Analyse 2

Correction TD 4

2020-2021

Rappel : définition d'une suite négligeable devant une autre

La suite (a_n) est **négligeable** devant la suite (b_n) (ou (b_n) est **prépondérante** devant (a_n)), ce que l'on écrit $a_n = \mathrm{o}(b_n)$, si

Il existe une suite (ε_n) telle que $\lim_{n \to +\infty} \varepsilon_n = \mathrm{o}$,

Pour tout n, $a_n = \varepsilon_n b_n$ à partir d'un certain rang.

La suite (a_n) est dominée par la suite (b_n) (ou (b_n) domine (a_n)), ce que l'on écrit $a_n = \mathcal{O}(b_n)$, si

Il existe une suite (M_n) bornée,

Pour tout n, $a_n = M_n b_n$ à partir d'un certain rang.

Ou bien, de façon équivalente.

 $\stackrel{\cdot}{\blacktriangleright}$ il existe $M\geq$ o tel que pour $n\in\mathbb{N}$ assez grand,

$$|a_n| \leq M|b_n|$$

Exercice 1:

Vérifier les assertions suivantes :

$$\frac{1}{n} = o(1), \quad \frac{\ln^{10}(n)}{n^3} = o\left(\frac{1}{n^2}\right), \quad \frac{2n+3}{n^2-5} = \mathcal{O}\left(\frac{1}{n}\right), \quad \frac{\cos(n\pi/3)}{n} = \mathcal{O}(1).$$

Remarque : $u_n = o(1) \Leftrightarrow u_n = \varepsilon_n \times 1$ avec $\lim_{n \to +\infty} \varepsilon_n = o \Leftrightarrow \lim_{n \to +\infty} u_n = o$.

- $\lim_{n \to +\infty} \frac{1}{n} = 0 \text{ donc on a } \frac{1}{n} = o(1).$
- $\begin{array}{l} \blacktriangleright \ \, \frac{\ln^{10}(n)}{n^3} = \frac{\ln^{10}(n)}{n} \times \frac{1}{n^2} = \varepsilon_n \times \frac{1}{n^2} \ \, \text{si on pose} \ \, \varepsilon_n = \frac{\ln^{10}(n)}{n}. \\ \text{Or on sait que } \lim_{n \to +\infty} \frac{\ln^{10}(n)}{n} = \text{o (résultat de cours) , donc } \frac{\ln^{10}(n)}{n^3} = \text{o} \left(\frac{1}{n^2}\right). \end{array}$

Comme $\lim_{n \to +\infty} M_n = 2$, la suite $(M_n)_n$ est convergente, et d'après un résultat du cours, toute suite convergente est bornée, donc $\frac{2n+3}{n^2-5} = \mathcal{O}\left(\frac{1}{n}\right)$.

Exercice n°1 TD 4

 $\left| \frac{\cos(n\pi/3)}{n} \right| \leq \frac{1}{n} \leq 1 \text{ pour tout } n \in \mathbb{N}^* \text{ , donc } \frac{\cos(n\pi/3)}{n} = \mathcal{O}(1).$

Exercice n°1 TD 4

Exercice 2:

Vérifier les assertions suivantes :

$$\frac{2n+3}{n^3-5} = o(1), \quad \frac{\cos(n\pi/3)}{n} = o(1), \quad \frac{1}{n} = \mathcal{O}(1), \quad \frac{2n+3}{n-5} = \mathcal{O}(1).$$

- $\lim_{n\to +\infty}\frac{\cos(n\pi/3)}{n}=\lim_{n\to +\infty}\cos(n\pi/3)\times\frac{1}{n}=\text{o} \ \text{comme produit d'une suite}$ bornée et d'une suite qui converge vers o , donc $\frac{\cos(n\pi/3)}{n}=\text{o}(1).$

Exercice n°2 TD 4

Exercice 3:

Déterminer un équivalent simple pour les suites ci-après :

1)
$$\frac{n^6 + 4n^2 - 6}{7n^4 - 3n^2 + n}$$
; 2) $\sin\left(\frac{1}{\sqrt{n+1}}\right)$; 3) $\frac{n^3 - \sqrt{n^2 + 1}}{\ln n - 2n^2}$; 4) $\frac{n^3 - \sqrt{n^2 + 1}}{\ln n - 2n^2}$;

▶ 1) On note $u_n = \frac{n^6 + 4n^2 - 6}{7n^4 - 3n^2 + n}$. on a $n^6 + 4n^2 - 6 \sim n^6$ car

$$\lim_{n \to +\infty} \frac{n^6 + 4n^2 - 6}{n^6} = \lim_{n \to +\infty} \mathbf{1} + \frac{4}{n^2} - \frac{6}{n^6} = \mathbf{1},$$

et $7n^4 - 3n^2 + n \sim 7n^4$ car

$$\lim_{n \to +\infty} \frac{7n^4 - 3n^2 + n}{7n^4} = \lim_{n \to +\infty} \mathbf{1} - \frac{3}{7n^2} + \frac{\mathbf{1}}{7n^3} = \mathbf{1},$$

donc

$$\frac{n^6 + 4n^2 - 6}{7n^4 - 3n^2 + n} \sim \frac{n^6}{7n^4} = \frac{n^2}{7},$$

quand $n \to +\infty$.

Exercice n°3 TD 4

▶ 2) On note $u_n = \sin\left(\frac{1}{\sqrt{n+1}}\right)$.

$$\underline{\text{rappel}}$$
: si $\lim_{n \to +\infty} a_n = 0$ alors $\sin a_n \sim a_n$.

Donc

$$\lim_{n \to +\infty} \frac{1}{\sqrt{n+1}} = \mathbf{0} \quad \Rightarrow \quad \sin\left(\frac{1}{\sqrt{n+1}}\right) \sim \frac{1}{\sqrt{n+1}}.$$

De plus
$$\frac{1}{\sqrt{n+1}} \sim \frac{1}{\sqrt{n}}$$
 car $\lim_{n \to +\infty} \frac{\sqrt{n+1}}{\sqrt{n}} = \lim_{n \to +\infty} \sqrt{1 + \frac{1}{n}} = 1$.

d'où

$$\sin\left(\frac{1}{\sqrt{n+1}}\right) \sim \frac{1}{\sqrt{n}} \quad n \to +\infty.$$

Exercice n°3 TD 4

► On note $u_n = \frac{n^3 - \sqrt{n^2 + 1}}{\ln n - 2n^2}$.

on a $n^3-\sqrt{n^2+1}\sim n^3$, car

$$\frac{n^3 - \sqrt{n^2 + 1}}{n^3} = 1 - \sqrt{\frac{n^2 + 1}{n^6}} = 1 - \sqrt{\frac{1}{n^4} + \frac{1}{n^6}} \underset{n \to +\infty}{\longrightarrow} 1$$

et $\ln n - 2n^2 \sim -2n^2$

En effet, par croissance comparée : $\lim_{n \to +\infty} \frac{\ln n}{n^2} = 0$.

$$\mathsf{D'o\grave{u}} \quad \lim_{n \to +\infty} \frac{\ln n - 2n^2}{-2n^2} = \lim_{n \to +\infty} \mathbf{1} - \frac{1}{2} \frac{\ln n}{n^2} = \mathbf{1}$$

donc

$$u_n \sim \frac{n^3}{-2n^2} = -\frac{n}{2} \quad n \to +\infty.$$

Exercice n°3

Exercice 4:

Déterminer un équivalent simple pour chacune des suites ci-après :

1)
$$(n+1)^{1/3} - n^{1/3}$$
; 2) $\left(1 + \ln\left(1 + \sin\frac{1}{n}\right)\right)^{2/3} - 1$.

▶ 1) On note $u_n = (n+1)^{1/3} - n^{1/3}$.

On a
$$(n+1)^{1/3} - n^{1/3} = n^{1/3} \left(1 + \frac{1}{n}\right)^{1/3} - n^{1/3} = n^{1/3} \left[\left(1 + \frac{1}{n}\right)^{1/3} - 1 \right]$$

$$\underline{\underline{\mathsf{rappel}}}$$
 : si $\lim_{n \to +\infty} a_n = \mathsf{o}$ alors $(\mathbf{1} + a_n)^{\alpha} - \mathbf{1} \sim \alpha a_n$

comme
$$\lim_{n\to+\infty} \frac{1}{n} = 0$$
 alors $\left(1+\frac{1}{n}\right)^{1/3} - 1 \sim \frac{1}{3^n}$ donc

$$u_n \sim \frac{n^{1/3}}{3^n} = \frac{1}{3^{n^2/3}}, \quad n \to +\infty.$$

Exercice n°4 TD 4

• 2) On note $u_n = (1 + v_n)^{2/3} - 1$ où $v_n = \ln (1 + \sin \frac{1}{n})$.

On a

$$\lim_{n\to +\infty}\frac{1}{n}=0\Rightarrow \lim_{n\to +\infty}\sin\frac{1}{n}=\sin 0=0\Rightarrow \lim_{n\to +\infty}\ln\left(1+\sin\frac{1}{n}\right)=\ln 1=0$$

d'où
$$\lim_{n \to +\infty} v_n = o$$
 et donc $u_n = (\mathbf{1} + v_n)^{2/3} - \mathbf{1} \sim \frac{2}{3} v_n.$

D'autre part,

$$\underline{\text{rappel}}: \text{si} \lim_{n \to +\infty} a_n = \text{o alors } \ln \left(1 + a_n \right) \sim a_n,$$

$$\text{comme } \lim_{n \to +\infty} \sin \tfrac{1}{n} = \text{o alors } v_n = \ln \left(1 + \sin \tfrac{1}{n} \right) \sim \sin \tfrac{1}{n} \sim \tfrac{1}{n},$$

Donc $v_n \sim \frac{1}{n}$ et donc $u_n \sim \frac{2}{3n}$ lorsque $n \to +\infty$.

Exercice n°4 TD 4

Exercice 5:

A l'aide des équivalents, déterminer la limite de la suite de terme général :

1)
$$(n^2+n)\sqrt{\sin\frac{\pi}{2n^4}}$$
; 2) $n^2\tan\left(\sqrt{\cos\frac{1}{n}}-1\right)$;

• 1) On note $u_n = (n^2 + n) \sqrt{\sin \frac{\pi}{2n^4}}$.

On a

$$\lim_{n \to +\infty} \frac{\pi}{2n^4} = 0 \implies \sin \frac{\pi}{2n^4} \sim \frac{\pi}{2n^4} \implies \sqrt{\sin \frac{\pi}{2n^4}} \sim \sqrt{\frac{\pi}{2n^4}} = \frac{1}{n^2} \sqrt{\frac{\pi}{2n^4}}$$

•

De plus
$$n^2 + n \sim n^2$$
 car $\lim_{n \to +\infty} \frac{n^2 + n}{n^2} = \lim_{n \to +\infty} 1 + \frac{1}{n} = 1$.

Donc

$$u_n = \underbrace{(n^2 + n)}_{\sim n^2} \underbrace{\sqrt{\sin \frac{\pi}{2n^4}}}_{\sim n^2} \sim n^2 \times \frac{1}{n^2} \sqrt{\frac{\pi}{2}} = \sqrt{\frac{\pi}{2}}$$

et par conséquent

$$\lim_{n\to+\infty}u_n=\sqrt{\frac{\pi}{2}}.$$

Exercice n°5 TD 4

Notons $u_n = n^2 \tan v_n$ où $v_n = \sqrt{\cos \frac{1}{n}} - 1$.

Comme $\lim_{n\to +\infty}\cos\frac{1}{n}=\cos 0=1$ alors $\lim_{n\to +\infty}v_n=0$,

$$\underline{\operatorname{rappel}}:\operatorname{si}\lim_{n\to+\infty}a_n=\operatorname{o}\operatorname{alors}\operatorname{tan}\left(a_n\right)\sim a_n,$$

Par conséquent

$$u_n = n^2 \tan v_n \sim n^2 v_n$$

. D'autre part,

$$v_n = \sqrt{\cos\frac{1}{n}} - 1 = \sqrt{\left[\cos\frac{1}{n} - 1\right] + 1} - 1 = (w_n + 1)^{1/2} - 1 \sim \frac{1}{2}w_n$$

car $w_n = \cos \frac{1}{n} - 1$ vérifie $\lim_{n \to +\infty} w_n = 0$.

De plus

$$w_n = \cos \frac{1}{n} - 1 \sim -\frac{1}{2n^2},$$

donc

$$v_n \sim \frac{1}{2} w_n \sim -\frac{1}{4n^2},$$

et donc

$$u_n = n^2 \tan v_n \sim n^2 v_n \sim -\frac{1}{4}$$

D'où

$$\lim_{n\to+\infty}u_n=-\frac{1}{4}.$$

Exercice 6:

A l'aide des équivalents, déterminer la limite de la suite de terme général :

1)
$$\left(\cos\frac{1}{n}\right)^{n^2}$$
; 2) $\frac{\sin\left(\frac{1}{n^2} + \frac{2}{n^3} - \frac{1}{n^4}\right)}{\sqrt{\exp\left(\frac{4}{n} - \frac{3}{n^2}\right) - 1}}$.

▶ 1) On note $u_n = \left(\cos\frac{1}{n}\right)^{n^2} = \exp v_n$ où $v_n = n^2 \ln\left(\cos\frac{1}{n}\right)$.

Ecrivons
$$\ln\left(\cos\frac{1}{n}\right) = \ln\left(\left[\cos\frac{1}{n} - 1\right] + 1\right)$$

Comme $\lim_{n \to +\infty} \cos \frac{1}{n} - 1 = \cos 0 - 1 = 0$ alors

$$\ln\left(\left[\cos\frac{1}{n}-1\right]+1\right)\sim\cos\frac{1}{n}-1.$$

$$\underline{\text{rappel}}: \text{si}\lim_{n \to +\infty} a_n = \text{o alors } \cos\left(a_n\right) - 1 \sim -\frac{a_n^2}{2}$$

Donc

$$\cos\frac{1}{n} - 1 \sim -\frac{1}{2n^2}$$

Exercice n°6 TD 4

Par conséquent, $\ln\left(\cos\frac{1}{n}\right) \sim -\frac{1}{2n^2}$.

$$v_n = n^2 \ln \left(\cos \frac{1}{n} \right) \sim -\frac{n^2}{2n^2} = -\frac{1}{2},$$

On en déduit que $\lim_{n\to+\infty} v_n = -\frac{1}{2}$.

D'où

Donc

$$\lim_{n\to+\infty}u_n=\lim_{n\to+\infty}\exp v_n=\exp \left(-1/2\right).$$

▶ 2) Notons
$$u_n = \frac{\sin\left(\frac{1}{n^2} + \frac{2}{n^3} - \frac{1}{n^4}\right)}{\sqrt{\exp\left(\frac{4}{n} - \frac{3}{n^2}\right) - 1}}$$
.

Comme $\lim_{n\to+\infty} \frac{1}{n^2} + \frac{2}{n^3} - \frac{1}{n^4} = 0$ alors

$$\sin\left(\frac{1}{n^2} + \frac{2}{n^3} - \frac{1}{n^4}\right) \sim \frac{1}{n^2} + \frac{2}{n^3} - \frac{1}{n^4} \sim \frac{1}{n^2},$$

car

$$\lim_{n \to +\infty} \frac{\frac{1}{n^2} + \frac{2}{n^3} - \frac{1}{n^4}}{\frac{1}{n}} = \lim_{n \to +\infty} 1 + \frac{2}{n} - \frac{1}{n^2} = 1.$$

$$\underline{\text{rappel}}$$
: si $\lim_{n \to +\infty} a_n = 0$ alors $\exp(a_n) - 1 \sim a_n$.

 $\begin{array}{l} \text{comme } \lim_{n \to +\infty} \frac{4}{n} - \frac{3}{n^2} = \text{o alors } \exp\left(\frac{4}{n} - \frac{3}{n^2}\right) - \text{i} \sim \frac{4}{n} - \frac{3}{n^2} \sim \frac{4}{n}. \\ \text{et donc } \sqrt{\exp\left(\frac{4}{n} - \frac{3}{n^2}\right) - \text{i}} \sim \frac{2}{\sqrt{n}}. \end{array}$

Par conséquent,

$$u_n \sim \frac{\frac{1}{n^2}}{\frac{2}{\sqrt{n}}} \sim \frac{1}{2n\sqrt{n}}$$

et donc

$$\lim_{n\to +\infty} u_n = \lim_{n\to +\infty} \frac{1}{2n\sqrt{n}} = 0.$$

Exercice n°6 TD 4