Table 1. Overview of domain truncation, CBM substitution and linker studies in LPMOs. An updated version of this table is available online at https://github.com/gcourtade/papers/tree/master/2022/LPMO-modularity-review

Enzyme	Modular	Key findings	References
(regioselectivity,	organization		
substrate	of wild-type (WT) and truncation		
specificity)	variants		
VcLPMO10B	AA10-GbpA2-	Chitin-binding is mainly aided by the CBM	Wong et al 2012
(GbpA)	GbpA3-CBM73	and to a lesser extent by the LPMO	https://doi.org/10.1371/journal.ppat.1002373
(C1-oxidizing,	(WT)	domain.	
chitin)	AA10 AA10-GbpA2-	The LPMO domain is required for mucin binding and GbpA2 and GbpA3 in	
	GbpA3	combination with the LPMO domain are	
	GbpA2-GbpA3	important for intestinal colonization in a	
	CBM73	cholera mouse model.	
ScLPMO10C	AA10-CBM2 (WT)	Loss of cellulose binding affinity for the	Forsberg et al 2014
(C1-oxidizing, cellulose)	AA10	CBM truncated enzyme.	https://doi.org/10.1021/bi5000433
		Reduced cellulose activity of CBM	Forsberg et al 2014
		truncated enzyme.	https://doi.org/10.1073/pnas.1402771111
		NMR spectroscopy study showing	Courtade et al 2018
		structural and dynamic features of a	https://doi.org/10.1074/jbc.ra118.004269
		modular LPMO. The substrate-binding affinity resides with	
		the CBM.	
		Comparison of the catalytic performance of	
		full-length and truncated LPMO revealed	
		that the CBM is beneficial for LPMO activity at lower substrate concentrations and	
		promotes localized and repeated oxidation	
		of the substrate.	Stepnov et al 2022
			https://doi.org/10.1038/s41598-022-10096-0
		Truncation of the CBM leads to elevated	
		H ₂ O ₂ production and decreased enzyme stability (both in absence and presence of	
		cellulose).	
		Release of copper by damaged enzymes	
		promote H ₂ O ₂ production, which increased	
		LPMO catalytic rate followed by	
		inactivation. Observed synergistic effects when	
		combining the two enzyme forms, that are	
		due to a combination of high oxidase	
		activity (i.e., increased LPMO-dependent	
		H ₂ O ₂ production) by the truncated enzyme	
		and efficient productive use of H ₂ O ₂ (i.e., peroxygenase activity) by the full-length	
		enzyme.	
NcLPMO9C	AA9-CBM1 (WT)	K _d measured for phosphoric acid swollen	Borisova et al 2015
(C4-oxidizing	AA9	cellulose (PASC) and xyloglucan showed	https://doi.org/10.1074/jbc.M115.660183
cellulose, cello- oligosaccharides,		weaker binding for CBM truncated NcLPMO9C.	
xyloglucan)		No CBM truncation effect on activity	
		comparison for PASC but a 2-fold	
		reduction in catalytic rate against	
		xyloglucan.	
		Truncation of the CBM reduced the	Laurent et al 2019
		binding affinity and activity but did not	https://doi.org/10.3390/ijms20246219
		affect regioselectivity.	
		The linker is important for the thermal	
		stability.	

CfLPMO10 (C1/C4- oxidizing, cellulose and C1-oxidizing, chitin) TbLPMO10 (C1-oxidizing, cellulose)	AA10-CBM2 (WT) AA10 AA10-CBM2 ^{Tb} AA10-CBM3 AA10-CBM10 AA10-CBM2 (WT) AA10 AA10-CBM2 ^{Cf} AA10-CBM3	Study on deleting and replacing CBMs in two cellulose-oxidizing LPMOs. Introducing other types of cellulose binding CBMs both potentiated and inhibited the LPMO activity. Such effects were both enzyme and substrate specific. Changed ratio between native and oxidized products when replacing the CBM2 to a CBM10 – CBMs can modulate the mode of action of LPMOs. See above (CfLPMO10).	Crouch et al 2016 https://doi.org/10.1074/jbc.M115.702365 Crouch et al 2016 https://doi.org/10.1074/jbc.M115.702365
CjLPMO10A (C1-oxidizing, chitin)	AA10-CBM50 AA10-CBM5-CBM73 (WT) AA10 AA10-CBM5	Removal of both CBMs reduced LPMO activity toward α -chitin compared with the full-length enzyme, but in synergistic reactions with an <i>endo</i> -chitinase equal levels of solubilized products were observed.	Forsberg <i>et al</i> 2016 https://doi.org/10.1074/jbc.M115.700161
		Structural analysis of two similar chitin-binding CBMs with different affinity for crystalline chitin and soluble chitohexaose. The effect of CBMs on chitin oxidation is substrate concentration dependent; at low concentrations, the CBM-containing variants performed better, whereas at high concentrations the differences were less apparent.	Madland <i>et al</i> 2021 https://doi.org/10.1016/j.jbc.2021.101084
HjLPMO9A (C1/C4-oxidizing cellulose)	AA9-CBM1 (WT) AA9-21 amino acid linker fragment AA9 (including three mutated variants; Y24A, Y211A & Y24A_Y211A)	Removal of the CBM, post-translationally by papain hydrolysis, led to a truncated variant with 21 remaining residues of the predicted linker which exhibited reduced binding and activity towards cellulose compared to the full-length enzyme. The X-ray structure revealed that the glycosylated linker forms an integral part covering a hydrophobic patch on the catalytic LPMO domain.	Hansson et al 2017 https://doi.org/10.1074/jbc.m117.799767
		Removing the CBM resulted in reduced binding but did not alter the regioselectivity. However, the effects of point mutations in the catalytic domain became more apparent in the absence of the CBM.	Danneels <i>et al</i> 2019 https://doi.org/10.1002/biot.201800211
TfLPMO10B (C1-oxidizing, cellulose)	AA10-FnIII-CBM2 (WT) AA10 AA10-FnIII AA10-CBM2	Binding is mediated mainly by the CBM and to some extent by the LPMO domain. Although, removal of the FnIII-like domain (called X1) had no effect on binding nor on activity.	Kruer-Zerhusen et al 2017 https://doi.org/10.1186/s13068-017-0925-7
MaLPMO10B (C1/C4- oxidizing, cellulose and C1- oxidizing, chitin)	AA10-CBM2 (WT) AA10	Deletion of the CBM affected the stability of the LPMO but did not affect the ratio of regioselective C1:C4 oxidation.	Forsberg <i>et al</i> 2018 https://doi.org/10.1074/jbc.M117.817130
BcLPMO10A (C1- oxidizing, chitin)	AA10-FnIII-FnIII- CBM5 (WT) AA10 AA10-FnIII AA10-FnIII-FnIII	The enzyme functionality was strongly dependent on the CBM that is responsible for substrate binding and protects the enzyme from inactivation. Truncation of one or two of the FnIIIs (both in combination with the CBM) resulted in essentially the same effect as when only the CBM was removed.	Mutahir et al 2018 https://doi.org/10.1002/1873-3468.13189

BtLPMO10A	AA10-FnIII-FnIII-	The CBM is essential for binding to α - and	Manjeet et al 2019
(C1-oxidizing, chitin)	CBM5 (WT) AA10 CBM5 AA10-FnIII-CBM5 AA10-CBM5 FnIII-FnIII	β-chitin. The FnIII-like domains do not have a role in chitin-binding.	https://doi.org/10.1016/j.ijbiomac.2019.01.183
PalPMO9H (C1/C4-oxidizing cellulose, cello-oligosaccharides, xyloglucan)	AA9-CBM1 (WT) AA9	CBM truncation weakened the binding and affected the catalytic performance on nanofibrils, amorphous and crystalline cellulosic substrates, although the isolated catalytic domain retained activity on cellohexaose. Increasing the substrate concentration reduces the need for a CBM. The truncated variant showed a modified regioselectivity with increased C1-oxidation. Optical and atomic force microscopy of the insoluble fraction revealed that both variants can promote disruption of the cellulose network and the CBM is not essential.	Chalak et al 2019 https://doi.org/10.1186/s13068-019-1548-y
JdLPMO10A (C1-oxidizing, chitin)	AA10-CBM5-GH18 (WT) AA10 AA10-CBM5 CBM5-GH18 GH18	Synergy study that showed intramolecular synergy between an LPMO and a chitinase. Comparison of the chitinolytic efficiency of the full-length enzyme and combinations of truncated variants showed that the full-length enzyme was more efficient compared to any combination of its separately produced domains.	Mekasha <i>et al</i> 2020 https://doi.org/10.1074/jbc.RA120.013040
MtLPMO9B (C1-oxidizing, cellulose)	AA9-CBM1 (WT) AA9	The CBM promote cellulose degradation in the full-length enzyme but did not affect regioselectivity in the truncated variant.	Sun et al 2021 https://doi.org/10.1021/acssuschemeng.1c04100
BcLPMO9C (Unknown regioselectivity, cellulose,)	AA9-CBM1 ⁵⁵ AA linker (WT) AA9-CBM1 ⁴⁴ AA linker AA9-CBM1 ¹⁸ AA linker AA9-CBM1 ⁷ AA linker AA9	Study on linker truncation showed that shortening the linker or removing the CBM reduced substrate binding.	Srivastava et al 2022 https://doi.org/10.1128/spectrum.02697-21