Predicting IMDb Movie Ratings

Group 6: Adegbenga Ayoola, Grace Le, Michelle Raj, Syed Bari, Wardah Anis

ABOUT DATA

Data Source	Kaggle (IMDB Dataset)		
Data Points	85855		
Target	weighted_average_rating		
Features	 Duration Country Language Tot_voters_below_18 Tot_voters_below_30 Tot_voters_below_45 Tot_voters_above_45 Tot_male_voters tot_female_voters 		

Figure 1: ERD Diagram

EXPLORATORY DATA ANALYSIS

Figure 2: Top 15 languages with highest movie ratings

Figure 3: Top 15 countries that produces highest rated movies

Figure 3: Genre vs Average Rating

Correlation Matrix for Cleaned Data

	WINDS AND AND									
Unnamed: 0 -	1	0.13	-0.18	0.013	0.032	0.0088	-0.034	0.0096	0.021	0.055
duration -	0.13	1	0.24	0.13	0.12	0.12	0.14	0.13	0.11	0.065
weighted_average_vote -	-0.18	0.24	1	0.17	0.15	0.17	0.2	0.17	0.16	0.05
total_votes -	0.013	0.13	0.17	1	0.98	0.99	0.95		0.94	-0.027
tot_voters_below_30 -	0.032	0.12	0.15	0.98	1	0.96	0.88	0.97	0.94	-0.029
tot_voters_below_45 -	0.0088	0.12	0.17	0.99	0.96	1	0.96	0.99	0.93	-0.025
tot_voters_above_45 -	-0.034	0.14	0.2	0.95	0.88	0.96	1	0.95	0.87	-0.02
tot_male_voters -	0.0096	0.13	0.17	1	0.97	0.99	0.95	1	0.91	-0.027
tot_female_voters -	0.021	0.11	0.16	0.94	0.94	0.93	0.87	0.91	1	-0.022
tot_voters_below_18 -	0.055	0.065	0.05	-0.027	-0.029	-0.025	-0.02	-0.027	-0.022	1
	Unnamed: 0	duration	weighted_average_vote	total_votes	tot_voters_below_30	tot_voters_below_45	tot_voters_above_45	tot_male_voters	tot_female_voters	tot_voters_below_1

- (

- 0.6

-0

-0

1. Multiple Linear Regression

```
r2 socre is 0.24489492727110707
mean_sqrd_error is== 1.2087212257382316
root_mean_squared error of is== 1.0994185853159986
```

The reason for the low score would be due to insufficient data relating to the average rating variable and relevance to the problem although the score has increased from previous linear regression model by 20% more.

2. Support Vector Machine

We divided our target into two groups:

- I. Ratings above 7
- II. Ratings below 7

	precision	recall	f1-score	support
0	0.90	0.93	0.92	296
1	0.71	0.61	0.65	79
accuracy			0.86	375
macro avg	0.80	0.77	0.78	375
weighted avg	0.86	0.86	0.86	375

	Predicted Below 7	Predicted Above 7
Actual Below 7	276	20
Actual Above 7	31	48

3. Random Forest Regression

Description Data splitting and Modelling

Metrics for Regression Model used

Mean Squared Error Root Mean Squared Error Mean Absolute Error

Output for Estimators (200, 800, 100)

[0.49415757514316994,0.4947008957127814, 0.4958920277984976,0.4960607807872609,0.4961116558077189,0.495891610385218

The reason for the low score would be due to insufficient data relating to the average rating variable and relevance to the problem although the score has increased from previous linear regression model by 20% more.

5. Deep Learning

- They are an advanced form of machine learning that recognizes patterns and features in input data and provides a clear quantitative output.
- Used in classification algorithms and regression
- Detects complex non linear relationships
- Scalable and effective

5. Deep Learning cont.

Summary of Results for Machine Learning Models

- 1. Multiple linear Regression Best Score: 0.244
- 2. Support Vector Machine Accuracy: 0.86
- 3. Random Forest Regression Best Score: 0.50
- 4. Gradient Boosting Accuracy :0.40
- 5. Deep Learning Accuracy: 0.98

Recommendation for Future Analysis

- 1. Sentimental Analysis
- 2. Building Movie Recommendations System
- 3. Consider the Budget of the movie

What we would have done differently?

Utilized Dataset for Movie Ratings from various movie rating platforms and streaming services like Netflix, Rotten Tomatoes, Metacritic,

Google to get more accurate prediction results

