Penetrate Sky

천체관측을 보조해주는 프로그램

컴퓨터학부 이동훈

Overview 개요

System Design 시스템 구성 요소

Version 1에 포함된 컴포넌트

Version 1에 포함된 컴포넌트

Penetrate Sky Date Location OBJECT Apply

Component – Crawler

 Su
 Mo
 Tu
 We
 Th
 Fr
 Sa

 4
 5
 6
 7
 8
 9
 10

 11
 12
 13
 14
 15
 16
 17

 18
 19
 20
 21
 22
 23
 24

 25
 26
 27
 28
 29
 30
 31

기능 (1): 구름 존재를 알 수 있는 데이터를 수집

- 입력1: 사용자로부터 당일기준 10일 이후까지의 날짜, 위치 입력

- 출력1: 입력 값 기준의 일기를 Decision Maker로 출력 이때 3일 간의 데이터와 3~10일 간의 데이터를 분류

입력1의 형식: yyyy-mm-dd 0600, 지역좌표(nx, ny) 저울특별지 🗸 하위지역선택 🗸

출력1의 형식: 구름의 양 - 1(맑음), 3(구름많음), 4(흐림) 강수형태 - 0(없음), 1(비), 2(비/눈), 3(눈), 5(빗방울), 6(빗방울, 눈날림), 7(눈날림)

1단계 ▼ 2단계 ▼ 3단계 ▼ 격자 X ▼ 격자 Y ▼ 대구광역시 북구 산격1동 89 91 대구광역시 북구 산격2동 89 91 대구광역시 북구 산격3동 89 91 대구광역시 북구 산격4동 89 91

Component – Crawler

기능 (2): 관측 대상과 태양, 지구의 태양계 위치를 가져옴

- 입력 2: 사용자로부터 관측 대상과 날짜 입력

- 출력 2: 태양, 지구, 관측 대상의 위치 데이터를 Visualizer, Decision Maker 로 전달

입력2의 형식: 태양계 행성(수성~해왕성, 달)의 id yyyy-mm-dd

출력2의 형식: 2차원 기준 좌표 값(x,y,z)

[id: 10] **Sun [Sol]**

[id:199] Mercury

[id:299] **Venus**

[id:399] **Earth**

[id:499] **Mars**

[id:599] Jupiter

[id:699] **Saturn**

[id:799] Uranus

Component – Decision Maker

기능 (1): 현재일기를 이용해 관측 가능 여부를 결정

- 입력 1: Crawler로부터 받은 일기 정보

- 출력 1: Substitute로 전달되는 관측 위치와 관측 가능 여부

입력 1의 형식: 구름의 양 - 1(맑음), 3(구름많음), 4(흐림) 강수형태 - 0(없음), 1(비), 2(비/눈), 3(눈), 5(빗방울), 6(빗방울, 눈날림), 7(눈날림)

출력 1의 형식: "가능 / 불가능"

Component – Decision Maker

기능 (2): 관측 대상의 좌표를 Numpy로 이각계산 후 관측 가능 여부를 결정

- 입력 2: Crawler로부터 받은 태양, 지구, 관측 대상의 위치 데이터

- 출력 2: Visualizer, Substitute로 전달되는 관측대상의 관측 가능 여부

입력 2의 형식: SEP(태양-지구-행성) 이각

출력 2의 형식: "가능 / 불가능"

Demo – Crawler, Decision Maker

```
PS C:\Users\이동훈\Desktop\project> python weather.py 2023-11-24 1900
구름의 양: 1, 강수형태: 0
관측을 권장합니다.
2023년11월24일 19시00분 대구광역시 산격1동 날씨 : 맑음
```

```
PS C:\Users\이동훈\Desktop\project> python object.py 499 2023-11-24
태양의 좌표: {'x': -1218861.064490905, 'y': -393658.721359742, 'z': 31705.70451517294}
지구의 좌표: {'x': 70164841.89526592, 'y': 128931200.8790419, 'z': 24118.47586721927}
관측대상의 좌표: {'x': -121627680.5660207, 'y': -195042245.8105704, 'z': -1094056.168649569}
499(id)과의 이각은 -1.7367424976007089°입니다.
관측이 가능합니다.
해가 뜨기 전 새벽 동쪽에서 관측됩니다.
```

Demo - Crawler, Decision Maker 검증

문제점

- 행성 관측 가능 여부에 대한 다양한 변수와 기준들

- 당일 기준 3일 이후부터의 예상 기후 정확성

앞으로의 구현 계획

- Visualizer: Web으로 입출력

- Redirector: 관측이 불가능한 경우 관측 위치 추천

- 출력값에 영향을 주는 외부 요인을 적용 (달의 밝기, 공전궤도, 일출과 일몰 등)

Penetrate Sky Date Location OBJECT Apply

추천하는 관측 장소는 "경상남도 김해시 가야테마로 161" "김해천문대" 입니다.

"화성" 과의 이각은 100° 입니다. 관측이 가능합니다. 18시경 동, 21시경 남동, 24시경 남, 3시경 남서, 6시경 서 다음 관측 가능 날짜는 "20xx년 xx월 xx일" 입니다.