Übungsblatt LA 10

Computational and Data Science FS2025

Mathematik 2

Lernziele:

- Sie kennen die Begriffe Bild, Kern, algebraische und geometrische Vielfachheit, ähnliche Matrix, Diagonalisierbarkeit einer Matrix und deren wichtigste Eigenschaften.
- > Sie können Bild und Kern einer linearen Abbildung berechnen.
- Sie können bestimmen, ob eine Matrix diagonalisierbar ist oder nicht und die Diagonalmatrix angeben.

1. Aussagen über Bild und Kern

Gegeben sei eine mxn Matrix A.

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Es gilt: $ker(A) \neq \emptyset$.		
b) Für $m = 2$ und $n = 3$ gilt: $ker(A) \neq \{0\}$.		
c) Für $m = 3$ und $n = 2$ gilt: $ker(A) \neq \{0\}$.		
d) Für $n = m$ und A regulär gilt: $ker(A) \neq \{0\}$.		
e) Für $n = m$ und A singulär gilt: $ker(A) \neq \{0\}$.		
f) Für $m = 3$ und $n = 4$ gilt: $dim(ker(A)) + dim(img(A)) = 7$.		

2. Bild und Kern berechnen

Berechnen Sie jeweils Bild und Kern der gegebenen Matrix.

a)
$$\begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$$

b)
$$\begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$$

c)
$$\begin{pmatrix} 0 & -3 & 2 \\ 3 & 0 & -1 \\ -2 & 1 & 0 \end{pmatrix}$$

$$d)\begin{pmatrix} -2 & 4 & 8 \\ 1 & -2 & -4 \end{pmatrix}$$

$$e)\begin{pmatrix} -2 & 4 & 8 \\ 1 & -2 & 0 \end{pmatrix}$$

$$f)\begin{pmatrix} -2 & 1\\ -2 & 1\\ 4 & -2\\ 8 & 0 \end{pmatrix}$$

3. Aussagen über 2 Matrizen in 3D

Gegeben seien die beiden Matrizen

$$A = \begin{pmatrix} 0 & 2 & -1 \\ -2 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix}$$
 und
$$B = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Es gilt: $img(A) = \mathbb{R}^3$.		
b) Es gilt: $ker(A^{12}) \neq \{0\}$.		
c) Es gilt: <i>B</i> ist orthogonal.		
d) Es gilt: $tr(2A + \sqrt{2}B) = 0$.		
e) Die Spaltenvektoren von B sind linear unabhängig.		
f) Es gilt: $ker(B^3) = ker(B)$.		

4. Eigenwerte

A sei eine nxn Matrix. Was lässt sich über die reellen Eigenwerte von A aussagen, falls gilt:

a)
$$A = -A^T$$

b)
$$A^{-1} = A^T$$

c) $A = B^T B$, B sei eine mxn Matrix.

5. Diagonalmatrizen

Gegeben seien die folgenden Matrizen:

$$A_1 = \begin{pmatrix} 1 & 5 & 7 \\ 0 & 4 & 3 \\ 0 & 0 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}, A_3 = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

- a) Bestimmen Sie die Eigenvektoren und zugehörigen Eigenräume obiger Matrizen.
- b) Welche der Matrizen sind ähnlich zu einer Diagonalmatrix?

6. Diagonalmatrix

Überprüfen Sie, dass $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ und $\vec{v}_3 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$ Eigenvektoren der Matrix

 $A = \begin{pmatrix} -5 & 8 & 8 \\ -3 & 5 & 3 \\ -1 & 3 & 4 \end{pmatrix}$ sind und bestimmen Sie die dazugehörigen Eigenwerte. Finden Sie

eine Matrix C, so dass $C^{-1}AC$ eine Diagonalmatrix ist und berechnen Sie A^n für alle $n \in \mathbb{N}$.

2