Advanced NN Architectures

Attention

Learning goals

- Understand attention mechanism
- Learn the different types of attention

ENCODER-DECODER WITH RNNS

©

OTHER ENCODER-DECODER APPLICATIONS

- Text summarization
- Text generation
- Keyword generation
- Automatic speech recognition
- Subtitle generation
- Question answering
- Named entity recognition
- Video or image captioning
- Part-of-speech tagging
- ...more

LIMITATIONS OF RNNS

- In an RNN, at a given point in time j, the information about all past inputs $x^{(1)} \dots x^{(j)}$ is "crammed" into the state vector $\vec{h}^{(j)}$ (and $\vec{c}^{(j)}$ for an LSTM)
- So for long sequences, the state becomes a bottleneck
- Especially problematic in encoder-decoder models (e.g., for Machine Translation)
- Solution: Attention (Bahdanau et al., 2015) an architectural modification of the RNN encoder-decoder that allows the model to "attend to" past encoder states

ATTENTION: THE BASIC RECIPE (1)

Ingredients:

- ullet One query vector: $\mathbf{q} \in \mathbb{R}^{d_q}$
- J key vectors: $\mathbf{K} \in \mathbb{R}^{J \times d_k}$; $(\vec{k}_1 \dots \vec{k}_J)$
- J value vectors: $\mathbf{V} \in \mathbb{R}^{J \times d_v}$; $(\vec{v}_1 \dots \vec{v}_J)$
- Scoring function $a: \mathbb{R}^{d_q} \times \mathbb{R}^{d_k} \to \mathbb{R}$
 - Maps a query-key pair to a scalar ("score")
 - a may be parametrized by parameters θ_a

ATTENTION: THE BASIC RECIPE (2)

• Step 1: Apply a to \vec{q} and all keys \vec{k}_j to get scores (one per key):

$$\vec{e} = \begin{bmatrix} e_1 \\ \vdots \\ e_J \end{bmatrix} = \begin{bmatrix} a(\vec{q}, \vec{k}_1; \theta_a) \\ \vdots \\ a(\vec{q}, \vec{k}_J; \theta_a) \end{bmatrix}$$

 Step 2: Turn e into a probability distribution with the softmax function

$$\alpha_j = \frac{\exp(\mathbf{e}_j)}{\sum_{j'=1}^J \exp(\mathbf{e}_{j'})}$$

• Note that $\sum_{j} \alpha_{j} = 1$

ATTENTION: THE BASIC RECIPE (3)

• Step 3: α -weighted sum over \vec{V} yields one d_{v} -dimensional output vector:

$$\vec{o} = \sum_{j=1}^{J} \alpha_j \vec{\mathbf{v}}_j$$

• Intuition: α_j is how much "attention" the model pays to \vec{v}_j when computing \vec{o} .

ATTENTION: AN ANALOGY (1)

- We have J weather stations on a map
- $\vec{K} \in \mathbb{R}^{J \times 2}$ are their geolocations (x,y coordinates)
- $\vec{V} \in \mathbb{R}^{J \times d_v}$ are their current weather conditions (temperature, humidity, etc.)
- ullet $ec{q} \in \mathbb{R}^2$ is a new geolocation for which we want to estimate weather conditions
- e_j is the relevance of the j'th station (e.g., $e_j = a(\vec{q}, \vec{k_j}) = \frac{1}{||\vec{q} \vec{k_j}||_2}$), and α_j is e_j as a probability

ATTENTION: AN ANALOGY (2)

• \vec{o} : a weighted sum of all known weather conditions, where stations that have a small distance (high α) have a higher weight

```
v=(33, 45, ...)
                                       v=(31, 49, ...) e=3.5
e=6.1 × α=0.027
                                    x α=0.37
                      o=(31.0, 48.0, ...)
                                                     v=(37, 44, ...)
x: q
                                     v=(30, 48, .x)<sup>α=0.068</sup>
                                     e = 6.5
x: \vec{k}_i
                                  \mathbf{x}^{\alpha=0.52}
                                                              v=(34, 50, ...)
                                                                                        v=(32, 45, ...)
                                                              e = 2.8
                                                           \alpha = 0.013
                                                                                        e = 1.9
                                                                                      \alpha = 0.0054
```

ATTENTION IN NEURAL NETWORKS (1)

- Contrary to our geolocation example, the \vec{q} , $\vec{k_j}$ and $\vec{v_j}$ vectors of a neural network are produced as a function of the input and some trainable parameters
- So the model learns which keys are relevant for which queries, based on the training data and loss function

Figure from Bahdanau et al. 2015: Neural Machine Translation by Jointly Learning to Align and Translate.

ATTENTION IN NEURAL NETWORKS (2)

- No (or few) assumptions are baked into the architecture (no notion of which words are neighbors in the sentence, sequentiality, etc.)
- The lack of prior knowledge often means that the Transformer requires more training data than an RNN/CNN to achieve a certain performance
- But when presented with sufficient data, it usually outperforms them
- After Christmas: Transfer learning as a way to pretrain Transformers on lots of data

THE TRANSFORMER ARCHITECTURE (1)

- The Bahdanau model is still an RNN, just with attention on top.
- Architecture that consists of attention only: Transformer (Vaswani et al. (2017), "Attention is all you need")

THE TRANSFORMER ARCHITECTURE (2)

Figure from Vaswani et al. 2017: Attention is all you need

CROSS-ATTENTION AND SELF-ATTENTION

- We can use attention on many different "things", including:
 - The pixels of images
 - The nodes of knowledge graphs
 - The words of a vocabulary
- Here, we focus on scenarios where the query, key and value vectors represent tokens (e.g., words, characters, etc.) in sequences (e.g., sentences, paragraphs, etc.).
- Cross-attention:
 - Let $X = (x_1 \dots x_{J_x}), Y = (y_1 \dots y_{J_y})$ be two sequences (e.g., source and target in a sequence-to-sequence problem)
 - The query vectors represent tokens in Y and the key/value vectors represent tokens in X ("Y attends to X")
- Self-attention:
 - There is only one sequence $X = (x_1 \dots x_J)$
 - The query, key and value vectors represent tokens in X ("X attends to itself")

CROSS-ATTENTION (1)

- Here, we describe cross-attention. Self-attention can easily be derived by assuming $\vec{X} = \vec{Y}$.
- Let $\vec{X} \in \mathbb{R}^{J_x \times d_x}$, $\vec{Y} \in \mathbb{R}^{J_y \times d_y}$ be representations of X, Y (e.g., stacked word embeddings, or the outputs of a previous layer)
- Let $\theta = \{\vec{W}^{(q)} \in \mathbb{R}^{d_y \times d_q}, \vec{W}^{(k)} \in \mathbb{R}^{d_x \times d_k}, \vec{W}^{(v)} \in \mathbb{R}^{d_x \times d_v}\}$ be trainable weight matrices
- We transform \vec{Y} into a matrix of query vectors:

$$\vec{Q} = \vec{Y} \vec{W}^{(q)}$$

• We transform \vec{X} into matrices of key and value vectors:

$$\vec{K} = \vec{X}\vec{W}^{(k)}$$
: $\vec{V} = \vec{X}\vec{W}^{(v)}$

CROSS-ATTENTION (2)

 To calculate the e scores (step 1 of the basic recipe), Vaswani et al. use a parameter-less scaled dot product instead of Bahdanau's complicated FFN:

$$e_{j,j'} = a(\vec{q}_j, \vec{k}_{j'}) = rac{\vec{q}_j^T \vec{k}_{j'}}{\sqrt{d_k}}$$

- Note: This requires that $d_q = d_k$
- Attention weights and outputs are defined like before (steps 2 and 3 of the basic recipe):

$$\alpha_{j,j'} = \frac{\exp(\boldsymbol{e}_{j,j'})}{\sum_{j''=1}^{J_x} \exp(\boldsymbol{e}_{j,j''})}$$
$$\vec{o}_j = \sum_{j'=1}^{J_x} \alpha_{j,j'} \vec{v}_{j'}$$

CROSS-ATTENTION (3)

Cross-attention

CROSS-ATTENTION (4)

Self-attention

PARALLELIZED ATTENTION (1)

- ullet We want to apply our attention recipe to every query vector \vec{q}_i
- We could simply loop over all time steps $1 \le j \le J_y$ and calculate each \vec{o}_i independently.
- ullet Then stack all $ec{o}_i$ into an output matrix $ec{O} \in \mathbb{R}^{J_y imes d_v}$
- But a loop does not use the GPU's capacity for parallelization
- So it might be unnecessarily slow

PARALLELIZED ATTENTION (2)

• Do some inputs (e.g., \vec{q}_j) depend on previous outputs (e.g., \vec{o}_{j-1})? If not, we can parallelize the loop into a single function:

$$\vec{O} = \mathcal{F}^{\mathrm{attn}}(\vec{X}, \vec{Y}; \theta)$$

- Attention in Transformers is usually parallelizable, unless we are doing autoregressive inference (more on that later).
- By the way: The Bahdanau model is not parallelizable in this way, because s_i (a.k.a. the query of the i + 1'st step) depends on c_i (a.k.a. the attention output of the i'th step), see last lecture:

The hidden state s_i of the decoder given the annotations from the encoder is computed by

$$s_i = (1 - z_i) \circ s_{i-1} + z_i \circ \tilde{s}_i,$$

where

$$\begin{split} \tilde{s}_i &= \tanh \left(W E y_{i-1} + U \left[r_i \circ s_{i-1} \right] + C c_i \right) \\ z_i &= \sigma \left(W_z E y_{i-1} + U_z s_{i-1} + C_z c_i \right) \\ r_i &= \sigma \left(W_r E y_{i-1} + U_r s_{i-1} + C_r c_i \right) \end{split}$$

PARALLELIZED SCALED DOT PRODUCT ATTENTION (1)

 Step 1: The parallel application of the scaled dot product to all query-key pairs can be written as:

$$ec{E} = rac{ec{Q}ec{K}^T}{\sqrt{d_k}}; \quad ec{E} \in \mathbb{R}^{J_y imes J_x}$$

$$\begin{array}{cccc}
\downarrow & & & \downarrow \\
queries & \vdots & \ddots & \vdots \\
\downarrow & & e_{J_y,1} & \dots & e_{J_y,J_x}
\end{array} = \frac{1}{\sqrt{d_k}} \begin{bmatrix} - & \vec{q}_1 & - \\ & \vdots & \\ - & \vec{q}_{J_y} & - \end{bmatrix} \begin{bmatrix} \downarrow & & \downarrow \\ \vec{k}_1 & \dots & \vec{k}_{J_x} \\ \downarrow & & & | \end{array}$$

PARALLELIZED SCALED DOT PRODUCT ATTENTION (2)

 Step 2: Softmax with normalization over the second axis (key axis):

$$\alpha_{j,j'} = \frac{\exp(\boldsymbol{e}_{j,j'})}{\sum_{j''=1}^{J_x} \exp(\boldsymbol{e}_{j,j''})}$$

>>> A = np.exp(E) / np.exp(E).sum(axis=-1, keepdims=Tru

- Let's call this new normalized matrix $\vec{A} \in (0, 1)^{J_y \times J_x}$
- The rows of \vec{A} , denoted $\vec{\alpha}_j$, are probability distributions (one $\vec{\alpha}_j$ per \vec{q}_i)

PARALLELIZED SCALED DOT PRODUCT ATTENTION (3)

• Step 3: Weighted sum

$$\vec{O} = \vec{A}\vec{V}; \vec{O} \in \mathbb{R}^{J_y \times d_v}$$

... AS A ONE-LINER

$$ec{O} = \mathcal{F}^{ ext{attn}}(ec{X}, ec{Y}; heta) = ext{softmax} \Big(rac{(ec{Y} ec{W}^{(q)}) (ec{X} ec{W}^{(k)})^T}{\sqrt{d_k}}\Big) (ec{X} ec{W}^{(
u)})$$

- GPUs like matrix multiplications → usually a lot faster than RNN!
- But: The memory requirements of \vec{E} and \vec{A} are $\mathcal{O}(J_yJ_x)$
- A length up to about 500 is usually ok on a medium-sized GPU (and most sentences are shorter than that anyway).
- But when we consider inputs that span several sentences (e.g., paragraphs or whole documents), we need tricks to reduce memory. These are beyond the scope of this lecture.