- U ist ein Untervektor von V, wenn:
 - U $V \neq \{\}$: (V, +, *) ein K-VR
 - U erbt +,* von V
 - U abgeschlossen bezüglich +,*
 - * kann Teilmenge U mit +,* nicht verlassen
 - * a + b U
 - * λu U
- Ist U ein Unter-K-VR von (V,+,*) ==> (U,+,*) ist ein K-VR
- Geraden in \mathbb{R}^n durch den Ursprung sind lineare Teilräume von \mathbb{R}^n

$$- \ \mathrm{U:} \{(a_1,a_2) \in \mathbb{R}^2 : 3a_1 - 4a_2 = 0\} \quad \mathbb{R}^2$$

- Ebene:
 - $\text{ U:} \{(a_1,a_2,a_3) \in \mathbb{R}^3: 2a_1-2a_2+a_3=0\} \quad \mathbb{R}^3$

Kriterien

- 1. Teilraumkriterium
 - (U,+,*) V und abg. bzgl. +,* ==> (U,+,*) ist K-VR
- 2. Abgeschlossenheit
 - kann zu λa + μb U zusammengefasst werden
- 3. $U = \{ \vec{0} \}$ ist Unter-VR jedes VR

Durchschnitt/Vereinigung/Summe von Teilräumen

- Der Durchschnitt zweier Teilräume von V ist Teilraum von V
- Die Vereinigung zweier Teilräume von V kann Teilraum von V sein
- Die Summe zweier Teilräume von V ist Teilraum von V

[[Allgemeine Vektorräume]]