Mérték, integrál, ...

7. Előadás

1. Emlékeztető.

i) Az X halmaz esetén egy $\mu^*: \mathcal{P}(X) \to [0, +\infty]$ leképezést külső mértéknek nevezünk, ha $\mu^*(\emptyset) = 0$, tetszőleges $A, B \in \mathcal{P}(X), A \subset B$ halmazokkal $\mu^*(A) \leq \mu^*(B)$, és bármilyen $A_n \in \mathcal{P}(X)$ $(n \in \mathbb{N})$ halmazsorozatra $\mu^*(\bigcup_{n=0}^{\infty} A_n) \leq \sum_{n=0}^{\infty} \mu^*(A_n)$. Az $A \in \mathcal{P}(X)$ halmaz μ^* -mérhető, ha minden $Z \in \mathcal{P}(X)$ halmazra

$$\mu^*(Z) = \mu^*(Z \cap A) + \mu^*(Z \setminus A)^{1}$$

Ekkor a μ^* -mérhető halmazok Ω halmazrendszere szigma-algebra, a μ^* -nak az Ω -ra való μ leszűkítése pedig teljes mérték² (Caratheodorytétel).

- ii) Ha mondjuk a $\mathcal{G} \subset \mathcal{P}(X)$ gyűrű, a $\widetilde{\mu}: \mathcal{G} \to [0,+\infty]$ pedig kvázimérték, továbbá $\mu^*(A) := \inf_{(A_n)} \sum_{n=0}^{\infty} \widetilde{\mu}(A_n) \ (A \in \mathcal{P}(X))$ (ahol az $\inf_{(A_n)}$ infimum azokra az $(A_n): \mathbf{N} \to \mathcal{G}$ halmazsorozatokra vonatkozik, amelyekre $A \subset \bigcup_{n=0}^{\infty} A_n$ teljesül)³, akkor a μ^* halmazfüggvény külső mérték, az i)-beli szereplőkkel pedig $\mathcal{G} \subset \Omega$ és $\widetilde{\mu}(A) = \mu(A)$ $(A \in \mathcal{G})$.⁴
- iii) A fenti $\widetilde{\mu}$ kvázimérték szigma-véges, ha megadhatók olyan $A_n \in \mathcal{G}$, $\widetilde{\mu}(A_n) < +\infty$ $(n \in \mathbb{N})$ páronként diszjunkt halmazok, amelyekkel $X = \bigcup_{n=0}^{\infty} A_n$. Ekkor egyértelműen létezik olyan $\mu : \Omega(\mathcal{G}) \to [0, +\infty]$ mérték, amelyik kiterjesztése a $\widetilde{\mu}$ -nak.
- iv) Legyen pl. $X:=\mathbf{R}^p, \ \widetilde{\mu}:=\widetilde{\mu}_p \quad (1\leq p\in \mathbf{N})$ pedig a (nyilván szigmavéges) Lebesgue-féle kvázimérték, és alkalmazzuk a Caratheodory-tételt a ii) szerinti $\mu^*:=\widetilde{\mu}_p^*$ külső mértékre. Ekkor az $(\mathbf{R}^p,\widehat{\Omega}_p,\widehat{\mu}_p)$ (Lebesgue-féle) teljes mértékteret kapjuk. Ha $\Omega_p:=\Omega(\mathbf{I}^p)=\Omega(\mathcal{I}^p)$ (az \mathbf{R}^p -beli Borel-halmazok rendszere)⁵, akkor $\Omega_p\subset\widehat{\Omega}_p$, és a $\mu_p:=\widehat{\mu}_{p|\Omega_p}$ Borel-Lebesgue-mértékre $\widetilde{\mu}_p=\mu_{p|\mathcal{I}^p}$. Itt a μ_p az egyetlen olyan mérték az Ω_p

¹Ez utóbbi ekvivalens azzal, hogy $\mu^*(Z) \ge \mu^*(Z \cap A) + \mu^*(Z \setminus A)$.

 $^{^2{\}rm M}$ ás szóval az $(X,\Omega,\mu)\,$ mértéktér teljes.

 $^{{}^{3}\}text{Itt inf }\emptyset := +\infty.$

 $^{^4}$ A $\widetilde{\mu}$ kvázimérték *kiterjeszthető* mértékké.

⁵Ha \mathcal{T}_p , \mathcal{C}_p , \mathcal{K}_p rendre az \mathbf{R}^p -beli nyílt, zárt, kompakt halmazok összessége, akkor $\Omega_p = \Omega(\mathcal{T}_p) = \Omega(\mathcal{C}_p) = \Omega(\mathcal{K}_p)$.

szigma-algebrán, amely az \mathcal{I}^p -n megegyezik a $\widetilde{\mu}_p$ -vel. Megjegyezzük, hogy tehát a $\widehat{\mu}_p$ Lebesgue-mérték teljes, ugyanakkor a Borel-Lebesgue-mérték nem az. Továbbá a Lebesgue-mérhető halmazok $\widehat{\Omega}_p$ szigma-algebrája bővebb halmazrendszer, mint az Ω_p .

2. Invariancia.

Tegyük fel, hogy adottak az (X_i, Θ_i) (i = 1, 2) mérhető terek, ahol $X_i \neq \emptyset$ (i = 1, 2). Az

$$f: X_1 \to X_2$$

leképezést mérhetőnek⁶ nevezzük, ha bármelyik $B \in \Theta_2$ halmaznak az f által létesített $f^{-1}[B]$ ősképe a Θ_1 -ben van: $f^{-1}[B] \in \Theta_1$.

1. Lemma. Ha $\mathcal{X} \subset \mathcal{P}(X_2)$ és $\Theta_2 = \Omega(\mathcal{X})$, akkor az f mérhetősége pontosan abban az esetben igaz, ha

$$f^{-1}[A] \in \Theta_1 \quad (A \in \mathcal{X}).$$

Bizonyítás. A szükségesség nyilvánvaló, az elégségesség igazolásához pedig tekintsük az alábbi halmazt:

$$\Omega := \{ A \in \mathcal{P}(X_2) : f^{-1}[A] \in \Theta_1 \}.$$

Könnyen belátható, hogy az Ω egy X_2 -beli σ -algebra. Mivel $\mathcal{X} \subset \Omega$, ezért (a "legszűkebb" σ -algebra értelmezése miatt) $\Theta_2 = \Omega(\mathcal{X}) \subset \Omega$. Más szóval minden $B \in \Theta_2$ halmazra egyúttal $f^{-1}[B] \in \Theta_1$, ami az f mérhetőségét jelenti. \blacksquare

Ha például $1 \le p, q \in \mathbf{N}$ és az

$$f: \mathbf{R}^p \to \mathbf{R}^q$$

folytonos függvény, akkor az f leképezés $\Omega_q = \Omega(\mathcal{T}_q)$ és az 1. Lemma miatt (Ω_p, Ω_q) -mérhető: ha $A \in \mathcal{T}_q$, akkor a folytonos függvények jól ismert tulajdonsága alapján $f^{-1}[A] \in \mathcal{T}_p$, így egyúttal $f^{-1}[A] \in \Omega_p (= \Omega(\mathcal{T}_p))$.

Legyen a fentiekben a $\nu_1:\Theta_1\to [0,+\infty]$ mérték a Θ_1 -en. Ekkor minden $f:X_1\to X_2$ mérhető leképezés esetén az

$$f[\nu_1](A) := \nu_1(f^{-1}[A]) \qquad (A \in \Theta_2)$$

 $^{^6\}mathrm{Vagy}$ (bővebben) $(\Theta_1,\Theta_2)\text{-mérhetőnek}.$

utasítással értelmezett függvény mérték a Θ_2 -n (a ν_1 mértéknek az f által létesített $k\acute{e}pe$).

Vizsgáljuk meg a most mondottakat az

$$X_i := \mathbf{R}^p, \ \Theta_i := \Omega_p \ (1 \le p \in \mathbf{N}, i = 1, 2)$$

esetben. Ha $a \in \mathbf{R}^p$ és

$$f_a(x) := x + a \qquad (x \in \mathbf{R}^p),$$

akkor az f_a függvény (folytonos lévén) mérhető. Legyen

$$\mu := f_a[\mu_p].$$

Az f_a bijekció és $f_a^{-1} = f_{-a}$, ill. bármilyen $[x, y) \in \mathbf{I}^p$ intervallumra

$$f_a^{-1}[x,y] = [x-a, y-a).$$

Következésképpen

$$\mu([x,y)) = \mu_p([x-a,y-a]) = \mu_p([x,y]) = \widetilde{\mu}_p([x,y]).$$

Ez azt is jelenti, hogy a μ és a μ_p mérték az $\mathcal{I}^p = \mathcal{G}(\mathbf{I}^p)$ gyűrűn megegyezik.⁷ Viszont a μ_p szigma-véges, ezért⁸ a μ_p az egyetlen olyan mérték az \mathbf{R}^p -beli Borel-halmazok Ω_p rendszerén, amely az \mathcal{I}^p -n egybeesik a $\widetilde{\mu}_p$ Lebesgue-féle kvázimértékkel. Az előbbiek miatt tehát

$$\mu_p = f_a[\mu_p].$$

Az f_a leképezés egy eltolás, így a μ_p Borel–Lebesgue-mérték eltolásin-variáns: tetszőleges $A \in \Omega_p$ és $b \in \mathbf{R}^p$ esetén

$$b + A := \{b + x \in \mathbf{R}^p : x \in A\} = f_{-b}^{-1}[A] \in \Omega_p,$$

valamint

$$\mu_p(b+A) = f_{-b}[\mu_p](A) = \mu_p(A).$$

Hasonlóan látható be, hogy a μ_p tükrözésinvariáns is, azaz bármelyik $A\in\Omega_p$ halmazra

$$-A := \{-x \in \mathbf{R}^p : x \in A\} \in \Omega_p \text{ és } \mu_p(-A) = \mu_p(A).$$

⁷Minden \mathcal{I}^p -beli halmaz véges sok, páronként diszjunkt \mathbf{I}^p -beli intervallum egyesítése.

⁸A kvázimérték kiterjesztésével kapcsolatos egyértelműségi tételre tekintettel.

 $^{^9}$ Megjegyezzük, hogy a $\widehat{\mu}_p$ Lebesgue-mérték is rendelkezik ugyanezekkel az invariancia tulajdonságokkal.

3. Lebesgue-Stieltjes-mérték.

Legyen a $\varphi: \mathbf{R} \to \mathbf{R}$ monoton növő, minden pontban balról folytonos függvény, $\widetilde{\mu}_{\varphi}$ a φ által meghatározott kvázimérték, μ_{φ}^* pedig a $\widetilde{\mu}_{\varphi}$ -ból a kiterjesztési tétel bizonyításában elkészített külső mérték. Alkalmazzuk a Caratheodory-tételt a μ_{φ}^* -ra:

1. **Definíció**. A μ_{φ}^* -mérhető **R**-beli halmazok $\widehat{\Omega}_{\varphi}$ rendszerének az elemeit $Lebesgue-Stieltjes-mérhető halmazoknak, a <math>\mu_{\varphi}^*$ -nak az $\widehat{\Omega}_{\varphi}$ -ra vett leszűkítéséül kapott $\widehat{\mu}_{\varphi}$ mértéket Lebesgue-Stieltjes-mértéknek nevezzük. Egy $A \in \widehat{\Omega}_{\varphi}$ halmaz esetén $\widehat{\mu}_{\varphi}(A) := \mu_{\varphi}^*(A)$ az A halmaz Lebesgue-Stieltjes-mértéke.

A $\widehat{\mu}_{\varphi}$ egy σ -véges teljes mérték. Nyilvánvaló, hogy a $\varphi(x) := x \in \mathbf{R}$ esetben $\widehat{\Omega}_{\varphi} = \widehat{\Omega}_1$ és $\widehat{\mu}_{\varphi} = \widehat{\mu}_1$.

Tetszőleges
$$\alpha \in \mathbf{R}$$
 mellett $\{\alpha\} = \bigcap_{n=1}^{\infty} [\alpha, \alpha+1/n) \in \widehat{\Omega}_{\varphi}$ és 10

$$\widehat{\mu}_{\varphi}(\{\alpha\}) = \lim_{n \to \infty} \widehat{\mu}_{\varphi}([\alpha, \alpha + 1/n)) =$$

$$\lim_{n \to \infty} \left(\varphi(\alpha + 1/n) - \varphi(\alpha) \right) = \varphi(\alpha + 0) - \varphi(\alpha)^{11}$$

Innen bármilyen $\alpha, \beta \in \mathbf{R}, \alpha < \beta$ számokra az alábbi összefüggéseket kapjuk:

$$\widehat{\mu}_{\varphi}([\alpha,\beta)) = \varphi(\beta) - \varphi(\alpha), \quad \widehat{\mu}_{\varphi}((\alpha,\beta)) = \varphi(\beta) - \varphi(\alpha+0),$$

$$\widehat{\mu}_{\varphi}((\alpha,\beta]) = \varphi(\beta+0) - \varphi(\alpha+0), \quad \widehat{\mu}_{\varphi}([\alpha,\beta]) = \varphi(\beta+0) - \varphi(\alpha).$$

Hasonlóan számíthatók ki a nem korlátos intervallumok Lebesgue–Stieltjes-mértékei is.

Legyen most a $\Psi: \mathbf{R} \to \mathbf{R}$ tetszőleges monoton növekedő függvény, és

$$\varphi(x) := \Psi(x - 0) \qquad (x \in \mathbf{R}).$$

Nem nehéz megmutatni, hogy a φ monoton növő, minden pontban balról folytonos, és

$$\varphi(x+0) = \Psi(x+0)$$
 $(x \in \mathbf{R}).$

A $\mu_{\Psi} := \hat{\mu}_{\varphi}$ megállapodással ezért minden $\Psi : \mathbf{R} \to \mathbf{R}$ monoton növekedő függvény esetén értelmezhető a Ψ által generált Lebesgue–Stieltjes-mérték.

¹⁰A mértékek félig folytonossága miatt.

¹¹Speciálisan: ha a φ folytonos, akkor $\widehat{\mu}_{\varphi}(\{\alpha\}) = 0$. Így pl. $\widehat{\mu}_{1}(\{\alpha\}) = 0$.

Az előbbi egyenlőségek a következőképpen módosulnak: ha $\alpha \in \mathbf{R}$, akkor

$$\mu_{\Psi}(\{\alpha\}) = \Psi(\alpha + 0) - \Psi(\alpha - 0),$$

valamint tetszőleges $\alpha, \beta \in \mathbf{R}, \alpha < \beta$ választással

$$\mu_{\Psi}([\alpha, \beta)) = \Psi(\beta - 0) - \Psi(\alpha - 0), \ \mu_{\Psi}((\alpha, \beta)) = \Psi(\beta - 0) - \Psi(\alpha + 0),$$

$$\mu_{\Psi}((\alpha, \beta]) = \Psi(\beta + 0) - \Psi(\alpha + 0), \ \mu_{\Psi}([\alpha, \beta]) = \Psi(\beta + 0) - \Psi(\alpha - 0).$$

4. Példa nem mérhető halmazra.

Megmutatjuk, hogy $\Omega_1 \neq \mathcal{P}(\mathbf{R})$, azaz van olyan részhalmaza az \mathbf{R} -nek, amelyik nem Borel-halmaz.

Legyen ui. 12 két $x, y \in \mathbf{R}$ szám "ekvivalens", ha x-y racionális. Az így értelmezett ekvivalenciareláció alapján az \mathbf{R} felbomlik páronként diszjunkt

$$A := x + \mathbf{Q} \qquad (x \in \mathbf{R})$$

alakú ekvivalenciaosztályok egyesítésére. Mivel itt

$$x - [x] \in A \cap [0, 1)$$

([x] jelenti az x szám egészrészét), ezért minden ekvivalenciaosztály tartalmaz [0,1)-beli elemet. A kiválasztási axióma alapján tehát van olyan $K \subset [0,1)$ halmaz, amelyik minden ekvivalenciaosztályból pontosan egy elemet tartalmaz, és más elemei nincsenek. Könnyen belátható, hogy

- az y + K $(y \in \mathbf{Q})$ halmazok páronként diszjunktak;
- $\bullet \ \mathbf{R} = \bigcup_{y \in \mathbf{Q}} (y + K).$

Ha ui. $y, z \in \mathbf{Q}, y \neq z$ esetén

$$(y+K)\cap(z+K)\neq\emptyset$$

teljesülne, akkor tetszőleges

$$x \in (y+K) \cap (z+K)$$

választással alkalmas $u,v\in K$ elemekkel

$$x = y + u = z + v$$
.

¹²Ernst Friedrich Ferdinand Zermelo (1871 - 1953).

Ezért

$$u - v = z - y \in \mathbf{Q},$$

más szóval az u ekvivalens a v-vel. A K definíciója miatt ez csak úgy lehetséges, hogy u=v, amiből y=z következne. Ez viszont nem igaz, ezért ilyen x szám sem létezhet:

$$(y+K)\cap(z+K)=\emptyset.$$

Legyen most $\xi \in \mathbf{R}$, ekkor van olyan $k \in K$ elem, amelyik ekvivalens a ξ -vel: $y := \xi - k \in \mathbf{Q}$, tehát

$$\xi = y + k \in y + K.$$

Lássuk most be azt, hogy a K nem Borel-halmaz. Ha ui. az lenne, akkor a μ_1 mérték eltolásinvarianciája miatt

$$+\infty = \mu_1(\mathbf{R}) = \sum_{y \in \mathbf{Q}} \mu_1(y+K) = \sum_{y \in \mathbf{Q}} \mu_1(K),$$

amiből $\mu_1(K) \neq 0$ adódna. Ugyanakkor

$$Y := \bigcup_{y \in [0,1) \cap \mathbf{Q}} (y + K) \subset [0,2),$$

így

$$\mu_1(Y) = \sum_{y \in [0,1) \cap \mathbf{Q}} \mu_1(y+K) = \sum_{y \in [0,1) \cap \mathbf{Q}} \mu_1(K) \le \mu_1[0,2) = 2,$$

ami pedig csak $\mu_1(K) = 0$ esetén lenne lehetséges. Tehát a K valóban nem Borel-halmaz.

5. Borel-mérhető leképezések.

Emlékeztetünk arra, hogy egy $A \subset \mathbf{R}$ halmazt Borel-halmaznak (Borel-mérhetőnek) nevezünk akkor, ha

$$A \in \Omega(\mathcal{I}) = \Omega(\mathbf{I}),$$

ahol az I halmazrendszer az R balról zárt, jobbról nyílt intervallumainak a félgyűrűje, az \mathcal{I} pedig az I által generált legszűkebb R-beli gyűrű. Legyen

$$\overline{\mathbf{R}} := \mathbf{R} \cup \{-\infty, +\infty\}.$$

Ekkor egy $A \subset \overline{\mathbf{R}}$ halmaz kibővített értelemben Borel-mérhető, ha valamilyen $B \subset \mathbf{R}$ Borel-mérhető halmazzal

$$B \subset A \text{ \'es } (A \setminus B) \cap \mathbf{R} = \emptyset.$$

Világos, hogy minden Borel-mérhető halmaz a most mondott kibővített értelemben is Borel-mérhető, továbbá a $\{-\infty\}, \{+\infty\}, \{-\infty, +\infty\}$ halmazok is ilyenek. A kibővített értelemben Borel-mérhető halmazok rendszere is (könnyen beláthatóan) egy ($\overline{\mathbf{R}}$ -beli) szigma-algebra. Ennek a szigma-algebrának az elemei pontosan a $B \cup C$ alakú halmazok, ahol $B \in \Omega(\mathbf{I})$ és

$$C \in \{\emptyset, \{-\infty\}, \{+\infty\}, \{-\infty, +\infty\}\}.$$

A továbbiakban Borel-halmazon kibővített értelemben Borel-mérhető halmazt fogunk érteni.

Legyen $X \neq \emptyset$, (X, Ω) mérhető tér.

2. Definíció. Az $f: X \to \overline{\mathbf{R}}$ leképezést mérhetőnek (Borel-mérhetőnek) nevezzük, ha minden $A \subset \overline{\mathbf{R}}$ Borel-halmaznak az f által létesített $f^{-1}[A]$ ősképe az Ω -ban van:

$$f^{-1}[A] := \{x \in X : f(x) \in A\} \in \Omega.$$

Például a karakterisztikus függvények mérhetőségéről a következőt mondhatjuk: ha $Y \subset X$ és

$$\chi_Y(x) := \begin{cases} 1 & (x \in Y) \\ 0 & (x \in X \setminus Y), \end{cases}$$

akkor a χ_Y mérhetősége ekvivalens azzal, hogy $Y \in \Omega$. Speciálisan minden konstansfüggvény is nyilván mérhető.

1. Tétel. $Az \ f: X \to \overline{\mathbf{R}}$ függvény akkor és csak akkor mérhető, ha tetszőleges $\alpha \in \mathbf{R}$ esetén $\{x \in X : f(x) \ge \alpha\} \in \Omega$.

Bizonyítás. Mivel minden $\alpha \in \mathbf{R}$ mellett $[\alpha, +\infty] \subset \overline{\mathbf{R}}$ Borel-halmaz, ezért az f mérhetőségét feltételezve

$${x \in X : f(x) \ge \alpha} = f^{-1}[\alpha, +\infty] \in \Omega.$$

Tehát a tételben szereplő feltétel szükségessége nyilvánvaló.

Az elégségesség bizonyításához legyen

$$\widetilde{\Omega} := \Omega(\{[\alpha, +\infty] \in \mathcal{P}(\overline{\mathbf{R}}) : \alpha \in \mathbf{R}\}).$$

Az $\widetilde{\Omega}$ minden Borel-halmazt tartalmaz. Valóban, ha valamilyen $\alpha, \beta \in \mathbf{R}$ számokkal $\alpha \leq \beta$, akkor

$$[\alpha, \beta) = [\alpha, +\infty] \setminus [\beta, +\infty]$$

miatt $[\alpha, \beta) \in \widetilde{\Omega}$, azaz $\mathbf{I} \subset \widetilde{\Omega}$. Innen belátható, hogy $\Omega(\mathbf{I}) = \Omega_1 \subset \widetilde{\Omega}$. Továbbá¹³

$$\{+\infty\} = \bigcap_{n=0}^{\infty} [n, +\infty] \in \widetilde{\Omega}, \ \{-\infty\} = \bigcap_{n=0}^{\infty} (\overline{\mathbf{R}} \setminus [-n, +\infty]) \in \widetilde{\Omega},$$

amiből az $\widetilde{\Omega}$ -ról mondott állítás már következik. Ekkor viszont a tételben szereplő feltétel elégségessége az 1. Lemmából adódik. \blacksquare

Legyen általában a *
 $\{\ge,>,\le,<,=,\ne\}$ szimbólum és valamilyen adott $f,g:X\to\overline{\bf R}$ leképezések ese
tén

$${f * g} := {x \in X : f(x) * g(x)}.$$

Ha $\alpha \in \overline{\mathbf{R}}$, akkor az $\{f * \alpha\}$ halmaz legyen értelemszerűen a

$$g(x) := \alpha \qquad (x \in X)$$

konstansfüggvénynek megfelelő $\{f * g\}$ halmaz, pl.

$$\{f \ge \alpha\} = \{x \in X : f(x) \ge \alpha\}.$$

Ekkor igaz a

- **2.** Tétel. A fenti (X,Ω) mérhető tér mellett
 - 1º legyen $* \in \{\geq, >, \leq, <\}$, ekkor egy $f: X \to \overline{\mathbf{R}}$ függvény mérhetősége azzal ekvivalens, hogy minden $\alpha \in \mathbf{R}$ esetén $\{f * \alpha\} \in \Omega$;
 - 2° ha az $f,g:X\to \overline{\mathbf{R}}$ függvények mérhetők, akkor

$$\{f < g\}, \{f \le g\}, \{f = g\}, \{f \ne g\} \in \Omega.$$

Továbbá:

3. Tétel. Az eddigi jelöléseket megtartva legyenek az $f, g: X \to \mathbf{R}$ függvények mérhetők. Ekkor az $f+g, f-g, f\cdot g$ függvények is mérhetők.

 $[\]overline{}^{13}$ Az előbbiekben egy adott halmazrendszert tartalmazó legszűkebb szigma-algebra fogalmát két alaphalmaz esetén használtuk: az $\widetilde{\Omega}$ -t illetően ez az alaphalmaz az $\overline{\mathbf{R}}$ volt, az Ω_1 esetében pedig az \mathbf{R} .

Megjegyezzük, hogy ha az $f,g:X\to \overline{\mathbf{R}}$ mérhető függvényekre létezik az $f+g:X\to \overline{\mathbf{R}}$ összegfüggvény, akkor az f+g függvény is mérhető. Hasonló állítás igaz az f-g függvényre is, feltételezve, hogy létezik az $f-g:X\to \overline{\mathbf{R}}$ függvény. Legyen továbbá

$$(\pm \infty) \cdot 0 := 0 \cdot (\pm \infty) := 0,$$

ekkor tetszőleges mérhető $f,g:X\to \overline{\mathbf{R}}$ függvények esetén az $f\cdot g:X\to \overline{\mathbf{R}}$ szorzatfüggvény mérhető.

4. Tétel. A fenti (X,Ω) mérhető térrel az $f_n: X \to \overline{\mathbf{R}}$ $(n \in \mathbf{N})$ mérhető függvényekre a $\sup_n f_n$, $\inf_n f_n$, $\lim\sup(f_n)$, $\lim\inf(f_n)$ függvények is mérhetők.

Innen (is) következik, hogy ha az \mathcal{M} véges sok mérhető $f:X\to \overline{\mathbf{R}}$ függvényből álló halmaz, akkor az

$$X \ni x \mapsto \sup\{f(x) : f \in \mathcal{M}\}, X \ni x \mapsto \inf\{f(x) : f \in \mathcal{M}\}$$

felső, ill. alsó burkoló függvények is mérhetők.

Ha az $f: X \to \overline{\mathbf{R}}$ egy mérhető függvény, akkor az |f| is mérhető, ui. az |f| nem más, mint az $\{f, -f\}$ függvényhalmaz felső burkoló függvénye.

Legyen most a mérhető függvényekből álló $f_n: X \to \overline{\mathbf{R}} \quad (n \in \mathbf{N})$ sorozat pontonként konvergens, és

$$f(x) := \lim_{n \to \infty} f_n(x)$$
 $(x \in X)$.

Ekkor az f határfüggvény is mérhető, mivel (pl.) $f = \liminf (f_n)$.

5. Tétel (Jegorov¹⁴). Legyen adott az (X, Ω, μ) mértéktér, és tegyük fel, hogy a μ mérték véges, az $f_n: X \to \mathbf{R}$ $(n \in \mathbf{N})$ mérhető függvényekből álló sorozat pedig pontonként konvergál az

$$f(x) := \lim_{n \to \infty} f_n(x) \in \mathbf{R}$$
 $(x \in X)$

határfüggvényhez. Ekkor tetszőleges $\varepsilon>0$ számhoz megadható olyan $X_{\varepsilon}\in\Omega$ halmaz, hogy

- a) az (f_n) sorozat az X_{ε} halmazon egyenletesen konvergál az f-hez;
- b) $\mu(X \setminus X_{\varepsilon}) < \varepsilon$.

¹⁴Dmitrij Fjodorovics Jegorov (1869 – 1931).

Bizonyítás. Legyen $0 < k \in \mathbb{N}$ és

$$X_{nk} := \bigcup_{i=n}^{\infty} \{ |f_i - f| \ge 1/k \} \qquad (n \in \mathbf{N}).$$

Az eddigiek szerint az így definiált halmazok valamennyien az Ω -ban vannak, és minden $0 < k \in \mathbf{N}$ indexhez megadható olyan $n_k \in \mathbf{N}$, amivel

$$\mu(X_{n_k k}) < \varepsilon \cdot 2^{-k}$$
.

Valóban, bármilyen $0 < k \in \mathbb{N}$ esetén $X_{n+1k} \subset X_{nk}$ $(n \in \mathbb{N})$, valamint $\bigcap_{n=0}^{\infty} X_{nk} = \emptyset$, ezért (a μ végessége miatt) $\lim_{n\to\infty} \mu(X_{nk}) = 0$.

Tegyük fel, hogy

$$x \in X_{\varepsilon} := X \setminus \Big(\bigcup_{k=1}^{\infty} X_{n_k k}\Big).$$

Ekkor $X_{\varepsilon} \in \Omega$ és minden $0 < k \in \mathbf{N}$ számra igaz a következő:

$$|f_i(x) - f(x)| < 1/k$$
 $(n_k \le i \in \mathbf{N}).$

Innen a tételbeli egyenletes konvergencia az X_{ε} halmazon már következik. Továbbá

$$\mu(X \setminus X_{\varepsilon}) \le \sum_{k=1}^{\infty} \mu(X_{n_k k}) < \varepsilon \cdot \sum_{k=1}^{\infty} 2^{-k} = \varepsilon.$$

6. Mérhető függvények integrálja.

Először az ún. lépcsősfüggvények integrálját fogjuk értelmezni. Mivel csak mérhető függvényekkel foglalkozunk, ezért a lépcsősfüggvények definíciójában a mérhetőséget eleve feltételezzük, így a "mérhető" jelzőt az elnevezésben külön nem is tüntetjük fel.

Legyen tehát adott egy $X \neq \emptyset$ halmaz esetén az (X, Ω) mérhető tér, és vezessük be a következő definíciót:

3. Definíció. Az $f: X \to \mathbf{R}$ függvényt *lépcsősfüggvénynek* nevezzük, ha van olyan $\emptyset \neq \Omega_0 \subset \Omega$ véges halmaz, hogy alkalmas $\alpha_A \in \mathbf{R}$ $(A \in \Omega_0)$ együtthatókkal

$$f = \sum_{A \in \Omega_0} \alpha_A \cdot \chi_A.$$

Jelöljük a most definiált lépcsősfüggvények halmazát L_0 -val. Az L_0 halmaz minden f eleme mérhető függvény, aminek az \mathcal{R}_f értékkészlete véges. Ez a két tulajdonság egyúttal jellemzi is az L_0 függvényosztály elemeit, azaz: egy $f: X \to \mathbf{R}$ függvény akkor és csak akkor eleme az L_0 -nak, ha mérhető, és az \mathcal{R}_f véges. Ui. az elégségességhez kell már csupán azt megjegyezni, hogy a tett feltételek mellett $\{f = y\} \in \Omega \ (y \in \mathcal{R}_f)$ és

$$f = \sum_{y \in \mathcal{R}_f} y \cdot \chi_{\{f = y\}}$$

(az f ún. kanonikus alakja).

6. Tétel. Tetszőleges $f, g \in L_0, \alpha \in \mathbf{R}$ esetén az

$$\alpha \cdot f$$
, $f + g$, $f \cdot g$, $\max\{f, g\}$, $\min\{f, g\}$

függvények valamennyien az L_0 -ban vannak.

A továbbiakban tételezzük fel, hogy adott a μ mérték az Ω szigmaalgebrán, és legyen

$$L_0^+ := L_0^+(\mu) := \{ f \in L_0 : f \ge 0 \}.$$

Nyilván igaz marad az L_0^+ függvényosztályra a 6. Tétel utolsó négy állítása, az első pedig az $\alpha \geq 0$ kiegészítő feltétel mellett.

4. Definíció. Az $f \in L_0^+$ függvénynek (a μ mérték szerinti) integrálján az

$$\int f \, d\mu := \sum_{y \in \mathcal{R}_f} y \cdot \mu(\{f = y\})$$

nemnegatív számot (vagy a $+\infty$ -t) értjük.

Ha $A \in \Omega$ és $0 \le \alpha \in \mathbb{R}$, akkor nyilván

$$\int \alpha \cdot \chi_A \, d\mu = \alpha \cdot \mu(A).$$

 $^{^{15}}$ Lineáris algebrai terminológiával élve tehát az L_0 nem más, mint a $\{\chi_A:A\in\Omega\}$ függvényhalmaz lineáris burka.

7. Tétel. Tetszőleges $f, g \in L_0^+$ és $\alpha \ge 0$ esetén

a)
$$\int \alpha f \, d\mu = \alpha \cdot \int f \, d\mu;$$

b)
$$\int (f+g) d\mu = \int f d\mu + \int g d\mu;$$

c)
$$f \leq g \implies \int f d\mu \leq \int g d\mu$$
.

Ezért azt mondhatjuk, hogy ha

$$f = \sum_{A \in \Omega_0} \alpha_A \cdot \chi_A \in L_0^+$$

(ahol tehát az $\emptyset \neq \Omega_0 \subset \Omega$ véges halmaz, $\alpha_A \geq 0$ $(A \in \Omega_0)$), akkor

$$\int f \, d\mu = \sum_{A \in \Omega_0} \int \alpha_A \cdot \chi_A \, d\mu = \sum_{A \in \Omega_0} \alpha_A \cdot \mu(A).$$

A következő tétel alapvető fontosságú az integrálfogalom kiterjesztése szempontjából.

8. Tétel. Legyen adott egy L_0^+ -beli függvényekből álló, monoton növe-kedő függvénysorozat:

$$f_n \in L_0^+, \ f_n \le f_{n+1} \qquad (n \in \mathbf{N}).$$

Tegyük fel, hogy a $g \in L_0^+$ függvényre $g \leq \sup_n f_n$ teljesül. Ekkor

$$\int g \, d\mu \le \sup_n \int f_n \, d\mu.$$

Bizonyítás. A tételben szereplő g függvény a következő alakú:

$$g = \sum_{A \in \Omega_0} \alpha_A \cdot \chi_A \qquad (\alpha_A \ge 0, A \in \Omega_0)$$

(alkalmas $\emptyset \neq \Omega_0 \subset \Omega$ véges halmazzal). Ekkor bármilyen $0 \leq c < 1$ számmal a

$$B_n := \{ f_n \ge cg \} \qquad (n \in \mathbf{N})$$

halmazok valamennyien az Ω -ban vannak, és

$$f_n \ge cg \cdot \chi_{B_n} = c \cdot \sum_{A \in \Omega_0} \alpha_A \cdot \chi_{A \cap B_n} \qquad (n \in \mathbf{N})$$

miatt

$$\int f_n d\mu \ge c \cdot \int g \cdot \chi_{B_n} d\mu = c \cdot \sum_{A \in \Omega_0} \alpha_A \cdot \mu(A \cap B_n) \qquad (n \in \mathbf{N}).$$

A tétel feltételeire tekintettel

$$B_n \subset B_{n+1} \quad (n \in \mathbf{N}), \quad X = \bigcup_{n=0}^{\infty} B_n,$$

így tetszőleges $A \in \Omega$ halmazra $A \cap B_n \subset A \cap B_{n+1}$ $(n \in \mathbb{N})$ és

$$A = \bigcup_{n=0}^{\infty} (A \cap B_n).$$

Innen $\mu(A) = \lim_{n \to \infty} \mu(A \cap B_n)$, ezért

$$\int g \, d\mu = \sum_{A \in \Omega_0} \alpha_A \cdot \mu(A) = \lim_{n \to \infty} \sum_{A \in \Omega_0} \alpha_A \cdot \mu(A \cap B_n) = \lim_{n \to \infty} \int g \cdot \chi_{B_n} \, d\mu$$

következik. Tehát

$$\sup_{n} \int f_n \, d\mu \ge c \cdot \sup_{n} \int g \cdot \chi_{B_n} \, d\mu \ge c \cdot \lim_{n \to \infty} \int g \cdot \chi_{B_n} \, d\mu = c \cdot \int g \, d\mu.$$

Vegyük figyelembe, hogy itt a $c \in [0,1)$ tetszőleges volt, ezért a tétel állítása már nyilvánvaló. \blacksquare

Megjegyezzük, hogy az előbbi tételben szereplő f_n $(n \in \mathbb{N})$ sorozat monoton növő lévén, azt is írhatjuk, hogy

$$\sup_{n} f_n = \lim_{n \to \infty} f_n.$$

A 7. Tétel szerint az $\int f_n d\mu$ $(n \in \mathbb{N})$ (integrál)sorozat is monoton növekedő, így létezik a $\lim_{n \to \infty} \int f_n d\mu$ határérték is, és

$$\sup_{n} \int f_n \, d\mu = \lim_{n \to \infty} \int f_n \, d\mu.$$

Más szóval

$$g \le \lim_{n \to \infty} f_n \implies \int g \, d\mu \le \lim_{n \to \infty} \int f_n \, d\mu.$$