Table 1
Summary of the elements of the statistical investigative cycle (Bargagliotti et al., 2020)

Statistical Investigative	
Process Element	GAISE II Description
Formulate Statistical	Formulating statistical investigative questions that anticipate
Investigative	variability leads to productive investigations. (p. 13)
Questions	
Collect/Consider the	Data collection designs must acknowledge variability in dataAfter
Data	the data are available—whether they were collected first-hand or
	acquired from another source—they need to be interrogatedThe
	data collection design impacts the scope of generalizability and the
	possible limitations in analysis and interpretation. (p. 14)
Analyze the Data	When we analyze data, we seek to understand its variability.
	Reasoning about distributions is key to accounting for and describing
	variability at all developmental levels. Graphical displays and
	numerical summaries are used to explore, describe, and compare
	variability in distributions. (p. 14)
Interpret the Results	Statistical interpretations are made in the presence of variability and
	must take variability into accountWhen we generalize the results
	and look beyond the study data collected, we must take into account
	these sources of variability. (p. 14)

Table 2Example of coding of CCSSM LEs based on the GAISE II Framework

	Process			Dev	elopme level	ental	
Learning Expectancy (LE)	Question	Collect	Analyze	Interpret	A	В	С
Display numerical data in plots on a number line, including dot plots, histograms, and box plots.	0	0	1	0	0	1	0
Summarize numerical data sets in relation to their context, such as by: Reporting the number of observations.	0	0	1	1	1	0	0
Summarize numerical data sets in relation to their context, such as by: Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.	0	1	0	1	1	1	0

 Table 3.

 Analytic Approaches to investigating the OTL relative to the highlights of the GAISE II report.

GAISE II Highlights	Analytic Approach
1. The importance of asking questions	Because we already captured standards related to
throughout the statistical problem-	questions in our first analysis, in our second analysis
solving process and how this process	we focused on looking for evidence of questions
remains at the forefront of statistical	being connected across the elements of investigative
reasoning for all studies involving	process by identifying standards that were coded for
data	questions and at least one other element to identify
	the OTL the importance of asking questions
	throughout the process.
2. The consideration of different data	This highlight specifically targets aspects of
and variable types, the importance of	collecting and analyzing data, so we began by only
carefully planning how to collect data	looking at standards in those two elements. Within
or how to consider data to help answer	the identified standards, we looked for explicit
statistical investigative questions, and	mention of variables other than categorical or
the process of collecting, cleaning,	quantitative (i.e., spatial, pictorial, textual, and
interrogating, and analyzing the data	dynamic). We also looked for explicit mention of
	data cleaning or structuring.
3. The inclusion of multivariate	For this highlight, we looked across all the K-8
thinking throughout all Pre-K–12	standards and searched specifically for mention of
educational levels	using more than two variables in an investigation.
4. The role of probabilistic thinking in	Part of the process of drawing boundaries for our data
quantifying randomness throughout all	was parsing out mathematical probability from
levels	statistical probability. To investigate the role of
	probabilistic thinking throughout the levels we then
	looked for standards that mention randomness,
5 The man amitian that was Jawa	simulation, uncertainty, or probability.
5. The recognition that modern	To investigate the process of this aspect, we looked
statistical practice is intertwined with technology, and the importance of	for the explicit mention of technology-related terms used in standards.
incorporating technology as feasible	used in standards.
6. The enhanced importance of clearly	The communication of statistical information falls
and accurately communicating	firmly into the interpretation element of the
statistical information	investigative process, so we began by isolating those
Statistical information	standards. Then we looked for standards that related
	to communicating information to others (beyond a
	teacher who is assessing a student's understanding of
	statistical interpretation).
	building interpretation,

Table 4

Comparison of Kentucky Grade 3 LEs and Comparative CCSSM Grade 3 LEs

Kentucky Grade 3 LE	Comparative CCSSM Grade 3 LE
KY.3.MD.3b: Create a scaled pictograph and	CCSS.MATH.CONTENT.3.MD.B.3
a scaled bar graph to represent a data set	Draw a scaled picture graph and a scaled bar
(using technology or by hand)	graph to represent a data set with several
KY.3.MD.3c: Make observations from the	categories. Solve one- and two-step "how many
graph about the question posed, including	more" and "how many less" problems using
"how many more" and "how many less"	information presented in scaled bar graphs. For
questions.	example, draw a bar graph in which each square
	in the bar graph might represent 5 pets.
KY.3.MD.4b: Generate measurement data by	CCSS.MATH.CONTENT.3.MD.B.4
measuring lengths using rulers marked with	Generate measurement data by measuring
halves and fourths of an inch	lengths using rulers marked with halves and
KY.3.MD.4c: Show the data by making a dot	fourths of an inch. Show the data by making a
plot where the horizontal scale is marked off	line plot, where the horizontal scale is marked
in appropriate units – whole numbers,	off in appropriate units— whole numbers,
halves, or quarters	halves, or quarters.
KY.3.MD.3a: Identify a statistical question	N/A
focused on categorical data and gather data	
KY.3.MD.4a: Identify a statistical question	N/A
focused on numerical data	
KY.3.MD.4d: Make observations from the	N/A
graph about the question posed, including	
questions about the shape of the data and	
compare responses.	

Table 5Descriptive statistics for the number of LEs in each state by grade level for all states (n=52) and for states that are not CCSSM verbatim (n=31) in parentheses when different.

Grade	Min	Q1	Median	Q3	Max
K	1	2	2	2	3
1	0	1	1	1(2)	5
2	1	2	2	2(3)	6
3	1	2	2	2	7
4	1	1	1	1 (2.25)	3
5	0	1	1	1(2)	7
6	2	8 (7)	8	8 (8.25)	13
7	3	7 (6.75)	7	8 (9)	14
8	2	4	4	4 (5)	11
Total	15	28	28 (29)	29.25 (33.5)	47

Table 6A descriptive summary of the common LEs for grades K-5 with counts of the numbers of states that have the same wording (same), similar wording, or did not have the LE (absent).

Grade				
& LE#	Common Learning Expectancies	Same	Similar	Absent
K-1	Describe measurable attributes of objects, such as length	30	17	5
CCSSM	or weight. Describe several measurable attributes of a			
	single object.			
K-2	Classify objects into given categories; count the	24	26	2
CCSSM	numbers of objects in each category and sort the			
***	categories by count.		_	
K-3	Create and interpret real-object and picture graphs	0	5	47
1-1	Organize, represent, and interpret data with up to three	37	13	2
CCSSM	categories; ask and answer questions about the total			
	number of data points, how many in each category, and			
	how many more or less are in one category than in			
1.2	another.	0	11	A 1
1-2	Create and interpret tables, pictograms, and bar graphs	0	11	41
2-1 <i>CCSSM</i>	Generate measurement data by measuring lengths of	28	14	10
CCSSIVI	several objects to the nearest whole unit, or by making			
	repeated measurements of the same object. Show the measurements by making a line plot, where the			
	horizontal scale is marked off in whole-number units.			
2-2	Draw a picture graph and a bar graph (with single-unit	33	18	1
CCSSM	scale) to represent a data set with up to four categories.	33	10	1
CCSSIII	Solve simple put-together, take-apart, and compare			
	problems using information presented in a bar graph.			
2-3	Draw conclusions/interpret graphs (i.e., pictograph, bar	0	10	42
	graphs, line plots)			
3-1	Draw a scaled picture graph and a scaled bar graph to	31	19	2
CCSSM	represent a data set with several categories. Solve one-			
	and two-step "how many more" and "how many less"			
	problems using information presented in scaled bar			
	graphs. For example, draw a bar graph in which each			
	square in the bar graph might represent 5 pets.			
3-2	Generate measurement data by measuring lengths using	32	12	8
CCSSM	rulers marked with halves and fourths of an inch. Show			
	the data by making a line plot, where the horizontal			
	scale is marked off in appropriate units— whole			
	numbers, halves, or quarters.	•	4.0	_
4-1	Make a line plot to display a data set of measurements in	29	19	4
CCSSM	fractions of a unit (1/2, 1/4, 1/8). Solve problems			
	involving addition and subtraction of fractions by using			

	information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.			
4-2	Represent and interpret data in bar graphs	0	9	43
5-1 CCSSM	Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.	31	12	9
5-2	Find and use descriptive statistics (i.e., mean, median, mode, range) to describe data.	0	6	46

Table 7A descriptive summary of the common LEs for grades 6-8 with counts of the numbers of states that have the same wording (same), similar wording, or did not have the LE (absent).

Grade				
& LE#	Common Learning Expectancies	Same	Similar	Absent
6-1	Recognize a statistical question as one that anticipates	30	17	5
CCSSM	variability in the data related to the question and			
	accounts for it in the answers. For example, "How old			
	am I?" is not a statistical question, but "How old are the			
	students in my school?" is a statistical question because			
	one anticipates variability in students' ages.			
6-2	Understand that a set of data collected to answer a	30	15	7
CCSSM	statistical question has a distribution which can be			
	described by its center, spread, and overall shape.			
6-3	Recognize that a measure of center for a numerical data	32	11	9
CCSSM	set summarizes all of its values with a single number,			
	while a measure of variation describes how its values			
	vary with a single number.		• •	
6-4	Display numerical data in plots on a number line,	29	20	3
CCSSM	including dot plots, histograms, and box plots.		10	_
6-5	Summarize numerical data sets in relation to their	32	13	7
CCSSM	context, such as by: Reporting the number of			
	observations.	22	1.0	0
6-6	Summarize numerical data sets in relation to their	33	10	9
CCSSM	context, such as by: Describing the nature of the			
	attribute under investigation, including how it was			
	measured and its units of measurement.	22	27	2
6-7	Summarize numerical data sets in relation to their	23	27	2
CCSSM	context, such as by: Giving quantitative measures of			
	center (median and/or mean) and variability			
	(interquartile range and/or mean absolute deviation), as			
	well as describing any overall pattern and any striking deviations from the overall pattern with reference to the			
	context in which the data were gathered.			
6-8	Summarize numerical data sets in relation to their	29	16	7
CCSSM	context, such as by: Relating the choice of measures of	2)	10	,
CCSSIVI	center and variability to the shape of the data			
	distribution and the context in which the data were			
	gathered.			
7-1	Understand that statistics can be used to gain	32	13	7
CCSSM	information about a population by examining a sample	-		,
	of the population; generalizations about a population			
	from a sample are valid only if the sample is			

	representative of that population. Understand that random sampling tends to produce representative			
	samples and support valid inferences.			
7-2	Use data from a random sample to draw inferences	31	16	5
CCSSM	about a population with an unknown characteristic of			
	interest. Generate multiple samples (or simulated			
	samples) of the same size to gauge the variation in			
	estimates or predictions. For example, estimate the mean			
	word length in a book by randomly sampling words			
	from the book; predict the winner of a school election			
	based on randomly sampled survey data. Gauge how far			
	off the estimate or prediction might be.			
7-3	Informally assess the degree of visual overlap of two	26	19	7
CCSSM	numerical data distributions with similar variabilities,			
	measuring the difference between the centers by			
	expressing it as a multiple of a measure of			
	variability. For example, the mean height of players on			
	the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the			
	variability (mean absolute deviation) on either team; on			
	a dot plot, the separation between the two distributions			
	of heights is noticeable.			
7-4	Use measures of center and measures of variability for	30	14	8
CCSSM	numerical data from random samples to draw informal			
	comparative inferences about two populations. For			
	example, decide whether the words in a chapter of a			
	seventh-grade science book are generally longer than the			
	words in a chapter of a fourth-grade science book.			
7-5	Approximate the probability of a chance event by	31	19	2
CCSSM	collecting data on the chance process that produces it			
	and observing its long-run relative frequency, and			
	predict the approximate relative frequency given the			
	probability. For example, when rolling a number cube			
	600 times, predict that a 3 or 6 would be rolled roughly			
7.0	200 times, but probably not exactly 200 times.	25	8	9
7-6 CCSSM	Develop a probability model and use it to find probabilities of events. Compare probabilities from a	35	8	9
CCSSW	model to observed frequencies; if the agreement is not			
	good, explain possible sources of the discrepancy:			
	Develop a probability model (which may not be			
	uniform) by observing frequencies in data generated			
	from a chance process. For example, find the			
	approximate probability that a spinning penny will land			
	heads up or that a tossed paper cup will land open-end			
	down. Do the outcomes for the spinning penny appear to			
	be equally likely based on the observed frequencies?			

			1	1
7-7	Find probabilities of compound events using organized	33	10	9
CCSSM	lists, tables, tree diagrams, and simulation: Design and			
	use a simulation to generate frequencies for compound			
	events. For example, use random digits as a simulation			
	tool to approximate the answer to the question: If 40%			
	of donors have type A blood, what is the probability that			
	it will take at least 4 donors to find one with type A			
	blood?			
7-8	Create and interpret circle graphs	0	7	45
8-1	Construct and interpret scatter plots for bivariate	34	18	0
CCSSM	measurement data to investigate patterns of association			
	between two quantities. Describe patterns such as			
	clustering, outliers, positive or negative association,			
	linear association, and nonlinear association.			
8-2	Know that straight lines are widely used to model	34	14	4
CCSSM	relationships between two quantitative variables. For			
	scatter plots that suggest a linear association, informally			
	fit a straight line, and informally assess the model fit by			
	judging the closeness of the data points to the line.			
8-3	Use the equation of a linear model to solve problems in	32	15	5
CCSSM	the context of bivariate measurement data, interpreting			
	the slope and intercept. For example, in a linear model			
	for a biology experiment, interpret a slope of 1.5 cm/hr			
	as meaning that an additional hour of sunlight each day			
	is associated with an additional 1.5 cm in mature plant			
	height.			
8-4	Understand that patterns of association can also be seen	28	14	10
CCSSM	in bivariate categorical data by displaying frequencies			
	and relative frequencies in a two-way table. Construct			
	and interpret a two-way table summarizing data on two			
	categorical variables collected from the same subjects.			
	Use relative frequencies calculated for rows or columns			
	to describe possible association between the two			
	variables. For example, collect data from students in			
	your class on whether or not they have a curfew on			
	school nights and whether or not they have assigned			
	chores at home. Is there evidence that those who have a			
	curfew also tend to have chores?			
	·			