Assignment 2 (Ch. 5-6)

Saturday, May 28, 2016

12:54 PM

5-5 Find the value of Q that makes the present

5-39 In order to improve evacuation routes out of New Orleans in the event of another major disaster such as Hurricane Katrina, the Louisiana Department of Transportation (L-DoT) is planning to construct an additional bridge across the Mississippi River. L-DoT is considering two alternatives: a suspension bridge and a cantilever bridge. The department uses an interest rate of 8% and plans a 50-year life for either bridge. Which design has the better PW?

tomato-peeling machines being considered

If the canning company uses an interest rate of 12%, which is the best alternative? I Tee XIDIAT to make your decision (Nata

for use in a canning plant.

	Suspension Bridge	Cantilever Bridge
Initial construction costs	\$585,000,000	\$470,000,000
Initial land acquisition costs	120,000,000	95,000,000
Annual O&M costs Annual growth in O&M	1,500,000 Growing 4%	2,000,000 Growing
Major maintenance (Year 25)	185,000,000	\$300,000 210,000,000
Salvage cost	30,000,000	27,000,000

If the canning company uses an interest rate of 12%, which is the best alternative? Use NPW to make your decision. (*Note*: Consider the least common multiple as the study period.)

	Machine A	Machine B	Machine C
First cost	\$52,000	\$63,000	\$67,000
Maintenance			
and operating			
costs	\$15,000	\$9,000	\$12,000
Annual benefit	\$38,000	\$31,000	\$37,000
Salvage value	\$13,000	\$19,000	\$22,000
Useful life			
(years)	4	6	12

5-79 Consider the following four alternatives. Three are "do something" and one is "do nothing."

	A	В	C	D
Cost	\$0	\$50	\$30	\$40
Net annual benefit	\$0	\$12	\$4.5	\$6
Useful life (years)	19	5	10	10

At the end of the five-year useful life of B, a replacement is not made. If a 10-year analysis period and a 10% interest rate are selected, which is the preferred alternative?

5-90 A treasury bond with a face value of \$5,000 and a coupon rate of 6% payable semi-annually was bought by Kirt when the market's nominal rate was 8%. The bond matures 20 years from now. What did Kirt pay for the bond?

the best option is to do nothing,

others have more cost than benifit.

$$NPW = FV(P_{F,i,n}) + r(FV)(P_{A,i,n})$$

$$i = \frac{8\%}{2} = 0.04 \qquad n = 20.2 = 40$$

$$r = \frac{6\%}{2} = 0.03$$

$$NPW = 5k(P_{F,0.04,40}) + 0.03(5k)(P_{A,0.04,40})$$

$$= 1.041k + 2.969k = 4010$$

6-9 For the diagram, compute the value of *D* that results in a net equivalent uniform annual worth (EUAW) of 0.

- Amanda and Blake have found a house, which because of a depressed real estate market costs only \$201,500. They will put \$22,000 down and finance the remainder with a 30-year mortgage loan from the Central Imperial Bank of Canada at 4.65% interest.
 - (a) How much is their monthly loan payment?
 - (b) How much interest will they pay in the second payment?
 - (c) They will also have the following expenses: property taxes of \$2,100, homeowners' insurance of \$1,625, and \$290 mortgage insurance (in case one of them dies before the loan is repaid, a requirement of the bank). These annual amounts are paid in 12 instalments and added to the loan payment. What will Amanda and

b)

(d) If they can afford \$1,200 a month, can Amanda and Blake afford this house?

Blake's full monthly cost be?

$$0.2774 \qquad 355.9 \qquad 0.8929$$

$$(A/p,0.12,5) \left[500(P/F,0.12,3) - D(P/F,0.12,1) - D(P/F,0.12,2) - D(P/F,0.12,4) - D(P/F,0.12,5) \right]$$

$$-1.5D(P/F,0.12,3) = 0$$

$$L_7 D = \left[89.86 \right]$$

N=30, i=4.65% nominal, comparate monthly annual effective interest =
$$(1+\frac{1}{12})^{12}-1=4.75\%$$
 monthly effective interest = $(1+\text{annual})^{12}-1=0.3875\%$

- a) monthly payment = (201.6k 22k)(A/p, 0.003875, 30.12)= 925.60
- c) 2100+1625+290=4015/45, 204(405/40) 120450
 monthly payment = (26.60 + 1204460 = 12260)

 (a/p, 0.003875, 30.12)

 d) no, they cannot, 728035k (9.0951260) month

6-43 Two possible routes for a power line are under study. Data on the routes are as follows:

	Around the Lake	Under the Lake
Length First cost Maintenance Useful life, in years Salvage value Yearly power loss Annual property taxes	15 km \$5,000/km \$200/km/yr 15 \$3,000/km \$500/km 2% of first cost	5 km \$25,000/km \$400/km/yr 15 \$5,000/km \$500/km 2% of first cost

= 19.73k under lake

If 7% interest is used, should the power line be routed around the lake or under the lake?

6-55 Consider the following three mutually exclusive alternatives:

	A	В	C
Cost Uniform annual	\$10,000	\$150,000	\$20,000
benefit Useful life, in years	\$1,000 ∞	\$1,762 20	\$5,548
7 7 7 6 6 1 3		11	20

Assuming that Alternatives B and C are replaced with identical replacements at the end of their useful lives, and an 8% interest rate, which alternative should be selected? Use an annual cash flow analysis in working this problem.

Option A

b/c infinite
$$A=Pi$$
, benefit - $cost = |k-10k(0.08)| = 200$

Option B

benefit - $cost = 1762 - 150k(A/p_0.08, 10) = -13.52 k$

Option C

benefit - $cost = 5548 - 20k(A/p_0.08, 5) = 538.90$

Choose option C