

Inferring Perturbation Profiles of Cancer Samples

Poster Made by: ZIQIziqiZ

Authors of the Paper:

Martin Pirkl and Niko Beerenwinkel

Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland Swiss Institute of Bioinformatics, Basel 4058, Switzerland

Abstract

- ❖ Goal: Infer perturbation profiles of cancer driver genes.
- * Model: $NEM\pi$ a nested effects model extension, which utilizes the causal network between genetic aberrations and gene expression data.
- ❖ Results: The proposed model performed much better on a simulated dataset and a CRISPR scRNAseq dataset compared to other classification models.

Introduction

Task Introduction:

- * Replication project of the paper *Inferring*perturbation profiles of cancer samples.
- Given gene expression data, samples are labeled by their perturbations.
- ❖ Infer perturbation profiles which gene is perturbed in which sample.

Importance of the Problem:

- Overcome existing challenges: difficulty in observing gene perturbations directly.
- Overcome existing challenges: difficulty in measuring molecular profiles (indirect indication of perturbation).
- ❖ Identify cancer driver genes.
- Distinguish different types of cancer.
- Determine treatments accordingly.

Summary of the Project:

- \clubsuit Replicated validating NEM π on a simulated dataset recovered unobserved perturbation profiles.
- \clubsuit Replicated validating NEM π on a CRISPR scRNA-seq dataset.
- * Replicated running a support vector machine model, a neural net model, and a random forest model on both datasets for comparison.
- * Extension: explored adding a bootstrap function and the reasons for the variability of NEM π 's results.

Datasets

Simulated Dataset

Figure 1: Heatmap of the data expression matrix. Blue corresponds to E-genes, and red indicates the genes with no effect. The shades of colors suggest the values of log odds.

❖ CRISPR scRNA-seq Dataset

Figure 2: Pilot experiment schematic. (Source: Adamson, B. et al. (2016) A multiplexed single-cell crispr screening platform enables systematic dissection of the unfolded protein response. Cell, 167, 1867–1882.e21.)

Methodology

Perturbation profiles
(known & unknown
perturbations)

Gene expression data

Underlying
causal network
of perturbed
genes

Inferred complete perturbation profiles ❖ Perturbed genes → adjacency matrix

- Effect genes -> binary attachment matrix
- Adjacency & attachment -> gene expression profiles
- Compare gene expression profiles to real data
- Expectation maximization algorithm -> iteration

Results

Simulation Study - Infer Unobserved Perturbation Profiles:

- Simulate single-cell data from a random mixture of networks.
- Parameters: P-genes, E-genes, the number of samples, uninformative samples, multiple perturbations.
- Standard deviation of Gaussian noise (1 or 3)
- ❖ Percentage of removed perturbation profiles (10% or 50%)

Figure 3: AUC of NEM π , support vector machine, neural network, and random forest when inferring unobserved perturbation profiles with different Gaussian noises and different percentages of unobserved perturbation profiles.

CRISPR scRNA-seq Data Study:

- * Matrix with genes as the names of rows and cell barcodes as the names of columns.
- Preprocess the sparse matrix, compute the log odds of gene expression data.
- Compare the actual perturbation profiles with the derived perturbation matrix.

Table 1: Classification performance of NEM π , support vector machine, neural network, and random forest on CRISPR scRNA-seq data

ΝΕΜπ	SVM	NNET	RF
0.87	0.71	0.77	0.78

Extension

NEM π + Bootstrap Function:

- * Resample data from original datasets.
- Grid search: choose the optimal number of bootstraps.
- Generate more stable results.

Figure 4: AUC of NEM π and NEM π bootstrap function with 8 bootstraps, Gaussian noise of 1, and 0.1 unobserved perturbation profiles.

Discussion

- * NEM π performs better than other supervised classification models, such as the neural network, the random forest, and the support vector machine.
- NEMπ is able to infer perturbation profiles accurately even if the dataset has high noise and a high percentage of unobserved perturbations.
- * NEM π performs well on simulated datasets and real-life CRISPR scRNA-seq datasets.
- \clubsuit Applying a bootstrap function to NEM π helps generate more stable and accurate results.

Summary

- \bullet NEM π infers perturbation profiles accurately.
- Importance of causal network of perturbed genes.
- Limitation: interpretation of the causal network.