Homework #4 (100 points)

207.547 Seminar in Experimental Psychology: Computational Modeling Spring 2018

Due: Thursday, May 17th, at 11:59 pm

- **1.** (50 pts). Consider another hierarchical Bayesian model (M4) of memory retention where we assume no individual differences for beta (β):
 - (1) (5 pts) Download Retention_3_Stan.R file from the GitHub repo (https://github.com/stan-dev/example-models/tree/master/Bayesian Cognitive Modeling)
 - (2) (25 pts) Modify "Retention_3_Stan.R", create M4, and save it as "Retention_4_Stan.R". Modify codes as needed for the latest Stan version (e.g., replace # with //).
 - (3) (20 pts) Using Stan, find the following:
 - (2a) The posterior distribution of individual and group (hyper) parameters.
 - (2b) The 95% Highest Density Interval (HDI) for the parameters.
 - (4) **Bonus point (30 pts warning: it may take extra effort to finish this bonus question)**: add lines in the generated quantities block so that you can add the 'log_lik' variable, and compute leave-one-out cross validation information criterion (LOOIC) using the loo package in R. See this example: https://github.com/CCS-Lab/hBayesDM/blob/master/exec/ra_prospect.stan. Then, calculate LOOIC using the loo:loo function. See this example showing how to extract LOOIC (https://github.com/CCS-Lab/hBayesDM/blob/master/R/extract_ic.R).

Attach your R/Stan program and outputs.

2. (50 pts).

- (1) Using ra_prospect_stan_singleSubj.R, program an R code that will run ra_prospect_w_reparam.stan.
- (2) Run and acquire the posterior distribution of individual and group parameters. Compute the 95% HDI for the parameters.
- (3) Try the following priors and repeat (2)
 - a. Half-Normal(0, 1) (mean of 0 and SD of 1) for sigma of all three parameters
 - b. Use Half-Cauchy(0, 5) for sigma of tau and lambda but Half-Normal(0, 1) for sigma of rho. Hint: you may need to use different variable names for sigma of each parameter.

Attach your R/Stan program and outputs.