Carlos Arguedas Barahona

Ing. Eléctrica

Análisis de Sistemas Lineales

- Respuesta de la salida de un circuito RLC, cuya función de transferencia es la siguiente: $\frac{V_{out}(S)}{V_{in}(S)} = \frac{L*S^2}{L*S^2 + R*S + \frac{1}{C}}$
- Entradas:
 - 1. Impulso: 1
 - 2. Escalón unitario: $\frac{1}{S}$
 - 3. Rampa: $\frac{1}{S^2}$
- 1) Respuesta ante un impulso.

$$V_{out}(S) = \frac{L * S^2}{L * S^2 + R * S + \frac{1}{C}} * 1$$

$$= V_{out}(S) = \frac{L * S^2}{L * S^2 + R * S + \frac{1}{C}}$$

Aplicamos fracciones parciales donde valores a L, R y C, para esto también utilizamos la aplicación Wolfram Alpha.

L= 1mH

 $R=1k\Omega$

C=1µF

Aplicando fracciones parciales obtenemos que:

Ahora aplicamos la transformada inversa de Laplace a los términos resultantes de las fracciones parciales:

Obteniendo las gráficas para la respuesta de una señal de impulso ante la función de transferencia de la siguiente forma.

2) Respuesta ante un escalón unitario.

$$V_{out}(S) = \frac{L * S^2}{L * S^2 + R * S + \frac{1}{C}} * \frac{1}{S}$$

$$= V_{out}(S) = \frac{L * S}{L * S^2 + R * S + \frac{1}{C}}$$

Aplicando fracciones parciales obtenemos que:

Ahora aplicamos la transformada inversa de Laplace a los términos resultantes de las fracciones parciales:

Obteniendo las gráficas para la respuesta de una señal de escalón unitario ante la función de transferencia de la siguiente forma.

3) Respuesta ante una rampa.

$$V_{out}(S) = \frac{L * S^2}{L * S^2 + R * S + \frac{1}{C}} * \frac{1}{S^2}$$

$$= V_{out}(S) = \frac{L}{L * S^2 + R * S + \frac{1}{C}}$$

Aplicando fracciones parciales obtenemos que:

Ahora aplicamos la transformada inversa de Laplace a los términos resultantes de las fracciones parciales:

Obteniendo las gráficas para la respuesta de una señal de escalón unitario ante la función de transferencia de la siguiente forma.

