

SEQUENCE LISTING

<110> Waisman, David M.

<120> Compositions and Methods for Inhibiting Tumor Growth and Metastasis

<130> ME03-009

<140>

<141> 2003-12-13

<150> US 60/433,140

<151> 2002-12-12

<160> 160

<170> Microsoft Word

<210> 1

<211> 791

<212> PRT

<213> mammalian

<400> 1

Glu Pro Leu Asp Asp Tyr Val Asn Thr Gln Gly Ala Ser Leu Phe Ser
1 5 10 15

Val Thr Lys Lys Gln Leu Gly Ala Gly Ser Ile Glu Glu Cys Ala Ala
20 25 30

Lys Cys Glu Glu Asp Glu Glu Phe Thr Cys Arg Ala Phe Gln Tyr His
35 40 45

Ser Lys Glu Gln Gln Cys Val Ile Met Ala Glu Asn Arg Lys Ser Ser
50 55 60

Ile Ile Ile Arg Met Arg Asp Val Val Leu Phe Glu Lys Lys Val Tyr
65 70 75 80

Leu Ser Glu Cys Lys Thr Gly Asn Gly Lys Asn Tyr Arg Gly Thr Met
85 90 95

Ser Lys Thr Lys Asn Gly Ile Thr Cys Gln Lys Trp Ser Ser Thr Ser
100 105 110

Pro His Arg Pro Arg Phe Ser Pro Ala Thr His Pro Ser Glu Gly Leu
115 120 125

Glu Glu Asn Tyr Cys Arg Asn Pro Asp Asn Asp Pro Gln Gly Pro Trp
130 135 140

Cys Tyr Thr Thr Asp Pro Glu Lys Arg Tyr Asp Tyr Cys Asp Ile Leu
145 150 155 160

Glu Cys Glu Glu Cys Met His Cys Ser Gly Glu Asn Tyr Asp Gly
165 170 175

Lys Ile Ser Lys Thr Met Ser Gly Leu Glu Cys Gln Ala Trp Asp Ser
 180 185 190

 Gln Ser Pro His Ala His Gly Tyr Ile Pro Ser Lys Phe Pro Asn Lys
 195 200 205

 Asn Leu Lys Lys Asn Tyr Cys Arg Asn Pro Asp Arg Glu Leu Arg Pro
 210 215 220

 Trp Cys Phe Thr Thr Asp Pro Asn Lys Arg Trp Glu Leu Cys Asp Ile
 225 230 240

 Pro Arg Cys Thr Thr Pro Pro Pro Ser Ser Gly Pro Thr Tyr Gln Cys
 245 250 255

 Leu Lys Gly Thr Gly Glu Asn Tyr Arg Gly Asn Val Ala Val Thr Val
 260 265 270

 Ser Gly His Thr Cys Gln His Trp Ser Ala Gln Thr Pro His Thr His
 275 280 285

 Asn Arg Thr Pro Glu Asn Phe Pro Cys Lys Asn Leu Asp Glu Asn Tyr
 290 295 300

 Cys Arg Asn Pro Asp Gly Lys Arg Ala Pro Trp Cys His Thr Thr Asn
 305 310 315 320

 Ser Gln Val Arg Trp Glu Tyr Cys Lys Ile Pro Ser Cys Asp Ser Ser
 325 330 335

 Pro Val Ser Thr Glu Gln Leu Ala Pro Thr Ala Pro Pro Glu Leu Thr
 340 345 350

 Pro Val Val Gln Asp Cys Tyr His Gly Asp Gly Gln Ser Tyr Arg Gly
 355 360 365

 Thr Ser Ser Thr Thr Thr Gly Lys Lys Cys Gln Ser Trp Ser Ser
 370 375 380

 Met Thr Pro His Arg His Gln Lys Thr Pro Glu Asn Tyr Pro Asn Ala
 385 390 395 400

 Gly Leu Thr Met Asn Tyr Cys Arg Asn Pro Asp Ala Asp Lys Gly Pro
 405 410 415

 Trp Cys Phe Thr Thr Asp Pro Ser Val Arg Trp Glu Tyr Cys Asn Leu
 420 425 430

 Lys Lys Cys Ser Gly Thr Glu Ala Ser Val Val Ala Pro Pro Pro Val
 435 440 445

 Val Leu Leu Pro Asp Val Glu Thr Pro Ser Glu Glu Asp Cys Met Phe
 450 455 460

 Gly Asn Gly Lys Gly Tyr Arg Gly Lys Arg Ala Thr Thr Val Thr Gly
 465 470 475 480

Thr Pro Cys Gln Asp Trp Ala Ala Gln Glu Pro His Arg His Ser Ile
 485 490 495

 Phe Thr Pro Glu Thr Asn Pro Arg Ala Gly Leu Glu Lys Asn Tyr Cys
 500 505 510

 Arg Asn Pro Asp Gly Asp Val Gly Gly Pro Trp Cys Tyr Thr Thr Asn
 515 520 525

 Pro Arg Lys Leu Tyr Asp Tyr Cys Asp Val Pro Gln Cys Ala Ala Pro
 530 535 540

 Ser Phe Asp Cys Gly Lys Pro Gln Val Glu Pro Lys Lys Cys Pro Gly
 545 550 555 560

 Arg Val Val Gly Gly Cys Val Ala His Pro His Ser Trp Pro Trp Gln
 565 570 575

 Val Ser Leu Arg Thr Arg Phe Gly Met His Phe Cys Gly Gly Thr Leu
 580 585 590

 Ile Ser Pro Glu Trp Val Leu Thr Ala Ala His Cys Leu Glu Lys Ser
 595 600 605

 Pro Arg Pro Ser Ser Tyr Lys Val Ile Leu Gly Ala His Gln Glu Val
 610 615 620

 Asn Leu Glu Pro His Val Gln Glu Ile Glu Val Ser Arg Leu Phe Leu
 625 630 635 640

 Glu Pro Thr Arg Lys Asp Ile Ala Leu Leu Lys Leu Ser Ser Pro Ala
 645 650 655

 Val Ile Thr Asp Lys Val Ile Pro Ala Cys Leu Pro Ser Pro Asn Tyr
 660 665 670

 Val Val Ala Asp Arg Thr Glu Cys Phe Ile Thr Gly Trp Gly Glu Thr
 675 680 685

 Gln Gly Thr Phe Gly Ala Gly Leu Leu Lys Glu Ala Gln Leu Pro Val
 690 695 700

 Ile Glu Asn Lys Val Cys Asn Arg Tyr Glu Phe Leu Asn Gly Arg Val
 705 710 715 720

 Gln Ser Thr Glu Leu Cys Ala Gly His Leu Ala Gly Gly Thr Asp Ser
 725 730 735

 Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Phe Glu Lys Asp Lys
 740 745 750

 Tyr Ile Leu Gln Gly Val Thr Ser Trp Gly Leu Gly Cys Ala Arg Pro
 755 760 765

 Asn Lys Pro Gly Val Tyr Val Arg Val Ser Arg Phe Val Thr Trp Ile
 770 775 780

Glu Gly Val Met Arg Asn Asn
785 790

<210> 2
<211> 319
<212> PRT
<213> mammalian

<400> 2

Met Ser Thr Val His Glu Ile Leu Cys Lys Leu Ser Leu Glu Gly Asp
1 5 10 15

His Ser Thr Pro Pro Ser Ala Tyr Gly Ser Val Lys Ala Tyr Thr Asn
20 25 30

Phe Asp Ala Glu Arg Asp Ala Leu Asn Ile Glu Thr Ala Ile Lys Thr
35 40 45

Lys Gly Val Asp Glu Val Thr Ile Val Asn Ile Leu Thr Asn Arg Ser
50 55 60

Asn Ala Gln Arg Gln Asp Ile Ala Phe Ala Tyr Gln Arg Arg Thr Lys
65 70 75 80

Lys Glu Leu Ala Ser Ala Leu Lys Ser Ala Leu Ser Gly His Leu Glu
85 90 95

Thr Val Ile Leu Gly Leu Leu Lys Thr Pro Ala Gln Tyr Asp Ala Ser
100 105 110

Glu Leu Lys Ala Ser Met Lys Gly Leu Gly Thr Asp Glu Asp Ser Leu
115 120 125

Ile Glu Ile Ile Cys Ser Arg Thr Asn Gln Glu Leu Gln Glu Ile Asn
130 135 140

Arg Val Tyr Lys Glu Met Tyr Lys Thr Asp Leu Glu Lys Asp Ile Ile
145 150 155 160

Glu Asp Gly Ser Val Ile Asp Tyr Glu Leu Ile Asp Gln Asp Ala Arg
165 170 175

Asp Leu Tyr Asp Ala Gly Val Lys Arg Lys Gly Thr Asp Val Pro Lys
180 185 190

Trp Ile Ser Ile Met Thr Glu Arg Ser Val Pro His Leu Gln Lys Val
195 200 205

Phe Asp Arg Tyr Lys Ser Tyr Ser Pro Tyr Asp Met Leu Glu Ser Ile
210 215 220

Arg Lys Glu Val Lys Gly Asp Leu Glu Asn Ala Phe Leu Asn Leu Val
225 230 235 240

Gln Cys Ile Gln Asn Lys Pro Leu Tyr Phe Ala Asp Arg Leu Tyr Asp
245 250 255

Ser Met Lys Gly Lys Gly Thr Arg Asp Lys Val Leu Ile Arg Ile Met
260 265 270

Val Ser Arg Ser Glu Val Asp Met Leu Lys-Ile Arg Ser Glu Phe Lys
275 280 285

Arg Lys Tyr Gly Lys Ser Leu Tyr Tyr Ile Gln Gln Asp Thr Lys
290 295 300

Gly Asp Tyr Gln Lys Ala Leu Leu Tyr Leu Cys Gly Gly Asp Asp
305 310 315

<210> 3
<211> 97
<212> PRT
<213> mammalian

<400> 3

Met Pro Ser Gln Met Glu His Ala Met Glu Thr Met Met Phe Thr Phe
1 5 10 15

His Lys Phe Ala Gly Asp Lys Gly Tyr Leu Thr Lys Glu Asp Leu Arg
20 25 30

Val Leu Met Glu Lys Glu Phe Pro Gly Phe Leu Glu Asn Gln Lys Asp
35 40 45

Pro Leu Ala Val Asp Lys Ile Met Lys Asp Leu Asp Gln Cys Arg Asp
50 55 60

Gly Lys Val Gly Phe Gln Ser Phe Phe Ser Leu Ile Ala Gly Leu Thr
65 70 75 80

Ile Ala Cys Asn Asp Tyr Phe Val Val His Met Lys Gln Lys Gly Lys
85 90 95

Lys
97

<210> 4
<211> 6
<212> PRT
<213> mammalian

<400> 4

Trp Cys Gly Pro Cys Lys
1 5

<210> 5

<211> 291
<212> DNA
<213> mammalian

<400> 5

cttctttccc ttctgcttca tggactac aaaatagtca ttgcattcaa tggtagggcc 60
cgcaattagg gaaaagaagc tctggaaagcc cactttgcc tctctacact ggtccaggc 120
cttcattatt ttgtccacag ccagagggtc ttttgattt tccaaaaatc cagggaaactc 180
ctttccatg agtactctca ggtcctcctt tgttaagtag cctttatccc cagcgaattt 240
gtgaaatgta aacatcatgg tttccatggc gtgttccatt tgagatggca t 291

<210> 6
<211> 291
<212> DNA
<213> mammalian

<400> 6

atgccatctc aaatggaaca cgccatggaa accatgatgt ttacatttca caaattcgct 60
ggggataaag gctacttaac aaaggaggac ctgagagtac tcatggaaaa ggagttccct 120
ggattttgg aaaatcaaaa agaccctctg gctgtggaca aaataatgaa ggacctggac 180
cagtgttagag atggcaaagt gggcttccag agcttctttt ccctaattgc gggcctcacc 240
attgcatgca atgactattt tgttagtacac atgaagcaga agggaaagaa g 291

<210> 7
<211> 391
<212> PRT
<213> mammalian

<400> 7

Lys Val Tyr Leu Ser Glu Cys Lys Thr Gly Asn Gly Lys Asn Tyr Arg
1 5 10 15

Gly Thr Met Ser Lys Thr Lys Asn Gly Ile Thr Cys Gln Lys Trp Ser
20 25 30

Ser Thr Ser Pro His Arg Pro Arg Phe Ser Pro Ala Thr His Pro Ser
35 40 45

Glu Gly Leu Glu Glu Asn Tyr Cys Arg Asn Pro Asp Asn Asp Pro Gln
50 55 60

Gly Pro Trp Cys Tyr Thr Asp Pro Glu Lys Arg Tyr Asp Tyr Cys
65 70 75 80

Asp	Ile	Leu	Glu	Cys	Glu	Glu	Cys	Met	His	Cys	Ser	Gly	Glu	Asn		
								85		90				95		
Tyr	Asp	Gly	Lys	Ile	Ser	Lys	Thr	Met	Ser	Gly	Leu	Glu	Cys	Gln	Ala	
								100		105				110		
Trp	Asp	Ser	Gln	Ser	Pro	His	Ala	His	Gly	Tyr	Ile	Pro	Ser	Lys	Phe	
								115		120				125		
Pro	Asn	Lys	Asn	Leu	Lys	Lys	Asn	Tyr	Cys	Arg	Asn	Pro	Asp	Arg	Glu	
								130		135				140		
Leu	Arg	Pro	Trp	Cys	Phe	Thr	Thr	Asp	Pro	Asn	Lys	Arg	Trp	Glu	Leu	
								145		150				155	160	
Cys	Asp	Ile	Pro	Arg	Cys	Thr	Thr	Pro	Pro	Pro	Ser	Ser	Gly	Pro	Thr	
								165		170				175		
Tyr	Gln	Cys	Leu	Lys	Gly	Thr	Gly	Glu	Asn	Tyr	Arg	Gly	Asn	Val	Ala	
								180		185				190		
Val	Thr	Val	Ser	Gly	His	Thr	Cys	Gln	His	Trp	Ser	Ala	Gln	Thr	Pro	
								195		200				205		
His	Thr	His	Asn	Arg	Thr	Pro	Glu	Asn	Phe	Pro	Cys	Lys	Asn	Leu	Asp	
								210		215				220		
Glu	Asn	Tyr	Cys	Arg	Asn	Pro	Asp	Gly	Lys	Arg	Ala	Pro	Trp	Cys	His	
								225		230				235	240	
Thr	Thr	Asn	Ser	Gln	Val	Arg	Trp	Glu	Tyr	Cys	Lys	Ile	Pro	Ser	Cys	
								245		250				255		
Asp	Ser	Ser	Pro	Val	Ser	Thr	Glu	Gln	Leu	Ala	Pro	Thr	Ala	Pro	Pro	
								260		265				270		
}	Glu	Leu	Thr	Pro	Val	Val	Gln	Asp	Cys	Tyr	His	Gly	Asp	Gly	Gln	Ser
								275		280				285		
Tyr	Arg	Gly	Thr	Ser	Ser	Thr	Thr	Thr	Gly	Lys	Lys	Cys	Gln	Ser		
								290		295				300		
Trp	Ser	Ser	Met	Thr	Pro	His	Arg	His	Gln	Lys	Thr	Pro	Glu	Asn	Tyr	
								305		310				315	320	
Pro	Asn	Ala	Gly	Leu	Thr	Met	Asn	Tyr	Cys	Arg	Asn	Pro	Asp	Ala	Asp	
								325		330				335		
Lys	Gly	Pro	Trp	Cys	Phe	Thr	Thr	Asp	Pro	Ser	Val	Arg	Trp	Glu	Tyr	
								340		345				350		
Cys	Asn	Leu	Lys	Lys	Cys	Ser	Gly	Thr	Glu	Ala	Ser	Val	Val	Ala	Pro	
								355		360				365		
Pro	Pro	Val	Val	Leu	Leu	Pro	Asp	Val	Glu	Thr	Pro	Ser	Glu	Glu	Asp	
								370		375				380		

Cys Met Phe Gly Asn Gly Lys
385 390

<210> 8
<211> 394
<212> PRT
<213> mammalian

<400> 8

Lys Val Tyr Leu Ser Glu Cys Lys Thr Gly Asn Gly Lys Asn Tyr Arg
1 5 10 15

Gly Thr Met Ser Lys Thr Lys Asn Gly Ile Thr Cys Gln Lys Trp Ser
20 25 30

Ser Thr Ser Pro His Arg Pro Arg Phe Ser Pro Ala Thr His Pro Ser
35 40 45

Glu Gly Leu Glu Glu Asn Tyr Cys Arg Asn Pro Asp Asn Asp Pro Gln
50 55 60

Gly Pro Trp Cys Tyr Thr Thr Asp Pro Glu Lys Arg Tyr Asp Tyr Cys
65 70 75 80

Asp Ile Leu Glu Cys Glu Glu Cys Met His Cys Ser Gly Glu Asn
85 90 95

Tyr Asp Gly Lys Ile Ser Lys Thr Met Ser Gly Leu Glu Cys Gln Ala
100 105 110

Trp Asp Ser Gln Ser Pro His Ala His Gly Tyr Ile Pro Ser Lys Phe
115 120 125

Pro Asn Lys Asn Leu Lys Lys Asn Tyr Cys Arg Asn Pro Asp Arg Glu
130 135 140

Leu Arg Pro Trp Cys Phe Thr Thr Asp Pro Asn Lys Arg Trp Glu Leu
145 150 155 160

Cys Asp Ile Pro Arg Cys Thr Thr Pro Pro Ser Ser Gly Pro Thr
165 170 175

Tyr Gln Cys Leu Lys Gly Thr Gly Glu Asn Tyr Arg Gly Asn Val Ala
180 185 190

Val Thr Val Ser Gly His Thr Cys Gln His Trp Ser Ala Gln Thr Pro
195 200 205

His Thr His Asn Arg Thr Pro Glu Asn Phe Pro Cys Lys Asn Leu Asp
210 215 220

Glu Asn Tyr Cys Arg Asn Pro Asp Gly Lys Arg Ala Pro Trp Cys His
225 230 235 240

Thr Thr Asn Ser Gln Val Arg Trp Glu Tyr Cys Lys Ile Pro Ser Cys

245	250	255
Asp Ser Ser Pro Val Ser Thr Glu Gln Leu Ala Pro Thr Ala Pro Pro		
260	265	270
Glu Leu Thr Pro Val Val Gln Asp Cys Tyr His Gly Asp Gly Gln Ser		
275	280	285
Tyr Arg Gly Thr Ser Ser Thr Thr Thr Gly Lys Lys Cys Gln Ser		
290	295	300
Trp Ser Ser Met Thr Pro His Arg His Gln Lys Thr Pro Glu Asn Tyr		
305	310	315
320		
Pro Asn Ala Gly Leu Thr Met Asn Tyr Cys Arg Asn Pro Asp Ala Asp		
325	330	335
Lys Gly Pro Trp Cys Phe Thr Thr Asp Pro Ser Val Arg Trp Glu Tyr		
340	345	350
Cys Asn Leu Lys Lys Cys Ser Gly Thr Glu Ala Ser Val Val Ala Pro		
355	360	365
Pro Pro Val Val Leu Leu Pro Asp Val Glu Thr Pro Ser Glu Glu Asp		
370	375	380
Cys Met Phe Gly Asn Gly Lys Gly Tyr Arg		
385	390	
<210> 9		
<211> 26		
<212> DNA		
<213> mammalian		
<400> 9		
ATGCGGCCGC ATGCCATCTC AAATGG		26
<210> 10		
<211> 24		
<212> DNA		
<213> mammalian		
<400> 10		
ATAGATCTCT ACTTCTTCCTT CTTC		24
<210> 11		
<211> 24		
<212> DNA		
<213> mammalian		
<400> 11		
ATAGATCTAT GCCATCTCAA ATGG		24
<210> 12		
<211> 28		
<212> DNA		
<213> mammalian		

<400> 12		
ATGCGGCCGC CTACTTCTTT CCCTTCTG		28
<210> 13		
<211> 21		
<212> DNA		
<213> mammalian		
<400> 13		
TCTACACTGG TCCAGGTCTT T		21
<210> 14		
<211> 21		
<212> DNA		
<213> mammalian		
<400> 14		
AGAAGCTCTG GAAGCCCACT T		21
<210> 15		
<211> 21		
<212> DNA		
<213> mammalian		
<400> 15		
AGAAGCTCTG GAAGCCCACT T		21
<210> 16		
<211> 1199		
<212> DNA		
<213> mammalian		
<400> 16		
ggaactaaaa aagaacctta tttattgagg gcaaggggat gcaaacaata caaaaatcaa		60
aagcttatct ggtatttaac ttttcttct ctgcttgtca aatgagagtt agattttatt		120
tttacatttg ctaagtgtcc tgatctgctc atgaaatcct tctatgggg aagctgtggg		180
gcagattcct taagcgaccc tttggacaa ctcttatacg ggaggagcga actgctcatt		240
tctgcctact tcttcctt ctgcttcatg tgtactacaa aatagtcatt gcatgcaatg		300
gtgaggcccg caatttaggaa aaagaagctc tggaagccca cttgccatc tctacactgg		360
tccaggtcct tcattatttt gtccacagcc agagggtctt tttgatttc caaaaatcca		420
gggaactcct tttccatgag tactctcagg tcctccttgc ttaagtagcc tttatccccca		480
gcgaatttgt gaaatgtaaa catcatggtt tccatggcgt gttccatttg agatggcatt		540
ttggtgtggc cctttttttt gttttttttt ttgggggggggggggggggggggggggggggggg		600
ctggacgcgg ggcggagagg cgagcgcggc gggctgtgcg ctttccttag tacgtgcggc		660
gggtgggtag agggaggcgg cgcggagcgc ggaggagcct ggcggcgct cggcaggcgc		720

ctcccccagc	cctgtctcct	ccccctttc	ctgccccga	ctcccccac	cccgggcgcg	780
cggcccacgc	cctgcctcg	ctcccgacc	cgcctcgac	aggcctcgcc	cgccccagac	840
agagcgttct	tgtaaacttc	tcttcagtag	aaacggctct	gctctcgaaat	atttcagggc	900
atccccaccc	tgagcctgcc	cttcctctcg	ggtttggttt	tagaaagtgt	acaaatcaaa	960
gaacccggcc	gtcctgcggg	tggggcacgc	tggcgcagaa	ccagaggtaa	ccggctctgc	1020
ggccacctac	gggtcttagga	attacttgct	ggatgaccct	gcagggagtg	gcacgtggag	1080
tcctatcgac	ctcagaggca	ctatcagatt	agcccttagga	ggtccgtctg	ggggtctcg	1140
cggcctgcgc	cagtggaggg	gccccaccc	cccagaagcc	gggcttcccg	ccccaccgg	1199
<210>	17					
<211>	1199					
<212>	DNA					
<213>	mammalian					
<400>	17					
ccgggtggggc	gggaagcccg	gcttctgggg	aggtggccgc	cctccactgg	cgcaggccgc	60
cgagacccccc	agacggacct	cctagggcta	atctgatagt	gcctctgagg	tcgataggac	120
tccacgtgcc	actccctgca	gggtcatcca	gcaagtaatt	cctagaccccg	taggtggccg	180
cagagccggt	tacctctgggt	tctgcgccag	cgtgccccac	ccgcaggacg	gccgggtct	240
ttgatttgta	cactttctaa	aaccaaaccc	gagaggaagg	gcaggctcag	ggtggggatg	300
ccctgaaata	ttcgagagca	ggaccgtttc	tactgaagag	aagtttacaa	gaacgctctg	360
tctggggcgg	gcgaggcctc	tgcgaggcgg	gtccggagc	gagggcaggg	cgtggccgc	420
gcgcccgggg	tcgggggagt	cggggcagg	aagaggggga	ggagacaggg	ctgggggagc	480
gccctgccga	gcgcccgc	ggctcctccc	gctccgcgc	cgccctccctc	tacccacccg	540
ccgcacgtac	taaggaaggc	gcacagcccg	ccgcgtcg	ctctccgccc	cgcgtccagc	600
tcgcccagct	cgcggcgt	ccgcccgc	tcggccaagg	cttcaacgga	ccacacaaa	660
atgccatctc	aatggaaca	cgcctggaa	accatgatgt	ttacatttca	caaattcgct	720
ggggataaaag	gctacttaac	aaaggaggac	ctgagagtac	tcatggaaaa	ggagttccct	780
ggatTTTgg	aaaatcaaaa	agaccctctg	gctgtggaca	aaataatgaa	ggacctggac	840
cagtgttagag	atggcaaagt	gggcttccag	agcttctttt	ccctaattgc	gggcctcacc	900
attgcatgca	atgactattt	tgttagtacac	atgaagcaga	agggaaagaa	gtaggcagaa	960
atgagcagtt	cgctcctccc	tgataagagt	tgtcccaaag	ggtcgcttaa	ggaatctgcc	1020

ccacagcttc ccccatagaa ggatttcatg agcagatcg gacacttagc aaatgtaaaa	1080
ataaaaatcta actctcattt gacaaggaga gaaagaaaag ttaaatacca gataagcttt	1140
tgatttttgt attgttgca tccccttgcc ctcaataaat aaagttcttt tttagttcc	1199
<210> 18	
<211> 21	
<212> DNA	
<213> mammalian	
<400> 18	
ggaccuggac caguguagau u	21
<210> 19	
<211> 21	
<212> DNA	
<213> mammalian	
<400> 19	
uuccuggacc uggucacauc u	21
<210> 20	
<211> 21	
<212> DNA	
<213> mammalian	
<400> 20	
gugggcuucc acagcuucuu u	21
<210> 21	
<211> 21	
<212> DNA	
<213> mammalian	
<400> 21	
uucacccgaa ggugucgaag a	21
<210> 22	
<211> 19	
<212> DNA	
<213> mammalian	
<400> 22	
gtgggcttcc agagcttct	19
<210> 23	
<211> 9	
<212> DNA	
<213> mammalian	
<400> 23	
tctcttgaa	9
<210> 24	
<211> 19	
<212> DNA	

<213> mammalian	
<400> 24	
gcgcgcttg taggattcg	19
<210> 25	
<211> 22	
<212> DNA	
<213> mammalian	
<400> 25	
AUAUUCGAGA GCAGGACCGU TT	22
<210> 26	
<211> 22	
<212> DNA	
<213> mammalian	
<400> 26	
ACGGUCCUGC UCUCGAAUAU TT	22
<210> 27	
<211> 21	
<212> DNA	
<213> mammalian	
<400> 27	
GGCUUCAACG GACCACACCT T	21
<210> 28	
<211> 21	
<212> DNA	
<213> mammalian	
<400> 28	
GGUGUGGUCC GUUGAAGCCT T	21
<210> 29	
<211> 21	
<212> DNA	
<213> mammalian	
<400> 29	
UAUUCGAGAG CAGGACCGUT T	21
<210> 30	
<211> 21	
<212> DNA	
<213> mammalian	
<400> 30	
ACGGUCCUGC UCUCGAAUAT T	21
<210> 31	
<211> 21	
<212> DNA	
<213> mammalian	

<400> 31	
AUAUUCGAGA GCAGGACCGT T	21
<210> 32	
<211> 21	
<212> DNA	
<213> mammalian	
<400> 32	
CGGUCCUGCU CUCGAAUAUT T	21
<210> 33	
<211> 21	
<212> DNA	
<213> mammalian	
<400> 33	
GAGAAGUUUA CAAGAACGCT T	21
<210> 34	
<211> 21	
<212> DNA	
<213> mammalian	
<400> 34	
GCGUUCUUGU AAACUUCUCT T	21
<210> 35	
<211> 21	
<212> DNA	
<213> mammalian	
<400> 35	
GACGGCCGGG UUCUUJGAUT T	21
<210> 36	
<211> 21	
<212> DNA	
<213> mammalian	
<400> 36	
CUCAAAGAAC CGGGCCGUCT T	21
<210> 37	
<211> 20	
<212> DNA	
<213> mammalian	
<400> 37	
GGCUUCAACG GACCACACTT	20
<210> 38	
<211> 20	
<212> DNA	
<213> mammalian	

<400> 38		
GUGUGGUCCG UUGAAGCCTT		20
<210> 39		
<211> 21		
<212> DNA		
<213> mammalian		
<400> 39		
AUGCCAUCUC AAAUGGAACT T		21
<210> 40		
<211> 21		
<212> DNA		
<213> mammalian		
<400> 40		
GUUCCAUUUG AGAUGGCAUT T		21
<210> 41		
<211> 20		
<212> DNA		
<213> mammalian		
<400> 41		
AUUCGAGAGC AGGACCGUTT		20
<210> 42		
<211> 20		
<212> DNA		
<213> mammalian		
<400> 42		
ACGGUCCUGC UCUCGAAUTT		20
<210> 43		
<211> 22		
<212> DNA		
<213> mammalian		
<400> 43		
AUGGAACACG CCAUGGAAAC TT		22
<210> 44		
<211> 22		
<212> DNA		
<213> mammalian		
<400> 44		
GUUUCCAUGG CGUGUUCCAU TT		22
<210> 45		
<211> 21		
<212> DNA		
<213> mammalian		
<400> 45		

GUUUACAAGA ACGCUCUGUT T	21
<210> 46	
<211> 21	
<212> DNA	
<213> mammalian	
<400> 46	
ACATAGCGUU CUUGUAACT T	21
<210> 47	
<211> 21	
<212> DNA	
<213> mammalian	
<400> 47	
GCCAUGGAAA CCAUGAUGUT T	21
<210> 48	
<211> 21	
<212> DNA	
<213> mammalian	
<400> 48	
ACAUCAUGGU UUCCAUGGCT T	21
<210> 49	
<211> 22	
<212> DNA	
<213> mammalian	
<400> 49	
GGACGGCCGG GUUCUUUGAU TT	22
<210> 50	
<211> 22	
<212> DNA	
<213> mammalian	
<400> 50	
AUCAAAGAAC CGGGCCGUCC TT	22
<210> 51	
<211> 21	
<212> DNA	
<213> mammalian	
<400> 51	
GUUUCUACUG AAGAGAAGUT T	21
<210> 52	
<211> 21	
<212> DNA	
<213> mammalian	
<400> 52	
ACUUCUCUUC AGUAGAAACT T	21

<210> 53		
<211> 22		
<212> DNA		
<213> mammalian		
<400> 53		
GAGAAGUUUA CAAGAACGCU TT	22	
<210> 54		
<211> 22		
<212> DNA		
<213> mammalian		
<400> 54		
AGCGUUCUUG UAAACUUCUC TT	22	
<210> 55		
<211> 20		
<212> DNA		
<213> mammalian		
<400> 55		
AUAUUCGAGA GCAGGACCTT	20	
<210> 56		
<211> 20		
<212> DNA		
<213> mammalian		
<400> 56		
GGUCCUGCUC UCGAAUAUTT	20	
<210> 57		
<211> 21		
<212> DNA		
<213> mammalian		
<400> 57		
GGUUCUUUGA UUUGUACACT T	21	
<210> 58		
<211> 21		
<212> DNA		
<213> mammalian		
<400> 58		
GUGUACAAAU CAAAGAACCT T	21	
<210> 59		
<211> 21		
<212> DNA		
<213> mammalian		
<400> 59		
GAAACCAUGA UGUUUACAUT T	21	

<210> 60		
<211> 21		
<212> DNA		
<213> mammalian		
<400> 60		
AUGUAAACAU CAUGGUUUCT T		21
<210> 61		
<211> 22		
<212> DNA		
<213> mammalian		
<400> 61		
GUUUACAAGA ACGCUCUGUC TT		22
<210> 62		
<211> 22		
<212> DNA		
<213> mammalian		
<400> 62		
GACAGAGCGU UCUUGUAAAC TT		22
<210> 63		
<211> 21		
<212> DNA		
<213> mammalian		
<400> 63		
ACCAUGAUGU UUACAUUUCT T		21
<210> 64		
<211> 21		
<212> DNA		
<213> mammalian		
<400> 64		
GAAAUGUAAA CAUCAUGGUT T		21
<210> 65		
<211> 22		
<212> DNA		
<213> mammalian		
<400> 65		
AUAUUCGAGA GCAGGACCGU TT		22
<210> 66		
<211> 22		
<212> DNA		
<213> mammalian		
<400> 66		
ACGGUCCUGC UCUCGAAUAU TT		22
<210> 67		

<211> 21
<212> DNA
<213> mammalian

<400> 67
UAUUCGAGAG CAGGACCGUT T 21

<210> 68
<211> 21
<212> DNA
<213> mammalian

<400> 68
ACGGUCCUGC UCUCGAAUAT T 21

<210> 69
<211> 21
<212> DNA
<213> mammalian

<400> 69
AUAAUCGAGA GCAGGACCGT T 21

<210> 70
<211> 21
<212> DNA
<213> mammalian

<400> 70
CGGUCCUGCU CUCGAAUAUT T 21

<210> 71
<211> 21
<212> DNA
<213> mammalian

<400> 71
GAGAAGUUUA CAAGAACGCT T 21

<210> 72
<211> 21
<212> DNA
<213> mammalian

<400> 72
GCGUUCUJGU AAACUUCUCT T 21

<210> 73
<211> 21
<212> DNA
<213> mammalian

<400> 73
GACGGCCGGG UUCUUUGAUT T 21

<210> 74
<211> 21

<212> DNA		
<213> mammalian		
<400> 74		21
AUCAAAGAAC CCGGCCGUCT T		
<210> 75		
<211> 20		
<212> DNA		
<213> mammalian		
<400> 75		20
AUUCGAGAGC AGGACCGUTT		
<210> 76		
<211> 20		
<212> DNA		
<213> mammalian		
<400> 76		20
ACGGUCCUGC UCUCGAAUTT		
<210> 77		
<211> 21		
<212> DNA		
<213> mammalian		
<400> 77		21
GUUUACAAGA ACGCUCUGUT T		
<210> 78		
<211> 21		
<212> DNA		
<213> mammalian		
<400> 78		21
ACAGAGCGUU CUUGUAACT T		
<210> 79		
<211> 22		
<212> DNA		
<213> mammalian		
<400> 79		22
GGACGGCCGG GUUCUUUGAU TT		
<210> 80		
<211> 22		
<212> DNA		
<213> mammalian		
<400> 80		22
AUCAAAGAAC CCGGCCGUCC TT		
<210> 81		
<211> 21		
<212> DNA		

<213> mammalian

<400> 81

GUUUCUACUG AAGAGAAGUT T

21

<210> 82

<211> 21

<212> DNA

<213> mammalian

<400> 82

ACUUCUCUUC AGUAGAACT T

21

<210> 83

<211> 22

<212> DNA

<213> mammalian

<400> 83

GAGAAGUUUA CAAGAACGCU TT

22

<210> 84

<211> 22

<212> DNA

<213> mammalian

<400> 84

AGCGUUCUUG UAAACUUCUC TT

22

<210> 85

<211> 20

<212> DNA

<213> mammalian

<400> 85

AUAUUCGAGA GCAGGACCTT

20

<210> 86

<211> 20

<212> DNA

<213> mammalian

<400> 86

GGUCCUGCUC UCGAAUAUTT

20

<210> 87

<211> 21

<212> DNA

<213> mammalian

<400> 87

GGUUCUUUGA UUUGUACACT T

21

<210> 88

<211> 21

<212> DNA

<213> mammalian

<400> 88	
GUGUACAAAU CAAAGAACCT T	21
<210> 89	
<211> 22	
<212> DNA	
<213> mammalian	
<400> 89	
GUUUACAAGA ACGCUCUGUC TT	22
<210> 90	
<211> 22	
<212> DNA	
<213> mammalian	
<400> 90	
GACAGAGCGU UCUUGUAAAC TT	22
<210> 91	
<211> 20	
<212> DNA	
<213> mammalian	
<400> 91	
ACGGCCGGGU UCUUUGAUTT	20
<210> 92	
<211> 20	
<212> DNA	
<213> mammalian	
<400> 92	
AUCAAAGAAC CCGGCCGUTT	20
<210> 93	
<211> 21	
<212> DNA	
<213> mammalian	
<400> 93	
GUUCUUUGAU UUGUACACUT T	21
<210> 94	
<211> 21	
<212> DNA	
<213> mammalian	
<400> 94	
AGUGUACAAA UCAAAGAACT T	21
<210> 95	
<211> 22	
<212> DNA	
<213> mammalian	

<400> 95		
GGGUUCUUJUG AUUJGUACAC TT		22
<210> 96		
<211> 22		
<212> DNA		
<213> mammalian		
<400> 96		
GUGUACAAAU CAAAGAACCC TT		22
<210> 97		
<211> 22		
<212> DNA		
<213> mammalian		
<400> 97		
GGUUCUUUGA UUUGUACACU TT		22
<210> 98		
<211> 22		
<212> DNA		
<213> mammalian		
<400> 98		
AGUGUACAAA UCAAAGAACCC TT		22
<210> 99		
<211> 20		
<212> DNA		
<213> mammalian		
<400> 99		
GUUCUUUGAU UUGUACACTT		20
<210> 100		
<211> 20		
<212> DNA		
<213> mammalian		
<400> 100		
GUGUACAAAU CAAAGAACCTT		20
<210> 101		
<211> 21		
<212> DNA		
<213> mammalian		
<400> 101		
GGAAGGGCAG GCUCAGGGUT T		21
<210> 102		
<211> 21		
<212> DNA		
<213> mammalian		
<400> 102		

ACCCUGAGCC UGCCCUUCCT T	21
<210> 103	
<211> 21	
<212> DNA	
<213> mammalian	
<400> 103	
AGACGGACCU CCUAGGGCUT T	21
<210> 104	
<211> 21	
<212> DNA	
<213> mammalian	
<400> 104	
AGCCCUAGGA GGUCCGUCUT T	21
<210> 105	
<211> 23	
<212> DNA	
<213> mammalian	
<400> 105	
ACGUACUAAG GAAGGCGCAC ACG	23
<210> 106	
<211> 23	
<212> DNA	
<213> mammalian	
<400> 106	
GGUGUGCGCC UUCCUUAGUA CGU	23
<210> 107	
<211> 23	
<212> DNA	
<213> mammalian	
<400> 107	
AGACGGACCU CCUAGGGCUA AUC	23
<210> 108	
<211> 23	
<212> DNA	
<213> mammalian	
<400> 108	
GAUUAGCCCU AGGAGGUCCG UCU	23
<210> 109	
<211> 23	
<212> DNA	
<213> mammalian	
<400> 109	
CAGACGGACC UCCUAGGGCU AAU	23

<210> 110		
<211> 23		
<212> DNA		
<213> mammalian		
<400> 110		
AUUAGCCUA GGAGGUCCGU CUG		23
<210> 111		
<211> 23		
<212> DNA		
<213> mammalian		
<400> 111		
ACGGACCUCC UAGGGCUAAU CUG		23
<210> 112		
<211> 23		
<212> DNA		
<213> mammalian		
<400> 112		
CAGAUUAGGCC CUAGGAGGCUC CGU		23
<210> 113		
<211> 23		
<212> DNA		
<213> mammalian		
<400> 113		
GCACGUACUA AGGAAGGCGC ACA		23
<210> 114		
<211> 23		
<212> DNA		
<213> mammalian		
<400> 114		
UGUGCGCCUU CCUUAGUACG UGC		23
<210> 115		
<211> 23		
<212> DNA		
<213> mammalian		
<400> 115		
AACCAAACCC GAGAGGAAGG GCA		23
<210> 116		
<211> 23		
<212> DNA		
<213> mammalian		
<400> 116		
UGCCCUUCCU CUCGGGUUUG GUU		23

<210> 117		
<211> 23		
<212> DNA		
<213> mammalian		
<400> 117		
GACGGACCUC CUAGGGCUAA UCU		23
<210> 118		
<211> 23		
<212> DNA		
<213> mammalian		
<400> 118		
AGAUUAGCCC UAGGAGGUCC GUC		23
<210> 119		
<211> 23		
<212> DNA		
<213> mammalian		
<400> 119		
AAACCAAACC CGAGAGGAAG GGC		23
<210> 120		
<211> 23		
<212> DNA		
<213> mammalian		
<400> 120		
GCCCUUCCUC UCGGGUUUGG UUU		23
<210> 121		
<211> 23		
<212> DNA		
<213> mammalian		
<400> 121		
CGGACCUCCU AGGGCUAAUC UGA		23
<210> 122		
<211> 23		
<212> DNA		
<213> mammalian		
<400> 122		
UCAGAUUAGC CCUAGGAGGU CCG		23
<210> 123		
<211> 23		
<212> DNA		
<213> mammalian		
<400> 123		
AAUUCCUAGA CCCGUAGGUG GCC		23
<210> 124		

<211> 23		
<212> DNA		
<213> mammalian		
<400> 124		
GGCCACCUAC GGGUCUAGGA AUU		23
<210> 125		
<211> 23		
<212> DNA		
<213> mammalian		
<400> 125		
CACGUACUAA GGAAGGCGCA CAG		23
<210> 126		
<211> 23		
<212> DNA		
<213> mammalian		
<400> 126		
CUGUGCGCCU UCCUUAGUAC GUG		23
<210> 127		
<211> 23		
<212> DNA		
<213> mammalian		
<400> 127		
UCGAUAGGAC UCCACGUGCC ACU		23
<210> 128		
<211> 23		
<212> DNA		
<213> mammalian		
<400> 128		
AGUGGCACGU GGAGUCCUAU CGA		23
<210> 129		
<211> 23		
<212> DNA		
<213> mammalian		
<400> 129		
UGAAAUAUUC GAGAGCAGGA CCG		23
<210> 130		
<211> 23		
<212> DNA		
<213> mammalian		
<400> 130		
CGGUCCUGCU CUCGAAUAUU UCA		23
<210> 131		
<211> 23		

<212> DNA
<213> mammalian

<400> 131
GGACCUCCUA GGGCUAAUCU GAU 23

<210> 132
<211> 23
<212> DNA
<213> mammalian

<400> 132
AUCAGAUUAG CCCUAGGAGG UCC 23

<210> 133
<211> 23
<212> DNA
<213> mammalian

<400> 133
UGAGGUCGAU AGGACUCCAC GUG 23

<210> 134
<211> 23
<212> DNA
<213> mammalian

<400> 134
CACGUGGAGU CCUAUCGACC UCA 23

<210> 135
<211> 23
<212> DNA
<213> mammalian

<400> 135
GCAGGACCGU UUCUACUGAA GAG 23

<210> 136
<211> 23
<212> DNA
<213> mammalian

<400> 136
CUCUUCAGUA GAAACGGUCC UGC 23

<210> 137
<211> 23
<212> DNA
<213> mammalian

<400> 137
GAAAUAUUCG AGAGCAGGAC CGU 23

<210> 138
<211> 23
<212> DNA

<213> mammalian	
<400> 138	
ACGGUCCUGC UCUCGAAUAU UUC	23
<210> 139	
<211> 23	
<212> DNA	
<213> mammalian	
<400> 139	
UCUGAGGUCG AUAGGACUCC ACG	23
<210> 140	
<211> 23	
<212> DNA	
<213> mammalian	
<400> 140	
CGUGGAGUAA UAUCGACCUC AGA	23
<210> 141	
<211> 23	
<212> DNA	
<213> mammalian	
<400> 141	
CCAGCAAGUA AUUCCUAGAC CCG	23
<210> 142	
<211> 23	
<212> DNA	
<213> mammalian	
<400> 142	
CGGGUCUAGG AAUUACUUGC UGG	23
<210> 143	
<211> 23	
<212> DNA	
<213> mammalian	
<400> 143	
AGUGCCUCUG AGGUCGAUAG GAC	23
<210> 144	
<211> 23	
<212> DNA	
<213> mammalian	
<400> 144	
GUCCUAUCGA CCUCAGAGGC ACU	23
<210> 145	
<211> 18	
<212> DNA	

<213> mammalian

<400> 145

TTCCATTTGA GATGGCAT

18

<210> 146

<211> 18

<212> DNA

<213> mammalian

<400> 146

TCCATTGAG ATGGCATT

18

<210> 147

<211> 18

<212> DNA

<213> mammalian

<400> 147

CCATTTGAGA TGGCATT

18

<210> 148

<211> 18

<212> DNA

<213> mammalian

<400> 148

CATTTGAGAT GGCATTT

18

<210> 149

<211> 18

<212> DNA

<213> mammalian

<400> 149

ATTTGAGATG GCATTTG

18

<210> 150

<211> 18

<212> DNA

<213> mammalian

<400> 150

TTTGAGATGG CATTGAG

18

<210> 151

<211> 18

<212> DNA

<213> mammalian

<400> 151

TTGAGATGGC ATTTTGTT

18

<210> 152
<211> 18
<212> DNA
<213> mammalian

<400> 152
TGAGATGGCA TTTTGGTG

18

<210> 153
<211> 18
<212> DNA
<213> mammalian

<400> 153
GAGATGGCAT TTTGGTGT

18

<210> 154
<211> 18
<212> DNA
<213> mammalian

<400> 154
AGATGGCATT TTGGTGTG

18

<210> 155
<211> 18
<212> DNA
<213> mammalian

<400> 155
GATGGCATTG TGGTGTGG

18

<210> 156
<211> 18
<212> DNA
<213> mammalian

<400> 156
ATGGCATTG GGTGTGGT

18

<210> 157
<211> 18
<212> DNA
<213> mammalian

<400> 157
GGTTCCATG GCGTGTTC

18

<210> 158
<211> 18
<212> DNA
<213> mammalian

<400> 158
TTTGTGAATG TAAACATC

18

<210> 159
<211> 18
<212> DNA
<213> mammalian

<400> 159
CCTTGTTAA GTAGCCTT

18

<210> 160
<211> 18
<212> DNA
<213> mammalian

<400> 160
CTTTGCCATC TCTACACT

18