

Machine Learning

Lecture 16: Principal Component Analysis (PCA)

Dr. Beilun Wang

Southeast University
School of Computer Science
and Engineering

This course

- Regression (supervised)
- Classification (supervised)
 - Feature selection
- Unsupervised models
 - Dimension Reduction (PCA)
 - Clustering (K-means, GMM/EM, Hierarchical)
- Learning theory
- Graphical models

a data matrix of n observations on p variables $x_1, x_2, ... x_p$

Unsupervised learning = learning from raw (unlabeled, unannotated, etc) data, as opposed to supervised data where a classification/regression label of examples is given

- Data/points/instances/examples/samples/records: [rows]
- Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [COlumns] 2021/5/23 Beilun Wang

Today

- Dimensionality Reduction (unsupervised) with Principal Components Analysis (PCA)
 - Review of eigenvalue, eigenvector

 - PCA for dimension reduction
 - Extra: PCA examples

Review: Eigenvector/Eigenvalue

• The eigenvalues λ_i are found by solving the equation

$$\det(C - \lambda I) = 0$$

Eigenvectors are columns of the matrix U such that

$$C = UDU^{T}$$

$$egin{pmatrix} m{\lambda}_1 & ... & ... & 0 \ 0 & \lambda_2 & ... & ... & 0 \ 0 & ... & ... & \lambda_p \end{pmatrix}$$

Review: Eigenvalue, e.g.

Let us take two variables with covariance c>0

•
$$C = \begin{pmatrix} 1 & c \\ c & 1 \end{pmatrix}$$
 $C - \lambda I = \begin{pmatrix} 1 - \lambda & c \\ c & 1 - \lambda \end{pmatrix}$

$$det(C - \lambda I) = (1 - \lambda)^{2} - C^{2}$$

$$u \neq 0$$

• Solving this we find $\lambda_1 = 1 + c$

$$\lambda_2 = 1 - c < \lambda_1$$

Review: Eigenvector, e.g.

Any eigenvector U satisfies the condition

$$Cu = \lambda u$$

•
$$\mathbf{u} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$
 $\mathbf{C}\mathbf{u} = \begin{pmatrix} 1 & c \\ c & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \lambda a_2 \end{pmatrix}$

After orthogonalization, we find

$$\mathbf{u}_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$
, $\mathbf{u}_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$

Today

- Dimensionality Reduction (unsupervised) with Principal Components Analysis (PCA)
 - Review of eigenvalue, eigenvector

 - PCA for dimension reduction
 - Extra: PCA examples

Background: Big & High-Dimensional Data

東南大学

High-Dimensions = Lot of Features
 Document classification

Features per document =
thousands of words/unigrams mi
contextual information

Surveys - Netflix

480189 users x 17770 movies

	movie 1	movie 2	movie 3	movie 4	movie 5	movie 6
Tom	5	?	?	1	3	?
George	?	?	3	1	2	5
Susan	4	3	1	?	5	1
Beth	4	3	?	2	4	2

Background: Big & High-Dimensional Data

東南大学

- High-Dimensions = Lot of Features
- MEG Brain Imaging
 - 120 locations x 500 time points x 20 objects

Or any high-dimensional image data

 We wish to explain/summarize the underlying variance-covariance structure of a large set of variables through a few linear combinations of these variables.

Trick: Rotate Coordinate Axes

- Suppose we have a sample population measured on p random variables $X_1, ..., X_p$.
- Our goal is to develop a new set of K (K<p) axes

• (linear combinations of the original p axes) in the directions of greatest variability:

This could be accomplished by rotating the axes (if data is centered).

- Given n points in a p dimensional space,
- for large p, how to project on to a lower-dimensional (K<p) space while preserving broad trends in the data and allowing it to be visualized?

From now we assume Data matrix is centered: we subtract the mean along each dimension, and center the original axis system at the centroid of all data points, for simplicity.

Review: Projection

Figure 1: The dot product is fundamentally a projection.

 Given n points in a p dimensional space, how to project on to a 1 dimensional space?

 Formally, to find a line that maximizing the sum of squares of data samples' projections on that line

• Example:

Good

Better

18

Algebraic Interpretation – 1D

 Formally, to find a line (direction) that maximizing the sum of squares of data samples' projections on that line

$$u = x^T v$$

size of x's projection on vector $v \rightarrow u = x^T v = v^T x$

subject to
$$v^T v = 1$$

x: p*1 vector

v: p*1 vector

u: 1*1 scalar

$$\max\left\{\sum_{i=1}^n u_i^2\right\}$$

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} x_1^T v \\ x_2^T v \\ \vdots \\ x_n^T v \end{bmatrix} = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{bmatrix} v = X v$$

 How is the sum of squares of projection lengths expressed in algebraic terms?

 $\max(v^T X^T X v)$, subject to $v^T v = 1$

• Rewriting:

$$v^{T}X^{T}Xv = \lambda = \lambda v^{T}v = v^{T}(\lambda v)$$

$$<=> v^{T}(X^{T}Xv - \lambda v) = 0$$

- It shows that the maximum value of $v^T X^T X v$ is obtained for those vectors / directions satisfying $X^T X v = \lambda v$
- So, find the largest λ and associated v such that the matrix X^TX when applied to v, yields a new vector which is in the same direction as v, only scaled by a factor λ .

• $X^T X v$ points in some other direction (different from v) in general

• If v is an eigenvector and λ is corresponding eigenvalue

$$X^T X v = \lambda v$$

Algebraic Interpretation – beyond 1D

- For matrices of the form (symmetric) X^TX
 - All eigenvalues are non-negative
 - $\lambda_1,...,\lambda_p$ are the eigenvalues, ordering from large to small
 - i.e. Ordered by the PC's importance

$$\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \cdots \ge \lambda_p$$

PCA (k=1): How the sum of squares of projection lengths relates to Variance?

size of x's projection on vector v

$$\rightarrow u = x^T v = v^T x$$

• In a new coordinate system with ν as axis, u is the position of sample x on this axis

PCA (k=1): How the sum of squares of projection lengths relates to Variance?

convert x_i onto $oldsymbol{v}$ coordinate

$$\rightarrow u_i = x_i^T v$$

How the sum of squares of projection lengths relates to Variance?

$$Var(u) = \sum_{u_i} (u_i - \mu)^2 P(u = u_i) = \sum_{u_i} (u_i)^2$$

Assuming centered data matrix

- Dimensionality Reduction (unsupervised) with Principal Components Analysis (PCA)
 - Review of eigenvalue, eigenvector

 - PCA for dimension reduction
 - Extra: PCA examples

Applications

• Uses:

- Data Visualization
- Data Reduction
- Data Classification
- Trend Analysis
- Factor Analysis
- Noise Reduction

Examples:

- How many unique "sub-sets" are in the sample?
- How are they similar / different?
- What are the underlying factors that influence the samples?
- How to best present what is "interesting"?
- Which "sub-set" does this new sample rightfully belong?

•

- From p original coordinates: $x_1, x_2, ..., x_p$:
- Produce k new coordinates : $v_1, v_2, ..., v_k$:

$$v_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1p}x_p$$

 $v_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2p}x_p$
...

- v_k's are Principal Components
 - v_k are uncorrelated (orthogonal) from each other
 - v₁ explains as much as possible of original variance in data set
 - V_2 explains as much as possible of remaining variance etc.
 - v_k : k^{th} PC retains the k^{th} greatest fraction of the variation in the samples

Interpretation of PCA

• The new variables (PCs) have a variance equal to their corresponding eigenvalue, since

$$Var(u^k) = v_k^T X^T X v_k = v_k^T \lambda_k v_k = \lambda_k v_k^T v_k = \lambda_k$$
 for all $k = 1, ..., p$

• Small $\lambda_k \Leftrightarrow$ small variance \Leftrightarrow data change little in the direction of component v_k

PCA is useful for finding new, more informative, uncorrelated features; it reduces dimensionality by rejecting low variance features

PCA Summary until now

- Rotates multivariate dataset into a new configuration which is easier to interpret
- PCA is useful for finding new, more informative, uncorrelated features; it reduces dimensionality by rejecting low variance features
 - PCA compresses (i.e. perform projection) the data points by only using the top few eigenvectors.
 - This corresponds to choosing a "linear subspace" represent points on a line, plane, or "hyper-plane"

PCA for dimension reduction e.g. $p=3 \rightarrow (pick top k=2 PCs)$

corresponds to choosing a "2D linear plane"

How many components to keep?

- I. Variance: Enough PCs to have a cumulative variance explained by the PCs that is >50-70%
- II. Scree plot: represents the ability of PCs to explain the variation in data, e.g. keep PCs with eigenvalues >1

e.g. check percentage of kept variance

You do lose some information, but if the eigenvalues are small, you don't lose much

- p dimensions in original data
- Calculate p eigenvectors and eigenvalues
- choose only the first k eigenvectors, by keep enough variance
- final projected data set has only k dimensions

e.g. check eigenvalue

Component Number

- PCA is not effective for some datasets.
- For example, if the data is a set of strings
- (1,0,0,0, ...), (0,1,0,0 ...), ..., (0,0,0, ..., 1) then the eigenvalues do not fall off as PCA requires.

```
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
```

eigenvalue = [1,1,1]

 The direction of maximum variance is not always good for classification (Example 1)

For this case:

- Ideal for capturing global variance
- Not ideal for discrimination

- PCA may not find the best directions for discriminating between two classes. (Example 2)
- Example:
 - suppose the two classes have 2D Gaussian densities as ellipsoids.
 - 1st eigenvector is best for representing the probabilities / overall data trend
 - 2nd eigenvector is best for discrimination.

Principal Component Analysis

- Hastie, Trevor, et al. The elements of statistical learning. Vol. 2. No.1 New York: Springer, 2009.
- Dr. S. Narasimhan's PCA lectures
- Prof. Derek Hoiem's eigenface lecture

Today

- Dimensionality Reduction (unsupervised) with Principal Components Analysis (PCA)
 - Review of eigenvalue, eigenvector
 - How to project samples into a line capturing the variation of the whole dataset Eigenvector / Eigenvalue of covariance matrix
 - PCA for dimension reduction
 - Extra: PCA examples

- Step 1: subtract the mean from each of the data dimensions.
 - It makes variance and covariance calculation easier by simplifying their equations.
 - The variance and covariance values are not affected by the mean value.

DATA: (p=2)		ZE	ZERO MEAN DATA		
x1	x2	x1		x2	
2.5	2.4	.6	9	.49	
0.5	0.7		.31	-1.21	j
2.2	2.9	.3		.99	1
1.9	2.2				1
3.1	3.0	.0		.29	
2.3	2.7	1.	29	1.09	
2	1.6	.4	9	.79	
1	1.1	.1	9	31	
1.5	1.6	8	31	81	
1.1	0.9	3	31	- .31	
		7	71	-1.01	

Step 2: calculate the covariance matrix

 since the non-diagonal elements in this covariance matrix are positive, we should expect that the x1 and x2 variable increase together.

 Step 3: calculate the eigenvectors and eigenvalues of the covariance matrix

```
eigenvectors = -.677873399 -.735178656
-.735178656 .677873399
```


- eigenvectors are plotted as diagonal dotted lines on the plot.
- Note they are perpendicular to each other.
- Note one of the eigenvectors goes through the middle of the points

Figure 3.2: A plot of the normalised data (mean subtracted) with the eigenvectors of the covariance matrix overlayed on top.

- Step 4: reduce dimensionality and form feature vector
- Feature Vector = (eig₁ eig₂ eig₃ ... eig_n)
- We can either form a feature vector with both of the eigenvectors:

```
    -.677873399
    -.735178656

    -.735178656
    .677873399
```

or, we can choose to leave out the smaller, less significant component and only have a single column:

```
-.677873399
-.735178656
```


- Step 5: derive the new data
 - FinalData = RowFeatureVector x RowZeroMeanData
 - RowFeatureVector is the matrix with the eigenvectors in the columns transposed so that the eigenvectors are now in the rows, with the most significant eigenvector at the top
 - RowZeroMeanData is the mean-adjusted data transposed, ie. the data items are in each column, with each row holding a separate dimension.

FinalData transpose: dimensions along columns

w1	w2
827970186	175115307
1.77758033	.142857227
992197494	.384374989
274210416	.130417207
-1.67580142	209498461
912949103	.175282444
.0991094375	349824698
1.14457216	.0464172582
.438046137	.0177646297
1.22382056	162675287

Figure 3.3: The table of data by applying the PCA analysis using both eigenvectors, and a plot of the new data points.

- Reconstruction of original Data
 - If we reduced the dimensionality, obviously, when reconstructing the data we would lose those dimensions we chose to discard.
 - In our example let us assume that we considered only the w1 dimension...

Figure 3.5: The reconstruction from the data that was derived using only a single eigenvector