Série 1

Exercice 1. On donne les vecteurs $\vec{a}, \vec{b}, \vec{c}$ sur la figure ci-dessous.

Représenter ces trois vecteurs sur une feuille quadrillée, puis construire les vecteurs $\vec{x}, \vec{y}, \vec{z}, \vec{n}, \vec{t}$ définis par :

$$\vec{x} + \vec{a} = \vec{b}, \quad \vec{y} + \vec{b} = \vec{c}, \quad \vec{a} + \vec{b} = \vec{c} - \vec{z}, \quad 2(\vec{a} - \vec{n}) = \vec{b} - \vec{c},$$
$$\frac{1}{3} \left(\frac{7}{2} \vec{t} + \vec{a} - \vec{b} \right) = -\vec{b} + \frac{1}{2} \left(\vec{t} + 2 \vec{a} + 2 \vec{b} \right).$$

Exercice 2. On donne les vecteurs $\vec{a}, \vec{b}, \vec{c}$ sur la figure ci-dessous.

a. Représenter ces vecteurs sur une feuille quadrillée, puis construire les vecteurs \vec{x} et \vec{y} définis par :

$$\vec{x} = \vec{a} + \frac{3}{2}\vec{b} + \vec{c}, \quad \vec{y} = 6\vec{a} - 4\vec{b} + 2\vec{c}.$$

- b. À l'aide du dessin, déterminer deux nombres p et q tels que $\vec{c} = p\vec{a} + q\vec{b}$.
- c. Exprimer les vecteurs \vec{x} et \vec{y} en fonction de \vec{a} et \vec{b} seulement.
- d. Exprimer les vecteurs \vec{b} et \vec{c} en fonction de $\vec{x} \vec{a}$ et \vec{y} .

 Indication: à l'aide de a. et b., exprimer les vecteurs $\vec{x} \vec{a}$ et \vec{y} en fonction de \vec{b} et \vec{c} uniquement, puis résoudre le système.

Exercice 3. Soient A, B, C, D et E des points quelconques. Simplifier les expressions suivantes :

$$\vec{a} = \overrightarrow{BC} + \overrightarrow{DE} + \overrightarrow{DC} + \overrightarrow{AD} + \overrightarrow{EB}, \quad \vec{b} = \overrightarrow{DA} - \overrightarrow{DB} - \overrightarrow{CD} - \overrightarrow{BC}, \quad \vec{c} = \overrightarrow{EC} - \overrightarrow{ED} + \overrightarrow{CB} - \overrightarrow{DB}.$$

Exercice 4. Soit ABCD un parallélogramme. On pose $\vec{a} = \overrightarrow{AB}$ et $\vec{b} = \overrightarrow{AD}$. Soit M le milieu de BC et P le point du plan défini par $\overrightarrow{PA} = -2\overrightarrow{PC}$. Exprimer les vecteurs \overrightarrow{PB} , \overrightarrow{PM} et \overrightarrow{DM} comme combinaison linéaire de \vec{a} et \vec{b} .

Exercice 5. Soit ABCDEF un hexagone régulier. Construire les vecteurs suivants et simplifier leur expression :

$$\vec{a} = \overrightarrow{AC} - \overrightarrow{FE}, \quad \vec{b} = \overrightarrow{EB} + \overrightarrow{DE}, \quad \vec{c} = \overrightarrow{FE} + \overrightarrow{FE}, \quad \vec{d} = \overrightarrow{FA} + \overrightarrow{BC} + \overrightarrow{AB} + \overrightarrow{DD}.$$

Exercice 6. a. Soient A, A', D et D' quatre points quelconques du plan ou de l'espace, I le milieu de AA' et L le milieu de DD'. Montrer que $\overrightarrow{AD} + \overrightarrow{A'D'} = 2\overrightarrow{IL}$.

b. Soient ABCD et A'B'C'D' deux parallélogrammes. On note I, J, K et L les milieux de AA', BB', CC' et DD' respectivement. Montrer que IJKL est un parallélogramme.

Exercice 7. Soit ABCDEFGH un parallélépipède. On pose $\vec{u} = \overrightarrow{AB}, \vec{v} = \overrightarrow{AD}, \vec{w} = \overrightarrow{AE}$ et $\vec{t} = \overrightarrow{AF}$.

- a. On appelle M le milieu de FG, N celui de \overline{HG} et \overline{P} le centre du parallélogramme ABCD. Exprimer chacun des vecteurs \overrightarrow{EP} , \overrightarrow{EM} , \overrightarrow{EN} , \overrightarrow{NM} , \overrightarrow{FN} , \overrightarrow{NP} et \overrightarrow{PM} en fonction de \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} .
- b. On considère le point J de la face BCGF tel que $\overrightarrow{BJ} = \frac{1}{2}\overrightarrow{BC} + \frac{1}{2}\overrightarrow{BF}$. Exprimer le vecteur \overrightarrow{AJ} en fonction de \vec{u} , \vec{v} et \vec{t} .

Exercice 8. Soient M, N, P, Q les points milieux des arêtes AC, BD, AD, BC d'un tétraèdre ABCD.

- a. Montrer que le quadrilatère MPNQ est un parallélogramme.
- b. Démontrer les relations vectorielles suivantes :

$$\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{AD} + \overrightarrow{CB} = 2\overrightarrow{MN}, \overrightarrow{AB} - \overrightarrow{CD} = \overrightarrow{AC} - \overrightarrow{BD} = 2\overrightarrow{PQ}, \overrightarrow{AB} = \overrightarrow{MN} + \overrightarrow{PQ}, \overrightarrow{CD} = \overrightarrow{MN} - \overrightarrow{PQ}.$$

Éléments de réponse :

Ex. 1:
$$\vec{x} = \vec{b} - \vec{a}$$
, $\vec{y} = \vec{c} - \vec{b}$, $\vec{z} = \vec{c} - \vec{a} - \vec{b}$, $\vec{n} = \vec{a} - \frac{1}{2}\vec{b} + \frac{1}{2}\vec{c}$, $\vec{t} = \vec{a} + \frac{1}{2}\vec{b}$.

Ex. 2: b.
$$p = -2$$
, $q = \frac{1}{2}$. c. $\vec{x} = -\vec{a} + 2\vec{b}$, $\vec{y} = 2\vec{a} - 3\vec{b}$. d. $\vec{b} = -(\vec{x} - \vec{a}) - \vec{y}$, $\vec{c} = \frac{5}{2}(\vec{x} - \vec{a}) + \frac{3}{2}\vec{y}$.

Ex. 3:
$$\vec{a} = \overrightarrow{AC} + \overrightarrow{DC}$$
, $\vec{b} = \overrightarrow{DA}$, $\vec{c} = \overrightarrow{0}$.

Ex. 4:
$$\overrightarrow{PB} = \frac{1}{3}\vec{a} - \frac{2}{3}\vec{b}$$
, $\overrightarrow{PM} = \frac{1}{3}\vec{a} - \frac{1}{6}\vec{b}$, $\overrightarrow{DM} = \vec{a} - \frac{1}{2}\vec{b}$.

Ex. 5:
$$\vec{a} = \overrightarrow{AB}$$
, $\vec{b} = \overrightarrow{EA}$, $\vec{c} = \overrightarrow{AD}$, $\vec{d} = \overrightarrow{FC}$.