Assignment 8

Rahul Ramachandran

May 15, 2022

Outline

- Problem Statement
- 2 Definitions
- Solution
- Graphs

Problem Statement

13.2 Q17 [NCERT 12]

The probability of obtaining an even prime number on each die, when a pair of dice is rolled is?

Random Variable Definition

In this experiment, there are two consecutive Bernoulli trials. Therefore, it is appropriate to define a Binomial Random Variable X as under:

Variable	Event
X = 0	0 even prime numbers are obtained
<i>X</i> = 1	1 even prime number is obtained
X = 2	2 even prime numbers are obtained

Table 1: Random Variable X

Probability Mass Function

The probability of success (assuming a fair die) is $p = \frac{1}{6}$. Therefore, the probability that X maps to i is given by:

$$\Pr(X = i) = {2 \choose i} (1 - p)^{2-i} p^i, \ 0 \le i \le 2$$
 (1)

The values for *i* can be substituted in the above formula, and the graph of the PMF can be obtained.

Cumulative Distribution Function

The cumulative probability $Pr(X \le i)$ can be defined as under:

$$\Pr(X \le i) = \sum_{k=0}^{i} {2 \choose k} (1-p)^{2-k} p^k, \ 0 \le i \le 2$$
 (2)

The values of i can be substituted in the above equation, and the obtained values can be used to plot the CDF graph.

Solution

The probability to be found corresponds to the case i = 2. Substituting i = 2 in Equation 1, we get

$$\Pr(X = 2) = {2 \choose 2} \times (1 - p)^{2-2} \times p^2$$
 (3)

$$=1\times\left(1-\frac{1}{6}\right)^{0}\times\left(\frac{1}{6}\right)^{2}\tag{4}$$

$$=\frac{1}{36}\tag{5}$$

PMF Graph

The PMF graph is:

Figure 1: Probability Mass Function

CDF Graph

The CDF graph is:

Figure 1: Cumulative Distribution Function

