Arhitectura Calculatoarelor

Oprițoiu Flavius flavius.opritoiu@cs.upt.ro

23 Septembrie, 2020

Motivatie

Înțelegerea principiilor proiectării sistemelor de calcul:

- creșterea susținută a performanței sistemelor de calcul
- oportunități de proiectarea sistemelor de calcul

Bibliografie:

- J. Hennessy, D. Patterson, "Computer Architecture: A Quantitative Approach", 6th ed., Morgan Kaufmann, 2017, [Hepa17]
- 2. **1** M. Vlăduțiu, "Computer Arithmetic: Algorithms and Hardware Implementations", Springer, 2012, [Vlad12]
- D. Patterson, J. Hennessy, "Computer Organization and Design: The Hardware/Software Interface", 5th ed., Morgan Kaufmann, 2013, [Pahe13]
- 4. R. Bryant, D. O'Hallaron, "Computer Systems: A Programmer's Perspective, 3rd" ed., Pearson, 2015, [Brha15]

Introducere

Cele 5 componente clasice ale unui sistem de calcul:

- input
- output
- memory
- datapath
- control

Datapath: efectuează operații aritmetice

Control: coordonează celelalte 4 componente indicând operațiile de efectuat, în concordanță cu instrucțiunile programului executat de microprocesor

ISA

Instruction Set Architecture (ISA) al unui calculator:

- cunoscut ca Architectura unui calculator
- reprezintă interfața între componentele hardware și software ale calculatorului
- include tot ceea ce un programator trebuie să cunoască pentru a putea construi un program în limbaj mașină care să fie executat corect de calculator
 - ▶ instrucțiuni, dispozitive Input/Output (I/O), ierarhii de memorie, ...

ISA: permite descrierea funcționalitații unui Central Processing Unit (CPU) într-o maniera independentă de hardware-ul din interiorul CPU-ului

Exemplu: ceas digital

ISA (contin.)

ISA: ascunde detaliile complexe de construcție ale calculatorului care implementează respectivul ISA

 faciliteaza inovația la nivelul componentei hardware fără modificarea arhitecturii

Exemplu:

- atât 8086 cât și Pentium IV implementează aceeași arhitectură x86
 - ▶ 8086 conține ≈ 29 mii de tranzistori, având o performanță de 0.33 Millions of Instructions Per Second (MIPS)
 - ▶ Pentium IV conţine ≈ 44 milioane de tranzistori, având o performantă de aprox. 5000 MIPS

Evoluția ISA

La începutul anilor 1960, International Business Machines (IBM) Corporation avea 4 ISA diferite:

- ▶ 701 → 7094: destinat calculului științific
- ▶ 702 → 7080: destinat marilor corporații
- ▶ $650 \rightarrow 7074$: sisteme de calcul în timp real
- ▶ $1401 \rightarrow 7010$: destinat micilor afaceri

Fiecare linie de produse avea propriile: seturi de programe, dispozitive I/O și piață de desfacere ⇒ efort mare de dezvoltare SW

Soluția: unificarea celor 4 ISA \Rightarrow IBM System/360 ISA

- datapath: poate acomoda ușor cuvinte de date înguste sau late
- ▶ hardware de control: dificil de proiectat, atât atunci cât și acum

.

THE COL

¹J. Hennessy, D. Patterson 2018: Turing Award Lecture [Hepa18]

Proiectarea hardware-ului de control

Control microprogramat (Maurice Wilkes)

- inspirat de programarea SW
- controlul este specificat printr-un control store
 - ▶ tabel bidimensional
 - ▶ mai multe elemente de controlat ⇒ mai multe coloane
 - ightharpoonup instrucțiunile CPU-ului: formate din secvențe de μ instrucțiuni
 - lacktriangle fiecare μ instrucțiune ocupa o linie în control store
 - ▶ instrucțiuni complexe ⇒ mai multe linii în control store

Control store:

- ▶ implementat utilizând memorii
 - soluție mai ieftină comparativ cu utilizarea porților logice

IBM a dominat piața prin familia System/360

- System/360 a fost lansat în 1964
- descendenții acestei familii încă aduc profit de miliarde de dolari
 - ²J. Hennessy, D. Patterson 2018: Turing Award Lecture [Hepa18]

Primul calculator personal: Alto, creat în 1973

- este un Complex Instruction Set Computer (CISC)
- construit de Xerox Palo Alto Research Center
- primul calculator cu display bit-mapped
- primul calculator care utilizează Ethernet
- controller-ele pentru display și rețea sunt programe în control store-ul de 4K x 32b

"The next big ISA":

- ▶ în anii 1970 microprocesoarele sunt pe 8 biţi (Intel 8080)
- ▶ Gordon Moore: următorul ISA al Intel va dăinui *a la longue*
 - asamblează o echipă în Portland pentru construcția lui
 - noul ISA, numit inițial 8800, ulterior redenumit "iAPX-432"
 - este un proiect ambițios: demarat în 1975, fără a fi însă materializat până în 1981, doar pentru a fi retras în 1986

3

³J. Hennessy, D. Patterson 2018: Turing Award Lecture [Hepa18]

Urmarea insuccesului lui iAPX-432, Intel demarează un plan de avarie:

- să aibă un microprocesor pe 16 biți până în 1979
- ▶ o echipă în Santa Clara: în 52 de săptămâni va dezvolta ISA-ul "8086", va proiecta chip-ul și îl va construi
- ► ISA-ul 8086 a fost dezvoltat în 3 săptămâni extinzând arhitectura 8080 la 16 biți
- ► CPU-ul a fost terminat la termen, fără prea mult fast

Oportunitatea lui Intel:

- ▶ IBM dezvolta un calculator personal pentru a concura cu Apple II și are nevoie de un CPU pe 16 biți
- ▶ IBM era interesat de Motorola 68000
 - ▶ 68000 avea un ISA similar cu cel al System/360
 - ▶ dar, 68000 nu ține pasul cu planul rapid de dezvoltare al lui IBM
- ca urmare, IBM alege CPU-ul 8086 de la Intel

Calculatorul Personal:

- ▶ IBM îl anunță în 12 August 1981
 - ▶ IBM speră să vândă 250 mii de unități până în 1986
 - în schimb vinde 100 milioane de unități

Prezicerea lui Gordon Moore că următorul ISA va dăinui se implinește!

- ▶ viitorul a aparținut lui 8086, cunoscut și ca arhitectura *x86*
- succesul nu a fost de partea ambiţiosului iAPX-432 sau arhitecturii Motorola 68000
 - ambele CPU-uri au "învăţat" o lecţie dură: piaţa nu are răbdare
 - ⁴J. Hennessy, D. Patterson 2018: Turing Award Lecture [Hepa18]

De la CISC la Reduced Instruction Set Computer (RISC):

- la începutul anilor 1980 apar unele schimbări de perspectivă:
 - sunt folosite limbaje de nivel înalt pentru dezvolatarea Operating System (OS)
 - întrebarea "ce limbaj de asamblare să folosesc" devine "ce instrucțiuni să utilizeze compilatorul"

Grupul lui John Coke de la IBM analizeaza arhitectura System/360:

- compilatorul folosește doar instrucțiuni simple (cele complexe sunt evitate)
- rezultatul: programele pot fi făcute să ruleze de 3 ori mai repede folosind instrucțiuni simple
- această cercetare stă la baza tranziției de la CISC la RISC

RISC:

- ightharpoonup instrucțiunile unui RISC: la fel de simple ca μ instrucțiunilor unui CISC
 - ▶ ⇒ hardware-ul de control devine mai puţin complex
- pentru că nu utilizeaza control store, această memorie rapidă preia rolul de cache al instrucțiunilor microprocesorului

Cache: mediu de stocare de dimensiuni mici, rapid care păstrează instrucțiunilor executate recent, acestea fiind cel mai probabil necesare în viitorul apropiat

Întrebare De ce sunt necesare instrucțiunile tocmai executate în viitorul apropiat?

RISC:

- ightharpoonup instrucțiunile unui RISC: la fel de simple ca μ instrucțiunilor unui CISC
 - ▶ ⇒ hardware-ul de control devine mai puţin complex
- pentru că nu utilizeaza control store, această memorie rapidă preia rolul de cache al instrucțiunilor microprocesorului

Cache: mediu de stocare de dimensiuni mici, rapid care păstrează instrucțiunilor executate recent, acestea fiind cel mai probabil necesare în viitorul apropiat

Întrebare De ce sunt necesare instrucțiunile tocmai executate în viitorul apropiat?

Răspuns Considerați fragmentul de cod următor:

```
int a = 1;

int b = N;

do {

a = a * b;

b = b - 1;

b = b + b;
```


Microprocesoare RISC:

- ► RISC-I dezvoltat la Berkely în 1982 de o echipa ce îl include pe D. Patterson
- MIPS (Microprocessor without Interlocked Pipeline Stages) dezvoltat la Stanford în 1983 de o echipă condusă de J. Hennessy

Arhitecturile RISC au dominat performanța CPU-urilor mai bine de 15 ani

⁵J. Hennessy, D. Patterson 2018: Turing Award Lecture [Hepa18]

⁶J. Hennessy, D. Patterson 2018: Turing Award Lecture [Hepa18]

Very Long Instruction Word (VLIW) și arhitectura Explicitlly Parallel Instruction Computer (EPIC):

- previzionate a depăși în performanță RISC și CISC
- ▶ EPIC un efort comun al Hewlett-Packard și Intel
- o instrucțiune de tip wide unește mai multe operații independente
 - 2 operații de acces la memorie
 - 2 operatii cu întregi
 - 2 operații cu numere de virgulă mobila
- s-a sperat că tehnologia de compilare va optimiza selecția operațiilor pentru instrucțiunile de tip wide
 - ca și CPU-urile RISC, efortul este transferat dinspre HW către compilator

(intel)

⁷J. Hennessy, D. Patterson 2018: Turing Award Lecture [Hepa18]

EPIC promitea sa înlocuiasca arhitectura x86 pe 32 de biți:

- primul CPU EPIC a fost Itanium, pe 64-biți
 - ▶ performanțe ridicate pentru programe în virgulă mobilă structurate
 - performanțe slabe pentru cache miss-uri/branch-uri puțin predictibile
 - ► Knuth nota: compilatoarele "așteptate" erau imposibil de construit
 - rebotezat de unii în "Itanic"

Încă odată, piața nu are răbdare și alege versiunea pe 64-biți a arhitecturii x86 ca noul ISA

VLIW este relevant pentru aplicații de tip Digital Signal

Processing, caracterizate de:

- programe scurte
- instructiuni conditionale simple
- lipsă cache

RISC vs CISC în era PC

- CPU-urile CISC reduc diferența de performanță față de RISC
 - echipe de dezvoltare mari (Intel şi AMD)
 - beneficiază de viteza crescută a RISC
 - \blacktriangleright transformă intern, on-the-fly, instructiunile în μ instructiuni RISC
 - ▶ ⇒ tehnicile de creştere a performanței specifice RISC sunt acum aplicabile și microprocesoarelor CISC

Vârful erei PC atins în 2011:

- ▶ 350 milioane de microprocesoare x86 vândute anual
 - volum mare + profit redus ⇒ pret mai mic pentru x86 decât RISC
- produsele SW pentru PC crează o piață imensă
 - piaţa SW pentru Unix este mult mai diversă, oferind produse pentru diverse arhitecturi RISC (Alpha, HP-PA, MIPS, Power, SPARK)
 - programele pentru PC, comparativ, ofera aplicații "împachetate" compatibile doar cu arhitectura x86
 - ► ⇒ PC a dominat piaţa calculatoarelor de birou şi serverelor de mici dimensiuni ai anilor 2000

Era post-PC:

- deschisă de Apple prin lansarea iPhone-ului în 2007
 - ▶ în loc să cumpere un microprocesor, Apple dezvoltă propriul System on Chip (SoC) folosind arhitecturi ale altor companii
- proiectanții de dispozitive mobile incep să valorifice reducerea dimensiunii și a puterii consumate
- ▶ ⇒ CPU-urile CISC sunt dezavantajate

Astazi:

- vanzările x86 au scăzut anual cu 10% începând cu 2011
- vânzările CPU-urilor RISC au explodat la 20 miliarde de unități
 - ▶ 99% din CPU-urile pe 32 și 64 de biți sunt RISC

Concluzii privind evoluția architecturii calculatoarelor

- piața a "rezolvat" rivalitatea CISC-RISC
 - CISC a dominat ultimii ani ai erei PC
 - RISC câstigă era post-PC
 - nicio arhitectură CISC în ultimii 30 ani
 - nicio arhitectură VLIW în ultimii 15 ani

Consensul, azi, în privința arhitecturii unui calculator favorizează soluțiile RISC, la 35 de ani de la introducerea acestora.

Provocări actuale pentru Arhitectura Calculatoarelor

De regulă, producătorul implementeaza un ISA nu construiește unul nou:

- Metal-Oxide Semiconductor (MOS): tehnologia prevalentă de implementare a microprocesoarelor începând cu a doua jumătate a anilor 1970
 - ▶ inițial în tehnologie nMOS
 - ulterior în tehnologie Complementary metal-oxide semiconductor (CMOS)
- evoluția tehnologiei CMOS a cunoscut salturi spectaculoase: legea lui Moore
 - ▶ v1: 1965: dublarea anuală a numărului de tranzistori \Rightarrow rata de crestere anuală de 100%
 - v2: 1975: dublarea la 2 ani a numărului de tranzistori ⇒ rata de crestere anuală de 41%

Întrebare Cum este evaluată o rată de creștere de 40%?

Provocări actuale pentru Arhitectura Calculatoarelor

De regulă, producătorul implementeaza un ISA nu construiește unul nou:

- ► MOS: tehnologia prevalentă de implementare a microprocesoarelor începând cu a doua jumătate a anilor 1970
 - ▶ inițial în tehnologie nMOS
 - ▶ ulterior în tehnologie CMOS
- evoluția tehnologiei CMOS a cunoscut salturi spectaculoase: legea lui Moore
 - v1: 1965: dublarea anuală a numărului de tranzistori ⇒ rata de crestere anuală de 100%
 - v2: 1975: dublarea la 2 ani a numărului de tranzistori ⇒ rata de crestere anuală de 41%

Întrebare Cum este evaluată o rată de creștere de 40%? **Răspuns** O rată de creștere de 41% este foarte mare!

Exemple de rate anuale de creștere: culturi de porumb - 2%, eficiența generatoarelor electrice - 1.5%, eficiența sistemelor de iluminat - 2.6%, viteza călătoriilor intercontinentale - 5.6%, eficiența consumului de conbustibil pentru autoturismelor - 2.5%

Provocări actuale (contin.)

Legea lui Moore încetinește în jurul anilor 2000

- ▶ în anul 2018 decalaj între nr. de tranzistori previzionat și cel actual a crescut de 15 ori
- decalajul acesta se va adânci mai mult în viitor

Legea lui Robert Dennard (1974)

- efectele miniaturizării tranzistorului
 - tranzistorul devine mai eficient energetic (scade puterea consumată)
 - tranzistorul devine mai rapid (tehnologie CMOS mai performantă)
- ► trendul de miniaturizare a tranzistorului a încetinit în jurul anului 2007
 - până în 2012 acest trend aproape a dispărut

Cresterea performanței CPU-urilor între 1986 și 2002

- facilitată de următorii factori:
 - tehnologia de integrare mai performantă
 - Instruction Level Parallelism (ILP)
- ▶ ⇒ creșterea performanței microprocesoarelor cu aproape 50%

Provocări actuale (contin.)

Diminuarea efectului legii lui Dennard:

 sunt necesare alte mijloace de creștere a performanței microprocesoarelor

Se declansază era multi-core!

- problema exploatării paralelismului (la nivel de instructiuni sau date) este transferată către programator și limbaje de programare
- nu rezolva problema consumului de putere
 - fiecare nucleu activ consumă energie

Creșterea numărului de nuclee \Rightarrow creșterea puterii consumate

- numărul de nuclee este limitat de Thermal Dissipation Power (TDP)
- ▶ "dark silicon" era: nucleele inactive nu sunt alimentate

Provocări actuale (contin.)

Creșterea performanței CPU-urilor măsurate de SPECint

Standard Performance Evaluation Company (SPEC)

Revenirea la creșterea de performanță a anilor 1980 și 1990:

- abordări arhitecturale noi
 - ⁸J. Hennessy, D. Patterson 2018: Turing Award Lecture [Hepa18]

Siguranța - tratată superficial

În anii 1970 proiectanții de CPU-uri adaugă măsuri arhitecturale de creștere a securității:

- majoritatea defectelor, considerate a origina în SW
- oferă suport HW pentru detecția lor

Facilitătile de securitate sunt nefolosite de OS:

- ▶ implicau costuri de performanță ⇒ sunt eliminate
- dintre măsurile actuale, dar modeste, de asigurare a secrității:
 - suport HW pentru mașini virtuale
 - facilități HW pentru primitive criptografice

Siguranța - tratată superficial (contin.)

Execuția speculativă introduce în multe CPU-uri defecte de securitate neprevăzute dar importante:

- Meltdown și Spectre: exploatarea unor vulnerabilități în HW-ul microprocesoarelor
 - permite obținerea informațiilor confidențiale cu o viteză de peste 10 Kbit/sec
 - sunt utilizate atacuri de tip "side-channel":
 - informația este "scursă" (leaked) observând durata de execuție a unei sarcini de calcul si convertirea ei în informatie
- atacul NetSpectre din 2018:
 - permite obţinerea informaţiilor la distanţă, de la calculatoare conectate într-o reţea locală sau în acelaşi cluster (în cloud)

Atacurile "side-channel" nu sunt noi:

- anterior, succesul unui atacator era facilitat de vulnerabilități SW
- Meltdown și Spectre: vulnerabilitatea rezida în implementarea HW
 - ► ISA nu oferă informații privind efectele laterale ale execuției unei secvente de instructiuni
 - ► ⇒ regândirea arhitecturii unui calculator

Referinte

- [Hepa17] J. L. Hennessy and D. A. Patterson, Computer Architecture, Sixth Edition: A Quantitative Approach, 6th ed. Morgan Kaufmann Publishers Inc., 2017.
- [Vlad12] M. Vlăduțiu, Computer Arithmetic: Algorithms and Hardware Implementations. Springer, 2012.
- [Pahe13] D. A. Patterson and J. L. Hennessy, Computer Organization and Design, Fifth Edition: The Hardware/Software Interface, 5th ed. Morgan Kaufmann Publishers Inc., 2013.
- [Brha15] R. E. Bryant and D. R. O'Hallaron, *Computer Systems:* A Programmer's Perspective, 3rd ed. Pearson, 2015.
- [Hepa18] J. L. Hennessy and D. A. Patterson, "Turing award lecture," https://iscaconf.org/isca2018/docs/ HennessyPattersonTuringLectureISCA4June2018.pdf, 2018, accessed: 2020-09-14.