第十七章 绕数与拓扑学

17.1 绕数

如前所知: 给定连续曲线 $\gamma:[a,b]\to\mathbb{C}$, 以及曲线外的点 c, 指定 $\gamma(a)-c$ 的一个辐角 θ_0 , 存在唯一的连续的辐角函数 $\theta:[a,b]\to\mathbb{R}$, 满足

$$\theta(t) \in \text{Arg}(\gamma(t) - c), \ \forall t \in [a, b]; \ \theta(a) = \theta_0.$$

定义曲线 γ 关于 c 的辐角变化量 $\Delta(\gamma,c)$ 为

$$\Delta(\gamma, c) = \theta(b) - \theta(a).$$

辐角变化量衡量的是曲线 γ 关于曲线外一点 c 的辐角变化,它满足如下基本性质:

- 辐角变化量与 θ_0 的选取无关;
- 如果 γ 是常值曲线 $\gamma(t) \equiv \gamma(a), \forall t \in [a,b], 则 <math>\Delta(\gamma,c) = 0$;
- 辐角变化量满足可加性: 任取区间 [a,b] 的一个分划 $a = t_0 < t_1 < \dots < t_n = b$,记 $\gamma_k = \gamma|_{[t_k,t_{k+1}]}$,则

$$\Delta(\gamma, c) = \sum_{k=0}^{n-1} \Delta(\gamma_k, c).$$

如果曲线 γ 是闭曲线, 则 $\gamma(a)=\gamma(b)$, 此时 $\Delta(\gamma,c)$ 是 2π 的整数倍。定义

$$w(\gamma, c) = \frac{\Delta(\gamma, c)}{2\pi} \in \mathbb{Z},$$

称它为闭曲线 γ 关于 c 的绕数 (winding number)。它表示曲线 γ 关于 c 围绕的圈数。

这里的曲线应按映射理解,不能按像集合来理解。为说明这一点,考虑曲线 $\gamma:[0,1]\to\mathbb{C},\ \gamma(t)=e^{2\pi int},\$ 其中 n 为整数。按照定义可得绕数 $w(\gamma,0)=n$ 。显然 γ 的像集 $\gamma([0,1])$ 为单位圆周 $\partial\mathbb{D}$,它关于原点的绕数为 ± 1 ,不等于 $w(\gamma,0)$,因为忽略了覆盖像集的次数。

绕数的一个重要的性质是同伦不变性。假设 $\gamma_0, \gamma_1 : [a, b] \rightarrow \Omega$ 是平面区域 Ω 中两条闭曲线, $c \notin \gamma_0 \cup \gamma_1$ (c 不必属于 Ω)。称 γ_0 与 γ_1 在 $\Omega \setminus \{c\}$ 中 (自由¹) 同伦,如果存在连续映射 $H : [0, 1] \times [a, b] \rightarrow \Omega \setminus \{c\}$,满足

$$H(0,t) = \gamma_0(t), H(1,t) = \gamma_1(t), \ \forall t \in [a,b];$$

 $H(s,a) = H(s,b), \ \forall s \in [0,1].$

此时, 我们记 $\gamma_0 \sim_{\Omega \setminus \{c\}} \gamma_1$.

命题 17.1. 若区域 Ω 中两闭曲线 γ_0, γ_1 满足 $\gamma_0 \sim_{\Omega \setminus \{c\}} \gamma_1$,则

$$w(\gamma_0, c) = w(\gamma_1, c).$$

证明: 不失一般性, 假设 c=0, 曲线参数区间 [a,b]=[0,1]. 记 $H:[0,1]\times[0,1]\to\Omega\setminus\{0\}$, 为 γ_0,γ_1 之间的自由同伦。紧集 $[0,1]\times[0,1]$ 在连续映射 H 下的像 E 是 $\Omega\setminus\{0\}$ 中的紧集。

记 $\rho = \min\{d(E,0), d(E,\partial\Omega)\} > 0$ 。由 H 的一致连续性, 存 在 $\delta > 0$,对任意 $(s_1,t_1), (s_2,t_2) \in [0,1] \times [0,1]$,

$$|s_1 - s_2|, |t_1 - t_2| \le \delta \Longrightarrow |H(s_1, t_1) - H(s_2, t_2)| \le \rho/2 < \rho.$$

取整数 $n \ge 1$ 使 $1/n \le \delta$ 。将 $[0,1] \times [0,1]$ 等分为 n^2 个小正方形

$$\Delta_{jk} = \left[\frac{j}{n}, \frac{j+1}{n}\right] \times \left[\frac{k}{n}, \frac{k+1}{n}\right], \ 0 \le j, k \le n-1.$$

由 H 的一致连续性,

$$H(\Delta_{jk}) \subset D(H(j/n, k/n), \rho) := \mathbb{D}_{jk}.$$

因为 $0 \notin \mathbb{D}_{jk}$, 在 \mathbb{D}_{jk} 上存在连续的辐角函数, 取其中之一为 $\arg_{jk}: \mathbb{D}_{jk} \to \mathbb{R}$ 。当 $s \in [j/n, (j+1)/n]$ 时, 有

$$w(\gamma_s, 0) = \frac{1}{2\pi} \sum_{k=0}^{n-1} \left[\arg_{jk} \left(\gamma_s \left(\frac{k+1}{n} \right) \right) - \arg_{jk} \left(\gamma_s \left(\frac{k}{n} \right) \right) \right].$$

¹指的是曲线在形变的过程中,端点不必固定,因此是自由的。

因取定 $t_0 \in [0,1]$ 时, $\gamma_s(t_0) = H(s,t_0)$ 时关于 s 连续, 故上式右端关于 $s \in [j/n,(j+1)/n]$ 连续。另一方面,它取整数值,因此只能是常数。

注意到 $w(\gamma_s,0)$ 关于 s 在每段闭区间 [j/n,(j+1)/n] 上都 是常数, 因此 $w(\gamma_s,0)$ 在 [0,1] 上取常数值。特别地, $w(\gamma_0,0)=w(\gamma_1,0)$.

本章利用绕数的同伦不变性来证明拓扑学中的几个重要定 理。

17.2 Brouwer 不动点定理

荷兰数学家 Brouwer 在 1912 年证明了如下定理。

定理 17.1. 任意连续映射 $f: \mathbb{D} \to \mathbb{D}$ 必有不动点。

证明: (反证法) 假设 f 没有不动点, 则映射 $g(z) = z - f(z), z \in \overline{\mathbb{D}}$ 连续且不取 0 值。考虑圆周 $\partial \mathbb{D}$ 在 g 下的像曲线 $\gamma = g(\partial \mathbb{D})$, 参数化为 $\gamma(t) = g(e^{it}) = e^{it} - f(e^{it}), t \in [0, 2\pi]$ 。

下面将通过两种方式计算绕数 $w(\gamma,0)$ 来得到矛盾。

定义

$$H_1: \begin{cases} [0,1] \times [0,2\pi] \to \mathbb{C} \setminus \{0\} \\ (s,t) \mapsto g(se^{it}). \end{cases}$$

显然 H_1 是常值曲线 $\alpha = H_1(0,\cdot)$ 与 $\gamma = H_1(1,\cdot)$ 在 $\mathbb{C} \setminus \{0\}$ 中的 同伦。由绕数的同伦不变性,有 $w(\gamma,0) = w(\alpha,0) = 0$ 。

另一方面, 可定义

$$H_2: \begin{cases} [0,1] \times [0,2\pi] \to \mathbb{C} \\ (s,t) \mapsto e^{it} - sf(e^{it}). \end{cases}$$

显然 $H_2(1,\cdot)$ 不取零值, 而当 $s \in [0,1)$ 时, $H_2(s,\cdot)$ 亦不取零值。 因此 H_2 是曲线 $\beta = H_2(0,\cdot)$ (易见 $\beta(t) = e^{it}, t \in [0,2\pi]$) 与 γ 在 $\mathbb{C} \setminus \{0\}$ 中的同伦。因此 $w(\gamma,0) = w(\beta,0) = 1$ 。

由此得矛盾。

17.3 Borsuk 定理

定理 17.2.(Borsuk) 任给连续映射 $f: S^2 \to \mathbb{C}$, 存在 $p \in S^2$ 满足 f(p) = f(-p).

证明: 假设结论不成立。定义函数 $h: \overline{\mathbb{D}} \to \mathbb{C} \setminus \{0\}$ 如下

$$h(z) = f(z, \sqrt{1 - |z|^2}) - f(-z, -\sqrt{1 - |z|^2}).$$

定义映射 $H:[0,1]\times[0,2\pi]\to\mathbb{C}\setminus\{0\}$ 为

$$H(s,z) = h(se^{it}).$$

显然 H 是常值曲线 α (参数化为 $\alpha(t)=h(0),t\in[0,2\pi]$) 和 曲线 $\gamma=h(\partial\mathbb{D})$ (参数化为 $\gamma(t)=h(e^{it}),t\in[0,2\pi]$) 在 $\mathbb{C}\setminus\{0\}$ 中 的同伦。利用绕数的同伦不变性得

$$w(\gamma, 0) = w(\alpha, 0) = 0.$$

另一方面,当 $z \in \partial \mathbb{D}$ 时,h(z) = -h(-z)。上半圆周在 h 下的像曲线 $\gamma^+ = h(\{e^{it}; t \in [0, \pi]\})$ (参数化为 $\gamma^+(t) = h(e^{it}), t \in [0, 2\pi]$),起点为 h(1),终点为 h(-1) = -h(1)。端点关于原点的对称性表明,沿着曲线 γ^+ 的辐角变化量 $\Delta(\gamma^+, 0) \neq 0$ 。

由 h 的对称性可知,下半圆周的像曲线 $\gamma^- = h(\{e^{it}; t \in [\pi, 2\pi]\})$ (参数化为 $\gamma^-(t) = h(e^{it}), t \in [\pi, 2\pi]$) 满足 $\gamma^-(t+\pi) = -\gamma^+(t), t \in [0, \pi]$ 。利用辐角变化量的定义,得 $\Delta(\gamma^-, 0) = \Delta(\gamma^+, 0)$ 。因此

$$w(\gamma, 0) = \frac{1}{2\pi} (\Delta(\gamma^+, 0) + \Delta(\gamma^-, 0)) = \frac{1}{\pi} \Delta(\gamma^+, 0) \neq 0.$$

这与上面矛盾。

17.4 舌尖上的数学

17.4.1 火腿三明治定理

1942年, Stone-Tukey 证明了如下定理

定理 17.3.(火腿三明治定理) 假设 A, B, C 为 \mathbb{R}^3 中有界连通 开集,则存在一平面,将三者体积同时等分。

此定理亦可推广到高维或离散的情形。

证明: 任取 $u = (u_1, u_2, u_3) \in S^2, t \in \mathbb{R}$, 定义半空间

$$H(\mathbf{u}, t) = {\mathbf{x} = (x_1, x_2, x_3) \in \mathbb{R}^3 ; \mathbf{x} \cdot \mathbf{u} < t}.$$

对单位球 $\mathbb{B} = \{(x_1, x_2, x_3) \in \mathbb{R}^3; x_1^2 + x_2^2 + x_3^2 < 1\}$ 中的连通开集 $U \subset \mathbb{R}^3$,定义函数 $\psi(t) = \nu(H(\boldsymbol{u}, t) \cap U)$,其中 $\nu(\cdot)$ 表可测集合的体积。容易验证 ψ 连续(事实上,Lipschitz 连续: $|\psi(t_1) - \psi(t_2)| \leq \pi |t_1 - t_2|$ 。为说明这一点,注意到两平面 $\boldsymbol{x} \cdot \boldsymbol{u} = t_1$ 与 $\boldsymbol{x} \cdot \boldsymbol{u} = t_2$ 之间的距离为 $|t_1 - t_2|$,U 与法方向 \boldsymbol{u} 垂直的截面面积不超过 π ,因此有 Lipschitz 估计),满足 $\psi(-1) = 0$, $\psi(1) = \nu(U)$ 。 由连续函数的介值定理,存在 $t_U(\boldsymbol{u}) \in (-1,1)$ 满足 $\psi(t_U(\boldsymbol{u})) = \nu(U)/2$ 。利用当 $0 < \psi(t) < \nu(U)$ 时 ψ 关于 t 的严格递增性,可知满足 $\psi(t_U(\boldsymbol{u})) = \nu(U)/2$ 的 $t_U(\boldsymbol{u})$ 是唯一的。

下面说明 $t_U: S^2 \to \mathbb{R}$ 是连续的奇函数。事实上, 对任意 $u, v \in S^2$, 以下两平面

$$P_{\boldsymbol{u}} = \{ \boldsymbol{x} \in \mathbb{R}^3; \boldsymbol{x} \cdot \boldsymbol{u} = t_U(\boldsymbol{u}) \}; \ P_{\boldsymbol{v}} = \{ \boldsymbol{x} \in \mathbb{R}^3; \boldsymbol{x} \cdot \boldsymbol{v} = t_U(\boldsymbol{v}) \}$$

都等分 U 的体积。如果交集 $P_{\boldsymbol{u}} \cap P_{\boldsymbol{v}}$ 在 U 的外部,这显然不可能。因此 $P_{\boldsymbol{u}} \cap P_{\boldsymbol{v}} \cap U \neq \emptyset$ 。取 $\boldsymbol{x}_0 \in P_{\boldsymbol{u}} \cap P_{\boldsymbol{v}} \cap U$ 。由 U 在单位球 \mathbb{B} 中可知 $\|\boldsymbol{x}_0\| < 1$ 。利用 Cauchy-Schwarz 不等式,

$$|t_U(u) - t_U(v)| = |x_0 \cdot (u - v)| \le ||u - v||.$$

这说明 t_U 连续。容易验证 t_U 是奇函数: $t_U(-\mathbf{u}) = -t_U(\mathbf{u})$ 。

最后, 利用 t_U 的上述性质, 给出定理的证明。不妨假设 A, B, C 都落在单位球 \mathbb{B} 中。定义函数 $f: S^2 \to \mathbb{R}^2$ 如下

$$f(\mathbf{u}) = (t_A(\mathbf{u}) - t_B(\mathbf{u}), \ t_A(\mathbf{u}) - t_C(\mathbf{u})).$$

易见 f 是连续的奇函数。由 Borsuk 定理,存在 $\mathbf{u} \in S^2$ 满足 $f(\mathbf{u}) = f(-\mathbf{u})$ 。由 f 是奇函数可知, $f(\mathbf{u}) = 0$ 。这说明 $t_A(\mathbf{u}) = t_B(\mathbf{u}) = t_C(\mathbf{u})$,记此值为 t_0 。则平面 $\mathbf{x} \cdot \mathbf{u} = t_0$ 将 A, B, C 的体积同时等分。

17.4.2 奶酪披萨定理

问题 17.1. 一个圆形的奶酪披萨, 成分只有奶酪与面饼。能否从中心分为两个扇形切片, 使两部分的奶酪和面饼同时等分?

为将问题转化为严谨的数学,需做一些合理的假设。

不妨假设披萨对应单位圆盘 \mathbb{D} , 它的面饼和奶酪面饼质量连续分布, 意即奶酪的密度函数 ρ_1 与面饼的密度函数 ρ_2 都是 \mathbb{D} 上的连续非负函数。二者都有正质量

$$\int_{\mathbb{D}} \rho_k dx dy > 0, \ k = 1, 2.$$

在扇形区域 $S(t_1, t_2) = \{re^{it}; 0 < r < 1, t_1 < t < t_2\}$ 上,奶酪和面饼的质量分别为

$$\nu_j([t_1, t_2]) = \int_{t_1}^{t_2} \int_0^1 \rho_j(re^{i\theta}) r dr d\theta, \ j \in \{1, 2\}.$$

任取 $\mathbf{x} = (x_1, x_2, x_3) \in S^2$, 定义

$$t_k = 2\pi \sum_{j=1}^k x_j^2, \ k = 1, 2, 3.$$

显然 $0 := t_0 \le t_1 \le t_2 \le t_3 = 2\pi$ 是 $[0, 2\pi]$ 的一个划分。 定义函数 $f = (f_1, f_2) : S^2 \to \mathbb{R}^2$ 如下

$$f_j(\mathbf{x}) = \sum_{k=1}^{3} \operatorname{sgn}(x_k) \cdot \nu_j([t_{k-1}, t_k]),$$

这里约定 sgn(0) = 0。

可以验证 f 连续 (细节留作习题), 满足 f(-x) = -f(x)。 由 Borsuk 定理可知, 存在 $x \in S^2$, 满足 f(-x) = f(x)。因此 f(x) = 0。

对此 $\mathbf{x} = (x_1, x_2, x_3)$,若每个分量非零,则必有两项同号 (若三项同号,导致求和不为零)。将符号相异的一项记为 x_k ,则扇形 $S(t_{k-1}, t_k)$ 中奶酪和面饼占各自总质量的一半;如果某分量为零,比如 $x_2 = 0$,此时 $t_2 = t_1$,此时扇形 $S(t_0, t_1)$ 中奶酪和面饼分别占各自总质量的一半。

由此得如下的奶酪披萨定理:

一个圆形的奶酪披萨, 成分只有奶酪与面饼。可经中心分为两个扇形切片, 使奶酪和面饼的质量同时等分。

此定理的一般形式为 Hobby-Rice 定理:

定理 17.4.(Hobby-Rice, 1965) 给定 [0,1] 区间上的 n 个连续 实函数 g_1, \dots, g_n , 存在区间的一个划分

$$0 \le t_1 \le t_2 \dots \le t_n \le t_{n+1} = 1$$
,

以及 $\epsilon_1, \dots, \epsilon_{n+1} \in \{\pm 1\}$, 满足

$$\sum_{k=1}^{n+1} \epsilon_k \int_{t_{k-1}}^{t_k} g_j(t)dt = 0, \ \forall j \in \{1, \dots, n\}.$$

证明: 证明与奶酪披萨定理类似, 唯一区别是此处需用 Borsuk 定理的高维版本。细节如下:

任取 $\mathbf{x} = (x_1, \dots, x_{n+1}) \in S^n$, 定义

$$t_k = \sum_{j=1}^k x_j^2,$$

显然 $0 \le t_1 \le t_2 \dots \le t_n \le t_{n+1} = 1$ 是 [0,1] 的一个分划。 定义函数 $f = (f_1, \dots, f_n) : S^n \to \mathbb{R}^n$, 如下

$$f_j(\mathbf{x}) = \sum_{k=1}^{n+1} \operatorname{sgn}(x_k) \int_{t_{k-1}}^{t_k} g_j(t) dt,$$

这里规定 $\operatorname{sgn}(0) = 0$ 。 显然 f 连续,容易验证 $f(-\boldsymbol{x}) = -f(\boldsymbol{x})$ 。 由 Borsuk 定理可知,存在 $\boldsymbol{x} \in S^{n+1}$,满足 $f(-\boldsymbol{x}) = f(\boldsymbol{x})$ 。 因此 $f(\boldsymbol{x}) = 0$ 。 最后,取 $\epsilon_k = \operatorname{sgn}(x_k)$ (如果 $x_k \neq 0$), $\epsilon_k = 1$ (如果 $x_k = 0$)。 证完。

17.5 Poincaré 定理

二维球面 S^2 上的一个切向量场 V 指映射 $V: S^2 \to \mathbb{R}^3$, 满足对任意 $\mathbf{u} = (u_1, u_2, u_3) \in S^2$, 向量 $V(\mathbf{u})$ 与 \mathbf{u} 正交: $V(\mathbf{u}) \cdot \mathbf{u} = 0$. 1885 年,Poincaré 证明了如下的漂亮定理

定理 17.5. (Poincaré) 球面 S^2 上的连续切向量场必有零点。

证明: 记上半球面 $S_+^2 = \{ \boldsymbol{u} \in S^2; u_3 \geq 0 \}$, 下半球面 $S_-^2 = \{ \boldsymbol{u} \in S^2; u_3 \leq 0 \}$ 。以下讨论中, 将复平面 \mathbb{C} 上的点 z = x + iy 与 $\mathbb{R}^2 \times \{0\}$ 中的点 (x, y, 0) 视为等同。

定义映射

$$\pi_+: \overline{\mathbb{D}} \to S^2_+, \ z \mapsto \left(\frac{2x}{1+|z|^2}, \frac{2y}{1+|z|^2}, \frac{1-|z|^2}{1+|z|^2}\right),$$

$$\pi_{-}: \overline{\mathbb{D}} \to S_{-}^{2}, \ z \mapsto \left(\frac{2x}{1+|z|^{2}}, \frac{2y}{1+|z|^{2}}, \frac{|z|^{2}-1}{1+|z|^{2}}\right).$$

这两个映射都有直观的几何解释: $\pi_+(z)$ 为南极 (0,0,-1) 与 z 连线与上半球面的交点, $\pi_-(z)$ 为北极 (0,0,1) 与 z 的连线与下半球面的交点。容易验证 π_\pm 都是同胚。

给定 S^2 上的连续切向量场 $V=(v_1,v_2,v_3):S^2\to\mathbb{R}^3$,它 在两个半球面的限制 $V|_{S^2_+},V|_{S^2_-}$ 可诱导两个连续映射 $\psi_+,\psi_-:\overline{\mathbb{D}}\to\mathbb{C}$:

$$\psi_{+}(z) = v_{1}(\pi_{+}(z)) + iv_{2}(\pi_{+}(z)) - v_{3}(\pi_{+}(z))z,$$

$$\psi_{-}(z) = v_{1}(\pi_{-}(z)) + iv_{2}(\pi_{-}(z)) + v_{3}(\pi_{-}(z))z.$$

现假设 V 无零点. 我们先说明 ψ_{\pm} 都无零点。如不然,假设 $\psi_{+}(z)=0$,结合 $\pi_{+}(z)\cdot V(\pi_{+}(z))=0$,可得方程组

$$\begin{cases} v_1(\pi_+(z)) - xv_3(\pi_+(z)) = 0, \\ v_2(\pi_+(z)) - yv_3(\pi_+(z)) = 0, \\ xv_1(\pi_+(z)) + yv_2(\pi_+(z)) + (1 - |z|^2)v_3(\pi_+(z)) = 0. \end{cases}$$

由此得 $V(\pi_+(z))=0$. 这与假设 V 无零点相矛盾。同理可证, ψ_- 亦无零点。这说明 ψ_+,ψ_- 均取值于 $\mathbb{C}\setminus\{0\}$.

接下来证明, 限制在 $\partial \mathbb{D}$ 上, ψ_{\pm} 满足如下等式

$$\psi_{+}(z) = z^{2}\overline{\psi_{-}(z)}, \ \forall z \in \partial \mathbb{D}.$$

事实上, 当 $z \in \partial \mathbb{D}$ 时, $\pi_+(z) = \pi_-(z) = (x, y, 0)$ 。条件 $\pi_+(z) \cdot V(\pi_+(z)) = 0$ 即为 $v_1 x + v_2 y = 0$, 等价于

$$iv_1(z + \overline{z}) + v_2(z - \overline{z}) = 0 \iff v_1 + iv_2 = -z^2(v_1 - iv_2).$$

由此可得, 当 $z \in \partial \mathbb{D}$ 时

$$\psi_{+}(z) = -z^{2}[v_{1}(\pi_{+}(z)) - iv_{2}(\pi_{+}(z))] - v_{3}(\pi_{+}(z))z$$

$$= -z^{2}[v_{1}(\pi_{+}(z)) - iv_{2}(\pi_{+}(z)) + v_{3}(\pi_{+}(z))\overline{z}]$$

$$= -z^{2}\overline{\psi_{-}(z)}.$$

定义 $g = \psi_+/\overline{\psi_-}: \overline{\mathbb{D}} \to \mathbb{C} \setminus \{0\}$. 它在 $\overline{\mathbb{D}}$ 上连续且不取零值, 因此 $w(g(\partial \mathbb{D}), 0) = 0$. 另一方面,上述推导表明,当 $z \in \partial \mathbb{D}$ 时, $g(z) = -z^2$,因此 $w(g(\partial \mathbb{D}), 0) = 2$,这是一个矛盾。

17.6 习题 149

17.6 习题

"这,就是数学:她提醒你灵魂有不可见的形态,她赋予自己的发现以生命,她唤醒悟性、澄清思维,她照亮了我们内心的思想,她涤尽了我们有生以来的蒙昧与无知。"

--古希腊哲学家普罗克洛斯

- 1. (绕数的性质) 给定闭曲线 $\gamma:[a,b]\to\mathbb{C}$ 以及 $c\notin\gamma$ 。证明: 绕数作为 c 的函数: $c\mapsto w(\gamma,c)$ 是定义在 $\mathbb{C}-\gamma$ 上的分片常值函数,即在 $\mathbb{C}\setminus\gamma$ 的每个连通分支上取整常数值。
 - 2. (绕数的性质) 给定闭曲线 $\gamma:[0,1]\to\mathbb{C}\setminus\{0\}$ 。
- (1). 若 γ 作为集合满足 n-重旋转对称性: $\gamma=e^{2\pi i/n}\gamma$ 。这 里 $n\geq 2$ 为整数, $aE:=\{az;z\in E\}$ 。举例说明绕数 $w(\gamma,0)$ 可能为 0。
 - (2). 如果 γ 的参数化满足 n-重旋转对称性:

$$e^{2\pi i/n}\gamma(t) = \begin{cases} \gamma(t+1/n), & t \in [0, 1-1/n], \\ \gamma(t+1/n-1), & t \in [1-1/n, 1]. \end{cases}$$

证明 $w(\gamma,0) \neq 0$ 。

3. (Borsuk 定理的应用) 三个闭集 E_1, E_2, E_3 是球面

$$S^2 := \{(u_1, u_2, u_3) \in \mathbb{R}^3; u_1^2 + u_2^2 + u_3^2 = 1\}$$

的一个覆盖, 即 $S^2 = E_1 \cup E_2 \cup E_3$ 。

- (1). 证明映射 $f: S^2 \to \mathbb{R}^2$, 定义为 $f(\boldsymbol{u}) = (d(\boldsymbol{u}, E_1), d(\boldsymbol{u}, E_2))$, 连续, 这里 $d(\boldsymbol{u}, E_k) = \min_{\boldsymbol{v} \in E_k} \|\boldsymbol{u} \boldsymbol{v}\|$ (欧氏距离)。
- (2). 利用 Borsuk 定理以及" $\mathbf{u} \in E_k$ 当且仅当 $d(\mathbf{u}, E_k) = 0$ "这一事实,证明存在 $\mathbf{u} \in S^2$, 以及 $k \in \{1, 2, 3\}$, 使得 $\mathbf{u}, -\mathbf{u} \in E_k$ 。
 - 4. (Brouwer 不动点定理的应用) 记 \mathbb{R}^3 中第一卦限

$$E = \left\{ (u_1, u_2, u_3) \in \mathbb{R}^3; u_1 \ge 0, u_2 \ge 0, u_3 \ge 0 \right\}.$$

利用 Brouwer 定理证明,如果 $F: E \to E$ 连续,则存在单位向量 $u \in E$, 实数 $\lambda \ge 0$, 满足 $F(u) = \lambda u$.

5. (火腿三明治定理之 2 维情形) 假设 E_1, E_2 为平面 \mathbb{R}^2 上的有界开集,证明:存在一条直线 ℓ 将 E_1, E_2 的面积同时等分.

(提示: 任取 $\mathbf{u} = (u_0, u_1, u_2) \in S^2$, 定义半平面

$$h(\mathbf{u}) = \{(x, y) \in \mathbb{R}^2; u_1 x + u_2 y \le u_0\}.$$

定义映射 $f: S^2 \to \mathbb{R}^2$ 为 $f(\boldsymbol{u}) = (f_1(\boldsymbol{u}), f_2(\boldsymbol{u}))$, 其中 $f_k(\boldsymbol{u}) = \operatorname{area}(h(\boldsymbol{u}) \cap E_k)$, area 为面积.)