Hypothesis Testing

• Answers binary questions such as "is a drug better than placebo"

■ Test and Rejection Region

A **test** is a function Ψ from the data to $\{0,1\}$. The **rejection region** of a test is $R=\{{
m datasets}\ {
m for}\ {
m which}\ \Psi=1\}$

ullet The rejection region fully characterizes Ψ

■ Test Statistic

Function that summarizes data and is sufficient to compute a test Ψ

■ Hypothesis Test

A hypothesis test takes the form

 $H_0: heta \in \Theta_0$ vs $H_1: heta \in \Theta_1$

where Θ_0 and Θ_1 are two disjoint subsets of Θ such that their union is Θ

- ullet We typically characterize H_0 as the null hypothesis, or the status quo
- H_1 is a revelation or something that you prove

Error Types

■ Type I Error

A Type I error is when H_0 is true, but the test concludes H_1 is true. This is considered more serious in things like a criminal trial.

■ Type II Error

A Type II error is when H_1 is true, but the test concludes H_0 is true.

The probability of a test committing an error depends on the true value of the parameter

■ Size and Level

The **size** of a test Ψ is:

$$\operatorname{size}(\Psi) = \max_{ heta \in \Theta_0} P_{ heta}(\Psi = 1)$$

• I.e. it is the maximum possible probability of a type I error

A test is said to have **level** α if $\operatorname{size}(\Psi) \leq \alpha$

• The maximum type I error probability is always achieved for heta on the boundary between Θ_0 and Θ_1

■ Power

The **power** function is defined as:

$$\mathrm{B}(\theta) = P_{\theta}(\Psi = 1)$$

For a perfect test, the power function B is a step function that is zero when $\theta\in\Theta_0$ and one when $\theta\in\Theta_1$