Active Vision

Natural Intelligence

- > Attention is a resource
- Our brain guides attention through eye saccades (movements)
- > We efficiently **sample** the environment and make quick **decisions**

Artificial Intelligence

- ➤ Emulate the eye with a **sensor** like: **RGB camera**, **depth** camera, or both (**RGB-D** camera)
- ➤ Make our sensor **mobile**
- ➤ **Maximize Information Gain** (with *minimal effort*)
- > Optimize sampling Efficiency
- > Controll the point of view of the mobile sensor via a clever algorithm

Replace the eye with a camera

Nonmyopic View Planning

- Detect and Classify objects in the scene
- Estimate their pose

Bridge the gap

Robot Grasping

- > Use a **planner** to estimate a **sequence** of camera poses
- ➤ Model using a **POMDP**: Partially **O**bservable **M**arkov **D**ecision **P**rocess
- Maximize **long term reward**, i.e. **NOT** Greedy or Short-Sighted/Myopic

Viewpoint-pose Tree

Features used to construct VP-Tree

No segmenter component available (=> Clutter Problem)

Myopic approach

- ➤ **Greedy**/Short-Sighted/Next-Best-View approach
- > Care about **short term reward**/one step horizon
- Can be modeled in many ways i.e. MDP, POMDP, Neural Nets etc.

Especially useful for quadrotor, drone & various flying-robot applications

Oracle Neural Net

- Many Greedy approaches still use a POMDP
- > This approach uses a trained Convolutional Neural Network that approximates an Oracle Function

$$\mathcal{L}(X, Y; \theta) = \sum_{i=1}^{N} \|f(X_i) - Y_i\|_2^2 + \lambda \|\theta\|_2^2$$

- > Computes Next Best View very fast (inference time of the net is relatively small as compared to a POMDP)
- > No free lunch! Pay with a long (offline) training time and lots of ground truth data

Framework for Monitoring Spaces

- > Employ an approximate POMDP policy/solution
- > Use a large scale camera network (up to 100 cameras)
- > Actuate the pan-**ZOOM**-tilt parameters of cameras

Multiple layers view of **sentient** systems

Tips and Tricks

Evaluation and Results

	True Hypothesis								Avg Number of	Avg Movement	Avg Decision	Avg Total
		H(0°)	H(60°)	$H(120^{\circ})$	H(180°)	H(240°)	$H(300^\circ)$	$H(\emptyset)$	Measurements	Cost	Cost	Cost
Predicted (%)	H(0°)	87.5	2.5	5.0	0.0	0.0	0.0	5.0	2.53	2.81	9.38	14.72
	H(60°)	2.5	80.0	0.0	0.0	0.0	0.0	17.5	2.66	2.52	15.00	20.18
	H(120°)	7.5	0.0	72.5	0.0	0.0	0.0	20.0	3.16	3.43	20.63	27.22
	H(180°)	0.0	0.0	0.0	70.0	10.0	2.5	17.5	2.20	1.72	22.5	26.42
	H(240°)	0.0	0.0	0.0	2.5	75.0	2.5	20.0	2.39	2.51	18.75	23.65
	H(300°)	0.0	0.0	0.0	0.0	5.0	72.5	22.5	2.57	2.18	20.63	25.38
	$H(\emptyset)$	0.0	0.0	0.97	0.0	0.0	0.97	98.05	2.17	1.93	1.46	5.56
	Overall Average Total Cost:											20.45

NVP (Nonmyopic View Planner) Approach (on PR2 robot)

Myopic CNN Approach

Approximate POMDP Approach

Concluding Remarks

- 1) NVP approach works well in simulation and we can transfer the encoded knowledge to a real robot
 - It is not much better quantitively than a state of the art **Greedy Approach**, but the main advantage is the **adaptive stopping criterion**
 - Does not scale well to large landscapes, since solving POMDPs is exponentially complex
 - Would benefit from a custom segmenter to avoid unnecessary camera movements
- 2) CNN approach works much better for large scenes
- 3) We can still leverage POMDPs for large scale systems by creatively **engineering clever setups**, employing **simplifying assumptions** and reasonable **approximations**

"Always ask questions for an Active Learning"

