Logistic Regression

November 29, 2022

Objectives

Understand Logistic Regression as a Generalized Linear Model;

Develop intuition for ideas behind Maximum Likelihood Estimation;

Build ability to interpret Logistic Regression results;

Binary data

We have learned about and worked with linear regression:

- model parameter interpretation;
- hypothesis tests and p-values;
- model fit, e.g. residuals.

This is great when the dependent variable is **continuous** (i.e. interval or ratio data).

Binary data

We have learned about and worked with linear regression:

- model parameter interpretation;
- hypothesis tests and p-values;
- model fit, e.g. residuals.

This is great when the dependent variable is **continuous** (i.e. interval or ratio data).

But what if the dependent variable is weird, e.g. binary?

Binary data

A specific example...

After colliding with an iceberg late on 14 April 1912 RMS *Titanic* sank with huge loss of life:

- Estimated that 2,224 passengers and crew were aboard;
- Carried 20 lifeboats with sufficient capacity for 1,178;

A specific example...

After colliding with an iceberg late on 14 April 1912 RMS *Titanic* sank with huge loss of life:

- Estimated that 2,224 passengers and crew were aboard;
- Carried 20 lifeboats with sufficient capacity for 1,178;
- Even with perfect efficiency 1,046 people were doomed.

A specific example... who lived and who died?

A specific example... who lived and who died?

	Survived	Pclass	Name	Sex	Age	Siblings	Parents	Fare
_						Spouses	Children	
	0	3	Owen Harris Braund	М	22	1	0	7.25
	1	1	Mrs. John Cumings	F	38	1	0	71.28
	1	3	Miss. Laina Heikkinen	F	26	0	0	7.92
	1	1	Mrs. Jacques Futrelle	F	35	1	0	53.10
	:	:	i :	:	:	÷	:	:

Logistic Regression

Logistic Regression (logit) is a Generalized Linear Model (GLM) used to model a binary dependent variable using numerical and categorical predictors.

Logistic Regression

Logistic Regression (logit) is a Generalized Linear Model (GLM) used to model a binary dependent variable using numerical and categorical predictors.

Recall that GLMs have three required components:

- 1. A probability distribution that describes the dependent variable;
- 2. A linear model $\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ...$;
- 3. A link function that relates the linear model to the dependent variable distribution.

A probability distribution that describes the dependent variable

ightharpoonup For logit assume that for a given set of predictor variables (say x):

$$y = 1$$
 w/ probability $p(1)$
 $y = 0$ w/ probability $1 - p(1)$;

• We want to model p(1) and figure out how it depends on x.

A linear model $\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$

► The x's are independent variables that come from the data and are the input to logit;

lacktriangle The eta's are the effects of the independent variables and are the output of logit;

▶ In the Titanic example, the x's could be any of Pclass, Sex, Age, Siblings, Parents, and Fare.

This is where the rubber meets the road...

Let's talk a little about **odds**:

This is where the rubber meets the road...

Let's talk a little about odds:

In the Titanic context we can ask what are the odds that a passenger lives?

$$Odds(Lived) = \frac{p(Lived)}{p(not Lived)} = \frac{p(Lived)}{1 - p(Lived)}.$$

This is where the rubber meets the road...

Let's talk a little about odds:

▶ In the Titanic context we can ask what are the odds that a passenger lives?

$$Odds(Lived) = \frac{p(Lived)}{p(not Lived)} = \frac{p(Lived)}{1 - p(Lived)}.$$

► The **Logistic Function** is defined as the inverse of:

$$\ln\left(Odds(Lived)\right) = \ln\left(\frac{p(\mathsf{Lived})}{1 - p(\mathsf{Lived})}\right).$$

This is where the rubber meets the road...

Let's talk a little about odds:

In the Titanic context we can ask what are the odds that a passenger lives?

$$Odds(Lived) = \frac{p(Lived)}{p(not Lived)} = \frac{p(Lived)}{1 - p(Lived)}.$$

After some algebra for a number γ :

$$\mathsf{Logistic}(\gamma) = \frac{\mathsf{exp}\{\gamma\}}{1 + \mathsf{exp}\{\gamma\}}.$$

This is where the rubber meets the road...

Let's talk a little about odds:

▶ In the Titanic context we can ask what are the odds that a passenger lives?

$$Odds(Lived) = \frac{p(Lived)}{p(not\ Lived)} = \frac{p(Lived)}{1 - p(Lived)}.$$

In logit we will use the **Logistic Function** as follows:

$$p(\mathsf{Lived}) = \mathsf{Logistic}(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ...) = \frac{\exp\{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ...\}}{1 + \exp\{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ...\}}$$

This is where the rubber meets the road...

Let's talk a little about **odds**:

▶ In the Titanic context we can ask what are the odds that a passenger lives?

$$Odds(Lived) = \frac{p(Lived)}{p(not Lived)} = \frac{p(Lived)}{1 - p(Lived)}.$$

In logit we will use the **Logistic Function** as follows:

$$p(\mathsf{Lived}) = \mathsf{Logistic}(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ...) = \frac{\exp\{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ...\}}{1 + \exp\{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ...\}}$$

- ▶ It takes the linear model and ensures that it will give us something between 0 and 1;
- It makes comparing the odds of two events really easy.

Maximum Likelihood Estimation

Let's return to the Titanic...

Survived	Pclass	Name	Sex	Age	Siblings	Parents	Fare
					Spouses	Children	
0	3	Owen Harris Braund	М	22	1	0	7.25
1	1	Mrs. John Cumings	F	38	1	0	71.28
1	3	Miss. Laina Heikkinen	F	26	0	0	7.92
1	1	Mrs. Jacques Futrelle	F	35	1	0	53.10
:	:	:	:	:	:	:	:

Let's return to the Titanic...

Did Fare matter?

Let's return to the Titanic...

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	5.2973	0.5574	9.50	0.0000
Pclass	-1.1777	0.1461	-8.06	0.0000
Age	-0.0435	0.0077	-5.63	0.0000
Male	-2.7573	0.2004	-13.76	0.0000
Siblings/Spouses	-0.4018	0.1107	-3.63	0.0003
Parents/Children	-0.1065	0.1186	-0.90	0.3691
Fare	0.0028	0.0024	1.17	0.2437

So if we were doing linear regression, we would have:

$$\begin{aligned} y = & \beta_{intercept} \\ & + \beta_{Pclass} Pclass \\ & + \beta_{Age} Age \\ & + \beta_{Male} Male \\ & + \beta_{Siblings/Spouses} Siblings/Spouses \\ & + \beta_{Parents/Children} Parents/Children \\ & + \beta_{Fare} Fare; \end{aligned}$$

So if we were doing linear regression, we would have:

$$\begin{split} y = & \beta_{intercept} \\ & + \beta_{Pclass} Pclass \\ & + \beta_{Age} Age \\ & + \beta_{Male} Male \\ & + \beta_{Siblings/Spouses} Siblings/Spouses \\ & + \beta_{Parents/Children} Parents/Children \\ & + \beta_{Fare} Fare; \end{split}$$

The effect of Age on y would be just β_{Age} .

Unfortunately, we are doing logit:

$$p(y = \mathsf{Lived}) = \frac{\exp\{\beta_{\mathit{intercept}} + \beta_{\mathit{Pclass}} \mathit{Pclass} + \beta_{\mathit{Age}} \mathit{Age} + ...\}}{1 + \exp\{\beta_{\mathit{intercept}} + \beta_{\mathit{Pclass}} \mathit{Pclass} + \beta_{\mathit{Age}} \mathit{Age} + ...\}};$$

Unfortunately, we are doing logit:

$$p(y = \mathsf{Lived}) = \frac{\exp\{\beta_{\mathit{intercept}} + \beta_{\mathit{Pclass}} P c lass + \beta_{\mathit{Age}} A g e + ...\}}{1 + \exp\{\beta_{\mathit{intercept}} + \beta_{\mathit{Pclass}} P c lass + \beta_{\mathit{Age}} A g e + ...\}};$$

The **effect** of Age on *y* **depends on the values for all** the other independent vars!

If you want to demonstrate how a variable matters it has to be relative to a particular case:

- the average or medians of the rest of the variables;
- a particular substantively interesting case;
- ▶ an observation in the dataset.

How well does the model predict?

How well does the model predict?

Summary

Logit is a powerful and ubiquitous method for the relationship between binary dependent variables and numerical or categorical independent variables;

Logit is estimated via Maximum Likelihood Estimation;

Logit is a GLM - there are tons of GLMs built for different tasks.