Sergio Montoya Ramirez 202112171

Universidad de Los Andes Tarea 3 Teoria de Grafos

Bogotá D.C., Colombia 10 de noviembre de 2023

Primera Pregunta

Suponga por contradicción que G es disconexo. Dado que $d_x,d_y>0$ entonces estas componentes deben estar repartidas entre X y Y. Ahora bien, sabemos por la clase que el numero de arcos de una componente conexa de m elementos es al menos m-1. Sin embargo, en este caso dado que tenemos que el mínimo valor que puede tomar la suma del grado de dos vértices es $\frac{n}{2}$ estas componentes superarían lo que esperábamos y en consecuencia debería ser conexo.

Segunda Pregunta

General

Dado que $L(G) = K_n$ sabemos que G tiene n arcos.

Primera Parte

Dado que $n \neq 3$ entonces estos vértices tienen asociados mas de dos arcos. Ahora bien, con esto podemos organizar los arcos de cada vértice en $L\left(G\right)$ de tal forma que todo salga de un mismo punto por lo que es isomorfo a S_n

Segunda Parte

En el caso de n=3 existen 2 posibilidades.

- 1. Cada vértice tiene exactamente dos arcos conectados directamente a un vértice. En donde este seria isomorfo a S_3
- 2. Uno de los vértices tiene 3 arcos y los otros dos tienen 2. En cuyo caso esto equivale a K_3

Tercera Pregunta

El árbol recubridor mínimo seria:

Tarea 3 Teoria de Grafos

Figura 1: Árbol recubridor mínimo del grafo puesto en el punto 3 de la tercera tarea

Y el orden en el que entraron los vértices fue:

- 1. $\{C, F\}$
- 2. $\{A, D\}$
- 3. $\{A,C\}$
- 4. $\{A, B\}$
- 5. $\{F,G\}$
- 6. $\{B, E\}$

Cuarta Pregunta

Primera Parte

Asuma por contradicción que existe un árbol recubridor tal que este no comparta ningún vértice con E. Por lo tanto todos sus vértices se encuentran en G-S. Sin embargo, dado que E es un Edge-cut sabemos que G-S es disconexo y por lo tanto contradictorio.

Segunda Parte

En este caso aprovecharemos la segunda característica. En particular tomo como contraejemplo: Tarea 3 Teoria de Grafos

Figura 2: Grafo contra ejemplo

En este caso si bien es cierto que el conjunto G-E es disco nexo también se da que no puede existir un S tal que $E=[S,\overline{S}]$

Nota

Para la realización de este taller se converso con 3 compañeros en la solución de Dudas:

- 1. Ángel
- 2. Germán López
- 3. Gabriela