COL 726 Homework 6

16-23 August, 2020

1. Prove that a function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if its restriction to any line is convex, i.e. for all $\mathbf{x}, \mathbf{v} \in \mathbb{R}^n$ the function $\tilde{f}(t) = f(\mathbf{x} + t\mathbf{v})$ is convex.

What if we restrict attention only to lines parallel to the coordinate axes? That is, suppose $f: \mathbb{R}^n \to \mathbb{R}$ is a function such that for all $\mathbf{x} \in \mathbb{R}^n$ and all i = 1, ..., n, the function $\tilde{f}(t) =$ $f(\mathbf{x} + t\mathbf{e}_i)$ is convex. Is this sufficient for f to be convex? Prove or give a counterexample.

2. Consider a function $f: \mathbb{R}^n \to \mathbb{R}$ of the form (note the absolute value signs!)

$$f(\mathbf{x}) = \sum_{i=1}^{k} |\mathbf{a}_i^T \mathbf{x} + b_i|.$$

Explain why f is convex but cannot be minimized effectively with gradient descent or Newton's method. Then, prove that the smoothed function $\hat{f}(\mathbf{x}) = \sum_{i=1}^k \sqrt{(\mathbf{a}_i^T \mathbf{x} + b_i)^2 + \epsilon}$ is convex for any constant $\epsilon > 0$. For full marks, do so without calculating any Hessians.

3. You are given an undirected graph on (m+n) nodes, each associated with a position $\mathbf{x}_i \in \mathbb{R}^k$. The positions of m nodes are fixed, while those of the remaining n are to be chosen to optimize the total cost (here p > 1 is a real number):¹

minimize
$$\sum_{(i,j)\in F} \|\mathbf{x}_i - \mathbf{x}_j\|_2^p.$$

minimize $\sum_{(i,j)\in E} \|\mathbf{x}_i - \mathbf{x}_j\|_2^p$.

(a) Interpreting the optimization variables as a single vector $\begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix} \in \mathbb{R}^{nk}$, find the gradient

Implement a function to find the minimum using gradient descent with backtracking line search. Terminate when the norm of the gradient is below a user-specified threshold.

(b) Then, implement a function to solve the problem using Newton's method, terminating when the Newton decrement is below a user-specified threshold.

Note: If the Hessian is too complicated to derive, you may estimate it via centered differences applied to the gradient, then ensure symmetry via $\mathbf{H} \leftarrow \frac{1}{2}(\mathbf{H} + \mathbf{H}^T)$.

Test your implementation on a graph of your choice, with k = 2, m, $n \ge 5$, and p = 1.2, 2, 5. Visualize the optimal configurations, similarly to B&V Figs. 8.15–17. Also report the objective value and gradient norm as a function of iteration number for both algorithms.

¹This is the nonlinear facility location problem described in B&V Ch. 8.7, but you don't have to read that to solve this problem.