

OCTAL D-TYPE LATCH WITH 3 STATE OUTPUTS (NON INVERTED)

- HIGH SPEED: t_{PD} = 4.5ns (TYP.) at V_{CC} = 5V
- LOW POWER DISSIPATION: $I_{CC} = 4\mu A(MAX.)$ at $T_A=25$ °C
- HIGH NOISE IMMUNITY: $V_{NIH} = V_{NIL} = 28 \% V_{CC}$ (MIN.)
- 50Ω TRANSMISSION LINE DRIVING CAPABILITY
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 24mA (MIN)
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 573
- IMPROVED LATCH-UP IMMUNITY

The 74AC573 is an advanced high-speed CMOS OCTAL D-TYPE LATCH with 3 STATE OUTPUTS NON INVERTING fabricated with sub-micron silicon gate and double-layer metal wiring C²MOS technology.

These 8 bit D-Type latch are controlled by a <u>latch</u> enable input (LE) and an output enable input (OE). While the LE inputs is held at a high level, the Q

ORDER CODES

PACKAGE	TUBE	T&R
DIP	74AC573B	
SOP	74AC573M	74AC573MTR
TSSOP		74AC573TTR

outputs will follow the data input precisely.

When the LE is taken low, the Q outputs will be latched at the logic level of D input data. While the (OE) input is low, the 8 outputs will be in a normal logic state (high or low logic level); while OE is in high level, the outputs will be in a high impedance state.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

April 2001 1/11

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	OE	Asynchronous Master Reset (Active LOW)
2, 3, 4, 5, 6, 7, 8, 9	D0 to D7	Data Inputs
12, 13, 14, 15, 16, 17, 18, 19	Q0 to Q7	3-State Latch Outputs
11	LE	Latch Enable Input
10	GND	Ground (0V)
20	V _{CC}	Positive Supply Voltage

TRUTH TABLE

	INPUTS							
ŌĒ	LE	D	Q					
Н	X	X	Z					
L	L	X	NO CHANGE					
L	Н	L	L					
L	Н	Н	Н					

X : Don't Care

Z : High Impedance

NOTE: Outputs are latched at the time when the input is taken LOW logic level

LOGIC DIAGRAM

This logic diagram has not be used to estimate propagation delays

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
V _I	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
V _O	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
I _O	DC Output Current	± 50	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 400	mA
T _{stg}	Storage Temperature	-65 to +150	°C
T_L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	2 to 6	V
V _I	Input Voltage	0 to V _{CC}	V
V _O	Output Voltage	0 to V _{CC}	V
T _{op}	Operating Temperature	-55 to 125	°C
dt/dv	Input Rise and Fall Time V _{CC} = 3.0, 4.5 or 5.5V (note 1)	8	ns/V

¹⁾ V_{IN} from 30% to 70% of V_{CC}

DC SPECIFICATIONS

		7	Test Condition				Value				
Symbol	Parameter	V _{CC}		T _A = 25°C		-40 to 85°C		-55 to 125°C		Unit	
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	3.0	V _O = 0.1 V or	2.1	1.5		2.1		2.1		
	Voltage	4.5	V _{CC} -0.1V	3.15	2.25		3.15		3.15		V
		5.5	VCC 0 V	3.85	2.75		3.85		3.85		
V_{IL}	Low Level Input	3.0	$V_{O} = 0.1 \text{ V or}$		1.5	0.9		0.9		0.9	
	Voltage	4.5	V _{CC} -0.1V		2.25	1.35		1.35		1.35	V
		5.5			2.75	1.65		1.65		1.65	
V _{OH}	High Level Output	3.0	I _O =-50 μA	2.9	2.99		2.9		2.9		
	Voltage	4.5	I _O =-50 μA	4.4	4.49		4.4		4.4		
		5.5	I _O =-50 μA	5.4	5.49		5.4		5.4		V
		3.0	I _O =-12 mA	2.56			2.46		2.4		7
		4.5	I _O =-24 mA	3.86			3.76		3.7		
		5.5	I _O =-24 mA	4.86			4.76		4.7		
V _{OL}	Low Level Output	3.0	I _O =50 μA		0.002	0.1		0.1		0.1	
	Voltage	4.5	I _O =50 μA		0.001	0.1		0.1		0.1	
		5.5	I _O =50 μA		0.001	0.1		0.1		0.1	V
		3.0	I _O =12 mA			0.36		0.44		0.5	V
		4.5	I _O =24 mA			0.36		0.44		0.5	
		5.5	I _O =24 mA			0.36		0.44		0.5	
I _I	Input Leakage Current	5.5	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	μΑ
loz	High Impedance Output Leakege Current	5.5	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$			± 0.5		± 2.5		± 5	μΑ
I _{CC}	Quiescent Supply Current	5.5	$V_I = V_{CC}$ or GND			4		40		80	μΑ
I _{OLD}	Dynamic Output	5.5	V _{OLD} = 1.65 V max					75		50	mA
I _{OHD}	Current (note 1, 2)	0.0	V _{OHD} = 3.85 V min					-75		-50	mA

¹⁾ Maximum test duration 2ms, one output loaded at time
2) Incident wave switching is guaranteed on transmission lines with impedances as low as 50\Omega

AC ELECTRICAL CHARACTERISTICS (C $_L$ = 50 pF, R_L = 500 $\Omega,$ Input t_{r} = t_{f} = 3ns)

		1	est Condition	Value							
Symbol	Parameter	v _{cc}	V _{CC}		T _A = 25°C			85°C	-55 to 125°C		Unit
			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	Ì	
t _{PLH} t _{PHL}	Propagation Delay	3.3 ^(*)			6.0	13.0		15.0		16.5	
	Time LE to Q	5.0 ^(**)			4.5	9.5		11.0		12.5	ns
t _{PLH} t _{PHL}	Propagation Delay	3.3 ^(*)			5.5	13.0		15.0		16.5	
	Time D to Q	5.0 ^(**)			4.5	10.0		11.5		13	ns
t _{PZL} t _{PZH}	Output Enable	3.3 ^(*)			6.5	11.0		12.5		13.5	ns
	Time	5.0 ^(**)			5.0	9.0		10.0		11.5	115
t _{PLZ} t _{PHZ}	Output Disable	3.3 ^(*)			7.0	12.5		13.5		15.0	ns
	Time	5.0 ^(**)			6.0	11.0		12.5		13.5	115
t _W	CLOCK Pulse	3.3 ^(*)			1.5	4.0		4.5		4.5	
	Width HIGH or LOW	5.0 ^(**)			1.5	3.5		4.0		4.0	ns
t _s	D to CK, HIGH or	3.3 ^(*)			0.5	3.0		3.5		3.5	ns
	LOW	5.0 ^(**)			0	2.5		3.0		3.0	110
t _h	Hold Time D to CK,	3.3 ^(*)			-0.5	3.0		3.5		3.5	ns
	HIGH or LOW	5.0 ^(**)			0	2.5		3.0		3.0	115

^(*) Voltage range is $3.3\text{V} \pm 0.3\text{V}$ (**) Voltage range is $5.0\text{V} \pm 0.5\text{V}$

CAPACITIVE CHARACTERISTICS

			Test Condition		Value						
Symbol Parameter	v _{cc}	V _{CC}		T _A = 25°C			-40 to 85°C		-55 to 125°C		
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance	5.0			4						pF
C _{OUT}	Output Capacitance	5.0			8						pF
C _{PD}	Power Dissipation Capacitance (note 1)	5.0	f _{IN} = 10MHz		20						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/n$ (per circuit)

TEST CIRCUIT

	TEST	SWITCH
t _{PLH} , t _{PHL}		Open
t _{PZL} , t _{PLZ}		2V _{CC}
t _{PZH} , t _{PHZ}		Open

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_L = R_1 = 500 Ω or equivalent R_T = Z_{OUT} of pulse generator (typically 50 Ω)

WAVEFORM 1: LE TO Qn PROPAGATION DELAYS, LE MINIMUN PULSE WIDTH, Dn TO LE SETUP AND HOLD TIMES (f=1MHz; 50% duty cycle)

47/ 6/11

WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIMES (f=1MHz; 50% duty cycle)

WAVEFORM 3: PROPAGATION DELAY TIME (f=1MHz; 50% duty cycle)

477

Plastic DIP-20 (0.25) MECHANICAL DATA

DIM.		mm		inch			
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.254			0.010			
В	1.39		1.65	0.055		0.065	
b		0.45			0.018		
b1		0.25			0.010		
D			25.4			1.000	
E		8.5			0.335		
е		2.54			0.100		
e3		22.86			0.900		
F			7.1			0.280	
ı			3.93			0.155	
L		3.3			0.130		
Z			1.34			0.053	

SO-20 MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			2.65			0.104
a1	0.10		0.20	0.004		0.007
a2			2.45			0.096
b	0.35		0.49	0.013		0.019
b1	0.23		0.32	0.009		0.012
С		0.50			0.020	
c1			45	(typ.)		
D	12.60		13.00	0.496		0.512
E	10.00		10.65	0.393		0.419
е		1.27			0.050	
e3		11.43			0.450	
F	7.40		7.60	0.291		0.299
L	0.50		1.27	0.19		0.050
М			0.75			0.029
S			8 (r	max.)		

TSSOP20 MECHANICAL DATA

DIM.		mm		inch				
J	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			1.1			0.433		
A1	0.05	0.10	0.15	0.002	0.004	0.006		
A2	0.85	0.9	0.95	0.335	0.354	0.374		
b	0.19		0.30	0.0075		0.0118		
С	0.09		0.2	0.0035		0.0079		
D	6.4	6.5	6.6	0.252	0.256	0.260		
Е	6.25	6.4	6.5	0.246	0.252	0.256		
E1	4.3	4.4	4.48	0.169	0.173	0.176		
е		0.65 BSC			0.0256 BSC			
К	0°	4°	8°	0°	4°	8°		
L	0.50	0.60	0.70	0.020	0.024	0.028		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

