Introduction to R

Introduction to R

- 통계 계산과 그래픽을 위한 프로그래밍 언어이자 소프트웨어 환경
- R은 다양한 통계 기법과 수치 해석 기법을 지원함 (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, ...)
- R은 사용자가 제작한 패키지를 추가하여 기능을 확장할 수 있음. 핵심적인 패키지는 R과 함께 설치되며, **CRAN**(the **C**omprehensive **R A**rchive **N**etwork)을 통해 2017년 현재 10,000개 이상 의 패키지를 내려 받을 수 있음
- R의 또다른 강점은 그래픽 기능으로 수학 기호를 포함할 수 있는 출판물 수준의 그래프를 제공
- R은 윈도, 맥 OS 및 리눅스를 포함한 UNIX 플랫폼에서 이용 가능

Learning Path

1. Setting up: R & RStudio

An IDE that was built just for R

- Syntax highlighting, code completion, and smart indentation
- Execute R code directly from the source editor
- Quickly jump to function definitions

Bring your workflow together

- Integrated R help and documentation
- Easily manage multiple working directories using projects
- Workspace browser and data viewer

Powerful authoring & Debugging

- Interactive debugger to diagnose and fix errors quickly
- Extensive package development tools
- Authoring with Sweave and R Markdown

<u>Bayesian</u>	Bayesian Inference	<u>Genetics</u>	Statistical Genetics	<u>Pharmacokinetics</u>	Analysis of Pharmacokine tic Data
<u>ChemPhys</u>	Chemometrics and Comp utational Physics	<u>Graphics</u>	Graphic Displays & Dyn amic Graphics & Graphi c Devices & Visualizatio n	<u>Phylogenetics</u>	Phylogenetics, Especially Comparative Methods
<u>ClinicalTrials</u>	Clinical Trial Design, Moni toring, and Analysis	HighPerformanceCompu ting	High-Performance and P arallel Computing with R	<u>Psychometrics</u>	Psychometric Models and Methods
Cluster	Cluster Analysis & Finite Mixture Models	MachineLearning	Machine Learning & Sta tistical Learning	ReproducibleResearch	Reproducible Research
<u>Differential Equations</u>	Differential Equations	MedicalImaging	Medical Image Analysis	<u>Robust</u>	Robust Statistical Method s
<u>Distributions</u>	Probability Distributions	<u>MetaAnalysis</u>	Meta-Analysis	<u>SocialSciences</u>	Statistics for the Social Sc iences
Econometrics	Econometrics	<u>Multivariate</u>	Multivariate Statistics	<u>Spatial</u>	Analysis of Spatial Data
<u>Environmetrics</u>	Analysis of Ecological and Environmental Data	Natural Language Processi ng	Natural Language Process ing	<u>SpatioTemporal</u>	Handling and Analyzing S patio-Temporal Data
<u>ExperimentalDesign</u>	Design of Experiments (DoE) & Analysis of Expe rimental Data	<u>NumericalMathematics</u>	Numerical Mathematics	<u>Survival</u>	Survival Analysis
<u>ExtremeValue</u>	Extreme Value Analysis	<u>OfficialStatistics</u>	Official Statistics & Surve y Methodology	<u>TimeSeries</u>	Time Series Analysis
<u>Finance</u>	Empirical Finance	Optimization	Optimization and Mathe matical Programming	WebTechnologies	Web Technologies and Se rvices
				gR	gRaphical Models in R

3. Data Importing

4. Data Manipulation

Data Wrangling with dplyr and tidyr

Studio

Syntax - Helpful conventions for wrangling

:tbl df(iris)

Converts data to tbl class, tbl's are easier to examine than data frames. R displays only the data that fits onscreen:

glimpse(iris)

Information dense summary of tbl data.

View data set in spreadsheet-like display (note capital V).

1 51 3.5 14 0.2 2 4.9 3.0 14 0.2 1 3 4.7 1.2 13 0.2 1 4 6 1.1 1.5 0.2 1 5 5.0 3.6 1.4 0.2 1 6 5.4 3.9 1.7 0.4 7 4.6 3.4 1.4 0.3 1		0 0 7 N	ter	Q,			
2 4.9 3.0 1.4 0.2 1 3 4.7 3.2 1.3 0.2 1 4 4.6 3.1 1.5 0.2 1 5 5.0 3.6 1.4 0.2 1 6 5.4 3.9 1.7 0.4 1 7 4.6 3.4 1.4 0.3 1		Sepal.Length =	Sepal.Width :	PetalLength :	Petal Width	Specie	
3 4.7 3.2 1.3 0.2 1 4 4.6 3.1 1.5 0.2 1 5 5.0 3.6 1.4 0.2 1 6 5.4 3.9 1.7 0.4 1 7 4.6 3.4 1.4 0.3 1	1	5.1	3.5	1.4	0.2	setosa	
4 4.6 3.1 1.5 0.2 1 5 5.0 3.6 1.4 0.2 1 6 5.4 3.9 1.7 0.4 1 7 4.6 3.4 1.4 0.3 1	2	4.9	3.0	1.4	0.2	setosa	
5 5.0 3.6 1.4 0.2 1 6 5.4 3.9 1.7 0.4 1 7 4.6 3.4 1.4 0.3 1	3	4.7	3.2	1.3	0.2	setosa	
6 5.4 3.9 1.7 0.4 1 7 4.6 3.4 1.4 0.3	4	4.6	3.1	1.5	0.2	setosa	
7 4.6 3.4 1.4 0.3	5	5.0	3.6	1.4	0.2	setosa	
	6	5.4	3.9	1.7	0.4	560058	
8 5.0 3.4 1.5 0.2	7	4.6	3.4	1.4	0.3	560058	
	8	5.0	3.4	1.5	0.2	500058	

Passes object on left hand side as first argument (or . argument) of function on righthand side.

x %>% f(y) is the same as f(x, y) y %% f(x, ., z) is the same as f(x, y, z)

"Piping" with %>% makes code more readable, e.g.

iris %>% group_by(Species) %>% summarise(avg = mean(Sepal.Width)) %>% arrange(avg)

In a tidy

Tidy data complements R's vectorized operations. R will automatically preserve observations as you manipulate variables. No other format works as intuitively with R.

Reshaping Data - Change the layout of a data set

Tidy Data - A foundation for wrangling in R

gather(cases, "year", "n", 2:4) Gather columns into rows.

::separate(storms, date, c("y", "m", "d")) Separate one column into several.

tidyr::spread(pollution, size, amount) Spread rows into columns.

Combine vectors into data frame plyr::arrange(mtcars, mpg)

Order rows by values of a column

plyr::arrange(mtcars, desc(mpg)) Order rows by values of a column (high to low).

r::data_frame(a = 1:3, b = 4:6)

dplyr::rename(tb, y = year) Rename the columns of a data

Subset Observations (Rows) Subset Variables (Columns)

dplyr::filter(iris, Sepal, Length > 7)

Extract rows that meet logical criteria. dplyr::distinct(iris)

Remove duplicate rows.

dplyr::sample_frac(iris, 0.5, replace = TRUE)

Randomly select fraction of rows.

dplyr::sample_n(iris, 10, replace = TRUE)

Randomly select n rows. dplyr::slice(iris, 10:15)

Select rows by position. dplyr::top_n(storms, 2, date)

Select and order top n entries (by group if grouped data).

Logic in R - ?0	omparison, ?base	::Logic
Less than	!=	Not equal to
Greater than	%in%	Group membership
Equal to	is.na	Is NA
Less than or equal to	!is.na	Is not NA
Constant the second to	&. L. L. vor. anv. all	Double and a second and

dplyr::select(iris, Sepal.Width, Petal.Length, Species) Select columns by name or helper function.

Helper functions for select - ?select

select(iris, contains(".")) Select columns whose name contains a character string

select(iris, ends_with("Length"))

Select columns whose name ends with a character string.

select(iris, everything())

Select every column.

select(iris, matches(".t."))

Select columns whose name matches a regular expression.

select(iris, num_range("x", 1:5))

Select columns named x1, x2, x3, x4, x5. select(iris, one_of(c("Species", "Genus")))

Select columns whose names are in a group of names.

select(iris, starts_with("Sepal")) Select columns whose name starts with a character string.

select(iris, Sepal.Length:Petal.Width)

Select all columns between Sepal.Length and Petal.Width (inclusive).

select(iris, -Species)

Select all columns except Species.

Learn more with browseVignettes(package = c(*dolyr*, *tidyr*)) + dolyr 0.4.0+ tidyr 0.2.0 + Updated: 1/15

RStudio* is a trademark of RStudio, Inc. • CC BY RStudio • info@rstudio.com • 844-448-1212 • rstudio.com

devtools::install_github("rstudio/EDAWR") for data sets

5. Data Visualization

7. Reporting Results

Getting help and learning more

