my hy new

National ELIOTT

803 FACTS

#### FACTS FOR ENGINEERS

The 803 is a small, medium-speed digital computer, flexible in operation and economical to run. The central processor, power unit, paper tape station and keyboard forming the minimal installation require only 400 sq. ft altogether, and power consumption is about 3 kilowatts.

The design follows normal practice for single-address machines. One operand is contained in the accumulator and the other in the store location specified by the address given in the instruction. Either operand or the result of an operation is stored in this location after the function has been performed. The current instruction is held in the instruction register to which is connected a decoding system for selecting the function to be performed and the store location required. Facilities are provided for double-length working in multiplication and division.

The element which forms the basis of the complete logic design depends for its operation upon the rectangular hysteresis characteristic of ferrites, small toroidal cores of the material being used, carrying a number of windings. Similar cores, threaded on wires and arranged in 64×64 matrices, are used in the store. Core selection is by a simple coincident current technique, Reading is inherently destructive, so that data to be retained in the store must be rewritten. This is automatic.

#### Dimensions and Weights

| Length, height and depth in inches, we | ight in pounds |      |
|----------------------------------------|----------------|------|
| Central processer                      | 66 by 56 by 15 | 680  |
| Extra working store                    | 33 by 56 by 16 | 250  |
| Power unit                             | 33 by 56 by 16 | 380  |
| Paper Tape Station                     | 80 by 30 by 29 | 450  |
| Film Controller                        | 33 by 56 by 16 | 250  |
| Film Handlers                          | 27 by 56 by 32 | 660  |
| Card Input                             | 41 by 36 by 21 | 215  |
| Keyboard table                         | 60 by 30 by 30 | 215  |
| Keyboard                               | 28 by 14 by 22 | 55   |
| Battery charger                        | 30 by 22 by 19 | 200  |
| Line printer                           | 64 by 54 by 29 | 1000 |
| Digital plotter                        | 18 by 10 by 15 | 33   |
| Plotter control box                    | 22 by 8 by 16  | 40   |
| High speed character printer & console | 32 by 26 by 46 | 400  |

#### FACTS FOR PROGRAMMERS

The basic 803 uses five-track paper tape input and output and has a main storage capacity of 4096 words, extendable to \$152 words maximum. Punched card input and output, line printer, high speed character printer and digital plotter are available as optional extras and 35 mm magnetic film backing stores having at most over seven million characters' capacity can also be added. The automatic floating-point arithmetic unit is an optional extra.

#### Speeds

500 charisec. Tape input 100 charisec. Tape output 10 charisec. Direct output \$10 cards/min. Card input 100 cards/min. Card output High speed character printer 100 char/sec. 200 lines/min. Line printer 200 steps/sec. Digital plotter 4350 charised, in block Film transfer sust under 5 blocks/sec.

833 is a serial binary computer, fixed-point number representation being such that numbers are held in the range  $-1 \le x \le +1$ , with two's complement notation for negative numbers, and standard floating-point form is  $x = a.2^b$  such that  $-1 \le a < -1$  or a = 0 or  $\frac{1}{2} \le a < 1$  and  $-256 \le b < 256$ . The word length is 39 bits.

The keyboard carries eight control keys and a 39-bit word generator, as well as power switching controls. The word generator may be used as an input channel, as a source of instructions external to the store, as a set of program switches, or as a method of selectively stopping the 803. A loudsneaker, driven from one of the control signals, is also provided, to indicate to the practised car the progress of a computation.

Two single-address instructions occupy one word. By means of a single B-line placed between the two instructions, the second instruction may be modified without loss of speed by adding to it the content of the location specified in the address portion of the first, wherever this location may be. As each instruction is obeyed, the count in the sequence contol register is increased by a half, unless the instruction causes a transfer of control. Election of the succeeding instruction follows the completion of an operation immediately.



#### INSTRUCTION CODE

The contents of the accumulator and specified location are denoted by a and s. a' and s' indicate these contents after the function has been performed. AR is the auxiliary register. Operation times quoted with each instruction or group of instructions are given in microseconds and include all requisite store access times.

| GROUP 0                                                                                                                                                                                              | GROUP 2                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Code a n Time  100                                                                                                                                                                                   | Code a n Time  20 a a 21 a -a 22 a n+1 23 a a 2 n 24 a a+n 25 a -n 26 a 0 27 a n-a  |
| GROUP 1                                                                                                                                                                                              | GROUP 3                                                                             |
| Code a' n' Time  10 n a  11 -n a  12 n+1 a  13 oan s  14 a+n s  15 a-n a  16 0 a  17 n-a                                                                                                             | Code a' n' Time  30 n n 31 n -n 32 n n+1 53 n a&n 55 n a+n 56 n a-n 36 n 0 37 n n-a |
| GR                                                                                                                                                                                                   | OUP 4                                                                               |
| Code Function                                                                                                                                                                                        | Time                                                                                |
| 40 44 Transfer control und<br>41 45 Transfer control if a<br>43 45 Transfer control if a<br>43 47 Transfer control if or<br>set and clear ind<br>(40 to 43 transfer to ti<br>64 to 47 transfer to ti | negative 200<br>zero<br>zerilow indicator is                                        |

Note in groups 0 to 4 the address is specified in the normal way. In Groups 5 to 7, the address part of an instruction not requiring store access is used to further specify the function, in which case the number is indicated by N.

|                | GROUP 5                                                                                |                                 |
|----------------|----------------------------------------------------------------------------------------|---------------------------------|
| Code           | Function.                                                                              | Time                            |
| 50 N I         | laire, double-length, N times                                                          | 576+286N                        |
|                | tight shift a N times, Clear AR                                                        | 578+288N                        |
|                | dultiply (double-length product)                                                       | 12096-238y                      |
| 53 N I         | Multiply (single-length product). Clear A                                              | R 12384-2887                    |
| (Multipones or | plication time depends on the number of<br>zeros, y, at the most significant end of th | f consecutive<br>e multiplier.) |
| 54 N I         | Double, double-length, N times                                                         | 576+288N                        |
|                | Double a N times. Clear AR                                                             | 576+288N                        |
|                | Divide (double-length dividend, single-                                                |                                 |
| 56 N           | Divide (double-length dividend, single-<br>length quotient). Clear AR                  | 12006                           |
| 57 1           | Read AR to accumulator                                                                 | 676                             |
|                | GROUP 6                                                                                |                                 |
| Code           | Function                                                                               | Time                            |
| 60 N           | a+= in floating-point mode                                                             | 884                             |
| 01 N           | a-n in floating-point mode                                                             | 884                             |
| 62 N           | n-a in floating-point mode                                                             | 864                             |
| 63 N           | axa in floating-point mode                                                             | 4896                            |
| 84 N           | a+a in floating-point mode                                                             | 9792                            |
|                |                                                                                        | (max.)                          |
| 65 9096        | Convert 39 bit integer a to standard<br>floating-point form                            | 578                             |
|                | (Functions 05 and 07 are not used)                                                     |                                 |

# Times printed in green are quoted in milliseconds and are approximate only

|                |                              | GROUP 7                                                                                                                    |       |
|----------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------|
| c              | ode                          | Function                                                                                                                   | Time  |
| 70             | 0                            | Read from word generator to                                                                                                | 576   |
| 73<br>Ta       | N<br>pe In                   | Write the address of this instruction                                                                                      | 578   |
| 71<br>71<br>Ta | 0<br>2048<br>pe/Print        | Read first tape reader to accumulator<br>Read second tape reader to accumulator<br>Out                                     | } 576 |
| - 11           | 4090+N                       | Punch N on first punch Punch N on second punch Print N on teleprinter (PTS 2A only) oh and teleprinter channels include bu | } 576 |
| 76             | 512                          | Read card input control word; prepare<br>to read card                                                                      | 964   |
| To a           | N<br>rd Out                  | Read card to store locations N to N+79                                                                                     | 175   |
| 78             | 2561                         | Read card output control word; prepare<br>to punch card                                                                    |       |
| 77             | N                            | Transfer to card punch from store<br>locations N to N+79                                                                   | 12    |
|                | tual pund                    | ching takes 600 milliseconds per card)                                                                                     |       |
| 76             | 1027                         | Read address of last block read or<br>written                                                                              | 576   |
| 76             | 1024<br>1032<br>1040<br>1048 | Read handler control word to<br>accumulator; prepare to read on<br>handler 1, 2, 3 or 4                                    | 884   |
| 70             | 1025<br>1033<br>1041<br>1049 | Read handler control word to<br>accumulator; prepare to write on<br>handler 1, 2, 3 or 4                                   | 864   |
| 76             | 1026<br>1034<br>1042<br>1060 | Read handler control word to<br>accumulator; prepare to search on<br>handler 1, 2, 3 or 4                                  | 854   |
| 77             | N                            | Read, write or search as prescribed by<br>76 instruction                                                                   | 204   |

# Times printed in green are quoted in milliseconds and are approximate only

#### GROUP 7 (Continued)

#### Digital Plotter

This device uses channel 2 and does not have a control word associated with it

| C  | de                                   | Punction (pen moves in direction) | Time |
|----|--------------------------------------|-----------------------------------|------|
| 72 | 7169<br>7170<br>7172<br>7176         | W<br>N<br>S                       | 3.3  |
| 72 | 7173<br>7174<br>7177<br>7177<br>7178 | NE<br>NW<br>EE<br>SW              | 2,3  |
| 72 | 7194<br>7200                         | Pen raise<br>Pen lower            | 100  |

#### Line Printer

| 76 | 3073 | Read ANelex control word to<br>accumulator; prepare to print one line 866 | ĺ, |
|----|------|---------------------------------------------------------------------------|----|
| 77 | N    | Transfer to line printer from store 18                                    |    |

The contents of location N control paper-feed as follows:

M (0≤M≤00) feed M+1 lines and print 31 or 32 print on same line

31 or 32 print on same line 32+M(1≤M≤30) find channel M and print

63 find top of form and print

### Serial Line Printer

72 0656+ N output character with telecode value N to the S.L.P.  $(0 \le N \le 31)$ 

# SUMMARY OF INSTRUCTIONS FOR AUTOCODE

#### In these examples

| a contract comment & total |                |                            |
|----------------------------|----------------|----------------------------|
| A, B, C and D              | represent      | Floating-point variables   |
| L J, K and L               | represent      | Integer variables          |
| l, m and n                 | represent      | Positive integer constants |
| p. q and r                 | represent      | Any integer constants      |
| x, y and z                 | represent      | Floating-point constants   |
| ny variable except         | the one before | the - sign may be replaced |

Any variable except the one before the - sign may be replaced by a constant.

#### Arithmetic

| A-B   | A=-B   | I-J   | IJ   |
|-------|--------|-------|------|
| A-B+C | AB+C   | I-J+K | IJ+K |
| A-B-C | A = BC | I-J-K | IJ-K |
| A-B*C | A B*C  | I-J*K | IJ*K |
| A-B/C | A B/C  |       |      |

#### Function

| A-SIN B  | A-LOG B  | A-FRAC B  | -       |
|----------|----------|-----------|---------|
| A=008 B  | A-EXP B  | A-INT B   | I-INT A |
| A-TAN B  | A-SQRT B | A-STAND I | _       |
| A-AROTAN | В        | A-MOD B   | I-MOD J |

### Jump

| _   |    | _ | _ |      |    |
|-----|----|---|---|------|----|
| - 4 | ** | • | - | a    | 10 |
| u   |    | м | r | - 44 | ъ  |
|     |    |   |   |      |    |

| JUMP | IF A-BSK       | JUMP IF I-JSK           |
|------|----------------|-------------------------|
| JUMP | UNLESS A-BOK   | JUMP UNLESS I-JOK       |
|      | (K may not hav | re any form of suffix). |
|      |                |                         |

Any permitted arithmetical instruction or function instruction may replace A = B or I = J, and > (%) or < (\$) may replace =

#### Other Controls

| SUBR n | EXIT | STOP | WATT |
|--------|------|------|------|

### Vary and Cycle

| VARY A-B: C: L               | VARY I-J: K: L             |
|------------------------------|----------------------------|
| CYCLE A-B; C; D              | CYCLE I-J: K: L            |
| CYCLE A-x, y, z,             | CYCLE I-p. q. r            |
| REPEAT A                     | REPEAT I                   |
| (B. C. D. J. K. and L may he | ave simple suffices only). |

### Input

READ A READ I INPUT I

SETS

instructions

#### Output

PRINT A, n: m PRINT A, n PRINT A, n/ PRINT A
PRINT I, n PRINT I OUTPUT I
(In OUTPUT I, I may have a numerical suffix only).
LINE LINES I SPACES I TITLE
CHECK A CHECK I

#### Setting and Start

SETV (Floating-point variables).
SETF (Punctions)
SETR n (Maximum reference number).
START m (Starting reference number)
(i) TRIG covers SIN, COS and TAN.
(ii) MOD and STAND need not be mentioned.
(iii) FILM allows use of film instructions.
(iv) CARD and PAR allow use of card reader

(Integer variables).

#### Film

In SETF

FILM(I) SEARCHJ(K)
FILM(I) TO J(K) OF FILM(I) TO A(K)
FILM(I) FROM J(K) OF FILM(I) FROM (A)K
JUMP IF FILM(I) SEARCHING & L
JUMP UNLESS FILM(I) SEARCHING & L
FILM(I) BLOCK NUMBER TO J(K)
FILM(I) ALLOW WRITE
FILM(I) PREVENT WRITE
K is a simple suffix
L cannot have any form of suffix

#### Card

J-PAR 1, m, n
1, m, n may be replaced by integer variables having numerical suffices only.
A-CARD 1, A, J, K or I -CARD 1, I, J, K
A-CARD 2, A, J, K or I -CARD 2, I, J, K
K may be replaced by an integer constant.

# SUMMARY OF 803 ALGOL STANDARD PROCEDURES

#### in the following parameters

| x   | represents | a real expression    |  |
|-----|------------|----------------------|--|
| Z   | represents | a real variable      |  |
| I&J | represents | integer expressions  |  |
| м   | represents | an integer variable  |  |
| A   | represents | a rent array         |  |
| п   | represents | an integer array     |  |
| q   | represents | a Boolean expression |  |
| 8   | represents | a string             |  |
|     |            |                      |  |

| Real     |  |
|----------|--|
| abs (X)  |  |
| exp(X)   |  |
| ln (X)   |  |
| sqrt (X) |  |
| cos (X)  |  |

arctan (X) tan (X) arcsin (X) arccos (X) checky (X)

# Integer

entier (X) sign (X) address (A) size (A) range (A. D lowbound (A, I) storemax checkt (I)

## Boolean buffer (I. S)

check B (Q)

# Input

read Z. M. .... reader (I) instring (B, M) advance (D

# Output

print X. L. S. ..... digits (D) scaled (f) freepoint (I) aligned (L, J)

sameline prefix (6)

leadzero (S) grouping (f) special (D) punch (I) outstring (B, M)

checks (B)

### Control

wait restart stop dump precomptle

#### Machine code

elliott (F1, F2, A1, b. F3, F4, A2)

# 803 ALGOL HARDWARE REPRESENTATION

| 808    |     | ALGOL | 803 | 100 | ALGO |  |
|--------|-----|-------|-----|-----|------|--|
| less   | for | <     | or  | for | V    |  |
| RT .   | for | >     | not | for | -    |  |
| lesseq | for | <     | 3   | for | •    |  |
| greq   | for | >     | 7   | for |      |  |
| noteq  | for | +     |     | for | ×    |  |
|        |     | 1000  | ••  | for | *    |  |
| equiv  | for | =     | vtb | for | +    |  |
| and    | for | ٨     |     | for |      |  |
|        |     |       |     |     |      |  |

NOTES

# TABLES OF BINARY

The purpose of these tables is to assist in the

- 1. Select the highest multiple of 64 less than (or equal
- 2. Set the first (left-hand) 7 buttons to the binary
- 3. Set the last (right-hand) 6 buttons to the binary

#### TABLE A

| Multiple<br>of 64                                            | Binary equivalent                                                         | Multiple<br>of 64                                            | Binary equipalent                                                         | Multiple<br>of 64                                                    | Binary equivalent                                                          |
|--------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|
| 0<br>61<br>128<br>192<br>256<br>330<br>384<br>445            | 0000000<br>0000001<br>0000010<br>0000010<br>0000100<br>0000100<br>0000110 | 2048<br>2112<br>2116<br>2240<br>2294<br>2298<br>2432<br>2490 | 0100000<br>0100001<br>0100010<br>0100010<br>0100100<br>010010             | 4006<br>4100<br>4224<br>4286<br>4352<br>4416<br>4480<br>4544         | 1000000<br>1000001<br>1000010<br>1000011<br>1000100<br>1000110<br>1000110  |
| 512<br>576<br>610<br>704<br>768<br>812<br>886<br>960         | 0001000<br>0001001<br>0001000<br>0001001<br>0001100<br>0001100<br>0001110 | 2500<br>2634<br>2638<br>2752<br>2816<br>2880<br>2044<br>3008 | 0101000<br>0101001<br>0101010<br>0101011<br>0101100<br>0101101            | 4908<br>4973<br>4736<br>4900<br>4894<br>4928<br>4942<br>5056         | 1001000<br>1001001<br>1001010<br>1001011<br>1001110<br>1001110<br>1001110  |
| 1004<br>1063<br>1152<br>126<br>1260<br>1344<br>1473          | 0010000<br>0010001<br>0010010<br>0010011<br>0010101<br>0010110<br>0010110 | 3072<br>3136<br>3200<br>3064<br>3128<br>3892<br>3456<br>3520 | 0110000<br>0110001<br>0110010<br>0110011<br>0110100<br>0110101<br>011011  | 51:20<br>51:94<br>50:48<br>5:112<br>52:76<br>54:40<br>55:04<br>65:48 | 1010000<br>1010001<br>1010010<br>1010010<br>1010100<br>1010110<br>10101110 |
| 1536<br>1600<br>1604<br>1738<br>1732<br>1856<br>1800<br>1894 | 0011000<br>0011001<br>0011010<br>0011011<br>0011100<br>0011101<br>0011110 | 3584<br>3048<br>3712<br>3776<br>3640<br>3668<br>4032         | 0111000<br>0111001<br>0111010<br>0111011<br>0111100<br>0111101<br>0111110 | 6632<br>5496<br>5760<br>5404<br>5408<br>5402<br>60116<br>6080        | 1011000<br>1011001<br>1011010<br>1011011<br>1011100<br>1011101<br>1011110  |

# EQUIVALENTS

setting of binary addresses on the word generator.

to) the required address, and work out the difference (if any).

equivalent of the multiple, working from Table A.

equivalent of the difference, working from Table B.

#### TABLE B

| of 64                                                        | Binary<br>equivalent                                                      | Difference                                   | Binary<br>equivalent                                                | Difference                                   | Binary<br>equivalent                                               |  |
|--------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|--|
| 6144<br>6200<br>6272<br>6336<br>6400<br>6464<br>6500<br>6562 | 1100000<br>1100001<br>1100010<br>1100100<br>1100100<br>1100101<br>1100111 | 012345                                       | 000000<br>000010<br>000110<br>000100<br>000110<br>000110            | 32<br>53<br>34<br>35<br>36<br>37<br>38<br>39 | 100000<br>100001<br>100010<br>100011<br>100100<br>100101<br>100110 |  |
| 6656<br>6720<br>6724<br>6948<br>6972<br>6973<br>7040<br>7104 | 1101000<br>1101001<br>1101010<br>1101011<br>1101100<br>110110             | 8<br>10<br>11<br>12<br>13<br>14<br>15        | 001000<br>001001<br>001010<br>001011<br>001100<br>001101<br>001110  | 40<br>41<br>42<br>43<br>44<br>45<br>46<br>47 | 101000<br>101001<br>1010010<br>101001<br>101100<br>101101          |  |
| 7168<br>7232<br>7296<br>7396<br>7424<br>7488<br>7562<br>7606 | 1116000<br>1116001<br>1116016<br>1116016<br>1116101<br>1116116<br>1116111 | 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23 | 010000<br>010001<br>010010<br>010011<br>010100<br>010101<br>010110  | 48<br>49<br>50<br>51<br>52<br>53<br>54<br>56 | 110000<br>110010<br>110010<br>110011<br>110100<br>110101<br>110110 |  |
| 7680<br>7744<br>7808<br>7872<br>7805<br>8000<br>8084<br>8128 | 1111000<br>1111001<br>1111010<br>1111011<br>1111100<br>1111101<br>111111  | 24<br>25<br>26<br>27<br>28<br>29<br>30<br>31 | 051000<br>021001<br>021010<br>021011<br>011100<br>021101<br>0211101 | 56<br>56<br>59<br>60<br>61<br>62<br>63       | 111000<br>111001<br>111010<br>111011<br>111100<br>111101<br>111110 |  |

## POWERS OF 2 IN DECIMAL

```
9-8
                     n
                      1
                           +5
                      ž
               8
                     3
                           ·125
                           -062 5
              16
              32
                     5
                           ·031 25
              64
                     6
                           -015 625
                     7
                           -007 812 5
             128
             206
                     R
                           -003 906 25
             512
                     9
                           ·001 953 125
                           -000 976 562 5
           1 024
                     10
                           -000 4B8 2B1 25
           2 048
                     11
                           -000 244 140 625
           4 006
                     12
                           ·000 122 070 312 5
           8 192
                     13
                           -000 061 035 156 25
          16 384
                     14
                           -000 000 517 578 125
          32 760
                     25
                           +000 015 258 789 062 5
          65 536
                     16
                           +000 007 629 394 531 25
                     17
         131 072
                           +000 003 814 697 265 695
                     18
         262 144
                           *800 001 907 348 632 812 5
         524 288
                     19
                           -000 000 963 674 316 406 25
                     20
       1.048 576
                           -000 000 476 837 158 203 125
       2 007 152
                     21
                           -000 000 218 418 579 101 562 5
       4 194 304
                     22
                           +000 000 119 209 289 550 781 25
                     23
       8 388 900
                           +000 000 058 604 614 775 390 625
                     24
      16 777 216
                           +000 000 029 802 322 337 896 513
                     25
     83 554 432
                           +000 000 014 901 161 193 847 656
                     28
      67 108 864
                           -000 000 007 450 580 596 923 828
                     27
     134 217 728
                           ·000 000 003 725 290 298 461 914
                     23
     203 435 456
                           *000 000 001 BEZ 645 149 200 SET
                     29
     536 670 912
                           ·000 000 000 931 322 574 615 479
   1 073 741 824
                     30
                            +000 000 000 465 661 287 307 739
   2 147 483 648
                     31
                            +000 000 000 222 830 643 653 870
    4 204 967 206
                     32
                            -000 000 000 116 415 321 826 935
                     83
   8 589 934 592
                            -000 000 000 068 207 660 913 467
  17 179 869 184
                     34
                            -000 000 000 029 103 B30 456 734
                     35
  24 250 738 368
                            -000 000 000 014 551 915 228 367
                     36
  68 719 476 735
                            -000 000 000 007 275 957 614 183
  137 438 953 472
                     37
                            ·000 000 000 003 637 978 807 092
  274 877 906 944
                     38
                            -000 000 000 001 818 989 403 546
                     20
  549 755 813 888
                            -000 000 000 000 909 494 T01 T73
                     40
1 000 511 627 776
```

#### SOME USEFUL CONSTANTS

| - 5      | - | 3.141    | 0002 | 600 | DOU  |
|----------|---|----------|------|-----|------|
| log, e   | - | 0.434    | 294  | 481 | 903  |
| log. 2   |   |          | 029  | 995 | 664  |
|          |   | 1-414    |      |     |      |
| 1 radian | - | 57 - 295 | 778  | 513 | 082* |

141 800 669 FOO

 $1/\pi = 0.318 309 808 184$  10g\*10 = 2.302 585 082 894 0 = 2.718 281 828 459  $\sqrt{3} = 1.732 050 807 589$  $1^{\circ} = 0.017 433 392 830$ 

radian

# 803 TELECODE

| Bingry  | Decimal         | Tape<br>Punching | Figure Shift | Letter Shift |
|---------|-----------------|------------------|--------------|--------------|
| 00000   | 0               | <b>HOUSE IN</b>  | bl •         | bl •         |
| 00001   | 1               |                  | 1            | 1.4          |
| 00010   | 2               | 700              | 2            | 2 3          |
| 00011   | 3               | * 00             |              | 3C           |
| 00100   | 4               | 10               |              | 4 D          |
| 00101   | 5               | 10.0             | For &        | 5/8          |
| 00110   | 6               | +00              | -            | 167          |
| 00111   | 7               | 1000             | 1            | 76           |
| 01000   |                 | 01               | 8 /          | & H          |
| 01004   | 9               | 0 0              |              | 91           |
| 01010   | 10              | 0.0              | 1            | 10 J         |
| 01011   | 11              | 0) 00            | +            | II K         |
| 01100   | 12              | 0.0              |              | 12 L         |
| 01104   | 13              | 0.0 0            | -            | - 1 M        |
| 01110   | 14              | 0.00             |              | I L N        |
| 01111   | 15              | 01000            | *            | -110 .       |
| 10000   | 16              | 0 1              | 0            | 16 P         |
| 10004   | 17              | 0 . 0            | 1            | 1.0          |
| 10010   | 18              | 0.0              | ).           | 17.8         |
| 10011   | 19              | 6 1-00           | 3            | 148          |
| 10100   | 20              | 0 0              | 2 •          | 20T          |
| 10100   | 21              | 8 .0 0           | 5            | 210          |
| 10113   | 22              | 0 100            | . 6          | 22 V         |
| 10111 . | 23              | 0 :000           | 1            | 2] W         |
| 11000   | 24              | 001              | 8 .          | 26 X         |
| 11001   | 25              | 001 0            | 9            | 2.5 Y        |
| 11010   | 26              | 00. 0            |              | 26 Z         |
| 11011   | 27              | 001 00           | fs •         | to •         |
| 11100   | 28              | 0010             | ap           | sp           |
| 11101   | 29              | 00:0:0           | cr •         | or •         |
| 11110   | 30              | 00.00            | lt •         | н •          |
| 11111   | 31<br>code also | 00:006           | ls •         | ls •         |

Notes This code also applies to the line printer where a sixth bi (value 32) is 0 for figure shift and 1 for letter shift.

<sup>·</sup> On the line printer this character acts as space

#### FOR SCIENTIFIC APPLICATIONS

ELLIOTT-AUTOMATION COMPUTERS LIMITED ELSTREE WAY . BOREHAMWOOD . HERTS Telephone: ELSTREE 2040

# FOR COMMERCIAL APPLICATIONS

NCR ELECTRONICS

NATIONAL CASH REGISTER COMPANY LTD. 206-216 MARYLEBONE RD., LONDON, N.W.1 Telephone: PADdington 7070