WHAT IS A REGULAR ALGEBRAIC AUTOMORPHIC REPRESENTATION?

ZACHARY FENG

1. Introduction

Let F be a number field. Let π be an automorphic representation of $GL_n(\mathbb{A}_F)$.

Definition 1. We say that π is regular algebraic if π_{∞} has the same infinitesimal character as an irreducible algebraic representation W of $(\operatorname{Res}_{F/\mathbb{Q}} \operatorname{GL}_n)_{\mathbb{C}}$.

The purpose of these notes is to demystify this definition. For example, why do we consider representations of $(\operatorname{Res}_{F/\mathbb{Q}} \operatorname{GL}_n)_{\mathbb{C}}$ rather than, say, $(\operatorname{Res}_{F/\mathbb{Q}} \operatorname{GL}_n)_{\mathbb{R}}$? The latter satisfies

$$(\operatorname{Res}_{F/\mathbb{Q}}\operatorname{GL}_n)(\mathbb{R}) = \operatorname{GL}_n(F \otimes_{\mathbb{Q}} \mathbb{R}) = \operatorname{GL}_n(\prod_{v \mid \infty} F_v) = \operatorname{GL}_n(\mathbb{A}_{F,\infty}).$$

We will go through one example in detail, which should clarify some things.

Let T_n be the standard diagonal torus and B_n be the standard upper triangular Borel subgroup in GL_n . Identify $X^{\bullet}(T_n)$ with \mathbb{Z}^n in the usual way, and write $\mathbb{Z}_+^n \subset \mathbb{Z}^n$ for the subset of weights which are B_n -dominant, that is:

$$\mathbb{Z}_{+}^{n} = \{(a_{1}, \dots, a_{n}) \in \mathbb{Z}^{n} : a_{1} \geq \dots \geq a_{n}\}.$$

There is a bijection between irreducible (finite-dimensional) algebraic representations of GL_n (over any characteristic zero field) and \mathbb{Z}_+^n , by sending the representation to its highest weight. The irreducible representations of $(\operatorname{Res}_{F/\mathbb{Q}} GL_n)_{\mathbb{C}}$ are then easy to determine. Indeed,

$$(\operatorname{Res}_{F/\mathbb{Q}}\operatorname{GL}_n)(\mathbb{C}) = \operatorname{GL}_n(F \otimes_{\mathbb{Q}} \mathbb{C}) = \operatorname{GL}_n(\prod_{\operatorname{Hom}(F,\mathbb{C})} \mathbb{C}) = \prod_{\operatorname{Hom}(F,\mathbb{C})} \operatorname{GL}_n(\mathbb{C}).$$

So its irreducible representations are in bijection with the set $(\mathbb{Z}_+^n)^{\operatorname{Hom}(F,\mathbb{C})}$.

2. Example

Let $F = \mathbb{Q}(\sqrt{d})$ be an imaginary quadratic field. We will be considering automorphic representations of $\mathrm{GL}_1(\mathbb{A}_F) = \mathbb{A}_F^{\times}$, that is, Hecke characters. (The first part of our exposition closely follows that of [Sno10], before breaking off to do our own calculations.)

To this end, let $\psi: F^{\times} \backslash \mathbb{A}_F^{\times} \to \mathbb{C}^{\times}$ be a Hecke character. We consider

$$\psi_{\infty}: (F \otimes_{\mathbb{Q}} \mathbb{R})^{\times} \to \mathbb{C}^{\times}.$$

Fix roots of the integer $d: u \in F$ and $u' \in \mathbb{C}$; this determines a unique embedding $F \xrightarrow{\sigma} \mathbb{C}$ which sends u to u'. In fact, σ induces an isomorphism $F \otimes_{\mathbb{Q}} \mathbb{R} \to \mathbb{C}$ sending $x \otimes y \mapsto \sigma(x)y$. Therefore, ψ_{∞} factors through this isomorphism

$$\psi_{\infty}: (F \otimes_{\mathbb{Q}} \mathbb{R})^{\times} \to \mathbb{C}^{\times} \to \mathbb{C}^{\times}.$$

Date: August 11, 2024.

Recall: every continuous homomorphism $\mathbb{C}^{\times} \to \mathbb{C}^{\times}$ has the form

$$re^{i\theta} \mapsto r^a e^{in\theta}$$

for some $a \in \mathbb{C}$ and $n \in \mathbb{Z}$ (this is because $\mathbb{C}^{\times} = \mathbb{R}_{>0} \times \mathbb{S}^1$ where \mathbb{S}^1 is the unit circle). Let z := x + yu' with $x, y \in \mathbb{R}$ and $xy \neq 0$ be an arbitrary element of \mathbb{C}^{\times} ; note that this is the image of $1 \otimes x + u \otimes y$ under the isomorphism $F \otimes_{\mathbb{Q}} \mathbb{R} \to \mathbb{C}$. In polar coordinates,

$$z = (x^2 - dy^2)^{1/2} \frac{x + yu'}{(x^2 - dy^2)^{1/2}}.$$

Then z is mapped under $\mathbb{C}^{\times} \to \mathbb{C}^{\times}$ to the following element:

$$(x^2 - dy^2)^{a/2} \left(\frac{x + yu'}{(x^2 - dy^2)^{1/2}} \right)^n = (x^2 - dy^2)^{(a-n)/2} (x + yu')^n.$$

This is a rational function of x and y if and only if a-n is an even integer, say 2m. (We want to treat ψ_{∞} as a function of x and y, rather than as a function of z, because $\mathrm{GL}_n(\mathbb{A}_{F,\infty}) = (\mathrm{Res}_{F/\mathbb{Q}}\,\mathrm{GL}_n)(\mathbb{R})$ always has the structure of a real algebraic group, and may not have complex structure if the base field F, say, is totally real.) It follows that ψ_{∞} , viewed as a function on \mathbb{C}^{\times} , takes the following form:

$$z = x + yu' \mapsto (x + yu')^{m+n} (x - yu')^m = z^{m+n} \overline{z}^m$$

So if ψ_{∞} is an algebraic character of $(F \otimes_{\mathbb{Q}} \mathbb{R})^{\times}$, it follows that there exist integers m and n such that after identifying $(F \otimes_{\mathbb{Q}} \mathbb{R})^{\times}$ with \mathbb{C}^{\times} , the character ψ_{∞} looks like:

$$z \mapsto z^m \overline{z}^n$$

Let's do our own calculation now: what is the infinitesimal character of ψ_{∞} ? First, we need to take the derivative $d\psi_{\infty}$ to obtain an action of the real Lie algebra

$$\operatorname{Lie}((F \otimes_{\mathbb{Q}} \mathbb{R})^{\times}) = F \otimes_{\mathbb{Q}} \mathbb{R} = \mathbb{R}(1 \otimes 1) \oplus \mathbb{R}(u \otimes 1) \xrightarrow{\sim} \mathbb{R} \oplus \mathbb{R}u' = \mathbb{C}.$$

Let's compute $d\psi_{\infty}$ on the basis $\{1, u'\}$. Fo any $\gamma \in \mathbb{C}$:

$$d\psi_{\infty}(1)(\gamma) = \frac{d}{dt}\Big|_{t=0} e^t \cdot \gamma = \frac{d}{dt}\Big|_{t=0} e^{t(m+n)} \gamma = (m+n)\gamma$$
$$d\psi_{\infty}(u')(\gamma) = \frac{d}{dt}\Big|_{t=0} e^{tu'} \cdot \gamma = \frac{d}{dt}\Big|_{t=0} e^{tu'(m-n)} \gamma = u'(m-n)\gamma$$

So the \mathbb{R} -linear homomorphism $d\psi_{\infty}: \mathbb{C} \to \mathbb{C}$ satisfies

$$d\psi_{\infty}(1) = m + n$$

$$d\psi_{\infty}(u') = u'(m - n)$$

Note that at this stage, m and n are still somewhat entangled. Let us recall for a moment what we are after. If $\mathfrak{g} := \operatorname{Lie}((F \otimes_{\mathbb{Q}} \mathbb{R})^{\times})$, then we want to compute the infinitesimal central character of ψ_{∞} , which is a character of $Z(U(\mathfrak{g}_{\mathbb{C}}))$: the centre of the universal enveloping algebra of $\mathfrak{g}_{\mathbb{C}}$. In particular, we need to compute $\mathfrak{g}_{\mathbb{C}} := \mathbb{C} \otimes_{\mathbb{R}} \mathfrak{g}$; this is where the magic happens, and things will become untangled.

Recall there is a canonical C-linear isomorphism

$$\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \to \mathbb{C} \times \mathbb{C}$$
$$z \otimes w \mapsto (zw, z\overline{w})$$

where \mathbb{C} acts on $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ in the first factor, and on $\mathbb{C} \times \mathbb{C}$ diagonally. This is a special case of the following more general phenomenon; for details, please read [Gai].

Proposition 2. Let L/K be a finite Galois extension, with Galois group G, and let A be an L-algebra. For each $\sigma \in G$, let $*_{\sigma}$ denote the twisted scalar action of L on A by $z*_{\sigma}a = \sigma(z)a$. Let A_{σ} denote the resulting L-algebra. Then there is an L-algebra isomorphism

$$L \otimes_K A \to \prod_{\sigma \in G} A_{\sigma}$$
$$z \otimes a \mapsto (z *_{\sigma} a)_{\sigma \in G}.$$

In our case, choose $A = L = \mathbb{C}$ and $K = \mathbb{R}$, and let $c \in \operatorname{Gal}(\mathbb{C}/\mathbb{R})$ denote the unique non-trivial element. Then there is a \mathbb{C} -algebra isomorphism

$$\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \to \mathbb{C} \times \mathbb{C}_c$$
$$z \otimes w \mapsto (zw, \overline{z}w).$$

However, (coincidentally) there is a canonical C-algebra isomorphism

$$\mathbb{C} \to \mathbb{C}_c$$
$$w \mapsto \overline{w}.$$

The composition of $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \to \mathbb{C} \times \mathbb{C}_c$ and $\mathbb{C} \times \mathbb{C}_c \to \mathbb{C} \times \mathbb{C}$ gives us the desired \mathbb{C} -algebra isomorphism alluded to in the beginning. Identifying $\mathbb{C} \otimes_{\mathbb{R}} \mathfrak{g}$ with $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$, we see that a natural basis for $\mathbb{C} \otimes_{\mathbb{R}} \mathfrak{g}$ gets mapped under the isomorphism to the following elements:

$$1 \otimes 1 \mapsto (1,1)$$
$$1 \otimes u' \mapsto (1,-u')$$
$$i \otimes 1 \mapsto (i,i)$$
$$i \otimes u' \mapsto (iu',-iu')$$

The next step is to observe that we can automatically upgrade the \mathbb{R} -linear homomorphism $d\psi_{\infty}: \mathfrak{g} \to \mathbb{C}$ to a \mathbb{C} -linear homomorphism $(d\psi_{\infty})_{\mathbb{C}}: \mathfrak{g}_{\mathbb{C}} \to \mathbb{C}$. Let's calculate this action on the \mathbb{C} -linear basis (1,0) and (0,1) of $\mathfrak{g}_{\mathbb{C}}$. Indeed (pardon my abuse of notation),

$$(1,0) = \frac{1}{2}((1 \otimes 1) - \frac{iu'}{d}(i \otimes u'))$$

$$(0,1) = \frac{1}{2}((1 \otimes 1) + \frac{iu'}{d}(i \otimes u')).$$

The \mathbb{C} -linearity of $(d\psi_{\infty})_{\mathbb{C}}$ then tells us that:

$$(d\psi_{\infty})_{\mathbb{C}}(1,0) = \frac{1}{2}((d\psi_{\infty})_{\mathbb{C}}(1\otimes 1) + \frac{u'}{d}(d\psi_{\infty})_{\mathbb{C}}(1\otimes u')) = \frac{1}{2}((m+n) + \frac{u'}{d}u'(m-n)) = m$$
$$(d\psi_{\infty})_{\mathbb{C}}(0,1) = \frac{1}{2}((d\psi_{\infty})_{\mathbb{C}}(1\otimes 1) - \frac{u'}{d}(d\psi_{\infty})_{\mathbb{C}}(1\otimes u')) = \frac{1}{2}((m+n) - \frac{u'}{d}u'(m-n)) = n.$$

So the m and n have been unentangled!

Since $\mathfrak{g}_{\mathbb{C}}$ is abelian, the universal enveloping algebra $U(\mathfrak{g}_{\mathbb{C}})$ of $\mathfrak{g}_{\mathbb{C}}$ is isomorphic to the polynomial algebra $\mathbb{C}[X,Y]$ where X=(1,0) and Y=(0,1). Its centre is equal to itself. So the infinitesimal central character of ψ_{∞} is the character

$$\mathbb{C}[X,Y] \to \mathbb{C}$$
$$X \mapsto m$$
$$Y \mapsto n.$$

Finally, let's see which algebraic character of $(\operatorname{Res}_{F/\mathbb{Q}} \operatorname{GL}_1)_{\mathbb{C}}$ this comes from. Indeed, using the isomorphism $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \to \mathbb{C} \times \mathbb{C}$ from before, we have:

$$(\operatorname{Res}_{F/\mathbb{Q}}\operatorname{GL}_1)(\mathbb{C}) = (F \otimes_{\mathbb{Q}} \mathbb{C})^{\times} = ((F \otimes_{\mathbb{Q}} \mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C})^{\times} = (\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C})^{\times} = \mathbb{C}^{\times} \times \mathbb{C}^{\times}.$$

All the algebraic characters of \mathbb{C}^{\times} , considered as the \mathbb{C} -points of $(\mathbb{G}_m)_{\mathbb{C}}$ rather than as the \mathbb{R} -points of $(\operatorname{Res}_{F/\mathbb{Q}}\operatorname{GL}_1)_{\mathbb{R}}$, are given by $z\mapsto z^n$ for some integer n.

With a simple calculation, we easily see that

$$\phi: (\operatorname{Res}_{F/\mathbb{Q}} \operatorname{GL}_1)(\mathbb{C}) = \mathbb{C}^{\times} \times \mathbb{C}^{\times} \to \mathbb{C}^{\times}$$
$$(a,b) \mapsto a^m b^n$$

has the same infinitesimal character as ψ_{∞} ; in fact, $d\phi \cong (d\psi_{\infty})_{\mathbb{C}}$. Going back to what we said in the introduction, we see that ϕ is associated to the tuple

$$(a,b) \in \mathbb{Z} \times \mathbb{Z} = \mathbb{Z}^{\operatorname{Hom}(F,\mathbb{C})} = (\mathbb{Z}_+^1)^{\operatorname{Hom}(F,\mathbb{C})}.$$

References

- [Gai] Pierre-Yves Gaillard. Tensor product algebra $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$. Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/2265459 (version: 2017-05-05).
- [Sno10] Andrew Snowden. Lecture 11: Hecke characters and Galois characters, 2010. URL: http://math.stanford.edu/~conrad/modseminar/pdf/L11.pdf. Last edited on 2010/01/28. Last visited on 2024/08/10.