微分流形模拟题

周潇翔

摘要

微分流形考前准备的一些模拟题, 和老师的考题还是有很大区别的.

1 判断题

- 1. (F) $f: \mathbb{R} \to \mathbb{R}$ 为光滑单射,则 f 为微分同胚.
- 2. (F) $(-1,1) \times (-1,1)$ 与 B(0,1) 不微分同胚.
- 3. (F) X_1, X_2 为完备向量场,则 $X_1 + X_2$ 为完备向量场.
- 4. (T) S^5 上存在处处非零的向量场.
- 5. (F) 若 $f: M \to N, \Gamma_f$ 为 $M \times N$ 的光滑子流形, 则 f 为光滑映射.
- 6. (F) 存在 $S^1 \times S^1$ 的等距嵌入.
- 7. (F) 若 G_1, G_2 为 Lie 群, 且有微分同胚 $\tau: G_1 \to G_2$, 则 τ 为 Lie 群同态.
- 8. (F) S^1, S^2, S^3 均为 Lie 群.(事实上, 在 S^n 中, 只有 S^1, S^3, S^7)
- 9. (F) 设 \mathfrak{g} 为 G 的 Lie 代数, 则 \mathfrak{g} 的 Lie 子代数同 G 的 Lie 子群一一对应.
- 10. (F) 若连通 Lie 群同态 $\varphi: G \to H$ 满足 $d\varphi: \mathfrak{g} \to \mathfrak{h}$ 为同构, 则 φ 为 Lie 群同构.
- 11. (F) 若 G, H 均为连通 Lie 群, $\mathfrak{g}, \mathfrak{h}$ 为其对应的 Lie 代数, 且 $\mathfrak{g}, \mathfrak{h}$ 为同构的 Lie 代数, 则 G, H 为群同构.
- 12. (T) exp 是 su(n), so(n), u(n), gl(n) 分别到其 Lie 群上的满射.

1 判断题 2

- 13. (F) 若 \mathcal{V} 为 involutive, 则对任意 $X, Y \in \mathcal{V}, [X, Y] = 0$.
- 14. (F) 若 X_1, \ldots, X_k 为 U 上的向量场, 且于每一点处线性无关, 且 \mathcal{V} 为 involutive, 则对任意 $p \in U$, 存在 p 的附近的一个局部坐标卡 (φ_p, U_p, V_p) , 使得 $X_i = \partial_i$ on U_p .
- 15. (T) 微分同胚 $\rho: M \to M$ 保定向 $\Leftrightarrow \deg \rho > 0$.
- 16. (T) 若 $\rho: M \to N$ 有正则值 $q \in N$, 则 $\rho^{-1}(q)$ 为可定向子流形。
- 17. (F) M 为连通的 n 维流形,则 M 可定向 $\Leftrightarrow H^n_{dR}(M) \simeq \mathbb{R}.$ (需加条件 M 紧或将 $H^n_{dR}(M)$ 替换成 $H^n_c(M)$)
- 18. (F) 设 M 为带边流形,则 ∂M 为可定向流形。
- 19. (F) Möbius 带不为带边流形的边界。
- 20. (F) 若 M 与 N 同伦等价且维数相同,则 $for \forall k, H_c^k(M) = H_c^k(N)$.
- 21. (?) 设 M 为无边光滑流形, $\Omega \subseteq M$ 为 domain, $\bar{\Omega}$ 紧,X 为 M 上的完备向量场,生成的流为 $\phi(t)$,且 $\Omega_t = \phi_t(\Omega)$ 始终为光滑带边流形,则 $\partial \Omega_t$ 与 $\partial \Omega_0$ 微分同胚。
- 22. (T) 设 M 为紧的可定向流形, 维数为 n, $4 \nmid n$, 则 $\chi(M)$ 为偶数。
- 23. (T) 对任意流形 M, TM 与 T^*M 均可定向。(E 可定向 $\Rightarrow E^*$ 可定向)
- 24. (T) S^k 存在处处非 0 的向量场 $\Leftrightarrow k$ 为奇数。
- 25. (F) 设 M 为紧致无边流形, $X \in \Gamma^{\infty}(TM)$,则对 $\forall f, g \in C^{\infty}$,有

$$\int_{M} X(f)g\mu = -\int_{M} fX(g)\mu$$