

LOUISIANA STATE UNIVERITY

College of Agriculture School of Plant, Environmental, and Soil Sciences AGRO 7075 Prediction-based Breeding

Hybrids between populations or lines

Prof. Roberto Fritsche-Neto

rfneto@agcenter.lsu.edu

Baton Rouge, Mar 6th, 2023

Hybrids between populations

 $G_{ij} = u + \propto_i + \propto_j + \delta_{ij}$

•
$$u_{F1} = u + (pr - qs)a + (ps + qr)d$$

•
$$E(G_{ii}) = u$$

•
$$E(\boldsymbol{\alpha}_i) = \sum_i p_i \boldsymbol{\alpha}_i = 0$$

•
$$E(\boldsymbol{\alpha}_i) = \sum_i p_i \boldsymbol{\alpha}_i = 0$$

•
$$E(S_{ij}) = \sum_{ij} p_i p_j S_{ij} = 0$$

•
$$E(S_{ij}) = \sum_{ij} p_i p_j S_{ij} = 0$$

•
$$E(\boldsymbol{\alpha}_i, \boldsymbol{\alpha}_i) = E(\boldsymbol{\alpha}_i) E(\boldsymbol{\alpha}_i) = 0$$

•
$$E(\boldsymbol{\alpha}_{i}, \mathcal{S}_{ij}) = E(\boldsymbol{\alpha}_{i}) E(\mathcal{S}_{ij}) = 0$$

•
$$E(\boldsymbol{\alpha}_{i}, \mathcal{S}_{ij}) = E(\boldsymbol{\alpha}_{i}) E(\mathcal{S}_{ij}) = 0$$

•
$$V(G_{ij}) = E[G_{ij} - E(G_{ij})]^2 = E[u + \alpha_i + \alpha_j + S_{ij} - u]^2 = E[\alpha_i + \alpha_j + S_{ij}]^2$$

•
$$= E(\boldsymbol{\alpha}_i)^2 + E(\boldsymbol{\alpha}_i)^2 + E(\boldsymbol{S}_{ij})^2 + dp$$

• =
$$\sum p_i(\boldsymbol{\alpha}_i)^2 + \sum p_i(\boldsymbol{\alpha}_i)^2 + \sum p_i p_i(\boldsymbol{S}_{ij})^2$$

• =
$$\frac{1}{2} Va_{(1:2)} + \frac{1}{2} Va_{(2:1)} + Vd_{(1:2)}$$

Pop 1		Pop 2
f(B) =p	Χ	f(B) =r
f(b) = q		f(b) = s

Genotype	f	VG
ВВ	pr	а
Bb	ps	d
bB	qr	d
bb	qs	-a

Variance among hybrids between populations

•
$$u_{F1} = u + (pr - qs)a + (ps + qr)d$$

• Within population variances – they have both alleles

•
$$\operatorname{Va}_{(1)} = 2\sum p_i(\boldsymbol{\alpha}_i)^2 = 2pq\boldsymbol{\alpha}_1^2$$

$$G_{ij} = u + \alpha_i + \alpha_j + \delta_{ij}$$

•
$$\operatorname{Va}_{(2)} = 2\sum p_i(\boldsymbol{\alpha}_i)^2 = 2\operatorname{rs}\boldsymbol{\alpha}_2^2$$

•
$$Vd_{(1)} = \sum p_i p_j (S_{ij})^2 = (2pqd)^2$$

•
$$Vd_{(2)} = \sum p_i p_i (S_{ij})^2 = (2rsd)^2$$

•
$$\alpha_1 = a + (p - q)d$$

•
$$\alpha_2 = a + (r - s)d$$

• Inter populations variances

•
$$Va_{(1:2)} = 2pq\alpha_2^2$$

• =
$$2pq[a + (r - s)d]^2$$

•
$$Va_{(2:1)} = 2rs\alpha_1^2$$

• =
$$2rs[a + (p - q)d]^2$$

•
$$Vd_{(1:2)} = 4pqrsd^2$$

Genotype	f	VG
ВВ	pr	a
bB	ps	d
Bb	qr	d
bb	qs	-a

Genetic covariance between two hybrids

$$G_{ij} = u + \propto_i + \propto_j + \delta_{ij}$$

•
$$f_{xy1} = \frac{1}{2} [P(x_i^1 \equiv y_i^1)]$$

•
$$f_{xy2} = \frac{1}{2} [P(x_i^2 \equiv y_i^2)]$$

•
$$f_{xy12} = P(x_i^1 \equiv y_i^1) = P(x_j^2 \equiv y_j^2) = P(x_i^1 \equiv y_i^1; x_j^2 \equiv y_j^2)$$

•
$$x_{ij(12)} = u_{(12)} + \boldsymbol{\alpha}_{i(12)x} + \boldsymbol{\alpha}_{j(21)x} + \boldsymbol{S}_{ij(12)x}$$

•
$$y_{ij(12)} = u_{(12)} + \alpha_{i(12)y} + \alpha_{j(21)y} + S_{ij(12)y}$$

•
$$COV(x_{ii}, y_{ii}) = E[x_{ii} - E(x_{ii})] \cdot E[y_{ii} - E(y_{ii})]$$

•
$$= E(\boldsymbol{\alpha}_{i12x}, \boldsymbol{\alpha}_{i12y}) + E(\boldsymbol{\alpha}_{j21x}, \boldsymbol{\alpha}_{j21y}) + E(\mathcal{S}_{ij(12)x}, \mathcal{S}_{ij(12)y}) + dp$$

•
$$E(\alpha_{i12x},\alpha_{i12y}) = \sum_{i} p_i \alpha_{i12} [P(x_i^1 \equiv y_i^1)] \alpha_{i12} = \sum_{i} p_i \alpha_{i12}^2 P(x_i^1 \equiv y_i^1) = f_{xv1} Va_{12}$$

•
$$E(\alpha_{j21x}, \alpha_{j21y}) = \sum_{j} p_{j} \alpha_{j21} [P(x_{j}^{2} \equiv y_{j}^{2})] \alpha_{j21} = \sum_{j} p_{j} \alpha_{j21}^{2} P(x_{j}^{2} \equiv y_{j}^{2}) = f_{xy2} Va_{21}$$

•
$$E(S_{ij(12)x}, S_{ij(12)y}) = \sum_{ij} p_i p_j S_{ij12} P(x_i^1 \equiv y_i^1; x_j^2 \equiv y_j^2) S_{ij(12)} = u_{xy12} Vd_{12}$$

•
$$COV_g(x_{ij(12)}, y_{ij(12)}) = f_{xy1}Va_{12} + f_{xy2}Va_{21} + u_{xy12}Vd_{12}$$

These values can be estimated by the kinship matrix

Hybrids between lines

- TC - Three-way cross - (A x A') x B

Parents	Gametes	Possible TWC	GV	
SC ₁₂ AaBb	AB Ab aB ab	AABb	$u + \alpha_A + d_{Bb}$	
(AABB x aabb)		AAbb	$u + \alpha_A - \alpha_b$	
L3	Ab	AaBb	$u + d_{Aa} + d_{Bb}$	
AAbb		Aabb	$u + d_{Aa} - \alpha_b$	
Mean		$u + \frac{1}{2} (\boldsymbol{\alpha}_{A} - \boldsymbol{\alpha}_{b} + d_{Aa} + d_{Bb})$		

SC non-parents	Genotype	GV
SC ₁₃	AABb	$u + \alpha_A + d_{Bb}$
SC ₂₃	Aabb	$u + d_{Aa} - \alpha_b$
Me	ean	$u + \frac{1}{2} (\boldsymbol{\alpha}_{A} - \boldsymbol{\alpha}_{b} + d_{Aa} + d_{Bb})$

•
$$COV_g(X_{ij(12)}, y_{ij(12)}) = f_{xy1}Va_{12} + f_{xy2}Va_{21} + u_{xy12}Vd_{12}$$

•
$$f_{xy1} = \frac{1}{2} [P(x_i^1 \equiv y_i^1)]$$

•
$$f_{xv2} = \frac{1}{2} [P(x_i^2 \equiv y_i^2)]$$

•
$$u_{xy12} = P(x_i^1 \equiv y_i^1) = P(x_j^2 \equiv y_j^2) = P(x_i^1 \equiv y_i^1; x_j^2 \equiv y_j^2)$$

- As they different populations, the latter can be reduced to
- $u_{xv12} = 2f_{xv1}Va_{12} \cdot 2f_{xv2}Va_{21}$
- The covariance within is equal to variance between
- Single-cross

•
$$f_{xy1} = \frac{1}{2} \left[P(x \equiv y \equiv A_i) + P(x \equiv y \equiv A_j) + 2.P(x \equiv y \equiv A_j \equiv A_j) \right]$$

• $\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{F}{2}$

•
$$f_{xv1} = \frac{1}{2} \left[\frac{1}{4} + \frac{1}{4} + 2 \cdot \frac{1}{4} \cdot F \right] = \frac{1}{4} \left(\frac{1+F}{1+F} \right)$$

$$RS = \frac{\iota}{\sigma_P} COV_G(x, y)$$

$$RS = \frac{i}{\sigma_P} \sigma_H^2$$

$$L_{A}^{1}(A_{i}A_{j}) \qquad L_{B}^{2}(A_{k}A_{L})$$

$$X \qquad V$$

•
$$f_{xv2} = \frac{1}{2} [P(x \equiv y \equiv A_k) + P(x \equiv y \equiv A_L) + 2.P(x \equiv y \equiv A_K \equiv A_L)] = \frac{1}{4}(1+F)$$

•
$$u_{xy12} = 2f_{xy1}Va_{12} \cdot 2f_{xy2}Va_{21} = 2.\frac{1}{4}(1+F) \cdot 2.\frac{1}{4}(1+F) = \frac{1}{4}(1+F)^2$$

•
$$COV_{gSC12} = \frac{1}{4}(1+F)[Va_{12} + Va_{21}] + \frac{1}{4}(1+F)^2Vd_{12}$$

•
$$COV_{gSC12} = \frac{1}{4}(1+F)[Va_{12} + Va_{21}] + \frac{1}{4}(1+F)^2Vd_{12}$$

- Thus, for SC between S_1 lines (F = 0 = parents F)
- $COV_{gSC12} = \frac{1}{4}(1+0)[Va_{12} + Va_{21}] + \frac{1}{4}(1+0)^2Vd_{12}$
- $COV_{gSC12} = \frac{1}{4}[Va_{12} + Va_{21}] + \frac{1}{4}Vd_{12}$
- and for SC between inbred lines (F=1)
- $COV_{gSC12} = \frac{1}{4}(1+1)[Va_{12} + Va_{21}] + \frac{1}{4}(1+1)^2Vd_{12}$
- $COV_{gSC12} = \frac{1}{2}[Va_{12} + Va_{21}] + Vd_{12}$
- The latter takes advantage of the whole dominance and additive genetic variability
- Therefore, there is no VG within hybrids. Just among them
- The covariance within is equal to the variance between

- Three-way cross
- $f_{xy1} = \frac{1}{2} [P(x \equiv y \equiv A_i) + P(x \equiv y \equiv A_j) + 2.P(x \equiv y \equiv A_j \equiv A_j) +$
- 1/4 1/4 1/4 F
- + $P(x \equiv y \equiv A_k) + P(x \equiv y \equiv A_L) + 2.P(x \equiv y \equiv A_K \equiv A_L)$
- $f_{xy1} = \frac{1}{2} [\frac{1}{16} + \frac{1}{16} + \frac{2}{1} \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} \frac{1}{16}] = \frac{1}{8} (\frac{1+F}{16})$
- $f_{xy2} = \frac{1}{2} [P(x \equiv y \equiv A_z) + P(x \equiv y \equiv A_t) + 2.P(x \equiv y \equiv A_z \equiv A_t)]$
- $f_{xy2} = \frac{1}{2} \left[\frac{1}{4} + \frac{1}{4} + 2 \cdot \frac{1}{4} \cdot F \right] = \frac{1}{4} \left(\frac{1+F}{4} \right)$
- $u_{xy12} = 2f_{xy1}Va_{12} \cdot 2f_{xy2}Va_{21} = 2.1/8 \cdot (1+F) \cdot 2.\frac{1}{4}(1+F) = \frac{1}{8}(1+F)^2$
- $COV_{gTWC(12)3} = 1/8(1+F)Va_{12} + 1/4(1+F)Va_{21} + 1/8(1+F)^2Vd_{12}$
- TWC between S_1 lines (F = 0 = parents F)
- $COV_{gTWC(12)3} = 1/8Va_{12} + 1/4Va_{21} + 1/8Vd_{12}$
- TWC between inbred lines (F=1)
- $COV_{gTWC(12)3} = 1/4Va_{12} + 1/2Va_{21} + 1/2Vd_{12}$

- Double-cross
- $f_{xy1} = 1/8(1+F)$
- $f_{xy2} = 1/8(1+F)$
- $u_{xy12} = 1/16(1+F)^2$
- $COV_{gDC(12)(34)} = 1/8(1+F)Va_{12} + 1/8(1+F)Va_{21} + 1/16(1+F)^2Vd_{12}$
- DC between S_1 lines (F = 0 = parents F)
- $COV_{gDC(12)(34)} = 1/8Va_{12} + 1/8Va_{21} + 1/16Vd_{12}$
- DC between inbred lines (F=1)
- $COV_{gDC(12)(34)} = 1/4Va_{12} + 1/4Va_{21} + 1/4Vd_{12}$

Comparison between cultivars

Hybrid	Vg (among)		Vg (within)			
	Va ₁₂	Va ₂₁	Vd ₁₂	Va ₁₂	Va ₂₁	Vd ₁₂
SC	1/2	1/2	1	0	0	0
TWC	1/4	1/2	1/2	1/4	0	1/2
DC	1/4	1/4	1/4	1/4	1/4	3/4

Cost, yield, heterosis, homogeneity, and technology

Varieties DC TWC SC

Variability and yield stability

