### Towards a Measurement of $V_{ub}$ with LHCb



William Sutcliffe

March 18, 2013

### Outline



- 1. Background and motivation.
- 2. Previous measurements.
- 3.  $V_{ub}$  with LHCb
- 4. Initial generator level study

## 1 - Current Status of $|V_{ub}|$



Semi-Leptonic B Decays:

Inclusive 
$$(\bar{B} \to X_u l \bar{\nu}_l)$$
 Exclusive  $(\bar{B}_0 \to \pi^+ l \bar{\nu}_l)$ 





$$|V_{ub}| = (4.41 \pm 0.15^{+0.15}_{-0.17}) \times 10^{-3} \qquad |V_{ub}| = (3.23 \pm 0.31) \times 10^{-3}$$

▶ Leptonic B decays  $(B^+ \to \tau^+ \nu_\tau)$ :





# 1 - $|V_{ub}|$ Constraints on the Unitarity Triangle



 $V_{CKM}V_{CKM}^{\dagger} = 1 \implies V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ (+ 5 others)





[1] CKMfitter Group, J. Charles et al. ICHEP conference (July 2012)



### 2 - Inclusive Measurements of $V_{ub}$



 $ightharpoonup e^+e^-$  B factories BaBar and Belle:

$$|V_{ub}| = (4.41 \pm 0.15^{+0.15}_{-0.17}) \times 10^{-3}$$

- ► Inclusive Approach:
  - □ Measure partial branching fraction,  $\Delta B(B \to X_u I^- \nu)$ .
  - □ Large background  $B \to X_c I^- \nu$ .
  - □ Exploit kinematic endpoint of  $B \to X_c I^- \nu$ .
  - Extrapolate to full phase space.
  - Dominate uncertainty due to uncertainty on  $m_b$ .

# 2- Exclusive Measurements of $|V_{ub}|$



- ▶ BaBar, Belle and CLEO:  $|V_{ub}| = (3.23 \pm 0.31) \times 10^{-3}$
- Exclusive Approach:
  - □ Exclusive final state  $(\bar{B}_0 \to \pi^+ I^- \bar{\nu}_I)$
  - $\begin{array}{c} \Box \ \frac{d\Gamma}{dq^2} = \\ \frac{G_F^2 |V_{ub}|^2}{24\pi^3} |p_{\pi}|^3 |f_{+}(q^2)|^2 \\ & \ddots & \vdots \\ \end{array}$ 
    - $|f_+(q^2)|^2$  predicted by lattice QCD
    - □ Uncertainty dominated by  $|f_+(q^2)|^2$ .

### Measured partial branching fraction





# $3 - |V_{ub}|$ with LHCb



- Large pion backgrounds.
- ▶ Other possible decays:  $\Lambda_b \to p \mu^- \bar{\nu}_\mu$  and  $\bar{B}_s \to K^+ \mu^- \bar{\nu}_\mu$



- ▶ Advantages of  $\Lambda_b \to p \mu^- \bar{\nu}_{\mu}$ :
  - $f_{\Lambda_b}/(f_u+f_d)\sim 0.40$  and  $f_{\Lambda_b}/f_s\sim 3$
  - □ Proton provides a more distinctive final-state.

# $\overline{3}$ - $\overline{\Lambda_b}$ ightarrow $p\mu^-ar{ u}_\mu$ with LHCb



- Displaced secondary vertex.
- μ and p tracks.
- Muon systems
- ▶ 2 RICH detectors for PID
- Proton, kaon and pion separation  $|\vec{p}| = 2 \rightarrow 100 \text{ GeV/c}$

#### Schematic of RICH 1:



### 3 - RICH PID performance





► High *K-p* misidentification rate below 10 GeV/c.

#### 4 - Initial Generator Level Studies



- ► Generator level sample of *pp* to inclusive *B* events.
  - $\square$  At least one lepton with  $p_{\rm T} > 1.5~{\rm GeV/c}$ .
- ▶ Search for p,  $K^+$  and  $\pi^+$  from the decay chain of a B hadron.





- ▶ Require p,  $K^+$  and  $\pi^+$  to vertex with a muon with  $p_{\rm T} > 1.5~{\rm GeV/c}$ .
- ▶ Plot signal samples of  $\Lambda_b o p \mu^- \bar{\nu}_\mu$  and  $\bar{B}_s o K^+ \mu^- \bar{\nu}_\mu$
- Weight signal samples using:
  - $\Box$   $B(\Lambda_b \to p \mu^- \bar{\nu}_{\mu}) \approx B(B_s \to K^+ \mu^- \bar{\nu}_{\mu}) \sim 10^{-4}$
  - □ Efficiencies of generator level cuts.
  - $\square$   $\Lambda_b$  and  $B_s$  production fractions.



#### Conclusion



- $|V_{ub}|$  is important constraining for CKM physics.
- $ightharpoonup \sim 3\sigma$  discrepancy between exclusive and inclusive measurements.
- ▶ Yet to be observed  $\Lambda_b \to p \mu^- \bar{\nu}_\mu$  is a promising decay.
- Generator level studies indicate that proton backgrounds are low.
- Future Work:
  - Determine exact selection criteria for a measurement of  $\Delta B(\Lambda_b \to p \mu^- \bar{\nu}_{\mu})$ .

Thanks for listening. Any questions?