Slide: 01

- * Assalamualaikum everyone!! Welcome to my presentation.
- * This Md. Abdul Kayum, from HSTU (Tell full form), Dinajpur.
- * My Paper ID 485 & the title is "Integration of T-shaped Notch Filter Elements into a UWB Antenna to Reduce EMI of WiMAX/N78 and N79 Bands"

Slide: 02 (Outlines)

- * At first, I'll briefly dicuss about UWB technology, with its applications, and some design challenges.
- * then our main objectives.
- * after that, the design procedure of the proposed notch filter element.
- * Finally, the results will be discussed with a comparison table.

Slide: 03 (Introduction)

* Antenna is a (read from slide "- front end component....).

It can (-radiate and receive....)

- * Ultrawide band, It's a high speed technology to transmit large volume of information using low power radio signal. It has a lincence free frequency spectrum, 2.97 GHz to 10.76 GHz.
- * UWB is mostly used for the following applications (read slide for applications).

Slide: 04

* There are some overlapping services with UWB.

For example, (read your slide)

* Also, there are some antenna design challenges,

for examples, (read your slide)

Slide: 05 (Objectives)

- * The main objectives of our work, (read your slide)
 - To design simple intrinsic notch filter element
 - To block the EMI due to WiMAX/N78 band
 - To block the EMI due to N79 band
- To attain satisfactory performances over the operating band

Slide: 06 (Simulation Tool)

- * We have used Coputer Simulation Technology (CST) version 2018
- * It's a High performance 3D EM analysis software
 - Flexible to analysis
 - Having different simulation techniques

Slide: 07

(Notch Filter Design Procedure)

* We have used, copper for ground & patch; (similarly, read your slide).

Slide: 08 (Notch Filter Design Procedure) (Important slide)

- * Fig.1 shows the Final geometry of the UWB antenna with proposed Notch filter element
- * Here, There are two T shaped slot, this slot acts as an Intrinsic filter element.
- * It consists of horizontal & vertical slots
- * The overall length of the filter element are estimated by the equations (1), (2), & (3)
- * The calculated length was ... (read slide), after optimization, we have used only (read slide) to eliminate the WiMAX band.

Slide: 09

Nije bolo figure deke

Slide: 11 (Results: VSWR)

Nije bolo figure deke

Slide: 12 (Results: Gain)

Nije bolo figure deke

Slide: 13 (Results: Efficiency)

Nije bolo figure deke

Slide: 15 (Comparison Table)

- * Table II shows the comparison of the proposed work with some recent works.
- * we observed that the proposed design has comparatively compact size.
- * It covers entire UWB spectrum, filter out the WiMAX/N78 and N79 band with unique 2 T-shaped filter element.
- * The maximum radiation efficiency is 95%.
- * Therefore, the proposed design is comparable to others.

Slide: 16 (Conclusion & Future work)

- * Therefore, the overall features are(Read your slide)
- * In future, reconfigure notch filter can be designed for filtering multiple interfering bands. Also, the design can be fabricated in future.

Slide: 17 (References)

* These are the references, we used in our work.

Slide: 18 (Thanks giving)

- * Thank you everyone!!
- * If you have any queries or suggestions, you are welcome.

WiMAX Applications:

- 1. Broadband Internet Access
- 2. Rural & Remote Connectivity
- 3. Mobile Data Services
- 4. Enterprise Networks
- 5. Public Safety & Emergency Services

N79 (5G) Applications:

- 1. 5G Mobile Networks
- 2. Enterprise & Industrial 5G
- 3. Augmented Reality (AR) & Virtual Reality (VR)
- 4. Cloud Gaming & Streaming
- 5. Autonomous Vehicles & Smart Transportation
- 6. WiMAX Worldwide Interoperability for Microwave Access
- 7. N79 It is a 5G NR (New Radio) frequency band ranging from 4.4 GHz to 5.0 GHz, primarily used in Asia. It does not have a full form like WiMAX.