Epäteoreettisen elektroniikan perusteet

Operaatiovahvistimet

Differentiaalinen jännite

Differentiaalivahvistin

Operaatiovahvistin

Nollaaja/hämääjä -malli

Malli toimii vain, kun vahvistin on lineaarisella alueella!

Puskuri

Summaava vahvistin (mikseri)

Operaatiovahvistimen epäideaalisuuksia

- Tulojen ottama virta (input bias current)
 - Ideaalisesti 0
 - Tyypillisesti:
 BJT: ~ 10 nA, JFET: ~ 10 pA, MOSFET: < 1 pA
- Tulovirtojen ero (input offset current)
 - Ideaalisesti 0
 - Tyypillisesti ~ 1/10 bias-virrasta
- Tulojen jännite-ero, jolla lähtöjännite = 0 (input offset voltage)
 - Ideaalisesti 0
 - Tyypillisesti ~ 1 mV
 - Joissakin operaatiovahvistimissa mahdollisuus nollata (offset null)
 - Muuttuu lämpötilan ja ajan mukana

Operaatiovahvistimen epäideaalisuuksia

- Yhteismuotoisen jännitteen vaimennussuhde (common mode rejection ratio, CMRR)
 - Ideaalisesti ääretön
 - Tyypillisesti esim. 85 dB = 18000
- Lähdön muutosnopeus (output slew rate)
 - Ideaalisesti ääretön
 - Tyypillisesti 1 ... 100 V/μs

Yksipuolinen jännitesyöttö

Komparaattorikäyttö

Komparaattori hystereesillä

Operaatiovahvistimien perusteet.

Differentiaalisen jännitteen käsite:

Kaksi jännitelähdettä, molempien miinuspää maassa. Kun U_1 ja U_2 erisuuret, syntyy yläpäiden välille erojännite U_d (differentiaalinen jännite).

Tämä voidaan korvata kahden jännitelähteen kytkennällä, U_d ja U_{CM} (CM = Common Mode).

Ajattelu sinänsä toimii jännitteiden arvoista riippumatta, mutta operaatiovahvistimien yhteydessä yleensä $U_1 \approx U_2$, jolloin $U_d << U_{CM}$.

Vahvistaa vain tulonapojen erojännitettä $\mathbf{U}_{\rm d}$. Ideaalitapauksessa yhteismuotoinen jännite ei vaikuta lähtöjännitteeseen mitenkään.

Vaikka tulojännite on differentaalinen, lähtöjännite on "normaali" maata vastaan mittattava jännite, mutta kaksipäinen, eli voi olla myös negatiivinen maahan nähden.

Tulonapojen merkinnät eivät ole vaatimus, ne kertovat nimellissuunnan: kun +napa on positiivisempi kuin -napa, lähtöjännite on positiivinen. Jos +napa on negatiivisempi, lähtöjännitekin on negatiivinen.

Operaatiovahvistin = differentiaalivahvistin.

Vaatii kaksipuolisen jännitesyötön, muuten lähtöjännite ei voi mennä negatiiviseksi.

Piirin analysoinnin kannalta riittää, kun kuvittelee nollaajan olemassaolon, hämääjän voi unohtaa.

Käytännössä hämääjä tekee kaikki työt, eli hämää katsojan luulemaan, että tulonapojen välillä on nollaaja. Oikeasti mitään nollaajaa ei ole.

Vaikka rakennuspalikkana on differentiaalinen vahvistin, koko kytkentä on perinteinen vahvistin, eli myös tulojännite on yksipuolinen (maata vastaan).

Lähtöjännite riippuu tulojännitteestä lineaarisesti, mutta mikä on kertoimen k arvo? Se johdetaan seuraavaksi nollaaja/hämääjä-mallia käyttäen.

Plus-napa on maassa, joten nollaajan ansioista myös miinus-navan jännite on aina 0 V, eli miinus-napaan syntyy virtuaalinen maa. Tulojännite näkyy siis sellaisenaan vastuksen R_1 yli. Tämä jännnite aiheuttaa vastuksessa R_1 virran I.

Koska nollaajan takia miinusnapaan ei mene virtaa, vastuksen R_1 läpi tuleva virta I täytyy lähteä kokonaisuudessaan vastukseen R_F . Tämä virta aiheuttaa vastuksen R_F napojen välille jännitteen U_F .

Tämä jännite on virtuaalisen maapisteen (miinusnavan) ja lähtönavan välillä, eli samalla välillä kuin $\rm U_{o}$, mutta vastakkaissuuntaisena, eli $\rm U_{o}$ = - $\rm U_{F}$

Ratkaisemalla molemmista yhtälöistä I ja asettamalla ne yhtäsuuriksi, saadaan ratkaistua vahvistuskertoimen k arvo.

Havaintoja:

- Vahvistuskerroin riippuu ainoastaan vastuksista, ei mistään operaatiovahvistimen parametrista.
- Vahvistuskerrointa voidaan säätää hyvinkin tarkasti ja laajoissa rajoissa valitsemalla vastukset sopivasti.
- Vahvistuskerroin on aina negatiivinen, eli tämä on vaiheenkääntävä vahvistin.
- Tuloimpedanssi = R_1

Vahvistuskerroin voidaan johtaa vastaavalla tavalla nollaajaa hyväksikäyttäen: U_i näkyy R_1 :n yli, aiheuttaa virran, sama virta tulee R_F :n läpi, aiheuttaa jännitteen, lähtöjännite on näiden kahden jännitteen summa.

Havaintoja:

- Vahvistuskerroin on aina vähintään 1.
- Tuloimpedanssi suuri, koska nollaajaan ei mene virtaa.
- Vahvistuskerroin aina positiivinen, eli ei käännä vaihetta.

Ei-vaiheenkääntävän vahvistimen erikoistapaus: asetetaan $R_F = 0$, $R_1 = \infty$, jolloin vahvistuskerroin = 1.

Käyttö esim. impedanssisovitukseen.

Vaiheenkääntävä perusvahvistin, jossa useita tuloja. Tulot eivät häiritse toisiaan, koska miinusnavassa virtuaalinen maa. Summauksen painotusta voidaan säätää valitsemalla vastukset sopivasti. Kukin tulopiste toimii kuin yksittäinen vahvistin, lähtöjännitteet summautuvat.

Operaatiovahvistimen epäideaalisuuksia

- Tulojen ottama virta (input bias current)
 - Ideaalisesti 0
 - Tyypillisesti:

BJT: ~ 10 nA, JFET: ~ 10 pA, MOSFET: < 1 pA

- Tulovirtojen ero (input offset current)
 - Ideaalisesti 0
 - Tyypillisesti ~ 1/10 bias-virrasta
- Tulojen jännite-ero, jolla lähtöjännite = 0 (input offset voltage)
 - Ideaalisesti 0
 - Tyypillisesti ~ 1 mV
 - Joissakin operaatiovahvistimissa mahdollisuus nollata (offset null)
 - Muuttuu lämpötilan ja ajan mukana

Lista epäideaalisuuksista...

Operaatiovahvistimen epäideaalisuuksia

- Yhteismuotoisen jännitteen vaimennussuhde (common mode rejection ratio, CMRR)
 - Ideaalisesti ääretön
 - Tyypillisesti esim. 85 dB = 18000
- Lähdön muutosnopeus (output slew rate)
 - Ideaalisesti ääretön
 - Tyypillisesti 1 ... 100 V/µs

... lista jatkuu.

Vaiheenkääntävä peruskytkentä yksipuolisella jännitesyötöllä. Plus-napaan tehdään keinotekoinen puolivälijännite vastusjaolla R_2 , R_3 . Kondensaattori C_3 jäykistää tätä jännitettä. Operaatiovahvistin siis näkee edelleen kaksipuolisen jännitesyötön, nyt vain sen näkemä maapiste on muun kytkennän kannalta puolet käyttöjännitteestä.

Lähdössä ja tulossa on nyt mukana tasajännite (puolet käyttöjännitteestä) joten se erotetaan kondensaattoreilla.

Operaatiovahvistinta voi käyttää myös komparaattorina. Nyt ei toimita lineaarisella alueella, jolloin nollaaja/hämääjä-mallia ei voi käyttää.

Komparaattorikäytössä toimitaan yleensä yksipuolisella jännitesyötöllä.

Vastusjaolla tehdään haluttu vertailujännite plusnapaan. Lähtöjännite on joko täysi jännite tai 0, riippuen siitä, onko tulojännite alle vai yli vertailujännitteen.

Epästabiili lähellä vertailujännitettä.

Parempi komparaattorikytkentä: vastuksella R_F on tehty positiivinen takaisinkytkentä, joka "häiritsee" vastusjaon tuottamaa vertailujännitettä. Aiheuttaa hystereesin ja stabiloi toimintaa lähellä vertailujännitettä.