FREE GROUPS

4.1 Introduction to Free Groups

Definition 4.1.1. Let S be a set, and fix a set S^- disjoint to S with a bijection $f: S \to S^-$, and a singleton set $\{e\}$. Denote $X_S = S \cup S^- \cup \{1\}$. We define the *inverse map* $-1: X_S \to X_S$ by

$$s^{-1} = \begin{cases} e & s = e \\ \varphi(s) & s \in S \\ \varphi^{-1}(s) & s \in S^{-}. \end{cases}$$

Definition 4.1.2. Let S be a set. A word on S is an infinite tuple $(s_1, s_2, ...)$ with values in X_S such that there exists an $N \in \mathbb{Z}_{\geq 1}$ such that for all $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N$, then $s_n = e$. A reduced word on S is a word $(s_1, s_2, ...)$ such that:

- if $s_N = e$ for some $N \ge 1$, then $s_n = e$ for all $n \ge N$;
- if $s_i \neq e$, then $s_{i+1} \neq s_1^{-1}$ for all $n \in \mathbb{Z}_{\geq 1}$.

We denote a reduced word $(s_1, s_2, \ldots, s_n, e, e, \ldots)$ by $s_1 s_2 \ldots s_n$, where $s_n \neq e$. The set of all reduced words is denoted by F(S). We have the inclusion map $\iota \colon S \to F(S)$ given by $\iota(s) = (s, e, e, \ldots)$. We also denote $e = (e, e, e, \ldots)$, and call it *identity element*.

Definition 4.1.3. Let S be a set. Define the operation $:: F(S) \to F(S)$ by

$$s_1 \dots s_n \cdot t_1 \dots t_k =$$

The operation is called *concatenation*.

Proposition 4.1.4. Let S be a set. Then, F(S) is a group under concatenation.

Proposition 4.1.5 (Universal Property of Free Groups). Let S be a set, G be a group, and $f: S \to G$ be a map. Then, there exists a unique homomorphism $\varphi: F(S) \to G$ such that $\varphi(s) = f(s)$ for all $s \in S$.

Proof. Define the map $\varphi \colon F(S) \to G$ by

$$\varphi(s_1^{\varepsilon_1}s_2^{\varepsilon_2}\dots s_n^{\varepsilon_n}) = f(s_1)^{\varepsilon_1}f(s_2)^{\varepsilon_2}\dots f(s_n)^{\varepsilon_n}.$$

By construction, this is a group homomorphism. Moreover, it extends f.

Now, let $\psi \colon F(S) \to G$ be such that $\psi(s) = f(s)$ for all $s \in S$. In that case, for all $s_1^{\varepsilon_1} s_2^{\varepsilon_2} \dots s_n^{\varepsilon_n} \in F(S)$, we find that

$$\psi(s_1^{\varepsilon_1}s_2^{\varepsilon_2}\dots s_n^{\varepsilon_n}) = \psi(s_1)^{\varepsilon_1}\psi(s_2)^{\varepsilon_2}\dots\psi(s_n)^{\varepsilon_n}$$

= $f(s_1)^{\varepsilon_1}f(s_2)^{\varepsilon_2}\dots f(s_n)^{\varepsilon_n} = \varphi(s_1^{\varepsilon_1}s_2^{\varepsilon_2}\dots s_n^{\varepsilon_n}).$

So, the map is unique.

Corollary 4.1.6. Let S be a set, with free groups $F_1(S)$ and $F_2(S)$. Then, there exists a unique isomorphism $\phi \colon F_1(S) \to F_2(S)$ that fixes S.

Proof. Let $\iota_1\colon S\hookrightarrow F_1(S)$ and $\iota_2\colon S\hookrightarrow F_2(S)$ be the inclusion maps. We can apply the universal property of the free group $F_2(S)$ on the map ι_1 to extend it to a unique homomorphism $\varphi_1\colon F_1(S)\to F_2(S)$. Similarly, we can construct a homomorphism $\varphi_2\colon F_2(S)\to F_1(S)$. Note that, by construction, φ_1 and φ_2 fix S. Now, consider the map $\varphi_2\circ\varphi_1\colon F_1(S)\to F_1(S)$. This is a group homomorphism that fixes S. We can apply again the universal property of the free group $F_1(S)$ on the map ι_1 to extend it to a unique homomorphism $\psi\colon F_1(S)\to F_1(S)$. Note that the identity map is also a homomorphism $\psi\colon F_1(S)\to F_1(S)$, so by uniqueness we find that $\psi=\varphi_2\circ\varphi_1$ are the identity map on $F_1(S)$. Similarly, $\varphi_1\circ\varphi_2$ is the identity map on $F_2(S)$. Hence, φ_1 is an isomorphism with inverse φ_2^{-1} . By construction, the map is unique and fixes S.

Definition 4.1.7. Let S be a set. We say that F(S) is the *free group* on S. We say that S is the set of *free generators* (or *free basis*) of F(S). The rank of the free group F(S) is the cardinality of S.

Proposition 4.1.8. A free group of rank 0 is isomorphic to the trivial group.

Proof.

Proposition 4.1.9. A free group of rank 1 is isomorphic to \mathbb{Z} .

Proof.

Proposition 4.1.10. A free group of rank $n \geq 2$ is not abelian.

Proof.

Proposition 4.1.11. A free group has no torsion elements.

Proof. \Box

Theorem 4.1.12 (Neilson-Schrier Theorem). Let F be a free group and let $G \subseteq F$. Then, G is free.

2 Pete Gautam

4.2 Group Relations and Presentation

Lemma 4.	2.1. .	Let G	$be \ a \ g$	roup.	Ther	n,G ($is\ the$	image	of som	$\it iefree$,	group.	Ir
particular,	there	exists	a fre	e $grou$	p F	and	a sur	jective	group	homor	norphi	sm
$\varphi \colon F \to G$.												

Proof. Consider the free group F(G). By the universal property of free groups on the identity map $id: G \to G$, we can extend it to a group homomorphism $\varphi \colon F(G) \to G$. By construction, we know that $\varphi(g) = g$ for all $g \in G$, meaning that φ is surjective.

Definition 4.2.2. Let G be a group and let $R \subseteq G$. Then, the *normal closure* of R is the intersection of all normal subgroups of G containing R. It is denoted by $\langle \langle R \rangle \rangle$.

Proposition 4.2.3. Let G be a group and let $R \subseteq G$. Then, $\langle \langle R \rangle \rangle$ is the subgroup generated by the conjugates of R.

Proof. Since the normal closure $\langle\langle R \rangle\rangle$ is normal, we know that the conjugates of R are in the subgroup. Moreover, a subgroup generated by the conjugates of R is closed under conjugation by construction, meaning that it is normal, and contains R. Hence, it is contained in $\langle\langle R \rangle\rangle$. So, the normal closure is the subgroup generated by the conjugates of R.

Proposition 4.2.4. Let G, H be groups, $R \subseteq G$ and let $\varphi \colon G \to H$ be a homomorphism with $R \subseteq \ker \varphi$. Then, $\langle \langle R \rangle \rangle \subseteq \ker \varphi$. In particular, $\langle \langle R \rangle \rangle$ is the smallest unique kernel of a group homomorphism that sends R to the identity.

Proof. Since $\ker \varphi$ is a normal subgroup, and $R \subseteq \ker \varphi$, it follows that $\langle \langle R \rangle \rangle \subseteq \ker \varphi$.

Definition 4.2.5. Let G be a group and S a generating set of G. A presentation is a pair (S,R), where R is a set of words in F(S) such that the normal closure $\langle\langle R \rangle\rangle$ is the kernel of the homomorphism $\varphi \colon F(S) \to G$ that fixes S. The set R is called the relators. We denote $G = \langle S \mid R \rangle$.

We say that G is *finitely presented* if there exists a presentation of G, (S, R), such that both S and R are finite. We say that G is *finitely generated* if there exists a presentation of G, (S, R), such that S is finite.

Proposition 4.2.6. Let G be a finite group. Then, G is finitely presented.

Proof.

Proposition 4.2.7. Let G and H be groups with bijective presentations. Then, there exists a group isomorphism $G \to H$.

Proof.

Proposition 4.2.8. There is one non-abelian group of order 10 up to isomorphism.

Proof.

Pete Gautam 3