Canonical Correlation Forests

Tom Rainforth, Frank Wood

{twgr,fwood}@robots.ox.ac.uk, <u>www.robots.ox.ac.uk/~twgr</u>

UNIVERSITY OF OXIGNATION OXIGNATI

Replacement for Random Forest

- Canonical correlation forests (CCFs) [1] are a new decision tree ensemble learning method for classification
- CCFs are composed of canonical correlation trees (CCTs) which use hyperplane splits based on canonical correlation components
- CCFs require no parameter tuning
- CCFs outperform both the state-of-art tree ensemble methods random forest (RF) [2] and rotation forest [3] significantly

Trees and Forests Review

- Decision trees hierarchically divide the input space and assign local models to the leafs
- Classical decision tree training algorithms greedily search the possible space of axisaligned unique splits
- Combining individual trees to form a forest improves performance

Canonical Correlation Analysis

 CCA [4] is used to give pairs of projections that maximise the correlation between the features X and the class labels Y

$$\{\Phi,\Omega\}=\operatorname{CCA}\left(X,Y\right)=\operatorname{argmax}_{a,b}\left(\operatorname{corr}\left(Xa,Yb\right)\right)$$

- $\min\left(\operatorname{rank}\left(X\right),\operatorname{rank}\left(Y\right)\right)$ pairs are produced by adding the constraint that new components are uncorrelated with previous components
- e.g.

$$\left\{ \begin{bmatrix} -2.11 & -2.49 \\ 0.52 & 0.93 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -1.34 & -2.49 \\ -2.28 & -0.38 \end{bmatrix} \right\} = CCA \begin{pmatrix} \begin{bmatrix} 1 & 0.5 \\ 2 & 2 \\ 3 & 4.5 \\ 4 & 8 \\ 5 & 12.5 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \right)$$

Unaffected by affine transformation or rotation

CCF Training

References

- [1] Tom Rainforth, and Frank Wood. Canonical Correlation Forests, 2015. Preprint and code available at http://robots.ox.ac.uk/~twgr
- [2] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
- [3] Juan Jose' Rodriguez, Ludmila I Kuncheva, and Carlos J Alonso. Rotation forest: A new classifier ensemble method. *Pattern Analysis and Machine Intelligence*, *IEEE Transactions on*, 28(10):1619–1630, 2006.
- [4] Magnus Borga. Canonical correlation: a tutorial. *On line tutorial* http://people.imt.liu.se/magnus/cca, 4, 2001.
- [5] Leo Breiman. Bagging predictors. *Machine learning*, 24(2):123–140, 1996.
- [6] Tin Kam Ho. The random subspace method for constructing decision forests. *Pattern*
- Analysis and Machine Intelligence, IEEE Transactions on, 20(8):832–844, 1998.
 [7] M. Lichman. UCI machine learning repository, 2013. https://archive.ics.uci.edu/ml/datasets.html

Coordinate Free Splitting

• CCTs allow non axis aligned partitions, $X\phi>s$ for features X, projection vector ϕ and split point s

Corresponding input space partionings with Bayes optimal decision surface in bold

Projection Bootstrap - A New Idea

- Instead of using tree bagging [5], perform CCA on a local bootstrap sample of the data
- Use all data points to select the split point and best projection in the projected space

Growing CCTs

- Randomly subsample features [6]
- On local bootstrap sample, carry out CCA between features and class labels
- Calculate best split in projected space using original data (projection bootstrapping)
- If no improvement is possible assign as leaf

Algorithm 2 GROWTREE 1: Inputs $X^j \in \mathbb{R}^{N^j \times D^r + D^b}$, $\mathcal{Y}^j \in \mathbb{I}^{N^j \times K}$, $\mathcal{D}^j \subseteq \{1, \dots, D^r + D^c\}$, $\lambda \in \mathbb{Z}^+, b \in \{\text{true}, \text{false}\}$ 2: Set current node index j to an unique node identifier (0 for root node) 3: Sample $\delta \subseteq \mathcal{D}^j$ by taking min $(\lambda, |\mathcal{D}^j|)$ samples without replacement from \mathcal{D}^j 4: While δ contains features without variation, eliminate these from \mathcal{D}^j and δ and resample 5: $\gamma = \delta$ mapped to the column indices of X^j in accordance with the 1-of-K encoding of X^c 6: **if** b **then** $\{X', \mathcal{Y}'\} \leftarrow \text{sample with replacement } N^j \text{ rows from } \{X_{(i, \gamma)}^j, \mathcal{Y}^j\}$ $f: \ \mathbf{else}\{X', \mathcal{Y}'\} \leftarrow \{X, \mathcal{Y}\} \ \mathbf{end} \ \mathbf{if}$ 8: if all rows in X' or Y' are identical then 9: **if** all rows in $X_{(-\infty)}^j$ or \mathcal{Y}^j are identical **then return** $[j, \emptyset, LABEL(\mathcal{Y}^j)]$ **end if** 10: $\{X', \mathcal{Y}'\} \leftarrow \{X^j_{(:,\gamma)}, \mathcal{Y}^j\}$ 12: if X' contains only two unique rows then $\mathcal{X}' = \text{UniqueRows}(X')$ 14: $\phi_{j(\gamma)} \leftarrow \mathcal{X}'_{(2,:)} - \mathcal{X}'_{(1,:)}, \quad \phi_{j(:\setminus \gamma)} \leftarrow 0$ $[A,\cdot] = \operatorname{CCA}(X',\mathcal{Y}')$ $R_{(\gamma,:)} \leftarrow A, \quad R_{(:\setminus \gamma,:)} \leftarrow 0$ $[\xi, s_i, gain] = FINDBESTSPLIT(U)$ 20: if gain ≤ 0 then return $[j, \emptyset, LABEL(\mathcal{Y}^j)]$ end if 21: $\phi_j = R_{(:,\xi)}$ 22: **end if** 23: $\tau_l = \left\{ n \in \left\{ 1, \dots, N^j \right\} : X_{(n,:)}^j \phi_j \le s_j \right\}, \ \tau_r = \left\{ 1, \dots, N^j \right\} \setminus \tau_l$ 24: $\left[\chi_{(j,1)}, \Psi_l, \Theta_l\right] = \text{GROWTREE}(X^j_{(\tau_l,:)}, \mathcal{Y}^j_{(\tau_l,:)}, \mathcal{D}^j, \lambda, b)$ 25: $\left[\chi_{(j,2)}, \Psi_r, \Theta_r\right] = \text{GROWTREE}(X^j_{(\tau_r,:)}, \mathcal{Y}^j_{(\tau_r,:)}, \mathcal{D}^j, \lambda, b)$ 26: $\psi_j = \{\chi_{(j,1)}, \chi_{(j,2)}, \phi_j, s_j\}$ 27: **return** $[j, \{\psi_j \cup \Psi_l \cup \Psi_r\}, \{\Theta_l \cup \Theta_r\}]$

CCFs have Smoother Decision Surfaces

Experiments

- 37 datasets [7]
- Compare against random forest, rotation forest and CCF-Bag which uses bagging instead of the projection bootstrap

	CCF	CCF-Bag	RF	Rotation Forest
CCF	-	2	2	7
CCF-Bag	18	-	1	14
RF	26	27	-	25
Rotation Forest	13	10	4	_

Number of significant victories column vs row at 1% level of Wilcoxon signed ranked test

Conclusions

- CCFs outperforms all other methods significantly
- Computationally less expensive than rotation forest and similar to RF
- Unaffected by correlation between features
- RF poor at dealing with such correlations
- Rotation forests can only adapt to global correlations
- New benchmark for out-of-box tree ensemble classification
- Concepts introduced apply to forest regression models

Results

Data set	K	N	D^c	D^r	CCF	CCF-Bag		RF		Rotation Forest	
Balance scale	3	625	0	4	91.06 ± 3.74	91.26 ± 3.48		83.81 ± 4.23	•	92.71 ± 3.43	0
Banknote	2	1372	0	4	$\textbf{100.00} \pm \textbf{0.00}$	$\textbf{100.00} \pm \textbf{0.00}$		99.28 ± 0.75	•	100.00 ± 0.00	
Breast tissue	6	106	0	9	71.58 ± 11.79	71.09 ± 12.38		69.03 ± 12.99	•	71.58 ± 12.70	
Climate crashes	2	360	0	18	$\textbf{94.17} \pm \textbf{4.04}$	93.56 ± 4.09	•	92.87 ± 4.18	•	94.04 ± 3.89	
Fertility	2	100	0	9	86.73 ± 9.38	86.47 ± 9.70		86.40 ± 9.78		$\textbf{87.67} \pm \textbf{8.78}$	
Heart-SPECT	2	267	0	22	$\textbf{82.84} \pm \textbf{7.13}$	81.98 ± 6.71	•	81.38 ± 7.27	•	82.49 ± 7.29	
Heart-SPECTF	2	267	0	44	81.46 ± 7.34	$\textbf{81.98} \pm \textbf{6.89}$		81.01 ± 6.71		81.23 ± 7.29	
Hill valley	2	1212	0	100	$\textbf{100.00} \pm \textbf{0.00}$	$\textbf{100.00} \pm \textbf{0.00}$		61.02 ± 4.34	•	93.74 ± 2.66	•
Hill valley noisy	2	1212	0	100	94.99 ± 1.85	94.38 ± 2.02	•	57.98 ± 4.41	•	88.75 ± 2.84	•
ILPD	2	640	0	10	71.97 ± 5.05	$\textbf{72.03} \pm \textbf{5.21}$		70.34 ± 4.95	•	70.98 ± 5.20	
Ionosphere	2	351	0	33	95.12 ± 3.63	94.38 ± 3.78	•	93.56 ± 3.89	•	94.30 ± 3.51	•
Iris	3	150	0	4	97.56 ± 3.89	$\textbf{97.69} \pm \textbf{3.78}$		94.93 ± 5.39	•	95.82 ± 5.10	•
Landsat satellite	2	6435	0	36	91.76 ± 1.08	91.30 ± 1.05	•	91.84 ± 1.01		92.19 ± 0.99	0
Letter	26	20000	0	16	$\textbf{97.75} \pm \textbf{0.33}$	97.42 ± 0.36	•	96.64 ± 0.38	•	97.52 ± 0.32	•
Libras	15	360	0	90	89.70 ± 4.75	88.65 ± 5.23	•	81.30 ± 5.97	•	90.28 ± 4.79	
MAGIC	2	19020	0	10	$\textbf{88.42} \pm \textbf{0.72}$	88.29 ± 0.72	•	88.15 ± 0.74	•	87.36 ± 0.72	•
Nursery	5	12960	0	8	99.96 ± 0.07	99.91 ± 0.11	•	99.67 ± 0.19	•	99.96 ± 0.06	
ORL	40	400	0	10304	97.82 ± 2.25	97.38 ± 2.75		97.55 ± 2.52		NaN \pm NaN	
Optical digits	10	5620	0	64	$\textbf{98.71} \pm \textbf{0.45}$	98.56 ± 0.46	•	98.35 ± 0.49	•	98.69 ± 0.40	
Parkinsons	2	195	0	22	93.90 ± 5.43	92.27 ± 6.01	•	90.97 ± 6.04	•	92.39 ± 5.44	•
Pen digits	10	10992	0	16	99.60 ± 0.19	99.54 ± 0.21	•	99.17 ± 0.29	•	99.51 ± 0.23	•
Polya	2	9255	0	169	78.82 ± 1.31	78.72 ± 1.28		78.72 ± 1.36		$\textbf{79.79} \pm \textbf{1.32}$	0
Seeds	3	210	0	7	$\textbf{95.21} \pm \textbf{4.73}$	94.57 ± 5.18	•	93.62 ± 5.23	•	95.14 ± 4.53	
Skin seg	2	245057	0	3	$\textbf{99.97} \pm \textbf{0.01}$	99.97 ± 0.01	•	99.96 ± 0.01	•	99.96 ± 0.01	•
Soybean	19	683	13	22	94.58 ± 2.94	94.18 ± 3.14	•	94.44 ± 3.08		94.40 ± 2.92	
Spirals	3	10000	0	2	99.73 ± 0.16	$\textbf{99.73} \pm \textbf{0.16}$		98.78 ± 0.33	•	98.98 ± 0.34	•
Splice	3	3190	60	0	96.90 ± 0.97	96.71 ± 1.12	•	96.88 ± 0.93		95.74 ± 1.18	•
Vehicle	4	846	0	18	$\textbf{82.69} \pm \textbf{3.93}$	82.68 ± 4.08		74.74 ± 4.64	•	79.09 ± 4.39	•
Vowel-c	11	990	2	10	99.06 ± 0.95	98.72 ± 1.08	•	97.35 ± 1.72	•	99.00 ± 0.95	
Vowel-n	11	990	0	10	98.01 ± 1.32	97.18 ± 1.64	•	96.75 ± 1.77	•	98.52 ± 1.23	0
Waveform (1)	3	5000	0	21	86.42 ± 1.58	$\textbf{86.52} \pm \textbf{1.49}$		85.04 ± 1.63	•	86.44 ± 1.56	
Waveform (2)	3	5000	0	40	86.64 ± 1.59	$\textbf{86.69} \pm \textbf{1.66}$		85.31 ± 1.66	•	86.64 ± 1.64	
Wholesale-c	2	440	1	7	91.48 ± 3.80	91.61 ± 3.99		$\textbf{91.92} \pm \textbf{4.09}$		91.44 ± 4.12	
Wholesale-r	3	440	0	7	69.44 ± 6.18	71.03 ± 6.27	0	71.05 ± 6.19	0	71.82 ± 6.19	0
Wisconsin cancer	2	699	0	9	96.71 ± 2.10	96.79 ± 1.96		96.87 ± 1.98		$\textbf{97.19} \pm \textbf{1.82}$	0
Yeast	2	1484	0	8	61.85 ± 4.04	62.72 ± 3.80	0	62.28 ± 4.07	0	62.75 ± 4.10	0
Zoo	7	101	0	16	96.73 ± 5.73	96.27 ± 6.19		95.20 ± 6.42	•	94.33 ± 6.70	•

Above: % test accuracy 15, 10-fold cross validations, best method in bold, ●/○ indicate CCF significantly better / worse at 1% level

Below: corresponding box plots

