Quizzes

- 1. Consider a curve parametrized by some $\gamma:(-1,1)\to\mathbb{R}^2$. For what values of t in the interval (-1.1) will $\dot{\gamma}(t)$ and $\ddot{\gamma}(t)$ be orthogonal if its arc length function, written in terms of the parametrization γ , is

 - a) s(t) = tb) $s(t) = t^2$
- 2. Consider a curve parametrized by $\gamma:(-1,1)\to\mathbb{R}^2$ which has the property that $\ddot{\gamma}(t_0) = c\dot{\gamma}(t_0)$, for some real number c and some $t_0 \in (-1,1)$. What is the curvature of the curve at the point $\gamma(t_0)$? Justify your answer.
- 3. If all the tangent lines to a space curve pass through a fixed point c, then prove that the curve lies on a straight line.
- a) Consider the function $F(x,y,z)=2x^2+y^2-3z^2-1$. Compute the partial derivatives $\frac{\partial F}{\partial x},\,\frac{\partial F}{\partial y}$, and $\frac{\partial F}{\partial z}$.
 - b) For the same F as above, compute ∇F . Why is S := $\{(x, y, z) \mid F(x, y, z) = 0\}$ a surface?
- 5. Given a surface patch $\sigma(x,y)=(x,y,\sqrt{1-x^2-y^2})$, compute the standard unit normal at the point (0, 0, 1).
- 6. If for every point on a surface patch $\sigma: U \to S$ of a surface, S, the two principle curvatures are equal, then prove that the principle curvature is constant.