Barème sur 10 points

Durée: 1 heure 30 minutes

Contrôle de géométrie analytique N°2

NOM:		
	 Groupe	
PRENOM:		

1. Dans l'espace, muni d'un repère orthonormé direct, on donne les équations cartésiennes d'un plan α et de deux droites a et d.

$$\alpha: 2x+y+z-11=0, \quad a: \frac{x+2}{2}=\frac{y-14}{-3}=z+5, \quad d: x+1=-(y+2)=\frac{z+3}{2}.$$

Déterminer les équations paramétriques de la droite g contenue dans le plan α , orthogonale à la droite d et coupant la droite a.

- 2.5 pts
- 2. Dans l'espace muni d'une origine O, on considère un point A repéré par le rayon vecteur $\vec{a} = \overrightarrow{OA}$ et une droite d passant par O et dirigée par \vec{d} ; $A \notin d$ et $\|\vec{d}\| = 1$. On considère un triangle ABC vérifiant les conditions suivantes :
 - le plan ABC est orthogonal à la droite d,
 - le sommet B appartient à la droite d,
 - le triangle ABC est isocèle et rectangle en B.
 - a) A l'aide du calcul vectoriel uniquement, déterminer la distance δ du point A à la droite d et les rayons vecteurs \overrightarrow{OB} et \overrightarrow{OC} en fonction des données \vec{a} et \vec{d} .
 - b) L'espace étant muni d'un repère orthonormé direct $(O, \vec{e}_1, \vec{e}_2, \vec{e}_3)$, on donne les coordonnées du point A et les composantes du vecteur d:

$$A(1, -2, 6)$$
 et $\vec{d} = \frac{1}{3} (2\vec{e}_1 + \vec{e}_2 - 2\vec{e}_3)$.

Calculer les coordonnées des points B et C.

Retenir pour le point C la solution d'ordonnée négative.

4.5 pts

3. Dans l'espace muni d'une origine O, on considère un plan α passant par le point A et admettant le vecteur \vec{n} comme vecteur normal et une droite d passant par A et dirigée par le vecteur \vec{d} , $(\vec{d} \cdot \vec{n} \neq 0)$.

On considère un point P appartenant à la droite d et situé à la distance δ du plan α .

A l'aide du calcul vectoriel uniquement, déterminer l'expression du rayon vecteur \overrightarrow{OP} en fonction des données $A, \overrightarrow{d}, \overrightarrow{n}, \delta$.

3 pts