Proyecto Final: Optimización de Regresión Lineal con Descenso del Gradiente

Matro Entrenamiento de Inteligencia Artificial (MeIA) 2025

Objetivo

Implementar el método del **descenso del gradiente** para resolver una tarea de **regresión** lineal sobre el conjunto de datos Iris.

1. Introducción

El descenso del gradiente es un algoritmo de optimización iterativo usado para encontrar el mínimo de una función objetivo. En el caso de **regresión lineal**, se utiliza para ajustar los parámetros del modelo que minimizan el error cuadrático medio entre las predicciones y los valores reales.

La forma funcional del modelo de regresión lineal simple es:

$$\hat{y} = \sum_{j=1}^{m} w_j x_j + b$$

donde:

- m: indica el numero de características todal de la base de datos.
- y: la variable dependiente que se desea predecir,
- x_j : la variable independiente j que influyen en la variable, dependiente (caracteristica i: por ejemplo, velocidad)
- b: término independiente (bias o sesgo),
- w_i : coeficientes del modelo de regresión lineal.

2. Función de Costo

Usamos el error cuadrático medio (MSE) como función de costo a minimizar:

$$f(W,b) = \frac{1}{2N} \sum_{i=1}^{N} (\hat{y}^{(i)} - y^{(i)})^2$$

$$= \frac{1}{2N} \sum_{i=1}^{N} \left[\left(\sum_{j=1}^{m} w_j x_j^{(i)} + b \right) - y^{(i)} \right]^2$$

donde N es el número de muestras (registros de la base de datos), $y^{(i)}$ es el valor real del registro i en la base de datos, $x_{i,j}$ es el valo real i de la caracteristica j en la base de datos y $W = (w_1, w_2, ..., w_m)$ los parametros a estimar (al igual que la b)

3. Gradientes Parciales

Para minimizar f(W, b), derivamos con respecto a los parámetros:

$$\partial_b f = \frac{\partial f}{\partial b} = \frac{1}{N} \sum_{i=1}^N \left[\left(\sum_{i=1}^m w_j x_j^{(i)} + b \right) - y^{(i)} \right],$$

$$\partial_{w_j} f = \frac{\partial f}{\partial w_j} = \frac{1}{N} \sum_{i=1}^{N} \left[\left(\sum_{j=1}^{m} w_j x_j^{(i)} + b \right) - y^{(i)} \right] x_j^{(i)}$$

4. Algoritmo del Descenso del Gradiente

- 1. Sean b^0 y w_j^0 $\forall j=1,...,m$ los valores iniciales. Estos pueden ser todos ceros (o valores aleatorios).
- 2. Repetir para k = 0, ...K:
 - Calcular gradientes

$$\partial_{b^k} f = \frac{1}{N} \sum_{i=1}^{N} \left[\left(\sum_{i=1}^{m} w_j^k x_j^{(i)} + b^k \right) - y^{(i)} \right],$$

$$\partial_{w_j^k} f = \frac{1}{N} \sum_{i=1}^N \left[\left(\sum_{i=1}^m w_j^k x_j^{(i)} + b \right) - y^{(i)} \right] x_j^{(i)}$$

• Actualizar parámetros:

$$b^{k+1} := b^k - \alpha \partial_{b^k} f$$

$$w_j^{k+1} := w_j^{k+1} - \alpha \partial_{w_j^k} f$$

donde α es la **tasa de aprendizaje** tipicamente igual a 0.1.

- 3. verificamos convergencia
 - si se cumple convergencia terminamos

5. Actividades

- a) Cargar el dataset Iris: Utiliza scikit-learn o pandas para obtener las columnas:
 - sepal width (cm) como variable independiente x_1
 - petal width (cm) como variable independiente x_2
 - sepal length (cm) como variable independiente x_3
 - petal length (cm) como variable dependiente y
- b) Implementar desde cero el algoritmo de descenso del gradiente: Evita usar LinearRegression de sklearn u otra herramienta donde ya este implementado. Usa numpy para todas las operaciones vectorizadas.
- c) Mostrar:
 - Evolución de la función de costo f(W, b) a través de las iteraciones.
 - Gráfica de los puntos reales y la línea ajustada.
 - Comparar tus resultados con los obtenidos usando LinearRegression de sklearn.

6. Entregables

- Código documentado en Python (puede ser .ipynb o .py).
- Archivo PDF con:
 - Gráficas solicitadas.
 - Explicación paso a paso del algoritmo.
 - Interpretación de resultados.

7. Recursos Sugeridos

- Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and Tensor-Flow. O'Reilly.
- https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset. html
- https://numpy.org/doc/