Machine Learning RNN for Word Generation

Mostafa S. Ibrahim Teaching, Training and Coaching for more than a decade!

Artificial Intelligence & Computer Vision Researcher PhD from Simon Fraser University - Canada Bachelor / MSc from Cairo University - Egypt Ex-(Software Engineer / ICPC World Finalist)

© 2023 All rights reserved.

Please do not reproduce or redistribute this work without permission from the author

Next Word Prediction

- In next character prediction, the vocabulary was simple
 - For example, 100 letters (for letters, puntcations, etc)
 - Pros: we use one-hot-encoding as input feature
 - Cons: harder to learn good output and need a long training
- In the next word prediction, the vocabulary can be like 100k words!
 - Cons: it is hard to keep providing inputs for 100k one-hot-encoding
 - Also, no relationship between close words!
 - Man/Woman. Apple/Banana. King/Queen
 - Solution: Instead, use embeddings (dense vector representations of words)
 - o For example, the 100k words are represented using 100k x 64 data
 - We init them and learn them during the training itself
 - We may use the learned one in another app
- Relevant note: Perplexity is a common metric for evaluation for some NLP tasks

Word Embedding

- Technique in NLP where each word is mapped to a feature vector
- Goal: replacing the sparse one-hot encoded vectors with a dense compact representation where similar words have continuous representation
 - Hopefully, similar words has similar encoding.
- But how to find such representations?! Learn them
 - Decide a dimension for the word, e.g. 128
 - Create for K words K feature vectors and initialize randomly
 - Map each input index to its current vector and feed the vectors to the network
- Hence, the embeddings are learned and updated during the training process of the network, in the same way as other learnable parameters.
 - We call these embeddings vectors = Embedding matrix

nn.Embedding

- A PyTorch layer to convert categorical data (indices), into a learnable embedding space.
- The internal vectors are passed to the network and updated during the training
- Key Syntax
 - Creation: self.embedding = nn.Embedding(vocab_size=200000, embedding_dim=128)
 - Create 200k embeddings, each vector is 128 features
 - Train/Inference in forward function
 - Let x be a tensor of input indices (e.g. [2, 7, 10])
 - $\mathbf{x} = \text{self.embedding}(\mathbf{x})$
 - Output x will be 3x128

```
class WordRNN(nn.Module):
   def init (self, vocab size, embedding dim, hidden dim, n layers=1):
        super(WordRNN, self). init ()
        self.hidden dim = hidden dim
        self.n layers = n layers
        self.rnn = nn.RNN(embedding dim, hidden dim, n layers, batch first=True)
        self.fc = nn.Linear(hidden dim, vocab size)
        self.embedding = nn.Embedding(vocab size, embedding dim)
   def forward(self, x, hidden = None):
       x = self.embedding(x) # convert idx to embedding dim: words x embedding dim
        if hidden is None:
           out, hidden = self.rnn(x)
       else:
           out, hidden = self.rnn(x, hidden)
       out = self.fc(out)
        return out, hidden
```

Next Word Prediction

- There is no code differences except using an embedding layer!
- Divide a string into words (tokens), this gives us the vocabulary size
 - Map a word to an index and the opposite
- Use word like EOS to mark the end of a sequence
- Code is attached
 - You will notice training is faster to reach high accuracy (overfitting a small dataset)
- Note: people either train and learn words embeddings or download a pretrained word embeddings (you may finetune).

ChatGpt

Custom instructions (i)

What would you like ChatGPT to know about you to provide better responses?

Machine Learning

Computer Vision

Multiview 3D Geometry

Sensor Calibration

Self-driving

in-cabin

if x = 2 and y = 3, what is x * y

ChatGPT

If x=2 and y=3, then the product $x\times y$ is $2\times 3=6$.

You

And x+y?

ChatGPT

If x=2 and y=3, then the sum x+y is 2+3=5.

"Acquire knowledge and impart it to the people."

"Seek knowledge from the Cradle to the Grave."