

Cancer: A Disease of the Genome

- An accumulation of genomic alterations can lead to unregulated cell growth
- One-size-fits-all standard treatment models do not take into account distinct molecular characteristics of each tumour
 - Response to standard therapy is highly variable
- Development of targeted therapies needs a comprehensive catalogue of molecular alterations and models of how these alterations give rise to tumour phenotype

International Cancer Genome Consortium (ICGC)

- Launched in 2008
- Goal: To sequence 25,000 tumor genomes (with matched normal) across 50 tumor types or subtypes by 2018
- Make this 'big 1.5PB cancer data' available to community & public

April 2017 - Commitment from 107 ICGC Projects for 29,000+ tumor genomes

- Goal: Understand the nature and consequences of somatic and germline variations in both coding and non-coding regions of the cancer whole genome and to identify common patterns of mutation
 - 580+ researchers
 - 130+ research projects
 - 16 thematic working groups
- Research Plan:
 - Uniformly analyze 2800+ tumor/normal whole genome pairs from ICGC
 - Make this 'big 0.8PB cancer data' available to research community

'Big Data' is a relative term

 This is what a **5MB** hard drive looked like in 1956 (note the forklift)

http://goo.gl/f1PkV

 This is what a **5TB** drive looks like in 2017 (1 million times more storage)

With the current pace of sequencing, 1.5PB (ICGC dataset) will soon become a small dataset!

Genomic Data Distribution is a Challenge

0.8 PB

9 days on a dedicated 10G link

8 mo on a shared University link

Your Compute Cluster

PCAWG Dataset Today 2800+ donors

2 mo on a dedicated 10G link

4 yr on a shared University link

Your Compute Cluster

ICGC Dataset in 2018 29,000+ donors

Few research labs have large enough storage and compute capacities

http://www.cancercollaboratory.org

Cloud Computing as a Solution

Collaboratory Infrastructure, Data & Usage

Hardware & Data

- 2,592 CPU cores, 4.4 PB storage (raw)
- $\Diamond \Diamond \Diamond$
- 1,949 PCAWG donors released in Collaboratory + 885 PCAWG donors released in Chicago
- Sequencing data for ICGC from EGA is being copied into Collaboratory

<u>Usaae</u>

- Collaboratory is open to user enrollment
- User account and project registration system is in place
- 50 enrolled users across 20 projects around the globe

cancercollaboratory.org

compute cloud resource that allows researchers to run complex analysis operations across large <u>ICGC cancer genome data sets</u>.

ABOUT OUR SERVICES →

Collaboratory and PDC together hold the entire PCAWG dataset

Collaboratory System Architecture

ICGC Data Portal (dcc.icgc.org)

Q. ja.g. BRAF, KRAS G12D, DO35100, MU7870, FI998, apoptosis, Cancer Gene Census, imatinib, GO:0016049

About Us

The CTCGC Data Portal provides tools for visualizing, querying and downloading the data released quarterly by the consortium's member projects.

To access ICGC controlled tier data, please read these
instructions.

New features will be regularly added by the DCC development team. Seedback is welcome.

The Pancancer Analysis of Whole Genomes (PCAWG) study is an international collaboration to identify common patterns of mutation in more than 2,800 cancer whole genomes from the International Cancer Genome Consortium.

Data Release 25

June 8th, 2017

Donor Distribution by Primary Site

Cancer projects	76
Cancer primary sites	21
Donors with molecular data in DCC	17,570
Total Donors	20,343
Simple somatic mutations	63,480,214
Mutated Genes	57,753

Tutorial

EXAMPLE QUERIES

- 1. BRAF missense mutations in colorectal cancer
- Most frequently mutated genes by high impact mutations in stage III malignant lymphoma
- Brain cancer donors with frameshift mutations and having methylation data available

ICGC data is now available on commercial and academic compute cloud. Read more...

Quick Search

DATA REPOSITORIES

icgc-get: A Universal Download Client for ICGC Data

How it works:

- Uses DCC Portal to define / serve your manifest (manifest-id)
- Checks you are authorised to access the requested data
- Downloads files from repositories in a chosen order of preference (e.g. eliminates duplicates)

Dockstore.org for Analysis Workflows

- Open platform for sharing Docker-based tools using Common Workflow Language used by GA4GH
 - Website and command line tools for registering containers
 - Builds upon Docker containers (docker.com)
- "Dockerized" all workflows (alignment and variant calling pipelines) used by PCAWG working groups

1	Available Tools		
	Name II	Author IT	Project Links
	clonehd-pcawg	Ignacio Vazquez- Garcia	GitHub Quay.io
	DKFZBiasFilter	Ivo Buchhalter	GitHub Quay.io
	pcawg-bwa-mem-workflow	Brian O'Connor	GitHub Quay.io
	pcawg-dkfz-workflow	Brian O'Connor	GitHub Quay.io
-	pcawg-merge-annotate	Jonathan Dursi	GitHub Quay.io
	pcawg-sanger-cgp-workflow	Keiran Raine	GitHub Quay.io
	pcawg delly workflow	Brian O'Connor	GitHub Quay.io

Cloud Computing Training

Bioinformatics.ca

 Provide training on use of the Cancer Genome Collaboratory cloud

Topics covered:

- Cloud computing
- Principles of virtual machine management
- Creation of portable software packages using Docker containers
- Use of Dockstore to co-package binaries & computational workflow descriptions

Benefits of Collaboratory

The Cancer Genome Collaboratory offers cancer researchers:

- Compute capacity
- Individual project tenancy
- Protected cancer sequencing data sets
- Tools to facilitate easy data access
- Tools for exporting and sharing analysis workflows
- Easy to understand pricing model (linear for # cores used)
- Responsive helpdesk support team

cancercollaboratory.org

Looking Forward in Collaboratory

- Collect more cancer datasets from other repositories
- Automate the enrollment process for DACO-approved researchers
- Train users in securely using cloud computing for analysis of protected data
- Increase the capacity of the distributed storage infrastructure, while maintaining performance & stability
- Develop APIs and tools for analysis of streaming data, rather than downloaded data

Co-Investigators of Cores & Research Modules

Robert Grossman, PhD Core 1 - Infrastructure University of Chicago

Vincent Ferretti, PhD

Core 1 - Infrastructure

Paul Boutros, PhD

Core 2 - Benchmarking
OICR & Univ. Toronto

Francis Ouellette
Core 3 - Training
OICR & Univ. Toronto

Lincoln Stein, MD, PhD

Lead & Core 4 - Administration
OICR & Univ. Toronto

Michelle Brazas Project Manager OICR

Cenk Sahinalp, PhD
Res. Module 1 Search, Indexing &
Compression
Simon Fraser Univ.

Guillaume Bourque, PhD
Res. Module 2 - Variant
Consequence Prediction
McGill Univ.

Sohrab Shah, PhD
Res. Module 3 - Tumour
Heterogeneity
Univ. British Columbia

Lincoln Stein, MD, PhD

Res. Module 4 - Drug Target
Identification

OICR & Univ. Toronto

Khaled El Emam, PhD
Res. Module 5 Bioethics
McGill Univ.

Bartha Knoppers, PhD
Res. Module 5 Bioethics
McGill Univ.

Acknowledgements

Annai Systems

Michael Ainsworth Scott McIntee Thomas Schlumpberger Francisco De La Vega

Broad Institute

Kristian Cibulskis
Gad Getz
Julian Hess
Ignaty Leshchiner
Dimitri Livitz
Esther Reinbay
Mara Roseberg
Gordon Saksena
Chip Stewart
Grace Tiao
Jeremiah Wala

BSC

Romina Royo Javier Bartolome Josep Gelpi David Torrents

DKFZ

Ivo Buchhalter Michael Heinold

Kortine Kleinheinz Rolf Kabbe Matthias Schlesner

EB

Rich Boyce Alvis Brazma Andy Cafferkey Jordi Rambla De Argila Nuno Fonseca Paul Flicek

EMBL

Jan Korbel Sergei lakhnin Ivica Letunic Joachim Weischenfeldt

<u>ETRL</u>

Youngchon Hyung-Lae Jonghui Hong Sung-Soo Keunchil Kang-ho Kim Hyunghwan Kim Jongsun Wan Jeon Seung-Hyub Youngwook Kim

<u>iDASH</u>

Ashley Williams Tony Chen Jihoon Kim Olivier Harismendy

<u>OHSU</u>

Kyle Ellrott

<u>IMSUT+RIKEN</u>

Keith Boroevich Akihiro Fujimoto Satoru Miyano Naoki Miyoshi Hidewaki Nakagawa Kazuhiro Ohi

OICR

Michelle Brazas
Niall Byrne
Jonathan Dursi
Nodirjon Fayzullaev
Vincent Ferretti
Wei Jiao
Jerry Lam
Sheldon McKay
George Mihaiescu
Jared Baker
Francois Gerthoffert
Robert Tisma
Hardeep Nahal
Francis Ouellette
Marc Perry
Solomon Shorser

Solomon Shorser Jared Simpson

Lincoln SteinBob Tiernay

Adam Wright Linda Xiang Andy Yang Denis Yuen

Christina Yung

Junjun Zhang

ONTARIO INSTITUTE FOR CANCER RESEARCH

NIH

Carolyn Hutter Todd Pihl Heidi Sophia

SAGE Bionetworks

Larsson Omberg

Sanaer

Keiran Raine Adam Butler Yilong Li Peter Campbell

Seven Bridges Genomics

Brandi Davis Dusenbery Petar Radovic Milena Kovacevic Nebojsa Tijanic Deniz Kural

UCSC

David Haussler Brian O'Connor Benedict Paten Linda Rosewood Josh Stuart Chris Wilks

University of Chicago

Allison Heath Jonathan Spring Michael Ford Robert Grossman Funding for the Ontario Institute for Cancer Research is provided by the Government of Ontario

Funding for the Cancer Genome Collaboratory is provided by

Thank you

Questions?

