Text retrieval

Kristian Wichmann

February 8, 2017

1 Push and pull modes

Text retrieval happens in two major categories: push and pull.

2 Terminology

Here we describe the various ingredients needed to make a retrieval model:

- We work with a vocabulary $V = \{w_1, \dots, w_N\}$ of words.
- A query q may be written $q = (q_1, \dots, q_m)$, where $q_i \in V$.
- A document can be written $d_i = (d_{i1}, \dots, d_{im_i})$.
- A collection of documents is $C = \{d_1, \dots, d_M\}$.

2.1 The text retrieval problem

Given a query q, we wish to extract the set of relevant documents $R(q) \subseteq C$ for the query.

In practice, all we can hope for is an approximation of the relevant documents: R'(q).

3 Strategies

3.1 Document selection strategies

One way to solve the text retrieval system is to build a binary classifier f, which given a document d and a query q returns either 0 or 1, depending on whether or not $d \in R'(q)$:

$$R'(q) = \{ d \in C | f(d, q) = 1 \}$$
(3.1)

Of course, any way to choose R'(q) is technically a binary classifier, but the idea is that f decides the *absolute relevance* of the document - there is no further nuance beyond "yes" or "no".

3.2 Document ranking

Instead, the function f might have a continuum of real values instead of just $\{0,1\}$. Then we might choose R'(q) based on a *cutoff* θ :

$$R'(q) = \{ d \in C | f(d, q) > \theta \}$$
(3.2)

Here f is more nuanced, and decides what is called the *relative relevance* of the document. A list of documents sorted by decreasing relevance could be constructed, and θ decides where to stop the list. Or rather, if the user browses such a list, θ is decided by the user.

Such a list is (under certain conditions) guaranteed by the *probability* ranking principle (PRP) to be of optimal utility to the user.

4 Building a selection function f

- 4.1 Similarity-based models
- 4.1.1 Vector space model
- 4.2 Probabilistic models
- 4.3 Probabilistic inference models
- 4.4 Axiomatic models