An Embedded Scalable Linear Model Predictive Hardware-based Controller using ADMM

Pei Zhang, Joseph Zambreno and Phillip H. Jones

Presenter: Pei Zhang Iowa State University peizhang@iastate.edu

July 6, 2017

Overview

- Related Work
- Background
 - State Space Model
 - Model Predictive Optimal Control
 - Splitting Method
- ADMM Hardware Architecture
 - Architecture Overview
 - Trajectory Setting During Runtime
 - Latency Analysis
- Evaluation
 - Plant on Chip
 - SW/HW Co-design
- Conclusion

Quadratic Programming (QP) solutions

MPC can be posed as a Quadratic Programming problem.

QP problems can be solved reliably via various iterative methods.

- Interior-Point Method (IPM)
- Active Set Method (ASM)
- Splitting Method

FPGA-based QP solutions

Compare IPM and ASM in FPGA

- ASM gives lower computing complexity and converges faster when the number of decision variables and constraints are small.
- IPM is a better choice when considering scalability.

State Space Model

A discrete state-space model defines what state a system will be in one-time step into the future:

$$x_{k+1} = Ax_k + Bu_k \tag{1}$$

$$y_k = Cx_k + Du_k \tag{2}$$

- x_k represents the state of the system at time k
- ullet u_k represents the input acting on the system at time k
- y_k represents outputs of the system at time k
- A is a matrix that defines the internal dynamics of the system
- B is a matrix that defines how the input acting upon the system impact its state
- ullet C is a matrix that transforms states of the system into outputs (y_k)

Augmented Vector

$$U_{k} = \begin{bmatrix} u_{k} \\ u_{k+1} \\ \vdots \\ u_{k+H_{u}} \end{bmatrix}, \quad \Delta U_{k} = \begin{bmatrix} \Delta u_{k} \\ \Delta u_{k+1} \\ \vdots \\ \Delta u_{k+H_{u-1}} \end{bmatrix}, \quad X_{k} = \begin{bmatrix} x_{k} \\ x_{k+1} \\ \vdots \\ x_{k+H_{p}} \end{bmatrix}$$
(3)

Where:

- H_u : changeable future input horizon. We assume input u_k will be constant after H_u time steps.
- H_p : prediction horizon. Normally, $H_p \ge H_u$.
- $U_k \in \mathbb{R}^{M(H_u+1)}$, $\Delta U_k \in \mathbb{R}^{MH_u}$, $X_k \in \mathbb{R}^{N(H_p+1)}$.

Cost Function

Cost function:

$$\mathbb{C}(k) = \frac{1}{2} \left(\sum_{i=k}^{k+H_p} (x_i^T q_i x_i - 2r_i^T q_i x_i) + \sum_{i=k}^{k+H_u} u_i^T p_i u_i + \sum_{i=k}^{k+H_{u-1}} \Delta u_i^T s_i \Delta u_i \right) + Const \qquad (4)$$

Compact matrix format:

$$\mathbb{C}(k) = \frac{1}{2} \begin{bmatrix} X_k \\ U_k \\ \Delta U_k \end{bmatrix}^T \begin{bmatrix} Q \\ P \\ S \end{bmatrix} \begin{bmatrix} X_k \\ U_k \\ \Delta U_k \end{bmatrix} - R_k^T Q X_k$$
 (5)

Box Constraints

Constraints in the QP Problem

The state X_k , input U_k and input rate of change ΔU_k are constrained by its lower and upper value respectively:

$$\begin{cases} \min(x) \le x_k \le \max(x) \\ \min(\Delta u) \le \Delta u_k \le \max(\Delta u) \\ \min(u) \le u_k \le \max(u) \end{cases}$$

Consensus Form

One technique for partitioning variables in ADMM is writing the convex QP problem into consensus form:

minimize:
$$\mathbb{1}_{\mathcal{D}}(\chi) + \phi(\chi) + \mathbb{1}_{\mathcal{C}}(\zeta)$$

$$\textit{subject to}: \ \chi = \zeta$$

Consensus Form

One technique for partitioning variables in ADMM is writing the convex QP problem into consensus form:

minimize :
$$\mathbb{1}_{\mathcal{D}}(\chi) + \phi(\chi) + \mathbb{1}_{\mathcal{C}}(\zeta)$$
 subject to : $\chi = \zeta$
$$f(\zeta)$$

Consensus Form

$$g(\chi) = \mathbb{1}_{\mathcal{D}}(\chi) + \phi(\chi)$$

$$f(\zeta) = \mathbb{1}_{\mathcal{C}}(\zeta)$$
 (6)

$$\chi^{i+1} := \operatorname{prox}_{g,\rho}(\zeta^i + v^i) \tag{7}$$

$$\zeta^{i+1} := \operatorname{prox}_{f,\rho}(\chi^{i+1} + v^i) \tag{8}$$

$$v^{i+1} := v^i + \rho(\chi^{i+1} - \zeta^{i+1}) \tag{9}$$

Here, i is the iteration counter, $prox_{f,\rho}(\chi)$ is the proximal mapping (or proximal operator) of a convex function f:

$$prox_{f,\rho}(\chi) = arg \min_{u} (f(u) + \frac{\rho}{2} ||\chi - u||_2^2)$$

 $\rho > 0$ is the dual update step length.

Solve χ^{i+1}

Matrix-vector Multiply (MvM)

Convert into QP problem:

minimize:
$$\frac{1}{2}(\chi^{i+1})^T E \chi^{i+1} + I^T \chi^{i+1}$$
subject to:
$$G \chi^{i+1} = h$$
(10)

Solve (10) via KKT condition:

$$\begin{bmatrix} \chi^{i+1} \\ \lambda \end{bmatrix} = \begin{bmatrix} E & G^T \\ G & \mathbf{0} \end{bmatrix}^{-1} \begin{bmatrix} -I \\ h \end{bmatrix}$$
 (11)

Solve ζ^{i+1} Saturation Function

$$f(\zeta^{i+1}) = \begin{cases} \chi^{i+1} - \upsilon^i & \text{, if } \min(\zeta) \leq \zeta^{i+1} \leq \max(\zeta) \\ f(\min(\zeta)) & \text{, if } \zeta^{i+1} \leq \min(\zeta) \\ f(\max(\zeta)) & \text{, if } \zeta^{i+1} \geq \max(\zeta) \end{cases}$$

Solve v^{i+1}

Vector Plus Vector

ADMM Algorithm

Algorithm 1: ADMM algorithm

1 Start from i = 0 with arbitrary ζ^0 and v^0 .

2 do

i := i + 1

3
$$I := \begin{bmatrix} Q * R_k \\ \mathbf{0} \end{bmatrix} - \rho(\zeta^i + v^i)$$
4
$$\chi^{i+1} := M_{11} * \begin{bmatrix} -I & x_k \end{bmatrix}^T$$
5
$$\zeta^{i+1} := \operatorname{sat}(\chi^{i+1} - v^i, \operatorname{dom} \mathcal{C})$$
6
$$v^{i+1} := v^i + \rho(\zeta^{i+1} - \chi^{i+1})$$

8 until stopping criterion is satisfied;

Hardware Architecture for ADMM with Relaxation Parameter α .

Processing Flow and the Corresponding Line in Algorithm 1

Step 1

Solve KKT (line 4)

Step 2

Saturation Function (line 5)

Step 3

Update v (line 6)

Step 4

Update / (line 3

Processing Flow and the Corresponding Line in Algorithm 1

Step 1

Solve KKT (line 4)

Step 2

Saturation Function (line 5)

Step 3

Update v (line 6)

Step 4

Update / (line 3

Processing Flow and the Corresponding Line in Algorithm 1

Step 1

Solve KKT (line 4)

Step 2

Saturation Function (line 5)

Step 3

Update v (line 6)

Step 4

Update / (line 3

Processing Flow and the Corresponding Line in Algorithm 1

Step 1

Solve KKT (line 4)

Step 2

Saturation Function (line 5)

Step 3

Update v (line 6)

Step 4

Update / (line 3)

Reduce Circuit

Figure: Reduce Circuit Architecture with Two Cascaded Adders

Reduce Circuit

Reduce Circuit

Reduce Circuit

Reduce Circuit

Reduce Circuit

Reduce Circuit

Reduce Circuit

Scalability with Reduce Circuit

Trade-off between pipeline stages and DSP usage

Runtime Trajectory Planning

Figure: Runtime Trajectory Planning

Runtime Trajectory Planning

$$I := \begin{bmatrix} Q * R_k \\ \mathbf{0} \end{bmatrix} - \rho(\zeta^i + v^i)$$
$$\chi^{i+1} := M_{11} * \begin{bmatrix} -I \& x_k \end{bmatrix}^T$$

The number of clock cycles to merge all the matrix and vector data into the MVM pipeline is:

$$\textit{L}_{\textit{read_M}_{11}} = \textit{N}_{\textit{ROW}} * (\textit{N}_{\textit{R}} + 1)$$

$$BinaryTree(L_{bt}) = L_M + D_pL_A + N_R(L_A + 2)$$

$$BottomLevel(L_{bl}) = 6L_A + 3L_M + L_C$$

$$L_{ADMM} = L_{bt} + L_{bl} + L_{read_M_{11}}$$

The number of clock cycles to merge all the matrix and vector data into the MVM pipeline is:

$$L_{read_M_{11}} = N_{ROW} * (N_R + 1)$$

$$BinaryTree(L_{bt}) = L_M + D_pL_A + N_R(L_A + 2)$$

$$BottomLevel(L_{bl}) = 6L_A + 3L_M + L_C$$

$$L_{ADMM} = L_{bt} + L_{bl} + L_{read_M_{11}}$$

The number of clock cycles to merge all the matrix and vector data into the MVM pipeline is:

$$L_{read_M_{11}} = N_{ROW} * (N_R + 1)$$

$$\textit{BinaryTree}(\textit{L}_{\textit{bt}}) = \textit{L}_{\textit{M}} + \textit{D}_{\textit{p}}\textit{L}_{\textit{A}} + \textit{N}_{\textit{R}}(\textit{L}_{\textit{A}} + 2)$$

$$BottomLevel(L_{bI}) = 6L_A + 3L_M + L_C$$

$$L_{ADMM} = L_{bt} + L_{bl} + L_{read_M_{11}}$$

The number of clock cycles to merge all the matrix and vector data into the MVM pipeline is:

$$L_{read_M_{11}} = N_{ROW} * (N_R + 1)$$

$$BinaryTree(L_{bt}) = L_M + D_pL_A + N_R(L_A + 2)$$

$$BottomLevel(L_{bl}) = 6L_A + 3L_M + L_C$$

$$L_{ADMM} = L_{bt} + L_{bl} + L_{read_M_{11}}$$

Mass-spring System (Testbench)

Figure: Mass-spring System

- Objective: moving masses to desired positions by applying a force to each mass.
- State Variable: position (P) and speed (P) of each mass¹
- Constraints:

$$\begin{cases} -0.5m \le P \le 0.5m \\ -0.5N \le u \le 0.5N \\ -0.1N/s \le \Delta u \le 0.1N/s \end{cases}$$

 $^{{}^{1}}P$ is the position relative to the initial position $(\bigcirc) (\bigcirc) (\bigcirc) (\bigcirc) (\bigcirc)$

Plant on Chip [1]

A hardware component that emulates the physical behavior of a linear system.

Emulation using Plant on Chip

Mass Position

Figure: Mass Position Change with respect to Planned Trajectory. Red dashed line is the planned trajectory, and the blue line is the actual trajectory.

Emulation using Plant on Chip

Constraints on Force and its Rate of Change

Figure: Control Signal U and ΔU . Blue line is the input force and the force rate of change for M_1 , red dashed line is for M_2 .

SW/HW Co-design

Figure: Top Level System Overview

Step 1

According to system requirements, generate the bitstream in Vivado, and M_{11} matrix in Matlab.

Step 2

Store M_{11} to BRAM via AXI bus using ARM software.

Step 3

ARM software configures trajectory and box constraints.

Step 4

Step 1

According to system requirements, generate the bitstream in Vivado, and M_{11} matrix in Matlab.

Step 2

Store M_{11} to BRAM via AXI bus using ARM software.

Step 3

ARM software configures trajectory and box constraints.

Step 4

Step 1

According to system requirements, generate the bitstream in Vivado, and M_{11} matrix in Matlab.

Step 2

Store M_{11} to BRAM via AXI bus using ARM software.

Step 3

ARM software configures trajectory and box constraints.

Step 4

Step 1

According to system requirements, generate the bitstream in Vivado, and M_{11} matrix in Matlab.

Step 2

Store M_{11} to BRAM via AXI bus using ARM software.

Step 3

ARM software configures trajectory and box constraints.

Step 4

Computation Speed Versus Hardware Resources

Figure: Computation time of 40 converge iteration loops and DSP usage for different system configurations from simulation. Computation time is marked by *, number of DSPs is marked by \square . Hardware speed is 100MHz.

Potential Computation Parallism

 $L_{read_M_{11}}$ is inverse proportional to parallelism K.

$$L_{read_M_{11}} = \frac{N_{ROW}}{K} * (N_R + 1)$$
 (12)

Resource Utilization

Table: Zynq-7020 Hardware Resource Usage

MVM	Flip-Flops	LUTs	18Kb BRAM	DSP48E	Maximum	
Size	(106400	(53200	(280	(220	Frequency	
D_p	total)	total)	total)	total)		
3	18147	12746	55	38	151.149MHz	
4	21058	15103	87	47	144.885MHz	
5	32425	23391	151	76	143.699MHz	
6	57167	41273	279	138	133.298MHz	

Timing Summary

Table: Hardware Computation Time per Iteration between Related Work.

	Method	Data Format	Chip Series	f _{clk}	#Multipliers	Iteration	#Opt Var	Running Time
This Paper	ADMM	floating-point	Zynq-7020	130MHz	72 (D _p =6, K=1)		204	314.2 μs
							350*	717.2 μs
					80 ($D_p=5$, K=2)		204	291.4 μs
			ZU9EG	340MHz	264 (D_p =8, K=1)			46.1 μs
			(Zynq UltraScale+)		792 (D_p =8, K=3)			$30.1~\mu s$
HW[2]	ADMM	fixed-point	Virtex-6 (LX75)	400MHz	216 (K=1)	40	216	$23.4 \mu s$
			Virtex-6 (SX475)	400101112	1512 (K=7)			$4.90 \mu s$
HW[4]	IPM	floating-point	Virtex-7 (XC7VX485T)	200MHz	448	10	240	$2,650 \ \mu s$
SW[3]	ADMM	floating-point	Quad-core Intel Xeon	3.4GHz	n/a	35.1	525	3,400 µs

Summary of Work

The primary contribution of this work is a software/hardware (SW/HW) co-design that allows:

- configuring an MPC controller for a wide range of plants;
- updating at run-time the desired trajectory to track;
- the flexibility to trade off hardware resources for computing speed;
- easing controller deployment by introducing an SW/HW co-design to decouple hardware details from control and embedded software engineers.

Selected References

S. Vyas, C. Kumar, J. Zambreno, C. Gill, R. Cytron, and P. Jones, "An FPGA-based Plant-on-Chip platform for cyber-physical system analysis," *IEEE Embedded Systems Letters*, vol. 6, no. 1, 2014.

J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides, E. C. Kerrigan, and M. Morari, "Embedded online optimization for model predictive control at megahertz rates," *IEEE Transactions on Automatic Control*, vol. 59, no. 12, 2014.

B. O'Donoghue, G. Stathopoulos, and S. Boyd, "A splitting method for optimal control," *IEEE Transactions on Control Systems Technology*, vol. 21, no. 6, Nov 2013.

J. Liu, H. Peyrl, A. Burg, and G. A. Constantinides, "FPGA implementation of an interior point method for high-speed model predictive control," in *24th International Conference on Field Programmable Logic and Applications*, Sept 2014.

The End