Chapitre 11

Configurations géométriques

I. Équation d'un cercle

1) À partir du centre et du rayon

Définition:

O est un point et r un nombre réel strictement positif.

L'ensemble des points M du plan vérifiant OM = r est le **cercle** de **centre** O et de **rayon** r.

Propriété:

Soit $\mathscr C$ un cercle de centre $\Omega(x_0; y_0)$ et de rayon R.

Un point M(x; y) appartient au cercle \mathscr{C} si, et seulement si :

$$(x-x_0)^2+(y-y_0)^2=R^2$$
.

Cette équation est une **équation cartésienne** du cercle \mathscr{C} .

Démonstration :

 $M \in \mathcal{C} \Leftrightarrow \Omega M = R \Leftrightarrow \Omega M^2 = R^2$.

Or dans $(O; \vec{i}, \vec{j})$, on a $\Omega M^2 = (x - x_0)^2 + (y - y_0)^2$.

Exemples:

• Dans un repère orthonormé $(O; \vec{i}, \vec{j})$, l'équation du cercle \mathscr{C} de centre $\Omega(-2; 3)$ passant par le point A(2; 1) est :

$$(x+2)^2+(y-3)^2=20$$

car $\Omega A^2 = (2 - (-2))^2 + (1 - 3)^2 = 4^2 + (-2)^2 = 16 + 4 = 20$.

• Soit l'ensemble des points M(x; y) vérifiant $x^2 + y^2 + 6x - 2y + 8 = 0$.

$$x^{2}+y^{2}+6x-2y+8=0 \Leftrightarrow [x^{2}+6x]+[y^{2}+2y]+8=0$$

$$\Leftrightarrow [(x+3)^{2}-9]+[(y-1)^{2}-1]+8=0 \Leftrightarrow (x+3)^{2}+(y-1)^{2}=2$$

On reconnect l'équation du carela
$$\mathscr{C}$$
 de centre $\Omega(-3:1)$ et de reven \mathcal{L}

On reconnaît l'équation du cercle \mathscr{C} de centre $\Omega(-3;1)$ et de ravon $\sqrt{2}$.

À partir du diamètre 2)

Propriété:

Soit \mathscr{C} un cercle de diamètre [AB].

Un point M appartient au cercle \mathscr{C} si, et seulement si, $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$.

Démonstration:

Si M est distinct de A et B:

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = 0 \Leftrightarrow \text{les droites } (MA) \text{ et } (MB) \text{ sont orthogonales}$$

- ⇔ le triangle AMB est rectangle en M
- \Leftrightarrow M appartient au cercle de diamètre [AB].
- Si M = A ou M = B, alors le point M appartient évidemment au cercle de diamètre [AB], et le produit scalaire $\overline{MA} \cdot \overline{MB}$ est nul (car $\overline{MA} = \vec{0}$ ou $\overline{MB} = \vec{0}$).

Exemple:

Soit A(1; 3) et B(-3; 1).

Le cercle \mathscr{C} de diamètre [AB] est l'ensemble des points M(x;y) tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$.

On a
$$\overrightarrow{MA} \begin{pmatrix} 1-x \\ 3-y \end{pmatrix}$$
 et $\overrightarrow{MB} \begin{pmatrix} -3-x \\ 1-y \end{pmatrix}$ donc $\overrightarrow{MA} \cdot \overrightarrow{MB} = (1-x)(-3-x) + (3-y)(1-y)$.

On obtient alors $x^2 + 2x - 3 + y^2 - 4y + 3 = 0$, et ainsi $(x + 1)^2 - 4 + (y - 2)^2 - 1 = 0$.

 \mathscr{C} est donc le cercle de centre $\Omega(-1; 2)$ et de rayon $\sqrt{5}$.

II. Applications au triangle

Formule de la médiane 1)

Définition:

Dans un triangle, la **médiane issue d'un sommet** est la droite qui passe par ce sommet et le milieu du côté opposé.

Définition:

On appelle **centre de gravité** d'un triangle ABC l'unique point G tel que $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.

Propriétés:

- Les médianes d'un triangle sont concourantes.
- Leur point d'intersection est le centre de gravité
- Le centre de gravité est situé aux deux tiers d'une médiane en partant du sommet dont elle est issue.

Démonstrations :

Soit A', B' et C' les milieux respectifs des côtés [BC], [AC] et [AB].

G est le centre de gravité de ABC donc $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$, et donc $-3\overrightarrow{GA} = \overrightarrow{AB} + \overrightarrow{AC}$.

Comme A' est le milieu de [BC], alors $3\overline{AG} = 2\overline{AA'}$ et donc $\overline{AG} = \frac{2}{3}\overline{AA'}$.

De même $\overline{BG} = \frac{2}{3}\overline{BB'}$ et $\overline{CG} = \frac{2}{3}\overline{CC'}$: G appartient donc à chacune des médianes du triangle, elles sont donc concourantes et leur point d'intersection est le centre de gravité de ABC.

3

De plus, on a bien $AG = \frac{2}{3}AA'$; $BG = \frac{2}{3}BB'$ et $CG = \frac{2}{3}CC'$.

Propriétés:

Soit A et B deux points du plan, et I le milieu du segment [AB].

Pour tout point M du plan :

•
$$MA^2 + MB^2 = 2MI^2 + \frac{AB^2}{2}$$

•
$$MA^2 - MB^2 = 2 \overrightarrow{IM} \cdot \overrightarrow{AB}$$

•
$$\overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 - \frac{AB^2}{4}$$

Démonstration:

Pour tout point M du plan, on a $MA^2 + MB^2 = \overrightarrow{MA}^2 + \overrightarrow{MB}^2 = (\overrightarrow{MI} + \overrightarrow{IA})^2 + (\overrightarrow{MI} + \overrightarrow{IB})^2$.

Ainsi,
$$MA^2 + MB^2 = \overline{MI}^2 + 2\overline{MI} \cdot \overline{IA} + \overline{IA}^2 + \overline{MI}^2 + 2\overline{MI} \cdot \overline{IB} + \overline{IB}^2$$

qui s'écrit encore :

$$MA^2 + MB^2 = 2MI^2 + 2\overrightarrow{MI} \cdot \overrightarrow{IA} + 2\overrightarrow{MI} \cdot \overrightarrow{IB} + \overrightarrow{IA}^2 + \overrightarrow{IB}^2 = 2MI^2 + 2\overrightarrow{MI} \cdot (\overrightarrow{IA} + \overrightarrow{IB}) + \overrightarrow{IA}^2 + \overrightarrow{IB}^2$$

Or I est le milieu de
$$[AB]$$
; on a donc $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$ et $IA^2 = IB^2 = \left(\frac{1}{2}AB\right)^2 = \frac{AB^2}{4}$.

On a donc
$$MA^2 + MB^2 = 2MI^2 + 2\overline{MI} \cdot \vec{0} + \frac{\overline{AB}^2}{4} + \frac{\overline{AB}^2}{4} = 2MI^2 + \frac{AB^2}{2}$$
.

Exemple:

Dans le triangle ABC ci-contre, on a $BA^2 + BC^2 = 2BI^2 + \frac{AC^2}{2}$

$$BI^2 = \frac{1}{2} \left(BA^2 + BC^2 - \frac{AC^2}{2} \right) = \frac{1}{2} \left(5^2 + 6^2 - \frac{10^2}{2} \right) = \frac{11}{2}$$
, soit $BI = \sqrt{\frac{11}{2}}$.

2) Formule d'Al-Kashi

Dans un triangle ABC, on notera:

$$a=BC$$
, $b=AC$, $c=AB$, $\widehat{A}=\widehat{BAC}$, $\widehat{B}=\widehat{ABC}$, $\widehat{C}=\widehat{ACB}$

Propriétés:

Pour tout triangle ABC, on a :

- $a^2 = b^2 + c^2 2bc \cos \hat{A}$
- $b^2 = a^2 + c^2 2ac \cos \hat{B}$
- $c^2 = a^2 + b^2 2ab\cos \hat{C}$

Démonstration:

 $a^2 = BC^2 = \overrightarrow{BC}^2 = (\overrightarrow{BA} + \overrightarrow{AC})^2 = \overrightarrow{BA}^2 + 2\overrightarrow{BA} \cdot \overrightarrow{AC} + \overrightarrow{AC}^2 = BA^2 + AC^2 - 2\overrightarrow{AB} \cdot \overrightarrow{AC} .$

Or $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos \hat{A}$ qui est l'égalité recherchée.

Exemple:

Soit EFG un triangle tel que EF=7, FG=4 et EG=5.

5

On cherche à déterminer les mesures de ses angles.

On a donc: $g^2 = e^2 + f^2 - 2ef \cos \hat{G}$

Soit $7^2 = 4^2 + 5^2 - 2 \times 4 \times 5 \times \cos \hat{G}$. D'où $\cos \hat{G} = \frac{-8}{40} = -0.2$ soit $\hat{G} \approx 101.5^{\circ}$.

De même : $f^2 = e^2 + g^2 - 2eg\cos \hat{F}$. D'où $\cos \hat{F} = \frac{40}{50} = \frac{5}{7}$ soit $\hat{F} \simeq 44.4^{\circ}$.

Donc $\hat{E} = 180 - (\hat{G} + \hat{F})$, soit $\hat{E} \simeq 34.1^{\circ}$.

3) Formule des aires

Propriété:

Pour tout triangle ABC non aplati, si on note $\mathcal G$ l'aire du triangle ABC, on a :

$$\mathcal{S} = \frac{1}{2}bc\sin\hat{A} = \frac{1}{2}ac\sin\hat{B} = \frac{1}{2}ab\sin\hat{C}$$

Démonstration (par disjonction des cas) :

Appelons H le pied de la hauteur issue de C dans le triangle ABC.

Cas 1 :
$$\hat{A}$$
 est aigu
On a $\widehat{HAC} = \widehat{BAC} = \hat{A}$

Dans le triangle AHC rectangle en H, on a $\sin \widehat{HAC} = \frac{HC}{AC}$, c'est-à-

dire
$$\sin \hat{A} = \frac{HC}{AC}$$
.

ce que l'on peut encore écrire $HC = b \sin \hat{A}$

Cas 2 : \hat{A} est droit

H et A sont confondus ; on a donc HC = AC = b.

Dans ce cas, on a
$$\hat{A} = \frac{\pi}{2}$$
, donc $\sin \hat{A} = 1$;

on peut alors écrire $HC=b=b\times 1=b\times \sin \hat{A}$

Cas 3 : A est obtus

 \widehat{HAC} et $\widehat{BAC} = \widehat{A}$ sont supplémentaires;

ils ont donc le même sinus : $\sin \widehat{HAC} = \sin \widehat{A}$

Dans le triangle AHC rectangle en H, on a $\sin \widehat{HAC} = \frac{HC}{AC}$,

c'est-à-dire
$$\sin \hat{A} = \frac{HC}{b}$$
;

ce que l'on peut encore écrire $HC = b \sin \hat{A}$

Dans tous les cas, on peut écrire $HC = b \sin \hat{A}$.

On peut donc exprimer l'aire \mathcal{S} du triangle ABC : $s = \frac{1}{2}AB \times HC = \frac{1}{2}c \times b \sin \hat{A}$;

ce qui s'écrit également $\mathcal{S} = \frac{1}{2}bc\sin\hat{A}$.

Propriété:

Pour tout triangle ABC non aplati, on a:

$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}}$$

Démonstration:

On utilise la formule $2S = bc \sin \hat{A} = ac \sin \hat{B} = ab \sin \hat{C}$ et on divise par le produit abc, ce qui donne :

$$\frac{2S}{abc} = \frac{\sin \hat{A}}{a} = \frac{\sin \hat{B}}{b} = \frac{\sin \hat{C}}{c} \text{ ou encore } \frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}} = \frac{abc}{2S}.$$

III. Résolution de problèmes géométriques

1) <u>Lieux géométriques</u>

Définition:

Un **lieu géométrique** est un ensemble de points qui satisfont une même condition.

Exemples:

L'ensemble des points M qui vérifient :

- MA = MB est la médiatrice du segment [AB].
- $\overrightarrow{AM} = k \overrightarrow{AB}$ est la droite (AB) ou une partie de celle-ci selon les valeurs de k.
- Ω M = r (avec r > 0) est le cercle de centre Ω et de rayon r.

2) <u>Optimisation géométrique</u>

Définition:

Optimiser une quantité, c'est trouver un point, ou un lieu, qui la maximise ou la minimise.

Exemple:

Soient les points A(4; 0) et B(0; 11).

On place un point M sur le segment [AB] et on place N et P sur les axes de façon à ce que MNOP soit un rectangle.

On veut savoir où placer le point M de façon à ce que l'aire du rectangle soit maximale.

À l'aide d'un logiciel de géométrie dynamique, on a tracé la figure et on a fait afficher un point C qui a pour abscisse celle du point M et pour ordonnée l'aire du rectangle.

On conjecture que cette aire est maximale pour le point M de coordonnées (2; 5,5).