Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky

Odhad relativní četnosti binomického rozdělení pomocí klasického a bayesovského přístupu v jazyce R

BAKALÁŘSKÁ PRÁCE

Studijní program: [Data Analytics]

Autor: [Bc. Michal Lauer]

Vedoucí práce: [Ing. Ondřej Vilikus, Ph.D.]

Praha, Prosinec 2024

Poděkování				
Děkuji svému vedoucímu za odborné neocenitelnou podporu.	vedení práce a p	orůběžné konzulta	ace a své přítelk	zyni za

Klíčová slova	
Bayesovská statistika, odhad relativní četnosti, jazyk R	
Abstract	
Abstract.	
Keywords	
Bayesian statistics, relative frequency estimation, R language	

Abstrakt

Abstrakt.

Obsah

Ú	vod			9	
1	Statistické metody				
	1.1	Infere	nce	10	
		1.1.1	Problematika výběrových šetření	10	
	1.2	Frekve	entistická inference	10	
		1.2.1	Testování hypotéz	10	
		1.2.2	Metriky při testování hypotéz	10	
		1.2.3	Jednovýběrový odhad poměru s velkým vzorkem	10	
		1.2.4	Jednovýběrový odhad poměru s malým vzorkem	10	
	1.3	Bayese	ovská inference	11	
2	Mo	nte Ca	rlo generování	12	
	2.1	Vyhod	lnocení generovaného rozdělení	12	
		2.1.1	Vyhodocení hypotéz	12	
		2.1.2	Odhad poměru	12	
3	Pra	ktické	odhady	13	
	3.1	Balíčk	y pro frekventistickou inferenci	13	
		3.1.1	Klasické test poměru	13	
	3.2	Softwa	are pro bayesovskou statistiku	15	
		3.2.1	Balíček R2WinBUGS	15	
		3.2.2	Balíček jags	18	
		3.2.3	stan	18	
	3.3	Simula	ace	18	
		3.3.1	Malý vzorek	19	
		3.3.2	Velký vzorek	19	
		3.3.3	Porovnání výsledků	19	
A	Bay	esovsk	té modely	21	

Seznam obrázků

Seznam tabulek

Seznam zdrojových kódů

3.1	Moje caption	13
3.2	NENÍ CAPTION	13
3.3	NENÍ CAPTION	14
3.4	NENÍ CAPTION	15
3.5	NENÍ CAPTION	16
3.6	NENÍ CAPTION	16
3.7	NENÍ CAPTION	17
3.8	NENÍ CAPTION	17
A.1	NENÍ CAPTION	21

Seznam použitých zkratek

 ${f BCC}$ Blind Carbon Copy

CC Carbon Copy

 \mathbf{CERT} Computer Emergency Response

Team

CSS Cascading Styleheets

DOI Digital Object Identifier

HTML Hypertext Markup Language

REST Representational State Transfer

SOAP Simple Object Access Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML eXtended Markup Language

Úvod

V úvodu závěrečné práce autor vysvětlí, proč si vybral zvolené téma, tedy **motivaci** celé závěrečné práce. V úvodu nesmí chybět přesně formulovaný **hlavní cíl** závěrečné práce (popř. dílčí cíle), měla by zde být nastíněna **metodika** celé závěrečné práce (popř. výzkumné otázky či hypotézy). Zvykem bývá rovněž nastínit **hlavní výsledky/výstupy** závěrečné práce.

Po úvodu následují jednotlivé **číslované kapitoly** členěné do podkapitol.

1. Statistické metody

Krátký úvod do historie, bayes, inferenční bayes (rozdělení) vs. inference (bod) citace Karla

1.1 Inference

proč to používáme, výběr vs. populace, reprezentativnost

1.1.1 Problematika výběrových šetření

reprezentativnost, definice populace, čas sběru, organizace sběru...

1.2 Frekventistická inference

Jak to funguje, jak to spoléhá na sampling distributions

1.2.1 Testování hypotéz

hladina významnosti, úroveň spolehlivosti, Testovací statistika, kritický obor, 1/2 stranný test p-hodnota, interval spolehlivosti

1.2.2 Metriky při testování hypotéz

Chyba I. a II. druhu, síla testu, velikost efektu

1.2.3 Jednovýběrový odhad poměru s velkým vzorkem

použití, předpoklady, poměrový Z test, binomický test, síla testu, velikost efektu

1.2.4 Jednovýběrový odhad poměru s malým vzorkem

Proč jsou důležité speciální metody, nějaké typy (wiki)

1.3 Bayesovská inference

Odvození bayesova vzorce, popis likelihood/aprior/data, druhy aprior/posterior

2. Monte Carlo generování

Halsing, Gibs, HMC

2.1 Vyhodnocení generovaného rozdělení

korelace, ESS, monte carlo error...

2.1.1 Vyhodocení hypotéz

Interval kredibility, ROPE, Bayesův faktor

2.1.2 Odhad poměru

3. Praktické odhady

3.1 Balíčky pro frekventistickou inferenci

3.1.1 Klasické test poměru

Výpis 3.1: Moje caption

```
One Sample t-test

data: x
t = 8.8438, df = 99, p-value = 3.621e-14
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
    0.7158758 1.1300282
sample estimates:
mean of x
    0.922952

3.1
Simulace alfa = chyba 1. druhu

library(dplyr)
```

Výpis 3.2: NENÍ CAPTION

```
library(ggplot2)
2 # Nastavení
    <- 1000 # Pocet simulaci
4 n <- 200
                 # Velikost vzorku
5 mu0 <- 0
                 # Skutecny prumer
6 sd0 <- 2
                 # čPopulaní ěsmrodatná odchylka
7 alpha <- 0.05 # Hladina významnosti</pre>
8 set.seed(639)
9 vzorky <- tibble()</pre>
10
11 # Simulace
for (i in seq_len(K)) {
      x \leftarrow rnorm(n = n, mean = mu0, sd = sd0)
      test <- t.test(x = x, mu = mu0, conf.level = 1 - alpha)</pre>
      vzorky <<- bind_rows(vzorky, tibble(n = i, vysledek = test$p.value <= alpha))</pre>
15
16 }
17 vzorky$cvysledky <- cummean(vzorky$vysledek)</pre>
18 ggplot(vzorky, aes(x = n, y = cvysledky)) +
      geom_line() +
19
      geom_hline(aes(yintercept = .05, color = "red"), linetype = "dashed") +
20
      scale_y_continuous(limits = c(0, .2)) +
21
      scale_x_continuous(labels = scales::label_number()) +
      theme_bw() +
      labs(
24
          title = "Procento šfalených zamítnutí hO se žblíí ěhladin významnosti",
25
          y = "Chyba I. druhu",
26
          x = "čPoet simulací"
27
      )
```

Výpis 3.3: NENÍ CAPTION

Procento falešných zamítnutí h0 se blíží hladine významnosti

3.2 Software pro bayesovskou statistiku

3.2.1 Balíček R2WinBUGS

podporuje WinBUGS, OpenBUGS

```
set.seed(123)
  x \leftarrow rbinom(10, 1, .6)
  bugs <- R2WinBUGS::bugs(</pre>
      data = list(
                 = length(x), # čPoet pozorování
                              # Vstupní data
                 = x,
          alpha = 0.01,
                             # Hodnota parametru alpha
          beta = 0.01
                              # Hodnota parametru beta
      ),
10
      # ččPoátení hodnoty
11
      inits = list(
12
          list(p = 0.5),
          list(p = 0.5)
14
15
      n.chains = 2, n.iter = 5000, n.burnin = 1000, n.thin = 1,
16
      # Parametry, které žuloit
      parameters.to.save = c("p"),
      # Cesta k modelu
19
```

```
working.directory = "prakticka",
model.file = "r2winbugs.txt",

# Cesta k programu WinBUGS
bugs.directory = r"(C:\Users\Mike\Downloads\WinBUGS14\WinBUGS14)",

# ňOdstra pracovní soubory
clearWD = T,
# Replikovatelnost
bugs.seed = 123
)
```

Výpis 3.4: NENÍ CAPTION

Výsledek

```
print(bugs)
```

Výpis 3.5: NENÍ CAPTION

Odhad parametru p.

```
mcmcplots::caterplot(mcmcout = bugs,  # Výstup modelu

parms = "p",  # Vybraný parametr

val.lim = c(0, 1),  # Limity na ose X

quantiles = list(

outer = c(0.025, 0.975), # 95% interval kredibility

inner = c(0.055, 0.945) # 89% interval kredibility

)

)
```

Výpis 3.6: NENÍ CAPTION

Posteriorní rozdělení jednotlivých chainů.

```
mcmcplots::denplot(mcmcout = bugs, # Výstup modelu

parms = "p", # Vybraný parametr

xlim = c(0, 1), # Limity na ose X

ci = 0.89 # 89% Interval kredibility

)
```

Výpis 3.7: NENÍ CAPTION

Vývoj jednotlivých chainů.

```
mcmcplots::traplot(mcmcout = bugs, # Výstup modelu

parms = "p", # Vybraný parametr

ylim = c(0, 1) # Limity na ose Y

1
1
2
2
3
4
1)
```

Výpis 3.8: NENÍ CAPTION

3.2.2 Balíček jags

aplikace, R implementace, výhody/nevýhody, používá gibse

3.2.3 stan

aplikace, R implementace, výhody/nevýhody, používá hmc

3.3 Simulace

jak budou simulace provedné, jak budou vyhodnocené, nastavení ROPE/alternativ. pro odhad chyb

3.3.1 Malý vzorek

Bayes vs. vybraný vzorec vs. binomic

3.3.2 Velký vzorek

Bayes vs. vybraný vzorec vs. binomic

3.3.3 Porovnání výsledků

Jak testy dopadly

A. Bayesovské modely

print(1 + 1)

Výpis A.1: NENÍ CAPTION

[1] 2