Computer Security Capstone

Supplementary: 5G Security

Computer Security Capstone

Chi-Yu Li

National Yang Ming Chiao Tung University

Mobile Subscriptions

¹ GSA (October 2021).

² A 5G subscription is counted as such when associated with a device that supports New Radio (NR), as specified in 3GPP Release 15, and is connected to a 5G-enabled network.

³ Mainly CDMA2000 EVDO, TD-SCDMA and Mobile WiMAX.

Various Requirements to 5G

Source: Ana Schafer, "Enhanced Mobile Broadband – 5G Innovation for consumers," Qualcomm developer network, 2019.

How to Deliver eMBB?

- Needs: higher throughput, lower latency, greater capacity, better uniformity and complete mobility
- Communication technologies
 - Massive MIMO
 - More spectrum sharing
 - o mmWave
 - Gigabit LTE
 - Device-centric mobility

How to Deliver MCC?

Needs: faster than humans can think; failure is not an option

- Enhanced ultra-reliable, low-latency communication (eURLLC)
 - Scalable slot duration down to 125 us
 - Efficient multiplexing with scheduled traffic
 - Spectrum sharing allows for more-predictable QoS
 - Redundant links to mission-critical devices with multi-connectivity

How to Deliver Massive IoT?

 Needs: more efficiently connect the wide variety of IoT devices and services

- Communication technologies
 - Upon the foundation of NB-IoT
 - More efficient uplink transmission scheme for IoT with RSMA
 - WAN-managed multi-hop mesh to extend network coverage

5G Revolution

- Service-based Core: delivering multi-network slicing, multi-level of services and multi-connectivity network capabilities
 - Based on virtualization and SDN
 - flexibility, agility and economics of scale
- Addressing many threats faced in today's 4G/3G/2G
 - E.g., new mutual authentication capabilities
- However, adopting new network technologies introduces new potential threats
 - Increasing attack surface

Security in 5G: Threats Everywhere

- **Device Threats** Bots
- DDoS
- MitM Attacks
- Firmware Hacks
- Device
- Tempering
- Malware
- Sensor Susceptibility

Edge Network Threats

Threats

MitM Attacks

Eavesdropping

Jamming

- MEC server
- vulnerabilities Rouge Nodes
- Authentication Issues
- Side Channel Attacks
- Improper Access

- Backhaul Threats
- DDoS Attacks Control and
- user plane sniffing
- MEC Backhaul

Sniffing

attacks

modification

Flow

- Control

- **5G Core Network Threats**
- Software issues
- API vulnerabilities
- Networking Slicing issues
- DoS and DDoS attacks
- Improper Access Control
- Virtualization issues

立陽明交通大學

5G Security Highlights

- New attack surface: changes from legacy cellular
 - Inter-working between multiple technologies and multiple generations, even non-trusted environments
 - User device proliferation
 - Moving intelligence from the core to the edge of networks
 - Network virtualization
 - Shift from telecom network protocols to IP-based protocols
 - Convergence of multiple technologies
 - More open platform/technology stacks with software from more vendors

5G Security Highlights (cont.)

- New attack surface: new innovations and verticals
 - Cloud RAN, vRAN, O-RAN
 - Service based core network architecture
 - SDN, NFV, network slicing, etc.
 - Cloud and edge computing
 - Limits of standards-specified protection

5G Security Evolution

- Main document: 3GPP TS 33.501
 - Security architecture and procedures for 5G system

5G Security in 3GPP R15

- Security for vulnerability resolution from legacy security
 - Subscriber ID privacy: ID is never disclosed over the air
 - Increased home control: Home network makes final auth. decision
 - Security edge protection proxy (SEPP): security between two networks

Legacy 4G Security

Mobile Device

4G BS

Base Station

SS

MME

HSS/AuC

Mobility Mgmt. Home Sub. Server
Entity Auth. Center

1 User Authentication

Non-Access Stratum (NAS) Security

3 Access Stratum (AS) Security

Legacy 4G Security (Cont.)

Legacy 4G Security (Cont.)

Legacy 4G Security (Cont.)

4G Authentication Framework

EPS-AKA: EPS-Authentication and Key Agreement

storing a cryptographic key shared with the HN

USIM (Universal Subscriber Identity Module)

MME (Mobility Management Entity)

- Storing user credentials
- Authenticating UE

4G EPS-AKA Procedure

4G EPS-AKA Procedure (cont.)

4G EPS-AKA Procedure (cont.)

5G Security in 3GPP R15

- Security for vulnerability resolution from legacy security
 - Subscriber ID privacy: ID is never disclosed over the air
 - Increased home control: Home network makes final auth. decision
 - Security edge protection proxy (SEPP): security between two networks

- Security for new architecture and functions
 - Unified authentication framework: 3GPP and non-3GPP access networks
 - Service based architecture (SBA) security

5G Unified Auth. Framework

- Three authentication methods
 - 5G-AKA & EAP-AKA'
 - Trust model: shared symmetric key
 - EAP-TLS
 - Limited use cases: private networks and IoT environments
 - Trust model: public key certificate
- Why EAP (Extensible Authentication Protocol)?
 - Allowing the use of different types of credentials besides the ones commonly used in mobile networks

5G Unified Auth. Framework

5G Subscriber ID Privacy

SUPI: Subscription Permanent Identifier

SUCI: Subscription Concealed Identifier

GUTI: Globally Unique Temporary UE Identifier

5G Subscriber ID Privacy

5G Subscriber ID Privacy

5G-AKA Procedure

5G Security in 3GPP R15

- Security for vulnerability resolution from legacy security
 - Subscriber ID privacy: ID is never disclosed over the air
 - Increased home control: Home network makes final auth. decision
 - Security edge protection proxy (SEPP): security between two networks

- Security for new architecture and functions
 - Unified authentication framework: 3GPP and non-3GPP access networks
 - Service based architecture (SBA) security

5G Security in 3GPP R15

- Security for vulnerability resolution from legacy security
 - Subscriber ID privacy: ID is never disclosed over the air
 - Increased home control: Home network makes final auth. decision
 - Security edge protection proxy (SEPP): security between two networks

- Security for new architecture and functions
 - Unified authentication framework: 3GPP and non-3GPP access networks
 - Service based architecture (SBA) security

5G SBA (Service-based Architecture) Networking & Mobile Systems Lab

Outpose of the service of the ser

Extensibility: light-weighted service-based interface

Modularity and Reusability: easily invoked by other services

Openness: easily exposed to external users

5G SBA: NFs Security

- Direct communication
 - Transport-layer protection (e.g., TLS)
 - Token-based authorization (OAuth 2.0)

Discovery of NF B by local configuration or via NRF

- Indirection communication via SCP
 - Implicit authentication
 - Token-based authorization (OAuth 2.0)

Direct discovery or delegation of discovery to SCP

5G Security in 3GPP R16

- Security for new essential functions and services
 - Network slices
 - Non-3GPP access
 - Non-public network
 - Time Sensitive Communications (TSC) service
 - Integrated Access and Backhaul (IAB)
 - Ultra-Reliable and Low Latency Communications (URLLC) service

5G Security in 3GPP R17

- Security for edge and management functions
 - Edge computing
 - Multicast/broadcast service
 - Message service for Massive IoT (MIoT)
 - Network Data Analytics Function (NWDAF)

Certifications/Audit Enhancement Networking & Mobile Systems Lab Lab Lab

- NESAS (Network Equipment Security Assurance Scheme) jointly defined by GSMA and 3GPP
 - Security evaluation of mobile network equipment
- Benefits for vendors
 - Accreditation from the world's leading mobile industry representative body
 - Offers a uniform approach to security audits
 - Avoding fragmentation of requirements in different markets
- Benefits for operators
 - Rigorous security standard requiring a high level of vendor commitment
 - Peace of mind for appropriate security measures and practices
 - No need to spend money and time conducting individual vendor audits

- 5G security designs from 3GPP standard
 - (R15) Security for vulnerability resolution and new architecture/functions
 - (R16) Security for new essential functions and services
 - (R17) Security for edge and management functions
- NESAS: Security for mobile network equipment
- However, any of design flaws, implementation bugs, and operation slips may cause security issues to a system
 - Especially for new architecture/functions/services

Conclusion (cont.)

- So, more security efforts are required beyond the designs
 - Threat prevention
 - Anomaly detection
 - Attack response
 - Loss recovery

Thanks for Your Attention!

Computer Security Capstone

- 3GPP TS 23.501, "System architecture for the 5G System (5GS)."
- 3GPP TS 33.501, "Security architecture and procedures for 5G system."
- 3GPP TS 33.535, "Authentication and Key Management for Applications (AKMA) based on 3GPP credentials in the 5G System (5GS)."
- 3GPP TS 33.813, "Study on security aspects of network slicing enhancement."
- "Ericsson Mobility Report," Ericsson, Nov. 2021
- Ana Schafer, "Enhanced Mobile Broadband 5G Innovation for consumers?" Qualcomm developer network, 2019
- "A Comparative Introduction to 4G and 5G Authentication," CableLabs, 2019.
- "5G Security when Roaming Part 2," Mpirical, 2022. [Online]. Available: https://mpirical.com/blog/5g-security-when-roaming-part-2
- IETF RFC 6749, "The OAuth 2.0 Authorization Framework."