Hindi Vidya Prachar Samiti's RAMNIRANJAN JHUNJHUNWALA COLLEGE OF ARTS, SCIENCE & COMMERCE (EMPOWERED AUTONOMUS)

Advanced Data Analytics

Name: Chetan Raut

Roll No.: 10414

Class: MSc Data Science and Artificial Intelligence Part-II

Ramniranjan Jhunjhunwala College of Arts, Science and Commerce

Department of Data Science and Artificial Intelligence

CERTIFICATE

This is to certify **Chetan Raut** of MSc. Data Science and Artificial Intelligence, **Roll No. 10414** has successfully completed the practical of **ADVANCED DATA ANALYTICS** during the AcademicYear 2024-2025.

Date:

Prof. Rahul Yadav (Prof-in-charge)

External Examiner

INDEX			
Prac. No	Practical Name	Date	Signature
1.	Learn all the basics of R-Programming (Data types, Variables Operators etc.)	03/07/2024	
2.	Implement R-Loops with different examples.	08/07/2024	
3.	Learn the basics of functions in R and implement them with examples.	10/07/2024	
4.	Implement data frames in R. Write a program to join columns and rows in a data frame using c bind()and r bind() in R.	15/07/2024	
5.	Implement different String Manipulation functions in R	16/07/2024	
6.	Implement different data structures in R (Vectors, Lists, Data Frames)	16/07/2024	
7.	Write a program to read a csv file and analyze the data in the file in R	17/07/2024	
8.	Create pie charts and bar charts using R.	22/07/2024	
9.	Calculate Summary Statistics in Excel	06/08/2024	
10.	Create Graphs in Excel	07/08/2024	
11.	Generate Comparative Statistics in Excel	12/08/2024	
12.	Tabulation, bar diagram, Multiple Bar diagram, Pie diagram, Measure of central tendency: Mean, median, mode, Measure of dispersion: variance, standard deviation, Coefficient of variation. Correlation, regression lines.	13/08/2024	
13.	t-test, F-test, ANOVA one way classification, chi square test, independence of attributes.	13/08/2024	
14.	Time Series Forecasting: Method of least squares, moving average method. Inference and discussion of results.	14/08/2024	
15.	Advanced Data Analysis using PivotTables and Pivot Charts	03/09/2024	

Date: 03/07/2024

AIM: Learn all the basics of R-Programming (Data types, Variables Operators etc.)

DATA TYPES

- > a=TRUE
- > class(a)
- [1] "logical"
- > a=FALSE
- > class(a)
- [1] "logical"
- > b = c(12,25.5,3)
- > class(b)
- [1] "numeric"
- > b=c(12.99999,25.5,3)
- > class(b)
- [1] "numeric"
- > b=c(-12.99999,25.5,-3)
- > class(b)
- [1] "numeric"
- > d = c(24L,55L)
- > class(d)
- [1] "integer"
- > d = c(24L,55L,-45L)
- > class(d)
- [1] "integer"
- > d=2+3i
- > class(d)
- [1] "complex"
- > d=i
- > class(d)
- [1] "character"
- > d = 1i
- > class(d)
- [1] "complex"
- > c="e"
- > class(c)
- [1] "character"
- > c=c("a","b","c")
- > class(c)
- [1] "character"

OPERATORS

- > x = c(2,4,5,6)
- > y=c(2,3,9,8)
- > x+y
- [1] 4 7 14 14

> x-y

```
[1] 0 1 -4 -2
> x*y
[1] 4 12 45 48
> x/y
[1] 1.0000000 1.3333333 0.555556 0.7500000
> x\%/\% y
[1] 1 1 0 0
> x^{\wedge}y
[1] 4 64 1953125 1679616
> x>y
[1] FALSE TRUE FALSE FALSE
[1] FALSE FALSE TRUE TRUE
> x == y
[1] TRUE FALSE FALSE FALSE
> x = c(10,20,30,40)
> y = c(20,20,30,50)
> x <= y
[1] TRUE TRUE TRUE TRUE
[1] FALSE TRUE TRUE FALSE
> x!=y
[1] TRUE FALSE FALSE TRUE
> thismatrix <- matrix(c("apple", "banana", "cherry", "orange", "mango", "pineapple"), nrow = 3,
ncol = 2
> thismatrix
[,1][,2]
[1,] "apple" "orange"
[2,] "banana" "mango"
[3,] "cherry" "pineapple"
> thismatrix <- thismatrix[-c(1), -c(1)] # exclude first row and first column
> print(thismatrix)
[1] "mango" "pineapple"
> x = c(1,2+3i, TRUE,-10)
> y = c(2,4+2i, FALSE,-20)
> x\&y
[1] TRUE TRUE FALSE TRUE
> x = c(1,2+3i,TRUE,-10L)
> y = c(2,4+2i,FALSE,-20)
> x \& y
[1] TRUE TRUE FALSE TRUE
> x = -10L
> class(x)
[1] "integer"
> x = -20
> class(x)
[1] "numeric"
> x = c(3,0,TRUE,-10L)
> y = c(0,0,FALSE,-20+2i)
[1] TRUE FALSE TRUE TRUE
> x = c(3,0,TRUE,-10L)
> !x
```

[1] FALSE TRUE FALSE FALSE > x=c(TRUE,FALSE,10,2+3i)> y = c(,FALSE,10,2+3i)> y = c(1,2,TRUE,10)> x[1] && y[1][1] TRUE > x[2] && y[2][1] FALSE > x[0] && y[0][1] NA > x[1] && y[2][1] **TRUE** > x = c(TRUE, FALSE, 10, 2+3i)> y = c(1,2,TRUE,10)> x[1] & y[1][1] **TRUE** > x[2] || y[2][1] TRUE > x < -c(2,3,4)> x [1] 2 3 4 > x << -c(5,3,4)> x [1] 5 3 4 > x = c(5,8,4)> x [1] 5 8 4 > c(5,8,4) -> x> x [1] 5 8 4 > c(5,8,4) ->> x> x

[1] 5 8 4

Date: 08/07/2024

AIM: Implement R-Loops with different examples.

```
> # R programming for loop
> for (val 1:5)
Error: unexpected numeric constant in "for (val 1"
> for (val in 1:5)
+ {
+ print(val)
+ }
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
> week <- c('sunday', 'monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday')
> for (day in week)
+ { print(day)
+ }
[1] "sunday"
[1] "monday"
[1] "tuesday"
[1] "wednesday"
[1] "thursday"
[1] "friday"
[1] "saturday"
>
> my_matrix<-matrix(1:9,nrow=3)
> my_matrix
[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
> for ( i in seq_len(nrow(my_matrix)))
+ {print(i)}
[1] 1
[1] 2
[1] 3
> for ( j in seq_len(ncol(my_matrix)))
+ {print(j)}
[1] 1
[1] 2
[1]3
> for ( i in seq_len(nrow(my_matrix)))
+ for ( j in seq_len(ncol(my_matrix)))
+ {
+ current_element <- my_matrix[i,j]
+ print(paste('the element is:',current_element))
+ }
+ }
```

```
[1] "the element is: 1"
[1] "the element is: 4"
[1] "the element is: 7"
[1] "the element is: 2"
[1] "the element is: 5"
[1] "the element is: 8"
[1] "the element is: 3"
[1] "the element is: 6"
[1] "the element is: 9"
> # fibonaaci series
> print_fibonacci <- function(n) {
+ a < -0
+ b < -1
+ cat("Fibonacci Sequence:")
+  for ( i in 1:n){
+ cat(a," ")
+ next num < - a+b
+ a < - b
+ b<-next_num
+ }
+ }
> number <- 10
> print(number)
[1] 10
> print_fibonacci(number)
Fibonacci Sequence: 0 1 1 2 3 5 8 13 21 34
> my_dataframe <- data.frame(
+ Name = c("Joy", "Juliya", "Boby", "Marry"),
+ Age = c(40, 25, 19, 55),
+ Gender = c("M", "F", "M", "F")
+)
> print(my_dataframe)
Name Age Gender
1 Joy 40 M
2 Juliya 25 F
3 Boby 19 M
4 Marry 55 F
> for (i in seq_len(nrow(my_dataframe))) {
+ current_row <- my_dataframe[i, ]
+ print(paste("The current row is:", toString(current_row)))
+ }
[1] "The current row is: Joy, 40, M"
[1] "The current row is: Juliya, 25, F"
[1] "The current row is: Boby, 19, M"
[1] "The current row is: Marry, 55, F"
> #while loop factorial
> n < -5
> # assigning the factorial variable
> # and iteration variable to 1
> factorial <- 1
> i < -1
```

```
> # using while loop
> while (i \leq n)
+ {
+ # multiplying the factorial variable
+ # with the iteration variable
+ factorial = factorial * i
+ # incrementing the iteration variable
+ i = i + 1
+ }
> # displaying the factorial
> print(factorial)
[1] 120
> print_fibonacci_series <- function(limit) {
+ a < -0
+ b < -1
+ cat(a, b, sep = "")
+ # Iterate while the next Fibonacci number is less than or equal to the limit
+ while (b <= limit) {
+ # Calculate the next Fibonacci number
+ next num < - a + b
+ # Print the next Fibonacci number
+ cat(" ", next_num)
+ # Update variables for the next iteration
+ a < - b
+ b <- next_num
+ }
+ }
> # Test the function with a limit of 100
> limit <- 100
> cat("Fibonacci series up to", limit, "is: ")
Fibonacci series up to 100 is: > print_fibonacci_series(limit)
0 1 1 2 3 5 8 13 21 34 55 89 144>
> print_fibonacci_series <- function(limit) {
+ a < -0
+ b < -1
+ cat(a, b, sep = "")
+ # Iterate while the next Fibonacci number is less than or equal to the limit
+ while (b <= limit) {
+ # Calculate the next Fibonacci number
+ next_num < -a + b
+ # Print the next Fibonacci number
```

```
+ cat(" ", next_num)
+ # Update variables for the next iteration
+ a <- b
+ b <- next_num
+ }
+ }
> # Test the function with a limit of 100
> limit <- 100
> cat("Fibonacci series up to", limit, "is: ")
Fibonacci series up to 100 is: >
> print_fibonacci_series <- function(bound) {
+ a < -0
+ b < -1
+ cat(a, b, sep = "")
+ while (b <= bound) {
+ next_num < -a + b
+ cat(" ", next_num)
+ # Update variables for the next iteration
+ a <- b
+ b <- next_num
+ }
+ }
> bound <- 200
> cat("Fibonacci series up to", bound, "is: ")
Fibonacci series up to 200 is: > print_fibonacci_series(bound)
0 1 1 2 3 5 8 13 21 34 55 89 144 233>
> #repeat loop
> val = 1
> repeat
+ {
+ print(val)
+ val = val + 1
+ if(val > 5)
+ {
+ break
+ }
+ }
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
> #repeat 5 times using repeat loop
> i<-0
> repeat
+ {
```

```
+ print("print")
+i=i+1
+ if (i==5)
+ {
+ break
+ }
+ }
[1] "print"
[1] "print"
[1] "print"
[1] "print"
[1] "print"
>
> i<-0
> repeat
+ {
+ print("print")
+i=i+1
+ if (i<=5)
+ {
+ break
+ }
+ }
[1] "print"
```

Date: 10/07/2024

[1] 210

AIM: Learn the basics of functions in R and implement them with examples.

```
> #sort function
> x = c(10,20,35,47,57,66)
[1] 10 20 35 47 57 66
> sort(x)
[1] 10 20 35 47 57 66
> sort(x,decreasing=T)
[1] 66 57 47 35 20 10
> sort(x,decreasing=F)
[1] 10 20 35 47 57 66
> x = scan()
1: 10 20 30 40 10 50 20 70 30 50
11: x
> x
[1] 10 20 35 47 57 66
> x = scan()
1: 10 20 30 40 50 20 30 10
9:
Read 8 items
> x
[1] 10 20 30 40 50 20 30 10
> unique(x)
[1] 10 20 30 40 50
> x = c(10.234567, 25.37580, 35.67843)
> round(x,2)
[1] 10.23 25.38 35.68
> x=-10:5
> abs(x)
[1] 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5
> x=-10:15
> abs(x)
[1] 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
> x=1:20
> fivenum(x)
[1] 1.0 5.5 10.5 15.5 20.0
> summary(x)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 5.75 10.50 10.50 15.25 20.00
> length(x)
[1] 20
> max(x)
[1] 20
> \min(x)
[1] 1
> range(x)
[1] 1 20
> sum(x)
```

> mean(x) [1] 10.5 > median(x) [1] 10.5 > var(x) [1] 35 > diff(x)	1 28 36 45 55 66 78 1 1 1 1 1 1 1 1 1 1 1	3 171 190 210	

Date: 15/07/2024

AIM: Implement data frames in R. Write a program to join columns and rows in a data frame using c bind() and r bind() in R.

```
>data=data.frame(Subjects=c("java","python","IT"),id=c(1,2,3),names=c("Rohini","Ram","Raj"),mark
s=c(75,80,89)
+)
> data
Subjects id names marks
1 java 1 Rohini 75
2 python 2 Ram 80
3 IT 3 Raj 89
> aggregate(data$marks,list(data$Subjects),FUN=sum)
Group.1 x
1 IT 89
2 java 75
3 python 80
> data=data.frame(Subjects=c("java","python","IT","python"),id=c(1,2,3,4),names=c("Rohini","Ram",
"Raj", "Soham"), marks=c(75,80,89,75)
> aggregate(data$marks,list(data$Subjects),FUN=sum)
Group.1 x
1 IT 89
2 iava 75
3 python 155
> aggregate(data$marks,list(data$Subjects),FUN=min)
Group.1 x
1 IT 89
2 java 75
3 python 75
> aggregate(data$marks,list(data$Subjects),FUN=max)
Group.1 x
1 IT 89
2 java 75
3 python 80
> matrix=matrix(c(1:12,nrow=4,byrow=TRUE)
> matrix=matrix(c(1:12),nrow=4,byrow=TRUE)
> matrix
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 789
[4,] 10 11 12
> t(matrix)
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
> dim(matrix)
[1] 43
```

```
> data
Subjects id names marks
1 java 1 Rohini 75
2 python 2 Ram 80
3 IT 3 Raj 89
4 python 4 Soham 75
> info=cbind(data)
> info
Subjects id names marks
1 java 1 Rohini 75
2 python 2 Ram 80
3 IT 3 Raj 89
4 python 4 Soham 75
> info=cbind(data$id,data)
> info
data$id Subjects id names marks
11 java 1 Rohini 75
2 2 python 2 Ram 80
3 3 IT 3 Raj 89
4 4 python 4 Soham 75
> info=cbind(data$id,data$names,data$Subjects,data$marks)
[,1] [,2] [,3] [,4]
[1,] "1" "Rohini" "java" "75"
[2,] "2" "Ram" "python" "80"
[3,] "3" "Raj" "IT" "89"
[4,] "4" "Soham" "python" "75"
> matrix2=matrix(c(13:18),nrow=2,byrow=TRUE)
> matrix2
[,1][,2][,3]
[1,] 13 14 15
[2,] 16 17 18
> info=cbind(matrix,matrix2)
Error in cbind(matrix, matrix2):
number of rows of matrices must match (see arg 2)
> matrix1=matrix(c(1:6),nrow=2,byrow=TRUE)
> info=cbind(matrix1,matrix2)
> info
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 2 3 13 14 15
[2,] 4 5 6 16 17 18
> info=rbind(matrix1,matrix2)
> info
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 13 14 15
[4,] 16 17 18
> data
Subjects id names marks
1 java 1 Rohini 75
2 python 2 Ram 80
3 IT 3 Raj 89
4 python 4 Soham 75
> data2=data.frame(Subjects=c("data science","AI"),id=c(5,6),names=c("Ashiwni","Rohan"),marks=c(7
0,50)
```

- > merge(data,data2)
- [1] Subjects id names marks
- <0 rows> (or 0-length row.names)
- > merge(data,data2,all=TRUE)

Subjects id names marks

- 1 AI 6 Rohan 50
- 2 data science 5 Ashiwni 70
- 3 IT 3 Raj 89
- 4 java 1 Rohini 75
- 5 python 2 Ram 80
- 6 python 4 Soham 75
- > merge(data,data2,all=FALSE)

[1] Subjects id names marks

- <0 rows> (or 0-length row.names)
- > merge(data,data2,all=FALSE)

[1] Subjects id names marks

- <0 rows> (or 0-length row.names)
- > merge(data,data2,all=TRUE)

Subjects id names marks

- 1 AI 6 Rohan 50
- 2 data science 5 Ashiwni 70
- 3 IT 3 Raj 89
- 4 java 1 Rohini 75
- 5 python 2 Ram 80
- 6 python 4 Soham 75
- > merge(data2,data,all=TRUE)

Subjects id names marks

- 1 AI 6 Rohan 50
- 2 data science 5 Ashiwni 70
- 3 IT 3 Raj 89
- 4 java 1 Rohini 75
- 5 python 2 Ram 80
- 6 python 4 Soham 75
- > data

Subjects id names marks

- 1 java 1 Rohini 75
- 2 python 2 Ram 80
- 3 IT 3 Raj 89
- 4 python 4 Soham 75
- > data2

Subjects id names marks

- 1 data science 5 Ashiwni 70
- 2 AI 6 Rohan 50
- > rbind(data,data2)

Subjects id names marks

- 1 java 1 Rohini 75
- 2 python 2 Ram 80
- 3 IT 3 Raj 89
- 4 python 4 Soham 75
- 5 data science 5 Ashiwni 70
- 6 AI 6 Rohan 50
- > merge(matrix1,matrix2)

[1] V1 V2 V3

- <0 rows> (or 0-length row.names)
- > merge(matrix1,matrix2,all=TRUE)

V1 V2 V3

```
1123
2456
3131415
4161718
> rose=c("red","yellow","blue","white")
> factor(rose)
[1] red yellow blue white
Levels: blue red white yellow
> rose=c("red","yellow","blue","white","white")
> factor(rose)
[1] red yellow blue white white

Levels: blue red white yellow
```

Date: 16/07/2024

AIM: Implement different String Manipulation functions in R

```
> str="AI is growing day by day"
> nchar(str)
[1] 24
> tolower(str)
[1] "ai is growing day by day"
> toupper(str)
[1] "AI IS GROWING DAY BY DAY"
> a= "Congratulation"
> b= "on your joining"
> paste(a,b)
[1] "Congratulation on your joining"
> paste(a,b,sep='-')
[1] "Congratulation-on your joining"
> chartr("DS","AI",str)
[1] "AI is growing day by day"
> chartr("AI","DS",str)
[1] "DS is growing day by day"
> substring("Pretty",2,3)
[1] "re"
> substring("Pretty",1,5)
```

[1] "Prett"

Date: 16/07/2024

AIM: Implement different data structures in R (Vectors, Lists, Data Frames)

```
> x = c(1,3,5,7,9)
> y = c(2,4,6,8,0)
> x+y
[1] 3 7 11 15 9
> x-y
[1] -1 -1 -1 -1 9
>
> class(x)
[1] "numeric"
> type of (y)
Error: unexpected symbol in "type of"
> class(x)
[1] "numeric"
> class(y)
[1] "numeric"
> a = c(1L,3L,5L)
> typeof(x)
[1] "double"
> typeof(y)
[1] "double"
> typeof(a)
[1] "integer"
> class(a)
[1] "integer"
> which(x == 5)
[1] 3
> which(y == 4)
[1] 2
> a = list(student\_name = c('X', 'Y', 'Z'), subject = c('Maths', 'Stats', 'Physics'), marks = c(60, 70, 80))
> a
$student_name
[1] "X" "Y" "Z"
$subject
[1] "Maths" "Stats" "Physics"
$marks
[1] 60 70 80
> a[student_name]
```

```
Error: object 'student_name' not found
> a['student_name']
$student_name
[1] "X" "Y" "Z"
> a['student_name'][1]
$student name
[1] "X" "Y" "Z"
> a['student_name', 1]
Error in a["student_name", 1]: incorrect number of dimensions
> print(a\student_name[1])
[1] "X"
>
> a['student_name']
$student_name
[1] "X" "Y" "Z"
> print(a\student_name[1])
[1] "X"
> a[[1]][4] = 'A'
> a[[2]][4] = 'Chem'
> a[[3]][4] = '50'
> a
$student_name
[1] "X" "Y" "Z" "A"
$subject
[1] "Maths" "Stats" "Physics" "Chem"
$marks
[1] "60" "70" "80" "50"
> # converting list to vector
> unlist(a)
student_name1 student_name2 student_name3 student_name4
                                                       subject1
                                                                  subject2
                                                                            subject3
subject4
           marks1
                     marks2
     "X"
              "Y"
                       "Z"
                                "A"
                                       "Maths"
                                                          "Physics"
                                                  "Stats"
                                                                       "Chem"
                                                                                   "60"
"70"
   marks3
              marks4
     "80"
             "50"
> as.vector(unlist(a))
[1] "X"
          "Y"
                 "Z"
                        "A"
                               "Maths" "Stats" "Physics" "Chem" "60"
                                                                       "70"
                                                                              "80"
                                                                                     "50"
80))
> df
 student_name subject marks
       X Maths 60
1
2
       Y Stats 70
3
       Z Physics 80
> print(data.frame(df$subject)
+)
 df.subject
```

```
Maths
1
2
    Stats
  Physics
> print(data.frame(df$subject))
 df.subject
1
    Maths
2
    Stats
3 Physics
> summary(df)
                  subject
student_name
                                marks
               Length:3
Length:3
                             Min. :60
Class: character Class: character 1st Qu.:65
Mode: character Mode: character Median:70
                      Mean :70
                      3rd Qu.:75
                      Max. :80
> dim(df)
[1] 3 3
```

Date: 17/07/2024

AIM: Write a program to read a csv file and analyze the data in the file in R

> is.null(data)

[1] FALSE

> summary(data)

PassengerId Survived Pclass Name Sex Age

SibSp Parch Ticket Fare Cabin

Min.: 1.0 Min.: 0.0000 Min.: 1.000 Length: 891 Length: 891 Min.: 0.42 Min.: 0.000 Min.: 0.0000 Length: 891 Min.: 0.00 Length: 891

1st Qu.:223.5 1st Qu.:0.0000 1st Qu.:2.000 Class :character Class :character 1st Qu.:2 0.12 1st Qu.:0.000 1st Qu.:0.0000 Class : character 1st Qu.: 7.91 Class :character

Median: 446.0 Median: 0.0000 Median: 3.000 Mode: character Mode: character Median: 2

8.00 Median: 0.000 Median: 0.0000 Mode: character Median: 14.45 Mode: character

Mean :446.0 Mean :0.3838 Mean :2.309 Mean :2 9.70 Mean :0.523 Mean :0.3816 Mean : 32.20

3rd Qu.:668.5 3rd Qu.:1.0000 3rd Qu.:3.000 3rd Qu.:3 8.00 3rd Qu.:1.000 3rd Qu.:0.0000 3rd Qu.: 31.00 Max.:891.0 Max.:1.0000 Max.:3.000 Max.:8

0.00 Max. :8.000 Max. :6.0000 Max. :512.33

> head(data)

PassengerId Survived Pclass Name Sex Age SibS

p Parch Ticket Fare Cabin Embarked

1103 Braund, Mr. Owen Harris male 22

1 0 A/5 21171 7.2500 S

2 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female 38

1 0 PC 17599 71.2833 C85 C

3 3 1 3 Heikkinen, Miss. Laina female 26

0 0 STON/O2. 3101282 7.9250 S

4 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35

1 0 113803 53.1000 C123 S

5 5 0 3 Allen, Mr. William Henry male 35

0 0 373450 8.0500 S

6 6 0 3 Moran, Mr. James male NA

0 0 330877 8.4583 Q

> tail(data)

PassengerId Survived Pclass Name Sex Age SibSp Parch

Ticket Fare Cabin Embarked

886 886 0 3 Rice, Mrs. William (Margaret Norton) female 39 0 5

382652 29.125 O

887 887 0 2 Montvila, Rev. Juozas male 27 0 0

211536 13.000 S

888 888 1 1 Graham, Miss. Margaret Edith female 19 0 0

112053 30.000 B42 S

889 889 0 3 Johnston, Miss. Catherine Helen "Carrie" female NA 1 2 W

./C. 6607 23.450 S

890 890 1 1 Behr, Mr. Karl Howell male 26 0 0

111369 30.000 C148 C

891 891 0 3 Dooley, Mr. Patrick male 32 0 0

```
> typeof(data$"Survived")
[1] "integer"
> sapply(data,class)
PassengerId Survived Pclass Name Sex Age SibSp Parch
Ticket Fare Cabin Embarked
"integer" "integer" "character" "character" "numeric" "integer" "integer" "
character" "numeric" "character" "character"
> sum(is.na(data))
[1] 177
> dim(data)
[1] 891 12
> dropnull_data = data[rowSums(is.na(data))<=0,]
> dim(data)
[1] 891 12
> dim(dropnull_data)
[1] 714 12
> df = na.omit(data)
> dim(df)
[1] 714 12
> ttable <- table(data$Survived)
> lbls <- paste(names(ttable), "\n", ttable, sep="")
> pie(ttable, labels = lbls, main="Pie Chart")
> hist(data$Age,xlab="gender",ylab="frequency")
```


Date: 22/07/2024

AIM: Create pie charts and bar charts using R.

Create the data for the chart

> A <- c(17, 32, 8, 53, 1)

Plot the bar chart

> barplot(A, xlab = "X-axis", ylab = "Y-axis", main = "Bar-Chart")

geeks < -c(23, 56, 20, 63)

> labels <- c("Mumbai", "Pune", "Chennai", "Bangalore")

Plot the chart.

> pie(geeks, labels)

> barplot(top\$geeks, names.arg=top\$labels, xlab = "X-axis", ylab = "Y-axis", main="Bar Chart")

> pie(top\$geeks, labels=labels)

Date: 06/08/2024

AIM: Calculate Summary Statistics in Excel

Steps to be followed to get "DATA ANALYSIS" add ons in the EXCEL

DATA

Product	Sale	Price	Revenue	Region
Electronics	150	100	15,000	North
Electronics	120	150	18,000	South
Furniture	80	200	16,000	East
Furniture	50	250	12,500	West
Clothing	200	50	10,000	North
Clothing	180	55	9,900	South
Electronics	110	120	13,200	East
Electronics	60	225	13,500	West
Furniture	220	45	9,900	North
Clothing	90	140	12,600	South

Summary Statistics
Steps to be followed:
Ribbon (Top bar) >> Data >> Data Analysis (Present in right top corner) >>
Descriptive Statics

Select Input Range (as given below) > Select Output range >> Check the Label in first row box >> Check the Summary Statistics box >> Click on OK

Sale		
Mean	126	
Standard Error	18.7498148	
Median	115	
Mode	#N/A	
Standard Deviation	59.2921205	
Sample Variance	3515.55556	
Kurtosis	-1.24083056	
Skewness	0.35469032	
Range	170	
Minimum	50	
Maximum	220	
Sum	1260	
Count	10	

Date: 07/08/2024

AIM: Create graphs in Excel

Original data

Month	Profit
November	590
November	590
March	1366
March	1188
May	238
May	297
May	199
May	100
February	1096
February	1046
July	398
July	398
July	349
July	349
August	369
August	517
September	148
September	74
January	74
January	74
May	443

- >> Copy and Paste Month column in a different cell from the original Data set
- >>With the copied data selected, go to the Data tab and click Remove Duplicates.
- >>Next to each unique month, use the SUMIF function to calculate the total profit:
- >>Original Month data is in column A, and Profit data is in column B, and unique months are in column D, enter the following formula in the cell next to the first unique month

Formula used : =SUMIF()

COLUMN CHART

Month	Profit	
January	369	
February	6475	
March	7688	
April	0	
May	8001	
June	2858	
July	5076	
August	6182	
September	7324	
October	581	
November	6631	
December	1756	
DAD CHADE		

BAR CHART

Month	Profit
January	369
February	6475
March	7688
April	0
May	8001
June	2858
July	5076
August	6182
September	7324
October	581
November	6631
December	1756

LINE CHART

Month	Profit
January	369
February	6475
March	7688
April	0
May	8001
June	2858
July	5076
August	6182
September	7324
October	581
November	6631
December	1756

PIE CHART

Month	Profit
January	369
February	6475
March	7688
April	0
May	8001
June	2858
July	5076
August	6182
September	7324
October	581
November	6631
December	1756

AREA CHART

Month	Profit
January	369
February	6475
March	7688
April	0
May	8001
June	2858
July	5076
August	6182
September	7324
October	581
November	6631
December	1756

SCATTER PLOT

Month	Profit	Cost
January	369	450
February	6475	2160
March	7688	3780
April	0	0
May	8001	3375
June	2858	1620
July	5076	3600
August	6182	4995
September	7324	4545
October	581	405
November	6631	4770
December	1756	1890

HISTOGRAM

Profit
369
6475
7688
0
8001
2858
5076
6182
7324
581
6631
1756

Date: 12/08/2024

AIM: GENERATE COMPARATIVE STATISTICS IN EXCEL

Steps to be followed for SUMMARY STATISTICS
Ribbon (Top bar) >> Data >> Data Analysis (Present in right top corner) >> Descriptive Statics

Select Input Range (as given below) > Select Output range >> Check the Label in first row box >> Check the Summary Statistics box >> Click on OK

Profit	•	Cost	~	Revenue -
5	90	:	360	950
5	90	:	360	950
13	66	1	035	2401
11	88	!	900	2088
2	38		180	418
2	97		225	522
1	99		180	379
1	.00		90	190
10	96	!	990	2086
10	46	!	945	1991
3	98		360	758
3	98	:	360	758
3	49		315	664
3	49	:	315	664
3	69		225	594
5	17	:	315	832
1	48		90	238
	74		45	119
	74		45	119
	74		45	119
4	43		270	713
5	90		360	950

Profit		Cost		Revenue	
Mean	641.1538	Mean	440.7692	Mean	1081.923
Standard Error	86.82059	Standard Error	56.62206	Standard Error	142.5336
Median	443	Median	315	Median	758
Mode	74	Mode	360	Mode	119
Standard Deviation	542.1944	Standard Deviation	353.6046	Standard Deviation	890.1221
Sample Variance	293974.8	Sample Variance	125036.2	Sample Variance	792317.3
Kurtosis	-0.11165	Kurtosis	-0.76663	Kurtosis	-0.43829
Skewness	1.090334	Skewness	0.865558	Skewness	0.980914
Range	1771	Range	1080	Range	2851
Minimum	74	Minimum	45	Minimum	119
Maximum	1845	Maximum	1125	Maximum	2970
Sum	25005	Sum	17190	Sum	42195
Count	39	Count	39	Count	39

Using Pivot Table

Country -	Profit -	Cost ▼	Revenue 🕶
Canada	590	360	950
Canada	590	360	950
Australia	1366	1035	2401
Australia	1188	900	2088
Australia	238	180	418
Australia	297	225	522
Australia	199	180	379
Australia	100	90	190
Australia	1096	990	2086
Australia	1046	945	1991
Australia	398	360	758
Australia	398	360	758
Australia	349	315	664
Australia	349	315	664
Canada	369	225	594
Canada	517	315	832
Canada	148	90	238
Canada	74	45	119
Canada	74	45	119
Canada	74	45	119
Canada	443	270	713
Canada	590	360	950

Row Labels 🔻	Sum of Profit	Sum of Cost	Sum of Revenue
Australia	8587	7155	15742
Canada	20296	12375	32671
France	4721	3600	8321
Germany	4756	3375	8131
United Kingdom	2106	1350	3456
United States	21296	13860	35156
Grand Total	61762	41715	103477

COLUMN CHART

LINE CHART

Date: 13/08/2024

AIM: Tabulation, bar diagram, Multiple Bar diagram, Pie diagram, Measure of central tendency: Mean, median, mode, Measure of dispersion: variance, standard deviation, Coefficient of variation. Correlation, regression lines.

TABULATION

Date	Day	Month	Year	Customer	Age_Grou Custome	Country	State	Product_0	Sub_Cate	e Product	Order_Qu U	Jnit_Cost U	nit_Price F	Profit
26/11/201		26 November	2013	19	Youth (<2! M	Canada	British Co	Accessor	Bike Rac	k Hitch Rack - 4-Bike	8	45	120	590
26/11/201		26 November	2015	19	Youth (<2! M	Canada	British Co	Accessor	Bike Rac	k Hitch Rack - 4-Bike	8	45	120	590
23/3/2014		23 March	2014	49	Adults (35 M	Australia	New Sout	Accessor	Bike Rac	k Hitch Rack - 4-Bike	23	45	120	1366
23/3/2016		23 March	2016	49	Adults (35 M	Australia	New Sout	Accessor	Bike Rac	k Hitch Rack - 4-Bike	20	45	120	1188
15/5/2014		15 May	2014	47	Adults (35 F	Australia	New Sout	Accessor	Bike Rac	k Hitch Rack - 4-Bike	4	45	120	238
15/5/2016		15 May	2016	47	Adults (35 F	Australia	New Sout	Accessor	Bike Rac	k Hitch Rack - 4-Bike	5	45	120	297
22/5/2014		22 May	2014	47	Adults (35 F	Australia	Victoria	Accessor	Bike Rac	k Hitch Rack - 4-Bike	4	45	120	199
22/5/2016		22 May	2016	47	Adults (35 F	Australia	Victoria	Accessor	Bike Rac	k Hitch Rack - 4-Bike	2	45	120	100
22/2/2014		22 February	2014	35	Adults (35 M	Australia	Victoria	Accessor	Bike Rac	k Hitch Rack - 4-Bike	22	45	120	1096
22/2/2016		22 February	2016	35	Adults (35 M	Australia	Victoria	Accessor	Bike Rac	k Hitch Rack - 4-Bike	21	45	120	1046
30/7/2013		30 July	2013	32	Young Adı F	Australia	Victoria	Accessor	Bike Rac	k Hitch Rack - 4-Bike	8	45	120	398
30/7/2015		30 July	2015	32	Young Adı F	Australia	Victoria	Accessor	Bike Rac	k Hitch Rack - 4-Bike	8	45	120	398
15/7/2013		15 July	2013	34	Young Adı M	Australia	Victoria	Accessor	Bike Rac	k Hitch Rack - 4-Bike	7	45	120	349
15/7/2015		15 July	2015	34	Young Adı M	Australia	Victoria	Accessor	Bike Rac	k Hitch Rack - 4-Bike	7	45	120	349
2/8/2013		2 August	2013	29	Young Adı M	Canada	British Co	Accessor	Bike Rac	k Hitch Rack - 4-Bike	5	45	120	369
2/8/2015		2 August	2015	29	Young Adı M	Canada	British Co	Accessor	Bike Rac	k Hitch Rack - 4-Bike	7	45	120	517
2/9/2013		2 Septembe	2013	29	Young Adı M	Canada	British Co	Accessor	Bike Rac	k Hitch Rack - 4-Bike	2	45	120	148
2/9/2015		2 Septembe	2015	29	Young Adı M	Canada	British Co	Accessor	Bike Rac	k Hitch Rack - 4-Bike	1	45	120	74
22/1/2014		22 January	2014	29	Young Adı M	Canada	British Co	Accessor	Bike Rac	k Hitch Rack - 4-Bike	1	45	120	74
22/1/2016		22 January	2016	29	Young Adi M	Canada	British Co	Accessor	Bike Rac	k Hitch Rack - 4-Bike	1	45	120	74
17/5/2014		17 May	2014	29	Young Adı M	Canada	British Co	Accessor	Bike Rac	k Hitch Rack - 4-Bike	6	45	120	443

BAR DIAGRAM

Month	Profit
January	369
February	6475
March	7688
April	0
May	8001
June	2858
July	5076
August	6182
September	7324
October	581
November	6631
December	1756

USING PIVOT TABLE

Country	Profits	Selling price	Sold
Australia	8587	7155	15742
Canada	20296	12375	32671
France	4721	3600	8321
Germany	4756	3375	8131
United Kingdom	2106	1350	3456
United States	21296	13860	35156
Grand Total	61762	41715	103477

PIE DIAGRAM

Month	Profit
January	369
February	6475
March	7688
April	0
May	8001
June	2858
July	5076
August	6182
September	7324
October	581
November	6631
December	1756

MEASURE OF CENTRAL TENDENCY

Profit	~	Cost	~	Revenue ▼
5	90	3	60	950
5	90	3	60	950
13	66	10	35	2401
11	.88	9	00	2088
2	38	1	80	418
2	97	2	25	522
1	.99	1	80	379
1	.00		90	190
10	96	9	90	2086
10	46	9	45	1991
3	98	3	60	758
3	98	3	60	758
3	49	3	15	664
3	49	3	15	664
3	69	2	25	594
5	17	3	15	832
1	.48		90	238
	74		45	119
	74		45	119
	74		45	119
4	43	2	70	713
5	90	3	60	950

Central Tendency							
Column1 Profit Cost Revenue							
Mean	623.8586	421.3636	1045.2222				
Median	436	315	787				
Mode	74	360	119				

Mean: Mean gives you an overall average, which might be skewed by extreme values.

Formula used "=AVERAGE()"

Median: Median is your middle-ground, which gives a better sense of centrality when dealing with skewed data.

Formula used "=MEDIAN()"

Mode: Mode tells you the most common value, which is useful in understanding the frequency of specific values.

Formula used "=MODE()"

MEASURE OF DISPERSION

Profit	~	Cost -	Revenue -
	90	360	950
5	90	360	950
13	66	1035	2401
11	88	900	2088
2	38	180	418
2	97	225	522
1	99	180	379
1	00	90	190
10	96	990	2086
10	46	945	1991
3	98	360	758
3	98	360	758
3	49	315	664
3	49	315	664
3	69	225	594
_	17	315	832
1	48	90	238
	74	45	119
	74	45	119
	74	45	119
	43	270	713
5	90	360	950

1	Measure of	Dispersion	n
Column1	Profit	Cost	Revenue
Range	2129	1305	3434
Variance	277497.2	118245.9	751925.83
Standard			
Deviation	526.78	343.869	867.13657
I.Q.R	545	337.5	882.5
C.O.V	84.43901	81.6086	82.961934

Range: Range provides a quick sense of the overall spread.

Formula used "=MAX() - MIN()"

Variance and Standard Deviation: Variance and Standard Deviation give detailed insights into how data points are dispersed around the mean.

Formula used "=VAR.S()" "=STDEV.S()"

Interquartile Range (**IQR**): Interquartile Range (**IQR**) is particularly useful when dealing with skewed data or outliers.

Formula used "=QUARTILE.INC(input range, 3) - QUARTILE.INC(input range, 1)"

Coefficient of Variation (CV): Coefficient of Variation (CV) allows for comparison across datasets of different units or scales.

Formula used "=(STDEV.S() / AVERAGE()) * 100"

Correlation and Covariance

Ribbon (Top bar) >> Data >> Data Analysis (Present in right top corner) >> Descriptive Statics

Select Input Range (as given below) > Select Output range >> Check the Label in first row box >> Correlation/Covariance >> Click on OK

Regression Lines

Select Input range () Ribbon \rightarrow Insert \rightarrow Recommended charts \rightarrow All charts \rightarrow Scatter

Profit	•	Cost	¥	Revenue	•
59	90	3	860	9!	50
59	90	3	860	9	50
136	66	10	35	240	01
118	38	S	900	208	88
23	38	1	.80	4:	18
29	97	2	25	52	22
19	99	1	.80	37	79
10	00		90	19	90
109	96	g	90	208	86
104	46	g	45	199	91
39	98	3	860	7	58
39	98	3	860	7	58
34	49	3	315	66	64
34	49	3	315	66	64
36	69	2	225	59	94
53	17	3	315	83	32
14	48		90	23	38
7	74		45	1	19
7	74		45	1:	19
7	74		45	1:	19
44	13	2	270	7:	13
59	90	3	860	9	50

CORRELATION					
	Profit	Cost	Revenue		
Profit	1				
Cost	0.983152	1			
Revenue	0.997369	0.9938156	1		

COVARIANCE				
	Profit	Cost	Revenue	
Profit	277497.2			
Cost	178091.4	118245.87		
Revenue	455588.6	296337.27	751925.8	

Date: 13/08/2024

AIM: Aim: t-test, F-test, ANOVA One way Classification, Chi Square test

(Independence of Attributes).

Profit	¥	Cost	Ŧ
5	90	3	60
5	90	3	60
13	66	10	35
11	88	9	00
2	38	1	.80
2	97	2	25
1	99	1	.80
1	.00		90
10	96		90
10	46	9	45
3	98	3	60
3	98	3	60
3	49		15
3	49	3	15
3	69	2	25
5	17	3	15
1	48		90
	74		45
	74		45
	74		45
4	43	2	70
5	90	3	60

t-Test: Two-Sample Assuming Unequal Variances			
	Profit	Cost	
Mean	623.8585859	421.3636364	
Variance	280328.7553	119452.4583	
Observations	99	99	
Hypothesized Mean Difference	0		
df	169		
t Stat	3.186549007		
P(T<=t) one-tail	0.000857624		
t Critical one-tail	1.653919942		
P(T<=t) two-tail	0.001715248		
t Critical two-tail	1.974100447		

Conclusion:				
Here,				
t Stat > t Critical one tail				
i.e. 3.1865 > 1.6539				
P(T<=t) one tail < Alpha				
i.e. 0.00008 < 0.05				
Hence,				
We Reject the Null				
Hypothesis				

t-test using Data Analysis tool in Excel

Ribbon >> Data >> Data Analysis >> t-Test: Two-Sample Assuming Unequal Variances

Select Variable 1 range >> Select Variable 2 range >> Select Output range >> check Labels in 1st row >> Ok

A clinic provides a program to help their clients lose weight and asks a consumer agency to investigate the effectiveness of the program. The agency takes a sample of 15 people, weighing each person in the sample before the program begins and 3 months later produces the table.

Determine whether the program is effective.

Hypothesis:

H0: The program is not effective.

H1: The program is effective.

Paired t-test using Data Analysis tool in Excel

Ribbon >> Data >> Data

Analysis >>

t-Test: Paired Two Sample for Means

Select Variable 1 range >> Select Variable 2 range >> Select Output range >> check Labels in 1st row >> Ok

Person	Before	After
1	210	197
2	205	195
3	193	191
4	182	174
5	259	236
6	239	226
7	164	157
8	197	196
9	222	201
10	211	196
11	187	181
12	175	164
13	186	181
14	243	229
15	246	231

Conclusion:
Here,
t Stat > t Critical one-tail
i.e 6.6897 > 2.1448
P(T<=t) one-tail < Alpha
i.e 5.14E-06 < 0.05
Hence,
We Reject the Null Hypothesis

t-Test: Paired Two Sample for Means				
	Before	After		
Mean	207.9333333	197		
Variance	815.7809524	595		
Observations	15	15		
Pearson Correlation	0.983720406			
Hypothesized Mean Difference	0			
df	14			
t Stat	6.689699535			
P(T<=t) one-tail	5.13783E-06			
t Critical one-tail	1.761310136			
P(T<=t) two-tail	1.02757E-05			
t Critical two-tail	2.144786688			

Therefore,

The program is effective.

F-test using Data Analysis tool in Excel

Ribbon >> Data >> Data Analysis >> **F-Test: Two-Sample for Variances**

Select Variable 1 range >> Select Variable 2 range >> Select Output range >> check Labels in 1st row >> Ok

Profit	¥	Cost	-
5	90	3	60
5	90	3	60
13	66	10	35
11	.88	9	00
2	38	1	80
2	97	2	25
1	99	1	80
1	00		90
10	96	9	90
10	46	9	45
3	98	3	60
3	98	3	60
3	49	3	15
3	49	3	15
3	69	2	25
5	17	3	15
1	48		90
	74		45
	74		45
	74		45
4	43	2	70
5	90	3	60

F-Test Two-Sample for Variances				
	Profit	Cost		
Mean	623.8585859	421.3636364		
Variance	280328.7553	119452.4583		
Observations	99	99		
df	98	98		
F	2.346780965			
P(F<=f) one-tail	1.65951E-05			
F Critical one-tail	1.396443091			

F-Test: Used to compare variances. We compare the spread or variability of two groups.

ANOVA (One way Classification)

A trial was run to check the effects of different diets. Positive numbers indicate weight loss and negative numbers indicate weight gain. Check if there is an average difference in the weight of people following different diets using an ANOVA Table.

Hypothesis:

H0: There is no average difference in the weight of people following different diets

H1: There is an average difference in the weight of people following different diets.

Low Fat	Low Calorie		Low Protein	Ī	Low Carb
8	1	2	:	3	2
9		4		5	2
6		3		4	-1
7	,	5		2	0
3		1		3	3

	Anov	/a: Single F	actor			
	SUMMARY	'				
Groups	Count	Sum	Average	Variance		
Low Fat	5	33	6.6	5.3		
Low Calorie	5	15	3	2.5		
Low Protein	5	17	3.4	1.3		
Low Carb	5	6	1.2	2.7		
		ANOVA				
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	75.75	3	25.25	8.559322	0.001278	3.238872
Within Groups	47.2	16	2.95			
Total	122.95	19				

Co	nclusion:
He	re,
F>	F Critical
i.e	8.559322 > 3.238872
P-۱	ralue < Alpha
i.e	0.001278 < 0.05
He	nce,
W	Reject the Null Hypothesis

Anova: Single Factor using Data Analysis tool in Excel Ribbon >> Data >> Data Analysis >> **Anova: Single Factor**

Select Input range >> Select Output range >> check Labels in 1st row >> Ok

Therefore,

There is an average difference in the weight of people following different diets.

Chi Square test (Independence of Attributes)

Suppose you wish to classify defects in the furniture produced by a manufacturing plant based on the type of defects and the production shift. A total of 309 furniture defects were recorded, and the defects were classified as one of four types A, B, C, and D.

At the same time, each piece of defective furniture was identified according to the production shift.

	Type of defect					
Shift	Α	В	С	D		
1	15	21	45	13		
2	26	31	34	5		
3	33	17	49	20		

Hypothesis:

H0: The Furniture is not defective.

H1: The Furniture is defective.

We calculate Expected value using Eij = (Row Total × Column Total) / Grand Total

OBSERVED							
		TYPE OF DEFECT					
SHIFT	Α	В	С	D	R TOTAL		
1	15	21	45	13	94		
2	26	31	34	5	96		
3	33	17	49	20	119		
C TOTAL	74	69	128	38	309		

	EXPECTED							
		TYPE OF DEFECT						
SHIFT	Α	В	С	D				
1	22.51133	20.99029	38.93851	11.55987				
2	22.99029	21.43689	39.76699	11.80583				
3	28.49838	26.57282	49.2945	14.6343				

	Conclusion	110
P-Value	< Alpha	
i.e 0.0038	373 < 0.05	
Hence,		
We Reject	t the Null F	lypothesis

To calculate the **p-value** we use : =CHISQ.TEST(actual_range, expected_range) Here,

actual_range: The range containing the observed data.
expected_range: The range containing the expected frequencies.

Date: 14/08/2024

AIM: Time series: Forecasting Method of Least Squares, Moving Average Method. Inference and Discussion of Results.

Moving Average Method using Data Analysis tool in Excel:

Ribbon >> Data >> Data Analysis >> **Moving Average**

Select Input range >> Interval (= 3, 4, 5) >> Select Output range >> check Labels in 1st row

Year	Profit	3 yrs MA
2013	590	#N/A
2015	590	#N/A
2014	1366	848.66667
2016	1188	1048
2014	238	930.66667
2016	297	574.33333
2014	199	244.66667
2016	100	198.66667
2014	1096	465
2016	1046	747.33333
2013	398	846.66667
2015	398	614
2013	349	381.66667
2015	349	365.33333
2013	369	355.66667
2015	517	411.66667
2013	148	344.66667
2015	74	246.33333
2014	74	98.666667
2016	74	74
2014	443	197
2016	590	369

Method of Least Squares

2013	16065
2014	15775
2015	15139
2016	14783

SLOPE	-448.2
INTERCEPT	918339.4

Years		Profit	
	2013		16065
	2014		15775
	2015		15139
	2016		14783
	2017		14320

Date: 03/09/2024

AIM: Advanced Data Analysis using PivotTables and Pivot Charts

Dataset

Species	Weight	Length1	Length2	Length3	Height	Width
Bream	242	23.2	25.4	30	11.52	4.02
Bream	290	24	26.3	31.2	12.48	4.3056
Bream	340	23.9	26.5	31.1	12.3778	4.6961
Bream	363	26.3	29	33.5	12.73	4.4555
Bream	430	26.5	29	34	12.444	5.134
Bream	450	26.8	29.7	34.7	13.6024	4.9274
Bream	500	26.8	29.7	34.5	14.1795	5.2785
Bream	390	27.6	30	35	12.67	4.69
Bream	450	27.6	30	35.1	14.0049	4.8438
Bream	500	28.5	30.7	36.2	14.2266	4.9594
Bream	475	28.4	31	36.2	14.2628	5.1042
Bream	500	28.7	31	36.2	14.3714	4.8146
Bream	500	29.1	31.5	36.4	13.7592	4.368
Bream	340	29.5	32	37.3	13.9129	5.0728
Bream	600	29.4	32	37.2	14.9544	5.1708
Bream	600	29.4	32	37.2	15.438	5.58
Bream	700	30.4	33	38.3	14.8604	5.2854
Bream	700	30.4	33	38.5	14.938	5.1975
Bream	610	30.9	33.5	38.6	15.633	5.1338
Bream	650	31	33.5	38.7	14.4738	5.7276
Bream	575	31.3	34	39.5	15.1285	5.5695
Bream	685	31.4	34	39.2	15.9936	5.3704
Bream	620	31.5	34.5	39.7	15.5227	5.2801

Using Pivot to find the total sum of the individual columns grouped by species

	٦				
Row Labels	Sum of Weight	Sum of Length1	Sum of Length2	Sum of Length3	Sum of Height
Bream	21624	1060.7	1158.8	1342.4	531.4124
Parkki	1703	206	223.8	250.7	98.5867
Perch	21405.4	1441.2	1562	1656	440.2647
Pike	12218	722.1	773.2	828.2	131.1341
Roach	3041	412.9	445.5	499.4	133.8959
Smelt	156.5	157.6	166.9	182.5	30.9312
Whitefish	3186	172.8	187.9	205.9	60.163
Grand Total	63333.9	4173.3	4518.1	4965.1	1426.388

Using Pivot to plot graphs

Implementing Slicer with the help of Pivot

