

COMUNICACIONES

UNIDAD TEMÁTICA Nº 8 MODULACIÓN

Ingeniero ALEJANDRO LUIS ECHAZÚ http://www.comunicacionnueva.com.ar

MODULACION

La modulación es un proceso que consiste en transformar una señal (que representa información) en otro tipo de señal adecuada para su transmisión por un medio de comunicación, sin modificar sustancialmente la información que ella representaba.

Mediante un modulador, una señal llamada portadora p(t) es trasformada por una señal llamada moduladora m(t), obteniéndose como producto una señal que se conoce como modulada M(t). La operación de recuperación de la señal original es llevada a cabo por un demodulador.

ESQUEMA BÁSICO DE MODULACIÓN

ESQUEMA DE UNA TRANSMISIÓN MODULADA

TIPOS DE MODULACION

Tipo de modulación	Moduladora	Portadora	Modulada	Nombre de la modulación
Continua analógica	Analógica	Analógica	Analógica	AM FM PM
Continua digital	Digital	Analógica	Analógica	ASK FSK PSK DPSK M-PSK M-QAM
Por pulsos analógica	Analógica	Digital	Analógica	PAM PDM PPM
Por pulsos digital	Digital	Digital	Digital	PCM (MIC) DPCM DELTA DELTA ADAPTIVA

MODULACIÓN POR ONDA CONTINUA

PORTADORA
$$p(t) = A_p sen(\omega_p t + \theta_p)$$

CON LA MODULACIÓN SE MODIFICAN ALGUNO DE LOS SIGUIENTES PARÁMETROS:

- •AMPLITUD
- •FRECUENCIA
- •FASE

$\overline{\mathbf{AM}}$

$$\begin{aligned} \text{MODULADORA} & \quad a \ (t) = A \ sen \ (\omega_a \ t + \theta_a) \\ p \ (t) = P \ sen \ (\omega_p \ t + \theta_p) \end{aligned}$$

$$\omega_a \ll \omega_p$$

Envolvente de modulación

\mathbf{AM}

Aplicando los Teoremas de traslación de frecuencia y de la modulación

- •DBL C/PORTADORA
- •BLU C/ PORTADORA
- •DBL INDEPENDIENTE
- •BLU C/ PORT REDUCIDA
- •BLU C/PORT SUPRIMIDA

ANCHO DE BANDA (AB)

AB DBL = 2B

AB BLU = B

ASK

VARIACION DE NIVEL DE PORTADORA

ASK

POR SUPRESION DE PORTADORA

ASK

ANCHO DE BANDA

FM

SEÑAL MODULADA

 $M(t) = A_p sen (\omega_p t + \beta sen \omega_a t + \theta_p)$

 $\beta = \Delta \omega / \omega_a$ (índice de modulación)

 $\Delta \omega = k A \omega_a$ (desviación de frec)

β = k A (circuito y amplitud de moduladora)

Banda Angosta

 $\Delta f << fa$

AB aprox = 2 fa

Banda Ancha

 $\Delta f > fa$

AB aprox= $2 (\Delta f + fa)$

FSK

FSK ANCHO DE BANDA

BANDA ANGOSTA

 $\beta < \pi/2$

$$M(t) = A_p \text{ sen } (\omega_p t + \beta \text{ sen } \omega_a t + \theta_p)$$

$$\beta = k A$$

BANDA ANCHA

$$\beta > \pi/2$$

PSK

SALTOS DE FASE

SEÑAL 2-PSK / B-PSK

DOS SALTOS DE FASE EN ESTE CASO (0°-180°)

ASIGNACION DE SECUENCIA DE BITS Y DE ESTADOS DIAGRAMA DE FASES MODULACION 4-PSK / Q-PSK

Nro	Secuencia	Fase	Cuadro de asignación
de	de	asignada	edudio de doignación
secuencia	Bits		
1	00	$0^{\mathbf{o}}$	Se aplica Código
2	01	90°	Reflejo o de Gray
3	11	180°	
4	10	270°	

Diagrama de Estados, de Fases o Vectorial

CONSTRUCCIÓN DEL CÓDIGO DE GRAY EJEMPLO CON 3 BITS

MODULACION M-PSK

$$\theta = \frac{2\pi}{M}$$

M saltos de fase, con un ángulo θ entre fase y fase

 $n = \log_2 M$

Vtx = Vmod x n

Cada salto lleva "n" bits

Relación entre ambas velocidades a través de "n"

8-PSK

N° de	Dígitos	Fase
Secuencia	binarios	asignada
1	011	0°
2	010	45°
3	000	90°
4	001	135°
5	101	180°
6	100	225°
7	110	270°
8	111	315°

MODULACION M-QAM

Usa dos portadoras independientes en cuadratura (desfasadas 90º entre sí)

Combina saltos de amplitud y de fase

MODULACION 16-QAM (ejemplos)

4 saltos de amplitud y 8 saltos de fase

3 saltos de amplitud y 12 saltos de fase

Variante Circular

Variante Rectangular

https://spectrum.ieee.org/telecom/wireless/in-the-future-aisnot-humanswill-design-our-wireless-signals

COMPARACIÓN DE MODULACIÓN M-PSK / M-QAM

V tx (bps) / AB (Hz)

Sensibilidad al ruido (Pe)

S/N (Eb/No)

VARIANTES M-PSK

OQPSK (offset - compensada)

Evita fluctuaciones de gran amplitud en los saltos de 180°

VARIANTES M-PSK

DPSK (diferencial)

Sin referencia de fase absoluta.

La referencia que se toma es la del último bit recibido.

VARIANTES M-PSK o M-QAM

TCM (Trellis Codes Modulation)

También Modulación por Codificación Entrelazada.

Proporciona una mayor inmunidad al ruido ante la complejidad de las constelaciones generadas por ambas técnicas de modulación.

Agregado de bits redundantes.

Constelación de estados con codificación entrelazada