Exercise sheet 8: Substitution Scoring

Exercise 1 - Point Accepted Mutation (PAM)

We want to calculate the PAM_1 matrix based on the following two sequence alignments of the DNA sequences a, b, c and d.

Tip: In order to solve a) and b) create a combined alignment comprised of two combined sequences a' and b' (based on the two initial alignments and their symmetric counterparts)

$$a' = a + c + b + d$$

$$b' = b + d + a + c$$

The order does not matter, as the frequency identification is position-insensitive.

Unless otherwise stated round all results to 4 decimal places.

1a)

Calculate the nucleotide frequencies r_x

Hide

Hint: Formulae

Answer

$$r_A = 0.3333$$
 (1)

$$r_C = 0.1667$$
 (2)

$$r_T = 0.3333$$
 (3)

$$r_G = 0.1667$$
 (4)

(5)

1b)

Calculate the symmetric mutation matrix E(x, y).

Hide

Hint: Formulae

Intermediate Values Non normalized values. Further multiplied by $ a' $
Answer
1c)
Calculate the non-normalized PAM matrix S with $10*log_{10}(odds)$, using the previously determined r values and E matrix. (round to integers)
Hide
Hint : Formulae
Answer
1d)
Given the sequences $a = ACC$ and $b = ATT$, compute the optimal Needleman-Wunsch alignments using:
1. The general similarity scoring function.
2. The PAM1-based similarity scoring function.
Hide
Hint: Possible Answers
Answer B
1e)
Calculate the normalization factor γ based on E .
Hide
Hint: Formulae

Answer $\gamma = 0.027$

1f)
Calculate the mutation rate matrix P .
Hide
Hint: Formulae
Answer
1g)
Calculate the normalized mutation rate matrix P' using P and the normalization factor γ .
Hide
Hint: Formulae
Answer
1h)
Determine PAM_1 based on the normalized mutation rate matrix P' with $10 * log_{10}(odds)$ (round to integer)
Hide
Hint: Formulae
Answer
10
1i) Determine PAM (round to integer)
Determine PAM_2 . (round to integer)
Hide
Hint: Formulae

Answer

Exercise 2 - Programming assignment

 $\label{lem:contain} Programming \ assignments \ are \ available \ via \ Github \ Classroom \ and \ contain \ automatic \ tests.$

We recommend doing these assignments since they will help you to further understand this topic.

Access the Github Classroom link: Programming Assignment: Sheet 08.