

Problem

Consider V, the set of all invertible 3×3 matrices is V subspace of $R^{3\times3}$?

Solution

Consider just I_3 and $-I_3$,

both are invertible but their sum is not.. so its not a subspace

Find a basis of the space of all 2×2 matrices A such that

$$A \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Solution

Let's say that
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 then $\Rightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} a+b & a+b \\ c+d & c+d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

so from here we get that
$$a = -b$$
 and $c = -d \iff A = \begin{pmatrix} -b & b \\ -d & d \end{pmatrix}$

We can express
$$A$$
 as $b \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ -1 & 1 \end{pmatrix}$. thus:

$$\begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} 0 & 0 \\ -1 & 1 \end{pmatrix}$ is a basis and dimension is just 2