Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).
- A. Fie L o listă numerică și următoarea definiție de predicat PROLOG f(list, integer), având modelul de flux (i, o):

f([], 0). f([H|T],S):-f(T,S1),H<S1,!,S is H+S1. $f([_|T],S)$:-f(T,S1), S is S1+2.

Rescrieți această definiție pentru a evita apelul recursiv <u>f(T,S)</u> în ambele clauze. Nu redefiniți predicatul. Justificați răspunsul.

В.	mare divizor comun pentru lista (A B 12	al numerelor impare	de la nivelurile pare 5 F) 1) 15) C 9), rea	ale listei. Nivelul sur zultatul va fi 3. Se pr	perficial al listei se cor	care să calculeze cel mai nsideră 1. <u>De exemplu</u> , puțin un număr impar la

C. Să se scrie un program PROLOG care generează lista submulţimilor cu suma număr impar, cu valori din intervalul [a, b]. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru $\mathbf{a}=2$ și $\mathbf{b}=4 \Rightarrow [[2,3],[3,4],[2,3,4]]$ (nu neapărat în această ordine)

- D. Se consideră o listă neliniară. Să se scrie o funcție LISP care să aibă ca rezultat lista inițială în care toate aparițiile unui element e au fost înlocuite cu o valoare e1. Se va folosi o funcție MAP.
 a) dacă lista este (1 (2 A (3 A)) (A)) e este A și e1 este B => (1 (2 B (3 B)) (B))
 b) dacă lista este (1 (2 (3))) și e este A => (1 (2 (3)))