ผลการจำลอง

ผลทดสอบในส่วน debounceSwitch

โดยให้ CLK เท่ากับ 50Mhz แต่ว่า ตั้งค่า cnt_max ไว้ ที่ 50 ซึ่ง ผลที่ได้ นั้น ถูกต้องสัญญาณรบกวนที่เปลี่ยนแปลงไม่ต่อเนื่องถึง 50 clk นั้นถูกตัดออกไป และ ทำการสลับ out จาก low เป็น hight และ hight เป็น low ตามโค้ดที่ได้ ออกแบบไป

ผลทดสอบในส่วน divid_Clk

ตั้ง clk เป็น 50Mhz และ ตั้ง Max_count เท่ากับ 5 ซึ่งก็คือเมื่อนับ clk ได้ 5 ลูกคลื่นแล้ว จะทำการสลับ จาก low เป็น hight และ hight เป็น low ซึ่ง การที่นับถึง 5 นั้นจะทำให้ ความถื่ลดลง เหลือ 10ลูกคลื่น ต่อ 1 ลูกคลื่น หรือลดลง 10 เท่า

ผลทดสอบในส่วน bcd_to_sevenSeg

Value at	0 ps	20.0 ns	40.0 ns	60.0 ns	80.0 ns	100 <mark>.</mark> 0 r	ns 120.0 n
0 ps	U ps						
H 0	0	1 2	3	4	6 7	8 9	A B
B 1000000	1000000	1111001 01001	00 0110000 001	1001 0010010 000	00010 1111000 00	00000 0011000	
	0 ps	0 ps 0 ps 0 ps	0 ps 0 ps 0 1 2	0 ps 0 ps 0 0 p	H 0 0 x 1 x 2 x 3 x 4 x 5 x	0 ps	H 0

ผลที่ได้คือเมื่อ input เมื่อแปลงจาก bcd เป็นเลขแล้วนำไปแปลงเป็น output สำหรับ 7segment นั้นถูกต้องตามที่ต้องการ และถ้าหาก ไม่อยู่ในช่วง 0 – 9 นั้น จะ ได้ค่าที่ไม่มีความหมาย

ผลทดสอบในส่วน eightBitToBcd

ผลที่ได้คือ เมื่อ input มีค่า integer เป็น 85 output digit หนึ่งจะมี bcd ที่มีค่าเป็น 4 และ difgi สองจะมีค่า เป็น 7 ซึ่ง เป็นค่าที่ถูกต้อง (นับจากอ)

ผลทดสอบในส่วน MuxTwo

เมื่อให้ input 1 คือ 1111 และ 2 เป็น 0000 จากการจำลองจะเห็นว่า output ขึ้นอยู่กับ ตัว selec ซึ่งตรงตามที่ต้องการ

ผลทดสอบในส่วน processCoin

จำลองในส่วนของการกด คิดเงินแล้วกด ยกเลิก ได้ผลตามที่ต้องการคือ กดครั้งแรก จะให้ผลลัพราคาสินค้าแสดงออกทาง result และกดอีกครั้งจะทำการทำให้เป็น o และมีเสียง buzzer ดัง ประมาณ ค่าที่ตั้งไว้ ซึ่งในการจำลองได้ปรับลงเหลือ50 clk

จำลองเมื่อคิดราคาจ่ายเงินแล้วบางส่วนแต่กดยกเลิก จะเห็นได้ว่า จากการจำลอง เมื่อหยอดเหรียญ 5 ลงไปแล้วกด ยกเลิก ในช่วงที่ buzzer ดัง จะมีการแสดงส่วน ของการทอนเงิน เป็นจำนวน 5 บาท เช่นกัน

ทดลอง เมื่อจ่ายเงินครบ จะเห็นว่า buzzer จะดังเป็น จังหวะที่คงที่ และมีการ แสดง เงินทอนที่จ่ายเกินไป และจากนั้นจะกดจ่ายเงินไม่ได้ เมื่อกด ปุ่ม buy อีกครั้ง ถึงจะเริ่มการคิดราคาใหม่อีกรอบตามที่ต้องการ

ผลทดสอบในส่วน ตัวหลัก หรือ vendingMach

จากการจำลองการกดปุ่ม แบบ Active Low จะได้ผลตามที่ต้องการ คือกดครั้ง แรกอ่านราคาและครั้งที่ 2 เพื่อยกเลิก ส่วนที่เห็นในส่วนที่มีการสลับค่ากันมากมาย ตรง

นั้นเป็นผลจากการที่ตัว selec ใน mux ทำงานเพื่อเลือก output ไปให้ 7 segment ที่ใช้ input ร่วมกันนั้นเอง

ผลการจำลองในสภาวะอื่นๆของโค้ดตัวนี้

การจ่ายเงินเกิน จะมีเสียงbuzzer ดังเป็นจังหวะ

จ่ายเงินไปแล้วแต่กดยกเลิกการซื้อ ทำให้มีการทอนเงินพร้อมมีเสียง buzzer ดัง ยาวต่อเนื่องไม่เป็นจังหวะ