User Manual: Geo-Spatial Dam Site Suitability Analysis

This manual provides a step-by-step guide for any new user to replicate the dam site suitability analysis project. It explicitly details which files are required as **Inputs** and which files are created as **Outputs** for each step, ensuring a clear and understandable project workflow.

1. Phase 1: Data Collection & Initial Processing

This phase covers the initial steps of gathering and preparing the raw data for analysis.

Step 1: Raw Data Collection

- **Purpose:** To download the foundational datasets for your project.
- **Inputs:** None (This is the starting point of the project).
- Outputs:
 - DEM tiles (from USGS Earth Explorer)
 - Landsat Level-1 satellite images (from USGS Earth Explorer)
 - River Network shapefile (from QGIS QuickOSM plugin)

Step 2: Merging DEM and NDVI

- Purpose: To combine multiple raw DEM tiles and individual NDVI rasters into single, continuous maps.
- Run merge rasters.ipynb:
 - o **Instructions:** Open the script in Jupyter Lab. Ensure your raw files are in the correct input directories as specified in the script. Run all cells in the notebook.
 - o Inputs:
 - Raw DEM files in Data/DEM Raw/
 - Individual NDVI files in Data/Processed Rasters/NDVI Individual/
 - Outputs:
 - DEM Merged Final.tif
 - NDVI_Merged_Final.tif

Step 3: Reprojection and Hydrological Analysis (QGIS)

- **Purpose:** To convert the DEM to a metric system and derive key hydrological factors.
- Reproject DEM (QGIS):
 - Instructions:
 - 1. In QGIS, load **DEM_Merged_Final.tif**.
 - Go to the top menu and select Raster > Projections > Warp (Reproject).
 - 3. Set the Target CRS to **WGS 84 / UTM zone 43N (EPSG:32643)** to get a metric DEM.

- 4. Save the output file.
- Input: DEM_Merged_Final.tif
- Output: DEM_Merged_Final_UTM.tif
- Fill Sinks (QGIS):
 - Instructions:
 - 1. In QGIS, load **DEM_Merged_Final_UTM.tif**.
 - Go to Processing > Toolbox and search for Fill sinks (Wang & Liu) under the SAGA menu.
 - 3. Set the Input DEM to **DEM Merged Final UTM.tif**.
 - 4. Save the output file.
 - Input: DEM_Merged_Final_UTM.tif
 - Output: DEM Filled.tif
- Calculate Depression Depth (QGIS):
 - Instructions:
 - 1. Go to Raster > Raster Calculator.
 - 2. Enter the expression: "DEM Filled@1" "DEM Merged Final UTM@1".
 - 3. Save the output file.
 - Inputs: DEM_Filled.tif and DEM_Merged_Final_UTM.tif
 - Output: Depression_Depth_Corrected.tif
- Hydrological Analysis (QGIS):
 - Instructions:
 - 1. In QGIS, use the **GRASS > r.watershed** tool on DEM Filled.tif.
 - 2. Set a Threshold for stream initiation (e.g., 100).
 - 3. Save the output files for Flow accumulation and Stream segments.
 - Input: DEM_Filled.tif
 - Outputs:
 - Flow Accumulation.tif
 - Stream_Network.tif

Step 4: Factor Derivation (Python)

- **Purpose:** To calculate the raw factor layers that our model will use.
- Run NDVI_Calcilation.ipynb:
 - o Input: Landsat Level-1 files in Data/Landsat Raw/
 - o Output: Individual NDVI rasters in Data/Processed Rasters/NDVI Individual/
- Run slope calculation.ipynb:
 - Input: DEM_Merged_Final_UTM.tif
 - Output: Slope Degrees.tif
- Run Distance_to_Rivers.ipynb:
 - o Inputs: River_Data_Final_for_Python.shp and DEM_Merged_Final_UTM.tif
 - Output: Distance to Rivers.tif

2. Phase 2: Reclassification & Weighted Overlay

This phase takes all the raw factor layers and converts them into a single suitability score.

Step 5: Reclassification (Python)

- **Purpose:** To convert the raw factor values into a standardized 1-5 suitability score.
- Instructions: For each of the five Reclassify_*.ipynb scripts, open it in Jupyter Lab, adjust the rules based on your data's histogram, and run all cells.
- Inputs:
 - NDVI_Merged_Final.tif
 - Slope_Degrees.tif
 - Distance_to_Rivers.tif
 - o Depression Depth Corrected.tif
 - o Flow Accumulation.tif
- Outputs:
 - NDVI_Suitability.tif
 - Slope_Suitability.tif
 - o Distance_Suitability.tif
 - Depression_Suitability.tif
 - o Flow_Accumulation_Suitability.tif

Step 6: Weighted Overlay (Python)

- Purpose: To combine all five reclassified layers into a final suitability map.
- Run Weighted Overlay.ipynb:
 - o **Instructions:** Open the script, verify the weights, and run all cells.
 - o Inputs: All five Suitability.tif layers.
 - o Output: Final Dam Suitability.tif

3. Phase 3: Final Output

This phase refines the final map and extracts the precise dam locations.

Step 7: Final Site Identification (Python)

- **Purpose:** To extract the final dam polygons from the suitability map.
- Run Final Dam Site Identification.ipynb:
 - o **Instructions:** Open the script, adjust the SUITABILITY_THRESHOLD (e.g., 4.5), and run all cells.
 - Input: Final Dam Suitability.tif
 - Output: Final_Candidate_Dam_Sites.shp, a vector file with your final dam locations.

4. Final Step: Visualization in QGIS

- **Purpose:** To create professional maps of your results for your report.
- Instructions:
 - 1. Load the Final_Candidate_Dam_Sites.shp file into QGIS.

- 2. Overlay it with your base maps, such as DEM_Merged_Final_UTM.tif and Stream_Network.tif, for context.
- 3. Adjust the symbology (e.g., bright red for the dam polygons) to create a professional map for your report.