GATE 2025: Solution to Homework #1

Based on Functions

Dr. Sachchidanand Prasad

Problem 1

Find the domain and range of each functions.

1.
$$f(x) = 1 + x^2$$

2.
$$g(t) = \frac{2}{t^2 - 16}$$

2.
$$g(t) = \frac{2}{t^2 - 16}$$

3. $h(s) = \sqrt{s^2 - 3s}$
4. $p(x) = \frac{4}{3-x}$

4.
$$p(x) = \frac{4}{3-x}$$

5.
$$s(x) = \sqrt{x^2 + 1}$$

Solution

1. The given function is $f(x) = 1 + x^2$. Since the function is defined for all $x \in \mathbb{R}$, the domain of the function is \mathbb{R} .

Let us see what will be range of this function. For any $x \in \mathbb{R}$,

$$0 < x^2 < \infty \Rightarrow 1 < 1 + x^2 < \infty.$$

Thus, the range of the function will be $[1, \infty)$. This range can be also be found as follows. Let $y \in \mathbb{R}$ and y is in the range of f. Then there exists $x \in \mathbb{R}$ such that

$$f(x) = y \Rightarrow 1 + x^2 = y$$
$$\Rightarrow x^2 = y - 1$$
$$\Rightarrow x = \pm \sqrt{y - 1}.$$

The above expression is well defined if $y-1 \ge 0$ which implies $y \ge 1$. Thus, the range will be $[1,\infty)$.

2. The given function is $g(t) = \frac{2}{t^2 - 16}$. This function will be well-defined if the denominator is nonzero. So, we must have

$$t^2-16\neq 0 \Rightarrow (t-4)(t+4)\neq 0 \Rightarrow t\neq \pm 4.$$

Thus, the domian of the given function will be

Domain =
$$\mathbb{R} - \{\pm 4\} = (-\infty, -4) \cup (-4, 4) \cup (4, \infty)$$
.

Now we will find the range of the function. If y is in the range of g, then there exists $t \in D(g)$ (D(g) = domain of g) such that

$$g(t) = y \Rightarrow \frac{2}{t^2 - 16} = y \qquad \Rightarrow 2 = t^2y - 16y$$
$$\Rightarrow t^2y = 2 + 16y \qquad \Rightarrow t^2 = \frac{2 + 16y}{y}$$
$$\Rightarrow t = \pm \sqrt{\frac{2 + 16y}{y}}.$$

The above expression is well defined if

$$\frac{2+16y}{y} \ge 0 \quad \text{and} \quad y \ne 0$$

$$\Rightarrow \begin{cases} 2+16y \ge 0 & \text{if } y > 0 \\ 2+16y \le 0 & \text{if } y < 0 \end{cases} \quad \text{and} \quad y \ne 0$$

$$\Rightarrow \begin{cases} y \ge -\frac{1}{8} & \text{if } y > 0 \\ y \le -\frac{1}{8} & \text{if } y < 0 \end{cases} \quad \text{and} \quad y \ne 0$$

$$\Rightarrow \begin{cases} y > 0 \\ y \le -\frac{1}{8} & \text{if } y < 0 \end{cases}$$

Thus, the range of the given function will be

$$R(g) = \left(-\infty, -\frac{1}{8}\right] \cup (0, \infty).$$

3. Te given function is $\sqrt{s^2 - 3s}$. For the domian of the function, we need

$$s^2 - 3s > 0 \Rightarrow s(s - 3) > 0.$$

This is a product of two numbers, namely s and s-3. We break our anyalsis in three intervals shown below.

$$s < 0 \text{ and } s - 3 < 0$$
 $s > 0 \text{ and } s - 3 > 0$ $s > 0 \text{ and } s - 3 < 0$ 3

In the first and third intervals the sign of s(s-3) is positive whereas in the second interval the sign is negative. Thus, the domian will be

$$D(h)=(-\infty,0]\cup[3,\infty).$$

To find the range, we first note that on the domain $s^2 - 3s \ge 0$. Also, as s approaches to infinity, $s^2 - 3s$ also approaches to infinity. Thus,

$$0 < s^2 - 3s < \infty \Rightarrow 0 < \sqrt{s^2 - 3s} < \infty.$$

Thus, the range of the function will be $[0, \infty)$. Note that we can also solve this problem similar to the earlier problems.

4. The given function is $p(x) = \frac{4}{3-x}$. The function is defined everywhere except when 3-x=0. So, the domain of the function is $\mathbb{R} - \{3\}$. For the range, we observe that if $y \in \mathbb{R}$ such that

$$y = \frac{4}{3-x} \Rightarrow 3y - xy = 4 \Rightarrow x = \frac{3y-4}{y},$$

which is defined except at y = 0. Thus, the range will be

$$R(p) = \mathbb{R} - \{0\}.$$

5. The given function is $s(x) = \sqrt{x^2 + 1}$. Since for any $x \in \mathbb{R}$, the value of $x^2 + 1 > 0$. Thus, the domain of the given function will be \mathbb{R} . For the range, we observe that

$$x^2 + 1 \ge 1 \Rightarrow \sqrt{x^2 + 1} \ge 1.$$

Thus, the range will be $[1, \infty)$. This can also be solved similar to the earlier problems. Let $y \in \mathbb{R}$ be in the range. It is clear that $y \ge 1$. So, there exists $x \in \mathbb{R}$ such that

$$s(x) = y \Rightarrow \sqrt{x^2 + 1} = y \Rightarrow x^2 + 1 = y^2$$
$$\Rightarrow x = \pm \sqrt{y^2 - 1}.$$

The above expression is well defined if $y^2-1\geq 0$ which implies $(y-1)(y+1)\geq 0$. Similar to the third part of this problem, we will get $y\in (-\infty,-1]\cup [1,\infty)$. Since $y\geq 1$, the range will be

$$R(s) = [1, \infty).$$

Problem 2

Which of the following are graphs of functions of x?

Solution

It is clear that the first and third one can not be a graph of a function of x as the shown vertical line intersects the graph more than once. The other two graphs are the graphs of some function of x.

Problem 3

Express the area and perimeter of an equilateral triangle as a function of the triangle's side length x.

Solution

Since the side length of the equilateral triangle is x, the perimeter function will be

$$P:(0,\infty)\to(0,\infty),\quad p(x)=3x.$$

Similarly, the area function will be

$$A:(0,\infty)\to (0,\infty), \quad A(x)=rac{\sqrt{3}}{4}x^2.$$

Problem 4

Consider the point (x, y) lying on the graph of the line 2x + 4y = 5. Let ℓ be the distance from the point (x, y) to the origin (0, 0). Write ℓ as a function of x.

Solution

Take any point (x, y) on the line 2x + 4y = 5. So, we can write

$$y = \frac{5 - 2x}{4}.$$

Thus, the point will be $\left(x, \frac{5-2x}{4}\right)$. The distance to this point to the origin will be

$$l(x) = \sqrt{(x-0)^2 + \left(\frac{5-2x}{4} - 0\right)^2}$$

$$= \sqrt{x^2 + \left(\frac{5-2x}{4}\right)^2}$$

$$= \sqrt{x^2 + \frac{25-20x+4x^2}{16}}$$

$$= \sqrt{\frac{16x^2 + 25 - 20x + 4x^2}{16}}$$

$$= \frac{\sqrt{(20x^2 - 20x + 25)}}{4}$$

Look at the figure below.

Problem 5

Find the domain of each functions.

1.
$$f(x) = \frac{x+3}{4-\sqrt{x^2-9}}$$
.
2. $g(t) = \frac{t}{|t|}$.
3. $h(x) = \sqrt{1-x^2}$.

$$2. \ g(t) = \frac{t}{|t|}$$

3.
$$h(x) = \sqrt{1 - x^2}$$

4.
$$s(t) = \sqrt{-t}$$
.

Solution

1. The given function is

$$f(x) = \frac{x+3}{4 - \sqrt{x^2 - 9}}.$$

The above function is defined everywhere except when

$$4 - \sqrt{x^2 - 9} = 0$$
 and $x^2 - 9 < 0$
 $\Rightarrow x^2 - 9 = 16$ and $(x - 3)(x + 3) < 0$
 $\Rightarrow x^2 - 25 = 0$ and $x \in (-3, 3)$
 $\Rightarrow (x - 5)(x + 5) = 0$ and $x \in (-3, 3)$
 $\Rightarrow x = \pm 5$ and $x \in (-3, 3)$.

Thus, the domian of the given function will be

$$D(f) = \mathbb{R} - [(-3,3) \cup \{-5,5\}].$$

2. The given function is

$$g(t) = \frac{t}{|t|}.$$

This function is defined everywhere except when |t| = 0, that is, t = 0. Thus, the domain will be

$$D(g) = \mathbb{R} - \{0\}.$$

3. The given function is

$$h(x) = \sqrt{1 - x^2}.$$

The above function will be defined if

$$1 - x^2 \ge 0 \Rightarrow (1 - x)(1 + x) \ge 0 \Rightarrow x \in [-1, 1].$$

Thus the domian will be

$$D(h) = [-1, 1].$$

4. The given function is

$$s(t)\sqrt{-t}$$
.

Again, this function will be defined if

$$-t \ge 0 \Rightarrow t \le 0 \Rightarrow t \in (-\infty, 0].$$

Thus, the domian will be

$$D(s) = (-\infty, 0].$$

Problem 6

How many points are there in the range of a constant function $f: \mathbb{R} \to \mathbb{R}$?

Solution

Since, a constant function can only take one value, then range contains excatly one point. Thus, there is only one point in the range set.

Problem 7

Solution

- The first function is increasing (**not** strictly increasing).
- The second function is neither increasing nor decreasing.
- The third function is decreasing (**not** strictly decreasing).
- In the last problem, the function f is strictly increasing whereas the function g is strictly decreasing.

Problem 8

Write the function after the given transformations.

- 1. $f(x) = \sqrt{x}$.
 - ▶ Upward 4 units.
 - ► Right side 10 units.
- 2. $f(x) = \sin x + \tan x + e^{x^2}$.
 - ► Towards left 20 units.
 - ▶ Downward 5 units.
 - ► Towards right 20 units.
 - Upward 10 units.

Solution

- 1. $f(x) = \sqrt{x}$.
 - After first transformation: $F_1(x) = \sqrt{x} + 4$.
 - After second transformation: $F_2(x) = \sqrt{x-10} + 4$.
- 2. $f(x) = \sin x + \tan x + e^{x^2}$.
 - After first transformation: $F_1(x) = f(x+20)$.
 - After second transformation: $F_2(x) = f(x+20) 5$.
 - After third transformation: $F_3(x) = f(x+20-20) 5 = f(x) 5$.
 - After fourth transformation: $F_4(x) = f(x) 5 + 20 = f(x) + 15$.

Problem 9

The accompanying figure shows the graph of $y=-x^2$ shifted to two new positions. Write equations for the new graphs.

1.

Solution

- 1. $f(x) = -x^2$
 - Position (a): $-(x+7)^2$.
 - Position (b): $-(x-3)^2$.
- 2. $f(x) = x^2$
 - Position (a): $x^2 + 3$.
 - Position (b) = $x^2 1$.