QUESTION 1

CS663 (DIGITAL IMAGE PROCESSING) ASSIGNMENT 3

ATISHAY JAIN (210050026) CHESHTA DAMOR (210050040) KANAD SHENDE (210050078)

210050026@iitb.ac.in 210050040@iitb.ac.in 210050078@iitb.ac.in

Contents

Ι	Question 1	1
1	Barbara256 with Gaussian Noise ($\sigma = 5$)	1
2	Kodak24 with Gaussian Noise ($\sigma = 5$)	3
3	Barbara256 with Gaussian Noise ($\sigma = 10$)	4
4	Kodak24 with Gaussian Noise ($\sigma = 10$)	6

Problem 1

Consider the two images in the homework folder 'barbara256.png' and 'kodak24.png'. Add zero-mean Gaussian noise with standard deviation $\sigma=5$ to both of them. Implement a mean shift based filter and show the outputs of the mean shift filter on both images for the following parameter configurations: $(\sigma_s=2,\sigma_r=2); (\sigma_s=0.1,\sigma_r=0.1); (\sigma_s=3,\sigma_r=15)$. Comment on your results in your report. Repeat when the image is corrupted with zero-mean Gaussian noise of $\sigma=10$ (with the same bilaterial filter parameters). Comment on your results in your report. Include all image ouputs as well as noisy images in the report. [20 points]

Section 1

Barbara256 with Gaussian Noise ($\sigma = 5$)

Figure 1. (b) shows Noisy Barbara with Gaussian Noise $(\mu = 0, \sigma = 5)$

ered Barbara 256 with $\sigma=5$, $\sigma_{\rm r}=15$, $\sigma_{\rm s}=1$

(c) $\sigma = 5, \sigma_s = 3, \sigma_r = 15$

Figure 2. Barbara Images after applying Mean Shift based Filter

From the above results, we observe that the effect of mean-shift-based filter is not much on the noisy image when implemented using parameters $(\sigma_s = 0.1, \sigma_r = 0.1)$. There is slight smoothening at some small regions for $(\sigma_s = 2, \sigma_r = 2)$, and there is too much filtering for $(\sigma_s = 3, \sigma_r = 15)$. In fact, in the last case, although it removed noise, but it also lost some important image details (like eyes) due to excessive filtering.

This is because as the value of σ_s and σ_r increases, the number of local maximas of kernel density estimate decreases, so now more number of points get converged to a same point. For low values of these parameters, almost every point's feature vector is a local maxima for itself and hence the effect of filtering is not much because points get clustered to themselves.

In general, smaller values of σ_s make the filter more sensitive to local variations, while smaller σ_r values will make it more sensitive to pixel intensity differences.

In implementation of gradient accent, we used $\epsilon = 0.01$ as hyper-parameter for the condition of convergence. Also, while running the code, we observed that it takes more time to filter image when using high values of σ_s , σ_r because with lesser local maximas, many points have to perform the accent more number of times to reach their cluster's local maxima point.

Section 2

Kodak24 with Gaussian Noise ($\sigma = 5$)

Figure 3. (b) shows Noisy Kodak with Gaussian Noise ($\mu = 0, \sigma = 5$)

(a)
$$\sigma = 5, \sigma_s = 2, \sigma_r = 2$$
 (b) $\sigma = 5, \sigma_s = 0.1, \sigma_r = 0.1$

(c)
$$\sigma = 5, \sigma_s = 3, \sigma_r = 15$$

Figure 4. kodak Images after applying Mean Shift based Filter Similar results as explained before in barbara image are obtained for kodak image also in terms of varying σ_r and σ_s

Section 3

Barbara 256 with Gaussian Noise ($\sigma = 10$)

Figure 5. (b) shows Noisy Barbara with Gaussian Noise ($\mu = 0, \sigma = 10$)

Now, the value of standard deviation of the Gaussian Noise added is increased from 5 to 10. We repeated the same processes and observed that as σ increased, the extent of noise added to the image increased because the Gaussian curve widens on increasing σ , and hence more error is added to the image intensities.

The trend in filtering results were similar, that is $\sigma_r = 3$, $\sigma_s = 15$ case provided better filtering than other ones, and it performed too much filtering, but the filtering effect was not much in case of $\sigma_s = 0.1$, $\sigma_r = 0.1$.

Since the noise added is more for $\sigma = 10$, the filtering effect is more clearly visible.

Filtered Barbara 256 with $\sigma=$ 10, $\sigma_{\rm r}=$ 15, $\sigma_{\rm s}=$ 3

(c) $\sigma = 10, \sigma_s = 3, \sigma_r = 15$

Figure 6. Barbara Images after applying Mean Shift based Filter

Section 4

Kodak24 with Gaussian Noise ($\sigma = 10$)

Figure 7. (b) shows Noisy Kodak with Gaussian Noise ($\mu = 0, \sigma = 10$)

(c)
$$\sigma = 10, \sigma_s = 3, \sigma_r = 15$$

Figure 8. kodak Images after applying Mean Shift based Filter