Equations aux dérivées partielles

Chap 1 : Introduction et principes de la méthode des différences finies

Joseph GERGAUD, Serge GRATTON, Ehouarn SIMON

7 octobre 2020

Outline

1.1. Introduction

1.2. Exemples d'EDP et éléments de classification

1.3. Principes de la méthode

Objectifs

Pouvoir comprendre, prédire, optimiser le comportement de systèmes complexes, tels que ceux issus de la physique, la chimie, l'économie, etc..

- Prévoir le futur (météo, climat, évolution des marchés, ...);
- Systèmes difficilement accessibles à l'observation (astrophysique, océan, physique quantique, ...);
- Réduire les coûts de prototypage (ingéniérie).

Modélisation

Les modélisations de ces problèmes font intervenir des équations différentielles ordinaires (EDO), mais aussi des équations aux dérivées partielles (EDP), à savoir des équations pluri-dimensionnelles.

Exemple 1.1.1.

- EDO: $\frac{du}{dt}(t) = f(t, u(t));$
- EDP: $f(x, t, u(x, t), \frac{\partial u}{\partial t}(x, t), \frac{\partial u}{\partial x}(x, t), \cdots) = 0$

Etapes :

1- Modélisation :

▷ Mise en équations du problème ⇒ équations aux dérivées partielles;

2- Analyse du modèle :

▷ Existence, unicité de la solution dans des espaces à définir;

3- Discrétisation du problème :

▶ Passage de la dimension infinie à la dimension finie; étude de la "perte" d'information;

4- Résolution du problème discret :

▶ Numérique, analyse du comportement de la solution numérique.

Remarque 1.1.1. Ce cours ne s'intéressera qu'aux étapes 3 et 4.

Prévoir l'évolution de l'atmosphère à des horizons et échelles multiples

 ${\color{blue} \triangleright} \ \ Variables \ pronostiques \ (vent, \ temp\'erature, \ humidit\'e, \ pression, \ hydrom\'et\'eores, \ etc...).$

Equations de Navier-Stokes (fluide incompressible)

Conservation de la masse

$$div(\mathbf{u}) = 0$$

Equations du mouvement

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \frac{1}{\rho}\nabla \rho - \nu \Delta \mathbf{u} = 0$$

avec ${\bf u}$ le champs de vitesse, p la pression, ρ la densité du fluide, et ν la viscosité cinématique.

Remarque 1.1.2.

- Le problème de l'existence et unicité de la solution de ce système d'équations reste ouvert en 3 dimensions pour des temps long.
- Expressions analytiques d'éventuelles solutions inconnues.

Exemples de grilles horizontales..

Exemples de gilles verticales à Météo-France : et la topographie? Coordonnée hybride : suit le terrain près du sol, puis se relaxe vers des niveaux pression.

Météorologie opérationnelle

La prévision numérique du temps fournit des résultats bruts à post-traiter et à expertiser.

- ightharpoonup Grâce aux équations de la physique, le modèle propage les variables de l'instant t à l'instant $t+\Delta t$.
- ▶ Quid de la qualité de la solution numérique?

SIMULATION GEOS-5 (NASA)

Température de surface (couleur) et rayonnement IR au sommet de l'atmosphère (blanc)

Source: https://svs.gsfc.nasa.gov

Outline		
1.1. Introduction		

1.2. Exemples d'EDP et éléments de classification

1.3. Principes de la méthode

FORMULATION GÉNÉRALE

• Le domaine, variable x est un ouvert Ω de \mathbb{R}^n , en pratique, n=1,2 ou 3. Nous ferons l'hypothèse que la frontière de cet ouvert $\partial\Omega=\Gamma$ est lipschitzienne. Cela signifie essentiellement que Γ est localement le graphe d'une fonction lipschitzienne et que Ω est situé d'un même coté par rapport à cette frontière.

FIGURE 1 – Ω_1 et Ω_3 sont possible, mais non Ω_2 .

Équation

$$f(t,x,u(x,t),\frac{\partial u}{\partial t}(x,t),\frac{\partial u}{\partial x_1}(x,t),\dots,\frac{\partial u}{\partial x_n}(x,t),$$
$$\frac{\partial^2 u}{\partial t^2}(x,t),\frac{\partial^2 u}{\partial x_1^2}(x,t),\frac{\partial^2 u}{\partial x_1\partial x_2}(x,t)\dots)=0$$

Exemple 1.2.1. Equation de la chaleur 2D

Trouver u telles que :

$$\left\{ \begin{array}{l} \frac{\partial u}{\partial t} - \Delta u = f \text{ dans } \Omega \times \mathbb{R}_*^+ \\ u = 0 \text{ sur } \Gamma \times \mathbb{R}_*^+, \quad \text{"Conditions aux limites"} \\ u(x,0) = u_0(x) \text{ dans } \Omega. \quad \text{"Conditions initiales"} \end{array} \right.$$

Exemple 1.2.2. Équation d'advection linéaire 1D

Trouver u telles que :

$$\begin{cases} \frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0 \text{ dans } \Omega \times \mathbb{R}_*^+ \\ u = 0 \text{ sur } \Gamma \times \mathbb{R}_*^+, \quad \text{"Conditions aux limites"} \\ u(x,0) = u_0(x) \text{ dans } \Omega. \quad \text{"Conditions initiales"} \end{cases}$$

Définition 1.2.1 – Ordre d'une EDP

On appelle ordre d'une EDP, l'ordre le plus élévé des dérivées présentes dans l'équation.

Exemple 1.2.3. Les EDP présentes dans les exemples 1.2.1 et 1.2.2 sont respectivements d'ordre 2 et 1.

Définition 1.2.2 - Conditions aux limites "classiques"

- Dirichlet : la valeur de u(x) est donnée $\forall x \in \Gamma$;
- Neumann : la valeur de $\frac{\partial u}{\partial \nu}(x)$ est donnée $\forall x \in \Gamma$, avec ν normale sortante à Γ en x :
- Cauchy : les valeurs de u(x) et $\frac{\partial u}{\partial v}(x)$ sont données $\forall x \in \Gamma$;
- Robin : la valeur de $\alpha(x)u(x) + \beta(x)\frac{\partial u}{\partial \nu}(x)$ est donnée $\forall x \in \Gamma$, avec α et β des fonctions définies sur Γ ;

Définition 1.2.3 – Classification des EDP d'ordre 2

Soit une EDP linéaire d'ordre 2 sur un domaine $\Omega \subset \mathbb{R}^d$ et d'inconnue $u:\Omega \to \mathbb{R}$. Elle peut s'écrire :

$$\forall z \in \Omega \sum_{i=1}^d \sum_{j=1}^d a_{j,i}(z) \frac{\partial^2 u}{\partial z_j \partial z_i}(z) + \sum_{i=1}^d f_i(z) \frac{\partial u}{\partial z_i}(z) + g(z)u(z) = h(z),$$

avec par convention $\forall z \in \Omega \ a_{j,i}(z) = a_{i,j}(z) \in \mathbb{R}, \ (f_i(z))_{i=1:d} \in \mathbb{R}^d, \text{et} \ (g(z), h(z)) \in \mathbb{R}^2.$ On note $A(z) \in \mathcal{M}_d(\mathbb{R})$ la matrice définie par $[A(z)]_{i,j} = a_{i,j}(z)$. L'EDP est dite :

- Elliptique en $z \in \Omega$ si la matrice A(z) n'admet que des valeurs propres non nulles toutes de même signe;
- Hyperbolique en $z \in \Omega$ si la matrice A(z) admet d-1 valeurs propres non nulles de même signe, et une valeur propre non nulle de signe opposé.
- Parabolique en $z \in \Omega$ si la matrice A(z) admet d-1 valeurs propres non nulles de même signe, et une valeur propre nulle.

Remarque 1.2.1. Les composantes de z renvoient aussi bien aux dimensions spatiales que temporelles.

 Elliptique: modèle stationnaire (thermique, électrostatique, membrane élastique, écoulement potentiel).

$$\left\{ \begin{array}{l} -\Delta u = f \text{ dans } \Omega \\ + \text{conditions aux limites} \end{array} \right.$$

 Hyperbolique: modèle instationnaire (propagation d'ondes, électromagnétisme, élastodynamique).

$$\left\{ \begin{array}{l} \frac{\partial^2 u}{\partial t^2} - \Delta u = f \text{ dans } \Omega \times \mathbb{R}_*^+ \\ + \text{conditions aux limites} + \text{condition initiale} \end{array} \right.$$

 Parabolique: modèle instationnaire (diffusion thermique, chimique, neutronique, fluide visqueux incompressible).

$$\left\{ \begin{array}{l} \frac{\partial u}{\partial t} - \Delta u = f \text{ dans } \Omega \times \mathbb{R}^+_* \\ + \text{conditions aux limites} + \text{condition initiale} \end{array} \right.$$

Outline

1.1. Introduction

1.2. Exemples d'EDP et éléments de classification

1.3. Principes de la méthode

On se place en 1D : $u : \mathbb{R} \to \mathbb{R}$ et on suppose "u suffisamment régulière".

Rappels

- u est dérivable en $x \in \mathbb{R}$ si $\exists \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{u(x+h) u(x)}{h} := u'(x)$;
- Développement de Taylor-Lagrange On suppose $u C^{n+1}$ sur le segment [x, x+h]. Alors

$$\exists \xi_h \in]x, x+h[\text{ t.q. } u(x+h) = u(x) + \sum_{i=1}^n \frac{h^i}{i!} u^{(i)}(x) + \frac{h^{n+1}}{(n+1)!} u^{(n+1)}(\xi_h)$$

Remarque 1.3.1. L'utilisation du développement de Taylor-Lagrange de la fonction u à différents ordres n sera à la base de l'approximation des dérivées de u en un point particulier.

Approximations de la dérivée d'ordre 1

Proposition 1.3.1 – Une approximation décentrée

On suppose $u : \mathbb{R} \to \mathbb{R}$, C^2 sur le segment $[x - h_0, x + h_0]$, avec $h_0 > 0$. Il vient

$$\exists C \geq 0 \text{ t.q. } \forall h \in]0, h_0] \mid \frac{u(x+h)-u(x)}{h}-u'(x) \mid \leq Ch$$

L'approximation est dite consistante d'ordre 1.

► Soit $h \in]0, h_0]$. u étant \mathcal{C}^2 sur [x, x + h], il vient par développement de Taylor - Lagrange $\exists \xi_h \in]x, x + h[$ t.q. $u(x + h) = u(x) + hu'(x) + \frac{h^2}{2}u^{(2)}(\xi_h)$. D'où

$$\left|\frac{u(x+h)-u(x)}{h}-u'(x)\right|\leq Ch$$

avec
$$C = \frac{1}{2} \sup_{y \in [x, x+h0]} |u^{(2)}(y)|.$$

Remarque 1.3.2. La constante C est indépendante du pas h choisi.

Approximations de la dérivée d'ordre 1

Proposition 1.3.2 – Une approximation centrée

On suppose $u: \mathbb{R} \to \mathbb{R}$, C^3 sur le segment $[x - h_0, x + h_0]$, avec $h_0 > 0$. Il vient

$$\exists C \geq 0 \text{ t.q. } \forall h \in]0, h_0] \mid \frac{u(x+h) - u(x-h)}{2h} - u'(x) \mid \leq Ch^2$$

L'approximation est dite consistante d'ordre 2.

► cf TD.

Remarque 1.3.3. La précision de l'approximation va dépendre de la régularité de la solution : plus la solution est régulière, plus on pourra espérer construire une approximation d'ordre élevée.

Approximations de la dérivée d'ordre 2

Proposition 1.3.3 – Une approximation centrée

On suppose $u: \mathbb{R} \to \mathbb{R}$, C^4 sur le segment $[x - h_0, x + h_0]$, avec $h_0 > 0$. Il vient

$$\exists C \ge 0 \text{ t.q. } \forall h \in]0, h_0] \mid \frac{u(x+h) - 2u(x) + u(x-h)}{h^2} - u^{(2)}(x) \mid \le Ch^2$$

L'approximation est dite consistante d'ordre 2.

► cf TD.

Définition 1.3.4 - Ordre de consistance d'une approximation

Une approximation de $u^{(k)}(x)$, avec $k \in \mathbb{N}^*$, est dite consistante à l'ordre p, s'il existe une constante positive et indépendante du pas h, notée C, telle que l'erreur d'approximation est majorée par Ch^p :

$$|\mathsf{Approx}(u,x,h) - u^{(k)}(x)| \leq Ch^p.$$

Idées

Supposons un problème spatio-temporel $1D \times 1D$. Soit le maillage régulier, de pas d'espace h et de pas de temps Δt :

avec $\forall i \in \mathbb{N} \ x_i = ih$, et $\forall n \in \mathbb{N} \ t_n = n\Delta t$.

On cherche une approximation u_h de la solution u en les points du maillage :

$$[u_h]_i^n := u_i^n \approx u(x_i, t_n).$$

Idées

Ceci nous conduit à approcher les dérivées par différences finies.

Exemple 1.3.1. Dérivées partielles d'ordre 1

$$\frac{\partial u}{\partial t}(x_i,t_n) \approx \frac{u_i^{n+1}-u_i^n}{\Delta t},$$

•
$$\frac{\partial u}{\partial t}(x_i,t_n) \approx \frac{u_i^n - u_i^{n-1}}{\Delta t}$$
,

$$\frac{\partial u}{\partial t}(x_i,t_n) \approx \frac{u_i^{n+1} - u_i^{n-1}}{2\Delta t},$$

• etc..

Exemple 1.3.2. Dérivées partielles d'ordre 2

$$\frac{\partial^2 u}{\partial x^2}(x_i,t_n) \approx \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{h^2},$$

etc..

Remarque 1.3.4.

Il n'y a pas unicité du schéma d'approximation. Néanmoins, ceux-ci auront des propriétés d'approximation différentes.

Laplacien 1D

Trouver $u \in C^4([0,1])$ telle que

$$\begin{cases} -u^{(2)}(x) = f(x), & \forall x \in]0,1[\\ u(0) = \alpha, u(1) = \beta \end{cases}$$

Soit une grille régulière $(x_i)_{i\in \llbracket 0:N+1\rrbracket}$ de [0,1], de pas d'espace $h: \forall i\in \llbracket 0:N+1\rrbracket, \ x_i=ih$. On cherche $(u_i)_{i\in \llbracket 0:N+1\rrbracket}\in \mathbb{R}^{N+2}$ approximant la solution u de l'EDP en les nœuds du maillage :

$$\forall i \in \llbracket 0:N+1 \rrbracket, \ u_i \approx u(x_i).$$

Conditions aux limites : $u(0) = \alpha$ et $u(1) = \beta$ donnent $u_0 = \alpha$ et $u_{N+1} = \beta$.

Intérieur du domaine : on s'intéresse à $u_h := (u_i)_{i \in \llbracket 1:N \rrbracket} \in \mathbb{R}^N$. Avec l'approximation

$$u^{(2)}(x_i) \approx \frac{u_{i+1} - 2u_i + u_{i-1}}{h^2},$$

il vient,

$$\forall i \in [1:N], -\frac{u_{i+1}-2u_i+u_{i-1}}{h^2}=f(x_i).$$

Laplacien 1D

Ceci conduit à la résolution du système linéaire

$$A_h u_h = b_h$$

avec

$$A_{h} = \frac{1}{h^{2}} \begin{pmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & -1 \\ 0 & \dots & 0 & -1 & 2 \end{pmatrix} \text{ et } b_{h} = \begin{pmatrix} f(x_{1}) + \frac{\alpha}{h^{2}} \\ f(x_{2}) \\ \vdots \\ f(x_{N}) + \frac{\beta}{h^{2}} \end{pmatrix}.$$

Questions

- 1- Le système admet-il une solution? Si oui, est-elle unique?
- 2- Quelle est la précision de la méthode? La discrétisation devient-elle exacte quand $h \to 0$? Les composantes de u_h convergent-elles vers la solution évaluée en les nœuds du maillage quand $h \to 0$?

Définition 1.3.5 – Norme matricielle subordonnée

Soit $\| \|$ une norme sur \mathbb{R}^N . On pose

$$\|\|: \mathcal{M}_{N}(\mathbb{R}) \rightarrow \mathbb{R}$$

$$A \mapsto \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|}$$

ainsi définie est une norme sur $\mathcal{M}_N(\mathbb{R})$, appelée norme matricielle subordonnée.

Proposition 1.3.6 - Quelques propriétés

Soit $\| \|$ une norme sur \mathbb{R}^N . Sa norme matricielle subordonnée vérifie :

- $\forall A \in \mathcal{M}_N(\mathbb{R}), \ \|A\| = \sup_{\|x\|=1} \|Ax\|;$
- $\forall (x, A) \in \mathbb{R}^N \times \mathcal{M}_N(\mathbb{R}), \|Ax\| \leq \|A\| \|x\|;$
- $\forall (A, B) \in \mathcal{M}_N(\mathbb{R})^2, \|AB\| \leq \|A\| \|B\|.$

Exemple 1.3.3.

Soit $\|\|_{\infty}$ la norme infinie sur \mathbb{R}^N définie par $\forall x \in \mathbb{R}^N$, $\|x\|_{\infty} = \sup_{i \in [\![1:N]\!]} |x_i|$. Sa norme matricielle subordonnée est définie par

$$\forall A \in \mathcal{M}_N(\mathbb{R}), \ \|A\|_{\infty} = \sup_{i \in [\![1:N]\!]} \sum_{j=1}^N |a_{i,j}|$$

Remarque 1.3.5.

Pour l'étude des EDP, nous privilégierons des normes discrètes du type

$$\forall p > 0, \ \forall x \in \mathbb{R}^N, \ \|x\|_p = \left(h \sum_{i=1}^N |x_i|^p\right)^{\frac{1}{p}}.$$

Elles renvoient à des discrétisations de normes définies sur des espaces fonctionnels (L_p) .

Définition 1.3.7 – Norme $|||_h$

On pose $\forall x \in \mathbb{R}^N$, $\|x\|_h = \sqrt{h \sum_{i=1}^N x_i^2}$. $\|\|_h$, ainsi définie, est une norme sur \mathbb{R}^N .

De plus, sa norme matricielle subordonnée est définie par :

$$\forall A \in \mathcal{M}_N(\mathbb{R}), \ \|A\|_h = \sqrt{\rho(A^T A)},$$

avec ρ le rayon spectral d'une matrice.

Proposition 1.3.8 – Propriété

On a $\forall x \in \mathbb{R}^N$, $||x||_h \leq ||x||_{\infty}$.

Rappelons le système linéaire obtenu :

$$A_h u_h = b_h$$

avec

$$A_{h} = \frac{1}{h^{2}} \begin{pmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & -1 \\ 0 & \dots & 0 & -1 & 2 \end{pmatrix} \text{ et } b_{h} = \begin{pmatrix} f(x_{1}) + \frac{\alpha}{h^{2}} \\ f(x_{2}) \\ \vdots \\ f(x_{N}) + \frac{\beta}{h^{2}} \end{pmatrix}.$$

Alors pour tout $u_h \neq 0$,

$$h^{2}u_{h}^{T}A_{h}u_{h} = 2u_{1}^{2} - u_{1}u_{2} - u_{2}u_{1} + 2u_{2}^{2} - u_{2}u_{3} - \dots - u_{N-1}u_{N} + 2u_{N}^{2}$$

$$= u_{1}^{2} + (u_{1} - u_{2})^{2} + \dots + (u_{N-1} - u_{N})^{2}$$

$$> 0$$

En conclusion le système admet une unique solution.

Soit u la solution de l'EDP (que l'on suppose exister et unique) alors pour tout i dans $\{1, \ldots, N\}$.

$$-u''(x_i)-f(x_i)=0.$$

Définition 1.3.9 – Erreur de consistance

L'erreur de consistance du schéma numérique $A_h u_h = b_h$ est

$$\xi_h(u) = A_h(\pi_h(u)) - b_h$$

où
$$\pi_h(u) = (u(x_1), \ldots, u(x_N))^T$$
.

Cette erreur est ici

$$\xi_h(u)_i = -\frac{u(x_{i-1}) - 2u_i(x_i) + u(x_{i+1})}{h^2} - f(x_i)$$

$$= -\frac{u(x_{i-1}) - 2u_i(x_i) + u(x_{i+1})}{h^2} + u''(x_i) - u''(x_i) - f(x_i)$$

$$= u''(x_i) - \frac{u(x_{i-1}) - 2u_i(x_i) + u(x_{i+1})}{h^2}$$

$$= -\frac{h^2}{12}u^{(4)}(\xi_i) \text{ avec } \xi_i \in]x_{i-1}, x_{i+1}[.$$

Par suite

$$\begin{aligned} \|\xi_{u}(u)\|_{\infty} &= \max_{i} |\xi_{h}(u)_{i}| \\ &= \max_{i} |\frac{h^{2}}{12} u^{(4)}(\xi_{i})| \\ &\leq \left(\frac{1}{12} \sup_{y \in [0,1]} |u^{(4)}(y)|\right) h^{2} \\ &\leq Ch^{2} \end{aligned}$$

avec $C \ge 0$ constante indépendante de h.On dit que le schéma numérique est consistant d'ordre 2 pour la norme $\|\cdot\|_{\infty}$.

Montrons maintenant la convergence. On a

$$A_h u_h = b_h$$

$$A_h(\pi_h(u)) = b_h + \xi_h(u)$$

Par suite

$$u_h - \pi_h(u) = A^{-1}(\xi_h(u))$$

$$\Rightarrow ||u_h - \pi_h(u)||_{\infty} \le ||A_h^{-1}||_{\infty} ||\xi_h(u)||_{\infty}$$

$$\le \frac{C}{8} h^2.$$

Soit f donnée et continue sur $\Omega =]0,1[\times]0,1[$. On considère le problème

$$\left\{ \begin{array}{l} -\Delta u(x) = f(x) \quad \forall x \in \Omega =]0, 1[\times]0, 1[\\ u(x) = 0, \forall x \in \partial \Omega. \end{array} \right.$$

• On définit une grille sur Ω :

$$x_{i_1} = i_1 * h_1$$
, avec $h_1 = 1/(N_1 + 1)$;
 $x_{i_2} = i_2 * h_2$, avec $h_2 = 1/(N_2 + 1)$.

- On note u_{i_1,i_2} une approximation de $u(x_{i_1},x_{i_2})$.
- On approxime les dérivées secondes en les noeuds du maillage par

$$\frac{\partial^2 u}{\partial x_1^2}(x_{i_1}, x_{i_2}) \approx \frac{u_{i_1+1, i_2} - 2u_{i_1, i_2} + u_{i_1-1, i_2}}{h^2}$$
$$\frac{\partial^2 u}{\partial x_2^2}(x_{i_1}, x_{i_2}) \approx \frac{u_{i_1, i_2+1} - 2u_{i_1, i_2} + u_{i_1, i_2-1}}{h^2}.$$

Bibliographie

Ce cours se base notamment sur les éléments suivants :

- B. Lucquin, Equations aux dérivées partielles et leurs approximations, Mathématiques à l'Université, Eds. Ellipses.
- Images et animation fournies par B. Ménétrier.