\Box

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: تقنى رياضي

المدة: 04 سا و 30 د

دورة: 2020

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين:

(الموضوع الأول)

التمرين الأوّل: (04 نقاط)

الدالة العددية f معرفة ومتزايدة تماما على المجال $f(x) = \frac{3x}{\sqrt{4x^2+5}}$ بـ: $f(x) = \frac{3x}{\sqrt{4x^2+5}}$ الدالة العددية $f(x) = \frac{3x}{\sqrt{4x^2+5}}$

. y=x المستوي المنسوب إلى المعلم المتعامد المتجانس $(O;\vec{i},\vec{j})$ و $(O;\vec{i},\vec{j})$

 $u_0 = \frac{1}{2}$:حيث u_0 معرفة بحدها الأول ميث (u_n) المتتالية العددية

 $u_{n+1} = f(u_n)$: n عدد طبیعي و من أجل كل عدد

أ . أعد رسم الشكل المقابل ثمّ مثّل على حامل محور الفواصل أ . أعد رسم الشكل المقابل ثمّ مثّل على حامل محور الفواصل العدود u_1 ، u_2 ، u_1 ، u_0 ، u_1 ، u_0 الحدود الإنشاء .

 \mathbf{u}_n ضع تخمينا حول اتجاه تغيّر المتتالية (u_n) وتقاربها.

. $\frac{1}{2} \le u_n < 1$: n عدد طبیعي أنه من أجل كل عدد أيد (2

 $m{\psi}$. بيّن أنّ المتتالية (u_n) متزايدة تماما، ثمّ استنتج أنّها متقاربة.

 v_0 برهن أنّ المتتالية v_n هندسية أساسها $\frac{9}{5}$ يُطلب تعيين حدها الأول

n بدلالة n ثمّ استنتج عبارة u_n بدلالة n أ . اكتب عبارة v_n بدلالة

 $\cdot (u_n)$ احسب نهایة المتتالیة .ب

التمرين الثاني: (04 نقاط)

. عددان صحيحان x و x عددان x و x عددان x عددان x و x عددان x عددان x عددان صحيحان x عددان صحيحان x عددان صحيحان x عددان صحيحان x

. و استنتج أنّ المعادلتين (E_1) و استنتج أنّ المعادلتين (E_1) و PGCD(693;216) متكافئتان

 $\mathbb{Z} imes \mathbb{Z}$ حلّ المعادلة (E_2) تحقّق أنّ الثنائية (2;3) حلّ المعادلة (E_2) تحقّق أنّ الثنائية (2;3) حلّ المعادلة (E_2) تحقّق أنّ الثنائية (E_2) حلّ المعادلة (E_2) تحقّق أنّ الثنائية (E_2) حلّ المعادلة (E_2) حلّ المعادلة (E_2) تحقّق أنّ الثنائية (E_2) حلّ المعادلة (E_2) حلّ المعادلة (E_2) تحقّق أنّ الثنائية (E_2) حلّ المعادلة (E_2) حلّ المعادلة (E_2) تحقّق أنّ الثنائية (E_2) حلّ المعادلة (E_2) حلك المعادلة (

 $|y-x| \le 54$ (قصَّق: E_2) التي تُحقّق: (x;y) حلول المعادلة (x;y) جد الثنائيات

.6 ليكن $1\alpha \beta 0\alpha$ في النظام ذي الأساس 9 و يكتب $1\alpha \beta 0\alpha$ في النظام ذي الأساس 9 في النظام ذي الأساس 6.

حيث α و β عددان طبيعيان.

جد العددين α و β ، ثمّ اكتب العدد N في النظام العشري.

التمرين الثالث: (05 نقاط)

يحتوي كيس على أربع كريات حمراء مرقمة بـ: 2 ، 2 ، 2 ، 2 و ثلاث كريات خضراء مرقمة بـ: 3 ، 3 ، 2 . الكربات لا نفرق بينها باللمس ، نسحب عشوائيا في آن واحد كربتين من هذا الكيس.

- للون" A "الحصول على كريتين مختلفتين في اللون" و B "الحصول على كريتين مختلفتين في اللون" A و A أ . احسب احتمال كل من الحدثين
 - $\frac{4}{21}$ بيّن أنّ احتمال الحصول على كريتين تحملان نفس الرّقم ومختلفتين في اللون يساوي
 - ج. استنتج احتمال الحصول على كريتين تحملان نفس الرّقم أو مختلفتين في اللون .
 - ليكن X المتغيّر العشوائي الذي يرفق بكل سحب جُداء الرّقمين الظاهرين على الكريتين المسحوبتين. عرّف قانون الاحتمال للمتغيّر العشوائي X.
 - 6 في لعبة، يقوم لاعب بسحب كريتين: إذا كان جُداء رقميهما x^2 دينار، إذا كان جُداء رقميهما x^2 یخسر y^2 دینار و إذا کان جُداء رقمیهما 9 یخسر 130 دینار . y عددان طبیعیان غیر معدومین عيّن قيمة كلّ من x و y حتى تكون هذه اللعبة عادلة.

التمرين الرابع: (07 نقاط)

- $g(x) = -1 + x + 2\ln x$: ب $g(x) = -1 + x + 2\ln x$ بالدالة العددية $g(x) = -1 + x + 2\ln x$
 - 1) ادرس اتجاه تغيرات الدالة g.
- $[0;+\infty[$ احسب g(x) من المجال g(1) احسب قيم g(1) احسب g(1)
- $f(x) = \frac{-1 + (x-2)\ln x}{x}$: ب $g(x) = \frac{-1 + (x-2)\ln x}{x}$: ب $g(x) = \frac{-1 + (x-2)\ln x}{x}$
- $(O; \vec{i}, \vec{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس (C_f)
 - أ. احسب f(x) ثمّ فسّر النتيجة هندسيا. أ
 - $\lim_{x \to +\infty} f(x)$ ب. احسب
 - - \mathbf{p} . عين اتجاه تغيّر الدالة f ثمّ شكّل جدول تغيّراتها.
 - $[0;+\infty[$ المنحنى البياني الممثّل للدالة: $x\mapsto \ln x$ على المجال (Γ) ليكن (T) ليكن
 - أ. احسب $\lim_{x \to +\infty} [f(x) \ln x]$ ، ثمّ فسّر النتيجة هندسيا.
 - \cdot (Γ) بالنسبة إلى المنحنى المنحنى بالنسبة إلى المنحنى
- : قصّ ، ثمّ تحقّق أنّ المنحنى (C_f) يقطع حامل محور الفواصل في نقطتين فاصلتاهما lpha و eta $\cdot 2.9 < \beta < 3$ و $0.5 < \alpha < 0.6$
 - $\cdot(C_f)$ ثمّ (Γ) ارسم (5

انتهى الموضوع الأول

الموضوع الثاني

التمرين الأول: (04 نقاط)

يحتوي كيس على كريتين خضراوين تحملان الرّقمين 1 ، 2 وثلاث كريات حمراء تحمل الأرقام 1 ، 2 ، 2 و أربع كريات بيضاء تحمل الأرقام 2 ، 3 ، 3 ، 4 . (الكريات متماثلة لا نفرق بينها باللمس)

- . نسحب من هذا الكيس 3 كريات في آن واحد (I
- احسب احتمال كل من الحدثين A و B التاليين:
- الحصول على 3 كريات من نفس اللون ". A
 - B:" الحصول على كرية بيضاء على الأقل ".
- ليكن X المتغيّر العشوائي الذي يرفق بكلّ سحب أكبر الأرقام المحصل عليها. (2)
- أ. بيّن أنّ: $\frac{3}{7}=(X=3)$ ثمّ عرّف قانون الاحتمال للمتغيّر العشوائي X.
 - $\boldsymbol{\mathcal{X}}$. احسب الأمل الرياضياتي للمتغيّر العشوائي
 - II) نسحب الآن 3 كريات على التوالي دون إرجاع.
 - ليكن C الحدث: " الحصول على S أرقام جُداؤها عدد زوجي" .
 - C احسب احتمال

التمرين الثاني: (04 نقاط)

- 1) أ . ادرس حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد 3^n على 5.
 - \cdot 5 على على 5. استنتج باقي القسمة الإقليدية للعدد: $1 8^{2020} 2 \times 3^{1441}$ على 5.
 - $a_n = 3^{n+1} + 4$: من أجل كل عدد طبيعي ، n نعتبر العدد الطبيعي (2 $a_n \equiv 0$ التي من أجلها يكون: n التي من أجلها أبيعين الأعداد الطبيعية n التي من أجلها يكون
 - . $b_n = 7a_n + 5$: نعتبر العدد الطبيعي (3
 - . b_n و a_n القيم الممكنة للقاسم المشترك الأكبر للعددين و . b_n
 - $b_n \equiv 0$ [5] اذا وفقط إذا كان $a_n \equiv 0$ [5] ب. بيّن أنّ:
- ج. استنتج الأعداد الطبيعية n التي من أجلها يكون a_n و b_n أوليّين فيما بينهما.

اختبار في مادة: الرياضيات \ الشعبة: تقني رياضي \بكالوريا 2020

التمرين الثالث: (05 نقاط)

 $u_{n+1} = 3 - \frac{4}{u_n + 2}$: n عدد طبيعي $u_0 = \frac{1}{2}$ عدث عدد الأول $u_0 = \frac{1}{2}$ عدد المتتالية العددية $u_n = \frac{1}{2}$

- $-1 < u_n < 2$: n برهن بالتراجع أنّه من أجل كل عدد طبيعي (1
- $u_{n+1} u_n = \frac{(2 u_n)(1 + u_n)}{u_n + 2}$: n عدد طبیعي عدد طبیعي (2
 - $\boldsymbol{\cdot}$ ب. حدّد اتجاه تغیّر المتتالیة (u_n) ثمّ استنتج أنّها متقاربة.
- . المتتالية العددية (v_n) معرفة على $v_n = \frac{u_n + \alpha}{u_n + 1}$: بالمتتالية العددية العددية العددية العددية العددية على المتتالية العددية العددية
- . v_0 أ . اوجد α حتى تكون المتتالية (v_n) هندسية أساسها $\frac{1}{4}$ ، ثمّ احسب حدّها الأول
- $\lim_{n\to +\infty}u_n$ بين عندئذٍ أنّه من أجل كل عدد طبيعي $n=\frac{2\times 4^n-1}{4^n+1}$: n عدد طبيعي بين عندئذٍ أنّه من أجل كل عدد طبيعي

التمرين الرابع: (07 نقاط)

 $f(x) = x - 1 + \frac{1}{4}(2e^{-x} - 1)^2$: ب $[-1; +\infty[$ الدّالة العددية f معرّفة على المجال

- . (2 cm وحدة الطول) ($O; \vec{i}, \vec{j}$) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتعامد (C_f)
 - $f'(x) = (1 e^{-x})(2e^{-x} + 1)$: $[-1; +\infty[$ سن المجال x من المجال عدد حقیقی عدد عقیقی x من المجال . $f'(x) = (1 e^{-x})(2e^{-x} + 1)$
 - . f الدرس اشارة f'(x) واستنتج اتجاه تغیّر الدّالة
 - f الدّالة المّf(x) جدول تغيّرات الدّالة بنمّ شكّل جدول تغيّرات الدّالة .
 - $\cdot (C_f)$ مقارب مائل للمنحنى $y=x-rac{3}{4}$ ذا المعادلة: (Δ) ذا المعادلة (Δ) مقارب مائل للمنحنى (Δ)
 - \cdot (Δ) ادرس وضعية (C_f) بالنسبة إلى المستقيم
 - .هادلة معادلة له. (Δ) بيّن أنّ المنحنى البياني (C_f) يقبل مماسا (T) موازيا للمستقيم (Δ) يُطلب كتابة معادلة له.
 - . بيّن أنّ المنحنى البياني (C_f) يقبل نقطة انعطاف يُطلب تعيينها (4
 - $\cdot(C_f)$ ارسم (Δ) ارسم (T) ، (Δ) ارسم (Δ
- ليكن m وسيطا حقيقيا. عيّن مجموعة قيم m التي من أجلها تقبل المعادلة : f(x) = x + m حلين مختلفين.

انتهى الموضوع الثاني