TD 4. Espaces de Sobolev

Exercice 1. Suites régularisantes

1. Construire une suite de fonctions $(\theta_n)_n$ vérifiant :

$$\theta_n \in \mathcal{C}_0^{\infty}(\mathbb{R}^d)$$
, supp $(\theta_n) \subset \mathbf{B}(0, 1/n)$, $\int_{\mathbb{R}^d} \theta_n = 1$, $\theta_n \geqslant 0$

On notera dans la suite $u_n := u \star \theta_n$ pour une fonction u donnée.

- 2. Soit $u \in \mathcal{C}^0(\mathbb{R}^d)$, montrer que $u_n \in \mathcal{C}^\infty(\mathbb{R}^d)$ et que (u_n) converge uniformément vers u sur tout compact de \mathbb{R}^d .
- 3. Soit $u \in L^p(\mathbb{R}^d)$ pour $1 \geqslant p < +\infty$, montrer que $u_n \in L^p \cap \mathcal{C}^\infty(\mathbb{R}^d)$ et que (u_n) converge vers u dans L^p .
- 4. Soit $u \in \mathcal{C}^0(\mathbb{R}^d)$, montrer que $\lim_{n \to +\infty} \int_{\mathbb{R}^d} u(x) \theta_n(x) dx = u(0)$ (autrement dit, $\theta_n \to \delta_0$ au sens des distributions).
- 5. Soit $u \in \mathcal{C}_b^0(\mathbb{R}^d)$ uniformément continue, montrer que (u_n) converge vers u uniformément sur \mathbb{R}^d .

Exercice 2. Etude de $W^{1,p}(0,1)$

- 1. Caractérisation de $W_0^{1,p}$
 - (a) On pose $W_0 = \{v \in W^{1,p}(0,1); v(0) = v(1) = 0\}$ (v(0) et v(1) sont bien définis, puisque v est identifiée à son représentant continu). Montrer que, pour $p \neq \infty$, on a $W_0^{1,p}(0,1) \subset W_0$.
 - (b) Soit $v \in W_0$ et $p \neq \infty$. Montrer qu'il existe $\varphi_n \in \mathcal{D}(]0,1[)$ vérifiant $\int_0^1 \varphi_n(x) dx = 0$ tel que l'on ait $\varphi_n \to v'$ dans $L^p(0,1)$. En déduire que $W_0^{1,p}(0,1) = W_0$.
- 2. Formule de Green et application
 - (a) Montrer que $W^{1,p}(0,1) = W_0^{1,p}(0,1) \oplus \mathbb{P}_1$. En déduire que $\mathcal{C}^{\infty}([0,1])$ est dense dans $W^{1,p}(0,1)$ (où on note \mathbb{P}_1 l'espace des fonctions affines).
 - (b) Soit u et $v \in W^{1,1}(a,b)$, montrer que $uv \in W^{1,1}(a,b)$, (uv)' = u'v + uv' et que

$$\int_{a}^{b} u'(x) v(x) dx = u(b) v(b) - u(a) v(a) - \int_{a}^{b} u(x) v'(x) dx$$

Si de plus $u \in W^{1,p}(a,b)$ et $v \in W^{1,q}(a,b)$, $1 \leqslant p \leqslant q \leqslant +\infty$, en déduire que $uv \in W^{1,p}(a,b)$.

(c) Soit a < b < c. Pour $u \in L^p(a,c)$, on note $u_g = u_{|(a,b)}$ et $u_d = u_{|(b,c)}$. Montrer que

$$u \in W^{1,p}(a,c) \Longleftrightarrow \begin{cases} u_g \in W^{1,p}(a,b), \\ u_d \in W^{1,p}(b,c), \\ u_g(b) = u_d(b) \end{cases}$$

Exercice 3. Inégalités de Poincaré, Poincaré-Wirtinger et de Deny-Lions

- 1. Montrer à l'aide du Théorème d'Ascoli que l'injection $H^1(0,1) \to C[0,1]$ est une application compacte.
- 2. On veut démontrer par l'absurde qu'il existe une constante C>0 telle que

 $\forall u \in H_0^1(0,1), \qquad ||u||_{L^2} \leqslant C||u'||_{L^2}$

(a) Vérifier que nier cette inégalité entraı̂ne l'existence d'une suite u_n de $H^1(0,1)$ telle que

 $\forall n \in \mathbb{N}^*$ $||u_n||_{L^2} = 1$, $||u'_n||_{L^2} < \frac{1}{n}$

- (b) Montrer qu'il existe une fonction $u \in L^2(0,1)$ telle que $||u||_{L^2} = 1$ et telle que, après extraction d'une sous-suite (renommée u_n), on ait $u_n \to u$ dans $L^2(0,1)$ lorsque $n \to +\infty$.
- (c) Montrer que u est une fonction constante appartenant à $H_0^1(0,1)$ et établir une contradiction.
- 3. Pour une fonction $u \in H^1(0,1)$, on note sa moyenne

$$\overline{u} = \int_0^1 u(x) \, dx$$

Montrer par l'absurde qu'il existe C > 0 telle que

$$\forall u \in H^1(0,1), \qquad ||u - \overline{u}||_{L^2} \leqslant C||u'||_{L^2}$$

4. On note Π_1 la projection orthogonale, dans $H^1(0,1)$, sur l'espace \mathbb{P}_1 des fonctions affines. Montrer qu'il existe une constante C > 0 telle que

$$\forall u \in H^2(0,1), \|u - \Pi_1 u\|_{H^1} \leqslant C \|u''\|_{L^2}$$

Exercice 4. Une caractérisation équivalente

- 1. Soit $1 \leq p < +\infty$, Ω un ouvert de \mathbb{R}^d , montrer que $\mathcal{C}_c^{\infty}(\Omega)$ est dense dans $L^p(\Omega)$.
- 2. Soit I un intervalle ouvert de \mathbb{R} , $u \in L^p(I)$ avec 1 . Montrer que les propriétés suivantes sont équivalentes :
 - (i) $u \in W^{1,p}(I)$
 - (ii) il existe une constante C > 0 telle que

$$\forall \varphi \in \mathcal{C}_c^1(I) \,, \, \left| \int_I u \varphi' \right| \leqslant C \|\varphi\|_{L^{p'}(I)}$$

(iii) il existe une constante C>0 telle que pour tout intervalle ouvert $w\subset\subset I$ et $h\in\mathbb{R}$ tel que $|h|< d(\omega,I^c)$ on a

$$\|\tau_h u - u\|_{L^p(\omega)} \leqslant C|h|$$

De plus, on peut choisir $C = ||u'||_{L^p(I)}$.