Outline for today

▶ Dictionary learning as a model for the first layer of a deep net

- Algorithms used for recovery of sparse activations:
 Selection of a subset of a dictionary for optimal signal representation
 Proofs of recovery of sparse activations using one step thresholding, matching pursuit algorithms, and convex regularisers
- ► The K-SVD algorithm and other methods to solve the dictionary update step

Wavelet, curvelet, and contourlet: fixed representations

Applied and computational harmonic analysis community developed representations with optimal approximation properties for piecewise smooth functions.

Most notable are the Daubechies wavelets and Curvelets/Contourlets pioneered by Candes and Donoho. While optimal, in a certain sense, for a specific class of functions, they can typically be improved upon for any particular data set.

Optimality of curvelets in 2D

Theorem (Candes and Donoho 02'a)

ahttp://www.curvelet.org/papers/CurveEdges.pdf

Let f be a two dimensional function that is piecewise C^2 with a boundary that is also C^2 . Let f_n^F , f_n^W , and f_n^C be the best approximation of f using n terms of the Fourier, Wavelet and Curvelet representation respectively. Then their approximation error satisfy $\|f - f_n^F\|_{L^2}^2 = \mathcal{O}(n^{-1/2})$, $\|f - f_n^W\|_{L^2}^2 = \mathcal{O}(n^{-1})$, and $\|f - f_n^C\|_{L^2}^2 = \mathcal{O}(n^{-2}\log^3(n))$; moreover, no fixed representation can have a rate exceeding $\mathcal{O}(n^{-2})$.

Near optimality of such representation suggest a good first layer.

Dictionary learning

While there are representations that are near optimal for realistic classes of functions, one can usually improve upon them for a particular data set; that is, one can learn a better dictionary for that data.

Let $Y \in \mathbb{R}^{m \times p}$ be a collection of p data elements in \mathbb{R}^m . Each data element y_i can be well represented by a dictionary $D \in \mathbb{R}^{m \times n}$ if there exists an x_i with at most k nonzeros such that $\|y_i - Dx_i\| \le \epsilon(k)$. This can be combined in matrix notation as $\min_X \|Y - DX\|$ subject to $\|x_i\|_0 \le k$ for $i = 1, \ldots, p$. Note that solving for the optimal x_i for each y_i is in general NP hard, but for well behaved D it is easy.

Dictionary learning does a step further and learns the optimal D

$$\min_{D,X} \|Y - DX\|$$
 subject to $\|x_i\|_0 \le k, \|d_i\| = 1$

Dictionary learned from natural scenes (Olshausen and Field 96'¹

Note the similarity to curvelets and the first layer of deep CNNs.

¹https://www.nature.com/articles/381607a0.pdf

Dictionary learning through ADMM

Alternating direction method of multipliers (ADMM) holds all but one component of a problem fixed and solves the other, then iterates through the variables to be solved for. For dictionary learning this is iteratively solving:

$$\min_{X:\|x_i\|_0 \le k} \|Y - DX\| \quad \text{ then } \quad \min_{D:\|d_i\| = 1} \|Y - DX\|$$

There are $\underline{\text{many}}$ methods for solving each of these subproblems. Solving for X is more challenging, and will be our focus for now. While better solutions exist, if X is held fixed one can solve for $YX^T = DXX^T$ as $X \in \mathbb{R}^{n \times p}$ for p > n allowing $D = YX^T(XX^T)^{-1}$ followed by normalising the columns.

Coherence

▶ With n > m the columns of $D \in \mathbb{R}^{m \times n}$ can't be orthogonal, we measure their dependence by the coherence of the columns.

$$\mu_2(D) := \max_{i \neq j} |d_i^* d_j|$$

▶ The collection of columns which are minimally coherent are called Grassman Frames and satisfy:

$$\mu_2(A_{m,n}) \ge \left(\frac{n-m}{m(n-1)}\right)^{1/2} \sim m^{-1/2}$$

▶ We can use coherence to analyse a number of algorithms to try and solve the sparse coding problem

$$\min_{x} \|x\|_0$$
 subject to $\|y_i - Dx_i\| \le \tau$

which in its worst case is NP-hard to solve.

One step thresholding

Input: y, D and k (number of non-zeros in output vector). **Algorithm:** Set Λ the index set of the $k \leq m$ largest in $|D^*b|$ Output the *n*-vector x whose entries are

$$x_{\Lambda} = (D_{\Lambda}^* D_{\Lambda})^{-1} D_{\Lambda}^* y$$
 and $x(i) = 0$ for $i \notin \Lambda$.

Let $y = Dx_0$, with the columns of D having unit ℓ^2 norm, and

$$||x_0||_0 < \frac{1}{2} (\nu_\infty(x_0) \cdot \mu_2(D)^{-1} + 1),$$

then the Thresholding decoder with $k = ||x_0||_0$ will return x_0 , with $\nu_p(x) := \min_{i \in \text{Supp}(x)} |x(j)| / ||x||_p.$

One step thresholding (proof)

Proof.

With $y = Dx_0$, denote $w = D^*b = D^*Dx_0$. The i^{th} entry in w is equal to $w_i = \sum_{j \in \text{Supp}(x_0)} x_0(j) d_i^* d_j$. For $i \notin \text{supp}(x_0)$ the magnitude of w_i is bounded above as:

$$|w_i| \leq \sum_{j \in \text{Supp}(x_0)} |x_0(j)| \cdot |d_i^* d_j| \leq k \mu_2(D) ||x_0||_{\infty}.$$

For $i \in \text{supp}(x_0)$ the magnitude of w_i is bounded below as:

$$|w_i| \ge |x_0(i)| - \left| \sum_{j \in \text{supp}(x_0), j \ne i} x_0(j) d_i^* d_j \right|$$

 $\ge |x_0(i)| - (k-1)\mu_2(D) ||x_0||_{\infty}.$

Recovery if $\max_{i \notin \text{Supp}(x_0)} |w_i| < \min_{i \in \text{Supp}(x_0)} |w_i|$.

Matching Pursuit (Tropp 04'²)

Input: y, D and k (number of nonzeros in output vector). **Algorithm:** Let $r^j := y - Dx^j$. Set $x^0 = 0$, and let $i := \operatorname{argmax}_{\ell} |d_{\ell}^* r^j|$ and define $x^{j+1} = x^j + (d_i^* r^j)e_i$ where e_i is the i^{th} coordinate vector. Output x^j when a termination criteria is obtained.

Theorem

Let $y = Dx_0$, with the columns of D having unit ℓ^2 norm, and

$$||x_0||_{\ell^0} < \frac{1}{2} (\mu_2(D)^{-1} + 1),$$

then Matching Pursuit will have $supp(x^j) \subseteq supp(x_0)$ for all j.

* Preferable over one step thresholding: no dependence on $\nu_p(x_0)$.

²https://ieeexplore.ieee.org/document/1337101

Matching Pursuit (proof)

Proof.

Assume $\operatorname{supp}(x^j) \subset \operatorname{supp}(x_0)$ for some j, which is true for j=0. Let $r^j=y-Dx^j$, and $w_i=\sum_{\ell\in\operatorname{supp}(x_0)}(x_0-x^j)(\ell)\cdot d_i^*d_\ell$. For $i\notin\operatorname{supp}(x_0)$ the magnitude of w_i is bounded above as:

$$|w_i| \leq \sum_{\ell \in \text{supp}(x_0)} |(x_0 - x^j)(\ell)| \cdot |d_i^* d_\ell| \leq k \mu_2(D) |||x_0 - x^j||_{\infty}.$$

For $i \in \text{supp}(x_0)$ the magnitude of w_i is bounded below as:

$$|w_{i}| \geq |(x_{0} - x^{j})(i)| - \left| \sum_{\ell \in \text{supp}(x_{0}), \ell \neq i} (x_{0} - x^{j})(\ell) \cdot d_{i}^{*} d_{\ell} \right|$$

$$\geq |(x_{0} - x^{j})(i)| - (k - 1)\mu_{2}(D) ||x_{0} - x^{j}||_{\infty}.$$

Recovery if $\max_{i \in \text{Supp}(x_0)} |w_i| > \max_{i \notin \text{Supp}(x_0)} |w_i|$.

Orthogonal Matching Pursuit (Tropp 04'3)

Input: y, D and k (number of nonzeros in output vector).

Algorithm: Let $r^j := y - Dx^j$.

Set $x^0 = 0$ and Λ^0 to be the empty set, and set j = 0.

Let $r^j := y - Dx^j$, $i := \operatorname{argmax}_{\ell} |d_{\ell}^* r^j|$, and $\Lambda^{j+1} = i \bigcup \Lambda^j$.

Set
$$x_{\Lambda^{j+1}}^{j+1} = (D_{\Lambda^{j+1}}^* D_{\Lambda^{j+1}})^{-1} D_{\Lambda^{j+1}}^* y$$

and $x^{j+1}(\ell) = 0$ for $\ell \notin \mathcal{N}^{j+1}$, and set j = j+1.

Output x^{j} when a termination criteria is obtained.

Theorem

Let $y = Dx_0$, with the columns of D having unit ℓ^2 norm, and

$$\|x_0\|_{\ell^0} < \frac{1}{2} (\mu_2(D)^{-1} + 1),$$

then after $||x_0||_{\ell^0}$ steps, Orthogonal Matching Pursuit recovers x_0 .

* Proof, same as Matching Pursuit. Finite number of steps.

3https://ieeexplore.ieee.org/document/1337101

ℓ^1 -regularization (Tropp 06' 4)

Input: y and D.

"Algorithm": Return argmin $||x||_1$ subject to y = Dx.

Theorem

Let $y = A_{m,n}x_0$, with

$$\|x_0\|_{\ell^0} < \frac{1}{2} (\mu_2(D)^{-1} + 1),$$

then the solution of ℓ^1 -regularization is x_0 .

* Preferable over OMP: faster if use good ℓ^1 solver.

//users.cms.caltech.edu/~jtropp/papers/Tro06-Just-Relax.pdf

⁴http:

ℓ^1 -regularization (proof, page 1)

Proof.

Let $\Lambda_0 := supp(x_0)$ and $\Lambda_1 := supp(x_1)$ with $y = Dx_0 = Dx_1$, and $\exists i$ with $i \in \Lambda_1$ with $i \notin \Lambda_0$.

Note that because $y = D_{\Lambda_0} x_0 = D_{\Lambda_1} x_1$,

$$||x_0||_1 = ||(D_{\Lambda_0}^* D_{\Lambda_0})^{-1} D_{\Lambda_0}^* D_{\Lambda_0} x_0||_1$$

$$= ||(D_{\Lambda_0}^* D_{\Lambda_0})^{-1} D_{\Lambda_0}^* y||_1$$

$$= ||(D_{\Lambda_0}^* D_{\Lambda_0})^{-1} D_{\Lambda_0}^* D_{\Lambda_1} x_1||_1.$$

Establish bounds on $(D_{\Lambda_0}^* D_{\Lambda_0})^{-1} D_{\Lambda_0}^* d_i$.

To establish proof need bounds for $i \in \Lambda$ and $i \notin \Lambda$.

For
$$i \in \Lambda_0$$
: $\|(D_{\Lambda_0}^* D_{\Lambda_0})^{-1} D_{\Lambda_0}^* d_i\|_1$
= $\|(D_{\Lambda_0}^* D_{\Lambda_0})^{-1} D_{\Lambda_0}^* D_{\Lambda_0} e_i\|_1 = \|e_i\|_1 = 1$

ℓ^1 -regularization (proof, page 2)

Proof.

For any $i \notin \Lambda_0$ we establish the bound in two parts; first,

$$||D_{\Lambda_0}^*d_i||_1 \leq \sum_{\ell \in \Lambda_0} |d_\ell^*d_i| \leq k\mu_2(D).$$

Noting $D_{\Lambda_0}^* D_{\Lambda_0} = I_{k,k} + B$ where $B_{i,i} = 0$ and $|B_{i,j}| \leq \mu_2(D)$, then

$$\|(I_{k,k}+B)^{-1}\|_1 = \left\|\sum_{\ell=0}^{\infty} (-B)^{\ell}\right\|_1 \le \sum_{\ell=0}^{\infty} \|B\|_1^{\ell} = \frac{1}{1-\|B\|_1} \le \frac{1}{1-(k-1)\mu}$$

Therefore, for $i \notin \Lambda_0$:

$$\|(D_{\Lambda_0}^*D_{\Lambda_0})^{-1}D_{\Lambda_0}^*d_i\|_1 \leq \frac{k\mu_2(D)}{(1-(k-1)\mu_2(D))} < 1$$

ℓ^1 -regularization (proof, page 3)

Proof.

Proof concludes through triangle inequality and use that:

- For $i \in \Lambda_0$: $\|(D_{\Lambda_0}^* D_{\Lambda_0})^{-1} D_{\Lambda_0}^* d_i\|_1 = 1$
- For $i \notin \Lambda_0$: $\|(D_{\Lambda_0}^* D_{\Lambda_0})^{-1} D_{\Lambda_0}^* d_i\|_1 < 1$
- And $\exists i$ with $i \in \mathring{\Lambda}_1$ and $i \notin \mathring{\Lambda}_0$.

Then,

$$||x_{0}||_{1} = \left\| \sum_{i \in \Lambda_{1}} (D_{\Lambda_{0}}^{*} D_{\Lambda_{0}})^{-1} D_{\Lambda_{0}}^{*} d_{i} x_{1}(i) \right\|_{1}$$

$$\leq \sum_{i \in \Lambda_{1}} |x_{1}(i)| \cdot \left\| (D_{\Lambda_{0}}^{*} D_{\Lambda_{0}})^{-1} D_{\Lambda_{0}}^{*} d_{i} \right\|_{1}$$

$$< \sum_{i \in \Lambda_{1}} |x_{1}(i)| = ||x_{1}||_{1}.$$

But, is the solution even unique?

The sparsity of the sparsest vector in the nullspace of D,

$$spark(D) := \min_{z} \|z\|_{\ell^0}$$
 subject to $Dz = 0$.

Theorem (Coherence and Spark)

$$\mathsf{spark}(D) \geq \min(m+1, \mu_2(D)^{-1}+1)$$

If $||x_0|| < (\mu_2(D)^{-1} + 1)/2$ unique satisfying $y = Dx_0$.

Proof.

Gershgorin disc theorem for $D_{\Lambda}^*D_{\Lambda}$ with $|\Lambda|=k$:

1 on diagonal, off diagonals bounded by $\mu_2(D)$.

If $k < \mu_2(D)^{-1} + 1$, smallest singular value of $D_{\Lambda}^* D_{\Lambda}$ is > 0

How to interpret these results, is better possible?

▶ When is $\|x_0\|_{\ell^0} < \frac{1}{2} \left(\mu_2(D)^{-1} + 1\right)$?

Grassman Frames: $\mu_2(D) \ge \left(\frac{n-m}{m(n-1)}\right)^{1/2} \sim m^{-1/2}$ "Sqrt bottleneck" $\|x_0\|_{\ell^0} \lesssim \sqrt{m}$

How to interpret these results, is better possible?

- ▶ When is $\|x_0\|_{\ell^0} < \frac{1}{2} \left(\mu_2(D)^{-1} + 1\right)$?

 Grassman Frames: $\mu_2(D) \ge \left(\frac{n-m}{m(n-1)}\right)^{1/2} \sim m^{-1/2}$ "Sqrt bottleneck" $\|x_0\|_{\ell^0} \lesssim \sqrt{m}$
- ▶ Is better possible? (not without more) Fourier & Dirac: $D = [F \ I]$ for m the square of an integer: Let $\Lambda = [\sqrt{m}, \ 2\sqrt{m}, \ \cdots, m]$, then $\sum_{j \in \Lambda} e_j = \sum_{j \in \Lambda} f_j \Longrightarrow \operatorname{spark}(D) = 2\sqrt{m}$.

How to interpret these results, is better possible?

- ▶ When is $\|x_0\|_{\ell^0} < \frac{1}{2} \left(\mu_2(D)^{-1} + 1\right)$?

 Grassman Frames: $\mu_2(D) \ge \left(\frac{n-m}{m(n-1)}\right)^{1/2} \sim m^{-1/2}$ "Sqrt bottleneck" $\|x_0\|_{\ell^0} \lesssim \sqrt{m}$
- Is better possible? (not without more)
 Fourier & Dirac: $D = [F \ I]$ for m the square of an integer:
 Let $\Lambda = [\sqrt{m}, \ 2\sqrt{m}, \ \cdots, \ m]$, then $\sum_{i \in \Lambda} e_i = \sum_{i \in \Lambda} f_i \Longrightarrow \operatorname{spark}(D) = 2\sqrt{m}.$
- ▶ Slightly more accurate sometimes with cumulative coherence: $\max_{i \in \Lambda} \max_{\Lambda'} \sum_{i \in \Lambda'} d_i^* d_i$
- ▶ To avoid pathological cases introduce randomness

One step thresholding: average sign pattern [ScVa07]

Input: y, D and k (number of nonzeros in output vector). **Algorithm:** Set Λ the index set of the $k \leq m$ largest in $|D^*y|$ Output the n-vector x whose entries are

$$x_{\Lambda} = (D_{\Lambda}^* D_{\Lambda})^{-1} D_{\Lambda} y$$
 and $x(i) = 0$ for $i \notin \Lambda$.

One step thresholding: average sign pattern [ScVa07]

Input: y, D and k (number of nonzeros in output vector). **Algorithm:** Set Λ the index set of the $k \leq m$ largest in $|D^*y|$ Output the n-vector x whose entries are

$$x_{\Lambda} = (D_{\Lambda}^* D_{\Lambda})^{-1} D_{\Lambda} y$$
 and $x(i) = 0$ for $i \notin \Lambda$.

Theorem

Let $y=Dx_0$, with the columns of D having unit ℓ^2 norm, the sign of the nonzeros in x_0 selected randomly from ± 1 independent of D, and

$$||x_0||_{\ell^0} < (128\log(2n/\epsilon))^{-1}\nu_\infty^2(x_0)\mu_2^{-2}(D),$$

then, with probability greater than $1 - \epsilon$, the Thresholding decoder with $k = ||x_0||_{\ell^0}$ will return x_0 .

One step thresholding: average sign pattern (proof, pg. 1)

Theorem (Rademacher concentration)

Fix a vector α . Let ϵ be a Rademacher series, vector with entries drawn uniformly from ± 1 , of the same length as α , then

$$\left| \operatorname{Prob} \left(\left| \sum_{i} \epsilon_{i} \alpha_{i} \right| > t \right) \leq 2 \exp \left(\frac{-t^{2}}{32 \|\alpha\|_{2}^{2}} \right) \right|$$

Let $\Lambda := \text{supp}(x_0)$. Thresholding fail to recover x_0 if

$$\max_{i \notin \Lambda} |d_i^* y| > \min_{i \in \Lambda} |d_i^* y|.$$

$$\operatorname{Prob}\left(\max_{i\notin\Lambda}|d_i^*y|>p \quad \text{and} \quad \min_{i\in\Lambda}|d_i^*y|< p\right) \leq \\ \operatorname{Prob}\left(\max_{i\notin\Lambda}|d_i^*y|>p\right) + \operatorname{Prob}\left(\min_{i\in\Lambda}|d_i^*y|< p\right) \quad =: \quad P_1+P_2$$

One step thresholding: average sign pattern (proof, pg. 2)

$$\begin{aligned} P_1 &= \operatorname{\mathsf{Prob}} \left(\max_{i \notin \Lambda} |d_i^* y| > p \right) \\ &\leq \sum_{i \notin \Lambda} \operatorname{\mathsf{Prob}} \left(|d_i^* y| > p \right) \\ &= \sum_{i \notin \Lambda} \operatorname{\mathsf{Prob}} \left(\left| \sum_{j \in \Lambda} x_0(j) (d_i^* d_j) \right| > p \right) \\ &\leq 2 \sum_{i \notin \Lambda} \exp \left(\frac{-p^2}{32 \sum_{j \in \Lambda} |x_0(j)|^2 |d_i^* d_j|^2} \right) \\ &\leq 2 (n-k) \exp \left(\frac{-p^2}{32k \|x_0\|_{\infty}^2 \mu_2^2(D)} \right). \end{aligned}$$

One step thresholding: average sign pattern (proof, pg. 3)

$$P_{2} = \operatorname{Prob}\left(\min_{i \in \Lambda} |d_{i}^{*}y| < p\right)$$

$$\leq \operatorname{Prob}\left(\min_{i \in \Lambda} |x_{0}(i)| - \max_{i \in \Lambda} \left| \sum_{j \in \Lambda, j \neq i} x_{0}(j)(d_{i}^{*}d_{j}) \right| < p\right)$$

$$\leq \sum_{i \in \Lambda} \operatorname{Prob}\left(\left| \sum_{j \in \Lambda, j \neq i} x_{0}(j)(d_{i}^{*}d_{j}) \right| > \min_{i \in \Lambda} |x_{0}(i)| - p\right)$$

$$\leq 2\sum_{i \in \Lambda} \exp\left(\frac{-(\min_{i \in \Lambda} |x_{0}(i)| - p)^{2}}{32\sum_{j \in \Lambda, j \neq i} |x_{0}(j)|^{2}|d_{i}^{*}d_{j}|^{2}}\right)$$

$$\leq 2k \exp\left(\frac{-(\min_{i \in \Lambda} |x_{0}(i)| - p)^{2}}{32k||x_{0}||_{\infty}^{2}\mu_{2}^{2}(D)}\right).$$

One step thresholding: average sign pattern (proof, pg. 4)

Balance P_1 and P_2 by setting $p := \min_{i \in \Lambda} |x_0(i)|/2$:

$$P_1 + P_2 \le 2n \exp\left(\frac{-(\min_{i \in \Lambda} |x_0(i)|)^2}{128k\|x_0\|_{\infty}^2 \mu_2^2(D)}\right) \le 2n \exp\left(\frac{-\nu_{\infty}(x_0)^2}{128k\mu_2^2(D)}\right).$$

Setting this bound on the probability of failure equal to ϵ and solving for k yields the conclusion of the proof.

- Similar work for matching pursuit by Schnass, ℓ¹ by Tropp, and in Statistical RICs
- Stronger uniform statements we need more than coherence.

Dictionary learning through ADMM

Alternating direction method of multipliers (ADMM) holds all but one component of a problem fixed and solves the other, then iterates through the variables to be solved for.

For dictionary learning this is iteratively solving:

$$\min_{X:\|x_i\|_0 \le k} \|Y - DX\| \quad \text{ then } \quad \min_{D:\|d_i\| = 1} \|Y - DX\|$$

Returning to the dictionary update step. Algorithms include Method of optimal directions:

solve for $YX^T = DXX^T$ as $X \in \mathbb{R}^{n \times p}$ for p > n allowing $D = YX^T(XX^T)^{-1}$ followed by normalising the columns, K-SVD, and steepest descent or other gradient updates of D.

Dictionary learning: K-SVD (Aharon et al. '06⁵)

For a fixed sparse code one can view $\min_{D:||d_i||=1} ||Y - DX||$ in terms of individual columns:

$$\left\| Y - \sum_{i=1}^n d_i \tilde{x}_i^T \right\|$$

where \tilde{x}_i^T is the i^{th} row of X.

Being faithful to the sparsity constraint, we can view d_i as a column used to represent those columns in Y indexed by the support of \tilde{x}_i^T . Letting $E_i = [Y - \sum_{j \neq i} d_j \tilde{x}_j^T]_{\text{supp}(\tilde{x}_i^T)}$ our task is to minimize

$$\left\| E_i - d_i \tilde{z}_i^T \right\|$$

where z_i^T is a vector of length $|\text{supp}(\tilde{x}_i^T)|$, and whose solution is given by the best rank 1 approximation of E_i .

⁵https://ieeexplore.ieee.org/document/1710377