2.10.23

Al25BTECH11034 - Sujal Chauhan

September 15, 2025

Question

The vector(s) which is/are coplanar with the vectors $\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$, and perpendicular to vector $\hat{i} + \hat{j} + \hat{k}$ is/are.

- $\mathbf{2} \hat{\mathbf{i}} + \hat{\mathbf{j}}$
- $\hat{\mathbf{i}} \hat{\mathbf{j}}$
- $\mathbf{0} \hat{\mathbf{j}} + \hat{\mathbf{k}}$

Solution

Variable	Vector
Α	$\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$
В	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$
С	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

Solution

Listing options as vectors D_i :

Innut	Vector
Input	vector
D_1	$\left \begin{array}{c} 0\\1\\-1 \end{array}\right $
D ₂	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
D ₃	$\left \begin{array}{c} 1 \\ -1 \\ 0 \end{array}\right $
D ₄	$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$

Checking coplanarity

If the given vector \mathbf{D}_{i} is coplanar with \mathbf{A} and \mathbf{B} :

$$[\mathbf{A} \mathbf{B} \mathbf{D_i}] = 0 \quad \Longleftrightarrow \quad [\mathbf{A} \mathbf{B} \mathbf{D_i}]^2 = 0 \tag{1}$$

The determinant test via Gram matrix:

$$\mathbf{G_{i}} = \begin{pmatrix} \mathbf{A}^{T} \mathbf{A} & \mathbf{A}^{T} \mathbf{B} & \mathbf{A}^{T} \mathbf{D_{i}} \\ \mathbf{B}^{T} \mathbf{A} & \mathbf{B}^{T} \mathbf{B} & \mathbf{B}^{T} \mathbf{D_{i}} \\ \mathbf{D_{i}}^{T} \mathbf{A} & \mathbf{D_{i}}^{T} \mathbf{B} & \mathbf{D_{i}}^{T} \mathbf{D_{i}} \end{pmatrix}$$
(2)

$$[\mathbf{A} \ \mathbf{B} \ \mathbf{D_i}]^2 = \det(\mathbf{G_i}) \tag{3}$$

Checking coplanarity for all four vectors:

Vector	det(G)	Coplanar?
D_1	0	Yes
D_2	4	No
D ₃	16	No
D ₄	4	No

Checking perpendicular to C

If a given vector is perpendicular to **C**:

$$\mathbf{C}^{\mathsf{T}}\mathbf{D_{i}}=0\tag{4}$$

$$\mathbf{C}^T = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \tag{5}$$

Vector	$\mathbf{C}^T\mathbf{D_i}$	Perpendicular?
D ₁	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = 0$	Yes
D ₂	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 3$	No
D_3	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = 0$	Yes
D ₄	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = 2$	No

Figure: Vector D_1 in plane

Figure: Vector D_2 not coplanar

Figure: Vector D_3 not coplanar

Figure: Vector **D**₄ not coplanar

conclusion

Only 1 satisfys both conditions