Elementi di Teoria della Computazione

Classe: Resto_2 - Prof.ssa Marcella Anselmo

Tutorato 03/07/2022 ore 15:00-17:00

Settima Esercitazione

a cura della dott.ssa Manuela Flores

Linguaggi regolari: dimostrare o confutare

Dimostrare o confutare le seguenti affermazioni.

- (a) Il linguaggio $X = \{w \in \{a,b\}^* \mid |w|_a = |w|_b\}$ è regolare (indichiamo con $|w|_a$ e $|w|_b$ rispettivamente le occorrenze di a e di b in w).
- (b) Il linguaggio $Y = \{a^i b^j \mid i+j \text{ è multiplo di 2}\}$ è regolare.
- (c) $L((ab)^*) \cap L((cd)^*) = \emptyset$, dove L(E) è il linguaggio denotato dall'espressione regolare E.

Pumping lemma

DEF[pumping lemma]

Se A è un linguaggio regolare, allora $\exists p > 0$ (costante del pumping) tale che $\forall s \in A$ di lunghezza almeno p (cioè $|s| \geq p$), esistono stringhe x, y, z tali che

$$s = xyz$$

per cui valgono le seguenti **condizioni**:

- $xy^iz \in A$, per ogni $i \ge 0$,
- $|y| \ge 1$,
- $|xy| \leq p$.

Pumping lemma: dimostrare la non regolarità (esempio)

Dimostriamo che $L = \{a^n b^n \mid n \ge 0\}$ non è regolare!

Dimostrazione.

Supponiamo per assurdo che L sia regolare. Allora vale il pumping lemma. Sia p la lunghezza del pumping.

Consideriamo la stringa $s = a^p b^p$.

Ovviamente $s \in L$ e |s| = 2p (soddisfa le ipotesi $|s| \ge p$).

Consideriamo **TUTTE** le possibili fattorizzazioni di $s = a^p b^p$ in 3 stringhe x, y, z con le proprietà delle condizioni: $|xy| \le p$ e $|y| \ge 1$.

Pumping lemma: dimostrare la non regolarità (esempio)

Dimostriamo che $L = \{a^n b^n \mid n \ge 0\}$ non è regolare!

Dimostrazione.

. . .

Consideriamo **TUTTE** le possibili fattorizzazioni di $s = a^p b^p$ in 3 stringhe x, y, z con le proprietà delle condizioni: $|xy| \le p$ e $|y| \ge 1$.

Quindi
$$y = a^m$$
, per $1 \le m \le p$. Per $i = 2$, $xy^2z = a^{p+m}b^p \notin L$.

Linguaggi regolari: dimostrare o confutare

Dimostrare o confutare le seguenti affermazioni.

- (a) Il linguaggio $X = \{w \in \{a,b\}^* \mid |w|_a = |w|_b\}$ è regolare (indichiamo con $|w|_a$ e $|w|_b$ rispettivamente le occorrenze di a e di b in w).
- (b) Il linguaggio $Y = \{a^i b^j \mid i+j \text{ è multiplo di 2}\}$ è regolare.
- (c) $L((ab)^*) \cap L((cd)^*) = \emptyset$, dove L(E) è il linguaggio denotato dall'espressione regolare E.

Lezione 5 pag. 22

Linguaggio riconosciuto da un DFA: esempi

Linguaggi regolari: dimostrare o confutare

Dimostrare o confutare le seguenti affermazioni.

- (a) Il linguaggio $X = \{w \in \{a,b\}^* \mid |w|_a = |w|_b\}$ è regolare (indichiamo con $|w|_a$ e $|w|_b$ rispettivamente le occorrenze di a e di b in w).
- (b) Il linguaggio $Y = \{a^i b^j \mid i+j \text{ è multiplo di 2}\}$ è regolare.
- (c) $L((ab)^*) \cap L((cd)^*) = \emptyset$, dove L(E) è il linguaggio denotato dall'espressione regolare E.

Esempio

$$E = (a \cup b) \cdot a^*$$

$$L(E) = ?$$

$$L((a \cup b) \cdot a^*) =$$

$$=$$

$$=$$

$$=$$

$$=$$

$$=$$

Esempio

```
E = (a \cup b) \cdot a^*
                                        L(E)=?
L((a \cup b) \cdot a^*) = L(a \cup b) \cdot L(a^*)
                    = (L(a) \cup L(b)) \cdot (L(a)) *
                    = (\{a\} \cup \{b\}) \cdot (\{a\})^*
                    = \{a,b\}\{\epsilon,a,aa,aaa,...\}
                    = \{a, aa, aaa, ..., b, ba, baa, ...\}
```

Linguaggi regolari: DFA ed espressione

Sia L l'insieme delle stringhe su $\{a,b\}$ che contengono almeno due occorrenze di a e al più una occorrenza di b.

- a) Fornire un DFA che riconosce L.
- b) Fornire un'espressione regolare che denota L.

Lezione 7 pag. 21

Chiusura di REG rispetto all'intersezione: tecnica 1

Lezione 7 pag. 28

Chiusura di REG rispetto all'intersezione: tecnica 2

Costruire l'automa ottenuto dall'intersezione...e confrontare gli automi ottenuti!

Chiusura di REG rispetto all'unione intersezione

Costruzione formale

Siano $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ e $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Definiamo $\mathbb{M} = (Q, \Sigma, \delta, q_0, F)$ che riconosce $L_1 \cup L_2$ $(L(\mathbb{M}) = L_1 \cup L_2)$, come segue:

- $Q = \{(q_1, q_2) \mid q_1 \in Q_1 \text{ e } q_2 \in Q_2\}$: insieme **prodotto cartesiano** di $Q_1 \times Q_2$.
- Σ è lo stesso alfabeto usato in \mathbb{M}_1 e \mathbb{M}_2 : per semplicità assumiamo che \mathbb{M}_1 e \mathbb{M}_2 usino lo stesso alfabeto, ma continua ad essere vero anche se hanno alfabeti diversi ($\Sigma = \Sigma_1 \cup \Sigma_2$).
- For each $(q_1, q_2) \in Q$ e ogni $a \in \Sigma$:

$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$$

- $q_0 = (q_1, q_2)$
- F is the set of pairs in which either member is an accept state of M_1 or M_2 :

$$F = \{(q_1, q_2) \mid q_1 \in F_1 \text{ oppure } q_2 \in F_2\}$$

Linguaggi regolari: DFA ed espressione

Sia L l'insieme delle stringhe su $\{a,b\}$ che contengono almeno due occorrenze di a e al più una occorrenza di b.

- a) Fornire un DFA che riconosce L.
- b) Fornire un'espressione regolare che denota L.

Esercizio (1.53, sipser)

Sia $\Sigma = \{0,1\}$. Per ogni espressione regolare seguente, indichiamo il linguaggio rappresentato.

- 1. $0*10* = \{ w \in \Sigma^* \mid w \text{ contiene un solo } 1 \}$
- 2. $\Sigma^* 1 \Sigma^* = \{ w \in \Sigma^* \mid w \text{ contiene almeno un } 1 \}$
- 3. $\Sigma^*001\Sigma^* = \{w \in \Sigma^* \mid w \text{ contiene la stringa } 001 \text{ come sottostringa} \}$
- 4. $1^*(01^+)^* = \{ w \in \Sigma^* \mid ogni \ 0 \ in \ w \ e \ seguito \ da \ almeno \ un \ 1 \}$
- 5. $(\Sigma\Sigma)^* = \{ w \in \Sigma^* \mid w \text{ è una stringa di lunghezza pari} \}$
- 6. $(\Sigma\Sigma\Sigma)^* = \{w \in \Sigma^* \mid \text{la lunghezza di } w \text{ è un multiplo di } 3\}$
- 7. $01 \cup 10 = \{01, 10\}$
- 8. $0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1 = \{w \in \Sigma^* \mid w \text{ inizia e termina con lo stesso simbolo}\}$
- 9. $(0 \cup \epsilon)1^* = 01^* \cup 1^*$
- 10. $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}$
- 11. $1^*\emptyset = \emptyset$
- 12. $\emptyset^* = \{\epsilon\}$

Esempio

$$E=(0 \cup 1)*00(0 \cup 1)*$$
 L(E)=?

 $L(E)=\{00,000,100,001,0000,0001,1000,1001,...\}$

Insieme delle stringhe che contengono 00 come sottostringa

In generale: insieme delle stringhe che contengono X come sottostringa

Esempio

$$E=(1\cup 01)^*(0\cup \epsilon)$$
 L(E)=?
$$L(E)=\{\epsilon,0,10,1,010,01,110,11,01010,0101,1111,111...\}$$
 Insieme delle stringhe che non contengono 00 come sottostringa

Teorema di Rice: dimostrare o confutare

- (a) Enunciare il teorema di Rice.
- (b) A quale dei seguenti linguaggi è possibile applicarlo?

```
X = \{\langle M \rangle \mid M \text{ è una MdT che rifiuta } ab\}

Y = \{\langle M \rangle \mid M \text{ è una MdT che accetta } ab\}
```

Teorema di Rice

Teorema di Rice. Sia

 $L = \{ \langle M \rangle \mid M \text{ è una MdT che verifica la proprietà } \mathcal{P} \}$

un linguaggio che soddisfa le seguenti due condizioni:

1. \mathcal{P} è una proprietà del linguaggio L(M), cioè: prese comunque due MdT M_1, M_2 tali che $L(M_1) = L(M_2)$ risulta

$$\langle M_1 \rangle \in L \Leftrightarrow \langle M_2 \rangle \in L$$

2. \mathcal{P} è una proprietà non banale, cioè: esistono due MdT M_1, M_2 tali che

$$\langle M_1 \rangle \in L, \langle M_2 \rangle \not\in L.$$

Allora L è indecidibile.

Linguaggio Turing riconoscibile e decidibile

- (a) Fornire le definizioni di linguaggio, linguaggio Turing riconoscibile, linguaggio decidibile.
- (b) Dimostrare o confutare le seguenti affermazioni, giustificando la risposta. Occorre enunciare con precisione gli eventuali risultati intermedi utilizzati. È possibile limitarsi a una descrizione ad alto livello delle macchine di Turing utilizzate.
 - La classe dei linguaggi decidibili è chiusa rispetto al complemento.
 - La classe dei linguaggi Turing riconoscibili è chiusa rispetto al complemento.

Lezione 03 pag. 73

Linguaggi

DEF[linguaggio formale]

Un linguaggio formale è un insieme di stringhe su un alfabeto.

L è un linguaggio sull'alfabeto Σ se $L \subseteq \Sigma^*$

Può essere infinito!

Esempi..

Sia $\Sigma = \{a\}$ un alfabeto. Consideriamo $L = \{\epsilon, a, aaa, aaaaa, \ldots\} = \{a^{2n+1} \mid n \in \mathbb{N}, n \geq 0\}$.

Poichè $L \subseteq \Sigma^*$, allora L è un linguaggio su Σ .

Dal punto di vista dei linguaggi

Definizione

Un linguaggio $L \subseteq \Sigma^*$ è Turing riconoscibile se esiste una macchina di Turing $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ tale che:

1 M riconosce L (cioè $L = L(M) = \{w \in \Sigma^* \mid \exists u, v \in \Gamma^* \ q_0w \to^* uq_{accept}v\}$).

Definizione

Un linguaggio $L \subseteq \Sigma^*$ è decidibile se esiste una macchina di Turing $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ tale che:

- 1 M riconosce L (cioè $L = L(M) = \{w \in \Sigma^* \mid \exists u, v \in \Gamma^* \ q_0w \to^* uq_{accept}v\}$).
- 2 M si arresta su ogni input (cioè per ogni $w \in \Sigma^*$, $q_0w \to^*$ uqv con $q \in \{q_{accept}, q_{reject}\}$).

The right picture

Decidibili = Turing riconoscibili ∩ co-Turing riconoscibili

Esercizio 1

La classe dei linguaggi decidibili è chiusa rispetto al complemento?

Soluzione:

La classe dei linguaggi decidibili è chiusa rispetto al complemento. Sia A un linguaggio decidibile, sia M_A una macchina di Turing che decide A.

Definiamo la macchina di Turing $M_{\overline{A}}$: sull'input w, $M_{\overline{A}}$ simula M_A e accetta w se e solo se M_A rifiuta w.

Poiché M_A si arresta su ogni input anche $M_{\overline{A}}$ si arresta su ogni input.

Inoltre, il linguaggio di $M_{\overline{A}}$ è \overline{A} perché $M_{\overline{A}}$ accetta w se e solo se M_A rifiuta w e quindi se e solo se $w \notin A$.

Quindi $M_{\overline{A}}$ è una macchina di Turing che decide \overline{A} e \overline{A} è decidibile.

Soluzione formale

Formalmente, se

$$M_{\mathcal{A}} = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$

definiamo

$$M_{\overline{A}} = (Q, \Sigma, \Gamma, \delta', q_0, q_{accept}, q_{reject})$$

dove, per ogni $q \in Q \setminus \{q_{accept}, q_{reject}\}$, per ogni $\gamma \in \Gamma$

$$\delta'(q,\gamma) = \begin{cases} \delta(q,\gamma) & \text{se } \delta(q,\gamma) = (q',\gamma',d), \\ & \text{con } q' \not\in \{q_{\textit{accept}}, q_{\textit{reject}}\}, \\ (q_{\textit{accept}},\gamma',d) & \text{se } \delta(q,\gamma) = (q_{\textit{reject}},\gamma',d), \\ (q_{\textit{reject}},\gamma',d) & \text{se } \delta(q,\gamma) = (q_{\textit{accept}},\gamma',d) \end{cases}$$

Figura:

Esercizio 2

La classe dei linguaggi **riconoscibili** è chiusa rispetto al complemento?

Un linguaggio che non è Turing riconoscibile

Teorema

A_{TM} non è Turing riconoscibile.

Dimostrazione.

Supponiamo per assurdo che $\overline{A_{TM}}$ sia Turing riconoscibile.

Sappiamo che A_{TM} è Turing riconoscibile.

Quindi A_{TM} è Turing riconoscibile e co-Turing riconoscibile.

Per il precedente teorema, A_{TM} è decidibile.

Assurdo, poichè abbiamo dimostrato che A_{TM} è indecidibile.

A_{TM} è Turing riconoscibile

Teorema

Il linguaggio

 $A_{TM} = \{\langle M, w \rangle \mid M \text{ è una } MdT \text{ che accetta la parola } w\}$

è Turing riconoscibile.

Dimostrazione

La seguente macchina di Turing U riconosce A_{TM} .

U = "Sull'input $\langle M, w \rangle$ dove M è una TM e w è una stringa

- 1 Simula *M* sull'input *w*.
- 2 Se M accetta w, accetta l'input $\langle M, w \rangle$; se M rifiuta w, rifiuta l'input $\langle M, w \rangle$."

U rifiuta ogni stringa che non sia della forma $\langle M, w \rangle$ dove M è una TM e w è una stringa.

Quindi U accetta una stringa y se e solo se y è della forma $\langle M, w \rangle$ dove M è una TM, w è una stringa e M accetta w. In altri termini, U accetta una stringa y se e solo se $y = \langle M, w \rangle$ è un elemento di A_{TM} .

Ne segue $L(U) = A_{TM}$.

Non richiesta dalla traccia, solo di riepilogo

Un problema indecidibile

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una MdT e } M \text{ accetta } w \}$$

 A_{TM} è il linguaggio associato al problema decisionale dell'accettazione di una macchina di Turing.

Teorema

Il linguaggio A_{TM} non è decidibile.

A_{TM} è indecidibile: riepilogo della dimostrazione

- 1. Definiamo $A_{TM} = \{ \langle M, w \rangle \mid M \text{ è MdT che accetta } w \}$
- 2. Assumiamo A_{TM} decidibile; sia H MdT che lo decide
- 3. Usiamo H per costruire MdT D che inverte le decisioni; $D(\langle M \rangle)$: accetta se M non accetta $\langle M \rangle$; rifiuta se M accetta $\langle M \rangle$.
- 4. Diamo in input a D la sua codifica $\langle D \rangle$: $D(\langle D \rangle)$ accetta sse D rifiuta.

Contraddizione

Non richiesta dalla traccia, solo di riepilogo

Immagine nella riduzione da 3SAT a VERTEX-COVER

Data la seguente formula booleana

$$\Phi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$$

definire il grafo G e l'intero k tali che $\langle G, k \rangle$ sia l'immagine di $\langle \Phi \rangle$ nella riduzione polinomiale di 3-SAT a VERTEX-COVER.

3SAT si riduce in tempo polinomiale a VERTEX-COVER

Costruzione:

- G contiene due vertici per ogni variabile x etichettati con x e \overline{x} (gadget per le variabili). Chiamiamo V_1 questo insieme di vertici.
- G contiene tre vertici per ogni clausola, etichettati con i tre letterali della clausola (gadget per le clausole). Chiamiamo V_2 questo insieme di vertici.
- Connettiamo i due vertici associati a una variabile con un arco
- Connettiamo i tre vertici associati a una clausola tra loro in un triangolo
- Connettiamo con un arco ogni vertice nel triangolo (associato a una clausola) al vertice in V_1 (gadget per le variabili) che ha la stessa etichetta.
- Se ϕ ha ℓ clausole e m variabili allora G ha $2m+3\ell$ vertici e $V=V_1\cup V_2$.
- Prendiamo $k = m + 2\ell$.

3SAT si riduce in tempo polinomiale a VERTEX-COVER

Proviamo che ϕ è soddisfacibile se e solo se G = (V, E) ha un vertex cover di cardinalità k.

- Sia ϕ soddisfacibile e sia τ un assegnamento che soddisfa ϕ . Consideriamo il sottoinsieme V' di V che contiene:
 - tutti i vertici in V_1 (gadget per le variabili) che hanno come etichette i letterali veri in au
 - due vertici per ogni triangolo (gadget per una clausola), escludendone uno che ha etichetta uguale a un vertice selezionato al passo precedente (ne esiste almeno uno).
- Se ϕ ha ℓ clausole e m variabili allora questo sottoinsieme V' di V ha taglia $k=m+2\ell$.
- Inoltre V' è un vertex cover:
 - tutti gli archi in un triangolo sono coperti (dai due vertici selezionati)
 - tutti gli archi tra due vertici di V_1 o tra un vertice di V_1 e un vertice di V_2 sono coperti (dalla scelta dei vertici in V_1 o V_2).

Per questo esercizio basta fermarsi qui, le slide successive sono di riepilogo

3SAT si riduce in tempo polinomiale a VERTEX-COVER

- Supponiamo che G = (V, E) abbia un vertex cover V' di cardinalità $k = m + 2\ell$ e proviamo che ϕ è soddisfacibile.
- V' deve contenere almeno 2 vertici di ogni triangolo e, per ogni arco tra due vertici di V_1 (gadget per le variabili), almeno 1 dei 2 vertici.
- Siccome il numero dei triangoli è ℓ e il numero degli archi tra i vertici in V₁ è m, l'insieme V' contiene esattamente due vertici di ogni triangolo e, per ogni arco tra due vertici di V₁, uno dei 2 vertici.

3SAT si riduce in tempo polinomiale a VERTEX-COVER

- Assegniamo valore vero ai letterali che sono etichette di vertici in $V' \cap V_1$.
- Proviamo che questo assegnamento τ soddisfa ϕ . Cioè che questo assegnamento rende vera ogni clausola.
- Infatti, per ogni triangolo esiste un vertice u che non è in V'.
- Ma (u, v), con $v \in V_1$ deve essere coperto da V'. Quindi $v \in V'$.
- Ma u e v hanno la stessa etichetta (per costruzione di G) che corrisponde a un letterale a cui è assegnato valore 1 (per costruzione di τ).
- Dunque, per ogni clausola c, c'è un letterale a cui τ assegna valore 1 e quindi ϕ è soddisfacibile. \square

Prossimo tutorato

Prima del secondo appello di luglio: data da definire, la troverete pianificata su questo canale del Team...

> ... buono studio e in bocca al lupo per l'appello di domani ©

