Fachhochschule Wiesbaden Fachbereich Design Informatik Medien Studiengang Angewandte Informatik Prof. Dr. Bernhard Geib

Klausur Security Al

		Modul 3151 (B Sc)		
N	ame:			
V	orname:			
М	atrNr.:			
U	nterschrift:			
N	ote:			
Sie zu I numme Die Kla	alten eine geheftete K Beginn der Bearbeitung r an den dafür vorgese usur ist nur mit Unters s abgegeben werden.	ıszeit Ihren Namen, Ih henen Stellen ein un	nren Vornamen und Ihr d unterschreiben Sie d	e Matrikel- ie Klausur.
Bearbe	<u>Bearbeitungsdauer:</u> 90 Minuten <u>Erlaubte Hilfsmittel:</u> Tasch rechner, Formelsammlung			
		Punktevergabe:	,	J
	Aufgabe	Soll-Punkte	Ist-Punkte	
	1	10		
	2	10		

Aufgabe	Soll-Punkte	Ist-Punkte
1	10	
2	10	
3	10	
4	15	
5	15	
6	20	
7	20	
Gesamt	100	

Zum Bestehen der Klausu	ır müssen mindestens	50 Punkte erreicht werden!
 Erstprüfer		Zweitprüfer

Aufgabe 1 (10 P.)

Damit elektronische Geschäftsprozesse sicher und zuverlässig abgewickelt werden können, bedarf es neben einer entsprechenden Sicherheitskonzeption der Implementierung geeigneter Sicherheitsmaßnahmen. Beantworten Sie vor diesem Hintergrund die folgenden Fragen:

	blementierung geeigneter Sicherheitsmaßnahmen. Beantworten Sie vor diesem tergrund die folgenden Fragen:
a)	Welche Sicherheitsvorkehrungen sind erforderlich, um E-Mails zu einem seriösen E-Business-Werkzeug zu machen?
b)	Nennen Sie mindestens drei verschiedene Arten von kryptographischen Angriffen auf ein Kryptosystem?
c)	Wann gilt ein Kryptoalgorithmus als sicher und wann als uneingeschränkt sicher?
d)	Welche Eigenschaften besitzt eine gute elektronische Unterschrift?
e)	Was versteht man unter einer fortgeschrittenen elektronischen Signatur?

Aufgabe 2 (10 P.)

a) Bestimmen Sie sämtliche Teiler der Zahl 3ⁿ.

- b) Sei $n \in IN$ eine natürliche Zahl. Zeigen Sie: b1) n ist ungerade $\Rightarrow n^2$ ist ungerade
 - b2) n ist gerade \Rightarrow n^2 ist gerade
- c) Zeigen Sie, dass es keine Primzahlen $p \in IP$ gibt, die gemeinsamer Teiler zweier aufeinanderfolgender natürlicher Zahlen n und n+1 sind.

d) Zeigen Sie oder widerlegen Sie die Behauptung, dass für alle ganzen Zahlen a, b und c gilt: c | a und c | b \Rightarrow c | (3 a + 5 b)

e) Zeigen Sie: Sind $p_1, p_2, ..., p_n$ Primzahlen, die bei Division durch 4 den Rest 1 ergeben, dann hat ihr Produkt $p_1 \cdot p_2 \cdot ... \cdot p_n$ ebenfalls den Rest 1 bei Division durch 4.

Aufgabe 3 (10 P. – je richtige Antwort 1 P.)

Beantworten Sie folgende Fragen mit einer möglichst kurzen Antwort!

Nr.	Frage	Antwort
1	ist die Wissenschaft, Geheimtexte aufzubrechen	
2	Das DES-Verfahren ist ein Kryptoverfahren	
3	Die Schlüssellänge beim RSA beträgt mindestens Bit.	
4	Zum Schlüsselaustausch verwendet man dasVerfahren	
5	Ein perfektes Chiffriersystem ist beispielsweise	
6	Zwei teilerfremde natürlichen Zahlen a und b erfüllen die Bedingung	
7	Die Zahlenklasse $\mathbf{Z}_m = \{0, 1,, m - 1\}$ nennt man einen	
8	Den Chinesischen Restsatzes verwendet man zur simultanen Lösung von	
9	Jede natürliche Zahl n > 1 lässt sich darstellen als Produkt von	
10	Ein Zertifikat ist die Beglaubigung eines Schlüssels	

Aufgabe 4 (15 P.)

Berechnen Sie die Funktionswerte folgender Funktionen:

a) ggT(249, 48) = ?

b) $\phi(525) = ?$

c) $2^{44} \mod 11 = ?$

d) eEA(7, 20) = ?

Aufgabe 5 (15 P.)

Wir betrachten eine (monoalphabetische) affine Tauschchiffre über dem Alphabet $A = \{a, b, ..., z\}$ mit der folgenden Chiffrierfunktion:

E:
$$z' = (z \cdot t + k) \mod n$$

wobei

$$t = 5$$
 und $k = 7$.

a) Wie lautet die entsprechende Dechiffrierfunktion **D** in allgemeiner Form?

b) Berechnen Sie die Schlüsselparameter der Dechiffrierfunktion **D**.

c) Welchem Klartext-Zeichen entspricht das Chiffre-Zeichen "r"?

Aufgabe 6 (20 P.)

a) Beweisen Sie: Man kann jeder natürliche Zahl n > 1 als endliches Produkt (mit mindestens einem Faktor) ausschließlich von Primzahlen schreiben.

<u>Hinweis</u>: Führen Sie sowohl einen Existenzbeweis als auch einen Eindeutigkeitsbeweis!

b) Sei $n \in IN$ eine zusammengesetzte natürliche Zahl. Zeigen Sie, dass n dann einen Primteiler $p \in IP$ mit $p \le \sqrt{n}$ besitzt.

Aufgabe 7 (20 P.)

a) Bestimmen Sie die simultane Lösung (kleinste positive ganze Zahl x) folgender linearer Kongruenzen:

$$x \equiv 3 \pmod{17}$$

$$x \equiv 10 \pmod{16}$$

$$x \equiv 0 \pmod{15}$$

(Bitte den Berechnungsweg vollständig angeben!)