Tensión X

Momento Constante

N: numero de grados de libertad

El CST da tensión nula ya que cada elemento debe tener una única deformacíon! Entonces existe un empate.

CST (N24)

LST (N66)

La viga no debería tener corte pero el elemento lleva parte de la energía a corte. No se curva lo que deberá

Q4 (N24)

Q8 (N56)

Corte XY

Comparación Elementos Tensión X Momento Variable 1.192 0.954 CST (N24 / E=76.71%) 0.715 0.477 0.238 LST (N66 / E=3.57%) 0.000 σ =1.2 - 0. 238 Q4 (N24 / E=32.70%) - 0.477 - 0. 715 - 0. \$54 Q8 (N56 / E=0.65%)

84

Momento Variable

 $\delta := 4.836 \cdot 10^{-3}$

86

Desplazamiento

CST (N24 / E=73.88%)

LST (N66 / E=-1.86%)

Q4 (N24 / E=24.01%)

Q8 (N56 / E=-2.22%)

Elementos Rectangulares

Deformación Constante – Incompatible Q6

Seda y nu son "grados de libertad jerárquicos" ya que no se encuentran sobre un nodo.

$$\xi = \frac{x}{a}; \quad \eta = \frac{y}{b}$$

$$u = a_1 + a_2 x + a_3 y + a_4 x y + d_1 (1 - \xi^2) + d_2 (1 - \eta^2) = N_1 u_1 + \dots + N_4 u_4 + d_1 (1 - \xi^2) + d_2 (1 - \eta^2)$$

$$v = a_5 + a_6 x + a_7 y + a_8 x y + d_3 (1 - \xi^2) + d_4 (1 - \eta^2) = N_1 v_1 + \dots + N_4 v_4 + d_3 (1 - \xi^2) + d_4 (1 - \eta^2)$$

Condensación

$$\begin{bmatrix} \begin{bmatrix} K_{nn} \\ \text{Viejos} \end{bmatrix} & \begin{bmatrix} K_{ni} \\ \text{Viejos con nuevos} \end{bmatrix} & \begin{bmatrix} u_1 \\ \vdots \\ v_4 \end{bmatrix} & \begin{bmatrix} K_{ni} \\ \vdots \\ F_{y4} \end{bmatrix} & \begin{bmatrix} K_{ni} \\ \vdots \\ K_{in} \\ \text{Nuevos con viejcs} \end{bmatrix} & \begin{bmatrix} K_{ni} \\ \vdots \\ K_{ii} \\ \end{bmatrix} & \begin{bmatrix} K_{in} \\ \vdots \\ K_{in} \end{bmatrix} & \begin{bmatrix} K_{ii} \\ \vdots$$

$$\begin{bmatrix} K_{nn} \\ \vdots \\ v_4 \end{bmatrix} + \begin{bmatrix} K_{ni} \\ \vdots \\ d_4 \end{bmatrix} = \begin{bmatrix} F_{x1} \\ \vdots \\ F_{y4} \end{bmatrix}$$

$$K_{in} \begin{cases} u_1 \\ \vdots \\ v_4 \end{cases} + \left[K_{ii} \right] \begin{cases} d_1 \\ \vdots \\ d_4 \end{cases} = \begin{cases} 0 \\ \vdots \\ 0 \end{cases} \rightarrow \begin{cases} d_1 \\ \vdots \\ d_4 \end{cases} = -\left[K_{ii} \right]^{-1} \left[K_{in} \right] \begin{cases} u_1 \\ \vdots \\ v_4 \end{cases}$$

Siempre que tengo grados de libertad que no se pueden mover, se puede condensar la matriz de rigidez.

Q6 condensado tiene los mismos grados de libertad que Q4

Elementos Rectangulares

Deformación Constante – Incompatible Q6

$$\begin{cases} d_{1} \\ \vdots \\ d_{4} \end{cases} = -[K_{ii}]^{-1}[K_{in}] \begin{cases} u_{1} \\ \vdots \\ v_{4} \end{cases} \rightarrow [K_{nn}] \begin{cases} u_{1} \\ \vdots \\ v_{4} \end{cases} - [K_{ni}][K_{ii}]^{-1}[K_{in}] \begin{cases} u_{1} \\ \vdots \\ v_{4} \end{cases} = \left[\underbrace{[K_{nn}] - [K_{ni}][K_{ii}]^{-1}[K_{in}]}_{[K]} \right] \begin{cases} u_{1} \\ \vdots \\ v_{4} \end{cases} = \begin{cases} F_{x1} \\ F_{y1} \\ \vdots \\ F_{y4} \end{cases}$$

Deformaciones

$$\varepsilon_{x} = \frac{\partial u}{\partial x} = a_{2} + a_{4}y - \frac{2x}{a^{2}}d_{1} \quad ; \quad \varepsilon_{y} = \frac{\partial v}{\partial y} = a_{7} + a_{8}x - \frac{2y}{b^{2}}d_{4}$$

$$\frac{\partial v}{\partial y} + \frac{\partial u}{\partial y} = a_{7} + a_{8}x - \frac{2y}{b^{2}}d_{4}$$

 $\gamma_{xy} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} = a_3 + a_6 + a_4 x + a_8 y \left(-\frac{2x}{a^2} d_3 - \frac{2y}{b^2} d_2 \right)$

Estos nuevos coeficientes eliminan Iso términos del corte espúreo.

Compatibilidad

Deja de haber compatibilidad en la continuidad de las deformaciones, ahora los elementos, aunque esten unidos en los nodos, se rompen por las lineas.

Elementos Rectangulares

Deformación Constante – Incompatible Q6

$$\begin{cases} d_{1} \\ \vdots \\ d_{4} \end{cases} = -[K_{ii}]^{-1}[K_{in}] \begin{cases} u_{1} \\ \vdots \\ v_{4} \end{cases} \rightarrow [K_{nn}] \begin{cases} u_{1} \\ \vdots \\ v_{4} \end{cases} - [K_{ni}][K_{ii}]^{-1}[K_{in}] \begin{cases} u_{1} \\ \vdots \\ v_{4} \end{cases} = \left[\underbrace{[K_{nn}] - [K_{ni}][K_{ii}]^{-1}[K_{in}]}_{[K]} \right] \begin{cases} u_{1} \\ \vdots \\ v_{4} \end{cases} = \begin{cases} F_{x1} \\ F_{y1} \\ \vdots \\ F_{y4} \end{cases}$$

Deformaciones

$$\varepsilon_{x} = \frac{\partial u}{\partial x} = a_{2} + a_{4}y - \frac{2x}{a^{2}}d_{1} \quad ; \quad \varepsilon_{y} = \frac{\partial v}{\partial y} = a_{7} + a_{8}x - \frac{2y}{b^{2}}d_{4}$$

$$\gamma_{xy} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} = a_{3} + a_{6} + a_{4}x + a_{8}y - \frac{2x}{a^{2}}d_{3} - \frac{2y}{b^{2}}d_{2}$$

Compatibilidad

Elementos 3D

Funciones de Forma

$$u = \sum_{i} N_{i} u_{i} \quad v = \sum_{i} N_{i} v_{i} \quad w = \sum_{i} N_{i} w_{i}$$

$$\begin{cases} u \\ v \\ w \end{cases} = \begin{bmatrix} N_1 & 0 & 0 & \dots & N_n & 0 & 0 \\ 0 & N_1 & 0 & \dots & 0 & N_n & 0 \\ 0 & 0 & N_1 & \dots & 0 & 0 & N_n \end{bmatrix}$$

Sólo hay 1 matriz constitutiva

Ecuación Constitutiva (Ingeniería)

$$\begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \\ \tau_{xy} \\ \tau_{yz} \\ \tau_{zx} \end{bmatrix} = \begin{bmatrix} A & B & B & 0 & 0 & 0 \\ B & A & B & 0 & 0 & 0 \\ B & B & A & 0 & 0 & 0 \\ 0 & 0 & 0 & G & 0 & 0 \\ 0 & 0 & 0 & 0 & G & 0 \end{bmatrix} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_z \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{zx} \end{bmatrix} - \underbrace{E\alpha\Delta T}_{1-2\nu} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad \mathbf{k}_{3\mathrm{Nx}3\mathrm{N}} = \mathbf{I}_{0} \mathbf{B}_{3\mathrm{Nx}6}^{\mathrm{T}} \mathbf{E}_{6\mathrm{x}6} \mathbf{B}_{6\mathrm{x}3\mathrm{N}} \, \mathrm{dx} \, \mathrm{dy} \, \mathrm{dz}$$

 $A = \frac{(1-\nu)E}{(1+\nu)(1-2\nu)} \quad B = \frac{\nu E}{(1+\nu)(1-2\nu)} \quad G = \frac{E}{2(1+\nu)}$

Matriz de Rigidez

$$\varepsilon_{6x1} = B_{6x3N} d_{3Nx1}$$

$$k_{3Nx3N} = \iiint_{\Omega} B_{3Nx6}^{T} E_{6x6} B_{6x3N} dx dy dz$$

Aplicación de Cargas

Energéticamente Equivalente

$$W = \{d\}^{T} \{r_{e}\} = \int_{\Omega} \{u\}^{T} \{F\} dV + \int_{S} \{u\}^{T} \{\Phi\} dS$$

$$\int_{S} \{u\}^{T} \{\Phi\} dS = \{d\}^{T} \int_{S} [N]^{T} \{\Phi\} dS \Rightarrow$$

$$\{d\}^{T} \{r_{e}\} = \{d\}^{T} \int_{S} [N]^{T} \{\Phi\} dS : \{r_{e}\} = \int_{S} [N]^{T} \{\Phi\} dS$$

$$\{\Phi\} = [N]\{q\} \to \{r_e\}_{\Phi} = \int_{S} [N]^T [N] dS\{q\}$$

$$\{r_e\}_{\Phi} = \int_{L} \left[\frac{L - x}{L} \quad \frac{x}{L} \right]^{T} \left[\frac{L - x}{L} \quad \frac{x}{L} \right] dL \begin{Bmatrix} q_A \\ q_B \end{Bmatrix}$$

$$\{r_e\}_{\Phi} = \frac{1}{L^2} \int_{L} \begin{bmatrix} x^2 - 2xL + L^2 & xL - x^2 \\ xL - x^2 & x^2 \end{bmatrix} dL \begin{Bmatrix} q_A \\ q_B \end{Bmatrix}$$

$$\{r_e\}_{\Phi} = \frac{L}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{Bmatrix} q_A \\ q_B \end{Bmatrix} \rightarrow q_1 = q_2 = q \rightarrow \{r_e\}_{\Phi} = \begin{Bmatrix} F_A \\ F_B \end{Bmatrix} = \frac{qL}{2} \begin{Bmatrix} 1 \\ 1 \end{Bmatrix}$$

Aplicación de Cargas

Cargas de Volumen

$${F} = [N]{f}$$

$$\{r_e\}_F = \left(\int_{\Omega} [N]^T [N] dV\right) \{f\}$$

q = constant

Resultados δ =-0.000124mm / σ = 240mN/mm²

RESULTS: 2- B.C. 1,STRESS_2,LOAD SET 1

Tipos de Elementos

	Topology linear parabolic		Modeled Stiffness Trans. Rot.		Required Properties	Best Application
3D solid	\Leftrightarrow	\Leftrightarrow	3		material	general 3D structures (those that appear solid)
axis symmet- ric solids	\Box	$\triangleleft \square$	2		material	general 3D structures that are symmetric about an axis
2D shell			3	3	material thickness non–structural mass formulation option	thin structures (>10:1 length/thickness) where bending is important
plane stress/ strain			2		material thickness	structures where only in- plane behavior is impor- tant
axis symmet- ric shells	$\sqrt{}$		2	1	material thickness	thin structures that are symmetric about an axis
1D rod	/		3		material non-structural mass cross section	axial deformation and rigid body motion of space frames
1D beam	/	<i></i>	3	3	material non-structural mass cross section orientation end offset end shortening release warping restraint factor	general space frame components and stiffen- ers for shell structures

Comparación de casos 2D

Comparación de casos 2D

Comparación de casos 2D

Gran espesor

-0.200

-0.600 -1,000

- 1.400

-2,600

Bajo espesor