Noiseless coding - entropy

- 1. DMC
- 2. BSC, BEC
- 3. information rate $ho(C)=rac{1}{n}log_2m$; error rate = $e(\hat{C})=\max_{x\in M}P(error|xsent)$
- 4. **transmit reliably** at rate R if there exists $(C_n)_{n=1}^\infty$ with each C_n a code of length n such that $lim_{n o \infty}
 ho(C_n) = R \& lim_{n o \infty} \hat{e}(C_n) = 0$.
- 5. A code is a function $c:A o B^*$, c(a) are codewords; $c^*:A^* o B^*$
- 6. decipherable: induced map c^st is injective
- 7. block code: all words same length; comma code;
- 8. prefix-free code: is a code where no codeword is a prefix of any other distinct word
- 9. **Kraft's inequality**: $|A|=m, |B|=a, c:A o B^*$ has word lengths l_1,\dots,l_m . Then $\sum_{i=1}^m a^{-l_i} \le 1$
- 10. A prefix-free code exists if and only if Kraft's inequality holds
- 11. (McMillan). Any decipherable code satisfies Kraft's inequality
- 12. Cor: A decipherable code with prescribed word lengths exists if and only if a prefix-free code with the same word lengths exists

- 1. $H(X)=-\sum_{i=1}^b p_i\log p_i$ 2. note: $H(p)'=\log \frac{1-p}{p}$, $p=\frac{1}{2}$ giving entropy 1 3. **Gibb's inequality**: $-\sum_{i=1}^n p_i\log p_i \leq -\sum_{i=1}^n p_i\log q_i$. [hint: $\ln q_i/p_i \leq q_i/p_i-1$]
- 4. Cor: $H(p_1, p_2, \ldots, p_n) \leq \log n$
- 5. Shannon's Noiseless Coding Theorem: $H(X)/\log a \leq E[S] < H(X)/\log a + 1$ [left: Gibb's, $q_i = a^{-l_i}/D$; right: $l_i = lower[-\log_a p_i] + 1]$
- 6. Shannon-Fano Coding
- 7. Huffman Coding is optimal
- [lemma: $p_i p_j, l_i l_j$, ; maximal length differ only one last]

- 8. H(X, Y)
- $9. H(X,Y) \le H(X) + H(Y)$
- [Gibb's, p_{ij} replace by p_iq_j]

Error correcting codes - noisy channels

- 1. binary [m, n]-code, Hamming distance
- 2. ideal observer, maximal likelihood(maximising $P(x \, {
 m received} \, | \, c \, {
 m sent})$), munimum distance [later two equivalent if p < 1/2]
- 3. d-error detecting: changing up to d digits in each codeword cannot produce another; e-error correcting if knowing that $x \in {0,1}^n$ differs fom a codeword in at most e places we can deduce the codeword.
- 4. Repetition Code: [n,2]-code, info rate 1/n
- 5. Simple parity check: $[n,2^{n-1}]$, info rate $rac{n-1}{n}$
- 6. Hamming code; [7,16,3]-code, 1-error-correcting
- 7. [n,m,d]-code. Minimum distance d, (d-1)-error-detecting, $[rac{d-1}{2}]$ -error-correcting

BCH codes

Fuck it

Shift Registers

- 1. Def
- 2. Berlekamp-Massey

Cryptography

- 1. plaintext M, ciphertext C, key K; $e: M \times K \to C$; $d: C \times K \to M$
- 2. $M=C=\{A,B,\ldots,Z\}^*=\Sigma^*$; Simple substitution: $K=\{$ permutations of $\Sigma \}$; Vigenere cipher: $K=\Sigma^d$ for some D: write out below, sum, mod 26; Caesar cipher: d = 1
- 3. perfect secrecy: Say (M,K,C) has perfect secrecy if H(M|C)=H(M), i.e M and C are independent
- 4. perfect secrecy implies $|K| \ge |M|$.
- 5. message equivocation is H(M|C); key equivocation is H(K|C)
- 6. $H(M|C) \leq H(K|C)$
- 7. unicity distance: the least n such that $H(K|C^{(n)})=0$, i.e the smallest number of encrypted messages required to uniquely determine the key.
- 8. $U:=rac{log|K|}{log|A|-H}$; R=1-H/log|A| redundency, where M=C=A
- 9. one-time-pad: perfect secrecy
- 10. key: private key for decryption, public key for encryption
- 1. Let p=4k-1 be prime. If the equation $x^2\equiv d(modp)$ has a solution then $x\equiv d^k(modp)$ is a solution
- 2. Rabin cryptosystem: private key: p,q =3mod4; Public key: N = pq. $M=C=1,\dots,N-1=Z_n^\star \text{ . Encrypt } m\in M \text{ as } c=m^2(modN). \text{ The ciphertext is } c$
- 3. Breaking Rabin as difficult as factorizing ${\it N}$
- 4. RSA
- 5. Finding the RSA private key (N,d) from the public key (N,e) is essentially as difficult as factoring N
- 6. Authenticity using RSA; problem: homo attack, Existential forgery (($s^e(modN), s$) valid signed message)
- 7. Homo attack

Kraft's inequality: |A|=m, |B|=a, $C:A\to B*$ has and length $C:A\to B*$ has and length $C:A\to B*$ has and length $C:A\to B*$ Prefix vode expists (=) Kraft's hold. SANGULT, where S=max { Li},

N=1

N=1 (=)). Reunite it as I at as NS= # codering with tople units units units Then Iniais! (=) Énias-i Eas Consider all code with code of length /It has as possible combinations. For each codewood of length i, the all codewords cap't start with its 50 the tobes as-i possible combo. We create so tode words by [ength: Start from it!. We com-use one filled, left with

(=> N, C15-1+1, 25-2+...+ Ns Eas. LHS is number of storys of leagth 5 in B Wath some cooleness & of Coas a prefix, RHS is mwhen of storys of length 5. So we have it tre. (E). Given Ni,--, ns satisfy by it, proceed by induction. axists 2 outh ne codewars of length L treal LES-1. Then we can cold >ns
new codeners of length 5 to 2, maintain prefix tree property. McMillan: Any déapherente code satisfies Kraft's imagulity. Prost: Say if [A=m, [B=a, C:A > B* is decipherable. with and length line; lm. Consider (=10-li)R = (\frac{1}{2} Ni (U-i) R

= Es biai atter expansion

Sina it's decipherable, each bis at most of. as code of length i can only to be desiphend = in a unique very, corresponds to 1 seglies of code (Intile E Zari Dai = RS

\$\frac{1}{2} \left(\text{RS} \frac{1}{2} \right) \ \text{OTS} \ \text{R-W}

[. H(X)=-IP; lgp; H(P)'= of (-plgp-(1-plg[1+p]) = -108P-1+1+108(1-P). = 19 17 => P=== max, H(P)=1. Gibb's inequality: - I Pilospi & - I Pilos Pi where I 1:1 Prat: lossit In 9: 59:-1 My Let CINGA. $\begin{array}{c}
\left(\frac{2}{2}\right)^{2} & \left(\frac{2}{2}\right)^{2} \\
= \frac{2}{2} \left(\frac{$ ((aim; 1989 < (E(S) < H(X) +1) LHS: $H(x) = -\sum P_i(gP_i)$ Let $q_i = \frac{q^{-l_i}}{\sum q^{-l_i}}$ RHS: Let (i= Alga Pi) (i= 1-19api)+1 Huttman coding is optimal: Lemma: 1- If Pi> Pi, then (i Eli, 2. Among coolenate both max length, have two differ only by the (ast digits. Prot: L. V O.N. SWEEP. Z. V. D.W. délète (ast doj). Then: By induction. Sey (E(Cn)=1E(Cn-1)+Pn-1+Pn. Cir optimal, tale two that differ only
by last differ only
(in) = (in(V)=y,

where cir(Morn)= yo, (in(Mn) = y).

 $V(n,r) = |B(x,r)| = \Xi(i).$ Hamis's herel: [C[= V(n,e]. Hamming is perfect: Hamis (n,d) n=2d-1. Parity-check H ha is (dx 2d-1) matry; et each is non-zero element of 152d. $m = 2^{n-d}$. EMA V(n,e) = V(n,i) = 2d/1+1=2d $y^{N-d} = \frac{2}{2d}$. $A(n,d+1) \leq A(n,d)$: A(N,d): Maximum number of coderrals st.

A(n,d): maximum number of codered; 5t.

each com max {m: \(\frac{1}{2}\)[n,m,d]-code}

Say Cis (n,m,d+1)-code.

of \(\frac{1}{2}\)[n,m,d+1],

Let c be that on a centain jth digits c sae as g, opposite to x, and other digits same as x. Then for any other Z, d(C,Z) & d(C,X) + d(C,X) All & d(Z,X) & d(Z,C) + d(C,X) -d(Z,C) + d(C,X)
$=d(z,c)+1$ $50 d(z,c)>d.$ OSV bond: (Vote that there does not oxist $x \in F_2^n$ with $d(x,c)>d$ of f_1^n all $c \in C$ otherw f_1^n to f_2^n f_3^n f_4^n f_5^n f_6^n f_7^n f_8^n f
Ct: Panty dech [n-1, m, d/d+1] C-: Princtue [n-1, m, d/d-1] C': Shartand. [n-1, m, d'] d',d

7.
$$H(X|Y) = H(X,Y) - H(Y)$$
:

 $H(X|Y) = \sum_{g \in B} P_g H(X|Y=g)$
 $= \sum_{g \in B} P_g \prod_{g \in B} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g \circ g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g \circ g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g \circ g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g \circ g}$
 $= \sum_{g \in B} \sum_{g \in B} P_{g \circ g} \log P_{g \circ g$

Expansis Inequality: X,Y take values in A,|A|=M. Let $P=IP(X\neq Y)$. Then $I+(X|Y) \leq I+(X|Y,Z)+I+(Z)$ I+(X|Y) = I+(X|Y) I(X;Y)=I+(X)-I+(X|Y)

and cody: For DMC,
operate coparity = into coparity

H(Y) - H(Y)

$$I(X,Y) = H(Y) - H(Y|X)$$

$$= H(Y) - E$$

$$P = P(Y) - E$$

$$P = P(Y) - E$$

$$P = P(Y) - P(Y|X)$$

$$P = P(Y|X) - P(Y|X)$$

$$P = P(Y|X)$$

$$P$$

Blog Day - (1-2B) + g(1-B)

Blog Day - [Blog B+ (1-B) + (1-B)

+ 1-B] + (1-B).

Yes.

(2+ Pi=B.

(2-P3-1-B)

$$P_{Ne-the-pad}$$
:
 $||P(M=m, K=c-m)|$
 $=||P(M=m, K=c-m)|$
 $=|P(M=m)||P(K=c-m)| = ||P(M=m)|| =$

$$H(M|C) \in H(K|C)$$
: $(N) + H(M,C,K) = H(M,C)$
 $H(M|C,K) = 0$.
 $H(K|C) = H(K,C) = H(C)$
 $= H(M,C,K) - H(M(K,C) - H(C)$
 $= H(K|M,C) + H(M,C) - H(C)$
 $= H(K|M,C) + H(M,C)$
 $= H(K|M,C) + H(M,C)$
 $= H(K|M,C) + H(M,C)$

Union, Least $n \leq t$. $H(K(C^{(n)})=0$, $V = \frac{19[K]}{(9[A]-t+.}$ $V = \frac$

CC. Noiseless. Pory 1. DMC: Pij=IPCY; reversed/x; sent) The sone for each channel use and indep of all part and future uses 2-BSC. Q X=B={0.1}_ cheme (motory to 13 (1-P P) (1-P2 P) (01-PP).

Code: c:A->B+.

Decipherable: (*, A* -> B* i'z impertive.

Block code: all world some length

Comma code:

Profix - free code: No codewad is a prefix of
any other distinct word.

| A |= m, | B |= a. C: A -> B*. Listz, --, Con 11 11 | c(a) | read -- [c(am)].

En a-li = () profix free expists. Claim: IA IAs at It prefix free. proof: ED(E) & nia-is/ ≤ Nia s-i ∈ as. I total number of stays number of stys of length sin B of length s with some code und of cas prefix. (=) Induction niast niastint Noraths Eas

First 5-1 forms of LITS
sum to # stys of leagth 5 with
a code word of 2 as a profix.

McMillan: Amy decipherable code scitisty Krontt.
Prof. Decipherable: C*: A* >B* 13 injectile.
(10) (10) (40) (10) (10) (10) (10) (10) (10) (10) (1
S= max (i.
$\left(\sum_{i=1}^{\infty} q^{-li}\right)^{R} = \sum_{i=1}^{\infty} b_i q^{-l}$
b_c : # Nays choosy R codewords of total length L. Any stry correspond to ≤ 1 C decipherable $= 1$ $\Rightarrow b_c \leq \alpha^c$.
C desipherable => => $b_l \leq a^l$.
50 (=10-11) RERS =10-11 RERS =10

Cov: It (Pi,Pz, ..., Pn) = - I Pilapi E- IPIlat = logn. aibb's iverpulity: - Spilgp: = - Edilgg: P-X = \$0.1-X In(x) < \$ x-1 In 91 - 91 -1. - = Pila Pi ≤- ZP((9:-1)

= 0.

Shannon's Noiseless Coda Thm: 14(X) < E[S] < H(X) = 1 10ga. IHS: HOME IEES = Pili Let 91= D. = > 591= Pili Dri (g(a) Pili-SP: (olog 9 itlogn) 1089117 = - liloga Liz-logaid loga >1- IP(98P; - 108D. Jas DE(シーシアにもか =1-1(91) RHS: Take li= LlogaPil+1= LlogaPil+1 Then IPili = I Pilog Pi = H(x) +1

Huttman Cooling is optimal Lemma: 1) If Pirkel Code: Pirken Listi. True, as otherwise surp etmit. c(ai) Exists two that differ only by
the last digits. True. Otherwise can cut the last digit for some. Still rode. Then: By induction. Smallest 2 to be First Pn, Patl

The hydrest digit.

[E[Sim] = Pn+Pn+1+ [E[Sn] > hy using Huthman If not optimal Snit optimal [curth c'n) Then I What last two code was max length, differ by last digit. In tinal position. Let Cmilton be s.t. ComilMi)=Scan(Mi) IE(Snil]=IE(Sn) The + Pnu. [E(Sn) = IE(Sn) - Dove)

(C 2021

P1,54,11R

H(X)=- = Pilospi

 $E(S) = \frac{N}{2} P_i C(M_i)$

Déciphorable binon codes

They I Profix free code with word length Sis .. Sw.

5++

1/55: >H(X) = · 1981/./.

7.019. P2, SI.

P2,5I,12G. (i) X. 5.5.6.6.

(1) X. About &.

(III) VIraleton X

CC 2017.

P2,51.3G. exists Chlz, ..., lu sutost Cretix tree iff Kraft's. CRe-writ)

Decipherals code sutisty (raft.

CC 2017.

2016. P1, SI. 3G.

Lit - + LN \(\int \frac{1}{2}(N^2+N-2);\)

(N+2)(N-1).

(N-1)+(N-1)+-
= \(\int \frac{N(N-1)}{2} + (N-1) \)

= \(\int \frac{N(N-1)}{2} + (N-1) \)

= \(\int \frac{N(N-1)}{2} + (N-1) \)

CC Vay 2 Noisy Chamels. BI Binoy [m,n]-code; 5,70 M= C(= {0,1} n 11. Length of code Hams distance: d(x,y) = | i: | = | (x,x+4) 5. I dent observer: decode P(Csent x received) ML deduns: menx 112 (x record) c sent)
min din: minimize d(x, c). If pct then (ii)(iii) equillent: e-error correctly coole Hammily's bond: of length in has $m \leq \frac{2}{\sum_{i=1}^{n} (n_i)} = \frac{2}{V(n_i,e)}$ 2m= m/(n,e).

Perfect : 2m= mV(n,e)

3 Hanning: Parity & check H: dx(2d-1) matrix. colums one (Fol) " denents of Code-length: n=2d-1 M= (c) = 2n-d as (n-d) dimensions one free e=1 as d=3 [any 3 are L.D] V(n,e)= n+1= 2d-1+1=2d. i 2 n-ol 2 n $M = \frac{2^n}{1/(n,e)}$. So Hammily code is perfect. $A(n,dt) \leq A(n,d)$: A(n,d) = max {m:][n,m,d]-code } If (is [n, m, d+1] - code, then for x,y st. d(x,y) = dtl, the charge x to Z st. differ in a day which Xi+ Yi, Zi=yi. dtx, d(y, z)=0. d(Z,t)#>,d(x,t)-1>,d. So done. Let x be Z. c' is [n, m, d]-wde.

 $5 - 2^{n} \left(A(n,d) \right) \leq \frac{2^{n}}{V(n,d-1)}$ Hammiz's bond. which of a coole went cover whole. 11=12= UB (C,d-1) = $2^n \leq \sum_{(CC)} |\overline{13}(Cd-1)| = mV(n,d-1).$ Ct: Parity check. [nt] m, d'] code. { (C1, C2, .., (n, \(\subseteq \sub (-: Yunctue [n-1, m, d'] code, d-18d'éd. C's Shortered cod. [N-1, m', d'], d'>d, m'>m tor some choice of of ((1,-, (i-1, lit1, -, (a); ((1,-, (i4, d, Citt, -, Ca)(c))

I Transmit reliably at rate R,] tiste, _ (Ca) ; st. @ each Ci of length n, lim (((n)=R) lim ê([]=0. Pa)= + (g2(m) Operatural (apacity = sup { reliable transmiton rate). = 279; Clam: H(XX)=H(X1X)=H(X): H(X|Y)= FB (P(Y=9) H(X|Y=9) = = [P(Y=y) [- = 1](X=x Y=y)|03|1)(X=x Y=y) = - 3 IP(X=x, Y=y) = IP(X=x, Y=y) Og IP(X=x, Y=y)

IP(Y=y) = IP(Y=y) = - = = = P(X=X, Y=y) 19 (P(X=X) = y) + = = = P(X=X, Y=Y) (gll(x=y) = H(X,Y)-H(Y).

Thus, Since we also have

H(X,Y) < H(X) HH(Y)

L Proof by Gills,

we have H(X|Y) < (H(X))

Claim: $H(X,Y) \leq H(X|Y,Z) + H(Z)$.

Proof: H(X,Y,Z) = H(Z|X,Y) + H(X|Y) + H(Y) H(X|Y,Z) + H(Z|Y) + H(Y) H(X|Y) = H(X|Y,Z) + H(Z|Y) - H(Z|X) = H(X|Y,Z) + H(Z)

Fano's inquality. X, Y takes value in As |A|=m. $|H(X|Y)| \leq |H(P)| + P(g(m-1))$. Let $Z = \begin{cases} 1, x \neq Y \\ 0, x \neq Y \end{cases}$. P = |P(X|=Y)|. $|H(X|Y)| \leq |H(X|Y,Z)| + |H(Z)| \rightarrow |H(P)|$. when Z = 0.

 $\leq p(s(m) + H(p))$

Men Z = 0, X determed Z=1, X has m-1 choises, 50 H(X(Y=y, Z1); < 108(m-1)

I(X;Y) = H(X) - H(X|Y)= H(X) - H(X,Y) + H(Y)= H(Y) - (H(Y)X) = I(YiX). 7,0 FIHT V.Y indes Inter capa = max I(X;Y). CC 2022. DZ-SI. DMC: Pint | V. reen / x/ Sent PPij=112(b) received [ai sent] Two DMC, Product chamel MON I (YXY XXX). = max [-1(xxx)+1+(xx)-H(xxx, xxx) = -IPx1Px2 (05 Px1Px2 - I - + IPx1y1Px2y2 / 9 Px1y1Px2y2 / 9 Px1y1Px2y2 = & max I (XX) $C_1+(C_1)$

2020 PZ,SI, 3I.CC. (a) Into capasity = 1 may I(X, Y). where X tollows disturbutur of a DMC after X, $I(Y|X) = H(\pm)$. Z(X,Y)=Z(X)X= H(Y) - H(=) H(Y)=[21032+21032+21032) - \$ [-x log(1-4) 十岁182十岁192. = 1+ Hb > 1+ = Men d==

Thus (I(X, Y) = }.

$$P = \frac{1}{8} \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$$

$$X : d, Y : 1 - d.$$

$$P = \frac{1}{8} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} +$$

H(P,, P2, P3) = H(P,, 1-P,) f(1-P,)

Proof:

,

CC 2021 P3,5I.3K. Itams code of length 2d1: N=20-1. H & dx(zd) matrix 5.t. each column is distrere non-zero élements du 1/2. V Yerfert: V(n,e). m=2°. $M = 2^{n-d}$ V(N,1)=2d-1+1=2d. A 1-error deform as d= ?: Amy 2 colum LIs 11.1. -- 1 EC, as @ 4## 0 all rows of H sum of

2d-141 1's action of 1's)

12, SI,12K. M: Fd >Fd En Eagliant ... the laws f to rows of 17. Obtain (Cd Cd+1 -- 006)

(C) If godd weight,

(Xn-1+Xn-2+1.1+1)/X-1)=0.

(Xn-1+Xn-2+1.1+1)/X-1)=0.

(Xn-1+Xn-2+1.1+1)/X-1)=0.

(Xn-1+Xn-2+1.1+1)/X-1)=0.

(Xn-1+Xn-2+1.1+1)/X-1)=0.

(Xn-1+Xn-2+1.1+1)/X-1)=0.

(Xn-1)=0.

(Xn

CC 2018.

PISI. 114.

rank (C, Cz) = rank (c) + rank (cz) { (x) x)} { (0, y)} basi}.

2. d((c, cz) = min{zd(ci), d(cz)}.

3. C1:P1 kixn C2:P2, kixn.

(1/Cr:

(P) PPZ

RM(d,r) = CR(d-1,ra) | RM(d-1,ra) | $Vombo = \sum_{s=0}^{r} (d) | RM(d-1,ra) |$ $RM(d-1,ra) = \sum_{s=0}^{r} (d) | RM(d-1,ra) |$

CC 2017 YI, SI, 10G. $Wc(s,t)=\sum_{j=0}^{\infty}A_jt^r(s_j)^j$ Wc(1,1)=\$A;=|C|=2k. Claim: Wc(s,t)=Wc(t,s) (> Wollso)=1. proof: (E/Vc(1,0)=1=) An=1. > 11---1EC. Claim: Aj=An-j. Pros : 1thing If X EAS. M. HXEAn.j. Bijectan. D. So Walst)=Walts). (=)) if Wc(s,t)=Wdts), then Wc(1,0)=W2(0,1)=(. Dual code Cof C: {y:x.y=0 xxtc} (i) y EFr. If y ECt, then \(\Sigma (1)^{\text{Y-y}} = |c| = 2^k.

Else, Then Take \$\frac{\fir}{\finn}}{\fint}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{

Extend def of weight. U(Y) for $Y \in \mathbb{F}_{2}^{n}$. $Z_{FF}^{n} t^{w(y)}(-1)^{n,y} = (1-t)^{w(x)}(1+t)^{n-w(x)}$

 $\sum_{x \in C} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y} (\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in C} (-1)^{x,y}} \right) \\
= \sum_{y \in C} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in C} (-1)^{x,y}} \right) \\
= \sum_{y \in C} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in C} (-1)^{x,y}} \right) \\
= \sum_{y \in C} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in C} (-1)^{x,y}} \right) \\
= \sum_{y \in C} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in C} (-1)^{x,y}} \right) \\
= \sum_{y \in F_{x}} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in C} (-1)^{x,y}} \right) \\
= \sum_{y \in F_{x}} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in F_{x}} (-1)^{x,y}} \right) \\
= \sum_{y \in F_{x}} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in F_{x}} (-1)^{x,y}} \right) \\
= \sum_{y \in F_{x}} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in F_{x}} (-1)^{x,y}} \right) \\
= \sum_{y \in F_{x}} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in F_{x}} (-1)^{x,y}} \right) \\
= \sum_{y \in F_{x}} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in F_{x}} (-1)^{x,y}} \right) \\
= \sum_{y \in F_{x}} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in F_{x}} (-1)^{x,y}} \right) \\
= \sum_{y \in F_{x}} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in F_{x}} (-1)^{x,y}} \right) \\
= \sum_{y \in F_{x}} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in F_{x}} (-1)^{x,y}} \right) \\
= \sum_{y \in F_{x}} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in F_{x}} (-1)^{x,y}} \right) \\
= \sum_{y \in F_{x}} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in F_{x}} (-1)^{x,y}} \right) \\
= \sum_{y \in F_{x}} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in F_{x}} (-1)^{x,y}} \right) \\
= \sum_{y \in F_{x}} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in F_{x}} (-1)^{x,y}} \right) \\
= \sum_{y \in F_{x}} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in F_{x}} (-1)^{x,y}} \right) \\
= \sum_{y \in F_{x}} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in F_{x}} (-1)^{x,y}} \right) \\
= \sum_{y \in F_{x}} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in F_{x}} (-1)^{x,y}} \right) \\
= \sum_{y \in F_{x}} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in F_{x}} (-1)^{x,y}} \right) \\
= \sum_{y \in F_{x}} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in F_{x}} (-1)^{x,y}} \right) \\
= \sum_{y \in F_{x}} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in F_{x}} (-1)^{x,y}} \right) \\
= \sum_{y \in F_{x}} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in F_{x}} (-1)^{x,y}} \right) \\
= \sum_{y \in F_{x}} \left(\frac{\sum_{y \in F_{x}} (-1)^{x,y}}{\sum_{y \in F_{x}} (-1)^{x,y}} \right) \\
= \sum_{y \in F_{x}} \left(\frac{\sum_{y \in F_{x}$

= 2k \(\frac{5}{4}\)\wy

 $= \frac{1}{\sqrt{2}} \left(\frac{2}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \left(\frac{1}{\sqrt{2}}$

 $2^k W_{cl}(s,t) = W_{cl}(t-s,t+s) V$

CC pay 3.

Frank

Hamy (7,4) & code.

= Hamy [7,16,3] - code.

n 24

11

2d-1

d=24=23.

3> (BK711011) d 2 (D) 25 (B) ME 0<3A -8> (3<71X-VXII) d 19910 19910 'S-b

ED Feed hends shif registe FSR is a map f: IF2d > IF2d given by ((x2, --, Xd-1) = (x1, x2, --, Xd-1, ((x0, --, Xd-1)) where Cill-sd > IFs. Sony register has length d. Stream associated to an initial till (40,000 Yan) is infinite sequence (yo, yı, -> yi, --) With yn=C(Ynd, Yn-d+1, --, Yn-1) for all nzd. If ((1/0, 1/1, -> 1/d)) = = (2) 9: 1/is Soy it's LFSR. yn = = diyn-dti Auxillan Poly Xd +ad-1Xdd for-fax+ao Foolback pbly P(X)=QxXd+-+ [ud-1X+]

CC Day 4.

3. Perfect secrecy; H(M(C)=H(M).

4. Perfect => 1K >/M,

V MEM have 11 (G-Co)=12 (G-Col M=m).

So I key kEK with G= ek(m).

If MI, Mz give sue boy k,

then ep(M1) = Co = ek(M2), 50 M1=M2.

50 Mmb injective.

5- H(M)C) EH(K(C)

NOTE M=d(C,K), So H(M(C,K)=0, 1+(C,K)=H(M,C,K)

H(K|C) = H(K,C) + H(C)

STARTED STALK, OSTE

= H(M,K,C)-H(c).

= H(K[M,c)+H(M,c)-H(c)

= H(KIM,c) +H(M/c)

 $\leq H(M(c))$

Rabin:

1 Private bey: P,9=3(4) prines

2) Public key: N=Pq.)

Encoding: @ CI-> C2 (mod N).

Decodity: Receive C

X = C (Pa) =) x=c(p)

 $\chi^2 = C(9)$

P=4/2,-1

CK = XX

(laim. (ch)= ((1) (1)

Prof. &= x4k= x2=c(pq).

50 X=tck(p)

X=1(2)

By CRT, Done.

Thm:	Breaking	Rahin as	difficult	as 7	fatory	\sim
	1)10001					
		Song NE	the square modernood (V) rand	t noel	Pute V,	
	E	$Pick x($ $ \#_{y=}f(x)$	inod (V) rand	conly.		
		y 2 = x2.	三七、メミリ	(N)	1	
		fails, d	N, x-y) is a	non-tn/o	factu	of N.

RSA

Private: & d.

Public: N.e.

N=pq -> (age p,q. De pandom, # (e, q(N))=1.

de=((Q(N)).

e: MH> Me d: CH> cd.

CC. 2018, P2,5II,12H. Op(x): ord(x) in (Fp. $\phi(N)|_{29b}$ (P-1)(9-1)[29b. If Op(xb) + Q(xb).

1296 = 1 (P)

12° b = ((9). (Since 140 only 12(41'=1 = 2th = [(p) $\chi^{2^{tb}} \neq ((9)$

Claim: number et a satisfying Op(xb) + Dq(xb) > 2(M). Prat: 5.7.5. For each vale of Op(xb)=k pumber of & satisfying 0. number of x of this s.t. Op(x0)=h < P-1,

Let 9 be primitive root of P. 9P-1= 1(P), Op (9b) is of form 2k suppose $Op(9^b) = 2^t (0 \le t \le a)$ Let x=gh, then xh=ghk for odd h xh=ghk $\partial_p(xh)=\frac{2^{t}}{(2^{t},k)}$ So Op(xt)= 2t iff So ofthe Op(x)=2t iff k is odd $Op(\pi^b) = Op(g^{bk}) \oplus \begin{cases} = 2^t & k \text{ odd} \\ \leq 2^t & k \text{ even} \end{cases}$ So: for all x=gk, b and, OP(Xb) = 2t. It has size = P-1. Others have size & ?-

Thus By CRT, $Q > \frac{124}{5} (9-1)$ = $\frac{1}{2} \varphi(N)$.

CC 2016 P3

Unicity distance:

least n s.t. H(K (C") =0.

i.e. smallest n to uniquely determine key

Assume:

i) All messages tades some opro

(iv) H(M(n)) NHH to some H const, n large.

Them: HEK/C(101) =0

H(K,((n)) + H(C(n))

= HE H(K, M(n), C(n)) -H(C(n))

Since K, M(n) indep.

 $= |+(|<,M^{(n)})| - |+(C^{(n)})$

= H((C)+(H(M(n)) -H(Cin))

= 10g/ + mlt. - nlg/2/

N= 19/Σ1-14