Sage Reference Manual: Matrices and Spaces of Matrices

Release 7.6

The Sage Development Team

CONTENTS

1	Matrix Spaces	3
2	General matrix Constructor	15
3	Matrices over an arbitrary ring 3.1 Indexing	21 22
4	Miscellaneous matrix functions	29
5	Abstract base class for matrices	33
6	Base class for matrices, part 0	35
7	Base class for matrices, part 1	69
8	Base class for matrices, part 2	89
9	Generic Asymptotically Fast Strassen Algorithms	243
10	Minimal Polynomials of Linear Recurrence Sequences	247
11	Base class for dense matrices	249
12	Base class for sparse matrices	251
13	Dense Matrices over a general ring	257
14	Sparse Matrices over a general ring	259
15	Sparse matrices over $\mathbf{Z}/n\mathbf{Z}$ for n small	263
16	Symbolic matrices	267
17	Dense matrices over the integer ring	279
18	Dense matrices over the rational field	303
19	Dense matrices using a NumPy backend.	313
20	Dense matrices over the Real Double Field using NumPy	351
21	Dense matrices over the Complex Double Field using NumPy	353
22	Arbitrary precision complex ball matrices using Arb	355

23	Dense matrices over univariate polynomials over fields	357
24	Dense matrices over multivariate polynomials over fields	363
25	Operation Tables	367
26	Actions used by the coercion model for matrix and vector multiplications	375
27	Functions for changing the base ring of matrices quickly.	379
28	Echelon matrices over finite fields.	381
29	Matrices over Cyclotomic Fields	383
30	Modular algorithm to compute Hermite normal forms of integer matrices.	389
31	Saturation over ZZ	401
32	Sparse integer matrices.	405
33	Dense matrices over GF(2) using the M4RI library.	409
34	Dense matrices over \mathbf{F}_{2^e} for $2 <= e <= 10$ using the M4RIE library.	419
35	Dense matrices over $\mathbf{Z}/n\mathbf{Z}$ for $n < 2^{23}$ using LinBox's Modular <double></double>	427
36	Dense matrices over $\mathbf{Z}/n\mathbf{Z}$ for $n < 2^{11}$ using LinBox's Modular <float></float>	437
37	Sparse rational matrices.	447
38	Matrix windows	451
39	Misc matrix algorithms	453
40	Calculate symplectic bases for matrices over fields and the integers.	457
41	J-ideals of matrices 41.1 Classes and Methods	463 464
42	Benchmarks for matrices	473
43	Indices and Tables	483

Sage provides native support for working with matrices over any commutative or noncommutative ring. The parent object for a matrix is a matrix space MatrixSpace(R,n,m) of all $n \times m$ matrices over a ring R.

To create a matrix, either use the matrix(...) function or create a matrix space using the MatrixSpace command and coerce an object into it.

Matrices also act on row vectors, which you create using the vector(...) command or by making a VectorSpace and coercing lists into it. The natural action of matrices on row vectors is from the right. Sage currently does not have a column vector class (on which matrices would act from the left), but this is planned.

In addition to native Sage matrices, Sage also includes the following additional ways to compute with matrices:

- Several math software systems included with Sage have their own native matrix support, which can be used from Sage. E.g., PARI, GAP, Maxima, and Singular all have a notion of matrices.
- The GSL C-library is included with Sage, and can be used via Cython.
- The scipy module provides support for *sparse* numerical linear algebra, among many other things.
- The numpy module, which you load by typing import numpy is included standard with Sage. It contains a very sophisticated and well developed array class, plus optimized support for *numerical linear algebra*. Sage's matrices over RDF and CDF (native floating-point real and complex numbers) use numpy.

Finally, this module contains some data-structures for matrix-like objects like operation tables (e.g. the multiplication table of a group).

CONTENTS 1

2 CONTENTS

CHAPTER

ONE

MATRIX SPACES

You can create any space $\operatorname{Mat}_{n\times m}(R)$ of either dense or sparse matrices with given number of rows and columns over any commutative or noncommutative ring.

EXAMPLES:

```
sage: MS = MatrixSpace(QQ,6,6,sparse=True); MS
Full MatrixSpace of 6 by 6 sparse matrices over Rational Field
sage: MS.base_ring()
Rational Field
sage: MS = MatrixSpace(ZZ,3,5,sparse=False); MS
Full MatrixSpace of 3 by 5 dense matrices over Integer Ring
```

Bases: sage.structure.unique_representation.UniqueRepresentation sage.structure.parent_gens.ParentWithGens

The space of all nrows x ncols matrices over base_ring.

INPUT:

- •base_ring a ring
- •nrows int, the number of rows
- •ncols (default nrows) int, the number of columns
- •sparse (default false) whether or not matrices are given a sparse representation

EXAMPLES:

```
sage: MatrixSpace(ZZ,10,5)
Full MatrixSpace of 10 by 5 dense matrices over Integer Ring
sage: MatrixSpace(ZZ,10,5).category()
Category of infinite enumerated modules over
  (euclidean domains and infinite enumerated sets and metric spaces)
sage: MatrixSpace(ZZ,10,10).category()
Category of infinite enumerated algebras over
  (euclidean domains and infinite enumerated sets and metric spaces)
sage: MatrixSpace(QQ,10).category()
Category of infinite algebras over (quotient fields and metric spaces)
```

base_extend (R)

Return base extension of this matrix space to R.

INPUT:

 $\bullet \mathbb{R}$ - ring

OUTPUT: a matrix space

EXAMPLES:

```
sage: Mat(ZZ,3,5).base_extend(QQ)
Full MatrixSpace of 3 by 5 dense matrices over Rational Field
sage: Mat(QQ,3,5).base_extend(GF(7))
Traceback (most recent call last):
...
TypeError: no base extension defined
```

basis ()

Returns a basis for this matrix space.

Warning: This will of course compute every generator of this matrix space. So for large matrices, this could take a long time, waste a massive amount of memory (for dense matrices), and is likely not very useful. Don't use this on large matrix spaces.

EXAMPLES:

```
sage: Mat(ZZ,2,2).basis()
[
[1 0] [0 1] [0 0] [0 0]
[0 0], [0 0], [1 0], [0 1]
]
```

cached_method (f, name=None, key=None, do_pickle=None)

A decorator for cached methods.

EXAMPLES:

In the following examples, one can see how a cached method works in application. Below, we demonstrate what is done behind the scenes:

```
sage: class C:
....:    @cached_method
....:    def __hash___(self):
....:        print("compute hash")
....:        return int(5)
....:        @cached_method
....:        def f(self, x):
....:             print("computing cached method")
....:                 return x*2
sage: c = C()
sage: type(C.__hash__)
<type 'sage.misc.cachefunc.CachedMethodCallerNoArgs'>
sage: hash(c)
compute hash
5
```

When calling a cached method for the second time with the same arguments, the value is gotten from the cache, so that a new computation is not needed:

```
sage: hash(c)
5
sage: c.f(4)
computing cached method
```

```
8
sage: c.f(4) is c.f(4)
True
```

Different instances have distinct caches:

```
sage: d = C()
sage: d.f(4) is c.f(4)
computing cached method
False
sage: d.f.clear_cache()
sage: c.f(4)
8
sage: d.f(4)
computing cached method
8
```

Using cached methods for the hash and other special methods was implemented in trac ticket #12601, by means of CachedSpecialMethod. We show that it is used behind the scenes:

```
sage: cached_method(c.__hash__)
<sage.misc.cachefunc.CachedSpecialMethod object at ...>
sage: cached_method(c.f)
<sage.misc.cachefunc.CachedMethod object at ...>
```

The parameter do_pickle can be used if the contents of the cache should be stored in a pickle of the cached method. This can be dangerous with special methods such as __hash__:

```
sage: class C:
....:    @cached_method(do_pickle=True)
....:    def __hash__(self):
....:    return id(self)

sage: import __main__
sage: __main__.C = C
sage: c = C()
sage: hash(c) # random output
sage: d = loads(dumps(c))
sage: hash(d) == hash(c)
True
```

However, the contents of a method's cache are not pickled unless do_pickle is set:

```
sage: class C:
....:    @cached_method
....:    def __hash__(self):
....:    return id(self)

sage: __main__.C = C
sage: c = C()
sage: hash(c) # random output
sage: d = loads(dumps(c))
sage: hash(d) == hash(c)
False
```

cardinality()

Return the number of elements in self.

EXAMPLES:

```
sage: MatrixSpace(GF(3), 2, 3).cardinality()
729
sage: MatrixSpace(ZZ, 2).cardinality()
+Infinity
sage: MatrixSpace(ZZ, 0, 3).cardinality()
1
```

change_ring (R)

Return matrix space over R with otherwise same parameters as self.

INPUT:

•R - ring

OUTPUT: a matrix space

EXAMPLES:

```
sage: Mat(QQ,3,5).change_ring(GF(7))
Full MatrixSpace of 3 by 5 dense matrices over Finite Field of size 7
```

column_space ()

Return the module spanned by all columns of matrices in this matrix space. This is a free module of rank the number of columns. It will be sparse or dense as this matrix space is sparse or dense.

EXAMPLES:

```
sage: M = Mat(GF(9,'a'),20,5,sparse=True); M.column_space()
Sparse vector space of dimension 20 over Finite Field in a of size 3^2
```

construction ()

EXAMPLES:

dimension ()

Returns (m rows) * (n cols) of self as Integer

EXAMPLES:

```
sage: MS = MatrixSpace(ZZ,4,6)
sage: u = MS.dimension()
sage: u - 24 == 0
True
```

dims ()

Returns (m row, n col) representation of self dimension

```
sage: MS = MatrixSpace(ZZ, 4, 6)
sage: MS.dims()
(4, 6)
```

full_category_initialisation()

Make full use of the category framework.

Note: It turns out that it causes a massive speed regression in computations with elliptic curves, if a full initialisation of the category framework of matrix spaces happens at initialisation: The elliptic curves code treats matrix spaces as containers, not as objects of a category. Therefore, making full use of the category framework is now provided by a separate method (see trac ticket #11900).

EXAMPLES:

```
sage: MS = MatrixSpace(QQ,8)
sage: TestSuite(MS).run()
sage: type(MS)
<class 'sage.matrix.matrix_space.MatrixSpace_with_category'>
sage: MS.full_category_initialisation()
doctest:...: DeprecationWarning: the full_category_initialization
method does nothing, as a matrix space now has its category
systematically fully initialized
See http://trac.sagemath.org/15801 for details.
```

qen(n)

Return the n-th generator of this matrix space.

This doesn't compute all basis matrices, so it is reasonably intelligent.

EXAMPLES:

```
sage: M = Mat(GF(7),10000,5); M.ngens()
50000
sage: a = M.10
sage: a[:4]
[0 0 0 0 0 0]
[0 0 0 0 0 0]
[1 0 0 0 0 0]
[0 0 0 0 0]
```

```
get_action_impl (S, op, self_on_left)
```

identity_matrix()

Returns the identity matrix in self.

self must be a space of square matrices. The returned matrix is immutable. Please use copy if you want a modified copy.

```
sage: MS1 = MatrixSpace(ZZ,4)
sage: MS2 = MatrixSpace(QQ,3,4)
sage: I = MS1.identity_matrix()
sage: I
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
```

```
sage: Er = MS2.identity_matrix()
Traceback (most recent call last):
...
TypeError: identity matrix must be square
```

is_dense()

Returns True if matrices in self are dense and False otherwise.

EXAMPLES:

```
sage: Mat(RDF,2,3).is_sparse()
False
sage: Mat(RR,123456,22,sparse=True).is_sparse()
True
```

is_finite()

EXAMPLES:

```
sage: MatrixSpace(GF(101), 10000).is_finite()
True
sage: MatrixSpace(QQ, 2).is_finite()
False
```

is_sparse()

Returns True if matrices in self are sparse and False otherwise.

EXAMPLES:

```
sage: Mat(GF(2011),10000).is_sparse()
False
sage: Mat(GF(2011),10000,sparse=True).is_sparse()
True
```

matrix (x=0, coerce=True, copy=True)

Create a matrix in self.

INPUT:

- •x (default: 0) data to construct a new matrix from. Can be one of the following:
 - -0, corresponding to the zero matrix;
 - -1, corresponding to the identity_matrix;
 - -a matrix, whose dimensions must match self and whose base ring must be convertible to the base ring of self;
 - -a list of entries corresponding to all elements of the new matrix;
 - -a list of rows with each row given as an iterable;
- •coerce (default: True) whether to coerce \times into self;
- •copy (default: True) whether to copy x during construction (makes a difference only if x is a matrix in self).

OUTPUT:

•a matrix in self.

```
sage: M = MatrixSpace(ZZ, 2)
sage: M.matrix([[1,0],[0,-1]])
[ 1  0]
[ 0 -1]
sage: M.matrix([1,0,0,-1])
[ 1  0]
[ 0 -1]
sage: M.matrix([1,2,3,4])
[ 1  2]
[ 3  4]
```

Note that the last "flip" cannot be performed if x is a matrix, no matter what is rows (it used to be possible but was fixed by trac ticket #10793):

```
sage: projection = matrix(ZZ,[[1,0,0],[0,1,0]])
sage: projection
[1 0 0]
[0 1 0]
sage: projection.parent()
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring
sage: M = MatrixSpace(ZZ, 3 , 2)
sage: M
Full MatrixSpace of 3 by 2 dense matrices over Integer Ring
sage: M(projection)
Traceback (most recent call last):
...
ValueError: a matrix from
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring
cannot be converted to a matrix in
Full MatrixSpace of 3 by 2 dense matrices over Integer Ring!
```

If you really want to make from a matrix another matrix of different dimensions, use either transpose method or explicit conversion to a list:

```
sage: M(projection.list())
[1 0]
[0 0]
[1 0]
```

matrix_space (nrows=None, ncols=None, sparse=False)

Return the matrix space with given number of rows, columns and sparcity over the same base ring as self, and defaults the same as self.

EXAMPLES:

```
sage: M = Mat(GF(7),100,200)
sage: M.matrix_space(5000)
Full MatrixSpace of 5000 by 200 dense matrices over Finite Field of size 7
sage: M.matrix_space(ncols=5000)
Full MatrixSpace of 100 by 5000 dense matrices over Finite Field of size 7
sage: M.matrix_space(sparse=True)
Full MatrixSpace of 100 by 200 sparse matrices over Finite Field of size 7
```

ncols ()

Return the number of columns of matrices in this space.

```
sage: M = Mat(ZZ['x'],200000,500000,sparse=True)
sage: M.ncols()
500000
```

ngens ()

Return the number of generators of this matrix space, which is the number of entries in the matrices in this space.

EXAMPLES:

```
sage: M = Mat(GF(7),100,200); M.ngens()
20000
```

nrows ()

Return the number of rows of matrices in this space.

EXAMPLES:

```
sage: M = Mat(ZZ,200000,500000)
sage: M.nrows()
200000
```

one ()

Returns the identity matrix in self.

self must be a space of square matrices. The returned matrix is immutable. Please use copy if you want a modified copy.

EXAMPLES:

```
sage: MS1 = MatrixSpace(ZZ,4)
sage: MS2 = MatrixSpace(QQ,3,4)
sage: I = MS1.identity_matrix()
sage: I
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: Er = MS2.identity_matrix()
Traceback (most recent call last):
...
TypeError: identity matrix must be square
```

random_element (density=None, *args, **kwds)

Returns a random element from this matrix space.

INPUT:

- •density float or None (default: None); rough measure of the proportion of nonzero entries in the random matrix; if set to None, all entries of the matrix are randomized, allowing for any element of the underlying ring, but if set to a float, a proportion of entries is selected and randomized to non-zero elements of the ring
- •*args, **kwds remaining parameters, which may be passed to the random_element function of the base ring. ("may be", since this function calls the randomize function on the zero matrix, which need not call the random_element function of the base ring at all in general.)

OUTPUT:

•Matrix

Note: This method will randomize a proportion of roughly density entries in a newly allocated zero matrix

By default, if the user sets the value of density explicitly, this method will enforce that these entries are set to non-zero values. However, if the test for equality with zero in the base ring is too expensive, the user can override this behaviour by passing the argument nonzero=False to this method.

Otherwise, if the user does not set the value of density, the default value is taken to be 1, and the option nonzero=False is passed to the randomize method.

EXAMPLES:

```
sage: Mat(ZZ,2,5).random_element()
[ -8
     2 0 0 1]
2 1 -95 -11
sage: Mat(QQ,2,5).random_element(density=0.5)
[2 0 0 0 1]
[ 0 0 0 -1 0 ]
sage: Mat(QQ,3,sparse=True).random_element()
[ -1 -1
          -11
  -3 - 1/3
  0 -1
            11
sage: Mat(GF(9,'a'),3,sparse=True).random_element()
            1]
       2*a
    2.
        1 a + 2
  2*a
          2
               2]
```

row_space ()

Return the module spanned by all rows of matrices in this matrix space. This is a free module of rank the number of rows. It will be sparse or dense as this matrix space is sparse or dense.

EXAMPLES:

```
sage: M = Mat(ZZ,20,5,sparse=False); M.row_space()
Ambient free module of rank 5 over the principal ideal domain Integer Ring
```

some_elements()

Return some elements of this matrix space.

See TestSuite for a typical use case.

OUTPUT:

An iterator.

```
sage: M = MatrixSpace(ZZ, 2, 2)
sage: tuple(M.some_elements())
(
[1 0] [1 1] [ 0  1] [-2  3] [-4  5] [-6  7] [-8  9] [-10  11]
[0 0], [1 1], [-1  2], [-3  4], [-5  6], [-7  8], [-9  10], [-11  12],

[-12  13] [-14  15] [-16  17] [-18  19] [-20  21] [-22  23]
[-13  14], [-15  16], [-17  18], [-19  20], [-21  22], [-23  24],

[-24  25] [-26  27] [-28  29] [-30  31] [-32  33] [-34  35]
[-25  26], [-27  28], [-29  30], [-31  32], [-33  34], [-35  36],
```

```
[-36 37] [-38 39] [-40 41] [-42 43] [-44 45] [-46 47]
[-37 38], [-39 40], [-41 42], [-43 44], [-45 46], [-47 48],
[-48 49]
[-49 50]
sage: M = MatrixSpace(QQ, 2, 3)
sage: tuple(M.some_elements())
[1 \ 0 \ 0] \quad [1/2 \ 1/2 \ 1/2] \quad [ \ 1/2 \ -1/2 \qquad 2] \quad [ \ -1 \qquad 42 \quad 2/3]
[0 0 0], [1/2 1/2 1/2], [ -2 0 1], [-2/3 3/2 -3/2],
[ 4/5 -4/5 5/4] [ 7/6 -7/6 8/9] [ 10/11 -10/11 11/10]
[-5/4 \quad 6/7 \quad -6/7], [-8/9 \quad 9/8 \quad -9/8], [-11/10 \quad 12/13 \quad -12/13],
[ 13/12 -13/12 14/15] [ 16/17 -16/17 17/16]
[-14/15 	 15/14 	 -15/14], [-17/16 	 18/19 	 -18/19],
[ 19/18 -19/18 20/441] [ 22/529 -22/529 529/22]
[-20/441 \quad 441/20 \quad -441/20], [-529/22 \quad 24/625 \quad -24/625],
[ 625/24 -625/24 26/729] [ 28/841 -28/841 841/28]
[-26/729 \quad 729/26 \quad -729/26], [-841/28 \quad 30/961 \quad -30/961],
[ 961/30 -961/30 32/1089] [ 34/1225 -34/1225 1225/34]
[-32/1089 \ 1089/32 \ -1089/32], [-1225/34 \ 36/1369 \ -36/1369],
[ 1369/36 -1369/36  38/1521] [ 40/68921 -40/68921  68921/40]
[-38/1521 \quad 1521/38 \quad -1521/38], [-68921/40 \quad 42/79507 \quad -42/79507],
[ 79507/42 -79507/42 44/91125]
[-44/91125 91125/44 -91125/44]
sage: M = MatrixSpace(SR, 2, 2)
sage: tuple(M.some_elements())
[1 0] [some_variable some_variable]
[0 0], [some_variable some_variable]
```

zero ()

Returns the zero matrix in self.

self must be a space of square matrices. The returned matrix is immutable. Please use copy if you want a modified copy.

EXAMPLES:

```
sage: z = MatrixSpace(GF(7),2,4).zero_matrix(); z
[0 0 0 0 0]
[0 0 0 0]
sage: z.is_mutable()
False
```

zero_matrix ()

Returns the zero matrix in self.

self must be a space of square matrices. The returned matrix is immutable. Please use copy if you want a modified copy.

EXAMPLES:

```
sage: z = MatrixSpace(GF(7),2,4).zero_matrix(); z
[0 0 0 0]
[0 0 0 0]
sage: z.is_mutable()
False
```

sage.matrix.matrix_space. dict_to_list (entries, nrows, ncols)

Given a dictionary of coordinate tuples, return the list given by reading off the nrows*ncols matrix in row order.

EXAMPLES:

```
sage: from sage.matrix.matrix_space import dict_to_list
sage: d = {}
sage: d[(0,0)] = 1
sage: d[(1,1)] = 2
sage: dict_to_list(d, 2, 2)
[1, 0, 0, 2]
sage: dict_to_list(d, 2, 3)
[1, 0, 0, 0, 2, 0]
```

sage.matrix.matrix_space.is_MatrixSpace (x)

Returns True if self is an instance of MatrixSpace returns false if self is not an instance of MatrixSpace

EXAMPLES:

```
sage: from sage.matrix.matrix_space import is_MatrixSpace
sage: MS = MatrixSpace(QQ,2)
sage: A = MS.random_element()
sage: is_MatrixSpace(MS)
True
sage: is_MatrixSpace(A)
False
sage: is_MatrixSpace(5)
False
```

sage.matrix.matrix_space. list_to_dict (entries, nrows, ncols, rows=True)

Given a list of entries, create a dictionary whose keys are coordinate tuples and values are the entries.

EXAMPLES:

```
sage: from sage.matrix.matrix_space import list_to_dict
sage: d = list_to_dict([1,2,3,4],2,2)
sage: d[(0,1)]
2
sage: d = list_to_dict([1,2,3,4],2,2,rows=False)
sage: d[(0,1)]
3
```

sage.matrix.matrix_space. test_trivial_matrices_inverse (ring, sparse=True, checkrank=True)

Tests inversion, determinant and is_invertible for trivial matrices.

This function is a helper to check that the inversion of trivial matrices (of size 0x0, nx0, 0xn or 1x1) is handled consistently by the various implementation of matrices. The coherency is checked through a bunch of assertions. If an inconsistency is found, an AssertionError is raised which should make clear what is the problem.

INPUT:

- •ring -aring
- •sparse a boolean
- •checkrank a boolean

OUTPUT:

•nothing if everything is correct, otherwise raise an AssertionError

The methods determinant, is_invertible, rank and inverse are checked for

- the 0x0 empty identity matrix
- the 0x3 and 3x0 matrices
- the 1x1 null matrix [0]
- the 1x1 identity matrix [1]

If checkrank is False then the rank is not checked. This is used the check matrix over ring where echelon form is not implemented.

Todo

This must be adapted to category check framework when ready (see trac ticket #5274).

GENERAL MATRIX CONSTRUCTOR

class sage.matrix.constructor. MatrixFactory

Bases: object

Create a matrix.

This implements the matrix constructor:

```
sage: matrix([[1,2],[3,4]])
[1 2]
[3 4]
```

It also contains methods to create special types of matrices, see matrix.[tab] for more options. For example:

```
sage: matrix.identity(2)
[1 0]
[0 1]
```

INPUT:

The matrix command takes the entries of a matrix, optionally preceded by a ring and the dimensions of the matrix, and returns a matrix.

The entries of a matrix can be specified as a flat list of elements, a list of lists (i.e., a list of rows), a list of Sage vectors, a callable object, or a dictionary having positions as keys and matrix entries as values (see the examples). If you pass in a callable object, then you must specify the number of rows and columns. You can create a matrix of zeros by passing an empty list or the integer zero for the entries. To construct a multiple of the identity (cI), you can specify square dimensions and pass in c. Calling matrix() with a Sage object may return something that makes sense. Calling matrix() with a NumPy array will convert the array to a matrix.

The ring, number of rows, and number of columns of the matrix can be specified by setting the ring, nrows, or ncols keyword parameters or by passing them as the first arguments to the function in specified order. The ring defaults to ZZ if it is not specified and cannot be determined from the entries. If the number of rows and columns are not specified and cannot be determined, then an empty 0x0 matrix is returned.

INPUT:

- •ring the base ring for the entries of the matrix.
- •nrows the number of rows in the matrix.
- •ncols the number of columns in the matrix.
- •sparse create a sparse matrix. This defaults to True when the entries are given as a dictionary, otherwise defaults to False.
- •entries see examples below.

OUTPUT:

a matrix

```
sage: m = matrix(2); m; m.parent()
[0 0]
[0 0]
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
```

```
sage: m = matrix(2,3); m; m.parent()
[0 0 0]
[0 0 0]
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring
```

```
sage: m = matrix(QQ,[[1,2,3],[4,5,6]]); m; m.parent()
[1 2 3]
[4 5 6]
Full MatrixSpace of 2 by 3 dense matrices over Rational Field
```

```
sage: m = matrix(QQ, 3, 3, lambda i, j: i+j); m
[0 1 2]
[1 2 3]
[2 3 4]
sage: m = matrix(3, lambda i, j: i-j); m
[ 0 -1 -2]
[ 1 0 -1]
[ 2 1 0]
```

```
sage: matrix(QQ, 2, 3, lambda x, y: x+y)
[0 1 2]
[1 2 3]
sage: matrix(QQ, 5, 5, lambda x, y: (x+1) / (y+1))
[ 1 1/2 1/3 1/4 1/5]
[ 2 1 2/3 1/2 2/5]
[ 3 3/2 1 3/4 3/5]
[ 4 2 4/3 1 4/5]
[ 5 5/2 5/3 5/4 1]
```

```
sage: v1=vector((1,2,3))
sage: v2=vector((4,5,6))
sage: m = matrix([v1,v2]); m; m.parent()
[1 2 3]
[4 5 6]
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring
```

```
sage: m = matrix(QQ,2,[1,2,3,4,5,6]); m; m.parent()
[1 2 3]
[4 5 6]
Full MatrixSpace of 2 by 3 dense matrices over Rational Field
```

```
sage: m = matrix(QQ,2,3,[1,2,3,4,5,6]); m; m.parent()
[1 2 3]
[4 5 6]
Full MatrixSpace of 2 by 3 dense matrices over Rational Field
```

```
sage: m = matrix({(0,1): 2, (1,1):2/5}); m; m.parent()
[ 0  2]
[ 0 2/5]
Full MatrixSpace of 2 by 2 sparse matrices over Rational Field
```

```
sage: m = matrix(QQ,2,3,{(1,1): 2}); m; m.parent()
[0 0 0]
[0 2 0]
Full MatrixSpace of 2 by 3 sparse matrices over Rational Field
```

```
sage: import numpy
sage: n = numpy.array([[1,2],[3,4]],float)
sage: m = matrix(n); m; m.parent()
[1.0 2.0]
[3.0 4.0]
Full MatrixSpace of 2 by 2 dense matrices over Real Double Field
```

```
sage: v = vector(ZZ, [1, 10, 100])
sage: m = matrix(v); m; m.parent()
[ 1 10 100]
Full MatrixSpace of 1 by 3 dense matrices over Integer Ring
sage: m = matrix(GF(7), v); m; m.parent()
[1 3 2]
Full MatrixSpace of 1 by 3 dense matrices over Finite Field of size 7
```

```
sage: g = graphs.PetersenGraph()
sage: m = matrix(g); m; m.parent()
[0 1 0 0 1 1 0 0 0 0]
[1 0 1 0 1 0 0 0 1 0 0 0]
[0 1 0 1 0 1 0 0 0 1 0 0]
[0 0 1 0 1 0 0 0 0 1 0]
[1 0 0 1 0 1 0 0 0 0 1 0]
[1 0 0 0 1 0 0 0 0 0 1]
[1 0 0 0 0 0 0 0 1 1 0]
[0 1 0 0 0 0 0 0 0 1 1]
[0 0 0 1 0 1 1 0 0 0]
[0 0 0 1 0 1 1 0 0 0]
Full MatrixSpace of 10 by 10 dense matrices over Integer Ring
```

```
sage: matrix(ZZ, 10, 10, range(100), sparse=True).parent()
Full MatrixSpace of 10 by 10 sparse matrices over Integer Ring
```

```
sage: R = PolynomialRing(QQ, 9, 'x')
sage: A = matrix(R, 3, 3, R.gens()); A
[x0 x1 x2]
[x3 x4 x5]
[x6 x7 x8]
sage: det(A)
-x2*x4*x6 + x1*x5*x6 + x2*x3*x7 - x0*x5*x7 - x1*x3*x8 + x0*x4*x8
```

AUTHORS:

- •William Stein: Initial implementation
- •Jason Grout (2008-03): almost a complete rewrite, with bits and pieces from the original implementation
- •Jeroen Demeyer (2016-02-05): major clean up, see trac ticket #20015 and trac ticket #20016

```
sage.matrix.constructor.ncols_from_dict ( d)
```

Given a dictionary that defines a sparse matrix, return the number of columns that matrix should have.

This is for internal use by the matrix function.

INPUT:

•d - dict

OUTPUT:

integer

EXAMPLES:

```
sage: sage.matrix.constructor.ncols_from_dict({})
0
```

Here the answer is 301 not 300, since there is a 0-th row.

```
sage: sage.matrix.constructor.ncols_from_dict({(4,300):10})
301
```

```
sage.matrix.constructor.nrows_from_dict ( d)
```

Given a dictionary that defines a sparse matrix, return the number of rows that matrix should have.

This is for internal use by the matrix function.

INPUT:

•d - dict

OUTPUT:

integer

EXAMPLES:

```
sage: sage.matrix.constructor.nrows_from_dict({})
0
```

Here the answer is 301 not 300, since there is a 0-th row.

```
sage: sage.matrix.constructor.nrows_from_dict({(300,4):10})
301
```

```
sage.matrix.constructor. prepare(w)
```

Given a list w of numbers, find a common ring that they all canonically map to, and return the list of images of the elements of w in that ring along with the ring.

This is for internal use by the matrix function.

INPUT:

•w - list

OUTPUT:

list, ring

```
sage: sage.matrix.constructor.prepare([-2, Mod(1,7)])
([5, 1], Ring of integers modulo 7)
```

Notice that the elements must all canonically coerce to a common ring (since Sequence is called):

```
sage: sage.matrix.constructor.prepare([2/1, Mod(1,7)])
Traceback (most recent call last):
...
TypeError: unable to find a common ring for all elements
```

```
sage.matrix.constructor.prepare_dict (w)
```

Given a dictionary w of numbers, find a common ring that they all canonically map to, and return the dictionary of images of the elements of w in that ring along with the ring.

This is for internal use by the matrix function.

INPUT:

•w - dict

OUTPUT:

dict, ring

```
sage: sage.matrix.constructor.prepare_dict({(0,1):2, (4,10):Mod(1,7)})
({(0, 1): 2, (4, 10): 1}, Ring of integers modulo 7)
```

Sage Reference Manual: Matrices and Spaces of Matrices, Release 7.6							

CHAPTER

THREE

MATRICES OVER AN ARBITRARY RING

AUTHORS:

- · William Stein
- Martin Albrecht: conversion to Pyrex
- Jaap Spies: various functions
- Gary Zablackis: fixed a sign bug in generic determinant.
- William Stein and Robert Bradshaw complete restructuring.
- Rob Beezer refactor kernel functions.

Elements of matrix spaces are of class Matrix (or a class derived from Matrix). They can be either sparse or dense, and can be defined over any base ring.

EXAMPLES:

We create the 2×3 matrix

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

as an element of a matrix space over Q:

```
sage: M = MatrixSpace(QQ,2,3)
sage: A = M([1,2,3, 4,5,6]); A
[1 2 3]
[4 5 6]
sage: A.parent()
Full MatrixSpace of 2 by 3 dense matrices over Rational Field
```

Alternatively, we could create A more directly as follows (which would completely avoid having to create the matrix space):

```
sage: A = matrix(QQ, 2, [1,2,3, 4,5,6]); A
[1 2 3]
[4 5 6]
```

We next change the top-right entry of A. Note that matrix indexing is 0-based in Sage, so the top right entry is (0, 2), which should be thought of as "row number 0, column number 2".

```
sage: A[0,2] = 389
sage: A
[ 1  2 389]
[ 4  5  6]
```

Also notice how matrices print. All columns have the same width and entries in a given column are right justified. Next we compute the reduced row echelon form of A.

3.1 Indexing

Sage has quite flexible ways of extracting elements or submatrices from a matrix:

```
sage: m=[(1, -2, -1, -1,9), (1, 8, 6, 2,2), (1, 1, -1, 1,4), (-1, 2, -2, -1,4)]; M =
    →matrix(m)
sage: M
[ 1 -2 -1 -1 9]
[ 1 8 6 2 2]
[ 1 1 -1 1 4]
[-1 2 -2 -1 4]
```

Get the 2 x 2 submatrix of M, starting at row index and column index 1:

```
sage: M[1:3,1:3]
[ 8 6]
[ 1 -1]
```

Get the 2 x 3 submatrix of M starting at row index and column index 1:

```
sage: M[1:3,[1..3]]
[ 8 6 2]
[ 1 -1 1]
```

Get the second column of M:

```
sage: M[:,1]
[-2]
[ 8]
[ 1]
[ 2]
```

Get the first row of M:

```
sage: M[0,:]
[ 1 -2 -1 -1 9]
```

Get the last row of M (negative numbers count from the end):

```
sage: M[-1,:]
[-1 2 -2 -1 4]
```

More examples:

```
sage: M[range(2),:]
[ 1 -2 -1 -1 9]
[ 1 8 6 2 2]
sage: M[range(2),4]
[9]
```

```
[2]
sage: M[range(3), range(5)]
[1 -2 -1 -1 9]
[1 8 6 2 2]
[1 1 -1 1 4]

sage: M[3, range(5)]
[-1 2 -2 -1 4]
sage: M[3,:]
[-1 2 -2 -1 4]
sage: M[3,4]
4

sage: M[-1,:]
[-1 2 -2 -1 4]

sage: A = matrix(ZZ,3,4, [3, 2, -5, 0, 1, -1, 1, -4, 1, 0, 1, -3]); A
[3 2 -5 0]
[1 -1 1 -4]
[1 0 1 -3]
```

A series of three numbers, separated by colons, like n:m:s, means numbers from n up to (but not including) m, in steps of s. So 0:5:2 means the sequence [0,2,4]:

```
sage: A[:,0:4:2]
[ 3 -5]
[ 1 1]
[ 1 1]
sage: A[1:,0:4:2]
[1 1]
[1 1]
sage: A[2::-1,:]
[ 1 0 1 -3]
[ 1 -1 1 -4]
[ 3 2 -5 0]
sage: A[1:,3::-1]
[-4 \ 1 \ -1 \ 1]
[-3 \ 1 \ 0 \ 1]
sage: A[1:,3::-2]
[-4 -1]
[-3 \ 0]
sage: A[2::-1,3:1:-1]
[-3 1]
[-4 1]
[0 -5]
```

We can also change submatrices using these indexing features:

3.1. Indexing 23

```
[-1 \quad 2 \quad -2 \quad -1 \quad 4]
```

Set the 2 x 2 submatrix of M, starting at row index and column index 1:

```
sage: M[1:3,1:3] = [[1,0],[0,1]]; M
[ 1 -2 -1 -1 9]
[ 1 1 0 2 2]
[ 1 0 1 1 4]
[-1 2 -2 -1 4]
```

Set the 2 x 3 submatrix of M starting at row index and column index 1:

```
sage: M[1:3,[1..3]] = M[2:4,0:3]; M
[ 1 -2 -1 -1 9]
[ 1 1 0 1 2]
[ 1 -1 2 -2 4]
[-1 2 -2 -1 4]
```

Set part of the first column of M:

```
sage: M[1:,0]=[[2],[3],[4]]; M
[ 1 -2 -1 -1 9]
[ 2 1 0 1 2]
[ 3 -1 2 -2 4]
[ 4 2 -2 -1 4]
```

Or do a similar thing with a vector:

```
sage: M[1:,0]=vector([-2,-3,-4]); M
[ 1 -2 -1 -1 9]
[-2 1 0 1 2]
[-3 -1 2 -2 4]
[-4 2 -2 -1 4]
```

Or a constant:

```
sage: M[1:,0]=30; M
[ 1 -2 -1 -1 9]
[30 1 0 1 2]
[30 -1 2 -2 4]
[30 2 -2 -1 4]
```

Set the first row of M:

```
sage: M[0,:]=[[20,21,22,23,24]]; M

[20 21 22 23 24]
[30 1 0 1 2]
[30 -1 2 -2 4]
[30 2 -2 -1 4]
sage: M[0,:]=vector([0,1,2,3,4]); M

[ 0 1 2 3 4]
[30 1 0 1 2]
[30 -1 2 -2 4]
[30 2 -2 -1 4]
sage: M[0,:]=-3; M
[-3 -3 -3 -3 -3]
[30 1 0 1 2]
[30 -1 2 -2 4]
```

```
[30 2 -2 -1 4]

sage: A = matrix(ZZ,3,4, [3, 2, -5, 0, 1, -1, 1, -4, 1, 0, 1, -3]); A

[ 3 2 -5 0]
[ 1 -1 1 -4]
[ 1 0 1 -3]
```

We can use the step feature of slices to set every other column:

```
sage: A[:,0:3:2] = 5; A
[ 5  2  5  0]
[ 5 -1  5 -4]
[ 5  0  5 -3]

sage: A[1:,0:4:2] = [[100,200],[300,400]]; A
[ 5  2  5  0]
[100  -1  200  -4]
[300  0  400  -3]
```

We can also count backwards to flip the matrix upside down:

```
sage: A[::-1,:]=A; A
     0 400 -31
[300
[100 -1 200 -4]
[ 5 2
        5 01
sage: A[1:,3::-1]=[[2,3,0,1],[9,8,7,6]]; A
[300 0 400 -3]
[ 1
      0 3
            21
[ 6
      7
         8
             91
sage: A[1:,::-2] = A[1:,::2]; A
     0 400 -31
[300
[ 1
      3 3
             11
     8
sage: A[::-1,3:1:-1] = [[4,3],[1,2],[-1,-2]]; A
     0 -2 -1]
[300
[ 1
      3
         2
             1]
6
      8
         3
             41
```

We save and load a matrix:

```
sage: A = matrix(Integers(8),3,range(9))
sage: loads(dumps(A)) == A
True
```

MUTABILITY: Matrices are either immutable or not. When initially created, matrices are typically mutable, so one can change their entries. Once a matrix A is made immutable using $A.set_immutable()$ the entries of A cannot be changed, and A can never be made mutable again. However, properties of A such as its rank, characteristic polynomial, etc., are all cached so computations involving A may be more efficient. Once A is made immutable it cannot be changed back. However, one can obtain a mutable copy of A using copy(A).

EXAMPLES:

3.1. Indexing 25

```
sage: A = matrix(RR,2,[1,10,3.5,2])
sage: A.set_immutable()
sage: copy(A) is A
False
```

The echelon form method always returns immutable matrices with known rank.

EXAMPLES:

3.1.1 Implementation and Design

Class Diagram (an x means that class is currently supported):

```
x Matrix
  Matrix_sparse
Х
Х
    Matrix_generic_sparse
Х
    Matrix_integer_sparse
Х
    Matrix_rational_sparse
    Matrix_cyclo_sparse
    Matrix_modn_sparse
     Matrix_RR_sparse
     Matrix_CC_sparse
     Matrix_RDF_sparse
     Matrix_CDF_sparse
x Matrix_dense
Х
    Matrix_generic_dense
     Matrix_integer_dense
Х
     Matrix_rational_dense
     Matrix_cyclo_dense -- idea: restrict scalars to QQ, compute charpoly there,
\rightarrowthen factor
    Matrix_modn_dense
     Matrix_RR_dense
     Matrix_CC_dense
     Matrix_real_double_dense
Х
     Matrix_complex_double_dense
х
     Matrix_complex_ball_dense
```

The corresponding files in the sage/matrix library code directory are named

```
[matrix] [base ring] [dense or sparse].
```

```
New matrices types can only be implemented in Cython.
******* LEVEL 1 ******
NON-OPTIONAL
For each base field it is *absolutely* essential to completely
implement the following functionality for that base ring:
   * __cinit__
                  -- should use sig_malloc from ext/stdsage.pxi (only
                    needed if allocate memory)
  * ___init___
                  -- this signature: 'def __init__(self, parent, entries, copy,_
⇔coerce)'
  * __dealloc__ -- use sig_free (only needed if allocate memory)
   * set_unsafe(self, size_t i, size_t j, x) -- doesn't do bounds or any other checks;
→ assumes x is in self._base_ring
  * get_unsafe(self, size_t i, size_t j) -- doesn't do checks
   * __richcmp__ -- always the same (I don't know why its needed -- bug in PYREX).
Note that the __init__ function must construct the all zero matrix if ``entries ==_.
→None``.
****** LEVEL 2 ******
IMPORTANT (and *highly* recommended):
After getting the special class with all level 1 functionality to
work, implement all of the following (they should not change
functionality, except speed (always faster!) in any way):
  * def _pickle(self):
         return data, version
   * def _unpickle(self, data, int version)
         reconstruct matrix from given data and version; may assume _parent, _nrows,_
→and _ncols are set.
         Use version numbers >= 0 so if you change the pickle strategy then
         old objects still unpickle.
  * cdef _list -- list of underlying elements (need not be a copy)
  * cdef _dict -- sparse dictionary of underlying elements
  * cdef _add_ -- add two matrices with identical parents
   * _matrix_times_matrix_c_impl -- multiply two matrices with compatible dimensions_
→and
                                    identical base rings (both sparse or both dense)
  * cpdef _cmp_ -- compare two matrices with identical parents
  * cdef _{\rm lmul\_c\_impl} -- multiply this matrix on the right by a scalar, i.e., self *_{\rm L}
⇔scalar
  * cdef _rmul_c_impl -- multiply this matrix on the left by a scalar, i.e., scalar,
•→* self
  * ___сору___
   * __neg__
The list and dict returned by _list and _dict will *not* be changed
by any internal algorithms and are not accessible to the user.
******** LEVEL 3 ******
OPTIONAL:
  * cdef _sub_
   * __invert__
   * _multiply_classical
```

3.1. Indexing 27

* __deepcopy__

Further special support:

- \star Matrix windows -- to support Strassen multiplication for a given base ring.
- * Other functions, e.g., transpose, for which knowing the specific representation can be helpful.

.. note::

- For caching, use self.fetch and self.cache.
- Any method that can change the matrix should call
 ``check_mutability()`` first. There are also many fast cdef'd bounds checking_
 →methods.
 - Kernels of matrices Implement only a left_kernel() or right_kernel() method, whichever requires the least overhead (usually meaning little or no transposing). Let the methods in the matrix2 class handle left, right, generic kernel distinctions.

MISCELLANEOUS MATRIX FUNCTIONS

Return the polynomial of the sums of permanental minors of A.

INPUT:

- $\bullet A$ a matrix
- • $permanent_only$ if True, return only the permanent of A
- •var name of the polynomial variable
- •prec if prec is not None, truncate the polynomial at precision prec

The polynomial of the sums of permanental minors is

$$\sum_{i=0}^{\min(nrows,ncols)} p_i(A)x^i$$

where $p_i(A)$ is the *i*-th permanental minor of A (that can also be obtained through the method permanental_minor() via A.permanental_minor(i)).

The algorithm implemented by that function has been developed by P. Butera and M. Pernici, see [BP2015]. Its complexity is $O(2^n m^2 n)$ where m and n are the number of rows and columns of A. Moreover, if A is a banded matrix with width w, that is $A_{ij} = 0$ for |i - j| > w and w < n/2, then the complexity of the algorithm is $O(4^w (w+1)n^2)$.

INPUT:

- •A − matrix
- •permanent_only -optional boolean. If True, only the permanent is computed (might be faster).
- •var a variable name

```
sage: from sage.matrix.matrix_misc import permanental_minor_polynomial
sage: m = matrix([[1,1],[1,2]])
sage: permanental_minor_polynomial(m)
3*t^2 + 5*t + 1
sage: permanental_minor_polynomial(m, permanent_only=True)
3
sage: permanental_minor_polynomial(m, prec=2)
5*t + 1
```

```
sage: M = MatrixSpace(ZZ,4,4)
sage: A = M([1,0,1,0,1,0,1,0,10,10,1,0,1,1])
sage: permanental_minor_polynomial(A)
84*t^3 + 114*t^2 + 28*t + 1
sage: [A.permanental_minor(i) for i in range(5)]
[1, 28, 114, 84, 0]
```

An example over Q:

```
sage: M = MatrixSpace(QQ,2,2)
sage: A = M([1/5,2/7,3/2,4/5])
sage: permanental_minor_polynomial(A, True)
103/175
```

An example with polynomial coefficients:

```
sage: R.<a> = PolynomialRing(ZZ)
sage: A = MatrixSpace(R,2)([[a,1], [a,a+1]])
sage: permanental_minor_polynomial(A, True)
a^2 + 2*a
```

A usage of the var argument:

```
sage: m = matrix(ZZ,4,[0,1,2,3,1,2,3,0,2,3,0,1,3,0,1,2])
sage: permanental_minor_polynomial(m, var='x')
164*x^4 + 384*x^3 + 172*x^2 + 24*x + 1
```

ALGORITHM:

The permanent perm(A) of a $n \times n$ matrix A is the coefficient of the $x_1x_2 \dots x_n$ monomial in

$$\prod_{i=1}^{n} \left(\sum_{j=1}^{n} A_{ij} x_j \right)$$

Evaluating this product one can neglect x_i^2 , that is x_i can be considered to be nilpotent of order 2.

To formalize this procedure, consider the algebra $R = K[\eta_1, \eta_2, \dots, \eta_n]$ where the η_i are commuting, nilpotent of order 2 (i.e. $\eta_i^2 = 0$). Formally it is the quotient ring of the polynomial ring in $\eta_1, \eta_2, \dots, \eta_n$ quotiented by the ideal generated by the η_i^2 .

We will mostly consider the ring R[t] of polynomials over R. We denote a generic element of R[t] by $p(\eta_1, \ldots, \eta_n)$ or $p(\eta_{i_1}, \ldots, \eta_{i_k})$ if we want to emphasize that some monomials in the η_i are missing.

Introduce an "integration" operation $\langle p \rangle$ over R and R[t] consisting in the sum of the coefficients of the non-vanishing monomials in η_i (i.e. the result of setting all variables η_i to 1). Let us emphasize that this is *not* a morphism of algebras as $\langle \eta_1 \rangle^2 = 1$ while $\langle \eta_1^2 \rangle = 0$!

Let us consider an example of computation. Let $p_1 = 1 + t\eta_1 + t\eta_2$ and $p_2 = 1 + t\eta_1 + t\eta_3$. Then

$$p_1 p_2 = 1 + 2t\eta_1 + t(\eta_2 + \eta_3) + t^2(\eta_1 \eta_2 + \eta_1 \eta_3 + \eta_2 \eta_3)$$

and

$$\langle p_1 p_2 \rangle = 1 + 4t + 3t^2$$

In this formalism, the permanent is just

$$perm(A) = \langle \prod_{i=1}^{n} \sum_{j=1}^{n} A_{ij} \eta_j \rangle$$

A useful property of $\langle . \rangle$ which makes this algorithm efficient for band matrices is the following: let $p_1(\eta_1, \ldots, \eta_n)$ and $p_2(\eta_j, \ldots, \eta_n)$ be polynomials in R[t] where $j \geq 1$. Then one has

$$\langle p_1(\eta_1,\ldots,\eta_n)p_2\rangle = \langle p_1(1,\ldots,1,\eta_i,\ldots,\eta_n)p_2\rangle$$

where $\eta_1, ..., \eta_{j-1}$ are replaced by 1 in p_1 . Informally, we can "integrate" these variables *before* performing the product. More generally, if a monomial η_i is missing in one of the terms of a product of two terms, then it can be integrated in the other term.

Now let us consider an $m \times n$ matrix with $m \le n$. The sum of permanental 'k'-minors of 'A' is

$$perm(A, k) = \sum_{r,c} perm(A_{r,c})$$

where the sum is over the k-subsets r of rows and k-subsets c of columns and $A_{r,c}$ is the submatrix obtained from A by keeping only the rows r and columns c. Of course $perm(A, \min(m, n)) = perm(A)$ and note that perm(A, 1) is just the sum of all entries of the matrix.

The generating function of these sums of permanental minors is

$$g(t) = \left\langle \prod_{i=1}^{m} \left(1 + t \sum_{j=1}^{n} A_{ij} \eta_{j} \right) \right\rangle$$

In fact the t^k coefficient of g(t) corresponds to choosing k rows of A; η_i is associated to the i-th column; nilpotency avoids having twice the same column in a product of A's.

For more details, see the article [BP2015].

From a technical point of view, the product in $K[\eta_1,\ldots,\eta_n][t]$ is implemented as a subroutine in $prm_mul()$. The indices of the rows and columns actually start at 0, so the variables are η_0,\ldots,η_{n-1} . Polynomials are represented in dictionary form: to a variable η_i is associated the key 2^i (or in Python 1 << i). The keys associated to products are obtained by considering the development in base 2: to the monomial $\eta_{i_1}\ldots\eta_{i_k}$ is associated the key $2^{i_1}+\ldots+2^{i_k}$. So the product $\eta_1\eta_2$ corresponds to the key $6=(110)_2$ while $\eta_0\eta_3$ has key $9=(1001)_2$. In particular all operations on monomials are implemented via bitwise operations on the keys.

```
sage.matrix.matrix_misc. prm_mul (p1, p2, mask\_free, prec)
Return the product of p1 and p2, putting free variables in mask_free to 1.
```

This function is mainly use as a subroutine of permanental_minor_polynomial().

INPUT:

•p1, p2 – polynomials as dictionaries

• $mask_free$ – an integer mask that give the list of free variables (the *i*-th variable is free if the *i*-th bit of mask_free is 1)

•prec – if prec is not None, truncate the product at precision prec

```
sage: from sage.matrix.matrix_misc import prm_mul
sage: t = polygen(ZZ, 't')
sage: p1 = {0: 1, 1: t, 4: t}
sage: p2 = {0: 1, 1: t, 2: t}
sage: prm_mul(p1, p2, 1, None)
{0: 2*t + 1, 2: t^2 + t, 4: t^2 + t, 6: t^2}
```

```
sage.matrix.matrix_misc. row_iterator(A)
```

```
sage.matrix_matrix_misc. row_reduced_form ( M, transformation=False)
```

This function computes a row reduced form of a matrix over a rational function field k(x), for k a field.

INPUT:

- •M a matrix over k(x) or k[x] for k a field.
- •transformation A boolean (default: False). If this boolean is set to True a second matrix is output (see OUTPUT).

OUTPUT:

If transformation is False, the output is W, a row reduced form of M.

If transformation is True, this function will output a pair (W, N) consisting of two matrices over k(x):

- 1.W a row reduced form of M.
- 2.N an invertible matrix over k(x) satisfying NW = M.

EXAMPLES:

The function expects matrices over the rational function field, but other examples below show how one can provide matrices over the ring of polynomials (whose quotient field is the rational function field).

The last example shows the usage of the transformation parameter.

```
:: sage: Fq.<a> = GF(2^3) sage: Fx.<x> = Fq[] sage: A = matrix(Fx,[[x^2+a,x^4+a],[x^3,a*x^4]]) sage: from sage.matrix.matrix_misc import row_reduced_form sage: row_reduced_form(A,transformation=True) ( [ x^2 + a x^4 + a] [1 0] [x^3 + a^*x^2 + a^2 a^2], [a 1] )
```

NOTES:

See docstring for row_reduced_form method of matrices for more information.

CHAPTER

FIVE

ABSTRACT BASE CLASS FOR MATRICES

For design documentation see matrix/docs.py.

```
class sage.matrix.matrix. Matrix
     Bases: sage.matrix.matrix2.Matrix
sage.matrix.matrix. is_Matrix (x)
     EXAMPLES:
```

```
sage: from sage.matrix.matrix import is_Matrix
sage: is_Matrix(0)
False
sage: is_Matrix(matrix([[1,2],[3,4]]))
True
```

Sage Reference Manual: Matrices and Spaces of Matrices, Release 7.6

CHAPTER

SIX

BASE CLASS FOR MATRICES, PART 0

Note: For design documentation see matrix/docs.py.

EXAMPLES:

```
sage: matrix(2,[1,2,3,4])
[1 2]
[3 4]
```

class sage.matrix.matrix0. Matrix

Bases: sage.structure.element.Matrix

A generic matrix.

The Matrix class is the base class for all matrix classes. To create a Matrix, first create a MatrixSpace, then coerce a list of elements into the MatrixSpace. See the documentation of MatrixSpace for more details.

EXAMPLES:

We illustrate matrices and matrix spaces. Note that no actual matrix that you make should have class Matrix; the class should always be derived from Matrix.

```
sage: M = MatrixSpace(CDF,2,3); M
Full MatrixSpace of 2 by 3 dense matrices over Complex Double Field
sage: a = M([1,2,3, 4,5,6]); a
[1.0 2.0 3.0]
[4.0 5.0 6.0]
sage: type(a)
<type 'sage.matrix.matrix_complex_double_dense.Matrix_complex_double_dense'>
sage: parent(a)
Full MatrixSpace of 2 by 3 dense matrices over Complex Double Field
```

```
sage: matrix(CDF, 2,3, [1,2,3, 4,5,6])
[1.0 2.0 3.0]
[4.0 5.0 6.0]
sage: Mat(CDF,2,3)(range(1,7))
[1.0 2.0 3.0]
[4.0 5.0 6.0]
```

```
sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -1,-1)
sage: matrix(Q,2,1,[1,2])
[1]
[2]
```

act_on_polynomial (f)

Returns the polynomial f(self*x).

INPUT:

- •self an nxn matrix
- •f a polynomial in n variables x=(x1,...,xn)

OUTPUT: The polynomial f(self*x).

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: x, y = R.gens()
sage: f = x**2 - y**2
sage: M = MatrixSpace(QQ, 2)
sage: A = M([1,2,3,4])
sage: A.act_on_polynomial(f)
-8*x^2 - 20*x*y - 12*y^2
```

$add_multiple_of_column (i, j, s, start_row=0)$

Add s times column j to column i.

EXAMPLES: We add -1 times the third column to the second column of an integer matrix, remembering to start numbering cols at zero:

```
sage: a = matrix(ZZ,2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: a.add_multiple_of_column(1,2,-1)
sage: a
[ 0 -1 2]
[ 3 -1 5]
```

To add a rational multiple, we first need to change the base ring:

```
sage: a = a.change_ring(QQ)
sage: a.add_multiple_of_column(1,0,1/3)
sage: a
[ 0 -1 2]
[ 3 0 5]
```

If not, we get an error message:

$\verb"add_multiple_of_row" (i, j, s, start_col = 0)$

Add s times row j to row i.

EXAMPLES: We add -3 times the first row to the second row of an integer matrix, remembering to start numbering rows at zero:

```
sage: a = matrix(ZZ,2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: a.add_multiple_of_row(1,0,-3)
```

```
sage: a
[ 0 1 2]
[ 3 1 -1]
```

To add a rational multiple, we first need to change the base ring:

If not, we get an error message:

anticommutator (other)

Return the anticommutator self and other.

The anticommutator of two $n \times n$ matrices A and B is defined as $\{A, B\} := AB + BA$ (sometimes this is written as $[A, B]_+$).

EXAMPLES:

```
sage: A = Matrix(ZZ, 2, 2, range(4))
sage: B = Matrix(ZZ, 2, 2, [0, 1, 0, 0])
sage: A.anticommutator(B)
[2 3]
[0 2]
sage: A.anticommutator(B) == B.anticommutator(A)
True
sage: A.commutator(B) + B.anticommutator(A) == 2*A*B
True
```

base_ring()

Returns the base ring of the matrix.

EXAMPLES:

```
sage: m=matrix(QQ,2,[1,2,3,4])
sage: m.base_ring()
Rational Field
```

change_ring (ring)

Return the matrix obtained by coercing the entries of this matrix into the given ring.

Always returns a copy (unless self is immutable, in which case returns self).

```
sage: A = Matrix(QQ, 2, 2, [1/2, 1/3, 1/3, 1/4])
sage: A.parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: A.change_ring(GF(25,'a'))
[3 2]
```

```
[2 4]
sage: A.change_ring(GF(25,'a')).parent()
Full MatrixSpace of 2 by 2 dense matrices over Finite Field in a of size 5^2
sage: A.change_ring(ZZ)
Traceback (most recent call last):
...
TypeError: matrix has denominators so can't change to ZZ.
```

Changing rings preserves subdivisions:

```
sage: A.subdivide([1], []); A
[1/2 1/3]
[-----]
[1/3 1/4]
sage: A.change_ring(GF(25,'a'))
[3 2]
[---]
[2 4]
```

commutator (other)

Return the commutator self*other - other*self.

EXAMPLES:

```
sage: A = Matrix(ZZ, 2, 2, range(4))
sage: B = Matrix(ZZ, 2, 2, [0, 1, 0, 0])
sage: A.commutator(B)
[-2 -3]
[ 0  2]
sage: A.commutator(B) == -B.commutator(A)
True
```

dict ()

Dictionary of the elements of self with keys pairs (i,j) and values the nonzero entries of self.

It is safe to change the returned dictionary.

EXAMPLES:

Notice that changing the returned list does not change a (the list is a copy):

dimensions ()

Returns the dimensions of this matrix as the tuple (nrows, ncols).

```
sage: M = matrix([[1,2,3],[4,5,6]])
sage: N = M.transpose()
sage: M.dimensions()
(2, 3)
sage: N.dimensions()
(3, 2)
```

AUTHORS:

•Benjamin Lundell (2012-02-09): examples

is_alternating()

Return True if self is an alternating matrix.

Here, "alternating matrix" means a square matrix A satisfying $A^T = -A$ and such that the diagonal entries of A are 0. Notice that the condition that the diagonal entries be 0 is not redundant for matrices over arbitrary ground rings (but it is redundant when 2 is invertible in the ground ring). A square matrix A only required to satisfy $A^T = -A$ is said to be "skew-symmetric", and this property is checked by the is skew symmetric () method.

EXAMPLES:

```
sage: m = matrix(QQ, [[0,2], [-2,0]])
sage: m.is_alternating()
True
sage: m = matrix(QQ, [[1,2], [2,1]])
sage: m.is_alternating()
False
```

In contrast to the property of being skew-symmetric, the property of being alternating does not tolerate nonzero entries on the diagonal even if they are their own negatives:

```
sage: n = matrix(Zmod(4), [[0, 1], [-1, 2]])
sage: n.is_alternating()
False
```

is_dense ()

Returns True if this is a dense matrix.

In Sage, being dense is a property of the underlying representation, not the number of nonzero entries.

EXAMPLES:

```
sage: matrix(QQ,2,2,range(4)).is_dense()
True
sage: matrix(QQ,2,2,range(4),sparse=True).is_dense()
False
```

is_hermitian ()

Returns True if the matrix is equal to its conjugate-transpose.

OUTPUT:

True if the matrix is square and equal to the transpose with every entry conjugated, and False otherwise.

Note that if conjugation has no effect on elements of the base ring (such as for integers), then the <code>is_symmetric()</code> method is equivalent and faster.

This routine is for matrices over exact rings and so may not work properly for matrices over RR or CC . For matrices with approximate entries, the rings of double-

precision floating-point numbers, RDF and CDF, are a better choice since the <code>sage.matrix.matrix_double_dense.Matrix_double_dense.is_hermitian()</code> method has a tolerance parameter. This provides control over allowing for minor discrepancies between entries when checking equality.

The result is cached.

EXAMPLES:

Sage has several fields besides the entire complex numbers where conjugation is non-trivial.

A matrix that is nearly Hermitian, but for a non-real diagonal entry.

Rectangular matrices are never Hermitian.

```
sage: A = matrix(QQbar, 3, 4)
sage: A.is_hermitian()
False
```

A square, empty matrix is trivially Hermitian.

```
sage: A = matrix(QQ, 0, 0)
sage: A.is_hermitian()
True
```

is_immutable ()

Return True if this matrix is immutable.

See the documentation for self.set_immutable for more details about mutability.

```
sage: A = Matrix(QQ['t','s'], 2, 2, range(4))
sage: A.is_immutable()
False
sage: A.set_immutable()
sage: A.is_immutable()
True
```

is invertible()

Return True if this matrix is invertible.

EXAMPLES: The following matrix is invertible over **Q** but not over **Z**.

```
sage: A = MatrixSpace(ZZ, 2)(range(4))
sage: A.is_invertible()
False
sage: A.matrix_over_field().is_invertible()
True
```

The inverse function is a constructor for matrices over the fraction field, so it can work even if A is not invertible.

```
sage: ~A # inverse of A
[-3/2 1/2]
[ 1 0]
```

The next matrix is invertible over **Z**.

The following nontrivial matrix is invertible over $\mathbf{Z}[x]$.

```
sage: R.<x> = PolynomialRing(IntegerRing())
sage: A = MatrixSpace(R,2)([1,x,0,-1])
sage: A.is_invertible()
True
sage: ~A
[ 1 x]
[ 0 -1]
```

is mutable ()

Return True if this matrix is mutable.

See the documentation for self.set_immutable for more details about mutability.

```
sage: A = Matrix(QQ['t','s'], 2, 2, range(4))
sage: A.is_mutable()
True
sage: A.set_immutable()
sage: A.is_mutable()
False
```

is singular ()

Returns True if self is singular.

OUTPUT:

A square matrix is singular if it has a zero determinant and this method will return True in exactly this case. When the entries of the matrix come from a field, this is equivalent to having a nontrivial kernel, or lacking an inverse, or having linearly dependent rows, or having linearly dependent columns.

For square matrices over a field the methods <code>is_invertible()</code> and <code>is_singular()</code> are logical opposites. However, it is an error to apply <code>is_singular()</code> to a matrix that is not square, while <code>is_invertible()</code> will always return False for a matrix that is not square.

EXAMPLES:

A singular matrix over the field QQ.

```
sage: A = matrix(QQ, 4, [-1,2,-3,6,0,-1,-1,0,-1,1,-5,7,-1,6,5,2])
sage: A.is_singular()
True
sage: A.right_kernel().dimension()
1
```

A matrix that is not singular, i.e. nonsingular, over a field.

```
sage: B = matrix(QQ, 4, [1,-3,-1,-5,2,-5,-2,-7,-2,5,3,4,-1,4,2,6])
sage: B.is_singular()
False
sage: B.left_kernel().dimension()
0
```

For rectangular matrices, invertibility is always False, but asking about singularity will give an error.

```
sage: C = matrix(QQ, 5, range(30))
sage: C.is_invertible()
False
sage: C.is_singular()
Traceback (most recent call last):
...
ValueError: self must be a square matrix
```

When the base ring is not a field, then a matrix may be both not invertible and not singular.

```
sage: D = matrix(ZZ, 4, [2,0,-4,8,2,1,-2,7,2,5,7,0,0,1,4,-6])
sage: D.is_invertible()
False
sage: D.is_singular()
False
sage: d = D.determinant(); d
2
sage: d.is_unit()
False
```

is_skew_symmetric()

Return True if self is a skew-symmetric matrix.

Here, "skew-symmetric matrix" means a square matrix A satisfying $A^T = -A$. It does not require that the diagonal entries of A are 0 (although this automatically follows from $A^T = -A$ when 2 is invertible in the ground ring over which the matrix is considered). Skew-symmetric matrices A whose diagonal entries are 0 are said to be "alternating", and this property is checked by the $is_alternating()$ method.

EXAMPLES:

```
sage: m = matrix(QQ, [[0,2], [-2,0]])
sage: m.is_skew_symmetric()
True
sage: m = matrix(QQ, [[1,2], [2,1]])
sage: m.is_skew_symmetric()
False
```

Skew-symmetric is not the same as alternating when 2 is a zero-divisor in the ground ring:

```
sage: n = matrix(Zmod(4), [[0, 1], [-1, 2]])
sage: n.is_skew_symmetric()
True
```

but yet the diagonal cannot be completely arbitrary in this case:

```
sage: n = matrix(Zmod(4), [[0, 1], [-1, 3]])
sage: n.is_skew_symmetric()
False
```

is_skew_symmetrizable (return_diag=False, positive=True)

This function takes a square matrix over an *ordered integral domain* and checks if it is skew-symmetrizable. A matrix B is skew-symmetrizable iff there exists an invertible diagonal matrix D such that DB is skew-symmetric.

Warning: Expects self to be a matrix over an *ordered integral domain*.

INPUT:

- •return_diag bool(default:False) if True and self is skew-symmetrizable the diagonal entries of the matrix D are returned.
- •positive bool(default:True) if True, the condition that *D* has positive entries is added.

OUTPUT:

- •True if self is skew-symmetrizable and return_diag is False
- •the diagonal entries of a matrix D such that DB is skew-symmetric iff self is skew-symmetrizable and return_diag is True
- •False iff self is not skew-symmetrizable

REFERENCES:

•[FZ2001] S. Fomin, A. Zelevinsky. Cluster Algebras 1: Foundations, arXiv:math/0104151 (2001).

is_sparse()

Return True if this is a sparse matrix.

In Sage, being sparse is a property of the underlying representation, not the number of nonzero entries.

EXAMPLES:

```
sage: matrix(QQ,2,2,range(4)).is_sparse()
False
sage: matrix(QQ,2,2,range(4),sparse=True).is_sparse()
True
```

is_square()

Return True precisely if this matrix is square, i.e., has the same number of rows and columns.

EXAMPLES:

```
sage: matrix(QQ,2,2,range(4)).is_square()
True
sage: matrix(QQ,2,3,range(6)).is_square()
False
```

is_symmetric ()

Returns True if this is a symmetric matrix.

A symmetric matrix is necessarily square.

EXAMPLES:

```
sage: m=Matrix(QQ,2,range(0,4))
sage: m.is_symmetric()
False

sage: m=Matrix(QQ,2,(1,1,1,1,1,1))
sage: m.is_symmetric()
False

sage: m=Matrix(QQ,1,(2,))
sage: m.is_symmetric()
True
```

is_symmetrizable (return_diag=False, positive=True)

This function takes a square matrix over an *ordered integral domain* and checks if it is symmetrizable. A matrix B is symmetrizable iff there exists an invertible diagonal matrix D such that DB is symmetric.

Warning: Expects self to be a matrix over an *ordered integral domain*.

INPUT:

- •return_diag bool(default:False) if True and self is symmetrizable the diagonal entries of the matrix D are returned.
- •positive bool(default:True) if True, the condition that *D* has positive entries is added.

OUTPUT:

- •True if self is symmetrizable and return_diag is False
- •the diagonal entries of a matrix D such that DB is symmetric iff self is symmetrizable and return_diag is True
- •False iff self is not symmetrizable

EXAMPLES:

```
sage: matrix([[0,6],[3,0]]).is_symmetrizable(positive=False)
True

sage: matrix([[0,6],[3,0]]).is_symmetrizable(positive=True)
True

sage: matrix([[0,6],[0,0]]).is_symmetrizable(return_diag=True)
False

sage: matrix([[2]).is_symmetrizable(positive=True)
True

sage: matrix([[1,2],[3,4]]).is_symmetrizable(return_diag=true)
[1, 2/3]
```

REFERENCES:

•[FZ2001] S. Fomin, A. Zelevinsky. Cluster Algebras 1: Foundations, arXiv:math/0104151 (2001).

is_unit()

Return True if this matrix is invertible.

EXAMPLES: The following matrix is invertible over \mathbf{Q} but not over \mathbf{Z} .

```
sage: A = MatrixSpace(ZZ, 2)(range(4))
sage: A.is_invertible()
False
sage: A.matrix_over_field().is_invertible()
True
```

The inverse function is a constructor for matrices over the fraction field, so it can work even if A is not invertible.

```
sage: ~A # inverse of A
[-3/2 1/2]
[ 1 0]
```

The next matrix is invertible over **Z**.

The following nontrivial matrix is invertible over $\mathbf{Z}[x]$.

```
sage: R.<x> = PolynomialRing(IntegerRing())
sage: A = MatrixSpace(R,2)([1,x,0,-1])
sage: A.is_invertible()
True
sage: ~A
[ 1 x]
[ 0 -1]
```

iterates (v, n, rows=True)

Let A be this matrix and v be a free module element. If rows is True, return a matrix whose rows are the entries of the following vectors:

$$v, vA, vA^2, \dots, vA^{n-1}$$
.

If rows is False, return a matrix whose columns are the entries of the following vectors:

$$v, Av, A^2v, \ldots, A^{n-1}v.$$

INPUT:

- •v free module element
- •n nonnegative integer

EXAMPLES:

```
sage: A = matrix(ZZ,2, [1,1,3,5]); A
[1 1]
[3 5]
sage: v = vector([1,0])
sage: A.iterates(v,0)
[]
sage: A.iterates(v,5)
[ 1 0]
[ 1 1]
[ 4 6]
[ 22 34]
[ 124 192]
```

Another example:

```
sage: a = matrix(ZZ,3,range(9)); a
[0 1 2]
[3 4 5]
[6 7 8]
sage: v = vector([1,0,0])
sage: a.iterates(v,4)
[ 1 0 0]
[ 0 1 2]
[ 15 18 21]
```

```
[180 234 288]
sage: a.iterates(v,4,rows=False)
[ 1  0  15 180]
[ 0  3  42 558]
[ 0  6  69 936]
```

linear_combination_of_columns (v)

Return the linear combination of the columns of self given by the coefficients in the list v.

INPUT:

•v - a list of scalars. The length can be less than the number of columns of self but not greater.

OUTPUT:

The vector (or free module element) that is a linear combination of the columns of self. If the list of scalars has fewer entries than the number of columns, additional zeros are appended to the list until it has as many entries as the number of columns.

EXAMPLES:

```
sage: a = matrix(ZZ,2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: a.linear_combination_of_columns([1,1,1])
(3, 12)
sage: a.linear_combination_of_columns([0,0,0])
(0, 0)
sage: a.linear_combination_of_columns([1/2,2/3,3/4])
(13/6, 95/12)
```

The list v can be anything that is iterable. Perhaps most naturally, a vector may be used.

```
sage: v = vector(ZZ, [1,2,3])
sage: a.linear_combination_of_columns(v)
(8, 26)
```

We check that a matrix with no columns behaves properly.

```
sage: matrix(QQ,2,0).linear_combination_of_columns([])
(0, 0)
```

The object returned is a vector, or a free module element.

```
sage: B = matrix(ZZ, 4, 3, range(12))
sage: w = B.linear_combination_of_columns([-1,2,-3])
sage: w
(-4, -10, -16, -22)
sage: w.parent()
Ambient free module of rank 4 over the principal ideal domain Integer Ring
sage: x = B.linear_combination_of_columns([1/2,1/3,1/4])
sage: x
(5/6, 49/12, 22/3, 127/12)
sage: x.parent()
Vector space of dimension 4 over Rational Field
```

The length of v can be less than the number of columns, but not greater.

```
sage: A = matrix(QQ,3,5, range(15))
sage: A.linear_combination_of_columns([1,-2,3,-4])
(-8, -18, -28)
sage: A.linear_combination_of_columns([1,2,3,4,5,6])
Traceback (most recent call last):
...
ValueError: length of v must be at most the number of columns of self
```

linear_combination_of_rows (v)

Return the linear combination of the rows of self given by the coefficients in the list v.

INPUT:

•v - a list of scalars. The length can be less than the number of rows of self but not greater.

OUTPUT:

The vector (or free module element) that is a linear combination of the rows of self. If the list of scalars has fewer entries than the number of rows, additional zeros are appended to the list until it has as many entries as the number of rows.

EXAMPLES:

```
sage: a = matrix(ZZ,2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: a.linear_combination_of_rows([1,2])
(6, 9, 12)

sage: a.linear_combination_of_rows([0,0])
(0, 0, 0)

sage: a.linear_combination_of_rows([1/2,2/3])
(2, 19/6, 13/3)
```

The list v can be anything that is iterable. Perhaps most naturally, a vector may be used.

```
sage: v = vector(ZZ, [1,2])
sage: a.linear_combination_of_rows(v)
(6, 9, 12)
```

We check that a matrix with no rows behaves properly.

```
sage: matrix(QQ,0,2).linear_combination_of_rows([])
(0, 0)
```

The object returned is a vector, or a free module element.

```
sage: B = matrix(ZZ, 4, 3, range(12))
sage: w = B.linear_combination_of_rows([-1,2,-3,4])
sage: w
(24, 26, 28)
sage: w.parent()
Ambient free module of rank 3 over the principal ideal domain Integer Ring
sage: x = B.linear_combination_of_rows([1/2,1/3,1/4,1/5])
sage: x
(43/10, 67/12, 103/15)
sage: x.parent()
Vector space of dimension 3 over Rational Field
```

The length of v can be less than the number of rows, but not greater.

```
sage: A = matrix(QQ,3,4,range(12))
sage: A.linear_combination_of_rows([2,3])
(12, 17, 22, 27)
sage: A.linear_combination_of_rows([1,2,3,4])
Traceback (most recent call last):
...
ValueError: length of v must be at most the number of rows of self
```

list()

List of the elements of self ordered by elements in each row. It is safe to change the returned list.

Warning: This function returns a list of the entries in the matrix self. It does not return a list of the rows of self, so it is different than the output of list(self), which returns $[self[0], self[1], \ldots]$.

EXAMPLES:

Note that list(a) is different than a.list():

```
sage: a.list()
[x, y, x*y, y, x, 2*x + y]
sage: list(a)
[(x, y, x*y), (y, x, 2*x + y)]
```

Notice that changing the returned list does not change a (the list is a copy):

mod(p)

Return matrix mod p, over the reduced ring.

EXAMPLES:

```
sage: M = matrix(ZZ, 2, 2, [5, 9, 13, 15])
sage: M.mod(7)
[5 2]
[6 1]
sage: parent(M.mod(7))
Full MatrixSpace of 2 by 2 dense matrices over Ring of integers modulo 7
```

multiplicative_order ()

Return the multiplicative order of this matrix, which must therefore be invertible.

```
sage: A = matrix(GF(59),3,[10,56,39,53,56,33,58,24,55])
sage: A.multiplicative_order()
580
sage: (A^580).is_one()
True
```

```
sage: B = matrix(GF(10007^3,'b'),0)
sage: B.multiplicative_order()
1
```

```
sage: C = matrix(GF(2^10,'c'),2,3,[1]*6)
sage: C.multiplicative_order()
Traceback (most recent call last):
...
ArithmeticError: self must be invertible ...
```

```
sage: D = matrix(IntegerModRing(6),3,[5,5,3,0,2,5,5,4,0])
sage: D.multiplicative_order()
Traceback (most recent call last):
...
NotImplementedError: ... only ... over finite fields
```

```
sage: E = MatrixSpace(GF(11^2,'e'),5).random_element()
sage: (E^E.multiplicative_order()).is_one()
True
```

REFERENCES:

•Frank Celler and C. R. Leedham-Green, "Calculating the Order of an Invertible Matrix", 1997

mutate (k)

Mutates self at row and column index k.

```
Warning: Only makes sense if self is skew-symmetrizable.
```

INPUT:

 $\bullet \texttt{k}\,$ – integer at which row/column self is mutated.

EXAMPLES:

Mutation of the B-matrix of the quiver of type A_3 :

```
sage: M = matrix(ZZ,3,[0,1,0,-1,0,1,0]); M
[ 0  1  0]
[-1  0 -1]
[ 0  1  0]

sage: M.mutate(0); M
[ 0 -1  0]
[ 1  0 -1]
[ 0  1  0]

sage: M.mutate(1); M
[ 0  1 -1]
[ -1  0  1]
```

```
sage: M = matrix(ZZ,6,[0,1,0,-1,0,-1,0,1,0,0,0,1,0,0,0,1]); M
[ 0  1  0]
[-1  0 -1]
[ 0  1  0]
[ 1  0  0]
[ 0  1  0]
[ 0  0  1]

sage: M.mutate(0); M
[ 0 -1  0]
[ 1  0 -1]
[ 0  1  0]
[ 1  0 0]
[ 1  0 0]
[ 1  0 0]
[ 1  0 0]
[ 1  0 0]
[ 1  0 0]
[ 1  0 0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1  0]
[ 1
```

REFERENCES:

•[FZ2001] S. Fomin, A. Zelevinsky. Cluster Algebras 1: Foundations, arXiv:math/0104151 (2001).

ncols ()

Return the number of columns of this matrix.

EXAMPLES:

```
sage: M = MatrixSpace(QQ, 2, 3)
sage: A = M([1,2,3, 4,5,6])
sage: A
[1 2 3]
[4 5 6]
sage: A.ncols()
3
sage: A.nrows()
```

AUTHORS:

•Naqi Jaffery (2006-01-24): examples

nonpivots ()

Return the list of i such that the i-th column of self is NOT a pivot column of the reduced row echelon form of self.

OUTPUT: sorted tuple of (Python) integers

```
sage: a = matrix(QQ,3,3,range(9)); a
[0 1 2]
[3 4 5]
[6 7 8]
sage: a.echelon_form()
[1 0 -1]
[0 1 2]
[0 0 0]
sage: a.nonpivots()
(2,)
```

nonzero_positions (copy=True, column_order=False)

Returns the sorted list of pairs (i,j) such that self[i,j] != 0.

INPUT:

- •copy (default: True) It is safe to change the resulting list (unless you give the option copy=False).
- •column_order (default: False) If true, returns the list of pairs (i,j) such that self[i,j] != 0, but sorted by columns, i.e., column j=0 entries occur first, then column j=1 entries, etc.

EXAMPLES:

```
sage: a = matrix(QQ, 2, 3, [1, 2, 0, 2, 0, 0]); a
[1 2 0]
[2 0 0]
sage: a.nonzero_positions()
[(0, 0), (0, 1), (1, 0)]
sage: a.nonzero_positions(copy=False)
[(0, 0), (0, 1), (1, 0)]
sage: a.nonzero_positions(column_order=True)
[(0, 0), (1, 0), (0, 1)]
sage: a = matrix(QQ, 2, 3, [1, 2, 0, 2, 0, 0], sparse=True); a
[1 2 0]
[2 0 0]
sage: a.nonzero_positions()
[(0, 0), (0, 1), (1, 0)]
sage: a.nonzero_positions(copy=False)
[(0, 0), (0, 1), (1, 0)]
sage: a.nonzero_positions(column_order=True)
[(0, 0), (1, 0), (0, 1)]
```

nonzero_positions_in_column (i)

Return a sorted list of the integers j such that self[j,i] is nonzero, i.e., such that the j-th position of the i-th column is nonzero.

INPUT:

•i - an integer

OUTPUT: list

EXAMPLES:

```
sage: a = matrix(QQ, 3,2, [1,2,0,2,0,0]); a
[1 2]
[0 2]
[0 0]
sage: a.nonzero_positions_in_column(0)
[0]
sage: a.nonzero_positions_in_column(1)
[0, 1]
```

You'll get an IndexError, if you select an invalid column:

```
sage: a.nonzero_positions_in_column(2)
Traceback (most recent call last):
...
IndexError: matrix column index out of range
```

nonzero_positions_in_row (i)

Return the integers j such that self[i,j] is nonzero, i.e., such that the j-th position of the i-th row is nonzero.

INPUT:

•i - an integer

OUTPUT: list

EXAMPLES:

```
sage: a = matrix(QQ, 3,2, [1,2,0,2,0,0]); a
[1 2]
[0 2]
[0 0]
sage: a.nonzero_positions_in_row(0)
[0, 1]
sage: a.nonzero_positions_in_row(1)
[1]
sage: a.nonzero_positions_in_row(2)
[]
```

nrows ()

Return the number of rows of this matrix.

EXAMPLES:

```
sage: M = MatrixSpace(QQ, 6, 7)
sage: A = M([1,2,3,4,5,6,7,22,3/4,34,11,7,5,3,99,65,1/2,2/3,3/5,4/5,5/6,...]
\rightarrow 9, 8/9, 9/8, 7/6, 6/7, 76, 4, 0, 9, 8, 7, 6, 5, 4, 123, 99, 91, 28, 6, 1024, 1])
sage: A
        2
             3
                  4
  1
           34
                11
 22 3/4
                                  31
[ 99
      65 1/2 2/3 3/5 4/5 5/6]
  9 8/9 9/8 7/6 6/7 76
       9
            8
                      6 5
  0
                 7
                                 4]
      99
[ 123
            91
                 28
                     6 1024
sage: A.ncols()
sage: A.nrows()
6
```

AUTHORS:

•Naqi Jaffery (2006-01-24): examples

permute_columns (permutation)

Permute the columns of self by applying the permutation group element permutation.

As a permutation group element acts on integers $\{1, \dots, n\}$ the columns are considered as being numbered from 1 for this operation.

INPUT:

•permutation -a PermutationGroupElement.

EXAMPLES: We create a matrix:

```
[0 0 0 4 0]
[0 0 0 0 5]
```

Next of all, create a permutation group element and act on M with it:

```
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: sigma, tau = G.gens()
sage: sigma
(1,2,3)(4,5)
sage: M.permute_columns(sigma)
sage: M
[0 0 1 0 0]
[2 0 0 0 0]
[0 3 0 0 0]
[0 0 0 0 4]
[0 0 0 5 0]
```

permute_rows (permutation)

Permute the rows of self by applying the permutation group element permutation.

As a permutation group element acts on integers $\{1, \dots, n\}$ the rows are considered as being numbered from 1 for this operation.

INPUT:

•permutation - a PermutationGroupElement

EXAMPLES: We create a matrix:

Next of all, create a permutation group element and act on M:

```
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: sigma, tau = G.gens()
sage: sigma
(1,2,3)(4,5)
sage: M.permute_rows(sigma)
sage: M
[0 2 0 0 0]
[0 0 3 0 0]
[1 0 0 0 0 0]
[0 0 0 0 5]
[0 0 0 4 0]
```

permute_rows_and_columns (row_permutation, column_permutation)

Permute the rows and columns of self by applying the permutation group elements row_permutation and column_permutation respectively.

As a permutation group element acts on integers $\{1, \dots, n\}$ the rows and columns are considered as being numbered from 1 for this operation.

INPUT:

- •row_permutation -a PermutationGroupElement
- •column_permutation a PermutationGroupElement

OUTPUT:

•A matrix.

EXAMPLES: We create a matrix:

```
sage: M =_
→matrix(ZZ,[[1,0,0,0,0],[0,2,0,0,0],[0,0,3,0,0],[0,0,0,4,0],[0,0,0,0,5]])
sage: M
[1 0 0 0 0]
[0 2 0 0 0]
[0 0 3 0 0]
[0 0 0 4 0]
[0 0 0 0 5]
```

Next of all, create a permutation group element and act on M:

```
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: sigma, tau = G.gens()
sage: sigma
(1,2,3)(4,5)
sage: M.permute_rows_and_columns(sigma,tau)
sage: M
[2 0 0 0 0]
[0 3 0 0 0]
[0 0 0 0 1]
[0 0 0 5 0]
[0 0 4 0 0]
```

pivots ()

Return the pivot column positions of this matrix.

OUTPUT: a tuple of Python integers: the position of the first nonzero entry in each row of the echelon form.

This returns a tuple so it is immutable; see trac ticket #10752.

EXAMPLES:

```
sage: A = matrix(QQ, 2, 2, range(4))
sage: A.pivots()
(0, 1)
```

rank ()

Return the rank of this matrix.

EXAMPLES:

```
sage: m = matrix(GF(7),5,range(25))
sage: m.rank()
2
```

Rank is not implemented over the integers modulo a composite yet.:

```
sage: m = matrix(Integers(4), 2, [2,2,2,2])
sage: m.rank()
Traceback (most recent call last):
```

```
...
NotImplementedError: Echelon form not implemented over 'Ring of integers_
→modulo 4'.
```

rescale_col (i, s, start_row=0)

Replace i-th col of self by s times i-th col of self.

INPUT:

- •i ith column
- •s scalar
- •start_row only rescale entries at this row and lower

EXAMPLES: We rescale the last column of a matrix over the rational numbers:

```
sage: a = matrix(QQ,2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: a.rescale_col(2,1/2); a
[ 0  1  1]
[ 3  4 5/2]
sage: R.<x> = QQ[]
```

We rescale the last column of a matrix over a polynomial ring:

We try and fail to rescale a matrix over the integers by a non-integer:

```
sage: a = matrix(ZZ,2,3,[0,1,2, 3,4,4]); a
[0 1 2]
[3 4 4]
sage: a.rescale_col(2,1/2)
Traceback (most recent call last):
...
TypeError: Rescaling column by Rational Field element cannot be done over

→Integer Ring, use change_ring or with_rescaled_col instead.
```

To rescale the matrix by 1/2, you must change the base ring to the rationals:

```
sage: a = a.change_ring(QQ); a
[0 1 2]
[3 4 4]
sage: a.rescale_col(2,1/2); a
[0 1 1]
[3 4 2]
```

rescale_row (i, s, start_col=0)

Replace i-th row of self by s times i-th row of self.

INPUT:

•i - ith row

- •s scalar
- •start_col only rescale entries at this column and to the right

EXAMPLES: We rescale the second row of a matrix over the rational numbers:

```
sage: a = matrix(QQ,3,range(6)); a
[0 1]
[2 3]
[4 5]
sage: a.rescale_row(1,1/2); a
[ 0   1]
[ 1 3/2]
[ 4   5]
```

We rescale the second row of a matrix over a polynomial ring:

```
sage: R.<x> = QQ[]
sage: a = matrix(R,3,[1,x,x^2,x^3,x^4,x^5]);a
[ 1     x]
[x^2 x^3]
[x^4 x^5]
sage: a.rescale_row(1,1/2); a
[     1     x]
[1/2*x^2 1/2*x^3]
[     x^4     x^5]
```

We try and fail to rescale a matrix over the integers by a non-integer:

```
sage: a = matrix(ZZ,2,3,[0,1,2, 3,4,4]); a
[0 1 2]
[3 4 4]
sage: a.rescale_row(1,1/2)
Traceback (most recent call last):
...
TypeError: Rescaling row by Rational Field element cannot be done over_
→Integer Ring, use change_ring or with_rescaled_row instead.
```

To rescale the matrix by 1/2, you must change the base ring to the rationals:

```
sage: a = a.change_ring(QQ); a
[0 1 2]
[3 4 4]
sage: a.rescale_col(1,1/2); a
[ 0 1/2 2]
[ 3 2 4]
```

$\verb|set_col_to_multiple_of_col| (i, j, s)|$

Set column i equal to s times column j.

EXAMPLES: We change the second column to -3 times the first column.

```
sage: a = matrix(ZZ,2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: a.set_col_to_multiple_of_col(1,0,-3)
sage: a
[ 0 0 2]
[ 3 -9 5]
```

If we try to multiply a column by a rational number, we get an error message:

```
sage: a.set_col_to_multiple_of_col(1,0,1/2)
Traceback (most recent call last):
...
TypeError: Multiplying column by Rational Field element cannot be done over_
→Integer Ring, use change_ring or with_col_set_to_multiple_of_col instead.
```

set immutable()

Call this function to set the matrix as immutable.

Matrices are always mutable by default, i.e., you can change their entries using A[i,j] = x. However, mutable matrices aren't hashable, so can't be used as keys in dictionaries, etc. Also, often when implementing a class, you might compute a matrix associated to it, e.g., the matrix of a Hecke operator. If you return this matrix to the user you're really returning a reference and the user could then change an entry; this could be confusing. Thus you should set such a matrix immutable.

EXAMPLES:

```
sage: A = Matrix(QQ, 2, 2, range(4))
sage: A.is_mutable()
True
sage: A[0,0] = 10
sage: A
[10   1]
[ 2   3]
```

Mutable matrices are not hashable, so can't be used as keys for dictionaries:

```
sage: hash(A)
Traceback (most recent call last):
...
TypeError: mutable matrices are unhashable
sage: v = {A:1}
Traceback (most recent call last):
...
TypeError: mutable matrices are unhashable
```

If we make A immutable it suddenly is hashable.

$set_row_to_multiple_of_row$ (i, j, s)

Set row i equal to s times row j.

EXAMPLES: We change the second row to -3 times the first row:

```
sage: a = matrix(ZZ,2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: a.set_row_to_multiple_of_row(1,0,-3)
sage: a
[ 0 1 2]
[ 0 -3 -6]
```

If we try to multiply a row by a rational number, we get an error message:

```
sage: a.set_row_to_multiple_of_row(1,0,1/2)
Traceback (most recent call last):
...
TypeError: Multiplying row by Rational Field element cannot be done over_
→Integer Ring, use change_ring or with_row_set_to_multiple_of_row instead.
```

Return a nice string representation of the matrix.

INPUT:

•rep_mapping - a dictionary or callable used to override the usual representation of elements.

If rep_mapping is a dictionary then keys should be elements of the base ring and values the desired string representation. Values sent in via the other keyword arguments will override values in the dictionary. Use of a dictionary can potentially take a very long time due to the need to hash entries of the matrix. Matrices with entries from QQbar are one example.

If rep_mapping is callable then it will be called with elements of the matrix and must return a string. Simply call repr() on elements which should have the default representation.

- •zero string (default: None); if not None use the value of zero as the representation of the zero element.
- •plus_one string (default: None); if not None use the value of plus_one as the representation of the one element.
- •minus_one string (default: None); if not None use the value of minus_one as the representation of the negative of the one element.
- •unicode boolean (default: False). Whether to use Unicode symbols instead of ASCII symbols for brackets and subdivision lines.
- •shape one of "square" or "round" (default: None). Switches between round and square brackets. The default depends on the setting of the unicode keyword argument. For Unicode symbols, the default is round brackets in accordance with the TeX rendering, while the ASCII rendering defaults to square brackets.

```
sage: R = PolynomialRing(QQ,6,'z')
sage: a = matrix(2,3, R.gens())
sage: a.__repr__()
'[z0 z1 z2]\n[z3 z4 z5]'

sage: M = matrix([[1,0],[2,-1]])
sage: M.str()
'[1 0]\n[2 -1]'
sage: M.str(plus_one='+',minus_one='-',zero='.')
'[+ .]\n[2 -]'
```

```
sage: M.str({1:"not this one",2:"II"},minus_one="*",plus_one="I")
'[ I 0]\n[II *]'
sage: def print_entry(x):
....: if x>0:
        return '+'
....: elif x<0:
....: return '-'
....: else: return '.'
. . .
sage: M.str(print_entry)
'[+ .]\n[+ -]'
sage: M.str(repr)
'[ 1 0]\n[ 2 -1]'
sage: M = matrix([[1,2,3],[4,5,6],[7,8,9]])
sage: M.subdivide(None, 2)
sage: print (M.str(unicode=True))
(1 2 | 3)
i 4 5 | 6 i
\7 8 | 9 \J
sage: M.subdivide([0,1,1,3], [0,2,3,3])
sage: print (M.str(unicode=True, shape="square"))
[+---++
1 | 1 2 | 3 | | 1
1+---+1
\mathsf{I} + ---++\mathsf{I}
1 | 4 5 | 6 | | 1
1|7 8|9||1
+---++
```

$swap_columns$ (c1, c2)

Swap columns c1 and c2 of self.

EXAMPLES: We create a rational matrix:

```
sage: M = MatrixSpace(QQ,3,3)
sage: A = M([1,9,-7,4/5,4,3,6,4,3])
sage: A
[ 1 9 -7]
[4/5 4 3]
[ 6 4 3]
```

Since the first column is numbered zero, this swaps the second and third columns:

```
sage: A.swap_columns(1,2); A
[ 1 -7 9]
[4/5 3 4]
[ 6 3 4]
```

$swap_rows$ (r1, r2)

Swap rows r1 and r2 of self.

EXAMPLES: We create a rational matrix:

```
sage: M = MatrixSpace(QQ,3,3)
sage: A = M([1,9,-7,4/5,4,3,6,4,3])
sage: A
[ 1 9 -7]
[4/5 4 3]
[ 6 4 3]
```

Since the first row is numbered zero, this swaps the first and third rows:

```
sage: A.swap_rows(0,2); A
[ 6  4  3]
[4/5  4  3]
[ 1  9  -7]
```

with_added_multiple_of_column (i, j, s, start_row=0)

Add s times column j to column i, returning new matrix.

EXAMPLES: We add -1 times the third column to the second column of an integer matrix, remembering to start numbering cols at zero:

```
sage: a = matrix(ZZ,2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: b = a.with_added_multiple_of_column(1,2,-1); b
[ 0 -1 2]
[ 3 -1 5]
```

The original matrix is unchanged:

```
sage: a
[0 1 2]
[3 4 5]
```

Adding a rational multiple is okay, and reassigning a variable is okay:

$\label{lem:col} \textbf{with_added_multiple_of_row} \ (\ i, j, s, start_col = 0)$

Add s times row j to row i, returning new matrix.

EXAMPLES: We add -3 times the first row to the second row of an integer matrix, remembering to start numbering rows at zero:

```
sage: a = matrix(ZZ,2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: b = a.with_added_multiple_of_row(1,0,-3); b
[ 0 1 2]
[ 3 1 -1]
```

The original matrix is unchanged:

```
sage: a
[0 1 2]
[3 4 5]
```

Adding a rational multiple is okay, and reassigning a variable is okay:

with_col_set_to_multiple_of_col (i, j, s)

Set column i equal to s times column j, returning a new matrix.

EXAMPLES: We change the second column to -3 times the first column.

```
sage: a = matrix(ZZ,2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: b = a.with_col_set_to_multiple_of_col(1,0,-3); b
[ 0 0 2]
[ 3 -9 5]
```

Note that the original matrix is unchanged:

```
sage: a
[0 1 2]
[3 4 5]
```

Adding a rational multiple is okay, and reassigning a variable is okay:

```
sage: a = a.with_col_set_to_multiple_of_col(1,0,1/2); a
[ 0  0  2]
[ 3 3/2  5]
```

with_permuted_columns (permutation)

Return the matrix obtained from permuting the columns of self by applying the permutation group element permutation.

As a permutation group element acts on integers $\{1, \dots, n\}$ the columns are considered as being numbered from 1 for this operation.

INPUT:

•permutation, a PermutationGroupElement

OUTPUT:

•A matrix.

EXAMPLES: We create some matrix:

Next of all, create a permutation group element and act on M:

```
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: sigma, tau = G.gens()
sage: sigma
```

```
(1,2,3) (4,5)

sage: M.with_permuted_columns(sigma)

[0 0 1 0 0]

[2 0 0 0 0]

[0 3 0 0 0]

[0 0 0 0 4]

[0 0 0 5 0]
```

with_permuted_rows (permutation)

Return the matrix obtained from permuting the rows of self by applying the permutation group element permutation.

As a permutation group element acts on integers $\{1, \dots, n\}$ the rows are considered as being numbered from 1 for this operation.

INPUT:

•permutation -a PermutationGroupElement

OUTPUT:

•A matrix.

EXAMPLES: We create a matrix:

Next of all, create a permutation group element and act on M:

```
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: sigma, tau = G.gens()
sage: sigma
(1,2,3)(4,5)
sage: M.with_permuted_rows(sigma)
[0 2 0 0 0]
[0 0 3 0 0]
[1 0 0 0 0]
[0 0 0 0 5]
[0 0 0 4 0]
```

with_permuted_rows_and_columns (row_permutation, column_permutation)

Return the matrix obtained from permuting the rows and columns of self by applying the permutation group elements row_permutation and column_permutation.

As a permutation group element acts on integers $\{1, \dots, n\}$ the rows are considered as being numbered from 1 for this operation.

INPUT:

- •row_permutation -a PermutationGroupElement
- $extstyle ext{column_permutation} a ext{ PermutationGroupElement}$

OUTPUT:

•A matrix.

EXAMPLES: We create a matrix:

Next of all, create a permutation group element and act on M:

```
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: sigma, tau = G.gens()
sage: sigma
(1,2,3)(4,5)
sage: M.with_permuted_rows_and_columns(sigma,tau)
[2 0 0 0 0]
[0 3 0 0 0]
[0 0 0 0 1]
[0 0 0 5 0]
[0 0 4 0 0]
```

with_rescaled_col (i, s, start_row=0)

Replaces i-th col of self by s times i-th col of self, returning new matrix.

EXAMPLES: We rescale the last column of a matrix over the integers:

```
sage: a = matrix(ZZ,2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: b = a.with_rescaled_col(2,-2); b
[ 0 1 -4]
[ 3 4 -10]
```

The original matrix is unchanged:

```
sage: a
[0 1 2]
[3 4 5]
```

Adding a rational multiple is okay, and reassigning a variable is okay:

```
sage: a = a.with_rescaled_col(1,1/3); a
[ 0 1/3   2]
[ 3 4/3   5]
```

with_rescaled_row (i, s, start_col=0)

Replaces i-th row of self by s times i-th row of self, returning new matrix.

EXAMPLES: We rescale the second row of a matrix over the integers:

```
sage: a = matrix(ZZ,3,2,range(6)); a
[0 1]
[2 3]
[4 5]
```

```
sage: b = a.with_rescaled_row(1,-2); b
[ 0  1]
[-4 -6]
[ 4  5]
```

The original matrix is unchanged:

```
sage: a
[0 1]
[2 3]
[4 5]
```

Adding a rational multiple is okay, and reassigning a variable is okay:

```
sage: a = a.with_rescaled_row(2,1/3); a
[ 0   1]
[ 2   3]
[4/3 5/3]
```

$with_row_set_to_multiple_of_row$ (i, j, s)

Set row i equal to s times row j, returning a new matrix.

EXAMPLES: We change the second row to -3 times the first row:

```
sage: a = matrix(ZZ,2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: b = a.with_row_set_to_multiple_of_row(1,0,-3); b
[ 0 1 2]
[ 0 -3 -6]
```

Note that the original matrix is unchanged:

```
sage: a
[0 1 2]
[3 4 5]
```

Adding a rational multiple is okay, and reassigning a variable is okay:

```
sage: a = a.with_row_set_to_multiple_of_row(1,0,1/2); a
[ 0 1 2]
[ 0 1/2 1]
```

with_swapped_columns (c1, c2)

Swap columns c1 and c2 of self and return a new matrix.

INPUT:

•c1, c2 - integers specifying columns of self to interchange

OUTPUT:

A new matrix, identical to self except that columns c1 and c2 are swapped.

EXAMPLES:

Remember that columns are numbered starting from zero.

```
sage: A = matrix(QQ, 4, range(20))
sage: A.with_swapped_columns(1, 2)
```

```
[ 0 2 1 3 4]
[ 5 7 6 8 9]
[10 12 11 13 14]
[15 17 16 18 19]
```

Trying to swap a column with itself will succeed, but still return a new matrix.

```
sage: A = matrix(QQ, 4, range(20))
sage: B = A.with_swapped_columns(2, 2)
sage: A == B
True
sage: A is B
False
```

The column specifications are checked.

```
sage: A = matrix(4, range(20))
sage: A.with_swapped_columns(-1, 2)
Traceback (most recent call last):
...
IndexError: matrix column index out of range
sage: A.with_swapped_columns(2, 5)
Traceback (most recent call last):
...
IndexError: matrix column index out of range
```

$with_swapped_rows$ (r1, r2)

Swap rows r1 and r2 of self and return a new matrix.

INPUT:

•r1, r2 - integers specifying rows of self to interchange

OUTPUT:

A new matrix, identical to self except that rows r1 and r2 are swapped.

EXAMPLES:

Remember that rows are numbered starting from zero.

```
sage: A = matrix(QQ, 4, range(20))
sage: A.with_swapped_rows(1, 2)
[ 0 1 2 3 4]
[10 11 12 13 14]
[ 5 6 7 8 9]
[15 16 17 18 19]
```

Trying to swap a row with itself will succeed, but still return a new matrix.

```
sage: A = matrix(QQ, 4, range(20))
sage: B = A.with_swapped_rows(2, 2)
sage: A == B
True
sage: A is B
False
```

The row specifications are checked.

```
sage: A = matrix(4, range(20))
sage: A.with_swapped_rows(-1, 2)
Traceback (most recent call last):
...
IndexError: matrix row index out of range

sage: A.with_swapped_rows(2, 5)
Traceback (most recent call last):
...
IndexError: matrix row index out of range
```

sage.matrix.matrix0. set_max_cols (n)

Sets the global variable max_cols (which is used in deciding how to output a matrix).

EXAMPLES:

```
sage: from sage.matrix.matrix0 import set_max_cols
sage: set_max_cols(50)
```

sage.matrix.matrix0. set_max_rows (n)

Sets the global variable max_rows (which is used in deciding how to output a matrix).

EXAMPLES:

```
sage: from sage.matrix.matrix0 import set_max_rows
sage: set_max_rows(20)
```

sage.matrix.matrix0. unpickle (cls, parent, immutability, cache, data, version)

Unpickle a matrix. This is only used internally by Sage. Users should never call this function directly.

EXAMPLES: We illustrating saving and loading several different types of matrices.

OVER Z:

```
sage: A = matrix(ZZ,2,range(4))
sage: loads(dumps(A)) # indirect doctest
[0 1]
[2 3]
```

Sparse OVER Q:

Dense over $\mathbf{Q}[x,y]$:

Dense over finite field.

Sage Reference Manual: Matrices and Spaces of Matrices, Release 7.6

BASE CLASS FOR MATRICES, PART 1

For design documentation see sage.matrix.docs.

```
class sage.matrix.matrix1. Matrix
    Bases: sage.matrix.matrix0.Matrix
```

augment (right, subdivide=False)

Returns a new matrix formed by appending the matrix (or vector) right on the right side of self.

INPUT:

- •right a matrix, vector or free module element, whose dimensions are compatible with self.
- •subdivide default: False request the resulting matrix to have a new subdivision, separating self from right.

OUTPUT:

A new matrix formed by appending right onto the right side of self. If right is a vector (or free module element) then in this context it is appropriate to consider it as a column vector. (The code first converts a vector to a 1-column matrix.)

If subdivide is True then any column subdivisions for the two matrices are preserved, and a new subdivision is added between self and right. If the row divisions are identical, then they are preserved, otherwise they are discarded. When subdivide is False there is no subdivision information in the result.

Warning: If subdivide is True then unequal row subdivisions will be discarded, since it would be ambiguous how to interpret them. If the subdivision behavior is not what you need, you can manage subdivisions yourself with methods like <code>get_subdivisions()</code> and <code>subdivide()</code>. You might also find <code>block_matrix()</code> or <code>block_diagonal_matrix()</code> useful and simpler in some instances.

EXAMPLES:

Augmenting with a matrix.

```
sage: A = matrix(QQ, 3, range(12))
sage: B = matrix(QQ, 3, range(9))
sage: A.augment(B)
[ 0  1  2  3  0  1  2]
[ 4  5  6  7  3  4  5]
[ 8  9 10 11  6  7  8]
```

Augmenting with a vector.

```
sage: A = matrix(QQ, 2, [0, 2, 4, 6, 8, 10])
sage: v = vector(QQ, 2, [100, 200])
sage: A.augment(v)
[ 0  2  4 100]
[ 6  8  10 200]
```

Errors are raised if the sizes are incompatible.

```
sage: A = matrix(RR, [[1, 2],[3, 4]])
sage: B = matrix(RR, [[10, 20], [30, 40], [50, 60]])
sage: A.augment(B)
Traceback (most recent call last):
...
TypeError: number of rows must be the same, 2 != 3

sage: v = vector(RR, [100, 200, 300])
sage: A.augment(v)
Traceback (most recent call last):
...
TypeError: number of rows must be the same, 2 != 3
```

Setting subdivide to True will, in its simplest form, add a subdivision between self and right.

```
sage: A = matrix(QQ, 3, range(12))
sage: B = matrix(QQ, 3, range(15))
sage: A.augment(B, subdivide=True)
[ 0 1 2 3 | 0 1 2 3 4]
[ 4 5 6 7 | 5 6 7 8 9]
[ 8 9 10 11 | 10 11 12 13 14]
```

Column subdivisions are preserved by augmentation, and enriched, if subdivisions are requested. (So multiple augmentations can be recorded.)

```
sage: A = matrix(QQ, 3, range(6))
sage: A.subdivide(None, [1])
sage: B = matrix(QQ, 3, range(9))
sage: B.subdivide(None, [2])
sage: A.augment(B, subdivide=True)
[0|1|0 1|2]
[2|3|3 4|5]
[4|5|6 7|8]
```

Row subdivisions can be preserved, but only if they are identical. Otherwise, this information is discarded and must be managed separately.

```
sage: A = matrix(QQ, 3, range(6))
sage: A.subdivide([1,3], None)
sage: B = matrix(QQ, 3, range(9))
sage: B.subdivide([1,3], None)
sage: A.augment(B, subdivide=True)
[0 1|0 1 2]
[---+----]
[2 3|3 4 5]
[4 5|6 7 8]
[---+---]
sage: A.subdivide([1,2], None)
sage: A.augment(B, subdivide=True)
```

```
[0 1|0 1 2]
[2 3|3 4 5]
[4 5|6 7 8]
```

The result retains the base ring of self by coercing the elements of right into the base ring of self.

Sometimes it is not possible to coerce into the base ring of self. A solution is to change the base ring of self to a more expansive ring. Here we mix the rationals with a ring of polynomials with rational coefficients.

```
sage: R = PolynomialRing(QQ, 'y')
sage: A = matrix(QQ, 1, [1,2])
sage: B = matrix(R, 1, ['y', 'y^2'])
sage: C = B.augment(A); C
[ y y^2 1 2]
sage: C.parent()
Full MatrixSpace of 1 by 4 dense matrices over Univariate Polynomial Ring in.
→y over Rational Field
sage: D = A.augment(B)
Traceback (most recent call last):
TypeError: not a constant polynomial
sage: E = A.change_ring(R)
sage: F = E.augment(B); F
     2 y y^2]
[ 1
sage: F.parent()
Full MatrixSpace of 1 by 4 dense matrices over Univariate Polynomial Ring in.
→y over Rational Field
```

AUTHORS:

- •Naqi Jaffery (2006-01-24): examples
- •Rob Beezer (2010-12-07): vector argument, docstring, subdivisions

block_sum (other)

Return the block matrix that has self and other on the diagonal:

```
[ self 0 ]
[ 0 other ]
```

EXAMPLES:

```
sage: A = matrix(QQ[['t']], 2, range(1, 5))
sage: A.block_sum(100*A)
[ 1  2  0  0]
[ 3  4  0  0]
[ 0  0 100 200]
[ 0  0 300 400]
```

column (i, from_list=False)

Return the i 'th column of this matrix as a vector.

This column is a dense vector if and only if the matrix is a dense matrix.

INPUT:

- •i integer
- •from_list bool (default: False); if true, returns the i 'th element of self.columns() (see columns()), which may be faster, but requires building a list of all columns the first time it is called after an entry of the matrix is changed.

EXAMPLES:

```
sage: a = matrix(2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: a.column(1)
(1, 4)
```

If the column is negative, it wraps around, just like with list indexing, e.g., -1 gives the right-most column:

```
sage: a.column(-1)
(2, 5)
```

columns (copy=True)

Return a list of the columns of self.

INPUT:

•copy - (default: True) if True, return a copy of the list of columns which is safe to change.

If self is a sparse matrix, columns are returned as sparse vectors, otherwise returned vectors are dense.

EXAMPLES:

```
sage: matrix(3, [1..9]).columns()
[(1, 4, 7), (2, 5, 8), (3, 6, 9)]
sage: matrix(RR, 2, [sqrt(2), pi, exp(1), 0]).columns()
[(1.41421356237310, 2.71828182845905), (3.14159265358979, 0.000000000000000)]
sage: matrix(RR, 0, 2, []).columns()
[(), ()]
sage: matrix(RR, 2, 0, []).columns()
[]
sage: m = matrix(RR, 3, 3, {(1,2): pi, (2, 2): -1, (0,1): sqrt(2)})
sage: parent(m.columns()[0])
Sparse vector space of dimension 3 over Real Field with 53 bits of precision
```

Sparse matrices produce sparse columns.

```
sage: A = matrix(QQ, 2, range(4), sparse=True)
sage: v = A.columns()[0]
sage: v.is_sparse()
True
```

delete_columns (dcols, check=True)

Return the matrix constructed from deleting the columns with indices in the dcols list.

INPUT:

- •dcols list of indices of columns to be deleted from self.
- •check checks whether any index in dools is out of range. Defaults to True.

SEE ALSO: The methods delete_rows() and matrix_from_columns() are related.

EXAMPLES:

```
sage: A = Matrix(3,4,range(12)); A
[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
sage: A.delete_columns([0,2])
[ 1 3]
[ 5 7]
[ 9 11]
```

dcols can be a tuple. But only the underlying set of indices matters.

```
sage: A.delete_columns((2,0,2))
[ 1 3]
[ 5 7]
[ 9 11]
```

The default is to check whether any index in dcols is out of range.

```
sage: A.delete_columns([-1,2,4])
Traceback (most recent call last):
...
IndexError: [4, -1] contains invalid indices.
sage: A.delete_columns([-1,2,4], check=False)
[ 0  1  3]
[ 4  5  7]
[ 8  9 11]
```

AUTHORS:

• Wai Yan Pong (2012-03-05)

delete rows (drows, check=True)

Return the matrix constructed from deleting the rows with indices in the drows list.

INPUT:

- •drows list of indices of rows to be deleted from self.
- •check checks whether any index in drows is out of range. Defaults to True.

SEE ALSO: The methods <code>delete_columns()</code> and <code>matrix_from_rows()</code> are related.

EXAMPLES:

```
sage: A = Matrix(4,3,range(12)); A
[ 0  1  2]
[ 3  4  5]
[ 6  7  8]
[ 9  10  11]
sage: A.delete_rows([0,2])
[ 3  4  5]
[ 9  10  11]
```

drows can be a tuple. But only the underlying set of indices matters.

```
sage: A.delete_rows((2,0,2))
[ 3  4  5]
[ 9 10 11]
```

The default is to check whether the any index in drows is out of range.

```
sage: A.delete_rows([-1,2,4])
Traceback (most recent call last):
...
IndexError: [4, -1] contains invalid indices.
sage: A.delete_rows([-1,2,4], check=False)
[ 0  1  2]
[ 3  4  5]
[ 9 10 11]
```

AUTHORS:

• Wai Yan Pong (2012-03-05)

dense_columns (copy=True)

Return list of the dense columns of self.

INPUT:

•copy - (default: True) if True, return a copy so you can modify it safely

EXAMPLES:

An example over the integers:

```
sage: a = matrix(3,3,range(9)); a
[0 1 2]
[3 4 5]
[6 7 8]
sage: a.dense_columns()
[(0, 3, 6), (1, 4, 7), (2, 5, 8)]
```

We do an example over a polynomial ring:

dense_matrix()

If this matrix is sparse, return a dense matrix with the same entries. If this matrix is dense, return this matrix (not a copy).

Note: The definition of "dense" and "sparse" in Sage have nothing to do with the number of nonzero entries. Sparse and dense are properties of the underlying representation of the matrix.

EXAMPLES:

```
sage: A = MatrixSpace(QQ,2, sparse=True)([1,2,0,1])
sage: A.is_sparse()
True
sage: B = A.dense_matrix()
sage: B.is_sparse()
False
sage: A*B
[1 4]
[0 1]
sage: A.parent()
Full MatrixSpace of 2 by 2 sparse matrices over Rational Field
sage: B.parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
```

In Sage, the product of a sparse and a dense matrix is always dense:

```
sage: (A*B).parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: (B*A).parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
```

dense rows (copy=True)

Return list of the dense rows of self.

INPUT:

•copy - (default: True) if True, return a copy so you can modify it safely (note that the individual vectors in the copy should not be modified since they are mutable!)

EXAMPLES:

```
sage: m = matrix(3, range(9)); m
[0 1 2]
[3 4 5]
[6 7 8]
sage: v = m.dense_rows(); v
[(0, 1, 2), (3, 4, 5), (6, 7, 8)]
sage: v is m.dense_rows()
False
sage: m.dense_rows(copy=False) is m.dense_rows(copy=False)
True
sage: m[0,0] = 10
```

```
sage: m.dense_rows()
[(10, 1, 2), (3, 4, 5), (6, 7, 8)]
```

lift ()

Return lift of self to the covering ring of the base ring R, which is by definition the ring returned by calling cover_ring() on R, or just R itself if the cover_ring method is not defined.

EXAMPLES:

```
sage: M = Matrix(Integers(7), 2, 2, [5, 9, 13, 15]); M
[5 2]
[6 1]
sage: M.lift()
[5 2]
[6 1]
sage: parent(M.lift())
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
```

The field QQ doesn't have a cover_ring method:

```
sage: hasattr(QQ, 'cover_ring')
False
```

So lifting a matrix over QQ gives back the same exact matrix.

```
sage: B = matrix(QQ, 2, [1..4])
sage: B.lift()
[1 2]
[3 4]
sage: B.lift() is B
True
```

lift_centered()

Apply the lift_centered method to every entry of self.

OUTPUT:

If self is a matrix over the Integers mod n, this method returns the unique matrix m such that m is congruent to self mod n and for every entry m[i,j] we have $-n/2 < m[i,j] \le n/2$. If the coefficient ring does not have a cover ring method, return self.

EXAMPLES:

```
sage: M = Matrix(Integers(8), 2, 4, range(8)); M
[0 1 2 3]
[4 5 6 7]
sage: L = M.lift_centered(); L
[ 0 1 2 3]
[ 4 -3 -2 -1]
sage: parent(L)
Full MatrixSpace of 2 by 4 dense matrices over Integer Ring
```

The returned matrix is congruent to M modulo 8.:

```
sage: L.mod(8)
[0 1 2 3]
[4 5 6 7]
```

The field QQ doesn't have a cover ring method:

```
sage: hasattr(QQ, 'cover_ring')
False
```

So lifting a matrix over QQ gives back the same exact matrix.

```
sage: B = matrix(QQ, 2, [1..4])
sage: B.lift_centered()
[1 2]
[3 4]
sage: B.lift_centered() is B
True
```

matrix from columns (columns)

Return the matrix constructed from self using columns with indices in the columns list.

EXAMPLES:

```
sage: M = MatrixSpace(Integers(8),3,3)
sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 0]
sage: A.matrix_from_columns([2,1])
[2 1]
[5 4]
[0 7]
```

matrix_from_rows (rows)

Return the matrix constructed from self using rows with indices in the rows list.

EXAMPLES:

```
sage: M = MatrixSpace(Integers(8),3,3)
sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 0]
sage: A.matrix_from_rows([2,1])
[6 7 0]
[3 4 5]
```

matrix_from_rows_and_columns (rows, columns)

Return the matrix constructed from self from the given rows and columns.

EXAMPLES:

```
sage: M = MatrixSpace(Integers(8),3,3)
sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 0]
sage: A.matrix_from_rows_and_columns([1], [0,2])
[3 5]
sage: A.matrix_from_rows_and_columns([1,2], [1,2])
[4 5]
[7 0]
```

Note that row and column indices can be reordered or repeated:

```
sage: A.matrix_from_rows_and_columns([2,1], [2,1])
[0 7]
[5 4]
```

For example here we take from row 1 columns 2 then 0 twice, and do this 3 times.

```
sage: A.matrix_from_rows_and_columns([1,1,1],[2,0,0])
[5 3 3]
[5 3 3]
[5 3 3]
```

AUTHORS:

- •Jaap Spies (2006-02-18)
- •Didier Deshommes: some Pyrex speedups implemented

matrix over field ()

Return copy of this matrix, but with entries viewed as elements of the fraction field of the base ring (assuming it is defined).

EXAMPLES:

```
sage: A = MatrixSpace(IntegerRing(),2)([1,2,3,4])
sage: B = A.matrix_over_field()
sage: B
[1 2]
[3 4]
sage: B.parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
```

matrix_space (nrows=None, ncols=None, sparse=None)

Return the ambient matrix space of self.

INPUT:

- •nrows, ncols (optional) number of rows and columns in returned matrix space.
- •sparse whether the returned matrix space uses sparse or dense matrices.

EXAMPLES:

```
sage: m = matrix(3, [1..9])
sage: m.matrix_space()
Full MatrixSpace of 3 by 3 dense matrices over Integer Ring
sage: m.matrix_space(ncols=2)
Full MatrixSpace of 3 by 2 dense matrices over Integer Ring
sage: m.matrix_space(1)
Full MatrixSpace of 1 by 3 dense matrices over Integer Ring
sage: m.matrix_space(1, 2, True)
Full MatrixSpace of 1 by 2 sparse matrices over Integer Ring
```

new_matrix (nrows=None, ncols=None, entries=None, coerce=True, copy=True, sparse=None)

Create a matrix in the parent of this matrix with the given number of rows, columns, etc. The default parameters are the same as for self.

INPUT:

These three variables get sent to matrix_space():

- •nrows, ncols number of rows and columns in returned matrix. If not specified, defaults to None and will give a matrix of the same size as self.
- •sparse whether returned matrix is sparse or not. Defaults to same value as self.

The remaining three variables (coerce, entries, and copy) are used by sage.matrix.matrix_space.MatrixSpace() to construct the new matrix.

Warning: This function called with no arguments returns the zero matrix of the same dimension and sparseness of self.

EXAMPLES:

```
sage: A = matrix(ZZ,2,2,[1,2,3,4]); A
[1 2]
[3 4]
sage: A.new_matrix()
[0 0]
[0 0]
sage: A.new_matrix(1,1)
[0]
sage: A.new_matrix(3,3).parent()
Full MatrixSpace of 3 by 3 dense matrices over Integer Ring
```

numpy (dtype=None)

Return the Numpy matrix associated to this matrix.

INPUT:

•dtype - The desired data-type for the array. If not given, then the type will be determined as the minimum type required to hold the objects in the sequence.

EXAMPLES:

```
sage: a = matrix(3, range(12))
sage: a.numpy()
array([[ 0, 1, 2, 3],
      [ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
sage: a.numpy('f')
                    2.,
                          3.],
array([[ 0., 1.,
      [ 4.,
              5.,
                    6.,
                          7.],
               9.,
                    10.,
                          11.]], dtype=float32)
       [ 8.,
sage: a.numpy('d')
array([[ 0.,
              1.,
                    2.,
                          3.],
         4.,
              5.,
                    6.,
                          7.],
              9.,
                    10., 11.]])
       [ 8.,
sage: a.numpy('B')
```

Type numpy.typecodes for a list of the possible typecodes:

Alternatively, numpy automatically calls this function (via the magic __array__ () method) to convert Sage matrices to numpy arrays:

row (i, from_list=False)

Return the i 'th row of this matrix as a vector.

This row is a dense vector if and only if the matrix is a dense matrix.

INPUT:

- •i integer
- •from_list bool (default: False); if true, returns the i 'th element of self.rows() (see rows()), which may be faster, but requires building a list of all rows the first time it is called after an entry of the matrix is changed.

EXAMPLES:

```
sage: a = matrix(2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: a.row(0)
(0, 1, 2)
sage: a.row(1)
(3, 4, 5)
sage: a.row(-1) # last row
(3, 4, 5)
```

rows (copy=True)

Return a list of the rows of self.

INPUT:

•copy - (default: True) if True, return a copy of the list of rows which is safe to change.

If self is a sparse matrix, rows are returned as sparse vectors, otherwise returned vectors are dense.

EXAMPLES:

```
sage: matrix(3, [1..9]).rows()
[(1, 2, 3), (4, 5, 6), (7, 8, 9)]
sage: matrix(RR, 2, [sqrt(2), pi, exp(1), 0]).rows()
[(1.41421356237310, 3.14159265358979), (2.71828182845905, 0.000000000000000)]
sage: matrix(RR, 0, 2, []).rows()
[]
sage: matrix(RR, 2, 0, []).rows()
[(), ()]
sage: m = matrix(RR, 3, 3, {(1,2): pi, (2, 2): -1, (0,1): sqrt(2)})
sage: parent(m.rows()[0])
Sparse vector space of dimension 3 over Real Field with 53 bits of precision
```

Sparse matrices produce sparse rows.

```
sage: A = matrix(QQ, 2, range(4), sparse=True)
sage: v = A.rows()[0]
sage: v.is_sparse()
True
```

set column (col, v)

Sets the entries of column col to the entries of v.

INPUT:

- •col index of column to be set.
- •v a list or vector of the new entries.

OUTPUT:

Changes the matrix in-place, so there is no output.

EXAMPLES:

New entries may be contained in a vector.:

```
sage: A = matrix(QQ, 5, range(25))
sage: u = vector(QQ, [0, -1, -2, -3, -4])
sage: A.set_column(2, u)
sage: A
[ 0  1  0  3   4]
[ 5  6 -1  8   9]
[10  11  -2  13  14]
[15  16  -3  18  19]
[20  21  -4  23  24]
```

New entries may be in any sort of list .:

```
sage: A = matrix([[1, 2], [3, 4]]); A
[1 2]
[3 4]
sage: A.set_column(0, [0, 0]); A
[0 2]
[0 4]
sage: A.set_column(1, (0, 0)); A
[0 0]
[0 0]
```

$set_row (row, v)$

Sets the entries of row row to the entries of v.

INPUT:

- •row index of row to be set.
- •v a list or vector of the new entries.

OUTPUT:

Changes the matrix in-place, so there is no output.

EXAMPLES:

New entries may be contained in a vector .:

```
sage: A = matrix(QQ, 5, range(25))
sage: u = vector(QQ, [0, -1, -2, -3, -4])
sage: A.set_row(2, u)
sage: A
[ 0  1  2  3  4]
[ 5  6  7  8  9]
[ 0  -1  -2  -3  -4]
[ 15  16  17  18  19]
[ 20  21  22  23  24]
```

New entries may be in any sort of list .:

```
sage: A = matrix([[1, 2], [3, 4]]); A
[1 2]
[3 4]
sage: A.set_row(0, [0, 0]); A
[0 0]
[3 4]
sage: A.set_row(1, (0, 0)); A
[0 0]
[0 0]
```

sparse_columns (copy=True)

Return a list of the columns of self as sparse vectors (or free module elements).

INPUT:

•copy - (default: True) if True, return a copy so you can modify it safely

EXAMPLES:

```
sage: a = matrix(2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: v = a.sparse_columns(); v
[(0, 3), (1, 4), (2, 5)]
sage: v[1].is_sparse()
True
```

sparse_matrix()

If this matrix is dense, return a sparse matrix with the same entries. If this matrix is sparse, return this matrix (not a copy).

Note: The definition of "dense" and "sparse" in Sage have nothing to do with the number of nonzero entries. Sparse and dense are properties of the underlying representation of the matrix.

EXAMPLES:

```
sage: A = MatrixSpace(QQ,2, sparse=False)([1,2,0,1])
sage: A.is_sparse()
False
sage: B = A.sparse_matrix()
sage: B.is_sparse()
True
sage: A
[1 2]
[0 1]
sage: B
[1 2]
[0 1]
sage: A*B
[1 4]
[0 1]
sage: A.parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: B.parent()
Full MatrixSpace of 2 by 2 sparse matrices over Rational Field
sage: (A*B).parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: (B*A).parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
```

sparse_rows (copy=True)

Return a list of the rows of self as sparse vectors (or free module elements).

INPUT:

•copy - (default: True) if True, return a copy so you can modify it safely

EXAMPLES:

```
sage: m = Mat(ZZ,3,3,sparse=True)(range(9)); m
[0 1 2]
[3 4 5]
[6 7 8]
sage: v = m.sparse_rows(); v
[(0, 1, 2), (3, 4, 5), (6, 7, 8)]
sage: m.sparse_rows(copy=False) is m.sparse_rows(copy=False)
True
sage: v[1].is_sparse()
True
sage: m[0,0] = 10
sage: m.sparse_rows()
[(10, 1, 2), (3, 4, 5), (6, 7, 8)]
```

stack (bottom, subdivide=False)

Return a new matrix formed by appending the matrix (or vector) bottom below self:

```
[ self ]
[ bottom ]
```

INPUT:

•bottom - a matrix, vector or free module element, whose dimensions are compatible with self.

•subdivide - default: False - request the resulting matrix to have a new subdivision, separating self from bottom.

OUTPUT:

A new matrix formed by appending bottom beneath self. If bottom is a vector (or free module element) then in this context it is appropriate to consider it as a row vector. (The code first converts a vector to a 1-row matrix.)

If subdivide is True then any row subdivisions for the two matrices are preserved, and a new subdivision is added between self and bottom. If the column divisions are identical, then they are preserved, otherwise they are discarded. When subdivide is False there is no subdivision information in the result.

Warning: If subdivide is True then unequal column subdivisions will be discarded, since it would be ambiguous how to interpret them. If the subdivision behavior is not what you need, you can manage subdivisions yourself with methods like <code>subdivisions()</code> and <code>subdivide()</code>. You might also find <code>block_matrix()</code> or <code>block_diagonal_matrix()</code> useful and simpler in some instances.

EXAMPLES:

Stacking with a matrix.

```
sage: A = matrix(QQ, 4, 3, range(12))
sage: B = matrix(QQ, 3, 3, range(9))
sage: A.stack(B)
[ 0  1   2]
[ 3  4  5]
[ 6  7  8]
[ 9  10  11]
[ 0  1   2]
[ 3  4  5]
[ 6  7  8]
```

Stacking with a vector.

```
sage: A = matrix(QQ, 3, 2, [0, 2, 4, 6, 8, 10])
sage: v = vector(QQ, 2, [100, 200])
sage: A.stack(v)
[ 0  2]
[ 4  6]
[ 8  10]
[100 200]
```

Errors are raised if the sizes are incompatible.

```
sage: A = matrix(RR, [[1, 2], [3, 4]])
sage: B = matrix(RR, [[10, 20, 30], [40, 50, 60]])
sage: A.stack(B)
Traceback (most recent call last):
...
TypeError: number of columns must be the same, not 2 and 3

sage: v = vector(RR, [100, 200, 300])
sage: A.stack(v)
Traceback (most recent call last):
```

```
TypeError: number of columns must be the same, not 2 and 3
```

Setting subdivide to True will, in its simplest form, add a subdivision between self and bottom

Row subdivisions are preserved by stacking, and enriched, if subdivisions are requested. (So multiple stackings can be recorded.)

Column subdivisions can be preserved, but only if they are identical. Otherwise, this information is discarded and must be managed separately.

```
sage: A = matrix(QQ, 2, 5, range(10))
sage: A.subdivide(None, [2,4])
sage: B = matrix(QQ, 3, 5, range(15))
sage: B.subdivide(None, [2,4])
sage: A.stack(B, subdivide=True)
[ 0 1 | 2 3 | 4]
[56|78|9]
[----+---
[ 0 1 | 2 3 | 4]
[56|78|9]
[10 11|12 13|14]
sage: A.subdivide(None, [1,2])
sage: A.stack(B, subdivide=True)
[ 0 1 2 3 4]
   6 7 8 9]
[ 0 1 2 3 4]
[56789]
[10 11 12 13 14]
```

The base ring of the result is the common parent for the base rings of self and bottom. In particular,

the parent for A.stack(B) and B.stack(A) should be equal:

Stacking a dense matrix atop a sparse one returns a sparse matrix:

```
sage: M = Matrix(ZZ, 2, 3, range(6), sparse=False)
sage: N = diagonal_matrix([10,11,12], sparse=True)
sage: P = M.stack(N); P
[ 0 1 2]
[ 3 4 5]
[10 0 0]
[ 0 11 0]
[ 0 0 12]
sage: P.is_sparse()
True
sage: P = N.stack(M); P
[10 0 0]
[ 0 11 0]
[ 0 0 12]
[ 0 1 2]
[ 3 4 5]
sage: P.is_sparse()
True
```

One can stack matrices over different rings (trac ticket #16399).

```
sage: M = Matrix(ZZ, 2, 3, range(6))
sage: N = Matrix(QQ, 1, 3, [10,11,12])
sage: M.stack(N)
[ 0  1  2]
[ 3  4  5]
[10 11 12]
```

```
sage: N.stack(M)
[10 11 12]
[ 0 1 2]
[ 3 4 5]
```

AUTHORS:

- •Rob Beezer (2011-03-19): rewritten to mirror code for augment ()
- •Jeroen Demeyer (2015-01-06): refactor, see trac ticket #16399. Put all boilerplate in one place (here) and put the actual type-dependent implementation in _stack_impl .

```
submatrix (row=0, col=0, nrows=-1, ncols=-1)
```

Return the matrix constructed from self using the specified range of rows and columns.

INPUT:

- •row, col index of the starting row and column. Indices start at zero.
- •nrows, ncols (optional) number of rows and columns to take. If not provided, take all rows below and all columns to the right of the starting entry.

SEE ALSO:

The functions $matrix_from_rows()$, $matrix_from_columns()$, and $matrix_from_rows_and_columns()$ allow one to select arbitrary subsets of rows and/or columns.

EXAMPLES:

Take the 3×3 submatrix starting from entry (1,1) in a 4×4 matrix:

```
sage: m = matrix(4, [1..16])
sage: m.submatrix(1, 1)
[ 6  7  8]
[10 11 12]
[14 15 16]
```

Same thing, except take only two rows:

```
sage: m.submatrix(1, 1, 2)
[ 6 7 8]
[10 11 12]
```

And now take only one column:

```
sage: m.submatrix(1, 1, 2, 1)
[ 6]
[10]
```

You can take zero rows or columns if you want:

```
sage: m.submatrix(1, 1, 0)
[]
sage: parent(m.submatrix(1, 1, 0))
Full MatrixSpace of 0 by 3 dense matrices over Integer Ring
```

Sage Reference Manual: Matrices and Spaces of Matrices, Release 7.6				

BASE CLASS FOR MATRICES, PART 2

For design documentation see matrix/docs.py.

AUTHORS:

- William Stein: initial version
- Miguel Marco (2010-06-19): modified eigenvalues and eigenvectors functions to allow the option extend=False
- Rob Beezer (2011-02-05): refactored all of the matrix kernel routines

class sage.matrix.matrix2. Matrix

Bases: sage.matrix.matrix1.Matrix

С

Returns the conjugate matrix.

EXAMPLES:

Н

Returns the conjugate-transpose (Hermitian) matrix.

EXAMPLES:

I

Returns the inverse of the matrix, if it exists.

EXAMPLES:

```
[-2, -1, 0, -4]])
. . . . :
sage: A.I
doctest:...: DeprecationWarning: The I property on matrices has been_
→deprecated. Please use the inverse() method instead.
See http://trac.sagemath.org/20904 for details.
[0 2 1 0]
[-4 -8 -2 7]
[ 4 7 1 -7]
[ 1 1 0 -2]
sage: B = matrix(QQ, [[-11, -5, 18, -6],
                       [ 1, 2, -6, 8],
[ -4, -2, 7, -3],
[ 1, -2, 5, -11]])
. . . . :
. . . . :
sage: B.I
Traceback (most recent call last):
ZeroDivisionError: input matrix must be nonsingular
```

LU (*pivot=None*, *format='plu'*)

Finds a decomposition into a lower-triangular matrix and an upper-triangular matrix.

INPUT:

- pivot pivoting strategy
 - -'auto' (default) see if the matrix entries are ordered (i.e. if they have an absolute value method), and if so, use a the partial pivoting strategy. Otherwise, fall back to the nonzero strategy. This is the best choice for general routines that may call this for matrix entries of a variety of types.
 - -'partial' each column is examined for the element with the largest absolute value and the row containing this element is swapped into place.
 - -'nonzero' the first nonzero element in a column is located and the row with this element is used.
- •format contents of output, see more discussion below about output.
 - -'plu' (default) a triple; matrices P, L and U such that A = P*L*U.
 - -'compact' a pair; row permutation as a tuple, and the matrices L and U combined into one matrix.

OUTPUT:

Suppose that A is an $m \times n$ matrix, then an LU decomposition is a lower-triangular $m \times m$ matrix L with every diagonal element equal to 1, and an upper-triangular $m \times n$ matrix, U such that the product LU, after a permutation of the rows, is then equal to A. For the 'plu' format the permutation is returned as an $m \times m$ permutation matrix P such that

$$A = PLU$$

It is more common to place the permutation matrix just to the left of A. If you desire this version, then use the inverse of P which is computed most efficiently as its transpose.

If the 'partial' pivoting strategy is used, then the non-diagonal entries of L will be less than or equal to 1 in absolute value. The 'nonzero' pivot strategy may be faster, but the growth of data structures for elements of the decomposition might counteract the advantage.

By necessity, returned matrices have a base ring equal to the fraction field of the base ring of the original matrix.

In the 'compact' format, the first returned value is a tuple that is a permutation of the rows of LU that yields A. See the doctest for how you might employ this permutation. Then the matrices L and U are merged into one matrix – remove the diagonal of ones in L and the remaining nonzero entries can replace the entries of U beneath the diagonal.

The results are cached, only in the compact format, separately for each pivot strategy called. Repeated requests for the 'plu' format will require just a small amount of overhead in each call to bust out the compact format to the three matrices. Since only the compact format is cached, the components of the compact format are immutable, while the components of the 'plu' format are regenerated, and hence are mutable.

Notice that while U is similar to row-echelon form and the rows of U span the row space of A, the rows of U are not generally linearly independent. Nor are the pivot columns (or rank) immediately obvious. However for rings without specialized echelon form routines, this method is about twice as fast as the generic echelon form routine since it only acts "below the diagonal", as would be predicted from a theoretical analysis of the algorithms.

Note: This is an exact computation, so limited to exact rings. If you need numerical results, convert the base ring to the field of real double numbers, RDF or the field of complex double numbers, CDF, which will use a faster routine that is careful about numerical subtleties.

ALGORITHM:

"Gaussian Elimination with Partial Pivoting," Algorithm 21.1 of [TB1997].

EXAMPLES:

Notice the difference in the L matrix as a result of different pivoting strategies. With partial pivoting, every entry of L has absolute value 1 or less.

```
4,
                                0,
sage: A = matrix(QQ, [[1, -1,
                                    2,
                                            7, -1],
                                    6, 4, 8, -2],
. . . . :
                      [2, -1, 0,
                       [2,
                           0, 1,
                                           6, 0],
. . . . :
                                    4, 2,
                           0, -1, 8, -1, -1, -3
. . . . :
                       [1,
                       [1, 1, 2, -2, -1, 1, 3]])
. . . . :
sage: P, L, U = A.LU(pivot='partial')
sage: P
[0 0 0 0 1]
[1 0 0 0 0]
[0 0 0 1 0]
[0 0 1 0 0]
[0 1 0 0 0]
sage: L
  1
         0
              0
                   0
                         01
[ 1/2
         1
             0
                   0
                         01
[ 1/2 1/3
             1
                   0
                         01
  1 2/3 1/5
                   1
                         01
[ 1/2 -1/3 -2/5
                   0
                         11
sage: U
                 0
                        6
    2
          -1
                              4
                                    8
                                          -21
     0
         3/2
                 2
                      -5
                             -3
                                   -3
                                          41
          0 -5/3 20/3
                            -2
     0
                                   -4 - 10/31
                                  4/5
     0
           0
               0
                            2/5
                    0
                                          0]
     0
           0
                 0
                       0
                            1/5
                                  2/5
                                          01
sage: A == P * L * U
sage: P, L, U = A.LU(pivot='nonzero')
sage: P
```

```
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
sage: L
[1 0 0 0 0]
[2 1 0 0 0]
[22100]
[ 1 1 -1 1 0]
[ 1 2 2 0 1]
sage: U
[1 -1 0 2 4 7 -1]
[ 0 1
      0 2 -4 -6
[ 0 0 1 -4 2 4
                 2]
[ 0 0 0 0 1 2 0]
[ 0 0 0 0 -1 -2 0 ]
sage: A == P * L * U
True
```

An example of the compact format.

```
sage: B = matrix(QQ, [[1, 3, 5, 5],
                      [ 1, 4, 7,
                                    8],
. . . . :
                      [-1, -4, -6, -6],
. . . . :
                      [0, -2, -5, -8],
. . . . :
                      [-2, -6, -6, -2]]
. . . . :
sage: perm, M = B.LU(format='compact')
sage: perm
(4, 3, 0, 1, 2)
sage: M
[ -2 -6 -6
                  -21
[ 0 -2 -5 
                 -8]
[-1/2 	 0 	 2
                 4]
[-1/2 - 1/2 3/4]
                   01
[ 1/2 1/2 -1/4
```

We can easily illustrate the relationships between the two formats with a square matrix.

For a nonsingular matrix, and the 'nonzero' pivot strategy there is no need to permute rows, so the permutation matrix will be the identity. Furthermore, it can be shown that then the L and U matrices are uniquely determined by requiring L to have ones on the diagonal.

```
sage: D = matrix(QQ, [[ 1,  0,  2,  0, -2, -1],
....: [ 3, -2,  3, -1,  0,  6],
```

```
[-4, 2, -3, 1, -1, -8],
. . . . :
                   [-2, 2, -3, 2, 1, 0],
[ 0, -1, -1, 0, 2, 5],
. . . . :
. . . . :
                    [-1, 2, -4, -1, 5, -3]]
. . . . :
sage: P, L, U = D.LU(pivot='nonzero')
sage: P
[1 0 0 0 0 0]
[0 1 0 0 0 0]
[0 0 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[0 0 0 0 0 1]
sage: L
  1
       0
            0
               0
                   0
       1
            0
                0
                     0
   3
  -4
      -1
            1
                0
                     0
                          0]
  -2 -1
           -1
                     0
                         01
               1
  0 1/2 1/4 1/2
                    1 0]
      -1 -5/2 -2
 -1
                    -6
                       11
sage: U
      0
           2
               0
                    -2 -1]
[
 1
  0
     -2
           -3
               -1
                    6
 0
     0 2
               0 -3 -31
 0
      0
          0
               1
                    0 41
  0
          0
               0 -1/4 -3/4]
      0
               0
  0
       0
           0
                    0
                        1]
sage: D == L*U
True
```

The base ring of the matrix may be any field, or a ring which has a fraction field implemented in Sage. The ring needs to be exact (there is a numerical LU decomposition for matrices over RDF and CDF). Matrices returned are over the original field, or the fraction field of the ring. If the field is not ordered (i.e. the absolute value function is not implemented), then the pivot strategy needs to be 'nonzero'.

```
sage: A = matrix(RealField(100), 3, 3, range(9))
sage: P, L, U = A.LU()
Traceback (most recent call last):
TypeError: base ring of the matrix must be exact, not Real Field with 100,
→bits of precision
sage: A = matrix(Integers(6), 3, 2, range(6))
sage: A.LU()
Traceback (most recent call last):
TypeError: base ring of the matrix needs a field of fractions, not Ring of ...
→integers modulo 6
sage: R.<y> = PolynomialRing(QQ, 'y')
sage: B = matrix(R, [[y+1, y^2+y], [y^2, y^3]])
sage: P, L, U = B.LU(pivot='partial')
Traceback (most recent call last):
TypeError: cannot take absolute value of matrix entries, try 'pivot=nonzero'
sage: P, L, U = B.LU(pivot='nonzero')
sage: P
[1 0]
[0 1]
```

```
sage: L
          1
Γ
[y^2/(y + 1)]
                     11
sage: U
[ y + 1 y^2 + y]
[ 0 0]
sage: L.base_ring()
Fraction Field of Univariate Polynomial Ring in y over Rational Field
sage: B == P * L * U
True
sage: F.<a> = FiniteField(5^2)
sage: C = matrix(F, [[a + 3, 4*a + 4, 2, 4*a + 2],
                    [3, 2*a + 4, 2*a + 4, 2*a + 1],
                    [3*a + 1, a + 3, 2*a + 4, 4*a + 3],
. . . . :
                    [a, 3, 3*a + 1, a]])
. . . . :
sage: P, L, U = C.LU(pivot='nonzero')
sage: P
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: L
             0
     1
                    0
                            0.1
           1
[3*a + 3]
                    0
                            0.1
                    1
[ 2*a 4*a + 2
                             0]
1]
sage: U
[a + 3 4*a + 4 2 4*a + 2]
    0 \quad a + 1 \quad a + 3 \quad 2*a + 4
         0
                1 4*a + 2]
      Ω
      0
             0
                     0
sage: L.base_ring()
Finite Field in a of size 5^2
sage: C == P*L*U
True
```

With no pivoting strategy given (i.e. pivot=None) the routine will try to use partial pivoting, but then fall back to the nonzero strategy. For the nonsingular matrix below, we see evidence of pivoting when viewed over the rationals, and no pivoting over the integers mod 29.

```
sage: entries = [3, 20, 11, 7, 16, 28, 5, 15, 21, 23, 22, 18, 8, 23, 15, 2]
sage: A = matrix(Integers(29), 4, 4, entries)
sage: perm, _ = A.LU(format='compact'); perm
(0, 1, 2, 3)
sage: B = matrix(QQ, 4, 4, entries)
sage: perm, _ = B.LU(format='compact'); perm
(2, 0, 1, 3)
```

The U matrix is only guaranteed to be upper-triangular. The rows are not necessarily linearly independent, nor are the pivots columns or rank in evidence.

```
sage: U
                            2
   -2
          8
               -1
                                  -4
                                        1
                                              -8
    0
          0
               1/2
                      -2
                            -1
                                  -2
                                       9/2
                                              -3
                                                  -7/21
                                  0 11/2
    0
          0
              3/2
                      -6
                           -2
                                             2
                                                   1/21
    Ω
          0
                 0
                      0
                         -1/3
                                  -1
                                      5/3 -5/3
                                                 -5/31
    0
          0
                 0
                                      7/3 -19/3 -19/31
                      0
                          1/3
                                  -3
sage: A.rref()
          4 0
                0 -1 -1 -1]
0
       1 - 4
              0
                0 1 0 -1]
    0
       0
          0
             1
                 0 -2 -1 -11
    0
       0
          0
             0
                1 -1 2
[ 0
    0
       0
          0 0
                 0 0
                      0
                         0]
sage: A.pivots()
(0, 2, 4, 5)
```

AUTHOR:

•Rob Beezer (2011-04-26)

QR (full=True)

Returns a factorization of self as a unitary matrix and an upper-triangular matrix.

INPUT:

•full - default: True - if True then the returned matrices have dimensions as described below. If False the R matrix has no zero rows and the columns of Q are a basis for the column space of self.

OUTPUT:

If self is an $m \times n$ matrix and full=True then this method returns a pair of matrices: Q is an $m \times m$ unitary matrix (meaning its inverse is its conjugate-transpose) and R is an $m \times n$ upper-triangular matrix with non-negative entries on the diagonal. For a matrix of full rank this factorization is unique (due to the restriction to positive entries on the diagonal).

If full=False then Q has m rows and the columns form an orthonormal basis for the column space of self. So, in particular, the conjugate-transpose of Q times Q will be an identity matrix. The matrix R will still be upper-triangular but will also have full rank, in particular it will lack the zero rows present in a full factorization of a rank-deficient matrix.

The results obtained when full=True are cached, hence Q and R are immutable matrices in this case.

Note: This is an exact computation, so limited to exact rings. Also the base ring needs to have a fraction field implemented in Sage and this field must contain square roots. One example is the field of algebraic numbers, <code>QQbar</code>, as used in the examples below. If you need numerical results, convert the base ring to the field of complex double numbers, <code>CDF</code>, which will use a faster routine that is careful about numerical subtleties.

ALGORITHM:

"Modified Gram-Schmidt," Algorithm 8.1 of [TB1997].

EXAMPLES:

For a nonsingular matrix, the QR decomposition is unique.

```
[3, 0, 8, 3, 3],
. . . . :
                         [-1, 1, -6, -6, 5]])
. . . . :
sage: Q, R = A.QR()
sage: Q
[-0.4588314677411235? -0.1260506983326509? 0.3812120831224489?
                                                                     -\cap
\hookrightarrow 394573711338418? -0.6874400625964?]
[-0.4588314677411235? 0.4726901187474409? -0.05198346588033394?
                                                                     0.
→7172941251646595?
                      -0.2209628772631?]
[0.2294157338705618? 0.6617661662464172? 0.6619227988762521? -0.
→1808720937375480?
                       0.1964114464561?1
[0.6882472016116853? 0.1890760474989764? -0.2044682991293135?]
→0966302966543065?
                       -0.6628886317894?]
                       0.5357154679137663? -0.609939332995919?
[ -0.2294157338705618?
                                                                     -0.
→536422031427112? 0.0245514308070?]
sage: R
[ 4.358898943540674? -0.4588314677411235?
                                            13.07669683062202?
→194224814505168? 2.982404540317303?1
                    0 1.670171752907625? 0.5987408170800917? -1.
[
→292019657909672?
                   6.207996892883057?]
[
                    0
                                             5.444401659866974?
\rightarrow 468660610611130? -0.6827161852283857?]
                   0
                                                              0
                                                                  1.
[
\hookrightarrow 027626039419836? -3.619300149686620?]
                   0
                                                              0
      0 0.024551430807012?]
sage: Q.conjugate_transpose()*Q
[1.00000000000000000?
                              0.?e-18
                                                  0.?e-17
                                                                     0.?e-16
           0.?e-13]
           0.?e-18 1.0000000000000000?
                                                  0.?e-17
                                                                     0.?e-16
[
           0.2e - 131
\hookrightarrow
                             0.?e-17 1.00000000000000000?
                                                                     0.?e-16
           0.2e-17
[
           0.?e-13]
[
           0.?e-16
                             0.?e-16
                                                 0.?e-16 1.0000000000000000?
           0.?e-13]
           0.?e-13
                              0.?e-13
                                                0.?e-13
                                                                     0.?e-13
→ 1.0000000000000?1
sage: Q*R == A
True
```

An example with complex numbers in QQbar, the field of algebraic numbers.

```
sage: A = matrix(QQbar, [[-8, 4*I + 1, -I + 2, 2*I + 1],
                           [1, -2*I - 1, -I + 3, -I + 1],
. . . . :
                           [I + 7, 2*I + 1, -2*I + 7, -I + 1],
. . . . :
                           [I + 2, 0, I + 12, -1]])
sage: Q, R = A.QR()
sage: Q
                             -0.7302967433402215? 0.2070566455055649? + 0.
[
→5383472783144687?*I 0.2463049809998642? - 0.0764456358723292?*I
→2381617683194332? - 0.1036596032779695?*I]
                              0.0912870929175277? -0.2070566455055649? - 0.
→3778783780476559?*I
                           0.3786559533863033? - 0.1952221495524667?*I
\rightarrow 701244450214469? - 0.3643711650986595?*I]
  0.6390096504226938? + 0.0912870929175277?*I
                                                      0.1708217325420910? + 0.
→6677576817554466?*I -0.03411475806452072? + 0.04090198741767143?*I
\rightarrow 3140171085506764? - 0.0825191718705412?*I]
[ \quad 0.1825741858350554? \ + \ 0.0912870929175277?* \mathtt{I} \quad -0.03623491296347385? \ + \ 0.0912870929175277?* \mathtt{I} \quad -0.0912870929175277.
→0724698259269477?*I 0.8632284069415110? + 0.06322839976356195?*I -0.
→4499694867611521? - 0.0116119181208918?*I]
```

```
sage: R
                          10.95445115010333?
[
                                                             0.?e-18 - 1.
→917028951268082?*I
                       5.385938482134133? - 2.190890230020665?*I -0.
→2738612787525831? - 2.190890230020665?*I]
                                                            4.829596256417300?
\rightarrow + 0.?e-18*I -0.869637911123373? - 5.864879483945125?*I 0.
\rightarrow 993871898426712? - 0.3054085521207082?*I]
[
                             12.00160760935814? + 0.?e-16*I -0.
→2709533402297273? + 0.4420629644486323?*I]
             \cap
                                                           0
\rightarrow 942963944258992? + 0.?e-16*I]
sage: Q.conjugate_transpose()*Q
[1.0000000000000000? + 0.?e-19*I
                                          0.?e-18 + 0.?e-17*I
→e-17 + 0.?e-17*I
                     0.?e-16 + 0.?e-16*I
           0.?e-18 + 0.?e-17*I 1.00000000000000 + 0.?e-17*I
                                                                           0.2
\rightarrow e^{-17} + 0.?e^{-17*I} 0.?e^{-16} + 0.?e^{-16*I}
           0.?e-17 + 0.?e-17*I
                                          0.?e-17 + 0.?e-17*I 1.
\rightarrow00000000000000000000? + 0.?e-17*I
                                         0.?e-16 + 0.?e-16*I
          0.?e-16 + 0.?e-16*I
                                          0.?e-16 + 0.?e-16*I
                                                                           0.?
[
→e-16 + 0.?e-16*I 1.00000000000000 + 0.?e-16*I]
sage: Q*R - A
            0.?e-17 \ 0.?e-17 + 0.?e-17*I \ 0.?e-16 + 0.?e-16*I \ 0.?e-16 + 0.?e-
<u>→</u>16*I]
            0.?e-18 0.?e-17 + 0.?e-17*I 0.?e-16 + 0.?e-16*I 0.?e-16 + 0.?e-
[0.?e-17 + 0.?e-18*I 0.?e-17 + 0.?e-17*I 0.?e-16 + 0.?e-16*I 0.?e-16 + 0.?e-
[0.?e-18 + 0.?e-18*I 0.?e-18 + 0.?e-18*I 0.?e-16 + 0.?e-16*I 0.?e-16 + 0.?e-
<u> </u>16*I]
```

A rank-deficient rectangular matrix, with both values of the full keyword.

```
sage: A = matrix(QQbar, [[2, -3, 3],
. . . . :
                    [-1, 1, -1],
                    [-1, 3, -3],
. . . . :
                    [-5, 1, -1]]
. . . . :
sage: Q, R = A.QR()
sage: Q
0.3592106040535498? -0.5693261797050169? 0.7239227659930268?
→1509015305256380?1
\cap
→9730546968377341?]
[-0.1796053020267749? 0.7048800320157352? 0.672213996993525? -0.
→1378927778941174?]
→10667177157846818?]
[ 5.567764362830022? -2.694079530401624? 2.694079530401624?]
               0 3.569584777515583? -3.569584777515583?]
[
               0
                               0
                                                 01
                                                 0]
               0
                                0
sage: Q.conjugate_transpose()*Q
                        0.?e-18
                                         0.?e-18
                                                         0.?e-181
             1
         0.?e-18
                             1
                                         0.?e-18
                                                         0.?e-18]
[
         0.?e-18
                         0.?e-18 1.0000000000000000?
Γ
                                        0.?e-18 1.0000000000000000?]
         0.?e-18
                        0.?e-18
```

Another rank-deficient rectangular matrix, with complex entries, as a reduced decomposition.

```
sage: A = matrix(QQbar, [[-3*I - 3, I - 3, -12*I + 1, -2],
                    [-I - 1, -2, 5*I - 1, -I - 2],
                     [-4 \times I - 4, I - 5, -7 \times I, -I - 4]])
. . . . :
sage: Q, R = A.QR(full=False)
sage: 0
[-0.4160251471689219? -0.4160251471689219?*I 0.5370861555295747? +0.
→1790287185098583?*I]
→2506402059138015?*I]
→07161148740394329?*I]
sage: R
                    7.211102550927979? 3.328201177351375? - 5.
→269651864139676?*I 7.904477796209515? + 8.45917799243475?*I 4.
→021576422632911? - 2.634825932069838?*I]
                                                         1.
→074172311059150? -1.611258466588724? - 9.13046464400277?*I 1.
→611258466588724? + 0.5370861555295747?*I]
sage: Q.conjugate_transpose()*Q
[1 0]
[0 1]
sage: Q*R-A
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
```

Results of full decompositions are cached and thus returned immutable.

```
sage: A = random_matrix(QQbar, 2, 2)
sage: Q, R = A.QR()
sage: Q.is_mutable()
False
sage: R.is_mutable()
False
```

Trivial cases return trivial results of the correct size, and we check Q itself in one case.

```
sage: A = zero_matrix(QQbar, 0, 10)
sage: Q, R = A.QR()
sage: Q.nrows(), Q.ncols()
(0, 0)
sage: R.nrows(), R.ncols()
```

```
(0, 10)
sage: A = zero_matrix(QQbar, 3, 0)
sage: Q, R = A.QR()
sage: Q.nrows(), Q.ncols()
(3, 3)
sage: R.nrows(), R.ncols()
(3, 0)
sage: Q
[1 0 0]
[0 1 0]
[0 0 1]
```

AUTHOR:

•Rob Beezer (2011-02-17)

т

Returns the transpose of a matrix.

EXAMPLES:

```
sage: A = matrix(QQ, 5, range(25))
sage: A.T
[ 0 5 10 15 20]
[ 1 6 11 16 21]
[ 2 7 12 17 22]
[ 3 8 13 18 23]
[ 4 9 14 19 24]
```

adjoint()

Returns the adjoint matrix of self (matrix of cofactors).

OUTPUT:

•N - the adjoint matrix, such that N * M = M * N = M.parent(M.det())

ALGORITHM:

Use PARI whenever the method self._adjoint is included to do so in an inheriting class. Otherwise, use a generic division-free algorithm to compute the characteristic polynomial and hence the adjoint.

The result is cached.

EXAMPLES:

```
sage: M = Matrix(ZZ, 2, 2, [5, 2, 3, 4]); M
[5 2]
[3 4]
sage: N = M.adjoint(); N
[ 4 -2]
[-3 5]
sage: M * N
[14 0]
[ 0 14]
sage: N * M
[14 0]
[ 0 14]
sage: M = Matrix(QQ, 2, 2, [5/3, 2/56, 33/13, 41/10]); M
[ 5/3 1/28]
[33/13 41/10]
sage: N = M.adjoint(); N
```

```
[ 41/10 -1/28]
[-33/13 5/3]
sage: M * N
[7363/1092 0]
[ 0 7363/1092]
```

AUTHORS:

- •Unknown: No author specified in the file from 2009-06-25
- •Sebastian Pancratz (2009-06-25): Reflecting the change that _adjoint is now implemented in this class

```
apply_map ( phi, R=None, sparse=None)
```

Apply the given map phi (an arbitrary Python function or callable object) to this dense matrix. If R is not given, automatically determine the base ring of the resulting matrix.

INPUT:

- •sparse True to make the output a sparse matrix; default False
- •phi arbitrary Python function or callable object
- •R (optional) ring

OUTPUT: a matrix over R

EXAMPLES:

```
sage: m = matrix(ZZ, 3, 3, range(9))
sage: k.<a> = GF(9)
sage: f = lambda x: k(x)
sage: n = m.apply_map(f); n
[0 1 2]
[0 1 2]
[0 1 2]
sage: n.parent()
Full MatrixSpace of 3 by 3 dense matrices over Finite Field in a of size 3^2
```

In this example, we explicitly specify the codomain.

```
sage: s = GF(3)
sage: f = lambda x: s(x)
sage: n = m.apply_map(f, k); n
[0 1 2]
[0 1 2]
[0 1 2]
sage: n.parent()
Full MatrixSpace of 3 by 3 dense matrices over Finite Field in a of size 3^2
```

If self is subdivided, the result will be as well:

```
sage: m = matrix(2, 2, srange(4))
sage: m.subdivide(None, 1); m
[0|1]
[2|3]
sage: m.apply_map(lambda x: x*x)
[0|1]
[4|9]
```

If the matrix is sparse, the result will be as well:

```
sage: m = matrix(ZZ,100,100,sparse=True)
sage: m[18,32] = -6
sage: m[1,83] = 19
sage: n = m.apply_map(abs, R=ZZ)
sage: n.dict()
{(1, 83): 19, (18, 32): 6}
sage: n.is_sparse()
True
```

If the map sends most of the matrix to zero, then it may be useful to get the result as a sparse matrix.

```
sage: m = matrix(ZZ, 3, 3, range(1, 10))
sage: n = m.apply_map(lambda x: 1//x, sparse=True); n
[1 0 0]
[0 0 0]
[0 0 0]
sage: n.parent()
Full MatrixSpace of 3 by 3 sparse matrices over Integer Ring
```

apply_morphism (phi)

Apply the morphism phi to the coefficients of this dense matrix.

The resulting matrix is over the codomain of phi.

INPUT:

•phi - a morphism, so phi is callable and phi.domain() and phi.codomain() are defined. The codomain must be a ring.

OUTPUT: a matrix over the codomain of phi

EXAMPLES:

```
sage: m = matrix(ZZ, 3, 3, range(9))
sage: phi = ZZ.hom(GF(5))
sage: m.apply_morphism(phi)
[0 1 2]
[3 4 0]
[1 2 3]
sage: parent(m.apply_morphism(phi))
Full MatrixSpace of 3 by 3 dense matrices over Finite Field of size 5
```

We apply a morphism to a matrix over a polynomial ring:

as_bipartite_graph()

Construct a bipartite graph B representing the matrix uniquely.

Vertices are labeled 1 to nrows on the left and nrows + 1 to nrows + ncols on the right, representing rows and columns correspondingly. Each row is connected to each column with an edge weighted by the value of the corresponding matrix entry.

This graph is a helper for calculating automorphisms of a matrix under row and column permutations. See $automorphisms_of_rows_and_columns()$.

OUTPUT:

•A bipartite graph.

EXAMPLES:

```
sage: M = matrix(QQ, [[1/3, 7], [6, 1/4], [8, -5]])
sage: M
[1/3    7]
[   6  1/4]
[   8   -5]

sage: B = M.as_bipartite_graph()
sage: B
Bipartite graph on 5 vertices
sage: B.edges()
[(1, 4, 1/3), (1, 5, 7), (2, 4, 6), (2, 5, 1/4), (3, 4, 8), (3, 5, -5)]
sage: len(B.left) == M.nrows()
True
sage: len(B.right) == M.ncols()
True
```

as_sum_of_permutations ()

Returns the current matrix as a sum of permutation matrices

According to the Birkhoff-von Neumann Theorem, any bistochastic matrix can be written as a positive sum of permutation matrices, which also means that the polytope of bistochastic matrices is integer.

As a non-bistochastic matrix can obviously not be written as a sum of permutations, this theorem is an equivalence.

This function, given a bistochastic matrix, returns the corresponding decomposition.

See also:

- •bistochastic_as_sum_of_permutations for more information on this method.
- •Birkhoff_polytope()

EXAMPLES:

We create a bistochastic matrix from a convex sum of permutations, then try to deduce the decomposition from the matrix

An exception is raised when the matrix is not bistochastic:

automorphisms of rows and columns ()

Return the automorphisms of self under permutations of rows and columns as a list of pairs of PermutationGroupElement objects.

EXAMPLES:

```
sage: M = matrix(ZZ,[[1,0],[1,0],[0,1]])
sage: M
[1 0]
[1 0]
[0 1]
sage: A = M.automorphisms_of_rows_and_columns()
sage: A
[((), ()), ((1,2), ())]
sage: M = matrix(ZZ,[[1,1,1,1],[1,1,1]])
sage: A = M.automorphisms_of_rows_and_columns()
sage: len(A)
48
```

One can now apply these automorphisms to M to show that it leaves it invariant:

```
sage: all(M.with_permuted_rows_and_columns(*i) == M for i in A)
True
```

characteristic_polynomial (*args, **kwds)

Synonym for self.charpoly(...).

EXAMPLES:

```
sage: a = matrix(QQ, 2,2, [1,2,3,4]); a
[1 2]
[3 4]
sage: a.characteristic_polynomial('T')
T^2 - 5*T - 2
```

charpoly (var='x', algorithm=None)

Returns the characteristic polynomial of self, as a polynomial over the base ring.

ALGORITHM:

In the generic case of matrices over a ring (commutative and with unity), there is a division-free algorithm, which can be accessed using "df", with complexity $O(n^4)$. Alternatively, by specifying "hessenberg", this method computes the Hessenberg form of the matrix and then reads off the characteristic polynomial. Moreover, for matrices over number fields, this method can use PARI's charpoly implementation instead.

The method's logic is as follows: If no algorithm is specified, first check if the base ring is a number field (and then use PARI), otherwise check if the base ring is the ring of integers modulo n (in which case compute the characteristic polynomial of a lift of the matrix to the integers, and then coerce back to the base), next check if the base ring is an exact field (and then use the Hessenberg form), or otherwise, use the generic division-free algorithm. If an algorithm is specified explicitly, if algorithm == "hessenberg", use the Hessenberg form, or otherwise use the generic division-free algorithm.

The result is cached.

INPUT:

```
•var - a variable name (default: 'x')
```

•algorithm - string:

- "df" Generic $O(n^4)$ division-free algorithm
- "hessenberg" Use the Hessenberg form of the matrix

EXAMPLES:

First a matrix over **Z**:

```
sage: A = MatrixSpace(ZZ,2)([1,2, 3,4])
sage: f = A.charpoly('x')
sage: f
x^2 - 5*x - 2
sage: f.parent()
Univariate Polynomial Ring in x over Integer Ring
sage: f(A)
[0 0]
[0 0]
```

An example over Q:

```
sage: A = MatrixSpace(QQ,3)(range(9))
sage: A.charpoly('x')
x^3 - 12*x^2 - 18*x
sage: A.trace()
12
sage: A.determinant()
0
```

We compute the characteristic polynomial of a matrix over the polynomial ring $\mathbb{Z}[a]$:

We compute the characteristic polynomial of a matrix over the multi-variate polynomial ring $\mathbf{Z}[x,y]$:

```
sage: R.<x,y> = PolynomialRing(ZZ,2)
sage: A = MatrixSpace(R,2)([x, y, x^2, y^2])
sage: f = A.charpoly('x'); f
x^2 + (-y^2 - x)*x - x^2*y + x*y^2
```

It's a little difficult to distinguish the variables. To fix this, we temporarily view the indeterminate as Z:

```
sage: with localvars(f.parent(), 'Z'): print(f)
Z^2 + (-y^2 - x)*Z - x^2*y + x*y^2
```

We could also compute f in terms of Z from the start:

```
sage: A.charpoly('Z')
Z^2 + (-y^2 - x)*Z - x^2*y + x*y^2
```

Here is an example over a number field:

```
sage: x = QQ['x'].gen()
sage: K.<a> = NumberField(x^2 - 2)
sage: m = matrix(K, [[a-1, 2], [a, a+1]])
sage: m.charpoly('Z')
Z^2 - 2*a*Z - 2*a + 1
sage: m.charpoly('a')(m) == 0
True
```

Over integers modulo n with composite n:

```
sage: A = Mat(Integers(6),3,3)(range(9))
sage: A.charpoly()
x^3
```

Here is an example over a general commutative ring, that is to say, as of version 4.0.2, SAGE does not even positively determine that S in the following example is an integral domain. But the computation of the characteristic polynomial succeeds as follows:

AUTHORS:

- •Unknown: No author specified in the file from 2009-06-25
- •Sebastian Pancratz (2009-06-25): Include the division-free algorithm

cholesky ()

Returns the Cholesky decomposition of a symmetric or Hermitian matrix.

INPUT:

A square matrix that is real, symmetric and positive definite. Or a square matrix that is complex, Hermitian and positive definite. Generally, the base ring for the entries of the matrix needs to be a subfield of the algebraic numbers (QQbar). Examples include the rational numbers (QQ), some number fields, and real algebraic numbers and the algebraic numbers themselves.

OUTPUT:

For a matrix A the routine returns a lower triangular matrix L such that,

$$A = LL^*$$

where L^* is the conjugate-transpose in the complex case, and just the transpose in the real case. If the matrix fails to be positive definite (perhaps because it is not symmetric or Hermitian), then a ValueError results.

ALGORITHM:

Whether or not the matrix is positive definite is checked first in every case. This is accomplished with an indefinite factorization (see $indefinite_factorization()$) which caches its result. This algorithm is of an order $n^3/3$. If the matrix is positive definite, this computation always succeeds, using just field operations. The transition to a Cholesky decomposition "only" requires computing square roots of the positive (real) entries of the diagonal matrix produced in the indefinite factorization. Hence, there is no real penalty in the positive definite check (here, or prior to calling this routine), but a field extension with square roots may not be implemented in all reasonable cases.

EXAMPLES:

This simple example has a result with entries that remain in the field of rational numbers.

```
sage: A = matrix(QQ, [[4, -2, 4, 2],
                      [-2, 10, -2, -7],
. . . . :
                      [ 4, -2, 8, 4],
. . . . :
                      [2, -7, 4, 7]
. . . . :
sage: A.is_symmetric()
True
sage: L = A.cholesky()
sage: L
[2 0 0 0]
[-1 \ 3 \ 0 \ 0]
[ 2 0 2 0]
[1 -2 1 1]
sage: L.parent()
Full MatrixSpace of 4 by 4 dense matrices over Rational Field
sage: L*L.transpose() == A
True
```

This seemingly simple example requires first moving to the rational numbers for field operations, and then square roots necessitate that the result has entries in the field of algebraic numbers.

```
sage: A = matrix(ZZ, [[ 78, -30, -37, -2],
. . . . :
                     [-30, 102, 179, -18],
. . . . :
                      [-37, 179, 326, -38],
                      [-2, -18, -38, 15]
sage: A.is_symmetric()
True
sage: L = A.cholesky()
sage: L
   8.83176086632785?
                                         0
                                                              0
      01
[ -3.396831102433787? 9.51112708681461?
     01
[ -4.189425026335004? 17.32383862241232? 2.886751345948129?
→ 01
[-0.2264554068289192? -1.973397116652010? -1.649572197684645?
→886751345948129?]
sage: L.parent()
Full MatrixSpace of 4 by 4 dense matrices over Algebraic Real Field
sage: L*L.transpose() == A
True
```

Some subfields of the complex numbers, such as this number field of complex numbers with rational real and imaginary parts, allow for this computation.

```
sage: C.<I> = QuadraticField(-1)
                              23, 17*I + 3, 24*I + 25, 21*I],
sage: A = matrix(C, [[
                    [-17*I + 3, 38, -69*I + 89, 7*I + 15],
. . . . :
                     [-24*I + 25, 69*I + 89, 976, 24*I + 6],
. . . . :
                     [ -21*I, -7*I + 15, -24*I + 6,
                                                               28]])
sage: A.is_hermitian()
sage: L = A.cholesky()
sage: L
[
                 4.79...?
                                                                          0
      0.1
\rightarrow
                                           5.00...?
   0.62...? - 3.54...?*I
                                                                          0
      01
   5.21...? - 5.00...?*I 13.58...? + 10.72...?*I
                                                                  24.98...?
[
              -4.37...?*I -0.10...? - 0.85...?*I -0.21...? + 0.37...?*I 2.
[
⇔81...?]
sage: L.parent()
Full MatrixSpace of 4 by 4 dense matrices over Algebraic Field
sage: (L*L.conjugate_transpose() - A.change_ring(QQbar)).norm() < 10^-10</pre>
```

The field of algebraic numbers is an ideal setting for this computation.

```
sage: A = matrix(QQbar, [[
                                   2, 4 + 2*I, 6 - 4*I],
                         [-2*I + 4, 11, 10 - 12*I],
. . . . :
                          [4 \times I + 6, 10 + 12 \times I,
                                                   3711)
. . . . :
sage: A.is_hermitian()
True
sage: L = A.cholesky()
sage: L
                        1.414213562373095?
                                                                            0]
[2.828427124746190? - 1.414213562373095?*I
                                                     1
                                                                            0.1
[4.242640687119285? + 2.828427124746190?*I -2*I + 2]
                                                          1.732050807568878?]
sage: L.parent()
Full MatrixSpace of 3 by 3 dense matrices over Algebraic Field
sage: (L*L.conjugate_transpose() - A.change_ring(QQbar)).norm() < 10^-10</pre>
True
```

Results are cached, hence immutable. Use the copy function if you need to make a change.

```
4, 2],
sage: A = matrix(QQ, [[4, -2,
                      [-2, 10, -2, -7],
. . . . :
. . . . :
                      [ 4, -2, 8, 4],
                      [2, -7, 4, 7]]
sage: L = A.cholesky()
sage: L.is_immutable()
sage: from copy import copy
sage: LC = copy(L)
sage: LC[0,0] = 1000
sage: LC
[1000
      0
             0
                   01
[ -1
         3
             0
                   01
   2
         0
```

```
[ 1 -2 1 1]
```

There are a variety of situations which will prevent the computation of a Cholesky decomposition.

The base ring must be exact. For numerical work, create a matrix with a base ring of RDF or CDF and use the <code>cholesky()</code> method for matrices of that type.

The base ring may not have a fraction field.

```
sage: A = matrix(Integers(6), [[2, 0], [0, 4]])
sage: A.cholesky()
Traceback (most recent call last):
...
ValueError: Could not see Ring of integers modulo 6 as a subring of
the real or complex numbers
```

The base field may not have elements that are comparable to zero.

```
sage: F.<a> = FiniteField(5^4)
sage: A = matrix(F, [[2+a^3, 3], [3, 3]])
sage: A.cholesky()
Traceback (most recent call last):
...
ValueError: Could not see Finite Field in a of size 5^4 as a subring
of the real or complex numbers
```

The algebraic closure of the fraction field of the base ring may not be implemented.

```
sage: F = Integers(7)
sage: A = matrix(F, [[4, 0], [0, 3]])
sage: A.cholesky()
Traceback (most recent call last):
...
ValueError: Could not see Ring of integers modulo 7 as a subring of
the real or complex numbers
```

The matrix may not be positive definite.

The matrix could be positive semi-definite, and thus lack a Cholesky decomposition.

AUTHOR:

•Rob Beezer (2012-05-27)

column module ()

Return the free module over the base ring spanned by the columns of this matrix.

EXAMPLES:

```
sage: t = matrix(QQ, 3, 3, range(9)); t
[0 1 2]
[3 4 5]
[6 7 8]
sage: t.column_module()
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 -1]
[ 0 1 2]
```

column space ()

Return the vector space over the base ring spanned by the columns of this matrix.

```
sage: M = MatrixSpace(QQ,3,3)
sage: A = M([1,9,-7,4/5,4,3,6,4,3])
sage: A.column_space()
Vector space of degree 3 and dimension 3 over Rational Field
Basis matrix:
[1 0 0]
[0 1 0]
[0 0 1]
sage: W = MatrixSpace(CC, 2, 2)
sage: B = W([1, 2+3*I, 4+5*I, 9]); B
                    1.0000000000000 2.000000000000 + 3.000000000000*I1
[4.00000000000000 + 5.000000000000000*I
                                                         9.0000000000000001
sage: B.column_space()
Vector space of degree 2 and dimension 2 over Complex Field with 53 bits of...
→precision
Basis matrix:
[0.00000000000000 1.0000000000000]
```

conjugate ()

Return the conjugate of self, i.e. the matrix whose entries are the conjugates of the entries of self.

EXAMPLES:

A matrix over a not-totally-real number field:

There is a shortcut for the conjugate:

There is also a shortcut for the conjugate transpose, or "Hermitian transpose":

```
sage: M.H
[-j + 1     0]
[     1     -2*j]
```

Conjugates work (trivially) for matrices over rings that embed canonically into the real numbers:

```
sage: M = random_matrix(ZZ, 2)
sage: M == M.conjugate()
True
sage: M = random_matrix(QQ, 3)
sage: M == M.conjugate()
True
sage: M = random_matrix(RR, 2)
sage: M == M.conjugate()
True
```

conjugate_transpose ()

Returns the transpose of self after each entry has been converted to its complex conjugate.

Note: This function is sometimes known as the "adjoint" of a matrix, though there is substantial variation and some confusion with the use of that term.

OUTPUT:

A matrix formed by taking the complex conjugate of every entry of self and then transposing the resulting matrix.

Complex conjugation is implemented for many subfields of the complex numbers. See the examples below, or more at conjugate().

There is also a shortcut for the conjugate transpose, or "Hermitian transpose":

Matrices over base rings that can be embedded in the real numbers will behave as expected.

```
sage: P = random_matrix(QQ, 3, 4)
sage: P.conjugate_transpose() == P.transpose()
True
```

The conjugate of a matrix is formed by taking conjugates of all the entries. Some specialized subfields of the complex numbers are implemented in Sage and complex conjugation can be applied. (Matrices over quadratic number fields are another class of examples.)

Conjugation does not make sense over rings not containing complex numbers.

AUTHOR:

Rob Beezer (2010-12-13)

```
cyclic_subspace ( v, var=None, basis='echelon')
```

Create a cyclic subspace for a vector, and optionally, a minimal polynomial for the iterated powers.

These subspaces are also known as Krylov subspaces. They are spanned by the vectors

$$\{v, Av, A^2v, A^3v, \dots\}$$

INPUT:

- •self a square matrix with entries from a field.
- •v a vector with a degree equal to the size of the matrix and entries compatible with the entries of the matrix.
- •var default: None if specified as a string or a generator of a polynomial ring, then this will be used to construct a polynomial reflecting a relation of linear dependence on the powers A^iv and this will cause the polynomial to be returned along with the subspace. A generator must create polynomials with coefficients from the same field as the matrix entries.
- •basis default: echelon the basis for the subspace is "echelonized" by default, but the keyword 'iterates' will return a subspace with a user basis equal to the largest linearly independent set $\{v, Av, A^2v, A^3v, \ldots, A^{k-1}v\}$.

OUTPUT:

Suppose k is the smallest power such that $\{v, Av, A^2v, A^3v, \dots, A^kv\}$ is linearly dependent. Then the subspace returned will have dimension k and be spanned by the powers 0 through k-1.

If a polynomial is requested through the use of the var keyword, then a pair is returned, with the polynomial first and the subspace second. The polynomial is the unique monic polynomial whose coefficients provide a relation of linear dependence on the first k powers.

For less convenient, but more flexible output, see the helper method "_cyclic_subspace" in this module.

EXAMPLES:

```
sage: A = matrix(QQ, [[5,4,2,1],[0,1,-1,-1],[-1,-1,3,0],[1,1,-1,2]])
sage: v = vector(QQ, [0, 1, 0, 0])
sage: E = A.cyclic_subspace(v); E
Vector space of degree 4 and dimension 3 over Rational Field
Basis matrix:
[1 0 0 0]
[ 0 1 0 0]
[ 0 0 1 -1 ]
sage: F = A.cyclic_subspace(v, basis='iterates'); F
Vector space of degree 4 and dimension 3 over Rational Field
User basis matrix:
[ 0 1 0 0]
[ 4 1 -1 1]
[23 1 -8 8]
sage: E == F
True
sage: p, S = A.cyclic_subspace(v, var='T'); p
T^3 - 9*T^2 + 24*T - 16
sage: gen = polygen(QQ,
sage: p, S = A.cyclic_subspace(v, var=gen); p
z^3 - 9*z^2 + 24*z - 16
sage: p.degree() == E.dimension()
True
```

The polynomial has coefficients that yield a non-trivial relation of linear dependence on the iterates. Or, equivalently, evaluating the polynomial with the matrix will create a matrix that annihilates the vector.

```
sage: A = matrix(QQ, [[15, 37/3, -16, -104/3, -29, -7/3, 35, 2/3, -29/3, -1/
→3],
                       [2, 9, -1, -6, -6, 0, 7, 0, -2, 0],
. . . . :
                       [24, 74/3, -29, -208/3, -58, -14/3, 70, 4/3, -58/3, -2/
. . . . :
→3],
                       [-6, -19, 3, 21, 19, 0, -21, 0, 6, 0],
. . . . :
                       [2, 6, -1, -6, -3, 0, 7, 0, -2, 0],
. . . . :
                       [-96, -296/3, 128, 832/3, 232, 65/3, -279, -16/3, 232/
. . . . :
\rightarrow 3, 8/31,
                       [0, 0, 0, 0, 0, 0, 3, 0, 0, 0],
. . . . :
                       [20, 26/3, -30, -199/3, -42, -14/3, 70, 13/3, -55/3, -2/
. . . . :
→31,
                       [18, 57, -9, -54, -57, 0, 63, 0, -15, 0],
. . . . :
                       [0, 0, 0, 0, 0, 0, 0, 0, 0, 3]])
. . . . :
sage: u = zero_vector(QQ, 10); u[0] = 1
sage: p, S = A.cyclic_subspace(u, var='t', basis='iterates')
sage: S
Vector space of degree 10 and dimension 3 over Rational Field
User basis matrix:
                         0
  1
       0
             0
                    0
                              0
                                    0
                                         0
                                              0
                                                    0]
                 -6
                        2 -96
                                             18
                                                    01
[
 15
             24
                                    0
                                        20
[ 79
       12 140 -36
                      12 -560
                                   0 116
                                                    0]
sage: p
t^3 - 9*t^2 + 27*t - 27
sage: k = p.degree()
sage: coeffs = p.list()
sage: iterates = S.basis() + [A^k*u]
sage: sum(coeffs[i]*iterates[i] for i in range(k+1))
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
sage: u in p(A).right_kernel()
True
```

AUTHOR:

•Rob Beezer (2011-05-20)

decomposition (algorithm='spin', is_diagonalizable=False, dual=False)

Returns the decomposition of the free module on which this matrix A acts from the right (i.e., the action is x goes to x A), along with whether this matrix acts irreducibly on each factor. The factors are guaranteed to be sorted in the same way as the corresponding factors of the characteristic polynomial.

Let A be the matrix acting from the on the vector space V of column vectors. Assume that A is square. This function computes maximal subspaces W_1 , ..., W_n corresponding to Galois conjugacy classes of eigenvalues of A. More precisely, let f(X) be the characteristic polynomial of A. This function computes the subspace $W_i = ker(g(A)^n)$, where $g_i(X)$ is an irreducible factor of f(X) and $g_i(X)$ exactly divides f(X). If the optional parameter is_diagonalizable is True, then we let $W_i = ker(g(A))$, since then we know that $ker(g(A)) = ker(g(A)^n)$.

INPUT:

- •self a matrix
- •algorithm 'spin' (default): algorithm involves iterating the action of self on a vector. 'kernel': naively just compute $ker(f_i(A))$ for each factor f_i .
- •dual bool (default: False): If True, also returns the corresponding decomposition of V under the action of the transpose of A. The factors are guaranteed to correspond.
- •is_diagonalizable if the matrix is known to be diagonalizable, set this to True, which might speed up the algorithm in some cases.

Note: If the base ring is not a field, the kernel algorithm is used.

OUTPUT:

- •Sequence list of pairs (V,t), where V is a vector spaces and t is a bool, and t is True exactly when the charpoly of self on V is irreducible.
- •(optional) list list of pairs (W,t), where W is a vector space and t is a bool, and t is True exactly when the charpoly of the transpose of self on W is irreducible.

EXAMPLES:

```
sage: A = matrix(\mathbb{Z}\mathbb{Z}, 4, [3,4,5,6,7,3,8,10,14,5,6,7,2,2,10,9])
sage: B = matrix(QQ, 6, 6, range(36))
sage: B*11
[ 0 11 22 33 44 55]
[ 66 77 88 99 110 121]
[132 143 154 165 176 187]
[198 209 220 231 242 253]
[264 275 286 297 308 319]
[330 341 352 363 374 385]
sage: A.decomposition()
(Ambient free module of rank 4 over the principal ideal domain Integer Ring, ...
→True)
sage: B.decomposition()
(Vector space of degree 6 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 -1 -2 -3 -4]
[ 0 1 2 3 4 5], True),
(Vector space of degree 6 and dimension 4 over Rational Field
Basis matrix:
[ 1 0 0 0 -5 4]
[ 0 1 0 0 -4 3 ]
[ 0 0 1 0 -3 2]
[ 0 0 0 1 -2 1], False)
```

decomposition_of_subspace (M, check_restrict=True, **kwds)

Suppose the right action of self on M leaves M invariant. Return the decomposition of M as a list of pairs (W, is irred) where is irred is True if the charpoly of self acting on the factor W is irreducible.

Additional inputs besides M are passed onto the decomposition command.

INPUT:

- ullet M A subspace of the free module self acts on.
- •check_restrict A boolean (default: True); Call restrict with or without check.
- •kwds Keywords that will be forwarded to decomposition().

```
sage: t = matrix(QQ, 3, [3, 0, -2, 0, -2, 0, 0, 0, 0]); t
[ 3 0 -2]
[ 0 -2 0]
[ 0 0 0]
```

```
sage: t.fcp('X')
                 # factored charpoly
(X - 3) * X * (X + 2)
sage: v = kernel(t*(t+2)); v
                              # an invariant subspace
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[0 1 0]
[0 0 1]
sage: D = t.decomposition_of_subspace(v); D
(Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[0 0 1], True),
(Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[0 1 0], True)
sage: t.restrict(D[0][0])
[0]
sage: t.restrict(D[1][0])
[-2]
```

We do a decomposition over ZZ:

```
sage: a = matrix(ZZ,6,[0, 0, -2, 0, 2, 0, 2, -4, -2, 0, 2, 0, 0, 0, -2, -2, ...
→0, 0, 2, 0, -2, -4, 2, -2, 0, 2, 0, -2, -2, 0, 0, 2, 0, -2, 0, 0])
sage: a.decomposition_of_subspace(ZZ^6)
[
(Free module of degree 6 and rank 2 over Integer Ring
Echelon basis matrix:
[ 1  0  1  -1  1  -1]
[ 0  1  0  -1  2  -1], False),
(Free module of degree 6 and rank 4 over Integer Ring
Echelon basis matrix:
[ 1  0  -1  0  1  0]
[ 0  1  0  0  0  0]
[ 0  0  0  1  0  0]
[ 0  0  0  0  1  0  0]
[ 0  0  0  0  0  1], False)
]
```

denominator ()

Return the least common multiple of the denominators of the elements of self.

If there is no denominator function for the base field, or no LCM function for the denominators, raise a TypeError.

EXAMPLES:

```
sage: A = MatrixSpace(QQ,2)(['1/2', '1/3', '1/5', '1/7'])
sage: A.denominator()
210
```

A trivial example:

```
sage: A = matrix(QQ, 0,2)
sage: A.denominator()
1
```

Denominators are not defined for real numbers:

```
sage: A = MatrixSpace(RealField(),2)([1,2,3,4])
sage: A.denominator()
Traceback (most recent call last):
...
TypeError: denominator not defined for elements of the base ring
```

We can even compute the denominator of matrix over the fraction field of $\mathbb{Z}[x]$.

```
sage: K.<x> = Frac(ZZ['x'])
sage: A = MatrixSpace(K,2)([1/x, 2/(x+1), 1, 5/(x^3)])
sage: A.denominator()
x^4 + x^3
```

Here's an example involving a cyclotomic field:

density()

Return the density of the matrix.

By density we understand the ratio of the number of nonzero positions and the self.nrows() * self.ncols(), i.e. the number of possible nonzero positions.

EXAMPLES:

First, note that the density parameter does not ensure the density of a matrix, it is only an upper bound.

```
sage: A = random_matrix(GF(127),200,200,density=0.3)
sage: A.density()
5211/20000
```

```
sage: A = matrix(QQ,3,3,[0,1,2,3,0,0,6,7,8])
sage: A.density()
2/3
```

```
sage: a = matrix([[],[],[],[]])
sage: a.density()
0
```

derivative (*args)

Derivative with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

```
sage: v = vector([1,x,x^2])
sage: v.derivative(x)
(0, 1, 2*x)
```

```
sage: type(v.derivative(x)) == type(v)
True
sage: v = vector([1,x,x^2], sparse=True)
sage: v.derivative(x)
(0, 1, 2*x)
sage: type(v.derivative(x)) == type(v)
True
sage: v.derivative(x,x)
(0, 0, 2)
```

det (*args, **kwds)

Synonym for self.determinant(...).

EXAMPLES:

```
sage: A = MatrixSpace(Integers(8),3)([1,7,3, 1,1,1, 3,4,5])
sage: A.det()
6
```

determinant (algorithm=None)

Returns the determinant of self.

ALGORITHM:

For small matrices (n less than 4), this is computed using the naive formula. In the specific case of matrices over the integers modulo a non-prime, the determinant of a lift is computed over the integers. In general, the characteristic polynomial is computed either using the Hessenberg form (specified by "hessenberg") or the generic division-free algorithm (specified by "df"). When the base ring is an exact field, the default choice is "hessenberg", otherwise it is "df". Note that for matrices over most rings, more sophisticated algorithms can be used. (Type A. determinant? to see what is done for a specific matrix A.)

INPUT:

•algorithm - string:

- "df" Generic $O(n^4)$ division-free algorithm
- "hessenberg" Use the Hessenberg form of the matrix

EXAMPLES:

```
sage: A = MatrixSpace(Integers(8),3)([1,7,3, 1,1,1, 3,4,5])
sage: A.determinant()
6
sage: A.determinant() is A.determinant()
True
sage: A[0,0] = 10
sage: A.determinant()
7
```

We compute the determinant of the arbitrary 3x3 matrix:

```
sage: R = PolynomialRing(QQ,9,'x')
sage: A = matrix(R,3,R.gens())
sage: A
[x0 x1 x2]
[x3 x4 x5]
[x6 x7 x8]
```

```
sage: A.determinant()
-x2*x4*x6 + x1*x5*x6 + x2*x3*x7 - x0*x5*x7 - x1*x3*x8 + x0*x4*x8
```

We create a matrix over $\mathbf{Z}[x, y]$ and compute its determinant.

```
sage: R.<x,y> = PolynomialRing(IntegerRing(),2)
sage: A = MatrixSpace(R,2)([x, y, x**2, y**2])
sage: A.determinant()
-x^2*y + x*y^2
```

A matrix over a non-domain:

```
sage: m = matrix(Integers(4), 2, [1,2,2,3])
sage: m.determinant()
3
```

AUTHORS:

- •Unknown: No author specified in the file from 2009-06-25
- •Sebastian Pancratz (2009-06-25): Use the division-free algorithm for charpoly
- •Thierry Monteil (2010-10-05): Bugfix for trac ticket #10063, so that the determinant is computed even for rings for which the is_field method is not implemented.

diagonal ()

Return the diagonal entries of self.

OUTPUT:

A list containing the entries of the matrix that have equal row and column indices, in order of the indices. Behavior is not limited to square matrices.

EXAMPLES:

```
sage: A = matrix([[2,5],[3,7]]); A
[2 5]
[3 7]
sage: A.diagonal()
[2, 7]
```

Two rectangular matrices.

```
sage: B = matrix(3, 7, range(21)); B
[ 0  1  2  3  4  5  6]
[ 7  8  9  10  11  12  13]
[ 14  15  16  17  18  19  20]
sage: B.diagonal()
[ 0,  8,  16]

sage: C = matrix(3, 2, range(6)); C
[ 0  1]
[ 2  3]
[ 4  5]
sage: C.diagonal()
[ 0,  3]
```

Empty matrices behave properly.

```
sage: E = matrix(0, 5, []); E
[]
sage: E.diagonal()
[]
```

echelon_form (algorithm='default', cutoff=0, **kwds)

Return the echelon form of self.

Note: This row reduction does not use division if the matrix is not over a field (e.g., if the matrix is over the integers). If you want to calculate the echelon form using division, then use rref(), which assumes that the matrix entries are in a field (specifically, the field of fractions of the base ring of the matrix).

INPUT:

- •algorithm string. Which algorithm to use. Choices are
 - -'default': Let Sage choose an algorithm (default).
 - -'classical': Gauss elimination.
 - -'strassen': use a Strassen divide and conquer algorithm (if available)
- •cutoff integer. Only used if the Strassen algorithm is selected.
- •transformation boolean. Whether to also return the transformation matrix. Some matrix backends do not provide this information, in which case this option is ignored.

OUTPUT:

The reduced row echelon form of self, as an immutable matrix. Note that self is *not* changed by this command. Use echelonize() to change self in place.

If the optional parameter transformation=True is specified, the output consists of a pair (E,T) of matrices where E is the echelon form of self and T is the transformation matrix.

EXAMPLES:

```
sage: MS = MatrixSpace(GF(19),2,3)
sage: C = MS.matrix([1,2,3,4,5,6])
sage: C.rank()
2
sage: C.nullity()
0
sage: C.echelon_form()
[ 1  0 18]
[ 0  1  2]
```

The matrix library used for \mathbf{Z}/p -matrices does not return the transformation matrix, so the transformation option is ignored:

```
sage: C.echelon_form(transformation=True)
[ 1  0 18]
[ 0  1  2]

sage: D = matrix(ZZ, 2, 3, [1,2,3,4,5,6])
sage: D.echelon_form(transformation=True)
(
[1 2 3] [ 1  0]
[0 3 6], [ 4 -1]
```

```
sage: E, T = D.echelon_form(transformation=True)
sage: T*D == E
True
```

echelonize (algorithm='default', cutoff=0, **kwds)

Transform self into a matrix in echelon form over the same base ring as self.

Note: This row reduction does not use division if the matrix is not over a field (e.g., if the matrix is over the integers). If you want to calculate the echelon form using division, then use rref(), which assumes that the matrix entries are in a field (specifically, the field of fractions of the base ring of the matrix).

INPUT:

- •algorithm string. Which algorithm to use. Choices are
 - -'default': Let Sage choose an algorithm (default).
 - -'classical': Gauss elimination.
 - -'strassen': use a Strassen divide and conquer algorithm (if available)
- •cutoff integer. Only used if the Strassen algorithm is selected.
- •transformation boolean. Whether to also return the transformation matrix. Some matrix backends do not provide this information, in which case this option is ignored.

OUTPUT:

The matrix self is put into echelon form. Nothing is returned unless the keyword option transformation=True is specified, in which case the transformation matrix is returned.

EXAMPLES:

```
sage: a = matrix(QQ,3,3,range(9)); a
[0 1 2]
[3 4 5]
[6 7 8]
sage: a.echelonize()
sage: a
[ 1 0 -1]
[ 0 1 2]
[ 0 0 0]
```

An immutable matrix cannot be transformed into echelon form. Use self.echelon_form() instead:

```
sage: a = matrix(QQ,3,3,range(9)); a.set_immutable()
sage: a.echelonize()
Traceback (most recent call last):
...
ValueError: matrix is immutable; please change a copy instead
(i.e., use copy(M) to change a copy of M).
sage: a.echelon_form()
[ 1  0 -1]
[ 0  1  2]
[ 0  0  0]
```

Echelon form over the integers is what is also classically often known as Hermite normal form:

```
sage: a = matrix(ZZ,3,3,range(9))
sage: a.echelonize(); a
[ 3 0 -3]
[ 0 1 2]
[ 0 0 0]
```

We compute an echelon form both over a domain and fraction field:

```
sage: b = a.change_ring(R.fraction_field())
sage: b.echelon_form()  # potentially useful
[ 1 y/x]
[ 0 0]
```

Echelon form is not defined over arbitrary rings:

Involving a sparse matrix:

```
sage: m = matrix(3,[1, 1, 1, 1, 0, 2, 1, 2, 0], sparse=True); m
[1 1 1]
[1 0 2]
[1 2 0]
sage: m.echelon_form()
[1 0 2]
[0 1 -1]
[0 0 0]
sage: m.echelonize(); m
[1 0 2]
[0 1 -1]
[0 0 0]
```

The transformation matrix is optionally returned:

```
sage: m_original = m
sage: transformation_matrix = m.echelonize(transformation=True)
sage: m == transformation_matrix * m_original
True
```

eigenmatrix_left()

Return matrices D and P, where D is a diagonal matrix of eigenvalues and P is the corresponding matrix where the rows are corresponding eigenvectors (or zero vectors) so that P*self = D*P.

```
sage: A = matrix(QQ, 3, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: D, P = A.eigenmatrix_left()
sage: D
[
                   0
                                                              0]
                   0 -1.348469228349535?
                                                              0]
[
                   0
                                        0 13.34846922834954?]
sage: P
                                         -2
                    1
                                                                 1]
                    1
                       0.3101020514433644? -0.3797958971132713?]
                    1
                       1.289897948556636?
                                             1.579795897113272?]
sage: P*A == D*P
True
```

Because P is invertible, A is diagonalizable.

```
sage: A == (~P)*D*P
True
```

The matrix P may contain zero rows corresponding to eigenvalues for which the algebraic multiplicity is greater than the geometric multiplicity. In these cases, the matrix is not diagonalizable.

```
sage: A = jordan_block(2,3); A
[2 1 0]
[0 2 1]
[0 0 2]
sage: A = jordan_block(2,3)
sage: D, P = A.eigenmatrix_left()
sage: D
[2 0 0]
[0 2 0]
[0 0 2]
sage: P
[0 0 1]
[0 0 0]
[0 0 0]
sage: P*A == D*P
True
```

eigenmatrix_right()

Return matrices D and P, where D is a diagonal matrix of eigenvalues and P is the corresponding matrix where the columns are corresponding eigenvectors (or zero vectors) so that self*P = P*D.

```
sage: A = matrix(QQ, 3, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: D, P = A.eigenmatrix_right()
sage: D
                    0
                                          0
                                                                0]
[
                    0 -1.348469228349535?
[
                                                                0]
                                          0 13.34846922834954?]
[
                    0
sage: P
                     1
                                                                   1]
```

```
[ -2 0.1303061543300932? 3.069693845669907?]
[ 1 -0.7393876913398137? 5.139387691339814?]

sage: A*P == P*D

True
```

Because P is invertible, A is diagonalizable.

```
sage: A == P*D*(~P)
True
```

The matrix P may contain zero columns corresponding to eigenvalues for which the algebraic multiplicity is greater than the geometric multiplicity. In these cases, the matrix is not diagonalizable.

```
sage: A = jordan_block(2,3); A
[2 1 0]
[0 2 1]
[0 0 2]
sage: A = jordan_block(2,3)
sage: D, P = A.eigenmatrix_right()
sage: D
[2 0 0]
[0 2 0]
[0 0 2]
sage: P
[1 0 0]
[0 0 0]
[0 0 0]
sage: A * P == P * D
True
```

eigenspaces_left (format='all', var='a', algebraic_multiplicity=False)

Compute the left eigenspaces of a matrix.

Note that eigenspaces_left() and left_eigenspaces() are identical methods. Here "left" refers to the eigenvectors being placed to the left of the matrix.

INPUT:

- •self a square matrix over an exact field. For inexact matrices consult the numerical or symbolic matrix classes.
- •format -default: None
 - -'all' attempts to create every eigenspace. This will always be possible for matrices with rational entries.
 - -'galois' for each irreducible factor of the characteristic polynomial, a single eigenspace will be output for a single root/eigenvalue for the irreducible factor.
 - -None Uses the 'all' format if the base ring is contained in an algebraically closed field which is implemented. Otherwise, uses the 'galois' format.
- •var default: 'a' variable name used to represent elements of the root field of each irreducible factor of the characteristic polynomial. If var='a', then the root fields will be in terms of a0, a1, a2,, where the numbering runs across all the irreducible factors of the characteristic polynomial, even for linear factors.
- •algebraic_multiplicity default: False whether or not to include the algebraic multiplicity of each eigenvalue in the output. See the discussion below.

OUTPUT:

If algebraic_multiplicity=False, return a list of pairs (e, V) where e is an eigenvalue of the matrix, and V is the corresponding left eigenspace. For Galois conjugates of eigenvalues, there may be just one representative eigenspace, depending on the format keyword.

If algebraic_multiplicity=True, return a list of triples (e, V, n) where e and V are as above and n is the algebraic multiplicity of the eigenvalue.

Warning: Uses a somewhat naive algorithm (simply factors the characteristic polynomial and computes kernels directly over the extension field).

EXAMPLES:

We compute the left eigenspaces of a 3×3 rational matrix. First, we request all of the eigenvalues, so the results are in the field of algebraic numbers, QQbar. Then we request just one eigenspace per irreducible factor of the characteristic polynomial with the galois keyword.

```
sage: A = matrix(QQ, 3, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: es = A.eigenspaces_left(format='all'); es
(0, Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[1 -2 1]),
(-1.348469228349535?, Vector space of degree 3 and dimension 1 over Algebraic.
User basis matrix:
                     1 0.3101020514433644? -0.3797958971132713?1),
(13.34846922834954?, Vector space of degree 3 and dimension 1 over Algebraic,
Field
User basis matrix:
                   1 1.289897948556636? 1.579795897113272?])
Γ
sage: es = A.eigenspaces_left(format='galois'); es
(0, Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[1 -2 1]),
(al, Vector space of degree 3 and dimension 1 over Number Field in al with.
→defining polynomial x^2 - 12*x - 18
User basis matrix:
             1 \frac{1}{15*a1} + \frac{2}{5} \frac{2}{15*a1} - \frac{1}{5}
sage: es = A.eigenspaces_left(format='galois', algebraic_multiplicity=True);...
(0, Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[1 -2 1], 1),
(al, Vector space of degree 3 and dimension 1 over Number Field in al with..

    →defining polynomial x^2 - 12*x - 18

User basis matrix:
             1 \frac{1}{15*a1} + \frac{2}{5} \frac{2}{15*a1} - \frac{1}{5}, 1
```

```
sage: e, v, n = es[0]; v = v.basis()[0]
sage: delta = e*v - v*A
sage: abs(abs(delta)) < 1e-10
True</pre>
```

The same computation, but with implicit base change to a field.

```
sage: A = matrix(ZZ,3,3,range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: A.eigenspaces_left(format='galois')
[
(0, Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1 -2 1]),
(a1, Vector space of degree 3 and dimension 1 over Number Field in a1 with_
    →defining polynomial x^2 - 12*x - 18
User basis matrix:
[ 1 1/15*a1 + 2/5 2/15*a1 - 1/5])
]
```

We compute the left eigenspaces of the matrix of the Hecke operator T_2 on level 43 modular symbols, both with all eigenvalues (the default) and with one subspace per factor.

```
sage: A = ModularSymbols(43).T(2).matrix(); A
[ 3 0 0 0 0 0 -1 ]
[ 0 -2 1 0 0 0 0]
[0 -1 1 1 0 -1 0]
[ 0 -1 0 -1 2 -1 1]
[0 -1 0 1 1 -1 1]
[ 0 0 -2 0 2 -2 1]
[ 0 0 -1 0 1 0 -1 ]
sage: A.base_ring()
Rational Field
sage: f = A.charpoly(); f
x^7 + x^6 - 12*x^5 - 16*x^4 + 36*x^3 + 52*x^2 - 32*x - 48
sage: factor(f)
(x - 3) * (x + 2)^2 * (x^2 - 2)^2
sage: A.eigenspaces_left(algebraic_multiplicity=True)
(3, Vector space of degree 7 and dimension 1 over Rational Field
User basis matrix:
                  0 - 1/7 0 - 2/7], 1),
       0 1/7
(-2, Vector space of degree 7 and dimension 2 over Rational Field
User basis matrix:
[ 0 1 0 1 -1 1 -1 ]
[0 \ 0 \ 1 \ 0 \ -1 \ 2 \ -1], \ 2),
(-1.414213562373095?, Vector space of degree 7 and dimension 2 over Algebraic,
→Field
User basis matrix:
                  0
                                                          0
                                      1
→-1 0.4142135623730951?
                                          1
                                                             -1]
[
                                      0
                                          0 2.414213562373095?], 2),
(1.414213562373095?, Vector space of degree 7 and dimension 2 over Algebraic.
→Field
```

```
User basis matrix:
[
         -2.414213562373095?
      -1
                                                  1
                                                                       -11
                   0
                                          0
                                                               1
[
       0
                                                  0 - 0.4142135623730951?, 2)
                            -1
sage: A.eigenspaces_left(format='galois', algebraic_multiplicity=True)
(3, Vector space of degree 7 and dimension 1 over Rational Field
User basis matrix:
[ 1 0 1/7
                   0 -1/7
                             0 - 2/7], 1),
(-2, Vector space of degree 7 and dimension 2 over Rational Field
User basis matrix:
[ \ 0 \ 1 \ 0 \ 1 \ -1 \ 1 \ -1]
[0 \ 0 \ 1 \ 0 \ -1 \ 2 \ -1], \ 2),
(a2, Vector space of degree 7 and dimension 2 over Number Field in a2 with,
→defining polynomial x^2 - 2
User basis matrix:
      0
                       0
               1
                              -1 -a2 -1
                                                1
                                                       -11
       0
               0
                       1
                               0
                                    -1
                                                0 -a2 + 1], 2)
]
```

Next we compute the left eigenspaces over the finite field of order 11.

```
sage: A = ModularSymbols(43, base_ring=GF(11), sign=1).T(2).matrix(); A
[ 3 9 0 0]
[0 9 0 1]
[ 0 10 9
[ 0 9 0 2]
sage: A.base_ring()
Finite Field of size 11
sage: A.charpoly()
x^4 + 10*x^3 + 3*x^2 + 2*x + 1
sage: A.eigenspaces_left(format='galois', var = 'beta')
(9, Vector space of degree 4 and dimension 1 over Finite Field of size 11
User basis matrix:
[0 0 1 5]),
(3, Vector space of degree 4 and dimension 1 over Finite Field of size 11
User basis matrix:
[1 6 0 6]),
(beta2, Vector space of degree 4 and dimension 1 over Univariate Quotient_
\rightarrowPolynomial Ring in beta2 over Finite Field of size 11 with modulus x^2 + 9
User basis matrix:
            0
                         1
                                      0 5*beta2 + 10])
[
```

This method is only applicable to exact matrices. The "eigenmatrix" routines for matrices with double-precision floating-point entries (RDF, CDF) are the best alternative. (Since some platforms return eigenvectors that are the negatives of those given here, this one example is not tested here.) There are also "eigenmatrix" routines for matrices with symbolic entries.

```
consult numerical or symbolic matrix classes for other options
sage: em = A.change_ring(RDF).eigenmatrix_left()
sage: eigenvalues = em[0]; eigenvalues.dense_matrix() # abs tol 1e-13
[13.348469228349522
                                                            0.01
                                      0.0
                 0.0 -1.348469228349534
                                                            0.01
                 0.0
                                      0.0
                                                            0.0]
sage: eigenvectors = em[1]; eigenvectors # not tested
[ 0.440242867... 0.567868371... 0.695493875...]
[ 0.897878732... 0.278434036... -0.341010658...]
[ 0.408248290... -0.816496580... 0.408248290...]
sage: x, y = var('x y')
sage: S = matrix([[x, y], [y, 3*x^2]])
sage: em = S.eigenmatrix_left()
sage: eigenvalues = em[0]; eigenvalues
[3/2*x^2 + 1/2*x - 1/2*sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2)]
                                      01
                                                            0 \ 3/2 \times x^2 + 1/2 \times x + 1/
[
\rightarrow2*sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2)]
sage: eigenvectors = em[1]; eigenvectors
                                                          1 \frac{1}{2} (3 \times x^2 - x - x)
\rightarrowsqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2))/y]
                                                          1 \frac{1}{2} (3 \times x^2 - x +
\rightarrowsqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2))/y]
```

A request for 'all' the eigenvalues, when it is not possible, will raise an error. Using the 'galois' format option is more likely to be successful.

eigenspaces_right (format='all', var='a', algebraic_multiplicity=False)
Compute the right eigenspaces of a matrix.

Note that eigenspaces_right() and right_eigenspaces() are identical methods. Here "right" refers to the eigenvectors being placed to the right of the matrix.

INPUT:

- •self a square matrix over an exact field. For inexact matrices consult the numerical or symbolic matrix classes.
- •format default: None

- -'all' attempts to create every eigenspace. This will always be possible for matrices with rational entries.
- -'galois' for each irreducible factor of the characteristic polynomial, a single eigenspace will be output for a single root/eigenvalue for the irreducible factor.
- -None Uses the 'all' format if the base ring is contained in an algebraically closed field which is implemented. Otherwise, uses the 'galois' format.
- •var default: 'a' variable name used to represent elements of the root field of each irreducible factor of the characteristic polynomial. If var='a', then the root fields will be in terms of a0, a1, a2,, where the numbering runs across all the irreducible factors of the characteristic polynomial, even for linear factors.
- •algebraic_multiplicity default: False whether or not to include the algebraic multiplicity of each eigenvalue in the output. See the discussion below.

OUTPUT:

If algebraic_multiplicity=False, return a list of pairs (e, V) where e is an eigenvalue of the matrix, and V is the corresponding left eigenspace. For Galois conjugates of eigenvalues, there may be just one representative eigenspace, depending on the format keyword.

If algebraic_multiplicity=True, return a list of triples (e, V, n) where e and V are as above and n is the algebraic multiplicity of the eigenvalue.

Warning: Uses a somewhat naive algorithm (simply factors the characteristic polynomial and computes kernels directly over the extension field).

EXAMPLES:

Right eigenspaces are computed from the left eigenspaces of the transpose of the matrix. As such, there is a greater collection of illustrative examples at the eigenspaces_left().

We compute the right eigenspaces of a 3×3 rational matrix.

```
sage: A = matrix(QQ, 3, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: A.eigenspaces_right()
(0, Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[1 -2 1]),
(-1.348469228349535?, Vector space of degree 3 and dimension 1 over Algebraic
User basis matrix:
                    1 0.1303061543300932? -0.7393876913398137?]),
(13.34846922834954?, Vector space of degree 3 and dimension 1 over Algebraic,
⊶Field
User basis matrix:
                 1 3.069693845669907? 5.139387691339814?])
sage: es = A.eigenspaces_right(format='galois'); es
(0, Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[1 -2 1]),
```

```
(al, Vector space of degree 3 and dimension 1 over Number Field in al with.

    defining polynomial x^2 - 12*x - 18

User basis matrix:
            1 \frac{1}{5*a1} + \frac{2}{5} \frac{2}{5*a1} - \frac{1}{5}
sage: es = A.eigenspaces_right(format='galois', algebraic_multiplicity=True);
(0, Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[1 -2 1], 1),
(al, Vector space of degree 3 and dimension 1 over Number Field in al with,

    →defining polynomial x^2 - 12*x - 18

User basis matrix:
             1 \frac{1}{5*a1} + \frac{2}{5} \frac{2}{5*a1} - \frac{1}{5}, 1
[
sage: e, v, n = es[0]; v = v.basis()[0]
sage: delta = v*e - A*v
sage: abs(abs(delta)) < 1e-10</pre>
True
```

The same computation, but with implicit base change to a field:

```
sage: A = matrix(ZZ, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: A.eigenspaces_right(format='galois')
[
(0, Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1 -2 1]),
(a1, Vector space of degree 3 and dimension 1 over Number Field in a1 with
defining polynomial x^2 - 12*x - 18
User basis matrix:
[ 1 1/5*a1 + 2/5 2/5*a1 - 1/5])
]
```

This method is only applicable to exact matrices. The "eigenmatrix" routines for matrices with double-precision floating-point entries (RDF, CDF) are the best alternative. (Since some platforms return eigenvectors that are the negatives of those given here, this one example is not tested here.) There are also "eigenmatrix" routines for matrices with symbolic entries.

```
sage: B = matrix(RR, 3, 3, range(9))
sage: B.eigenspaces_right()
Traceback (most recent call last):
NotImplementedError: eigenspaces cannot be computed reliably for inexact,
→rings such as Real Field with 53 bits of precision,
consult numerical or symbolic matrix classes for other options
sage: em = B.change_ring(RDF).eigenmatrix_right()
sage: eigenvalues = em[0]; eigenvalues.dense_matrix() # abs tol 1e-13
[13.348469228349522
                                   0.0
                                                      0.01
               0.0 -1.348469228349534
                                                      0.01
               0.0
                                   0.0
                                                      0.01
sage: eigenvectors = em[1]; eigenvectors # not tested
[ 0.164763817... 0.799699663... 0.408248290...]
```

```
[ 0.846785134... -0.591288087... 0.408248290...]
sage: x, y = var('x y')
sage: S = matrix([[x, y], [y, 3*x^2]])
sage: em = S.eigenmatrix_right()
sage: eigenvalues = em[0]; eigenvalues
[3/2*x^2 + 1/2*x - 1/2*sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2)]
                                    0]
\hookrightarrow
Γ
                                                        0 \ 3/2 \times x^2 + 1/2 \times x + 1/
\Rightarrow2*sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2)]
sage: eigenvectors = em[1]; eigenvectors
                               1]
[1/2*(3*x^2 - x - sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2))/y 1/2*(3*x^2 - x + ...)]
\rightarrowsqrt (9*x^4 - 6*x^3 + x^2 + 4*y^2))/y]
```

eigenvalues (extend=True)

Return a sequence of the eigenvalues of a matrix, with multiplicity. If the eigenvalues are roots of polynomials in QQ, then QQbar elements are returned that represent each separate root.

If the option extend is set to False, only eigenvalues in the base ring are considered.

EXAMPLES:

```
sage: a = matrix(ZZ, 4, range(16)); a
[ 0  1  2  3]
[ 4  5  6  7]
[ 8  9  10  11]
[12  13  14  15]
sage: sorted(a.eigenvalues(), reverse=True)
[ 32.46424919657298?, 0, 0, -2.464249196572981?]
```

A symmetric matrix a+a.transpose() should have real eigenvalues

```
sage: b=a+a.transpose()
sage: ev = b.eigenvalues(); ev
[-8.35066086057957?, -1.107247901349379?, 5.718651326708515?, 33.

→73925743522043?]
```

The eigenvalues are elements of QQbar, so they really represent exact roots of polynomials, not just approximations.

```
sage: e = ev[0]; e
-8.35066086057957?
sage: p = e.minpoly(); p
x^4 - 30*x^3 - 171*x^2 + 1460*x + 1784
sage: p(e) == 0
True
```

To perform computations on the eigenvalue as an element of a number field, you can always convert back to a number field element.

Notice the effect of the extend option.

```
sage: M=matrix(QQ,[[0,-1,0],[1,0,0],[0,0,2]])
sage: M.eigenvalues()
[2, -1*I, 1*I]
sage: M.eigenvalues(extend=False)
[2]
```

The method also works for matrices over finite fields:

```
sage: M = matrix(GF(3), [[0,1,1],[1,2,0],[2,0,1]])
sage: ev = sorted(M.eigenvalues()); ev
[2*z3, 2*z3 + 1, 2*z3 + 2]
```

Similarly as in the case of QQbar, the eigenvalues belong to some algebraic closure but they can be converted to elements of a finite field:

```
sage: e = ev[0]
sage: e.parent()
Algebraic closure of Finite Field of size 3
sage: e.as_finite_field_element()
(Finite Field in z3 of size 3^3, 2*z3, Ring morphism:
    From: Finite Field in z3 of size 3^3
    To: Algebraic closure of Finite Field of size 3
    Defn: z3 |--> z3)
```

eigenvectors_left (extend=True)

Compute the left eigenvectors of a matrix.

For each distinct eigenvalue, returns a list of the form (e,V,n) where e is the eigenvalue, V is a list of eigenvectors forming a basis for the corresponding left eigenspace, and n is the algebraic multiplicity of the eigenvalue.

If the option extend is set to False, then only the eigenvalues that live in the base ring are considered.

EXAMPLES: We compute the left eigenvectors of a 3×3 rational matrix.

```
sage: A = matrix(QQ,3,3,range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: es = A.eigenvectors_left(); es
[(0, [
(1, -2, 1)
], 1),
(-1.348469228349535?, [(1, 0.3101020514433644?, -0.3797958971132713?)], 1),
(13.34846922834954?, [(1, 1.289897948556636?, 1.579795897113272?)], 1)]
sage: eval, [evec], mult = es[0]
sage: delta = eval*evec - evec*A
```

```
sage: abs(abs(delta)) < 1e-10
True</pre>
```

Notice the difference between considering ring extensions or not.

```
sage: M=matrix(QQ,[[0,-1,0],[1,0,0],[0,0,2]])
sage: M.eigenvectors_left()
[(2, [
  (0, 0, 1)
], 1), (-1*I, [(1, -1*I, 0)], 1), (1*I, [(1, 1*I, 0)], 1)]
sage: M.eigenvectors_left(extend=False)
[(2, [
  (0, 0, 1)
], 1)]
```

eigenvectors_right (extend=True)

Compute the right eigenvectors of a matrix.

For each distinct eigenvalue, returns a list of the form (e,V,n) where e is the eigenvalue, V is a list of eigenvectors forming a basis for the corresponding right eigenspace, and n is the algebraic multiplicity of the eigenvalue. If extend = True (the default), this will return eigenspaces over the algebraic closure of the base field where this is implemented; otherwise it will restrict to eigenvalues in the base field.

EXAMPLES: We compute the right eigenvectors of a 3×3 rational matrix.

```
sage: A = matrix(QQ, 3, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: es = A.eigenvectors_right(); es
[(0, [
(1, -2, 1)
], 1),
(-1.348469228349535?, [(1, 0.1303061543300932?, -0.7393876913398137?)], 1),
(13.34846922834954?, [(1, 3.069693845669907?, 5.139387691339814?)], 1)]
sage: A.eigenvectors_right(extend=False)
[(0, [
(1, -2, 1)
], 1)]
sage: eval, [evec], mult = es[0]
sage: delta = eval*evec - A*evec
sage: abs(abs(delta)) < 1e-10</pre>
True
```

elementary_divisors ()

If self is a matrix over a principal ideal domain R, return elements d_i for $1 \le i \le k = \min(r, s)$ where r and s are the number of rows and columns of self, such that the cokernel of self is isomorphic to

$$R/(d_1) \oplus R/(d_2) \oplus R/(d_k)$$

with $d_i \mid d_{i+1}$ for all i. These are the diagonal entries of the Smith form of self (see $smith_form()$).

```
sage: OE.<w> = EquationOrder(x^2 - x + 2)
sage: m = Matrix([ [1, w], [w, 7]])
sage: m.elementary_divisors()
[1, -w + 9]
```

See also:

```
smith form()
```

elementwise_product (right)

Returns the elementwise product of two matrices of the same size (also known as the Hadamard product).

INPUT:

•right - the right operand of the product. A matrix of the same size as self such that multiplication of elements of the base rings of self and right is defined, once Sage's coercion model is applied. If the matrices have different sizes, or if multiplication of individual entries cannot be achieved, a TypeError will result.

OUTPUT:

A matrix of the same size as self and right. The entry in location (i, j) of the output is the product of the two entries in location (i, j) of self and right (in that order).

The parent of the result is determined by Sage's coercion model. If the base rings are identical, then the result is dense or sparse according to this property for the left operand. If the base rings must be adjusted for one, or both, matrices then the result will be sparse only if both operands are sparse. No subdivisions are present in the result.

If the type of the result is not to your liking, or the ring could be "tighter," adjust the operands with change_ring(). Adjust sparse versus dense inputs with the methods <code>sparse_matrix()</code> and <code>dense_matrix()</code>.

EXAMPLES:

Notice the base ring of the results in the next two examples.

```
sage: G = matrix(GF(3),2,[0,1,2,2])
sage: H = matrix(ZZ,2,[1,2,3,4])
sage: J = G.elementwise_product(H)
sage: J
[0 2]
[0 2]
sage: J.parent()
Full MatrixSpace of 2 by 2 dense matrices over Finite Field of size 3
```

Non-commutative rings behave as expected. These are the usual quaternions.

```
sage: R.<i,j,k> = QuaternionAlgebra(-1, -1)
sage: A = matrix(R, 2, [1,i,j,k])
sage: B = matrix(R, 2, [i,i,i,i])
sage: A.elementwise_product(B)
[ i -1]
[-k j]
sage: B.elementwise_product(A)
[ i -1]
[ k -j]
```

Input that is not a matrix will raise an error.

Matrices of different sizes for operands will raise an error.

Some pairs of rings do not have a common parent where multiplication makes sense. This will raise an error.

We illustrate various combinations of sparse and dense matrices. Notice how if base rings are unequal, both operands must be sparse to get a sparse result.

```
sage: A = matrix(ZZ, 5, 6, range(30), sparse=False)
sage: B = matrix(ZZ, 5, 6, range(30), sparse=True)
sage: C = matrix(QQ, 5, 6, range(30), sparse=True)
sage: A.elementwise_product(C).is_dense()
True
sage: B.elementwise_product(C).is_sparse()
True
sage: A.elementwise_product(B).is_dense()
True
sage: B.elementwise_product(A).is_dense()
```

AUTHOR:

•Rob Beezer (2009-07-13)

exp()

Calculate the exponential of this matrix X, which is the matrix

$$e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}.$$

This function depends on maxima's matrix exponentiation function, which does not deal well with floating point numbers. If the matrix has floating point numbers, they will be rounded automatically to rational numbers during the computation. If you want approximations to the exponential that are calculated numerically, you may get better results by first converting your matrix to RDF or CDF, as shown in the last example.

EXAMPLES:

```
sage: a=matrix([[1,2],[3,4]])
sage: a.exp()
[-1/22*((sqrt(33) - 11)*e^sqrt(33) - sqrt(33) - 11)*e^(-1/2*sqrt(33) + 5/2)]
                2/33*(sqrt(33)*e^sqrt(33) - sqrt(33))*e^(-1/2*sqrt(33) + 5/2)]
                 1/11*(sqrt(33)*e^sqrt(33) - sqrt(33))*e^(-1/2*sqrt(33) + 5/2)
\rightarrow 1/22*((sqrt(33) + 11)*e^sqrt(33) - sqrt(33) + 11)*e^(-1/2*sqrt(33) + 5/2)]
sage: type(a.exp())
<type 'sage.matrix.matrix_symbolic_dense.Matrix_symbolic_dense'>
sage: a=matrix([[1/2,2/3],[3/4,4/5]])
sage: a.exp()
[-1/418*((3*sqrt(209) - 209)*e^{(1/10*sqrt(209))} - 3*sqrt(209) - 209)*e^{(-1/418*((3*sqrt(209) - 209)*e^{(-1/418*((3*sqrt(209) - 209))*e^{(-1/418*((3*sqrt(209) - 209)))*e^{(-1/418*((3*sqrt(209) - 209)))*e^{(-1/418*((3*sqrt(209) - 209)))*e^{(-1/418*((3*sqrt(209) - 209)))}
\rightarrow20*sqrt(209) + 13/20)
                                                      20/627*(sqrt(209)*e^(1/
\rightarrow 10 * sqrt(209)) - sqrt(209)) * e^(-1/20 * sqrt(209) + 13/20)]
                        15/418*(sqrt(209)*e^(1/10*sqrt(209)) - sqrt(209))*e^(-1/
\rightarrow20*sqrt(209) + 13/20) 1/418*((3*sqrt(209) + 209)*e^(1/10*sqrt(209)) -...
\rightarrow3*sqrt(209) + 209)*e^(-1/20*sqrt(209) + 13/20)]
sage: a=matrix(RR,[[1,pi.n()],[1e2,1e-2]])
sage: a.exp()
[ 1/11882424341266*((11*sqrt(227345670387496707609) + 5941212170633)*e^(3/
→1275529100*sqrt(227345670387496707609)) - 11*sqrt(227345670387496707609) +...
→5941212170633) *e^(-3/2551058200*sqrt(227345670387496707609) + 101/200)
                               445243650/
→75781890129165569203*(sqrt(227345670387496707609)*e^(3/
→1275529100*sqrt(227345670387496707609)) - sqrt(227345670387496707609))*e^(-
→3/2551058200*sqrt(227345670387496707609) + 101/200)]
                                                10000/
\rightarrow53470909535697* (sqrt (227345670387496707609) *e^(3/
→1275529100*sqrt(227345670387496707609)) - sqrt(227345670387496707609))*e^(-
\rightarrow 3/2551058200 \times \text{sgrt} (227345670387496707609) + 101/200) -1/
→11882424341266*((11*sqrt(227345670387496707609) - 5941212170633)*e^(3/
→1275529100*sqrt(227345670387496707609)) - 11*sqrt(227345670387496707609) - ...
→5941212170633)*e^(-3/2551058200*sqrt(227345670387496707609) + 101/200)]
sage: a.change_ring(RDF).exp() # rel tol 1e-14
[42748127.31532951 7368259.244159399]
[234538976.1381042 40426191.45156228]
```

extended_echelon_form (subdivide=False, **kwds)

Returns the echelon form of self augmented with an identity matrix.

INPUT:

- •subdivide default: False determines if the returned matrix is subdivided. See the description of the (output) below for details.
- •kwds additional keywords that can be passed to the method that computes the echelon form.

OUTPUT:

If A is an $m \times n$ matrix, add the m columns of an $m \times m$ identity matrix to the right of self. Then row-reduce this $m \times (n+m)$ matrix. This matrix is returned as an immutable matrix.

If subdivide is True then the returned matrix has a single division among the columns and a single division among the rows. The column subdivision has n columns to the left and m columns to the right. The row division separates the non-zero rows from the zero rows, when restricted to the first n columns.

For a nonsingular matrix the final m columns of the extended echelon form are the inverse of self. For a matrix of any size, the final m columns provide a matrix that transforms self to echelon form when it multiplies self from the left. When the base ring is a field, the uniqueness of reduced row-echelon form implies that this transformation matrix can be taken as the coefficients giving a canonical set of linear combinations of the rows of self that yield reduced row-echelon form.

When subdivided as described above, and again over a field, the parts of the subdivision in the upper-left corner and lower-right corner satisfy several interesting relationships with the row space, column space, left kernel and right kernel of self. See the examples below.

Note: This method returns an echelon form. If the base ring is not a field, no attempt is made to move to the fraction field. See an example below where the base ring is changed manually.

EXAMPLES:

The four relationships at the end of this example hold in general.

```
sage: A = matrix(QQ, [[2, -1, 7, -1, 0, -3],
                    [-1, 1, -5, 3, 4, 4],
. . . . :
                    [2, -1, 7, 0, 2, -2],
. . . . :
                    [2, 0, 4, 3, 6, 1],
. . . . :
                    [2, -1, 7, 0, 2, -2]])
sage: E = A.extended_echelon_form(subdivide=True); E
        0 2 0 0 -1 0 -1
   1
                                      0 1
                              0
                                  -2
                                         0 2 -31
   \cap
        1
            -3
                     -2
                          0 |
                 0
        0
            0
                     2
                              0 2/3
                                       0 -1/3 2/31
   0
               1
                          1 |
        0
            0
                 0
                      0
                           0 |
                              1 2/3
                                         0 -1/3 -1/31
        0
             0
                 0
                      0
                           0 |
                               0
                                    0
                                         1
sage: J = E.matrix_from_columns(range(6,11)); J
   Ω
      -1 0 1
                     -11
      -2
             0
                 2
   \cap
                    -31
   0 2/3
            0 -1/3 2/3]
   1 2/3
             0 -1/3 -1/3]
          1 0
     0
sage: J*A == A.rref()
True
sage: C = E.subdivision(0,0); C
   0 2 0 0 -1]
    1 -3 0 -2 0]
0
    0 0 1 2
               1]
sage: L = E.subdivision(1,1); L
   1 2/3
             0 - 1/3 - 1/31
```

```
[ 0  0  1  0  -1]
sage: A.right_kernel() == C.right_kernel()
True
sage: A.row_space() == C.row_space()
True
sage: A.column_space() == L.right_kernel()
True
sage: A.left_kernel() == L.row_space()
```

For a nonsingular matrix, the right half of the extended echelon form is the inverse matrix.

```
sage: B = matrix(QQ, [[1,3,4], [1,4,4], [0,-2,-1]])
sage: E = B.extended_echelon_form()
sage: J = E.matrix_from_columns(range(3,6)); J
[-4 5 4]
[-1 1 0]
[ 2 -2 -1]
sage: J == B.inverse()
True
```

The result is in echelon form, so if the base ring is not a field, the leading entry of each row may not be 1. But you can easily change to the fraction field if necessary.

```
sage: A = matrix(ZZ, [[16, 20, 4, 5, -4, 13, 5],
                   [10, 13, 3, -3, 7, 11, 6],
. . . . :
                    [-12, -15, -3, -3, 2, -10, -4],
. . . . :
                   [10, 13, 3, 3, -1, 9, 4],
. . . . :
                    [4, 5, 1, 8, -10, 1, -1]])
sage: E = A.extended_echelon_form(subdivide=True); E
[ 2 0 -2 2 -9 -3 -4 | 0 4 -3 -9 4]
[0 1 1 2 0 1 1 0 1 2 1 1]
[0 0 0 3 -4 -1 -1 | 0 3 1 -3 3]
         -----1
[0 0 0 0 0 0 0 1 6 3 -6 5]
   0 0 0 0 0 0 0 0 7 2 -7 61
0 ]
sage: J = E.matrix from columns(range(7,12)); J
[ 0 4 -3 -9 4]
[ 0 1 2 1 1]
[ 0 3 1 -3 3]
[ 1 6 3 -6 5]
[072-76]
sage: J*A == A.echelon_form()
True
sage: B = A.change_ring(QQ)
sage: B.extended_echelon_form(subdivide=True)
                                                0
                       0 -19/6 -7/6 -5/3|
                                                        0 -89/42
     1
                 -1
                                                                  -5/2
           0
    1/7]
                                                                     2_
                           8/3
                                  5/3
                                         5/3|
           1
                 1
                       0
                                                 0
                                                        0 34/21
   -1/7]
                                                                     0_
                  0
                        1
                          -4/3
    0
           0
                                  -1/3
                                         -1/3|
                                                  0
                                                            1/21
   1/7]
⊶----]
[
     0
           0
                  0
                        0
                               0
                                     0
                                           0 |
                                                             9/7
                                                                     0
   -1/7]
                                                                    -1_
                        0
                               0
                                     0
                                            0 |
[
    0
                                                             2/7
    6/7]
```

Subdivided, or not, the result is immutable, so make a copy if you want to make changes.

```
sage: A = matrix(FiniteField(7), [[2,0,3], [5,5,3], [5,6,5]])
sage: E = A.extended_echelon_form()
sage: E.is_mutable()
False
sage: F = A.extended_echelon_form(subdivide=True)
sage: F
[1 0 0 | 0 4 6]
[0 1 0 | 4 2 2]
[0 0 1 | 5 2 3]
[----]
sage: F.is_mutable()
False
sage: G = copy(F)
sage: G.subdivide([],[]); G
[1 0 0 0 4 6]
[0 1 0 4 2 2]
[0 0 1 5 2 3]
```

If you want to determine exactly which algorithm is used to compute the echelon form, you can add additional keywords to pass on to the echelon_form() routine employed on the augmented matrix. Sending the flag include_zero_rows is a bit silly, since the extended echelon form will never have any zero rows.

```
sage: A = matrix(ZZ, [[1,2], [5,0], [5,9]])
sage: E = A.extended_echelon_form(algorithm='padic', include_zero_rows=False)
sage: E
[ 1  0  36  1  -8]
[ 0  1  5  0  -1]
[ 0  0  45  1  -10]
```

AUTHOR:

•Rob Beezer (2011-02-02)

fcp (var='x')

Return the factorization of the characteristic polynomial of self.

INPUT:

•var - (default: 'x') name of variable of charpoly

EXAMPLES:

```
sage: M = MatrixSpace(QQ,3,3)
sage: A = M([1,9,-7,4/5,4,3,6,4,3])
sage: A.fcp()
x^3 - 8*x^2 + 209/5*x - 286
sage: A = M([3, 0, -2, 0, -2, 0, 0, 0])
sage: A.fcp('T')
(T - 3) * T * (T + 2)
```

find (*f*, *indices=False*)

Find elements in this matrix satisfying the constraints in the function f. The function is evaluated on each element of the matrix .

INPUT:

•f - a function that is evaluated on each element of this matrix.

•indices - whether or not to return the indices and elements of this matrix that satisfy the function.

OUTPUT: If indices is not specified, return a matrix with 1 where f is satisfied and 0 where it is not. If indices is specified, return a dictionary containing the elements of this matrix satisfying f.

EXAMPLES:

```
sage: M = matrix(4,3,[1, -1/2, -1, 1, -1, -1/2, -1, 0, 0, 2, 0, 1])
sage: M.find(lambda entry:entry==0)
[0 0 0]
[0 0 0]
[0 1 1]
[0 1 0]
```

```
sage: M.find(lambda u:u<0)
[0 1 1]
[0 1 1]
[1 0 0]
[0 0 0]</pre>
```

```
sage: M = matrix(4,3,[1, -1/2, -1, 1, -1, -1/2, -1, 0, 0, 2, 0, 1])
sage: len(M.find(lambda u:u<1 and u>-1,indices=True))
5
```

```
sage: M.find(lambda u:u!=1/2)
[1 1 1]
[1 1 1]
[1 1 1]
[1 1 1]
```

```
sage: M.find(lambda u:u>1.2)
[0 0 0]
[0 0 0]
[0 0 0]
[1 0 0]
```

get_subdivisions()

Returns the current subdivision of self.

```
sage: M = matrix(5, 5, range(25))
sage: M.subdivisions()
([], [])
sage: M.subdivide(2,3)
sage: M.subdivisions()
([2], [3])
sage: N = M.parent()(1)
sage: N.subdivide(M.subdivisions()); N
[1 0 0 | 0 0]
[0 1 0 | 0 0]
[----+--]
[0 0 1 | 0 0]
```

```
[0 0 0|1 0]
[0 0 0|0 1]
```

gram_schmidt (orthonormal=False)

Performs Gram-Schmidt orthogonalization on the rows of the matrix, returning a new matrix and a matrix accomplishing the transformation.

INPUT:

- •self a matrix whose rows are to be orthogonalized.
- •orthonormal default: False if True the returned orthogonal vectors are unit vectors. This keyword is ignored if the matrix is over RDF or CDF and the results are always orthonormal.

OUTPUT:

A pair of matrices, G and M such that if A represents self, where the parenthetical properties occur when orthonormal = True:

- $\bullet A = M \star G$
- •The rows of G are an orthogonal (resp. orthonormal) set of vectors.
- •G times the conjugate-transpose of G is a diagonal (resp. identity) matrix.
- ullet The row space of ${\mathbb G}$ equals the row space of ${\mathbb A}$.
- •M is a full-rank matrix with zeros above the diagonal.

For exact rings, any zero vectors produced (when the original vectors are linearly dependent) are not output, thus the orthonormal set is linearly independent, and thus a basis for the row space of the original matrix.

Any notion of a Gram-Schmidt procedure requires that the base ring of the matrix has a fraction field implemented. In order to arrive at an orthonormal set, it must be possible to construct square roots of the elements of the base field. In Sage, your best option is the field of algebraic numbers, QQbar, which properly contains the rationals and number fields.

If you have an approximate numerical matrix, then this routine requires that your base field be the real and complex double-precision floating point numbers, RDF and CDF. In this case, the matrix is treated as having full rank, as no attempt is made to recognize linear dependence with approximate calculations.

EXAMPLES:

Inexact Rings, Numerical Matrices:

First, the inexact rings, CDF and RDF.

```
sage: A = matrix(CDF, [0.6454 + 0.7491*I, -0.8662 + 0.1489*I, 0.7656 - 0.
→00344*I1,
                         [-0.2913 + 0.8057*I, 0.8321 + 0.8170*I, -0.6744 + 0.
. . . . :
\hookrightarrow 9248 \times I],
                         [0.2554 + 0.3517 \times I, -0.4454 - 0.1715 \times I, 0.8325 - 0.
. . . . :
→6282*I]])
sage: G, M = A.gram_schmidt()
sage: G.round(6) # random signs
[-0.422243 - 0.490087*I \quad 0.566698 - 0.097416*I - 0.500882 + 0.002251*I]
[-0.057002 - 0.495035*I -0.35059 - 0.625323*I 0.255514 - 0.415284*I]
[0.394105 - 0.421778*I - 0.392266 - 0.039345*I - 0.352905 + 0.62195*I]
sage: M.round(6) # random
               -1.528503
                                                                         0.0]
   0.459974 - 0.40061*I
                                        -1.741233
                                                                        0.01
[-0.934304 + 0.148868 \times I \quad 0.54833 + 0.073202 \times I
                                                                  -0.550725]
```

A rectangular matrix. Note that the orthonormal keyword is ignored in these cases.

```
sage: A = matrix(RDF, [-0.978325, -0.751994, 0.925305, -0.200512, 0.420458],
                        [-0.474877, -0.983403, 0.089836, 0.132218, 0.672965]])
. . . . :
sage: G, M = A.gram_schmidt(orthonormal=False)
sage: G.round(6).zero_at(10^-6)
[-0.607223 - 0.466745 \quad 0.574315 - 0.124453 \quad 0.260968]
[ 0.123203 -0.617909 -0.530578  0.289773  0.487368]
sage: M.round(6).zero_at(10^-6)
[1.611147
           0.01
[0.958116 0.867778]
sage: (A-M*G).zero_at (10^-12)
[0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0]
sage: (G*G.transpose()).round(6).zero_at(10^-6)
[1.0 0.0]
[0.0 1.0]
```

Even though a set of vectors may be linearly dependent, no effort is made to decide when a zero vector is really the result of a relation of linear dependence. So in this regard, input matrices are treated as being of full rank. Try one of the base rings that provide exact results if you need exact results.

```
sage: entries = [[1,1,2], [2,1,3], [3,1,4]]
sage: A = matrix(QQ, entries)
sage: A.rank()
sage: B = matrix(RDF, entries)
sage: G, M = B.gram_schmidt()
sage: G.round(6) # random signs
[-0.408248 - 0.408248 - 0.816497]
                         -0.0]
[ 0.707107 -0.707107
[-0.57735 -0.57735 0.57735]
sage: M.round(10) # random
[-2.4494897428
                         0.0
                                       0.01
[-3.6742346142 \quad 0.7071067812
                                       0.01
[-4.8989794856 1.4142135624
                                       0.01
sage: (A - M*G).zero_at (1e-14)
[0.0 0.0 0.0]
[0.0 0.0 0.0]
[0.0 0.0 0.0]
sage: (G*G.transpose()) # abs tol 1e-14
[0.99999999999997
                                                       0.01
                0.0 0.99999999999998
Γ
                                                       0.01
Γ
                0.0
                                   0.0
                                                       1.01
```

Exact Rings, Orthonormalization:

To scale a vector to unit length requires taking a square root, which often takes us outside the base ring. For the integers and the rationals, the field of algebraic numbers (QQbar) is big enough to contain what

we need, but the price is that the computations are very slow, hence mostly of value for small cases or instruction. Now we need to use the orthonormal keyword.

```
sage: A = matrix(QQbar, [[6, -8,
                               1],
                        [4, 1, 3],
. . . . :
                        [6, 3, 3],
. . . . :
                        [7, 1, -5],
                        [7, -3, 5]])
sage: G, M = A.gram_schmidt(orthonormal=True)
sage: G
[ 0.5970223141259934? -0.7960297521679913? 0.09950371902099891?]
 [ \ 0.5252981913594170? \ \ 0.2941669871612735? \ \ -0.798453250866314?] 
sage: M
[ 10.04987562112089?
                                     0
                                                        0]
[ 1.890570661398980? 4.735582601355131?
                                                        0]
[ 1.492555785314984? 7.006153332071100? 1.638930357041381?]
[ 2.885607851608969? 1.804330147889395? 7.963520581008761?]
[ 7.064764050490923? 5.626248468100069? -1.197679876299471?]
sage: M*G-A
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
sage: (G*G.transpose()-identity_matrix(3)).norm() < 10^-10</pre>
sage: G.row_space() == A.row_space()
True
```

After trac ticket #14047, the matrix can also be over the algebraic reals AA:

```
sage: A = matrix(AA, [[6, -8,
. . . . :
                     [4, 1, 3],
                     [6, 3, 3],
. . . . :
                     [7, 1, -5],
. . . . :
                     [7, -3, 5]])
. . . . :
sage: G, M = A.gram_schmidt(orthonormal=True)
[ \ 0.5970223141259934? \ -0.7960297521679913? \ 0.09950371902099891?]
[ \ 0.6063218341690895? \ \ 0.5289635311888953? \ \ 0.5937772444966257?]
[ \ 0.5252981913594170? \ \ 0.2941669871612735? \ \ -0.798453250866314?]
sage: M
[ 10.04987562112089?
                                     \cap
                                                         0]
[ 1.890570661398980? 4.735582601355131?
                                                         01
[ 1.492555785314984? 7.006153332071100? 1.638930357041381?]
7.064764050490923? 5.626248468100069? -1.197679876299471?]
```

Starting with complex numbers with rational real and imaginary parts. Note the use of the conjugate-transpose when checking the orthonormality.

```
sage: A = matrix(QQbar, [[ -2, -I - 1, 4*I + 2, -1],
...: [-4*I, -2*I + 17, 0, 9*I + 1],
...: [ 1, -2*I - 6, -I + 11, -5*I + 1]])
sage: G, M = A.gram_schmidt(orthonormal=True)
sage: (M*G-A).norm() < 10^-10
True</pre>
```

```
sage: id3 = G*G.conjugate().transpose()
sage: (id3 - identity_matrix(3)).norm() < 10^-10
True
sage: G.row_space() == A.row_space() # long time
True</pre>
```

A square matrix with small rank. The zero vectors produced as a result of linear dependence get eliminated, so the rows of G are a basis for the row space of A.

```
sage: A = matrix(QQbar, [[2, -6, 3, 8],
. . . . :
                       [1, -3, 2, 5],
                       [0, 0, 2, 4],
. . . . :
                       [2, -6, 3, 8]])
. . . . :
sage: A.change_ring(QQ).rank()
2
sage: G, M = A.gram_schmidt(orthonormal=True)
sage: G
→7525766947068779?1
[-0.2502818123591464?
                     0.750845437077439? 0.3688363550555841? 0.
→4873908977520218?]
sage: M
[10.630145812734649?
[ 6.208757731331742? 0.6718090752798139?]
[ 3.574739299857670? 2.687236301119256?]
[10.630145812734649?
sage: M*G-A
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
sage: (G*G.transpose()-identity_matrix(2)).norm() < 10^-10</pre>
sage: G.row_space() == A.row_space()
True
```

Exact Rings, Orthogonalization:

If we forego scaling orthogonal vectors to unit vectors, we can apply Gram-Schmidt to a much greater variety of rings. Use the orthonormal=False keyword (or assume it as the default). Note that now the orthogonality check creates a diagonal matrix whose diagonal entries are the squares of the lengths of the vectors.

First, in the rationals, without involving QQbar.

```
2],
sage: A = matrix(QQ, [[-1, 3, 2,
                      [-1, 0, -1, 0],
. . . . :
                      [-1, -2, -3, -1],
. . . . :
                      [ 1, 1, 2, 0]])
. . . . :
sage: A.rank()
3
sage: G, M = A.gram_schmidt()
sage: G
    -1
            3
                   2
                           21
          1/6 -8/9
[-19/18]
                        1/91
[ 2/35 -4/35 -2/35
                        9/351
sage: M
             0
                    01
      1
```

```
[-1/18] 1
                  0]
[-13/18 59/35
                 1]
[ 1/3 -48/35
                 -21
sage: M*G-A
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
sage: G*G.transpose()
[ 18 0 0]
   0 35/18
              0]
  0 0 3/351
sage: G.row_space() == A.row_space()
```

A complex subfield of the complex numbers.

```
sage: C.<z> = CyclotomicField(5)
                                          -z^3 - 2*z,
                                                                      -z^3 - 1, 2*z^3 -
sage: A = matrix(C, [[
\hookrightarrow 2 \times z^2 + 2 \times z
                                     z^3 - 2*z^2 + 1, -z^3 + 2*z^2 - z - 1,
                         [
. . . . :
                         z^2 + z,
\hookrightarrow
                         [-1/2*z^3 - 2*z^2 + z + 1,
                                                                 -z^3 + z - 2
                                                                                       -2*z^
\rightarrow 3 + 1/2 \times z^2, 2 \times z^2 - z + 2]
sage: G, M = A.gram_schmidt(orthonormal=False)
sage: G
                                                                  -z^3 - 2*z
[
                                                       -z^3 - 1
                             2*z^3 - 2*z^2 + 2*z
\hookrightarrow
                                    11
_
                        155/139*z^3 - 161/139*z^2 + 31/139*z + 13/139
      -175/139*z^3 + 180/139*z^2 - 125/139*z - 142/139
\rightarrow 230/139 \times z^3 + 124/139 \times z^2 + 6/139 \times z + 19/139
                                                                                  -14/139*z^{
\rightarrow3 + 92/139*z^2 - 6/139*z - 95/139]
[-10359/19841*z^3 - 36739/39682*z^2 + 24961/39682*z - 11879/39682 - 28209/
\rightarrow 39682 \times z^3 - 3671/19841 \times z^2 + 51549/39682 \times z - 38613/39682 - 42769/39682 \times z^3
\rightarrow 3 - 615/39682*z^2 - 1252/19841*z - 14392/19841 4895/19841*z^3 + 57885/
\rightarrow39682*z^2 - 46094/19841*z + 65747/39682]
sage: M
                                                                        1
[
                                    0]
                    14/139*z^3 + 47/139*z^2 + 145/139*z + 95/139
                                                    1
                                    0]
                 -7/278 \times z^3 + 199/278 \times z^2 + 183/139 \times z + 175/278 - 3785/39682 \times z^3.
\rightarrow+ 3346/19841*z^2 - 3990/19841*z + 2039/19841
                                   1]
sage: M*G - A
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
sage: G*G.conjugate().transpose()
                                     15*z^3 + 15*z^2 + 28
ſ
\hookrightarrow
→ 0]
                                                             \cap
                                                                                  463/139*z^
\rightarrow3 + 463/139*z^2 + 1971/139
→ 0]
```

```
[ 0 0 30983/19841*z^3 + 230983/19841*z^2 + 1003433/ 39682]
sage: G.row_space() == A.row_space()
True
```

A slightly edited legacy example.

```
sage: A = matrix(ZZ, 3, [-1, 2, 5, -11, 1, 1, 1, -1, -3]); A
[ -1
     2
     1
        1]
[-11]
[ 1 -1 -3]
sage: G, mu = A.gram_schmidt()
sage: G
              2
                      5]
     -1
  -52/5
          -1/5
                     -2]
[ 2/187 36/187 -14/187]
sage: mu
            0
                   01
     1
   3/5
           1
                   0]
[-3/5-7/187]
                   1]
sage: G.row(0) * G.row(1)
sage: G.row(0) * G.row(2)
sage: G.row(1) * G.row(2)
```

The relation between mu and A is as follows.

```
sage: mu*G == A
True
```

hadamard_bound ()

Return an int n such that the absolute value of the determinant of this matrix is at most 10^n .

This is got using both the row norms and the column norms.

This function only makes sense when the base field can be coerced to the real double field RDF or the MPFR Real Field with 53-bits precision.

EXAMPLES:

```
sage: a = matrix(ZZ, 3, [1,2,5,7,-3,4,2,1,123])
sage: a.hadamard_bound()
4
sage: a.det()
-2014
sage: 10^4
10000
```

In this example the Hadamard bound has to be computed (automatically) using MPFR instead of doubles, since doubles overflow:

```
sage: a = matrix(ZZ, 2, [2^10000,3^10000,2^50,3^19292])
sage: a.hadamard_bound()
12215
sage: len(str(a.det()))
12215
```

hermite_form (include_zero_rows=True, transformation=False)

Return the Hermite form of self, if it is defined.

INPUT:

- •include_zero_rows bool (default: True); if False the zero rows in the output matrix are deleted.
- •transformation bool (default: False) a matrix U such that U*self == H.

OUTPUT:

- •matrix H
- •(optional) transformation matrix U such that U*self == H, possibly with zero rows deleted...

EXAMPLES:

```
sage: M = FunctionField(GF(7),'x').maximal_order()
sage: K.<x> = FunctionField(GF(7)); M = K.maximal_order()
sage: A = matrix(M, 2, 3, [x, 1, 2*x, x, 1+x, 2])
sage: A.hermite_form()
           1
      X
                    2*x]
      0
              x 5 * x + 2
sage: A.hermite_form(transformation=True)
      X
             1
                   2*x] [1 0]
      0
             x 5*x + 2], [6 1]
Γ
sage: A = matrix (M, 2, 3, [x, 1, 2*x, 2*x, 2, 4*x])
sage: A.hermite_form(transformation=True, include_zero_rows=False)
([x 1 2*x], [1 0])
sage: H, U = A.hermite_form(transformation=True, include_zero_rows=True); H, U
     1 2*x] [1 0]
     0 0], [5 1]
  0
sage: U*A == H
sage: H, U = A.hermite_form(transformation=True, include_zero_rows=False)
sage: U*A
     1 2*x]
[ X
sage: U*A == H
True
```

hessenberg_form ()

Return Hessenberg form of self.

If the base ring is merely an integral domain (and not a field), the Hessenberg form will (in general) only be defined over the fraction field of the base ring.

EXAMPLES:

```
sage: A = matrix(ZZ,4,[2, 1, 1, -2, 2, 2, -1, -1, -1,1,2,3,4,5,6,7])
sage: h = A.hessenberg_form(); h
[ 2 -7/2 -19/5    -2]
[ 2 1/2 -17/5    -1]
[ 0 25/4 15/2 5/2]
[ 0 0 58/5 3]
sage: parent(h)
```

```
Full MatrixSpace of 4 by 4 dense matrices over Rational Field

sage: A.hessenbergize()

Traceback (most recent call last):
...

TypeError: Hessenbergize only possible for matrices over a field
```

hessenbergize ()

Transform self to Hessenberg form.

The hessenberg form of a matrix A is a matrix that is similar to A, so has the same characteristic polynomial as A, and is upper triangular except possible for entries right below the diagonal.

ALGORITHM: See Henri Cohen's first book.

EXAMPLES:

```
sage: A = matrix(QQ,3, [2, 1, 1, -2, 2, 2, -1, -1, -1])
sage: A.hessenbergize(); A
[ 2 3/2   1]
[ -2   3   2]
[ 0  -3  -2]
```

```
sage: A = matrix(QQ,4, [2, 1, 1, -2, 2, 2, -1, -1, -1,1,2,3,4,5,6,7])
sage: A.hessenbergize(); A
[ 2 -7/2 -19/5   -2]
[ 2 1/2 -17/5   -1]
[ 0 25/4 15/2 5/2]
[ 0 0 58/5 3]
```

You can't Hessenbergize an immutable matrix:

image ()

Return the image of the homomorphism on rows defined by this matrix.

EXAMPLES:

```
sage: MS1 = MatrixSpace(ZZ,4)
sage: MS2 = MatrixSpace(QQ,6)
sage: A = MS1.matrix([3,4,5,6,7,3,8,10,14,5,6,7,2,2,10,9])
sage: B = MS2.random_element()
```

```
sage: image(A)
Free module of degree 4 and rank 4 over Integer Ring
Echelon basis matrix:
[ 1  0  0  426]
[ 0  1  0  518]
[ 0  0  1  293]
[ 0  0  0  687]
```

```
sage: image(B) == B.row_module()
True
```

indefinite_factorization (algorithm='symmetric', check=True)

Decomposes a symmetric or Hermitian matrix into a lower triangular matrix and a diagonal matrix.

INPUT:

- •self a square matrix over a ring. The base ring must have an implemented fraction field.
- •algorithm default: 'symmetric'. Either 'symmetric' or 'hermitian', according to if the input matrix is symmetric or hermitian.
- •check default: True if True then performs the check that the matrix is consistent with the algorithm keyword.

OUTPUT:

A lower triangular matrix L with each diagonal element equal to 1 and a vector of entries that form a diagonal matrix D. The vector of diagonal entries can be easily used to form the matrix, as demonstrated below in the examples.

For a symmetric matrix, A, these will be related by

$$A = LDL^T$$

If A is Hermitian matrix, then the transpose of L should be replaced by the conjugate-transpose of L.

If any leading principal submatrix (a square submatrix in the upper-left corner) is singular then this method will fail with a ValueError.

ALGORITHM:

The algorithm employed only uses field operations, but the computation of each diagonal entry has the potential for division by zero. The number of operations is of order $n^3/3$, which is half the count for an LU decomposition. This makes it an appropriate candidate for solving systems with symmetric (or Hermitian) coefficient matrices.

EXAMPLES:

There is no requirement that a matrix be positive definite, as indicated by the negative entries in the resulting diagonal matrix. The default is that the input matrix is symmetric.

```
sage: A = matrix(QQ, [[3, -6,
                      [-6, 11, -16, -11,
                                           17],
. . . . :
                      [9, -16, 28, 16, -40],
. . . . :
                                      9, -191,
. . . . :
                      [ 6, -11, 16,
                       [-9, 17, -40, -19, 68]
. . . . :
sage: A.is_symmetric()
True
sage: L, d = A.indefinite_factorization()
sage: D = diagonal_matrix(d)
sage: L
[1 0 0 0 0]
[-2 \ 1 \ 0 \ 0 \ 0]
[ 3 -2 1 0 0]
[ 2 -1 0 1
              0.1
[-3 \ 1 \ -3 \ 1]
              11
sage: D
[ 3 0 0 0
             01
[ 0 -1 0 0
              01
```

```
[ 0 0 5 0 0]
[ 0 0 0 -2 0]
[ 0 0 0 0 -1]
sage: A == L*D*L.transpose()
True
```

Optionally, Hermitian matrices can be factored and the result has a similar property (but not identical). Here, the field is all complex numbers with rational real and imaginary parts. As theory predicts, the diagonal entries will be real numbers.

```
sage: C.<I> = QuadraticField(-1)
sage: B = matrix(C, [[ 2, 4 - 2*I, 2 + 2*I],
                   [4 + 2*I, 8, 10*I],
                    [2 - 2 * I, -10 * I,
                                         -3]])
sage: B.is_hermitian()
sage: L, d = B.indefinite_factorization(algorithm='hermitian')
sage: D = diagonal_matrix(d)
sage: L
             0
     1
  I + 2
             1
                     0]
[-I + 1 2 * I + 1]
                     11
sage: D
[2 0 0]
[ 0 -2 0]
[ 0 0 3]
sage: B == L*D*L.conjugate_transpose()
```

If a leading principal submatrix has zero determinant, this algorithm will fail. This will never happen with a positive definite matrix.

This algorithm only depends on field operations, so outside of the singular submatrix situation, any matrix may be factored. This provides a reasonable alternative to the Cholesky decomposition.

```
sage: F.<a> = FiniteField(5^3)
sage: A = matrix(F,
                   a^2 + 2*a, 4*a^2 + 3*a + 4, 3*a^2 + a, 2*a^2 + 2*a + 1
. . . . :
          1 1
\hookrightarrow 1],
           [4*a^2 + 3*a + 4, 	 4*a^2 + 2,
                                                                 3*a, 2*a^2 + 4*a +
. . . . :
\hookrightarrow2],
                                                      3*a^2 + 2, 3*a^2 + 2*a + ...
                   3*a^2 + a,
                                              3*a,
. . . . :
→3],
            [2*a^2 + 2*a + 1, 2*a^2 + 4*a + 2, 3*a^2 + 2*a + 3, 3*a^2 + 2*a + ]
. . . . :

→4]])
```

```
sage: A.is_symmetric()
True
sage: L, d = A.indefinite_factorization()
sage: D = diagonal_matrix(d)
sage: L
                                             0
                              0
                                                             0]
              1
[4*a^2 + 4*a + 3]
                              1
                                             0
                                                             0]
             3 	 4*a^2 + a + 2
[
                                                             0.1
     4*a^2 + 4 2*a^2 + 3*a + 3 2*a^2 + 3*a + 1
                                                             11
sage: D
     a^2 + 2*a
                            0
                                                             0.1
             0 \ 2*a^2 + 2*a + 4
                                             0
                                                             01
              0 	 0 	 3*a^2 + 4*a + 3
                                                             0]
                                                  a^2 + 3*a
              0
                             0
sage: A == L*D*L.transpose()
True
```

AUTHOR:

•Rob Beezer (2012-05-24)

integer_kernel (ring='ZZ')

Return the kernel of this matrix over the given ring (which should be either the base ring, or a PID whose fraction field is the base ring).

Assume that the base field of this matrix has a numerator and denominator functions for its elements, e.g., it is the rational numbers or a fraction field. This function computes a basis over the integers for the kernel of self.

If the matrix is not coercible into QQ, then the PID itself should be given as a second argument, as in the third example below.

EXAMPLES:

```
sage: A = MatrixSpace(QQ, 4)(range(16))
sage: A.integer_kernel()
Free module of degree 4 and rank 2 over Integer Ring
Echelon basis matrix:
[ 1 0 -3 2]
[ 0 1 -2 1]
```

The integer kernel even makes sense for matrices with fractional entries:

```
sage: A = MatrixSpace(QQ, 2)(['1/2',0, 0, 0])
sage: A.integer_kernel()
Free module of degree 2 and rank 1 over Integer Ring
Echelon basis matrix:
[0 1]
```

An example over a bigger ring:

inverse()

Returns the inverse of self, without changing self.

Note that one can use the Python inverse operator to obtain the inverse as well.

EXAMPLES:

```
sage: m = matrix([[1,2],[3,4]])
sage: m^(-1)
[ -2   1]
[ 3/2 -1/2]
sage: m.inverse()
[ -2   1]
[ 3/2 -1/2]
sage: ~m
[ -2   1]
[ 3/2 -1/2]
```

```
sage: m = matrix([[1,2],[3,4]], sparse=True)
sage: m^(-1)
[ -2    1]
[ 3/2 -1/2]
sage: m.inverse()
[ -2    1]
[ 3/2 -1/2]
sage: ~m
[ -2    1]
[ 3/2 -1/2]
```

is bistochastic (normalized=True)

Returns True if this matrix is bistochastic.

A matrix is said to be bistochastic if both the sums of the entries of each row and the sum of the entries of each column are equal to 1 and all entries are nonnegative.

INPUT:

•normalized – if set to True (default), checks that the sums are equal to 1. When set to False, checks that the row sums and column sums are all equal to some constant possibly different from 1.

EXAMPLES:

The identity matrix is clearly bistochastic:

```
sage: Matrix(5,5,1).is_bistochastic()
True
```

The same matrix, multiplied by 2, is not bistochastic anymore, though is verifies the constraints of normalized == False:

```
sage: (2 * Matrix(5,5,1)).is_bistochastic()
False
sage: (2 * Matrix(5,5,1)).is_bistochastic(normalized = False)
True
```

Here is a matrix whose row and column sums is 1, but not all entries are nonnegative:

```
sage: m = matrix([[-1,2],[2,-1]])
sage: m.is_bistochastic()
False
```

is_diagonalizable (base_field=None)

Determines if the matrix is similar to a diagonal matrix.

INPUT:

•base field - a new field to use for entries of the matrix.

OUTPUT:

If self is the matrix A, then it is diagonalizable if there is an invertible matrix S and a diagonal matrix D such that

$$S^{-1}AS = D$$

This routine returns True if self is diagonalizable. The diagonal entries of the matrix D are the eigenvalues of A. It may be necessary to "increase" the base field to contain all of the eigenvalues. Over the rationals, the field of algebraic numbers, sage.rings.qqbar is a good choice.

To obtain the matrices S and D use the $jordan_form()$ method with the transformation=True keyword.

ALGORITHM:

For each eigenvalue, this routine checks that the algebraic multiplicity (number of occurences as a root of the characteristic polynomial) is equal to the geometric multiplicity (dimension of the eigenspace), which is sufficient to ensure a basis of eigenvectors for the columns of S.

EXAMPLES:

A matrix that is diagonalizable over the rationals, as evidenced by its Jordan form.

```
sage: A = matrix(QQ, [[-7, 16, 12,
                     [-9, 15, 0, 12, -27],
. . . . :
                     [ 9, -8, 11, -12, 51],
. . . . :
                     [ 3, -4, 0, -1,
. . . . :
                                       9],
                     [-1, 0, -4,
                                  4, -12]])
sage: A.jordan_form(subdivide=False)
[2 0 0 0 0]
0 ]
    3 0 0 01
    0 3 0 01
0 1
[ 0 0 0 -1 0]
    0 0 0 -1]
[ 0
sage: A.is_diagonalizable()
True
```

A matrix that is not diagonalizable over the rationals, as evidenced by its Jordan form.

```
sage: A = matrix(QQ, [[-3, -14, 2, -1, 15],
                        [4, 6, -2, 3, -8],
. . . . :
                        [-2, -14, 0, 0, 10],
. . . . :
                        [3, 13, -2, 0, -11],
. . . . :
                        [-1, 6, 1, -3, 1]])
sage: A.jordan_form(subdivide=False)
[-1 \quad 1 \quad 0 \quad 0 \quad 0]
[0 -1]
       0 0 0]
[ 0 0 2 1 0]
[ 0 0 0 2 1]
[ 0 0 0 0 2]
sage: A.is_diagonalizable()
False
```

If any eigenvalue of a matrix is outside the base ring, then this routine raises an error. However, the ring can be "expanded" to contain the eigenvalues.

```
sage: A = matrix(QQ, [[1,
                           Ο,
                               1, 1, -1],
                      [0, 1, 0,
                                   4, 8],
. . . . :
                       [2, 1, 3, 5, 1],
. . . . :
                       [2, -1, 1, 0, -2],
. . . . :
                       [0, -1, -1, -5, -8]])
. . . . :
sage: [e in QQ for e in A.eigenvalues()]
[False, False, False, False, False]
sage: A.is_diagonalizable()
Traceback (most recent call last):
RuntimeError: an eigenvalue of the matrix is not contained in Rational Field
sage: [e in QQbar for e in A.eigenvalues()]
[True, True, True, True, True]
sage: A.is_diagonalizable(base_field=QQbar)
```

Other exact fields may be employed, though it will not always be possible to expand their base fields to contain all the eigenvalues.

```
sage: F.<b> = FiniteField(5^2)
sage: A = matrix(F, [[
                        4, 3*b + 2, 3*b + 1, 3*b + 4],
                   [2*b + 1, 4*b, 0,
                                                   21,
. . . . :
                             b + 2, 2*b + 3,
                   [4*b,
                                                   31,
                        2*b, 3*b, 4*b + 4, 3*b + 3]])
                   [
sage: A.jordan_form()
    4
         1|
                     0
                             01
      0
                    0
             4 |
                           01
Γ
                           ---1
      0
            0|2*b + 1
                            1]
      0
            0 \mid 0 \ 2*b + 1
sage: A.is_diagonalizable()
False
sage: F.<c> = QuadraticField(-7)
sage: A = matrix(F, [[ c + 3, 2*c - 2, -2*c + 2,
                   [2*c + 10, 13*c + 15, -13*c - 17, 11*c + 31],
                   [2*c + 10, 14*c + 10, -14*c - 12, 12*c + 30],
. . . . :
                              2*c - 2, -2*c + 2,
                   [
                          Ο,
                                                    2*c + 2]])
sage: A.jordan_form(subdivide=False)
       0 0
[
   4
                     0]
    0
         -2
              0
                     0]
    0
        0 c + 3
                     01
        0 \quad 0 \quad c + 3
   Ω
sage: A.is_diagonalizable()
True
```

A trivial matrix is diagonalizable, trivially.

```
sage: A = matrix(QQ, 0, 0)
sage: A.is_diagonalizable()
True
```

A matrix must be square to be diagonalizable.

```
sage: A = matrix(QQ, 3, 4)
sage: A.is_diagonalizable()
False
```

The matrix must have entries from a field, and it must be an exact field.

```
sage: A = matrix(ZZ, 4, range(16))
sage: A.is_diagonalizable()
Traceback (most recent call last):
...
ValueError: matrix entries must be from a field, not Integer Ring
sage: A = matrix(RDF, 4, range(16))
sage: A.is_diagonalizable()
Traceback (most recent call last):
...
ValueError: base field must be exact, not Real Double Field
```

AUTHOR:

•Rob Beezer (2011-04-01)

is normal ()

Returns True if the matrix commutes with its conjugate-transpose.

OUTPUT:

True if the matrix is square and commutes with its conjugate-transpose, and False otherwise.

Normal matrices are precisely those that can be diagonalized by a unitary matrix.

This routine is for matrices over exact rings and so may not work properly for matrices over RR or CC . For matrices with approximate entries, the rings of double-precision floating-point numbers, RDF and CDF , are a better choice since the <code>sage.matrix.matrix_double_dense.Matrix_double_dense.is_normal()</code> method has a tolerance parameter. This provides control over allowing for minor discrepancies between entries when checking equality.

The result is cached.

EXAMPLES:

Hermitian matrices are normal.

```
sage: A = matrix(QQ, 5, 5, range(25)) + I*matrix(QQ, 5, 5, range(0, 50, 2))
sage: B = A*A.conjugate_transpose()
sage: B.is_hermitian()
True
sage: B.is_normal()
True
```

Circulant matrices are normal.

```
sage: G = graphs.CirculantGraph(20, [3, 7])
sage: D = digraphs.Circuit(20)
sage: A = 3*D.adjacency_matrix() - 5*G.adjacency_matrix()
sage: A.is_normal()
True
```

Skew-symmetric matrices are normal.

```
sage: A = matrix(QQ, 5, 5, range(25))
sage: B = A - A.transpose()
sage: B.is_skew_symmetric()
True
sage: B.is_normal()
True
```

A small matrix that does not fit into any of the usual categories of normal matrices.

```
sage: A = matrix(ZZ, [[1, -1],
....: [1, 1]])
sage: A.is_normal()
True
sage: not A.is_hermitian() and not A.is_skew_symmetric()
True
```

Sage has several fields besides the entire complex numbers where conjugation is non-trivial.

A matrix that is nearly normal, but for a non-real diagonal entry.

Rectangular matrices are never normal.

```
sage: A = matrix(QQbar, 3, 4)
sage: A.is_normal()
False
```

A square, empty matrix is trivially normal.

```
sage: A = matrix(QQ, 0, 0)
sage: A.is_normal()
True
```

AUTHOR:

```
•Rob Beezer (2011-03-31)
```

is_one()

Return True if this matrix is the identity matrix.

EXAMPLES:

```
sage: m = matrix(QQ,2,2,range(4))
sage: m.is_one()
False
sage: m = matrix(QQ,2,[5,0,0,5])
sage: m.is_one()
False
sage: m = matrix(QQ,2,[1,0,0,1])
sage: m.is_one()
True
sage: m = matrix(QQ,2,[1,1,1,1])
sage: m.is_one()
False
```

is_permutation_of (N, check=False)

Return True if there exists a permutation of rows and columns sending self to N and False otherwise.

INPUT:

•N – a matrix.

•check - boolean (default: False). If False return Boolean indicating whether there exists a permutation of rows and columns sending self to N and False otherwise. If True return a tuple of a Boolean and a permutation mapping self to N if such a permutation exists, and (False, None) if it does not.

OUTPUT:

A Boolean or a tuple of a Boolean and a permutation.

EXAMPLES:

```
sage: M = matrix(ZZ,[[1,2,3],[3,5,3],[2,6,4]])
sage: M
[1 2 3]
[3 5 3]
[2 6 4]
sage: N = matrix(ZZ,[[1,2,3],[2,6,4],[3,5,3]])
sage: N
[1 2 3]
[2 6 4]
[3 5 3]
sage: M.is_permutation_of(N)
True
```

Some examples that are not permutations of each other:

```
sage: N = matrix(ZZ,[[1,2,3],[4,5,6],[7,8,9]])
sage: N
[1 2 3]
[4 5 6]
[7 8 9]
sage: M.is_permutation_of(N)
False
sage: N = matrix(ZZ,[[1,2],[3,4]])
sage: N
[1 2]
[3 4]
sage: M.is_permutation_of(N)
False
```

And for when check is True:

```
sage: N = matrix(ZZ,[[3,5,3],[2,6,4],[1,2,3]])
sage: N
[3 5 3]
[2 6 4]
[1 2 3]
sage: r = M.is_permutation_of(N, check=True)
sage: r
(True, ((1,2,3), ()))
sage: p = r[1]
sage: M.with_permuted_rows_and_columns(*p) == N
True
```

is_positive_definite()

Determines if a real or symmetric matrix is positive definite.

A square matrix A is positive definite if it is symmetric with real entries or Hermitan with complex entries, and for every non-zero vector \vec{x}

$$\vec{x}^* A \vec{x} > 0$$

Here \vec{x}^* is the conjugate-transpose, which can be simplified to just the transpose in the real case.

ALGORITHM:

A matrix is positive definite if and only if the diagonal entries from the indefinite factorization are all positive (see <code>indefinite_factorization()</code>). So this algorithm is of order n^3/3 and may be applied to matrices with elements of any ring that has a fraction field contained within the reals or complexes.

INPUT:

Any square matrix.

OUTPUT:

This routine will return True if the matrix is square, symmetric or Hermitian, and meets the condition above for the quadratic form.

The base ring for the elements of the matrix needs to have a fraction field implemented and the computations that result from the indefinite factorization must be convertable to real numbers that are comparable to zero.

EXAMPLES:

A real symmetric matrix that is positive definite, as evidenced by the positive entries for the diagonal matrix of the indefinite factorization and the positive determinants of the leading principal submatrices.

```
sage: A = matrix(QQ, [[4, -2, 4, 2],
                       [-2, 10, -2, -7],
. . . . :
                       [4, -2,
                                 8,
. . . . :
                                      4],
                       [2, -7,
                                  4,
                                      7]])
. . . . :
sage: A.is_positive_definite()
True
sage: _, d = A.indefinite_factorization(algorithm='symmetric')
sage: d
(4, 9, 4, 1)
sage: [A[:i,:i].determinant() for i in range(1, A.nrows()+1)]
[4, 36, 144, 144]
```

A real symmetric matrix which is not positive definite, along with a vector that makes the quadratic form negative.

```
sage: A = matrix(QQ, [[3, -6,
                                  9,
                                       6,
                                          -91,
                      [-6, 11, -16, -11, 17],
                      [9, -16, 28, 16, -40],
. . . . :
                      [6, -11, 16, 9, -19],
                      [-9, 17, -40, -19, 68]]
sage: A.is_positive_definite()
sage: _, d = A.indefinite_factorization(algorithm='symmetric')
sage: d
(3, -1, 5, -2, -1)
sage: [A[:i,:i].determinant() for i in range(1, A.nrows()+1)]
[3, -3, -15, 30, -30]
sage: u = vector(QQ, [2, 2, 0, 1, 0])
sage: u.row()*A*u
(-3)
```

A real symmetric matrix with a singular leading principal submatrix, that is therefore not positive definite. The vector u makes the quadratic form zero.

An Hermitian matrix that is positive definite.

An Hermitian matrix that is not positive definite. The vector u makes the quadratic form negative.

```
sage: d
(2, -2, 3)
sage: [B[:i,:i].determinant() for i in range(1,B.nrows()+1)]
[2, -4, -12]
sage: u = vector(C, [-5 + 10*I, 4 - 3*I, 0])
sage: u.row().conjugate()*B*u
(-50)
```

A positive definite matrix over an algebraically closed field.

AUTHOR:

•Rob Beezer (2012-05-24)

is_scalar (a=None)

Return True if this matrix is a scalar matrix.

INPUT:

•base_ring element a, which is chosen as self[0][0] if a = None

OUTPUT:

•whether self is a scalar matrix (in fact the scalar matrix aI if a is input)

EXAMPLES:

```
sage: m = matrix(QQ,2,2,range(4))
sage: m.is_scalar(5)
False
sage: m = matrix(QQ,2,[5,0,0,5])
sage: m.is_scalar(5)
True
sage: m = matrix(QQ,2,[1,0,0,1])
sage: m.is_scalar(1)
True
sage: m = matrix(QQ,2,[1,1,1,1])
sage: m.is_scalar(1)
False
```

is_similar (other, transformation=False)

Return True if self and other are similar, i.e. related by a change-of-basis matrix.

INPUT:

- •other -a matrix, which should be square, and of the same size as self.
- •transformation default: False if True, the output may include the change-of-basis matrix (also known as the similarity transformation). See below for an exact description.

OUTPUT:

Two matrices, A and B are similar if they are square matrices of the same size and there is an invertible matrix S such that $A = S^{-1}BS$. S can be interpreted as a change-of-basis matrix if A and B are viewed as matrix representations of the same linear transformation from a vector space to itself.

When transformation=False this method will return ${\tt True}$ if such a matrix S exists, otherwise it will return ${\tt False}$. When transformation= ${\tt True}$ the method returns a pair. The first part of the pair is ${\tt True}$ or ${\tt False}$ depending on if the matrices are similar. The second part of the pair is the change-of-basis matrix when the matrices are similar and ${\tt None}$ when the matrices are not similar.

When a similarity transformation matrix S is requested, it will satisfy self = S.inverse()*other*S.

rings and coefficients

Inexact rings are not supported. Only rings having a fraction field can be used as coefficients.

The base rings for the matrices are promoted to a common field for the similarity check using rational form over this field.

If the fraction fields of both matrices are the same, this field is used. Otherwise, if the fraction fields are only related by a canonical coercion, the common coercion field is used.

In all cases, the result is about similarity over a common field.

similarity transformation

For computation of the similarity transformation, the matrices are first checked to be similar over their common field.

In this case, a similarity transformation is then searched for over the common field. If this fails, the matrices are promoted to the algebraic closure of their common field (whenever it is available) and a similarity transformation is looked for over the algebraic closure.

For example, matrices over the rationals may be promoted to the field of algebraic numbers (QQbar) for computation of the similarity transformation.

Warning: When the two matrices are similar, this routine may fail to find the similarity transformation. A technical explanation follows.

The similarity check is accomplished with rational form, which will be successful for any pair of matrices over the same field. However, the computation of rational form does not provide a transformation. So we instead compute Jordan form, which does provide a transformation. But Jordan form will require that the eigenvalues of the matrix can be represented within Sage, requiring the existence of the appropriate extension field. When this is not possible, a RuntimeError is raised, as demonstrated in an example below.

EXAMPLES:

The two matrices in this example were constructed to be similar. The computations happen in the field of algebraic numbers, but we are able to convert the change-of-basis matrix back to the rationals (which may not always be possible).

```
sage: B = matrix(ZZ, [[1, 12, 3],
. . . . :
                      [-1, -6, -1],
                      [ 0, 6, 1]])
. . . . :
sage: A.is_similar(B)
True
sage: _, T = A.is_similar(B, transformation=True)
[ 1.00000000000000? + 0.?e-14*I
                                                                            0.?
                                            0.?e-14 + 0.?e-14*I
→e-14 + 0.?e-14*I]
[-0.66666666666667? + 0.?e-15*I 0.1666666666667? + 0.?e-15*I -0.
⇒833333333333334? + 0.?e-14*I]
                                           0.?e-14 + 0.?e-14*I - 0.
[ 0.66666666666667? + 0.?e-14*I
→333333333333333 + 0.?e-14*I]
sage: T.change_ring(QQ)
[ 1 0 0]
[-2/3 1/6 -5/6]
[ 2/3 0 -1/3]
sage: A == T.inverse()*B*T
True
```

Other exact fields are supported.

```
sage: F.<a> = FiniteField(7^2)
sage: A = matrix(F, [[2*a + 5, 6*a + 6, a + 3],
                   [a + 3, 2*a + 2, 4*a + 2],
                   [2*a + 6, 5*a + 5, 3*a]])
sage: B = matrix(F, [[5*a + 5, 6*a + 4,
                                      a + 1],
                  [a + 5, 4*a + 3, 3*a + 3],
. . . . :
                   [3*a + 5, a + 4, 5*a + 6]])
sage: A.is_similar(B)
True
sage: B.is_similar(A)
True
sage: _, T = A.is_similar(B, transformation=True)
sage: T
[ 1
          0
                      0]
[6*a + 1 4*a + 3 4*a + 2]
[6*a + 3 3*a + 5 3*a + 6]
sage: A == T.inverse() *B*T
True
```

Two matrices with different sets of eigenvalues, so they cannot possibly be similar.

```
sage: A = matrix(QQ, [[ 2, 3, -3, -6],
                        [0, 1, -2, -8],
. . . . :
                        [-3, -3, 4, 3],
. . . . :
                        [-1, -2, 2, 6]]
sage: B = matrix(QQ, [[1, 1, 2, 4],
                        [-1, 2, -3, -7],
[-2, 3, -4, -7],
. . . . :
. . . . :
                        [0, -1,
                                  0, 011)
. . . . :
sage: A.eigenvalues() == B.eigenvalues()
False
sage: A.is_similar(B, transformation=True)
(False, None)
```

Similarity is an equivalence relation, so this routine computes a representative of the equivalence class for each matrix, the rational form, as provided by rational_form(). The matrices below have identical

eigenvalues (as evidenced by equal characteristic polynomials), but slightly different rational forms, and hence are not similar.

```
sage: A = matrix(QQ, [[19, -7, -29],
                     [-16, 11, 30],
                     [ 15, -7, -25]])
. . . . :
sage: B = matrix(QQ, [[-38, -63, 42],
                     [ 14, 25, -14],
                     [-14, -21, 18]]
sage: A.charpoly() == B.charpoly()
True
sage: A.rational_form()
     0 -48]
  0
     0 8]
  1
     1
  0
          5]
sage: B.rational_form()
[4|00]
[--+---]
[ 0| 0 12]
[ 0 | 1 1]
sage: A.is_similar(B)
False
```

Obtaining the transformation between two similar matrices requires the Jordan form, which requires computing the eigenvalues of the matrix, which may not lie in the field used for entries of the matrix. In this unfortunate case, the computation of the transformation may fail with a RuntimeError, EVEN when the matrices are similar. This is not the case for matrices over the integers, rationals or algebraic numbers, since the computations are done in the algebraically closed field of algebraic numbers. Here is an example where the similarity is obvious by design, but we are not able to resurrect a similarity transformation.

An example over a finite field of prime order, which uses the algebraic closure of this field to find the change-of-basis matrix:

```
sage: cox = posets.TamariLattice(3).coxeter_transformation()
sage: M = cox.change_ring(GF(3))
sage: M.is_similar(M**3, True) # long time
(
      [1 0 0 0 0]
      [0 1 1 0 2]
      [0 0 0 0 1]
```

```
[1 2 0 2 1]
True, [0 0 1 0 0]
)
```

Inexact rings and fields are not supported.

```
sage: A = matrix(CDF, 2, 2, range(4))
sage: B = copy(A)
sage: A.is_similar(B)
Traceback (most recent call last):
...
TypeError: matrix entries must come from an exact field,
not Complex Double Field
```

Base rings for the matrices need to have a fraction field. So in particular, the ring needs to be at least an integral domain.

```
sage: Z6 = Integers(6)
sage: A = matrix(Z6, 2, 2, range(4))
sage: A.is_similar(A)
Traceback (most recent call last):
...
ValueError: base ring of a matrix needs a fraction field,
maybe the ring is not an integral domain
```

If the fraction fields of the entries are unequal and do not coerce in a common field, it is an error.

```
sage: A = matrix(GF(3), 2, 2, range(4))
sage: B = matrix(GF(2), 2, 2, range(4))
sage: A.is_similar(B, transformation=True)
Traceback (most recent call last):
...
TypeError: no common canonical parent for objects with parents:
'Full MatrixSpace of 2 by 2 dense matrices over Finite Field
of size 3' and
'Full MatrixSpace of 2 by 2 dense matrices over Finite Field
of size 2'
```

A matrix over the integers and a matrix over the algebraic numbers will be compared over the algebraic numbers (by coercion of QQ in QQbar).

```
sage: A = matrix(ZZ, 2, 2, range(4))
sage: B = matrix(QQbar, 2, 2, range(4))
sage: A.is_similar(B)
True
```

AUTHOR:

•Rob Beezer (2011-03-15, 2015-05-25)

is_unitary()

Returns True if the columns of the matrix are an orthonormal basis.

For a matrix with real entries this determines if a matrix is "orthogonal" and for a matrix with complex entries this determines if the matrix is "unitary."

OUTPUT:

True if the matrix is square and its conjugate-transpose is its inverse, and False otherwise. In other

words, a matrix is orthogonal or unitary if the product of its conjugate-transpose times the matrix is the identity matrix.

For numerical matrices a specialized routine available over RDF and CDF is a good choice.

EXAMPLES:

A permutation matrix is always orthogonal.

```
sage: sigma = Permutation([1,3,4,5,2])
sage: P = sigma.to_matrix(); P
[1 0 0 0 0 0]
[0 0 0 0 1]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
sage: P.is_unitary()
True
sage: P.change_ring(GF(3)).is_unitary()
True
sage: P.change_ring(GF(3)).is_unitary()
```

A square matrix far from unitary.

```
sage: A = matrix(QQ, 4, range(16))
sage: A.is_unitary()
False
```

Rectangular matrices are never unitary.

```
sage: A = matrix(QQbar, 3, 4)
sage: A.is_unitary()
False
```

jordan_form (base_ring=None, sparse=False, subdivide=True, transformation=False, eigenvalues=None, check_input=True)

Compute the Jordan normal form of this square matrix A, if it exists.

This computation is performed in a naive way using the ranks of powers of A-xI, where x is an eigenvalue of the matrix A. If desired, a transformation matrix P can be returned, which is such that the Jordan canonical form is given by $P^{-1}AP$; if the matrix is diagonalizable, this equals to eigendecomposition or spectral decomposition.

INPUT:

- •base_ring Ring in which to compute the Jordan form.
- •sparse (default False) If sparse=True, return a sparse matrix.
- •subdivide (default True) If subdivide=True, the subdivisions for the Jordan blocks in the matrix are shown.

- •transformation (default False) If transformation=True, computes also the transformation matrix
- •eigenvalues (default None) A complete set of roots, with multiplicity, of the characteristic polynomial of A, encoded as a list of pairs, each having the form (r,m) with r a root and m its multiplicity. If this is None, then Sage computes this list itself, but this is only possible over base rings in whose quotient fields polynomial factorization is implemented. Over all other rings, providing this list manually is the only way to compute Jordan normal forms.
- •check_input (default True) A Boolean specifying whether the list eigenvalues (if provided) has to be checked for correctness. Set this to False for a speedup if the eigenvalues are known to be correct.

NOTES:

Currently, the Jordan normal form is not computed over inexact rings in any but the trivial cases when the matrix is either 0×0 or 1×1 .

In the case of exact rings, this method does not compute any generalized form of the Jordan normal form, but is only able to compute the result if the characteristic polynomial of the matrix splits over the specific base ring.

Note that the base ring must be a field or a ring with an implemented fraction field.

EXAMPLES:

```
sage: a = matrix(ZZ, 4, [1, 0, 0, 0, 0, 1, 0, 0, 1, \]
-1, 1, 0, 1, -1, 1, 2]); a
[1 0 0 0]
[ 0 1 0 0]
[1 -1 1 0]
[ 1 -1 1 2]
sage: a.jordan_form()
[2|0 0|0]
\lceil -1+-1-1-1 \rceil
[0|1 1|0]
[0|0 1|0]
[-+----]
[0|0 0|1]
sage: a.jordan_form(subdivide=False)
[2 0 0 0]
[0 1 1 0]
[0 0 1 0]
[0 0 0 1]
sage: b = matrix(ZZ, 3, 3, range(9)); b
[0 1 2]
[3 4 5]
[6 7 8]
sage: b.jordan_form()
Traceback (most recent call last):
RuntimeError: Some eigenvalue does not exist in Rational Field.
sage: b.jordan_form(RealField(15))
Traceback (most recent call last):
ValueError: Jordan normal form not implemented over inexact rings.
```

Here we need to specify a field, since the eigenvalues are not defined in the smallest ring containing the matrix entries (trac ticket #14508):

If you need the transformation matrix as well as the Jordan form of self , then pass the option transformation=True. For example:

```
sage: m = matrix([[5,4,2,1],[0,1,-1,-1],[-1,-1,3,0],[1,1,-1,2]]); m
[5421]
[0 \ 1 \ -1 \ -1]
[-1 \ -1 \ 3 \ 0]
[ 1 1 -1 2]
sage: jf, p = m.jordan_form(transformation=True)
sage: jf
[2|0|0 0]
[-+-+--]
[0|1|0 0]
\lceil -1+-1+---1 \rceil
[0|0|4 1]
[0|0|0 4]
sage: \sim p * m * p
[2 0 0 0]
[0 1 0 0]
[0 0 4 1]
[0 0 0 4]
```

Note that for matrices over inexact rings, we do not attempt to compute the Jordan normal form, since it is not numerically stable:

```
sage: b = matrix(ZZ,3,3,range(9))
sage: jf, p = b.jordan_form(RealField(15), transformation=True)
Traceback (most recent call last):
...
ValueError: Jordan normal form not implemented over inexact rings.
```

```
sage: evals = [(i,i) for i in range(1,6)]
sage: n = sum(range(1,6))
sage: jf = block_diagonal_matrix([jordan_block(ev,size) for ev,size in evals])
sage: p = random_matrix(ZZ,n,n)
sage: while p.rank() != n: p = random_matrix(ZZ,n,n)
sage: m = p * jf * ~p
sage: mjf, mp = m.jordan_form(transformation=True)
sage: mjf == jf
True
sage: m = diagonal_matrix([1,1,0,0])
sage: jf,P = m.jordan_form(transformation=True)
sage: jf == ~P*m*P
```

We verify that the bug from trac ticket #6942 is fixed:

```
sage: J, T = M.jordan_form(transformation=True)
sage: J
[1 1 | 0 0 | 0 0 | 0 ]
[0 1 | 0 0 | 0 0 | 0 ]
[---+---+-]
[0 0|1 1|0 0|0]
[0 0|0 1|0 0|0]
[---+---+-]
[0 0|0 0|1 1|0]
[0 0|0 0|0 1|0]
[---+---+-]
[0 0|0 0|0 0|1]
sage: M * T == T * J
True
sage: T.rank()
sage: M.rank()
```

We verify that the bug from trac ticket #6932 is fixed:

```
sage: M=Matrix(1,1,[1])
sage: M.jordan_form(transformation=True)
([1], [1])
```

We now go through three 10×10 matrices to exhibit cases where there are multiple blocks of the same size:

```
sage: A = matrix(QQ, [[15, 37/3, -16, -104/3, -29, -7/3, 0, 2/3, -29/3, -1/3
\rightarrow3], [2, 9, -1, -6, -6, 0, 0, 0, -2, 0], [24, 74/3, -41, -208/3, -58, -23/3,,
\rightarrow 0, 4/3, -58/3, -2/3], [-6, -19, 3, 21, 19, 0, 0, 0, 6, 0], [2, 6, 3, -6, -
→3, 1, 0, 0, −2, 0], [-96, -296/3, 176, 832/3, 232, 101/3, 0, -16/3, 232/3,...
→8/3], [-4, -2/3, 21, 16/3, 4, 14/3, 3, -1/3, 4/3, -25/3], [20, 26/3, -66, -
\rightarrow199/3, -42, -41/3, 0, 13/3, -55/3, -2/3], [18, 57, -9, -54, -57, 0, 0, 0, -
\hookrightarrow15, 0], [0, 0, 0, 0, 0, 0, 0, 0, 3]]); A
                                                   2/3 -29/3
    15
         37/3
                 -16 - 104/3
                              -29
                                    -7/3
                                              0
                                                                -1/31
     2
            9
                 -1
                               -6
                                              0
                                                   0
                      -6
                                     0
                                                          -2
                                                                   01
                                                        -58/3
    24
         74/3
                 -41 - 208/3
                              -58 -23/3
                                              0
                                                   4/3
                                                                -2/31
                 3
        -19
                                                 0
    -6
                              19 0
                                              0
                                                           6
                         2.1
                                                                   0.1
    2
            6
                  3
                        -6
                               -3
                                       1
                                              0
                                                    0
                                                           -2
                                                                   0]
                            232 101/3
   -96 -296/3
               176 832/3
                                              0 -16/3 232/3
                                                                8/3]
    -4 -2/3
                21 16/3
                              4 14/3
                                             3 -1/3 4/3 -25/31
    20
         26/3
                 -66 - 199/3
                              -42 -41/3
                                              0 13/3 -55/3
                                                              -2/31
          57
                 -9
                       -54
                              -57
                                                   0 -15
    18
                                             0
                                                                   0]
           0
                 0
                         0
                                0
                                       0
                                              0
                                                           0
                                                                   31
sage: J, T = A.jordan_form(transformation=True); J
[3 1 0 | 0 0 0 | 0 0 0 0 0]
[0 3 1 | 0 0 | 0 0 0 0 0 0 ]
[0 0 3 | 0 0 | 0 0 0 0 0 ]
[----+-]
[0 0 0|3 1 0|0 0 0|0]
[0 0 0|0 3 1|0 0 0|0]
[0 0 0|0 0 3|0 0 0|0]
[----+-]
[0 0 0|0 0 0|3 1 0|0]
[0 0 0|0 0 0|0 3 1|0]
[0 0 0|0 0 0|0 0 3|0]
```

```
[0 0 0 0 0 0 0 0 0 0 0 3]

sage: T * J * T**(-1) == A

True

sage: T.rank()

10
```

```
sage: A = matrix(QQ, [[15, 37/3, -16, -14/3, -29, -7/3, 0, 2/3, 1/3, 44/3],...
\rightarrow[2, 9, -1, 0, -6, 0, 0, 0, 0, 3], [24, 74/3, -41, -28/3, -58, -23/3, 0, 4/
\leftrightarrow3, 2/3, 88/3], [-6, -19, 3, 3, 19, 0, 0, 0, -9], [2, 6, 3, 0, -3, 1, 0, _
→0, 0, 3], [-96, -296/3, 176, 112/3, 232, 101/3, 0, -16/3, -8/3, -352/3], [-
→4, -2/3, 21, 16/3, 4, 14/3, 3, -1/3, 4/3, -25/3], [20, 26/3, -66, -28/3, -
\rightarrow 42, -41/3, 0, 13/3, 2/3, 82/3], [18, 57, -9, 0, -57, 0, 0, 0, 3, 28], [0, \Box
\rightarrow 0, 0, 0, 0, 0, 0, 0, 3]]); A
    15 37/3
                 -16 -14/3
                                -29
                                      -7/3
                                                 0
                                                     2/3
                                                             1/3
                                                                   44/3]
                                      0
     2
          9
                   -1
                        0
                                 -6
                                                 0
                                                      0
                                                                    31
                 -41 -28/3
                                                     4/3
     24
        74/3
                                -58 -23/3
                                                 0
                                                             2/3
                                                                  88/3]
                                                    0
                                      0
         -19
                  3 3
3 0
                                 19
                                                             0
    -6
                                                 0
                                                0
     2
                                 -3
                                        1
                                                      0
                                                              0
          6
                                                                      31

      -96
      -296/3
      176
      112/3
      232
      101/3
      0
      -16/3
      -8/3
      -352/3]

      -4
      -2/3
      21
      16/3
      4
      14/3
      3
      -1/3
      4/3
      -25/3]

    20 26/3 -66 -28/3 -42 -41/3 0 13/3 2/3 82/3]
                                                             3
          57
                  -9 0
                                -57 0
                                               0 0
                                                                    281
[
    18
                                              0
           0
                  0
                                                      0
                                                              0
     0
                         0
                                0
                                        0
                                                                      31
sage: J, T = A.jordan_form(transformation=True); J
[3 1 0|0 0 0|0 0|0 0]
[0 3 1 | 0 0 | 0 0 | 0 0]
[0 0 3 | 0 0 | 0 0 | 0 0 ]
[----1
[0 0 0|3 1 0|0 0|0 0]
[0 0 0|0 3 1|0 0|0 0]
[0 0 0|0 0 3|0 0|0 0]
[----1
[0 0 0|0 0 0|3 1|0 0]
[0 0 0|0 0 0|0 3|0 0]
[-----]
[0 0 0|0 0 0|0 0|3 1]
[0 0 0|0 0 0|0 0|0 3]
sage: T * J * T**(-1) == A
True
sage: T.rank()
10
```

```
sage: A = matrix(QQ, [[15, 37/3, -16, -104/3, -29, -7/3, 35, 2/3, -29/3, -1/
→3], [2, 9, -1, -6, -6, 0, 7, 0, -2, 0], [24, 74/3, -29, -208/3, -58, -14/3, _
4/3, -58/3, -2/3], [-6, -19, 3, 21, 19, 0, -21, 0, 6, 0], [2, 6, -1, -1
→6, -3, 0, 7, 0, -2, 0], [-96, -296/3, 128, 832/3, 232, 65/3, -279, -16/3, __
\rightarrow232/3, 8/3], [0, 0, 0, 0, 0, 0, 0, 0], [20, 26/3, -30, -199/3, -42, -
\rightarrow14/3, 70, 13/3, -55/3, -2/3], [18, 57, -9, -54, -57, 0, 63, 0, -15, 0], [0, ]
\rightarrow 0, 0, 0, 0, 0, 0, 0, 3]]); A
ſ
    15 37/3
             -16 -104/3
                          -29 -7/3
                                        35
                                             2/3 -29/3
                                                           -1/31
    2
         9
                -1 -6
                            -6 0
                                         7
                                               0 -2
                                                            01
    24
       74/3
               -29 - 208/3
                            -58 -14/3
                                        70
                                             4/3 -58/3
                                                           -2/31
                3 21
                            19 0
                                              0
    -6 -19
                                        -21
                                                    6
                                                            01
                                   0
                                         7
    2
          6
                -1
                      -6
                            -3
                                                      -2
                                                             01
   -96 - 296/3
               128 832/3
                          232
                                65/3
                                        -279 -16/3 232/3
                                                           8/31
[
[
    0
        0
                0
                    0
                            0
                                 0
                                         3
                                              0
    20 26/3 -30 -199/3
                          -42 \quad -14/3
                                       70
                                             13/3 -55/3
                                                           -2/31
```

```
18
           57
                  -9
                        -54
                               -57
                                              63
                                                          -15
                                                                   0]
     0
                   0
                          0
                                0
                                        0
                                              0
                                                      0
                                                            0
                                                                   3]
            0
sage: J, T = A.jordan_form(transformation=True); J
[3 1 0|0 0|0 0|0 0|0]
[0 3 1 | 0 0 | 0 0 | 0 0 | 0 ]
[0 0 3|0 0|0 0|0 0|0]
[----+---+----+-]
[0 0 0|3 1|0 0|0 0|0]
[0 0 0|0 3|0 0|0 0|0]
[----+-]
[0 0 0|0 0|3 1|0 0|0]
[0 0 0|0 0|0 3|0 0|0]
[----+-]
[0 0 0|0 0|0 0|3 1|0]
[0 0 0|0 0|0 0|0 3|0]
[----+-]
[0 0 0|0 0|0 0|0 0|3]
sage: T * J * T**(-1) == A
True
sage: T.rank()
10
```

Verify that we smoothly move to QQ from ZZ (trac ticket #12693), i.e. we work in the vector space over the field:

```
sage: M = matrix(((2,2,2),(0,0,0),(-2,-2,-2)))
sage: J, P = M.jordan_form(transformation=True)
sage: J; P
[0 1 | 0]
[0 0 0 ]
[---+-]
[0 0 | 0]
[2 1 0]
[ 0 0 1]
[-2 0 -1]
sage: J - ~P * M * P
[0 0 0]
[0 0 0]
[0 0 0]
sage: parent(M)
Full MatrixSpace of 3 by 3 dense matrices over Integer Ring
sage: parent(J) == parent(P) == MatrixSpace(QQ, 3)
sage: M.jordan_form(transformation=True) == (M/1).jordan_
→form(transformation=True)
```

By providing eigenvalues ourselves, we can compute the Jordan form even lacking a polynomial factorization algorithm.

```
[0 0|0]
sage: M.jordan_form(eigenvalues=[(0, 2)])
Traceback (most recent call last):
...
ValueError: The provided list of eigenvalues is not correct.
sage: M.jordan_form(transformation=True, eigenvalues=[(0, 3)])
(
[0 1|0]
[0 0|0] [x31 0 1]
[---+-] [x21 0 0]
[0 0|0], [ 0 1 0]
)
```

The base ring for the matrix needs to have a fraction field and it needs to be implemented.

```
sage: A = matrix(Integers(6), 2, 2, range(4))
sage: A.jordan_form()
Traceback (most recent call last):
...
ValueError: Matrix entries must be from a field, not Ring of integers modulo 6
```

kernel (*args, **kwds)

Returns the left kernel of this matrix, as a vector space or free module. This is the set of vectors x such that x*self = 0.

Note: For the right kernel, use $right_kernel()$. The method kernel() is exactly equal to $left_kernel()$.

INPUT:

- •algorithm default: 'default' a keyword that selects the algorithm employed. Allowable values are:
 - -'default' allows the algorithm to be chosen automatically
 - -'generic' naive algorithm usable for matrices over any field
 - -'flint' FLINT library code for matrices over the rationals or the integers
 - -'pari' PARI library code for matrices over number fields or the integers
 - -'padic' padic algorithm from IML library for matrices over the rationals and integers
 - -'pluq' PLUQ matrix factorization for matrices mod 2
- •basis default: 'echelon' a keyword that describes the format of the basis used to construct the left kernel. Allowable values are:
 - -'echelon': the basis matrix is returned in echelon form
 - -'pivot': each basis vector is computed from the reduced row-echelon form of self by placing a single one in a non-pivot column and zeros in the remaining non-pivot columns. Only available for matrices over fields.
 - -'LLL': an LLL-reduced basis. Only available for matrices over the integers.

OUTPUT:

A vector space or free module whose degree equals the number of rows in self and which contains all the vectors x such that x*self = 0.

If self has 0 rows, the kernel has dimension 0, while if self has 0 columns the kernel is the entire ambient vector space.

The result is cached. Requesting the left kernel a second time, but with a different basis format, will return the cached result with the format from the first computation.

Note: For much more detailed documentation of the various options see <code>right_kernel()</code>, since this method just computes the right kernel of the transpose of <code>self</code>.

EXAMPLES:

Over the rationals with a basis matrix in echelon form.

Over a finite field, with a basis matrix in "pivot" format.

The left kernel of a zero matrix is the entire ambient vector space whose degree equals the number of rows of self (i.e. everything).

```
sage: A = MatrixSpace(QQ, 3, 4)(0)
sage: A.kernel()
Vector space of degree 3 and dimension 3 over Rational Field
Basis matrix:
[1 0 0]
[0 1 0]
[0 0 1]
```

We test matrices with no rows or columns.

```
sage: A = matrix(QQ, 2, 0)
sage: A.left_kernel()
Vector space of degree 2 and dimension 2 over Rational Field
Basis matrix:
[1 0]
[0 1]
sage: A = matrix(QQ, 0, 2)
sage: A.left_kernel()
```

```
Vector space of degree 0 and dimension 0 over Rational Field Basis matrix:
[]
```

The results are cached. Note that requesting a new format for the basis is ignored and the cached copy is returned. Work with a copy if you need a new left kernel, or perhaps investigate the <code>right_kernel_matrix()</code> method on the transpose, which does not cache its results and is more flexible.

```
sage: A = matrix(QQ, [[1,1],[2,2]])
sage: K1 = A.left_kernel()
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
  1 -1/2]
sage: K2 = A.left_kernel()
sage: K1 is K2
True
sage: K3 = A.left_kernel(basis='pivot')
sage: K3
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
  1 -1/2]
sage: B = copy(A)
sage: K3 = B.left_kernel(basis='pivot')
Vector space of degree 2 and dimension 1 over Rational Field
User basis matrix:
[-2 1]
sage: K3 is K1
False
sage: K3 == K1
True
```

kernel_on (V, poly=None, check=True)

Return the kernel of self restricted to the invariant subspace V. The result is a vector subspace of V, which is also a subspace of the ambient space.

INPUT:

- •V vector subspace
- •check (optional) default: True; whether to check that V is invariant under the action of self.
- •poly (optional) default: None; if not None, compute instead the kernel of poly(self) on V.

OUTPUT:

•a subspace

Warning: This function does *not* check that V is in fact invariant under self if check is False. With check False this function is much faster.

EXAMPLES:

```
sage: t = matrix(QQ, 4, [39, -10, 0, -12, 0, 2, 0, -1, 0, 1, -2, 0, 0, 2, 0, -\leftrightarrow2]); t [ 39 -10 0 -12]
```

```
2
         0 -1]
[ 0
     1 -2
             0]
[ 0
     2 0 -21
sage: t.fcp()
(x - 39) * (x + 2) * (x^2 - 2)
sage: s = (t-39)*(t^2-2)
sage: V = s.kernel(); V
Vector space of degree 4 and dimension 3 over Rational Field
Basis matrix:
[1 0 0 0]
[0 1 0 0]
[0 0 0 1]
sage: s.restrict(V)
[0 0 0]
[0 0 0]
[0 0 0]
sage: s.kernel_on(V)
Vector space of degree 4 and dimension 3 over Rational Field
Basis matrix:
[1 0 0 0]
[0 1 0 0]
[0 0 0 1]
sage: k = t-39
sage: k.restrict(V)
[ 0 -10 -12]
[ 0 -37 -1]
     2 -41]
  0
sage: ker = k.kernel_on(V); ker
Vector space of degree 4 and dimension 1 over Rational Field
Basis matrix:
[ 1 -2/7
           0 -2/7]
sage: ker.0 * k
(0, 0, 0, 0)
```

Test that trac ticket #9425 is fixed.

left_eigenmatrix()

Return matrices D and P, where D is a diagonal matrix of eigenvalues and P is the corresponding matrix where the rows are corresponding eigenvectors (or zero vectors) so that P*self = D*P.

EXAMPLES:

```
sage: A = matrix(QQ, 3, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: D, P = A.eigenmatrix_left()
sage: D
[
                   0
                                                             0]
                   0 -1.348469228349535?
[
                                                             0.1
                   0
                                        0 13.34846922834954?]
sage: P
                                         -2
                    1
                    1 0.3101020514433644? -0.3797958971132713?]
                                             1.579795897113272?]
                    1
                       1.289897948556636?
sage: P*A == D*P
True
```

Because P is invertible, A is diagonalizable.

```
sage: A == (~P)*D*P
True
```

The matrix P may contain zero rows corresponding to eigenvalues for which the algebraic multiplicity is greater than the geometric multiplicity. In these cases, the matrix is not diagonalizable.

```
sage: A = jordan_block(2,3); A
[2 1 0]
[0 2 1]
[0 0 2]
sage: A = jordan_block(2,3)
sage: D, P = A.eigenmatrix_left()
sage: D
[2 0 0]
[0 2 0]
[0 0 2]
sage: P
[0 0 1]
[0 0 0]
[0 0 0]
sage: P * A == D * P
True
```

left_eigenspaces (format='all', var='a', algebraic_multiplicity=False)

Compute the left eigenspaces of a matrix.

Note that eigenspaces_left() and left_eigenspaces() are identical methods. Here "left" refers to the eigenvectors being placed to the left of the matrix.

INPUT:

- •self a square matrix over an exact field. For inexact matrices consult the numerical or symbolic matrix classes.
- •format -default: None
 - -'all' attempts to create every eigenspace. This will always be possible for matrices with rational entries.
 - -'galois' for each irreducible factor of the characteristic polynomial, a single eigenspace will be output for a single root/eigenvalue for the irreducible factor.

- -None Uses the 'all' format if the base ring is contained in an algebraically closed field which is implemented. Otherwise, uses the 'galois' format.
- •var default: 'a' variable name used to represent elements of the root field of each irreducible factor of the characteristic polynomial. If var='a', then the root fields will be in terms of a0, a1, a2,, where the numbering runs across all the irreducible factors of the characteristic polynomial, even for linear factors.
- •algebraic_multiplicity default: False whether or not to include the algebraic multiplicity of each eigenvalue in the output. See the discussion below.

OUTPUT:

If algebraic_multiplicity=False, return a list of pairs (e, V) where e is an eigenvalue of the matrix, and V is the corresponding left eigenspace. For Galois conjugates of eigenvalues, there may be just one representative eigenspace, depending on the format keyword.

If algebraic_multiplicity=True, return a list of triples (e, V, n) where e and V are as above and n is the algebraic multiplicity of the eigenvalue.

Warning: Uses a somewhat naive algorithm (simply factors the characteristic polynomial and computes kernels directly over the extension field).

EXAMPLES:

We compute the left eigenspaces of a 3×3 rational matrix. First, we request *all* of the eigenvalues, so the results are in the field of algebraic numbers, QQbar. Then we request just one eigenspace per irreducible factor of the characteristic polynomial with the galois keyword.

```
sage: A = matrix(QQ, 3, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: es = A.eigenspaces_left(format='all'); es
(0, Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[1 -2 1]),
(-1.348469228349535?, Vector space of degree 3 and dimension 1 over Algebraic_
⊶Field
User basis matrix:
                    1 \quad 0.3101020514433644? \quad -0.3797958971132713?
(13.34846922834954?, Vector space of degree 3 and dimension 1 over Algebraic
→Field
User basis matrix:
                  1 1.289897948556636? 1.579795897113272?])
sage: es = A.eigenspaces_left(format='galois'); es
(0, Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[1 -2 1]),
(al, Vector space of degree 3 and dimension 1 over Number Field in al with,
\rightarrowdefining polynomial x^2 - 12*x - 18
User basis matrix:
           1 1/15*a1 + 2/5 2/15*a1 - 1/5])
Γ
```

The same computation, but with implicit base change to a field.

```
sage: A = matrix(ZZ,3,3,range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: A.eigenspaces_left(format='galois')
[
(0, Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1 -2 1]),
(a1, Vector space of degree 3 and dimension 1 over Number Field in a1 with_
defining polynomial x^2 - 12*x - 18
User basis matrix:
[ 1 1/15*a1 + 2/5 2/15*a1 - 1/5])
]
```

We compute the left eigenspaces of the matrix of the Hecke operator T_2 on level 43 modular symbols, both with all eigenvalues (the default) and with one subspace per factor.

```
sage: A = ModularSymbols(43).T(2).matrix(); A
[3 0 0 0 0 0 -1]
[ 0 -2 1 0 0 0 0]
[ 0 -1 1 1 0 -1 0 ]
[ 0 -1  0 -1  2 -1  1]
[ 0 -1  0  1  1 -1  1]
[ 0 0 -2 0 2 -2 1]
[ 0 0 -1 0 1 0 -1 ]
sage: A.base_ring()
Rational Field
sage: f = A.charpoly(); f
x^7 + x^6 - 12*x^5 - 16*x^4 + 36*x^3 + 52*x^2 - 32*x - 48
sage: factor(f)
(x - 3) * (x + 2)^2 * (x^2 - 2)^2
sage: A.eigenspaces_left(algebraic_multiplicity=True)
(3, Vector space of degree 7 and dimension 1 over Rational Field
User basis matrix:
[ 1 0 1/7 0 -1/7 ]
                           0 - 2/7], 1),
(-2, Vector space of degree 7 and dimension 2 over Rational Field
User basis matrix:
\begin{bmatrix} 0 & 1 & 0 & 1 & -1 & 1 & -1 \end{bmatrix}
```

```
[0 \ 0 \ 1 \ 0 \ -1 \ 2 \ -1], \ 2),
(-1.414213562373095?, Vector space of degree 7 and dimension 2 over Algebraic,
→Field
User basis matrix:
                   \cap
                                        1
                                                             0
→-1 0.4142135623730951?
                                            1
                                                                -11
[
                   0
                                        0
                                            0 2.414213562373095?], 2),
(1.414213562373095?, Vector space of degree 7 and dimension 2 over Algebraic,
⊶Field
User basis matrix:
                    0
                                                                0
      -1 -2.414213562373095?
                                                                       -1]
                                                  0 -0.4142135623730951?], 2)
sage: A.eigenspaces_left(format='galois', algebraic_multiplicity=True)
(3, Vector space of degree 7 and dimension 1 over Rational Field
User basis matrix:
[ 1 0 1/7
                   0 - 1/7 0 - 2/7, 1),
(-2, Vector space of degree 7 and dimension 2 over Rational Field
User basis matrix:
\begin{bmatrix} 0 & 1 & 0 & 1 & -1 & 1 & -1 \end{bmatrix}
[ 0 0 1 0 -1 2 -1], 2),
(a2, Vector space of degree 7 and dimension 2 over Number Field in a2 with,
\rightarrowdefining polynomial x^2 - 2
User basis matrix:
                                           1
      0
           1
                       0
                            -1 -a2 - 1
       0
               0
                              0
                       1
                                     -1
                                               0 -a2 + 1], 2)
ſ
```

Next we compute the left eigenspaces over the finite field of order 11.

```
sage: A = ModularSymbols(43, base_ring=GF(11), sign=1).T(2).matrix(); A
[ 3 9 0 0]
[ 0 9 0 1]
[ 0 10 9 2]
[ 0 9 0 2]
sage: A.base_ring()
Finite Field of size 11
sage: A.charpoly()
x^4 + 10*x^3 + 3*x^2 + 2*x + 1
sage: A.eigenspaces_left(format='galois', var = 'beta')
(9, Vector space of degree 4 and dimension 1 over Finite Field of size 11
User basis matrix:
[0 0 1 5]),
(3, Vector space of degree 4 and dimension 1 over Finite Field of size 11
User basis matrix:
[1 6 0 6]),
(beta2, Vector space of degree 4 and dimension 1 over Univariate Quotient,
\rightarrowPolynomial Ring in beta2 over Finite Field of size 11 with modulus x^2 + 9
User basis matrix:
           0
                                      0 5*beta2 + 10])
[
                         1
```

This method is only applicable to exact matrices. The "eigenmatrix" routines for matrices with double-

precision floating-point entries (RDF , CDF) are the best alternative. (Since some platforms return eigenvectors that are the negatives of those given here, this one example is not tested here.) There are also "eigenmatrix" routines for matrices with symbolic entries.

```
sage: A = matrix(QQ, 3, 3, range(9))
sage: A.change_ring(RR).eigenspaces_left()
Traceback (most recent call last):
NotImplementedError: eigenspaces cannot be computed reliably for inexact,
\rightarrowrings such as Real Field with 53 bits of precision,
consult numerical or symbolic matrix classes for other options
sage: em = A.change_ring(RDF).eigenmatrix_left()
sage: eigenvalues = em[0]; eigenvalues.dense_matrix() # abs tol 1e-13
[13.348469228349522
                                      0.0
                                                            0.01
                 0.0 -1.348469228349534
                                                            0.01
                 0.0
                                      0.0
                                                             0.01
sage: eigenvectors = em[1]; eigenvectors # not tested
[ 0.440242867... 0.567868371... 0.695493875...]
[ 0.897878732... 0.278434036... -0.341010658...]
[ 0.408248290... -0.816496580... 0.408248290...]
sage: x, y = var('x y')
sage: S = matrix([[x, y], [y, 3*x^2]])
sage: em = S.eigenmatrix_left()
sage: eigenvalues = em[0]; eigenvalues
[3/2*x^2 + 1/2*x - 1/2*sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2)]
                                      0]
                                                            0 \ 3/2 \times x^2 + 1/2 \times x + 1/
[
\Rightarrow2*sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2)]
sage: eigenvectors = em[1]; eigenvectors
                                                          1 \frac{1}{2} \times (3 \times x^2 - x - x)
\rightarrowsqrt (9*x^4 - 6*x^3 + x^2 + 4*y^2))/y]
                                                          1 \frac{1}{2} \times (3 \times x^2 - x + \dots)
[
\rightarrowsqrt (9*x^4 - 6*x^3 + x^2 + 4*y^2))/y]
```

A request for 'all' the eigenvalues, when it is not possible, will raise an error. Using the 'galois' format option is more likely to be successful.

left_eigenvectors (extend=True)

Compute the left eigenvectors of a matrix.

For each distinct eigenvalue, returns a list of the form (e,V,n) where e is the eigenvalue, V is a list of eigenvectors forming a basis for the corresponding left eigenspace, and n is the algebraic multiplicity of the eigenvalue.

If the option extend is set to False, then only the eigenvalues that live in the base ring are considered.

EXAMPLES: We compute the left eigenvectors of a 3×3 rational matrix.

```
sage: A = matrix(QQ,3,3,range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: es = A.eigenvectors_left(); es
[(0, [
(1, -2, 1)
], 1),
(-1.348469228349535?, [(1, 0.3101020514433644?, -0.3797958971132713?)], 1),
(13.34846922834954?, [(1, 1.289897948556636?, 1.579795897113272?)], 1)]
sage: eval, [evec], mult = es[0]
sage: delta = eval*evec - evec*A
sage: abs(abs(delta)) < 1e-10
True</pre>
```

Notice the difference between considering ring extensions or not.

```
sage: M=matrix(QQ,[[0,-1,0],[1,0,0],[0,0,2]])
sage: M.eigenvectors_left()
[(2, [
  (0, 0, 1)
], 1), (-1*I, [(1, -1*I, 0)], 1), (1*I, [(1, 1*I, 0)], 1)]
sage: M.eigenvectors_left(extend=False)
[(2, [
  (0, 0, 1)
], 1)]
```

left_kernel (*args, **kwds)

Returns the left kernel of this matrix, as a vector space or free module. This is the set of vectors x such that $x \star self = 0$.

Note: For the right kernel, use $right_kernel()$. The method kernel() is exactly equal to $left_kernel()$.

INPUT:

- •algorithm default: 'default' a keyword that selects the algorithm employed. Allowable values are:
 - -'default' allows the algorithm to be chosen automatically
 - 'generic' naive algorithm usable for matrices over any field
 - -'flint' FLINT library code for matrices over the rationals or the integers
 - -'pari' PARI library code for matrices over number fields or the integers
 - -'padic' padic algorithm from IML library for matrices over the rationals and integers
 - -'pluq' PLUQ matrix factorization for matrices mod 2

- •basis default: 'echelon' a keyword that describes the format of the basis used to construct the left kernel. Allowable values are:
 - -'echelon': the basis matrix is returned in echelon form
 - -'pivot': each basis vector is computed from the reduced row-echelon form of self by placing a single one in a non-pivot column and zeros in the remaining non-pivot columns. Only available for matrices over fields.
 - -'LLL': an LLL-reduced basis. Only available for matrices over the integers.

OUTPUT:

A vector space or free module whose degree equals the number of rows in self and which contains all the vectors x such that x*self = 0.

If self has 0 rows, the kernel has dimension 0, while if self has 0 columns the kernel is the entire ambient vector space.

The result is cached. Requesting the left kernel a second time, but with a different basis format, will return the cached result with the format from the first computation.

Note: For much more detailed documentation of the various options see <code>right_kernel()</code>, since this method just computes the right kernel of the transpose of <code>self</code>.

EXAMPLES:

Over the rationals with a basis matrix in echelon form.

Over a finite field, with a basis matrix in "pivot" format.

The left kernel of a zero matrix is the entire ambient vector space whose degree equals the number of rows of self (i.e. everything).

```
sage: A = MatrixSpace(QQ, 3, 4)(0)
sage: A.kernel()
Vector space of degree 3 and dimension 3 over Rational Field
Basis matrix:
```

```
[1 0 0]
[0 1 0]
[0 0 1]
```

We test matrices with no rows or columns.

```
sage: A = matrix(QQ, 2, 0)
sage: A.left_kernel()
Vector space of degree 2 and dimension 2 over Rational Field
Basis matrix:
[1 0]
[0 1]
sage: A = matrix(QQ, 0, 2)
sage: A.left_kernel()
Vector space of degree 0 and dimension 0 over Rational Field
Basis matrix:
[]
```

The results are cached. Note that requesting a new format for the basis is ignored and the cached copy is returned. Work with a copy if you need a new left kernel, or perhaps investigate the <code>right_kernel_matrix()</code> method on the transpose, which does not cache its results and is more flexible.

```
sage: A = matrix(QQ, [[1,1],[2,2]])
sage: K1 = A.left_kernel()
sage: K1
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
   1 -1/2]
sage: K2 = A.left_kernel()
sage: K1 is K2
True
sage: K3 = A.left_kernel(basis='pivot')
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[1 -1/2]
sage: B = copy(A)
sage: K3 = B.left_kernel(basis='pivot')
Vector space of degree 2 and dimension 1 over Rational Field
User basis matrix:
[-2 \ 1]
sage: K3 is K1
False
sage: K3 == K1
True
```

left_nullity()

Return the (left) nullity of this matrix, which is the dimension of the (left) kernel of this matrix acting from the right on row vectors.

```
sage: M = Matrix(QQ,[[1,0,0,1],[0,1,1,0],[1,1,1,0]])
sage: M.nullity()
0
```

```
sage: M.left_nullity()
0
```

```
sage: A = M.transpose()
sage: A.nullity()
1
sage: A.left_nullity()
1
```

```
sage: M = M.change_ring(ZZ)
sage: M.nullity()
0
sage: A = M.transpose()
sage: A.nullity()
1
```

matrix window (row=0, col=0, nrows=-1, ncols=-1, check=1)

Return the requested matrix window.

EXAMPLES:

```
sage: A = matrix(QQ, 3, 3, range(9))
sage: A.matrix_window(1,1, 2, 1)
Matrix window of size 2 x 1 at (1,1):
[0 1 2]
[3 4 5]
[6 7 8]
```

We test the optional check flag.

```
sage: matrix([1]).matrix_window(0,1,1,1, check=False)
Matrix window of size 1 x 1 at (0,1):
[1]
sage: matrix([1]).matrix_window(0,1,1,1)
Traceback (most recent call last):
...
IndexError: matrix window index out of range
```

Another test of bounds checking:

```
sage: matrix([1]).matrix_window(1,1,1,1)
Traceback (most recent call last):
...
IndexError: matrix window index out of range
```

maxspin(v)

Computes the largest integer n such that the list of vectors $S = [v, v*A, ..., v*A^n]$ are linearly independent, and returns that list.

INPUT:

- •self Matrix
- •v Vector

OUTPUT:

•list - list of Vectors

ALGORITHM: The current implementation just adds vectors to a vector space until the dimension doesn't grow. This could be optimized by directly using matrices and doing an efficient Echelon form. Also, when the base is Q, maybe we could simultaneously keep track of what is going on in the reduction modulo p, which might make things much faster.

EXAMPLES:

```
sage: t = matrix(QQ, 3, 3, range(9)); t
[0 1 2]
[3 4 5]
[6 7 8]
sage: v = (QQ^3).0
sage: t.maxspin(v)
[(1, 0, 0), (0, 1, 2), (15, 18, 21)]
sage: k = t.kernel(); k
Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[ 1 -2 1]
sage: t.maxspin(k.0)
[(1, -2, 1)]
```

minimal_polynomial (var='x', **kwds)

This is a synonym for self.minpoly

EXAMPLES:

```
sage: a = matrix(QQ, 4, 4, range(16))
sage: a.minimal_polynomial('z')
z^3 - 30*z^2 - 80*z
sage: a.minpoly()
x^3 - 30*x^2 - 80*x
```

minors (k)

Return the list of all $k \times k$ minors of self.

Let A be an $m \times n$ matrix and k an integer with $0 \le k$, $k \le m$ and $k \le n$. A $k \times k$ minor of A is the determinant of a $k \times k$ matrix obtained from A by deleting m - k rows and n - k columns. There are no $k \times k$ minors of A if k is larger than either m or n.

The returned list is sorted in lexicographical row major ordering, e.g., if A is a 3×3 matrix then the minors returned are with these rows/columns: [[0, 1]x[0, 1], [0, 1]x[0, 2], [0, 1]x[1, 2], [0, 2]x[0, 1], [0, 2]x[0, 2], [0, 2]x[1, 2], [1, 2]x[0, 1], [1, 2]x[0, 2], [1, 2]x[1, 2]].

INPUT:

•k - integer

```
sage: A = Matrix(ZZ,2,3,[1,2,3,4,5,6]); A
[1 2 3]
[4 5 6]
sage: A.minors(2)
[-3, -6, -3]
sage: A.minors(1)
[1, 2, 3, 4, 5, 6]
sage: A.minors(0)
[1]
sage: A.minors(5)
[]
```

This test addresses an issue raised at trac ticket #20512:

```
sage: A.minors(0)[0].parent() == P
True
```

```
minpoly ( var='x', **kwds)
```

Return the minimal polynomial of self.

This uses a simplistic - and potentially very very slow - algorithm that involves computing kernels to determine the powers of the factors of the charpoly that divide the minpoly.

EXAMPLES:

```
sage: A = matrix(GF(9,'c'), 4, [1, 1, 0,0, 0,1,0,0, 0,0,5,0, 0,0,0,5])
sage: factor(A.minpoly())
(x + 1) * (x + 2)^2
sage: A.minpoly()(A) == 0
True
sage: factor(A.charpoly())
(x + 1)^2 * (x + 2)^2
```

The default variable name is x, but you can specify another name:

```
sage: factor(A.minpoly('y'))
(y + 1) * (y + 2)^2
```

norm (p=2)

Return the p-norm of this matrix, where p can be 1, 2, inf, or the Frobenius norm.

INPUT:

- •self a matrix whose entries are coercible into CDF
- •p one of the following options:
- •1 the largest column-sum norm
- •2 (default) the Euclidean norm
- •Infinity the largest row-sum norm
- •'frob' the Frobenius (sum of squares) norm

OUTPUT: RDF number

See also:

•sage.misc.functional.norm()

```
sage: A = matrix(ZZ, [[1,2,4,3],[-1,0,3,-10]])
sage: A.norm(1)
13.0
```

```
sage: A.norm(Infinity)
14.0
sage: B = random_matrix(QQ, 20, 21)
sage: B.norm(Infinity) == (B.transpose()).norm(1)
True
```

```
sage: Id = identity_matrix(12)
sage: Id.norm(2)
1.0
sage: A = matrix(RR, 2, 2, [13,-4,-4,7])
sage: A.norm() # rel tol 2e-16
14.99999999999998
```

Norms of numerical matrices over high-precision reals are computed by this routine. Faster routines for double precision entries from RDF or CDF are provided by the $Matrix_double_dense$ class.

```
sage: A = matrix(CC, 2, 3, [3*I,4,1-I,1,2,0])
sage: A.norm('frob')
5.656854249492381
sage: A.norm(2)
5.470684443210...
sage: A.norm(1)
6.0
sage: A.norm(Infinity)
8.414213562373096
sage: a = matrix([[],[],[],[]])
sage: a.norm()
0.0
sage: a.norm(Infinity) == a.norm(1)
True
```

nullity()

Return the (left) nullity of this matrix, which is the dimension of the (left) kernel of this matrix acting from the right on row vectors.

EXAMPLES:

```
sage: M = Matrix(QQ,[[1,0,0,1],[0,1,1,0],[1,1,1,0]])
sage: M.nullity()
0
sage: M.left_nullity()
0
```

```
sage: A = M.transpose()
sage: A.nullity()
1
sage: A.left_nullity()
1
```

```
sage: M = M.change_ring(ZZ)
sage: M.nullity()
0
sage: A = M.transpose()
sage: A.nullity()
1
```

numerical_approx (prec=None, digits=None, algorithm=None)

Return a numerical approximation of self with prec bits (or decimal digits) of precision.

INPUT:

- •prec precision in bits
- •digits precision in decimal digits (only used if prec is not given)
- •algorithm ignored for matrices

OUTPUT: A matrix converted to a real or complex field

EXAMPLES:

```
sage: d = matrix([[3, 0],[0,sqrt(2)]]);
sage: b = matrix([[1, -1], [2, 2]]); e = b * d * b.inverse();e
[ 1/2*sqrt(2) + 3/2 -1/4*sqrt(2) + 3/4]
[ -sqrt(2) + 3 1/2*sqrt(2) + 3/2]
```

```
sage: e.numerical_approx(53)
[ 2.20710678118655 0.396446609406726]
[ 1.58578643762690 2.20710678118655]
```

```
sage: e.numerical_approx(20)
[ 2.2071 0.39645]
[ 1.5858 2.2071]
```

```
sage: matrix(SR, 2, 2, range(4)).n()
[0.000000000000000    1.000000000000]
[ 2.0000000000000    3.000000000000]
```

permanent (algorithm='Ryser')

Return the permanent of this matrix.

Let $A = (a_{i,j})$ be an $m \times n$ matrix over any commutative ring with $m \le n$. The permanent of A is

$$per(A) = \sum_{\pi} a_{1,\pi(1)} a_{2,\pi(2)} \cdots a_{m,\pi(m)}$$

where the summation extends over all one-to-one functions π from $\{1, \ldots, m\}$ to $\{1, \ldots, n\}$.

The product $a_{1,\pi(1)}a_{2,\pi(2)}\cdots a_{m,\pi(m)}$ is called *diagonal product*. So the permanent of an $m\times n$ matrix A is the sum of all the diagonal products of A.

By default, this method uses Ryser's algorithm, but setting algorithm to "ButeraPernici" you can use the algorithm of Butera and Pernici (which is well suited for band matrices, i.e. matrices whose entries are concentrated near the diagonal).

INPUT:

- •A matrix of size $m \times n$ with $m \le n$
- •algorithm either "Ryser" (default) or "ButeraPernici". The Butera-Pernici algorithm takes advantage of presence of zeros and is very well suited for sparse matrices.

ALGORITHM:

The Ryser algorithm is implemented in the method $_{permanent_ryser}()$. It is a modification of theorem 7.1.1. from Brualdi and Ryser: Combinatorial Matrix Theory. Instead of deleting columns from A, we choose columns from A and calculate the product of the row sums of the selected submatrix.

The Butera-Pernici algorithm is implemented in the function <code>permanental_minor_polynomial()</code> . It takes advantage of cancellations that may occur in the computations.

EXAMPLES:

```
sage: A = ones_matrix(4,4)
sage: A.permanent()
24

sage: A = matrix(3,6,[1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1])
sage: A.permanent()
36
sage: B = A.change_ring(RR)
sage: B.permanent()
36.000000000000000
```

The permanent above is directed to the Sloane's sequence OEIS sequence A079908 ("The Dancing School Problems") for which the third term is 36:

```
sage: oeis(79908) # optional -- internet
A079908: Solution to the Dancing School Problem with 3 girls and n+3 boys:

    →f(3,n).

sage: _(3) # optional -- internet
36
```

```
sage: A = matrix(4,5,[1,1,0,1,1,0,1,1,1,1,0,1,0,1,0,1,1,1,0,1,0])
sage: A.permanent()
32
```

A huge permanent that can not be reasonably computed with the Ryser algorithm (a 50×50 band matrix with width 5):

```
sage: n, w = 50, 5
sage: A = matrix(ZZ, n, n, lambda i, j: (i+j)%5 + 1 if abs(i-j) <= w else 0)
sage: A.permanent(algorithm="ButeraPernici")
57766972735511097036962481710892268404670105604676932908</pre>
```

See Minc: Permanents, Example 2.1, p. 5.

```
sage: A = matrix(QQ,2,2,[1/5,2/7,3/2,4/5])
sage: A.permanent()
103/175
```

```
sage: R.<a> = PolynomialRing(ZZ)
sage: A = matrix(R,2,2,[a,1,a,a+1])
sage: A.permanent()
a^2 + 2*a
```

```
sage: R.<x,y> = PolynomialRing(ZZ,2)
sage: A = matrix(R,2,2,[x, y, x^2, y^2])
sage: A.permanent()
x^2*y + x*y^2
```

AUTHORS:

•Jaap Spies (2006-02-16 and 2006-02-21)

permanental_minor (k, algorithm='Ryser')

Return the permanental k-minor of this matrix.

The permanental k-minor of a matrix A is the sum of the permanents of all possible k by k submatrices of A. Note that the maximal permanental minor is just the permanent.

For a (0,1)-matrix A the permanental k-minor counts the number of different selections of k 1's of A with no two of the 1's on the same row and no two of the 1's on the same column.

See Brualdi and Ryser: Combinatorial Matrix Theory, p. 203. Note the typo $p_0(A) = 0$ in that reference! For applications see Theorem 7.2.1 and Theorem 7.2.4.

See also:

The method rook_vector() returns the list of all permanental minors.

INPUT:

- •k the size of the minor
- •algorithm either "Ryser" (default) or "ButeraPernici". The Butera-Pernici algorithm is well suited for band matrices.

```
sage: A = matrix(4,[1,0,1,0,1,0,1,0,1,0,10,10,1,0,1,1])
sage: A.permanental_minor(2)
114
```

```
sage: A = matrix(3,6,[1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1])
sage: A.permanental_minor(0)
1
sage: A.permanental_minor(1)
12
sage: A.permanental_minor(2)
```

```
40
sage: A.permanental_minor(3)
36
```

Note that if k = m = n, the permanental k-minor equals per(A):

```
sage: A.permanent()
36
```

The permanental minors of the "complement" matrix of A is related to the permanent of A:

See Theorem 7.2.1 of Brualdi and Ryser: Combinatorial Matrix Theory: per(A)

AUTHORS:

•Jaap Spies (2006-02-19)

permutation_normal_form (check=False)

Take the set of matrices that are self permuted by any row and column permutation, and return the maximal one of the set where matrices are ordered lexicographically going along each row.

INPUT:

•check - (default: False) If True return a tuple of the maximal matrix and the permutations taking taking self to the maximal matrix. If False, return only the maximal matrix.

OUTPUT:

The maximal matrix.

```
sage: M = matrix(ZZ, [[0, 0, 1], [1, 0, 2], [0, 0, 0]])
sage: M
[0 0 1]
[1 0 2]
[0 0 0]
sage: M.permutation_normal_form()
[2 1 0]
[1 0 0]
[0 0 0]
sage: M = matrix(ZZ, [[-1, 3], [-1, 5], [2, 4]])
sage: M
[-1 3]
[-1 \ 5]
[24]
sage: M.permutation_normal_form(check=True)
[5 -1]
[42]
[3 -1],
```

```
((1,2,3), (1,2))
```

pfaffian (algorithm=None, check=True)

Return the Pfaffian of self, assuming that self is an alternating matrix.

INPUT:

- •algorithm string, the algorithm to use; currently the following algorithms have been implemented:
 - -'definition' using the definition given by perfect matchings
- •check (default: True) Boolean determining whether to check self for alternatingness and squareness. This has to be set to False if self is defined over a non-discrete ring.

The Pfaffian of an alternating matrix is defined as follows:

Let A be an alternating $k \times k$ matrix over a commutative ring. (Here, "alternating" means that $A^T = -A$ and that the diagonal entries of A are zero.) If k is odd, then the Pfaffian of the matrix A is defined to be 0. Let us now define it when k is even. In this case, set n = k/2 (this is an integer). For every i and j, we denote the (i,j)-th entry of A by $a_{i,j}$. Let M denote the set of all perfect matchings of the set $\{1,2,\ldots,2n\}$ (see sage.combinat.perfect_matching.PerfectMatchings). For every matching $m \in M$, define the sign sign(m) of m by writing m as $\{\{i_1,j_1\},\{i_2,j_2\},\ldots,\{i_n,j_n\}\}$ with $i_k < j_k$ for all k, and setting sign(m) to be the sign of the permutation $(i_1,j_1,i_2,j_2,\ldots,i_n,j_n)$ (written here in one-line notation). For every matching $m \in M$, define the weight w(m) of m by writing m as $\{\{i_1,j_1\},\{i_2,j_2\},\ldots,\{i_n,j_n\}\}$ with $i_k < j_k$ for all k, and setting $w(m) = a_{i_1,j_1}a_{i_2,j_2}\cdots a_{i_n,j_n}$. Now, the Pfaffian of the matrix A is defined to be the sum

$$\sum_{m \in M} \operatorname{sign}(m) w(m).$$

The Pfaffian of A is commonly denoted by $\operatorname{Pf}(A)$. It is well-known that $(\operatorname{Pf}(A))^2 = \det A$ for every alternating matrix A, and that $\operatorname{Pf}(U^TAU) = \det U \cdot \operatorname{Pf}(A)$ for any $n \times n$ matrix U and any alternating $n \times n$ matrix A.

See [Knu1995], [DW1995] and [Rot2001], just to name three sources, for further properties of Pfaffians.

ALGORITHM:

The current implementation uses the definition given above. It checks alternatingness of the matrix self only if check is True (this is important because even if self is alternating, a non-discrete base ring might prevent Sage from being able to check this).

Todo

Implement faster algorithms, including a division-free one. Does [Rot2001], section 3.3 give one?

Check the implementation of the matchings used here for performance?

EXAMPLES:

A 3×3 alternating matrix has Pfaffian 0 independently of its entries:

```
sage: MSp = MatrixSpace(Integers(27), 3)
sage: A = MSp([0, 2, -3, -2, 0, 8, 3, -8, 0])
sage: A.pfaffian()
0
sage: parent(A.pfaffian())
Ring of integers modulo 27
```

The Pfaffian of a 2×2 alternating matrix is just its northeast entry:

```
sage: MSp = MatrixSpace(QQ, 2)
sage: A = MSp([0, 4, -4, 0])
sage: A.pfaffian()
4
sage: parent(A.pfaffian())
Rational Field
```

The Pfaffian of a 0×0 alternating matrix is 1:

```
sage: MSp = MatrixSpace(ZZ, 0)
sage: A = MSp([])
sage: A.pfaffian()
1
sage: parent(A.pfaffian())
Integer Ring
```

Let us compute the Pfaffian of a generic 4×4 alternating matrix:

The Pfaffian of an alternating matrix squares to its determinant:

AUTHORS:

•Darij Grinberg (1 Oct 2013): first (slow) implementation.

pivot_rows ()

Return the pivot row positions for this matrix, which are a topmost subset of the rows that span the row space and are linearly independent.

OUTPUT: a tuple of integers

```
sage: A = matrix(QQ,3,3, [0,0,0,1,2,3,2,4,6]); A
[0 0 0]
[1 2 3]
```

```
[2 4 6]
sage: A.pivot_rows()
(1,)
sage: A.pivot_rows() # testing cached value
(1,)
```

```
plot ( *args, **kwds)
```

A plot of this matrix.

Each (ith, jth) matrix element is given a different color value depending on its relative size compared to the other elements in the matrix.

The tick marks drawn on the frame axes denote the (ith, jth) element of the matrix.

This method just calls matrix_plot.*args and **kwds are passed to matrix_plot.

EXAMPLES:

A matrix over ZZ colored with different grey levels:

```
sage: A = matrix([[1,3,5,1],[2,4,5,6],[1,3,5,7]])
sage: A.plot()
Graphics object consisting of 1 graphics primitive
```

Here we make a random matrix over RR and use cmap='hsv' to color the matrix elements different RGB colors (see documentation for matrix_plot for more information on cmaps):

```
sage: A = random_matrix(RDF, 50)
sage: plot(A, cmap='hsv')
Graphics object consisting of 1 graphics primitive
```

Another random plot, but over GF(389):

```
sage: A = random_matrix(GF(389), 10)
sage: A.plot(cmap='Oranges')
Graphics object consisting of 1 graphics primitive
```

```
prod of row sums (cols)
```

Calculate the product of all row sums of a submatrix of A for a list of selected columns cols.

EXAMPLES:

```
sage: a = matrix(QQ, 2,2, [1,2,3,2]); a
[1 2]
[3 2]
sage: a.prod_of_row_sums([0,1])
15
```

Another example:

```
sage: a = matrix(QQ, 2,3, [1,2,3,2,5,6]); a
[1 2 3]
[2 5 6]
sage: a.prod_of_row_sums([1,2])
55
```

AUTHORS:

•Jaap Spies (2006-02-18)

pseudoinverse (algorithm=None)

Return the Moore-Penrose pseudoinverse of this matrix.

INPUT:

- •algorithm (default: guess) one of the following:
 - -"numpy" Use numpy's linalg.pinv() which is suitable over real or complex fields.
 - -"exact" Use a simple algorithm which is not numerically stable but useful over exact fields. Assume that no conjugation is needed, that the conjugate transpose is just the transpose.
 - -"exactconj" Like exact but use the conjugate transpose.

OUTPUT: a matrix

EXAMPLES:

```
sage: M = diagonal_matrix(CDF, [0, I, 1+I])
sage: M
                                     0.0]
          0.0
                       0.0
[
          0.0
                     1.0*I
                                     0.01
          0.0
                       0.0\ 1.0\ +\ 1.0 \times I]
sage: M.pseudoinverse() # tol 1e-15
          0.0
                      0.0
                                     0.0]
          0.0
                    -1.0 * I
                                     0.0]
Γ
          0.0
                       0.0\ 0.5 - 0.5 \times I1
```

We check the properties of the pseudoinverse over an exact field:

```
sage: M = random_matrix(QQ, 6, 3) * random_matrix(QQ, 3, 5)
sage: Mx = M.pseudoinverse()
sage: M * Mx * M == M
True
sage: Mx * M * Mx == Mx
True
sage: (M * Mx).is_symmetric()
True
sage: (Mx * M).is_symmetric()
True
```

Beware that the exact algorithm is not numerically stable, but the default numpy algorithm is:

```
sage: M = matrix(RR, 3, 3, [1,2,3,1/3,2/3,3/3,1/5,2/5,3/5])
sage: M.pseudoinverse() # tol 1e-15
[0.0620518477661335 0.0206839492553778 0.0124103695532267]
[ 0.124103695532267 0.0413678985107557 0.0248207391064534]
[ 0.186155543298400 0.0620518477661335 0.0372311086596801]
sage: M.pseudoinverse(algorithm="numpy") # tol 1e-15
[0.0620518477661335 0.0206839492553778 0.0124103695532267]
[ 0.124103695532267 0.0413678985107557 0.0248207391064534]
[ 0.186155543298400 0.0620518477661335 0.0372311086596801]
sage: M.pseudoinverse(algorithm="exact")
[ 0.1250000000000000 0.062500000000000 0.03125000000000000]
[ 0.2500000000000000 0.125000000000000 0.0625000000000000]
[ 0.000000000000000 0.0000000000000 0.06250000000000000]
```

When multiplying the given matrix with the pseudoinverse, the result is symmetric for the exact algorithm or hermitian for the exactconj algorithm:

For an invertible matrix, the pseudoinverse is just the inverse:

```
sage: M = matrix([[1,2], [3,4]])
sage: ~M
[ -2   1]
[ 3/2 -1/2]
sage: M.pseudoinverse()
[ -2   1]
[ 3/2 -1/2]
```

Numpy gives a strange answer due to rounding errors:

```
sage: M.pseudoinverse(algorithm="numpy") # random
[-1286742750677287/643371375338643 1000799917193445/1000799917193444]
[ 519646110850445/346430740566963 -300239975158034/600479950316067]
```

randomize (density=1, nonzero=False, *args, **kwds)

Replace a proportion of the entries of a matrix by random elements, leaving the remaining entries unchanged.

Note: The locations of the entries of the matrix to change are determined randomly, with the total number of locations determined by the density keyword. These locations are not guaranteed to be distinct. So it is possible that the same position can be chosen multiple times, especially for a very small matrix. The exception is when density = 1, in which case every entry of the matrix will be changed.

INPUT:

- •density float (default: 1); upper bound for the proportion of entries that are changed
- •nonzero Bool (default: False); if True , then new entries will be nonzero
- •*args, **kwds Remaining parameters may be passed to the random_element function of the base ring

EXAMPLES:

We construct the zero matrix over a polynomial ring.

```
sage: a = matrix(QQ['x'], 3); a
[0 0 0]
[0 0 0]
[0 0 0]
```

We then randomize roughly half the entries:

```
sage: a.randomize(0.5)
sage: a
```

```
 \begin{bmatrix} 1/2*x^2 - x - 12 & 1/2*x^2 - 1/95*x - 1/2 & 0 \\ [-5/2*x^2 + 2/3*x - 1/4 & 0 & 0] \\ -x^2 + 2/3*x & 0 & 0 \end{bmatrix}
```

Now we randomize all the entries of the resulting matrix:

We create the zero matrix over the integers:

```
sage: a = matrix(ZZ, 2); a
[0 0]
[0 0]
```

Then we randomize it; the x and y keywords, which determine the size of the random elements, are passed on to the random_element method for ZZ.

```
sage: a.randomize(x=-2^64, y=2^64)
sage: a
[-12401200298100116246    1709403521783430739]
[ -4417091203680573707    17094769731745295000]
```

rational_form (format='right', subdivide=True)

Returns the rational canonical form, also known as Frobenius form.

INPUT:

- •self a square matrix with entries from an exact field.
- •format default: 'right' one of 'right', 'bottom', 'left', 'top' or 'invariants'. The first four will cause a matrix to be returned with companion matrices dictated by the keyword. The value 'invariants' will cause a list of lists to be returned, where each list contains coefficients of a polynomial associated with a companion matrix.
- •subdivide default: 'True' if 'True' and a matrix is returned, then it contains subdivisions delineating the companion matrices along the diagonal.

OUTPUT:

The rational form of a matrix is a similar matrix composed of submatrices ("blocks") placed on the main diagonal. Each block is a companion matrix. Associated with each companion matrix is a polynomial. In rational form, the polynomial of one block will divide the polynomial of the next block (and thus, the polynomials of all subsequent blocks).

Rational form, also known as Frobenius form, is a canonical form. In other words, two matrices are similar if and only if their rational canonical forms are equal. The algorithm used does not provide the similarity transformation matrix (also known as the change-of-basis matrix).

Companion matrices may be written in one of four styles, and any such style may be selected with the format keyword. See the companion matrix constructor, sage.matrix.constructor.companion_matrix(), for more information about companion matrices.

If the 'invariants' value is used for the format keyword, then the return value is a list of lists, where each list is the coefficients of the polynomial associated with one of the companion matrices on the diagonal. These coefficients include the leading one of the monic polynomial and are ready to be coerced into any

polynomial ring over the same field (see examples of this below). This return value is intended to be the most compact representation and the easiest to use for testing equality of rational forms.

Because the minimal and characteristic polynomials of a companion matrix are the associated polynomial, it is easy to see that the product of the polynomials of the blocks will be the characteristic polynomial and the final polynomial will be the minimal polynomial of the entire matrix.

ALGORITHM:

We begin with ZigZag form, which is due to Arne Storjohann and is documented at zigzag_form(). Then we eliminate "corner" entries enroute to rational form via an additional algorithm of Storjohann's [Sto2011].

EXAMPLES:

The lists of coefficients returned with the invariants keyword are designed to easily convert to the polynomials associated with the companion matrices. This is illustrated by the construction below of the polys list. Then we can test the divisibility condition on the list of polynomials. Also the minimal and characteristic polynomials are easy to determine from this list.

```
23,
sage: A = matrix(QQ, [[ 11, 14, -15, -4, -38, -29,
                                                                       1,
                                                                                    14, -63,
                                                                                                  17,
\hookrightarrow 24
        36,
               32],
                                       6, -17, -11, -31, -43, 12,
. . . . :
                             [ 18,
                                                                             26,
                                                                                    0, -69,
\hookrightarrow13,
         17,
               24],
                                                   -8, -48, -34,
                                                                                                  26,
                             [ 11,
                                     16, -22,
                                                                        0,
                                                                             31,
                                                                                    16, -82,
. . . . :
         39,
               37],

→ 31.

                             [-8, -18,
                                             22,
                                                    10,
                                                          46,
                                                                 33,
                                                                        3, -27, -12,
                                                                                           70, -19, -
. . . . :
\rightarrow 20, -42, -31],
                             [-13, -21,
                                             16,
                                                    10,
                                                          52,
                                                                 43,
                                                                        4, -28,
                                                                                  -25,
                                                                                           89, -37, -
40, -53, -62],
                                              0,
                                                                 10,
                                                                                    -7,
                                                                                           14, -11,
. . . . :
                                                     0,
                                                            6,
                                                                        1,
                                                                               1,
\rightarrow -3, -10, -18],
                              [-9, -19,
                                             -3,
                                                          23,
                                                                 30,
                                                                              -3, -27,
                                                                                           55, -40,
                                                     4,
                                                                        8.
\rightarrow -5, -40, -69],
                                                                                            4, -14,
                                      -8,
                                             -1,
                                                    -1,
                                                            5,
                                                                 -4,
                                                                        9.
                                                                               5, -11,
\hookrightarrow -2,
       -13, -17],
                                                          19,
                                                                 -2, -1, -17,
. . . . :
                                       -2,
                                             16,
                                                    -1,
\hookrightarrow 25,
         -7, 141,
                                        7. -13.
                                                    -4. -26.
                                                                 -21.3.
                                                                             18,
                                                                                      5. -40.
. . . . :
        20,
\hookrightarrow 15,
              141,
                                                                      3,
                                                                                          15, -18,
                                       -7. -12.
                                                     4,
                                                          -1,
                                                                 18,
                                                                               8, -11,
. . . . :
\hookrightarrow17, -15, -41],
                                           -11,
                                                    -3, -26, -19, -1,
                                                                             14,
                                                                                    10, -42,
         25, 231,
\hookrightarrow 17,
                                                                                           71, -35,
                             [-16, -15,
                                               3,
                                                    10,
                                                          29,
                                                                 45, -1, -13, -19,
. . . . :
\leftrightarrow -2, -35, -65],
                                 4,
                                        2,
                                               3,
                                                    -2,
                                                          -2, -10,
                                                                        1,
                                                                               0,
                                                                                      3, -11,
. . . . :
                                                                                                   6,
\hookrightarrow -4,
          6,
               17]])
sage: A.rational_form()
    0
          -4|
                  0
                         0
                                0
                                       0 |
                                             0
                                                    0
                                                           0
                                                                  0
                                                                        0
                                                                               0
                                                                                      0
                                                                                            01
     1
            41
                  0
                         0
                                0
                                      0 |
                                             0
                                                    0
                                                           0
                                                                        0
                                                                               0
                                                                                      0
                                                                                            01
ſ
     0
            01
                  0
                         0
                                0
                                             0
                                                    0
                                                          0
                                                                 0
                                                                        0
                                                                               0
                                                                                      0
                                                                                            0.1
                                     12.1
                                0
                                             0
                                                          0
                                                                 0
                                                                               0
                                                                                            0]
     0
            01
                  1
                         0
                                                    \cap
                                                                        0
                                                                                      0
                                     -4 I
                  0
                                0
                                                          0
                                                                 0
                                                                               0
                                                                                      0
     0
            0 1
                         1
                                     -9I
                                             0
                                                    0
                                                                        0
                                                                                            01
     0
            0 |
                  0
                         0
                                1
                                             0
                                                    0
                                                           0
                                                                 0
                                                                        0
                                                                               0
                                                                                      0
                                                                                            01
Γ
     0
            0 |
                  0
                         0
                                0
                                      0 |
                                             0
                                                    0
                                                          0
                                                                 0
                                                                        0
                                                                               0
                                                                                      0 - 216
ſ
     0
            0 |
                  0
                         0
                                0
                                      0 1
                                             1
                                                    0
                                                          0
                                                                 0
                                                                        0
                                                                               0
                                                                                      0
                                                                                        108]
     0
            0 1
                  0
                         0
                                0
                                      01
                                             0
                                                    1
                                                          0
                                                                 0
                                                                        0
                                                                               0
                                                                                      0 3061
```

```
0
                          0
                               0 |
                                               1
                                                     0
                                                          0
                                                                     0 - 271
    0
                          0
                                    0
                                               0
[
         0 1
               0
                    0
                               0 |
                                          0
                                                     1
                                                          0
                                                                0
                                                                     0
                                                                        -41]
    0
         0 |
               0
                    0
                         0
                               0 |
                                    0
                                          0
                                               0
                                                     0
                                                          1
                                                               0
                                                                     0
                                                                        1341
Γ
         0 1
               0
                         0
                               0 1
                                    0
                                          0
                                               0
                                                     0
                                                                     0
    0
                    0
                                                          0
                                                               1
                                                                       -641
[
                                               0
                                                     0
         0 |
               \cap
                    \cap
                         0
                               0 |
                                    \cap
                                          \cap
                                                          Ω
                                                               0
                                                                     1
                                                                         131
    0
[
sage: R = PolynomialRing(QQ, 'x')
sage: invariants = A.rational_form(format='invariants')
sage: invariants
[4, -4, 1], [-12, 4, 9, -6, 1], [216, -108, -306, 271, 41, -134, 64, -13, 1]
sage: polys = [R(p) for p in invariants]
sage: [p.factor() for p in polys]
[(x-2)^2, (x-3) * (x+1) * (x-2)^2, (x+1)^2 * (x-3)^3 * (x-2)^3]
sage: all(polys[i].divides(polys[i+1]) for i in range(len(polys)-1))
True
sage: polys[-1] == A.minimal_polynomial(var='x')
True
sage: prod(polys) == A.characteristic_polynomial(var='x')
True
```

Rational form is a canonical form. Any two matrices are similar if and only if their rational forms are equal. By starting with Jordan canonical forms, the matrices $\mathbb C$ and $\mathbb D$ below were built as similar matrices, while $\mathbb E$ was built to be just slightly different. All three matrices have equal characteristic polynomials though $\mathbb E$'s minimal polynomial differs.

```
sage: C = matrix(QQ, [[2,
                            31, -10,
                                       -9, -125,
                                                   13,
                                                         62, -12],
. . . . :
                       [0,
                            48, -16, -16, -188,
                                                   20,
                                                         92, -16],
. . . . :
                       [0,
                              9,
                                  -1,
                                        2,
                                            -33,
                                                    5,
                                                         18,
                                                               01,
                                                              -4],
                       [0,
                            15,
                                  -5,
                                        0,
                                            -59.
                                                    7,
                                                        30.
. . . . :
                                  7,
                                             84, -10, -42,
                       [0, -21,
                                        2,
                                                               51,
. . . . :
                                            167, -17, -84,
                       [0, -42,
                                  14,
                                        8,
                                                              131.
. . . . :
                       [0, -50,
                                  17,
                                       10,
                                            199, -23, -98,
                                                             14],
. . . . :
                       [0, 15,
                                 -5,
                                       -2,
                                            -59,
                                                  7, 30, -211)
. . . . :
sage: C.minimal_polynomial().factor()
(x - 2)^2
sage: C.characteristic_polynomial().factor()
(x - 2)^8
sage: C.rational_form()
[0 -4 | 0 0 | 0 0 | 0 0]
[1 4| 0 0| 0 0| 0 0]
[ 0 0 | 0 -4 | 0 0 | 0
[ 0 0 | 1 4 | 0 0 | 0
                        0.1
    --+----
[ 0 0 | 0 0 | 0 -4 | 0 0 ]
[ 0 0 | 0 0 | 1 4 | 0
[-----]
[ 0 0 | 0 0 | 0 0 | 0 -4 ]
[ 0 0 | 0 0 | 0 0 | 1 4]
                                                      5,
                                                             7,
                                                                  -3],
sage: D = matrix(QQ, [[-4,
                                3,
                                      7,
                                            2,
                                                -4,
                                5,
                                            2,
                                                -4,
                                                      5,
                                                             7,
                       [ -6,
                                      7,
                                                                  -31,
. . . . :
                                                                 -95],
                       [ 21, -12,
                                     89,
                                          25,
                                                8,
                                                     27,
                                                            98,
. . . . :
                       [-9,
                                5,
                                    -44, -11,
                                                -3, -13,
                                                           -48,
. . . . :
                       [ 23, -13,
                                    74,
                                         21,
                                               12.
                                                     22.
                                                            85,
                                                                 -841,
. . . . :
                       [ 31, -18,
                                         38,
                                   135,
                                               12,
                                                     47,
                                                           155, -1471,
. . . . :
                       [-33, 19, -138, -39, -13, -45, -156,
. . . . :
                                                                 1511.
                                   -29,
                                         -8,
                                               -3, -10,
                                                          -34,
                       [-7,
                              4,
                                                                 3411)
```

```
sage: D.minimal_polynomial().factor()
(x - 2)^2
sage: D.characteristic_polynomial().factor()
(x - 2)^8
sage: D.rational_form()
[0.4|0.0|0.0|0.0]
[ 1 4 | 0 0 | 0 0 | 0 0]
[-----]
[ 0 0 | 0 -4 | 0 0 | 0 0 ]
[ 0 0 | 1 4 | 0 0 | 0 0]
[-----]
[ 0 0 | 0 0 | 0 -4 | 0 0 ]
[ 0 0 | 0 0 | 1 4 | 0 0]
[-----]
[ 0 0 | 0 0 | 0 0 | 0 -4 ]
[0 0|0 0|0 0|1 4]
sage: E = matrix(QQ, [[0, -8,
                             4, -6, -2,
                                         5, -3,
                                                 11],
                    [-2, -4, 2, -4, -2,
                                         4, -2,
                                                  6],
                    [ 5, 14, -7, 12, 3,
                                         -8, 6, -27],
. . . . :
                    [-3, -8,
                             7, -5, 0,
                                         2, -6, 17],
. . . . :
                    [ 0, 5, 0, 2, 4,
                                        -4, 1,
                                                  21,
. . . . :
                             5, -6, -1,
                    [-3, -7,
                                         5, -4,
                                                 141.
. . . . :
                    [6, 18, -10, 14, 4, -10, 10, -28],
. . . . :
                             4, -5, -1,
                                         3, -3, 13]])
. . . . :
                    [-2, -6,
sage: E.minimal_polynomial().factor()
(x - 2)^3
sage: E.characteristic_polynomial().factor()
(x - 2)^8
sage: E.rational_form()
[ 2| 0 0| 0 0| 0
                            0.1
[ 0 | 0 -4 | 0
                 0 | 0 0
                            0]
  0 | 1 4 | 0
                 0 | 0 0 0 1
  0 | 0 0 | 0 -4 | 0 0 01
  0 1 0
          0 | 1
               4 | 0
                        0 01
                        ----1
                       0
                 0 | 0
  0 | 0
          0 | 0
                            8]
  0 |
      0
         0 |
             0
                 0 |
                    1
                        0 -12]
         0 | 0
                 0 | 0
                       1
  0 | 0
```

The principal feature of rational canonical form is that it can be computed over any field using only field operations. Other forms, such as Jordan canonical form, are complicated by the need to determine the eigenvalues of the matrix, which can lie outside the field. The following matrix has all of its eigenvalues outside the rationals - some are irrational $(\pm \sqrt{2})$ and the rest are complex $(-1 \pm 2i)$.

```
sage: A = matrix(QQ,
....: [[-154, -3, -54, 44, 48, -244, -19, 67, -326, 85,
                                                              355,
→581],
....: [ 504, 25, 156, -145, -171, 793,
                                       99, -213, 1036, -247, -1152, -
\hookrightarrow 1865],
\dots: [ 294, -1, 112, -89, -90, 469,
                                        36, -128, 634, -160, -695, -
→11261,
....: [ -49, -32, 25,
                        7, 37, -64, -58, 12, -42, -14,
                                                               72, 🚨
→1061,
\dots: [-261, -123, 65, 47, 169, -358, -254,
                                              70, -309, -29,
                                                               454,
→673],
```

```
\dots: [-448, -123, -10, 109, 227, -668, -262, 163, -721,
                                                                   896, _
→14101,
               7, 8, -14, -17,
                                    66, 6, -23, 73, -29,
....: [ 38,
                                                                   -78, -
→143],
...: [ -96,
             10, -55,
                        37,
                              24, -168,
                                          17,
                                               56, -231,
                                                                   237,
                                                             88,
→412],
....: [ 310,
             67, 31, -81, -143, 473, 143, -122, 538, -98,
                                                                  -641, -
\hookrightarrow1029],
\dots: [ 139, -35, 99, -49, -18, 236, -41, -70, 370, -118,
                                                                 -377, -

→619],

              9, 81, -72, -81, 386, 43, -105, 508, -124, -564, -
....: [ 243,
→911],
             -3, -55, 45, 50, -245, -27, 65, -328, 77,
                                                                  365,
...: [-155,
→583]])
sage: A.characteristic_polynomial().factor()
(x^2 - 2)^2 \star (x^2 + 2 \star x + 5)^4
sage: A.eigenvalues(extend=False)
[]
sage: A.rational_form()
[ 0 -5 | 0 0 0
                     0 | 0
                                 ()
                                     0
                                             0]
                     0 | 0
[ 1 -2 | 0
              0
                  0
                                 ()
                                             01
                                             --1
0 1
     0 | 0
              0
                  0
                    10| 0
                              0
                                 0
                                     0
                                         0
                                             01
  0
      0 | 1
              0
                  \cap
                     4 | 0
                              0
                                 0
                                     0
                                         0
                                             0.1
      0 | 0
  0
              1
                  0 -3| 0
                              0
                                 0
                                     0
                                         0
                                             01
      0 | 0
  0
              0
                  1
                    -2|
                          0
                              0
                                 0
                                     0
                                         0
                                             0]
         0
                         0
  0
      0 |
              0
                  0
                      0 |
                              0
                                 0
                                     0
                                         0
Γ
  0
      0 |
         0
              0
                  0
                      0 |
                         1
                              0
                                 0
                                     0
                                         0
                                            401
         0
              0
                      0 1
                         0
                                 0
  Ω
      0.1
                  \cap
                             1
                                     0
                                         0 3]
  0
      0 | 0
              0
                  0
                      0 | 0
                                 1
                                     0
                                        0 -121
                              0
      0 | 0
              0
                0
                      0 | 0
                                 0
[ 0
                              0
                                     1
                                         0 -12]
[ 0
              0
                      0 | 0
                              0
                                 0
      0 | 0
                  0
                                     0
                                         [1 -4]
sage: F. < x > = QQ[]
sage: polys = A.rational_form(format='invariants')
sage: [F(p).factor() for p in polys]
[x^2 + 2*x + 5, (x^2 - 2) * (x^2 + 2*x + 5), (x^2 - 2) * (x^2 + 2*x + 5)^2]
```

Rational form may be computed over any field. The matrix below is an example where the eigenvalues lie outside the field.

```
sage: F.<a> = FiniteField(7^2)
sage: A = matrix(F,
....: [5*a + 3, 4*a + 1, 6*a + 2, 2*a + 5, 6, 4*a + 5, 4*a + 5,
                 5, 4*a + 4],
     a + 6,
....: [6*a + 3, 2*a + 4,
                                       6, 5*a + 5, 2*a, 5*a + 1,
                 4*a, 5*a + 6],
\hookrightarrow 1, 5*a + 2,
                                        2, 0, 3*a + 6, 5*a + 4, 5*a +
....: [3*a + 1, 6*a + 6, a + 6,
                  3, 4*a + 2],
\leftrightarrow 6, 5*a + 2,
          3*a,
                    6*a,
                             3*a,
                                       4*a, 4*a + 4, 3*a + 6,
4, 3*a + 4, 6*a + 2,
                          4*a],
                 a + 1, 4*a + 3, 6*a + 5, 5*a + 2, 5*a + 2,
....: [4*a + 5,
                                                                  6*a, 4*a +_
\leftarrow6, 6*a + 4, 5*a + 3, 3*a + 1],
           3*a,
                    6*a, 4*a + 1, 6*a + 2, 2*a + 5, 4*a + 6,
                                                                   2, a +_
. . . . : [
\hookrightarrow5, 2*a + 4, 2*a + 1, 2*a + 1],
....: [4*a + 5, 3*a + 3,
                               6, 4*a + 1, 4*a + 3, 6*a + 3,
                                                                   6, 3*a +_
~3,
          3, a + 3,
                             0],
....: [6*a + 6, a + 4, 2*a + 6, 3*a + 5, 4*a + 3,
                                                                    a, 3*a +_
                                                         2,
        5*a, 2*a + 5, 4*a + 3],
```

```
....: [3*a + 5, 6*a + 2, 4*a, a + 5,
                                                    0,
                                                            5*a, 6*a + 5, 2*a + ...
\rightarrow 1, 3*a + 1, 3*a + 5, 4*a + 2],
....: [3*a + 2, a + 3, 3*a + 6,
                                         a, 3*a + 5, 5*a + 1, 3*a + 2, a + 1
\Rightarrow3, a + 2, 6*a + 1, 3*a + 3],
....: [6*a + 6, 5*a + 1,
                                         2, 5*a + 5, 3*a + 5, 3*a + 1,
                              4*a,
          2*a, 2*a + 4, 4*a + 2]])
-2*a,
sage: A.rational_form()
                                         0
                                                 0
[a + 2] 0
→ 0
           01
[----
   ----1
                       0 a + 6|
      0 |
               0
                                         0
                                                 0
                                                                  0
           0]
                        0.6*a + 4|
                                         0
[
           0]
      0 |
               0
                        1.6*a + 4|
                                        0
[
          01
→ 0
[-----
→-----]
    0 |
               0
                                0 |
                                         0
                                                 0
                                                                  0
                                                                           0
ſ
→ 0 2*a]
[
     0 |
               0
                                0 |
                                         1
                                                 0
                                                                  0
                                                                           0
→ 0 6*a + 3]
     0 |
               0
                       0
                                01
                                         0
                                                 1
                                                          0
                                                                  0
                                                                           0
\rightarrow 0 6*a + 1]
      0 |
               0
                        0
                                0 |
                                         0
                                                 0
                                                          1
                                                                  0
                                                                           0
→ 0
      a + 2]
      0 |
                                01
                                         0
                                                                           0
\rightarrow 0 a + 6]
     0 |
               0
                        0
                                01
                                         \cap
                                                 0
                                                          0
                                                                  0
                                                                           1
\rightarrow 0 2*a + 1]
               0
                        Ω
                                         0
                                                 \cap
                                                          Λ
                                                                           0
     0 |
                                0 1
                                                                  0
\rightarrow 1 2*a + 1]
sage: invariants = A.rational_form(format='invariants')
sage: invariants
[[6*a + 5, 1], [6*a + 1, a + 3, a + 3, 1], [5*a, a + 4, a + 6, 6*a + 5, 6*a + 5,
\hookrightarrow 1, 5*a + 6, 5*a + 6, 1]]
sage: R. < x > = F[]
sage: polys = [R(p) for p in invariants]
sage: [p.factor() for p in polys]
[x + 6*a + 5, (x + 6*a + 5) * (x^2 + (2*a + 5)*x + 5*a), (x + 6*a + 5) * (x^2]
\hookrightarrow+ (2*a + 5)*x + 5*a)^3]
sage: polys[-1] == A.minimal_polynomial()
True
sage: prod(polys) == A.characteristic_polynomial()
True
sage: A.eigenvalues()
Traceback (most recent call last):
NotImplementedError: algebraic closures of finite fields are only implemented,
\hookrightarrowfor prime fields
```

Companion matrices may be selected as any one of four different types. See the documentation for the companion matrix constructor, sage.matrix.constructor.companion_matrix(), for more information.

```
sage: A = matrix(QQ, [[35, -18, -2, -45],
....: [22, -22, 12, -16],
```

```
[ 5, -12, 12,
. . . . :
                    [16, -6, -4, -23]]
. . . . :
sage: A.rational_form(format='right')
[2|0 0 0]
[--+---]
[ 0 | 0 0 10]
[0|10-1]
[ 0 | 0 1 0]
sage: A.rational_form(format='bottom')
[2|000]
[--+--]
[0|0 1 0]
[0|001]
[ 0|10 -1 0]
sage: A.rational_form(format='left')
[2|000]
[--+---]
[ 0 | 0 1 0]
[0|-101]
[ 0|10 0 0]
sage: A.rational_form(format='top')
[2|0 0 0]
[--+---]
[ 0 | 0 -1 10]
[ 0 | 1 0 0 ]
[ 0 | 0 1 0]
```

AUTHOR:

•Rob Beezer (2011-06-09)

restrict (V, check=True)

Returns the matrix that defines the action of self on the chosen basis for the invariant subspace V. If V is an ambient, returns self (not a copy of self).

INPUT:

- •V vector subspace
- •check (optional) default: True; if False may not check that V is invariant (hence can be faster).

OUTPUT: a matrix

Warning: This function returns an nxn matrix, where V has dimension n. It does *not* check that V is in fact invariant under self, unless check is True.

```
sage: V = VectorSpace(QQ, 3)
sage: M = MatrixSpace(QQ, 3)
sage: A = M([1,2,0, 3,4,0, 0,0,0])
sage: W = V.subspace([[1,0,0], [0,1,0]])
sage: A.restrict(W)
[1 2]
[3 4]
sage: A.restrict(W, check=True)
[1 2]
[3 4]
```

We illustrate the warning about invariance not being checked by default, by giving a non-invariant subspace. With the default check=False this function returns the 'restriction' matrix, which is meaningless as check=True reveals.

```
sage: W2 = V.subspace([[1,0,0], [0,1,1]])
sage: A.restrict(W2, check=False)
[1 2]
[3 4]
sage: A.restrict(W2, check=True)
Traceback (most recent call last):
...
ArithmeticError: subspace is not invariant under matrix
```

$restrict_codomain (V)$

Suppose that self defines a linear map from some domain to a codomain that contains V and that the image of self is contained in V. This function returns a new matrix A that represents this linear map but as a map to V, in the sense that if x is in the domain, then xA is the linear combination of the elements of the basis of V that equals v*self.

INPUT:

•V - vector space (space of degree self.ncols()) that contains the image of self.

See also:

```
restrict(), restrict_domain()
```

EXAMPLES:

```
sage: A = matrix(QQ, 3, [1..9])
sage: V = (QQ^3).span([[1,2,3], [7,8,9]]); V
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 -1]
[ 0 1 2]
sage: z = vector(QQ, [1, 2, 5])
sage: B = A.restrict_codomain(V); B
[1 2]
[4 5]
[7 8]
sage: z*B
(44, 52)
sage: z*A
(44, 52, 60)
sage: 44 * V.0 + 52 * V.1
(44, 52, 60)
```

$restrict_domain (V)$

Compute the matrix relative to the basis for V on the domain obtained by restricting self to V, but not changing the codomain of the matrix. This is the matrix whose rows are the images of the basis for V.

INPUT:

•V - vector space (subspace of ambient space on which self acts)

See also:

```
restrict()
```

```
sage: V = QQ^3
sage: A = matrix(QQ,3,[1,2,0,3,4,0,0,0,0])
sage: W = V.subspace([[1,0,0], [1,2,3]])
sage: A.restrict_domain(W)
[1 2 0]
[3 4 0]
sage: W2 = V.subspace_with_basis([[1,0,0], [1,2,3]])
sage: A.restrict_domain(W2)
[1 2 0]
[7 10 0]
```

right_eigenmatrix()

Return matrices D and P, where D is a diagonal matrix of eigenvalues and P is the corresponding matrix where the columns are corresponding eigenvectors (or zero vectors) so that self*P = P*D.

EXAMPLES:

```
sage: A = matrix(QQ, 3, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: D, P = A.eigenmatrix_right()
                    0
[
                    0 -1.348469228349535?
                                                              0]
Γ
                    0
                                         0 13.34846922834954?]
sage: P
                     1
                    -2 0.1303061543300932?
                                               3.069693845669907?]
                     1 -0.7393876913398137?
                                               5.139387691339814?]
sage: A * P == P * D
True
```

Because P is invertible, A is diagonalizable.

```
sage: A == P*D*(~P)
True
```

The matrix P may contain zero columns corresponding to eigenvalues for which the algebraic multiplicity is greater than the geometric multiplicity. In these cases, the matrix is not diagonalizable.

```
sage: A = jordan_block(2,3); A
[2 1 0]
[0 2 1]
[0 0 2]
sage: A = jordan_block(2,3)
sage: D, P = A.eigenmatrix_right()
sage: D
[2 0 0]
[0 2 0]
[0 0 2]
sage: P
[1 0 0]
[0 0 0]
[0 0 0]
sage: A*P == P*D
True
```

right_eigenspaces (*format='all'*, *var='a'*, *algebraic_multiplicity=False*) Compute the right eigenspaces of a matrix.

Note that eigenspaces_right() and right_eigenspaces() are identical methods. Here "right" refers to the eigenvectors being placed to the right of the matrix.

INPUT:

- •self a square matrix over an exact field. For inexact matrices consult the numerical or symbolic matrix classes.
- •format -default: None
 - -'all' attempts to create every eigenspace. This will always be possible for matrices with rational entries.
 - -'galois' for each irreducible factor of the characteristic polynomial, a single eigenspace will be output for a single root/eigenvalue for the irreducible factor.
 - -None Uses the 'all' format if the base ring is contained in an algebraically closed field which is implemented. Otherwise, uses the 'galois' format.
- •var default: 'a' variable name used to represent elements of the root field of each irreducible factor of the characteristic polynomial. If var='a', then the root fields will be in terms of a0, a1, a2,, where the numbering runs across all the irreducible factors of the characteristic polynomial, even for linear factors.
- •algebraic_multiplicity default: False whether or not to include the algebraic multiplicity of each eigenvalue in the output. See the discussion below.

OUTPUT:

If algebraic_multiplicity=False, return a list of pairs (e, V) where e is an eigenvalue of the matrix, and V is the corresponding left eigenspace. For Galois conjugates of eigenvalues, there may be just one representative eigenspace, depending on the format keyword.

If algebraic_multiplicity=True, return a list of triples (e, V, n) where e and V are as above and n is the algebraic multiplicity of the eigenvalue.

Warning: Uses a somewhat naive algorithm (simply factors the characteristic polynomial and computes kernels directly over the extension field).

EXAMPLES:

Right eigenspaces are computed from the left eigenspaces of the transpose of the matrix. As such, there is a greater collection of illustrative examples at the <code>eigenspaces_left()</code>.

We compute the right eigenspaces of a 3×3 rational matrix.

```
1 \quad 0.1303061543300932? \quad -0.7393876913398137?
(13.34846922834954?, Vector space of degree 3 and dimension 1 over Algebraic,
→Field
User basis matrix:
                   1 3.069693845669907? 5.139387691339814?])
sage: es = A.eigenspaces_right(format='galois'); es
(0, Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[1 -2 1]),
(al, Vector space of degree 3 and dimension 1 over Number Field in al with,
→defining polynomial x^2 - 12*x - 18
User basis matrix:
            1 \frac{1}{5*a1} + \frac{2}{5} \frac{2}{5*a1} - \frac{1}{5}
[
sage: es = A.eigenspaces_right(format='galois', algebraic_multiplicity=True);_
⊶es
(0, Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[1 -2 1], 1),
(al, Vector space of degree 3 and dimension 1 over Number Field in al with,

→defining polynomial x^2 - 12*x - 18
User basis matrix:
            1 \frac{1}{5*a1} + \frac{2}{5} \frac{2}{5*a1} - \frac{1}{5}, 1
sage: e, v, n = es[0]; v = v.basis()[0]
sage: delta = v*e - A*v
sage: abs(abs(delta)) < 1e-10</pre>
```

The same computation, but with implicit base change to a field:

This method is only applicable to exact matrices. The "eigenmatrix" routines for matrices with double-precision floating-point entries (RDF, CDF) are the best alternative. (Since some platforms return eigenvectors that are the negatives of those given here, this one example is not tested here.) There are also "eigenmatrix" routines for matrices with symbolic entries.

```
sage: B = matrix(RR, 3, 3, range(9))
sage: B.eigenspaces_right()
Traceback (most recent call last):
...
```

```
NotImplementedError: eigenspaces cannot be computed reliably for inexact...
→rings such as Real Field with 53 bits of precision,
consult numerical or symbolic matrix classes for other options
sage: em = B.change_ring(RDF).eigenmatrix_right()
sage: eigenvalues = em[0]; eigenvalues.dense_matrix() # abs tol 1e-13
[13.348469228349522
                                    0.0
                                                        0.0]
                                                        0.0]
                0.0 -1.348469228349534
                0.0
                                    0.0
                                                        0.0]
sage: eigenvectors = em[1]; eigenvectors # not tested
[ 0.164763817... 0.799699663... 0.408248290...]
[ 0.505774475... 0.104205787... -0.816496580...]
[ 0.846785134... -0.591288087... 0.408248290...]
sage: x, y = var('x y')
sage: S = matrix([[x, y], [y, 3*x^2]])
sage: em = S.eigenmatrix_right()
sage: eigenvalues = em[0]; eigenvalues
[3/2*x^2 + 1/2*x - 1/2*sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2)]
                                     0]
                                                         0 \ 3/2 \times x^2 + 1/2 \times x + 1/
[
\rightarrow2*sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2)]
sage: eigenvectors = em[1]; eigenvectors
                                11
[1/2*(3*x^2 - x - sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2))/y 1/2*(3*x^2 - x + y^2)]
\rightarrowsqrt (9*x^4 - 6*x^3 + x^2 + 4*y^2))/y]
```

right eigenvectors (extend=True)

Compute the right eigenvectors of a matrix.

For each distinct eigenvalue, returns a list of the form (e,V,n) where e is the eigenvalue, V is a list of eigenvectors forming a basis for the corresponding right eigenspace, and n is the algebraic multiplicity of the eigenvalue. If extend = True (the default), this will return eigenspaces over the algebraic closure of the base field where this is implemented; otherwise it will restrict to eigenvalues in the base field.

EXAMPLES: We compute the right eigenvectors of a 3×3 rational matrix.

```
sage: A = matrix(QQ, 3, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: es = A.eigenvectors_right(); es
[(0, [
(1, -2, 1)
], 1),
(-1.348469228349535?, [(1, 0.1303061543300932?, -0.7393876913398137?)], 1),
(13.34846922834954?, [(1, 3.069693845669907?, 5.139387691339814?)], 1)]
sage: A.eigenvectors_right(extend=False)
[(0, [
(1, -2, 1)
], 1)]
sage: eval, [evec], mult = es[0]
sage: delta = eval*evec - A*evec
sage: abs(abs(delta)) < 1e-10</pre>
True
```

right_kernel (*args, **kwds)

Returns the right kernel of this matrix, as a vector space or free module. This is the set of vectors x such that self*x = 0.

Note: For the left kernel, use $left_kernel()$. The method kernel() is exactly equal to $left_kernel()$.

INPUT:

- •algorithm default: 'default' a keyword that selects the algorithm employed. Allowable values are:
 - -'default' allows the algorithm to be chosen automatically
 - -'generic' naive algorithm usable for matrices over any field
 - -'flint' FLINT library code for matrices over the rationals or the integers
 - -'pari' PARI library code for matrices over number fields or the integers
 - -'padic' padic algorithm from IML library for matrices over the rationals and integers
 - -'pluq' PLUQ matrix factorization for matrices mod 2
- •basis default: 'echelon' a keyword that describes the format of the basis used to construct the right kernel. Allowable values are:
 - -'echelon': the basis matrix is returned in echelon form
 - -'pivot': each basis vector is computed from the reduced row-echelon form of self by placing a single one in a non-pivot column and zeros in the remaining non-pivot columns. Only available for matrices over fields.
 - -'LLL': an LLL-reduced basis. Only available for matrices over the integers.

OUTPUT:

A vector space or free module whose degree equals the number of columns in self and which contains all the vectors x such that self*x = 0.

If self has 0 columns, the kernel has dimension 0, while if self has 0 rows the kernel is the entire ambient vector space.

The result is cached. Requesting the right kernel a second time, but with a different basis format, will return the cached result with the format from the first computation.

Note: For more detailed documentation on the selection of algorithms used and a more flexible method for computing a basis matrix for a right kernel (rather than computing a vector space), see right_kernel_matrix(), which powers the computations for this method.

```
[ 0 0 1 0 -1 -2 -3]
[ 0 0 0 1 0 1 1]

sage: A*K.basis_matrix().transpose() == zero_matrix(QQ, 4, 4)

True
```

The default is basis vectors that form a matrix in echelon form. A "pivot basis" instead has a basis matrix where the columns of an identity matrix are in the locations of the non-pivot columns of the original matrix. This alternate format is available whenever the base ring is a field.

```
sage: A = matrix(QQ, [[0, 0, 1, 2, 2, -5, 3],
                      [-1, 5, 2, 2, 1, -7, 5],
. . . . :
                      [0, 0, -2, -3, -3, 8, -5],
. . . . :
                      [-1, 5, 0, -1, -2, 1, 0]])
. . . . :
sage: A.rref()
[1 -5 0 0 1 1 -1]
[ 0 \ 0 \ 1 \ 0 \ 0 \ -1 \ 1 ]
[ 0 0 0 1 1 -2 1]
[0 0 0 0 0 01
sage: A.nonpivots()
(1, 4, 5, 6)
sage: K = A.right_kernel(basis='pivot'); K
Vector space of degree 7 and dimension 4 over Rational Field
User basis matrix:
[5100000]
[-1 \quad 0 \quad 1 \quad 2 \quad 0 \quad 1 \quad 0]
[ 1  0  -1  -1  0  0  1]
sage: A*K.basis_matrix().transpose() == zero_matrix(QQ, 4, 4)
```

Matrices may have any field as a base ring. Number fields are computed by PARI library code, matrices over GF(2) are computed by the M4RI library, and matrices over the rationals are computed by the IML library. For any of these specialized cases, general-purpose code can be called instead with the keyword setting algorithm='generic'.

Over an arbitrary field, with two basis formats. Same vector space, different bases.

In the following test, we have to force usage of <code>Matrix_generic_dense</code>, since the option basis = 'pivot' would simply yield the same result as the previous test, if the optional meataxe package is installed.

```
sage: from sage.matrix.matrix_generic_dense import Matrix_generic_dense
sage: B = Matrix_generic_dense(A.parent(), A.list(), False, False)
sage: P = B.right_kernel(basis = 'pivot'); P
Vector space of degree 4 and dimension 2 over Finite Field in a of size 5^2
User basis matrix:
```

```
[ 4 4 1 0]
[ a + 2 3*a + 3 0 1]
```

If the optional meataxe package is installed, we again have to make sure to work with a copy of B that has the same type as $P.basis_matrix()$:

Over number fields, PARI is used by default, but general-purpose code can be requested. Same vector space, same bases, different code.:

```
sage: Q = QuadraticField(-7)
sage: a = Q.gen(0)
sage: A = matrix(Q, [[2, 5-a,
                                    15-a, 16+4*a],
                     [2+a, a, -7 + 5*a, -3+3*a]])
sage: K = A.right_kernel(algorithm='default'); K
Vector space of degree 4 and dimension 2 over Number Field in a with defining,
\rightarrowpolynomial x^2 + 7
Basis matrix:
Γ
                 1
                                    0
                                         7/88*a + 3/88 -3/176*a - 39/176]
                                    1
                                        -1/88*a - 13/88 13/176*a - 7/176]
sage: A*K.basis_matrix().transpose() == zero_matrix(Q, 2, 2)
True
sage: B = copy(A)
sage: G = A.right_kernel(algorithm='generic'); G
Vector space of degree 4 and dimension 2 over Number Field in a with defining.
\rightarrowpolynomial x^2 + 7
Basis matrix:
                                    0
                                          7/88*a + 3/88 - 3/176*a - 39/176
Γ
                 0
                                    1
                                        -1/88*a - 13/88 13/176*a - 7/176]
sage: B*G.basis_matrix().transpose() == zero_matrix(Q, 2, 2)
sage: K == G
True
```

For matrices over the integers, several options are possible. The basis can be an LLL-reduced basis or an echelon basis. The pivot basis is not available. A heuristic will decide whether to use a p-adic algorithm from the IML library or an algorithm from the PARI library. Note how specifying the algorithm can mildly influence the LLL basis.

```
sage: A = matrix(ZZ, [[0, -1, -1, 2, 9, 4, -4],
                       [-1, 1, 0, -2, -7, -1, 6],
. . . . :
                       [2, 0, 1, 0, 1, -5, -2],
. . . . :
                       [-1, -1, -1, 3, 10, 10, -9],
. . . . :
                       [-1, 2, 0, -3, -7, 1, 6]])
. . . . :
sage: A.right_kernel(basis='echelon')
Free module of degree 7 and rank 2 over Integer Ring
Echelon basis matrix:
[ 1   5   -8   3   -1   -1   -1 ]
[ 0 11 -19 5 -2 -3 -3 ]
sage: B = copy(A)
sage: B.right_kernel(basis='LLL')
Free module of degree 7 and rank 2 over Integer Ring
```

```
User basis matrix:
[ 2 -1 3 1 0 1
[-5 \ -3 \ 2 \ -5 \ 1 \ -1 \ -1]
sage: C = copy(A)
sage: C.right_kernel(basis='pivot')
Traceback (most recent call last):
ValueError: pivot basis only available over a field, not over Integer Ring
sage: D = copy(A)
sage: D.right_kernel(algorithm='pari')
Free module of degree 7 and rank 2 over Integer Ring
Echelon basis matrix:
[ 1  5  -8  3  -1  -1  -1]
  0 11 -19 5 -2 -3 -3]
sage: E = copy(A)
sage: E.right_kernel(algorithm='padic', basis='LLL')
Free module of degree 7 and rank 2 over Integer Ring
User basis matrix:
[-2 \quad 1 \quad -3 \quad -1 \quad 0 \quad -1 \quad -1]
[ 5 3 -2 5 -1 1 1]
```

Besides the integers, rings may be as general as principal ideal domains. Results are then free modules.

It is possible to compute a kernel for a matrix over an integral domain which is not a PID, but usually this will fail.

Matrices over non-commutative rings are not a good idea either. These are the "usual" quaternions.

```
sage: Q.<i,j,k> = QuaternionAlgebra(-1,-1)
sage: A = matrix(Q, 2, [i,j,-1,k])
sage: A.right_kernel()
Traceback (most recent call last):
...
NotImplementedError: Cannot compute a matrix kernel over Quaternion Algebra (-
-1, -1) with base ring Rational Field
```

Sparse matrices, over the rationals and the integers, use the same routines as the dense versions.

```
sage: A = matrix(ZZ, [[0, -1, 1, 1, 2],
                      [1, -2, 0, 1, 3],
. . . . :
                      [-1, 2, 0, -1, -3]],
. . . . :
                 sparse=True)
. . . . :
sage: A.right_kernel()
Free module of degree 5 and rank 3 over Integer Ring
Echelon basis matrix:
[ 1 0 0 2 -1 ]
[ 0 1 0 -1 1]
[0 \ 0 \ 1 \ -3 \ 1]
sage: B = A.change_ring(QQ)
sage: B.is_sparse()
True
sage: B.right_kernel()
Vector space of degree 5 and dimension 3 over Rational Field
Basis matrix:
[ 1 0 0 2 -1]
[ 0 1 0 -1 1 ]
[ 0 0 1 -3 1 ]
```

With no columns, the kernel can only have dimension zero. With no rows, every possible vector is in the kernel.

```
sage: A = matrix(QQ, 2, 0)
sage: A.right_kernel()
Vector space of degree 0 and dimension 0 over Rational Field
Basis matrix:
[]
sage: A = matrix(QQ, 0, 2)
sage: A.right_kernel()
Vector space of degree 2 and dimension 2 over Rational Field
Basis matrix:
[1 0]
[0 1]
```

Every vector is in the kernel of a zero matrix, the dimension is the number of columns.

```
sage: A = zero_matrix(QQ, 10, 20)
sage: A.right_kernel()
Vector space of degree 20 and dimension 20 over Rational Field
Basis matrix:
20 x 20 dense matrix over Rational Field
```

Results are cached as the right kernel of the matrix. Subsequent requests for the right kernel will return the cached result, without regard for new values of the algorithm or format keyword. Work with a copy if you need a new right kernel, or perhaps investigate the $right_kernel_matrix()$ method, which does not cache its results and is more flexible.

```
sage: A = matrix(QQ, 3, 3, range(9))
sage: K1 = A.right_kernel(basis='echelon')
sage: K1
Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[ 1 -2 1]
sage: K2 = A.right_kernel(basis='pivot')
sage: K2
Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
```

```
[ 1 -2 1]
sage: K1 is K2
True
sage: B = copy(A)
sage: K3 = B.kernel(basis='pivot')
sage: K3
Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1 -2 1]
sage: K3 is K1
False
sage: K3 == K1
True
```

right kernel matrix (*args, **kwds)

Returns a matrix whose rows form a basis for the right kernel of self.

INPUT:

- •algorithm default: 'default' a keyword that selects the algorithm employed. Allowable values are:
 - -'default' allows the algorithm to be chosen automatically
 - -'generic' naive algorithm usable for matrices over any field
 - -'flint' FLINT library code for matrices over the rationals or the integers
 - -'pari' PARI library code for matrices over number fields or the integers
 - -'padic' padic algorithm from IML library for matrices over the rationals and integers
 - -'pluq' PLUQ matrix factorization for matrices mod 2
- •basis default: 'echelon' a keyword that describes the format of the basis returned. Allowable values are:
 - -'echelon': the basis matrix is returned in echelon form
 - -'pivot': each basis vector is computed from the reduced row-echelon form of self by placing a single one in a non-pivot column and zeros in the remaining non-pivot columns. Only available for matrices over fields.
 - -'LLL': an LLL-reduced basis. Only available for matrices over the integers.
 - -'computed': no work is done to transform the basis, it is returned exactly as provided by whichever routine actually computed the basis. Request this for the least possible computation possible, but with no guarantees about the format of the basis.

OUTPUT:

A matrix X whose rows are an independent set spanning the right kernel of self . So self*X.transpose() is a zero matrix.

The output varies depending on the choice of algorithm and the format chosen by basis.

The results of this routine are not cached, so you can call it again with different options to get possibly different output (like the basis format). Conversely, repeated calls on the same matrix will always start from scratch.

Note: If you want to get the most basic description of a kernel, with a minimum of overhead, then ask for the right kernel matrix with the basis format requested as 'computed'. You are then free to work with the

output for whatever purpose. For a left kernel, call this method on the transpose of your matrix.

For greater convenience, plus cached results, request an actual vector space or free module with right_kernel() or left_kernel().

EXAMPLES:

Over the Rational Numbers:

Kernels are computed by the IML library in <code>_right_kernel_matrix()</code>. Setting the *algorithm* keyword to 'default', 'padic' or unspecified will yield the same result, as there is no optional behavior. The 'computed' format of the basis vectors are exactly the negatives of the vectors in the 'pivot' format.

```
sage: A = matrix(QQ, [[1, 0, 1, -3, 1],
                       [-5, 1, 0, 7, -3],
. . . . :
                       [0, -1, -4, 6, -2],
. . . . :
                       [4, -1, 0, -6, 2]])
. . . . :
sage: C = A.right_kernel_matrix(algorithm='default', basis='computed'); C
[-1 \quad 2 \quad -2 \quad -1 \quad 0]
[ 1 2 0 0 -1]
sage: A*C.transpose() == zero_matrix(QQ, 4, 2)
sage: P = A.right_kernel_matrix(algorithm='padic', basis='pivot'); P
[ 1 -2 2 1 0 ]
[-1 -2 0 0 1]
sage: A*P.transpose() == zero_matrix(QQ, 4, 2)
sage: C == -P
True
sage: E = A.right_kernel_matrix(algorithm='default', basis='echelon'); E
 1 0 1 1/2 -1/2]
   0
        1 -1/2 -1/4 -1/4]
sage: A*E.transpose() == zero_matrix(QQ, 4, 2)
```

Since the rationals are a field, we can call the general code available for any field by using the 'generic' keyword.

We verify that the rational matrix code is called for both dense and sparse rational matrices, with equal result.

```
sage: D = A.right_kernel(); D
verbose 1 (<module>) computing a right kernel for 4x5 matrix over Rational.
-Field
Vector space of degree 5 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 1 1/2 -1/2 ]
[ 0 1 -1/2 -1/4 -1/4 ]
sage: S = B.right_kernel(); S
verbose 1 (<module>) computing a right kernel for 4x5 matrix over Rational...
⊶Field
. . .
Vector space of degree 5 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 1 1/2 -1/2]
[ 0
      1 -1/2 -1/4 -1/4]
sage: set_verbose(0)
sage: D == S
True
```

Over Number Fields:

Kernels are by default computed by PARI, (except for exceptions like the rationals themselves). The raw results from PARI are a pivot basis, so the basis keywords 'computed' and 'pivot' will return the same results.

```
sage: Q = QuadraticField(-7)
sage: a = Q.gen(0)
sage: A = matrix(Q, [[2, 5-a, 15-a, 16+4*a],
                   [2+a, a, -7 + 5*a, -3+3*a]])
sage: C = A.right_kernel_matrix(algorithm='default', basis='computed'); C
   -a -3 1 0]
    -2 -a - 1
                0
                        11
sage: A*C.transpose() == zero_matrix(Q, 2, 2)
sage: P = A.right_kernel_matrix(algorithm='pari', basis='pivot'); P
                1 0]
    -a -3
    -2 -a - 1 0
                        1]
sage: A*P.transpose() == zero_matrix(Q, 2, 2)
sage: E = A.right_kernel_matrix(algorithm='default', basis='echelon'); E
                               0 7/88*a + 3/88 -3/176*a - 39/176]
               1
                                   -1/88*a - 13/88 13/176*a - 7/176]
               0
                                1
sage: A*E.transpose() == zero_matrix(Q, 2, 2)
True
```

We can bypass using PARI for number fields and use Sage's general code for matrices over any field. The basis vectors as computed are in pivot format.

We check that number fields are handled by the right routine as part of typical right kernel computation.

```
sage: Q = QuadraticField(-7)
sage: a = Q.gen(0)
sage: A = matrix(Q, [[2, 5-a, 15-a, 16+4*a], [2+a, a, -7 + 5*a, -3+3*a]])
sage: set_verbose(1)
sage: A.right_kernel(algorithm='default')
verbose ...
verbose 1 (<module>) computing right kernel matrix over a number field for...
→2x4 matrix
verbose 1 (<module>) done computing right kernel matrix over a number field.
→for 2x4 matrix
Vector space of degree 4 and dimension 2 over Number Field in a with defining.
\rightarrowpolynomial x^2 + 7
Basis matrix:
                                    \cap
                                          7/88*a + 3/88 - 3/176*a - 39/176
                 0
                                        -1/88*a - 13/88 13/176*a - 7/176]
                                    1
sage: set_verbose(0)
```

Over the Finite Field of Order 2:

Kernels are computed by the M4RI library using PLUQ matrix decomposition in the _right_kernel_matrix() method. There are no options for the algorithm used.

Since GF(2) is a field we can route this computation to the generic code and obtain the 'pivot' form of the basis. The algorithm keywords, 'pluq', 'default' and unspecified, all have the same effect as there is no optional behavior.

```
sage: A = matrix(GF(2), [[0, 1, 1, 0, 0, 0],
                        [1, 0, 0, 0, 1, 1,],
. . . . :
                        [1, 0, 0, 0, 1, 1]])
sage: P = A.right_kernel_matrix(algorithm='generic', basis='pivot'); P
[0 1 1 0 0 0]
[0 0 0 1 0 0]
[1 0 0 0 1 0]
[1 0 0 0 0 1]
sage: A*P.transpose() == zero_matrix(GF(2), 3, 4)
True
sage: DP = A.right_kernel_matrix(algorithm='default', basis='pivot'); DP
[0 1 1 0 0 0]
[0 0 0 1 0 0]
[1 0 0 0 1 0]
[1 0 0 0 0 1]
sage: A*DP.transpose() == zero_matrix(GF(2), 3, 4)
sage: A.right_kernel_matrix(algorithm='plug', basis='echelon')
[1 0 0 0 0 1]
```

```
[0 1 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 1]
```

We test that the mod 2 code is called for matrices over GF(2).

```
sage: A = matrix(GF(2),[[0, 1, 1, 0, 0, 0],
                        [1, 0, 0, 0, 1, 1,],
. . . . :
                         [1, 0, 0, 0, 1, 1]])
. . . . :
sage: set_verbose(1)
sage: A.right_kernel(algorithm='default')
verbose 1 (<module>) computing right kernel matrix over integers mod 2 for...
→3x6 matrix
verbose 1 (<module>) done computing right kernel matrix over integers mod 2...
→for 3x6 matrix
Vector space of degree 6 and dimension 4 over Finite Field of size 2
Basis matrix:
[1 0 0 0 0 1]
[0 1 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 1]
sage: set_verbose(0)
```

Over Arbitrary Fields:

For kernels over fields not listed above, totally general code will compute a set of basis vectors in the pivot format. These could be returned as a basis in echelon form.

```
sage: F.<a> = FiniteField(5^2)
sage: A = matrix(F, 3, 4, [[ 1,
                                      1+a, a^3+a^5],
                              a,
                        [ a, a^4,
                                   a+a^4, a^4+a^8],
                        [a^2, a^6, a^2+a^6, a^5+a^10]])
. . . . :
sage: P = A.right_kernel_matrix(algorithm='default', basis='pivot'); P
[ 4 4 1 0]
[ a + 2 3*a + 3
                   0
                            1]
sage: A*P.transpose() == zero_matrix(F, 3, 2)
sage: E = A.right_kernel_matrix(algorithm='default', basis='echelon'); E
     1
            0 3*a + 4 2*a + 21
            1 2*a 3*a + 3]
    0
sage: A*E.transpose() == zero_matrix(F, 3, 2)
True
```

This general code can be requested for matrices over any field with the algorithm keyword 'generic'. Normally, matrices over the rationals would be handled by specific routines from the IML library. The default format is an echelon basis, but a pivot basis may be requested, which is identical to the computed basis.

We test that the generic code is called for matrices over fields, lacking any more specific routine.

```
sage: F.<a> = FiniteField(5^2)
sage: A = matrix(F, 3, 4, [[ 1,
                                         1+a, a^3+a^5,
                                 a,
                                      a+a^4, a^4+a^8],
                           [ a, a^4,
. . . . :
                           [a^2, a^6, a^2+a^6, a^5+a^10]
. . . . :
sage: set verbose(1)
sage: A.right_kernel(algorithm='default')
verbose ...
verbose 1 (<module>) computing right kernel matrix over an arbitrary field,
→for 3x4 matrix
Vector space of degree 4 and dimension 2 over Finite Field in a of size 5^2
Basis matrix:
               0.3*a + 4.2*a + 21
      1
      0
                     2*a 3*a + 3]
              1
sage: set_verbose(0)
```

Over the Integers:

Either the IML or PARI libraries are used to provide a set of basis vectors. The algorithm keyword can be used to select either, or when set to 'default' a heuristic will choose between the two. Results can be returned in the 'compute' format, straight out of the libraries. Unique to the integers, the basis vectors can be returned as an LLL basis. Note the similarities and differences in the results. The 'pivot' format is not available, since the integers are not a field.

```
sage: A = matrix(ZZ, [[8, 0, 7, 1, 3, 4, 6],
                    [4, 0, 3, 4, 2, 7, 7],
. . . . :
                    [1, 4, 6, 1, 2, 8, 5],
                    [0, 3, 1, 2, 3, 6, 2]])
. . . . :
sage: X = A.right_kernel_matrix(algorithm='default', basis='echelon'); X
[ 1 12 3 14 -3 -10 1]
[ 0 35
         0 25 -1 -31 17]
    0
         7 12 -3 -1 -8]
sage: A*X.transpose() == zero_matrix(ZZ, 4, 3)
True
sage: X = A.right_kernel_matrix(algorithm='padic', basis='LLL'); X
[ -3 -1 5 7 2 -3 -2]
     1 2 5 -5 2 -6]
                5 7 -3]
[-4 -13
          2 -7
sage: A*X.transpose() == zero_matrix(ZZ, 4, 3)
sage: X = A.right_kernel_matrix(algorithm='pari', basis='computed'); X
[ -3 -1 5 7 2 -3 -2]
[ 3 1 2 5 -5 2 -6]
         2 -7 5 7 -3]
[-4 -13]
sage: A*X.transpose() == zero_matrix(ZZ, 4, 3)
True
```

We test that the code for integer matrices is called for matrices defined over the integers, both dense and sparse, with equal result.

```
sage: A = matrix(ZZ, [[8, 0, 7, 1, 3, 4, 6],
                     [4, 0, 3, 4, 2, 7, 7],
. . . . :
. . . . :
                     [1, 4, 6, 1, 2, 8, 5],
                     [0, 3, 1, 2, 3, 6, 2]],
                sparse=False)
sage: B = copy(A).sparse_matrix()
sage: set_verbose(1)
sage: D = A.right_kernel(); D
verbose 1 (<module>) computing a right kernel for 4x7 matrix over Integer Ring
verbose 1 (<module>) computing right kernel matrix over the integers for 4x7,
⊶matrix
verbose 1 (<module>) done computing right kernel matrix over the integers for_
→4x7 matrix
Free module of degree 7 and rank 3 over Integer Ring
Echelon basis matrix:
[ 1 12 3 14 -3 -10
                         11
[ 0 35 0 25 -1 -31 17]
     0 7 12 -3 -1 -81
sage: S = B.right_kernel(); S
verbose 1 (<module>) computing a right kernel for 4x7 matrix over Integer Ring
verbose 1 (<module>) computing right kernel matrix over the integers for 4x7,
→matrix
. . .
verbose 1 (<module>) done computing right kernel matrix over the integers for,
→4x7 matrix
. . .
Free module of degree 7 and rank 3 over Integer Ring
Echelon basis matrix:
[ 1 12 3 14 -3 -10
                         11
[ 0 35 0 25 -1 -31 17]
     0
         7 12 -3 -1 -8]
sage: set_verbose(0)
sage: D == S
True
```

Over Principal Ideal Domains:

Kernels can be computed using Smith normal form. Only the default algorithm is available, and the 'pivot' basis format is not available.

```
True
```

It can be computationally expensive to determine if an integral domain is a principal ideal domain. The Smith normal form routine can fail for non-PIDs, as in this example.

```
sage: D.<x> = ZZ[]
sage: A = matrix(D, 2, 2, [[x^2 - x, -x + 5],
....: [x^2 - 8, -x + 2]])
sage: A.right_kernel_matrix()
Traceback (most recent call last):
...
ArithmeticError: Ideal Ideal (x^2 - x, x^2 - 8) of Univariate Polynomial Ring_
→in x over Integer Ring not principal
```

We test that the domain code is called for domains that lack any extra structure.

```
sage: R. < y > = QQ[]
sage: A = matrix(R, [[ 1,
                           y, 1+y^2],
                     [y^3, y^2, 2*y^3]
sage: set_verbose(1)
sage: A.right_kernel(algorithm='default', basis='echelon')
verbose ...
verbose 1 (<module>) computing right kernel matrix over a domain for 2x3,
⊶mat.rix
verbose 1 (<module>) done computing right kernel matrix over a domain for 2x3,
⊶matrix
. . .
Free module of degree 3 and rank 1 over Univariate Polynomial Ring in y over,
→Rational Field
Echelon basis matrix:
[-1 -y 1]
sage: set_verbose(0)
```

Trivial Cases:

We test two trivial cases. Any possible values for the keywords (algorithm, basis) will return identical results.

```
sage: A = matrix(ZZ, 0, 2)
sage: A.right_kernel_matrix()
[1 0]
[0 1]
sage: A = matrix(FiniteField(7), 2, 0)
sage: A.right_kernel_matrix().parent()
Full MatrixSpace of 0 by 0 dense matrices over Finite Field of size 7
```

AUTHOR:

```
•Rob Beezer (2011-02-05)
```

right_nullity()

Return the right nullity of this matrix, which is the dimension of the right kernel.

```
sage: A = MatrixSpace(QQ,3,2)(range(6))
sage: A.right_nullity()
0
```

```
sage: A = matrix(ZZ,3,3,range(9))
sage: A.right_nullity()
1
```

rook_vector (algorithm='ButeraPernici', complement=False, use_complement=None)
Return the rook vector of this matrix.

Let A be an m by n (0,1)-matrix. We identify A with a chessboard where rooks can be placed on the fields (i,j) with $A_{i,j}=1$. The number $r_k=p_k(A)$ (the permanental k-minor) counts the number of ways to place k rooks on this board so that no rook can attack another.

The *rook vector* of the matrix A is the list consisting of r_0, r_1, \ldots, r_h , where h = min(m, n). The *rook polynomial* is defined by $r(x) = \sum_{k=0}^{h} r_k x^k$.

The rook vector can be generalized to matrices defined over any rings using permanental minors. Among the available algorithms, only "Godsil" needs the condition on the entries to be either 0 or 1.

See Wikipedia article Rook_polynomial for more information and also the method permanental_minor() to compute individual permanental minor.

See also sage.matrix.matrix2.permanental_minor_polynomial and the graph method matching_polynomial.

INPUT:

- •self an m by n matrix
- •algorithm a string which must be either "Ryser" or "ButeraPernici" (default) or "Godsil"; Ryser one might be faster on simple and small instances. Godsil only accepts input in 0,1.
- •complement boolean (default: False) whether we consider the rook vector of the complement matrix. If set to True then the matrix must have entries in {0, 1} and the complement matrix is the one for which the 0's are replaced by 1's and 1's by 0's.
- •use_complement Boolean (default: None) whether to compute the rook vector of a (0,1)-matrix from its complement. By default this is determined by the density of ones in the matrix.

EXAMPLES:

The standard chessboard is an 8 by 8 grid in which any positions is allowed. In that case one gets that the number of ways to position 4 non-attacking rooks is 117600 while for 8 rooks it is 40320:

```
sage: ones_matrix(8,8).rook_vector()
[1, 64, 1568, 18816, 117600, 376320, 564480, 322560, 40320]
```

These numbers are the coefficients of a modified Laguerre polynomial:

```
sage: x = polygen(QQ)
sage: factorial(8) * laguerre(8,-x)
x^8 + 64*x^7 + 1568*x^6 + 18816*x^5 + 117600*x^4 + 376320*x^3 +
564480*x^2 + 322560*x + 40320
```

The number of derangements of length n is the permanent of a matrix with 0 on the diagonal and 1 elsewhere; for n=21 it is 18795307255050944540 (see OEIS sequence A000166):

```
sage: A = identity_matrix(21) sage: A.rook_vector(complement=True)[-1] 18795307255050944540 sage: Derangements(21).cardinality() 18795307255050944540
```

An other example that we convert into a rook polynomial:

```
sage: A = matrix(3,6, [1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1])
sage: A
[1 1 1 1 0 0]
[0 1 1 1 1 1 0]
[0 0 1 1 1 1]
sage: A.rook_vector()
[1, 12, 40, 36]

sage: R = PolynomialRing(ZZ, 'x')
sage: R(A.rook_vector())
36*x^3 + 40*x^2 + 12*x + 1
```

Different algorithms are available:

```
sage: A = matrix([[1,0,0,1],[0,1,1,0],[0,1,1,0],[1,0,0,1]])
sage: A.rook_vector(algorithm="ButeraPernici")
[1, 8, 20, 16, 4]
sage: A.rook_vector(algorithm="Ryser")
[1, 8, 20, 16, 4]
sage: A.rook_vector(algorithm="Godsil")
[1, 8, 20, 16, 4]
```

When the matrix A has more ones then zeroes it is usually faster to compute the rook polynomial of the complementary matrix, with zeroes and ones interchanged, and use the inclusion-exclusion theorem, giving for a $m \times n$ matrix A with complementary matrix B

$$r_k(A) = \sum_{j=0}^{k} (-1)^j \binom{m-j}{k-j} \binom{n-j}{k-j} (k-j)! r_j(B)$$

see [Rio1958] or the introductory text [AS2011]. This can be done setting the argument use_complement to True.

An example with an exotic matrix (for which only Butera-Pernici and Ryser algorithms are available):

AUTHORS:

- •Jaap Spies (2006-02-24)
- •Mario Pernici (2014-07-01)

row_module (base_ring=None)

Return the free module over the base ring spanned by the rows of self.

EXAMPLES:

```
sage: A = MatrixSpace(IntegerRing(), 2)([1,2,3,4])
sage: A.row_module()
Free module of degree 2 and rank 2 over Integer Ring
Echelon basis matrix:
[1 0]
[0 2]
```

row reduced form (transformation=None)

This function computes a row reduced form of a matrix over a rational function field k(x), where k is a field.

A matrix M over k(x) is row reduced if the (row-wise) leading term matrix of dM has the same rank as M, where $d \in k[x]$ is a minimal degree polynomial such that dM is in k[x]. The (row-wise) leading term matrix of a polynomial matrix M_0 is matrix over k whose (i, j) th entry is the x^{d_i} coefficient of $M_0[i, j]$, where d_i is the greatest degree among polynomials in the ith row of M_0 .

INPUT:

•transformation — A boolean (default: False). If this is set to True , the transformation matrix U will be returned as well: this is an invertible matrix over k(x) such that self equals UW, where W is the output matrix.

OUTPUT:

ullet W - a matrix over the same ring as self (i.e. either k(x) or k[x] for a field k) giving a row reduced form of self .

EXAMPLES:

The routine expects matrices over the rational function field. One can also provide matrices over the ring of polynomials (whose quotient field is the rational function field).

If self is an $n \times 1$ matrix with at least one non-zero entry, W has a single non-zero entry and that entry is a scalar multiple of the greatest-common-divisor of the entries of self.

```
sage: M1 = matrix([[t*(t-1)*(t+1)],[t*(t-2)*(t+2)],[t]])
sage: output1 = M1.row_reduced_form()
sage: output1
[0]
[0]
[t]
```

We check that the output is the same for a matrix M if its entries are rational functions instead of polynomials. We also check that the type of the output follows the documentation. See trac ticket #9063

```
sage: M2 = M1.change_ring(K)
sage: output2 = M2.row_reduced_form()
sage: output1 == output2
```

```
True
sage: output1.base_ring() is R
True
sage: output2.base_ring() is K
True
```

The following is the first half of example 5 in [Hes2002] *except* that we have transposed self; [Hes2002] uses column operations and we use row.

The next example demonstrates what happens when self is a zero matrix.

```
sage: R.<t> = GF(5)['t']
sage: K = FractionField(R)
sage: M = matrix([[K(0),K(0)],[K(0),K(0)]])
sage: M.row_reduced_form()
[0 0]
[0 0]
```

In the following example, self has more rows than columns.

```
sage: R.<t> = QQ['t']
sage: M = matrix([[t,t,t],[0,0,t]])
sage: M.row_reduced_form()
[ t  t  t]
[-t -t  0]
```

The next example shows that M must be a matrix with coefficients in k(t) or in k[t] for some field k.

The last example shows the usage of the transformation parameter.

NOTES:

•For consistency with LLL and other algorithms in Sage, we have opted for row operations; however, some references e.g. [Hes2002] transpose and use column operations.

REFERENCES:

- •[Hes2002]
- •[Kal1980]

row_space (base_ring=None)

Return the row space of this matrix. (Synonym for self.row_module().)

EXAMPLES:

```
sage: t = matrix(QQ, 3, 3, range(9)); t
[0 1 2]
[3 4 5]
[6 7 8]
sage: t.row_space()
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 -1]
[ 0 1 2]
```

```
sage: m = Matrix(Integers(5),2,2,[2,2,2,2]);
sage: m.row_space()
Vector space of degree 2 and dimension 1 over Ring of integers modulo 5
Basis matrix:
[1 1]
```

rref (*args, **kwds)

Return the reduced row echelon form of the matrix, considered as a matrix over a field.

If the matrix is over a ring, then an equivalent matrix is constructed over the fraction field, and then row reduced.

All arguments are passed on to echelon_form().

Note: Because the matrix is viewed as a matrix over a field, every leading coefficient of the returned matrix will be one and will be the only nonzero entry in its column.

```
sage: A=matrix(3,range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: A.rref()
[ 1 0 -1]
```

```
[ 0 1 2]
[ 0 0 0]
```

Note that there is a difference between rref() and echelon_form() when the matrix is not over a field (in this case, the integers instead of the rational numbers):

```
sage: A.base_ring()
Integer Ring
sage: A.echelon_form()
[ 3  0 -3]
[ 0  1  2]
[ 0  0  0]

sage: B=random_matrix(QQ,3,num_bound=10); B
[ -4  -3  6]
[ 5  -5  9/2]
[ 3/2  -4  -7]
sage: B.rref()
[ 1  0  0]
[ 0  1  0]
[ 0  0  1]
```

In this case, since B is a matrix over a field (the rational numbers), rref() and echelon_form() are exactly the same:

```
sage: B.echelon_form()
[1 0 0]
[0 1 0]
[0 0 1]
sage: B.echelon_form() is B.rref()
True
```

Since echelon_form() is not implemented for every ring, sometimes behavior varies, as here:

```
sage: R.<x>=ZZ[]
sage: C = matrix(3, [2, x, x^2, x+1, 3-x, -1, 3, 2, 1])
sage: C.rref()
[1 0 0]
[0 1 0]
[0 0 1]
sage: C.base_ring()
Univariate Polynomial Ring in x over Integer Ring
sage: C.echelon form()
Traceback (most recent call last):
NotImplementedError: Ideal Ideal (2, x + 1) of Univariate Polynomial Ring in.
→x over Integer Ring not principal
Echelon form not implemented over 'Univariate Polynomial Ring in x over.
→Integer Ring'.
sage: C = matrix(3, [2, x, x^2, x+1, 3-x, -1, 3, 2, 1/2])
sage: C.echelon_form()
                                     2
[
                                                                            Х
                       x^2]
\hookrightarrow
Γ
                                     0
                                                                            1
\hookrightarrow 15 \times x^2 - 3/2 \times x - 31/21
                                                                            0 5/2*x^3 -_
\hookrightarrow 15/4 \times x^2 - 9/4 \times x + 7/21
sage: C.rref()
```

```
[1 0 0]

[0 1 0]

[0 0 1]

sage: C = matrix(3,[2,x,x^2,x+1,3-x,-1/x,3,2,1/2])

sage: C.echelon_form()

[1 0 0]

[0 1 0]

[0 0 1]
```

set block (row, col, block)

Sets the sub-matrix of self, with upper left corner given by row, col to block.

EXAMPLES:

```
sage: A = matrix(QQ, 3, 3, range(9))/2
sage: B = matrix(ZZ, 2, 1, [100,200])
sage: A.set_block(0, 1, B)
sage: A
[ 0 100   1]
[3/2 200 5/2]
[ 3 7/2   4]
```

We test that an exception is raised when the block is out of bounds:

```
sage: matrix([1]).set_block(0,1,matrix([1]))
Traceback (most recent call last):
...
IndexError: matrix window index out of range
```

smith_form ()

If self is a matrix over a principal ideal domain R, return matrices D, U, V over R such that D = U * self * V, U and V have unit determinant, and D is diagonal with diagonal entries the ordered elementary divisors of self, ordered so that $D_i \mid D_{i+1}$. Note that U and V are not uniquely defined in general, and D is defined only up to units.

INPUT:

•self - a matrix over an integral domain. If the base ring is not a PID, the routine might work, or else it will fail having found an example of a non-principal ideal. Note that we do not call any methods to check whether or not the base ring is a PID, since this might be quite expensive (e.g. for rings of integers of number fields of large degree).

ALGORITHM: Lifted wholesale from http://en.wikipedia.org/wiki/Smith_normal_form

See also:

```
elementary_divisors()
```

AUTHORS:

•David Loeffler (2008-12-05)

EXAMPLES:

An example over the ring of integers of a number field (of class number 1):

```
sage: OE.<w> = EquationOrder(x^2 - x + 2)
sage: m = Matrix([ [1, w], [w, 7]])
sage: d, u, v = m.smith_form()
sage: (d, u, v)
(
```

```
[    1     0] [ 1     0] [ 1 -w]
[    0 -w + 9], [-w    1], [ 0     1]
)
sage: u * m * v == d
True
sage: u.base_ring() == v.base_ring() == d.base_ring() == OE
True
sage: u.det().is_unit() and v.det().is_unit()
True
```

An example over the polynomial ring QQ[x]:

An example over a field:

```
sage: m = matrix( GF(17), 3, 3, [11,5,1,3,6,8,1,16,0]); d,u,v = m.smith_form()
sage: d
[1 0 0]
[0 1 0]
[0 0 0]
sage: u*m*v == d
True
```

Some examples over non-PID's work anyway:

Others don't, but they fail quite constructively:

```
sage: matrix(R,2,2,[s-1,-s-2,-2*s,-s-2]).smith_form()
Traceback (most recent call last):
...
ArithmeticError: Ideal Fractional ideal (2, s + 1) not principal
```

Empty matrices are handled safely:

```
sage: m = MatrixSpace(OE, 2,0)(0); d,u,v=m.smith_form(); u*m*v == d
True
sage: m = MatrixSpace(OE, 0,2)(0); d,u,v=m.smith_form(); u*m*v == d
True
sage: m = MatrixSpace(OE, 0,0)(0); d,u,v=m.smith_form(); u*m*v == d
True
```

Some pathological cases that crashed earlier versions:

solve_left (B, check=True)

If self is a matrix A, then this function returns a vector or matrix X such that XA = B. If B is a vector then X is a vector and if B is a matrix, then X is a matrix.

INPUT:

- •B a matrix
- •check bool (default: True) if False and self is nonsquare, may not raise an error message even if there is no solution. This is faster but more dangerous.

EXAMPLES:

```
sage: A = matrix(QQ,4,2, [0, -1, 1, 0, -2, 2, 1, 0])
sage: B = matrix(QQ,2,2, [1, 0, 1, -1])
sage: X = A.solve_left(B)
sage: X*A == B
True
```

solve_right (B, check=True)

If self is a matrix A, then this function returns a vector or matrix X such that AX = B. If B is a vector then X is a vector and if B is a matrix, then X is a matrix.

Note: In Sage one can also write $A \rightarrow B$ for $A.solve_right(B)$, i.e., Sage implements the "the MATLAB/Octave backslash operator".

INPUT:

- •B a matrix or vector
- •check bool (default: True) if False and self is nonsquare, may not raise an error message even if there is no solution. This is faster but more dangerous.

OUTPUT: a matrix or vector

See also:

```
solve_left()
```

EXAMPLES:

```
sage: A = matrix(QQ, 3, [1,2,3,-1,2,5,2,3,1])
sage: b = vector(QQ,[1,2,3])
sage: x = A \ b; x
(-13/12, 23/12, -7/12)
sage: A * x
(1, 2, 3)
```

We solve with A nonsquare:

Another nonsingular example:

```
sage: A = matrix(QQ,2,3, [1,2,3,2,4,6]); v = vector([-1/2,-1])
sage: x = A \ v; x
(-1/2, 0, 0)
sage: A*x == v
True
```

Same example but over \mathbf{Z} :

```
sage: A = matrix(ZZ,2,3, [1,2,3,2,4,6]); v = vector([-1,-2])
sage: A \ v
(-1, 0, 0)
```

An example in which there is no solution:

```
sage: A = matrix(QQ,2,3, [1,2,3,2,4,6]); v = vector([1,1])
sage: A \ v
Traceback (most recent call last):
...
ValueError: matrix equation has no solutions
```

A ValueError is raised if the input is invalid:

```
sage: A = matrix(QQ,4,2, [0, -1, 1, 0, -2, 2, 1, 0])
sage: B = matrix(QQ,2,2, [1, 0, 1, -1])
sage: X = A.solve_right(B)
Traceback (most recent call last):
...
ValueError: number of rows of self must equal number of rows of B
```

We solve with A singular:

```
sage: A = matrix(QQ,2,3, [1,2,3,2,4,6]); B = matrix(QQ,2,2, [6, -6, 12, -12])
sage: X = A.solve_right(B); X
[ 6 -6]
[ 0    0]
[ 0    0]
sage: A*X == B
True
```

We illustrate left associativity, etc., of the backslash operator.

```
sage: A = matrix(QQ, 2, [1,2,3,4])
sage: A \ A
[1 0]
[0 1]
sage: A \ A \ A
```

```
[1 2]
[3 4]
sage: A.parent()(1) \ A
[1 2]
[3 4]
sage: A \ (A \ A)
[ -2   1]
[ 3/2 -1/2]
sage: X = A \ (A - 2); X
[ 5 -2]
[-3  2]
sage: A * X
[-1  2]
[ 3  2]
```

Solving over a polynomial ring:

```
sage: x = polygen(QQ, 'x')
sage: A = matrix(2, [x,2*x,-5*x^2+1,3])
sage: v = vector([3,4*x - 2])
sage: X = A \ v
sage: X
((-8*x^2 + 4*x + 9)/(10*x^3 + x), (19*x^2 - 2*x - 3)/(10*x^3 + x))
sage: A * X == v
True
```

Solving some systems over $\mathbf{Z}/n\mathbf{Z}$:

```
sage: A = Matrix(Zmod(6), 3, 2, [1,2,3,4,5,6])
sage: B = vector(Zmod(6), [1,1,1])
sage: A.solve_right(B)
(5, 1)
sage: B = vector(Zmod(6), [5,1,1])
sage: A.solve_right(B)
Traceback (most recent call last):
ValueError: matrix equation has no solutions
sage: A = Matrix(Zmod(128), 2, 3, [23,11,22,4,1,0])
sage: B = Matrix(Zmod(128), 2, 1, [1,0])
sage: A.solve_right(B)
[ 1]
[124]
[ 1]
sage: B = B.column(0)
sage: A.solve_right(B)
(1, 124, 1)
```

Solving a system over the p-adics:

```
sage: k = Qp(5,4)
sage: a = matrix(k, 3, [1,7,3,2,5,4,1,1,2]); a
[    1 + O(5^4) 2 + 5 + O(5^4) 3 + O(5^4)]
[    2 + O(5^4) 5 + O(5^5) 4 + O(5^4)]
[    1 + O(5^4) 1 + O(5^4) 2 + O(5^4)]
sage: v = vector(k, 3, [1,2,3])
sage: x = a \ v; x
(4 + 5 + 5^2 + 3*5^3 + O(5^4), 2 + 5 + 3*5^2 + 5^3 + O(5^4), 1 + 5 + O(5^4))
sage: a * x == v
```

```
True
```

Solving a system of linear equation symbolically using symbolic matrices:

```
sage: var('a,b,c,d,x,y')
(a, b, c, d, x, y)
sage: A=matrix(SR,2,[a,b,c,d]); A
[a b]
[c d]
sage: result=vector(SR,[3,5]); result
(3, 5)
sage: soln=A.solve_right(result)
sage: soln
(-b*(3*c/a - 5)/(a*(b*c/a - d)) + 3/a, (3*c/a - 5)/(b*c/a - d))
sage: (a*x+b*y).subs(x=soln[0],y=soln[1]).simplify_full()
3
sage: (c*x+d*y).subs(x=soln[0],y=soln[1]).simplify_full()
5
sage: (A*soln).apply_map(lambda x: x.simplify_full())
(3, 5)
```

subdivide (row_lines=None, col_lines=None)

Divides self into logical submatrices which can then be queried and extracted. If a subdivision already exists, this method forgets the previous subdivision and flushes the cache.

INPUT:

- •row_lines None, an integer, or a list of integers (lines at which self must be split).
- •col_lines None, an integer, or a list of integers (columns at which self must be split).

OUTPUT: changes self

Note: One may also pass a tuple into the first argument which will be interpreted as (row_lines, col_lines)

```
sage: M = matrix(5, 5, prime_range(100))
sage: M.subdivide(2,3); M
[2 3 5 | 7 11]
[13 17 19|23 29]
[----]
[31 37 41|43 47]
[53 59 61|67 71]
[73 79 83|89 97]
sage: M.subdivision(0,0)
[2 3 5]
[13 17 19]
sage: M.subdivision(1,0)
[31 37 41]
[53 59 61]
[73 79 83]
sage: M.subdivision_entry(1,0,0,0)
sage: M.subdivisions()
([2], [3])
sage: M.subdivide(None, [1,3]); M
[2|3 5|7 11]
```

```
[13|17 19|23 29]
[31|37 41|43 47]
[53|59 61|67 71]
[73|79 83|89 97]
```

Degenerate cases work too:

```
sage: M.subdivide([2,5], [0,1,3]); M
[| 2| 3 5| 7 11]
[|13|17 19|23 29]
[+--+---]
[|31|37 41|43 47]
[|53|59 61|67 71]
[|73|79 83|89 97]
[+--+---]
sage: M.subdivision(0,0)
[]
sage: M.subdivision(0,1)
[2]
[13]
sage: M.subdivide([2,2,3], [0,0,1,1]); M
[|| 2|| 3 5 7 11]
[||13||17 19 23 29]
[++--+1
[++--++]
[||31||37 41 43 47]
[++--+
[||53||59 61 67 71]
[||73||79 83 89 97]
sage: M.subdivision(0,0)
sage: M.subdivision(2,4)
[37 41 43 47]
```

Indices do not need to be in the right order (trac ticket #14064):

AUTHORS:

•Robert Bradshaw (2007-06-14)

${\tt subdivision}\ (\ i,j)$

Returns an immutable copy of the (i,j)th submatrix of self, according to a previously set subdivision.

Before a subdivision is set, the only valid arguments are (0,0) which returns self.

```
sage: M = matrix(3, 4, range(12))
sage: M.subdivide(1,2); M
[ 0 1 | 2 3]
```

```
[----+---]
[ 4 5 | 6 7]
[ 8 9 | 10 11]
sage: M.subdivision(0,0)
[0 1]
sage: M.subdivision(0,1)
[2 3]
sage: M.subdivision(1,0)
[4 5]
[8 9]
```

It handles size-zero subdivisions as well.

```
sage: M = matrix(3, 4, range(12))
sage: M.subdivide([0],[0,2,2,4]); M
[+----++----+]
[| 0    1 || 2   3 |]
[| 4   5 || 6   7 |]
[| 8   9 || 10  11 |]
sage: M.subdivision(0,0)
[]
sage: M.subdivision(1,1)
[0   1]
[4   5]
[8   9]
sage: M.subdivision(1,2)
[]
sage: M.subdivision(1,0)
[]
sage: M.subdivision(0,1)
[]
```

$subdivision_entry(i, j, x, y)$

Returns the x,y entry of the i,j submatrix of self.

EXAMPLES:

Even though this entry exists in the matrix, the index is invalid for the submatrix.

```
sage: M.subdivision_entry(0,0,4,0)
Traceback (most recent call last):
...
IndexError: Submatrix 0,0 has no entry 4,0
```

subdivisions ()

Returns the current subdivision of self.

EXAMPLES:

```
sage: M = matrix(5, 5, range(25))
sage: M.subdivisions()
([], [])
sage: M.subdivide(2,3)
sage: M.subdivisions()
([2], [3])
sage: N = M.parent()(1)
sage: N.subdivide(M.subdivisions()); N
[1 0 0|0 0]
[0 1 0|0 0]
[----+--]
[0 0 1|0 0]
[0 0 0|1 0]
[0 0 0|0 1]
```

subs (*args, **kwds)

Substitute values to the variables in that matrix.

All the arguments are transmitted unchanged to the method subs of the coefficients.

EXAMPLES:

```
sage: var('a,b,d,e')
(a, b, d, e)
sage: m = matrix([[a,b], [d,e]])
sage: m.substitute(a=1)
[1 b]
[d e]
sage: m.subs(a=b, b=d)
[b d]
[d e]
sage: m.subs({a: 3, b:2, d:1, e:-1})
[ 3 2]
[ 1 -1]
```

The parent of the newly created matrix might be different from the initial one. It depends on what the method .subs does on coefficients (see trac ticket #19045):

```
sage: x = polygen(ZZ)
sage: m = matrix([[x]])
sage: m2 = m.subs(x=2)
sage: m2.parent()
Full MatrixSpace of 1 by 1 dense matrices over Integer Ring
sage: m1 = m.subs(x=RDF(1))
sage: m1.parent()
Full MatrixSpace of 1 by 1 dense matrices over Real Double Field
```

However, sparse matrices remain sparse:

```
sage: m = matrix({(3,2): -x, (59,38): x^2+2}, nrows=1000, ncols=1000)
sage: m1 = m.subs(x=1)
sage: m1.is_sparse()
True
```

symplectic_form ()

Find a symplectic form for self if self is an anti-symmetric, alternating matrix defined over a field.

Returns a pair (F, C) such that the rows of C form a symplectic basis for self and F = C * self * C.transpose().

Raises a ValueError if not over a field, or self is not anti-symmetric, or self is not alternating.

Anti-symmetric means that $M = -M^t$. Alternating means that the diagonal of M is identically zero.

A symplectic basis is a basis of the form $e_1, \ldots, e_i, f_1, \ldots, f_i, z_1, \ldots, z_k$ such that

```
•z_i M v^t = 0 for all vectors v
```

$$\bullet e_i M e_j^t = 0$$
 for all i, j

•
$$f_i M f_i^t = 0$$
 for all i, j

•
$$e_i M f_i^{\ t} = 1$$
 for all i

•
$$e_i M f_j^t = 0$$
 for all i not equal j .

See the example for a pictorial description of such a basis.

EXAMPLES:

```
sage: E = matrix(QQ, 8, 8, [0, -1/2, -2, 1/2, 2, 0, -2, 1, 1/2, 0, -1, -3, 0, ]
→2, 5/2, -3, 2, 1, 0, 3/2, -1, 0, -1, -2, -1/2, 3, -3/2, 0, 1, 3/2, -1/2, -1/
\rightarrow2, -2, 0, 1, -1, 0, 0, 1, -1, 0, -2, 0, -3/2, 0, 0, 1/2, -2, 2, -5/2, 1, 1/
\hookrightarrow 2, -1, -1/2, 0, -1, -1, 3, 2, 1/2, 1, 2, 1, 0]); E
 0 -1/2 -2 1/2
                     2
                        0
      0
           -1
               -3
                      0
          0 3/2
        1
                     -1
                         0 -1
        3 - 3/2
                    1 3/2 -1/2 -1/2]
[-1/2]
                0
  -2
       0
          1
                -1
                      0 0 1
            0 -3/2
      -2
                     0
   0
                        0 1/2
          1 1/2
  2 -5/2
                     -1 -1/2 0
                                   -11
            2 1/2
  -1
        3
                     1 2
sage: F, C = E.symplectic_form(); F
[0 0 0 0 1 0 0 0]
 0 0 0 0 0 1 0 01
       0 0 0 0 1 01
0 ]
    0
       0 0 0 0 0 11
    0
\lceil -1 \rceil
    0
       0 0 0 0 0 01
[ 0 -1
       0
         0
            0
               0
[ 0 0 -1
         0
            0
               0
[ 0 \ 0 \ 0 \ -1 \ 0 \ 0 \ 0]
sage: F == C * E * C.transpose()
True
```

tensor_product (A, subdivide=True)

Returns the tensor product of two matrices.

INPUT:

- •A a matrix
- •subdivide default: True whether or not to return natural subdivisions with the matrix

OUTPUT:

Replace each element of self by a copy of A, but first create a scalar multiple of A by the element it replaces. So if self is an $m \times n$ matrix and A is a $p \times q$ matrix, then the tensor product is an $mp \times nq$ matrix. By default, the matrix will be subdivided into submatrices of size $p \times q$.

EXAMPLES:

```
sage: M1=Matrix(QQ,[[-1,0],[-1/2,-1]])
sage: M2=Matrix(ZZ,[[1,-1,2],[-2,4,8]])
sage: M1.tensor_product(M2)
0]
[ 2 -4 -8| 0
                    0 01
[-1/2 \quad 1/2 \quad -1 | \quad -1 \quad 1 \quad -2]
\begin{bmatrix} 1 & -2 & -4 \end{bmatrix} 2 -4
sage: M2.tensor_product(M1)
[ -1
      0 | 1 0 | -2
                           0]
[-1/2]
       -1 | 1/2
                  1 |
                     -1
                           -21
[-----
                 --+----1
        0 | -4
                0 | -8
   1
        21 -2
                 -4 \mid -4
                           -81
```

Subdivisions can be optionally suppressed.

```
sage: M1.tensor_product(M2, subdivide=False)
[ -1
          -2 0
      1
                   0
                         0.1
  2
           -8
               0
                     0
                         01
      -4
[-1/2 	 1/2
           -1
              -1
                    1
                        -21
               2
  1
      -2.
           -4
                   -4
                        -8]
```

Different base rings are handled sensibly.

The input is checked to be sure it is a matrix.

```
sage: A = matrix(QQ, 2, 2, range(4))
sage: A.tensor_product('junk')
Traceback (most recent call last):
...
TypeError: tensor product requires a second matrix, not junk
```

trace ()

Return the trace of self, which is the sum of the diagonal entries of self.

INPUT:

•self - a square matrix

OUTPUT: element of the base ring of self

EXAMPLES:

```
sage: a = matrix(3,3,range(9)); a
[0 1 2]
[3 4 5]
[6 7 8]
sage: a.trace()
12
sage: a = matrix({(1,1):10, (2,1):-3, (2,2):4/3}); a
[ 0 0 0]
[ 0 10 0]
[ 0 -3 4/3]
sage: a.trace()
34/3
```

trace_of_product (other)

Returns the trace of self * other without computing the entire product.

EXAMPLES:

```
sage: M = random_matrix(ZZ, 10, 20)
sage: N = random_matrix(ZZ, 20, 10)
sage: M.trace_of_product(N)
-1629
sage: (M*N).trace()
-1629
```

visualize_structure (maxsize=512)

Visualize the non-zero entries

White pixels are put at positions with zero entries. If 'maxsize' is given, then the maximal dimension in either x or y direction is set to 'maxsize' depending on which is bigger. If the image is scaled, the darkness of the pixel reflects how many of the represented entries are nonzero. So if e.g. one image pixel actually represents a 2x2 submatrix, the dot is darker the more of the four values are nonzero.

INPUT:

•maxsize - integer (default: 512). Maximal dimension in either x or y direction of the resulting image. If None or a maxsize larger than max(self.nrows(), self.ncols()) is given the image will have the same pixelsize as the matrix dimensions.

OUTPUT:

Bitmap image as an instance of Image.

EXAMPLES:

```
sage: M = random_matrix(CC, 5, 7)
sage: for i in range(5): M[i,i] = 0
sage: M[4, 0] = M[0, 6] = M[4, 6] = 0
sage: img = M.visualize_structure(); img
7x5px 24-bit RGB image
```

You can use save () to save the resulting image:

```
sage: filename = tmp_filename(ext='.png')
sage: img.save(filename)
sage: open(filename).read().startswith('\x89PNG')
True
```

wiedemann (i, t=0)

Application of Wiedemann's algorithm to the i-th standard basis vector.

INPUT:

- •i an integer
- •t an integer (default: 0) if t is nonzero, use only the first t linear recurrence relations.

IMPLEMENTATION: This is a toy implementation.

EXAMPLES:

```
sage: t = matrix(QQ, 3, 3, range(9)); t
[0 1 2]
[3 4 5]
[6 7 8]
sage: t.wiedemann(0)
x^2 - 12*x - 18
sage: t.charpoly()
x^3 - 12*x^2 - 18*x
```

zigzag_form (subdivide=True, transformation=False)

Find a matrix in ZigZag form that is similar to self.

INPUT:

- •self a square matrix with entries from an exact field.
- •transformation default: False if True return a change-of-basis matrix relating the matrix and its ZigZag form.
- •subdivide default: True if True the ZigZag form matrix is subdivided according to the companion matrices described in the output section below.

OUTPUT:

A matrix in ZigZag form has blocks on the main diagonal that are companion matrices. The first companion matrix has ones just below the main diagonal. The last column has the negatives of coefficients of a monic polynomial, but not the leading one. Low degree monomials have their coefficients in the earlier rows. The second companion matrix is like the first only transposed. The third is like the first. The fourth is like the second. And so on.

These blocks on the main diagonal define blocks just off the diagonal. To the right of the first companion matrix, and above the second companion matrix is a block that is totally zero, except the entry of the first row and first column may be a one. Below the second block and to the left of the third block is a block that is totally zero, except the entry of the first row and first column may be one. This alternating pattern continues. It may now be apparent how this form gets its name. Any other entry of the matrix is zero. So this form is reminiscent of rational canonical form and is a good precursor to that form.

If transformation is True, then the output is a pair of matrices. The first is the form Z and the second is an invertible matrix U such that U.inverse()*self*U equals Z. In other words, the representation of self with respect to the columns of U will be Z.

If subdivide is True then the matrix returned as the form is partitioned according to the companion matrices and these may be manipulated by several different matrix methods.

For output that may be more useful as input to other routines, see the helper method _zigzag_form()

Note: An effort has been made to optimize computation of the form, but no such work has been done for the computation of the transformation matrix, so for fastest results do not request the transformation

matrix.

ALGORITHM:

ZigZag form, and its computation, are due to Arne Storjohann and are described in [Sto2000] and [Sto1998], where the former is more representative of the code here.

EXAMPLES:

Two examples that illustrate ZigZag form well. Notice that this is *not* a canonical form. The two matrices below are similar, since they have equal Jordan canonical forms, yet their ZigZag forms are quite different. In other words, while the computation of the form is deterministic, the final result, when viewed as a property of a linear transformation, is dependent on the basis used for the matrix representation.

```
sage: A = matrix(QQ, [[-68,
                                  69, -27, -11, -65,
                                                          9, -181, -321,
                         [-52,
                                  52, -27,
                                             -8, -52, -16, -133, -14],
. . . . :
                         [ 92,
                                -97,
                                       47,
                                             14, 90,
                                                        32,
                                                              241,
                                                                     18],
. . . . :
                         [139, -144,
                                       60,
                                             18, 148, -10,
                                                              362,
. . . . :
                                -41,
                                       12,
                                             6, 45, -24,
                                                              105,
. . . . :
                         [ 40,
                         [-46,
                                  48, -20,
                                             -7, -47,
                                                         0, -122, -22],
. . . . :
                         [-26,
                                  27, -13,
                                             -4, -29,
                                                        -6,
                                                              -66, -14],
. . . . :
                                             -5, -35,
                         [-33,
                                  34, -13,
                                                         7,
                                                             -87, -2311)
. . . . :
sage: Z, U = A.zigzag_form(transformation=True)
sage: Z
[ 0
       0
            0
               40|
                     1
                          01
                              0
                                   0]
   1
       0
            0
               52|
                     0
                          0 |
                              0
                                   01
            0
               181
                          0 |
                              0
                                   01
               -1|
   0
       \cap
            0
                 0 | 0
                                   0.1
                          1 |
                 0|-25
   0
        0
            0
                        10|
            0
                 0 | 1
                          0 |
                              0 -41
      0
            0
                0 | 0
                         0 |
sage: U.inverse() *A*U == Z
True
sage: B = matrix(QQ, [[16,
                                 69, -13,
                                             2, -52,
                                                       143,
                                                               90,
                        [ 26,
                                54,
                                      6,
                                           -5, -28,
                                                       73,
                                                               73, -48],
. . . . :
                         [-16, -79,
                                      12, -10,
                                                 64, -142, -115,
                         [ 27,
                                -7,
                                      21, -33,
                                                  39,
                                                       -20,
                                                              -42,
. . . . :
                                                                     431,
                                      34, -32,
                                                  86, -156, -130,
                            8. -75.
                                                                     42],
. . . . :
                            2, -17,
                                                       -33,
                                                              -31,
                                       7,
                                           -8,
                                                  20,
                                                                     161,
. . . . :
                                       7,
                                           -3,
                                                  56, -136, -112,
                         [-24, -80,
. . . . :
                                                                     421,
                                            -1,
                         [-6, -19,
                                                       -28,
                                                             -27,
                                                                     15]])
. . . . :
                                       0,
                                                  13,
sage: Z, U = B.zigzag_form(transformation=True)
sage: Z
    0
          0
                0
                     0
                           0 10001
                                      0 1
                                            01
    1
          0
                0
                     0
                           0
                              9001
                                      01
                                            01
          1
                0
                     0
                           0
                              -301
    0
                                      01
                                            01
          0
                           0 -153|
    0
                1
                     0
                                      0 |
                                            0.1
          0
    0
                0
                     1
                           0
                                3 |
                                      0 |
                                            01
    0
          0
                0
                     0
                           1
                                 91
                     0
                           0
                                0 | -2 |
Γ
                                    1| -21
          0
                           0
                                0 |
    0
               0
                    0
sage: U.inverse()*B*U == Z
True
```

```
sage: A.jordan_form() == B.jordan_form()
True
```

Two more examples, illustrating the two extremes of the zig-zag nature of this form. The first has a one in each of the off-diagonal blocks, the second has all zeros in each off-diagonal block. Notice again that the two matrices are similar, since their Jordan canonical forms are equal.

```
sage: C = matrix(QQ, [[2,
                          31, -10,
                                    -9, -125,
                                               13,
                                                    62, -12],
                          48, -16, -16, -188,
                                               20,
                                                    92, -16],
. . . . :
                      [0,
                                     2, -33,
                                              5,
                      [0,
                               -1,
                          9.
                                                   18,
                                                          01.
. . . . :
                               -5,
                                                   30,
                      [0,
                                     0, -59,
                         15,
                                              7,
                                                        -4],
. . . . :
                                    2,
                                                        5],
                      [0, -21,
                               7,
                                         84, -10, -42,
                                        167, -17, -84, 13],
                      [0, -42,
                              14,
                                    8,
. . . . :
. . . . :
                     [0, -50, 17, 10, 199, -23, -98, 14],
                     [0, 15, -5, -2, -59, 7, 30, -2]])
sage: Z, U = C.zigzag_form(transformation=True)
sage: Z
[2|1|0|0|0|0|0|0]
\lceil -+-+-+-+-+-+-\rceil
[0|2|0|0|0|0|0|0]
[-+-+-+-+-
[0|1|2|1|0|0|0|0]
[-+-+-+-+-+-]
[0|0|0|2|0|0|0|0]
[-+-+-+-+-+-+-]
[0|0|0|1|2|1|0|0]
[-+-+-+-+-
[0|0|0|0|0|2|0|0]
[-+-+-+-+-]
[0|0|0|0|0|1|2|1]
[-+-+-+-+-]
[0|0|0|0|0|0|0|2]
sage: U.inverse()*C*U == Z
True
                             3,
                                   7,
                                        2,
                                                        7,
sage: D = matrix(00, [[-4,
                                            -4,
                                                  5,
                                                             -31,
                           5,
                                  7,
                                       2,
                                                5,
                                                        7,
                     ſ −6,
                                           -4,
                                                             -3],
                     [ 21, -12,
                                 89,
                                      25,
                                            8,
                                                27,
                                                           -95],
                                                       98,
                     [-9, 5, -44, -11,
                                            -3, -13,
                                                     -48,
                                                           47],
                     [ 23, -13,
                                 74, 21, 12, 22,
                                                     85,
                                                           -84],
                     [ 31, -18, 135, 38, 12, 47, 155, -147],
. . . . :
                     [-33, 19, -138, -39, -13, -45, -156, 151],
. . . . :
                            4, -29, -8, -3, -10, -34,
                     [-7,
                                                           3411)
. . . . :
sage: Z, U = D.zigzag_form(transformation=True)
sage: Z
[0.4|0.0|0.0|0.0]
[ 1 4 | 0 0 | 0 0 | 0 0]
[----+
[ 0 0 | 0 1 | 0 0 | 0 0]
[ 0 0 | -4 4 | 0 0 | 0 0 ]
[-----]
[ \ 0 \ \ 0 \ | \ 0 \ \ 0 \ | \ 0 \ \ -4 \ | \ 0 \ \ 0 \ ]
[ 0 0 | 0 0 | 1 4 | 0 0 ]
[-----]
[0 0|0 0|0 0|0 1]
[ 0 \ 0 | 0 \ 0 | 0 \ 0 | -4 \ 4 ]
sage: U.inverse()*D*U == Z
```

```
True
sage: C.jordan_form() == D.jordan_form()
True
```

ZigZag form is achieved entirely with the operations of the field, so while the eigenvalues may lie outside the field, this does not impede the computation of the form.

```
sage: F. < a > = GF(5^4)
                            a, 0, 0, a + 3],
sage: A = matrix(F, [[
                            0,a<sup>2</sup> + 1, 0, 0],
0, 0,a<sup>3</sup>, 0],
                     [
. . . . :
                           0, 0,a^3,
                      [
. . . . :
                      [a^2 +4]
                                   0, 0, a + 2]])
. . . . :
sage: A.zigzag_form()
                      0 a^3 + 2*a^2 + 2*a + 2
[
                                                                      0 |
           0]
1
                                      2*a + 2|
                                                                      01
           01
   -----]
                      0
                                              0 |
                                                                   a^3|
           0]
                                              0 1
                                                                     0 1
    a^2 + 1
sage: A.eigenvalues()
Traceback (most recent call last):
NotImplementedError: algebraic closures of finite fields are only implemented.
→for prime fields
```

Subdivisions are optional.

```
sage: F. < a > = GF(5^4)
                        a, 0, 0, a + 3],
sage: A = matrix(F, [[
                         0,a^2 + 1, 0, 0],
                   [
                        0, 0,a^3,
                   [
                                          0],
                   [a^2 +4]
                               0, 0, a + 2]])
sage: A.zigzag_form(subdivide=False)
                   0 a^3 + 2*a^2 + 2*a + 2
                                                             0
[
          01
[
                   1
                                  2*a + 2
                                                             0
          0]
                   0
                                        0
                                                           a^3
          0]
                   0
                                        0
                                                             0
    a^2 + 11
```

AUTHOR:

•Rob Beezer (2011-06-09)

```
sage.matrix.matrix2. cmp_pivots ( x, y)
```

Compare two sequences of pivot columns.

- •If x is shorter than y, return -1, i.e., x < y, "not as good".
- •If x is longer than y, x > y, "better".

•If the length is the same then x is better, i.e., x > y if the entries of x are correspondingly >= those of y with one being greater.

```
sage.matrix.matrix2. decomp_seq ( v)
```

This function is used internally be the decomposition matrix method. It takes a list of tuples and produces a sequence that is correctly sorted and prints with carriage returns.

```
sage: from sage.matrix.matrix2 import decomp_seq
sage: V = [(QQ^3, 2), (QQ^2, 1)]
sage: decomp_seq(V)
[
(Vector space of dimension 2 over Rational Field, 1),
(Vector space of dimension 3 over Rational Field, 2)
]
```

GENERIC ASYMPTOTICALLY FAST STRASSEN ALGORITHMS

Sage implements asymptotically fast echelon form and matrix multiplication algorithms.

class sage.matrix.strassen. int_range (indices=None, range=None)
 Represent a list of integers as a list of integer intervals.

Note: Repetitions are not considered.

Useful class for dealing with pivots in the strassen echelon, could have much more general application INPUT:

It can be one of the following:

- •indices integer, start of the unique interval
- •range integer, length of the unique interval

OR

•indices - list of integers, the integers to wrap into intervals

OR

•indices - None (default), shortcut for an empty list

OUTPUT:

An instance of int_range, i.e. a list of pairs (start, length).

EXAMPLES:

From a pair of integers:

```
sage: from sage.matrix.strassen import int_range
sage: int_range(2, 4)
[(2, 4)]
```

Default:

```
sage: int_range()
[]
```

From a list of integers:

```
sage: int_range([1,2,3,4])
[(1, 4)]
sage: int_range([1,2,3,4,6,7,8])
[(1, 4), (6, 3)]
```

```
sage: int_range([1,2,3,4,100,101,102])
[(1, 4), (100, 3)]
sage: int_range([1,1000,2,101,3,4,100,102])
[(1, 4), (100, 3), (1000, 1)]
```

Repetitions are not considered:

```
sage: int_range([1,2,3])
[(1, 3)]
sage: int_range([1,1,1,1,2,2,2,3])
[(1, 3)]
```

AUTHORS:

•Robert Bradshaw

intervals ()

Return the list of intervals.

OUTPUT:

A list of pairs of integers.

EXAMPLES:

```
sage: from sage.matrix.strassen import int_range
sage: I = int_range([4,5,6,20,21,22,23])
sage: I.intervals()
[(4, 3), (20, 4)]
sage: type(I.intervals())
<... 'list'>
```

to_list()

Return the (sorted) list of integers represented by this object.

OUTPUT:

A list of integers.

EXAMPLES:

```
sage: from sage.matrix.strassen import int_range
sage: I = int_range([6,20,21,4,5,22,23])
sage: I.to_list()
[4, 5, 6, 20, 21, 22, 23]
```

```
sage: I = int_range(34, 9)
sage: I.to_list()
[34, 35, 36, 37, 38, 39, 40, 41, 42]
```

Repetitions are not considered:

```
sage: I = int_range([1,1,1,1,2,2,2,3])
sage: I.to_list()
[1, 2, 3]
```

```
sage.matrix.strassen. strassen_echelon (A, cutoff)
```

Compute echelon form, in place. Internal function, call with M.echelonize(algorithm="strassen") Based on work of Robert Bradshaw and David Harvey at MSRI workshop in 2006.

INPUT:

- •A matrix window
- •cutoff size at which algorithm reverts to naive Gaussian elimination and multiplication must be at least 1.

OUTPUT: The list of pivot columns

EXAMPLES:

```
→0, -1, 0, 0, -1, 0, 1, 2, -1, 1, 0, -1, 0, 1, 3, -1, 1, 0, 0, -2, 0, 2, 0, 1, __
\rightarrow 0, 0, -1, 0, 1, 0, 1])
sage: B = A.__copy__(); B._echelon_strassen(1); B
[1 0 0 0 0 0 0]
[ 0 1 0 -1 0 1 0]
[0 0 1 0 0 0 0]
[0 0 0 0 1 0 0]
0 0 ]
     0 0 0 0
               1]
0 0
     0 0 0 0
               01
[00000000]
sage: C = A.__copy__(); C._echelon_strassen(2); C == B
sage: C = A.__copy__(); C._echelon_strassen(4); C == B
True
```

```
sage: n = 32; A = matrix(Integers(389),n,range(n^2))
sage: B = A.__copy__(); B._echelon_in_place_classical()
sage: C = A.__copy__(); C._echelon_strassen(2)
sage: B == C
True
```

```
sage: A = matrix(Integers(7), 4, 4, [1,0,5,0,2,0,3,6,5,1,2,6,4,6,1,1])
sage: B = A.__copy__(); B._echelon_in_place_classical()
sage: C = A.__copy__(); C._echelon_strassen(2) #indirect doctest
sage: B == C
True
```

AUTHORS:

•Robert Bradshaw

```
sage.matrix.strassen.strassen_window_multiply (C, A, B, cutoff)
```

Multiplies the submatrices specified by A and B, places result in C. Assumes that A and B have compatible dimensions to be multiplied, and that C is the correct size to receive the product, and that they are all defined over the same ring.

Uses strassen multiplication at high levels and then uses MatrixWindow methods at low levels. EXAMPLES: The following matrix dimensions are chosen especially to exercise the eight possible parity combinations that could occur while subdividing the matrix in the strassen recursion. The base case in both cases will be a (4x5) matrix times a (5x6) matrix.

```
sage: A = MatrixSpace(Integers(2^65), 64, 83).random_element()
sage: B = MatrixSpace(Integers(2^65), 83, 101).random_element()
sage: A._multiply_classical(B) == A._multiply_strassen(B, 3) #indirect doctest
True
```

AUTHORS:

David Harvey

```
•Simon King (2011-07): Improve memory efficiency; trac ticket #11610

sage.matrix.strassen.test (n, m, R, c=2)

INPUT:

•n - integer

•m - integer

•R - ring

•c - integer (optional, default:2)
```

```
sage: from sage.matrix.strassen import test
sage: for n in range(5):
...: print("{} {}".format(n, test(2*n,n,Frac(QQ['x']),2)))
0 True
1 True
2 True
3 True
4 True
```

MINIMAL POLYNOMIALS OF LINEAR RECURRENCE SEQUENCES

AUTHORS:

· William Stein

```
sage.matrix.berlekamp_massey.berlekamp_massey ( a)
```

Use the Berlekamp-Massey algorithm to find the minimal polynomial of a linearly recurrence sequence a.

The minimal polynomial of a linear recurrence $\{a_r\}$ is by definition the unique monic polynomial g, such that if $\{a_r\}$ satisfies a linear recurrence $a_{j+k}+b_{j-1}a_{j-1+k}+\cdots+b_0a_k=0$ (for all $k\geq 0$), then g divides the polynomial $x^j+\sum_{i=0}^{j-1}b_ix^i$.

INPUT:

•a - a list of even length of elements of a field (or domain)

OUTPUT:

•Polynomial - the minimal polynomial of the sequence (as a polynomial over the field in which the entries of a live)

```
sage: berlekamp_massey([1,2,1,2,1,2])
x^2 - 1
sage: berlekamp_massey([GF(7)(1),19,1,19])
x^2 + 6
sage: berlekamp_massey([2,2,1,2,1,191,393,132])
x^4 - 36727/11711*x^3 + 34213/5019*x^2 + 7024942/35133*x - 335813/1673
sage: berlekamp_massey(prime_range(2,38))
x^6 - 14/9*x^5 - 7/9*x^4 + 157/54*x^3 - 25/27*x^2 - 73/18*x + 37/9
```


CHAPTER

ELEVEN

BASE CLASS FOR DENSE MATRICES

```
class sage.matrix.matrix_dense. Matrix_dense
    Bases: sage.matrix.matrix.Matrix
```

antitranspose ()

Returns the antitranspose of self, without changing self.

EXAMPLES:

```
sage: A = matrix(2,3,range(6)); A
[0 1 2]
[3 4 5]
sage: A.antitranspose()
[5 2]
[4 1]
[3 0]
```

```
sage: A.subdivide(1,2); A
[0 1|2]
[---+-]
[3 4|5]
sage: A.antitranspose()
[5|2]
[-+-]
[4|1]
[3|0]
```

transpose ()

Returns the transpose of self, without changing self.

EXAMPLES: We create a matrix, compute its transpose, and note that the original matrix is not changed.

```
sage: M = MatrixSpace(QQ, 2)
sage: A = M([1,2,3,4])
sage: B = A.transpose()
sage: print(B)
[1 3]
[2 4]
sage: print(A)
[1 2]
[3 4]
```

. T is a convenient shortcut for the transpose:

```
sage: A.T
[1 3]
[2 4]
```

```
sage: A.subdivide(None, 1); A
[1|2]
[3|4]
sage: A.transpose()
[1 3]
[---]
[2 4]
```

BASE CLASS FOR SPARSE MATRICES

```
class sage.matrix.matrix_sparse. Matrix_sparse
    Bases: sage.matrix.matrix.Matrix
    antitranspose ()
    apply_map (phi, R=None, sparse=True)
```

Apply the given map phi (an arbitrary Python function or callable object) to this matrix. If R is not given, automatically determine the base ring of the resulting matrix.

INPUT: sparse – False to make the output a dense matrix; default True

•phi - arbitrary Python function or callable object

•R - (optional) ring

OUTPUT: a matrix over R

EXAMPLES:

An example where the codomain is explicitly specified.

```
sage: n = m.apply_map(lambda x:x%3, GF(3))
sage: n.parent()
Full MatrixSpace of 10000 by 10000 sparse matrices over Finite Field of size 3
sage: n[1,2]
2
```

If we didn't specify the codomain, the resulting matrix in the above case ends up over ZZ again:

```
sage: n = m.apply_map(lambda x:x%3)
sage: n.parent()
Full MatrixSpace of 10000 by 10000 sparse matrices over Integer Ring
sage: n[1,2]
2
```

If self is subdivided, the result will be as well:

```
sage: m = matrix(2, 2, [0, 0, 3, 0])
sage: m.subdivide(None, 1); m
[0|0]
[3|0]
sage: m.apply_map(lambda x: x*x)
[0|0]
[9|0]
```

If the map sends zero to a non-zero value, then it may be useful to get the result as a dense matrix.

```
sage: m = matrix(ZZ, 3, 3, [0] * 7 + [1,2], sparse=True); m
[0 0 0]
[0 0 0]
[0 1 2]
sage: parent(m)
Full MatrixSpace of 3 by 3 sparse matrices over Integer Ring
sage: n = m.apply_map(lambda x: x+polygen(QQ), sparse=False); n
        X
                X
    Х
         X
                x]
    x x + 1 x + 2
sage: parent(n)
Full MatrixSpace of 3 by 3 dense matrices over Univariate Polynomial Ring in.,
→x over Rational Field
```

apply_morphism (phi)

Apply the morphism phi to the coefficients of this sparse matrix.

The resulting matrix is over the codomain of phi.

INPUT:

•phi - a morphism, so phi is callable and phi.domain() and phi.codomain() are defined. The codomain must be a ring.

OUTPUT: a matrix over the codomain of phi

EXAMPLES:

```
sage: m = matrix(ZZ, 3, range(9), sparse=True)
sage: phi = ZZ.hom(GF(5))
sage: m.apply_morphism(phi)
[0 1 2]
[3 4 0]
[1 2 3]
sage: m.apply_morphism(phi).parent()
Full MatrixSpace of 3 by 3 sparse matrices over Finite Field of size 5
```

augment (right, subdivide=False)

Return the augmented matrix of the form:

```
[self | right].
```

```
sage: M = MatrixSpace(QQ, 2, 2, sparse=True)
sage: A = M([1,2, 3,4])
sage: A
[1 2]
```

```
[3 4]
sage: N = MatrixSpace(QQ, 2, 1, sparse=True)
sage: B = N([9,8])
sage: B
[9]
[8]
sage: A.augment(B)
[1 2 9]
[3 4 8]
sage: B.augment(A)
[9 1 2]
[8 3 4]
```

A vector may be augmented to a matrix.

```
sage: A = matrix(QQ, 3, 4, range(12), sparse=True)
sage: v = vector(QQ, 3, range(3), sparse=True)
sage: A.augment(v)
[ 0  1  2  3  0]
[ 4  5  6  7  1]
[ 8  9 10 11  2]
```

The subdivide option will add a natural subdivision between self and right. For more details about how subdivisions are managed when augmenting, see sage.matrix.matrix1.Matrix.augment().

```
sage: A = matrix(QQ, 3, 5, range(15), sparse=True)
sage: B = matrix(QQ, 3, 3, range(9), sparse=True)
sage: A.augment(B, subdivide=True)
[ 0 1 2 3 4 | 0 1 2]
[ 5 6 7 8 9 | 3 4 5]
[10 11 12 13 14 | 6 7 8]
```

change_ring (ring)

Return the matrix obtained by coercing the entries of this matrix into the given ring.

Always returns a copy (unless self is immutable, in which case returns self).

EXAMPLES:

```
sage: A = matrix(QQ['x,y'], 2, [0,-1,2*x,-2], sparse=True); A
[ 0 -1]
[2*x -2]
sage: A.change_ring(QQ['x,y,z'])
[ 0 -1]
[2*x -2]
```

Subdivisions are preserved when changing rings:

```
charpoly (var='x', **kwds)
```

Return the characteristic polynomial of this matrix.

Note - the generic sparse charpoly implementation in Sage is to just compute the charpoly of the corresponding dense matrix, so this could use a lot of memory. In particular, for this matrix, the charpoly will be computed using a dense algorithm.

EXAMPLES:

```
sage: A = matrix(ZZ, 4, range(16), sparse=True)
sage: A.charpoly()
x^4 - 30*x^3 - 80*x^2
sage: A.charpoly('y')
y^4 - 30*y^3 - 80*y^2
sage: A.charpoly()
x^4 - 30*x^3 - 80*x^2
```

density()

Return the density of the matrix.

By density we understand the ratio of the number of nonzero positions and the self.nrows() * self.ncols(), i.e. the number of possible nonzero positions.

EXAMPLES:

```
sage: a = matrix([[],[],[],[]], sparse=True); a.density()
0
sage: a = matrix(5000,5000,{(1,2): 1}); a.density()
1/25000000
```

determinant (**kwds)

Return the determinant of this matrix.

Note: the generic sparse determinant implementation in Sage is to just compute the determinant of the corresponding dense matrix, so this could use a lot of memory. In particular, for this matrix, the determinant will be computed using a dense algorithm.

EXAMPLES:

```
sage: A = matrix(ZZ, 4, range(16), sparse=True)
sage: B = A + identity_matrix(ZZ, 4, sparse=True)
sage: B.det()
-49
```

matrix_from_rows_and_columns (rows, columns)

Return the matrix constructed from self from the given rows and columns.

```
sage: M = MatrixSpace(Integers(8),3,3, sparse=True)
sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 0]
sage: A.matrix_from_rows_and_columns([1], [0,2])
[3 5]
sage: A.matrix_from_rows_and_columns([1,2], [1,2])
```

```
[4 5]
[7 0]
```

Note that row and column indices can be reordered or repeated:

```
sage: A.matrix_from_rows_and_columns([2,1], [2,1])
[0 7]
[5 4]
```

For example here we take from row 1 columns 2 then 0 twice, and do this 3 times.

```
sage: A.matrix_from_rows_and_columns([1,1,1],[2,0,0])
[5 3 3]
[5 3 3]
[5 3 3]
```

We can efficiently extract large submatrices:

We must pass in a list of indices:

```
sage: A=random_matrix(ZZ,100,density=.02,sparse=True)
sage: A.matrix_from_rows_and_columns(1,[2,3])
Traceback (most recent call last):
...
TypeError: rows must be a list of integers
sage: A.matrix_from_rows_and_columns([1,2],3)
Traceback (most recent call last):
...
TypeError: columns must be a list of integers
```

AUTHORS:

- •Jaap Spies (2006-02-18)
- •Didier Deshommes: some Pyrex speedups implemented
- •Jason Grout: sparse matrix optimizations

transpose ()

Returns the transpose of self, without changing self.

EXAMPLES: We create a matrix, compute its transpose, and note that the original matrix is not changed.

```
sage: M = MatrixSpace(QQ, 2, sparse=True)
sage: A = M([1,2,3,4])
sage: B = A.transpose()
sage: print(B)
[1 3]
[2 4]
sage: print(A)
[1 2]
[3 4]
```

. $\ensuremath{\mathsf{T}}$ is a convenient shortcut for the transpose:

```
sage: A.T
[1 3]
[2 4]
```

DENSE MATRICES OVER A GENERAL RING

```
class sage.matrix.matrix_generic_dense. Matrix_generic_dense
    Bases: sage.matrix.matrix_dense.Matrix_dense
```

The Matrix_generic_dense class derives from Matrix, and defines functionality for dense matrices over any base ring. Matrices are represented by a list of elements in the base ring, and element access operations are implemented in this class.

EXAMPLES:

Test comparisons:

```
sage: A = random_matrix(Integers(25)['x'],2)
sage: A == A
True
sage: A < A + 1
True
sage: A+1 < A
False</pre>
```


SPARSE MATRICES OVER A GENERAL RING

```
sage: R.<x> = PolynomialRing(QQ)
sage: M = MatrixSpace(QQ['x'],2,3,sparse=True); M
Full MatrixSpace of 2 by 3 sparse matrices over Univariate Polynomial Ring in x over,
→Rational Field
sage: a = M(range(6)); a
[0 1 2]
[3 4 5]
sage: b = M([x^n for n in range(6)]); b
[1 x x^2]
[x^3 x^4 x^5]
sage: a * b.transpose()
                                 2*x^5 + x^41
             2*x^2 + x
      5*x^2 + 4*x + 3 5*x^5 + 4*x^4 + 3*x^3
sage: pari(a) *pari(b.transpose())
[2*x^2 + x, 2*x^5 + x^4; 5*x^2 + 4*x + 3, 5*x^5 + 4*x^4 + 3*x^3]
sage: c = copy(b); c
[1 x x^2]
[x^3 x^4 x^5]
sage: c[0,0] = 5; c
[5 \times x^2]
[x^3 x^4 x^5]
sage: b[0,0]
sage: c.dict()
\{(0, 0): 5, (0, 1): x, (0, 2): x^2, (1, 0): x^3, (1, 1): x^4, (1, 2): x^5\}
sage: c.list()
[5, x, x^2, x^3, x^4, x^5]
sage: c.rows()
[(5, x, x^2), (x^3, x^4, x^5)]
sage: TestSuite(c).run()
sage: d = c.change_ring(CC['x']); d
[5.00000000000000
                                                x^2]
                                X
             x^3
                               x^4
                                                x^5]
sage: latex(c)
\left(\begin{array}{rrr}
5 & x & x^{2} \\
x^{3} & x^{4} & x^{5}
\end{array}\right)
sage: c.sparse_rows()
[(5, x, x^2), (x^3, x^4, x^5)]
sage: d = c.dense_matrix(); d
[ 5 x x^2]
[x^3 x^4 x^5]
```

```
sage: parent(d)
Full MatrixSpace of 2 by 3 dense matrices over Univariate Polynomial Ring in x over_
→Rational Field
sage: c.sparse_matrix() is c
True
sage: c.is_sparse()
True
```

class sage.matrix.matrix_generic_sparse. Matrix_generic_sparse

Bases: sage.matrix.matrix_sparse.Matrix_sparse

Generic sparse matrix.

The Matrix_generic_sparse class derives from $Matrix_sparse$, and defines functionality for sparse matrices over any base ring. A generic sparse matrix is represented using a dictionary whose keys are pairs of integers (i, j) and values in the base ring. The values of the dictionary must never be zero.

EXAMPLES:

```
sage: R.<a,b> = PolynomialRing(ZZ,'a,b')
sage: M = MatrixSpace(R, 5, 5, sparse=True)
sage: M(\{(0,0):5*a+2*b, (3,4): -a\})
          0
                     0
[5*a + 2*b]
                                             01
                0
                          0
                                   0
       0
                                             01
                         0
               0
       0
                                   0
                                             01
[
               0
                         0
                                  0
       0
                                            -a1
                0
                         0
                                  0
        0
                                            0.1
sage: M(3)
[3 0 0 0 0]
[0 3 0 0 0]
[0 0 3 0 0]
[0 0 0 3 0]
[0 0 0 0 3]
sage: V = FreeModule(ZZ, 5, sparse=True)
sage: m = M([V({0:3}), V({2:2, 4:-1}), V(0), V(0), V({1:2})])
sage: m
[ 3 0 0 0 0]
[ 0 0 2 0 -1 ]
[ 0 0 0 0 0 ]
[ 0 0 0 0 0 ]
[0 2 0 0 0]
```

Note: The datastructure can potentially be optimized. Firstly, as noticed in trac ticket #17663, we lose time in using 2-tuples to store indices. Secondly, there is no fast way to access non-zero elements in a given row/column.

```
sage.matrix.matrix_generic_sparse. {\tt Matrix\_sparse\_from\_rows} ( X ) INPUT:
```

•X - nonempty list of SparseVector rows

OUTPUT: Sparse_matrix with those rows.

```
sage: V = VectorSpace(QQ,20,sparse=True)
sage: v = V(0)
sage: v[9] = 4
sage: from sage.matrix.matrix_generic_sparse import Matrix_sparse_from_rows
```


SPARSE MATRICES OVER $\mathbf{Z}/N\mathbf{Z}$ FOR N SMALL

This is a compiled implementation of sparse matrices over $\mathbb{Z}/n\mathbb{Z}$ for n small.

TODO: - move vectors into a Cython vector class - add _add_ and _mul_ methods.

```
sage: a = matrix(Integers(37),3,3,range(9),sparse=True); a
[0 1 2]
[3 4 5]
[6 7 8]
sage: type(a)
<type 'sage.matrix.matrix_modn_sparse.Matrix_modn_sparse'>
sage: parent(a)
Full MatrixSpace of 3 by 3 sparse matrices over Ring of integers modulo 37
sage: a^2
[15 18 21]
[ 5 17 29]
[32 16 0]
sage: a+a
[ 0 2 4]
[6 8 10]
[12 14 16]
sage: b = a.new_matrix(2, 3, range(6)); b
[0 1 2]
[3 4 5]
sage: a*b
Traceback (most recent call last):
TypeError: unsupported operand parent(s) for *: 'Full MatrixSpace of 3 by 3 sparse,
→matrices over Ring of integers modulo 37' and 'Full MatrixSpace of 2 by 3 sparse_
→matrices over Ring of integers modulo 37'
sage: b*a
[15 18 21]
[ 5 17 29]
```

```
sage: TestSuite(a).run()
sage: TestSuite(b).run()
```

```
sage: a.echelonize(); a
[ 1  0 36]
[ 0  1  2]
[ 0  0  0]
sage: b.echelonize(); b
[ 1  0 36]
```

```
[ 0 1 2]
sage: a.pivots()
(0, 1)
sage: b.pivots()
(0, 1)
sage: a.rank()
2
sage: b.rank()
2
sage: a[2,2] = 5
sage: a.rank()
3
```

class sage.matrix.matrix_modn_sparse. Matrix_modn_sparse

Bases: sage.matrix.matrix_sparse.Matrix_sparse

Create a sparse matrix over the integers modulo n .

INPUT:

```
•parent - a matrix space
```

•entries - can be one of the following:

- -a Python dictionary whose items have the form (i, j): x, where $0 \le i \le nrows$, $0 \le j \le nrows$, and x is coercible to an element of the integers modulo n. The i, j entry of self is set to x. The x 's can be 0.
- -Alternatively, entries can be a list of *all* the entries of the sparse matrix, read row-by-row from top to bottom (so they would be mostly 0).

```
•copy - ignored
```

•coerce - ignored

density()

Return the density of self, i.e., the ratio of the number of nonzero entries of self to the total size of self.

EXAMPLES:

```
sage: A = matrix(QQ,3,3,[0,1,2,3,0,0,6,7,8],sparse=True)
sage: A.density()
2/3
```

Notice that the density parameter does not ensure the density of a matrix; it is only an upper bound.

```
sage: A = random_matrix(GF(127),200,200,density=0.3, sparse=True)
sage: A.density()
2073/8000
```

lift()

Return lift of this matrix to a sparse matrix over the integers.

EXAMPLES: sage: a = matrix(GF(7),2,3,[1..6], sparse=True) sage: a.lift() [1 2 3] [4 5 6] sage: a.lift().parent() Full MatrixSpace of 2 by 3 sparse matrices over Integer Ring

Subdivisions are preserved when lifting:

```
sage: a.subdivide([], [1,1]); a
[1||2 3]
[4||5 6]
sage: a.lift()
```

```
[1||2 3]
[4||5 6]
```

matrix_from_columns (cols)

Return the matrix constructed from self using columns with indices in the columns list.

EXAMPLES:

```
sage: M = MatrixSpace(GF(127),3,3,sparse=True)
sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: A.matrix_from_columns([2,1])
[2 1]
[5 4]
[8 7]
```

matrix_from_rows (rows)

Return the matrix constructed from self using rows with indices in the rows list.

INPUT

•rows - list or tuple of row indices

EXAMPLES:

```
sage: M = MatrixSpace(GF(127),3,3,sparse=True)
sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: A.matrix_from_rows([2,1])
[6 7 8]
[3 4 5]
```

p

rank (gauss=False)

Compute the rank of self.

INPUT:

•gauss - if True LinBox' Gaussian elimination is used. If False 'Symbolic Reordering' as implemented in LinBox is used. If 'native' the native Sage implementation is used. (default: False)

EXAMPLES:

```
sage: A = random_matrix(GF(127),200,200,density=0.01,sparse=True)
sage: r1 = A.rank(gauss=False)
sage: r2 = A.rank(gauss=True)
sage: r3 = A.rank(gauss='native')
sage: r1 == r2 == r3
True
sage: r1
155
```

ALGORITHM: Uses LinBox or native implementation.

REFERENCES:

•Jean-Guillaume Dumas and Gilles Villars. 'Computing the Rank of Large Sparse Matrices over Finite Fields'. Proc. CASC'2002, The Fifth International Workshop on Computer Algebra in Scientific Computing, Big Yalta, Crimea, Ukraine, 22-27 sept. 2002, Springer-Verlag, http://perso.ens-lyon.fr/gilles.villard/BIBLIOGRAPHIE/POSTSCRIPT/rankjgd.ps

Note: For very sparse matrices Gaussian elimination is faster because it barly has anything to do. If the fill in needs to be considered, 'Symbolic Reordering' is usually much faster.

```
swap\_rows (r1, r2) transpose () Return the transpose of self.
```

EXAMPLES:

```
sage: A = matrix(GF(127),3,3,[0,1,0,2,0,0,3,0,0],sparse=True)
sage: A
[0 1 0]
[2 0 0]
[3 0 0]
sage: A.transpose()
[0 2 3]
[1 0 0]
[0 0 0]
```

. T is a convenient shortcut for the transpose:

```
sage: A.T
[0 2 3]
[1 0 0]
[0 0 0]
```

CHAPTER

SIXTEEN

SYMBOLIC MATRICES

Matrices with symbolic entries. The underlying representation is a pointer to a Maxima object.

EXAMPLES:

```
sage: matrix(SR, 2, 2, range(4))
[0 1]
[2 3]
sage: matrix(SR, 2, 2, var('t'))
[t 0]
[0 t]
```

Arithmetic:

```
sage: -matrix(SR, 2, range(4))
[ 0 -1]
[-2 -3]
sage: m = matrix(SR, 2, [1..4]); sqrt(2)*m
[ sqrt(2) 2*sqrt(2)]
[3*sqrt(2) 4*sqrt(2)]
sage: m = matrix(SR, 4, [1..4^2])
sage: m * m
[ 90 100 110 120]
[202 228 254 280]
[314 356 398 440]
[426 484 542 600]
sage: m = matrix(SR, 3, [1, 2, 3]); m
[1]
[2]
[3]
sage: m.transpose() * m
[14]
```

Computing inverses:

```
[0 1 0]
[0 0 1]

sage: matrix(SR, 1, 1, 1).inverse()
[1]
sage: matrix(SR, 0, 0).inverse()
[]
sage: matrix(SR, 3, 0).inverse()
Traceback (most recent call last):
...
ArithmeticError: self must be a square matrix
```

Transposition:

. T is a convenient shortcut for the transpose:

```
sage: m.T
[sqrt(2)     pi]
[     -1     e^2]
```

Test pickling:

Comparison:

```
sage: m = matrix(SR, 2, [sqrt(2), 3, pi, e])
sage: m == m
True
sage: m != 3
True
sage: m = matrix(SR, 2, [1..4]); n = m^2
sage: (exp(m+n) - exp(m)*exp(n)).simplify_rational() == 0 # indirect test
True
```

Determinant:

```
sage: M = matrix(SR, 2, 2, [x,2,3,4])
sage: M.determinant()
4*x - 6
sage: M = matrix(SR, 3,3,range(9))
sage: M.det()
0
sage: t = var('t')
sage: M = matrix(SR, 2, 2, [cos(t), sin(t), -sin(t), cos(t)])
sage: M.det()
cos(t)^2 + sin(t)^2
sage: M = matrix([[sqrt(x),0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]])
sage: det(M)
sqrt(x)
```

Permanents:

```
sage: M = matrix(SR, 2, 2, [x,2,3,4])
sage: M.permanent()
4*x + 6
```

Rank:

```
sage: M = matrix(SR, 5, 5, range(25))
sage: M.rank()
2
sage: M = matrix(SR, 5, 5, range(25)) - var('t')
sage: M.rank()
5
.. warning::
    :meth:`rank` may return the wrong answer if it cannot determine that a matrix element that is equivalent to zero is indeed so.
```

Copying symbolic matrices:

Conversion to Maxima:

```
sage: m = matrix(SR, 2, [sqrt(2), 3, pi, e])
sage: m._maxima_()
matrix([sqrt(2),3],[%pi,%e])
```

class sage.matrix.matrix_symbolic_dense. Matrix_symbolic_dense

Bases: sage.matrix.matrix_generic_dense.Matrix_generic_dense

arguments ()

Returns a tuple of the arguments that self can take.

EXAMPLES:

```
sage: var('x,y,z')
(x, y, z)
sage: M = MatrixSpace(SR,2,2)
sage: M(x).arguments()
(x,)
sage: M(x+sin(x)).arguments()
(x,)
```

canonicalize_radical ()

Choose a canonical branch of each entrie of self by calling Expression.canonicalize_radical() componentwise.

charpoly (var='x', algorithm=None)

Compute the characteristic polynomial of self, using maxima.

EXAMPLES:

```
sage: M = matrix(SR, 2, 2, var('a,b,c,d'))
sage: M.charpoly('t')
t^2 + (-a - d)*t - b*c + a*d
sage: matrix(SR, 5, [1..5^2]).charpoly()
x^5 - 65*x^4 - 250*x^3
```

eigenvalues ()

Compute the eigenvalues by solving the characteristic polynomial in maxima

EXAMPLES:

```
sage: a=matrix(SR,[[1,2],[3,4]])
sage: a.eigenvalues()
[-1/2*sqrt(33) + 5/2, 1/2*sqrt(33) + 5/2]
```

eigenvectors_left()

Compute the left eigenvectors of a matrix.

For each distinct eigenvalue, returns a list of the form (e,V,n) where e is the eigenvalue, V is a list of eigenvectors forming a basis for the corresponding left eigenspace, and n is the algebraic multiplicity of the eigenvalue.

```
sage: A = matrix(SR, 2, 2, var('a,b,c,d'))
sage: A.eigenvectors_left()
[(1/2*a + 1/2*d - 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2), [(1, -1/2*(a - d + 4*b*c - 2*a*d + d^2))/c)], 1), (1/2*a + 1/2*d + 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2))/c)], 1), (1/2*a + 1/2*d + 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2))/c)], 1)]
sage: es = A.eigenvectors_left(); es
[(1/2*a + 1/2*d - 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2), [(1, -1/2*(a - d + 4*b*c - 2*a*d + d^2))/c)], 1), (1/2*a + 1/2*d + 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2))/c)], 1), (1/2*a + 1/2*d + 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2))/c)], 1)]
sage: eval, [evec], mult = es[0]
sage: delta = eval*evec - evec*A
sage: delta.apply_map(lambda x: x.full_simplify())
(0, 0)
```

This routine calls Maxima and can struggle with even small matrices with a few variables, such as a 3×3 matrix with three variables. However, if the entries are integers or rationals it can produce exact values in a reasonable time. These examples create 0-1 matrices from the adjacency matrices of graphs and illustrate how the format and type of the results differ when the base ring changes. First for matrices over the rational numbers, then the same matrix but viewed as a symbolic matrix.

```
sage: G=graphs.CycleGraph(5)
sage: am = G.adjacency_matrix()
sage: spectrum = am.eigenvectors_left()
sage: qqbar_evalue = spectrum[2][0]
sage: type(qqbar_evalue)
<class 'sage.rings.qqbar.AlgebraicNumber'>
sage: qqbar_evalue
0.618033988749895?
sage: am = G.adjacency_matrix().change_ring(SR)
sage: spectrum = am.eigenvectors_left()
sage: symbolic_evalue = spectrum[2][0]
sage: type(symbolic_evalue)
<type 'sage.symbolic.expression.Expression'>
sage: symbolic_evalue
1/2*sqrt(5) - 1/2
sage: bool(qqbar_evalue == symbolic_evalue)
True
```

A slightly larger matrix with a "nice" spectrum.

```
sage: G=graphs.CycleGraph(6)
sage: am = G.adjacency_matrix().change_ring(SR)
sage: am.eigenvectors_left()
[(-1, [(1, 0, -1, 1, 0, -1), (0, 1, -1, 0, 1, -1)], 2), (1, [(1, 0, -1, -1, ..., -1)], 0, 1), (0, 1, 1, 0, -1, -1)], 2), (-2, [(1, -1, 1, -1, 1, -1)], 1), (2, ..., -1)], 1, 1, 1, 1, 1, 1, 1]]
```

eigenvectors_right()

Compute the right eigenvectors of a matrix.

For each distinct eigenvalue, returns a list of the form (e,V,n) where e is the eigenvalue, V is a list of eigenvectors forming a basis for the corresponding right eigenspace, and n is the algebraic multiplicity of the eigenvalue.

EXAMPLES:

The right eigenvectors are nothing but the left eigenvectors of the transpose matrix:

exp()

Return the matrix exponential of this matrix X, which is the matrix

$$e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}.$$

This function depends on maxima's matrix exponentiation function, which does not deal well with floating point numbers. If the matrix has floating point numbers, they will be rounded automatically to rational numbers during the computation.

EXAMPLES:

```
sage: m = matrix(SR,2, [0,x,x,0]); m
[0 x]
[x 0]
sage: m.exp()
[1/2*(e^(2*x) + 1)*e^(-x) 1/2*(e^(2*x) - 1)*e^(-x)]
[1/2*(e^(2*x) - 1)*e^(-x) 1/2*(e^(2*x) + 1)*e^(-x)]
sage: exp(m)
[1/2*(e^(2*x) + 1)*e^(-x) 1/2*(e^(2*x) - 1)*e^(-x)]
[1/2*(e^(2*x) + 1)*e^(-x) 1/2*(e^(2*x) + 1)*e^(-x)]
```

Exp works on 0x0 and 1x1 matrices:

```
sage: m = matrix(SR,0,[]); m
[]
sage: m.exp()
[]
sage: m = matrix(SR,1,[2]); m
[2]
sage: m.exp()
[e^2]
```

Commuting matrices m, n have the property that $e^{m+n} = e^m e^n$ (but non-commuting matrices need not):

```
sage: m = matrix(SR,2,[1..4]); n = m^2
sage: m*n
[ 37 54]
[ 81 118]
sage: n*m
[ 37 54]
```

```
[ 81 118]
sage: a = exp(m+n) - exp(m) *exp(n)
sage: a.simplify_rational() == 0
True
```

The input matrix must be square:

```
sage: m = matrix(SR,2,3,[1..6]); exp(m)
Traceback (most recent call last):
...
ValueError: exp only defined on square matrices
```

In this example we take the symbolic answer and make it numerical at the end:

```
sage: exp(matrix(SR, [[1.2, 5.6], [3,4]])).change_ring(RDF) # rel tol 1e-15
[ 346.5574872980695 661.7345909344504]
[ 354.50067371488416 677.4247827652946]
```

Another example involving the reversed identity matrix, which we clumsily create:

expand ()

Operates point-wise on each element.

EXAMPLES:

factor ()

Operates point-wise on each element.

EXAMPLES:

fcp (*var='x'*)

Return the factorization of the characteristic polynomial of self.

INPUT:

•var - (default: 'x') name of variable of charpoly

EXAMPLES:

```
sage: a = matrix(SR,[[1,2],[3,4]])
sage: a.fcp()
x^2 - 5*x - 2
sage: [i for i in a.fcp()]
[(x^2 - 5*x - 2, 1)]
sage: a = matrix(SR,[[1,0],[0,2]])
sage: a.fcp()
(x - 2) * (x - 1)
sage: [i for i in a.fcp()]
[(x - 2, 1), (x - 1, 1)]
sage: a = matrix(SR, 5, [1..5^2])
sage: a.fcp()
(x^2 - 65*x - 250) * x^3
sage: list(a.fcp())
[(x^2 - 65*x - 250, 1), (x, 3)]
```

jordan_form (subdivide=True, transformation=False)

Return a Jordan normal form of self.

INPUT:

- •self a square matrix
- •subdivide boolean (default: True)
- •transformation boolean (default: False)

OUTPUT:

If transformation is False, only a Jordan normal form (unique up to the ordering of the Jordan blocks) is returned. Otherwise, a pair (J,P) is returned, where J is a Jordan normal form and P is an invertible matrix such that self equals $P \star J \star P^{(-1)}$.

If subdivide is True, the Jordan blocks in the returned matrix J are indicated by a subdivision in the sense of subdivide().

EXAMPLES:

We start with some examples of diagonalisable matrices:

```
sage: a,b,c,d = var('a,b,c,d')
sage: matrix([a]).jordan_form()
[a]
sage: matrix([[a, 0], [1, d]]).jordan_form(subdivide=True)
[d|0]
[-+-]
[0|a]
sage: matrix([[a, 0], [1, d]]).jordan_form(subdivide=False)
[d 0]
[0 a]
sage: matrix([[a, x, x], [0, b, x], [0, 0, c]]).jordan_form()
[c|0|0]
[-+-+-]
[0|b|0]
[-+-+-]
[0|0|a]
```

In the following examples, we compute Jordan forms of some non-diagonalisable matrices:

```
sage: matrix([[a, a], [0, a]]).jordan_form()
[a 1]
[0 a]
sage: matrix([[a, 0, b], [0, c, 0], [0, 0, a]]).jordan_form()
[c|0 0]
[-+---]
[0|a 1]
[0|0 a]
```

The following examples illustrate the transformation flag. Note that symbolic expressions may need to be simplified to make consistency checks succeed:

```
sage: A = matrix([[x - a*c, a^2], [-c^2, x + a*c])
sage: J, P = A.jordan_form(transformation=True)
sage: J, P
[x 1] [-a*c
               11
[0 x], [-c^2]
               01
sage: A1 = P * J * \sim P; A1
             -a*c + x (a*c - x)*a/c + a*x/c]
[
                 -c^2
                                   a*c + x]
sage: A1.simplify_rational() == A
True
sage: B = matrix([[a, b, c], [0, a, d], [0, 0, a]])
sage: J, T = B.jordan_form(transformation=True)
sage: J, T
(
[a 1 0] [b*d
              С
                   01
[0 a 1] [ 0 d 0]
                   11
[0 0 a], [ 0 0
sage: (B * T).simplify_rational() == T * J
```

Finally, some examples involving square roots:

```
minpoly (var='x')
```

Return the minimal polynomial of self.

```
sage: M = Matrix.identity(SR, 2)
sage: M.minpoly()
x - 1
```

```
sage: t = var('t')
sage: m = matrix(2, [1, 2, 4, t])
sage: m.minimal_polynomial()
x^2 + (-t - 1)*x + t - 8
```

number_of_arguments ()

Returns the number of arguments that self can take.

EXAMPLES:

simplify()

Simplifies self.

EXAMPLES:

simplify_full ()

Simplify a symbolic matrix by calling Expression.simplify_full() componentwise.

INPUT:

•self - The matrix whose entries we should simplify.

OUTPUT:

A copy of self with all of its entries simplified.

EXAMPLES:

Symbolic matrices will have their entries simplified:

simplify_rational ()

```
sage: M = matrix(SR, 3, 3, range(9)) - var('t')
sage: (~M*M)[0,0]
t*(3*(2/t + (6/t + 7)/((t - 3/t - 4)*t))*(2/t + (6/t + 5)/((t - 3/t
- 4)*t))/(t - (6/t + 7)*(6/t + 5)/(t - 3/t - 4) - 12/t - 8) + 1/t +
3/((t - 3/t - 4)*t^2)) - 6*(2/t + (6/t + 5)/((t - 3/t - 4)*t))/(t -
(6/t + 7)*(6/t + 5)/(t - 3/t - 4) - 12/t - 8) - 3*(6/t + 7)*(2/t +
(6/t + 5)/((t - 3/t - 4)*t))/((t - (6/t + 7)*(6/t + 5)/(t - 3/t -
4) - 12/t - 8)*(t - 3/t - 4)) - 3/((t - 3/t - 4)*t)
sage: expand((~M*M)[0,0])
1
sage: (~M * M).simplify_rational()
[1 0 0]
[0 1 0]
[0 0 1]
```

simplify_trig()

EXAMPLES:

variables ()

Returns the variables of self.

Sage Reference Manual: Matrices and Spaces of Matrices, Release 7.6

CHAPTER

SEVENTEEN

DENSE MATRICES OVER THE INTEGER RING

AUTHORS:

- · William Stein
- · Robert Bradshaw
- Marc Masdeu (August 2014). Implemented using FLINT, see trac ticket #16803.
- Jeroen Demeyer (October 2014): lots of fixes, see trac ticket #17090 and trac ticket #17094.
- Vincent Delecroix (February 2015): make it faster, see trac ticket #17822.

EXAMPLES:

```
sage: a = matrix(ZZ, 3,3, range(9)); a
[0 1 2]
[3 4 5]
[6 7 8]
sage: a.det()
0
sage: a[0,0] = 10; a.det()
-30
sage: a.charpoly()
x^3 - 22*x^2 + 102*x + 30
sage: b = -3*a
sage: a == b
False
sage: b < a
True</pre>
```

class sage.matrix.matrix_integer_dense. Matrix_integer_dense
 Bases: sage.matrix.matrix_dense.Matrix_dense

Matrix over the integers, implemented using FLINT.

On a 32-bit machine, they can have at most $2^{32} - 1$ rows or columns. On a 64-bit machine, matrices can have at most $2^{64} - 1$ rows or columns.

```
sage: a = MatrixSpace(ZZ,3)(2); a
[2 0 0]
[0 2 0]
[0 0 2]
sage: a = matrix(ZZ,1,3, [1,2,-3]); a
[ 1 2 -3]
sage: a = MatrixSpace(ZZ,2,4)(2); a
Traceback (most recent call last):
```

```
...

TypeError: nonzero scalar matrix must be square
```

BKZ (delta=None, algorithm='fpLLL', fp=None, block_size=10, prune=0, use_givens=False, precision=0, proof=None, **kwds)
Block Korkin-Zolotarev reduction.

INPUT:

- •delta (default: 0.99) LLL parameter
- •algorithm (default: "fpLLL") "fpLLL" or "NTL"
- •fp floating point number implementation
 - -None NTL's exact reduction or fpLLL's wrapper (default)
 - -'fp' double precision: NTL's FP or fpLLL's double
 - -'ld' long doubles (fpLLL only)
 - -'qd' -NTL's QP
 - -'qd1' quad doubles: Uses quad_float precision to compute Gram-Schmidt, but uses double precision in the search phase of the block reduction algorithm. This seems adequate for most purposes, and is faster than 'qd', which uses quad_float precision uniformly throughout (NTL only).
 - -'xd' extended exponent: NTL's XD or fpLLL's dpe
 - -'rr' arbitrary precision: NTL'RR or fpLLL's MPFR
- •block_size (default: 10) Specifies the size of the blocks in the reduction. High values yield shorter vectors, but the running time increases double exponentially with block_size . block_size should be between 2 and the number of rows of self .
- •proof (default: same as proof.linear_algebra()) Insist on full BKZ reduction. If disabled and fplll is called, reduction is much faster but the result is not fully BKZ reduced.

NLT SPECIFIC INPUT:

- •prune (default: 0) The optional parameter prune can be set to any positive number to invoke the Volume Heuristic from [SH1995]. This can significantly reduce the running time, and hence allow much bigger block size, but the quality of the reduction is of course not as good in general. Higher values of prune mean better quality, and slower running time. When prune is 0, pruning is disabled. Recommended usage: for block_size==30, set 10 <= prune <=15.
- •use_givens Use Given's orthogonalization. This is a bit slower, but generally much more stable, and is really the preferred orthogonalization strategy. For a nice description of this, see Chapter 5 of [GL1996].

fpLLL SPECIFIC INPUT:

- •precision (default: 0 for automatic choice) bit precision to use if fp='rr' is set
- •**kwds kwds are passed through to fpylll. See fpylll.fplll.BKZ.Param for details.

Also, if the verbose level is at least 2, some output is printed during the computation.

```
sage: A = Matrix(ZZ, 3, 3, range(1, 10))
sage: A.BKZ()
[0 0 0]
[ 2 1 0]
[-1]
    1 3]
sage: A = Matrix(ZZ, 3, 3, range(1, 10))
sage: A.BKZ(use_givens=True)
[0 0 0]
[2 1 0]
[-1 \ 1 \ 3]
sage: A = Matrix(ZZ, 3, 3, range(1, 10))
sage: A.BKZ(fp="fp")
[ 0 0 0]
[ 2
    1 0]
[-1 \ 1 \ 3]
```

ALGORITHM:

Calls either NTL or fpLLL.

LLL (delta=None, eta=None, algorithm='fpLLL:wrapper', fp=None, prec=0, early_red=False, use_givens=False, use_siegel=False, **kwds)

Return LLL reduced or approximated LLL reduced lattice R for this matrix interpreted as a lattice.

A lattice $(b_1, b_2, ..., b_d)$ is (δ, η) -LLL-reduced if the two following conditions hold:

```
•For any i > j, we have |\mu_{i,j}| \leq \eta.
```

•For any i < d, we have $\delta |b_i^*|^2 \le |b_{i+1}^* + \mu_{i+1,i} b_i^*|^2$,

where $\mu_{i,j} = \langle b_i, b_j^* \rangle / \langle b_j^*, b_j^* \rangle$ and b_i^* is the *i*-th vector of the Gram-Schmidt orthogonalisation of $(b_1, b_2, ..., b_d)$.

The default reduction parameters are $\delta=3/4$ and $\eta=0.501$. The parameters δ and η must satisfy: $0.25<\delta\leq 1.0$ and $0.5\leq \eta<\sqrt{\delta}$. Polynomial time complexity is only guaranteed for $\delta<1$. Not every algorithm admits the case $\delta=1$.

The lattice is returned as a matrix. Also the rank (and the determinant) of self are cached if those are computed during the reduction. Note that in general this only happens when self.rank() == self.ncols() and the exact algorithm is used.

INPUT:

```
•delta – (default: 0.99) \delta parameter as described above
```

- •eta (default: 0.501) η parameter as described above, ignored by NTL
- •algorithm string one of the algorithms listed below (default: "fpLLL:wrapper").
- •fp floating point number implementation:

```
-None - NTL's exact reduction or fpLLL's wrapper
```

- -'fp' double precision: NTL's FP or fpLLL's double
- -'ld' -long doubles (fpLLL only)
- -'qd' -NTL's QP
- -'xd' extended exponent: NTL's XD or fpLLL's dpe
- -'rr' arbitrary precision: NTL's RR or fpLLL's MPFR

- •prec (default: auto choose) precision, ignored by NTL
- •early_red (default: False) perform early reduction, ignored by NTL
- •use_givens (default: False) use Givens orthogonalization only applicable to approximate reductions and NTL; this is more stable but slower
- •use_siegel (default: False) use Siegel's condition instead of Lovasz's condition, ignored by NTL
- •**kwds kwds are passed through to fpylll. See fpylll.fplll.LLL.reduction for details.

Also, if the verbose level is at least 2, some output is printed during the computation.

AVAILABLE ALGORITHMS:

- •NTL:LLL NTL's LLL + choice of fp .
- •fpLLL: heuristic fpLLL's heuristic + choice of fp.
- •fpLLL: fast fpLLL's fast + choice of fp.
- $\bullet \texttt{fpLLL} : \texttt{proved} \texttt{fpLLL's} \ \texttt{proved} + \texttt{choice} \ \texttt{of} \ \texttt{fp} \ .$
- •fpLLL: wrapper fpLLL's automatic choice (default).

OUTPUT:

A matrix over the integers.

EXAMPLES:

```
sage: A = Matrix(ZZ,3,3,range(1,10))
sage: A.LLL()
[ 0  0  0]
[ 2  1  0]
[-1  1  3]
```

We compute the extended GCD of a list of integers using LLL, this example is from the Magma handbook:

The case $\delta = 1$ is not always supported:

```
sage: L = X.LLL(delta=2)
Traceback (most recent call last):
...
TypeError: delta must be <= 1
sage: L = X.LLL(delta=1) # not tested, will eat lots of ram</pre>
```

```
Traceback (most recent call last):
...
RuntimeError: infinite loop in LLL
sage: L = X.LLL(delta=1, algorithm='NTL:LLL')
sage: L[-1]
(-100, -3, -1, 13, -1, -4, 2, 3, 4, 5, -1)
```

Note: See ntl.mat_ZZ or fpylll.fplll.lll for details on the used algorithms.

Albeit LLL is a deterministic algorithm, the output for different implementations and on CPUs (32-bit vs. 64-bit) may vary, while still being correct.

LLL_gram ()

LLL reduction of the lattice whose gram matrix is self.

INPUT:

•M – gram matrix of a definite quadratic form

OUTPUT:

U - unimodular transformation matrix such that U.T \star M \star U is LLL-reduced.

ALGORITHM: Use PARI

EXAMPLES:

```
sage: M = Matrix(ZZ, 2, 2, [5,3,3,2]); M
[5 3]
[3 2]
sage: U = M.LLL_gram(); U
[-1 1]
[ 1 -2]
sage: U.transpose() * M * U
[1 0]
[0 1]
```

Semidefinite and indefinite forms no longer raise a ValueError:

```
sage: Matrix(ZZ,2,2,[2,6,6,3]).LLL_gram()
[-3 -1]
[ 1  0]
sage: Matrix(ZZ,2,2,[1,0,0,-1]).LLL_gram()
[ 0 -1]
[ 1  0]
```

antitranspose ()

Returns the antitranspose of self, without changing self.

```
sage: A = matrix(2,3,range(6))
sage: type(A)
<type 'sage.matrix.matrix_integer_dense.Matrix_integer_dense'>
sage: A.antitranspose()
[5 2]
[4 1]
[3 0]
sage: A
```

```
[0 1 2]
[3 4 5]

sage: A.subdivide(1,2); A
[0 1|2]
[---+-]
[3 4|5]

sage: A.antitranspose()
[5|2]
[-+-]
[4|1]
[3|0]
```

augment (right, subdivide=False)

Returns a new matrix formed by appending the matrix (or vector) right on the right side of self.

INPUT:

- •right a matrix, vector or free module element, whose dimensions are compatible with self.
- •subdivide default: False request the resulting matrix to have a new subdivision, separating self from right.

OUTPUT:

A new matrix formed by appending right onto the right side of self. If right is a vector (or free module element) then in this context it is appropriate to consider it as a column vector. (The code first converts a vector to a 1-column matrix.)

EXAMPLES:

```
sage: A = matrix(ZZ, 4, 5, range(20))
sage: B = matrix(ZZ, 4, 3, range(12))
sage: A.augment(B)
[ 0 1 2 3 4 0 1 2]
[ 5 6 7 8 9 3 4 5]
[10 11 12 13 14 6 7 8]
[15 16 17 18 19 9 10 11]
```

A vector may be augmented to a matrix.

```
sage: A = matrix(ZZ, 3, 5, range(15))
sage: v = vector(ZZ, 3, range(3))
sage: A.augment(v)
[ 0  1  2  3  4  0]
[ 5  6  7  8  9  1]
[10  11  12  13  14  2]
```

The subdivide option will add a natural subdivision between self and right . For more details about how subdivisions are managed when augmenting, see <code>sage.matrix.matrix1.Matrix.augment()</code>.

```
sage: A = matrix(ZZ, 3, 5, range(15))
sage: B = matrix(ZZ, 3, 3, range(9))
sage: A.augment(B, subdivide=True)
[ 0 1 2 3 4 | 0 1 2]
[ 5 6 7 8 9 | 3 4 5]
[10 11 12 13 14 | 6 7 8]
```

Errors are raised if the sizes are incompatible.

```
sage: A = matrix(ZZ, [[1, 2],[3, 4]])
sage: B = matrix(ZZ, [[10, 20], [30, 40], [50, 60]])
sage: A.augment(B)
Traceback (most recent call last):
...
TypeError: number of rows must be the same, not 2 != 3
```

charpoly (var='x', algorithm='generic')

INPUT:

- •var a variable name
- •algorithm 'generic' (default), 'flint' or 'linbox'

EXAMPLES:

```
sage: A = matrix(ZZ,6, range(36))
sage: f = A.charpoly(); f
x^6 - 105*x^5 - 630*x^4
sage: f(A) == 0
True
sage: g = A.charpoly(algorithm='flint')
sage: f == g
True
sage: n=20; A = Mat(ZZ,n)(range(n^2))
sage: A.charpoly()
x^20 - 3990*x^19 - 266000*x^18
sage: A.minpoly()
x^3 - 3990*x^2 - 266000*x
```

decomposition (**kwds)

Returns the decomposition of the free module on which this matrix A acts from the right (i.e., the action is x goes to x A), along with whether this matrix acts irreducibly on each factor. The factors are guaranteed to be sorted in the same way as the corresponding factors of the characteristic polynomial, and are saturated as ZZ modules.

INPUT:

- •self a matrix over the integers
- •**kwds these are passed onto to the decomposition over QQ command.

EXAMPLES:

```
sage: t = ModularSymbols(11, sign=1).hecke_matrix(2)
sage: w = t.change_ring(ZZ)
sage: w.list()
[3, -1, 0, -2]
```

determinant (algorithm='default', proof=None, stabilize=2)

Return the determinant of this matrix.

INPUT:

- •algorithm
 - -'default' use flint
 - -'flint' let flint do the determinant
 - -'padic' uses a p-adic / multimodular algorithm that relies on code in IML and linbox

```
-'linbox' - calls linbox det (you must set proof=False to use this!)
```

- -'ntl' calls NTL's det function
- -'pari' uses PARI

•proof - bool or None; if None use proof.linear_algebra(); only relevant for the padic algorithm.

Note: It would be *VERY VERY* hard for det to fail even with proof=False.

•stabilize - if proof is False, require det to be the same for this many CRT primes in a row. Ignored if proof is True.

ALGORITHM: The p-adic algorithm works by first finding a random vector v, then solving $A^*x = v$ and taking the denominator d. This gives a divisor of the determinant. Then we compute $\det(A)/d$ using a multimodular algorithm and the Hadamard bound, skipping primes that divide d.

EXAMPLES:

```
sage: A = matrix(ZZ,8,8,[3..66])
sage: A.determinant()
0
```

```
sage: A = random_matrix(ZZ,20,20)
sage: D1 = A.determinant()
sage: A._clear_cache()
sage: D2 = A.determinant(algorithm='ntl')
sage: D1 == D2
True
```

We have a special-case algorithm for 4 x 4 determinants:

```
sage: A = matrix(ZZ,4,[1,2,3,4,4,3,2,1,0,5,0,1,9,1,2,3])
sage: A.determinant()
270
```

Next we try the Linbox det. Note that we must have proof=False.

A bigger example:

```
sage: A = random_matrix(ZZ,30)
sage: d = A.determinant()
sage: A._clear_cache()
sage: A.determinant(algorithm='linbox',proof=False) == d
True
```

Return the echelon form of this matrix over the integers, also known as the hermite normal form (HNF).

INPUT:

- •algorithm String. The algorithm to use. Valid options are:
 - -'default' Let Sage pick an algorithm (default). Up to 75 rows or columns with no transformation matrix, use pari with flag 0; otherwise, use flint.
 - -'flint' use flint
 - -'ntl' use NTL (only works for square matrices of full rank!)
 - -'padic' an asymptotically fast p-adic modular algorithm, If your matrix has large coefficients and is small, you may also want to try this.

```
-'pari' - use PARI with flag 1
-'pari0' - use PARI with flag 0
-'pari1' - use PARI with flag 1
-'pari4' - use PARI with flag 4 (use heuristic LLL)
```

- •proof (default: True); if proof=False certain determinants are computed using a randomized hybrid p-adic multimodular strategy until it stabilizes twice (instead of up to the Hadamard bound). It is *incredibly* unlikely that one would ever get an incorrect result with proof=False.
- •include_zero_rows (default: True) if False, don't include zero rows
- •transformation if given, also compute transformation matrix; only valid for flint and padic algorithm
- •D (default: None) if given and the algorithm is 'ntl', then D must be a multiple of the determinant and this function will use that fact.

OUTPUT:

The Hermite normal form (=echelon form over **Z**) of self as an immutable matrix.

EXAMPLES:

```
sage: A = MatrixSpace(ZZ, 2)([1, 2, 3, 4])
sage: A.echelon form()
[1 0]
[0 2]
sage: A = MatrixSpace(ZZ, 5) (range(25))
sage: A.echelon_form()
      0 -5 -10 -15]
  0
      1 2 3 41
  0
      0
          0 0
                   01
  0
           0
               0
                   01
       0
      0
           \cap
```

Getting a transformation matrix in the nonsquare case:

```
sage: A = matrix(ZZ,5,3,[1..15])
sage: H, U = A.hermite_form(transformation=True, include_zero_rows=False)
sage: H
[1 2 3]
[0 3 6]
sage: U
```

```
[ 0 0 0 4 -3]
[ 0 0 0 13 -10]
sage: U*A == H
True
```

```
sage: m = matrix(ZZ,0,0,[])
sage: m.echelon_form()
[]
```

Note: If 'ntl' is chosen for a non square matrix this function raises a ValueError.

Special cases: 0 or 1 rows:

```
sage: a = matrix(ZZ, 1,2,[0,-1])
sage: a.hermite_form()
[0 1]
sage: a.pivots()
(1,)
sage: a = matrix(ZZ, 1,2,[0,0])
sage: a.hermite_form()
[0 0]
sage: a.pivots()
()
sage: a = matrix(ZZ,1,3); a
[0 0 0]
sage: a.echelon_form(include_zero_rows=False)
[]
sage: a.echelon_form(include_zero_rows=True)
[0 0 0]
```

Illustrate using various algorithms.:

```
sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm='pari')
[1 2 3]
[0 3 6]
[0 0 0]
sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm='pari0')
[0 3 6]
[0 0 0]
sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm='pari4')
[1 2 3]
[0 3 6]
[0 0 0]
sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm='padic')
[1 2 3]
[0 3 6]
[0 0 0]
sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm='default')
[1 2 3]
[0 3 6]
[0 0 0]
```

The 'ntl' algorithm doesn't work on matrices that do not have full rank.:

```
sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm='ntl')
Traceback (most recent call last):
...
ValueError: ntl only computes HNF for square matrices of full rank.
sage: matrix(ZZ,3,[0] +[2..9]).hermite_form(algorithm='ntl')
[1 0 0]
[0 1 0]
[0 1 0]
```

elementary_divisors (algorithm='pari')

Return the elementary divisors of self, in order.

```
Warning: This is MUCH faster than the smith_form function.
```

The elementary divisors are the invariants of the finite abelian group that is the cokernel of *left* multiplication of this matrix. They are ordered in reverse by divisibility.

INPUT:

```
•self - matrix
•algorithm - (default: 'pari')
    -'pari': works robustly, but is slower.
    -'linbox' - use linbox (currently off, broken)
```

OUTPUT: list of integers

Note: These are the invariants of the cokernel of *left* multiplication:

```
sage: M = Matrix([[3,0,1],[0,1,0]])
sage: M
[3 0 1]
[0 1 0]
sage: M.elementary_divisors()
[1, 1]
sage: M.transpose().elementary_divisors()
[1, 1, 0]
```

EXAMPLES:

```
sage: matrix(3, range(9)).elementary_divisors()
[1, 3, 0]
sage: matrix(3, range(9)).elementary_divisors(algorithm='pari')
[1, 3, 0]
sage: C = MatrixSpace(ZZ,4)([3,4,5,6,7,3,8,10,14,5,6,7,2,2,10,9])
sage: C.elementary_divisors()
[1, 1, 1, 687]
```

```
sage: M = matrix(ZZ, 3, [1,5,7, 3,6,9, 0,1,2])
sage: M.elementary_divisors()
[1, 1, 6]
```

This returns a copy, which is safe to change:

```
sage: edivs = M.elementary_divisors()
sage: edivs.pop()
6
sage: M.elementary_divisors()
[1, 1, 6]
```

See also:

```
smith_form()
```

frobenius (flag=0, var='x')

Return the Frobenius form (rational canonical form) of this matrix.

INPUT:

- •flag -0 (default), 1 or 2 as follows:
 - −0 (default) return the Frobenius form of this matrix.
 - -1 return only the elementary divisor polynomials, as polynomials in var.
 - -2 return a two-components vector [F,B] where F is the Frobenius form and B is the basis change so that $M = B^{-1}FB$.
- •var a string (default: 'x')

ALGORITHM: uses PARI's matfrobenius()

EXAMPLES:

```
sage: A = MatrixSpace(ZZ, 3)(range(9))
sage: A.frobenius(0)
[ 0 0 0]
[ 1 0 18]
[ 0 1 12]
sage: A.frobenius(1)
[x^3 - 12*x^2 - 18*x]
sage: A.frobenius(1, var='y')
[y^3 - 12*y^2 - 18*y]
sage: F, B = A.frobenius(2)
sage: A == B^{(-1)} *F*B
True
sage: a=matrix([])
sage: a.frobenius(2)
([], [])
sage: a.frobenius(0)
[]
sage: a.frobenius(1)
[]
sage: B = random_matrix(ZZ,2,3)
sage: B.frobenius()
Traceback (most recent call last):
ArithmeticError: frobenius matrix of non-square matrix not defined.
```

AUTHORS:

•Martin Albrect (2006-04-02)

TODO: - move this to work for more general matrices than just over Z. This will require fixing how PARI polynomials are coerced to Sage polynomials.

gcd ()

Return the gcd of all entries of self; very fast.

EXAMPLES:

```
sage: a = matrix(ZZ,2, [6,15,-6,150])
sage: a.gcd()
3
```

height ()

Return the height of this matrix, i.e., the max absolute value of the entries of the matrix.

OUTPUT: A nonnegative integer.

EXAMPLES:

```
sage: a = Mat(ZZ,3)(range(9))
sage: a.height()
8
sage: a = Mat(ZZ,2,3)([-17,3,-389,15,-1,0]); a
[ -17     3 -389]
[ 15     -1     0]
sage: a.height()
389
```

hermite_form (algorithm='default', proof=None, include_zero_rows=True, transformation=False, D=None)

Return the echelon form of this matrix over the integers, also known as the hermite normal form (HNF).

INPUT:

- •algorithm String. The algorithm to use. Valid options are:
 - -'default' Let Sage pick an algorithm (default). Up to 75 rows or columns with no transformation matrix, use pari with flag 0; otherwise, use flint.
 - -'flint' use flint
 - -'ntl' use NTL (only works for square matrices of full rank!)
 - -'padic' an asymptotically fast p-adic modular algorithm, If your matrix has large coefficients and is small, you may also want to try this.
 - -'pari' use PARI with flag 1
 - -'pari0' use PARI with flag 0
 - -'pari1' use PARI with flag 1
 - -'pari4' use PARI with flag 4 (use heuristic LLL)
- •proof (default: True); if proof=False certain determinants are computed using a randomized hybrid p-adic multimodular strategy until it stabilizes twice (instead of up to the Hadamard bound). It is *incredibly* unlikely that one would ever get an incorrect result with proof=False.
- •include zero rows (default: True) if False, don't include zero rows
- •transformation if given, also compute transformation matrix; only valid for flint and padic algorithm
- •D (default: None) if given and the algorithm is 'ntl', then D must be a multiple of the determinant and this function will use that fact.

OUTPUT:

The Hermite normal form (=echelon form over **Z**) of self as an immutable matrix.

EXAMPLES:

```
sage: A = MatrixSpace(ZZ,2)([1,2,3,4])
sage: A.echelon_form()
[1 0]
[0 2]
sage: A = MatrixSpace(ZZ, 5) (range(25))
sage: A.echelon_form()
     0 -5 -10 -15]
         2 3
 0
     1
                41
 0
    0 0 0 0]
[ 0
    0 0 0 0]
0 ]
     0 0 0
                01
```

Getting a transformation matrix in the nonsquare case:

```
sage: A = matrix(ZZ,5,3,[1..15])
sage: H, U = A.hermite_form(transformation=True, include_zero_rows=False)
sage: H
[1 2 3]
[0 3 6]
sage: U
[ 0 0 0 4 -3]
[ 0 0 0 13 -10]
sage: U*A == H
True
```

```
sage: m = matrix(ZZ,0,0,[])
sage: m.echelon_form()
[]
```

Note: If 'ntl' is chosen for a non square matrix this function raises a ValueError.

Special cases: 0 or 1 rows:

```
sage: a = matrix(ZZ, 1,2,[0,-1])
sage: a.hermite_form()
[0 1]
sage: a.pivots()
(1,)
sage: a = matrix(ZZ, 1,2,[0,0])
sage: a.hermite_form()
[0 0]
sage: a.pivots()
()
sage: a = matrix(ZZ,1,3); a
[0 0 0]
sage: a.echelon_form(include_zero_rows=False)
[]
sage: a.echelon_form(include_zero_rows=True)
[0 0 0]
```

Illustrate using various algorithms.:

```
sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm='pari')
[1 2 3]
[0 3 6]
[0 0 0]
sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm='pari0')
[1 2 3]
[0 3 6]
[0 0 0]
sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm='pari4')
[1 2 3]
[0 3 6]
[0 0 0]
sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm='padic')
[1 2 3]
[0 3 6]
[0 0 0]
sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm='default')
[1 2 3]
[0 3 6]
[0 0 0]
```

The 'ntl' algorithm doesn't work on matrices that do not have full rank.:

```
sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm='ntl')
Traceback (most recent call last):
...
ValueError: ntl only computes HNF for square matrices of full rank.
sage: matrix(ZZ,3,[0] +[2..9]).hermite_form(algorithm='ntl')
[1 0 0]
[0 1 0]
[0 0 3]
```

index_in_saturation (proof=None)

Return the index of self in its saturation.

INPUT:

•proof - (default: use proof.linear_algebra()); if False, the determinant calculations are done with proof=False.

OUTPUT:

•positive integer - the index of the row span of this matrix in its saturation

ALGORITHM: Use Hermite normal form twice to find an invertible matrix whose inverse transforms a matrix with the same row span as self to its saturation, then compute the determinant of that matrix.

EXAMPLES:

```
sage: A = matrix(ZZ, 2,3, [1..6]); A
[1 2 3]
[4 5 6]
sage: A.index_in_saturation()
3
sage: A.saturation()
[1 2 3]
[1 1 1]
```

insert_row (index, row)

Create a new matrix from self with.

INPUT:

- •index integer
- •row a vector

EXAMPLES:

```
sage: X = matrix(ZZ, 3, range(9)); X
[0 1 2]
[3 4 5]
[6 7 8]
sage: X.insert_row(1, [1,5,-10])
[ 0 1 2]
 1 5 -10]
[ 3 4 5]
6 ]
    7 81
sage: X.insert_row(0, [1,5,-10])
     5 -10]
    1
  0
         2]
  3
    4 51
    7
  6
sage: X.insert_row(3, [1,5,-10])
0 1
     1 2]
 3
    4 5]
     7 8]
  6
 1
    5 -10]
```

integer_valued_polynomials_generators ()

Determine the generators of the ring of integer valued polynomials on this matrix.

OUTPUT:

A pair (mu_B, P) where P is a list of polynomials in $\mathbf{Q}[X]$ such that

$$\{f \in \mathbf{Q}[X] \mid f(B) \in M_n(\mathbf{Z})\} = \mu_B \mathbf{Q}[X] + \sum_{g \in P} g\mathbf{Z}[X]$$

where B is this matrix.

EXAMPLES:

```
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: B.integer_valued_polynomials_generators()
(x^3 + x^2 - 12*x - 20, [1, 1/4*x^2 + 3/4*x + 1/2])
```

See also:

```
compute_J_ideal, integer_valued_polynomials_generators()
```

is_LLL_reduced (delta=None, eta=None)

Return True if this lattice is (δ, η) -LLL reduced. See self.LLL for a definition of LLL reduction.

INPUT:

- •delta (default: 0.99) parameter δ as described above
- •eta (default: 0.501) parameter η as described above

```
sage: A = random_matrix(ZZ, 10, 10)
sage: L = A.LLL()
sage: A.is_LLL_reduced()
False
sage: L.is_LLL_reduced()
True
```

is_one()

Tests whether self is the identity matrix.

EXAMPLES:

```
sage: matrix(2, [1,0,0,1]).is_one()
True
sage: matrix(2, [1,1,0,1]).is_one()
False
sage: matrix(2, 3, [1,0,0,0,1,0]).is_one()
False
```

minpoly (var='x', algorithm='linbox')

INPUT:

- •var a variable name
- •algorithm 'linbox' (default) 'generic'

Note: Linbox charpoly disabled on 64-bit machines, since it hangs in many cases.

EXAMPLES:

```
sage: A = matrix(ZZ,6, range(36))
sage: A.minpoly()
x^3 - 105*x^2 - 630*x
sage: n=6; A = Mat(ZZ,n)([k^2 for k in range(n^2)])
sage: A.minpoly()
x^4 - 2695*x^3 - 257964*x^2 + 1693440*x
```

$null_ideal (b=0)$

Return the (b)-ideal of this matrix.

Let B be a $n \times n$ matrix. The $null\ ideal$ modulo b, or (b)-ideal, is

$$N_{(b)}(B) = \{ f \in \mathbf{Z}[X] \mid f(B) \in M_n(b\mathbf{Z}) \}.$$

INPUT:

•b – an element of \mathbf{Z} (default: 0)

OUTPUT:

An ideal in $\mathbf{Z}[X]$.

```
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: B.null_ideal()
Principal ideal (x^3 + x^2 - 12*x - 20) of
    Univariate Polynomial Ring in x over Integer Ring
sage: B.null_ideal(8)
```

```
Ideal (8, x^3 + x^2 - 12*x - 20, 2*x^2 + 6*x + 4) of
    Univariate Polynomial Ring in x over Integer Ring
sage: B.null_ideal(6)
Ideal (6, 2*x^3 + 2*x^2 - 24*x - 40, 3*x^2 + 3*x) of
    Univariate Polynomial Ring in x over Integer Ring
```

See also:

```
compute_J_ideal, null_ideal()
```

p_minimal_polynomials (p, s_max=None)

Compute (p^s) -minimal polynomials ν_s of this matrix.

For $s \ge 0$, a (p^s) -minimal polynomial of a matrix B is a monic polynomial $f \in \mathbf{Z}[X]$ of minimal degree such that all entries of f(B) are divisible by p^s .

Compute a finite subset S of the positive integers and (p^s) -minimal polynomials ν_s for $s \in S$.

For $0 < t \le \max S$, a (p^t) -minimal polynomial is given by ν_s where $s = \min\{r \in S \mid r \ge t\}$. For $t > \max S$, the minimal polynomial of B is also a (p^t) -minimal polynomial.

INPUT:

```
•p – a prime in \mathbf{Z}
```

•s_max - a positive integer (default: None); if set, only (p^s) -minimal polynomials for s <= s_max are computed (see below for details)

OUTPUT:

A dictionary. Keys are the finite set S, the values are the associated (p^s) -minimal polynomials ν_s , $s \in S$.

Setting s_{max} only affects the output if s_{max} is at most max S where S denotes the full set. In that case, only those ν_s with $s <= s_{max}$ are returned where s_{max} is always included even if it is not included in the full set S.

EXAMPLES:

```
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: B.p_minimal_polynomials(2)
{2: x^2 + 3*x + 2}
```

See also:

```
compute\_J\_ideal\,,\,p\_minimal\_polynomials\,()
```

pivots ()

Return the pivot column positions of this matrix.

OUTPUT: a tuple of Python integers: the position of the first nonzero entry in each row of the echelon form.

```
sage: n = 3; A = matrix(ZZ,n,range(n^2)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: A.pivots()
(0, 1)
sage: A.echelon_form()
[ 3 0 -3]
```

```
[ 0 1 2]
[ 0 0 0]
```

prod_of_row_sums (cols)

Return the product of the sums of the entries in the submatrix of self with given columns.

INPUT:

•cols - a list (or set) of integers representing columns of self

OUTPUT: an integer

EXAMPLES:

```
sage: a = matrix(ZZ,2,3,[1..6]); a
[1 2 3]
[4 5 6]
sage: a.prod_of_row_sums([0,2])
40
sage: (1+3)*(4+6)
40
sage: a.prod_of_row_sums(set([0,2]))
40
```

randomize (density=1, x=None, y=None, distribution=None, nonzero=False)

Randomize density proportion of the entries of this matrix, leaving the rest unchanged.

The parameters are the same as the ones for the integer ring's random_element function.

If x and y are given, randomized entries of this matrix have to be between x and y and have density 1.

INPUT:

- •self a mutable matrix over ZZ
- •density a float between 0 and 1
- \bullet x, y if not None, these are passed to the ZZ.random_element function as the upper and lower endpoints in the uniform distribution
- •distribution would also be passed into ZZ.random_element if given
- •nonzero bool (default: False); whether the new entries are guaranteed to be zero

OUTPUT:

•None, the matrix is modified in-place

```
sage: A = matrix(ZZ, 2,3, [1..6]); A
[1 2 3]
[4 5 6]
sage: A.randomize()
sage: A
[-8 2 0]
[0 1 -1]
sage: A.randomize(x=-30,y=30)
sage: A
[ 5 -19 24]
[ 24 23 -9]
```

```
rank ( algorithm='modp')
```

Return the rank of this matrix.

INPUT:

```
•algorithm - either 'modp' (default) or 'flint' or 'linbox'
```

OUTPUT:

•a nonnegative integer – the rank

Note: The rank is cached.

ALGORITHM:

If set to 'modp', first check if the matrix has maximum possible rank by working modulo one random prime. If not, call LinBox's rank function.

EXAMPLES:

```
sage: a = matrix(ZZ,2,3,[1..6]); a
[1 2 3]
[4 5 6]
sage: a.rank()
2
sage: a = matrix(ZZ,3,3,[1..9]); a
[1 2 3]
[4 5 6]
[7 8 9]
sage: a.rank()
2
```

Here is a bigger example - the rank is of course still 2:

```
sage: a = matrix(ZZ,100,[1..100^2]); a.rank()
2
```

rational reconstruction (N)

Use rational reconstruction to lift self to a matrix over the rational numbers (if possible), where we view self as a matrix modulo N.

INPUT:

•N - an integer

OUTPUT:

•matrix - over QQ or raise a ValueError

EXAMPLES: We create a random 4x4 matrix over ZZ.

```
sage: A = matrix(ZZ, 4, [4, -4, 7, 1, -1, 1, -1, -12, -1, -1, 1, -1, -3, 1, \hookrightarrow 5, -1])
```

There isn't a unique rational reconstruction of it:

```
sage: A.rational_reconstruction(11)
Traceback (most recent call last):
...
ValueError: rational reconstruction does not exist
```

We throw in a denominator and reduce the matrix modulo 389 - it does rationally reconstruct.

```
sage: B = (A/3 % 389).change_ring(ZZ)
sage: B.rational_reconstruction(389) == A/3
True
```

saturation (*p*=0, *proof*=None, max_dets=5)

Return a saturation matrix of self, which is a matrix whose rows span the saturation of the row span of self. This is not unique.

The saturation of a **Z** module M embedded in \mathbf{Z}^n is the a module S that contains M with finite index such that \mathbf{Z}^n/S is torsion free. This function takes the row span M of self, and finds another matrix of full rank with row span the saturation of M.

INPUT:

- •p (default: 0); if nonzero given, saturate only at the prime p, i.e., return a matrix whose row span is a **Z**-module S that contains self and such that the index of S in its saturation is coprime to p. If p is None, return full saturation of self.
- •proof (default: use proof.linear_algebra()); if False, the determinant calculations are done with proof=False.
- •max_dets (default: 5); technical parameter max number of determinant to compute when bounding prime divisor of self in its saturation.

OUTPUT:

•matrix - a matrix over ZZ

Note: The result is *not* cached.

ALGORITHM: 1. Replace input by a matrix of full rank got from a subset of the rows. 2. Divide out any common factors from rows. 3. Check max_dets random dets of submatrices to see if their GCD (with p) is 1 - if so matrix is saturated and we're done. 4. Finally, use that if A is a matrix of full rank, then $hnf(transpose(A))^{-1}*A$ is a saturation of A.

EXAMPLES:

```
sage: A = matrix(ZZ, 3, 5, [-51, -1509, -71, -109, -593, -19, -341, 4, 86,...
\rightarrow 98, 0, -246, -11, 65, 217])
sage: A.echelon_form()
       1
               5
                    2262
                           20364
                                    565761
       0
               6
                   35653 320873 891313]
               0
                   42993 386937 1074825]
       \cap
sage: S = A.saturation(); S
              -71 -109
  -51 -1509
                          -593]
   -19 -341
                4
                       86
                             98]
    35
         994
                43
                       51
                            347]
```

Notice that the saturation spans a different module than A.

```
sage: S.echelon_form()
[ 1  2  0  8  32]
[ 0  3  0 -2 -6]
[ 0  0  1  9  25]
sage: V = A.row_space(); W = S.row_space()
sage: V.is_submodule(W)
True
```

```
sage: V.index_in(W)
85986
sage: V.index_in_saturation()
85986
```

We illustrate each option:

```
sage: S = A.saturation(p=2)
sage: S = A.saturation(proof=False)
sage: S = A.saturation(max_dets=2)
```

smith_form ()

Returns matrices S, U, and V such that S = U*self*V, and S is in Smith normal form. Thus S is diagonal with diagonal entries the ordered elementary divisors of S.

Warning: The elementary_divisors function, which returns the diagonal entries of S, is VASTLY faster than this function.

The elementary divisors are the invariants of the finite abelian group that is the cokernel of this matrix. They are ordered in reverse by divisibility.

EXAMPLES:

```
sage: A = MatrixSpace(IntegerRing(), 3)(range(9))
sage: D, U, V = A.smith_form()
sage: D
[1 0 0]
[0 3 0]
[0 0 0]
sage: U
[ 0 1 0]
[ 0 -1 1]
[-1 \ 2 \ -1]
sage: V
[-1 \ 4 \ 1]
[1 -3 -2]
[ 0 0 1]
sage: U*A*V
[1 0 0]
[0 3 0]
[0 0 0]
```

It also makes sense for nonsquare matrices:

```
sage: A = Matrix(ZZ,3,2,range(6))
sage: D, U, V = A.smith_form()
sage: D
[1 0]
[0 2]
[0 0]
sage: U
[ 0 1 0]
[ 0 -1 1]
[ -1 2 -1]
sage: V
[-1 3]
```

```
[ 1 -2]
sage: U * A * V
[1 0]
[0 2]
[0 0]
```

Empty matrices are handled sensibly (see trac ticket #3068):

```
sage: m = MatrixSpace(ZZ, 2,0)(0); d,u,v = m.smith_form(); u*m*v == d
True
sage: m = MatrixSpace(ZZ, 0,2)(0); d,u,v = m.smith_form(); u*m*v == d
True
sage: m = MatrixSpace(ZZ, 0,0)(0); d,u,v = m.smith_form(); u*m*v == d
True
```

See also:

```
elementary_divisors()
```

symplectic_form ()

Find a symplectic basis for self if self is an anti-symmetric, alternating matrix.

Returns a pair (F, C) such that the rows of C form a symplectic basis for self and F = C * self * C.transpose().

Raises a ValueError if self is not anti-symmetric, or self is not alternating.

Anti-symmetric means that $M = -M^t$. Alternating means that the diagonal of M is identically zero.

A symplectic basis is a basis of the form $e_1, \ldots, e_i, f_1, \ldots, f_i, z_1, \ldots, z_k$ such that

```
 \begin{split} \bullet z_i M v^t &= 0 \text{ for all vectors } v \\ \bullet e_i M e_j{}^t &= 0 \text{ for all } i,j \\ \bullet f_i M f_j{}^t &= 0 \text{ for all } i,j \\ \bullet e_i M f_i{}^t &= 1 \text{ for all } i \\ \bullet e_i M f_j{}^t &= 0 \text{ for all } i \text{ not equal } j. \end{split}
```

The ordering for the factors $d_i|d_{i+1}$ and for the placement of zeroes was chosen to agree with the output of smith form.

See the example for a pictorial description of such a basis.

```
sage: E = matrix(ZZ, 5, 5, [0, 14, 0, -8, -2, -14, 0, -3, -11, 4, 0, 3, 0, 0, ...]
\hookrightarrow 0, 8, 11, 0, 0, 8, 2, -4, 0, -8, 0]); E
[ 0 14 0 -8 -2]
     0 -3 -11
[-14]
      3
          0
              0
                    01
  8 11
          0 0
          0 -8
     -4
sage: F, C = E.symplectic_form()
sage: F
[0 \ 0 \ 1 \ 0 \ 0]
[0 0 0 2 0]
[-1 \quad 0 \quad 0 \quad 0 \quad 0]
[ 0 -2 0 0 0]
[0 0 0 0 0]
sage: F == C * E * C.transpose()
```

```
True

sage: E.smith_form()[0]

[1 0 0 0 0]

[0 1 0 0 0]

[0 0 2 0 0]

[0 0 0 2 0]

[0 0 0 0 0]
```

transpose ()

Returns the transpose of self, without changing self.

EXAMPLES:

We create a matrix, compute its transpose, and note that the original matrix is not changed.

```
sage: A = matrix(ZZ, 2, 3, range(6))
sage: type(A)
<type 'sage.matrix.matrix_integer_dense.Matrix_integer_dense'>
sage: B = A.transpose()
sage: print(B)
[0 3]
[1 4]
[2 5]
sage: print(A)
[0 1 2]
[3 4 5]
```

. T is a convenient shortcut for the transpose:

```
sage: A.T
[0 3]
[1 4]
[2 5]
```

```
sage: A.subdivide(None, 1); A
[0|1 2]
[3|4 5]
sage: A.transpose()
[0 3]
[---]
[1 4]
[2 5]
```

DENSE MATRICES OVER THE RATIONAL FIELD

EXAMPLES:

We create a 3x3 matrix with rational entries and do some operations with it.

```
sage: a = matrix(QQ, 3,3, [1,2/3, -4/5, 1,1,1, 8,2, -3/19]); a
   1
        2/3 -4/51
    1
          1
                1]
         2 -3/191
   8
sage: a.det()
2303/285
sage: a.charpoly()
x^3 - 35/19*x^2 + 1259/285*x - 2303/285
sage: b = a^{(-1)}; b
[ -615/2303 -426/2303 418/2303]
[ 2325/2303 1779/2303 -513/2303]
[-1710/2303 950/2303 95/2303]
sage: b.det()
285/2303
sage: a == b
False
sage: a < b</pre>
False
sage: b < a</pre>
True
sage: a > b
True
sage: a*b
[1 0 0]
[0 1 0]
[0 0 1]
```

class sage.matrix.matrix_rational_dense. Matrix_rational_dense
 Bases: sage.matrix.matrix_dense.Matrix_dense

LLL (*args, **kwargs)

Return an LLL reduced or approximated LLL reduced lattice for self interpreted as a lattice.

For details on input parameters, see sage.matrix.matrix_integer_dense.Matrix_integer_dense.LLL()

```
sage: A = Matrix(QQ, 3, 3, [1/n for n in range(1, 10)])
sage: A.LLL()
[ 1/28 -1/40 -1/18]
[ 1/28 -1/40  1/18]
[ 0 -3/40  0]
```

antitranspose ()

Returns the antitranspose of self, without changing self.

EXAMPLES:

```
sage: A = matrix(QQ, 2, 3, range(6))
sage: type(A)
<type 'sage.matrix.matrix_rational_dense.Matrix_rational_dense'>
sage: A.antitranspose()
[5 2]
[4 1]
[3 0]
sage: A
[0 1 2]
[3 4 5]
sage: A.subdivide(1,2); A
[0 1|2]
[---+-]
[3 4|5]
sage: A.antitranspose()
[5|2]
[-+-]
[4|1]
[3|0]
```

$change_ring(R)$

Create the matrix over R with entries the entries of self coerced into R.

EXAMPLES:

charpoly (var='x', algorithm='linbox')

Return the characteristic polynomial of this matrix.

INPUT:

```
•var - 'x' (string)
```

•algorithm - 'linbox' (default) or 'generic'

OUTPUT: a polynomial over the rational numbers.

EXAMPLES:

```
sage: a = matrix(QQ, 3, [4/3, 2/5, 1/5, 4, -3/2, 0, 0, -2/3, 3/4])
sage: f = a.charpoly(); f
x^3 - 7/12*x^2 - 149/40*x + 97/30
sage: f(a)
[0 0 0]
[0 0 0]
[0 0 0]
```

column (i, from_list=False)

Return the i-th column of this matrix as a dense vector.

INPUT:

- i integer
- from_list -ignored

EXAMPLES:

```
sage: matrix(QQ,2,[1/5,-2/3,3/4,4/9]).column(1)
(-2/3, 4/9)
sage: matrix(QQ,2,[1/5,-2/3,3/4,4/9]).column(1,from_list=True)
(-2/3, 4/9)
sage: matrix(QQ,2,[1/5,-2/3,3/4,4/9]).column(-1)
(-2/3, 4/9)
sage: matrix(QQ,2,[1/5,-2/3,3/4,4/9]).column(-2)
(1/5, 3/4)
```

decomposition (is_diagonalizable=False, dual=False, algorithm='default', height_guess=None, proof=None)

Returns the decomposition of the free module on which this matrix A acts from the right (i.e., the action is x goes to x A), along with whether this matrix acts irreducibly on each factor. The factors are guaranteed to be sorted in the same way as the corresponding factors of the characteristic polynomial.

Let A be the matrix acting from the on the vector space V of column vectors. Assume that A is square. This function computes maximal subspaces W_1 , ..., W_n corresponding to Galois conjugacy classes of eigenvalues of A. More precisely, let f(X) be the characteristic polynomial of A. This function computes the subspace $W_i = ker(g(A)^n)$, where $g_i(X)$ is an irreducible factor of f(X) and $g_i(X)$ exactly divides f(X). If the optional parameter is_diagonalizable is True, then we let $W_i = ker(g(A))$, since then we know that $ker(g(A)) = ker(g(A)^n)$.

If dual is True, also returns the corresponding decomposition of V under the action of the transpose of A. The factors are guaranteed to correspond.

INPUT:

- •is diagonalizable -ignored
- •dual whether to also return decompositions for the dual
- •algorithm
 - -'default': use default algorithm for computing Echelon forms
 - -'multimodular': much better if the answers factors have small height
- $\label{lem:continuous} \mbox{ \bullet height_guess positive integer; only used by the multimodular algorithm }$

•proof - bool or None (default: None, see proof.linear_algebra or sage.structure.proof); only used by the multimodular algorithm. Note that the Sage global default is proof=True.

Note: IMPORTANT: If you expect that the subspaces in the answer are spanned by vectors with small height coordinates, use algorithm='multimodular' and height_guess=1; this is potentially much faster than the default. If you know for a fact the answer will be very small, use algorithm='multimodular', height_guess=bound on height, proof=False.

You can get very very fast decomposition with proof=False.

EXAMPLES:

```
sage: a = matrix(QQ,3,[1..9])
sage: a.decomposition()
[
(Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[ 1 -2 1], True),
(Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 -1]
[ 0 1 2], True)
]
```

denominator ()

Return the denominator of this matrix.

OUTPUT: a Sage Integer

EXAMPLES:

determinant (algorithm='default', proof=None)

Return the determinant of this matrix.

INPUT:

•proof - bool or None; if None use proof.linear_algebra(); only relevant for the padic algorithm.

•algorithm:

"default" – use PARI for up to 7 rows, then use integer

"pari" – use PARI

"integer" - clear denominators and call det on integer matrix

Note: It would be *VERY VERY* hard for det to fail even with proof=False.

ALGORITHM: Clear denominators and call the integer determinant function.

```
sage: m = matrix(QQ,3,[1,2/3,4/5, 2,2,2, 5,3,2/5])
sage: m.determinant()
-34/15
sage: m.charpoly()
x^3 - 17/5*x^2 - 122/15*x + 34/15
```

echelon_form (algorithm='default', height_guess=None, proof=None, **kwds)
INPUT:

- •algorithm
 - -'default' (default): use heuristic choice
 - -'padic': an algorithm based on the IML p-adic solver.
 - -'multimodular': uses a multimodular algorithm the uses linbox modulo many primes.
 - -'classical': just clear each column using Gauss elimination
- •height_guess, **kwds all passed to the multimodular algorithm; ignored by the p-adic algorithm.
- •proof bool or None (default: None, see proof.linear_algebra or sage.structure.proof). Passed to the multimodular algorithm. Note that the Sage global default is proof=True.

OUTPUT: the reduced row echelon form of self.

EXAMPLES:

```
sage: a = matrix(QQ, 4, range(16)); a[0,0] = 1/19; a[0,1] = 1/5; a
[1/19 1/5
           2.
                  31
        5
             6
                  7]
   4
        9
           10
   8
                 11]
  12
      13
           14
                 15]
sage: a.echelon_form()
             0
                      0 -76/157]
      1
Γ
      0
              1
                      0 -5/157]
Γ
              0
                      1 238/157]
      0
              0
      0
                      0
                              0]
sage: a.echelon_form(algorithm='multimodular')
      1
             0
                      0 -76/157]
      0
              1
                      0 -5/157]
      0
              0
                      1 238/1571
      0
                              01
```

The result is an immutable matrix, so if you want to modify the result then you need to make a copy. This checks that trac ticket #10543 is fixed.

```
sage: A = matrix(QQ, 2, range(6))
sage: E = A.echelon_form()
sage: E.is_mutable()
False
sage: F = copy(E)
sage: F[0,0] = 50
sage: F
[50 0 -1]
[ 0 1 2]
```

echelonize (*algorithm='default'*, *height_guess=None*, *proof=None*, **kwds)

Transform the matrix self into reduced row echelon form in place.

INPUT:

- •algorithm:
- •'default' (default): use heuristic choice
- •'padic': an algorithm based on the IML p-adic solver.
- •'multimodular': uses a multimodular algorithm the uses linbox modulo many primes.
- •'classical': just clear each column using Gauss elimination
- \bullet height_guess, **kwds all passed to the multimodular algorithm; ignored by the p-adic algorithm.
- •proof bool or None (default: None, see proof.linear_algebra or sage.structure.proof). Passed to the multimodular algorithm. Note that the Sage global default is proof=True.

OUTPUT:

Nothing. The matrix self is transformed into reduced row echelon form in place.

EXAMPLES:

```
sage: a = matrix(QQ, 4, range(16)); a[0,0] = 1/19; a[0,1] = 1/5; a
[1/19 1/5
          2
                 31
      5
            6
                 7]
  4
       9
   8
           10
                11]
      13
          14
  12
                15]
sage: a.echelonize(); a
      1 0 0 -76/157]
      0
             1
                    0 -5/157]
      0
             0
                    1 238/157]
      0
             0
                    0
                            0]
```

height ()

Return the height of this matrix, which is the maximum of the absolute values of all numerators and denominators of entries in this matrix.

OUTPUT: an Integer

EXAMPLES:

minpoly (var='x', algorithm='linbox')

Return the minimal polynomial of this matrix.

INPUT:

```
•var - 'x' (string)
```

•algorithm - 'linbox' (default) or 'generic'

OUTPUT: a polynomial over the rational numbers.

EXAMPLES:

```
sage: a = matrix(QQ, 3, [4/3, 2/5, 1/5, 4, -3/2, 0, 0, -2/3, 3/4])
sage: f = a.minpoly(); f
x^3 - 7/12*x^2 - 149/40*x + 97/30
sage: a = Mat(ZZ,4)(range(16))
sage: f = a.minpoly(); f.factor()
x * (x^2 - 30*x - 80)
sage: f(a) == 0
True
```

```
sage: a = matrix(QQ, 4, [1..4^2])
sage: factor(a.minpoly())
x * (x^2 - 34*x - 80)
sage: factor(a.minpoly('y'))
y * (y^2 - 34*y - 80)
sage: factor(a.charpoly())
x^2 * (x^2 - 34*x - 80)
sage: b = matrix(QQ, 4, [-1, 2, 2, 0, 0, 4, 2, 2, 0, 0, -1, -2, 0, -4, 0, 4])
sage: a = matrix(QQ, 4, [1, 1, 0,0, 0,1,0,0, 0,0,5,0, 0,0,0,5])
sage: c = b^(-1)*a*b
sage: factor(c.minpoly())
(x - 5) * (x - 1)^2
sage: factor(c.charpoly())
(x - 5)^2 * (x - 1)^2
```

prod_of_row_sums (cols)

randomize (density=1, num_bound=2, den_bound=2, distribution=None, nonzero=False)

Randomize density proportion of the entries of this matrix, leaving the rest unchanged.

If x and y are given, randomized entries of this matrix have numerators and denominators bounded by x and y and have density 1.

INPUT:

- •density number between 0 and 1 (default: 1)
- •num_bound numerator bound (default: 2)
- •den_bound denominator bound (default: 2)
- •distribution None or '1/n' (default: None); if '1/n' then num_bound , den_bound are ignored and numbers are chosen using the GMP function mpq_randomize_entry_recip_uniform
- •nonzero Bool (default: False); whether the new entries are forced to be non-zero

OUTPUT:

•None, the matrix is modified in-space

```
sage: a = matrix(QQ,2,4); a.randomize(); a
[ 0 -1 2 -2]
[ 1 -1 2 1]
```

```
sage: a = matrix(QQ,2,4); a.randomize(density=0.5); a
[ -1 -2 0 0]
[ 0 0 1/2 0]
sage: a = matrix(QQ,2,4); a.randomize(num_bound=100, den_bound=100); a
[ 14/27 21/25 43/42 -48/67]
[-19/55 64/67 -11/51 76]
sage: a = matrix(QQ,2,4); a.randomize(distribution='1/n'); a
[ 3 1/9 1/2 1/4]
[ 1 1/39 2 -1955/2]
```

rank ()

Return the rank of this matrix.

```
EXAMPLES:: sage: matrix(QQ,3,[1..9]).rank() 2 sage: matrix(QQ,100,[1..100^2]).rank() 2
```

row (i, from_list=False)

Return the i-th row of this matrix as a dense vector.

INPUT:

- i integer
- from_list -ignored

EXAMPLES:

```
sage: matrix(QQ,2,[1/5,-2/3,3/4,4/9]).row(1)
(3/4, 4/9)
sage: matrix(QQ,2,[1/5,-2/3,3/4,4/9]).row(1,from_list=True)
(3/4, 4/9)
sage: matrix(QQ,2,[1/5,-2/3,3/4,4/9]).row(-2)
(1/5, -2/3)
```

$set_row_to_multiple_of_row$ (i, j, s)

Set row i equal to s times row j.

EXAMPLES:

```
sage: a = matrix(QQ,2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: a.set_row_to_multiple_of_row(1,0,-3)
sage: a
[ 0 1 2]
[ 0 -3 -6]
```

transpose ()

Returns the transpose of self, without changing self.

EXAMPLES:

We create a matrix, compute its transpose, and note that the original matrix is not changed.

```
sage: A = matrix(QQ, 2, 3, range(6))
sage: type(A)
<type 'sage.matrix.matrix_rational_dense.Matrix_rational_dense'>
sage: B = A.transpose()
sage: print(B)
[0 3]
[1 4]
[2 5]
```

```
sage: print(A)
[0 1 2]
[3 4 5]
```

. $\ensuremath{\mathbb{T}}$ is a convenient shortcut for the transpose:

```
sage: print(A.T)
[0 3]
[1 4]
[2 5]
```

```
sage: A.subdivide(None, 1); A
[0|1 2]
[3|4 5]
sage: A.transpose()
[0 3]
[---]
[1 4]
[2 5]
```


CHAPTER

NINETEEN

DENSE MATRICES USING A NUMPY BACKEND.

This serves as a base class for dense matrices over Real Double Field and Complex Double Field.

AUTHORS:

- Jason Grout, Sep 2008: switch to NumPy backend, factored out the Matrix_double_dense class
- · Josh Kantor
- William Stein: many bug fixes and touch ups.

EXAMPLES:

```
sage: b=Mat(RDF,2,3).basis()
sage: b[0]
[1.0 0.0 0.0]
[0.0 0.0 0.0]
```

We deal with the case of zero rows or zero columns:

```
sage: m = MatrixSpace(RDF,0,3)
sage: m.zero_matrix()
[]
```

```
class sage.matrix.matrix_double_dense. Matrix_double_dense
    Bases: sage.matrix.matrix_dense.Matrix_dense
```

Base class for matrices over the Real Double Field and the Complex Double Field. These are supposed to be fast matrix operations using C doubles. Most operations are implemented using numpy which will call the underlying BLAS on the system.

This class cannot be instantiated on its own. The numpy matrix creation depends on several variables that are set in the subclasses.

EXAMPLES:

LU ()

Returns a decomposition of the (row-permuted) matrix as a product of a lower-triangular matrix ("L") and an upper-triangular matrix ("U").

OUTPUT:

For an $m \times n$ matrix A this method returns a triple of immutable matrices P, L, U such that

```
\bullet P * A = L * U
```

- •P is a square permutation matrix, of size $m \times m$, so is all zeroes, but with exactly a single one in each row and each column.
- •L is lower-triangular, square of size $m \times m$, with every diagonal entry equal to one.
- \bullet U is upper-triangular with size $m \times n$, i.e. entries below the "diagonal" are all zero.

The computed decomposition is cached and returned on subsequent calls, thus requiring the results to be immutable.

Effectively, P permutes the rows of A. Then L can be viewed as a sequence of row operations on this matrix, where each operation is adding a multiple of a row to a subsequent row. There is no scaling (thus 1's on the diagonal of L) and no row-swapping (P does that). As a result U is close to being the result of Gaussian-elimination. However, round-off errors can make it hard to determine the zero entries of U.

Note: Sometimes this decomposition is written as $A=P \star L \star U$, where P represents the inverse permutation and is the matrix inverse of the P returned by this method. The computation of this matrix inverse can be accomplished quickly with just a transpose as the matrix is orthogonal/unitary.

EXAMPLES:

trac ticket #10839 made this routine available for rectangular matrices.

```
sage: A = matrix(RDF, 5, 6, range(30)); A
[ 0.0 1.0 2.0 3.0 4.0 5.0]
[ 6.0 7.0 8.0 9.0 10.0 11.0]
[12.0 13.0 14.0 15.0 16.0 17.0]
[18.0 19.0 20.0 21.0 22.0 23.0]
[24.0 25.0 26.0 27.0 28.0 29.0]
sage: P, L, U = A.LU()
sage: P
[0.0 0.0 0.0 0.0 1.0]
[1.0 0.0 0.0 0.0 0.0]
[0.0 0.0 1.0 0.0 0.0]
[0.0 0.0 0.0 1.0 0.0]
[0.0 1.0 0.0 0.0 0.0]
sage: L.zero_at(0) # Use zero_at(0) to get rid of signed zeros
[ 1.0 0.0 0.0 0.0 0.0]
[ 0.0 1.0 0.0 0.0 0.0]
[ 0.5 0.5 1.0 0.0 0.0]
```

```
[0.75 0.25 0.0 1.0 0.0]
[0.25 0.75 0.0 0.0 1.0]
sage: U.zero_at(0) # Use zero_at(0) to get rid of signed zeros
[24.0 25.0 26.0 27.0 28.0 29.0]
[ 0.0 1.0 2.0 3.0 4.0 5.0]
[ 0.0 0.0 0.0 0.0 0.0 0.0]
[ 0.0 0.0 0.0 0.0 0.0 0.0]
[ 0.0 0.0 0.0 0.0 0.0 0.0]
sage: P*A-L*U
[0.0 0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0 0.0]
sage: P.transpose()*L*U
[ 0.0 1.0 2.0 3.0 4.0 5.0]
[ 6.0 7.0 8.0 9.0 10.0 11.0]
[12.0 13.0 14.0 15.0 16.0 17.0]
[18.0 19.0 20.0 21.0 22.0 23.0]
[24.0 25.0 26.0 27.0 28.0 29.0]
```

Trivial cases return matrices of the right size and characteristics.

```
sage: A = matrix(RDF, 5, 0)
sage: P, L, U = A.LU()
sage: P.parent()
Full MatrixSpace of 5 by 5 dense matrices over Real Double Field
sage: L.parent()
Full MatrixSpace of 5 by 5 dense matrices over Real Double Field
sage: U.parent()
Full MatrixSpace of 5 by 0 dense matrices over Real Double Field
sage: P*A-L*U
[]
```

The results are immutable since they are cached.

LU valid ()

Returns True if the LU form of this matrix has already been computed.

```
sage: A = random_matrix(RDF,3) ; A.LU_valid()
False
sage: P, L, U = A.LU()
sage: A.LU_valid()
True
```

QR ()

Returns a factorization into a unitary matrix and an upper-triangular matrix.

INPUT:

Any matrix over RDF or CDF.

OUTPUT:

 ${\mathbb Q}$, ${\mathbb R}$ – a pair of matrices such that if A is the original matrix, then

$$A = QR, \quad Q^*Q = I$$

where R is upper-triangular. Q^* is the conjugate-transpose in the complex case, and just the transpose in the real case. So Q is a unitary matrix (or rather, orthogonal, in the real case), or equivalently Q has orthogonal columns. For a matrix of full rank this factorization is unique up to adjustments via multiples of rows and columns by multiples with scalars having modulus 1. So in the full-rank case, R is unique if the diagonal entries are required to be positive real numbers.

The resulting decomposition is cached.

ALGORITHM:

Calls "linalg.qr" from SciPy, which is in turn an interface to LAPACK routines.

EXAMPLES:

Over the reals, the inverse of Q is its transpose, since including a conjugate has no effect. In the real case, we say Q is orthogonal.

At this point, Q is only well-defined up to the signs of its columns, and similarly for R and its rows, so we normalize them:

```
sage: Qnorm = Q._normalize_columns()
sage: Rnorm = R._normalize_rows()
sage: Qnorm.round(6).zero_at(10^-6)
[ 0.458831  0.126051  0.381212  0.394574
                                         0.687441
[0.458831 -0.47269 -0.051983 -0.717294 0.220963]
[-0.229416 -0.661766 0.661923 0.180872 -0.196411]
[-0.688247 - 0.189076 - 0.204468 - 0.09663 0.662889]
[0.229416 - 0.535715 - 0.609939 0.536422 - 0.024551]
sage: Rnorm.round(6).zero_at(10^-6)
[ 4.358899 -0.458831 13.076697 6.194225 2.982405]
      0.0 1.670172 0.598741 -1.29202 6.2079971
                0.0 5.444402 5.468661 -0.682716]
[
      0.0
                          0.0 1.027626
                                         -3.6193]
      0.0
                0.0
                          0.0
                                    0.0 0.0245511
      0.0
                0.0
```

```
sage: (Q*Q.transpose()) # tol 1e-14
                                                                              0.0
[0.999999999999994
                                                          0.0
                 0.01
\hookrightarrow
                 0.0
                                                                              0.0
                                     1.0
                                                          0.0
[
                 0.0]
                                     0.0 0.999999999999999
                 0.0
                                                                              0.0
Γ
                 0.0]
                                                         0.0 0.999999999999998
[
                 0.0
                                     0.0
                 0.01
Γ
                 0.0
                                     0.0
                                                         0.0
                                                                              0.0
→1.000000000000000000002]
sage: (Q*R - A).zero_at(10^-14)
[0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0]
```

Now over the complex numbers, demonstrating that the SciPy libraries are (properly) using the Hermitian inner product, so that Q is a unitary matrix (its inverse is the conjugate-transpose).

```
sage: A = matrix(CDF, [[-8, 4 \times I + 1, -I + 2, 2 \times I + 1],
                     [1, -2*I - 1, -I + 3, -I + 1],
                     [I + 7, 2*I + 1, -2*I + 7, -I + 1],
. . . . :
                     [I + 2, 0, I + 12, -1]])
. . . . :
sage: Q, R = A.QR()
sage: Q._normalize_columns() # tol 1e-6
                          0.7302967433402214
                                            0.20705664550556482 + 0.
→5383472783144685*I 0.24630498099986423 - 0.07644563587232917*I 0.
\rightarrow23816176831943323 - 0.10365960327796941*I]
                        -0.09128709291752768 -0.20705664550556482 -0.
Γ
→37787837804765584*I
                      0.37865595338630315 - 0.19522214955246678*I
\rightarrow7012444502144682 - 0.36437116509865947*I1
 \hookrightarrow 6677576817554466 \star \text{I} -0.03411475806452064 + 0.040901987417671426 \star \text{I} \\ 0. 
\rightarrow 31401710855067644 - 0.08251917187054114*I]
44996948676115206 - 0.01161191812089182*I
sage: R._normalize_rows().zero_at(1e-15) # tol 1e-6
                       10.954451150103322
                                                             -1.
→9170289512680814*I
                     5.385938482134133 - 2.1908902300206643*I -0.
→2738612787525829 - 2.1908902300206643*I]
[
                                     0.0
→8295962564173 -0.8696379111233719 - 5.864879483945123*I 0.993871898426711
\rightarrow - 0.30540855212070794*I]
                                 12.00160760935814 - 0.2709533402297273 + 0.
      0.0
→4420629644486325*I]
                                     0.0
      0.0
                                              0.0
                                                                        ш
\hookrightarrow1.94296394425899171
sage: (Q.conjugate().transpose()*Q).zero_at(1e-15) # tol 1e-15
              1.0
                                0.0
                                                  0.0
                                                                    0.01
[
[
              0.0 0.999999999999994
                                                  0.0
                                                                    0.0]
[
              0.0
                                0.0 1.00000000000000002
                                                                    0.01
              0.0
                                0.0
                                                  0.0 1.0000000000000004]
sage: (Q*R - A).zero_at(10^-14)
```

```
[0.0 0.0 0.0 0.0]

[0.0 0.0 0.0 0.0]

[0.0 0.0 0.0 0.0]

[0.0 0.0 0.0 0.0]
```

An example of a rectangular matrix that is also rank-deficient. If you run this example yourself, you may see a very small, nonzero entries in the third row, in the third column, even though the exact version of the matrix has rank 2. The final two columns of $\mathbb Q$ span the left kernel of $\mathbb A$ (as evidenced by the two zero rows of $\mathbb R$). Different platforms will compute different bases for this left kernel, so we do not exhibit the actual matrix.

```
sage: Arat = matrix(QQ, [[2, -3, 3],
                         [-1, 1, -1],
                          [-1, 3, -3],
. . . . :
. . . . :
                         [-5, 1, -1]])
sage: Arat.rank()
sage: A = Arat.change_ring(CDF)
sage: Q, R = A.QR()
sage: R._normalize_rows() # abs tol 1e-14
     5.567764362830022 -2.6940795304016243
                                                  2.6940795304016243]
                    0.0
                           3.5695847775155825 -3.5695847775155825]
[
                    0.0
                                            0.0 2.4444034681064287e-16]
Γ
                    0.0
                                            0.0
                                                                    0.01
sage: (Q.conjugate_transpose()*Q) # abs tol 1e-14
      1.0000000000000000 \\ -5.185196889911925 \\ -17 \\ -4.1457180570414476 \\ \\ -17 \\ -2.
→909388767229071e-17]
[ -5.185196889911925e-17
                              1.0000000000000000 -9.286869233696149e-17 -1.
→1035822863186828e-16]
[-4.1457180570414476e-17 -9.286869233696149e-17
                                                                       1.0 4.
4159215672155694e-17
[-2.909388767229071e-17 \ -1.1035822863186828e-16 \ 4.4159215672155694e-17]
                 1.01
```

Results are cached, meaning they are immutable matrices. Make a copy if you need to manipulate a result.

SVD ()

Return the singular value decomposition of this matrix.

The U and V matrices are not unique and may be returned with different values in the future or on different systems. The S matrix is unique and contains the singular values in descending order.

The computed decomposition is cached and returned on subsequent calls.

INPUT:

•A – a matrix

OUTPUT:

•U, S, V – immutable matrices such that A = U * S * V.conj().transpose() where U and V are orthogonal and S is zero off of the diagonal.

Note that if self is m-by-n, then the dimensions of the matrices that this returns are (m,m), (m,n), and (n, n).

Note: If all you need is the singular values of the matrix, see the more convenient <code>singular_values()</code>.

EXAMPLES:

A non-square example:

S contains the singular values:

```
sage: S.round(4)
[ 9.508     0.0     0.0]
[ 0.0 0.7729     0.0]
sage: [round(sqrt(abs(x)),4) for x in (S*S.transpose()).eigenvalues()]
[9.508, 0.7729]
```

U and V are orthogonal matrices:

cholesky ()

Returns the Cholesky factorization of a matrix that is real symmetric, or complex Hermitian.

INPUT:

Any square matrix with entries from RDF that is symmetric, or with entries from CDF that is Hermitian. The matrix must be positive definite for the Cholesky decomposition to exist.

OUTPUT:

For a matrix A the routine returns a lower triangular matrix L such that,

$$A = LL^*$$

where L^* is the conjugate-transpose in the complex case, and just the transpose in the real case. If the matrix fails to be positive definite (perhaps because it is not symmetric or Hermitian), then this function raises a ValueError.

IMPLEMENTATION:

The existence of a Cholesky decomposition and the positive definite property are equivalent. So this method and the <code>is_positive_definite()</code> method compute and cache both the Cholesky decomposition and the positive-definiteness. So the <code>is_positive_definite()</code> method or catching a <code>ValueError</code> from the <code>cholesky()</code> method are equally expensive computationally and if the decomposition exists, it is cached as a side-effect of either routine.

EXAMPLES:

A real matrix that is symmetric and positive definite.

```
sage: M = matrix(RDF,[[ 1,
                                       1,
                          1,
                                1,
                                              11,
                               31,
                                     121,
                                            341],
. . . . :
                     [ 1, 5,
                     [ 1, 31, 341,
                                    1555, 4681],
. . . . :
                     [ 1,121, 1555,
                                    7381, 22621],
                     [ 1,341, 4681, 22621, 69905]])
. . . . :
sage: M.is_symmetric()
True
sage: L = M.cholesky()
sage: L.round(6).zero_at(10^-10)
   1.0 0.0 0.0
                                0.0
                                       0.0]
         2.0
                    0.0
   1.0
                                0.0
                                      0.0]
   1.0 15.0 10.723805
                               0.0
                                       0.01
       60.0 60.985814
                          7.792973
   1.0
                                       0.01
   1.0 170.0 198.623524 39.366567 1.7231]
sage: (L*L.transpose()).round(6).zero_at(10^-10)
[ 1.0
        1.0
               1.0
                      1.0
                                1.0]
[ 1.0
         5.0
                31.0
                     121.0
                              341.01
[ 1.0
        31.0
               341.0 1555.0 4681.0]
[ 1.0
       121.0 1555.0 7381.0 22621.0]
       341.0 4681.0 22621.0 69905.0]
[ 1.0
```

A complex matrix that is Hermitian and positive definite.

```
sage: A = matrix(CDF, [[ 23, 17*I + 3, 24*I + 25, 21*I], ....: [ -17*I + 3, 38, -69*I + 89, 7*I + 15],
```

```
[-24*I + 25, 69*I + 89,
                                                976, 24*I + 6],
. . . . :
                       [ -21*I, -7*I + 15, -24*I + 6,
                                                                  28]])
. . . . :
sage: A.is_hermitian()
True
sage: L = A.cholesky()
sage: L.round(6).zero_at(10^-10)
                4.795832
                                              0.0
                                                                     0.0
Γ
→0.0]
[ 0.625543 - 3.544745 \times I ]
                                         5.004346
                                                                     0.0
\hookrightarrow 0.01
[ 5.21286 - 5.004346*I 13.588189 + 10.721116*I
                                                               24.984023
\hookrightarrow 0.01
             -4.378803*I -0.104257 -0.851434*I -0.21486 +0.371348*I 2.
[
→811799]
sage: (L*L.conjugate_transpose()).round(6).zero_at(10^-10)
          23.0 3.0 + 17.0*I 25.0 + 24.0*I
                                                   21.0*Il
[3.0 - 17.0*I 38.0 89.0 - 69.0*I 15.0 + 7.0*I]
[25.0 - 24.0*I 89.0 + 69.0*I
                                    976.0 6.0 + 24.0*I]
      -21.0*I 15.0 - 7.0*I 6.0 - 24.0*I
                                                     28.01
```

This routine will recognize when the input matrix is not positive definite. The negative eigenvalues are an equivalent indicator. (Eigenvalues of a Hermitian matrix must be real, so there is no loss in ignoring the imprecise imaginary parts).

```
sage: A = matrix(RDF, [[3, -6,
                                   9,
                                        6, -9],
                        [-6, 11, -16, -11, 17],
. . . . :
                        [9, -16, 28, 16, -40],
                        [6, -11, 16, 9, -19],
. . . . :
                        [-9, 17, -40, -19, 68]])
. . . . :
sage: A.is_symmetric()
True
sage: A.eigenvalues()
[108.07..., 13.02..., -0.02..., -0.70..., -1.37...]
sage: A.cholesky()
Traceback (most recent call last):
. . .
ValueError: matrix is not positive definite
                             2, 4 - 2 \times I, 2 + 2 \times I,
sage: B = matrix(CDF, [[
                       [4 + 2*I, 8, 10*I],
. . . . :
                        [2 - 2 \times I, -10 \times I,
. . . . :
                                               -311)
sage: B.is_hermitian()
True
sage: [ev.real() for ev in B.eigenvalues()]
[15.88..., 0.08..., -8.97...]
sage: B.cholesky()
Traceback (most recent call last):
ValueError: matrix is not positive definite
```

condition (p='frob')

Returns the condition number of a square nonsingular matrix.

Roughly speaking, this is a measure of how sensitive the matrix is to round-off errors in numerical computations. The minimum possible value is 1.0, and larger numbers indicate greater sensitivity.

INPUT:

•p - default: 'frob' - controls which norm is used to compute the condition number, allowable values

are 'frob' (for the Frobenius norm), integers -2, -1, 1, 2, positive and negative infinity. See output discussion for specifics.

OUTPUT:

The condition number of a matrix is the product of a norm of the matrix times the norm of the inverse of the matrix. This requires that the matrix be square and invertible (nonsingular, full rank).

Returned value is a double precision floating point value in RDF, or Infinity. Row and column sums described below are sums of the absolute values of the entries, where the absolute value of the complex number a+bi is $\sqrt{a^2+b^2}$. Singular values are the "diagonal" entries of the "S" matrix in the singular value decomposition.

•p = 'frob': the default norm employed in computing the condition number, the Frobenius norm, which for a matrix $A = (a_{ij})$ computes

$$\left(\sum_{i,j} |a_{i,j}|^2\right)^{1/2}$$

•p = 'sv': the quotient of the maximal and minimal singular value.

•p = Infinity or p = oo: the maximum row sum.

•p = -Infinity or p = -00: the minimum column sum.

•p = 1: the maximum column sum.

•p = -1: the minimum column sum.

 $\bullet p = 2$: the 2-norm, equal to the maximum singular value.

•p = -2: the minimum singular value.

ALGORITHM:

Computation is performed by the cond () function of the SciPy/NumPy library.

EXAMPLES:

First over the reals.

```
sage: A = matrix(RDF, 4, [(1/4)*x^3 for x in range(16)]); A
 0.0
        0.25 2.0 6.751
[ 16.0 31.25
               54.0 85.75]
[ 128.0 182.25 250.0 332.75]
[ 432.0 549.25 686.0 843.75]
sage: A.condition()
9923.88955...
sage: A.condition(p='frob')
9923.88955...
sage: A.condition(p=Infinity) # tol 2e-14
22738.50000000045
sage: A.condition(p=-Infinity) # tol 2e-14
17.50000000000028
sage: A.condition(p=1)
12139.21...
sage: A.condition(p=-1) # tol 2e-14
550.0000000000093
sage: A.condition(p=2)
9897.8088...
sage: A.condition(p=-2)
0.000101032462...
```

And over the complex numbers.

```
sage: B = matrix(CDF, 3, [x + x^2*I \text{ for } x \text{ in } range(9)]); B
           0.0 	 1.0 + 1.0 \times I 	 2.0 + 4.0 \times I
[3.0 + 9.0*I 4.0 + 16.0*I 5.0 + 25.0*I]
[6.0 + 36.0 \times I 7.0 + 49.0 \times I 8.0 + 64.0 \times I]
sage: B.condition()
203.851798...
sage: B.condition(p='frob')
203.851798...
sage: B.condition(p=Infinity)
369.55630...
sage: B.condition(p=-Infinity)
5.46112969...
sage: B.condition(p=1)
289.251481...
sage: B.condition(p=-1)
20.4566639...
sage: B.condition(p=2)
202.653543...
sage: B.condition(p=-2)
0.00493453005...
```

Hilbert matrices are famously ill-conditioned, while an identity matrix can hit the minimum with the right norm.

```
sage: A = matrix(RDF, 10, [1/(i+j+1) for i in range(10) for j in range(10)])
sage: A.condition() # tol 2e-4
16332197709146.014
sage: id = identity_matrix(CDF, 10)
sage: id.condition(p=1)
1.0
```

Return values are in RDF.

```
sage: A = matrix(CDF, 2, range(1,5))
sage: A.condition() in RDF
True
```

Rectangular and singular matrices raise errors if p is not 'sv'.

```
sage: A = matrix(RDF, 2, 3, range(6))
sage: A.condition()
Traceback (most recent call last):
...
TypeError: matrix must be square if p is not 'sv', not 2 x 3

sage: A.condition('sv')
7.34...

sage: A = matrix(QQ, 5, range(25))
sage: A.is_singular()
True
sage: B = A.change_ring(CDF)
sage: B.condition()
Traceback (most recent call last):
...
LinAlgError: Singular matrix
```

Improper values of p are caught.

determinant ()

Return the determinant of self.

ALGORITHM:

Use numpy

EXAMPLES:

```
sage: m = matrix(RDF,2,range(4)); m.det()
-2.0
sage: m = matrix(RDF,0,[]); m.det()
1.0
sage: m = matrix(RDF, 2, range(6)); m.det()
Traceback (most recent call last):
...
ValueError: self must be a square matrix
```

eigenvalues (algorithm='default', tol=None)

Returns a list of eigenvalues.

INPUT:

- •self a square matrix
- •algorithm default: 'default'
 - -'default' applicable to any matrix with double-precision floating point entries. Uses the eigvals() method from SciPy.
 - -'symmetric' converts the matrix into a real matrix (i.e. with entries from RDF), then applies the algorithm for Hermitian matrices. This algorithm can be significantly faster than the 'default' algorithm.
 - -'hermitian' uses the eigh() method from SciPy, which applies only to real symmetric or complex Hermitian matrices. Since Hermitian is defined as a matrix equaling its conjugate-transpose, for a matrix with real entries this property is equivalent to being symmetric. This algorithm can be significantly faster than the 'default' algorithm.
- •'tol' default: None if set to a value other than None this is interpreted as a small real number used to aid in grouping eigenvalues that are numerically similar. See the output description for more information.

Warning: When using the 'symmetric' or 'hermitian' algorithms, no check is made on the input matrix, and only the entries below, and on, the main diagonal are employed in the computation.

Methods such as is_symmetric() and is_hermitian() could be used to verify this beforehand.

OUTPUT:

Default output for a square matrix of size n is a list of n eigenvalues from the complex double field, CDF . If the 'symmetric' or 'hermitian' algorithms are chosen, the returned eigenvalues are from the real double field, RDF .

If a tolerance is specified, an attempt is made to group eigenvalues that are numerically similar. The return is then a list of pairs, where each pair is an eigenvalue followed by its multiplicity. The eigenvalue reported is the mean of the eigenvalues computed, and these eigenvalues are contained in an interval (or disk) whose radius is less than $5 \star tol$ for n < 10,000 in the worst case.

More precisely, for an $n \times n$ matrix, the diameter of the interval containing similar eigenvalues could be as large as sum of the reciprocals of the first n integers times tol.

Warning: Use caution when using the tol parameter to group eigenvalues. See the examples below to see how this can go wrong.

EXAMPLES:

```
sage: m = matrix(RDF, 2, 2, [1,2,3,4])
sage: ev = m.eigenvalues(); ev
[-0.372281323..., 5.37228132...]
sage: ev[0].parent()
Complex Double Field

sage: m = matrix(RDF, 2, 2, [0,1,-1,0])
sage: m.eigenvalues(algorithm='default')
[1.0*I, -1.0*I]

sage: m = matrix(CDF, 2, 2, [I,1,-I,0])
sage: m.eigenvalues()
[-0.624810533... + 1.30024259...*I, 0.624810533... - 0.30024259...*I]
```

The adjacency matrix of a graph will be symmetric, and the eigenvalues will be real.

The matrix A is "random", but the construction of B provides a positive-definite Hermitian matrix. Note that the eigenvalues of a Hermitian matrix are real, and the eigenvalues of a positive-definite matrix will be positive.

```
sage: A = matrix([[ 4*I + 5, 8*I + 1, 7*I + 5, 3*I + 5],
...:
        [ 7*I - 2, -4*I + 7, -2*I + 4, 8*I + 8],
...:
        [ -2*I + 1, 6*I + 6, 5*I + 5, -I - 4],
...:
        [ 5*I + 1, 6*I + 2, I - 4, -I + 3]])
```

```
sage: B = (A*A.conjugate_transpose()).change_ring(CDF)
sage: ev = B.eigenvalues(algorithm='hermitian'); ev
[2.68144025..., 49.5167998..., 274.086188..., 390.71557...]
sage: ev[0].parent()
Real Double Field
```

A tolerance can be given to aid in grouping eigenvalues that are similar numerically. However, if the parameter is too small it might split too finely. Too large, and it can go wrong very badly. Use with care.

```
sage: G = graphs.PetersenGraph()
sage: G.spectrum()
[3, 1, 1, 1, 1, 1, -2, -2, -2, -2]

sage: A = G.adjacency_matrix().change_ring(RDF)
sage: A.eigenvalues(algorithm='symmetric', tol=1.0e-5) # tol 1e-15
[(-1.99999999999999, 4), (1.0, 5), (2.9999999999999, 1)]

sage: A.eigenvalues(algorithm='symmetric', tol=2.5) # tol 1e-15
[(-1.99999999999999, 4), (1.3333333333333333, 6)]
```

An (extreme) example of properly grouping similar eigenvalues.

```
sage: G = graphs.HigmanSimsGraph()
sage: A = G.adjacency_matrix().change_ring(RDF)
sage: A.eigenvalues(algorithm='symmetric', tol=1.0e-5) # tol 2e-15
[(-8.0, 22), (1.99999999999994, 77), (21.999999999996, 1)]
```

eigenvectors_left()

Compute the left eigenvectors of a matrix of double precision real or complex numbers (i.e. RDF or CDF).

OUTPUT: Returns a list of triples, each of the form (e, [v], 1), where e is the eigenvalue, and v is an associated left eigenvector. If the matrix is of size n, then there are n triples. Values are computed with the SciPy library.

The format of this output is designed to match the format for exact results. However, since matrices here have numerical entries, the resulting eigenvalues will also be numerical. No attempt is made to determine if two eigenvalues are equal, or if eigenvalues might actually be zero. So the algebraic multiplicity of each eigenvalue is reported as 1. Decisions about equal eigenvalues or zero eigenvalues should be addressed in the calling routine.

The SciPy routines used for these computations produce eigenvectors normalized to have length 1, but on different hardware they may vary by a sign. So for doctests we have normalized output by forcing their eigenvectors to have their first non-zero entry equal to one.

EXAMPLES:

```
sage: spectrum[1] # tol le-13
(0.99999999999164, [(0.9999999999999, 0.79999999999933, 0.

→799999999999836, 0.59999999999696)], 1)

sage: spectrum[2] # tol le-13
(-1.999999999999782, [(1.0, 0.400000000000335, 0.60000000000039, 0.

→200000000000051)], 1)

sage: spectrum[3] # tol le-13
(-1.00000000000018, [(1.0, 0.99999999999568, 1.9999999999999794, 1.

→99999999999998472)], 1)
```

eigenvectors_right ()

Compute the right eigenvectors of a matrix of double precision real or complex numbers (i.e. RDF or CDF).

OUTPUT:

Returns a list of triples, each of the form (e, [v], 1), where e is the eigenvalue, and v is an associated right eigenvector. If the matrix is of size n, then there are n triples. Values are computed with the SciPy library.

The format of this output is designed to match the format for exact results. However, since matrices here have numerical entries, the resulting eigenvalues will also be numerical. No attempt is made to determine if two eigenvalues are equal, or if eigenvalues might actually be zero. So the algebraic multiplicity of each eigenvalue is reported as 1. Decisions about equal eigenvalues or zero eigenvalues should be addressed in the calling routine.

The SciPy routines used for these computations produce eigenvectors normalized to have length 1, but on different hardware they may vary by a sign. So for doctests we have normalized output by forcing their eigenvectors to have their first non-zero entry equal to one.

EXAMPLES:

```
sage: m = matrix(RDF, [[-9, -14, 19, -74], [-1, 2, 4, -11], [-4, -12, 6, -14], [-1, 2, 4, -11], [-4, -12, 6, -14], [-1, 2, 4, -14], [-4, -14], [-4, -14], [-4, -14], [-4, -14], [-4, -14], [-4, -14], [-4, -14], [-4, -14], [-4, -14], [-4, -14], [-4, -14], [-4, -14], [-4, -14], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4], [-4, -4
\rightarrow32], [0, -2, -1, 1]])
sage: m
[-9.0 -14.0 19.0 -74.0]
                        2.0
                                             4.0 -11.01
[-1.0]
                                             6.0 -32.01
[-4.0 -12.0]
\begin{bmatrix} 0.0 & -2.0 & -1.0 \end{bmatrix}
                                                                1.0]
sage: spectrum = m.right_eigenvectors()
sage: for i in range(len(spectrum)):
                         spectrum[i][1][0]=matrix(RDF, spectrum[i][1]).echelon_form()[0]
sage: spectrum[0] # tol 1e-13
(2.00000000000048, [(1.0, -2.00000000001523, 3.00000000000181, 1.
\hookrightarrow00000000000000746)], 1)
sage: spectrum[1] # tol 1e-13
(0.9999999999941, [(1.0, -0.666666666633, 1.333333333333286, 0.
 \rightarrow 3333333333333555)], 1)
sage: spectrum[2] # tol 1e-13
\rightarrow20000000000000498)], 1)
sage: spectrum[3] # tol 1e-13
(-1.0000000000000406, [(1.0, -0.4999999999996264, 1.999999999998617, 0.
```

exp (algorithm=None, order=None)

Calculate the exponential of this matrix X, which is the matrix

$$e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}.$$

INPUT:

- •algorithm deprecated
- •order deprecated

EXAMPLES:

```
sage: A=matrix(RDF, 2, [1,2,3,4]); A
[1.0 2.0]
[3.0 4.0]
sage: A.exp() # tol 1e-15
[51.968956198705044 74.73656456700327]
[112.10484685050491 164.07380304920997]
sage: A=matrix(CDF, 2, [1,2+I,3*I,4]); A
         1.0\ 2.0\ +\ 1.0*I
[
      3.0*I
                    4.01
sage: A.exp() # tol 1.1e-14
[-19.614602953804912 + 12.517743846762578*I
                                             3.7949636449582176 + 28.
→88379930658099*I1
[-32.383580980922254 + 21.88423595789845*I
                                              2.269633004093535 + 44.
→901324827684824*I]
```

is_hermitian (tol=1e-12, algorithm='orthonormal')

Returns True if the matrix is equal to its conjugate-transpose.

INPUT:

- •tol default: 1e-12 the largest value of the absolute value of the difference between two matrix entries for which they will still be considered equal.
- •algorithm default: 'orthonormal' set to 'orthonormal' for a stable procedure and set to 'naive' for a fast procedure.

OUTPUT:

True if the matrix is square and equal to the transpose with every entry conjugated, and False otherwise.

Note that if conjugation has no effect on elements of the base ring (such as for integers), then the <code>is_symmetric()</code> method is equivalent and faster.

The tolerance parameter is used to allow for numerical values to be equal if there is a slight difference due to round-off and other imprecisions.

The result is cached, on a per-tolerance and per-algorithm basis.

ALGORITHMS:

The naive algorithm simply compares corresponding entries on either side of the diagonal (and on the diagonal itself) to see if they are conjugates, with equality controlled by the tolerance parameter.

The orthonormal algorithm first computes a Schur decomposition (via the *schur()* method) and checks that the result is a diagonal matrix with real entries.

So the naive algorithm can finish quickly for a matrix that is not Hermitian, while the orthonormal algorithm will always compute a Schur decomposition before going through a similar check of the matrix entry-by-entry.

EXAMPLES:

A matrix that is nearly Hermitian, but for one non-real diagonal entry.

We get a unitary matrix from the SVD routine and use this numerical matrix to create a matrix that should be Hermitian (indeed it should be the identity matrix), but with some imprecision. We use this to illustrate that if the tolerance is set too small, then we can be too strict about the equality of entries and may achieve the wrong result (depending on the system):

A square, empty matrix is trivially Hermitian.

```
sage: A = matrix(RDF, 0, 0)
sage: A.is_hermitian()
True
```

Rectangular matrices are never Hermitian, no matter which algorithm is requested.

```
sage: A = matrix(CDF, 3, 4)
sage: A.is_hermitian()
False
```

AUTHOR:

•Rob Beezer (2011-03-30)

is normal (tol=1e-12, algorithm='orthonormal')

Returns True if the matrix commutes with its conjugate-transpose.

INPUT:

- •tol default: 1e-12 the largest value of the absolute value of the difference between two matrix entries for which they will still be considered equal.
- •algorithm default: 'orthonormal' set to 'orthonormal' for a stable procedure and set to 'naive' for a fast procedure.

OUTPUT:

True if the matrix is square and commutes with its conjugate-transpose, and False otherwise.

Normal matrices are precisely those that can be diagonalized by a unitary matrix.

The tolerance parameter is used to allow for numerical values to be equal if there is a slight difference due to round-off and other imprecisions.

The result is cached, on a per-tolerance and per-algorithm basis.

ALGORITHMS:

The naive algorithm simply compares entries of the two possible products of the matrix with its conjugatetranspose, with equality controlled by the tolerance parameter.

The orthonormal algorithm first computes a Schur decomposition (via the *schur()* method) and checks that the result is a diagonal matrix. An orthonormal diagonalization is equivalent to being normal.

So the naive algorithm can finish fairly quickly for a matrix that is not normal, once the products have been computed. However, the orthonormal algorithm will compute a Schur decomposition before going through a similar check of a matrix entry-by-entry.

EXAMPLES:

First over the complexes. B is Hermitian, hence normal.

Now over the reals. Circulant matrices are normal.

```
sage: G = graphs.CirculantGraph(20, [3, 7])
sage: D = digraphs.Circuit(20)
sage: A = 3*D.adjacency_matrix() - 5*G.adjacency_matrix()
sage: A = A.change_ring(RDF)
sage: A.is_normal()
True
sage: A.is_normal(algorithm = 'naive')
```

```
True
sage: A[19,0] = 4.0
sage: A.is_normal()
False
sage: A.is_normal(algorithm = 'naive')
False
```

Skew-Hermitian matrices are normal.

A small matrix that does not fit into any of the usual categories of normal matrices.

Sage has several fields besides the entire complex numbers where conjugation is non-trivial.

A square, empty matrix is trivially normal.

```
sage: A = matrix(CDF, 0, 0)
sage: A.is_normal()
True
```

Rectangular matrices are never normal, no matter which algorithm is requested.

```
sage: A = matrix(CDF, 3, 4)
sage: A.is_normal()
False
```

AUTHOR:

```
•Rob Beezer (2011-03-31)
```

is_positive_definite()

Determines if a matrix is positive definite.

A matrix A is positive definite if it is square, is Hermitian (which reduces to symmetric in the real case), and for every nonzero vector \vec{x} ,

$$\vec{x}^* A \vec{x} > 0$$

where \vec{x}^* is the conjugate-transpose in the complex case and just the transpose in the real case. Equivalently, a positive definite matrix has only positive eigenvalues and only positive determinants of leading principal submatrices.

INPUT:

Any matrix over RDF or CDF.

OUTPUT:

True if and only if the matrix is square, Hermitian, and meets the condition above on the quadratic form. The result is cached.

IMPLEMENTATION:

The existence of a Cholesky decomposition and the positive definite property are equivalent. So this method and the cholesky() method compute and cache both the Cholesky decomposition and the positive-definiteness. So the $is_positive_definite()$ method or catching a ValueError from the cholesky() method are equally expensive computationally and if the decomposition exists, it is cached as a side-effect of either routine.

EXAMPLES:

A matrix over RDF that is positive definite.

```
sage: M = matrix(RDF,[[ 1,
                             1,
                                   1,
                                           1,
                                                  1],
                       [ 1, 5,
                                  31,
                                        121,
                                                341],
. . . . :
                       [ 1, 31, 341,
                                       1555,
                                              46811,
. . . . :
                       [ 1,121, 1555, 7381, 22621],
                       [ 1,341, 4681, 22621, 69905]])
sage: M.is_symmetric()
True
sage: M.eigenvalues()
[77547.66..., 82.44..., 2.41..., 0.46..., 0.011...]
sage: [round(M[:i,:i].determinant()) for i in range(1, M.nrows()+1)]
[1, 4, 460, 27936, 82944]
sage: M.is_positive_definite()
True
```

A matrix over CDF that is positive definite.

```
23, 17*I + 3, 24*I + 25,
sage: C = matrix(CDF, [[
                                                                21*Il.
                       [-17*I + 3, 38, -69*I + 89, 7*I + 15],
. . . . :
                       [-24*I + 25, 69*I + 89,
                                                       976, 24*I + 6],
. . . . :
                             -21*I, -7*I + 15, -24*I + 6,
                                                                   2811)
. . . . :
sage: C.is_hermitian()
True
sage: [x.real() for x in C.eigenvalues()]
[991.46..., 55.96..., 3.69..., 13.87...]
sage: [round(C[:i,:i].determinant().real()) for i in range(1, C.nrows()+1)]
[23, 576, 359540, 2842600]
sage: C.is_positive_definite()
True
```

A matrix over RDF that is not positive definite.

```
sage: A = matrix(RDF, [[3, -6,
                                 9,
                                       6, -91,
                       [-6, 11, -16, -11,
                                            17],
. . . . :
                       [ 9, -16, 28, 16, -40],
. . . . :
                       [ 6, -11, 16, 9, -19],
. . . . :
                       [-9, 17, -40, -19, 68]]
sage: A.is_symmetric()
sage: A.eigenvalues()
[108.07..., 13.02..., -0.02..., -0.70..., -1.37...]
sage: [round(A[:i,:i].determinant()) for i in range(1, A.nrows()+1)]
[3, -3, -15, 30, -30]
sage: A.is_positive_definite()
False
```

A matrix over CDF that is not positive definite.

A large random matrix that is guaranteed by theory to be positive definite.

```
sage: R = random_matrix(CDF, 200)
sage: H = R.conjugate_transpose()*R
sage: H.is_positive_definite()
True
```

AUTHOR:

•Rob Beezer (2012-05-28)

is_symmetric (tol=1e-12)

Return whether this matrix is symmetric, to the given tolerance.

EXAMPLES:

```
sage: m = matrix(RDF,2,2,range(4)); m
[0.0 1.0]
[2.0 3.0]
sage: m.is_symmetric()
False
sage: m[1,0] = 1.1; m
[0.0 1.0]
[1.1 3.0]
sage: m.is_symmetric()
False
```

The tolerance inequality is strict: sage: m.is_symmetric(tol=0.1) False sage: m.is_symmetric(tol=0.11) True

is unitary (tol=1e-12, algorithm='orthonormal')

Returns True if the columns of the matrix are an orthonormal basis.

For a matrix with real entries this determines if a matrix is "orthogonal" and for a matrix with complex entries this determines if the matrix is "unitary."

INPUT:

- •tol default: 1e-12 the largest value of the absolute value of the difference between two matrix entries for which they will still be considered equal.
- •algorithm default: 'orthonormal' set to 'orthonormal' for a stable procedure and set to 'naive' for a fast procedure.

OUTPUT:

True if the matrix is square and its conjugate-transpose is its inverse, and False otherwise. In other words, a matrix is orthogonal or unitary if the product of its conjugate-transpose times the matrix is the identity matrix.

The tolerance parameter is used to allow for numerical values to be equal if there is a slight difference due to round-off and other imprecisions.

The result is cached, on a per-tolerance and per-algorithm basis.

ALGORITHMS:

The naive algorithm simply computes the product of the conjugate-transpose with the matrix and compares the entries to the identity matrix, with equality controlled by the tolerance parameter.

The orthonormal algorithm first computes a Schur decomposition (via the *schur()* method) and checks that the result is a diagonal matrix with entries of modulus 1, which is equivalent to being unitary.

So the naive algorithm might finish fairly quickly for a matrix that is not unitary, once the product has been computed. However, the orthonormal algorithm will compute a Schur decomposition before going through a similar check of a matrix entry-by-entry.

EXAMPLES:

A matrix that is far from unitary.

```
sage: A = matrix(RDF, 4, range(16))
sage: A.conjugate().transpose()*A
[224.0 248.0 272.0 296.0]
[248.0 276.0 304.0 332.0]
[272.0 304.0 336.0 368.0]
[296.0 332.0 368.0 404.0]
sage: A.is_unitary()
False
sage: A.is_unitary(algorithm='naive')
False
sage: A.is_unitary(algorithm='orthonormal')
False
```

The QR decomposition will produce a unitary matrix as Q and the SVD decomposition will create two unitary matrices, U and V.

```
True
sage: U, S, V = A.SVD()
sage: U.is_unitary(algorithm='naive')
True
sage: U.is_unitary(algorithm='orthonormal')
True
sage: V.is_unitary(algorithm='naive')
True
```

If we make the tolerance too strict we can get misleading results.

Rectangular matrices are not unitary/orthogonal, even if their columns form an orthonormal set.

```
sage: A = matrix(CDF, [[1,0], [0,0], [0,1]])
sage: A.is_unitary()
False
```

The smallest cases. The Schur decomposition used by the orthonormal algorithm will fail on a matrix of size zero.

AUTHOR:

•Rob Beezer (2011-05-04)

left_eigenvectors()

Compute the left eigenvectors of a matrix of double precision real or complex numbers (i.e. RDF or CDF).

OUTPUT: Returns a list of triples, each of the form (e, [v], 1), where e is the eigenvalue, and v is an associated left eigenvector. If the matrix is of size n, then there are n triples. Values are computed with the SciPy library.

The format of this output is designed to match the format for exact results. However, since matrices here have numerical entries, the resulting eigenvalues will also be numerical. No attempt is made to determine if two eigenvalues are equal, or if eigenvalues might actually be zero. So the algebraic multiplicity of each eigenvalue is reported as 1. Decisions about equal eigenvalues or zero eigenvalues should be addressed in the calling routine.

The SciPy routines used for these computations produce eigenvectors normalized to have length 1, but on different hardware they may vary by a sign. So for doctests we have normalized output by forcing their eigenvectors to have their first non-zero entry equal to one.

EXAMPLES:

```
sage: m = matrix(RDF, [[-5, 3, 2, 8], [10, 2, 4, -2], [-1, -10, -10, -17], [-2, ]
\hookrightarrow 7, 6, 13]])
sage: m
[-5.0 3.0]
            2.0
                 8.01
[ 10.0 2.0 4.0 -2.0]
[-1.0 -10.0 -10.0 -17.0]
[-2.0 \quad 7.0 \quad 6.0 \quad 13.0]
sage: spectrum = m.left_eigenvectors()
sage: for i in range(len(spectrum)):
....: spectrum[i][1][0]=matrix(RDF, spectrum[i][1]).echelon_form()[0]
sage: spectrum[0] # tol 1e-13
(2.0000000000000675, [(1.0, 1.00000000000138, 1.000000000000147, 1.
\hookrightarrow000000000000000309)], 1)
sage: spectrum[1] # tol 1e-13
(0.99999999999164, [(0.99999999999999, 0.799999999999833, 0.
\rightarrow799999999999836, 0.599999999999696)], 1)
sage: spectrum[2] # tol 1e-13
\rightarrow2000000000000051)], 1)
sage: spectrum[3] # tol 1e-13
\hookrightarrow 99999999999998472)], 1)
```

log_determinant()

Compute the log of the absolute value of the determinant using LU decomposition.

Note: This is useful if the usual determinant overflows.

EXAMPLES:

```
sage: m = matrix(RDF, 2, 2, range(4)); m
[0.0 1.0]
[2.0 3.0]
sage: RDF(log(abs(m.determinant())))
0.6931471805599453
sage: m.log_determinant()
0.6931471805599453
sage: m = matrix(RDF, 0, 0, []); m
[]
sage: m.log_determinant()
0.0
sage: m = matrix(CDF, 2, 2, range(4)); m
[0.0 1.0]
[2.0 3.0]
sage: RDF(log(abs(m.determinant())))
0.6931471805599453
sage: m.log determinant()
0.6931471805599453
sage: m = matrix(CDF, 0, 0, []); m
sage: m.log_determinant()
```

0.0

norm (p=2)

Returns the norm of the matrix.

INPUT:

•p - default: 2 - controls which norm is computed, allowable values are 'frob' (for the Frobenius norm), integers -2, -1, 1, 2, positive and negative infinity. See output discussion for specifics.

OUTPUT:

Returned value is a double precision floating point value in RDF. Row and column sums described below are sums of the absolute values of the entries, where the absolute value of the complex number a+bi is $\sqrt{a^2+b^2}$. Singular values are the "diagonal" entries of the "S" matrix in the singular value decomposition.

•p = 'frob': the Frobenius norm, which for a matrix $A = (a_{ij})$ computes

$$\left(\sum_{i,j} |a_{i,j}|^2\right)^{1/2}$$

•p = Infinity or p = oo: the maximum row sum.

•p = -Infinity or p = -00 : the minimum column sum.

•p = 1: the maximum column sum.

•p = -1: the minimum column sum.

 $\bullet p = 2$: the induced 2-norm, equal to the maximum singular value.

•p = -2: the minimum singular value.

ALGORITHM:

Computation is performed by the norm () function of the SciPy/NumPy library.

EXAMPLES:

First over the reals.

```
sage: A = matrix(RDF, 3, range(-3, 6)); A
[-3.0 -2.0 -1.0]
[ 0.0 1.0 2.0]
[ 3.0 4.0 5.0]
sage: A.norm()
7.99575670...
sage: A.norm(p='frob')
8.30662386...
sage: A.norm(p=Infinity)
sage: A.norm(p=-Infinity)
sage: A.norm(p=1)
8.0
sage: A.norm (p=-1)
6.0
sage: A.norm(p=2)
7.99575670...
sage: A.norm(p=-2) < 10^{-15}
True
```

And over the complex numbers.

```
sage: B = matrix(CDF, 2, [[1+I, 2+3*I], [3+4*I, 3*I]]); B
[1.0 + 1.0 \times I 2.0 + 3.0 \times I]
[3.0 + 4.0 *I]
                    3.0*I]
sage: B.norm()
6.66189877...
sage: B.norm(p='frob')
7.0
sage: B.norm(p=Infinity)
8.0
sage: B.norm(p=-Infinity)
5.01976483...
sage: B.norm(p=1)
6.60555127...
sage: B.norm(p=-1)
6.41421356...
sage: B.norm(p=2)
6.66189877...
sage: B.norm(p=-2)
2.14921023...
```

Since it is invariant under unitary multiplication, the Frobenius norm is equal to the square root of the sum of squares of the singular values.

```
sage: A = matrix(RDF, 5, range(1,26))
sage: f = A.norm(p='frob')
sage: U, S, V = A.SVD()
sage: s = sqrt(sum([S[i,i]^2 for i in range(5)]))
sage: abs(f-s) < 1.0e-12
True</pre>
```

Return values are in RDF.

```
sage: A = matrix(CDF, 2, range(4))
sage: A.norm() in RDF
True
```

Improper values of p are caught.

numpy (dtype=None)

This method returns a copy of the matrix as a numpy array. It uses the numpy C/api so is very fast.

INPUT:

•dtype - The desired data-type for the array. If not given, then the type will be determined as the minimum type required to hold the objects in the sequence.

EXAMPLES:

Alternatively, numpy automatically calls this function (via the magic __array__ () method) to convert Sage matrices to numpy arrays:

```
sage: import numpy
sage: m = matrix(RDF, 2, range(6)); m
[0.0 1.0 2.0]
[3.0 4.0 5.0]
sage: numpy.array(m)
array([[ 0., 1., 2.],
      [ 3., 4., 5.]])
sage: numpy.array(m).dtype
dtype('float64')
sage: m = matrix(CDF, 2, range(6)); m
[0.0 1.0 2.0]
[3.0 4.0 5.0]
sage: numpy.array(m)
array([[ 0.+0.j, 1.+0.j, 2.+0.j],
       [3.+0.j, 4.+0.j, 5.+0.j]
sage: numpy.array(m).dtype
dtype('complex128')
```

right_eigenvectors ()

Compute the right eigenvectors of a matrix of double precision real or complex numbers (i.e. RDF or CDF).

OUTPUT:

Returns a list of triples, each of the form (e, [v], 1), where e is the eigenvalue, and v is an associated right eigenvector. If the matrix is of size n, then there are n triples. Values are computed with the SciPy library.

The format of this output is designed to match the format for exact results. However, since matrices here have numerical entries, the resulting eigenvalues will also be numerical. No attempt is made to determine if two eigenvalues are equal, or if eigenvalues might actually be zero. So the algebraic multiplicity of each eigenvalue is reported as 1. Decisions about equal eigenvalues or zero eigenvalues should be addressed in the calling routine.

The SciPy routines used for these computations produce eigenvectors normalized to have length 1, but on different hardware they may vary by a sign. So for doctests we have normalized output by forcing their eigenvectors to have their first non-zero entry equal to one.

EXAMPLES:

```
[-9.0 -14.0 19.0 -74.0]
[-1.0 2.0 4.0 -11.0]
[ -4.0 -12.0  6.0 -32.0 ]
[ 0.0 -2.0 -1.0 1.0]
sage: spectrum = m.right_eigenvectors()
sage: for i in range(len(spectrum)):
....: spectrum[i][1][0]=matrix(RDF, spectrum[i][1]).echelon_form()[0]
sage: spectrum[0] # tol 1e-13
(2.000000000000048, [(1.0, -2.000000000001523, 3.00000000000181, 1.
\hookrightarrow00000000000000746)], 1)
sage: spectrum[1] # tol 1e-13
(0.9999999999941, [(1.0, -0.6666666666633, 1.3333333333333286, 0.
\rightarrow 3333333333333555)], 1)
sage: spectrum[2] # tol 1e-13
\rightarrow20000000000000498)], 1)
sage: spectrum[3] # tol 1e-13
→499999999999958)], 1)
```

round (ndigits=0)

Returns a copy of the matrix where all entries have been rounded to a given precision in decimal digits (default 0 digits).

INPUT:

•ndigits - The precision in number of decimal digits

OUTPUT:

A modified copy of the matrix

EXAMPLES:

schur (base_ring=None)

Returns the Schur decomposition of the matrix.

INPUT:

•base_ring - optional, defaults to the base ring of self. Use this to request the base ring of the returned matrices, which will affect the format of the results.

OUTPUT:

A pair of immutable matrices. The first is a unitary matrix Q. The second, T, is upper-triangular when returned over the complex numbers, while it is almost upper-triangular over the reals. In the latter case, there can be some 2×2 blocks on the diagonal which represent a pair of conjugate complex eigenvalues of self.

If self is the matrix A, then

$$A = QT(\overline{Q})^t$$

where the latter matrix is the conjugate-transpose of Q, which is also the inverse of Q, since Q is unitary.

Note that in the case of a normal matrix (Hermitian, symmetric, and others), the upper-triangular matrix is a diagonal matrix with eigenvalues of self on the diagonal, and the unitary matrix has columns that form an orthonormal basis composed of eigenvectors of self. This is known as "orthonormal diagonalization".

Warning: The Schur decomposition is not unique, as there may be numerous choices for the vectors of the orthonormal basis, and consequently different possibilities for the upper-triangular matrix. However, the diagonal of the upper-triangular matrix will always contain the eigenvalues of the matrix (in the complex version), or 2×2 block matrices in the real version representing pairs of conjugate complex eigenvalues.

In particular, results may vary across systems and processors.

EXAMPLES:

First over the complexes. The similar matrix is always upper-triangular in this case.

```
sage: A = matrix(CDF, 4, 4, range(16)) + matrix(CDF, 4, 4, [x^3*I \text{ for } x \text{ in}]
\rightarrowrange(0, 16)])
sage: Q, T = A.schur()
sage: (Q*Q.conjugate().transpose()).zero_at(1e-12) # tol 1e-12
[ 0.99999999999999
                                    0.0
                                                         0.0
                                                                             0.01
                0.0 0.99999999999999
                                                         0.0
                                                                             0.01
                0.0
                                    0.0 0.99999999999999
                                                                             0.01
Γ
                0.0
                                    0.0
                                                         0.0 0.999999999999991
sage: all([T.zero_at(1.0e-12)[i,j] == 0 for i in range(4) for j in range(i)])
sage: (Q*T*Q.conjugate().transpose()-A).zero_at(1.0e-11)
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
sage: eigenvalues = [T[i,i] for i in range(4)]; eigenvalues
[30.733... + 4648.541...*I, -0.184... - 159.057...*I, -0.523... + 11.158...
\rightarrow *I, -0.025... - 0.642...*I]
sage: A.eigenvalues()
[30.733... + 4648.541...*I, -0.184... - 159.057...*I, -0.523... + 11.158...
→*I, -0.025... - 0.642...*I]
sage: abs(A.norm()-T.norm()) < 1e-10</pre>
True
```

We begin with a real matrix but ask for a decomposition over the complexes. The result will yield an upper-triangular matrix over the complex numbers for \mathbb{T} .

```
sage: A = matrix(RDF, 4, 4, [x^3 \text{ for } x \text{ in } range(16)])
sage: Q, T = A.schur(base_ring=CDF)
sage: (Q*Q.conjugate().transpose()).zero_at(1e-12) # tol 1e-12
[0.99999999999987
                                    0.0
                                                         0.0
                                                                             0.01
                0.0 0.999999999999999
Γ
                                                         0.0
                                                                             0.01
[
                0.0
                                    0.0 1.0000000000000013
                                                                             0.01
                0.0
                                    0.0
                                                         0.0 1.000000000000000071
sage: T.parent()
Full MatrixSpace of 4 by 4 dense matrices over Complex Double Field
sage: all([T.zero_at(1.0e-12)[i,j] == 0 for i in range(4) for j in range(i)])
True
sage: (Q*T*Q.conjugate().transpose()-A).zero_at(1.0e-11)
```

```
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
```

Now totally over the reals. But with complex eigenvalues, the similar matrix may not be upper-triangular. But "at worst" there may be some 2×2 blocks on the diagonal which represent a pair of conjugate complex eigenvalues. These blocks will then just interrupt the zeros below the main diagonal. This example has a pair of these of the blocks.

```
sage: A = matrix(RDF, 4, 4, [[1, 0, -3, -1],
                             [4, -16, -7, 0],
                             [1, 21, 1, -2],
. . . . :
                             [26, -1, -2, 1]])
. . . . :
sage: Q, T = A.schur()
sage: (Q*Q.conjugate().transpose()) # tol 1e-12
[0.99999999999994
                                                                           0.01
                                   0.0
                                                       0.0
                0.0 1.0000000000000013
                                                       0.0
                                                                           0.0]
                0.0
                                   0.0 1.0000000000000004
                                                                           0.01
                0.0
                                   0.0
                                                       0.0 1.000000000000016]
sage: all([T.zero_at(1.0e-12)[i,j] == 0 for i in range(4) for j in range(i)])
False
sage: all([T.zero_at(1.0e-12)[i,j] == 0 for i in range(4) for j in range(i-
→1)])
True
sage: (Q*T*Q.conjugate().transpose()-A).zero_at(1.0e-11)
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
sage: sorted(T[0:2,0:2].eigenvalues() + T[2:4,2:4].eigenvalues())
[-5.710... - 8.382...*I, -5.710... + 8.382...*I, -0.789... - 2.336...*I, -0.
→789... + 2.336...*I]
sage: sorted(A.eigenvalues())
[-5.710... - 8.382...*I, -5.710... + 8.382...*I, -0.789... - 2.336...*I, -0.
→789... + 2.336...*I]
sage: abs(A.norm()-T.norm()) < 1e-12
True
```

Starting with complex numbers and requesting a result over the reals will never happen.

```
sage: A = matrix(CDF, 2, 2, [[2+I, -1+3*I], [5-4*I, 2-7*I]])
sage: A.schur(base_ring=RDF)
Traceback (most recent call last):
...
TypeError: unable to convert input matrix over CDF to a matrix over RDF
```

If theory predicts your matrix is real, but it contains some very small imaginary parts, you can specify the cutoff for "small" imaginary parts, then request the output as real matrices, and let the routine do the rest.

```
sage: A = matrix(RDF, 2, 2, [1, 1, -1, 0]) + matrix(CDF, 2, 2, [1.0e-14*I]*4)
sage: B = A.zero_at(1.0e-12)
sage: B.parent()
Full MatrixSpace of 2 by 2 dense matrices over Complex Double Field
sage: Q, T = B.schur(RDF)
sage: Q.parent()
Full MatrixSpace of 2 by 2 dense matrices over Real Double Field
sage: T.parent()
```

```
Full MatrixSpace of 2 by 2 dense matrices over Real Double Field

sage: Q.round(6)

[ 0.707107  0.707107]

[-0.707107  0.707107]

sage: T.round(6)

[ 0.5  1.5]

[-0.5  0.5]

sage: (Q*T*Q.conjugate().transpose()-B).zero_at(1.0e-11)

[ 0.0  0.0]

[ 0.0  0.0]
```

A Hermitian matrix has real eigenvalues, so the similar matrix will be upper-triangular. Furthermore, a Hermitian matrix is diagonalizable with respect to an orthonormal basis, composed of eigenvectors of the matrix. Here that basis is the set of columns of the unitary matrix.

```
sage: A = matrix(CDF, [[
                                 52,
                                                    6*I - 187, -188*I + 2],
                                      12,
. . . . :
                           9*I - 8,
                                                   -58*I + 59
                                                                30 * I + 421
. . . . :
                       [-6*I - 187, 58*I + 59,
                                                         2677, 2264*I + 651,
                       [188 \times I + 2, -30 \times I + 42, -2264 \times I + 65,
. . . . :
                                                                     208011)
sage: Q, T = A.schur()
sage: T = T.zero_at(1.0e-12).change_ring(RDF)
sage: T.round(6)
[4680.13301
                   0.0
                              0.0
        0.0 102.715967
                              0.0
                                          0.01
        0.0 0.0 35.039344
                                          0.01
        0.0
                   0.0
                                    3.11168]
sage: (Q*Q.conjugate().transpose()).zero_at(1e-12) # tol 1e-12
[1.00000000000000004
                                                                           0.01
                                   0.0
                                                       0.0
                0.0 0.999999999999999
                                                       0.0
                                                                           0.01
Γ
                0.0
                                   0.0 1.00000000000000002
Γ
                0.0
                                   0.0
                                                       0.0 0.99999999999991
sage: (Q*T*Q.conjugate().transpose()-A).zero_at(1.0e-11)
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
```

Similarly, a real symmetric matrix has only real eigenvalues, and there is an orthonormal basis composed of eigenvectors of the matrix.

```
sage: A = matrix(RDF, [[1, -2, 5, -3],
                        [-2, 9, 1, 5],
. . . . :
                        [5, 1, 3, 7],
. . . . :
                        [-3, 5, 7, -8]])
. . . . :
sage: Q, T = A.schur()
sage: Q.round(4)
[-0.3027 -0.751]
                  0.576 -0.1121]
[ 0.139 -0.3892 -0.2648 0.8713]
[ 0.4361
         0.359 0.7599 0.3217]
[ -0.836  0.3945  0.1438  0.3533]
sage: T = T.zero_at(10^-12)
sage: all(abs(e) < 10^{-4} for e in (T - diagonal_matrix(RDF, [-13.5698, -0.
\leftrightarrow8508, 7.7664, 11.6542])).list())
sage: (Q*Q.transpose()) # tol 1e-12
[0.999999999999998
                                     0.0
                                                         0.0
                                                                             0.01
                                                         0.0
                                     1.0
                                                                             0.0]
[
                0.0
                0.0
                                     0.0 0.99999999999998
                                                                             0.01
```

The results are cached, both as a real factorization and also as a complex factorization. This means the returned matrices are immutable.

```
sage: A = matrix(RDF, 2, 2, [[0, -1], [1, 0]])
sage: Qr, Tr = A.schur(base_ring=RDF)
sage: Qc, Tc = A.schur(base_ring=CDF)
sage: all([M.is_immutable() for M in [Qr, Tr, Qc, Tc]])
True
sage: Tr.round(6) != Tc.round(6)
True
```

AUTHOR:

•Rob Beezer (2011-03-31)

singular_values (eps=None)

Returns a sorted list of the singular values of the matrix.

INPUT:

•eps - default: None - the largest number which will be considered to be zero. May also be set to the string 'auto'. See the discussion below.

OUTPUT:

A sorted list of the singular values of the matrix, which are the diagonal entries of the "S" matrix in the SVD decomposition. As such, the values are real and are returned as elements of RDF. The list is sorted with larger values first, and since theory predicts these values are always positive, for a rank-deficient matrix the list should end in zeros (but in practice may not). The length of the list is the minimum of the row count and column count for the matrix.

The number of non-zero singular values will be the rank of the matrix. However, as a numerical matrix, it is impossible to control the difference between zero entries and very small non-zero entries. As an informed consumer it is up to you to use the output responsibly. We will do our best, and give you the tools to work with the output, but we cannot give you a guarantee.

With eps set to None you will get the raw singular values and can manage them as you see fit. You may also set eps to any positive floating point value you wish. If you set eps to 'auto' this routine will compute a reasonable cutoff value, based on the size of the matrix, the largest singular value and the smallest nonzero value representable by the 53-bit precision values used. See the discussion at page 268 of [Wat2010].

See the examples for a way to use the "verbose" facility to easily watch the zero cutoffs in action.

ALGORITHM:

The singular values come from the SVD decomposition computed by SciPy/NumPy.

EXAMPLES:

Singular values close to zero have trailing digits that may vary on different hardware. For exact matrices, the number of non-zero singular values will equal the rank of the matrix. So for some of the doctests we round the small singular values that ideally would be zero, to control the variability across hardware.

This matrix has a determinant of one. A chain of two or three theorems implies the product of the singular values must also be one.

```
3],
sage: A = matrix(QQ, [[1,
                              0,
                                  0,
                                      0,
                                           0,
                                              1,
                             1,
                                          Ο,
                                  1, -2,
                                             -4,
                       [-2,
                                                   0],
. . . . :
                             0,
                       [ 1,
                                 1, -4, -6, -3,
. . . . :
                                                   7],
                                          7,
                       [-2,
                             2,
                                 1,
                                     1,
                                              1, -1],
. . . . :
                       [-1, 0, -1,
                                      5,
                                         8,
                                              4, -6],
. . . . :
                       [4, -2, -2,
                                     1, -3,
                                              0, 81,
. . . . :
                       [-2, 1, 0,
                                      2,
                                          7,
                                               3, -4]])
. . . . :
sage: A.determinant()
1
sage: B = A.change_ring(RDF)
sage: sv = B.singular_values(); sv # tol 1e-12
[20.523980658874265, 8.486837028536643, 5.86168134845073, 2.4429165899286978,
→0.5831970144724045, 0.26933287286576313, 0.0025524488076110402]
sage: prod(sv)
                # tol 1e-12
0.99999999999525
```

An exact matrix that is obviously not of full rank, and then a computation of the singular values after conversion to an approximate matrix.

A matrix of rank 3 over the complex numbers.

```
sage: A = matrix(CDF, [46*I - 28, -47*I - 50, 21*I + 51, -62*I - 782, 13*I + ...
→22],
                         [35*I - 20, -32*I - 46, 18*I + 43, -57*I - 670, 7*I + ...
. . . . :
→3],
                         [22*I - 13, -23*I - 23, 9*I + 24, -26*I - 347, 7*I + ...
. . . . :
→131,
. . . . :
                         [-44*I + 23, 41*I + 57, -19*I - 54, 60*I + 757, -11*I -
→ 91,
                        [30*I - 18, -30*I - 34, 14*I + 34, -42*I - 522, 8*I + ...]
. . . . :
→12]])
sage: sv = A.singular_values()
sage: sv[0:3] # tol 1e-14
[1440.7336659952966, 18.404403413369227, 6.839707797136151]
sage: (sv[3] < 10^-13) or sv[3]
True
sage: (sv[4] < 10^{-14}) or sv[4]
True
```

A full-rank matrix that is ill-conditioned. We use this to illustrate ways of using the various possibilities for eps, including one that is ill-advised. Notice that the automatically computed cutoff gets this (difficult) example slightly wrong. This illustrates the impossibility of any automated process always getting this right. Use with caution and judgement.

```
sage: entries = [1/(i+j+1)] for i in range(12) for j in range(12)
sage: B = matrix(QQ, 12, 12, entries)
sage: B.rank()
12
sage: A = B.change_ring(RDF)
sage: A.condition() > 1.59e16 or A.condition()
True
sage: A.singular_values(eps=None) # abs tol 7e-16
[1.7953720595619975, 0.38027524595503703, 0.04473854875218107, 0.
 \hookrightarrow 0037223122378911614, 0.0002330890890217751, 1.116335748323284e-05, 4.00002330890890217751
 →082376110397296e-07, 1.1228610675717613e-08, 2.2519645713496478e-10, 3.
 →1113486853814003e-12, 2.6500422260778388e-14, 9.87312834948426e-17]
sage: A.singular_values(eps='auto') # abs tol 7e-16
[1.7953720595619975, 0.38027524595503703, 0.04473854875218107, 0.
 \hookrightarrow 0037223122378911614, 0.0002330890890217751, 1.116335748323284e-05, 4.000823122378911614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.00082311614, 0.0008211614, 0.0008211614, 0.0008211614, 0.0008211614, 0.0008211614, 0.0008211614, 0.0008211614, 0.0008211614, 0.0008211614, 0.0008211614, 
 →082376110397296e-07, 1.1228610675717613e-08, 2.2519645713496478e-10, 3.
 \hookrightarrow1113486853814003e-12, 2.6500422260778388e-14, 0.0]
sage: A.singular_values(eps=1e-4) # abs tol 7e-16
[1.7953720595619975, 0.38027524595503703, 0.04473854875218107, 0.
 \rightarrow0037223122378911614, 0.0002330890890217751, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
 →0]
```

With Sage's "verbose" facility, you can compactly see the cutoff at work. In any application of this routine, or those that build upon it, it would be a good idea to conduct this exercise on samples. We also test here that all the values are returned in RDF since singular values are always real.

```
sage: A = matrix(CDF, 4, range(16))
sage: set_verbose(1)
sage: sv = A.singular_values(eps='auto'); sv
verbose 1 (<module>) singular values,
smallest-non-zero:cutoff:largest-zero,
2.2766...:6.2421...e-14:...
[35.13996365902..., 2.27661020871472..., 0.0, 0.0]
sage: set_verbose(0)

sage: all([s in RDF for s in sv])
True
```

AUTHOR:

•Rob Beezer - (2011-02-18)

solve_left (b)

Solve the vector equation x * A = b for a nonsingular A.

INPUT:

- •self a square matrix that is nonsigular (of full rank).
- •b a vector of the correct size. Elements of the vector must coerce into the base ring of the coefficient matrix. In particular, if b has entries from CDF then self must have CDF as its base ring.

OUTPUT:

The unique solution x to the matrix equation $x \star A = b$, as a vector over the same base ring as self.

ALGORITHM:

Uses the solve() routine from the SciPy scipy.linalg module, after taking the tranpose of the coefficient matrix.

EXAMPLES:

Over the reals.

```
sage: A = matrix(RDF, 3,3, [1,2,5,7.6,2.3,1,1,2,-1]); A
[ 1.0     2.0     5.0]
[ 7.6     2.3     1.0]
[ 1.0     2.0 -1.0]
sage: b = vector(RDF,[1,2,3])
sage: x = A.solve_left(b); x.zero_at(1e-17) # fix noisy zeroes
(0.6666666666..., 0.0, 0.3333333333...)
sage: x.parent()
Vector space of dimension 3 over Real Double Field
sage: x*A # tol 1e-14
(0.9999999999999999, 1.999999999999, 3.0)
```

Over the complex numbers.

```
sage: A = matrix(CDF, [[
                               0, -1 + 2 \times I, 1 - 3 \times I,
                                                              I],
                        [2 + 4*I, -2 + 3*I, -1 + 2*I,
                                                         -1 - I],
                        [2 + I, 1 - I,
                                                   -1,
. . . . :
                                                              5],
                           3*I, -1 - I,
                                             -1 + I,
                                                         -3 + I]])
. . . . :
                        Γ
sage: b = vector(CDF, [2 - 3*I, 3, -2 + 3*I, 8])
sage: x = A.solve_left(b); x
(-1.55765124... - 0.644483985...*I, 0.183274021... + 0.286476868...*I, 0.
→270818505... + 0.246619217...*I, -1.69003558... - 0.828113879...*I)
sage: x.parent()
Vector space of dimension 4 over Complex Double Field
sage: abs(x*A - b) < 1e-14
True
```

The vector of constants, b, can be given in a variety of forms, so long as it coerces to a vector over the same base ring as the coefficient matrix.

```
sage: A=matrix(CDF, 5, [1/(i+j+1) for i in range(5) for j in range(5)])
sage: A.solve_left([1]*5) # tol 1e-11
(5.0, -120.0, 630.0, -1120.0, 630.0)
```

$solve_right(b)$

Solve the vector equation A*x = b for a nonsingular A.

INPUT:

- •self a square matrix that is nonsigular (of full rank).
- •b a vector of the correct size. Elements of the vector must coerce into the base ring of the coefficient matrix. In particular, if b has entries from CDF then self must have CDF as its base ring.

OUTPUT:

The unique solution x to the matrix equation A*x = b, as a vector over the same base ring as self.

ALGORITHM

Uses the solve () routine from the SciPy scipy.linalg module.

EXAMPLES:

Over the reals.

```
sage: A = matrix(RDF, 3,3, [1,2,5,7.6,2.3,1,1,2,-1]); A
[ 1.0   2.0   5.0]
```

Over the complex numbers.

```
sage: A = matrix(CDF, [[
                            0, -1 + 2 \times I, 1 - 3 \times I,
                                                            Il,
                      [2 + 4*I, -2 + 3*I, -1 + 2*I,
                                                     -1 - II,
. . . . :
                                                       5],
                       [2 + I, 1 - I, -1,
. . . . :
                          3*I,
                                                      -3 + I]])
                       [
                                  -1 - I,
                                           -1 + I,
sage: b = vector(CDF, [2 - 3*I, 3, -2 + 3*I, 8])
sage: x = A.solve_right(b); x
(1.96841637... - 1.07606761...*I, -0.614323843... + 1.68416370...*I, 0.
→0733985765... + 1.73487544...*I, -1.6018683... + 0.524021352...*I)
sage: x.parent()
Vector space of dimension 4 over Complex Double Field
sage: abs(A*x - b) < 1e-14
True
```

The vector of constants, b, can be given in a variety of forms, so long as it coerces to a vector over the same base ring as the coefficient matrix.

```
sage: A=matrix(CDF, 5, [1/(i+j+1) for i in range(5) for j in range(5)])
sage: A.solve_right([1]*5) # tol le-11
(5.0, -120.0, 630.0, -1120.0, 630.0)
```

transpose ()

Return the transpose of this matrix, without changing self.

EXAMPLES:

. T is a convenient shortcut for the transpose:

```
sage: m.T
[2.0 3.0]
[1.0 4.0]
[2.0 5.0]

sage: m = matrix(RDF,0,3); m
[]
sage: m.transpose()
[]
```

```
sage: m.transpose().parent()
Full MatrixSpace of 3 by 0 dense matrices over Real Double Field
```

zero_at (eps)

Returns a copy of the matrix where elements smaller than or equal to eps are replaced with zeroes. For complex matrices, the real and imaginary parts are considered individually.

This is useful for modifying output from algorithms which have large relative errors when producing zero elements, e.g. to create reliable doctests.

INPUT:

•eps - Cutoff value

OUTPUT:

A modified copy of the matrix.

EXAMPLES:

```
sage: a = matrix(CDF, [[1, 1e-4r, 1+1e-100jr], [1e-8+3j, 0, 1e-58r]])
sage: a
                     0.0001 1.0 + 1e-100*I]
           1.0
[1e-08 + 3.0*I]
                        0.0
                                     1e-58]
sage: a.zero_at(1e-50)
         1.0
              0.0001
                                    1.01
[1e-08 + 3.0*I]
                                     0.01
                       0.0
sage: a.zero_at(1e-4)
[ 1.0 0.0 1.0]
[3.0*I 0.0 0.0]
```


CHAPTER

TWENTY

DENSE MATRICES OVER THE REAL DOUBLE FIELD USING NUMPY

EXAMPLES:

```
sage: b=Mat(RDF,2,3).basis()
sage: b[0]
[1.0 0.0 0.0]
[0.0 0.0 0.0]
```

We deal with the case of zero rows or zero columns:

```
sage: m = MatrixSpace(RDF,0,3)
sage: m.zero_matrix()
[]
```

AUTHORS:

- Jason Grout (2008-09): switch to NumPy backend, factored out the Matrix_double_dense class
- · Josh Kantor
- William Stein: many bug fixes and touch ups.

```
class sage.matrix.matrix_real_double_dense. Matrix_real_double_dense
    Bases: sage.matrix.matrix_double_dense.Matrix_double_dense
```

Class that implements matrices over the real double field. These are supposed to be fast matrix operations using C doubles. Most operations are implemented using numpy which will call the underlying BLAS on the system.

EXAMPLES:

To compute eigenvalues the use the functions left_eigenvectors or right_eigenvectors

```
sage: p,e = m.right_eigenvectors()
```

the result of eigen is a pair (p,e), where p is a list of eigenvalues and the e is a matrix whose columns are the eigenvectors.

To solve a linear system Ax = b where A = [[1,2],[3,4]] and b = [5,6].

```
sage: b = vector(RDF,[5,6])
sage: m.solve_right(b) # rel tol le-15
(-3.99999999999997, 4.499999999999)
```

See the commands qr, lu, and svd for QR, LU, and singular value decomposition.

CHAPTER

TWENTYONE

DENSE MATRICES OVER THE COMPLEX DOUBLE FIELD USING NUMPY

EXAMPLES:

```
sage: b=Mat(CDF,2,3).basis()
sage: b[0]
[1.0 0.0 0.0]
[0.0 0.0 0.0]
```

We deal with the case of zero rows or zero columns:

```
sage: m = MatrixSpace(CDF,0,3)
sage: m.zero_matrix()
[]
```

AUTHORS:

- Jason Grout (2008-09): switch to NumPy backend
- · Josh Kantor
- William Stein: many bug fixes and touch ups.

```
class sage.matrix.matrix_complex_double_dense. Matrix_complex_double_dense
    Bases: sage.matrix.matrix_double_dense.Matrix_double_dense
```

Class that implements matrices over the real double field. These are supposed to be fast matrix operations using C doubles. Most operations are implemented using numpy which will call the underlying BLAS on the system.

EXAMPLES:

To compute eigenvalues the use the functions left_eigenvectors or right_eigenvectors:

```
sage: p,e = m.right_eigenvectors()
```

the result of eigen is a pair (p,e), where p is a list of eigenvalues and the e is a matrix whose columns are the eigenvectors.

To solve a linear system Ax = b where A = [[1,2]] and b = [5,6] [3,4]]

See the commands qr, lu, and svd for QR, LU, and singular value decomposition.

ARBITRARY PRECISION COMPLEX BALL MATRICES USING ARB

AUTHORS:

• Clemens Heuberger (2014-10-25): Initial version.

This is a rudimentary binding to the Arb library; it may be useful to refer to its documentation for more details.

```
class sage.matrix.matrix_complex_ball_dense. Matrix_complex_ball_dense
    Bases: sage.matrix.matrix_dense.Matrix_dense
```

Matrix over a complex ball field. Implemented using the acb_mat type of the Arb library.

EXAMPLES:

DENSE MATRICES OVER UNIVARIATE POLYNOMIALS OVER FIELDS

This implementation inherits from Matrix_generic_dense, i.e., it is not optimized for speed but only some methods were added.

AUTHORS:

• Kwankyu Lee (2016-12-15): Initial version with code moved from other files.

```
class sage.matrix.matrix_polynomial_dense. Matrix_polynomial_dense
    Bases: sage.matrix.matrix_generic_dense.Matrix_generic_dense
```

Dense matrix over a univariate polynomial ring over a field.

```
is_weak_popov ( )
```

Return True if the matrix is in weak Popov form.

OUTPUT:

A matrix over a polynomial ring is in weak Popov form if all leading positions are different [MS2003]. A leading position is the position i in a row with the highest degree; in case of tie, the maximal i is used (i.e. furthest to the right).

EXAMPLES:

A matrix with the same leading position in two rows is not in weak Popov form:

If a matrix has different leading positions, it is in weak Popov form:

Weak Popov form is not restricted to square matrices:

Even a matrix with more rows than columns can still be in weak Popov form:

A matrix with fewer columns than non-zero rows is never in weak Popov form:

See also:

•weak_popov_form

AUTHOR:

•David Moedinger (2014-07-30)

row_reduced_form (transformation=None, shifts=None)

Return a row reduced form of this matrix.

A matrix M is row reduced if the (row-wise) leading term matrix has the same rank as M. The (row-wise) leading term matrix of a polynomial matrix M is the matrix over k whose (i, j) th entry is the x^{d_i} coefficient of M[i, j], where d_i is the greatest degree among polynomials in the i th row of M_0 .

A row reduced form is non-canonical so a given matrix has many row reduced forms.

INPUT:

- •transformation (default: False). If this True, the transformation matrix U will be returned as well: this is an invertible matrix over k[x] such that self equals UW, where W is the output matrix.
- •shifts (default: None) A tuple or list of integers s_1, \ldots, s_n , where n is the number of columns of the matrix. If given, a "shifted row reduced form" is computed, i.e. such that the matrix $A \operatorname{diag}(x^{s_1}, \ldots, x^{s_n})$ is row reduced, where diag denotes a diagonal matrix.

OUTPUT:

•W – a row reduced form of this matrix.

EXAMPLES:

```
sage: R.<t> = GF(3)['t']
sage: M = matrix([[(t-1)^2],[(t-1)]])
sage: M.row_reduced_form()
[    0]
[t + 2]
```

If the matrix is an $n \times 1$ matrix with at least one non-zero entry, W has a single non-zero entry and that entry is a scalar multiple of the greatest-common-divisor of the entries of the matrix:

```
sage: M1 = matrix([[t*(t-1)*(t+1)],[t*(t-2)*(t+2)],[t]])
sage: output1 = M1.row_reduced_form()
sage: output1
[0]
[0]
[t]
```

The following is the first half of example 5 in [Hes2002] *except* that we have transposed the matrix; [Hes2002] uses column operations and we use row:

The next example demonstrates what happens when the matrix is a zero matrix:

```
sage: R.<t> = GF(5)['t']
sage: M = matrix(R, 2, [0,0,0,0])
sage: M.row_reduced_form()
[0 0]
[0 0]
```

In the following example, the original matrix is already row reduced, but the output is a different matrix. This is because currently this method simply computes a weak Popov form, which is always also a row reduced matrix (see weak_popov_form()). This behavior is likely to change when a faster algorithm designed specifically for row reduced form is implemented in Sage:

```
sage: R.<t> = QQ['t']
sage: M = matrix([[t,t,t],[0,0,t]]); M
[t t t]
[0 0 t]
sage: M.row_reduced_form()
[ t t t]
[-t -t 0]
```

The last example shows the usage of the transformation parameter:

weak_popov_form (transformation=False, shifts=None)

Return a weak Popov form of this matrix.

A matrix is in weak Popov form if the leading positions of the nonzero rows are all different. The leading position of a row is the right-most position whose entry has the maximal degree in the row.

The weak Popov form is non-canonical, so an input matrix have many weak Popov forms.

INPUT:

- •transformation (default: False) If True , the transformation matrix is returned together with the weak Popov form.
- •shifts (default: None) A tuple or list of integers s_1, \ldots, s_n , where n is the number of columns of the matrix. If given, a "shifted weak Popov form" is computed, i.e. such that the matrix $A \operatorname{diag}(x^{s_1}, \ldots, x^{s_n})$ is in weak Popov form, where diag denotes a diagonal matrix.

ALGORITHM:

This method implements the Mulders-Storjohann algorithm of [MS2003].

EXAMPLES:

A zero matrix will return itself:

```
sage: Z = matrix(PF,5,3)
sage: Z.weak_popov_form()
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
```

Shifted weak popov form is computed if shifts is given:

```
sage: PF. < x > = QQ[]
                       x^2, x^3, 
sage: A = matrix(PF, 3, [x,
                    x^2, x^1, 0, 
                    x^3, x^3, x^3)
sage: A.weak_popov_form()
     x x^2 x^3]
     x^2
           X
                  0]
                       01
[ x^3 - x x^3 - x^2
sage: H,U = A.weak_popov_form(transformation=True, shifts=[16,8,0])
sage: H
                      x^2
              Х
                                         x^3]
                      -x^2 + x 	 -x^4 + x^3
             0
                         0 - x^5 + x^4 + x^3
sage: U * A == H
True
```

AUTHOR:

•Johan Rosenkilde (2017-02-07)

See also:

is_weak_popov

CHAPTER

DENSE MATRICES OVER MULTIVARIATE POLYNOMIALS OVER FIELDS

This implementation inherits from Matrix_generic_dense, i.e. it is not optimized for speed only some methods were added.

AUTHOR:

• Martin Albrecht <malb@informatik.uni-bremen.de>

```
class sage.matrix.matrix_mpolynomial_dense. Matrix_mpolynomial_dense
    Bases: sage.matrix.matrix_generic_dense.Matrix_generic_dense
```

Dense matrix over a multivariate polynomial ring over a field.

```
determinant ( algorithm=None)
```

Return the determinant of this matrix

INPUT:

 \bullet algorithm -ignored

EXAMPLES:

We compute the determinant of the arbitrary 3x3 matrix:

```
sage: R = PolynomialRing(QQ, 9, 'x')
sage: A = matrix(R, 3, R.gens())
sage: A
[x0 x1 x2]
[x3 x4 x5]
[x6 x7 x8]
sage: A.determinant()
-x2*x4*x6 + x1*x5*x6 + x2*x3*x7 - x0*x5*x7 - x1*x3*x8 + x0*x4*x8
```

We check if two implementations agree on the result:

Finally, we check whether the Singular interface is working:

ALGORITHM: Calls Singular, libSingular or native implementation.

echelon_form (algorithm='row_reduction', **kwds)

Return an echelon form of self using chosen algorithm.

By default only a usual row reduction with no divisions or column swaps is returned.

If Gauss-Bareiss algorithm is chosen, column swaps are recorded and can be retrieved via swapped_columns().

INPUT:

- •algorithm string, which algorithm to use (default: 'row_reduction'). Valid options are:
 - -'row_reduction' (default) reduce as far as possible, only divide by constant entries
 - -'frac' reduced echelon form over fraction field
 - -'bareiss' fraction free Gauss-Bareiss algorithm with column swaps

OUTPUT:

The row echelon form of A depending on the chosen algorithm, as an immutable matrix. Note that self is *not* changed by this command. Use A.echelonize() ` to change A in place.

EXAMPLES:

The reduced row echelon form over the fraction field is as follows:

```
sage: A.echelon_form('frac') # over fraction field
[1 0]
[0 1]
```

Alternatively, the Gauss-Bareiss algorithm may be chosen:

```
sage: E = A.echelon_form('bareiss'); E
[    1    y]
[    0 x - y]
```

After the application of the Gauss-Bareiss algorithm the swapped columns may inspected:

```
sage: E.swapped_columns(), E.pivots()
((0, 1), (0, 1))
sage: A.swapped_columns(), A.pivots()
(None, (0, 1))
```

Another approach is to row reduce as far as possible:

```
sage: A.echelon_form('row_reduction')
[    1    x]
[    0 -x + y]
```

echelonize (algorithm='row_reduction', **kwds)

Transform self into a matrix in echelon form over the same base ring as self.

If Gauss-Bareiss algorithm is chosen, column swaps are recorded and can be retrieved via swapped_columns().

INPUT:

- •algorithm string, which algorithm to use. Valid options are:
 - -'row_reduction' reduce as far as possible, only divide by constant entries
 - -'bareiss' fraction free Gauss-Bareiss algorithm with column swaps

EXAMPLES:

```
sage: P. \langle x, y \rangle = PolynomialRing(QQ, 2)
sage: A = matrix(P, 2, 2, [1/2, x, 1, 3/4*y+1])
sage: A
      1/2
        1 \ 3/4 * y + 1
sage: B = copy(A)
sage: B.echelonize('bareiss'); B
          1 3/4*y + 1
                0 \times - 3/8 \times y - 1/2
sage: B = copy(A)
sage: B.echelonize('row_reduction'); B
                1
                                 2*x1
Γ
                 0 -2 * x + 3/4 * y + 1
ſ
sage: P.\langle x,y \rangle = PolynomialRing(QQ, 2)
sage: A = matrix(P, 2, 3, [2, x, 0, 3, y, 1]); A
[2 \times 0]
[3 y 1]
sage: E = A.echelon_form('bareiss'); E
[1 3 y]
[0 \ 2 \ x]
sage: E.swapped_columns()
(2, 0, 1)
sage: A.pivots()
(0, 1, 2)
```

pivots ()

Return the pivot column positions of this matrix as a list of integers.

This returns a list, of the position of the first nonzero entry in each row of the echelon form.

OUTPUT:

A list of Python ints.

EXAMPLES:

swapped_columns ()

Return which columns were swapped during the Gauss-Bareiss reduction

OUTPUT:

Return a tuple representing the column swaps during the last application of the Gauss-Bareiss algorithm (see echelon_form() for details).

The tuple as length equal to the rank of self and the value at the i-th position indicates the source column which was put as the i-th column.

If no Gauss-Bareiss reduction was performed yet, None is returned.

```
sage: R.<x,y> = QQ[]
sage: C = random_matrix(R, 2, 2, terms=2)
sage: C.swapped_columns()
sage: E = C.echelon_form('bareiss')
sage: E.swapped_columns()
(0, 1)
```

OPERATION TABLES

This module implements general operation tables, which are very matrix-like.

```
class sage.matrix.operation table. OperationTable (S, operation, names='letters', ele-
                                                        ments=None)
```

Bases: sage.structure.sage object.SageObject

An object that represents a binary operation as a table.

Primarily this object is used to provide a multiplication_table() for objects in the category of magmas (monoids, groups, ...) and addition_table() for objects in the category of commutative additive magmas (additive monoids, groups, ...).

INPUT:

- •S a finite algebraic structure (or finite iterable)
- •operation a function of two variables that accepts pairs of elements from S . A natural source of such functions is the Python operator module, and in particular operator.add() and operator.mul(). This may also be a function defined with lambda or def.
- •names (default: 'letters') The type of names used, values are:
 - -'letters' lowercase ASCII letters are used for a base 26 representation of the elements' positions in the list given by column_keys(), padded to a common width with leading 'a's.
 - -'digits' base 10 representation of the elements' positions in the list given by column keys() , padded to a common width with leading zeros.
 - -'elements' the string representations of the elements themselves.
 - -a list a list of strings, where the length of the list equals the number of elements.
- •elements (default: None) A list of elements of S, in forms that can be coerced into the structure, eg. their string representations. This may be used to impose an alternate ordering on the elements of S', perhaps when this is used in the context of a particular structure. The default is to use whatever ordering the S.list () method returns. elements' can also be a subset which is closed under the operation, useful perhaps when the set is infinite.

OUTPUT: An object with methods that abstracts multiplication tables, addition tables, Cayley tables, etc. It should be general enough to be useful for any finite algebraic structure whose elements can be combined with a binary operation. This is not necessarily meant be constructed directly, but instead should be useful for constructing operation tables of various algebraic structures that have binary operations.

EXAMPLES:

In it's most basic use, the table needs a structure and an operation:

With two operations present, we can specify which operation we want:

The default symbol set for elements is lowercase ASCII letters, which take on a base 26 flavor for structures with more than 26 elements.

```
sage: from sage.matrix.operation table import OperationTable
sage: G=DihedralGroup(14)
sage: OperationTable(G, operator.mul, names='letters')
* aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ...
→ba bb
aa| aa ab ac ad ae af ag ah ai aj ak al am an ao ap ag ar as at au av aw ax ay az..
ab| ab aa ae ah ac aj ak ad am af ag ar ai ap at an av al aw ao az aq as ba bb au.
ac | ac ad af ai ab ag al aa an ae aj ag ah ao au am as ak ax ap ay ar av bb ba at.
ad| ad ac ab aa af ae aj ai ah ag al ak an am ap ao ar aq av au at as ax aw az ay...
ae | ae ah aj am aa ak ar ab ap ac af av ad at az ai aw ag ba an bb al ag ay ax ao..
af | af ai ag an ad al ag ac ao ab ae as aa au ay ah ax aj bb am ba ak ar az aw ap.,
ag | ag an al ao ai ag as af au ad ab ax ac ay ba aa bb ae az ah aw aj ak at av am,
ah | ah ae aa ab aj ac af am ad ak ar ag ap ai an at al av ag az ao aw ba as au bb.
⊶av ax
ai | ai af ad ac ag ab ae an aa al aq aj ao ah am au ak as ar ay ap ax bb av at ba,
⊶az aw
aj aj am ak ap ah ar av ae at aa ac aw ab az bb ad ba af ay ai ax ag al au as an,
ak | ak ap ar at am av aw aj az ah aa ba ae bb ax ab ay ac au ad as af ag ao aq ai.
→al an
```

```
al| al ao ag au an as ax ag ay ai ad bb af ba aw ac az ab at aa av ae aj ap ar ah..
→ak am
am | am aj ah ae ak aa ac ap ab ar av af at ad ai az ag aw al bb an ba ay ag ao ax,
⊶au as
an | an ag ai af al ad ab ao ac ag as ae au aa ah ay aj ax ak ba am bb az ar ap aw.,
ao | ao al an ag ag ai ad au af as ax ab ay ac aa ba ae bb aj aw ah az at ak am av.
ap| ap ak am aj ar ah aa at ae av aw ac az ab ad bb af ba ag ax ai ay au al an as.
⇔ao aα
aq| aq au as ay ao ax bb al ba an ai az ag aw av af at ad ap ac ar ab ae am ak aa,
⊶aj ah
ar | ar at av az ap aw ba ak bb am ah ay aj ax as ae au aa ao ab aq ac af an al ad,
⊶aσ ai
as | as ay ax ba au bb az ag aw ao an at al av ar ag ap ai am af ak ad ab ah aj ac.
at | at ar ap ak av am ah az aj aw ba aa bb ae ab ax ac ay af as ad au ao ag ai aq.
au | au aq ao al as an ai ay ag ax bb ad ba af ac aw ab az ae av aa at ap aj ah ar,
av | av az aw bb at ba ay ar ax ap am au ak as aq aj ao ah an ae al aa ac ai aq ab,,
aw| aw bb ba ax az ay au av as at ap ao ar aq al ak an am ai aj ag ah aa ad af ae,
ax | ax ba bb aw ay az at as av au ao ap aq ar ak al am an ah ag aj ai ad aa ae af ...
ay| ay as au aq ax ao an ba al bb az ai aw ag af av ad at ab ar ac ap am ae aa ak...
⊶ah aj
az | az av at ar aw ap am bb ak ba ay ah ax aj ae as aa au ac aq ab ao an af ad al.
⇒ai aσ
ba| ba ax ay as bb au ao aw aq az at an av al ag ar ai ap ad ak af am ah ab ac aj_
bb| bb aw az av ba at ap ax ar ay au am as ak aj aq ah ao aa al ae an ai ac ab ag_
→ad af
```

Another symbol set is base 10 digits, padded with leading zeros to make a common width.

```
sage: from sage.matrix.operation table import OperationTable
sage: G=AlternatingGroup(4)
sage: OperationTable(G, operator.mul, names='digits')
* 00 01 02 03 04 05 06 07 08 09 10 11
00| 00 01 02 03 04 05 06 07 08 09 10 11
01| 01 05 03 07 06 00 08 02 04 10 11 09
02 | 02 04 06 05 10 09 00 11 07 03 01 08
03 | 03 06 08 00 11 10 01 09 02 07 05 04
04| 04 09 05 11 00 02 07 06 10 01 08 03
05| 05 00 07 02 08 01 04 03 06 11 09 10
06| 06 10 00 09 01 03 02 08 11 05 04 07
07| 07 08 04 01 09 11 05 10 03 02 00 06
08 | 08 11 01 10 05 07 03 04 09 00 06 02
09| 09 02 11 06 07 04 10 05 00 08 03 01
10| 10 03 09 08 02 06 11 00 01 04 07 05
11| 11 07 10 04 03 08 09 01 05 06 02 00
```

If the group's elements are not too cumbersome, or the group is small, then the string representation of the elements can be used.

You can give the elements any names you like, but they need to be ordered in the same order as returned by the column_keys() method.

```
sage: from sage.matrix.operation_table import OperationTable
sage: G=QuaternionGroup()
sage: T=OperationTable(G, operator.mul)
sage: T.column_keys()
((), (1,2,3,4)(5,6,7,8), \ldots, (1,7,3,5)(2,6,4,8))
sage: names=['1', 'I', 'J', '-1', '-K', 'K', '-I', '-J']
sage: T.change names(names=names)
sage: sorted(T.translation().items())
[('-1', (1,3)(2,4)(5,7)(6,8)),..., ('K', (1,8,3,6)(2,7,4,5))]
sage: T
   1 I J -1 -K K -I -J
I -1 K -I J -J
J| J -K -1 -J -I I K 1
-1| -1 -I -J 1 K -K I J
-K| -K -J I K -1 1 J -I
K| K J -I -K 1 -1 -J I
-I| -I 1 -K I -J J -1 K
-J| -J K 1 J I -I -K -1
```

With the right functions and a list comprehension, custom names can be easier. A multiplication table for hex digits (without carries):

```
sage: from sage.matrix.operation_table import OperationTable
sage: R=Integers(16)
sage: names=[hex(Integer(a)) for a in R]
sage: OperationTable(R, operation=operator.mul, names=names)
* 0 1 2 3 4 5 6 7 8 9 a b c d e f
+----
0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 | 0 1 2 3 4 5 6 7 8 9 a b c d e f
2 | 0 2 4 6 8 a c e 0 2 4 6 8 a c e
3 | 0 3 6 9 c f 2 5 8 b e 1 4 7 a d
4 | 0 4 8 c 0 4 8 c 0 4 8 c 0 4 8 c
5| 0 5 a f 4 9 e 3 8 d 2 7 c 1 6 b
6| 0 6 c 2 8 e 4 a 0 6 c 2 8 e 4 a
7 | 0 7 e 5 c 3 a 1 8 f 6 d 4 b 2 9
8 | 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8
9| 0 9 2 b 4 d 6 f 8 1 a 3 c 5 e 7
a| 0 a 4 e 8 2 c 6 0 a 4 e 8 2 c 6
b| 0 b 6 1 c 7 2 d 8 3 e 9 4 f a 5
c| 0 c 8 4 0 c 8 4 0 c 8 4 0 c 8 4
d| 0 d a 7 4 1 e b 8 5 2 f c 9 6 3
e| 0 e c a 8 6 4 2 0 e c a 8 6 4 2
f| 0 f e d c b a 9 8 7 6 5 4 3 2 1
```

This should be flexible enough to create a variety of such tables.

```
sage: from sage.matrix.operation table import OperationTable
sage: from operator import xor
sage: T=OperationTable(ZZ, xor, elements=range(8))
sage: T
. abcdefqh
a | a b c d e f q h
b| badcfehq
c| cdabqhef
d| dcbahqfe
elefghabcd
fl fehgbadc
q | q h e f c d a b
h| h q f e d c b a
sage: names=['000', '001','010','011','100','101','110','111']
sage: T.change_names(names)
sage: T.set_print_symbols('^', '\\land')
sage: T
 ^ 000 001 010 011 100 101 110 111
  +----
000| 000 001 010 011 100 101 110 111
001 | 001 000 011 010 101 100 111 110
010| 010 011 000 001 110 111 100 101
011| 011 010 001 000 111 110 101 100
100 | 100 101 110 111 000 001 010 011
101 | 101 100 111 110 001 000 011 010
110 | 110 111 100 101 010 011 000 001
111 | 111 110 101 100 011 010 001 000
sage: T = OperationTable([False, True], operator.or_, names = 'elements')
sage: T
    . False True
    +----
False| False True
True| True True
```

TODO:

Provide color and grayscale graphical representations of tables. See commented-out stubs in source code.

AUTHOR:

```
•Rob Beezer (2010-03-15)
```

change names (names)

For an existing operation table, change the names used for the elements.

INPUT:

- •names the type of names used, values are:
 - -'letters' lowercase ASCII letters are used for a base 26 representation of the elements' positions in the list given by list(), padded to a common width with leading 'a's.
 - -'digits' base 10 representation of the elements' positions in the list given by list(), padded to a common width with leading zeros.
 - -'elements' the string representations of the elements themselves.

-a list - a list of strings, where the length of the list equals the number of elements.

OUTPUT: None . This method changes the table "in-place", so any printed version will change and the output of the dict() will also change. So any items of interest about a particular table need to be copied/saved prior to calling this method.

EXAMPLES:

More examples can be found in the documentation for <code>OperationTable</code> since creating a new operation table uses the same routine.

```
sage: from sage.matrix.operation_table import OperationTable
sage: D=DihedralGroup(2)
sage: T=OperationTable(D, operator.mul)
sage: T
* abcd
al a b c d
b| badc
c| cdab
d| d c b a
sage: T.translation()['c']
(1, 2)
sage: T.change_names('digits')
sage: T
* 0 1 2 3
+----
0 | 0 1 2 3
1 | 1 0 3 2
2 | 2 3 0 1
3 | 3 2 1 0
sage: T.translation()['2']
sage: T.change_names('elements')
sage: T
                   () (3,4)
                                      (1,2) (1,2) (3,4)
            () (3,4)
(3,4) () (1,
(1,2) (1,2) (3,4)
        () |
                                      (1,2) (1,2) (3,4)
                           () (1,2)(3,4) (1,2)
     (3, 4)
                                               (3,4)
     (1,2) |
                                      ()
(1,2)(3,4)(1,2)(3,4) (1,2)
                                      (3, 4)
sage: T.translation()['(1,2)']
(1, 2)
sage: T.change_names(['w', 'x', 'y', 'z'])
sage: T
* w x y z
w| w x y z
x | x w z y
yl y z w x
z | z y x w
sage: T.translation()['y']
(1, 2)
```

column keys ()

Returns a tuple of the elements used to build the table.

Note: column_keys and row_keys are identical. Both list the elements in the order used to label

the table.

OUTPUT:

The elements of the algebraic structure used to build the table, as a list. But most importantly, elements are present in the list in the order which they appear in the table's column headings.

EXAMPLES:

```
sage: from sage.matrix.operation_table import OperationTable
sage: G=AlternatingGroup(3)
sage: T=OperationTable(G, operator.mul)
sage: T.column_keys()
((), (1,2,3), (1,3,2))
```

matrix of variables ()

This method provides some backward compatibility for Cayley tables of groups, whose output was restricted to this single format.

EXAMPLES:

The output here is from the doctests for the old cayley_table() method for permutation groups.

```
sage: from sage.matrix.operation_table import OperationTable
sage: G=PermutationGroup(['(1,2,3)', '(2,3)'])
sage: T=OperationTable(G, operator.mul)
sage: T.matrix_of_variables()
[x0 x1 x2 x3 x4 x5]
[x1 x0 x3 x2 x5 x4]
[x2 x5 x4 x1 x0 x3]
[x3 x4 x5 x0 x1 x2]
[x4 x3 x0 x5 x2 x1]
[x5 x2 x1 x4 x3 x0]
sage: T.column_keys()[3]*T.column_keys()[3] == T.column_keys()[0]
True
```

row_keys ()

Returns a tuple of the elements used to build the table.

Note: column_keys and row_keys are identical. Both list the elements in the order used to label the table.

OUTPUT:

The elements of the algebraic structure used to build the table, as a list. But most importantly, elements are present in the list in the order which they appear in the table's column headings.

EXAMPLES:

```
sage: from sage.matrix.operation_table import OperationTable
sage: G=AlternatingGroup(3)
sage: T=OperationTable(G, operator.mul)
sage: T.column_keys()
((), (1,2,3), (1,3,2))
```

set_print_symbols (ascii, latex)

Set the symbols used for text and LaTeX printing of operation tables.

INPUT:

- •ascii a single character for text table
- •latex a string to represent an operation in LaTeX math mode. Note the need for double-backslashes to escape properly.

EXAMPLES:

table ()

Returns the table as a list of lists, using integers to reference the elements.

OUTPUT: The rows of the table, as a list of rows, each row being a list of integer entries. The integers correspond to the order of the elements in the headings of the table and the order of the output of the list() method.

EXAMPLES:

```
sage: from sage.matrix.operation_table import OperationTable
sage: C=CyclicPermutationGroup(3)
sage: T=OperationTable(C, operator.mul)
sage: T.table()
[[0, 1, 2], [1, 2, 0], [2, 0, 1]]
```

translation ()

Returns a dictionary associating names with elements.

OUTPUT: A dictionary whose keys are strings used as names for entries of the table and values that are the actual elements of the algebraic structure.

```
sage: from sage.matrix.operation_table import OperationTable
sage: G=AlternatingGroup(3)
sage: T=OperationTable(G, operator.mul, names=['p','q','r'])
sage: sorted(T.translation().items())
[('p', ()), ('q', (1,2,3)), ('r', (1,3,2))]
```

ACTIONS USED BY THE COERCION MODEL FOR MATRIX AND VECTOR MULTIPLICATIONS

Warning: The class <code>MatrixMulAction</code> and its descendants extends the class <code>Action</code>. As a consequence objects from these classes only keep weak references to the underlying sets which are acted upon. This decision was made in trac ticket #715 in order to allow garbage collection within the coercion framework, where actions are mainly used, and avoid memory leaks.

To ensure that the underlying set of such an object does not get garbage collected, it is sufficient to explicitly create a strong reference to it before creating the action.

Note: The *MatrixSpace()* function caches the objects it creates. Therefore, the underlying set MSZ in the above example will not be garbage collected, even if it is not strongly ref'ed. Nonetheless, there is no guarantee that the set that is acted upon will always be cached in such a way, so that following the above example is good practice.

EXAMPLES:

An action requires a common parent for the base rings, so the following doesn't work (see trac ticket #17859):

```
sage: vector(QQ, [1]) * matrix(Zmod(2), [[1]])
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for *: 'Vector space of
dimension 1 over Rational Field' and 'Full MatrixSpace of 1 by 1
dense matrices over Ring of integers modulo 2'
```

AUTHOR:

• Robert Bradshaw (2007-09): Initial version.

```
{\bf class} \ {\tt sage.matrix.action.} \ {\bf MatrixMatrixAction} \\ {\bf Bases:} \ {\it sage.matrix.action.MatrixMulAction}
```

EXAMPLES:

By trac ticket #715, there only is a weak reference on the underlying set, so that it can be garbage collected if only the action itself is explicitly referred to. Hence, we first assign the involved matrix spaces to a variable:

```
sage: R.<x> = ZZ[]
sage: MSR = MatrixSpace(R, 3, 3)
sage: MSQ = MatrixSpace(QQ, 3, 2)
sage: from sage.matrix.action import MatrixMatrixAction
sage: A = MatrixMatrixAction(MSR, MSQ); A
Left action by Full MatrixSpace of 3 by 3 dense matrices over Univariate.
→Polynomial Ring in x over Integer Ring on Full MatrixSpace of 3 by 2 dense_
→matrices over Rational Field
sage: A.codomain()
Full MatrixSpace of 3 by 2 dense matrices over Univariate Polynomial Ring in x.
→over Rational Field
sage: A(matrix(R, 3, 3, x), matrix(QQ, 3, 2, range(6)))
0
     хl
[2*x 3*x]
[4*x 5*x]
```

Note: The *MatrixSpace()* function caches the object it creates. Therefore, the underlying set MSZ in the above example will not be garbage collected, even if it is not strongly ref'ed. Nonetheless, there is no guarantee that the set that is acted upon will always be cached in such a way, so that following the above example is good practice.

```
class sage.matrix.action. MatrixMulAction
    Bases: sage.categories.action.Action
    codomain ()
    domain ()
        EXAMPLES:
```

By trac ticket #715, there only is a weak reference on the underlying set, so that it can be garbage collected if only the action itself is explicitly referred to. Hence, we first assign the involved matrix spaces to a variable:

Note: The MatrixSpace() function caches the object it creates. Therefore, the underlying set MSZ

in the above example will not be garbage collected, even if it is not strongly ref'ed. Nonetheless, there is no guarantee that the set that is acted upon will always be cached in such a way, so that following the above example is good practice.

class sage.matrix.action. MatrixVectorAction

Bases: sage.matrix.action.MatrixMulAction

EXAMPLES:

```
sage: from sage.matrix.action import MatrixVectorAction
sage: A = MatrixVectorAction(MatrixSpace(QQ, 3, 3), VectorSpace(CDF, 4)); A
Traceback (most recent call last):
...
TypeError: incompatible dimensions 3, 4
```

class sage.matrix.action. VectorMatrixAction

Bases: sage.matrix.action.MatrixMulAction

```
sage: from sage.matrix.action import VectorMatrixAction
sage: A = VectorMatrixAction(MatrixSpace(QQ, 5, 3), VectorSpace(CDF, 3)); A
Traceback (most recent call last):
...
TypeError: incompatible dimensions 5, 3
```


FUNCTIONS FOR CHANGING THE BASE RING OF MATRICES QUICKLY.

sage.matrix.change_ring.integer_to_real_double_dense (A)

Fast conversion of a matrix over the integers to a matrix with real double entries.

INPUT: A - a dense matrix over the integers

OUTPUT: – a dense real double matrix

EXAMPLES: sage: a = matrix(ZZ,2,3,[-2,-5,3,4,8,1030339830489349908]) sage: a.change_ring(RDF) [-2.0 -5.0 3.0] [4.0 8.0 1.0303398304893499e+18] sage: import sage.matrix.change_ring sage: sage.matrix.change_ring.integer_to_real_double_dense(a) [-2.0 -5.0 3.0] [4.0 8.0 1.0303398304893499e+18]

CHAPTER

TWENTYEIGHT

ECHELON MATRICES OVER FINITE FIELDS.

```
sage.matrix.echelon_matrix.reduced_echelon_matrix_iterator ( K, k, n, sparse=False, copy=True, set\ immutable=False)
```

An iterator over (k, n) reduced echelon matrices over the finite field K.

INPUT:

- •K a finite field
- •k number of rows (or the size of the subspace)
- •n number of columns (or the dimension of the ambient space)
- •sparse boolean (default is False)
- •copy boolean. If set to False then iterator yields the same matrix over and over (but with different entries). Default is True which is safer but might be slower.
- \bullet set_immutable boolean. If set to True then the output matrices are immutable. This option automatically turns copy into True .

Note: We ensure that the iteration order is so that all matrices with given pivot columns are generated consecutively. Furthermore, the order in which the pivot columns appear is lexicographic.

It would be faster to generate the pivots columns following a Gray code. There would be only one pivot changing at a time, avoiding the possibly expensive $m0 \cdot __copy__()$. However that would modify the generation order some functions depend upon.

```
sage: from sage.matrix.echelon_matrix import reduced_echelon_matrix_iterator
sage: it = reduced_echelon_matrix_iterator(GF(2),2,3)
sage: for m in it:
....: print(m)
. . . . :
         print(m.pivots())
          print("******")
. . . . :
[1 0 0]
[0 1 0]
(0, 1)
*****
[1 0 0]
[0 1 1]
(0, 1)
*****
```


MATRICES OVER CYCLOTOMIC FIELDS

The underlying matrix for a Matrix_cyclo_dense object is stored as follows: given an n x m matrix over a cyclotomic field of degree d, we store a d x (nm) matrix over QQ, each column of which corresponds to an element of the original matrix. This can be retrieved via the _rational_matrix method. Here is an example illustrating this:

EXAMPLES:

AUTHORS:

- · William Stein
- Craig Citro

class sage.matrix.matrix_cyclo_dense. Matrix_cyclo_dense

Bases: sage.matrix.matrix_dense.Matrix_dense

Initialize a newly created cyclotomic matrix.

INPUT:

- •parent a matrix space over a cyclotomic field
- •entries a list of entries or scalar
- •coerce boolean; if true entries are coerced to base ring
- •copy boolean; ignored due to underlying data structure

EXAMPLES:

This function is called implicitly when you create new cyclotomic dense matrices:

```
[ a -2/3*a a^19] sage: TestSuite(A).run()
```

charpoly (var='x', algorithm='multimodular', proof=None)

Return the characteristic polynomial of self, as a polynomial over the base ring.

INPUT:

- •algorithm
 - -'multimodular' (default): reduce modulo primes, compute charpoly mod p, and lift (very fast)
 - -'pari': use pari (quite slow; comparable to Magma v2.14 though)
 - -'hessenberg': put matrix in Hessenberg form (double dog slow)
- •proof bool (default: None) proof flag determined by global linalg proof.

OUTPUT:

polynomial

EXAMPLES:

```
sage: K.<z> = CyclotomicField(5)
sage: a = matrix(K, 3, [1,z,1+z^2, z/3,1,2,3,z^2,1-z])
sage: f = a.charpoly(); f
x^3 + (z - 3) * x^2 + (-16/3 * z^2 - 2 * z) * x - 2/3 * z^3 + 16/3 * z^2 - 5 * z + 5/3
sage: f(a)
[0 0 0]
[0 0 0]
[0 0 0]
sage: a.charpoly(algorithm='pari')
x^3 + (z - 3) * x^2 + (-16/3 * z^2 - 2 * z) * x - 2/3 * z^3 + 16/3 * z^2 - 5 * z + 5/3
sage: a.charpoly(algorithm='hessenberg')
x^3 + (z - 3) * x^2 + (-16/3 * z^2 - 2 * z) * x - 2/3 * z^3 + 16/3 * z^2 - 5 * z + 5/3
sage: Matrix(K, 1, [0]).charpoly()
sage: Matrix(K, 1, [5]).charpoly(var='y')
y - 5
sage: Matrix(CyclotomicField(13),3).charpoly()
sage: Matrix(CyclotomicField(13),3).charpoly()[2].parent()
Cyclotomic Field of order 13 and degree 12
```

coefficient bound ()

Return an upper bound for the (complex) absolute values of all entries of self with respect to all embeddings.

Use self.height() for a sharper bound.

This is computed using just the Cauchy-Schwarz inequality, i.e., we use the fact that

```
\left| \sum_i a_i\zeta^i \right| \leq \sum_i |a_i|,
```

as $|\zeta| = 1$.

The above bound is just 9+7, coming from the lower left entry. A better bound would be the following:

```
sage: (A[1,0]).abs()
12.997543663...
```

denominator ()

Return the denominator of the entries of this matrix.

OUTPUT:

integer - the smallest integer d so that d * self has entries in the ring of integers

EXAMPLES:

echelon_form (algorithm='multimodular', height_guess=None)

Find the echelon form of self, using the specified algorithm.

The result is cached for each algorithm separately.

EXAMPLES:

```
sage: W.<z> = CyclotomicField(3)
sage: A = matrix(W, 2, 3, [1+z, 2/3, 9*z+7, -3 + 4*z, z, -7*z]); A
         2/3 9 * z + 7
[z + 1]
[4*z - 3]
                 -7*z]
sage: A.echelon_form()
                                      0 -192/97*z - 361/97]
                  1
Γ
                  0
                                      1 1851/97*z + 1272/97]
ſ
sage: A.echelon_form(algorithm='classical')
                                      0 -192/97*z - 361/97]
                  1
[
                   0
                                      1 1851/97*z + 1272/97]
[
```

We verify that the result is cached and that the caches are separate:

```
sage: A.echelon_form() is A.echelon_form()
True
sage: A.echelon_form() is A.echelon_form(algorithm='classical')
False
```

height ()

Return the height of self.

If we let a_{ij} be the i, j entry of self, then we define the height of self to be

```
\max_{v} \max_{i,j} |a_{ij}|_{v}
```

where v runs over all complex embeddings of self.base_ring().

EXAMPLES:

Randomize the entries of self.

Choose rational numbers according to distribution, whose numerators are bounded by num_bound and whose denominators are bounded by den_bound.

EXAMPLES:

set_immutable ()

Change this matrix so that it is immutable.

EXAMPLES:

Note that there is no function to set a matrix to be mutable again, since such a function would violate the whole point. Instead make a copy, which is always mutable by default.:

tensor_product (A, subdivide=True)

Return the tensor product of two matrices.

INPUT:

•A - a matrix

•subdivide - (default: True) whether or not to return natural subdivisions with the matrix

OUTPUT:

Replace each element of self by a copy of A , but first create a scalar multiple of A by the element it replaces. So if self is an $m \times n$ matrix and A is a $p \times q$ matrix, then the tensor product is an $mp \times nq$ matrix. By default, the matrix will be subdivided into submatrices of size $p \times q$.

```
sage: C = CyclotomicField(12)
sage: M = matrix.random(C, 3, 3)
sage: N = matrix.random(C, 50, 50)
sage: M.tensor_product(M) == super(type(M), M).tensor_product(M)
True
sage: N = matrix.random(C, 15, 20)
sage: M.tensor_product(N) == super(type(M), M).tensor_product(N)
True
```


MODULAR ALGORITHM TO COMPUTE HERMITE NORMAL FORMS OF INTEGER MATRICES.

AUTHORS:

• Clement Pernet and William Stein (2008-02-07): initial version

```
sage.matrix.matrix_integer_dense_hnf. {\it add\_column} ( {\it B, H\_B, a, proof}) The add column procedure.
```

INPUT:

- •B a square matrix (may be singular)
- •H_B the Hermite normal form of B
- •a an n x 1 matrix, where B has n rows

•proof – bool; whether to prove result correct, in case we use fallback method.

OUTPUT:

•x - a vector such that H' = H B.augment(x) is the HNF of A = B.augment(a).

EXAMPLES:

```
sage: B = matrix(ZZ, 3, 3, [1,2,5, 0,-5,3, 1,1,2])
sage: H_B = B.echelon_form()
sage: a = matrix(ZZ, 3, 1, [1, 8, -2])
sage: import sage.matrix.matrix_integer_dense_hnf as hnf
sage: x = hnf.add_column(B, H_B, a, True); x
[18]
[ 3]
[23]
sage: H_B.augment(x)
[ 1 0 17 18]
[ 0 1 3 3]
[ 0 0 18 23]
sage: B.augment(a).echelon_form()
[ 1 0 17 18]
[ 0 1 3 3]
[ 0 0 18 23]
```

sage.matrix.matrix_integer_dense_hnf. $add_column_fallback$ (B, a, proof) Simplistic version of add_column, in case the powerful clever one fails (e.g., B is singular).

INPUT:

B – a square matrix (may be singular) a – an n x 1 matrix, where B has n rows proof – bool; whether to prove result correct

OUTPUT:

x - a vector such that H' = H B.augment(x) is the HNF of A = B.augment(a).

EXAMPLES:

sage.matrix.matrix_integer_dense_hnf. add_row ($A, b, pivots, include_zero_rows$) The add row procedure.

INPUT:

- •A a matrix in Hermite normal form with n column
- •b an n x 1 row matrix
- •pivots sorted list of integers; the pivot positions of A.

OUTPUT:

- •H the Hermite normal form of A.stack(b).
- •new_pivots the pivot columns of H.

EXAMPLES:

```
sage: import sage.matrix.matrix_integer_dense_hnf as hnf
sage: A = matrix(ZZ, 2, 3, [-21, -7, 5, 1,20,-7])
sage: b = matrix(ZZ, 1,3, [-1,1,-1])
sage: hnf.add_row(A, b, A.pivots(), True)
(
[ 1 6 29]
[ 0 7 28]
[ 0 0 46], [0, 1, 2]
)
sage: A.stack(b).echelon_form()
[ 1 6 29]
[ 0 7 28]
[ 0 7 28]
[ 0 0 46]
```

sage.matrix.matrix_integer_dense_hnf.benchmark_hnf (nrange, bits=4)
Run benchmark program.

```
sage: import sage.matrix.matrix_integer_dense_hnf as hnf
sage: hnf.benchmark_hnf([50,100],32)
```

```
('sage', 50, 32, ...),
('sage', 100, 32, ...),
```

sage.matrix.matrix_integer_dense_hnf. benchmark_magma_hnf (nrange, bits=4)
EXAMPLES:

```
sage: import sage.matrix.matrix_integer_dense_hnf as hnf
sage: hnf.benchmark_magma_hnf([50,100],32) # optional - magma
('magma', 50, 32, ...),
('magma', 100, 32, ...),
```

```
sage.matrix.matrix_integer_dense_hnf. det_from_modp_and_divisor ( A, d, p, z_mod, moduli, s_so_far=1, N_so_far=1)
```

This is used for internal purposes for computing determinants quickly (with the hybrid p-adic / multimodular algorithm).

INPUT:

- •A a square matrix
- •d a divisor of the determinant of A
- •p a prime
- •z mod values of det/d (mod ...)
- •moduli the moduli so far
- •z_so_far for a modulus p in the list moduli, (z_so_far mod p) is the determinant of A modulo p.
- •N_so_far N_so_far is the product over the primes in the list moduli.

OUTPUT:

•A triple (det bound, new z_so_far, new N_so_far).

EXAMPLES:

```
sage: a = matrix(ZZ, 3, [6, 1, 2, -56, -2, -1, -11, 2, -3])
sage: factor(a.det())
-1 * 13 * 29
sage: d = 13
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: matrix_integer_dense_hnf.det_from_modp_and_divisor(a, d, 97, [], [])
(-377, -29, 97)
sage: a.det()
-377
```

```
sage.matrix.matrix_integer_dense_hnf. det_given_divisor (A, d, proof=True, stabi-
lize=2)
```

Given a divisor d of the determinant of A, compute the determinant of A.

INPUT:

- •A a square integer matrix
- •d a nonzero integer that is assumed to divide the determinant of A
- •proof bool (default: True) compute det modulo enough primes so that the determinant is computed provably correctly (via the Hadamard bound). It would be VERY hard for det() to fail even with proof=False.

•stabilize - int (default: 2) if proof = False, then compute the determinant modulo p until stabilize successive modulo determinant computations stabilize.

OUTPUT:

integer - determinant

EXAMPLES:

```
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: a = matrix(ZZ,3,[-1, -1, -1, -20, 4, 1, -1, 1, 2])
sage: matrix_integer_dense_hnf.det_given_divisor(a, 3)
-30
sage: matrix_integer_dense_hnf.det_given_divisor(a, 3, proof=False)
-30
sage: matrix_integer_dense_hnf.det_given_divisor(a, 3, proof=False, stabilize=1)
-30
sage: a.det()
-30
```

Here we illustrate proof=False giving a wrong answer:

```
sage: p = matrix_integer_dense_hnf.max_det_prime(2)
sage: q = previous_prime(p)
sage: a = matrix(ZZ, 2, [p, 0, 0, q])
sage: p * q
70368442188091
sage: matrix_integer_dense_hnf.det_given_divisor(a, 1, proof=False, stabilize=2)
0
```

This still works, because we don't work modulo primes that divide the determinant bound, which is found using a p-adic algorithm:

```
sage: a.det(proof=False, stabilize=2)
70368442188091
```

3 primes is enough:

```
sage: matrix_integer_dense_hnf.det_given_divisor(a, 1, proof=False, stabilize=3)
70368442188091
sage: matrix_integer_dense_hnf.det_given_divisor(a, 1, proof=False, stabilize=5)
70368442188091
sage: matrix_integer_dense_hnf.det_given_divisor(a, 1, proof=True)
70368442188091
```

sage.matrix.matrix_integer_dense_hnf. det_padic (A, proof=True, stabilize=2)
Return the determinant of A, computed using a p-adic/multimodular algorithm.

INPUT:

- •A a square matrix
- •proof -boolean
- •stabilize (default: 2) if proof False, number of successive primes so that CRT det must stabilize.

```
sage: import sage.matrix.matrix_integer_dense_hnf as h
sage: a = matrix(ZZ, 3, [1..9])
sage: h.det_padic(a)
```

```
0
sage: a = matrix(ZZ, 3, [1,2,5,-7,8,10,192,5,18])
sage: h.det_padic(a)
-3669
sage: a.determinant(algorithm='ntl')
-3669
```

 $sage.matrix.matrix_integer_dense_hnf.$ **double_det** (A, b, c, proof)

Compute the determinants of the stacked integer matrices A.stack(b) and A.stack(c).

INPUT:

- •A an (n-1) x n matrix
- •b an 1 x n matrix
- •c an 1 x n matrix

•proof – whether or not to compute the det modulo enough times to provably compute the determinant.

OUTPUT:

•a pair of two integers.

EXAMPLES:

```
sage: from sage.matrix.matrix_integer_dense_hnf import double_det
sage: A = matrix(ZZ, 2, 3, [1,2,3, 4,-2,5])
sage: b = matrix(ZZ, 1, 3, [1,-2,5])
sage: c = matrix(ZZ, 1, 3, [8,2,10])
sage: A.stack(b).det()
-48
sage: A.stack(c).det()
42
sage: double_det(A, b, c, False)
(-48, 42)
```

sage.matrix.matrix integer dense hnf. extract ones data (H, pivots)

Compute ones data and corresponding submatrices of H. This is used to optimized the add_row function.

INPUT:

•H - a matrix in HNF

•pivots – list of all pivot column positions of H

OUTPUT:

- C, D, E, onecol, onerow, non_onecol, non_onerow where onecol, onerow, non_onecol, non_onerow are as for the ones function, and C, D, E are matrices:
 - •C submatrix of all non-onecol columns and onecol rows
 - •D all non-onecol columns and other rows
 - •E inverse of D

If D isn't invertible or there are 0 or more than 2 non onecols, then C, D, and E are set to None.

```
sage: H = matrix(ZZ, 3, 4, [1, 0, 0, 7, 0, 1, 5, 2, 0, 0, 6, 6])
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: matrix_integer_dense_hnf.extract_ones_data(H, [0,1,2])
```

```
(
[0]
[5], [6], [1/6], [0, 1], [2], [2]
)
```

Here we get None's since the (2,2) position submatrix is not invertible. sage: H = matrix(ZZ, 3, 5, [1, 0, 0, 45, -36, 0, 1, 0, 131, -107, 0, 0, 0, 178, -145]); H [1 0 0 45 -36] [0 1 0 131 -107] [0 0 0 178 -145] sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf sage: matrix_integer_dense_hnf.extract_ones_data(H, [0,1,3]) (None, None, None, [0, 1], [0, 1], [2], [2])

sage.matrix.matrix_integer_dense_hnf. **hnf** (*A*, *include_zero_rows=True*, *proof=True*) Return the Hermite Normal Form of a general integer matrix A, along with the pivot columns.

INPUT:

- •A an n x m matrix A over the integers.
- •include_zero_rows bool (default: True) whether or not to include zero rows in the output matrix
- •proof whether or not to prove the result correct.

OUTPUT:

- •matrix the Hermite normal form of A
- •pivots the pivot column positions of A

EXAMPLES:

```
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense hnf
sage: a = matrix(ZZ, 3, 5, [-2, -6, -3, -17, -1, 2, -1, -1, -2, -1, -2, -2, -6, 9, ...]
→21)
sage: matrix_integer_dense_hnf.hnf(a)
           26 -75 -10]
         0
        1
            27 -73
                      -91
        0 37 -106 -13], [0, 1, 2]
sage: matrix_integer_dense_hnf.hnf(a.transpose())
[1 0 0]
[0 1 0]
[0 0 1]
[0 0 0]
[0 0 0], [0, 1, 2]
sage: matrix_integer_dense_hnf.hnf(a.transpose(), include_zero_rows=False)
[1 0 0]
[0 1 0]
[0 0 1], [0, 1, 2]
```

 $\verb|sage.matrix_integer_dense_hnf. hnf_square| (A, proof) \\ INPUT:$

•a nonsingular n x n matrix A over the integers.

OUTPUT:

•the Hermite normal form of A.

EXAMPLES:

```
sage: import sage.matrix.matrix_integer_dense_hnf as hnf
sage: A = matrix(ZZ, 3, [-21, -7, 5, 1,20,-7, -1,1,-1])
sage: hnf.hnf_square(A, False)
[ 1 6 29]
[ 0 7 28]
[ 0 0 46]
sage: A.echelon_form()
[ 1 6 29]
[ 0 7 28]
[ 0 0 46]
```

sage.matrix.matrix_integer_dense_hnf. hnf_with_transformation (A, proof=True) Compute the HNF H of A along with a transformation matrix U such that U*A = H.

INPUT:

- •A an n x m matrix A over the integers.
- •proof whether or not to prove the result correct.

OUTPUT:

- •matrix the Hermite normal form H of A
- •U a unimodular matrix such that U * A = H

EXAMPLES:

```
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: A = matrix(ZZ, 2, [1, -5, -10, 1, 3, 197]); A
[ 1 -5 -10]
[ 1 3 197]
sage: H, U = matrix_integer_dense_hnf.hnf_with_transformation(A)
sage: H
[ 1 3 197]
[ 0 8 207]
sage: U
[ 0 1]
[-1 1]
sage: U*A
[ 1 3 197]
[ 0 8 207]
```

```
sage.matrix.matrix_integer_dense_hnf. hnf_with_transformation_tests ( n=10, m=5, tri-als=10)
```

Use this to randomly test that hnf with transformation matrix is working.

EXAMPLES:

```
\verb|sage.matrix_integer_dense_hnf.interleave_matrices| (A, B, cols1, cols2) \\ INPUT:
```

•A, B – matrices with the same number of rows

•cols1, cols2 – disjoint lists of integers

OUTPUT:

construct a new matrix C by sticking the columns of A at the positions specified by cols1 and the columns of B at the positions specified by cols2.

EXAMPLES:

```
sage: A = matrix(ZZ, 2, [1,2,3,4]); B = matrix(ZZ, 2, [-1,5,2,3])
sage: A
[1 2]
[3 4]
sage: B
[-1 5]
[ 2 3]
sage: import sage.matrix.matrix_integer_dense_hnf as hnf
sage: hnf.interleave_matrices(A, B, [1,3], [0,2])
[-1 1 5 2]
[ 2 3 3 4]
```

```
sage.matrix.matrix_integer_dense_hnf. is_in_hnf_form ( H, pivots)
```

Return True precisely if the matrix H is in Hermite normal form with given pivot columns.

INPUT:

H - matrix pivots - sorted list of integers

OUTPUT:

bool - True or False

EXAMPLES:

```
sage.matrix.matrix_integer_dense_hnf.max_det_prime (n)
```

Return the largest prime so that it is reasonably efficienct to compute modulo that prime with n x n matrices in LinBox.

INPUT:

•n – a positive integer

OUTPUT:

a prime number

```
sage: from sage.matrix.matrix_integer_dense_hnf import max_det_prime
sage: max_det_prime(10000)
8388593
sage: max_det_prime(1000)
8388593
```

```
sage: max_det_prime(10)
8388593
```

```
sage.matrix.matrix_integer_dense_hnf. ones (H, pivots)
```

Find all 1 pivot columns of the matrix H in Hermite form, along with the corresponding rows, and also the non 1 pivot columns and non-pivot rows. Here a 1 pivot column is a pivot column so that the leading bottom entry is 1.

INPUT:

•H – matrix in Hermite form

•pivots – list of integers (all pivot positions of H).

OUTPUT:

4-tuple of integer lists: onecol, onerow, non oneol, non onerow

EXAMPLES:

sage.matrix.matrix_integer_dense_hnf. pad_zeros (A, nrows)

Add zeros to the bottom of A so that the resulting matrix has nrows.

INPUT:

•A – a matrix

•nrows – an integer that is at least as big as the number of rows of A.

OUTPUT:

a matrix with nrows rows.

EXAMPLES:

```
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: a = matrix(ZZ, 2, 4, [1, 0, 0, 7, 0, 1, 5, 2])
sage: matrix_integer_dense_hnf.pad_zeros(a, 4)
[1 0 0 7]
[0 1 5 2]
[0 0 0 0]
[0 0 0 0]
sage: matrix_integer_dense_hnf.pad_zeros(a, 2)
[1 0 0 7]
[0 1 5 2]
```

```
sage.matrix.matrix_integer_dense_hnf.pivots_of_hnf_matrix (H)
```

Return the pivot columns of a matrix H assumed to be in HNF.

INPUT:

•H – a matrix that must be HNF

OUTPUT:

•list – list of pivots

EXAMPLES:

sage.matrix.matrix_integer_dense_hnf.probable_hnf (A, include_zero_rows, proof)

Return the HNF of A or raise an exception if something involving the randomized nature of the algorithm goes wrong along the way. Calling this function again a few times should result it in it working, at least if proof=True.

INPUT:

- •A a matrix
- •include zero rows bool
- •proof bool

OUTPUT:

the Hermite normal form of A. cols – pivot columns

EXAMPLES:

```
sage: a = matrix(ZZ,4,3,[-1, -1, -1, -20, 4, 1, -1, 1, 2,1,2,3])
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: matrix_integer_dense_hnf.probable_hnf(a, True, True)
(
[1 0 0]
[0 1 0]
[0 0 1]
[0 0 0], [0, 1, 2]
)
sage: matrix_integer_dense_hnf.probable_hnf(a, False, True)
(
[1 0 0]
[0 1 0]
[0 1 0]
[0 0 1], [0, 1, 2]
)
sage: matrix_integer_dense_hnf.probable_hnf(a, False, False)
(
[1 0 0]
[0 1 0]
[0 1 0]
[0 1 0]
[0 1 0]
[0 1 0]
[0 0 1], [0, 1, 2]
)
```

```
sage.matrix.matrix_integer_dense_hnf.probable_pivot_columns (A)
INPUT:
```

•A – a matrix

OUTPUT:

a tuple of integers

```
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: a = matrix(ZZ,3,[0, -1, -1, 0, -20, 1, 0, 1, 2])
sage: a
[ 0 -1 -1]
[ 0 -20    1]
[ 0   1   2]
sage: matrix_integer_dense_hnf.probable_pivot_columns(a)
(1, 2)
```

sage.matrix.matrix_integer_dense_hnf. probable_pivot_rows (A)

Return rows of A that are very likely to be pivots.

This really finds the pivots of A modulo a random prime.

INPUT:

•A – a matrix

OUTPUT:

a tuple of integers

EXAMPLES:

```
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: a = matrix(ZZ,3,[0, -1, -1, 0, -20, 1, 0, 1, 2])
sage: a
[ 0 -1 -1]
[ 0 -20    1]
[ 0   1   2]
sage: matrix_integer_dense_hnf.probable_pivot_rows(a)
(0, 1)
```

Run random sanity checks on the modular p-adic HNF with tall and wide matrices both dense and sparse.

INPUT:

- •times number of times to randomly try matrices with each shape
- •n number of rows
- •m number of columns
- •proof test with proof true
- •stabilize parameter to pass to hnf algorithm when proof is False
- •check_using_magma if True use Magma instead of PARI to check correctness of computed HNF's. Since PARI's HNF is buggy and slow (as of 2008-02-16 non-pivot entries sometimes aren't normalized to be nonnegative) the default is Magma.

```
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: matrix_integer_dense_hnf.sanity_checks(times=5, check_using_magma=False)
small 8 x 5
0 1 2 3 4 (done)
big 8 x 5
0 1 2 3 4 (done)
small 5 x 8
```

```
0 1 2 3 4 (done)
big 5 x 8
0 1 2 3 4 (done)
sparse 8 x 5
0 1 2 3 4 (done)
sparse 5 x 8
0 1 2 3 4 (done)
ill conditioned -- 1000*A -- 8 x 5
0 1 2 3 4 (done)
ill conditioned -- 1000*A but one row -- 8 x 5
0 1 2 3 4 (done)
```

```
sage.matrix.matrix_integer_dense_hnf. solve_system_with_difficult_last_row (B,
```

Solve $B^*x = a$ when the last row of B contains huge entries using a clever trick that reduces the problem to solve $C^*x = a$ where C is B but with the last row replaced by something small, along with one easy null space computation. The latter are both solved p-adically.

INPUT:

•B – a square n x n nonsingular matrix with painful big bottom row.

•a – an n x 1 column matrix

OUTPUT:

•the unique solution to B*x = a.

CHAPTER

THIRTYONE

SATURATION OVER ZZ

For any zero matrix the index in its saturation is 1 (see trac ticket #13034):

```
sage: m = matrix(ZZ, 3)
sage: m
[0 0 0]
[0 0 0]
[0 0 0]
sage: m.index_in_saturation()

sage: m = matrix(ZZ, 2, 3)
sage: m
[0 0 0]
[0 0 0]
sage: m.index_in_saturation()
1
```

 $\verb|sage.matrix_matrix_integer_dense_saturation.p_saturation| (A, p, proof=True) \\ INPUT:$

```
A – a matrix over ZZ
p – a prime
proof – bool (default: True)
```

OUTPUT:

The p-saturation of the matrix A, i.e., a new matrix in Hermite form whose row span a ZZ-module that is p-saturated.

EXAMPLES:

```
sage: from sage.matrix.matrix_integer_dense_saturation import p_saturation
sage: A = matrix(ZZ, 2, 2, [3,2,3,4]); B = matrix(ZZ, 2,3,[1,2,3,4,5,6])
sage: A.det()
6
sage: C = A*B; C
[11 16 21]
[19 26 33]
sage: C2 = p_saturation(C, 2); C2
[ 1 8 15]
[ 0 9 18]
sage: C2.index_in_saturation()
9
sage: C3 = p_saturation(C, 3); C3
[ 1 0 -1]
[ 0 2 4]
sage: C3.index_in_saturation()
```

sage.matrix.matrix_integer_dense_saturation. ${\bf random_sublist_of_size}$ (k,n) INPUT:

•k – an integer

•n – an integer

OUTPUT:

a randomly chosen sublist of range(k) of size n.

EXAMPLES:

```
sage: import sage.matrix.matrix_integer_dense_saturation as s
sage: s.random_sublist_of_size(10,3)
[0, 1, 5]
sage: s.random_sublist_of_size(10,7)
[0, 1, 3, 4, 5, 7, 8]
```

sage.matrix_integer_dense_saturation. saturation (A, proof=True, p=0, $max_dets=5$)

Compute a saturation matrix of A.

INPUT:

```
•A – a matrix over ZZ
```

•proof – bool (default: True)

•p – int (default: 0); if not 0 only guarantees that output is p-saturated

•max_dets – int (default: 4) max number of dets of submatrices to compute.

OUTPUT:

matrix – saturation of the matrix A.

EXAMPLES:

```
sage: from sage.matrix.matrix integer dense saturation import saturation
sage: A = matrix(ZZ, 2, 2, [3,2,3,4]); B = matrix(ZZ, 2,3,[1,2,3,4,5,6]); C = A*B
sage: C
[11 16 21]
[19 26 33]
sage: C.index_in_saturation()
sage: S = saturation(C); S
[11 16 21]
[-2 -3 -4]
sage: S.index_in_saturation()
sage: saturation(C, proof=False)
[11 16 21]
[-2 -3 -4]
sage: saturation(C, p=2)
[11 16 21]
[-2 -3 -4]
sage: saturation(C, p=2, max_dets=1)
[11 16 21]
[-2 -3 -4]
```

 $\verb|sage.matrix.matrix_integer_dense_saturation. solve_system_with_difficult_last_row (B, A)| \\$

Solve the matrix equation B*Z = A when the last row of B contains huge entries.

INPUT:

- •B a square n x n nonsingular matrix with painful big bottom row.
- •A an n x k matrix.

OUTPUT:

the unique solution to B*Z = A.

THIRTYTWO

SPARSE INTEGER MATRICES.

AUTHORS:

- William Stein (2007-02-21)
- Soroosh Yazdani (2007-02-21)

```
class sage.matrix.matrix_integer_sparse. Matrix_integer_sparse
```

Bases: sage.matrix.matrix_sparse.Matrix_sparse

Create a sparse matrix over the integers.

INPUT:

- •parent a matrix space
- •entries can be one of the following:
 - -a Python dictionary whose items have the form (i, j): x, where $0 \le i \le nrows$, $0 \le j \le nrows$, and x is coercible to an integer. The i, j entry of self is set to x. The x 's can be 0.
 - -Alternatively, entries can be a list of *all* the entries of the sparse matrix, read row-by-row from top to bottom (so they would be mostly 0).
- •copy ignored
- •coerce -ignored

elementary_divisors (algorithm='pari')

Return the elementary divisors of self, in order.

The elementary divisors are the invariants of the finite abelian group that is the cokernel of *left* multiplication by this matrix. They are ordered in reverse by divisibility.

INPUT:

- •self matrix
- •algorithm (default: 'pari')
 - -'pari': works robustly, but is slower.
 - -'linbox' use linbox (currently off, broken)

OUTPUT:

list of integers

```
sage: matrix(3, range(9), sparse=True).elementary_divisors()
[1, 3, 0]
sage: M = matrix(ZZ, 3, [1,5,7, 3,6,9, 0,1,2], sparse=True)
sage: M.elementary_divisors()
[1, 1, 6]
```

This returns a copy, which is safe to change:

```
sage: edivs = M.elementary_divisors()
sage: edivs.pop()
6
sage: M.elementary_divisors()
[1, 1, 6]
```

..SEEALSO:: smith form()

hermite_form (algorithm='default', cutoff=0, **kwds)

Return the echelon form of self.

Note: This row reduction does not use division if the matrix is not over a field (e.g., if the matrix is over the integers). If you want to calculate the echelon form using division, then use rref(), which assumes that the matrix entries are in a field (specifically, the field of fractions of the base ring of the matrix).

INPUT:

- •algorithm string. Which algorithm to use. Choices are
 - -'default': Let Sage choose an algorithm (default).
 - -'classical': Gauss elimination.
 - -'strassen': use a Strassen divide and conquer algorithm (if available)
- •cutoff integer. Only used if the Strassen algorithm is selected.
- •transformation boolean. Whether to also return the transformation matrix. Some matrix backends do not provide this information, in which case this option is ignored.

OUTPUT:

The reduced row echelon form of self, as an immutable matrix. Note that self is *not* changed by this command. Use echelonize() to change self in place.

If the optional parameter transformation=True is specified, the output consists of a pair (E,T) of matrices where E is the echelon form of self and T is the transformation matrix.

EXAMPLES:

```
sage: MS = MatrixSpace(GF(19),2,3)
sage: C = MS.matrix([1,2,3,4,5,6])
sage: C.rank()
2
sage: C.nullity()
0
sage: C.echelon_form()
[ 1  0 18]
[ 0  1  2]
```

The matrix library used for \mathbf{Z}/p -matrices does not return the transformation matrix, so the transformation option is ignored:

```
sage: C.echelon_form(transformation=True)
[ 1  0 18]
[ 0  1  2]

sage: D = matrix(ZZ, 2, 3, [1,2,3,4,5,6])
sage: D.echelon_form(transformation=True)
(
[1 2 3]  [ 1  0]
[0 3 6], [ 4 -1]
)
sage: E, T = D.echelon_form(transformation=True)
sage: T*D == E
True
```

rational reconstruction (N)

Use rational reconstruction to lift self to a matrix over the rational numbers (if possible), where we view self as a matrix modulo N.

EXAMPLES:

smith_form ()

Returns matrices S, U, and V such that S = U*self*V, and S is in Smith normal form. Thus S is diagonal with diagonal entries the ordered elementary divisors of S.

This version is for sparse matrices and simply makes the matrix dense and calls the version for dense integer matrices.

Warning: The elementary_divisors function, which returns the diagonal entries of S, is VASTLY faster than this function.

The elementary divisors are the invariants of the finite abelian group that is the cokernel of this matrix. They are ordered in reverse by divisibility.

```
sage: A = MatrixSpace(IntegerRing(), 3, sparse=True)(range(9))
sage: D, U, V = A.smith_form()
sage: D
[1 0 0]
[0 3 0]
[0 0 0]
sage: U
[ 0 1 0]
[ 0 -1 1]
[-1 2 -1]
sage: V
[-1 4 1]
[ 1 -3 -2]
[ 0 0 1]
sage: U*A*V
```

```
[1 0 0]
[0 3 0]
[0 0 0]
```

It also makes sense for nonsquare matrices:

```
sage: A = Matrix(ZZ,3,2,range(6), sparse=True)
sage: D, U, V = A.smith_form()
sage: D
[1 0]
[0 2]
[0 0]
sage: U
[ 0 1 0]
[ 0 -1 1]
[-1 \ 2 \ -1]
sage: V
[-1 \ 3]
[ 1 -2]
sage: U * A * V
[1 0]
[0 2]
[0 0]
```

The examples above show that trac ticket #10626 has been implemented.

See also:

elementary_divisors()

DENSE MATRICES OVER GF(2) USING THE M4RI LIBRARY.

AUTHOR: Martin Albrecht <malb@informatik.uni-bremen.de>

```
sage: a = matrix(GF(2),3,range(9),sparse=False); a
[1 0 1]
[0 1 0]
sage: a.rank()
sage: type(a)
<type 'sage.matrix.matrix_mod2_dense.Matrix_mod2_dense'>
sage: a[0,0] = 1
sage: a.rank()
sage: parent(a)
Full MatrixSpace of 3 by 3 dense matrices over Finite Field of size 2
sage: a^2
[0 1 1]
[1 0 0]
[1 0 1]
sage: a+a
[0 0 0]
[0 0 0]
[0 0 0]
sage: b = a.new_matrix(2,3,range(6)); b
[0 1 0]
[1 0 1]
sage: a*b
Traceback (most recent call last):
TypeError: unsupported operand parent(s) for *: 'Full MatrixSpace of 3 by 3 dense,
→matrices over Finite Field of size 2' and 'Full MatrixSpace of 2 by 3 dense
→matrices over Finite Field of size 2'
sage: b*a
[1 0 1]
[1 0 0]
sage: TestSuite(a).run()
sage: TestSuite(b).run()
sage: a.echelonize(); a
```

```
[1 0 0]

[0 1 0]

[0 0 1]

sage: b.echelonize(); b

[1 0 1]

[0 1 0]
```

TODO:

- make LinBox frontend and use it
 - charpoly?
 - minpoly?
- make Matrix_modn_frontend and use it (?)

```
class sage.matrix.matrix_mod2_dense. Matrix_mod2_dense
    Bases: sage.matrix.matrix_dense.Matrix_dense
```

Dense matrix over GF(2).

augment (right, subdivide=False)
Augments self with right.

EXAMPLES:

```
sage: MS = MatrixSpace(GF(2),3,3)
sage: A = MS([0, 1, 0, 1, 1, 0, 1, 1, 1]); A
[0 1 0]
[1 1 0]
[1 1 1]
sage: B = A.augment(MS(1)); B
[0 1 0 1 0 0]
[1 1 0 0 1 0]
[1 1 1 0 0 1]
sage: B.echelonize(); B
[1 0 0 1 1 0]
[0 1 0 1 0 0]
[0 0 1 0 1 1]
sage: C = B.matrix_from_columns([3,4,5]); C
[1 1 0]
[1 0 0]
[0 1 1]
sage: C == ~A
True
sage: C*A == MS(1)
True
```

A vector may be augmented to a matrix.

```
sage: A = matrix(GF(2), 3, 4, range(12))
sage: v = vector(GF(2), 3, range(3))
sage: A.augment(v)
[0 1 0 1 0]
[0 1 0 1 1]
[0 1 0 1 0]
```

The subdivide option will add a natural subdivision between self and right . For more details about how subdivisions are managed when augmenting, see <code>sage.matrix.matrix1.Matrix.augment()</code>.

```
sage: A = matrix(GF(2), 3, 5, range(15))
sage: B = matrix(GF(2), 3, 3, range(9))
sage: A.augment(B, subdivide=True)
[0 1 0 1 0 | 0 1 0]
[1 0 1 0 1 | 1 0 1]
[0 1 0 1 0 | 0 1 0]
```

density (approx=False)

Return the density of this matrix.

By density we understand the ration of the number of nonzero positions and the self.nrows() * self.ncols(), i.e. the number of possible nonzero positions.

INPUT:

•approx – return floating point approximation (default: False)

EXAMPLES:

```
sage: A = random_matrix(GF(2),1000,1000)
sage: d = A.density(); d
62483/125000

sage: float(d)
0.499864

sage: A.density(approx=True)
0.499864000...

sage: float(len(A.nonzero_positions())/1000^2)
0.499864
```

determinant ()

Return the determinant of this matrix over GF(2).

EXAMPLES:

```
sage: matrix(GF(2),2,[1,1,0,1]).determinant()
1
sage: matrix(GF(2),2,[1,1,1,1]).determinant()
0
```

echelonize (algorithm='heuristic', cutoff=0, reduced=True, **kwds)

Puts self in (reduced) row echelon form.

INPUT:

- •self a mutable matrix
- algorithm
 - -'heuristic' uses M4RI and PLUQ (default)
 - -'m4ri' uses M4RI
 - -'pluq' uses PLUQ factorization
 - -'classical' uses classical Gaussian elimination
- •k the parameter 'k' of the M4RI algorithm. It MUST be between 1 and 16 (inclusive). If it is not specified it will be calculated as $3/4 * \log_2(\min(nrows, ncols))$ as suggested in the M4RI paper.
- •reduced return reduced row echelon form (default:True)

EXAMPLES:

ALGORITHM:

Uses M4RI library

REFERENCES:

•[Bar2006]

randomize (density=1, nonzero=False)

Randomize density proportion of the entries of this matrix, leaving the rest unchanged.

INPUT:

- •density float; proportion (roughly) to be considered for changes
- •nonzero Bool (default: False); whether the new entries are forced to be non-zero

OUTPUT:

•None, the matrix is modified in-space

EXAMPLES:

```
sage: A = matrix(GF(2), 5, 5, 0)
sage: A.randomize(0.5); A
[0 0 0 1 1]
[0 1 0 0 0 1]
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 0 1 0]
sage: A.randomize(); A
[0 0 1 1 0]
[1 1 0 0 1]
[1 1 1 0 0]
[1 1 1 1 0]
```

rank (algorithm='ple')

Return the rank of this matrix.

On average 'ple' should be faster than 'm4ri' and hence it is the default choice. However, for small - i.e. quite few thousand rows & columns - and sparse matrices 'm4ri' might be a better choice.

INPUT:

```
•algorithm - either "ple" or "m4ri"
```

```
sage: A = random_matrix(GF(2), 1000, 1000)
sage: A.rank()
999
```

```
sage: A = matrix(GF(2),10, 0)
sage: A.rank()
0
```

row (i, from_list=False)

Return the i 'th row of this matrix as a vector.

This row is a dense vector if and only if the matrix is a dense matrix.

INPUT:

- •i integer
- •from_list bool (default: False); if True, returns the i 'th element of self.rows() (see rows()), which may be faster, but requires building a list of all rows the first time it is called after an entry of the matrix is changed.

EXAMPLES:

```
sage: A = random_matrix(GF(2), 10, 10); A
[0 1 0 1 1 0 0 0 1 1]
[0 1 1 1 0 1 1 0 0 1]
[0 0 0 1 0 1 0 0 1 0]
[0 1 1 0 0 1 0 1 1 0]
[0 0 0 1 1 1 1 0 1 1]
[0 0 1 1 1 1 0 0 0 0]
[1 1 1 1 0 1 0 1 1 0]
[0 0 0 1 1 0 0 0 1 1]
[1 0 0 0 1 1 1 0 1 1]
[1 0 0 1 1 0 1 0 0 0]
sage: A.row(0)
(0, 1, 0, 1, 1, 0, 0, 0, 1, 1)
sage: A.row(-1)
(1, 0, 0, 1, 1, 0, 1, 0, 0, 0)
sage: A.row(2,from_list=True)
(0, 0, 0, 1, 0, 1, 0, 0, 1, 0)
sage: A = Matrix(GF(2), 1, 0)
sage: A.row(0)
()
```

str (rep_mapping=None, zero=None, plus_one=None, minus_one=None) Return a nice string representation of the matrix.

INPUT:

- •rep_mapping a dictionary or callable used to override the usual representation of elements. For a dictionary, keys should be elements of the base ring and values the desired string representation.
- •zero string (default: None); if not None use the value of zero as the representation of the zero element.
- •plus_one string (default: None); if not None use the value of plus_one as the representation of the one element.
- •minus_one Ignored. Only for compatibility with generic matrices.

```
sage: B = random_matrix(GF(2),3,3)
sage: B # indirect doctest
[0 1 0]
[0 1 1]
[0 0 0]
sage: block_matrix([[B, 1], [0, B]])
[0 1 0|1 0 0]
[0 1 1|0 1 0]
[0 0 0|0 0 1]
[----+---]
[0 0 0|0 1 0]
[0 0 0|0 1 1]
[0 0 0|0 0 0]
sage: B.str(zero='.')
'[. 1 .]\n[. 1 1]\n[. . .]'
```

submatrix (row=0, col=0, nrows=-1, ncols=-1)

Return submatrix from the index row, col (inclusive) with dimension nrows x ncols.

INPUT:

- •row index of start row
- •col index of start column
- •nrows number of rows of submatrix
- •ncols number of columns of submatrix

EXAMPLES:

```
sage: A = random_matrix(GF(2),200,200)
sage: A[0:2,0:2] == A.submatrix(0,0,2,2)
True
sage: A[0:100,0:100] == A.submatrix(0,0,100,100)
True
sage: A == A.submatrix(0,0,200,200)
True

sage: A[1:3,1:3] == A.submatrix(1,1,2,2)
True
sage: A[1:100,1:100] == A.submatrix(1,1,99,99)
True
sage: A[1:200,1:200] == A.submatrix(1,1,199,199)
True
```

TESTS for handling of default arguments (trac ticket #18761):

```
sage: A.submatrix(17,15) == A.submatrix(17,15,183,185)
True
sage: A.submatrix(row=100,col=37,nrows=1,ncols=3) == A.submatrix(100,37,1,3)
True
```

transpose ()

Returns transpose of self and leaves self untouched.

```
sage: A = Matrix(GF(2),3,5,[1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0])
sage: A
```

```
[1 0 1 0 0]
[0 1 1 0 0]
[1 1 0 1 0]
sage: B = A.transpose(); B
[1 0 1]
[0 1 1]
[1 1 0]
[0 0 0]
sage: B.transpose() == A
True
```

. T is a convenient shortcut for the transpose:

```
sage: A.T
[1 0 1]
[0 1 1]
[0 1 0]
[1 1 0]
[0 0 0]
```

```
sage.matrix.matrix_mod2_dense.free_m4ri()
```

Free global Gray code tables.

```
sage.matrix.matrix_mod2_dense. from_png (filename)
```

Returns a dense matrix over GF(2) from a 1-bit PNG image read from filename. No attempt is made to verify that the filename string actually points to a PNG image.

INPUT:

•filename - a string

EXAMPLES:

```
sage: from sage.matrix.matrix_mod2_dense import from_png, to_png
sage: A = random_matrix(GF(2),10,10)
sage: fn = tmp_filename()
sage: to_png(A, fn)
sage: B = from_png(fn)
sage: A == B
True
```

```
sage.matrix.matrix_mod2_dense. parity ( a)
```

Returns the parity of the number of bits in a.

EXAMPLES:

```
sage: from sage.matrix.matrix_mod2_dense import parity
sage: parity(1)
1L
sage: parity(3)
0L
sage: parity(0x10000101011)
1L
```

```
sage.matrix.matrix_mod2_dense. ple ( A, algorithm='standard', param=0)
```

Return PLE factorization of A.

INPUT:

```
•A – matrix
•algorithm

-'standard' asymptotically fast (default)

-'russian' M4RI inspired

-'naive' naive cubic

•param – either k for 'mmpf' is chosen or matrix multiplication cutoff for 'standard' (default: 0)
```

EXAMPLES:

```
sage: from sage.matrix.matrix mod2 dense import ple
sage: A = random_matrix(GF(2), 4, 4); A
[0 1 0 1]
[0 1 1 1]
[0 0 0 1]
[0 1 1 0]
sage: LU, P, Q = ple(A)
sage: LU
[1 0 0 1]
[1 1 0 0]
[0 0 1 0]
[1 1 1 0]
sage: P
[0, 1, 2, 3]
sage: Q
[1, 2, 3, 3]
sage: A = random_matrix(GF(2),1000,1000)
sage: ple(A) == ple(A, 'russian') == ple(A, 'naive')
True
```

sage.matrix.matrix_mod2_dense. pluq (A, algorithm='standard', param=0)
Return PLUQ factorization of A.

INPUT:

- •A matrix
- •algorithm
 - -'standard' asymptotically fast (default)
 - -'mmpf' M4RI inspired
 - -'naive' naive cubic

•param – either k for 'mmpf' is chosen or matrix multiplication cutoff for 'standard' (default: 0)

```
sage: from sage.matrix.matrix_mod2_dense import pluq
sage: A = random_matrix(GF(2),4,4); A
[0 1 0 1]
[0 1 1 1]
[0 0 0 1]
[0 1 1 0]
```

```
sage: LU, P, Q = pluq(A)
sage: LU
[1 0 1 0]
[1 1 0 0]
[0 0 1 0]
[1 1 1 0]

sage: P
[0, 1, 2, 3]
sage: Q
[1, 2, 3, 3]
```

sage.matrix.matrix_mod2_dense. to_png (A, filename)

Saves the matrix A to filename as a 1-bit PNG image.

INPUT:

- •A a matrix over GF(2)
- •filename a string for a file in a writable position

EXAMPLES:

```
sage: from sage.matrix.matrix_mod2_dense import from_png, to_png
sage: A = random_matrix(GF(2),10,10)
sage: fn = tmp_filename()
sage: to_png(A, fn)
sage: B = from_png(fn)
sage: A == B
True
```

sage.matrix.matrix_mod2_dense. unpickle_matrix_mod2_dense_v1 (r, c, data, size)
Deserialize a matrix encoded in the string s .

INPUT:

- •r number of rows of matrix
- •c number of columns of matrix
- \bullet s a string
- •size length of the string s

```
sage: A = random_matrix(GF(2),100,101)
sage: _,(r,c,s,s2) = A.__reduce__()
sage: from sage.matrix.matrix_mod2_dense import unpickle_matrix_mod2_dense_v1
sage: unpickle_matrix_mod2_dense_v1(r,c,s,s2) == A
True
sage: loads(dumps(A)) == A
True
```


DENSE MATRICES OVER \mathbf{F}_{2^E} FOR 2 <= E <= 10 USING THE M4RIE LIBRARY.

The M4RIE library offers two matrix representations:

1. mzed t

m x n matrices over \mathbf{F}_{2^e} are internally represented roughly as m x (en) matrices over \mathbf{F}_2 . Several elements are packed into words such that each element is filled with zeroes until the next power of two. Thus, for example, elements of \mathbf{F}_{2^3} are represented as $[0 \times x \times |0 \times x \times$

Multiplication and elimination both use "Newton-John" tables. These tables are simply all possible multiples of a given row in a matrix such that a scale+add operation is reduced to a table lookup + add. On top of Newton-John multiplication M4RIE implements asymptotically fast Strassen-Winograd multiplication. Elimination uses simple Gaussian elimination which requires $O(n^3)$ additions but only $O(n^2*2^e)$ multiplications.

2. mzd_slice_t

m x n matrices over \mathbf{F}_{2^e} are internally represented as slices of m x n matrices over \mathbf{F}_2 . This representation allows for very fast matrix times matrix products using Karatsuba's polynomial multiplication for polynomials over matrices. However, it is not feature complete yet and hence not wrapped in Sage for now.

See http://m4ri.sagemath.org for more details on the M4RIE library.

EXAMPLES:

```
sage: K. < a > = GF(2^8)
sage: A = random_matrix(K, 3,4)
       a^6 + a^5 + a^4 + a^2
a^7 + a^6 + a^3 a^7 + a^6 + a^5 + 1 a^5 + a^4 +
\Rightarrowa^3 + a + 1 a^6 + a^5 + a^4 + a^3 + a^2 + 1]
  a^6 + a^5 + a + 1
                                                            a^7 +__
sage: A.echelon_form()
                                       0
6 + a^5 + a^4 + a^2
                                       1
\rightarrow + a^5 + a^3 + a + 1]
                                       0
                                                          1 a^6 + ...
\rightarrowa^4 + a^3 + a^2 + 1]
```

AUTHOR:

Martin Albrecht <martinralbrecht@googlemail.com>

TODO:

• wrap mzd_slice_t

REFERENCES:

• [BB2009]

```
class sage.matrix.matrix_gf2e_dense. M4RIE_finite_field
    Bases: object
```

A thin wrapper around the M4RIE finite field class such that we can put it in a hash table. This class is not meant for public consumption.

```
class sage.matrix.matrix_gf2e_dense. Matrix_gf2e_dense
    Bases: sage.matrix.matrix_dense.Matrix_dense
```

Create new matrix over $GF(2^e)$ for 2<=e<=10.

INPUT:

```
•parent -a MatrixSpace.
```

- •entries may be list or a finite field element.
- •copy ignored, elements are always copied
- •coerce ignored, elements are always coerced

EXAMPLES:

```
sage: K. < a > = GF(2^4)
sage: 1 = [K.random_element() for _ in range(3*4)]; 1
[a^2 + 1, a^3 + 1, 0, 0, a, a^3 + a + 1, a + 1, a + 1, a^2, a^3 + a + 1, a^3 + a, ]
\rightarrowa^3 + a]
sage: A = Matrix(K, 3, 4, 1); A
[ a^2 + 1 a^3 + 1
          a a^3 + a + 1
                              a + 1
                                          a + 1]
                          a^3 + a
        a^2 a^3 + a + 1
                                        a^3 + a
sage: A.list()
[a^2 + 1, a^3 + 1, 0, 0, a, a^3 + a + 1, a + 1, a + 1, a^2, a^3 + a + 1, a^3 + a, ]
\rightarrowa^3 + a]
sage: 1[0], A[0,0]
(a^2 + 1, a^2 + 1)
sage: A = Matrix(K, 3, 3, a); A
[a 0 0]
[0 a 0]
[0 0 a]
```

```
augment ( right)
```

Augments self with right.

INPUT:

•right -a matrix

```
sage: K. < a > = GF(2^4)
sage: MS = MatrixSpace(K, 3, 3)
sage: A = random_matrix(K,3,3)
sage: B = A.augment(MS(1)); B
             a^2 a^3 + a + 1 a^3 + a^2 + a + 1
[
                                                                    1
            0
                            0 ]
[
            a + 1
                               a^3
                                                  1
                                                                    0
           1
                             0]
      a^3 + a + 1
                     a^3 + a^2 + 1
                                              a + 1
                                                                    0
            0
                            11
sage: B.echelonize(); B
                                                   0
                                                              a^2 + a
      a^3 + 1
                       a^3 + a
                                                       a^3 + a^2 + a a^3
Γ
\rightarrow+ a^2 + a + 1
                        a^2 + a
                                                  1
                                 0
                                                                a + 1
         a^3
                           a^3]
sage: C = B.matrix_from_columns([3,4,5]); C
        a^2 + a a^3 + 1
                                           a^3 + a
    a^3 + a^2 + a a^3 + a^2 + a + 1
                                           a^2 + a
          a + 1
[
                               a^3
                                                a^3]
sage: C == ~A
True
sage: C * A == MS(1)
True
```

$\operatorname{cling} (*C)$

Pack the matrices over \mathbf{F}_2 into this matrix over \mathbf{F}_{2^e} .

Elements in \mathbf{F}_{2^e} can be represented as $\sum c_i a^i$ where a is a root the minimal polynomial. If this matrix is A then this function writes $c_i a^i$ to the entry A[x,y] where c_i is the entry $C_i[x,y]$.

INPUT:

•C - a list of matrices over GF(2)

```
sage: K.<a> = GF(2^2)
sage: A = matrix(K, 5, 5)
sage: A0 = random_matrix(GF(2), 5, 5); A0
[0 1 0 1 1]
[0 1 1 1 0]
[0 0 0 1 0]
[0 1 0 0 1 1]

sage: A1 = random_matrix(GF(2), 5, 5); A1
[0 0 1 1 1]
[1 1 1 0]
[0 0 0 1 1]
[1 0 0 0 1]
[1 0 0 0 1]
[1 0 0 0 1]
```

```
[ 0 a 1 a + 1 a + 1]

[ 1 a + 1 a + 1 a + 1 0]

[ 0 0 0 a + 1 1]

[ 1 a a 0 1]

[ 1 0 0 a + 1 a + 1]

sage: A0[0,3]*a + A1[0,3], A[0,3]

(a + 1, a + 1)
```

Slicing and clinging are inverse operations:

```
sage: B1, B0 = A.slice()
sage: B0 == A0 and B1 == A1
True
```

echelonize (algorithm='heuristic', reduced=True, **kwds)

Compute the row echelon form of self in place.

INPUT:

- •algorithm one of the following heuristic let M4RIE decide (default) newton_john use newton_john table based algorithm ple use PLE decomposition naive use naive cubic Gaussian elimination (M4RIE implementation) builtin use naive cubic Gaussian elimination (Sage implementation)
- •reduced if True return reduced echelon form. No guarantee is given that the matrix is *not* reduced if False (default: True)

```
sage: K. < a > = GF(2^4)
sage: m, n = 3, 5
sage: A = random_matrix(K, 3, 5); A
           a^2
                   a^3 + a + 1 a^3 + a^2 + a + 1
         a^31
                                a^3 + a^2 + 1
                   a^3 + a + 1
    a^3 + 11
     a^3 + a + 1 a^3 + a^2 + a + 1
                                       a^2 + a
                                                      a^2 + 1
     a^2 + a
sage: A.echelonize(); A
                                 0 a + 1 0 a^2
    1
                     0
                                                   a^2 + 1
[
                     1
Γ
          0
                                                    a + 1]
Γ
          0
                                 1 a^3 + a^2 + a
                                                       a^3]
sage: K. < a > = GF(2^3)
sage: m, n = 3, 5
sage: MS = MatrixSpace(K,m,n)
sage: A = random_matrix(K, 3, 5)
sage: copy(A).echelon_form('newton_john')
     1 0 a + 1
                                      0 a^2 + 1]
                 1 a^2 + a + 1
         0
                                      0
[
                                                 a l
        0
                  0
                     0
                                      1 a^2 + a + 1]
[
sage: copy(A).echelon_form('naive');
[
        1 0 a + 1
                                      0 	 a^2 + 1
                                      0 a]
         0
                   1 a^2 + a + 1
Γ
                                       1 a^2 + a + 1
```

randomize (density=1, nonzero=False, *args, **kwds)

Randomize density proportion of the entries of this matrix, leaving the rest unchanged.

INPUT:

- •density float; proportion (roughly) to be considered for changes
- •nonzero Bool (default: False); whether the new entries are forced to be non-zero

OUTPUT:

•None, the matrix is modified in-place

EXAMPLES:

```
sage: K. < a > = GF(2^4)
sage: A = Matrix(K, 3, 3)
sage: A.randomize(); A
      a^2 a^3 + a + 1 a^3 + a^2 + a + 1
           a + 1
                        a^3
                                                   1]
      a^3 + a + 1
                     a^3 + a^2 + 1
                                              a + 1]
sage: K. < a > = GF(2^4)
sage: A = random_matrix(K, 1000, 1000, density=0.1)
sage: float(A.density())
0.0999...
sage: A = random_matrix(K, 1000, 1000, density=1.0)
sage: float(A.density())
sage: A = random_matrix(K, 1000, 1000, density=0.5)
sage: float(A.density())
0.4996...
```

Note, that the matrix is updated and not zero-ed out before being randomized:

```
sage: A = matrix(K,1000,1000)
sage: A.randomize(nonzero=False, density=0.1)
sage: float(A.density())
0.0936...
sage: A.randomize(nonzero=False, density=0.05)
sage: float(A.density())
0.135854
```

rank ()

Return the rank of this matrix (cached).

```
sage: K.<a> = GF(2^4)
sage: A = random_matrix(K, 1000, 1000)
```

```
sage: A.rank()
1000

sage: A = matrix(K, 10, 0)
sage: A.rank()
0
```

slice()

Unpack this matrix into matrices over \mathbf{F}_2 .

Elements in \mathbf{F}_{2^e} can be represented as $\sum c_i a^i$ where a is a root the minimal polynomial. This function returns a tuple of matrices C whose entry $C_i[x,y]$ is the coefficient of c_i in A[x,y] if this matrix is A.

EXAMPLES:

```
sage: K. < a > = GF(2^2)
sage: A = random_matrix(K, 5, 5); A
[ 0 a + 1 a + 1 a + 1 0]
1]
                               a]
                               0]
    а
           1 a + 1 a + 1
                              0 ]
sage: A1,A0 = A.slice()
sage: A0
[0 1 1 1 0]
[0 1 0 1 0]
[1 1 1 0 1]
[1 0 1 0 0]
[1 0 1 1 0]
sage: A1
[0 1 1 1 0]
[1 1 1 1 1]
[1 1 0 1 0]
[0 1 1 1 0]
[0 1 1 1 0]
sage: A0[2,4]*a + A1[2,4], A[2,4]
(a, a)
sage: K. < a > = GF(2^3)
sage: A = random_matrix(K, 5, 5); A
[ a + 1 a<sup>2</sup> + a 1 a a<sup>2</sup> + a]
[ a + 1 a<sup>2</sup> + a a<sup>2</sup> a<sup>2</sup> a<sup>2</sup> a<sup>2</sup> 1]
[a<sup>2</sup> + a + 1 a<sup>2</sup> + a + 1 0 a<sup>2</sup> + a + 1 a<sup>2</sup> + 1]
a a^2 + 1 a^2 + a + 1
sage: A0,A1,A2 = A.slice()
sage: A0
[1 0 1 0 0]
[1 0 0 0 1]
[1 1 0 1 1]
[0 0 1 0 0]
[0 1 0 1 1]
```

Slicing and clinging are inverse operations:

```
sage: B = matrix(K, 5, 5)
sage: B.cling(A0,A1,A2)
sage: B == A
True
```

stack (other)

Stack self on top of other.

INPUT:

•other -a matrix

EXAMPLES:

```
sage: K. < a > = GF(2^4)
sage: A = random_matrix(K,2,2); A
          a^2 a^3 + a + 1
[a^3 + a^2 + a + 1]
                        a + 1]
sage: B = random_matrix(K, 2, 2); B
        a^3
[a^3 + a + 1 a^3 + a^2 + 1]
sage: A.stack(B)
           a^2
                    a^3 + a + 1
                    a + 1]
[a^3 + a^2 + a + 1]
[
           a^3
                              1]
                 a^3 + a^2 + 1
    a^3 + a + 1
[
sage: B.stack(A)
    a^3
                             1]
     a^3 + a + 1 a^3 + a^2 + 1
     a^2
                   a^3 + a + 1
[a^3 + a^2 + a + 1]
                          a + 1]
```

submatrix (row=0, col=0, nrows=-1, ncols=-1)

Return submatrix from the index row, col (inclusive) with dimension nrows x ncols.

INPUT:

- •row index of start row
- •col index of start column
- •nrows number of rows of submatrix
- •ncols number of columns of submatrix

```
sage: K.<a> = GF(2^10)
sage: A = random_matrix(K,200,200)
sage: A[0:2,0:2] == A.submatrix(0,0,2,2)
True
sage: A[0:100,0:100] == A.submatrix(0,0,100,100)
True
sage: A == A.submatrix(0,0,200,200)
True
sage: A[1:3,1:3] == A.submatrix(1,1,2,2)
True
```

```
sage: A[1:100,1:100] == A.submatrix(1,1,99,99)
True

sage: A[1:200,1:200] == A.submatrix(1,1,199,199)
True
```

TESTS for handling of default arguments (trac ticket #18761):

```
sage: A.submatrix(17,15) == A.submatrix(17,15,183,185)
True
sage: A.submatrix(row=100,col=37,nrows=1,ncols=3) == A.submatrix(100,37,1,3)
True
```

sage.matrix.matrix_gf2e_dense. unpickle_matrix_gf2e_dense_v0 (a, base_ring, nrows, ncols)

EXAMPLES:

```
sage: K.<a> = GF(2^2)
sage: A = random_matrix(K,10,10)
sage: f, s= A.__reduce__()
sage: from sage.matrix.matrix_gf2e_dense import unpickle_matrix_gf2e_dense_v0
sage: f == unpickle_matrix_gf2e_dense_v0
True
sage: f(*s) == A
True
```

We can still unpickle pickles from before trac ticket #19240:

```
sage: old_pickle = \x\sqrt{x9c}x85RKo\xd3@\x10\xae\xdd$$\xdb&\xe5U\x1e-
\Rightarrow x8fxc2xc9x12RD#$\xcexa0xb4x80x07xa2xcaxc2x07x0exd5xe2:
\Rightarrow\x1b\xdb\x8acq\x1c\xa7J\x85*!\xa4\x90\xe6\x07p\xe0\xc4\x01q\xe5\xc4\x19\xf5\xd0?
\rightarrow \xc1\x81\xdf\x80\xb8q\x0b\xb3\x8eMS\xa1\x82V;;
¬\xb3\xdf\xce\xf7\xcd\x8e\xe6\xb5j\xf7, GT;
\rightarrowV\x1cy\x83\xf4\xe0\x9d\xb0Y\x13\xbc)\x82\x9e`\xfd\xa0\xeb\xd9m_\xf0\xbf1\xbe
\rightarrow \{\x97\xa1\xa2\x9d\xc6\xf0\x0f\x82,\x7f\x9d\xa1\xaa\x81\n\xb9m\x9c\xd7\xf4\xf1d2\x81-
→h\xc0
\rightarrow \# (\x03\x83\x15\xdas\xc9*\xc3\x13x\x0cu0\xd28\x97\x9e*(0\x9f\xfa\x1b\xd0\xd2\x7fH\x82\xb5\xf4\x)
\rightarrow\xcd\x07i\xbe\xcb\xd4ib\t\xba\xa4\xf6\x02zIT\xd1\x8f2(u\x15\xfd\x9d
\rightarrow < \\ xee@\\ x05V\\ xd3\\ x94E*\\ xb0\\ x0e\\ x0fH\\ xad\\ xa8\\ xbf\\ x97\\ xa0\\ r\\ x03\\ xfd\\ xf0\\ xb8\\ x1aU\\ xff\\ x92\\ x90\\ xe8?
\Rightarrow xa5 xd6 x814 xa5 xf9 (xcd xafc xe9) xe2 xd9 xa0 x06 xd4 xf5 xcf xf2 xf2!
→\xbc\xd4\xdf\x90#\xc0\x8f\r\xccM\x1b\xdd\x8b\xa3\xbe\x1d\xf7#QmYv\x1cF
\rightarrow {\xcc\x11\x81\x88<\x9b\xa71\xcf:
\rightarrow\xce0\xaf\x9d\x96\xe3\x87a\xbb\xdf\xe5\x8e\x1f\xeeX>\xc3\x82\xb9\xb0\xe9\x05^
\rightarrow, 6=\xe17\xf1\xcc\xd0\xc0"u\xb0d\xe6wD1\xdd\x1fa)e\x8a\xbc\xc0\xe9U\xbd.
\rightarrow x16x8ex88xxc7 jx0bx9ex05xc8Lxe5x1e%.
\rightarrow\x98\x8a5\xc4\xc5\xd9\xf7\xdd\xd0\xdf\x0b\xc2\x8eq\xf93.wZ\xb5\xc1\x94B\xf8\xa2
\rightarrow #\x82\x98a\xf9\xff\\x12\xe3v\x18\\xff\x14F1\xeb\x0ff\x10\xc4\xb0\xa2\xb9y\xcd-
\rightarrow\xba%\xcd\xa5\x8ajT\xd1\x92\xa9\x0c\x86x\xb6a\xe6h\xf8\x02<g\xaa\xaf\xf6\xdd
\Rightarrow \x89\xae\x13z\xfe \xc6\x0b\xfb1^
\rightarrow4p\x99\x1e6\xc6\xd4\xebK\xdbx\xf9\xc4\x8f[Iw\xf8\x89\xef\xcbQf\xcfh\xe3\x95\x8c\xlebj&
\xb9\xe2.\x8f\x0c\\ui\x89\xf1x\xf4\xd6\xc0\kf\xc1\xf1v\xad(\xc4\xeb\x89~
\rightarrow\xfa\xf0\x06\xa8\xa4\x7f\x93\xf4\xd7\x0c\xbcE#\xad\x92\xfc\xed\xeao\xefX\\\x03'
sage: loads(old_pickle)
[ 0 a]
[a + 1]
            11
```

CHAPTER

THIRTYFIVE

DENSE MATRICES OVER ${\bf Z}/N{\bf Z}$ FOR $N < 2^{23}$ USING LINBOX'S MODULAR<DOUBLE>

AUTHORS:

- · Burcin Erocal
- · Martin Albrecht

Dense matrices over $\mathbf{Z}/n\mathbf{Z}$ for $n < 2^{23}$ using LinBox's Modular<double>

These are matrices with integer entries mod n represented as floating-point numbers in a 64-bit word for use with LinBox routines. This allows for n up to 2^{23} . The analogous Matrix_modn_dense_float class is used for smaller moduli.

Routines here are for the most basic access, see the $matrix_modn_dense_template.pxi$ file for higher-level routines.

```
class sage.matrix.matrix_modn_dense_double. Matrix_modn_dense_template
    Bases: sage.matrix.matrix_dense.Matrix_dense
```

Create a new matrix.

INPUT:

- •parent a matrix space
- •entries a list of entries or a scalar
- •copy ignroed
- •coerce perform modular reduction first?

EXAMPLES:

```
sage: A = random_matrix(GF(3),1000,1000)
sage: type(A)
<type 'sage.matrix.matrix_modn_dense_float.Matrix_modn_dense_float'>
sage: A = random_matrix(Integers(10),1000,1000)
sage: type(A)
<type 'sage.matrix.matrix_modn_dense_float.Matrix_modn_dense_float'>
sage: A = random_matrix(Integers(2^16),1000,1000)
sage: type(A)
<type 'sage.matrix.matrix_modn_dense_double.Matrix_modn_dense_double'>
```

```
charpoly (var='x', algorithm='linbox')
```

Return the characteristic polynomial of ${\tt self}$.

INPUT:

- •var a variable name
- •algorithm 'generic', 'linbox' or 'all' (default: linbox)

```
sage: A = random_matrix(GF(19), 10, 10); A
[ 3 1 8 10 5 16 18 9 6 1]
[ 5 14 4 4 14 15 5 11
                            3 01
[4 1 0 7 11 6 17 8 5 6]
[ 4 6 9 4 8 1 18 17 8 18]
[11 2 0 6 13 7 4 11 16 10]
[12 6 12 3 15 10 5 11 3 8]
[15  1  16  2  18  15  14  7  2  11]
[16 16 17 7 14 12 7 7 0 5]
[13 15 9 2 12 16 1 15 18 7]
[10 8 16 18 9 18 2 13 5 10]
sage: B = copy(A)
sage: char_p = A.characteristic_polynomial(); char_p
x^{10} + 2 \times x^{9} + 18 \times x^{8} + 4 \times x^{7} + 13 \times x^{6} + 11 \times x^{5} + 2 \times x^{4} + 5 \times x^{3} + 7 \times x^{2} + \dots
\hookrightarrow16*x + 6
sage: char_p(A) == 0
True
sage: B == A
                           # A is not modified
True
sage: min_p = A.minimal_polynomial(proof=True); min_p
x^{10} + 2*x^{9} + 18*x^{8} + 4*x^{7} + 13*x^{6} + 11*x^{5} + 2*x^{4} + 5*x^{3} + 7*x^{2} + \dots
→16*x + 6
sage: min_p.divides(char_p)
True
```

```
sage: A = random_matrix(GF(2916337), 7, 7); A
[1242955 1040744 99523 2447069
                                  40527 930282 26857861
[2892660 1347146 1126775 2131459 869381 1853546 2266414]
[2897342 1342067 1054026 373002 84731 1270068 2421818]
[ 569466 537440 572533 297105 1415002 2079710 355705]
[2546914 2299052 2883413 1558788 1494309 1027319 1572148]
[ 250822    522367    2516720    585897    2296292    1797050    2128203]
sage: B = copy(A)
sage: char_p = A.characteristic_polynomial(); char_p
x^7 + 1191770 \times x^6 + 547840 \times x^5 + 215639 \times x^4 + 2434512 \times x^3 + 1039968 \times x^2 + \dots
→483592*x + 733817
sage: char_p(A) == 0
True
sage: B == A
                           # A is not modified
True
sage: min_p = A.minimal_polynomial(proof=True); min_p
x^7 + 1191770 \times x^6 + 547840 \times x^5 + 215639 \times x^4 + 2434512 \times x^3 + 1039968 \times x^2 + \dots
→483592*x + 733817
sage: min_p.divides(char_p)
True
```

```
sage: A = Mat(Integers(6),3,3)(range(9))
sage: A.charpoly()
x^3
```

ALGORITHM: Uses LinBox if self.base_ring() is a field, otherwise use Hessenberg form algorithm.

determinant ()

Return the determinant of this matrix.

```
sage: A = random_matrix(GF(7), 10, 10); A
[3 1 6 6 4 4 2 2 3 5]
[4 5 6 2 2 1 2 5 0 5]
[3 2 0 5 0 1 5 4 2 3]
[6 4 5 0 2 4 2 0 6 3]
[2 2 4 2 4 5 3 4 4 4]
[2 5 2 5 4 5 1 1 1 1]
[0 6 3 4 2 2 3 5 1 1]
[4 2 6 5 6 3 4 5 5 3]
[5 2 4 3 6 2 3 6 2 1]
[3 3 5 3 4 2 2 1 6 2]
sage: A.determinant()
```

```
sage: A = random_matrix(GF(7), 100, 100)
   sage: A.determinant()
   2
   sage: A.transpose().determinant()
   sage: B = random_matrix(GF(7), 100, 100)
   sage: B.determinant()
   sage: (A*B).determinant() == A.determinant() * B.determinant()
   True
::
   sage: A = random_matrix(GF(16007), 10, 10); A
   [ 5037 2388 4150 1400
                            345 5945 4240 14022 10514
                                                         7001
   [15552 8539 1927 3870 9867 3263 11637
                                             609 15424 24431
   [ 3761 15836 12246 15577 10178 13602 13183 15918 13942 2958]
   [ 4526 10817 6887 6678 1764 9964 6107 1705 5619 5811]
   [13537 15004 8307 11846 14779
                                  550 14113 5477 7271
                                                        70911
   [13338 4927 11406 13065 5437 12431 6318 5119 14198
   1044
          179 12881 353 12975 12567 1092 10433 12304
   [10072 8821 14118 13895 6543 13484 10685 14363 2612 11070]
          237 2612 14127 11589 5808 117 9656 15957 141181
   [15113
   [15233 11080 5716 9029 11402 9380 13045 13986 14544 5771]
   sage: A.determinant()
   10207
```

```
sage: A = random_matrix(GF(16007), 100, 100)
sage: A.determinant()
3576

sage: A.transpose().determinant()
3576

sage: B = random_matrix(GF(16007), 100, 100)
sage: B.determinant()
4075

sage: (A*B).determinant() == A.determinant() * B.determinant()
True
```

echelonize (algorithm='linbox', **kwds)

Put self in reduced row echelon form.

INPUT:

- •self a mutable matrix
- •algorithm
 - -linbox uses the LinBox library (EchelonFormDomain implementation, default)
 - -linbox_noefd uses the LinBox library (FFPACK directly, less memory but slower)
 - -gauss uses a custom slower $O(n^3)$ Gauss elimination implemented in Sage.
 - -all compute using both algorithms and verify that the results are the same.
- •**kwds these are all ignored

OUTPUT:

- •self is put in reduced row echelon form.
- •the rank of self is computed and cached
- •the pivot columns of self are computed and cached.
- •the fact that self is now in echelon form is recorded and cached so future calls to echelonize return immediately.

```
sage: A = random_matrix(GF(7), 10, 20); A
[3 1 6 6 4 4 2 2 3 5 4 5 6 2 2 1 2 5 0 5]
[3 2 0 5 0 1 5 4 2 3 6 4 5 0 2 4 2 0 6 3]
[2 2 4 2 4 5 3 4 4 4 2 5 2 5 4 5 1 1 1 1]
[0 6 3 4 2 2 3 5 1 1 4 2 6 5 6 3 4 5 5 3]
[5 2 4 3 6 2 3 6 2 1 3 3 5 3 4 2 2 1 6 2]
[0 5 6 3 2 5 6 6 3 2 1 4 5 0 2 6 5 2 5 1]
[4 0 4 2 6 3 3 5 3 0 0 1 2 5 5 1 6 0 0 3]
[2 0 1 0 0 3 0 2 4 2 2 4 4 4 5 4 1 2 3 4]
[2 4 1 4 3 0 6 2 2 5 2 5 3 6 4 2 2 6 4 4]
[0 0 2 2 1 6 2 0 5 0 4 3 1 6 0 6 0 4 6 5]
sage: A.echelon_form()
[1 0 0 0 0 0 0 0 0 0 0 6 2 6 0 1 1 2 5 6 2]
```

```
[0 1 0 0 0 0 0 0 0 0 0 0 4 5 4 3 4 2 5 1 2]
[0 0 1 0 0 0 0 0 0 0 0 0 6 3 4 6 1 0 3 6 5 6]
[0 0 0 1 0 0 0 0 0 0 0 0 0 3 5 2 3 4 0 6 5 3]
[0 0 0 0 1 0 0 0 0 0 0 0 0 6 3 4 5 3 0 4 3 2]
[0 0 0 0 0 1 0 0 0 0 0 1 1 0 2 4 2 5 5 5 0]
[0 0 0 0 0 0 1 0 0 0 1 0 1 3 2 0 0 0 5 3]
[0 0 0 0 0 0 1 0 0 0 1 0 0 4 4 2 6 5 4 3 4 1 0]
[0 0 0 0 0 0 0 0 1 0 1 0 1 0 4 2 3 5 4 6 4 0]
[0 0 0 0 0 0 0 0 0 0 1 2 0 5 0 5 5 3 1 1 4]
```

```
sage: A = random_matrix(GF(13), 10, 10); A
[8 3 11 11 9 4 8 7 9 9]
        5 7 12
[296
               3 4 11
[12
   6 11 12
          4
             3
               3
                  8
                    9
   2 10
        5 10
             1
               1
                  1
     5
        5 11
             4
               1
   6 9 11
          4
             7 1
                  0 12
   9 0 7
          7 7 10 4 1
[ 0 8 2 6 7 5 7 12 2 3]
[211123472961]
[011594558710]
sage: MS = parent(A)
sage: B = A.augment(MS(1))
sage: B.echelonize()
sage: A.rank()
10
sage: C = B.submatrix(0, 10, 10, 10); C
[494404711911]
   7
        8 2 8
[11
      6
               6 11
[ 3
   9 9 2 4 8 9 2 9 4]
[7 0 11 4 0 9 6 11 8 1]
[12 12 4 12 3 12 6 1 7 12]
[12 2 11 6 6 6 7 0 10 6]
[ 0 7 3 4 7 11 10 12 4 6]
[511 0 5 3 11 4 12 5 12]
[6 7 3 5 1 4 11 7 4 1]
[4 9 6 7 11 1 2 12 6 7]
sage: ~A == C
True
```

:: sage: A = random_matrix(GF(16007), 10, 20); A [15455 1177 10072 4693 3887 4102 10746 15265 6684 14559 4535 13921 9757 9525 9301 8566 2460 9609 3887 6205] [8602 10035 1242 9776 162 7893 12619 6660 13250 1988 14263 11377 2216 1247 7261 8446 15081 14412 7371 7948] [12634 7602 905 9617 13557 2694 13039 4936 12208 15480 3787 11229 593 12462 5123 14167 6460 3649 5821 6736] [10554 2511 11685 12325 12287 6534 11636 5004 6468 3180 3607 11627 13436 5106 3138 13376 8641 9093 2297 5893] [1025 11376 10288 609 12330 3021 908 13012 2112 11505 56 5971 338 2317 2396 8561 5593 3782 7986 13173] [7607 588 6099 12749 10378 111 2852 10375

hessenbergize ()

Transforms self in place to its Hessenberg form.

EXAMPLES:

```
sage: A = random_matrix(GF(17), 10, 10, density=0.1); A
[ 0 0 0 0 12 0 0 0 0
                      0]
[ 0 0 0 4 0 0
               0
                 0
                    0
[ 0 0 0 0 2 0
               0
                 0
                    \cap
                      01
[ 0 14 0 0 0 0 0 0
                    0
                      0.1
[ 0 0 0 0 0 10 0 0 0 0 ]
[ \ 0 \ 0 \ 0 \ 0 \ 0 \ 16 \ 0 \ 0 \ 0 \ 0 ]
[0 0 0 0 0 0 6 0 0 0]
[15 0 0 0 0 0 0 0 0 0]
[0 0 0 16 0 0 0 0 0 0]
[05000000000]
sage: A.hessenbergize(); A
[0 0 0 0 0 0 0 12 0 0]
[15
   0
      0
        0
          0
             0
               0
                 0
                    0
                      0.1
0
   0
      0
        0 0
             0
               0
                 2
                    0
                      0]
 0
   0
      0 0 14
             0
               0
                 0
                    0
0 ]
   0 0 4 0 0
               0
                 0
                    0
                      01
   0 0 0 5 0 0 0
0 ]
                    0 01
[ \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 10]
[0 0 0 0 0 0 0 0 0]
[00000000016]
```

lift()

Return the lift of this matrix to the integers.

```
sage: A = matrix(GF(7),2,3,[1..6])
sage: A.lift()
```

```
[1 2 3]
[4 5 6]
sage: A.lift().parent()
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring

sage: A = matrix(GF(16007),2,3,[1..6])
sage: A.lift()
[1 2 3]
[4 5 6]
sage: A.lift().parent()
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring
```

Subdivisions are preserved when lifting:

```
sage: A.subdivide([], [1,1]); A
[1||2 3]
[4||5 6]
sage: A.lift()
[1||2 3]
[4||5 6]
```

minpoly (var='x', algorithm='linbox', proof=None)

Returns the minimal polynomial of "self".

INPUT:

- •var a variable name
- •algorithm generic or linbox (default: linbox)
- •proof (default: True); whether to provably return the true minimal polynomial; if False, we only guarantee to return a divisor of the minimal polynomial. There are also certainly cases where the computed results is frequently not exactly equal to the minimal polynomial (but is instead merely a divisor of it).

 $\begin{tabular}{ll} \textbf{Warning:} & If $\tt proof=True $\tt is insanely $\tt slow $\tt compared $\tt to proof=False $\tt is the $\tt default, $\tt unless $\tt you $\tt first type proof.linear_algebra(False) $\tt is the $\tt default, $\tt unless $\tt you $\tt first type proof.linear_algebra(False) $\tt is the $\tt default, $\tt unless $\tt you $\tt first type proof.linear_algebra(False) $\tt is the $\tt default, $\tt unless $\tt you $\tt first type proof.linear_algebra(False) $\tt is the $\tt default, $\tt unless $\tt you $\tt first type proof.linear_algebra(False) $\tt is the $\tt default, $\tt unless $\tt you $\tt first type proof.linear_algebra(False) $\tt is the $\tt default, $\tt unless $\tt you $\tt first type proof.linear_algebra(False) $\tt is the $\tt default, $\tt unless $\tt you $\tt first type proof.linear_algebra(False) $\tt is the $\tt default, $\tt unless $\tt you $\tt first type proof.linear_algebra(False) $\tt is the $\tt default, $\tt unless $\tt you $\tt first type proof.linear_algebra(False) $\tt is the $\tt default, $\tt unless $\tt you $\tt first type proof.linear_algebra(False) $\tt is the $\tt default, $\tt is the $\tt is t$

```
sage: A = random_matrix(GF(17), 10, 10); A
[ 2 14 0 15 11 10 16 2 9 4]
[10 14 1 14 3 14 12 14 3 13]
[10 1 14 6 2 14 13 7 6 14]
[10 3 9 15 8 1 5 8 10 11]
[5 12 4 9 15 2 6 11 2 12]
[6101206977
                        3 81
         5 12 13 7 16
[291
                        7 11]
    1 0 2 0 4 7 9
[11
                        8 15]
    3 16 2 11 10 12 14
[ 5
                        0
[16
   4 6 5 2 3 14 15 16 4]
sage: B = copy(A)
sage: min_p = A.minimal_polynomial(proof=True); min_p
x^{10} + 13*x^{9} + 10*x^{8} + 9*x^{7} + 10*x^{6} + 4*x^{5} + 10*x^{4} + 10*x^{3} + 12*x^{2} + \dots
\hookrightarrow 14 * x + 7
```

```
sage: min_p(A) == 0
True
sage: B == A
True

sage: char_p = A.characteristic_polynomial(); char_p
x^10 + 13*x^9 + 10*x^8 + 9*x^7 + 10*x^6 + 4*x^5 + 10*x^4 + 10*x^3 + 12*x^2 + 44*x + 7
sage: min_p.divides(char_p)
True
```

```
sage: A = random_matrix(GF(1214471), 10, 10); A
[ 266673 745841 418200 521668 905837 160562 831940 65852 173001 _
→515930]
[714380 778254 844537 584888 392730 502193 959391 614352 775603...
→240043]
[1156372 104118 1175992 612032 1049083 660489 1066446 809624
                                                                15010.
→1002045]
[ 470722 314480 1155149 1173111 14213 1190467 1079166 786442 429883 ...
<del>--</del>5636111
[ 625490 1015074 888047 1090092 892387
                                        4724 244901 696350 384684 ...

→2545611

[ 898612 44844 83752 1091581 349242 130212 580087 253296 472569 ...
→9136131
→7134281
[ 668799 1122064 325250 1084368 520553 1179743 791517 34060 1183757,
→1118938]
[ 642169 47513 73428 1076788 216479 626571 105273 400489 1041378...
→1186801]
[ 158611 888598 1138220 1089631 56266 1092400 890773 1060810 211135 _
→7196361
sage: B = copy(A)
sage: min_p = A.minimal_polynomial(proof=True); min_p
x^{10} + 283013*x^9 + 252503*x^8 + 512435*x^7 + 742964*x^6 + 130817*x^5 + 1
\rightarrow 581471*x^4 + 899760*x^3 + 207023*x^2 + 470831*x + 381978
sage: min_p(A) == 0
True
sage: B == A
True
sage: char_p = A.characteristic_polynomial(); char_p
x^{10} + 283013 \times x^{9} + 252503 \times x^{8} + 512435 \times x^{7} + 742964 \times x^{6} + 130817 \times x^{5} + \dots
\rightarrow581471*x^4 + 899760*x^3 + 207023*x^2 + 470831*x + 381978
sage: min_p.divides(char_p)
True
```

```
sage: A = random_matrix(GF(2535919), 0, 0)
sage: A.minimal_polynomial()

sage: A = random_matrix(GF(2535919), 0, 1)
sage: A.minimal_polynomial()
Traceback (most recent call last):
```

```
ValueError: matrix must be square

sage: A = random_matrix(GF(2535919), 1, 0)
sage: A.minimal_polynomial()
Traceback (most recent call last):
...
ValueError: matrix must be square

sage: A = matrix(GF(2535919), 10, 10)
sage: A.minimal_polynomial()
x
```

EXAMPLES:

```
sage: R.<x>=GF(3)[]
sage: A = matrix(GF(3),2,[0,0,1,2])
sage: A.minpoly()
x^2 + x

sage: A.minpoly(proof=False) in [x, x+1, x^2+x]
True
```

randomize (density=1, nonzero=False)

Randomize density proportion of the entries of this matrix, leaving the rest unchanged.

INPUT:

•density - Integer; proportion (roughly) to be considered for changes

•nonzero - Bool (default: False); whether the new entries are forced to be non-zero

OUTPUT:

•None, the matrix is modified in-space

EXAMPLES:

```
sage: A = matrix(GF(5), 5, 5, 0)
sage: A.randomize(0.5); A
[0 0 0 2 0]
[0 3 0 0 2]
[4 0 0 0 0]
[4 0 0 0 0]
[0 1 0 0 0]

sage: A.randomize(); A
[3 3 2 1 2]
[4 3 3 2 2]
[0 3 3 3 3]
[3 3 2 2 4]
[2 2 2 1 4]
```

The matrix is updated instead of overwritten:

```
sage: A = random_matrix(GF(5), 100, 100, density=0.1)
sage: A.density()
961/10000
sage: A.randomize(density=0.1)
```

```
sage: A.density()
801/5000
```

rank ()

Return the rank of this matrix.

EXAMPLES:

```
sage: A = random_matrix(GF(3), 100, 100)
sage: B = copy(A)
sage: A.rank()
99
sage: B == A
True

sage: A = random_matrix(GF(3), 100, 100, density=0.01)
sage: A.rank()
63
sage: A = matrix(GF(3), 100, 100)
sage: A.rank()
0
```

Rank is not implemented over the integers modulo a composite yet.:

```
sage: A = random_matrix(GF(16007), 100, 100)
sage: B = copy(A)
sage: A.rank()
100
sage: B == A
True
sage: MS = A.parent()
sage: MS(1) == ~A*A
True
```

DENSE MATRICES OVER ${f Z}/N{f Z}$ FOR $N<2^{11}$ USING LINBOX'S MODULAR<FLOAT>

AUTHORS: - Burcin Erocal - Martin Albrecht

Dense matrices over $\mathbb{Z}/n\mathbb{Z}$ for $n < 2^{11}$ using LinBox's Modular<float>

These are matrices with integer entries mod n represented as floating-point numbers in a 32-bit word for use with LinBox routines. This allows for n up to 2^{11} . The Matrix_modn_dense_double class is used for larger moduli.

Routines here are for the most basic access, see the $matrix_modn_dense_template.pxi$ file for higher-level routines.

class sage.matrix.matrix_modn_dense_float. Matrix_modn_dense_template
 Bases: sage.matrix.matrix_dense.Matrix_dense

Create a new matrix.

INPUT:

- •parent a matrix space
- •entries a list of entries or a scalar
- •copy ignroed
- •coerce perform modular reduction first?

EXAMPLES:

```
sage: A = random_matrix(GF(3),1000,1000)
sage: type(A)
<type 'sage.matrix.matrix_modn_dense_float.Matrix_modn_dense_float'>
sage: A = random_matrix(Integers(10),1000,1000)
sage: type(A)
<type 'sage.matrix.matrix_modn_dense_float.Matrix_modn_dense_float'>
sage: A = random_matrix(Integers(2^16),1000,1000)
sage: type(A)
<type 'sage.matrix.matrix_modn_dense_double.Matrix_modn_dense_double'>
```

charpoly (var='x', algorithm='linbox')

Return the characteristic polynomial of self.

INPUT:

•var - a variable name

•algorithm - 'generic', 'linbox' or 'all' (default: linbox)

```
sage: A = random_matrix(GF(19), 10, 10); A
[ 3 1 8 10 5 16 18 9 6 1]
[51444141551130]
[4 1 0 7 11 6 17 8 5 6]
[4694811817818]
[11 2 0 6 13 7 4 11 16 10]
[12 6 12 3 15 10 5 11 3 8]
[15  1  16  2  18  15  14  7  2  11]
           7 14 12 7 7 0 51
[16 16 17
[13 15 9 2 12 16 1 15 18
[10 8 16 18 9 18 2 13 5 10]
sage: B = copy(A)
sage: char_p = A.characteristic_polynomial(); char_p
x^{10} + 2 \times x^{9} + 18 \times x^{8} + 4 \times x^{7} + 13 \times x^{6} + 11 \times x^{5} + 2 \times x^{4} + 5 \times x^{3} + 7 \times x^{2} + \dots
\rightarrow 16 * x + 6
sage: char_p(A) == 0
True
sage: B == A
                            # A is not modified
True
sage: min_p = A.minimal_polynomial(proof=True); min_p
x^{10} + 2*x^{9} + 18*x^{8} + 4*x^{7} + 13*x^{6} + 11*x^{5} + 2*x^{4} + 5*x^{3} + 7*x^{2} + 1
\hookrightarrow16*x + 6
sage: min_p.divides(char_p)
True
```

```
sage: A = random_matrix(GF(2916337), 7, 7); A
[1242955 1040744
                 99523 2447069 40527 930282 2685786]
[2892660 1347146 1126775 2131459 869381 1853546 2266414]
[2897342 1342067 1054026 373002 84731 1270068 2421818]
[ 569466 537440 572533 297105 1415002 2079710 355705]
[2546914 2299052 2883413 1558788 1494309 1027319 1572148]
[ 250822 522367 2516720 585897 2296292 1797050 2128203]
sage: B = copy(A)
sage: char_p = A.characteristic_polynomial(); char_p
x^7 + 1191770*x^6 + 547840*x^5 + 215639*x^4 + 2434512*x^3 + 1039968*x^2 + ...
→483592*x + 733817
sage: char_p(A) == 0
True
sage: B == A
                          # A is not modified
True
sage: min_p = A.minimal_polynomial(proof=True); min_p
x^7 + 1191770 \times x^6 + 547840 \times x^5 + 215639 \times x^4 + 2434512 \times x^3 + 1039968 \times x^2 + \dots
→483592*x + 733817
sage: min_p.divides(char_p)
True
sage: A = Mat(Integers(6), 3, 3) (range(9))
sage: A.charpoly()
x^3
```

ALGORITHM: Uses LinBox if self.base_ring() is a field, otherwise use Hessenberg form algorithm.

determinant ()

Return the determinant of this matrix.

```
sage: A = random_matrix(GF(7), 10, 10); A
[3 1 6 6 4 4 2 2 3 5]
[4 5 6 2 2 1 2 5 0 5]
[3 2 0 5 0 1 5 4 2 3]
[6 4 5 0 2 4 2 0 6 3]
[2 2 4 2 4 5 3 4 4 4]
[2 5 2 5 4 5 1 1 1 1]
[0 6 3 4 2 2 3 5 1 1]
[4 2 6 5 6 3 4 5 5 3]
[5 2 4 3 6 2 3 6 2 1]
[3 3 5 3 4 2 2 1 6 2]
sage: A.determinant()
```

```
sage: A = random_matrix(GF(7), 100, 100)
   sage: A.determinant()
   sage: A.transpose().determinant()
   sage: B = random_matrix(GF(7), 100, 100)
   sage: B.determinant()
   sage: (A*B).determinant() == A.determinant() * B.determinant()
   True
::
   sage: A = random_matrix(GF(16007), 10, 10); A
   [ 5037 2388 4150 1400
                            345 5945 4240 14022 10514
                                                          7001
   [15552 8539 1927 3870 9867 3263 11637 609 15424 24431
   [ 3761 15836 12246 15577 10178 13602 13183 15918 13942
                                                         29581
    [ 4526 10817 6887 6678 1764 9964 6107 1705 5619
                                                          58111
   [13537 15004 8307 11846 14779
                                  550 14113
                                             5477 7271
                                                          7091]
    [13338 4927 11406 13065 5437 12431 6318 5119 14198
                      353 12975 12567 1092 10433 12304
   [ 1044
           179 12881
   [10072 8821 14118 13895 6543 13484 10685 14363 2612 11070]
           237 2612 14127 11589 5808
                                        117 9656 15957 14118]
   [15113
   [15233 11080 5716 9029 11402 9380 13045 13986 14544 5771]
   sage: A.determinant()
   10207
::
   sage: A = random_matrix(GF(16007), 100, 100)
   sage: A.determinant()
```

```
sage: A.transpose().determinant()
3576

sage: B = random_matrix(GF(16007), 100, 100)
sage: B.determinant()
4075

sage: (A*B).determinant() == A.determinant() * B.determinant()
True
```

echelonize (algorithm='linbox', **kwds)

Put self in reduced row echelon form.

INPUT:

- •self a mutable matrix
- •algorithm
 - -linbox uses the LinBox library (EchelonFormDomain implementation, default)
 - -linbox_noefd uses the LinBox library (FFPACK directly, less memory but slower)
 - -gauss uses a custom slower $O(n^3)$ Gauss elimination implemented in Sage.
 - -all compute using both algorithms and verify that the results are the same.
- •**kwds these are all ignored

OUTPUT:

- •self is put in reduced row echelon form.
- •the rank of self is computed and cached
- •the pivot columns of self are computed and cached.
- •the fact that self is now in echelon form is recorded and cached so future calls to echelonize return immediately.

```
sage: A = random_matrix(GF(7), 10, 20); A
[3 1 6 6 4 4 2 2 3 5 4 5 6 2 2 1 2 5 0 5]
[3 2 0 5 0 1 5 4 2 3 6 4 5 0 2 4 2 0 6 3]
[2 2 4 2 4 5 3 4 4 4 2 5 2 5 4 5 1 1 1 1]
[0 6 3 4 2 2 3 5 1 1 4 2 6 5 6 3 4 5 5 3]
[5 2 4 3 6 2 3 6 2 1 3 3 5 3 4 2 2 1 6 2]
[0 5 6 3 2 5 6 6 3 2 1 4 5 0 2 6 5 2 5 1]
[4 0 4 2 6 3 3 5 3 0 0 1 2 5 5 1 6 0 0 3]
[2 0 1 0 0 3 0 2 4 2 2 4 4 4 5 4 1 2 3 4]
[2 4 1 4 3 0 6 2 2 5 2 5 3 6 4 2 2 6 4 4]
[0 0 2 2 1 6 2 0 5 0 4 3 1 6 0 6 0 4 6 5]
sage: A.echelon_form()
[1 0 0 0 0 0 0 0 0 0 6 2 6 0 1 1 2 5 6 2]
[0 1 0 0 0 0 0 0 0 0 4 5 4 3 4 2 5 1 2]
[0 0 1 0 0 0 0 0 0 6 3 4 6 1 0 3 6 5 6]
[0 0 0 1 0 0 0 0 0 0 0 3 5 2 3 4 0 6 5 3]
[0 0 0 0 1 0 0 0 0 0 0 6 3 4 5 3 0 4 3 2]
```

```
[0 0 0 0 0 1 0 0 0 1 1 0 2 4 2 5 5 5 0]

[0 0 0 0 0 0 1 0 0 0 1 0 1 3 2 0 0 0 5 3]

[0 0 0 0 0 0 0 1 0 0 4 4 2 6 5 4 3 4 1 0]

[0 0 0 0 0 0 0 0 1 0 1 0 1 0 4 2 3 5 4 6 4 0]

[0 0 0 0 0 0 0 0 0 1 2 0 5 0 5 5 3 1 1 4]
```

```
sage: A = random_matrix(GF(13), 10, 10); A
[8 3 11 11 9 4 8 7 9 9]
[2 9 6 5 7 12 3 4 11 5]
[12 6 11 12 4 3 3 8 9
   2 10 5 10 1 1 1 6 9]
[12 8 5 5 11
             4 1 2 8 111
   6 9 11
             7
[ 2
          4
               1 0 12
             7 10
[ 8
   9
     0 7
           7
                  4
                    1
        6 7 5
0
   8 2
               7 12
[ 2 11 12
        3
             7
               2
          4
                  9
     5 9 4 5 5 8 7 10]
[ 0 11
sage: MS = parent(A)
sage: B = A.augment(MS(1))
sage: B.echelonize()
sage: A.rank()
sage: C = B.submatrix(0, 10, 10, 10); C
[494404711911]
[11
   7 6 8 2 8 6 11
                    9 5]
   9 9 2
          4
             8
               9 2
                    9
                       4]
   0 11 4
          0 9 6 11
[12 12 4 12
          3 12
                    7 12]
               6 1
[12
   2 11 6 6 6 7 0 10
[ 0 7 3 4 7 11 10 12 4 6]
[ 5 11 0 5 3 11 4 12 5 12]
[67351411741]
[496711121267]
sage: ~A == C
True
```

:: sage: A = random_matrix(GF(16007), 10, 20); A [15455 1177 10072 4693 3887 4102 10746 15265 6684 14559 4535 13921 9757 9525 9301 8566 2460 9609 3887 6205] [8602 10035 1242 9776 162 7893 12619 6660 13250 1988 14263 11377 2216 1247 7261 8446 15081 14412 7371 7948] [12634 7602 905 9617 13557 2694 13039 4936 12208 15480 3787 11229 593 12462 5123 14167 6460 3649 5821 6736] [10554 2511 11685 12325 12287 6534 11636 5004 6468 3180 3607 11627 13436 5106 3138 13376 8641 9093 2297 5893] [1025 11376 10288 609 12330 3021 908 13012 2112 11505 56 5971 338 2317 2396 8561 5593 3782 7986 13173] [7607 588 6099 12749 10378 111 2852 10375 8996 7969 774 13498 12720 4378 6817 6707 5299 9406 13318 2863] [15545 538 4840 1885 8471 1303 11086 14168 1853 14263 3995 12104 1294 7184 1188 11901 15971 2899 4632 711] [584 11745 7540 15826 15027 5953 7097 14329 10889 12532 13309 15041 6211 1749 10481 9999 2751 11068 21 2795] [761 11453 3435 10596 2173 7752 15941 14610 1072 8012 9458 5440 612 10581

hessenbergize ()

Transforms self in place to its Hessenberg form.

EXAMPLES:

```
sage: A = random_matrix(GF(17), 10, 10, density=0.1); A
[0 0 0 0 12 0 0 0 0]
                      0]
Γ Ω
   0 0 4 0 0 0
                  0
                    0
[ 0
   0 0 0 2 0 0
                  0
                    0
                       0]
[ 0 14
      0 0 0 0
               0
                  0
                    0
                       0]
 0
   0
      0 0 0 10
               0
                  0
                    0
                       01
   0
      0 0
          0 16
               0
 0
                  0
                    0
0 ]
   0
      0 0 0 0 6
                  0
                    0
                       01
   0 0 0 0 0 0 0 0 0 0 0 0 1
£1.5
[ 0 0 0 16 0 0 0 0 0 0]
[0500000000]
sage: A.hessenbergize(); A
[ 0 0 0 0 0 0 0 12 0 0]
[15 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 2 0 0]
0 ]
   0
      0 0 14 0 0 0 0 0]
[ 0
   0
      0 4 0
             0
               0
                  0
                    0
                       0.1
          5
[ 0
   0
      0
        0
             0
                0
                  0
                    0
                       0.1
0
   0
      0
        0
          0
             0
                6
                  0
                    0
0 ]
   0
      0
        0
           0
             0
                0
                  0
                    0 101
0 0 0 0 0
             0
               0
                  0
                    0
                       01
0 ]
   0 0 0 0 0
               0
                  0
                    0 161
```

lift ()

Return the lift of this matrix to the integers.

```
sage: A = matrix(GF(7),2,3,[1..6])
sage: A.lift()
[1 2 3]
[4 5 6]
sage: A.lift().parent()
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring
```

```
sage: A = matrix(GF(16007),2,3,[1..6])
sage: A.lift()
[1 2 3]
[4 5 6]
sage: A.lift().parent()
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring
```

Subdivisions are preserved when lifting:

```
sage: A.subdivide([], [1,1]); A
[1||2 3]
[4||5 6]
sage: A.lift()
[1||2 3]
[4||5 6]
```

minpoly (var='x', algorithm='linbox', proof=None)

Returns the minimal polynomial of "self".

INPUT:

- •var a variable name
- •algorithm generic or linbox (default: linbox)
- •proof (default: True); whether to provably return the true minimal polynomial; if False, we only guarantee to return a divisor of the minimal polynomial. There are also certainly cases where the computed results is frequently not exactly equal to the minimal polynomial (but is instead merely a divisor of it).

Warning: If proof=True, minpoly is insanely slow compared to proof=False. This matters since proof=True is the default, unless you first type $proof.linear_algebra(False)$.

```
sage: A = random_matrix(GF(17), 10, 10); A
[ 2 14  0 15 11 10 16  2  9  4]
[10 14 1 14 3 14 12 14 3 13]
[10 1 14 6 2 14 13 7 6 14]
[10 3 9 15 8 1 5 8 10 11]
[5 12 4 9 15 2 6 11 2 12]
[61012 0 6 9 7 7 3 8]
[2 9 1 5 12 13 7 16 7 11]
[11 1 0 2 0 4 7 9 8 15]
[ 5 3 16 2 11 10 12 14 0 7]
[16 4 6 5 2 3 14 15 16 4]
sage: B = copy(A)
sage: min_p = A.minimal_polynomial(proof=True); min_p
x^{10} + 13*x^{9} + 10*x^{8} + 9*x^{7} + 10*x^{6} + 4*x^{5} + 10*x^{4} + 10*x^{3} + 12*x^{2} + \dots
\hookrightarrow 14 * x + 7
sage: min_p(A) == 0
True
sage: B == A
True
```

```
sage: char_p = A.characteristic_polynomial(); char_p
x^10 + 13*x^9 + 10*x^8 + 9*x^7 + 10*x^6 + 4*x^5 + 10*x^4 + 10*x^3 + 12*x^2 +

→14*x + 7
sage: min_p.divides(char_p)
True
```

```
sage: A = random_matrix(GF(1214471), 10, 10); A
[ 266673 745841 418200 521668 905837 160562 831940 65852 173001 ...
→515930]
[714380 778254 844537 584888 392730 502193 959391 614352 775603 ...
<u>→</u>240043]
[1156372 104118 1175992 612032 1049083 660489 1066446 809624
                                                                 15010.
→1002045]
[ 470722 314480 1155149 1173111 14213 1190467 1079166 786442 429883 ...
→563611]
[ 625490 1015074 888047 1090092 892387
                                         4724 244901 696350 384684 ...
<u>→</u>254561]
[ 898612 44844 83752 1091581 349242 130212 580087 253296 472569 ...
→913613]
[ 668799 1122064 325250 1084368 520553 1179743 791517 34060 1183757...
→111189381
[ 642169 47513 73428 1076788 216479 626571 105273 400489 1041378...
→1186801]
[ 158611 888598 1138220 1089631 56266 1092400 890773 1060810 211135 ...
→719636]
sage: B = copy(A)
sage: min_p = A.minimal_polynomial(proof=True); min_p
x^{10} + 283013*x^9 + 252503*x^8 + 512435*x^7 + 742964*x^6 + 130817*x^5 + 
\rightarrow 581471 \times x^4 + 899760 \times x^3 + 207023 \times x^2 + 470831 \times x + 381978
sage: min_p(A) == 0
True
sage: B == A
True
sage: char_p = A.characteristic_polynomial(); char_p
x^{10} + 283013*x^{9} + 252503*x^{8} + 512435*x^{7} + 742964*x^{6} + 130817*x^{5} + 1
\rightarrow 581471 \times x^4 + 899760 \times x^3 + 207023 \times x^2 + 470831 \times x + 381978
sage: min_p.divides(char_p)
True
```

```
sage: A = random_matrix(GF(2535919), 0, 0)
sage: A.minimal_polynomial()

sage: A = random_matrix(GF(2535919), 0, 1)
sage: A.minimal_polynomial()
Traceback (most recent call last):
...
ValueError: matrix must be square

sage: A = random_matrix(GF(2535919), 1, 0)
```

```
sage: A.minimal_polynomial()
Traceback (most recent call last):
...
ValueError: matrix must be square

sage: A = matrix(GF(2535919), 10, 10)
sage: A.minimal_polynomial()
x
```

EXAMPLES:

```
sage: R.<x>=GF(3)[]
sage: A = matrix(GF(3),2,[0,0,1,2])
sage: A.minpoly()
x^2 + x

sage: A.minpoly(proof=False) in [x, x+1, x^2+x]
True
```

randomize (density=1, nonzero=False)

Randomize density proportion of the entries of this matrix, leaving the rest unchanged.

INPUT:

•density - Integer; proportion (roughly) to be considered for changes

•nonzero - Bool (default: False); whether the new entries are forced to be non-zero

OUTPUT:

•None, the matrix is modified in-space

EXAMPLES:

```
sage: A = matrix(GF(5), 5, 5, 0)
sage: A.randomize(0.5); A
[0 0 0 2 0]
[0 3 0 0 2]
[4 0 0 0 0]
[4 0 0 0 0]
[0 1 0 0 0]

sage: A.randomize(); A
[3 3 2 1 2]
[4 3 3 2 2]
[0 3 3 3 3]
[3 3 2 2 4]
[2 2 2 1 4]
```

The matrix is updated instead of overwritten:

```
sage: A = random_matrix(GF(5), 100, 100, density=0.1)
sage: A.density()
961/10000

sage: A.randomize(density=0.1)
sage: A.density()
801/5000
```

rank ()

Return the rank of this matrix.

EXAMPLES:

```
sage: A = random_matrix(GF(3), 100, 100)
sage: B = copy(A)
sage: A.rank()
99
sage: B == A
True

sage: A = random_matrix(GF(3), 100, 100, density=0.01)
sage: A.rank()
63
sage: A = matrix(GF(3), 100, 100)
sage: A.rank()
0
```

Rank is not implemented over the integers modulo a composite yet.:

```
sage: A = random_matrix(GF(16007), 100, 100)
sage: B = copy(A)
sage: A.rank()
100
sage: B == A
True
sage: MS = A.parent()
sage: MS(1) == ~A*A
True
```

THIRTYSEVEN

SPARSE RATIONAL MATRICES.

AUTHORS:

- William Stein (2007-02-21)
- Soroosh Yazdani (2007-02-21)

```
class sage.matrix.matrix_rational_sparse. Matrix_rational_sparse
```

```
Bases: sage.matrix.matrix_sparse.Matrix_sparse
```

Create a sparse matrix over the rational numbers.

INPUT:

- •parent a matrix space
- •entries can be one of the following:
 - -a Python dictionary whose items have the form (i,j): x, where $0 \le i \le nrows$, $0 \le j \le nrows$, and x is coercible to a rational. The i, j entry of self is set to x. The x 's can be 0.
 - -Alternatively, entries can be a list of *all* the entries of the sparse matrix, read row-by-row from top to bottom (so they would be mostly 0).
- •copy ignored
- •coerce -ignored

denominator ()

Return the denominator of this matrix.

OUTPUT:

- Sage Integer

EXAMPLES:

dense_matrix ()

Return dense version of this matrix.

```
sage: a = matrix(QQ,2,[1..4],sparse=True); type(a)
<type 'sage.matrix.matrix_rational_sparse.Matrix_rational_sparse'>
sage: type(a.dense_matrix())
```

```
<type 'sage.matrix.matrix_rational_dense.Matrix_rational_dense'>
sage: a.dense_matrix()
[1 2]
[3 4]
```

Check that subdivisions are preserved when converting between dense and sparse matrices:

```
sage: a.subdivide([1,1], [2])
sage: b = a.dense_matrix().sparse_matrix().dense_matrix()
sage: b.subdivisions() == a.subdivisions()
True
```

echelon_form (algorithm='default', height_guess=None, proof=True, **kwds)

INPUT:

 $height_guess$, proof, **kwds - all passed to the multimodular algorithm; ignored by the p-adic algorithm.

OUTPUT:

self is no in reduced row echelon form.

EXAMPLES:

```
sage: a = matrix(QQ, 4, range(16), sparse=True); <math>a[0,0] = 1/19; a[0,1] = 1/5;
      1/5
[1/19
              2
                   31
        5
                   7]
  4
              6
   8
         9
             10
                 11]
[ 12
       13
             14
                  15]
sage: a.echelon_form()
      1
              0
                        0 - 76/157
               1
                       0 -5/1571
       0
ſ
       0
               0
                       1 238/1571
ſ
               0
       \cap
                        Ω
                                0.1
```

echelonize (height_guess=None, proof=True, **kwds)

Transform the matrix self into reduced row echelon form in place.

INPUT:

height_guess, proof, **kwds - all passed to the multimodular algorithm; ignored by the p-adic algorithm.

OUTPUT:

Nothing. The matrix self is transformed into reduced row echelon form in place.

ALGORITHM: a multimodular algorithm.

```
sage: a = matrix(QQ, 4, range(16), sparse=True); a[0,0] = 1/19; a[0,1] = 1/5;...
⇔a
[1/19
      1/5
              2
                   31
        5
                   7]
             6
  4
        9
             10
                  11]
   8
  12
       13
             14
sage: a.echelonize(); a
      1
               0
                       0 -76/157]
Γ
       0
               1
                       0 -5/1571
```

```
[ 0 0 1 238/157]
[ 0 0 0 0]
```

trac ticket #10319 has been fixed:

```
sage: m = Matrix(QQ, [1], sparse=True); m.echelonize()
sage: m = Matrix(QQ, [1], sparse=True); m.echelonize(); m
[1]
```

height ()

Return the height of this matrix, which is the least common multiple of all numerators and denominators of elements of this matrix.

OUTPUT:

- Integer

EXAMPLES:

$set_row_to_multiple_of_row$ (i, j, s)

Set row i equal to s times row j.

```
sage: a = matrix(QQ,2,3,range(6), sparse=True); a
[0 1 2]
[3 4 5]
sage: a.set_row_to_multiple_of_row(1,0,-3)
sage: a
[ 0 1 2]
[ 0 -3 -6]
```

Sage Reference Manual: Matrices and Spaces of Matrices, Release 7.6

THIRTYEIGHT

MATRIX WINDOWS

```
class sage.matrix.matrix_window. MatrixWindow
     Bases: object
     {\tt add} \ (A)
     add\_prod(A, B)
     echelon_in_place ( )
          Calculate the echelon form of this matrix, returning the list of pivot columns
     element_is_zero (i, j)
     \mathtt{get\_unsafe}\ (\ i,j)
     matrix ()
          Returns the underlying matrix that this window is a view of.
     matrix_window ( row, col, n_rows, n_cols)
          Returns a matrix window relative to this window of the underlying matrix.
     ncols ()
     new_empty_window ( nrows, ncols)
     new_matrix_window ( matrix, row, col, n_rows, n_cols)
          This method is here only to provide a fast cdef way of constructing new matrix windows. The only implicit
          assumption is that self._matrix and matrix are over the same base ring (so share the zero).
     nrows ()
     set (src)
     set_to(A)
          Change self, making it equal A.
     set_to_diff(A, B)
     set\_to\_prod(A, B)
     set\_to\_sum (A, B)
     set_to_zero ( )
     set\_unsafe (i, j, x)
     subtract (A)
     subtract\_prod(A, B)
```

 $swap_rows (a, b)$

to_matrix()

Returns an actual matrix object representing this view.

MISC MATRIX ALGORITHMS

Code goes here mainly when it needs access to the internal structure of several classes, and we want to avoid circular cimports.

NOTE: The whole problem of avoiding circular imports – the reason for existence of this file – is now a non-issue, since some bugs in Cython were fixed. Probably all this code should be moved into the relevant classes and this file deleted

```
sage.matrix.misc. \mathbf{cmp\_pivots} ( x, y)
```

Compare two sequences of pivot columns.

If x is shorter than y, return -1, i.e., x < y, "not as good". If x is longer than y, then x > y, so "better" and return +1. If the length is the same, then x is better, i.e., x > y if the entries of x are correspondingly <= those of y with one being strictly less.

INPUT:

•x, y – list of integers

EXAMPLES:

We illustrate each of the above comparisons.

```
sage: sage.matrix.misc.cmp_pivots([1,2,3], [4,5,6,7])
-1
sage: sage.matrix.misc.cmp_pivots([1,2,3,5], [4,5,6])
1
sage: sage.matrix.misc.cmp_pivots([1,2,4], [1,2,3])
-1
sage: sage.matrix.misc.cmp_pivots([1,2,3], [1,2,3])
0
sage: sage.matrix.misc.cmp_pivots([1,2,3], [1,2,4])
1
```

```
sage.matrix.misc. hadamard_row_bound_mpfr (A)
```

Given a matrix A with entries that coerce to RR, compute the row Hadamard bound on the determinant.

INPUT:

A – a matrix over RR

OUTPUT:

integer – an integer n such that the absolute value of the determinant of this matrix is at most \$10^n\$.

EXAMPLES:

We create a very large matrix, compute the row Hadamard bound, and also compute the row Hadamard bound of the transpose, which happens to be sharp.

```
sage: a = matrix(ZZ, 2, [2^10000,3^10000,2^50,3^19292])
sage: import sage.matrix.misc
sage: sage.matrix.misc.hadamard_row_bound_mpfr(a.change_ring(RR))
13976
sage: len(str(a.det()))
12215
sage: sage.matrix.misc.hadamard_row_bound_mpfr(a.transpose().change_ring(RR))
12215
```

Note that in the above example using RDF would overflow:

```
sage: b = a.change_ring(RDF)
sage: b._hadamard_row_bound()
Traceback (most recent call last):
...
OverflowError: cannot convert float infinity to integer
```

```
sage.matrix.misc.matrix_integer_dense_rational_reconstruction (A, N)
```

Given a matrix over the integers and an integer modulus, do rational reconstruction on all entries of the matrix, viewed as numbers mod N. This is done efficiently by assuming there is a large common factor dividing the denominators.

INPUT:

A – matrix N – an integer

EXAMPLES:

```
sage: B = ((\text{matrix}(ZZ, 3,4, [1,2,3,-4,7,2,18,3,4,3,4,5])/3)\%500).change_ring(ZZ) sage: sage.matrix.misc.matrix_integer_dense_rational_reconstruction(B, 500) [ 1/3 2/3 1 -4/3] [ 7/3 2/3 6 1] [ 4/3 1 4/3 5/3]
```

```
sage.matrix.misc.matrix_integer_sparse_rational_reconstruction (A, N)
```

Given a sparse matrix over the integers and an integer modulus, do rational reconstruction on all entries of the matrix, viewed as numbers mod N.

EXAMPLES:

```
sage: A = matrix(ZZ, 3, 4, [(1/3)%500, 2, 3, (-4)%500, 7, 2, 2, 3, 4, 3, 4, (5/7)%500], sparse=True) sage: sage.matrix.misc.matrix_integer_sparse_rational_reconstruction(A, 500) [1/3 2 3 -4] [ 7 2 2 3] [ 4 3 4 5/7]
```

```
sage.matrix.misc. matrix_rational_echelon_form_multimodular ( self,
```

height_guess=None, proof=None)

Returns reduced row-echelon form using a multi-modular algorithm. Does not change self.

REFERENCE: Chapter 7 of Stein's "Explicitly Computing Modular Forms".

INPUT:

```
•height_guess – integer or None
```

•proof – boolean or None (default: None, see proof.linear_algebra or sage.structure.proof). Note that the global Sage default is proof=True

ALGORITHM:

The following is a modular algorithm for computing the echelon form. Define the height of a matrix to be the max of the absolute values of the entries.

Given Matrix A with n columns (self).

- 0.Rescale input matrix A to have integer entries. This does not change echelon form and makes reduction modulo lots of primes significantly easier if there were denominators. Henceforth we assume A has integer entries.
- 1.Let c be a guess for the height of the echelon form. E.g., c=1000, e.g., if matrix is very sparse and application is to computing modular symbols.
- 2.Let M = n * c * H(A) + 1, where n is the number of columns of A.
- 3.List primes p_1, p_2, ..., such that the product of the p_i is at least M.
- 4.Try to compute the rational reconstruction CRT echelon form of A mod the product of the p_i. If rational reconstruction fails, compute 1 more echelon forms mod the next prime, and attempt again. Make sure to keep the result of CRT on the primes from before, so we don't have to do that computation again. Let E be this matrix.
- 5. Compute the denominator d of E. Attempt to prove that result is correct by checking that

```
H(d*E)*ncols(A)*H(A) < (prod of reduction primes)
```

where H denotes the height. If this fails, do step 4 with a few more primes.

EXAMPLES:

```
sage: A = matrix(QQ, 3, 7, [1..21]) sage: sage.matrix.misc.matrix_rational_echelon_form_multimodular(A) [ 10 - 1 - 2 - 3 - 4 - 5] [ 0 1 2 3 4 5 6] [ 0 0 0 0 0 0 0]
```

sage: A = matrix(QQ, 3, 4, [0,0] + [1..9] + $[-1/2^20]$) sage: sage.matrix.misc.matrix_rational_echelon_form_multimodular(A) [1 0 0 -10485761/1048576] [0 1 0 27262979/4194304] [0 0 1 2] sage: A.echelon_form() [1 0 0 -10485761/1048576] [0 1 0 27262979/4194304] [0 0 1 2]

Sage Reference Manual: Matrices and Spaces of Matrices, Release 7.6	

CALCULATE SYMPLECTIC BASES FOR MATRICES OVER FIELDS AND THE INTEGERS.

This module finds a symplectic basis for an anti-symmetric, alternating matrix M defined over a field or the integers.

Anti-symmetric means that $M = -M^t$, where M^t denotes the transpose of M. Alternating means that the diagonal of M is identically zero.

A symplectic basis is a basis of the form $e_1, \ldots, e_j, f_1, \ldots, f_j, z_1, \ldots, z_k$ such that

- $z_i M v^t = 0$ for all vectors v;
- $e_i M e_j^t = 0$ for all i, j;
- $f_i M f_j^t = 0$ for all i, j;
- $e_i M f_i^t = 0$ for all i not equal j;

and such that the non-zero terms

• $e_i M f_i^t$ are "as nice as possible": 1 over fields, or integers satisfying divisibility properties otherwise.

REFERENCES:

Bourbaki gives a nice proof that can be made constructive but is not efficient (see Section 5, Number 1, Theorem 1, page 79):

Bourbaki, N. Elements of Mathematics, Algebra III, Springer Verlag 2007.

Kuperburg gives a more efficient and constructive exposition (see Theorem 18).

Kuperberg, Greg. Kasteleyn Cokernels. Electr. J. Comb. 9(1), 2002.

TODO:

The routine over the integers applies over general principal ideal domains.

WARNING:

This code is not a good candidate for conversion to Cython. The majority of the execution time is spent adding multiples of columns and rows, which is already fast. It would be better to devise a better algorithm, perhaps modular or based on a fast smith_form implementation.

AUTHOR:

- Nick Alexander: initial implementation
- David Loeffler (2008-12-08): changed conventions for consistency with smith form

```
sage.matrix.symplectic_basis. symplectic_basis_over_ZZ ( M)
```

Find a symplectic basis for an anti-symmetric, alternating matrix M defined over the integers.

Returns a pair (F, C) such that the rows of C form a symplectic basis for M and F = C * M * C.transpose().

Anti-symmetric means that $M = -M^t$. Alternating means that the diagonal of M is identically zero.

A symplectic basis is a basis of the form $e_1, \ldots, e_i, f_1, \ldots, f_i, z_1, \ldots, z_k$ such that

```
 \begin{aligned} & \bullet z_i M v^t = 0 \text{ for all vectors } v; \\ & \bullet e_i M e_j{}^t = 0 \text{ for all } i, j; \\ & \bullet f_i M f_j{}^t = 0 \text{ for all } i, j; \\ & \bullet e_i M f_i{}^t = d_i \text{ for all } i, \text{ where d_i are positive integers such that } d_i | d_{i+1} \text{ for all } i; \\ & \bullet e_i M f_i{}^t = 0 \text{ for all } i \text{ not equal } j. \end{aligned}
```

The ordering for the factors $d_i|d_{i+1}$ and for the placement of zeroes was chosen to agree with the output of smith_form.

See the examples for a pictorial description of such a basis.

EXAMPLES:

```
sage: from sage.matrix.symplectic_basis import symplectic_basis_over_ZZ
```

An example which does not have full rank:

```
sage: E = matrix(ZZ, 4, 4, [0, 16, 0, 2, -16, 0, 0, -4, 0, 0, 0, 0, -2, 4, 0, 0]);
→ E
[ 0 16 0 21
[-16]
     0
        0 -4]
[ 0 0 0 0]
[ -2
     4 0 01
sage: F, C = symplectic_basis_over_ZZ(E)
sage: F
[ 0 2 0 0]
[-2 \ 0 \ 0 \ 0]
[0 0 0 0]
[ 0 0 0 0]
sage: C * E * C.transpose() == F
```

A larger example:

```
sage: E = matrix(ZZ, 8, 8, [0, 25, 0, 0, -37, -3, 2, -5, -25, 0, 1, -5, -54, -3, ]
→3, 3, 0, −1, 0, 7, 0, −4, −20, 0, 0, 5, −7, 0, 0, 14, 0, −3, 37, 54, 0, 0, 0, ∪
\rightarrow2, 3, -12, 3, 3, 4, -14, -2, 0, -3, 2, -2, -3, 20, 0, -3, 3, 0, -2, 5, -3, 0,...
\hookrightarrow 3, 12, -2, 2, 0]); E
[ 0 25 0 0 -37 -3 2 -5]
[-25 \quad 0 \quad 1 \quad -5 \quad -54 \quad -3 \quad 3]
\begin{bmatrix} 0 & -1 & 0 & 7 & 0 & -4 & -20 & 0 \end{bmatrix}
     5 -7 0 0 14 0 -31
 Ω
[ 37 54 0 0 0 2 3 -12]
        4 -14 -2 0 -3
     3
                    3
 -2 -3 20
                       0 -2]
            0
                -3
             3 12 -2
     -3
         0
sage: F, C = symplectic_basis_over_ZZ(E)
sage: F
                 0
     \cap
          0
                        0
                               1
                                      0
                                            0
                                                   01
                       0
          0
                0
                               0
                                           0
     0
                                     1
                                                   0]
                       0
    0
          0
                 0
                              0
                                     0
                                            1
                                                   0]
                       0 0 0
                                          0 20191]
     0
          0
                 0
                                      0
           0
                 0
                                     0
    -1
                                                   0]
          -1 0
```

```
0
                                                         01
             0
                    0 -20191
                                   0
                                          0
                                                  0
                                                         0]
sage: F == C * E * C.transpose()
sage: E.smith_form()[0]
                              0
                                    0
                                          0
                                                0]
    1
           0
                 0
    0
                 0
                       0
           1
                              0
                                    0
                                          0
                                                0]
    0
           0
                 1
                       0
                                                0]
    0
           0
                 0
                       1
                             0
                                                0]
    0
           0
                 0
                       0
                             1
                                    0
                                          0
                                                0]
    0
           0
                 0
                       0
                             0
                                    1
                                          0
                                                0]
    0
           0
                 0
                       0
                              0
                                    0 20191
                                                0]
                       0
                              0
                                    0
                                          0 20191]
    0
           0
                 0
```

An odd dimensional example:

```
\hookrightarrow 8, 11, 0, 0, 8, 2, -4, 0, -8, 0]); E
        0 -8 -2]
0 14
    0 -3 -11 4]
[-14]
     3
        0 0
                01
0 1
        0 0
  8 11
                8]
  2
        0 -8
    -4
                0]
sage: F, C = symplectic_basis_over_ZZ(E)
sage: F
[0 0 1 0 0]
[0 0 0 2 0]
[-1 \quad 0 \quad 0 \quad 0 \quad 0]
[ 0 -2  0  0  0 ]
[0 0 0 0 0]
sage: F == C * E * C.transpose()
sage: E.smith_form()[0]
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 2 0 0]
[0 0 0 2 0]
[0 0 0 0 0]
sage: F.parent()
Full MatrixSpace of 5 by 5 dense matrices over Integer Ring
sage: C.parent()
Full MatrixSpace of 5 by 5 dense matrices over Integer Ring
```

sage.matrix.symplectic_basis.symplectic_basis_over_field (M)

Find a symplectic basis for an anti-symmetric, alternating matrix M defined over a field.

Returns a pair (F, C) such that the rows of C form a symplectic basis for M and $F = C \star M \star C.transpose()$.

Anti-symmetric means that $M = -M^t$. Alternating means that the diagonal of M is identically zero.

A symplectic basis is a basis of the form $e_1, \ldots, e_j, f_1, \ldots, f_j, z_1, \ldots, z_k$ such that

- • $z_i M v^t = 0$ for all vectors v;
- $\bullet e_i M e_i^t = 0$ for all i, j;
- • $f_i M f_j^t = 0$ for all i, j;

```
•e_i M f_i^{\ t} = 1 for all i;
•e_i M f_i^{\ t} = 0 for all i not equal j.
```

See the examples for a pictorial description of such a basis.

EXAMPLES:

```
sage: from sage.matrix.symplectic_basis import symplectic_basis_over_field
```

A full rank exact example:

```
sage: E = matrix(QQ, 8, 8, [0, -1/2, -2, 1/2, 2, 0, -2, 1, 1/2, 0, -1, -3, 0, 2,...
\rightarrow 5/2, -3, 2, 1, 0, 3/2, -1, 0, -1, -2, -1/2, 3, -3/2, 0, 1, 3/2, -1/2, -1/2, -2, \bigcirc
\leftarrow0, 1, -1, 0, 0, 1, -1, 0, -2, 0, -3/2, 0, 0, 1/2, -2, 2, -5/2, 1, 1/2, -1, -1/
\rightarrow2, 0, -1, -1, 3, 2, 1/2, 1, 2, 1, 0]); E
 0 -1/2 -2 1/2
                           0
                     2
                               -2
      0 -1
                     0 2 5/2
[ 1/2
                -3
                                     -3]
            0 3/2
                           0
       1
                     -1
                               -1
                     1 3/2 -1/2 -1/2]
0 0 1 -11
      3 -3/2
0 1
[-1/2]
                0
[ -2
           1
                -1
[ 0
      -2 0 -3/2
                     0 0 1/2
                                     -21
[ 2 -5/2 1 1/2
                    -1 -1/2 0
                                   -11
[ -1
       3
            2 1/2
                      1 2
                                1
sage: F, C = symplectic_basis_over_field(E); F
[0 0 0 0 1 0 0 0]
[0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 1]
[-1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0]
[ 0 -1  0  0  0  0  0  0]
[ 0  0  -1  0  0  0  0  0]
[ 0 0 0 -1 0 0 0 0 ]
sage: F == C * E * C.transpose()
True
```

An example over a finite field:

```
sage: E = matrix(GF(7), 8, 8, [0, -1/2, -2, 1/2, 2, 0, -2, 1, 1/2, 0, -1, -3, 0, ]
\Rightarrow 2, 5/2, -3, 2, 1, 0, 3/2, -1, 0, -1, -2, -1/2, 3, -3/2, 0, 1, 3/2, -1/2, -1/2,
\rightarrow 2, 0, 1, -1, 0, 0, 1, -1, 0, -2, 0, -3/2, 0, 0, 1/2, -2, 2, -5/2, 1, 1/2, -1, -
\rightarrow 1/2, 0, -1, -1, 3, 2, 1/2, 1, 2, 1, 0]); E
[0 3 5 4 2 0 5 1]
[4 0 6 4 0 2 6 4]
[2 1 0 5 6 0 6 5]
[3 3 2 0 1 5 3 3]
[5 0 1 6 0 0 1 6]
[0 5 0 2 0 0 4 5]
[2 1 1 4 6 3 0 6]
[6 3 2 4 1 2 1 0]
sage: F, C = symplectic_basis_over_field(E); F
[0 0 0 0 1 0 0 0]
[0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 1]
[6 0 0 0 0 0 0 0]
[0 6 0 0 0 0 0 0]
[0 0 6 0 0 0 0 0]
[0 0 0 6 0 0 0 0]
```

```
sage: F == C * E * C.transpose()
True
```

The tricky case of characteristic 2:

```
sage: E = matrix(GF(2), 8, 8, [0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, ...
→0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, ...
→0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0]); E
[0 0 1 1 0 1 0 1]
[0 0 0 0 0 0 0]
[1 0 0 0 0 0 1 1]
[1 0 0 0 0 0 0 1]
[0 0 0 0 0 1 1 0]
[1 0 0 0 1 0 1 1]
[0 0 1 0 1 1 0 0]
[1 0 1 1 0 1 0 0]
sage: F, C = symplectic_basis_over_field(E); F
[0 0 0 1 0 0 0 0]
[0 0 0 0 1 0 0 0]
[0 0 0 0 0 1 0 0]
[1 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
sage: F == C * E * C.transpose()
True
```

An inexact example:

```
sage: E = matrix(RR, 8, 8, [0.0000000000000, 0.420674846479344, -0.
→839702420666807, 0.658715385244413, 1.69467394825853, -1.14718543053828, 1.
→03076138152950, -0.227739521708484, -0.420674846479344, 0.000000000000000, 0.
→514381455379082, 0.282194064028260, -1.38977093018412, 0.278305070958958, -0.
→0781320488361574, -0.496003664217833, 0.839702420666807, -0.514381455379082, 0.
→1.28202592892333, -0.512563654267693, -0.658715385244413, -0.282194064028260, 0.
→00618222322875384, 0.00000000000000, 0.852525732369211, -0.356957405431611, -0.
\leftarrow699960114607661, 0.0260496330859998, -1.69467394825853, 1.38977093018412, 0.
→318386939149028, -0.852525732369211, 0.000000000000, -0.836072521423577, 0.
450137632758469, -0.696145287292091, 1.14718543053828, -0.278305070958958, 0.
→0840205427053993, 0.356957405431611, 0.836072521423577, 0.00000000000000, 0.
→214878541347751, -1.20221688928379, -1.03076138152950, 0.0781320488361574, -1.
→00000000000000, 0.785074452163036, 0.227739521708484, 0.496003664217833, 0.
→512563654267693, -0.0260496330859998, 0.696145287292091, 1.20221688928379, -0.
\rightarrow785074452163036, 0.00000000000000]); E
0.000000000000000
                                                     0.420674846479344 -0.839702420666807
→658715385244413
                                             1.69467394825853
                                                                                         -1.14718543053828
                                                                                                                                          1.03076138152950
\rightarrow -0.2277395217084841
[-0.420674846479344
                                                     0.000000000000000
                                                                                                  0.514381455379082
                                           -1.38977093018412 0.278305070958958 -0.0781320488361574 ...
→282194064028260
\rightarrow -0.4960036642178331
       0.839702420666807
                                                  -0.514381455379082
                                                                                                 0.000000000000000 -0.
\hookrightarrow 00618222322875384 -0.318386939149028 -0.0840205427053993
\rightarrow28202592892333 -0.5125636542676931
[ -0.658715385244413 \quad -0.282194064028260 \quad 0.00618222322875384 \quad -0.282194064028260 \quad 0.00618222322875384 \quad -0.282194064028260 \quad -0.00618222322875384 \quad -0.282194064028260 \quad -0.006182223228875384 \quad -0.282194064028260 \quad -0.006182223228875384 \quad -0.282194064028260 \quad -0.006182223228875384 \quad -0.282194064028260 \quad -0.006182223228875384 \quad -0.006182223228875384 \quad -0.006182223228875384 \quad -0.006182223288875384 \quad -0.0061822232888754 \quad -0.00618288888 \quad -0.0061828888 \quad -0.0061828888 \quad -0.0061828888 \quad -0.0061828888 \quad -0.0061828888 \quad -0.0061828888 \quad -0.00618288888 \quad -0.00618888 \quad -0.006188888 \quad -0.0061888888 \quad -0.006188888 \quad -0.006188888 \quad -0.006188888 \quad -0.006188888 \quad -0.006188888 \quad -0.006188888 \quad -0.00618888888 \quad -0.006188888 \quad -0.006188888 \quad -0.0061888888 \quad -0.006188888888 \quad -0.006188888 \quad -0.0061888888 \quad -0.0061888888 \quad -0.00618888888 \quad -0.006188888 \quad -0.0061888888 \quad -0.0061888888 \quad -0.00618888888 \quad -0.0061888888 \quad -0.0061888888 \quad -0.0061888888 \quad -0.00618888888 \quad -0.0061888888 \quad -0.0061888888 \quad -0.0061888888 \quad -0.00618888888 \quad -0.0061888888 \quad -0.00618888888 \quad -0.0061888888 \quad -0.00618888888 \quad -0.0061888888 \quad -0.00618888888 \quad -0.00618888888 \quad -0.00618888888 \quad -0.006188888888 \quad -0.0061888888888 \quad -0.0061888888888 \quad -0.0061888888888 \quad -0.0061888888888888 \quad -0.006188888888888
                                                                                                                                                 Ω
→0000000000000000
                                           0.852525732369211 -0.356957405431611 -0.699960114607661
 \rightarrow 0.0260496330859998]
```

```
-1.69467394825853
                      1.38977093018412
                                        0.318386939149028
→852525732369211 0.00000000000000 −0.836072521423577 0.450137632758469
\rightarrow -0.6961452872920911
                    1.14718543053828
                                                           0.
→356957405431611 0.836072521423577 0.0000000000000 0.214878541347751 ...
\rightarrow -1.202216889283791
\begin{bmatrix} -1.03076138152950 & 0.0781320488361574 \end{bmatrix}
                                        -1.28202592892333
→ 0.785074452163036]
 0.227739521708484
                      →0260496330859998 0.696145287292091 1.20221688928379 −0.785074452163036,
→ 0.0000000000000000
sage: F, C = symplectic_basis_over_field(E); F # random
   0.000000000000000
                      0.000000000000000 2.22044604925031e-16 -2.
→22044604925031e-16
                       1.000000000000000
                                        0.000000000000000
→000000000000000 -3.33066907387547e-16]
    0.0000000000000000 8.14814392305203e-17 -1.66533453693773e-16 -1.
→11022302462516e-16 0.00000000000000
                                        1.00000000000000 -1.
→11022302462516e-16
                     0.00000000000000000
[-5.27829526256056e-16 -2.40004077757759e-16 1.28373418199470e-16 -1.
                     0.000000000000000 -3.15483812822081e-16
→11022302462516e-16
\rightarrow00000000000000 -4.44089209850063e-16]
[ \ 1.31957381564014e-16 \ \ 1.41622049084608e-16 \ \ -6.68515202578511e-17 \ \ -3.
→95597468756028e-17 -4.85722573273506e-17 -5.32388011580111e-17 -1.
→31328455615552e-16
                     1.00000000000000000
    -1.00000000000000
                      0.000000000000000
                                           0.00000000000000 4.
→85722573273506e-17
                     0.000000000000000 -5.55111512312578e-17 -1.
→11022302462516e-16 2.22044604925031e-16]
    0.000000000000000
                      -1.000000000000000
                                           →77555756156289e-17 5.55111512312578e-17 -8.69223574327834e-17
→000000000000000 -4.44089209850063e-16]
    0.000000000000000 -1.05042437087238e-17
                                          -1.00000000000000 3.
→33066907387547e-16 1.11022302462516e-16 -1.18333563634309e-16 4.
→40064433050777e-17 2.22044604925031e-16]
→000000000000 -2.22044604925031e-16 5.52150940090699e-16 -3.93560383111738e-
→16 1.01155762925061e-16]
sage: F == C * E * C.transpose()
sage: abs(F[0, 4] - 1) < 1e-10
sage: abs(F[4, 0] + 1) < 1e-10
True
sage: F.parent()
Full MatrixSpace of 8 by 8 dense matrices over Real Field with 53 bits of_
⇔precision
sage: C.parent()
Full MatrixSpace of 8 by 8 dense matrices over Real Field with 53 bits of...
→precision
```

CHAPTER

FORTYONE

J-IDEALS OF MATRICES

Let B be an $n \times n$ -matrix over a principal ideal domain D.

For an ideal J, the J-ideal of B is defined to be $N_J(B) = \{ f \in D[X] \mid f(B) \in M_n(J) \}$.

For a prime element p of D and $t \ge 0$, a (p^t) -minimal polynomial of B is a monic polynomial $f \in N_{(p^t)}(B)$ of minimal degree.

This module computes these minimal polynomials.

Let p be a prime element of D. Then there is a finite set S_p of positive integers and monic polynomials ν_{ps} for $s \in S_p$ such that for $t \ge 1$,

$$N_{(p^t)}(B) = \mu_B D[X] + p^t D[X] + \sum_{\substack{s \in \mathcal{S}_p \\ s \le b(t)}} p^{\max\{0, t-s\}} \nu_{ps} D[X]$$

holds where $b(t) = \min\{r \in \mathcal{S}_p \mid r \geq s\}$. The degree of ν_{ps} is strictly increasing in $s \in \mathcal{S}_p$ and ν_{ps} is a (p^s) -minimal polynomial. If $t \leq \max \mathcal{S}_p$, then the summand $\mu_B D[X]$ can be omitted.

All computations are done by the class <code>ComputeMinimalPolynomials</code> where various intermediate results are cached. It provides the following methods:

- $p_minimal_polynomials()$ computes S_p and the monic polynomials ν_{ps} .
- null_ideal() determines $N_{(p^t)}(B)$.
- $prime_candidates()$ determines all primes p where S_p might be non-empty.
- integer_valued_polynomials_generators () determines the generators of the ring $\{f \in K[X] \mid f(B) \in M_n(D)\}$ of integer valued polynomials on B.

```
sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: C = ComputeMinimalPolynomials(B)
sage: C.prime_candidates()
[2, 3, 5]
sage: for t in range(4):
....:    print(C.null_ideal(2^t))
Principal ideal (1) of
        Univariate Polynomial Ring in x over Integer Ring
Ideal (2, x^2 + x) of
        Univariate Polynomial Ring in x over Integer Ring
Ideal (4, x^2 + 3*x + 2) of
        Univariate Polynomial Ring in x over Integer Ring
Ideal (8, x^3 + x^2 - 12*x - 20, 2*x^2 + 6*x + 4) of
        Univariate Polynomial Ring in x over Integer Ring
```

```
sage: C.p_minimal_polynomials(2)
{2: x^2 + 3*x + 2}
sage: C.integer_valued_polynomials_generators()
(x^3 + x^2 - 12*x - 20, [1, 1/4*x^2 + 3/4*x + 1/2])
```

The last output means that

$$\{f \in \mathbf{Q}[X] \mid f(B) \in M_3(\mathbf{Z})\} = (x^3 + x^2 - 12x - 20)\mathbf{Q}[X] + \mathbf{Z}[X] + \frac{1}{4}(x^2 + 3x + 2)\mathbf{Z}[X].$$

Todo

Test code over PIDs other than ZZ.

This requires implementation of frobenius () over more general domains than ZZ.

Additionally, <code>lifting()</code> requires modification or a bug needs fixing, see AskSage Question 35555.

REFERENCES:

[Ris2016], [HR2016]

AUTHORS:

- Clemens Heuberger (2016)
- Roswitha Rissner (2016)

ACKNOWLEDGEMENT:

- Clemens Heuberger is supported by the Austrian Science Fund (FWF): P 24644-N26.
- Roswitha Rissner is supported by the Austrian Science Fund (FWF): P 27816-N26.

41.1 Classes and Methods

```
class sage.matrix.compute_J_ideal. ComputeMinimalPolynomials ( B)
     Bases: sage.structure.sage_object.SageObject
```

Create an object for computing (p^t) -minimal polynomials and J-ideals.

For an ideal J and a square matrix B over a principal ideal domain D, the J-ideal of B is defined to be $N_J(B) = \{ f \in D[X] \mid f(B) \in M_n(J) \}.$

For a prime element p of D and $t \ge 0$, a (p^t) -minimal polynomial of B is a monic polynomial $f \in N_{(p^t)}(B)$ of minimal degree.

The characteristic polynomial of B is denoted by χ_B ; n is the size of B.

INPUT:

 $\bullet B$ – a square matrix over a principal ideal domain D

OUTPUT:

An object which allows to call $p_minimal_polynomials()$, $null_ideal()$ and $integer_valued_polynomials_generators()$.

```
sage: from sage.matrix.compute J ideal import ComputeMinimalPolynomials
sage: B = matrix(\mathbb{Z}\mathbb{Z}, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: C = ComputeMinimalPolynomials(B)
sage: C.prime_candidates()
[2, 3, 5]
sage: for t in range(4):
....: print(C.null_ideal(2^t))
Principal ideal (1) of
   Univariate Polynomial Ring in x over Integer Ring
Ideal (2, x^2 + x) of
   Univariate Polynomial Ring in x over Integer Ring
Ideal (4, x^2 + 3*x + 2) of
   Univariate Polynomial Ring in x over Integer Ring
Ideal (8, x^3 + x^2 - 12*x - 20, 2*x^2 + 6*x + 4) of
   Univariate Polynomial Ring in x over Integer Ring
sage: C.p_minimal_polynomials(2)
\{2: x^2 + 3*x + 2\}
sage: C.integer_valued_polynomials_generators()
(x^3 + x^2 - 12*x - 20, [1, 1/4*x^2 + 3/4*x + 1/2])
```

current_nu (p, t, pt_generators, prev_nu)

Compute (p^t) -minimal polynomial of B.

INPUT:

- •p a prime element of D
- •t − a positive integer
- •pt_generators a list (g_1,\ldots,g_s) of polynomials in D[X] such that $N_{(p^t)}(B)=(g_1,\ldots,g_s)+pN_{(p^{t-1})}(B)$
- •prev_nu -a (p^{t-1}) -minimal polynomial of B

OUTPUT:

A (p^t) -minimal polynomial of B.

EXAMPLES:

```
sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: C = ComputeMinimalPolynomials(B)
sage: x = polygen(ZZ, 'x')
sage: nu_1 = x^2 + x
sage: generators_4 = [2*x^2 + 2*x, x^2 + 3*x + 2]
sage: C.current_nu(2, 2, generators_4, nu_1)
x^2 + 3*x + 2
```

ALGORITHM:

[HR2016], Algorithm 4.

find_monic_replacements (p, t, pt_generators, prev_nu)

Replace possibly non-monic generators of $N_{(p^t)}(B)$ by monic generators.

INPUT:

- •p a prime element of D
- •t a non-negative integer

```
•pt_generators —a list (g_1,\ldots,g_s) of polynomials in D[X] such that N_{(p^t)}(B)=(g_1,\ldots,g_s)+pN_{(p^{t-1})}(B)
```

•prev_nu -a (p^{t-1}) -minimal polynomial of B

OUTPUT:

A list (h_1, \ldots, h_r) of monic polynomials such that $N_{(p^t)}(B) = (h_1, \ldots, h_r) + pN_{(p^{t-1})}(B)$.

EXAMPLES:

```
sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: C = ComputeMinimalPolynomials(B)
sage: x = polygen(ZZ, 'x')
sage: nu_1 = x^2 + x
sage: generators_4 = [2*x^2 + 2*x, x^2 + 3*x + 2]
sage: C.find_monic_replacements(2, 2, generators_4, nu_1)
[x^2 + 3*x + 2]
```

ALGORITHM:

[HR2016], Algorithms 2 and 3.

integer_valued_polynomials_generators ()

Determine the generators of the ring of integer valued polynomials on B.

OUTPUT:

A pair (mu_B, P) where P is a list of polynomials in K[X] such that

$$\{f \in K[X] \mid f(B) \in M_n(D)\} = \mu_B K[X] + \sum_{g \in P} gD[X]$$

where K denotes the fraction field of D.

EXAMPLES:

```
sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: C = ComputeMinimalPolynomials(B)
sage: C.integer_valued_polynomials_generators()
(x^3 + x^2 - 12*x - 20, [1, 1/4*x^2 + 3/4*x + 1/2])
```

$mccoy_column (p, t, nu)$

Compute matrix for McCoy's criterion.

INPUT:

•p – a prime element in D

•t − a positive integer

•nu – a (p^t) -minimal polynomial of B

OUTPUT:

An $(n^2+1) \times 1$ matrix g with first entry nu such that $(b-\chi_B I) g \equiv 0 \pmod{p^t}$ where b consists of the entries of $\operatorname{adj}(X-B)$.

```
sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: C = ComputeMinimalPolynomials(B)
sage: x = polygen(ZZ, 'x')
sage: nu_4 = x^2 + 3*x + 2
sage: g = C.mccoy_column(2, 2, nu_4)
sage: b = matrix(9, 1, (x-B).adjoint().list())
sage: M = matrix.block([[b , -B.charpoly(x)*matrix.identity(9)]])
sage: (M*g % 4).is_zero()
True
```

ALGORITHM:

[HR2016], Algorithm 5.

null ideal (b=0)

Return the (b)-ideal $N_{(b)}(B) = \{ f \in D[X] \mid f(B) \in M_n(bD) \}.$

INPUT:

•b – an element of D (default: 0)

OUTPUT:

An ideal in D[X].

EXAMPLES:

```
sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: C = ComputeMinimalPolynomials(B)
sage: C.null_ideal()
Principal ideal (x^3 + x^2 - 12*x - 20) of
   Univariate Polynomial Ring in x over Integer Ring
sage: C.null_ideal(2)
Ideal (2, x^2 + x) of
   Univariate Polynomial Ring in x over Integer Ring
sage: C.null_ideal(4)
Ideal (4, x^2 + 3*x + 2) of
   Univariate Polynomial Ring in x over Integer Ring
sage: C.null_ideal(8)
Ideal (8, x^3 + x^2 - 12*x - 20, 2*x^2 + 6*x + 4) of
   Univariate Polynomial Ring in x over Integer Ring
sage: C.null_ideal(3)
Ideal (3, x^3 + x^2 - 12*x - 20) of
   Univariate Polynomial Ring in x over Integer Ring
sage: C.null_ideal(6)
Ideal (6, 2*x^3 + 2*x^2 - 24*x - 40, 3*x^2 + 3*x) of
   Univariate Polynomial Ring in x over Integer Ring
```

p_minimal_polynomials (p, s_max=None)

Compute (p^s) -minimal polynomials ν_s of B.

Compute a finite subset S of the positive integers and (p^s) -minimal polynomials ν_s for $s \in S$.

For $0 < t \le \max S$, a (p^t) -minimal polynomial is given by ν_s where $s = \min\{r \in S \mid r \ge t\}$. For $t > \max S$, the minimal polynomial of B is also a (p^t) -minimal polynomial.

INPUT:

•p – a prime in D

•s_max - a positive integer (default: None); if set, only (p^s) -minimal polynomials for s <= s_max are computed (see below for details)

OUTPUT:

A dictionary. Keys are the finite set S, the values are the associated (p^s) -minimal polynomials ν_s , $s \in S$.

Setting s_{max} only affects the output if s_{max} is at most $max \mathcal{S}$ where \mathcal{S} denotes the full set. In that case, only those ν_s with $s <= s_{max}$ are returned where s_{max} is always included even if it is not included in the full set \mathcal{S} .

```
sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: C = ComputeMinimalPolynomials(B)
sage: C.p_minimal_polynomials(2)
\{2: x^2 + 3*x + 2\}
sage: set_verbose(1)
sage: C = ComputeMinimalPolynomials(B)
sage: C.p_minimal_polynomials(2)
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
p = 2, t = 1:
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
Result of lifting:
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
[x^2 + x]
      x]
      01
      1]
      11
  x + 1
      1]
      01
      01
[x + 1]
verbose 1 (...: compute_J_ideal.py, current_nu)
_____
verbose 1 (...: compute_J_ideal.py, current_nu)
(x^2 + x)
verbose 1 (...: compute_J_ideal.py, current_nu)
Generators with (p^t)-generating property:
verbose 1 (...: compute_J_ideal.py, current_nu)
[x^2 + x]
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
nu = x^2 + x
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
corresponding columns for G
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
[x^2 + x]
[x + 2]
      01
      1]
[
      1]
Γ
  x - 1]
     -1]
```

```
10]
     0]
Γ
[x + 1]
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
p = 2, t = 2:
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
Result of lifting:
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
F =
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
[2*x^2 + 2*x x^2 + 3*x + 2]
          2 * x x + 4]
           0
                         01
           2
                         1]
           2
                         1]
    2 * x + 2
                    x + 1
      2
                      -11
           0
                       10]
           0
                        01
Γ
     2 * x + 2
                    x + 31
verbose 1 (...: compute_J_ideal.py, current_nu)
verbose 1 (...: compute_J_ideal.py, current_nu)
(2*x^2 + 2*x, x^2 + 3*x + 2)
verbose 1 (...: compute_J_ideal.py, current_nu)
Generators with (p^t)-generating property:
verbose 1 (...: compute_J_ideal.py, current_nu)
[x^2 + 3*x + 2]
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
nu = x^2 + 3*x + 2
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
corresponding columns for G
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
[x^2 + 3*x + 2]
       x + 4]
           0]
            1]
          1]
        x + 1
Γ
           -1]
          101
           01
       x + 3]
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
p = 2, t = 3:
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
Result of lifting:
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
[x^3 + 7*x^2 + 6*x x^3 + 3*x^2 + 2*x]
      x^2 + 8*x x^2 + 4*x
Γ
              0
                                0.1
[
               Х
                            x + 4
```

```
x^2 + x
    x^2 + 5*x + 4
ſ
           -x + 4
[
                                  -x]
                                10*x]
             10*x
               0
                                  0 1
        x^2 + 7*x x^2 + 3*x + 4
verbose 1 (...: compute_J_ideal.py, current_nu)
verbose 1 (...: compute_J_ideal.py, current_nu)
(x^3 + 7*x^2 + 6*x, x^3 + 3*x^2 + 2*x)
verbose 1 (...: compute_J_ideal.py, current_nu)
Generators with (p^t)-generating property:
verbose 1 (...: compute_J_ideal.py, current_nu)
[x^3 + 7*x^2 + 6*x, x^3 + 3*x^2 + 2*x]
verbose 1 (...: compute_J_ideal.py, current_nu)
[x^3 + 3*x^2 + 2*x]
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
nu = x^3 + 3*x^2 + 2*x
\{2: x^2 + 3*x + 2\}
sage: set_verbose(0)
sage: C.p_minimal_polynomials(2, s_max=1)
\{1: x^2 + x\}
sage: C.p_minimal_polynomials(2, s_max=2)
\{2: x^2 + 3*x + 2\}
sage: C.p_minimal_polynomials(2, s_max=3)
\{2: x^2 + 3*x + 2\}
```

ALGORITHM:

[HR2016], Algorithm 5.

prime_candidates ()

Determine those primes p where μ_B might not be a (p)-minimal polynomial.

OUTPUT:

A list of primes.

EXAMPLES:

```
sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: C = ComputeMinimalPolynomials(B)
sage: C.prime_candidates()
[2, 3, 5]
sage: C.p_minimal_polynomials(2)
{2: x^2 + 3*x + 2}
sage: C.p_minimal_polynomials(3)
{}
sage: C.p_minimal_polynomials(5)
{}
```

This means that 3 and 5 were candidates, but actually, μ_B turns out to be a (3)-minimal polynomial and a (5)-minimal polynomial.

```
sage.matrix.compute_J_ideal. lifting ( p,t,A,G)
Compute generators of \{f\in D[X]^d\mid Af\equiv 0\pmod{p^t}\} given generators of \{f\in D[X]^d\mid Af\equiv 0\pmod{p^{t-1}}\}.
```

INPUT:

- •p a prime element of some principal ideal domain D
- •t a non-negative integer
- •A a $c \times d$ matrix over D[X]
- •G a matrix over D[X]. The columns of $(p^{t-1}I \ G)$ are generators of $\{f \in D[X]^d \mid Af \equiv 0 \pmod{p^{t-1}}\}$; can be set to None if t is zero

OUTPUT:

A matrix F over D[X] such that the columns of $(p^tI \ F \ pG)$ are generators of $\{f \in D[X]^d \mid Af \equiv 0 \pmod{p^t}\}$.

EXAMPLES:

```
sage: from sage.matrix.compute_J_ideal import lifting
sage: X = polygen(ZZ, 'X')
sage: A = matrix([[1, X], [2*X, X^2]])
sage: G0 = lifting(5, 0, A, None)
sage: G1 = lifting(5, 1, A, G0); G1
sage: (A*G1 % 5).is_zero()
True
sage: A = matrix([[1, X, X^2], [2*X, X^2, 3*X<sup>3</sup>]])
sage: G0 = lifting(5, 0, A, None)
sage: G1 = lifting(5, 1, A, G0); G1
[3*X^2]
   Χl
Γ
    1]
sage: (A*G1 % 5).is_zero()
sage: G2 = lifting(5, 2, A, G1); G2
[15*X^2 23*X^2]
[ 5*X X]
     5
            11
sage: (A*G2 % 25).is_zero()
sage: lifting(5, 10, A, G1)
Traceback (most recent call last):
ValueError: A*G not zero mod 5^9
```

ALGORITHM:

[HR2016], Algorithm 1.

```
sage.matrix.compute_J_ideal.p_part (f, p)
```

Compute the p-part of a polynomial.

INPUT:

- •f a polynomial over D
- •p a prime in D

OUTPUT:

A polynomial g such that $\deg g \leq \deg f$ and all non-zero coefficients of f-pg are not divisible by p.

```
sage: from sage.matrix.compute_J_ideal import p_part
sage: X = polygen(ZZ, 'X')
sage: f = X^3 + 5*X + 25
sage: g = p_part(f, 5); g
X + 5
sage: f - 5*g
X^3
```

CHAPTER

FORTYTWO

BENCHMARKS FOR MATRICES

This file has many functions for computing timing benchmarks of various methods for random matrices with given bounds for the entries. The systems supported are Sage and Magma.

The basic command syntax is as follows:

sage.matrix.benchmark.MatrixVector_QQ (n=1000, h=100, system='sage', times=1)

Compute product of square n matrix by random vector with num and denom bounded by h the given number of times.

INPUT:

- •n matrix dimension (default: 300)
- •h numerator and denominator bound (default: bnd)
- •system either 'sage' or 'magma' (default: 'sage')
- •times number of experiments (default: 1)

EXAMPLES:

```
sage: import sage.matrix.benchmark as b
sage: ts = b.MatrixVector_QQ(500)
sage: tm = b.MatrixVector_QQ(500, system='magma') # optional - magma
```

sage.matrix.benchmark.charpoly_GF (n=100, p=16411, system='sage')

Given a n x n matrix over GF with random entries, compute the charpoly.

INPUT:

- •n matrix dimension (default: 100)
- •p prime number (default: 16411)
- •system either 'magma' or 'sage' (default: 'sage')

```
sage: import sage.matrix.benchmark as b
sage: ts = b.charpoly_GF(100)
sage: tm = b.charpoly_GF(100, system='magma') # optional - magma
```

sage.matrix.benchmark.charpoly_ZZ (n=100, min=0, max=9, system='sage')

Characteristic polynomial over ZZ: Given a n x n matrix over ZZ with random entries between min and max, compute the charpoly.

INPUT:

- •n matrix dimension (default: 100)
- •min minimal value for entries of matrix (default: 0)
- •max maximal value for entries of matrix (default: 9)
- •system either 'sage' or 'magma' (default: 'sage')

EXAMPLES:

```
sage: import sage.matrix.benchmark as b
sage: ts = b.charpoly_ZZ(100)
sage: tm = b.charpoly_ZZ(100, system='magma') # optional - magma
```

sage.matrix.benchmark. det_GF (n=400, p=16411, system='sage')

Dense determinant over GF(p). Given an n x n matrix A over GF with random entries compute det(A).

INPUT:

- •n matrix dimension (default: 300)
- •p prime number (default: 16411)
- •system either 'magma' or 'sage' (default: 'sage')

EXAMPLES:

```
sage: import sage.matrix.benchmark as b
sage: ts = b.det_GF(1000)
sage: tm = b.det_GF(1000, system='magma') # optional - magma
```

sage.matrix.benchmark. det_QQ (n=300, num_bound=10, den_bound=10, system='sage')

Dense rational determinant over QQ. Given an $n \times n$ matrix A over QQ with random entries with numerator bound and denominator bound, compute det(A).

INPUT:

- •n matrix dimension (default: 200)
- •num_bound numerator bound, inclusive (default: 10)
- •den_bound denominator bound, inclusive (default: 10)
- •system either 'sage' or 'magma' (default: 'sage')

```
sage: import sage.matrix.benchmark as b
sage: ts = b.det_QQ(200)
sage: ts = b.det_QQ(10, num_bound=100000, den_bound=10000)
sage: tm = b.det_QQ(200, system='magma') # optional - magma
```

```
sage.matrix.benchmark. det ZZ (n=200, min=1, max=100, system='sage')
```

Dense integer determinant over ZZ. Given an $n \times n$ matrix A over ZZ with random entries between min and max, inclusive, compute det(A).

INPUT:

```
n - matrix dimension (default: 200)
min - minimal value for entries of matrix (default: 1)
max - maximal value for entries of matrix (default: 100)
system - either 'sage' or 'magma' (default: 'sage')
```

EXAMPLES:

```
sage: import sage.matrix.benchmark as b
sage: ts = b.det_ZZ(200)
sage: tm = b.det_ZZ(200, system='magma') # optional - magma
```

```
sage.matrix.benchmark. det_hilbert_QQ ( n=80, system='sage')
```

Runs the benchmark for calculating the determinant of the hilbert matrix over rationals of dimension n.

INPUT:

- •n matrix dimension (default: 300)
- •system either 'sage' or 'magma' (default: 'sage')

EXAMPLES:

```
sage: import sage.matrix.benchmark as b
sage: ts = b.det_hilbert_QQ(50)
sage: tm = b.det_hilbert_QQ(50, system='magma') # optional - magma
```

```
sage.matrix.benchmark.echelon_QQ (n=100, min=0, max=9, system='sage')
```

Given a n x (2*n) matrix over QQ with random integer entries between min and max, compute the reduced row echelon form.

INPUT:

- •n matrix dimension (default: 300)
- •min minimal value for entries of matrix (default: -9)
- •max maximal value for entries of matrix (default: 9)
- •system either 'sage' or 'magma' (default: 'sage')

EXAMPLES:

```
sage: import sage.matrix.benchmark as b
sage: ts = b.echelon_QQ(100)
sage: tm = b.echelon_QQ(100, system='magma') # optional - magma
```

$\verb|sage.matrix.benchmark.hilbert_matrix| (n)$

Returns the Hilbert matrix of size n over rationals.

```
sage: import sage.matrix.benchmark as b
sage: b.hilbert_matrix(3)
[ 1 1/2 1/3]
```

```
[1/2 1/3 1/4]
[1/3 1/4 1/5]
```

sage.matrix.benchmark.inverse_QQ (n=100, min=0, max=9, system='sage')

Given a n x n matrix over QQ with random integer entries between min and max, compute the reduced row echelon form.

INPUT:

- •n matrix dimension (default: 300)
- •min minimal value for entries of matrix (default: -9)
- •max maximal value for entries of matrix (default: 9)
- •system either 'sage' or 'magma' (default: 'sage')

EXAMPLES:

```
sage: import sage.matrix.benchmark as b
sage: ts = b.inverse_QQ(100)
sage: tm = b.inverse_QQ(100, system='magma') # optional - magma
```

sage.matrix.benchmark.invert_hilbert_QQ (n=40, system='sage')

Runs the benchmark for calculating the inverse of the hilbert matrix over rationals of dimension n.

INPUT:

- •n matrix dimension (default: 300)
- •system either 'sage' or 'magma' (default: 'sage')

EXAMPLES:

```
sage: import sage.matrix.benchmark as b
sage: ts = b.invert_hilbert_QQ(30)
sage: tm = b.invert_hilbert_QQ(30, system='magma') # optional - magma
```

sage.matrix.benchmark.matrix_add_GF (n=1000, p=16411, system='sage', times=100)

Given two n x n matrix over GF(p) with random entries, add them.

INPUT:

- •n matrix dimension (default: 300)
- •p prime number (default: 16411)
- •system either 'magma' or 'sage' (default: 'sage')
- •times number of experiments (default: 100)

EXAMPLES:

```
sage: import sage.matrix.benchmark as b
sage: ts = b.matrix_add_GF(500, p=19)
sage: tm = b.matrix_add_GF(500, p=19, system='magma') # optional - magma
```

sage.matrix.benchmark.matrix_add_ZZ (n=200, min=-9, max=9, system='sage', times=50)

Matrix addition over ZZ Given an n x n matrix A and B over ZZ with random entries between \min and \max , inclusive, compute A+B times times.

INPUT:

•n - matrix dimension (default: 200)

```
•min - minimal value for entries of matrix (default: -9)
         •max - maximal value for entries of matrix (default: 9)
         •system - either 'sage' or 'magma' (default: 'sage')
         •times - number of experiments (default: 50)
     EXAMPLES:
     sage: import sage.matrix.benchmark as b
     sage: ts = b.matrix_add_ZZ(200)
     sage: tm = b.matrix_add_ZZ(200, system='magma')
                                                             # optional - magma
sage.matrix.benchmark.matrix_add_ZZ_2 (n=200, bits=16, system='sage', times=50)
     Matrix addition over ZZ. Given an n x n matrix A and B over ZZ with random bits -bit entries, compute A +
     INPUT:
         •n - matrix dimension (default: 200)
         •bits - bitsize of entries
         •system - either 'sage' or 'magma' (default: 'sage')
         •times - number of experiments (default: 50)
     EXAMPLES:
     sage: import sage.matrix.benchmark as b
     sage: ts = b.matrix_add_ZZ_2(200)
     sage: tm = b.matrix_add_ZZ_2(200, system='magma')
                                                                # optional - magma
sage.matrix.benchmark.matrix\_multiply\_GF (n=100, p=16411, system='sage', times=3)
     Given an n x n matrix A over GF(p) with random entries, compute A * (A+1).
     INPUT:
         •n - matrix dimension (default: 100)
         •p - prime number (default: 16411)
         •system - either 'magma' or 'sage' (default: 'sage')
         •times - number of experiments (default: 3)
     EXAMPLES:
     sage: import sage.matrix.benchmark as b
     sage: ts = b.matrix_multiply_GF(100, p=19)
     sage: tm = b.matrix_multiply_GF(100, p=19, system='magma') # optional - magma
sage.matrix.benchmark.matrix multiply QQ (n=100, bnd=2, system='sage', times=1)
     Given an n x n matrix A over QQ with random entries whose numerators and denominators are bounded by bnd,
     compute A * (A+1).
     INPUT:
         •n - matrix dimension (default: 300)
         •bnd - numerator and denominator bound (default: bnd)
         •system - either 'sage' or 'magma' (default: 'sage')
         •times - number of experiments (default: 1)
```

EXAMPLES:

```
sage: import sage.matrix.benchmark as b
sage: ts = b.matrix_multiply_QQ(100)
sage: tm = b.matrix_multiply_QQ(100, system='magma') # optional - magma
```

sage.matrix.benchmark.matrix_multiply_ZZ (n=300, min=-9, max=9, system='sage',
times=1)

Matrix multiplication over ZZ Given an n x n matrix A over ZZ with random entries between min and max, inclusive, compute A * (A+1).

INPUT:

- •n matrix dimension (default: 300)
- •min minimal value for entries of matrix (default: -9)
- •max maximal value for entries of matrix (default: 9)
- •system either 'sage' or 'magma' (default: 'sage')
- •times number of experiments (default: 1)

EXAMPLES:

```
sage: import sage.matrix.benchmark as b
sage: ts = b.matrix_multiply_ZZ(200)
sage: tm = b.matrix_multiply_ZZ(200, system='magma') # optional - magma
```

sage.matrix.benchmark.nullspace_GF (n=300, p=16411, system='sage')

Given a n+1 x n matrix over GF(p) with random entries, compute the nullspace.

INPUT:

- •n matrix dimension (default: 300)
- •p prime number (default: 16411)
- •system either 'magma' or 'sage' (default: 'sage')

EXAMPLES:

```
sage: import sage.matrix.benchmark as b
sage: ts = b.nullspace_GF(300)
sage: tm = b.nullspace_GF(300, system='magma') # optional - magma
```

sage.matrix.benchmark. nullspace_RDF (n=300, min=0, max=10, system='sage')

Nullspace over RDF: Given a $n+1 \times n$ matrix over RDF with random entries between min and max, compute the nullspace.

INPUT:

- •n matrix dimension (default: 300)
- •min minimal value for entries of matrix (default: 0)
- •max maximal value for entries of matrix (default: 10')
- •system either 'sage' or 'magma' (default: 'sage')

```
sage: import sage.matrix.benchmark as b
sage: ts = b.nullspace_RDF(100) # long time
sage: tm = b.nullspace_RDF(100, system='magma') # optional - magma
```

```
sage.matrix.benchmark.nullspace RR (n=300, min=0, max=10, system='sage')
```

Nullspace over RR: Given a n+1 x n matrix over RR with random entries between min and max, compute the nullspace.

INPUT:

```
•n - matrix dimension (default: 300)
```

•min - minimal value for entries of matrix (default: 0)

•max - maximal value for entries of matrix (default: 10)

•system - either 'sage' or 'magma' (default: 'sage')

EXAMPLES:

```
sage: import sage.matrix.benchmark as b
sage: ts = b.nullspace_RR(100)
sage: tm = b.nullspace_RR(100, system='magma') # optional - magma
```

sage.matrix.benchmark. nullspace ZZ (n=200, min=0, max=4294967296, system='sage')

Nullspace over ZZ: Given a n+1 x n matrix over ZZ with random entries between min and max, compute the nullspace.

INPUT:

```
•n - matrix dimension (default: 200)
```

•min - minimal value for entries of matrix (default: 0)

•max - maximal value for entries of matrix (default: 2 * * 32)

•system - either 'sage' or 'magma' (default: 'sage')

EXAMPLES:

```
sage: import sage.matrix.benchmark as b
sage: ts = b.nullspace_ZZ(200)
sage: tm = b.nullspace_ZZ(200, system='magma') # optional - magma
```

sage.matrix.benchmark. $rank2_GF$ (n=500, p=16411, system='sage')

Rank over GF(p): Given a $(n + 10) \times n$ matrix over GF(p) with random entries, compute the rank.

INPUT:

```
•n - matrix dimension (default: 300)
```

•p - prime number (default: 16411)

•system - either 'magma' or 'sage' (default: 'sage')

EXAMPLES:

```
sage: import sage.matrix.benchmark as b
sage: ts = b.rank2_GF(500)
sage: tm = b.rank2_GF(500, system='magma') # optional - magma
```

```
sage.matrix.benchmark.rank2_ZZ (n=400, min=0, max=18446744073709551616L, system='sage')
```

Rank 2 over ZZ: Given a (n + 10) x n matrix over ZZ with random entries between min and max, compute the rank.

INPUT:

•n - matrix dimension (default: 400)

```
min - minimal value for entries of matrix (default: 0)
max - maximal value for entries of matrix (default: 2**64)
```

•system - either 'sage' or 'magma' (default: 'sage')

EXAMPLES:

```
sage: import sage.matrix.benchmark as b
sage: ts = b.rank2_ZZ(300)
sage: tm = b.rank2_ZZ(300, system='magma') # optional - magma
```

sage.matrix.benchmark. rank_GF (n=500, p=16411, system='sage')

Rank over GF(p): Given a n x (n+10) matrix over GF(p) with random entries, compute the rank.

INPUT:

- •n matrix dimension (default: 300)
- •p prime number (default: 16411)
- •system either 'magma' or 'sage' (default: 'sage')

EXAMPLES:

```
sage: import sage.matrix.benchmark as b
sage: ts = b.rank_GF(1000)
sage: tm = b.rank_GF(1000, system='magma') # optional - magma
```

sage.matrix.benchmark.rank_ZZ (n=700, min=0, max=9, system='sage')

Rank over ZZ: Given a n x (n+10) matrix over ZZ with random entries between min and max, compute the rank.

INPUT:

- •n matrix dimension (default: 700)
- •min minimal value for entries of matrix (default: 0)
- •max maximal value for entries of matrix (default: 9)
- •system either 'sage' or 'magma' (default: 'sage')

EXAMPLES:

```
sage: import sage.matrix.benchmark as b
sage: ts = b.rank_ZZ(300)
sage: tm = b.rank_ZZ(300, system='magma') # optional - magma
```

sage.matrix.benchmark.report (F, title, systems=['sage', 'magma'], **kwds)

Run benchmarks with default arguments for each function in the list F.

INPUT:

- •F a list of callables used for benchmarking
- •title a string describing this report
- •systems a list of systems (supported entries are 'sage' and 'magma')
- •**kwds keyword arguments passed to all functions in F

```
sage.matrix.benchmark.report_GF (p=16411, **kwds)
```

Runs all the reports for finite field matrix operations, for prime p=16411.

INPUT:

- •p ignored
- •**kwds passed through to report ()

Note: right now, even though p is an input, it is being ignored! If you need to check the performance for other primes, you can call individual benchmark functions.

EXAMPLES:

sage.matrix.benchmark.report_ZZ (**kwds)

Reports all the benchmarks for integer matrices and few rational matrices.

INPUT:

•**kwds - passed through to report ()

EXAMPLES:

```
sage.matrix.benchmark. smithform_ZZ ( n=128, min=0, max=9, system='sage')
```

Smith Form over ZZ: Given a n x n matrix over ZZ with random entries between min and max, compute the Smith normal form.

INPUT:

```
n - matrix dimension (default: 128)
min - minimal value for entries of matrix (default: 0)
max - maximal value for entries of matrix (default: 9)
system - either 'sage' or 'magma' (default: 'sage')
```

EXAMPLES:

```
sage: import sage.matrix.benchmark as b
sage: ts = b.smithform_ZZ(100)
sage: tm = b.smithform_ZZ(100, system='magma') # optional - magma
```

```
sage.matrix.benchmark. vecmat_ZZ ( n=300, min=-9, max=9, system='sage', times=200)
Vector matrix multiplication over ZZ.
```

Given an n x n matrix A over ZZ with random entries between min and max, inclusive, and v the first row of A, compute the product v * A.

INPUT:

```
•n - matrix dimension (default: 300)

•min - minimal value for entries of matrix (default: -9)

•max - maximal value for entries of matrix (default: 9)

•system - either 'sage' or 'magma' (default: 'sage')

•times - number of runs (default: 200)
```

```
sage: import sage.matrix.benchmark as b
sage: ts = b.vecmat_ZZ(300) # long time
sage: tm = b.vecmat_ZZ(300, system='magma') # optional - magma
```

CHAPTER

FORTYTHREE

INDICES AND TABLES

- Index
- Module Index
- Search Page

Sage Reference Manual: Matrices and Spaces of Matrices, Release 7.6			

m

```
sage.matrix.action, 375
sage.matrix.benchmark, 473
sage.matrix.berlekamp_massey, 247
sage.matrix.change_ring, 379
sage.matrix.compute_J_ideal, 463
sage.matrix.constructor, 15
sage.matrix.docs, 21
sage.matrix.echelon matrix, 381
sage.matrix.matrix, 33
sage.matrix.matrix0,35
sage.matrix.matrix1,69
sage.matrix.matrix2,89
sage.matrix.matrix_complex_ball_dense, 355
sage.matrix.matrix_complex_double_dense, 353
sage.matrix.matrix_cyclo_dense, 383
sage.matrix.matrix_dense, 249
sage.matrix.matrix_double_dense, 313
sage.matrix.matrix generic dense, 257
sage.matrix.matrix_generic_sparse, 259
sage.matrix.matrix_gf2e_dense, 419
sage.matrix.matrix_integer_dense, 279
sage.matrix.matrix_integer_dense_hnf, 389
sage.matrix.matrix_integer_dense_saturation, 401
sage.matrix.matrix_integer_sparse, 405
sage.matrix.matrix_misc, 29
sage.matrix.matrix mod2 dense, 409
sage.matrix.matrix_modn_dense_double, 427
sage.matrix.matrix_modn_dense_float,437
sage.matrix.matrix_modn_sparse, 263
sage.matrix.matrix mpolynomial dense, 363
sage.matrix.matrix_polynomial_dense, 357
sage.matrix_rational_dense, 303
sage.matrix.matrix_rational_sparse,447
sage.matrix_real_double_dense, 351
sage.matrix.matrix_space, 3
sage.matrix.matrix_sparse, 251
```

Sage Reference Manual: Matrices and Spaces of Matrices, Release 7.6

```
sage.matrix.matrix_symbolic_dense, 267
sage.matrix.matrix_window, 451
sage.matrix.misc, 453
sage.matrix.operation_table, 367
sage.matrix.strassen, 243
sage.matrix.symplectic_basis, 457
```

486 Python Module Index

Α act on polynomial() (sage.matrix.matrix0.Matrix method), 35 add() (sage.matrix.matrix_window.MatrixWindow method), 451 add_column() (in module sage.matrix.matrix_integer_dense_hnf), 389 add column fallback() (in module sage.matrix.matrix integer dense hnf), 389 add_multiple_of_column() (sage.matrix.matrix0.Matrix method), 36 add_multiple_of_row() (sage.matrix.matrix0.Matrix method), 36 add prod() (sage.matrix.matrix window.MatrixWindow method), 451 add row() (in module sage.matrix.matrix integer dense hnf), 390 adjoint() (sage.matrix.matrix2.Matrix method), 99 anticommutator() (sage.matrix.matrix0.Matrix method), 37 antitranspose() (sage.matrix.matrix_dense.Matrix_dense method), 249 antitranspose() (sage.matrix.matrix integer dense.Matrix integer dense method), 283 antitranspose() (sage.matrix.matrix_rational_dense.Matrix_rational_dense method), 304 antitranspose() (sage.matrix.matrix_sparse.Matrix_sparse method), 251 apply map() (sage.matrix.matrix2.Matrix method), 100 apply map() (sage.matrix.matrix sparse.Matrix sparse method), 251 apply_morphism() (sage.matrix.matrix2.Matrix method), 101 apply morphism() (sage.matrix.matrix sparse.Matrix sparse method), 252 arguments() (sage.matrix.matrix symbolic dense.Matrix symbolic dense method), 269 as_bipartite_graph() (sage.matrix.matrix2.Matrix method), 101 as_sum_of_permutations() (sage.matrix.matrix2.Matrix method), 102 augment() (sage.matrix.matrix1.Matrix method), 69 augment() (sage.matrix.matrix_gf2e_dense.Matrix_gf2e_dense method), 420 augment() (sage.matrix.matrix_integer_dense.Matrix_integer_dense method), 284 augment() (sage.matrix.matrix_mod2_dense.Matrix_mod2_dense method), 410 augment() (sage.matrix.matrix sparse.Matrix sparse method), 252 automorphisms of rows and columns() (sage.matrix.matrix2.Matrix method), 103 В base_extend() (sage.matrix.matrix_space.MatrixSpace method), 3 base ring() (sage.matrix.matrix0.Matrix method), 37 basis() (sage.matrix.matrix space.MatrixSpace method), 4 benchmark_hnf() (in module sage.matrix.matrix_integer_dense_hnf), 390 benchmark magma hnf() (in module sage.matrix.matrix integer dense hnf), 391 berlekamp massey() (in module sage.matrix.berlekamp massey), 247 BKZ() (sage.matrix.matrix_integer_dense.Matrix_integer_dense method), 280

```
block sum() (sage.matrix.matrix1.Matrix method), 71
C
C (sage.matrix.matrix2.Matrix attribute), 89
cached_method() (sage.matrix.matrix_space.MatrixSpace method), 4
canonicalize radical() (sage.matrix.matrix symbolic dense.Matrix symbolic dense method), 269
cardinality() (sage.matrix.matrix space.MatrixSpace method), 5
change_names() (sage.matrix.operation_table.OperationTable method), 371
change_ring() (sage.matrix.matrix0.Matrix method), 37
change ring() (sage.matrix.matrix rational dense.Matrix rational dense method), 304
change ring() (sage.matrix.matrix space.MatrixSpace method), 6
change_ring() (sage.matrix.matrix_sparse.Matrix_sparse method), 253
characteristic_polynomial() (sage.matrix.matrix2.Matrix method), 103
charpoly() (sage.matrix.matrix2.Matrix method), 103
charpoly() (sage.matrix.matrix cyclo dense.Matrix cyclo dense method), 384
charpoly() (sage.matrix.matrix_integer_dense.Matrix_integer_dense method), 285
charpoly() (sage.matrix.matrix modn dense double.Matrix modn dense template method), 427
charpoly() (sage.matrix.matrix modn dense float.Matrix modn dense template method), 437
charpoly() (sage.matrix.matrix_rational_dense.Matrix_rational_dense method), 304
charpoly() (sage.matrix.matrix_sparse.Matrix_sparse method), 253
charpoly() (sage.matrix.matrix symbolic dense.Matrix symbolic dense method), 270
charpoly_GF() (in module sage.matrix.benchmark), 473
charpoly_ZZ() (in module sage.matrix.benchmark), 474
cholesky() (sage.matrix.matrix2.Matrix method), 105
cholesky() (sage.matrix.matrix_double_dense.Matrix_double_dense method), 320
cling() (sage.matrix.matrix gf2e dense.Matrix gf2e dense method), 421
cmp_pivots() (in module sage.matrix.matrix2), 241
cmp_pivots() (in module sage.matrix.misc), 453
codomain() (sage.matrix.action.MatrixMulAction method), 376
coefficient_bound() (sage.matrix.matrix_cyclo_dense.Matrix_cyclo_dense method), 384
column() (sage.matrix.matrix1.Matrix method), 72
column() (sage.matrix_rational_dense.Matrix_rational_dense method), 305
column_keys() (sage.matrix.operation_table.OperationTable method), 372
column_module() (sage.matrix.matrix2.Matrix method), 109
column_space() (sage.matrix.matrix2.Matrix method), 109
column_space() (sage.matrix.matrix_space.MatrixSpace method), 6
columns() (sage.matrix.matrix1.Matrix method), 72
commutator() (sage.matrix.matrix0.Matrix method), 38
ComputeMinimalPolynomials (class in sage.matrix.compute_J_ideal), 464
condition() (sage.matrix.matrix double dense.Matrix double dense method), 321
conjugate() (sage.matrix.matrix2.Matrix method), 109
conjugate_transpose() (sage.matrix.matrix2.Matrix method), 110
construction() (sage.matrix.matrix_space.MatrixSpace method), 6
current_nu() (sage.matrix.compute_J_ideal.ComputeMinimalPolynomials method), 465
cyclic subspace() (sage.matrix.matrix2.Matrix method), 111
D
decomp_seq() (in module sage.matrix.matrix2), 242
decomposition() (sage.matrix.matrix2.Matrix method), 113
decomposition() (sage.matrix.matrix_integer_dense.Matrix_integer_dense method), 285
```

```
decomposition() (sage.matrix.matrix rational dense.Matrix rational dense method), 305
decomposition_of_subspace() (sage.matrix.matrix2.Matrix method), 114
delete columns() (sage.matrix.matrix1.Matrix method), 73
delete rows() (sage.matrix.matrix1.Matrix method), 73
denominator() (sage.matrix.matrix2.Matrix method), 115
denominator() (sage.matrix.matrix_cyclo_dense.Matrix_cyclo_dense method), 385
denominator() (sage.matrix.matrix rational dense.Matrix rational dense method), 306
denominator() (sage.matrix.matrix rational sparse.Matrix rational sparse method), 447
dense_columns() (sage.matrix.matrix1.Matrix method), 74
dense matrix() (sage.matrix.matrix1.Matrix method), 75
dense matrix() (sage.matrix.matrix rational sparse.Matrix rational sparse method), 447
dense rows() (sage.matrix.matrix1.Matrix method), 75
density() (sage.matrix.matrix2.Matrix method), 116
density() (sage.matrix.matrix mod2 dense.Matrix mod2 dense method), 411
density() (sage.matrix.matrix modn sparse.Matrix modn sparse method), 264
density() (sage.matrix.matrix_sparse.Matrix_sparse method), 254
derivative() (sage.matrix.matrix2.Matrix method), 116
det() (sage.matrix.matrix2.Matrix method), 117
det from modp and divisor() (in module sage.matrix.matrix integer dense hnf), 391
det_GF() (in module sage.matrix.benchmark), 474
det given divisor() (in module sage.matrix.matrix integer dense hnf), 391
det hilbert QQ() (in module sage.matrix.benchmark), 475
det_padic() (in module sage.matrix.matrix_integer_dense_hnf), 392
det OO() (in module sage.matrix.benchmark), 474
det_ZZ() (in module sage.matrix.benchmark), 474
determinant() (sage.matrix.matrix2.Matrix method), 117
determinant() (sage.matrix.matrix_double_dense.Matrix_double_dense method), 324
determinant() (sage.matrix.matrix_integer_dense.Matrix_integer_dense method), 285
determinant() (sage.matrix.matrix mod2 dense.Matrix mod2 dense method), 411
determinant() (sage.matrix.matrix modn dense double.Matrix modn dense template method), 429
determinant() (sage.matrix.matrix_modn_dense_float.Matrix_modn_dense_template method), 439
determinant() (sage.matrix.matrix mpolynomial dense.Matrix mpolynomial dense method), 363
determinant() (sage.matrix.matrix rational dense.Matrix rational dense method), 306
determinant() (sage.matrix.matrix_sparse.Matrix_sparse method), 254
diagonal() (sage.matrix.matrix2.Matrix method), 118
dict() (sage.matrix.matrix0.Matrix method), 38
dict_to_list() (in module sage.matrix.matrix_space), 13
dimension() (sage.matrix.matrix_space.MatrixSpace method), 6
dimensions() (sage.matrix.matrix0.Matrix method), 38
dims() (sage.matrix.matrix space.MatrixSpace method), 6
domain() (sage.matrix.action.MatrixMulAction method), 376
double_det() (in module sage.matrix.matrix_integer_dense_hnf), 393
Ε
echelon form() (sage.matrix.matrix2.Matrix method), 119
echelon form() (sage.matrix.matrix cyclo dense.Matrix cyclo dense method), 385
echelon_form() (sage.matrix.matrix_integer_dense.Matrix_integer_dense method), 286
echelon_form() (sage.matrix.matrix_mpolynomial_dense.Matrix_mpolynomial_dense method), 364
echelon form() (sage.matrix.matrix rational dense.Matrix rational dense method), 307
echelon_form() (sage.matrix.matrix_rational_sparse.Matrix_rational_sparse method), 448
```

```
echelon in place() (sage.matrix.matrix window.MatrixWindow method), 451
echelon_QQ() (in module sage.matrix.benchmark), 475
echelonize() (sage.matrix.matrix2.Matrix method), 120
echelonize() (sage.matrix.matrix gf2e dense.Matrix gf2e dense method), 422
echelonize() (sage.matrix.matrix_mod2_dense.Matrix_mod2_dense method), 411
echelonize() (sage.matrix.matrix_modn_dense_double.Matrix_modn_dense_template method), 430
echelonize() (sage.matrix.matrix modn dense float.Matrix modn dense template method), 440
echelonize() (sage.matrix.matrix mpolynomial dense.Matrix mpolynomial dense method), 365
echelonize() (sage.matrix.matrix_rational_dense.Matrix_rational_dense method), 307
echelonize() (sage.matrix.matrix_rational_sparse.Matrix_rational_sparse method), 448
eigenmatrix left() (sage.matrix.matrix2.Matrix method), 121
eigenmatrix right() (sage.matrix.matrix2.Matrix method), 122
eigenspaces_left() (sage.matrix.matrix2.Matrix method), 123
eigenspaces_right() (sage.matrix.matrix2.Matrix method), 127
eigenvalues() (sage.matrix.matrix2.Matrix method), 130
eigenvalues() (sage.matrix.matrix_double_dense.Matrix_double_dense method), 324
eigenvalues() (sage.matrix.matrix_symbolic_dense.Matrix_symbolic_dense method), 270
eigenvectors left() (sage.matrix.matrix2.Matrix method), 131
eigenvectors left() (sage.matrix.matrix double dense.Matrix double dense method), 326
eigenvectors_left() (sage.matrix.matrix_symbolic_dense.Matrix_symbolic_dense method), 270
eigenvectors_right() (sage.matrix.matrix2.Matrix method), 132
eigenvectors right() (sage.matrix.matrix double dense.Matrix double dense method), 327
eigenvectors_right() (sage.matrix.matrix_symbolic_dense.Matrix_symbolic_dense method), 271
element_is_zero() (sage.matrix.matrix_window.MatrixWindow method), 451
elementary_divisors() (sage.matrix.matrix2.Matrix method), 132
elementary divisors() (sage.matrix.matrix integer dense.Matrix integer dense method), 289
elementary_divisors() (sage.matrix_integer_sparse.Matrix_integer_sparse method), 405
elementwise_product() (sage.matrix.matrix2.Matrix method), 133
exp() (sage.matrix.matrix2.Matrix method), 135
exp() (sage.matrix.matrix double dense.Matrix double dense method), 327
exp() (sage.matrix.matrix symbolic dense.Matrix symbolic dense method), 272
expand() (sage.matrix.matrix symbolic dense.Matrix symbolic dense method), 273
extended echelon form() (sage.matrix.matrix2.Matrix method), 135
extract_ones_data() (in module sage.matrix.matrix_integer_dense_hnf), 393
F
factor() (sage.matrix.matrix symbolic dense.Matrix symbolic dense method), 273
fcp() (sage.matrix.matrix2.Matrix method), 138
fcp() (sage.matrix.matrix_symbolic_dense.Matrix_symbolic_dense method), 273
find() (sage.matrix.matrix2.Matrix method), 138
find_monic_replacements() (sage.matrix.compute_J_ideal.ComputeMinimalPolynomials method), 465
free_m4ri() (in module sage.matrix.matrix_mod2_dense), 415
frobenius() (sage.matrix.matrix_integer_dense.Matrix_integer_dense method), 290
from_png() (in module sage.matrix.matrix_mod2_dense), 415
full category initialisation() (sage.matrix.matrix space.MatrixSpace method), 7
G
gcd() (sage.matrix.matrix_integer_dense.Matrix_integer_dense method), 290
gen() (sage.matrix.matrix_space.MatrixSpace method), 7
get_action_impl() (sage.matrix.matrix_space.MatrixSpace method), 7
```

```
get subdivisions() (sage.matrix.matrix2.Matrix method), 139
get_unsafe() (sage.matrix.matrix_window.MatrixWindow method), 451
gram_schmidt() (sage.matrix.matrix2.Matrix method), 140
Η
H (sage.matrix.matrix2.Matrix attribute), 89
hadamard_bound() (sage.matrix.matrix2.Matrix method), 145
hadamard_row_bound_mpfr() (in module sage.matrix.misc), 453
height() (sage.matrix.matrix cyclo dense.Matrix cyclo dense method), 385
height() (sage.matrix.matrix_integer_dense.Matrix_integer_dense method), 291
height() (sage.matrix.matrix_rational_dense.Matrix_rational_dense method), 308
height() (sage.matrix.matrix rational sparse.Matrix rational sparse method), 449
hermite form() (sage.matrix.matrix2.Matrix method), 146
hermite_form() (sage.matrix.matrix_integer_dense.Matrix_integer_dense method), 291
hermite_form() (sage.matrix.matrix_integer_sparse.Matrix_integer_sparse method), 406
hessenberg form() (sage.matrix.matrix2.Matrix method), 146
hessenbergize() (sage.matrix.matrix2.Matrix method), 147
hessenbergize() (sage.matrix.matrix_modn_dense_double.Matrix_modn_dense_template method), 432
hessenbergize() (sage.matrix.matrix_modn_dense_float.Matrix_modn_dense_template method), 442
hilbert matrix() (in module sage.matrix.benchmark), 475
hnf() (in module sage.matrix.matrix_integer_dense_hnf), 394
hnf_square() (in module sage.matrix.matrix_integer_dense_hnf), 394
hnf with transformation() (in module sage.matrix.matrix integer dense hnf), 395
hnf with transformation tests() (in module sage.matrix.matrix integer dense hnf), 395
I (sage.matrix.matrix2.Matrix attribute), 89
identity matrix() (sage.matrix.matrix space.MatrixSpace method), 7
image() (sage.matrix.matrix2.Matrix method), 147
indefinite_factorization() (sage.matrix.matrix2.Matrix method), 148
index in saturation() (in module sage.matrix.matrix integer dense saturation), 401
index in saturation() (sage.matrix.matrix integer dense.Matrix integer dense method), 293
insert_row() (sage.matrix.matrix_integer_dense.Matrix_integer_dense method), 293
int_range (class in sage.matrix.strassen), 243
integer kernel() (sage.matrix.matrix2.Matrix method), 150
integer to real double dense() (in module sage.matrix.change ring), 379
integer_valued_polynomials_generators() (sage.matrix.compute_J_ideal.ComputeMinimalPolynomials method), 466
integer_valued_polynomials_generators() (sage.matrix.matrix_integer_dense.Matrix_integer_dense method), 294
interleave matrices() (in module sage.matrix.matrix integer dense hnf), 395
intervals() (sage.matrix.strassen.int range method), 244
inverse() (sage.matrix.matrix2.Matrix method), 150
inverse OO() (in module sage.matrix.benchmark), 476
invert hilbert QQ() (in module sage.matrix.benchmark), 476
is_alternating() (sage.matrix.matrix0.Matrix method), 39
is_bistochastic() (sage.matrix.matrix2.Matrix method), 151
is_dense() (sage.matrix.matrix0.Matrix method), 39
is_dense() (sage.matrix.matrix_space.MatrixSpace method), 8
is_diagonalizable() (sage.matrix.matrix2.Matrix method), 151
is_finite() (sage.matrix.matrix_space.MatrixSpace method), 8
is hermitian() (sage.matrix.matrix0.Matrix method), 39
```

```
is hermitian() (sage,matrix,matrix double dense,Matrix double dense method), 328
is_immutable() (sage.matrix.matrix0.Matrix method), 40
is_in_hnf_form() (in module sage.matrix.matrix_integer_dense_hnf), 396
is invertible() (sage.matrix.matrix0.Matrix method), 41
is_LLL_reduced() (sage.matrix.matrix_integer_dense.Matrix_integer_dense method), 294
is_Matrix() (in module sage.matrix.matrix), 33
is MatrixSpace() (in module sage.matrix.matrix space), 13
is_mutable() (sage.matrix.matrix0.Matrix method), 41
is_normal() (sage.matrix.matrix2.Matrix method), 154
is_normal() (sage.matrix.matrix_double_dense.Matrix_double_dense method), 329
is one() (sage.matrix.matrix2.Matrix method), 155
is one() (sage.matrix.matrix integer dense.Matrix integer dense method), 295
is_permutation_of() (sage.matrix.matrix2.Matrix method), 156
is_positive_definite() (sage.matrix.matrix2.Matrix method), 157
is positive definite() (sage.matrix.matrix double dense.Matrix double dense method), 331
is_scalar() (sage.matrix.matrix2.Matrix method), 159
is_similar() (sage.matrix.matrix2.Matrix method), 159
is singular() (sage.matrix.matrix0.Matrix method), 41
is skew symmetric() (sage.matrix.matrix0.Matrix method), 42
is_skew_symmetrizable() (sage.matrix.matrix0.Matrix method), 43
is_sparse() (sage.matrix.matrix0.Matrix method), 44
is sparse() (sage.matrix.matrix space.MatrixSpace method), 8
is_square() (sage.matrix.matrix0.Matrix method), 44
is_symmetric() (sage.matrix.matrix0.Matrix method), 44
is_symmetric() (sage.matrix.matrix_double_dense.Matrix_double_dense method), 333
is symmetrizable() (sage.matrix.matrix0.Matrix method), 44
is_unit() (sage.matrix.matrix0.Matrix method), 45
is_unitary() (sage.matrix.matrix2.Matrix method), 163
is unitary() (sage.matrix.matrix double dense.Matrix double dense method), 333
is_weak_popov() (sage.matrix.matrix_polynomial_dense.Matrix_polynomial_dense method), 357
iterates() (sage.matrix.matrix0.Matrix method), 46
J
jordan form() (sage.matrix.matrix2.Matrix method), 164
jordan form() (sage.matrix.matrix symbolic dense.Matrix symbolic dense method), 274
K
kernel() (sage.matrix.matrix2.Matrix method), 170
kernel_on() (sage.matrix.matrix2.Matrix method), 172
L
left eigenmatrix() (sage.matrix.matrix2.Matrix method), 173
left_eigenspaces() (sage.matrix.matrix2.Matrix method), 174
left_eigenvectors() (sage.matrix.matrix2.Matrix method), 178
left_eigenvectors() (sage.matrix.matrix_double_dense.Matrix_double_dense method), 335
left kernel() (sage.matrix.matrix2.Matrix method), 179
left nullity() (sage.matrix.matrix2.Matrix method), 181
lift() (sage.matrix.matrix1.Matrix method), 76
lift() (sage.matrix.matrix_modn_dense_double.Matrix_modn_dense_template method), 432
lift() (sage.matrix.matrix modn dense float.Matrix modn dense template method), 442
```

```
lift() (sage.matrix.matrix modn sparse.Matrix modn sparse method), 264
lift_centered() (sage.matrix.matrix1.Matrix method), 76
lifting() (in module sage.matrix.compute J ideal), 470
linear combination of columns() (sage.matrix.matrix0.Matrix method), 47
linear combination_of_rows() (sage.matrix.matrix0.Matrix method), 48
list() (sage.matrix.matrix0.Matrix method), 49
list to dict() (in module sage.matrix.matrix space), 13
LLL() (sage.matrix.matrix integer dense.Matrix integer dense method), 281
LLL() (sage.matrix.matrix_rational_dense.Matrix_rational_dense method), 303
LLL_gram() (sage.matrix.matrix_integer_dense.Matrix_integer_dense method), 283
log determinant() (sage.matrix.matrix double dense.Matrix double dense method), 336
LU() (sage.matrix.matrix2.Matrix method), 90
LU() (sage.matrix.matrix double dense.Matrix double dense method), 313
LU valid() (sage.matrix.matrix double dense.Matrix double dense method), 315
M
M4RIE finite field (class in sage.matrix.matrix gf2e dense), 420
Matrix (class in sage.matrix.matrix), 33
Matrix (class in sage.matrix.matrix0), 35
Matrix (class in sage.matrix.matrix1), 69
Matrix (class in sage.matrix.matrix2), 89
matrix() (sage.matrix.matrix_space.MatrixSpace method), 8
matrix() (sage.matrix.matrix window.MatrixWindow method), 451
matrix add GF() (in module sage.matrix.benchmark), 476
matrix add ZZ() (in module sage.matrix.benchmark), 476
matrix add ZZ 2() (in module sage.matrix.benchmark), 477
Matrix complex ball dense (class in sage.matrix.matrix complex ball dense), 355
Matrix_complex_double_dense (class in sage.matrix.matrix_complex_double_dense), 353
Matrix cyclo dense (class in sage.matrix.matrix cyclo dense), 383
Matrix dense (class in sage.matrix.matrix dense), 249
Matrix double dense (class in sage.matrix.matrix double dense), 313
matrix_from_columns() (sage.matrix.matrix1.Matrix method), 77
matrix_from_columns() (sage.matrix.matrix_modn_sparse.Matrix_modn_sparse method), 265
matrix from rows() (sage.matrix.matrix1.Matrix method), 77
matrix from rows() (sage.matrix.matrix modn sparse.Matrix modn sparse method), 265
matrix_from_rows_and_columns() (sage.matrix.matrix1.Matrix method), 77
matrix from rows and columns() (sage.matrix.matrix sparse.Matrix sparse method), 254
Matrix generic dense (class in sage.matrix.matrix generic dense), 257
Matrix_generic_sparse (class in sage.matrix.matrix_generic_sparse), 260
Matrix gf2e dense (class in sage.matrix.matrix gf2e dense), 420
Matrix_integer_dense (class in sage.matrix.matrix_integer_dense), 279
matrix_integer_dense_rational_reconstruction() (in module sage.matrix.misc), 454
Matrix_integer_sparse (class in sage.matrix.matrix_integer_sparse), 405
matrix_integer_sparse_rational_reconstruction() (in module sage.matrix.misc), 454
Matrix mod2 dense (class in sage.matrix.matrix mod2 dense), 410
Matrix modn dense double (class in sage.matrix.matrix modn dense double), 427
Matrix modn dense float (class in sage.matrix.matrix modn dense float), 437
Matrix_modn_dense_template (class in sage.matrix.matrix_modn_dense_double), 427
Matrix modn dense template (class in sage.matrix.matrix modn dense float), 437
Matrix_modn_sparse (class in sage.matrix.matrix_modn_sparse), 264
```

```
Matrix mpolynomial dense (class in sage.matrix.matrix mpolynomial dense), 363
matrix_multiply_GF() (in module sage.matrix.benchmark), 477
matrix multiply QQ() (in module sage.matrix.benchmark), 477
matrix multiply ZZ() (in module sage.matrix.benchmark), 478
matrix_of_variables() (sage.matrix.operation_table.OperationTable method), 373
matrix_over_field() (sage.matrix.matrix1.Matrix method), 78
Matrix polynomial dense (class in sage.matrix.matrix polynomial dense), 357
Matrix_rational_dense (class in sage.matrix.matrix_rational_dense), 303
matrix_rational_echelon_form_multimodular() (in module sage.matrix.misc), 454
Matrix rational sparse (class in sage.matrix.matrix rational sparse), 447
Matrix real double dense (class in sage.matrix.matrix real double dense), 351
matrix space() (sage.matrix.matrix1.Matrix method), 78
matrix_space() (sage.matrix.matrix_space.MatrixSpace method), 9
Matrix sparse (class in sage.matrix.matrix sparse), 251
Matrix sparse from rows() (in module sage.matrix.matrix generic sparse), 260
Matrix_symbolic_dense (class in sage.matrix.matrix_symbolic_dense), 269
matrix_window() (sage.matrix.matrix2.Matrix method), 182
matrix window() (sage.matrix.matrix window.MatrixWindow method), 451
MatrixFactory (class in sage.matrix.constructor), 15
MatrixMatrixAction (class in sage.matrix.action), 376
MatrixMulAction (class in sage.matrix.action), 376
MatrixSpace (class in sage.matrix.matrix space), 3
MatrixVector_QQ() (in module sage.matrix.benchmark), 473
Matrix Vector Action (class in sage.matrix.action), 377
MatrixWindow (class in sage.matrix.matrix_rational_dense), 303
MatrixWindow (class in sage.matrix.matrix window), 451
max_det_prime() (in module sage.matrix.matrix_integer_dense_hnf), 396
maxspin() (sage.matrix.matrix2.Matrix method), 182
mccoy column() (sage.matrix.compute J ideal.ComputeMinimalPolynomials method), 466
minimal polynomial() (sage.matrix.matrix2.Matrix method), 183
minors() (sage.matrix.matrix2.Matrix method), 183
minpoly() (sage.matrix.matrix2.Matrix method), 184
minpoly() (sage.matrix.matrix integer dense.Matrix integer dense method), 295
minpoly() (sage.matrix.matrix_modn_dense_double.Matrix_modn_dense_template method), 433
minpoly() (sage.matrix.matrix_modn_dense_float.Matrix_modn_dense_template method), 443
minpoly() (sage.matrix.matrix_rational_dense.Matrix_rational_dense method), 308
minpoly() (sage.matrix.matrix_symbolic_dense.Matrix_symbolic_dense method), 275
mod() (sage.matrix.matrix0.Matrix method), 49
multiplicative_order() (sage.matrix.matrix0.Matrix method), 49
mutate() (sage.matrix.matrix0.Matrix method), 50
Ν
ncols() (sage.matrix.matrix0.Matrix method), 51
ncols() (sage.matrix.matrix_space.MatrixSpace method), 9
ncols() (sage.matrix.matrix window.MatrixWindow method), 451
ncols from dict() (in module sage.matrix.constructor), 18
new_empty_window() (sage.matrix.matrix_window.MatrixWindow method), 451
new matrix() (sage.matrix.matrix1.Matrix method), 78
new matrix window() (sage.matrix.matrix window.MatrixWindow method), 451
ngens() (sage.matrix.matrix_space.MatrixSpace method), 10
```

```
nonpivots() (sage.matrix.matrix0.Matrix method), 51
nonzero_positions() (sage.matrix.matrix0.Matrix method), 51
nonzero_positions_in_column() (sage.matrix.matrix0.Matrix method), 52
nonzero positions in row() (sage.matrix.matrix0.Matrix method), 52
norm() (sage.matrix.matrix2.Matrix method), 184
norm() (sage.matrix.matrix_double_dense.Matrix_double_dense method), 337
nrows() (sage.matrix.matrix0.Matrix method), 53
nrows() (sage.matrix.matrix space.MatrixSpace method), 10
nrows() (sage.matrix.matrix_window.MatrixWindow method), 451
nrows_from_dict() (in module sage.matrix.constructor), 18
null ideal() (sage.matrix.compute J ideal.ComputeMinimalPolynomials method), 467
null ideal() (sage.matrix.matrix integer dense.Matrix integer dense method), 295
nullity() (sage.matrix.matrix2.Matrix method), 185
nullspace GF() (in module sage.matrix.benchmark), 478
nullspace RDF() (in module sage.matrix.benchmark), 478
nullspace_RR() (in module sage.matrix.benchmark), 478
nullspace_ZZ() (in module sage.matrix.benchmark), 479
number of arguments() (sage.matrix.matrix symbolic dense.Matrix symbolic dense method), 276
numerical approx() (sage.matrix.matrix2.Matrix method), 185
numpy() (sage.matrix.matrix1.Matrix method), 79
numpy() (sage.matrix.matrix double dense.Matrix double dense method), 338
0
one() (sage.matrix.matrix_space.MatrixSpace method), 10
ones() (in module sage.matrix.matrix integer dense hnf), 397
OperationTable (class in sage.matrix.operation table), 367
Р
p (sage.matrix.matrix_modn_sparse.Matrix_modn_sparse attribute), 265
p_minimal_polynomials() (sage.matrix.compute_J_ideal.ComputeMinimalPolynomials method), 467
p minimal polynomials() (sage.matrix.matrix integer dense.Matrix integer dense method), 296
p part() (in module sage.matrix.compute J ideal), 471
p_saturation() (in module sage.matrix.matrix_integer_dense_saturation), 401
pad zeros() (in module sage.matrix.matrix integer dense hnf), 397
parity() (in module sage.matrix.matrix_mod2_dense), 415
permanent() (sage.matrix.matrix2.Matrix method), 186
permanental minor() (sage.matrix.matrix2.Matrix method), 188
permanental_minor_polynomial() (in module sage.matrix.matrix_misc), 29
permutation_normal_form() (sage.matrix.matrix2.Matrix method), 189
permute_columns() (sage.matrix.matrix0.Matrix method), 53
permute_rows() (sage.matrix.matrix0.Matrix method), 54
permute rows and columns() (sage.matrix.matrix0.Matrix method), 54
pfaffian() (sage.matrix.matrix2.Matrix method), 190
pivot_rows() (sage.matrix.matrix2.Matrix method), 191
pivots() (sage.matrix.matrix0.Matrix method), 55
pivots() (sage.matrix.matrix_integer_dense.Matrix_integer_dense method), 296
pivots() (sage.matrix.matrix_mpolynomial_dense.Matrix_mpolynomial_dense method), 365
pivots_of_hnf_matrix() (in module sage.matrix.matrix_integer_dense_hnf), 397
ple() (in module sage.matrix.matrix_mod2_dense), 415
plot() (sage.matrix.matrix2.Matrix method), 192
```

```
plug() (in module sage.matrix.matrix mod2 dense), 416
prepare() (in module sage.matrix.constructor), 18
prepare_dict() (in module sage.matrix.constructor), 19
prime candidates() (sage.matrix.compute J ideal.ComputeMinimalPolynomials method), 470
prm_mul() (in module sage.matrix.matrix_misc), 31
probable_hnf() (in module sage.matrix.matrix_integer_dense_hnf), 398
probable pivot columns() (in module sage.matrix.matrix integer dense hnf), 398
probable_pivot_rows() (in module sage.matrix.matrix_integer_dense_hnf), 399
prod_of_row_sums() (sage.matrix.matrix2.Matrix method), 192
prod of row sums() (sage.matrix.matrix integer dense.Matrix integer dense method), 297
prod of row sums() (sage.matrix.matrix rational dense.Matrix rational dense method), 309
pseudoinverse() (sage.matrix.matrix2.Matrix method), 192
Q
QR() (sage.matrix.matrix2.Matrix method), 95
QR() (sage.matrix.matrix_double_dense.Matrix_double_dense method), 316
R
random element() (sage.matrix.matrix space.MatrixSpace method), 10
random sublist of size() (in module sage.matrix.matrix integer dense saturation), 402
randomize() (sage.matrix.matrix2.Matrix method), 194
randomize() (sage.matrix.matrix cyclo dense.Matrix cyclo dense method), 386
randomize() (sage.matrix.matrix gf2e dense.Matrix gf2e dense method), 423
randomize() (sage.matrix.matrix_integer_dense.Matrix_integer_dense method), 297
randomize() (sage.matrix_mod2_dense.Matrix_mod2_dense method), 412
randomize() (sage.matrix.matrix modn dense double.Matrix modn dense template method), 435
randomize() (sage.matrix.matrix_modn_dense_float.Matrix_modn_dense_template method), 445
randomize() (sage.matrix.matrix_rational_dense.Matrix_rational_dense method), 309
rank() (sage.matrix.matrix0.Matrix method), 55
rank() (sage.matrix.matrix gf2e dense.Matrix gf2e dense method), 423
rank() (sage.matrix.matrix integer dense.Matrix integer dense method), 297
rank() (sage.matrix.matrix mod2 dense.Matrix mod2 dense method), 412
rank() (sage.matrix.matrix_modn_dense_double.Matrix_modn_dense_template method), 436
rank() (sage.matrix.matrix modn dense float.Matrix modn dense template method), 445
rank() (sage.matrix.matrix_modn_sparse.Matrix_modn_sparse method), 265
rank() (sage.matrix.matrix rational dense.Matrix rational dense method), 310
rank2 GF() (in module sage.matrix.benchmark), 479
rank2_ZZ() (in module sage.matrix.benchmark), 479
rank GF() (in module sage.matrix.benchmark), 480
rank_ZZ() (in module sage.matrix.benchmark), 480
rational form() (sage.matrix.matrix2.Matrix method), 195
rational reconstruction() (sage.matrix.matrix integer dense.Matrix integer dense method), 298
rational_reconstruction() (sage.matrix.matrix_integer_sparse.Matrix_integer_sparse method), 407
reduced_echelon_matrix_iterator() (in module sage.matrix.echelon_matrix), 381
report() (in module sage.matrix.benchmark), 480
report_GF() (in module sage.matrix.benchmark), 481
report_ZZ() (in module sage.matrix.benchmark), 481
rescale_col() (sage.matrix.matrix0.Matrix method), 56
rescale_row() (sage.matrix.matrix0.Matrix method), 56
restrict() (sage.matrix.matrix2.Matrix method), 201
```

```
restrict codomain() (sage.matrix.matrix2.Matrix method), 202
restrict_domain() (sage.matrix.matrix2.Matrix method), 202
right eigenmatrix() (sage.matrix.matrix2.Matrix method), 203
right eigenspaces() (sage.matrix.matrix2.Matrix method), 203
right_eigenvectors() (sage.matrix.matrix2.Matrix method), 206
right_eigenvectors() (sage.matrix.matrix_double_dense.Matrix_double_dense method), 339
right kernel() (sage.matrix.matrix2.Matrix method), 206
right kernel matrix() (sage.matrix.matrix2.Matrix method), 212
right_nullity() (sage.matrix.matrix2.Matrix method), 219
rook vector() (sage.matrix.matrix2.Matrix method), 220
round() (sage.matrix.matrix double dense.Matrix double dense method), 340
row() (sage.matrix.matrix1.Matrix method), 80
row() (sage.matrix.matrix_mod2_dense.Matrix_mod2_dense method), 413
row() (sage.matrix.matrix rational dense.Matrix rational dense method), 310
row iterator() (in module sage.matrix.matrix misc), 31
row_keys() (sage.matrix.operation_table.OperationTable method), 373
row_module() (sage.matrix.matrix2.Matrix method), 221
row reduced form() (in module sage.matrix.matrix misc), 31
row reduced form() (sage.matrix.matrix2.Matrix method), 222
row_reduced_form() (sage.matrix_polynomial_dense.Matrix_polynomial_dense method), 358
row space() (sage.matrix.matrix2.Matrix method), 224
row space() (sage.matrix.matrix space.MatrixSpace method), 11
rows() (sage.matrix.matrix1.Matrix method), 80
rref() (sage.matrix.matrix2.Matrix method), 224
S
sage.matrix.action (module), 375
sage.matrix.benchmark (module), 473
sage.matrix.berlekamp massey (module), 247
sage.matrix.change_ring (module), 379
sage.matrix.compute J ideal (module), 463
sage.matrix.constructor (module), 15
sage.matrix.docs (module), 21
sage.matrix.echelon matrix (module), 381
sage.matrix.matrix (module), 33
sage.matrix.matrix0 (module), 35
sage.matrix.matrix1 (module), 69
sage.matrix.matrix2 (module), 89
sage.matrix.matrix_complex_ball_dense (module), 355
sage.matrix.matrix complex double dense (module), 353
sage.matrix.matrix_cyclo_dense (module), 383
sage.matrix.matrix_dense (module), 249
sage.matrix.matrix_double_dense (module), 313
sage.matrix.matrix_generic_dense (module), 257
sage.matrix.matrix generic sparse (module), 259
sage.matrix.matrix_gf2e_dense (module), 419
sage.matrix.matrix integer dense (module), 279
sage.matrix.matrix integer dense hnf (module), 389
sage.matrix.matrix integer dense saturation (module), 401
sage.matrix.matrix_integer_sparse (module), 405
```

```
sage.matrix.matrix misc (module), 29
sage.matrix.matrix_mod2_dense (module), 409
sage.matrix.matrix_modn_dense_double (module), 427
sage.matrix.matrix modn dense float (module), 437
sage.matrix.matrix_modn_sparse (module), 263
sage.matrix.matrix_mpolynomial_dense (module), 363
sage.matrix.matrix polynomial dense (module), 357
sage.matrix.matrix rational dense (module), 303
sage.matrix.matrix_rational_sparse (module), 447
sage.matrix.matrix real double dense (module), 351
sage.matrix.matrix space (module), 3
sage.matrix.matrix sparse (module), 251
sage.matrix.matrix_symbolic_dense (module), 267
sage.matrix.matrix window (module), 451
sage.matrix.misc (module), 453
sage.matrix.operation_table (module), 367
sage.matrix.strassen (module), 243
sage.matrix.symplectic basis (module), 457
sanity checks() (in module sage.matrix.matrix integer dense hnf), 399
saturation() (in module sage.matrix.matrix_integer_dense_saturation), 402
saturation() (sage.matrix.matrix_integer_dense.Matrix_integer_dense method), 299
schur() (sage.matrix.matrix double dense.Matrix double dense method), 340
set() (sage.matrix.matrix_window.MatrixWindow method), 451
set_block() (sage.matrix.matrix2.Matrix method), 226
set_col_to_multiple_of_col() (sage.matrix.matrix0.Matrix method), 57
set column() (sage.matrix.matrix1.Matrix method), 81
set_immutable() (sage.matrix.matrix0.Matrix method), 58
set_immutable() (sage.matrix.matrix_cyclo_dense.Matrix_cyclo_dense method), 386
set max cols() (in module sage.matrix.matrix0), 67
set max rows() (in module sage.matrix.matrix0), 67
set_print_symbols() (sage.matrix.operation_table.OperationTable method), 373
set row() (sage.matrix.matrix1.Matrix method), 81
set row to multiple of row() (sage.matrix.matrix0.Matrix method), 58
set_row_to_multiple_of_row() (sage.matrix_rational_dense.Matrix_rational_dense method), 310
set row to multiple of row() (sage.matrix.matrix rational sparse.Matrix rational sparse method), 449
set_to() (sage.matrix.matrix_window.MatrixWindow method), 451
set_to_diff() (sage.matrix.matrix_window.MatrixWindow method), 451
set to prod() (sage.matrix.matrix window.MatrixWindow method), 451
set_to_sum() (sage.matrix.matrix_window.MatrixWindow method), 451
set to zero() (sage.matrix.matrix window.MatrixWindow method), 451
set unsafe() (sage.matrix.matrix window.MatrixWindow method), 451
simplify() (sage.matrix.matrix symbolic dense.Matrix symbolic dense method), 276
simplify_full() (sage.matrix.matrix_symbolic_dense.Matrix_symbolic_dense method), 276
simplify rational() (sage.matrix.matrix symbolic dense.Matrix symbolic dense method), 276
simplify_trig() (sage.matrix.matrix_symbolic_dense.Matrix_symbolic_dense method), 277
singular values() (sage.matrix.matrix double dense.Matrix double dense method), 344
slice() (sage.matrix.matrix_gf2e_dense.Matrix_gf2e_dense method), 424
smith_form() (sage.matrix.matrix2.Matrix method), 226
smith form() (sage.matrix.matrix integer dense.Matrix integer dense method), 300
smith_form() (sage.matrix.matrix_integer_sparse.Matrix_integer_sparse method), 407
```

```
smithform ZZ() (in module sage.matrix.benchmark), 481
solve_left() (sage.matrix.matrix2.Matrix method), 228
solve left() (sage.matrix.matrix double dense.Matrix double dense method), 346
solve right() (sage.matrix.matrix2.Matrix method), 228
solve_right() (sage.matrix.matrix_double_dense.Matrix_double_dense method), 347
solve_system_with_difficult_last_row() (in module sage.matrix.matrix_integer_dense_hnf), 400
solve system with difficult last row() (in module sage.matrix.matrix integer dense saturation), 403
some_elements() (sage.matrix.matrix_space.MatrixSpace method), 11
sparse_columns() (sage.matrix.matrix1.Matrix method), 82
sparse matrix() (sage.matrix.matrix1.Matrix method), 82
sparse rows() (sage.matrix.matrix1.Matrix method), 83
stack() (sage.matrix.matrix1.Matrix method), 83
stack() (sage.matrix.matrix_gf2e_dense.Matrix_gf2e_dense method), 425
str() (sage.matrix.matrix0.Matrix method), 59
str() (sage.matrix.matrix mod2 dense.Matrix mod2 dense method), 413
strassen_echelon() (in module sage.matrix.strassen), 244
strassen_window_multiply() (in module sage.matrix.strassen), 245
subdivide() (sage.matrix.matrix2.Matrix method), 231
subdivision() (sage.matrix.matrix2.Matrix method), 232
subdivision_entry() (sage.matrix.matrix2.Matrix method), 233
subdivisions() (sage.matrix.matrix2.Matrix method), 234
submatrix() (sage.matrix.matrix1.Matrix method), 87
submatrix() (sage.matrix.matrix_gf2e_dense.Matrix_gf2e_dense method), 425
submatrix() (sage.matrix.matrix_mod2_dense.Matrix_mod2_dense method), 414
subs() (sage.matrix.matrix2.Matrix method), 234
subtract() (sage.matrix.matrix window.MatrixWindow method), 451
subtract_prod() (sage.matrix.matrix_window.MatrixWindow method), 451
SVD() (sage.matrix.matrix_double_dense.Matrix_double_dense method), 318
swap columns() (sage.matrix.matrix0.Matrix method), 60
swap rows() (sage.matrix.matrix0.Matrix method), 60
swap_rows() (sage.matrix.matrix_modn_sparse.Matrix_modn_sparse method), 266
swap rows() (sage.matrix.matrix window.MatrixWindow method), 451
swapped columns() (sage.matrix.matrix mpolynomial dense.Matrix mpolynomial dense method), 366
symplectic_basis_over_field() (in module sage.matrix.symplectic_basis), 459
symplectic_basis_over_ZZ() (in module sage.matrix.symplectic_basis), 457
symplectic_form() (sage.matrix.matrix2.Matrix method), 235
symplectic_form() (sage.matrix.matrix_integer_dense.Matrix_integer_dense method), 301
Т
T (sage.matrix.matrix2.Matrix attribute), 99
table() (sage.matrix.operation_table.OperationTable method), 374
tensor_product() (sage.matrix.matrix2.Matrix method), 235
tensor_product() (sage.matrix.matrix_cyclo_dense.Matrix_cyclo_dense method), 386
test() (in module sage.matrix.strassen), 246
test trivial matrices inverse() (in module sage.matrix.matrix space), 13
to list() (sage.matrix.strassen.int range method), 244
to matrix() (sage.matrix.matrix window.MatrixWindow method), 451
to_png() (in module sage.matrix.matrix_mod2_dense), 417
trace() (sage.matrix.matrix2.Matrix method), 236
trace_of_product() (sage.matrix.matrix2.Matrix method), 237
```

```
translation() (sage.matrix.operation table.OperationTable method), 374
transpose() (sage.matrix.matrix_dense.Matrix_dense method), 249
transpose() (sage.matrix.matrix_double_dense.Matrix_double_dense method), 348
transpose() (sage.matrix.matrix integer dense.Matrix integer dense method), 302
transpose() (sage.matrix.matrix_mod2_dense.Matrix_mod2_dense method), 414
transpose() (sage.matrix.matrix_modn_sparse.Matrix_modn_sparse method), 266
transpose() (sage.matrix.matrix rational dense.Matrix rational dense method), 310
transpose() (sage.matrix.matrix_sparse.Matrix_sparse method), 255
U
unpickle() (in module sage.matrix.matrix0), 67
unpickle matrix gf2e dense v0() (in module sage.matrix.matrix gf2e dense), 426
unpickle_matrix_mod2_dense_v1() (in module sage.matrix.matrix_mod2_dense), 417
V
variables() (sage.matrix.matrix_symbolic_dense.Matrix_symbolic_dense method), 277
vecmat ZZ() (in module sage.matrix.benchmark), 482
VectorMatrixAction (class in sage.matrix.action), 377
visualize_structure() (sage.matrix.matrix2.Matrix method), 237
W
weak_popov_form() (sage.matrix.matrix_polynomial_dense.Matrix_polynomial_dense method), 359
wiedemann() (sage.matrix.matrix2.Matrix method), 237
with_added_multiple_of_column() (sage.matrix.matrix0.Matrix method), 61
with added multiple of row() (sage.matrix.matrix0.Matrix method), 61
with col set to multiple of col() (sage.matrix.matrix0.Matrix method), 62
with permuted columns() (sage.matrix.matrix0.Matrix method), 62
with_permuted_rows() (sage.matrix.matrix0.Matrix method), 63
with_permuted_rows_and_columns() (sage.matrix.matrix0.Matrix method), 63
with rescaled col() (sage.matrix.matrix0.Matrix method), 64
with_rescaled_row() (sage.matrix.matrix0.Matrix method), 64
with_row_set_to_multiple_of_row() (sage.matrix.matrix0.Matrix method), 65
with swapped columns() (sage.matrix.matrix0.Matrix method), 65
with_swapped_rows() (sage.matrix.matrix0.Matrix method), 66
Ζ
zero() (sage.matrix.matrix_space.MatrixSpace method), 12
zero at() (sage.matrix.matrix double dense.Matrix double dense method), 349
zero matrix() (sage.matrix.matrix space.MatrixSpace method), 12
zigzag_form() (sage.matrix.matrix2.Matrix method), 238
```