CENG 280

Formal Languages and Abstract Machines Spring 2021-2022

Homework 1

Derya Tınmaz - 2380947

April 3, 2022

1. (a) $((a \cup b)^*aa(a \cup b)^*bb(a \cup b)^*) \cup ((a \cup b)^*bb(a \cup b)^*aa(a \cup b)^*)$ or $(a \cup b)^*((aa(a \cup b)^*bb) \cup (bb(a \cup b)^*aa))(a \cup b)^*$

(b)
$$M = (K, \sum, \Delta, s, F)$$

 $K = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$
 $\sum = \{a, b\}$
 $s = q_0$
 $F = \{q_4\}$
 $\Delta = \{(q_0, a, q_0), (q_0, b, q_0), (q_0, a, q_1), (q_1, a, q_2), (q_2, a, q_2), (q_2, b, q_2), (q_2, b, q_3), (q_3, b, q_4),$
 $(q_4, a, q_4), (q_4, b, q_4), (q_0, b, q_5), (q_5, b, q_6), (q_6, a, q_6), (q_6, a, q_7), (q_7, a, q_4)\}$


```
(c) M' = (K', \sum, \delta, s', F')
           K' = \{\{q_0\}, \{q_0, q_1\}, \{q_0, q_5\}, \{q_0, q_1, q_2\}, \{q_0, q_5, q_6\}, \{q_0, q_2, q_3, q_5\}, 
           {q_0, q_1, q_6, q_7}, {q_0, q_2, q_3, q_4, q_5, q_6}, {q_0, q_1, q_2, q_4, q_6, q_7}
           \sum_{s'=q_0} = \{a, b\}
           F' = \{\{q_0, q_2, q_3, q_4, q_5, q_6\}, \{q_0, q_1, q_2, q_4, q_6, q_7\}\}\ (the ones that include q_4)
           E(q_0) = \{q_0\}, E(q_1) = \{q_1\}, E(q_2) = \{q_2\}, E(q_3) = \{q_3\}, E(q_4) = \{q_4\}, E(q_5) = \{q_5\}, E(q_6) = \{q_6\}, E(q_7) = \{q_7\}, E(q_8) = \{q_8\}, E(q_8) = \{q_
           \delta(\{q_0\}, a) = E(q_0) \cup E(q_1) = \{q_0, q_1\}
           \delta(\{q_0\}, b) = E(q_0) \cup E(q_5) = \{q_0, q_5\}
           \delta(\{q_0, q_1\}, a) = E(q_0) \cup E(q_1) \cup E(q_2) = \{q_0, q_1, q_2\}
           \delta(\{q_0, q_1\}, b) = E(q_0) \cup E(q_5) \cup \{\} = \{q_0, q_5\}
           \delta(\{q_0, q_5\}, a) = E(q_0) \cup E(q_1) \cup \{\} = \{q_0, q_1\}
           \delta(\{q_0, q_5\}, b) = E(q_0) \cup E(q_5) \cup E(q_6) = \{q_0, q_5, q_6\}
           \delta(\{q_0, q_1, q_2\}, a) = E(q_0) \cup E(q_1) \cup E(q_2) \cup E(q_2) = \{q_0, q_1, q_2\}
           \delta(\{q_0, q_1, q_2\}, b) = E(q_0) \cup E(q_5) \cup \{\} \cup E(q_2) \cup E(q_3) = \{q_0, q_2, q_3, q_5\}
           \delta(\{q_0, q_5, q_6\}, a) = E(q_0) \cup E(q_1) \cup \{\} \cup E(q_6) \cup E(q_7) = \{q_0, q_1, q_6, q_7\}
           \delta(\{q_0, q_5, q_6\}, b) = E(q_0) \cup E(q_5) \cup E(q_6) \cup E(q_6) = \{q_0, q_5, q_6\}
           \delta(\{q_0, q_2, q_3, q_5\}, a) = E(q_0) \cup E(q_1) \cup E(q_2) \cup \{\} \cup \{\} = \{q_0, q_1, q_2\}
           \delta(\{q_0, q_2, q_3, q_5\}, b) = E(q_0) \cup E(q_5) \cup E(q_2) \cup E(q_3) \cup E(q_4) \cup E(q_6) = \{q_0, q_2, q_3, q_4, q_5, q_6\}
           \delta(\{q_0,q_1,q_6,q_7\},a) = E(q_0) \cup E(q_1) \cup E(q_2) \cup E(q_6) \cup E(q_7) \cup E(q_4) = \{q_0,q_1,q_2,q_4,q_6,q_7\}
           \delta(\{q_0, q_1, q_6, q_7\}, b) = E(q_0) \cup E(q_5) \cup \{\} \cup E(q_6) \cup \{\} = \{q_0, q_5, q_6\}
           \delta(\{q_0,q_2,q_3,q_4,q_5,q_6\},a) = E(q_0) \cup E(q_1) \cup E(q_2) \cup \{\} \cup E(q_4) \cup \{\} \cup E(q_6) \cup E(q_7) = \{q_0,q_1,q_2,q_4,q_6,q_7\}
           \delta(\{q_0,q_2,q_3,q_4,q_5,q_6\},b) = E(q_0) \cup E(q_5) \cup E(q_2) \cup E(q_3) \cup E(q_4) \cup E(q_4) \cup E(q_6) \cup E(q_6) \cup E(q_6) = \{q_0,q_2,q_3,q_4,q_5,q_6\}
```

 $\delta(\{q_0, q_1, q_2, q_4, q_6, q_7\}, a) = E(q_0) \cup E(q_1) \cup E(q_2) \cup E(q_2) \cup E(q_4) \cup E(q_6) \cup E(q_7) \cup E(q_4) = \{q_0, q_1, q_2, q_4, q_6, q_7\} \\ \delta(\{q_0, q_1, q_2, q_4, q_6, q_7\}, b) = E(q_0) \cup E(q_5) \cup \{\} \cup E(q_2) \cup E(q_3) \cup E(q_4) \cup E(q_6) \cup \{\} = \{q_0, q_2, q_3, q_4, q_5, q_6\}$

(d) For NFA:

```
 (\{q_0\}, bbabb) \vdash_M (\{q_0\}, babb) \vdash_M (\{q_0\}, abb) \vdash_M (\{q_0\}, bb) \vdash_M (\{q_0\}, b) \vdash_M (\{q_0\}, e) \ (q_0 \text{ is not a final state}) \\ (\{q_0\}, bbabb) \vdash_M (\{q_0\}, babb) \vdash_M (\{q_0\}, abb) \vdash_M (\{q_0\}, bb) \vdash_M (\{q_0\}, b) \vdash_M (\{q_5\}, e) \ (q_5 \text{ is not a final state}) \\ (\{q_0\}, bbabb) \vdash_M (\{q_0\}, babb) \vdash_M (\{q_0\}, abb) \vdash_M (\{q_0\}, bb) \vdash_M (\{q_5\}, b) \vdash_M (\{q_6\}, e) \ (q_6 \text{ is not a final state}) \\ (\{q_0\}, bbabb) \vdash_M (\{q_0\}, babb) \vdash_M (\{q_0\}, abb) \vdash_M (\{q_1\}, bb) \ (q_1 \text{ does not accept b}) \\ (\{q_0\}, bbabb) \vdash_M (\{q_0\}, babb) \vdash_M (\{q_6\}, abb) \vdash_M (\{q_6\}, bb) \vdash_M (\{q_6\}, b) \vdash_M (\{q_6\}, e) \ (q_6 \text{ is not a final state}) \\ (\{q_0\}, bbabb) \vdash_M (\{q_5\}, babb) \vdash_M (\{q_6\}, abb) \vdash_M (\{q_7\}, bb) \ (q_7 \text{ does not accept b}) \\ \text{Since none of them reaches the final state, the } w' \text{ is not accepted.}
```

For DFA:

 $(\{q_0\}, bbabb) \vdash_{M'} (\{q_0, q_5\}, babb) \vdash_{M'} (\{q_0, q_5, q_6\}, abb) \vdash_{M'} (\{q_0, q_1, q_6, q_7\}, bb) \vdash_{M'} (\{q_0, q_5, q_6\}, b) \vdash_{M'} (\{q_0, q_5, q_6\}, e)$ Since $\{q_0, q_5, q_6\}$ is not a final state, the w' is not accepted.

2. (a) First let check if L_1 is regular.

Let L_1 be a regular language. Then there exists an integer $n \ge 1$ such that every string w in L_1 of length at least n can be written as w = xyz with satisfying the following conditions:

 $1.|y| \ge 1$

 $2.|xy| \le n$

 $3.xy^iz \in L_1 \text{ for } \forall i \geq 0$

Let m = n + 1 then $w = a^{n+1}b^n$ where $|w| = (2n + 1) \ge n$

Find xyz such that $|xy| \leq n$

w = aaaa..aabb...b then $x = a^{\alpha}, y = a^{\beta}, z = a^{n+1-\alpha-\beta}b^n$ where $\beta \ge 1$ and $\alpha + \beta \le n$

 xy^iz must be in the language for all $i \ge 0$

If we take i=0, we get $xz=a^{\alpha}a^{n+1-\alpha-\beta}b^n=a^{n+1-\beta}b^n$. Since $(n+1-\beta) \geq n$ this does not satisfy the $a^mb^n, m>n$ rule of the language, by contradiction L_1 is not a regular language.

 L_2 is the complement of the L_1 . Complement of a non-regular language is always a non-regular language. Then L_2 also is a non-regular language. Proof of this by contradiction:

Let L be a non regular language, and let \overline{L} be a regular language. Since \overline{L} is regular $\overline{\overline{L}} = L$ also is regular. Which contradicts our assumption that \overline{L} is non regular. L is regular if and only if \overline{L} is regular.

Therefore, L_2 is not a regular language.

(b) L_4 is a language that consist of strings which starts with n a's followed by same number of n b's. Such as $\{ab, aabb, aaabb, ...\}$

 L_5 is a language that consist of strings which starts with some number of a's followed by some number of b's. Such as $\{e, a, b, ab, aa, bb, aaa, aab, abb, bbb, aaaa, aaab, aabb, abbb, bbb, ...\}$

Therefore, set of strings that are accepted by L_5 includes the set of strings that are accepted by L_4 . (Since L_5 includes all number of a's followed by b's, and L_5 includes only equal number of a's followed by b's)

We can say that L_4 is a subset of L_5 . Therefore their union is L_5 language. $L_4 \cup L_5 = L_5$

We can express L_5 as regular expression a^*b^* .

 $L_5 \cup L_6 = a^*b^* \cup b^*a(ab^*a)^*$

Since a regular language is a language that can be expressed with a regular expression, and we can express $L_4 \cup L_5 \cup L_6$ as $a^*b^* \cup b^*a(ab^*a)^*$, their union is a regular language.