CSP 2019提高组 DAY1

(请选手务必仔细阅读本页内容)

一、题目概况

中文题目名称	花火大会	规划	拼图
题目类型	传统	传统	传统
英文题目与子目录名	firework	plan	puzzle
可执行文件名	firework	plan	puzzle
输入文件名	firework.in	plan.in	puzzle.in
输出文件名	firework.out	plan.out	puzzle.out
内存限制	256MB	256MB	256MB
每个测试点时限	1秒	1秒	1秒
测试点数目	10	10	20
每个测试点分值	10	10	5

二. 提交源程序文件名

对于 C++语言	firework.cpp	plan.cpp	puzzle.cpp
对于 C 语言	firework.c	plan.c	puzzle.c
对于 pascal 语言	firwork.pas	plan.pas	puzzle.pas

花火大会

题目背景

去看烟花吧。

题目描述

花火大会放n个烟花,烟花场地可以看做一个长度为L的数轴,给定每个烟花发射时的坐标和时刻 p_i 和 t_i 。为了看到最好的烟花,你每个时刻可以向右(x轴正方向)移动到x轴任意的地方。你在看到烟花时的不满值 α 是烟花发射时的坐标 x_p 和该时刻你的坐标x的差的绝对值,即 $\alpha = |x_p - x|$ 。

请设计程序使得你的不满值之和最小。

输入格式

第一行两个正整数n和L。

以下n行,每行两个正整数 t_i 和 p_i 。

输出格式

一行一个整数,表示最小的不满值。

样例

输入样例

- 4 5
- 1 3
- 1 4
- 3 3
- 4 4

输出

1

样例解释

第一个时刻移动到3,烟花1和烟花2发射,对于烟花1的不满值是0,对于烟花2的不满值是1。在时刻2和时刻3都不动,对于烟花3的不满值是0,在时刻4移动到4,对于烟花4的不满值是0。所以 $\alpha=1$ 。

数据范围与约定

对于20%的数据,满足 $n, L \leq 5, t_i, p_i \leq 5$

对于另外20%的数据,满足 $n, L \leq 100, t_i, p_i \leq 100$

对于另外10%的数据,满足 $n, L \leq 1000, t_i, p_i \leq 1000$

对于另外10%的数据,满足 $n, L \leq 10000, t_i, p_i \leq 10000$

所有数据满足 $1 \le n, L \le 100000, 1 \le t_i, p_i \le 100000$

规划

题目描述

A国国王K决定派出一个调查兵团来探查自己国内人们的生活状况。他邀请了国内最聪明的人qws来解决这个问题。

A国有n个城池,城池与城池之间以m条双向边连接。调查团从首都1号节点出发,他们要到达A国的所有城池。(可以认为这个调查团的人员为无限)。由于他们很聪明,所以他们只会走最短路。现在qws 想要为他们规划道路。规划的定义是,从原来的m条边中选若干条,构成新图E。

在原图中,若1到点i的最短路为 dis_i ,在新图中1到i的最短路为 p_i ,则对于所有的点i都有 $dis_i=p_i$. 求新图的最小边权和。

输入格式

第一行两个整数n, m , 表示一共有n座城,m条边。 以下m行表示m条道路。

输出格式

一行一个整数, 表示新图的最小边权和。

样例

输入样例

- 4 4
- 1 2 1
- 2 4 8
- 1 3 8
- 3 4 1

输出样例

10

数据范围与约定

有20% 的数据 $n \leq 10, m \leq 30$

对于100%的数据 $1 \le n \le 1000, 1 \le m \le 100000, 1 \le w \le 1000$

拼图

题目背景

开始玩拼图吧。

题目描述

你有 $2 \times n$ 的拼图盘和足够多种类、足够多数量的 $1 \times k$ 的拼图块。 $(k \in [2, n])$ 请求出拼好拼图的方案数对 998244353 取模的结果。

输入格式

第一行两个整数T和type,表示数据组数和数据种类。

输出格式

以下T行,每行一个整数n。

一共T行,一行一个整数,表示拼好拼图的方案数对 998244353 取模的结果。

样例

输入样例#1

1 1

2

输出样例#1

2

样例#1解释

在一个 2×2 的拼图中选择 1×2 的块填满,有如下填法:

输入样例#2

2 2

1

2

输出样例#2

2

7

样例#2解释

当n=1时,方法如下:

当n=2时,方法如下:

数据范围与约定

当type=1时,拼图块只能选择 1×2 的,但是数量依旧有足够多个。

当type=2时,拼图块可以选择1 imes k的,其中 $k\in [2,n]$ 。

数据点	type	n
1	=1	≤ 5
2-3	=1	≤ 10
4-6	=1	$\leq 10^{18}$
7	=2	≤ 3
8	=2	≤ 5
9	=2	≤ 7
10-13	=2	≤ 10
14-20	=2	$\leq 10^{18}$

对于所有数据,满足 $1 \leq t \leq 10, type \in \{1,2\}, 1 \leq n \leq 10^8$