下がすれる

Knowledge Representation & Processing

OL デジリン のれっしゅり

Yizheng Zhao^{1,2}

- 1. National Key Laboratory for Novel Software Technology
 - 2. School of Artificial Intelligence, Nanjing University

Introduction to Description Logics & the Description Logic \mathcal{EL}

用の似語言素多出のれるしの多

What are Description Logics?

There is no precise definition of what a description logic is. They form a **huge family** of logic-based **knowledge representation formalisms** with a number of common properties:

- They are descendants of semantic networks and KL-ONE from the 1960-70s.
- They describe a domain of interest in terms of
 - concepts (also called classes),
 - roles (also called relations or properties),
 - individuals
- Modulo a simple translation, they are subsets of predicate logic.
- Distinction between terminology and data (see next slide).

DL architecture

Knowledge Base (KB)

TBox (terminological box, schema)

 $\begin{aligned} &\text{Man} \equiv \text{Human} \sqcap \text{Male} \\ &\text{Father} \equiv \text{Man} \sqcap \exists \text{hasChild.} \top \end{aligned}$

...

ABox (assertion box, data)

john: Man (john, mary): hasChild

...

Reasoning System

A Semantic Network

Example: knowledge concerning persons, parents, etc.

described as a semantic network:

Semantic networks without a semantics!

Description Logics to be discussed

We first discuss the **terminological part** of the description logics

- *EL* (the DL underpinning OWL2 EL);
- DL-Lite (the DL underpinning OWL2 QL);
- The DL underpinning Schema.org;
- \mathcal{ALC} and some extensions (the DL underpinning OWL2).

We will later discuss how description logics are used to access **instance data**.

The description logic \mathcal{EL} : the terminological part

Language for \mathcal{EL} concepts

The language for \mathcal{EL} concepts consists of:

• concept names $A_0, A_1, ...$

A concept name denotes a set of objects. Typical examples are 'Person' and 'Female'. We also use A, B, B_0 , B_1 ... etc as concept names.

Concept names are also called class names.

 \bullet role names r_0 , r_1 , ...

A role name denotes a set of pairs of objects. Typical examples are 'hasChild' and 'loves'. We also use r, s, s_0 , s_1 ... etc as role names.

Role names are also called property names.

• the concept T (often called "thing")

 \top denotes the set of all objects in the domain.

- the concept constructor n. It is often called intersection, conjunction, or simply "and".
- the concept constructor ∃. It is often called existential restriction.

Definition of \mathcal{EL} concepts

 \mathcal{EL} concepts are defined inductively as follows:

- ullet all concept names are \mathcal{EL} concepts
- \bullet \top is a \mathcal{EL} concept
- ullet if C and D are \mathcal{EL} concepts and r is a role name, then

$$C \sqcap D, \exists r.C$$
 $\exists r \not\in C \bowtie \lambda \downarrow$

are \mathcal{EL} concepts.

nothing else is a EL concept.

Examples

Assume that **Human** and **Female** are concept names and that **hasChild**, **gender**, and **hasParent** are role names. Then we obtain the following \mathcal{EL} concepts:

- ∃hasChild. T (somebody who has a child),
- Human □ ∃hasChild. □ (a human who has a child),
- Human $\sqcap \exists$ hasChild.Human (a human who has a child that is human),
- Human □ ∃gender.Female (a woman),
- Human □ ∃hasChild. □ ∃hasParent. □ (a human who has a child and has a parent),
- Human □ ∃hasChild.∃gender.Female (a human who has a daughter),
- Human □ ∃hasChild.∃hasChild. □ (a human who has a grandchild).

Concept definitions in \mathcal{EL}

Let A be a concept name and C a \mathcal{EL} concept. Then

- $A \equiv C$ is called a **concept definition**. C describes necessary and sufficient conditions for being an A. We sometimes read this as "A is equivalent to C".
- $A \sqsubseteq C$ is a primitive concept definition. C describes necessary conditions for being an A. We sometimes read this as "A is subsumed by C".

Examples:

- Father \equiv Person $\sqcap \exists$ gender.Male $\sqcap \exists$ hasChild. \top .
- Student ≡ Person □ ∃is_registered_at.University.
- Father □ Person.
- Father
 □ ∃hasChild.
 ⊤.

\mathcal{EL} terminology

A \mathcal{EL} terminology \mathcal{T} is a finite set of definitions of the form

$$A \equiv C$$
, $A \sqsubseteq C$ $\uparrow C$ $\downarrow C$ $\uparrow C$ $\downarrow C$

such that no concept name occurs more than once on the left hand side of a definition. f uncept name f. So, in a terminology it is impossible to have two distinct definitions:

- University \equiv Institution $\sqcap \exists$ supplies.higher_education

However, we can have cyclic definitions such as

Human_being ≡ ∃has_parent.Human_being

A acyclic \mathcal{EL} terminology \mathcal{T} is a \mathcal{EL} terminology that does not contain (even indirect) cyclic definitions.

11 Ontoloay Lanauaaes

Example: SNOMED CT (see http://www.ihtsdo.org/)

- Comprehensive healthcare terminology with approximately 400 000 definitions (400 000 concept names and 60 role names)
- ullet Almost (except inclusions between role names) an acyclic \mathcal{EL} terminology
- Property rights owned by not-for-profit organisation IHSTDO (International Health terminology Standards Development Organisation).
- IHSTDO founded in 2007. Currently owned and governed by 27 nations.
- Aim: enabling clinicians, researchers and patients to share and exchange healthcare and clinical knowledge worldwide.
- In the NHS, SNOMED CT is specified as the single terminology to be used across the health system by 2020.

SNOMED CT Snippet

EntireFemur	StructureOfFemur
FemurPart	StructureOfFemur □
	∃part_of.EntireFemur
Bone Structure Of Distal Femur	FemurPart
EntireDistalFemur	BoneStructureOfDistalFemur
DistalFemurPart	$BoneStructureOfDistalFemur \ \sqcap$
	$\exists part_of.EntireDistalFemur$
${\bf Structure of Distal Epiphysis Of Femur}$	DistalFemurPart
EntireDistalEpiphysisOfFemur	StructureOfDistalEpiphysisOfFemur

SNOMED CT most general concept names

- Clinical finding
- Procedure
- Observable Entity
- Body structure
- Organism
- Substance
- Biological product
- Specimen
- Physical object

Typical roles in SNOMED CT

Finding Site. Example

 $Kidney_disease \equiv Disorder \sqcap \exists Finding_Site.Kidney_Structure$

Associated Morphology. Example

 $Bone_marrow_hyperplasia \sqsubseteq \exists Associated_Morphology. Hyperplasia$

• Due to. Example

Acute_pancreatitis_due_to_infection

Acute_pancreatitis □ ∃Due_to.Infection

FL will & concept name EC concept inclusion (CI)

We generalise \mathcal{EL} concept definitions and primitive \mathcal{EL} concept definitions. Let C and D be \mathcal{EL} concepts. Then

- $C \sqsubseteq D$ is called a \mathcal{EL} concept inclusion. It states that every C is-a D. We also say that C is subsumed by D or that D subsumes C. Sometimes we also say that C is included in D.
- $C \equiv D$ is is called a \mathcal{EL} concept equation. We regard this as an abbreviation for the two concept inclusions $C \sqsubseteq D$ and $D \sqsubseteq C$. We sometimes read this as "C and D are equivalent".

Examples:

- Disease □ ∃has_location.Heart □ NeedsTreatment
- $\bullet \ \exists student_of. Computer Science \sqsubseteq Human_being \sqcap \exists knows. Programming_Language$

Observations

- Every \mathcal{EL} concept definition is a \mathcal{EL} concept equation, but not every \mathcal{EL} concept equation is a \mathcal{EL} concept definition.
- Every primitive \mathcal{EL} concept definition is a \mathcal{EL} concept inclusion, but not every \mathcal{EL} concept inclusion is a primitive \mathcal{EL} concept definition.

\mathcal{EL} TBox

A \mathcal{EL} TBox is a finite set \mathcal{T} of \mathcal{EL} concept inclusions and \mathcal{EL} concept equations. Observe:

- Every acyclic \mathcal{EL} terminology is a \mathcal{EL} terminology;
- ullet every \mathcal{EL} terminology is a \mathcal{EL} TBox.

Example:

How are TBoxes (eg, SNOMED CT) used?

The **concept hierarchy** induced by a TBox $\mathcal T$ is defined as

 $\{A \sqsubseteq B \mid A, B \text{ concept names in } \mathcal{T} \text{ and } \mathcal{T} \text{ implies } A \sqsubseteq B\}$

Eg, the concept hierarchy induced by the SNOMED CT snippet above is EntireDistalEpiphysisOfFemur

StructureOfDistalEpiphysisOfFemur

DistalFemurPart

BoneStructureOfDistalFemur

FemurPart

Standard application of SNOMED CT based on concept hierarchy

- SNOMED CT is used to produce a hierarchy of medical terms (concept names). Each term is annotated with a numerical code and an axiom defining its meaning.
- This hierarchy is used by physicians to
 - generate,
 - process
 - and store

electronic medical records (EMRs) containing diagnoses, treatments, medication, lab records, etc.

Problem: we do not yet have a precise definition of what it means that $A \sqsubseteq B$ follows from \mathcal{T} (or is implied by \mathcal{T}). So: we do not have a precise definition of the concept hierarchy induced by a TBox.

\mathcal{EL} (semantics)

- ullet An **interpretation** is a structure $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ in which
 - $\Delta^{\mathcal{I}}$ is the **domain** (a non-empty set)
 - $\cdot^{\mathcal{I}}$ is an interpretation function that maps:
 - * every concept name A to a subset $A^{\mathcal{I}}$ of $\Delta^{\mathcal{I}}$ ($A^{\mathcal{I}}\subseteq\Delta^{\mathcal{I}}$)
 - * every role name r to a binary relation $r^{\mathcal{I}}$ over $\Delta^{\mathcal{I}}$ $(r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}})$
- The interpretation $C^{\mathcal{I}}\subseteq\Delta^{\mathcal{I}}$ of an arbitrary \mathcal{EL} concept C in \mathcal{I} is defined inductively:
 - $(\top)^{\mathcal{I}} = \Delta^{\mathcal{I}}$
 - $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$
 - $(\exists r.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} \mid \text{ exists } y \in \Delta^{\mathcal{I}} \text{ such that } (x,y) \in r^{\mathcal{I}} \text{ and } y \in C^{\mathcal{I}} \}$

せいを引有強力、C在了。体中、例目、C包引致多差

Let $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where

$$ullet$$
 $\Delta^{\mathcal{I}} = \{a,b,c,d,A,B\};$

- Person $^{\mathcal{I}} = \{a, b, c, d\}$, Female $^{\mathcal{I}} = \{A\}$;
- ullet has $\mathsf{Child}^\mathcal{I} = \{(a,b),(b,c)\}$, $\mathsf{gender}^\mathcal{I} = \{(a,A),(b,B),(c,A)\}$.

Compute:

- (Person $\sqcap \exists gender. \top)^{\mathcal{I}}$, $= \{A, b, C, d\} \cap \{a, b, C\}$ (Person $\sqcap \exists gender. Female)^{\mathcal{I}}$, $= \{a, b, C, d\} \cap \{a, c\}$
- (Person $\sqcap \exists hasChild.Person)^{\mathcal{I}}$, $= \{a_1b_1, c_1d_1\} \land \{a_1b_1\}$
- (Person $\sqcap \exists hasChild. \exists gender. Female$)) $^{\mathcal{I}} = \{ a_1 b_1 c_1 d \} \cap \{ b \}$
- (Person \Box $\exists hasChild. \exists hasChild. \top$) $^{\mathcal{I}} : \exists \{a,b,c,d\} \land \{a\}$

Semantics: when is a concept inclusion true in an interpretation?

Let \mathcal{I} be an interpretation, $C \sqsubseteq D$ a concept inclusion, and \mathcal{T} a TBox.

- We write $\mathcal{I} \models C \sqsubseteq D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$. If this is the case, then we say that
 - \mathcal{I} satisfies $C \sqsubseteq D$ or, equivalently, $\mathcal{I} \subset \mathcal{I} \subseteq \mathcal{I}$ $\mathcal{I} \subseteq \mathcal{I}$

 - \mathcal{I} is a model of $C \sqsubseteq D$. Interpret at \mathcal{I} model
- ullet We write $\mathcal{I} \models C \equiv D$ if $C^{\mathcal{I}} = D^{\mathcal{I}}$
- We write $\mathcal{I} \models \mathcal{T}$ if $\mathcal{I} \models E \sqsubseteq F$ for all $E \sqsubseteq F$ in \mathcal{T} . If this is the case, then 工解释了一个疑念的东西 we say that
 - \mathcal{I} satisfies \mathcal{T} or, equivalently,
 - \mathcal{I} is a model of \mathcal{T} .

Semantics: when does a concept inclusion follow from a TBox?

 $C \subseteq D \quad \text{follows} \quad \text{from} \quad \text{T} \iff \quad \text{T} \quad \text{Monode} \quad L \quad \text{T} \quad \text{S} \quad \text{Let} \quad \mathcal{T} \text{ be a TBox and } C \subseteq D \text{ a concept inclusion. We say that } C \subseteq D \text{ follows} \quad \text{from } \mathcal{T} \text{ if, and only if, every model of } \mathcal{T} \text{ is a model of } C \subseteq D.$

Instead of saying that $C \sqsubseteq D$ follows from $\mathcal T$ we often write

model

- $\mathcal{T} \models C \sqsubseteq D$ or
- $C \sqsubseteq_{\mathcal{T}} D$.

Example: let MED be the \mathcal{EL} TBox

Pericardium

☐ Tissue ☐ ∃cont_in.Heart

Pericarditis
☐ Inflammation
☐ ∃has_loc.Pericardium

Inflammation □ **Disease** □ ∃acts_on. **Tissue**

Disease □ ∃has_loc.∃cont_in.Heart □ Heartdisease □ NeedsTreatment

Pericarditis needs treatment if, and only if, **Percarditis** \square_{MED} **NeedsTreatment**.

Examples

Let $\mathcal{T} = \{A \sqsubseteq \exists r.B\}$. Then

$$\mathcal{T} \not\models A \sqsubseteq B$$
.

To see this, construct an interpretation ${\cal I}$ such that

• $\mathcal{I} \not\models A \sqsubseteq B$.

Namely, let \mathcal{I} be defined by

- ullet $\Delta^{\mathcal{I}}=\{a,b\};$
- $\bullet \ A^{\mathcal{I}} = \{a\};$
- $\bullet \ r^{\mathcal{I}} = \{(a,b)\};$
- $\bullet \ B^{\mathcal{I}} = \{b\}.$

Then $A^{\mathcal{I}}=\{a\}\subseteq \{a\}=(\exists r.B)^{\mathcal{I}} \text{ and so } \mathcal{I}\models \mathcal{T}.$ But $A^{\mathcal{I}}\not\subseteq B^{\mathcal{I}}$ and so $\mathcal{I}\not\models A\sqsubseteq B.$

Examples

Let again $\mathcal{T} = \{A \sqsubseteq \exists r.B\}$. Then

$$\mathcal{T} \not\models \exists r.B \sqsubseteq A.$$

To see this, construct an interpretation ${\mathcal I}$ such that

- $\mathcal{I} \models \mathcal{T}$;
- $\mathcal{I} \not\models \exists r.B \sqsubseteq A$.

Let \mathcal{I} be defined by

- $\bullet \ \Delta^{\mathcal{I}} = \{a\};$
- \bullet $A^{\mathcal{I}} = \emptyset$;
- $ullet r^{\mathcal{I}} = \{(a,a)\};$
- $\bullet \ B^{\mathcal{I}} = \{a\}.$

Then $A^{\mathcal{I}} = \emptyset \subseteq \{a\} = (\exists r.B)^{\mathcal{I}}$ and so $\mathcal{I} \models \mathcal{T}$. But $(\exists r.B)^{\mathcal{I}} = \{a\} \not\subseteq \emptyset = A^{\mathcal{I}}$ and so $\mathcal{I} \not\models \exists r.B \sqsubseteq A$.

Deciding whether $C \sqsubseteq_{\mathcal{T}} D$ for \mathcal{EL} TBoxes \mathcal{T}

We give a polynomial time (tractable) algorithm deciding whether $C \sqsubseteq_{\mathcal{T}} D$

The algorithm actually decides whether $A \sqsubset_{\mathcal{T}} B$ only for concept names Aand B in \mathcal{T} .

This is sufficient because the following two conditions are equivalent:

- $C \sqsubseteq_{\mathcal{T}} D$
- ullet $A \sqsubseteq_{\mathcal{T}'} B$, where A and B are concept names that do not occur in \mathcal{T} and the TBox \mathcal{T}' is defined by

$$\mathcal{T}' = \mathcal{T} \cup \{A \equiv C, B \equiv D\}$$

Thus, if we want to know whether $C \sqsubseteq_{\mathcal{T}} D$, we first construct \mathcal{T}' and then apply the algorithm to \mathcal{T}' , A, and B.

T和TTC,D上等们

Pre-processing

A \mathcal{EL} TBox is in *normal form* if it consists of inclusions of the form

(sform) $A \sqsubseteq B$, where A and B are concept names;

(cform) $A_1 \sqcap A_2 \sqsubseteq B$, where A_1, A_2, B are concept names;

(rform) $A \sqsubseteq \exists r.B$, where A, B are concept names;

(Iform) $\exists r.A \sqsubseteq B$, where A, B are concept names.

Given a \mathcal{EL} Box \mathcal{T} , one can compute in polynomial time a TBox \mathcal{T}' in normal form such that for all concept names A, B in \mathcal{T} :

$$A \sqsubseteq_{\mathcal{T}} B \iff A \sqsubseteq_{\mathcal{T}'} B.$$

Normalization Algorithm for Pre-processing EMM

Given a TBox \mathcal{T} , apply the following rules exhaustively:

- Replace each $C_1 \equiv C_2$ by $C_1 \sqsubseteq C_2$ and $C_2 \sqsubseteq C_1$;
- Replace each $C \sqsubseteq C_1 \sqcap C_2$ by $C \sqsubseteq C_1$ and $C \sqsubseteq C_2$;
- If $\exists r.C$ occurs in \mathcal{T} and C is complex, replace C in \mathcal{T} by a fresh concept name X and add $X \sqsubseteq C$ and $C \sqsubseteq X$ to \mathcal{T} ;
- If $C \sqsubseteq D$ in \mathcal{T} and $\exists r.B$ occurs in C (but $C \neq \exists r.B$), then remove $C \sqsubseteq D$, take a fresh concept name X, and add

$$X \sqsubset \exists r.B, \exists r.B \sqsubset X, C' \sqsubset D$$

to \mathcal{T} , where C' is the concept obtained from C by replacing $\exists r.B$ by X.

Algorithm for Pre-processing

ullet If $A_1\sqcap\cdots\sqcap A_n\sqsubseteq D$ in $\mathcal T$ and n>2, then remove it, take a fresh concept name X, and add

$$A_2 \sqcap \cdots \sqcap A_n \sqsubseteq X$$
, $X \sqsubseteq A_2 \sqcap \cdots \sqcap A_n$, $A_1 \sqcap X \sqsubseteq D$

to \mathcal{T} .

ullet If $\exists r.B \sqsubseteq \exists s.E$ in \mathcal{T} , then remove it, take a fresh concept name X, and add

$$\exists r.B \sqsubseteq X, \quad X \sqsubseteq \exists s.E$$

to \mathcal{T} .

Pre-Processing: Example

Consider \mathcal{T} :

$$A_0 \sqsubseteq B \cap \exists r.B', \quad A_1 \cap \exists r.B \sqsubseteq A_2$$

Step 1 gives:

$$A_0 \sqsubseteq B$$
, $A_0 \sqsubseteq \exists r.B'$, $A_1 \sqcap \exists r.B \sqsubseteq A_2$

Step 4 gives:

$$A_0 \sqsubseteq B$$
 $A_0 \sqsubseteq \exists r.B'$ $A_1 \sqcap X \sqsubseteq A_2$ $\exists r.B \sqsubseteq X$ $X \sqsubseteq \exists r.B$

Pre-Processing applied to Example MED

Pericardium □ **Tissue** Pericardium \Box Y**Pericarditis** □ **Inflammation** Pericarditis

∃has_loc.Pericardium **Inflammation** □ **Disease** Inflammation

∃acts_on. Tissue Disease $\sqcap X \sqsubseteq$ Heartdisease Disease $\sqcap X \subseteq \mathsf{NeedsTreatment}$ \exists has_loc. $Y \sqsubseteq X, X \sqsubseteq \exists$ has_loc. Y, \exists cont_in.Heart $\sqsubseteq Y, Y \sqsubseteq \exists$ cont_in.Heart

Algorithm deciding $A \sqsubseteq_{\mathcal{T}} B$: Intuition

Given \mathcal{T} in normal form, we compute functions S and R:

- S maps every concept name A from $\mathcal T$ to a set of concept names B;
- ullet R maps every role name r from ${\mathcal T}$ to a set of pairs (B_1,B_2) of concept names.

We will have $A \sqsubseteq_{\mathcal{T}} B$ if, and only if, $B \in S(A)$.

Intuitively, we construct an interpretation ${\mathcal I}$ with

- $\Delta^{\mathcal{I}}$ is the set of concept names in \mathcal{T} .
- $A^{\mathcal{I}}$ is the set of all B such that $A \in S(B)$;
- $r^{\mathcal{I}}$ is the set of all $(A,B) \in R(r)$.

This will be a model of \mathcal{T} and $A \sqsubseteq_{\mathcal{T}} B$ if, and only if, $A \in B^{\mathcal{I}}$.

Algorithm

Input: $\mathcal T$ in normal form. Initialise: $S(A)=\{A\}$ and $R(r)=\emptyset$ for A and r in $\mathcal T$. Apply the following four rules to S and R exhaustively:

(simpleR) If $A' \in S(A)$ and $A' \sqsubseteq B \in \mathcal{T}$ and $B \not \in S(A)$, then

$$S(A) := S(A) \cup \{B\}.$$

(conjR) If $A_1,A_2\in S(A)$ and $A_1\sqcap A_2\sqsubseteq B\in \mathcal{T}$ and $B\not\in S(A)$, then

$$S(A) := S(A) \cup \{B\}.$$

(rightR) If $A' \in S(A)$ and $A' \sqsubseteq \exists r.B \in \mathcal{T}$ and $(A,B) \not \in R(r)$, then

$$R(r) := R(r) \cup \{(A,B)\}.$$

(leftR) If $(A,B)\in R(r)$ and $B'\in S(B)$ and $\exists r.B'\sqsubseteq A'\in \mathcal{T}$ and $A'\not\in S(A)$, then

$$S(A) := S(A) \cup \{A'\}.$$

Example

$$egin{array}{cccc} A_0 &\sqsubseteq& \exists r.B \ & B &\sqsubseteq& E \ & \exists r.E &\sqsubseteq& A_1 \end{array}$$

Initialise: $S(A_0) = \{A_0\}$, $S(A_1) = \{A_1\}$, $S(B) = \{B\}$, $S(E) = \{E\}$, $R(r) = \emptyset$.

- Application of (rightR) and axiom 1 gives: $R(r) = \{(A_0, B)\}$;
- Application of (simpleR) and axiom 2 gives: $S(B) = \{B, E\}$;
- Application of (leftR) and axiom 3 gives: $S(A_0) = \{A_0, A_1\}$;
- No more rules are applicable.

Thus, $R(r)=\{(A_0,B)\}$, $S(B)=\{B,E\}$, $S(A_0)=\{A_0,A_1\}$ and no changes for the remaining values. We obtain $A_0\sqsubseteq_{\mathcal{T}}A_1$.

Fragment of MED

Partial run of the algorithm (showing that $Ps \sqsubseteq_{MED} NeedsTreatment$):

- Applications of (simpleR) give: $S(Pm) = \{Y, Pm\}, S(Ps) = \{Inf, Ps, Dis\};$
- Application of (rightR) give: $R(has_loc) = \{(Ps, Pm)\}$,
- Application of (leftR) gives: $S(Ps) = \{Inf, Ps, Dis, X\}$
- Application of (conjR) gives: $S(Ps) = \{Inf, Ps, Dis, X, NeedsTreatment\}$

Analysing the output of the algorithm

Let \mathcal{T} be in normal form and S, R the output of the algorithm.

Theorem. For all concept names A,B in \mathcal{T} : $A\sqsubseteq_{\mathcal{T}} B$ if, and only if, $B\in S(A)$. In fact, the following holds: Define an interpretation \mathcal{I} by

- ullet $\Delta^{\mathcal{I}}$ is the set of concept names in \mathcal{T} .
- $A^{\mathcal{I}}$ is the set of all B such that $A \in S(B)$;
- ullet $r^{\mathcal{I}}$ is the set of all $(A,B)\in R(r)$.

Then

- \bullet \mathcal{I} satisfies \mathcal{T} and
- ullet for all concept names A from ${\mathcal T}$ and ${\mathcal E}{\mathcal L}$ -concepts C:

$$A \sqsubseteq_{\mathcal{T}} C \quad \Leftrightarrow \quad A \in C^{\mathcal{I}}.$$