help customers to quickly compare different type of wines.

Topic modeling

a. LDA model

```
In [11]: lda = models.LdaModel(corpus, id2word=dictionary, num topics=10) #fit lda model
         lda.print topics(10) #V matrix, topic matrix
Out[11]: [(0,
            '0.020*"flavors" + 0.016*"palate" + 0.013*"wine" + 0.012*"notes" + 0.012*"finish" + 0.012*"aromas" + 0.012*"fruit" + 0.008*"w
         hite" + 0.008*"acidity" + 0.008*"rich"').
            '0.020*"wine" + 0.018*"flavors" + 0.016*"aromas" + 0.016*"fruit" + 0.015*"finish" + 0.012*"acidity" + 0.012*"palate" + 0.010
         *"drink" + 0.010*"sweet" + 0.008*"apple"').
            '0.024*"wine" + 0.023*"fruit" + 0.022*"flavors" + 0.018*"palate" + 0.015*"aromas" + 0.012*"acidity" + 0.011*"finish" + 0.009
         *"cherry" + 0.008*"white" + 0.008*"black"'),
            '0.040*"wine" + 0.017*"flavors" + 0.016*"aromas" + 0.014*"acidity" + 0.014*"drink" + 0.014*"fruit" + 0.013*"tannins" + 0.013
         *"ripe" + 0.011*"finish" + 0.008*"palate"'),
            '0.017*"wine" + 0.016*"finish" + 0.015*"fruit" + 0.014*"notes" + 0.014*"fresh" + 0.014*"nalate" + 0.013*"flavors" + 0.012*"ar
         omas" + 0.011*"acidity" + 0.011*"nose"'),
            '0.024*"wine" + 0.019*"drink" + 0.016*"acidity" + 0.015*"palate" + 0.015*"ripe" + 0.014*"flavors" + 0.011*"fruit" + 0.011*"fi
         nish" + 0.010*"aromas" + 0.008*"nose"'),
            '0.021*"palate" + 0.017*"cherry" + 0.017*"wine" + 0.014*"aromas" + 0.014*"black" + 0.013*"fruit" + 0.011*"finish" + 0.011*"fl
         avors" + 0.010*"notes" + 0.010*"nose"'),
           .
'0.033*"wine" + 0.016*"acidity" + 0.015*"tannins" + 0.015*"ripe" + 0.013*"drink" + 0.011*"fruit" + 0.011*"palate" + 0.010*"sp
         ice" + 0.010*"flavors" + 0.010*"rich"').
            '0.018*"drink" + 0.016*"berry" + 0.016*"flavors" + 0.015*"aromas" + 0.013*"palate" + 0.013*"tannins" + 0.012*"ripe" + 0.010
         *"red" + 0.010*"finish" + 0.009*"wine"').
            '0.033*"flavors" + 0.023*"wine" + 0.019*"aromas" + 0.017*"fruit" + 0.015*"black" + 0.010*"cabernet" + 0.010*"cherry" + 0.009
         *"rich" + 0.008*"dry" + 0.008*"finish"')]
```

- Although, the content is all about wine, we still can use topic modeling to cluster descriptions.
- Most of topics contain wine, flavors, aromas, and acidity
- There are some difference based on wines' category among all ten topics such as....

Keyword extractor

```
In [166]: # show final tfidf feature matrix
         display features(np.round(norm tfidf, 2), feature names)
                                               0.00
                                                    0.00
                                                    0.00
                              0.12 0.00
                                         0.00
                                               0.00
                                         0.00
                                               0.00
                                               0.00
                                               0.00
                                         0.00
                                               0.00 0.00
                                               0.00
                                         0.00
                                               0.00 0.00
                                               0.19
                                                    0.00
                                               0.00
                                               0.00
                                                    0.00
                                               0.00
                                                    0.00
                                               0.00
                                                    0.00
             winethat
                                    wood
                                         vear
                                               vears
                                                     vellow
                              0.00
                                   0.00
                 0.00
                                   0.00
                                                             0.00
                              0.00
                                   0.00
                                                 0.0
                                                             0.00
                                   0.00
                              0.06
                                   0.13
                                                             0.00
                             0.00
                                   0.00
                                         0.00
                                                 0.0
                                   0.00
```

- We use "feature_extraction" function from Sklearn package and word2vector from genism
- Our target is to get three most meaningful words which stand for a description.
- We calculate TFIDF value of each word. Then we select the top three meaningful words based on TFIDF value.
- This is a demo by using 20 description of wine

Keyword extractor

AP	CA	CB	CC	CD	CE	CF	CG	CH	CI	CJ
blackberry	coffee	concentrat	hazelnut	minty	oak	orange	pear	subtle	sweetened	vanilla
0	0	0	0	3.397895	2.481605	0	0	2.704748	0	(
2.145132	0	0	0	0	0	0	0	0	3.397895	2.299283
0	0	0	3.397895	0	0	2.481605	2.99243	0	0	(
2.145132	2.99243	0	0	0	2.481605	0	0	0	0	(
0	0	2.704748	0	0	0	0	0	0	0	(
2.145132	2.99243	0	0	0	2.481605	0	0	0	0	(
2.145132	0	0	0	0	0	0	0	0	0	(
0	0	0	0	0	0	0	0	0	0	2.29928
0	0	2.704748	0	0	0	0	0	0	0	(
0	0	0	0	0	0	2.481605	0	0	0	(
0	0	0	0	0	0	0	2.99243	0	0	(
0	0	0	0	0	0	0	0	0	0	2.29928
2.145132	0	0	0	0	0	0	0	2.704748	0	2.29928
0	0	0	0	0	0	0	0	0	0	(
0	0	0	0	0	0	0	0	0	0	(
0	0	0	0	0	0	0	0	2.704748	0	
0	0	0	0	0	2.481605	0	0	0	0	
4.290265	0	0	0	0	0	0	0	0	0	2.29928
0	0	2.704748	0	0	0	0	0	0	0	
0	0	0	0	0	0	2.481605	0	0	0	
0	0	0	0	0	0	2.481605	0	0	0	

- 1. minty, subtle, aged
- 2. vanilla, sweetened, blackberry
- 3. pear, orange, hazelnut
- 4. blackberry, oak, coffee
- 5. concentration, aging, acidity

Limitation: we only use 20
 descriptions. The corpus is not
 huge enough to generate
 reliable keywords.

Text Similarity

- This figure shows our codes for calculating Text Similarity basically using 'gensim' and 'numpy' modules.
- Main thought is transferring documents to vectors in the convenience of calculating.
- Accrossing to change the training text and testing text, we could select specific "wines that customers are willing to know.

```
TaggededDocument = gensim.models.doc2vec.TaggedDocument
puctuation = [',', '.', '?', '!', '@', '%', ':', ';']
def get dataset():
    with open('traininglok.txt','r', encoding = 'utf-8') as wine reviewl:
        docs = wine reviewl.readlines()
        for p in puctuation:
            docs = [d.replace(p, ' ')for d in docs]
    x train = []
        for a, b in enumerate(docs):
            doc list = b.split('\n')
            1 = len(doc list)
            doc \ list[1-1] = doc \ list[1-1].strip()
            document = TaggededDocument(doc list, tags=[a])
            x train.append(document)
            return x train
            wine review.close()
    except UnicodeDecodeError:
        return x train
        wine review.close()
def getVecs(model, corpus, size):
    vecs = [np.array(model.docvecs[z.tags[0]].reshape(1, size)) for z in corpus]
    return np.concatenate(vecs)
def train(x train, size=200, epoch num=1):
    model dm = Doc2Vec(x train,min count=1, window = 3, size = size, sample=le-3, negative=5, workers=4)
    model dm.train(x train, total examples=model dm.corpus count, epochs=70)
    model dm.save('model dmtraining')
    return model dm
def test():
    model dm = Doc2Vec.load('model dmtraining')
    wine review2 = open('testingl0k.txt','r')
    text = wine review2.readlines()
    for p in puctuation:
            text = [t.replace(p, ' ')for t in text]
    test text = text[int(input('Please input number of the line you want to test.'))]
    inferred vector dm = model dm.infer vector(test text)
     print (inferred vector dm)
    sims = model dm.docvecs.most similar([inferred vector dm], topn=10)
    return sims
    wine review2.close()
if name == ' main ':
    x train = get dataset()
    model dm = train(x train)
    sims = test()
    for count, sim in sims:
        docnum = x train[count]
        for sen in docnum[0]:
            sens = sens + sen +
        print (sens, sim)
```

Text Similarity

 If a customer is going to make investment on wine, we could test the descriptions similarity among all kinds of wine. There are two kinds of wine, one is at high price and the other low-price wine's description shows high similarity with the high-price one.

```
RESTART: C:\Users\panch\Downloads\text analytics\PROJECT\wine-reviews\text_proj ect.py

Please input number of the line you want to test.5

This tremendous 100 varietal wine hails from Oakville and was aged over three y ears in oak Juicy red-cherry fruit and a compelling hint of caramel greet the p alate framed by elegant fine tannins and a subtle minty tone in the background Balanced and rewarding from start to finish it has years ahead of it to develo p further nuance Enjoy 2022â€"2030 0.8901684880256653
```

Conclusion and Future Direction

- Based on our findings, customers can accelerate their study on unknowing fields by developing core knowledge. Companies can offer customers more usable tools, reliable information and humanized user interface to improve user experience and improve company reputations.
- For future direction, the most significant part would be gaining usable cleaning data.
 Generating investing opportunities would be more plausible if we drill down to wine prices. Trying other vector models and testing out their performance is also a big challenge.

Reference

Bansal, Shivam, et al. "Beginners Guide to Topic Modeling in Python." *Analytics Vidhya*, 29 Aug. 2016, www.analyticsvidhya.com/blog/2016/08/beginners-guide-to-topic-modeling-in-python/.

"Sklearn.feature_extraction.Text.TfidfVectorizer ¶." Sklearn.feature_extraction.Text.TfidfVectorizer - Scikit-Learn 0.19.1 Documentation, scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html.