

Sobre la función máximal de Hardy-Littlewood y un vistazo al trabajo futuro Andrés David Cadena Simons

Trabajo realizado bajo la dirección del profesor Ricardo Ariel Pastrán Ramírez y Oscar Guillermo Riaño Castañeda Semillero de Análisis Armónico y Ecuaciones Diferenciales Parciales, Departamento de Matemáticas, Universidad Nacional de Colombia 01 de diciembre de 2023

Resumen

El propósito de este póster es presentar uno de los resultados estudiados durante el *Semillero de Análisis Armónico y Ecuaciones Diferenciales Parciales* del departamento de matemáticas de la Universidad Nacional de Colombia sede Bogotá, referentes al estudio de la *función maximal de Hardy-Littlewood*.

En este mismo se presentarán resultados y teoremas preliminares como aproximaciones de la identidad, convergencia en casi todo punto, desigualdades débiles/fuertes y el teorema de interpolación de Marcinkiewicz, esto con el fin de introducir la función maximal de Hardy-Littlewood y continuar su estudio enfocados a resultados como: mostrar que la función maximal establece un operador acotado en \mathcal{L}^{∞} , un operador (1,1)-débil y deducir de esto el teorema de diferenciación de Lebesgue. Como trabajo futuro, se plantea estudiar para cuales espacios de Sobolev la función maximal de Hardy-Littlewood determina un operador continuo.

1. Conceptos y Definiciones

Aproximación de la identidad

Suponga ϕ como una función integrable en \mathbb{R}^n tal que $\int_{\mathbb{R}^n} \phi = 1$, y luego definamos para todo t > 0 a

$$\phi_t(x) = t^{-n}\phi(t^{-1}x).$$

Si $t \to 0$, ϕ_t converge en el sentido distribucional de S' a δ_0 (la medida delta de Dirac en el origen), entonces diremos que $\{\phi_t \mid t > 0\}$ es una aproximación de la identidad.

Desigualdades débiles y fuertes

Sean (X, μ) y (Y, ν) dos espacios de medida y sea T un operador de $\mathcal{L}^p(X, \mu)$, en el espacio de funciones medibles de Y en \mathbb{C} .

$$T: \mathcal{L}^p(X,\mu) \to \mathcal{M}(Y,\mathbb{C})$$

i. Se dice que T es (p,q)-débil (con $q<\infty$) si para todo $\lambda>0$ existe C>0 tal que:

$$\nu(\{y \in Y : |(Tf)(y)| > \lambda\}) \le \left(\frac{C||f||_p}{\lambda}\right)^q.$$

ii. Se dice que T es (p, ∞) -débil si está acotado de $\mathcal{L}^p(X, \mu)$ en $\mathcal{L}^\infty(Y, \nu)$.

iii. Se dice que T es (p,q)-fuerte si está acotado de $\mathcal{L}^p(X,\mu)$ en $\mathcal{L}^q(Y,\nu)$.

Función de distribución

Sea (X, μ) un espacio de medida y sea $f: X \to \mathbb{C}$ una función medible. Se llama función de distribución de f asociadad a μ a la función:

$$a_f: (0, \infty) \to [0, \infty]$$

$$\lambda \to \mu(\{x \in X : |f(x)| > \lambda\})$$

Operador sublineal

Un operador T de un espacio vectorial de funciones medibles en funciones medibles se dice *sublineal* si

- $|T(f_1 + f_2)(x)| \le |T(f_1)(x)| + |T(f_2)(x)|.$
- $\blacksquare |T(\lambda f)(x)| = |\lambda||T(f)(x)|$ para todo $\lambda \in \mathbb{C}$

Función Maximal de Hardy-Littlewood

Sea B_r la bola euclidea centrada en el origen y de radio r. Definiremos la función maximal de Hardy-Littlewood de una función localmente integrable f en \mathbb{R}^n como:

$$\mathcal{M}f(x) = \sup_{r > 0} \frac{1}{|B_r|} \int_{B} |f(x - y)| dy$$

2. Resultados

Teorema. Sea $\{\phi_t | t > 0\}$ una aproximación de la identidad, entonces

$$\lim_{t \to 0} ||\phi_t * f - f||_p = 0,$$

para cualquier $f \in \mathcal{L}^p$, con $1 \le p < \infty$ y uniformemente (caso $p = \infty$) si f es continua y tiende a 0 en infinito, esto es, $f \in C_0(\mathbb{R}^n)$.

Como una consecuencia de este teorema, sabemos que existe una sucesión $\{t_k\}$ que depende de f tal que $t_k \to 0$ y

$$\lim_{k \to \infty} \phi_{t_k} * f(x) = f(x) \quad \text{c.t.p.}$$

Es por esto que si el límite $\lim_{t\to 0} \phi_t * f(x)$ existe, debe de ser igual a f(x) en casi todo punto. Más adelante se estudiará la existencia de este límite en general, no solo para una secuencia $\{t_k\}$.

Proposición. Sea T un operador (p,q)-fuerte, entonces T es (p,q)-débil.

Demostracón (idea). Denotemos por

$$E_{\lambda} = \{ y \in Y : |(Tf)(y)| > \lambda \},$$

luego se tiene que

$$\nu(E_{\lambda}) = \int_{E_{\lambda}} d\nu \le \int_{E_{\lambda}} \left| \frac{(Tf)(y)}{\lambda} \right|^{q} d\nu$$

$$\le \frac{1}{\lambda^{q}} \int_{Y} |(Tf)(y)|^{q} d\nu = \frac{1}{\lambda^{q}} ||Tf||_{q}^{q}$$

$$\le \frac{1}{\lambda^{q}} (C||f||_{p})^{q} = \left(\frac{C||f||_{p}}{\lambda}\right)^{q}.$$

Teorema. Sea $\{T_t\}$ una familia de operadores lineales en $\mathcal{L}^p(X,\mu)$, es decir,

$$T_t: \mathcal{L}^p(X,\mu) \to \mathcal{L}^p(X,\mu)$$

$$f \to T_t f$$

y definimos

$$T^*f(x) = \sup |T_t f(x)|.$$

Si T^* es (p,q)-débil, el conjunto

$$\{f \in \mathcal{L}^p | \lim_{t \to t_0} T_t f(x) = f(x) \text{ c.t.p}\}$$

es cerrado en \mathcal{L}^p .

Observaciones:

- T^* se llama operador maximal asociado a $\{T_t\}$.
- Como para las aproximaciones de la identidad conocemos la convergencia puntual hacía f para funciones de S, basta probar acotaciones débiles sobre el operador maximal $\sup_{t>0} |\phi_t * f(x)|$ para deducir la convergencia en casi todo punto para $f \in \mathcal{L}^p$, $1 \le p < \infty$, o para $f \in C^0$.

Proposición. Sea $\varphi:[0,\infty)\to[0,\infty)$ una función derivable y creciente tal que $\varphi(0)=0$, entonces:

$$\int_X \varphi(|f(x)|) d\mu = \int_0^\infty \varphi'(\lambda) a_f(\lambda) d\lambda.$$

Si en particular, $\varphi(\lambda) = \lambda^p$, entonces podemos concluir que:

$$||f||_{L^p}^p = p \int_0^\infty \lambda^{p-1} a_f(\lambda) \, d\lambda.$$

Teorema (Teorema de interpolación de Marcinkiewicz). Sean (X, μ) y (Y, ν) espacios medibles, $1 \le p_0 < p_1 \le \infty$, y tome T como un operador sublineal de $L^{p_0}(X, \mu) + L^{p_1}(X, \mu)$ a las funciones de medida de Y que es débil (p_0, p_0) y es débil (p_1, p_1) . Entonces T es fuerte (p, p) para $p_0 .$

Algunas consecuencias:

La función maximal establece un operador fuerte (∞, ∞) . Para ver esto, sea $f \in \mathcal{L}^{\infty}$, entonces para $x \in \mathbb{R}^N$ y r > 0 arbitrarios se tiene

$$\frac{1}{|B_r|} \int_{B_r} |f(x-y)| \, dy \le ||f||_{\infty}.$$

Luego tomando el supremo en r > 0, tenemos $\mathcal{M}f(x) \leq ||f||_{\infty}$. Ahora, como $x \in \mathbb{R}^N$ es arbitrario, se deduce que

$$\|\mathcal{M}f\|_{\infty} \le \|f\|_{\infty}.$$

Luego \mathcal{M} define un operador (∞, ∞) . En trabajos futuros estudiaremos el siguiente resultado.

Teorema. El operador \mathcal{M} es débil (1,1).

Como consecuencia del teorema de interpolación de Marcinkiewicz y lo anterior, tenemos que \mathcal{M} es un operador fuerte (p,p) para todo 1 .

Notemos que dada $f \in \mathcal{L}^1$, $\mathcal{M}f \in \mathcal{L}^1$ si y solo si f = 0. Por lo que no se espera la acotación fuerte en \mathcal{L}^1 .

3. Trabajo Futuro

- Demostrar que \mathcal{M} es débil (1,1). Para esto tendremos que estudiar conceptos como la función maximal diádica y la descomposición de Calderón-Zygmund.
- Una vez tengamos estos resultados, deduciremos el teorema de diferenciación de Lebesgue. Para esto usaremos el resultado enunciado antes para ver que

$$\mathcal{L}^{p} = \{ f \in \mathcal{L}^{p} \mid \lim_{r \to 0^{+}} \frac{1}{|B_{r}|} \int_{B_{r}} f(x - y) \, dy = f(x) \text{ c.t.p} \},$$

para $1 \le p < \infty$.

- Mostraremos que si ϕ es una función positiva, radial, decreciente (como función de $(0, \infty)$), entonces $\sup_t |\phi_t * f(x)| \le \|\phi\|_1 \mathcal{M}f(x)$. Como consecuencia tenemos que la función maximal $\sup_t |\phi_t * f(x)|$ es débil (1,1) y fuerte (p,p), $1 \le p \le \infty$. Este resultado permite generalizar (sin usar secuencias $\{t_n\}$) el resultado de convergencia mencionado anteriormente para aproximaciones de la identidad.
- Dado $1 \le p \le \infty$. Recordamos que el *espacio de Sobolev* $W^{1,p}(\mathbb{R}^N)$ comprende todas las funciones $f \in \mathcal{L}^p$ tales que f tiene gradiente débil y $\nabla f \in \mathcal{L}^p$. A este espacio se le asigna la norma

$$||f||_{W^{1,p}} = ||f||_{L^p} + ||\nabla f||_{L^p}.$$

La idea es estudiar artículos como el de Kinnunen (1997) donde se verifica que

$$\mathcal{M}: W^{1,p}(\mathbb{R}^N) \to W^{1,p}(\mathbb{R}^N)$$

establece un operador acotado cuando 1 .

4. Agradecimientos

Agradezco al Semillero de Análisis Armónico y Ecuaciones Diferenciales Parciales de la Universidad Nacional de Colombia - Sede Bogotá, especialmente a los docentes Ricardo Ariel Pastrán Ramírez y Oscar Guillermo Riaño Castañeda, quienes orientaron el proceso de desarrollo de este póster, tanto en la parte teórica como en la presentación del mismo.

Referencias

- [1] J. Duoandikoetxea, *Fourier Analysis*, Grad. Stud. Math., vol. 29, American Mathematical Society, Providence, RI, 2001, translated and revised from the 1995 Spanish original by D. Cruz-Uribe.
- [2] J. Kinnunen, *The Hardy-Littlewood maximal function of a Sobolev function*, Israel J. Math. 100 (1997), 117–124.
- [3] J. Kinnunen and P. Lindqvist, *The derivative of the maximal function*, J. Reine Angew. Math. 503 (1998), 161–167.