Naïve Bayes Classifier

黄欢

(计算机科学与技术系 计 33 2013011331)

1 Design

根据 Naïve Bayes 原理:

1.9. Naive Bayes

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes' theorem with the "naive" assumption of independence between every pair of features. Given a class variable y and a dependent feature vector x_1 through x_n , Bayes' theorem states the following relationship:

$$P(y \mid x_1, \dots, x_n) = \frac{P(y)P(x_1, \dots x_n \mid y)}{P(x_1, \dots, x_n)}$$

Using the naive independence assumption that

$$P(x_i|y, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) = P(x_i|y),$$

for all i, this relationship is simplified to

$$P(y \mid x_1, ..., x_n) = \frac{P(y) \prod_{i=1}^n P(x_i \mid y)}{P(x_1, ..., x_n)}$$

Since $P(x_1,\ldots,x_n)$ is constant given the input, we can use the following classification rule:

$$P(y \mid x_1, \dots, x_n) \propto P(y) \prod_{i=1}^n P(x_i \mid y)$$

$$\downarrow \downarrow$$

$$\hat{y} = \arg \max_{y} P(y) \prod_{i=1}^n P(x_i \mid y),$$

and we can use Maximum A Posteriori (MAP) estimation to estimate P(y) and $P(x_i \mid y)$; the former is then the relative frequency of class y in the training set.

设计 adult. py 的过程如下:

- 1. 读入训练集, 随机选取一定比例用于训练(issue 1)。
- 2. 训练数据:记录不同分类的数目,以及不同分类下各属性的数目;其中,对于数字属性,根据需要进行分级(issue 3)。
- $\hat{y} = \arg\max_{y} P(y) \prod_{i=1}^{n} P(x_i \mid y),$ 3. 读入测试集,并计算 (issue 2)。
- 4. 对结果进行评估,计算当前训练数据比例(train_percent)、分段数量(bucket_num)、训练数据数量(train_num)下的准确率(accuracy)、召回率(p_recall)、F 值(f measure)。

2 Results

参数:

train_percent #当前训练数据比例 is_bucket #是否对数字属性进行分段 bucket_num #分段数量 train num #训练数据数量

中间参数:

Ak #正确分到 k 类的数量
Bk #错误分到 k 类的数量
Ck #属于该类而未被分到该类的数量

结果:

accuracy #准确率 p_precission #精确率 p_recall #召回率 f_measure #F值 time #时间

根据如下公式:

 $Accuracy = \frac{\text{number of correctly classified records}}{\text{number of test records}}$

$$precision: P = \frac{\sum_{k} (\frac{a_{k}}{a_{k} + b_{k}})}{K}$$

$$recall: R = \frac{\sum_{k} (\frac{a_{k}}{a_{k} + c_{k}})}{K}$$

$$f - score: F = \frac{2PR}{P + R}$$

可以得到:

```
E:\【learn】\3\32-2016春季学期\机器学习\Experiment\Experiment 1 Naive Bayes Clas sifier\黄欢_2013011331\src>python adult.py when train_percent = 1.0 bucket_num = 15 train_num = 32561 accuracy = 0.827160493827 p_precission = 0.764425733433 p_recall = 0.810255544118 f_measure = 0.786673719197 time = 0.967000007629

E:\【learn】\3\32-2016春季学期\机器学习\Experiment\Experiment 1 Naive Bayes Clas sifier\黄欢_2013011331\src>_
```

Accuracy = 82.72%

3 Analysis

3.1 Issue 1: The impact of the size of training set

When is_bucket = 1, bucket_num = 15,

训练比例	0. 05		0. 5		1. 0	
次数	数量	准确率	数量	准确率	数量	准确率
1	1609	82. 46%	16240	82. 49%	32561	82. 72%
2	1582	82.70%	16214	82. 67%		
3	1675	82.38%	16214	82.77%		
4	1642	82. 91%	16336	82. 66%		
5	1593	82.78%	16322	82. 75%		
最大值	82. 91%		82. 77%		82.72%	
最小值	82. 38%		82. 49%		82. 72%	
平均值	82. 646%		82. 668%		82. 720%	

依据表格中数据,准确率在大体上随着训练集的增大而增大,但相差不多。

3.2 Issue 2: Zero-probabilities

假设在 training set 中,没有 $x_i = k$, y = c 的记录,则

$$\hat{P}(y=c|x_1,\dots,x_i=k,\dots,x_n)=0$$

$$\hat{P}(x_i=k|y=c)=rac{\#\{y=c,x_i=k\}+lpha}{\#\{y=c\}+Mlpha}$$
, 其中 M is the

number of unique class label, 且 alpha=1e-7.

3.3 Issue 3: Continuous and missing attributes

对于连续的属性值,可以根据需要进行分级,设置 is_bucket (是否分级) 和合理的 bucket_num (分级数量)可以提高准确率。

缺失属性('?')看做独立的类别。

When train_percent = 1.0, train_num = 32561,

是否分级	是	是	是	是	否
分级数量	3	6	10	15	_
准确率	81. 94%	81. 87%	82. 11%	82. 72%	79. 82%

依据表格中的数据,不进行分级的准确率最低,在一定范围内,准确率随着分级数量的增加而增加;可以尝试不断调整分级数量,从而得到较高的准确率。