MIMA Group

Outline

- Definition
- Distance Calculation
- Algorithms
 - K-means
 - Mixture of Gaussian
 - DBSCAN
 - AGNES
- Performance Measure

Definition

- Supervised learning VS. Unsupervised learning
- In supervised learning, we know something(label or value) about data($X=\{x1,...,xn\}$, $Y=\{y1,...,yn\}$ known), learn y=f(x)
- In unsupervised learning, we know nothing about the data(X known, Y unknown).

Definition

Clustering is the task of grouping a set of objects in such a way that objects in the same group(intragroup) are more similar to each other than to those in other groups(inter-group).

Distance Calculation

Minkowski distance

$$dist_{mk}(x_i, x_j) = \left(\sum_{u=1}^{n} |x_{iu} - x_{ju}|^p\right)^{\frac{1}{p}}$$

$$x_i = (x_{i1}; x_{i2}; ... x_{in}), x_j = (x_{j1} x_{j2}; ... x_{jn})$$

- Euclidean distance (p=2)
- Manhattan distance (p=1)

$$x_1 = [2,1]$$

$$x_2 = [3,3]$$
Euclidean distance
$$d = (|2-3|^1 + |1-3|^1)^1 = 3$$

$$d = (|2-3|^2 + |1-3|^2)^{1/2} = \sqrt{5}$$

Other Similarity Metrics

■ Chebyshev Distance D=max($|x_1 - x_2|, |y_1 - y_2|$)

D=max(
$$|x_1 - x_2|, |y_1 - y_2|$$
)

Cosine

$$\cos(\theta) = \frac{\sum_{i=1}^{n} (x_i * y_i)}{\sqrt{\sum_{i=1}^{n} (x_i)^2} * \sqrt{\sum_{i=1}^{n} (y_i)^2}}$$

- Hamming Distance
 - $d(x,y)=\sum X[i] \oplus Y[i]$
- Jaccard Distance

$$\frac{|A \cup B| - |A \cap B|}{|A \cup B|}$$

Correlation coefficient and Correlation distance

Algorithm--K-means

- Randomly select K samples as the centroids of clustering.
- Calculate the distances of each sample from the K centroid points.
- Select the cluster centroid c_i (i = 1, 2 ... K) with the smallest distance to divide the cluster.
- Re-determine the centroids.
- Iterate until it converges.

- By experience, set k=2.
- Randomly select two points as cluster centroids.

- For all green samples, compute distances from the blue point and red point.
- Choose the smallest distance and assign it to one cluster.

簇划分

- Compute the average for two clusters.
- Re-determine cluster centroids.

■ Iterate until convergence (the cluster centroids will not change).


```
输入: 样本集D = \{x_1, x_2, \dots, x_m\};
       聚类簇数k.
过程:
 1: 从D中随机选择k个样本作为初始均值向量{\mu_1, \mu_2
 2: repeat
    \diamondsuit C_i = \emptyset \ (1 \le i \le k)
      for j = 1, \ldots, m do
    计算样本x_j与各均值向量\mu_i (1 \le i \le k)的足根据距离最近的均值向量确定x_j的簇标记:
      将样本x_j划入相应的簇: C_{\lambda_j} = C_{\lambda_j} \bigcup \{x_j\};
      end for
      for i = 1, \ldots, k do
         计算新均值向量: \mu'_i = \frac{1}{|C_i|} \sum_{\boldsymbol{x} \in C_i} \boldsymbol{x};
10:
     if \mu_i' \neq \mu_i then
      将当前均值向量\mu_i更新为\mu'_i
12:
     else
13:
       保持当前均值向量不变
14:
         end if
15:
      end for
16:
17: until 当前均值向量均未更新
18: return 簇划分结果
```

输出: 簇划分 $\mathcal{C} = \{C_1, C_2, \ldots, C_k\}$

- Are the results with different random initialization same?
- How to choose K?

移动 聚类中心

- We need all possible initializations and get the best result.
- The measure to find the best result is minimizing square error E(SSE, sum of the Squared Error).

$$E = \sum_{i=1}^{k} \sum_{x \in C_i} ||x - u_i||_2^2 \qquad E = \sum_{i=1}^{m} ||x_i - u_{\lambda_i}||_2^2$$

$$u_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$$

□ How to initialize

- ➤ It is NP-Hard to minimizing E.
- ➤ K-means uses an iterative optimal algorithm. Each step of every iteration is the process of optimizing E.
- We can choose multiple initializations to get the best result(Attention: Whether this measure is effective depends on k).

■ K-means is not always suitable.

(A): Undesirable clusters

(B): Ideal clusters

Gaussian mixture distribution

$$p(x) = \sum_{k=1}^{K} p(k)p(x|k)$$
$$= \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k)$$

- $\blacksquare \pi_k$: corresponding mixture coefficient

Objective function:

$$\sum_{i=1}^{N} \log \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(x_i | \mu_k, \Sigma_k)
ight\}$$

■ Then, we use MLE(Maximum likelihood estimate) to optimize function.

■ 估计数据由每个 Component 生成的概率 (并不是每个 Component 被选中的概率) : 对于每个数据 x_i 来说, 它由第 k 个 Component 生成的概率为

$$\gamma(i,k) = rac{\pi_k \mathcal{N}(x_i | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(x_i | \mu_j, \Sigma_j)}$$

■ 估计每个 Component 的参数

$$egin{aligned} \mu_k &= rac{1}{N_k} \sum_{i=1}^N \gamma(i,k) x_i \ \Sigma_k &= rac{1}{N_k} \sum_{i=1}^N \gamma(i,k) (x_i - \mu_k) (x_i - \mu_k)^T \end{aligned}$$

- Suppose we have 100 students and the only data we can get is their height. Try to model the distribution of male and female.
- The height obeys Gaussian distribution.

先假定男生服从参数为~N(180,10)的高斯分布,女生服从参数为~N(160,8)的高斯分布(Assume a determined Gaussian model for boys and girls)

- 对每个样本计算出分别属于男生和女生的概率(Compute the probability that clustering each sample to boys and girls)
- 认定:每个样本分属于男生和女生的部分(即概率,用 $\gamma(i,k)$ 表示,即第i个样本属于第k个类别的概率)同样服从高斯分布,且具有更好的拟合属性。(如一个样本身高175,我们可以通过设定的参数计算出他有80%的概率为男生,20%的概率为女生,那可以把这个样本看作由80%的男生和20%的女生组成,并将这个样本看作是一个80%的男生样本和一个20%的女生样本。)(Divide each sample into two components according to the probability in step 2)
- 根据每个样本的男生组分和女生组分拟合出新的高斯模型。(Update the parameters according to the components in step 3)
- 迭代直到收敛。(Iterating these steps until convergence)


```
输入: 样本集D = \{x_1, x_2, \dots, x_m\};
           高斯混合成分个数k.
 过程:
 1: 初始化高斯混合分布的模型参数\{(\alpha_i, \mu_i, \Sigma_i) \mid 1 \le i \le k\}
 2: repeat
         for j = 1, ..., m do
             根据(9.30)计算x_i由各混合成分生成的后验概率,即
            \gamma_{ii} = p_{\mathcal{M}}(z_i = i \mid \boldsymbol{x}_i) \ (1 \leq i \leq k)
         end for
         for i = 1, \ldots, k do
        计算新均值向量: \mu_i' = \frac{\sum_{j=1}^m \gamma_{ji} \boldsymbol{x}_j}{\sum_{j=1}^m \gamma_{ji}};
            计算新协方差矩阵: \Sigma_i' = \frac{\sum_{j=1}^m \gamma_{ji} (\boldsymbol{x}_j - \boldsymbol{\mu}_i') (\boldsymbol{x}_j - \boldsymbol{\mu}_i')^\top}{\sum_{j=1}^m \gamma_{ji}};
            计算新混合系数: \alpha_i' = \frac{\sum_{j=1}^m \gamma_{ji}}{m};
         end for
10:
         将模型参数\{(\alpha_i, \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) \mid 1 \leq i \leq k\}更新为\{(\alpha'_i, \boldsymbol{\mu}'_i, \boldsymbol{\Sigma}'_i) \mid 1 \leq i \leq k\}
12: until 满足停止条件
13: C_i = \emptyset \ (1 < i < k)
14: for j = 1, ..., m do
         根据(9.31)确定x_i的簇标记\lambda_i;
         将x_i划入相应的簇: C_{\lambda_i} = C_{\lambda_i} \bigcup \{x_i\}
17: end for
18: return 簇划分结果
 输出: 簇划分\mathcal{C} = \{C_1, C_2, \dots, C_k\}
```

固定模型参数

更新后验概率

固定后验概率

更新模型参数

- > It is a famous density-based-clustering.
- \succ ϵ -neighborhood: $N_{\epsilon}(x_j) = \{x_i \in D | dist(x_i, x_j) \le \epsilon\}$ of the point x_j
- > core object :a point with a $|N_{\epsilon}(x_j)| \ge MinPts$
- \triangleright Directly density-reached: x_j is directly density-reachable from a core object x_i if x_j is in $N_{\epsilon}(x_i)$
- Density-reached: x_j is density-reachable from a core object x_i if a sequence of core objects $p_1, p_2, ..., p_n$ between x_i and x_j exists and p_{i+1} is directly density-reached from p_i .
- \triangleright Density-connected: x_i and x_j are density-connected if they are density-reachable from a common core object x_k .

- □ Directly density-reached: X2 from X1
- □ Density-reached: X3 from X1
- □ Density-connected: X4 from X3

■ DBSCAN defines cluster as such sample set which is most density-connected.

找出所有核心 对象

随机选一个 核心对象生长 出一个簇,并 在核心对象集 合里删去该核 心对象

```
输入: 样本集D = \{x_1, x_2, \dots, x_m\};
        邻域参数(\epsilon, MinPts).
过程:
 1: 初始化核心对象集合: \Omega = \emptyset
 2: for j = 1, ..., m do
 3: 确定样本x_i的\epsilon-邻域N_{\epsilon}(x_i);
 4: if |N_{\epsilon}(\boldsymbol{x}_{j})| \geq MinPts then
     将样本x_i加入核心对象集合: \Omega = \Omega \cup \{x_i\}
       end if
 7: end for
 8: 初始化聚类簇数: k=0
 9: 初始化未访问样本集合: \Gamma = D
10: while \Omega \neq \emptyset do
     记录当前未访问样本集合: \Gamma_{\text{old}} = \Gamma;
     随机选取一个核心对象o \in \Omega, 初始化队列 Q = \langle o \rangle;
      \Gamma = \Gamma \setminus \{o\};
13:
      while Q \neq \emptyset do
          取出队列Q中的首个样本q;
15:
         if |N_{\epsilon}(q)| \geq MinPts then
16:
         \diamondsuit \Delta = N_{\epsilon}(\mathbf{q}) \cap \Gamma;
17:
       将\Delta中的样本加入队列Q;
18:
            \Gamma = \Gamma \setminus \Delta;
19:
     end if
20:
     end while
     k = k + 1, 生成聚类簇C_k = \Gamma_{\text{old}} \setminus \Gamma;
      \Omega = \Omega \setminus C_k
23:
24: end while
25: return 簇划分结果
输出: 簇划分\mathcal{C} = \{C_1, C_2, \dots, C_k\}
```


Strengths

- > There is no K.
- > It can discover any shape of spatial clustering.
- > It can discard the remote point.

Weaknesses

- ➤ It is not suitable when the cluster spacing difference is very different.
- > Parameters adjustment are more complicated.

AGNES is a kind of Hierarchical clustering

- Given cluster C_i , C_j , Usually the distance between two clusters is one of the following
 - Maximum distance(also called complete-linkage clustering) $dist_{max}(C_i, C_j) = \max_{x \in C_i, z \in C_j} dist(x, z)$
 - Minimum distance(also called single-linkage clustering) $dist_{\min}(C_i, C_j) = \min_{x \in C_i, z \in C_j} dist(x, z)$
 - Average distance (also called average-linkage clustering)

$$dist_{avg}(C_i, C_j) = \frac{1}{|C_i||C_j|} \sum_{x \in C_i} \sum_{z \in C_j} dist(x, z)$$


```
输入: 样本集D = \{x_1, x_2, \dots, x_m\};
       聚类簇距离度量函数d \in \{d_{\min}, d_{\max}, d_{\text{avg}}\};
       聚类簇数k.
过程:
1: for j = 1, ..., m do
2: C_j = \{x_j\}
3: end for
4: for i = 1, ..., m do
5: for j = i, ..., m do
    M(i,j) = d(C_i, C_j);
7: M(j,i) = M(i,j)
8: end for
9: end for
10: 设置当前聚类簇个数: q=m
11: while q > k do
     找出距离最近的两个聚类簇(C_{i^*}, C_{i^*});
     合并(C_{i^*}, C_{j^*}): C_{i^*} = C_{i^*} \bigcup C_{j^*};
13:
    for j = j^* + 1, ..., q do
14:
     将聚类簇C_i重编号为C_{i-1}
15:
16:
    end for
     删除距离矩阵M的第j*行与第j*列;
17:
   for j = 1, ..., q - 1 do
18:
    M(i^*, j) = d(C_{i^*}, C_j);
19:
     M(j, i^*) = M(i^*, j)
20:
   end for
21:
     q = q - 1
23: end while
24: return 簇划分结果
输出: 簇划分\mathcal{C} = \{C_1, C_2, \dots, C_k\}
```

计算距离矩阵

每次循环合并 两个簇并更新 距离矩阵

- Partitioning Methods
- k-means, k-medoids, CLARANS, FCM
- Hierarchical Methods
- AGNES, Birch, Cure, Rock, CHEMALOEN
- Density-based Methods
- DBSCAN,OPTICS
- Grid-based Methods
- Model-Based Methods
- Transitive closure, Boolean matrix, direct clustering, correlation analysis clustering, clustering method based on statistics.....

Performance Measurement

Good clustering should be:

Inter-cluster similarity implication minimized

Intra distance & Inter distance

Intra
distance
$$distance = \frac{2}{|C|(|C|-1)} \sum_{1 \le i \le j \le |C|} dist(x_i, x_j)$$

$$distance = \max_{1 \le i \le j \le |C|} dist(x_i, x_j)$$
Inter
distance
$$d_{min}(C_i, C_j) = \min_{x_i \in C_i, x_j \in C_j} dist(x_i, x_j)$$

$$d_{cen}(C_i, C_j) = dis(\mu_i, \mu_j)$$

Performance Measurement

- Internal Index
- Evaluate clustering results directly without using reference model.

- External Index
- Compare clustering results with reference model, for example, partitioning results given by domain expert.

Internal Index

Davies-Boukdin Index:

The smaller the better

$$DBI = \frac{1}{k} \sum_{i=1}^{k} \max_{j \neq i} \left(\frac{avg(C_i) + avg(C_j)}{d_{cen}(C_i, C_j)} \right)$$

Dunn Index:

The bigger the better

$$DI = \min_{1 \le i \le k} \left\{ \min_{j \ne i} \frac{d_{min}(C_i, C_j)}{\max_{1 \le l \le k} diam(C_l)} \right\}$$

External Index

Assume our cluster partition is

$$C = \{C_1, C_2, ... C_k\}$$

- The partition given by reference model is
- $C^* = \{C_1^*, C_2^*, ... C_s^*\}$
- \triangleright let λ and λ^* be clustering label vectors corresponding to
- C and C^* . Consider C_m^2 sample pairs

$$a = |SS|, SS = \{(x_i, x_j) | \lambda_i = \lambda_j, \lambda_i^* = \lambda_j^*, i < j\}$$

$$b = |SD|, SS = \{(x_i, x_j) | \lambda_i = \lambda_j, \lambda_i^* \neq \lambda_j^*, i < j\}$$

$$c = |DS|, SS = \{(x_i, x_j) | \lambda_i \neq \lambda_j, \lambda_i^* = \lambda_j^*, i < j\}$$

$$d = |DD|, SS = \{(x_i, x_j) | \lambda_i \neq \lambda_j, \lambda_i^* \neq \lambda_j^*, i < j\}$$

$$a + b + c + d = C_m^2 = m(m - 1)/2$$

External Index

■ JC: Jaccard Coefficient

$$JC = \frac{a}{a+b+c}$$

■ FMI: Fowlkes and Mallows Index

$$FMI = \sqrt{\frac{a}{a+b} \cdot \frac{a}{a+c}}$$

■ RI: Rand Index

$$RI = \frac{2(a+d)}{m(m-1)}$$

[0,1] interval the bigger the better

Applications

Organize computing clusters

Market segmentation

Social network analysis

Astronomical data analysis

An Example

Superpixel segmentation uses the similarity of features between pixels to group pixels, and replaces a large number of pixels with a small number of superpixels to express image features.

MIMA Group

Thank You!

Any Question?