Оценка окупаемости рекламы приложения Procrastinate Pro+, поиск причин убытков

1c96fee4-af67-4c6f-bc39-6dcac175a197

Описание проекта

Несмотря на огромные вложения в рекламу, последние несколько месяцев компания - развлекательное приложение Procrastinate Pro+, терпит убытки. Есть данные о пользователях, привлечённых с 1 мая по 27 октября 2019 года: лог сервера с данными об их посещениях, выгрузка их покупок за этот период, рекламные расходы.

В ходе исследования необходимо изучить:

- откуда приходят пользователи и какими устройствами они пользуются,
- сколько стоит привлечение пользователей из различных рекламных каналов;
- сколько денег приносит каждый клиент,
- когда расходы на привлечение клиента окупаются,
- какие факторы мешают привлечению клиентов.

В плане:

- изучить первоначальные данные и выполнить предобработку: привести к удобному для расчетов виду, удалить пропуски и дубликаты при их наличии;
- подобрать функции для проведения маркетингового исследования;
- изучить профили пользователей: зависимость их заинтересованности от используемых устройств, каналов привлечения и региона проживания;
- проанализировать массив с данными о расходах на маркетинг;
- оценить окупаемость рекламы по регионам, по устройствам и каналам привлечения;
- выявить причины убытков и определить перспективные направления.

Задача — разобраться в причинах убытков и помочь компании выйти в плюс

Загрузка данных и подготовка их к анализу

Загрузим данные о визитах, заказах и рекламных расходах из CSV-файлов в переменные. Изучим данные и выполним предобработку. Проверим, есть ли в данных пропуски и дубликаты. Убедимся, что типы данных во всех колонках соответствуют сохранённым в них значениям. Обратим внимание на столбцы с датой и временем.

Импорт библиотек.

```
import pandas as pd
from datetime import datetime, timedelta
import numpy as np
import seaborn as sbn
```

```
import matplotlib.pyplot as plt
from scipy import stats as st
```

Загрузка данных.

```
In [2]: visits = pd.read_csv('/datasets/visits_info_short.csv')
    orders = pd.read_csv('/datasets/orders_info_short.csv')
    costs = pd.read_csv('/datasets/costs_info_short.csv')
```

Выведем первые строки массивов для ознакомления.

```
In [3]: pd.set_option('display.max_columns', None)
    visits.head()
    #orders.head()
#costs.head()
```

Out[3]:		User Id	Region	Device	Channel	Session Start	Session End
	0	981449118918	United States	iPhone	organic	2019-05-01 02:36:01	2019-05-01 02:45:01
	1	278965908054	United States	iPhone	organic	2019-05-01 04:46:31	2019-05-01 04:47:35
	2	590706206550	United States	Mac	organic	2019-05-01 14:09:25	2019-05-01 15:32:08
	3	326433527971	United States	Android	ТірТор	2019-05-01 00:29:59	2019-05-01 00:54:25
	4	349773784594	United States	Mac	organic	2019-05-01 03:33:35	2019-05-01 03:57:40

Создадим функцию для вывода общей информации по датафрейму: размер, типы данных и количество пропусков в солбцах, наличие дубликатов, наименования столбцов отдельно:

```
In [4]:

def describe(df: pd.DataFrame):
    display(f'Oбщая информация: {df.shape}')
    display(df.info())
    display(df.iduplicated().sum())
    display(df.isna().mean())
    display(f'Haзвaния столбцов: {df.columns}')
```

```
In [5]: describe(visits)
```

```
'Общая информация: (309901, 6)'
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 309901 entries, 0 to 309900
Data columns (total 6 columns):
                  Non-Null Count Dtype
# Column
                  309901 non-null int64
0 User Id
    Region
                  309901 non-null object
2 Device
                  309901 non-null object
             309901 non-null object
3 Channel
4 Session Start 309901 non-null object
5 Session End 309901 non-null object
dtypes: int64(1), object(5)
memory usage: 14.2+ MB
None
User Id
               0.0
Region
               0.0
Device
               0.0
```

```
Session Start 0.0
        Session End
        dtype: float64
        "Названия столбцов: Index(['User Id', 'Region', 'Device', 'Channel', 'Session Star
                    'Session End'],\n
                                         dtype='object')"
In [6]:
         describe(orders)
         'Обшая информация: (40212, 3)'
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 40212 entries, 0 to 40211
        Data columns (total 3 columns):
           Column Non-Null Count Dtype
            -----
                     -----
         0 User Id 40212 non-null int64
         1 Event Dt 40212 non-null object
         2 Revenue 40212 non-null float64
        dtypes: float64(1), int64(1), object(1)
        memory usage: 942.6+ KB
        None
        User Id
                   0.0
        Event Dt
                   a a
        Revenue
                   0.0
        dtype: float64
        "Названия столбцов: Index(['User Id', 'Event Dt', 'Revenue'], dtype='object')"
In [7]:
         describe(costs)
        'Общая информация: (1800, 3)'
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1800 entries, 0 to 1799
        Data columns (total 3 columns):
         # Column Non-Null Count Dtype
        --- ----- ------
                     1800 non-null object
         0 dt
         1 Channel 1800 non-null object
         2 costs 1800 non-null float64
        dtypes: float64(1), object(2)
        memory usage: 42.3+ KB
        None
        0
        dt
                  0.0
        Channel
                  0.0
        costs
                  0.0
        dtype: float64
        "Названия столбцов: Index(['dt', 'Channel', 'costs'], dtype='object')"
       Для начала переименуем столбцы массивов в стиле snake.
In [8]:
         visits.rename(columns={'User Id': 'user id', 'Region': 'region', 'Device': 'device',
         visits.columns
Out[8]: Index(['user_id', 'region', 'device', 'channel', 'session start',
               'session end'l.
              dtype='object')
In [9]:
         orders.rename(columns={'User Id': 'user_id', 'Event Dt': 'event_dt', 'Revenue': 'rev
         orders.columns
Out[9]: Index(['user_id', 'event_dt', 'revenue'], dtype='object')
```

```
In [10]:
         costs.rename(columns={'Channel': 'channel'}, inplace=True)
         costs.columns
Out[10]: Index(['dt', 'channel', 'costs'], dtype='object')
        Приведем данные в столбцах массивов с датами к формату datetime.
         visits['session_start'] = pd.to_datetime(visits['session_start'])
         visits['session end'] = pd.to datetime(visits['session end'])
         orders['event dt'] = pd.to datetime(orders['event dt'])
         costs['dt'] = pd.to_datetime(costs['dt']).dt.date
         visits.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 309901 entries, 0 to 309900
         Data columns (total 6 columns):
                           Non-Null Count Dtype
         # Column
                           -----
         0 user id
                           309901 non-null int64
         1 region
                           309901 non-null object
         2 device
                           309901 non-null object
         3 channel
                           309901 non-null object
         4 session start 309901 non-null datetime64[ns]
         5 session end 309901 non-null datetime64[ns]
         dtypes: datetime64[ns](2), int64(1), object(3)
         memory usage: 14.2+ MB
```

вывод:

После загрузки данных о визитах, заказах и рекламных расходах из CSV-файлов в переменные были выполнены операции по их предобработке для дальнейшей работы. В ходе изучения данных не было выявлено пропусков и дубликатов в данных. Столбцы массивов были переименованы в едином стиле. Данные в столбцах с датами переведены в формат для работы с датой и временем.

Функции для расчёта и анализа LTV, ROI, удержания и конверсии.

Используем готовые функции.

Это функции для вычисления значений метрик:

- get_profiles() для создания профилей пользователей,
- get_retention() для подсчёта Retention Rate,
- get_conversion() для подсчёта конверсии,
- get_ltv() для подсчёта LTV.

А также функции для построения графиков:

- filter data() для сглаживания данных,
- plot retention() для построения графика Retention Rate,
- plot_conversion() для построения графика конверсии,
- plot_ltv_roi для визуализации LTV и ROI.

```
# функция для создания пользовательских профилей
def get profiles(sessions, orders, ad costs):
    # находим параметры первых посещений
    profiles = (
        sessions.sort values(by=['user id', 'session start'])
        .groupby('user id')
        .agg(
                'session start': 'first'.
                'channel': 'first',
                'device': 'first',
                'region': 'first'.
        .rename(columns={'session start': 'first ts'})
        .reset index()
    # для когортного анализа определяем дату первого посещения
    # и первый день месяца, в который это посещение произошло
    profiles['dt'] = profiles['first ts'].dt.date
    profiles['month'] = profiles['first ts'].astype('datetime64[M]')
    # добавляем признак платящих пользователей
    profiles['payer'] = profiles['user_id'].isin(orders['user_id'].unique())
    # считаем количество уникальных пользователей
    # с одинаковыми источником и датой привлечения
    new users = (
       profiles.groupby(['dt', 'channel'])
        .agg({'user id': 'nunique'})
        .rename(columns={'user id': 'unique users'})
        .reset index()
    # объединяем траты на рекламу и число привлечённых пользователей
    ad costs = ad costs.merge(new users, on=['dt', 'channel'], how='left')
    # делим рекламные расходы на число привлечённых пользователей
    ad_costs['acquisition_cost'] = ad_costs['costs'] / ad_costs['unique_users']
    # добавляем стоимость привлечения в профили
    profiles = profiles.merge(
       ad costs[['dt', 'channel', 'acquisition cost']],
       on=['dt', 'channel'],
       how='left',
    # стоимость привлечения органических пользователей равна нулю
    profiles['acquisition cost'] = profiles['acquisition cost'].fillna(0)
    return profiles
```

```
In [14]:
           # функция для расчёта удержания
           def get retention(
               profiles,
               sessions,
               observation date.
```

```
horizon days,
dimensions=[],
ignore horizon=False,
# добавляем столбец paver в передаваемый dimensions список
dimensions = ['payer'] + dimensions
# исключаем пользователей, не «доживших» до горизонта анализа
last suitable acquisition date = observation date
if not ignore horizon:
   last suitable acquisition date = observation date - timedelta(
       days=horizon days - 1
result raw = profiles.query('dt <= @last suitable acquisition date')
# собираем «сырые» данные для расчёта удержания
result raw = result raw.merge(
   sessions[['user id', 'session start']], on='user id', how='left'
result raw['lifetime'] = (
   result_raw['session_start'] - result_raw['first_ts']
# Функция для группировки таблицы по желаемым признакам
def group by dimensions(df, dims, horizon days):
   result = df.pivot table(
        index=dims, columns='lifetime', values='user id', aggfunc='nunique'
   cohort_sizes = (
       df.groupby(dims)
        .agg({'user_id': 'nunique'})
        .rename(columns={'user id': 'cohort size'})
   result = cohort sizes.merge(result, on=dims, how='left').fillna(0)
   result = result.div(result['cohort_size'], axis=0)
   result = result[['cohort size'] + list(range(horizon days))]
   result['cohort_size'] = cohort_sizes
   return result
# получаем таблицу удержания
result grouped = group by dimensions(result raw, dimensions, horizon days)
# получаем таблицу динамики удержания
result in time = group by dimensions(
    result_raw, dimensions + ['dt'], horizon_days
# возвращаем обе таблицы и сырые данные
return result raw, result grouped, result in time
```

```
In [15]:
          # функция для расчёта конверсии
          def get conversion(
              profiles.
              purchases,
              observation date,
              horizon days,
              dimensions=[],
              ignore horizon=False,
          ):
               # исключаем пользователей. не «доживших» до горизонта анализа
```

```
last suitable acquisition date = observation date
if not ignore horizon:
   last suitable acquisition date = observation date - timedelta(
        days=horizon days - 1
result raw = profiles.guery('dt <= @last suitable acquisition date')
# определяем дату и время первой покупки для каждого пользователя
first purchases = (
   purchases.sort values(by=['user id', 'event dt'])
    .groupby('user id')
    .agg({'event dt': 'first'})
    .reset index()
# добавляем данные о покупках в профили
result raw = result raw.merge(
   first purchases[['user id', 'event dt']], on='user id', how='left'
# рассчитываем лайфтайм для каждой покупки
result raw['lifetime'] = (
   result raw['event dt'] - result raw['first ts']
).dt.days
# группируем по cohort, если в dimensions ничего нет
if len(dimensions) == 0:
   result raw['cohort'] = 'All users'
   dimensions = dimensions + ['cohort']
# функция для группировки таблицы по желаемым признакам
def group by dimensions(df, dims, horizon days):
   result = df.pivot table(
       index=dims, columns='lifetime', values='user id', aggfunc='nunique'
   result = result.fillna(0).cumsum(axis = 1)
   cohort sizes = (
        df.groupby(dims)
        .agg({'user_id': 'nunique'})
        .rename(columns={'user id': 'cohort size'})
   result = cohort sizes.merge(result, on=dims, how='left').fillna(0)
   # делим каждую «ячейку» в строке на размер когорты
   # и получаем conversion rate
   result = result.div(result['cohort size'], axis=0)
   result = result[['cohort_size'] + list(range(horizon_days))]
   result['cohort_size'] = cohort_sizes
   return result
# получаем таблицу конверсии
result grouped = group by dimensions(result raw, dimensions, horizon days)
# для таблицы динамики конверсии убираем 'cohort' из dimensions
if 'cohort' in dimensions:
   dimensions = [1]
# получаем таблицу динамики конверсии
result in time = group by dimensions(
   result raw, dimensions + ['dt'], horizon days
# возвращаем обе таблицы и сырые данные
return result raw, result grouped, result in time
```

```
In [16]:
          # Функция для расчёта LTV и ROI
          def get ltv(
              profiles,
              purchases,
              observation date.
              horizon days.
               dimensions=[],
               ignore horizon=False,
          ):
              # исключаем пользователей, не «доживших» до горизонта анализа
              last suitable acquisition date = observation date
              if not ignore horizon:
                  last_suitable_acquisition_date = observation_date - timedelta(
                      days=horizon days - 1
              result raw = profiles.query('dt <= @last suitable acquisition date')</pre>
               # добавляем данные о покупках в профили
              result raw = result raw.merge(
                  purchases[['user id', 'event dt', 'revenue']], on='user id', how='left'
              # рассчитываем лайфтайм пользователя для каждой покупки
              result raw['lifetime'] = (
                   result raw['event dt'] - result raw['first ts']
              ).dt.davs
               # группируем по cohort, если \theta dimensions ничего нет
              if len(dimensions) == 0:
                  result raw['cohort'] = 'All users'
                  dimensions = dimensions + ['cohort']
               # функция группировки по желаемым признакам
               def group by dimensions(df, dims, horizon days):
                  # строим «треугольную» таблицу выручки
                  result = df.pivot table(
                       index=dims, columns='lifetime', values='revenue', aggfunc='sum'
                  # находим сумму выручки с накоплением
                  result = result.fillna(0).cumsum(axis=1)
                  # вычисляем размеры когорт
                  cohort sizes = (
                      df.groupby(dims)
                       .agg({'user id': 'nunique'})
                       .rename(columns={'user id': 'cohort size'})
                  # объединяем размеры когорт и таблицу выручки
                  result = cohort sizes.merge(result, on=dims, how='left').fillna(0)
                  # считаем LTV: делим каждую «ячейку» в строке на размер когорты
                  result = result.div(result['cohort size'], axis=0)
                  # исключаем все лайфтаймы, превышающие горизонт анализа
                  result = result[['cohort size'] + list(range(horizon days))]
                  # восстанавливаем размеры когорт
                  result['cohort_size'] = cohort_sizes
                  # собираем датафрейм с данными пользователей и значениями САС,
                  # добавляя параметры из dimensions
                  cac = df[['user id', 'acquisition cost'] + dims].drop duplicates()
                  # считаем средний CAC по параметрам из dimensions
                  cac = (
                       cac.groupby(dims)
                       .agg({'acquisition_cost': 'mean'})
                       .rename(columns={'acquisition_cost': 'cac'})
```

```
In [18]:
          def plot retention(retention, retention history, horizon, window=7):
              # задаём размер сетки для графиков
              plt.figure(figsize=(15, 10))
              # исключаем размеры когорт и удержание первого дня
              retention = retention.drop(columns=['cohort size', 0])
              # в таблице динамики оставляем только нужный лайфтайм
```

```
retention history = retention history.drop(columns=['cohort size'])[
    [horizon - 1]
1
# если в индексах таблицы удержания только payer,
# добавляем второй признак — cohort
if retention.index.nlevels == 1:
   retention['cohort'] = 'All users'
   retention = retention.reset index().set index(['cohort', 'payer'])
# в таблице графиков — два столбца и две строки, четыре ячейки
# в первой строим кривые удержания платящих пользователей
ax1 = plt.subplot(2, 2, 1)
retention.query('payer == True').droplevel('payer').T.plot(
    grid=True, ax=ax1
plt.legend()
plt.xlabel('Лайфтайм')
plt.title('Удержание платящих пользователей')
# во второй ячейке строит кривые удержания неплатящих
# вертикальная ось — от графика из первой ячейки
ax2 = plt.subplot(2, 2, 2, sharey=ax1)
retention.query('payer == False').droplevel('payer').T.plot(
   grid=True, ax=ax2
plt.legend()
plt.xlabel('Лайфтайм')
plt.title('Удержание неплатящих пользователей')
# в третьей ячейке — динамика удержания платящих
ax3 = plt.subplot(2, 2, 3)
# получаем названия столбцов для сводной таблицы
columns = [
   name
    for name in retention_history.index.names
   if name not in ['dt', 'payer']
# фильтруем данные и строим график
filtered data = retention history.query('payer == True').pivot table(
   index='dt'. columns=columns. values=horizon - 1. aggfunc='mean'
filter data(filtered data, window).plot(grid=True, ax=ax3)
plt.xlabel('Дата привлечения')
plt.title(
    'Динамика удержания платящих пользователей на {}-й день'.format(
       horizon
)
# в чётвертой ячейке — динамика удержания неплатящих
ax4 = plt.subplot(2, 2, 4, sharey=ax3)
# фильтруем данные и строим график
filtered data = retention history.query('payer == False').pivot table(
    index='dt', columns=columns, values=horizon - 1, aggfunc='mean'
filter data(filtered data, window).plot(grid=True, ax=ax4)
plt.xlabel('Дата привлечения')
plt.title(
    'Динамика удержания неплатящих пользователей на {}-й день'.format(
       horizon
```

```
plt.tight layout()
              nlt show()
In [19]:
          # функция для визуализации конверсии
          def plot conversion(conversion, conversion history, horizon, window=7):
              # задаём размер сетки для графиков
              plt.figure(figsize=(15, 5))
              # исключаем размеры когорт
              conversion = conversion.drop(columns=['cohort size'])
              # в таблице динамики оставляем только нужный лайфтайм
              conversion history = conversion history.drop(columns=['cohort size'])[
                  [horizon - 1]
              # первый график - кривые конверсии
              ax1 = plt.subplot(1, 2, 1)
              conversion.T.plot(grid=True, ax=ax1)
              plt.legend()
              plt.xlabel('Лайфтайм')
              plt.title('Конверсия пользователей')
              # второй график — динамика конверсии
              ax2 = plt.subplot(1, 2, 2, sharey=ax1)
              columns = [
                  # столбцами сводной таблицы станут все столбцы индекса, кроме даты
                  name for name in conversion history.index.names if name not in ['dt']
              filtered data = conversion history.pivot table(
                  index='dt', columns=columns, values=horizon - 1, aggfunc='mean'
              filter data(filtered data, window).plot(grid=True, ax=ax2)
              plt.xlabel('Дата привлечения')
              plt.title('Динамика конверсии пользователей на {}-й день'.format(horizon))
              plt.tight layout()
              plt.show()
```

```
In [20]:
           # функция для визуализации LTV и ROI
          def plot ltv roi(ltv, ltv history, roi, roi history, horizon, window=7):
              # задаём сетку отрисовки графиков
              plt.figure(figsize=(20, 10))
              # из таблицы Ltv исключаем размеры когорт
              ltv = ltv.drop(columns=['cohort size'])
              # в таблице динамики Ltv оставляем только нужный лайфтайм
              ltv history = ltv history.drop(columns=['cohort size'])[[horizon - 1]]
              # стоимость привлечения запишем в отдельный фрейм
              cac history = roi history[['cac']]
              # из таблицы roi исключаем размеры когорт и сас
              roi = roi.drop(columns=['cohort size', 'cac'])
              # в таблице динамики гоі оставляем только нужный лайфтайм
              roi_history = roi_history.drop(columns=['cohort_size', 'cac'])[
                  [horizon - 1]
```

```
# первый график - кривые Ltv
ax1 = plt.subplot(2, 3, 1)
ltv.T.plot(grid=True, ax=ax1)
plt.legend()
plt.xlabel('Лайфтайм')
plt.title('LTV')
# второй график — динамика Ltv
ax2 = plt.subplot(2, 3, 2, sharey=ax1)
# столбцами сводной таблицы станут все столбцы индекса, кроме даты
columns = [name for name in ltv history.index.names if name not in ['dt']]
filtered data = ltv historv.pivot table(
   index='dt', columns=columns, values=horizon - 1, aggfunc='mean'
filter data(filtered data, window).plot(grid=True, ax=ax2)
plt.xlabel('Дата привлечения')
plt.title('Динамика LTV пользователей на {}-й день'.format(horizon))
# третий график — динамика сас
ax3 = plt.subplot(2, 3, 3, sharey=ax1)
# столбцами сводной таблицы станут все столбцы индекса, кроме даты
columns = [name for name in cac history.index.names if name not in ['dt']]
filtered data = cac history.pivot table(
   index='dt', columns=columns, values='cac', aggfunc='mean'
filter data(filtered data, window).plot(grid=True, ax=ax3)
plt.xlabel('Дата привлечения')
plt.title('Динамика стоимости привлечения пользователей')
# четвёртый график — кривые гоі
ax4 = plt.subplot(2, 3, 4)
roi.T.plot(grid=True, ax=ax4)
plt.axhline(y=1, color='red', linestyle='--', label='Уровень окупаемости')
plt.legend()
plt.xlabel('Лайфтайм')
plt.title('ROI')
# пятый график - динамика гоі
ax5 = plt.subplot(2, 3, 5, sharey=ax4)
# столбцами сводной таблицы станут все столбцы индекса, кроме даты
columns = [name for name in roi history.index.names if name not in ['dt']]
filtered data = roi history.pivot table(
   index='dt', columns=columns, values=horizon - 1, aggfunc='mean'
filter data(filtered data, window).plot(grid=True, ax=ax5)
plt.axhline(y=1, color='red', linestyle='--', label='Уровень окупаемости')
plt.xlabel('Дата привлечения')
plt.title('Динамика ROI пользователей на {}-й день'.format(horizon))
plt.tight layout()
plt.show()
```

вывод:

Созданы функции для вычисления значений метрик:

- qet_profiles() для создания профилей пользователей,
- get_retention() для подсчёта Retention Rate,
- get_conversion() для подсчёта конверсии,
- get ltv() для подсчёта LTV.

А также функции для построения графиков:

- filter_data() для сглаживания данных,
- plot retention() для построения графика Retention Rate,
- plot_conversion() для построения графика конверсии,
- plot_ltv_roi() для визуализации LTV и ROI.

Исследовательский анализ данных

- Составим профили пользователей. Определим минимальную и максимальную даты привлечения пользователей.
- Выясним, из каких стран пользователи приходят в приложение и на какую страну приходится больше всего платящих пользователей. Построим таблицу, отражающую количество пользователей и долю платящих из каждой страны.
- Узнаем, какими устройствами пользуются клиенты и какие устройства предпочитают платящие пользователи. Построим таблицу, отражающую количество пользователей и долю платящих для каждого устройства.
- Изучим рекламные источники привлечения и определите каналы, из которых пришло больше всего платящих пользователей. Построим таблицу, отражающую количество пользователей и долю платящих для каждого канала привлечения.

Получим профили пользователей. Для этого вызовем функцию get profiles(), передав ей данные о посещениях, покупках и тратах на рекламу.

```
In [21]:
          profiles = get profiles(visits, orders, costs)
          profiles.head(5)
```

ut[21]:		user_id	first_ts	channel	device	region	dt	month	payer	acquisition_cost
	0	599326	2019-05- 07 20:58:57	FaceBoom	Mac	United States	2019- 05-07	2019- 05-01	True	1.088172
	1	4919697	2019-07- 09 12:46:07	FaceBoom	iPhone	United States	2019- 07-09	2019- 07-01	False	1.107237
	2	6085896	2019-10- 01 09:58:33	organic	iPhone	France	2019- 10-01	2019- 10-01	False	0.000000
	3	22593348	2019-08- 22 21:35:48	AdNonSense	PC	Germany	2019- 08-22	2019- 08-01	False	0.988235
	4	31989216	2019-10- 02 00:07:44	YRabbit	iPhone	United States	2019- 10-02	2019- 10-01	False	0.230769

Определим самую раннюю и самую позднюю даты привлечения пользователей:

```
In [22]:
          min = profiles['first_ts'].dt.date.min()
          display('Минимальная дата привлечения пользователей {}'.format(min))
```

```
In [23]:
          max = profiles['first ts'].dt.date.max()
          display('Максимальная дата привлечения пользователей {}'.format(max))
```

'Максимальная дата привлечения пользователей 2019-10-27'

27.04.2023. 09:35

Видим, что у нас имеются данные с начала мая 2019 года примерно по конец октября этого же года. Около 5 месяцев.

Выясним, из каких стран пользователи приходят в приложение и на какую страну приходится больше всего платящих пользователей.

```
In [24]:
          # пользователи по странам
          prof1 = profiles.groupby('region').agg({'user id': 'nunique'})
          prof1
```

```
Out[24]:
                       user id
                region
                        17450
                France
                        14981
              Germany
                   UK
                        17575
```

```
In [25]:
          # плательщики по странам
          prof2 = profiles.query('payer == True').groupby('region').agg({'user_id': 'nunique'})
          prof2
```

```
user_id
      region
                 663
      France
   Germany
                 616
         UK
                 700
United States
```

United States 100002

Построим таблицу, отражающую количество пользователей и долю платящих из каждой страны

```
prof1['payer_part'] = (prof2['user_id']/prof1['user_id']*100).round(2)
prof1.sort values(by='payer part', ascending = False)
```

^{&#}x27;Минимальная дата привлечения пользователей 2019-05-01'

•		
United States	100002	6.90
Germany	14981	4.11
UK	17575	3.98
France	17450	3.80

Выяснилось, что больше всего пользователей Procrastinate Pro+ родом из США, они же и самые платежеспособные. Стоит обратить внимание на пользователей из Германии, при наименьшем количестве - у них доля плятящих за развлечения на втором месте.

Узнаем, какими устройствами пользуются клиенты и какие устройства предпочитают платящие пользователи. Построим таблицу, отражающую количество пользователей и долю платящих для каждого устройства.

```
In [27]:
          # пользователи по устройствам
          device grouped1 = profiles.pivot table(index=['device'], values='user id', aggfunc='
          device grouped1
```

```
35032
Android
        30042
         30455
 iPhone
```

device user_id

```
In [28]:
          # плательщики по устройствам
          device_grouped2 = profiles.query('payer == True').pivot_table(index=['device'], valu
          device_grouped2.rename(columns={'user_id': 'payer'}, inplace=True)
          device_grouped2
```

Out[28]:		device	payer
	0	Android	2050
	1	Mac	1912
	2	PC	1537
	3	iPhone	3382

```
In [29]:
          # общая таблица по устройствам
          device_grouped = device_grouped1.merge(device_grouped2, on='device', how='left')
          device grouped['payer part'] = (device grouped['payer']/device grouped['user id']*10
          device_grouped.sort_values(by='payer_part', ascending = False)
```

Out[29]:		device	user_id	payer	payer_part
	1	Mac	30042	1912	6.36
	3	iPhone	54479	3382	6.21

	device	user_id	payer	payer_part
0	Android	35032	2050	5.85
2	PC	30455	1537	5.05

27.04.2023. 09:35

Установили, что самая высокая доля плательщиков среди пользователей Мак, хотя их численность в общем количестве пользователей - самая маленькая. Пользователи айфонов на первом месте по общему количеству использующих наше приложение и на втором по доле платящих за него.

Изучим рекламные источники привлечения и определим каналы, из которых пришло больше всего платящих пользователей. Построим таблицу, отражающую количество пользователей и долю платящих для каждого канала привлечения.

```
In [30]:
          # пользователи по каналам
          channel1 = profiles.groupby('channel').agg({'user_id': 'nunique'})
          channel1
```

```
Out[30]:
                              user id
                     channel
                 AdNonSense
                                3880
                   FaceBoom
                               29144
                    LeapBob
                                8553
                MediaTornado
                                4364
           OppleCreativeMedia
                                8605
              RocketSuperAds
                                4448
                      TipTop
                               19561
             WahooNetBanner
                                8553
                     YRabbit
                                4312
             lambdaMediaAds
                                2149
```

organic 56439

```
In [31]:
          # плательщики по каналам
          channel2 = profiles.query('payer == True').groupby('channel').agg({'user_id': 'nuniq
          channel2
```

```
Out[31]:
                              user_id
                     channel
                                440
                 AdNonSense
                   FaceBoom
                                3557
                    LeapBob
                                262
                MediaTornado
                                 156
                                233
```

OppleCreativeMedia

user id channel RocketSuperAds 352 TipTop 1878 WahooNetBanner 453 YRabbit 165 lambdaMediaAds 225 organic 1160

Общая таблица пользователей и доли плательщиков по каналам привлечения:

user id naver part

```
In [32]:
          channel1['payer part'] = (channel2['user id']/channel1['user id']*100).round(2)
          channel1.sort values(by='payer part', ascending = False)
```

1c96fee4-af67-4c6f-bc39-6dcac175a197

	usei_iu	payer_part
channel		
FaceBoom	29144	12.20
AdNonSense	3880	11.34
lambdaMediaAds	2149	10.47
ТірТор	19561	9.60
RocketSuperAds	4448	7.91
WahooNetBanner	8553	5.30
YRabbit	4312	3.83
MediaTornado	4364	3.57
LeapBob	8553	3.06
OppleCreativeMedia	8605	2.71
organic	56439	2.06

Наибольшее количество пользователей приложения органического происхождения, как и следовало ожидать, среди них меньше всего платных пользователей. На втором месте по количеству пользователей и на первом по доле платных пользователей - источник FaceBoom. Стоит обратить внимание на рекламу в таких источниках, как: AdNonSense и lambdaMediaAds!!! Так как при наименьшем количестве пользователей, пришедших из них, доля платящих пользователей там на 2 и 3 местах после FaceBoom. Наименьшее количество плательщиков привлекает канал LeapBob при не самом маленьком количестве пользователей(4 место).

выводы:

По результатам анализа пользовательских профилей за 5 месяцев можно посоветовать уделить больше внимания рекламе приложения в Германии (большая доля пользователей этой страны готова платить за приложение, хотя самих

пользователей в 6 раз меньше, чем в США), не забывая при этом про США - главный источних пользователей и прямо пропорционально - плательщиков.

Что касается устройств: самой привлекательной целевой аудиторией являются пользователи МАС. При почти в 2 раза меньшем количестве, чем пользователей с айфонами, среди них самая высокая доля готовых платить!

Каналы для размещения рекламы: лучшие поставщики клиентов - FaceBoom, TipTop. HO стоит больше внимания уделить AdNonSense и lambdaMediaAds - привлекают сейчас наименьшее количество пользователей, но доля плательшиков из них суммарно равна доле плательщиков по источникам-лидерам.

Маркетинг

- Посчитаем общую сумму расходов на маркетинг.
- Выясним, как траты распределены по рекламным источникам, то есть сколько денег потратили на каждый источник.
- Построим визуализацию динамики изменения расходов во времени (по неделям и месяцам) по каждому источнику.
- Узнаем, сколько в среднем стоило привлечение одного пользователя (САС) из каждого источника. Используем профили пользователей.

Общие расходы на маркетинг посчитаем, суммируя столбец costs одноименного массива данных:

```
total market = costs['costs'].sum().round(0)
display(f'Общие затраты на маркетинг: {total market}')
```

'Общие затраты на маркетинг: 105497.0'

Распределим расходы по каналам привлечения:

```
In [34]:
          costs channel = costs.groupby('channel')['costs'].sum().reset index()
          costs_channel['part'] = (costs_channel['costs']/total_market*100).round(2)
          costs channel.sort values(by='costs',ascending = False)
```

ut[34]:		channel	costs	part
	6	ТірТор	54751.30	51.90
	1	FaceBoom	32445.60	30.75
	7	WahooNetBanner	5151.00	4.88
	0	AdNonSense	3911.25	3.71
	4	${\sf OppleCreativeMedia}$	2151.25	2.04
	5	RocketSuperAds	1833.00	1.74
	2	LeapBob	1797.60	1.70
	9	lambdaMediaAds	1557.60	1.48
	3	MediaTornado	954.48	0.90
	8	YRabbit	944.22	0.90

27.04.2023. 09:35

Больше 80 % расходов приходится на каналы TipTop и FaceBoom, которые хоть и привлекают большую часть пользователей, но плательщиков привлекают не больше, чем недооцененные AdNonSense и lambdaMediaAds. Возможно стоит перераспределить рекламный бюджет.

1c96fee4-af67-4c6f-bc39-6dcac175a197

Визуализируем динамику изменения расходов во времени (по неделям и месяцам) по каждому источнику:

```
In [35]: # добавим столбца с неделями и месяцами
costs['week'] = pd.to_datetime(costs['dt']).dt.isocalendar().week
costs['month'] = pd.to_datetime(costs['dt']).dt.month
costs.head()
```

```
        dt
        channel
        costs
        week
        month

        0
        2019-05-01
        FaceBoom
        113.3
        18
        5

        1
        2019-05-02
        FaceBoom
        78.1
        18
        5

        2
        2019-05-03
        FaceBoom
        85.8
        18
        5

        3
        2019-05-04
        FaceBoom
        136.4
        18
        5

        4
        2019-05-05
        FaceBoom
        122.1
        18
        5
```

```
In [36]:
          plt.figure(figsize=(20, 6))
          ax1 = plt.subplot(1, 2, 1)
          costs.pivot_table(
                  index='week', columns='channel', values='costs', aggfunc='sum'
               ).plot(grid=True, ax=ax1)
          ax2 = plt.subplot(1, 2, 2, sharey=ax1)
          costs.pivot table(
                   index='month', columns='channel', values='costs', aggfunc='sum'
               ).plot(grid=True, ax=ax2)
          ax1.set_title('График изменения затрат в разбивке по каналам понедельно')
          ax2.set title('График изменения затрат в разбивке по каналам помесячно')
          ax1.set xlabel('Неделя')
          ax2.set xlabel('Месяц')
          ax1.set ylabel('Затраты')
          ax2.set_ylabel('Затраты')
          plt.show()
```


Видим, что средства затрачивались только на рекламу двух каналов TipTop и FaceBoom, причем эти расходы резко возрастали до сентября по TipTop и плавно росли до августа по

FaceBoom. По остальным каналам расходы практически не менялись во времени.

Узнаем, сколько в среднем стоило привлечение одного пользователя (САС) из каждого источника. Используем профили пользователей. Исключим из профилей органических пользователей, т.к. на их привлечение ничего не затрачено.

```
profiles2 = profiles.query('channel != "organic"')
          profiles2.groupby('channel')['acquisition cost'].mean().round(2).sort values(ascendi
Out[37]: channel
          TipTop
                                2.80
          FaceBoom
                               1.11
          AdNonSense
                               1.01
         lambdaMediaAds
                                a 72
         WahooNetBanner
                                9.69
         RocketSuperAds
                                a 41
         OppleCreativeMedia
                               0.25
          MediaTornado
                                0.22
          VRahhit
                                a 22
         LeapBob
                                0.21
         Name: acquisition_cost, dtype: float64
```

По данным таблицы видно, что самые высокие расходы на привлечение пользователя по каналам TipTop и FaceBoom, пользователи, привлеченные AdNonSense и lambdaMediaAds обходятся в 3 раза дешевле, чем пользователи с TipTop, но почти столько же, как и FaceBoom. Стоит сильно сократить затраты на TipTop. Похоже они не окупаются, уточним далее. И подумать о большем привлечении пользователей с совсем недорогих каналов: MediaTornado, YRabbit, LeapBob.

```
In [38]: cac = profiles2['acquisition_cost'].mean().round(2) display(f'Средняя стоимость привлечения одного пользователя (САС) всего проекта: {ca
```

'Средняя стоимость привлечения одного пользователя (САС) всего проекта: 1.13' Еще раз убеждаемся, что расходы на привлечение пользователей канала ТірТор больше, чем в два раза, средних расходов на пользователя по всем каналам привлечения.

Оценка окупаемости рекламы

Используя графики LTV, ROI и CAC, проанализируем окупаемость рекламы. На календаре 1 ноября 2019 года, а в бизнес-плане заложено, что пользователи должны окупаться не позднее чем через две недели после привлечения.

- Проанализируем окупаемость рекламы с помощью графиков LTV и ROI, а также графики динамики LTV, CAC и ROI.
- Проверим конверсию пользователей и динамику её изменения. То же самое сделаем с удержанием пользователей. Построим и изучим графики конверсии и удержания.
- Проанализируем окупаемость рекламы с разбивкой по устройствам. Построим графики LTV и ROI, а также графики динамики LTV, CAC и ROI.
- Проанализируем окупаемость рекламы с разбивкой по странам. Построим графики LTV и ROI, а также графики динамики LTV, CAC и ROI.
- Проанализируем окупаемость рекламы с разбивкой по рекламным каналам.
 Постройте графики LTV и ROI, а также графики динамики LTV, CAC и ROI.

27.04.2023. 09:35

Посмотрим на окупаемость рекламы. Рассчитаем и визуализируем LTV и ROI, вызвав функции get_ltv() и plot_ltv_roi(). На входе функции get_ltv() используем данные массива profiles2, чтобы исключить затраты на органических пользователей.

Реклама к концу второй недели горизонта анализа окупается только на 80% (ROI). При этом стоимость привлечения пользователей растет каждый месяц. LTV достаточно стабилен. Значит, дело не в ухудшении качества пользователей. Судя по уменьшению ROI 14-го дня ниже уровня окупаемости, начиная с июня, затраты на рекламу растут быстрее, чем LTV пользователей.

Проверим конверсию пользователей и динамику её изменения. То же самое сделаем с удержанием пользователей. Построим и изучим графики конверсии и удержания. Будем использовать массив профилей пользователей без органического привлечения.

Посчитаем и визуализируем конверсию, вызвав функции get_conversion() и plot conversion().

```
In [40]:
    dimensions = ['device']
    conversion_raw, conversion_grouped, conversion_history = get_conversion(
        profiles2, orders, observation_date, horizon_days, dimensions=dimensions)
    plot_conversion(conversion_grouped, conversion_history, horizon_days)
```


Судя по графикам конверсия пользователей довольно стабильна, наблюдаются сезонные перепады. Самая стабильная и высокая конверсия у пользователей МАС и айфонов. Немного отстает и менее стабилен Андроид. А вот пользоватили РС конвертируются хуже всех остальных.

```
dimensions = ['channel']
conversion_raw, conversion_grouped, conversion_history = get_conversion(
    profiles2, orders, observation_date, horizon_days, dimensions=dimensions)

plot_conversion(conversion_grouped, conversion_history, horizon_days)
```


Еще раз убедились, что самая высокая конверсия у пользователей, привлеченных FaceBoom, AdNonSense, lambdaMediaAds. ТірТор замыкает четверку лидеров, у которых итоговая конверсия выше 8%. При этом конверсия по каналам AdNonSense и lambdaMediaAds отличается большими перепадами.

Еще раз подтвердили данные, полученные в таблицах выше. Самая высокая и стабильная конверсия у пользователей из США, что скорее всего связано с их наибольшей долей в общем количестве. Из остальных стран с примерно равным количеством пользователей конверсия наилучшая у пользователей Германии.

Вызовем функции get_retention() и plot_retention(), чтобы рассчитать и отразить на графиках этот показатель.

In [43]: dimensions = ['device'] retention_raw, retention_grouped, retention_history = get_retention(profiles2, visits, observation_date, horizon_days, dimensions=dimensions) plot_retention(retention_grouped, retention_history, horizon_days)

А вот удержание платящих пользователей лучше всего по устройствам РС, у пользователей которых самая низкая конверсия. Возможно, с остальных устройств не так удобно пользоваться приложением? Удержание неплатящих пользователей примерно одинаковое.

```
In [44]:
          dimensions = ['channel']
          retention_raw, retention_grouped, retention_history = get_retention(
              profiles2, visits, observation_date, horizon_days, dimensions=dimensions)
```

plot_retention(retention_grouped, retention_history, horizon_days) FaceBoom

Еще раз убедились в том, что вкладывать так много средств в канал FaceBoom не стоит, самое низкое удержание платящих пользователей! Также плохое удержание у еще одного не самого дешевого канала AdNonSense.

```
In [45]:
          dimensions = ['region']
          retention_raw, retention_grouped, retention_history = get_retention(
              profiles2, visits, observation_date, horizon_days, dimensions=dimensions)
          plot_retention(retention_grouped, retention_history, horizon_days)
```


Еще одно проблемное место: при самой высокой конверсии - самое низкое удержание платящих пользователей из США!

Теперь проанализируем окупаемость рекламы с разбивкой по устройствам. Построим графики LTV и ROI, а также графики динамики LTV, CAC и ROI.

```
In [46]:
          # смотрим окупаемость с разбивкой по устройствам
          dimensions = ['device']
          ltv raw, ltv grouped, ltv history, roi grouped, roi history = get ltv(
              profiles2, orders, observation date, horizon days, dimensions=dimensions
          plot ltv roi(
              ltv_grouped, ltv_history, roi_grouped, roi_history, horizon_days, window=14
```


Окупаемость рекламы достигается к концу второй недели только по РС. По нему же и наименьшие затраты на привлечение пользователей.

Проанализируем окупаемость рекламы с разбивкой по странам. Построим графики LTV и ROI, а также графики динамики LTV, CAC и ROI.

```
In [47]:
          # смотрим окупаемость с разбивкой по странам
          dimensions = ['region']
          ltv raw, ltv grouped, ltv history, roi grouped, roi history = get ltv(
              profiles2, orders, observation date, horizon days, dimensions=dimensions
          plot ltv roi(
              ltv grouped, ltv history, roi grouped, roi history, horizon days, window=14
                                       May
2019
```

Очень дорого нам обходятся и совсем не окупаются пользователи из США. Похоже именно они и портят всю статистику по окупаемости рекламы. При хорошем качестве клиенов (высокий LTV и хорошая конверсия) большие затраты на них не окупаются.

Mac

Android

15424

12436

6421

```
profiles3 = profiles2.querv('region == "United States"')
          profiles3.groupby('channel')['user id'].nunique().sort values(ascending=False)
Out[48]: channel
         FaceBoom
                            29144
          TipTop
                            19561
          RocketSuperAds
                             4448
          MediaTornado
                             4364
          YRabbit
                             4312
         Name: user id, dtype: int64
In [49]:
          profiles3.groupby('device')['user id'].nunique().sort values(ascending=False)
         device
Out[49]:
                     27548
          iPhone
```

1c96fee4-af67-4c6f-bc39-6dcac175a197

Name: user_id, dtype: int64 Видим, что большая часть пользователей США привлечены наиболее популярными каналами FaceBoom и TipTop. И почти половина заходит с Айфонов.

Проанализируем окупаемость рекламы с разбивкой по рекламным каналам. Постройте графики LTV и ROI, а также графики динамики LTV, CAC и ROI.

```
In [50]:
          # смотрим окупаемость с разбивкой по источникам привлечения
          dimensions = ['channel']
          ltv raw, ltv grouped, ltv history, roi grouped, roi history = get ltv(
              profiles2, orders, observation date, horizon days, dimensions=dimensions
          plot ltv roi(
              ltv grouped, ltv history, roi grouped, roi history, horizon days, window=14
```


Не окупаются расходы на пользователей, привлеченных с каналов FaceBoom, AdNonSense, ТірТор. При постоянно растущих расходах на ТірТор и стабильно высоких на два остальных

вывод:

Реклама, направленная на привлечение пользователей в целом, не окупается. Негативно сказывается на окупаемости вложение средств в пользователей устройств Мас и Айфон (возможно, есть проблемы с использованием приложения на этих устройствах). Что подтверждается и более низким уровнем удержания платящих пользователей при хорошей конверсии.

Также не окупаются и высокие расходы на рекламу в США, при хорошем качестве пользователей, очень низкое удержание платящих.

И похоже провальным было решение вкладывать большую часть средств в рекламу на каналах FaceBoom, AdNonSense, TipTop, большая стоимость привлечения пользователей и дорогой трафик при отсутствии окупаемости и очень низком уровне удержания платящих пользователей каналом FaceBoom.

Выводы

После загрузки данных о визитах, заказах и рекламных расходах из CSV-файлов в переменные были выполнены операции по их предобработке для дальнейшей работы. В ходе изучения данных не было выявлено пропусков и дубликатов в данных. Столбцы массивов были переименованы в едином стиле. Данные в столбцах с датами переведены в формат для работы с датой и временем.

Созданы функции для вычисления значений метрик: - qet profiles() — для создания профилей пользователей, - get_retention() — для подсчёта Retention Rate, get_conversion() — для подсчёта конверсии, - get_ltv() — для подсчёта LTV.

А также функции для построения графиков: - filter data() — для сглаживания данных, - plot_retention() — для построения графика Retention Rate, plot conversion() — для построения графика конверсии, - plot ltv roi() — для визуализации LTV и ROI.

Наибольшее количество пользователей приложения органического происхождения, как и следовало ожидать, среди них меньше всего платных пользователей. На втором месте по количеству пользователей и на первом по доле платных пользователей - источник FaceBoom. Стоит обратить внимание на рекламу в lambdaMediaAds, т.к. как при наименьшем количестве пользователей, доля платящих пользователей там на 3 местах после FaceBoom и AdNonSense. Наименьшее количество плательщиков привлекает канал LeapBob при не самом маленьком количестве пользователей(4 место).

По результатам анализа пользовательских профилей за 5 месяцев можно посоветовать уделить больше внимания рекламе приложения в Германии (большая доля пользователей этой страны готова платить за приложение, хотя самих пользователей в 6 раз меньше, чем в США).

Что касается устройств: самой привлекательной целевой аудиторией являются пользователи МАС. При почти в 2 раза меньшем количестве, чем пользователей с айфонами, среди них самая высокая доля готовых платить!

Каналы для размещения рекламы: лучшие поставщики клиентов - FaceBoom, TipTop. HO! По данным дальнейшего анализа видно, что самые высокие расходы на привлечение пользователей по каналам TipTop и FaceBoom, AdNonSense себя не оправдали! Стоит сильно сократить затраты на них. И подумать о большем привлечении пользователей с менее дорогих каналов: lambdaMediaAds, MediaTornado, YRabbit.

Реклама, направленная на привлечение пользователей в целом, не окупается. Негативно сказывается на окупаемости вложение средств в пользователей устройств Мас и Айфон (возможно, есть проблемы с использованием приложения на этих устройствах). Что подтверждается и более низким уровнем удержания платящих пользователей при хорошей конверсии. Также не окупаются и высокие расходы на рекламу в США, при хорошем качестве пользователей, очень низкое удержание платящих. Что интересно, большая часть пользователей из США пользуются Айфонами и привлечены с каналов с дорогим трафиком и низкой окупаемостью FaceBoom и TipTop. И похоже провальным было решение вкладывать большую часть средств в рекламу на каналах FaceBoom, AdNonSense, TipTop, большая стоимость привлечения пользователей и дорогой трафик при отсутствии окупаемости и низком уровне удержания платящих.

Рекомендации для отдела маркетинга: - искать новые каналы с низкой стоимостью трафика, обратить внимание на lambdaMediaAds, MediaTornado, YRabbit; - расследовать, нет ли технических проблем у пользователей Мак и айфон, привлекать больше пользователей Андроидов и РС (реклама окупается уже в конце первой недели); - сделать своей целью привлечение аудитории из Германии, Англии и Франции; - понять причину низкого интереса к приложению платящих пользователей из США.