Uvod

V prvem letniku smo spoznali, kako lahko zveznost funkcije v neki točki karakteriziramo z zaporedji. Funkcija $f: \mathbb{R} \to \mathbb{R}$ je zvezna v točki $a \in \mathbb{R}$ natanko tedaj, ko za vsako zaporedje (a_n) , ki konvergira proti a, zaporedje $(f(a_n))$ konvergira proti f(a). Podobno lahko z zaporedji karakteriziramo funkcijsko limito: število $L \in \mathbb{R}$ je limita funkcije $f: \mathbb{R} \to \mathbb{R}$ v točki $a \in \mathbb{R}$ natanko tedaj, ko za vsako zaporedje (a_n) s členi različnimi od a, ki konvergira proti a, zaporedje $(f(a_n))$ konvergira proti a. Po definiciji funkcija a0 devedljiva v a0, če obstaja limita

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a},$$

v tem primeru tej limiti pravimo odvod funkcije f v točki a. Ker funkcijsko limito znamo opisati z zaporedji, lahko rečemo, da je f odvedljiva v a, natanko tedaj, ko obstaja število $L \in \mathbb{R}$, da za vsako zaporedje (a_n) s členi različnimi od a, ki konvergira proti a, zaporedje $(\frac{f(x)-f(a_n)}{x-a_n})$ konvergira proti L. Sedaj smo uspeli pojma zveznosti in odvedljivosti funkcije opisati samo s pojmom konvergence zaporedja. Če bi znali tudi kako drugače definirati, kdaj dano zaporedje konvergira, bi dobili drugačni definiciji zveznosti in odvedljivosti. Točno s tem se bomo ukvarjali v tej predstavitvi. Najprej se bomo naučili, kaj je to Cesaro konvergenca zaporedja, s pomočjo tega bomo dobili novi definiciji zveznosti in odvedljivosti, nato pa bomo ugotovili katere funkcije so zvezne oziroma odvedljive po tej novi definiciji.

1 Cesaro konvergenca

Naj bo (a_n) realno zaporedje. Temu zaporedju lahko priredimo novo zaporedje, katerega n-ti člen je enak $\overline{a}_n = \frac{a_1 + a_2 + ... + a_n}{n}$. Temu novemu zaporedju bomo rekli zaporedje aritmetičnih sredin zaporedja (a_n) in ga označili z (\overline{a}_n) .

Definicija 1. Realno zaporedje (a_n) Cesaro konvergira, če konvergira njeno zaporedje aritmetičnih sredin (\overline{a}_n) .

Oznaka $a_n \to a$ naj pomeni, da zaporedje (a_n) konvergira proti a, oznaka $a_n \leadsto a$ pa, da zaporedje Cesaro konvergira proti a.

V prvem letniku smo se pri analizi naučili, da iz $a_n \to a$ sledi $a_n \leadsto a$. Obratno seveda ne velja, saj zaporedje $(-1)^n$ Cesaro konvergira proti 0, ne konvergira pa v običajnem smislu. Ker je pojem Cezaro konvergence zelo pomemben za nadaljevanje, si oglejmo še nekaj primerov.

1.1 Primeri

1. Poiščimo primer omejenega zaporedja, ki ni Cesaro konvergentno. Prvi člen naj bo enak 2. Naslednjih nekaj členov bo enakih −2. Takih členov mora biti dovolj, da bo aritmetična sredina padla pod −1. Nato spet dodajmo dovolj členov enakih 2, da bo aritmetična sredina narasla nad 1. S ponavljanjem take kostrukcije dobimo omejeno zaporedje, ki ni Cesaro konvergentno, saj zaporedje aritmetičnih sredin nekako oscilira med −1 in 1.

2. Naj bo $m \in \mathbb{N}$ in $a_1, a_2, \ldots, a_m \in \mathbb{R}$. Zanima nas, kdaj zaporedje $a_1, a_2, \ldots, a_m, a_1, a_2, \ldots$ Cesaro konvergira proti 0. Naj bo $A := a_1 + a_2 + \ldots + a_m$. Ker za vse $k \in \mathbb{N}$ velja $\overline{a}_{km} = A$, je enakost A = 0 potreben pogoj za $a_n \leadsto 0$. Naj bo torej A = 0. Zaporedje delnih vsot zaporedja (a_n) je potem periodično, zato je omejeno. Sledi, da zaporedje aritmetičnih sredin konvergira proti 0. Torej (a_n) konvergira proti 0 natanko tedaj, ko velja A = 0.

2 Cesaro zveznost

Sedaj se lahko končno lotimo Cesaro zveznosti.

Definicija 2. Funkcija $f : \mathbb{R} \to \mathbb{R}$ je Cesaro zvezna v točki $a \in \mathbb{R}$, če za vsako zaporedje (a_n) , ki Cesaro konvergira proti a, zaporedje $(f(a_n))$ Cesaro konvergira proti f(a). Pravimo, da je f zvezna, če je zvezna v vsaki točki $a \in \mathbb{R}$.

Da si bomo lažje predstavljali, katere funkcije so Cesaro zvezne, si najprej oglejmo kakšen primer.

Zgled 1. Pokazati želimo, da je vsaka funkcija oblike f(x) = Ax + B, kjer sta $A, B \in \mathbb{R}$, Cesaro zvezna. (TODO)

Izrek 1. Naj bo $f : \mathbb{R} \to \mathbb{R}$ funkcija. Naslednje trditve so ekvivalentne.

- 1. Funkcija f je Cesaro zvezna v točki 0.
- 2. Funkcija f je Cesaro zvezna.
- 3. Funkcija f je oblike f(x) = Ax + B za neki realni števili $A, B \in \mathbb{R}$.

Dokaz. (1) \rightarrow (3) : Naj bo funkcija $g: \mathbb{R} \rightarrow \mathbb{R}$ definirana s predpisom g(x) = f(x) - f(0). Potem je g Cesaro zvezna v točki 0 in velja g(0) = 0. Naj bo $a \in \mathbb{R}$ poljubno realno število. Ker zaporedje $a, -a, a, -a, a, \ldots$ Cesaro konvergira proti 0 in je g Cesaro zvezna v 0, zaporedje $g(a), g(-a), g(a), g(-a), \ldots$ Cesaro konvergira proti g(0) = 0. Potem mora veljati g(a) + g(-a) = 0 oziroma g(-a) = -g(a). Naj bosta zdaj $b, c \in \mathbb{R}$ poljubni realni števili. Spet zaporedje $b, c, -(b+c), b, c, -(b+c), \ldots$ Cesaro konvergira k 0, zato zaporedje $g(b), g(c), g(-(b+c)), g(b), \ldots$ Cesaro konvergira proti g(0) = 0. Sledi g(b) + g(c) + g(-(b+c)) = 0 oziroma -(g(b) + g(c)) = g(-(b+c)). Upoštevamo še, da je velja g(-a) = -g(a) za vsak $a \in \mathbb{R}$ in dobimo g(b) + g(c) = g(b+c). Torej je g aditivna.

Naslednji cilj je pokazati, da velja $g(\lambda x) = \lambda g(x)$ za vse $\lambda \in \mathbb{Q}$ in $x \in \mathbb{R}$. Za primer ko je $\lambda \in \mathbb{N}$ to sledi neposredno iz aditivnosti. Ker velja tudi g(0) = 0 in g(-a) = -g(a), to velja celo za vse $\lambda \in \mathbb{Z}$. Naj bo zdaj $\frac{m}{n} \in \mathbb{Q}$ poljubno racionalno število. Velja $mg(x) = g(mx) = g(n\frac{m}{n}x) = ng(\frac{m}{n}x)$ oziroma $\frac{m}{n}g(x) = g(\frac{m}{n}x)$, kar smo želeli dokazati.

Pokažimo zdaj, da je g zvezna. Naj bo (x_n) poljubno zaporedje, da je $x_n \to 0$. Poiščimo zaporedje (y_n) , katerega zaporedje aritmetičnih sredin je enako (x_n) . Očitno mora biti $y_1 = x_1$. Denimo, da smo že definirali y_1, \ldots, y_n in da velja $x_k = \overline{y}_k$ za vse $k \le n$. Da bo veljalo tudi

 $x_{n+1} = \overline{y}_{n+1}$ oziroma $x_{n+1} = \frac{y_1 + \ldots + y_{n+1}}{n+1}$, moramo vzeti $y_{n+1} = (n+1)x_{n+1} - (y_1 + \ldots + y_n)$. Tako definirano zaporedje (y_n) res zadošča $x_n = \overline{y}_n$ za vse $n \in \mathbb{N}$. Ker je $x_n \to 0$, je $y_n \leadsto 0$ po definiciji, zato iz Cesaro zveznosti funkcije g v 0 sledi $g(y_n) \leadsto g(0) = 0$. Iz tega, kar smo pokazali v prejšnjih odstavkih, sledi

$$g(x_n) = g(\overline{y}_n) = g(\frac{y_1 + \dots + y_n}{n}) = \frac{g(y_1) + \dots + g(y_n)}{n} \to 0.$$

Torej je g zvezna v 0. Ker je $g(x_0+x)=g(x_0)+g(x)$, je zvezna tudi v vsaki drugi točki $x_0 \in \mathbb{R}$. Naj bo A=g(1). Zevezni funkciji g in $x\mapsto Ax$ se ujemata na \mathbb{Q} , ki je gosta podmnožica v \mathbb{R} , torej sta enaki. Če vzamemo B=f(0), velja f(x)=Ax+B za vse $x\in\mathbb{R}$. S tem je implikacija dokazana.

- $(3) \rightarrow (2)$: To smo pokazali v zgornjem zgledu.
- $(2) \rightarrow (1)$: Če je f Cesaro zvezna, je po definiciji Cesaro zvezna tudi v točki 0.

3 Cesaro odvedljivost