

Computer model calibration for design, with an application to wind turbine blades

Carl Ehrett 1,2 , Andrew Brown 1,2 , Sez Atamturktur 1,3 , Christopher Kitchens 1,4 , Mingzhe Jiang 1,4 , Caleb Arp 1,4 , Evan Chodora 1,3

Computer experiments

Researchers increasingly look to computer experiments to investigate phenomena where physical experimentation is difficult or impossible [6, 7].

Computer model calibration

- Computer models may include unknown inputs (calibration inputs) that must be estimated[4].
- Calibration input is often estimated by combining simulator output with field data.
- Calibration is ordinarily thought of as bringing a computer model into agreement with reality.

Finite element smulator

We rely on a finite element simulator of the blade cost and performance.

- Calibration inputs: volume fraction, thickness of blade material. Control input: temperature.
- Outputs are tip deflection, rotation, and cost; the design goal is to minimize these.
- Model utilizes ANSYS simulation software; computation cost is too high for use in MCMC.

References

- [1] M. J. Bayarri, J. O. Berger, R. Paulo, J. Sacks, J. A. Cafeo, J. Cavendish, C.-H. Lin, and J. Tu. A Framework for Validation of Computer Models.
- Technometrics, 49(2):138–154, may 2007.
- Monte Carlo sampling methods using Markov chains and their applications.

 Biometrika, 57(1):97–109, apr 1970.
- B] D. Higdon, M. Kennedy, J. C. Cavendish, J. A. Cafeo, and R. D. Ryne. Combining Field Data and Computer Simulations for Calibration and Prediction. SIAM Journal on Scientific Computing, 26(2):448–466, jan 2004.
- [4] M. C. Kennedy and A. O'Hagan.
 Bayesian calibration of computer models.

 JRSS: Series B (Statistical Methodology), 63(3):425–464, aug 2001.
- [5] A. O'Hagan and J. F. C. Kingman.
- Curve Fitting and Optimal Design for Prediction, 1978.
- [6] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and Analysis of Computer Experiments. Statistical Science, 4(4):409–423, 1989.
- [7] T. J. Santner, B. J. Williams, and W. I. Notz.

 The Design and Analysis of Computer Experiments.

 Springer, New York, 2003.
- [8] B. Williams, D. Higdon, J. Gattiker, L. Moore, M. McKay, and S. Keller-McNulty. Combining experimental data and computer simulations, with an application to flyer plate experiments.

Bayesian Analysis, 1(4):765–792, dec 2006.

Central idea

Previous explorations of computer model calibration have approached calibration as a matter of bringing a computer model into agreement with physical reality[1, 4, 3, 8]. In the present work, we consider computer model calibration as a method for design. Under this framework, we calibrate a computer model not using physical experimental data, but rather using "desired data" which describes the performance one hopes to achieve in the simulated system.

Results

Central idea

Previous explorations of computer model calibration have approached calibration as a matter of bringing a computer model into agreement with physical reality[1, 4, 3, 8]. In the present work, we consider computer model calibration as a method for design. Under this framework, we calibrate a computer model not using physical experimental data, but rather using "desired data" which describes the performance one hopes to achieve in the simulated system.

Central idea

Previous explorations of computer model calibration have approached calibration as a matter of bringing a computer model into agreement with physical reality[1, 4, 3, 8]. **In the present**

MCMC imp

- Calibrate volume fracti desired data. Set a unit
- Each iteration of the M for x_3, x_4 , and the obse
- Where \mathbf{y} is the desired $\Sigma_{\mathcal{D}} = \operatorname{Var}(\mathcal{D})$, the likeli

hence[8] the full poste

 $\pi(x_3, x_4, \sigma_d^2, \sigma_r^2, \sigma_c^2)$

- Eliminate boundary con $\tau_j = \log(\sigma_j^2)$ for i = 3,4
- We use the Metropoliswe set normal proposal $\tau_j^{(n)} | \tau_j^{(n-1)}, \forall i \forall j.$
- In burn-in, the proposatusing the sample covariachieving optimal acceptance.

Res

- Posterior means are ser desired data. Therefore consider a surface over
- Where desired output is ambitious, the MCMC lack of identifiability in

Contact In

Carl E Email: cehrett