Shared response modelling of somatosensory digit representations using 7-tesla fMRI

O. Contier¹, E. Kuehn^{2,3,4}, M. Hanke^{5,6}

Max Planck School of Cognition, Leipzig, Germany¹ Institute for Cognitive Neurology and Dementia Research, Magdeburg, Germany² German Center for Neurodegenerative Diseases, Magdeburg, Germany³ Center for Behavioral Brain Sciences, Magdeburg, Germany⁴ Psychoinformatics lab, Institute of Neuroscience and Medicine (INM-7), Research Center Jülich, Germany⁵

Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Germany⁶

Background

- High-field fMRI can capture fine-scaled functional topography in primary somatosensory cortices [1,2]
- Studying shared organizational principles requires alignment across participants, yet anatomical alignment cannot preserve topographies at fine spatial scale [3]
- Shared response modelling (SRM) [4] identifies shared latent variables that explain individual voxel time-series, independent of anatomical layout.
- Here, we apply SRM to explore the possibility to align individual participants' finger maps in a common representational space of somatosensory cortex

Methods

Data acquisition

- 12 participants were scanned in the 7T-MRI scanner in Magdeburg. Vibro-tactile periodic digit stimulation (right hand, all five fingers) was applied using a Piezostimulator (Quearosys stimulator) in forward- and reversed-order (5.12 sec / digit, 10 repetitions)
- 1mm isotropic voxels, TR 2 sec, 256 volumes, 8:32 min

Preprocessing

• Spatial smoothing (2mm), temporal filtering (50 volumes high-pass, 2 volumes low-pass), mask contralateral hemisphere, GLM to identify associated voxels (F-Test over digit-regressors, cf. figure 1).

Shared response modelling

- Robust SRM [4]: Participants' functional data is decomposed into a set of 10 shared temporal factors and individual voxel-wise weights (cf. figure 2). We applied two modelling approaches:
- 1. Separate SRM for each of the two functional runs
- 2. Cross-validation scheme: SRM was estimated on training run and test run of held-out subject projected into model space, i.e. test data was neither used to estimate the SRM, nor subject-specific mapping

Figure 1. Individual ROI from one example participant. Voxels associated with digit stimulation were determined via subject-level GLM.

Figure 2. Illustration of SRM procedure (adapted from [5])

Functional data in shared response space

Figure 3. Functional data of one example subject as projected in shared somatosensory space. A: Trajectory throughout the run. B: Individual TRs. The ring-like trajectory reflects temporal transition between stimulation of five digits. SRM was estimated on one functional run, axes correspond to first two principle components (PC), color indicates stimulated digit.

Results

Figure 5. Example results from cross-validation. A: Averaged shared responses based on the training data. B: Held out participants projected into shared response space. Color indicates stimulated digit, axes correspond to first three principle components.

Digit-wise similarity

Figure 4. Average euclidean distance in shared space between samples associated with the five digits.

References

- [1] Schweisfurth, Frahm, Farina, & Schweizer (2018). Comparison of fMRI digit representations of the dominant and non-dominant hand in the human primary somatosensory cortex. Frontiers in Human Neuroscience, https://doi.org/10.3389/fnhum.2018.00492
- [2] Kuehn, Haggard, Villringer, Pleger, & Sereno (2018). Visually-driven maps in area 3b. Journal of Neuroscience, https://doi.org/10.1523/JNEUROSCI.0491-17.2017
- [3] Poldrack, Halchenko, & Hanson, (2009). Decoding the large-scale structure of brain function by classifying mental states across individuals https://doi.org/10.1111/j.1467-9280.2009.02460.x
- [4] Turek, Ellis, Skalaban, Turk-Browne, & Willke (2018). Capturing Shared and Individual Information in fMRI Data. https://doi.org/10.1109/ICASSP.2018.8462175

[5] Cohen, Daw, Engelhardt, Hasson, Li, Niv, ... Willke (2017). Computational approaches to fMRI analysis. Nature Neuroscience, https://doi.org/10.1038/nn.4499

Discussion

- The ring-like trajectory reflects temporal transitions between five distinct sensory experiences
- Our results suggest:
 - SRM can capture a shared representational space of somatosensory cortex
 - SRM can align fine-scaled somatotopy across participants, opening up possibilities for future group analyses in ultra-high resolution MRI studies
- The clear-cut dimensionality of the stimulus (i.e. 5 distinct states) facilitates interpretability of locations in this shared space

poster #2197

GitHub