Internettechnologien I

Anwendungsprotokolle - Anforderungen

Inhaltsverzeichnis

Schichtenmodell

Architekturen

Client-Server

Peer-to-Peer

Anwendungsprotokolle

Network Byte Order Transportdienst Anforderungen

Beispiele

Internet-Schichtenmodell

- Anwendungen sitzen an den Endpunkten des Netzwerks!
- Neuer Dienst einfach möglich durch Anschluss eines Hosts mit einem höherschichtigen Protokoll (z.B. HTTP)
- Adressierung der Anwendungen/Dienste über Portnummern (Portnummern < 1024 für Standarddienste, well-known Ports)
- z. B. TCP: 22, 25, 53, 80, 443 UDP: 53

Einige Netzwerkanwendungen

- ► E-Mail
- ▶ Web
- ► Instant Messaging
- ► Terminalfernzugriff
- ▶ P2P-Filesharing
- ▶ Netzwerkspiele
- ▶ Streaming von Videoclips

- Voice over IP (VoIP)
- Videokonferenzen
- Internet-TV
- ► Google Maps/Streetview
- Onlineanwendungen
- Onlinespeicher
 - z.B. Dropbox
- Grid Computing

Internet-Schichtenmodell

- ▶ Zugangsnetz, Backbone, Hosts
- Im Inneren des Netzwerkes werden keine Anwend. ausgeführt!

Architekturen

- Client-Server
- ▶ Peer-to-Peer (P2P)
- ► Kombination aus Client-Server und P2P

Client-Server-Architektur

Server:

- Immer eingeschaltet
- Feste IP-Adresse
- Serverfarmen, um zu skalieren

Clients:

- ► Kommunizieren mit Servern
- Sporadisch angeschlossen
- Können dynamische IP-Adressen haben
- Kommunizieren nicht direkt miteinander

Beispiele:

Webanwendungen z. B. Google-Dienste

Peer-to-Peer-Architektur

- Keine zentralen Server
- ▶ Beliebige Endsysteme kommunizieren direkt miteinander
- Peers sind nur sporadisch angeschlossen und wechseln ihre IP-Adresse
- Gut skalierbar
- ▶ U.u. schwierig zu warten
- ▶ Beispiele:
- ▶ Bitcoin-Netzwerk

Kombination von Client-Server und P2P

- ▶ Zentraler Server: z. B. Adresse anderer Clients finden
- ▶ Verbindung zwischen Clients: direkt (nicht über einen Server)

Beispiel:

Skype (P2P-Anwendung f
ür Voice-over-IP)

Kommunizierende Prozesse

Client-Prozess Prozess, der die Kommunikation beginnt Server-Prozess Prozess, der darauf wartet, kontaktiert zu werden

- Anwendungen mit einer P2P-Architektur haben Client- und Server-Prozesse
- ► Prozesse auf verschiedenen Hosts kommunizieren, indem sie Nachrichten über ein Netzwerk über Sockets austauschen

Anwendungsprotokolle

Bestimmung von:

- Arten von Nachrichten
 - z.B. Request, Response
- Syntax der Nachrichten
 - Welche Felder sind vorhanden und wie werden diese voneinander getrennt?
- Semantik der Nachrichten
 - Bedeutung der Informationen in den Feldern
- Regeln für das Senden von und Antworten auf Nachrichten

- Öffentliche Protokolle:
 - Definiert in RFCs
 - Erlauben Interoperabilität
 - z. B. HTTP, SMTP
- ► Proprietäre Protokolle:
 - z. B. Skype

Network Byte Order

Bei Netzwerkprotokollen ist für fehlerfreien Datenaustausch immer die Byte-Reihenfolge festgeschrieben (versch. Plattformen).

Big-Endian Zuerst die höherwertigen Bytes, z. B. Motorola 68000

Little-Endian Zuerst niederwertige Bytes, z. B. x86

Middle-Endian Mischform zwischen Big- und Little-Endian

Bi-Endian Reihenfolge umschaltbar, z. B. ARM-Prozessoren

Beispiel: HEX-Zahl: 0x01020304

- Protokolle im Internet: Big-Endian-Format
- ▶ Bei bitserieller Übertragung muss auch die Bitreihenfolge spezifiziert sein (Übertragungsprotokoll)

Big-Endian Zuerst MSB, z. B. I²C

Little-Endian Zuerst LSB, z. B. USB, RS232, Ethernet

Wahl des Transportdienstes

Datenverlust.

- ▶ Toleranz von Datenverlust
- zuverlässige Übertragung
- ▶ VoIP <-> Dateitransfer

Zeitanforderungen

- ► Toleranz nur geringer Verzögerungen
- unkritische Zeitanforderungen
- ▶ VoIP, Spiele <-> Dateitransfer

Datenrate

- Mindestdatenrate, um zu funktionieren
- Nutzung der verfügbaren Datenrate (datenratenelastische Anwendungen)
- Streaming <-> Dateitransfer

Anforderungen an die Transportschicht

Anwendung	Datenverlust	Datenrate	Echtzeit
Dateitransfer	nein	elastisch	nein
E-Mail	nein	elastisch	nein
Videokonferenz	ja	fest	ja < 150 ms
Gespeichertes Video	ja	fest	ja, einige Sek.
Interaktive Spiele	ja	verschieden	ja, wendige ms

Protokollbeispiele

Anwendung	Anwendungsprotokoll	Transportprotokoll
E-Mail	SMTP (RFC2821)	TCP
WWW	HTTP (RFC2616)	TCP
Streaming	HTTP, RTP	TCP oder UDP
VoIP	SIP, RTP oder proprietär	i.d.R. UDP

Zusammenfassung

- Anwendungsschicht läuft nur auf den Endknoten im Netz
- ► Anwendungen nutzen das Socketinterface für UDP/TCP
- ► Client- / Server oder P2P-Architektur möglich
- ➤ Kommunikation erfolgt zwischen den dem Client- und dem Serverprozess über Nachrichtenaustausch (Protokolle)
- ▶ Frei verfügbare oder proprietären Protokolle möglich
- ► HTTP ist ein zentrales (Anwendungs)Protokoll zum Datenaustausch und basiert auf TCP

Literatur

- ► Kurose, Ross "Computernetzwerke", Person
- ► Tanenbaum "Computernetzwerke", Person