

Open-Minded

Mahalanobis Distance

Neuroinformatics Tutorial 4

Duc Duy Pham¹

¹Intelligent Systems, Faculty of Engineering, University of Duisburg-Essen, Germany

Content

- Revision: Naive Bayes Classifer
- Revision: Lecture
- Mahalanobis Distance

Content

- Revision: Naive Bayes Classifer
- Revision: Lecture
- Mahalanobis Distance

• What is the main goal of the Naive Bayes Classifier

- What is the main goal of the Naive Bayes Classifier
 - 1. Using naive assumptions
 - 2. Maximum a-posteriori (MAP) estimation
 - 3. Using Expectation-Maximization
 - 4. Find most probable class, given the observed features

- What is the main goal of the Naive Bayes Classifier
 - 1. Using naive assumptions
 - 2. Maximum a-posteriori (MAP) estimation
 - 3. Using Expectation-Maximization
 - 4. Find most probable class, given the observed features

- What is the main goal of the Naive Bayes Classifier
 - 1. Using naive assumptions
 - 2. Maximum a-posteriori (MAP) estimation
 - 3. Using Expectation-Maximization
 - 4. Find most probable class, given the observed features

A: 1,2,3
B: 2,4

C: 4
D: 2,3,4

- What is the main goal of the Naive Bayes Classifier
 - 1. Using naive assumptions
 - 2. Maximum a-posteriori (MAP) estimation
 - 3. Using Expectation-Maximization
 - 4. Find most probable class, given the observed features

$$\underset{k=0,\ldots,N}{\operatorname{argmax}}[P(C_k|x_1,\ldots x_n)]$$

What is the naive assumption of the Naive Bayes Classifier

- What is the naive assumption of the Naive Bayes Classifier
 - 1. Using Bayes
 - 2. Observed features are stochastically independent
 - 3. Using the chain rule
 - 4. Finding most probable class, given the observed features

- What is the naive assumption of the Naive Bayes Classifier
 - 1. Using Bayes
 - 2. Observed features are stochastically independent
 - 3. Using the chain rule
 - 4. Finding most probable class, given the observed features

- What is the naive assumption of the Naive Bayes Classifier
 - 1. Using Bayes
 - 2. Observed features are stochastically independent
 - 3. Using the chain rule
 - 4. Finding most probable class, given the observed features

- What is the naive assumption of the Naive Bayes Classifier
 - 1. Using Bayes
 - 2. Observed features are stochastically independent
 - 3. Using the chain rule
 - 4. Finding most probable class, given the observed features

$$\underset{k=0,\ldots,N}{\operatorname{argmax}}[P(C_k|x_1,\ldots x_n)]$$

$$= \underset{k=0,...,K}{\operatorname{argmax}} [P(C_k) \cdot P(x_1|C_k) \cdot P(x_2|C_k, x_1) \cdots P(x_n|C_k, x_1, \dots, x_{n-1})]$$

$$= \underset{k=0,...,K}{\operatorname{argmax}} [P(C_k) \cdot P(x_1|C_k) \cdot P(x_2|C_k) \cdot P(x_n|C_k)]$$

• Which values need to be calculated during training for the Gaussian Naive Bayes Classifier?

- Which values need to be calculated during training for the Gaussian Naive Bayes Classifier?
 - 1. Feature likelihoods for each class
 - 2. Feature means for each feature/class combination
 - 3. Class priors
 - 4. Feature standard deviation for each feature/class combination

- Which values need to be calculated during training for the Gaussian Naive Bayes Classifier?
 - 1. Feature likelihoods for each class
 - 2. Feature means for each feature/class combination
 - 3. Class priors
 - 4. Feature standard deviation for each feature/class combination

- Which values need to be calculated during training for the Gaussian Naive Bayes Classifier?
 - 1. Feature likelihoods for each class
 - 2. Feature means for each feature/class combination
 - 3. Class priors
 - 4. Feature standard deviation for each feature/class combination

Naive Bayes Classifier

 Given a labeled training set, how do we get these probabilities?

Prior of class C_k : Number of class occurences in data set divided by number of all samples in data set Likelihoods of all features, given class C_k

For each feature/class combination, we need a (gaussian) distribution model!

This way we can calculate the probability during inference!

Estimation of Likelihood

- In practice quite important:
 - Estimation of Likelihood P(feature | class)
 - Easy for categorical features:
 - But what about continuous features?
 - P(Temp=19.5°C | Class = Rainy) = 0% ?
 - => Need to estimate underlying distribution!
 - Assume Gaussian

=> Variance (Given Class = Rainy) =
$$\frac{2}{3}$$

=> P(Temp=19.5°C | Class = Rainy) =
$$\frac{1}{\sqrt{2\pi^{\frac{2}{3}}}}e^{\frac{-(19.5-19)^{2}}{2\cdot\frac{2}{3}}}$$

1 _	$(x-\mu)^2$	
$\frac{1}{\sqrt{2}}e^{-\frac{1}{2}}$	$-\frac{1}{2\sigma^2}$	
$\sqrt{2\pi\sigma^2}$		

Temp.	Class
icilip.	Class
19°C	Rainy
18°C	Rainy
20°C	Rainy
21°C	Sunny
22°C	Sunny
24°C	Sunny

Naive Bayes Classifier: Jupyter

Content

- Revision: Naive Bayes Classifer
- Revision: Lecture
- Mahalanobis Distance

• Which statements regarding discrimination functions are true in the context of classification?

- Which statements regarding discrimination functions are true in the context of classification?
 - The discrimination function evaluates an input feature vector for a given class
 - 2. The discrimination function depends on the class
 - 3. A classifier chooses the class that maximizes the discrimination function
 - 4. The log-likelihood can be used as a discrimination function

- Which statements regarding discrimination functions are true in the context of classification?
 - The discrimination function evaluates an input feature vector for a given class
 - 2. The discrimination function depends on the class
 - 3. A classifier chooses the class that maximizes the discrimination function
 - 4. The log-likelihood can be used as a discrimination function

A:	all	B:	1,2,4
C:	1,3,4	D:	2,3,4

- Which statements regarding discrimination functions are true in the context of classification?
 - The discrimination function evaluates an input feature vector for a given class
 - 2. The discrimination function depends on the class
 - 3. A classifier chooses the class that maximizes the discrimination function
 - 4. The log-likelihood can be used as a discrimination function

A:	all	B:	1,2,4
C:	1,3,4	D:	2,3,4

- Which statements regarding discrimination functions are true in the context of classification?
 - The discrimination function evaluates an input feature vector for a given class
 - 2. The discrimination function depends on the class
 - 3. A classifier chooses the class that maximizes the discrimination function
 - 4. The log-likelihood can be used as a discrimination function

$$rgmax\{d^k(x)\}\$$
 $d^k(x) := \ln P(x|c^k)$
 $d^k(x) := -||x - \mu_k||_2$

Content

- Revision: Naive Bayes Classifer
- Revision: Lecture
- Mahalanobis Distance

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

 Given two real valued random variables, the covariance is defindes as:

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

• Covariance is positive, if there is a positive linear dependency

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

- Covariance is positive, if there is a positive linear dependency
- Covariance is negative, if there is a negative linear dependency

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

- Covariance is positive, if there is a positive linear dependency
- Covariance is negative, if there is a negative linear dependency
- Covariance is zero, if there is no linear dependency (But there can be a non-linear dependency!)

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

- Covariance is positive, if there is a positive linear dependency
- Covariance is negative, if there is a negative linear dependency
- Covariance is zero, if there is no linear dependency (But there can be a non-linear dependency!)
- Features/Measurements can be statistically represented by random variables! (Random variables map a value to probabilistic events!)

Positive Covariance

Positive Covariance

Negative Covariance

Zero Covariance

 Covariance does not yield information of the degree of dependency! - Only the direction!

- Covariance does not yield information of the degree of dependency! - Only the direction!
- For information of degree, covariance needs to be normed!

- Covariance does not yield information of the degree of dependency! - Only the direction!
- For information of degree, covariance needs to be normed!
- Pearson Correlation Coefficient:

$$\rho_{X,Y} = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

- Covariance does not yield information of the degree of dependency! - Only the direction!
- For information of degree, covariance needs to be normed!
- Pearson Correlation Coefficient:

$$\rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

Standard deviations

Caution:

No information about slope except whether positive or negative!

 Multidimensional feature vectors can be represented by multivariate random variables!

$$\mathbf{X} := egin{pmatrix} X_1 \ X_2 \ \dots \ X_N \end{pmatrix}$$

 For multivariate random variables the covariance can be determined for each combination of random variables within the vector

- For multivariate random variables the covariance can be determined for each combination of random variables within the vector
- The covariance matrix is definded as:

$$Cov(X) = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^T]$$

How to get covariance matrix from training data set?

- How to get covariance matrix from training data set?
- Need covariance matrix for each class!

- How to get covariance matrix from training data set?
- Need covariance matrix for each class!
- Assuming equal distribution: Expected value = mean!

- How to get covariance matrix from training data set?
- Need covariance matrix for each class!
- Assuming equal distribution: Expected value = mean!

$$Cov(X) = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^T]$$

- How to get covariance matrix from training data set?
- Need covariance matrix for each class!
- Assuming equal distribution: Expected value = mean!

Cov(X)=
$$\mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^T]$$

= $\frac{1}{N_k} \sum_{i=1}^{N_k} (x_i - \mu_k)(x_i - \mu_k)^T$

- How to get covariance matrix from training data set?
- Need covariance matrix for each class!
- Assuming equal distribution: Expected value = mean!

$$Cov(X) = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^T]$$
$$= \frac{1}{N_k} \sum_{i=1}^{N_k} (x_i - \mu_k)(x_i - \mu_k)^T$$

Mean feature vector over all samples from class k

- How to get covariance matrix from training data set?
- Need covariance matrix for each class!
- Assuming equal distribution: Expected value = mean!

$$Cov(X) = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^T]$$
$$= \frac{1}{N_k} \sum_{i=1}^{N_k} (x_i - \mu_k)(x_i - \mu_k)^T$$

Sample feature vector from class k

Mean feature vector over all samples from class k

- How to get covariance matrix from training data set?
- Need covariance matrix for each class!
- Assuming equal distribution: Expected value = mean!

$$Cov(X) = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^T]$$

Number of samples belonging to class k

$$= \frac{1}{N_k} \sum_{i=1}^{N_k} (x_i - \mu_k) (x_i - \mu_k)^T$$

Sample feature vector from class *k*

Mean feature vector over all samples from class k

Prerequisites: Cholesky Matrix

• A covariance matrix Σ can be uniquely decomposed into:

$$\Sigma = U^T U$$

- U is an upper triangular matrix
- This matrix is called Cholesky matrix

Inverse Cholesky Transform

• Claim: Multiplying each sample point with the inverse transposed Cholesky matrix $(U^T)^{-1}$ of the covariance matrix uncorrelates the data set!

Inverse Cholesky Transform

• Claim: Multiplying each sample point with the inverse transposed Cholesky matrix $(U^T)^{-1}$ of the covariance matrix uncorrelates the data set!

• This means the covariance matrix of the transformed data set should be the identity!

Inverse Cholesky Transform

• Claim: Multiplying each sample point with the inverse transposed Cholesky matrix $(U^T)^{-1}$ of the covariance matrix uncorrelates the data set!

 This means the covariance matrix of the transformed data set should be the identity!

Cov(X)=
$$\mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^T]$$

= $\frac{1}{N_k} \sum_{i=1}^{N_k} (x_i - \mu_k)(x_i - \mu_k)^T$

$$\frac{1}{N_k} \sum_{i=1}^{N_k} (U^{T^{-1}} x_i - U^{T^{-1}} \mu_k) (U^{T^{-1}} x_i - U^{T^{-1}} \mu_k)^T$$

$$\frac{1}{N_k} \sum_{i=1}^{N_k} (U^{T^{-1}} x_i - U^{T^{-1}} \mu_k) (U^{T^{-1}} x_i - U^{T^{-1}} \mu_k)^T$$

$$= \frac{1}{N_k} \sum_{i=1}^{N_k} U^{T^{-1}} (x_i - \mu_k) (x_i - \mu_k)^T U^{T^{-1}T}$$

$$\frac{1}{N_k} \sum_{i=1}^{N_k} (U^{T^{-1}} x_i - U^{T^{-1}} \mu_k) (U^{T^{-1}} x_i - U^{T^{-1}} \mu_k)^T$$

$$= \frac{1}{N_k} \sum_{i=1}^{N_k} U^{T^{-1}} (x_i - \mu_k) (x_i - \mu_k)^T U^{T^{-1}}$$

$$= \frac{1}{N_k} \sum_{i=1}^{N_k} U^{T^{-1}} (x_i - \mu_k) (x_i - \mu_k)^T U^{-1}$$

$$\frac{1}{N_k} \sum_{i=1}^{N_k} (U^{T^{-1}} x_i - U^{T^{-1}} \mu_k) (U^{T^{-1}} x_i - U^{T^{-1}} \mu_k)^T$$

$$= \frac{1}{N_k} \sum_{i=1}^{N_k} U^{T^{-1}} (x_i - \mu_k) (x_i - \mu_k)^T U^{T^{-1}}^T$$

$$= \frac{1}{N_k} \sum_{i=1}^{N_k} U^{T^{-1}} (x_i - \mu_k) (x_i - \mu_k)^T U^{-1}$$

$$= U^{T^{-1}} \left[\frac{1}{N_k} \sum_{i=1}^{N_k} (x_i - \mu_k) (x_i - \mu_k)^T \right] U^{-1}$$

$$\frac{1}{N_k} \sum_{i=1}^{N_k} (U^{T^{-1}} x_i - U^{T^{-1}} \mu_k) (U^{T^{-1}} x_i - U^{T^{-1}} \mu_k)^T$$

$$= \frac{1}{N_k} \sum_{i=1}^{N_k} U^{T^{-1}} (x_i - \mu_k) (x_i - \mu_k)^T U^{T^{-1}}^T$$

$$= \frac{1}{N_k} \sum_{i=1}^{N_k} U^{T^{-1}} (x_i - \mu_k) (x_i - \mu_k)^T U^{-1}$$

$$= U^{T^{-1}} \left[\frac{1}{N_k} \sum_{i=1}^{N_k} (x_i - \mu_k) (x_i - \mu_k)^T \right] U^{-1}$$

$$= U^{T^{-1}} \sum_{i=1}^{N_k} U^{T^{-1}} (x_i - \mu_k) (x_i - \mu_k)^T U^{-1}$$

$$= U^{T^{-1}} \sum_{i=1}^{N_k} (x_i - \mu_k) (x_i - \mu_k)^T U^{-1}$$

$$\frac{1}{N_k} \sum_{i=1}^{N_k} (U^{T^{-1}} x_i - U^{T^{-1}} \mu_k) (U^{T^{-1}} x_i - U^{T^{-1}} \mu_k)^T$$

$$= \frac{1}{N_k} \sum_{i=1}^{N_k} U^{T^{-1}} (x_i - \mu_k) (x_i - \mu_k)^T U^{T^{-1}}$$

$$= \frac{1}{N_k} \sum_{i=1}^{N_k} U^{T^{-1}} (x_i - \mu_k) (x_i - \mu_k)^T U^{-1}$$

$$= U^{T^{-1}} \left[\frac{1}{N_k} \sum_{i=1}^{N_k} (x_i - \mu_k) (x_i - \mu_k)^T \right] U^{-1}$$

$$= U^{T^{-1}} \Sigma U^{-1} = U^{T^{-1}} (U^T U) U^{-1}$$

$$\frac{1}{N_k} \sum_{i=1}^{N_k} (U^{T^{-1}} x_i - U^{T^{-1}} \mu_k) (U^{T^{-1}} x_i - U^{T^{-1}} \mu_k)^T$$

$$= \frac{1}{N_k} \sum_{i=1}^{N_k} U^{T^{-1}} (x_i - \mu_k) (x_i - \mu_k)^T U^{T^{-1}}$$

$$= \frac{1}{N_k} \sum_{i=1}^{N_k} U^{T^{-1}} (x_i - \mu_k) (x_i - \mu_k)^T U^{-1}$$

$$= U^{T^{-1}} \left[\frac{1}{N_k} \sum_{i=1}^{N_k} (x_i - \mu_k) (x_i - \mu_k)^T \right] U^{-1}$$

$$= U^{T^{-1}} \Sigma U^{-1} = U^{T^{-1}} (U^T U) U^{-1} = (U^{T^{-1}} U^T) (U U^{-1})$$

$$\frac{1}{N_k} \sum_{i=1}^{N_k} (U^{T^{-1}} x_i - U^{T^{-1}} \mu_k) (U^{T^{-1}} x_i - U^{T^{-1}} \mu_k)^T$$

$$= \frac{1}{N_k} \sum_{i=1}^{N_k} U^{T^{-1}} (x_i - \mu_k) (x_i - \mu_k)^T U^{T^{-1}}$$

$$= \frac{1}{N_k} \sum_{i=1}^{N_k} U^{T^{-1}} (x_i - \mu_k) (x_i - \mu_k)^T U^{-1}$$

$$= U^{T^{-1}} \left[\frac{1}{N_k} \sum_{i=1}^{N_k} (x_i - \mu_k) (x_i - \mu_k)^T \right] U^{-1}$$

$$= U^{T^{-1}} \Sigma U^{-1} = U^{T^{-1}} (U^T U) U^{-1} = (U^{T^{-1}} U^T) (U U^{-1}) = I$$

• Distance measure, that takes into account the correlations of the data set

.

- Distance measure, that takes into account the correlations of the data set
- Main idea:
 - Transform data into uncorrelated space with inverse cholesky transform

- Distance measure, that takes into account the correlations of the data set
- Main idea:
 - Transform data into uncorrelated space with inverse cholesky transform
 - Measure euclidean distance to mean in transformed space

$$d(x,\mu) := \sqrt{(U^{T^{-1}}x - U^{T^{-1}}\mu)^T(U^{T^{-1}}x - U^{T^{-1}}\mu)}$$

$$d(x,\mu) := \sqrt{(U^{T^{-1}}x - U^{T^{-1}}\mu)^T(U^{T^{-1}}x - U^{T^{-1}}\mu)}$$
$$= \sqrt{(x-\mu)^TU^{T^{-1}}U^{T^{-1}}(x-\mu)}$$

$$\begin{split} d(x,\mu) := \sqrt{(U^{T^{-1}}x - U^{T^{-1}}\mu)^T(U^{T^{-1}}x - U^{T^{-1}}\mu)} \\ &= \sqrt{(x-\mu)^TU^{T^{-1}}}U^{T^{-1}}(x-\mu) \\ &= \sqrt{(x-\mu)^TU^{-1}}U^{T^{-1}}(x-\mu) \end{split}$$

$$\begin{split} d(x,\mu) &:= \sqrt{(U^{T^{-1}}x - U^{T^{-1}}\mu)^T(U^{T^{-1}}x - U^{T^{-1}}\mu)} \\ &= \sqrt{(x-\mu)^TU^{T^{-1}}U^{T^{-1}}(x-\mu)} \\ &= \sqrt{(x-\mu)^TU^{-1}U^{T^{-1}}(x-\mu)} \\ &= \sqrt{(x-\mu)^T(U^TU)^{-1}(x-\mu)} \end{split}$$

$$\begin{split} d(x,\mu) &:= \sqrt{(U^{T^{-1}}x - U^{T^{-1}}\mu)^T(U^{T^{-1}}x - U^{T^{-1}}\mu)} \\ &= \sqrt{(x-\mu)^TU^{T^{-1}}}U^{T^{-1}}(x-\mu) \\ &= \sqrt{(x-\mu)^TU^{-1}}U^{T^{-1}}(x-\mu) \\ &= \sqrt{(x-\mu)^T(U^TU)^{-1}}(x-\mu) \\ &= \sqrt{(x-\mu)^T\Sigma^{-1}}(x-\mu) \end{split}$$

$$d(x,\mu) := \sqrt{(x-\mu)^T \Sigma^{-1} (x-\mu)}$$

- To calculate the distance:
 - No need for cholesky matrix
 - Only need inverse of covariance!

Likelihood Estimation

Classification via Likelihood Estimation

- "Training":
 - Calculate mean feature vectors for each class

- "Training":
 - Calculate mean feature vectors for each class
 - Calculate inverse covariance matrix for each class

- "Training ":
 - Calculate mean feature vectors for each class
 - Calculate inverse covariance matrix for each class
- Inference:
 - For each class calculate (sqaured) Mahalanobis distance to its mean feature vector

- "Training":
 - Calculate mean feature vectors for each class
 - Calculate inverse covariance matrix for each class
- Inference:
 - For each class calculate (squared) Mahalanobis distance to its mean feature vector
 - Return class with lowest Mahalanobis distance

$$d(x,\mu) := \sqrt{(x-\mu)^T \Sigma^{-1} (x-\mu)}$$

