Метрики Сбертех, МФТИ

Стратегия валидации

Train-test split

Cross-validation

Leave-one-out

Стратегия валидации

Стратегия валидации

Time series

$$Accuracy(\hat{y}, y) = \frac{1}{\ell} \sum_{i=1}^{\ell} [\hat{y}_i = y_i]$$

True Class

$$precision = \frac{TP}{TP + FP}$$
 $F_{\beta} = (1 + \beta^2) \frac{precision.recall}{\beta^2.precision + recall}$

$$recall = \frac{TP}{TP + FN}$$

$$F_1 = \frac{2.precision.recall}{precision + recall}$$

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{FP + TN}$$

https://alexanderdyakonov.wordpress.com/2017/07/28/auc-гос-площадь-под-кривой-ошибок/

$$TPR = \frac{TP}{TP + FN} = \frac{90}{90 + 10} = 0.9$$

$$TPR = \frac{TP}{TP + FN} = \frac{90}{90 + 10} = 0.9$$
 $precision = \frac{TP}{TP + FP} = \frac{90}{90 + 10} = 0.9$

$$FPR = \frac{FP}{FP + TN} = \frac{10}{10 + 999890} = 0.00001$$
 $recall = \frac{TP}{TP + FN} = \frac{90}{(90 + 10)} = 0.9$

$$recall = \frac{TP}{TP + FN} = 90/(90 + 10) = 0.9$$

$$TPR = \frac{TP}{TP + FN} = \frac{90}{90 + 10} = 0.9$$

$$TPR = \frac{TP}{TP + FN} = \frac{90}{90 + 10} = 0.9$$
 $precision = \frac{TP}{TP + FP} = \frac{90}{90 + 1910} = 0.045$

$$FPR = \frac{FP}{FP + TN} = \frac{1910}{1910 + 997990} = 0.001$$
 $recall = \frac{TP}{TP + FN} = \frac{90}{90 + 10} = 0.9$

$$recall = \frac{TP}{TP + FN} = \frac{90}{90 + 10} = 0.9$$

$$Sensitivity = \frac{TP}{TP+FN}$$

$$Specificity = \frac{TN}{TN + FP}$$

Мультикласс

Predicted Values Versicolor Virginica Setosa Values 16 Setosa (cell 1) (cell 2) (cell 3) Actual Versicolor (cell 4) (cell 5) (cell 6) Virginica (cell 7) (cell 8) (cell 9)

Метрики регрессии

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y_i})^2}$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y_i})^2$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y_i}|$$

 $\underset{m}{\text{maximize}} \quad ACC(m) \times \left[\frac{LAT(m)}{T}\right]^{w}$

Figure 1: An Overview of Platform-Aware Neural Architecture Search for Mobile.

https://arxiv.org/pdf/1807.11626.pdf

AIC/BIC

$$AIC = 2k - 2ln(L)$$

$$BIC = -2\ln(L) + k\ln(n)$$

https://machinelearningmastery.com/probabilistic-model-selection-measures/

https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_model_selection.html

Критерий Стьюдента

- •Параметрические
- •Непараметрические

выборки:
$$X_1^{n_1}=\left(X_{11},\ldots,X_{1n_1}\right),X_1\sim N\left(\mu_1,\sigma_1^2\right)\ X_2^{n_2}=\left(X_{21},\ldots,X_{2n_2}\right),X_2\sim N\left(\mu_2,\sigma_2^2\right)\ \sigma_1,\sigma_2$$
 неизвестны

нулевая гипотеза: H_0 : $\mu_1 = \mu_2$

альтернатива: $H_1: \mu_1 < \neq > \mu_2$

статистика: $T\left(X_1^{n_1},X_2^{n_2}\right)=rac{ar{X}_1-ar{X}_2}{\sqrt{rac{S_1^2}{n_1}+rac{S_2^2}{n_2}}}$ $u=rac{\left(rac{S_1^2}{n_1}+rac{S_2^2}{n_2}
ight)^2}{rac{S_1^4}{n_1^2(n_1-1)}+rac{S_2^4}{n_2^2(n_2-1)}}$

нулевое распределение:

