iiiiiiii HEAD ======

 $\verb||| \verb||| \verb||| \verb||| \verb||| \verb||| 410951f5e919666df39df4d90222a500a1f63b6d$

SIGNAL PROCESSING Through GATE

EE1205-TA Group

 $Author:\ Sayyam\ Palrecha$

Copyright ©2024 by Sayyam Palrecha

 ${\rm https://creative commons.org/licenses/by-sa/3.0/}$

 $\quad \text{and} \quad$

 $\rm https://www.gnu.org/licenses/fdl-1.3.en.html$

Contents

In	troduction	iii
1	Harmonics	1
2	Filters	3
3	Z-transform	5
	iiiiiii HEAD	
4	Systems	9
5	Sequences	11
6	Sampling	13
7	Contour Integration	15
8	Laplace Transform	17
	======	
4	Systems	7
5	Sequences	9
6	Sampling	11

7	Contour Integration	13
8	Laplace Transform	15
	іііііі 410951f5e919666df39df4d90222a500a1f63b6d	
9	Fourier transform	21

Introduction

This book provides solutions to signal processing problems in GATE.

Harmonics

Z-transform

3.1 Consider the following recursive iteration scheme for different values of variable P with the initial guess $x_1 = 1$:

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{P}{x_n} \right), \qquad n = 1, 2, 3, 4, 5$$

For P=2, x_5 is obtained to be 1.414, rounded off to 3 decimal places. For P=3, x_5 is obtained to be 1.732, rounded off to 3 decimal places.

If P=10, the numerical value of x_5 is ______ . (round off to three decimal places) (GATE CE 2022)

Solution:

Applying $A.M \geq G.M$ inequality,

$$\frac{x_n + \frac{P}{x_n}}{2} \ge \sqrt{P} \tag{3.1}$$

$$\implies x_{n+1} \ge \sqrt{P} \tag{3.2}$$

Solving the equation,

$$2x_{n+1}x_n - x_n^2 - P = 0 (3.3)$$

Applying Z-transform we get,

$$X(z) * X(z) = \frac{PZ^{-1}}{(1 - z^{-1})(2 - z^{-1})}$$
(3.4)

$$=P\left(\frac{z^{-1}}{1-z^{-1}} - \frac{z^{-1}}{2-z^{-1}}\right) \tag{3.5}$$

From the transformation pairs,

$$x_{n-a} \stackrel{\mathcal{Z}}{\longleftrightarrow} z^{-a} X(z)$$
 (3.6)

$$x_{n_1} \times x_{n_2} \stackrel{\mathcal{Z}}{\longleftrightarrow} X_1(z) * X_2(z)$$
 (3.7)

$$\frac{u(n-1)}{a^n} \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}}{a-z^{-1}} \tag{3.8}$$

Now, applying inverse Z-tranform,

$$x_n^2 = P\left(u(n-1) - \frac{u(n-1)}{2^n}\right)$$
 (3.9)

$$\implies x_n^2 = P\left(1 - \frac{1}{2^n}\right) \quad [\because n \ge 1] \tag{3.10}$$

Similarly,

$$x_{n+1}^2 = P\left(1 - \frac{1}{2^{n+1}}\right) \tag{3.11}$$

$$\implies \lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \lim_{n \to \infty} \sqrt{\frac{P\left(1 - \frac{1}{2^n}\right)}{P\left(1 - \frac{1}{2^{n+1}}\right)}}$$
(3.12)

$$=1 \tag{3.13}$$

Hence, the system is convergent.

Now finding the limit of the sequence,

$$x^2 = \lim_{x \to \infty} P\left(1 - \frac{1}{2^n}\right) \tag{3.14}$$

$$\implies x = \pm \sqrt{P} \tag{3.15}$$

From (3.2) and (3.15),

$$x_{n+1} = \sqrt{P} \tag{3.16}$$

Therefore, for P = 10 the value of x_5 is,

$$x_5 = \sqrt{10} (3.17)$$

$$\therefore x_5 = 3.162 \tag{3.18}$$

Systems

Sampling

Contour Integration

Laplace Transform

8.1 Consider the differential equation $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 0$. The boundary conditions are y=0 and $\frac{dy}{dx}=1$ at x=0. Then the value of y at $x=\frac{1}{2}$ (GATE AE 2022) Solution:

Parameters	Values	Description
y(0)	0	y at x = 0
y'(0)	1	$\frac{dy}{dx}$ at $x = 0$

Table 8.1: Parameters

$$\frac{d^2y}{dx^2} \stackrel{\mathcal{L}}{\longleftrightarrow} s^2 Y(s) - sy(0) - y'(0) \tag{8.1}$$

$$\frac{dy}{dx} \stackrel{\mathcal{L}}{\longleftrightarrow} sY(s) - y(0) \tag{8.2}$$

Applying Laplace Transform, using (8.1) and (8.2),

$$s^{2}Y(s) - sy(0) - y'(0) - 2(sY(s) - y(0)) + Y(s) = 0$$
(8.3)

From Table 8.1,

$$(s^2 - 2s + 1)Y(s) - 1 = 0 (8.4)$$

$$Y(s) = \frac{1}{(s-1)^2} \tag{8.5}$$

$$t^n \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{n!}{s^{n+1}} \tag{8.6}$$

$$e^{at}x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s-a)$$
 (8.7)

Taking Inverse Laplace Transform for Y(s), using (8.6) and (8.7),

$$y(x) = xe^x (8.8)$$

$$\implies y\left(\frac{1}{2}\right) = \frac{\sqrt{e}}{2} \tag{8.9}$$

Figure 8.1: Plot of y(x)

8.2 A process described by the transfer function

$$G_p(s) = \frac{(10s+1)}{(5s+1)}$$

is forced by a unit step input at time t=0. The output value immediately after the unit step input (at $t=0^+$) is ? (Gate 2022 CH 34)

Solution:

Parameters	Description	
X(s)	Laplace transform of $x(t)$	
Y(s)	Laplace transform of $y(t)$	
$G_p(s) = \frac{Y(s)}{X(s)}$	Transfer function	
x(t) = u(t)	unit step function	

Table 8.2: Given parameters

$$G_p(s) = \frac{Y(s)}{X(s)} = \frac{(10s+1)}{(5s+1)}$$
(8.10)

$$u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s}$$
 (8.11)

From equation (8.11):

$$Y(s) = \frac{(10s+1)}{s(5s+1)} \tag{8.12}$$

$$=\frac{1}{s} + \frac{5}{5s+1} \tag{8.13}$$

Taking inverse laplace transformation,

$$\frac{1}{s} \stackrel{\mathcal{L}^{-1}}{\longleftrightarrow} u(t) \tag{8.14}$$

$$\frac{1}{s-c} \stackrel{\mathcal{L}^{-1}}{\longleftrightarrow} e^{ct} u(t) \tag{8.15}$$

$$y(t) = \left(1 + e^{\frac{-t}{5}}\right) u(t)$$
 (8.16)

$$y(0^+) = 2 (8.17)$$

Figure 8.2: Graph of y(t)

Fourier transform