Probleme de căutare

Mihai-Sorin Stupariu

Sem. I, 2017-2018

Motivație

Exemplu.

Baza de date a unei bănci: informații numerice referitoare la clienți: data nașterii, număr de copii, venitul lunar, valoarea depozitelor, valoarea ratelor de plată, valoarea comisioanelor plătite anual, etc. \rightarrow stocarea se realizează folosind puncte dintr-un spațiu numeric d-dimensional \mathbb{R}^d .

Motivație

Exemplu.

Baza de date a unei bănci: informații numerice referitoare la clienți: data nașterii, număr de copii, venitul lunar, valoarea depozitelor, valoarea ratelor de plată, valoarea comisioanelor plătite anual, etc. \rightarrow stocarea se realizează folosind puncte dintr-un spațiu numeric d-dimensional \mathbb{R}^d .

A identifica un "grup-ţintă" de clienţi (de exemplu pentru lansarea unui produs), având anumite caracteristici — e.g. vârsta între 30-40 ani, 2-4 copii, un venit lunar între 3000-5000 lei, etc. revine la efectuarea căutări prin care să fie determinate punctele situate într-un "paralelipiped" d-dimensional.

Căutare 1-dimensională: formularea problemei

Cadru. Fie $M = \{a_1, a_2, \dots, a_n\}$ o mulțime de numere reale. Fie $I = [x, x'] \subset \mathbb{R}$ un interval real. Se dorește determinarea elementelor lui M situate în intervalul I.

Structura de date utilizată: Arbore binar de căutare echilibrat.

Exemplu de arbore ${\mathcal T}$

Procedura Găsește $NodSplitare (\mathcal{T}, x, x')$

▶ **Input.** Un arbore binar de căutare echilibrat \mathcal{T} , două numere reale x < x'.

- ▶ **Input.** Un arbore binar de căutare echilibrat \mathcal{T} , două numere reale x < x'.
- ► Output. Nodul v în care se realizează splitarea drumurilor către x şi x' sau frunza pe care ambele drumuri se încheie.

- ▶ **Input.** Un arbore binar de căutare echilibrat \mathcal{T} , două numere reale x < x'.
- ▶ Output. Nodul *v* în care se realizează splitarea drumurilor către *x* și *x'* sau frunza pe care ambele drumuri se încheie.
- 1. $v \leftarrow root(\mathcal{T})$

- ▶ **Input.** Un arbore binar de căutare echilibrat \mathcal{T} , două numere reale x < x'.
- ► Output. Nodul v în care se realizează splitarea drumurilor către x și x' sau frunza pe care ambele drumuri se încheie.
- 1. $v \leftarrow root(\mathcal{T})$
- 2. **while** v nu este frunză and $(x' \le x_v \text{ or } x \ge x_v)$

Procedura GăseșteNodSplitare (\mathcal{T}, x, x')

- ▶ **Input.** Un arbore binar de căutare echilibrat \mathcal{T} , două numere reale x < x'.
- ► Output. Nodul v în care se realizează splitarea drumurilor către x și x' sau frunza pe care ambele drumuri se încheie.
- 1. $v \leftarrow root(\mathcal{T})$
- 2. while v nu este frunză and $(x' \le x_v \text{ or } x \ge x_v)$
- 3. do if $x' \leq x_v$

- ▶ **Input.** Un arbore binar de căutare echilibrat \mathcal{T} , două numere reale x < x'.
- ► Output. Nodul v în care se realizează splitarea drumurilor către x și x' sau frunza pe care ambele drumuri se încheie.
- 1. $v \leftarrow root(\mathcal{T})$
- 2. **while** v nu este frunză and $(x' \le x_v \text{ or } x \ge x_v)$
- 3. do if $x' \leq x_v$
- 4. then $v \leftarrow lc(v)$

- ▶ **Input.** Un arbore binar de căutare echilibrat \mathcal{T} , două numere reale x < x'.
- ► Output. Nodul v în care se realizează splitarea drumurilor către x și x' sau frunza pe care ambele drumuri se încheie.
- 1. $v \leftarrow root(\mathcal{T})$
- 2. **while** v nu este frunză and $(x' \le x_v \text{ or } x \ge x_v)$
- 3. do if $x' \leq x_v$
- 4. then $v \leftarrow lc(v)$
- 5. else $v \leftarrow rc(v)$

- ▶ **Input.** Un arbore binar de căutare echilibrat \mathcal{T} , două numere reale x < x'.
- ► Output. Nodul v în care se realizează splitarea drumurilor către x și x' sau frunza pe care ambele drumuri se încheie.
- 1. $v \leftarrow root(\mathcal{T})$
- 2. **while** v nu este frunză and $(x' \le x_v \text{ or } x \ge x_v)$
- 3. do if $x' \leq x_v$
- 4. **then** $v \leftarrow lc(v)$
- 5. else $v \leftarrow rc(v)$
- 6. return(v)

Exemplu de aplicare GĂSEŞTENODSPLITARE $(\mathcal{T}, 35, 40)$

În nodul $x_v = 47$ este ales lc(v)

În nodul $x_v = 26$ este ales rc(v)

În nodul $x_v = 38$ se realizează splitarea, acest nod fiind returnat

▶ **Input.** Un arbore binar de căutare echilibrat \mathcal{T} , un interval [x, x'].

- ▶ **Input.** Un arbore binar de căutare echilibrat \mathcal{T} , un interval [x, x'].
- **Output.** Toate elementele din \mathcal{T} aflate în intervalul [x, x'].

- ▶ **Input.** Un arbore binar de căutare echilibrat \mathcal{T} , un interval [x, x'].
- **Output.** Toate elementele din \mathcal{T} aflate în intervalul [x, x'].
- 1. $v_{split} \leftarrow \text{GăseşteNodSplitare} (\mathcal{T}, x, x')$

- ▶ **Input.** Un arbore binar de căutare echilibrat \mathcal{T} , un interval [x, x'].
- **Output.** Toate elementele din \mathcal{T} aflate în intervalul [x, x'].
- 1. $v_{split} \leftarrow \text{GXSESTENODSPLITARE} (\mathcal{T}, x, x')$
- 2. **if** v_{split} este frunză
- 3. **then** verifică dacă elementul memorat în v_{split} trebuie raportat

- ▶ **Input.** Un arbore binar de căutare echilibrat \mathcal{T} , un interval [x, x'].
- **Output.** Toate elementele din \mathcal{T} aflate în intervalul [x, x'].
- 1. $v_{split} \leftarrow \text{GXSESTENODSPLITARE} (\mathcal{T}, x, x')$
- 2. **if** v_{split} este frunză
- 3. **then** verifică dacă elementul memorat în v_{split} trebuie raportat
- 4. **else** // Caută drumul spre x, raportează subarborii din dreapta

- ▶ **Input.** Un arbore binar de căutare echilibrat \mathcal{T} , un interval [x, x'].
- **Output.** Toate elementele din \mathcal{T} aflate în intervalul [x, x'].
- 1. $v_{split} \leftarrow \text{GXSESTENODSPLITARE} (\mathcal{T}, x, x')$
- 2. **if** v_{split} este frunză
- 3. **then** verifică dacă elementul memorat în v_{split} trebuie raportat
- 4. **else** // Caută drumul spre x, raportează subarborii din dreapta
- 5. $v \leftarrow lc(v_{split})$

- ▶ **Input.** Un arbore binar de căutare echilibrat \mathcal{T} , un interval [x, x'].
- **Output.** Toate elementele din \mathcal{T} aflate în intervalul [x, x'].
- 1. $v_{split} \leftarrow GXSESTENODSPLITARE (\mathcal{T}, x, x')$
- 2. **if** v_{split} este frunză
- 3. **then** verifică dacă elementul memorat în v_{split} trebuie raportat
- 4. **else** // Caută drumul spre x, raportează subarborii din dreapta
- 5. $v \leftarrow lc(v_{split})$
- 6. **while** v nu este o frunză
- 7. **do if** $x \le x_v$
- 8. **then** RAPORTEAZĂSUBARBORE(rc(v))
- 9. $v \leftarrow lc(v)$
- 10. else $v \leftarrow rc(v)$

- ▶ **Input.** Un arbore binar de căutare echilibrat \mathcal{T} , un interval [x, x'].
- **Output.** Toate elementele din \mathcal{T} aflate în intervalul [x, x'].
- 1. $v_{split} \leftarrow \text{GäseşteNodSplitare} (\mathcal{T}, x, x')$
- 2. if v_{split} este frunză
- 3. **then** verifică dacă elementul memorat în v_{split} trebuie raportat
- 4. **else** // Caută drumul spre x, raportează subarborii din dreapta
- 5. $v \leftarrow lc(v_{split})$
- 6. **while** *v* nu este o frunză
- 7. do if $x \le x_v$
- 8. **then** RaporteazăSubarbore(rc(v))
- 9. $v \leftarrow lc(v)$
- 10. else $v \leftarrow rc(v)$
- 11. Verifică dacă elementul din frunza *v* trebuie raportat

- ▶ **Input.** Un arbore binar de căutare echilibrat \mathcal{T} , un interval [x, x'].
- **Output.** Toate elementele din \mathcal{T} aflate în intervalul [x, x'].
- 1. $v_{split} \leftarrow \text{GXSESTENODSPLITARE} (\mathcal{T}, x, x')$
- 2. **if** v_{split} este frunză
- 3. **then** verifică dacă elementul memorat în v_{split} trebuie raportat
- 4. **else** // Caută drumul spre x, raportează subarborii din dreapta
- 5. $v \leftarrow lc(v_{split})$
- 6. **while** *v* nu este o frunză
- 7. **do if** $x \le x_v$
- 8. **then** RaporteazăSubarbore(rc(v))
- 9. $v \leftarrow lc(v)$
- 10. else $v \leftarrow rc(v)$
- 11. Verifică dacă elementul din frunza v trebuie raportat
- 12.-19. Efectuează pași similari pentru x'

Aplicare Căutare 1-dimensională $(\mathcal{T}, [18, 68])$

Nodul de splitare este 47

Nodurile / frunzele colorate cu verde sunt raportate \longrightarrow Subarborii colorați cu verde sunt raportați

Nodurile colorate cu galben sunt vizitate, fără a fi raportate

Rezultatul principal - căutare 1D

Teoremă. Fie M o mulțime de n puncte din \mathbb{R} . Mulțimea M poate fi memorată într-un arbore binar de căutare echilibrat, folosind O(n) memorie și cu timp de construcție $O(n \log n)$. Determinarea unor puncte dintr-un interval I poate fi realizată cu complexitate-timp $O(k + \log n)$, unde k este numărul de puncte din $M \cap I$.

Rezultatul principal - căutare 2D

Teoremă. Fie M o mulțime de n puncte din planul \mathbb{R}^2 . Un arbore de intervale (range tree) pentru M necesită $O(n \log n)$ memorie și poate fi construit în timp $O(n \log n)$. Determinarea unor puncte dintr-un dreptunghi D poate fi realizată cu complexitate-timp $O(k + \log^2 n)$, unde k este numărul de puncte din $M \cap D$.