Ch1. Introduction

1.Introduction to Machine Learning

Machine Learning algorithms enable the computers to learn from data, and even improve themselves, without being explicitly programmed.

Types of Machine Learning?

Machine learning can be classified into 3 types of algorithms.

- 1. Supervised Learning
- 2. Unsupervised Learning
- 3. Reinforcement Learning

Overview of Supervised Learning Algorithm

In Supervised learning, an AI system is presented with data which is labeled, which means that each data tagged with the correct label.

Types of Supervised learning

- Classification: A classification problem is when the output variable is a category, such as "red" or "blue" or "disease" and "no disease".
- **Regression**: A regression problem is when the output variable is a real value, such as "dollars" or "weight".

Overview of Unsupervised Learning Algorithm

- In unsupervised learning, an AI system is presented with unlabeled, uncategorized data and the system's algorithms act on the data without prior training.
- The output is dependent upon the coded algorithms.

Types of Unsupervised learning

- **Clustering**: A clustering problem is where you want to discover the inherent groupings in the data, such as grouping customers by purchasing behavior.
- Association: An association rule learning problem is where you want to discover rules that describe large portions of your data, such as people that buy X also tend to buy Y.

Overview of Reinforcement Learning

- A reinforcement learning algorithm, or agent, learns by interacting with its environment.
- The agent receives rewards by performing correctly and penalties for performing incorrectly.
- The agent learns without intervention from a human by maximizing its reward and minimizing its penalty.
- It is a type of dynamic programming that trains algorithms using a system of reward and punishment.

2.Statistical Learning:

Statistical Learning is a set of tools for understanding data. These tools broadly come under two classes: supervised learning & unsupervised learning. Generally, supervised learning refers to predicting or estimating an output based on one or more inputs. Unsupervised learning, on the other hand, provides a relationship or finds a pattern within the given data without a supervised output.

3. Supervise Learning

Supervised learning is the types of machine learning in which machines are trained using well "labelled" training data, and on basis of that data, machines predict the output. The labelled data means some input data is already tagged with the correct output.

In supervised learning, the training data provided to the machines work as the supervisor that teaches the machines to predict the output correctly. It applies the same concept as a student learns in the supervision of the teacher.

Supervised learning is a process of providing input data as well as correct output data to the machine learning model. The aim of a supervised learning algorithm is to find a mapping function to map the input variable(x) with the output variable(y).

In the real-world, supervised learning can be used for **Risk Assessment, Image classification, Fraud Detection, spam filtering**, etc.

How Supervised Learning Works?

In supervised learning, models are trained using labelled dataset, where the model learns about each type of data. Once the training process is completed, the model is tested on the basis of test data (a subset of the training set), and then it predicts the output.

The working of Supervised learning can be easily understood by the below example and diagram:

Suppose we have a dataset of different types of shapes which includes square, rectangle, triangle, and Polygon. Now the first step is that we need to train the model for each shape.

- If the given shape has four sides, and all the sides are equal, then it will be labelled as a **Square**.
- o If the given shape has three sides, then it will be labelled as a **triangle**.
- If the given shape has six equal sides then it will be labelled as hexagon.

Now, after training, we test our model using the test set, and the task of the model is to identify the shape.

The machine is already trained on all types of shapes, and when it finds a new shape, it classifies the shape on the bases of a number of sides, and predicts the output.

Steps Involved in Supervised Learning:

- First Determine the type of training dataset
- o Collect/Gather the labelled training data.
- Split the training dataset into training dataset, test dataset, and validation dataset.
- Determine the input features of the training dataset, which should have enough knowledge so that the model can accurately predict the output.
- Determine the suitable algorithm for the model, such as support vector machine, decision tree, etc.
- Execute the algorithm on the training dataset. Sometimes we need validation sets as the control parameters, which are the subset of training datasets.
- Evaluate the accuracy of the model by providing the test set. If the model predicts the correct output, which means our model is accurate.

Types of supervised Machine learning Algorithms:

Supervised learning can be further divided into two types of problems:

1. Regression

Regression algorithms are used if there is a relationship between the input variable and the output variable. It is used for the prediction of continuous variables, such as Weather forecasting, Market Trends, etc. Below are some popular Regression algorithms which come under supervised learning:

- Linear Regression
- Regression Trees
- Non-Linear Regression
- Bayesian Linear Regression
- Polynomial Regression

2. Classification

Classification algorithms are used when the output variable is categorical, which means there are two classes such as Yes-No, Male-Female, True-false, etc.

Spam Filtering,

- Random Forest
- Decision Trees
- Logistic Regression
- Support vector Machines

Note: We will discuss these algorithms in detail in later chapters.

Advantages of Supervised learning:

- With the help of supervised learning, the model can predict the output on the basis of prior experiences.
- o In supervised learning, we can have an exact idea about the classes of objects.
- Supervised learning model helps us to solve various real-world problems such as fraud detection, spam filtering, etc.

Disadvantages of supervised learning:

 Supervised learning models are not suitable for handling the complex tasks.

- Supervised learning cannot predict the correct output if the test data is different from the training dataset.
- Training required lots of computation times.
- In supervised learning, we need enough knowledge about the classes of object.

4. Unsupervised Learning:

What is Unsupervised Learning?

As the name suggests, unsupervised learning is a machine learning technique in which models are not supervised using training dataset. Instead, models itself find the hidden patterns and insights from the given data. It can be compared to learning which takes place in the human brain while learning new things. It can be defined as:

Unsupervised learning is a type of machine learning in which models are trained using unlabeled dataset and are allowed to act on that data without any supervision.

Unsupervised learning cannot be directly applied to a regression or classification problem because unlike supervised learning, we have the input data but no corresponding output data. The goal of unsupervised learning is to find the underlying structure of dataset, group that data according to similarities, and represent that dataset in a compressed format.

Example: Suppose the unsupervised learning algorithm is given an input dataset containing images of different types of cats and dogs. The algorithm is never trained upon the given dataset, which means it does not have any idea about the features of the dataset. The task of the unsupervised learning algorithm is to identify the image features on their own. Unsupervised learning algorithm will perform this task by clustering the image dataset into the groups according to similarities between images.

Why use Unsupervised Learning?

Below are some main reasons which describe the importance of Unsupervised Learning:

- Unsupervised learning is helpful for finding useful insights from the data.
- Unsupervised learning is much similar as a human learns to think by their own experiences, which makes it closer to the real AI.
- o Unsupervised learning works on unlabeled and uncategorized data which make unsupervised learning more important.
- o In real-world, we do not always have input data with the corresponding output so to solve such cases, we need unsupervised learning.

Working of Unsupervised Learning

Working of unsupervised learning can be understood by the below diagram:

Here, we have taken an unlabeled input data, which means it is not categorized and corresponding outputs are also not given. Now, this unlabeled input data is fed to the machine learning model in order to train it. Firstly, it will interpret the raw data to find the hidden patterns

from the data and then will apply suitable algorithms such as k-means clustering, Decision tree, etc.

Once it applies the suitable algorithm, the algorithm divides the data objects into groups according to the similarities and difference between the objects.

Types of Unsupervised Learning Algorithm:

The unsupervised learning algorithm can be further categorized into two types of problems:

- Clustering: Clustering is a method of grouping the objects into clusters such that objects with most similarities remains into a group and has less or no similarities with the objects of another group. Cluster analysis finds the commonalities between the data objects and categorizes them as per the presence and absence of those commonalities.
- Association: An association rule is an unsupervised learning method which is used for finding the relationships between variables in the large database. It determines the set of items that occurs together in the dataset. Association rule makes marketing strategy more effective. Such as people who buy X item (suppose a bread) are also tend to purchase Y (Butter/Jam) item. A typical example of Association rule is Market Basket Analysis.

Unsupervised Learning algorithms:

Below is the list of some popular unsupervised learning algorithms:

- K-means clustering
- KNN (k-nearest neighbors)
- Hierarchal clustering
- Anomaly detection
- Neural Networks
- Principle Component Analysis
- Independent Component Analysis
- Apriori algorithm
- Singular value decomposition

Advantages of Unsupervised Learning

- Unsupervised learning is used for more complex tasks as compared to supervised learning because, in unsupervised learning, we don't have labeled input data.
- o Unsupervised learning is preferable as it is easy to get unlabeled data in comparison to labeled data.

Disadvantages of Unsupervised Learning

- Unsupervised learning is intrinsically more difficult than supervised learning as it does not have corresponding output.
- The result of the unsupervised learning algorithm might be less accurate as input data is not labeled, and algorithms do not know the exact output in advance.

5.Reinforcement Learning

What is Reinforcement Learning?

 Reinforcement Learning is a feedback-based Machine learning technique in which an agent learns to behave in an environment by performing the actions and seeing the results of actions. For

- each good action, the agent gets positive feedback, and for each bad action, the agent gets negative feedback or penalty.
- o In Reinforcement Learning, the agent learns automatically using feedbacks without any labeled data, unlike <u>supervised learning</u>.
- Since there is no labeled data, so the agent is bound to learn by its experience only.
- RL solves a specific type of problem where decision making is sequential, and the goal is long-term, such as game-playing, robotics, etc.
- The agent interacts with the environment and explores it by itself. The primary goal of an agent in reinforcement learning is to improve the performance by getting the maximum positive rewards.
- The agent learns with the process of hit and trial, and based on the experience, it learns to perform the task in a better way. Hence, we can say that "Reinforcement learning is a type of machine learning method where an intelligent agent (computer program) interacts with the environment and learns to act within that." How a Robotic dog learns the movement of his arms is an example of Reinforcement learning.
- o It is a core part of <u>Artificial intelligence</u>, and all <u>AI agent</u> works on the concept of reinforcement learning. Here we do not need to pre-program the agent, as it learns from its own experience without any human intervention.
- Example: Suppose there is an AI agent present within a maze environment, and his goal is to find the diamond. The agent interacts with the environment by performing some actions, and based on those actions, the state of the agent gets changed, and it also receives a reward or penalty as feedback.
- o The agent continues doing these three things (take action, change state/remain in the same state, and get feedback), and by doing these actions, he learns and explores the environment.
- The agent learns that what actions lead to positive feedback or rewards and what actions lead to negative feedback penalty. As a

positive reward, the agent gets a positive point, and as a penalty, it gets a negative point.

Terms used in Reinforcement Learning

- **Agent():** An entity that can perceive/explore the environment and act upon it.
- Environment(): A situation in which an agent is present or surrounded by. In RL, we assume the stochastic environment, which means it is random in nature.
- **Action():** Actions are the moves taken by an agent within the environment.
- **State():** State is a situation returned by the environment after each action taken by the agent.
- **Reward():** A feedback returned to the agent from the environment to evaluate the action of the agent.
- o **Policy():** Policy is a strategy applied by the agent for the next action based on the current state.
- Value(): It is expected long-term retuned with the discount factor and opposite to the short-term reward.

• **Q-value():** It is mostly similar to the value, but it takes one additional parameter as a current action (a).

6.Linear Algebra basics

7. Probability Basics

Ch2. Linear Regression

1. Simple Linear Regression:

Simple Linear Regression is a type of Regression algorithms that models the relationship between a dependent variable and a single independent variable. The relationship shown by a Simple Linear Regression model is linear or a sloped straight line, hence it is called Simple Linear Regression.

The key point in Simple Linear Regression is that the *dependent* variable must be a continuous/real value. However, the independent variable can be measured on continuous or categorical values.

Simple Linear regression algorithm has mainly two objectives:

- Model the relationship between the two variables. Such as the relationship between Income and expenditure, experience and Salary, etc.
- **Forecasting new observations.** Such as Weather forecasting according to temperature, Revenue of a company according to the investments in a year, etc.

Simple Linear Regression Model:

The Simple Linear Regression model can be represented using the below equation:

$$y=a_0+a_1x+\varepsilon$$

Where,

- a0= It is the intercept of the Regression line (can be obtained putting x=0)
- a1= It is the slope of the regression line, which tells whether the line is increasing or decreasing.
- ε = The error term. (For a good model it will be negligible)

2. Multiple Linear Regression

In the previous topic, we have learned about Simple Linear Regression, where a single Independent/Predictor(X) variable is used to model the response variable (Y). But there may be various cases in which the response variable is affected by more than one predictor variable; for such cases, the Multiple Linear Regression algorithm is used.

Moreover, Multiple Linear Regression is an extension of Simple Linear regression as it takes more than one predictor variable to predict the response variable. We can define it as:

Multiple Linear Regression is one of the important regression algorithms which models the linear relationship between a single dependent continuous variable and more than one independent variable.

Example:

Prediction of CO₂ emission based on engine size and number of cylinders in a car.

Some key points about MLR:

- For MLR, the dependent or target variable(Y) must be the continuous/real, but the predictor or independent variable may be of continuous or categorical form.
- Each feature variable must model the linear relationship with the dependent variable.
- MLR tries to fit a regression line through a multidimensional space of data-points.

MLR equation:

In Multiple Linear Regression, the target variable(Y) is a linear combination of multiple predictor variables $x_1, x_2, x_3, ..., x_n$. Since it is an enhancement of Simple Linear Regression, so the same is applied for the multiple linear regression equation, the equation becomes:

Where,

Y= Output/Response variable

 b_0 , b_1 , b_2 , b_3 , b_n ...= Coefficients of the model.

 $x_1, x_2, x_3, x_4,...=$ Various Independent/feature variable

Assumptions for Multiple Linear Regression:

- A linear relationship should exist between the Target and predictor variables.
- The regression residuals must be normally distributed.
- MLR assumes little or **no multicollinearity** (correlation between the independent variable) in data.

Ch3. Classification

1.Logistic Regression:

- Logistic regression is one of the most popular Machine Learning algorithms, which comes under the Supervised Learning technique. It is used for predicting the categorical dependent variable using a given set of independent variables.
- Logistic regression predicts the output of a categorical dependent variable. Therefore the outcome must be a categorical or discrete value. It can be either Yes or No, 0 or 1, true or False, etc. but instead of giving the exact value as 0 and 1, it gives the probabilistic values which lie between 0 and 1.
- Logistic Regression is much similar to the Linear Regression except that how they are used. Linear Regression is used for solving Regression problems, whereas Logistic regression is used for solving the classification problems.
- In Logistic regression, instead of fitting a regression line, we fit an "S" shaped logistic function, which predicts two maximum values (0 or 1).
- The curve from the logistic function indicates the likelihood of something such as whether the cells are cancerous or not, a mouse is obese or not based on its weight, etc.
- Logistic Regression is a significant machine learning algorithm because it has the ability to provide probabilities and classify new data using continuous and discrete datasets.
- Logistic Regression can be used to classify the observations using different types of data and can easily determine the most effective variables used for the classification. The below image is showing the logistic function:

Note: Logistic regression uses the concept of predictive modeling as regression; therefore, it is called logistic regression, but is used to classify samples; Therefore, it falls under the classification algorithm.

Logistic Function (Sigmoid Function):

- The sigmoid function is a mathematical function used to map the predicted values to probabilities.
- $_{\circ}$ It maps any real value into another value within a range of 0 and 1
- The value of the logistic regression must be between 0 and 1, which cannot go beyond this limit, so it forms a curve like the "S" form. The S-form curve is called the Sigmoid function or the logistic function.
- o In logistic regression, we use the concept of the threshold value, which defines the probability of either 0 or 1. Such as values above the threshold value tends to 1, and a value below the threshold values tends to 0.

Assumptions for Logistic Regression:

- The dependent variable must be categorical in nature.
- o The independent variable should not have multi-collinearity.

Logistic Regression Equation:

The Logistic regression equation can be obtained from the Linear Regression equation. The mathematical steps to get Logistic Regression equations are given below:

• We know the equation of the straight line can be written as:

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + \dots + b_n x_n$$

 In Logistic Regression y can be between 0 and 1 only, so for this let's divide the above equation by (1-y):

$$\frac{y}{1-y}$$
; 0 for y= 0, and infinity for y=1

 But we need range between -[infinity] to +[infinity], then take logarithm of the equation it will become:

$$log\left[\frac{y}{1-y}\right] = b_0 + b_1x_1 + b_2x_2 + b_3x_3 + \dots + b_nx_n$$

The above equation is the final equation for Logistic Regression.

***** Cost function:

- The cost function is the technique of evaluating "the performance of our algorithm/model".
- It takes both predicted outputs by the model and actual outputs and calculates how much wrong the model was in its prediction.
- It outputs a higher number if our predictions differ a lot from the actual values. As we tune our model to improve the predictions, the cost function acts as an indicator of how the model has improved.
- This is essentially an optimization problem.
- The optimization strategies always aim at "minimizing the cost function".

***** problem of overfitting:

Overfitting and Underfitting are the two main problems that occur in machine learning and degrade the performance of the machine learning models.

The main goal of each machine learning model is **to generalize well**. Here **generalization** defines the ability of an ML model to provide a suitable output by adapting the given set of unknown input. It means after providing training on the dataset, it can produce reliable and accurate output. Hence, the underfitting and overfitting are the two terms that need to be checked for the performance of the model and whether the model is generalizing well or not.

Before understanding the overfitting and underfitting, let's understand some basic term that will help to understand this topic well:

- Signal: It refers to the true underlying pattern of the data that helps the machine learning model to learn from the data.
- **Noise:** Noise is unnecessary and irrelevant data that reduces the performance of the model.
- Bias: Bias is a prediction error that is introduced in the model due to oversimplifying the machine learning algorithms. Or it is the difference between the predicted values and the actual values.
- Variance: If the machine learning model performs well with the training dataset, but does not perform well with the test dataset, then variance occurs.

Overfitting

• Overfitting occurs when our machine leaning model tries to cover all the data points or more than the required data points present in the given dataset. Because of this, the model starts caching noise and inaccurate values present in the dataset, and all these factors reduce the efficiency and accuracy of the model. The overfitted model has **low bias** and **high variance**.

- The chances of occurrence of overfitting increase as much we provide training to our model. It means the more we train our model, the more chances of occurring the overfitted model.
- Overfitting is the main problem that occurs in supervised learning.
- **Example:** The concept of the overfitting can be understood by the below graph of the linear regression output:

As we can see from the above graph, the model tries to cover all the data points present in the scatter plot. It may look efficient, but in reality, it is not so. Because the goal of the regression model to find the best fit line, but here we have not got any best fit, so, it will generate the prediction errors.

How to avoid the Overfitting in Model

Both overfitting and underfitting cause the degraded performance of the machine learning model. But the main cause is overfitting, so there are some ways by which we can reduce the occurrence of overfitting in our model.

- Cross-Validation
- Training with more data

- Removing features
- Early stopping the training
- Regularization
- Ensembling

Underfitting

Underfitting occurs when our machine learning model is not able to capture the underlying trend of the data. To avoid the overfitting in the model, the fed of training data can be stopped at an early stage, due to which the model may not learn enough from the training data. As a result, it may fail to find the best fit of the dominant trend in the data.

In the case of underfitting, the model is not able to learn enough from the training data, and hence it reduces the accuracy and produces unreliable predictions.

An underfitted model has <u>high bias and low variance</u>.

Example: We can understand the underfitting using below output of the linear regression model:

As we can see from the above diagram, the model is unable to capture the data points present in the plot.

How to avoid underfitting:

- By increasing the training time of the model.
- By increasing the number of features.

Goodness of Fit

The "Goodness of fit" term is taken from the statistics, and the goal of the machine learning models to achieve the goodness of fit. In statistics modeling, it defines how closely the result or predicted values match the true values of the dataset.

The model with a good fit is between the underfitted and overfitted model, and ideally, it makes predictions with 0 errors, but in practice, it is difficult to achieve it.

As when we train our model for a time, the errors in the training data go down, and the same happens with test data. But if we train the model for a long duration, then the performance of the model may decrease due to the overfitting, as the model also learn the noise present in the dataset. The errors in the test dataset start increasing, so the point, just before the raising of errors, is the good point, and we can stop here for achieving a good model.

There are two other methods by which we can get a good point for our model, which are the **resampling method** to estimate model accuracy and **validation dataset**.

* Regularization:

What is Regularization?

• Regularization is one of the most important concepts of machine learning. It is a technique to prevent the model from overfitting by adding extra information to it.

- Sometimes the machine learning model performs well with the training data but does not perform well with the test data. It means the model is not able to predict the output when deals with unseen data by introducing noise in the output, and hence the model is called overfitted. This problem can be deal with the help of a regularization technique.
- This technique can be used in such a way that it will allow to maintain all variables or features in the model by reducing the magnitude of the variables. Hence, it maintains accuracy as well as a generalization of the model.
- It mainly regularizes or reduces the coefficient of features toward zero. In simple words, "In regularization technique, we reduce the magnitude of the features by keeping the same number of features."

How does Regularization Work?

Regularization works by adding a penalty or complexity term to the complex model. Let's consider the simple linear regression equation:

$$y = \beta 0 + \beta 1x1 + \beta 2x2 + \beta 3x3 + \dots + \beta nxn + b$$

In the above equation, Y represents the value to be predicted

X1, X2, ...Xn are the features for Y.

 $\beta 0, \beta 1, \dots, \beta n$ are the weights or magnitude attached to the features, respectively. Here represents the bias of the model, and b represents the intercept.

Linear regression models try to optimize the $\beta 0$ and b to minimize the cost function. The equation for the cost function for the linear model is given below:

$$\sum_{i=1}^{M} (y_i - y'_i)^2 = \sum_{i=1}^{M} (y_i - \sum_{j=0}^{n} \beta_j * Xij)^2$$

Techniques of Regularization

There are mainly two types of regularization techniques, which are given below:

- Ridge Regression
- Lasso Regression

Ridge Regression

- Ridge regression is one of the types of linear regression in which a small amount of bias is introduced so that we can get better long-term predictions.
- Ridge regression is a regularization technique, which is used to reduce the complexity of the model. It is also called as L2 regularization.
- In this technique, the cost function is altered by adding the penalty term to it. The amount of bias added to the model is called **Ridge Regression penalty**. We can calculate it by multiplying with the lambda to the squared weight of each individual feature.
- o The equation for the cost function in ridge regression will be:

$$\sum_{i=1}^{M} (y_i - y'_i)^2 = \sum_{i=1}^{M} \left(y_i - \sum_{j=0}^{n} \beta_j * x_{ij} \right)^2 + \lambda \sum_{j=0}^{n} \beta_j^2$$

- In the above equation, the penalty term regularizes the coefficients of the model, and hence ridge regression reduces the amplitudes of the coefficients that decreases the complexity of the model.
- As we can see from the above equation, if the values of λ tend to zero, the equation becomes the cost function of the linear regression model. Hence, for the minimum value of λ , the model will resemble the linear regression model.
- A general linear or polynomial regression will fail if there is high collinearity between the independent variables, so to solve such problems, Ridge regression can be used.

 It helps to solve the problems if we have more parameters than samples.

Lasso Regression:

- Lasso regression is another regularization technique to reduce the complexity of the model. It stands for Least Absolute and Selection Operator.
- It is similar to the Ridge Regression except that the penalty term contains only the absolute weights instead of a square of weights.
- Since it takes absolute values, hence, it can shrink the slope to 0, whereas Ridge Regression can only shrink it near to 0.
- It is also called as L1 regularization. The equation for the cost function of Lasso regression will be:

$$\sum_{i=1}^{M} (y_i - y'_i)^2 = \sum_{i=1}^{M} \left(y_i - \sum_{j=0}^{n} \beta_j * x_{ij} \right)^2 + \lambda \sum_{j=0}^{n} |\beta_j|^{\square}$$

- Some of the features in this technique are completely neglected for model evaluation.
- Hence, the Lasso regression can help us to reduce the overfitting in the model as well as the feature selection.

Key Difference between Ridge Regression and Lasso Regression

- Ridge regression is mostly used to reduce the overfitting in the model, and it includes all the features present in the model. It reduces the complexity of the model by shrinking the coefficients.
- Lasso regression helps to reduce the overfitting in the model as well as feature selection.

2.Support vector machine:

- Support Vector Machine or SVM is one of the most popular Supervised Learning algorithms, which is used for Classification as well as Regression problems. However, primarily, it is used for Classification problems in Machine Learning.
- The goal of the SVM algorithm is to create the best line or decision boundary that can segregate n-dimensional space into classes so that we can easily put the new data point in the correct category in the future. This best decision boundary is called a hyperplane.
- SVM chooses the extreme points/vectors that help in creating the hyperplane. These extreme cases are called as support vectors, and hence algorithm is termed as Support Vector Machine. Consider the below diagram in which there are two different categories that are classified using a decision boundary or hyperplane:

Example: SVM can be understood with the example that we have used in the KNN classifier. Suppose we see a strange cat that also has some features of dogs, so if we want a model that can accurately identify whether it is a cat or dog, so such a model can be created by using the SVM algorithm. We will first train our model with lots of images of

cats and dogs so that it can learn about different features of cats and dogs, and then we test it with this strange creature. So as support vector creates a decision boundary between these two data (cat and dog) and choose extreme cases (support vectors), it will see the extreme case of cat and dog. On the basis of the support vectors, it will classify it as a cat. Consider the below diagram:

SVM algorithm can be used for **Face detection**, **image classification**, **text categorization**, etc.

Types of SVM

SVM can be of two types:

- Linear SVM: Linear SVM is used for linearly separable data, which means if a dataset can be classified into two classes by using a single straight line, then such data is termed as linearly separable data, and classifier is used called as Linear SVM classifier.
- Non-linear SVM: Non-Linear SVM is used for non-linearly separated data, which means if a dataset cannot be classified by using a straight line, then such data is termed as non-linear data and classifier used is called as Non-linear SVM classifier.

Hyperplane and Support Vectors in the SVM algorithm:

Hyperplane: There can be multiple lines/decision boundaries to segregate the classes in n-dimensional space, but we need to find out the best decision boundary that helps to classify the data points. This best boundary is known as the hyperplane of SVM.

The dimensions of the hyperplane depend on the features present in the dataset, which means if there are 2 features (as shown in image), then

hyperplane will be a straight line. And if there are 3 features, then hyperplane will be a 2-dimension plane.

We always create a hyperplane that has a maximum margin, which means the maximum distance between the data points.

Support Vectors:

The data points or vectors that are the closest to the hyperplane and which affect the position of the hyperplane are termed as Support Vector. Since these vectors support the hyperplane, hence called a Support vector.

How does SVM works?

Linear SVM:

The working of the SVM algorithm can be understood by using an example. Suppose we have a dataset that has two tags (green and blue), and the dataset has two features x1 and x2. We want a classifier that can classify the pair(x1, x2) of coordinates in either green or blue. Consider the below image:

So as it is 2-d space so by just using a straight line, we can easily separate these two classes. But there can be multiple lines that can separate these classes. Consider the below image:

Hence, the SVM algorithm helps to find the best line or decision boundary; this best boundary or region is called as a **hyperplane**. SVM algorithm finds the closest point of the lines from both the classes. These points are called support vectors. The distance between the vectors and the hyperplane is called as **margin**. And the goal of SVM is to maximize this margin. The **hyperplane** with maximum margin is called the **optimal hyperplane**.

Non-Linear SVM:

If data is linearly arranged, then we can separate it by using a straight line, but for non-linear data, we cannot draw a single straight line. Consider the below image:

So to separate these data points, we need to add one more dimension. For linear data, we have used two dimensions x and y, so for non-linear data, we will add a third dimension z. It can be calculated as:

$$z=x^2+y^2$$

By adding the third dimension, the sample space will become as below image:

So now, SVM will divide the datasets into classes in the following way. Consider the below image:

Since we are in 3-d Space, hence it is looking like a plane parallel to the x-axis. If we convert it in 2d space with z=1, then it will become as:

Hence we get a circumference of radius 1 in case of non-linear data.

***** support vector:

- Support vectors are data points that are closer to the hyperplane and influence the position and orientation of the hyperplane.
- Using these support vectors, we maximize the margin of the classifier.
- Deleting the support vectors will change the position of the hyperplane.
- These are the points that help us build our SVM.

***** kernel:

• **Kernel Function** is a method used to take data as input and transform it into the required form of processing data.

- "Kernel" is used due to a set of mathematical functions used in Support Vector Machine providing the window to manipulate the data.
- So, Kernel Function generally transforms the training set of data so that a non-linear decision surface is able to transform to a linear equation in a higher number of dimension spaces.
- Basically, It returns the inner product between two points in a standard feature dimension.

Standard Kernel Function Equation:

$$K(\bar{x}) = 1, if||\bar{x}|| <= 1$$

• Gaussian Kernel: It is used to perform transformation when there is no prior knowledge about data.

$$K(x, y) = e^{-(\frac{||x-y||^2}{2\sigma^2})}$$

• **Sigmoid Kernel:** this function is equivalent to a two-layer, perceptron model of the neural network, which is used as an activation function for artificial neurons.

***** K-nearest Neighbor(KNN):

- K-Nearest Neighbour is one of the simplest Machine Learning algorithms based on Supervised Learning technique.
- K-NN algorithm assumes the similarity between the new case/data and available cases and put the new case into the category that is most similar to the available categories.
- K-NN algorithm stores all the available data and classifies a new data point based on the similarity. This means when new data appears then it can be easily classified into a well suite category by using K- NN algorithm.

- K-NN algorithm can be used for Regression as well as for Classification but mostly it is used for the Classification problems.
- K-NN is a **non-parametric algorithm**, which means it does not make any assumption on underlying data.
- It is also called a **lazy learner algorithm** because it does not learn from the training set immediately instead it stores the dataset and at the time of classification, it performs an action on the dataset.
- KNN algorithm at the training phase just stores the dataset and when it gets new data, then it classifies that data into a category that is much similar to the new data.
- Example: Suppose, we have an image of a creature that looks similar to cat and dog, but we want to know either it is a cat or dog. So for this identification, we can use the KNN algorithm, as it works on a similarity measure. Our KNN model will find the similar features of the new data set to the cats and dogs images and based on the most similar features it will put it in either cat or dog category.

Why do we need a K-NN Algorithm?

Suppose there are two categories, i.e., Category A and Category B, and we have a new data point x1, so this data point will lie in which of these categories. To solve this type of problem, we need a K-NN algorithm. With the help of K-NN, we can easily identify the category or class of a particular dataset. Consider the below diagram:

How does K-NN work?

The K-NN working can be explained on the basis of the below algorithm:

- **Step-1:** Select the number K of the neighbors
- **Step-2:** Calculate the Euclidean distance of **K number of neighbors**
- **Step-3:** Take the K nearest neighbors as per the calculated Euclidean distance.
- **Step-4:** Among these k neighbors, count the number of the data points in each category.
- **Step-5:** Assign the new data points to that category for which the number of the neighbor is maximum.
- **Step-6:** Our model is ready.

Ch4. Resampling Methods and Evaluation

1.Cross-Validation:

Cross-validation is a technique for validating the model efficiency by training it on the subset of input data and testing on previously unseen subset of the input data. We can also say that it is a technique to check how a statistical model generalizes to an independent dataset.

In machine learning, there is always the need to test the stability of the model. It means based only on the training dataset; we can't fit our model on the training dataset. For this purpose, we reserve a particular sample of the dataset, which was not part of the training dataset. After that, we test our model on that sample before deployment, and this complete process comes under cross-validation. This is something different from the general train-test split.

Hence the basic steps of cross-validations are:

- Reserve a subset of the dataset as a validation set.
- o Provide the training to the model using the training dataset.
- Now, evaluate model performance using the validation set. If the model performs well with the validation set, perform the further step, else check for the issues.

Comparison of Cross-validation to train/test split in Machine Learning

- **Train/test split:** The input data is divided into two parts, that are training set and test set on a ratio of 70:30, 80:20, etc. It provides a high variance, which is one of the biggest disadvantages.
 - Training Data: The training data is used to train the model,
 and the dependent variable is known.
 - Test Data: The test data is used to make the predictions from the model that is already trained on the training data. This has the same features as training data but not the part of that.
- Cross-Validation dataset: It is used to overcome the disadvantage of train/test split by splitting the dataset into groups of train/test splits, and averaging the result. It can be used if we want to optimize our model that has been trained on the training

dataset for the best performance. It is more efficient as compared to train/test split as every observation is used for the training and testing both.

Limitations of Cross-Validation

There are some limitations of the cross-validation technique, which are given below:

- For the ideal conditions, it provides the optimum output. But for the inconsistent data, it may produce a drastic result. So, it is one of the big disadvantages of cross-validation, as there is no certainty of the type of data in machine learning.
- o In predictive modeling, the data evolves over a period, due to which, it may face the differences between the training set and validation sets. Such as if we create a model for the prediction of stock market values, and the data is trained on the previous 5 years stock values, but the realistic future values for the next 5 years may drastically different, so it is difficult to expect the correct output for such situations.

Applications of Cross-Validation

- This technique can be used to compare the performance of different predictive modeling methods.
- It has great scope in the medical research field.
- It can also be used for the meta-analysis, as it is already being used by the data scientists in the field of medical statistics.

Methods used for Cross-Validation

There are some common methods that are used for cross-validation. These methods are given below:

2. The Validation Set Approach:

We divide our input dataset into a training set and test or validation set in the validation set approach. Both the subsets are given 50% of the dataset.

But it has one of the big disadvantages that we are just using a 50% dataset to train our model, so the model may miss out to capture important information of the dataset. It also tends to give the underfitted model.

3.Leave-One-Out Cross-Validation:

This method is similar to the leave-p-out cross-validation, but instead of p, we need to take 1 dataset out of training. It means, in this approach, for each learning set, only one datapoint is reserved, and the remaining dataset is used to train the model. This process repeats for each datapoint. Hence for n samples, we get n different training set and n test set. It has the following features:

- In this approach, the bias is minimum as all the data points are used.
- The process is executed for n times; hence execution time is high.
- o This approach leads to high variation in testing the effectiveness of the model as we iteratively check against one data point.

4.k-Fold Cross-Validation

K-fold cross-validation approach divides the input dataset into K groups of samples of equal sizes. These samples are called **folds**. For each learning set, the prediction function uses k-1 folds, and the rest of the folds are used for the test set. This approach is a very popular CV approach because it is easy to understand, and the output is less biased than other methods.

The steps for k-fold cross-validation are:

Split the input dataset into K groups

- o For each group:
 - o Take one group as the reserve or test data set.
 - Use remaining groups as the training dataset
 - Fit the model on the training set and evaluate the performance of the model using the test set.

Let's take an example of 5-folds cross-validation. So, the dataset is grouped into 5 folds. On 1st iteration, the first fold is reserved for test the model, and rest are used to train the model. On 2nd iteration, the second fold is used to test the model, and rest are used to train the model. This process will continue until each fold is not used for the test fold.

5.Bias-Variance Trade-Off for k-Fold Cross-Validation:

6.Cross-Validation on Classification Problems

7. The Bootstrap

What is the Bootstrap Sampling Method?

Technically speaking, the bootstrap sampling method is a resampling method that uses random sampling with replacement.

Don't worry if that sounded confusing, let me explain it with a diagram:

X						
5 10 4 8 4 8	Initial Sample	Initial Sample		New Sample		
4 8	X Y		Х	Υ		
	5 10		4	8		
2 4	4 8					
	2 4					

Suppose you have an initial sample with 3 observations. Using the bootstrap sampling method, you'll create a new sample with 3 observations as well. Each observation has an equal chance of being chosen (1/3). In this case, the second observation was chosen randomly and will be the first observation in our new sample.

Initial Sample			New Sample		
х	Υ		х	Υ	
5	10	_	4	8	
4	8		2	4	
2	4				

After choosing another observation at random, you chose the green observation.

Initial	Initial Sample			New Sample		
Х	Υ		Х	Υ		
5	10	Ì	4	8		
4	8		2	4		
2	4		4	8		

Lastly, the yellow observation is chosen again at random. Remember that bootstrap sampling using random sampling with replacement. This means that it is very much possible for an already chosen observation to be chosen again.

And this is the essence of bootstrap sampling!

8.ROC curve

An **ROC** curve (receiver operating characteristic curve) is a graph showing the performance of a classification model at all classification thresholds. This curve plots two parameters:

- True Positive Rate
- False Positive Rate

True Positive Rate (TPR) is a synonym for recall and is therefore defined as follows:

False Positive Rate (FPR) is defined as follows:

An ROC curve plots TPR vs. FPR at different classification thresholds. Lowering the classification threshold classifies more items as positive, thus increasing both False Positives and True Positives. The following figure shows a typical ROC curve.

Figure 4. TP vs. FP rate at different classification thresholds.

To compute the points in an ROC curve, we could evaluate a logistic regression model many times with different classification thresholds, but this would be inefficient. Fortunately, there's an efficient, sorting-based algorithm that can provide this information for us, called AUC.

9.Confusion matrix:

When we get the data, after data cleaning, pre-processing, and wrangling, the first step we do is to feed it to an outstanding model and of course, get output in probabilities. But hold on! How in the hell can we measure the effectiveness of our model. Better the effectiveness, better the performance, and that is exactly what we want. And it is where the Confusion matrix comes into the limelight. Confusion Matrix is a performance measurement for machine learning classification.

What is Confusion Matrix and why you need it?

Well, it is a performance measurement for machine learning classification problem where output can be two or more classes. It is a table with 4 different combinations of predicted and actual values.

Actual Values

It is extremely useful for measuring Recall, Precision, Specificity, Accuracy, and most importantly AUC-ROC curves.

Let's understand TP, FP, FN, TN in terms of pregnancy analogy.

True Positive:

Interpretation: You predicted positive and it's true.

You predicted that a woman is pregnant and she actually is.

True Negative:

Interpretation: You predicted negative and it's true.

You predicted that a man is not pregnant and he actually is not.

False Positive: (Type 1 Error)

Interpretation: You predicted positive and it's false.

You predicted that a man is pregnant but he actually is not.

False Negative: (Type 2 Error)

Interpretation: You predicted negative and it's false.

You predicted that a woman is not pregnant but she actually is.

Just Remember, We describe predicted values as Positive and Negative and actual values as True and False.

How to Calculate Confusion Matrix for a 2-class classification problem?

Let's understand the confusion matrix through math.

у	y pred	output for threshold 0.6	Recall	Precision	Accuracy
0	0.5	0			
1	0.9	1			
0	0.7	1			
1	0.7	1	1/2	2/3	4/7
1	0.3	0			
0	0.4	0			
1	0.5	0			

Recall

The recall is calculated as the ratio between the numbers of Positive samples correctly classified as Positive to the total number of Positive samples. The *recall measures the model's ability to detect positive samples*. The higher the recall, the more positive samples detected.

Recall =
$$\frac{TP}{TP + FN}$$

The above equation can be explained by saying, from all the positive classes, how many we predicted correctly.

Recall should be high as possible.

Precision

Precision is defined as the *ratio of correctly classified positive* samples (*True Positive*) to a total number of classified positive samples (either correctly or incorrectly).

Precision =
$$\frac{TP}{TP + FP}$$

The above equation can be explained by saying, from all the classes we have predicted as positive, how many are actually positive.

Precision should be high as possible.

and

Accuracy

From all the classes (positive and negative), how many of them we have predicted correctly. In this case, it will be 4/7.

Accuracy should be high as possible.

F-measure

It is difficult to compare two models with low precision and high recall or vice versa. So to make them comparable, we use F-Score. F-score helps to measure Recall and Precision at the same time. It uses Harmonic Mean in place of Arithmetic Mean by punishing the extreme values more.

10.Precision

11.Recall

12.F-score

the answer of 10,11,12 is present in Ans number 9.