- 1 Types
- **Definition 1.** For a theory T, and variables x, a partial type P is a set of formulas where $T \cup P$ is
- 3 consistent
- **Example 2.** For $T = \text{Th}(\langle \mathbb{Z}, +, -, 0, 1 \rangle)$, $P(x) = \{\exists y(y+y\ldots + y=x)\} \cup \{x \neq 0\}$, is a partial type.
- 5 This can be proven by compactness.
- **Definition 3.** For a theory T, a type P is principal if for some $\theta(\mathbf{x})$, $T \cup \theta(\mathbf{x}) \models P$ and $T \cup \theta$ is consistent.
- **Theorem 4.** If P is not principal it is omitted in some model of T. If P is principal and T is complete
- 8 then every model of T realises P.

9 Embeddings

Theorem 5. If $A \leq B$ then for every quantifier free $\varphi(x_1, \dots x_n)$,

$$\varphi^{\underline{B}} \cap A^k = \varphi^{\underline{A}}.$$

If $A \leq B$ then this is true for all formulas φ .

12 Preservation Theorems

- **Theorem 6.** For a theory $T, \underline{A} \models T_{\forall}$ if and only if there exists $\underline{B} \models T$ with $\underline{A} \leqslant \underline{B}$.
- Corollary 7. The theory of fields is not universal as, $\underline{Z} \leqslant Q$ but Q is a field and \underline{Z} is not.
- **Theorem 8.** Sentence σ is universal if and only if for all $B \models \sigma$ and $A \leqslant B$, $A \models \sigma$.
- Example 9. For F the theory of fields, F_{\forall} is the theory of integral domains. That is because every integral domain can be embedded in a field.
- Theorem 10. For a chain $\underline{A_1} \leqslant \underline{A_2} \leqslant \dots$, let $\underline{A^*}$ be the limit of the chain. Then every AE sentence σ which holds for all A_i , holds for $\underline{A^*}$.

20 Quantifier elimination

Definition 11. Theory T admits quantifier elimination if for any formula $\theta(\mathbf{x})$, there exists a quantifier free formula $\tilde{\theta}(\mathbf{x})$ such that:

$$T \models \forall \mathbf{x}(\theta \leftrightarrow \tilde{\theta})$$

- Theorem 12. If L has no constant or function symbols and T admits Q.E. then T is complete.
- **Example 13.** Th($\langle \mathbb{Q}, < \rangle$) admits QE and so is complete.
- ACF admits QE. But, the only thing ACF does not decide is the field characteristic. Hence, ACF_p for p prime or zero is complete.
- Th($\langle \mathbb{R}, +, -, \times, 0, 1 \rangle$) does not admit Q.E. Atomic sentences with one variable define only, finite and cofinite sets. But $\varphi(x) = \exists y(y^2 = x)$ defines the positive numbers.
- Th($\langle \mathbb{R}, +, -, \times, 0, 1, < \rangle$) admits Q.E. by Tarski. It is complete because the order is complete and so determines equality.
- Remark. If T admits Q.E. and $\underline{A_1}, \underline{A_2} \models T$ and $\underline{A_1} \leqslant \underline{A_2}$ then $\underline{A_1} \preceq \underline{A_2}$.
- Theorem 14. If it exists, there is only one way to extend a universal theory to a Q.E. theory. Prove by taking $S \models \underline{A_1}$ and $\underline{A_1} \leqslant \underline{B_1} \models T$ and build chains. The limits are equal and $\underline{A_1} \preceq A_2 \preceq C$.
- Theorem 15 (Equivalence). 1. T has Q.E.
- 2. Any partial isomorphism between models of *T* is elementary. It is enough to consider isomorphisms on finitely generated subsets.
- 3. For any $\mathcal{M} \models T$ and any $\mathbf{a} \in \mathcal{M}^n$, $T \cup \operatorname{diag}(\mathbf{a})$ is complete.

- 1 Categoricity
- **Definition 16.** A theory T for a cardinal κ is κ -categorical if there exist models $\underline{A}, \underline{B} \models T$ and for
- $|A| = |B| = \kappa, A \cong B.$
- **Proposition 17.** If T has no finite models, and for $\kappa \ge |L| + \aleph_0 T$ is κ-categorical, then T is complete.
- **Example 18.** 1. Theory of equality $T_{=}$ is categorical for every cardinal. So T_{∞} is complete.
- 2. Vect_K is categorical for every $\kappa \geq |K|$, so Vect_K $\cup T_{\infty}$ is complete.
- 3. DLO is \aleph_0 -categorical and has no finite models. Proof by back and forth lemma.
- **Definition 19** (Atomic Model). A is an atomic model of a complete theory T if for any $\mathbf{a} \in A^n$ there is
- 9 $\varphi(\mathbf{x})$ such that $\underline{A} \models \varphi(\mathbf{a})$ and for any $\psi(\mathbf{x})$:

$$T \vDash \forall x(\varphi \to \psi) \text{ or } T \vDash \forall x(\varphi \to \neg \psi)$$

- Definition 20. A model $\underline{A} \models T$ is homogeneous if for any $\mathbf{a}, \mathbf{b} \in A^n$ that satisfy the same formulas,
- there is an automorphism $\alpha: A \longrightarrow A$ such that $\alpha(a_i) = b_i$.
- Definition 21. A model $A \models T$ is *prime* if for any model $B \models T$, A embeds elementarily to B.
- Proposition 22. Countable atomic models are isomorphic. In fact, every finite partial isomorphism can
- be extended to an isomorphism. They are also prime and homogeneous.
- Definition 23 (Type). The *n*-type of an *n*-tuple $\mathbf{a} \in A^n$ is the set of formulas satisfied by \mathbf{a} , denoted
- by $\operatorname{tp}_A(\mathbf{a})$. In particular, it is a partial type for the $\operatorname{Th}(\underline{A})$. It is complete as $\varphi(\mathbf{x}) \in \operatorname{tp}_A(\mathbf{a})$ or $\neg \varphi(\mathbf{x}) \in \operatorname{Th}(\underline{A})$.
- 17 $\operatorname{tp}_{A}(\mathbf{a}).$
- Proposition 24. For a complete theory T the atomic models realise the fewest types.
- Proposition 25. For a countable language L, Prime \iff Countable and Atomic.
- ²⁰ Corollary 26. The prime models of T are isomorphic, by uniqueness of countable & atomic.
- **Proposition 27.** If for each n the set of n-types is countable, then T has a prime model.
- **Definition 28.** A countable model $\mathcal{M} \models T$ is *universal*, if every countable model embeds elementarily
- into \mathcal{M} .
- Theorem 29 (Ryll-Nardzewski). Let T complete and L-countable. Then, T is \aleph_0 -categorical \iff
- $_{25}$ every countable model is prime \iff every countable model is atomic \iff every type is principal \iff
- there are only finitely many n-types \iff n-formulas $\varphi(\mathbf{x})$ up to T equivalence is finite \iff
- $_{27}$ every countable model is universal \iff a countable model is prime and universal \iff
- $_{\rm 28}$ $\,$ every countable model is universal and homogeneous.
- Definition 30. A saturated model is a model that realises all n-types and is homogeneous. Equivalently:
- If \mathcal{M} is saturated, for all $B \subseteq \mathcal{M}$ and $|B| < |\mathcal{M}|$, \mathcal{M}_B realises all 1-types of Th(\mathcal{M}_B).
- Definition 31. A group G applied to a G-set is oligomorphic if there are finitely many orbits of G.