PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-043731

(43)Date of publication of application: 16.02,1999

(51)IntCL

C22C 9/06

(21)Application number: 09-214149

(71)Applicant: KOBE STEEL LTD.

(22)Date of filing:

23.07.1997

(72)Inventor: OGURA TETSUZO

HOSOKAWA ISAO HAMAMOTO TAKASHI

MIWA YOSUKE ISONO MASAAKI

(54) HIGH STRENGTH COPPER ALLOY EXCELLENT IN STAMPING PROPERTY AND SUITABLE FOR SILVER **PLATING**

(57)Abstract

PROBLEM TO BE SOLVED: To obtain a Gu-Ni-Si type high strength copper alloy excellent in silver plating suitableness as well as in stamping property.

SOLUTION: This high strength copper alloy has a composition which consists of, by weight, 0.4-4.0% Ni, 0.05-1.0% Si, 0.001-5% Sn. 0.1-5.0% Zn, 0.005-1.0% Mg, 0.0003-0.005% S, 0.0003-0.01% C, and the balance Cu with inevitable impurities and in which respective contents of Mg and S simultaneously satisfy the following (1) and (2): (1) -0.5 $[Mg]+0.005 \le [S]$; (2) $[S] \le 0.25[Mg]$. In the above inequalities, [Mg] and [S] represent respective weight percentages of Mg and S.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-43731

母終頁に続く

(43)公開日 平成11年(1999) 2月16日

(51) Int.Cl.

C22C 9/06

說別記号

兮_.

F 1 -

C 2 2 C 9/06

審査請求 未請求 請求項の数4 FD (全 9 頁)

(21)出願番号 特願平9-214149 (71) 出願人 000001199 株式会社神戸製鋼所 (22)出顧日 平成9年(1997)7月23日 兵庫県神戸市中央区脇浜町1丁目3番18号 (72) 発明者 小倉 哲造 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 (72) 発明者 細川 功 山口県下関市長府港町14番1号 株式会社 神戸雙網所長府製造所內 (72) 発明者 資本 孝 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 (74)代理人 弁理士 香本 薫

(54) 【発明の名称】 スタンピング加工性及び銀めっき性に優れる高力銅合金

(57)【要約】

を意味する。

【課題】 スタンピング加工性と銀めっき性の双方の特性に優れたCu-Ni-Si系高力銅合金を得る。
【解決手段】 Ni:0.4~4.0wt%、Si:0.05~1.0wt%、Sn:0.001~5wt%、Zn:0.1~5.0wt%、Mg:0.005~1.0wt%、S:0.0003~0.005wt%、C:0.0003~C.01wt%を含有し、残部Cu及び不可退不純物からなり、さらにMgとSの含有量が下記式(1)及び(2)を同時に満たすCu-Ni-Si系高力銅合金。
-0.5[Mg]+C.005≦[S]···(1)[S]≦0.25[Mg] ···(2)ただし、[Mg]はMgのwt%、[S]はSのwt%

【特許請求の範囲】

【請求項】】 Ni:0. 4~4. Owt%. Si: 0. 05~1. 0wt%, Sn: 0. 001~5. 0w t%. Zn:0.1~5.0wt%, Mg:0.005 ~1. 0wt%, S:0. 00.03~0. 005wt %、C:0.0003~0.01wt%を含有し、残部 Cu及び不可避不純物からなり、さらにMgとSの含有 量が下記式(1)及び(2)を同時に満たすことを特徴 とするスタンピング加工性及び銀めっき性に優れる高力 铜合金

0. $5 [Mg] + [S] \ge 0.005 \cdots (1)$ 0. $25 [Mg] \ge [S]$

([Mg]はMgのwl%、[S]はSのwl%を意味 する、以下同じ)

【請求項2】 Ni:0. 4~4. 0wt%、Si: 0. 05~1. 0wt%, Sn: 0. 001~5. 0w · t%, Zn:0.1~5.0wt%, Mg:0.005 ~1. 0wt%, S:0. 0003~0. 005wt %、C:0.0003~0.01wt%を含有し、残部 量が下記式(1)及び(2)を同時に満たすとともに、 板厚方向の平均結晶粒径が20μm以下であることを特 **敬とするスタンピング加工性及び銀めっき性に優れる高** 力銅合金、

0. $5 [Mg] + [S] \ge 0.005 \cdots (1)$

 $0.25[Mg] \ge [S]$ · · · · (2)

【請求項3】 Ni:0.4~4.0wt%、Si: 0. 05~1. 0wt%, Sn: 0. 001~5. 0w t%, Zn:0.1~5.0wt%, Mg:0.005 ~1. 0wt%, S:0. 0003~0. 005wt %、C:0.0003~0.01wt%を含有し、副成 分としてBe、B. Al、P、Ti、V. Cr. Mn、 Fe. Co. Pb. Ca. Zr. Nb. Mo. Ag. I n、Sb、Hf、Taのうち1種又は2種以上を総量で 0.001~1.0wt%含有し、残部Cu及び不可避 不純物からなり、さらにMgとSが下記式(1)及び (2)を同時に満たすことを特徴とするスタンピング加 工性及び銀めっき性に優れる高力銅合金。

 $0..5 [Mg] + [S] \ge 0..005 \cdots (1)$

0. $25 [Mg] \ge [S]$

【請求項4】 Ni:0.4~4.0wt%、Si: 0. $05\sim1$. 0w1%, Sn:0. $001\sim5$. 0wt%, Zn:0.1~5.0wt%, Mg:0.005 ~1. 0wt%. S:0. 0003~0. 005wt %. C:0.0003~0.01wt%を含有し、副成 分としてBe、B、Al、P、Ti、V、Cr、Mn、 Fe, Co. Pb, Ca, Zr, Nb, Mo, Ag, I n、Sb、Hf、Taのうち1種又は2種以上を総量で 0.001~1.0wt%含有し、残部Cu及び不可避 不純物からなり、さらにMgとSが下記式(1)及び

(2)を同時に満たすとともに、板厚方向の平均結晶粒 径が20μm以下であることを特徴とするスタンピング 加工性および銀めっき性に優れる高力銅合金。

0. $5 [Mg] + [S] \ge 0.005 \cdots (1)$

0. 25 $\{Mg\} \ge \{S\}$ (2)

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体リードフレ ーム、端子、コネクタ、リレー、スイッチなどの電気・ 電子部品に使用されるスタンピング加工性及び銀めっき 性に優れる高力銅合金に関するものである。

[0002]

【従来の技術】Cu-Ni-Si系銅合金は、強度と導 電率を兼備することから、半導体リードフレーム、端 子、コネクタなどの電気・電子部品に広く使用されてい る。近年、電気・電子部品の小型化、軽量化、高集積化 に伴い、リードフレームのリード間隔の縮小あるいはコ ネクタの極間ピッチの縮小が図られている。これにより 高強度化、高導電率化の要求はもとより、スタンピング Cu及び不可避不耗物からなり、さらにMgとSの含有 20 加工性(スタンピング加工後のぱり、たれなどが少ない こと)に優れ、スタンピング金型を摩耗させない材料の 要求が増大している(例えば、特開平2-66130号 公報参照)。また、これらの電気・電子部品は銀めっき されることがあるが、信頼性の向上要求増大により、従 来にも増して、銀めっき性が重要視されるようになって、 きている(例えば、特開昭63-130739号公報) 特開平5-59468号公報、特開平8-319528 号公報卷昭)。

> 30 【発明が解決しようとする課題】電気・電子部品用Cu -Ni-Si系銅合金において、導電率の低下を抑えて 強度の向上を図る添加元素としてMgが使用される。そ して、Mgは、上記特開平2-66130号公報に記載 されているように、スタンピング加工性及び金型摩耗の 低減にも効果が大きいが、一方、微量でも銀めっき性を 劣化(銀めっきの突起を発生)させることが知られてい る。本発明は、Mgを含有するCu-Ni-Si系高力 銅合金において、スタンピング加工性と銀めっき性とい う従来は相反すると考えられていた特性を両立させると

[0004]

40 とを目的としたものである。

[0003]

【課題を解決するための手段】本発明に係るスタンピン グ加工性及び銀めっき性に優れる高力銅合金は、Ni: 0. 4~4. 0wt%. Si: 0. 05~1. 0wt %. Sn: 0. 001~5. 0wt%, Zn: 0. 1~ 5. Owt%, Mg: 0. 005~1, Owt%, S: 0. 0003~0. 005wt%, C:0. 0003~ 0.01wt%を含有し、残部Cu及び不可避不純物か らなり、さらにMgとSの含有量が下記式(1)及び 50 (2)を同時に満たすことを特徴とする。

0. $5 [Mg] + [S] \ge 0.005 \cdots (1)$ 0. 25 [Mg] ≥ [S] ···· (2) 【0005】上記銅合金は、副成分として、Be、B、 Al. P. Ti. V. Cr. Mn. Fe. Co. Pb. Ca, Zr, Nb, Mo, Ag, In, Sb, Hf, T aのうち1種又は2種以上を総量で0.001~1.0 w t %含有するととができる。また、板厚方向の平均結 晶粒径が20μm以下であることが好ましい。 [0006]

【発明の実施の形態】以下、本発明に係る銅合金の成分 10 及び結晶粒径の限定理由について説明する。

(Ni) NiはSiとともに添加することにより、Ni とSiの化合物を生成し、合金の強度を向上させる作用 を有する元素である。しかし、0.4 w t %未満ではと の効果が小さく、4.0wt%を超えて含有すると熱間 加工性及び冷間加工性が劣化するので好ましくない。従 って、Niの含有量は0. 4~4. 0wt%とする。 【0007】(Si) SiはNiとともに添加すること により、N1とSiの化合物を生成し、合金の強度を向 上させる作用を有する元素である。しかし、0.05 w 20 1%未満ではこの効果が小さく、また1.0wt%を超 えて含有すると、熱間加工性及び冷間加工性が劣化する ので好ましくない。従って、Siの含有量は0.05~ 1. 0 w t % と する。

【0008】(Sn)Snは強度、ばわ特性及び耐応力 緩和特性を向上させる元素である。しかし、0、001 w t %未満ではこの効果は小さく、5.0 w t %を超え て含有しても効果が飽和するとともに、熱間加工性の劣 化及び導電率の低下を招くので好ましくない。

【0009】(Zn) Znは鯣及び鍋合金めっきの耐熱 30]wt%とする。 剥離性を向上させ、さらに耐マイグレーション性をも向 上させる元素である。しかし、0.1 w t %未満ではこ れらの効果は小さく、5.0% t%を超えて含有しても 効果が飽和するとともに、導電率の低下、耐応力腐食割 れ感受性の増大を招くので好ましくない。従って、2n の含有量は0.1~5.0wt%とする。

【0010】(Mg) Mgは強度、耐応力緩和特性及び スタンピング加工性を向上させるとともに、金型摩耗の 低減にも効果がある元素である。 0.005 w t %未満 ではその効果は小さく、1.0wt%を超えて含有して 40 もその効果が飽和するとともに、鋳造性、熱間加工性の 劣化、及び導電率の低下を招くので好ましくない。従っ て、Mgの含有量は0.005~1.0wt%とする。 さらにMgは、以下に述べるとおり、Sとの相互作用で 銀めっき性にも関与する。

【0011】(S) SはMgとともにスタンピング加工 性を向上させる反面、銀めっき時の銀突起を発生させや すい元素でもある。0.0003wt%未満ではスタン ピング加工性を向上させる効果が小さく、0.005w 1%を超えて含有すると銀めっき性及び熱間加工性を劣 50 なお、再結晶後に合計90%以上の冷間加工を施した材

化させる。従って、Sの含有量は0.0003~0.0 05 w t %とする。

【0012】 (Mg及びSの関係) Mgを含有するCu -Ni-Si系高力銀合金において、スタンピング加丁 性及び銀めっき性を両立させるために、以下の範囲に両 成分を限定する必要があることを本発明者らは見い出し た。まず、スタンピング加工性の面からはMg及びSは 多い方が望ましく、最低限下記式(1)を満たすことが 必要である。

0. $5 [Mg] + [S] \ge 0.005 \cdots (1)$ 【0013】次に、銀めっき性の面からは以下のような 考え方でその比率を制御することが必要である。すなわ ち、銀突起の主原因はMgとSが結合して生成したMg Sであり、それが銅合金の中に局在化することにより、 その部分の局部的な電位が低くなり、銀の局部的な析出 が起こるためである。しかし、Mgの含有量が十分に多 いと、銅中に固溶するMgが銅合金のマトリックスとM gSとの間の電位差を小さくしてくれるため、銀の局部 的な析出が起こりにくくなる。従って、MgはSとの比 率で多い方が望ましく、最低限下記式(2)を満たすと とが必要である。

0. 25 $[Mg] \ge [S]$ [00]4](C)CはMgを含有するCu-Ni-S i 系銅合金のスタンピング加工性を向上させる作用があ ることを本発明者らは見い出した。しかし、0.000 3 w t %未満ではその効果は小さく、0.01 w t %を 超えて含有するとその効果が飽和するとともに、熱間加 工性を劣化させる。したがって、Cの含有量は0.00 03~0.01wt%、好ましくは0.001~0.0

[0015] (副成分) Be, B, Al, P, Ti, V. Cr. Mn. Fe. Co. Pb. Ca. Zr. N b、Mo、Ag、In、Sb、Hf. Taの副成分は、 強度とスタンピング加工性をさらに向上させる目的で、 導電率の低下が許される範囲で添加することができる元 **素である。これらの元素の1種又は2種以上の絵量が** 0.001wt%未満では強度向上効果が小さく、1w t %を超えて含有すると、導電率の低下が著しくなり好 ましくない。したがって、これらの副成分の総量を0. 001~1wt%とする。

【0016】(結晶粒径) Mgを含有するCu-Ni-Si系銅合金において、特に板厚方向の結晶粒径がスタ ンピング加工性に関与することを本発明者らは見い出し た。最終板製品状態での板厚方向の平均結晶粒径が20 μ m 以下であればスタンピング加工性を向上させること ができる。望ましくは15μm以下である。 再結晶段階 で20μmを超す結晶粒径であったとしても、その後の 冷間加工により結晶粒が偏平となり、板厚方向の平均結 晶粒径が20μm以下となる場合は、これに含まれる。

5

料に認められる、いわゆるファイバー組織の場合は結晶 粒は観察困難であるが、とのようなファイバー組織も本 発明に含まれる。

[0017]

【実施例】本発明に係るスタンピング加工性及び銀めっき性に優れる高力铜合金の実施例について、その比較例とともに以下に説明する。表1~4に示す成分組成の銅合金を、クリフトル炉にて木炭被覆下で大気溶解し、ブックモールドに鋳造し、50mm×80mm×200mmの鋳塊を作製した。この鋳塊を930℃に加熱し熱間*10

* 圧延後、たたちに水中急冷し厚さ15mmの熱延材とした。 との熱延材の表面の酸化スケールを除去するため、表面をグラインダで切削した。 との熱延材を冷間圧延で厚さ0.36mmとし、650~850℃で20秒間熱処理した後水中急冷した。 さらに厚さ0.25mmまで冷間圧延し、450~500℃で2時間の焼鈍を施し、表面の酸化皮膜を酸洗にて除去後試験に供した。 【0018】

【表1】

k 10

丧-1

	L.	<u>l</u> .	主成分(wt%)								
	No.	Cu	Ni	Si	Sn	Z n	Мв	S	С	(wt%)	
	1	残部	0.8	0.2	0.5	1.0	0.10	0.0015	0.0030	_	
	2	残部	1.8	0.4	0.5	1.0	0. 10	0.0015	0.0030	-	
	3	残部	3. 2	0.7	0.5	1.0	0.10	0,0015	0.0030	_	
	4	残部	1,8	D. 4	0,01	1.0	0.10	0.0015	0.0030	_	
İ	5	残部	1.8	0. 4	0.1	1.0	0. 10	0.0015	0.0030	-	
実	6	残部	1.8	D. 4	3.0	1.0	0, 10	0.0015	0.0030	-	
	7	残部	1,8	0, 4	0.5	0.3	0. 10	0.0015	0.0030	-	
艇	8	残部	1.8	D. 4	0.5	3.0	0. 10	0,0015	0.0030	-	
	9	残部	1.8	0.4	0.5	1.0	0.01	0,0015	0.0030	-	
例	10	残部	1.8	0. 4	0.5	1.0	0.30	0.0015	0.0030	-	
	11	残部	1.8	0.4	0.5	1.0	0.70	0.0015	0.0030	_	
	12	残部	1.8	0.4	0.5	1.0	0, 10	0.0005	0.0030	_	
	13	残部	1.8	0.4	0.5	1.0	0.10	0,0040	0,0030	_	
	14	残部	1,8	0.4	0.5	1,0	0. 10	0.0015	0.0015	_	
	15	残部	1.8	0.4	0.5	1.6	0.10	,0.0015	0.0080	_	

[0019]

【表2】

表-2

			主成分(wt%)								
	Na,	Cu	Ni	Si	aZ	Ζn	Mg	S	С	(wt%)	
	1 6	房部	1. 8	0.4	0.5	1.0	0. 10	0.0015	0.0030	Be: 0.1 B: 0.04 A1: 0.008	
	17	残部	1.8	0.4	0.5	1.0	0. 10	0.0015	0,0030	P:0.03 Ti:0.02 V:0.006	
実	18	残部	1.8	0.4	0.5	1.0	0. 10	0.0015	0.0030	Cr: 0.005 Nn: 0.04 Fe: 0.02	
施	19	残部	1.8	0.4	0.5	1.0	0. 10	0.0015	0.0030	Co: 0.03 Zr: 0.02 No: 0.01	
例	20	残部	1.8	0.4	0.5	1.0	0. 10	0.0015	0,0030	Mc: 0.005 Ag: 0.03 In: 0.08	
	2 1	残部	1, 6	0.4	0.5	1.0	0. 10	0. 0015	0.0030	Sb: 0.07 Hf: 0.009 Ta: 0.01	
	22	残部	1.8	0.4	0.5	1.0	0. 10	0.0015	0.0030	Pb: 0.02 Ca: 0.005	

[0020]

* * [表3]

表-3

	主成分(wt%)								
No.	Сu	Νi	Si	аS	Zn	M g	S	С	(w t %)
23	疾部	<u>0. 3</u>	0.4	0.5	1.0	0.10	0.0015	0.0030	_
24	残部	<u>4.5</u>	0.4	0.5	1,0	0. 10	0.0015	0.0030	_
2 5	残部	<u>5. 0</u>	<u>1.1</u>	0.5	1.0	0.10	0.0015	0.0030	_
2 6	残部	1.8	0.4	0.0005	1.0	0.10	D. 0015	0.0030	
27	残部	1.8	0.4	6.0	1,0	0, 10	0.0015	0.0030	_
28	残部	1.8	0.4	0.5	0.05	0. 10	0.0015	0.0030	-
29	残部	1, 8	0.4	0.5	<u>6.0</u>	0.10	0.0015	0.0030	· -
30	残部	1.8	0.4	0.5	1.0	0,003	0,0015	0.0030	-
31	残部	1,8	0.4	0.5	1, 0	1.2	0.0015	0.0030	-
3 2	残部	1.18	0.4	0.5	1.0	0.10	0.0002	0.0030	-
3 3	兒部	1.8	0.4	0.5	1.0	0.10	0.006	0,0030	_
3 4	預部	1.8	0.4	0.5	1.0	0.10	0.0015	0.0001	-
3 5	別部	1.8	0.4	0.5	1.0	0.10	0. D015	0.0120	-
	2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4	2 3	2 3 疾部 0.3 2 4 残部 4.5 2 5 残部 5.0 2 6 残部 1.8 2 7 残部 1.8 2 8 残部 1.8 2 9 残部 1.8 3 0 残部 1.8 3 1 残部 1.8 3 2 残部 1.8 3 3 残部 1.8 3 3 残部 1.8 3 3 残部 1.8 3 4 殁部 1.8 3 4 殁部 1.8	23 疾部 0.3 0.4 24 残部 4.5 0.4 25 残部 5.0 1.1 26 残部 1.8 0.4 27 残部 1.8 0.4 28 残部 1.8 0.4 29 残部 1.8 0.4 30 残部 1.8 0.4 31 残部 1.8 0.4 32 残部 1.8 0.4 33 残部 1.8 0.4 33 残部 1.8 0.4 34 残部 1.8 0.4 35 残部 1.8 0.4 36 残部 1.8 0.4 37 残部 1.8 0.4 38 残部 1.8 0.4 39 残部 1.8 0.4 31 残部 1.8 0.4 32 残部 1.8 0.4 33 残器 1.8 0.4 34 残器 1.8 0.4	No. Cu Ni Si Sn 2 3 疾部 0.3 0.4 0.5 2 4 残部 4.5 0.4 0.5 2 5 残部 5.0 1.1 0.5 2 6 残部 1.8 0.4 0.0005 2 7 残部 1.8 0.4 6.0 2 8 残部 1.8 0.4 0.5 2 9 残部 1.8 0.4 0.5 3 0 残部 1.8 0.4 0.5 3 1 残部 1.8 0.4 0.5 3 2 残部 1.8 0.4 0.5 3 2 残部 1.8 0.4 0.5 3 3 残部 1.8 0.4 0.5 3 3 残部 1.8 0.4 0.5 3 3 残部 1.8 0.4 0.5	No. Cu Ni Si Sn Zn 2n 23 疾部 0.3 0.4 0.5 1.0 24 預部 4.5 0.4 0.5 1.0 25 预部 5.0 1.1 0.6 1.0 26 预部 1.8 0.4 0.0005 1.0 27 預部 1.8 0.4 0.5 0.05 29 预部 1.8 0.4 0.5 0.05 29 预部 1.8 0.4 0.5 0.05 30 预部 1.8 0.4 0.5 1.0 31 预部 1.8 0.4 0.5 1.0 31 预部 1.8 0.4 0.5 1.0 32 预部 1.8 0.4 0.5 1.0 33 预部 1.8 0.4 0.5 1.0	No. Cu Ni Si Sn Zn Mg. 23 残部 0.3 0.4 0.5 1.0 0.10 24 残部 4.5 0.4 0.5 1.0 0.10 25 残部 5.0 1.1 0.5 1.0 0.10 26 残部 1.8 0.4 0.0005 1.0 0.10 27 残部 1.8 0.4 6.0 1.0 0.10 28 残部 1.8 0.4 0.5 0.05 0.10 29 残部 1.8 0.4 0.5 0.05 0.10 30 残部 1.8 0.4 0.5 0.05 0.10 31 残部 1.8 0.4 0.5 1.0 0.003 31 残部 1.8 0.4 0.5 1.0 0.003 31 残部 1.8 0.4 0.5 1.0 0.003 31 残部 1.8 0.4 0.5 1.0 0.10 33 残部 1.8 0.4 0.5 1.0 0.10	No. Cu Ni Si Sn Zn Mg S 2 3 疾部 0.3 0.4 0.5 1.0 0.10 0.0015 2 4 殘部 4.5 0.4 0.5 1.0 0.10 0.0015 2 5 残部 5.0 1.1 0.5 1.0 0.10 0.0015 2 6 残部 1.8 0.4 0.0005 1.0 0.10 0.0015 2 7 残部 1.8 0.4 6.0 1.0 0.10 0.0015 2 8 残部 1.8 0.4 0.5 0.05 0.10 0.0015 2 9 残部 1.8 0.4 0.5 0.05 0.10 0.0015 3 0 残部 1.8 0.4 0.5 1.0 0.10 0.0015 3 1 残部 1.8 0.4 0.5 1.0 0.003 0.0015 3 2 残部 1.8 0.4 0.5 1.0 0.003 0.0015 3 2 残部 1.8 0.4 0.5 1.0 0.003 0.0015 3 3 残部 1.8 0.4 0.5 1.0 0.10 0.0002 3 3 残器 1.8 0.4 0.5 1.0 0.10 0.0002	No. Cu Ni Si Sn Zn Mg S C 2 3 疾部 0.3 0.4 0.5 1.0 0.10 0.0015 0.0030 2 4 預部 5.0 1.1 0.5 1.0 0.10 0.0015 0.0030 2 5 預部 5.0 1.1 0.5 1.0 0.10 0.0015 0.0030 2 6 預部 1.8 0.4 0.0005 1.0 0.10 0.0015 0.0030 2 7 預部 1.8 0.4 6.0 1.0 0.10 0.0015 0.0030 2 8 預部 1.8 0.4 6.0 1.0 0.10 0.0015 0.0030 2 9 預部 1.8 0.4 0.5 0.05 0.10 0.0015 0.0030 2 9 預部 1.8 0.4 0.5 6.0 0.10 0.0015 0.0030 3 0 預部 1.8 0.4 0.5 1.0 0.10 0.0015 0.0030 3 1 残部 1.8 0.4 0.5 1.0 0.00 0.0015 0.0030 3 2 残部 1.8 0.4 0.5 1.0 0.00 0.0015 0.0030 3 3 残部 1.8 0.4 0.5 1.0 0.00 0.0015 0.0030 3 3 残器 1.8 0.4 0.5 1.0 0.00 0.0015 0.0030 3 3 残器 1.8 0.4 0.5 1.0 0.10 0.0002 0.0030 3 3 残器 1.8 0.4 0.5 1.0 0.10 0.0002 0.0030

アンダーラインの箇所は本発明の範囲外

[0021]

【表4】

表 4

10

					主成分	(wt	%>			副成分
L	No.	Cu	Νi	Si	Sn	Zn	Mg	S	С	(wt%)
	3 6	残部	1.8	0.4	0.5	1.0	0. 10	0.0015	0.0030	Be: 0, 1 + B: 0, 04 Al: 1, 2
	3.7	残部	1.8	0.4	0.5	1.0	0. 10	0. 001 5	0.0030	P:0.6 * Ti:0.5 V:0.006
比	3 8	残部	1.8	0.4	0.5	1.0	0.10	0.0015	0.0030	Cr: 0.5 * Mn: 0.04 Fe: 0.7
較	39	残部	1.8	0.4	0.5	1.0	0. 10	0.0015	0.0030	Co: 1.3 * Zr: 0.02 Nb: 0.01
6 71	40	残部	1.8	0.4	0.5	1.0	0. 10	0.0015	0.0030	No: 0.005 Ag: 0.03 In: 1.2 *
	41	烈都	1.8	0.4	0.5.	1.0) , 10	0,0015	0.0030	Sb: 1.1 * Hf: 0.009 Ta: 0.01
	4 2	残部	L.8	0.4	0.5	1.0	<u>0.015</u>	0.004	0.0030	-
	43	残部	1.8	0.4	0.5	1.0	<u>0. 006</u>	0.0015	0.0030	

アンダーラインの箇所又は#印の箇所は本発明の範囲外

【0022】との供試材について、下記要領にて引張強 さ、導電率、結晶粒径、スタンピング加工性、銀めっき 性及びはんだ耐熱剥離性を調査した。これらの結果を表 5及び表6に示す。引張強さは、JIS5号試験片を用 いた。導電率はダブルブリッジ法にて測定した。結晶粒 径は、JISH0501に規定する伸銅品結晶粒度試験 方法の切断法により、板厚方向に測定した。スタンピン 30 めっき層の剝離の有無を観察した。 グ加工性の評価は、プレスにより長さ30mm、幅0. 5 mmのリードを打抜き、ばりの高さを測定した、銀め

っき性は、シアン系銀めっきを厚さ I μm施したとき に、局所的にめっき厚さが厚くなる現象 (突起) の有無 を実体顕微鏡で観察した。はんだ耐熱剝離性は、245 Cのはんだ浴(60Sn/40Pb)に5秒間浸漬して 約20μmのめっき層を被覆した材料を150℃で10 00時間加熱後、180°曲げて平板に戻した後はんだ

[0023]

【表5】

袞-5

_				£X.	- 5			
	No.	熱間 加工性	ち起設に (***********)	等電率 (XIACS)	平均結晶 粒径(µm)	ばり高さ (µa)	銀突起 有無	はんだ剝 離 有無
	1	良好	580	45	7. 5	В	無し	無し
	2	良好	730	43	7. 5	5	無し	. 無し
	.3	良好	900	40	7.5	- 3	無し	無し
	4	良好	710	48	7. 5	5	無し	無し
	5	良好	720	. 47	7.5	5	無し	無し
	6	良好	770	30	7.5	5	無し	無し
	7	良好	720	44	7, 5	5	無し	無し
	8	良好	740	42	7. 5	5	無し	無し
実	9	良好	710	44	7. 5	7	無し	無し
	10	良好	750	41	7.5	4	無し	無し
瓶	11	良好	780	38	7.5	3	無し	無し
1	12	良好	730	43	7. 5	7	無し	無し
	13	良好	730	43	7. 5	3	無し	無し
例	14	良好	730	43	7.5	7	無し	無し
	15	良好	730	43	7. 5	3	無し	無し
	16	良好	800	37	7. 5	3	無し	無し
	17	良好	770	38	7. 5	3	無し	無し
	18	良好	740	42	7. 5	4	無し	無し
	19	良好	750	42	7.5	4	無し	無し
	20	良好	760	41	7. 5	3	無し	無し
	2 1	良好	750	41	7.5	3	無し	無し
	22	良好	750	41	7.5	2	無し	無し

[0024]

【表6】

14

				37	-6			
	No.	熱間 加工性	引張強さ (N/mm²)	游超率 (X1ACS)	平均結晶 粒径(µn)	ばり高さ (µm)	纸突起 有無	はんだ剝離す無
i	2 3	良好	_530	36	7. 5	10	無し	無し
١.	2 4	割れ	_		-	-		_
	2 5	割れ	1		-	_	-	-
	2 6	良好	<u>700</u>	43	7. 5	5	無し	無し
	27	割れ	1	_	-	-	-	_
	28	良好	730	45	7.5	5	無し	<u>有り</u>
	29	良好	740	<u>34</u>	7.5	5	無し	無し
比	30	段县	690	44	7.5	16	無し	無し
-5	3 1	割れ		1	-	-	_	_
	3 2	具好	780	38	7.5	15	無し	無し
較	33	置む	-	-	-		-	
	34	良好	730	43	7.5	_17_	無し	無し
Ø₽!	3 5	割れ	-	. -	-	-	-	
	3 6	良好	890	24	7.5	3	無し	無し
	37	良好	960	_9_	7.5	3	無し	無し
	3 8	良好	770	_31_	7.5	3	無し	無し
ļ	3 9	良好	760	<u>29.</u>	7.5	3	無し	無し
	40	良好	790	30_	7.5	3	無し	無し
	41	良好	800	<u>28</u>	7.5	3	無し	無し
	4 2	良好	710	43	7.5	5	査り	無し
\bot	4 3	良好	700	44	7. 5	_13	無し、	無し

アンダーラインの箇所は特性が劣る

【0025】表5に示すように、本発明合金No. 1~ 22は、いずれの特性も良好である。一方、表6に示す ように、比較合金No. 23~43は一部の成分が本発 明に規定する範囲を外れるため、いずれかの特性が劣っ ている。なお、No. 42及び43は、Mg及びSの含 有量が本発明の規定範囲に含まれるものの、式(1)又 は式(2)の範囲を外れるため、銀めっき性あるいはス タンピング加工性が劣る。

[0026]また、表1のNo. 2の合金については、 結晶粒径の影響を見るために中間の20秒間の熱処理の*

* 温度を変え(他の加工熱処理工程等は表5の実施例N

o. 2と同じ)、上記と同じ試験に供した。その結果を 表7に示す。表7に示すように、20秒間の熱処理の温 度が低く再結晶が起こらなかったNo. 2-2はファイ バー組織となり、No. 2とほぼ同等の特性が得られた が、熱処理の温度が高かったNo. 2-3は、平均結晶 粒径が大きく、スタンピング加工性がNo. 2より低く なっている。

[0027]

[表7]

- T- 1												
No.	熱間 加工性	引張強さ (N/mar²)	學質率 (XIACS)	平均結晶 粒径(µm)	ばり高さ (μm)	銀突起 有無	はんだ剣 離 有無					
2	良好	730	43	7.5	5	無し	無し					
2-2	良好	710	43	ファイパー状	4	無し	無し					
2-3	良好	740	42	25	12	無し	無し					

[0028]

して要求される強度、導電率、はんだの耐熱剥離性など 【発明の効果】本発明の銅合金は、電気・電子部品用と 50 の特性を満足するとともに、例えば半導体装置のリード

フレームや端子、コネクタなどの電気・電子部品をスタンピング加工したときに、ばり高さが小さいため、寸法精度ひいては打抜き金型の使用寿命を著しく向上させるととができる。また、銀めっきした時の銀突起の発生を*

16 * 抑制するととができる。従って、本発明は、電気・電子 部品の生産性並びに信頼性向上に対する寄与が大であ る。

フロントページの続き

(72)発明者 三輪 洋介

山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 (72)発明者 磯野 誠昭

山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内