Sistemas de Particulas Conceptos y Ejemplos

Índice

Animación Basada en la Física ¿Qué es?

Ciclo de Vida
El ciclo de vida de los
sistemas de partículas y la
generación procedural

O2 Sistemas de Partículas

¿Qué son y qué atributos tienen?

14 Ejemplos

El efecto génesis, Spacewar, Pixar e implementaciones para el proyecto

Animación Basada en la Física

¿Qué es?

Técnica que permite **simular el movimiento y comportamiento realista** de objetos y elementos virtuales

Animación Basada en la Física

¿Cómo funciona?

En lugar de animar manualmente cada fotograma, la animación basada en la física utiliza **principios físicos**, como la gravedad, la fricción y las fuerzas de colisión, para calcular el movimiento de los objetos de forma automática

Sistemas de Partículas

¿Qué es?

Es una técnica utilizada para simular el comportamiento de un conjunto de partículas virtuales en un entorno tridimensional

Las partículas interactúan entre sí y con su entorno de acuerdo con ciertas reglas y principios físicos

Las partículas pueden representar:

- ★ elementos naturales
- **★** elementos artificiales
- ★ efectos especiales

Sistemas de Partículas

Atributos

Cada partícula individual tiene **propiedades** como:

- Posición
- Velocidad
- Masa
- Color
- Transparencia
- Vida útil

Se actualizan a lo largo del tiempo según reglas definidas

El ciclo de vida típico de una partícula consta de tres etapas principales:

Emisión

Las partículas se generan y se colocan en el entorno virtual

Pueden ser emitidas desde un punto específico o distribuidas en un área determinada

Durante esta etapa, se definen las propiedades iniciales de las partículas, como su posición, velocidad, color y vida útil

Comportamiento

Durante esta etapa, se aplican fuerzas y efectos físicos a las partículas, como gravedad, viento, colisiones y atracción/rechazo

Estas interacciones determinan el comportamiento y apariencia de las partículas a lo largo del tiempo:

Desaparición

A medida que las partículas envejecen o cumplen ciertos criterios predefinidos, se eliminan del sistema

Esto puede suceder cuando la partícula alcanza el final de su vida útil o cuando sale de los límites del entorno virtual

La desaparición de las partículas permite mantener un rendimiento óptimo y evitar una acumulación excesiva de partículas en el sistema

Y los sistemas de partículas

Es un tipo de animación que se realiza de manera procedural

Permite crear y controlar la apariencia y el comportamiento de las partículas de manera dinámica

Se pueden generar resultados consistentes y escalables, lo que es útil en aplicaciones donde se requiere una gran cantidad de partículas o variabilidad en tiempo real

Efecto Génesis

Los sistemas de partículas fueron inventados por Bill Reeves para la película Star Trek II en 1982

Ejemplos Spacewar

El primer uso del sistema de partículas se remonta a 1961-1962. En 1961, tres estudiantes del MIT crearon un videojuego llamado **Spacewar** para la minicomputadora PDP-1

Este juego presentaba un sistema de partículas para simular explosiones

Pixar

Toy Story (1995)

Los Increíbles (2004)

Buscando a Nemo (2003)

Proyecto 3

Proyecto 3

Proyecto 3

¡Gracias!

Bibliografía ·

https://es.wikipedia.org/wiki/Sistema de part%C3%ADculas (software)

- https://en.wikipedia.org/wiki/Star Trek II: The Wrath of Khan
- https://hmong.es/wiki/Physically based animation
- https://www.historyofinformation.com/detail.php?id=3141
- https://www.infoworld.com/article/2071771/simulate-fuzzy-phenomena-with-particle-systems.
 https://www.infoworld.com/article/2071771/simulate-fuzzy-phenomena-with-particle-systems.
- Comparison Between Particle Rendering Techniques in DirectX 11de Robin Andersson y Simon Johansson (https://www.diva-portal.org/smash/get/diva2:1480568/FULLTEXT01.pdf)
- Making of the Genesis Sequence from Star Trek II (https://www.youtube.com/watch?v=Qe9qSLYK5q4&ab_channel=VintageCG)
- Effects overview | Effects | Computer animation | Khan Academy
 (https://www.youtube.com/watch?v=7yorxr8KZIE&ab_channel=KhanAcademyLabs)
- Introduction to particle systems | Effects | Computer animation | Khan Academy (https://www.youtube.com/watch?v=ovlVh-QgVao&list=RDCMUCOVNyQfEdtjs7B06l0z6Mug&start-radio=1&ab-channel=KhanAcademyLabs)
- Simulating water | Effects | Computer animation | Khan Academy
 (https://www.youtube.com/watch?v=XtpENxf2w Y&ab channel=KhanAcademyLabs)
- Imágenes varias de internet.