Exercise

The utility function used in Tutorial 2 is called a Cobb-Douglas function. In this exercise, we will consider utility maximization with a CES utility function. In particular, the CES utility function is given by:

$$U(x_1, x_2) = (\alpha x_1^{\rho} + (1 - \alpha) x_2^{\rho})^{1/\rho}$$

Here,

- α is a parameter between 0 and 1 that reflects the relative weight or importance of the goods.
- ρ controls how easily the consumer can substitute between the two goods.
 - When $\rho \to 1$, the goods are perfect substitutes.
 - When $\rho \to -\infty$, the goods are perfect complements.

Also, note that the Cobb-Douglas utility function is a special case of the CES utility function with $\rho \to 0$.

Since this exercise builds on Tutorial 2, here is the link to a Google Colab notebook containing the essential code from that tutorial.

Each part is worth 2.5 points.

- 1. Modify the solve_demand function from Tutorial 2 to create a new function, solve_demand_ces, which solves for the optimal quantities of good 1 and good 2 given the CES utility function. (This new function will include an additional parameter, ρ .)
- 2. With the values of the other parameters set to:

$$\alpha = 0.5, \ m = 100, \ p_1 = 5, \ p_2 = 10$$

Find the optimal values of x_1 and x_2 in three cases:

- (a) $\rho = 0.99$
- (b) $\rho = 0.001$

(c)
$$\rho = -200$$

Print the results for each of the three cases and intuitively explain why the results make sense.

- 3. Plot the demand for good 2 as a function of the price of good 1 for the three cases in part 2. Let other parameters be the same as in part 2 and use the range of 1 to 20 for the price of good 1. Superimpose the three demand curves on the same plot. Make sure to include a legend and label the axes. Intuitively explain what the demand curves are telling us about the relationship between the two goods in each case.
- 4. An indifference curve shows combinations of two goods that give a consumer equal utility. Plot the indifference curves for the *first two* cases specified in part 2 when utility U = 5. Continue to assume $\alpha = 0.5$. As before, superimpose the two indifference curves on the same plot, include a legend, and label the axes.

Write your code and explanations in a Google Colab notebook. Save the notebook as firstname_lastname.ipynb, download it on your local machine, and upload it on Canvas.