Geometry of the limit sets of linear switched systems

Philippe Jouan (and Moussa Balde, Université de Dakar)

Université de Rouen Laboratoire de Mathématiques R. Salem

> Topolò May 30, 2011

Table of contents

The system under consideration

The omega-limit sets

Regular inputs

Chaotic inputs

Elements of proof

$$\dot{x} = B_{u(t)} x$$

where

- $B_1, \ldots, B_p \in \mathcal{M}(d; \mathbb{R})$
- The input $u: [0, +\infty[\longmapsto \{1, \dots, p\}]$ is piecewise constant and right continuous.

$$B_i^T P + PB_i \leq 0$$
 $i = 1, \dots, p$

Linear Switched Systems

$$\dot{x} = B_{u(t)}x$$

where

- $B_1, \ldots, B_p \in \mathcal{M}(d; \mathbb{R})$
- The input $u: [0, +\infty[\longmapsto \{1, \dots, p\}]$ is piecewise constant and right continuous.

Assumption

The matrices B_1, \ldots, B_p share a common quadratic Lyapunov function P (i.e. P is a symmetric, positive, definite matrix), **non strict in general**:

$$B_i^T P + PB_i \leq 0$$
 $i = 1, \ldots, p$.

The system under consideration II

We can assume

$$P = Id$$

hence

$$B_i^T + B_i \leq 0$$
 $i = 1, \ldots, p$.

The set V_i

We set
$$\mathcal{V}_i = \{x \in \mathbb{R}^d; \; orall t \in \mathbb{R} \; \left\| e^{tB_i} x
ight\| = \|x\| \}$$

Lemma

For each i, $\mathbb{R}^d = \mathcal{V}_i \oplus \mathcal{V}_i^{\perp}$ and

- V_i and V_i^{\perp} are B_i -invariant subspaces
- $B_i \mid_{\mathcal{V}_i}$ is skew-symmetric (in a suitable orthonormal basis)
- B_i |_v⊥ is Hurwitz

The system under consideration II

We can assume

$$P = Id$$

hence

$$B_i^T + B_i \leq 0$$
 $i = 1, \ldots, p$.

The set V_i

We set
$$V_i = \{x \in \mathbb{R}^d; \ \forall t \in \mathbb{R} \ \left\| e^{tB_i} x \right\| = \|x\| \}$$

Lemma

For each i, $\mathbb{R}^d = \mathcal{V}_i \oplus \mathcal{V}_i^{\perp}$ and

- V_i and V_i^{\perp} are B_i -invariant subspaces
- $B_i \mid_{\mathcal{V}_i}$ is skew-symmetric (in a suitable orthonormal basis)
- $B_i \mid_{\mathcal{V}^{\perp}}$ is Hurwitz

The system under consideration II

We can assume

$$P = Id$$

hence

$$B_i^T + B_i \leq 0$$
 $i = 1, \ldots, p$.

The set V_i

We set
$$V_i = \{x \in \mathbb{R}^d; \ \forall t \in \mathbb{R} \ \left\| e^{tB_i} x \right\| = \|x\| \}$$

Lemma

For each i, $\mathbb{R}^d = \mathcal{V}_i \oplus \mathcal{V}_i^{\perp}$ and

- V_i and V_i^{\perp} are B_i -invariant subspaces.
- $B_i \mid_{\mathcal{V}_i}$ is skew-symmetric (in a suitable orthonormal basis)
- $B_i \mid_{\mathcal{V}^{\perp}}$ is Hurwitz

In \mathbb{R}^3 with $\{x, y, z\}$ coordinates

$$B_1 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \qquad \mathcal{V}_1 = \{x = 0\}.$$

$$B_2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \mathcal{V}_2 = \{x = y = 0\}.$$

$$B_i \mid_{\mathcal{V}_i} = 0$$
 $i = 1, \ldots, p$

In \mathbb{R}^3 with $\{x, y, z\}$ coordinates

$$\mathcal{B}_1 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \qquad \mathcal{V}_1 = \{x = 0\}.$$

$$B_2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \mathcal{V}_2 = \{x = y = 0\}.$$

In the paper: On the convergence of linear switched systems (2011), U. Serres, J.C. Vivalda, and P. Riedinger have studied the case where

$$B_i \mid_{\mathcal{V}_i} = 0$$
 $i = 1, \ldots, p$.

Another important set

$$\mathcal{K}_{i} = \ker(B_{i}^{T} + B_{i}) = \{x; \ \frac{d}{dt}_{|t=0} \left\| e^{tB_{i}} x \right\|^{2} = 0\}$$

 \mathcal{K}_i is not B_i -invariant in general.

The set \mathcal{V}_i is related to \mathcal{K}_i by:

$$V_i \subseteq \mathcal{K}_i$$

$$\mathcal{V}_i = \{x; \ \forall t \in \mathbb{R} \ e^{tB_i} x \in \mathcal{K}_i \}$$

Another important set

$$\mathcal{K}_{i} = \ker(B_{i}^{T} + B_{i}) = \{x; \ \frac{d}{dt}_{|t=0} \left\| e^{tB_{i}} x \right\|^{2} = 0\}$$

 \mathcal{K}_i is not B_i -invariant in general.

The set V_i is related to K_i by:

$$V_i \subseteq K_i$$

$$\mathcal{V}_i = \{x; \ \forall t \in \mathbb{R} \ e^{tB_i} x \in \mathcal{K}_i\}$$

B Hurwitz does not imply $K = \{0\}$.

$$B = \begin{pmatrix} -2 & -1 \\ 1 & 0 \end{pmatrix}$$
 is Hurwitz.

$$B^T + B = \begin{pmatrix} -4 & 0 \\ 0 & 0 \end{pmatrix}$$
 $\mathcal{K} = \{x = 0\}$

So for

Ελαπρι

B Hurwitz does not imply $K = \{0\}$.

$$B = \begin{pmatrix} -2 & -1 \\ 1 & 0 \end{pmatrix}$$
 is Hurwitz.

$$B^T + B = \begin{pmatrix} -4 & 0 \\ 0 & 0 \end{pmatrix}$$
 $\mathcal{K} = \{x = 0\}$

So for

$$B = \begin{pmatrix} -2 & -1 & & \\ 1 & 0 & & \\ & & 0 & -1 \\ & & 1 & 0 \end{pmatrix} \text{ we have } \begin{cases} \mathcal{V} = \{x_1 = x_2 = 0\} \\ \mathcal{K} = \{x_1 = 0\} \end{cases}$$

The switching law

The **input**, or **switching signal** u(t) is characterized by the switching times $(a_n)_{n\geq 0}$ and the values u_n it takes on the intervals $[a_n, a_{n+1}]$.

The solution to the equation

$$\dot{x} = B_{u(t)}x$$

is

$$t \longmapsto \Phi_u(t)x$$

where

$$\Phi_{u}(t) = e^{tB_{u_n}}e^{(a_n-a_{n-1})B_{u_{n-1}}}\dots e^{(a_1-a_0)B_{u_0}}$$

The ω -limit sets

 $\Omega_u(x)$ stands for the set of ω -limit points of the trajectory

$$t \longmapsto \Phi_u(t)x$$

Proposition

The ω -limit set $\Omega(x)$ is a compact and **connected** subset of a sphere

$$\mathcal{S}_r = \{x; \ \|x\| = r\}$$

for some $r \ge 0$.

1. If for $t \in [a_n, a_{n+1}]$ we have

$$\|\Phi_u(t)x\| = \|\Phi_u(a_n)x\|$$

then
$$\Phi_u(t)x \in \mathcal{V}_{u_n}$$
 for $t \in [a_n, a_{n+1}[$.

$$(\mathcal{V}_1 \cup \mathcal{V}_2) \bigcap \mathcal{S}$$

Two features

1. If for $t \in [a_n, a_{n+1}]$ we have

$$\|\Phi_u(t)x\| = \|\Phi_u(a_n)x\|$$

then
$$\Phi_u(t)x \in \mathcal{V}_{u_n}$$
 for $t \in [a_n, a_{n+1}[$.

2. If $\Omega_u(x)$ meets \mathcal{V}_1 and \mathcal{V}_2 on a sphere \mathcal{S}_r and does not leave $\mathcal{V}_1 \cup \mathcal{V}_2$, then $\Omega_u(x)$ is a connected component of

$$(\mathcal{V}_1 \cup \mathcal{V}_2) \bigcap \mathcal{S}_r$$

Non Chaotic inputs

Definition

The input u is said to be **chaotic** if there exists a sequence $[t_k, t_k + s]$ of intervals s.t.

- 1. $t_k \longrightarrow_{k \to +\infty} +\infty$ and s > 0.
- 2. For all $\epsilon > 0$ there exists k_0 such that for all $k \geq k_0$, the input u is constant on no subinterval of $[t_k, t_k + s]_{k \geq 0}$ of length greater than or equal to ϵ .

If not u is called a **non chaotic input**.

Proposition

If the input is not chaotic then

$$\forall x \in \mathbb{R}^d$$
 $\Omega_u(x) \subseteq \bigcup_{i=1}^p \mathcal{V}$

Non Chaotic inputs

Definition

The input u is said to be **chaotic** if there exists a sequence $[t_k, t_k + s]$ of intervals s.t.

- 1. $t_k \longrightarrow_{k \to +\infty} +\infty$ and s > 0.
- 2. For all $\epsilon > 0$ there exists k_0 such that for all $k \geq k_0$, the input u is constant on no subinterval of $[t_k, t_k + s]_{k \geq 0}$ of length greater than or equal to ϵ .

If not u is called a **non chaotic input**.

Proposition

If the input is not chaotic then

$$\forall x \in \mathbb{R}^d$$
 $\Omega_u(x) \subseteq \bigcup_{i=1}^p \mathcal{V}_i$

Regular inputs

Definition

The input $u=(a_n,u_n)_{n\geq 0}$ satisfies the assumption H(i) if there exist a subsequence $(a_{n_k})_{k\geq 0}$ and $\delta>0$ such that

$$\forall k \geq 0$$
 $u_{n_k} = i$ and $a_{n_{k+1}} - a_{n_k} \geq \delta$.

Proposition

If the input u satisfies the assumption H(i) then:

$$\forall x \in \mathbb{R}^d \qquad \Omega_u x \bigcap \mathcal{V}_i \neq \emptyset.$$

Definition

An input u is said to be **regular** if it is non chaotic and satisfies the assumption H(i) for i = 1, ..., p.

Regular inputs

Definition

The input $u=(a_n,u_n)_{n\geq 0}$ satisfies the assumption H(i) if there exist a subsequence $(a_{n_k})_{k\geq 0}$ and $\delta>0$ such that

$$\forall k \geq 0 \qquad u_{n_k} = i \text{ and } a_{n_{k+1}} - a_{n_k} \geq \delta.$$

Proposition

If the input u satisfies the assumption H(i) then:

$$\forall x \in \mathbb{R}^d \qquad \Omega_u x \bigcap \mathcal{V}_i \neq \emptyset.$$

Definition

An input u is said to be **regular** if it is non chaotic and satisfies the assumption H(i) for i = 1, ..., p.

Regular inputs

Definition

The input $u=(a_n,u_n)_{n\geq 0}$ satisfies the assumption H(i) if there exist a subsequence $(a_{n_k})_{k\geq 0}$ and $\delta>0$ such that

$$\forall k \geq 0$$
 $u_{n_k} = i$ and $a_{n_{k+1}} - a_{n_k} \geq \delta$.

Proposition

If the input u satisfies the assumption H(i) then:

$$\forall x \in \mathbb{R}^d \qquad \Omega_u x \bigcap \mathcal{V}_i \neq \emptyset.$$

Definition

An input u is said to be **regular** if it is non chaotic and satisfies the assumption H(i) for i = 1, ..., p.

Main result I

A geometric condition

(C) The sets \mathcal{V}_i are said to satisfy the condition (C) if for r > 0, no connected component of the set $(\bigcup_{i=1}^p \mathcal{V}_i) \bigcap \mathcal{S}(r)$ intersects all the \mathcal{V}_i 's.

Theorem

If Condition (C) is satisfied, then for every regular input u the switched system is asymptotically stable.

Main result I

A geometric condition

(C) The sets \mathcal{V}_i are said to satisfy the condition (C) if for r > 0, no connected component of the set $(\bigcup_{i=1}^p \mathcal{V}_i) \bigcap \mathcal{S}(r)$ intersects all the \mathcal{V}_i 's.

Theorem

If Condition (C) is satisfied, then for every regular input u the switched system is asymptotically stable.

Main result II

Theorem

Under the hypothesis

$$\bigcap_{i=1}^p \mathcal{V}_i = \{0\},\,$$

the switched system is asymptotically stable for every regular input as soon as one of the following conditions hold:

- 1. there exists i such that dim $V_i = 0$
- 2. there exists i such that dim $V_i = 1$, and $V_i \subseteq V_j \Longrightarrow V_i = V_j$
- 3. p = 2
- 4. p > 2, and $\dim(\sum_{i=1}^{p} V_i) > \sum_{i=1}^{p} \dim(V_i) p + 1$

In particular in the plane, that is for d=2, at least one of these conditions is satisfied as soon as $V_i \neq \mathbb{R}^2$ for $i=1,\ldots,p$.

Chaotic inputs

For general inputs consider

•
$$\mathcal{K}_i = \ker(B_i^T + B_i) = \{x; \frac{d}{dt|_{t=0}} \|e^{tB_i}x\|^2 = 0\}$$

• $J_u \subseteq \{1, 2 \dots, p\}$

$$i \in J_u \iff m\{t \geq 0; \ u(t) = i\} = +\infty.$$

• $F_u = \bigcup_{i \in J_u} \mathcal{K}_i$.

Proposition

For all $x \in \mathbb{R}^d$, the set $\Omega_u(x)$ is included in F_u and moreover verifies

$$\forall i \in J_u$$
 $\Omega_u(x) \bigcap \mathcal{K}_i \neq \emptyset$

Theorem 4

With the previous notations, it is assumed that $\bigcap_{i \in J_u} \mathcal{K}_i = \{0\}.$

Then the switched system is asymptotically stable, as soon as for r > 0 no connected component of

$$(\cup_{i\in J_u}\mathcal{K}_i)\bigcap \mathcal{S}(r)$$

intersects all the K_i 's for $i \in J_u$. This condition is verified if

- 1. the cardinality $|J_u|$ of J_u is 2;
- 2. $|J_u| > 2$, and $\dim(\sum_{i \in J_u} \mathcal{K}_i) > \sum_{i \in J_u} \dim(\mathcal{K}_i) q + 1$;
- 3. there exists $i \in J_u$ such that dim $K_i = 0$;
- 4. there exists $i \in J_u$ such that dim $K_i = 1$, and for $j \in J_u$, $K_i \subseteq K_j \Longrightarrow K_i = K_j$.

In particular for d=2, at least one of these conditions is satisfied as soon as $\mathcal{K}_i \neq \mathbb{R}^2$ for all $i \in J_u$.

Stability of pairs of Hurwitz matrices

Theorem 5

Let B_1 and B_2 be two $d \times d$ Hurwitz matrices, assumed to share a common, but not necessarily strict, Lyapunov matrix P. Then the switched system is asymptotically stable for any input as soon as

$$\mathcal{K}_1 \bigcap \mathcal{K}_2 = \{0\}$$

where $K_i = \ker ((QB_iQ^{-1})^T + QB_iQ^{-1})$ for i = 1, 2, and Q is the symmetric positive square root of P.

The lift of the problem

• The solution to the equation

$$\dot{x} = B_{u(t)}x$$
 is $t \longmapsto \Phi_u(t)x$

where

$$\Phi_u(t) = e^{tB_{u_n}}e^{(a_n-a_{n-1})B_{u_{n-1}}}\dots e^{(a_1-a_0)B_{u_0}}$$

ullet We can consider the ω -limit set Ω_u of the matrix trajectory

$$t \longmapsto \Phi_{u}(t)$$

The lift of the problem

The solution to the equation

$$\dot{x} = B_{u(t)}x$$
 is $t \longmapsto \Phi_u(t)x$

where

$$\Phi_{u}(t) = e^{tB_{u_n}}e^{(a_n-a_{n-1})B_{u_{n-1}}}\dots e^{(a_1-a_0)B_{u_0}}$$

• We can consider the ω -limit set Ω_u of the matrix trajectory

$$t \longmapsto \Phi_u(t)$$

The lift of the problem II

Proposition

• The set Ω_u is a compact and connected subset of $K = B'(0,1) \subset \mathcal{M}(d;\mathbb{R})$, and for all $x \in \mathbb{R}^d$ the set $\Omega_u(x)$ is equal to:

$$\Omega_u(x) = \{Mx; M \in \Omega_u\} = \Omega_u x.$$

ullet Moreover there exists a symmetric nonnegative matrix S_u

$$\forall M, N \in \Omega_u$$
 $M^T M = N^T N = S_u^2$

• The switched system is asymptotically stable if and only if $S_{ii} = 0$

The lift of the problem II

Proposition

• The set Ω_u is a compact and connected subset of $K = B'(0,1) \subset \mathcal{M}(d;\mathbb{R})$, and for all $x \in \mathbb{R}^d$ the set $\Omega_u(x)$ is equal to:

$$\Omega_u(x) = \{Mx; M \in \Omega_u\} = \Omega_u x.$$

• Moreover there exists a symmetric nonnegative matrix S_u

$$\forall M, N \in \Omega_u$$
 $M^T M = N^T N = S_u^2$.

• The switched system is asymptotically stable if and only if $S_{ii} = 0$

The lift of the problem II

Proposition

• The set Ω_u is a compact and connected subset of $K = B'(0,1) \subset \mathcal{M}(d;\mathbb{R})$, and for all $x \in \mathbb{R}^d$ the set $\Omega_u(x)$ is equal to:

$$\Omega_u(x) = \{Mx; M \in \Omega_u\} = \Omega_u x.$$

• Moreover there exists a symmetric nonnegative matrix S_u

$$\forall M, N \in \Omega_u$$
 $M^T M = N^T N = S_u^2$.

• The switched system is asymptotically stable if and only if $S_u = 0$

The lift of the problem III

Theorem

• Let S(t) be the symmetric positive square root of $\Phi_u(t)^T \Phi_u(t)$. Then

$$\Phi_u(t)^T \Phi_u(t) = S(t)^2 \searrow_{t \mapsto +\infty} S_u^2$$

• There exists a compact and connected subset of \mathcal{O}_u of SO_d such that

$$\Omega_u = \mathcal{O}_u S_u$$

The matrix S_u can be computed using a convergent subsequence of $\Phi_u(t)$.

The lift of the problem III

Theorem

• Let S(t) be the symmetric positive square root of $\Phi_u(t)^T \Phi_u(t)$. Then

$$\Phi_u(t)^T \Phi_u(t) = S(t)^2 \setminus_{t \mapsto +\infty} S_u^2$$

• There exists a compact and connected subset of \mathcal{O}_u of SO_d such that

$$\Omega_u = \mathcal{O}_u S_u$$

The matrix S_u can be computed using a convergent subsequence of $\Phi_u(t)$.

The lift of the problem III

Theorem

• Let S(t) be the symmetric positive square root of $\Phi_u(t)^T \Phi_u(t)$. Then

$$\Phi_u(t)^T \Phi_u(t) = S(t)^2 \setminus_{t \mapsto +\infty} S_u^2$$

• There exists a compact and connected subset of \mathcal{O}_u of SO_d such that

$$\Omega_u = \mathcal{O}_u \mathcal{S}_u$$

The matrix S_u can be computed using a convergent subsequence of $\Phi_u(t)$.

Example

$$B_1 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \ B_2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \ B_3 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Here

$$\bigcap_{i} \mathcal{V}_{i} = \{0\} \quad \text{and} \quad \bigcup_{i} \mathcal{V}_{i} = \{x = 0\}$$

The input $u=(a_n,u_n)_{n\geq 0}$ is defined by $a_n=n\frac{\pi}{2}$ and

$$u_{4k} = u_{4k+2} = 1$$
 $u_{4k+1} = 2$ $u_{4k+3} = 3$.

$$\Phi_u(4k\pi)$$
 tends to $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ as k tends to $+\infty$.

The matrix S_u is therefore equal to $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

We know that $\Omega_u = \mathcal{O}_u S_u$ for a certain subset \mathcal{O}_u of SO_d , so

$$\Omega_u(x) = \{0\} \iff x_2 = 0$$

Convergence on intervals

Consider

- $(t_k)_{k\geq 0}$ with $t_k>0$ and $t_k \uparrow \uparrow_{k\mapsto +\infty} +\infty$
- s > 0
- The sequence $(\Phi_k)_{k\geq 0}$ of functions from [0,s] into $\mathcal{M}(d,\mathbb{R})$ defined by

$$\Phi_k(t) = \Phi_u(t_k + t).$$

Proposition

There exists a subsequence of $(\Phi_k)_{k\geq 0}$ that converges uniformly to a continuous function

$$t \longmapsto \Psi(t)$$

from [0, s] into Ω_u .

Proof: use Ascoli's Theorem

Open problems

- Necessary and sufficient condition of stability for all inputs for pairs of Hurwitz matrices.
- Rate of convergence.
- Extension to nonlinear switched systems

- M. Balde, Ph. Jouan *Geometry of the limit sets of linear switched systems* SIAM J. Control Optim. (2011).
- J.P. Hespanha Uniform stability of switched linear systems: Extensions of LaSalle's invariance principle Trans. Aut. Cont. (2004).
- P. Riedinger, M. Sigalotti, J. Daafouz On the algebraic characterization of invariant sets of switched linear systems, Automatica (2010).
- U. Serres, J.C. Vivalda, P. Riedinger, On the convergence of linear switched systems, IEEE Trans. Automatic Control (2011).