

Robotics & XR

5 ECTS
Ilkka Jormanainen and Samuel Yigzaw
{firstname.lastname}@uef.fi

AI in Robotics November 25, 2024

Theme 5: Robotics and Al

- Week 48 (November 25 December 1)
- Al methods in robotics
- Machine vision
- Neural networks
- Speech recognition
- Reinforcement and model learning

Al methods and applications in robotics

- Robotics and AI are often considered as synonyms
- Almost all current robotics solutions have AI driven features
 - Machine learning for navigation tasks
 - Machine vision for object recognition and manipulation
 - NLP and LLMs for human-robot interaction
- New and emerging technologies like LLMs and edge computing will change how robots are developed and operated

Challenges with AI applications in robotics

- Data challenges
 - Quality and quantity of training data
 - Sim-to-real gap
 - Real-time data processing
- Computational constrains
 - Limited resources
 - Latency and bandwidth
- Integration
 - Learning vs. controlling
 - Sensor fusion and synchronizing multiple data sources
 - Generalization of AI models

Challenges with AI applications in robotics

- Safety and reliability
 - Uncertainty in predictions for instance road signs for self-driving cars
- Failure recovery
 - Robots must recover automatically, but many AI models inherently lack robustness against unexcepted scenarios
- Real-world risks
 - Physical robots may cause lots of harm if AI goes wrong (compared to software-AI)

Challenges with AI applications in robotics

- Ethical and social challenges
 - Transparency and explainability black boxes
 - Biased training data Unwanted or unsafe behavior of the robot
 - Job displacement and societal impacts
- Deployment and maintenance
 - Adaptation to new or dynamic environments
 - Software-hardware mismatch
 - Scalability

How to solve challenges?

- Model optimization pruning, quantization
- Domain adaptation fine-tuning or transfer learning
- Safety frameworks rule-based or human-driven safety measures
- Hybrid architecture edge computing to balance between on-board and cloud
- Explainable AI making users to better understand the models and how to interpret them

Early Days: Rule-Based Systems and Logical AI (1950s–1970s)

Al Foundations:

- Alan Turing's "Computing Machinery and Intelligence" (1950) and the proposal of the Turing Test inspired early thoughts on AI's potential for robotics.
- Early robotics relied on rule-based systems and explicit programming to perform tasks in controlled environments.
- Example: Shakey the Robot (1966–1972), developed by SRI International, was the first general-purpose robot to combine problem-solving AI with perception and navigation. It relied on logical reasoning to plan actions.

Emergence of Machine Learning (1980s–1990s)

From Rules to Learning:

- Al shifted from rule-based systems to machine learning (ML), where robots could learn patterns from data rather than relying solely on pre-defined instructions.
- Early neural networks, though limited by computational power, laid the groundwork for modern AI.
- **Example**: Autonomous land vehicle projects like CMU's ALV (1980s) showcased how early computer vision techniques and ML could help robots navigate in outdoor environments.

Evolution of Probabilistic Robotics (1990s–2000s)

Bayesian Inference and SLAM:

- Probabilistic approaches (e.g., Markov models, Kalman filters) enabled robots to deal with uncertainty in real-world environments.
- Simultaneous Localization and Mapping (SLAM) algorithms emerged, allowing robots to map unknown environments while tracking their position.
- **Example**: The Mars rovers (*Spirit* and *Opportunity*, 2004) utilized AI for navigation, decision-making, and self-diagnosis based on probabilistic reasoning.

Deep Learning Revolution (2010s)

Advances in Neural Networks:

- The resurgence of neural networks, powered by deep learning, brought transformative changes to robotics.
- Robots could now process vast amounts of sensory data (e.g., images, speech) with unprecedented accuracy.

• Example:

- Boston Dynamics' robots began leveraging AI for dynamic motion control.
- NVIDIA's use of deep reinforcement learning enabled autonomous drones and cars to navigate complex environments.

Integration of Al Across Disciplines (2020s and Beyond)

Collaborative AI and Multi-Agent Systems:

 All now enables robots to collaborate with humans and other robots in shared environments.

Edge Computing and Federated Learning:

 Robots can process AI algorithms locally, enabling faster and more autonomous decision-making.

• Example:

- Tesla's Al-driven autonomous driving systems demonstrate integration of computer vision, deep learning, and real-time decision-making.
- Robotic assistants like Pepper or Sophia showcase the combination of NLP, computer vision, and advanced learning algorithms.

Case 1: Boston Dynamics – Al-Driven Agility

- Boston Dynamics is renowned for robots like *Spot* (quadruped) and Atlas (bipedal), showcasing human-like agility and complex movement capabilities.
- Handling high degrees of freedom in robot kinematics through hierarchical controllers.
- Seamlessly combining learned behaviors (RL) with classical control strategies for optimal performance.

Case 1: Boston Dynamics' robots

Dynamic Motion Planning

- Use of Model Predictive Control (MPC) to optimize real-time motion trajectories based on robot dynamics and constraints.
- Combination of trajectory optimization with contact dynamics (foot placement and force distribution).

Reinforcement Learning (RL)

- RL is employed to train robots in simulated environments, significantly reducing the risk of hardware damage.
- Deep RL frameworks (e.g., Proximal Policy Optimization, PPO) are used to enable balance and adaptive recovery from disturbances.

Computer Vision

- Visual SLAM and depth perception systems enable obstacle avoidance and mapping.
- Integration of LiDAR and stereo cameras for robust environmental understanding.

Case Study 2: Agricultural Robotics – Al for Fruit Picking

- Robotic arms equipped with vision systems are designed to autonomously pick fruits like apples and strawberries.
- Environmental variability (lighting, occlusion) addressed with data augmentation and domain adaptation techniques.
- Real-time decision-making achieved through edge computing platforms like NVIDIA Jetson.

Case 2: Fruit picking robot

Computer Vision

- Use of Convolutional Neural Networks (CNNs) for fruit detection and classification.
- Segmentation models (e.g., U-Net or Mask R-CNN) for precise identification of harvestable fruits.

Grasp Planning

- Algorithms based on deep learning (e.g., GraspNet) to compute optimal grasp points based on fruit geometry and pose.
- Integration with motion planning algorithms like Rapidly-Exploring Random Trees (RRT) or Probabilistic Roadmaps (PRM) for collision-free arm trajectories.

Reinforcement Learning for Gripper Control

 Adaptive control strategies to fine-tune the force applied during fruit picking to prevent damage.

Case 3: Warehouse Robotics – Amazon's Kiva Systems

- Autonomous mobile robots
 (AMRs) streamline warehouse operations by moving inventory shelves to human workers.
- Scalability: Distributed computing ensures that the system can manage thousands of robots.
- Latency: Low-latency wireless communication protocols (e.g., 5G, Zigbee) reduce delays in command transmission.

Case 2: Amazon warehouse robots

Multi-Agent Path Planning (MAPF)

- Algorithms like Cooperative A* and prioritized planning ensure efficient pathfinding and collision avoidance in multi-robot systems.
- Use of real-time updates for dynamic re-routing based on warehouse activity.

Localization and Mapping

- Kiva robots employ fiducial markers (e.g., QR codes) for precise localization within a grid-based environment.
- Algorithms like Extended Kalman Filter (EKF) refine positional estimates using odometry and sensor data.

Task Allocation

- Centralized systems use task scheduling algorithms (e.g., Hungarian algorithm) to allocate robots efficiently.
- Optimization techniques (e.g., Integer Linear Programming) balance workload and minimize idle time.

LLMs and robotics

- Human-robot interaction
 - Natural language commands and interaction
 - Service and social robots, healthcare, robot companions
- Instruction parsing and task execution
 - LLMs to interpret vague commands and translate them into actionable tasks
 - RPA applications tasks that require decision making and context understanding
- Multi-modal learning and reasoning
 - Multimodal LLMs may help robotics applications to combine language and vision into action
 - Interpretation of visual data in the surrounding

LLMs and robotics

- Knowledge retrieval for decision making
 - Robotics applications may access vast amount of knowledge while executing tasks -> decision making based on newly adopted information
- LLMs may be combined with knowledge graphs or retrievalaugmented generation (RAG) systems enable robots to provide accurate, context-aware responses, even in niche technical domains.

LLMs and robotics

- LLMs assist in programming robots by generating control code based on natural language descriptions or demonstrations.
- Applications: Rapid prototyping of robotic behaviors or teaching robots to replicate complex actions.
- For example: Codex (OpenAl's model) can write Python code for controlling robotic arms or designing algorithms for specific tasks based on user-provided prompts.

Challenges with LLMs

Real-Time Processing

• LLMs often require significant computational resources, which may conflict with the real-time processing needs of robotics applications. Edge AI or optimization methods are critical to overcoming this.

Grounding and Context Awareness

• LLMs lack physical grounding; hence, errors can occur when translating abstract instructions into physical actions. Combining LLMs with sensory data and reinforcement learning helps address this.

Ethical Concerns

 Risks associated with misunderstanding or over-reliance on language-based decisions in safety-critical applications.

Edge computing in robotics

- Data is processed locally on the robot or nearby devices (e.g., onpremises servers or edge gateways) instead of relying entirely on cloud-based resources
- Crucial for robotics due to the real-time and often safety-critical nature of robotic tasks
- Low Latency for Real-Time Decision-Making
- Bandwidth Optimization
- Enhanced Reliability
- Data Privacy and Security

Edge computing for robotics

Perception Systems

- Real-time object detection, tracking, and recognition using edge AI models (e.g., YOLO or MobileNet) enable robots to navigate complex environments.
- Example: Autonomous delivery robots use edge vision systems to identify obstacles and pedestrians in real-time.

Autonomous Navigation

- Algorithms like Visual SLAM (Simultaneous Localization and Mapping) and path planning often rely on edge computing to map environments and localize the robot without delays.
- Natural Language Processing (NLP)
 - Lightweight LLMs or speech recognition models on edge devices allow robots to interact conversationally without relying on cloud APIs, reducing latency.

Edge computing for robotics

- Collaborative Robotics (Cobots)
 - Edge computing to support multi-agent coordination in warehouses or assembly lines, enabling robots to communicate and plan actions collectively without requiring centralized cloud systems.
- Predictive Maintenance
 - Al models running at the edge analyze sensor data from robotic components (e.g., motors, joints) to predict and prevent failures before they occur.

Challenges with edge AI in robotics

Hardware Constraints

• Edge devices often have limited compute power and storage compared to cloud systems, requiring highly optimized AI models (e.g., pruning, quantization).

Energy Efficiency

 Power consumption is critical, especially for mobile robots like drones or autonomous vehicles, where battery life is limited.

Integration Complexity

 Balancing computational loads between edge devices and cloud systems can complicate system design.

Some edge AI platforms for robotics

NVIDIA Jetson Series

 Compact GPU-based platforms designed for AI tasks on the edge. Widely used in drones, autonomous vehicles, and industrial robots.

Google Coral

Specialized for low-power AI applications with Tensor Processing Units (TPUs).
 Used in robots for image classification and edge inferencing.

Some edge AI platforms for robotics

Intel Movidius

• Offers hardware acceleration for computer vision tasks, allowing robots to process complex imagery locally.

TinyML

- Brings AI capabilities to edge devices, such as low-cost and low-power microcontrollers (for instance, Arduino TinyML Kit)
- ML frameworks optimized for microcontrollers, for instance TensorFlow Lite and Edge Impulse
- Models are trained in advance real-time adaptation is challenging