17- Spazio Prodotto e Derivate Parziali

Premesse

> Proiezioni canoniche

Siano X, Y due insiemi.

Si dice proiezione canonica su X la funzione $\pi_X: X imes Y o X$ definita ponendo

$$\pi_X(x,y) = x$$
 per ogni $(x,y) \in X \times Y$.

Si dice proiezione canonica su Y la funzione $\pi_Y: X \times Y \to Y$ definita ponendo

$$\pi_X(x,y)=y$$
 per ogni $(x,y)\in X imes Y$

> Spazio vettoriale prodotto

Siano $(E, +_E, \cdot_E)$ e $(F, +_F, \cdot_F)$ due spazi vettoriali.

Si dice spazio vettoriale prodotto di E e F l'insieme $E \times F$ dotato delle seguenti operazioni:

- $+_{E\times F}$ è definita ponendo $(\mathbf{x},\mathbf{y})+_{E\times F}(\mathbf{z},\mathbf{w})=(\mathbf{x}+_{E}\mathbf{z},\mathbf{y}+_{F}\mathbf{w})$ per ogni $(\mathbf{x},\mathbf{y}),(\mathbf{z},\mathbf{w})\in E\times F;$
- $\cdot_{E \times F}$ è definita ponendo $k \cdot_{E \times F} (\mathbf{x}, \mathbf{y}) = (k \cdot_{E} \mathbf{x}, k \cdot_{F} \mathbf{y})$ per ogni $(\mathbf{x}, \mathbf{y}) \in E \times F$; e per ogni $k \in \mathbb{R}$.

> Topologia prodotto, Spazio topologico prodotto

Siano X e Y due spazi topologici.

Sia $\pi_X: X \times Y \to X$ la proiezione canonica su X, definita ponendo $\pi_X(x,y) = x$ per ogni $(x,y) \in X \times Y$.

Sia $\pi_Y: X \times Y \to X$ la proiezione canonica su Y, definita ponendo $\pi_Y(x,y) = y$ per ogni $(x,y) \in X \times Y$.

Si dice topologia prodotto su $X \times Y$ la topologia τ su $X \times Y$ soddisfacente una delle seguenti condizioni, tra loro equivalenti:

- τ è la topologia meno fine su $X \times Y$ tale che π_X e π_Y siano continue;
- τ è la topologia generata dagli insiemi del tipo $A \times B$, al variare di A aperto in X e B aperto in Y.

> Limiti di funzioni a valori in uno spazio prodotto

Siano X, Y, Z tre spazi topologici.

Sia $A \subseteq X$.

Sia $x_0 \in D(A)$ (D(A) denota l'insieme dei punti di accumulazione di A)

Sia $f: A \rightarrow Y$ una funzione.

Sia $g: A \rightarrow Z$ una funzione.

Si consideri su $Y \times Z$ la topologia prodotto.

Sia h:A o Y imes Z la funzione definita ponendo h(x)=ig(f(x),g(x)ig) per ogni $x\in A$.

sia $(y_0, z_0) \in Y \times Z$.

Si ha $\lim_{x o x_0}h(x)=(y_0,z_0)$ se e solo se $\lim_{x o x_0}f(x)=y_0$ e $\lim_{x o x_0}g(x)=z_0.$

Dimostrazione

Si supponga dapprima $\lim_{x o x_0} h(x) = (y_0, z_0).$

Sia $V \subseteq Y$ un intorno aperto di y_0 ;

si provi che esiste $U \subseteq A$ intorno aperto (in A) di x_0 tale che $f(U) \subseteq V$.

Per defnizione di topologia prodotto, $V \times Z$ è un intorno di (y_0, z_0) , aperto in $Y \times Z$;

per ipotesi, esiste allora $U \subseteq A$ intorno aperto (in A) di x_0 tale che $h(U) \subseteq V \times Z$.

Allora, $f(U) = \pi_Y(h(U)) \subseteq \pi_Y(V \times Z) = V$.

Il ragionamento per mostrare che $\lim_{x o x_0} g(x) = z_0$ è analogo.

Viceversa, si supponga che $\lim_{x o x_0} f(x) = y_0$ e $\lim_{x o x_0} g(x) = z_0$.

Sia W un intorno di (y_0, z_0) aperto in $Y \times Z$;

si provi che esiste $U \subseteq A$ intorno aperto (in A) di x_0 tale che $h(U) \subseteq W$.

Per definizione di topologia prodotto, esistono $M \subseteq Y$ aperto e $N \subseteq Z$ aperto, tali che $(y_0, z_0) \in M \times N \subseteq W$.

Dunque, M è un intorno aperto di y_0 e N è un intorno aperto di x_0 .

Per ipotesi, esistono allora $U, V \subseteq A$ intorni aperti (in A) di x_0 , tali che $f(U) \subseteq M$ e $g(V) \subseteq N$.

Allora, $U \cap V$ è un intorno aperto di x_0 , e si ha

 $h(U\cap V)=f(U\cap V) imes g(U\cap V)\subseteq f(U) imes g(V)\subseteq M imes N\subseteq W.$

Г

Spazio normato prodotto

Proposizione 17.1: Norme sullo spazio vettoriale prodotto

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Si ponga, per ogni $(\mathbf{x}, \mathbf{y}) \in X \times Y$:

$$\|(\mathbf{x},\mathbf{y})\|_1 = \|\mathbf{x}\|_X + \|\mathbf{y}\|_Y$$

$$\|(\mathbf{x},\mathbf{y})\|_2 = \sqrt{\|\mathbf{x}\|_X^2 + \|\mathbf{y}\|_Y^2}$$

$$\|(\mathbf{x},\mathbf{y})\|_{\infty} = \max\left\{\|\mathbf{x}\|_{X},\|\mathbf{y}\|_{Y}
ight\}$$

Si hanno i seguenti fatti:

- $\|\cdot\|_1$, $\|\cdot\|_2$ e $\|\cdot\|_\infty$ sono norme equivalenti su $X \times Y$ (Due norme $\|\cdot\|$ e $\|\cdot\|'$ su uno spazio E si dicono equivalenti quando esistono M, N > 0 tali che $\|\mathbf{x}\| \le M \|\mathbf{x}\|'$ e $\|\mathbf{x}\|' \le N \|\mathbf{x}\|$ per ogni $\mathbf{x} \in E$);
- Tali norme inducono tutte la topologia prodotto su $X \times Y$.

Q Osservazioni preliminari

Siano $a, b \in \mathbb{R}_0^+$.

Valgono le seguenti relazioni:

- $\min\{a, b\} + \max\{a, b\} = a + b;$
- $\max\{a^2, b^2\} = (\max\{a, b\})^2$;
- $a+b \leq \sqrt{2} \cdot \sqrt{a^2+b^2}$.

Si mostri la quarta disuguaglianza, essendo la meno ovvia.

Si ha la seguente catena di equivalenze:

$$a+b \leq \sqrt{2} \cdot \sqrt{a^2+b^2} \iff (a+b)^2 \leq 2(a^2+b^2)$$
 Elevando al quadrato ambo i membri

$$\iff \quad a^2 + b^2 + 2ab \le 2a^2 + 2b^2$$

$$\iff a^2 + b^2 - 2ab \ge 0$$

$$\iff (a-b)^2 \geq 0$$

l'ultima delle quali è vera.

Q Osservazioni preliminari 2

Siano $a, b \in \mathbb{R}_0^+$.

Valgono le seguenti relazioni:

- $\min\{a,b\} + \max\{a,b\} = a + b;$
- $\sqrt{a^2+b^2} \leq a+b$;
- $\max\{a^2, b^2\} = (\max\{a, b\})^2$;
- $a+b \leq \sqrt{2} \cdot \sqrt{a^2+b^2}$.

Si mostri la quarta disuguaglianza, essendo la meno ovvia.

Si ha la seguente catena di equivalenze:

$$a+b \leq \sqrt{2} \cdot \sqrt{a^2+b^2} \iff (a+b)^2 \leq 2(a^2+b^2)$$
 Elevando al quadrato ambo i membri

$$\iff \quad a^2+b^2+2ab \leq 2a^2+2b^2$$

$$\iff a^2 + b^2 - 2ab \ge 0$$

$$\iff (a-b)^2 \ge 0$$

l'ultima delle quali è vera.

Dimostrazione

Che $\|\cdot\|_1, \|\cdot\|_2$ e $\|\cdot\|_\infty$ siano norme su $X\times Y$ è evidente.

Si provi che queste sono equivalenti.

Fissato $(\mathbf{x}, \mathbf{y}) \in X \times Y$, si hanno le seguenti disuguaglianze:

$$\|(\mathbf{x}, \mathbf{y})\|_1 = \|\mathbf{x}\|_X + \|\mathbf{y}\|_X$$
 Per definizione di $\|\cdot\|_1$
 $\leq \max \{\|\mathbf{x}\|_X, \|\mathbf{y}\|_Y\} + \max \{\|\mathbf{x}\|_X, \|\mathbf{y}\|_Y\}$ Dalla definizione di massimo $= 2\|(\mathbf{x}, \mathbf{y})\|_{\infty}$ Per definizione di $\|\cdot\|_{\infty}$

$$\|(\mathbf{x}, \mathbf{y})\|_{\infty} = \max \{\|\mathbf{x}\|_{X}, \|\mathbf{y}\|_{Y}\}$$
 Per definizione di $\|\cdot\|_{\infty}$
 $\leq \max \{\|\mathbf{x}\|_{X}, \|\mathbf{y}\|_{Y}\} + \min \{\|\mathbf{x}\|_{X}, \|\mathbf{y}\|_{Y}\}$ Essendo $\|\mathbf{x}\|_{X}, \|\mathbf{y}\|_{Y} \geq 0$
 $= \|\mathbf{x}\|_{X} + \|\mathbf{y}\|_{Y}$ Dalle osservazioni preliminari $\|\mathbf{x}\|_{X} + \|\mathbf{y}\|_{Y}$ Per definizione di $\|\cdot\|_{1}$

$$\begin{split} &\|(\mathbf{x},\mathbf{y})\|_2 = \sqrt{\|\mathbf{x}\|_X^2 + \|\mathbf{y}\|_Y^2} & \text{Per definizione di } \|\cdot\|_2 \\ &\leq \sqrt{\max\left\{\|\mathbf{x}\|_X^2, \|\mathbf{y}\|_Y^2\right\} + \max\left\{\|\mathbf{x}\|_X^2, \|\mathbf{y}\|_Y^2\right\}} & \text{Dalla definizione di massimo} \\ &= \sqrt{2} \cdot \max\left\{\|\mathbf{x}\|_X, \|\mathbf{y}\|_Y\right\} & \text{Dalle osservazioni preliminari} \\ &= \sqrt{2} \cdot \|(\mathbf{x},\mathbf{y})\|_\infty & \text{Per definizione di } \|\cdot\|_\infty \end{split}$$

$$\begin{aligned} &\|(\mathbf{x}, \mathbf{y})\|_{\infty} = \max \left\{ \|\mathbf{x}\|_{X}, \|\mathbf{y}\|_{Y} \right\} & \text{Per definizione di } \| \cdot \|_{2} \\ &= \sqrt{\max \left\{ \|\mathbf{x}\|_{X}^{2}, \|\mathbf{y}\|_{Y}^{2} \right\}} & \text{Dalle osservazioni preliminari} \\ &\leq \sqrt{\max \left\{ \|\mathbf{x}\|_{X}^{2}, \|\mathbf{y}\|_{Y}^{2} \right\} + \min \left\{ \|\mathbf{x}\|_{X}^{2}, \|\mathbf{y}\|_{Y}^{2} \right\}} & \text{Essendo } \|\mathbf{x}\|_{X}^{2}, \|\mathbf{y}\|_{Y}^{2} \geq 0 \\ &\leq \sqrt{\|\mathbf{x}\|_{X}^{2} + \|\mathbf{y}\|_{Y}^{2}} & \text{Dalle osservazioni preliminari} \end{aligned}$$

Il primo punto sarebbe dunque provato, in quanto l'equivalenza tra $\|\cdot\|_1$ e $\|\cdot\|_2$ segue per transitività; ciò nonostante, si vogliono confrontare direttamente le due norme.

Si ha

$$\|(\mathbf{x}, \mathbf{y})\|_2 = \sqrt{\|\mathbf{x}\|_X^2 + \|\mathbf{y}\|_Y^2}$$
 Per definizione di $\|\cdot\|_2$
 $\leq \|\mathbf{x}\|_X + \|\mathbf{y}\|_Y$ Dalle osservazioni preliminari $\|\cdot\|_1$ Per definizione di $\|\cdot\|_1$

$$\|(\mathbf{x}, \mathbf{y})\|_1 = \|\mathbf{x}\|_X + \|\mathbf{y}\|_X$$
 Per definizione di $\|\cdot\|_1$
$$\sqrt{2} \cdot \sqrt{\|\mathbf{x}\|_X^2 + \|\mathbf{y}\|_Y^2}$$
 Dalle osservazioni preliminari
$$= \sqrt{2} \cdot \|(\mathbf{x}, \mathbf{y})\|_2$$
 Per definizione di $\|\cdot\|_2$

Essendo le tre norme tra loro equivalenti, esse inducono la stessa topologia.

Per concludere la dimostrazione, si provi allora che $\|\cdot\|_{\infty}$ induce la topologia prodotto.

A tale scopo si vuole mostrare che la topologia indotta da $\|\cdot\|_{\infty}$ è la topologia generata dai prodotti di aperti di X con aperti di Y;

cioè, fissato $A \subseteq X \times Y$ aperto secondo la topologia indotta da $\|\cdot\|_{\infty}$ e fissato $(\mathbf{x}_0, \mathbf{y}_0) \in A$, si vuole mostrare che esistono $U \subseteq X$ aperto in X e $V \subseteq Y$ aperto in Y, tali che $x \in U \times V \subseteq A$.

Intanto, essendo $(\mathbf{x}_0, \mathbf{y}_0) \in A$ ed essendo A aperto secondo la topologia indotta da $\|\cdot\|_{\infty}$, esiste $\delta > 0$ tale che $B((\mathbf{x}_0, \mathbf{y}_0), \delta) \subseteq A$.

Si osserva che

$$B((\mathbf{x}_0, \mathbf{y}_0), \delta) = \{(\mathbf{x}, \mathbf{y}) \in X \times Y : \|(\mathbf{x}, \mathbf{y}) - (\mathbf{x}_0, \mathbf{y}_0)\|_{\infty} < \delta\}$$
 Per definizione di intorno sferico

$$oxed{ = \{(\mathbf{x},\mathbf{y}) \in X imes Y : \|(\mathbf{x} - \mathbf{x}_0, \mathbf{y} - \mathbf{y}_0)\|_{\infty} < \delta\} }$$

Per definizione di spazio vettoriale prodotto

$$\mathbf{x} = \{(\mathbf{x}, \mathbf{y}) \in X \times Y : \max\{\|\mathbf{x} - \mathbf{x}_0\|_X, \|\mathbf{y} - \mathbf{y}_0\|_Y\} < \delta\}$$

Per definizione di $\|\cdot\|_{\infty}$

$$=\{(\mathbf{x},\mathbf{y})\in X imes Y: \|\mathbf{x}-\mathbf{x}_0\|_X<\delta\ \wedge\ \|\mathbf{y}-\mathbf{y}_0\|_Y<\delta\}$$

In generale, $\max\{a,b\} < c \iff a < c \land b < c$

$$=B(\mathbf{x}_0,\delta) imes B(\mathbf{y}_0,\delta)$$

Allora, $B(\mathbf{x}_0, \delta)$ e $B(\mathbf{y}_0, \delta)$ sono aperti in X e Y rispettivamente, e si ha

$$(\mathbf{x}_0,\mathbf{y}_0)\in B(\mathbf{x}_0,\delta) imes B(\mathbf{y}_0,\delta)=Big((\mathbf{x}_0,\mathbf{y}_0),\deltaig)\subseteq A.$$

Q Osservazione 1: Intorni rispetto alla norma $\|\cdot\|_{\infty}$

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Si consideri su $X \times Y$ la norma $\|\cdot\|_{\infty}$.

Nella dimostrare la [Proposizione 17.1] è stata acquisita la seguente uguaglianza:

$$B((\mathbf{x}_0, \mathbf{y}_0), \delta) = B(\mathbf{x}_0, \delta) \times B(\mathbf{y}_0, \delta).$$

Q Osservazione 2

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Si osserva che, qualunque sia la definizione di $\|\cdot\|_{X\times Y}$ tra le tre date sopra, per ogni $\mathbf{x}\in X$ e per ogni $\mathbf{y}\in Y$ si ha

$$\|\mathbf{x}\|_X \le \|(\mathbf{x}, \mathbf{y})\|_{X \times Y} \in \|\mathbf{y}\|_Y \le \|(\mathbf{x}, \mathbf{y})\|_{X \times Y}.$$

Derivate parziali

Definizione: Parziale derivabilità, Derivata parziale

Siano $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ e $(E, \|\cdot\|_E)$ tre spazi normati.

Sia $A \subseteq X \times Y$ aperto.

Sia $(\mathbf{x}_0,\mathbf{y}_0)\in \overset{\circ}{A}$

Sia $f: A \to E$ una funzione.

f si dice parzialmente derivabile rispetto a \mathbf{x} secondo Gateaux (rispettivamente Fréchet) in $(\mathbf{x}_0, \mathbf{y}_0)$ quando la funzione $f(\cdot, \mathbf{y}_0)$ è derivabile secondo Gateaux (rispettivamente Fréchet) in \mathbf{x}_0 ;

la derivata $(f(\cdot, \mathbf{y}_0))'(\mathbf{x}_0)$ prende il nome di **derivata parziale** di f rispetto a \mathbf{x} in $(\mathbf{x}_0, \mathbf{y}_0)$, e si denota con $f'_{\mathbf{x}}(\mathbf{x}_0, \mathbf{y}_0)$.

f si dice **parzialmente derivabile rispetto a y** secondo Gateaux (rispettivamente Fréchet) in $(\mathbf{x}_0, \mathbf{y}_0)$ quando la funzione $f(\mathbf{x}_0, \cdot)$ è derivabile secondo Gateaux (rispettivamente Fréchet) in \mathbf{y}_0 ;

la derivata $(f(\mathbf{x}_0, \cdot))'(\mathbf{y}_0)$ prende il nome di **derivata parziale** di f rispetto a \mathbf{y} in $(\mathbf{x}_0, \mathbf{y}_0)$, e si denota con $f_{\mathbf{y}}'(\mathbf{x}_0, \mathbf{y}_0)$.

ho Proposizione 17.2: Caratterizzazione delle funzioni di classe C^1 a valori in uno spazio prodotto

Siano $(X, \|\cdot\|_X)$, $(E, \|\cdot\|_E)$ e $(F, \|\cdot\|_F)$ tre spazi normati.

Sia $A \subseteq X$ aperto.

Sia $f: A \to E$ una funzione.

Sia $q: A \rightarrow F$ una funzione.

Sia h:A o E imes F la funzione definita ponendo $h(\mathbf{x})=ig(f(\mathbf{x}),g(\mathbf{x})ig)$ per ogni $\mathbf{x}\in A$.

Sono equivalenti le seguenti affermazioni:

- 1. h è di classe C^1 ;
- 2. f e g sono entrambe di classe C^1 .

In tal caso, vale $h'(\mathbf{x})(\mathbf{v}) = (f'(\mathbf{x})(\mathbf{v}), g'(\mathbf{x})(\mathbf{v}))$ per ogni $\mathbf{v} \in X$.

\bigcap Dimostrazione (1. \Rightarrow 2.)

Si supponga h di classe C^1 .

Si osserva che $f = \pi_E \circ h$ e $g = \pi_F \circ h$, dove π_E e π_F sono le proiezioni su E e F rispettivamente.

 π_E e π_F sono lineari (per definizione di spazio vettoriale prodotto) e continue (per definizione di topologia prodotto), dunque di classe C^1 :

h è di classe C^1 per ipotesi.

Ne viene che f e g sono entrambe di classe C^1 in quanto composizioni di funzioni di classe C^1 .

Q Osservazioni preliminari

Si definisca la mappa $\Lambda: \mathcal{L}(X, E \times F) \to \mathcal{L}(X, E) \times \mathcal{L}(X, F)$, ponendo $\Lambda(\psi) = (\pi_E \circ \psi, \pi_F \circ \psi)$ per ogni $\psi \in \mathcal{L}(X, E \times F)$.

 Λ è un omeomorfismo lineare.

Infatti:

La linearità di Λ segue evidentemente dalla sua definizione e dalla linearità di π_E e π_F .

 Λ è suriettiva.

Segue dal fatto che, fissati $\varphi_1 \in \mathcal{L}(X, E)$ e $\varphi_2 \in \mathcal{L}(X, F)$, la mappa ' φ_1, φ_2 ': $X \to E \times F$ definita ponendo ' φ_1, φ_2 '(\mathbf{x}) = $(\varphi_1(\mathbf{x}), \varphi_2(\mathbf{x}))$ per ogni $\mathbf{x} \in X$ è lineare e continua.

 Λ è iniettiva.

Segue dal fatto che, dato $\psi \in \mathcal{L}(E \times F)$ tale che $\Lambda(\psi) = \left(\mathbf{0}_{\mathcal{L}(X,E)}, \mathbf{0}_{\mathcal{L}(X,F)}\right)$, fissato $\mathbf{x} \in X$ si ha

$$\psi(\mathbf{x}) = ig((\pi_E \circ \psi)(\mathbf{x}), (\pi_F \circ \psi)(\mathbf{x})ig) = (\mathbf{0}_E, \mathbf{0}_F) = \mathbf{0}_{E imes F}.$$

Essendo $(\mathbf{0}_E, \mathbf{0}_F)$ l'elemento neutro dello spazio vettoriale prodotto $E \times F$, si ha pertanto

$$\psi(\mathbf{x}) = \mathbf{0}_{E \times F}$$
 per ogni $\mathbf{x} \in X$, da cui segue l'iniettività di Λ .

Dunque, Λ^{-1} è ben definita, e si ha $\Lambda^{-1}(\varphi_1, \varphi_2) = \varphi_1, \varphi_2$ per ogni $\varphi_1 \in \mathcal{L}(X, E)$ e $\varphi_2 \in \mathcal{L}(X, F)$.

 Λ è continua.

Segue dal fatto che, fissato $\psi \in \mathcal{L}(X, E \times F)$, si ha

$$\|\Lambda(\psi)\|_{\mathcal{L}(X,E) imes\mathcal{L}(X,F)} = \|(\pi_E\circ\psi,\pi_F\circ\psi)\|_{\mathcal{L}(X,E) imes\mathcal{L}(X,F)}$$

Per definizione di Λ

$$=\|\pi_E\circ\psi\|_{\mathcal{L}(X,E)}+\|\pi_F\circ\psi\|_{\mathcal{L}(X,F)}$$

Dalla definizione scelta per $\|\cdot\|_{\mathcal{L}(X,E)\times\mathcal{L}(X,F)}$

$$\leq \|\pi_E\|_{\mathcal{L}(E\times F,E)}\cdot \|\psi\|_{\mathcal{L}(X,E\times F)} + \|\pi_F\|_{\mathcal{L}(E\times F,F)}\cdot \|\psi\|_{\mathcal{L}(X,E\times F)}$$

Dalla submoltiplicatività della norma per operatori lineari e continui

$$=\left(\|\pi_E\|_{\mathcal{L}(E imes F,E)}+\|\pi_F\|_{\mathcal{L}(E imes F,F)}
ight)\cdot\|\psi\|_{\mathcal{L}(X,E imes F)}$$

 Λ^{-1} è continua.

Segue dal fatto che, fissato $(\varphi, \phi) \in \mathcal{L}(X, E) \times \mathcal{L}(X, F)$, fissato $\mathbf{x} \in X$ e considerando su $E \times F$ e su $\mathcal{L}(X, E) \times \mathcal{L}(X, F)$ la norma $\|\cdot\|_1$, si ha

$$\|\mathbf{\Lambda}^{-1}(\varphi,\phi)(\mathbf{x})\|_{E\times F}=\|`\varphi,\phi`(\mathbf{x})\|_{E\times F}$$
 Per definizione di $\mathbf{\Lambda}^{-1}$

$$= \left\| \left(arphi(\mathbf{x}), \phi(\mathbf{x}) \right) \right\|_{E imes F}$$
 Per definizione di ' $arphi, \phi$ '

$$\| \varphi(\mathbf{x}) \|_E + \| \phi(\mathbf{x}) \|_F$$
 Dalla definizione scelta per $\| \cdot \|_{E imes F}$

 $\leq \|\varphi\|_{\mathcal{L}(X,E)} \cdot \|\mathbf{x}\|_X + \|\phi\|_{\mathcal{L}(X,F)} \cdot \|\mathbf{x}\|_X \quad \text{Dalla disuguaglianza fondamentale delle norme per operatori lineari e continui}$ $= \left(\|\varphi\|_{\mathcal{L}(X,E)} + \|\phi\|_{\mathcal{L}(X,F)}\right) \cdot \|\mathbf{x}\|_X$

Da questa catena di disuguaglianze, verificata per ogni $\mathbf{x} \in X$, segue che Λ^{-1} è continua, con

$$\|\Lambda^{-1}(\varphi,\phi)\|_{\mathcal{L}(X,E\times F)}\leq \|\varphi\|_{\mathcal{L}(X,E)}+\|\phi\|_{\mathcal{L}(X,F)}=\|(\varphi,\phi)\|_{\mathcal{L}(X,E)\times \mathcal{L}(X,F)}.$$

\bigcap Dimostrazione (2. \Rightarrow 1.)

Si suppongano f e g entrambe di classe C^1 .

Si provi che $h'(\mathbf{x})(\mathbf{v}) = (f'(\mathbf{x})(\mathbf{v}), g'(\mathbf{x})(\mathbf{v}))$ per ogni $\mathbf{x} \in A$ e per ogni $\mathbf{v} \in X$.

Si ha

$$\lim_{\mathbf{v}\to\mathbf{0}} \frac{h(\mathbf{x}+\mathbf{v}) - h(\mathbf{x}) - (f'(\mathbf{x})(\mathbf{v}), g'(\mathbf{x})(\mathbf{v}))}{\|\mathbf{v}\|_{X}}$$

$$= \lim_{\mathbf{v}\to\mathbf{0}} \left(\frac{f(\mathbf{x}+\mathbf{v}) - f(\mathbf{x}) - f'(\mathbf{x})(\mathbf{v})}{\|\mathbf{v}\|_{X}}, \frac{g(\mathbf{x}+\mathbf{v}) - g(\mathbf{x}) - g'(\mathbf{x})(\mathbf{v})}{\|\mathbf{v}\|_{X}} \right)$$

$$= (\mathbf{0}_{E}, \mathbf{0}_{F})$$

Per definizione di h e dello spazio vettoriale $E \times F$

f e g sono F-derivabili in \mathbf{x} essendo di classe C^1 per ipotesi; la coppia dei limiti delle componenti equivale al limite della coppia, per quanto osservato tra le premesse

 $=\mathbf{0}_{E imes F}$ L'elemento neutro dello spazio vettoriale prodottoE imes F è $(\mathbf{0}_E,\mathbf{0}_F)$

Resta da provare che h' è continua.

Essendo f e g di classe C^1 per ipotesi, f' e g' sono continue;

per come è definita la topologia prodotto, la mappa "f', g'": $A \to \mathcal{L}(X, E) \times \mathcal{L}(X, F)$ definita ponendo "f', g'"(\mathbf{x}) = $(f'(\mathbf{x}), g'(\mathbf{x}))$ per ogni $\mathbf{x} \in X$ è allora continua.

La mappa Λ^{-1} è continua per le osservazioni preliminari; allora, la mappa $\Lambda^{-1} \circ "f', g'" : A \to \mathcal{L}(X, E \times F)$ è continua.

Infine, si osserva che $\Lambda^{-1}\circ ``f',g'"=h';$ infatti, per ogni $\mathbf{x}\in X$ si ha $h'(\mathbf{x})=`f'(\mathbf{x}),g'(\mathbf{x})"=\Lambda^{-1}\big(f'(\mathbf{x}),g'(\mathbf{x})\big)=\Lambda^{-1}\big(``f',g'"(\mathbf{x})\big).$

Ne segue che h' è continua in quanto composizione di due funzioni continue.

holimits Proposizione 17.3: Caratterizzazione delle funzioni di classe C^1 a valori in uno spazio prodotto

Siano $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ e $(E, \|\cdot\|_E)$ tre spazi normati.

Sia $A \subseteq X \times Y$ aperto.

 $f:A \to E$ una funzione.

Sono equivalenti le seguenti affermazioni:

- 1. f è di classe C^1 ;
- 2. f è parzialmente G-derivabile in A, e $f'_{\mathbf{x}}$ e $f'_{\mathbf{y}}$ sono entrambe continue in A.

In tal caso, per ogni $(\mathbf{x},\mathbf{y}) \in A$ si ha

$$f'(\mathbf{x}, \mathbf{y})(\mathbf{u}, \mathbf{v}) = f'_{\mathbf{x}}(\mathbf{x}, \mathbf{y})(\mathbf{u}) + f'_{\mathbf{y}}(\mathbf{x}, \mathbf{y})(\mathbf{v}) \text{ per ogni } (\mathbf{u}, \mathbf{v}) \in X \times Y.$$

(Quindi si osserva in particolare che

$$f'_{\mathbf{x}}(\mathbf{x},\mathbf{y})(\mathbf{u}) = f'(\mathbf{x},\mathbf{y})(\mathbf{u},\mathbf{0}_Y)$$

 $f'_{\mathbf{y}}(\mathbf{x},\mathbf{y})(\mathbf{v}) = f'(\mathbf{x},\mathbf{y})(\mathbf{0}_X,\mathbf{v})$, per linearità delle derivate parziali)

Osservazioni preliminari

Si definiscano le mappe $\Pi_X : \mathcal{L}(X \times Y, E) \to \mathcal{L}(X, E)$ e $\Pi_Y : \mathcal{L}(X \times Y, E) \to \mathcal{L}(Y, E)$, ponendo $\Pi_X(\psi) = \psi(\cdot, \mathbf{0}_Y)$ e $\Pi_Y(\psi) = \psi(\mathbf{0}_X, \cdot)$ per ogni $\psi \in \mathcal{L}(X, Y)$.

 Π_X e Π_Y sono continue.

Infatti, sia $\{\psi_n\}_{n\in\mathbb{N}}\subseteq\mathcal{L}(X\times Y,E)$ una successione convergente a $\psi\in\mathcal{L}(X\times Y,E)$. Si provi che $\lim_n\|\psi_n(\cdot,\mathbf{0}_Y)-\psi(\cdot,\mathbf{0}_Y)\|_{\mathcal{L}(X,E)}=0$ e $\lim_n\|\psi_n(\mathbf{0}_X,\cdot)-\psi(\mathbf{0}_X,\cdot)\|_{\mathcal{L}(Y,E)}=0$.

Per ogni $\mathbf{u} \in X$ e per ogni $n \in \mathbb{N}$, si ha

$$\|\psi_n(\cdot, \mathbf{0}_Y)(\mathbf{u}) - \psi(\cdot, \mathbf{0}_Y)(\mathbf{u})\|_E = \|\psi_n(\mathbf{u}, \mathbf{0}_Y) - \psi(\mathbf{u}, \mathbf{0}_Y)\|_E$$

$$= \|(\psi_n - \psi)(\mathbf{u}, \mathbf{0}_Y)\|_E$$

 $\leq \|\psi_n - \psi\|_{\mathcal{L}(X imes Y, E)} \, \|(\mathbf{u}, \mathbf{0}_Y)\|_{X imes Y}$

Per la disuguaglianza fondamentale delle norme degli operatori lineari

$$\leq \|\psi_n - \psi\|_{\mathcal{L}(X \times Y, E)} \|\mathbf{u}\|_X$$

Vale $\|(\mathbf{u}, \mathbf{0}_Y)\|_{X \times Y} = \|\mathbf{u}\|_X$, qualunque sia la definizione di $\|\cdot\|_{X \times Y}$

Valendo tale catena per ogni $\mathbf{u} \in X$, ne segue che

$$\|\psi_n(\cdot,\mathbf{0}_Y)-\psi(\cdot,\mathbf{0}_Y)\|_E\leq \|\psi_n-\psi\|_{\mathcal{L}(X\times Y,E)}$$
 per ogni $n\in\mathbb{N}.$

Essendo $\|\psi_n - \psi\|_{\mathcal{L}(X \times Y, E)} = 0$ per convergenza di $\{\psi_n\}_{n \in \mathbb{N}}$ a ψ , segue per confronto che

$$\lim_n \|\psi_n(\cdot,\mathbf{0}_Y) - \psi(\cdot,\mathbf{0}_Y)\|_E = 0.$$

La continuità di Π_X è dunque acquisita;

la continuità di Π_Y si mostra in modo analogo.

\triangleright Dimostrazione (1. \Rightarrow 2.)

Si supponga f di classe C^1 .

Si mostri che f è parzialmente F-derivabile in A, e che per ogni $(\mathbf{x},\mathbf{y}) \in A$ si ha

$$f'_{\mathbf{x}}(\mathbf{x}, \mathbf{y})(\mathbf{u}) = f'(\mathbf{x}, \mathbf{y})(\mathbf{u}, \mathbf{0}_Y)$$
 per ogni $\mathbf{u} \in X$;

$$f'_{\mathbf{y}}(\mathbf{x},\mathbf{y})(\mathbf{v}) = f'(\mathbf{x},\mathbf{y})(\mathbf{0}_X,\mathbf{v})$$
 per ogni $\mathbf{v} \in Y$.

Si fissi dunque $(\mathbf{x}, \mathbf{y}) \in A$, e si consideri su $X \times Y$ la norma $\| \cdot \|_1$.

Sia $\delta > 0$ tale che $B(\mathbf{x}, \delta) \times B(\mathbf{y}, \delta) \subseteq A$;

esso esiste in quanto A è aperto, e i rettangoli aperti costituiscono una base della topologia prodotto.

Essendo f F-derivabile in (\mathbf{x}, \mathbf{y}) in quanto è di classe C^1 per ipotesi, si ha

$$\lim_{(\mathbf{u},\mathbf{v})\to(\mathbf{0},\mathbf{0})}\frac{f(\mathbf{x}+\mathbf{u},\mathbf{y}+\mathbf{v})-f(\mathbf{x},\mathbf{y})-f'(\mathbf{x},\mathbf{y})(\mathbf{u},\mathbf{v})}{\|\mathbf{u}\|_X+\|\mathbf{v}\|_Y}=\mathbf{0}_Z.$$

Restringendo tale espressione all'insieme $A_{\mathbf{u}}=\{(\mathbf{u},\mathbf{0}_Y)\mid \mathbf{u}\in B(\mathbf{0}_X,\delta)\}$, ne viene che

$$\lim_{\mathbf{u} \to \mathbf{0}_X} \frac{f(\mathbf{x} + \mathbf{u}, \mathbf{y}) - f(\mathbf{x}, \mathbf{y}) - f'(\mathbf{x}, \mathbf{y})(\mathbf{u}, \mathbf{0}_Y)}{\|\mathbf{u}\|_X} = \mathbf{0}_Z.$$

che equivale ad affermare che $f(\cdot, \mathbf{y})$ è F-derivabile in \mathbf{x} , e si ha $(f(\cdot, \mathbf{y}))'(\mathbf{x})(\mathbf{u}) = f'(\mathbf{x}, \mathbf{y})(\mathbf{u}, \mathbf{0}_Y)$ per ogni $\mathbf{u} \in X$.

Cioè, f è parzialmente F-derivabile rispetto alla prima variabile in \mathbf{x} , e si ha

$$f'_{\mathbf{x}}(\mathbf{x},\mathbf{y})(\mathbf{u}) = f'(\mathbf{x},\mathbf{y})(\mathbf{u},\mathbf{0}_Y)$$
 per ogni $\mathbf{u} \in X$.

D'altra parte, restringendosi a $A_{\mathbf{v}} = \{(\mathbf{0}_X, \mathbf{v}) \mid \mathbf{v} \in B(\mathbf{0}_Y, \delta)\}$, si ottiene

$$\lim_{\mathbf{v} \to \mathbf{0}_Y} \frac{f(\mathbf{x}, \mathbf{y} + \mathbf{v}) - f(\mathbf{x}, \mathbf{y}) - f'(\mathbf{x}, \mathbf{y})(\mathbf{0}_X, \mathbf{v})}{\|\mathbf{v}\|_X} = \mathbf{0}_Z.$$

che equivale ad affermare che $f(\mathbf{x},\cdot)$ è F-derivabile in \mathbf{y} , e si ha $\big(f(\mathbf{x},\cdot)\big)'(\mathbf{y})(\mathbf{v})=f'(\mathbf{x},\mathbf{y})(\mathbf{0}_X,\mathbf{v})$ per ogni $\mathbf{v}\in X$.

Cioè, f è parzialmente F-derivabile rispetto alla seconda variabile in ${f y}$, e si ha

$$f'_{\mathbf{v}}(\mathbf{x},\mathbf{y})(\mathbf{v}) = f'(\mathbf{x},\mathbf{y})(\mathbf{0}_X,\mathbf{v})$$
 per ogni $\mathbf{v} \in Y$.

Resta da provare la continuità di $f'_{\mathbf{x}}$ e $f'_{\mathbf{y}}$.

Si osserva che, per quanto ottenuto finora, si ha $f'_{\mathbf{x}} = \Pi_X \circ f'$ e $f'_{\mathbf{y}} = \Pi_Y \circ f'$;

la continuità di $f'_{\mathbf{x}}$ e $f'_{\mathbf{y}}$ segue allora dalla continuità di f', essendo f di classe C^1 per ipotesi, e dalla continuità di Π_X e Π_Y , mostrate nelle osservazioni preliminari.

\bigcap Dimostrazione (2. \Rightarrow 1.)

Si supponga che f sia parzialmente G-derivabile in A, e che $f'_{\mathbf{x}}$ e $f'_{\mathbf{y}}$ siano entrambe sono continue in A;

Si provi intanto che f è F-derivabile in A e che, fissato $(\mathbf{x}_0, \mathbf{y}_0) \in A$, si ha

$$f'(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{u}, \mathbf{v}) = f'_{\mathbf{x}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{u}) + f'_{\mathbf{v}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{v}) \text{ per ogni } (\mathbf{u}, \mathbf{v}) \in X \times Y.$$

Si consideri su $X \times Y$ la norma $\|\cdot\|_{\infty}$, e si mostri allora che

$$\lim_{(\mathbf{u},\mathbf{v})\to(\mathbf{0}_X,\mathbf{0}_Y)}\frac{f(\mathbf{x}_0+\mathbf{u},\mathbf{y}_0+\mathbf{v})-f(\mathbf{x}_0,\mathbf{y}_0)-f_\mathbf{x}'(\mathbf{x}_0,\mathbf{y}_0)(\mathbf{u})-f_\mathbf{y}'(\mathbf{x}_0,\mathbf{y}_0)(\mathbf{v})}{\max\{\|\mathbf{u}\|_X,\|\mathbf{v}\|_Y\}}=\mathbf{0}_E.$$

Si fissi $\varepsilon > 0$.

Essendo $(\mathbf{x}_0,\mathbf{y}_0)\in A$ aperto e per ipotesi di continuità di $f'_{\mathbf{x}}$ e di $f'_{\mathbf{y}}$, esiste $\delta>0$ tale che $B\big((\mathbf{x}_0,\mathbf{y}_0),\delta\big)\subseteq A$ e

$$||f'_{\mathbf{x}}(\mathbf{x}_0, \mathbf{y}_0) - f'_{\mathbf{x}}(\mathbf{x}, \mathbf{y})||_{\mathcal{L}(X, E)} < \frac{\varepsilon}{3} \text{ per ogni } (\mathbf{x}, \mathbf{y}) \in B((\mathbf{x}_0, \mathbf{y}_0), \delta);$$

$$\|f_{\mathbf{y}}'(\mathbf{x}_0,\mathbf{y}_0) - f_{\mathbf{y}}'(\mathbf{x},\mathbf{y})\|_{\mathcal{L}(Y,E)} < \frac{\varepsilon}{3} \text{ per ogni } (\mathbf{x},\mathbf{y}) \in B((\mathbf{x}_0,\mathbf{y}_0),\delta).$$

Segue allora dalla disuguaglianza fondamentale delle norme di operatori lineari continui che

$$||f'_{\mathbf{x}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{u}) - f'_{\mathbf{x}}(\mathbf{x}, \mathbf{y})(\mathbf{u})||_{\mathcal{L}(X, E)} < \frac{\varepsilon}{3} ||\mathbf{u}||_X$$
 per ogni $(\mathbf{x}, \mathbf{y}) \in B((\mathbf{x}_0, \mathbf{y}_0), \delta)$ e per ogni $\mathbf{u} \in X$; $||f'_{\mathbf{v}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{v}) - f'_{\mathbf{v}}(\mathbf{x}, \mathbf{y})(\mathbf{v})||_{\mathcal{L}(Y, E)} < \frac{\varepsilon}{3} ||\mathbf{v}||_Y$ per ogni $(\mathbf{x}, \mathbf{y}) \in B((\mathbf{x}_0, \mathbf{y}_0), \delta)$ e per ogni $\mathbf{v} \in Y$.

Si provi che, per ogni $(\mathbf{u},\mathbf{v})\in Big((\mathbf{0}_X,\mathbf{0}_Y),\deltaig)\setminus\{(\mathbf{0}_X,\mathbf{0}_Y)\}$, si ha

$$\frac{\|f(\mathbf{x}_0+\mathbf{u},\mathbf{y}_0+\mathbf{v})-f(\mathbf{x}_0,\mathbf{y}_0)-f_{\mathbf{x}}'(\mathbf{x}_0,\mathbf{y}_0)(\mathbf{u})-f_{\mathbf{y}}'(\mathbf{x}_0,\mathbf{y}_0)(\mathbf{v})\|_E}{\max\{\|\mathbf{u}\|_X,\|\mathbf{v}\|_Y\}}<\varepsilon,\cos\text{``ada acquisire il limite che si vuole mostrare.''}$$

Si ha intanto che

$$\frac{\|f(\mathbf{x}_0 + \mathbf{u}, \mathbf{y}_0 + \mathbf{v}) - f(\mathbf{x}_0, \mathbf{y}_0) - f'_{\mathbf{x}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{u}) - f'_{\mathbf{y}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{v})\|_E}{\max\{\|\mathbf{u}\|_X, \|\mathbf{v}\|_Y\}}$$

$$= \frac{\|f(\mathbf{x}_0 + \mathbf{u}, \mathbf{y}_0 + \mathbf{v}) - f(\mathbf{x}_0, \mathbf{y}_0 + \mathbf{v}) - f'_{\mathbf{x}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{u}) + f(\mathbf{x}_0, \mathbf{y}_0 + \mathbf{v}) - f(\mathbf{x}_0, \mathbf{y}_0) - f'_{\mathbf{y}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{v})\|_E}{\max\{\|\mathbf{u}\|_X, \|\mathbf{v}\|_Y\}}$$

$$\leq \frac{\|f(\mathbf{x}_0 + \mathbf{u}, \mathbf{y}_0 + \mathbf{v}) - f(\mathbf{x}_0, \mathbf{y}_0 + \mathbf{v}) - f'_{\mathbf{x}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{u})\|_E}{\max\{\|\mathbf{u}\|_X, \|\mathbf{v}\|_Y\}} + \frac{\|f(\mathbf{x}_0, \mathbf{y}_0 + \mathbf{v}) - f(\mathbf{x}_0, \mathbf{y}_0) - f'_{\mathbf{y}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{v})\|_E}{\max\{\|\mathbf{u}\|_X, \|\mathbf{v}\|_Y\}}$$

Per sub-additività delle norme

$$\leq \frac{\|f(\mathbf{x}_0+\mathbf{u},\mathbf{y}_0+\mathbf{v})-f(\mathbf{x}_0,\mathbf{y}_0+\mathbf{v})-f_{\mathbf{x}}'(\mathbf{x}_0,\mathbf{y}_0)(\mathbf{u})\|_E}{\|\mathbf{u}\|_X} + \frac{\|f(\mathbf{x}_0,\mathbf{y}_0+\mathbf{v})-f(\mathbf{x}_0,\mathbf{y}_0)-f_{\mathbf{y}}'(\mathbf{x}_0,\mathbf{y}_0)(\mathbf{v})\|_E}{\|\mathbf{v}\|_Y}$$

Essendo
$$\|\mathbf{u}\|_X$$
, $\|\mathbf{v}\|_Y \le \max\{\|\mathbf{u}\|_X, \|\mathbf{v}\|_Y\}$

Si mostri ora che

$$\frac{\|f(\mathbf{x}_0 + \mathbf{u}, \mathbf{y}_0 + \mathbf{v}) - f(\mathbf{x}_0, \mathbf{y}_0 + \mathbf{v}) - f'_{\mathbf{x}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{u})\|_E}{\|\mathbf{u}\|_X}, \frac{\|f(\mathbf{x}_0, \mathbf{y}_0 + \mathbf{v}) - f(\mathbf{x}_0, \mathbf{y}_0) - f'_{\mathbf{y}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{v})\|_E}{\|\mathbf{v}\|_Y} < \frac{\varepsilon}{2}.$$

Si considerino le funzioni $f(\cdot, \mathbf{y}_0 + \mathbf{v})$ e $f(\mathbf{x}_0, \cdot)$.

Il loro dominio contiene $B(\mathbf{x}_0, \delta)$ e $B(\mathbf{y}_0, \delta)$ rispettivamente; cioè, $(\mathbf{x}, \mathbf{y}_0 + \mathbf{v}) \in A$ per ogni $\mathbf{x} \in B(\mathbf{x}_0, \delta)$, e $(\mathbf{x}_0, \mathbf{y}) \in A$ per ogni $\mathbf{y} \in B(\mathbf{y}_0, \delta)$.

Infatti, per ogni $\mathbf{x} \in B(\mathbf{x}_0, \delta)$ e per ogni $\mathbf{y} \in B(\mathbf{y}_0, \delta)$, si ha

$$(\mathbf{x}, \mathbf{y}_0 + \mathbf{v}), (\mathbf{x}_0, \mathbf{y}) \in B(\mathbf{x}_0, \delta) \times B(\mathbf{y}_0, \delta) = B((\mathbf{x}_0, \mathbf{y}_0), \delta) \subseteq A,$$

dove l'uguaglianza $B(\mathbf{x}_0, \delta) \times B(\mathbf{y}_0, \delta) = B((\mathbf{x}_0, \mathbf{y}_0), \delta)$ segue dall'aver considerato su $X \times Y$ la norma $\|\cdot\|_{\infty}$.

Dunque, $f(\cdot, \mathbf{y}_0 + \mathbf{v})$ e $f(\mathbf{x}_0, \cdot)$ sono ben definite su $B(\mathbf{x}_0, \delta)$ e $B(\mathbf{y}_0, \delta)$ rispettivamente.

Inoltre, $f(\cdot, \mathbf{y}_0 + \mathbf{v})$ e $f(\mathbf{x}_0, \cdot)$ sono G-derivabili su $B(\mathbf{x}_0, \delta)$ e $B(\mathbf{y}_0, \delta)$ rispettivamente, essendo f parzialmente G-derivabile in A per ipotesi.

Allora, si può applicare ad esse il teorema di Lagrange ([Teorema 11.7]) sui segmenti $[\mathbf{x}_0, \mathbf{x}_0 + \mathbf{u}]$ e $[\mathbf{y}_0, \mathbf{y}_0 + \mathbf{v}]$ rispettivamente, ottenendo così:

$$\bullet \ \ f(\mathbf{x}_0+\mathbf{u},\mathbf{y}_0+\mathbf{v})-f(\mathbf{x}_0,\mathbf{y}_0+\mathbf{v})\in \overline{\mathrm{conv}}\left(f_{\mathbf{x}}'\big([\mathbf{x}_0,\mathbf{x}_0+\mathbf{u}],\mathbf{y}_0+\mathbf{v}\big)(\mathbf{u})\right);$$

$$f(\mathbf{x}_0,\mathbf{y}_0+\mathbf{v})-f(\mathbf{x}_0,\mathbf{y}_0)\in \overline{\operatorname{conv}}\left(f_{\mathbf{y}}'ig(\mathbf{x}_0,[\mathbf{y}_0,\mathbf{y}_0+\mathbf{v}]ig)(\mathbf{v})
ight).$$

Si osserva infine che
$$||f(\mathbf{x}_0 + \mathbf{u}, \mathbf{y}_0 + \mathbf{v}) - f(\mathbf{x}_0, \mathbf{y}_0 + \mathbf{v}) - f'_{\mathbf{x}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{u})||_E < \frac{\varepsilon}{2} ||\mathbf{u}||_X$$
 e $||f(\mathbf{x}_0, \mathbf{y}_0 + \mathbf{v}) - f(\mathbf{x}_0, \mathbf{y}_0) - f'_{\mathbf{y}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{v})||_E < \frac{\varepsilon}{2} ||\mathbf{v}||_Y$.

Infatti, per l'osservazione fatta dopo la costruzione di δ , si ha

$$\quad \bullet \quad f_{\mathbf{x}}'\big([\mathbf{x}_0,\mathbf{x}_0+\mathbf{u}],\mathbf{y}_0+\mathbf{v}\big)(\mathbf{u})\subseteq \overline{B}\big(f_{\mathbf{x}}'(\mathbf{x}_0,\mathbf{y}_0)(\mathbf{u}),\tfrac{\varepsilon}{3}\|\mathbf{u}\|\big);$$

$$\quad \bullet \quad f_{\mathbf{y}}'\big(\mathbf{x}_0,[\mathbf{y}_0,\mathbf{y}_0+\mathbf{v}]\big)(\mathbf{v})\subseteq \overline{B}\big(f_{\mathbf{y}}'(\mathbf{x}_0,\mathbf{y}_0)(\mathbf{v}),\tfrac{\varepsilon}{3}\|\mathbf{v}\|\big).$$

Essendo i due soprainsiemi chiusi e convessi, dalla definizione di chiusura convessa segue che

$$\begin{array}{l} \bullet \ \, \overline{\mathrm{conv}} \left(f'_{\mathbf{x}} \big([\mathbf{x}_0, \mathbf{x}_0 + \mathbf{u}], \mathbf{y}_0 + \mathbf{v} \big) (\mathbf{u}) \right) \subseteq \overline{B} \big(f'_{\mathbf{x}} (\mathbf{x}_0, \mathbf{y}_0) (\mathbf{u}), \frac{\varepsilon}{3} \|\mathbf{u}\| \big); \\ \bullet \ \, \overline{\mathrm{conv}} \left(f'_{\mathbf{y}} \big(\mathbf{x}_0, [\mathbf{y}_0, \mathbf{y}_0 + \mathbf{v}] \big) (\mathbf{v}) \right) \subseteq \overline{B} \big(f'_{\mathbf{y}} (\mathbf{x}_0, \mathbf{y}_0) (\mathbf{v}), \frac{\varepsilon}{3} \|\mathbf{v}\| \big), \end{array}$$

per cui si ha

$$\begin{array}{l} \bullet \ \, \overline{\mathrm{conv}} \left(f'_{\mathbf{x}} \big([\mathbf{x}_0, \mathbf{x}_0 + \mathbf{u}], \mathbf{y}_0 + \mathbf{v} \big) (\mathbf{u}) \right) \subseteq B \big(f'_{\mathbf{x}} (\mathbf{x}_0, \mathbf{y}_0) (\mathbf{u}), \frac{\varepsilon}{2} \| \mathbf{u} \| \big); \\ \bullet \ \, \overline{\mathrm{conv}} \left(f'_{\mathbf{y}} \big(\mathbf{x}_0, [\mathbf{y}_0, \mathbf{y}_0 + \mathbf{v}] \big) (\mathbf{v}) \right) \subseteq B \big(f'_{\mathbf{y}} (\mathbf{x}_0, \mathbf{y}_0) (\mathbf{v}), \frac{\varepsilon}{2} \| \mathbf{v} \| \big). \end{array}$$

Allora, da quanto osservato prima viene che

•
$$f(\mathbf{x}_0 + \mathbf{u}, \mathbf{y}_0 + \mathbf{v}) - f(\mathbf{x}_0, \mathbf{y}_0 + \mathbf{v}) \in B(f'_{\mathbf{x}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{u}), \frac{\varepsilon}{2} || \mathbf{u} ||)$$
, ossia $||f(\mathbf{x}_0 + \mathbf{u}, \mathbf{y}_0 + \mathbf{v}) - f(\mathbf{x}_0, \mathbf{y}_0 + \mathbf{v}) - f'_{\mathbf{x}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{u})||_E < \frac{\varepsilon}{2} || \mathbf{u} ||_X$;
• $f(\mathbf{x}_0, \mathbf{y}_0 + \mathbf{v}) - f(\mathbf{x}_0, \mathbf{y}_0) \in B(f'_{\mathbf{y}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{v}), \frac{\varepsilon}{2} || \mathbf{v} ||)$, ossia $||f(\mathbf{x}_0, \mathbf{y}_0 + \mathbf{v}) - f(\mathbf{x}_0, \mathbf{y}_0) - f'_{\mathbf{y}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{v})||_E < \frac{\varepsilon}{2} || \mathbf{v} ||_Y$.

Dunque, sono acquisite la F-derivabilità di f, e la legge di f' tramite le derivate parziali

Per concludere la dimostrazione, resta da mostrare la continuità di f';

essa segue dall'ipotesi di continuità di $f_{\mathbf{x}}'$ e $f_{\mathbf{y}}'$.

Più nello specifico, per quanto ricavato finora si ha che $f'(\mathbf{x}, \mathbf{y}) = f'_{\mathbf{x}}(\mathbf{x}, \mathbf{y}) \circ \pi_X + f'_{\mathbf{y}}(\mathbf{x}, \mathbf{y}) \circ \pi_Y$ per ogni $\mathbf{x}, \mathbf{y} \in A$.

Inoltre, fissato $(\mathbf{x}_0, \mathbf{y}_0) \in A$, per ogni $\mathbf{x}, \mathbf{y} \in A$ si ha

$$||f'(\mathbf{x}, \mathbf{y}) - f'(\mathbf{x}_0, \mathbf{y}_0)||_{\mathcal{L}(X \times Y, E)}$$

$$= ||f'_{\mathbf{x}}(\mathbf{x}, \mathbf{y}) \circ \pi_X + f'_{\mathbf{y}}(\mathbf{x}, \mathbf{y}) \circ \pi_Y - f'_{\mathbf{x}}(\mathbf{x}_0, \mathbf{y}_0) \circ \pi_X - f'_{\mathbf{y}}(\mathbf{x}_0, \mathbf{y}_0) \circ \pi_Y ||_{\mathcal{L}(X \times Y, E)}$$
Per quanto appena osservato

$$oxed{f_{\mathbf{x}}'(\mathbf{x},\mathbf{y}) - f_{\mathbf{x}}'(\mathbf{x}_0,\mathbf{y}_0)} \circ \pi_X + \left(f_{\mathbf{y}}'(\mathbf{x},\mathbf{y}) - f_{\mathbf{y}}'(\mathbf{x}_0,\mathbf{y}_0)
ight) \circ \pi_Y \|_{\mathcal{L}(X imes Y,E)}}$$

$$0 \leq \| ig(f_{\mathbf{x}}'(\mathbf{x}, \mathbf{y}) - f_{\mathbf{x}}'(\mathbf{x}_0, \mathbf{y}_0) ig) \circ \pi_X \|_{\mathcal{L}(X imes Y, E)} + \| ig(f_{\mathbf{y}}'(\mathbf{x}, \mathbf{y}) - f_{\mathbf{y}}'(\mathbf{x}_0, \mathbf{y}_0) ig) \circ \pi_Y \|_{\mathcal{L}(X imes Y, E)}$$

Per sub-additività della

norma

$$f_{\mathbf{x}}'(\mathbf{x},\mathbf{y}) - f_{\mathbf{x}}'(\mathbf{x}_0,\mathbf{y}_0) \|_{\mathcal{L}(X,E)} \cdot \|\pi_X\|_{\mathcal{L}(X imes Y,X)} + \|f_{\mathbf{y}}'(\mathbf{x},\mathbf{y}) - f_{\mathbf{y}}'(\mathbf{x}_0,\mathbf{y}_0)\|_{\mathcal{L}(Y,E)} \cdot \|\pi_Y\|_{\mathcal{L}(X imes Y,Y)}$$

Per sub-additività della norma

Poiché $\lim_{\mathbf{x}\to\mathbf{x}_0} \|f'_{\mathbf{x}}(\mathbf{x},\mathbf{y}) - f'_{\mathbf{x}}(\mathbf{x}_0,\mathbf{y}_0)\|_{\mathcal{L}(X,E)} = 0$ e $\lim_{\mathbf{x}\to\mathbf{x}_0} \|f'_{\mathbf{y}}(\mathbf{x},\mathbf{y}) - f'_{\mathbf{y}}(\mathbf{x}_0,\mathbf{y}_0)\|_{\mathcal{L}(Y,E)} = 0$ per ipotesi di continuità di $f'_{\mathbf{x}}$ e $f'_{\mathbf{y}}$, dalla catena di disuguaglianze appena ottenuta segue allora per confronto che

$$\lim_{\mathbf{x} o \mathbf{x}_0} f'(\mathbf{x}, \mathbf{y}) = f'(\mathbf{x}_0, \mathbf{y}_0).$$

La continuità di f' è dunque acquisita, e la dimostrazione è conclusa.

Proposizione 17.4: Derivazione della funzione composta per componenti

Siano $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$, $(Z, \|\cdot\|_Z)$ e $(E, \|\cdot\|_E)$ spazi normati.

Sia $A \subseteq X$ aperto.

Sia $B \subseteq Y \times Z$ aperto.

Sia f:A o Y una funzione di classe C^1 .

Sia $q: A \to Z$ una funzione di classe C^1 .

Sia $\varphi: B \to E$ una funzione di classe C^1 .

Si supponga $(f(\mathbf{x}), g(\mathbf{x})) \in B$ per ogni $\mathbf{x} \in A$.

Sia $\psi:A o E$ la funzione definita ponendo $\psi(\mathbf{x})=arphiig(f(\mathbf{x}),g(\mathbf{x})ig)$ per ogni $\mathbf{x}\in A$.

 ψ è di classe C^1 , e per ogni $\mathbf{v} \in X$ si ha

$$\psi'(\mathbf{x})(\mathbf{v}) = \varphi'_{\mathbf{x}}ig(f(\mathbf{x}),g(\mathbf{x})ig)ig(f'(\mathbf{x})(\mathbf{v})ig) + \varphi'_{\mathbf{y}}ig(f(\mathbf{x}),g(\mathbf{x})ig)ig(g'(\mathbf{x})(\mathbf{v})ig).$$

Sia $h:A\to Y\times Z$ la mappa definita ponendo $h(\mathbf{x})\mapsto \big(f(\mathbf{x}),g(\mathbf{x})\big);$ essa è di classe C^1 per la [Proposizione 17.2], essendo f e g di classe C^1 per ipotesi.

Si osserva che $\psi = \varphi \circ h$;

da ciò segue che ψ è di clase C^1 , in quanto h è di classe C^1 per quanto appena visto e φ è di classe C^1 per ipotesi.

Fissati $\mathbf{x} \in A$ e $\mathbf{v} \in X$, si ha

$$\psi'(\mathbf{x})(\mathbf{v}) = \varphi'(h(\mathbf{x}))(h'(\mathbf{x})(\mathbf{v}))$$
Per derivazione delle funzioni composte
$$= \varphi'(f(\mathbf{x}), g(\mathbf{x}))(h'(\mathbf{x})(\mathbf{v}))$$
Per definizione di h

$$= \varphi'(f(\mathbf{x}), g(\mathbf{x}))(f'(\mathbf{x})(\mathbf{v}), g'(\mathbf{x})(\mathbf{v}))$$

$$= \varphi'_{\mathbf{x}}(f(\mathbf{x}), g(\mathbf{x}))(f'(\mathbf{x})(\mathbf{v})) + \varphi'_{\mathbf{y}}(f(\mathbf{x}), g(\mathbf{x}))(g'(\mathbf{x})(\mathbf{v}))$$

$$h'(\mathbf{x})(\mathbf{v}) = (f'(\mathbf{x})(\mathbf{v}), g'(\mathbf{x})(\mathbf{v})) \text{ per la [Proposizione 17.3]}$$

$$= \varphi'_{\mathbf{x}}(f(\mathbf{x}), g(\mathbf{x}))(f'(\mathbf{x})(\mathbf{v})) + \varphi'_{\mathbf{y}}(f(\mathbf{x}), g(\mathbf{x}))(g'(\mathbf{x})(\mathbf{v}))$$

$$h'(\mathbf{x})(\mathbf{v}) = (f'(\mathbf{x})(\mathbf{v}), g'(\mathbf{x})(\mathbf{v})) \text{ per la [Proposizione 17.3]}$$

La dimostrazione è dunque conclusa.