Chapter 3 Functions, Sequences, and Relations 函数、序列、和关系

Lu Han

hl@bupt.edu.cn

Definition 3.1.1 Let X and Y be sets. A function f from X to Y is a subset of the Cartesian product $X \times Y$ having the property that for each $x \in X$, there is exactly one $y \in Y$ with $(x, y) \in f$.

Definition 3.1.1 Let X and Y be sets. A function f from X to Y is a subset of the Cartesian product $X \times Y$ having the property that for each $x \in X$, there is exactly one $y \in Y$ with $(x, y) \in f$.

A function can be defined by

Listing its members

$$f = \{(a, 1), (b, 2), (c, 3)\}$$

A formula

$$f = \{(x, x^2) \mid x \in \mathbf{Z}\}$$

Definition 3.1.1 Let X and Y be sets. A function f from X to Y is a subset of the Cartesian product $X \times Y$ having the property that for each $x \in X$, there is exactly one $y \in Y$ with $(x, y) \in f$.

one-to-one (or injective) (单射)

onto (or surjective) (满射)

bijection (双射)

Definition 3.1.21 A function f from X to Y is said to be **one-to-one (or injective)** (单射的) if **for all** $x_1, x_2 \in X$, if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

Example 3.1.30 The set
$$f = \{(1, a), (2, c), (3, b)\}$$
 is onto Y from $X = \{1, 2, 3\}$ to $Y = \{a, b, c\}$?

Example 3.1.31 The set
$$f = \{(1, b), (3, a), (2, c)\}$$
 is onto Y from $X = \{1, 2, 3\}$ to $Y = \{a, b, c, d\}$?

Definition 3.1.29 A function f from X to Y is said to be **onto** Y (**or surjective**) (满射的) if **for every** $y \in Y$, **there exists** $x \in X$ **such that** f(x) = y.

Example 3.1.33 Prove that the function $f(x) = \frac{1}{x^2}$ from the set X of nonzero real numbers to the set Y of positive real numbers is onto Y.

Definition 3.1.29 A function f from X to Y is said to be **onto** Y (**or surjective**) (满射的) if **for every** $y \in Y$, **there exists** $x \in X$ **such that** f(x) = y.

Example 3.1.34 Prove that the function f(n) = 2n - 1 from the set X of positive integers to the set Y of positive integers is not onto Y.

A function f from X to Y is not onto Y if for some $y \in Y$, for every $x \in X$, $f(x) \neq y$.

Exercise

Function	Domain	Codomain	Injective?	Surjective?	Bijective?
$f(x) = \sin(x)$	R	R			
$f(x) = 2^x$	R	R ⁺			
$f(x) = x^2$	R	R ^{nonneg}			
Reverse String	Bit Strings of length <i>n</i>	Bit Strings of length <i>n</i>			

Definition 3.1.1 Let X and Y be sets. A function f from X to Y is a subset of the Cartesian product $X \times Y$ having the property that for each $x \in X$, there is exactly one $y \in Y$ with $(x, y) \in f$.

Definition 3.1.21 A function f from X to Y is said to be **one-to-one (or injective)** (单射的) if **for all** x_1 , $x_2 \in X$, **if** $f(x_1) = f(x_2)$ **then** $x_1 = x_2$.

Definition 3.1.29 A function f from X to Y is said to be **onto** Y (or **surjective**) (满射的) if **for every** $y \in Y$, **there exists** $x \in X$ **such that** f(x) = y.

Arrow Diagram 箭头图

Arrow Diagram 箭头图

arrow out of X and into Y

Arrow Diagram 箭头图

arrow out of *X* and into *Y*

A function: exactly one arrow goes out of *X*.

• injective: ≤ 1 arrow into Y

• surjective: \geq 1 arrow into Y

bijective: exactly one arrow into Y

Inverse Function (反函数)

Suppose that f is one-to-one, onto function from X to Y. It can be shown that $\{(y, x) \mid (x, y) \in f\}$ is a one-to-one, onto function from Y to X. This new function, denote f^{-1} , is called f inverse (\mathfrak{W}).

Inverse Function (反函数)

Suppose that f is one-to-one, onto function from X to Y. It can be shown that $\{(y, x) \mid (x, y) \in f\}$ is a one-to-one, onto function from Y to X. This new function, denote f^{-1} , is called f inverse (\mathfrak{W}).

Example 3.1.38 For function $f = \{(1, a), (2, c), (3, b)\}$, we have

$$f^{-1} = ?$$

Definition 3.1.41 Let g be a function X to Y and let f be a function from Y to Z. The **composition of f with g (f 与 g 的复合函数), denoted f \circ g, is the function**

$$(f \circ g)(x) = f(g(x))$$

from X to Z.

Example 3.1.42 Given $X = \{1, 2, 3\}$, $Y = \{a, b, c\}$, $Z = \{x, y, z\}$. The function $g = \{(1, a), (2, a), (3, c)\}$ from X to Y. The function $f = \{(a, y), (b, x), (c, z)\}$ from Y to Z.

The composition function from *X* to *Z* is $f \circ g = ?$

Example 3.1.42 Given $X = \{1, 2, 3\}$, $Y = \{a, b, c\}$, $Z = \{x, y, z\}$. The function $g = \{(1, a), (2, a), (3, c)\}$ from X to Y. The function $f = \{(a, y), (b, x), (c, z)\}$ from Y to Z.

The composition function from X to Z is $f \circ g = \{(1, y), (2, y), (3, z)\}.$

Example 3.1.43 Draw the arrow diagram of the function $f \circ g$.

Example 3.1.42 Given $X = \{1, 2, 3\}$, $Y = \{a, b, c\}$, $Z = \{x, y, z\}$. The function $g = \{(1, a), (2, a), (3, c)\}$ from X to Y. The function $f = \{(a, y), (b, x), (c, z)\}$ from Y to Z.

The composition function from X to Z is $f \circ g = \{(1, y), (2, y), (3, z)\}.$

Example 3.1.43 Draw the arrow diagram of the function $f \circ g$.

Example 3.1.44 If $f(x) = \log_3 x$ and $g(x) = x^4$,

then
$$(f \circ g)(x) = ?$$

and
$$(g \circ f)(x) = ?$$

Exercise: $g \circ f$

$f\colon X\to Y$	$g: Y \to Z$	Injective?	Surjective?	Bijective?
f is injective	g is injective	1	2	3
f is surjective	g is surjective	4	5	6
f is injective	g is surjective	7	8	9
f is surjective	g is injective	10	11	12
f is bijective	g is bijective	13	14	15

If more pigeons

than pigeonholes,

then some hole must have at least two pigeons!

Pigeonhole Principle (First Form)

If n pigeons fly into k pigeonholes and k < n, some pigeonhole contains at least two pigeons.

then some hole must have at least two pigeons!

Pigeonhole Principle (First Form)

If n pigeons fly into k pigeonholes and k < n, some pigeonhole contains at least two pigeons.

Pigeonhole Principle (Second Form)

If f is a function from a finite set X to a finite set Y and |X| > |Y|, then ...

Pigeonhole Principle (First Form)

If n pigeons fly into k pigeonholes and k < n, some pigeonhole contains at least two pigeons.

Pigeonhole Principle (Second Form)

If f is a function from a finite set X to a finite set Y and |X| > |Y|, then $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X, x_1 \neq x_2$.

A function from a larger set to a smaller set cannot be injective.

(There must be at least two elements in the domain that have the same image in the codomain.)

Pigeonhole Principle (First Form)

If n pigeons fly into k pigeonholes and k < n, some pigeonhole contains at least two pigeons.

Pigeonhole Principle (Second Form)

If f is a function from a finite set X to a finite set Y and |X| > |Y|, then $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X, x_1 \neq x_2$.

Example

In a group of 366 people, there must be two people having the same birthday.

Pigeonhole Principle (First Form)

If n pigeons fly into k pigeonholes and k < n, some pigeonhole contains at least two pigeons.

Pigeonhole Principle (Second Form)

If f is a function from a finite set X to a finite set Y and |X| > |Y|, then $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X, x_1 \neq x_2$.

Extension select 5 numbers from 1-8, there exists two number that their sum is exactly 9.

Definition 3.1.17 The floor of x, denote $\lfloor x \rfloor$, is the greatest integer less than or equal to x. The ceiling of x, denote $\lfloor x \rfloor$, is the least integer greater than or equal to x.

Definition 3.1.17 The floor of x, denote $\lfloor x \rfloor$, is the greatest integer less than or equal to x. The ceiling of x, denote $\lfloor x \rfloor$, is the least integer greater than or equal to x.

Figure 3.1.7 The graphs of the floor (left graph) and ceiling (right graph) functions.

Definition 3.1.11 If x is an integer and y is a positive integer, we define $x \mod y$ to be the remainder when x is divided by y.

● mod is called the modulus operator(模算子)

Definition 3.1.11 If x is an integer and y is a positive integer, we define $x \mod y$ to be the remainder when x is divided by y.

● mod is called the modulus operator(模算子)

Example 3.1.12 We have

 $11 \mod 7 = 4, -11 \mod 7 = ?$

Definition 3.1.11 If x is an integer and y is a positive integer, we define $x \mod y$ to be the remainder when x is divided by y.

● mod is called the modulus operator(模算子)

Example 3.1.12 We have

 $11 \mod 7 = 4$, $-11 \mod 7 = ?$

Quotient-Remainder Theorem 商和余数定理

If d and n are integers, d>0, there exist integers q (quotient) and r (remainder) satisfying n=dq+r ($0 \le r < d$)

Furthermore, q and r are unique; that is, if

$$n = dq_1 + r_1 \ (0 \le r_1 < d) \text{ and } n = dq_2 + r_2 \ (0 \le r_2 < d),$$

then $q_1 = q_2$ and $r_1 = r_2$.

Definition 3.1.11 If x is an integer and y is a positive integer, we define $x \mod y$ to be the remainder when x is divided by y.

● mod is called the modulus operator(模算子)

Example 3.1.12 We have $11 \mod 7 = 4$, $-11 \mod 7 = 3$.

Example 3.1.14 What day of the week will it be 365 days from Wednesday?

Definition 3.1.11 If x is an integer and y is a positive integer, we define $x \mod y$ to be the remainder when x is divided by y.

● mod is called the modulus operator(模算子)

Exercise Let f be the function from $X = \{0, 1, 2, 3, 4\}$ to X defined by $f(x) = 4x \mod 5$. Write f as a set of ordered pairs and draw the arrow diagram of f. Is f one-to-one? Is f onto?

Definition 3.1.47 A function from $X \times X$ to X is called a **binary operator on** X. (X上的二元操作符)

Definition 3.1.50 A function from X to X is called a **unary operator on** X. (X上的一元操作符)

Definition 3.1.47 A function from $X \times X$ to X is called a **binary operator on X**. (X上的二元操作符)

Example Let $X = \{1, 2, ...\}$. If we define f(x, y) = x + y, where $x, y \in X$, then f is a binary operator on X.

Definition 3.1.50 A function from X to X is called a **unary operator on** X. (X上的一元操作符)

Example Let U be a universal set. If we define $f(X) = \overline{X}$, where $X \in \mathcal{P}(U)$, then f is a unary operator on $\mathcal{P}(U)$.

 $f \colon \mathcal{P}(U) \to \mathcal{P}(U)$

Definition 3.2.1 A sequence (序列) s is a function whose domain D is a subset of integers.

The notation s_n is typically used instead of the more general function notation s(n). The term n is called the **index(**下标**)** of the sequence.

If D is a finite set, we call s a finite sequence (有限序列); otherwise, s is an infinite sequence (无限序列).

A sequence s is denoted s or $\{s_n\}$ if n is the index of the sequence.

lacktriangle Notation s_n denotes the single element of the sequence s at index n.

If s is a sequence $\{s_n\}$, where n = 1, 2, 3, ...

- s_1 denotes the first element,
- \blacksquare s_2 the second element,
- \bullet s_n the *n*th element...

A sequence s is denoted s or $\{s_n\}$ if n is the index of the sequence.

- lacktriangle Notation s_n denotes the single element of the sequence s at index n.
- lacktriangle We will frequently use \mathbf{Z}^+ or \mathbf{Z}^{nonneg} as the domain of a sequence.

If the domain of a sequence s is $\{k, k+1, k+2, ...\}$ and the index of s is n, we can denote the sequence s as $\{s_n\}_{n=k}^{\infty}$.

A sequence s whose domain is \mathbf{Z}^{nonneg} :

A sequence *s* whose domain is $\{i, i + 1, ..., j\}$:

A sequence s whose domain is $\{-1, 0, 1, 2, 3\}$:

Example 3.2.5 Define a sequence b by the rule b_n is the nth letter in the word digital. If the domain of b is $\{1, 2, ..., 7\}$,

then $b_1 = ?$, $b_2 = ?$, $b_4 = ?$ and $b_7 = ?$

Example 3.2.5 Define a sequence b by the rule b_n is the nth letter in the word digital. If the domain of b is $\{1, 2, ..., 7\}$,

then
$$b_1 = ?$$
, $b_2 = ?$, $b_4 = ?$ and $b_7 = ?$

Example 3.2.6 If x is the sequence defined by

$$x^2 = \frac{1}{2^n} - 1 \le n \le 4,$$

the elements of x are?

Example 3.2.7 Define a sequence s as

$$s_n = 2^n + 4 \times 3^n \quad n \ge 0.$$

- (a) Find s_0 .
- (b) Find s_1 .
- (c) Find a formula for s_i .
- (d) Find a formula for s_{n-1} .
- (e) Find a formula for s_{n-2} .
- (f) Prove that $\{s_n\}$ satisfies

$$s_n = 5s_{n-1} - 6s_{n-2}$$
 for all $n \ge 2$.

Important Types of Sequences

∞ Increasing Sequences (递增序列)

A sequence s is increasing if for all i and j in the domain of s,

if i < j, then $s_i < s_j$.

∞ Decreasing Sequences (递减序列)

∞ Nonincreasing Sequences (非增序列)

∞ Nondecreasing Sequences (非减序列)

Important Types of Sequences

⋙ Increasing Sequences (递增序列)

A sequence s is increasing if for all i and j in the domain of s,

if i < j, then $s_i < s_j$.

∞ Decreasing Sequences (递减序列)

A sequence s is decreasing if for all i and j in the domain of s,

if i < j, then $s_i > s_j$.

∞ Nonincreasing Sequences (非增序列)

A sequence s is **nonincreasing** if for all i and j in the domain of s,

if i < j, then $s_i \ge s_j$.

∞ Nondecreasing Sequences (非减序列)

A sequence s is **nondecreasing** if for all i and j in the domain of s,

if i < j, then $s_i \le s_j$

Important Types of Sequences

- **∞ Increasing Sequences (递增序列)**
- **⋙ Decreasing Sequences (递减序列)**
- **∞ Nonincreasing Sequences (非增序列)**
- **∞ Nondecreasing Sequences (**非减序列)

Examples

- 1. The sequence 100, 90, 90, 74, 74, 74, 30.
- 2. The sequence $\{s_n\}$ defined by the rule $s_n = 2n 1$, for all $n \ge 1$.

Subsequences 子序列

Definition 3.2.12 Let s be a sequence. A subsequence of s is a sequence obtained from s by choosing certain terms of s in the same order in which they appear in s.

Example

Let
$$s = \{s_n = n \mid n = 1, 2, 3, \dots\}.$$

Let
$$t = \{t_n = 2n \mid n = 1, 2, 3, \dots\}.$$

t is a subsequence of s

Definition 3.2.17 If $\{a_i\}_{i=m}^n$ is a sequence, we define

$$\sum_{i=m}^{n} a_i = a_m + a_{m+1} + \dots + a_n,$$

$$\prod_{i=m}^{n} a_i = a_m \cdot a_{m+1} \dots a_n.$$

The formalism $\sum_{i=m}^{n} a_i$ is called the **sum (or sigma) notation (**求和符号) and

 $\prod_{i=m}^{n} a_i$ is called the **product (or pi) notation (**乘积符号).

Exercise 1 For the sequence w defined by

$$w_n = \frac{1}{n} - \frac{1}{n+1}$$
, $n \ge 1$.

- (1) Find $\sum_{i=1}^{3} w_i$.
- (2) Find $\sum_{i=1}^{10} w_i$.
- (3) Find a formula for the sequence c defined by $c_n = \sum_{i=1}^n w_i$.
- (4) Find a formular for the sequence d defined by $d_n = \prod_{i=1}^n w_i$.
- (5) Is w increasing?
- (6) Is w decreasing?
- (7) Is w nonincreasing?
- (8) Is w nondecreasing?

Exercise 2 For the sequence *a* defined by

$$a_n = \frac{n-1}{n^2(n-2)^2}$$
, $n \ge 3$.

and the sequence z defined by $z_n = \sum_{i=3}^n a_i$

- (1) Find a_3 .
- (2) Find a_4 .
- (3) Find z_3 .
- (4) Find z_4 .
- (5) Find z_{100} .
- (6) Is z increasing, decreasing, nondecreasing and nonincreasing?

Exercise 2 For the sequence a defined by

$$a_n = \frac{n-1}{n^2(n-2)^2}$$
, $n \ge 3$.

and the sequence z defined by $z_n = \sum_{i=3}^n a_i$

- (1) Find a_3 .
- (2) Find a_4 .
- (3) Find z_3 .
- (4) Find z_4 .
- (5) Find z_{100} .

Hint: Show that $a_n = \frac{1}{4} \left[\frac{1}{(n-2)^2} - \frac{1}{n^2} \right]$

and use this form in the sum. Write out $a_3 + a_4 + a_5 + a_6$ to see what is going on.

(6) Is z increasing, decreasing, nondecreasing and nonincreasing?

String

Definition 3.2.23 A string over *X*, where *X* is a finite set, is a finite sequence of elements from *X*.

- Finite sequences are also called strings.
- The string with no elements is called null string (空串) and is denoted λ.
- Let *X** denote the set of all strings over *X*.
- Let X⁺ denote the set of all nonnull strings over X.

String

Definition 3.2.23 A string over *X*, where *X* is a finite set, is a finite sequence of elements from *X*.

- Finite sequences are also called strings.
- The string with no elements is called null string (空串) and is denoted λ.
- Let *X** denote the set of all strings over *X*.
- Let X^+ denote the set of all nonnull strings over X.

Example 3.2.5 Let $X = \{a, b\}$. Some elements in X^* are λ , a, b, abab and $b^2a^{50}ba$.

String

Definition 3.2.23 A string over *X*, where *X* is a finite set, is a finite sequence of elements from *X*.

• The **length** (长度) of a string α is the number of elements in α . The length of α is denoted $|\alpha|$.

Example 3.2.26 If $\alpha = aabab$ and $\beta = a^3b^4a^{32}$, then $|\alpha| = 5$ and $|\beta| = 39$.

Definition 3.3.2 A (binary) relation (二元关系) R from a set X to a set Y is a subset of the Cartesian product $X \times Y$. If $(x, y) \in R$, we write xRy and say that x is related to y.

If X = Y, we call R a (binary) relation on X.

Definition 3.3.2 A (binary) relation (二元关系) R from a set X to a set Y is a subset of the Cartesian product $X \times Y$. If $(x, y) \in R$, we write xRy and say that x is related to y.

If X = Y, we call R a (binary) relation on X.

• The relationship between Function, Sequence and Relation

Definition 3.2.1 A sequence (序列) s is a function whose domain D is a subset of integers.

Definition 3.3.2 A (binary) relation (二元关系) R from a set X to a set Y is a subset of the Cartesian product $X \times Y$. If $(x, y) \in R$, we write xRy and say that x is related to y.

If X = Y, we call R a (binary) relation on X.

• The relationship between Function, Sequence and Relation

Definition 3.2.1 A sequence (序列) s is a function whose domain D is a subset of integers.

Special case

sequence ← function

Definition 3.3.2 A (binary) relation (二元关系) R from a set X to a set Y is a subset of the Cartesian product $X \times Y$. If $(x, y) \in R$, we write xRy and say that x is related to y.

If X = Y, we call R a (binary) relation on X.

∞ The relationship between Function, Sequence and Relation

A function *f* from *X* to *Y* is a relation from *X* to *Y* having the properties:

- (a) The domain of f is equal to X.
- (b) For each $x \in X$, there is exactly one $y \in Y$ such that $(x, y) \in f$.

Special case Special case

sequence ← function ← relation

Definition 3.3.2 A (binary) relation (二元关系) R from a set X to a set Y is a subset of the Cartesian product $X \times Y$. If $(x, y) \in R$, we write xRy and say that x is related to y. If X = Y, we call R a (binary) relation on X.

A relation can be defined by

simply specifying which ordered pairs belong to the relation

TABLE 3.3.1 ■ Relation of Students to Courses

Course
CompSci
Math
Art
History
CompSci
Math

Definition 3.3.2 A (binary) relation (二元关系) R from a set X to a set Y is a subset of the Cartesian product $X \times Y$. If $(x, y) \in R$, we write xRy and say that x is related to y. If X = Y, we call R a (binary) relation on X.

A relation can be defined by

- simply specifying which ordered pairs belong to the relation
 R = {(Bill, CompSci), (Mary, Math), (Bill, Art), (Beth, History), (Beth, CompSci), (Dave, Math)}
- defining a relation by giving a rule for membership in the relation

Definition 3.3.2 A (binary) relation (二元关系) R from a set X to a set Y is a subset of the Cartesian product $X \times Y$. If $(x, y) \in R$, we write xRy and say that x is related to y. If X = Y, we call R a (binary) relation on X.

Example 3.3.3 Let $X = \{2, 3, 4\}$ and $Y = \{3, 4, 5, 6, 7\}$. If we define a relation R from X to Y by

 $(x, y) \in R$ if x divides y,

we obtain R = ?

Definition 3.3.2 A (binary) relation (二元关系) R from a set X to a set Y is a subset of the Cartesian product $X \times Y$. If $(x, y) \in R$, we write xRy and say that x is related to y. If X = Y, we call R a (binary) relation on X.

Example 3.3.3 Let $X = \{2, 3, 4\}$ and $Y = \{3, 4, 5, 6, 7\}$. If we define a relation R from X to Y by

 $(x, y) \in R$ if x divides y,

we obtain $R = \{(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)\}.$

Definition 3.3.2 A (binary) relation (二元关系) R from a set X to a set Y is a subset of the Cartesian product $X \times Y$. If $(x, y) \in R$, we write xRy and say that x is related to y. If X = Y, we call R a (binary) relation on X.

Example 3.3.3 Let $X = \{2, 3, 4\}$ and $Y = \{3, 4, 5, 6, 7\}$. If we define a relation R from X to Y by

$$(x, y) \in R$$
 if x divides y,

we obtain $R = \{(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)\}.$

Example 3.3.4 Let $X = \{2, 3, 4\}$ definded by $(x, y) \in R$ if $x \le y, x, y \in X$.

Then R = ?

Definition 3.3.2 A (binary) relation (二元关系) R from a set X to a set Y is a subset of the Cartesian product $X \times Y$. If $(x, y) \in R$, we write xRy and say that x is related to y. If X = Y, we call R a (binary) relation on X.

A relation on a set

draw its digraph (有向图)

Example 3.3.4 Let $X = \{1, 2, 3, 4\}$ definded by $(x, y) \in R$ if $x \le y, x, y \in X$.

Then $R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4)(4,4)\}.$

Definition 3.3.2 A (binary) relation (二元关系) R from a set X to a set Y is a subset of the Cartesian product $X \times Y$. If $(x, y) \in R$, we write xRy and say that x is related to y. If X = Y, we call R a (binary) relation on X.

A relation on a set

draw its digraph (有向图)

Example 3.3.4 Let $X = \{1, 2, 3, 4\}$ definded by $(x, y) \in R$ if $x \le y, x, y \in X$.

Then $R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4)(4,4)\}.$

Definition 3.3.2 A (binary) relation (二元关系) R from a set X to a set Y is a subset of the Cartesian product $X \times Y$. If $(x, y) \in R$, we write xRy and say that x is related to y. If X = Y, we call R a (binary) relation on X.

A relation on a set

- draw its digraph (有向图)
- reflexive 自反的
- symmetric 对称的
- antisymmetric 反对称的
- transitive 传递的

Definition 3.3.2 A (binary) relation (二元关系) R from a set X to a set Y is a subset of the Cartesian product $X \times Y$. If $(x, y) \in R$, we write xRy and say that x is related to y. If X = Y, we call R a (binary) relation on X.

A relation on a set

- draw its digraph (有向图)
- reflexive 自反的
- symmetric 对称的
- antisymmetric 反对称的
- transitive 传递的

How many different relations can we define on a set X with n elements?

Definition 3.3.2 A (binary) relation (二元关系) R from a set X to a set Y is a subset of the Cartesian product $X \times Y$. If $(x, y) \in R$, we write xRy and say that x is related to y. If X = Y, we call R a (binary) relation on X.

A relation on a set

- draw its digraph (有向图)
- reflexive 自反的
- symmetric 对称的
- antisymmetric 反对称的
- transitive 传递的

How many different relations can we define on a set *X* with *n* elements?

A relation on a set X is a subset of $X \times X$. How many elements are in $X \times X$? There are n^2 elements in $X \times X$, so how many subsets (= relations on X) does $X \times X$ have? Therefore, 2^{n^2} subsets can be formed out of $X \times X$.

Answer: We can define 2^{n^2} different relations on X.

Definition 3.3.6 A relation R on a set X is **reflexive** (自反的) if $(x, x) \in R$ for every $x \in X$.

Exercise Are the following relations on {1, 2, 3, 4} reflexive?

$$R = \{(1, 1), (1, 2), (2, 3), (3, 3), (4, 4)\}$$

$$R = \{(1, 1), (2, 2), (2, 3), (3, 3), (4, 4)\}$$

$$R = \{(1, 1), (2, 2), (3, 3)\}$$

Definition 3.3.6 A relation R on a set X is **reflexive** (自反的) if $(x, x) \in R$ for every $x \in X$.

Exercise Are the following relations on {1, 2, 3, 4} reflexive?

$$R = \{(1, 1), (1, 2), (2, 3), (3, 3), (4, 4)\}$$

$$R = \{(1, 1), (2, 2), (2, 3), (3, 3), (4, 4)\}$$

Yes.

$$R = \{(1, 1), (2, 2), (3, 3)\}$$

No.

Definition 3.3.9 A relation R on a set X is **symmetric (**对称的**)** if for all $x, y \in X$, if $(x, y) \in R$, then $(y, x) \in R$.

Definition 3.3.12 A relation R on a set X is **antisymmetric** (反对称的) if for all $x, y \in X$, if $(x, y) \in R$ and $(y, x) \in R$, then x = y.

Definition 3.3.9 A relation R on a set X is **symmetric (**对称的**)** if for all $x, y \in X$, if $(x, y) \in R$, then $(y, x) \in R$.

Definition 3.3.12 A relation R on a set X is **antisymmetric** (反对称的) if for all $x, y \in X$, if $(x, y) \in R$ and $(y, x) \in R$, then x = y.

for all $x, y \in X$, if $x \neq y$, then $(x, y) \notin R$ or $(y, x) \notin R$.

Definition 3.3.9 A relation R on a set X is **symmetric (**对称的**)** if for all $x, y \in X$, if $(x, y) \in R$, then $(y, x) \in R$.

Definition 3.3.12 A relation R on a set X is **antisymmetric** (反对称的) if for all $x, y \in X$, if $(x, y) \in R$ and $(y, x) \in R$, then x = y.

Example 3.3.4 Let $X = \{1, 2, 3, 4\}$ definded by $(x, y) \in R$ if $x \le y, x, y \in X$.

Then $R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4)(4,4)\}.$

symmetric? antisymmetric?

Definition 3.3.9 A relation R on a set X is **symmetric (**对称的**)** if for all $x, y \in X$, if $(x, y) \in R$, then $(y, x) \in R$.

Definition 3.3.12 A relation R on a set X is **antisymmetric** (反对称的) if for all $x, y \in X$, if $(x, y) \in R$ and $(y, x) \in R$, then x = y.

not symmetric = antisymmetric?

Definition 3.3.9 A relation R on a set X is **symmetric (**对称的**)** if for all $x, y \in X$, if $(x, y) \in R$, then $(y, x) \in R$.

Definition 3.3.12 A relation R on a set X is **antisymmetric** (反对称的) if for all $x, y \in X$, if $(x, y) \in R$ and $(y, x) \in R$, then x = y.

not symmetric = antisymmetric?

$$R = \{(a, a), (b, b), (c, c)\} \text{ on } X = \{a, b, c\}.$$

Both symmetric and antisymmetric!

Definition 3.3.17 A relation R on a set X is **transitive (传递的)** if for all $x, y, z \in X$, if (x, y) and $(y, z) \in R$, then $(x, z) \in R$.

Exercise Are the following relations on $\{1, 2, 3, 4\}$ transitive?

$$R = \{(1, 1), (1, 2), (2, 2), (2, 1), (3, 3)\}$$

$$R = \{(1, 3), (3, 2), (2, 1)\}$$

$$R = \{(2, 4), (4, 3), (2, 3), (4, 1)\}$$

Definition 3.3.17 A relation R on a set X is **transitive (传递的)** if for all $x, y, z \in X$, if (x, y) and $(y, z) \in R$, then $(x, z) \in R$.

Exercise Are the following relations on $\{1, 2, 3, 4\}$ transitive?

$$R = \{(1, 1), (1, 2), (2, 2), (2, 1), (3, 3)\}$$
 Yes.

$$R = \{(1, 3), (3, 2), (2, 1)\}$$
 No.

$$R = \{(2, 4), (4, 3), (2, 3), (4, 1)\}$$
 No.

The relation $R = \emptyset$

Definition 3.3.6 A relation R on a set X is **reflexive** (自反的) if $(x, x) \in R$ for every $x \in X$.

Definition 3.3.9 A relation R on a set X is **symmetric (**对称的**)** if for all $x, y \in X$, if $(x, y) \in R$, then $(y, x) \in R$.

Definition 3.3.12 A relation R on a set X is **antisymmetric** (反对称的) if for all $x, y \in X$, if $(x, y) \in R$ and $(y, x) \in R$, then x = y.

Definition 3.3.17 A relation R on a set X is **transitive (传递的)** if for all $x, y, z \in X$, if (x, y) and $(y, z) \in R$, then $(x, z) \in R$.

Negation

Definition 3.3.6 A relation R on a set X is **reflexive** (自反的) if $(x, x) \in R$ for every $x \in X$.

Definition 3.3.9 A relation R on a set X is **symmetric (**对称的**)** if for all $x, y \in X$, if $(x, y) \in R$, then $(y, x) \in R$.

Definition 3.3.12 A relation R on a set X is **antisymmetric** (反对称的) if for all $x, y \in X$, if $(x, y) \in R$ and $(y, x) \in R$, then x = y.

Definition 3.3.17 A relation R on a set X is **transitive (传递的)** if for all $x, y, z \in X$, if (x, y) and $(y, z) \in R$, then $(x, z) \in R$.

Negation

Definition 3.3.6 A relation R on a set X is **reflexive** (自反的) if $(x, x) \in R$ for every $x \in X$.

not reflexive: if there exists $x \in X$, such that $(x, x) \notin R$.

Definition 3.3.9 A relation R on a set X is **symmetric (**对称的**)** if for all $x, y \in X$, if $(x, y) \in R$, then $(y, x) \in R$.

not symmetric: if there exists x and y, such that $(x, y) \in R$ and $(y, x) \notin R$.

Definition 3.3.12 A relation R on a set X is **antisymmetric** (反对称的) if for all $x, y \in X$, if $(x, y) \in R$ and $(y, x) \in R$, then x = y.

not antisymmetric: if there exists x and y, $x \neq y$, such that $(x, y) \in R$ and $(y, x) \in R$.

Definition 3.3.17 A relation R on a set X is **transitive** (传递的)

if for all $x, y, z \in X$, if (x, y) and $(y, z) \in R$, then $(x, z) \in R$.

not transitive: if there exists $x, y, z \in X$, if (x, y) and $(y, z) \in R$, then $(x, z) \notin R$.

Exercise Give examples of relations on $\{1, 2, 3, 4\}$ having the properties specified as follows.

- (a) Reflexive, symmetric, and not transitive
- (b) Reflexive, not symmetric, and not transitive
- (c) Reflexive, antisymmetric, and not transitive
- (d) Not reflexive, symmetric, not antisymmetric, and transitive
- (e) Not reflexive, not symmetric, and transitive

Definition 3.3.20 A relation R on a set X is a partial order (偏序) if R is reflexive, antisymmetric, and transitive.

Definition 3.3.20 A relation R on a set X is a partial order (偏序) if R is reflexive, antisymmetric, and transitive.

If R is a partial order on a set X, the notation $x \le y$ is sometimes used to indicate that $(x, y) \in R$.

Definition 3.3.20 A relation R on a set X is a partial order (偏序) if R is reflexive, antisymmetric, and transitive.

If R is a partial order on a set X, the notation $x \le y$ is sometimes used to indicate that $(x, y) \in R$.

We say that

窓 x and y are comparable (可比的): If $x, y \in X$ and either $x \leq y$ or $y \leq x$. 窓 x and y are incomparable (不可比的): If $x, y \in X$ and either $x \not\leq y$ or $y \not\leq x$.

Definition 3.3.20 A relation R on a set X is a partial order (偏序) if R is reflexive, antisymmetric, and transitive.

If R is a partial order on a set X, the notation $x \le y$ is sometimes used to indicate that $(x, y) \in R$.

We say that

窓 x and y are comparable (可比的): If $x, y \in X$ and either $x \leq y$ or $y \leq x$. 窓 x and y are incomparable (不可比的): If $x, y \in X$ and either $x \not\leq y$ or $y \not\leq x$.

If every pair of elements in X is comparable, we call R a total order (全序).

Definition 3.3.20 A relation R on a set X is a partial order (偏序) if R is reflexive, antisymmetric, and transitive.

If every pair of elements in X is comparable, we call R a total order (全序).

Example?

Definition 3.3.20 A relation R on a set X is a partial order (偏序) if R is reflexive, antisymmetric, and transitive.

If every pair of elements in X is comparable, we call R a total order (全序).

Example 3.3.4 Let $X = \{2, 3, 4\}$ definded by $(x, y) \in R$ if $x \le y$, $x, y \in X$. Then $R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4)(4,4)\}$.

Definition 3.3.20 A relation R on a set X is a partial order (偏序) if R is reflexive, antisymmetric, and transitive.

If every pair of elements in X is comparable, we call R a total order (全序).

Example 3.3.4 Let $X = \{2, 3, 4\}$ definded by $(x, y) \in R$ if $x \le y$, $x, y \in X$. Then $R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4)(4,4)\}$.

Example 3.3.3 Let $X = \{2, 3, 4\}$ and $Y = \{3, 4, 5, 6, 7\}$. If we define a relation R from X to Y by

 $(x, y) \in R$ if x divides y, we obtain $R = \{(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)\}.$

Definition 3.3.23 Let R be a relation from X to Y. The **inverse of** R (R的逆), denoted R^{-1} , is the relation from Y to X defined by

$$R^{-1} = \{ (y, x) \mid (x, y) \in R \}.$$

Example 3.3.3 Let $X = \{2, 3, 4\}$ and $Y = \{3, 4, 5, 6, 7\}$. If we define a relation R from X to Y by

$$(x, y) \in R$$
 if x divides y,

we obtain $R = \{(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)\}.$

$$R^{-1} =$$

Definition 3.3.25 Let R_1 be a relation from X to Y and R_2 be a relation from Y to Z. The composition of R_1 and R_2 , denoted $R_2 \circ R_1$, is the relation from X to Z defined by

$$R_2 \circ R_1 = \{(x, z) \mid (x, y) \in R_1 \text{ and } (y, z) \in R_2 \text{ for some } y \in Y\}.$$

Example 3.3.26 The composition of the relations

$$R_1 = \{(1, 2), (1, 6), (2, 4), (3, 4), (3, 6), (3, 8)\}$$

and

$$R_2 = \{(2, u), (4, s), (4, t), (6, t), (8, u)\}$$

is
$$R_2 \circ R_1 =$$

Definition 3.3.25 Let R_1 be a relation from X to Y and R_2 be a relation from Y to Z. The composition of R_1 and R_2 , denoted $R_2 \circ R_1$, is the relation from X to Z defined by

$$R_2 \circ R_1 = \{(x, z) \mid (x, y) \in R_1 \text{ and } (y, z) \in R_2 \text{ for some } y \in Y\}.$$

Example 3.3.26 The composition of the relations

$$R_1 = \{(1, 2), (1, 6), (2, 4), (3, 4), (3, 6), (3, 8)\}$$

and

$$R_2 = \{(2, u), (4, s), (4, t), (6, t), (8, u)\}$$

is
$$R_2 \circ R_1 = \{(1, u), (1, t), (2, s), (2, t), (3, s), (3, t), (3, u)\}.$$

Example 3.3.27 Suppose that R and S are transitive relations on a set X. Determine whether each of $R \cup S$, $R \cap S$, or $R \circ S$ must be transitive.

(1) $R \cup S$

(2) $R \cap S$

(3) $R \circ S$

Example 3.3.27 Suppose that R and S are transitive relations on a set X. Determine whether each of $R \cup S$, $R \cap S$, or $R \circ S$ must be transitive.

(1) $R \cup S$

$$R = \{(1, 2)\}, S = \{(2, 3)\}, R \cup S = \{(1, 2), (2, 3)\}.$$

(2) $R \cap S$

If
$$\{x, y\}$$
, $\{y, z\} \in R \cap S$, then $\{x, z\} \in R \cap S$.

(3) $R \circ S$

$$R = \{(5, 2), (6, 3)\}, S = \{(1, 5), (2, 6)\}, R \circ S = \{(1, 2), (2, 3)\}.$$

Definition 3.4.3 A relation that is **reflexive**, **symmetric**, **and transitive** on a set X is called an **equivalence relation** (等价关系) on X.

Definition 3.4.3 A relation that is **reflexive**, **symmetric**, **and transitive** on a set X is called an **equivalence relation** (等价关系) on X.

Theorem 3.4.1 Let S be a partition of a set X. Define xRy to mean that for some set S in S, both x and y belong to S. Then R is reflexive, symmetric, and transitive.

Definition 3.4.3 A relation that is **reflexive**, **symmetric**, **and transitive** on a set X is called an **equivalence relation** (等价关系) on X.

Theorem 3.4.1 Let S be a partition of a set X. Define xRy to mean that for some set S in S, both x and y belong to S. Then R is reflexive, symmetric, and transitive.

 \bowtie A collection of sets (集族): A set S whose elements are sets. Example: $S = \{\{1, 2\}, \{1, 3\}, \{1, 7, 10\}\}.$

pprox A partition (划分): A collection S of nonempty subsets of X is said to be a partition of the set X if every element in X belongs to exactly one member of S. Example: $S = \{\{1, 4, 5\}, \{2, 6\}, \{3\}, \{7, 8\}\}$ is a partition of $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Definition 3.4.3 A relation that is **reflexive**, **symmetric**, **and transitive** on a set X is called an **equivalence relation** (等价关系) on X.

Theorem 3.4.1 Let S be a partition of a set X. Define xRy to mean that for some set S in S, both x and y belong to S. Then R is reflexive, symmetric, and transitive.

Example 3.4.2 Consider the partition $S = \{\{1, 3, 5\}, \{2, 6\}, \{4\}\}\}$ of $X = \{1, 2, 3, 4, 5, 6\}$. The relation R on X is given by Theorem 3.4.1. Then $R = \{1, 2, 3, 4, 5, 6\}$.

Definition 3.4.3 A relation that is **reflexive**, **symmetric**, **and transitive** on a set X is called an **equivalence relation** (等价关系) on X.

Exercise Which of the following relation is an equivalence relation?

The relation R on $X = \{1, 2, 3, 4\}$ defined by $(x, y) \in R$ if $x \le y, x, y \in X$.

The relation $R = \{(a, a), (b, c), (c, b), (d, d)\}$ on $X = \{a, b, c, d\}$.

Definition 3.4.3 A relation that is **reflexive**, **symmetric**, **and transitive** on a set X is called an **equivalence relation** (等价关系) on X.

Exercise Which of the following relation is an equivalence relation?

The relation R on $X = \{1, 2, 3, 4\}$ defined by $(x, y) \in R$ if $x \le y, x, y \in X$. No.

The relation $R = \{(a, a), (b, c), (c, b), (d, d)\}$ on $X = \{a, b, c, d\}$.

Definition 3.4.3 A relation that is **reflexive**, **symmetric**, **and transitive** on a set X is called an **equivalence relation** (等价关系) on X.

Exercise Which of the following relation is an equivalence relation?

The relation R on $X = \{1, 2, 3, 4\}$ defined by $(x, y) \in R$ if $x \le y, x, y \in X$. No.

The relation $R = \{(a, a), (b, c), (c, b), (d, d)\}$ on $X = \{a, b, c, d\}$.