AP Physics 1: Algebra Based

Review for AP Exam Exam: Thursday, May 11th, 2023 @ 12PM

Exam Layout

Section I: 50 multiple choice, 1 hr 30 min Section II: 5 free response, 1 hr 30 min

- 1 Experimental Design question
- 1 Qualitative/Quantitative Translation question
- 1 Short Answer: Paragraph Argument question
 - 2 Short Answer questions

Materials

- Calculator
- ❖ No. 2 Pencils
- Pens with blue and black Ink
- A watch that doesn't make noise and no access to the internet (optional)
 - Straight-edge ruler (optional)

Exam Weight

- ❖ Kinematics: 12-18%
- ❖ Dynamics: 16-20%
- Circular Motion & Gravitation: 6-8%
 - ❖ Energy: 20-28%
 - ❖ Momentum: 12-18%
 - Simple Harmonic Motion: 4-6%
- ❖ Torque & Rotational Motion: 12-18%

Contents of Packet

Kinematics: Pages $4 \rightarrow 9$

Forces: Pages $10 \rightarrow 13$

Circular Motion: Pages $14 \rightarrow 20$

Energy: Pages 21 → 28

Momentum: Pages 29 → 30

Simple Harmonic Motion: Pages 31 → 34

Rotational Motion: Pages 35 → 39

There is a section for reference sheets at the end of the packet. Please tear off for easy use.

NOTES

Unit 1 → Kinematics

Measurements

- Scalar
 - o Magnitude (size) only
- Vector
 - o Magnitude AND direction

Adding Vectors

- Tail-to-tail
 - o Parallelogram
- Head-to-tail
 - Complete the triangle
- *R*→resultant vector; sum of 2 or more vectors

Measuring Length

- Distance (scalar)
 - Length of path traveled
- Displacement (vector)
 - o Straight line length from start to finish
- Fundamental unit
- Meters (m)

Speed and Velocity

- Speed (scalar)
 - Rate at which *distance* changes
- Velocity (vector)
 - Rate at which *displacement* changes
- Fundamental unit
 - Meters per second $(\frac{m}{s})$
- Reference table: $\underline{v_x} = \frac{\Delta x}{t} = \frac{v_{x0} + v_x}{2}$
 - Δx → change in position (*m*)
 - o v_{x0} —initial speed or velocity $(\frac{m}{s})$
 - $\circ v_x \rightarrow \text{ final speed or velocity } (\frac{m}{s})$
 - $\circ \quad \underline{v_x} \rightarrow \text{average speed or velocity } (\frac{m}{s})$

Acceleration (vector)

- Rate at which velocity changes
- Fundamental unit
 - Meters per second per second; meters per second squared; $(\frac{m}{s^2})$
- Direction
 - o Speeding up
 - Acceleration and motion in the *same* direction
 - Slowing down
 - Acceleration and motion in the *opposite* direction
- Reference table (some equations are simplified)

$$\circ \quad v_x = v_{x0} + a_x t$$

$$\circ \quad v_x^2 = v_{x0}^2 + 2a_x \Delta x$$

$$\circ \quad a_x \rightarrow$$
 acceleration in the x-direction

Free-Fall Motion

• Description of an object's motion when the only unbalanced force acting on it is gravity

- CONFINED TO Y-AXIS ONLY
- Depends on acceleration due to gravity (g)
- Does *not* depend on mass (m)
- Acceleration due to gravity
 - Varies planet to planet
 - Determined by planet
 - Same for ALL objects
 - Constant
- Time
 - Height determines time
 - Same height = same time
- Reference Table
 - Acceleration due to gravity = $g = -9.8 \frac{m}{s^2}$
 - On Earth ONLY
 - \blacksquare Different planets have different g values
 - Always points down (-) towards center of the planet
- Key terms
 - o Falls freely
 - Dropped
 - Released from rest
- Free-fall with v_{v0}
 - Key terms
 - Vertically/straight upward/downward
- Free-fall with v_i
 - At max height
 - Velocity = 0 m/s
 - Vertically when thrown up = velocity when it hits the ground
 - Only applied when starts and ends at same height
- Max height
 - Y-axis ONLY
 - $v_y = 0 \, m/s$
 - $a_v = -9.8 \, m/s^2$
 - $\Delta y = \text{height}$
 - $v_v^2 = v_{v0}^2 + 2a_v \Delta y$

Graphing Motion

- Important information
 - o Axis → tells you what information you're given
 - \circ Slope \rightarrow tells you how to break up your work
- Do individual slopes first; combine at the end

- Slope equation $\rightarrow \frac{y_2 y_1}{x_2 x_1} = \frac{\Delta y}{\Delta x}$
- Area under a graph
 - \circ Area = base \times height = $x \times y$
 - o Velocity vs. time
 - Area = Δx

Adding Vectors

At 0°

$$\circ$$
 $a+b=c$

• At 90°

$$\circ \quad a^2 + b^2 = c^2$$

$$\circ \quad c = \sqrt{a^2 + b^2}$$

• At 180°

$$\circ$$
 $a + -b = c$

• Resolution of vectors

$$\circ a_x + b_x = R_x$$

$$\circ \quad a_y + b_y = R_y$$

$$\circ R_x^2 + R_y^2 = R^2$$

- Steps
 - Add components
 - Find Resultants

Horizontal Projectile Motion

- Depends on...
 - \circ Acceleration due to gravity (g)
 - Air resistance (ignore it)
- Does *not* depend on...
 - Mass (m)
- Acceleration

- o Y-axis
 - Determined by gravity of the planet
 - Same for all objects
 - Constant
- X-axis
 - No jetpack, no air resistance
 - Constant a_x at $0 m/s^2$
- Time
 - X and Y axis
 - Height determines time
 - Same in both axis (scalar)
 - Same objects have the same time
- Key terms
 - Thrown horizontally
 - Fired horizontally
 - o ANYTHING horizontally
 - Range → horizontal displacement (Δx)

Angled Projectile Motion

- 45°
 - o Greatest range
 - o Longest horizontal displacement
- 30° or 60°
 - 45°±15°
 - o Same range
- 15° or 75°

- 45°±30°
- o Same range
- 90°
 - o Greatest height
- Relationships
 - o Greater angle, greater height, greater time
- Key terms
 - o At an *angle* above or below the horizontal
- Max height

$$\circ \quad v_y = 0 \, m/s$$

$$\circ \quad a_y = -9.8 \, m/s^2$$

$$\circ$$
 $\Delta y = \text{height}$

$$v_y^2 = v_{y0}^2 + 2a_y \Delta y$$

Unit $2 \rightarrow$ Forces

Newton's First Law

- An object stays at rest or in motion unless acted upon by an unbalanced force
 - \circ F_{net} is the overall net force which may be considered as unbalanced
- Inertia→Object's stubbornness to change
 - o Inertia = mass
- Mass (kg)→amount of matter in an object
 - Scalar quantity

Newton's Second Law

- Reference Table: $a = \frac{F_{net}}{m}$
 - Also can be written as $F_{net} = ma$
- Relationships
 - \circ $a \propto F_{net}$
 - \circ $m \propto F_{net}$
 - $\circ \quad a \propto \frac{1}{m}$
 - \circ $m \propto \frac{1}{a}$
- F_{net}→net force (N); unbalanced force; vector quantity
 - \circ $F_{net} = \sum F_{net}$
- F_{net} and a are always in the **same** direction

Newton's Third Law

- For every action there is an equal and opposite reaction
- Action→who creates the force
- Object→who experiences the force
- Action and reaction pairs are never the same object
- Effects of push and pull depend on the mass of object

Force

- Force is a push or pull
- Force acts on an object
- An agent causes the push or pull

Mass (m)

- Mass is the measure of the amount of matter in an object
 - o Scalar quantity measured in kilograms (kg)

MASS DOES NOT CHANGE BASED ON LOCATION

Weight (F_g)

- Represented by F_a
- Force of attraction between a planet and an object near its surface
- ALWAYS pulls towards the center of a planet
- ALWAYS attractive
- ALWAYS pulling down on us near the surface of a planet
- CAN change based on location
- Reference table: $g = \frac{F_g}{m}$
 - \circ Can also be written as $F_g=mg$
- $F_g \rightarrow$ gravitational force (N); vector
- $g \rightarrow$ acceleration due to gravity $(\frac{m}{s^2})$; vector

Normal Force (F_N)

- $F_N \rightarrow$ normal force
- Normal→perpendicular
- SUPPORTIVE FORCE between an object and a surface it's in contact with
- F_N = apparent weight
 - What we FEEL as weight is the ground pushing up
- When you are flat on a surface and *not* accelerating up or down
- $F_N = F_g$
- Weightless during free-fall
 - \circ $F_N = ON$
 - Nothing is supporting us

Friction

- Force caused by contact between 2 objects
- Reference table: $|F_f| \le \mu |F_N|$
 - F_f →force of friction (N); vectors
 - o μ \rightarrow coefficient of friction; always less than 1; NO UNITS
 - Motion

- Materials
- Lubrication

Kinetic Friction

- Moving friction
- Directed opposite motion
- If you are moving, force of friction is set to some value
 - $\circ \quad F_{f_{kinetic}} = \mu_{kinetic} F_N$
 - \blacksquare $F_f \propto F_N$

Static Friction

- Not moving; stationary
 - Static friction is stationary friction
- Directed opposite intended motion
- If you are *not* moving, your force of static friction will vary
- The harder you push, the harder the force of static friction pushes back
- There is a maximum force of static friction
- Once you reach the max, the object begins to move and transforms to kinetic friction
- $F_{f_{static}} \leq \mu_{static} F_N$

SHOUT IT OUT!!

- **CONSTANT VELOCITY**
- **❖** ZERO ACCELERATION
- $F_{net} = ON$
- **♦** EQUILIBRIUM

Equilibrium

- Forces are balanced
- Forces add up to 0
 - $\circ \quad \Sigma F_{net} = \mathit{ON}$
- Equalibriant
 - The force that creates equilibrium
 - Equal and opposite to the resultant of the forces; you are in balance

Unbalanced Forces

- Elevators
 - o Moving in the y-axis
 - o Mass and planet are constant
- F_N will vary
 - $\circ \quad \mathsf{If} \, F_N = F_g$
 - Balanced
 - Constant velocity
 - Up or down
 - $\circ \quad \text{If } F_N < F_g$
 - We feel lighter
 - Accelerating down
 - \blacksquare F_{net} is down
 - $\circ \quad \mathsf{If} \, F_N > F_g$
 - We feel heavier
 - Accelerating up
 - Moving up or down
 - \blacksquare F_{net} is up

Unit 3 → Circular Motion

Horizontal Circular Paths

- Uniform Circular Motion
 - o Constant, consistent, evenly applied speed
 - Uniform
 - Consistent, constantly, evenly applied
- Circular Motion
 - o Objects are moving in a curved path
 - How can we find the speed of an object as it moves through a circle?
 - o Reference Table

- T = period = time for one circle(s)
- \blacksquare As r increases, so does v
- Tangential Velocity
 - The direction of velocity is constantly changing
 - The direction is *tangent* to the circle
 - Speed is constant
 - Velocity is *not* constant
 - Change in direction therefore there is acceleration
- Centripetal Acceleration
 - o Reference Table

$$a_c = \frac{v^2}{r}$$

- a_c = centripetal acceleration (m/s^2)
- v = speed(m/s)
- r = radius (m)

- The force that causes an object to move toward the inside of a circle
 - Centripetal force is circular net force
 - Centripetal force causes centripetal acceleration
 - F_{net} produces a_c of circular motion

- Horizontal Circular Motion
 - Flat tabletop
 - o Car on a curve
 - o Record player
 - o Force of gravity DOES NOT directly play a role
 - o Particular Cases
 - Make towards the center of the circle positive (+)
 - Flat curve

$$F_{c} = F_{F}$$

$$F_{net_{x}} = F_{net_{x}}$$

$$F_{c_{x}} = F_{c_{x}}$$

$$ma_{c} = F_{F}$$

$$ma_{c} = \mu F_{N}$$

$$F_{net_{y}} = F_{net_{y}}$$

$$ma_{y} = \Sigma F_{y}$$

$$ON = F_{N} + F_{g}$$

$$F_{g} = F_{N}$$

$$ma_{c} = \mu F_{g}$$

$$a_{c} = \mu g$$

$$\frac{v^{2}}{r} = \mu g$$

- Conical pendulum
 - Object on a string

 F_c is a component of the tension force (F_T)

$$F_{net_x} = F_{net_x}$$

$$F_{c_x} = F_{c_x}$$

$$ma_c = \Sigma F_x$$

$$ma_c = F_{T_x}$$

$$F_{T_x} = F_{T_y} tan\theta$$

$$ma_c = F_{g} tan\theta$$

$$ma_c = mgtan\theta$$

$$a_c = gtan\theta$$

$$\frac{v^2}{r} = tan\theta$$

- Banked curve
 - F_c is a component of F_N
 - Proper banking angle indicates no friction
 - SAME SITUATION AS CONICAL PENDULUMS

$$F_{net_x} = F_{net_x}$$

$$F_{c_x} = F_{c_x}$$

$$ma_c = F_{N_x}$$

$$\begin{split} F_{net_y} &= F_{net_y} \\ ma_y &= \Sigma F_y \\ ON &= F_{N_y} + F_g \\ F_g &= F_{N_y} \\ F_{N_x} &= F_{N_y} tan\theta \\ &\qquad ma_c = F_g tan\theta \\ &\qquad \frac{mv^2}{r} = mgtan\theta \\ &\qquad \frac{v^2}{r} = gtan\theta \end{split}$$

Vertical Circular Paths

- Vertical Circular Motion
 - Examples
 - Roller Coaster loop
 - Driving over a bump
 - Walking
 - Force of gravity **DOES** play a *direct* role
- Particular Cases
 - Towards the center of the circle is positive (+)
 - o Bottom of a curve

$$F_{net_y} = F_{net_y}$$

$$F_{c_y} = F_{c_y}$$

$$ma_c = \Sigma F_y$$

$$ma_c = F_N + -F_g$$

o Top of a curve

$$F_{net_y} = F_{net_y}$$

 $F_{c_y} = F_{c_y}$
 $ma_c = \Sigma F_y$
 $ma_c = F_q + -F_N$

Top of a curve (upside-down)

$$F_{net_y} = F_{net_y}$$

$$F_{c_y} = F_{c_y}$$

$$ma_c = \Sigma F_y$$

$$ma_c = F_N + F_q$$

- Critical Speed
 - Slowest speed at which an object can complete a circle
 - At the top of a curve

$$\blacksquare$$
 $F_N = ON$

$$\bullet$$
 $F_N = F_a$

$$\frac{mv^{2}}{r} = F_{N} + F_{g}$$

$$\frac{mv^{2}}{r} = F_{g}$$

$$\frac{mv^{2}}{r} = mg$$

$$\frac{v^{2}}{r} = g$$

Vertical Circular Motion

Bottom of the Curve

Top of the Curve

F_g >F_N

Top of the Curve, Upside Down

Force of Gravity

- Long Rangeforce
 - No need for contact
 - o Extends to infinity
 - o Always attractive
- $F_g = mg$
 - \circ Force of attraction between Earth and another object on Earth

 - Weight
- $\bullet \quad F_g = G \frac{m_1 m_2}{r^2}$
 - o Force of attraction between 2 objects
 - \blacksquare m_1 and m_2
 - lacksquare G is the Universal Gravitation Constant

•
$$G = 6.67 \times 10^{-11} N \cdot \frac{m^2}{kg^2}$$

- Acceleration due to gravity

 - $\begin{array}{ll}
 \circ & |F_g| = F_g \\
 \circ & \frac{Gm_Pm_o}{r^2} = m_o g
 \end{array}$
 - $g = \frac{Gm_P}{r^2}$
 - m_P represents the mass of a planet
 - ullet m_o represent the mass of an object
- The Skeleton
 - Equation
 - $F_g = \frac{Gm_1m_2}{r^2}$
 - Skeleton
 - $\blacksquare \frac{(1)(\)(\)}{(\)^2}F_g$

Orbits

- Orbits
 - Vertical circular motion
 - o Objects are in free-fall
 - \blacksquare $F_c = F_g$
 - $a_c = g$
 - Period (*T*) is the time for one full revolution
- Period of an orbit

$$a_c = g$$

$$\frac{v^2}{r} = G \frac{m_P}{r^2}$$

$$u_c = g$$

$$\frac{v^2}{r} = G \frac{m_P}{r^2}$$

$$\frac{\left(\frac{2\pi r}{T}\right)^2}{r} = G \frac{m_P}{r^2}$$

$$T = \sqrt{\frac{4\pi^2 r^3}{Gm_P}}$$

$$T = \sqrt{\frac{4\pi^2 r^3}{Gm_P}}$$

Unit $4 \rightarrow \text{Energy}$

Understanding Energy

- ullet Total energy of a system is represented by: E_{total}
 - o Sum of all energies in a system
 - $\circ \quad E_{total} = K + U_g + U_s + Q$
- Energy transfer
 - Energy of one kind can be transformed into another
 - o Exchange of energy between a system and its environment
 - TYPES
 - Work
 - Mechanical transfer of energy (pushing and pulling)
 - Heat
 - Nonmechanical transfer of energy (temperature difference)
- Law of conservation of energy
 - Total energy of an isolated system is conserved
 - In an isolated system, there is no way of transferring energy in and out of the system
 - \circ $\Delta E = W$

Work

- Forces
 - o An external force occurs when work is done from outside of a system
 - An internal force occurs from forces within an object
 - Greatest force is done when force points in the same direction as displacement
 - \circ $F \rightarrow F_{\parallel}$ and F_{\perp}
 - \blacksquare F_{\parallel}
- F_{\parallel} can increase kinetic energy
- $F_{\parallel} = cos\theta$
- Relationship between work and displacement
 - o For a change in energy to occur, there must be a displacement
 - o Larger the displacement, greater the work done
 - \circ $d \propto W$ or $\Delta x \propto W$
 - o If force is constant, force will point in the same direction as displacement
- Relationship between work and force
 - Stronger the force, the greater the work done
 - \circ $F \propto W$
- Equations and units
 - \circ W = Fd or $W = F\Delta x$
 - \circ $W = F_{\parallel} d = Fdcos\theta$
 - \circ Newtons \cdot meters = $N \cdot m = Joules = J$
 - Joules (*J*) is the unit used for ALL forms of energy
 - \circ Sign of W is determined by the angle between force and displacement
 - $\circ \quad W = \Delta E_{total} = \Delta K + \Delta U_{g} + \Delta U_{s} + \Delta E_{th}$
 - $\circ W = \Delta E$
 - \blacksquare Expand to all forms when ΔE is equal to different types of energy
- Systems with NO work
 - Systems that undergo NO displacement
 - A force is perpendicular to the displacement
 - o Part of an object with a force undergoes no displacement

Kinetic Energy

- Understanding kinetic energy
 - o Depends on velocity of an object squared
 - o Must always be zero or positive
 - o NOT a vector, although velocity is
- An object's energy in motion
- Equation and units

$$\circ$$
 $W = \Delta K$

$$W = \Delta K = K - K_0 = K_{final} - K_{initial}$$

∘ *J* (Joules)

$$\circ \quad \Delta K = \frac{1}{2} m \Delta v^2$$

o Proving the formula using manipulation

$$v^2 = v_0^2 + 2a\Delta x$$

Substitute
$$a = \frac{F}{m}$$

$$v^2 = v_0^2 + \frac{2F\Delta x}{m}$$

Substitute $F\Delta x = W$

$$v^2 = v_0^2 + \frac{2W}{m}$$

$$W = \frac{1}{2}m(v^2 - v_0^2)$$

$$K_{final} = \frac{1}{2} m v_{final}^2$$

$$K_0 = \frac{1}{2}mv_0^2$$

$$\Delta K = \frac{1}{2}m\Delta v^2$$

If it starts from rest,

$$K = \frac{1}{2}mv^2$$

Potential Energy

- An object's stored energy
- Forces
 - Conservative forces
 - Interactive forces that store useful energy
 - Gravity and elastic forces
 - Mechanical energy is only conserved when conservative forces act upon it
 - o Nonconservative forces
 - Forces where energy is not stored
 - Friction
- Gravitational potential energy
 - Gravitational potential energy depends on height of an object, not path taken to the position
 - lacktriangle As an object is thrown up, ΔU_a increases because height increases
 - At its highest point, it will start to decrease
 - Equations

 - \blacksquare $W = \Delta U_q$
 - Proof of formula

$$U_g = U_{go} + W$$

Substitute $W = Fd = mg\Delta y$
 $U_g = U_{go} + mg\Delta y$
 $\Delta U_g = mg\Delta y$

- Elastic potential energy
 - Energy stored in compressed or extended springs
 - Hooke's Law

$$|F_s| = -k\Delta x$$

- Equations

 - \blacksquare $W = \Delta U_{\rm s}$
 - Proof of formula

$$W = F_s \Delta x$$

Substitute $F_s = k \Delta x$
 $W = (k \Delta x) \cdot \Delta x$
 $W = k \Delta x^2$

Substitute $W = \Delta U_s$ and halve the equation because some of the energy goes to the spring

$$\Delta U_s = \frac{1}{2} k \Delta x^2$$

Conservation of Energy

- Total energy of a system equals the energy transferred to or from systems of work
- Energy of an isolated system is conserved
- Mechanical energy

- o Sum of potential and kinetic energy of a system
- o Conserved if the isolated system DOES NOT have friction
- Equations

$$\circ \quad W = \Delta K + \Delta U_q + \Delta U_s + Q$$

$$\circ \quad E_{total} = U_g + K + Q + U_s$$

$$\circ \quad W_{friction} = Q = F_f d = F_d \Delta x$$

Heat

- HEAT IS THE SAME THING AS THERMAL ENERGY
- Sum of all microscopic potential and kinetic energies
 - Atoms move fast → higher temperature → higher kinetic energy
 - Further away from equilibrium → higher potential energy
- Describes the energy lost
- Internal energy describes the energy inside of a system
 - Friction is a type of internal energy
- Force is the force of kinetic friction

$$\circ$$
 $F = F_f$

- \blacksquare F is a force on the box
- lacksquare F_f is the frictional force
- Box is at a constant speed
- Equations

$$\circ \quad Q = \Delta E_{th} = F_k \Delta x$$

$$\circ \quad W = W_f = Q = \Delta E_{th}$$

o Proof of formula

$$W = F\Delta x$$

Substitute
$$F = F_k$$

$$W = F_f \Delta x$$

Substitute
$$W = Q$$

$$Q = F_f \Delta x$$

Q can further be expanded into more components

$$Q = \mu F_N \Delta x$$

When dealing along the y-axis, F_N may be substituted for F_q

$$Q = \mu F_g \Delta x$$

$$Q = \mu m g \Delta x$$

Power

- Rate at which energy is transferred
- Equations

$$\circ \quad P = \frac{\Delta E}{\Delta t}$$

○ W (watts)

■
$$\frac{J}{s}$$
 (Joules per second)

Proof of formula

To find the power of each type of energy use the general formula,

$$P = \frac{\Delta E}{\Delta t}$$

FInd P_W by substituting $\Delta E = W$

$$P_W = \frac{W}{\Delta t}$$

Substitute $W = F\Delta x$

$$P_W = \frac{F\Delta x}{\Delta t}$$

$$P_W = F \frac{\Delta x}{\Delta t}$$

$$P_W = F \frac{\Delta x}{\Delta t}$$
Substitute $\frac{\Delta x}{\Delta t} = v$

$$P_W = Fv$$

Find P_K by substituting $\Delta E = \Delta K$

$$P_K = \frac{\Delta K}{\Delta t}$$

Substitute $\Delta K = \frac{1}{2} m \Delta v^2$

$$P_K = \frac{\frac{1}{2}m\Delta v^2}{\Delta t}$$

$$P_K = \frac{m\Delta v^2}{2\Delta t}$$

Find P_g by substituting $\Delta E = \Delta U_g$

$$P_g = \frac{\Delta U_g}{\Delta t}$$

Substitute $U_g = mg\Delta y$

$$P_g = \frac{mg\Delta y}{\Delta t}$$

$$P_g = mg \frac{\Delta y}{\Delta t}$$

Substitute $\frac{\Delta y}{\Delta t} = v$

$$P_q = mgv$$

Find P_s by substituting $\Delta E = \Delta U_s$

$$P_S = \frac{\Delta U_S}{\Delta t}$$

Substitute $\Delta U_s = \frac{1}{2}k\Delta x^2$

$$P_{S} = \frac{\frac{1}{2}k\Delta x^{2}}{\Delta t}$$

$$P_{S} = \frac{k\Delta x^{2}}{2\Delta t}$$

"Skeletons"

- Kinetic Energy
 - $\circ \quad K = \frac{1}{2}mv^2$
 - $\circ K(1)()()^2$
 - $\circ \quad \Delta K(1)()()^2 ()_0^2$
- Potential Energy
 - o Gravitational Potential Energy
 - $\blacksquare \quad U_g = mg\Delta y$
 - \blacksquare $U_g()()()$
 - o Elastic Potential Energy

 - $U_s(1)()()^2$
- Work
 - $\circ \quad W = F \Delta x$
 - ∘ *W*()()
- Heat
 - $\circ \quad Q = F_f \Delta x$
 - ∘ Q()()

Applying Formulas

• Linear Motion

$$\Delta K = \Delta U_g$$

$$\Delta K = \Delta U_g$$

$$\frac{1}{2} m \Delta v_y^2 = mg \Delta y$$
 Substitute $g = a_y$
$$\frac{1}{2} m \Delta v_y^2 = ma_y \Delta y$$
 Cancel m
$$\frac{1}{2} \Delta v_y^2 = a_y \Delta y$$
 Solve for v_y^2
$$\Delta v_y^2 = 2a_y \Delta y$$
 Expand $\Delta v_y^2 = (v_y^2 - v_{y_0}^2)$
$$v_y^2 - v_{y_0}^2 = 2a_y \Delta y$$

$$v_y^2 = v_{y_0}^2 + 2a_y \Delta y$$

- O Why does this work?
 - The masses cancel each other out, therefore indicating mass is not a determining factor in the equation
 - It describe the velocity and acceleration over a certain distance

Unit $5 \rightarrow Momentum$

Momentum

- An object's "stop-ability"
 - The more momentum, the starter to stop
- Two factors
 - Mass and velocity
- Examples
 - o Nickel vs. bullet
 - o Kickball vs. bowling ball
- Reference table and Equations
 - \circ p = mv

 - Momentum and velocity are vectors
- Change of momentum
 - o An individual object can have a change in momentum
 - $\circ \quad \Delta p_x = p_x p_{x_0}$
 - $\circ \quad \Delta p_x = m \Delta v_x = m(v_x v_{x_0})$

Impulse

- Means change in momentum
- When we change momentum, or impart an impulse, we change object velocity
 - O How do we change an object's velocity?
 - Exert a force on it!
- Represented by Δp , I, or J
- Reference table and Equations
 - $\circ \quad \Delta p = F \Delta t$
 - $\blacksquare \quad m\Delta v = m(v v_0)$
 - o Impulse is a vector
 - $\circ kg \times \frac{m}{s} = kg \frac{m}{s}$
- When two objects interact...
 - \circ Same F_{net} on each action/reaction
 - \circ Same amount of time (t)
 - o Each object receives the *same* impulse (change in momentum)
- Collision
 - Short duration interaction between objects
 - Time to COMPRESS and time to EXPAND
 - Perfectly elastic
 - Bounce apart
 - Perfectly inelastic
 - Stick together

Conservation of momentum

- Impulse and change in momentum
 - o Exerts a force over time
 - Accelerate an object
 - Change the velocity
 - o Change its momentum
- Conservation
 - 2 or more objects collide
 - Colliding
 - Exploding apart
 - o Individual momentum changes
 - o Total momentum remains the same
- Types of Collisions
 - o Perfectly elastic collision
 - No object deformation
 - o Inelastic collision
 - Object deforms to a certain degree
 - o Perfectly inelastic collision
 - Objects stick together
- Conservation of momentum
 - o Total momentum of an isolated system is constant
 - o Interactions within the system do not change the total momentum
- Equations and the reference table
 - \circ $p_{total\ before} = p_{total\ after}$
- Scenarios
 - 1→2

 $p_{total\ before} = p_{total\ after}$

$$p_{AB} = p_A + p_B$$

$$m_{AB}v_{AB} = m_A v_A + m_B v_B$$

○ 2→1

 $p_{total\ before} = p_{total\ after}$

$$p_A + p_A = p_{AB}$$

$$m_A v_A + m_B v_B = m_{AB} v_{AB}$$

 \circ 2 \rightarrow 2

$$p_{total\ before} = p_{total\ after}$$
 $p_A + p_B = p_A + p_B$
 $m_A v_A + m_B v_B = m_A v_A + m_B v_B$

Unit 6 → Simple Harmonic Motion

Period of a simple harmonic motion

- Definitions
 - Simple Harmonic Motion
 - A repeated constant motion around a single point
 - Oscillation
 - A type of simple harmonic motion
 - Regular, repeated, variation in a position around a singular point
 - **Equilibrium Position**
 - The central point about which an object oscillates
 - Frequency
 - Number of waves, cycles, oscillations, or disturbances per unit of time

- Units: cps, Hz, s^{-1}
- Period
 - Time for one complete wave, cycle, oscillation, or disturbance

$$T = \frac{time}{\#of\ waves, oscillations, or\ disturbances}$$

- Linear restoring force
 - lacktriangle The F_{net} that forces the object back to its equilibrium position
- Reference Table
 - General period

$$T = \frac{2\pi}{\omega} = \frac{1}{f}$$

- T = period
- $\omega = \text{angular speed/angular frequency (rad/s)}$

$$\circ \quad \omega = 2\pi f$$

- f = frequency(Hz)
- Period of a pendulum

$$T_P = 2\pi \sqrt{\frac{\ell}{g}}$$

- T_P = period of the pendulum (s)
 ℓ = length of the string (m)
- $g = acceleration due to gravity (\frac{m}{c^2})$
- Period of a spring

$$T_S = 2\pi \sqrt{\frac{m}{k}}$$

- $T_S = period \ of \ the \ spring \ (s)$
- $k = spring \ constant \ (\frac{N}{m})$
- m = mass(kg)

- What's happening, where?
 - o At maximum displacement from equilibrium
 - Amplitude = maximum
 - \blacksquare $F_{net} = \text{maximum}$
 - Acceleration = maximum
 - Velocity = zero
 - At equilibrium
 - Amplitude = zero
 - $F_{net} = zero$
 - Acceleration = zero
 - Velocity = maximum
- Reference Table
 - THESE EQUATIONS MUST BE IN RADIAN MODE
 - Position of an object
 - $\mathbf{x} = A\cos(2\pi ft)$
 - x = position(m)
 - A = amplitude(m)
 - f = frequency(Hz)
 - t = time(s)
 - Velocity and acceleration
 - Base
 - $v(x) = 2\pi f x$
 - $\bullet \quad a(x) = (2\pi f)^2 x$

$$\circ$$
 $a(x) = \omega^2 x$

- At maximum
 - $v(max) = 2\pi f A$
 - $a(max) = (2\pi f)^2 A$

$$\circ \quad a(max) = \omega^2 A$$

Energy of a simple harmonic motion

- Energy in a simple harmonic motion
 - o Only applies to springs
 - o Potential energy is based on position
 - The greater the distance from equilibrium, the greater the stored energy
 - o Kinetic energy is based on speed
 - The greater the speed, the greater the kinetic energy
- Reference Table
 - o At base

$$K = \frac{1}{2}mv^2$$

$$U_s = \frac{1}{2}kx^2$$

o At maximum

$$K_{max} = \frac{1}{2} m v_{max}^2$$

$$U_{s_{max}} = \frac{1}{2}kA^2$$

Scenarios at Equilibrium

Dandulu

Vertical Spring

Horizontal Spring

Unit 7 → Rotational Motion

Rotational Motion

- Rotational Motion
 - The motion of objects that spin about an axis
 - Variables are assigned new types of equations using properties of rotation such as the radius
- Arc Length
 - Distance the object has traveled around its circular path
 - o Formula
 - $\mathbf{s} = \theta r = \Delta x$
 - $s = arc \ length \ (m)$
 - r = radius(m)
 - $\theta = angular position (rad)$
 - The arc length around one full circle is the circumference
- Sign Convention
 - Counterclockwise is positive (+)
 - Clockwise is negative (-)
- Angular Position
 - \circ Represented by θ and $\Delta\theta$, measured in radians or rad
 - \circ Rotational equivalent to x and Δx , which are measured in meters
- Angular Velocity
 - \circ Rate at which angular position changes, measured in rad/s
 - Uniform circular motion = constant angular velocity
 - \circ Represented by lowercase omega, ω
 - o Formula
 - \circ Rotational equivalent to v_x , which is measured in m/s
 - May also be called angular speed or angular frequency
- Angular Acceleration
 - Rate at which angular velocity changes
 - \circ Represented by lowercase alpha, α
 - o Formula
 - \circ Rotational equivalent to a_x , which is m/s^2

• Converting Equations

$$\circ \quad \omega = \omega_0 + \alpha t$$

$$\blacksquare \quad \mathsf{Was} \; v_{x} = v_{x_0} + at$$

$$\circ \quad \Delta\theta = \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\circ \quad \omega^2 = \omega_0^2 + 2\alpha\Delta\theta$$

$$\blacksquare \quad \text{Was } v_x^2 = v_{x_0}^2 + 2a_x \Delta x$$

- Velocities
 - \circ Angular speed (ω)
 - \circ Tangential velocity (v_t)
 - Tangent to the circle
 - $\mathbf{v}_t = \omega r$
- Accelerations
 - \circ Angular acceleration (α)
 - \circ Tangential acceleration (a_t)
 - Tangent to the circle
 - $a_t = \alpha r$
 - \circ Centripetal acceleration (a_c)

Concepts of Rotational Motion

Rotational Forces

- Moment of Inertia
 - An object rotating wants to stay rotating and an object not rotating wants to stay not rotating unless acted upon by an unbalanced torque
 - The resistance to change in rotation
 - Stubbornness
 - o Depends on...
 - Mass
 - Axis of rotation
 - o Greater the radius, greater the moment of inertia
 - Equations
 - NOT IN THE REFERENCE TABLE

 - $I_{collection \ of \ particles} = m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2 + ...$
 - $I = moment \ of \ inertia \ (kg \cdot m^2)$
- Torque
 - A rotational force
 - Depends on...
 - Magnitude of force
 - Distance from pivot
 - Angle of force
 - Equations
 - ON the reference table
 - - $\tau = torque(N \cdot m)$
 - r = distance from pivot (m)
 - o The Set Up

$$\begin{aligned} \tau_{net} &= \tau_{net} \\ &I\alpha &= \Sigma \tau \\ I\alpha &= \tau_1 + \tau_2 + \tau_3 + \dots \end{aligned}$$

- Center of gravity
 - \circ $au_{net} = \mathit{ON}$ when the pivot point is the center of gravity
 - o BALANCED
 - Equations

$$x_{cg} = \frac{x_1 m_1 + x_2 m_2 + x_3 m_3 + \dots}{m_1 + m_2 + m_3 + \dots}$$

$$y_{cg} = \frac{y_1 m_1 + y_2 m_2 + y_3 m_3 + \dots}{m_1 + m_2 + m_3 + \dots}$$

- Constraints due to ropes and pulleys
 - Non Slipping rope
 - $\circ v_{obj} = \omega R$
 - Rim speed
 - $\circ \quad a_{obj} = \alpha R$
 - Rim acceleration

Rotational Momentum

- Angular momentum
 - $\circ \quad L = angular \ momentum \ (kg \cdot m^2/s)$
 - Equations
 - $L = I\omega$

 - $L_{total\ before} = L_{total\ after}$
- Conservation of angular momentum
 - Relationships
 - When radius decreases, moment of inertia increases
 - When moment of inertia decreases, angular momentum decreases
 - o Zero total momentum
- Transfer of angular momentum
 - \circ $L = r_{\perp}p = prsin\theta = mvrsin\theta$
 - Relationship between linear and angular momentum

Rotational Energy

- Rotational kinetic energy
 - \circ $K_{rot} = rotational kinetic energy (J)$
 - o Equations
 - $\qquad K_{rot} = \frac{1}{2}I\omega^2$
 - $\blacksquare \quad E_T = E_T \to U_g = K + K_{rot}$

Good luck on your exam!

Get that 5! You got this!

ADVANCED PLACEMENT PHYSICS 1 EQUATIONS, EFFECTIVE 2015

CONSTANTS AND CONVERSION FACTORS

Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$

Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$

Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Speed of light, $c = 3.00 \times 10^8 \text{ m/s}$

Electron charge magnitude, $e = 1.60 \times 10^{-19} \text{ C}$

Coulomb's law constant, $k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$

Universal gravitational

vitational constant, $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$

Acceleration due to gravity at Earth's surface,

 $g = 9.8 \text{ m/s}^2$

	meter,	m	kelvin,	K	watt,	W	degree Celsius,	°C
UNIT	kilogram,	kg	hertz,	Hz	coulomb,	C		
SYMBOLS	second,	S	newton,	N	volt,	V		
	ampere,	Α	joule,	J	ohm,	Ω		

PREFIXES				
Factor	Prefix	Symbol		
10 ¹²	tera	T		
10 ⁹	giga	G		
10 ⁶	mega	M		
10 ³	kilo	k		
10^{-2}	centi	c		
10^{-3}	milli	m		
10^{-6}	micro	μ		
10^{-9}	nano	n		
10^{-12}	pico	p		

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	∞

The following conventions are used in this exam.

- I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- II. Assume air resistance is negligible unless otherwise stated.
- III. In all situations, positive work is defined as work done on a system.
- IV. The direction of current is conventional current: the direction in which positive charge would drift.
- V. Assume all batteries and meters are ideal unless otherwise stated.

ADVANCED PLACEMENT PHYSICS 1 EQUATIONS, EFFECTIVE 2015

MECHANICS

$v_x = v_{x0} + a_x t$	a = acceleration
	A = amplitude

$$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$$
 $d = \text{distance}$
 $E = \text{energy}$

$$f = v^2 + 2a (r - r_0)$$
 $f = frequency$

$$F_{x}^{2} = v_{x0}^{2} + 2a_{x}(x - x_{0})$$
 F = force

$$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$$
 $f = \text{frequency}$
 $\vec{a} = \frac{\sum \vec{F}}{m} = \frac{\vec{F}_{net}}{m}$ $I = \text{rotational inertia}$
 $I = \text{rotational inertia}$ $I = \text{rotationa$

$$|\vec{F}_f| \le \mu |\vec{F}_n|$$
 $k = \text{spring constant}$ $L = \text{angular momentum}$

$$|F_f| \le \mu |F_n|$$
 $\ell = \text{length}$

$$a_c = \frac{v^2}{r}$$
 $m = \text{mass}$
 $P = \text{power}$
 $p = \text{momentum}$

$$\vec{p} = m\vec{v}$$
 $r = \text{radius or separation}$

$$\Delta \vec{p} = \vec{F} \Delta t$$
 $T = \text{period}$ $t = \text{time}$

$$K = \frac{1}{2}mv^2$$
 $U = \text{potential energy}$
 $V = \text{volume}$
 $v = \text{speed}$

$$\Delta E = W = F_{\parallel} d = F d \cos \theta$$
 $W = \text{work done on a system}$

$$P = \frac{\Delta E}{\Delta t}$$
 $x = position$ $y = height$

$$\alpha$$
 = angular acceleration

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$
 $\mu = \text{coefficient of friction}$
 $\theta = \text{angle}$

$$\omega = \omega_0 + \alpha t$$
 $\rho = \text{density}$
 $\tau = \text{torque}$

$$x = A\cos(2\pi ft)$$
 $\omega = \text{angular speed}$

$$\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I} \qquad \Delta U_g = mg \, \Delta y$$

$$\tau = r_{\perp}F = rF\sin\theta$$

$$L = I\omega$$

$$T = \frac{2\pi}{\omega} = \frac{1}{f}$$

$$L = I\omega$$

$$\Delta L = \tau \, \Delta t \qquad T_s = 2\pi \sqrt{\frac{m}{k}}$$

$$K = \frac{1}{2}I\omega^2$$

$$T_p = 2\pi\sqrt{\ell}$$

$$K = \frac{1}{2}I\omega^2 \qquad T_p = 2\pi\sqrt{\frac{\ell}{g}}$$

$$\begin{aligned} |F_s| &= k|x| \\ U_s &= \frac{1}{2}kx^2 \end{aligned} \qquad |\vec{F}_g| = G\frac{m_1 m_2}{r^2}$$

$$U_s = \frac{1}{2}kx^2$$

$$\rho = \frac{m}{V}$$

$$\vec{g} = \frac{\vec{F}_g}{m}$$

$$U_G = -\frac{Gm_1m_2}{r}$$

ELECTRICITY

$$|\vec{F}_E| = k \left| \frac{q_1 q_2}{r^2} \right|$$
 $A = \text{area}$
 $F = \text{force}$
 $I = \text{current}$
 $\ell = \text{length}$
 $\ell = \text{power}$
 $\ell = \text{power}$

$$R = \frac{r}{A}$$
 $R = \text{resistance}$
 $I = \frac{\Delta V}{R}$ $t = \text{time}$

$$P = I \Delta V$$
 $V = \text{electric potential}$
 $\rho = \text{resistivity}$

$$R_s = \sum_{i} R_i$$

$$\frac{1}{R_p} = \sum_{i} \frac{1}{R_i}$$

WAVES

$$\lambda = \frac{v}{f}$$
 $f = \text{frequency}$
 $v = \text{speed}$
 $\lambda = \text{wavelength}$

GEOMETRY AND TRIGONOMETRY

Rectangle	A = area
A = bh	C = circumference

$$V = \text{volume}$$
Triangle $S = \text{surface area}$

Triangle
$$S = \text{surface area}$$

$$A = \frac{1}{2}bh \qquad b = \text{base}$$

$$h = \text{height}$$

$$\ell = \text{length}$$

Circle
$$w = \text{width}$$

 $A = \pi r^2$ $r = \text{radius}$
 $C = 2\pi r$

Rectangular solid
$$V = \ell wh$$
 Right triangle $c^2 = a^2 + b^2$

Cylinder
$$\sin \theta = \frac{a}{c}$$

$$V = \pi r^{2} \ell$$

$$S = 2\pi r \ell + 2\pi r^{2}$$

$$\cos \theta = \frac{b}{c}$$

$$V = \pi r^{2} \ell$$

$$S = 2\pi r \ell + 2\pi r^{2}$$

$$\cos \theta = \frac{b}{c}$$

$$\tan \theta = \frac{a}{b}$$

Sphere
$$\tan \theta = \frac{a}{b}$$

 $V = \frac{4}{3}\pi r^3$ C
 $S = 4\pi r^2$ θ 90°_{\square}

Unit 7: Rotation Supplementary Reference Table

$$s = \theta r = \Delta x$$

$$v_t = \omega r$$

$$a_t = \alpha r$$

$$I_{collection of particles} = \sum m_i r_i^2$$

$$x_{cg} = \frac{x_1 m_1 + x_2 m_2 + x_3 m_3 + \cdots}{m_1 + m_2 + m_3 + \cdots}$$

$$y_{cg} = \frac{y_1 m_1 + y_2 m_2 + y_3 m_3 + \cdots}{m_1 + m_2 + m_3 + \cdots}$$

$$L = pr \sin \theta = mvr \sin \theta$$

TABLE 7.1 Moments of inertia of objects with uniform density and total mass M

Object and axis	Picture	1	Object and axis	Picture	I
Thin rod (of any cross section), about center		$\frac{1}{12}ML^2$	Cylinder or disk, about center	R	$\frac{1}{2}MR^2$
Thin rod (of any cross section), about end		$\frac{1}{3}ML^2$	Cylindrical hoop, about center	R	MR ²
Plane or slab, about center		$\frac{1}{12}Ma^2$	Solid sphere, about diameter	R	$\frac{2}{5}MR^2$
Plane or slab, about edge		$\frac{1}{3}Ma^2$	Spherical shell, about diameter	R	$\frac{2}{3}MR^2$