Task 5. Creat a Strong Password and Evaluate its Strength

Topic: Password Security & Strength Evaluation

✓ Step 1: Create Multiple Passwords with Varying Complexity

Description
Common, weak password
Medium complexity
Strong password with symbols, numbers
Random, high complexity
Simple dictionary word
Complex, user-friendly

✓ Step 2: Test Passwords Using a Password Strength Checker

You can use tools like:

- How Secure Is My Password
- Password Checker Online
- LastPass Password Generator

Record feedback and scores.

Password	Strength (Estimated)	Feedback
password123	Very Weak (Instant crack)	Common password, lacks complexity
Pa\$\$w0rd!	Weak (few minutes)	Better, but still predictable
S@f3H0us3!2025	Strong (millions of years)	Good length, variety of characters
Gk*83vd!j#L2	Very Strong (billions of years)	Random, very hard to crack
sunshine	Very Weak (instant crack)	Found in dictionary
C0mpl3x_4#Us3r!	Strong (billions of years)	Well-structured with symbols and length

✓ Step 3: Identify Best Practices for Creating Strong Passwords

From testing and research, best practices include:

- Use **12+ characters** (longer = stronger).
- Combine uppercase, lowercase, numbers, and special characters.
- Avoid **dictionary words** and common phrases.
- Don't reuse passwords across sites.
- Use **passphrases** or randomly generated strings.
- Consider a **password manager** for storing complex passwords.

✓ Step 4: Tips Learned from Evaluation

- Even replacing letters with symbols (e.g., Pa\$\$w0rd) isn't enough if the base word is common.
- Truly secure passwords look random (e.g., Gk*83vd!j#L2).
- Adding length increases security more than just complexity.
- Mixing unrelated words (e.g., BlueTable7!Rain) can be both strong and memorable.

✓ Step 5: Research – Common Password Attacks

Attack Type Description

Brute Force Tries every possible combination until it finds a match.

Dictionary Attack Uses known words/phrases from a list (like "password", "123456").

Credential Stuffing Uses leaked credentials from data breaches.

Phishing Tricks users into revealing passwords.Keylogging Captures typed passwords via malware.

✓ Step 6: Summary – How Password Complexity Affects Security

- Low Complexity Passwords (e.g., password123) are highly vulnerable to dictionary and brute-force attacks.
- **High Complexity Passwords** take **millions or billions of years** to crack using brute force, especially when long and random.
- Attackers rely on **common patterns** and **human laziness**—unique, complex passwords defend against this.
- The combination of **length** + **unpredictability** is the key to strong passwords.

Final Thoughts

Security Tip: Always use **multi-factor authentication (MFA)** alongside strong passwords for better protection.