半导体二极管

主讲教师: 张晓春

半导体二极管

主要内容:

二极管的基本结构、伏安特性及主要参数。

重点难点:

二极管的伏安特性。

1. 基本结构

(1) 点接触型

结面积小、结电容小、正 向电流小,适用于高频和小功 率工作,也用作数字电路中的 开关元件。

(2) 面接触型

结面积大、结电容大、正 向电流大,适用于低频整流电 路。

1. 基本结构

(c) 平面型

用于集成电路制作工艺中。 PN 结结面积可大可小,用于高 频整流和开关电路中。

符号

使用二极管时,必须注意极性不能接反,否则电路非但不能正常工作,还有毁坏管子和其他元件的可能。

常见二极管外形图

(a) 玻璃封装 (b) 塑料封装 (c) 金属封装中、大功率二极管

二极管

特点: 非线性

反向击穿

电压U_(BR)

反向电流在 一定电压范围 内保持常数。

反向特性

外加电压大于反向击穿电压二 极管被击穿,失去单向导电性。

正向特性

导通压降

硅: 0.6~0.8V

锗: 0.2~0.3V

死区电压

硅管: 0.5V

锗管: 0.1V

外加电压大于死区电压,二极 管才能导通。

3.主要参数

(1) 最大整流电流 I_{OM}

二极管长期使用时,允许流过二极管的最大正向平均电流。

(2) 反向工作峰值电压 U_{RWM}

是保证二极管不被击穿而给出的反向峰值电压,一般是二极管反向击穿电压 $U_{\rm BR}$ 的一半或三分之二。二极管击穿后单向导电性被破坏,甚至过热而烧坏。

(3) 反向峰值电流 I_{RM}

指二极管加反向工作峰值电压时的反向电流值。反向电流越小,表明管子的单向导电性能越好,温度对最大反向电流的影响很大,使用时应注意。

二极管电路分析举例

定性分析: 判断二极管的工作状态 { 导通 截止

若二极管是理想的,正向导通时正向管压降为零,反向截止时二极管相当于断开。

分析方法:将二极管断开,分析二极管两端电位的高低或所加电压 U_{D} 的正负。

若 $V_{\text{Pl}} > V_{\text{Pl}}$ 或 U_{D} 为正 (正向偏置),二极管导通 若 $V_{\text{Pl}} < V_{\text{Pl}}$ 或 U_{D} 为负 (反向偏置),二极管截止

例1:

电路如图,求: U_{AR}

取 B 点作参考点, 断 开二极管,分析二极管 阳极和阴极的电位。

解: $V_{\text{BH}} = -6 \text{ V}$ $V_{\text{BH}} = -12 \text{ V}$ $V_{\text{II}} > V_{\text{II}}$ 二极管导通

若忽略管压降,二极管可看作短路, $U_{AB} = -6V$ 否则, U_{AR} 低于-6V一个管压降,为-6.3V或 -6.7V

例2:

电路如图,求: U_{AR}

两个二极管的阴极接在一起

取 B 点作参考点, 断开二极 管,分析二极管阳极和阴极 的电位。

解:
$$V_{1 \text{闷}} = -6 \text{ V}$$
, $V_{2 \text{\thickspace}} = 0 \text{ V}$, $V_{1 \text{\thickspace}} = V_{2 \text{\thickspace}} = -12 \text{ V}$ $U_{D1} = 6 \text{V}$, $U_{D2} = 12 \text{V}$

 $U_{D2} > U_{D1}$. D2 优先导通, D1 截止。

若忽略管压降,二极管可看作短路, $U_{AB}=0$ V

流过 \mathbf{D}_2 的电流为 $I_{\mathbf{D}_2} = \frac{12}{3} = 4\mathbf{m}\mathbf{A}$ 在这里, \mathbf{D}_2 起钳位 D_1 承受反向电压为 $-6V^3$

作用, D₁起隔离作用。

小 结

- 1. 二极管加正向电压(正向偏置,阳极接正、阴极接负)时,
- 二极管处于正向导通状态,二极管正向电阻较小,正向电流较大。
 - 2. 二极管加反向电压(反向偏置,阳极接负、阴极接正)时,
- 二极管处于反向截止状态,二极管反向电阻较大,反向电流很小。
 - 3. 外加电压大于反向击穿电压二极管被击穿,失去单向导电性。
 - 4. 二极管的反向电流受温度的影响,温度愈高反向电流愈大。