# Tablero / Mis cursos / Escuela de CIENCIAS / 2021 / VACACIONES DEL SEGUNDO SEMESTRE

/ AREA MATEMATICA INTERMEDIA 3 Sección A / Primer Parcial / Primer Parcial

| Comenzado en  | Monday, 13 de December de 2021, 07:05            |
|---------------|--------------------------------------------------|
| Estado        | Terminados                                       |
| Finalizado en | Monday, 13 de December de 2021, 08:44            |
| Tiempo        | 1 hora 39 mins                                   |
| empleado      |                                                  |
| Calificación  | <b>19.50</b> de un total de 25.00 ( <b>78</b> %) |

Pregunta 1

Correcta

Puntúa 5.00 sobre 5.00

Dada la siguiente ecuación diferencial  $(xy - x^2 - 1)dx + (x^2 + 1)dy = 0$  responda los siguientes incisos.

- a) Tipo de ecuación diferencial
- 1) lineal
- 2) variables separables
- 3) Homogénea
- 4) Bernoulli
- 5) reducible a exacta
- 6) exacta
- 7) ninguna de las anteriores



- b) Suponiendo que para resolver la ecuación diferencial debe de obtener un factor de integración, determine dicho factor de integración
- 1)  $F. I. = e^{2x}$
- 2)  $F. I. = \sqrt{x^2 + 1}$
- 3)  $F.I. = \frac{1}{x^2+1}$
- 4)  $F. I. = x^3$
- 5) ninguno de los anteriores



- c) Determine la solución de la ecuación diferencial
- 1)  $y\sqrt{x^2+1} = ln(x+\sqrt{x^2+1}) \sqrt{x^2+1} + c$
- 2)  $y^3 + xy^2 + x^3 + cx^4$
- 3)  $2y\sqrt{x^2+1} = ln(x+\sqrt{x^2+1}) + x\sqrt{x^2+1} + c$
- 4)  $y = ln(x + \sqrt{x^2 + 1}) + x\sqrt{x^2 + 1} + c\sqrt{x^2 + 1}$
- 5) ninguna de las anteriores



| Pregunta <b>2</b>      |  |  |
|------------------------|--|--|
| Correcta               |  |  |
| Puntúa 6.00 sobre 6.00 |  |  |

Cierta sustancia radiactiva tiene una vida media de 60 horas.

# a) ¿Cuál es la ecuación que indica la cantidad de sustancia radioactiva en función del tiempo?



#### b) ¿Cuál es el valor de la constante k?



## c) Encuentre el tiempo que le toma al 99% de la radioactividad en disiparse.



Nota: Recuerde de utilizar únicamente 3 cifras significativas en los decimales.

Ejemplo: 25.62534 la respuesta sería: 25.625

Ejemplo: -10.00047841 la respuesta sería -10.000478

utilizar el punto decimal y en ningún momento utilizar espacio.

Pregunta 3

Parcialmente correcta

Puntúa 3.00 sobre 5.00

Dada la siguiente ecuación diferencial  $y^2 \frac{dx}{dy} + 3xy = x^2 - 5y^2$  responda los siguientes incisos.

- a) Tipo de ecuación diferencial
- 1) lineal
- 2) variables separables
- 3) Homogénea
- 4) Bernoulli
- 5) reducible a exacta
- 6) exacta
- 7) ninguna de las anteriores



- b) Suponiendo que para resolver la ecuación diferencial debe de obtener un factor de integración, determine dicho factor de integración
- 1)  $F. I. = e^{2x}$
- 2)  $F. I. = x^2$
- 3)  $F. I. = \frac{1}{x^2 + 1}$
- 4)  $F. I. = x^3$
- 5) ninguno de los anteriores



- c) Determine la solución de la ecuación diferencial
- 1)  $y^2 3xy x^2 = cx^3$
- 2)  $y^3 + xy^2 + x^3 + cx^4$
- 3)  $x 5y = cy^6(x + y)$
- 4)  $y x = cx^5(4x + y)$
- 5) ninguna de las anteriores



Pregunta 4

Correcta

Puntúa 4.00 sobre 4.00

Clasifique correctamente la siguientes E.D.

# $(y-1)\frac{dy}{dx} + y + lnx + e^x = xe^x + xlnx$



TIPO









$$\left(\frac{dy}{dx}\right)^4 - \frac{3}{x}y = \frac{x^2}{x^2 - 1}$$





Pregunta **5** 

Parcialmente correcta

Puntúa 1.50 sobre 5.00

Determine una función p(x, y) que haga de la ecuación, sea una ecuación diferencial exacta.

$$(\cos x - x \sin x + 3y \cos x)dx + p(x, y)dy = 0$$

- a) 3xcosy
- b) 3ycosx
- c) 3ysenx
- d) 3xseny
- e) ninguna de las anteriores



Determine la solución de la ecuación diferencial exacta.

- a) ysenx + 3xseny + 3xcosx = c
- b)  $x\cos y + 3y\sin y + 3y\sin x = c$
- c) xcosx + 3ysenx + 3ycosxx = c
- d)  $3x\cos x + y\sin x + 2x\cos y = c$
- e) ninguna de las anteriores



### ■ Contenido Primer Parcial

Ir a...

Procedimiento Primer Parcial ►