МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Статистические методы обработки экспериментальных данных»

Тема: Формирование и первичная обработка выборки. Ранжированный и интервальный ряды.

Студент гр. 8383	 Бабенко Н.С.
Студент гр. 8383	 Сахаров В.М.
Преполаватель	Серела АВ.И.

Санкт-Петербург

2022

Цель работы

Ознакомление с основными правилами формирования выборки и подготовки выборочных данных к статистическому анализу.

Основные теоретические положения

Ранжированный ряд — это распределение отдельных единиц совокупности в порядке возрастания или убывания исследуемого признака. Ранжирование позволяет легко разделить количественные данные по группам, сразу обнаружить наименьшее и наибольшее значения признака, выделить значения, которые чаще всего повторяются. Вариационный ряд — последовательность значений заданной выборки $x^m = (x_1, ..., x_m)$, расположенных в порядке неубывания:

$$\chi^{(1)} \leq \chi^{(2)} \leq \cdots \leq \chi^{(m)}$$

Интервальный ряд распределения — это таблица, состоящая из двух столбцов (строк) — интервалов варьирующего признака X_i и числа единиц совокупности, попадающих в данный интервал (частот - f_i), или долей этого числа в общей численности совокупностей (частостей - d_i). Полигоном частот называют ломанную, отрезки которой соединяют точки $(x_1,n_1),(x_2,n_2),...,(x_k,n_k)$. Для построения полигона частот на оси абсцисс откладывают варианты x_i , а на оси ординат — соответствующие им частоты n_i . Точки (x_i,n_i) соединяют отрезками прямых и получают полигон частот. Гистограммой частот (частостей) называется ступенчатая фигура, состоящая из прямоугольников с основаниями, равными интервалам значений h_i и высотами, равными отношению частот (или частостей) к шагу.

Постановка задачи

Осуществить формирование репрезентативной выборки заданного объема из имеющейся генеральной совокупности экспериментальных данных. Осуществить последовательное преобразование полученной выборки в ранжированный, вариационный и интервальный ряды. Применительно к интервальному

ряду построить и отобразить графически полигон, гистограмму и эмпирическую функцию распределения для абсолютных и относительных частот. Полученные результаты содержательно проинтерпретировать.

Выполнение работы

В качестве генеральной совокупности были выбраны данные наблюдений относительно объемного веса nu ($\frac{\Gamma}{\text{см}^3}$) при влажности 10% и модуля упругости $E\left(\frac{\kappa\Gamma}{\text{см}^2}\right)$ при сжатии вдоль волокон древесины резонансной ели. Далее была сформирована репрезентативная выборка заданного объема из имеющейся генеральной совокупности экспериментальных данных при помощи библиотеки scikit-learn. Объём выборки: 100. Выборка представлена в таблице 1.

Таблица 1

Nº	nu	E	Nº	nu	E	Nº	nu	E	Nº	nu	E	Nº	nu	E
1	481	135.2	21	418	131.4	41	513	159.3	61	450	122.3	81	475	143.6
2	445	124.7	22	378	103.8	42	489	149.8	62	468	128.9	82	518	144.4
3	550	147.9	23	521	154.9	43	474	132.5	63	441	122.8	83	566	175.7
4	465	140.9	24	394	117.7	44	379	94.6	64	460	140.7	84	464	131.3
5	566	168.5	25	504	145.3	45	472	135.6	65	480	117.7	85	394	112.1
6	497	147.3	26	440	126.7	46	544	169.6	66	429	112.9	86	480	146.1
7	478	136.6	27	465	114.8	47	507	142.4	67	457	126.4	87	321	86.1
8	521	139.6	28	418	109.3	48	409	116.7	68	464	143.2	88	502	132.5
9	352	84.9	29	418	118.6	49	498	164.0	69	431	125.0	89	460	122.4
10	422	117.9	30	465	127.7	50	468	142.0	70	424	119.0	90	458	104.7
11	506	153.5	31	447	117.5	51	593	187.4	71	502	137.2	91	362	111.7
12	443	122.9	32	433	131.5	52	523	152.6	72	465	140.7	92	503	148.5
13	434	140.4	33	460	136.8	53	478	126.6	73	492	137.5	93	446	144.0
14	422	108.6	34	382	98.8	54	438	122.2	74	446	128.4	94	421	115.1
15	569	157.4	35	532	160.6	55	423	115.9	<i>75</i>	482	136.4	95	407	110.5
16	439	119.2	36	482	148.2	56	408	110.0	76	510	140.6	96	448	137.7
17	437	129.4	37	472	122.6	<i>57</i>	386	105.8	77	434	122.3	97	490	139.9
18	461	138.6	38	532	158.7	58	428	130.3	78	623	195.7	98	482	141.2
19	351	89.0	39	473	137.9	59	560	169.8	79	468	141.2	99	463	129.2
20	390	91.4	40	525	148.3	60	483	130.3	80	471	119.7	100	459	145.4

Выборка относительно переменной nu представлена в таблице 2.

Таблица 2

i	x_i	i	x_i	i	x_i	i	x_i	i	x_i
1	481	21	418	41	513	61	450	81	475
2	445	22	378	42	489	62	468	82	518
3	550	23	521	43	474	63	441	83	566
4	465	24	394	44	379	64	460	84	464
5	566	25	504	45	472	65	480	85	394
6	497	26	440	46	544	66	429	86	480
7	478	27	465	47	507	67	457	87	321
8	521	28	418	48	409	68	464	88	502
9	352	29	418	49	498	69	431	89	460
10	422	30	465	50	468	70	424	90	458
11	506	31	447	51	593	71	502	91	362
12	443	32	433	52	523	72	465	92	503
13	434	33	460	53	478	73	492	93	446
14	422	34	382	54	438	74	446	94	421
15	569	35	532	55	423	75	482	95	407
16	439	36	482	56	408	76	510	96	448
17	437	37	472	<i>57</i>	386	77	434	97	490
18	461	38	532	58	428	78	623	98	482
19	351	3 9	473	59	560	79	468	99	463
20	390	40	525	60	483	80	471	100	459

В таблице 3 представлено преобразование выборки в ранжированный ряд.

Таблица 3

i	x_i	i	x_i	i	x_i	i	x_i	i	x_i
1	321	21	423	41	457	61	473	81	504
2	351	22	424	42	458	62	474	82	506
3	352	23	428	43	459	63	475	83	507
4	362	24	429	44	460	64	478	84	510
5	378	25	431	45	460	65	478	85	513
6	379	26	433	46	460	66	480	86	518
7	382	27	434	47	461	67	480	87	521
8	386	28	434	48	463	68	481	88	521

9	390	29	437	49	464	69	482	89	523
10	394	30	438	50	464	70	482	90	525
11	394	31	439	51	465	71	482	91	532
12	407	32	440	52	465	72	483	92	532
13	408	33	441	53	465	73	489	93	544
14	409	34	443	54	465	74	490	94	550
15	418	35	445	55	468	75	492	95	560
16	418	36	446	56	468	76	497	96	566
17	418	37	446	57	468	77	498	97	566
18	421	38	447	58	471	78	502	98	569
19	422	39	448	59	472	79	502	99	593
20	422	40	450	60	472	80	503	100	623

Из таблицы 3 видно, что наименьшее значение в выборке $x_{min}=321,$ а наибольшее значение $x_{max}=623.$

i	x_i	n_i	$\overline{n_{\iota}}$	i	x_i	n_i	$\overline{n_i}$	i	x_i	n_i	$\overline{n_{\iota}}$	i	x_i	n_i	$\overline{n_{\iota}}$
1	321	1	0.01	26	439	1	0.01	51	481	1	0.01	76	593	1	0.01
2	351	1	0.01	27	440	1	0.01	52	482	3	0.03	77	623	1	0.01
3	352	1	0.01	28	441	1	0.01	53	483	1	0.01				
4	362	1	0.01	29	443	1	0.01	54	489	1	0.01				
5	378	1	0.01	30	445	1	0.01	55	490	1	0.01				
6	379	1	0.01	31	446	2	0.02	56	492	1	0.01				
7	382	1	0.01	32	447	1	0.01	<i>57</i>	497	1	0.01				
8	386	1	0.01	33	448	1	0.01	58	498	1	0.01				
9	390	1	0.01	34	450	1	0.01	59	502	2	0.02				
10	394	2	0.02	35	457	1	0.01	60	503	1	0.01				
11	407	1	0.01	36	458	1	0.01	61	504	1	0.01				
12	408	1	0.01	<i>37</i>	459	1	0.01	62	506	1	0.01				
13	409	1	0.01	38	460	3	0.03	63	507	1	0.01				
14	418	3	0.03	39	461	1	0.01	64	510	1	0.01				
15	421	1	0.01	40	463	1	0.01	65	513	1	0.01				
16	422	2	0.02	41	464	2	0.02	66	518	1	0.01				
17	423	1	0.01	42	465	4	0.04	67	521	2	0.02				
18	424	1	0.01	43	468	3	0.03	68	523	1	0.01				

19	428	1	0.01	44	471	1	0.01	69	525	1	0.01		
20	429	1	0.01	45	472	2	0.02	70	532	2	0.02		
21	431	1	0.01	46	473	1	0.01	71	544	1	0.01		
22	433	1	0.01	47	474	1	0.01	72	550	1	0.01		
23	434	2	0.02	48	475	1	0.01	73	560	1	0.01		
24	437	1	0.01	49	478	2	0.02	74	566	2	0.02		
25	438	1	0.01	50	480	2	0.02	<i>75</i>	569	1	0.01		

Из таблицы 4 можно увидеть моду выборки, которой является варианта $x_{42} = 465$ с абсолютной частотой равной 4.

Чтобы преобразовать вариационный ряд в интервальный ряд сначала нужно вычислить количество интервалов разбиения с помощью формулы Стерджесса:

$$k = 1 + 3.31 * \lg N = 7$$

Далее вычислена ширина интервала с помощью формулы:

$$h = \frac{x_{max} - x_{min}}{k} = \frac{623 - 321}{7} \approx 44$$

В таблице 5 представлен полученный интервальный ряд.

Таблица 5

Границы	Середины	Абсолютная	Относительная
интервалов	интервалов	частота	частота
[321, 365)	343	4	0.04
[365, 409)	387	9	0.09
[409, 453)	431	27	0.27
[453, 497)	475	35	0.35
[497, 541)	519	17	0.17
[541, 585)	563	6	0.06
[585, 623)	604	2	0.02

Далее для интервального ряда абсолютных частот были построены полигон и гистограмма.

Полигон представлен на рис. 1.

Рисунок 1 – Полигон для абсолютных частот

Полигон представляет собой ломаную, соединяющую точки, соответствующие срединным значениям интервалов и абсолютным частотам этих интервалов. Видно, что на пике значение равно 35, что сходится с данными таблицы 5.

Гистограмма, представлена на рис. 2.

Рисунок 2 – Гистограмма для абсолютных частот

Гистограмма представляет собой фигуру, состоящую из прямоугольников, основания которых это длина интервалов h, а высота равна отношению частоты к длине интервала, то есть площадь прямоугольника обозначает частоту интервала.

Графики для интервального ряда относительных частот представлены ниже.

Полигон для относительных частот представлен на рис. 3.

Рисунок 3 – Полигон для относительных частот

Гистограмма для относительных частот, представлена на рис. 4.

Рисунок 4 – Гистограмма для относительных частот

Эмпирическая функция распределения, построенная применительно к интервальному ряду для относительных частот представлен на рис. 5.

Функция распределения:

$$F(343) = 0$$

$$F(387) = 0.04$$

$$F(431) = 0.13$$

$$F(475) = 0.40$$

$$F(519) = 0.75$$

$$F(563) = 0.92$$

$$F(604) = 0.98$$

Рисунок 5 – График эмпирической функции распределения

Выводы

В ходе данной лабораторной работы была выбрана выборка, которая представляет собой данные наблюдений относительно объемного веса nu ($\frac{\Gamma}{CM^3}$) при влажности 10% и модуля упругости E ($\frac{\kappa\Gamma}{CM^2}$) при сжатии вдоль волокон древесины резонансной ели. Выборка была преобразована в ранжированный, вариационный и интервальный ряды.

С помощью ранжированного ряда удалось определить минимальный и максимальный элемент выборки $x_{min}=321, x_{max}=623,$ так как его элементы находятся в порядке возрастания. Далее при преобразовании ряда в вариационный ряд (объединение одинаковых элементов) удалось определить моду – значение в выборке, которое встречается наиболее часто, для данной выборки это $x_{42}=465$ с абсолютной $n_{42}=4$ и относительной частотой $\overline{n_{42}}=0.04$. Далее при преобразовании интервального ряда из вариационного с помощью высчитанных значений количества интервалов k=7 (нечетное) и последующего h=1

44 можно было заметить, что наибольшая частота попаданий в интервал равная n=35 находится в интервале [453, 497).

Построенные графики также помогают увидеть наглядное представление ряда распределения. Видно, например, что в интервале [453, 497) больше всего значений. Полигон строится как ломаная, которая соединяет точки, соответствующие срединным значениям интервалов и частотам этих интервалов, поэтому его форма не меняется для абсолютных и относительных частот, а меняется ось ординат, где как раз откладывают соответствующие абсолютные или относительные частоты. Гистограмма же — это фигура, состоящая из прямоугольников, площадь которых как раз и обозначает соответствующие частоты. Можно проверить, что для гистограммы абсолютных частот общая площадь прямоугольников равна объему выборки, а для гистограммы относительных частот она равна единице. Эмпирическая функция распределения же показывает отношение накопленных частот до середины интервалов к объему выборки n=100, где опять же видно, как на интервале [497, 541) с серединой равной 519 накопленная частота резко увеличивается.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df.to csv('data/data1.csv', index=False)
n = len(df)
df2 = df.drop('E', axis=1)
df2.to_csv('data/data2.csv', index=False)
df2.head()
df2 = df2.sort_values(by=['nu'], ignore_index = True)
df2.to_csv('data/data3.csv', index=False)
df2.head()
df2.min()
df2.max()
X = df2['nu']
X.mode()
table af = X.value counts().sort index()
table rf = X.value counts(normalize=True).sort index()
table_af = pd.DataFrame({'nu': table_af.index, 'af': table_af.values})
table_rf = pd.DataFrame({'nu': table_rf.index, 'rf': table_rf.values})
table_rf2 = table_rf.copy()
table_rf2['rf'] = np.round(table_rf2['rf'], 4)
table af.to csv('data/data4.csv', index=False)
table rf2.to csv('data/data5.csv', index=False)
k = 1+3.31*np.log10(n)
k = int(np.floor(k))
min(X)
max(X)
h = (max(X) - min(X))/k
h = int(np.ceil(h))
```

```
data_interval = pd.concat([table_af, table_rf], ignore_index=True,
axis=1).drop(2, axis=1)
data interval.columns = ['nu', 'af', 'rf']
data interval.to csv('data/data6.csv', index=False)
ivs = np.hstack((np.arange(min(X), max(X), h), np.array(max(X))))
data interval['inter'] = pd.cut(data interval['nu'], bins=ivs,
                                right=False)
data_interval.iloc[76, 3] = data_interval.iloc[75, 3]
data_interval['inter'].value_counts().sort_index()
f_inter = data_interval.groupby(['inter'])[['af', 'rf']].apply(sum).re-
set_index()
f_inter['avg_inter'] = np.array([np.mean([ivs[i], ivs[i+1]], axis=0) for
i in range(k)])
f inter = f inter[['inter', 'avg inter', 'af', 'rf']]
f inter['rf'] = np.round(f inter['rf'], 2)
f inter.to csv('data/data7.csv', index=False)
sns.set theme(palette='crest', font scale=1.15)
sns.set style('ticks', {"axes.facecolor": ".94"})
ax = sns.relplot(data=f inter, x='avg inter', y='af', kind='line',
                 height=8.27, aspect=11.7/8.27, linewidth=3)
ax.set_axis_labels('Середины интервалов', 'Частоты')
ax.set(xticks=f inter['avg inter'])
plt.savefig('pics/3.png')
ax = sns.displot(data=df, x='nu', bins=ivs, kind='hist',
                 height=8.27, aspect=11.7/8.27, linewidth=3)
ax.set axis labels('Середины интервалов', 'Частоты')
ax.set(xticks=f_inter['avg_inter'], yticks=f_inter['af'])
plt.savefig('pics/4.png')
f_inter['sum_rf'] = f_inter['rf'].cumsum()
f inter
f inter
ax = sns.relplot(data=f inter, x='avg inter', y='sum rf', s=80,
                 kind='scatter', height=8.27, aspect=11.7/8.27,
color='w')
```

```
for i in range(6):
    plt.hlines(f_inter['sum_rf'][i], f_inter['avg_inter'][i], f_in-
ter['avg inter'][i+1], color='r')
plt.hlines(1, 604, 624, color='r')
for i in range(6):
    plt.vlines(f inter['avg inter'][i+1], f inter['sum rf'][i], f in-
ter['sum rf'][i+1], color='r', linestyle='-')
plt.vlines(343, 0, 0.04, color='r', linestyle='-')
for i in range(6):
    plt.annotate('', xy=(f_inter['avg_inter'][i]-1, f_in-
ter['sum_rf'][i]),
                 xytext=(f_inter['avg_inter'][i+1], f_in-
ter['sum_rf'][i]),
                 arrowprops=dict(arrowstyle="->", color='r', lin-
ewidth=3))
plt.annotate('', xy=(604, 1),
                 xytext=(624, 1),
                 arrowprops=dict(arrowstyle="->", color='r', lin-
ewidth=3))
ax.set_axis_labels('Середины интервалов', '')
ax.set(xticks=f_inter['avg_inter'])
plt.savefig('pics/5.png')
ax = sns.relplot(data=f inter, x='avg inter', y='rf', kind='line',
                 height=8.27, aspect=11.7/8.27, linewidth=3)
ax.set axis labels('Середины интервалов', 'Частоты')
ax.set(xticks=f inter['avg inter'])
plt.savefig('pics/6.png')
ax = sns.displot(data=df, x='nu', bins=ivs, kind='hist', linewidth=3,
                 height=8.27, aspect=11.7/8.27, stat='density')
ax.set axis labels('Середины интервалов', 'Частоты')
ax.set(xticks=f inter['avg inter'], yticks=round((f inter['rf']/h), 4))
plt.savefig('pics/7.png')
```