Description statistique des données

M8 – Chapitre 2

• Variables :	$X = \{a_1, \dots a_l\}$ $Y = \{b_1, \dots, b_k\}$
• Échantillon :	$S_n = \{(x_1, y_1), \dots, (x_n, y_n)\}\$ $(x_i, y_i) \in X \times Y$
• Lignes :	$n_{i\bullet} = \sum_{j=1}^k n_{ij}$
• Colonnes :	$n_{\bullet j} = \sum_{i=1}^{l} n_{ij}$
• Total:	$n_{\bullet\bullet} = \sum_{i=1}^{l} \sum_{j=1}^{k} n_{ij}$

Tableau de contingence :

Х У	b_1	 b_{j}	 b_k	marge
a_1	n_{11}	 n_{1j}	 n_{1k}	n_{1ullet}
÷	:	:	:	:
a_i	n_{i1}	 n_{ij}	 n_{ik}	n_{iullet}
÷	:	÷	:	:
a_l	n_{l1}	 n_{lj}	 n_{lk}	n_{lullet}
marge	$n_{\bullet 1}$	 $n_{ullet j}$	 $n_{\bullet k}$	$n_{ullet} = n$

	$\overline{i=1}$ $j=1$				
• Fréquence :	$f_{ij} = \frac{n_{ij}}{n} = \widehat{\mathbb{P}}_{ij} = \widehat{\mathbb{P}}(X = a_i \cap Y = b_j)$				
• Profil ligne :	$l_{ij} = \frac{n_{ij}}{m} = \widehat{\mathbb{P}}(Y = b_j \mid X = a_i)$				
• Profil colonne :	$c_{ij} = \frac{n_{ij}}{n_{\bullet j}} = \widehat{\mathbb{P}}(X = a_i \mid Y = b_j)$ $\frac{n_{i\bullet}}{n} = \widehat{\mathbb{P}}_i \qquad \frac{n_{\bullet j}}{n} = \widehat{\mathbb{P}}_j$				
• Distribution marginale:	$\frac{n_{i\bullet}}{n} = \widehat{\mathbb{P}}_i \qquad \frac{n_{\bullet j}}{n} = \widehat{\mathbb{P}}_j$				
• Moyenne :	$\min_{(\bar{x},\bar{y})\in\mathbb{R}^2} \sum_{i=1}^n (x_i - \bar{x})^2 + (y_i - \bar{y})^2$				
• Médiane :	$\min_{(\overline{M_x},\overline{M_y})\in\mathbb{R}^2} \sum_{i=1}^{n} x_i - \overline{M_x} + y_i - \overline{M_y} $				
Médiane euclidienne :	$\min_{(\overline{M_X},\overline{M_Y})\in\mathbb{R}^2} \sum_{i=1}^n \sqrt{ x_i - \overline{M_X} ^2 + y_i - \overline{M_Y} ^2}$				
 Information mutuelle: (X, Y discrètes) 	$I(X,Y) = \sum_{i \in \Omega_X} \sum_{j \in \Omega_Y} \widehat{\mathbb{P}}_{ij} \log \left(\frac{\widehat{\mathbb{P}}_{ij}}{\widehat{\mathbb{P}}_i \widehat{\mathbb{P}}_j} \right)$ $X \text{ indep } Y \Rightarrow I(X,Y) = 0$				
• Dépendance : (X, Y quantitatives)	$s_{XY} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$ $= \frac{1}{n} \sum_{i=1}^{n} (x_i y_i - \bar{x}\bar{y})$ $s_X^2 = s_{XX} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$ $s_Y^2 = s_{YY} = \sum_{i=1}^{n} (y_i - \bar{y})^2$ $s_Y^2 = s_{YY} = \sum_{i=1}^{n} (y_i - \bar{y})^2$ $s_Y^2 = s_{YY} = \sum_{i=1}^{n} (y_i - \bar{y})^2$ $r \approx 0 \Rightarrow x \text{ indep } y$ $r \approx 1 \Rightarrow x \land y \land y \land y \Rightarrow x \Rightarrow x \Rightarrow x \Rightarrow y \Rightarrow x \Rightarrow x \Rightarrow y \Rightarrow x \Rightarrow x \Rightarrow$				
 Dépendance : (X, Y qualitatives) Distance du χ² 	$D_{\chi^2} = \sum_{i \in \Omega_X} \sum_{j \in \Omega_Y} \frac{\left(n_{ij} - \frac{n_{i \bullet} n_{\bullet j}}{n}\right)^2}{\frac{n_{i \bullet} n_{\bullet j}}{n}} = n \sum_{i \in \Omega_X} \sum_{j \in \Omega_Y} \frac{(\widehat{\mathbb{P}}_{ij} - \widehat{\mathbb{P}}_{i}\widehat{\mathbb{P}}_{j})^2}{\widehat{\mathbb{P}}_{i}\widehat{\mathbb{P}}_{j}}$				

Dépendance : (X qual, Y quant) Coef. de détermination

Description statistique des données

M8 - Chapitre 2

I. Matrice de covariance et matrice de corrélation

$$X_{C_{i,j}} = X_{i,j} - \overline{X_j} \qquad \qquad X_{R_{i,j}} = \frac{X_{i,j} - \overline{X_j}}{S_j} \qquad \qquad \boxed{\Sigma = \frac{X_C^{\mathsf{T}} X_C}{n}} \qquad \qquad \boxed{\rho = \frac{X_R^{\mathsf{T}} X_R}{n}}$$
 Matrice centrée multiple de covariance matrice de covariance de covariance de covariance de covariance de covariance de covariance de covariance

II. L'ACP

1. Le problème

On veut reconstruire au mieux X par le produit uv^{T} , c'est-à-dire minimiser :

$$\min_{u,v} J(u,v) = \min_{u,v} ||X - uv^{\mathrm{T}}||_F^2 = \min_{u,v} -2(Xv)^{\mathrm{T}}u + ||u||^2 + ||v||^2 = \min_{u,v} \sum_{i}^{n} \sum_{j}^{p} (x_{ij} - u_i v_j)^2$$

2. La solution

$$\begin{cases} \nabla_u J(u) = -2Xv + 2\|v\|^2 u = 0 & \Leftrightarrow & Xv = \|v\|^2 u \\ \nabla_v J(v) = -2X^{\mathsf{T}} u + 2\|u\|^2 v = 0 & \Leftrightarrow & -X^{\mathsf{T}} u = \|u\|^2 v \end{cases} \Leftrightarrow X^{\mathsf{T}} Xv = \underbrace{\|u\|^2 \|v\|^2}_{\lambda} v$$

La solution est un vecteur propre v de la matrice X^TX . C'est celle qui a la plus grande valeur propre car à l'optimum on a $J(u,v)=-\lambda$.

3. Remarques sur les valeurs et vecteurs propres

• Les valeurs propres sont ordonnées : $\lambda_1 \geq \lambda_2$

• Les vecteurs propres sont normées : $v_i^{\mathrm{T}}v_i=1$

• Les vecteurs propres sont orthogonaux : $v_i^T v_j = 0$

4. L'ACP

$$[v, \lambda] = eig(X)$$
 v : vecteurs propres $diag(\lambda)$: valeurs propres

Les composantes principales : u = Xv

Corrélations entre variables observées normalisées Xn (centrées réduites) et les composantes principales u :

$$cor(X_R, u_i) = \frac{{X_R}^T u_i}{\sqrt{n} ||u_i||} = \frac{||u_i||}{\sqrt{n}} v = \frac{\sqrt{\lambda_i}}{\sqrt{n}} v$$

Rôle des variables :

$$V_n = \sqrt{\frac{\lambda}{n}} V$$