Econ 301 - Microeconomic Theory 2

Winter 2018

Lecture 4: January 15, 2018

Lecturer: Jean Guillaume Forand

Notes By: Harsh Mistry

4.1 Consumer Choice Continued

• We often impose additional assumptions on preferences to yield "nice" (201) indifference curves

Definition 4.1 The preference relation \succeq on \mathbb{R}^2_+ is

- 1. <u>Monotone</u> if for all $x, y \in \mathbb{R}^2_+$ such that $x_1 > y_1$ and $x_2 > y_2$. We have that $x \succ y$
- 2. <u>Convex</u> if for all $x, y \in \mathbb{R}^2_+$ such that $x \sim y$ and for all $0 \le \alpha \le 1$. We have that $\alpha x + (1 \alpha)ygeqx$
- Monotonicity states that bundles containing strictly more goods are strictly preferred by the consumer
 - This rules out "thick" indifference curves
- Convexity ensures "nicely" curved indifference curves.
 - Represents a preference for diversity
 - States that mixture of bundles never make the consumer worse off
- Indifference curves that violate convexity:

- Convexity assumptions induce convenient properties in consumers optimisation problem
 - Ensures that sufficient or "second-order" conditions are satisfied

4.1.1 Utility

In class numbering: 1.1.4

• A utility function is a tool for representing preference relations.

Definition 4.2 A function $u: \mathbb{R}^2_+ \to \mathbb{R}$ is a <u>utility function representing preference relation</u> \succeq if for all $x, y \in \mathbb{R}^2_+$

$$u(x) \le u(y) \iff x \succeq y$$

- Note that $u(x) > u(y) \iff x \succ y$ and $u(x) = u(y) \iff x \sim y$
- "Utility" is not some physical quantity. Meaning is attached to utility numbers only in so that they allow us to reconstruct preference statements

Example 4.3 Suppose that goods 1 and 2 are perfect substitutes

$$x \succeq y \iff x_1 + x_2 \ge y_1 + y_2$$

 $u(x_1, x_2) = x_1 + x_2$ is a utility function representing \succeq , but so is $u(x_1, x_2) = ln((x_n + x_2)^2) + 36$

- Any transformation of utility numbers that maintains their order which represents the same preference relation
- Consider a strictly increasing function

$$f: \mathbb{R} \to \mathbb{R}_+.thenf(u(x)) \ge f(u(y)) \iff u(x)gequ(y) \iff x \succeq y$$

So that $f(u(\cdot))$ is a utility function representing \succeq

- Utility functions represent the ordinal information contained in preferences
- Important question : Can any preference relation be represented by a utility function.
 - No if preferences are not complete.

Proof By contradiction : suppose not $x \succeq y$ and not $y \succeq x$, but u represents \geq . Then either Contradiction $u(x) \geq u(y)$ or $u(y) \geq u(x)$ or $u(x) \geq u(y)$, thus $x \succeq y$ or $y \succeq x$. Contradiction.

- No if preferences are not transitivity
- Yes if preferences are complete, transitive, and satisfy additional continuity assumptions

4.1.2 Optimal consumer choice

In class numbering: 1.1.5

• Consumers choice problem has been reduced to constrained optimization problem:

$$\max_{x_1,x_2>0} u(x_1,x_2)$$
 subject to $p_1x_1 + p_2x_2 \le m$