An attempt to give the most abstract possible definition of a blockchain.

1 BlockChain

Given a set S, let $\mathrm{LIST}(S)$ and $\mathrm{SET}(S)$ be the sets of all finite lists and all finite sets of elements of S, respectively. Given $L \in \mathrm{LIST}(S)$, we use notation |L| to refer to the number of elements in L, and notation L[i] to refer to the i-th element in L, where $i \in \{1, \ldots, |L|\}$. From now on, assume that Σ is a finite alphabet, and that $\mathbf{B} \subseteq \Sigma^*$ is the set of all possible blocks.

Definition 1. A validation rule is a function $V : LIST(\mathbf{B}) \to SET(\mathbf{B})$

Intuitively V is a function taking a list L of block as input, and returning the set of blocks that could be added to L to produce a valid blockchain.

Definition 2. Let $G \in LIST(\mathbf{B})$ be non-empty, and V be a validation rule. Then a function $f: \{1, \ldots, n\} \to \mathbf{B}$ with $n \in \mathbb{N}$ is a validated chain with respect to (G, V) if:

- 1. $|G| \le n$ and f(i) = G[i], for every $i \in \{1, ..., n\}$.
- 2. $f(1) \in V([])$ and $f(i+1) \in V([f(1), ..., f(i)])$, for every $i \in \{1, ..., i-1\}$.

Function f in this definition is a valid chain according to the validation rule V and the lists G of genesis blocks (whose role is to provide the blocks to startup the system). Let Log(G,V) be the set of validated chains with respect to (G,V).

Definition 3. Let $G \in LIST(\mathbf{B})$ be non-empty, and V be a validation rule. Then LOG(G, V) is safe if for every $f \in LOG(G, V)$ such that $f : \{1, \ldots, n\} \to \mathbf{B}$, and every $b_1, b_2 \in \mathbf{B}$ such that $b_1 \neq b_2$:

$$V([f(1),...,f(n),b_1]) \cap V([f(1),...,f(n),b_2]) = \emptyset$$

Intuitively, in order to be secured V should depend on the last block b that is included in the blockchain.

Notation. For all $f: \{1, ..., n\} \to \mathbf{B}$ with $n \in \mathbb{N} \in LOG_{G,V}$ we denote

$$f^L = [f(1), \dots, f(n)]$$

Definition 4. Let P be a set of players and K_T a function :

$$K_T: P \times \llbracket 0; T \rrbracket \times \mathbb{N} \to SET(\mathbf{B} \times [0; 1])$$

Then (P, K_T) is a valid knowledge representation if:

$$\forall p \in P, \forall t \in [0; T], (b, \alpha) \in K_T(t, 0, p) \implies \alpha = 1 \lor \alpha = 0$$

$$\forall p \in P, \forall t, t' \in [0; T], t' \ge t, \forall b \in \mathbf{B}, (b, 1) \in K_T(t, 0, p) \implies (b, 1) \in K(t', 0, p)$$

$$\forall p \in P, \forall t \in [0; T], \forall \delta \in \mathbb{N}, \forall b \in \mathbf{B}, (b, 1) \in K_T(t, 0, p) \implies (b, 1) \in K(t, \delta, p)$$

$$\forall p \in P, \forall t \in [0; T], \forall \delta, \delta' \in \mathbb{N}, \delta' \ge \delta \implies \forall (b, \alpha) \in K_T(p, t, \delta), \exists (b, \alpha') \in K_T(p, t, \delta'), \alpha' \ge \alpha$$

Notation. $\forall p \in P, \forall t \in [0, T]$ we denote

$$K_T(p,t) = \{b | (b,1) \in K_T(p,t,0)\}$$

Definition 5. Let $T, T' \in \mathbb{N}$ such that T > T' we say that $K'_{T'}$ extend K_T if

$$\forall p, K_T(p,T) = K'_{T'}(p,T)$$

Definition 6. A block chain protocol is a function noted $P_{G,V}$:

$$P_{G,V}: \operatorname{SET}(LOG_{G,V}) \times \llbracket 0,T \rrbracket \to \operatorname{SET}(LOG_{G,V})$$

such that:

$$\forall S, \forall t \in [0, T], P_{G,V}(S, t) \subseteq S$$

Remark. $P_{G,V}$ can be seen as the rule in case of fork and new block.

Definition 7. Considering $LOG_{G,V}$ the set of validated chains with respect to (G,V), (P,K_T) a valid knowledge representation and $P_{G,V}$ a block chain protocol. We denote $S_{t,p}$ where $t \in [0,T]$ and $p \in P$ the set:

$$S_{t,p} = \{ f | f \in LOG_{G,V} \land \forall i \in \{1, \dots, |f^L|\}, f(i) \in K_T(p,t) \}$$

We call a BlockChain at time $t \in [0, T]$ for user $p \in P$ noted $BC_{t,p}$ a tuple:

$$BC_{t,p} \in P_{G,V}(S_{t,p},t)$$

Remark. Intuitively the blockchain for a user p at a time t is one of the best chain he fully knows regarding the protocol function and the validity at time t (time-stamping).

Definition 8. Considering $LOG_{G,V}$ the set of validated chains with respect to (G,V), (P,K_T) a valid knowledge representation. We denote α^* the function

$$\mathbb{N} \times LOG_{G,V} \times P \rightarrow [0,1]$$

such that:

$$\alpha^*(\delta, f, p) = \max\{\alpha | \exists b \in \mathbf{B}; (b, \alpha) \in K_T(p, T, \delta) \cap V(f^L)\}$$

We said that $LOG_{G,V}$ is alive regarding (P, K_T) if:

$$\exists p, \exists f, \forall \in K_T(p,T) \land V(log_{G,V}(N)^-) \cap K_T(p,T) = \emptyset \land lim_{\delta \to \infty} \alpha^*(\delta, log_{G,V}, N, p) = 1$$

2 Draft

Definition 9. We call an alive set of validated chain a tuple $(LOG_{G,V}, P, K_P)$ where $LOG_{G,V}$ is an set of infinite validated chain and P, K_P an alive set of player.

Proposition. Let $(LOG_{G,V}, P, K_P)$ an alive set of validated chain then:

$$\forall log_{G,V} \in LOG_{G,V}, \forall i \in \mathbb{N}, \exists p \in P, \exists t \in T, V(log_{G,V}(i)^{-}) \cap K_{P}(p,t) \neq \emptyset$$

Remark. To be honest i am not sure as we are dealing with infinite number. I may have to trick things here. I want to ensure the fact that the chain will eventually move forward.