

Panchip Microelectronics Co., Ltd.

PAN1020

Datasheet

BLE SoC Transceiver

Version: 1.4

Release date: Aug. 2019

Shanghai Panchip Microelectronics Co., Ltd.

Address: Room 802, No. 666 summer

Shanghai Zhangjiang Hi-Tech Park Road,

People's Republic of China

Tel: 021-50802371

Website: http://www.panchip.com

USING THIS DOCUMENT

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

TRADEMARKS

Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

DISCLAIMER

All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

REVISION HISTORY

Version	Date	Content	Reference
1.0	Nov.2017	Initial	《PAN163CX Datasheet_V1.2-EN》
1.1	Jul. 2018	Add the pin description of QFN 48-PIN	
		Complement the pakage dimension of the QFN 48-PIN	
1.2	Dec.2018	Refresh parts of the parameter of "ELECTRICAL	
		CHARACTERISTICS"	
		Modify the description of "Feature"	
		Add the charpter of "PRECAUTIONS", "STORAGE	
		CONDITIONS" and "CONTACT US".	
1.3	June.2019	Add the SSOP24 package.	
1.4	Aug.2019	High temperature version	

Table of Contents

1 General Description	6
1.1 Key Features	6
1.2 Typical Applications	8
2 Block Diagram	9
3 Pin Information	10
3.1 QFN 32-PIN Diagram	10
3.2 QFN 48-PIN Diagram	
3.3 SSOP24-PIN Diagram	
3.4 Pin Descriptions	12
4 Electrical Characteristics	19
4.1 Absolute Maximum Ratings	19
4.2 DC Electrical Characteristics	
4.3 16 MHz Crystal Oscillator Characteristics	
4.4 32 KHz Crystal Oscillator Characteristics	
4.5 Stable Low Frequency RCX Oscillator Characteristics	
4.6 AC Electrical Characteristics	21
5 Application Reference Design	24
5.1 QFN-32 Application Reference Circuit	24
5.2 QFN-48 Application Reference Circuit	25
5.3 SSOP24 Application Reference Circuit	
6 Pakage Dimensions	27
6.1 QFN-32 Package Dimensions	
6.2 QFN-48 Package Dimensions	
6.3 SSOP24 Package Dimensions	
7 Precautions	30
8 Storage Conditions	31
9 Contact Us.	32

List of Figures

Figure 2-1 PAN1020 Block Diagram	9
Figure 3-1 PAN1020 QFN 32-PIN Diagram	10
Figure 3-2 PAN1020 QFN 48-PIN Diagram	11
Figure 3-3 PAN1020 SSOP24-PIN Diagram	12
Figure 5-1 Application Reference Circuit for QFN32	24
Figure 5-2 Application Reference Circuit for QFN48	25
Figure 5-4 Application Reference Circuit for SSOP24	26
Figure 6-1 QFN32 Package Views	27
Figure 6-2 QFN48 Package Views	28
Figure 6-3 SSOP24 Package Views	29

List of Tables

Table 3-1 PAN1020 Pin descriptions	12
Table 4-1 Absolute maximum ratings	19
Table 4-2 Voltage and current	19
Table 4-3 16M RC oscillator	20
Table 4-4 32K RC oscillator	20
Table 4-5 Stable Low Frequency RCX Oscillator	20
Table 4-6 RF	21
Table 4-7 DPLL	21
Table 4-8 ADC	22
Table 4-9 LVR	22
Table 4-10 BOD	22
Table 6-1 QFN32 Package Detail Parameters	27
Table 6-2 OFN48 Package Detail Parameters	28

In-System Programming

ISP

PAN1020 BLE SoC Transceiver

Abbreviation

Analog-to-Digital Converter	L2CAP	Logical Link Control and Adaptation Protocol
Attribute Protocol	LDO	Low dropout regulator
Bit Error Rate	LIRC	Low speed RC oscillator
Bluetooth Low Energy	LVR	Low Voltage Reset
Brown-out Detector	LXT	Low speed crystal oscillator
Central Processing Unit	MCU	Microcontroller Unit
Direct Memory Access	PLL	Phase Locked Loop
First Input First Output	PWM	Pulse Width Modulation
Generic Access Profile	RAM	Random access memory
Generic Attribute Profile	SM	Security Manager
General-purpose I/O	SPI	Serial Peripheral Interface
Human Interface Device	SRAM	Static Random-Access Memory
High speed crystal oscillator	SWD	Serial Wire Debug
Inter-Integrated Circuit	UART	Universal Asynchronous Receiver/Transmitters
In-Application-Programming	WDT	Watchdog Timer
In-Circuit Programming	WWDT	Window Watchdog Timer
	Attribute Protocol Bit Error Rate Bluetooth Low Energy Brown-out Detector Central Processing Unit Direct Memory Access First Input First Output Generic Access Profile Generic Attribute Profile General-purpose I/O Human Interface Device High speed crystal oscillator Inter—Integrated Circuit In-Application-Programming	Attribute Protocol Bit Error Rate LIRC Bluetooth Low Energy LVR Brown-out Detector LXT Central Processing Unit MCU Direct Memory Access PLL First Input First Output Generic Access Profile RAM Generic Attribute Profile SM General-purpose I/O Human Interface Device High speed crystal oscillator Inter—Integrated Circuit UART In-Application-Programming WDT

1 General Description

The PAN1020 integrated circuit has a fully integrated radio transceiver and baseband processor for Bluetooth Low Energy. It can be used as an application processor as well as a data pump in fully hosted systems.

The PAN1020 contains an embedded Flash memory for storing Bluetooth profiles as well as custom application code. The qualified BLE protocol stack, stored in a dedicated Flash area, as well as the customer application software run on the embedded MCU processor. Low leakage Retention RAM is used to store all the sensitive data and connection information while in Deep Sleep mode.

The BLE firmware includes the L2CAP service layer protocols, Security Manager (SM), Attribute Protocol (ATT), the Generic Attribute Profile (GATT) and the Generic Access Profile (GAP). Furthermore, application profiles such as Proximity, Health Thermometer, Heart Rate, Blood Pressure, Glucose and Human Interface Device (HID) are supported.

The MCU part of PAN1020 is the 32-bit microcontroller. It supports a wide range of applications from low-end, price sensitive designs to computing-intensive ones and provides advanced high-end features in economical products.

The PAN1020 has many high-performance peripheral functions, such as general purpose I/O port(25 GPIOs for QFN32 package, 41 GPIOs for QFN48 package and 15 GPIOs for SSOP24 package), three 32-bit timers, two UARTs, two group SPI interfaces, two I2C interfaces, one 16-bit PWM generators providing eight channels, an 8-channel 12-bit ADC, Watchdog Timer, Window Watchdog Timer, and a Brown-out Detector. All these peripherals have been incorporated into the PAN1020 to reduce component count, board space and system cost.

Additionally, the PAN1020 is equipped with ISP (In-System Programming) and ICP (In-Circuit Programming) functions, which allow the user to update the program memory without removing the chip from the actual end product. PAN1020 also supports In-Application-Programming (IAP) function, user switches the code executing without the chip reset after the embedded flash updated.

The PAN1020 can run up to 52 MHz and operate at a wide voltage range of $2.2V \sim 3.6V$ and temperature range of $-40^{\circ}\text{C} \sim +125^{\circ}\text{C}$. For PAN1020, the embedded FLASH size up to 256 Kbytes and SRAM up to 16 Kbytes. It also offers size configurable Data Flash (shared with program flash), and configurable flash size for the ISP.

1.1 Key Features

RF

- 2.4GHz RF transceiver(Compatible with BLE4.2)
- RX sensitivity: -90 dBm@1Mbps
- Maximum received signal: 0 dBm
- Programmable TX output power: 13 dBm(Maximum), 8 dBm(Typical)
- Single wire antenna: no RF matching or RX/TX switching required

Core

- MCU core running up to 52 MHz
- One 24-bit system timer

PANCHIP

PAN1020 BLE SoC Transceiver

- Supports low power Idle mode
- A single-cycle 32-bit hardware multiplier
- Supports Serial Wire Debug (SWD) interface and two watchpoints/four breakpoints

Memory

- 256 KB Flash memory for program memory
- 16 KB SRAM

Peripheral

- QFN32 package
 - ➤ 25 GPIOs
 - > Two UARTs
 - ➤ Three SPIs
 - Two I2Cs
 - One 8-channel ADC
 - ➤ One 8-channel PWM0
- QFN48 package
 - ➤ 41 GPIOs
 - > Two UARTs
 - > Three SPIs
 - > Two I2Cs
 - ➤ One 8-channel ADC
 - ➤ One 8-channel PWM0
- SSOP24 package
 - > 15 GPIOs
 - > Two UARTs
 - > Three SPIs
 - > Two I2Cs
 - One 4-channel ADC
 - ➤ One 4-channel PWM0
- Three channel 32-bit Timers (one 8-bit pre-scaler counter with 24-bit up-timer for each timer)
- DMA up to 3 channels (one per source and destination pair)
- Two UART devices with DMA
- Two Group SPI master and slave devices with DMA
- Two I2C master and slaver devices with DMA
- Up to 40 general-purpose I/O (GPIO) pins
- 12-Bit ADC with Eight Channels
- One built-in 16-bit PWM generators with eight channels
- One WDT with 18-bit up counter
- One WWDT with 6-bit down counter value (CNTDAT) and 6-bit compare value (CMP-DAT)

Special features

 ISP (In-System Programming), ICP (In-Circuit Programming), and IAP (In Application Programming)

- BOD (Brown-out Detector) threshold levels: 2.87V/2.72V/2.34V/2.06V
- 96-bit unique ID
- LVR (Low Voltage Reset) threshold voltage level: 1.7 ± 0.1 V

Package

- QFN32 package, 5×5 mm
- QFN48 package, 6×6 mm
- SSOP24 package, pin pitch = 0.635mm

• DC/AC Charactaristics

- Operating Temperature: -40°C~125°C
- Operating voltage: 2.2~3.6V
- Reliability: ESD HBM pass $\pm 2KV$
- Built-in LDO for wide operating voltage: 2.2V to 3.6V
 - > ~2uA @ deep sleep mode, wake up by internal 32K oscillator

1.2 Typical Applications

- TV and STB remote control
- Wireless mouse and keyboard
- Wireless gamepads
- Smart home automation

2 Block Diagram

PAN1020

Figure 2-1 PAN 1020 Block Diagram

3 Pin Information

3.1 QFN 32-PIN Diagram

Figure 3-1 PAN1020 QFN 32-PIN Diagram

3.2 QFN 48-PIN Diagram

Figure 3-2 PAN1020 QFN 48-PIN Diagram

3.3 SSOP24-PIN Diagram

Figure 3-3 PAN1020 SSOP24-PIN Diagram

3.4 Pin Descriptions

Detail pin descriptions see Table 3-1.

Table 3-1 PAN1020 Pin descriptions

	Pin Number		D' N	D: T	
QFN 32	QFN 48	SSOP24	Pin Name	Pin Type	Description
1	2	4	NRESET_PAD	I	Reset pin
			P5.2	I/O	General purpose digital I/O pin
2	3	5	INT1	I	External interrupt pin
			EXT_WAKEUP	I	External wake-up pin
			P4.6	I/O	General purpose digital I/O pin
			ICE_CLK	I	ICE clk input pin
2	1	6	UART1_RXD	I	UART1 RX pin
3	4	6	I2C0_SCL	I/O	I2C0 CLK pin
			SPI1_CLK	О	SPI1 CLK pin
			SPI2_CLK	I	SPI2 CLK pin
4	5	7	VDD1	P	SoC power supply VDD1 pin
4	3	/	VDD3	P	SoC power supply VDD3 pin
			P4.7	I/O	General purpose digital I/O pin
		6 8	ICE_DAT	I	Debug and program data pin
5 6	6		UART1_TXD	О	UART1 TX pin
			I2C0_SDA	I/O	I2C0 data pin
			SPI1_SS	О	SPI1 SS pin

			SPI2_SS	I	SPI2 SS pin
6	7	9	XC2	AO	Crystal pin2
7	8	10	XC1	AI	Crystal pin1
			P5.3	I/O	General purpose digital I/O pin
			PWM0_CH2	О	PWM0 channel2 output pin
8	9	-	ADC_CH0	AI	ADC channel0 analog input pin
			SPI1_MISO	I	SPI1 MISO pin
			SPI2_MISO	О	SPI2 MISO pin
			P1.0	I/O	General purpose digital I/O pin
			PWM0_CH3	О	PWM0 channel3 output pin
9	10	-	ADC_CH1	AI	ADC channel1 analog input pin
			SPI1_MOSI	О	SPI1 MOSI pin
			SPI2_MOSI	I	SPI2 MOSI pin
			P1.2	I/O	General purpose digital I/O pin
			PWM0_CH0	0	PWM0 channel0 output pin
10	11	11	UART1_CTS	I	UART1 CTS pin
			UART0_RXD	I	UART0 RX pin
			ADC_CH2	AI	ADC channel2 analog input pin
			P1.3	I/O	General purpose digital I/O pin
		·	PWM0_CH1	O	PWM0 channel1 output pin
11	12	12	UART1_RTS	О	UART1 RTS pin
			UART0_TXD	О	UART0 TX pin
			ADC_CH3	AI	ADC channel3 analog input pin
			P1.4	I/O	General purpose digital I/O pin
			PWM0_CH4	О	PWM0 channel4 output pin
12	13	-	UART0_CTS	I	UART0 CTS pin
			UART1_RXD	I	UART1 RX pin
			ADC_CH4	AI	ADC channel4 analog input pin
			P1.5	I/O	General purpose digital I/O pin
			PWM0_CH6	О	PWM0 channel6 output pin
13	14	-	UART0_RTS	О	UARTO RTS pin
			UART1_TXD	О	UART1 TX pin
			ADC_CH5	AI	ADC channel5 analog input pin
14	15	13	P3.0	I/O	General purpose digital I/O pin

			UART0_CTS	I	UART0 CTS pin
			ADC_CH6	AI	ADC channel6 analog input pin
			UART1_RXD	I	UART1 RX pin
			PWM0_CH7	О	PWM0 channel7 output pin
			P3.1	I/O	General purpose digital I/O pin
			UART0_RTS	О	UART0 RTS pin
15	16	14	ADC_CH7	AI	ADC channel7 analog input pin
			UART1_TXD	О	UART1 TX pin
			PWM0_CH5	О	PWM0 channel5 output pin
			P5.1	I/O	General purpose digital I/O pin
			PWM0_CH6	О	PWM0 channel output pin
-	17	-	UART0_RXD	I	UART0 RX pin
			UART1_CTS	I	UART1 CTS pin
			I2C1_SCL	I/O	I2C1 CLK pin
			P5.0	I/O	General purpose digital I/O pin
			UARTO_TXD	О	UART0 RX pin
-	18	-	PWM0_CH7	0	PWM0 channel7 output pin
			UART1_RTS	0	UART1 RTS pin
			I2C1_SDA	I/O	I2C1 data pin
			P2.7	I/O	General purpose digital I/O pin
	19		TM2_EXT	I	Timer2 external input pin
-	19		SPI0_CLK	О	SPI0 CLK pin
			SPI2_CLK	I	SPI2 CLK pin
			P0.1	I/O	General purpose digital I/O pin
			SPI0_SS	О	SPI0 SS pin
	20		PWM0_CH3	О	PWM0 channel3 output pin
-	20	-	UART0_RXD	I	UART0 RX pin
			UART1_CTS	I	UART1 CTS pin
			SPI2_SS	I	SPI2 SS pin
			P0.0	I/O	General purpose digital I/O pin
	21		PWM0_CH2	О	PWM0 channel2 output pin
-	∠1	-	UART0_TXD	О	UART0 TX pin
			UART1_RTS	О	UART1 RTS pin
-	22	-	P5.4	I/O	General purpose digital I/O pin

			TM2_CNT_OUT	О	TM2_CNT output pin
			SPI0_MOSI	О	SPI0 MOSI pin
			SPI2_MOSI	I	SPI2 MOSI pin
			P3.2	I/O	General purpose digital I/O pin
			INT0	I/O	External interrupt0
-	23	15	TM0_EXT	I	Timer0 external input pin
			SPI0_MISO	I	SPI0 MISO pin
			SPI2_MISO	О	SPI2 MISO pin
16	24	16	DVDD	P	Core power supply, generaged by internal LDO
-	25	-	DVDD18	P	-
			P3.4	I/O	General purpose digital I/O pin
-	26	17	TM0_CNT_OUT	О	TM0_CNT output pin
			I2C0_SDA	I/O	I2C0 data pin
			P3.5	I/O	General purpose digital I/O pin
-	27	-	TM1_CNT_OUT	О	TM1_CNT output pin
			I2C0_SCL	I/O	I2C0 CLK pin
			P3.6	I/O	General purpose digital I/O pin
17	20		TM1_EXT	1	Timer1 external input pin
17	28	-	SPI1_SS	0	SPI1 SS pin
		*	SPI3_SS	I	SPI3 SS pin
			P0.4	I/O	General purpose digital I/O pin
18	29		PWM0_CH5	О	PWM0 channel5 output pin
10	29		SPI0_SS	О	SPI0 SS pin
			SPI2_SS	I	SPI2 SS pin
			P5.5	I/O	General purpose digital I/O pin
	30		SPI0_SS	О	SPI0 SS pin
-	30	-	PWM0_CH5	О	PWM0 channel5 output pin
			SPI2_SS	I	SPI2 SS pin
			P5.6	I/O	General purpose digital I/O pin
			I2C0_SCL	I/O	I2C0 CLK pin
-	31	-	PWM0_CH6	О	PWM0 channel6 output pin
			SPI1_MOSI	О	SPI1 MOSI pin
			SPI3_MOSI	I	SPI3 MOSI pin
19	32	-	P5.7	I/O	General purpose digital I/O pin

			I2C0_SDA	I/O	I2C0 data pin
			PWM0_CH7	О	PWM0 channel7 output pin
			SPI1_MISO	I	SPI1 MISO pin
			SPI3_MISO	О	SPI3 MISO pin
			P2.2	I/O	General purpose digital I/O pin
			I2C1_SCL	I/O	I2C1 CLK pin
20	33	-	PWM0_CH0	О	PWM0 channel0 output pin
			SPI1_CLK	О	SPI1 CLK pin
			SPI3_CLK	I	SPI3 CLK pin
			P2.3	I/O	General purpose digital I/O pin
			I2C1_SDA	I/O	I2C1 data pin
21	34	18	PWM0_CH1	О	PWM0 channel1 output pin
			SPI1_SS	0	SPI1 SS pin
			SPI3_SS	I	SPI3 SS pin
			P2.4	I/O	General purpose digital I/O pin
22	35	10	UART1_RXD	I	UART1 RX pin
22	33	19	PWM0_CH2	0	PWM0 channel2 output pin
			UART0_CTS	I	UART0 CTS pin
			P2.5	I/O	General purpose digital I/O pin
23	26	36 20	UART1_TXD	0	UART1 TX pin
23	30		20	PWM0_CH3	О
			UART0_RTS	О	UART0 RTS pin
			P2.6	I/O	General purpose digital I/O pin
24	37	21	SPI0_SS	О	SPI0 SS pin
24	31	21	PWM0_CH4	О	PWM0 channel4 output pin
			SPI2_SS	I	SPI2 SS pin
			P0.7	I/O	General purpose digital I/O pin
			SPI0_CLK	О	SPI0 CLK pin
25	38	22	PWM0_CH0	О	PWM0 channel0 output pin
			SPI2_CLK	I	SPI2 CLK pin
			I2C1_SCL	I/O	I2C1 CLK pin
			P0.6	I/O	General purpose digital I/O pin
26	39	23	SPI0_MISO	I	SPI0 MISO pin
			PWM0_CH1	О	PWM0 channel1 output pin

			SPI2_MISO	О	SPI2 MISO pin
			UART1_TXD	О	UART1 TX pin
			UART0_RTS	О	UARTO RTS pin
			32K XC2	AO	32K Crystal pin2
			P0.5	I/O	General purpose digital I/O pin
			SPI0_MOSI	О	SPI0 MOSI pin
			PWM0_CH4	О	PWM0 channel4 output pin
27	40	24	SPI2_MOSI	I	SPI2 MOSI pin
			UART1_RXD	I	UART1 RX pin
			UART0_CTS	I	UART0 CTS pin
			32K XC1	AI	32K Crystal pin1
-	41	-	P2.1	I/O	General purpose digital I/O pin
			P2.0	I/O	General purpose digital I/O pin
28	42		SPI1_SS	0	SPI1 SS pin
28	72	42 -	SPI3_SS	I	SPI3 SS pin
			I2C1_SDA	I/O	I2C1 data pin
			P1.7	I/O	General purpose digital I/O pin
			SPI1_MISO	I	SPI1 MISO pin
-	43	-	SPI3_MISO	O	SPI3 MISO pin
			UART0_TXD	О	UART0 TX pin
			UART1_RTS	О	UART1 RTS pin
			P1.6	I/O	General purpose digital I/O pin
			SPI1_MOSI	О	SPI1 MOSI pin
-	44	-	SPI3_MOSI	I	SPI3 MOSI pin
			UART0_RXD	I	UART0 RX pin
			UART1_CTS	I	UART1 CTS pin
	·		P1.1	I/O	General purpose digital I/O pin
	45		SPI1_CLK	О	SPI1 CLK pin
-	43	-	SPI3_CLK	I	SPI3 CLK pin
			I2C0_SCL	I/O	I2C0 CLK pin
29	46	-	P0.3	I/O	General purpose digital I/O pin

30	47	-	P0.2	I/O	General purpose digital I/O pin
31	48	1	ANT	AIO	Antenna pin
32	1	3	VDD2	P	RF power supply VDD2 pin
33	49	2	GND	P	Ground pin

4 Electrical Characteristics

All the parameters are accurate to the one decimal place.

4.1 Absolute Maximum Ratings

Table 4-1 Absolute maximum ratings

Samb al	Description		Unit		
Symbol	Description	Min	Тур	Max	Unit
VDD	VDD1/VDD2	-0.3	-	3.6	V
V_{I}	Input voltage	-0.3	-	VDD	V
Vo	Output voltage	VSS	-	VDD	V
Тор	Operating Temperature	-40	-	125	°C
T _{STG}	Storage Temperature	-40	-	125	°C

Note: Exceeding one or more of the limiting values may cause permanent damage to PAN1020.

Caution: Electrostatic sensitive device, comply with protection rules when operating.

4.2 DC Electrical Characteristics

Table 4-2 Voltage and current

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
VDD1/VDD2	Power Supply	2.2	3	3.6	V	TA=25°C
VSS	Ground	-	0	-	V	-
I _{DP_SLP_PAD}	Deep sleep current	1.5	2	2.5	uA	MCU power down, SRAM
						maintain, HCLK and 32K RC
						off, wake up by GPIO or RE-
						SET
I _{DP_SLP_RC}	Deep sleep current	2	3	5	uA	MCU power down, SRAM
						maintain, HCLK off, 32K RC on
I _{TX,0dBm}	Operating Current of	-	17	-	mA	0dBm output power
	TX mode					
I _{TX,8dBm}	Operating Current of	-	31	-	mA	8dBm output power
	TX mode					
I _{TX,10dBm}	Operating Current of	-	41	-	mA	10dBm output power
	TX mode					
I_{RX}	Operating Current of	-	16	-	mA	Maximum LNA Gain
	RX mode					
V_{OH}	Output high level voltage	VDD-0.3	-	VDD	V	-
V _{OL}	Output low level voltage	VSS	-	VSS+0.3	V	-
V _{IH}	Input high level voltage	2.0	3	3.6	V	-
V _{IL}	Input low level voltage	VSS	-	VSS+0.3	V	-

4.3 16 MHz Crystal Oscillator Characteristics

Table 4-3 16M RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F _{XTAL(16M)}	Crystal oscillator frequency	-	-	16	-	MHz
ESR(16M)	Equivalent series resistance	-	-	-	80	Ω
$\Delta f_{XTAL(16M)}$	Crystal frequency tolerance	-	-20	-	20	ppm
V _{CLK(EXT)(16M)}	External clock voltage	-	0.1	0.8	-	V
		$f_C = 50 \text{ kHz}$				
φN _{(EXTERNAL)16M}	Phase noise	in case of an external	-	-	-130	dBc/Hz
		reference clock				

4.4 32 KHz Crystal Oscillator Characteristics

Table 4-4 32K RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CLK(EXT)(32K)}	External clock voltage	peak-peak voltage of external clock at XTAL32Kp, pin XTAL32Km floating. note: XTAL32Kp is internally AC coupled	0.1	0.2	1.5	V
f _{XTAL(32k)}	Crystal oscillator frequency	frequency range for an external clock (for a crystal, use either 32.000 kHz or 32.768 kHz)	TBD	32.768	TBD	KHz
ESR(32k)	Equivalent series resistance		1	1	100	ΚΩ
$\Delta f_{\mathrm{XTAL(32k)}}$	Crystal frequency tolerance (including aging)	Timing accuracy is dominated by crystal accuracy. A much smaller value is preferred	-250	ı	250	ppm

4.5 Stable Low Frequency RCX Oscillator Characteristics

Table 4-5 Stable Low Frequency RCX Oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$f_{RC(RCX)}$	RCX oscillator frequency	default setting	-	32	-	Khz
$\Delta f_{RC(RCX)}$	RCX oscillator frequency drift	-	-500	-	500	ppm

4.6 AC Electrical Characteristics

Table 4-6 RF

Symbol	Condition	Min	Тур	Max	Unit
	General frequency				
Fop	Operating frequency	2400	-	2483	MHz
PLL _{res}	PLL Programming resolution	-	1	-	MHz
Fxtal	Crystal frequency	-	16	-	MHz
DR	Data rate	-	1	-	Mbps
Transmitter					
PRF	Output power	2	8	13	dBm
PRFC	Output Power Range	-16	-	13	dBm
PBW	20dB Bandwidth for Modulated Carrier at 1Mbps	950	-	1100	MHz
Spur2M	In-band 2M Spurious Emission	-	-	-26	dBm
Spur≥3M	In-band 3M or greater Spurious Emission	-	-	-36	dBm
MDR	Maximum drift rate	-	/	13	KHz/50us
FD	Frequency Deviation	225	-	275	KHz
Receiver					
RXmax	Maximum received signal at <0.1% BER	-	0	-	dBm
RXSENS	Sensitivity (0.1%BER) @1Mbps	-	-90	-	dBm
C/ICO	C/I Co-channel interference	-	11	-	dBc
C/I1M	Adjacent 1MHz interference	-	-2	-	dBc
C/I2M	Adjacent 2MHz interference	-	-22	-	dBc
C/I≥3M	Adjacent ≥ 3MHz interference	-	-38	-	dBc
C/Iimage	Image frequency interference	-	-12	-	dBc
C/Iimage±1M	Adjacent (1MHz) interference to in-band image fre-	-	-35	-	dBc
	quency				
P_IMD	Intermodulation interference	-	-45	-	dBm
P_Blocking	Out-of-band Blocking interference	-30		-	dBm

Table 4-7 DPLL

Symbol	Parameter	Min	Тур	Max	Unit	Notes
VDD2	Power Supply	2.2	-	3.6	V	-
T_A	Temperature	-40	-	125	${\mathbb C}$	-
		-	12	-	MHz	-
Fin	Input Clock frequency	-	16	-	MHz	-
		-	24	-	MHz	-
F _{DPLL}	Clock frequency	-	52	-	MHz	-

Table 4-8 ADC

Symbol	Parameter	Min	Тур	Max	Unit	Notes
-	Resolution	-	10	-	Bit	-
		2.5(for				
VDD2	Power Supply	VTOP=2.4V)		3.6	VDDA	
VDD2	Power Supply	2.2(for	-	3.0	VDDA	-
		VTOP=1.4V)				
I _{TOT}	Operation Current	880	-	1600	uA	-
INL	Integral Nonlinearity Error	-	-	±2	LSB	
PCLK	System Clock	-	-	52	MHz	-
Fadc	Clock Frequency	-	-	26	MHz	-
FS	Sample Rate	-	-	1.625	MHz	-
Ts	Sample Time	7	-	-	PCLK	-
Th	Compare Time	25	-	-	PCLK	-
TCONV	Data Output cycle	32	50	170	PCLK	-
N	S-H counter	1	2	7	-	-
Vin	A1 :	0.4	-	2.4	V	
Vin	Analog input voltage	0.4	-	1.4	V	-
Cin	Input Capacitance	-	10	-	pF	-
Rin	Imput magiston on	14.6			ΚΩ	See
KIII	Input resistance	14.0	-	-	K22	Note
Vref	ADC reference voltage		VBG	-	V	-
DATA	ADC Output	000	-	FFF	HEX	-
SFDR	Spurious Free Dynamic	-	64	-	dB	
	range					-

Note:

$$Rin = \frac{\text{EXTSMPT} < 9:0 > (1 + \text{ADC_CTL} < 19:16 > 1)}{f_{adc} \times C_{in} \times \ln \frac{V_{in}}{V_{in} - V_{cont}}}$$

Table 4-9 LVR

Symbol	Parameter	Min	Тур	Max	Unit	Notes
VDD2	Power Supply	2.2	3	3.6	V	-
V_{LVR}	Threshold Voltage	1.6	1.7	1.8	V	-

Table 4-10 BOD

Symbol	Parameter	Vout(V) 1→0	Vout(V) 0→1	Test Conditions	Notes
$ m V_{BOD}$	Brown-Out Detector	1.93	2.06	BODEN=1 BODVL<1:0>=00	-
		2.20	2.34	BODEN=1	-

		BODVL<1:0>=01	
2.55	2.72	BODEN=1	
2.33	2.72	BODVL<1:0>=10	-
2.82	2.87	BODEN=1	
2.82	2.87	BODVL<1:0>=11	-

5 Application Reference Design

5.1 QFN-32 Application Reference Circuit

Figure 5-1 Application Reference Circuit for QFN32

5.2 QFN-48 Application Reference Circuit

Figure 5-2 Application Reference Circuit for QFN48

5.3 SSOP24 Application Reference Circuit

Figure 5-3 Application Reference Circuit for SSOP24

6 Pakage Dimensions

6.1 QFN-32 Package Dimensions

Figure 6-1 QFN32 Package Views

Table 6-1 QFN32 Package Detail Parameters

DIM SYMBOL	MIN.(mm)	NOM.(mm)	MAX.(mm)					
A	0.70	0.75	0.80					
A	0.85	0.90	0.95					
A1	0	0.02	0.05					
A3	-	0.20 REF	-					
b	0.18	0.23	0.28					
D		5.00BSC						
Е		5.00BSC						
D2	3.55	3.65	3.75					
E2	3.55	3.65	3.75					
e		0.50BSC						
L	0.30	0.35	0.40					
K	0.20	-	-					
aaa		0.15						
bbb		0.10						
ccc	0.10							
ddd	0.05							
eee	0.08							
fff		0.10						

6.2 QFN-48 Package Dimensions

Figure 6-2 QFN48 Package Views

Table 6-2 QFN48 Package Detail Parameters

SYMBOL DIM	MIN.(mm)	MAX.(mm)
A	6.0 ± 0.1	
В	6.0 ± 0.1	
С	0.70	0.80
C1	0~0.050	
C2	0.203TYP	
D1	4.05TYP	
D2	4.05TYP	
Е	0.200TYP	
E1	0.400TYP	
F	0.400TYP	

6.3 SSOP24 Package Dimensions

Figure 6-3 SSOP24 Package Views

7 Precautions

- 1) This product is a CMOS device and should be protected against static electricity during storage, transportation and use.
- 2) Grounding when device is in use.
- 3) Reflow temperature can not exceed 260°C.

8 Storage Conditions

- 1) Products should be stored in sealed packages: when the temperature is less than 30 degrees and the humidity is less than 90%, it can last for 12 months.
- 2) After the package is opened, the components will be used in the reflow process or other high-temperature processes. The following conditions must be met:
 - a) Completed within 72 hours and the factory environment is less than 30°C≤ 60% RH.
 - b) Stored in 10% RH environment.
 - c) Exhaust at 125°C for 24 hours to remove internal water vapor before used.

9 Contact Us

Shanhgai headquarters:

Tel: 021-50802371

Fax: 021-50802372

Add:Room 802, No.666 summer, Shanghai Zhangjiang Hi-Tech Park Road

Suzhou R&D center:

Tel: 0512-68136052

Fax: 0512-68136051

Add: 4th floor, Fuhua Technology Building, No.199 Chongwen Road, Suzhou, Jiangsu Province

Shenzhen Agency:

Tel: 0755-26403799

Fax:0755-26403799

Add: Room 106, Weijie Building, Sangda Hi-tech Park No.11, Technology Road, Nanshan District