

Introduction to Mobile Robotics Lecture 6

(Machine Learning and Infomation Processing for Robotics)

Huan YIN

Research Assistant Professor, Dept. of ECE

eehyin@ust.hk

L5 Issue

- We rewrite the Frobenius norm using the trace of the matrix $\|\mathbf{Y} \mathbf{R}\mathbf{X}\|_F^2 = tr(\mathbf{Y}^T\mathbf{Y}) + tr(\mathbf{X}^T\mathbf{X}) tr(\mathbf{Y}^T\mathbf{R}\mathbf{X}) tr(\mathbf{X}^T\mathbf{R}^T\mathbf{Y})$
- And observe that only the two last terms depend on the unknown \boldsymbol{R} yielding a maximization problem.
- Even without using the properties of the trace we can see that both last terms are equal to

$$\sum_{i}^{N} R(x_i - x_0)(y_i - y_0)^T = tr(RXY^T)$$

The 3D-3D pose problem reduced to

$$\max_{\mathbf{R}} tr(\mathbf{R}\mathbf{X}\mathbf{Y}^T)$$

L5 Issue

• If the SVD of XY^T is USV^T and let $Z = V^TRU$

$$tr(\mathbf{R}\mathbf{X}\mathbf{Y}^T) = tr(\mathbf{R}\mathbf{U}\mathbf{S}\mathbf{V}^T) = tr(\mathbf{Z}\mathbf{S}) = \sum_{i=1}^{3} z_{ii}\sigma_i \leq \sum_{i=1}^{3} \sigma_i$$

The upper bound is obtained by setting

$$R = VU^T$$

L2 - Properties of a Rot. Mat.

- Let $\mathbf{R} = [\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3]$ be a rotation matrix
- Orthogonal:

•
$$\mathbf{r}_i^T \cdot \mathbf{r}_j = \begin{cases} 0 \text{ if } i \neq j \\ 1 \text{ if } i = j \end{cases}$$

•
$$\mathbf{R} \cdot \mathbf{R}^T = \mathbf{I}$$

Special orthogonal:

•
$$\det \mathbf{R} = \mathbf{r}_1^T \cdot (\mathbf{r}_2 \times \mathbf{r}_3) = \mathbf{r}_1^T \cdot \mathbf{r}_1 = 1$$

- The set of all rotations forms the Special Orthogonal Group
 - Special orthogonal group
 - 3D rotations: SO(3)
 - 2D rotations: SO(2)
 - $SO(n) = {\mathbf{R} \in \mathbb{R}^{n \times n} | \mathbf{R} \cdot \mathbf{R}^T = \mathbf{I}, \det \mathbf{R} = 1}$

Map

Robot Localization

Odometry

- Wheel Odometry
- Visual Odometry
- LiDAR Odometry
- etc

SLAM

 Simultaneous localization and mapping

- Map-based Localization
 - Localize on a given map

Performance of Map

- Memory usage
- Load speed
- Maintainability (Easy to update)
- Usability with Estimation and Planning

Map

- Representations
 - Point Cloud
 - Grids
 - Octree
 - Elevation
 - Features
- Organization
 - Global
 - Topological

Point Cloud

- Pros
 - No discretization of data
 - Mapped area not limited
- Cons
 - Unbounded memory usage
 - No direct representation of free or unknown space

Grid

- Pros
 - Volumetric representation
 - Constant access time
 - Probabilistic update
 - Friendly to planning
- Cons
 - Memory requirement: Complete map is allocated in memory
 - Extent of the map has to be known/guessed

Octree

- Tree-based data structure
- Recursive subdivision of the space into octants
- Volumes allocated as needed
- "Smart 3D grid"

Octree

- Pros
 - Full 3D model
 - Probabilistic
 - Inherently multi-resolution
 - Memory efficient
- Cons
 - Implementation can be tricky (memory, update, map files, ...)

Elevation

- 2D grid that stores an estimated height (elevation) for each cell
- Uncertainty increases with measured distance
- The elevation cam be updated

Courtesy: Wolfram Burgard

Elevation - 2.5D Height

- Pro:
 - 2.5D representation (vs. full 3D grid)
 - Constant time access
 - Probabilistic estimate about the height
- Cons:
 - No vertical objects
 - Only one level is represented

Standard Elevation Map

- Problem of basic elevation map
- Need check scheme for "large gap" of cells

Extended Elevation Map

- Red: cells with vertical objects; Blue: data points above a big vertical gap; Yellow: cells seen from above
- Traversability estimation using gap cells

Features

 A broad concept that includes landmark, line, curve, objects, point with descriptors and others

Obejct SLAM

LandMark as Features

- Victoria dataset, Sydney, AU
- Use tree trunks as landmarks for SLAM (EKF SLAM)

2002 (maybe)

Spline as Features

Lane Mapping

Online Monocular Lane Mapping Using Catmull-Rom Spline

Zhijian Qiao, Zehuan Yu, Huan Yin and Shaojie Shen

Visual Features

• Tesla Bot Update Video (2023 May)

Courtesy: Tesla

Obejcts as Features

Quadric SLAM by Nicholson et al.

QuadricSLAM: Constrained Dual Quadrics from Object Detections as Landmarks in Object-oriented SLAM

Lachlan Nicholson, Michael Milford, Niko Sünderhauf

ARC Centre of Excellence for Robotic Vision

Features

- Pros
 - Compact, less memory cost
 - Close to human perception of environments
 - Can support localization
- Cons
 - Unable to represent complex environments
 - Not planning-oriented

Tunnels

Map

- Representations
 - Point Cloud
 - Grids
 - Octree
 - Elevation
 - Features
- Organization
 - Global
 - Topological

Global vs Topological

- Global map is okay for small-area navigation
- Topological-based is close to human-level

Topological Map

- Node (Pose) + Edge
- In each submap
 - Pose
 - Map representations or raw data, e.g, laser scans and images
- Criteria for "map split"
 - distance traveled or rotated angle
 - memory limit of submap

Courtesy: Lozenguez 25

Summary

- Different 3D map representations exist
 - Why and How
 - Pros and Cons
- Conclusion
 - Octomap is currently a popular tool for LiDAR point clouds
 - Hybrid representations (like multi-sensor fusion)
 - Sparse features for localization, Dense grids for planning

Robot Operating System (ROS)

From Concept/Math to Program

How to install Ubuntu & ROS?

- Canvas PDF File
 - EnvSetup.pdf

Env Setup Introduction System Installation Preparation Check Virtualization Feature Windows MAC (Intel CPU) Download and Install VM Download Ubuntu 20.04 Windows && MAC (Intel CPU) ■ MAC (M1/M2) ▼ ROS Installation Install ROS Noetic Test Environment Setup Other questions

Introduction

What is ROS?

- ROS: Robot Operating System
 - a flexible framework for writing robot software
 - a collection of tools, libraries, and convention
 - across a wide variety of robotic platforms

Courtesy: ROS 30

ROS

Programming Language

Tools and Libraries

C++ in ROS

Simple C++ Program

```
#include <iostream>
int main(int argc, char* argv[])
{
   std::cout << "Hello World!";
   return 0;</pre>
```

```
Simple C++ ROS Node
#include <ros/ros.h>
int main(int argc, char* argv∏)
  ros::init(argc, argv, "hello");
  ros::NodeHandle node;
  ROS_INFO_STREAM("Hello World!");
  return 0;
```

ROS Master and Node

ROS Master

- As a parameter server
- Enabling different nodes to find each other
- One system, one master

ROS Node

- Must have unique names
- Different functionalities in different nodes
- Communicate with other nodes through topics, services, or actions
- Different nodes can run on different devices and hosts, and communicate via Ethernet (Distributed System)

ROS as Glue

ROS as Glue

ROS MASTER

Image Processing Node

/topic

Data Recording Node

Visualization Node

Rosbag

- Recorded Data
- Easy to debug offline

Visualization

rqt_graph

Visualization for ROS nodes

TF

• Transformation / Pose

Documents of Pose

• QuaternionStamped

Transform

https://docs.ros.org/en/noetic/api/geometry_msgs/html/index-msg.html

geometry msgs Msg/Srv Documentation See also: • Website • Code API Documentation Message types • Accel • AccelStamped · AccelWithCovariance • AccelWithCovarianceStamped • Inertia • InertiaStamped • Point • Point32 PointStamped Polygon • PolygonStamped Pose • Pose2D PoseArray PoseStamped • PoseWithCovariance PoseWithCovarianceStamped Quaternion

Other Concepts and Tools

- Package
- Launch File
- rqt_plot

• • •

Check when you need!

http://wiki.ros.org/ROS/Tutorials

https://docs.ros.org/

Next Lecture

- Bayes Theorem
- Gaussian Distribution