Autour des endomorphismes nilpotents

Notations

Soit n un entier naturel non nul et $(E, \langle | \rangle)$ un espace préhilbertien de dimension n. On note $\mathcal{L}(E)$ l'ensemble des applications linéaires de E dans lui-même.

On note $\mathcal{M}_n(\mathbf{R})$ l'espace vectoriel des matrices carrées d'ordre n à coefficients complexes, I_n la matrice identité de $\mathcal{M}_n(\mathbf{R})$ et $\mathrm{GL}_n(\mathbf{R})$ l'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbf{R})$.

Une application $u \in \mathcal{L}(E)$ est dite nilpotente d'indice p si p est le plus petit entier strictement positif pour lequel $N^p = 0$. Pour $u \in \mathcal{L}(E)$, on note χ_u le polynôme caractéristique de M et $\mathrm{Sp}(u)$ l'ensemble de ses valeurs propres.

On pose

$$J_n = \begin{pmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbf{R}).$$

Dans tout le problème, on considèrera une application $u \in \mathcal{L}(E)$ nilpotente d'indice p.

I. Réduction de Jordan des endomorphismes nilpotents

- A. Une majoration de p
- 1. a. Donner un polynôme annulateur de u.
 - b. Déterminer les valeurs propres de *u*.
- 2. Soit $v \in \mathcal{L}(E)$. On suppose que $Sp(v) = \{0\}$. Montrer que v est nilpotente.

On a ainsi montré qu'une application $v \in \mathcal{L}(E)$ est nilpotente si, et seulement si, χ_v est scindé et $\mathrm{Sp}(v) = \{0\}$.

- 3. En déduire que $p \le n$.
 - B. Le cas p = n
- **4.** a. Justifier l'existence de $x \in E$ tel que $u^{n-1}(x) \neq 0$.
 - **b.** Montrer alors que la famille $\mathscr{B} = (u^{n-1}(x), \dots, u(x), x)$ est une base de E.
- 5. En déduire la matrice de u dans \mathcal{B} .

C. Le cas p < n

- **6.** Montrer qu'il existe $x \in E$ tel que la famille $(u^{p-1}(x), \dots, u(x), x)$ soit libre dans E.
- 7. En déduire que $F = \text{Vect}(u^{p-1}(x), \dots, u(x), x)$ est stable par u.
- 8. a. Montrer que F^{\perp} est stable par u.
 - **b.** Montrer que $E = F \oplus F^{\perp}$.
 - **c.** Montrer que les restrictions $u_{|F}$ et $u_{|F^{\perp}}$ de u à F et F^{\perp} sont nilpotentes.
- 9. Montrer qu'il existe une base \mathscr{B} de E dans laquelle la matrice de u est de la forme $\begin{pmatrix} J_p & 0 \\ 0 & M \end{pmatrix}$.

D. Caractéristiques de la décomposition de Jordan

- 10. Montrer qu'il existe $p_1 \ge \cdots \ge p_s \in \mathbb{N}^*$ ainsi qu'une base \mathscr{B} de E dans laquelle la matrice de u est de la forme $\begin{pmatrix} J_{p_1} & & \\ & \ddots & \\ & & J_{p_s} \end{pmatrix}$. Cette forme est appelée la décomposition de Jordan de u.
- 11. En déduire la valeur de *p*.
- 12. Justifier l'existence d'une famille libre $(x_1, \dots, x_s) \in E^s$ tel que pour $1 \le i \le s$, $u^{p_i-1}(x_i) \ne 0$.
- 13. Montrer que (x_1, \dots, x_s) est une base de Ker(u). En déduire la valeur de s.

Pour $0 \le k \le s$, on note $d_k = \dim(\operatorname{Ker} u^k)$.

- 14. Montrer que $(x_1, \dots, x_s, u(x_1), \dots, u(x_s))$ est une base de $Ker(u^2)$. En déduire $Card(\{p_i | 1 \le i \le s \text{ et } p_i \ge 2\})$.
- **15**. Montrer que pour $1 \le k \le s$, Card $(p_i | 1 \le i \le s \text{ et } p_i \ge k) = d_k d_{k-1}$.

E. Généralisation aux matrices quelconques

On considère $v \in \mathcal{L}(E)$ un endomorphisme de E tel que χ_v soit scindé. On note alors $\chi_v = \prod_{k=1}^r (X - \lambda_k)^{\alpha_k}$, les λ_k étant des réels deux à deux distincts et les α_k étant des entiers naturels non nuls.

- 16. Montrer que $E = \bigoplus_{k=1}^{r} C_k$, où $C_k = \text{Ker}(v \lambda_k \text{id}_E)^{\alpha_k}$. On appelle sous-espaces caractéristiques de u les C_k .
- 17. Montrer que, pour tout $1 \le k \le r$, C_k est stable par v.
- 18. Montrer que, pour tout $1 \le k \le r$, $v_k = v_{|C_k|}$ peut s'écrire $v_k = \lambda_k \mathrm{id}_E + n_k$, où n_k est un endomorphisme nilpotent de C_k .
- 19. Montrer qu'il existe $p_1 \ge \cdots \ge p_s \in \mathbb{N}^*$, ainsi qu'une base \mathscr{B} de E dans laquelle la matrice de v est de la forme

$$\begin{pmatrix} \lambda_1 I_{p_1} + J_{p_1} & & \\ & \ddots & \\ & & \lambda_s I_{p_s} + J_{p_s} \end{pmatrix}.$$

- 20. Justifier que l'on peut déterminer la valeur des p_i , uniquement en fonction de u. En déduire l'unicité des p_i .
- 21. Montrer alors que deux matrices A et B sont semblables dans C si, et seulement si

$$\forall (\lambda, k) \in \mathbb{C} \times \mathbb{N}^*, \operatorname{rg}(A - \lambda I_n)^k = \operatorname{rg}(B - \lambda I_n)^k.$$

F. Commutant d'un endomorphisme