Quantum Effects

Alessio Cimma

February 13, 2025

Contents

1	13/11/24]
2	[√] ORALE]

$1 \quad 13/11/24$

$2 \quad [\checkmark] \text{ ORALE}$

- C1: Qualcosa sullo spin (Stern Gerlac) Obtain the commutators and $\hbar^2 S(S+1)$ e il calcolo dei vari stati di singoletto, tripletto ++, -, +-, -+. Caso specifico $|00\rangle$. Sapere risultato di J^2 effetto su $|l,l,+\rangle$.
- T1: Potential step con $E > V_0$ (matematica: solo soluzione prova e derivata seconda = Ψ). Calcola solo la trasmissione.
- M1: Hartree Fock equations and state distribution.
- C2: Scritto H come Gauge, Landau level → harmonic oscillator (il giappo scrive come un dannato).
- T2: Somma di (spin?) $a \mid ++ \rangle + b \mid -+ \rangle$ e ladder operator
- M2: Bloch teorema & overlap
- C3: Commutatori $[S_z, S_x] = i\hbar S_y$ usa matrici di Pauli. Stern-Gerlac. Uncertainty principle. Calcolo Normalization
- T3: Armoniche sferiche $R(r)sin(\theta)sin(\phi)$, calcolo dei numeri (sostituisce il seno con esponenziale complesso). Continua con esercizio sulla time evolution (dimostrazione completa). Discorso sul fatto che la fase non cambia lo stato del sistema.
- M3: Basis set e segno di \prod e FC = SCE
- C4: (FRANCESCA) Perturbation theory $H = H_0 + \lambda H_1$, example of application in H atom. Zeeman effect Hydrogen atom.
- T4: Commutatori commutano e Uncertainty principle (non si ricordava $\hbar/2$ ma va tutto bene). Calcolo probabilità.
- M4: Charge density
- C5: α decay
- T5: Time evolution
- M5: Hartree Fock equation FC = SCE, linearizzazione e basis set
- M6: Slater determinant, DFT working principle
- M6: Full CR
- 28 28 30, 26, 23