Shiva Sam Kumar Govindan

Wichita, Kansas • shivasamkumarg@gmail.com • +1 (602) 921-8754 • LinkedIn

Summary

Robotics Engineer with 3+ years of hands-on experience in autonomous systems, industrial automation, and UAV development. Proficient in ROS2, Python, C++, and MATLAB, with expertise in sensor fusion, motion planning, and AI-driven perception. Demonstrated success in deploying scalable robotic solutions for warehouse automation, aerial surveillance, and disaster response. Skilled in multi-robot coordination, digital twins, and IoT integration, leveraging MoveIt, Gazebo, and AWS RoboMaker to deliver efficient and reliable systems.

Education

M.S, Robotics and Autonomous Systems (Mechanical and Aerospace Engineering)

Arizona State University, Tempe, Arizona

B. Tech, Aeronautical Engineering

Aug 2016 – May 2020

Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, India

Skills

- Programming Languages: Python, C++, MATLAB, SQL, LaTeX.
- Robotics Frameworks: ROS2, MoveIt, Nav2, OMPL, STOMP, GTSAM, PX4 Autopilot, MAV Link, FreeRTOS, ROSI.
- Perception & AI: OpenCV, TensorFlow, PyTorch, Kalibr, Scikit-learn, PCL (Point Cloud Library), LOAM, RTAB-Map.
- Simulation & Modelling: Gazebo, CARLA, Ansys, SolidWorks, Blender, AWS RoboMaker, Siemens NX
- Embedded Systems & IoT: STM32, Raspberry Pi, NVIDIA Jetson, TMC2209, Socket CAN, Ether CAT, Beckhoff PLCs.

Experience

Rainier Labs, California

Robotics Engineer

Nov 2024 - Present

- Programmed ABB IRB 2600 robotic arms using ROS-I and MoveIt to automate palletizing tasks for Rainier Labs, reducing cycle time by 25% through Ether CAT integration with Beckhoff PLCs.
- Designed a Kalman filter-based pipeline to fuse LiDAR (Velodyne VLP-16) and Intel RealSense D455 data in ROS2, achieving 97% obstacle detection accuracy for warehouse robots.
- Built a digital twin in NVIDIA Isaac Sim to validate AGV path planning in dynamic environments, reducing real-world testing costs by 40%.
- Optimized OMPL algorithms for 7-DOF manipulators using CHOMP and STOMP in MoveIt, reducing motion jerk by 30% in precision assembly tasks.
- Deployed TensorRT-optimized YOLOv8 on NVIDIA Jetson Orin for real-time defect detection, triggering automated quality control workflows via ROS2 nodes.
- Reduced Hector SLAM drift by 20% in GPS-denied environments using GTSAM factor graphs on Husky UGV platforms.
- Implemented Visual Language Architecture, large language models and convolutional neural networks (CNNs) for natural language-based decision-making, streamlining tasks and reducing execution time by 25% while improving precision.
- Optimized robotic grasping strategies, integrating OMPL and MoveIt for autonomous voice-controlled pick-and-place operations, achieving a 30% improvement in grasp success rates and a 25% reduction in motion execution time.

EPICS Pro, Arizona State University, Tempe, AZ

Jul 2024 - Nov 2024

Mechatronics Engineer

- Programmed PX4 Autopilot firmware for hexacopter UAVs, integrating MAV Link with ROS2 for swarm coordination in agricultural monitoring missions, achieving 95% mission success in GPS-denied environments.
- Designed STM32-based motor controllers using FreeRTOS and TMC2209 stepper drivers, achieving 0.1° precision in UAV gimbal stabilization for aerial photogrammetry applications.
- Implemented LQR (Linear Quadratic Regulator) controllers in MATLAB/Simulink for UAV trajectory tracking, reducing steady-state error by 18% compared to traditional PID controllers.
- Processed LiDAR point clouds with PCL and Cloud Compare, deploying LOAM (Lidar Odometry and Mapping) on NVIDIA Xavier NX for real-time 3D terrain reconstruction.
- Prototyped lightweight UAV frames using Ulti maker S5 and Carbon Fiber PETG, validated via Ansys Static Structural simulations to ensure structural integrity under 5G loads.
- Developed an autonomous UAV for surveillance, integrating ORB-SLAM and sensor fusion for real-time localization and mapping using ROS2 and Gazebo. Utilized Python, OpenCV for live image processing, enhancing situational awareness.
- Orchestrated AWS RoboMaker simulations for 50+ UAV swarms, leveraging EC2 Spot Instances to reduce cloud compute costs by 35% while scaling mission testing.

Launch Trax Private Limited, Bangalore, India Robotics Application Engineer

- Processed LIDAR DEMs (Digital Elevation Models) with GRASS GIS and GDAL, automating flood-risk mapping using Python and Scikit-learn clustering algorithms for disaster response missions.
- Engineered a Dask-parallelized pipeline for SAR (Synthetic Aperture Radar) data processing, reducing latency by 55% in real-time disaster response workflows.
- Deployed Open VINO-optimized YOLOv5 on Intel NUC for real-time aerial object detection, achieving 45 FPS on Hikvision thermal cameras for surveillance missions.
- Developed a CANopen stack with Socket CAN on Raspberry Pi 4, enabling real-time communication between UAV payloads and Pixhawk flight controllers.
- Validated flight controllers with Speedgoat HIL (Hardware-in-Loop) systems, ensuring DO-178C compliance for aviation-grade UAV firmware and reducing certification time by 30%.
- Designed algorithm-based trajectory planners in C++, reducing UAV fuel consumption by 22% for long-range surveillance missions in mountainous terrain.
- Streamlined QGIS workflows with PostgreSQL and GeoServer, dynamically rendering aeronautical charts at 10,000:1 scale for defense and aviation clients.
- Developed and optimized geo-pointing & geo-location algorithms in Python, leveraging OpenCV, GDAL to convert UAV camera feeds from image coordinates to world coordinates via a GUI interface, improving navigational accuracy by 40%.

Certifications

- Self-Driving Cars Specialization Toronto University
- Introduction to Robotics in Microelectronics Manufacturing Arizona State University (ASU)
- MATLAB Certification Skill-Lync
- Diploma in Mechanical CAD CAD School