0. Definition

- 1. \mathbb{S}^3 is a unit ball in \mathbb{R}^4
- 2. $\mathbb{SO}(3)$ is a group of 3D rotations
- 3. $\mathbb{SE}(3)$ is the group of 3D rigid transformations

1. Representations of Rotation

1. Euler angle: [roll, pitch, yow]

2. Quaternion: $q = [\omega, \vec{v}]$

• q and -q is identical in terms of rotation

3. Axis-angle: $[heta, ec{\omega}]$

4. Rotation-Matrix

Conversion between representations

1. Quaternion -> Axis-angle

• $\theta = 2 * arccos(\omega)$

•
$$\vec{\omega} = \frac{1}{\sin(\theta/2)} \vec{v}$$
 if $\theta \neq 0$ else 0

2. Axis-angle -> Quaternion

•
$$q = [cos(\theta/2), sin(\theta/2)\vec{\omega}]$$

3. Rotation-Matrix -> Axis-angle (restrict $heta \in (0,\pi)$)

•
$$\theta = arccos(1/2*(tr(R)-1))$$

•
$$[\vec{\omega}] = \frac{1}{2sin(\theta)}(R - R^T)$$

NOTE: $[\vec{\omega}]$ is the skew-symmetric matrix of $\vec{\omega}=(a,b,c)$, specifically,

$$[\vec{\omega}] = egin{bmatrix} 0 & -c & b \ c & 0 & -a \ -b & a & 0 \end{bmatrix}$$

 $[\vec{\omega}]$ has the following properties:

$$\circ \ [\vec{\omega}]^2 = [\vec{\omega}][\vec{\omega}]^T - ||\vec{\omega}||^2 I$$

$$|\vec{\omega}|^3 = -||\vec{\omega}||^2[\vec{\omega}]$$

4. Axis-angle -> Rotation-Matrix

$$ullet R=e^{[ec{\omega}] heta}=I+ heta[ec{\omega}]+rac{ heta^2}{2!}[ec{\omega}]^2+\cdots=I+[ec{\omega}]sin(heta)+[ec{\omega}]^2(1-cos(heta))$$

Compare: Rotation-Matrix and Quaternion

1. Storage:

· Quaternion: 4 floating-point

• Ratation-Matrix: 9 floating-point

2. Multiplication:

• Quaternion: 16 multiplications and 12 additions

• Rotation Matrix: 27 multiplications and 18 additions

3. Numerical Stability:

• Rotation Matrix can accumulate error during operation, including violating orthogonality. Hard to normalize.

• Quaternions: when normalized, maintain unit magnitude.

NOTE: How to Normalize Rotation Matrix and Quaternion?

• Rotation Matrix:

 Schmidt orthogonalization (bad for discarding information about the original axis, and manually privileging one axis over another)

 $\circ~$ Or use SVD, namely, R=USV, and change S so that

$$S' = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & det(UV^T) \end{bmatrix}$$

in case $||UV^T|| = -1$, US'V is the closest orthogonal matrix to R.

• Quaternion: divide by the magnitude, remember $qq*=w^2+ec{v}ec{v}^T$

2. Applications of Rotation Representations

Definition

- 1. distance of Rotations:
 - ullet the rotation that transforms R_1 to R_2 is $R_0=R_2R_1^{-1}$
 - the distance between R_1 and R_2 is $\theta(R_0)$ which is the angle in Axis-angle representation of R_0 , namely, $\theta = arccos(\frac{1}{2}(tr(R_0)-1))$.
- 2. distance of Quaternions:
 - the distance between $q_1 = (\omega_1, \vec{v_1})$ and $q_2 = (\omega_2, \vec{v_2})$ is the angle between their corresponding vectors, namely, $dist(q_1, q_2) = arccos(q_1 \cdot q_2) = arccos(w_1w_2 + \vec{v_1} \cdot \vec{v_2})$ (divided by the magnitudes of the quaternions if not unit-length).

NOTE: The distance of Rotations and distance of corresponding Quaternions are linearly related, only lacking a constant factor of 2. Actually,

$$egin{aligned} dist(R_1,R_2) &= angle \; of \; q_2q_1^* \; represented \; in \; Angle \; axis \; form \ &= 2arccos(Re(q_2q_1^*)) \ &= 2arccos(|q_1\cdot q_2|) \ &= 2min(dist(q_1,q_2),dist(q_1,-q_2)) \end{aligned}$$

Interpolation

- 1. Axis-angle: divide angle into N portions
- 2. Quaternion: Spherical Linear Interplation Interpolate the Great Circle
 - First find the angle between the two quaternions using the dot product, namely, $\psi = arccos(q_1 \cdot q_2)$
 - ullet the interpolated quaternion should be on the surface of the unit sphere: $q=\omega_1q_1+\omega_2q_2$
 - Assume $\langle q,q_1\rangle=\beta,\langle q,q_2\rangle=\alpha$, there are relations ships:

$$sineta/\omega_2=sin\psi$$
 $g_1\sin(1-t)\psi+g_2\sin t\psi$

 $sinlpha/\omega_1=sin\psi$

$$q(t)=rac{q_1\sin(1-t)\psi+q_2\sin t\psi}{sin\psi}\;,\;t\in[0,1]$$

Sampling

- 1. Random sample a variable from $\mathbb{N}(0,\mathbb{I}_{4\times 4})$ and normalize it to unit length. This is sampling a random quaternion. And given that distance between quaternions are linearly related to the distance between corresponding rotations, we can use this method to sample random rotations.
- 2. Uniformly sample from a Euler angle representation is not a uniformly sample from the rotation group.
- 3. Uniformly sample longitude and latitude on a sphere is not a uniformly sample from the rotation group. Actually the same span of latitude covers different area on the sphere, the closer to the equator, the larger.

3. Balancing all representations:

- · rotation matrices to define concepts
- · Euler angles to visualize rotations
- angle-axis representation to visualize rotations and calculate derivatives
- quaternion to write fast codes

NOTE: Using rotation matrices to represent rotations is better for training as it changes smoothly for slight transformations.