

Deep Learning Computation for Economic Theory and Its Applications

Prof. Joongheon Kim

Korea University, School of Electrical Engineering Artificial Intelligence and Mobility Laboratory https://joongheon.github.io joongheon@korea.ac.kr

Korea University Members

MyungJae Shin (Alumnus, SNU-Hospital) Soohyun Park (Ph.D. Course) Yeongeun Kang (Ph.D. Course) Junghyun Kim (Ph.D. Course)

Collaborators

Prof. Marco Levorato (CS@UC-Irvine) Prof. Minseok Choi (TE@Jeju Nat'l University)

Related Projects

Hanyang-ITRC (5G/Unmanned Vehicle Research Center)

- [PI] Hanyang University
- [WP2] Ajou University

Deep Learning Solutions to Economic Theory

Applications to Distributed Systems

Summary

Linear Programming

min:
$$c_1x_1 + c_2x_2 + \dots + c_nx_n$$

subject to
$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$$

$$\dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$$

$$x_j \ge 0, j \in \{1, \dots, n\}$$

Stable Marriage

Auction

Game Theory

Pure Strategic Game (Strategic User)

MBC (KBS)		KBS				
Payoff Matrix		Movie	Opera	Comedy		
МВС	Movie	35 (65)	15 (85)	60 (40)		
Opera Comedy		45 (55)	58 (42)	50 (50)		
		38 (62)	14 (86)	70 (30)		

Game Theory

Pure Strategic Game (Strategic User)

MBC (KBS)		KBS				
Payoff Matrix		Movie	Opera	Comedy		
МВС	Movie	35 (65)	15 (85)	60 (40)		
Opera Comedy		45 (55)	58 (42)	50 (50)		
		38 (62)	14 (86)	70 (30)		

Call (\$2)? Fold (\$1)?

Call (\$2)? Fold (\$1)?

Player 1 Payoff Matrix		Player 2		
		Call	Fold	
Player	PP	-1	-1	
1	PB	-21/13	3/13	
	BP	2/13	-3/13	
	BB	-6/13	1	

Call (\$2)? Fold (\$1)?

Player 1 Payoff Matrix		Player 2		
		Call	Fold	
Player	PP	-1	-1	
1	PB	-21/13	3/13	
	BP	2/13	-3/13	
	BB	-6/13	1	

Player 1 Payoff Matrix		Player 2		
		Call	Fold	
Player	Player		1	
1	70	-21/13	3/12 3/	
	ВР	2/13	-3/13	
	BB	-6/13	1	

Player 1 Payoff		Player 2		
Matrix (Reduced)		Call y_1 Fold y		
Player	BP x_1	2/13	-3/13	
1	вв х 2	-6/13	1	

	Maximizing the profit of Player 1	
maximize	\overline{z}	

 $\frac{z}{13}x_1 - \frac{6}{13}x_2 \ge \boxed{z}$ Expected **Profit** if Player 2 is doing **Call** $-\frac{3}{13}x_1 + x_2 \ge \boxed{z}$ Expected **Profit** if Player 2 is doing **Fold** subject to $x_1 + x_2 = 1$

is doing Fold

 $x_1 \ge 0$

 $x_2 \ge 0$

Minimizing the **loss** of Player 2
$$w$$
2 3 Expected **Loss** if Player 1 is

 $\frac{w}{\frac{2}{13}y_1 - \frac{3}{13}y_2} \le w$ $-\frac{6}{13}y_1 + y_2 \le w$

doing BP

Expected **Loss** if Player 1 is doing BB

$$y_1 \ge 0$$

$$g_1 \geq 0$$

 $y_1 + y_2 = 1$

Introductory Example

Two Possible Matching

Stable

Unstable

Gale-Shapley Algorithm (GSA) Procedure

A	1234
В	2143
С	3 2 4 1
D	3 4 2 1
1	ACDB

1	ACDB
2	CDAB
3	BADC
4	ABCD

GSA Procedure

- 1. (A 1)
- 2. (A 1)(B 2)
- 3. (A 1)(B 2)(C 3)
- 4. 3 prefers D over C, i.e., (A 1)(B 2)(D 3)
- 5. C's next preference is 2., 2 prefers C over B, i.e., (A 1)(C 2)(D 3)
- 6. B's next preference is 1.,
 The a does not want to switch.
- 7. B's next preference is 4; and the 4 is free., i.e., (A 1)(C 2)(D 3)(B 4)

David Gale PROFESSOR, UC BERKELEY

Lloyd Shapley

Nick McKeown, Adisak Mekkittikul, Venkat Anantharam, and Jean Walrand, "Achieving 100% Throughput in an Input-Queued Switch," *IEEE Transactions on Communications*, Vol.47, No.8, August 1999.

Auction

Auction (Basic Concepts)

- **Truthfulness:** The rule that induces true behaviors of players
- FPA vs. SPA
 - **FPA:** Revenue-Optimal (O) & Truthful (X) // Revenue: Payment to Auctioneer (Seller)
 - Revenue-Optimal: because the auctioneer will get the payment (the highest bid)
 - SPA: Revenue-Optimal (X) & Truthful (O)

DSIC, IR, and Optimal Auction

- Dominant Strategy Incentive Compatibility (DSIC): All participants should submit truthful bids. This guarantees the maximum utility. SPA.
- Individual Rationality (IR): All utilities should be non-negative.
- Optimal Auction → Myerson Auction maximizes revenue in single-item auction.
 - DSIC
 - IR
 - Revenue Maximization

Improving SPA (by increasing Revenue)

Definition (Virtual Valuation)

$$\varphi_i(b_i) = b_i - \frac{1 - F_i(b_i)}{f_i(b_i)}$$

- $f_i(b_i)$: probability for b_i
- $1 F_i(b_i)$: probability for having a value higher than b_i

v_i

- If it is the largest, $1 - F_i(b_i)$: It is 0, i.e., $\varphi_i(b_i) = b_i$
- If it is the smallest, $1-F_i(b_i)$: It is 1, i.e., $\varphi_i(b_i)=b_i-\frac{1}{f_i(b_i)}$ and $0< f_i(b_i)<1$

Distributed Optimization

Game Theory

Stable Marriage

Auction

Outline

Economics and Distributed Optimization

Deep Learning Solutions to Economic Theory

Applications to Distributed Systems

Summary

Monotonic Network

- Monotone transformations $\varphi_1, ..., \varphi_n$ to the input bids $b_1, ..., b_n$
- Transformed bids $\overline{b_1}, \dots, \overline{b_n}$ are fed into the SPA network.
- The monotonic network consists of *K* groups of *J* units.
- Each $w_{k,j}$ has to be positive $(w_{k,j} > 0)$, i.e., $w_{k,j}^i = e^{\alpha_{k,j}^i}$.
- Monotonicity of monotonic network
 - [Sill, 1998] proves that $\bar{\varphi}_i = \min_{k \in K} \max_{j \in J} w_{k,j}^i b_i$ guarantees the monotonicity of monotonic network.
 - [Daniels, 2010] proves that $\bar{\varphi}_i = \max_{k \in K} \min_{j \in J} w_{k,j}^i b_i$ guarantees the monotonicity of monotonic network.
 - [Yang, 1995] Min-max is used because it was proved that the min-max/max-min form guarantees monotonicity.
- The inverse transform φ^{-1} can be directly obtained from the parameters for the forward transform.

^[1] J. Sill, "Monotonic Networks," In Proc. NIPS, pages 661–667, 1998.

^[2] H. Daniels and M. Velikova, "Monotone and Partially Monotone Neural Networks," IEEE Transactions on Neural Networks, 21(6): 906-917 (2010).

^[3] P.-F. Yang and P. Maragos, "Min-Max Classifiers: Learnability, Design and Application," Pattern Recognition, 28(6):879-899 (1995).

Allocation Network

• The SPA allocation rule g^0 can be approximated using a **softmax** function on transformed values $\bar{b}_1, ..., \bar{b}_n$

$$g_{\rm i} = \frac{e^{\kappa \bar{b}_i}}{\sum_{j=1}^N e^{\kappa \bar{b}_j}}$$

```
class AllocNet(nn.Module):
    def __init__(self, numUser, k):
        super(AllocNet, self).__init__()
        self.numUser = numUser
        self.k = k
    def forward(self, x):
        x = torch.div(torch.exp(k*x),torch.sum(torch.exp(k*x)))
        return x
```


Payment Network

• The payment network consists of a **ReLU** function ensure positiveness of transformed values $\bar{b}_1, ..., \bar{b}_n$.

$$p^0(\bar{b}_i) = ReLU(\bar{b}_1)$$

```
class PayNet(nn.Module):

def __init__(self, numUser):
    super(PayNet, self).__init__()
    self.numUser = numUser
    self.rl = nn.ReLU()
    def forward(self,x):
    x = self.rl(x)
    return x
```


Actual Payment Computation (Inverse Monotonic Network)


```
class BackMonotonicNet(nn.Module):
  def __init__(self, numUnit, numGroup, vars):
    super(BackMonotonicNet, self). init ()
    self.numUnit = numUnit
    self.numGroup = numGroup
    self.vars = vars
  def forward(self, x):
    y = torch.ones(size=(numUser, numGroup, numUnit))
    for i in range(numUser):
      y[i, :, :] = x[i]
    result = torch.mul(torch.exp(-self.vars), y)
    min = torch.min(result, dim=1)
    max = torch.max(min[0], dim=-1)
    return max[0]
```


		Results	(1st Aucti	on Compı	utation)		
Allocation Network (Output)	Bids	-1.2201 negatives	-1.2892	-0.5140	0.4430 Winner	0.3734 / SPA	
	Probs	0.0002	0.0002	0.0002	0.4972 Maximum /	0.4822	
	Payment	0.0000 ReLU	0.0000	0.0000	0.4428 SPA+DL	0.3329	• 0.4430 > 0.4428 (~FPA) • 0.4428 > 0.3734 (SPA+DL)
Results (2 nd Auction Computation)							
	Bids	0.9578 Winner	0.3370	0.1259	-0.0669 negatives	0.5899 SPA	17
Allocation Network (Output)	FIUUS	0.4713 Maximum	0.0762	0.0115	0.0055	0.4355	
	Payment	0.9514 ← SPA+DL	0.3825	0.0905	0.0000 ReLU	0.5269	 0.9578 > 0.9514 (~FPA) 0.9514 > 0.5899 (SPA+DL)

- Deep learning auction removes the negative bids and determines the winner of the auction.
- The winner's payment does not exceed the winner's bid; and it is guaranteed to be higher than the second winning price.

Outline

Economics and Distributed Optimization

Deep Learning Solutions to Economic Theory

Applications to Distributed Systems

Summary

Applications to Distributed Systems

N. C. Luong, Z. Xiong, P. Wang, and D. Niyato, "Optimal Auction For Edge Computing Resource Management in Mobile Blockchain Networks: A Deep Learning Approach," *arXiv preprint*, *arXiv:1711.02844*, November 2017 (Preliminary version was presented at IEEE ICC 2018).

Applications to Distributed Systems

M. Shin, J. Kim, and M. Levorato, "Auction-Based Charging Scheduling With Deep Learning Framework for Multi-Drone Networks," *IEEE Transactions on Vehicular Technology*, 68(5):4235-4248, May 2019.

Outline

Economics and Distributed Optimization

Deep Learning Solutions to Economic Theory

Applications to Distributed Systems

Summary

- Economics and Distributed Optimization
 - Game Theory
 - Stable Marriage
 - Auction
- Deep Learning Solutions to Truthful/Revenue-Optimal Auction
- Applications to Distributed Platforms
 - Mobile Blockchain Mining
 - Multi-UAV Charging Scheduling

- L Park, S. Jeong, J. Kim, and S. Cho, "Joint Geometric Unsupervised Learning and Truthful Auction for Local Energy Market," *IEEE Transactions on Industrial Electronics*, 66(2):1499-1508, February 2019.
- S. Jeong, W. Na, J. Kim, and S. Cho, "Internet of Things for Smart Manufacturing System: Trust Issues in Resource Allocation," *IEEE Internet of Things Journal*, 5(6):4418-4427, December 2018.

Thank you for your attention!

- More questions?
 - joongheon@korea.ac.kr
- More details?
 - https://joongheon.github.io/ (Personal)
 - https://aimlab-kuee.github.io/ (Lab)
- Appendix
 - Auxiliary Parts of PyTorch Codes

Appendix) Auxiliary Parts of PyTorch Codes


```
Main
if __name__=="__main___":
  # Training Setting
  epoch = 100
  # Auction Setting
  numUser = 5
  numUnit = 3
  numGroup = 5
  k = 1
  Auction = AuctionNet(numUser, numUnit, numGroup, k)
  optimizer = optim.SGD(Auction.parameters(), lr=0.001, momentum=0.9)
  clipper = ZeroOneClipper()
```



```
Overall Deep Learning Auction
class AuctionNet(nn.Module):
 def init (self, numUser, numUnit, numGroup, k):
   super(AuctionNet, self). init ()
   self.numUser = numUser
   self.numUnit = numUnit
   self.numGroup = numGroup
   self.rl1 = nn.ReLU()
   self.monoNets = monotonicNet(numUser, numUnit, numGroup)
   self.backNets = BackMonotonicNet(numUnit, numGroup, self.monoNets.getVars())
   self.pay = PayNet(numUser)
   self.allocNet = AllocNet(numUser, k)
```


1. Call aforementioned models.


```
class ZeroOneClipper(object):

def __init__(self, frequency=5):
    self.frequency = frequency

def __call__(self, module):
    # filter the variables to get the ones you want
    if hasattr(module, 'weight'):
        w = module.weight.data
        w = w.clamp(0.01, 100)
```

- Pytorch's weight clipping method.
- Use proper weight clipping depending on the distribution of bid values.
- Disadvantages of deep learning based auction that have to rely on experimental results.

$$Loss = -g^0(\varphi_1(b_1), \dots, \varphi_N(b_N))^T * [\overline{\varphi_1}^{-1}(p^0(\varphi_1(b_1))), \dots, \overline{\varphi_N}^{-1}(p^0(\varphi_N(b_N)))]$$

- The **incentive compatibility (IC)** constraint of auction can be restated as requiring the **expected ex post regret** for the auction to be 0 (Dutting, 2019).
- The ex post regret for each bidder is the extent to which an auction violates incentive compatibility (IC).
- we optimize the parameters using the negated revenue on bids $b = (b_1, ..., b_N)$ as the error function.

[4] Dütting, Paul, et al. "Optimal auctions through deep learning." International Conference on Machine Learning. 2019.


```
Overall Deep Learning Auction
class AuctionNet(nn.Module):
  def forward(self, x):
    x = x.float()
    posBD = self.rl1(x)
   transBD = self.monoNets(posBD)
    probs = self.allocNet(transBD)
    pays = self.pay(torch.tensor(transBD))
    payment = self.backNets(pays)
   loss = - torch.sum(torch.mul(probs, torch.as tensor(payment)))
    return probs, payment, loss
```

- 1. Calculates g^0 and p^0 .
- 2. Calculates $\bar{\varphi}^{-1}(\bar{b}_i) = \underset{i \in I}{\operatorname{maxmin}} e^{-\alpha_{k,i}^l} p^0(\bar{b}_i)$
- 3. Calculates loss.

- L. Calculates g^0 and p^0 .
- 2. Calculates $\bar{\varphi}^{-1}(\bar{b}_i) = \underset{i \in I}{\operatorname{maxmin}} e^{-\alpha_{k,i}^i} \operatorname{p}^0(\bar{b}_i)$
- Calculates loss.