Mixed / Multilevel models

Example dataset: trees

▶ Data on 1000 trees from 10 plots.

head(trees)

```
plot dbh height sex dead dbh.c
1 2 38.85 37.8 female 0 13.85
2 4 26.05 38.1 female 0 1.05
3 5 42.66 50.2 female 0 17.66
4 2 20.72 30.1 female 0 -4.28
5 4 21.83 34.0 female 0 -3.17
6 4 8.23 21.9 male 0 -16.77
```

Example dataset: trees

- ▶ Data on 1000 trees from 10 plots.
- ► Trees per plot: 4 392.

head(trees)

```
plot dbh height sex dead dbh.c
1 2 38.85 37.8 female 0 13.85
2 4 26.05 38.1 female 0 1.05
3 5 42.66 50.2 female 0 17.66
4 2 20.72 30.1 female 0 -4.28
5 4 21.83 34.0 female 0 -3.17
6 4 8.23 21.9 male 0 -16.77
```

diameter and height?

Q: What's the relationship between tree

A simple linear model

```
lm.simple <- lm(height ~ dbh, data = trees)</pre>
Call:
lm(formula = height ~ dbh, data = trees)
Residuals:
    Min 10 Median 30
                                     Max
-13.7384 -4.7652 0.4759 4.2931 13.5282
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.18767  0.41476  31.80  <2e-16 ***
dbh 0.60967 0.01351 45.14 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.549 on 998 degrees of freedom
```

Multiple R-squared: 0.6712, Adjusted R-squared: 0.6709 F-statistic: 2038 on 1 and 998 DF, p-value: < 2.2e-16

Remember our model structure

$$y_i \sim N(\mu_i, \sigma^2)$$

 $\mu_i = \alpha + \beta x_i$

In this case:

Height_i ~
$$N(\mu_i, \sigma^2)$$

 $\mu_i = \alpha + \beta DBH_i$

 α : expected height when DBH = 0

 β : how much height increases with every unit increase of DBH

There is only one intercept

What if allometry varies among plots?

Fitting a varying intercepts model with 1m

```
lm(formula = height ~ factor(plot) + dbh, data = trees)
             coef.est coef.se
(Intercept) 7.79
                      0.24
factor(plot)2 7.86
                      0.24
factor(plot)3 7.95 0.32
factor(plot)4 11.48
                      0.33
factor(plot)5
             11.05
                     0.32
factor(plot)6 11.55
                     0.43
factor(plot)7 7.41
                      0.63
factor(plot)8 3.05
                      0.97
factor(plot)9 9.73
                      1.45
factor(plot)10 -0.14
                      0.92
dbh
              0.61
                      0.01
n = 1000, k = 11
residual sd = 2.89, R-Squared = 0.91
```

Single vs varying intercept

Different intercept for each plot

Mixed models enable us to account for variability

Varying intercepts

Figure 1:

Mixed models enable us to account for variability

- Varying intercepts
- Varying slopes

Figure 1:

Mixed model with varying intercepts

$$y_i = a_j + bx_i + \varepsilon_i$$
$$a_j \sim N(0, \tau^2)$$
$$\varepsilon_i \sim N(0, \sigma^2)$$

En nuestro ejemplo:

$$\begin{aligned} \textit{Height}_i &= \textit{plot}_j + \textit{bDBH}_i + \varepsilon_i \\ \textit{plot}_j &\sim \textit{N}\left(0, \tau^2\right) \\ \varepsilon_i &\sim \textit{N}\left(0, \sigma^2\right) \end{aligned}$$

Mixed models estimate varying parameters (intercepts and/or slopes) with pooling among levels (rather than considering them fully independent)

complete pooling: Single overall intercept.

- **complete pooling**: Single overall intercept.
 - lm (height ~ dbh)

- **complete pooling**: Single overall intercept.
 - ▶ lm (height ~ dbh)
- ▶ no pooling: One *independent* intercept for each plot.

- **complete pooling**: Single overall intercept.
 - ▶ lm (height ~ dbh)
- ▶ no pooling: One *independent* intercept for each plot.
 - lm (height ~ dbh + factor(plot))

- **complete pooling**: Single overall intercept.
 - ▶ lm (height ~ dbh)
- ▶ no pooling: One independent intercept for each plot.
 - lm (height ~ dbh + factor(plot))
- partial pooling: Inter-related intercepts.

- complete pooling: Single overall intercept.
 - ▶ lm (height ~ dbh)
- ▶ no pooling: One *independent* intercept for each plot.
 - lm (height ~ dbh + factor(plot))
- partial pooling: Inter-related intercepts.
 - lmer(height ~ dbh + (1 | plot))

1. Fixed effects constant across individuals, random effects vary.

- 1. Fixed effects constant across individuals, random effects vary.
- 2. Effects are fixed if they are interesting in themselves; random if interest in the underlying population.

- 1. Fixed effects constant across individuals, random effects vary.
- 2. Effects are fixed if they are interesting in themselves; random if interest in the underlying population.
- 3. Fixed when sample exhausts the population; random when the sample is small part of the population.

- 1. Fixed effects constant across individuals, random effects vary.
- 2. Effects are fixed if they are interesting in themselves; random if interest in the underlying population.
- 3. Fixed when sample exhausts the population; random when the sample is small part of the population.
- 4. Random effect if it's assumed to be a realized value of random variable.

- 1. Fixed effects constant across individuals, random effects vary.
- 2. Effects are fixed if they are interesting in themselves; random if interest in the underlying population.
- 3. Fixed when sample exhausts the population; random when the sample is small part of the population.
- Random effect if it's assumed to be a realized value of random variable.
- 5. Fixed effects estimated using least squares or maximum likelihood; random effects estimated with shrinkage.

What is a random effect, really?

1. Varies by group

Random effects are estimated with partial pooling, while fixed effects are not (infinite variance).

What is a random effect, really?

- 1. Varies by group
- 2. Variation estimated with probability model

Random effects are estimated with partial pooling, while fixed effects are not (infinite variance).

Shrinkage improves parameter estimation

Especially for groups with low sample size

Figure 2:

From Gelman & Hill p. 253

Fitting mixed/multilevel models

```
library(lme4)
mixed <- lmer(height ~ dbh + (1|plot), data = trees)
lmer(formula = height ~ dbh + (1 | plot), data = trees)
           coef.est coef.se
(Intercept) 14.80 1.44
dbh 0.61 0.01
Error terms:
Groups Name Std.Dev.
plot (Intercept) 4.45
Residual
                    2.89
number of obs: 1000, groups: plot, 10
AIC = 5015.6, DIC = 4996.4
deviance = 5002.0
```

Retrieve model coefficients

coef(mixed)

```
$plot
   (Intercept)
                      dbh
      7.798373 0.6056549
2
     15.647613 0.6056549
3
     15.735397 0.6056549
4
     19.253661 0.6056549
5
     18.819467 0.6056549
     19.306574 0.6056549
     15.197908 0.6056549
8
     11.016485 0.6056549
9
     17, 265447 0, 6056549
10
      7.940715 0.6056549
attr(,"class")
[1] "coef.mer"
```

Broom: model estimates in tidy form

```
library(broom)
tidy(mixed)
```

```
estimate
                                       std.error statistic
                     term
                                                               gr
              (Intercept) 14.7981641 1.437421280 10.29494
1
2
                      dbh 0.6056549 0.007040079 86.02956
                                                               fi
3
      sd_(Intercept).plot 4.4535702
                                              NA
                                                        NA
                                                               p
 sd_Observation.Residual 2.8852942
                                              NA
                                                        NA Resid
```

Visualising model: allEffects

Visualising model: visreg

Visualising model: sjPlot

```
library(sjPlot)
sjp.lmer(mixed, type = "ri.slope")
```


Visualising model: sjPlot

sjp.lmer(mixed)

Visualising model: sjPlot

```
sjp.lmer(mixed, type = "eff", show.ci = TRUE)
```


Using merTools to understand fitted model

library(merTools)
shinyMer(mixed)

Plotting regression for individual forest plots

```
nplot <- 2
plot(trees$dbh[trees$plot==nplot], trees$height[trees$plot==nplot
abline(a=coef(mixed)$plot[nplot, 1], b=coef(mixed)$plot[nplot, 2]</pre>
```


Checking residuals

plot(mixed)

Checking residuals (DHARMa)

simulateResiduals(mixed, plot = TRUE, use.u = TRUE)

Growing the hierarchy: adding plot-level

predictors

Model with group-level predictors

We had:

$$y_i = a_j + bx_i + \varepsilon_i$$
$$a_j \sim N(0, \tau^2)$$
$$\varepsilon_i \sim N(0, \sigma^2)$$

Now

$$y_i = a_j + bx_i + \varepsilon_i$$
 $a_j \sim N(\mu_j, \tau^2)$
 $\mu_j = \gamma + \delta \cdot predictor_j$
 $\varepsilon_i \sim N(0, \sigma^2)$

Merging trees and plot data

```
plotdata <- read.csv("data-raw/plotdata.csv")
trees.full <- merge(trees, plotdata, by = "plot")
head(trees.full)</pre>
```

```
plot dbh height sex dead dbh.c temp
1 1 28.63 22.1 female 0 3.63 15.1
2 1 44.71 39.0 female 0 19.71 15.1
3 1 28.31 29.0 female 0 3.31 15.1
4 1 19.33 19.1 male 0 -5.67 15.1
5 1 9.25 12.2 female 0 -15.75 15.1
6 1 30.02 23.1 female 0 5.02 15.1
```

Centre continuous variables

Plot temperatures referred as deviations from 15°C

```
trees.full$temp.c <- trees.full$temp - 15</pre>
```

Fit multilevel model

deviance = 4996.9

```
group.pred <- lmer(height ~ dbh + (1 | plot) + temp.c, data = tr
arm::display(group.pred)
lmer(formula = height ~ dbh + (1 | plot) + temp.c, data = trees.
          coef.est coef.se
(Intercept) 11.79 1.75
dbh 0.61 0.01
temp.c 1.07 0.46
Error terms:
Groups Name Std.Dev.
plot (Intercept) 3.61
Residual
            2.89
number of obs: 1000, groups: plot, 10
AIC = 5012.8, DIC = 4991
```

Examine model with merTools

shinyMer(group.pred)

Comparing plot effects with and without group predictor

Are plot effects related to temperature?

► There is overall difference in height among plots (different intercepts)

```
mixed.slopes <- lmer(height ~ dbh + (1 + dbh | plot), data=trees
```

- ▶ There is overall difference in height among plots (different intercepts)
- AND

```
mixed.slopes <- lmer(height ~ dbh + (1 + dbh | plot), data=trees
```

- ► There is overall difference in height among plots (different intercepts)
- AND
- ► Relationship between DBH and Height varies among plots (different slopes)

```
mixed.slopes <- lmer(height ~ dbh + (1 + dbh | plot), data=trees</pre>
```

```
lmer(formula = height ~ dbh + (1 + dbh | plot), data = trees)
          coef.est coef.se
(Intercept) 14.82 1.48
dbh 0.60 0.01
Error terms:
Groups Name Std.Dev. Corr
plot (Intercept) 4.57
        dbh 0.01 - 0.41
Residual
               2.88
number of obs: 1000, groups: plot, 10
AIC = 5018.6, DIC = 4995.9
deviance = 5001.3
```

```
$plot
   (Intercept)
                      dbh
      7.554578 0.6144452
2
     15.966915 0.5942836
3
     15.868969 0.6008673
4
     19.321161 0.6031855
5
     18.866370 0.6039353
6
     19.355009 0.6038332
     15.159258 0.6067449
8
     10.965429 0.6080747
9
     17.348840 0.6024600
10
      7.769135 0.6109349
attr(,"class")
[1] "coef.mer"
```

Visualising model: sjPlot

sjp.lmer(mixed.slopes)

Visualising model: sjPlot

```
sjp.lmer(mixed.slopes, type = "rs.ri")
```


Q: Relationship between tree size and mortality

```
plot(dead ~ dbh, data = trees)
```


Q: Relationship between tree size and mortality

```
plot(factor(dead) ~ dbh, data = trees)
```


Fit simple logistic regression

```
simple.logis <- glm(dead ~ dbh, data = trees, family=binomial)</pre>
Call:
glm(formula = dead ~ dbh, family = binomial, data = trees)
Deviance Residuals:
   Min 10 Median 30 Max
-0.4121 -0.3287 -0.2624 -0.2048 2.9127
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.46945 0.49445 -9.039 < 2e-16 ***
dbh
    0.04094 0.01380 2.967 0.00301 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 329.51 on 999 degrees of freedom
```

Logistic regression with *independent* plot effects

```
logis2 <- glm(dead ~ dbh + factor(plot), data = trees, family=bi</pre>
Call:
```

glm(formula = dead ~ dbh + factor(plot), family = binomial, data

Deviance Residuals:

Median 30 Max Min 10 -0.5923 -0.3198 -0.2549 -0.1940 2.8902

Coefficients: Estimate Std. Error z value Pr(>|z|) -4.40106 0.52997 -8.304

(Intercept) dbh

factor(plot)3

factor(plot)4

factor(plot)5

factor(plot)6

factor(plot)7

0.04060 factor(plot)2

-0.59168 0.52132 -1.135 0.54576 0.47094 1.159

0.03126

0.05507 0.57434 0.096

-0.38312 0.64222 -0.597

-0.08426 0.76908 -0.110

1.06064

0.01386 2.929

0.029

0.2564 0.2465 0.9236

0.5508

0.9128

0.9765

<2e-16 ***

0.0034 **

Fit multilevel logistic regression

deviance = 319.9

```
mixed.logis <- glmer(dead ~ dbh + (1 plot), data=trees, family =
glmer(formula = dead ~ dbh + (1 | plot), data = trees, family =
          coef.est coef.se
(Intercept) -4.47 0.49
dbh 0.04 0.01
Error terms:
Groups Name Std.Dev.
plot (Intercept) 0.00
Residual 1.00
number of obs: 1000, groups: plot, 10
AIC = 325.9, DIC = 319.9
```

Retrieve model coefficients

coef(mixed.logis)

```
$plot
   (Intercept)
                      dbh
     -4.469446 0.04093806
    -4.469446 0.04093806
3
    -4.469446 0.04093806
4
  -4.469446 0.04093806
5
    -4.469446 0.04093806
6
    -4.469446 0.04093806
    -4.469446 0.04093806
8
    -4.469446 0.04093806
9
    -4.469446 0.04093806
10
    -4.469446 0.04093806
attr(,"class")
[1] "coef.mer"
```

Visualising model: sjPlot

```
sjp.glmer(mixed.logis, type = "eff", show.ci = TRUE)
```


Visualising model: sjPlot

sjp.glmer(mixed.logis, type = "ri.slope")

▶ Perfect for structured data (space-time)

- Perfect for structured data (space-time)
- ▶ Predictors enter at the appropriate level

- Perfect for structured data (space-time)
- Predictors enter at the appropriate level
- ► Accommodate variation in treatment effects

- Perfect for structured data (space-time)
- ▶ Predictors enter at the appropriate level
- Accommodate variation in treatment effects
- ▶ More efficient inference of regression parameters

- Perfect for structured data (space-time)
- ▶ Predictors enter at the appropriate level
- Accommodate variation in treatment effects
- ▶ More efficient inference of regression parameters
- Using all the data to perform inferences for groups with small sample size

Formula syntax for different models

```
y ~ x + (1 | group) # varying intercepts y ~ x + (1 + x | group) # varying intercepts and slopes y ~ x + (1 | group/subgroup) # nested y ~ x + (1 | group1) + (1 | group2) # varying intercepts, crossed y ~ x + (1 + x | group1) + (1 + x | group2) # varying intercepts and slopes, crossed
```