Boosting for exploration and prediction in the social sciences

Christopher Boylan
Department of Political Science

Motivation

Boosting:

- ▶ Is a flexible and versatile method
- ► Has strong predictive performance (extremely popular in data mining competitions)
- ► Can help identify patterns in data

Outline

1. Machine Learning Basics

2. CART

3. Boosting

4. Application: Using Boosting to Predict Civil War Onsets

Data: (x_i, y_i) i = 1, 2, ..., N

- ▶ Predictors: *xi*
- ► Response: *y_i*
- ► Quantitative response: Regression problem
- ► Categorical response: Classification problem
- ► Training Data: Used to fit model
- ▶ Validation Data: Unseen data used to tune the model
- ► Test Data: Unseen data used to evaluate model performance

Goal:

► Find function \hat{f} such that error $L(y, \hat{f}(x))$ for test data is minimal

Loss function:

► A loss function *L* measures the discrepancy between a model's prediction and the value of the response

Why use test data?:

- ▶ A predictive model can be substantively more interesting
- ► Overfitting: Training error is small while test error is large. Model may be picking up patterns caused by random chance.

Bias-Variance Tradeoff

$$Err(x_0) = Variance + Bias^2 + Irreducible Error$$

- ▶ Bias: Error due to erroneous assumptions of model
- Variance: Error due to sensitivity to small changes in the training data

Source: Hastie et al.

k-Fold Cross Validation

5 fold cross validation:

CART:

- ▶ Predictor space is partitioned into J non-overlapping $R_1, R_2, ..., R_J$ regions that are homogenous with respect to the response y
- ► Predictors and split points are chosen to minimize prediction errors
- ▶ Trees fit a prediction, a constant c_i , to each region R_i .

Example: Civil War Onset and Economic Conditions

Advantages:

- ► Can easily handle mixed predictors
- ► Small trees are easy to interpret
- ► Can detect nonlinear relationships

Disadvantages:

► Can often have poor predictive performance

Ensemble Methods

Bagging (bootstrap aggregation):

- ► Draw a large number of bootstrapped samples
- ► Fit a tree to each bootstrapped sample
- ► Combine the predictions

Random Forests:

- ► Draw a large number of bootstrapped samples
- ► Fit a tree to each bootstrapped sample only considering a randomly selected subset of predictors at each split
- ► Combine the predictions

Ensemble Methods

- \rightarrow y = 1, 1, 1, 1, 1, 1, 1, 1, 1
- ► Ensemble with a majority vote:

Model	Prediction								Accuracy		
Tree A	1	1	1	1	1	1	1	1	0	0	0.8
Tree B	0	1	1	1	0	1	1	1	0	1	0.7
Tree C	1	0	0	0	1	0	1	1	1	1	0.6
Ensemble	1	1	1	1	1	1	1	1	0	1	0.9

Boosting

Introduction

- ▶ Boosting also uses an ensemble of regression trees.
- ▶ Boosting works in a sequential manner where each tree tries to correct the errors of its predecessors.

Boosting

Least Squares Boosting

- 1. Start with $f_0(x) = 0$, residuals r = y, t = 0
- $2. t \leftarrow t + 1$
- 3. Fit a CART regression tree to r giving g(x)
- 4. Set $f_t(x) \leftarrow f_{t-1}(x) + g(x)$, $r \leftarrow r g(x)$, and repeat steps 2-4 many times

Boosting

Intuition

Stochastic Gradient Boosting Algorithm

Select:

- A loss function (L)
 - Number of trees (T)
 - Number of regions in each tree (J)
 - $\bullet \quad \text{Shrinkage parameter } (\lambda)$
- Subsampling rate (p)
- 1. Initialize $f_0(x)$ to be a constant c, $f_0(x) = \operatorname{argmin}_c \sum_{i=1}^{N} L(y_i, c)$
- 2. For t = 1 to T:
 - (a) Randomly sample $p \times N = \tilde{N}$ cases from the data $\left(\left\{y_{\pi(i)}, x_{\pi(i)}\right\}_{i=1}^{N}\right)$
 - (b) For $i = 1, 2, ..., \tilde{N}$ compute

$$r_{\pi(i)t} = -\left[\frac{\partial L(y_{\pi(i)}, f(x_{\pi(i)}))}{\partial f(x_{\pi(i)})}\right]_{f(x) = f_{t-1}(x)}$$

- (c) Fit a regression tree to the targets $r_{\pi(i)t}$ giving terminal regions R_{jt} , $b=1,2,...,j_t$
- (d) Compute the optimal terminal node predictions

$$c_{jt} = \underset{c}{\operatorname{argmin}} \sum_{x_{\pi(i)} \in R_{it}} L(y_{\pi(i)}, f_{t-1}(x_{\pi(i)}) + c)$$

- (e) Update $f_t(x) = f_{t-1}(x) + \lambda \cdot c_{jt} I(x \in R_{jt})$
- 3. Output $\hat{f}(x) = f_T(x)$

Response Types and Loss Functions

Boosting can be used to analyze continuous, categorical, count, and censored survival data.

Setting	Loss Function	$-\partial L(y_i, f(x_i))/\partial f(x_i)$
Regression	$\frac{1}{2}\left[y_i-f(x_i)\right]^2$	$y_i - f(x_i)$
Binary Classification	$-2[y_i f(x_i) - log(1 + exp(f(x_i)))]$	$y_i - p_i$
Count	$-2\left[y_if(x_i)-exp(f(x_i))\right]$	$y_i - exp(f(x_i))$

Hyperparameters

- ▶ Shrinkage parameter (λ)- Slows down learning and helps to prevent overfitting. Increases computational costs.
- ▶ Number of trees (*T*)- Growing too many trees can lead to overfitting and poor predictive performance.
- ► Subsampling rate (p)- Introducing randomness into procedure can reduce the influence of individual observations and reduce computation time.
- ▶ Number of regions in each tree (*J*)- Restrict all trees to be the same size. Lower order interactions tend to perform best.

Use cross validation to select optimal hyperparameters

Application

Predicting Civil War Onset

- ► Response- Onset of Civil War (Yes/No)
- ► Predictors 90 variables pertaining to the political institutions, development, natural resources, economic conditions, and demographic characteristics of a country

Hyperparameter Selection

- ▶ Subsampling rate (p)= 0.5, Shrinkage parameter (λ)= 0.01
- ▶ ROC-AUC maximized with Trees (T)= 1300, Regions(J)= 7

Prediction

Boosting versus Other Methods

Exploration

Variable Importance

Exploration

Partial Dependence Plots

Exploration

Automatic Interaction Detection

Implementing Boosting

R

gbm package implements stochastic gradient boosting

- ▶ gbm for model training and prediction
- ▶ plot.gbm for partial dependence plots
- ▶ relative.influence for variable importance

caret acts as a wrapper for gbm

- ▶ train for easy model tuning and comparison
- ► varImp for variable importance

Implementing Boosting

R

mlr also acts as a wrapper for gbm

► plotPartialPrediction for partial dependence and interaction plots

xgboost implements a modified version of gradient boosting

- ► Extremely popular on kaggle
- ► Faster than gbm and can be used with extremely large datasets
- ► Accessible through both caret and mlr

Summary

- ► Boosting is a flexible technique that can be used with a variety of response types
- ► Boosting has strong predictive performance
- ▶ Boosting can help identify patterns in data