FMI, Info, Anul I

Logică matematică și computațională

Seminar 10

(S10.1) Să se demonstreze Teorema de completitudine tare - versiunea 2, dar fără a se folosi, precum în curs, Teorema de completitudine tare - versiunea 1.

Demonstrație: Fie $\varphi \in Form$, $\Gamma \subseteq Form$. Abreviem Teorema de completitudine (slabă) cu TC, iar Teorema de compacitate cu TK. Avem că:

$$\Gamma \vdash \varphi \Leftrightarrow \operatorname{există} \varphi_1, ..., \varphi_n \in \Gamma \operatorname{cu} \{\varphi_1, ..., \varphi_n\} \vdash \varphi \qquad (\operatorname{din Propoziția} 1.47)$$

$$\Leftrightarrow \operatorname{există} \varphi_1, ..., \varphi_n \in \Gamma \operatorname{cu} \vdash (\varphi_1 \land ... \land \varphi_n) \to \varphi \qquad (\operatorname{din Propoziția} 1.62.(i))$$

$$\Leftrightarrow \operatorname{există} \varphi_1, ..., \varphi_n \in \Gamma \operatorname{cu} \models (\varphi_1 \land ... \land \varphi_n) \to \varphi \qquad (\operatorname{din} \operatorname{TC})$$

$$\Leftrightarrow \operatorname{există} \varphi_1, ..., \varphi_n \in \Gamma \operatorname{cu} \{\varphi_1, ..., \varphi_n\} \vDash \varphi \qquad (\operatorname{din Propoziția} 1.34.(ii))$$

$$\Leftrightarrow \Gamma \vDash \varphi. \qquad (\operatorname{din} \operatorname{TK} - \operatorname{versiunea} 3)$$

(S10.2) Să se arate că Teorema de completitudine tare - versiunea 2 implică imediat Teorema de completitudine tare - versiunea 1.

Demonstrație: Vrem să arătăm că o mulțime de formule este consistentă dacă și numai dacă este satisfiabilă. Fie $\Gamma \subseteq Form$. Abreviem Teorema de completitudine tare cu TCT. Avem că:

$$\Gamma \text{ este consistent} \begin{tabular}{ll} $\Gamma \end{tabular} & $\Gamma \end{tabular} \begin{tabular}{ll} $\Gamma \end{tabular} & $\Gamma \end{tabular} & $(\dim \end{tabular} \begin{tabular}{ll} $(\dim \end{tabular} \begin{tabular}{ll} $\Gamma \end{tabular} & $(\Pi \end{tabular} & $(\Pi \end{tabular} \begin{tabular}{ll} $\Gamma \end{tabular} & $(\Pi \end{tabular} \begin{tabular}{ll} $\Gamma \end{tabular} & $(\Pi \end{tabular} \begin{tabular}{ll} $\Gamma \end{tabular} & $(\Pi \end{tabular} & $(\Pi \end{tabular} \begin{tabular}{ll} $\Gamma \end{tabular} & $(\Pi \end{tabular} & $(\Pi \end{tabular} \begin{tabular}{ll} $\Gamma \end{tabular} & $(\Pi \end{tabular} & $(\Pi \end{tabular} \begin{tabular}{ll} $\Gamma \end{tabular} & $(\Pi \end{tabular} & $(\Pi \end{tabular} \begin{tabular}{ll} $\Gamma \end{tabular} & $(\Pi \end{tabular} & $(\Pi \end{tabular} \begin{tabular}{ll} $\Gamma \end{tabular} & $(\Pi \end{tabular} & $(\Pi \end{tabular}) & $(\Pi \end{tabular} & $(\Pi \end{ta$$

(S10.3) Să se aducă următoarele formule la cele două forme normale prin transformări sintactice:

(i)
$$((v_0 \to v_1) \land v_1) \to v_0;$$

(ii)
$$(v_1 \lor \neg v_4) \to (\neg v_2 \to v_3)$$
.

Demonstrație:

(i) Avem:

$$((v_0 \to v_1) \land v_1) \to v_0 \sim \neg((\neg v_0 \lor v_1) \land v_1) \lor v_0 \qquad \text{(înlocuirea implicației)}$$

$$\sim \neg(\neg v_0 \lor v_1) \lor \neg v_1 \lor v_0 \qquad \text{(de Morgan)}$$

$$\sim (\neg \neg v_0 \land \neg v_1) \lor \neg v_1 \lor v_0 \qquad \text{(de Morgan)}$$

$$\sim (v_0 \land \neg v_1) \lor \neg v_1 \lor v_0, \qquad \text{(reducerea dublei negații)}$$

iar ultima formulă este în FND. Mai departe, obținem:

$$(v_0 \wedge \neg v_1) \vee \neg v_1 \vee v_0 \sim ((v_0 \vee \neg v_1) \wedge (\neg v_1 \vee \neg v_1)) \vee v_0 \qquad \text{(distributivitate)}$$
$$\sim (v_0 \vee \neg v_1 \vee v_0) \wedge (\neg v_1 \vee \neg v_1 \vee v_0) \qquad \text{(distributivitate)}$$
$$\sim (v_0 \vee \neg v_1) \wedge (\neg v_1 \vee v_0), \qquad \text{(idempotență)}$$

iar ultima formulă este în FNC. De asemenea, ultima formulă este echivalentă și cu:

$$v_0 \vee \neg v_1$$
,

care este și în FND, și în FNC.

(ii) Avem:

$$(v_1 \vee \neg v_4) \rightarrow (\neg v_2 \rightarrow v_3) \sim \neg (v_1 \vee \neg v_4) \vee (\neg \neg v_2 \vee v_3) \qquad \text{(inlocuirea implicațiilor)} \\ \sim \neg (v_1 \vee \neg v_4) \vee v_2 \vee v_3 \qquad \text{(reducerea dublei negații)} \\ \sim (\neg v_1 \wedge \neg \neg v_4) \vee v_2 \vee v_3 \qquad \text{(de Morgan)} \\ \sim (\neg v_1 \wedge v_4) \vee v_2 \vee v_3, \qquad \text{(reducerea dublei negații)}$$

iar ultima formulă este în FND. Mai departe, obținem:

$$(\neg v_1 \land v_4) \lor v_2 \lor v_3 \sim ((\neg v_1 \lor v_2) \land (v_4 \lor v_2)) \lor v_3$$
 (distributivitate)
$$\sim (\neg v_1 \lor v_2 \lor v_3) \land (v_4 \lor v_2 \lor v_3),$$
 (distributivitate)

iar ultima formulă este în FNC.

(S10.4) Să se aducă formula $\varphi = (v_0 \to v_1) \to v_2$ la cele două forme normale trecându-se prin funcția booleană asociată (i.e. metoda tabelului).

Demonstrație: Alcătuim tabelul de valori al funcției asociate $F_{\varphi}: \{0,1\}^3 \to \{0,1\}$, precum și a funcției $\neg \circ F_{\varphi}$.

x_0	x_1	x_2	$x_0 \rightarrow x_1$	$F_{\varphi}(x_0, x_1, x_2) := (x_0 \to x_1) \to x_2$	$\neg F_{\varphi}(x_0, x_1, x_2)$
1	1	1	1	1	0
1	1	0	1	0	1
1	0	1	0	1	0
1	0	0	0	1	0
0	1	1	1	1	0
0	1	0	1	0	1
0	0	1	1	1	0
0	0	0	1	0	1

Obţinem, aşadar, uitându-ne pe liniile cu 1 de pe coloana valorilor lui F_{φ} şi aplicând raţionamentul din demonstraţiile Teoremelor 1.75 şi 1.77, că o formă normală disjunctivă a lui φ este:

$$(v_0 \wedge v_1 \wedge v_2) \vee (v_0 \wedge \neg v_1 \wedge v_2) \vee (v_0 \wedge \neg v_1 \wedge \neg v_2) \vee (\neg v_0 \wedge v_1 \wedge v_2) \vee (\neg v_0 \wedge \neg v_1 \wedge v_2),$$

iar uitându-ne pe liniile cu 0 de pe coloana valorilor lui F_{φ} și aplicând raționamentul din demonstrațiile Teoremelor 1.76 și 1.77, obținem că o formă normală conjunctivă a lui φ este:

$$(\neg v_0 \vee \neg v_1 \vee v_2) \wedge (v_0 \vee \neg v_1 \vee v_2) \wedge (v_0 \vee v_1 \vee v_2).$$

Alternativ, ne putem uita pe liniile cu 1 de pe coloana valorilor lui $\neg \circ F_{\varphi} = F_{\neg \varphi}$ pentru a obține (ca mai sus) următoarea formă normală disjunctivă a lui $\neg \varphi$:

$$(v_0 \wedge v_1 \wedge \neg v_2) \vee (\neg v_0 \wedge v_1 \wedge \neg v_2) \vee (\neg v_0 \wedge \neg v_1 \wedge \neg v_2),$$

iar, pe urmă, aplicând Propoziția 1.71.(ii), obținem că o formă normală conjunctivă a lui $\neg\neg\varphi$, și deci a lui φ , este:

$$(\neg v_0 \lor \neg v_1 \lor v_2) \land (v_0 \lor \neg v_1 \lor v_2) \land (v_0 \lor v_1 \lor v_2).$$

(S10.5) Să se arate că pentru orice formule φ, ψ, χ avem:

- (i) $\{\varphi \wedge \psi\} \vdash \varphi$;
- (ii) $\{\varphi \wedge \psi\} \vdash \psi$;
- (iii) $\{\varphi, \psi\} \vdash \varphi \land \psi$;
- (iv) $\{\varphi, \psi\} \vdash \chi \operatorname{ddaca} \{\varphi \land \psi\} \vdash \chi$.

Demonstrație: Reamintim că $\varphi \wedge \psi = \neg(\varphi \rightarrow \neg \psi)$. De asemenea, oriunde folosim o teoremă formală cunoscută, aplicăm implicit Propoziția 1.42.(ii). Demonstrăm (i):

(1)	$\{\neg(\varphi\to\neg\psi)\}$	$\vdash \neg(\varphi \to \neg\psi)$	Propoziția 1.40.(ii)
(2)	$\{\neg(\varphi \to \neg\psi)\}$	$\vdash \neg \varphi \to (\varphi \to \neg \psi)$	(S8.3).(ii)
(3)	$\{\neg(\varphi \to \neg\psi)\}$	$\vdash (\neg \varphi \to (\varphi \to \neg \psi)) \to (\neg (\varphi \to \neg \psi) \to \neg \neg \varphi)$	(S8.4)
(4)	$\{\neg(\varphi \to \neg\psi)\}$	$\vdash \neg(\varphi \to \neg\psi) \to \neg\neg\varphi$	(MP): (2), (3)
(5)	$\{\neg(\varphi \to \neg\psi)\}$	$\vdash \neg \neg \varphi$	(MP): (1), (4)
(6)	$\{\neg(\varphi \to \neg\psi)\}$	$\vdash \neg \neg \varphi \rightarrow \varphi$	(S8.3).(iii)
(7)	$\{\neg(\varphi \to \neg\psi)\}$	$\vdash \varphi$	(MP): (5), (6).

Demonstrăm (ii):

Demonstrăm (iii):

Demonstrăm (iv), implicația "⇒":

- $\{\varphi,\psi\} \vdash \chi$ Ipoteză (1)
- $\{\varphi\} \vdash \psi \to \chi$ (2)Teorema deducției
- (3) $\vdash \varphi \to (\psi \to \chi)$ Teorema deducției (4) $\{\varphi \land \psi\} \vdash \varphi \to (\psi \to \chi)$ (3)
- $(5) \quad \{\varphi \wedge \psi\} \quad \vdash \varphi$ (i)
- (6) $\{\varphi \wedge \psi\} \vdash \psi \to \chi$ (MP): (4), (5)
- $(7) \quad \{\varphi \wedge \psi\} \quad \vdash \psi$ (ii)
- (8) $\{\varphi \wedge \psi\} \vdash \chi$ (MP): (6), (7).

Demonstrăm (iv), implicația "⇐":

- Ipoteză (1) $\{\varphi \wedge \psi\} \vdash \chi$
- $\vdash (\varphi \land \psi) \rightarrow \chi$ Teorema deducției (2)
- (3)
- $\begin{cases} \varphi, \psi \} & \vdash (\varphi \land \psi) \to \chi \\ \{\varphi, \psi \} & \vdash \varphi \land \psi \end{cases}$ (2) (iii) (iii) (4)
- $\{\varphi,\psi\} \vdash \chi$ (MP): (3), (4).(5)

5