ECN 6338 Cours 4

Optimisation statique sans contraintes

William McCausland

2025-09-26

Survol du cours 4

Optimisation univariée

- 1. méthode de dichotomie (bracketing)
- 2. méthode de Newton (ou de Newton-Raphson)

Exemple, maximisation du profit d'un monopole

- 1. valeur, gradient et matrice hessienne du profit
- 2. code pour les évaluations

Optimisation multivariée

- 1. méthode de Nelder-Mead
- 2. méthode de Newton
- 3. méthode de "direction set"
 - a. direction des axes de coordonnées
 - b. direction de la plus forte pente (steepest descent)
 - c. direction Newton
 - d. direction BFGS

Mise en oeuvre en R et résultats

Notes sur l'optimisation univariée

- Directement utile
- Utile aussi en multivarié via une stratégie en deux étapes, à répéter :
 - choix d'une direction,
 - optimisation univariée (line search).

Méthode de dichotomie (bracketing) pour un minimum

Il faut commencer dans un état (a, b, c), a < b < c où $f(b) < \min(f(a), f(c))$.

- Si la fonction est continue et cette condition tient, il doit y avoir un minimum local dans l'intervalle [a, c].
- À chaque iteration, on calcule un nouvel état qui remplit les mêmes conditions.
- L'intervalle [a, c] rétrécit à chaque itération.
- ▶ On arrête quand $c a < \epsilon$, où ϵ mesure la tolérance.

Une itération de la méthode de dichotomie

Les étapes pour trouver un état (a',b',c'), a' < b' < c' où $f(b') < \min(f(a'),f(c'))$ et c'-a' < c-a:

1. Trouver *d* :

$$d = \begin{cases} \frac{a+b}{2} & b-a < c-b, \\ \frac{b+c}{2} & b-a \ge c-b. \end{cases}$$

- 2. Évaluer f(d).
- 3. Trouver (a', b', c'):

$$(a',b',c') = \begin{cases} (d,b,c) & d < b, f(d) > f(b), \\ (a,d,b) & d < b, f(d) < f(b), \\ (b,d,c) & d > b, f(d) < f(b), \\ (a,b,d) & d > b, f(d) > f(b). \end{cases}$$

Méthode de dichotomie (graphique)

Figure 1: Méthode de dichotomie pour trouver un minimum

Notes sur la méthode de dichotomie

Avantages

- L'intervalle rétrécit toujours par au moins 1/4 par itération.
- ▶ Il y a une seule évaluation de $f(\cdot)$ par itération, et aucune dérivée à évaluer.
- ► La méthode est robuste aux fonctions avec des coudes et des parties concaves.

Désavantages

On ne peut pas profiter de l'information dans les dérivées.

Méthode de Newton en une dimension pour un maximum

- ▶ Considérez la fonction $f(x) = x e^x$.
- Les deux premières dérivées sont

$$f'(x) = 1 - e^x$$
, $f''(x) = -e^x$

- f(x) est concave avec un maximum unique à x = 0.
- ightharpoonup L'expansion quadratique de Taylor autour de x^k est

$$g(x) = f(x^k) + f'(x^k)(x - x^k) + \frac{1}{2}f''(x^k)(x - x^k)^2.$$

- Le maximum de l'expansion g résoud l'équation $g'(x) = f'(x^k) + f''(x^k)(x x^k) = 0$.
- ▶ La solution de $g'(x^{k+1}) = 0$ est $x^{k+1} = x^k f'(x^k)/f''(x^k)$.
- ► Notez que

$$-\frac{f'(x)}{f''(x)} = \frac{1 - e^x}{e^x}.$$

- Pour $x^k \ll 0$, $x^{k+1} x^k \approx e^{-x^k} \gg |x^k|$.
- Pour $x^k \gg 0$, $x^{k+1} x^k \approx -1$.

Pas de Newton pour x = -2, -1, 1, 2

Un pire cas : minimisation de $f(x) = \log \cosh x$

• $f'(x) = \tanh x$, $f''(x) = (1 - \tanh^2 x) > 0$

```
x = seq(-3, 3, length=101)
plot(x, log(cosh(x)), type='l')
```


Notes sur la méthode de Newton

Avantages

La convergence est très rapide près de la solution, où la deuxième dérivée ne change pas beaucoup.

Désavantages

- La méthode ne marche pas quand la fonction n'est pas concave (max) ou convexe (min).
- ➤ x^k peut diverger même pour une fonction concave (max) ou convexe (min)
- Il faut calculer deux dérivées de la fonction.

Quasi-Newton en une dimension

- Supposons que la deuxième dérivée est coûteuse.
- Au lieu de calculer

$$x^{k+1} - x^k = -f'(x^k)/f''(x^k),$$

on peut calculer

$$x^{k+1} - x^k = -f'(x^k)/h^k$$
,

οù

$$h^k \equiv \frac{f'(x^k) - f'(x^{k-1})}{x^k - x^{k-1}}.$$

- ▶ h_k est la pente d'une corde qui approxime la pente de la tangente de f'(x) à $x = x^k$.
- Attention : en plusieurs dimensions l'équation analogue $H_k(x^k-x^{k-1})=\nabla f(x^k)-\nabla f(x^{k-1})$ donne n équations, pas assez pour déterminer H_k , $n\times n$ et symétrique.

Maximisation d'utilité avec un terme linéaire

Fonction de Lagrange :

$$\mathcal{L}(X,Y,Z,\lambda) = X + U(Y,Z) + \lambda(I - p_x X - p_y Y - p_z Z).$$

Conditions nécessaires de première ordre :

$$1 - \lambda p_x = 0,$$

$$U_Y - \lambda p_y = 0, \quad U_Z - \lambda p_z = 0.$$

Si le bien X est numéraire $(p_X = 1)$, alors $\lambda = 1$ et

$$U_Y = p_y, \quad U_Z = p_z.$$

Problème du monopole (Judd, page 105)

- ▶ Un monopole produit deux biens, en quantités Y et Z.
- ▶ Les coûts de production sont linéaires

$$c_Y(Y) = C_Y Y, \quad c_Z(Z) = C_Z Z,$$

où $C_Y = 0.62$ et $C_Z = 0.60$.

La demande est celle d'un consommateur avec utilité

$$U(Y,Z) = u(Y,Z) + M = (Y^{\alpha} + Z^{\alpha})^{\eta/\alpha} + M,$$

où $\alpha=0.98,~\eta=0.85$ et M représente les dépenses en autres biens.

▶ La demande pour Y et Z est donnée par les équations

$$p_Y = u_Y(Y, Z), \quad p_Z = u_Z(Y, Z),$$

où p_Y et p_Z sont les prix de Y et Z.

Problème du monopole (suite)

Le problème du monopole est la maximisation du profit :

$$\max_{Y,Z\geq 0}\Pi(Y,Z),$$

οù

$$\Pi(Y,Z) = Yu_Y(Y,Z) + Zu_Z(Y,Z) - c_Y(Y) - c_Z(Z).$$

Le revenu associé à Y est

$$Yu_{Y}(Y,Z) = Y\frac{\eta}{\alpha}(Y^{\alpha} + Z^{\alpha})^{(\eta/\alpha)-1}\alpha Y^{\alpha-1} = \eta(Y^{\alpha} + Z^{\alpha})^{(\eta/\alpha)-1}Y^{\alpha}$$

ightharpoonup Après la même démarche pour Zu_Z on peut écrire

$$\Pi(Y,Z) = \eta(Y^{\alpha} + Z^{\alpha})^{(\eta/\alpha)-1}(Y^{\alpha} + Z^{\alpha}) - c_{Y}(Y) - c_{Z}(Z)$$
$$= \eta(Y^{\alpha} + Z^{\alpha})^{\eta/\alpha} - C_{Y}Y - C_{Z}Z.$$

Le problème en logarithmes de quantité

- ▶ Pour éviter l'évaluation de Π à Y < 0 où Z < 0, soit $y \equiv \log Y$, $z \equiv \log Z$.
- Notez que $\log(Y^{\alpha}) = \alpha y$ et $Y^{\alpha} = e^{\alpha y}$.
- Le problème s'écrit $\max_{y,z} \pi(y,z)$, où

$$\pi(y,z) = \Pi(e^y, e^z) = \eta(e^{\alpha y} + e^{\alpha z})^{\eta/\alpha} - 0.62e^y - 0.60e^z.$$

Comment faire les graphiques en R

```
source('../pi.R')
C = c(0.62, 0.60) # Coûts marginaux
alpha = 0.98; eta = 0.85 # Paramètres de l'utilité
yz <- as.matrix(expand.grid(seq(-2, 1, length=301),
                             seq(0, 2, length=201)))
colnames(yz) <-c('y', 'z')</pre>
df <- data.frame(</pre>
 pi_fn = apply(yz, 1, pi_val, C, alpha, eta), yz)
df [1:5,]
```

```
## pi_fn y z
## 1 0.2690171 -2.00 0
## 2 0.2691787 -1.99 0
## 3 0.2693416 -1.98 0
## 4 0.2695057 -1.97 0
## 5 0.2696711 -1.96 0
```

Graphique I

wireframe(pi_fn ~ y*z, data = df, shade=T)

Graphique II

Graphique III

levelplot(pi_fn ~ y*z, data=df, shade=T, col.regions = term

Gradient et matrice hessienne du profit du monopole

Valeur : $\pi(y,z) = \Pi(e^y,e^z) = \eta(e^{\alpha y} + e^{\alpha z})^{\eta/\alpha} - C_Y e^y - C_Z e^z$. Gradient :

$$\frac{\partial \pi}{\partial x^{\top}} = \eta^{2} (e^{\alpha y} + e^{\alpha z})^{(\eta/\alpha)-1} \begin{bmatrix} e^{\alpha y} \\ e^{\alpha z} \end{bmatrix} - \begin{bmatrix} C_{Y} e^{y} \\ C_{Z} e^{z} \end{bmatrix}$$

Matrice hessienne:

$$\frac{\partial^{2} \pi}{\partial x \partial x^{T}} = \alpha \eta^{2} (\frac{\eta}{\alpha} - 1) (e^{\alpha y} + e^{\alpha z})^{(\eta/\alpha) - 2} \begin{bmatrix} e^{\alpha y} \\ e^{\alpha z} \end{bmatrix} \begin{bmatrix} e^{\alpha y} & e^{\alpha z} \end{bmatrix}
+ \alpha \eta^{2} (e^{\alpha y} + e^{\alpha z})^{(\eta/\alpha) - 1} \begin{bmatrix} e^{\alpha y} & 0 \\ 0 & e^{\alpha z} \end{bmatrix} - \begin{bmatrix} C_{Y} e^{y} & 0 \\ 0 & C_{Z} e^{z} \end{bmatrix}$$

Une formule plus générale

- ▶ Soit $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R}^n \to \mathbb{R}$.
- Alors

$$\frac{\partial f(g(x))}{\partial x} = f'(g(x)) \frac{\partial g(x)}{\partial x}$$
$$\frac{\partial^2 f(g(x))}{\partial x \partial x^{\top}} = f''(g(x)) \frac{\partial g(x)}{\partial x^{\top}} \frac{\partial g(x)}{\partial x} + f'(g(x)) \frac{\partial^2 g(x)}{\partial x \partial x^{\top}}$$

▶ Dans l'exemple, utiliser x = (y, z), $g(x) = e^{\alpha y} + e^{\alpha z}$, $f(g) = \eta g^{\eta/\alpha}$.

Le calcul du gradient et de la matrice hessienne

```
pi_val_grad_hess <- function(x, C, alpha, eta) {</pre>
  eta_sur_al <- eta/alpha; eta2 = eta * eta
  X <- exp(x) # Vecteur de quantités
  X_al <- exp(alpha*x) # Vecteur de quantités X_i^alpha
 Q = sum(X al)
  Q_m2=Q^(eta_sur_al-2); Q_m1=Q_m2*Q; Q_m0=Q_m1*Q
  # Valeur v, gradient q, hessienne h du profit pi
  v = eta*Q mO - t(C) %*% X
  g = (eta2*Q m1) * X al - C*X
  h = (alpha*eta2*(eta_sur_al-1)*Q_m2) * X_al %*% t(X_al) 
      (alpha*eta2*Q m1) * diag(X al) - diag(C*X)
 list(valeur=v, gradient=g, hessien=h)
```

Vérification numérique des calculs I

```
C = c(0.62, 0.60) # Coûts marginaux
alpha = 0.98; eta = 0.85 # Paramètres de l'utilité
# Point d'expansion, pas, deuxième point d'évaluation
x1 = c(2, 1)
h = c(-0.001, 0.002)
x2 = x1 + h
# Valeur, gradient, matrice hessienne aux points x1, x2
vgh1 = pi val grad hess(x1, C, alpha, eta)
vgh2 = pi_val_grad_hess(x2, C, alpha, eta)
# Valeur à x2 de deux expansions de Taylor autour de x1
v2_1 = vgh1$valeur + vgh1$gradient %*% h
v2_2 = v2_1 + 0.5 * t(h) %*% vgh1$hessien %*% h
```

Vérification numérique des calculs II

```
vgh2$valeur - vgh1$valeur
                 [,1]
##
## [1.] 0.0003729129
v2_1 - vgh1$valeur
##
                 [,1]
## [1,] 0.0003738301
v2_2 - vgh1$valeur
                [,1]
##
## [1,] 0.000372913
```

Vérification numérique des calculs III

```
vgh2$gradient - vgh1$gradient

## [1] 0.0009541977 -0.0004401634

vgh1$hessien %*% h

## [,1]
## [1,] 0.0009551851
## [2,] -0.0004395381
```

Nelder-Mead (méthode de simplex, méthode de polytope)

(Conventions de la page Wikipedia et non du livre de Judd, illustration d'une recherche de minimum)

En n dimensions, l'état est x_1, \ldots, x_{n+1} (sommets d'un simplexe) tel que

$$f(x_1) < f(x_2) < \cdots < f(x_n) < f(x_{n+1}).$$

Autres points d'intérêt :

- \triangleright x_0 , le centroïde des points x_1, x_2, \dots, x_n ,
- $x_r = x_0 + \alpha(x_0 x_{n+1}), \ \alpha > 0$, un point de réflexion (r).
- $x_r = x_0 + \gamma(x_0 x_{n+1}), \ \gamma > \alpha$, un point d'expansion (e).

Une étape donne une autre ensemble de n+1 points, qu'il faut trier.

Nelder-Mead, graphiques

Figure 2: Nelder Mead en deux dimensions

Notes sur la méthode Nelder-Mead

Avantages

- Simple à programmer, à comprendre
- Marche pour les fonctions avec des discontinuités, des coudes
- On fournit seulement le code pour évaluer la fonction (pas de gradient, pas de matrice hessienne).

Inconvénients

► Lente : elle peut prendre beaucoup d'évaluations

La méthode Newton

La méthode Newton est $x^{k+1} - x^k = -H(x^k)^{-1}\nabla f(x^k)$, où $H(x^k)$ est la matrice hessienne de f évaluée à x^k .

Avantages

- La convergence est quadratique près de la solution.
- ▶ Elle marche bien quand la matrice hessienne ne change pas beaucoup et reste définie positive.
- Il y a des modifications qui surmontent souvent les inconvénients.

Inconvénients

- ► Elle marche moins bien quand les valeurs propres de H(x^k) deviennent petites où négatives. (Illustration plus tard.)
- La matrice hessienne est souvent coûteuse à évaluer.

Méthodes du type "direction set"

L'algorithme générique : faire les étapes suivantes jusqu'à ce que $\|x^k - x^{k+1}\| < \epsilon(1 + \|x^k\|)$, pour les tolérances δ et ϵ choisies :

- 1. Calculer une direction $s^k \in \mathbb{R}^n$.
- 2. Faire une recherche linéaire : trouver $\lambda_k = \arg\min_{\lambda} f(x^k + \lambda s^k)$.
- 3. $x^{k+1} = x^k + \lambda_k s^k$.

Si $\|\nabla f(x^k)\| < \delta(1+|f(x^k)|)$, réclamer le succès ; sinon, indique la convergence à un point non-optimal.

Quelques directions possibles (pour un minimum) Directions possibles

- 1. direction des axes de coordonnées : $s^k = e_{(k \mod n + 1)}$
- 2. direction de la plus forte pente : $s^k = -\nabla f(x^k)$
- 3. direction Newton : $s^k = -H(x^k)^{-1}\nabla f(x^k)$
- 4. direction BFGS : $s^k = -H_k^{-1} \nabla f(x^k)$ (H_k décrit plus tard)

Considérations pour faire un choix de direction

- 1. Coût d'évaluation de $f(x^k)$, $\nabla f(x^k)$ et $H(x^k)$.
- 2. Coût de ∇f relatif aux coûts de ses éléments :
 - a. un cas extrême : $f(x) = f_1(x_1) + \ldots + f_n(x_n)$.
 - b. un cas avec "rendements à l'échelle" : f(x) = g(h(x)), avec g et h scalaires : g'(h(x)) est un factor commun du gradient.
- 3. Variations de H(x) et de la courbature de la fonction.
- 4. Régions de non-convexité.
- 5. Alignement des vecteurs propres de la matrice hessienne et les axes de coordonnées.
- 6. Besoin de calculer la matrice hessienne de toute façon?

Illustration des directions (pour un minimum)

Dans les graphiques suivantes,

- Le point du départ (x^k) et le gradient sont normalisés :
 - $x^k = (0,0) \text{ (vert)}$
 - ▶ $\nabla f(x^k) = (-1, -1)$ (direction en vert)
- La matrice hessienne est spécifié en termes de la décomposition en éléments propres $H = QDQ^{T}$ où Q est la matrice de rotation pour un angle θ , $D = \operatorname{diag}(\lambda)$
- ► En noir:
 - le point x^{k+1} après un pas de Newton
 - la courbe de niveau de l'approximation quadratique qui passe par $x^k = (0,0)$
 - les vecteurs propres (directions de courbature maximale et minimale)
- ► En rouge : la direction de Newton

Exemple 1

```
source('../conic.R'); grad <- c(-1, -1)
nc <- Newton_conic(grad, theta=pi/8, lambda=c(1, 4))
Newton_plot(grad, nc)</pre>
```


Exemple 2

nc <- Newton_conic(grad, theta=pi/8, lambda=c(0.25, 4))
Newton_plot(grad, nc)</pre>

Exemple 3

nc <- Newton_conic(grad, theta=pi/8, lambda=c(-0.25, 4))
Newton_plot(grad, nc)</pre>

La méthode BFGS (Broyden-Fletcher-Goldfarb-Shanno)

- Les méthodes quasi-Newton (comme BFGS) utilisent une matrice H_k au lieu de la matrice hessienne de la méthode Newton.
- Deux conditions désirables : (les deux tiennent pour BFGS)
 - condition de corde pour H_k:

$$H_k(x^k - x^{k-1}) = \nabla f(x^k)^\top - \nabla f(x^{k-1})^\top$$

- ▶ H_k définie positive (une garantie que $s_k \equiv -H_k^{-1} \nabla f(x^k)$ est une direction de descente)
- La mise à jour de H_k est

$$H_{k+1} = H_k - \frac{H_k z_k z_k^\top H_k}{z_k^\top H_k z_k} + \frac{y_k y_k^\top}{y_k^\top z_k},$$

où
$$z_k = x^{k+1} - x^k$$
, $y_k = \nabla f(x^{k+1})^{\top} - \nabla f(x^k)^{\top}$.

Mise à jour de rang un

Problème : résoudre la suite de systèmes $y_k = A_k b_k$, où $A_{k+1} = A_k + u_k u_k^{\top}$.

La solution directe prend $O(n^3)$ opérations :

- mise à jour A_k , $O(n^2)$,
- décomposition de cholesky, $O(n^3)$,
- ▶ substitutions avant et arrière, $O(n^2)$.

Une solution plus efficace implique la mise à jour de A_k^{-1} , avec le formule Sherman-Morrison :

$$(A \pm uu^{\top})^{-1} = A^{-1} \mp \frac{A^{-1}uu^{\top}A^{-1}}{1 + u^{\top}A^{-1}u}.$$

Calculer $b_k = A_k^{-1} y_k$ prend $O(n^2)$ opération ; La mise à jour, $O(n^2)$ opérations :

- $V = A^{-1}u, O(n^2),$
- Numérateur, vv^{\top} , $O(n^2)$; dénominateur, $1 + u^{\top}v$, O(n).

Résultats, Nelder-Mead

\$counts

[1] 0

\$message

##

##

##

function gradient

53

\$convergence

```
## [1] -0.5627079 1.0769163
##
## $value
## [1] -0.3731764
##
```

NA

Résultats, BFGS

```
optim(c(1,1), pi_minus, gr=pi_grad_minus, C, alpha, eta,
      method='BFGS')
## $par
## [1] -0.5561409 1.0758744
##
## $value
## [1] -0.3731763
##
## $counts
## function gradient
##
         25
                  23
##
## $convergence
## [1] 0
##
## $message
## NULL
```

Programmation linéaire

Le problème canonique est

$$\max_{x \in \mathbb{R}^n} c^\top x \text{ tel que } Ax \leq b, x \geq 0.$$

Méthodes par points intérieurs (crédit, Wikipédia)

