GPU-Accelerated QR Algorithm for Eigenvalue Computation Using CUDA

MPCS 56430: Introduction to Scientific Computing

Intro

Objective:

- Implement the QR algorithm for computing eigenvalues of a matrix using NVIDIA's CUDA platform.
- Leverage cuSOLVER and cuBLAS libraries to accelerate computations on GPUs.
- Analyze performance and discuss potential improvements.

Motivation:

- Eigenvalue computations are fundamental in various scientific and engineering applications, such as quantum mechanics, vibration analysis, and stability studies.
- Traditional CPU implementations can be time-consuming for large matrices due to computational complexity.
- GPUs offer massive parallelism, which can significantly speed up linear algebra operations.

Background

The QR Algorithm:

- An iterative method to find all eigenvalues of a matrix.
- Process:
 - Factorize matrix A into Q and R
 - Update A as A=RQ.
 - Repeat the process until A converges to an upper triangular matrix.
- **Convergence:** Diagonal elements of the converged A approximate the eigenvalues.

CUDA and GPU Computing:

- CUDA: A parallel computing platform and API model created by NVIDIA.
- cuSOLVER Library:
 - Provides LAPACK-like features on GPUs.
 - Used for matrix factorization and solving linear systems.
- cuBLAS Library:
 - An implementation of BLAS (Basic Linear Algebra Subprograms) on top of the NVIDIA CUDA runtime.
 - Optimized for high performance on NVIDIA GPUs.

Why Use GPUs for Eigenvalue Computation?

- GPUs can handle thousands of threads simultaneously.
- Ideal for matrix operations that can be parallelized.
- Significant speedup over CPU implementations for large-scale problems.

Approach

Matrix Initialization:

- Initialize a matrix A of size NxN on the host.
- Transpose and copy A to the device (GPU memory).

QR Factorization using cuSOLVER:

- **cusolverDnDgeqrf:** Computes the QR factorization of A.
- Extracting R:
 - Custom CUDA kernel extractR extracts the upper-triangular matrix R from the factorized A.

Generating Q:

• **cusolverDnDorgqr:** Generates the orthogonal matrix Q from the output of QR factorization.

Matrix Multiplication using cuBLAS:

• **cublasDgemm:** Performs matrix multiplication B=R×Q to form the updated A for the next iteration.

Iterative QR Algorithm:

- Repeat QR factorization and update A for a fixed number of iterations.
- Monitor convergence by observing changes in the eigenvalues (diagonal elements).

Performance Measurement:

- Use std::chrono to measure execution time.
- Functions start_timer and end_timer encapsulate timing around computation.

Implementation Details:

• Memory Management:

- Allocate device memory for matrices and vectors.
- Ensure proper synchronization using cudaDeviceSynchronize.

Error Handling:

- Check return codes from cuSOLVER and cuBLAS functions.
- Use cudaMemcpy to transfer data between host and device.

Results

Computation Time:

- **Execution Time:** Measured using high-resolution clock.
- Example Output:
 - o computation took 0.6956 seconds
- Analysis:
 - GPU acceleration shows significant improvement over CPU-only computations, especially for larger matrices.

Eigenvalue Convergence:

- Diagonal Sum (check):
 - Sum of diagonal elements of the matrix after iterations.
 - Represents the trace of A, which is the sum of its eigenvalues.
- Convergence Behavior:
 - Eigenvalues converge as the number of iterations increases.
 - Difference between successive largest eigenvalues (diff) decreases over iterations.

Dimension (N x N)	Memory (GB)	Time (s)	
		CUDA (nvc++)	Python 3.10
10	0.000001	0.1324	0.0037
50	0.000019	0.0720	0.0026
100	0.000075	0.0892	1.2164
500	0.001863	0.2542	5.4108
1000	0.007451	0.6621	20.1788
5000	0.186265	37.2650	328.1599

Discussion and References

Discussion:

Performance Gains:

 GPU implementation accelerates QR algorithm, beneficial for large-scale problems.

Challenges:

- Memory bandwidth and latency can impact performance.
- Synchronization overhead between CPU and GPU.

Future Work:

Adaptive Iterations:

• Implement convergence checks to determine when to stop iterating.

Scalability Testing:

 Evaluate performance for varying systems including multi gpu high throughput setups.

Comparison with CPU Libraries:

 Benchmark against CPU implementations (e.g., LAPACK).

References:

- 1. cuSOLVER Documentation:
 - NVIDIA Developer Zone: <u>cuSOLVER Library</u>
- 2. cuBLAS Documentation:
 - NVIDIA Developer Zone: <u>cuBLAS Library</u>
- 3. CUDA Toolkit Documentation:
 - NVIDIA Developer Zone: <u>CUDA Toolkit</u>
- 4. **CUDA Programming Guide:**
 - NVIDIA Developer Zone: <u>CUDA Programming Guide</u>

Thanks