Algoritmos para aproximación numérica

Giovanni Ramírez García, PhD

Escuela de Ciencias Físicas y Matemáticas Universidad de San Carlos de Guatemala

Guatemala, 15 de marzo de 2021

Introducción

Algoritmo para el polinomio de Lagrange

Algoritmo para los polinomios de Newton

Algoritmo para los polinomios de Hermite

Introducción

Algoritmo para el polinomio de Lagrange

Algoritmo para los polinomios de Newton

Algoritmo para los polinomios de Hermite

Características generales

- REAL(8), ALLOCATAS (5) MENSION (:)
- ► Cada implementación debe leer un archivo de texto donde se encuentran los datos. Cada quien elije el nombre, sugerencia datos.
- La primera línea del archivo es el número de datos n. Esto permite hacer asignación dinámica de memoria.
- Posteriormente en el archivo estarán los puntos $(x_n, f(x_n))$. La primera columna para x_n y la segunda para $f(x_n)$.
- Para cuando sea necesario, la tercera columna del archivo tendrá la información de la primera derivada $f'(x_n)$.
- ▶ El punto que se quiere aproximar (x, f(x)) se debe leer de otro archivo de texto. Cada quien elije el nombre, sugerencia punto.
- ▶ Vamos a tomar siempre puntos ordenados tal que $x_1 < \cdots < x_n$.
- Importante: vamos modificar las definiciones de los polinomios para que los índices inicien vayan de $1 \rightarrow n$. Esto no es necesario en el polinomio de diferencias divididas centradas.

Forhan: indices que van de

Introducción

Algoritmo para el polinomio de Lagrange

Algoritmo para los polinomios de Newton

Algoritmo para los polinomios de Hermite

Polinomio de Lagrange

- ► Consideremos los n puntos $\{(x_1, f(x_1)), \dots, (x_n, f(x_n))\}$.
- ▶ Para aproximar f(x) es posible construir un polinomio de Lagrange de orden n-1 dado por

$$P_{n-1}(x) = \sum_{k=1}^{n} f(x_k) L_{n-1,k}(x), \text{ donde } L_{n,k}(x) = \prod_{\substack{i=1\\i\neq k}}^{n+1} \frac{x - x_i}{x_k - x_i},$$

▶ Para n = 3, se tienen los puntos $\{(x_1, f(x_1)), (x_2, f(x_2)), (x_3, f(x_3))\}$. Entonces $P_2(x) = f(x_1)L_{2,1}(x) + f(x_2)L_{2,2}(x) + f(x_3)L_{2,3}(x)$ con

$$L_{2,1}(x) = \frac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)}, \quad L_{2,2}(x) = \frac{(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)},$$

$$L_{2,3}(x) = \frac{(x - x_1)(x - x_2)}{(x_3 - x_1)(x_3 - x_2)}.$$

Algoritmo de Lagrange (I)

Entrada: del archivo *datos*, el número de puntos n y los puntos $\{(x_1, f(x_1)), \ldots, (x_n, f(x_n))\}$; del archivo *punto*, el punto (x, f(x)). Salida: el valor aproximado $f(x) \approx P_{n-1}(x)$ y el error absoluto $|f(x) - P_{n-1}(x)|$. Requiere: función LNK(k,x,Xn).

- Iniciar.
- 2. Leer el número de puntos n.
- 3. Reservar memoria para $Xn(n) = x_n$ y $Fn(n) = f(x_n)$.
- 4. Leer $x_n \to Xn(n)$ y $f(x_n) \to Fn(n)$.
- 5. Leer $x \to x$ y $f(x) \to f$.
- 6. Reservar memoria para L(n).
- 7. Hacer para $1 \le k \le n$: 7.1 L(k) = LNK(k, x, Xn).

- 8. Definit P = 0.
- 9. Hacer para $1 \le k \le n$: 9.1 P = P + Fn(k)L(k).
- 10. AbsError = ABS(f P).
- 11. Escribir P y AbsErr.
- 12. Liberar la memoria reservada.
- 13. Fin.

Programación defensiva: validar los valores de *n* y de *x*.

Algoritmo de Lagrange (II)

marce

Función LNK(k,x,Xn). Entrada: k es el orden del coeficiente de Lagrange en el punto x, con el conjunto de nodos Xn. Salida: el k-ésimo coeficiente de Lagrange $L_{n,k}(x)$.

- 1. Iniciar.
- 2. Definir n = SIZE(Xn, 1).
- 3. Definir L=1.
- 4. Hacer para $1 \le i \le n+1$:

4.1 Si
$$i = k$$
, continuar. Si no,

$$L = L * \frac{x - Xn(i)}{Xn(k) - Xn(i)}.$$

- 5. Retornar L.
- 6. Fin.

Programación defensiva: validar n y que $Xn(k) - Xn(i) \neq 0$. Programación modular: se debe implementar LNK(Xi,x,k) en un archivo aparte.

n72

Tonea: d'avé hace fortran con una división entre coro? Introducción

Algoritmo para el polinomio de Lagrange

Algoritmo para los polinomios de Newton

Algoritmo para los polinomios de Hermite

Polinomio de diferencias divididas (I)

- Consideremos los n puntos $\{(x_1, f(x_1)), \dots, (x_n, f(x_n))\}.$
- ▶ Para aproximar f(x) es posible construir un polinomio de diferencias divididas de Newton de orden n-1 dado por

donde $f[x_i] = f(x_i)$ es la diferencia dividida de orden cero y la diferencia dividida de orden k es

$$\frac{f[x_i, x_{i+1}, \dots, x_{i+k-1}, x_{i+k}] =}{f[x_{i+1}, x_{i+2}, \dots, x_{i+k}] - f[x_i, x_{i+1}, \dots, x_{i+k-1}]}{x_{i+k} - x_i}.$$

Polinomio de diferencias divididas (II)

- Para n = 3, se tienen los puntos $\{(x_1, f(x_1)), (x_2, f(x_2)), (x_3, f(x_3))\}$. Entonces $P_2(x) = f[x_1] + f[x_1, x_2](x - x_1) + f[x_1, x_2, x_3](x - x_1)(x - x_2)$.
- ▶ Las diferencias de orden cero son $f[x_i] = f(x_i)$.
- Las diferencias divididas de orden uno son $f[x_0, x_1] = \frac{f[x_1] f[x_0]}{x_1 x_0}$, $f[x_1, x_2] = \frac{f[x_2] f[x_1]}{x_2 x_1}$, $f[x_2, x_3] = \frac{f[x_3] f[x_2]}{x_3 x_2}$.
- ► La diferencia de orden dos es $f[x_1, x_2, x_3] = \frac{f[x_2, x_3] f[x_1, x_2]}{x_3 x_1}$.

Tabla de diferencias divididas

XI f(KI)

Las diferencias divididas se pueden ordenar en una tabla, por x_4 $f(x_4)$ ejemplo para n=4

- Sólo se pueden construir diferencias divididas hasta el orden n-1. f
- Hay n diferencias divididas de orden cero.
- ▶ Hay n-1 diferencias divididas de orden uno.
- Y así, hasta que al final sólo hay una diferencia dividida de orden n − 1.

Polinomio de diferencias divididas adelantadas

- Consideremos los n puntos equiespaciados $\{(x_1, f(x_1)), \dots, (x_n, f(x_n))\}$, tal que $h = x_{i+1} x_i$, para $i = 1, \dots, n$.
- Para aproximar f(x), donde $x = x_i + (s i)h$, es posible construir un polinomio de diferencias divididas adelantadas de Newton de orden n-1 dado por

$$P_{n-1}(x) = f[x_1] + \sum_{k=2}^{n} (s - k + 2) \cdots (s - 1)sh^{k-1} f[x_1, \dots, x_k].$$

Para n = 4 puntos equiespaciados, $h = x_{i+1} - x_i$, la aproximación para el nodo $x = x_0 + sh$ es

$$P_3(x) = f[x_1] + shf[x_1, x_2] + (s - 1)sh^2f[x_1, x_2, x_3] + (s - 2)(s - 1)sh^3f[x_1, x_2, x_3, x_4].$$

Polinomio de diferencias divididas atrasadas

- Consideremos los n puntos equiespaciados $\{(x_1, f(x_1)), \dots, (x_n, f(x_n))\}$, tal que $h = x_{i+1} x_i$, para $i = 1, \dots, n$.
- Para aproximar f(x), donde $x = x_n + sh$, es posible construir un polinomio de diferencias divididas atrasadas de Newton de orden n-1 dado por

$$P_{n-1}(x) = f[x_n] + \sum_{k=2}^{n} (s+k-2) \cdots (s+1) sh^{k-1} f[x_n, \dots, x_{n-k+1}]$$

Para n = 4 puntos equiespaciados, $h = x_{i+1} - x_i$, la aproximación para el nodo $x = x_3 + sh$ es

$$P_3(x) = f[x_4] + shf[x_4, x_3] + (s+1)sh^2f[x_4, x_3, x_2] + (s+2)(s+1)sh^3f[x_4, x_3, x_2, x_1].$$

Diferencias divididas centradas (I)

- Consideremos que x₀ está cerca del centro del intervalo.
- Los nodos menores que x_0 se etiquetan de modo que $\cdots < x_{-2} < x_{-1} < x_0$.
- Los nodos mayores que x_0 se etiquetan de modo que $x_0 < x_1 < x_2 < \cdots$
- ► Entonces si *n* es par, la fórmula de Stirling es $P_n(x) = P_{2m}(x)$, donde

$$P_{2m}(x) = f[x_0] + sh\left(\frac{f[x_{-1}, x_0] + f[x_0, x_1]}{2}\right) + s^2h^2f[x_{-1}, x_0, x_1] + s(s^2 - 1)h^3\left(\frac{f[x_{-2}, x_{-1}, x_0, x_1] + f[x_{-1}, x_0, x_1, x_2]}{2}\right) + \dots + s^2(s^2 - 1)(s^2 - 4)\dots(s^2 - (m - 1)^2)h^{2m}f[x_m, \dots, x_m].$$

Diferencias divididas centradas (II)

▶ En el caso de que n sea impar, la fórmula de Stirling es $P_n(x) = P_{2m+1}(x)$, donde

$$P_{2m+1}(x) = f[x_0] + sh\left(\frac{f[x_{-1}, x_0] + f[x_0, x_1]}{2}\right) + s^2h^2f[x_{-1}, x_0, x_1] + s(s^2 - 1)h^3\left(\frac{f[x_{-2}, x_{-1}, x_0, x_1] + f[x_{-1}, x_0, x_1, x_2]}{2}\right) + \dots + s^2(s^2 - 1)(s^2 - 4)\dots(s^2 - (m - 1)^2)h^{2m}f[x_m, \dots, x_m] + s(s^2 - 1)\dots(s^2 - m^2)h^{2m+1}\left(\frac{f[x_{-m-1}, \dots, x_m] + f[x_{-m}, \dots, x_{m+1}]}{2}\right).$$

▶ Recodar que los índices en Fortran inician en 1.

Algoritmo de Diferencias divididas de Newton

Entrada: del archivo datos, el número de puntos n y los puntos $\{(x_1, f(x_1)), \dots, (x_n, f(x_n))\}$; del archivo punto, el punto (x, f(x)). Salida: el valor aproximado $f(x) \approx P_{n-1}(x)$ y el error absoluto $|f(x) - P_{n-1}(x)|$. Requiere: funciones divDiff(Xn,Fn) y (prodNodes(x,Xn)).

- 1. Iniciar.
- 2. Leer el número de puntos n.
- 3. Reservar memoria para $Xn(n) = x_n$ y $Fn(n) = f(x_n)$.
- 4. Leer $x_n \to Xn(n)$ y $f(x_n) \to Fn(n)$.
- 5. Leer $x \to x$ y $f(x) \to f$.
- 6. Reservar memoria para Tabla(n-1, n-1).
- 7. Tabla = divDiff(Xn, Fn)

- 8. Reservar memoria para N(n-1).
- 9. $N = prodNodes(x, X_n)$.
- 10. Definir P = Fn(1).
- 11. Hacer para $2 \le k \le n$: 11.1 P = P + Tabla(1, k)N(k).
- 12. AbsError = ABS(f P).
- 13. Escribir P y AbsErr.
- 14. Liberar la memoria reservada.
- 15. Fin.

Algoritmo de Diferencias divididas adelantadas

Entrada: del archivo datos, el número de puntos n y los puntos $\{(x_1, f(x_1)), \dots, (x_n, f(x_n))\}$; del archivo punto, el punto (x, f(x)). Salida: el valor aproximado $f(x) \approx P_{n-1}(x)$ y el error absoluto $|f(x) - P_{n-1}(x)|$. Requiere: funciones divDiff(Xn,Fn) y prodFwd(s,h,n)

- Iniciar.
- 2. Leer el número de puntos n.
- 3. Reservar memoria para $Xn(n) = x_n$ y $Fn(n) = f(x_n)$.
- 4. Leer $x_n \to Xn(n)$ y $f(x_n) \to Fn(n)$.
- 5. Leer $x \to x$ y $f(x) \to f$.
- 6. Reservar memoria para Tabla(n-1, n-1).
- 7. Tabla = divDiff(Xn, Fn)

- 8. Calcular s y h.
- 9. Reservar memoria para N(n-1).
- 10. $N = \frac{\text{prodFwd}(s, h, n)}{s}$
- 11. Definir P = Fn(1).
- 12. Hacer para $2 \le k \le n$:

12.1
$$P = P + Tabla(1, k)N(k)$$
.

- 13. AbsError = ABS(f P).
- 14. Escribir P y AbsErr.
- 15. Liberar la memoria reservada.
- 16. Fin.

Algoritmo de Diferencias divididas atrasadas

Entrada: del archivo datos, el número de puntos n y los puntos $\{(x_1, f(x_1)), \dots, (x_n, f(x_n))\}$; del archivo punto, el punto (x, f(x)). **Salida**: el valor aproximado $f(x) \approx P_{n-1}(x)$ y el error absoluto $|f(x) - P_{n-1}(x)|$. Requiere: funciones divDiff(Xn,Fn) y prodBwd(s,h,n)

- Iniciar.
- 2. Leer el número de puntos n.
- 3. Reservar memoria para $X_n(n) = 10$. N = prodBwd(s, h, n). $x_n \vee F_n(n) = f(x_n)$.
- 4. Leer $x_n \to Xn(n)$ y $f(x_n) \to$ Fn(n).
- 5. Leer $x \to x$ y $f(x) \to f$.
- 6. Reservar memoria para Tabla(n-1, n-1).
- 7. Tabla = divDiff(Xn, Fn)

- 8. Calcular s y h.
- 9. Reservar memoria para N(n-1).
- 11. Definir P = Fn(1).
- 12. Hacer para 2 < k < n:
 - 12.1 Tarea.
- 13. AbsError = ABS(f P).
- 14. Escribir P y AbsErr.
- 15. Liberar la memoria reservada.
- 16. Fin.

Algoritmo de Diferencias divididas centradas

Tarea

Algoritmo de la Tabla de Diferencias divididas de Newton

Función divDiff (Xn,Fn). Entrada: el conjunto de puntos $\{(x_1, f(x_1)), \ldots, (x_n, f(x_n))\}$. Salida: un arreglo bidimensional de dimensión $(n-1) \times (n-1)$ con el valor de las diferencias divididas.

- 1. Iniciar.
- 2. Definir n = SIZE(Xn, 1)
- 3. Reservar memoria para T(n 1, n 1).
- 4. Hacer para $2 \le k \le n-1$:
- ★ 4.1 Tarea: ¿cómo calcular las diferencias divididas?
- 5. Retornar T.
- 6. Fin.

Programación defensiva: validar los valores de n y de x. Optimizable: el arreglo Tabla tiene n-1 columnas. La *i*-ésima columna tiene las diferencias de orden i y tiene n-i filas. Si se deja la primera diferencia de orden i en la primera fila de la i-ésima columna, la última diferencia estará en la fila n-i. Reutilizable: se puede usar la función divDiff(Xn,Fn) para las otras versiones del polinomio de diferencias divididas.

Algoritmo del Producto de nodos

Función prodNodes (x, Xn). Entrada: el conjunto de nodos $\{x_n\}$ y el nodo de interés x. Salida: un arreglo unidimensional de dimensión (n-1) con el valor de los productos $(x-x_1)\cdots$ $(x - x_{k-1})$

- Iniciar.
- 2. Definir n = SIZE(Xn, 1)

Programación defensiva: validar los valores de n y de x.

3. Reservar memoria para
$$Q(n-1)$$
.
4. Hacer para $2 \le k \le n$:

$$4.1 \ Q(k) = (x-x_1) \cdots (x-x_{k-1})$$

$$Q(x) = Q(1) * (x-x_k)$$

- 5. Retornar Q.
- 6. Fin.

Algoritmo del Producto de nodos para las diferencias adelantadas

Función prodFwd(s,h,n). Entrada: el incremento s, el paso h y el número de nodos n. Salida: un arreglo unidimensional de dimensión (n-1) con el valor de los productos $(s-k+2)\cdots(s-1)sh^{k-1}$.

- 1. Iniciar.
- 2. Reservar memoria para Q(n-1).
- 3. Hacer para $2 \le k \le n$:
 - 3.1 $Q(k) = sh^{k-1}(s-1)\cdots(s-k+2)$
- 4. Retornar Q.
- 5. Fin.

Programación defensiva: validar el valor de *n*.

Tarea: ¿cómo se hace el producto del punto 3.1?

Productos de matricos se

Algoritmo del Producto de nodos para las diferencias atrasadas

Función prodBwd(s,h,n). Entrada: el incremento s, el paso h y el número de nodos n. Salida: un arreglo unidimensional de dimensión (n-1) con el valor de los productos $(s+k-2)\cdots(s-1)sh^{k-1}$.

- 1. Iniciar.
- 2. Reservar memoria para Q(n-1).
- 3. Hacer para $2 \le k \le n$: 3.1 $Q(k) = sh^{k-1}(s-1)\cdots(s+k-2)$
- 4. Retornar Q.
- 5. Fin.

Programación defensiva: validar el valor de *n*.

Tarea: ¿cómo se hace el producto del punto 3.1?

Introducción

Algoritmo para el polinomio de Lagrange

Algoritmo para los polinomios de Newton

Algoritmo para los polinomios de Hermite

Polinomio de Hermite usando el polinomio de Newton

- ► Consideremos los *n* puntos $\{(x_1, f(x_1)), \dots, (x_n, f(x_n))\}$.
- ► Hay que definir una nueva secuencia de nodos z_0, \ldots, z_{2n+1} , con $z_{2i} = z_{2i+1} = x_i$.
- ▶ Como $z_{2i} = z_{2i+1} = x_i$, no se puede definir $f[z_{2i}, z_{2i+1}]$ de la forma tradicional, así que se usa $f[z_{2i}, z_{2i+1}] = f'(z_{2i}) = f'(x_i)$.
- ▶ Entonces, se puede definir el polinomio de Hermite con

$$H_{2n-1}(x) = f[z_1] + \sum_{k=2}^{2n} f[z_1, \dots, z_k](x-z_1)(x-z_2) \cdots (x-z_{k-1}).$$

▶ Para n = 3, se tendrán 2n = 6 valores $\{z_i\}$ y

$$H_5(x) = f[z_1] + f[z_1, z_2](x - z_1) + f[z_1, z_2, z_3](x - z_1)(x - z_2) + f[z_1, z_2, z_3, z_4](x - z_1)(x - z_2)(x - z_3) + f[z_1, z_2, z_3, z_4, z_5] \cdot (x - z_1)(x - z_2)(x - z_3)(x - z_4) + f[z_1, z_2, z_3, z_4, z_5, z_6] \cdot (x - z_1)(x - z_2)(x - z_3)(x - z_4)(x - z_5).$$

Algoritmo de Hermite

Entrada: del archivo datos, el número de puntos n y los puntos $\{(x_1, f(x_1)), \ldots, (x_n, f(x_n))\}$; del archivo punto, el punto (x, f(x)). Salida: el valor aproximado $f(x) \approx H_{2n-1}(x)$ y el error absoluto $|f(x) - H_{2n-1}(x)|$. Requiere: implementación del polinomio de diferencias divididas de Newton.

- Iniciar.
- 2. Leer el número de puntos n.
- 3. Reservar memoria para $\frac{Xn(n)}{x_n} = x_n$ y $\frac{Fn(n)}{x_n} = f(x_n)$.
- 4. Leer $x_n \to Xn(n)$ y $f(x_n) \to Fn(n)$.
- 5. Leer $x \to x$ y $f(x) \to f$.
- 6. Reservar memoria para Zn(2n) y FZn(2n).

- 8. Hacer para $1 \le i \le n$:
 - 8.1 Definir $Z_n(2i) = X_n(i)$
 - 8.2 Definir $Z_n(2i+1) = X_n(i)$
 - 8.3 Definir FZn(2i) = Fn(i)
 - 8.4 Definir FZn(2i+1) = Fn(i)
- Encontrar el polinomio de diferencias divididas de Newton usando como datos los 2n puntos {(Zn(i), FZn(i))}.
- 10. Fin.

¡Muchas gracias!

Contacto: Giovanni Ramírez García, PhD ramirez@ecfm.usac.edu.gt http://ecfm.usac.edu.gt/ramirez