Background material

Relations

- A relation over a set S is a set R ⊂ S × S
 - We write a R b for $(a,b) \in R$
- A relation R is:
 - reflexive iff
 - $\forall a \in S . a R a$
 - transitive iff

$$\forall$$
 a \in S, b \in S, c \in S . a R b \land b R c \Rightarrow a R c

symmetric iff

$$\forall$$
 a, b \in S . a R b \Rightarrow b R a

anti-symmetric iff

$$\forall$$
 a, b, \in S . a R b $\Rightarrow \neg$ (b R a)

Relations

- A relation over a set S is a set R ⊂ S × S
 - We write a R b for $(a,b) \in R$
- A relation R is:
 - reflexive iff∀ a ∈ S . a R a
 - transitive iff

$$\forall$$
 a \in S, b \in S, c \in S . a R b \land b R c \Rightarrow a R c

symmetric iff

$$\forall$$
 a, b \in S . a R b \Rightarrow b R a

anti-symmetric iff

$$\forall$$
 a, b, \in S . a R b $\Rightarrow \neg$ (b R a)

$$\forall$$
 a, b, \in S . a R b \land b R a \Rightarrow a = b

Partial orders

An equivalence class is a relation that is:

A partial order is a relation that is:

Partial orders

- An equivalence class is a relation that is:
 - reflexive, transitive, symmetric
- A partial order is a relation that is:
 - reflexive, transitive, anti-symmetric
- A partially ordered set (a poset) is a pair (S,≤) of a set S and a partial order ≤ over the set
- Examples of posets: (2^S, ⊆), (Z, ≤), (Z, divides)

Lub and glb

- Given a poset (S, ≤), and two elements a ∈ S and b ∈ S, then the:
 - least upper bound (lub) is an element c such that $a \le c$, $b \le c$ and \forall $d \in S$. ($a \le d \land b \le d$) \Rightarrow $c \le d$
 - greatest lower bound (glb) is an element c such that $c \le a, c \le b,$ and $\forall d \in S$. ($d \le a \land d \le b$) $\Rightarrow d \le c$

Lub and glb

- Given a poset (S, ≤), and two elements a ∈ S and b ∈ S, then the:
 - least upper bound (lub) is an element c such that $a \le c$, $b \le c$, and $\forall d \in S$. ($a \le d \land b \le d$) $\Rightarrow c \le d$
 - greatest lower bound (glb) is an element c such that $c \le a, c \le b,$ and $\forall d \in S$. $(d \le a \land d \le b) \Rightarrow d \le c$
- lub and glb don't always exists:

Lub and glb

- Given a poset (S, ≤), and two elements a ∈ S and b ∈ S, then the:
 - least upper bound (lub) is an element c such that $a \le c$, $b \le c$, and $\forall d \in S$. ($a \le d \land b \le d$) $\Rightarrow c \le d$
 - greatest lower bound (glb) is an element c such that $c \le a, c \le b,$ and $\forall d \in S$. $(d \le a \land d \le b) \Rightarrow d \le c$
- lub and glb don't always exists:

Lattices

- A lattice is a tuple (S, ⊑, ⊥, ⊤, □, □) such that:
 - (S, \sqsubseteq) is a poset
 - $\forall a \in S . \bot \Box a$
 - \forall a ∈ S . a \sqsubseteq \top
 - Every two elements from S have a lub and a glb
 - — □ is the least upper bound operator, called a join
 - — □ is the greatest lower bound operator, called a meet

Powerset lattice

Powerset lattice


```
two vay
```


