Krzysztof Pszeniczny nr albumu: 347208 str. 1/2 Seria: 1 z pierścieni

Zadanie 9d

Zauważmy, że każdą niezerową liczbę $a \in \mathbb{Z}_p$ można zapisać jako $a = up^k$ gdzie u jest odwracalne. Istotnie, skoro liczba a jest niezerowa, to jest niezerowa modulo pewne p^k . Weźmy najmniejsze takie l i ustalamy k na l-1. Wtedy oczywiście dla każdego l mamy $p^k|a \mod p^l$, zatem bardzo łatwo możemy zdefiniować $u = a/p^k$, gdyż mamy $\mathbb{Z}_{p^{1-k}} \cong \mathbb{Z}_{p^1}/\langle p^k \rangle \twoheadrightarrow \mathbb{Z}_{p^{1-1}}/\langle p^k \rangle \cong \mathbb{Z}_{p^{1-k-1}}$ dla l > k, gdyż $\langle p^k \rangle \subseteq \ker(\mathbb{Z}_{p^1} \to \mathbb{Z}_{p^{1-1}})$, zatem mamy nić, więc u jest dobrze określone (intuicyjnie: skreślamy k ostatnich zer z zapisu liczby a i widzimy, że jest nadal dobrze). Teraz jednak a jest odwracalne na mocy zadania 5.

Stąd widzimy, że dla dowolnego ideału I możemy wziąć zbiór generujący G (np. cały ideał), po czym w każdym elemencie wziąć tylko jego p^k (bo można odwracać u). Łatwo stąd widać, że każdy niezerowy ideał w $\mathbb{Z}_p^{\hat{}}$ jest postaci (p^k) dla pewnego k (najmniejsze z k występujących w zbiorze generatorów).

Oczywiście jedyny niezerowy ideał pierwszy to (p), gdyż w każdym innym mamy $p^{k-1}, p \notin (p^k)$, lecz $p^{k-1}p = p^k \in (p^k)$, jest to też więc jedyny ideał maksymalny.

Ponadto pierwszy jest ideał (0), gdyż w liczbach p-adycznych nie ma dzielników zera, gdyż dla dowolnych a,b mamy $a=u_{\alpha}p^{k_{\alpha}}$, $b=u_{b}p^{k_{b}}$, skąd $ab=u_{\alpha}u_{b}p^{k_{\alpha}+k_{b}}$ no i łatwo widać, że modulo $p^{k_{\alpha}+k_{b}+1}$ ta liczba jest niezerowa.

Pierścień ilorazowy \mathbb{Z}_p /(0) jest oczywiście izomorficzny z \mathbb{Z}_p . Zajmijmy się więc pierścieniem \mathbb{Z}_p /(p).

Zauważmy, że przekształcenie f biorące liczbę p-adyczną modulo p jest homomorfizmem. Ponadto zeruje się ono jedynie dla liczb z (p), zatem \mathbb{Z}_p /(p) \cong im f, lecz im f \cong \mathbb{Z}_p praktycznie wprost z definicji liczb p-adycznych. Zatem ten pierscień ilorazowy to \mathbb{Z}_p .

Zadanie 14

Zauważmy, że oczywiście $I:=(x^2+y^2+10y,x^2-y)\subseteq (x^2,y)$ (gdyż każdy z generatorów tam należy). Ponadto $x\not\in (x^2,y)$, zatem $xy+11x\not\in (x^2,y)$, zatem $xy+11x\not\in I$. Jednakże $(xy+11x)^2=x^2y^2+22x^2y+121x^2=(y^2+21y+110)(x^2-y)+(y+11)(x^2+y^2+10y)\in I$.

Ale zauważmy, że jeśli $P \supseteq I$ będzie ideałem pierwszym, to ponieważ $(xy + 11x)^2 \in P$, to $xy + 11x \in P$, zatem I nie może być przecięciem ideałów pierwszych, a co dopiero maksymalnych.

Zadanie 15

Łatwo widać, że działanie to zachowuje potęgi x oraz y, zatem jednomiany przesyła na te same jednomiany, ale z inną stałą. Dokładniej, mamy, że $x^{a}y^{b} \mapsto \xi^{a-b}x^{a}y^{b}$. Zatem w zbiorze F punktów stałych działania niezerowe współczynniki mogą być jedynie przy takich jednomianach, w których n|a-b. Co więcej, dowolny wielomian złożony z takich jednomianów jest punktem stałym danego działania. Oczywiście jednak suma takich wielomianów jest nadal tej postaci, element przeciwny także, wielomiany 0 i 1 także, a ponadto $x^{a}y^{b} \cdot x^{c}y^{d} = x^{a+c}y^{b+d}$, zatem jeśli zachodziło n|a-b i n|b-d, to oczywiście mamy n|(a+c)-(b+d), czyli iloczyn nie wyprowada poza jednomiany z F, zatem iloczyn wielomianów z F także jest w F, z rozdzielności. Zatem F jest podpierścieniem.

Określmy przekształcenie:

$$\begin{split} \mathbb{C}[p,q,r] & \xrightarrow{\varphi} \mathbb{C}[x,y] \\ p^k q^l r^m & \mapsto x^{kn+m} y^{ln+m} \end{split}$$

Ponieważ n|(kn+m)-(ln+m), to im $\varphi\subseteq F$. Ponadto zauważmy, że wszystkie generatory F (tj. jednomiany $x^{\alpha}y^{b}$ dla n|a-b) są osiągane. Istotnie, jeśli a>b, to bierzemy m=b, $k=\frac{a-b}{n}$, l=0, jeśli zaś a< b to m=a, k=0, $l=\frac{b-a}{n}$. Zatem im $\varphi\cong F$.

Teraz popatrzmy na ker ϕ . Twierdzę, że ker $\phi=(r^n-pq)$. Oczywiście $\phi(r^n-pq)=0$. Niech teraz $P\in\ker\phi$. Wtedy oczywiście możemy P rozbić na sumę jednomianów i pogrupować je w bloki takich jednomianów, które (pomijając stałą) dają to samo po przejściu przez ϕ . Jeżeli $\phi(p^kq^lr^m)=\phi(p^{\hat{k}}q^{\hat{l}}r^{\hat{m}})$ to mamy oczywiście $kn+m=\hat{k}n+\hat{m}$ oraz $ln+m=\hat{l}n+\hat{m}$, skąd odejmując stronami i dzieląc przez n uzyskujemy $k-l=\hat{k}-\hat{l}$, skąd oznaczając $k-\hat{k}=l-\hat{l}=c$ mamy, że $\hat{m}-m=nc$. Gdy teraz mamy kombinację liniową takich jednomianów, to możemy łatwo wziąć ten o największym wykładniku przy r, od naszej sumy odjąć odpowiednio przemnożony wielomian r^n-pq i uzyskać kombinację z mniejszym maksymalnym wykładnikiem przy r. Zauważmy, że na

Algebra Termin: 2014-12-01

nr albumu: 347208 str. 2/2 Seria: 1 z pierścieni

końcu nie mógł nam zostać pojedynczy jednomian ani niezerowa stała, gdyż zaczęliśmy z kombinacją z jądra i odejmowaliśmy elementy z jądra, zatem to na końcu też jest z jądra, a żaden pojedynczy wielomian ani niezerowa stała nie są w ker φ (bo kn + m = ln + m = 0 wtedy i tylko wtedy, gdy k = l = m = 0, a wyrazy wolne są zachowywane przez φ). Zatem uzyskaliśmy, że suma jednomianów należy do $(r^n - pq)$, czyli $P \in (r^n - pq)$.

Zatem z tw. o izomorfizmie mamy $\mathbb{C}[p,q,r]/(r^n-pq)\cong F$.

Zadanie 16

Niech $p \in I$, $q \in J$ będą takie, że p + q = 1.

Część a

Oczywiście IJ \subseteq I, IJ \subseteq J, zatem IJ \subseteq I \cap J.

Zauważmy, że teza jest nieprawdą jeśli przyjmiemy definicję IJ jak w treści. Istotnie, niech $R=\mathbb{Z}[x,y]$, I=(x,y), J=(x-1,y). Wtedy $x^2-x\in IJ$, $y^2\in IJ$, $\sec x^2-x+y^2\not\in IJ$, gdyż jeśli byłby on w IJ, to mielibyśmy rozkład tego wielomianu na iloczyn dwóch niestałych wielomianów. Patrząc na niego jako na wielomian jednej zmiennej x z parametrem y łatwo widzimy, że taki rozkład musi mieć oba czynniki liniowe ze względu na x (gdyż żaden ze składników nie może być stały względem x, gdyż to by znaczyło, że y dzieli ten wielomian). Analogicznie pokazujemy, że oba składniki są liniowe względem y. Oczywiście jeden z nich musi mieć zerowy wyraz wolny. Zapisując jednak $x^2-x+y^2=(\alpha x+by+c)(dx+ey)=bey^2+(\alpha e+bd)xy+cey+\alpha dx^2+cdx$, skąd be=1, ce=0, cd=-1, ce=0, cd=0, c=0 c=0 c=0 c=0 c=0 c=00 c=00, co jest sprzecznością.

Zatem IJ nie byłoby ideałem, a co dopiero równe $I \cap J$. Zatem przyjmijmy definicję $IJ := (\{xy : x \in I \land y \in J\})$. Teraz jeśli $\alpha \in I \cap J$, to $\alpha = \alpha \cdot (p + q) = \alpha p + \alpha q \in JI + IJ = IJ$.

Część b

Niech x=aq+bp. Wtedy mamy, że $x-a=aq+bp-a=a(1-p)+bp-a=a-ap+bp-a=-ap+bp\in I$, analogicznie $x-b\in J$.

Algebra Termin: 2014-12-01