Problem 2.9 - Uncertainty Analysis, Case B

Get["UCAnalysis.m", Path → {NotebookDirectory[]}]

$$\frac{\rho}{2} \left(\mathbf{v}_2^2 - \mathbf{v}_1^2 \right) \, \mathbf{D} \, \mathbf{L} \, \mapsto \, \begin{pmatrix} \mathbf{v}_2 & 220 \pm 0.5 & \text{Uniform} \mathcal{D} \\ \mathbf{v}_1 & 180 \pm 0.5 & \text{Uniform} \mathcal{D} \\ \rho & 1.0 \pm 0.05 & \text{Uniform} \mathcal{D} \\ \mathbf{D} & 3 \pm 0.5 & \text{Uniform} \mathcal{D} \\ \mathbf{L} & 8 \pm 0.5 & \text{Uniform} \mathcal{D} \end{pmatrix}$$

Evaluated Functional Relationship

QAnalysisEnvironment

$$y = \frac{1}{2} (x_1^2 - x_2^2) x_3 x_4 x_5$$

Variable		Uncertainty Interval	Distribution	∂f/∂x _i
x ₁ x ₂ x ₃	v ₂ v ₁ ρ	$(2.200 \pm 0.005) \times 10^{2}$ $(1.800 \pm 0.005) \times 10^{2}$ $(1.00 \pm 0.05) \times 10^{0}$	Uniform Uniform Uniform	5.28×10^{3} 4.32×10^{3} 1.92×10^{5}
X 4 X 5	D L	$(3.0 \pm 0.5) \times 10^{0}$ $(8.0 \pm 0.5) \times 10^{0}$	Uniform Uniform	6.4×10^4 2.4×10^4

У	192 000	
Ymin Ymax	138 937.5 256 147.5	= y - 53062.5 = y + 64147.5
ε_{max} y ± ε_{max}	58400 $(1.9\pm0.6)\times10^5$	= 30.4% = $1.9(6) \times 10^5$
u _c y ± u _c	$20589.60255404 \\ \left(1.9 \pm 0.2\right) \times 10^{5}$	= 10.7% = $1.9(2) \times 10^5$

Absolute Maximum Uncertainty

$$\varepsilon_{\text{max}} = \sum_{i=1}^{n} |\partial_{x_i} f[x]| \varepsilon_i; f[x] \pm \varepsilon_{\text{max}} // \text{QUCE}$$

```
192 000 ± 58 400

\in [133600; 250400]

\simeq (1.9 \pm 0.6) \times 10^5 = 1.9(6) \times 10^5
```

Combined Standard Uncertainty

$$u_c = \left(\sum_{i=1}^{n} (\partial_{x_i} f[x])^2 u_i^2\right)^{1/2}; f[x] \pm u_c // QUCA$$

```
192 000 ± 20 589.6

\in [171 410; 212 590]

\simeq (1.9 \pm 0.2) \times 10^5 = 1.9(2) \times 10^5
```

Monte Carlo Simulation

```
Block \left\{ data, trials = 10^6 \right\},
  data = f@@ Table[RandomReal[fDist[i], {trials}], {i, 1, n}];
  Mean[data] ± StandardDeviation[data] ] // QUCA
   192 037.424209331 ± 20 608.6
     € [171 430; 212 650]
    \simeq (1.9 \pm 0.2) \times 10^5 = 1.9(2) \times 10^5
```