Федеральное государственное автономное образовательное учреждение высшего

образования НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Отчет по лабо	раторной р	работе 5.4	«Компьютерная	сцинитилляцио	панна
		γ - спектр	« кидтэмоо		

Выполнил: Сидельников Станислав Игоревич студент Б01-908

1 Аннотация

Цель работы: исследование при помощи спектрометрии эффектов рассеяния γ -квантов на различных типах веществ.

В работе используются:

- сцинтиллятор
- ФЭУ
- предусилитель импульсов
- высоковольтный блок питания для ФЭУ
- АЦП
- компьютер

2 Теоретические сведения

Фотоэффект - это процесс взаимодействия гамма-кванта с электроном, связанным с атомом, при котором электрону передается вся энергия гамма-кванта. При этом электрону сообщается кинетическая энергия $T_e = E_{\gamma} - I_i$, где E_{γ} – энергия гамма-кванта, I_i – потенциал ионизации i-той оболочки атома. Фотоэффект особенно существенен для тяжелых веществ, где он идет с заметной вероятностью даже при высоких энергиях гамма-квантов. В легких веществах фотоэффект становится заметен лишь при относительно небольших энергиях гамма-квантов.

Эффект Комптона - это упругое рассеяние фотона на свободном электроне, сопровождающееся изменением длины волны фотона. Максимальная энергия образующихся комптоновских электронов соответствует рассеянию гамма-квантов на 180° и равна

$$E_{\text{max}} = \frac{h\omega}{1 + \frac{mc^2}{2h\omega}}.$$
 (1)

Процесс образования электрон-позитронных пар. При достаточно высокой энергии гамма-кванта наряду с фотоэффектом и эффектом Комптона может происходить третий вид взаимодействия гамма-квантов с веществом – образование электрон-позитронных пар. Процесс образования пар не может происходить в пустоте, так как в этом случае не выполняются законы сохранения энергии и импульса. В присутствии ядра или электрона процесс образования пары гамма-квантов возможен, так как можно распределить энергию и импульс гамма-кванта между тремя частицами без противоречия с законами сохранения. При этом если процесс образования пары идет в кулоновском поле ядра или протона, то энергия образующегося ядра отдачи оказывается весьма малой, так что пороговая энергия гамма-кванта E_0 , необходимая для образования пары, практически совпадает с удвоенной энергией покоя электрона $E_0 \cong 2mc^2 = 1.022$ МэВ.

Появившийся в результате процесса образования пар электрон свою энергию на ионизацию среды. Таким образом, вся энергия электрона остается в детекторе. Позитрон будет двигаться до тех пор, пока практически не остановится, а затем аннигилирует с электроном среды, в результате чего появятся два гамма-кванта. Т.е., кинетическая энергия позитрона также останется в детекторе. Далее возможны три варианта развития событий:

- 1. оба родившихся гамма-кванта не вылетают из детектора, и тогда вся энергия первичного гамма-кванта останется в детекторе, а в спектре появится пик с $E = E_{\gamma}$;
- 2. один из родившихся гамма-квантов покидает детектор, и в спектре появляется пик, соответствующий энергии $E=E_{\gamma}-E_{0}$, где $E_{0}=mc^{2}=511$ кэB;
- 3. оба родившихся гамма-кванта покидают детектор, и в спектре появляется пик, соотвествующий энергии $E=E_{\gamma}-2E_{0}$, где $2E_{0}=2mc^{2}=1022$ кэВ.

Таким образом, любой спектр, получаемый с помощью гамма-спектрометра, описывается несколькими компонентами, каждая из которых связана с определенным физическим процессом. Как описано выше, основными физическими процессами взаимодействия гамма-квантов с веществом является фотоэффект, эффект Комптона и образование электрон-позитронных пар, и каждый из них вносит свой вклад в образование спектра. Помимо этих процессов, добавляется экспонента, связанная с наличием фона, пик характеристического излучения, возникающий при взаимодействии гамма-квантов с окружающим веществом, а также пик обратного рассеяния, образующийся при энергии квантов $E_{\gamma} \gg mc^2/2$ в результате рассеяния гамма-квантов на большие углы на материалах конструктивных элементов детектора и защиты. Положение пика обратного рассеяния определяется по формуле:

$$E_{\text{ofp}} = \frac{E}{1 + 2E/mc^2},\tag{2}$$

где E – энергия фотопика.

Энергетическое разрешение спектрометра. Даже при поглощении частиц с одинаковой энергией амплитуда импульса на выходе фотоприёмника сцинтилляционного детектора меняется от события к событию. Это связано:

- 1. со статистическим характером процессов сбора фотонов на фотоприёмнике и последующего усиления,
- 2. с различной вероятностью доставки фотона к фотоприемнику из разных точек сцинтиллятора,
- 3. с разбросом высвечиваемого числа фотонов

В результате в набранном спектре линия (которая для идеального детектора представляла бы дельта-функцию) оказывается размытой, её часто описывают гауссианом.

Энергетическим разрешением спектрометра называется величина

$$R_i = \frac{\Delta E_i}{E_i},\tag{3}$$

где ΔE_i – ширина пика полного поглощения, измеренная на половине высоты, E_i – энергия регистрируемого γ -излучения. Значение E_i пропорционально среднему числу фотонов $\overline{n_i}$ на выходе $\Phi \ni V$, т.е.:

$$E_i = \alpha \overline{n_i}. \tag{4}$$

Полуширина пика полного поглощения ΔE_i пропорциональна среднеквадратичной флуктуации $\overline{\Delta n_i}$. Т.к. n_i является дискретной случайной величиной, которая распределена по закону Пуассона, то $\overline{\Delta n_i} = \sqrt{\overline{n_i}}$ и поэтому

$$\Delta E_i = \alpha \overline{\Delta n_i} = \alpha \sqrt{\overline{n_i}}.$$
 (5)

Из (4), (5) получаем, что

$$R_i = \frac{\Delta E_i}{E_i} = \frac{\text{const}}{\sqrt{E_i}}.$$
 (6)

Поскольку энергетическое разрешение зависит от энергии, его следует указывать для конкретной энергии. Чаще всего разрешение указывают для энергии гаммалинии $^{137}\mathrm{Cs}$ (661.7 кэВ).

3 Результаты измерений и обработка данных

3.1 Определение зависимости между энергией гамма квантов и номерами каналов

Здесь и далее погрешность определение пиков считаем равной 10 каналам, и она определяется ошибкой определения номера канала при снятии на глаз пика с графика на компьютере.

$$\delta_{ch} = 10$$

Результаты измерения фотопиков		
для калибровочных данных		
	Номер канала	Энергия, эВ
Фотопик Na	1742	1275000
Анигиляционный пик Na	746	511000
Фотопик Сѕ	942	661700

Калибровочный график зависимости энергии пика от номера канала

Коэффиценты, вычисленные согласно калибровочному графику:

$$E = 766.94 \cdot N + 60968.12$$
, где N - номер канала

3.2 Измерения пиков, ширины пиков и разрешающей способности

Погрешность измерения энергии, учитывая линейную зависимость от погрешность измерения коэффициента перевода номера канала в энергию:

$$\delta_E = a \cdot \delta_N = 7669$$

Погрешность измерения ширины пика:

$$\delta_{dE} = a \cdot \delta_{dN} = 7669$$

Погрешность измерения энергетического разрешения:

$$\delta_R = 0.02$$

Элемент	N, номер канала	Погрешность измерения номера канала	dN, ширина
Co60	1825	10	223
-//-	1607	10	183
Na	1742	10	168
Cs	942	10	147
Am	161	10	55
Eu	527	10	110
-//-	400	10	58
-//-	243		55

Элемент	Погрешность	Е, значение энергии в эВ	Погрешность измерения	
	ширины	<u> </u>	энергии	
Co60	20	1338697.37726	7669	
-//-	20	1171504.45726	7669	
Na	20	1275041.35726	7669	
Cs	20	661489.35726	7669	
Am	20	62509.21726	7669	
Eu	20	343209.25726	7669	
-//-	20	245807.87726	7669	
-//-	20	125398.29726	7669	

Элемент	dE, ширина пика в эВ	Погрешность измерения ширины пика, эВ	Погрешность энергетического разрешения	R, энерг. разрешение
Co60	171027.62	15334	0.02	0.127756745404293
-//-	140350.02	15334	0.02	0.119803231759153
Na	128845.92	15334	0.02	0.101052345687738
Cs	112740.18	15334	0.02	0.170433853186979
Am	42181.7	15334	0.02	0.674807681954327
Eu	84363.4	15334	0.02	0.245807472308622
-//-	44482.52	15334	0.02	0.180964582973674
-//-	42181.7	15334	0.02	0.33638176053173

3.3 Исследование соответствия измеренного края комптоновского рассеяния от теоретического

3.4 Исследование зависимости квадрата энергетического разрешения от обратной энергии пиков

 О.14
 0.12

 0.12
 0.08

 0.06
 0.09

 0.07
 0.09

4x10⁻⁶

1/E, ₉B -1

5x10⁻⁶

6x10⁻⁶

7x10⁻⁶

8x10⁻⁶

9x10

1x10⁻⁶

2x10⁻⁶

3x10⁻⁶

3.5 Исследование пиков обратного рассеяния

Погрешность для обратного рассеяния возьмем равной погрешности измерения энергии

			Погрешность
Элемент	Энергия. эВ	BackScattering, эВ	измерения
			энергии эВ
Co60	1338697.37726	214551.337725697	7669
-//-	1171504.45726	209753.646743792	7669
Na	1275041.35726	212848.26132574	7669
Cs	661489.35726	184310.242471014	7669
Am	62509.21726	50222.1449665474	7669
Eu	343209.25726	146465.023158727	7669
-//-	245807.87726	125280.123231252	7669
-//-	125398.29726	84115.0122759937	7669

3.6 Энергия наблюдаемого характеристического излучения свинца

Были измерены номера каналов пика излучения свинца длля Co60 и Na22:

$$N_1 = 231 \pm 10$$
, $N_2 = 233 \pm 10$

В пределах погрешности измерения эти пики совпадают, это говорит о том, что данный пик не зависит от типа исследуемого вещества и, следовательно, связан с постоянно присутствующим экранирующим свинцом.

Энергия характеристического излучения свинца:

$$E_{Pb} = 177163 \pm 7669 \text{ 9B}$$

4 Обсуждение результатов и вывод

Я хз что тут написать я половину скатал и не понимаю сути работы