

Previously...

What we want to know

- Testing our physical understanding in Galactic scale
- Milky Way is an excellent test site!

• (Dynamical) Overview of our Milky Way

- Stellar Disc(s) & Spiral arms
 - Thin (younger) & Thick (older) Discs: Rotationally supported
 - Spiral arms: Very young & hot stars, HII gas; Density wave...?
- Bar & Bulge
 - Bar: Rotates with Pattern Speed; Funnels gas to the inner Galaxy
 - Boxy/Peanut Bulge: Dynamical origin from Bar
- Stellar Halo & Streams
 - Made of (very) old stars; Very low density; Velocity dispersion supported
 - Full of Streams resulted from tidal disruption of various satellite bodies in the halo
- (Dark Halo & Rotation curve) we will cover it today

Lecture 8

- (Dynamical) Overview of our Milky Way
 - Dark Halo & Rotation curve
- Various dynamical features
 - Virial Theorem
 - Kinematics & Dynamics
 - Stellar Orbit
 - Integrals-of-motion (Actions)

Dark Halo

Dark Halo

- The first "pocket" for galaxy building
- The most dominating component of the Galaxy ($\sim 10^{12}\,{
 m M}_{\odot}$)
- Usually described by power-law density profile
- Evidences (of Dark halo or dark matter in general):
 - Galactic Rotation curve: not Keplerian

- Gravitational lensing: implies the existence of invisible mass
- X-ray gas in galaxy clusters: too hot to be explained by the gravity of the visible matter alone
- Cosmic Microwave Background fluctuations: also require a substantial non-baryonic dark matter
- Large-scale structure formation and evolution needs a substantial amount of mass

Galactic Rotation curve

Rotation curve

- For a simplistic case, assume a spherical (symmetric) mass distribution, $M(r) = \int 4 \pi r^2 \rho(r) dr$
- For an object to stay in a circular orbit (e.g., v_R and $v_z \ll v_\phi$), the centripetal and gravitational forces need to be balanced

$$\Rightarrow \frac{m v(r)^2}{r} = \frac{G M(r) m}{r^2}, M(r) \text{ is mass inclosed in radius r}$$

$$\Rightarrow v_{circ}(r) = \sqrt{\frac{GM(r)}{r}}$$

- Now, close to the Galactic centre, assuming $\rho(\mathbf{r}) \sim \text{const}$. (homogeneous),

$$\Rightarrow$$
 M(r) = $\frac{4}{3}\pi r^3 \rho$, and,

 $\Rightarrow v_{circ}(r) = r\sqrt{\frac{4}{3}}\pi G\rho \text{ , so } v_{circ}(r) \propto r \text{ (solid body rotation)} \dots \text{ roughly right but only for the very inner region of the Galaxy...}$

- And then from Kepler's law, we get, $\Rightarrow v_{circ}(r) \propto \frac{1}{\sqrt{r}}$
- But this is very different from what we observe! The gravity from the visible mass is insufficient for the observed rotational velocity!
- More mass is required... something "invisible"... because we see a flat galactic rotation curve!

Galactic Rotation curve

Rotation curve

- _ To get the observed "flat" rotation curve, $v_{circ}(r) = \sqrt{\frac{GM(r)}{r}}$, we expect, $v_{circ}(r) = const$.
 - This requires $M(r) \propto r$
 - Consider a power-law density profile, $\rho(\mathbf{r}) = \rho_0 \left(\frac{\mathbf{r}}{\mathbf{r}_0}\right)^{-\alpha}$

$$\Rightarrow v_{\text{circ}}(\mathbf{r}) = \mathbf{r}^{1-\alpha/2} \sqrt{\frac{4 \pi G \rho_0 r_0^{\alpha}}{3-\alpha}}, \text{ with } \alpha < 3. \text{ (note that denominator is } 3-\alpha, \text{ since } \mathbf{M}(\mathbf{r}) = \int_0^{\mathbf{r}} 4 \pi r^2 \rho(\mathbf{r}) \, d\mathbf{r} \, d\mathbf{r}$$

- \Rightarrow $v_{circ}(r) = const.$ when $\rho(r) \propto r^{-2}$ (i.e., $\alpha = 2$, called isothermal sphere)
 - ...and indeed, $M(r) \propto r$
- There are variety of density profiles describing the dark matter halo (e.g., Hernquist, NFW)
- And indeed, the dark matter dominates at large radii!
- It also indicates us that dark matter wouldn't be found concentrated in the disc it would make the velocity dispersion very high! (making "visible" structure, i.e., disc dynamically "hot")
- Dark matter: non-collisional, not interacting by Electromagnetic nor Strong force, but by Gravity
 - Feels no pressure, no friction, won't dissipate energy! → will reach equilibrium under Virial Theorem! → won't collapse very dense

The Virial Theorem

Virtual Theorem

- For a star bound to a galaxy, we know its total energy is: $\langle T
angle + \langle U
angle < 0$, $\langle T
angle$ and $\langle U
angle$ are time averaged kinetic and potential energy

Consider the moment of inertia of this system,
$$I \equiv \sum_{i}^{N} m_i x_i \cdot x_i = \sum_{i}^{N} m_i x_i^2$$

$$\Rightarrow \dot{I} = \sum_{i}^{N} m_{i} (\dot{\mathbf{x}}_{i} \cdot \mathbf{x}_{i} + \mathbf{x}_{i} \cdot \dot{\mathbf{x}}_{i}) = 2 \sum_{i}^{N} m_{i} \dot{\mathbf{x}}_{i} \cdot \mathbf{x}_{i}$$

Now, we know the kinetic energy of the *i*th particle is $\frac{1}{2}$ m_i \dot{x}_i^2 . Also, \sum_{i}^{N} m_i $\ddot{x}_i \cdot x_i$ is related to the gravitational potential energy

$$\Rightarrow \ddot{I} = 2U + 4T$$

- And for the time averaged case

$$\Rightarrow \langle \ddot{I} \rangle = 2 \langle U \rangle + 4 \langle T \rangle$$

- Now, a system at dynamical equilibrium: the time-averaged moment of inertia, I, is constant, i.e., the second derivative is zero!

$$\Rightarrow 2 \langle T \rangle + \langle U \rangle = 0$$

- If we know the kinetic energy of the system (from the measured r.m.s. velocity dispersion) then we can estimate the system's total mass!

The Virial Theorem

- Virial Theorem A simple case
 - Let's imagine the circular orbit case:
 - For an object to stay in a circular orbit, the centripetal and gravitational forces need to be balanced

$$\Rightarrow \frac{m v^2}{r} = \frac{GMm}{r^2}$$

$$\Rightarrow m v^2 = \frac{GMm}{r^2}$$

_ We know the kinetic energy is $\frac{1}{2}$ m v^2 and potential energy is $-\frac{G\,M\,m}{r}$

$$\Rightarrow$$
 2T + U = 0

The Virial Theorem

- Virial Theorem can be used:
 - Systems of stars at a steady equilibrium state macroscopic properties do not change over time
 - Elliptical galaxies
 - Evolved globular clusters, e.g. globular clusters
 - Evolved galaxies clusters
- Virial Theorem cannot be used:
 - Systems of stars NOT at a steady equilibrium state
 - Merging galaxies
 - Newly formed star clusters
 - Clusters of galaxies that are still forming/still have infalling galaxies
- Virial theorem provides easy (...but rough) estimates on various key properties of the system (including the total mass)

Structural view

- Various perspectives...
 - Spatial distribution in configuration space (or even, on the sky)
 - substructure as a spatial correlation
 - not-so-smooth footprint, and complex selection function
 - Current kinematics: velocity components
 - distribution, mean, and dispersion
 - directly looking for currently "co-moving" groups (e.g., clustering in velocity space)

Structural view

- More "dynamic" perspective
 - Orbital parameters (e.g., energy, eccentricity, inclination from orbital integration)
 - Action-angle variables
 - a set of canonical coordinates on phase space
 - for a closed (& periodic) orbit, action, J, is constant (i.e., integrals-of-motion)
 - for an axisymmetric potential:
 - action variables can characterise the orbit of an object (e.g., star) in radial (J_R), azimuthal ($J_\phi=L_z$), and vertical (J_z) components
 - → what the orbit is
 - ullet angles are conjugate variables and constantly increase from 0 to 2π
 - → where on the orbit
 - adiabatic invariant
 - → stays approximately constant over the slow change of system (e.g., slow growth of the MW)
 - "phase mix" is not necessarily a problem!

