

Diurnal Variability of MLH and Ozone in NYC Urban and Coastal Area from an Integrated Observation during LISTOS 2018

Yonghua Wu^{1,2*}, Amin Nehrir³, Kaihui Zhao⁴, Guillaume Gronoff^{3,5}, Jianping Huang⁶, James E. Collins ^{3,5}, Timothy A. Berkoff ⁵, Liqiao Lei ^{3,5}, Dingdong Li ¹, Margarita Kulko ^{1,2}, Mark Arend ^{1,2}, Barry Gross ^{1,2}, Fred Moshary ^{1,2}

- ¹City College of New York, New York, NY 10031, USA, *Email: yhwu@ccny.cuny.edu
- ² NOAA-Cooperative Science Center for Earth System Sciences and Remote Sensing Technologies
- ³ NASA Langley Research Center, Hampton, VA 23681, USA
- ⁴ School of Environment and Energy, South China University of Technology, Guangzhou, China
- ⁵ Science Systems Applications, Inc. (SSAI), Hampton, VA 23681, USA
- ⁶ NOAA/NCEP/ EMC and I.M. System Group, College Park, MD 20740, USA

[08].[Atmospheric Boundary Processes]

[28-June], [12:00UTC]

[Tuesday_08_P01]

The 30th International Laser Radar Conference (ILRC) virtual conference, June 26th – July 1st, 2022.

Motivation and Observation

Background:

- High ozone (MDA8 O₃>70 ppb NAAQS) episodes often occur in summer in New York City (NYC) and downwind coastal area due to urban emissions/pollutants transport, urban-coastal meteorology (land-sea breeze) and chemistry.
- Long Island Sound Tropospheric Ozone Study (LISTOS): Integrate ground-based, aircraft observation and model to investigate high O₃ formation and transport in summer 2018 and 2019 in Long Island Sound.

The goals of this study are to:

- Demonstrate the MLH and O₃ dynamics and comparisons in NYC urban and coastal area with the ground/airborne aerosol lidar, O₃-DIAL and Coherent Doppler Wind lidar observations;
- Investigate high O₃ formation processes associated with the urban plume transport, MLH dynamics, and sea-breezes;
- Evaluate NOAA NAM-CMAQ model forecast of O₃ and MLH.

O₃ pollution in Long Island Sound: forecast

PROD OZCHOL (PPB) 0 TUE 180828/21009009

Ground sites used in this study

The 30th International Laser Radar Conference (ILRC) virtual conference, June 26th – July 1st, 2022.

Results: (1) MLH Diurnal Variation in the NYC urban and coastal area

Results: (2) MLH Spatial Variability from the NASA airborne Lidar

Lower MLH at the coastal area $(0.7 \sim 0.8 \text{ km})$ than those in the urban area $(\sim 1.5 \text{ km})$ altitude in the afternoon Good agreement with the ground lidar observations in the urban and coastal area.

Results: (3) Much higher O₃ but lower MLH at the coast vs. urban area

Results: (4) Evaluation of Model Forecast of O₃ and PBLH

Model: good consistency at the urban site, but a timing shift for the maximum O₃ & PBLH growth at the coast site

Summary

- Lower MLH and time-lag of MLH growth in the morning at the coastal area versus the NYC urban area. The MLHs attain 1.5 km altitude in the urban area but 0.7~0.8 km in the coastal and marine area at noon on Aug.28, 2018.
- Higher O₃ attaining 100-120 ppb and exceeding the NAAQS are observed at the coastal area which is probably attributed to the urban plume transport, MLH dynamics and sea breezes effects.
- The NOAA operational model (NAM-CMAQ) forecast product show similar variation of O₃ and PBLH with the observations except the timing shift for the maximum O₃ and PBLH growth at the coastal site; but good consistency in the NYC urban area.
- Next: Statistical comparison and analysis of MLH dynamics and model product evaluation in the coastal and urban area during the O₃ episodes.

Comments/Questions? Contact at yhwu@ccny.cuny.edu

Acknowledgements: New York State Energy Resources Development Authority (grant # 137482), NESCAUM (grant # 2417), NOAA under the CESSRST Agreement (Grant # NA16SEC4810008); NYSDEC, NOAA, ASRC-SUNY-Albany.

The 30th International Laser Radar Conference (ILRC) virtual conference, June 26th – July 1st, 2022.