

Amerikanske optioner

Matematisk Finansiering 1 Efterår 2020

20. oktober

Amerikanske optioner

Optioner med mulighed for førtidig indfrielse. Afsnit 6.5 i noterne, afsnit 2.7.14 i Röman, I – og ofte i opgaver.

Kaldes af historiske årsager *amerikanske*; det ku' ligeså godt ha' været *orange* eller *varmforzinkede*. (Eller ihvertfald næsten ligeså godt; <u>se side nederst side 4 her</u>.)

Optioner med kun et, fast indfrielsestidpunkt kaldes europæiske.

Prisfastsættelse: I hver knude: Tjek om optionen er mere værd $d \phi d$ end i live. Hvis ja, så indfri og byt ud

Eller som formel/ligning:

$$\pi_g^{AMR}(t) = \max\left\{g(S(t)), \frac{1}{1+\rho_t} \mathbf{E}_t^Q(\pi_g^{AMR}(t+1))\right\}, \quad (*)$$

hvor g betegner payoff-funktionen (fx $g(x) = (K - x)^+$ for en put-option) og $\pi_g^{AMR}(T) = g(S(T))$.

Ligning (*) kan ses som et specialtilfælde af dynamisk programmering eller et eksempel på Bellmans optimalitetsprincip.

Ideen dukker op mange andre steder – fx hvis man vil vide, hvornår man skal *pull the goalie*.

Det er nemmere gjort end sagt – idet det dog er vigtigt, at man gør præcis, hvad formel (*) siger.

Regneeksempler: MatFin1, januar 2018, spg. 1d; Example 27 i noterne.

	Clipboard	G.	Fo	nt			Alignment			Numb
	SUM	¥ (X 🗸 fx	=MAX((\$1\$	3*D15	(1-\$I\$3)*D1	6)/(1+\$I\$2)	H10		
1	A	В	С	D	Е	F	G	Н	1	
1	Stock price lattice									
2				172.8				R	0.05	
3			144	129.6				q	0.5	
4		120	108	97.2			Put	Expriy	3	
5	100	81	72.9	65.61				Strike	100	
6	0	1	2	3						
7										
8	European pr	Jt.				Intrinsic v	alue			
9				0.000					0	
10			0.000	0.000				0	0	
11		0.635	1.333	2.800			0	0	2.8	
12	4.620	9.068	17.710	34.390		0	19	27.1	34.39	
13										
14	Amrerican put					Exercise strategy				
15				0.000					HOLD	
16			=MAX((\$IS[0.000				HOLD	HOLD	
17		0.635	1.333	2.800			HOLD	HOLD	EX	
18	9.350	19.000	27.100	34.390		HOLD	EX	EX	EX	
19										

Vigtigt specialtilfælde: Hvis renten er positiv bør amerikanske call-optioner på aktiver uden dividende aldrig indfris førtidigt. Bevis: Mertons tunnel-agtigt – idet man dog potentielt skal være forsigtig for at få skarpe uligheder.

Alle tre antagelser (call, r>0 og $\delta=0$) er vigtige; som gamle eksamensopgaver viser:

- For put-optioner kan førtidig indfrielse være optimalt selv for r > 0 & $\delta = 0$.
- $r = 0 \& \delta > 0 \Rightarrow Put^{EU} = Put^{AMR}$
- $r < 0 \& \delta = 0 \rightsquigarrow \operatorname{Call}^{AMR} > \operatorname{Call}^{EU}$
- Korollar: Put-call-pariteten holder ikke for amerikanske optioner.