Apprentissage non supervisé

Clustering

Mme Hamdad Leila

ESI, LCSI.

Plan

- Introduction
- Kmeans
- Métriques pour détecter le nombre de classes
- Classification basée sur la densité: DBSCAN
 - Principe de fonctionnement
 - Caractéristiques
- Classification par grille: SOM
 - Principe de fonctionnement
 - Caractéristiques
- Conclusion

Introduction

- **But** :Regrouper un ensemble de données en différents groupes homogènes.
- Les objets d'un même groupe: les plus similaires possibles
- Les objets de groupes différents: les plus dissimilaires possibles.

Classification Non Supervisée

- 1. Les données du même groupe doivent être les plus semblables possible.
- 2. Les données de groupes différents doivent être les plus différentes possible.
- 3. Le nombre de groupes et leur signification ne sont pas connus à l'avance.

Domaines d'application

• Marketing:

- Partitionner une clientèle en segments dotés chacun d'une offre et d'une communication spécifique.
- Répartir l'ensemble des magasins d'une enseigne selon le type de clientèle, rayon (selon type d'article) ou selon la taille du magasin.

• Médical :

- Groupes de patients susceptibles d'être soumis à des protocoles thérapeutiques déterminés. Un groupe contient tous les patients réagissant identiquement.
- Sociologie : Découper la population en groupes homogènes du point de vue socio-démographique, style de vie, opinions ou attentes.

Classification Non Supervisée

Taxonomie de la classification non supervisée

K-means

- Soit E l'ensemble à partitionner.
- Début, on choisit k points de E aléatoirement appelés centroides.

Entrée : un ensemble d'objets E, nombre de classes K.

- 1. Choisir K individus au hasard dans E(comme centres des classe initiaux).
- 2. Affecter chaque individu au centre le plus proche.
- 3. Recalculer le centre de chacune de ces classes.
- 4. Répéter l'étape (2) et (3) jusqu'à stabilité des centres.
- 5. Editer la partition obtenue.
- Sortie: Partition de E en K classes.

- Cette méthode est facile à mettre en œuvre.
- Elle converge très vite.
- Elle est sensible aux données aberrantes.
- Elle a tendance à donner des classes de formes sphériques.
- L'inconvénient majeur de la méthode est le choix aléatoire des noyaux à l'initialisation de l'algorithme. Car deux choix différents des représentants initiaux, mènent à des partitions différentes.

K-medoids

- Trouver k objets représentatives, appelés k-medoids
 - PAM (Partitioning Around Medoids)
 - CLARA (Clustering Large Applications)
 - CLARANS (Randomized sampling)

10

Métriques pour déterminer le nombre de classes

Méthode Elbow

Méthode du coude.

- Exécuter un clustering k-means sur l'ensemble de données pour des valeurs de k variant par exemple de 1 à 10
- Pour chaque valeur de k, calculer la somme des erreurs au carré (SSE) ou l'inertie intra classes
- Tracer la courbe des SSE en fonction de K
- Si le graphe ressemble à un bras, alors le «coude» est la meilleure valeur de k.

Méthode Silhouette

- On dit que c'est la meilleure mesure pour décider du nombre de classes à définir à partir des données.
- Pour chaque objet i appartenant au cluster Ck, calculer a(i):

$$a(i) = \frac{1}{|C_k| - 1} \sum_{i \neq j} d(i, j)$$

 la distance moyenne entre i et tous les autres points de données du même cluster.

$$b(i) = \min_{l \neq k} \frac{1}{|C_l|} \sum_{j \in C_l} d(i, j)$$

 b(i) est la plus petite distance moyenne de i à tous les points de tout autre cluster auquel il n'appartient pas. Le cluster avec la plus petite dissimilarité moyenne est dit "cluster voisin" de i.

$$s(i) = \frac{a(i) - b(i)1}{\max(a(i), b(i))} si |C_k| > 1$$

- s(i) = 0 si $|C_k| = 1$ Le coefficient varie entre -1 et 1.
- Une valeur proche de 1 implique que l'objet est bien classifié,
- Si s(i) est plutôt négative, ceci indique que l'objet n'est pas dans le bon cluster.
- Un s (i) proche de zéro signifie que la donnée est à la frontière de deux clusters naturels.

Avantages et inconvénients

- Cette méthode est meilleure car elle donne le nombre optimal de clusters.
- Mais cette métrique est coûteuse en calcul car le coefficient est calculé pour chaque instance.
- Le choix de la métrique optimale pour le nombre de clusters doit être pris en fonction des besoins.

DBSCAN – Density-Based Spatial Clustering of Applications with Noise

Composantes de DBSCAN

- Trois types de points:
 - Points denses
 - Points frontières
 - Points aberrants
- Deux paramètres principaux:
 - Epsilon: Rayon du voisinage
 - Minpoints: Nombre minimal de points dans ce voisinage.

Un point est dense s'il a un nombre de points supérieur à Minpoints dans son voisinage

Eléments de DBSCAN

DBSCAN: algorithme basé sur la densité

- Densité = Nombre de points à l'intérieur d'un rayon donné (Eps)
- Un point est un noyau s'il a plus qu'un nombre donné de points (MinPts) à l'intérieur d'un rayon donné (Eps)
- Ces points sont à l'intérieur d'un même segment
- Un point frontière est un point non noyau qui a un nombre de points inférieur à MinPts à l'intérieur de son Eps, mais qui se trouve à moins d'un Eps d'au moins un noyau
- Un point bruité est un point qui n'est ni un noyau, ni un point frontière

DBSCAN: Principe de fonctionnement

- Regroupe les objets dans le même cluster, s'ils sont connectés l'un à l'autre par une population de point dense.
- Si A est un point dense alors ses voisins sont dans le même cluster.

• Idée de base:

- Démarrer d'un point dense A.
- Tout les points joignable par A ou d'autres points dense connectés à A font partie du même cluster.
- Tout les points non joignable par des points denses sont des bruits.
- On répète l'opération jusqu'à ce que tout les points soit explorés

22

DBSCAN: Principe de fonctionnement

DBSCAN: Caractéristiques

Avantages

- Détecte les points aberrants
- Le nombre de classes n'est pas spécifié
- Peut découvrir des cluster de forme arbitraire.
- Les deux paramètres peuvent être spécifiés par un expert du domaine.
- Peut trouver des clusters non linéairement séparables
- Est déterministe

Inconvénients

- N'est pas adapté au datasets avec de hautes densités
- N'est pas adapté au datasets avec des points déconnectés
- Si le domaine n'est pas bien étudié, il est difficile de choisir une mesure de distance

Self Organizing Map (SOM)

SOM

- SOM est une classe de réseaux de neurones pour l'apprentissage non supervisé.
- En pratique: Visualisation, discrétisation, clustering.
- Elle permet de représenter graphiquement des données de grandes dimension.
- Introduits pour la première fois par Teuvo Kohonen en 1982

Nuage de données à n dimensions

Réduire la dimension Montrer les similarités

Mapper les données

 Faire correspondre chaque donnée à une position dans l'espace
 2D discret

 Les données les plus similaires sont mappés dans la même position

- L'objectif de SOM est de trouver un ensemble de nœuds (codebook en terminologie SOM) et affecter chaque donnée au nœud qui fournit sa meilleure approximation.
- Dans la terminologie des réseaux neuronaux, il existe un neurone associé à chaque noeud[2].
- les données similaires sont placées à proximité les uns des autres sur la grille SOM.

Principe de SOM

- Une grille SOM est composée de plusieurs nœuds de forme circulaire, rectangulaire ou plus généralement hexagonale,
- Chaque nœud possède :
 - Une position fixe sur la grille SOM.
 - Un vecteur de poids de la même dimension que l'espace d'entrée.
 - Chaque élément de donnée en entrée est "mappé" ou "lié" à un nœud sur la grille de la carte.
 - Un nœud peut représenter plusieurs échantillons d'entrées.

La grille SOM

Algorithme SOM

- 1: Initialiser les nœuds aléatoirement.
- 2: répéter
 - Sélectionner un élément
 - Déterminer le noeud le plus proche de l'objet
 - Mettre à jour ce noeud et les noeuds dans un voisinage spécifié.

$$w_i(t+1) = w_i(t) + h(i,t)(x_i - w_i(t))$$
 si $i \in \text{voisinage}$
 $w_i(t+1) = w_i(t)$ si $i \notin \text{voisinage}$

• avec $h(i,t) = \alpha(t).v(t)$ ($\alpha(t)$: Le taux d'apprentissage. v(t): la fonction de voisinage):

$$v(t) = \sigma_0 exp(-S^2/\sigma^2(t))$$

- Tel que: $S^2=d^2(i,i^*)$ et $\sigma^2(t)=\sigma_0 \exp(t/t_{Max}), \alpha(t)=\alpha_0 \exp(t/t_{Max}). \sigma_0$, t_{Max} , et α_0 sont les paramètres du modèle.
- 3- Faire décroître la taille de la zone de voisinage des nœuds gagnants (la zone qui contient les neurones subissant la transformation).
- 4- Faire décroître le coéfficient d'apprentissage, $\alpha(t)$,
- 5- Arrêt: Les nœuds ne changent pas beaucoup ou nombre d'itérations dépassé
- 6- Affecter chaque élément à son nœud le plus proche et retourner le résultat.

Initialisation

Choix du vecteur donnée

Trouver le BMU

Déterminer le voisinage

Ajuster les poids

Initialisation

Choix du vecteur donnée

Trouver le BMU

Déterminer le voisinage

Ajuster les poids

Initialisation

Choix du vecteur donnée

Trouver le BMU

Déterminer le voisinage

Ajuster les poids

- Aléatoirement
- Par balayage séquentiel de l'espace de données

Initialisation

Choix du vecteur donnée

Trouver le BMU

Déterminer le voisinage

Ajuster les poids

$$DistFromInput^{2} = \sum_{i=0}^{i=n} (I_{i} - W_{i})^{2}$$

Initialisation

Choix du vecteur doni

Trouver le BMU

Déterminer le voisina

Ajuster les poids

Répéter jusqu'à conve

Source image: [4]

chaque iteration

Initialisation

Choix du vecteur donnée

Trouver le BMU

Déterminer le voisinage

Ajuster les poids

Répéter jusqu'à convergence

$$W(t+1)=W(t)+\Theta(t)L(t)(I(t)-W(t))$$

% d'apprentissage: décroit par itération

 Magnitude de l'ajustement proportionnelle à la distance

Initialisation

Choix du vecteur donné

Trouver le BMU

Déterminer le voisinage

Ajuster les poids

Clustering

- Appliquer le clustering hiérarchique sur la carte SOM:
- les nœuds adjacents de la carte topologique appartiendront à la même classe.
- Pouvoir traiter des très grandes bases, tout en bénéficiant des avantages de la CAH.

Exemple de clustering

SOM : Caractéristiques

Avantages

- Préserve la topologie dans les deux sens
- Processus d'apprentissage rapide

Inconvénients

 Voisinage fixe: on ne peut casser les liaisons entre neurones même pour mieux représenter les données discontinues.

% K -means

- Choix du nombre de classes K vs nombre de neurones
- Les deux sont moins efficaces que DBSCAN quand les données ne sont pas linéairement séparés

Conclusion

Algorithm	No. of clusters found	Cluster quality (β)	Percent correct	CPU time (sec)
Art_data_l artificial data set				
K-Means	2	1.7481265202402723	57.25	21
SOM	2	1.5714675087911916	63.66	50
DBSCAN	2	1.1745995850120072	99.99	168
Art_data_2 artificial data set				
K-Means	2	3.8910738021701077	99.9	4
SOM	2	3.8910738021701077	99.9	6
DBSCAN	2	3.8885998293751793	100.0	8
IRIS data set				
K-Means	3	8.624488765260416	99.9	4
SOM	3	8.624027263474284	88.67	3
DBSCAN	3	12.095993612888822	78.0	4

Source image: [8]