

Universidade Federal de Uberlândia

FEMEC 42060

CONTROLE DE SISTEMAS LINEARES

Guia para elaboração do relatório 4

Parte 1

- 1 Ações de controle de um PID
- 1.1 Escreva as expressões que relacionam o erro de rastreamento $(e(t) \in E(s))$ com a ação de controle $(u(t) \in U(s))$ em um PID nos domínios do tempo e da frequência.
- 1.2 Mostre o comportamento das ações de controle proporcional, integral e derivativo para um degrau na referência. Comente sobre o efeito esperado de cada um desses termos na saída da planta.
- 2 Efeito dos termos do PID no comportamento do processo
- 2.1 Apresente o comportamento da planta com o controlador proporcional para os três valores de K_p indicados. Comente sobre o que foi observado ao aumentar K_p .
- 2.2 Mostre a resposta ao controlador PI para os três valores de K_i considerados. O que ocorreu ao se aumentar demasiadamente o valor de K_i ? O que está causando o problema?
- 2.3 Explique como são calculadas a integral e a derivada do erro.

- 2.4 Exiba o comportamento do sistema controlado pelo PID com os três valores de K_d . O que ocorreu ao se aumentar muito o ganho derivativo?
- 2.5 Compare os sinais de saída e de controle do PID e do PI+D. Quais foram as vantagens observadas ao se mover o ganho derivativo para o ramo de realimentação?

Parte 2

- 3 Ajuste baseado na resposta experimental
- 3.1 Quais valores de do ganho crítico K_{cr} e do período crítico T_{cr} obtidos? Apresente a figura da resposta ao degrau.
- 3.2 Utilizando os valores do item anterior, calcule os parâmetros do PID: K_p , T_i e T_d . Mostre a função de transferência do controlador.
- 3.3 Apresente a resposta ao degrau de 120° na referência utilizando o PID calculado no item anterior.

4 Anti-windup

4.1 Qual técnica de anti-windup foi utilizada? Apresente o código da implementação da abordagem. Mostre também a resposta ao degrau de 120° de referência.