Exercises 8

- 1. (Functor of points) Recall the Yoneda lemma: An object X is decided by the functor Hom(-,X). Conversely, from a functor F, we can try to find the object that represents it. (e.g. we have seen that the line bundles with n+1 section over X is represented by \mathbb{P}^n)
 - (a) For a set S, let P(S) be the set of subsets. Can you find the set that represents P? (i.e. find such set B s.t. $P(S) \cong \operatorname{Hom}_{\operatorname{Set}}(S,B)$)
 - (b) For a polynomial $f \in \mathbb{Z}[x,y]$. Let $h_f(\operatorname{Spec} R) = \{(x,y) \in R, f(x,y) = 0\}$. Can you find the scheme that represents h_f ?
 - (c) For any scheme X, denote X(R) for the $\operatorname{Hom}_{\operatorname{Sch}}(\operatorname{Spec} R, X)$. which is the functor of points. If X is a variety over an algebraically close field k, then show that X(k) corresponds to the set of close points.
 - (d) If X is a variety over \mathbb{C} , then show that there is a $\mathbb{Z}/2\mathbb{Z}$ action on $X(\mathbb{C})$, And the fix points are corresponds to $X(\mathbb{R})$
 - (e) Show that $X \times_Z Y(R) \cong X(R) \times_{Z(R)} Y(R)$. So we can define the fiber product $X \times_Z Y$ as the scheme represents $X(R) \times_{Z(R)} Y(R)$. But how can we find such a scheme?
- 2. * For topological space X, show that X is proper (i.e. $X \times Y \to Y$ is closed for any Y) iff X is compact. (More generally, for proper map $f: X \to Y$, for $y \in Y$, we have the fibre $f^{-1}(y)$ is compact)
- 3. * Recall the fact that holomorphic functions on compact Riemann surfaces are constant. Let k be an algebraically closed field, and let X be a connected reduced proper k-scheme. Then $\mathcal{O}_X(X) = k$.

¹find also these exercises on https://github.com/iamcxds/AG-exercise, you can skip a question with * if it is difficult.

²see more on https://stacks.math.columbia.edu/tag/01JF