Sun-Avoidance Slew Planning Algorithm with Pointing and Actuator Constraints (AAS 10-801)

AIAA/AAS Astrodynamics Specialist Conference, Portland, ME, 11–15 August 2019

Mohammad. A. Ayoubi¹ Junette Hsin²

¹ Associate Professor, Department of Mechanical Engineering, Santa Clara University, ² Engineer, Dynamics and Control Analysis Group, Maxar Space Solutions (Formerly Space Systems/Loral)

Outlines

- Introduction
- Sun-Avoidance Slew (SAS) Algorithm
- Numerical Simulations
 - Summary and Conclusion
- 5 Q& A

Introduction

Literature review

Sun-Avoidance Slew (SAS) Algorithm

Problem Statement:

Given: $_{\mathcal{N}}\hat{P}_{i}$, $_{\mathcal{N}}\hat{P}_{f}$, $_{\mathcal{N}}\hat{S}$, $_{\mathcal{G}}\hat{P}$, $_{\mathcal{C}}\hat{P}$, $_{\mathcal{C}}\hat{P}$, $_{\mathcal{G}}\hat{P}$, $_{\mathcal{G$

Assumption: The spacecraft is rigid.

Find:

- A sequence of slew maneuvers to avoid sun vector.
- 2 the commanded angular velocity, angular acceleration, and quaternion profiles.

Sun-Avoidance Slew (SAS) Algorithm

Figure: The gyrostat-centered unit sphere.

Sun-Avoidance Slew (SAS) Algorithm

Nomenclature

- ullet ${\cal G}$ frame: Unit sphere attached to the gyrostat.
- \bullet $\mathcal{N}:$ frame: The Newtonian frame fixed in the inertial space.
- $_{\mathcal{G}}\hat{P}$: Unit vector along the bore sight of payload in the \mathcal{G} frame.
- $_{\mathcal{G}}\hat{P}_{i}$: Unit vector of the initial point in the \mathcal{G} frame.
- \bullet $_{\mathcal{G}}\hat{P}_{f}$: Unit vector of the final point in the \mathcal{G} frame.
- $_{\mathcal{N}}\hat{S}$: Unit vector of the sun vector in the \mathcal{N} frame.
- \bullet ϵ_p : Payload half-cone angle.

Introduction

- Matlab was used to numerically simulate and examine the proposed algorithm.
- 2 The initial, final, and sun position vectors were randomized for each run.
- Two cases shown in these slides one in which the sun angle is greater than 0 from the slew plane, the other in which the sun vector lies directly on the slew plane.
- Slew angles were found using the methods discussed in the description of the algorithm.

Figure: Attitude Profile of the Entire Slew

Figure: Angular Velocity in Spacecraft Frame

Figure: Angular Acceleration

Figure: Torque Applied from Actuator System

Figure: Quaternion Attitude

Figure: Attitude in Euler Angles

Figure: Attitude Profile of the Entire Slew

Figure: Angular Velocity in Spacecraft Frame

Figure: Angular Acceleration

Figure: Torque Applied from Actuator System

Figure: Quaternion Attitude

Figure: Attitude in Euler Angles

Summary and Conclusion

- Geometric approach for large-angle slew planning with pointing and actuator constraints
- Assumed that initial and final attitudes, instrument boresight, and sun vector are known
- Target-frame quaternions, angular velocities, and angular accelerations are derived base on the PMP
- Limitation is for single sensitive-payload

Acknowledgments

The research has been supported by Maxar Space Solutions (formerly Space Systems/Loral). The second author (Junette Hsin) would like to acknowledge Luke DeGalan for his useful comments.

Q&A

Back-up Slides

Computing the Steering Profiles

Case II: Single-Axis, Agile Slew Maneuver with Acceleration Constraint.

Single-Axis, Agile Slew Maneuver with Acceleration Constraint

Problem Statement:

Consider the optimal control problem described by Eqs.(??), (??), and subject to control constraint

$$C_2: |u = \ddot{\phi}| \leq \ddot{\phi}_{max}.$$
 (1)

Find: $\phi(t)$, $\dot{\phi}(t)$, and $\ddot{\phi}(t)$.

Single-Axis, Agile Slew Maneuver with Acceleration Constraint

• Angular acceleration about the ê axis:

$$\ddot{\phi}(t) = \ddot{\phi}_{max} \mathbb{U}(t_0) - 2\ddot{\phi}_{max} \mathbb{U}(t - t_1)$$
 (2)

where the switching and the final times are given by

$$t_{1} = t_{0} - \frac{\dot{\phi}_{0}}{\ddot{\phi}_{max}} + \frac{\sqrt{\ddot{\phi}_{max}^{2}(2\ddot{\phi}_{max}\phi_{f} + \dot{\phi}_{f}^{2} + \dot{\phi}_{0}^{2})}}{\sqrt{2}\ddot{\phi}_{max}^{2}}$$
(3)

Single-Axis, Agile Slew Maneuver with Acceleration Constraint

and

$$t_{f} = t_{0} - \frac{\dot{\phi}_{f} + \dot{\phi}_{0}}{\ddot{\phi}_{max}} + \frac{\sqrt{2}\sqrt{\ddot{\phi}_{max}^{2}(2\ddot{\phi}_{max}\phi_{f} + \dot{\phi}_{ef}^{2} + \dot{\phi}_{0}^{2})}}{\ddot{\phi}_{max}^{2}}$$
(4)

Angular velocity about the ê axis:

$$\dot{\phi}(t) = \dot{\phi}_0 + \ddot{\phi}_{max}(t - t_0)\mathbb{U}(t_0) - 2\ddot{\phi}_{max}(t - t_1)\mathbb{U}(t - t_1)$$
 (5)

• Angular position about the ê axis:

$$\phi(t) = \dot{\phi}_0(t - t_0) + \ddot{\phi}_{max} \frac{(t - t_0)^2}{2} \mathbb{U}(t_0)$$

$$-2\ddot{\phi}_{max} \frac{(t - t_1)^2}{2} \mathbb{U}(t - t_1)$$
(6)

The Agile Sun-Avoidance Slew Maneuver

The First Slew Maneuver:

A single-axis nonrest-to-rest maneuver around the ê

• The BCs:

$$\dot{\phi}(t_0) = \dot{\phi}_0, \phi(t_0) = 0, \dot{\phi}(t_{f1}) = 0, \phi(t_{f1}) = \phi_1. \tag{7}$$

The switching time, t_{11} , and minimum-time, t_{f1} , are

$$t_{11} = t_0 - \frac{\dot{\phi}_0}{\ddot{\phi}_{max}} + \frac{\sqrt{\ddot{\phi}_{max}^2 (2\ddot{\phi}_{max}\phi_1 + \dot{\phi}_0^2)}}{\sqrt{2}\ddot{\phi}_{max}^2}$$
(8)

$$t_{f1} = t_0 - \frac{\dot{\phi}_0}{\ddot{\phi}_{max}} + \frac{\sqrt{2\ddot{\phi}_{max}^2(2\ddot{\phi}_{max}\phi_1 + \dot{\phi}_0^2)}}{\ddot{\phi}_{max}^2}$$
(9)

The $\ddot{\phi}(t)$, $\dot{\phi}(t)$, and $\phi(t)$, can be found by substituting the boundary conditions given by (7) and t_{11} and t_{f1} in to Eqs. (2), (5), and (6), respectively.

The Agile Sun-Avoidance Slew Maneuver

The Second Slew Maneuver: A rest-to-rest maneuver around the sun vector

• The BCs:

$$\dot{\phi}(t_0) = 0, \phi(t_0) = 0, \dot{\phi}(t_{f2}) = 0, \phi(t_{f2}) = \phi_2.$$
 (10)

The switching time, t_{12} , and the minimum-time, t_{f2} , are

$$t_{12} = t_0 - \frac{\sqrt{\phi_2}}{\ddot{\phi}_{max}} \tag{11}$$

$$t_{f2} = t_0 - \frac{2\sqrt{\phi_2}}{\ddot{\phi}_{max}} \tag{12}$$

The $\ddot{\phi}(t)$, $\dot{\phi}(t)$, and $\phi(t)$, can be found by substituting the boundary conditions given by (10) and t_{12} and t_{f2} in to Eqs. (2), (5), and (6), respectively.

The Agile Sun-Avoidance Slew Maneuver

The Third Slew Maneuver: A single-axis rest-to-nonrest maneuver around the \hat{e}

• The BCs:

$$\dot{\phi}(t_0) = 0, \phi(t_0) = 0, \dot{\phi}(t_{f3}) = \dot{\phi}_f, \phi(t_{f3}) = \phi_3.$$
 (13)

The switching time, t_{13} , and the minimum-time, t_{f3} , are

$$t_{13} = t_0 + \frac{\sqrt{\ddot{\phi}_{max}^2 (2\ddot{\phi}_{max}\phi_3 + \dot{\phi}_f^2)}}{\sqrt{2\ddot{\phi}_{max}^2}}$$
(14)

$$t_{f3} = t_0 - \frac{\dot{\phi}_f}{\ddot{\phi}_{max}} + \frac{\sqrt{2\ddot{\phi}_{max}^2(2\ddot{\phi}_{max}\phi_3 + \dot{\phi}_f^2)}}{\ddot{\phi}_{max}^2}$$
(15)

The $\ddot{\phi}(t)$, $\dot{\phi}(t)$, and $\phi(t)$, can be found by substituting the boundary conditions given by (13) and t_{13} and t_{f3} in to Eqs. (2), (5), and (6), respectively.