Week 7 & 8 - Exercises

Max Holst Mikkelsen

Advanced Linear Algebra

Consider the matrices

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \in \mathbb{M}_3(\mathbb{R}).$$

Determine the rank and nullity of both matrices (considered as elements in $\operatorname{Hom}(\mathbb{R}^3, \mathbb{R}^3)$).

For $(x, y, z) \in \mathbb{R}^3$ we have

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y+z \\ x+y+z \\ x+y+z \end{pmatrix}$$
$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z \\ y \\ x \end{pmatrix}$$

Thus, if we denote the matrices by A and B respectively, we have

$$R(A) = \operatorname{span}\{(1, 1, 1)\}$$

 $R(B) = \mathbb{R}^3$

Hence,

$$rank(A) = dim R(A) = 1$$
, $null(A) = dim \mathbb{R}^3 - rank(A) = 3 - 1 = 2$
 $rank(B) = dim R(B) = 3$, $null(B) = 3 - 3 = 0$

Denote by \mathcal{P}_n the subspace in $\mathbb{R}[x]$ consisting of polynomials of degree at most n and the differentiation operator $D\colon \mathcal{P}_n \to \mathcal{P}_n$ sending a polynomial to its derivative. From the exercises done in week 6, it follows that D is linear [convince yourself of this]. Determine the matrix [D] of D in the standard basis $\{1, x, x^2, \dots, x^n\}$.

MM853 students should be able to do this for general n, and MM562 students may, if they prefer, assume that n=4.

We have

$$D(1) = 0 = 0 \cdot 1 + 0 \cdot x + 0 \cdot x^{2} + \dots + 0 \cdot x^{n-1} + 0 \cdot x^{n}$$

$$D(x) = 1 = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^{2} + \dots + 0 \cdot x^{n-1} + 0 \cdot x^{n}$$

$$\vdots$$

$$D(x^{n}) = nx^{n-1} = 0 \cdot 1 + 0 \cdot x + 0 \cdot x^{2} + \dots + n \cdot x^{n-1} + 0 \cdot x^{n}$$

$$[D] = \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \cdots & \cdots & n \\ 0 & 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}$$

Determine the rank and nullity of the operator D from the previous question.

We have

$$N(D) = \operatorname{span}\{1\}$$

$$\operatorname{null}(D) = \dim N(D) = 1$$

$$rank(D) = \dim \mathcal{P}_n - null(D) = n + 1 - 1 = n$$

Let U, V be vector spaces over and let $A \in \operatorname{Hom}(U, V)$. Show that if $U_0 \subseteq U$ is a subspace then $A(U_0)$ is a subspace in V.

We have $0 \in U_0$ and thus $0 = A(0) \in A(U_0)$. Now, let $A(u), A(v) \in A(U_0)$ and $\alpha \in \mathbb{F}$. Then $u + v \in U_0$ and thus

$$A(u) + A(v) = A(u+v) \in A(U_0)$$

Further, $\alpha u \in U_0$ and thus

$$\alpha A(u) = A(\alpha u) \in A(U_0)$$

Hence, $A(U_0)$ is a subspace of V.

Consider the real vector space \mathbb{R}^3 with its standard basis $B := \{(1,0,0), (0,1,0), (0,0,1)\}.$

- (a) Show that $B' := \{(1,0,0), (1,1,0), (1,1,1)\}$ is also a basis.
- (b) Consider the map T: ℝ³ → ℝ³ given by T(x1, x2, x3) = (2x1 x2, x2 + x3, 4x3). Show that T ∈ End(ℝ³) and determine the matrix [T]_B and [T]_{B'} in M₃(ℝ) representing T in B and B', respectively. Also, determine the matrix representing T² := T ∘ T in the basis B.
 I did not cover page 19 in the lecture, so the exercise is intended to be done without these tools. See below for a slightly smarter way.
- (a) Since $\dim \mathbb{R}^3=3$ and |B'|=3, it suffices to show that B' is linearly independent. Let $\alpha_1,\alpha_2,\alpha_3\in\mathbb{R}$ and assume that

$$\alpha_1(1,0,0) + \alpha_2(1,1,0) + \alpha_3(1,1,1) = (0,0,0)$$

This corresponds to the following set of equations:

$$\alpha_1 + \alpha_2 + \alpha_3 = 0$$
$$\alpha_2 + \alpha_3 = 0$$
$$\alpha_3 = 0$$

From the third equation we have $\alpha_3=0$. Then the second equation yields $\alpha_2=0$. Inserting in the first equation, we obtain $\alpha_1=0$. Hence, B' is linearly independent, and B' is a basis for \mathbb{R}^3 .

Week 7 - Exercise 5 - continued

Consider the real vector space \mathbb{R}^3 with its standard basis $B := \{(1,0,0), (0,1,0), (0,0,1)\}.$

- (a) Show that $B' := \{(1,0,0), (1,1,0), (1,1,1)\}$ is also a basis.
- (b) Consider the map $T : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T(x_1, x_2, x_3) = (2x_1 x_2, x_2 + x_3, 4x_3)$. Show that $T \in \operatorname{End}(\mathbb{R}^3)$ and determine the matrix $[T]_B$ and $[T]_{B'}$ in $M_3(\mathbb{R})$ representing T in B and B', respectively. Also, determine the matrix representing $T^2 := T \circ T$ in the basis B.

I did not cover page 19 in the lecture, so the exercise is intended to be done without these tools. See below for a slightly smarter way.

(b) We have

$$T(1,0,0) = (2,0,0) = 2 \cdot (1,0,0) + 0 \cdot (0,1,0) + 0 \cdot (0,0,1)$$

$$T(0,1,0) = (-1,1,0) = -1 \cdot (1,0,0) + 1 \cdot (0,1,0) + 0 \cdot (0,0,1)$$

$$T(0,0,1) = (0,1,4) = 0 \cdot (1,0,0) + 1 \cdot (0,1,0) + 4 \cdot (0,0,1)$$

$$[T]_B = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{pmatrix}$$

Week 7 - Exercise 5 - continued

Consider the real vector space \mathbb{R}^3 with its standard basis $B := \{(1,0,0), (0,1,0), (0,0,1)\}.$

- (a) Show that $B' := \{(1,0,0), (1,1,0), (1,1,1)\}$ is also a basis.
- (b) Consider the map T: R³ → R³ given by T(x1, x2, x3) = (2x1 x2, x2 + x3, 4x3). Show that T ∈ End(R³) and determine the matrix [T]_B and [T]_{B'} in M₃(R) representing T in B and B', respectively. Also, determine the matrix representing T² := T ∘ T in the basis B.
 I did not cover page 19 in the lecture, so the exercise is intended to be done without

I did not cover page 19 in the lecture, so the exercise is intended to be done without these tools. See below for a slightly smarter way.

(b) We have

$$T(T(1,0,0)) = T(2,0,0) = (4,0,0)$$

 $T(T(0,1,0)) = T(-1,1,0) = (-3,1,0)$
 $T(T(0,0,1)) = T(0,1,4) = (-1,5,16)$

Thus,

$$[T^2]_B = \begin{pmatrix} 4 & -3 & -1 \\ 0 & 1 & 5 \\ 0 & 0 & 16 \end{pmatrix}$$

Note that

$$[T]_B^2 = [T^2]_B$$

Week 7 - Exercise 5 - continued

Consider the real vector space \mathbb{R}^3 with its standard basis $B := \{(1,0,0), (0,1,0), (0,0,1)\}.$

- (a) Show that $B' := \{(1,0,0), (1,1,0), (1,1,1)\}$ is also a basis.
- (b) Consider the map $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T(x_1, x_2, x_3) = (2x_1 x_2, x_2 + x_3, 4x_3)$. Show that $T \in \operatorname{End}(\mathbb{R}^3)$ and determine the matrix $[T]_B$ and $[T]_{B'}$ in $\mathbb{M}_3(\mathbb{R})$ representing T in B and B', respectively. Also, determine the matrix representing $T^2 := T \circ T$ in the basis B.

I did not cover page 19 in the lecture, so the exercise is intended to be done without these tools. See below for a slightly smarter way.

(b) We have

$$T(1,0,0) = (2,0,0) = 2 \cdot (1,0,0) + 0 \cdot (1,1,0) + 0 \cdot (1,1,1)$$

$$T(1,1,0) = (1,1,0) = 0 \cdot (1,0,0) + 1 \cdot (1,1,0) + 0 \cdot (1,1,1)$$

$$T(1,1,1) = (1,2,4) = -1 \cdot (1,0,0) + (-2) \cdot (1,1,0) + 4 \cdot (1,1,1)$$

$$[T]_{B'} = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 4 \end{pmatrix}$$

Let U, V, W be finite dimensional vector spaces equipped with fixed bases B_U, B_V and B_W . Let $A \in \operatorname{Hom}(U, V)$ and $B \in \operatorname{Hom}(V, W)$ be given and consider the composition $B \circ A \in \operatorname{Hom}(U, W)$. Show that the matrix $[B \circ A]$ representing $B \circ A$ equals the matrix product $[B] \cdot [A]$ of the two matrices representing A and B, respectively. Hint: one may start by considering the case $\dim(U) = \dim(V) = \dim(W) = 2$, and then generalize from there (or simply choose to believe that it works in general).

Let us consider $\dim(U) = \dim(V) = \dim(W) = 2$. We denote the basis vectors by $B_U = \{u_1, u_2\}$, $B_V = \{v_1, v_2\}$, $B_W = \{w_1, w_2\}$ and the entries of the matrices by

$$[A] = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \qquad [B] = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

Now,

$$A(u_1) = a_{11}v_1 + a_{21}v_2,$$
 $A(u_2) = a_{12}v_1 + a_{22}v_2$
 $B(v_1) = b_{11}w_1 + b_{21}w_2,$ $B(v_2) = b_{12}w_1 + b_{22}w_2$

Then

$$B(A(u_1)) = a_{11}B(v_1) + a_{21}B(v_2)$$

$$= a_{11}(b_{11}w_1 + b_{21}w_2) + a_{21}(b_{12}w_1 + b_{22}w_2)$$

$$= (a_{11}b_{11} + a_{21}b_{12})w_1 + (a_{11}b_{21} + a_{21}b_{22})w_2$$

Week 7 - Exercise 6 - continued

$$[A] = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \qquad [B] = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

$$A(u_1) = a_{11}v_1 + a_{21}v_2,$$
 $A(u_2) = a_{12}v_1 + a_{22}v_2$
 $B(v_1) = b_{11}w_1 + b_{21}w_2,$ $B(v_2) = b_{12}w_1 + b_{22}w_2$

Then

$$B(A(u_1)) = a_{11}B(v_1) + a_{21}B(v_2)$$

$$= a_{11}(b_{11}w_1 + b_{21}w_2) + a_{21}(b_{12}w_1 + b_{22}w_2)$$

$$= (a_{11}b_{11} + a_{21}b_{12})w_1 + (a_{11}b_{21} + a_{21}b_{22})w_2$$

and

$$B(A(u_2)) = a_{12}B(v_1) + a_{22}B(v_2)$$

$$= a_{12}(b_{11}w_1 + b_{21}w_2) + a_{22}(b_{12}w_1 + b_{22}w_2)$$

$$= (a_{12}b_{11} + a_{22}b_{12})w_1 + (a_{12}b_{21} + a_{22}b_{22})w_2$$

$$[BA] = \begin{pmatrix} a_{11}b_{11} + a_{21}b_{12} & a_{12}b_{11} + a_{22}b_{12} \\ a_{11}b_{21} + a_{21}b_{22} & a_{12}b_{21} + a_{22}b_{22} \end{pmatrix} = [B] \cdot [A]$$

Consider again the bases B and B' for \mathbb{R}^3 introduced above as well as the operator $T \in \operatorname{End}(\mathbb{R}^3)$. Determine the transition matrix (a.k.a. basis change matrix) P from B' to B and use it to determine $[T]_{B'}$ from $[T]_B$.

$$B:=\{(1,0,0),(0,1,0),(0,0,1)\}.\quad B':=\{(1,0,0),(1,1,0),(1,1,1)\}$$

Since

$$\begin{aligned} &(1,0,0) = 1 \cdot (1,0,0) + 0 \cdot (0,1,0) \cdot 0 \cdot (0,0,1) \\ &(1,1,0) = 1 \cdot (1,0,0) + 1 \cdot (0,1,0) \cdot 0 \cdot (0,0,1) \\ &(1,1,1) = 1 \cdot (1,0,0) + 1 \cdot (0,1,0) \cdot 1 \cdot (0,0,1) \end{aligned}$$

we have

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Then

$$[T]_{\mathcal{B}'} = P^{-1}[T]_{\mathcal{B}}P = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 4 \end{pmatrix}$$

Consider the complex vector space $\mathbb{M}_2(\mathbb{C})$ of 2×2 complex matrices and denote by Tr the usual trace (mapping a matrix to the sum of its diagonal elements). Show that $\operatorname{Tr} \in (\mathbb{M}_2(\mathbb{C}))'$ and determine a basis for the nullspace $N(\operatorname{Tr})$ and the quotient $\mathbb{M}_2(\mathbb{C})/N(\operatorname{Tr})$.

Let
$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, $\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \in \mathbb{M}_2(\mathbb{C})$ and let $\lambda \in \mathbb{C}$. Then
$$\mathsf{Tr} \left(\lambda \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \right)$$

$$= \mathsf{Tr} \begin{pmatrix} \lambda a_{11} + b_{11} & \lambda a_{12} + b_{12} \\ \lambda a_{21} + b_{21} & \lambda a_{22} + b_{22} \end{pmatrix}$$

$$= \lambda a_{11} + b_{11} + \lambda a_{22} + b_{22}$$

$$= \lambda (a_{11} + a_{22}) + (b_{11} + b_{22})$$

$$= \lambda \mathsf{Tr} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} + \mathsf{Tr} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

Thus, $Tr \in (\mathbb{M}_2(\mathbb{C}))'$.

Week 8 - Exercise 2 - continued

Consider the complex vector space $\mathbb{M}_2(\mathbb{C})$ of 2×2 complex matrices and denote by \mathbb{T} r the usual trace (mapping a matrix to the sum of its diagonal elements). Show that $\mathbb{T} \in (\mathbb{M}_2(\mathbb{C}))'$ and determine a basis for the nullspace $N(\mathbb{T})$ and the quotient $\mathbb{M}_2(\mathbb{C})/N(\mathbb{T})$.

We have

$$\begin{split} \textit{N}(\mathsf{Tr}) &= \left\{ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in \mathbb{M}_2(\mathbb{C}) : a_{11} = -a_{22} \right\} \\ &= \mathsf{span} \left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\} \end{split}$$

Note that a basis for $M_2(\mathbb{C})$ is given by

$$B(\mathbb{M}_2(\mathbb{C})) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}$$

Thus, it follows from Theorem 2.14 that a basis for the quotient $\mathbb{M}_2(\mathbb{C})/\textit{N}(Tr)$ is given by

$$B(\mathbb{M}_2(\mathbb{C})/N(\mathsf{Tr})) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + N(\mathsf{Tr}) \right\}$$

Week 8 - Exercise 3 (Halmos §14, exercise 3)

3. Suppose that for each x in $\mathcal P$ the function y is defined by

(a)
$$y(x) = \int_{-1}^{+2} x(t) dt$$
,

(b)
$$y(x) = \int_0^2 (x(t))^2 dt$$
,

(e)
$$y(x) = \int_0^1 t^2 x(t) dt$$
,

(d)
$$y(x) = \int_{a}^{1} x(t^2) dt$$
,

(e)
$$y(x) = \frac{dx}{dt}$$
.

(f)
$$y(x) = \frac{d^2x}{dt^2}$$

In which of these cases is y a linear functional?

(a) Let $x_1, x_2 \in \mathbb{R}[t]$ and $\lambda \in \mathbb{R}$. Then

$$y(\lambda x_1 + x_2) = \int_{-1}^{2} (\lambda x_1 + x_2)(t) dt = \int_{-1}^{2} (\lambda x_1(t) + x_2(t)) dt$$
$$= \lambda \int_{-1}^{2} x_1(t) dt + \int_{-1}^{2} x_2(t) dt = \lambda y(x_1) + y(x_2)$$

Thus, y is a linear functional.

(b) y is not a linear functional since for example,

$$y(2 \cdot 1) = \int_0^2 2^2 dt = 4 \int_0^2 dt \neq 2 \int_0^2 dt = 2y(1)$$

(c) Let $x_1, x_2 \in \mathbb{R}[t]$ and $\lambda \in \mathbb{R}$. Then

$$y(\lambda x_1 + x_2) = \int_0^1 t^2 ((\lambda x_1 + x_2)(t) = \lambda \int_0^1 t^2 x_1(t) dt + \int_0^1 t^2 x_2(t) dt = \lambda y(x_1) + y(x_2)$$

Thus, y is a linear functional.

Week 8 - Exercise 3 (Halmos §14, exercise 3) - continued

- 3. Suppose that for each x in \mathcal{O} the function y is defined by
- (a) $y(x) = \int_{-1}^{+2} x(t) dt$,
- (b) $y(x) = \int_{a}^{2} (x(t))^{2} dt$,
- (c) $y(x) = \int_0^1 t^2 x(t) dt$,
- (d) $y(x) = \int_{1}^{1} x(t^2) dt$,
- (e) $y(x) = \frac{dx}{dt}$.
- (f) $y(x) = \frac{d^2x}{dt^2}\Big|_{t=1}$.

In which of these cases is y a linear functional?

(d) Let $x_1, x_2 \in \mathbb{R}[t]$ and $\lambda \in \mathbb{R}$. Then

$$y(\lambda x_1 + x_2) = \int_0^1 (\lambda x_1 + x_2)(t^2) dt = \lambda \int_0^1 x_1(t^2) dt + \int_0^1 x_2(t^2) dt = \lambda y(x_1) + y(x_2)$$

Thus, y is a linear functional.

- (e) y is not a linear functional since it is not even a map into the scalars ($\frac{dx}{dt}$ is not a complex number).
- (f) Let $x_1, x_2 \in \mathbb{R}[t]$ and $\lambda \in \mathbb{R}$. Then

$$y(\lambda x_1 + x_2) = \frac{d^2(\lambda x_1 + x_2)}{dt^2}\Big|_{t=1} = \lambda \frac{d^2 x_1}{dt^2}\Big|_{t=1} + \frac{d^2 x_2}{dt^2}\Big|_{t=1} = \lambda y(x_1) + y(x_2)$$

Thus, y is a linear functional.

Week 8 - Exercise 4 (Halmos §14, exercise 5)

5. If y is a non-zero linear functional on a vector space \mathbb{U} , and if α is an arbitrary scalar, does there necessarily exist a vector x in \mathbb{U} such that $[x, y] = \alpha$?

Note that we are asked to show that y is surjective. From Week 7 - Exercise 4 we know that R(y) is a subspace of \mathbb{F} . Hence $\dim R(y) \leq \dim \mathbb{F} = 1$, and since y is non-zero, it then follows that $\dim R(y) = 1 = \dim \mathbb{F}$. Thus, $R(y) = \mathbb{F}$ which means that y is surjective.

5. (if time permits) Consider again the bases B and B' for \mathbb{R}^3 defined above, and denote by $\{y_1', y_2', y_3'\}$ the dual basis of B'. Write y_1', y_2' and y_3' in terms of the basis B; i.e. as $y_1'(x_1, x_2, x_3) = \cdots$ and similarly for y_2' and y_3' .

$$B:=\{(1,0,0),(0,1,0),(0,0,1)\}.\quad B':=\{(1,0,0),(1,1,0),(1,1,1)\}$$

For $(x_1, x_2, x_3) \in \mathbb{R}^3$ we note that

$$(x_1, x_2, x_3) = (x_1 - x_2) \cdot (1, 0, 0) + (x_2 - x_3) \cdot (1, 1, 0) + x_3 \cdot (1, 1, 1)$$

$$y'_1(x_1, x_2, x_3) = x_1 - x_2$$

 $y'_2(x_1, x_2, x_3) = x_2 - x_3$
 $y'_3(x_1, x_2, x_3) = x_3$