Contents

Reaction with Mg metal	2
Applications of Grignard Reagent Reaction with Carbonyl Compounds	2
Preparation of chloroform	4
Reagents	4
Role of bleaching powder in preparation	
Reaction with Ethanol	
Labratory Praparation	5
Purification of Chloroform	6
Physical Properties	6
Chemical Properties	7
Phosgene	
Precautions of storage of phosgene	7
Test of purity of chloroform	8
Reaction with acetone	8
Reaction with Nitric Acid	8
Reaction with silver powder	9
Reaction with chlorine	9
Reduction	9
Reduction with Zn, H_2O	
Reduction with Zn, HCl	
Reaction with aqueous KOH or $NaOH$	10
Reaction of Chloroform with Phenol	11
Uses of Chloroform	11

lodoform		12
	lodoform test	12
	Nature of iodoform	12
	Uses of iodoform	13
Alcoho	ols	13
Aldehy	Aldehydes and Ketones	
	Special Cases for alcohol	14
	Special cases for carbonyl compounds	14

Reaction with Mg metal

• **Grignard reagent** can be prepared by reacting *magnesium metal* with **haloalkane**.

$$\begin{array}{c} R-X+Mg \xrightarrow{Inert\ Condition} RMgX \\ CH_3-CH_2-X+Mg \xrightarrow{Inert\ Condition} CH_3-CH_2-MgX \end{array}$$

Applications of Grignard Reagent

Reaction with Carbonyl Compounds

- Reaction with formaldehyde
 - Formaldehyde reaction with Grignard reagent always yields 1° alcohol on hydrolysis .

- Reaction with *aldehydes* other than **formaldehyde**.
 - Aldehydes other than formaldehyde always yield secondary alcohol on hydrolysis

- · Reaction with Ketones
 - Reaction with **ketones** always yields **tertiary alcohol** on hydrolysis.

$$\begin{array}{c|c} O & OMgX \\ \hline \\ R - C - R1 + R_2MgX \longrightarrow R - C - R1 \\ \hline & R2 \\ \hline & OMgX & OH \\ \hline \\ R - C - R1 \xrightarrow{H^+OH^-} R - C - R1 + Mg(OH)X \\ \hline \\ & R2 & R2 \end{array}$$

- · Reaction with Carbon Dioxide
 - Reaction of *Grignard reagent* with **Carbon dioxide** yields carboxylic acid on **hydrolysis**.

Preparation of chloroform

Reagents

- · Chloroform can be prepared by:
 - Acetone or Ethanol
 - Bleaching Powder

Role of bleaching powder in preparation

• Bleaching Powder treated with water is taken in preparation.

$$CaOCl_2 + H_2O \longrightarrow Ca(OH)_2 + Cl_2$$

- acts as:
 - 1. **hydrolysing** agent.
- acts as:
 - 1. **chlorinating** agent.
 - 2. oxidising agent.

Reaction with Ethanol

1. Oxidisation of Ethanol into acetaldehyde:

$$\begin{array}{c|c} H & O \\ \hline \\ CH3 & \hline \\ C & OH + Cl_2 & \longrightarrow CH3 & \hline \\ \\ H & \\ \end{array} \\ \begin{array}{c} CH3 & \hline \\ \\ C & \hline \\ \end{array} \\ H + HCl$$

2. Chlorination of acetaldehyde to form trichloroacetaldehyde

3. Hydrolysis of trichloroacetaldehyde

Reaction with propanone

1. Chlorination of acetone to trichloroacetone

2. Hydrolysis of tricholoroacetone to chloroform

Labratory Praparation

- 1. **Paste** of **bleaching powder** is dissolved in *water* .
 - Amount of bleaching powder: 100gm.
 - Amount of water: 200ml .

- 2. The *mixture* of **bleaching powder** is taken in
 - round bottom flask.
- 3. 25ml of **acetone** or **propanone** are added.
- 4. The **R.B.** flask is fitted with **condenser**.
- 5. The **condenser** is fitted with **reciever**.
- 6. **Chloroform** is formed.
- 7. Chloroform is distilled.

Purification of Chloroform

- 1. The chloroform contains **acidic** *impurities* .
- 2. Chloroform is treated with dil. NaOH.
- 3. Aqueous layer is rejected by separating funnel.
- 4. **Chloroform** is washed with water.
- 5. Water removes salt by dissolution.
- 6. Chloroform is treated with anh. .
- 7. **Chloroform** is distilled.
- 8. The boiling point of **chloroform** is 61° .
- 9. Chloroform obtained is:
 - · pure
 - · dry

Physical Properties

- · Chloroform is sweet.
- Boiling point: 61°.
- Melting point: -63° .
- · Chloroform dissolves organic substances.

- Chloroform is heavier than water.
- · Vapour of chloroform induces unconsiousness.
- · Chloroform is used as anaesthetic.

Chemical Properties

Phosgene

- · Reaction of chloroform with oxygen yields carbonyl chloride.
- · Carbonyl chloride is also called phosgene .
- This reaction occurs in the **presence** of *sunlight* .

$$\begin{array}{c|c} Cl & & \\ \hline & \\ 2\,Cl & \hline & C & \hline \\ Cl & & Cl & \hline \\ & & \\ &$$

- Phosgene is highly poisonous.
- · Intake of phosgene attacks the C.N.S.
- This can result in immediate death.

Precautions of storage of phosgene

- · Phosgene is **stored** in:
 - dark brown bottle.
 - dark brown bottle reflects sunlight.
- Phosgene is **filled** till **stopper**.
 - This leaves **no air** inside the bottle.
- · Small amount of ethanol is added in the bottle.
 - Ethanol converts phosgene to diethyl carbonate.
 - Diethyl carbonate is non poisonous. Diethyl carbonate is volatile.

$$\begin{array}{c} O \longrightarrow CH2 \longrightarrow CH3 \\ \\ 2\,CH_3 - CH_2 - OH + Cl \longrightarrow C \longrightarrow C \longrightarrow O \\ \\ \\ Cl \end{array} + 2\,HCl \\ \\ Cl \longrightarrow CH2 \longrightarrow CH3 \end{array}$$

Test of purity of chloroform

- Impure chloroform contains phosgene.
- Pure chloroform doesnot
 - give white ppt. on reaction with
- Impure chloroform containing phosgene
 - gives white ppt. on reaction with

Reaction with acetone

- Reaction of acetone with chloroform yields:
 - Chlorotene
 - Chlorotene is a sleep inducing drug.
 - Chlorotene is a hypnotic drug.

Reaction with Nitric Acid

• Reaction of *chloroform* with Nitric Acid yields chloropicrin.

- The another name for **chloropicrin** is **war gas**.
- The another name for **chloropicrin** is **tear gas**.
- The another name for **chloropicrin** is **trichloromethane**.
- Chloropicrin is used as insecticide .

$$\begin{array}{c|c} Cl & Cl \\ \hline \\ Cl & Cl \\ \hline \\ Cl & Cl \\ \hline \end{array}$$

Reaction with silver powder

• Reaction of *chloroform* with *silver powder* yields **silver chloride** .

$$\begin{array}{c} Cl \\ H \longrightarrow C \longrightarrow Cl + 6 \, Ag + Cl \longrightarrow C \longrightarrow H \longrightarrow 6 \, AgCl + HC \Longrightarrow CH \\ Cl \end{array}$$

Reaction with chlorine

• Reaction of *chloroform* with **chlorine** yields **carbon tetrachloride**.

$$\begin{array}{c|c} Cl & Cl \\ \hline \\ Cl & Cl \\ \hline \\ Cl & Cl \\ \hline \end{array}$$

Reduction

Reduction with Zn, H_2O

· produces nascent hydrogen.

· Nascent hydrogen replaces all chlorine to form methane.

$$CHCl_3 + 6 [H] \xrightarrow{Zn, H_{20}} CH_4 + 3 HCl$$

Reduction with Zn, HCl

- produces nascent hydrogen.
- · Nascent hydrogen partially replaces chlorine to form

$$\mathrm{CHCl}_3 + 2\,[\mathrm{H}] \longrightarrow \mathrm{CH}_2\mathrm{Cl}_2 + \mathrm{HCl}$$

Reaction with primary amine

- · Chloroform on reacting only with
 - primary amine
 - gives alkyl isocyanide
 - * Alkyl isocyanide is also called carbylamine.
 - * Carbylamine has a pungent smell.
 - * The smell is *analogus* to **rotten onion** .

Reaction with aqueous KOH or NaOH

- Reaction of aqueous or ${\it NaOH}$ yields methanoic acid .

Reaction of Chloroform with Phenol

- Chloroform on reacting with phenol gives salicyaldehyde as major product .
- The other name for this reaction is **Reimer -Tiemann reaction**

OH OH CHO
$$+ \mathrm{CHCl_3} + \mathrm{KOH} \longrightarrow + CHO$$

Uses of Chloroform

- · Chloroform is used:
 - as **solvent**.
 - to prepare chloretene and chloropicrin

- in test of **primary amine**

lodoform

The molecular formula for iodoform is .

• lodoform has almost similar chemical properties to chloroform.

lodoform test

For iodoform test the molecules must have one among the two structures.

The term [?] in the box can be either or .

Nature of iodoform

When the molecules satisfying the above structural units are:

- treated with
 - aqueous alkali
 - excess

The product is an

- · yellow coloured
- crystalline
- solid

The nature of smell of such product is called hospital smell. The product obtained is iod-oform.

Uses of iodoform

lodoform is use in:

- antiseptic
 - This use of idoform comes form it's property to release iodine.

Alcohols

$$\begin{array}{c|c} 2\operatorname{NaOH} + \operatorname{I}_2 & \longrightarrow \operatorname{NaOI} + \operatorname{NaI} + \operatorname{H}_2\operatorname{O}) \times 4 \\ & & OH & & O \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

The final reaction can be expressed as:

Aldehydes and Ketones

$$\begin{array}{c} 2\operatorname{NaOH} + \operatorname{I}_2 \longrightarrow \operatorname{NaOI} + \operatorname{NaI} + \operatorname{H}_2\operatorname{O}) \times 4 \\ \\ O & \\ O & \\ \\ \operatorname{CH3} \longrightarrow \operatorname{C} \longrightarrow \operatorname{R} + 3\operatorname{NaOI} \xrightarrow{\operatorname{iodination}} \operatorname{CI3} \longrightarrow \operatorname{C} \longrightarrow \operatorname{R} + 3\operatorname{NaOH} \\ \\ O & \\ \\ \operatorname{CI3} \longrightarrow \operatorname{C} \longrightarrow \operatorname{R} + \operatorname{NaOH} \longrightarrow \operatorname{CHI}_3 + \operatorname{RCOONa} \end{array}$$

The final reaction can be expressed as:

$$CH3 \longrightarrow C \longrightarrow R + NaOH + I_2 \longrightarrow CHI_3 + RCOONa + NaI + H_2O$$

Special Cases for alcohol

- Only one primary alcohol can give iodoform test.
 - Methanol
- Tertiary alcohol donot give iodoform test.
- · Secondary alcohol only give iodoform test if:
 - the alcohol has an structure of 2-ol

Special cases for carbonyl compounds

- The only aldehyde that gives iodoform test is:
 - ethanal
- Ketone only give positive iodoform test if there structure is 2-one