Filter Summary Report: TIA simple Z5 ZL

Generated by MacAnalog-Symbolix

December 4, 2024

Contents

1	Exa	amined $H(z)$ for TIA simple Z5 ZL: $\frac{Z_L(Z_5g_m-1)}{Z_5g_m+2Z_Lg_m+1}$,
2	HP		,
	BP 3.1	BP-1 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$,
4	LP		8
		BS-1 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$ BS-2 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$	
6	GE 6.1	$GE-1 \ Z(s) = \left(R_1, \ \infty, \ \infty, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right) $ $GE-2 \ Z(s) = \left(R_1, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right) $ $GE-3 \ Z(s) = \left(R_1 + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ R_L\right) $	(
	6.2	GE-2 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$	L(
	6.3	GE-3 $Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)$	L(
	6.4	GE-4 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)$	1
	6.5	GE-5 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, R_L\right)'$	L:

		GE-6 $Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)$	
	6.7	GE-7 $Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, R_L\right)$	12
		GE-8 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \infty, R_L\right)$	
7	\mathbf{AP}		13
3	INV	ALID-NUMER	14
	8.1	INVALID-NUMER-1 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$	14
		INVALID-NUMER-2 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$	
	8.3	INVALID-NUMER-3 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$	15
	8.4	INVALID-NUMER-4 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$	15
a	INX	$ m ^{\prime}ALID-WZ$	16
,		INVALID-WZ-1 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$	16
1.0	INI	ALID-ORDER	16
	10.1	INVALID-ORDER-1 $Z(s) = (R_1, \infty, \infty, \infty, \infty, R_L)$	16
	10.2	INVALID-ORDER-1 $Z(s) = (R_1, \infty, \infty, \infty, \infty, R_L)$	16
	10.3	INVALID-ORDER-3 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$	17
		INVALID-ORDER-4 $Z(s) = (R_1, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s})$	
	10.5	INVALID-ORDER-5 $Z(s) = (L_1 s, \infty, \infty, \infty, \infty, \infty, R_L)$	17
	10.6	INVALID-ORDER-6 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$	17
		INVALID-ORDER-7 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$	
		INVALID-ORDER-8 $Z(s) = (L_1 s, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s})$	
	10.9	INVALID-ORDER-9 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)'$	18
		0INVALID-ORDER-10 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$	
	10.1	1INVALID-ORDER-11 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	18
	10.1	2INVALID-ORDER-12 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$	18

10.13INVALID-ORDER-13 $Z(s) =$	$\left(L_1s, \infty, \infty\right)$	$\infty, \infty, \infty,$	$\frac{R_L \left(L_L s - L_L s + R_L \right)}{L_L s + R_L}$	$\left(\frac{+\frac{1}{C_L s}}{+\frac{1}{C_L s}}\right)$		 	 	 	 	19
10.14INVALID-ORDER-14 $Z(s) =$	>		`	/		 	 	 	 	19
10.15INVALID-ORDER-15 $Z(s) =$	$\left(\frac{1}{C_1 s}, \infty, \infty\right)$	∞ , ∞ , ∞ ,	$L_L s + \overline{c}$	$\left(\frac{1}{C_L s}\right)$		 	 	 	 	19
10.16INVALID-ORDER-16 $Z(s) =$	$\left(\frac{1}{C_1 s}, \infty, \infty\right)$	∞ , ∞ , ∞ ,	$\frac{L_L s}{C_L L_L s^2 +}$	$\overline{-1}$)		 	 	 	 	19
10.17INVALID-ORDER-17 $Z(s) =$	$\left(\frac{1}{C_1 s}, \infty, \infty\right)$	∞ , ∞ , ∞ ,	$L_L s + R$	$R_L + \frac{1}{C_L s}$		 	 	 	 	19
10.18INVALID-ORDER-18 $Z(s) =$	$\left(\frac{1}{C_1 s}, \ \infty, \ \infty\right)$	∞ , ∞ , ∞ ,	$\frac{1}{C_L s + \frac{1}{R_L}}$	$\left(\frac{1}{1+\frac{1}{L_L s}}\right)$.		 	 	 	 	20
10.19INVALID-ORDER-19 $Z(s) =$	$\left(\frac{1}{C_1 s}, \ \infty, \ \infty\right)$	∞ , ∞ , ∞ ,	$\frac{L_L s}{C_L L_L s^2 +}$	$\overline{1} + R_L$		 	 	 	 	20
10.20INVALID-ORDER-20 $Z(s) =$	$\left(\frac{1}{C_1 s}, \infty, \infty\right)$	∞ , ∞ , ∞ ,	$\frac{R_L \left(L_L s - L_L s + R_L\right)}{L_L s + R_L}$	$\left(\frac{+\frac{1}{C_L s}}{+\frac{1}{C_L s}}\right)$		 	 	 	 	20
10.21INVALID-ORDER-21 $Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1}, \right)$	$\infty, \infty, \infty,$	∞ , R_L)		 	 	 	 	20
10.22INVALID-ORDER-22 $Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1}, \right)$	$\infty, \infty, \infty,$	$\infty, \frac{1}{C_L s}$	$\left(\frac{1}{2}\right) \dots$		 	 	 	 	20
10.23INVALID-ORDER-23 $Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1}, \right. $	$\infty, \infty, \infty,$	∞ , R_L	$+\frac{1}{C_L s}$		 	 	 	 	21
10.24INVALID-ORDER- $24 Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1}, \right. $	$\infty, \infty, \infty,$	∞ , $L_L s$	$s + \frac{1}{C_L s}$		 	 	 	 	21
10.25INVALID-ORDER- 25 $Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1}, \right. $	$\infty, \infty, \infty,$	∞ , $\frac{1}{C_L I}$	$\left(\frac{L_L s}{L_L s^2 + 1}\right)$		 	 	 	 	21
10.26INVALID-ORDER-26 $Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	∞ , ∞ , ∞ ,	∞ , $L_L s$	$s + R_L +$	$\frac{1}{C_L s}$	 	 	 	 	21
10.27INVALID-ORDER-27 $Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1}, c\right)$	$\infty, \ \infty, \ \infty$	$, \infty, \overline{C_{L^{8}}}$	$\frac{1}{s + \frac{1}{R_L} + \frac{1}{L_L s}}$	$\left(\frac{1}{2}\right)$	 	 	 	 	21
10.28INVALID-ORDER-28 $Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	∞ , ∞ , ∞ ,	∞ , $\frac{1}{C_L I}$	$\frac{L_L s}{L_L s^2 + 1} + L$	$R_L\Big)$.	 	 	 	 	21
10.29INVALID-ORDER-29 $Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1}, c\right)$	$\infty, \ \infty, \ \infty$	$, \infty, \frac{R_L}{L_L}$	$\frac{\left(L_L s + \frac{1}{C_L s}\right)}{s + R_L + \frac{1}{C_L s}}$	$\left(\frac{1}{2}\right)$	 	 	 	 	22
10.30INVALID-ORDER-30 $Z(s) =$	$\left(R_1 + \frac{1}{C_1 s},\right)$	∞ , ∞ , ∞	$\infty, \ \infty, \ \frac{1}{C_L}$	$\left(\frac{1}{\sqrt{s}}\right)$		 	 	 	 	22
10.31INVALID-ORDER-31 $Z(s) =$	$\left(R_1 + \frac{1}{C_1 s},\right)$	∞ , ∞ , ∞	$0, \infty, \overline{C_L}$	$\frac{R_L}{R_L s+1}$		 	 	 	 	22
10.32INVALID-ORDER-32 $Z(s) =$	$\left(R_1 + \frac{1}{C_1 s},\right)$	∞ , ∞ , ∞	∞ , ∞ , R_I	$\left(1 + \frac{1}{C_L s}\right)$		 	 	 	 	22
10.33INVALID-ORDER-33 $Z(s) =$	$\left(R_1 + \frac{1}{C_1 s},\right)$	∞ , ∞ , ∞	∞ , ∞ , L_L	$\left(s + \frac{1}{C_L s} \right)$		 	 	 	 	22
10.34INVALID-ORDER-34 $Z(s) =$	$\left(R_1 + \frac{1}{C_1 s}, \right)$	∞ , ∞ , ∞	$0, \infty, \overline{C_L}$	$\frac{L_L s}{L_L s^2 + 1}$		 	 	 	 	23

10.35INVALID-ORDER-35 $Z(s) = ($	$\left(R_1 + \frac{1}{C_1 s}, \right. \infty$	∞ , ∞ , ∞ , ∞	$, L_L s + R_L$	$+\frac{1}{C_L s}$	 	 	 	 23
10.36INVALID-ORDER-36 $Z(s) = ($	$\left(R_1 + \frac{1}{C_1 s}, \right. \propto$	∞ , ∞ , ∞ , ∞	$0, \ \frac{1}{C_L s + \frac{1}{R_L} +}$	$\frac{1}{L_L s}$.	 	 	 	 23
10.37INVALID-ORDER-37 $Z(s) = ($					 	 	 	 23
10.38INVALID-ORDER-38 $Z(s) = ($	$\left(R_1 + \frac{1}{C_1 s}, \right. \propto$	∞ , ∞ , ∞ , ∞	$\circ, \frac{R_L \left(L_L s + \frac{1}{6}\right)}{L_L s + R_L + \frac{1}{6}}$	$\left(\frac{1}{C_L s}\right) \over \frac{1}{C_L s}$	 	 	 	 23
10.39INVALID-ORDER-39 $Z(s) = ($					 	 	 	 24
10.40INVALID-ORDER-40 $Z(s) = ($	$\left(L_1s + \frac{1}{C_1s}, \circ\right)$	∞ , ∞ , ∞ ,	$\infty, \frac{R_L}{C_L R_L s + 1}$)	 	 	 	 24
10.41INVALID-ORDER-41 $Z(s) = ($	$\left(L_1s + \frac{1}{C_1s}, \circ\right)$	∞ , ∞ , ∞ , ∞	∞ , $R_L + \frac{1}{C_L}$	$\left(\frac{1}{s}\right)$	 	 	 	 24
10.42INVALID-ORDER-42 $Z(s) = ($	$\left(L_1s + \frac{1}{C_1s}, \circ\right)$	∞ , ∞ , ∞ ,	∞ , $L_L s + \frac{1}{C_L}$	$\left(\frac{1}{\sqrt{s}}\right)$	 	 	 	 24
10.43 INVALID-ORDER-43 $Z(s)=\left(\right.$	$\left(L_1s + \frac{1}{C_1s}, \circ\right)$	$\infty, \infty, \infty, \infty$	∞ , $\frac{L_L s}{C_L L_L s^2 + 1}$	$_{ar{1}}\Big)$	 	 	 	 24
10.44INVALID-ORDER-44 $Z(s) = ($	$\left(L_1s + \frac{1}{C_1s}, \circ\right)$	∞ , ∞ , ∞ , ∞	∞ , $L_L s + R_L$	$_L + \frac{1}{C_L s}$	 	 	 	 24
10.45INVALID-ORDER-45 $Z(s) = 1$	$\left(L_1s + \frac{1}{C_1s}, \right)$	$\infty, \ \infty, \ \infty, \ $	∞ , $\frac{1}{C_L s + \frac{1}{R_L}}$	$\frac{1}{1+\frac{1}{L_L s}}$.	 	 	 	 25
10.46INVALID-ORDER-46 $Z(s) = ($	$(L_1s + \frac{1}{C_1s}, \circ)$	$\infty, \infty, \infty, \infty$	∞ , $\frac{L_L s}{C_L L_L s^2 + 1}$	$\left(\vec{1} + \vec{R_L} \right)$	 	 	 	 25
10.47INVALID-ORDER-47 $Z(s) = 1$	$\left(L_1s + \frac{1}{C_1s}, \right)$	$\infty, \ \infty, \ \infty, \ $	∞ , $R_L(L_L s + L_L s + R_L - R$	$\left(\frac{1}{C_L s}\right) \over \left(\frac{1}{C_L s}\right)$	 	 	 	 25
10.48INVALID-ORDER-48 $Z(s) = ($	/		\		 	 	 	 25
10.49INVALID-ORDER-49 $Z(s) = ($	$\left(\frac{L_1s}{C_1L_1s^2+1}, \ \infty\right)$	$, \infty, \infty, \infty$	$, \frac{R_L}{C_L R_L s + 1} \right)$		 	 	 	 25
10.50INVALID-ORDER-50 $Z(s) = ($	$\left(\frac{L_1s}{C_1L_1s^2+1}, \ \infty\right)$	$, \infty, \infty, \infty$	$, R_L + \frac{1}{C_L s}$)	 	 	 	 26
10.51 INVALID-ORDER-51 $Z(s)=\left(\right.$	$\left(\frac{L_1s}{C_1L_1s^2+1}, \ \infty\right)$	$, \infty, \infty, \infty$	$, L_L s + \frac{1}{C_L s}$	$\left(\frac{1}{8}\right)$	 	 	 	 26
10.52INVALID-ORDER-52 $Z(s) = ($	$\left(\frac{L_1s}{C_1L_1s^2+1}, \ \infty\right)$	$, \infty, \infty, \infty$	$, \frac{L_L s}{C_L L_L s^2 + 1}$)	 	 	 	 26
10.53INVALID-ORDER-53 $Z(s) = ($	$\left(\frac{L_1s}{C_1L_1s^2+1}, \ \infty\right)$	$, \infty, \infty, \infty$	$, L_L s + R_L$	$+\frac{1}{C_L s}$	 	 	 	 26
10.54INVALID-ORDER-54 $Z(s) = 1$	$\left(\frac{L_1s}{C_1L_1s^2+1}, \right. \propto$	∞ , ∞ , ∞ , ∞	$C_L s + \frac{1}{R_L} + \frac{1}{R_L}$	$\frac{1}{L_L s}$	 	 	 	 26
10.55INVALID-ORDER-55 $Z(s) = ($	$\left(\frac{L_1s}{C_1L_1s^2+1}, \infty\right)$	$, \infty, \infty, \infty$	$, \frac{L_L s}{C_L L_L s^2 + 1}$	$+R_L$).	 	 	 	 27
10.56INVALID-ORDER-56 $Z(s) = 1$	$\left(\frac{L_1s}{C_1L_1s^2+1}, \propto \right)$	∞ , ∞ , ∞ , ∞	$\sum_{L_L s + R_L + 1} \frac{R_L \left(L_L s + \frac{1}{C} \right)}{L_L s + R_L + 1}$	$\left(\frac{\frac{1}{C_L s}}{\frac{1}{C_L s}}\right)$.	 	 	 	 27

10.57INVALID-ORDER-57 $Z(s) =$	$\left(L_1s + R_1 + \frac{1}{C_1s}, \infty, \infty, \infty, \infty, \frac{1}{C_Ls}\right)$	27
10.58INVALID-ORDER-58 $Z(s) =$	$\left(L_1s + R_1 + \frac{1}{C_1s}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$	27
10.59INVALID-ORDER-59 $Z(s) =$	$\left(L_1s+R_1+\frac{1}{C_{1s}},\ \infty,\ \infty,\ \infty,\ \infty,\ R_L+\frac{1}{C_{Ls}}\right)$	27
	$\left(L_1s + R_1 + \frac{1}{C_1s}, \infty, \infty, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right) \dots \dots$	28
	$\left(L_1s + R_1 + \frac{1}{C_1s}, \infty, \infty, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$	28
10.62INVALID-ORDER- $62 Z(s) =$	$\left(L_1s + R_1 + \frac{1}{C_1s}, \infty, \infty, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$	28
10.63INVALID-ORDER-63 $Z(s) =$	$\left(L_1s + R_1 + \frac{1}{C_1s}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	28
10.64INVALID-ORDER-64 $Z(s) =$	$\left(L_1s + R_1 + \frac{1}{C_1s}, \infty, \infty, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$	28
10.65INVALID-ORDER-65 $Z(s) =$	$\left(L_1s + R_1 + \frac{1}{C_1s}, \infty, \infty, \infty, \infty, \infty, \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) \dots \dots$	29
10.66INVALID-ORDER-66 $Z(s) =$	$\left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	29
10.67INVALID-ORDER-67 $Z(s) =$	$\left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right) \dots $	29
10.68INVALID-ORDER-68 $Z(s) =$	$\left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right) \dots \dots$	29
10.69INVALID-ORDER-69 $Z(s) =$	$\left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right) \dots \dots$	29
10.70INVALID-ORDER-70 $Z(s) =$	$\left(\frac{1}{C_1s+\frac{1}{R_1}+\frac{1}{L_1s}}, \infty, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	30
10.71INVALID-ORDER-71 $Z(s) =$	$\left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right) \dots \dots$	30
10.72INVALID-ORDER-72 $Z(s) =$	$\left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right) \dots \dots$	30
10.73INVALID-ORDER-73 $Z(s) =$	$\left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right) \qquad \dots $	30
10.74INVALID-ORDER-74 $Z(s) =$	$\left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \dots $	30
10.75INVALID-ORDER-75 $Z(s) =$	$\left(\frac{L_1s}{C_1L_1s^2+1}+R_1,\ \infty,\ \infty,\ \infty,\ \infty,\ \frac{1}{C_Ls}\right) \dots $	31
10.76INVALID-ORDER-76 $Z(s) =$	$\left(\frac{L_1s}{C_1L_1s^2+1}+R_1, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$	31

10.77INVALID-ORDER-77 $Z(s) =$	$\left(\frac{L_1s}{C_1L_1s^2+1}+R_1, \ \infty,\right.$	∞ , ∞ , ∞ ,	$R_L + \frac{1}{C_L s}$)		 	 	31
10.78INVALID-ORDER-78 $Z(s) =$	$\left(\frac{L_1s}{C_1L_1s^2+1}+R_1, \ \infty,\right.$	∞ , ∞ , ∞ ,	$L_L s + \frac{1}{C_L s}$.		 	 	31
10.79INVALID-ORDER-79 $Z(s) =$	$\left(\frac{L_1s}{C_1L_1s^2+1}+R_1, \ \infty,\right.$	∞ , ∞ , ∞ ,	$\frac{L_L s}{C_L L_L s^2 + 1}$. 31
10.80INVALID-ORDER-80 $Z(s) =$	$\left(\frac{L_1s}{C_1L_1s^2+1} + R_1, \ \infty, \right.$	∞ , ∞ , ∞ ,	$L_L s + R_L + \frac{1}{C_L}$	$\left(\frac{1}{s}\right)$	 	 	31
10.81INVALID-ORDER-81 $Z(s) =$							
10.82INVALID-ORDER- $82 Z(s) =$	$\left(\frac{L_1s}{C_1L_1s^2+1} + R_1, \infty, \right.$	∞ , ∞ , ∞ ,	$\frac{L_L s}{C_L L_L s^2 + 1} + R_L$	$) \dots$	 	 	32
10.83INVALID-ORDER-83 $Z(s) =$	$\left(\frac{L_1s}{C_1L_1s^2+1}+R_1, \ \infty,\right.$	∞ , ∞ , ∞ ,	$\frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$		 	 	32

1 Examined H(z) for TIA simple Z5 ZL: $\frac{Z_L(Z_5g_m-1)}{Z_5g_m+2Z_Lg_m+1}$

$$H(z) = \frac{Z_L (Z_5 g_m - 1)}{Z_5 g_m + 2Z_L g_m + 1}$$

- 2 HP
- 3 BP
- 3.1 BP-1 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

$$H(s) = \frac{L_L s (R_4 g_m - 1)}{C_L L_L R_4 g_m s^2 + C_L L_L s^2 + 2L_L g_m s + R_4 g_m + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_L \sqrt{\frac{1}{C_L L_L}} (R_4 g_m + 1)}{2g_m} \\ \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ \text{bandwidth:} \ \frac{2g_m}{C_L (R_4 g_m + 1)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_4 g_m - 1}{2g_m} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.2 BP-2
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(R_4 g_m - 1\right)}{C_L L_L R_4 R_L g_m s^2 + C_L L_L R_L s^2 + L_L R_4 g_m s + 2L_L R_L g_m s + L_L s + R_4 R_L g_m + R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_L R_L \sqrt{\frac{1}{C_L L_L}} (R_4 g_m + 1)}{R_4 g_m + 2 R_L g_m + 1} \\ \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ \text{bandwidth:} \ \frac{R_4 g_m + 2 R_L g_m + 1}{C_L R_L (R_4 g_m + 1)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_L (R_4 g_m - 1)}{R_4 g_m + 2 R_L g_m + 1} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

4 LP

5 BS

5.1 BS-1
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(R_4 g_m - 1) (C_L L_L s^2 + 1)}{2C_L L_L g_m s^2 + C_L R_4 g_m s + C_L s + 2g_m}$$

$$\begin{array}{l} \text{Q:} \ \frac{2L_{L}g_{m}\sqrt{\frac{1}{C_{L}L_{L}}}}{R_{4}g_{m}+1} \\ \text{wo:} \ \sqrt{\frac{1}{C_{L}L_{L}}} \\ \text{bandwidth:} \ \frac{R_{4}g_{m}+1}{2L_{L}g_{m}} \\ \text{K-LP:} \ \frac{R_{4}g_{m}-1}{2g_{m}} \\ \text{K-HP:} \ \frac{R_{4}g_{m}-1}{2g_{m}} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_{L}L_{L}}} \end{array}$$

5.2 BS-2
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L\left(R_4 g_m - 1\right)\left(C_L L_L s^2 + 1\right)}{C_L L_L R_4 g_m s^2 + 2C_L L_L R_L g_m s^2 + C_L L_L s^2 + C_L R_4 R_L g_m s + C_L R_L s + R_4 g_m + 2R_L g_m + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_L\sqrt{\frac{1}{C_LL_L}}(R_4g_m + 2R_Lg_m + 1)}{R_L(R_4g_m + 1)} \\ &\text{wo: } \sqrt{\frac{1}{C_LL_L}} \\ &\text{bandwidth: } \frac{R_L(R_4g_m + 1)}{L_L(R_4g_m + 2R_Lg_m + 1)} \\ &\text{K-LP: } \frac{R_L(R_4g_m - 1)}{R_4g_m + 2R_Lg_m + 1} \\ &\text{K-HP: } \frac{R_L(R_4g_m - 1)}{R_4g_m + 2R_Lg_m + 1} \\ &\text{K-BP: } 0 \\ &\text{Qz: None} \\ &\text{Wz: } \sqrt{\frac{1}{C_LL_L}} \end{aligned}$$

6 **GE**

6.1 GE-1
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(R_4 g_m - 1) (C_L L_L s^2 + C_L R_L s + 1)}{2C_L L_L g_m s^2 + C_L R_4 q_m s + 2C_L R_L q_m s + C_L s + 2q_m}$$

$$\begin{aligned} &\text{Q: } \frac{2L_{L}g_{m}\sqrt{\frac{1}{C_{L}L_{L}}}}{R_{4}g_{m}+2R_{L}g_{m}+1} \\ &\text{wo: } \sqrt{\frac{1}{C_{L}L_{L}}} \\ &\text{bandwidth: } \frac{R_{4}g_{m}+2R_{L}g_{m}+1}{2L_{L}g_{m}} \end{aligned}$$

$$\begin{array}{l} \text{K-LP: } \frac{R_{4}g_{m}-1}{2g_{m}} \\ \text{K-HP: } \frac{R_{4}g_{m}-1}{2g_{m}} \\ \text{K-BP: } \frac{R_{L}(R_{4}g_{m}-1)}{R_{4}g_{m}+2R_{L}g_{m}+1} \\ \text{Qz: } \frac{L_{L}\sqrt{\frac{1}{C_{L}L_{L}}}}{R_{L}} \\ \text{Wz: } \sqrt{\frac{1}{C_{L}L_{L}}} \end{array}$$

6.2 GE-2
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{(R_4 g_m - 1) \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_4 g_m s^2 + 2C_L L_L R_L g_m s^2 + C_L L_L s^2 + 2L_L g_m s + R_4 g_m + 2R_L g_m + 1}$$

$$\begin{aligned} & \text{Q:} \ \frac{C_L \sqrt{\frac{1}{C_L L_L}} (R_4 g_m + 2 R_L g_m + 1)}{2 g_m} \\ & \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ & \text{bandwidth:} \ \frac{2 g_m}{C_L (R_4 g_m + 2 R_L g_m + 1)} \\ & \text{K-LP:} \ \frac{R_L (R_4 g_m - 1)}{R_4 g_m + 2 R_L g_m + 1} \\ & \text{K-HP:} \ \frac{R_L (R_4 g_m - 1)}{R_4 g_m + 2 R_L g_m + 1} \\ & \text{K-BP:} \ \frac{R_4 g_m - 1}{2 g_m} \\ & \text{Qz:} \ C_L R_L \sqrt{\frac{1}{C_L L_L}} \\ & \text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.3 GE-3
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_4 L_4 g_m s^2 - C_4 s + g_m \right)}{C_4 L_4 g_m s^2 + 2C_4 R_L g_m s + C_4 s + g_m}$$

Q:
$$\frac{L_4 g_m \sqrt{\frac{1}{C_4 L_4}}}{2R_L g_m + 1}$$

wo:
$$\sqrt{\frac{1}{C_4L_4}}$$
 bandwidth: $\frac{2R_Lg_m+1}{L_4g_m}$ K-LP: R_L K-HP: R_L K-BP: $-\frac{R_L}{2R_Lg_m+1}$ Qz: $-L_4g_m\sqrt{\frac{1}{C_4L_4}}$ Wz: $\sqrt{\frac{1}{C_4L_4}}$

6.4 GE-4
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_L \left(-C_4 L_4 s^2 + L_4 g_m s - 1 \right)}{2C_4 L_4 R_L q_m s^2 + C_4 L_4 s^2 + L_4 q_m s + 2R_L q_m + 1}$$

$$\begin{aligned} &\text{Q:} \ \frac{C_4 \sqrt{\frac{1}{C_4 L_4}} (2R_L g_m + 1)}{g_m} \\ &\text{wo:} \ \sqrt{\frac{1}{C_4 L_4}} \\ &\text{bandwidth:} \ \frac{g_m}{C_4 (2R_L g_m + 1)} \\ &\text{K-LP:} \ -\frac{R_L}{2R_L g_m + 1} \\ &\text{K-HP:} \ -\frac{R_L}{2R_L g_m + 1} \\ &\text{K-BP:} \ R_L \\ &\text{Qz:} \ -\frac{C_4 \sqrt{\frac{1}{C_4 L_4}}}{g_m} \\ &\text{Wz:} \ \sqrt{\frac{1}{C_4 L_4}} \end{aligned}$$

6.5 GE-5
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_4 L_4 g_m s^2 + C_4 R_4 g_m s - C_4 s + g_m \right)}{C_4 L_4 g_m s^2 + C_4 R_4 g_m s + 2C_4 R_L g_m s + C_4 s + g_m}$$

$$\begin{aligned} & \text{Q: } \frac{L_{4}g_{m}\sqrt{\frac{1}{C_{4}L_{4}}}}{R_{4}g_{m}+2R_{L}g_{m}+1} \\ & \text{wo: } \sqrt{\frac{1}{C_{4}L_{4}}} \\ & \text{bandwidth: } \frac{R_{4}g_{m}+2R_{L}g_{m}+1}{L_{4}g_{m}} \\ & \text{K-LP: } R_{L} \\ & \text{K-HP: } R_{L} \\ & \text{K-BP: } \frac{R_{L}(R_{4}g_{m}-1)}{R_{4}g_{m}+2R_{L}g_{m}+1} \\ & \text{Qz: } \frac{L_{4}g_{m}\sqrt{\frac{1}{C_{4}L_{4}}}}{R_{4}g_{m}-1} \\ & \text{Wz: } \sqrt{\frac{1}{C_{4}L_{4}}} \end{aligned}$$

6.6 GE-6
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(-C_4 L_4 R_4 s^2 + L_4 R_4 g_m s - L_4 s - R_4 \right)}{2C_4 L_4 R_4 g_m s^2 + C_4 L_4 R_4 s^2 + L_4 R_4 g_m s + 2L_4 R_L g_m s + L_4 s + 2R_4 R_L g_m + R_4}$$

$$\begin{aligned} &\text{Q: } \frac{C_4 R_4 \sqrt{\frac{1}{C_4 L_4}} (2 R_L g_m + 1)}{R_4 g_m + 2 R_L g_m + 1} \\ &\text{wo: } \sqrt{\frac{1}{C_4 L_4}} \\ &\text{bandwidth: } \frac{R_4 g_m + 2 R_L g_m + 1}{C_4 R_4 (2 R_L g_m + 1)} \\ &\text{K-LP: } -\frac{R_L}{2 R_L g_m + 1} \\ &\text{K-HP: } -\frac{R_L}{2 R_L g_m + 1} \\ &\text{K-BP: } \frac{R_L (R_4 g_m - 1)}{R_4 g_m + 2 R_L g_m + 1} \\ &\text{Qz: } -\frac{C_4 R_4 \sqrt{\frac{1}{C_4 L_4}}}{R_4 g_m - 1} \\ &\text{Wz: } \sqrt{\frac{1}{C_4 L_4}} \end{aligned}$$

6.7 GE-7
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_4 L_4 R_4 g_m s^2 - C_4 L_4 s^2 + L_4 g_m s + R_4 g_m - 1\right)}{C_4 L_4 R_4 g_m s^2 + 2C_4 L_4 R_L g_m s^2 + C_4 L_4 s^2 + L_4 g_m s + R_4 g_m + 2R_L g_m + 1}$$

$$\begin{array}{l} \text{Q:} & \frac{C_4\sqrt{\frac{1}{C_4L_4}}(R_4g_m + 2R_Lg_m + 1)}{g_m} \\ \text{wo:} & \sqrt{\frac{1}{C_4L_4}} \\ \text{bandwidth:} & \frac{g_m}{C_4(R_4g_m + 2R_Lg_m + 1)} \\ \text{K-LP:} & \frac{R_L(R_4g_m - 1)}{R_4g_m + 2R_Lg_m + 1} \\ \text{K-HP:} & \frac{R_L(R_4g_m - 1)}{R_4g_m + 2R_Lg_m + 1} \\ \text{K-BP:} & R_L \\ \text{Qz:} & \frac{C_4\sqrt{\frac{1}{C_4L_4}}(R_4g_m - 1)}{g_m} \\ \text{Wz:} & \sqrt{\frac{1}{C_4L_4}} \end{array}$$

6.8 GE-8
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_4 L_4 R_4 g_m s^2 - C_4 L_4 s^2 - C_4 R_4 s + R_4 g_m - 1 \right)}{C_4 L_4 R_4 g_m s^2 + 2 C_4 L_4 R_L g_m s^2 + C_4 L_4 s^2 + 2 C_4 R_4 R_L g_m s + C_4 R_4 s + R_4 g_m + 2 R_L g_m + 1}$$

Parameters:

$$\begin{aligned} & \text{Q:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}(R_4g_m + 2R_Lg_m + 1)}{R_4(2R_Lg_m + 1)} \\ & \text{wo:} \ \sqrt{\frac{1}{C_4L_4}} \\ & \text{bandwidth:} \ \frac{R_4(2R_Lg_m + 1)}{L_4(R_4g_m + 2R_Lg_m + 1)} \\ & \text{K-LP:} \ \frac{R_L(R_4g_m - 1)}{R_4g_m + 2R_Lg_m + 1} \\ & \text{K-HP:} \ \frac{R_L(R_4g_m - 1)}{R_4g_m + 2R_Lg_m + 1} \\ & \text{K-BP:} \ -\frac{R_L}{2R_Lg_m + 1} \\ & \text{Qz:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}(-R_4g_m + 1)}{R_4} \\ & \text{Wz:} \ \sqrt{\frac{1}{C_4L_4}} \end{aligned}$$

7 AP

8 INVALID-NUMER

8.1 INVALID-NUMER-1 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L \left(-C_4 s + g_m \right)}{C_4 C_L R_L s^2 + 2C_4 R_L g_m s + C_4 s + C_L R_L g_m s + g_m}$$

Parameters:

$$\begin{array}{l} \text{Q: } \frac{C_4 C_L R_L \sqrt{\frac{g_m}{C_4 C_L R_L}}}{2C_4 R_L g_m + C_4 + C_L R_L g_m} \\ \text{wo: } \sqrt{\frac{g_m}{C_4 C_L R_L}} \\ \text{bandwidth: } \frac{2C_4 R_L g_m + C_4 + C_L R_L g_m}{C_4 C_L R_L} \\ \text{K-LP: } R_L \\ \text{K-HP: 0} \\ \text{K-BP: } -\frac{C_4 R_L}{2C_4 R_L g_m + C_4 + C_L R_L g_m} \\ \text{Qz: 0} \\ \text{Wz: None} \end{array}$$

8.2 INVALID-NUMER-2 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$

$$H(s) = \frac{-C_4 R_4 s + R_4 g_m - 1}{C_4 C_L R_4 s^2 + 2C_4 R_4 g_m s + C_L R_4 g_m s + C_L s + 2g_m}$$

$$\begin{array}{l} \text{Q: } \frac{\sqrt{2}C_{4}C_{L}R_{4}\sqrt{\frac{g_{m}}{C_{4}C_{L}R_{4}}}}{2C_{4}R_{4}g_{m}+C_{L}R_{4}g_{m}+C_{L}}\\ \text{wo: } \sqrt{2}\sqrt{\frac{g_{m}}{C_{4}C_{L}R_{4}}}\\ \text{bandwidth: } \frac{2C_{4}R_{4}g_{m}+C_{L}R_{4}g_{m}+C_{L}}{C_{4}C_{L}R_{4}}\\ \text{K-LP: } \frac{R_{4}g_{m}-1}{2g_{m}}\\ \text{K-HP: } 0\\ \text{K-BP: } -\frac{C_{4}R_{4}}{2C_{4}R_{4}g_{m}+C_{L}R_{4}g_{m}+C_{L}}\\ \text{Qz: } 0\\ \text{Wz: None} \end{array}$$

8.3 INVALID-NUMER-3 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L \left(-C_4 R_4 s + R_4 g_m - 1 \right)}{C_4 C_L R_4 R_L s^2 + 2 C_4 R_4 R_L g_m s + C_4 R_4 s + C_L R_4 R_L g_m s + C_L R_L s + R_4 g_m + 2 R_L g_m + 1}$$

Parameters:

8.4 INVALID-NUMER-4 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L \left(C_4 R_4 g_m s - C_4 s + g_m \right)}{C_4 C_L R_4 R_L g_m s^2 + C_4 C_L R_L s^2 + C_4 R_4 g_m s + 2 C_4 R_L g_m s + C_4 s + C_L R_L g_m s + g_m}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_4C_LR_L\sqrt{\frac{g_m}{C_4C_LR_L(R_4g_m+1)}}(R_4g_m+1)}{C_4R_4g_m+2C_4R_Lg_m+C_4+C_LR_Lg_m} \\ \text{wo:} \ \sqrt{\frac{g_m}{C_4C_LR_L(R_4g_m+1)}} \\ \text{bandwidth:} \ \frac{C_4R_4g_m+2C_4R_Lg_m+C_4+C_LR_Lg_m}{C_4C_LR_L(R_4g_m+1)} \\ \text{K-LP:} \ R_L \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{C_4R_L(R_4g_m-1)}{C_4R_4g_m+2C_4R_Lg_m+C_4+C_LR_Lg_m} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

9 INVALID-WZ

9.1 INVALID-WZ-1 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = -\frac{\left(C_L R_L s + 1\right) \left(C_4 R_4 s - R_4 g_m + 1\right)}{2C_4 C_L R_4 R_L g_m s^2 + C_4 C_L R_4 s^2 + 2C_4 R_4 g_m s + C_L R_4 g_m s + 2C_L R_L g_m s + C_L s + 2g_m}$$

Parameters:

$$\begin{aligned} & \text{Q:} \ \frac{\sqrt{2}C_{4}C_{L}R_{4}\sqrt{\frac{g_{m}}{C_{4}C_{L}R_{4}(2R_{L}g_{m}+1)}}(2R_{L}g_{m}+1)}}{2C_{4}R_{4}g_{m}+C_{L}R_{4}g_{m}+2C_{L}R_{L}g_{m}+C_{L}}} \\ & \text{wo:} \ \sqrt{2}\sqrt{\frac{g_{m}}{C_{4}C_{L}R_{4}(2R_{L}g_{m}+1)}} \\ & \text{bandwidth:} \ \frac{2C_{4}R_{4}g_{m}+C_{L}R_{4}g_{m}+2C_{L}R_{L}g_{m}+C_{L}}{C_{4}C_{L}R_{4}(2R_{L}g_{m}+1)}} \\ & \text{K-LP:} \ \frac{R_{4}g_{m}-1}{2g_{m}} \\ & \text{K-HP:} \ -\frac{R_{L}}{2R_{L}g_{m}+1} \\ & \text{K-BP:} \ \frac{-C_{4}R_{4}+C_{L}R_{4}R_{L}g_{m}-C_{L}R_{L}}{2C_{4}R_{4}g_{m}+C_{L}R_{4}g_{m}+2C_{L}R_{L}g_{m}+C_{L}}} \\ & \text{Qz:} \ \frac{\sqrt{2}C_{4}C_{L}R_{4}R_{L}\sqrt{\frac{g_{m}}{C_{4}C_{L}R_{4}(2R_{L}g_{m}+1)}}}{C_{4}R_{4}-C_{L}R_{4}R_{L}g_{m}+C_{L}R_{L}} \\ & \text{Wz:} \ \sqrt{\frac{-R_{4}g_{m}+1}{C_{4}C_{L}R_{4}R_{L}}} \end{aligned}$$

10 INVALID-ORDER

10.1 INVALID-ORDER-1 $Z(s) = (R_1, \infty, \infty, \infty, \infty, R_L)$

$$H(s) = \frac{R_L (R_4 g_m - 1)}{R_4 g_m + 2R_L g_m + 1}$$

10.2 INVALID-ORDER-2 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_4 g_m - 1}{C_L R_4 g_m s + C_L s + 2g_m}$$

10.3 INVALID-ORDER-3
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L (R_4 g_m - 1)}{C_L R_4 R_L g_m s + C_L R_L s + R_4 g_m + 2R_L g_m + 1}$$

10.4 INVALID-ORDER-4
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(R_4 g_m - 1) (C_L R_L s + 1)}{C_L R_4 g_m s + 2C_L R_L g_m s + C_L s + 2g_m}$$

10.5 INVALID-ORDER-5 $Z(s) = (L_1 s, \infty, \infty, \infty, \infty, R_L)$

$$H(s) = \frac{R_L (-C_4 s + g_m)}{2C_4 R_L g_m s + C_4 s + g_m}$$

10.6 INVALID-ORDER-6
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{-C_4 s + g_m}{s (C_4 C_L s + 2C_4 g_m + C_L g_m)}$$

10.7 INVALID-ORDER-7
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = -\frac{(C_4 s - g_m)(C_L R_L s + 1)}{s(2C_4 C_L R_L g_m s + C_4 C_L s + 2C_4 g_m + C_L g_m)}$$

10.8 INVALID-ORDER-8
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = -\frac{(C_4 s - g_m) (C_L L_L s^2 + 1)}{s (2C_4 C_L L_L g_m s^2 + C_4 C_L s + 2C_4 g_m + C_L g_m)}$$

10.9 INVALID-ORDER-9
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(-C_4 s + g_m\right)}{C_4 C_L L_L s^3 + 2C_4 L_L g_m s^2 + C_4 s + C_L L_L g_m s^2 + g_m}$$

10.10 INVALID-ORDER-10
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = -\frac{(C_4 s - g_m) (C_L L_L s^2 + C_L R_L s + 1)}{s (2C_4 C_L L_L g_m s^2 + 2C_4 C_L R_L g_m s + C_4 C_L s + 2C_4 g_m + C_L g_m)}$$

10.11 INVALID-ORDER-11
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(-C_4 s + g_m \right)}{C_4 C_L L_L R_L s^3 + 2 C_4 L_L R_L g_m s^2 + C_4 L_L s^2 + C_4 R_L s + C_L L_L R_L g_m s^2 + L_L g_m s + R_L g_m}$$

10.12 INVALID-ORDER-12
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = -\frac{\left(C_{4}s - g_{m}\right)\left(C_{L}L_{L}R_{L}s^{2} + L_{L}s + R_{L}\right)}{2C_{4}C_{L}L_{L}R_{L}g_{m}s^{3} + C_{4}C_{L}L_{L}s^{3} + 2C_{4}L_{L}g_{m}s^{2} + 2C_{4}R_{L}g_{m}s + C_{4}s + C_{L}L_{L}g_{m}s^{2} + g_{m}}$$

10.13 INVALID-ORDER-13
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = -\frac{R_L \left(C_4 s - g_m\right) \left(C_L L_L s^2 + 1\right)}{2C_4 C_L L_L R_L g_m s^3 + C_4 C_L L_L s^3 + C_4 C_L R_L s^2 + 2C_4 R_L g_m s + C_4 s + C_L L_L g_m s^2 + C_L R_L g_m s + g_m}$$

10.14 INVALID-ORDER-14 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \infty\right)$

$$H(s) = \frac{R_L \left(-C_4 R_4 s + R_4 g_m - 1 \right)}{2C_4 R_4 R_L g_m s + C_4 R_4 s + R_4 g_m + 2R_L g_m + 1}$$

10.15 INVALID-ORDER-15 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$

$$H(s) = -\frac{\left(C_L L_L s^2 + 1\right) \left(C_4 R_4 s - R_4 g_m + 1\right)}{2C_4 C_L L_L R_4 g_m s^3 + C_4 C_L R_4 s^2 + 2C_4 R_4 g_m s + 2C_L L_L g_m s^2 + C_L R_4 g_m s + C_L s + 2g_m}$$

10.16 INVALID-ORDER-16 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

$$H(s) = \frac{L_L s \left(-C_4 R_4 s + R_4 g_m - 1\right)}{C_4 C_L L_L R_4 s^3 + 2 C_4 L_L R_4 g_m s^2 + C_4 L_L R_4 s + C_L L_L R_4 g_m s^2 + C_L L_L s^2 + 2 L_L g_m s + R_4 g_m + 1}$$

10.17 INVALID-ORDER-17 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$

$$H(s) = -\frac{\left(C_4 R_4 s - R_4 g_m + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{2C_4 C_L L_L R_4 g_m s^3 + 2C_4 C_L R_4 R_L g_m s^2 + C_4 C_L R_4 s^2 + 2C_4 R_4 g_m s + 2C_L L_L g_m s^2 + C_L R_4 g_m s + 2C_L R_L g_m s + C_L s + 2g_m R_2 r_0^2}$$

10.18 INVALID-ORDER-18
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

10.19 INVALID-ORDER-19
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = -\frac{\left(C_{4}R_{4}s - R_{4}g_{m} + 1\right)\left(C_{L}L_{L}R_{2}s^{2} + L_{L}s + R_{L}\right)}{2C_{4}C_{L}L_{L}R_{4}g_{m}s^{3} + C_{4}C_{L}L_{L}R_{4}g_{m}s^{2} + 2C_{4}L_{L}R_{4}g_{m}s^{2} + 2C_{4}L_{L}R_{4}g_{m}s^{2} + 2C_{L}L_{L}R_{4}g_{m}s^{2} + 2C_{L}L_{L}R_{2}g_{m}s^{2} + C_{L}L_{L}s^{2} + 2L_{L}g_{m}s + R_{4}g_{m} + 2R_{L}g_{m} + 1}{2C_{4}C_{L}L_{L}R_{4}g_{m}s^{2} + 2C_{L}L_{L}R_{4}g_{m}s^{2} + 2C_{L}L_{L}R_{2}g_{m}s^{2} + C_{L}L_{L}s^{2} + 2L_{L}g_{m}s + R_{4}g_{m} + 2R_{L}g_{m} + 1}{2C_{4}C_{L}L_{L}R_{4}g_{m}s^{2} + 2C_{L}L_{L}R_{4}g_{m}s^{2} + 2C_{L}L_{L}R_{2}g_{m}s^{2} + 2C_{L}L_{L}R_{2}$$

10.20 INVALID-ORDER-20
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = -\frac{R_L \left(C_L L_L s^2 + 1 \right) \left(C_4 R_4 s - R_4 g_m + 1 \right)}{2 C_4 C_L L_L R_4 g_m s^3 + C_4 C_L L_L R_4 s^3 + C_4 C_L R_4 R_L s^2 + 2 C_4 R_4 R_L g_m s + C_4 R_4 s + C_L L_L R_4 g_m s^2 + 2 C_L L_L R_L g_m s^2 + C_L L_L s^2 + C_L R_4 R_L g_m s + C_L R_L s + R_4 g_m + 2 R_L g_m s^2 + C_L R_4 R_L g_m s^2 + C_L R_4 R_L g_m s + C_L R_4 R_L g_m s + C_L R_4 R_L g_m s^2 + C_L R_4 R_L g_m s + C_L R_4 R_L g_m s + C_L R_4 R_L g_m s^2 + C$$

10.21 INVALID-ORDER-21
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L (C_4 R_4 g_m s - C_4 s + g_m)}{C_4 R_4 g_m s + 2C_4 R_L g_m s + C_4 s + g_m}$$

10.22 INVALID-ORDER-22
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_4 R_4 g_m s - C_4 s + g_m}{s \left(C_4 C_L R_4 g_m s + C_4 C_L s + 2 C_4 g_m + C_L g_m \right)}$$

10.23 INVALID-ORDER-23
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_L R_L s + 1) (C_4 R_4 g_m s - C_4 s + g_m)}{s (C_4 C_L R_4 g_m s + 2C_4 C_L R_L g_m s + C_4 C_L s + 2C_4 g_m + C_L g_m)}$$

10.24 INVALID-ORDER-24
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_4 R_4 g_m s - C_4 s + g_m\right)}{s \left(2C_4 C_L L_L g_m s^2 + C_4 C_L R_4 g_m s + C_4 C_L s + 2C_4 g_m + C_L g_m\right)}$$

10.25 INVALID-ORDER-25
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_4 R_4 g_m s - C_4 s + g_m \right)}{C_4 C_L L_L R_4 g_m s^3 + C_4 C_L L_L s^3 + 2C_4 L_L g_m s^2 + C_4 R_4 g_m s + C_4 s + C_L L_L g_m s^2 + g_m}$$

10.26 INVALID-ORDER-26
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_4 R_4 g_m s - C_4 s + g_m\right)}{s \left(2C_4 C_L L_L g_m s^2 + C_4 C_L R_4 g_m s + 2C_4 C_L R_L g_m s + C_4 C_L s + 2C_4 g_m + C_L g_m\right)}$$

10.27 INVALID-ORDER-27
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_4 R_4 g_m s - C_4 s + g_m\right)}{C_4 C_L L_L R_4 g_m s^3 + C_4 C_L L_L R_L s^3 + C_4 L_L R_4 g_m s^2 + 2 C_4 L_L R_L g_m s^2 + C_4 L_L s^2 + C_4 R_4 R_L g_m s + C_4 R_L s + C_L L_L R_L g_m s^2 + L_L g_m s + R_L g_m s^2 + C_4 R_L s + C_4$$

10.28 INVALID-ORDER-28
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_{4}R_{4}g_{m}s - C_{4}s + g_{m}\right)\left(C_{L}L_{L}R_{L}s^{2} + L_{L}s + R_{L}\right)}{C_{4}C_{L}L_{L}R_{4}g_{m}s^{3} + 2C_{4}C_{L}L_{L}R_{2}g_{m}s^{3} + C_{4}C_{L}L_{L}s^{3} + 2C_{4}L_{L}g_{m}s^{2} + C_{4}R_{4}g_{m}s + 2C_{4}R_{L}g_{m}s + C_{4}s + C_{L}L_{L}g_{m}s^{2} + g_{m}}$$

10.29 INVALID-ORDER-29
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1 \right) \left(C_4 R_4 g_m s - C_4 s + g_m \right)}{C_4 C_L L_L R_4 g_m s^3 + 2 C_4 C_L L_L R_2 g_m s^3 + C_4 C_L L_L s^3 + C_4 C_L R_4 R_L g_m s^2 + C_4 C_L R_L s^2 + C_4 R_4 g_m s + 2 C_4 R_L g_m s + C_4 s + C_L L_L g_m s^2 + C_L R_L g_m s + g_m R_2 r_0 + C_4 r_0 r_0 + C_4$$

10.30 INVALID-ORDER-30
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_4 L_4 g_m s^2 - C_4 s + g_m}{s \left(C_4 C_L L_4 g_m s^2 + C_4 C_L s + 2 C_4 g_m + C_L g_m \right)}$$

10.31 INVALID-ORDER-31
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_4 L_4 g_m s^2 - C_4 s + g_m \right)}{C_4 C_L L_4 R_L g_m s^3 + C_4 C_L R_L s^2 + C_4 L_4 g_m s^2 + 2 C_4 R_L g_m s + C_4 s + C_L R_L g_m s + g_m}$$

10.32 INVALID-ORDER-32
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_L R_L s + 1) (C_4 L_4 g_m s^2 - C_4 s + g_m)}{s (C_4 C_L L_4 g_m s^2 + 2C_4 C_L R_L g_m s + C_4 C_L s + 2C_4 g_m + C_L g_m)}$$

10.33 INVALID-ORDER-33
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_4 L_4 g_m s^2 - C_4 s + g_m\right)}{s \left(C_4 C_L L_4 q_m s^2 + 2C_4 C_L L_L q_m s^2 + C_4 C_L s + 2C_4 q_m + C_L q_m\right)}$$

10.34 INVALID-ORDER-34
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_4 L_4 g_m s^2 - C_4 s + g_m \right)}{C_4 C_L L_4 L_L g_m s^4 + C_4 C_L L_L s^3 + C_4 L_4 g_m s^2 + 2C_4 L_L g_m s^2 + C_4 s + C_L L_L g_m s^2 + g_m}$$

10.35 INVALID-ORDER-35
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_4 L_4 g_m s^2 - C_4 s + g_m\right)}{s \left(C_4 C_L L_4 g_m s^2 + 2 C_4 C_L L_L g_m s^2 + 2 C_4 C_L R_L g_m s + C_4 C_L s + 2 C_4 g_m + C_L g_m\right)}$$

10.36 INVALID-ORDER-36
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_4 L_4 g_m s^2 - C_4 s + g_m\right)}{C_4 C_L L_4 L_L R_L g_m s^4 + C_4 C_L L_L R_L s^3 + C_4 L_4 L_L g_m s^3 + C_4 L_4 R_L g_m s^2 + 2 C_4 L_L R_L g_m s^2 + C_4 L_L s^2 + C_4 R_L s + C_L L_L R_L g_m s^2 + L_L g_m s + R_L g_m s^2 + C_4 R_L s + C_4 R_L$$

10.37 INVALID-ORDER-37
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_4 L_4 g_m s^2 - C_4 s + g_m\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_4 C_L L_4 L_L g_m s^4 + 2 C_4 C_L L_L R_L g_m s^3 + C_4 C_L L_L s^3 + C_4 L_4 g_m s^2 + 2 C_4 L_L g_m s^2 + 2 C_4 R_L g_m s + C_4 s + C_L L_L g_m s^2 + g_m}$$

10.38 INVALID-ORDER-38
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1 \right) \left(C_4 L_4 g_m s^2 - C_4 s + g_m \right)}{C_4 C_L L_4 L_L g_m s^4 + C_4 C_L L_4 R_L g_m s^3 + 2 C_4 C_L L_L R_L g_m s^3 + C_4 C_L L_L s^3 + C_4 C_L R_L s^2 + C_4 L_4 g_m s^2 + 2 C_4 R_L g_m s + C_4 s + C_L L_L g_m s^2 + C_L R_L g_m s + g_m R_L \left(C_L L_L R_L g_m s^2 + C_4 C_L L_L R_L g_m s^2 + C_4 C_L R_L g_m s^2 + C_4$$

10.39 INVALID-ORDER-39
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{-C_4 L_4 s^2 + L_4 g_m s - 1}{C_4 C_L L_4 s^3 + 2C_4 L_4 q_m s^2 + C_L L_4 q_m s^2 + C_L s + 2q_m}$$

10.40 INVALID-ORDER-40
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(-C_4 L_4 s^2 + L_4 g_m s - 1 \right)}{C_4 C_L L_4 R_L s^3 + 2 C_4 L_4 R_L g_m s^2 + C_4 L_4 s^2 + C_L L_4 R_L g_m s^2 + C_L R_L s + L_4 g_m s + 2 R_L g_m + 1}$$

10.41 INVALID-ORDER-41
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = -\frac{\left(C_L R_L s + 1\right) \left(C_4 L_4 s^2 - L_4 g_m s + 1\right)}{2C_4 C_L L_4 R_L g_m s^3 + C_4 C_L L_4 s^3 + 2C_4 L_4 g_m s^2 + C_L L_4 g_m s^2 + 2C_L R_L g_m s + C_L s + 2g_m}$$

10.42 INVALID-ORDER-42
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = -\frac{\left(C_L L_L s^2 + 1\right) \left(C_4 L_4 s^2 - L_4 g_m s + 1\right)}{2C_4 C_L L_4 L_L g_m s^4 + C_4 C_L L_4 s^3 + 2C_4 L_4 g_m s^2 + C_L L_4 g_m s^2 + 2C_L L_L g_m s^2 + C_L s + 2g_m c^2}$$

10.43 INVALID-ORDER-43
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(-C_4 L_4 s^2 + L_4 g_m s - 1\right)}{C_4 C_L L_4 L_L s^4 + 2 C_4 L_4 L_L g_m s^3 + C_4 L_4 s^2 + C_L L_4 L_L g_m s^3 + C_L L_L s^2 + L_4 g_m s + 2 L_L g_m s + 1}$$

10.44 INVALID-ORDER-44
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = -\frac{\left(C_4 L_4 s^2 - L_4 g_m s + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{2C_4 C_L L_4 L_L g_m s^4 + 2C_4 C_L L_4 R_L g_m s^3 + C_4 C_L L_4 s^3 + 2C_4 L_4 g_m s^2 + C_L L_4 g_m s^2 + 2C_L L_L g_m s^2 + 2C_L R_L g_m s + C_L s + 2g_m R_L s^2}$$

10.45 INVALID-ORDER-45
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(-C_4 L_4 s^2 + L_4 g_m s - 1\right)}{C_4 C_L L_4 L_L R_L s^4 + 2 C_4 L_4 L_L R_L g_m s^3 + C_4 L_4 L_L s^3 + C_4 L_4 R_L s^2 + C_L L_4 L_L R_L g_m s^3 + C_L L_L R_L s^2 + L_4 L_L g_m s^2 + L_4 R_L g_m s + 2 L_L R_L g_m s + L_L s + R_L R_L g_m s^2 + L_4 R_L g_m s^2 + L_4 R_L g_m s^2 + L_4 R_L g_m s + 2 L_L R_L g_m s + L_L s + R_L R_L g_m s^2 + L_4 R_L g$$

10.46 INVALID-ORDER-46
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = -\frac{\left(C_4L_4s^2 - L_4g_ms + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{2C_4C_LL_4L_Lg_ms^4 + C_4C_LL_4L_Ls^4 + 2C_4L_4L_Lg_ms^3 + 2C_4L_4R_Lg_ms^2 + C_4L_4s^2 + C_LL_4L_Lg_ms^3 + 2C_LL_LR_Lg_ms^3 + 2C_LR_Lg_ms^3 + 2C_LL_LR_Lg_ms^3 + 2C_LR_Lg_ms^3 + 2C_LL_LR_Lg_ms^3 + 2C_LL_LR_Lg_ms^3 + 2C_LL_LR_Lg_ms^3 + 2C_LL_LR_Lg_ms^3 + 2C_LL_LR_Lg_ms^3 + 2C_LL_LR_Lg_ms^3 + 2C_LR_Lg_ms^3 + 2C_LL_LR_Lg_ms^3 + 2C_LR_Lg_ms^3 +$$

10.47 INVALID-ORDER-47
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = -\frac{R_L \left(C_L L_L s^2 + 1 \right) \left(C_4 L_4 s^2 - L_4 g_m s + 1 \right)}{2 C_4 C_L L_4 L_L g_m s^4 + C_4 C_L L_4 L_L s^4 + C_4 C_L L_4 R_L g_m s^2 + C_4 L_4 S^2 + C_L L_4 L_L g_m s^3 + C_L L_4 R_L g_m s^2 + 2 C_L L_L R_L g_m s^2 + C_L L_L s^2 + C_L R_L s + L_4 g_m s + 2 R_L R_L g_m s^2 + C_L R_L g_m$$

10.48 INVALID-ORDER-48
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_4 L_4 g_m s^2 + C_4 R_4 g_m s - C_4 s + g_m}{s \left(C_4 C_L L_4 g_m s^2 + C_4 C_L R_4 g_m s + C_4 C_L s + 2 C_4 g_m + C_L g_m \right)}$$

10.49 INVALID-ORDER-49
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_4 L_4 g_m s^2 + C_4 R_4 g_m s - C_4 s + g_m \right)}{C_4 C_L L_4 R_L g_m s^3 + C_4 C_L R_4 R_L g_m s^2 + C_4 C_L R_L s^2 + C_4 L_4 g_m s^2 + C_4 R_4 g_m s + 2 C_4 R_L g_m s + C_4 s + C_L R_L g_m s + g_m}$$

10.50 INVALID-ORDER-50
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_L R_L s + 1) (C_4 L_4 g_m s^2 + C_4 R_4 g_m s - C_4 s + g_m)}{s (C_4 C_L L_4 g_m s^2 + C_4 C_L R_4 g_m s + 2 C_4 C_L R_L g_m s + C_4 C_L s + 2 C_4 g_m + C_L g_m)}$$

10.51 INVALID-ORDER-51
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_4 L_4 g_m s^2 + C_4 R_4 g_m s - C_4 s + g_m\right)}{s \left(C_4 C_L L_4 g_m s^2 + 2 C_4 C_L L_L g_m s^2 + C_4 C_L R_4 g_m s + C_4 C_L s + 2 C_4 g_m + C_L g_m\right)}$$

10.52 INVALID-ORDER-52
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_4 L_4 g_m s^2 + C_4 R_4 g_m s - C_4 s + g_m \right)}{C_4 C_L L_4 L_L g_m s^4 + C_4 C_L L_L R_4 g_m s^3 + C_4 C_L L_L s^3 + C_4 L_4 g_m s^2 + 2C_4 L_L g_m s^2 + C_4 R_4 g_m s + C_4 s + C_L L_L g_m s^2 + g_m}$$

10.53 INVALID-ORDER-53
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_4 L_4 g_m s^2 + C_4 R_4 g_m s - C_4 s + g_m\right)}{s \left(C_4 C_L L_4 g_m s^2 + 2 C_4 C_L L_L g_m s^2 + C_4 C_L R_4 g_m s + 2 C_4 C_L R_L g_m s + C_4 C_L s + 2 C_4 g_m + C_L g_m\right)}$$

10.54 INVALID-ORDER-54
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_4 L_4 g_m s^2 + C_4 R_4 g_m s - C_4 s + g_m\right)}{C_4 C_L L_4 L_L R_L g_m s^4 + C_4 C_L L_L R_4 R_L g_m s^3 + C_4 L_4 L_L g_m s^3 + C_4 L_4 R_L g_m s^2 + C_4 L_L R_4 g_m s^2 + 2 C_4 L_L R_4 g_m s^2 + C_4 L_L R_4 g_m s + C_4 R_4 R_L g_m s + C_4 R_4 R_L g_m s + C_4 R_4 R_L g_m s^2 + C_4$$

10.55 INVALID-ORDER-55
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_{L}L_{L}R_{L}s^{2} + L_{L}s + R_{L}\right)\left(C_{4}L_{4}g_{m}s^{2} + C_{4}R_{4}g_{m}s - C_{4}s + g_{m}\right)}{C_{4}C_{L}L_{4}L_{2}g_{m}s^{4} + C_{4}C_{L}L_{L}R_{4}g_{m}s^{3} + 2C_{4}C_{L}L_{L}R_{3}g_{m}s^{3} + C_{4}C_{L}L_{L}s^{3} + C_{4}L_{4}g_{m}s^{2} + 2C_{4}L_{L}g_{m}s^{2} + C_{4}R_{4}g_{m}s + 2C_{4}R_{L}g_{m}s + C_{4}s + C_{L}L_{L}g_{m}s^{2} + g_{m}}$$

10.56 INVALID-ORDER-56
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1 \right) \left(C_4 L_4 g_m s^2 + C_4 R_4 g_m s - C_4 s + g_m \right)}{C_4 C_L L_4 L_L g_m s^4 + C_4 C_L L_4 R_L g_m s^3 + 2 C_4 C_L L_L R_4 g_m s^3 + C_4 C_L L_L s^3 + C_4 C_L R_4 R_L g_m s^2 + C_4 C_L R_L s^2 + C_4 L_4 g_m s^2 + C_4 R_4 g_m s + 2 C_4 R_4 g_m s + 2 C_4 R_4 g_m s + C_4 S_4 R_4 g_m s^2 + C_4 R_4 g_m$$

10.57 INVALID-ORDER-57
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{-C_4 L_4 R_4 s^2 + L_4 R_4 g_m s - L_4 s - R_4}{C_4 C_L L_4 R_4 s^3 + 2C_4 L_4 R_4 g_m s^2 + C_L L_4 R_4 g_m s^2 + C_L L_4 s^2 + C_L R_4 s + 2L_4 g_m s + 2R_4 g_m}$$

10.58 INVALID-ORDER-58
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(-C_4 L_4 R_4 s^2 + L_4 R_4 g_m s - L_4 s - R_4 \right)}{C_4 C_L L_4 R_4 R_L s^3 + 2 C_4 L_4 R_4 R_L g_m s^2 + C_4 L_4 R_4 s^2 + C_L L_4 R_4 R_L g_m s^2 + C_L L_4 R_4 R_L s + L_4 R_4 g_m s + 2 L_4 R_L g_m s + L_4 s + 2 R_4 R_L g_m s + R_4 R_L$$

10.59 INVALID-ORDER-59
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = -\frac{\left(C_L R_L s + 1\right) \left(C_4 L_4 R_4 s^2 - L_4 R_4 g_m s + L_4 s + R_4\right)}{2 C_4 C_L L_4 R_4 g_m s^3 + C_4 C_L L_4 R_4 s^3 + 2 C_4 L_4 R_4 g_m s^2 + C_L L_4 R_4 g_m s^2 + C_L L_4 R_2 g_m s^2 + C_L L_4 R_2 g_m s + C_L R_4 R_2 g_m s + C_L R_4 R_4 g_m s + C_L R_4$$

10.60 INVALID-ORDER-60
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = -\frac{\left(C_{L}L_{L}s^{2}+1\right)\left(C_{4}L_{4}R_{4}s^{2}-L_{4}R_{4}g_{m}s+L_{4}s+R_{4}\right)}{2C_{4}C_{L}L_{4}L_{L}R_{4}g_{m}s^{4}+C_{4}C_{L}L_{4}R_{4}s^{3}+2C_{4}L_{4}R_{4}g_{m}s^{2}+2C_{L}L_{4}L_{L}g_{m}s^{3}+C_{L}L_{4}R_{4}g_{m}s^{2}+C_{L}L_{4}R_{4}g_{m}s^{2}+C_{L}R_{4}s+2L_{4}g_{m}s+2R_{4}g_{m}s^{2}+C_{4}L_{4}R_{4}g_{m}s^{2}+C_{4$$

10.61 INVALID-ORDER-61
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(-C_4 L_4 R_4 s^2 + L_4 R_4 g_m s - L_4 s - R_4\right)}{C_4 C_L L_4 L_L R_4 s^4 + 2 C_4 L_4 L_L R_4 g_m s^3 + C_4 L_4 R_4 s^2 + C_L L_4 L_L R_4 g_m s^3 + C_L L_4 L_L R_4 s^2 + 2 L_4 L_L g_m s^2 + L_4 R_4 g_m s + L_4 s + 2 L_L R_4 g_m s + R_4 R_4 g_m s^2 + L_4 R_4 g_m s + L_4 s + 2 L_4 R_4 g_m s + R_4 R_4$$

10.62 INVALID-ORDER-62
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = -\frac{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_4 L_4 R_4 s^2 - L_4 R_4 g_m s + L_4 s + R_4\right)}{2C_4 C_L L_4 L_L R_4 g_m s^4 + 2C_4 C_L L_4 R_4 g_m s^3 + C_4 C_L L_4 R_4 g_m s^2 + 2C_4 L_4 L_4 g_m s^3 + C_4 L_4 R_4 g_m s^2 + 2C_4 L_4 R_4 g_m s^2 + 2C_4$$

10.63 INVALID-ORDER-63
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(-C_4 L_4 R_4 s^2 + L_4 R_4 g_m s - L_4 s - R_4\right)}{C_4 C_L L_4 L_L R_4 R_L s^4 + 2 C_4 L_4 L_L R_4 R_L g_m s^3 + C_4 L_4 L_4 R_4 R_L s^2 + C_L L_4 L_L R_4 R_L g_m s^3 + C_L L_4 L_L R_4 R_L s^3 + C_L L_4 L_L R_4 R_L s^2 + L_4 L_L R_4 g_m s^2 + 2 L_4 L_L R_4 g_m s^2 + L_4 L_L R_4 g_m s^2$$

10.64 INVALID-ORDER-64
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = -\frac{\left(C_{L}L_{L}S^{2} + L_{L}s + R_{L}\right)\left(C_{4}L_{4}R_{4}s^{2} - L_{4}R_{4}g_{m}s + L_{4}s + R_{4}\right)}{2C_{4}C_{L}L_{4}L_{L}R_{4}g_{m}s^{4} + C_{4}C_{L}L_{4}L_{L}R_{4}s^{4} + 2C_{4}L_{4}L_{L}R_{4}g_{m}s^{3} + 2C_{4}L_{4}R_{4}R_{L}g_{m}s^{2} + C_{4}L_{4}R_{4}g_{m}s^{3} + 2C_{L}L_{4}L_{L}R_{4}g_{m}s^{3} + 2C_{L}L_{4}L_{4}R_{4}g_{m}s^{3} +$$

10.65 INVALID-ORDER-65
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = -\frac{R_L \left(C_L L_L s^2 + 1\right) \left(C_4 L_4 R_4 s^2 - L_4 R_4 g_m s + L_4 s + R_4\right)}{2 C_4 C_L L_4 L_L R_4 g_m s^4 + C_4 C_L L_4 L_L R_4 g_m s^4 + C_4 C_L L_4 R_4 R_L g_m s^2 + C_4 L_4 R_4 g_m s^2 + C_4 L_4 L_L R_4 g_m s^3 + 2 C_L L_4 L_L R_4 g_m s^3 + C_L L_4 L_L R_5 g_m s^3 + C_L L_4 L_L R_4 g_m s^3 + C_L L_4 L_L R_5 g_m s^3 + C_L L_4 R_4 g_m s^3 + C_L L_4 R_4 g_m s^3 + C_L L_4 R_4 g_m s^3 + C_L R_4 g$$

10.66 INVALID-ORDER-66
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_4 L_4 R_4 g_m s^2 - C_4 L_4 s^2 + L_4 g_m s + R_4 g_m - 1}{C_4 C_L L_4 R_4 g_m s^3 + C_4 C_L L_4 s^3 + 2 C_4 L_4 g_m s^2 + C_L L_4 g_m s^2 + C_L R_4 g_m s + C_L s + 2 g_m}$$

10.67 INVALID-ORDER-67
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_4 L_4 R_4 g_m s^2 - C_4 L_4 s^2 + L_4 g_m s + R_4 g_m - 1 \right)}{C_4 C_L L_4 R_4 g_m s^3 + C_4 C_L L_4 R_L s^3 + C_4 L_4 R_4 g_m s^2 + 2 C_4 L_4 R_L g_m s^2 + C_4 L_4 R_L g_m s^2 + C_L L_4 R_L g_m s + C_L R_L s + L_4 g_m s + R_4 g_m + 2 R_L g_m + 1 R_4 g_m s^2 + C_4 R_4 R_4 g_m s^2 + C_4 R_$$

10.68 INVALID-ORDER-68
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$(C_L R_L s + 1) \left(C_A L_A R_A q_m s^2 - C_A L_A s^2 + L_A q_m s + R_A q_m - 1\right)$$

$$H(s) = \frac{\left(C_L R_L s + 1\right) \left(C_4 L_4 R_4 g_m s^2 - C_4 L_4 s^2 + L_4 g_m s + R_4 g_m - 1\right)}{C_4 C_L L_4 R_4 g_m s^3 + 2 C_4 C_L L_4 R_L g_m s^3 + C_4 C_L L_4 s^3 + 2 C_4 L_4 g_m s^2 + C_L L_4 g_m s^2 + C_L R_4 g_m s + 2 C_L R_L g_m s + C_L s + 2 g_m r^2}$$

10.69 INVALID-ORDER-69
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_4 L_4 R_4 g_m s^2 - C_4 L_4 s^2 + L_4 g_m s + R_4 g_m - 1\right)}{2C_4 C_L L_4 L_L g_m s^4 + C_4 C_L L_4 R_4 g_m s^3 + C_4 C_L L_4 s^3 + 2C_4 L_4 g_m s^2 + C_L L_4 g_m s^2 + 2C_L L_L g_m s^2 + C_L R_4 g_m s + C_L s + 2g_m r^2}$$

10.70 INVALID-ORDER-70
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_4 L_4 R_4 g_m s^2 - C_4 L_4 s^2 + L_4 g_m s + R_4 g_m - 1\right)}{C_4 C_L L_4 L_L R_4 g_m s^4 + C_4 C_L L_4 L_L s^4 + 2 C_4 L_4 L_L g_m s^3 + C_4 L_4 R_4 g_m s^2 + C_4 L_4 s^2 + C_L L_4 L_L g_m s^3 + C_L L_L R_4 g_m s^2 + C_L L_L s^2 + L_4 g_m s + R_4 g_m + 1}$$

10.71 INVALID-ORDER-71
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_{L}L_{L}s^{2} + C_{L}R_{L}s + 1\right)\left(C_{4}L_{4}R_{4}g_{m}s^{2} - C_{4}L_{4}s^{2} + L_{4}g_{m}s + R_{4}g_{m} - 1\right)}{2C_{4}C_{L}L_{4}L_{2}g_{m}s^{4} + C_{4}C_{L}L_{4}R_{4}g_{m}s^{3} + 2C_{4}C_{L}L_{4}S^{3} + 2C_{4}L_{4}g_{m}s^{2} + C_{L}L_{4}g_{m}s^{2} + 2C_{L}L_{L}g_{m}s^{2} + C_{L}R_{4}g_{m}s + 2C_{L}R_{L}g_{m}s + C_{L}s + 2g_{m}s^{2}}$$

10.72 INVALID-ORDER-72
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

10.73 INVALID-ORDER-73
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_L L_L R_L s^2 + L_L s + R_L\right) \left(C_4 L_4 R_4 g_m s^2 - C_4 L_4 s^2 + L_4 g_m s + R_4 g_m - 1\right)}{C_4 C_L L_4 L_L R_4 g_m s^4 + 2 C_4 C_L L_4 L_L S^4 + 2 C_4 L_4 L_L g_m s^3 + C_4 L_4 R_4 g_m s^2 + 2 C_4 L_4 R_L g_m s^2 + C_4 L_4 S^2 + C_L L_4 L_L g_m s^3 + C_L L_L R_4 g_m s^2 + 2 C_L L_L R_4 g_m s^2 + C_4 L_4 R_4 g_$$

10.74 INVALID-ORDER-74
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1 \right) \left(C_4 L_4 R_4 g_m s^2 - C_4 L_4 s^2 + L_4 g_m s + R_4 g_m - 1 \right)}{C_4 C_L L_4 L_L R_4 g_m s^4 + 2 C_4 C_L L_4 L_L R_4 g_m s^4 + C_4 C_L L_4 R_4 R_L g_m s^3 + C_4 C_L L_4 R_L g_m s^3 + C_4 L_4 R_4 g_m s^2 + 2 C_4 L_4 R_L g_m s^2 + C_4 L_4 L_2 g_m s^3 + C_L L_4 R_L g_m s^3 + C_L R_L g_m s^3 + C_L$$

10.75 INVALID-ORDER-75
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_4 L_4 R_4 g_m s^2 - C_4 L_4 s^2 - C_4 R_4 s + R_4 g_m - 1}{C_4 C_L L_4 R_4 g_m s^3 + C_4 C_L L_4 s^3 + C_4 C_L R_4 s^2 + 2C_4 L_4 g_m s^2 + 2C_4 R_4 g_m s + C_L R_4 g_m s + C_L s + 2g_m}$$

10.76 INVALID-ORDER-76
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_4 L_4 R_4 g_m s^2 - C_4 L_4 s^2 - C_4 R_4 s + R_4 g_m - 1 \right)}{C_4 C_L L_4 R_4 g_m s^3 + C_4 C_L L_4 R_L s^3 + C_4 C_L R_4 R_L s^2 + C_4 L_4 R_4 g_m s^2 + 2 C_4 L_4 R_L g_m s^2 + C_4 L_4 s^2 + 2 C_4 R_4 R_L g_m s + C_4 R_4 s + C_L R_4 R_L g_m s + C_L R_L s + R_4 g_m + 2 R_L g_m + 1 R_4 g_m s^2 + 2 C_4 R_4 R_L g_m s^2 + C_4 R_4 R_L g_m s + C_4 R_4 R_L g_$$

10.77 INVALID-ORDER-77
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = -\frac{\left(C_L R_L s + 1\right) \left(-C_4 L_4 R_4 g_m s^2 + C_4 L_4 s^2 + C_4 R_4 s - R_4 g_m + 1\right)}{C_4 C_L L_4 R_4 g_m s^3 + 2 C_4 C_L L_4 R_L g_m s^3 + 2 C_4 C_L L_4 s^3 + 2 C_4 C_L R_4 R_L g_m s^2 + C_4 C_L R_4 s^2 + 2 C_4 L_4 g_m s^2 + 2 C_4 R_4 g_m s + C_L R_4 g_m s +$$

10.78 INVALID-ORDER-78
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = -\frac{\left(C_{L}L_{L}s^{2}+1\right)\left(-C_{4}L_{4}R_{4}g_{m}s^{2}+C_{4}L_{4}s^{2}+C_{4}R_{4}s-R_{4}g_{m}+1\right)}{2C_{4}C_{L}L_{4}L_{2}g_{m}s^{4}+C_{4}C_{L}L_{4}R_{3}g_{m}s^{3}+C_{4}C_{L}L_{L}R_{4}g_{m}s^{3}+C_{4}C_{L}L_{4}R_{3}g_{m}s^{3}+C_{4}C_{L}L_{4}R_{4}g_{m}s^{3}+C_{4}C_{L}L_{4}R_$$

10.79 INVALID-ORDER-79
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_4 L_4 R_4 g_m s^2 - C_4 L_4 s^2 - C_4 R_4 s + R_4 g_m - 1\right)}{C_4 C_L L_4 L_L R_4 g_m s^4 + C_4 C_L L_L L_4 s^4 + C_4 C_L L_L R_4 s^3 + 2 C_4 L_4 L_L g_m s^3 + C_4 L_4 R_4 g_m s^2 + C_4 L_4 L_2 g_m s^2 + C_4 L_4 R_4 g_m s^2 + C_4 R_4 s + C_4 L_4 R_4 g_m s^2 + C_4 L_4 R_4 g_m s^2 + C_4 R_4 s + C_4 L_4 R_4 g_m s^2 + C_4 R_4 s + C_4 L_4 R_4 g_m s^2 + C_4 R_4 s + C_4 L_4 R_4 g_m s^2 + C_4 R_4 s + C_4 L_4 R_4 g_m s^2 + C_4 R_4 s + C_4 L_4 R_4 g_m s^2 + C_4 R_4 s + C_4 L_4 R_4 g_m s^2 + C_4 R_4 s + C_4 L_4 R_4 g_m s^2 + C_4 R_4 s + C_4 L_4 R_4 g_m s^2 + C_4 R_4 s + C_4 L_4 R_4 g_m s^2 + C_4 R_4 s + C_4 L_4 R_4 g_m s^2 + C_4 R_4 s + C_4 L_4 R_4 g_m s^2 + C_4 R_4 s + C_4 L_4 R_4 g_m s^2 + C_4 R_4 s + C_4 L_4 R_4 g_m s^2 + C_4 R_4 s + C_4 L_4 R_4 g_m s^2 + C_4 R_4 s + C_4 L_4 R_4 g_m s^2 + C_4 R_4 s + C_4 L_4 R_4 g_m s^2 + C_4 R_4 g_m s^2 + C_4 R_4 s + C_4 L_4 R_4 g_m s^2 + C_4 R_4 g_m s^2 + C_4$$

10.80 INVALID-ORDER-80
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = -\frac{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(-C_4 L_4 R_4 g_m s^2 + C_4 L_4 s^2 + C_4 R_4 s - R_4 g_m + 1\right)}{2C_4 C_L L_4 L_4 g_m s^4 + C_4 C_L L_4 R_4 g_m s^3 + 2C_4 C_L L_4 R_4 g_m s^3 + 2C_4 C_L L_4 R_4 g_m s^3 + 2C_4 C_L R_4 R_4 g_m s^2 + C_4 C_L R_4 g_m s^2 + 2C_4 R_4 g_m$$

10.81 INVALID-ORDER-81
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_4 L_4 R_4 g_m s^2 - C_4 L_4 s^2 - C_4 R_4 s + R_4 g_m - 1\right)}{C_4 C_L L_4 L_L R_4 g_m s^4 + C_4 C_L L_4 L_L R_4 s^4 + C_4 C_L L_L R_4 R_L s^3 + C_4 L_4 L_L R_4 g_m s^3 + 2 C_4 L_4 L_L R_4 g_m s^3 + C_4 L_4 L_L R_3 s^2 + C_4 L_4 R_L g_m s^2$$

10.82 INVALID-ORDER-82
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

10.83 INVALID-ORDER-83
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = -\frac{R_L \left(C_L L_L s^2 + 1 \right) \left(-C_4 L_4 R_4 g_m s^2 + C_4 L_4 s^2 + C_4 C_L L_4 R_4 g_m s^3 + C_4 C_L L_4 R_4 g_$$