Example Questions: Trees

Due No due date **Points** 49 **Questions** 13 **Time Limit** None **Allowed Attempts** Unlimited

Take the Quiz Again

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	18 minutes	0 out of 49

Submitted Dec 16 at 12:24pm

Question 2 0 / 3 pts

Let us suppose that in the tree below D < B < E < A < C, i.e. it is an AVL tree. We insert a new node into it.

Which rotation must be used, if the new node becomes the right child of node D? [Select]

Which rotation must be used, if the new node becomes the right child of node C? [Select]

Which rotation must be used, if the new node becomes the right child of node E? [Select]

Answer 1:

ou Answered

(You left this blank)

Question 3 0 / 3 pts

Let us suppose that in the tree below D < B < E < A < C, i.e. it is an AVL tree. We delete a node from it.

Which rotation must be used, when we delete the maximal node? [Select]

Which rotation must be used, when we delete the minimal node? [Select]

Which rotation must be used, when we delete the root node? (We suppose that the deletion is performed with the algorithm variant familiar from the lecture.) [Select]

(--,+)

Answer 1:

ou Answered (You left this blank)

orrect Answer

orrect Answer

(--,=)

Answer 2:

ou Answered Yo

(You left this blank)

orrect Answer

No rotation

	Question 6	0 / 3 pts
	Given AVL tree { [(1) 2 (<3> 4)] 5 [(< 6 {7} > 8 <9>) 10 (<11> {14} >)] }. Remove its minimal node with the algorithm familiar from lectures. Then present the preorder traversal of the resulting tree, should contain the key of a single node. In case of internal nodes must be immediately followed by its balance (+ or - or =), for example, or 10=. Nothing else should be written into the boxes. In case of nodes, only the key should be presented.	om the Each box the key nple 2+ or
	Answer 1:	
ou Answered	(You left this blank)	
orrect Answer	10-	
	Answer 2:	
ou Answered	(You left this blank)	
orrect Answer	5+	
	Answer 3:	
ou Answered	(You left this blank)	

orrect Answer

Answer 12:

11

ou Answered

(You left this blank)

orrect Answer

13+

Answer 13:

ou Answered

(You left this blank)

orrect Answer

14

Jnanswered

Question 7

0 / 3 pts

Given the following AVL tree: { [(1) 2 ({3} 4)] 5 [(6) 7] }. Let we delete key 5. Which of the following alternatives is the result, if we apply the algorithm variant known from the lecture?

- { [1+ (2)] 3= [(4) 6= (7)] }
- { [(1) 2= (3)] 4= [(6) 7-] }
- { [(1) 2-] 3= [(4) 6= (7)] }

orrect Answer

{ [(1) 2= (3)] 4= [6+ (7)] }

Jnanswered

Question 8

0 / 1 pts

Apply the appropriate balancing rotation to BST (3++ ((4) 5-)). Which is the result of the rotation?

- (3++ (4+ (5)))
- ((3) 5= (4))

orrect Answer

((3) 4= (5))

Question 10

0 / 3 pts

Consider the following B+ tree:

[(9, 10) 11 (12, 13) 14 (15, 16, 17) 18 (19, 20)]

Insert14 into it. What is the textual representation of the resulting tree? (Let the order of the brackets be: "{ [(" . Do not use blanks. The keys of the leaf nodes must be separated with commas.)

ou Answered

orrect Answers

{[(9,10)11(12,13)14(14,15)]16[(16,17)18(19,20)]}

Question 11

0 / 3 pts

Consider the following B+ tree. Insert 18. What are the (split) keys of the new tree? (*Minus sign* means *no key*.)

{ [(1,2)3(4,5)]7[(11,15,20)27(27,30)]}

Delete key 4 from the tree. What is the textual representation of the resulting B+ tree? (Let the order of the different kinds of brackets be: "[(". Separate the keys of the leaves with commas. Do not use blanks.)

ou Answered

orrect Answers

[(1,2,5)7(11,15,20)27(27,30)]

Question 12

0 / 3 pts

Consider the following B+ tree. Delete key 30. What are the (split) keys of the new tree? (*Minus sign* means *no key*.)

Jnanswered	Question 13 0 / 8	pts		
	Let t be a B+ tree. Let its degree be d . Let it contain n keys (not including the split keys, as usual). Select the true statements.			
orrect Answer	All the leaves are at the same depth.			
	Split keys may be also in the leaves.			
	Consider internal node N where k is the number of keys in node N . In the i th subtree $(2 \le i \le k)$ of node N , for any key r , $N.key[i-1] < r \le N.key[i]$ (where we index keys and subtrees from 1).			
orrect Answer	In a B+ tree with degree <i>d</i> , <i>d</i> ≥ 4.			
orrect Answer	☐ It is possible that during insertion we create a new root node.			
orrect Answer	☐ The running time of search is <i>O(lg n)</i> .			
	Normal keys can be at any level.			
	☐ Each node has maximum <i>d-1</i> pointers, and maximum <i>d</i> keys.			