

Sistemas Embebidos / Lic. El

Docentes: Flavia Pires/João Braun/José Lima/Thadeu Brito

Ficha nº. 1: Programação Assembly

№. Aluno	Nome

Parte 1

Objetivos

- Utilizar a linguagem Assembly para criar um programa que interaja com os portos digitais do ATmega8515;
- Realizar operações matemáticas para obter melhor compreensão da arquitetura do microcontrolador;
- Verificar experimentalmente os conteúdos abordados na aula teórica.

Material

- AVR Studio
- Atmega8515

Exercícios

- 1. Implemente um programa em Assembly para cada situação dada abaixo:
 - a. Realizar a leitura das portas B e C, realizar a soma e escrever o resultado em A.
 - b. Realizar a leitura da porta C e escrever o dobro na porta B.
 - c. Realizar as operações:

$$PA=PB+PC$$

 $PD=PB-PC$

d. Implemente um contador ascendente (PORT A – iniciar em 0) e descendente (PORT B –iniciar em 255).

Sistemas Embebidos / Lic. El

Docentes: Flavia Pires/João Braun/José Lima/Thadeu Brito

Parte 2

Objetivos

- Utilizar a linguagem Assembly para criar um programa que interaja com os portos digitais do ATmega8515;
- Implementar programas em exemplos de situações reais verificando a aplicabilidade dos conceitos aprendidos;

Material

- AVR Studio
- Atmega8515

Exercícios

- 1. Implemente um programa em Assembly para cada situação dada abaixo:
 - a) Controlar a bomba de acordo com o nível de líquido no tanque, se o nível for inferior ao ponto **SE** a bomba deve ligar; se o nível de líquido for superior ao ponto **SF** a bomba deve desligar (Figura 1).

Figura 1: Tanque com sensores e bomba.

b) Controlar o compressor para manter a pressão do tanque entre 100 e 200, tendo em conta a pressão lida pelo sensor **P1** (Figura 2).

Sistemas Embebidos / Lic. EI

Docentes: Flavia Pires/João Braun/José Lima/Thadeu Brito

Figura 2: Tanque ligado a um compressor e o seu microcontrolador.

c) Implemente um programa que permita contar na PORTA o número de flancos ascendentes no bit3 da PORTC (Figura 3).

Figura 3. Exemplo contar o número de pessoas que passam num feixe.