Stat 134: Section 16 Ani Adhikari March 15, 2017

Problem 1

Suppose X has an exponential (λ) distribution, What is the distribution of cX for a constant c>0? Ex 4.4.1 in Pitman's Probability

Problem 2

Suppose U has a uniform (0,1) distribution. Find the density of U^2 . $Ex\ 4.4.3$ in $Pitman's\ Probability$

Problem 3

Suppose X has uniform [-1,2] distribution. Find the density of X^2 . *Ex* 4.4.5 *in Pitman's Probability*

Is this a one-to-one transformation?

Show that if U has uniform (0,1) distribution, then $\tan (\pi U - \pi/2)$ has the Cauchy distribution.

Ex 4.4.7 in Pitman's Probability

Recall that if $Y \sim$ Cauchy, the density of Y is $f_Y(y) = \frac{1}{\pi(1+y^2)}$ for $y \in (-\infty, \infty)$.

Problem 5

Let Z be a standard normal random variable. Find formulae for the densities of each of the following random variables: (a) |Z|; (b) Z^2 ; (c) 1/Z; (d) $1/Z^2$.

Ex 4.4.10 in Pitman's Probability