# Kapittel 16: Resonnering i modeller

Skrevet av Mohammad Fadel Al Khafaji

(。•`∪-)♦

Nettkurs

Boka

#### Logisk ekvivalens

To lukkede førsteordens formler  $\varphi$  og  $\psi$  er **ekvivalente** hvis enhver modell som gjør  $\varphi$  sann, også gjør  $\psi$  sann, og vice versa.

- Alle gyldige formler er ekvivalente med hverandre .
- Alle kontradiktoriske formler er ekvivalente med hverandre.

For enhver modell M, vil  $M \vDash \varphi$  hvis og bare hvis  $M \vDash \psi$ . Vi skriver  $\varphi \Leftrightarrow \psi$  når phi og psi er ekvivalente.

#### Logisk konsekvens

La M være en mengde av lukkede førsteordens formler, og la  $\varphi$  være en lukket førsteordens formel. Hvis  $\varphi$  er sann i enhver modell som gjør alle formlene i M sanne samtidig, er  $\varphi$  en **logisk konsekvens** av formlene i M.

- Vi skriver  $M \vDash \varphi$  når phi er en logisk konsekvens av **M**.
- En gyldig formel er en logisk konsekvens av alle formler.
- Alle formler er en logisk konsekvens av en kontradiksjon.

// M her står for mengde og ikke modell

#### Kvantorer og negasjon

 $\neg \forall \Leftrightarrow \exists \neg$ 

 $\neg\exists \Leftrightarrow \forall x \neg$ 

#### **Eksempel:**

 $\neg \forall x \neg Px$  er ekvivalent med  $\exists x Px$ 

 $\neg \exists x \neg Px$  er ekvivalent med  $\forall x Px$ 

 $\exists x (Px \lor Qx)$  er ekvivalent med  $\exists x Px \lor \exists x Qx$ .

Hvis det finnes en som danser eller er glad, finnes det en som danser eller det finnes en som er glad, og vice versa.

 $\forall x (Px \land Qx)$  er ekvivalent med  $\forall x Px \land \forall x Qx$ .

Hvis alle danser og er glade, danser alle og alle er glade, og vice versa.

 $\forall x (Px \lor Qx)$  er *ikke* ekvivalent med  $\forall x Px \lor \forall x Qx$ .

Alle er menn eller kvinner, men det er ikke slik at alle er menn eller alle er kvinner.

 $\exists x (Px \land Qx)$  er *ikke* ekvivalent med  $\exists x Px \land \exists x Qx$ .

Det finnes et partall og det finnes et oddetall, men det finnes ikke noe som både er partall og oddetall.

### Et logisk kvadrat

Øverst: universelle påstander

Nederst: eksistensielle påstander

Venstre side: positive påstander

Høyre side: negative påstander

Røde piler: negasjoner



Diagrammet viser sammenhengen mellom fire forskjellige påstander



## Teorier, aksiomer og teoremer

I førsteordens logikk er en **teori** en mengde med formler. Formlene i en teori kalles **aksiomer**. Alle logiske konsekvenser av teorien kalles **teoremer**.