Robótica Sensores y Actuadores Curso 2019-2020

Departamento de Arquitectura y tecnología de Computadores

Faculta de Informática
Universidad del País Vasco-Euskal Herriko
Unibertsitatea

Créditos y horario

Profesores:

- Julio Abascal. Despacho 248. julio.abascal@ehu.es. Tel: 943018067
- Xabier Gardeazabal. Laboratorio Egokituz. Tel: 943015113

Créditos:

- Teóricos: 2 (20 horas lectivas)
- Prácticos: 4 (10 horas de prácticas en clase y 30 horas lectivas en el laboratorio)

Horarios

Clases:

Martes 17:15-19:15Viernes 15:00-17:00

- Distribución de las clases:
 - Teoría: (30'-60')
 - Prácticas: (60'-90')
- Tutorías:
 - Martes, miércoles y jueves: 9:00-11:00

Lugar de impartición:

Laboratorio de Robótica: I.1.3 (Informatika Fakultatea)

Objetivos

- Introducir a los/as alumnos/as de Informática en los aspectos teórico-prácticos de la Robótica.
 - Dada la formación previa y los objetivos del alumnado de Informática se tratará de minimizar el aparato matemático que da soporte a la robótica (por ejemplo, el cálculo de trayectorias, la solución de los problemas cinemática y dinámico, directo e inverso, etc.).
- Objetivos específicos:
 - Introducción general a la robótica
 - Instalación y programación de sensores y actuadores
 - Programación de robots móviles y brazos articulados
 - Desarrollo de software (portable) multi-robot
 - Interacción persona-robot

Temario

Te ma	Teoría	Pr.	Prácticas
1	Presentación e Introducción a la robótica. Tipos de robots	1	Introducción a la programación de Rapsberri Pi2
2	Sensores	2	Programación de iRobot
3	Actuadores	3	Programación de sensores y actuadores de iRobot
4	Transmisiones	4	Localización y navegación mediante marcas
5	Reducciones	5	iRobot: seguimiento de marcas y evitación de obstáculos
6	Control en lazo cerrado	6	iRobot: navegación por dead recogning
7	Introducción a los robots móviles. Tipos de robots móviles	7	iRobot: planificación: laberinto
8	Robots móviles: locomoción		
9	Robots móviles: localización		
10	Robots móviles: navegación		
11	Robots móviles: planificación		
12	Brazos articulados. Características mecánicas. Programación del brazo articulado		
13	Estática, cinemática y dinámica del brazo articulado		
14	Software multirobot. Introducción a ROS		
15	Interacción persona-robot. Telepresencia y telemanipulación		

Créditos: 6. Nº de clases: 27. Horas de clase: 54.

Bibliografía

BIBLIOGRAFÍA					
Materiales					
Bibliografía Básica	 Corke P. Robotics, Vision and Control. Springer, 2013. [versión electrónica disponible en la Biblioteca de la UPV/EHU] Correll N. Introduction to Autonomous Robots. 2016. [Descargar de: https://github.com/correll/Introduction-to-Autonomous-Robots/releases/download/1.8/book.pdf] Monk s. Raspberry Pi Cookbook. O'Reilly Media 2013. [+http://razzpisampler.oreilly.com/] Barrientos L. F., Peñin C., Balaguer, R. Aracil. Fundamentos de Robótica. McGraw-Hill, 1997. 				
Bibliografía de Profundización	 Latombe JC. Robot Motion Planning. Kluwer Academic Pub, 1991. Fu, K.S. et al. Robótica: Control, Detección, Visión e Inteligencia. McGraw Hill, 1988. Paul R. P. Robot Manipulators. Mathematics, Programming and Control. MIT Press, 1981. H. Choset ety al. Principles of Robot Motion. Theory, Algorithms and Implementation. MIT press. 2001. McFarland D, Bösser T. Intelligent behaviour in Animals and Robots. MIT Press, 1993. 				
Revistas	 International Journal of Advanced Robotic Systems (free, on-line) Robotics and Autonomous Systems Advanced Robotics 				
Direcciones de interés en Internet	 Raspberry Pi Cookbook by Simon Monk. http://razzpisampler.oreilly.com/ Scorbot-ER V+: http://www.intelitek.com/ iRobot for Developers and educators. http://store.irobot.com/deved/ 				

Calendario

2019

SEPTIEMBRE / IRAILA

Nº LU MAR MIE JU VI
2 3 4 5 6
1 9 10 11 12 13
2 16 17 18 19 20
3 23 24 25 26 27
4 30

	OCTUBRE / URRIA							
Nº	LU	MAR	MIE	JU	VI			
4		1	2	3	4			
5	7	8	9	10	11			
6	14	15	16	17	18			
7	21	22	23	24	25			
8	28	29	30	31				

	NOVIEMBRE / AZAROA					
Nº	LU MAR		MIE	JU	VI	
8					1	
9	4	5	6	7	8	
10	11	12	13	14	15	
11	18	19	20	21	22	
12	25	26	27	28	29	
Fiesta de la Faculta						

Lehenengo lauhilekoa / Primer cuatrimestre

Neguko oporra / Vacaciones Invierno

Evaluación

Para quienes asistan a más del 75% de las clases y entreguen los trabajos intermedios

Prácticas: NP -> 60% de la nota final

- Informe escrito, y presentación oral de cada una de las prácticas.
- Examen escrito de las prácticas

Teoría: NT -> 40% de la nota final

Examen escrito de la materia impartida (ET)

Para hacer la media:

NFinal =
$$0.6 \text{ NP} + 0.4 \text{ ET} \Leftrightarrow \text{NP} > 4 \text{ y ET} > 4$$

Evaluación

Para quienes asistan a menos del 75% de las clases o no entreguen los trabajos intermedios:

- Examen final compuesto por:
 - una práctica de laboratorio diferente de las de clase (que desarrollarán en el propio laboratorio durante un día) (60%)
 - Manuales Raspberry Pi 2
 - Manuales del iRobot
 - Manuales del Scorbot-er V+
 - un examen teórico (40%) sobre la siguiente bibliografía:
 - Barrientos L. F., Peñín C., Balaguer, R. Aracil. Fundamentos de Robótica. McGraw-Hill, 1997.
 - Jones J.L., Flynn A. M. Mobile Robots. Inspiration to Implementation. A. K. Peters, 1993.

Organización y normas de funcionamiento del Laboratorio de Robótica

En clase de RSA

- No se puede
 - usar el teléfono (absolutamente para nada)
 - usar el ordenador de prácticas para nada que no sea la práctica que se está realizando (por ejemplo, revisar el correo electrónico)
 - comer
 - llegar tarde

RSA: Materiales de clase

- Los materiales de cada tema estarán en eGela.
- En clase se presentarán solamente los aspectos más importantes de cada tema:
 - cada uno/a debe trabajar por su cuenta y plantear en clase lo que no entienda.
 - es importante tomar apuntes:
 - en clase se enfatizan los aspectos más importantes (que suelen aparecer en los exámenes).
 - ayudan a la atención y a la concentración.

Clases teóricas y laboratorios de RSA

- Esta asignatura se distribuye en:
 - 2 créditos (20 horas) de teoría y 4 de prácticas (40 horas).
 - Cada alumno debe dedicar por su cuenta: 90 horas de trabajo.
 - En 2019-2020 tenemos asignadas 28 clases de 2 horas.
- La mayoría del trabajo de la asignatura se desarrollará en el laboratorio en horas de clase:
 - Cuando una práctica no se pueda terminar en clase, se podrá usar el laboratorio fuera de horas de clase (siempre que no esté ocupado por otra asignatura).

Programación en RSA

- Las prácticas se harán en C y C++ utilizando en entorno NetBeans
- Se da por supuesto que los/as alumnos/as matriculados/as saben programar en C:
 - no se resolverán problemas de programación en el laboratorio
- Conviene utilizar las técnicas de ingeniería del software y las herramientas que ofrece NetBeans:
 - Por ejemplo, haced copias de cada programa que funcione.
- En la evaluación se valorará la claridad del código:
 - Modularidad y reutilización.
 - Estructuración y comentarios.

Programación de robots en RSA

- Los robots son máquinas complejas, dependientes del contexto, que frecuentemente se comportan como no deterministas (el mismo conjunto de entradas no produce las mismas salidas):
 - La prueba repetida de programas no garantiza su validez: el argumento "ayer funcionaba perfectamente" no es válido en esta signatura.
 - En robótica es necesario tener paciencia.

Desarrollo de las prácticas de RSA

- Grupos de prácticas:
 - Las prácticas se realizarán en grupos de 2 personas.
- Asistencia a las prácticas:
 - es obligatoria.
 - si se asiste a menos del 75% de las prácticas se va directamente a un examen teórico-práctico.
- Durante las prácticas:
 - se puede hablar pero no gritar.
 - no se debe hacer ruido.
 - hay que levantarse lo menos posible.

Desarrollo de las prácticas de RSA

- Para cada práctica cada grupo dispondrá de:
 - Un documento de descripción del hardware y el software que se utiliza, su instalación y mantenimiento, etc.
 - Un documento que describe los objetivos y el modo de desarrollar la práctica. Suele incluir una plantilla en C con las estructuras de datos que se deben usar y las funciones que hay que desarrollar.
 - Una placa Raspberry Pi 2, un robot móvil iRobot y materiales de conexión.

Desarrollo de las prácticas de RSA

- Cada grupo es responsable del cuidado y mantenimiento de su hardware:
 - Hay que tener cuidado con los cables de conexión. Son artesanales y no tenemos repuestos.
 - Hay que mantener cargada la batería de iRobot (normalmente lo dejaremos cargándose entre clase y clase).

Evaluación de las prácticas de RSA

- La evaluación de las prácticas constará de:
 - Informe de realización de la práctica:
 - Debe ser escueto y claro. Por ejemplo, evitar repetir lo que se explica en la descripción de la práctica que se os entrega.
 - Debe contener los fuentes de los programes desarrollados.
 - Demostración ante el profesor de los programas desarrollados.
 - Examen escrito sobre el contenido de la práctica.

Evaluación de las prácticas de RSA

- Criterios de evaluación:
 - Se valorará la claridad del código: modularidad, reutilización, estructuración y comentarios.
 - Cada práctica tendrá diferentes niveles de dificultad. La nota será relativa a los niveles alcanzados.
 - Se valorarán especialmente las aportaciones originales.
 - Se tendrán en cuenta las aportaciones de cada uno de los miembros del grupo.

Otras prácticas de RSA

 Además de las prácticas obligatorias, aquellos alumnos que lo deseen podrán realizar prácticas voluntarias en los aspectos de la robótica que les interesen y con los materiales de los que dispone el laboratorio.

I Robot: (Dr. Lanning's Hologram)

