CFD Assignment -3

Submitted by: Abhishek Gautam

Roll no: 234103301

Fluids and Thermal

Problem

Solve the following partial differential equation using the finite difference method with the specified boundary conditions for the geometry with 100×100 grid size as shown in the figure.

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = -\omega$$

$$u\frac{\partial \omega}{\partial x} + v\frac{\partial \omega}{\partial y} = \frac{1}{\text{Re}} \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} \right)$$

$$u = \frac{\partial \psi}{\partial y}$$
, $v = -\frac{\partial \psi}{\partial x}$

Convergence Criteria: Find the maximum error of stream function and vorticity and reduce that maximum error to 10^{-6} . Apply the finite difference discretization to replace all derivatives with the corresponding central difference expressions with uniform grid $M \times N$ and write the discretized equations of the governing equations and boundary conditions of stream function & vorticity in the report. Write the code in such a way so that you can input the values of Re, M, N. Submit the results and discussion for Re=100 and 400 in terms of streamlines, velocity vectors, u velocity along vertical centerline and v velocity along horizontal centerline.

Re = 100; Grid Size = 100×100 ; Stream Line Graph

Re = 400; Grid Size = 100 × 100; Stream Line Graph

Re = 100; Grid Size = 100×100 ; Vorticity (omega)

Re = 400; Grid Size = 100×100 ; Vorticity(omega)

Re = 100; Grid Size = 100×100 ; Velocity Vector graph

Re = 400; Grid Size = 100×100 ; Velocity Vector graph

Center line velocity (V)

