Epreuve écrite

Examen de fin d'études secondaires 2014

Sections: B et C

Branche: CHIMIE

Numéro	d'ordre	du	candidat	

QC – Questions de cours – 18 pts ANN – Applications non numériques – 21 pts AN – Applications numériques – 21 pts

I. Synthèse du chlorure de polyvinyle, PVC – 17 pts

Le chlorure de polyvinyle (PVC) est un polymère utilisé à grande échelle dans la fabrication de cadres de fenêtres, de revêtements de sols, de gaines de câbles électriques etc. On se propose d'étudier la synthèse du PVC.

Le monomère utilisé pour la synthèse est le chloroéthène. Pour le chloroéthène

a. dresser la formule spatiale.

ANN1

b. indiquer l'état d'hybridation des atomes de carbone et indiquer tous les angles de liaison dans la molécule.

ANN1

c. étudier l'état d'hybridation des atomes de carbone.

QC3

Le PVC, dont la polymérisation se fait de façon analogue à celle du polystyrène, nécessite également l'intervention d'un initiateur comme le peroxyde de dibenzoyle.

d. Détailler le rôle de l'initiateur peroxyde de dibenzoyle (commentaires + équation).

QC3

e. Dresser le mécanisme réactionnel de la polymérisation du chloroéthène en PVC.

QC3

Une méthode pour préparer le monomère chloroéthène se fait en deux étapes : d'abord addition de dichlore sur l'éthène, suivi d'une élimination de HCl du produit obtenu lors de la première étape.

f. Dresser les équations de ces deux réactions.

ANN₂

Une alternative à cette préparation consiste dans la monoaddition de HCl sur l'éthyne.

g. Dresser l'équation de cette réaction.

ANN1

h. Pour cette dernière réaction, calculer les volumes en m^3 de HCl(g) et d'éthyne(g) qu'il faudrait faire réagir afin d'obtenir 1 tonne de chloroéthène avec un rendement de 80% sous une pression de 0,977 atm et une température de 25°C. On donne R=0,082 L'atm'mol^1-K-1 ou R = 8,31 m³-Parmol^1-K-1 AN3

II. Synthèse de l'acide éthanoïque – 10 pts

On se propose de transformer le bromoéthane en plusieurs étapes en acide éthanoïque.

- a. Les étapes suivantes décrivent la transformation envisagée. Dresser l'équation chimique de chacune des étapes. QC3
 - i. Substitution nucléophile du bromoéthane par l'anion hydroxyde. On obtient un produit organique appelé **A**.
 - ii. Oxydation catalytique de A (2 étapes).
- b. Dresser le mécanisme réactionnel de la SN du bromoéthane par l'anion hydroxyde (étape i). QC2
- c. Comparer les polarisations des liaisons dans le groupement -COOH avec celles dans le groupement hydroxyle des alcools. En déduire un argument qui permet de conclure que le groupement -COOH est plus acide que le groupement hydroxyle. On ne demande pas d'analyse de l'effet mésomère.

 QC4
- d. Est-ce que **A** peut également être oxydé par les réactifs de FEHLING ou de TOLLENS ? Motiver votre réponse.

III. Etude d'un ester – 16 pts

Un laborantin d'un fabricant de produits laitiers trouve dans une armoire un flacon sur lequel un bout de l'étiquette a été arraché. Seulement les mentions <u>« ...d'éthyle »</u> et <u>« ...ester »</u> figurent encore sur le bout restant. En ouvrant la bouteille, il détecte une odeur agréable d'ananas. Une analyse montre que l'ester dans la bouteille renferme <u>27,59% en masse d'oxygène</u>.

a. Calculer la masse molaire de l'ester et en déduire la formule brute.

AN2+ANN1

b. Dresser les deux formules semi-développées possibles pour l'ester.

ANN₂

- c. Est-ce que l'analyse de l'activité optique de l'ester permettrait d'écarter une des formules indiquées sub b ?

 Motiver votre réponse.

 ANN1
- d. Identifier l'ester, sachant que la chaîne carbonée de l'acide carboxylique (appelé C) dont il est dérivé est non ramifiée. Nommer l'ester et l'acide carboxylique C.

L'acide carboxylique $\bf C$ peut être synthétisé à partir de l'acide but-2-énoïque (appelé $\bf B$). La synthèse se fait par addition de $\bf H_2$ sur la liaison double $\bf C=\bf C$.

- e. Dresser l'équation chimique de cette synthèse ($\mathbf{B} \rightarrow \mathbf{C}$) en utilisant les formules semi-développées. ANN2
- f. Indiquer les formules spatiales des deux isomères de configuration de l'acide but-2-énoïque **B** et désigner-les selon la nomenclature en vigueur.

Après la synthèse de l'acide **C**, une analyse montre que le mélange réactionnel renferme 30% en masse de l'acide but-2-énoïque **B** et 70% en masse de l'acide carboxylique **C**.

g. Calculer le rendement (calcul exact !) de cette réaction d'addition.

AN4

IV. Dosage d'un acide inconnu – 17 pts

Afin de déterminer la structure d'un acide inconnu, on procède à la neutralisation de 10,0 cm³ d'une solution de cet acide par une solution de KOH 0,010 M. La courbe de dosage se présente ci-dessous.

pH en fonction du volume de KOH 0,010 M ajouté

- a. Indiquer si la courbe de titrage correspond à celle du titrage d'un acide faible ou d'un acide fort. Motiver votre raisonnement.
- b. Dresser l'équation de la protolyse d'un acide (noté HA) par une base forte.

ANN1

c. Calculer la concentration de la solution initiale de l'acide inconnu.

AN1

Page 2/5

d. L'acide inconnu à l'état <u>pur</u> est un liquide. Sachant que pour obtenir la solution acide à titrer, il a fallu dissoudre $1,42\cdot10^{-3}$ cm³ de cet acide pur ($\rho=1,77$ g/cm³) dans de l'eau distillée de façon à obtenir 10 cm³ de solution, calculer la masse molaire de l'acide et vérifier que l'acide en question est l'acide perchlorique.

ANZ

e. Calculer le pH

i. de la solution initiale d'acide perchlorique.

AN1

ii. après ajout de 1,0 cm³ de KOH 0,010 M.

AN2

iii. après ajout de 5,0 cm³ de KOH 0,010 M.

AN2

- f. Calculer le volume de KOH 0,010 M qu'il faut ajouter à la solution initiale d'acide perchlorique pour obtenir une solution de pH 3.
- g. Etablir la formule de Lewis des acides suivants et, en vous basant sur le tableau des pKa, classer-les selon leur force acide croissante. Donner une explication pour l'évolution de la force acide constatée. ANN2 $HCIO_4$ $HCIO_3$ $HCIO_2$ HCIO

* *

Annexes:

TABLEAU PERIODIQUE DES ELEMENTS

	groupes	principa	aux											gro	upes pri	ncipaux		
		II	1										III	IV	V	VI	VII	VIII
	1,0		•															4,0
1	H																	He 2
	6,9	9,0]										10,8	12,0	14,0	16,0	19,0	20,2
2	Li	Ве											В	C	N	0	F	Ne
-	3	4											5	6	7	8	9	10
	23,0	24,3	1				groupes	second	daires				27,0	28,1	31,0	32,1	35,5	39,9
3	Na	Mg											Al	Si	P	S	CI	Ar
	11	12	III	IV	V	VI	VII	VIII			1	II	13	14	15	16	17	18
	39,1	40,1	45,0	47,9	50,9	52,0	54,9	55,8	58,9	58,7	63,5	65,4	69,7	72,6	74,9	79,0	79,9	83,8
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	85,5	87,6	88,9	91,2	92,9	95,9	(97)	101,1	102,9	106,4	107,9	112,4	114,8	118,7	121,8	127,6	126,9	131,3
5	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	132,9	137,3	138,9	178,5	180,9	183,9	186,2	190,2	192,2	195,1	197,0	200,6	204,4	207,2	209,0	(209)	(210)	(222)
6	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	55		57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	(223)	226,0	227,0	(261)	(262)	(266)	(264)	(269)	(268)	(281)	(272)	(285)		(289)		(293)		
7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		FI		Lv		
	87	88	89	104	105	106	107	108	109	110	111	112		114		116		

(145) 150,4 152,0 162,5 164,9 167,3 168,9 173,0 175,0 140.1 140.9 144.2 157,3 158,9 Dy Lu Pr Pm Er Tm Yb Nd Sm Eu Gd Tb Ho lanthanides Ce 65 66 68 69 70 71 58 59 60 61 62 63 64 67 232,0 231,0 238,0 237,0 (244) (243)(247)(247)(251) (254)(257)(258)(259)(256)Th Md No actinides Pa U Np Pu Am Cm Bk Cf Es Fm Lr 92 96 97 98 100 101 102 103 90 91 93 94 95

Tableau des pKa (abréviations : ac. = acide ; cat. = cation ; an. = anion)

acides forts (plus forts que H₃O⁺) HI, HBr, HCl, HClO₄, HNO₃, H₂SO₄

bases de force négligeable

cat. hydronium	H ₃ O ⁺	H ₂ O	eau	-1,74
ac. chlorique	HClO ₃	ClO ₃	an. chlorate	-1,00
ac. trichloroéthanoïque	CCl₃COOH	CCl₃COO⁻	an. trichloroéthanoate	0,70
ac. iodique	HIO ₃	IO ₃ -	an. iodate	0,80
cat. hexaqua thallium III	[TI(H ₂ O) ₆] ³⁺	[TI(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo thallium III	1,14
ac. oxalique	нооссоон	HOOCCOO-	an. hydrogénooxalate	1,23
ac. dichloroéthanoïque	CHCl₂COOH	CHCl ₂ COO ⁻	an. dichloroéthanoate	1,26
ac. sulfureux	H ₂ SO ₃	HSO ₃ -	an. hydrogénosulfite	1,80
an. hydrogénosulfate	HSO ₄ ⁻	SO ₄ ²⁻	an. sulfate	1,92
ac. chloreux	HClO ₂	CIO ₂ -	an. chlorite	2,00
ac. phosphorique	H ₃ PO ₄	H ₂ PO ₄ ⁻	an. dihydrogénophosphate	2,12
ac. fluoroéthanoïque	CH₂FCOOH	CH₂FCOO⁻	an. fluoroéthanoate	2,57
cat. hexaqua gallium III	[Ga(H ₂ O) ₆] ³⁺	[Ga(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo gallium III	2,62
cat. hexaqua fer III	[Fe(H ₂ O) ₆] ³⁺	[Fe(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo fer III	2,83
ac. chloroéthanoïque	CH₂CICOOH	CH₂CICOO ⁻	an. chloroéthanoate	2,86
ac. bromoéthanoïque	CH₂BrCOOH	CH₂BrCOO⁻	an. bromoéthanoate	2,90
cat. hexaqua vanadium III	$[V(H_2O)_6]^{3+}$	[V(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo vanadium III	2,92
ac. nitreux	HNO ₂	NO ₂	an. nitrite	3,14
ac. iodoéthanoïque	CH₂ICOOH	CH₂ICOO⁻	an. iodoéthanoate	3,16
ac. fluorhydrique	HF	F ⁻	an. fluorure	3,17
ac. acétylsalicylique	C ₈ H ₇ O ₂ COOH	C ₈ H ₇ O ₂ COO	an. acétylsalicylate	3,48
ac. cyanique	HOCN	OCN-	an. cyanate	3,66
ac. méthanoïque	НСООН	HCOO-	an. méthanoate	3,75
ac. lactique	CH₃CHOHCOOH	CH₃CHOHCOO ⁻	an. lactate	3,87
ac. ascorbique	C ₆ H ₈ O ₆	C ₆ H ₇ O ₆ ⁻	an. ascorbate	4,17
ac. benzoïque	C ₆ H ₅ COOH	C ₆ H ₅ COO	an. benzoate	4,19

ac. éthanoïque	CH₃COOH	CH₃COO ⁻	an. éthanoate	4,75
ac. propanoïque	CH ₃ CH ₂ COOH	CH ₃ CH ₂ COO ⁻	an. propanoate	4,87
cat. hexaqua aluminium	[Al(H ₂ O) ₆] ³⁺	[Al(OH)(H ₂ O) ₅] ²⁺	cat. pentagua hydroxo aluminium	4,95
	C ₅ H ₅ NH ⁺	C_5H_5N	pyridine	5,25
cat. pyridinium				6,00
cat. hydroxylammonium	NH₃OH ⁺	NH₂OH	hydroxylamine	
dioxyde de carbone (aq)	CO ₂ + H ₂ O	HCO ₃	an. hydrogénocarbonate	6,12
ac. sulfhydrique	H ₂ S	HS ⁻	an. hydrogénosulfure	7,04
an. hydrogénosulfite	HSO ₃	SO ₃ ²⁻	an. sulfite	7,20
an. dihydrogénophosphate	H ₂ PO ₄	HPO ₄ ²⁻	an. hydrogénophosphate	7,21
ac. hypochloreux	HCIO	CIO	an. hypochlorite	7,55
cat. hexaqua cadmium	$[Cd(H_2O)_6]^{2+}$	[Cd(OH)(H ₂ O) ₅] ⁺	cat. pentaqua hydroxo cadmium	8,50
cat. hexaqua zinc	$[Zn(H_2O)_6]^{2+}$	[Zn(OH)(H ₂ O) ₅] ⁺	cat. pentaqua hydroxo zinc	8,96
cat. ammonium	NH ₄ ⁺	NH ₃	ammoniac	9,20
ac. borique	H ₃ BO ₃	H ₂ BO ₃	an. borate	9,23
ac. hypobromeux	HBrO	BrO ⁻	an. hypobromite	9,24
ac. cyanhydrique	HCN	CN ⁻	an. cyanure	9,31
cat. triméthylammonium	(CH ₃) ₃ NH ⁺	(CH ₃) ₃ N	triméthylamine	9,87
phénol	C ₆ H ₅ OH	C ₆ H ₅ O⁻	an. phénolate	9,89
an. hydrogénocarbonate	HCO ₃ -	CO ₃ ²⁻	an. carbonate	10,25
ac. hypoiodeux	HIO	IO-	an. hypoiodite	10,64
cat. méthylammonium	CH ₃ NH ₃ ⁺	CH ₃ NH ₂	méthylamine	10,70
cat. éthylammonium	CH ₃ CH ₂ NH ₃ ⁺	CH ₃ CH ₂ NH ₂	éthylamine	10,75
cat. triéthylammonium	$(C_2H_5)_3NH^+$	(C ₂ H ₅) ₃ N	triéthylamine	10,81
cat. diméthylammonium	(CH ₃) ₂ NH ₂ ⁺	(CH ₃) ₂ NH	diméthylamine	10,87
cat. diéthylammonium	$(C_2H_5)_2NH_2^+$	(C ₂ H ₅) ₂ NH	diéthylamine	11,10
an. hydrogénophosphate	HPO ₄ ²⁻	PO ₄ ³⁻	an. phosphate	12,32
an. hydrogénosulfure	HS ⁻	S ²⁻	an. sulfure	12,90
eau	H ₂ O	OH-	anion hydroxyde	15,74

acides de force négligeable

bases fortes(plus fortes que OH⁻)
O²⁻, NH₂⁻, anion alcoolate RO⁻)