Data Hazards

A major effect of pipelining is to change the relative timing of instructions by overlapping their execution. This overlap introduces data and control hazards. Data hazards occur when the pipeline changes the order of read/write accesses to operands so that the order differs from the order seen by sequentially executing instructions on an unpipelined processor. Consider the pipelined execution of these instructions:

DADD	R1,R2,R3
DSUB	R4,R1,R5
AND	R6,R1,R7
OR	R8, R1, R9
XOR	R10,R1,R11

All the instructions after the DADD use the result of the DADD instruction. As shown in Figure C.6, the DADD instruction writes the value of R1 in the WB pipe stage, but the DSUB instruction reads the value during its ID stage. This problem is called a *data hazard*. Unless precautions are taken to prevent it, the DSUB instruction will read the wrong value and try to use it. In fact, the value used by the DSUB instruction is not even deterministic: Though we might think it logical to assume that DSUB would always use the value of R1 that was assigned by an instruction prior to DADD, this is not always the case. If an interrupt should occur between the DADD and DSUB instructions, the WB stage of the DADD will complete, and the value of R1 at that point will be the result of the DADD. This unpredictable behavior is obviously unacceptable.

The AND instruction is also affected by this hazard. As we can see from Figure C.6, the write of R1 does not complete until the end of clock cycle 5. Thus, the AND instruction that reads the registers during clock cycle 4 will receive the wrong results.

The XOR instruction operates properly because its register read occurs in clock cycle 6, after the register write. The OR instruction also operates without incurring a hazard because we perform the register file reads in the second half of the cycle and the writes in the first half.

The next subsection discusses a technique to eliminate the stalls for the hazard involving the DSUB and AND instructions.

Minimizing Data Hazard Stalls by Forwarding

The problem posed in Figure C.6 can be solved with a simple hardware technique called *forwarding* (also called *bypassing* and sometimes *short-circuiting*). The key insight in forwarding is that the result is not really needed by the DSUB until

Figure C.6 The use of the result of the DADD instruction in the next three instructions causes a hazard, since the register is not written until after those instructions read it.

after the DADD actually produces it. If the result can be moved from the pipeline register where the DADD stores it to where the DSUB needs it, then the need for a stall can be avoided. Using this observation, forwarding works as follows:

- The ALU result from both the EX/MEM and MEM/WB pipeline registers is always fed back to the ALU inputs.
- If the forwarding hardware detects that the previous ALU operation has written the register corresponding to a source for the current ALU operation, control logic selects the forwarded result as the ALU input rather than the value read from the register file.

Notice that with forwarding, if the DSUB is stalled, the DADD will be completed and the bypass will not be activated. This relationship is also true for the case of an interrupt between the two instructions.

As the example in Figure C.6 shows, we need to forward results not only from the immediately previous instruction but also possibly from an instruction

that started 2 cycles earlier. Figure C.7 shows our example with the bypass paths in place and highlighting the timing of the register read and writes. This code sequence can be executed without stalls.

Forwarding can be generalized to include passing a result directly to the functional unit that requires it: A result is forwarded from the pipeline register corresponding to the output of one unit to the input of another, rather than just from the result of a unit to the input of the same unit. Take, for example, the following sequence:

DADD R1, R2, R3 LD R4,0(R1) SD R4,12(R1)

Figure C.7 A set of instructions that depends on the DADD result uses forwarding paths to avoid the data hazard. The inputs for the DSUB and AND instructions forward from the pipeline registers to the first ALU input. The OR receives its result by forwarding through the register file, which is easily accomplished by reading the registers in the second half of the cycle and writing in the first half, as the dashed lines on the registers indicate. Notice that the forwarded result can go to either ALU input; in fact, both ALU inputs could use forwarded inputs from either the same pipeline register or from different pipeline registers. This would occur, for example, if the AND instruction was

Figure C.8 Forwarding of operand required by stores during MEM. The result of the load is forwarded from the memory output to the memory input to be stored. In addition, the ALU output is forwarded to the ALU input for the address calculation of both the load and the store (this is no different than forwarding to another ALU operation). If the store depended on an immediately preceding ALU operation (not shown above), the result would need to be forwarded to prevent a stall.

To prevent a stall in this sequence, we would need to forward the values of the ALU output and memory unit output from the pipeline registers to the ALU and data memory inputs. Figure C.8 shows all the forwarding paths for this example.

Data Hazards Requiring Stalls

Unfortunately, not all potential data hazards can be handled by bypassing. Consider the following sequence of instructions:

LD	R1,0(R2)				
DSUB	R4,R1,R5				
AND	R6,R1,R7				
OR	R8,R1,R9				

The pipelined data path with the bypass paths for this example is shown in Figure C.9. This case is different from the situation with back-to-back ALU operations. The LD instruction does not have the data until the end of clock cycle 4 (its MEM cycle), while the DSUB instruction needs to have the data by the beginning of that clock cycle. Thus, the data hazard from using the result of a load instruction cannot be completely eliminated with simple hardware. As Figure C.9 shows, such a forwarding path would have to operate backward

Figure C.9 The load instruction can bypass its results to the AND and OR instructions, but not to the DSUB, since that would mean forwarding the result in "negative time."

in time—a capability not yet available to computer designers! We can forward the result immediately to the ALU from the pipeline registers for use in the AND operation, which begins 2 clock cycles after the load. Likewise, the OR instruction has no problem, since it receives the value through the register file. For the DSUB instruction, the forwarded result arrives too late—at the end of a clock cycle, when it is needed at the beginning.

The load instruction has a delay or latency that cannot be eliminated by forwarding alone. Instead, we need to add hardware, called a *pipeline interlock*, to preserve the correct execution pattern. In general, a pipeline interlock detects a hazard and stalls the pipeline until the hazard is cleared. In this case, the interlock stalls the pipeline, beginning with the instruction that wants to use the data until the source instruction produces it. This pipeline interlock introduces a stall or bubble, just as it did for the structural hazard. The CPI for the stalled instruction increases by the length of the stall (1 clock cycle in this case).

Figure C.10 shows the pipeline before and after the stall using the names of the pipeline stages. Because the stall causes the instructions starting with the DSUB to move 1 cycle later in time, the forwarding to the AND instruction now goes through the register file, and no forwarding at all is needed for the OR instruction. The insertion of the bubble causes the number of cycles to complete this sequence to grow by one. No instruction is started during clock cycle 4 (and none finishes during cycle 6).

LD R1,0	(R2)	IF	ID	EX	MEM	WB				
DSUB R4,R1	, R5		IF	ID	EX	MEM	***			
AND R6,R1	. R7			IT	70000	MEM	WB			
				IF	ID	EX	MEM	WB		-
OR R8,R1,R9				IF	ID	EX	MEM	WB		
LD R1,0(R	21	***					BUSTINE.		44 D	
,,,,,	100	IF	ID	EX	MEM	WB		The second		
DSUB R4,R1,	R5		IF	ID						
ND R6, R1, F	27	III SUD III II	- 11		stall	EX	MEM	WB		
				IF	stall	ID	EX	MEM	WD.	
R R8,R1,R	9				stall	IF			WB	
		Was well			stall	IF	ID	EX	MEM	WB

Figure C.10 In the top half, we can see why a stall is needed: The MEM cycle of the load produces a value that is needed in the EX cycle of the DSUB, which occurs at the same time. This problem is solved by inserting a stall, as shown in the bottom half.