第14讲 函数极限的概念

● 数列的极限

天体运动

炮弹发射

连续变量的变化过程

函数极限例子

函数极限的定义

函数 y = f(x) 自变量 x 变化过程有六种形式:

(1)
$$x \to -\infty$$

(1)
$$x \to -\infty$$
 (2) $x \to +\infty$ (3) $x \to \infty$

(3)
$$x \to \infty$$

(4)
$$x \to x_0^-$$
 (5) $x \to x_0^+$ (6) $x \to x_0$

(5)
$$x \to x_0^+$$

(6)
$$x \rightarrow x_0$$

函数关于过程x → +∞的极限定义

数列极限 $\lim_{n\to\infty} a_n = a$ 的定义:对于任何给定的正数 ε ,存在正整数N,当n>N时,恒有 $|a_n-a|<\varepsilon$.

定义1 设函数f(x)在x大于某一正数时有定义,若存在常数A,使得对任意给定的正数 ε ,存在正数X,当x > X 时,恒有 $|f(x) - A| < \varepsilon$

则称函数f(x)当 自变量x趋于无穷大(即 $x \to +\infty$)时存在极限A, 记为 $\lim_{x \to +\infty} f(x) = A$ 或 $f(x) \to A$ (当 $x \to +\infty$).

极限 $\lim_{x\to +\infty} f(x) = A$ 定义简洁形式:

 $\lim_{x \to +\infty} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \; \exists X > 0, \; \underline{\exists} X > X \; \overline{\mathbf{n}}, \; \underline{\mathbf{n}} = \overline{\mathbf{n}} |f(x) - A| < \varepsilon.$

极限 $\lim_{x \to +\infty} f(x) = A$ 定义的几何解释

极限 $\lim_{x\to +\infty} f(x) = A$ 定义简洁形式:

 $\lim_{x \to +\infty} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \; \exists X > 0, \; \underline{\exists} X > X \; \overline{\mathbf{n}}, \; [\underline{\mathbf{n}}] = [f(x) - A] < \varepsilon.$

极限 $\lim_{x \to +\infty} f(x) = A$ 定义的几何解释

极限 $\lim_{x\to +\infty} f(x) = A$ 定义简洁形式:

 $\lim_{x \to +\infty} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \; \exists X > 0, \; \underline{\exists} X > X \; \overline{\mathbf{n}}, \; [\underline{\mathbf{n}}] = [f(x) - A] < \varepsilon.$

极限 $\lim_{x \to +\infty} f(x) = A$ 定义的几何解释

极限	定义
$\lim_{x\to +\infty} f(x) = A$	$\forall \varepsilon > 0$, $\exists X > 0$,

极限	定义
$\lim_{x \to +\infty} f(x) = A$	$\forall \varepsilon > 0$, $\exists X > 0$,
$\lim_{x \to -\infty} f(x) = A$	$\forall \varepsilon > 0$, $\exists X > 0$,

极限	定义
$\lim_{x \to +\infty} f(x) = A$	$\forall \varepsilon > 0$, $\exists X > 0$,
λ / 50	$\forall \varepsilon > 0$, $\exists X > 0$,
$\lim_{x\to\infty}f(x)=A$	$\forall \varepsilon > 0$, $\exists X > 0$, $\dot{\exists} x > X$ 时, $ f(x) - A < \varepsilon$

极限	定义
	$\forall \varepsilon > 0$, $\exists X > 0$,
	$\forall \varepsilon > 0$, $\exists X > 0$,
$\lim_{x\to\infty}f(x)=A$	$\forall \varepsilon > 0$, $\exists X > 0$, $\dot{\exists} x > X$ 时, $ f(x) - A < \varepsilon$

性质(函数单边极限与双边极限的关系)

$$\lim_{x \to \infty} f(x) = A \Leftrightarrow \lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = A$$

● $x \to x_0$ 时函数极限的定义

定义2 设函数f(x)在 x_0 的某去心邻域内 $U_0(x_0,r)$ 有定义,若存在常数A,使得对任意给定的正数 ε ,存在正数 $\delta(\delta < r)$,当 $0 < |x - x_0| < \delta$ 时,恒有

$$|f(x) - A| < \varepsilon$$
,

则称函数f(x)当自变量 x趋于 x_0 (即 $x \to x_0$)时存在极限A, 记为

$$\lim_{x\to x_0} f(x) = A \quad \text{if} \quad f(x) \to A(x\to x_0) \ .$$

 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\dot{=} 0 < |x - x_0| < \delta$ 时 , $\dot{=} f(x) - A| < \varepsilon$.

极限	定义
$\lim_{x \to x_0} f(x) = A$	$\forall \varepsilon > 0$, $\exists \delta > 0$,

极限	定义
$\lim_{x \to x_0} f(x) = A$	$\forall \varepsilon > 0$, $\exists \delta > 0$,
$\lim_{x \to x_0^+} f(x) = A$	$\forall \varepsilon > 0$, $\exists \delta > 0$,

极限	定义
$\lim_{x \to x_0} f(x) = A$	$\forall \varepsilon > 0$, $\exists \delta > 0$,
$\lim_{x \to x_0^+} f(x) = A$	$\forall \varepsilon > 0$, $\exists \delta > 0$,
$\lim_{x \to x_0^-} f(x) = A$	$\forall \varepsilon > 0$, $\exists \delta > 0$, $\dot{\exists} -\delta < x - x_0 < 0$ 时, $ f(x) - A < \varepsilon$

极限	定义
$\lim_{x \to x_0} f(x) = A$	$\forall \varepsilon > 0$, $\exists \delta > 0$,
$\lim_{x \to x_0^+} f(x) = A$	$\forall \varepsilon > 0$, $\exists \delta > 0$,
$\lim_{x \to x_0^-} f(x) = A$	$\forall \varepsilon > 0$, $\exists \delta > 0$, $\dot{\exists} -\delta < x - x_0 < 0$ 时, $ f(x) - A < \varepsilon$

右极限
$$f(x_0 + 0) = \lim_{x \to x_0^+} f(x)$$
 左极限 $f(x_0 - 0) = \lim_{x \to x_0^-} f(x)$

极限 $\lim_{x \to x_0} f(x) = A$ 的几何解释:

极限 $\lim_{x \to x_0} f(x) = A$ 的几何解释:

情形1: $f(x_0)$ 有定义且 $A = f(x_0)$

情形2: $f(x_0)$ 有定义但 $A \neq f(x_0)$

情形 $3:f(x_0)$ 无定义

例2 用定义验证函数极限 $\lim_{x\to 2} \frac{x^2-4}{x-2} = 4.$

例3 设 x_0 为任意实数, 试用定义验证函数极限:

$$\lim_{x \to x_0} \sin x = \sin x_0.$$

f(x)

性质(单侧极限与双侧极限的关系)

$$\lim_{x \to x_0} f(x) = A \Leftrightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = A$$

例4 讨论函数
$$f(x) = \frac{|x|}{x} (x \neq 0)$$
 当 $x \to 0$ 时极限的存在性.

例5 设
$$f(x) = \begin{cases} x^2, x > -1, \\ x + a, x < -1, \end{cases}$$
 试确定常数 a 使 $\lim_{x \to -1} f(x)$ 存在.

