

Smart digital contracts: Algebraic foundations for resource accounting

Fritz Henglein

Email: henglein@diku.dk, henglein@deondigital.com

OPLSS 2019, 2019-06-26

Recall

Agents: Persons, companies, robots, devices that sign events and their evidence

Events: Significant real-world events that update the state of the (business) world

- Business events: Transmission of information and other events whose resource effect is idempotent (e.g. queries)
- Resource events: Producing (transforming) and transferring resources, which have a resource effect (who owns or possesses what)

Resources: Physical (goods, services) or digital (money, rights) resources that cannot/must not be freely copied and discarded

Contract: A classifier of event sequences into "happy" paths (correct contract executions) and "breaches" (incorrect contract executions).

Today

- Algebraic model of resources, with user-definable resource types ("multi-currency")
- Resource ownership via coproducts
- Resource transfers via kernels
- Operations and properties: vector space operations and basic linear algebra

Vector spaces

Definition

- Field: $(K, +, -, 0, \cdot, /, 1)$, commutative ring with multiplication and division
- Vector space over $K: (V, +, -, 0, \cdot)$, usual properties
- Dimension of vector space: Cardinality of smallest subset of V that spans all of V

Example

The reals $\mathbb R$ are a field and simultaneously a vector space of dimension 1 over itself.

Vector space constructions

Let V_x be vector spaces.

 $\prod_{x \in X} V_x$ (product): Functions f from x : X to V_x

 $\coprod_{x \in X} V_x$ (coproduct): Functions f from x : X to V_x with finite support $\operatorname{Supp}(f) = \{x \mid f(x) \neq 0\}$; that is, finite maps with default return value 0.

 $V \rightarrow_1 W$ (linear map space): Functions (linear maps) f from V to W such that $f(v_1 + v_2) = f(v_1) + f(v_2)$ and $f(k \cdot v) = k \cdot f(v)$.

 $U\subseteq V$ (subspace): Subset U of V that is closed under $0,+,-,\cdot$

If $V_x = V$ for all $x \in X$, write

$$\prod_{X} V = \prod_{x \in X} V$$

$$\coprod_{X} V = \coprod_{x \in X} V$$

Vector space constructions: Examples

Let X be a set.

```
V_1 \oplus V_2 (direct sum): \coprod_{x \in \{1,2\}} V_i (= V_1 \times V_2)
```

 $\operatorname{Free}_K(X)$ (free vector space): $\coprod_X K$

$$\sum : (\coprod_X V) \to_1 V$$
 (sum, addition):

$$\sum (\{x_1 : v_1, \ldots, x_n : v_n\}) = v_1 + \ldots + v_n$$

 $p^* : \operatorname{Free}_K(X) \to_1 K$ (valuation under price $p : X \to K$): Unique extension of p to $\operatorname{Free}_K(X)$.

$$\ker f \subseteq V$$
 (kernel of $f: V \to W$): $\{x \in V \mid f(x) = 0\}$.

$$\operatorname{im} f \subseteq W$$
 (image of $f: V \to W$): $\{f(x) \mid x \in V\}$.

Vector space constructions: Examples of examples

- $(5,8) \in \mathbb{R} \oplus \mathbb{R} = \mathbb{R}^2$
- $5 \cdot X_1 + 8 \cdot X_2 = \{X_1 : 5, X_2 : 8\} \in \coprod_{\{X_1, X_2\}} \mathbb{R}$
- $\sum \{X_1:5,X_2:8\}=5+8=13$
- $p^*({X_1:5, X_2:8}) = 4 \cdot 5 + 3 \cdot 8 = 44$ for $p(X_1) = 4, p(X_2) = 3$.
- $\ker p^* = \{ \{X_1 : x_1, X_2 : x_2\} \mid 4 \cdot x_1 + 3 \cdot x_2 = 0 \}.$
- $\bullet \ \operatorname{im} p^* = \mathbb{R}.$

Agents and resources

Agents A: A set. $A = \{Alice, Bob, Charlie, ...\}.$

Resource types X: A set. $X = \{USD, iPhone, ...\}$.

Resources R: A vector space. $R = \coprod_X \mathbb{R}$ Ownership states O: A vector space. $O = \coprod_A R$

Transfers T: Subspace of O. $T = \sum_{X} R = \ker(\sum : \coprod_{A} R \to_{1} R)$

Example

- A *simple* resource: 50 · USD
- A *compound* resource: $50 \cdot USD + 2 \cdot iPhone$
- A missing resource is also a resource: $-50 \cdot \text{USD}$
- An ownership state: $\{Alice : 50 \cdot USD, Bob : 1 \cdot iPhone + 10 \cdot USD\}$
- A simple (2-party) transfer: $\{Alice : -30 \cdot USD, Bob : 30 \cdot USD\}$
- A compound (multi-party) transfer: {Alice: −30 · USD, Bob: 20 · USD, Charlie: 10 · USD}

Resource manager

- Credit limit policy: Predicate (Boolean function), classifying ownership states into valid and invalid ones
 - ▶ Usually : $P_{A_0,c}(o) = o(a) \ge c(a)$ for all $a \in A_0$ where $A_0 \subseteq A$.
- Resource manager: Object (service) with
 - ▶ Internal state o: An ownership state satisfying credit limit policy P.
 - Method ApplyTransfer:

Receive transfer t.

If P(o+t), update internal state to o+t and return "success"; otherwise, return "failure".

Example

Credit limit policy: No credit (no negative amounts of any resource type) Initial ownership: $o_1 = \{\text{Alice} : 50 \cdot \text{USD}, \text{Bob} : 1 \cdot \text{iPhone} + 10 \cdot \text{USD}\}$

First transfer: $t_1 = \{Alice : -30 \cdot USD, Bob : 30 \cdot USD\}$ Second transfer: $t_2 = \{Alice : 1 \cdot iPhone, Bob : -1 \cdot iPhone\}$

 $\label{eq:combined transfer: Alice: 1 · iPhone - 30 · USD, Bob: -(1 · iPhone - 30 · USD)} \\$

Final ownership: $o_2 = \{Alice : 1 \cdot iPhone + 20 \cdot USD, Bob : 40 \cdot USD\}$

Ownership state as balance plus transfer

Theorem

Let $f: V \rightarrow_1 W$. Then:

$$V \cong \operatorname{im} f \oplus \ker f$$

 $\dim V = \dim(\operatorname{im} f) + \dim(\ker f).$

Corollary

$$O = \coprod_{A} R \cong R \oplus \sum_{A} R = R \oplus T$$

Intuitively: Ownership state \cong a resource balance owned by one particular agent $b \in A$ and some transfer; for example:

$$\begin{split} o &= & \{ \text{Bank} : 60 \cdot \text{USD}, \text{Alice} : 30 \cdot \text{USD}, \text{Bob} : 40 \cdot \text{USD} \} \\ &= & \{ \text{Bank} : 130 \cdot \text{USD} \} + \\ & \{ \text{Bank} : -70 \cdot \text{USD}, \text{Alice} : 30 \cdot \text{USD}, \text{Bob} : 40 \cdot \text{USD} \} \end{split}$$

Resource manager properties

- A multiset $M = \{t_1, \dots, t_n\}$ of transfers can be applied by a resource manager in *any* order: any two orders that succeed result in the same ownership state. Some orders may fail, however, due to the resource manager's credit limit policy.
- If there is *some* successful order of applying M satisfying P, then applying the *single* "netted" transfer $t = \sum M = \sum_{i=1}^{n} t_i$ is valid, too. The converse is *not* true.
- The internal ownership state can be stored as a pair, a balance and a transfer.
- The balance component in a resource manager is invariant. Only the transfer component is updated by ApplyTransfer.

Zero-balance resource managers

- Balance of a resource manager can be kept in another resource manager.
- Zero-balance resource manager: internal state of resource manager consists of a transfer only; resource balance component is implicitly 0.

Zero-balance resource managers: Example

Two resource managers:

```
\begin{array}{lll} o_1 & = & \{ \mathrm{Bank}_1 : 60 \cdot \mathrm{USD}, \mathrm{Alice} : 30 \cdot \mathrm{USD}, \mathrm{Bob} : 40 \cdot \mathrm{USD} \} \\ & = & \{ \mathrm{Bank}_1 : 130 \cdot \mathrm{USD} \} + \\ & \{ \mathrm{Bank}_1 : -70 \cdot \mathrm{USD}, \mathrm{Alice} : 30 \cdot \mathrm{USD}, \mathrm{Bob} : 40 \cdot \mathrm{USD} \} \\ o_2 & = & \{ \mathrm{Bank}_2 : 10 \cdot \mathrm{USD}, \mathrm{Alice} : 100 \cdot \mathrm{USD}, \mathrm{Bob} : 200 \cdot \mathrm{USD} \} \\ & = & \{ \mathrm{Bank}_2 : 310 \cdot \mathrm{USD} \} + \\ & \{ \mathrm{Bank}_1 : -300 \cdot \mathrm{USD}, \mathrm{Alice} : 100 \cdot \mathrm{USD}, \mathrm{Bob} : 200 \cdot \mathrm{USD} \} \end{array}
```

Replace by three resource managers mainting transfers only:

```
\begin{array}{lll} t_1 &=& \{\mathrm{Bank_1}: -70 \cdot \mathrm{USD}, \mathrm{Alice}: 30 \cdot \mathrm{USD}, \mathrm{Bob}: 40 \cdot \mathrm{USD}\} \\ t_2 &=& \{\mathrm{Bank_1}: -300 \cdot \mathrm{USD}, \mathrm{Alice}: 100 \cdot \mathrm{USD}, \mathrm{Bob}: 200 \cdot \mathrm{USD}\} \\ t_0 &=& \{\mathrm{Bank_0}: -440 \cdot \mathrm{USD}, \mathrm{Bank_1}: 130 \cdot \mathrm{USD}, \mathrm{Bank_2}: 310 \cdot \mathrm{USD}\} \end{array}
```

where $Bank_0$ is another agent, corresponding to the *central bank* in the banking system or the *equity account* in a company's chart of accounts. Note: $\{Bank_0 : -\sum (o_1 + o_2)\} + o_1 + o_2 = t_0 + t_1 + t_2$ is a transfer.

Double-entry bookkeeping

Fundamental principle of double-entry bookkeeping:

- All (scalar) account (\cong agent) balances sum to 0.
- Every transaction consists of multiple ("double") account entries that sum to 0.

"Equity" plays role of resource balance when decomposing ownership state into resource balance and transfer satisfying

Assets
$$-$$
 Liabilities $-$ Equity $=$ 0

Resource accounting

Resource accounting: Double-entry bookkeeping, generalized to admit

- arbitrary resources, not just scalars, with
- expressive algebra (vector space) of transfers that are not composed from possibly incorrect adding/subtracting to/from account balances, but from a base of simple transfers; and
- arbitrary report functions on internal state,
 - ▶ often *linear maps* on internal ownership states or on sequences of transfers T*, and then
 - easily incrementalized to maintain report function results online (dynamically) as new transfers arrive.

A resource manager (implemented whichever way) provides digital resource management for arbitrary (including user-defined) resource types.

- Updating by *transfers only* guarantees *resource preservation*: No managed resource is duplicated or lost.
- Credit limit enforcement by checking of credit limit policy.

Distributed resource managers by additive decomposition

- Idea: Implement distributed resource manager r by a P2P network of resource managers r_1, \ldots, r_n such that $r.o = r_1.o + \ldots r_n.o$.
- The r_i may be distributed themselves. Advantages:
 - ► Some transfers can be performed *locally*: If r_i can validate and effect a transfer t, then no communication with other resource managers is necessary.¹
 - ▶ In general, decompose transfer t into $t = t_1 + ... + t_n$ and transactionally execute all t_i to r_i . No communication with r_i is required if $t_i = 0$.

¹Assume credit limit policy of r is conjunction of credit limit policies r_1, \ldots, r_n .

Distributed resource managers: Example

Let r consist of resource managers r_1, r_2 with current ownership states

```
\begin{array}{lll} o_1 & = & \{ \mathrm{Bank}_1 : 60 \cdot \mathrm{USD}, \mathrm{Alice} : 30 \cdot \mathrm{USD}, \mathrm{Bob} : 40 \cdot \mathrm{USD} \} \\ & = & \{ \mathrm{Bank}_1 : 130 \cdot \mathrm{USD} \} + \\ & \{ \mathrm{Bank}_1 : -70 \cdot \mathrm{USD}, \mathrm{Alice} : 30 \cdot \mathrm{USD}, \mathrm{Bob} : 40 \cdot \mathrm{USD} \} \\ o_2 & = & \{ \mathrm{Bank}_2 : 10 \cdot \mathrm{USD}, \mathrm{Alice} : 100 \cdot \mathrm{USD}, \mathrm{Bob} : 200 \cdot \mathrm{USD} \} \\ & = & \{ \mathrm{Bank}_2 : 310 \cdot \mathrm{USD} \} + \\ & \{ \mathrm{Bank}_1 : -300 \cdot \mathrm{USD}, \mathrm{Alice} : 100 \cdot \mathrm{USD}, \mathrm{Bob} : 200 \cdot \mathrm{USD} \} \end{array}
```

and zero-credit policy (only nonnegative balances allowed).

- Transfer {Alice : $-80 \cdot \text{USD}$, Bob : $80 \cdot \text{USD}$ } can be performed by r_2 without communication with r_1 .
- Transfer {Alice: $-120 \cdot \text{USD}$, Bob: $120 \cdot \text{USD}$ } cannot be performed by either r_1 or r_2 , but it can be decomposed into $t_1 + t_2$ where $t_1 = \{\text{Alice: } -20 \cdot \text{USD}, \text{Bob: } 20 \cdot \text{USD}\}$ and $t_2 = \{\text{Alice: } -100 \cdot \text{USD}, \text{Bob: } 100 \cdot \text{USD}\}$ and then performed by transactionally executing t_1 on r_1 and t_2 on r_2 .

Distributed resource managers: Transactionality

Nodes in a distributed resource manager need to support atomic execution of distributed transactions, e.g. for 2-phase commit:

- Precommit transfer t: Like ApplyTransfer, but with guarantee that, if validated, subsequent execution of -t will succeed. For simple transfers: deducts resource from sender, but does not make it available yet to receiver.
- Commit transfer t: Apply previously precomitted t (remove requirement that -t must be applicable later on). For simple transfer: releases resource to receiver.
- Abort transfer t: Apply -t to previously precommitted t. For simple transfer: return resource to sender.

Distributed resource managers: Discussion

- Many freely combinable "dimensions" of decomposition possible:
 - ▶ By resource type (e.g. land registry managing houses; national banking system (with individual banks as "peers") managing USD accounts; the Bitcoin network for managing Bitcoin accounts (UTxOs), etc.
 - ▶ By agents (e.g. residents divided into countries of residence)
 - By statically or dynamically splitting off resource managers from existing resource managers for privacy and/or load balancing purposes (e.g. state channels, sharding).
- Resource managers should have API for participating in distributed transactions.
- Algebraic resource model as semantic basis for large design space for distributed resource managers.

Summary

- Algebra of transfers: infinite-dimensional vector space.
 - ▶ The power of negative: Additive inverses important.
- Separation of resource preservation (unrestricted algebra) and credit limit policies (restrictions).
- Additive decomposition of transfers: partitioning of resource managers for distributed implementation.

