Análisis y Diseño de Algoritmos

Carlos Eduardo Atencio Torres Universidad Nacional de San Agustín mailto: catencio@episunsa.edu.pe

Empezamos: Ordenación

A[1..n] es creciente si $A[1] \leq ... \leq A[n]$.

Problema

Ordenar un arreglo A[1..n] de modo que quede en forma creciente.

Empezamos: Ordenación

A[1..n] es creciente si $A[1] \leq ... \leq A[n]$.

Problema

Ordenar un arreglo A[1..n] de modo que quede en forma creciente.

Entra

Empezamos: Ordenación

A[1..n] es creciente si $A[1] \leq ... \leq A[n]$.

Problema

Ordenar un arreglo A[1..n] de modo que quede en forma creciente.

Entra

Sale 1

11 22 22 33 33 33 44 55 55 77 99

Clave = 38

Borrador

Clave = 38

Clave = 38

1					i	j				n
20	25	35	40	44	55	38	99	10	65	50

1			i		j				n
20	25	35	40	44	55	99	10	65	50

difundir

Clave = 38

Clave = 38

Carlos Eduardo Atencio Torres Universida

Clave	1							j			n	
99	20	25	35	38	40	44	55	99	10	65	50	

Borrador

Clave	1								j		n
10	20	25	35	38	40	44	55	99	10	65	50

ORDENA-POR-INSERCION(A,n)

- 1: para $j \leftarrow 2$ hasta n hacer
- 2: $clave \leftarrow A[j]$
- 3: $i \leftarrow j 1$
- 4: mientras $i \ge 1$ AND A[i] > clave hacer
- 5: $A[i+1] \leftarrow A[i]$, \triangleright Haciendo campo
- 6: $i \leftarrow i 1$
- 7: $A[i+1] \leftarrow clave$, \triangleright Insertando

Corrección del algoritmo

Para probar la correctitud de un algoritmo usamos invariantes.

Borrador

Corrección del algoritmo

Para probar la correctitud de un algoritmo usamos invariantes.

Invariante i0

En la línea 1, se cumple que A[1..j-1] es creciente.

Corrección del algoritmo

Para probar la correctitud de un algoritmo usamos invariantes.

Invariante i0

25

35

40

En la línea 1, se cumple que A[1..j-1] es creciente.

44

1 20

55 38

99 10

65

50

Conclusión

Suponiendo que i0 siempre es válida, cuando j sea n+1, se entiende que A[1..n] es creciente.

Más invariantes

En la línea 4 ocurren las siguientes invariantes:

- i1 A[1..i] y A[i+2..j] son crecientes
- $i2 A[1...i] \le A[i+2...i]$ son crecientes
- |A[i+2.j]| > |A[i+2.j]|
- i4 A[1..i] + A[i+2..j] + llave no cambian.

Llave

Concluyendo

Las demostraciones en un algoritmo iterativo siempre seguirán los siguientes pasos:

- Verificar que la relación vale al inicio de la primera iteración.
- Demostrar que si la relación vale al inicio de la iteración, entonces ella valdrá al final.
- O Demostrar que si la relación vale al inicio de la última iteración, entonces la relación junto a la condición de parada demuestran la correctitud del algoritmo.

Recordando el algoritmo de INSERCIÓN:

LINEAS 3-6(A,n)

- 3: $i \leftarrow j 1$
- 4: mientras $i \ge 1$ AND A[i] > clave hacer
- 5: $A[i+1] \leftarrow A[i]$
- 6: $i \leftarrow i 1$
- 7: $A[i+1] \leftarrow clave$

Contando las asignaciones para el caso máximo:

Recordando el algoritmo de INSERCIÓN:

LINEAS 3-6(A,n)

- $3: i \leftarrow i 1$
- 4: mientras $i \ge 1$ AND A[i] > clave hacer
- 5: $A[i+1] \leftarrow A[i]$
- 6: $i \leftarrow i 1$
- 7: $A[i+1] \leftarrow clave$

Contando las asignaciones para el caso máximo:

línea asignaciones 3 = 1

- 4
- 5
- 6

total

Recordando el algoritmo de INSERCIÓN:

LINEAS 3-6(A,n)

- 3: $i \leftarrow j 1$
- 4: mientras $i \ge 1$ AND A[i] > clave hacer
- 5: $A[i+1] \leftarrow A[i]$
- 6: $i \leftarrow i 1$
- 7: $A[i+1] \leftarrow clave$

Contando las asignaciones para el caso máximo:

línea asignaciones

$$3 = 1$$

$$4 = 0$$

- 5
- 6

total

Recordando el algoritmo de INSERCIÓN:

LINEAS 3-6(A,n)

- $3: i \leftarrow i 1$
- 4: mientras $i \ge 1$ AND A[i] > clave hacer
- 5: $A[i+1] \leftarrow A[i]$
- 6: $i \leftarrow i-1$
- 7: $A[i+1] \leftarrow clave$

Contando las asignaciones para el caso máximo:

línea asignaciones

$$4 = 0$$

$$4 = 0$$

$$5 \leq j-1$$

total

Recordando el algoritmo de INSERCIÓN:

LINEAS 3-6(A,n)

- $3: i \leftarrow i 1$
- 4: mientras $i \ge 1$ AND A[i] > clave hacer
- 5: $A[i+1] \leftarrow A[i]$
- 6: $i \leftarrow i-1$
- 7: $A[i+1] \leftarrow clave$

Contando las asignaciones para el caso máximo:

línea asignaciones

$$\begin{array}{ccc} 3 & = 1 \\ 4 & = 0 \end{array}$$

$$5 \leq j-1$$

$$6 \leq j-1$$

total
$$\leq 2$$
j-1 ≤ 2 n - 1

Asignaciones del Algoritmo ORDENA-POR-INSERCION

línea		Asignaciones (número máximo)
1	=	n-1+1
2	=	n-1016660000
3	=	n-1
4	=	0
5	\leq	1+2++(n-1)=n(n-1)/2
6	\leq	1+2++(n-1)=n(n-1)/2
7	=	n-1
total	<	$n^2 + 3n - 3$

• Suponiendo que cada línea de código consume 1 unidad de tiempo.

línea		Asignaciones (número máximo)
1	=	n
2	=	n-1
3	=	n-1
4	\leq	$2+3+\cdots+n=(n-1)(n+2)/2$
5	\leq	$1+2+\cdots+(n-1)=n(n-1)/2$
6	\leq	$1+2+\cdots+(n-1)=n(n-1)/2$
7		
total	\leq	

• Suponiendo que cada línea de código consume 1 unidad de tiempo.

línea		Asignaciones (número máximo)
1	=	n
2	=	n-1
3	=	n-1
4	\leq	$2+3+\cdots+n=(n-1)(n+2)/2$
5	\leq	$1+2+\cdots+(n-1)=n(n-1)/2$
6	<u> </u>	$1 + 2 + \cdots + (n - 1) = n(n - 1)/2$ $n - 1$
total	\leq	$(3/2)n^2 + (7/2)n - 4$

- Suponiendo que cada línea de código consume 1 unidad de tiempo.
- Suponiendo que cada línea consume un tiempo t_i .

línea		Asignaciones (número máximo)	
1	=	n	$\times t_1$
2	=	n-1	x t ₂
3	=	n-1	× t ₃
4	\leq	$2+3+\cdots+n=(n-1)(n+2)/2$	× t ₄
5	\leq	$1+2+\cdots+(n-1)=n(n-1)/2$	$\mathbf{x} t_5$
6	\leq	$1+2+\cdots+(n-1)=n(n-1)/2$	x t ₆
7	1	n-1	$\times t_7$
total	\leq		

- Suponiendo que cada línea de código consume 1 unidad de tiempo.
- Suponiendo que cada línea consume un tiempo t_i .

línea		Asignaciones (número máximo)	
1	=	n $\times t_1$	
2	=	$n-1$ xt_2	
3	=	$n-1$ xt_3	
4	\leq	$2+3+\cdots+n=(n-1)(n+2)/2$ x t ₄	
5	\leq	$1+2+\cdots+(n-1)=n(n-1)/2$ xt ₅	
6		$ 1 + 2 + \cdots + (n-1) = n(n-1)/2 $	
total		$((t_4 + t_5 + t_6)/2) \times n^2 +$	
totai	_	**	
		$(t_1+t_2+t_3+t_4/2-t_5/2-t_6/2+t_7)\times n-$	
		$(t_2+t_3+t_4+t_7)$	

total =
$$((t_4 + t_5 + t_6)/2) \times n^2 + (t_1 + t_2 + t_3 + t_4/2 - t_5/2 - t_6/2 + t_7) \times n - (t_2 + t_3 + t_4 + t_7)$$

Reemplazando t_i por una constante, tenemos:

total =
$$((t_4 + t_5 + t_6)/2) \times n^2 + (t_1 + t_2 + t_3 + t_4/2 - t_5/2 - t_6/2 + t_7) \times n - (t_2 + t_3 + t_4 + t_7)$$

Reemplazando t_i por una constante, tenemos:

$$\begin{array}{c} c_1 \times n^2 + c_2 \times n + c_3 \\ \hline {\bf no \ cliffundlr} \end{array}$$

total =
$$((t_4 + t_5 + t_6)/2) \times n^2 + (t_1 + t_2 + t_3 + t_4/2 - t_5/2 - t_6/2 + t_7) \times n - (t_2 + t_3 + t_4 + t_7)$$

Reemplazando t_i por una constante, tenemos:

$$c_1 \times n^2 + c_2 \times n + c_3$$

- c_1, c_2, c_3 dependen del computador.
 - n^2 se repetirá siempre, es algo propio del algoritmo.

Notación Asintótica

Intuitivamente...

$$O(f(n)) \approx$$
 Funciones que no crecen más rápido que $f(n)$ \approx Funciones menores o iguales a un múltiplo de $f(n)$ $n^2 100n^2 + 0.00000001 n^2/9378$ etc.

- $n^2 + 3n 5$ tiene el mismo crecimiento asintótico que n^2
- $n^2 + 3n 5$ no crece más rápido que n^2
- $n^2 + 3n 5$ es $O(n^2)$
- $n^2 + 3n 5 = O(n^2)$
- $n^3 + n^2 18n + 65$ No es $O(n^2)$

Ejercicio 1

En función de n, cuanto vale S al final del siguiente algoritmo?

- 1: **S** ← 0
- 2: **para** $i \leftarrow 2$ hasta n 2 **hacer**
- 3: **para** $j \leftarrow i$ hasta n hacer
- 4: $S \leftarrow S + 1$

Ejercicio 1

En función de n, cuanto vale S al final del siguiente algoritmo?

- 2: $para i \leftarrow 2 hasta n 2 hacer$
- 3: **para** $j \leftarrow i$ hasta n hacer
- 4: $S \leftarrow S + 1$

Solución

$$5 = (1/2)n^2 - (1/2)n - 3$$

Ejercicio 2

En función de n, cuanto vale S al final del siguiente algoritmo?. Responda con una cota superior cercana.

- 1: **S** ← 0
- 2: $i \leftarrow n$
- 3: mientras i > 0 hacer
- 4: **para** $j \leftarrow 1$ hasta i **hacer**
- 5: **S** ← **S** + **1**
- 6. $i \leftarrow \lfloor i/2 \rfloor$

Ejercicio 3

Para el siguiente algoritmo que recibe un arreglo A, se pide el número de...

- Asignaciones, y
- Comparaciones.
- 1: $s \leftarrow 0$
- 2: **para** $i \leftarrow \text{hasta } n \text{ hacer}$
- 3: $s \leftarrow s + A[i]$
- 4: $m \leftarrow s/n$
- 5: $k \leftarrow 1$
- 6: $para i \leftarrow 2 hasta n hacer$
- 7: $si (A[i] m)^2 < (A[k] m)^2$ entonces
- 8: $k \leftarrow i$

Borrador