tran_2009

1 "environment" component

This component has no equations.

2 "sarcomere_geometry" component

$$sovr_ze = \begin{cases} \frac{len_thick}{2}; & \text{if } \frac{len_thick}{2} < \frac{SL}{2}, \\ \frac{SL}{2} & \text{otherwise.} \end{cases}$$

$$sovr_cle = \begin{cases} \left(\frac{SL}{2} - (SL - len_thin)\right); & \text{if } \left(\frac{SL}{2} - (SL - len_thin)\right) > \frac{len_hbare}{2}, \\ \frac{len_hbare}{2} & \text{otherwise.} \end{cases}$$

$$len_sovr = (sovr_ze - sovr_cle)$$

$$SOVFThick = \frac{len_sovr}{(len_thick - len_hbare)}$$

$$SOVFThin = \frac{len_sovr}{len_thin}$$

3 "Ca_binding_to_troponin_to_thin_filament_regulation" component

$$konT = \frac{((kdHCa)^{m} + (H_cons)^{m})}{((kdHCa)^{m} + (H)^{m})} * kon * (Qkon)^{\frac{(TmpC - 37)}{10}}$$
$$H = 106 * (10)^{-(pH)}$$

$$H_cons = 106 * (10)^{-7.15}$$

$$koffLT = koffL * koffmod * (Qkoff)^{\frac{(TmpC-37)}{10}}$$

$$koffHT = koffH * koffmod * (Qkoff)^{\frac{(TmpC-37)}{10}}$$

$$kn_pT = kn_p * permtot * (Qkn_p)^{\frac{(TmpC-37)}{10}}$$

$$kp_nT = kp_n * inprmt * (Qkp_n)^{\frac{(TmpC-37)}{10}}$$

$$permtot = \sqrt{\left|\frac{1}{\left(1 + \left(\frac{perm50}{Tropreg}\right)^{nperm}\right)}\right|}$$

$$inprmt = \begin{cases} \frac{1}{permtot}; & \text{if } \frac{1}{permtot} < 100, \\ 100 & \text{otherwise.} \end{cases}$$

$$\frac{d(TRPNCaL)}{d(time)} = dTRPNCaL$$

$$dTRPNCaL = (konT * Cai * (1 - TRPNCaL) - koffLT * TRPNCaL)$$

$$\frac{d(TRPNCaH)}{d(time)} = dTRPNCaH$$

$$dTRPNCaH = (konT * Cai * (1 - TRPNCaH) - koffHT * TRPNCaH)$$

$$Tropreg = ((1 - SOVFThin) * TRPNCaL + SOVFThin * TRPNCaH)$$

4 "thin_filament_regulation_and_crossbridge_cycling_rates" component

$$fappT = fapp * xbmodsp * (Qfapp)^{\frac{(TmpC - 37)}{10}}$$

$$gapslmd = (1 + (1 - SOVFThick) * gslmod)$$

$$\begin{split} gappT &= gapp * gapslmd * xbmodsp * (Qgapp)^{\frac{(TmpC-37)}{10}} \\ & hfmd = e^{\frac{-(xXBprer)}{|xXBprer|}} * hfmdc * (\frac{xXBprer}{x_0})^2 \\ & hbmd = e^{\frac{(xXBpostr-x_0)}{|(xXBpostr-x_0)|}} * hbmdc * (\frac{(xXBpostr-x_0)}{x_0})^2 \\ & hfT = hf * hfmd * xbmodsp * (Qhf)^{\frac{(TmpC-37)}{10}} \\ & hbT = hb * hbmd * xbmodsp * (Qhb)^{\frac{(TmpC-37)}{10}} \\ & gxbmd = \begin{cases} e^{sigmap * (\frac{(x_0-xXBpostr)}{x_0})^2}; & \text{if } xXBpostr < x_0, \\ e^{sigman * (\frac{(xXBpostr-x_0)}{x_0})^2} & \text{otherwise.} \end{cases} \\ & gxbT = gxb * gxbmd * xbmodsp * (Qgxb)^{\frac{(TmpC-37)}{10}} \end{split}$$

${\small 5} \quad \hbox{``regulation_and_crossbridge_cycling_state_equations'' component} \\$

$$\frac{d(N_NoXB)}{d(time)} = (kp_nT * P_NoXB - kn_pT * N_NoXB)$$

$$\frac{d(P_NoXB)}{d(time)} = (kn_pT * N_NoXB - kp_nT * P_NoXB)$$

$$N = (1 - (P + XBprer + XBpostr))$$

$$\frac{d(P)}{d(time)} = (kn_pT * N - (kp_nT + alpha1_plus) * P)$$

$$\frac{d(XBprer)}{d(time)} = dXBprer$$

 $dXBprer = ((alpha1_plus*P + alpha2_minus*XBpostr) - (alpha1_minus + alpha2_plus)*XBprer)$

$$\frac{\mathrm{d}(XBpostr)}{\mathrm{d}(time)} = dXBpostr$$

$$dXBpostr = ((alpha3_minus * P + alpha2_plus * XBprer) - (alpha2_minus + alpha3_plus) * XBpostr)$$

$$alpha1_plus = fappT$$

$$alpha3_plus = MgATP * \frac{gxbT}{MgATP_cons} * \frac{(kdADP + MgADP_cons)}{(kdADP + MgADP)}$$

$$alpha1_minus = xPi * \frac{gappT}{xPi_cons}$$

$$alpha2_minus = H * \frac{hbT}{H_cons} * \frac{(kdADP + MgADP_cons)}{MgADP_cons} * \frac{MgADP}{(kdADP + MgADP)}$$

$$alpha3_minus = fxbT$$

$$fxbT = \frac{kdADP * fappT * hfT * \frac{gxbT}{MgATP_cons}}{\frac{gappT}{gappT} * \frac{hbT}{MgATP_cons}} * kMgATP$$

"mean_strain_of_strongly_bound_states" component

$$\frac{\mathrm{d}(xXBprer)}{\mathrm{d}(time)} = dxXBprer$$

$$dxXBprer = \left(\frac{dSL}{2} + \frac{xPsi}{dutyprer} * (-(alpha1_plus * xXBprer) + alpha2_minus * (xXBpostr - (x_0 + xXBprer)))\right)$$

$$\frac{\mathrm{d}(xXBpostr)}{\mathrm{d}(time)} = dxXBpostr$$

$$dxXBpostr = \left(\frac{dSL}{2} + \frac{xPsi}{dutypostr} * alpha2_plus * ((xXBprer + x_0) - xXBpostr)\right)$$

$$\frac{(alpha3_minus * alpha2_minus + alpha3_plus * alpha1_plus + alpha3}{(alpha1_plus * alpha2_plus + alpha3_minus * alpha2_plus + alpha3_minus * alpha1_plus + alpha3}$$

$$\frac{(alpha1_plus * alpha2_plus + alpha3_minus * alpha1_plus + alpha3}{(alpha1_plus * alpha2_plus + alpha3_minus * alpha1_plus + alpha3_minus * alpha1_plus + alpha3_minus * alpha1_plus + alpha3_minus * alpha3_minus$$

7 "normalised_active_and_passive_force" component

$$fxb = \frac{kdADP*fapp*hf*\frac{gapp}{MATP_cons}}{\frac{gapp}{MATP_cons}} * \frac{kdADP*fapp}{MATP_cons} * \frac{gapp}{MATP_cons} * \frac{kdADP}{MATP_cons} * \frac{kdADP}{MATP_cons$$

8 "calculation_of_micromolar_per_millisecondes_of_Ca_for_apparent_Ca_binding" component

$$FrSBXB = \frac{(XBpostr + XBprer)}{(SSXBpostr + SSXBprer)}$$

$$dFrSBXB = \frac{(dXBpostr + dXBprer)}{(SSXBpostr + SSXBprer)}$$

$$dsovr_ze = \begin{cases} -(0.5) * dSL; & \text{if } SL < len_thick, \\ 0 & \text{otherwise.} \end{cases}$$

$$dsovr_cle = \begin{cases} -(0.5) * dSL; & \text{if } (2 * len_thin - SL) > len_hbare, \\ 0 & \text{otherwise.} \end{cases}$$

$$dlen_sovr = (dsovr_ze - dsovr_cle)$$

$$dSOVFThin = \frac{dlen_sovr}{len_thin}$$

$$dSOVFThick = \frac{2 * dlen_sovr}{(len_thick - len_hbare)}$$

 $TropTot = Trop_conc*((1 - SOVFThin) * TRPNCaL + SOVFThin * (FrSBXB * TRPNCaH + (1 - FrSBXB) * TRPNCaL)) \\$

 $dTropTot = Trop_conc*(-(dSOVFThin)*TRPNCaL + (1-SOVFThin)*dTRPNCaL + dSOVFThin*(FrSBXB*TRPNCaH + (1-FrSBXB)*TRPNCaL) + dSOVFThin*(FrSBXB*TRPNCaH + (1-FrSBXB)*TRPNCaH + (1-FrSBX$

dforce = (kxb*dSOVFThick*(xXBpostr*X

9 "model_parameters" component

This component has no equations.