

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 159000 N	M _×	= -14100000 Nmm	$\sigma_{\rm a}$	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 17400000 Nmm	M_{v}	= -11900000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	l _y)=	σ_{mis}	ses=
y_G	=	J_{u}	=	$\tau(M)$	t) =	$\sigma_{st.v}$	_{ven} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_v	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	sca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -9860000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 72000 \text{ N/mm}^2
         = 168000 N
Ν
                                                                                                                                                  G
                                                                                                          = 200000 \text{ N/mm}^2
         = 17000000 Nmm
                                                         = -11500000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -12100000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 72000 \text{ N/mm}^2
         = 196000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 14800000 Nmm
                                                          = -15900000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -12600000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                             = 72000 \text{ N/mm}^2
         = 138000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 14900000 Nmm
                                                          = -15100000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                 α
                                                                                                  \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -15300000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
Ν
         = 187000 N
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 20400000 Nmm
                                                          = 15700000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -10800000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 72000 \text{ N/mm}^2
Ν
         = 200000 N
                                                                                                                                                     G
                                                                                                            = 200000 \text{ N/mm}^2
         = 20700000 Nmm
                                                           = 15900000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 224000 N	M _×	= -12700000 Nmm	$\sigma_{\rm a}$	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 16500000 Nmm	M_{v}	= 19200000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	l _y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	, () =	$\sigma_{\text{st.v}}$	
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	sca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -13500000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 72000 \text{ N/mm}^2
         = 160000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 17100000 Nmm
                                                           = 19000000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -16900000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 72000 \text{ N/mm}^2
Ν
         = 199000 N
                                                                                                                                                  G
                                                                                                          = 200000 \text{ N/mm}^2
         = 22600000 Nmm
                                                          = -15100000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -11700000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
Ν
         = 210000 N
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 22100000 Nmm
                                                          = -14600000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -14500000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 72000 \text{ N/mm}^2
Ν
         = 245000 N
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 19200000 Nmm
                                                           = -20100000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 173000 N	M _×	= -15100000 Nmm	$\sigma_{\rm a}$	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 19300000 Nmm	M_{v}	= -19100000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	τ(M	_t) =	$\sigma_{st.v}$	_{/en} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	$r_{\rm u}$	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	_{ca} =	_	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 221000 N	M _×	= -15900000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 24600000 Nmm	M_{v}		E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_G	=	J_{u}	=	$\tau(M_1$	<u>,</u>) =	$\sigma_{\text{st.}}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 236000 N	M _×	= -11200000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 25100000 Nmm	M_y	= 20100000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 265000 N	M _×	= -13300000 Nmm	$\sigma_{\rm a}$	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 20000000 Nmm	M_{v}^{λ}	= 24700000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	τ(M	_t) =	$\sigma_{st.v}$	_{/en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_{u}	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}^{∞}	=	σ(M	(x)=	σ_{tres}	_{ca} =	ŭ	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 189000 N	M _×	= -14000000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 20800000 Nmm	M_{v}^{λ}	= 24500000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{st.v}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{treso}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -15000000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 72000 \text{ N/mm}^2
         = 166000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 19300000 Nmm
                                                          = -13700000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -10400000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 72000 \text{ N/mm}^2
         = 176000 N
Ν
                                                                                                                                                  G
                                                                                                          = 200000 \text{ N/mm}^2
         = 19100000 Nmm
                                                          = -13400000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 204000 N	M _×	= -12900000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 16300000 Nmm	M_{v}	= -18100000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_1$	_t) =	$\sigma_{st.v}$	_{/en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -13400000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 72000 \text{ N/mm}^2
         = 144000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 16600000 Nmm
                                                           = -17400000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 193000 N	M _x	= -15900000 Nmm		= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 21900000 Nmm	M_{v}	= 17200000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_o	=	J_{v}	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	$\sigma(N)$) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -11300000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
Ν
         = 207000 N
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 22300000 Nmm
                                                          = 17500000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 231000 N	M _x	= -13200000 Nmm	$\sigma_{\rm a}$	$= 260 \text{ N/mm}^2$	G	$= 72000 \text{ N/mm}^2$
M_t	= 17700000 Nmm	M_{v}	= 21100000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	l _y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	, () =	$\sigma_{\text{st.}}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	sca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 166000 N	M _x	= -14100000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 18500000 Nmm	M_{v}	= 21000000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	<u>,</u>) =	$\sigma_{\text{st.}}$	_{ven} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -18500000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 72000 \text{ N/mm}^2
Ν
         = 212000 N
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 26100000 Nmm
                                                           = -18400000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -12900000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
Ν
         = 225000 N
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 26000000 Nmm
                                                          = -18100000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -15900000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 72000 \text{ N/mm}^2
Ν
         = 261000 N
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 22000000 Nmm
                                                           = -24300000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -16500000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 72000 \text{ N/mm}^2
Ν
         = 185000 N
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 22500000 Nmm
                                                          = -23500000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 229000 N	M _x	= -16600000 Nmm	σ_{a}	= 260 N/mm ²	G	= 72000 1	N/mm ²
M_t	= 26400000 Nmm	M_{v}	= 22000000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=	
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=	
Α	=	J_t	=	σ_{l}	=	r_{v}	=	
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =			
@ A	dolfo Zavelani Rossi, F	olitec	nico di Milano, vers.02	.05.12				28.05.12

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 245000 N	M _×	= -11700000 Nmm	σ_a	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 27000000 Nmm	M_{v}^{λ}	= 22300000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_1$	_t) =	$\sigma_{st.v}$	_{ren} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 275000 N	M _×	= -14000000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 21400000 Nmm	M_{v}	= 27200000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	<u>,</u>) =	$\sigma_{\text{st.v}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 196000 N	M _×	= -14700000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 22300000 Nmm	M_{v}	= 27100000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_t$	_t) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 136000 N	M _×	= -10300000 Nmm	σ_a	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 10700000 Nmm	M_{v}	= -6410000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_1$	_t) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -7300000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 72000 \text{ N/mm}^2
         = 149000 N
Ν
                                                                                                                                                  G
                                                                                                          = 200000 \text{ N/mm}^2
         = 11200000 Nmm
                                                          = -6750000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -8790000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                             = 72000 \text{ N/mm}^2
         = 165000 N
Ν
                                                                                                                                                   G
                                                                                                            = 200000 \text{ N/mm}^2
         = 8870000 Nmm
                                                          = -8110000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -9320000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                             = 72000 \text{ N/mm}^2
         = 121000 N
Ν
                                                                                                                                                   G
                                                                                                            = 200000 \text{ N/mm}^2
         = 9470000 Nmm
                                                          = -8380000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 160000 N	M _x	= -12700000 Nmm		$= 260 \text{ N/mm}^2$	G	$= 72000 \text{ N/mm}^2$
M_t	= 13900000 Nmm	M_{y}	= -9430000 Nmm	Ε	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	en=
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = -8930000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                         = 72000 \text{ N/mm}^2
         = 168000 N
Ν
                                                                                                                                                G
                                                                                                         = 200000 \text{ N/mm}^2
         = 13300000 Nmm
                                                         = -8820000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -10800000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 197000 N
Ν
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 11700000 Nmm
                                                          = 12400000 Nmm
M₊
                                                                                                  Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -11400000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 139000 N
Ν
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 11600000 Nmm
                                                          = -11700000 Nmm
M₊
                                                                                                  Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 173000 N	M _×	= -13700000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 15400000 Nmm	M_y	= -9300000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	$\sigma(N)$		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -9610000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 189000 N
Ν
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 16000000 Nmm
                                                          = -9680000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 210000 N	M _×	= -11700000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 12800000 Nmm	M_y	= -11800000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 153000 N	M _x	= -12300000 Nmm		= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 13500000 Nmm	M_{y}	= -12000000 Nmm	Ε	$= 200000 \text{ N/mm}^2$		
x_G	=	J_{xy}	=	σ(M,	_v)=	σ_{mise}	es=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{treso}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = -8080000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                         = 72000 \text{ N/mm}^2
         = 132000 N
Ν
                                                                                                                                               G
                                                                                                         = 200000 \text{ N/mm}^2
         = 6270000 Nmm
                                                         = -3330000 Nmm
M₊
                                                                                               Ε
                                                                                               \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                               \tau(M_t) =
y_{G}
                                                                                                σ
                                               α
                                                                                                \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -5670000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 145000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 6510000 Nmm
                                                          = -3460000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 160000 N	M _x	= -6970000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 5160000 Nmm	M_{v}	= -4240000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$,) =	$\sigma_{\text{st.v}}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = -7330000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 72000 \text{ N/mm}^2
Ν
         = 117000 N
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 5470000 Nmm
                                                          = -4320000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_{\star}) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 143000 N	M _×	= -11800000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 12800000 Nmm	M_y	= -8080000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=
y_{G}	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{treso}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -8250000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 155000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 13200000 Nmm
                                                          = -8290000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -10200000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 173000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 10700000 Nmm
                                                          = -10300000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -10700000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 125000 N
Ν
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 11200000 Nmm
                                                          = -10400000 Nmm
M₊
                                                                                                  Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -9790000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
Ν
         = 145000 N
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 11900000 Nmm
                                                          = -8490000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -6810000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 151000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 11400000 Nmm
                                                          = -7900000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = -8400000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                         = 72000 \text{ N/mm}^2
         = 179000 N
Ν
                                                                                                                                                G
                                                                                                         = 200000 \text{ N/mm}^2
         = 10100000 Nmm
                                                         = 11300000 Nmm
M₊
                                                                                               Ε
                                                                                               \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                                                                \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -8750000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 126000 N
Ν
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 9990000 Nmm
                                                          = -10500000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -18500000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 72000 \text{ N/mm}^2
Ν
         = 212000 N
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 26100000 Nmm
                                                           = -18400000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -12900000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 72000 \text{ N/mm}^2
Ν
         = 225000 N
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 26000000 Nmm
                                                          = -18100000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -15900000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 72000 \text{ N/mm}^2
Ν
         = 261000 N
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 22000000 Nmm
                                                           = -24300000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -16500000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 72000 \text{ N/mm}^2
Ν
         = 185000 N
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 22500000 Nmm
                                                          = -23500000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 229000 N	M _x	= -16600000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 26400000 Nmm	M_{v}	= 22000000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	,) =	$\sigma_{\text{st.v}}$	
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

$N = 245000 \text{ N}$ $M_x = -11700000 \text{ Nmm}$ $\sigma_a = 260 \text{ N/mm}^2$ $G = 7200$ $M_t = 27000000 \text{ Nmm}$ $M_y = 22300000 \text{ Nmm}$ $E = 200000 \text{ N/mm}^2$	00 N/mm ²
2. 333333y 2233333 2 233333	
$x_G = J_{xy} = \sigma(M_y) = \sigma_{mises} =$	
$y_G = J_u = \tau(M_t) = \sigma_{st.ven} =$	
$u_o = J_v = \sigma = \theta_t =$	
v_o = σ = τ = r_u =	
$A = J_t = \sigma_l = r_v =$	
$J_{xx} = \sigma(N) = \sigma_{II} = r_{o} =$	
$J_{yy} = \sigma(M_x) = \sigma_{tresca} =$	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 275000 N	M _×	= -14000000 Nmm	σ_{a}	$= 260 \text{ N/mm}^2$	G	= 72000 1	N/mm ²
M_t	= 21400000 Nmm	M_{v}	= 27200000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=	
y_G	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{\text{st.v}}$	en=	
u_o	=	J_{v}	=	σ	=	Θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{l}	=	r_{v}	=	
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =			
	dolfo Zavelani Rossi,	Polited	nico di Milano, vers.02	.05.12				28.05.12

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 196000 N	M _×	= -14700000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 22300000 Nmm	M_{v}	= 27100000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_t$	_t) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 258000 N	M _×	= -13400000 Nmm	$\sigma_{\rm a}$	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 31400000 Nmm	M_{v}	= -24800000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M)$	_t) =	$\sigma_{st.v}$	_{ren} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(_x)=	σ_{tres}	_{sca} =		

 $= 72000 \text{ N/mm}^2$ = 305000 NΝ G $= 200000 \text{ N/mm}^2$ = 27200000 Nmm = -34600000 Nmm M₊ Ε $\sigma(M_v)=$ X_{G} $\sigma_{\text{mises}} =$ $\tau(M_t) =$ y_{G} σ α σ_{I} $\sigma(N) =$ σ_{II} $\sigma(M_x)=$

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.02.05.12

28.05.12

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 212000 N	M _×	= -17600000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 27300000 Nmm	M_{v}^{λ}	= -32600000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_G	=	J_{u}	=	$\tau(M)$	<u>,</u>) =	$\sigma_{\text{st.}}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N	•	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 314000 N	M _×	= -20100000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 37800000 Nmm	M_{v}	= -36200000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_1$	_t) =	$\sigma_{\text{st.v}}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	$\sigma(N)$		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N $M_{\star} = -13800000 \text{ Nmm}$ $\sigma_a = 260 \text{ N/mm}^2$ $= 72000 \text{ N/mm}^2$ Ν = 327000 NG $= 200000 \text{ N/mm}^2$ = 37800000 Nmm = -35100000 Nmm M₊ Ε $\sigma(M_v)=$ X_{G} $\sigma_{\text{mises}} =$ $\tau(M_t) =$ y_{G} σ_{I} $\sigma(N) =$ σ_{II} $\sigma(M_x)=$

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

					9		2
Ν	= 385000 N	M_{x}	= -17400000 Nmm	σ_a	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 31700000 Nmm	M_{v}	= -47600000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(N	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	τ(M	$_{t}) =$	$\sigma_{\text{st.}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	sca=		
					_		

Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N $M_{\star} = -17900000 \text{ Nmm}$ $\sigma_a = 260 \text{ N/mm}^2$ $= 72000 \text{ N/mm}^2$ Ν = 269000 NG $= 200000 \text{ N/mm}^2$ = 32400000 Nmm = -45400000 Nmm M₊ Ε $\sigma(M_v)=$ X_{G} $\sigma_{\text{mises}} =$ $\tau(M_t) =$ y_{G} α σ_{I} $\sigma(N) =$ σ_{II} $\sigma(M_x)=$

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -15100000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 167000 N
Ν
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 16400000 Nmm
                                                          = -10300000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 180000 N	M _x	= -10800000 Nmm		= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 16700000 Nmm	M_{y}	= -10500000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 205000 N	M _x	= -12700000 Nmm		= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 13700000 Nmm	M_y	= -13400000 Nmm	E	= 200000 N/mm		
x_G	=	J_{xy}	=	σ(M	y	σ_{mis}	es=
y_G	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{st.ve}$	en=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 148000 N	M _×	= -13600000 Nmm	σ_a	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 14300000 Nmm	M_{v}	= -13400000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=
y_{G}	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{treso}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -15500000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                               = 72000 \text{ N/mm}^2
Ν
         = 205000 N
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 22300000 Nmm
                                                           = -16500000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -10900000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 72000 \text{ N/mm}^2
Ν
         = 217000 N
                                                                                                                                                     G
                                                                                                            = 200000 \text{ N/mm}^2
         = 22200000 Nmm
                                                           = -16200000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -13100000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                               = 72000 \text{ N/mm}^2
Ν
         = 252000 N
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 18700000 Nmm
                                                           = -21600000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -13800000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                             = 72000 \text{ N/mm}^2
Ν
         = 178000 N
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 19100000 Nmm
                                                          = -20900000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                 α
                                                                                                  \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -16600000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 207000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 21900000 Nmm
                                                          = -14200000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.02.05.12

28.05.12

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -11900000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
Ν
         = 223000 N
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 22500000 Nmm
                                                          = -14600000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -13900000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
Ν
         = 252000 N
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 18200000 Nmm
                                                          = -18200000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -14900000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 72000 \text{ N/mm}^2
         = 182000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 19200000 Nmm
                                                          = -18400000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.02.05.12

28.05.12

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

		.66.00			o			0
Ν	= 257000 N	M_{\star}	= -19600000 Nmm	σ_{a}	= 260 N/mm ²	G	= 72000 1	√mm²
M_t	= 31000000 Nmm	M_{v}	= 25000000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	y ′	σ_{mis}	es=	
y_{G}	=	J_u	=	$\tau(M_t$) =	$\sigma_{st.ve}$	en=	
u_o	=	J_v	=	σ	=	Θ_{t}	=	
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=	
Α	=	J_t	=	σ_{I}	=	r_v	=	
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =			
	dolfo Zavelani Rossi, F	Polited	nico di Milano, vers.02	.05.12				28.05.12

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 274000 N	M _x	= -13800000 Nmm	σ_a	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 31700000 Nmm	M_{v}^{λ}	= 25400000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=
y_{G}	=	J_u	=	$\tau(M_t)$) =	$\sigma_{st.v}$	en=
u_o	=	J_{v}	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	$r_{\rm u}$	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.02.05.12

28.05.12

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

$M_x = -16500000 \text{ Nmm}$ $\sigma_a = 260 \text{ N/mm}^2$ $G = 72$	
$M_t = 25200000 \text{ Nmm} \qquad M_v = 31000000 \text{ Nmm} \qquad E = 200000 \text{ N/mm}^2$	
$x_G = J_{xy} = \sigma(M_y) = \sigma_{mises} =$	
$y_G = J_u = \tau(M_t) = \sigma_{st.ven} =$	
$u_o = J_v = \sigma = \theta_t =$	
v_o = σ = τ = r_u =	
$A = J_t = \sigma_l = r_v =$	
$J_{xx} = \sigma(N) = \sigma_{II} = r_{o} =$	
$J_{yy} = \sigma(M_x) = \sigma_{tresca} =$	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	72000 N/mm ²
$M_t = 26300000 \text{ Nmm} \qquad M_v = 30900000 \text{ Nmm} \qquad E = 200000 \text{ N/mm}^2$	
$X_G = J_{xy} = \sigma(M_y) = \sigma_{mises} =$	
$y_G = J_u = \tau(M_t) = \sigma_{st.ven} =$	
$u_o = J_v = \sigma = \theta_t =$	
v_o = σ = τ = r_u =	
$A = J_t = \sigma_l = r_v =$	
$J_{xx} = \sigma(N) = \sigma_{II} = r_{o} =$	
$J_{yy} = \sigma(M_x) = \sigma_{tresca} =$	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -18600000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                             = 72000 \text{ N/mm}^2
Ν
         = 246000 N
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 28200000 Nmm
                                                          = -19600000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                 α
                                                                                                  \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 259000 N	M _×	= -12700000 Nmm	σ_a	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 27900000 Nmm	M_{v}^{γ}	= -19100000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$	·) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -16200000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                             = 72000 \text{ N/mm}^2
Ν
         = 302000 N
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 23900000 Nmm
                                                          = -25900000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                 α
                                                                                                  \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -16600000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                             = 72000 \text{ N/mm}^2
Ν
         = 213000 N
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 24300000 Nmm
                                                           = -24800000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                 α
                                                                                                  \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -30600000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                              = 72000 \text{ N/mm}^2
Ν
        = 318000 N
                                                                                                                                      G
                                                                                                  = 200000 \text{ N/mm}^2
        = 45900000 Nmm
                                                     = -37100000 Nmm
                                            M_{v}
M₊
                                                                                         Ε
                                                                                         \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{mises}} =
                                                                                         \tau(M_{\star}) =
y_G
                                                                                         σ
                                            α
                                                                                         \sigma_{\text{I}}
                                            \sigma(N) =
J_{xx}
                                                                                         \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.02.05.12
                                                                                                                                                                28.05.12
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -21300000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                  = 72000 \text{ N/mm}^2
          = 339000 N
Ν
                                                                                                                                                        G
                                                                                                               = 200000 \text{ N/mm}^2
          = 47000000 Nmm
                                                            = -37700000 Nmm
                                                  M_{v}
M₊
                                                                                                     Ε
                                                                                                     \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                        \sigma_{\text{mises}} =
                                                                                                     \tau(M_{\star}) =
y_{G}
                                                                                                     σ
                                                  α
                                                                                                     \sigma_{\text{I}}
                                                  \sigma(N) =
J_{xx}
                                                                                                     \sigma_{\text{II}}
                                                  \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.02.05.12

28.05.12

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -26700000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                  = 72000 \text{ N/mm}^2
          = 389000 N
Ν
                                                                                                                                                        G
                                                                                                               = 200000 \text{ N/mm}^2
          = 38200000 Nmm
                                                            = -48500000 Nmm
                                                  M_{v}
M₊
                                                                                                     Ε
                                                                                                     \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                        \sigma_{\text{mises}} =
                                                                                                     \tau(M_{\star}) =
y_{G}
                                                                                                     σ
                                                  α
                                                                                                     \sigma_{\text{I}}
                                                  \sigma(N) =
J_{xx}
                                                                                                     \sigma_{\text{II}}
                                                  \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 277000 N	M _×	= -27900000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 40000000 Nmm	M_{v}	= -48400000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_1$	_t) =	$\sigma_{\text{st.v}}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 173000 N	M _x	= -13600000 Nmm	σ_{a}	$= 260 \text{ N/mm}^2$	G	$= 72000 \text{ N/mm}^2$
M_t	= 15500000 Nmm	M_{v}	= -9320000 Nmm	E	= 200000 N/mm ²		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	$\sigma(N)$) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -9590000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 189000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 16100000 Nmm
                                                          = -9700000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 210000 N	M _x	= -11700000 Nmm	$\sigma_{\rm a}$	$= 260 \text{ N/mm}^2$	G	$= 72000 \text{ N/mm}^2$
M_t	= 12800000 Nmm	M_{v}	= -11800000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	<u>,</u>) =	$\sigma_{\text{st.v}}$	_{ven} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 153000 N	M _x	= -12300000 Nmm		$= 260 \text{ N/mm}^2$	G	$= 72000 \text{ N/mm}^2$
M_t	= 13600000 Nmm	M_{y}	= -12000000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
x_G	=	J_{xy}	=	σ(M	_v)=	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		