SISTEME SIMETRICE DE CRIPTARE MODERNE

DES (Data Encryption Standard)

I. Descrierea sistemului de criptare DES

Vizualizați în Cryptool cum funcționează sistemul de criptare DES (*DES Visualization*).

II. Criptare

Criptați mesajul HORST FEISTEL.

- i. Folosiți cheia de criptare A1 B2 C3 D4 E5 F6 A1 B2.
- ii. Utilizați mai întâi modul de criptare ECB, apoi în modul de criptare CBC.

III. Decriptare

- i. Considerați aceeași cheie de mai sus.
- ii. Decriptați mesajul:

EF 9D D9 72 F0 05 22 5D 79 87 B4 85 3F 86 76 D0 BE 0B C3 DF 75 48 43 2B E4 4F 8A 00 C6 86 9B 8B

iii. În ce mod s-a realizat criptarea, ECB sau CBC?

IV. Proprietatea de difuzie

- i. Alegeți un text clar oarecare.
- ii. Alegeți o cheie oarecare (dar nu trivială).
- iii. Criptați textul în mod ECB cu ajutorul cheii și păstrați textul criptat obținut.
- iv. Modificati un singur bit din cheia de criptare.
- v. Criptați din nou textul, utilizând această nouă cheie.
- vi. Ce observați?

V. Rezistența la erorile de transmisie – modurile de implementare ECB și CBC

i. Alegeți un text clar oarecare.

- ii. Alegeți o cheie oarecare (dar nu trivială).
- iii. Criptați textul clar în modul ECB.
- iv. În textul criptat obținut modificați un singur bit
- v. Decriptați textul astfel modificat.
- vi. Repetați pașii iii-v pentru modul CBC (păstrați constantă poziția bitului pentru cele 2 moduri).

Care dintre cele 2 moduri este mai rezistent la erorile de transmisie?

VI. Chei slabe și perechi de chei semi-slabe

i. Se consideră următoarele chei:

FE 01 FE 01 FE 01 FE 01

E0 E0 E0 E0 E0 F1 F1 F1 F1

FE FE FE FE FE FE FE FE

01 FE 01 FE 01 FE 01 FE

- ii. Care dintre acestea este o cheie slabă? (i.e. $e_k(e_K(M))=M$, pentru orice mesaj M)
- iii. Puteți găsi o pereche de chei semi-slabe?(i.e. e_{k1}(e_{K2}(M))=M, pentru orice mesaj M)

VII. Meet-In-The-Middle Attack

i. Se dă textul clar:

attack

ii. Se știe că acesta a fost supus unei duble criptări cu DES în mod ECB, folosind 2 chei de forma:

X0 00 00 00 00 00 00 00

unde X poate fi orice cifra hexazecimală.

iii. În urma acestei criptări s-a obținut textul criptat:

$\alpha > b'M\theta 3x$

(E6 3E 62 27 4D F8 33 78)

iv. Folosind un atac de tip Meet-In-The-Middle determinați cele 2 chei

AES (Advanced Encryption Standard)

I. Descrierea sistemului de criptare AES

Vizualizați în Cryptool cum funcționează sistemul de criptare AES (AES Visualization).

II. Criptare

i. Folosiți cheia de criptare pe 128 de biți:

13 57 90 24 68 AB CD EF 13 57 90 24 68 AB CD EF

ii. Criptați textul Advanced Encryption Standard

III. Decriptare

Folosind aceeași cheie de criptare de la punctul II și padding mode *1-0* padding, decriptați mesajul:

FF 06 4E D6 BB 21 9C 38 FE 7C EB 45 CF 70 CE 7C 69 86 FC 87 49 90 51 3A B8 3A F3 F7 EF 51 6C C5

• Mai multe informații:

- 1. CrypTool Portal (Cryptool 2) https://www.cryptool.org/en/
- 2. ECE646 Lab#3 Kryptos Properties of secret-key ciphers http://www.docstoc.com/docs/34482238/ECE646-Lab-3-Kryptos---Properties-of-secret-key
- 3. NIST Data Encryption Standard (DES) http://www.itl.nist.gov/fipspubs/fip46-2.htm
- 4. AES Proposal: Rijndael http://www.daimi.au.dk/~ivan/rijndael.pdf
- 5. Block cipher modes of operation http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
- 6. NIST Advanced Encryption Standard (AES) http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf