ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΕΡΓΑΣΤΗΡΙΟ

2^η ΕΡΓΑΣΤΗΡΙΑΚΗ ΕΝΟΤΗΤΑ: Εισαγωγή στον αναλογικό υπολογιστή

Μέρος Α (Θεωρητική ανάλυση ΤΕ και πείραμα συγκριτή-αθροιστή) και Μέρος Β (Χρονική και αρμονική απόκριση ΤΕ)

Ονοματεπώνυμα: Κωνσταντίνος Παπαθανασίου ΑΜ: 2008

Ηλίας Σταθάκος ΑΜ: 2017 Φίλιππος Τσότσιος ΑΜ: 1751

Τμήμα: Δευτέρα 11:00-13:00

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

1. Ερωτήσεις θεωρίας

Ερώτηση 1.1.1: Σε έναν Τ.Ε. με λόγο ενίσχυσης $a=R_f/R=250$ (συνδεσμολογία με ανάδραση) και τροφοδοσία $V_{CC}=\pm15V$ οδηγούμε στην αναστρέφουσα είσοδο 2.5V. Πόση θα είναι η τάση στην έξοδο του Τ.Ε.?

Απάντηση:

Έστω e(t) = 2.5V.

Θεωρητικά η τιμή που θα έχει στην έξοδο θα είναι Vout = -a * e(t) = -625V.

Πρακτικά αφού η τροφοδοσία είναι 15V, το Vout θα τείνει στο -15.

Ερώτηση 1.1.2: Να σχεδιαστεί ένας διαιρέτης τάσης ή αναλογικός ελεγκτής $(1 \ge K_P \ge 0)$. Απάντηση:

TMHMA

ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Ερώτηση 1.1.3: Να σχεδιαστεί το ηλεκτρολογικό σχέδιο ενός ολοκληρωτή 2 εισόδων (κάνοντας χρήση ενός Τ.Ε. 741).

Απάντηση:

Ερώτηση 1.1.4: Να σχεδιαστεί το ηλεκτρολογικό σχέδιο ενός διαφοριστή 2 εισόδων (κάνοντας χρήση ενός Τ.Ε. 741).

Απάντηση:

Ερώτηση 1.1.5: Να σχεδιαστεί το ηλεκτρολογικό σχέδιο που υλοποιεί το παρακάτω διάγραμμα βαθμίδων στον αναλογικό υπολογιστή για $R(s) = \frac{3140}{s^2 + 394384}$.

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Απάντηση:

1.2.Πρακτικό

Πείραμα 2.1: Αθροιστής

Ερώτηση 1.2.1: Να συμπληρώσετε τον παρακάτω πίνακα με βάση τις μετρήσεις που πήρατε στο εργαστήριο και τις θεωρητικές τιμές.

Απάντηση:

$V_1 * 1(V)$	$V_2 * 1(V)$	$V_3 * 10(V)$	$V_o(V)$ -Μετρούμενη	$V_o(V)$ -Θεωρητική
0.6	1.4	0.5	-7.25	-7
0.2	1.7	0.5	-7.20	-6.9
1	4	-0.5	0.02	0
4	1	-0.5	0.02	0
-2	4	-0.1	-1	-1
-6	4	-0.1	3.05	3
-2	-2	-0.5	9.3	9
- 9	-4	-0.1	14.4	14
-4	-2	-8	14.55	86

TMHMA

ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Πείραμα 2.2: Προσομοίωση αθροιστή-συγκριτή

Ερώτηση 1.2.2: Να γίνει προσομοίωση του παρακάτω διαγράμματος βαθμίδων. Να βρείτε την θεωρητική και την μετρούμενη τιμή του διαγράμματος βαθμίδων στο πεδίο του t.

Απάντηση:

Ανάλυση στο μιγαδικό επίπεδο:

$$E(s) = \frac{1}{s} + \frac{3}{s} - \frac{5}{s} = U(s) + 3U(s) - 5U(s) = -U(s)$$

Ανάλυση στο πεδίο του χρόνου:

$$L^{-1}{E(s)} = L^{-1}{U(s) + 3U(s) - 5U(s)}$$

$$= L^{-1}{U(s)} + 3 * L^{-1}{U(s)} - 5 * L^{-1}{U(s)} = -L^{-1}{U(s)} = -1$$

$$=> e(t) = -1 * u(t)$$

TMHMA

Πείραμα 2.3α: Μέτρηση ενίσχυσης

Ερώτηση 1.2.3: Εφαρμόζουμε στην είσοδο του τελεστικού ενισχυτή ημιτονική τάση $u_1 = U_1 \sin(\omega t)$ με σταθερό πλάτος $U_{1pp} = 1V$ και συχνότητας 100Hz. Να συμπληρώσετε τον παρακάτω πίνακα με βάση τις μετρήσεις που πήρατε.

Απάντηση:

R_1	R_f	U_{1pp}	U_{2pp}
1	1	0.8	0.8
1	10	0.8	0.92

Πείραμα 2.3β: Χρονική απόκριση

Ερώτηση 1.2.4: Να μελετηθεί στον παλμογράφο η χρονική απόκριση του αναλογικού ρυθμιστή P με τετραγωνικό παλμό εισόδου u_1 ως προς το μηδέν, πλάτους $1 \, V_{pp}$ και συχνότητας 200 Hz. Να σχεδιαστεί το σήμα εισόδου και εξόδου (καταγραφή από παλμογράφο).

Απάντηση:

Σήμα εισόδου:

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Σήμα εξόδου:

Με βάση τις τιμές των αντιστάσεων Rf και R1, η ενίσχυση $\alpha = Rf/R1 = 10$, στοιχείο το οποίο παρατηρούμε και στον παλμογράφο του multisim.

Πείραμα 2.3γ: Αρμονική απόκριση

Ερώτηση 1.2.5: Εφαρμόζουμε στην είσοδο του τελεστικού ενισχυτή $(\frac{R_f}{R}=1)$ ημιτονική τάση $u_1=U_1\sin(\omega t)$ με σταθερό πλάτος 1 V_{pp} και συχνότητα από 10Hz έως 20kHz. Να συμπληρώσετε τον παρακάτω πίνακα.

Απάντηση:

f (Hz)	100	1000	10000	20000
$U_1(V_{pp})$	1	0.96	0.8	0.8
$U_2(V_{pp})$	1	0.86	0.8	0.92

Βιβλιογραφία