AULA 20: ESPAÇOS DE MEDIDA ABSTRATOS

Construímos uma família de subconjuntos do espaço euclidiano chamados de conjuntos Lebesque mensuráveis e definimos a medida de tais conjuntos; introduzimos uma classes geral de funções no espaço euclidiano chamadas de funções Lebesgue mensuráveis e definimos um conceito de integração para tais funções.

O objetivo deste capítulo é desenvolver uma teoria semelhante em um cenário abstrato.

σ -ÁLGEBRAS E ESPAÇOS MENSURÁVEIS

Definição 1. Dado um conjunto X, uma σ -álgebra sobre X é uma coleção \mathcal{B} de subconjuntos de X tal que

- $(1) \varnothing \in \mathcal{B}$
- (2) se $E \in \mathcal{B}$ então $E^{\complement} \in \mathcal{B}$, (3) se $\{E_n : n \ge 1\} \subset \mathcal{B}$ então $\bigcup_{n \ge 1} E_n \in \mathcal{B}$.

Um par (X, \mathcal{B}) , onde X é um conjunto (o espaço ambiente) e \mathcal{B} é uma σ -álgebra sobre X é chamado de espaço mensurável.

Os elementos de \mathcal{B} são ditos conjuntos \mathcal{B} -mensuráveis ou simplesmente, mensuráveis.

Observação 1. Note que o espaço ambiente $X=\varnothing^{\complement}\in\mathcal{B}$. Além disso, \mathcal{B} é fechada também com respeito a interseções enumeráveis: se $\{E_n : n \geq 1\} \subset \mathcal{B}$ então

$$\bigcap_{n\geq 1} E_n = \left(\bigcup_{n\geq 1} E_n^{\complement}\right)^{\complement} \in \mathcal{B}.$$

A seguir apresentamos alguns exemplos gerais de σ -álgebras.

Exemplo 1 (de σ -álgebras). Seja X um espaço ambiente.

- (1) A σ -álgebra trivial: $\mathcal{B} = \{\emptyset, X\}$.
- (2) A σ -álgebra discreta: $\mathcal{B} = 2^X = \{E : E \subset X\}.$
- (3) A σ-álgebra atômica. Dada uma partição

$$X = \bigsqcup_{\alpha \in \mathcal{I}} A_{\alpha}$$

de X em "átomos", seja

$$\mathcal{B} := \left\{ igcup_{lpha \in \mathcal{J}} A_lpha \colon \mathcal{J} \subset \mathcal{I}
ight\} \,.$$

Então \mathcal{B} é uma σ -álgebra (atômica). A prova deste fato é um exercício. Note que a σ -álgebra trivial é atômica, que corresponde à partição

$$X = \varnothing \sqcup X$$
.

enquanto a σ -álgebra discreta também é atômica, onde todos os singletons são átomos:

$$X = \bigsqcup_{x \in X} \{x\} .$$

(4) A σ -álgebra diádica de determinada geração. Dado $n \geq 0$, considere a partição de reta real \mathbb{R} em intervalos diádicos de geração n,

$$\mathbb{R} = \bigsqcup_{j \in \mathbb{Z}} \left[\frac{j}{2^n}, \, \frac{j+1}{2^n} \right)$$

e a σ -álgebra atômica $\mathfrak{D}_n(\mathbb{R})$ correspondente.

A mesma construção pode ser feita em \mathbb{R}^d , $d \geq 1$, usando caixas diádicas em vez de intervalos diádicos.

GERAÇÃO DE σ -ÁLGEBRAS

Dadas duas σ -álgebras \mathcal{B} e \mathcal{B}' , se $\mathcal{B} \subset \mathcal{B}'$ dizemos que \mathcal{B}' é mais fina do que \mathcal{B} , ou que \mathcal{B} é mais grosseira do que \mathcal{B}' .

Por exemplo, para todo $n \in \mathbb{N}$,

$$\mathfrak{D}_n(\mathbb{R}) \subset \mathfrak{D}_{n+1}(\mathbb{R}).$$

É fácil verificar que a interseção de qualquer família $\{\mathcal{B}_{\alpha}\}_{{\alpha}\in\mathcal{I}}$ de σ -álgebras sobre X também é uma σ -álgebra sobre X, o que nos permite introduzir o seguinte conceito.

Definição 2. Dada uma coleção \mathcal{F} de subconjuntos de um espaço ambiente X, seja

$$\sigma(\mathcal{F}) := \bigcap \{ \mathcal{B} : \mathcal{B} \supset \mathcal{F}, \, \mathcal{B} \text{ \'e uma } \sigma - \text{\'algebra} \} .$$

Então $\sigma(\mathcal{F})$ é uma σ -álgebra sobre X chamada a σ -álgebra gerada por \mathcal{F} . Ela é a menor (ou a mais grosseira) σ -álgebra que contém a coleção \mathcal{F} .

Note que $2^X \supset \mathcal{F}$ e como 2^X é uma σ -álgebra, a interseção de σ -álgebras acima é bem definida.

Definição 3 (a σ -álgebra de Borel). Denotamos por $\mathcal{B}(\mathbb{R}^d)$ a σ -álgebra gerada pela topologia do espaço euclidiano, ou seja,

$$\mathcal{B}(\mathbb{R}^d) := \sigma \left\{ U \subset \mathbb{R}^d \colon U \text{ aberto} \right\}.$$

Mais geralmente, dado um espaço topológico qualquer (X, \mathcal{T}) ,

$$\mathcal{B}(X) := \sigma(\mathcal{T}) = \sigma \{ U \subset X : U \text{ aberto} \}$$

é chamada a σ -álgebra de Borel do espaço (X, \mathcal{T}) .

Os conjuntos $E \in \mathcal{B}(X)$ são chamados de conjuntos borelianos.

Exemplo 2 (de conjuntos borelianos). Todos os conjuntos abertos, fechados, do tipo F_{σ} (i.e., uniões enumeráveis de conjuntos fechados), do tipo G_{δ} (i.e., interseções enumeráveis de conjuntos abertos) são conjuntos borelianos.

O mecanismo padrão para conjuntos. Considere uma coleção \mathcal{F} de subconjuntos de X é a σ -álgebra $\sigma(\mathcal{F})$ gerada por \mathcal{F} . Dada uma propriedade P sobre subconjuntos de X, para provar a afirmação

$$P(E)$$
 vale para todo $E \in \sigma(\mathcal{F})$

basta provar que:

- (1) P(E) vale para todo $E \in \mathcal{F}$;
- (2) A coleção

$$\mathcal{A} := \{ E \subset X \colon P(E) \text{ vale} \}$$

é uma σ -álgebra, ou seja,

- $\blacksquare P(\varnothing)$ vale,
- \blacksquare se P(E) vale, então $P(E^{\complement})$ vale,
- se $P(E_n)$ vale para todo $n \ge 1$ então $P(\bigcup_{n>1} E_n)$ vale.

Proposição 1. Sejam X e Y dois espaços topológicos e seja $f: X \to Y$ uma função contínua. Então para todo conjunto boreliano $E \in \mathcal{B}(Y)$, sua pré-imagem $f^{-1}(E) \in \mathcal{B}(X)$, i.e., ele é um conjunto boreliano em X.

Demonstração. Para provar a afirmação

$$f^{-1}(E) \in \mathcal{B}(X)$$
 para todo $E \in \mathcal{B}(Y)$

usamos o mecanismo padrão para conjuntos, lembrando que $\mathcal{B}(Y)$ é a σ -álgebra gerada pelos conjuntos abertos em Y.

- (1) Para todo conjunto aberto E in Y, como f é contínua, $f^{-1}(E)$ é aberto, então boreliano, ou seja, ele pertence a $\mathcal{B}(X)$.
- (2) Seja

$$\mathcal{A} := \left\{ E \in \mathcal{B}(Y) \colon f^{-1}(E) \in \mathcal{B}(X) \right\} .$$

Tem-se

- $\bullet f^{-1}(\varnothing) = \varnothing \in \mathcal{B}(X).$
- Se $E \in \mathcal{A}$ então $f^{-1}(E) \in \mathcal{B}(X)$. Como $\mathcal{B}(x)$ é uma σ -álgebra, $f^{-1}(E)^{\complement} \in \mathcal{B}(X)$ também. Mas $f^{-1}(E^{\complement}) = f^{-1}(E)^{\complement} \in \mathcal{B}(X)$, mostrando que $E^{\complement} \in \mathcal{A}$.
- Se $\{E_n : n \ge 1\}$ ⊂ \mathcal{A} então $f^{-1}(E_n) \in \mathcal{B}(X)$ para todo $n \ge 1$. Como $\mathcal{B}(X)$ é uma σ -álgebra, segue que

$$f^{-1}(\bigcup_{n\geq 1} E_n) = \bigcup_{n\geq 1} f^{-1}(E_n) \in \mathcal{B}(X),$$

mostrando que $\bigcup_{n>1} E_n \in \mathcal{A}$.

Observação 2. A σ -álgebra $\mathcal{B}(\mathbb{R}^d)$ de conjuntos borelianos do espaço euclidiano é estritamente mais grosseira de a de todos os conjuntos mensuráveis à Lebesgue, ou seja

$$\mathcal{B}(\mathbb{R}^d) \subsetneq \mathcal{L}(R^d)$$
.

De fato, todo conjunto aberto é Lebesgue mensurável, então a σ -álgebra $\mathcal{L}(\mathbb{R}^d)$ contém a σ -álgebra $\mathcal{B}(\mathbb{R}^d)$ geradas pelos conjuntos abertos.

O exercício seguinte fornece um exemplo de conjunto não boreliano mas ainda mensurável à Lebesgue. A construção descrita abaixo, baseada no conjunto de Cantor e na função "escada do diabo" de Cantor, será usada para obter vários outros contraexemplos.

Exercício 1. Sejam $\mathcal{C} \subset [0,1]$ o conjunto de Cantor e $c : [0,1] \to [0,1]$ a função de Cantor, Considere a função

$$f \colon [0,1] \to [0,2], \quad f(x) = x + c(x).$$

Então,

- (i) f é uma função contínua, sobrejetiva e (estritamente(crescente, portanto é bi-contínua.
- (ii) A imagem do conjunto de Cantor pela função f é mensurável e

$$m(f(\mathcal{C})) = 1$$
.

Por isso (usando um exercício anterior) existe um conjunto $n\tilde{a}o$ mensurável $\mathcal{N}\subset f(\mathcal{C})$.

(iii) Seja

$$E := f^{-1}(\mathcal{N}) \subset \mathcal{C}$$
.

Então E é mensurável à Lebesgue mas não é um conjunto boreliano.

Proposição 2. Cada uma das seguintes famílias de conjuntos gera a σ -álgebra de Borel $\mathcal{B}(\mathbb{R}^d)$:

- (i) A família de conjuntos abertos.
- (ii) A família de conjuntos fechados.
- (iii) A família de conjuntos compactos.

- $(iv)\ A\ família\ de\ bolas\ abertas\ (ou\ fechadas).$
- (v) A família de caixas (ou de caixas diádicas).

Demonstração. Exercício.