CAR PRICES

Prediction of Car prices in US Market

OUTLINE

- & Business Problem
- **Data**
- **Modelling**
- **Evaluation & Results**

BUSINESS PROBLEM

To provide analysis on car prices in US market to predict what features drives the car prices in US market which will be used by automobile consulting companies to advice potential car Manufacturers.

DATA

DATA UNDERSTANDING

- The analysis is based on a data set of approximately **300 rows and 26 columns on car prices**. The data includes many different types of information about each cars. They were categorized in to two different types of data by visualizing using scatter plots
 - Continuous Data-Wheel base, Car length, curb weight, Engine size, Bore ratio, High mpg etc.
 - Categorical Data Car Company, Fuel type, Car body, Drive wheel, Engine location, Engine type, Cylinder number, Fuel system etc.

DATA

DATA CLEANING

Categorical Variables

- 1. Visualization of Categorical data using Box plots
- 2.Dropping insignificant variables on "Price" of the car
- 3. Deriving new variable for "Car names"
- 4. Creating Dummies

Continuous Variables

- 1. Visualization of Continuous data and their relation to Target variable using Heat maps
- 2. Dropping insignificant variables on "Price" of the car
- 3. Checking the distribution of Continuous variables using Scatter matrix and doing Log Transformation

MODELLING

Iteration 1

- Checking for Multi Collinearity and dropped variables which are strongly correlated
- Adjusted R square **0.942** but there are many insignificant variables based on the P values
- Model Assumptions were checked using model fit distribution and Regression plots

01.0				
OLS	Regr	ession	Resu	Its

1.193

	Dep. Variable:	price		R-squared:		0.951
	Model:	Model:		Adj.	R-squared:	0.942
	Method:	Least Squares		F-statistic:		104.3
	Date:	Date: Sat, 22 Jul 2023		Prob (F-statistic):		3.35e-96
	coef	std err	t	P> t	[0.025	0.975]
cons	t 5959.2355	2034.478	-2.929	0.004	-9974.995	-1943.476
wheelbas	e 143.4767	61.695	2.326	0.021	21.700	265.253
curbweigh	t 4.9075	1.152	4.261	0.000	2.634	7.181
boreration	o 1650.7734	1130.657	-1.460	0.146	-3882.524	580.977
horsepowe	r 79.5440	13.441	5.918	0.000	53.013	106.075
highwaymp	g 87.7562	56.105	1.564	0.120	-22.987	198.499
CarCompany_highen	d 8494.9656	818.117	10.384	0.000	6880.124	1.01e+04
CarCompany_med	d 1971.1379	434.839	4.533	0.000	1112.830	2829.446
fueltype_diese	1846.2703	873.806	-2.113	0.036	-3571.035	-121.506
fueltype_ga	s 4112.9652	240.157	-3.316	0.001	-6560.851	-1665.079
fuelsystem_	_idi -1846.2703	873.806	-2.113	0.036	-3571.035	-121.506
fuelsystem_	mfi -1708.0866	1824.608	-0.936	0.351	-5309.594	1893.421
fuelsystem_m	npfi -491.0412	634.541	-0.774	0.440	-1743.532	761.449
fuelsystem_s	pdi -1655.0740	838.889	-1.973	0.050	-3310.917	0.769
fuelsystem_s	spfi 446.1957	1794.484	0.249	0.804	-3095.849	3988.241
Omnibus: 66.245 Durbin-Watson: 1.407						
ob(Omnibus): 0.000 Jarque-Bera (JB): 288.388 MODEL SUMMAR						

Prob(JB):

MODELLING

Iteration 2

- Data was split into Train and test data first to avoid any transformation on test data
- Min MAX Scaling on continuous variable and same scaling on test data
- Recursive feature elimination to select the

- Adjusted R square **0.917** and all the variables seems to be significant based on the P values except one(engine type)
- Dropped the insignificant variable and the and run regression fit
- Adjusted R square 0.916 and all the variables seems to be significant

EVALUATION

Model Evaluation

- Applied same feature elimination and dropped insignificant variables on the Test data same as train data
- Check the Mean Squared Error of both Train and Test data

Train Mean Squared Error: 0.0037206106392557742 Test Mean Squared Error: 0.00457119710185608

There does not seem to be a big difference between the train and test MSE! Test MSE is slightly higher than the training MSE which indicates that the model is performing well on unseen data and is not overfitting to the training data.

RESULTS

- The main features which Contributes heavily on the prices of cars are:
 - 1.Wheelbase
 - 2.Curb weight
 - 3.Horsepower
 - 4. Car Company_highend brand
 - 5.Enginelocation_rear
 - 6.Carbody_convertible
- There is positive relation ship between Price and and these variables.

	std err	t	P> t	
const	-0.0946	0.013	-7.032	0.000
wheelbase	0.1926	0.057	3.360	0.001
curbweight	0.2750	0.077	3.570	0.000
horsepower	0.3827	0.063	6.109	0.000
CarCompany_highend	0.2531	0.021	12.327	0.000
carbody_convertible	0.1378	0.036	3.823	0.000
enginelocation_rear	0.2321	0.068	3.421	0.001

THANK YOU!

EMAIL: e.gajanani9@gmail.com

GITHUB: @ Gajas9

LINKEDIN: LINKEDIN.COM/IN/GAJA-SANCHAYAN/

