ОСНОВИ СИСТЕМ ШТУЧНОГО ІНТЕЛЕКТУ, НЕЙРОННИХ МЕРЕЖ та ГЛИБОКОГО НАВЧАННЯ

Модуль 5. Глибоке навчання

Лекція 5.2. Багатошаровий персептрон

Ареал ШІ

ML – машинне навчання – підрозділ ШІ, де системи навчаються без явного програмування

NN - нейронна мережа - математична модель, що імітує роботу людського мозку

DL - глибоке Ч навчання - навчання багатошарових NN

Багатошаровий персептрон (MLP)

Багатошаровий персептрон (Multilayered perceptron) — повнозв'язаний клас штучної нейронної мережі із прямою передачею даних.

MLP складається щонайменше з трьох рівнів вузлів: вхідного, прихованого та вихідного. За винятком вхідних вузлів, кожен вузол є нейроном, який використовує деяку нелінійну функцію активації.

MLP використовує методику навчання з вчителем, з використанням зворотного поширення похибки для навчання.

Багатошаровість та нелінійна активація відрізняють MLP від лінійного персептрона.

Багатошаровий персептрон (MLP)

Найпростіша багатошарова NN

Найпростіша багатошарова NN

Модель логічного елементу XOR

Дивись приклад 1 до лекції (скрипт Python)

Найпростіша багатошарова NN

Бінарний класифікатор

Дивись приклад 2 до лекції (скрипт Python)

MLP. Формально

ШАРИ q = 0, 1,, Q

 \mathbf{WAP} із номером q:

Складається з багатьох нейронів. Позначимо кількість нейронів в шарі q дорівнює $N^{(q)}$. Вхідний шар (q=0) має $N^{(0)}$ і дорівнює розміру вхідного вектору ознак.

Номер нейрону в шарі q визначимо як $i^{(q)}$. Попередній шар складається з $N^{(q-1)}$ нейронів. Таким чином кожен нейрон шару q має $N^{(q-1)}$ входів. Номер входу означимо як j що змінюється від 0 до $N^{(q-1)}$. Наступний шар складається з нейронів $N^{(q+1)}$ Таким чином кожен нейрон шару q має $N^{(q+1)}$ виходів.

MLP. Формально

Ваги нейрону $i^{(q)}$ в шарі q означимо як $w_{j^{(q-1)},i^{(q)}},q=1,\ldots,Q$, ;

 $m{i}^{(q)} = m{0}, ..., N^{(q)}; \ m{j}^{(q)-1} = m{0}, ..., N^{(q-1)},$ Тобто загальна кількість ваг

$$\mathbf{W} \to \sum_{q=1}^{Q} N^{(q-1)} N^{(q)}$$

Тренувальні дані: множина $\{X_i, Y_i\}$,

 \widehat{Y}_i – обчислений вихід для i-го тренувального зразка.

 Y_i - мітка, очікуваний вихід для i-го зразка. \widehat{Y}_i - обчислений вихід для i-го тренувального зразка

 $L(\widehat{Y}_{i}, Y_{i}) = L(F(\langle X_{i}, W \rangle), Y_{i})$ L(W) – похибка, для заданих ознак та міток, залежність тільки від

Завдання: знайти такі W, щоб похибка L(W) була мінімальною.

Regression Losses Mean Square Error (MSE)/Quadratic Loss/L2 Loss

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

Regression Losses

Root Mean Square Error (RMSE)

$$RMSE = \sqrt[2]{\frac{1}{n} \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2}$$

Regression Losses Mean Absolute Error (MAE) / L1 Loss

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |Y_i - \widehat{Y}_i|$$

Huber Loss / Smooth Mean Absolute Error / Soft MAE (Комбінація L2 та L1)

$$a = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)$$

$$L_{\delta}(a) = \begin{cases} 0.5 * a^2, & |a| \leq \delta \\ \delta * (|a| - 0.5)\delta, & |a| > \delta \end{cases}$$

Classification Losses Mean Squared Logarithmic Error (MSLE)

$$MSLE = \frac{1}{n} \sum_{i=1}^{n} (log(Y_i) - log(\widehat{Y}_i))^2$$

Classification Losses
Cross entropy loss (logarithmic loss, log loss, logistic loss).

$$Loss = -\frac{1}{n} \sum_{i=1}^{n} [Y_i log(\widehat{Y}_i) + (1 - Y_i) log(1 - \widehat{Y}_i)]^2$$

Випадок бінарної класифікації Тут \hat{Y} ймовірність (вихід softmax())

Тренувальні дані

Визначена множина $\{X_i, Y_i\}$, i = 1, 2, ..., N

Тренувальна множина екземплярів

Навчання

 y_i - мітка (очікуваний вихід) для і-го екземпляру.

 \hat{y}_i - обчислений вихід для і-го екземпляру.

3НАЙТИ W , щоб похибка L(W)мінімальною (бажано 0).

L(W) – похибка, для

заданих ознак та міток,

як залежність від W

Загальний підхід до навчання

```
W \leftarrow 0; b ← 0 - ініціалізація
for epoche = 1 to max_epoche:
   for all [X, Y]:
      s \leftarrow W^*X+b
      a \leftarrow F(s)
      \widehat{Y} \leftarrow \text{softmax}(a)
      L \leftarrow cross entropy (Y, \hat{Y})
      GrW, Grb \leftarrow \partial L/\partial W; \partial L/\partial b
      W←W - lean rate* GrW
      b← b - lean rate *Grb
    end for
end for
```

MLP. Позначення

ШАРИ q = 0, 1,, QКількість нейронів в шарі $q \rightarrow N^{(q)}$. Вхідний шар (q = 0) має $N^{(0)}$ нейронів і дорівнює розміру вхідного вектору ознак n.

Номер нейрону в шарі $q \rightarrow i^{(q)}$, $i^{(q)} = 1, 2, ... N^{(q)}$.

повнозвяність:

Кожен $i^{(q)}$ нейрон шару q має $N^{(q-1)}$ входів. Кожен $i^{(q)}$ нейрон шару q має $N^{(q+1)}$ виходів. Вихід $i^{(q)}$ нейрону $\rightarrow a_{i^{(q)}}$

Ваги нейрону $i^{(q)}$ в шарі q

$$w_{j^{(q-1)},i^{(q)}}$$
 , $i^{(q)}=1,...,N^{(q)};\ j^{(q-1)}=1,...,N^{(q-1)},$

Загальний алгоритм навчання

```
W \leftarrow 0; b ← 0 #ініціалізація for epoche = 1 to max_epoche: for all [X, Y]:
```

```
#пряме розповсюдження \widehat{Y} \leftarrow F(W^*X+b)#по всіх шарах та нейронах #накопичення похибки Lsum(W) + = Loss(Y, \widehat{Y})
```

```
#похибка
L(W) = Lsum(W) / N
L(W) мале? → breck

#зволотне позповсюдження
```

#зворотне розповсюдження GrW, Grb ← дL/дW; дL/дb # градієнтна мінімізація похибки W← W – learning_rate* GrW b← b – learning_rate *Grb

Загальний алгоритм навчання пряме розповсюдження

```
# Для кожного екземпляру
for q = 0:

a_{j^{(0)}} = x_{j} #вихід шару 0

for q = 1, 2, ..., Q: #послідовно для всіх шарів
       for i^{(q)} = 1, 2, ... N^{(q)}:
             z_{i^{(q)}} = 0
for all j^{(q-1)} = 1, ..., N^{(q-1)}:
               a_{i(q)} += a_{j(q-1)} w_{j(q-1),i(q)}
a_{i(q)} = F(z_{i(q)})
```

 $\widehat{Y} = a_{i(Q)}$ #вихід останнього шару – передбачення #накопичення похибки $Lsum(W) + = Loss(Y, \widehat{Y})$

Загальний алгоритм навчання похибка

#Осереднюється сума похибок для кожного екземпляру датасету

$$L(W) = Lsum(W)/N$$

#Якщо похибка менше деякого визначеного значення (tolerance) обчислення завершуються

За правило, попереднє визначається максимальні кількість епох і, якщо для цієї епохи похибка не досягає tolerance, обчислення також завершуються

Загальний алгоритм навчання зворотне розповсюдження

#Для кожного $w_{j(q-1),i}(q)$ визначаються компоненти градієнту

$$\nabla L_{j^{(q-1)},i^{(q)}} = \frac{\partial L(W)}{\partial w_{j^{(q-1)},i^{(q)}}}$$

кожна вага змінюється

$$w_{j^{(q-1)},i^{(q)}}^{(eph+1)} = w_{j^{(q-1)},i^{(q)}}^{(eph)}$$
-learning_rate* $\nabla L_{j^{(q-1)},i^{(q)}}$

Оновлені значення ваг використовуються для прямого розповсюдження на наступній епосі.

Рекомендована ЛІТЕРАТУРА

- **Литвин В. В., Пелещак Р. М., Висоцька В. А.** Глибинне навчання : навч. посіб. Львів : Вид-во Львівської Політехніки, 2011. 264 с.
- **Тимощук П.В., Лобур М. В.** Principles of Artificial Neural Networks and Their Applications :: Принципи штучних нейронних мереж та їх застосування : навч. посіб. Львів : Вид-во Львівської Політехніки, 2011. 292 с.
- **Тимощук, П.В.** Штучні нейронні мережі : навч. посіб. Львів : Вид-во Львівської Політехніки, 2011. 444 с.

Рекомендована ЛІТЕРАТУРА

Beyeler M. Machine Learning for OpenCV. — Packt Publishing Ltd., 2017. — 350 p.

Sarkar D., Bali R., Sharma T. Practical Machine Learning with Python . — APress, 2018. — 530p.

Raschka S., Mirjalili V. Python Macine Learning. Machine Learning and Deep Learning with Python, scikitlearn, and TensorFlow 2 .- 3rd Edition, Packt Publishing, 2019 .- 859 p.

The END Модуль 5. Лекція 02.