Aufzubauen war folgende Schaltung:

Phasenschieber

Es wurden mittels Potentiometer verschiedene Phasen eingestellt und die dazugehörigen Potentiometerwiderstände gemessen:

Beispiel für das sich ergebende Bild am Oszilloskop

Phase	zugehöriger R_{Pot} in $k\Omega$
-176	0.0015 (R _{Pot,min})
45	18.1
91	43.9
120	78.94

Herleitung der Theoriekurve zur Phasenverschiebung: Zusammenhang zwischen den Einzelspannungen:

$$U_{2,6} = U_{2,Erde} - U_{out} \tag{1}$$

$$U_{R2} = U_{in} - U \tag{2}$$

Schaltplan:

Funktionsweise der Schaltung

- Operationsverstärker ohne Gegenkopplung funktioniert als Komparator
- ideales Bauteil gibt bei $U_{versorgung} = \pm 7V$ ein $U_{out} = sign(U_3 U_2) \cdot U_{versorgung}$ aus
- Pin 2 bzw. Pin 3 werden geerdet, U_{in} liegt jeweils am anderen
 Pin an ⇒ Ein Op-Amp. invertiert, der andere nicht

Schaltung gibt zwei zueinander inverse, sonst identische Rechtecksspannungen aus

Vergleich der von $U_{generator}$, U_{in} , $U_{out,1}$ und $U_{out,2}$

Schaltung:

Beide Schaltungen verstärken mit Faktor 1, obere normal (da U_{in} auf Pin 3 trifft), untere invertiert (da U_{in} auf invertierenden Pin 2 trifft)

Es erbibt sich am Oszilloskop folgendes Bild:

