Marca la resposta correcta.

- 1. Determineu el conjunt solució de la inequació $(x+2)(x^2-9) < 0$.

- (b) $(-\infty, -3) \cup (-2, 3)$ (c) (-3, -2) (d) $(-\infty, -2) \cup (3, +\infty)$
- 2. Sigui $f(x) = \sqrt{\frac{x-2}{x-1}}$. Llavors el domini de f és

- (a) (1,2) (b) [1,2] (c) $(-\infty,1) \cup [2,+\infty)$ (d) $(-\infty,1] \cup (2,+\infty)$
- 3. Si una població creix a un ritme del 2% anual, el temps que triga a duplicar-se és aproximadament
 - (a) 48 anys
- (b) 63 anys
- (c) 57 anys
- (d) 35 anys

- 4. El límit $\lim_{x \to +\infty} \left(\frac{x^2 + 5}{x^2 + 1} \right)^{x^2}$
- (a) és 0 (b) és e^4 (c) no existeix (d) és $e^{1/4}$

5. Sigui f(x) definida per

$$f(x) = \begin{cases} |x| & , & \text{si } x < 1\\ (x-1)^2 + 2 & , & \text{si } x \ge 1 \end{cases}$$

Llavors

(a) $\lim_{x \to 1^+} f(x) = 1$

- (b) $\lim_{x \to 1^{-}} f(x) = 2$
- (c) f no és contínua al punt x = 1 (d) f no és contínua al punt x = 0
- 6. La funció $f(x) = \frac{xe^{-x^2}}{x+4}$
 - (a) té una asímptota horitzontal i una obliqua
 - (b) té exactament tres asímptotes
 - (c) té només una asímptota
 - (d) té una asímptota vertical i una horitzontal.
- 7. Una peça es declara defectuosa si la seva longitud x verifica $\left|\frac{x-120}{4}\right| > 0$, 25. Per quins valors de x es declararà defectuosa la peça?
 - (a) menys de 121
- (b) menys de 119 o més de 121
- (c) més de 119
- (d) entre 119 i 120

8. Determineu el conjunt solució de la inequació $(3x^2 + 8)(x^2 - 4x + 3) > 0$

(a) $(-\infty, 1)$

(b) $(-\infty, 1) \cup (3, +\infty)$ (c) (1, 3) (d) $(-\infty, 1] \cup [3, +\infty)$

9. El domini de $f(x) = \ln\left(\frac{x-2}{x+4}\right)$ és

(a) (-4, 2)

(b) [-4,2] (c) $(-\infty,-4) \cup (2,+\infty)$ (d) $(-\infty,-4] \cup [2,+\infty)$

10. Una població creix a un ritme del 3% anual. Si inicialment hi ha 100 individus, quants anys aproximadament es necessiten per arribar a 10000 individus?

(a) 86 anys

(b) 156 anys

(c) 234 anys

(d) 92 anys

11. El límit $\lim_{x\to 0} \frac{\sin^4(3x)\cos(4x)}{x^2\sin(4x^2)}$

(a) és 0 (b) és $\frac{81}{4}$ (c) no existeix (d) és $\frac{3}{4}$

- 12. La funció $f(x) = \frac{x^2 + x + 2}{x^2 4x}$
 - (a) té exactament una asímptota horitzontal i una obliqua
 - (b) té exactament una asímptota vertical i una horitzontal
 - (c) té exactament una asímptota vertical
 - (d) té exactament dues asímptotes verticals i una horitzontal.

Respon les següents preguntes.

- 13. Una companyia aeria varia el preu dels seients en un vol de manera que per 100 passatgers, el preu és de 200 euros per seient, i si el preu varia en 5 euros, el nombre de passatgers varia en 2 (es perden 2 passatgers per cada 5 euros que puja el preu, i es guanyen si baixa el preu).
 - (a) Quin tipus de funció és la que ens dóna el nombre de passtagers en funció del preu? escriu-la.
 - (b) Per quin nombre de passatgers obté el màxim benefici?
- 14. Aïlla y de la següent equació $2 \ln(y) = \ln(y+1) + x$.
- 15. Considera les funcions $f(x) = \frac{x+1}{A_x 5}$ i $g(x) = 3e^{2x-1}$, calcula $f \circ g$, $g \circ f$, f^{-1} i g^{-1} , si és posible.
- 16. Calcula el domini de la funció $f(x) = \log_{10}(x)\sqrt{1-x}$
- 17. Calcula els següents límits:

(a)
$$\lim_{x \to 0} \left(\frac{\sqrt{3+x} - \sqrt{3}}{x} \right)^2$$
, (b) $\lim_{x \to \infty} \left(\frac{x^3 + 2x + 1}{3 + x^3} \right)^{4x}$, (c) $\lim_{x \to 0} \frac{\cos^2(x)}{x^2}$,
(d) $\lim_{x \to +\infty} \frac{\sqrt{x^5 + x} + x}{\sqrt{2x^3 + 5x}}$, (e) $\lim_{x \to -\infty} \frac{2^{x+1} + 3^x}{3^x - 1}$, (e) $\lim_{x \to +\infty} \frac{2^{x+1} + 3^x}{3^x - 1}$

- 18. Fes un esbòs de la gràfica de $f(x) = \frac{x+1}{4x-5}$ tot calculant les seves assímptotes.
- 19. Es considera la funció definida per

$$f(x) = \begin{cases} ax^2 + 2x & \text{si } x < 2, \\ \frac{2x^2 + 4}{x + 1} & \text{si } x \ge 2. \end{cases}$$

- (a) Estudieu la continuitat de la funció f(x) i les seves assímptotes.
- (b) Hi ha un valor $x \in \mathbb{R}$ pel qual f(x) = 0?
- 20. Comprova que l'equació $3x + 2\cos(x) + 5 = 0$ té solució.