Precalculus

Compute the trigonometric functions of an angle not in the first quadrant

Todor Milev

2019

The computation of the reference angle α depends on the quadrant.

To compute trigonometric functions from obtuse ($> 90^{\circ}$) or negative angles, we can use the following visual aid.

Definition (Reference Angle)

Let θ be an angle in standard position. Its reference angle is the acute positive angle formed by the terminal arm and the x axis.

The computation of the reference angle α depends on the quadrant.

Observation

One can find the value of a trigonometric function of θ as follows.

- Find the reference angle α associated to θ .
- Find the trig function of α .
- Use the quadrant in which θ lies to affix an appropriate sign to the function value.

Example

Find the exact values of the trigonometric functions of $\theta = \frac{2\pi}{3} = 120^{\circ}$.

$$\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \quad \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \quad \tan\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{-1} = -\sqrt{3}$$

$$\csc\left(\frac{2\pi}{3}\right) = \frac{2}{\sqrt{3}} \quad \sec\left(\frac{2\pi}{3}\right) = -\frac{2}{1} = -2 \quad \cot\left(\frac{2\pi}{3}\right) = -\frac{1}{\sqrt{3}}$$