Announcements & Such

- Administrative Stuff
 - HW #4 resubs should be done now. See bspace...
 - HW #6 is due today. Final HW assignment! *LMPL Proofs*.
 - Next week, I will be giving lectures. I will use them for review, and for some "logic beyond LMPL" topics (not on the final).
 - I'll have office hours today from 2-4, and next Thurs. from 2-4.
 - There's a review session on Monday, May 10 @ 4pm. (room TBA)
 - Stay tuned for further announcements *via* email (+ lecture).
 - I've posted a handout with *all* natural deduction rules (for final).
- Today: Chapter 6 Natural Deductions in LMPL
- Next week: L2PL (beyond LMPL) and review for final exam(s).

The Rule of ∃-Elimination: Official Definition

 \exists -**Elimination**: If $\lceil (\exists v) \phi v \rceil$ occurs at i depending on a_1, \ldots, a_n , an instance $\phi \tau$ of $\lceil (\exists v) \phi v \rceil$ is *assumed* at j, and \mathscr{P} is inferred at k depending on b_1, \ldots, b_u , then at line m we may infer \mathscr{P} , with label 'i, j, k \exists E' and dependencies $\{a_1, \ldots, a_n\} \cup \{b_1, \ldots, b_u\}/j$:

$$a_1,\ldots,a_n$$
 (i) $(\exists v)\phi v$
 \vdots
 j (j) $\phi \tau$ Assumption
 \vdots
 b_1,\ldots,b_u (k) \mathscr{P}
 \vdots
 $\{a_1,\ldots,a_n\}\cup\{b_1,\ldots,b_u\}/j$ (m) \mathscr{P} i, j, k $\exists E$

Provided that *all four* of the following conditions are met:

- τ (in $\phi \tau$) replaces *every* occurrence of ν in $\phi \nu$. [avoids fallacies]
- τ *does not occur in* $\lceil (\exists v) \phi v \rceil$. [generalizability]
- τ *does not occur in* \mathscr{P} . [generalizability]
- τ does not occur in any of b_1, \ldots, b_u , except (possibly) $\phi \tau$ itself. [generalizability]

The Rule of ∃-Elimination: Nine Examples

• Here are 9 examples of proofs involving all four quantifier rules.

1.
$$(\exists x) \sim Fx \vdash \sim (\forall x)Fx$$

2.
$$(\exists x)(Fx \to A) \vdash (\forall x)Fx \to A$$

3.
$$(\forall x)(\forall y)(Gy \rightarrow Fx) \vdash (\forall x)[(\exists y)Gy \rightarrow Fx]$$

4.
$$(\exists x)[Fx \to (\forall y)Gy] \vdash (\exists x)(\forall y)(Fx \to Gy)$$

5.
$$A \vee (\exists x) Fx \vdash (\exists x) (A \vee Fx)$$

6.
$$(\exists x)(Fx \& \sim Fx) \vdash (\forall x)(Gx \& \sim Gx)$$

7.
$$(\forall x)[Fx \rightarrow (\forall y) \sim Fy] \vdash \sim (\exists x)Fx$$

8.
$$(\forall x)(\exists y)(Fx \& Gy) \vdash (\exists y)(\forall x)(Fx \& Gy)$$

9.
$$(\exists y)(\forall x)(Fx \& Gy) \vdash (\forall x)(\exists y)(Fx \& Gy)$$

$$[p. 203, I. # 19 \Rightarrow]$$

[
$$p. 203$$
, I. # 20 \Leftarrow]

[
$$p$$
. 203, II. # 2 \Leftarrow]

$$[p. 203, I. # 12 \Rightarrow]$$

Proof of (1)

Problem is: $(\exists x) \sim Fx + \sim (\forall x)Fx$

2 3 2

 $(1) (\exists x) \sim Fx$

 $(2) (\forall x) Fx$

(3) ~Fa

(4) Fa

(5) Λ

(6) A

(7) $\sim (\forall x) Fx$

Premise

Assumption

Assumption

2 AE

3,4 ~E

1,3,5 **JE**

2,6 ~1

Proof of (2)

Problem is: $(\exists x)(Fx \rightarrow A) \vdash (\forall x)Fx \rightarrow A$

2 3 2

 $(1) (\exists x)(\mathsf{Fx} \rightarrow \mathsf{A})$

 $(2) (\forall x) Fx$

(3) Fa→A

(4) Fa

(6) A

(7) $(\forall x)Fx \rightarrow A$

Premise

Assumption

Assumption

2 AE

3,4 →E

1,3,5 **JE**

2,6 →

Proof of (3)

Problem is: $(\forall x)(\forall y)(Gy \rightarrow Fx) \vdash (\forall x)((\exists y)Gy \rightarrow Fx)$

1,3

(1) $(\forall x)(\forall y)(Gy \rightarrow Fx)$

(2) (3y)Gy

(3) Gb

 $(4) (\forall y)(Gy \rightarrow Fa)$

(5) Gb→Fa

(6) Fa

(7) Fa

(8) (∃y)Gy→Fa

(9) $(\forall x)((\exists y)Gy \rightarrow Fx)$

Premise

Assumption

Assumption

1 **YE**

4 **Y**F

5,3 →E

2,3,6 JE

04/29/10

2,7 →

8 AI

Proof of (4)

Problem is: $(\exists x)(Fx \rightarrow (\forall y)Gy) \vdash (\exists x)(\forall y)(Fx \rightarrow Gy)$

2 3 2,3

(1) $(\exists x)(\mathsf{Fx} \rightarrow (\forall y)\mathsf{Gy})$

(2) $Fa \rightarrow (\forall y)Gy$

(3) Fa

 $(4) (\forall y)Gy$

(5) Gb

(6) Fa→Gb

(7) $(\forall y)(Fa \rightarrow Gy)$

(8) $(\exists x)(\forall y)(\mathsf{Fx} \rightarrow \mathsf{Gy})$

(9) $(\exists x)(\forall y)(\mathsf{Fx} \rightarrow \mathsf{Gy})$

Premise

Assumption

Assumption

2,3 →E

4 **V**E

3,5 →

6 AI

1,2,8 **3E**

Proof of (5)

Problem is: $A \vee (\exists x) Fx + (\exists x) (A \vee Fx)$

22566

6 5

(1) $A_{\vee}(\exists x)Fx$

(2) A

(3) A_VFa

 $(4) (\exists x)(A \lor Fx)$

(5) (3x)Fx

(6) Fa

(7) A√Fa

 $(x_{4} \rightarrow A)(x_{5})$

 $(9) (\exists x)(A \lor Fx)$

(10) $(\exists x)(A \lor Fx)$

Premise

Assumption

2 \

IE E

Assumption

Assumption

6 VI

7 3I

5,6,8 **3E**

1,2,4,5,9 VE

Proof of (6)

Problem is: $(\exists x)(Fx\&\sim Fx) \vdash (\forall x)(Gx\&\sim Gx)$

 $(1) (\exists x)(Fx\&\sim Fx)$

(2) Fa&~Fa

(3) ~Gb

(4) ~Fa

(5) Fa

(6) A

(7) ~~Gb

(8)Gb

(9)Gb

(10) ~Gb

(11) Gb&~Gb

 $(12) (\forall x)(Gx\&\sim Gx)$

 $(13) (\forall x)(Gx\&\sim Gx)$

Premise

Assumption

Assumption

2 &E

2 &E

4,5 ~E

3,6 ~1

7 DN

Assumption

9,6 ~1

8,10 &1

11 ∀I

1,2,12 **3E**

Proof of (7)

Problem is: $(\forall x)(Fx \rightarrow (\forall y) \sim Fy) \vdash \sim (\exists x)Fx$

2

1,3

1,3

1,3

1,2

 $(1) \quad (\forall x)(\mathsf{Fx} \rightarrow (\forall y) \sim \mathsf{Fy})$

(2) (3x)Fx

(3) Fa

(4) Fa→(∀y)~Fy

(5) (∀y)~Fy

(6) ~Fa

(7) Λ

Λ (8)

(9) $\sim (\exists x) Fx$

Premise

Assumption

Assumption

1 ∀E

4,3 →E

5 AE

6,3 ~E

2,3,7 3E

2,8 ~1

Proof of (8)

Problem is: $(\forall x)(\exists y)(Fx\&Gy) + (\exists y)(\forall x)(Fx\&Gy)$

(1) (∀x)(∃y)(Fx&Gy)
(2) (∃y)(Fa&Gy)
(3) Fa&Gb
(4) (∃y)(Fc&Gy)
(5) Fc&Gd
(6) Fc
(7) Fc
(8) Gb
(9) Fc&Gb
(10) (∀x)(Fx&Gb)
(11) (∃y)(∀x)(Fx&Gy)
(12) (∃y)(∀x)(Fx&Gy)

Premise
1 VE
Assumption
1 VE
Assumption
5 &E
4,5,6 JE
3 &E
7,8 &I
9 VI
10 JI
2,3,11 JE

Proof of (9)

Problem is: $(\exists y)(\forall x)(Fx\&Gy) \vdash (\forall x)(\exists y)(Fx\&Gy)$

 $(1) (\exists y)(\forall x)(\mathsf{Fx\&Gy})$

 $(2) (\forall x)(Fx\&Gb)$

(3) Fa&Gb

(4) (3y)(Fa&Gy)

(5) $(\exists y)(Fa\&Gy)$ 1,2,4 $\exists E$

(6) $(\forall x)(\exists y)(Fx\&Gy)$ 5 $\forall I$

Premise

Assumption

2 AE

IE 8

Two LMPL Extensions of Sequent Introduction

- Here are two additions to our list of SI sequents:
- (QS) One can infer $\lceil (\forall x) \sim \phi x \rceil$ from (the *logically equivalent* sentence) $\lceil \sim (\exists x) \phi x \rceil$, and *vice versa*; and, that one can infer $\lceil (\exists x) \sim \phi x \rceil$ from (the *logically equivalent*) $\lceil \sim (\forall x) \phi x \rceil$, and *vice versa*.

$$(\forall x) \sim \phi x \dashv \vdash \sim (\exists x) \phi x; \text{ and, } (\exists x) \sim \phi x \dashv \vdash \sim (\forall x) \phi x \tag{QS}$$

(AV) One can infer a *closed* LMPL sentence ψ from (the *logically equivalent* sentence) ψ' , and *vice versa*, where ψ and ψ' are *alphabetic variants*. Two formulas are *alphabetic variants* if and only if they differ *only* in a (conventional) choice of individual *variable* letters (*not* kosher for constants!). *E.g.*, ' $(\forall x)Fx$ ' and ' $(\forall y)Fy$ ' are (closed) *alphabetic variants*, because they differ *only* in which individual variable ('x' or 'y') is used, but they have the same *logical* (*i.e.*, *syntactical*) *structure*.

$$\psi \dashv \vdash \psi'$$
 (AV)

Our (New) Official List of Sequents and Theorems (see pp. 123, 204, and 206)

(DS)
$$A \vee B$$
, $\sim A \vdash B$; or; $A \vee B$, $\sim B \vdash A$ (Imp) $A \rightarrow B \dashv \vdash \sim A \vee B$

(MT)
$$A \to B, \sim B \vdash \sim A$$
 (Neg-Imp) $\sim (A \to B) \dashv \vdash A \& \sim B$

(PMI)
$$A \vdash B \rightarrow A$$
 (Dist) $A \& (B \lor C) \dashv \vdash (A \& B) \lor (A \& C)$

(PMI)
$$\sim A \vdash A \rightarrow B$$
 (Dist) $A \lor (B \& C) \dashv \vdash (A \lor B) \& (A \lor C)$

(DN⁺)
$$A \vdash \sim \sim A$$
 (EFQ, or $\wedge E$) $\land \vdash A$

(DEM)
$$\sim (A \& B) \dashv \vdash \sim A \lor \sim B$$
 (Com) $A * B \vdash B * A$

(DEM)
$$\sim (A \vee B) \dashv \vdash \sim A \& \sim B$$
 (SDN) $\sim \sim A * \sim \sim B \dashv \vdash A * B$

(DEM)
$$\sim (\sim A \vee \sim B) \dashv \vdash A \& B$$
 (SDN) $A * B \dashv \vdash \sim \sim A * B \dashv \vdash A * \sim \sim B$

(DEM)
$$\sim (\sim A \& \sim B) \dashv \vdash A \lor B$$
 (LEM) $\vdash A \lor \sim A$

(QS)
$$(\forall x) \sim \phi x \dashv \vdash \sim (\exists x) \phi x$$
 (QS) $(\exists x) \sim \phi x \dashv \vdash \sim (\forall x) \phi x$ (AV) $\psi \dashv \vdash \psi'$

In (Com), '*' can be any binary connective *except* ' \rightarrow '. In (SDN), '*' can be *any* binary connective. In (AV), ψ must be *closed*, and ψ' must be an *alphabetic variant* of ψ .

The Value of (QS) — Its Four Simplest Instances

1 (1) $(\forall x) \sim Fx$ Premise 1 (1) $\sim (\exists x) Fx$ Premise 2 (2) $(\exists x) Fx$ Ass 2 (2) Fa Ass 3 (3) Fa Ass 2 (3) $(\exists x) Fx$ 2 3	$(\forall x) \sim \forall x \rightarrow (x \forall x)$			~(∃x)Fx + (∀x)~Fx				
1 (4) ~Fa 1 \forall E 1,2 (4) Λ 1,3 ~E 1,3 (5) Λ 4,3 ~E 1 (5) ~Fa 2,4 ~I 1,2 (6) Λ 2,3,5 \exists E 1 (6) $(\forall$ x)~Fx 5 \forall I 1 (7) ~ $(\exists$ x)Fx 2,6 ~I (5) ~Fx 5 \forall I	3 1 1,3	(2) (3) (4) (5) (6)	(∃x)Fx Fa ~Fa Λ	Ass Ass 1 ∀E 4,3 ~E 2,3,5 ∃E	2	(2)(3)(4)(5)	Fa (∃x)Fx Λ ~Fa	Ass 2

(∃x)~Fx + ~(∀x)Fx			~(∀x)Fx + (∃x)~Fx		
1 2 3 2 2,3 1,2	 (1) (∃x)~Fx (2) (∀x)Fx (3) ~Fa (4) Fa (5) Λ (6) Λ (7) ~(∀x)Fx 	Premise Ass Ass 2 ∀E 3,4 ~E 1,3,5 ∃E 2,6 ~I	1 $(1) \sim (\forall x)Fx$ Premise 2 $(2) \sim (\exists x) \sim Fx$ Ass 3 $(3) \sim Fa$ Ass 3 $(4) (\exists x) \sim Fx$ 3 $\exists I$ 2,3 $(5) \Lambda$ $2,4 \sim E$ 2 $(6) \sim \sim Fa$ $3,5 \sim I$ 2 $(7) Fa$ $6 DN$ 2 $(8) (\forall x)Fx$ $7 \forall I$ 1,2 $(9) \Lambda$ $1,8 \sim E$ 1 $(10) \sim \sim (\exists x) \sim Fx$ $2,9 \sim I$ 1 $(11) (\exists x) \sim Fx$ $10 DN$		

Three Examples Involving the LMPL SI Extension (QS)

• Here are three examples of proofs involving SI (QS):

1.
$$\sim (\forall x) \sim Fx \vdash (\exists x) Fx$$

$$[p. 207, #7 \Leftarrow]$$

2.
$$\sim (\exists x)(Fx \& Gx) \lor (\exists x) \sim Gx, (\forall y)Gy \vdash (\forall z)(Fz \rightarrow \sim Gz) [p. 205, ex. 1]$$

3.
$$(\forall x)Fx \rightarrow A \vdash (\exists x)(Fx \rightarrow A)$$

[
$$p$$
. 205, ex. 2]

Proof of (1)

- 1 (1) $\sim (\forall x) \sim Fx$ Premise
- 2 (2) $\sim (\exists x) Fx$ Assumption
- 2 (3) $(\forall x) \sim Fx$ 2 SI (QS)
- 1,2 (4) \land 1,3 \sim E
 - 1 (5) $\sim \sim (\exists x) Fx$ 2, 4 $\sim I$
 - 1 (6) $(\exists x)Fx$ 5 DN

Proof of (2)

1	(1)	$\sim (\exists x)(Fx \& Gx) \lor (\exists x) \sim Gx$	Premise
2	(2)	$(\forall y)Gy$	Premise
3	(3)	$\sim (\exists x) (Fx \& Gx)$	Assumption
3	(4)	$(\forall x) \sim (Fx \& Gx)$	3 SI (QS)
3	(5)	\sim (Fa & Ga)	4 ∀E
3	(6)	$\sim Fa \vee \sim Ga$	5 SI (DeM)
3	(7)	$Fa \rightarrow \sim Ga$	6 SI (Imp)
3	(8)	$(\forall z)(Fz \rightarrow \sim Gz)$	7 ∀I
9	(9)	$(\exists x) \sim Gx$	Assumption
10	(10)	$\sim Ga$	Assumption
2	(11)	Ga	2 ∀E
2,10	(12)	人	10, 11 ∼E
2,10	(13)	$(\forall z)(Fz \rightarrow \sim Gz)$	12 SI (EFQ)
2,9	(14)	$(\forall z)(Fz \rightarrow \sim Gz)$	9, 10, 13 ∃E
1,2	(15)	$(\forall z)(Fz \to \sim Gz)$	$1, 3, 8, 9, 14 \lor E$

Proof of (3)

Problem is: $(\forall x)Fx \rightarrow A \vdash (\exists x)(Fx \rightarrow A)$

9

(1) $(\forall x)Fx \rightarrow A$

(2) $\sim (\forall x) Fx \vee A$

(3) $\sim (\forall x) Fx$

(4) $(3x)\sim Fx$

(5) ~Fa

(6) Fa→A

 $(7) (\exists x)(Fx \rightarrow A)$

 $(8) (\exists x)(Fx \rightarrow A)$

(10) Fa→A

 $(11) (\exists x)(Fx \rightarrow A)$

(12) $(\exists x)(Fx \rightarrow A)$

Premise

1 SI (Imp)

Assumption

3 SI (QS)

Assumption

5 SI (PMI)

IE 6

4,5,7 3E

Assumption

9 SI (PMI)

10 JI

2,3,8,9,11 VE

The Value of (AV)

• Here are the two simplest instances of (AV):

(∀x)Fx ⊦ (∀y)Fy			(∃x)Fx ⊦ (∃y)Fy		
1 1 1	(1) (∀x)Fx (2) Fa (3) (∀y)Fy	Premise 1 ∀E 2 ∀I	1 2 2 1	(1) (3x)Fx (2) Fa (3) (3y)Fy (4) (3y)Fy	Premise Ass 2 3I 1,2,3 3E

• Here's an (AV)-aided proof of the following sequent

$$(\forall x)Fx, (\forall y)Fy \rightarrow (\forall y)Gy \vdash (\forall z)Gz$$

 $(1) \quad (\forall x) Fx$

Premise

 $(2) \quad (\forall y) Fy \to (\forall y) Gy$

Premise

(3) $(\forall y)Fy$

1 SI (AV)

1,2

 $(4) \quad (\forall y)Gy$

2,3 →E

1,2

 $(5) \quad (\forall z)Gz$

4 SI (AV)

This is the end of material to be covered on the final(s).

Beyond LMPL: 2-Place Predicates (a.k.a., Relations) II

- From the point of view of logic (as opposed to mathematics) what matters is *capturing validities*. And, LMPL captures more than LSL.
- But, LMPL also has its own *logical* limitations. The problem: we can't capture some of the intuitively valid arguments involving *relations*.
- Consider the following argument, which involves a 2-place predicate:
 - (1) Brutus killed Caesar.
 - (2) ∴ Brutus killed someone and someone killed Caesar.
- If we were to symbolize this argument using monadic predicates, we would end-up with something like the following LMPL reconstruction:
- (1') Kb.
- (2') \therefore $(\exists x)Bx & (\exists y)Ky$.

Where Kx: x killed Caesar, Bx: Brutus killed x, and b: Brutus.

• This argument is *not* valid in LMPL. But, the English argument *is* valid!

- The problem here is that "x killed y" is a 2-place predicate (or relation).
- If we expand our language to include predicates that can take 2 arguments, then we can capture statements and arguments like these.
- In chapter 7, a more general language is introduced that allows n-place predicates, for any finite n. We will only discuss 2-place predicates.
- For instance, we can introduce the 2-place predicate Kxy: x killed y. With this relation in hand, we can express the above argument as:

 (1^*) Kbc.

 (2^*) :: $(\exists x)Kbx \& (\exists y)Kyc$.

- In 2-place predicate logic ("L2PL"), this argument *is* valid. So, this is a more accurate and faithful formalization of the English argument.
- We will (in chapter 8) discuss the semantics for 2-place predicate logic (L2PL). The natural deduction system for L2PL is *the same as* LMPL's!
- Before that, we will look at various complexities of L2PL *symbolization*.

Some Sample L2PL Symbolization Problems

- 1. Someone loves someone. [Lxy: x loves y]
 - First, work on the quantifier with widest scope, then work in.
 - There exists an x such that x loves someone.
 - (i) $(\exists x)$ x loves someone.
 - Now, work on expression within the scope of the quantifier in (i).
 - (ii) x loves someone
 - there exists a y such that Lxy
 - $-(\exists y)Lxy$
 - Plugging the symbolization of (ii) into (i) yields the **final product**: $(\exists x)(\exists y)Lxy$

- 2. Everyone loves everyone.
 - For all x, x loves everyone.
 - $(\forall x)$ x loves everyone.
 - x loves everyone $\mapsto (\forall y) Lxy$
 - $(\forall x)(\forall y)Lxy$
- 3. Everyone loves someone.
 - For all *x*, *x* loves someone.
 - $(\forall x)$ x loves someone.
 - x loves someone $\mapsto (\exists y) Lxy$
 - $(\forall x)(\exists y)Lxy$
- 4. Someone loves everyone.
 - There exists an *x* such that *x* loves everyone.
 - $(\exists x)$ x loves everyone.
 - x loves everyone $\mapsto (\forall y) Lxy$
 - $(\exists x)(\forall y)Lxy$

Four Important Properties of Binary Relations

- **Reflexivity**. A binary relation *R* is said to be *reflexive* iff $(\forall x)Rxx$.
- Symmetry. *R* is symmetric iff $(\forall x)(\forall y)(Rxy \rightarrow Ryx)$.
- Transitivity. *R* is transitive iff $(\forall x)(\forall y)(\forall z)[(Rxy \& Ryz) \rightarrow Rxz]$.
- If *R* has *all three* of these properties, then *R* is an *equivalence relation*.
- **Fact**. If *R* is Euclidean and reflexive, then *R* is an equivalence relation.

Relation	Reflexive?	Symmetric?	Transitive?	Euclidean?
x > y	No	No	Yes	No
$x \vDash y$	Yes	No	Yes	No
x is a sibling of y	No	Yes	No	No
$x \approx y$	Yes	Yes	No	No
x respects y	No	No	No	No
x = y	Yes	Yes	Yes	Yes

L2PL Interpretations I

- Here's an example L2PL interpretation. Oxy: x was older than y, \mathcal{D} : The Three Stooges, Ref(a) = Curly, Ref(b) = Larry, and Ref(c) = Moe.
- The matrix representation of Ext(O) for this interpretation is:

О	α	β	y
α	_	+	+
β	_	_	+
$\overline{\gamma}$	_	_	_

• The pictorial or diagrammatic representation of Ext(O) is:

L2PL Interpretations III

(\mathcal{I}_1) Let \mathcal{D} be the set consisting of George W. Bush (α) and Jeb Bush (β). And, let Bxy: x is a brother of y. Determine \mathcal{I}_1 -truth-values for:

1.
$$(\forall x)(\exists y)Bxy$$

2.
$$(\exists y)(\forall x)Bxy$$

- (1) is \top on \mathcal{I}_1 , since *both* of its \mathcal{D} -instances are \top on \mathcal{I}_1 .

- * ' $(\exists y)Bay$ ' is \top on \mathcal{I}_1 because its instance 'Bab' is \top on \mathcal{I}_1 .
 - · That is, $\langle \alpha, \beta \rangle \in \text{Ext}(B)$. Note: $\text{Ext}(B) = \{\langle \alpha, \beta \rangle, \langle \beta, \alpha \rangle\}$.
- * ' $(\exists y)Bby$ ' is \top on \mathcal{I}_1 because its instance 'Bba' is \top on \mathcal{I}_1 .
- (2) is \perp on \mathcal{I}_1 , since *both* of its \mathcal{D} -instances are \perp on \mathcal{I}_1 .
 - * ' $(\forall x)Bxa$ ' is \bot on \mathcal{I}_1 because its instance 'Baa' is \bot on \mathcal{I}_1 .
 - · That is, $\langle \alpha, \alpha \rangle \notin \text{Ext}(B)$.
 - * ' $(\forall x)Bxb$ ' is \perp on \mathcal{I}_1 because its instance 'Bbb' is \perp on \mathcal{I}_1 .

L2PL Interpretations IV

- Just as with LMPL, L2PL interpretations can be used as counterexamples to validity claims. Establishing ⊭ claims works just as you'd expect.
- We have just seen an L2PL interpretation that shows the following:

$$(\forall x)(\exists y)Rxy \neq (\exists x)(\forall y)Rxy$$

- Interpretation I_1 on the previous slide is a counterexample. Why?
 - $(\forall x)(\exists y)Bxy$ is \top on \mathcal{I}_1 , since both of its instances are \top on \mathcal{I}_1 .
 - $(\exists x)(\forall y)Rxy$ is \bot on \mathcal{I}_1 , since both of its instances are \bot on \mathcal{I}_1 .
- Here is a *very important* L2PL invalidity:
 - (†) $(\forall x)(\exists y)Rxy, (\forall x)(\forall y)(\forall z)[(Rxy \& Ryz) \to Rxz] \neq (\exists x)Rxx$
- (†) reveals a surprising difference between LMPL (and LSL) and L2PL sometimes *infinite* interpretations are needed to prove ⊭ in L2PL!

Why (†) is So Important — L2PL vs LMPL: Infinite Domains

- In LMPL, if p is true on any interpretation \mathcal{I} , then it is true on a *finite* interpretation. Indeed, p will be true on an interpretation of size no greater than 2^k , where k is the # of monadic predicate letters in p.
- In L2PL, some statements are true *only* on *infinite* interpretations. It is for this reason that there is no general decision procedure for validity (or logical truth) in L2PL. (†) on the last slide is a good example of this.
 - $(\dagger) \qquad (\forall x)(\exists y)Rxy,(\forall x)(\forall y)(\forall z)[(Rxy \& Ryz) \to Rxz] \neq (\exists x)Rxx$
- **Fact**. *Only infinite interpretations 1 can be counterexamples to the validity in* (†). To see why, try to *construct* such an interpretation.
- We start by showing that no interpretation \mathcal{I}_1 with a 1-element domain can be an interpretation on which the premises of (†) are \top and its conclusion is \bot . Then, we will repeat this argument for I_2 and \mathcal{I}_3 .
- This reasoning can, in fact, be shown correct for *all* (finite) n. So, only \mathcal{I} 's with infinite domains will work [e.g., $\mathcal{D} = \mathbb{N}$, Rxy: x < y].
- Begin with a 1-element domain $\{\alpha\}$. For the conclusion of (4) to be \bot , no

object can be related to itself: $(\forall x) \sim Rxx$. Thus, we must have $\sim Raa$:

α

• But, to make the first premise \top , we need there to be *some* y such that Ray is \top . That means we need *another object* β to allow Rab. Thus:

• Now, because we need the conclusion to remain \bot , we must have $\sim Rbb$. And, because we need the first premise to remain \top , we need there to be *some* y such that Rby is \top . We could try to make Rba \top , as follows:

• But, this picture is not consistent with the second premise being \top and (at the same time) the conclusion being \bot . If R is transitive, then Rab & Rba (as pictured) entails Raa, which makes the conclusion \top .

• Thus, the only way to consistently ensure that there is some y such that Rby is to introduce yet another object y (such that Rbc), which yields:

- Again, in order to make the conclusion \bot , we must have $\sim Rcc$, and in order to make the first premise \top , there must be some y such that Rcy.
- We could *try* to make either Rca or Rcb true. But, both of these choices will end-up with the same sort of inconsistency we just saw with β .

- In other words, *no finite interpretation* will give us what we want here.
- However, if we let $\mathcal{D} = \mathbb{N}$ and Rxy: x < y, then we get what we want.

- That is, the relation Rxy: x < y on the natural numbers \mathbb{N} is such that:
 - For all x, there exists a y such that x < y. [seriality]
 - For all x, y, z, if x < y and y < z, then x < z. [transitivity]
 - For all x, $x \not< x$. [irreflexivity]
- It is crucial that the set \mathbb{N} of *all* natural numbers is *infinite*. The relation < cannot satisfy all three of these properties on *any finite* domain.
- *I.e.*, no finite subset of \mathbb{N} will suffice to show that the invalidity in (4) holds. Equivalently, the following sentence of L2PL is \bot on *all finite T*'s: $p \triangleq (\forall x)(\exists y)Rxy \& (\forall x)(\forall y)(\forall z)[(Rxy \& Ryz) \rightarrow Rxz] \& (\forall x) \sim Rxx$
- This sort of thing *cannot happen* in LMPL. In this sense, the introduction of a single 2-place predicate involves a *quantum leap* in complexity.

Some Further Remarks on Validity in L2PL

- As I just explained, there is no general decision procedure for \models claims in L2PL. This is because we can't always establish $\not\models$ claims in finite time.
- However, there is a method for proving \models claims *natural deduction*. And, L2PL's natural deduction system *is exactly the same as LMPL's*!
- Before we get to proofs, however, I want to look at the alternating quantifier example that I said separates LMPL and L2PL.
- As we have seen, $(\forall x)(\exists y)Rxy \neq (\exists y)(\forall x)Rxy$. But, the converse entailment *does* hold. That is, $(\exists y)(\forall x)Rxy = (\forall x)(\exists y)Rxy$.
- We will *prove i.e.*, *deduce* $(\exists y)(\forall x)Rxy \vdash (\forall x)(\exists y)Rxy$ shortly.
- Before we do that, let's think about $(\exists y)(\forall x)Rxy \vDash (\forall x)(\exists y)Rxy$ using our definitions, and our informal method of thinking of \forall as & and \exists as \lor . This is interesting for both directions of the entailment.
- But, we need to be much more careful here than with LMPL!

- First, consider what $(\exists y)(\forall x)Rxy$ says on a domain of size n: $(\exists y)(\forall x)Rxy \approx_n (\forall x)Rxa \lor (\forall x)Rxb \lor \cdots \lor (\forall x)Rxn$ $\approx_n (Raa \& \cdots \& Rna) \lor (Rab \& \cdots \& Rnb) \lor \cdots \lor (Ran \& \cdots \& Rnn)$
- Next, consider what $(\forall x)(\exists y)Rxy$ says on a domain of size n: $(\forall x)(\exists y)Rxy \approx_n (\exists y)Ray \& (\exists y)Rby \& \cdots \& (\exists y)Rny$ $\approx_n (Raa \lor \cdots \lor Ran) \& (Rba \lor \cdots \lor Rbn) \& \cdots \& (Rna \lor \cdots \lor Rnn)$
- Then, we notice that these two sentential forms are intimately related. Specifically, we note that $(\exists y)(\forall x)Rxy$ has the following n-form: $X_n = (p_1 \& p_2 \& \cdots \& p_n) \lor (q_1 \& q_2 \& \cdots \& q_n) \lor \cdots \lor (r_1 \& r_2 \& \cdots \& r_n)$
- And, we notice that $(\forall x)(\exists y)Rxy$ has the following n-form: $y_n = (p_1 \lor q_1 \lor \cdots \lor r_1) \& (p_2 \lor q_2 \lor \cdots \lor r_2) \& \cdots \& (p_n \lor q_n \lor \cdots \lor r_n)$
- Fact. $X_n = Y_n$, for any n. Each disjunct of X_n entails every conjunct of Y_n . Caution! This *doesn't* show that $(\exists y)(\forall x)Rxy = (\forall x)(\exists y)Rxy!$
- Fact. $\mathcal{Y}_n \not\models \mathcal{X}_n$, for all n > 1. This can be shown (next slide) using only LSL reasoning. This *does* show that $(\forall x)(\exists y)Rxy \not\models (\exists y)(\forall x)Rxy$.
- The moral is that our "informal" semantical approach to the quantifiers works for LMPL, since no infinite domains are required for ⊭ in LMPL.

- However, our "informal" semantical approach breaks down for L2PL, since we sometimes need an infinite domain to establish $\not\models$ in L2PL.
- In L2PL, if the "informal" method above reveals $p_n \not\models q_n$ for *some* finite n, then it *does* follow that $p \not\models q$. For instance, $\mathcal{Y}_2 \not\models \mathcal{X}_2$ on the last slide:
 - $-(Raa \lor Rab) \& (Rba \lor Rbb) \not\models (Raa \& Rba) \lor (Rab \& Rbb)$
 - This is just an LSL problem with 4-atoms [A = Raa, B = Rab, C = Rba, D = Rbb]. Truth-tables will generate a counterexample.
- On the other hand, if (in L2PL) our "informal" method indicates (as above) that $p_n \models q_n$ for *all* finite n, this does *not* guarantee $p \models q$. *E.g.*:
 - $p = (\forall x)(\exists y)Rxy \& (\forall x)(\forall y)(\forall z)[(Rxy \& Ryz) \to Rxz].$
 - $-q = (\exists x) R x x.$
- We showed above (informally) that $p_n \models q_n$ for *all* finite n. But, we also saw that there are infinite interpretations on which p is \top but q is \bot .