HWE

Kapazitive Kopplung

Die Übertragung der Störgröße auf den Nutzkreis erfolgt über das Elektrischefeld.

Ursache für Kapazitive beeinflussung sind parasitäre (d.h nicht beabsichtigte) Kapazitäten zwischen Leitern die zu verschiedenen Stromkreisen gehören.

$$u_L = u_{SIG} rac{R_L}{R_i + R_L} + i_{ST\ddot{O}R} rac{R_i * R_L}{R_i + R_L}$$

Für den (allgemeinen) Fall, dass die Impedanz der Koppelkapazität sehr viel größer ist als die Impedanz des Nutzkreises folgt: $\frac{1}{\omega C_K} >> (R_i||R_L)$ gilt $i_{ST\ddot{O}R} pprox C_K \frac{du_S T\ddot{O}R}{dt}$

$$i_{ST\ddot{O}R}rac{R_i*R_L}{R_i+R_L}$$
 = Stör-Anteil \Rightarrow $U_L=rac{R_L}{R_i+R_L}$ ($u_{SIG}+i_{ST\ddot{O}R}*R_i$)

Für den Störanteil gilt:

▼ im Zeitbereich

$$egin{aligned} u_{L,ST\ddot{O}R} &= rac{R_L*R_i}{R_L+R_i} i_{ST\ddot{O}R} \ i_{ST\ddot{O}R} &= C_K rac{du_{ST\ddot{O}R}}{dt} \end{aligned}$$

▼ im Frequenzbereich

$$egin{aligned} & \underline{U}_{L,ST\ddot{O}R} = rac{R_L * R_i}{R_L + R_i} \underline{I}_{ST\ddot{O}R} \ & \underline{I}_{ST\ddot{O}R} = j\omega C_K * \underline{U}_{ST\ddot{O}R} \end{aligned}$$

Die Höhe des Störstroms $i_{ST\ddot{O}R}$ hängt ab von:

- 1. Der Größe der Koppelkapazität C_K
- 2. Der Änderunggeschwindigkeit, der Amplitude und der Frequenz von $u_{ST\ddot{O}R}$

$$C_K = rac{arepsilon_0 arepsilon_r A}{d}$$
 Plattenkondensator

Reale werte für den Kapazitätsbelag von realen Leitungen sind 5 -100 pF/m

Nachweis eingekoppelter Störungen:

Für den Störanteil gilt:

▼ im Zeitbereich

$$u_{L,ST\ddot{O}R} = rac{R_i * R_L}{R_i + R_L} * i_{ST\ddot{O}R} = rac{R_i * R_L}{R_i + R_L} C_k rac{du_{ST\ddot{O}R}}{dt}$$

▼ im Frequenzbereich

$$\underline{U}_{L,ST\ddot{O}R} = j\omega C_K \frac{R_i * R_L}{R_i + R_L} * \underline{U}_{ST\ddot{O}R}$$

Modellierung der Störspannung

$$u_L = rac{R_L}{R_i + R_L} * u_{SIG} + rac{R_L}{R_i + R_L} * i_{ST\ddot{O}R} * R_i$$
Nutzsignal + Störsignal

Diagnose von kapazitiven Kopplungen:

Ersetzen des Nutzsignals u_{SIG} durch einen Kurzschluß

$$\mathrm{d.h.}\,R_i=0$$

wächst

Die Störspannung muss damit verschwinden

Abhilfemaßnahmen bei kapazitiven Kopplungen:

1. Die Koppelkapazitäten gering halten

$$C_K = rac{arepsilon_0 arepsilon_r A}{d}$$
 - kurze Verbindungsleitungen \Rightarrow A minimiert

- großer Abstand zwischen sich störenden Leitungen \Rightarrow d

- Vermeidung paralleler Leitungsführung
- 2. Verwenden einer Signalspannungsquelle mit möglichst geringem R_i
- 3. Verringern von $\frac{du_{ST\ddot{O}R}}{dt}$ \Rightarrow z.B. einfacher RC-Tiefpass

4. Möglichst niederohmige Ausführung der Impedanzen im Stromkreis

 $u_{L,ST\ddot{O}R}$ wird kleiner, wenn R_i,R_L kleiner sind

- 5. Schirmen der gefährdeten Leitungen und Stromkreisen
 - abgeschirmte Leitung (Koax kabel)
 - Schirmleiterbahnen auf PCB
 - Schirmwände zwischen Systemen

Schirmung:

Die wirksame Koppelkapazität C_K wird reduziert auf die Kapazität C_{S2} zwischen Schirm und Nutzkreis.

Bei gleicher Amplitude und $\frac{d}{dt}$ der Störquelle verringert sich damit die eingekoppelte Störspannung.

Bild 12: Schirmleiterbahn auf Leiterplatten

Der Schirm muss jeweils aus gut leitendem Material bestehen, damit der über ihn abfliessende Strom keinen nennenswerten Spannungsabfall über der Schirmimpedanz $Z_S=R_S+j\omega L_S$ erzeugt.

Bsp.: Kapazitive Kopplung

 $l_1=100mm$

 $l_2=80mm$

w=10mm

d=0,2mm

$$C_K = rac{arepsilon_0 arepsilon_r A}{d} = rac{8,854*10^{-12} F*10^{-2}*10^{-2} m^2}{m \ 0,2*10^{-3} m} = 4,427 pF$$

Modellbildung

 $V_{AC}=5V,\ R_4>> \
ightarrow$ es fließt ein kleiner Strom ortogonale anordnung \Rightarrow keine induzierte Spannung ESB:

$$\begin{array}{l} U_{ST\ddot{O}R} = V_{AC} * \frac{(R_2||R_3)}{(R_2||R_3) + \frac{1}{j\omega C}} = \frac{(R_2||R_3) * j\omega C_K}{1 + j\omega C(R_2||R_3)} \\ \text{ges } |U_{ST\ddot{O}R}| \text{ für 10, 20, 60 MHz} \\ f = 50MHz \;\; R_2||R_3 = 25\Omega \;\; C_K = 5pF \\ \\ U_{ST\ddot{O}R} = V_{AC} * \frac{j2\pi 50 * 10^6 Hz * 5 * 10^{-12} F * 25\Omega}{1 + j2\pi 50 * 10^6 * 5 * 10^{-12} Hz * 25\Omega} = 5V * \\ \frac{j\pi 10^8 * 5 * 10^{-12} * 25 Hz \Omega F}{1 + j\pi * 10^8 * 5 * 10^{-12} * 25 Hz \Omega F} = \\ = 5 * \frac{j125\pi * 10^{-4}}{1 + j125\pi * 10^{-4}} = \frac{5 * j125\pi * 10^{-4}}{1} = j625\pi * 10^{-4} = j0,196V \\ \Rightarrow |U_{ST\ddot{O}R}| \approx 0,2V \end{array}$$