PO11Q: Introduction to Quantitative Political Analysis I

Worksheet Week 9 - Solutions

Dr Florian Linke

F.Linke@warwick.ac.uk

The t-distribution

- 1. How df changes the shape and critical values Using two-tailed, α = 0.05 (so $t_{\rm crit}$ = $t_{0.025,df}$ with df = n 1):
 - n = 3 (df = 2): $t_{crit} \approx 4.303$
 - n = 5 (df = 4): $t_{crit} \approx 2.776$
 - n = 10 (df = 9): $t_{crit} \approx 2.262$
 - n = 20 (df = 19): $t_{crit} \approx 2.093$
 - n = 50 (df = 49): $t_{crit} \approx 2.009$

The normal reference is $z_{0.025} \approx 1.960$.

Within 0.05 of 1.96 occurs by $n \approx 50$ (df = 49, 2.009 is 0.049 above 1.96).

Explanation: as $df \to \infty$, the t distribution $\to N(0, 1)$, so tails thin and t_{crit} decreases toward 1.96.

2. One-tailed vs two-tailed critical regions

With df = 14 and $\alpha = 0.05$:

- Two-tailed: $t_{0.025,14} \approx 2.145$, cut points at ±2.145
- One-tailed (upper): $t_{0.05,14} \approx 1.761$, single cut point at +1.761

For $H_0: \mu = \mu_0$ vs $H_1: \mu > \mu_0$, the one-tailed threshold $t_{0.05,14}$ is relevant because only the upper tail provides evidence against H_0 .

In both cases, the shaded area equals α :

- two-tailed shades two symmetric regions each of area $\alpha/2$;
- one-tailed shades a single upper tail of area α .

Effect Size, sample size, and power

- 1. Same effect size, different n (mapping t, n, and d)
 - a. With t=1.6 and n=16, $\hat{d}=t/\sqrt{n}=1.6/4=0.40$. The power at n=16 for $\hat{d}\approx 0.40$ and $\alpha=0.05$ will be modest (typically well below 0.80).
 - b. Keeping \hat{d} fixed at 0.40 and raising n to 64 requires $t = \hat{d}\sqrt{n} = 0.40 \times 8 = 3.2$. The app will show the same \hat{d} but a higher power at n = 64.
 - c. As n increases while the underlying effect stays fixed, the standard error shrinks: $SE = s/\sqrt{n}$. The test statistic is $t = \frac{\bar{x} \mu_0}{SE}$, so a smaller SE makes |t| larger on average. For a fixed α , the critical cutoff (e.g., $t_{\alpha/2,df}$ for a two-sided test) is essentially fixed, so larger typical |t| increases the chance that $|t| > t_{\alpha/2,df}$. Therefore, bigger $n \Rightarrow$ less sampling noise \Rightarrow tighter estimates \Rightarrow higher power.

- 2. Planning with a SESOI and α sensitivity
 - a. For t=2.0 and n=30, $\hat{d}=t/\sqrt{n}\approx 2.0/\sqrt{30}\approx 0.37$. The app will report the power at n=30 using this \hat{d} (typically moderate at $\alpha=0.05$).
 - b. Turning on the SESOI with d = 0.5 switches the curve to a fixed target effect. The orange marker shows the n giving 80% power at $\alpha = 0.05$; for d = 0.5 this is typically in the few-dozen range for a one-sample t-test (on the order of the 30s).
 - c. Increasing α to 0.10 lowers the critical threshold and reduces the required n for a given power; decreasing α to 0.01 raises the threshold and increases the required n. Formally, stricter α increases the critical t value, so a larger n is needed for the same probability of exceeding it under the alternative.
- 3. Was the study well powered? Post-hoc check and replication planning
 - a. With t = 2.1 and n = 25, $\hat{d} = 2.1/\sqrt{25} = 2.1/5 = 0.42$. The app will show the power at n = 25 for $\hat{d} \approx 0.42$ and $\alpha = 0.05$; this is typically only moderate, not comfortably high.
 - b. For replication planning, turn on SESOI and choose the closest option to \hat{d} (e.g., d = 0.5). The orange marker will give the n needed for 80% power at the chosen α ; expect a sample size in the few-dozen range for d = 0.5 at α = 0.05.
 - c. A significant result with low power can be fragile because small shifts in sampling may miss the effect and estimates are noisier. Picking a SESOI (a target *d* tied to practical importance) and planning for 80% power helps ensure a replication has adequate sensitivity to detect a meaningfully sized effect.

Summarising Conclusions

- Power is the probability your test will detect a real effect (reject H₀ when the effect truly exists).
- The curve fixes an effect size d and shows how power increases with n.
- If you base d on your observed test ($\hat{d} = t/\sqrt{n}$), the curve answers: "If the effect really was the size we observed, how likely would the test be to detect that effect at other sample sizes n?"
- If you base d on a meaningful minimum (SESOI), the curve answers: "How large should n be to reliably detect an effect that actually matters?"
- The 0.80 (80%) line is a convention (not a law). Many fields use it as a planning minimum; higher power (e.g., 90%) is desirable when stakes are high.
- Rule of thumb: because $t = d\sqrt{n}$, halving d requires about $4 \times$ the sample size to keep power roughly the same.

Why do many plots show an 80% power line?

- 80% power means choosing β = 0.20 (so power = 1 β = 0.80). This is a planning convention, not a mathematical law.
- The convention became common through methodological guidance (e.g., Cohen's power analysis texts) and is echoed in many applied fields.
- In higher-stakes settings (e.g., confirmatory clinical trials), targets of 80–90% power are typical; 90