Série de TD N° 03

Exercice 1Utiliser la méthode de résolution pour prouver ou infirmer les affirmations suivantes.

- $1. \models p \Rightarrow p$
- 2. \models ((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)
- 3. \models ((s \Rightarrow r) \land p $\land \neg$ r) $\Rightarrow \neg$ r $\land \neg$ s \land p
- $4. \models [(p \land q) \lor (r \land q)] \Rightarrow (p \lor r)$
- 5. $\{q \Rightarrow (\neg q \lor r), q \Rightarrow (p \land \neg r)\} \models q \Rightarrow r$
- 6. $\{ q \Rightarrow (\neg q \lor r), q \Rightarrow (p \land \neg r) \} \models q \land r$
- 7. $\{p \Rightarrow q, q \Rightarrow r, p \lor \neg r\} \models p \land q \land r$.
- 8. $\{p \Rightarrow q, q \Rightarrow r, p \lor \neg r\} \models (p \land q \land r) \lor (\neg p \land \neg q \land \neg r).$

<u>Exercice 2</u> prenez les formules de l'exercice 4 de la série 2, et vérifier si ces formule sont satisfiables ou pas en utilisant la méthode de résolution.

Exercice 3 : Soit la théorie T du calcul propositionnel :

 $A1: A \rightarrow (B \rightarrow A)$

et la règle du Modus Ponens : A, A \rightarrow B \vdash B.

$$A2: (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$A3: (\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$$

Montrer dans la théorie T que :

- 1. $A + A \rightarrow A$ 2. $+B \rightarrow B$ 3. $\alpha \rightarrow \beta$, $\beta \rightarrow \gamma + \alpha \rightarrow \gamma$ 4. $\alpha \rightarrow (\beta \rightarrow \gamma)$, $\beta + \alpha \rightarrow \gamma$ 5. $\neg \neg \beta + \beta$
- 6. $\beta \vdash \neg \neg \beta$ 7. $\alpha \rightarrow \beta$, $\neg \beta \vdash \neg \alpha$, 8. $\alpha \rightarrow (\beta \rightarrow \gamma) \vdash \beta \rightarrow (\alpha \rightarrow \gamma)$, 9. $\alpha \vdash \beta \rightarrow \alpha$

Exercice 4 : Montrer dans la théorie *T* que :

- 1. $\beta \rightarrow \alpha$, $\neg \alpha \vdash \neg \beta$ 2. $\alpha \rightarrow \beta$, $\neg \alpha \rightarrow \gamma \vdash \neg \beta \rightarrow \gamma$ 3. $\alpha \rightarrow \beta$, $\neg \alpha \rightarrow \gamma \vdash \neg \gamma \rightarrow \beta$
- 4. $\vdash \neg (\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)$

Exercice 3: Montrer que les formules suivantes sont des théorèmes :

- 1. $(A \rightarrow A)$
- 2. $(\neg B \rightarrow (\neg B \rightarrow (B \rightarrow A)))$
- 3. $(\neg B \rightarrow (B \rightarrow A))$
- 4. $((\neg A \rightarrow A) \rightarrow A)$

Exercice 4: Soient les deux formules F1, F2 et suivantes :

$$F1 \equiv (A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

$$F2 \equiv ((A \rightarrow B) \rightarrow C) \rightarrow (B \rightarrow C)$$

- 1) Montrer, à l'aide du théorème de déduction, que F1 et F2 sont des théorèmes.
- 2) Montrer, maintenant, que F1 et F2 sont des théorèmes ; et cela sans utiliser d'hypothèses.

Exercice 5 : Effectuer une déduction naturelle montrant les raisonnements ci-dessous sont correctes:

- 1. $q \rightarrow (p \rightarrow r) + (q \land p) \rightarrow r$.
- 2. $r \vdash p \rightarrow (p \land r)$.
- 3. $P \wedge R, R \wedge S + P \wedge S$
- 4. $Q, Q \rightarrow \neg R \vdash \neg R \lor T$
- 5. $T \rightarrow R + (P \land T) \rightarrow R$
- 6. $(Q \land R) \lor (T \rightarrow R), \neg R \vdash \neg T$
- 7. $P, \neg R \vdash \neg (P \rightarrow R)$

Exercice 6 :Les raisonnements suivants sont corrects. Trouver une déduction naturelle qui le prouve.

- 1. $P \rightarrow (Q \lor R), \neg Q, \neg R \vdash \neg P$
- 2. $\neg (P \rightarrow Q) \vdash P \land \neg Q$
- 3. $(P \rightarrow Q) \rightarrow R, \neg R + P \land \neg Q$
- 4. $(P \rightarrow Q) \rightarrow (R \rightarrow S)$, $\neg S \lor \neg Q$, $P \rightarrow Q \vdash \neg R \lor \neg P$