Student Name

CS 585 Spring 2024 Written Assignment #02

Due: Sunday, February 11, 2024, 11:59 PM CST

Points: 30

Instructions:

1. Use this document template to report your answers. Name the complete document as follows:

LastName_FirstName_CS585_Written02.doc ONLY PDF or MS Word file formats will be accepted.

2. Submit the final document to Blackboard Assignments section before the due date. No late submissions will be accepted.

Objectives:

- 1. (10 points) Demonstrate your understanding of Minimum Edit Distance algorithm.
- 2. (10 points) Demonstrate your understanding of the N-gram language modeling.
- 3. (10 points) Demonstrate your understanding of an HMM POS tagger.

Problem 1 [10 pts]

What is the **Minimum Edit Distance** between words STALK and FABLE (assume that insertion / deletion cost is 1, substitution cost is 2)? Populate the table below to find the MED. Include back pointers.

K						
L						
Α						
Т						
S						
#						
	#	F	Α	В	L	E

Solution:

K	5	6	5	6	5	6
L	4	5	4	5	4	5
Α	3	4	3	4	5	6
Т	2	3	4	5	6	7
S	1	2	3	4	5	6
#	0	1	2	3	4	5
	#	F	Α	В	L	E

Problem 2 [10 pts]

Your task is to calculate probabilities of selected sentences in English using a language model (based on Google Books N-gram corpus). Use the Google N-Gram Viewer website (https://books.google.com/ngrams) to collect all necessary data (NOTE: Google provides N-gram PERCENTAGES — those are NOT COUNTS! and not exactly probabilities!) and calculate sentence probability.

NOTES: - assume that probability of a any bigram starting or ending a sentence is 0.25. - use the settings shown below (2018 probabilities, English (2019), case insensitive, Smoothing of 1) Google Books Ngram Viewer Q good day,bad day × ? 2018 - 2019 ▼ English (2019) ▼ Case-Insensitive Smoothing of 1 ▼ 0.000200% -0.000160% -0.000140% -0.000100% -0.000080% 0.000060% - 2018 0.000040% - good day (All) 0.0002359785% 0.000020% - bad day (All) 0.0000676828% August September October November December (click on line/label for focus, right click to expand/contract wildcards)

A) [5 pts] Probability of a sentence:

Today is a good day

```
Relevant bigram probabilities [1 pt]:

(<s>, today) - 0.25

(Today, is) - 0.00039373768/100 = 0.399376*10^-5

(is, a) - 0.0562696642/100 = 0.005626 = 0.562696642*10^-5

(a, good) - 0.013680092/100 = 13.6860092*10^-5

(Good, day) - 0.0002368249/100 = 0.2368249*10^-5

(day, </s>) - 0.25

Probability of a sentence formula [2 pt]:

P(<s>, Today) * P(Today, is) * P(is, a) * P(a, good) * P(Good, day) * P(day, </s)

Probability of a sentence (calculations and value) [2 pt]:

(250 * 0.3993768 * 56.2696642 * 13.6860092 * 0.2368249 * 250) *10^-5 = 4.552*10^-5
```

B) [5 pts] Probability of a sentence:

Today is a bad day

Relevant bigram probabilities [1 pt]:

```
(<s>, Today) = 0.25
```

(today, is) = 0.3993768*10^-5 (is, a) = 56.2696642*10^-5 (a, bad) = 1.963926 *10^-5 (bad, day) = 0.0680989 *10^-5

(day, </s>) = 0.25

Probability of a sentence <u>formula</u> [2 pt]:

P(<s>, Today) * P(Today, is) * P(is, a) * P(a, bad) * P(bad, day) * P(day, </s)

Probability of a sentence (calculations and value) [2 pt]:

(250 * 0.3993768 * 56.2696642*1.963926*0.0680989 *250) *10^-5

= 0.188*10^-5

Problem 3 [10 pts]

Given the following Hidden Markov model (transition probabilities shown; emission probabilities to be determined by you using corpus C data) based on corpus C:

And the following table of selected word counts from some corpus C:

Word/Tag	N	V	ART	Р	TOTAL
flies	21	23	0	0	44
fruit	49	5	1	0	55
like	10	30	0	21	61
а	1	0	201	0	202
the	1	0	300	2	303
flower	53	15	0	0	68
flowers	42	16	0	0	58
birds	64	1	0	0	65
others	592	210	56	284	1142
TOTAL	833	300	558	307	1998

Using the approach presented during the lecture, decide which sentence, S1:

birds like flower

or S2:

flies like fruit

is more likely to be labeled with a sequence of tags N, V, N. Show all your work.

Answer:

Second word is most likely to be labelled with sequence of tags because of the probability of 2^{nd} sentence is greater than probability of first sentence.