

40V 2.2m Ω N-Ch Power MOSFET

Features

- Ultra-low ON-resistance, R_{DS(ON)}
- Low Gate Charge, Q_q
- 100% UIS and R_q Tested
- Pb-free Lead Plating
- · Halogen-free and RoHS-compliant
- AEC-Q101 Qualified for Automotive Applications

Product Summary

Parameter	Value	Unit	
V _{DS}	40	V	
V _{GS(th)_Typ}	2.8	V	
I_D (@ $V_{GS} = 10V$) (1)	145	Α	
$R_{DS(ON)_Typ}$ (@ $V_{GS} = 10V$)	2.2	mΩ	

PDFN5x6-8L Top View Bottom View

Ordering Information

Device	Package	# of Pins	Marking	MSL	T _J (°C)	Media	Quantity (pcs)
JMSH0403BGQ-13	PDFN5x6-8L	8	SH0403BQ	1	-55 to 175	13-inch Reel	3000

Absolute Maximum Ratings (@ T_A = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DS}	40	V
Gate-to-Source Voltage	V _{GS}	±20	V
Continuous Drain T _C = 25°C	1	145	۸
rurrent ⁽¹⁾ T _C = 100°C	I _D	103	A
Pulsed Drain Current (2)	I _{DM}	581	A
Avalanche Energy (3)	E _{AS}	216	mJ
Power Dissipation (4) $T_C = 25^{\circ}C$ $T_C = 100^{\circ}C$	P _D	100	W
Power Dissipation $T_C = 100^{\circ}C$	-D	50	VV
Junction & Storage Temperature Range	T _J , T _{STG}	-55 to 175	°C

Electrical Characteristics (@ T_J = 25°C unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
STATIC PARAMETERS						
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$I_D = 250 \mu A, V_{GS} = 0 V$	40			V
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 32V, V_{GS} = 0V$ $T_{J} = 55^{\circ}C$			1.0 5.0	μА
Gate-Body Leakage Current	I _{GSS}	$V_{DS} = 0V, V_{GS} = \pm 20V$			±100	nA
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.2	2.8	3.4	V
Static Drain-Source ON-Resistance	R _{DS(ON)}	V _{GS} = 10V, I _D = 20A		2.2	2.8	mΩ
Forward Transconductance	g _{FS}	$V_{DS} = 5V, I_{D} = 20A$		81		S
Diode Forward Voltage	V _{SD}	I _S = 1A, V _{GS} = 0V		0.68	1.0	V
Diode Continuous Current	Is	T _C = 25°C			100	Α
DYNAMIC PARAMETERS (5)						
Input Capacitance	C _{iss}			2086		pF
Output Capacitance	C _{oss}	V _{GS} = 0V, V _{DS} = 20V, f = 1MHz		1150		pF
Reverse Transfer Capacitance	C _{rss}			60		pF
Gate Resistance	R_g	$V_{GS} = 0V$, $V_{DS} = 0V$, $f = 1MHz$		1.4		Ω
SWITCHING PARAMETERS (5)						
Total Gate Charge (@ V _{GS} = 10V)	Qg			28		nC
Total Gate Charge (@ V _{GS} = 6.0V)	Q_g	V _{GS} = 0 to 10V		17.6		nC
Gate Source Charge	Q_{gs}	$V_{DS} = 20V, I_{D} = 20A$		9.2		nC
Gate Drain Charge	Q_{gd}			5.3		nC
Turn-On DelayTime	t _{D(on)}			63		ns
Turn-On Rise Time	t _r	$V_{GS} = 10V, V_{DS} = 20V$		14.8		ns
Turn-Off DelayTime	t _{D(off)}	$R_L = 1.0\Omega$, $R_{GEN} = 6\Omega$		31		ns
Turn-Off Fall Time	t _f			87		ns
Body Diode Reverse Recovery Time	t _{rr}	$I_F = 20A$, $dI_F/dt = 100A/\mu S$		39		ns
Body Diode Reverse Recovery Charge	Q _{rr}	$I_F = 20A$, $dI_F/dt = 100A/\mu S$		29		nC

Thermal Performance

Parameter	Symbol	Тур.	Max.	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	52	60	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.5	1.8	°C/W

Notes:

- Computed continuous current assumes the condition of T_{J_Max} while the actual continuous current depends on the thermal & electro-mechanical
 application board design.
- 2. This single-pulse measurement was taken under $\rm T_{\rm J_Max}$ = 175°C.
- 3. E_{AS} of 216 mJ is based on starting T_J = 25°C,L = 3.0mH, I_{AS} = 12A, V_{GS} = 10V, V_{DD} = 20V; 100% test at L = 0.1mH, I_{AS} = 42A.
- 4. The power dissipation P_D is based on T_{J_Max} = 175°C.
- 5. This value is guaranteed by design hence it is not included in the production test.

Typical Electrical & Thermal Characteristics

Figure 1: Saturation Characteristics

Figure 2: Transfer Characteristics

Figure 3: $R_{DS(ON)}$ vs. Drain Current

Figure 4: $R_{DS(ON)}$ vs. Junction Temperature

Figure 5: $V_{GS(th)}$ vs. Junction Temperature

Figure 6: $V_{BR(DSS)}$ vs. Junction Temperature

Typical Electrical & Thermal Characteristics

Figure 7: Body-Diode Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Current De-rating

Figure 10: Power De-rating

Figure 11: Single Pulse Power Rating, Junction-to-Case

Figure 12: Maximum Safe Operating Area

Typical Electrical & Thermal Characteristics

Figure 13: Normalized Maximum Transient Thermal Impedance

PDFN5x6-8L Package Information

Package Outline

Front View

NOTES:

- Dimension and tolerance per ASME Y14.5M, 1994.
 All dimensions in millimeter (angle in degree).
 Dimensions D1 and E1 do not include mold flash protrusions or gate burrs.

DIM.	MILLIMETER				
DIM.	MIN.	NOM.	MAX.		
A	0.90	1.00	1.10		
ь	0.31	0.41	0.51		
c	0.20	0.25	0.30		
D	5.00	5.20	5.40		
D1	4.95	5.05	5.15		
D2	4.00	4.10	4.20		
E	6.05	6.15	6.25		
E1	5.50	5.60	5.70		
E2	3.42	3.53	3.63		
e	1.27BSC				
Н	0.60	0.70	0.80		
L	0.50	0.70	0.80		
K	1.23 REF				
θ	-	-	10°		

Recommended Soldering Footprint

DIMENSIONS:MILLIMETERS