There are two questions in this quiz: one conceptual, and one practical. The conceptual question is multiple choice while **you must show your work for the practical problem for full credit**. Both questions are short and the quiz should take about **5 minutes** or so to complete.

Name: SOUTIONS

Equations that you may need:

$$e = 1.602 \times 10^{-19} \text{ C}$$
 $k = 8.99 \times 10^{9} \frac{\text{Nm}^{2}}{\text{C}^{2}}$ $Q = (N_{p} - N_{e})e$ $F_{e} = k \frac{q_{1}q_{2}}{r^{2}}$ $E = k \frac{q}{r^{2}}$

1. Consider a charge q_A producing an electric field. A second charge q_B feels the electric field with a magnitude E. If the distance between q_A and q_B is doubled, and the charge q_B is halved, what is the new value of the electric field felt by q_B ?

new value of the electric field felt by
$$q_B$$
?

(a) $E/8$

(b) $E/4$

(c) $E/2$

(d) E

IF Γ Is Double D, $E = k \frac{q_A}{(2i)^2} = \frac{1}{4} k \frac{q_A}{r^2}$

(E) $\frac{q_A}{r^2}$

(B) $\frac{q_A}{r^2}$

(C) $\frac{q_A}{r^2}$

(D) $\frac{q_A}{r^2}$

(E) $\frac{q_A}{r^2}$

2. If the electric force between an electron and a charged substance is 1.5×10^{-20} N when separated by 1m, how many excess electrons does the substance have?

$$F = k \frac{90}{r^2} \Rightarrow Q = \frac{r^2 F}{kq} = \frac{(1)^2 (1.5 \times 10^{-20})}{(8.99 \times 10^9)(1.6 \times 10^{-11})}$$
$$= 1.04 \times 10^{-11} C$$

excess electrons:
$$Q = NE$$

$$\Rightarrow N = \frac{Q}{e} = \frac{(1.04 \times 10^{-11})}{(1.6 \times 10^{-R})}$$

$$= 6.52 \times 10^{\frac{7}{2}} \text{ electrons}$$