

# 32 位微控制器

# 高级定时器 ADT 的输入信号处理

### 适用对象

| 系列       | 产品型号         | 系列      | 产品型号         | 系列      | 产品型号         |
|----------|--------------|---------|--------------|---------|--------------|
| HC32L110 | HC32L110C6UA | HC32F00 | HC32F003C4UA | HC32L13 | HC32L130E8PA |
|          | HC32L110C6PA |         | HC32F003C4PA |         | HC32L130F8UA |
|          | HC32L110C4UA |         | HC32F005C6UA |         | HC32L130J8TA |
|          | HC32L110C4PA |         | HC32F005C6PA |         | HC32L130J8UA |
|          | HC32L110B6PA |         | HC32F005D6UA |         | HC32L136J8TA |
|          | HC32L110B4PA |         |              |         | HC32L136K8TA |
|          | HC32L110B6YA |         |              |         |              |
| HC32F03  | HC32F030E8PA | HC32L07 | HC32L072PATA | HC32F07 | HC32F072PATA |
|          | HC32F030F8UA |         | HC32L072KATA |         | HC32F072KATA |
|          | HC32F030F8TA |         | HC32L072JATA |         | HC32F072JATA |
|          | HC32F030H8TA |         | HC32L073PATA |         | HC32F072FAUA |
|          | HC32F030J8TA |         | HC32L073KATA |         |              |
|          | HC32F030K8TA |         | HC32L073JATA |         |              |
|          |              |         | HC32L072FAUA |         |              |
| HC32L17  | HC32L176PATA | HC32F17 | HC32F176PATA | HC32L19 | HC32L196PCTA |
|          | HC32L176MATA |         | HC32F176MATA |         | HC32L196MCTA |
|          | HC32L176KATA |         | HC32F176KATA |         | HC32L196KCTA |
|          | HC32L176JATA |         | HC32F176JATA |         | HC32L196JCTA |
|          | HC32L170JATA |         | HC32F170JATA |         | HC32L190JCTA |
|          | HC32L170FAUA |         | HC32F170FAUA |         | HC32L190FCUA |
|          |              |         | HC32F170LATA |         |              |
| HC32F19  | HC32F196PCTA |         |              |         |              |
|          | HC32F196MCTA |         |              |         |              |
|          | HC32F196KCTA |         |              |         |              |
|          | HC32F196JCTA |         |              |         |              |
|          | HC32F190JCTA |         |              |         |              |
|          | HC32F190FCUA |         |              |         |              |



# 目 录

| 1 | 摘要                   | [               |    |  |  |  |
|---|----------------------|-----------------|----|--|--|--|
| 2 | 2 功能介绍               |                 |    |  |  |  |
| 3 | 高级定时器的捕获功能           |                 |    |  |  |  |
|   | 3.1                  | 高级定时器 ADT 的硬件事件 |    |  |  |  |
|   | 3.2                  | 输入电平的捕获         | 4  |  |  |  |
|   | 3.3                  | AOS 事件的捕获       |    |  |  |  |
|   | 3.4                  | VC 输出结果的捕获      | 9  |  |  |  |
| 4 | <b>经定时器的外部输入计数功能</b> | 10              |    |  |  |  |
|   | 4.1                  | 单路脉冲信号计数        | 10 |  |  |  |
|   | 4.2                  | 双路正交信号计数        | 11 |  |  |  |
| 5 | 总结                   | Î               | 14 |  |  |  |
| 6 | 参考样例及驱动1             |                 |    |  |  |  |
| 7 | 其他信息1                |                 |    |  |  |  |
| 8 | 版本                   | :信息 & 联系方式      | 15 |  |  |  |



### 1 摘要

本篇应用笔记主要介绍华大半导体 MCU\*的高级定时器 Advanced Timer(以下简称 ADT)的输入信号处理。

本应用笔记主要包括:

- ADT 高级定时器的硬件事件
- 输入电平捕获
- AOS 事件捕获
- VC 输出结果的捕获
- 单路脉冲信号计数
- 双路正交信号计数

#### 注意:

一本应用笔记为华大半导体 MCU\*的应用补充材料,不能代替用户手册,具体功能及寄存器的操作等相关事项请以用户手册为准。

### 2 功能介绍

ADT 除了可以调制输出多种 PWM,还可以用来对输入信号进行多种方式的处理,包括捕获和外部输入计数等。

\* 支持型号见封面。

应用笔记 Page 3 of 15



### 3 高级定时器的捕获功能

### 3.1 高级定时器 ADT 的硬件事件

ADT 一共有 3 类硬件事件: CHA/B 端口事件, TRIx 端口(x=A/B/C/D)事件, AOS 事件:

- 1. CHA/B 端口事件是由 ADT 的通道 IO 输入的电平或者电平边沿跳变事件,每个 ADT 的定时器单元都有一对 CHA/B 引脚,由 GPIO 的功能配置寄存器 Pxyy\_SEL (x=A/B/C/D, yy=01~15)寄存器设置。
- 2. TRIx 事件是 ADT 三个单元共用的外部输入触发 IO 产生的电平边沿跳变事件,该端口由 ADT 寄存器 TTRIG 设置。
- 3. AOS 事件是内部指定的模块包括 ADT 自身产生的事件请求(对于 L110/F005/F003 系列 而言,是指中断请求,而不是事件请求),三个单元共用。可以同时设置 4 个 AOS 事件,由 ADT 寄存器 ITRIG 设置。

#### 3.2 输入电平的捕获

ADT 的每一个定时器单元,都具有两路捕获通道,这两路捕获通道既可以分别捕获两个 IO 口(CHA/B 或 TRIx 引脚)的输入信号,也可以用于捕获同一个 IO 的输入信号。

捕获通道 A 的硬件捕获条件由寄存器 HCPAR 设置,捕获通道 B 的硬件捕获条件由 HCPBR 寄存器设置。CHA/B 或 TRIx 引脚输入的电平跳变符合所设置的条件,就会产生捕获动作,将计数器 CNTER 的值保存到对应的 GCMAR 或 GCMBR 寄存器中。

如果在设置捕获条件的同时,设置与硬件捕获条件对应的硬件启动(HSTAR)、硬件停止(HSTPR)或者硬件清零(HCELR)的条件,就可以在捕获的同时执行相应的硬件启动(定时器)、停止(定时器)或者清零(定时器计数值)的动作。

应用笔记 Page 4 of 15



#### 例 1: 用户需要捕获一个输入脉冲的占空比:



图 1 高低电平捕获示意图

如图 1 所示,使用捕获通道 A 和捕获通道 B 对通过 CHA/B 或者 TRIx 的某一个 IO 引脚输入的信号进行捕获,在电平的上升沿和下降沿的时候都会清零 CNTER 计数器,所以捕获通道 A/B 的捕获值都是两次电平跳变之间的值:

HCPAR 捕获条件: CHA/B 或者 TRIx 的 IO 端口采样到上升沿

HCPBR 捕获条件: CHA/B 或者 TRIx 的 IO 端口采样到下降沿

HCELR 的清零条件: CHA/B 或者 TRIx 的 IO 端口采样到上升沿和下降沿

如上述条件设置,当有连续的脉冲信号输入:在符合设定的捕获件时候,通道 A 的通道 B 就会发生捕获;在符合设定的清零件时候,定时器的计数器也会被自动清零(先捕获再清零)。通道 A 的捕获结果送入寄存器 GCMAR,通道 B 的捕获结果送入寄存器 GCMBR:

捕获通道 A→捕获低电平的计数值→GCMAR

捕获通道 B→捕获低高平的计数值→GCMBR

如果 ICONR.INTENA 和 ICONR.INTENB 使能,在发送上述捕获的时候,将分别产生计数比较匹配中断 A(其实为捕获中断 A)和计数比较匹配中断 B(其实为捕获中断 B)。

因此, 该串脉冲的占空比: GCMBR 值 / (GCMBR 值+ GCMAR 值)。

应用笔记 Page 5 of 15



#### 例 2: 用户需要捕获一串输入脉冲的周期:



图 2 周期电平捕获示意图

如图 2 所示, 硬件捕获条件和硬件清零设置如下:

HCPAR 捕获条件: CHA/B 或者 TRIx 的 IO 端口采样到上升沿

HCPBR 捕获条件: CHA/B 或者 TRIx 的 IO 端口采样到下降沿

HCELR 的清零条件: CHA/B 或者 TRIx 的 IO 端口采样到上升

在每个电平的上升沿的时候,捕获 CNTER 的值到 GCMAR,并且设置硬件自动清零 CNTER,这样 GCMAR 存储的值就是该串脉冲的周期值(除去第一个上升沿捕获的值可能不是该串脉冲的周期值)。

如果在捕获周期的条件设置之外,再用捕获通道 B 设置条件,捕获电平下降沿时候的值,这时候 GCMBR 的值就是该串脉冲的高电平时间值,如此占空比就是 GCMBR 值 / GMCAR 值。

操作步骤(以 ADT 的 Timer4 为例):

- 1. 使能 ADT 和 GPIO 外设时钟。
- 2. 设置 IO: Timer4 的 CHA/B 功能在 GPIO 寄存器内设置; TRIx 的 IO, 在 GPIO 内设置为输入引脚,在 ADT 的寄存器 TTRIG 内选择对应的引脚。
- 3. Timer4 设置为锯齿波计数模式,计数方向为向上计数,根据所需捕获的电平大概周期范围选择合适的 Timer4 的分频值。

应用笔记 Page 6 of 15



- 4. Timer4 的周期设置为 0xFFFF。
- 5. Timer4 的通道 A 和通道 B 设置为捕获输入(PCONR.CAPCA 和 CAPCB 设置为 1)。
- 6. Timer4 的 CHA/B 或者 TRIx 输入滤波时间设置并且滤波使能(FCONR,该寄存器只在 Timer4 设置,即使使用 Timer5/6 作引脚的捕获输入功能)。
- 7. 设置通道 A 的硬件捕获条件(HCPAR)和通道 B 的硬件捕获条件(HCPBR)为 CHA/B 或者 TRIx 端口采样条件。
- 8. 设置硬件清零条件(CHA/B 或者 TRIx 端口采样条件)并且使能硬件清零功能(如有其他捕获需求,也可以设置硬件启动和停止条件)。
- 9. 清零 Timer4 的中断标志,使能计数比较匹配中断 A(ICONR.INTENA)和计数比较匹配中断 B(ICONR.INTENB),并且使能 Timer4 的 NVIC 中断。
- 10.启动 Timer4。
- 11.在中断内读取捕获值,并清零对应的中断标志。

硬件捕获事件选择寄存器 HCPAR/HCPBR 配合硬件启动、硬件停止和硬件清零寄存器 (HSTAR、HSTPR 和 HCELR),可以组合出很多种用户需要的捕获功能。上述例子,仅作为 抛砖引玉,用户可以结合手册,进一步拓展 ADT 的使用。

### 3.3 AOS 事件的捕获

在 AOS 触发控制寄存器 ITRIG 选择了 AOS 事件之后,硬件捕获事件选择寄存器 HCPAR 或 HCPBR 可以设置 AOS0~3 事件作为捕获条件。

例 3: 捕获 VC0 的中断事件 VC0\_INT:

HCPA/BR 捕获条件: AOS0 触发事件有效

HCELR 的清零条件: AOSO 触发事件有效

ITRIG 的 AOS 事件选择: AOSO 触发源选择 VC0 INT

VC0 配置上升沿或者下降沿中断使能,但是对应序号的 NVIC 中断可以不需要使能(如果不使能 VC0 的 NVIC 中断,需要在 ADT 的捕获中断内将 VC 的中断标志清零),上述的 ITRIG 的 AOS0 选择 VC0\_INT,捕获寄存器选择 AOS0 捕获。再配置 VC 和 ADT 的其他基本设置,这样当 VC 输出结果电平边沿跳变的时候,就可以捕获 CNTER 的值到 GCMAR/GCMBR 寄存器。

应用笔记 Page 7 of 15



利用硬件清零寄存器,使能 AOSO 事件匹配的时候清零 CNTER,这样每一次捕获发生后,会自动清零 CNTER。



图 3 AOS 事件捕获示意图

操作步骤(以 ADT 的 Timer4 为例):

- 1. 使能 ADT 和 GPIO 外设时钟。
- 2. 设置 IO: 配置 VC 的相应引脚。
- 3. Timer4 设置为锯齿波计数模式,计数方向为向上计数,根据所需捕获的事件的大概周期范围选择合适的 Timer4 的分频值。
- 4. Timer4 的周期设置为 0xFFFF。
- 5. Timer4 的通道 A 设置为捕获输入(PCONR.CAPCA 设置为 1)。
- 6. 设置通道 A 的硬件捕获条件为 AOS 触发事件(HCPAR)。
- 7. 设置硬件清零条件(AOS 触发事件)并且使能硬件清零功能(如有其他捕获需求,也可以设置硬件启动和停止条件)。
- 8. 选择 ADT 的 AOS 触发源(ITRIG)。
- 9. 清零 Timer4 的中断标志,使能计数比较匹配中断 A(ICONR.INTENA)并且使能 Timer4 的 NVIC 中断。
- 10.启动 Timer4。
- 11.在中断内读取捕获值,并清零对应的中断标志(也要清零 VC 的中断标志)。

应用笔记 Page 8 of 15



利用 AOS 的触发,也可以把两个 ADT 单元,例如 Timer4 的上溢中断,输出给 Timer5 做硬件递加计数,可以组成一个 32bit 的定时器功能。注意,此时 Timer4 除了需要使能 ICONR.INTENOVF(不需要使能 NVIC 中断)以外,还需要使能 CR.OVFE(上溢匹配输出 AOS trig 使能控制位)。

### 3.4 VC 输出结果的捕获

上述 3.3 描述的是通过 AOS 事件触发(AOS 请求为 VC 中断事件)的捕获。但是通过 AOS 事件的捕获,捕获只能发生在 VC 中断请求发生的时候,ADT 不能自动区分 VC 的中断请求 为上升沿还是下降沿,所以除此之外,ADT 也可以通过 CHA/CHB 端口,对 VC 输出结果进行捕获(不需引脚外接引线),以达到测量 VC 输出结果的高电平或低电平的宽度。

操作步骤如下(以 VC1 输出结果输入到 Timer4 的 CHB 为例):

- 1. 使能 ADT、VC 和 GPIO 外设时钟。
- 2. 设置 IO: 配置 VC 的相应引脚。
- 3. Timer4 设置为锯齿波计数模式,计数方向为向上计数,根据所需捕获的事件的大概周期范围选择合适的 Timer4 的分频值。
- 4. Timer4 的周期设置为 0xFFFF。
- 5. Timer4 的通道 A 和通道 B 设置为捕获输入(PCONR.CAPCA 和 CAPCB 设置为 1)。
- 6. Timer4 的 CHB 输入滤波时间设置并且滤波使能(FCONR,该寄存器只在 Timer4 设置,即使使用 Timer5/6 作引脚的捕获输入功能,用户视需求而决定是否使用)。
- 7. 设置通道 A 的硬件捕获条件(HCPAR)为 CHB 端口采样到下降沿,通道 B 的硬件捕获条件(HCPBR)为 CHB 端口采样到上升沿。
- 8. 设置硬件清零条件(CHB端口采样到下降沿和上升沿)并且使能硬件清零功能(如有其他捕获需求,也可以设置硬件启动和停止条件)。
- 9. 配置 VC1,并使能输出结果到 ADT CHB,不需要使能中断。
- 10.清零 Timer4 的中断标志,使能计数比较匹配中断 A(ICONR.INTENA)和计数比较匹配中断 B(ICONR.INTENB),并且使能 Timer4 的 NVIC 中断。
- 11.启动 Timer4。
- 12.在中断内读取捕获值,并清零对应的中断标志。

应用笔记 Page 9 of 15



### 4 高级定时器的外部输入计数功能

### 4.1 单路脉冲信号计数

硬件递加事件选择寄存器 HCUPR 或者硬件递减事件选择寄存器 HCDOR 设置硬件递加或者递减条件,单路脉冲信号通过 TRIx 引脚输入,当输入信号电平边沿跳变满足该条件的时候,ADT的计数器 CNTER 会执行递加或者递减计数的操作。

例 4: 从 TRIA 引脚输入一串脉冲波形, 计数这个脉冲的周期个数:

HCUPR.HCUP8 = 1,设置采样到TRIA 端口的上升沿电平后,ADT的计数器执行递加计数。



图 4 单路脉冲的单边沿递加计数示意图

如图 4,每次检测到输入电平的上升沿,CNTER 都会向上计数 1 次。

如果对脉冲的上升沿和下降沿同时计数,需要设置硬件递加计数器的 HCUPR.HCUP8 =1 和 HCUPR.HCUP9 =1, TRIA 端口上采样到上升沿和下降沿都会进行硬件递加计数。那么结果 将如图 5 所示:



图 5 单路脉冲的双边沿递加计数示意图

应用笔记 Page 10 of 15



在硬件递加、递减计数功能时,内部的计数时钟不起作用,ADT 的通用控制寄存器的 GCONR 的波形模式、计数方式和分频都不用设置。

操作步骤(以ADT的Timer4和TRIA(PA15)引脚为例):

- 1. 使能 ADT 和 GPIO 外设时钟。
- 2. 设置 IO: PA15 配置为输入, ADT 的 TTRIG.TRIGAS 设置为 0xC, 选择 PA15。
- 3. Timer4 的周期设置为 0x6000 (用户由需求决定)。
- 4. Timer4 的 TRIA 输入滤波时间设置并且滤波使能(FCONR,该寄存器只在 Timer4 设置,即使使用 Timer5/6 作引脚的捕获输入功能)。
- 5. 设置 Timer 的硬件递加事件选择寄存器 HCUPR.HCUP8 或者 HCUPR.HCUP9 为 1,在 TRIA 引脚采样到上升沿或者下降沿的时候执行递加计数,也可以两种条件都设置为 1,在输入信号上升沿或者下降沿的时候都执行递加计数。
- 6. 清零 Timer4 的中断标志,使能上溢中断(ICONR.INTENOVF)和计数比较匹配中断 A (ICONR.INTENA,用户视需求决定是否使用该中断),并且使能 Timer4 的 NVIC 中断。
- 7. 启动 Timer4。
- 8. 硬件递加计数到上溢出匹配,产生上溢中断。需要清除对应标志位。

### 4.2 双路正交信号计数

两路正交脉冲信号通过 CHA 和 CHB 端口输入,ADT 可以做正交计数。设置硬件递加事件选择寄存器 HCUPR 和硬件递减选择寄存器 HCDOR,当 CHA 和 CHB 引脚的电平满足所设置的条件时,ADT 的计数器 CNTER 会执行递加或者递减计数的操作。



图 6 双路正交信号硬件递加计数示意图

应用笔记 Page 11 of 15



如图 6 所示,硬件递加计数条件为:

HCUPR.HCUP6=1,当 CHB 端口为高电平时,CHA 端口采样到上升沿电平。

硬件递减计数条件为:

HCDOR.HCDO4 = 1, 当 CHB 端口为低电平时, CHA 端口采样到上升沿电平。

操作步骤(以 ADT 的 Timer4 和 CHA/B 引脚为例):

- 1. 使能 ADT 和 GPIO 外设时钟。
- 2. 设置 IO: 在 GPIO 寄存器内设置 Timer4 的 CHA 和 CHB 引脚。
- 3. Timer4 的周期设置为 2000 (用户由需求决定)。
- 4. Timer4 的通道 A 和通道 B 设置为输入(寄存器 PCONR)。
- 5. Timer4 的通道 A 和 B 输入滤波时间设置并且滤波使能(FCONR,该寄存器只在 Timer4 设置,即使使用 Timer5/6 作引脚的捕获输入功能)。
- 6. 设置 Timer4 的硬件递加事件选择寄存器 HCUPR.HCUP6 为 1,在 CHB 为高电平时 CHA 端口采样到上升沿的时候执行递加计数。
- 7. 设置 Timer4 的硬件递减事件选择寄存器 HCDOR.HCDO4 为 1,在 CHB 为低电平时 CHA 端口采样到上升沿的时候执行递减计数。
- 8. 清零 Timer4 的中断标志,使能上溢中断(ICONR.INTENOVF)和下溢中断(ICONR.INTENUDF)并且使能 Timer4 的 NVIC 中断。
- 9. 启动 Timer4。
- 10.硬件递加计数到上溢出值或者0匹配,产生上溢或者下溢中断。需要清除对应标志位。

上述仅为最简单的正交信号计数的例子,通过设置 HCUPR 和 HCDOR 条件的组合,可以实现更复杂的正交信号计数功能。



图 7 ABZ 信号数示意图

应用笔记 Page 12 of 15



如图 7 所示,位置计数单元(比如 Timer4)的 CHA 和 CHA 通道计数原理同上,加上另一个 ADT 定时器(比如 Timer5),配合一个 TRIx 引脚,可以完成正交编码的 ABZ 输入信号计数。

- 1. Timer4 的 CNTER 的计数由 CHA 和 CHB 的正交信号决定。
- 2. Timer4 的上溢可以通过 AOS 触发事件,通过过 Timer5 的 HCUPR(或 DCDOR)配置,使 Timer5 执行硬件递加(递减)计数。
- 3. TRIx 引脚的电平信号,可以清零 Timer4 的计数器,也可以通过 Timer5 的 HCUPR 配 置,使 Timer5 执行硬件递加计数。

当然,Timer5 可以仅由 ZIN 信号触发硬件递加计数,或仅由 Timer4 的上溢或下溢的 AOS 触发硬件递加(递减)计数,都是由用户视其需求而选择。

应用笔记 Page 13 of 15



## 5 总结

以上仅仅是对输入信号的一些处理的描述和举例,用户应用中可能会有更多种组合和实践,使用时请以用户手册为参考。结合本笔记,可以加深对该高级定时器 ADT 的理解和运用。

### 6 参考样例及驱动

华大半导体(HDSC)官方同时提供了该模块的应用样例及驱动库,用户可通过打开样例的 工程进一步直观地熟悉该模块以及驱动库的应用,在实际开发中也可以直接参考样例和使用 驱动库来快速实现对该模块的操作。

- ▶ 样例参考: ~/HC32L17X\_DDL/example/adt
- ▶ 驱动库参考: ~/HC32L17X DDL/driver/.../adt

## 7 其他信息

技术支持信息: www.hdsc.com.cn

应用笔记 Page 14 of 15



# 8 版本信息 & 联系方式

| 日期        | 版本     | 修改记录  |
|-----------|--------|-------|
| 2020/1/20 | Rev1.0 | 初版发布。 |
|           |        |       |
|           |        |       |



如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@hdsc.com.cn

网址: www.hdsc.com.cn

通信地址: 上海市浦东新区中科路 1867号 A座 10层

邮编: 201203



应用笔记 AN0150005C