포아송 분포(Poisson distribution)

포아송 확률변수는 시간 또는 공간의 일정한 구간에서 발생하는 사건의 횟수를 추정하는 데 유용하다.

무한한 일련의 값 (x = 0, 1, 2, ...)들을 갖는 이산확률 변수이다.

포아송 분포 확률변수의 예

송판의 14 feet내에 있는 옹이구멍의 개수

시간당 요금소에 도착하는 자동차의 대수

- 포아송 실험의 두 가지 속성
 - 1. 동일한 길이의 어떤 두 구간에서 사건발생 확률은 동일하다.
 - 2. 어떤 구간의 사건발생이나 사건불발은 다른 구간에서의 사건발생 또는 사건불발과는 독립적이다(무관하다).

▶포아송 확률함수

$$f(x) = \frac{\mu^x e^{-\mu}}{x!}$$

여기서:

f(x) = 한 구간에서 x건의 사건발생 확률 $\mu =$ 한 구간에서 사건발생 평균 횟수 e = 2.71828

- 예: Mercy 병원
- ➤ 환자들이 주말 저녁에 시간당 평균 6명 정도 Mercy 병원의 응급실에 도착한다.
- 어떤 주말저녁에 30분내에 4명이 도착할 가능성은 얼마인가?

■ 포아송 확률함수의 사용

$$\mu = 6/\text{hour} = 3/\text{half-hour}, x = 4$$

$$f(4) = \frac{3^4 (2.71828)^{-3}}{4!} = .1680$$

■ 포아송 확률테이블 이용

	μ									
X	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	(3.0)
0	.1225	.1108	.1003	.0907	.0821	.0743	.0672	.0608	.0550	.0498
1	.2572	.2438	.2306	.2177	.2052	.1931	.1815	.1703	.1596	.1494
2	.2700	.2681	.2652	.2613	.2565	.2510	.2450	.2384	2314	.2240
3	.1890	.1966	.2033	.2090	.2138	.2176	.2205	.2225	.2237	2240
(4)	.0992	.1082	.1169	.1254	.1336	.1414	.1488	.1557	.1622	.1680
5	.0417	.0476	.0538	.0602	0668	.0735	.0804	.0872	.0940	.1008
6	.0146	.0174	.0206	.0241	.0278	.0319	.0362	.0407	.0455	.0504
7	.0044	.0055	.0068	.0083	.0099	.0118	.0139	.0163	.0188	.0216
8	.0011	.0015	.0019	.0025	.0031	.0038	.0047	.0057	.0068	.0081

■ 도착환자들의 포아송 분포

포아송 분포의 특성은 평균과 분산이 같다는 것이다.

$$\mu = \sigma^2$$

■ 30분 동안에 도착하는 환자수의 분산

$$\mu = \sigma^2 = 3$$