Tutorial #3

- 1. Let $Q[\sqrt{3}] = \{a + b\sqrt{3} \mid a, b \in Q\}$. That $Q[\sqrt{3}]$ is a commutative ring with identity. Prove that $Q[\sqrt{3}]$ is a field.
- 2. Let Q be the field of rational numbers then show that

$$Q(\sqrt{2}, \sqrt{3}) = Q(\sqrt{2} + \sqrt{3})$$

- 3. Find a basis of $Q(\sqrt[5]{3})$ over Q.
- 4. Gaussian integer is a complex number such that its real and imaginary parts are both integers. $Z[i] = \{a + bi \mid a, b \in Z\}$ is a ring of Gaussian integers. Prove that the ring of Gaussian integers modulo 3 is a field. Also find its characteristic.
- 5. Is $\sqrt{2} + \sqrt[3]{7}$ algebraic over the field of rational numbers? Justify.
- 6. Let F be the field of rational numbers and $f(x) = x^4 + x^2 + 1 \in F[x]$. Show that $F(\omega)$ where ω is cube root of unity is a splitting field of f(x). Also determine the degree of the splitting field of f(x) over F.
- 7. Show that $\sqrt{2 + \sqrt{3}}$ is algebraic over Q.
- 8. Prove that $F_3[x]/x^2+1$ is a field. How many elements does the field have?
- 9. Prove that every non-zero element in $GF(2^n)$ possesses a unique multiplicative inverse.
- 10. Construct the field F₄₉.
- 11. Find the number of monic irreducible polynomials in $F_3[x]$ of degree 12.
- 12. If a is an algebraic integer and m is an ordinary integer, prove
 - (a) a + m is an algebraic integer.
 - (b) ma is an algebraic integer.
- 13. (a) Let α be a root of $x^2 + 1 = 0$, and K be the field $F_3[\alpha]$. Write down a basis for K, considered as a vector space over F_3 . Write out the elements of F_1 explicitly.
 - (b) Deduce that if you repeat the construction in (a) with a different quadratic polynomial irreducible over F_3 (instead of $x^2 + 1$), you get the same field K.
- 14. Find all the primitive elements of the field $GF(3^2) = GF(3)/(x^2 + x + 2)$.