Universität Leipzig

Fakultät für Mathematik und Informatik Institut für Informatik

An interesting title about, EOF, Wind, Humidity and Climate

Masterarbeit

Leipzig, Mai 2024

Denis Streitmatter Studiengang Master Informatik

vorgelegt von

Betreuende Hochschullehrer:

Dr.-Ing. Sebastian Hellmann
Institut für Angewandte Informatik/KILT
Johannes Frey, M.Sc.
Institut für Angewandte Informatik/KILT
Dr. Eric Peukert
Abteilung Datenbanken Universität Leipzig

Abstract

Scientific documents often use LATEX for type setting. While numerous packages and templates exist, it makes sense to create a new one. Just because.

CONTENTS

1	Pre	ELIMINA	RIES	1
2	Pro	BLEM A	Analysis	3
3	Rel	ATED \	Vork	5
	3.1	Clima	te simulation datasets	5
		3.1.1	RCP Scenarios	5
		3.1.2	Questions arising about using climate simulation datasets	5
		3.1.3	MPI-GE - The Max Planck Institute grand Ensemble	5
		3.1.4	CMIP5 - Coupled Model Intercomparison Project	5
	3.2	Precip	itation Literature	5
		3.2.1	Saisonality in Precipitation variability	5
	3.3	Means	s of moisture transport	6
		3.3.1	vertically integrated water vapor transport	6
	3.4	Patter	n analysis	6
		3.4.1	Empirical Orthogonal Functions	6
4	DES	SIGN		7
5	EVA	LUATIO	N	9
6	Con	NCLUSIC	ONS AND FUTURE WORK	11
	6.1	Conclu	usions	11
	6.2	Future	e Work	11
Bı	BLIO	GRAPHY	·	15

1 Preliminaries

2 Problem Analysis

3 Related Work

3.1 CLIMATE SIMULATION DATASETS

General infos from [4]:

•

3.1.1 RCP Scenarios

- 3.1.2 Questions arising about using climate simulation datasets
 - How many ensemble members are needed for a correct assessment?
 - How to sort them out? Random?

•

- 3.1.3 MPI-GE THE MAX PLANCK INSTITUTE GRAND ENSEMBLE
- In [4] theere is much inforantion available:
- 3.1.4 CMIP5 COUPLED MODEL INTERCOMPARISON PROJECT

In [5]

3.2 Precipitation Literature

3.2.1 Saisonality in Precipitation Variability

The work of Zveryaev

3.3 Means of moisture transport

3.3.1 VERTICALLY INTEGRATED WATER VAPOR TRANSPORT

As proposed by Zhu and Newell in [6], one way of measuring moisture (p) transport is by vertically integrating over the different pressure levels the zonal and meridional fluxes \overline{pu} and \overline{pv} .

An example of using this method can be found in [1] with many more references why this method is working well for these kinds of approaches. Also this paper lists some other methods of moisture transportation which are also used:

- 1. integrated water vapor distributions (see [2])
- 2. the lagrangian approach
- 3. stable oxygen isotope investigation

3.4 Pattern analysis

3.4.1 Empirical Orthogonal Functions

See [3] for a big overview of EOF in atmospheric science.

See [1] for an similar approach as we plan it, except it only focuses on the past

4 Design

5 EVALUATION

6 Conclusions and Future Work

- 6.1 Conclusions
- 6.2 FUTURE WORK

6 Conclusions and Future Work

BIBLIOGRAPHY

- 1. O. O. Ayantobo, J. Wei, B. Kang, and G. Wang. "Integrated moisture transport variability over China: patterns, impacts, and relationship with El Nino-Southern Oscillation (ENSO)". *Theoretical and Applied Climatology* 147, 2021, pp. 985–1002. URL: https://api.semanticscholar.org/CorpusID:244492291.
- 2. L. Gimeno, R. Nieto, M. Vázquez, and D.A. Lavers. "Atmospheric rivers: A mini-review". Frontiers in Earth Science 2, 2014, p. 2.
- 3. A. Hannachi, I. T. Jolliffe, and D. B. Stephenson. "Empirical orthogonal functions and related techniques in atmospheric science: A review". *International Journal of Climatology: A Journal of the Royal Meteorological Society* 27:9, 2007, pp. 1119–1152.
- 4. N. Maher, S. Milinski, L. Suarez-Gutierrez, M. Botzet, M. Dobrynin, L. Kornblueh, J. Kröger, Y. Takano, R. Ghosh, C. Hedemann, C. Li, H. Li, E. Manzini, D. Notz, D. Putrasahan, L. Boysen, M. Claussen, T. Ilyina, D. Olonscheck, T. Raddatz, B. Stevens, and J. Marotzke. "The Max Planck Institute Grand Ensemble: Enabling the Exploration of Climate System Variability". Journal of Advances in Modeling Earth Systems 11:7, 2019, pp. 2050–2069. DOI: https://doi.org/10.1029/2019MS001639. eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019MS001639. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001639.
- K. E. Taylor, R. J. Stouffer, and G. A. Meehl. "An overview of CMIP5 and the experiment design". Bulletin of the American meteorological Society 93:4, 2012, pp. 485–498.
- 6. Y. Zhu and R. E. Newell. "A Proposed Algorithm for Moisture Fluxes from Atmospheric Rivers". Monthly Weather Review 126:3, 1998, pp. 725–735. DOI: https://doi.org/10.1175/1520-0493(1998)126<0725: APAFMF>2.0.CO; 2. URL: https://journals.ametsoc.org/view/journals/mwre/126/3/1520-0493_1998_126_0725_apafmf_2.0.co_2.xml.

7. I. I. Zveryaev. "Seasonality in precipitation variability over Europe". Journal of Geophysical Research: Atmospheres 109:D5, 2004. DOI: https://doi.org/10.1029/2003JD003668. eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2003JD003668. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2003JD003668.