

n -dimensional links, their components, and their band-sums

Eiji Ogasa ^{*}
 ogasa@hep-th.phys.s.u-tokyo.ac.jp
 High Energy Physics Theory Groups
 Department of Physics
 University of Tokyo
 Hongo, Tokyo 113, JAPAN

Abstract. We prove the following results (1) (2) (3) on relations between n -links and their components.

- (1) Let $L = (L_1, L_2)$ be a $(4k+1)$ -link ($4k+1 \geq 5$). Then we have
 $\text{Arf } L = \text{Arf } L_1 + \text{Arf } L_2$.
- (2) Let $L = (L_1, L_2)$ be a $(4k+3)$ -link ($4k+3 \geq 3$). Then we have
 $\sigma L = \sigma L_1 + \sigma L_2$.
- (3) Let $n \geq 1$. Then there is a nonribbon n -link $L = (L_1, L_2)$ such that
 L_i is a trivial knot.

We prove the following results (4) (5) (6) (7) on band-sums of n -links.

- (4) Let $L = (L_1, L_2)$ be a $(4k+1)$ -link ($4k+1 \geq 5$).

Let K be a band-sum of L . Then we have

$$\text{Arf } K = \text{Arf } L_1 + \text{Arf } L_2.$$

- (5) Let $L = (L_1, L_2)$ be a $(4k+3)$ -link ($4k+3 \geq 3$).

Let K be a band-sum of L . Then we have

$$\sigma K = \sigma L_1 + \sigma L_2.$$

The above (4)(5) imply the following (6).

- (6) Let $2m+1 \geq 3$. There is a set of three $(2m+1)$ -knots K_0, K_1, K_2 with the following property: K_0 is not any band-sum of any n -link $L = (L_1, L_2)$ such that L_i is equivalent to K_i ($i = 1, 2$).
- (7) Let $n \geq 1$. Then there is an n -link $L = (L_1, L_2)$ such that L_i is a trivial knot ($i = 1, 2$) and that a band-sum of L is a nonribbon knot.

We prove a 1-dimensional version of (1).

- (8) Let $L = (L_1, L_2)$ be a proper 1-link. Then

$$\begin{aligned} \text{Arf } L &= \text{Arf } L_1 + \text{Arf } L_2 + \frac{1}{2}\{\beta^*(L) + \text{mod}_4\{\frac{1}{2}\text{lk}(L)\}\} \\ &= \text{Arf } L_1 + \text{Arf } L_2 + \text{mod}_2\{\lambda(L)\}, \end{aligned}$$

where $\beta^*(L)$ is the Saito-Sato-Levine invariant
 and $\lambda(L)$ is the Kirk-Livingston invariant.

^{*}1991 Mathematics Subject Classification. Primary 57M25, 57Q45, 57R65

This research was partially supported by Research Fellowships of the Promotion of Science for Young Scientists.

Keyword: n -links, n -knots, band-sums, ribbon n -knots, ribbon n -links, the Arf invariant of n -links (resp. n -knots), the signature of n -links (resp. n -knots),

1 Introduction and main results

We work in the smooth category.

An (*oriented*) (*ordered*) m -component n -(dimensional) link is a smooth, oriented submanifold $L = \{L_1, \dots, L_m\} \subset S^{n+2}$, which is the ordered disjoint union of m manifolds, each PL homeomorphic to the n -sphere. If $m = 1$, then L is called a knot.

We say that n -links L and L' are equivalent if there exists an orientation preserving diffeomorphism $f : S^{n+2} \rightarrow S^{n+2}$ such that $f(L) = L'$ and $f|_L : L \rightarrow L'$ is an orientation and order preserving diffeomorphism. If n -knot K bounds a $(n+1)$ -ball $\subset S^{n+2}$, then K is called a trivial (n)-knot.

We say that m -component n -dimensional links, L and L' , are said to be (*link-*)concordant or (*link-*)cobordant if there is a smooth oriented submanifold $\tilde{C} = \{C_1, \dots, C_m\} \subset S^{n+2} \times [0, 1]$, which meets the boundary transversely in $\partial \tilde{C}$, is PL homeomorphic to $L \times [0, 1]$ and meets $S^{n+2} \times \{0\}$ in L (resp. $S^{n+2} \times \{1\}$ in L'). An n -link L is called a slice link if L is cobordant to a trivial link.

We prove:

Theorem 1.1. (1) Let $4k + 1 \geq 5$. Let $L = (L_1, L_2)$ be a $(4k + 1)$ -link. Then we have

$$\text{Arf } L = \text{Arf } L_1 + \text{Arf } L_2.$$

(2) Let $4k + 3 \geq 3$. Let $L = (L_1, L_2)$ be a $(4k + 3)$ -link. Then we have

$$\sigma L = \sigma L_1 + \sigma L_2.$$

Note. In §2 we review the Arf invariant and the signature.

Furthermore we prove 1-dimensional version of Theorem 1.1.

Proposition 1.2. Let $L = (L_1, L_2)$ be a 1-link. Suppose that the Arf invariants of 2-component 1-links are defined, that is, that the linking numbers are even.

- (1) $\text{Arf } L = \text{Arf } L_1 + \text{Arf } L_2 + \frac{1}{2}\{\beta^*(L) + \text{mod4}\{\frac{1}{2}\text{lk}(L)\}\}$,
where $\beta^*(L)$ is the Saito-Sato-Levine invariant.
- (2) $\text{Arf } L = \text{Arf } L_1 + \text{Arf } L_2 + \text{mod2}\{\lambda(L)\}$,
where $\lambda(L)$ is the Kirk-Livingston invariant.

Note. The Saito-Sato-Levine invariant is defined in [30] The Kirk-Livingston invariant is defined in [15].

In order to continue to state our main results, we need some more definitions. An n -link $L = (L_1, \dots, L_m)$ is called a ribbon n -link if L satisfies the following properties.

- (1) There is a self-transverse immersion $f : D_1^{n+1} \amalg \dots \amalg D_m^{n+1} \rightarrow S^{n+2}$ such that $f(\partial D_i^{n+1}) = L_i$.
- (2) The singular point set $C (\subset S^{n+2})$ of f consists of double points.
 C is a disjoint union of n -discs $D_i^n (i = 1, \dots, k)$.
- (3) Put $f^{-1}(D_j^n) = D_{jB}^n \amalg D_{jS}^n$. The n -disc D_{jS}^n is trivially embedded in the interior $\text{Int } D_\alpha^{n+1}$ of a $(n+1)$ -disc component D_α^{n+1} . The circle ∂D_{jB}^n is trivially embedded in the boundary ∂D_β^{n+1} of an $(n+1)$ -disc component D_β^{n+1} . The n -disc D_{jB}^n is trivially embedded in the $(n+1)$ -disc component D_β^{n+1} . (Note that there are two cases, $\alpha = \beta$ and $\alpha \neq \beta$.)

It is well-known that it is easy to prove that all ribbon n -links are slice.

It is natural to consider the following.

Problem A. (1) Is there a nonribbon n -link $L = (L_1, L_2)$ such that L_i is a ribbon knot ($i = 1, 2$)?

(2) Is there a nonribbon n -link $L = (L_1, L_2)$ such that L_i is a trivial knot ($i = 1, 2$)?

The $n = 1$ case holds because the Hopf link is an example. In [22], the author gave the affirmative answer to the $n = 2$ case. In this paper we give the affirmative answer to the $n \geq 3$ case. We prove:

Theorem 1.3. (1) Let $n \geq 1$. Then there is a nonribbon n -link $L = (L_1, L_2)$ such that L_i is a trivial knot.

Furthermore we have the following.

(2) Let $2m + 1 \geq 1$. Then there is a nonslice $(2m + 1)$ -link $L = (L_1, L_2)$ such that L_i is a trivial knot. (Note that L is nonribbon since L is nonslice.)

(3) Let $n \geq 2$. Then there is a slice and nonribbon n -link $L = (L_1, L_2)$ such that L_i is a trivial knot.

We need some more definitions. Let $L = (L_1, L_2)$ be an n -link. An n -knot K is called a *band-sum* (of the components L_1 and L_2) of the 2-link L along a *band* h if we have:

(1) There is an $(n+1)$ -dimensional 1-handle h , which is attached to L , embedded in S^4 .

(2) There are a point $p_1 \in L_1$ and a point $p_2 \in L_2$. We attach h to $L_1 \amalg L_2$ along $p_1 \amalg p_2$. $h \cap (L_1 \cup L_2)$ is the attach part of h . Then we obtain an n -knot from L_1 and L_2 by this surgery. The n -knot is K .

The set (K_0, K_1, K_2) is called a *triple* of n -knots if K_i is an n -knot. A triple (K_0, K_1, K_2) of n -knots is said to be *band-realizable* if there is an n -link $L = (L_1, L_2)$ such that K_1 (resp. K_2) is equivalent to L_1 (resp. L_2) and that K_0 is a band-sum of L .

Note: Suppose that a triple (K_0, K_1, K_2) of n -knots is band-realizable. Then $[K_0] = [K_1] + [K_2]$, where $[X]$ represents an element in the homotopy sphere group Θ_n . See [11] for Θ_n .

It is natural to consider the following.

Problem B. Let K_0, K_1, K_2 be arbitrary n -knots. Then is the triple (K_0, K_1, K_2) of n -knots band-realizable?

By using the results in [6][12][13], we can prove: we have the affirmative answer to the $n = 1$ case. By using [31], we can prove: if K_0, K_1, K_2 are ribbon n -knots ($n \geq 2$), we have the affirmative answer. In [22], the author proved: there is a nonribbon 2-link $L = (L_1, L_2)$ such that L_i is the trivial knot and that a band-sum of L is a nonribbon knot. ‘Nonribbon case’ of the n -dimensional version ($n \geq 2$) is not solved completely. Thus, in this paper, we consider the following problems C, D, which are the special cases of Problem B.

Problem C. Is there a set of three n -knots K_0, K_1, K_2 such that the triple (K_1, K_2, K_3) is not band-realizable?

In this paper we give the affirmative answer when n is odd and $n \geq 3$. (Theorem 1.4, 1.5.)

Problem D. (1) Is there a set of one nonribbon n -knot K_0 and two ribbon n -knots K_1, K_2 such that the triple (K_1, K_2, K_3) is band-realizable?

(2) Is there a set of one nonribbon n -knot K_0 and two trivial n -knots K_1, K_2 such that the triple (K_1, K_2, K_3) is band-realizable?

In [22], the author gave the affirmative answer to the $n = 2$ case. In this paper we give the affirmative answer to the $n \geq 3$ case. (Theorem 1.6.)

Theorem 1.4. *Let $2m + 1 \geq 3$. There is a set of three $(2m + 1)$ -knots K_0, K_1, K_2 such that the triple (K_0, K_1, K_2) is not band-realizable.*

Theorem 1.4 is deduced from Theorem 1.5.

Theorem 1.5. *(1) Let $4k + 1 \geq 5$. Let $L = (L_1, L_2)$ be a $(4k + 1)$ -link. Let K be a band-sum of L . Then we have*

$$\text{Arf}K = \text{Arf}L_1 + \text{Arf}L_2.$$

(2) Let $4k + 3 \geq 3$. Let $L = (L_1, L_2)$ be a $(4k + 3)$ -link. Let K be a band-sum of L . Then we have

$$\sigma K = \sigma L_1 + \sigma L_2.$$

Theorem 1.6.(1) *Let $n \geq 1$. Let T be a trivial n -knot. Then there is a nonribbon n -knot K such that the triple (K, T, T) is band-realizable.*

Furthermore we have the following.

(2) Let $2m + 1 \geq 1$. Let T be a trivial $(2m + 1)$ -knot. Then there is a nonslice $(2m + 1)$ -knot K such that the triple (K, T, T) is band-realizable. (Note that K is nonribbon if K is nonslice.)

(3) Let $2m + 1 \geq 3$. Let T be a trivial $(2m + 1)$ -knot T . Then there is a slice and nonribbon $(2m + 1)$ -knot K such that the triple (K, T, T) is band-realizable.

Note. All even dimensional knots are slice. ([10].)

[26] includes the announcement of this paper.

Our organization is as follows:

§2 Seifert matrices, the signature and the Arf invariant of n -knots (resp. n -links)

- §3 Some properties of band-sums
- §4 Proof of Theorem 1.1.(1)
- §5 Proof of Theorem 1.1.(2)
- §6 Proof of Proposition 1.2
- §7 Proof of Theorem 1.5
- §8 Proof of Theorem 1.4
- §9 Proof of Theorem 1.3.(2)
- §10 Proof of Theorem 1.3.(3)
- §11 Proof of Theorem 1.3.(1)
- §12 Proof of Theorem 1.6.(2)
- §13 Proof of Theorem 1.6.(3)
- §14 Proof of Theorem 1.6.(1)
- §15 Open problems

In §9, we give an alternative proof of one of the main theorems of [9] and that of [2]. In §10, we give a short proof of the main theorem of [7].

2 Seifert matrices, the signature and the Arf invariant of n -knots (resp. n -links)

See the $n = 1$ case [8][20][27]. See the $n \geq 2$ case [16] [17].

Let K be a $(2m+1)$ -knot ($2m+1 \geq 1$). Let V be a connected Seifert hypersurface of K . Note the orientation of V is compatible with that of K . Let x_1, \dots, x_μ be $(m+1)$ -cycles in V which are basis of $H_{m+1}(V; \mathbf{Z})/\text{Tor}$. Push x_i to the positive direction of the normal bundle of V . Call it x_i^+ . A *Seifert matrices* of K associated with V represented by basis x_1, \dots, x_μ is a matrix $A = (a_{ij}) = (lk(x_i, x_j^+))$. Then we have: $A - (-1)^m \cdot {}^t A$ represents the map $\{H(V; \mathbf{Z})/\text{Tor}\} \times \{H(V; \mathbf{Z})/\text{Tor}\} \rightarrow \mathbf{Z}$, which is defined by the intersection product.

The *signature* $\sigma(K)$ of K is the signature of the matrix $A + {}^t A$. Therefore, we have:

Claim. *If $2m+1 = 4k+3 (\geq 3)$, the signature of K coincides with the signature of \hat{V} , where \hat{V} is the closed oriented manifold which we obtain by attaching a $(4k+4)$ -dimensional 0-handle to ∂V .*

Let K be a $(4k+1)$ -knot ($4k+1 \geq 1$). We regard naturally $(H_{2k+1}(V; \mathbf{Z})/\text{Tor}) \otimes \mathbf{Z}_2$ as a subgroup of $H_{2k+1}(V; \mathbf{Z}_2)$. Then we can take basis $x_1, \dots, x_\nu, y_1, \dots, y_\nu$ of $(H_{2k+1}(V; \mathbf{Z})/\text{Tor}) \otimes \mathbf{Z}_2$ such that $x_i \cdot x_j = 0, y_i \cdot y_j = 0, x_i \cdot y_j = \delta_{ij}$ for any pair (i, j) , where \cdot is the intersection product. The *Arf invariant* of K is mod 2 $\sum_{i=1}^\nu lk(x_i, x_i^+) \cdot lk(y_i, y_i^+)$.

Let $L = (K_1, K_2)$ be a $(2m+1)$ -link ($2m+1 \geq 1$). Let V be a Seifert hypersurface of L . We define $x_i, x_i^+, A, \sigma L$ in the same manner. If $2m+1 = 4k+3 (\geq 3)$, then σL is the signature of the closed oriented manifold \hat{V} , where \hat{V} is the closed oriented manifold which we obtain by attaching $(4k+4)$ -dimensional 0-handles to ∂V .

Let $L = (L_1, L_2)$ be a $(4k+1)$ -link ($4k+1 \geq 1$). We define the Arf invariant of $L = (L_1, L_2)$ ($4k+1 \geq 1$). There are two cases.

(1) Let $4k+1 \geq 5$. The Arf invariant of L is defined in the same manner as the knot case.

(2) Let $4k+1 = 1$. The Arf invariant of $L = (L_1, L_2)$ is defined only if the linking number $lk(L_1, L_2)$ of L is even. Then we can take basis $x_1, \dots, x_\nu, y_1, \dots, y_\nu, z$ of $H_1(V; \mathbf{Z})/\text{Tor}$ such that $x_i \cdot x_j = 0, x_i \cdot y_j = \delta_{ij}, y_i \cdot y_j = 0, x_i \cdot z = 0, y_i \cdot z = 0, z \cdot z = 0$. The *Arf invariant* of L is mod 2 $\sum_{i=1}^\nu lk(x_i, x_i^+) \cdot lk(y_i, y_i^+)$. See e.g. Appendix of [14].

3 Some properties of band-sums

In our proof of main results we use the following properties of band-sums.

Proposition 3.1. *Let $L = (L_1, L_2)$ be an n -link. Let K be a band-sum of L along a band h .*

- (1) $\text{Arf } K = \text{Arf } L$. ($n = 4k+1 \geq 5$.)
- (2) $\sigma K = \sigma L$. ($n = 4k+3 \geq 3$.)
- (3) Knot cobordism class of K is independent of the choice of h . ($n \geq 2$.)
- (4) The following two equivalent conditions hold. ($n \geq 1$)
 - (i) If L is slice, then K is slice.
 - (ii) If K is nonslice, L is nonslice.
- (5) The following two equivalent conditions hold. ($n \geq 1$)
 - (i) If L is ribbon, then K is ribbon.
 - (ii) If K is nonribbon, L is nonribbon.

Proof of (1)(2)(3). We need a lemma.

Lemma 3.2. *There is a Seifert hypersurface V for L such that $V \cap h$ is the attach part of h .*

Proof of Lemma 3.2. Let $h \times [-1, 1]$ be a tubular neighborhood of $h \subset S^{n+2}$. Suppose $h \times [-1, 1] \cap L$ is the attach part of h . Then we have $[L] = 0 \in H_n(\overline{S^{n+2} - (h \times [-1, 1])}; \mathbf{Z})$. By the following Claim 3.3, the above Lemma 3.2 holds. Claim 3.3 is proved by an elementary obstruction theory. (The author gave a proof in Appendix of [23].)

Claim 3.3. *Let X be a compact oriented $(n+2)$ -manifold with boundary. Let M be a closed oriented n -submanifold $\subset X$. We do not suppose that $M \cap X = \phi$ nor that $M \cap X \neq \phi$. Let $[M] = 0 \in H_n(X; \mathbf{Z})$. Then there is a compact oriented $(n+1)$ -manifold W such that $\partial W = M$.*

Suppose that n is odd and that $n \geq 3$. By Lemma 3.2, a Seifert matrix of L is a Seifert matrix of K . By [16], [17], Proposition 3.1.(1), (2), hold. Furthermore Proposition 3.1.(3) holds when n is odd and $n \geq 3$.

Suppose that n is even. By [10], all even dimensional knots are slice. Hence Proposition 3.1.(3) holds when n is even.

Proof of (5). Proposition 3.1.(5) holds by the definition of ribbon links.

Proof of (4). If $L = \{L_1, \dots, L_m\} \subset S^{n+2} = \partial B^{n+3}$ is a slice n -link, then there is a disjoint union of embedded $(n+1)$ -discs, $\tilde{D} = \{D_1, \dots, D_m\} \subset B^{n+3}$, such that \tilde{D} meets the boundary transversely in $\partial \tilde{C}$ and that $\partial D_i = L_i$. \tilde{D} is called a set of *slice discs* for L . If L is a knot, $\tilde{D} = D_1$ is called a *slice disc* for $L = L_1$.

We prove (i). Let $L = (L_1, L_2)$ be embedded in $S^{2m+3} = \partial B^{2m+4} = B^{2m+4}$. Let $D_1^{2m+2} \amalg D_2^{2m+2} \subset B^{2m+4}$ be a set of slice discs for L . Note that $D_1^{2m+2} \cap D_2^{2m+2} = \phi$. Then we can regard h is a $(2m+2)$ -dimensional 1-handle which is attached to $D_1^{2m+2} \amalg D_2^{2m+2}$. Put $D = h \cup D_1^{2m+2} \cup D_2^{2m+2}$. Then we can make a slice disc for K from D .

4 Proof of Theorem 1.1.(1)

Theorem 1.1. (1) *Let $4k+1 \geq 5$. Let $L = (L_1, L_2)$ be a $(4k+1)$ -link. Then we have*

$$\text{Arf } L = \text{Arf } L_1 + \text{Arf } L_2.$$

Proof. We prove:

Lemma 4.1. *Let K be a $(4k+1)$ -knot $\subset S^{4k+3} = \partial B^{4k+4} \subset B^{4k+4}$ ($4k+1 \geq 5$).*

Suppose that there is a compact $(4k+2)$ -manifold M which is embedded in B^{4k+4} with the following properties.

- (1) $M \cap \partial B = \partial M = K$.
- (2) M intersects ∂B^{4k+4} transversely.
- (3) $H_i(M; \mathbf{Z}) \cong H_i(\overline{\xi S^1 \times S^{4k+1} - D^{4k+2}}; \mathbf{Z})$ for each i , where ξ is a nonnegative integer and $\sharp^0 S^1 \times S^{4k+1} = S^{4k+2}$.

Then we have $\text{Arf}(K) = 0$.

Proof of Lemma 4.1. We first prove:

Claim. *In order to prove Lemma 4.1, it suffices to prove the case where K is a simple knot.*

Note. See [17] for simple knots. Recall: If an $(2w+1)$ -knot K is a simple knot, then there is a Seifert hypersurface V for K with the following propositions. (1) $\pi_i(V) = 0$ $i \leq w$. (2) There are embedded spheres in V such that the set of the homology classes of the spheres is a set of generators of $H_{w+1}(V; \mathbf{Z})$.

Proof of Claim. Take a collar neighborhood of $S^{4k+3} = \partial B^{4k+4} \subset B^{4k+4}$. Call it $S^{4k+3} \times [0, 1]$. Push $M \cap (S^{4k+3} \times [0, 1])$ into the inside.

By [17], there is an embedding $f : S^{4k+1} \times [0, 1] \hookrightarrow S^{4k+3} \times [0, 1]$ with the following properties.

- (1) $f(S^{4k+1} \times \{1\})$ in $S^{4k+3} \times \{1\}$ is K .
- (2) $f(S^{4k+1} \times \{0\})$ in $S^{4k+3} \times \{0\}$ is a simple knot K' .

Then $\text{Arf}K = \text{Arf}K'$ and $M \cup f(S^{4k+1} \times [0, 1])$ satisfies (1), (2), and (3) in Lemma 4.1. This completes the proof of the above Claim.

We prove Lemma 4.1 in the case where K is a simple knot. There is a Seifert hypersurface V for K with the following properties: (1) $\pi_i V = 0$ ($1 \leq i \leq 2k$). (2) There are embedded spheres in V such that the set of the homology classes of the spheres is a set of generators of $H_{2k+1}(V; \mathbf{Z})$.

Then we have:

$$H_i(V; \mathbf{Z}) \cong \begin{cases} 0 & \text{for } i \neq 2k+1, 0 \\ \mathbf{Z}^{2\mu} & \text{for } i = 2k+1, \end{cases}$$

$$\begin{aligned} H_{2k+1}(V; \mathbf{Z}) \otimes \mathbf{Z}_2 &\cong H_{2k+1}(V; \mathbf{Z}_2), \\ H_{2k+1}(V \cup M; \mathbf{Z}) \otimes \mathbf{Z}_2 &\cong H_{2k+1}(V \cup M; \mathbf{Z}_2), \end{aligned}$$

and

$$H_i(V \cup M; \mathbf{Z}_2) \cong \begin{cases} 0 & \text{for } i = 2k+2 \\ H_{2k+1}(V; \mathbf{Z}_2) & \text{for } i = 2k+1 \\ 0 & \text{for } i = 2k. \end{cases}$$

By Claim 3.3, there is a compact oriented $(4k+3)$ -submanifold $W \subset B^{4k+4}$ such that $\partial W = V \cup M$.

Take the Meyer-Vietoris exact sequence:

$$H_i(V \cup M; \mathbf{Z}_2) \rightarrow H_i(W; \mathbf{Z}_2) \rightarrow H_i(W, V \cup M; \mathbf{Z}_2)$$

Consider the following part of the above sequence:

$$\begin{aligned} H_{2k+2}(V \cup M; \mathbf{Z}_2) &\rightarrow H_{2k+2}(W; \mathbf{Z}_2) \rightarrow H_{2k+2}(W, V \cup M; \mathbf{Z}_2) \rightarrow \\ H_{2k+1}(V \cup M; \mathbf{Z}_2) &\rightarrow H_{2k+1}(W; \mathbf{Z}_2) \rightarrow H_{2k+1}(W, V \cup M; \mathbf{Z}_2) \rightarrow \\ H_{2k}(V \cup M; \mathbf{Z}_2). \end{aligned}$$

Therefore we have

$$\begin{aligned} 0 &\rightarrow H_{2k+2}(W; \mathbf{Z}_2) \rightarrow H_{2k+2}(W, V \cup M; \mathbf{Z}_2) \rightarrow \\ \mathbf{Z}_2^{2\mu} &\rightarrow H_{2k+1}(W; \mathbf{Z}_2) \rightarrow H_{2k+1}(W, V \cup M; \mathbf{Z}_2) \rightarrow \\ 0. \end{aligned}$$

By using the Poincaré duality and the universal coefficient theorem, we have $H_{2k+2}(W; \mathbf{Z}_2) \cong H_{2k+1}(W, V \cup M; \mathbf{Z}_2)$ and $H_{2k+1}(W; \mathbf{Z}_2) \cong H_{2k+2}(W, V \cup M; \mathbf{Z}_2)$.

Hence there is a set of basis $x_1, \dots, x_\mu, y_1, \dots, y_\mu \in H_{2k+1}(V; \mathbf{Z}_2)$ with the following properties.

(1) $x_i \cdot x_j = 0$, $y_i \cdot y_j = 0$, $x_i \cdot y_j = \delta_{ij}$, where \cdot denote the intersection product.

(2) Let f be the above map $H_{2k+1}(V \cup M; \mathbf{Z}_2) \rightarrow H_{2k+1}(W; \mathbf{Z}_2)$. Then $f(x_i) = 0$

(3) x_i is represented by an embedded $(2k+1)$ -sphere in V .

We prove:

Lemma. If mod 2 $\text{lk}(x_i^+, x_i) = 0$ for each i , then $\text{Arf } K = 0$, where x_i^+ is one in §2.

Proof. Put $p : H_{2k+1}(V; \mathbf{Z}) \rightarrow H_{2k+1}(V; \mathbf{Z}_2)$. There is a basis $\bar{x}_1, \dots, \bar{x}_\mu, \bar{y}_1, \dots, \bar{y}_\mu$ in $H_{2k+1}(V; \mathbf{Z}_2)$ with the following properties.

(1) $\bar{x}_i \cdot \bar{x}_j = 0$, $\bar{y}_i \cdot \bar{y}_j = 0$, $\bar{x}_i \cdot \bar{y}_j = \delta_{ij}$, where \cdot denote the intersection product.

(2) $\bar{x}_i = p(x_i)$. $\bar{y}_i = p(y_i)$.

Then $\text{lk}(\bar{x}_i^+, \bar{x}_i) \equiv \text{lk}(x_i^+, x_i) \pmod{2}$ and $\text{lk}(\bar{y}_i^+, \bar{y}_i) \equiv \text{lk}(y_i^+, y_i) \pmod{2}$.

$\text{Arf } K = \text{mod } 2 \sum_{i=1}^\mu \text{lk}(\bar{x}_i^+, \bar{x}_i) \cdot \text{lk}(\bar{y}_i^+, \bar{y}_i) = \text{mod } 2 \sum_{i=1}^\mu \text{lk}(x_i^+, x_i) \cdot \text{lk}(y_i^+, y_i)$

Hence the above Lemma holds.

Let α be a \mathbf{Z}_2 - $(2k+2)$ -chain in W which bounds x_i . Let β be a \mathbf{Z}_2 - $(2k+2)$ -chain in S^{4k+3} which bounds x_i . Then $\gamma = \alpha \cup \beta$ is a \mathbf{Z}_2 - $(2k+2)$ -cycle in B^{4k+4} . We prove:

Claim. The \mathbf{Z}_2 -intersection product $\gamma \cdot \gamma$ in B^{4k+4} is mod 2 $\text{lk}(x_i^+, x_i)$.

Proof. Push off α to the positive direction of the normal bundle of W in X . Call it α^+ . Note α^+ bounds x_i^+ . By considering the collar neighborhood $S^{4k+3} \times [0, 1]$, we have that the \mathbf{Z}_2 -intersection product $\gamma \cdot \gamma$ is the mod 2 number of the points $\alpha^+ \cap \beta$.

It holds that mod 2 $\text{lk}(x_i^+, x)$ is the mod 2 number of the points $\alpha^+ \cap \beta$. Hence $\gamma \cdot \gamma = \text{mod } 2 \text{lk}(x_i^+, x)$.

Claim. The \mathbf{Z}_2 -intersection product $\gamma \cdot \gamma$ in B^{4k+4} is zero.

Proof. $H_{2k+2}(B; \mathbf{Z}_2) = 0$. Hence $\gamma \cdot \gamma = 0$.

This completes the proof of Lemma 4.1.

We go back to the proof of Theorem 1.1.(1).

In [26], the author proved the following. [25] includes the announcement.

Theorem. (See [25] [26].) Let $L_0 = (L_{0a}, L_{0b})$ be a $(4k+1)$ -link ($4k+1 \geq 5$). Then there is a boundary link $L_1 = (L_{1a}, L_{1b})$ and a compact oriented submanifold $P \amalg Q \subset S^{4k+3} \times [0, 1]$ with the following properties.

(1) $P = S^{4k+1} \times [0, 1]$. Put $\partial P = P_0 \amalg P_1$.

$Q = \overline{(S^1 \times S^{4k+1}) - B^{4k+2} - B^{4k+2}}$. Put $\partial Q = Q_0 \amalg Q_1$.

(2) P (resp. Q) is transverse to $S^{4k+3} \times \{0, 1\}$.

(3) $(f(P_i), f(Q_i))$ in $(S^{4k+1} \times \{i\})$ is a link L_i ($i = 0, 1$), where $(P \amalg Q) \cap (S^{4k+1} \times \{i\})$ is $(f(P_i), f(Q_i))$.

In order to prove Theorem 1.1.(1), it is suffices to prove that $\text{Arf } L_0 = \text{Arf } L_{0a} + \text{Arf } L_{0b}$.

Since L_{0a} is cobordant to L_{1a} , we have $\text{Arf } L_{0a} = \text{Arf } L_{1a}$.

Take $L_{0b} \# L_{1b}$. By using Q , we can make a manifold like M in Lemma 4.1 for $L_{0b} \# L_{1b}$. By Lemma 4.1, we have $\text{Arf } L_{0b} = \text{Arf } L_{1b}$.

Since L_1 is a boundary link, there is a Seifert surface V_{1a} for L_{1a} (resp. V_{1b} for L_{1b}) such that $V_{1a} \cap V_{1b} = \phi$. Let K_1 be a band-sum of L_1 along a band h such that $h \cap \{V_{1a} \amalg V_{1b}\}$ is the attach part of h . By considering V_{1a} , V_{1b} , and h , we have $\text{Arf } K_1 = \text{Arf } L_{1a} + \text{Arf } L_{1b}$.

Let K_0 be a band-sum of L_0 . By Proposition 3.1.(1), $\text{Arf } K_0 = \text{Arf } L_0$.

Take L_0 and $-L_1^*$ in S^{4k+3} such that L_0 is embedded in a ball B^{4k+3} and that $-L_1^*$ is embedded in $S^{4k+3} - B^{4k+3}$. Make K_0 in B^{4k+3} . Make $-K_1^*$ in $S^{4k+3} - B^{4k+3}$. Take a connected-sum $K_0 \# (-K_1^*)$. By using $P \amalg Q$ and band-

sums, we can make a manifold like M in Lemma 4.1 for $K_0 \# (-K_1^*)$. By Lemma 4.1, we have $\text{Arf } K_0 = \text{Arf } K_1$.

$$\begin{aligned} & \text{Hence Arf } L_0 \\ &= \text{Arf } K_0 \\ &= \text{Arf } K_1 \\ &= \text{Arf } L_{1a} + \text{Arf } L_{1b} \\ &= \text{Arf } L_{0a} + \text{Arf } L_{0b}. \end{aligned}$$

This completes the proof of Theorem 1.1.(1).

Note. (1) If $bP_{4k+2} \cong \mathbf{Z}_2$, the proof of Theorem 3.5.(1) is easy. See [11] for bP_{4k+2} . Because: An arbitrary n -knot bounds a Seifert hypersurface. An arbitrary Seifert hypersurface is a compact oriented parallelizable manifold. Therefore $[K_0], [K_1], [K_2] \in bP_{4k+2} \subset \Theta_{4k+1}$. If $bP_{4k+2} \cong \mathbf{Z}_2$, then the Arf invariant of K_i as a manifold coincides with the Arf invariant of K_i as a knot.

(2) There are integers k such that $bP_{4k+2} \cong 1$. See [1] [11].

5 Proof of Theorem 1.1.(2)

Theorem 1.1. (2) Let $4k+3 \geq 3$. Let $L = (L_1, L_2)$ be a $(4k+3)$ -link. Then we have

$$\sigma L = \sigma L_1 + \sigma L_2.$$

Proof. Let $L = (L_+, L_-)$ be a $(4k+3)$ -link ($4k+3 \geq 3$) $\subset S^{4k+5}$. Let V (resp. V_+, V_-) be a Seifert hypersurface of L (resp. L_+, L_-). Take $S^{4k+5} \times [-1, 1]$. Regard $L = (L_+, L_-)$ as in $S^{4k+5} \times \{0\}$.

Take $L_+ \times [0, 1]$ in $S^{4k+5} \times [0, 1]$ so that $L_+ \times \{t\}$ is embedded in $S^{4k+5} \times \{t\}$ and that $L_+ \times \{0\}$ coincides with L_+ in L in $S^{4k+5} \times \{0\}$.

Take $L_- \times [-1, 0]$ in $S^{4k+5} \times [-1, 0]$ so that $L_- \times \{t\}$ is embedded in $S^{4k+5} \times \{t\}$ and that $L_- \times \{0\}$ coincides with L_- in L in $S^{4k+5} \times \{0\}$.

Then it holds that $(L_+ \times \{0\}, L_- \times \{0\})$ in $S^{4k+5} \times \{0\}$ is L .

Take V (resp. V_+, V_-) in $S^{4k+5} \times \{0\}$ (resp. $S^{4k+5} \times \{1\}, S^{4k+5} \times \{-1\}$).

Put $W = V_+ \cup (L_+ \times [0, 1]) \cup (-V) \cup (L_- \times [-1, 0]) \cup V_-$. Note $W \supset L$.

By Claim 4.2, there is a compact oriented $(4k+5)$ -submanifold $X \subset S^{4k+5} \times [-1, 1]$ such that $\partial X = W$. Hence

$$\sigma(W) = 0 \quad (\text{i}).$$

By the definition of W ,

$$\sigma(W) = \sigma(V_+) + \sigma(-V) + \sigma(V_-) = \sigma(V_+) - \sigma(V) + \sigma(V_-) \quad (\text{ii}).$$

By (i)(ii), $\sigma(V) = \sigma(V_+) + \sigma(V_-)$. Hence $\sigma(L) = \sigma(L_+) + \sigma(L_-)$.

6 Proof of Proposition 1.2

Proposition 1.2. Let $L = (L_1, L_2)$ be a 1-link. Suppose that the Arf invariants of 2-component 1-links are defined, that is, that the linking numbers are even.

(1) $\text{Arf } L = \text{Arf } L_1 + \text{Arf } L_2 + \frac{1}{2}\{\beta^*(L) + \text{mod4}\{\frac{1}{2}\text{lk}(L)\}\}$,
where $\beta^*(L)$ is the Saito-Sato-Levine invariant.

(2) $\text{Arf } L = \text{Arf } L_1 + \text{Arf } L_2 + \text{mod2}\{\lambda(L)\}$,
where $\lambda(L)$ is the Kirk-Livingston invariant.

Proof. Put the Conway polynomial $\nabla_L(z)$ of $L = (L_1, L_2)$ to be $\nabla_L(z) = c_1 \cdot z + c_3 \cdot z^3 + \dots$. By Lemma 3.6 of [8],
 $c_1(L) = \text{lk}(L) \quad (\text{i}).$

The Saito-Sato-Levine invariant $\beta(\) \in \mathbf{Z}_4$ is defined in [30] for $L = (L_1, L_2)$ whose linking number is even. It is a generalization of the Sato-Levine invariant $\in \mathbf{Z}_2$ in [29].

Let $\text{lk}(L)$ be even. By Theorem 4.1 of [30],

$$\beta^*(L) = \text{mod}4\{2c_3(L) - \frac{1}{2}c_1(L)\} \quad (\text{ii}).$$

By (i) and (ii),

$$\beta^*(L) = \text{mod}4\{2c_3(L)\} - \text{mod}4\{\frac{1}{2}\text{lk}(L)\} \quad (\text{iii}).$$

By (iii),

$$\text{mod}2\{c_3(L)\} = \frac{1}{2}\{\beta^*(L) + \text{mod}4\{\frac{1}{2}\text{lk}(L)\}\} \quad (\text{iv}).$$

Note. The first $\frac{1}{2}$ in the right side make sense. We can regard the right side as an element in \mathbf{Z}_2 .

The Kirk-Livingston invariant $\lambda(\)$ is defined in [15]. By the definition of $\lambda(\)$ and Theorem 6.3 of [15], it holds that: If $\text{lk}(L)$ is even,

$$\text{mod}4\{\lambda(L)\} = \text{mod}4\{c_3(L)\}. \quad (\text{v})$$

By (v),

$$\text{mod}2\{\lambda(L)\} = \text{mod}2\{c_3(L)\}. \quad (\text{vi})$$

By [20], it holds that: If $\text{lk}(L)$ is even,

$$\text{mod}2\{c_3(L)\} = \text{Arf}L + \text{Arf}L_1 + \text{Arf}L_2 \quad (\text{vii}).$$

By (vi)(vii), Proposition 1.2.(2) holds. By (iv)(vii) Proposition 1.2.(1) holds.

Note. Let $\text{lk}(L)$ be even. Then, by (iii) and (v), we have

$\beta^*(L) = \text{mod } 4\{2\lambda(L) - \frac{1}{2}\text{lk}(L)\}$. It is written in Addenda of [KL] that the author proved this result.

7 Proof of Theorem 1.5

Theorem 1.5. (1) Let $4k+1 \geq 5$. Let $L = (L_1, L_2)$ be a $(4k+1)$ -link. Let K be a band-sum of L . Then we have

$$\text{Arf}K = \text{Arf}L_1 + \text{Arf}L_2.$$

(2) Let $4k+3 \geq 3$. Let $L = (L_1, L_2)$ be a $(4k+3)$ -link. Let K be a band-sum of L . Then we have

$$\sigma K = \sigma L_1 + \sigma L_2.$$

Proof of (1). By Proposition 3.1(1), $\text{Arf } K = \text{Arf } L$. By Theorem 1.1.(1), $\text{Arf } L = \text{Arf } L_1 + \text{Arf } L_2$. Hence $\text{Arf } K = \text{Arf } L_1 + \text{Arf } L_2$.

Proof of (1). By Proposition 3.1.(2), $\sigma K = \sigma L$. By Theorem 1.1.(2), $\sigma L = \sigma L_1 + \sigma L_2$. Hence $\sigma K = \sigma L_1 + \sigma L_2$.

8 Proof of Theorem 1.4

Theorem 1.4. Let $2m+1 \geq 3$. There is a set of three $(2m+1)$ -knots K_0, K_1, K_2 such that the triple (K_0, K_1, K_2) is not band-realizable.

Proof of the $2m+1 = 4k+1 \geq 5$ case. There is a $(4k+1)$ -knot ($4k+1 \geq 5$) whose Arf invariant is zero (resp. nonzero).

Proof of the $2m+1 = 4k+3 \geq 3$ case. There is a $(4k+3)$ -knot ($4k+3 \geq 3$) whose signature is zero (resp. nonzero).

9 Proof of Theorem 1.3.(2)

Theorem 1.3.(2) Let $2m + 1 \geq 1$. Then there is a nonslice $(2m + 1)$ -link $L = (L_1, L_2)$ such that L_i is a trivial knot.

Proof of the $2m + 1 = 4k + 1 (\geq 1)$ case. We prove:

Proposition 9.1. There is a nonslice $(4k + 1)$ -link $L = (L_1, L_2)$ ($4k + 1 \geq 1$) such that L_i is a trivial knot ($i = 1, 2$).

Proof. Let V_i be a Seifert surface for L_i . Let $V_i \cong \overline{(S^{2k+1} \times S^{2k+1}) - B^{4k+2}}$. Suppose $V_1 \cap V_2 = \emptyset$. Let a, b be basis of $H_{2k+1}(V_1, \mathbf{Z})$. Let c, d be basis of $H_{2k+1}(V_2, \mathbf{Z})$.

Let K be a band-sum of L along a band h . Suppose $h \cap V$ is the attach part of h . Put $V = V_1 \cup V_2 \cup h$.

We can suppose that a Seifert matrix of L_1 associated with V_1 represented by basis a, b is

$$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}.$$

We can suppose that a Seifert matrix of L_2 associated with V_2 represented by basis c, d is

$$\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

We can suppose that a Seifert matrix of K associated with V represented by basis a, b, c, d is

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

One way of construction of K is the following one: Take a ball $B^{4k+3} \subset S^{4k+3}$. Take a submanifold V'_1 in B^{4k+3} which is equivalent to V_1 . Take a submanifold V'_2 in $S^{4k+3} - B^{4k+3}$ which is equivalent to V_2 . Let L'_i be $\partial V'_i$. Take a connected-sum $L'_1 \# L'_2$. By using pass-moves, we can make K from $L'_1 \# L'_2$. (Pass-moves for 1-knots are defined in [8]. Pass-moves for $(2n + 1)$ -knots are defined by the author in [24].($2n + 1 \geq 3$.)

we can make K from $L'_1 \# L'_2$.

We have

$$\det(A + {}^t A) = \det \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix} = -15.$$

$A + {}^t A$ is a (4×4) -matrix. Hence $\sigma(A + {}^t A) \neq 0$. Hence K is nonslice. By Proposition 3.1.(4), L is nonslice. This completes the proof when $2m + 1 = 4k + 1 (\geq 5)$.

Proof of the $2m + 1 = 4k + 3 (\geq 3)$ case. We prove:

Proposition 9.2. There is a nonslice $(4k + 3)$ -link $L = (L_1, L_2)$ ($4k + 3 \geq 3$) such that L_i is a trivial knot ($i = 1, 2$).

Proof. Let V_i be a Seifert surface for L_i . Let $V_i \cong \overline{(S^{2k+2} \times S^{2k+2}) - B^{4k+4}}$. Suppose $V_1 \cap V_2 = \emptyset$.

Let a, b be basis of $H_{2k+2}(V_1, \mathbf{Z})$. Let c, d be basis of $H_{2k+2}(V_2, \mathbf{Z})$.

Let K be a band-sum of L along a band h . Suppose $h \cap V$ is the attach part of h . Put $V = V_1 \cup V_2 \cup h$.

We can suppose that a Seifert matrix of L_1 associated with V_1 represented by basis a, b is

$$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}.$$

We can suppose that a Seifert matrix of L_2 associated with V_2 represented by basis c, d is

$$\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}.$$

We can suppose that a Seifert matrix of K associated with V represented by basis a, b, c, d is

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

We can construct K by a similar way to the way of construction of the knot K in Proof of Proposition 9.1.

By §25, 26 of [17], A is not a Seifert matrix of any slice knot. Hence K is nonslice. By Proposition 3.1.(4), L is nonslice. This completes the proof when $2m + 1 = 4k + 3 (\geq 3)$.

This completes the proof of Theorem 1.3.(2).

Note. (1) The above $(4k + 3)$ -knots K are discussed in [17][19].

(2) By using the above link L , we can give a short alternative proof to one of the main results of [2], [9]. The theorem is that there is a boundary $(2m+1)$ -link ($2m + 1 \geq 1$) which is not cobordant to any split link. Proof: If the above link L is concordant to a split link, then L is slice. Therefore L is a boundary link which is not cobordant to any split link.

[19] prove a theorem which is close to this theorem but different from this theorem.

(3) We give a question: Do we give some answers to Problems in §1 by using [3][4][18]?

10 Proof of Theorem 1.3.(3)

Theorem 1.3.(3) Let $n \geq 2$. Then there is a slice and nonribbon n -link $L = (L_1, L_2)$ such that L_i is a trivial knot.

Proof of the $n \geq 3$ case. Recall that the following facts hold by Theorem 4.1 of [5] or by using the Mayer-Vietoris exact sequence. See, e.g., §14 of [17] for the Alexander polynomials. See, e.g., p.160 of [Rolfsen] and [16] for the Alexander invariant. Let \tilde{X}_K denote the canonical infinite cyclic covering of the complement of the knot K .

Theorem 10.1. (known) Let K be a simple $(2k + 1)$ -knot ($k \geq 1$). Let $\Delta_K(t)$ be the Alexander polynomial of K . Suppose the $(k + 1)$ -Alexander invariant $H_{k+1}(\tilde{X}_K; \mathbf{Q}) \cong \{(\mathbf{Q}[t, t^{-1}])/\delta_K^1(t)\} \oplus \dots \oplus \{(\mathbf{Q}[t, t^{-1}])/\delta_K^p(t)\}$. Then $\Delta_K(t) = a \cdot t^b \cdot \delta_K^1(t) \dots \delta_K^p(t)$ for a rational number a and an integer b and we can put $\Delta_K(1) = 1$.

Theorem 10.2. (known) Let $K^{(n+1)}$ be the spun knot of $K^{(n)}$ ($n \geq 1$). Let $H_k(\tilde{X}_{K^{(n)}}; \mathbf{Q})$ (resp. $H_k(\tilde{X}_{K^{(n+1)}}; \mathbf{Q})$) denote the k -Alexander invariant of

$K^{(n)}$ (resp. $K^{(n+1)}$). Suppose that $K^{(n)}$ bounds a Seifert hypersurface V such that $H_1(V; \mathbf{Z}) \cong 0$. Then $H_2(\widetilde{X^{(n+1)}}; \mathbf{Q}) \cong H_2(\widetilde{X^{(n)}}; \mathbf{Q})$.

Proposition 10.3. (known) Let $K^{(n+1)}$ be the spun knot of $K^{(n)}$ ($n \geq 1$). If $K^{(n)}$ has a simply connected Seifert hypersurface, then $K^{(n+1)}$ has a simply connected Seifert hypersurface.

We prove:

Proposition 10.4. Let K be a ribbon n -knot $\subset S^{n+2}$ ($n \geq 1$). Then $H_2(\widetilde{X_K}; \mathbf{Q})$ does not have $\mathbf{Q}[\mathbf{t}, \mathbf{t}^{-1}]$ -torsion.

Proof. Since K is ribbon, there is a Seifert hypersurface V which is diffeomorphic to $\overline{S^1 \times S^n - D^{n+1}}$. It holds that $H_i(V; \mathbf{Q}) \cong \begin{cases} \mathbf{Q} & \text{for } i = 1, n \\ 0 & \text{for } i \neq 1, n. \end{cases}$

Let $N(K)$ be a tubular neighborhood of K in S^{n+2} . Put $X = \overline{S^{n+2} - N(K)}$. The submanifold $V \cap X$ is called V again. Let $N(V)$ be a tubular neighborhood of V in X . Put $Y = X - N(V)$. By using the Mayer-Vietoris exact sequence, it holds that $H_i(Y; \mathbf{Q}) \cong \begin{cases} \mathbf{Q} & \text{for } i = 1, n \\ 0 & \text{for } i \neq 1, n. \end{cases}$

Let $p : \widetilde{X_K} \rightarrow X$ be the canonical projection map. Put $p^{-1}(N(V)) = \coprod_{j=-\infty}^{\infty} V_j$. Put $p^{-1}(Y) = \coprod_{j=-\infty}^{\infty} Y'_j$. Suppose $\partial Y'_j \subset V_j \amalg V_{j+1}$. Put $Y_j = V_j \cup Y'_j \cup V_{j+1}$. Then there is the Mayer-Vietoris exact sequence:

$$H_i(\coprod_{j=-\infty}^{\infty} V_j; \mathbf{Q}) \rightarrow H_i(\coprod_{j=-\infty}^{\infty} Y_j; \mathbf{Q}) \rightarrow H_i(\widetilde{X_K}; \mathbf{Q}).$$

Consider the following part: $H_2(\coprod_{j=-\infty}^{\infty} Y_j; \mathbf{Q}) \rightarrow H_2(X_K; \mathbf{Q}) \rightarrow H_1(\coprod_{j=-\infty}^{\infty} V_j; \mathbf{Q})$.

Hence $0 \rightarrow H_2(X_K; \mathbf{Q}) \rightarrow \oplus^{\mu} \mathbf{Q}[\mathbf{t}, \mathbf{t}^{-1}]$ is exact, where μ is a nonnegative integer. Therefore Proposition 10.4 holds.

Take a 3-link $L = (L_1, L_2) \subset S^5$ in the proof of Theorem 1.3.(2).

Suppose $L \subset \mathbf{R}^5 \subset \mathbf{S}^5$. Let $\alpha : \mathbf{R}^4 \times \mathbf{R} \rightarrow \mathbf{R}^4 \times \mathbf{R}$ be the map defined by $(x, y) \mapsto (x, -y)$.

Suppose that $L \subset \mathbf{R}^4 \times \{y|y \geq 0\}$, that $L_i \cap (\mathbf{R}^4 \times \{y|y = 0\})$ is a 3-disc D_i^3 . Note $D_1^3 \cap D_2^3 = \phi$. The link $\alpha(L)$ is called $-L^* = (-L_1^*, -L_2^*)$. The link $(\{L_1 \cup (-L_1^*)\} - D_1^3, \{K_2 \cup (-K_2^*)\} - D_2^3)$ is called $\tilde{L} = (\tilde{L}_1, \tilde{L}_2)$.

We prove:

Claim. \tilde{L} is slice and nonribbon.

Proof. Firstly we prove that \tilde{L} is slice. Take $\mathbf{R}^4 \times \mathbf{R} \times \{z|z \geq 0\}$. Regard $\mathbf{R}^4 \times \mathbf{R}$ as $\mathbf{R}^4 \times \mathbf{R} \times \{z|z = 0\}$. Put $F_\theta = \mathbf{R}^4 \times \{(y, z)|y = r \cdot \cos\theta, z = r \cdot \sin\theta, r \geq 0, \theta : \text{fix.}\}$, where $0 \leq \theta < \pi$. Regard $\mathbf{R}^4 \times \mathbf{R} \times \{z|z \geq 0\}$ as the rotating of F_0 around the axis $\mathbf{R}^4 \times \{0\} \times \{0\}$. When rotating F_0 , we rotate $\overline{L - D_1^3 - D_2^3}$ as well. The result of rotating $\overline{L - D_1^3 - D_2^3}$ is a set of slice discs for \tilde{L} . Hence \tilde{L} is slice.

Secondly we prove that \tilde{L} is nonribbon. Take Seifert hypersurfaces V_1 and V_2 in the proof of Theorem 1.3.(2) for L . Suppose $V_1, V_2 \subset \mathbf{R}^4 \times \{y|y = 0\}$. Suppose that $V_i \cap (\mathbf{R}^4 \times \{y|y = 0\}) = D_i^3$. Put $\tilde{V}_i = V_i \cup \alpha(V_i)$.

Let \tilde{K} be a band-sum of $\tilde{L} = (\tilde{K}_1, \tilde{K}_2)$ along a band h . Suppose $h \cap \tilde{V}_i$ is the attach part of h . Then a Seifert matrix of the 3-knot \tilde{K} is

$$P = \begin{pmatrix} X & 0 \\ 0 & -X \end{pmatrix}, \text{ where } X = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Then $\det(X + t \cdot {}^t X)$ is the Alexander polynomial of \tilde{K} (see [16][17]). By Theorem 10.1, $H_{m+1}(X_{\tilde{K}}; \mathbf{Q})$ has $\mathbf{Q}[\mathbf{t}, \mathbf{t}^{-1}]$ -torsion. By Proposition 10.4, \tilde{K} is nonribbon. By Proposition 3.1.(5), \tilde{L} is nonribbon.

Next we prove the $n \geq 3$ case. Let $L^{(3)} = (L_1^{(3)}, L_2^{(3)})$ be the above 3-link $\tilde{L} = (\widetilde{L}_1, \widetilde{L}_2)$. For any band-sum $K^{(3)}$ of $L^{(3)}$, $H_2(X_{K^{(3)}})$ has $\mathbf{Q}[\mathbf{t}, \mathbf{t}^{-1}]$ -torsion.

Let $L^{(n+1)} = (L_1^{(n+1)}, L_2^{(n+1)})$ be a spun link of $L^{(n)} = (L_1^{(n)}, L_2^{(n)})$ ($n \geq 3$). We can take $h^{(n)}$ and $h^{(n+1)}$ so that the band-sum $K^{(n+1)}$ of $L^{(n+1)}$ along $h^{(n+1)}$ is a spun knot of $K^{(n)}$. (Put the core of the band in the axis of the rotation.)

By Theorem 10.2 and Proposition 10.3, $H_2(\widetilde{X_{K^{(n)}}}; \mathbf{Q}) \cong H_2(\widetilde{X_{K^{(3)}}}; \mathbf{Q})$ ($n \geq 3$). Hence $H_2(X_{K^{(n)}})$ has $\mathbf{Q}[\mathbf{t}, \mathbf{t}^{-1}]$ -torsion. By Proposition 10.4, $K^{(n)}$ is nonribbon ($n \geq 3$). By Proposition 3.1.(5), $L^{(n)}$ is nonribbon.

Since $L^{(n)}$ is a spun link, $L^{(n)}$ is slice ($n \geq 4$). Hence $L^{(n)}$ is slice ($n \geq 3$).

This completes the proof of the $n \geq 3$ case.

Proof of the $n = 2$ case In [22] the author made a nonribbon 2-link as follows: Let K be a 2-knot. Let $N(K)$ be a tubular neighborhood. We made a way to construct a 2-link $L^K = (L_1^K, L_2^K)$ in $N(K)$. We proved that there is a 2-knot K' such that $L^{K'}$ is nonribbon.

We prove: $L^{K'}$ is slice. Because: Let $K \subset S^4 = \partial B^5 = B^5$. Take a slice disc $D^K \subset B^5$ for K . Take a tubular neighborhood $N(D^K)$ of D^K . Note $N(D^K) \cap S^4 = N(K)$. Suppose that K is a trivial knot and that D^K is embedded trivially in B^5 . Then we can make a set of slice discs (D_1^K, D_2^K) for (L_1^K, L_2^K) such that (D_1^K, D_2^K) is embedded in $N(D^K)$. Take a diffeomorphism map $f : N(D^K) \rightarrow N(D^{K'})$ such that $f(L_i^K) = L_i^{K'}$. The submanifold $f(D_i^K)$ is called $D_i^{K'}$. Then $(D_1^{K'}, D_2^{K'})$ is a set of slice discs for $L^{K'}$.

Note. (1) By using this section we can give a short alternative proof of the main theorem of [7]: there is a nonribbon and slice n -knot ($n \geq 3$).

(Nonribbon 2-knots and nonribbon 1-knots are known before [7] is written as [7] quoted.)

(2) In Proposition 10.4, furthermore, we can prove that $H_i(\widetilde{X_K}; \mathbf{Z}) = \mathbf{0}$ for $2 \leq i \leq n - 1$.

11 Proof of Theorem 1.3.(1)

Theorem 1.3.(1) *Let $n \geq 1$. Then there is a nonribbon n -link $L = (L_1, L_2)$ such that L_i is a trivial knot.*

Proof. The $n = 1$ case holds because the Hopf link is an example. The $n \geq 2$ case follows from Theorem 1.3.(2), (3). This completes the proof.

12 Proof of Theorem 1.6.(2)

Theorem 1.6.(2) *Let $2m + 1 \geq 1$. Let T be a trivial $(2m + 1)$ -knot. Then there is a nonslice $(2m + 1)$ -knot K such that the triple (K, T, T) is band-realizable.*

Proof. K and $L = (L_1, L_2)$ in the proof of Theorem 1.3.(2) give examples.

13 Proof of Theorem 1.6.(3)

Theorem 1.6.(3) Let $2m + 1 \geq 3$. Let T be a trivial $(2m + 1)$ -knot T . Then there is a slice and nonribbon $(2m + 1)$ -knot K such that the triple (K, T, T) is band-realizable.

Proof. K and $L = (L_1, L_2)$ in the proof of Theorem 1.3.(3) give examples.

14 Proof of Theorem 1.6.(1)

Theorem 1.6.(1) Let $n \geq 1$. Let T be a trivial n -knot. Then there is a nonribbon n -knot K such that the triple (K, T, T) is band-realizable.

Proof. K and $L = (L_1, L_2)$ in the proof of Theorem 1.3.(3) give examples for the $n \geq 3$ case. K and $L = (L_1, L_2)$ in the proof of Theorem 1.3.(2) give examples for the case where $n \geq 1$ and n is odd. The $n = 2$ case follows from [22]. This completes the proof.

15 Open problems

Even dimensional case of Problem C in §1 is open. If the answer to the following problem is positive, then the $n = 2$ case of Problem C is positive.

Problem 15.1 Let $L = (K_1, K_2)$ be a 2-link. Do we have: $\mu(L) = \mu(K_1) + \mu(K_2)$?

See [28] for the μ -invariant of 2-knots. See [23] for the μ -invariant of 2-links.

In [23] the author proved: if L is a SHB link, the answer to Problem 15.1 is positive.

If the answer to Problem 15.1 is negative, then the answer to the following problem is positive.

Problem 15.2 Is there a non SHB link?

We can define an invariant for $(4k+2)$ -knots corresponding to the μ invariant for 2-knots. We use this invariant and make a similar problem to Problem 15.1.

References

- [1] W. Browder: The Kervaire invariant of framed manifolds and its generalization, *Ann. Math.*, 90, 157-186, 1969.
- [2] S.Cappell and J.Shaneson: Link cobordism, *Comment. Math. Helv.*, 1980.
- [3] T.D.Cochran and K. E. Orr: Not all links are concordant to boundary links *Ann. Math.*, 138, 519-554, 1993.
- [4] P. Gilmer and C. Livingston: The Casson-Gordon invariant and link concordance, *Topology*, 31, 475-492, 1992.
- [5] C.McA.Gordon: Some higher-dimensional knots with the same homotopy group, *Quart.J.Math.Oxford* 24, 411-422, 1973.
- [6] O. G. Harrold and S. Kinoshita: A theorem on θ -curves and its application to a problem of T.B.Rushing, *Bull.de L'Acad. Polon. des.Sci.*, 28, 631-634, 1980.
- [7] L.R.Hitt: Examples of higher dimensional slice knots which are not ribbon knots, *Proc. Amer. Math. Soc.*, 77, 291-297, 1979.
- [8] L. Kauffman: On knots, *Ann of math studies*, 115, 1987.
- [9] A. Kawauchi: On links not cobordant to split links, *Topology* 19, 321-334, 1980.

- [10] M. Kervaire: Les noeuds de dimensions supérieures, *Bull.Soc.Math.France* 93, 225-271, 1965.
- [11] M. Kervaire and J. Milnor: Groups of homotopy spheres I, *Ann. Math.* , 77, 504-537, 1963.
- [12] S. Kinoshita: On θ_n -curves in \mathbf{R}^3 and their constituent knots, In:*Topology and Computer sciences, Kinokuniya Co.Ltd*, 211-216, 1987.
- [13] S. Kinoshita and H. Terasaka: On union of knots, *Osaka J. Math*, 9, 131-153, 1957.
- [14] R. Kirby: The topology of 4-manifolds *Lecture Notes in Math (Springer Verlag)* vol. 1374, 1989
- [15] P. Kirk and C. Livingston: Vassiliev invariant of two component links and the Casson-Walker invariant, *Topology*, 36, 1333-1353, 1997
- [16] J. Levine: Polynomial invariant of knots of codimension two, *Ann. Math.*, 84, 537-554, 1966.
- [17] J. Levine: Knot cobordism in codimension two, *Comment. Math. Helv.*, 44, 229-244, 1969.
- [18] J. Levine: Link invariant via the eta-invariant, *Comment. Math. Helv.*, 69, 82-119, 1994.
- [19] W, Mio: On boundary link cobordism, *Proc. Camb. Phil. Soc.*, 101, 259-266, 1989.
- [20] K. Murasugi: On the Arf invariant of links *Proc. Camb. Phil. Soc.*, 95, 421-434, 1984.
- [21] E, Ogasa: Some results on knots and links in all dimensions. *Surgery and geometric topology (Edit. A.Ranicki and M. Yamasaki, Sakado,1996).* *Sci. Bull. Josai Univ.* 1997, Special issue no. 2, 81-90.
- [22] E. Ogasa: Nonribbon 2-links all of whose components are trivial knots and some of whose band-sums are nonribbon knots *J. Knot Theory Ramifications*, to appear
- [23] E. Ogasa: Ribbon-moves of 2-links preserve the μ -invariant of 2-links, *math.GT/0004008* in <http://xxx.lanl.gov>, UTMS 97-35.
- [24] E. Ogasa: Intersectional pair of n -knots, local moves of n -knots, and their associated invariants of n -knots *Mathematical Research Letters*, 5, 577-582, 1998, UTMS 95-50
- [25] E. Ogasa: Link cobordism and the intersection of slice discs *Bulletin of the London Mathematical Society*, 31, 1-8, 1999.
- [26] E. Ogasa: Link cobordism and the intersection of codimension two submanifolds *In preparation*, which is based on a part of the author's Doctor thesis (Math. Dept. University of Tokyo 1996).
- [27] D. Rolfsen: Knots and links *Publish or Perish, Inc.* 1976
- [28] D. Ruberman: Doubly slice knots and the Casson-Gordon invariants *Trans. Amer. Math. Soc.*, 279, 569-588, 1983.
- [29] N. Sato: Cobordisms of semi-boundary links, *Topology Appl.*, 18, 225-234, 1984.
- [30] M. Saito: On the unoriented Sato-Levine invariant, *J. Knot Theory Ramifications*, 2, 335-358, 1993.
- [31] A. Yasuhara: On higher dimensional θ -curves *Kobe J. Math.*, 8, 191-196, 1991