Лекция N9: Несобетвенные пратите интегралы

Определение 9.1: Последовательност линожесть $\{E_n\}$ нау-аг истерпанием множесть $E \in \mathbb{R}^m$ тогда п том но тогда, когда

1) En - измерими подмнотества мнотества Е диг всех n 6 N;

3) En = En+, gut berz n 6 N; 3) Obsegumeture UEn=E.

Nemna 9.1: Pyers incorrecto $E \subset \mathbb{R}^m$ ignepuno, a $\{E_n\}$ - ero increpriance.

Torga

1) fin $\mu(E_n) = \mu(E)$

1) Due barrow $f \in R(E)$ enpalse g who $\lim_{n \to \infty} \int_{E_n} f(x) dx = \int_{E_n} f(x) dx.$

Doxajamenicto: 1) J_{10} определению истернания имеетах включение $E_n \subset E_{n+1} \subset E_j$

zomopoe burin nepabencibo $p(E_n) \leq p(E_{n+1}) \leq p(E)$ m e. $\{p(E_n)\} - neyōnbaronyae$ u orposeuzennas chepry nocusobarensnocis. Chegobarensnocis. $\{p(E_n)\} \leq p(E)$

Due bien $n \in \mathbb{N}$ pacenompnen enonecibe $\widetilde{E}_n := E_n \cup \mathcal{U}_n$, noempoenene onucanomn brune enocobon no $\mathcal{E}_n = \frac{\mathcal{E}}{2n}$. Orebuguo, uno $E_n \subseteq \widetilde{E}_n$ re $\mathcal{M}(\widetilde{E}_n) \leq \mathcal{M}(E_n) + \mathcal{M}(\mathcal{U}_n) \leq \mathcal{M}(E_n) + \frac{\mathcal{E}}{2n}$.

По построению

E < UEn < UEn.

Замакании \bar{E} Мыявіле компактом, компорячі покрым системой отпрыту множесть $U, \tilde{E}_1, \tilde{E}_2, \dots$. Существуєт конигное подпомритие множесть \bar{E} быда $U, \tilde{E}_1, \dots, \tilde{E}_K$

B cury brownering $E_1 \subseteq E_2 \subseteq \ldots \subseteq E_K$, chemena $\mathcal{U}, \mathcal{U}_1, \ldots, \mathcal{U}_K, E_K$ tomo shisemae homporaren E. Torga

 $\mu(E) \leq \mu(E) \leq \mu(E_k) + \mu(u) + \sum_{i=1}^{k} \mu(u_i) \leq \mu(E_k) + 2\varepsilon.$

Josyzaerca, emo que been $n \supset K$ $0 < M(E) - M(E_n) < 2 E$. Repenose K speggary no $n \to \infty$, where

M(E) & him M(En)

2) Яо критерию Лебега из интегрируености в на Е следует и интегриругиость на повинотестье $E_n \subseteq E$, $n \in \mathbb{N}$. Из интегрируемости f на E такке crepgem orpaniocentroon ha E, m.e. $\exists M \ni 0$, m.r. $|f(z)| \le M$ give been $z \in E$. Cregobaierous. $\left| \int_{E} f(x) dx - \int_{E_{n}} f(x) dx \right| = \left| \int_{E \mid E_{n}} f(x) dx \right| \leq \int_{E \mid E_{n}} \left| f(x) | dx \leq M \right| \mu(E \mid E_{n}) \xrightarrow{n \to \infty} 0$

Onpegerence I.L: Type {En} - ucrepnance unomedo E, bywyne 1:E=R rencui 6 KLACCE R(En) que beex nEN. Toega, com npegel

 $(9.1) \qquad \int f(x) dx := \lim_{n \to \infty} \int f(x) dx$

существуй, а его значение не зависий от впора истерпания, то $\int f^{h_0} dx$ наупьания несобейвенням иннеграции функции f но иножеству E.

Nyuem 1) renna 9.1 robopui, cro que fER(E) revierpar Punana no E cobragação со сходащимие интеграсом в сипеле определения в.в.

Yilenmgenus 9.1: Tyer fla) > 0 Ha E n que nenomonoro ucrepranua & En} множества Е преди (9.1) существует. Тогда несобствения интегрел J flxldx cooquial.

Dokyaterscibe: Pacchomphia grypol ucrephapul $\{E_k'\}$ muomecibe E_i m.t. $f \in R(E_k')$ que been $k \in N$. Therefore the $E_n^k := E_k' \cap E_h$, $n \in N$, objectly som ucrephapule uponecibe E_k' , normy no nyukty 2) remain 9.1 $\int_{E_n'} f(x)dx = \lim_{n \to \infty} \int_{E_n'} f(x)dx < \lim_{n \to \infty} \int_{E_n} f(x)dx = A.$

T.K. $f \ge D$ ma, a $E_R \subset E_{R+1} \subset E_{\gamma}$ mo noting-to $\int_{E_R} f(x) dx$ meyorbacouyan,

a quarit copyectiver

him fifteldx = B & A.

Teneps naverab uccentrance {En} ~ {E'_k} & pacymgenus necianu, nongrun A ≤ B.

Typung 9.1: Paccus mynum $\iint_{\mathbb{R}^2} e^{-(x^2 \cdot y^2)} dxdy$. Pyrkyne $e^{-(x^2 \cdot y^2)} > 0$ na procesou \mathbb{R}^2 , a gre $E_n := \{(x,y) \in \mathbb{R}^2 : x^2 \cdot y^2 < n^2\}$ uneen $\iint_{E_n} e^{-(x^4y^5)} dxdy = \int_{0}^{\infty} dy \int_{0}^{\infty} e^{-y^2} dy = 2\pi \left(1 - e^{-n^5}\right) \xrightarrow{n \to \infty} \pi.$

Norming be every yellowing magness 9.1 implements $\iint_{\mathbb{R}^2} e^{-(x^4vy^3)} dy = T$ We reprombate the choice IR^2 in boggarance $E_n' := (-n;n) \times (-n;n)$, respecting the $n \times n = 1$. By but $\int_{\mathbb{R}^2} e^{-(x^4vy^4)} dx dy = \int_{\mathbb{R}^2} dx \int_{\mathbb{R}^2} e^{-(x^4vy^4)} dy = \left(\int_{\mathbb{R}^2} e^{-t^4} dt\right)^{t} \Rightarrow \int_{\mathbb{R}^2} e^{-t^2} dt = IT$

Угвертдение 9.2: (макорантный признам входимости)

There $f,q: E \to \mathbb{R}$ - pyukyuu, unmerpupyeune na ognuz u tex me uzuepunum nogunoxecibax un ba E, m τ . $|f(z)| \leq g(z)$ gus bcex $z \in E$. Toega, ecu $\int_E g(z)dz$ cooguies, mo cooguies u unierpan $\int_E |f(z)|dz$ a $\int_E f(z)dz$.

моси днях розимей може \tilde{p} \tilde{p} сделана меньше любого \tilde{e} $\tilde{e$

Paccuompuu gbe qoyunyuu $f_+(z):=\frac{1}{2}\left(|f(z)|+f(z)| \text{ is } f_-(z):=\frac{1}{2}\left(|f(z)|-f(z)\right),$ Dubuguo, two $0\leqslant f_+(\pi)\leqslant |f(\pi)|$ is $0\leqslant f_-(\pi)\leqslant |f(\pi)|$. Ho morga no Dougraumyu univerpasor $\int_E f_-(z)dz$ is $\int_E f_+(\pi)d\pi$ coograms. Juanus is inverpas

$$\int_{E} f(x) dx = \int_{E} (f_{+}(x) - f_{-}(x)) dx = \int_{E} f_{+}(x) dx - \int_{E} f_{-}(x) dx$$

czogurae.

Пример 91: Рассиотрии функцию $\frac{1}{r^2} = \frac{1}{d^d(0,z)}$, где $d(0,z) = \sqrt{(x')^2 + ... + (x'')^2} -$ расстояние мижду началом координаї и точной x, ограниченную на проиологий единигрый мар $\mathring{B} := B(0,1) \subset \mathbb{R}^m$. Будем исследоват инаеграл $\frac{dx}{r^d(x)}$

на Сходимость.

Paccustown ucreprovue $B_n:=\{x\in B(0,1): \frac{1}{n} < d(0,x) < 1\}$ Seperoga κ experimental Koopdungtan

$$x'' = p \cos \varphi_1$$
, $x'' = p \sin \varphi_1 \cos \varphi_2$, (another neperoga paten $x''' = p \sin \varphi_1 \sin \varphi_2 \dots \sin \varphi_{m-1} \cos \varphi_{m-1}$)

 $x''' = p \sin \varphi_1 \sin \varphi_2 \dots \sin \varphi_{m-1} \cos \varphi_{m-1} \dots \sin \varphi_{m-1} \dots \sin \varphi_{m-1}$
 $x''' = p \sin \varphi_1 \sin \varphi_2 \dots \sin \varphi_{m-1} \dots \sin \varphi_{m-1}$

hougeun $\int_{\mathcal{B}_n} \frac{dz}{r^d(z)} = \int_{\mathcal{S}} f(\varphi) d\varphi \int_{\frac{1}{n}}^{1} \frac{r^{m-1} dr}{r^d} = Const \cdot \int_{\frac{1}{n}}^{1} \frac{dr}{r^{d-m+1}}$

npegeu no $n \to \infty$ bygem cyclobate \iff d-m+1<1, m.e. korga d<m.

Пример 9.3: Рассмотрим функцию $f(x) = \frac{(-1)^{n-1}}{n}$ при $n-1 \le x < n$, $n \in \mathbb{N}$, $n \in$

$$\int_{0}^{+\infty} f(x) dx = \sum_{n=1}^{\infty} \int_{n-t}^{n} \frac{(-t)^{n-t}}{n} dx = \sum_{n=1}^{\infty} \frac{(-t)^{n-t}}{n} - \frac{(-t)^{$$

- условно оходанущий числовой ряд. Согласно теорем Римана перестановкой его членов можно получить ряд, имеющий мобую сумму, даже + 00.

Paccuo mpius racrituyus eyuuy mauoro paga
$$\sum_{i=d}^{n} \int_{n_{i-1}}^{n_{i}} \frac{(-1)^{n_{i-1}}}{n_{i}} dx = \int_{E_{n}}^{\pi} f(x) dx, \quad \text{rge } E_{n} := \bigcup_{i=1}^{n} (n_{i}-1, n_{i})$$

дают интеграции множества $(0,+\infty)$. Таким обрадом, одномерны несобственный интеграц $\int_0^\infty f(x)dx$, которым сходитах, но расходитах в смасле определения 22.