Data Converters

- Signals are of two types: Analog & Digital
- Digital Signal Processing (DSP) is much easier, since we have to keep track of only 1s and 0s
- Analog signal processing is pretty tedious (Remember BJT Amplifiers?)
- Particularly, in *communication systems*, digital data transmission produces almost *error-free* and *noise-free* operation

- * There is very little chance that digital signals would get *corrupted by noise* (Remember Noise Margins?)
- * Also, much less chance of *signal interference* in digital transmissions
- * However, after the digital signal is *processed*, we may still need the o/p in **analog form**, e.g., *speech*
- * Thus, the basic signal processing architecture:

Sampling of Analog Signals:

- * Known as Sample-and-Hold Circuit
- * V_C: Switch Control Signal:
 - Makes the switch *close periodically*

- * Produces pulses of width Δt and period T
- * \Delta t: Sampling Interval
- * $f_{sampling} = Sampling Frequency = 1/T$
- * $(T \Delta t)$: *Hold Interval*
 - During this time, V_0 is fed to an ADC, and converted to corresponding digital signal
- * O/p is in N-bit binary form

Signal Quantization:

- * Let an analog signal range from **0 to 10 V**, which needs to be converted to a **4-bit digital signal**
- * Recall: A 4-bit digital signal can represent 16 equispaced values (from 0 to 15)
- * Thus, each value is *spaced apart* by (10 V)/15
 - = **0.67 V**, which corresponds to **1 LSB**
- * This is known as **Resolution of Conversion**
- * *Chart*: $0000 \rightarrow 0.00 \text{ V}$; $0001 \rightarrow 0.67 \text{ V}$; $0010 \rightarrow 1.34 \text{ V}$; $0100 \rightarrow 2.68 \text{ V}$; $1000 \rightarrow 5.36 \text{ V}$; $1010 \rightarrow 6.7 \text{ V}$; $1100 \rightarrow 8.04 \text{ V}$; $1110 \rightarrow 9.38 \text{ V}$; $1111 \rightarrow 10 \text{ V}$

- * *Note*: For **each bit increment**, analog i/p range is **0.67 V**
- * What happens if the analog signal lies within a range, e.g., let's say 7 V?
- * Now, 1010 is 6.7 V and 1011 is 7.37 V
 - \Rightarrow The o/p can be either of 1010 or 1011
 - \Rightarrow Either way, there is an *error*, known as **Quantization Error** (QE)
- * QE = (Analog Full Scale) / $(2^N 1)$, where N = Number of bits

- st Obviously, this error can be reduced by increasing N
- * Example:

• For
$$N = 16$$
, $QE = (10 \text{ V})/(2^{16} - 1) = 0.15 \text{ mV}$

• For N = 32, QE =
$$(10 \text{ V})/(2^{32}-1) = 2.33 \text{ nV}$$

(vanishingly small)

* Another way to express QE: $\pm LSB/2$

* Example:
$$N = 4$$
, $QE = \pm 0.335 V$
 $N = 16$, $QE = \pm 0.075 mV$
 $N = 32$, $QE = \pm 1.165 nV$

DAC:

- * Two types:
 - Binary Weighted
 - R-2R Ladder

Binary Weighted DAC:

- * A_2 A_1 A_0 are *digital i/p bits*, which can be either 0 or 1 (*logically*), equivalent to 0 V or some V_{REF} (*Reference Voltage*)
- * KCL at node X:

$$\frac{V_{\text{REF}} \times A_0}{R} + \frac{V_{\text{REF}} \times A_1}{R/2} + \frac{V_{\text{REF}} \times A_2}{R/4} = -\frac{V_1}{R_F}$$

$$\Rightarrow V_1 = -\frac{R_F}{R} \times (4A_2 + 2A_1 + A_0) \times V_{REF}$$

* Thus, the *output voltage*:

$$V_0 = -\frac{R_2}{R_1} \times V_1 = \frac{R_2 R_F}{R_1 R} \times (4A_2 + 2A_1 + A_0) \times V_{REF}$$

⇒ Binary Weighting

- * Note: Maximum weight is assigned to A_2 , which has the least resistance (R/4) attached to it, so that it draws the maximum current from the reference voltage \rightarrow MSB
- * Similarly, minimum weight is assigned to A_0 , which has the highest resistance (R) attached to it, so that it draws the minimum current from the reference voltage \rightarrow LSB
- * Note: If $R_1 = R_F$ and $R_2 = R$, then $V_0 = (4A_2 + 2A_1 + A_0) \times V_{REF}$

Design Example:

- * Let $V_0(max) = 5 \text{ V}$
 - \Rightarrow A₂A₁A₀ = 111 should correspond to 5 V

$$\Rightarrow V_{REF} = (5 \text{ V})/(4+2+1) = 0.714 \text{ V}$$

* For $A_2A_1A_0 = 000$, $V_0 = 0$, while for $A_2A_1A_0$

= 001,
$$V_0 = 0.714 \text{ V} = (5 \text{ V})/(2^3 - 1)$$

- \Rightarrow For each bit increment, V_0 jumps by 0.714 V
- \Rightarrow Resolution of the DAC = 0.714 V
- * *Note*: For $A_2A_1A_0 = 100$, $V_0 = 2.856 \text{ V} \neq V_0 (\text{max})/2$

R-2R Ladder DAC:

- * For additional i/p bits, the resistors scale as R/8, R/16, R/32, and so on
 - ⇒ Becomes a very *clumsy* design
- * Remedy: R-2R Ladder DAC

- * Uses resistors of values *R* and 2*R* only, and a single op-amp (OA)
- * MSB (A_2) is *closest* to the OA, while LSB (A_0) is *furthest* from it
- * A_0 A_1 A_2 connected to **either 0 or V**_{REF} (*logic 0* or 1)
- * Show that:

•
$$V_1|_{A_2=1 \text{ and } A_1=A_0=0} = (A_2/3) \times V_{REF}$$

•
$$V_1|_{A_1=1 \text{ and } A_2=A_0=0} = (A_1/6) \times V_{REF}$$

•
$$V_1|_{A_0=1 \text{ and } A_2=A_1=0} = (A_0/12) \times V_{REF}$$

* Thus, by *superposition*:

•
$$V_1 = (1/12)(4A_2 + 2A_1 + A_0) \times V_{REF}$$

* The OA is *non-inverting*, with gain:

$$V_0/V_1 = 1 + R_2/R_1$$

* Choose $R_2/R_1 = 11$

$$\Rightarrow V_0 = (4A_2 + 2A_1 + A_0) \times V_{REF}$$

- * The result is exactly same as that obtained in the previous case, but using resistors of *only 2 values* (R and 2R)
- * Extremely popular DAC and heavily used

ADC:

- * Various options available, out of which, we will be discussing two of them:
 - Counting Type
 - Flash (or *Parallel Comparator*)

Counting Type:

* Note: It employs a DAC within it

Operating Principle:

- * Initially, the Binary Counter is **reset** (*all o/ps zero*)
- * Thus, DAC o/p = 0, fed back to the comparator
- * Comparator o/p high \Rightarrow CLK is allowed to pass to the counter through the AND gate
- * The counter starts counting and increments by 1 at each CLK pulse
- * DAC *converts* this digital o/p to its *analog equivalent* and feeds it back to the comparator, which *compares* it with the analog i/p signal

- * So long as the analog i/p signal is *greater* than the DAC o/p, the o/p of the comparator remains *high*, and the counter keeps on *counting*
- * As soon as the DAC o/p becomes *greater* than the analog i/p signal, the comparator o/p goes *low*, and the CLK signal is *prevented* from reaching the i/p of the counter \Rightarrow the count *stops*
- * At that instant of time, the *binary o/p is taken out*, and immediately thereafter the *counter is reset*, which *starts the counting process again*

- * *Note*: During the entire conversion period, the analog i/p *should not change*, i.e., it must be held **constant**
- * Implemented using a Sample-and-Hold (S/H) circuit, with its hold time at least equal to or greater than the conversion time of the ADC
- * *Note*: The conversion time itself is a function of the analog i/p (smaller value leads to quicker conversion and vice-versa)

- * As soon as the count *stops*, the **Hold** of the S/H circuit is *released*, and it samples and holds the *next* analog data for conversion
- * Needs a maximum of $(2^N 1)$ CLK cycles for N-bit data
- * Quite slow, if the analog i/p voltage is large, since the count has to always start from zero
- * Advantage: Very simple design and needs very limited hardware \Rightarrow costs less

Flash (Parallel Comparator):

* Fastest ADC availabe to date

- * Note:
 - For $0 < V_i < V_{REF}/4$:

$$C_1 = C_2 = C_3 = 0$$

• For $V_{REF}/4 < V_{i} < V_{REF}/2$:

$$C_1 = 1, C_2 = C_3 = 0$$

• For $V_{REF}/2 < V_i < 3V_{REF}/4$:

$$C_1 = C_2 = 1, C_3 = 0$$

• For $V_i > 3V_{REF}/4$:

$$C_1 = C_2 = C_3 = 1$$

* The *4-to-2 Line Encoder* takes these as i/ps and produces **2-bit binary output**

* Encoding Scheme:

			MSB	LSB
\mathbb{C}_3	\mathbf{C}_{2}	\mathbf{C}_{1}	\mathbf{B}_{1}	\mathbf{B}_0
0	0	0	0	0
0	0	1	0	1
0	1	1	1	0
1	1	1	1	1

^{*} The entire operation is done **parallely** (*in a flash*)

⇒ Known as a **Parallel Comparator** (or *Flash*) ADC

- * *Note*: **QE** (or *Resolution*) = $\pm V_{REF}/8$
- * Number of comparators needed = $(2^N 1)$ for

N-bit digital o/p

- ⇒ For 8-bit digital o/p, need 255 comparators!!!
- ⇒ One of the major drawbacks of flash ADC, i.e., hardware requirement (and thus, the cost) is huge
- \Rightarrow Use limited to 8-bit o/p
- * Note: Needs only one clock cycle for data conversion
 - \Rightarrow Extremely fast