WIT私有协议

指令使用说明:

串口发送指令必须要在10S内完成,否则会自动上锁,为避免自动上锁,可以先进行以下步骤。

- 1. 输入解锁指令 (OXFF OXAA OX69 OX88 OXB5, OX表示16进制)
- 2. 输入需要修改或读取数据的指令
- 3. 保存指令 (0XFF 0XAA 0X00 0X00 0X00)

寄存器表

ADDR (Hex)	ADDR (Dec)	REGISTER NAME	FUNCTION	SERIAL I/F	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10
00	00	SAVE	保存/重启/恢复出厂	R/W						
01	01	CALSW	校准模式	R/W						
02	02	RSW	输出内容	R/W						GSA
03	03	RRATE	输出速率	R/W						
04	04	BAUD	串口波特率	R/W						
05	05	AXOFFSET	加速度X零偏	R/W						
06	06	AYOFFSET	加速度Y零偏	R/W						
07	07	AZOFFSET	加速度Z零偏	R/W						
08	08	GXOFFSET	角速度X零偏	R/W						
09	09	GYOFFSET	角速度Y零偏	R/W						
0A	10	GZOFFSET	角速度Z零偏	R/W						
ОВ	11	HXOFFSET	磁场X零偏	R/W						
0C	12	HYOFFSET	磁场Y零偏	R/W						
0D	13	HZOFFSET	磁场Z零偏	R/W						
0E	14	D0MODE	D0引脚模式	R/W						
OF	15	D1MODE	D1引脚模式	R/W						
10	16	D2MODE	D2引脚模式	R/W						
11	17	D3MODE	D3引脚模式	R/W						
1A	26	IICADDR	设备地址	R/W						
1B	27	LEDOFF	关闭LED灯	R/W						
1C	28	MAGRANGX	磁场X校准范围	R/W						
1D	29	MAGRANGY	磁场Y校准范围	R/W						
1E	30	MAGRANGZ	磁场Z校准范围	R/W						
1F	31	BANDWIDTH	带宽	R/W						

第2页 共47页 2022-09-17 18:47

20	32	GYRORANGE	陀螺仪量程	R/W	
21	33	ACCRANGE	加速度量程	R/W	
22	34	SLEEP	休眠	R/W	
23	35	ORIENT	安装方向	R/W	
24	36	AXIS6	算法	R/W	
25	37	FILTK	动态滤波	R/W	
26	38	GPSBAUD	GPS波特率	R/W	
27	39	READADDR	读取寄存器	R/W	
2A	42	ACCFILT	加速度滤波	R/W	
2D	45	POWONSEND	指令启动	R/W	
2E	46	VERSION	版本号	R	
30	48	YYMM	年月	R/W	MOUTH[15:8]
31	49	DDHH	日时	R/W	HOUR[15:8]
32	50	MMSS	分秒	R/W	SECONDS[15:8]
33	51	MS	毫秒	R/W	
34	52	AX	加速度X	R	
35	53	AY	加速度Y	R	
36	54	AZ	加速度Z	R	
37	55	GX	角速度X	R	
38	56	GY	角速度Y	R	
39	57	GZ	角速度Z	R	
3A	58	НХ	磁场X	R	
3B	59	НҮ	磁场Y	R	
3C	60	HZ	磁场Z	R	
3D	61	Roll	横滚角	R	
3E	62	Pitch	俯仰角	R	
3F	63	Yaw	航向角	R	
40	64	TEMP	温度	R	

第3页 共47页 2022-09-17 18:47

41	65	D0Status	D0引脚状态	R	
42	66	D1Status	D1引脚状态	R	
43	67	D2Status	D2引脚状态	R	
44	68	D3Status	D3引脚状态	R	
45	69	PressureL	气压低16位	R	
46	70	PressureH	气压高16位	R	
47	71	HeightL	高度低16位	R	
48	72	HeightH	高低高16位	R	
49	73	LonL	经度低16位	R	
4A	74	LonH	经度高16位	R	
4B	75	LatL	纬度低16位	R	
4C	76	LatH	纬度高16位	R	
4D	77	GPSHeight	GPS海拔	R	
4E	78	GPSYAW	GPS航向角	R	
4F	79	GPSVL	GPS地速低16位	R	
50	80	GPSVH	GPS地速高16位	R	
51	81	q0	四元数0	R	
52	82	q1	四元数1	R	
53	83	q2	四元数2	R	
54	84	q3	四元数3	R	
55	85	SVNUM	卫星数	R	
56	86	PDOP	位置精度	R	
57	87	HDOP	水平精度	R	
58	88	VDOP	垂直精度	R	
59	89	DELAYT	报警信号延时	R/W	
5A	90	XMIN	X轴角度报警最小值	R/W	
5B	91	XMAX	X轴角度报警最大值	R/W	
F.C	വാ	D AT\/A I	/#由由压	D	

第4页 共47页 2022-09-17 18:47

3 C	92	DAIVAL	洪电电压	ĸ		
5D	93	ALARMPIN	报警引脚映射	R/W	X-ALARM[15:12]	X+ALARN
5E	94	YMIN	Y轴角度报警最小值	R/W		
5F	95	YMAX	Y轴角度报警最大值	R/W		
61	97	GYROCALITHR	陀螺仪静止阈值	R/W		
62	98	ALARMLEVEL	角度报警电平	R/W		
63	99	GYROCALTIME	陀螺仪自动校准时间	R/W		
68	104	TRIGTIME	报警连续触发时间	R/W		
69	105	KEY	解锁	R/W		
6A	106	WERROR	陀螺仪变化值	R		
6B	107	TIMEZONE	GPS时区	R/W		
6E	110	WZTIME	角速度连续静止时间	R/W		
6F	111	WZSTATIC	角速度积分阈值	R/W		
74	116	MODDELAY	485数据应答延时	R/W		
79	121	XREFROLL	横滚角零位参考值	R		
7A	122	YREFPITCH	俯仰角零位参考值	R		
7F	127	NUMBERID1	设备编号1-2	R	ID2[15:8]
80	128	NUMBERID2	设备编号3-4	R	ID4[15:8]
81	129	NUMBERID3	设备编号5-6	R	ID6[15:8]
82	130	NUMBERID4	设备编号7-8	R	ID8[15:8]
83	131	NUMBERID5	设备编号9-10	R	ID10	[15:8]
84	132	NUMBERID6	设备编号11-12	R	ID12	[15:8]
 	·	•				

协议格式

读格式

- ·数据是按照16进制方式发送的,不是ASCII码。
- 每个数据分低字节和高字节依次传送,二者组合成一个有符号的short类型的数据。例如数据 DATA1,其中DATA1L为低字节,DATA1H为高字节。转换方法如下:假设DATA1为实际的数据,DATA1H为其高字节部分,DATA1L为其低字节部分,

那么: DATA1=(short)((short)DATA1H<<8|DATA1L)。这里一定要注意DATA1H需要先强制转换为一个有符号的short类型的数据以后再移位,并且DATA1的数据类型也是有符号的short类型,这样才能表示出负数。

协议头	数据内容	数据低8位	数据高8位	数据低8位	数据高8位	数据低8位	数据高8位
0x55	TYPE [1]	DATA1L[7:0]	DATA1H[15:8]	DATA2L[7:0]	DATA2H[15:8]	DATA3L[7:0]	DATA3H[15:8]

【1】TYPE(数据内容):

TYPE	备注
0x50	时间
0x51	加速度
0x52	角速度
0x53	角度
0x54	磁场
0x55	端口状态
0x56	气压高度
0x57	经纬度
0x58	地速
0x59	四元数
0x5A	GPS定位精度
0x5F	读取

【2】SUMCRC(数据和校验):

SUMCRC=0x55+TYPE+DATA1L+DATA1H+DATA2L+DATA2H+DATA3L+DATA3H+DATA4L+DATA4H SUMCRC为char型,取校验和的低8位

时间输出

0x55	0x50	YY	MM	DD	НН	MN	SS	MSL	MSH
------	------	----	----	----	----	----	----	-----	-----

名称	描述	备注
YY	年	
MM	月	
DD	日	
НН	时	
MN	分	
SS	秒	
MSL	毫秒低8位	毫秒计算公式:
MSH	毫秒高8位	毫秒=((MSH<<8) MSL)
SUM	校验和	SUM=0x55+0x50+YY+MM+DD+HH+MN+SS+MSL+MSH

加速度输出

0x55	0x51	AxL	AxH	AyL	АуН	AzL	AzH	TL	TH

名称	描述	备注
AxL	加速度X低8位	加速度X=((AxH<<8) AxL)/32768*16g
AxH	加速度X高8位	(g为重力加速度,可取9.8m/s2)
AyL	加速度Y低8位	加速度Y=((AyH<<8) AyL)/32768*16g
АуН	加速度Y高8位	(g为重力加速度,可取9.8m/s2)
AzL	加速度Z低8位	加速度Z=((AzH<<8) AzL)/32768*16g
AzH	加速度Z高8位	(g为重力加速度,可取9.8m/s2)
TL	温度低8位	温度计算公式:
TH	温度高8位	温度=((TH<<8) TL) /100 ℃
SUM	校验和	SUM=0x55+0x51+AxL+AxH+AyL+AyH+AzL+AzH+TL+Th

角速度输出

第7页 共47页 2022-09-17 18:47

0x55 0x52 WxL WxH WyL WyH WzL WzH VolL Voll		0x55	0x52	WxL	WxH	WyL	WyH	WzL	WzH	VolL	Voll
---	--	------	------	-----	-----	-----	-----	-----	-----	------	------

名称	描述	备注				
WxL	角速度X低8位	角速度X=((WxH<<8) WxL)/32768*2000°/s				
WxH	角速度X高8位					
WyL	角速度Y低8位	角速度Y=((WyH<<8) WyL)/32768*2000°/s				
WyH	角速度Y高8位					
WzL	角速度Z低8位	角速度Z=((WzH<<8) WzL)/32768*2000°/s				
WzH	角速度Z高8位					
VolL	电压低8位	(非蓝牙产品,该数据无效) 电压计算公式:				
VolH	电压高8位	电压=((VoIH<<8) VoIL) /100 ℃				
SUM	校验和	SUM=0x55+0x52+WxL+WxH+WyL+WyH+WzL+WzH+VolH+VolL				

角度输出

0x55 0x53 RollL RollH PitchL PitchH YawL YawH VL VH

名称	描述	备注					
RollL	滚转角X低8位	滚转角X=((RollH<<8) RollL)/32768*180(°)					
RollH	滚转角X高8位						
PitchL	俯仰角Y低8位	俯仰角Y=((PitchH<<8) PitchL)/32768*180(°)					
PitchH	俯仰角Y高8位						
YawL	偏航角Z低8位	偏航角Z=((YawH<<8) YawL)/32768*180(°)					
YawH	偏航角Z高8位						
VL	版本号低8位	版本号计算公式:					
VH	版本号高8位	版本号=(VH<<8) VL					
SUM	校验和	SUM=0x55+0x53+RollH+RollL+PitchH+PitchL+YawH+YawL+VH+V L					

第8页 共47页 2022-09-17 18:47

磁场输出

0x55 0x54 HxL HxH HyL HyH HzL HzH IL IH	0x55	1/X)4		HxH	HyL	НуН	HzL	HzH	TL	TH
---	------	--------	--	-----	-----	-----	-----	-----	----	----

名称	描述	备注
HxL	磁场X低8位	磁场X=((HxH<<8) HxL)
НхН	磁场X高8位	
HyL	磁场Y低8位	磁场Y=((HyH <<8) HyL)
НуН	磁场Y高8位	
HzL	磁场Z低8位	磁场Z=((HzH<<8) HzL)
HzH	磁场Z高8位	
TL	温度低8位	温度计算公式:
TH	温度高8位	温度=((TH<<8) TL) /100 ℃
SUM	校验和	SUM=0x55+0x54+HxH+HxL+HyH+HyL+HzH+HzL+TH+TL

端口状态输出

0.55	0.55	DOL	DOLL	D41	D411	D21	DOLL	D 21	D211
0x55	0x55	DOL	D0H	D1L	D1H	D2L	D2H	D3L	D3H

第9页 共47页 2022-09-17 18:47

名称	描述	备注
D0L	D0状态低8位	D0状态=((D0H<<8) D0L)
D0H	D0状态高8位	
D1L	D1状态低8位	D1状态=((D1H<<8) D1L)
D1H	D1状态高8位	
D2L	D2状态低8位	D2状态=((D2H<<8) D2L)
D2H	D2状态高8位	
D3L	D3状态低8位	D3状态=((D3H<<8) D3L)
D3H	D3状态高8位	D31人が、- ((D3口 < < 0) D3L)
SUM	校验和	SUM=0x55+0x54+D0L+D0H+D1L+D1H+D2L+D2H+D3L+D3H

说明:

- ・当端口模式设置为模拟输入时,端口状态数据表示模拟电压。实际电压的大小按照下面公式计算:
 - U=DxStatus/1024*Uvcc
- · Uvcc为芯片的电源电压,由于片上有LDO,如果模块供电电压大于3.5V,Uvcc为3.3V。如果模块供电电压小于3.5V,Uvcc=电源电压-0.2V。
- 当端口模式设置为数字量输入时,端口状态数据表示端口的数字电平状态,高电平为1,低电平为0。
- 当端口模式设置为高电平输出模式时,端口状态数据为1。
- 当端口模式设置为低电平输出模式时,端口状态数据位0。

气压高度输出

0x55	0x56	P0	P1	P2	Р3	Н0	H1	H2	НЗ
------	------	----	----	----	----	----	----	----	----

名称	描述	备注
P0	气压[7:0]	
P1	气压[15:8]	气压=(P3<<24) (P2<<16) (P1<<8) P0(Pa)
P2	气压[23:16]	
Р3	气压[31:24]	
Н0	高度[7:0]	
H1	高度[15:8]	高度=(H3<<24) (H2<<16) (H1<<8) H0(cm)
H2	高度[23:16]	
Н3	高度[31:24]	
SUM	校验和	SUM=0x55+0x56+P0+P1+P2+P3+H0+H1+H2+H3

经纬度输出

0x55	0x57	Lon0	Lon1	Lon2	Lon3	Lat0	Lat1	Lat2	Lat3

名称	描述	备注
Lon0	经度[7:0]	
Lon1	经度[15:8]	经度=(Lon3<<24) (Lon2<<16) (Lon1<<8) Lon0
Lon2	经度[23:16]	
Lon3	经度[31:24]	
Lat0	纬度[7:0]	
Lat1	纬度[15:8]	纬度=(Lat3<<24) (Lat2<<16) (Lat1<<8) Lat0
Lat2	纬度[23:16]	
Lat3	纬度[31:24]	
SUM	校验和	SUM=0x55+0x57+Lon0+Lon1+Lon2+Lon3+Lat0+Lat1+Lat2+Lat3

说明:

• NMEA8013标准规定GPS的经度输出格式为ddmm.mmmmm(dd为度, mm.mmmmm为分), 经/ 纬度输出时去掉了小数点, 因此经/纬度的度数可以这样计算:

第11页 共47页 2022−09−17 18:47

dd=Lon[31:0]/10000000;

dd=Lat[31:0]/10000000;

经/纬度的分数可以这样计算:

mm.mmmm=(Lon[31:0]%1000000)/100000; (%表示求余数运算)mm.mmmm=(Lat[31:0]%1000000)/100000; (%表示求余数运算)

GPS数据输出

0x55	0x58	GPS	GPS	GPS	GPS	GPSV0	GPSV1	GPSV2	GPSV3
		HeightL	Height	YawL	YawH				
			Н						

名称	描述	备注
GPS HeightL	GPS海拔[7:0]	GPS高度=((GPSHeightH<<8) GPSHeightL)/10(m)
GPS HeightH	GPS海拔[15:8]	
GPS YawL	GPS航向[7:0]	CDS管点每-(/CDSVowLLxx9)/CDSVowL)/100(°)
GPS YawH	GPS航向[15:8]	GPS航向角=((GPSYawH<<8) GPSYawL)/100(°)
GPSV0	GPS地速[7:0]	
GPSV1	GPS地速[15:8]	GPS地速 = ((GPSV3 < <24) (GPSV2 < <16)
GPSV2	GPS地速[23:16]	(GPSV1 < < 8) GPSV0)/1000(km/h)
GPSV3	GPS地速[31:24]	
SUM	校验和	SUM=0x55+0x58+GPSHeightL+GPSHeightH+GPSYawL+GPSYawH+GPSV0+GPSV1+GPSV2+GPSV3

四元数输出

0x5	5 0x59	Q0L	Q0H	Q1L	Q1H	Q2L	Q2H	Q3L	Q3H
-----	--------	-----	-----	-----	-----	-----	-----	-----	-----

第12页 共47页 2022-09-17 18:47

名称	描述	备注
Q0L	四元数0低8位	q0=((Q0H<<8) Q0L)/32768
Q0H	四元数0高8位	
Q1L	四元数1低8位	q1=((Q1H<<8) Q1L)/32768
Q1H	四元数1高8位	
Q2L	四元数2低8位	q2=((Q2H<<8) Q2L)/32768
Q2H	四元数2高8位	
Q3L	四元数3低8位	a2_((O211 < 20) O21) /22760
Q3H	四元数3高8位	q3=((Q3H<<8) Q3L)/32768
SUM	校验和	SUM=0x55+0x59+Q0L+Q0H+Q1L +Q1H +Q2L+Q2H+Q3L+Q3H

GPS定位精度输出

0x55 0x5A SNL SNH PDOPL	PDOPH HDOPL HDOPH VDOPL VDOPH
-------------------------	-------------------------------

名称	描述	备注
SNL	卫星数低8位	GPS卫星数=((SNH<<8) SNL)
SNH	卫星数高8位	
PDOPL	位置定位精度低8位	位置定位精度=((PDOPH < < 8) PDOPL)/100
PDOPH	位置定位精度高8位	
HDOPL	水平定位精度低8位	水平定位精度=((HDOPH<<8) HDOPL)/100
HDOPH	水平定位精度高8位	
VDOPL	垂直定位精度低8位	五古宁位特度 (///DORLL 4.9))//DORL\/100
VDOPH	垂直定位精度高8位	垂直定位精度=((VDOPH<<8) VDOPL)/100
SUM	校验和	SUM=0x55+0x5A+SNL+SNH+PDOPL+PDOPH+HDOPL+HDOPH+V DOPL+VDOPH

读取寄存器返回值

第13页 共47页 2022-09-17 18:47

•用于读取用户指定寄存器的值,读取REG1,则返回REG1~REG4的4个寄存器的值,协议固定必须返回4个寄存器

0x55	0x5F	REG1L	REG1H	REG2L	REG2H	REG3L	REG3H	REG4L	REG4H

名称	描述	备注	
REG1L	寄存器1低8位	REG1[15:0]=((REG1H<<8) REG1L)	
REG1H	寄存器1高8位		
REG2L	寄存器2低8位	REG2[15:0]=((REG2H<<8) REG2L)	
REG2H	寄存器2高8位		
REG3L	寄存器3低8位	REG3[15:0]=((REG3H<<8) REG3L)	
REG3H	寄存器3高8位		
REG4L	寄存器4低8位	DEC 4[15:0]_(/DEC 4[1 < 20)]DEC 4[1)	
REG5H	寄存器4高8位	REG4[15:0]=((REG4H<<8) REG4L)	
SUM	校验和	SUM=0x55+0x5F+REG1L+REG1H+REG2L+REG2H+REG3L+REG3H+ REG4L+REG4H	

例如:

• 读取寄存器"AXOFFSET",则返回: 0x55 0x5F AXOFFSET[7:0] AXOFFSET[15:8] AYOFFSET[7:0] AYOFFSET[15:8] AZOFFSET[7:0] AZOFFSET[15:8] GXOFFSET[15:8] SUM

写格式

- ·以下数据,全部使用Hex码16进制
- 所有的设置,都需要先操作解锁寄存器(KEY)

协议头	协议头	寄存器	数据低8位	数据高8位
0xFF	0xAA	ADDR	DATAL[7:0]	DATAH[15:8]

- ·数据是按照16进制方式发送的,不是ASCII码。
- 每个数据分低字节和高字节依次传送,二者组合成一个有符号的short类型的数据。例如数据 DATA,其中DATAL为低字节,DATAH为高字节。转换方法如下:假设DATA为实际的数据,DATAH为其高字节部分,DATAL为其低字节部分,

那么: DATA=(short)((short)DATAH<<8|DATAL)。这里一定要注意DATAH需要先强制转换为一个

有符号的short类型的数据以后再移位,并且DATA的数据类型也是有符号的short类型,这样才能表示出负数。

注:

进行指令写入操作时候需要分三个步骤执行。

第一步解锁0xFF 0XAA 0X69 0X88 0XB5,

第二步发送需要修改的指令,

第三步保存指令0xFF 0XAA 0X00 0X00 0X00。流程图如下。

第15页 共47页 2022-09-17 18:47

SAVE (保存/重启/恢复出厂)

寄存器名称: SAVE 寄存器地址: 0 (0x00)

读写方向: R/W 默认值: 0x0000

Bit	NAME	FUNCTION		
15:0	SAVE[15:0]	保存: 0x0000 重启: 0x00FF 恢复出厂: 0x0001		
<i>=</i> /5d ⋅ 1	一例: EE AA 00 EE 00 (重白)			

示例: FF AA 00 FF 00 (重启)

CALSW (校准模式)

第17页 共47页 2022-09-17 18:47

寄存器名称: CALSW 寄存器地址: 1 (0x01)

读写方向: R/W 默认值: 0x0000

Bit	NAME	FUNCTION			
15:4					
3:0	CAL[3:0]	设置校准模式: 0000(0x00): 正常工作模式 0001(0x01): 自动加计校准 0011(0x03): 高度清零 0100(0x04): 航向角置零 0111(0x07): 磁场校准 (球型拟合法) 1000(0x08): 设置角度参考 1001(0x09): 磁场校准 (双平面模式)			
示例:	示例: FF AA 01 04 00 (航向角置零)				

RSW(输出内容)

第18页 共47页 2022-09-17 18:47

寄存器名称: RSW

寄存器地址: 2 (0x02)

读写方向: R/W 默认值: 0x001E

Bit	NAME	FUNCTION
15:11		
10	GSA (0x5A)	0: 关闭 1: 打开
9	QUATER (0x59)	0: 关闭 1: 打开
8	VELOCITY (0x58)	0: 关闭 1: 打开
7	GPS (0x57)	0: 关闭 1: 打开
6	PRESS (0x56)	0: 关闭 1: 打开
5	PORT (0x55)	0: 关闭 1: 打开
4	MAG (0x54)	0: 关闭 1: 打开
3	ANGLE (0x53)	0: 关闭 1: 打开
2	GYRO (0x52)	0: 关闭 1: 打开
1	ACC (0x51)	0: 关闭 1: 打开
0	TIME (0x50)	0: 关闭 1: 打开
示例:	FF AA 02 3E 00 (设置只	输出加速度、角速度、角度、磁场、端口状态)

RRATE (输出速率)

第19页 共47页 2022-09-17 18:47

寄存器名称: RRATE 寄存器地址: 3 (0x03)

读写方向: R/W 默认值: 0x0006

Bit	NAME	FUNCTION
15:4		
3:0	RRATE[3:0]	设置输出速率: 0001(0x01): 0.2Hz 0010(0x02): 0.5Hz 0011(0x03): 1Hz 0100(0x04): 2Hz 0101(0x05): 5Hz 0110(0x06): 10Hz 0111(0x07): 20Hz 1000(0x08): 50Hz 1001(0x09): 100Hz 1011(0x00): 单次回传 1100(0x00): 不回传

示例: FF AA 03 03 00 (设置1Hz输出)

注: HWT906, WT931可以输出500Hz, 1000Hz.

FF AA 03 0C 00:500Hz FF AA 03 0D 00:1000Hz FF AA 03 0E 00:单次回传

BAUD (串口波特率)

寄存器名称: BAUD

寄存器地址: 4 (0x04)

读写方向: R/W 默认值: 0x0002

Bit	NAME	FUNCTION				
15:4						
3:0	BAUD[3:0]	设置串口波特率: 0001(0x01): 4800bps 0010(0x02): 9600bps 0011(0x03): 19200bps 0100(0x04): 38400bps 0101(0x05): 57600bps 0110(0x06): 115200bps 0111(0x07): 230400bps 1000(0x08): 460800bps (仅WT931/JY931/HWT606/HWT906支持) 1001(0x09): 921600bps (仅WT931/JY931/HWT606/HWT906支持)				
示例:	示例: FF AA 04 06 00 (设置串口波特率115200)					

AXOFFSET~HZOFFSET (零偏设置)

第21页 共47页 2022-09-17 18:47

寄存器名称: AXOFFSET~HZOFFSET

寄存器地址: 5~13 (0x05~0x0D)

读写方向: R/W 默认值: 0x0000

Bit	NAME	FUNCTION	
15:0	AXOFFSET[15:0]	加速度X轴零偏,实际加速度零偏=AXOFFSET[15:0]/10000(g)	
15:0	AYOFFSET[15:0]	加速度Y轴零偏,实际加速度零偏=AYOFFSET[15:0]/10000(g)	
15:0	AZOFFSET[15:0]	加速度Z轴零偏,实际加速度零偏=AZOFFSET[15:0]/10000(g)	
15:0	GXOFFSET[15:0]	角速度X轴零偏,实际角速度零偏=GXOFFSET[15:0]/10000(°/s)	
15:0	GYOFFSET[15:0]	角速度Y轴零偏,实际角速度零偏=GYOFFSET[15:0]/10000(°/s)	
15:0	GZOFFSET[15:0]	角速度Z轴零偏,实际角速度零偏=GZOFFSET[15:0]/10000(°/s)	
15:0	HXOFFSET[15:0]	磁场X轴零偏	
15:0	HYOFFSET[15:0]	磁场Y轴零偏	
15:0	HZOFFSET[15:0]	磁场Z轴零偏	
示例:	示例: FF AA 05 E8 03 (设置加速度X轴零偏0.1g) ,0x03E8=1000, 1000/10000=0.1(g)		

D0MODE~D3MODE (端口模式设置)

第22页 共47页 2022-09-17 18:47

寄存器名称: D0MODE~D3MODE 寄存器地址: 14~17 (0x0E~0x11)

读写方向: R/W 默认值: 0x0000

Bit	NAME	FUNCTION
3:0	D0MODE[3:0]	设置D0端口模式 0000(0x00): 模拟输入 (默认) 0001(0x01): 数字输入 0010(0x02): 输出数字高电平 0011(0x03): 输出数字低电平
3:0	D1MODE[3:0]	设置D1端口模式 0000(0x00): 模拟输入(默认) 0001(0x01): 数字输入 0010(0x02): 输出数字高电平 0011(0x03): 输出数字低电平 0101(0x05): 设置相对姿态
3:0	D2MODE[3:0]	设置D2端口模式 0000(0x00): 模拟输入 (默认) 0001(0x01): 数字输入 0010(0x02): 输出数字高电平 0011(0x03): 输出数字低电平
3:0	D3MODE[3:0]	设置D3端口模式 0000(0x00): 模拟输入 (默认) 0001(0x01): 数字输入 0010(0x02): 输出数字高电平 0011(0x03): 输出数字低电平
示例: FF AA 0E 03 00 (设置D0为输出数字低电平模式)		

IICADDR (设备地址)

寄存器名称: IICADDR 寄存器地址: 26 (0x1A)

读写方向: R/W 默认值: 0x0050

Bit	NAME	FUNCTION	
15:8			
7:0	IICADDR[7:0]	设置设备地址,用于I2C和Modbus通讯使用 0x01~0x7F	
示例: [示例: FF AA 1A 02 00 (设置设备地址为0x02)		

LEDOFF (关闭LED灯)

寄存器名称: LEDOFF

寄存器地址: 27 (0x1B)

读写方向: R/W 默认值: 0x0000

Bit	NAME	FUNCTION
15:1		
0	LEDOFF	1: 关闭LED灯 0: 打开LED灯
一周: EE AA 18 01 00 (美田 EDVI)		

示例: FF AA 1B 01 00 (关闭LED灯)

MAGRANGX~MAGRANGZ (磁场校准范围)

寄存器名称: MAGRANGX~MAGRANGZ

寄存器地址: 28~30 (0x1C~0x1E)

读写方向: R/W 默认值: 0x01F4

Bit	NAME	FUNCTION	
15:0	MAGRANGX[15:0]	磁场校准X轴范围	
15:0	MAGRANGY[15:0]	磁场校准Y轴范围	
15:0	MAGRANGZ[15:0]	磁场校准Z轴范围	
示例:	示例: FF AA 1C F4 01 (设置磁场校准X轴范围为500)		

BANDWIDTH (带宽)

寄存器名称: BANDWIDTH

寄存器地址: 31 (0x1F)

读写方向: R/W 默认值: 0x0004

Bit	NAME	FUNCTION	
15:4			
3:0	BANDWIDTH[3:0]	设置带宽 0000(0x00): 256Hz 0001(0x01): 188Hz 0010(0x02): 98Hz 0011(0x03): 42Hz 0100(0x04): 20Hz 0101(0x05): 10Hz 0110(0x06): 5Hz	
示例:	示例: FF AA 1F 01 00 (设置带宽为188Hz)		

GYRORANGE (陀螺仪量程)

第25页 共47页 2022-09-17 18:47

寄存器名称: GYRORANGE

寄存器地址: 32 (0x20)

读写方向: R/W 默认值: 0x0003

Bit	NAME	FUNCTION
15:4		
3:0	GYRORANGE[3:0]	设置陀螺仪量程 0011(0x03): 2000°/s 默认2000°/s,固定不可设置
示例: FF AA 20 03 00 (设置陀螺仪量程2000°/s)		

ACCRANGE (加速度计量程)

寄存器名称: ACCRANGE

寄存器地址: 33 (0x21)

读写方向: R/W 默认值: 0x0000

Bit	NAME	FUNCTION
15:4		
3:0	ACCRANGE[3:0]	设置加速度计量程 0000(0x00): ±2g 0011(0x03): ±16g 该参数不可设置,产品内部自适应加速度量程,当加速度超过2g时 动切换到16g
示例: FF AA 21 00 00 (设置加速度计量程16g)		

SLEEP (休眠)

寄存器名称: SLEEP

寄存器地址: 34 (0x22)

读写方向: R/W 默认值: 0x0000

Bit	NAME	FUNCTION
15:1		
0	SLEEP	设置休眠 1(0x01): 休眠 任意串口数据,可唤醒
二 例:FF AA 22 01 00 (計入休眠)		

示例: FF AA 22 01 00 (进入休眠)

ORIENT (安装方向)

寄存器名称: ORIENT

寄存器地址: 35 (0x23)

读写方向: R/W 默认值: 0x0000

Bit	NAME	FUNCTION
15:1		
0	ORIENT	设置安装方向 0(0x00): 水平安装 1(0x01): 垂直安装 (必须坐标轴的Y轴箭头朝上)

示例: FF AA 23 01 00 (设置垂直安装)

AXIS6 (算法)

第27页 共47页 2022-09-17 18:47

寄存器名称: AXIS6

寄存器地址: 36 (0x24)

读写方向: R/W 默认值: 0x0000

Bit	NAME	FUNCTION	
15:1			
0	AXIS6	设置算法 0(0x00): 9轴算法 (磁场解算航行角,绝对航向角) 1(0x01): 6轴算法 (积分解算航行角,相对航向角)	
示例: F	示例: FF AA 24 01 00 (设置6轴算法模式)		

FILTK (K值滤波)

寄存器名称: FILTK

寄存器地址: 37 (0x25)

读写方向: R/W 默认值: 0x001E

Bit	NAME	FUNCTION
15:0	FILTK[15:0]	范围: 1~10000, 默认30 (不建议修改, 一旦修改, 角度达不到使用要时, 请修改为30) FILTK[15:0]越小, 抗震性能增强, 实时性减弱 FILTK[15:0]越大, 抗震性能减弱, 实时性增强

示例: FF AA 25 1E 00 (设置K值滤波为30)

GPSBAUD (GPS波特率)

寄存器名称: GPSBAUD 寄存器地址: 38 (0x26)

读写方向: R/W 默认值: 0x0002

Bit	NAME	FUNCTION
15:4		
3:0	GPSBAUD[3:0]	设置GPS波特率: 0001(0x01): 4800bps 0010(0x02): 9600bps 0011(0x03): 19200bps 0100(0x04): 38400bps 0101(0x05): 57600bps 0110(0x06): 115200bps 0111(0x07): 230400bps
示例: FF AA 26 02 00 (设置GPS波特率9600)		

READADDR (读取寄存器)

寄存器名称: READADDR 寄存器地址: 39 (0x27)

读写方向: R/W 默认值: 0x00FF

Bit	NAME	FUNCTION
15:8		
7:0	READADDR[7:0]	读取寄存器范围: 请参考"寄存器表"

示例:

发送: FF AA 27 34 00 (读取加速度X轴0x34)

返回: 55 5F AXL AXH AYL AYH AZL AZH GXL GXH SUM

具体请参考"读格式"章节的"读取寄存器返回值"

ACCFILT (加速度滤波)

寄存器名称: ACCFILT 寄存器地址: 42 (0x2A)

读写方向: R/W 默认值: 0x01F4

Bit	NAME	FUNCTION
15:0	ACCFILT[15:0]	范围: 1~10000, 默认500 (不建议修改, 一旦修改, 角度达不到使用野时, 请修改为500) ACCFILT[15:0]越小, 抗震性能增强, 实时性减弱 ACCFILT[15:0]越大, 抗震性能减弱, 实时性增强 该参数为经验值, 需要根据不同环境调试该参数, 在拖拉机的环境里, ACCFILT[15:0]可调节为100, 因为拖拉机的抖动严重, 需要提高抗震性能

示例: FF AA 2A F4 01 (设置加速度滤波500)

POWONSEND (上电输出)

寄存器名称: POWONSEND

寄存器地址: 45 (0x2D)

读写方向: R/W 默认值: 0x0001

15:4	Bit	NAME	FUNCTION
次里也《白油·	15:4		
3:0 POWONSEND[3:0] 0000(0x00): 关闭上电数据输出 0001(0x01): 打开上电数据输出	3:0	POWONSEND[3:0]	

示例: FF AA 2D 00 00 (打开上电数据输出)

VERSION (版本号)

第30页 共47页 2022-09-17 18:47

寄存器名称: VERSION 寄存器地址: 46 (0x2E)

读写方向: R 默认值: 无

Bit	NAME	FUNCTION
15:0	VERSION[15:0]	不同产品,版本号不一样

示例:

发送: FF AA 27 2E 00 (读取版本号, 0x27表示读取, 0x2E是版本号寄存器)

返回: 55 5F VL VH XX XX XX XX XX XX SUM

VERSION[15:0] = (short)(((short)VH < < 8)|VL)

YYMM~MS (片上时间)

第31页 共47页 2022-09-17 18:47

寄存器名称: YYMM~MS

寄存器地址: 48~51 (0x30~0x33)

读写方向: R/W 默认值: 0x0000

Bit	NAME	FUNCTION
15:8	YYMM[15:8]	月
7:0	YYMM[7:0]	年
15:8	DDHH[15:8]	时
7:0	DDHH[7:0]	日
15:8	MMSS[15:8]	秒
7:0	MMSS[7:0]	分
15:0	MS[15:0]	毫秒

示例:

FF AA 30 16 03 (设置年月22-03)

FF AA 31 0C 09 (设置日时12-09)

FF AA 32 1E 3A (设置分秒30:58)

FF AA 33 F4 01 (设置毫秒500)

示例:

发送: FF AA 27 30 00 (读取版本号, 0x27表示读取, 0x30是年月寄存器)

返回: 55 5F YYMM[7:0] YYMM[15:8] DDHH[7:0] DDHH[15:8] MMSS[7:0] MMSS[15:8] MS[7:0] MS[15

SUM

AX~AZ (加速度)

寄存器名称: AX~AZ

寄存器地址: 52~54 (0x34~0x36)

读写方向: R 默认值: 0x0000

Bit	NAME	FUNCTION
15:0	AX[15:0]	加速度X=AX[15:0]/32768*16g (g为重力加速度,可取9.8m/s2)
15:0	AY[15:0]	加速度Y=AY[15:0]/32768*16g (g为重力加速度,可取9.8m/s2)
15:0	AZ[15:0]	加速度Z=AZ[15:0]/32768*16g (g为重力加速度,可取9.8m/s2)

读取3加速度: 50 03 00 34

GX~GZ (角速度)

寄存器名称: GX~GZ

寄存器地址: 55~57 (0x37~0x39)

读写方向: R 默认值: 0x0000

Bit	NAME	FUNCTION
15:0	GX[15:0]	角速度X=GX[15:0]/32768*2000°/s
15:0	GY[15:0]	角速度Y=GY[15:0]/32768*2000°/s
15:0	GZ[15:0]	角速度Z=GZ[15:0]/32768*2000°/s

HX~HZ (磁场)

第33页 共47页 2022-09-17 18:47

寄存器名称: HX~HZ

寄存器地址: 58~60 (0x3A~0x3C)

读写方向: R 默认值: 0x0000

Bit	NAME	FUNCTION
15:0	HX[15:0]	磁场X=HX[15:0] (单位: LSB)
15:0	HY[15:0]	磁场Y=HY[15:0] (单位: LSB)
15:0	HZ[15:0]	磁场Z=HZ[15:0] (单位: LSB)

Roll~Yaw (角度)

寄存器名称: Roll~Yaw

寄存器地址: 61~63 (0x3D~0x3F)

读写方向: R 默认值: 0x0000

Bit	NAME	FUNCTION
15:0	Roll[15:0]	滚转角X=Roll[15:0]/32768*180°
15:0	Pitch[15:0]	俯仰角Y=Pitch[15:0]/32768*180°
15:0	Yaw[15:0]	航向角Z=Yaw[15:0]/32768*180°

TEMP (温度)

寄存器名称: TEMP

寄存器地址: 64 (0x40)

读写方向: R

默认值: 0x0000

Bit	NAME	FUNCTION
15:0	TEMP[15:0]	温度=TEMP[15:0]/100℃

D0Status~D3Status (端口状态)

寄存器名称: D0Status~D3Status 寄存器地址: 65~68 (0x41~0x44)

读写方向: R 默认值: 0x0000

Bit	NAME	FUNCTION
15:0	D0Status[15:0]	D0状态值
15:0	D1Status[15:0]	D1状态值
15:0	D2Status[15:0]	D2状态值
15:0	D3Status[15:0]	D3状态值

PressureL~HeightH (气压高度)

寄存器名称: PressureL~HeightH 寄存器地址: 69~72 (0x45~0x48)

读写方向: R 默认值: 0x0000

Bit	NAME	FUNCTION
15:0	PressureL[15:0]	气压=((int)PressureH[15:0]<<16) PressureL[15:0](Pa)
15:0	PressureH[15:0]	
15:0	HeightL[15:0]	高度=((int)HeightH[15:0]<<16) HeightL[15:0](cm)
15:0	HeightH[15:0]	

LonL~LatH (经纬度)

寄存器名称: LonL~LatH

寄存器地址: 73~76 (0x49~0x4C)

读写方向: R 默认值: 0x0000

Bit	NAME	FUNCTION
15:0	LonL[15:0]	Lon[31:0]=((int)LonH[15:0]<<16) LonL[15:0](Pa)
15:0	LonH[15:0]	
15:0	LatL[15:0]	Lat[31:0]=((int)LatH[15:0]<<16) LatL[15:0](cm)
15:0	LatH[15:0]	

NMEA8013标准规定GPS的经度输出格式为ddmm.mmmmm(dd为度, mm.mmmmm为分), 经/纬层出时去掉了小数点, 因此经/纬度的度数可以这样计算:

dd=Lon[31:0]/10000000;

dd=Lat[31:0]/10000000;

经/纬度的分数可以这样计算:

mm.mmmm=(Lon[31:0]%1000000)/100000; (%表示求余数运算) mm.mmmmm=(Lat[31:0]%1000000)/100000; (%表示求余数运算)

GPSHeight~GPSVH (GPS数据)

寄存器名称: GPSHeight~GPSVH

寄存器地址: 77~80 (0x4D~0x50)

读写方向: R 默认值: 0x0000

Bit	NAME	FUNCTION
15:0	GPSHeight[15:0]	GPS海拔=GPSHeight[15:0]/10(m)
15:0	GPSYAW[15:0]	GPS航向=GPSYAW[15:0]/100(°)
15:0	GPSVL[15:0]	CDC地流 (//:-+) CDC) // [/15:0] 、
15:0	GPSVH[15:0]	GPS地速=(((int)GPSVH[15:0]<<16) GPSVL[15:0])/1000(km/h)

q0~q3 (四元数)

寄存器名称: q0~q3

寄存器地址: 81~84 (0x51~0x54)

读写方向: R 默认值: 0x0000

Bit	NAME	FUNCTION
15:0	q0[15:0]	四元数0=q0[15:0]/32768
15:0	q1[15:0]	四元数1=q1[15:0]/32768
15:0	q2[15:0]	四元数2=q2[15:0]/32768
15:0	q3[15:0]	四元数3=q3[15:0]/32768

SVNUM~VDOP (GPS定位精度)

寄存器名称: SVNUM~VDOP

寄存器地址: 85~88 (0x55~0x58)

读写方向: R 默认值: 0x0000

Bit	NAME	FUNCTION
15:0	SVNUM[15:0]	GPS卫星数=SVNUM[15:0]
15:0	PDOP[15:0]	位置定位经度=PDOP[15:0]/100
15:0	HDOP[15:0]	水平定位经度=HDOP[15:0]/100
15:0	VDOP[15:0]	垂直定位经度=VDOP[15:0]/100

DELAYT (报警信号延时)

第37页 共47页 2022-09-17 18:47

寄存器名称: DELAYT 寄存器地址: 89 (0x59)

读写方向: R/W 默认值: 0x0000

Bit	NAME	FUNCTION
15:0	DELAYT[15:0]	单位: ms 角度发生报警后,端口会产生相应的报警信号,当报警消失后,该报警会持续DELAYT[15:0]的延时后才消失

示例: FF AA 59 E8 03 (设置报警信号延时1000ms)

XMIN~XMAX (X轴角度报警阈值)

寄存器名称: XMIN~XMAX

寄存器地址: 90~91 (0x5A~0x5B)

读写方向: R/W 默认值: 0x0000

Bit	NAME	FUNCTION
15:0	XMIN[15:0]	设置X轴角度报警最小值 X轴角度报警最小值=XMIN[15:0]*180/32768(°)
15:0	XMAX[15:0]	设置X轴角度报警最大值 X轴角度报警最大值=XMAX[15:0]*180/32768(°)

示例:

FF AA 5A 72 FC(设置-5度), 0xFC72=-910, -910*180/32768=-5

FF AA 5B 8E 03 (设置5度) , 0x038E=910, 910*180/32768=5

X轴在-5°~5°之间不报警,一旦超出该范围,发生报警

BATVAL (电压)

寄存器名称: BATVAL

寄存器地址: 92 (0x5C)

读写方向: R

默认值: 0x0000

Bit	NAME	FUNCTION
15:0	BATVAL[15:0]	电压=BATVAL[15:0]/100 °C

ALARMPIN (报警引脚映射)

第39页 共47页 2022-09-17 18:47

寄存器名称: ALARMPIN

寄存器地址: 93 (0x5D)

读写方向: R/W 默认值: 0x4365

Bit	NAME	FUNCTION
15:12	X-ALARM[15:12]	0001(0x01): D0 0010(0x02): D1 0011(0x03): D2 0100(0x04): D3 0101(0x05): SCL 0110(0x06): SDA
11:8	X+ALARM[11:8]	0001(0x01): D0 0010(0x02): D1 0011(0x03): D2 0100(0x04): D3 0101(0x05): SCL 0110(0x06): SDA
7:4	Y-ALARM[7:4]	0001(0x01): D0 0010(0x02): D1 0011(0x03): D2 0100(0x04): D3 0101(0x05): SCL 0110(0x06): SDA
3:0	Y+ALARM[3:0]	0001(0x01): D0 0010(0x02): D1 0011(0x03): D2 0100(0x04): D3 0101(0x05): SCL 0110(0x06): SDA

示例:

设置X-报警信号在D3口输出

设置X+报警信号在D1口输出

设置Y-报警信号在SCL口输出

设置Y+报警信号在SCL口输出

发送: FF AA 5D 55 42

YMIN~YMAX (Y轴角度报警阈值)

寄存器名称: YMIN~YMAX

寄存器地址: 94~95 (0x5E~0x5F)

读写方向: R/W 默认值: 0x0000

Bit	NAME	FUNCTION
15:0	YMIN[15:0]	设置Y轴角度报警最小值 Y轴角度报警最小值=YMIN[15:0]*180/32768(°)
15:0	YMAX[15:0]	设置Y轴角度报警最大值 Y轴角度报警最大值=YMAX[15:0]*180/32768(°)

示例: FF AA 5E 72 FC (设置-5度), 0xFC72=-910, -910*180/32768=-5

FF AA 5F 8E 03 (设置5度) , 0x038E=910, 910*180/32768=5

Y轴在-5°~5°之间不报警,一旦超出该范围,发生报警

GYROCALITHR (陀螺仪静止阈值)

寄存器名称: GYROCALITHR

寄存器地址: 97 (0x61)

读写方向: R/W 默认值: 0x0000

Bit	NAME	FUNCTION
15:0	GYROCALITHR[15:0]	设置陀螺仪静止阈值: 陀螺仪静止阈值=GYROCALITHR[15:0]/1000(°/s)

示例:设置陀螺仪静止阈值为0.05°/s

FF AA 61 32 00

当角速度变化小于0.05°/s时,且持续"GYROCALTIME"的时间,传感器识别为静止,自动把小于0.05°/s的

度归零

陀螺仪静止阈值的大小设置规律,可通过读取"WERROR"寄存器的值来确定,一般设置的规律

是: GYROCALITHR=WERROR*1.2, 单位: °/s

该寄存器需要需要结合GYROCALTIME寄存器使用

ALARMLEVEL (角度报警电平)

寄存器名称: ALARMLEVEL

寄存器地址: 98 (0x62)

读写方向: R/W 默认值: 0x0000

Bit	NAME	FUNCTION
15:4		
3:0	ALARMLEVEL[3:0]	设置报警电平: 0000(0x00): 低电平报警 (不报警时,高电平,报警时,低电平) 0001(0x01): 高电平报警 (不报警时,低电平,报警时,高电平)

示例:设置高电平报警

FF AA 62 01 00

GYROCALTIME (陀螺仪自动校准时间)

寄存器名称: GYROCALTIME

寄存器地址: 99 (0x63)

读写方向: R/W 默认值: 0x03E8

Bit	NAME	FUNCTION
15:0	GYROCALTIME[15:0]	设置陀螺仪自动校准时间

示例:设置陀螺仪自动校准时间500ms

FF AA 63 F4 01

当角速度变化小于"GYROCALITHR"时,且持续500ms的时间,传感器识别为静止,自动把小于0.05°/s的

度归零

该寄存器需要需要结合GYROCALITHR寄存器使用

TRIGTIME (报警连续触发时间)

寄存器名称: TRIGTIME 寄存器地址: 104 (0x68)

读写方向: R/W 默认值: 0x0000

Bit	NAME	FUNCTION
15:0	TRIGTIME[15:0]	设置报警连续触发时间

示例:设置报警连续触发时间500ms

FF AA 68 F4 01

当角度发生报警时,报警信号不会立马输出,需要角度报警持续500ms时,才能输出报警信号。该寄存器

滤除误动作导致的报警

KEY (解锁)

寄存器名称: KEY

寄存器地址: 105 (0x69)

读写方向: R/W 默认值: 0x0000

Bit	NAME	FUNCTION
15:0	KEY[15:0]	解锁寄存器: 进行写操作时, 需要先设置该寄存器

示例:解锁,往该寄存器写0xB588 (其他值无效)

FF AA 69 88 B5

WERROR (陀螺仪变化值)

寄存器名称: WERROR

寄存器地址: 106 (0x6A)

读写方向: R 默认值: 0x0000

Bit	NAME	FUNCTION
15:0	WERROR[15:0]	陀螺仪变化值=WERROR[15:0]/1000*180/3.1415926(°/s) 在传感器静止放置时,可通过该寄存器的变化,来设定"GYROCALITHR' 器

TIMEZONE (GPS时区)

寄存器名称: TIMEZONE 寄存器地址: 107 (0x6B)

读写方向: R/W 默认值: 0x0014

Bit	NAME	FUNCTION
15:8		
7:0	TIMEZONE[7:0]	设置GPS时区: 00000000(0x0000): UTC-12 00000001(0x0001): UTC-11 00000010(0x0002): UTC-10 00000011(0x0003): UTC-9 0000010(0x0004): UTC-8 0000010(0x0005): UTC-7 00000110(0x0006): UTC-6 0000111(0x0007): UTC-5 00001000(0x0008): UTC-4 0000101(0x0009): UTC-3 0000101(0x0008): UTC-2 00001011(0x0008): UTC-1 0000110(0x000C): UTC 0000111(0x000B): UTC+1 00001110(0x000E): UTC+2 00001111(0x000E): UTC+2 00001111(0x000F): UTC+3 0001000(0x0010): UTC+4 0001001(0x0011): UTC+5 00010010(0x0012): UTC+6 0001011(0x0013): UTC+7 0001010(0x0014): UTC+8 (默认东8区) 00010111(0x0015): UTC+9 00010111(0x0015): UTC+10 00010111(0x0017): UTC+11

第44页 共47页 2022-09-17 18:47

WZTIME (角速度连续静止时间)

寄存器名称: WZTIME

寄存器地址: 110 (0x6E)

读写方向: R/W 默认值: 0x01F4

Bit	NAME	FUNCTION
15:0	WZTIME[15:0]	角速度连续静止时间

示例:设置角速度连续静止时间500ms

FF AA 6E F4 01

当角速度小于"WZSTATIC"时,且持续500ms,则角速度输出为0,且Z轴航向角不积分

该寄存器需要需要结合"WZSTATIC"寄存器使用

WZSTATIC (角速度积分阈值)

寄存器名称: WZSTATIC

寄存器地址: 111 (0x6F)

读写方向: R/W 默认值: 0x012C

Bit	NAME	FUNCTION
15:0	WZSTATIC[15:0]	角速度积分阈值=WZSTATIC[15:0]/1000(°/s)

示例:设置角速度积分阈值为0.5°/s

FF AA 6F F4 01

当角速度大于0.5°/s时, Z轴航向角开始对加速度进行积分

当角速度小于0.5°/s时,且持续寄存器"WZTIME"所设置的时长时,角速度输出为0,且Z轴航向角不积分

该寄存器需要需要结合"WZTIME"寄存器使用

MODDELAY (485数据应答延时)

寄存器名称: MODDELAY 寄存器地址: 116 (0x74)

读写方向: R/W 默认值: 0x0BB8

Bit	NAME	FUNCTION
15:0	MODDELAY[15:0]	设置485数据应答延时,默认3000,单位: us

示例:设置485数据应答延时1000us

FF AA 74 E8 03

当传感器接到收Modbus读取指令后,传感器延时1000us,返回数据

该寄存器仅支持Modbus版本的传感器

XREFROLL~YREFPITCH (角度零位参考值)

寄存器名称: XREFROLL~YREFPITCH 寄存器地址: 121~122 (0x79~0x7A)

读写方向: R/W 默认值: 0x00000

Bit	NAME	FUNCTION
15:0	XREFROLL[15:0]	滚转角零位参考值=XREFROLL[15:0]/32768*180(°)
15:0	YREFPITCH[15:0]	俯仰角零位参考值=YREFPITCH[15:0]/32768*180(°)

示例: 当前滚转角为2°,设置滚转角零位,减去2°,则XREFROLL[15:0]=2*32768/180=364=0x016C

FF AA 79 6C 01

NUMBERID1~NUMBERID6 (设备编号)

寄存器名称: NUMBERID1~NUMBERID6

寄存器地址: 127~132 (0x7F~0x84)

读写方向: R 默认值: 无

Bit	NAME	FUNCTION
15:0	NUMBERID1[15:0]	
15:0	NUMBERID2[15:0]	
15:0	NUMBERID3[15:0]	
15:0	NUMBERID4[15:0]	
15:0	NUMBERID5[15:0]	
15:0	NUMBERID6[15:0]	
设备标号: WT420000001		

寄存器说明