

Institut für Algebra und Geometrie Prof. Dr. Wilderich Tuschmann Dr. Rafael Dahmen Dr. Elisa Hartmann Martin Günther, M. Sc.

Lineare Algebra I

Winter-Semester 2020/2021

Übungsblatt 12

08.02.21

Aufgabe 1 (Polynome, Eigenwerte und Ähnlichkeit)

(10 Punkte)

Es sei \mathbb{K} ein Körper und $p \in \mathbb{K}[X]$ ein Polynom. Beweisen Sie die folgenden Aussagen:

- a) Wenn $A, B \in \mathbb{K}^{n \times n}$ zueinander ähnlich sind, sind auch p(A) und p(B) zueinander ähnlich.
- b) Wenn λ ein Eigenwert von $A \in \mathbb{K}^{n \times n}$ ist, dann ist auch $p(\lambda)$ ein Eigenwert von p(A).
- c) Sind $A \in \mathbb{K}^{n \times m}$ und $B \in \mathbb{K}^{m \times n}$ zwei Matrizen, und $\lambda \in \mathbb{K} \setminus \{0\}$ ein Eigenwert von AB, dann ist λ auch ein Eigenwert von BA.

Hinweis: Denken sie daran, dass wir den Nullvektor nicht als Eigenvektor bezeichnen.

Aufgabe 2 (Spur ist linear und zyklisch.)

(10 Punkte)

Es sei $\mathbb K$ ein Körper und $\ell, m, n \in \mathbb N$. Beweisen Sie die folgenden Aussagen, ohne Lemma 5.5.6. zu verwenden:

- a) Für jedes $n \in \mathbb{N}$ ist die Spur tr
: $\mathbb{K}^{n \times n} \to \mathbb{K}$ eine lineare Abbildung von Vektorräumen.
- b) Für $A \in \mathbb{K}^{n \times m}$ und $B \in \mathbb{K}^{m \times n}$ gilt $\operatorname{tr}(AB) = \operatorname{tr}(BA)$
- c) Geben Sie ein Beispiel für solche A und B an, sodass $tr(AB) \neq tr(A) \cdot tr(B)$ gilt.
- d) Für Matrizen $A \in \mathbb{K}^{n \times m}, B \in \mathbb{K}^{m \times \ell}, C \in \mathbb{K}^{\ell \times n}$ gilt

$$tr(ABC) = tr(CAB) = tr(BCA).$$

Aufgabe 3 (Charakteristisches Polynom und Eigenräume)

(10 Punkte)

Gegeben sei die Matrix

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 3 & 2 & 0 & 2 \\ 0 & 1 & 2 & 3 \\ 4 & 2 & 0 & 4 \end{pmatrix} \in \mathbb{F}_5^{4 \times 4}.$$

- a) Bestimmen Sie das charakteristische Polynom $p_A \in \mathbb{F}_5[X]$.
- b) Bestimmen Sie alle Eigenwerte und die zugehörigen Eigenräume. Hinweis: Beachten Sie, dass in \mathbb{F}_5 die üblichen Lösungsformeln für Nullstellen von Polynomen nicht funktionieren.
- c) Stellen Sie p_A als Produkt von Linearfaktoren dar. *Hinweis:* Linearfaktoren sind Polynome der Form (X - a) für ein $a \in \mathbb{F}_5$. Die Linearfaktoren müssen nicht alle verschieden sein.

Aufgabe 4 (Boolesche Algebren)

(10 Punkte)

Es sei X eine Menge. Von Tutoriumsblatt 5 wissen wir, dass $(\mathcal{P}(X), \triangle, \cap)$ ein kommutativer Ring mit Null-Element \emptyset und Eins-Element X ist. Dabei bezeichnet $\mathcal{P}(X)$ die Potenzmenge, \triangle die symmetrische Differenz (als Addition) und \cap die Schnittmenge (als Multiplikation).

Nun definieren wir eine Skalarmultiplikation $\mathbb{F}_2 \times \mathcal{P}(X) \to \mathcal{P}(X)$ durch $0 \cdot A = \emptyset$ und $1 \cdot A = A$ für alle $A \in \mathcal{P}(X)$.

Beweisen Sie, dass durch diese Skalarmultiplikation $(\mathcal{P}(X), \triangle, \cap, \cdot)$ zu einer \mathbb{F}_2 -Algebra wird.

Abgabe bis Montag, den 15.02.21 um 18:00 Uhr. Bitte verfassen Sie Ihre Lösung handschriftlich und versehen Sie sie mit Ihren Namen, Ihren Matrikelnummern und E-Mail-Adressen aller Teilnehmenden ihrer Lerngruppe. Laden Sie sie dann als eine pdf-Datei in den entsprechenden Postkasten im ILIAS-Kurs hoch.