MA215 Probability Theory

Assignment 08

1. Suppose that the continuous random variable X has $\operatorname{p.d.f}$

$$f_X(x) = \begin{cases} kx(1-x), & 0 < x < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Evaluate the constant k, and then find the non-zero range of Y and the p.d.f $f_Y(y)$ of Y when

(a)
$$Y = -3X + 3$$
;

(b)
$$Y = \frac{1}{Y}$$
.

$$\int_{-\infty}^{+\infty} \left\{ x(x) \, dx = 1 \right\} \Rightarrow \int_{0}^{+\infty} \left[kx(1-x) \, dx = 1 \right] \Rightarrow \left[k\left(\frac{x^{2}}{3} - \frac{x^{2}}{3}\right) \right]_{0}^{1} = 1 \Rightarrow k = 6$$

$$\int_{X} (x) = \begin{cases} bx(1-x), & 0 < x < 1 \\ 0, & \text{otherwise.} \end{cases}$$

(a) non-zero range of X is (0,1), So
$$Y \in (0, \frac{1}{2})$$

 $Y = -3x + 3$ $X = \frac{3-1}{3}$ $\frac{dx}{dy} = -\frac{1}{3}$
 $f_{Y}(y) = f_{X}(\frac{3-y}{3})|\frac{dx}{dy}|$

When
$$y \in (0,3)$$
, $f_Y(y) = b \cdot \frac{3-y}{3} \left(1 - \frac{3-y}{3}\right) \cdot \frac{1}{3} = \frac{2}{9}y(3-y)$

(b)
$$\therefore \chi \in (0,1)$$
 $\therefore \gamma = \frac{1}{\lambda} \in (1,+\infty)$

$$X = \frac{1}{Y}$$
, $\left| \frac{dX}{dY} \right| = \frac{1}{Y^2}$

:
$$f_{Y}(y) = f_{X}(\frac{1}{3}) | \frac{dx}{dy} | = 0 \cdot \frac{1}{3} (1 - \frac{1}{3}) \cdot \frac{1}{3^{2}} = \frac{b(y-1)}{y^{4}}, y > 0$$

$$f(y|y) = \begin{cases} \frac{b(y-i)}{y^4}, & y>1 \\ 0, & \text{other } w \end{cases}$$

2. Suppose that the random variable X has c.d.f.

$$F_X(x) = \begin{cases} 0, & x < 0, \\ \frac{1 - \cos(x)}{2}, & 0 \le x \le \pi, \\ 1, & x > \pi. \end{cases}$$

and that $Y = \sqrt{X}$. What is the non-zero range of Y? Find the c.d.f. $F_Y(y)$ of Y, and hence find the p.d.f of Y.

For
$$f_X(x) = \frac{d f_X(x)}{dx}$$
, $f_X(x) = \begin{cases} 0, & x \le 0 \\ \frac{1}{2} \sin x, & 0 < x \le \tau \end{cases}$
So non-zero range of X is $(0, \tau_1]$ $f_X(x) = \begin{cases} 0, & x \ge 0 \\ 0, & x > \tau_1 \end{cases}$

$$F_{Y}(y) = P(Y \in y) = P(X \leq y^{2}) = F_{X}(y^{2}) = \begin{cases} 0, & y \leq 0 \\ \frac{1 - \cos y^{2}}{2}, & 0 < y \leq \sqrt{\pi} \end{cases}$$

$$t_{Y(y)} = \frac{dF_{Y(y)}}{dy}$$
, when $0 < y \le \sqrt{10}$, $t_{Y(y)} = \frac{d}{dy} \left(1 - \frac{1 - \cos y^2}{2}\right) = \frac{1}{2} \sin y^2$.

$$f_{Y(y)} = \begin{cases} 0, & y \le 0 \text{ for } y > \sqrt{10}, \\ & y \le \sin y^2, & 0 < y \le \sqrt{10}. \end{cases}$$

3. Suppose that the two random variables
$$X$$
 and Y have joint probability c.d.f. $F(x,y)$. Show that $F(x,y)$ possesses the following properties:

- (a) For any fixed x, F(x,y) is a non-decreasing function of y and, similarly, for any fixed y, F(x, y) is a non-decreasing function of x.
- (b) $F(x,y) \to 1$ when both $x \to +\infty$ and $y \to +\infty$.
- (c) $F(x,y) \to 0$ when either $x \to -\infty$ or $y \to -\infty$.
- (d) If $x_1 < x_2$ and $y_1 < y_2$, then

$$P(x_1 < X \le x_2, y_1 < Y \le y_2) = F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1).$$

(a) Suppose
$$x_1 < x_2$$
, we want to get $F(x_1, y) \le F(x_2, y)$

$$F(x_{2}, y) - F(x_{1}, y) = P(x \in x_{2}, Y \in y) - P(x \in x_{1}, Y \in y) = P(x \in X \in x_{2}, Y \in y)$$

So Fixy) is a non-decreasing function of both x and y (6)

(d)
$$P(x_1 < x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y \leq y_2) = P(x \leq x_2, y_1 < y$$

$$= P(x \in x_1, Y \in y_2) - P(x \in x_2, Y \in y_1) - (P(x \in x_1, Y \in y_2) - P(x \in x_1, Y \in y_1))$$

$$= F(x_2, y_2) - F(x_2, y_3) - F(x_3, y_2) + F(x_3, y_3)$$

4. Suppose that the two discrete random variables X and Y have joint p.m.f. given by

 $=\frac{2}{32}+\frac{2}{33}+\frac{4}{32}+\frac{1}{32}=\frac{7}{16}$

Y	Y = 1	Y = 2	Y = 3	Y = 4
X = 1	2/32	3/32	4/32	5/32
X = 2	3/32	4/32	5/32	6/32

Obtain the marginal p.m.f. of X.

When X=2,
$$P_X(x) = \sum_{y=1}^{4} P_{x,y}(x,y) = P_{x,y}(x,y) + P_{x,y}(x,y) + P_{x,y}(x,y) + P_{x,y}(x,y) + P_{x,y}(x,y) + P_{x,y}(x,y)$$

$$= \frac{1}{32} + \frac{1}{32} + \frac{1}{32} + \frac{1}{32} + \frac{1}{32} = \frac{9}{10}$$