Laboratorium Teorii Automatów			
Synteza układu sekwencyjnego zbudowanego na przerzutnikach			
Grupa 4b (wtorek 17.15) Sonia Wittek, Katarzyna Wątorska, Bartłomiej			
	Mróz		

Wstęp teoretyczny

Laboratorium miało na celu zapoznanie się z rodzajami przerzutników oraz stworzenie układu sekwencyjnego zbudowanego na przerzutnikach na podstawie zadanych tabeli przejść, wyjść i kodowania dla układu.

Układ sekwencyjny - rodzaj układu cyfrowego charakteryzujący się tym, że stan wyjść zależy od stanu wejść układu oraz od poprzedniego stanu, zwanego stanem wewnętrznym, pamiętanego w zespole rejestrów (pamięci). Może być synchroniczny (taktowany sygnałem CLK – wejściem zegarowym) lub asynchroniczny.

Przebieg laboratorium

Polecenie: Zaprojektować układ sekwencyjny odpowiadający automatowi zadanego podaną tabelką wejść i wyjść układu, przy założeniu, że układ realizujemy na przerzutnikach: T, D, RS i JK. Połączyć układ na przerzutnikach JK i sprawdzić poprawność działania układu z tabelkami wejść i wyjść.

Tabela przejść (Q')

Stan Q \ X	0	1
Р	Q	R
Q	Р	Р
R	R	Q

Tabela wyjść (Y)

Stan Q \ X	0	1
Р	0	0
Q	1	1
R	1	0

Tabela kodowania

	Q1	Q2
Р	0	0
Q	0	1
R	1	1
S	-	-

Tablica projektowa układu sekwencyjnego

L.p.	Х	Q1	Q2	Q1'	Q2'	K1	J1	К2	J2	T1	T2	D1	D2	Υ
0	0	0	0	0	1	-	0	-	1	0	1	0	1	0
1	0	0	1	0	0	-	0	1	0	0	1	0	0	1
2	0	1	1	1	1	0	-	0	-	0	0	1	1	1
3	0	1	0	-	-	-	-	-	-	-	-	-	-	-
4	1	0	0	1	1	-	1	-	1	1	1	1	1	0
5	1	0	1	0	0	-	0	1	0	0	1	0	0	1
6	1	1	1	0	1	1	0	0	-	1	0	0	1	0
7	1	1	0	-	-	-	-	-	-	-	-	-	-	-

Tabele Karnaugha dla każdego wyjścia każdego przerzutnika

K1 J1

Q1Q2\X	0	1
00	-	-
01	1	1
11	0	0
10	-	-

$$K1 = \overline{Q1}$$

 $J1 = \overline{Q2}X$

J2

01

11 10

K2

Q1Q2\X	0	1
00	-	-
01	-	-
11	0	1
10	-	-

0

1

1

0

J2	=	$\overline{Q2}$	

K2 = X

T1

Q1Q2\X	0	1
00	0	1
01	0	0
11	0	1
10	-	-

Q1Q2\X	0	1
00	1	1
01	1	1
11	0	0
10	-	-

$$T1 = \overline{Q1Q2}X + Q1X$$

$$T2 = \overline{Q1}$$

D1

Q1Q2\X	0	1
00	0	1
01	0	0
11	1	0
10	-	-

Q1Q2\X	0	1
00	1	1
01	0	0
11	1	1
10	-	-

$$D1 = \overline{Q2}X + Q1\overline{X}$$

$$D2 = \overline{Q1Q2} + Q1$$

Tabela Karnaugha dla wyjścia układu:

Q1Q2\X	0	1
00	0	0
01	1	1
11	1	0
10	-	-

$$Y = \overline{Q1}Q2 + Q1\overline{X}$$

Ponieważ na zajęciach były dla nas dostępne jedynie bramki NAND i EXOR to trzeba było przekształcić otrzymane równania, na takie w których występują tylko takie bramki.

$$Y = \overline{Q1}Q2 + Q1\overline{X} = \overline{\overline{\overline{Q1}Q2}} + \overline{\overline{Q1}\overline{X}} = \overline{\overline{\overline{\overline{Q1}Q2}} \cdot \overline{Q1}\overline{X}}$$

Dla przejrzystości załączono schematy układów zamodelowane w Simulinku.

Projektowanie układu na przerzutnikach JK

$$K1 = \overline{Q1}, J1 = \overline{Q2}X$$

$$K2 = X, J2 = \overline{Q2}$$

Projektowanie układu na przerzutnikach T

$$T1 = \overline{Q1Q2}X + Q1X = \overline{\overline{Q1Q2}X} + \overline{Q1X} = \overline{\overline{Q1Q2}X} \cdot \overline{Q1X}$$

$$T2 = \overline{Q1}$$

Projektowanie układu na przerzutnikach D

$$\boldsymbol{D1} = \overline{Q2}X + Q1\overline{X} = \overline{\overline{\overline{Q2}X}} + \overline{\overline{Q1}\overline{X}} = \overline{\overline{\overline{Q2}X} \cdot \overline{Q1}\overline{X}}$$

$$\mathbf{D2} = \overline{Q1Q2} + Q1 = \overline{Q1Q2} + \overline{\overline{Q1}} = \overline{Q1Q2 \cdot \overline{Q1}}$$

Podsumowanie

Na zajęciach mieliśmy możliwość zapoznania się z działaniem przerzutników oraz zbudowania układu sekwencyjnego na różnych rodzajach przerzutników. Na podstawie tabeli przejść i wyjść wyprowadziliśmy funkcje realizowane przez poszczególne przerzutniki oraz cały układ. Na początku otrzymywane przez nas wyniki różniły się od tych oczekiwanych, określonych na podstawie tabel. Błąd znaleźliśmy w źle zapisanej funkcji, przez co niepoprawnie podłączaliśmy elementy. Dzięki temu nabraliśmy doświadczenia w analizowaniu układu oraz detekcji pomyłek.