CHAP. : FONCTIONS AFFINES. INÉQUATIONS PRODUIT

1. Représentation graphique et Accroissements d'une fonction affine

1.1. Rappels

Définition:

- \star Soient m et p deux réels donnés. La fonction f définie sur \mathbb{R} par $f: x \mapsto mx + p$ est appelée fonction affine. Sa représentation graphique est une droite d.
- \star Lorsque p=0, f est une fonction linéaire et la droite d passe par l'origine du repère.
- \star Lorsque m=0, f est une fonction constante et la droite d est parallèle à l'axe des abscisses.

Vocabulaire:

On dit que la droite d a pour équation y = mx + p.

Le nombre m est appelé coefficient directeur de d.

Le nombre p est appelé ordonnée à l'origine de d

1.2. Proportionnalité des accroissements

Soient m et p deux réels donnés et soit f la fonction affine définie sur \mathbb{R} par f(x) = mx + p

Propriété:

Quels que soient les nombres réels x_1 et x_2 appartenant à \mathbb{R} :

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = m$$

Preuve:

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{mx_2 + p - (mx_1 + p)}{x_2 - x_1} = \frac{mx_2 + p - mx_1 - p}{x_2 - x_1} = \frac{m(x_2 - x_1)}{x_2 - x_1} = m$$

Rq: Cette propriété permet notamment de déterminer entièrement l'expression d'une fonction affine pour laquelle on connaît l'image de deux points distincts.

Ex: Déterminer l'expression de la fonction affine f qui vérifie f(2) = 1 et f(4) = -3.

f est une fonction affine, on a donc f(x) = mx + p.

Déterminons
$$m$$
:
$$m = \frac{f(2) - f(4)}{2 - 4} = \frac{1 - (-3)}{-2} = \frac{4}{-2} = -2 \text{ donc } f(x) = -2x + p$$
Déterminons p :

De f(x) = -2x + p on obtient $f(2) = -2 \times 2 + p = -4 + p$. Mais f(2) = 1, on a donc -4 + p = 1d'où l'on déduit que p=5

Finalement, f est la fonction définie par f(x) = -2x + 5

1.3. Variations d'une fonction affine

Propriété : Soit f la fonction affine définie sur \mathbb{R} par $f: x \mapsto mx + p$

- \star Si m > 0, alors la fonction f est strictemenent croissante sur \mathbb{R} .
- \star Si m < 0, alors la fonction f est strictemenent décroissante sur \mathbb{R} .
- * Si m=0, alors la fonction f est constante sur \mathbb{R} .

<u>Preuve</u>: Soient x_1 et x_2 deux réels tels que $x_1 < x_2$

- * Premier cas, m > 0: $x_1 < x_2$ donc $mx_1 < mx_2$ car m > 0, donc $mx_1 + p < mx_2 + p$, soit $f(x_1) < f(x_2)$.
 - Ceci étant vrai pour tous les réels x_1 et x_2 tels que $x_1 < x_2$, f est strictement croissante sur \mathbb{R} .
- * Deuxième cas, m < 0: $x_1 < x_2$ donc $mx_1 > mx_2$ car m < 0, donc $mx_1 + p > mx_2 + p$, soit $f(x_1) > f(x_2)$.
 - Ceci étant vrai pour tous les réels x_1 et x_2 tels que $x_1 < x_2$, f est strictement décroissante sur \mathbb{R} .
- * Troisième cas, m=0: On a alors pour tout $x \in \mathbb{R}$, f(x)=p et f est constante.

1.4. Signe d'une fonction affine

Soit f la fonction affine définie sur \mathbb{R} par $f: x \mapsto mx + p$ avec $m \neq 0$

$$f(x) = 0 \iff mx + p = 0 \iff mx = -p \iff x = \frac{-p}{m}$$

 \star Premier cas, m > 0: On a vu qu'alors f est strictement croissante, on en déduit le tableau de signe suivant :

x	$-\infty$	$\frac{-p}{m}$	$+\infty$
mx + p		- 0	+

 \star Deuxième cas, m<0 : On a vu qu'alors f est strictement décroissante, on en déduit le tableau de signe suivant :

x	$-\infty$		$\frac{-p}{m}$		$+\infty$
mx + p		+	0	_	

2

On pourra s'aider d'une figure pour se convaincre de ce qui précède...

Ex: Dresser le tableau de signe de la fonction affine $f: x \mapsto -2x + 5$

2. Inéquations Produit (sur des exemples)

Un exemple d'inéquation produit

On cherche le signe du produit (2x+6)(2-x) On peut le trouver, par des calculs, pour des valeurs particulières de x.

			(2x+6)(2-x) est
x est égal à	2x + 6 est	$2-x \text{ est } \dots$	donc
5	positif (ça fait 16)	négatif (ça fait -3)	négatif
0	positif	positif	positif
-4	négatif	positif	négatif

Mais cela ne nous permet pas de le connaître pour n'importe quelle valeur de x.

On va donc utiliser deux notions déjà étudiées :

- * Le signe d'une fonction affine (vu dans le cours de seconde sur les fonctions affines)
- ★ Le signe d'un produit (vu en quatrième)
- Signe de 2x + 6.

La fonction affine $x \mapsto 2x + 6$ est strictement croissante (m = 2 > 0), elle est donc négative avant de devenir positive.

$$2x + 6 = 0 \iff 2x = -6 \iff x = -3.$$

On en déduit donc la tableau de signes suivant :

x	$-\infty$		-3		$+\infty$
2x + 6		_	0	+	

• Signe de 2-x.

La fonction affine $x \mapsto 2 - x$ est strictement décroissante (m = -1 < 0), elle est donc positive avant de devenir négative.

$$2 - x = 0 \iff 2 = x$$
.

On en déduit donc la tableau de signes suivant :

x	$-\infty$		2		$+\infty$
2-x		+	0	_	

• Signe de (2x+6)(2-x)

On utilise les tableaux des signes précédents et on complète la dernière ligne en utilisant la règle des signes d'un produit.

3

x	$-\infty$		-3		2		$+\infty$
2x+6		_	0	+		+	
2-x		+		+	0	_	
(2x+6)(2-x)		_	0	+	0	_	

Ce tableau des signes nous permet de résoudre l'inéquation $(2x+6)(2-x) \leqslant 0$. En effet, en observant la dernière ligne du tableau, on trouve que $(2x+6)(2-x) \leqslant 0$ pour tout $x \in]-\infty;-3] \cup [2;+\infty[$. On a donc $\mathscr{S}=]-\infty;-3] \cup [2;+\infty[$

Un exemple d'inéquation quotient

On cherche à résoudre $\frac{-3x-1}{x+3}\geqslant 0$. Cette inéquation n'est définie que lorsque $x+3\neq 0$, c'est à dire lorsque $x\neq -3$. On utilise alors une double barre dans la dernière ligne du tableau pour exclure cette valeur

x	$-\infty$		-3		$\frac{-1}{3}$		$+\infty$
-3x - 1		+		+	0	_	
x+3		_	0	+		+	
$\frac{-3x-1}{x+3}$		_		+	0	_	

On a donc
$$\mathscr{S} =]-3; \frac{-1}{3}]$$