MATH 9850, Free Resolutions

Fall 2019

Exercises 2

Due date: Thu 03 Oct 4:30PM

Let R be a commutative ring with identity.

Let $x_1, \ldots, x_n \in R$, and let σ be an element of the symmetric group S_n . The goal of this exercise set is to prove that there is an isomorphism of Koszul complexes

$$K^{R}(x_{\sigma(1)}, \dots, x_{\sigma(n)}) \cong K^{R}(x_{1}, \dots, x_{n}). \tag{\dagger}$$

Note that Exercise 1 can be done with no knowledge of Koszul complexes.

Exercise 1. Let the following commutative diagram of chain maps be given.

- (a) Prove that α and γ induce a well-defined chain map Λ : Cone(ϕ) \to Cone(ϕ ').
- (b) Prove that if α and γ are isomorphisms, then so is Λ .

Definition 2. We define the Koszul complex $K^R(x_1, \ldots, x_n)$ inductively. For $x, y \in R$:

$$K^{R}(x) = (0 \to R \xrightarrow{x} R \to 0)$$

$$K^{R}(x, y) = \operatorname{Cone}(K^{R}(y) \xrightarrow{x} K^{R}(y))$$

$$\cong \left(0 \to R \xrightarrow{\left(-\frac{y}{x}\right)} R^{2} \xrightarrow{\left(x \ y\right)} R \to 0\right)$$

$$K^{R}(x_{1}, \dots, x_{n}) = \operatorname{Cone}(K^{R}(x_{2}, \dots, x_{n}) \xrightarrow{x_{1}} K^{R}(x_{2}, \dots, x_{n}))$$

Exercise 3. Let $x, y \in R$.

- (a) Prove that there is an isomorphism between Koszul complexes $K^R(x,y) \cong K^R(y,x)$.
- (b) More generally, let A be an R-complex, and set $K^R(x;A) = \operatorname{Cone}(A \xrightarrow{x} A)$ and $K^R(x,y;A) = \operatorname{Cone}(K^R(y;A) \xrightarrow{x} K^R(y;A))$. Define $K^R(y,x;A)$ similarly. Prove that $K^R(x,y;A) \cong K^R(y,x;A)$.

Exercise 4. (a) Prove that if σ is an adjacent transposition $\sigma = (i \ i+1)$, then there is an isomorphism (\dagger) .

(b) Prove that if $\sigma \in S_n$ is arbitrary, then there is an isomorphism (†).