04188183

ROCKY MOUNTAIN ARSENAL SOUTH PLANTS CERCLA PRETREATMENT SYSTEM OPERATIONAL ASSESSMENT REPORT

FY91

FINAL REPORT

BY

ENVIRONMENTAL ENGINEERING DIVISION PROGRAM MANAGER, ROCKY MOUNTAIN ARSENAL COMMERCE CITY, COLORADO 80022-2180

Appeared to problems

APRIL 1994

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE A	ND DATES COVERED	
4 TITLE AND CUPTITIE	04/00/94		5. FUNDING NUMBERS	
4. TITLE AND SUBTITLE ROCKY MOUNTAIN ARSENAL, SOUTH PLA ASSESSMENT REPORT, FY91, FINAL	NTS CERCLA PRETREATMENT	SYSTEM, OPERATIONAL		
6. AUTHOR(S)				
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER	
ROCKY MOUNTAIN ARSENAL (CO.). PME COMMERCE CITY, CO	RMA		94188R03	
9. SPONSORING/MONITORING AGENC	Y NAME(S) AND ADDRESS(ES)	10. SPONSORING / MONITORING AGENCY REPORT NUMBER	
11. SUPPLEMENTARY NOTES				
	,			
12a. DISTRIBUTION / AVAILABILITY STATEMENT			12b. DISTRIBUTION CODE	
APPROVED FOR PUBLIC RELE	ASE; DISTRIBUTION	IS UNLIMITED		
13. ABSTRACT (Maximum 200 words) THIS REPORT DOCUMENTS AN THE SYSTEM OPERATIONS. PERIOD BETWEEN OCTOBER 1 REPORT ARE: (1) TO ASSE LIQUID WASTES THAT WERE DOCUMENT SYSTEM OPERATIN	IT IS THE THIRD AI 990 AND SEPTEMBER SS THE EFFECTIVENI GENERATED FROM THI	NNUAL REPORT AND 1991 (FY91). THESS OF THE SOUTH	COVERS THE OPERATING IE OBJECTIVES OF THIS PLANTS IN TREATING	
199	60719 0	83		
14. SUBJECT TERMS			15. NUMBER OF PAGES	
CONTAMINANT CONCENTRATIONS, GC/M	S ANALYSIS		16. PRICE CODE	
17. SECURITY CLASSIFICATION 18.	SECURITY CLASSIFICATION	19. SECURITY CLASS OF ABSTRACT	IFICATION 20. LIMITATION OF ABSTRA	

UNCLASSIFIED NSN 7540-01-280-5500

OF REPORT

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 298-102

OF THIS PAGE

PREFACE

This study was conducted as part of a cooperative effort by personnel from the Environmental Engineering Division (EED), Operations Branch (OB)* of the Program Manager for Rocky Mountain Arsenal (PMRMA) and the U.S. Army Engineer Waterways Experiment Station (WES). Funding for participation by WES was provided by the PMRMA via military interdepartmental purchase request (MIPR) number 0933. Project Management was provided by Messrs. David W. Strang, EED, and Norman R. Francingues, WES Environmental Laboratory (EL).

The contributing authors to this report were Douglas W. Thompson and Ms. Beth C. Fleming (WES-EL). The authors acknowledge the support and assistance of the following people and organizations during this study: Ms. Dianna R. Pantleo, and Messr. Bruce Fritz, D. P. Associates.

^{*} Formerly the Remedial Action Division (RAD), Remedial Operations Branch (ROB).

CONTENTS

	Page
PREFACE	1
LIST OF TABLES	3
LIST OF FIGURES	3
PART I: INTRODUCTION	4
Background	4 4 6 6
PART II: SYSTEM OPERATIONS	7
System Operational Summary System Flow Quantities Carbon/Alumina Usage System Water Quality Contaminant Mass Removal	7 8 8 10 88
PART III: CONCLUSIONS	90
APPENDIX A: FLOW QUANTITIES AND FLOW RATES FOR THE CPS	A1
APPENDIX B: CPS WATER QUALITY DATA, STATISTICAL SUMMARIES, AND GC/MS ANALYSES	B1

LIST OF TABLES

<u>No.</u>	<u>Page</u>					
 South Plants CERCLA Pretreatment System Analyte List for FY91 Chemical-Specific ARAR Analytes South Plants CPS Contaminant Removal, FY91	11 14 89					
LIST OF FIGURES						
No. System Layout System Flow Quantities FY91 Aldrin concentrations FY91 Arsenic concentrations FY91 Benzene concentrations FY91 Carbon Tetrachloride concentrations FY91 Carbon Tetrachloride concentrations FY91 Chloridane concentrations FY91 Chloridane concentrations FY91 Chlorobenzene concentrations FY91 Chlorobenzene concentrations FY91 Chloroform concentrations FY91 Chromium concentrations FY91 Chromium concentrations FY91 Choper concentrations FY91 Copper concentrations FY91 Dichlorodiphenyltrichloroethane (p, p'-DDE) concentrations FY91 Dichlorodiphenylethane (p, p'-DDT) concentrations FY91 Dichlorodiphenylethane concentrations FY91 1,2-Dichloroethylene concentrations FY91 1,2-Dichloroethylene concentrations FY91 1,2-Dichloroethylene concentrations FY91 1,2-Dichloroethylene concentrations FY91 Sy91 Fy91 Horida concentrations FY91 Fy91 Endrin concentrations FY91 Fy91 Hexachlorocyclopentadiene concentrations FY91 Mercury concentrations FY91 Mercury concentrations FY91 Toluene concentrations FY91 Toluene concentrations FY91 Toluene concentrations FY91 Trichloroethylene concentrations FY91 Toluene concentrations FY91 Trichloroethylene concentrations FY91 Trichloroethylene concentrations FY91 Trichloroethylene concentrations FY91 Typi Trichloroethylene concentrations FY91 Typi Typi Typi Chloride concentrations	Page 5 9 16 8 0 2 2 5 7 9 1 3 3 6 8 4 4 4 4 7 9 1 3 6 6 6 6 6 7 7 7 6 8 8 2 8 2 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1					

SOUTH PLANTS CERCLA PRETREATMENT SYSTEM OPERATIONAL ASSESSMENT FY91 ACTIVITIES

PART I: INTRODUCTION

Background

1. The South Plants CERCLA Pretreatment System Operational Assessment described herein has been prepared to document and evaluate the treatment process performance related to the system operations. This is the third annual report and covers the operating period between October 1990 and September 1991 (FY91).

Treatment System Description

- 2. The South Plants CERCLA Pretreatment System (CPS) was initially constructed in 1982 primarily as a means of treating waste from the analytical and bioassay laboratories at the Rocky Mountain Arsenal (RMA). Over the years, the CPS has been increasingly used for the treatment of other wastewaters generated on the arsenal from various field activities. The system was upgraded in 1988 to include an air stripper for the polishing removal of volatile organics. The system was modified during the period May 1990 through September 1990 at which time the existing 24-inch diameter activated carbon column and 8-inch diameter activated alumina column were removed and replaced with two 55-gallon contactors, one containing activated carbon and the other containing activated alumina. These modifications were made to facilitate easier replacement of spent adsorption media and reduce the plugging experienced with the two columns. The modifications were completed by RMA personnel and the CPS was placed back in operation during October 1990.
- 3. At the start of FY91, the CPS consisted of a steam-heated, 170,000 gallon, above-ground holding tank; a pump; a small in-line cartridge filter; a 55-gallon contactor containing activated carbon; a 55-gallon contactor containing activated alumina; a 30-gallon surge tank; a transfer pump; a 10,000-gallon holding tank; a feed pump; and, an air stripper (see Figure 1). The adsorption contactors limited the maximum flow to approximately 3 gallons per minute (gpm). The air stripper has a maximum design flow of approximately 10 gpm. The activated carbon served to remove organic contaminants while the activated alumina served to remove fluoride. The air stripper

SOUTH PLANTS WASTEWATER TREATMENT SYSTEM FLOW DIAGRAM

Figure 1. System Layout

served as a polishing technique to remove additional volatile organics not effectively removed by the activated carbon.

- 4. In operation, the wastewater was fed from the 170,000-gallon holding tank through the in-line filter, through the activated carbon contactor, through the activated alumina contactor, and into the small surge tank. The wastewater was then pumped to the 10,000-gallon holding tank until it reached a high level controlled by a level sensor at which time the air stripper was started and operated until the holding tank was emptied. The treated water was discharged to the sanitary sewer. The system was operated during normal working hours by RMA personnel periodically during FY91.
- 5. During FY91, the CPS was used to treat wastewater generated from the RMA laboratory, decontamination pad operations, remedial investigation studies, comprehensive monitoring program, and interim response actions. The wastewater from the laboratory discharged into a sump located outside the northwest corner of the laboratory building. Other wastewaters were transported from their point of generation (i.e. the South Plants Decontamination Facility) by tanker trucks and discharged into the sump. From the sump, the wastewater was pumped by means of an underground pipeline to the 170,000-gallon holding tank located adjacent to the CPS building.

Report Objectives

- 6. Report objectives include:
 - a. To assess the effectiveness of the South Plants in treating liquid wastes that were generated from the various activities at RMA.
 - b. To document system operating parameters.

Approach

7. The approach to developing this study incorporates direction of the Environmental Engineering Division (EED) at RMA. EED established and provided the reporting framework and objectives, the database, and general technical guidance. The U.S. Army Engineer Waterways Experiment Station (WES), Vicksburg, Mississippi, provided specialized environmental engineering assessments.

PART II: SYSTEM OPERATIONS

System Operational Summary

- 8. As previously discussed, the CPS was modified during FY90 and was placed back in operation in October 1990. As in previous years, a record of FY91 system operations for the CPS was maintained by RMA plant operations personnel with major events documented on a daily basis. This daily record contains information on the operation, maintenance activities, and repairs of the treatment equipment. It also details other events such as plant downtime, equipment failure, and carbon and alumina replacement. The daily record indicates that the system operated and discharged treated water to the sanitary sewer system for three weeks in October 1990; nine weeks in January, February, and March 1991; and ten weeks in July, August, and September 1991. The system also operated in July and August in a recirculation mode with no discharge to the sanitary sewer as described below.
- 9. Cold weather in late October 1990 resulted in frozen piping and gauges at the treatment plant. The plant was shut down on November 3, 1990, for repairs. The repairs were completed and the plant was placed in operation on January 14, 1991. The treatment system operated until the middle of March 1991 when the influent feed pump needed repair work. While repairs of the feed pump were ongoing, a batch of wastewater from the South Plants Decontamination Facility was transferred to the CPS storage tank which was thought to contain a high fluoride concentration based on its source of generation. Onsite testing of the wastewater in the storage tank using a specific ion electrode method indicated fluoride concentrations approaching 50 mg/ ℓ . This level was later confirmed by laboratory testing under the normal sample collection and analysis program. A concentration of 39.0 mg/ ℓ was reported in an influent sample collected on August 6, 1991. Based on the higher than normal fluoride concentration in the influent storage tank, a management decision was made to modify the treatment system and to operate in a manner that permitted recirculation of effluent to assure sufficient fluoride removal prior to discharge.
- 10. The modifications were made between May 1991 and July 1991. In addition to allowing for recirculation, a 55-gallon drum containing limestone chips was placed on line ahead of the carbon adsorber. The concept was that the wastewater flowing in contact with the limestone would dissolve some of the limestone resulting in an increased calcium concentration effecting a reduction in fluoride due to precipitation of calcium fluoride. In late July 1991, the treatment system was placed back in

operation. Wastewater flowed through the limestone, activated carbon, activated alumina and into the 10,000-gallon holding tank. The fluoride concentration was then checked using the onsite fluoride detection method. If the fluoride concentration exceeded 2.0 mg/ ℓ , the wastewater was recycled through the limestone, carbon, and aluminum treatment process. Once the 2.0 mg/ ℓ criteria was met, the wastewater was then treated using the air stripper and discharged. No wastewater was discharged to the sanitary sewer from the CPS during all of July and most of August 1991. Wastewater was discharged to the sanitary sewer starting on August 30, 1991, when the effluent fluoride concentration had been reduced to below 2.0 mg/ ℓ . During September 1991, the treatment system was operated normally and in the recycle mode when necessary to achieve the fluoride concentration criteria. By the end of September, most of the high fluoride wasterwater had been treated and the fluoride concentration in the influent to the system was within normal values for single pass treatment. The treatment plant operation was converted back to a single pass mode and was successful in producing an effluent meeting the fluoride concentration criteria.

System Flow Quantities

- 11. The volume of water treated by the CPS was measured using a totalizing flow meter located on the effluent line from the carbon/alumina treatment subsystem. The meter was read and the values recorded on a daily basis while the system was operating. Weekly flow quantities were calculated from the daily reports. Flow rates were calculated by dividing the total flow for the week by 10,080 minutes per week. Flow quantities and calculated flow rates for the CPS for FY91 are presented in Appendix A.
- 12. A graph of weekly flow rates has been prepared and is presented in Figure 2. The maximum flow rate during FY91 was 2.06 gpm. The total volume of water treated and discharged in FY91 was 189,115 gallons which was somewhat less than the 240,249 gallons treated in FY90.

Carbon/Alumina Usage

13. The CPS plant operation records indicate that during FY91, 3600 pounds of activated carbon and 4240 pounds of activated alumina were used in the respective adsorption contactors. Based on the volume of water treated, the usage rates were

Figure 2. System Flow Quantities

16.4 pounds of carbon and 19.3 pounds of alumina per thousand gallons of water treated.

System Water Quality

- 14. The quality of the water entering the treatment system, after carbon/ alumina treatment, and leaving the system was monitored periodically by taking grab samples and analyzing them for a variety of analytes. These samples were collected from sampling ports located in the influent line, in the line between the carbon/alumina treatment subsystem and the air stripper holding tank, and in the effluent line from the air stripper. Sampling was conducted during the three periods of operation in FY91.
- 15. All water samples were collected in new glass containers (for organics analyses) or plastic containers (for metals analyses), sealed, and transported to the appropriate analytical laboratory at RMA or their contractor for analysis. In FY91, the samples were generally analyzed for the analytes listed in Table 1. The analytes are organized in four groups including chemical-specific applicable or relevant and appropriate requirements (ARAR) analytes, to be considered (TBC) analytes, other target analytes, and GC/MS scan. As indicated in the Final Decision Document for the CERCLA Wastewater Treatment System, Interim Response Action (IRA) at RMA, dated July 1990, the existing South Plants Wastewater Treatment Facility (SPWTF) was to continue to be operated prior to the implementation of the new system. The SPWTF would be subject to and comply with the chemical-specific ARAR's identified and would attain these limitations to the maximum extent practicable. The chemical-specific ARAR analytes each have concentration criteria which are applied to the effluent from the system. As a result, every attempt was made to operate the plant so as to maintain the concentrations of these analytes in the effluent below their respective criteria. The TBC analytes are compounds with concentration criteria which do not come within the definition of ARARS but were considered in the design of the new CERCLA system. The other target analytes are analytes for which promulgated standards were not found. GC/MS scans are conducted to identify any organic contaminants that are not included in the other analyte categories. FY91 was the first year in which the chemical-specific ARAR criteria were applicable to the CPS. As a result, the operation of the CPS was directed towards meeting these specific criteria. Although the other analytes do not have specific concentration criteria applicable to

Table 1 South Plants CERCLA Pretreatment System Analyte List for FY91

A. Chemical-Specific ARAR Analytes:*

Acrylonitrile

Aldrin

Arsenic

Benzene

Cadmium

Carbon Tetrachloride

Chlordane

Chloride

Chlorobenzene

Chloroform

Chromium

Copper

DDE

DDT

1,4-Dichlorobenzene

1,2-Dichloroethane

1,1-Dichloroethylene

Trans-1,2-Dichloroethylene

1,2-Dichloropropane

Dieldrin

Endrin

Ethylbenzene

Fluoride

Hexachlorocyclopentadiene

Lead

Mercury

Parathion

Tetrachloroethylene

Toluene

1.1.1-Trichloroethane

1,1,2-Trichloroethane

Trichloroethylene

Vinyl Chloride

Zinc

B. TBC Analytes:**

Atrazine

Chloroacetic Acid

Dibromochloropropane

1,1-Dichloroethane

(Continued)

^{*} As listed in the "Final Decision Document for the CERCLA Wastewater Treatment System IRA at RMA" dated July 1990.

^{**} Compounds listed in the Final Decision Document as "To Be Considered" in the design of the new system.

B. TBC Analytes (Continued):

Dicyclopentadiene Diisopropylmethylphosphonate IMPA Methylene Chloride Methylisobutylketone Xylenes

C. Other Target Analytes:*

Bicycloheptadiene
p-Chlorophenylmethyl sulfur compounds
Dithiane
Dimethyldisulfide
Fluoroacetic Acid
Isodrin
Malathion
Oxathiane
Thiodiglycol
Supona
Vapona

D. GC/MS Scan

^{*} Target analytes listed in the Final Decision Document for which promulgated standards were not found.

the operation of the system, they have generally been analyzed for use in monitoring the overall performance of the system.

- 16. All analyses of samples were performed using standard methods. The data were subjected to a quality control review, validated, and placed into the PMRMA database by D. P. Associates. Data sets were prepared from the database for use in developing the tables and figures used in this report. The analytical data, statistical summaries, and GC/MS data are presented in Appendix B. The statistical summaries were developed for each analyte and include the total number of samples analyzed, the certified reporting limit (CRL), the number of samples with concentrations above the CRL, the percent samples with concentrations above the CRL, the method numbers, the unit of measurement, the mean concentration, the low concentration, and the high concentration. A mean concentration was only computed for sets of data where 65 percent or more of the readings were above the CRL. When the criterion was met, values falling below the CRL were made equal to the CRL and included in the computations.
- 17. The analytical data were used to prepare graphs of the system influent, effluent from the carbon/alumina treatment subsystem, and system effluent concentrations reported for the chemical-specific ARAR analytes during FY91. These graphs are presented in Figures 3 through 34. The analytical results reported for the other analytes are discussed later in the report. Each graph (except where noted) presents a plot of the contaminant concentrations reported and two lines indicating the CRL and the average concentration over FY91 where sufficient data were available to calculate an average. Each system effluent graph has a third line indicating the ARAR standard for the analyte. The ARAR standards are summarized in Table 2 and the source of each standard is identified. All values in the table and on the graphs are reported in micrograms per liter $(\mu g/\ell)$ except where noted.

Chemical-Specific ARAR Analytes

18. Acrylonitrile. The ARAR standard for acrylonitrile at the CPS is 2,600 μ g/ ℓ . Acrylonitrile was not specifically analyzed for during FY91; however, it was quantified in the three GC/MS analyses conducted in FY91. As a result, no graph was prepared for acrylonitrile. The GC/MS results indicate that no concentrations above 8.4 μ g/ ℓ were reported in any of the samples subjected to GC/MS analysis in FY91. Thus, no concentrations of acrylonitrile above the ARAR standard were reported for any CPS effluent samples in FY91.

Table 2 Chemical-Specific ARAR Analytes

Analyte	Standard	Source
Acrylonitrile	2,600 μg/ ℓ	CBSM*
Aldrin	$0.1 \mu \text{g}/\ell$	CBSG**
Arsenic	50 μg/ <i>l</i>	40 CFR § 141.11(b)†
Benzene	5 μg/ l	40 CFR § 141.61(a)
Cadmium	10 μg/ <i>l</i>	40 CFR § 141.11(b)
Carbon Tetrachloride	5 μg/ l	40 CFR § 141.61(a)
Chlordane	$0.1 \mu \mathrm{g}/\ell$	CBSM
Chloride	250,000 μg/ l	CBSG
Chlorobenzene	300 μg/l	CBSG
Chloroform	100 μg/ <i>l</i>	40 CFR § 141.12
Chromium	50 μg/ <i>l</i>	40 CFR § 141.11(b)
Copper	200 μg/l	CBSM
DDE	$0.1 \mu \mathrm{g}/\ell$	CBSM
DDT	$0.1 \mu \mathrm{g}/\ell$	CBSM
1,4-Dichlorobenzene	75 μg/ l	CBSG
1,2-Dichloroethane	$5 \mu g/\ell$	40 CFR § 141.61(a)
1,1-Dichloroethylene	$\frac{7}{4} \mu g/\ell$	CBSG
Trans-1,2-Dichloroethylene	$7 \mu g/\ell$	40 CFR § 141.61(a)
1,2-Dichloropropane	$6 \mu g/\ell$	CBSG
Dieldrin	$0.1 \mu \text{g}/\ell$	CBSG
Endrin Ethylpopropo	$0.1 \mu \text{g}/\ell$	CBSM
Ethylbenzene Fluoride	680 µg/l	CBSG
Hexachlorocyclopentadiene	2,000 μg/l	CBSM CBSG
Lead	49 μg/l 50 μg/l	40 CFR § 141.11(b)
Mercury	2 μg/ l	40 CFR § 141.11(b)
Parathion	$0.3 \mu\text{g}/\ell$	CBSM
Tetrachloroethylene	10 µg/ℓ	CBSG
Toluene	$2,420 \mu g / \ell$	CBSG
1,1,1-Trichloroethane	200 μg/ ℓ	40 CFR § 141.61(a)
1,1,2-Trichloroethane	28 μg/ l	CBSG
Trichloroethylene	5 μg/ l	40 CFR § 141.61(a)
Vinyl Chloride	2 μg/ l	40 CFR § 141.61(a)
Zinc	$2,000 \mu g/\ell$	CBSM

^{*} Colorado Basic Standards and Methodologies for Surface Water 3.1.0 (5CCR 1002-8).
** Colorado Basic Standards for Groundwater.
† Maximum contaminant level (MCL) established under the National Primary Drinking Water Standards.

- 19. Aldrin. The ARAR standard for aldrin at the CPS is 0.1 μ g/ ℓ . As indicated in Figure 3, neither of the two influent samples analyzed for aldrin during FY91 were reported with concentrations in excess of the CRL. None of the fourteen carbon/alumina subsystem effluent samples were reported with concentrations in excess of the CRL. A single system effluent sample out of the sixteen collected was reported with an aldrin concentration above the ARAR standard. This sample was collected on October 10, 1990. The carbon/alumina effluent sample collected on this date was reported with an aldrin concentration below the CRL and the following weekly samples were below CRL (with no carbon change); therefore, the concentration reported above the ARAR standard for the system effluent sample is probably anomalous. None of the other fifteen system effluent samples collected during FY91 were reported with aldrin concentrations in excess of the CRL.
- 20. Arsenic. The ARAR standard for arsenic at the CPS is 50 μ g/ ℓ . The concentrations of arsenic reported for the three influent samples collected in FY91 ranged from 3.4 μ g/ ℓ to 1300 μ g/ ℓ with a mean value of 494 μ g/ ℓ as indicated in Figure 4. The concentrations reported for the three carbon/alumina effluent samples collected in FY91 ranged from 10.8 μ g/ ℓ to 1400 μ g/ ℓ with a mean value of 474 μ g/ ℓ . One of the three system effluent samples collected in FY91 exceeded the ARAR standard. A concentration of 1700 μ g/ ℓ was reported for the sample collected on August 7, 1991. The other CPS samples collected on this date were also reported as having arsenic concentrations in this range. The other two system effluent samples analyzed for arsenic in FY91 were reported with concentrations of 12.5 μ g/ ℓ and 8.3 μ g/ ℓ with an average for the year of 574 μ g/ ℓ . It should be noted that the CPS has no specific process for the removal of arsenic.
- 21. <u>Benzene</u>. The ARAR standard for benzene at the CPS is $5 \mu g/\ell$. As indicated in Figure 5, no concentrations of benzene above the CRL were reported for any of the three system influent, carbon/alumina effluent, or system effluent samples analyzed for benzene in FY91. Thus, no concentrations of benzene above the ARAR standard were reported for any system effluent samples in FY91.
- 22. <u>Cadmium.</u> The ARAR standard for cadmium at the CPS is $10 \,\mu\text{g}/\ell$. As indicated in Figure 6, no concentrations of cadmium above the CRL were reported for any of the three system influent, carbon/alumina effluent, or system effluent samples analyzed for cadmium in FY91. Thus, no concentrations of cadmium above the ARAR standard were reported for any system effluent samples in FY91. It should be noted that the CPS has no specific process for the removal of cadmium.

SOUTH PLANTS PSIFIN - ALDRN

SOUTH PLANTS PSAAEF - ALDRN ALDRIN

Figure 3. (Continued)

SOUTH PLANTS PSASEF - ALDRN ALDRIN FY91

Figure 3. (Concluded)

SOUTH PLANTS PSIFIN - AS

SOUTH PLANTS PSAAEF - AS

Figure 4. (Continued)

D.P. ASSOCIATES, INC

Figure 4. (Concluded)

SOUTH PLANTS PSAAEF - C6H6 BENZENE

12/10/93 D.P. ASSOCIATES, INC

Figure 5. (Continued)

Figure 5. (Concluded)

SOUTH PLANTS PSAAEF - CD CADMIUM FY91

12/10/93 D.P. ASSOCIATES, INC

Figure 6. (Continued)

D.P. ASSOCIATES, INC

Figure 6. (Concluded)

- 23. <u>Carbon Tetrachloride</u>. The ARAR standard for carbon tetrachloride at the CPS is $5.0 \, \mu \mathrm{g}/\ell$. As indicated in Figure 7, no concentrations of carbon tetrachloride above the CRL were reported for any of the three system influent, carbon/alumina effluent, or system effluent samples analyzed for carbon tetrachloride in FY91. Thus, no concentrations of carbon tetrachloride above the ARAR standard were reported for any system effluent samples in FY91.
- 24. Chlordane. The ARAR standard for chlordane at the CPS in 0.1 μ g/ ℓ . As indicated in Figure 8, no concentrations of chlordane above the CRL were reported for any of the two system influent, carbon/alumina effluent, or system effluent samples analyzed for chlordane in FY91. Thus, no concentrations of chlordane above the ARAR standard were reported for any system effluent samples in FY91.
- 25. Chloride. The ARAR standard for chloride at the CPS is 250 mg/ ℓ . The concentrations of chloride reported for the three influent samples collected in FY91 ranged from 57 mg/ ℓ to 180 mg/ ℓ with a mean value of 126 mg/ ℓ as indicated in Figure 9. The concentrations reported for the three carbon/alumina effluent samples ranged from 57 mg/ ℓ to 180 mg/ ℓ with a mean value of 126 mg/ ℓ . None of the three system effluent samples collected in FY91 were reported with concentrations in excess of the ARAR standard. The concentrations reported ranged from 68 mg/ ℓ to 240 mg/ ℓ with a mean value of 149 mg/ ℓ . It should be noted that the CPS has no specific process for the removal of chloride.
- 26. <u>Chlorobenzene</u>. The ARAR standard for chlorobenzene at the CPS is 300 μ g/ ℓ . As indicated in Figure 10, no concentrations of chlorobenzene above the CRL were reported for any of the three system influent, carbon/alumina effluent, or system effluent samples analyzed for chlorobenzene in FY91. Thus, no concentrations of chlorobenzene above the ARAR standard were reported for any system effluent samples in FY91.
- 27. <u>Chloroform.</u> The ARAR standard for chloroform at the CPS is $100 \ \mu g/\ell$. As indicated in Figure 11, the concentrations of chloroform reported for the three influent samples collected in FY91 ranged from $9.3 \ \mu g/\ell$ to $24.9 \ \mu g/\ell$ with a mean value of $16.2 \ \mu g/\ell$. Two of the fourteen carbon/alumina effluent samples were reported with concentrations in excess of the CRL ranging from $6.4 \ \mu g/\ell$ to $34.5 \ \mu g/\ell$. None of the sixteen system effluent samples were reported with chloroform concentrations in excess of the ARAR standard. One of the system effluent concentrations was reported as being greater than the CRL.

SOUTH PLANTS PSIFIN - CCL4 CARBON TETRACHLORIDE

SOUTH PLANTS PSAAEF - CCL4 CARBON TETRACHLORIDE

D.P. ASSOCIATES, INC

Figure 7. (Continued)

SOUTH PLANTS PSASEF - CCL4

D.P. ASSOCIATES, INC

Figure 7. (Concluded)

SOUTH PLANTS PSIFIN - CLDAN

D.P. ASSOCIATES, INC 12/10/93

Figure 8. (Continued)

Figure 8. (Concluded)

SOUTH PLANTS PSIFIN - CL

SOUTH PLANTS PSAAEF - CL

Figure 9. (Continued)

SOUTH PLANTS PSASEF - CL

D.P. ASSOCIATES, INC

Figure 9. (Concluded)

SOUTH PLANTS PSIFIN - CLC6H5

SOUTH PLANTS PSAAEF - CLC6H5

D.P. ASSOCIATES, INC

Figure 10. (Continued)

SOUTH PLANTS PSASEF - CLC6H5

Figure 10. (Concluded)

SOUTH PLANTS PSIFIN - CHCL3

SOUTH PLANTS PSAAEF - CHCL3

D.P. ASSOCIATES, INC

Figure 11. (Continued)

D.P. ASSOCIATES, INC

Figure 11. (Concluded)

- 28. Chromium. The ARAR standard for chromium at the CPS is $50.0~\mu g/\ell$. As indicated in Figure 12, no concentrations of chromium above the CRL were reported for any of the three system influent, carbon/alumina effluent, or system effluent samples analyzed for chromium in FY91. Thus, no concentrations of chromium above the ARAR standard were reported for any system effluent samples in FY91. It should be noted that the CPS has no specific process for the removal of chromium.
- 29. Copper. The ARAR standard for copper at the CPS is $200~\mu g/\ell$. The concentrations of copper above the CRL reported for two out of the three influent samples collected in FY91 were $37.4~\mu g/\ell$ and $51.8~\mu g/\ell$ with a mean value of $36~\mu g/\ell$ as indicated in Figure 13. No concentrations of copper above the CRL were reported for any of the three carbon/alumina effluent samples analyzed for copper in FY91. None of the three system effluent samples collected in FY91 were reported with concentrations in excess of the ARAR standard. Two of the three samples were reported with concentrations in excess of the CRL at $102~\mu g/\ell$ and $197~\mu g/\ell$. The mean value for FY91 for the system effluent samples was $106~\mu g/\ell$. It should be noted that the CPS has no specific process for the removal of copper.
- 30. <u>p,p'-DDE</u>. The ARAR standard for p,p'-DDE at the CPS is 0.1 μ g/ ℓ . As indicated in Figure 14, only one of the two system influent samples analyzed for p,p'-DDE in FY91 was reported with a concentration in excess of the CRL at 0.37 μ g/ ℓ . No concentrations of p,p'-DDE above the CRL were reported for any of the three carbon/alumina effluent or system effluent samples analyzed for p,p'-DDE in FY91. Thus, no concentrations of p,p'-DDE above the ARAR standard were reported for any system effluent samples in FY91.
- 31. <u>p,p'-DDT</u>. The ARAR standard for p,p'-DDT at the CPS is 0.1 μ g/ ℓ . As indicated in Figure 15, only one system influent sample was analyzed for p,p'-DDT in FY91. The concentration was reported to be below the CRL. No concentrations of p,p'-DDT above the CRL were reported for any of the two carbon/alumina effluent or system effluent samples analyzed for p,p'-DDT in FY91. Thus, no concentrations of p,p'-DDT above the ARAR standard were reported for any system effluent samples in FY91.
- 32. 1,4-Dichlorobenzene. The ARAR standard for 1,4-dichlorobenzene at the CPS is 75 μ g/ ℓ . As indicated in Figure 16, only one of the three system influent samples analyzed for 1,4-dichlorobenzene in FY91 was reported with a concentration in excess of the CRL at 1.25 μ g/ ℓ . No concentrations of 1,4-dichlorobenzene above the CRL were reported for any of the three carbon/alumina effluent samples. No concentrations of 1,4-dichlorobenzene above the ARAR standard were reported for any

SOUTH PLANTS PSIFIN - CR

SOUTH PLANTS PSAAEF - CR

D.P. ASSOCIATES, INC

Figure 12. (Continued)

Figure 12. (Concluded)

SOUTH PLANTS PSAAEF - CU

△ Less than CRL □ Greater than CRL

D.P. ASSOCIATES, INC

Figure 13. (Continued)

SOUTH PLANTS PSASEF - CU COPPER FY91 200 200 200 105.93 AVG 18.8 CRL

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL

△ Less than CRL □ Greater than CRL

Figure 13. (Concluded)

SOUTH PLANTS PSIFIN - PPDDE

SOUTH PLANTS PSAAEF - PPDDE

D.P. ASSOCIATES, INC

Figure 14. (Continued)

12/13/93 D.P. ASSOCIATES, INC

Figure 14. (Concluded)

SOUTH PLANTS PSAAEF - PPDDT

D.P. ASSOCIATES, INC 12/13/93

Figure 15. (Continued)

12/13/93 D.P. ASSOCIATES, INC

Figure 15. (Concluded)

SOUTH PLANTS PSIFIN - 14DCLB 1,4-DICHLOROBENZENE

SOUTH PLANTS PSAAEF - 14DCLB

D.P. ASSOCIATES, INC

12/10/93

Figure 16. (Continued)

SOUTH PLANTS PSASEF - 14DCLB

D.P. ASSOCIATES, INC

12/10/93

Figure 16. (Concluded)

system effluent samples in FY91. Only one of the three samples was reported with a concentration in excess of the CRL at 39.1 μ g/ ℓ .

- 33. 1,2-Dichloroethane. The ARAR standard for 1,2-dichloroethane at the CPS is 5 μ g/ ℓ . As indicated in Figure 17, no concentrations of 1,2-dichloroethane above the CRL were reported for any of the three system influent, carbon/alumina effluent, or system effluent samples analyzed for 1,2-dichloroethane in FY91. Thus, no concentrations of 1,2-dichloroethane above the ARAR standard were reported for any system effluent samples in FY91.
- 34. 1.1-Dichloroethylene. The ARAR standard for 1,1-dichloroethylene at the CPS is 7 μ g/ ℓ . As indicated in Figure 18, no concentrations of 1,1-dichloroethylene above the CRL were reported for any of the three system influent, carbon/alumina effluent, or system effluent samples analyzed for 1,1-dichloroethylene in FY91. Thus, no concentrations of 1,1-dichloroethylene above the ARAR standard were reported for any system effluent samples in FY91.
- 35. 1,2-Dichloroethylene. The ARAR standard for 1,2-dichloroethylene at the CPS is $7 \,\mu g/\ell$. As indicated in Figure 19, no concentrations of 1,2-dichloroethylene above the CRL were reported for any of the three system influent, carbon/alumina effluent, or system effluent samples analyzed for 1,2-dichloroethylene in FY91. Thus, no concentrations of 1,2-dichloroethylene above the ARAR standard were reported for any system effluent samples in FY91.
- 36. 1,2-Dichloropropane. The ARAR standard for 1,2-dichloropropane at the CPS is 6 μ g/ ℓ . 1,2-Dichloropropane was not specifically analyzed for during FY91, however it was quantified in the three GC/MS analyses conducted in FY91. As a result, no graph was prepared for 1,2-dichloropropane. The GC/MS results indicate that no concentrations above 1.0 μ g/ ℓ were reported in any of the samples subjected to GC/MS analysis in FY91. Thus, no concentrations of 1,2-dichloropropane above the ARAR standard were reported for any CPS effluent samples in FY91.
- 37. <u>Dieldrin.</u> The ARAR standard for dieldrin at the CPS is $0.1 \,\mu g/\ell$. The concentrations of dieldrin reported for the two influent samples collected in FY91 were $0.29 \,\mu g/\ell$ and $0.61 \,\mu g/\ell$ with a mean value of $0.45 \,\mu g/\ell$ as indicated in Figure 20. Three of the fourteen carbon/alumina effluent samples were reported with concentrations in excess of the CRL ranging from $0.10 \,\mu g/\ell$ to $0.33 \,\mu g/\ell$. Five of the sixteen system effluent samples were reported with dieldrin concentrations in excess of the ARAR standard ranging from $0.103 \,\mu g/\ell$ to $0.82 \,\mu g/\ell$. Nine of the sixteen system effluent samples were reported as having concentrations below the CRL.

SOUTH PLANTS PSIFIN - 12DCLE 1,2-DICHLOROETHANE FY91

SOUTH PLANTS PSAAEF - 12DCLE 1,2-DICHLOROETHANE

D.P. ASSOCIATES, INC

12/10/93

Figure 17. (Continued)

SOUTH PLANTS PSASEF - 12DCLE 1,2-DICHLOROETHANE

12/10/93

Figure 17. (Concluded)

SOUTH PLANTS PSIFIN - 11DCE

SOUTH PLANTS PSAAEF - 11DCE 1,1-DICHLOROETHYLENE

D.P. ASSOCIATES, INC

12/10/93

Figure 18. (Continued)

SOUTH PLANTS PSASEF - 11DCE 1,1-DICHLOROETHYLENE

Figure 18. (Concluded)

SOUTH PLANTS PSIFIN - 12DCE

1,2-DICHLOROETHYLENE

SOUTH PLANTS PSAAEF - 12DCE 1,2-DICHLOROETHYLENE

Figure 19. (Continued)

SOUTH PLANTS PSASEF - 12DCE 1.2-DICHLOROETHYLENE

Figure 19. (Concluded)

SOUTH PLANTS PSIFIN - DLDRN DIELDRIN

SOUTH PLANTS PSAAEF - DLDRN DIELDRIN

D.P. ASSOCIATES, INC

Figure 20. (Continued)

12/13/93

Figure 20. (Concluded)

- 38. Endrin. The ARAR standard for endrin at the CPS is 0.1 μ g/ ℓ . Only one system influent sample was analyzed for endrin in FY91 with a reported concentration below the CRL as indicated in Figure 21. Three of the fourteen carbon/alumina effluent samples were reported with concentrations in excess of the CRL ranging from 0.05 μ g/ ℓ to 0.43 μ g/ ℓ . Four of the sixteen system effluent samples were reported with endrin concentrations in excess of the ARAR standard ranging from 0.31 μ g/ ℓ to 2.7 μ g/ ℓ . Nine of the sixteen system effluent samples were reported as having concentrations below the CRL.
- 39. <u>Ethylbenzene</u>. The ARAR standard for ethylbenzene at the CPS is $680~\mu\text{g}/\ell$. As indicated in Figure 22, no concentrations of ethylbenzene above the CRL were reported for any of the three system influent, carbon/alumina effluent, or system effluent samples analyzed for ethylbenzene in FY91. Thus, no concentrations of ethylbenzene above the ARAR standard were reported for any system effluent samples in FY91.
- 40. Fluoride. The ARAR standard for fluoride at the CPS is 2 mg/ ℓ . The concentrations of fluoride reported for the three system influent samples collected in FY91 ranged from 1.24 mg/ ℓ to 39.0 mg/ ℓ with a mean value of 13.9 mg/ ℓ as indicated in Figure 23. For the three carbon/alumina effluent samples, the reported fluoride concentrations ranged from 1.14 mg/ ℓ to 30 mg/ ℓ with a mean value of 10.9 mg/ ℓ . One of the three system effluent samples was reported with a fluoride concentration in excess of the ARAR standard at 43.0 mg/ ℓ . It should be noted that the 43.0 mg/ ℓ value was reported for a sample collected on August 7, 1991. As previously discussed, no wastewater was discharged from the CPS during this time as the plant was being operated in a recycle mode to provide for treatment of high fluoride concentrations. Wastewater was not discharged until August 30, 1991 when the fluoride concentration was reduced to below 2.0 mg/ ℓ based on onsite analysis using a specific ion electrode method. The other two samples were reported with concentrations of 1.61 mg/ ℓ and 1.13 mg/ ℓ . As a result, no wastewater with a fluoride concentration in excess of 2.0 mg/ ℓ was actually discharged from the CPS.
- 41. Hexachlorocyclopentadiene. The ARAR standard for hexachlorocyclopentadiene at the CPS is 49 μ g/ ℓ . As indicated in Figure 24, no concentrations of hexachlorocyclopentadiene above the CRL were reported for any of the two system influent, carbon/alumina effluent, or system effluent samples analyzed for hexachlorocyclopentadiene in FY91. Thus, no concentrations of hexachlorocyclopentadiene above the ARAR standard were reported for any system effluent samples in FY91.

SOUTH PLANTS PSIFIN - ENDRN

SOUTH PLANTS PSAAEF - ENDRN

D.P. ASSOCIATES, INC

Figure 21. (Continued)

12/13/93 D.P. ASSOCIATES, INC

Figure 21. (Concluded)

SOUTH PLANTS PSIFIN - ETC6H5

SOUTH PLANTS PSAAEF - ETC6H5

Figure 22. (Continued)

SOUTH PLANTS PSASEF - ETC6H5

D.P. ASSOCIATES, INC

Figure 22. (Concluded)

SOUTH PLANTS PSIFIN - F

SOUTH PLANTS PSAAEF - F

Figure 23. (Continued)

△ Less than CRL ☐ Greater than CRL

D.P. ASSOCIATES, INC

Figure 23. (Concluded)

SOUTH PLANTS PSIFIN - CL6CP

SOUTH PLANTS PSAAEF - CL6CP

D.P. ASSOCIATES, INC

12/10/93

Figure 24. (Continued)

SOUTH PLANTS PSASEF - CL6CP

D.P. ASSOCIATES, INC

12/10/93

Figure 24. (Concluded)

- 42. Lead. The ARAR standard for lead at the CPS is $50 \, \mu g/\ell$. The concentrations of lead reported for the three system influent samples collected in FY91 ranged from $5.94 \, \mu g/\ell$ to $69.0 \, \mu g/\ell$ with a mean value of $28.1 \, \mu g/\ell$ as indicated in Figure 25. Only one of the three carbon/alumina effluent samples was reported with a lead concentration in excess of the CRL at $10.4 \, \mu g/\ell$. No concentrations of lead above the ARAR standard were reported for any system effluent samples in FY91. Only one of the three samples was reported with a lead concentration in excess of the CRL at $5.33 \, \mu g/\ell$. It should be noted that the CPS has no specific process for the removal of lead.
- 43. Mercury. The ARAR standard for mercury at the CPS is $2 \mu g/\ell$. The concentrations of mercury reported for the three system influent samples collected in FY91 ranged from $0.72 \mu g/\ell$ to $1.73 \mu g/\ell$ with a mean value of $1.08 \mu g/\ell$ as indicated in Figure 26. Two of the three carbon/alumina effluent samples were reported with mercury concentrations in excess of the CRL with a maximum concentration of $0.24 \mu g/\ell$ and a mean value for FY91 of $0.17 \mu g/\ell$. No concentrations of mercury above the ARAR standard were reported for any system effluent samples in FY91. Two of the three samples were reported with concentrations in excess of the CRL with a maximum mercury concentration of $0.56 \mu g/\ell$ and a mean value of $0.30 \mu g/\ell$. It should be noted that the CPS has no specific process for the removal of mercury.
- 44. <u>Parathion.</u> The ARAR standard for parathion at the CPS is $0.3 \, \mu g/\ell$. As indicated in Figure 27, no concentrations of parathion above the CRL were reported for any of the three system influent, carbon/alumina effluent, or system effluent samples analyzed for parathion in FY91. It is not possible to determine if any of the parathion concentrations in the system effluent samples were in excess of the ARAR standard since the CRL in FY91 was higher than the ARAR standard.
- 45. <u>Tetrachloroethylene</u>. The ARAR standard for tetrachloroethylene at the CPS is $10 \ \mu g/\ell$. The concentrations of tetrachloroethylene reported for the three system influent samples collected in FY91 ranged from $1.16 \ \mu g/\ell$ to $10.0 \ \mu g/\ell$ with a mean value of $5.25 \ \mu g/\ell$ as indicated in Figure 28. Only one of the three carbon/alumina effluent samples was reported with a tetrachloroethylene concentration in excess of the CRL at $2.56 \ \mu g/\ell$. No concentrations of tetrachloroethylene above the ARAR standard were reported for any system effluent samples in FY91. None of the three samples were reported with concentrations in excess of the CRL.
- 46. <u>Toluene</u>. The ARAR standard for toluene at the CPS is 2,420 μ g/ ℓ . As indicated in Figure 29, no concentrations of toluene above the CRL were reported for any of the three system influent, carbon/alumina effluent, or system effluent samples

SOUTH PLANTS PSIFIN - PB

SOUTH PLANTS PSAAEF - PB

D.P. ASSOCIATES, INC

Figure 25. (Continued)

12/13/93 D.P. ASSOCIATES, INC

Figure 25. (Concluded)

SOUTH PLANTS PSIFIN - HG

3.000
2.500

1.500

1.000

0.500

CT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP

A Less than CRL Greater than CRL

SOUTH PLANTS PSAAEF - HG

D.P. ASSOCIATES, INC

Figure 26. (Continued)

12/13/93

Figure 26. (Concluded)

SOUTH PLANTS PSIFIN - PRTHN

SOUTH PLANTS PSAAEF - PRTHN

D.P. ASSOCIATES, INC

Figure 27. (Continued)

SOUTH PLANTS PSASEF - PRTHN PARATHION FY91

Figure 27. (Concluded)

SOUTH PLANTS PSIFIN - TCLEE TETRACHLOROETHYLENE FY91

SOUTH PLANTS PSAAEF - TCLEE TETRACHLOROETHYLENE

D.P. ASSOCIATES, INC

12/13/93

Figure 28. (Continued)

SOUTH PLANTS PSASEF - TCLEE

D.P. ASSOCIATES, INC

Figure 28. (Concluded)

SOUTH PLANTS PSAAEF - MEC6H5 TOLUENE

D.P. ASSOCIATES, INC

12/13/93

Figure 29. (Continued)

D.P. ASSOCIATES, INC

Figure 29. (Concluded)

analyzed for toluene in FY91. Thus, no concentrations of toluene above the ARAR standard were reported for any system effluent samples in FY91.

- 47. 1.1.1-Trichloroethane. The ARAR standard for 1,1,1-trichloroethane at the CPS is 200 μ g/ ℓ . As indicated in Figure 30, no concentrations of 1,1,1-trichloroethane above the CRL were reported for any of the three system influent, carbon/alumina effluent, or system effluent samples analyzed for 1,1,1-trichloroethane in FY91. Thus, no concentrations of 1,1,1-trichloroethane above the ARAR standard were reported for any system effluent samples in FY91.
- 48. 1,1,2-Trichloroethane. The ARAR standard for 1,1,2-trichloroethane at the CPS is 28 μ g/ ℓ . As indicated in Figure 31, no concentrations of 1,1,2-trichloroethane above the CRL were reported for any of the three system influent, carbon/alumina effluent, or system effluent samples analyzed for 1,1,2-trichloroethane in FY91. Thus, no concentrations of 1,1,2-trichloroethane above the ARAR standard were reported for any system effluent samples in FY91.
- 49. <u>Trichloroethylene</u>. The ARAR standard for trichloroethylene at the CPS is $5 \mu g/\ell$. As indicated in Figure 32, no concentrations of trichloroethylene above the CRL were reported for any of the three system influent, carbon/alumina effluent, or system effluent samples analyzed for trichloroethylene in FY91. Thus, no concentrations of trichloroethylene above the ARAR standard were reported for any system effluent samples in FY91.
- 50. <u>Vinyl Chloride</u>. The ARAR standard for vinyl chloride at the CPS is $2 \mu g/\ell$. As indicated in Figure 33, no concentrations of vinyl chloride above the CRL were reported for any of the three system influent, carbon/alumina effluent, or system effluent samples analyzed for vinyl chloride in FY91. Thus, no concentrations of vinyl chloride above the ARAR standard were reported for any system effluent samples in FY91.
- 51. Zinc. The ARAR standard for zinc at the CPS is 2,000 μ g/ ℓ . The concentrations of zinc reported for the three system influent samples collected in FY91 ranged from 68.3 μ g/ ℓ to 74.6 μ g/ ℓ with a mean value of 71.4 μ g/ ℓ as indicated in Figure 34. Two of the three carbon/alumina effluent samples were reported with a zinc concentration in excess of the CRL with a maximum concentration of 36.3 μ g/ ℓ and a mean value for FY91 of 26.3 μ g/ ℓ . No concentrations of zinc above the ARAR standard were reported for any system effluent samples in FY91. The zinc concentrations in these samples ranged from 42.7 μ g/ ℓ to 165 μ g/ ℓ with a mean value of 101.3 μ g/ ℓ .

SOUTH PLANTS PSIFIN - 111TCE

SOUTH PLANTS PSAAEF - 111TCE 1,1,1-TRICHLOROETHANE

D.P. ASSOCIATES, INC

12/10/93

Figure 30. (Continued)

SOUTH PLANTS PSASEF - 111TCE 1,1,1-TRICHLOROETHANE

1,1,1-TRICHLOROETHANE
FY91

250

200

200

200

200

200

200.00 ARAR

200.00 ARAR

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP

△ Less than CRL □ Greater than CRL

D.P. ASSOCIATES, INC

Figure 30. (Concluded)

SOUTH PLANTS PSIFIN - 112TCE

SOUTH PLANTS PSAAEF - 112TCE 1,1,2-TRICHLOROETHANE

D.P. ASSOCIATES, INC

12/10/93

Figure 31. (Continued)

SOUTH PLANTS PSASEF - 112TCE 1,1,2-TRICHLOROETHANE

12/10/93

D.P. ASSOCIATES, INC

Figure 31. (Concluded)

SOUTH PLANTS PSIFIN - TRCLE TRICHLOROETHYLENE

SOUTH PLANTS PSAAEF - TRCLE TRICHLOROETHYLENE

D.P. ASSOCIATES, INC

12/13/93

Figure 32. (Continued)

SOUTH PLANTS PSASEF - TRCLE TRICHLOROETHYLENE FY91

12/13/93

D.P. ASSOCIATES, INC

Figure 32. (Concluded)

SOUTH PLANTS PSIFIN - C2H3CL CHLOROETHENE/VINYL CHLORIDE

SOUTH PLANTS PSAAEF - C2H3CL CHLOROETHENE/VINYL CHLORIDE

D.P. ASSOCIATES, INC

Figure 33. (Continued)

SOUTH PLANTS PSASEF - C2H3CL CHLOROETHENE/VINYL CHLORIDE FY91

2.500 2.000 2.000 2.000 ARAR

1.01 CRL

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP

△ Less than CRL □ Greater than CRL

12/10/93

D.P. ASSOCIATES, INC

Figure 33. (Concluded)

SOUTH PLANTS PSAAEF - ZN ZINC FY91 150 125 75 26.33 AVG 18.0 CRL OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP A Less than CRL © Greater than CRL

D.P. ASSOCIATES, INC

12/13/93

Figure 34. (Continued)

D.P. ASSOCIATES, INC

Figure 34. (Concluded)

TBC Analytes

52. With respect to the TBC analytes, no concentrations of dibromochloropropane, 1,1-dichloroethane, dicyclopentadiene, methylisobutyl ketone, or xylene above their respective CRL's were reported for any of the system influent, carbon/ alumina effluent, or system effluent samples for which they were analyzed in FY91. Chloroacetic acid and IMPA were not specifically analyzed for in any samples in FY91. Concentrations of atrazine (up to 10 $\mu g/\ell$), DIMP (up to 110 $\mu g/\ell$), and methylene chloride (up to 128 $\mu q/\ell$) were reported in system influent samples during FY91. No concentrations of atrazine above its CRL were reported for any carbon/alumina effluent or system effluent samples for which it was analyzed. Nine out of fourteen carbon/alumina effluent samples were reported with DIMP concentrations in excess of the CRL with a maximum concentration of 10.9 $\mu g/\ell$ reported. Two of three system effluent samples were reported with DIMP concentrations in excess of its CRL with a maximum concentration of 8.05 μ g/ ℓ . Five out of fourteen carbon/alumina effluent samples were reported with methylene chloride concentrations in excess of the CRL with a maximum concentration of 74.4 $\mu q/\ell$ reported. No concentrations of methylene chloride above its CRL were reported for any of the sixteen system effluent samples for which it was analyzed.

Other Target Analytes

53. With respect to the other target analytes, no concentrations of bicycloheptadiene, p-chlorophenylmethyl, sulfur compounds, dithiane, dimethyldisulfide, isodrin, oxathiane, supona, or vapona above their respective CRL's were reported for any of the system influent, carbon/alumina effluent, or system effluent samples for which they were analyzed in FY91. Fluoroacetic acid and thiodiglycol were not specifically analyzed for in any samples in FY91. Concentrations of malathion above its CRL (up to 2.97 μ g/ ℓ) were reported in two of the three system influent samples for which it was analyzed in FY91. No concentrations of malathion above its CRL were reported for any carbon/alumina effluent samples. One of three system effluent samples was reported with a malathion concentration in excess of its CRL at 0.8 μ g/ ℓ .

GC/MS Analyses

54. GC/MS analyses were conducted on system influent, carbon/alumina effluent, and system effluent samples collected during the 1st, 2nd, and 4th quarters of FY91. Many of the analytes included in the standard analytical program were not quantified during the GC/MS analyses since the detection levels associated with the GC/MS analytical method are generally higher than the CRL's established for each analyte under the standard analytical program. A review of the data associated with

1st quarter sample analyses indicates only three analytes were reported with a concentration in excess of their detection levels. Chloroform was detected in the influent sample at a concentration of 110 $\mu g/\ell$. The system influent sample for nitroso di-npropylamine was reported with a concentration of 9.76 μ g/ ℓ which is just slightly above the detection level of 6.80 μ g/ ℓ . Tetrachloroethylene was reported in the influent at 1.02 $\mu g/\ell$, slightly above the 1.00 $\mu g/\ell$ detection limit. During the 2nd quarter, the system influent sample was reported with a bis (2-ethylhexyl) phthalate concentration of 14.7 μ g/ ℓ . Methylene chloride was also reported above its detection level in the influent at 93.9 $\mu q/\ell$. Chloroform was also present in the influent during second quarter analysis at 19.0 μ g/ ℓ . Diisopropylmethyl phospohnate was detected at 42.5 - $\mu g/\ell$ in the influent, and was detected at 24.5 $\mu g/\ell$ in the activated alumina effluent. Diisopropylmethyl phosphonate was not detected in the air-stripper effluent. Tetrachloroethylene was reported at 8.06 μ g/ ℓ , slightly above the 1.00 μ g/ ℓ detection level. During the 4th quarter, the system influent sample was reported with concentrations of chloroform, sulfone, naphthalene, and tetrachloroethylene in excess of their respective detection levels. Of these four, only naphthalene is not analyzed for in the standard analytical program. No other contaminants were reported in any other samples collected during the 4th quarter with concentrations in excess of their respective detection levels. Since none of the non-standard analytes were reported in more than one quarter and since none of them were reported in any effluent samples in concentrations above their detection levels, no changes to the standard analytical program have been made.

Summary of CPS Effectiveness

- 55. Since the chemical-specific ARAR's became applicable to the CPS in FY91, there were specific contaminant concentration criteria against which to compare the effectiveness of the CPS. With respect to organic analytes, aldrin, dieldrin, and endrin concentrations were reported in excess of ARAR standards in some system effluent samples collected in FY91. Aldrin was reported in only one of sixteen effluent samples analyzed for aldrin. The concentration reported was just slightly above the ARAR standard at 0.11 μ g/ ℓ . All other concentrations were reported as being less than the CRL. Four of sixteen system effluent samples were reported with dieldrin and endrin concentrations in excess of their respective ARAR standards. None of the other organics were reported in system effluent samples at concentrations in excess of their respective ARAR standards.
- 56. With respect to inorganic analytes, arsenic and fluoride concentrations were reported in excess of ARAR standards in some system effluent samples collected

- in FY91. Both arsenic and fluoride were reported in one of three effluent samples analyzed for the analytes. For both analytes, the concentrations in excess of the standards were reported for the sample collected on August 7, 1991. As previously noted, however, no wastewater was discharged from the CPS during this time since the plant was being operated in a recycle mode. Wastewater was not discharged until September 1991 when the fluoride concentration was reduced to below 2.0 mg/ ℓ based on onsite analysis. As a result, no wastewater with a fluoride concentration in excess of 2.0 mg/ ℓ was actually discharged from the CPS. Concentrations of both analytes were comparable in the system influent, carbon/alumina effluent, and system effluent samples. The CPS has no specific process for the removal of arsenic.
- 57. In summary, the FY91 analytical data generated for the CPS indicated a number of chemical detections above the chemical-specific ARAR standards which had been approved prior to the construction and operation of a new CERCLA Wastewater Treatment System. The CPS had not been designed to operate according to the more stringent criteria of the new proposed system. The CPS criteria was to operate until chemical breakthrough was detected, then the carbon/alumina was changed as required. Hence, there were occasions where detectable levels of aldrin, dieldrin, or endrin were noted in the effluent data. During the 4th Qtr FY91, there were a number of readings in the data showing high fluoride levels in the effluent. There were 3 periods in which the water was recirculated for retreatment until the effluent met ARAR's and was subsequently discharged. With respect to the TBC analytes, the CPS was effective in removing atrazine, DIMP, and methylene chloride. With respect to the other target analytes, the CPS was effective in removing malathion.

Contaminant Mass Removal

58. A calculation of the total mass of contaminants removed by the CPS during FY91 was prepared with the results shown in Table 3. The calculation was based on the difference in contaminant concentrations in the system influent and effluent. Average annual system effluent concentrations were subtracted from influent concentrations and multiplied by the flow. Values less than the CRL were set equal to one half the CRL value. The total mass of contaminants removed in FY91 was approximately 0.32 pounds. The contaminant with the largest mass removal was methylene chloride at approximately 0.12 pounds.

Table 3
South Plants CPS Contaminant Removal, FY91

Containment	<u>Abbreviation</u>	System Total (lbs/year)
Aldrin	ALDRN	0.010
Bis (2-ethylhexyl) phthalate	B2EHP	0.007
Methylene chloride	CH2CL2	0.123
Chloroform	CHCL3	0.058
Combined Organo Sulfurs	CPMSOX	0.004
Diisopropyl methylphosphonate	DIMP	0.086
Dieldrin	DLDRN	0.010
Endrin	ENDRN	0.013
N-Nitrosodi-N-propylamine	NNDNPA	0.004
Tetrachloroethylene	TCLEE	<u>0.008</u>
Total		0.323

PART III: CONCLUSIONS

- 59. Based on the evaluation of the available FY91 operations data for the South Plants CERCLA Pretreatment System, the following conclusions have been made:
 - a. The CPS operated for approximately twenty-two weeks in FY91, including periods of recirculation.
 - b. The CPS treated approximately 189,115 gallons during FY91.
 - c. The CPS was only partially successful in meeting the chemicalspecific ARAR standards established for the new CERCLA treatment sytem.
 - d. The GC/MS analyses conducted on the system samples identified no significant concentrations of contaminants not currently included in the standard analytical program.
 - e. The total mass of contaminants removed by the CPS during FY91 was approximately 0.32 pounds.

APPENDIX A: FLOW QUANTITIES AND FLOW RATES FOR THE CPS

9/1/93 DPA

South Plants Weekly Flow Data 10/01/90 - 09/30/91

Sample Date	Meter	Gallons Discharged	AVG GPM
Sample Date 10/07/90 10/14/90 10/21/90 10/28/90 11/04/90 11/11/90 11/18/90 11/18/90 11/25/90 12/02/90 12/09/90 12/16/90 12/30/90 01/06/91 01/23/91 01/27/91 02/03/91 02/17/91 02/24/91 03/03/91 03/17/91 03/24/91 03/31/91 03/17/91 03/24/91 03/31/91 04/14/91 04/21/91 04/21/91 05/12/91 05/12/91 05/12/91 05/12/91 05/12/91 05/12/91 06/02/91 06/03/91 06/03/91 06/16/91 06/30/91 07/14/91 07/21/91 07/28/91 07/28/91	348,410 363,960 372,050 372,050 372,050 372,050 372,050 372,050 372,050 372,050 372,050 372,050 372,050 372,050 372,050 372,050 372,050 472,050 473,050 473,20 477,320	Gallons	
	(C	ontinued)	

9/1/93 DPA

South Plants Weekly Flow Summary 10/01/90 - 09/30/91 (Concluded)

Sample	Mata	Gallons	AVG
Date	<u>Meter</u>	<u>Discharged</u>	<u>GPM</u>
08/11/91	503,910	0	0.00
08/18/91	505,120	0	0.00
08/25/91	507,130	0	0.00
09′/01′/91	518,650	10,785	1.07
09/08/91	533,540	14,890	1.48
09/15/91	537,040	3,500	0.35
09/22/91	557,780	20,740	2.06
09/22/91 09/29/91	562,400	4,620	0.46
09/30/91	562,400	0	0.00
		189,115	0.36

Total Discharge to Sanitary Sewer System: 189,115. Daily Average (GPM): 0.051. Daily Average (GPD): 517.

APPENDIX B: CPS WATER QUALITY DATA, STATISTICAL SUMMARIES, AND GC/MS ANALYSES

South Plants - FY 91 Statistical Summary Datachem - Site: PSIFIN

					Certified			•	
Analyte	Tot Samp	Samp >CRL	%> CRL	Mth No.	Report <u>Limit (LT)</u>	<u>UOM</u>	<u>Mean</u>	Low <u>Value</u>	High <u>Value</u>
111TCE 112TCE 11DCE 11DCLE 11DCLE 11DCLE 12DCLE 12DCLE 13DMB 14DCLB 14DCLB 14DCLB 14DCLB 14DCLB 14DCLB 14DCLC 12DCLC 12DCLC 13DMB 14DCLB 14DCLC 12DCLC 12DCL	®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®	00000010331000030033300000021000302030	0% 0% 0% 0% 0% 0% 0% 100% 100% 100% 100	N8 N	0.760 0.780 1.700 0.730 0.760 1.100 1.320 0.579 0.0500 N/A 2.350 4.030 5.900 5.000 1.010 1.050 105 0.990 6.780 7.400 0.500 0.278 0.0480 0.0950 5.690 11.50 7.460 16.80 18.80 5.000 0.195 5.000 0.195 5.000 0.195 5.000 0.195 0.384 0.0500 0.550 0.384 0.0500 0.550 0.384 0.0500 0.550 0.188 0.0500		LT CRL LT	LT CRL LT	LT CRL LT
	•	•	0,0		Continued)	-3/		_: _ :. _	_: •

(Continued)

LT = Less than the following concentration.

ug/l = Microgram per liter.

mg/l = Milligram per liter.

South Plants - FY 91 Statistical Summary Datachem - Site: PSIFIN (Concluded)

	Tot	Samp			Certified Report			Low	
<u>Analyte</u> <u>Value</u>	Samp	<u>> CF</u>	RL CRL	Mth No	o. <u>Limit (LT</u>	<u>10U</u>	<u>Mean</u>	Valu	<u>e</u> _
ETC6H5	3	0	0%	AV8	1.370	ug/l	LT CRL	LT CRL	LT CRL
F	3	3	100%	TT09	0.153	mg/l	13.94	1.240	39.00
HG	3	3	100%	CC8	0.1000	ug/l	1.080	0.720	1.730
ISODR	2	0	0%	KK8	0.0510	ug/l	LT CRL	LT CRL	LT CRL
K	3 3 3 2 3 3	3	100%	SS12	1240	ug/l	8100	5540	9610
MEC6H5	3	0	0%	AV8	1.470	ug/l	LT CRL	LT CRL	LT CRL
MG	3	3	100%	SS12	135	ug/l	7837	6720	8420
MIBK	3	0	0%	P8	4.900	ug/l	LT CRL	LT CRL	LT CRL
MLTHN	3	2	66%	UH11	0.373	ug/l	1.731	LT CRL	2.970
NA	3	2	100%	SS12	279	ug/l	265333	76000	610000
NIT	3	2	66%	LL8	10.00	ug/l	93.33	LT CRL	150
OXAT	3	0	0%	8AAA	2.380	ug/l	LT CRL	LT CRL	LT CRL
PB	3 3 3 3 3 3 2 1	3	100%	SD18	4.470	ug/l	28.06	5.940	69.00
PPDDE	2	1	50%	KK8	0.0540	ug/l	LT CRL	LT CRL	0.374
PPDDT		0	0%	KK8	0.0490	ug/l	LT CRL	LT CRL	LT CRL
PRTHN	3	0	0%	UH11	0.647	ug/l	LT CRL	LT CRL	LT CRL
S04	3	3	100%	TT09	0.175	mg/l	153	80.00	230
SUPONA	3	0	0%	UH11	0.787	ug/l	LT CRL	LT CRL	LT CRL
TCLEE	3	3	100%	N8	0.750	ug/l	5.247	1.160	10.00
TRCLE	3	0	0%	И8	0.560	ug/l	LT CRL	LT CRL	LT CRL
XYLEN	3 3 3	0	0%	AV8	1.360	ug/l	LT CRL	LT CRL	LT CRL
ZN	3	3	100%	SS12	18.00	ug/l	71.37	68.30	74.60

LT = Less than the following concentration.
ug/l = Microgram per liter.
mg/l = Milligram per liter.

South Plants - FY 91 Statistical Summary

Datachem - Site: PSAAEF

	Tot	Samp	%>		Certified Report			Low	High
Analyte Value	Samp	>CRL		Mth No.		<u>uon</u>	<u>Mean</u>		
	Samp 333333333333333333333333333333333333	>CRL 00000000330000000523000000000009030	CRL 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	Mth No. N8 N	Limit (LT) 0.760 0.780 1.700 0.730 0.760 1.100 1.320 0.579 0.0500 N/A 2.350 4.030 5.900 5.000 1.010 1.050 105 0.990 6.780 7.400 0.278 0.0480 0.278 0.0480 0.278 0.0480 0.278 0.0480 0.195 5.000 11.50 7.460 16.80 18.80 5.000 0.195 5.000 0.384 0.392 1.340 0.0500 0.550	UON ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I	LT CRL LT	LT CRL	LT CRL LT CRL
DMMP ENDRN	14 14	9	64% 21%	AT8 KK8	0.188 0.0500 ontinued)	ug/l ug/l	LT CRL LT CRL	LT CRL LT CRL	9.315 0.425
				(C	ontinueu/				

LT = Less than the following concentration.
ug/l = Microgram per liter.
mg/l = Milligram per liter.

South Plants - FY 91 Statistical Summary Datachem - Site: PSAAEF (Concluded)

	T - 4	C	0/ >		Certified			•	
Analyte Value	Tot <u>Samp</u>	Samp >CR		Mth No	Report D. Limit (LT) UOI	<u>Mean</u>	Low Valu	
Value ETC6H5 F HG ISODR K MEC6H5 MG MIBK MLTHN NA NIT OXAT PB PPDDE PPDDT PRTHN SO4	33323333333332333	03203030032010003	0% 100% 66% 0% 100% 0% 100% 66% 0% 33% 0% 0%	AV8 TT09 CC8 KK8 SS12 AV8 SS12 P8 UH11 SS12 LL8 AAA8 SD18 KK8 UH11 TT09	1.370 0.153 0.1000 0.0510 1240 1.470 135 4.900 0.373 279 10.00 2.380 4.470 0.0540 0.0490 0.647 0.175	ug/l mg/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l u	LT CRL 10.92 0.173 LT CRL 7950 LT CRL 27807 LT CRL LT CRL	LT CRL 1.140 LT CRL 6100 LT CRL 7090 LT CRL	LT CRL 30.00 0.237 LT CRL 9080 LT CRL 8500 LT CRL LT CRL 640000 22.10 LT CRL 10.40 LT CRL LT CRL LT CRL LT CRL LT CRL
SUPONA TCLEE TRCLE XYLEN	3 3 3 3 3	0 1 0 0 2	0% 33% 0% 0%	UH11 N8 N8 AV8	0.787 0.750 0.560 1.360	ug/l ug/l ug/l ug/l	LT CRL LT CRL LT CRL LT CRL	LT CRL LT CRL LT CRL LT CRL	LT CRL 2.560 LT CRL LT CRL
ZN	3	2	66%	SS12	18.00	ug/l	26.33	LT CRL	36.30

LT = Less than the following concentration.
ug/l = Microgram per liter.
mg/l = Milligram per liter.

South Plants - FY 91 Statistical Summary

Datachem - Site: PSASEF

	ot Samp	Samp >CRI	%> _ CRL	Mth No.	Certified Report Limit (LT)	UOM	1_Mean	Low Value	
Value 111TCE	3	0	0%	N8	0.760	ug/l	LT CRL	LT CRL	LT CRL
112TCE 11DCE	3	0	0% 0%	N8 N8	0.780 1.700	ug/l ug/l	LT CRL LT CRL	LT CRL LT CRL	LT CRL LT CRL
11DCLE 12DCE	3	0	0% 0%	N8 N8	0.730 0.760	ug/l ug/l	LT CRL LT CRL	LT CRL LT CRL	LT CRL LT CRL
12DCLE 13DMB	3	0	0% 0%	N8 AV8	1.100 1.320	ug/l ug/l	LT CRL LT CRL	LT CRL LT CRL	LT CRL LT CRL
14DCLB	3	1	33%	AV8	0.579	ug/l	LT CRL LT CRL	LT CRL LT CRL	39.10 0.107
ALDRN ALK	16 3	1	6% 100%	KK8 00	0.0500 N/A	ug/l ug/l	147000	120000	170000
AS ATZ	3	3	100% 0%	AX8 UH11	2.350 4.030	ug/l ug/l	574 LT CRL	8.330 LT CRL	1700 LT CRL
BCHPD BTZ	3	0	0% 0%	P8 AAA8	5.900 5.000	ug/l ug/l	LT CRL LT CRL	LT CRL LT CRL	LT CRL LT CRL
C2H3CL C6H6	3	0	0% 0%	N8 AV8	1.010 1.050	ug/l ug/l	LT CRL LT CRL	LT CRL LT CRL	LT CRL LT CRL
CA CCL4	3	3	100% 0%	SS12 N8	105 0.990	ug/l ug/l	37333 LT CRL	10400 LT CRL	57700 LT CRL
CD CH2CL2	3 16	0	0% 0%	SS12 N8	6.780 7.400	ug/l ug/l	LT CRL LT CRL	LT CRL LT CRL	LT CRL LT CRL
CHCL3	16 3	1 3	6% 100%	N8 TT09	0.500 0.278	ug/l mg/l	LT CRL 149	LT CRL 68.00	0.718
CL6CP CLC6H5	2	0	0% 0%	KK8 N8	0.0480 0.820	ug/l	LT CRL LT CRL	LT CRL LT CRL	LT CRL LT CRL
CLDAN	2	0	0%	KK8	0.0950	ug/l ug/l	LT CRL	LT CRL	LT CRL
CPMS CPMSO	3	0	0% 0%	8AAA 8AAA	5.690 11.50	ug/l ug/l	LT CRL	LT CRL	LT CRL
CPMSO2 CR	3	0	0% 0%	AAA8 SS12	7.460 16.80	ug/l ug/l	LT CRL LT CRL	LT CRL	LT CRL
CU CYN	3	2	66% 0%	SS12 TF34	18.80 5.000	ug/l ug/l	106 LT CRL	LT CRL LT CRL	197 LT CRL
DBCP DCPD	1 3	0	0% 0%	AY8 P8	0.195 5.000	ug/l ug/l	LT CRL LT CRL	LT CRL LT CRL	LT CRL LT CRL
DDVP DIMP	3	0 3	0% 100%	UH11 AT8	0.384 0.392	ug/l ug/l	LT CRL 3.306	LT CRL 0.448	LT CRL 8.050
DITH DLDRN	3 16	0	0% 43%	AAA8 KK8	1.340 0.0500	ug/l ug/l	LT CRL LT CRL	LT CRL LT CRL	LT CRL 0.820
DMDS DMMP	3	0	0% 66%	AAA8 AT8	0.550 0.188	ug/l ug/l	LT CRL 2.341	LT CRL LT CRL	LT CRL 6.080
ENDRN	16	7	43%	KK8	0.0500	ug/l	LT CRL	LT CRL	2.700

⁽Continued)

LT = Less than the following concentration.
ug/l = Microgram per liter.
mg/l = Milligram per liter.

South Plants - FY 91 Statistical Summary Datachem - Site: PSASEF (Concluded)

·					Certified				
	Tot	Samp			Report			Low	
<u>Analyte</u> <u>Value</u>	Samp	<u>>CR</u>	L CRL	Mth No	o. <u>Limit (LT</u>) <u>UON</u>	<u>M Mean</u>	Valu	<u>e</u>
ETC6H5	3	0	0%	AV8	1.370	ug/l	LT CRL	LT CRL	LT CRL
F	3 2 3 3	3 2	100%		0.153	mg/l	15.25	1.130	43.00
HG	3	2	66%	CC8	0.1000	ug/l	0.303	LT CRL	0.563
ISODR	2	0	0%	KK8	0.0510	ug/l	LT CRL	LT CRL	LT CRL
K	3	3	100%		1240	ug/l	8860	5880	10600
MEC6H5		0	0%	AV8	1.470	ug/l	LT CRL	LT CRL	LT CRL
MG	3333333	3	100%	SS12	135	ug/l	8697	8120	9390
MIBK	3	0	0%	P8	4.900	ug/l	LT CRL	LT CRL	LT CRL
MLTHN	3	1	33%	UH11	0.373	ug/l	LT CRL	LT CRL	0.798
NA	3	3 3	100%	SS12	279	ug/l	386667	80000	970000
NIT	3	3	100%	LL8	10.00	ug/l	1840	120	4000
OXAT	3	0	0%	AAA8	2.380	ug/l	LT CRL	LT CRL	LT CRL
PB	3	1	33%	SD18	4.470	ug/l	LT CRL	LT CRL	5.330
PPDDE	3	0	0%	KK8	0.0540	ug/l	LT CRL	LT CRL	LT CRL
PPDDT	2 3 3	0	0%	KK8	0.0490	ug/l	LT CRL	LT CRL	LT CRL
PRTHN	3	0	0%	UH11	0.647	ug/l	LT CRL	LT CRL	LT CRL
S04	3	3	100%	TT09	0.175	mg/l	643	79.00	1700
SUPONA		Ŏ	0%	UH11	0.787	ug/l	LT CRL	LT CRL	LT CRL
TCLEE TRCLE	3	0	0%	N8	0.750	ug/l	LT CRL	LT CRL	LT CRL
XYLEN	3	0 0	0% 0%	N8 AV8	0.560 1.360	ug/l	LT CRL LT CRL	LT CRL LT CRL	LT CRL
ZN	3 3 3	3	100%	SS12	18.00	ug/l ug/l	101	42.70	LT CRL 165

LT = Less than the following concentration.
ug/l = Microgram per liter.
mg/l = Milligram per liter.

6/25/93 DPA

South Plants - PSIFIN for FY 91

Sample Date	<u>Org</u>	111TCE ug/l	112TCE ug/l	11DCE ug/l	11DCLE ug/l	12DCE ug/l
10/31/90	UB	LT 0.760	LT 0.780	LT 1.700	LT 0.730	LT 0.760
02/20/91 02/27/91 08/07/91	UB UB UB	LT 0.760 LT 0.760	LT 0.780 LT 0.780	LT 1.700 LT 1.700	LT 0.730 LT 0.730	LT 0.760 LT 0.760
		12DCLE ug/l	13DMB ug/l	14DCLB ug/l	ALDRN ug/l	ALK ug/l
10/31/90 000	UB	LT 1.100	LT 1.320	LT 0.579		180000
02/20/91 02/27/91 000	UB UB	LT 1.100	 LT 1.320	LT 0.579	LT 0.050	130000
08/07/91 800000.00	UB OO	LT 1.100	LT 1.320	1.250	LT 0.050	
		AS ug/l	ATZ uǧ/l	BCHPD ug/l	BTZ ug/l	C2H3CL ug/l
10/31/90 02/20/91	UB UB	180.000	LT 4.030	LT 5.900	LT 5.000	LT 1.010
02/27/91 02/27/91 08/07/91	UB UB	3.380 1300.000	LT 4.030 10.000	LT 5.900 LT 5.900	LT 5.000 LT 5.000	LT 1.010 LT 1.010
		C6H6 ug/l	CA ug/l	CCL4 ug/l	CD ug/l	CH2CL2 ug/l
10/31/90	UB	LT 1.050	59200.000	LT 0.990	LT 6.780	115.000
02/20/91 02/27/91 08/07/91	UB UB UB	LT 1.050 LT 1.050	44600.000 9920.000	LT 0.990 LT 0.990	LT 6.780 LT 6.780	128.000 16.600
		CHCL3 ug/l	CL mg/l	CL6CP ug/l	CLC6H5 ug/l	CLDAN ug/l
10/31/90 02/20/91	UB UB	9.330	140.000		LT 0.820 	
02/27/91 08/07/91	UB UB	24.900 14.500	57.000 180.000	LT 0.048 LT 0.048	LT 0.820 LT 0.820	LT 0.095 LT 0.095

(Continued)

LT = Less than the following concentration.
ug/l = Microgram per liter.
-- = Analysis was not performed.
mg/l = Milligram per liter.

Sample Date	<u>Org</u>	CPMS ug/l	CPMSO ug/l	CPMSO2 ug/l	CR ug/l	CU ug/l
10/31/90 02/20/91	UB UB	LT 5.690	LT 11.500	LT 7.460	LT 16.800	51.800
02/27/91 08/07/91	UB UB	LT 5.690 LT 5.690	LT 11.500 LT 11.500	LT 7.460 LT 7.460	LT 16.800 LT 16.800	LT 18.800 37.400
		CYN ug/l	DBCP ug/l	DCPD ug/l	DDVP ug/l	DIMP ug/l
10/31/90 02/20/91	UB UB	LT 5.000 LT 5.000		LT 5.000	LT 0.384	110.000
02/27/91 08/07/91	UB UB	22.900	LT 0.195	LT 5.000 LT 5.000	LT 0.384 LT 0.384	21.400 80.000
		DITH ug/l	DLDRN ug/l	DMDS ug/l	DMMP ug/l	ENDRN ug/l
10/31/90 02/20/91	UB UB	LT 1.340		LT 0.550	4.680	
02/27/91 08/07/91	UB UB	LT 1.340 LT 1.340	0.289 0.613	LT 0.550 LT 0.550	0.554 0.356	LT 0.050
		ETC6H5 ug/l	F mg/l	HG _ug/l	ISODR ug/l	K ug/
10/31/90 02/20/91	UB UB	LT 1.370	1.570	0.790		9610.000
02/27/91 08/07/91	UB UB	LT 1.370 LT 1.370	1.240 39.000	1.730 0.720	LT 0.051 LT 0.051	5540.000 9150.000
		MEC6H5 ug/l	MG ug/l	MIBK ug/l	MLTHN ug/l	NA ug/l
10/31/90 02/20/91	UB UB	LT 1.470	8370.000	LT 4.900	LT 0.373	110000.000
02/27/91 08/07/91	UB UB	LT 1.470 LT 1.470	8420.000 6720.000	LT 4.900 LT 4.900	1.850 2.970	76000.000 610000.000

(Continued)

LT = Less than the following concentration.
ug/l = Microgram per liter.
-- = Analysis was not performed.
mg/l = Milligram per liter.

6/25/93 DPA

South Plants - PSIFIN for FY 91 (Concluded)

Sample Date	Org	NIT ug/l	OXAT ug/l	PB ug/l	PPDDE ug/l	PPDDT ug/l
10/31/90 02/20/91 02/27/91 08/07/91	UB UB UB UB	120.000 150.000 LT 10.000	LT 2.380 LT 2.380 LT 2.380	69.000 5.940 9.240	 LT 0.054 0.374	 LT 0.049
		PRTHN ug/l	SO4 mg/l	SUPONA ug/l	TCLEE ug/l	TRCLE ug/l
10/31/90 02/20/91 02/27/91 08/07/91	UB UB UB UB	LT 0.647 LT 0.647 LT 0.647	150.000 80.000 230.000	LT 0.787 LT 0.787 LT 0.787	1.160 10.000 4.580	LT 0.560 LT 0.560 LT 0.560
		XYLEN ug/l	ZN ug/l			
10/31/90 02/20/91 02/27/91 08/07/91	UB UB UB UB	LT 1.360 LT 1.360 LT 1.360	74.600 71.200 68.300			

LT = Less than the following concentration.
ug/l = Microgram per liter.
-- = Analysis was not performed.
mg/l = Milligram per liter.

Sample	0	111TCE	112TCE	11DCE	11DCLE	12DCE
<u>Date</u>	<u>Org</u>	<u>ug/l</u>	ug/l	<u>ug/l</u>	ug/l	ug/l
10/31/90	UB	LT 0.760	LT 0.780	LT 1.700	LT 0.730	LT 0.760
01/30/91	UB					
02/20/91	UB					
02/27/91 08/07/91	UB UB	LT 0.760 LT 0.760	LT 0.780 LT 0.780	LT 1.700 LT 1.700	LT 0.730 LT 0.730	LT 0.760 LT 0.760
		12DCLE	13DMB	14DCLB	ALK	AS
		ug/l	ug/l	ug/l	ug/l	ug/l_
10/31/90	UB	LT 1.100	LT 1.320	LT 0.579	210000.00	0 12.400
01/30/91	UB					
02/20/91	UB		. =			
02/27/91	UB	LT 1.100	LT 1.320	LT 0.579	140000.00	
08/07/91	UB	LT 1.100	LT 1.320	LT 0.579	54000.000	1400.000
		ATZ	BCHPD	BTZ	C2H3CL	C6H6
		<u>ug/l</u>	ug/l	ug/l	<u>ug/l</u>	ug/l
10/31/90	UB	LT 4.030	LT 5.900	LT 5.000	LT 1.010	LT 1.050
01/30/91 02/20/91	UB UB					
02/20/91	UB	LT 4.030	LT 5.900	LT 5.000	LT 1.010	LT 1.050
08/07/91	ÜB	LT 4.030	LT 5.900	LT 5.000	LT 1.010	LT 1.050
		CA	CVL4	CD	CL	CL6CP
		ug/l_	ug/l	ug/l	mg/l	ug/l
10/31/90	UB	55300.000	LT 0.990	LT 6.780	140.000	
01/30/91	UB					
02/20/91	UB					
02/27/91	UB	44700.000	LT 0.990	LT 6.780	57.000	LT 0.048
08/07/91	UB	9900.000	LT 0.990	LT 6.780	180.000	LT 0.048
		CLC6H5	CLDAN	CPMS	CPMSO	CPMSO2
		ug/l	ug/l	ug/l	ug/l	ug/l
10/31/90	UB	LT 0.820		LT 5.690	LT 11.500	LT 7.460
01/30/91	UB					
02/20/91	UB					
02/27/91 08/07/91	UB UB	LT 0.820 LT 0.820	LT 0.095	LT 5.690	LT 11.500	LT 7.460
00/07/91	UB	LI 0.820	LT 0.095	LT 5.690	LT 11.500	LT 7.460
(Continued)						

LT = Less than the following concentration.
ug/l = Microgram per liter.
-- = Analysis was not performed.
mg/l = Milligram per liter.

South Plants - PSAAEF for FY 91 (Continued)

Sample	_	CR	CU	CYN	DCBP	DCPD
Date	<u>Org</u>	ug/l	ug/l	<u>ug/l</u>	<u>ug/l</u>	<u>ug/l</u>
10/31/90	UB	LT 16.800	LT 18.800	LT 5.000		LT 5.000
01/30/91	UB					
02/20/91	UB			LT 5.000		LT E 000
02/27/91 08/07/91	UB UB	LT 16.800 LT 16.800	LT 18.800 LT 18.800	LT 5.000	LT 0.195	LT 5.000 LT 5.000
		DDVP	DITH	DMDS	ETC6H5	F
		ug/l	ug/l	ug/l	ug/l	mg/l
10/31/90	UB	LT 0.384	LT 1.340	LT 0.550	LT 1.370	1.620
01/30/91	ÜB					
02/20/91	UB	••				
02/27/91 08/07/91	UB UB	LT 0.384 LT 0.384	LT 1.340 LT 1.340	LT 0.550 LT 0.550	LT 1.370 LT 1.370	1.140 30.000
00/07/01	OD.	HG	ISODR	K	МЕС6Н5	MG
		ug/l	ug/l	ug/l	ug/l	ug/l
10101100			ug/!		_	
10/31/90	UB	LT 0.100		9080.000	LT 1.470	7830.000
01/30/91 02/20/91	UB UB					
02/27/91	UB	0.183	LT 0.051	6100.000	LT 1.470	8500.000
08/07/91	ÜB	0.237	LT 0.051	8670.000	LT 1.470	7090.000
		MIBK	MLTHN	NA	NIT	OXAT
		ug/l	ug/l	ug/l	ug/l	ug/l_
10/31/90	UB	LT 4.900	LT 0.373	100000.000	22.100	LT 2.380
01/30/91	UB					
02/20/91	ÜB					
02/27/91	UB	LT 4.900	LT 0.373	74000.000	LT 10.000	LT 2.380
08/07/91	UB	TL 4.900	LT 0.373	640000.000	11.500	LT 2.380
		PB	PPDDE	PPDDT	PRTHN	S04
		ug/l	<u>ug/l</u>	ug/l	<u>ug/l</u>	mg/l
10/31/90	UB	10.400			LT 0.647	150.000
01/30/91	UB		LT 0.054	LT 0.049		
02/20/91	UB	••				
02/27/91	UB	LT 4.470	LT 0.054	LT 0.049	LT 0.647	72.000 1200.000
08/07/91	UB	LT 4.470	LT 0.054		LT 0.647	1200.000
(Continued)						

LT = Less than the following concentration.
ug/l = Microgram per liter.
-- = Analysis was not performed.
mg/l = Milligram per liter.

6/25/93 DPA

South Plants - PSAAEF for FY 91 (Concluded)

Sample	<u>Org</u>	SUPONA	TCLEE	TRCLE	XYLEN	ZN
Date		ug/l	ug/l	ug/l	ug/l	ug/l
10/31/90 01/30/91 02/20/91	UB UB UB	LT 0.787 	LT 0.750 	LT 0.560 	LT 1.360 	LT 18.000
02/27/91	UB	LT 0.787	2.560	LT 0.560	LT 1.360	36.300
08/07/91	UB	LT 0.787	LT 0.750	LT 0.560	LT 1.360	24.700

LT = Less than the following concentration.
ug/l = Microgram per liter.
-- = Analysis was not performed.
mg/l = Milligram per liter.

6/25/93 DPA

South Plants - PSAAEF for FY 91

Sample	Org	ALDRN	CH2CL2	CHCL3	DIMP
Date		ug/l	ug/l	ug/l	ug/l
10/03/90 10/10/90 10/17/90 10/24/90 10/31/90 01/30/91 02/13/91 02/27/91 03/06/91 06/12/91 06/26/91 08/07/91 08/28/91	UB UB UB UB UB UB UB UB UB UB UB	LT 0.050 LT 0.050	LT 7.400 LT 7.400 LT 7.400 LT 7.400 14.800 21.300 47.600 74.400 LT 7.400 LT 7.400 LT 7.400 LT 7.400 LT 7.400 LT 7.400	LT 0.500 LT 0.500 LT 0.500 LT 0.500 LT 0.500 LT 0.500 6.470 34.500 LT 0.500 LT 0.500 LT 0.500 LT 0.500	2.220 3.060 3.305 1.237 2.300 5.530 14.400 10.900 LT 0.392 LT 0.392 LT 0.392 LT 0.392 LT 0.392 LT 0.392

LT = Less than the following concentration.
ug/l = Microgram per liter.
-- = Analysis was not performed.
mg/l = Milligram per liter.

6/25/93 DPA

South Plants - PSAAEF for FY 91

Sample Date	Org	DLDRN ug/l	DMMP ug/l	ENDRN ug/l
10/03/90	UB		9.300	
10/10/90	ÜB	LT 0.050	6.860	LT 0.050
10/17/90	UB	LT 0.050	w w	LT 0.050
10/24/90	UB	0.332	9.315	0.054
10/31/90	UB	LT 0.050	4.445	LT 0.050
01/30/91	UB	LT 0.050	1.080	LT 0.050
02/13/91	UB	LT 0.050	1.540	LT 0.050
02/27/91	UB	0.111	1.177	LT 0.050
03/06/91	UB	0.173	0.665	LT 0.050
06/12/91	UB	LT 0.050	LT 0.188	0.425
06/26/91	UB	LT 0.050	LT 0.188	LT 0.050
08/07/91	UB	LT 0.050	LT 0.188	0.132
08/28/91	UB	LT 0.050	LT 0.188	LT 0.050
09/04/91	UB	LT 0.050	LT 0.188	LT 0.050
09/25/91	UB	LT 0.050	3.820	LT 0.050

LT = Less than the following concentration.
ug/l = Microgram per liter.
-- = Analysis was not performed.
mg/l = Milligram per liter.

South Plants - PSASEF for FY 91

Sample Date	Org	111TCE ug/l	112TCE ug/l	11DCE ug/l	11DCLE ug/l	12DCE ug/l
10/31/90 01/30/91 02/20/90	UB UB UB	LT 0.760 	LT 0.780 	LT 1.700 	LT 0.730 	LT 0.760
02/27/91 08/07/91	UB UB	LT 0.760 LT 0.760	LT 0.780 LT 0.780	LT 1.700 LT 1.700	LT 0.730 LT 0.730	LT 0.760 LT 0.760
		12DCLE ug/l	13DMB ug/l	14DCLB ug/l	ALK ug/l	AS ug/l
10/31/90 01/30/91 02/20/91	UB UB UB	LT 1.100 	LT 1.320	39.100	151000.00	0 12.500
02/20/91 02/27/91 08/07/91	UB UB	LT 1.100 LT 1.100	LT 1.320 LT 1.320	LT 0.579 LT 0.579	120000.00 170000.00	0 8.330
		ATZ ug/l	BCHPD ug/l	BTZ ug/l	C2H3CL ug/l	C6H6 ug/l
10/31/90 01/30/91	UB UB	LT 4.030 	LT 5.900 	LT 5.000 	LT 1.010	LT 1.050
02/20/91 02/27/91 08/07/91	UB UB UB	LT 4.030 LT 4.030	LT 5.900 LT 5.900	LT 5.000 LT 5.000	LT 1.010 LT 1.010	LT 1.050 LT 1.050
		CA ug/l	CCL4 ug/l	CD ug/l	CL mg/l	CL6CP ug/l
10/31/90 01/30/91	UB UB	57700.000 	LT 0.990 	LT 6.780 	140.000	
02/20/91 02/27/91 08/07/91	UB UB UB	43900.000 10400.000	LT 0.990 LT 0.990	LT 6.780 LT 6.780	68.000 240.000	LT 0.048 LT 0.048
		CLC6H5 ug/l	CLDAN ug/l	CPMS ug/l	CPMSO ug/l	CPMSO2 ug/l
10/31/90 01/30/91	UB UB	LT 0.820 		LT 5.690 	LT 11.500 	LT 7.460
02/20/91 02/27/91 08/07/91	UB UB UB	LT 0.820 LT 0.820	LT 0.095 LT 0.095	LT 5.690 LT 5.690	LT 11.500 LT 11.500	LT 7.460 LT 7.460
				44		

(Continued)

LT = Less than the following concentration.
ug/l = Microgram per liter.
-- = Analysis was not performed.
mg/l = Milligram per liter.

Sample Date	<u>Org</u>	CR ug/l	CU ug/l	CYN ug/l	DBCP ug/l	DCPD ug/l
10/31/90 01/30/91	UB UB	LT 16.800 	197.000 	LT 5.000 		LT 5.000
02/20/91 02/27/91 08/07/91	UB UB UB	LT 16.800 LT 16.800	LT 18.800 102.000	LT 5.000 LT 5.000	 LT 0.195	LT 5.000 LT 5.000
		DDVP ug/l	DIMP ug/l	DITH ug/l	DMDS ug/l	DMMP ug/l
10/31/90 01/30/91	UB UB	LT 0.384 	1.420 	LT 1.340 	LT 0.550 	6.080
02/20/91 02/27/91 08/07/91	UB UB UB	LT 0.384 LT 0.384	8.050 0.448	LT 1.340 LT 1.340	LT 0.550 LT 0.550	0.756 LT 0.188
		ETC6H5 ug/l	F <u>mg/l</u>	HG ug/l	ISODR ug/l	K ug/l
10/31/90 01/30/91	UB UB	LT 1.370	1.610 	LT 0.100		10100.000
02/20/91 02/27/91 08/07/91	UB UB UB	LT 1.370 LT 1.370	1.130 43.000	0.247 0.563	LT 0.051 LT 0.051	5880.000 10600.000
		MEC6H5 ug/l	MG ug/l	MIBK ug/l	MLTHN ug/l	NA ug/l
10/31/90 01/30/91	UB UB	LT 1.470	8120.000	LT 4.900	LT 0.373	110000.000
02/20/91 02/27/91 08/07/91	UB UB UB	LT 1.470 LT 1.470	8580.000 9390.000	LT 4.900 LT 4.900	0.798 LT 0.373	80000.000 970000.000
		NIT ug/l	OXAT ug/l	PB <u>ug/l</u>	PDDE ug/l	PPDDT ug/l
10/31/90 01/30/91	UB UB	4000.000	LT 2.380	5.330	LT 0.054	LT 0.049
02/20/91 02/27/91 08/07/91	UB UB UB	120.000 1400.000	LT 2.380 LT 2.380	LT 4.470 LT 4.470	LT 0.054 LT 0.054	LT 0.049
			(Continu	ied)		

LT = Less than the following concentration.
ug/l = Microgram per liter.
-- = Analysis was not performed.
mg/l = Milligram per liter.

6/25/93 DPA

South Plants - PSASEF for FY 91 (Concluded)

			· · · · · · · · · · · · · · · · · · ·			*************
Sample Date	<u>Org</u>	PRTHN ug/l	SO4 mg/l	SUPONA ug/l	TCLEE ug/l	TRCLE ug/l
10/31/90 01/30/91 02/20/91 02/27/91 08/07/91	UB UB UB UB	LT 0.647 LT 0.647 LT 0.647	150.000 79.000 1700.000	LT 0.787 LT 0.787 LT 0.787	LT 0.750 LT 0.750 LT 0.750	LT 0.560 LT 0.560 LT 0.560
		XYLEN ug/l	ZN ug/l			
10/31/90 01/30/91 02/20/91 02/27/91 08/07/91	UB UB UB UB	LT 1.360 LT 1.360 LT 1.360	165.000 42.700 96.100			

LT = Less than the following concentration.
ug/l = Microgram per liter.
-- = Analysis was not performed.
mg/l = Milligram per liter.

South Plants - PSASEF for FY 91

Sample		ALDRN	CH2CL2	CHCL3	DLDRN
Date	Orq	ug/l	ug/l	ug/l	ug/l
Dato	9.9				<u>ug/i</u>
10/10/90	UB	0.107	LT 7.400	LT 0.500	.058
10/17/90	UB	LT 0.050	LT 7.400	LT 0.500	LT .050
10/24/90	UB	LT 0.050	LT 7.400	LT 0.500	LT .050
10/31/90	ÜB	LT 0.050	LT 7.400	LT 0.500	LT .050
01/30/91	UB	LT 0.050	LT 7.400	LT 0.500	LT .050
02/06/91	UB	LT 0.050	LT 7.400	LT 0.500	.069
02/13/91	UB	LT 0.050	LT 7.400	LT 0.500	.483
02/20/91	UB	LT 0.050	LT 7.400	LT 0.500	LT 0.050
02/27/91	UB	LT 0.050	LT 7.400	0.718	0.103
03/06/91	UB	LT 0.050	LT 7.400	LT 0.500	0.191
03/13/91	UB	LT 0.050	LT 7.400	LT 0.500	LT 0.050
06/26/91	UB	LT 0.050	LT 7.400	LT 0.500	LT 0.050
08/07/91	UB	LT 0.050	LT 7.400	LT 0.500	LT 0.050
08/28/91	UB	LT 0.050	LT 7.400	LT 0.500	0.243
09/04/91	UB	LT 0.050	LT 7.400	LT 0.500	LT 0.050
09/25/91	UB	LT 0.050	LT 7.400	LT 0.500	0.820

LT = Less than the following concentration.
ug/l = Microgram per liter.
-- = Analysis was not performed.
mg/l = Milligram per liter.

South Plants - PSASEF for FY 91

Sample Date	<u>Org</u>	ENDRN ug/l	
10/10/90 10/17/90 10/24/90 10/31/90 01/30/91 02/06/91 02/13/91 02/20/91 02/27/91 03/06/91 03/13/91 06/26/91 08/07/91 08/28/91 09/04/91	UB U	0.520 LT 0.050 0.075 LT 0.050 LT 0.050 LT 0.050 0.089 0.060 0.970 2.700 LT 0.050 0.311 LT 0.050 LT 0.050	
09/25/91	UB	LT 0.050	

LT = Less than the following concentration.
ug/l = Microgram per liter.
-- = Analysis was not performed.
mg/l = Milligram per liter.

Quarter 1

FIN	0000	3 : 1	2.40	1.20	0.0	3	9 40	1.00	4.80	1.00	1.50	:	!	2.80	1	3.60	:	8.40	
PS	בבבב	_	בב	ᅼ	<u></u>	ī	-	בי	느!							_	!	<u>_</u>	
ASEF	1 1 1	5.80 2.40	2.40	1.20 1.20	: :	13.0	3.40) - -	!	; ; ;	 	1.70	2.80	2.80	3.60	3.60	8.40	8.40	
PS		55		בב		Н	<u> </u>	Ī		}	<u>_</u>	Ė			L	느!	_ ;		
AAEF	8888	5.80 2.40	2.40 5.00	1.20	9.5	13.0	3.40	1.00	4.80	1.00	 	1.70	2.80	2.80	3.60	3.60	8.40	8.40	
PS/	לבבב	בבב	בבו	בב		בב	느느	ıĿ		느!	<u>-</u> -	: <u> </u>				느!			-
<u>Lab</u>	888	8 8 8 0 0 0	I B B	e e	B B	9 B 0 C	B B	n N	NB	8 5	8 E	nB O	NB	NB	NB	nB N	OB O	NB	(Continued)
Date	10/29/90 10/29/90 10/29/90					_ ~		_ ~	_		_ ~	_	_	_	_		`	_	
Analyte	1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,-Dichloroethylene	1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	1,2,4-Trichlorobenzene 1,2-Dichloroethylene	1,2-Dichlorobenzene		1,2-Diphenylhydrazine	1,3-Dichlorobenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,3-Dimethylbenzene	1,4-Dichlorobenzene	2,3,6-Trichlorophenol	2,4,5-Trichlorophenol	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dichlorophenol	
Code	111TCE 112TCE 11DCE	11DCLE 123TCB 124TCB	. <u>-</u> U	12DCLB		12DPH	ăă	13DCLB		13DMB	14DCLB	236TCP	245TCP	245TCP	246TCP	246TCP	24DCLP	24DCLP	

LIN	4.40	176	2 :	5.80	:	:	6.70	3.50	:	2.80	;	2.60	1	1.30	:	3.60	;	8.20	:	2.00	:	1	15.0	
PS	ב	۲	<u>.</u>		İ																		<u> </u>	
SASEF	4.40	176	-/0 5 80		8.80	6.70	6.70	:	2.80	2.80	2.60	2.60	1.30	1.30	3.60	3.60	8.20	8.20	5.00	5.00	21.0	15.0	15.0	
d	בב	בב	<u> </u>	<u>-</u>	: <u> </u>	コ	ᆸ		L	ニ	H	L		ニ		L			L		_	<u></u>		
AAEF	4.40 4.40	176	70	7.00 2.00 2.00 2.00	8.80	6.70	6.70	3.50	2.80	2.80	2.60	2.60	1.30	1.30	3.60	3.60	8.20	8.20	5.00	2.00	21.0	15.0	15.0	
PS	בב	<u></u>	<u>-</u> -	<u>;</u>						_				5		L	<u></u>			<u> </u>				o
<u>Lab</u>	n R N R	99		<u>a</u> a	B B	NB	OB	NB	NB	NB	UB	NB	NB	NB	NB	UB	NB	NB	UB	NB	NB	NB	NB	(Continued)
Date	10/03/90 10/29/90	10/03/90	(S)) (C) (C)	10/03/90	03(/29/	/29	/03/	/29/	03	10/29/90	,03	/29	/03/	/29/	,03	/29	/03/	/29/	/03/	/03/	10/29/90	
Analyte	2,4-Dimethylphenol 2.4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,4-Unitrolouerie o 6-Dioitroaniline	2,0-Dinitrotoli lene	2,6-Cinitrotolisene	2-Chloroethylvinyl Ether	2-Chlorophenol	2-Chlorophenol	2-Chloronaphthalene	2-Chloronaphthalene	2-Methylnaphthalene	2-Methylnaphthalene	2-Methylphenol /2-Cresol	2-Methylphenol/2-Cresol	2-Nitronhenol	2-Nitrophenol	3 3'-Dichlorobenzidine	3.1. Dichlorohenzidine	3.5-Dinitroaniline	3-Nitroaniline	3-Nitroaniline	
Code	24DMPN 24DMPN	24DNP	24DNP	24DNT	24UNI	SOUNT	26DNT	SCULTANE		20 P	SCHAP	SCNAP	DAINAG	SMNA		ZMP OMP	OND	aNc	SOUCED		SEDNA	CNOING HINDING	SNANIL	

PSIFIN	1	LT 22.0	1	LT 8.50								LT 5.30								LT 5.80	!	LT 5.10	;	LT 5.20	
PSASEF	LT 2.90												:					LT 13.0							
PSAAEF	LT 2.90	LT 22.0																							
Lab	CB	a a C	NB	NB	NB	NB	NB	NB	NB	NB	UB	NB	NB	NB	NB	UB	UB	NB	NB	NB	NB	NB	UB	NB	(Continued)
Date		10/29/90																							(Cont
Analyte	3-Nitrotoluene	4-Bromophenyiphenyi Emer 4-Bromophenyiphenyi Ether	3-Methyl-4-Chlorophenol	3-Methyl-4-Chlorophenol	4-Chlorophenylphenyl Ether	4-Chlorophenýlphenýl Ether	4-Methylphenol/4-Cresol	4-Methýlphenol/4-Cresol	4-Nitrophenol	4-Nitrophenol	Alpha-Benzenehexachloride	Alpha-Benzenehexachloride	Acetone/Dimethyl Ketone	Acrylonitrile	Alpha-Endosulfan	Alpha-Endosulfan	ALDRIN	ALDRIN	Acenaphthene	Acenaphthene	Acenaphthylene	Acenaphthylene	Anthracene	Anthracene	
Code	3NT	4BRPPE 4BRPPE	4CL3C	4CL3C	4CLPPE	4CLPPE	4MP	4MP	4NP	4NP	ABHC	ABHC	ACET	ACRYLO	AENSLF	AENSLF	ALDRN	ALDRN	ANAPNE	ANAPNE	ANAPYL	ANAPYL	ANTRC	ANTRC	

PSIFIN	1 1	LT 6.80	; 1	LT 5.00	:	LT .680	; !	LT 7.70		LT 9.80	:	LT 14.0	;	LT 10.0		LT 17.0	1	LT 28.0	:	LT 42.0	:	LT 15.0	:	
SASEF	5.90	6.80 08.9	5.00	5.00	089.	.680	0/./	7.70	9.80	9.80	14.0	14.0	10.0	10.0	17.0	17.0	28.0	28.0	42.0	42.0	15.0	15.0	10.0	
	בב	בונ	<u>ا</u>	<u>-</u> !	<u></u>	느!	<u>ا</u> ت		_				L			<u></u>	5		<u> </u>			<u></u>		
AAEF	5.90	6.80 6.80	2.00	5.00	.680	089.	0.7	7.70	9.80	9.80	14.0	14.0	10.0	10.0	17.0	17.0	28.0	28.0	42.0	42.0	15.0	15.0	10.0	
83	בב	בי		ב	5	느!	_	<u></u>			<u> </u>									<u>_</u>		5		
<u>Lab</u>	e e	8 B O	NB	NB	NB	n R	NB	NB	NB	NB	UB	CB	UB	NB	NB	NB	NB	OB	NB	UB	NB	NB	NB	(Continued)
Date	10/03/90	10/03/90	10/03/90	10/29/90	10/03/90	10/29/90	_	_	_	_	_	_	_	10/29/90	_	_	_	10/29/90	10/03/90	_		10/29/90	10/03/90	(Con
Analyte	Atrazine	BIS(2-Chloroethoxy)Methane BIS(2-Chloroethoxy)Methane	BIS(2-Chloroesopropyl)Ether	BIS(2-Chloroisopropyl)Ether	BIS(2-Chloroethyl)Ether	BIS(2-Chloroethyl)Ether	BIS(2-Ethylhexyl)Phthalate	BIS(2-Ethýhexýl)Phthalate	Benzo [A] Anthracene		<u> </u>	<u> </u>	Benzo (R) Fluoranthene	Benzo [B] Fluoranthene	Beta-Benzenehexachloride	Beta-Benzenehexachloride		Butylbenzyl Phthalate	Beta-Endosulfan/Endolsulfan II	Beta-Endosulfan/Endolsulfan II		Benzo [G,H,I] Perylene	Benzo [K] Flúoranthene	
Code	ATZ	BOCEXM	B2CIPE	B2CIPE	BZCLEE	BZCLEE	BZEHP	B2FHP	BAANTR	RAANTR	RAPYR	BAPYR	RREANT	BREANT	REFIC	BBHC	BB7P	RR7P	BENCIE	RENSE	RGHIPY	BGHIPY	BKFANT	

LT = Less Than the Following Concentration.
ug/l = Microgram per liter.
-- = Analysis was not performed.
mg/l = Milligram per liter.

PSIFIN	LT 10.0 LT 1.00 LT 4.00 LT 12.0 LT 1.00 LT 1.00 LT 11.0 LT 7.40 LT 7.40
PSASEF	LT 10.0 LT 2.90 LT 4.00 LT 4.00 LT 7.40 LT 7.40
PSAAEF	LT 100 LT 1.00 LT 1.00
<u>Lab</u>	Continued)
Date	10/29/29 10/29/29/29/29/29/29/29/29/29/29/29/29/29/
Analyte	Benzo [k] Fluoranthene Bromodichloromethane Bromacil Benzyl Alcohol Benzyl Alcohol Chloroethane Benzene Trichlorofluoromethane Carbon Tetrachloride Methylene Chloride Bromomethane Chloroform Chloroform Chloroform Chrysene Hexachlorobenzene Hexachlorocyclopentadiene Hexachloroethane Chlorobenzene
Code	BKFANT BRDCLM BRACC BZALC C2H3CL C2H5CL C2H5CL C6H6 CCL3F CCL3F CCL3F CH2CL2 CH3BR CH2CL2 CH3BR

PSIFIN	1 1	1 1		LT 12.0						;	:		LT 5.90	;	:		LT 26.0	:	;	LT 2.20	:	LT 33.0	
PSASEF	LT 37.0 LT 10.0	LT 5.30						LT 5.10										•					
PSAAEF	LT 37.0 LT 10.0	LT 15.0 LT 5.30																•					
Lab	an a	9 B O	NB N	NB	B C	80	OB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	(Continued)
Date	10/03/90	10/03/90	10/03/90	10/29/90	8	53	ဗ္ဗ	10/29/90	29	, 03	, ,03	(03)	, 29,	()	, (03)	, 03	,58	10/03/90	,03	10/29/90	(03	10/29/90	(Con
Analyte	Chlordane 4-Chlorophenylmethyl Sulfide	4-Chlorophenylmethyl Sulfone 4-Chlorophenylmethyl Sulfone	Dibenz[A,H]Anthracene	Dibenz[A,H]Anthracene	Dibromochloropropane	Dibromochloromethane	Dibenzofuran	Dibenzofuran	Dichlorobenzene	Dicyclopentadiene	Vapona	Diethyl phthalate	Diethyl Phthalate	Diisopropylmethyl Phosphonate	Dithiane	Dieldrin	Dieldrin	Dimethylmethyl Phosphate	Dimethyl Phthalate	Dimethyl Phthalate	Di-N-Butyl Phthalate	Di-N-Butyl Phthalate	
Code	CLDAN	CPMSO CPMSO	DBAHA	DBAHA	DBCP	DBRCLM	DBZFUR	DBZFUR	DCLB	DCPD	DDVP	DEP	DEP	DIMP	DITH	DIDRN	DLDRN	DMMP	DMP	DMP	DNBP	DNBP	

South Plants - FY91 GC/MS Data (ug/l)

Quarter 1 (Continued)

PSIFIN	LT 1.50	:	LT 18.0	:	:	LT 50.0		1				:	LT 8.70	:	LT 38.0	:	LT 28.0	:	LT 21.0	:	:	LT 2.40	:	LT 7.20	
PSASEF	LT 1.50 LT 1.50																								
PSAAEF	LT 1.50 LT 1.50		LT 18.0																						
<u>Lab</u>	NB UB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	UB	UB	NB	NB	NB	NB	NB	NB	NB	NB	(Continued)
Date	10/03/90	<u>`</u>	10/29/90	, 03	<u>(</u>	29/	29/	, (03	29	,03	,59	,03	,58,	<u>,</u>	,59,	<u>,</u>	,59	,03	,59	,03	, 03,	/29/	, 03,	29	(Con
Analyte	Di-N-Octyl Phthalate Di-N-Octyl Phthalate	Endrin	Endrin	Endrin Aldehyde	Endosulfan Sulfate	Endosulfan Sulfate	Ethylbenzene	Fluoranthene	Fluoranthene	Fluorene	Fluorene	Hexachlorobutadiene	Hexachlorobutadiene	Heptachlor	Heptachlor	Heptachlor Epoxide	Heptachlor Epoxide	Indeno {1,2,3-C,D]Pyrene	Indeno (1,2,3-C,D)Pyrene	Isodrin	Isophorone	Isophorone	Lindane	Lindane	
Code	DNOP	ENDRN	ENDRN	ENDRNA	ESFS04	ESFS04	ETC6H5	FANT	FANT	FLRENE	FLRENE	HCBD	HCBD	HPCL	HPCL	HPCI F	HPCLE	ICDPYR	ICDPYR	SODR	SOPHR	SOPHR	2	Z	

PSIFIN	LT 1.00 LT 10.0	: : : : : : : : : : : : : : : : : : :	LI 1.0	1.40	:	;					:	1 0	9.75							LT 9.90			;	
PSASEF	: :	LT 11.0	LT 11.0																			LT 2.20		
PSAAEF	LT 1.00 LT 10.0																							
<u>Lab</u>	UB	n R R	nB C	NB	ПВ	B)	a i	NB	OB C	OB	OB	NB	NB	NB	NB	NB	UB	UB	UB	UB	NB	NB E	NB OB	(Continued)
Date	10/29/90	10/03/90	10/29/90	10/29/90	10/03/90	10/03/90	10/03/90	10/29/90	10/03/90	10/29/90	10/03/90	10/03/90	10/29/90	10/03/90	10/29/90	10/03/90	10/03/90	10/29/90	10/03/90	10/29/90	10/03/90	10/29/90	10/03/90	(Con
Analyte	Toluene	Methoxychlor	Methoxychlor	Methylisobutyl Ketone	Mirex	Malathion	Naphthalene	Naphthalene	Nitrobenzene	Nitrobenzene	nethylami	N-Nitroso Di-N-Propylamine	N-Nitroso Di-N-Propylamine	Diphenylami	N-Nitroso Diphenylamine	1 4-Oxathiane	Pentachloronhenol	Pentachlorophenol	Dhananthrana	Phenanthrene	Phenol	Phenol	P,P¹-DDD	
Code	MEC6H5	MEK MEK CI R	MEXCLR	MIRK	MIREX	MLTHN	NAP	NAP	NB	2	NNOMFA	ANDNA	AGNONA	AGUNIA	AGOIN	O TO YOU			TO L			PHENOL	PPDDD	

Quarter 2

PSIFIN	LT 1.00	1.00														LT 1.50					1	1/6	က် (LI 8.80	L.1 5.70	3.50	
SASEF	1.00	1.00	1.00	1.00	5.80	2.40	2.00	1.20	1.00	1.00	13.0	3.40	1.00	4.80	1.00	1.50	1.70	2.80	3.60	8.40	4.40	1/6	5.80	8.80	6.70	3.50	
	1	<u>-</u> !	- !			<u>ا</u>	5	ב	ָב! ב				<u>ا</u>	<u> </u>		ָב! בי			= !	<u></u>	<u>-</u> !	<u></u>	<u></u> :	<u>-</u> !	<u>!</u>		
AAEF	:	;		;	5.80	2.40	1	1.20	:	;	13.0	3.40	:	:	:	1.50	1.70	2.80	3.60	8.40	4.40	176	5.80	8.80	6.70	:	
bSd					<u></u>							<u></u>				5	<u></u>	느	5	5	5	5	5	5	<u></u>		
Lab	NB	NB	NB	NB	NB	NB	OB O	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	OB O	CB CB	NB	CB CB	NB	NB	OB C	NB	(Continued)
Date	02/26/91	02/26/91	02/26/91	_	02/26/91	. ``	. —	02/26/91	_	_	. ~	/56/	. ~	/56/	/56/	02/26/91	_	. ~	02/26/91	02/26/91	02/26/91	02/26/91	02/26/91	02/26/91	02/26/91	02/26/91	(Con
Analyte	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethylene	1,1-Dichloroethane	1,2.3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1.2-Diphenylhydrazine	1,3-Dichlorobenzene	1,3-Dichlorobenzene	1,3-Ddichloropropane	1.3-Dimethylbenzene	1,4-Dichlorobenzen	2.3.6-Trichlorophenol	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitroaniline	2,6-Dinitrotoluene	2-Chloroethylvinyl Ether	
Code	111TCE	112TCE	11DCE	11DCLE	123TCB	124TCB	12DCF	12DCLB	12DCLE	12DCI P	12DPH	13DCLB	13DCLB	13DCP	13DMB	14DCLB	236TCP	245TCP	246TCP	24DCLP	24DMPN	24DNP	24DNT	26DNA	26DNT	2CLEVE	

LT = Less Than the Following Concentration.
ug/l = Microgram per liter.
-- = Analysis was not performed.
mg/l = Milligram per liter.

South Plants - FY91 GC/MS Data (ug/l)

Quarter 2 (Continued)

PSIFIN				<u></u>	느 느			5									L				_	<u> </u>	느!	
PSASEF	2.80																							
	55																							
PSAAEF	T 2.80														1									
ap	B LT														В								اط! اط	
La	/91 UB	- E	91	91	91	91	91	91	91	91	91	91	91	91	91	91	91	91	91	91	91	91	91	91
Date	02/26/	26 /26/	/26	/26	/26	/26	/26	/26	/26	/26	/26	/26/	/26	/26	/26	/26	/26/	/26	/26/	/26/	/26	/26/	/26/	/26/
Analyte	2-Chlorophenol	2-Onoronaphinalene 2-Methylnaphthalene	2-Methyphenol/2-Cresol	2-Nitrophenol	3,3'-Dichlorobenzidine	3,5-Dinitroaniline	3-Nitroaniline	3-Nitrotoluene	4-Bromophenylphenyl Ether	3-Methyl-4-Chlorophenol	4-Chlorophenylphenyl Ether	4-MEthylphenol/4-Cresol	4-Nitrophenol	Alpha-Benzenehexachloride	Acetone/Dimethyl Ketone	Acrylonitrile	Alpha-Endosulfan	Aldrin	Acenaphthene	Acenaphthylene	Anthracené	Atrazine	Bis (2-Chloroethoxy) Methane	
									4ABRPPE															

PSIFIN		LT 120 LT 1.00 LT 1.00 LT 1.00 LT 1.20 LT 7.40 LT 7.40
SASEF		2.5.0 6.00 7.00 7.00 7.00 7.00 7.00 7.00 7.
		מממממממממממממ
SAAEF		4.00
ă	ים ממממממממם	בבב
Lab	8888888888	91 91 92 93 93 93 94 94 95 95 95 95 95 95 95 95 95 95 95 95 95
Date		
Analyte	Bis (2-Chloroethyl) Ether Bis (2-Ethylhexyl) Phthalate Benzo [A] Anthracene Benzo [A] Pyrene Benzo [B] Flouranthene Beta-Benzenehexachloride Butylbenzyl Phthalate Beta-Endosulfan/Endosulfan II Benzo [G,H,I] Perylene Bromodichloromethane	Benzyl Alchohol Chloroethene/Vinyl Chloride Chloroethane Benzene Trichlorofluoromethane Carbon Tetrachloride Methylene Chloride Bromomethane Chloromethane Bromoform Chloroform Chloroform Chrysene Hexachlorobenzene Hexachlorocyclopentadiene
Code	B2CLEE B2EHP BAANTR BAPYR BBFANT BBHC BBZP BENSLF BGHIPY BKFANT BRDCLM	BZALC C2H3CL C2H5CL C6H6 CCL3F CCL4 CH2CL2 CH3CL CH3CL CH3CL CH3CL CHBR3 CHCL3 CHCL3

LT = Less Than the Following Concentration.
ug/l = Microgram per liter.
-- = Analysis was not performed.
mg/l = Milligram per liter.

PSIFIN	LT 8.30 LT 1.00																_							
SASEF	8.30 1.00	37.0	10.0	15.0	5.30	0.57	0.2.7	0	5.10	2.00	5.50	8.50	5.90	21.0	3.30	26.0	130	2.20	33.0	1.50	18.0	5.00	20.0	
	בב	5	בי!	<u>י</u>	<u>-!</u>	_ :	<u>י</u> ב	֖֡֝֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	<u> </u>	_		5	<u> </u>										_	
SAAEF	8.30	37.0	10.0	15.0	5.30	12.0	12.0	:	5.10	!	5.50	8.50	5.90	24.5	3.30	26.0	130	2.20	33.0	1.50	18.0	5.00	20.0	
ď		L	ב	느!	<u>-</u>	느!	_				_						L	ニ	ニ		L	<u></u>	_	
Lab	UB UB	nB R	en n	8 0	OB	8 C	OB OB	OB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	g :	OB	(Continued)
Date	_	02/26/91	_	_	_	_	$\overline{}$	_	_	_	_	_ ~	_	. ~	_ ~	. ~	. ~	. ~	. ~	. ~	. ~	_	$\overline{}$	(Cor
Analyte	Hexachloroethane	Chlordane	4-Chlorophenylmethyl Sulfide	4-Chlorophenýlmethyl Sulfoxide	4-Chlorophenylmethyl Sulfone	Dibenz [A,H] Anthracene	Dibromochloropropane	Dibromochloromethane	Dibenzofuran	Dichlorobenzene	Dicyclopentadiene	Vapona	Diethyl Phthalate	Disopropylmethyl Phosphonate	Dithiane	Dieldrin	Dimethylmethyl Phosphate	Dimethyl Phthalate	Di-N-Butyl Phthalate	Di-N-Octvl Phthalate	Endrin	Endrin Aldehyde	Endosulfan Sulfate	
Code	CLGET	CLCOH	CPMS	CPMSO	CPMS02	DBAHA	DBCP	DBRCLM	DBZFUR	DCI B	DCPD	DDVP	DEP	OIMP		DI DIRN	DMMP	DMP	DNRP	dONG	FNDRN	ENDRNA	ESFS04	

Onarter 2 (Continued)

PSIFIN

	'							→ -					-													
	ASEF	1.00	24.0	9.20	8.70	38.0	28.0	2.02	2.80 40 80	2.40	7.20	0.0	2.0) - -	04.1	24.0	0.12	.500	0.00	2.0	9.80	20.70	7.0		9.90	
	PS	트!	_:	<u>ا</u> د	<u>ا</u> :	_!	ב ב	<u>.</u> !	_ <u>:</u> :	ב!	ב!	<u>_</u> :	_;	<u>י</u> ב	<u>.</u>	_!	<u></u> :	<u>:</u> :	<u> </u>	_ } 	_ <u>_</u> _	<u> </u>	<u>-</u> L	<u> </u>	_	
	AAEF	:	24.0	9.20	8.70	38.0	28.0	21.0	7.80	2.40	7.20	;	1 ;	11.0	1 ;	24.0	21.0	.500	3.70	9.70	6.80 2.70	0.70	0.72	0.0	9.80	
a)	PS		<u>ا</u> د!				느!	= !	<u></u> :	5	ᆸ		ļ		!	<u> </u>	<u></u>	<u></u> :	_ !	<u>:</u> ا	<u>_</u>		<u>:</u>	<u>_</u>	<u></u>	
Continued	Lab	UB	NB	OB O	NB	ПB	nB C	NB	OB	NB	NB	nB N	OB	UB	NB	NB	OB	OB:	9 C	OB OB	8 5	25	9 ! O	80	OB	
Quarter 2	Date	02/26/91	26,	26/	26,	26	02/26/91	26/	26/	26/	26,	02/26/91	,56/	,56/	/26/	/26/	/26/	/26/	,56/	/26/	92	786	92/	02/26/91	/26	
	Analyte	Ethylbenzene	Fluoranthene	Fliorene	Hexachtorobutadiene	Hentachlor	Heptachlor Epoxide	Indeno [1.2.3-C.D] Pyrene	Isodrin	Isonhorone	Lindane	Toluene	Methylethyl Keytone	Methoxychlor	Methylisobutyl Keytone	Mirex	Malathion	Naphthalene	Nitrobenzene	N-Nitroso Dimethylamine	N-Nitroso Di-N-Propylamine	N-Nitroso Diphenylamine	1.4-Oxathiane	Pentachlorophenol	Phenanthrene	
	Code	FTC6H5	FANT	FIBENE	HCBD	T COL	HPCLE	ICDDVR	SODB	SOPHB		MEXGHS	MIK	MEXC! B	MIRK	MIREX	ZIL	NAP	NB	NNOMEA	NNDNPA	NNDPZ	OXAT	PCP	PHANTR	

24.0 9.20 88.70 288.0 21.0 7.20 11.0 11.0 11.0 21.0 3.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70

さささささささささささささささささささささささささささ

= Less Than the Following Concentration. ug/l = Microgram per liter. -- = Analysis was not performed. mg/l = Milligram per liter.

(Continued)

Quarter 2 (Concluded)

PSIFIN	LT 18:0 LT 18:0 LT 18:0 LT 17:0 LT 17:0 LT 15:0 LT 1:50 LT 1:00
ASEF	2.20 14.0 14.0 17.0 1.50 1.00 1.00
PS	
SAAEF	2.20 18.0 14.0 18.0 37.0 17.0
ă	לככככככ
<u>Lab</u>	9999999999
Date	02/26/91 02/26/91 02/26/91 02/26/91 02/26/91 02/26/91
Analyte	Phenol P,P'-DDD P,P'-DDE P,P'-DDT Parathion Pyrene Supona 1,1,2,2-Tetrachloroethane Tetrachloroethylene Trichloroethylene
Code	PHENOL PPDDD PPDDDT PPDDT PYR SUPONA TCLEA TCLEE

PSIFIN	LT 1.00 LT 1.00	LT 1.00	LT 1.00	LT 5.80	LT 2.40		LT 1.20			_											-	LT 5.80	LT 8.80	LT 6.70	LT 3.50	
PSASEF	T. 1.00	T 1.00	LT 1.00	Ω			T 1.20														-	.T 5.80		.T 6.70	.T 3.50	
PSAAEF	11	-1	-	-	-	-		-	-	:	-			-	!	-	-	1				-	-	:	:	
<u>Lab</u>	NB NB	n B	NB	NB	NB	NB	NB	NB	NB	UB	NB	NB	UB	NB	NB	NB	NB	NB	NB	NB	OB O	NB	NB	NB	NB	(Continued)
Date	08/06/91		_	_	_	_	08/06/91	90/	/90/	90/	_	/90/	/90/	90/	90/	/90/	_	_	_	_	08/06/91	08/06/91		08/06/91	08/06/91	(Con
Analyte	1,1,1-Trichloroethane	1,1-Dichloroethylene	1,1-Dichloroethane	1,2,3-Trichloeobenzene	1,2,4-Trichlorobenzene	1,2-Dichloroethylene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,2-Diphenylhydrazine	1,3-Dichloróbénzene	1,3-Dichlorobenzene	1,3-Dichloropropone	1,3-Dimethylbenzene	1,4-Dichlorobenzene	2,3,6-Trichlorophenol	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitroaniline	2,6-Dinitrotoluene	2-Chloroethylvinyl Ether	
Code	111TCE	11DCE	11DCLE	123TCB	124TCB	12DCE	12DCLB	12DCLE	12DCLP	12DPH	13DCLB	13DCLB	13DCP	13DMB	14DCLB	236TCP	245TCP	246TCP	24DCLP	24DMPN	24DNP	24DNT	26DNA	26DNT	2CLEVE	

Code	2CLP	2CNAP	2MNAP	2MP	2NP	33DCBD	35DNA	3NANIL	BNT	4BRPPE	4CL3C	4CLPPE	g 4MP	4NP	ABHC	ACET	ACRYLO	AENSLF	ALDRN	ANAPNE	ANAPYL	ANTRC	ATZ	B2CEXM	B2CIPE
Analyte	2-Chlorophenol	2-Chloronaphthalene	2-Methylnaphthalene	2-Methylnaphthalene	2-Nitrophenol	3,3'-Dichlorobenzidine	3,5-Dinitroaniline	3-Nitroaniline	3-Nitrotoluene	4-Bromophenylphenyl Ether	3-Methyl-4-Chlorophenol	4-Chlorophenylphenyl Ether	4-Methylphenól/4-Cresol	4-Nitorphenol	ehexachl	Acetone-Dimethyl Ketone	Acrylonitrile	Alpha-Endosulfan	Aldrin	Acenaphthene	Acenaphthylene	Anthracene	Atrazine	BIS (2-Chloroethoxy) Methane	BIS (2-Chloroisopropyl) Ether
Date		08/06/91	_	_	_	,00/	_	_	,00/	,90/	,00,	,00	_	,00	,90/	,06,	,90,	,06	<u>/90</u>	~	~	_	_	_	-
Lab	NB	NB	NB	NB	UB	NB	NB	UB	ПB	NB	UB	UB	NB	ПB	NB	UB	ПB	NB	NB	NB	NB	UB	UB	UB	NB
PSAAEF	1	1	:	1	;	1	:	;	:	:	1	1	:	1	i	8	:	:	:	1	!	:	:	;	i
PS	ᆸ		L	<u>_</u>	_	<u></u>			느		L	╘	ᆸ		ᆸ									느	느
ASEF	2.80	2.60	1.30	3.60	8.20	5.00	21.0	15.0	2.90	22.0	8.50	23.0	2.80	0.96	8.00	8.00	8.40	23.0	13.0	5.80	5.10	5.20	5.90	6.80	2.00
PSIFIN		LT 2.60																						LT 6.80	

PSIFIN	LT680 LT 7.70 LT 14.0 LT 10.0 LT 17.0 LT 17.0 LT 15.0 LT 15.0 LT 15.0 LT 1.00 LT 1.
SASEF	.680 2.70 10.0 14.0 17.0 15.0 15.0 1.00 1.00 1.00 1.00 1.00 1.
PSAAEF	
<u>Lab</u>	
Date	08/06/91 08/06/91 08/06/91 08/06/91 08/06/91 08/06/91 08/06/91 08/06/91 08/06/91 08/06/91 08/06/91 08/06/91
Analyte	BIS (2-Chloroethyl) Ether BIS (2-Ethylhexyl) Phthalate Benzo [A] Anthracene Benzo [A] Pyrene Benzo [B] Fluoranthene Benzo [B] Fluoranthene Beta-Benzenehexachloride Butylbenzyl Phthalate Beta-Endosulfan/Endosulfane III Benzo [G,H,I] Perylene Benzo [K] Fluoranthene Bromodichloromethane Bromacil Benzyl Alcohol Chloroethene/Vinyl Chloride Chloroethane Benzene Trichlorofluoromethane Carbon Tetrachloride Methylene Chloride Bromomethane Chloromethane Chloromethane Chloromethane Chloroform Chloroform Chloroform Chrysene
Code	B2CLEE B2EHP BAANTR BAANTR BAPYR BBFANT BBBZP BBBZP BBBZP BBBZP BBBZP BBBZP BBBZP BBBZP BBBZP BBBZP BBBZP BBBZP C2H3CL C2H3CL C2H3CL C2H3CL C2H3CL CCL3F CCL3C CCL3F CCL3C CCCL3C CCCL3C CCCL3C CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC

LT = Less Than the Following Concentration.
ug/l = Microgram per liter.
-- = Analysis was not performed.
mg/l = Milligram per liter.

(Continued)

PSIFIN	LT 54.0 LT 8.30	LT 1.00	LT 10.0	LT 15.0	6.67	LT 12.0	LT 12.0	LT 1.00	LT 5.10	LT 2.00	LT 5.50	LT 8.50	LT 5.90	LT 21.0	LT 3.30	LT 26.0	LT130	LT 2.20	LT 33.0	LT 1.50	LT 18.0	LT 5.00	LT 50.0	LT 1.00	
PSASEF	LT 54.0 LT 8.30																•								
PSAAEF	; ;	;	1	:	;	;	1	1	;	:	ł	;	:	•	;	;	;	ŀ	1	1	1	ŀ	1	ì	
Lab	UB UB	UB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	UB	NB	NB	NB	NB	NB	UB	UB	NB	inued)
Date	08/06/91 08/06/91	08/06/91					90/	90/	90/	90/	90/	.00/	.00/	90	.00	,06	(90		90,	.00	90,	90	.00		(Continued
Analyte	Hexachlorocyclopentadiene Hexachloroethane	Chlorobenzene	4-Chlorophenylmehtyl Sulfide	4-Chlorophenylmethyl Sulfoxide	4-Chlorophenylmethyl Sulfone	Dibenz [A,H] Anthracene	Dibromochloropropane	Dibromochloromethane	Dibenzofuran	Dichlorobenzene	Dicyclopentadiene	Vapona	Diethyl Phthalate	Diisopropylmethyl Phosphonate	Dithiane	Dieldrin	Dimethylmethyl Phosphate	Dimethyl Phthalate	Di-N-Butyl Phthalate	Di-N-Octyl Phthalate	Endrin	Endrin Aldehyde	Edosulfan Sulfate	Ethylbenzene	
Code	CL6CP CL6ET	CLC6H5	CPMS	CPMSO	CPMS02	DBAHA	DBCP	DBRCLM	DBZFUR	DCLB	DCPD	DDVP	DEP	DIMP	DITH	DLDRN	DMMP	DMP	DMBP	DNOP	ENDRN	ENDRNA	ESFS04	ETC6H5	

		Andria	Date	Lab	PSAAEF	PSASEF	PSIFIN
	Code	Signa					ŀ
	!		08/06/91	I.B	1		LI 24.0
	FANI	Fluorantilerie	00/00/00	= = =	1		LT 9.20
	FLRENE	Fluorene	00/00/00				LT 8.70
	HCBD	Hexochlorubutadiene	16/90/80	9 5			LT 38.0
	HPC	Heptachlor	90	90	1		1 28 O
	HPCLF	Hentachlor Epoxide	9	NB	:		17 24 0
	72007	Indeno [1 2 3-C D] Pyrene	90	OB	:		L1 71.0
	מייים מייים	11.00 (1,2,0 0,7) · 3.00.0	`9	NB	:		7.80
	700S		90	NB	1		2.40
	אחידטצו	SOCIOLO OLI OLI OLI OLI OLI OLI OLI OLI OLI	9	NB	1		1.20
	Z	Lingane	9	E	1		LT 1.00
	MEC6H5	Toluene	38				LT 10.0
	MFK	Methylethyl Ketone	9	9 :	ŀ		11 11 0
		Methoxychlor	90	NB	:		
_		Methylisobutyl Ketone	.00	NB	1		7.50
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Mich ly moderal and a second	,00	NB	:		L1 24.0
^	MINEX		90	UB	1		LI 21.0
	MLTHN	Malathion	200	= a	;		.508
	NAP	Naphthalene	9	2 2			1T 370
	. a	Nitrobenzene	90	9 9	:		17 9 70
	מאַטאַטאַנוּ	N-Nitroso Dimethylamine	90	NB	:		1 CO
		N-Nitroso Di-N-Propylamine	90	NB	1		1 0.00
		N Nitroso Diobenylamine	,00	NB	:		17.00.70
	NNDFA	4 4 Octobbiogo	106	OB	:		LI 27.0
	OXA	1,4-Oxalinane	9	ÚB	:		LI 9.10
	PCP	Pentachiorophenol) = =	ŀ		LT 9.90
	PHANTR	Phenanthrene	08/00/81		¦ !	1T 2.20	LT 2.20
	DHENO	Phenol	S	0			17 18 A
	PPDDD	P.PDDD	90/	OB O	:		10.0
)) -		(Con	(Continued)			

8/10/93 DPA

South Plants - FY91 GC/MS Data (ug/l)

Quarter 4 (Concluded)

PSIFIN	LT 14.0 LT 18.0 LT 37.0 LT 17.0 LT 19.0 LT 1.50 LT 1.00 LT 2.00
PSASEF	LT 14.0 LT 18.0 LT 37.0 LT 17.0 LT 19.0 LT 1.00 LT 2.00
PSAAEF	
Lab	
Date	08/06/91 08/06/91 08/06/91 08/06/91 08/06/91 08/06/91
Analyte	P, P'DDE P, P'-DDT Parathion Pyrene Supona 1, 1, 2, 2-Tetrachloroethane Tetrachloroethylene Trichloroethylene Xylenes
Code	PPDDE PPDDT PRTHN PYR SUPONA TCLEA TCLEE