MATH9952 Modern Applied Statistical Models ASSIGNMENT MARKING SCHEME

Student No.	D/6	126734	Name:	JERRY	KIELY
	0 1	•	X		
Assignment _) .	SULVIVAL	ANALYSIA		

Part 1: Part 2: Part 3: Total Marks from 100	30
Part 3: Total Marks from 100	30
Total Marks from 100	
	36
	76
Comments:	
A basic but solid report to	<u>'</u> ~
the Cox PH Model.	
It would have berejetted from	none
detailed oralgin g the route	6 -
Merhys present Horand vatio	5
and their respection CI's	7
what about conjuning the diff	
BMI groups weing customised	
MyneKeres?	

The Worcester Heart Attack Study

Jerry Kiely

19 April 2017

Introduction

The main goal of this study is to describe factors associated survival rates following hospital admission for acute myocardial infarction (MI), i.e. heart attack.

Name	Description	Codes / Values
id	Identification Number	
age	Age at Hospital Admission	Years
gender	Gender	0 = Male, 1 = Female
hr	Initial Heart Rate	Beats per minute
bmi_group	Body Mass Index category	low, medium, high, very.high
cvd	History of Cardiovascular	0 = No, 1 = Yes
	Disease	
chf	Congestive Heart Compli-	0 = No, 1 = Yes
	cations	
miord	MI Order	0 = First, 1 = Recurrent
los	Length of Hospital Stay	Days from Hospital Admission
lenfol	Time variable	Days from Hospital Admission Date
		to Date of Last Follow-up
fstat	Event indicator	0 = Alive (censored), 1 = Dead

The Data

Before fitting a model to the data let's have a look at the behaviour of some of the predictors in isolation, beginning with Gender. From Figure 1 we can see that both the survival functions are reasonably close, with the female group being slightly worse than the male.

Figure 1: Survival Function by Gender

Now lets look at BMI Group. As can be seen from Figure 2, there is a lot of variation in the survival functions for the different BMI groups. What's interesting is that the low and very high groups seem to have similar survival functions, and the medium BMI group seems to have the worst survival function.

Figure 2: Survival Function by BMI Group

Both these predictors look to be of interest, and there does seem to be significant difference between the survival functions for each group within these predictors. Lets move on to fitting a full model and seeing which predictors are significant and which are not.

The Model

To begin with we fit a Cox PH model with all predictors and look to see which, if any, predictors can be pruned as insignificant. As can be seen from Table 2, the predictors with an AIC value less than the intercept's AIC value are cvd, los, and miord. Also, by looking at the p-values (right-most column) we see that these predictors have values which would also indicate insignificance.

do son men æ null " mortel?

Table 2: table detailing statistics for all predictors

	Df	AIC	LRT	Pr(>Chi)
	NA	1350.595	NA	NA
age	1	1403.761	55.1661583	0.0000000
factor(gender)	1	1353.165	4.5696690	0.0325429
hr	1	1356.081	7.4853886	0.0062202
factor(bmi_group)	3	1356.712	12.1162990	0.0069952
cvd	1	1348.610	0.0147793	0.9032394
chf	1	1370.211	21.6160302	0.0000033
factor(miord)	1	1350.350	1.7542536	0.1853429
los	1	1348.736	0.1404566	0.7078275

We prune these values and look at the results:

Table 3: table detailing remaining predictors after pruning

Df	AIC	LRT	Pr(>Chi)
NA	1346.747	NA	NA
1	1403.542	58.794823	0.0000000
1	1349.206	4.458412	0.0347298
1	1352.978	8.230396	0.0041195
3	1353.218	12.470658	0.0059331
1	1366.037	21.289293	0.0000039
	NA 1 1 1 3	NA 1346.747 1 1403.542 1 1349.206 1 1352.978 3 1353.218	NA 1346.747 NA 1 1403.542 58.794823 1 1349.206 4.458412 1 1352.978 8.230396 3 1353.218 12.470658

As we can see, all predictors are now very significant. Looking at the coefficients of the model - the coefficients representing the log hazard ratios - we can see that (after exponentiating) for a unit increase in age we have a 5.96% increase in hazard. For gender, the hazard decreases by 32.53% going from male to female. For initial heart rate we see the hazard increases by 1.06% for unit increase. And for congestive heart complications, the hazard increases by 136.67% going from no to yes (which is pretty much to be expected).

```
library(survival)
whas = read.csv("~/whas.csv", header = T)
 attach(whas)
 colnames(whas)
km1 = survfit(Surv(lenfol, fstat) ~ 1, conf.type = 'plain', data = whas)
plot(km1)
km2 = survfit(Surv(lenfol, fstat) \sim factor(gender), conf.type = 'plain', data = whas) plot(km2, col = c('red', 'blue'))
survdiff(Surv(lenfol, fstat) ~ factor(gender), data = whas)
km3 = survfit(Surv(lenfol, fstat) ~ factor(bmi_group), conf.type = 'plain', data = whas)
plot(km3, col = c('red', 'blue', 'green', 'purple'))
survdiff(Surv(lenfol, fstat) ~ factor(bmi_group), data = whas)
km4 = survfit(Surv(lenfol, fstat) ~ factor(miord), conf.type = 'plain', data = whas)
plot(km4, col = c('red', 'blue'))
survdiff(Surv(lenfol, fstat) ~ factor(miord), data = whas)
fit1 = coxph(Surv(lenfol, fstat) ~ factor(miord), data = whas)
summary(fit1)
fit2 = coxph(Surv(lenfol, fstat) ~ factor(gender), data = whas)
summary(fit2)
fit3 = coxph(Surv(lenfol, fstat) ~ factor(gender) + age, data = whas)
summary(fit3)
fit4 = coxph(Surv(lenfol, fstat) ~ age, data = whas)
summary(fit4)
fita = coxph(Surv(lenfol, fstat) ~ age + factor(gender) + hr + factor(bmi_group) + cvd + chf + factor(miord)
+ los, data = whas)
drop1(fita, test = 'Chisq')
fitb = update(fita, ~. - cvd)
drop1(fitb, test = 'Chisq')
fitc = update(fitb, ~. - los)
drop1(fitc, test = 'Chisq')
fitd = update(fitc, ~. - factor(miord))
drop1(fitd, test = 'Chisq')
fitf = coxph(Surv(lenfol, fstat) ~ age + factor(gender) + hr + factor(bmi_group) + chf, data = whas)
summary(fitf)
detach(whas)
```


(a)
$$S(f) = 1 - \int_{0}^{f} f(u) du$$

$$\begin{cases} u = e^{-\lambda t^{\gamma}} \\ du = -\lambda^{\gamma} t^{\gamma-1} e^{-\lambda t^{\gamma}} dt \end{cases}$$

$$= 1 + \left[e^{-\lambda u^{\gamma}} \right]_{0}^{t}$$

$$= 1 + \left(e^{-x+y} - 1\right)$$

$$b \qquad h(t) = b(t) = \lambda y t^{\gamma-1}$$

$$\frac{1}{2} \left(\frac{\ln 2}{x} \right) = \left(\frac{\ln 2}{x} \right)^{8}$$

$$\int_{0}^{\infty} t dt dt = \int_{0}^{\infty} t x x t^{8-1}e^{-xt^{8}}dt$$

$$t = (u x)^{1/8}$$

$$x x t^{8-1}dt = dn$$

$$\vdots \qquad \int_{0}^{\infty} t x x t^{8-1}e^{-xt^{8}}dt = \int_{0}^{\infty} (u)^{1/8}e^{-u}dn$$

$$= \int_{0}^{\infty} (x)^{1/8} \cdot u^{1/8}e^{-u}dn$$

$$= x^{-1/8} \int_{0}^{\infty} u^{1/8}e^{-u}dn$$

$$= x^{-1/8} \int_{0}^{\infty} u^{1/8}e^{-u}dn$$

$$= x^{-1/8} \int_{0}^{\infty} u^{1/8}e^{-u}dn$$

$$= \frac{1}{\sqrt{8}} \left[\left(\frac{1}{8} + 1 \right) \right]$$

$$= \left[\left(\frac{1}{8} + 1 \right) \right]$$

*

ν

(22)

(a)

(A)

5 (H) nj-lj 4: 2; Nj Cj

B

s (+) C_{5} d; f: رآ

median per B: 73

Var (ue)

Ho: surviver punctions are the same

tha: survivor punchons are not the same

Var (ue)

p- Value = 0.784

in tail to reject the null hypothersis

+