Notes on "PFA implies $AD^{L(\mathbb{R})}$ "

Stefan Mesken

January 12, 2019

1 Quick Reference §1

- 1. κ is a singular, strong limit cardinal such that \square_{κ} fails.
- 2. $A_0 \subseteq \kappa \text{ codes } V_{\kappa}$.
- 3. $\lambda = \kappa^{+\operatorname{Lp}(A_0)}$.
- 4. $cf(\lambda) < \mu < \kappa$ and $\mu^{\omega} = \mu$.
- 5. g is a $Col(\omega, \mu)$ -generic filter.
- 6. Given $U \subseteq \mathbb{R}^g$ and $k < \omega$ a coarse (k, U)-Woodin mouse (witnessed by $S, T, \Sigma, \delta_0, \ldots, \delta_k$) is a countable transitive model of ZFC such that
 - (a) $N \models \delta_0 < \ldots < \delta_k$ are Woodin cardinals,
 - (b) $N \models S, T$ are trees which project to complements after the collapse of δ_k to be countable and
 - (c) there is a $\omega_1 + 1$ -iteration strategy Σ for N such that whenever $i \colon N \to P$ is an iteration map by Σ and P is countable, then $p[i(S)] \subseteq U$ and $p[i(T)] \subseteq \mathbb{R}^g \setminus U$.
- 7. For a scale $\vec{\phi}$ we let $\vec{\phi}^*$ be the associated sequence of prewellorderes.
- 8. (W_{α}^*) Let $U \subseteq \mathbb{R}^g$ and suppose there are scales $\vec{\phi}, \vec{\psi}$ on U and $\mathbb{R}^g \setminus U$ such that $\vec{\phi}^*, \vec{\psi}^* \in J_{\alpha}(\mathbb{R}^g)$. Then for all $k < \omega$ and all $x \in \mathbb{R}^g$ there are N, Σ such that
 - (a) $x \in N$ and N is a coarse (k, U)-Woodin mouse as witnessed by Σ and
 - (b) $\Sigma \upharpoonright HC^{V[g]} \in J_{\alpha}(\mathbb{R}^g)$.