Beweise zur Vorlesung Approximationsalgorithmen

gelesen von Joachim Spoerhase

Later Läffler January 30, 2014

Contents

1	Vor 1.1	lesung Beweis zu Approximationsalgorithmus zu VertexCover	3
2	Vorlesung		
3	Vor	elesung	3
4	Vor	elesung	3
	4.1	Beweis zur Approximationsgüte vom Mehrwege-Schnitt	3
5	Vorlesung		
	5.1	Beweis zu LP-Runden: Ansatz II	3
	5.2	Beweis zu Relaxierter komplementärer Schlupf	3
	5.3	<u> </u>	4
6	Vorlesung		
	6.1	Beweis zu Unabhängige Mengen in H^2	4
	6.2	Beweis zu Faktor 2 für metrisches k-Zentrum	4
	6.3		4
	6.4		4
	6.5		5
7	Vorlesung		
	7.1	Beweis zum Lemma	5
	7.2	Beweis zu Satz	6
8	Vorlesung		
	8.1	FPTAS für Rucksack durch Skalierung	6
	8.2		6
	8.3	Beweis zu Satz 7.3	6
9	Vor	elesung	7

10 Vorlesung	7
11 Vorlesung	7
12 Mehrwegeschnitte per LP-Runden	7
13 Steinerwald-Problem	8
14 Gradbeschränkte minimale Spannbäume	10

1 Vorlesung

1.1 Beweis zu Approximationsalgorithmus zu VertexCover

- Zulässigkeit: Der Algorithmus liefert eine Knotenüberdeckung. Beweis durch Widerspruch: Wäre e eine Kante die nicht überdeckt ist, dann wäre auch $M \cup \{e\}$ ein Matching, im Widerspruch zur Nicht-Erweiterbarkeit von M.
- Güte: Es gilt $|M| \leq \text{OPT}$. Die ausgegebene Knotenmenge V' hat Größe $|V'| \leq 2|M| \leq 2\text{OPT}$, also $\frac{|V'|}{\text{OPT}} \leq 2$.

2 Vorlesung

3 Vorlesung

4 Vorlesung

4.1 Beweis zur Approximationsgüte vom Mehrwege-Schnitt

 A_i ist isolierender Schnitt für S_i . $\sum_{i=1}^k (A_i) = 2$ OPT, da jede Kante aus A genau zwei Komponenten K_i, K_j inzident.

Für $i = 1, \dots, k$ gilt $c(C_i) \le c(A_i)$. $c(C) \le (1 - \frac{1}{k}) \sum_{i=1}^{k} c(C_i) \le c(A_i) = 2(1 - \frac{1}{k}) \text{OPT}$

5 Vorlesung

5.1 Beweis zu LP-Runden: Ansatz II

- Zulässigkeit: Sei $e \in U$. Da e in $\leq h$ Mengen liegt und $\sum_{S\ni e} x_S \geq 1$ gilt, muss eine dieser Mengen $x_S \geq \frac{1}{h}$ erfüllen. Diese Menge wird von Algorithmus gewählt.
- Güte: Sei $S \in \mathbb{S}$. Der Algorithmus erhöht x_S um Faktor $\leq h$. Somit erhöht sich der Beitrag $x_S \cdot c_S$ dieser Menge zur Zielfunktion um Faktor h.

5.2 Beweis zu Relaxierter komplementärer Schlupf

Jede Variable y_i hat einen Geldbetrag von $\alpha\beta b_i y_i$. D.h. die Variablen haben insgesamt $\alpha\beta\sum_{i=1}^m b_i y_i$ Geldeinheiten. Für jedes Paar x_j, y_i von Variablen trasferiert y_i insgesamt $\alpha a_{ij}x_jy_i$ an x_j .

Jedes y_i besitzt dafü genügend Geld, da $\sum_j \alpha a_{ij} x_j y_i \leq \alpha \beta b_i y_i$ wegen des relaxierten dualen Komplementären Schlupfs (CS).

Jedes x_j bekommt $\alpha x_j \sum_i a_{ij} y_i \ge c_j x_j$ wegen des primalen Komplementären Schlupfs.

Insgesamt erhalten die x_j also mindestens den Betrag $\sum_{j=1}^n c_j x_j$.

5.3 Beweis zu Primal-Dual-Schema für SetCover

- Zulässigkeit: ✓
- Güte: es werden die relaxierten CS-Bedingungen mit $\alpha=1$ und $\beta=h$ erfüllt.

Beispiel: h=n [[Bild mit n-1 überlappendenen Mengen, die allen einen Knoten überdecken und zusätzlich den Knoten e_n gemeinsam haben und Kosten 1 besitzen, alle umschlossen von einer großen Menge mit Kosten $1+\varepsilon$]] $\frac{h}{1+\varepsilon}\approx h$

6 Vorlesung

6.1 Beweis zu Unabhängige Mengen in H^2

Betrachte kleinste dominierende Menge D in H. Dann lassen sich die Knoten von H mit |D| Sternen überdecken. $\Rightarrow H^2$ lässt sich mit |D| Cliquen überdecken. Jede dieser Cliquen enthält höchstens einen Knoten aus U. $\Rightarrow |U| \leq |D| = \mathrm{dom}(H)$

6.2 Beweis zu Faktor 2 für metrisches k-Zentrum

Sei $\{e_1, \dots, e_{j^*}\}$ die Menge der Kanten mit Kosten $\leq OPT$. Der Graph G_{j^*} enthält dominierende Menge der Größe $\text{dom}(G_{j^*}) \leq k$.

$$\Rightarrow |U_{j^*}| \le \operatorname{dom}(G_{j^*}) \le k$$

\Rightarrow j \le j^* \Rightarrow c(e_j) = c(e_{j^*}) = OPT

6.3 Beweis zu Satz 6.3

 U_j ist dominierende Menge in G_j^2 der Größe $\leq k$. Sei $v \in V$ beliebig. Dann gibt es einen Knoten u, der v in G_j^2 dominiert. \Rightarrow es existiert ein u-v-Weg in G_j , der höchstens zwei Kanten durchläuft und dessen Länge $\leq 2 \cdot c(e_j) \leq 2 \cdot OPT$

6.4 Beweis zu Satz 6.4

Angenommen, es gäbe einen $(2 - \varepsilon)$ -Approximationsalgorithmus $A \Rightarrow$ reduzieren von dominierender Menge.

Eingabe: Graph $G = (V, E), k \le |V|$

Frage: Existiert eine dominierende Menge und Größe $\leq k$.

Betrachte einen vollständigen Graphen G' mit Knotenmenge V.

$$c(u,v) = \begin{cases} 1 \text{ falls } (u,v) \in E \\ 2 \text{ falls } (u,v) \notin E \end{cases}$$

- angenommen, es existiert eine dominierende Menge in G mit Größe $\leq k$. $\Rightarrow OPT(G') \leq 1 \Rightarrow A(G') \leq 2 \varepsilon$
- angenommen, $dom(G) > k \Rightarrow OPT(G') \ge 2 \Rightarrow A(G') \ge 2$
- \Rightarrow wir können dominierende Menge in Glösen $\mbox{\ensuremath{\not|}}$

Definition 1 (leichtester Knoten). Mit $S_H(u)$ sei der leichteste Knoten aus $N_H(u) \cup \{u\}$ bezeichnet.

Lemma 1 (Leichteste Dominierende Menge). Sei U unabhängige Menge in H^2 von $S := \{S_H(u)|u \in U\}$. Dann gilt $w(S) \leq wdom(H)$, wobei wdom(H) das Gewicht der leichtesten dominierenden Menge in H ist.

Proof. Beweis Sei D günstigste dominierende Menge in $H. \Rightarrow$ Knoten von H lassen sich durch Sterne mit Zentrum in D überdecken. Diese Sterne sind Cliquen in H^2 . Jede dieser Cliquen enthält höchstens einen Knoten aus U. Sei $u' \in U$ beliebig und $v \in D$ das Zentrum des Sterns, der u' überdeckt.

$$S_H(u) \le x(v) \Rightarrow w(S) \le w(D) = \text{wdom}(H)$$

6.5 Beweis zu Satz 6.5

 $c(e_j) \leq OPT$ analog zu Lemma 6.2. Sei $v \in V$ beliebig, v wird in G_j^2 von einem Knoten u' dominiert.

 \Rightarrow Weg von v zu uüber ≤ 2 Kanten und zu $S_{G_j}(u)$ über ≤ 3 Kanten. $\Rightarrow ALG \leq 3 \cdot c(e_j) \leq 3 \cdot OPT$

7 Vorlesung

7.1 Beweis zum Lemma

Sei S_i die Menge von Knoten mit Grad $\geq i$ in T. Sei E_i die Menge von Kanten in T, die inzident zu einem Knoten in S_i sind. Behauptung: Für jedes $i \geq \Delta(T) - l$ gilt:

i)
$$|E_i| \ge (i-1) \cdot |S_i| + 1$$

- ii) Jede Kante aus G, die verschiedene Zusammenhangskomponenten aus $T-E_i$ verbindet ist inzident zu Knoten aus S_{i-1} .
- iii) $\exists j : |S_{j-i}| \le 2|S_j| \text{ und } j \ge \Delta(T) l + 1.$

Aus i) - iii) folgt das Lemma, denn:

$$OPT \ge \frac{(j-1) \cdot |S_j| + 1}{|S_{j-1}|} \stackrel{\text{iii}}{\ge} \frac{(j-q) \cdot |S_j| + 1}{2|S_j|} > \frac{(j-1)}{2} \ge \frac{\Delta(T) - l}{2}$$

- zu i) Es gibt $\geq i \cdot |S_i|$ viele Kanten-Inzidenten zu Knoten aus S_i . Es gibt $\leq |S_i| 1$ viele Kanten, die inzident zu <u>zwei</u> Kanten aus S_i sind, was i) zeigt: $|E_i| \geq i \cdot |S_i| (|S_i| 1) = (i 1) \cdot |S_i| + 1$
- zu ii) Jede Kante e, die zwei Zusammenhangskomponenten aus $T-E_i$ verbindet, liegt entweder in E_i oder schließt einen Kreis C in T, der einen Knoten aus S_i enthält. Da T lokal optimal ist, muss e somit zu einem Knoten aus S_{i-1} inzident sein.
- zu iii) Andernfalls wäre $|S_{\Delta(T)-l}| > 2^l \cdot |S_{\Delta(T)}| \ge n \cdot |S_{\Delta(T)}|$.

Beweis zu Satz

Definiere das Potential: $\Phi(T) = \sum_{v \in V} 3^{\deg v}$

Es gilt: $\Phi(T) \leq n \cdot 3^n$.

$$\Phi(T) \ge (n-2) \cdot 3^2 + 2 \cdot 3 > n.$$

Zu zeigen ist, dass das Potential nach jeder Iteration höchstens $(1 - \frac{2}{27 \cdot n^3})$ -mal so groß ist wie vorher.

Nach $\frac{27}{2}n^4 \log 3$ vielen Flips ist das Potential höchstens

$$\left(1 - \frac{2}{27 \cdot n^3}\right)^{\frac{27}{2}n^4 \log 3} \cdot n \cdot 3^n \stackrel{1 + x \le e^x}{\le} e^{-n \log 3} \cdot n \cdot 3^n = n.$$

 $(1-\frac{2}{27\cdot n^3})^{\frac{27}{2}n^4\log 3}\cdot n\cdot 3^n\overset{1+x\leq e^x}{\leq}e^{-n\log 3}\cdot n\cdot 3^n=n.$ Angenommen, der Algorithmus reduziert den Grad eines Knoten v von i auf i-1, wobei $i \geq \Delta(T) - l$ und fügt eine Kante (u, w) hinzu

- Die Erhöhung von Φ aufgrund des Hinzufügens von (u, w) ist $\leq 2 \cdot (3^{i-1} 1)^{i-1}$
- Die Abnahme von Φ aufgrund von v ist $\geq 3^i-3^{i-1}=2\cdot 3^{i-1}$. Es gilt $3^l\leq 3\cdot 3^{\log n}\leq 3\cdot 2^{2\cdot \log n}=3\cdot n^2$.

Die Gesamtabnahme von Φ ist somit mindestens

$$2 \cdot 3^{i-1} - 4 \cdot 3^{i-2} = \frac{2}{9} 3^i \ge \frac{2}{9} 3^{\Delta(T) - l} \ge \frac{2}{27 \cdot n^3} 3^{\Delta(T)} \ge \frac{2}{27 \cdot n^3} \Phi(t)$$

Für den Ergebnisbaum T' gilt also: $\Phi(T') \leq (1 - \frac{2}{27 \cdot n^3})\Phi(T)$

8 ${f Vorlesung}$

FPTAS für Rucksack durch Skalierung

Sei O eine optimale Lösung. Für jedes Objekt a gilt wegen der Skalierung $profit(a) - K \le K \cdot profit'(a) \le profit(a)$

$$\Rightarrow K \cdot profit'(O) \ge profit(O) - nK$$

Da S' optimale Lösung unter $profit'(\cdot)$ ist, gilt:

$$profit(S') \ge K \cdot profit'(S') \ge K \cdot profit'(O) \ge profit(O) - nK$$
$$= profit(O) + \epsilon P \ge profit(O) - \epsilon \cdot profit(O)$$
$$\ge (1 - \epsilon) \cdot profit(O)$$

Beweis zu Satz 7.1

Laufzeit:
$$O(n^2 \frac{P}{\epsilon P/n}) = O(\frac{n^3}{\epsilon})$$

Beweis zu Satz 7.3 8.3

Angenommen, es gibt ein FPTAS für Π mit Laufzeit $q(|I_u|, \frac{1}{\epsilon})$ wobei q ein Polynom ist. Setze nun $\epsilon := \frac{1}{p(|I_u|)}$. Dann ist der Zielwert der von FPTAS erreichten Lösung höchstens $(1 + \epsilon) \cdot OPT < OPT + \epsilon \cdot p(|I_u|) = OPT + 1$. Das heißt, der FPTAS bestimmt dann sogar eine optimale Lösung. Die Laufzeit ist $q(|I_u|, \frac{1}{\epsilon}) = q(|I_u|, p(|I_u|))$, was polynomiell in $|I_u|$ ist.

9 Vorlesung

10 Vorlesung

Vorlesung 11

12 Mehrwegeschnitte per LP-Runden

Eing.: Graph G = (V, E), Kosten $c : E \to \mathcal{N}$, Terminale $s_1, \dots, s_k \in V$. Ges.: Partitionierung $V = C_1 \cup \cdots \cup C_k$ mit $s_i \in C_i$ für $i = 1, \cdots, k$, so dass die

Kosten von F =

$$\bigcup_{i=1}^{k} \delta(C_i)$$

minimal sind.

Menge der Kanten mit genau einem Endpunkt in C_i

Menge der Kanten mit genau einem IPL: min $\frac{1}{2}\sum_{e\in E}c_e\sum_{i=1}^kz_e^i$ s.t. $z_e^i\geq x_u^i-x_v^i\;\forall e=(u,v)\in E, i=1,\cdots,k$ $z_e^i\geq x_v^i-x_u^i\;\forall e=(u,v)\in E, i=1,\cdots,k$ $x_{s_i}=1\;(i=1,\cdots,k)$ $\sum_{i=1}^kx_u^i=1\;\forall c\in V$ $x_u^i\in\{0,1\}$

<u>L</u>₁-Metrik: $x \in \mathcal{R}^k$, $x^i \stackrel{\wedge}{=} i$ -te Koordinate von x. $||x-y||_1 := \sum_{i=1}^k x^i - y^i$ LP-Relaxierung:

- ersetze $x_u^i \in \{0,1\}$ durch $x_u^i \ge 0$
- In optimaler Lösung gilt $z_e^i = |x_u^i x_v^i|$ für e = (u, v)
- $\sum_{i=1}^k z_e^i = \sum_{i=1}^k |x_u^i x_v^i| = ||x_u x_v||_1$ wobei $x_u = (x_u^1, \dots, x_u^k)$
- $\Delta_k = \{x \in \mathcal{R}^k | x^i \ge 0, \sum_{i=1}^k x^i = 1\}$
- $e_i = (0, \dots, 0, \underbrace{1}_{i\text{-te Stelle}}, 0, \dots, 0)$
- LP-Relaxierung:

min
$$\sum_{e=(u,v)\in E} c_e \cdot ||x_u - x_v||_1$$

s.t. $x_{s_i} = e_i (i = 1, \dots, k)$
 $x_u \in \Delta_k \forall u \in V$

Definiere $B(s_i, r) = \{v \in V | \frac{1}{2} | |x_v - e_i| | 1 \le r \}, B(s_i, 1) = V$ Alg.:

- \bullet Bestimme optimale Lösung x für LP-Relaxierung
- für $i = 1, \dots, k$ do $C_i \leftarrow \emptyset$
- wähle $v \in (0,1)$ zufällig und gleichverteilt
- wähle Permutation π auf $\{1, \dots, k\}$ zufällig und gleichverteilt.
- $x \leftarrow \emptyset$ #alle bereits zugewiesenen Knoten

• for
$$i = 1, \dots, k$$

$$- C_{\pi(i)} \leftarrow B(s_{\pi(i)}, r) - x$$

- $C_{\pi(k)} = V X$
- return (C_1, \dots, C_k)

Lemma 2. Für jeden Index l und alle Knoten $u, v \in V$ gilt:

$$|x_u^l - x_v^l| \le \frac{1}{2} ||x_u - x_v||_1$$

$$\begin{array}{l} \textit{Proof.} \; \text{o.E.:} \; x_u^l \geq x_v^l \colon |x_u^l - x_v^l| = x_u^l - x_v^l = (1 - \sum_{j \neq l} x_u^j) - (1 - \sum_{j \neq l} x_v^j) = \\ \sum_{j \neq l} (x_v^j - x_u^j) \leq \sum_{j \neq l} |x_v^j - x_u^j| \\ \Rightarrow 2|x_u^l - x_v^l| \leq ||x_u - x_v||_1 \end{array} \quad \Box$$

Lemma 3. $u \in B(s_i, r) \Leftrightarrow 1 - x_u^i \leq r$

Proof.
$$u \in B(s_i, r) \Leftrightarrow \frac{1}{2}||e_i - x_u||_1 \leq r$$

Äq.: $\frac{1}{2} \sum_{l \neq i} x_u^l + \frac{1}{2} (1 - x_u^i) \leq r$
Behauptung folgt wegen $\sum_{l \neq i} x_u^l = 1 - x_u^i$

Lemma 4. Sei $uv \in E$. Die Wahrscheinlichkeit, dass u und v vom Algorithmus getrennt werden ist $\leq \frac{3}{4}||x_u - x_v||_1$

Beweis später.

Satz 5. Obiger Algorithmus ist ein randomisierter $\frac{3}{2}$ -Approximationsalgorithmus.

Proof. Sei Z_{uv} eine Zufallsvariable aus $\{0,1\}$ mit $Z_{uv}=1 \Leftrightarrow u,v$ werden vom Algorithmus getrennt.

Sei $W:=\sum_{e=(u,v)\in E}c_e\cdot Z_{uv}$ eine Zufallsvariable, die berechneten Kosten des Lösungsalgorithmus.

$$E[W] = E[\sum_{e=(u,v)\in E} c_e \cdot Z_{uv}] = \sum_{e=(u,v)\in E} c_e \cdot E[Z_{uv}] = \sum c_e Pr[u,v \text{ werden getrennt}] \le \sum c_e \frac{3}{4} ||x_u - x_v||_1 = \frac{1}{2} \cdot \frac{3}{2} \sum c_e ||x_u - x_v||_1 \le \frac{3}{2} OPT$$

13 Steinerwald-Problem

Eingabe: Graph G=(V,E), Kosten $c:E\mapsto\mathbb{N},\ k$ Knotenpaare $s_i,t_i\in V$. Ziel: Finde kostengünstigste Menge $F\subseteq E$, so dass in (V,F) jedes der Paare s_i,t_i verbunden ist. ILP:

$$\min \sum_{e \in E} c_e \cdot x_e$$
 s.t.
$$\sum_{e \in \delta(s)} x_e \ge 1$$

$$S \in S_i \text{ für ein } i$$

$$x_e \in \{0,1\}$$

$$\forall e \in E$$

LP-Relaxierung:
$$x_e \in \{0, 1\} \mapsto x_e \ge 0$$

 $S_i := \{S \subseteq V : |S \cap \{s_i, t_i\}| = 1\}$
Duales LP:

$$\max \sum_{S:\exists i: S \subseteq S_i} y_s$$
 s.t.
$$\sum_{S: e \in \delta(S)} y_s \le c_e \qquad \forall e \in E$$

$$y_s \ge 0 \qquad \exists i: S \in S_i$$

Algorithmus:

```
\begin{array}{l} \mathbf{y} \leftarrow \mathbf{0} \\ \mathbf{F} \leftarrow \emptyset \\ \mathbf{e} \leftarrow \mathbf{0} \\ \text{while nicht alle Paare } s_i, t_i \text{ sind verbunden:} \\ \mathbf{e} \leftarrow \mathbf{e} + \mathbf{1} \\ \mathcal{C} := \{ \mathbf{Zhgs.komponente C von } (\mathbf{V}, \mathbf{F}) | \exists i : |C \cap \{s_i, t_i\}| = 1 \} \\ \text{erhoehe } y_e \text{ fuer alle } c \in \mathcal{C} \text{ gleichfoermig }, \\ \text{bis fuer ein } e_l \in \delta(c'), c' \in \mathcal{C} \text{ gilt:} \\ c_{e_l} = \sum_{S:e_l \in \delta(s)} y_s \\ \mathbf{F} \leftarrow \mathbf{F} + e_l \\ \mathbf{F}' \leftarrow \mathbf{F} \\ \text{for } \mathbf{k} \leftarrow \mathbf{1} \text{ to } \mathbf{1} : \\ \text{if } \mathbf{F}' - e_k \text{ zul ssig: } \mathbf{F}' \leftarrow \mathbf{F}' - e_k \end{array}
```

Beobachtung: Die konstruierte Primal- und Duallösung ist zulässig.

Lemma 6 (13.1). Für jedes C in jeder Iteration gilt:

$$\sum_{c \in \mathcal{C}} |\delta(c) \cap F'| \le 2 \cdot |\mathcal{C}|.$$

Beweis später.

Satz 7 (13.2). Obiger Algorithmus ist eine 2-Approximation.

Proof. $\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F'| \cdot y_S$ Zeigen per Induktion über di Anzahl der Iterationen, dass

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \cdot \sum_{S} y_S. (1)$$

Daraus folgt die Behauptung über die schwache Duallösung. (1) gilt zu Beginn wegen y=0.

Angenommen, dass (1) zu Beginn einer Iteration gilt. In diesen Iterationen werden alle $y_c, c \in \mathcal{C}$ um den gleichen Betrag, sagen wir $\varepsilon \geq 0$, erhöht. Die Erhöhung der beiden Seiten von (1) ist somit $\varepsilon \sum_{c \in \mathcal{C}} |\delta(c) \cap F'|$. Die Erhöhung der rechten Seite ist $2 \cdot \varepsilon \cdot |\mathcal{C}|$. Nach Lemma 6 gilt die Ungleichung also auch nach der Iteration.

Proposition 8 (Beobachtung). Zu jedem Zeitpunkt bildet die Kantenmenge F einen Wald.

Proof. Per Induktion über die Anzahl der Iterationen:

Beginn: $F = \emptyset$. Jede Kante, die wir neu hinzufügen verbindet zwei Zusammenhangskomponenten von F.

Proof zu Lemma 6. Betrachte Iteration i:

Sei $F_i = \{e_1, \cdots, e_{i-1}\}$ die Menge der Kanten, die zu Beginn der Iteration schon im Wald sind. Betrachte die Menge noch dazukommenden Kanten $H = F' - F_i$. Beobachte, dass $F_i \cup H \supseteq F'$ eine zulässige Lösung ist. Wir behaupten, dass wenn wir eine Kante $e \in H$ aus $F_i \cap H$ entfernen, so ist die Lösung nicht mehr zulässig. Das liegt an den Löschprozeduren am Ende des Algorithmus. Wenn e_{i-1} für die Löschung betrachtet wurde, gilt $F' = F' \cup H$. Daher sind alle bereits betrachteten Kanten notwendig. Dies sind genau die Kanten in H.

Wir bilden aus $(V, F_i \cup H)$ einen neuen Graphen indem wir die Zusammenhangskomponenten von (V, F_i) zu je einem Knoten kontrahieren. Die Kantenmenge des Graphen ist H. Seine Kontenmenge sei V'. (V', H) ist ein Wald. Wir färben alle Knoten von V' (\Leftrightarrow Zusammenhangskomponenten von (V, F_i)). Alle Knoten, die zu Zusammenhangskomponenten von $\mathcal C$ korrespondieren, werden rot gefärbt. Alle restlichen Knoten werden blau gefärbt. Sei R die Menge aller roten Knoten in V' und B die Menge der blauen Knoten v mit deg(v) > 0. Die behauptete Ungleichung lässt sich umschreiben:

Die rechte Seite ist 2|R|. Die linke Seite ist $\sum_{v \in R} deg(v)$. Wir behaupten, dass keine Knoten in B genau Grad 1 hat. Dann folgt:

$$\sum_{v \in R} deg(v) = \sum_{v \in R \cup B} deg(v) - \sum_{v \in B} deg(v) \leq 2 \cdot (|R| + |B|) - 2 \cdot |B| = 2 \cdot |R|$$

Angenommen, ein blauer Knoten v habe Grad 1 und sei \mathcal{C} die korrespondiere Zusammenhangskomponente und e die inzidente Kante in H. Da e notwendig ist, muss sie auf einem (s_i, t_i) -Pfad in $(V, F_i \cup H)$ liegen.

Das heißt,
$$|C \cap \{s_i, t_i\}| = 1$$
 und somit $c \in \mathcal{C}$. $\mbox{$\xi$}$

14 Gradbeschränkte minimale Spannbäume

Eingabe: $G = (V, E), c : E \mapsto \mathbb{N}, W \subseteq V$, und Schranken $b_v \ge 1$ für alle $v \in W$. Ziel: Kostenminimaler Spannbaum T von G, sodass $deg_T(v) \le b_v$ für alle $v \in W$. NP-schwer: Durch Beschränkung jedes Knotens auf $b_v = 2$ erhält man einen Hamilton-Pfad.

$$S \subseteq V : E(S) := \{uv \in E | u \in S, v \in S\}$$

LP-Relaxierung:

$$\min \sum_{e \in E} c_e \cdot x_e$$
s.t.
$$\sum_{e \in E} x_e = |v| - 1$$
 (i)
$$\sum_{e \in E(S)} x_e \le |S| - 1$$

$$\forall S \subseteq V, |S| \ge 2 \text{ (ii)}$$

$$\sum_{e \in \delta(V)} x_e \le b_v$$

$$\forall v \in W \text{ (iii)}$$

$$x_e \ge 0$$

$$\forall e \in E$$

Satz 9 (14.1). Es gibt einen Polynomialzeit-Algorithmus, der einen Spannbaum T mit Kosten $\leq OPT_{LP}$ produziert (falls das LP eine Lösung hat), so dass $deg_T(v) \leq b_v + 1$ für alle $v \in W$.