Modulo: Approfondimenti sui Sistemi Aritmetici di un computer: tipo reale floating-point [P2_03]

Unità didattica: Esempi di roundoff

[4-AT]

Titolo: Come gli algoritmi possono influenzare l'accuratezza e l'efficienza

Argomenti trattati:

- Criterio di arresto naturale
- ✓ Calcolo delle radici di un'equazione di 2° grado
- Esempi di non validità delle proprietà algebriche dei numeri reali
- ✓ Valutazione di un particolare polinomio mediante algoritmo di Horner
- ✓ Somme di molti addendi dello stesso ordine di grandezza
- ✓ Somme di molti addendi ordinati (dello stesso segno)
- ✓ Somme di molti addendi a segno alternato
- ✓ Variabili predefinite dell'ambiente aritmetico

Prerequisiti richiesti: algoritmi di base citati, accuratezza statica e dinamica del Sistema Aritmetico Floating-Point

Nel Sistema Aritmetico Floating-point:

$$\forall a \in \mathbf{F}(\beta, t, E_{\min}, E_{\max}),$$

$$\exists \varepsilon > 0 : a \oplus \varepsilon = a$$

$$\exists \text{addizione floating-point}$$

$$ulp(a) = \min\{0 < \varepsilon \in \mathbf{F}(\beta, t, E_{\min}, E_{\max}) : a \oplus \varepsilon > a\}$$

$$ulp(a) = min\{0 < \varepsilon \in F(\beta, t, E_{\min}, E_{\max}) : a \oplus \varepsilon > a\}$$

$$ulp(1) = Epsilon \ macchina \ (\varepsilon_{mach})$$

$$\epsilon_{\text{mach}} = \min\{0 < \epsilon \in F(\beta, t, E_{\min}, E_{\max}) : 1 \oplus \epsilon > 1\}$$

Criterio di arresto naturale

Esempio o: perché criterio di arresto naturale?

Usando per la somma $S_n(x) = \sum_{k=0}^n \frac{x^k}{k!} \approx e^x$ l'algoritmo iterativo: $S_n = S_{h-1} + a_n$

$$\begin{cases} S_0(50) = 1 \\ S_n(50) = S_{n-1}(50) + \frac{(50)^n}{n!}, & n > 0 \end{cases}$$

che approssima il valore e^{50} mediante alcune ridotte $S_n(50)$ della serie esponenziale, nel sistema aritmetico in singola precisione ($7 \div 8$ cifre significative decimali equivalenti), si ottiene:

$S_{88}(50)=$	5.184703e+021	0 11000111 00011001000100000011011
$S_{89}(50)=$	5.184704e+021	0 11000111 00011001000100000011101
$S_{90}(50)=$	5.184705e+021	0 11000111 00011001000100000011110
$S_{91}(50)=$	5.184705e+021	0 11000111 00011001000100000011111
$S_{92}(50)=$	5.184705e+021	0 11000111 00011001000100000011111

...e la somma non aumenta più al crescere di *n* pur eseguendo le addizioni! ... Perché ???

```
main()
                                                              criterio di arresto naturale
    int n,k; short bit[MAX LEN]; float x,a, A[200];
                                                                                               P2_03_
     union sp
         float F;
                                   union: per visualizzare i bit
         unsigned int N;
       ន[200];
     printf("\tFLT EPSILON = %e\n".FLT EPSILON);
     x=50.0f; S[0].F=1.0f; A[0]=1.0f; S[1].F=a=x; n=1; A[1]=a;
    while (S[n].F \mathrel{!=} S[n-1].F)
                                                                                               Reale Floating-Point
         n++;
                                            somma a finché S si incrementa
          a=a*x/n; A[n]=a;
         S[n].F = S[n-1].F+a;
     printf("n = %d\n",n);
     for (k=n-4; k \le n; k++)
         printf("\na %3d = %e\tA[k]/S[k-1] = %e",k,A[k],A[k]/S[k-1].F);
         printf("\ns(%3d, %3.2f) = %e \t",k,x,s[k].F);
         mostra 32 bit(S[k].N,bit):
                                                                 FLT_EPSILON/2 = 5.960464e-008
                                      FLT EPSILON = 1.192093e-007
                                     n = 92
                                     a 88 = 1.742036e + 015 A[k]/S[k-1] = 3.359954e - 007
                                     S(88, 50.00) = 5.184703e + 021 0 11000111 0001100100010000011011
        La somma non si
                                     a 89 = 9.786718e + 014 A[k]/S[k-1] = 1.887614e-007
                                     S(89, 50.00) = 5.184704e + 021 0 11000111 00011001000100000011101
        incrementa più
                                     a_90 = 5.437066e + 014 A[k]/S[k-1] = 1.048674e - 007
                                     S(90,50.00) = 5.184705e + 021 0 11000111 0001100100010000011110
                                     a_91 = 2.987399e + 014 A[k]/S[k-1] = 5.761946e - 008
                                     S(91, 50.00) = 5.184705e + 021 0 11000111 000110010001000000111
                                     a_92 = 1.623586e + 014 A[k]/S[k-1] = 3.131492e - 008
                                     S(92, 50.00) = 5.184705e + 021 0 11000111 000110010001000000
```


Nonostante il Sistema Aritmetico Standard IEEE 754 assicuri massima accuratezza statica e dinamica nelle singole operazioni floating-point, l'errore totale di roundoff può comunque aumentare in maniera abnorme ...

Esempio 1: equazione di 2° grado Le radici di $x^2+10^4x-1=0$ sono $x_1 = 0.00009999$ $x_2 = -10000.0001$ **MATLAB** format long e; roots([1 10^4 -1])' -1.00000010000000e+004 9.99999900000002e-005 Usando la ben nota formula $x = \frac{-b \pm \sqrt{b^2}}{2}$ (instabile) si ha $E_r = 1.00e + 000$

ans =

$$\widetilde{x}_1 = 9.999999747e-005$$
 $E_r = 1.82e-008$ radice di massimo modulo $\widetilde{x}_2 = -1.000000000e+004$ $E_r = 1.00e-008$ è di massima accuratezza

```
#include <stdio.h>
                                   Esempio 1: equazione di 2° grado – codice C
 3
      #include <math.h>
      #include <float.h>
 5
 6
      main()
          float a=1.f, b=1.e+4, c=-1.f, x1, x2, Er1, Er2;
 8
          long double A=1.0, B=1.e+4, C=-1.0, X1, X2, swap;
          printf("\tFLT EPSILON = %e\tFLT EPSILON/2 = %e\n\n",FLT EPSILON,FLT EPSILON/2);
10
          // Radici in long double (anche con la formula sbagliata!)
11
          X2 = (-B - sqrt(B*B-4.0*A*C))/(2.0*A);
12
          X1 = (-B + sqrt(B*B-4.0*A*C))/(2.0*A);
13
          printf("\n\tRadici esatte: \n\nX1 = $24.16e,\tX2 = $24.16e\n", (double) X1, (double) X2);
14
15
16
          // Radici in float (formula sbagliata)
17
          x2=(-b-(float) sqrt(b*b-4.f*a*c))/(2.f*a);
18
          x1=(-b+(float) sqrt(b*b-4.f*a*c))/(2.f*a);
19
          Er1 = (float) fabs(X1-x1) / fabs(X1);
20
          Er2 = (float) fabs(X2-x2) / fabs(X2);
21
          printf("\n\nRadici formula sbagliata \tErrori relativi\n");
22
          printf("\nx1 = %+e,\t\tEr1 = %e\nx2 = %+e,\t\tEr2 = %e\n\n",x1,Er1,x2,Er2);
23
24
          // Radici in float (formula corretta)
25
          if (b>0)
26
              x2=(-b-(float) sqrt(b*b-4.f*a*c))/(2.f*a); // radice di massimo modulo
27
          else
          { x2=(-b+(float) sqrt(b*b-4.f*a*c))/(2.f*a); // radice di massimo modulo
28
29
              swap=X1; X1=X2; X2=swap; // solo per qli errori
30
          x1 = c/a/x2;
31
          Er1 = (float) fabs(X1-x1) / fabs(X1);
32
          Er2 = (float) fabs(X2-x2) / fabs(X2);
33
34
          printf("\n\nRadici formula corretta \tErrori relativi\n");
35
          printf("\nx1 = %+e,\t\tEr1 = %e\nx2 = %+e,\t\tEr2 = %e\n\n",x1,Er1,x2,Er2);
36
37
```

```
FLT EPSILON = 1.192093e-007 FLT EPSILON/2 = 5.960464e-008
        Radici esatte:
X1 = 9.9999999292776920e-005, X2 = -1.0000000099999999e+004
Radici formula sbagliata
                                Errori relativi
                                                  Er > FLT_EPSILON / 2
                                 Ex1 = 1.0000009 + 000
x1 = +0.0000000e+000,
x2 = -1.0000000e+0004
                                 Er2 = 1.000000e-008
Radici formula corretta
                                 Errori relativi
```

x2 = -1.0000000e+004Er2 = 1.000000e-008

risultato non di massima accuratezza

Er1 = 1.818989 = -008

risultato di massima accuratezza (Er≤FLT_EPSILON/2)

x1 = +1.000000e-004,

Esempio 2: non vale la Proprietà Associativa

Nel S.A. Floating-Point può succedere che

$$(a+b)+c \neq a+(b+c)$$

$$a = 2^{-24} \approx 5e - 8$$

 $b = 2^{-25} \approx 3e - 8$
 $c=1$

$$x2 = a + (b+c) = 1$$

$$E_r$$
=2.98e-008

$$E_r$$
=8.94e-008

singola precisione $\frac{1}{2} \epsilon_{mach} = 5.9e - 8$

Non è di massima accuratezza

Quiz: perché?

prof. M. R

```
Esempio 2: proprietà associativa di + - codice C
      #include <stdio.h>
      #include <math.h>
      #include <float.h>
     #define MAX LEN 32
      void mostra 32 bit(long num, short bit[32])
          char k;
19
     main()
          float a, b, c, temp, x1, x2, Er1, Er2;
20
21
         long double A, B, C, X1, X2;
22
         union sp
             float F;
23
             unsigned int N;
24
25
          } u1, u2; short bit[MAX LEN];
26
27
          printf("\tFLT EPSILON = %e\tFLT EPSILON/2 = %e\n\n",FLT EPSILON,FLT EPSILON/2);
          A=pow(2.0,-24); a=(float)A;
28
          B=pow(2.0,-25); b=(float)B;
29
                          c=(float)C;
30
          C=1.0;
31
32
          // Espressioni esatte
          X1 = (A + B) + C; X2 = A + (B + C);
33
          printf("\n\tEspressioni esatte: \n\nX1 = \$24.16e, \tX2 = \$24.16e \n", (double) X1, (double) X2)
34
35
36
          // Espressioni in float
                                          forza la singola precisione!
37
          temp = a+b; x1 = temp + c;
          temp = b+c; x2 = a + temp;
38
39
          Er1 = (float) fabs(X1-x1)/fabs(X1);
          Er2 = (float) fabs(X2-x2)/fabs(X2);
40
41
          printf("\n\nEspressioni float \tErrori relativi\n");
42
          printf("\nx1 = %+1.8e,\t\tEr1 = %e\nx2 = %+1.8e,\t\tEr2 = %e\n\n",x1,Er1,x2,Er2);
43
44
          ul.F=x1; printf("\nx1 binario = "); mostra 32 bit(ul.N,bit);
          u2.F=x2; printf("\nx2 binario = "); mostra 32 bit(u2.N,bit);
45
46
```

usando invece: x1=(a+b)+c; x2=a+(b+c); i calcoli sono eseguiti nella ALU e gli errori ...

FLT EPSILON/2 = 5.960464e-008FLT EPSILON = 1.192093e-007

Espressioni esatte:

X1 = 1.0000000894069672e+000, X2 = 1.0000000894069672e+000

Espressioni float Errori relativi

x1 = +1.00000012e+000, Er1 = 2.980232e-008

x2 = +1.000000000e+000,Er2 = 8.940696e - 008

Er > FLT_EPSILON / 2

x1 binario = 0 01111111 00000000000000000000001

$$x2=a+(b+c)$$

$$x1 = (a+b)+c$$

risultato non di massima accuratezza

risultato di massima accuratezza (Er≤FLT_EPSILON/2)

Esempio 3: valutazione di un polinomio

$$P(x) = 512x^{10} - 1280x^8 + 1120x^6 - 400x^4 + 50x^2 - 1$$

mediante algoritmo di Horner in s.p.

$$P(x) = ((((512x^2 - 1280)x^2 + 1120)x^2 - 400)x^2 + 50)x^2 - 1$$

$$x_1 = 0.99$$
 $E_r[P(x_1)] = 2.4424 \text{ e}-005$
 $x_2 = 1.00$ $E_r[P(x_2)] = 0$

singola precisione $\frac{1}{2} \varepsilon_{mach} = 5.9e - 8$

Non è di massima accuratezza

Quiz: perché?

Esempio 4: somme di molti addendi

(dello stesso ordine di grandezza)

Somma Test
$$S_n = \sum_{k=1}^n a_k = \sum_{k=1}^{10^8} 10^{-6} = 100$$

k	S_k
25107766	3.1999 e+1
25107767	3.2000 e+1

<u>...</u>

100000000 3.2000 e+1

Da un certo indice in poi la somma non si incrementa più!!!

Quiz: perché?

k = 25107766 S = 3.199999e+001

0 10000011 1111111111111111111111111

k = 25107767 S = 3.200000e+001

0 10000011 1111111111111111111110

k = 25107768 S = 3.200000e+001

0 10000011 11111111111111111111111

k = 25107769 S = 3.200000e+001

k = 25107770 S = 3.200000e+001

k = 1000000000 S = 3.2000000e+001

Esempio 5: somme di molti addendi

(dello stesso ordine di grandezza)

$$S_n = \sum_{k=1}^n a_k = \sum_{k=1}^{10^8} 10^{-6} = 100$$

Soluzione: sommare a gruppi (raddoppiamento ricorsivo)

Quiz: perché così funziona?

Esempio 5: somme di molti addendi dello stesso ordine di grandezza – algoritmo

Invece di sommare le componenti adiacenti dell'array, somma quelle diametralmente opposte (simmetriche rispetto al centro)

1.000000e+002

Esempio 6: somme di molti addendi ordinati (> 0)

$$S_n = \sum_{k=1}^n \frac{1}{k^2} \approx \frac{\pi^2}{6} \qquad \left\{ \frac{1}{k^2} \right\} \text{ decrescente}$$

Gli addendi possono essere sommati in ...

ordine decrescente dei valori

ordine crescente dei valori

		PIÙ ACCURATO		
tivo zione	n	crex	decrex	
rela	5000	1.2153e-004	1.2690e-004	
ore	10000	6.0803e-005	1.2690e-004	← ?
Erro di dis	20000	3.0365e-005	1.2690e-004	

Quiz: perché?

Esempio 7: somme di addendi ordinati alternanti

$$S_n(x) = \sum_{k=0}^n \frac{x^k}{k!} \approx e^x$$

Usando l'algoritmo efficiente per calcolare S_n $(-5.5) \approx e^{-5.5}$ si ha

$$E_r = 7.26e-005$$
 - accurate!

Sfruttando invece la proprietà dell'esponenziale

 $E_r = 1.38e-007$ + accurato

Quiz: perché?

Riassumendo

- quando un algoritmo contiene un modulo per calcolare una somma di molti addendi (prodotti scalari, formule di quadratura, ...), in assenza di algoritmi specifici, conviene eseguire la computazione intermedia, se possibile, ad una precisione maggiore (ad es. usando in C il tipo long double);
- evitare quando possibile la cancellazione nelle somme algebriche;
- nella somma iterativa

usare il **criterio di arresto naturale** per evitare somme inutili di addendi non significativi rispetto a **s**;

Data type constants

The constants listed below give the ranges for the integral data types and are defined in LIMITS.H.

	Constant	Value	Meaning
	SCHAR_MAX	127	Maximum signed char value
	SCHAR_MIN	-128	Minimum signed char value
	UCHAR_MAX	255 (0xff)	Maximum unsigned char value
Ħ	CHAR_BIT	8	Number of bits in a char
	USHRT_MAX	65535 (0xffff)	Maximum unsigned short value
3	SHRT_MAX	32767	Maximum (signed) short value
ווו	SHRT_MIN	-32768	Minimum (signed) short value
	UINT_MAX	4294967295(0xfffffff)	Maximum unsigned int value
3	ULONG_MAX	4294967295(0xfffffff)	Maximum unsigned long value
	INT_MAX	2147483647	Maximum (signed) int value
	INT_MIN	-2147483648	Minimum (signed) int value
4	LONG_MAX	2147483647	Maximum (signed) long value
	LONG_MIN	-2147483648	Minimum (signed) long value
	CHAR_MAX	127(255 if /J option used)	Maximum char value
	CHAR_MIN	-128(0 if /J option used)	Minimum char value
	MB_LEN_MAX	2	Maximum number of bytes in multibyte cha
			■ >

Data type constants

The constants listed below give the ranges and other characteristics of the float data type and are defined in **FLOAT.H**.

	~~~	AA I
Constant	Value	Meaning
FLT_DIG	6	Number of decimal digits of precision
FLT_EPSILON	1.192092896e-07F	Smallest such that
		1.0+FLT_EPSILON !=1.0
FLT_MANT_DIG	24	Number of bits in mantissa
FLT_MAX	3.402823466e+38F	Maximum value
FLT_MAX_10_EXP	38	Maximum decimal exponent
FLT_MAX_EXP	128	Maximum binary exponent
FLT_MIN	1.175494351e-38F	Minimum positive value
FLT_MIN_10_EXP	-37	Minimum decimal exponent
FLT_MIN_EXP	-125	Minimum binary exponent
FLT_RADIX	2	Exponent radix
FLT_ROUNDS	1	Addition rounding: near

MSDN documentation

#### Data type constants

The constants listed below give the ranges and other characteristics of the double data type and are defined in **FLOAT.H**.

Constant	Value	Meaning
DBL_DIG	15	# of decimal digits of precision
DBL_EPSILON	2.2204460492503131e-016	Smallest such that
		1.0+DBL_EPSILON !=1.0
DBL_MANT_DIG	53	# of bits in mantissa
DBL_MAX	1.7976931348623158e+308	Maximum value
DBL_MAX_10_EXP	308	Maximum decimal exponent
DBL_MAX_EXP	1024	Maximum binary exponent
DBL_MIN	2.2250738585072014e-308	Minimum positive value
DBL_MIN_10_EXP	-307	Minimum decimal exponent
DBL_MIN_EXP	-1021	Minimum binary exponent
_DBL_RADIX	2	Exponent radix
_DBL_ROUNDS	1	Addition rounding: near
-	DBL_DIG DBL_EPSILON  DBL_MANT_DIG DBL_MAX DBL_MAX_10_EXP DBL_MAX_EXP DBL_MIN DBL_MIN_10_EXP DBL_MIN_EXP DBL_MIN_EXP DBL_RADIX	DBL_DIG DBL_EPSILON 2.2204460492503131e-016  DBL_MANT_DIG DBL_MAX 1.7976931348623158e+308  DBL_MAX_10_EXP 308  DBL_MAX_EXP 1024  DBL_MIN 2.2250738585072014e-308  DBL_MIN_10_EXP -307  DBL_MIN_EXP -1021  _DBL_RADIX 2

**MSDN** documentation

- Scrivere function C per valutare un polinomio mediante algoritmo di Horner (se non è noto cercarlo sul web). [liv. 2]
- Scrivere function C per calcolare una somma di molti addendi dello stesso ordine di grandezza. A scelta la versione dell'algoritmo di somma a gruppi.
- Scrivere function C di somma iterativa con criterio di arresto naturale.
- Scrivere function C per sommare addendi ordinati rispettivamente in ordine crescente e decrescente.
  - Scrivere function C che somma addendi di segno alternato evitando l'eventuale cancellazione catastrofica. [liv. 2]