QUÍMICA (Grado en Física) Febrero 2019 Nacional Primera Semana [1]

NOTA: NO ESTA PERMITIDA CALCULADORA, ni ningún tipo de material

- 1.- (1 punto) Al resolver la ecuación de ondas de Schrödinger para el átomo de hidrógeno, se encuentra que la distancia del núcleo a la que es máxima la probabilidad de encontrar al electrón coincide con el radio de la órbita de Bohr, pero el concepto de *orbital* en la teoría mecanocuántica es diferente al de *órbita* en la teoría clásica de Bohr. ¿En qué se diferencian ambos conceptos?
- 2.- (1 punto) ¿Por qué el fósforo, cuya capa electrónica más externa es 3s²3p³, puede actuar con las valencias covalentes tres y cinco?
- 3.- (1,5 puntos) Para calcular la energía libre normal de la reacción de combustión de etano (C_2H_6) , dando dióxido de carbono (CO_2) y agua (H_2O) , ¿qué datos se necesitan? ¿Cómo se usan? (deje planteado el cálculo)
- 4.- (1,5 puntos) Calcule el valor de la constante de equilibrio K_p para la reacción: $2NO_2 = N_2O_4$ sabiendo que K_c para la reacción: $N_2O_4 \rightleftarrows 2NO_2$ vale 3,2 (temperatura 150 °C, en ambos casos), y que la constante de los gases vale 0,082 atm·L·K⁻¹·mol⁻¹.
- 5.- (1 punto) Una disolución acuosa de ácido sulfuroso 0,5 M tiene pH = 1,1, a 25 °C. Calcule **aproximadamente** el pK_a del ácido, a esa temperatura.
- 6.- (1 punto) Dibuje el esquema de una pila para medir el potencial normal de reducción, E°, del electrodo de cobre. Ponga sobre cada electrodo la reacción que en él trascurre, y señale los flujos de electrones y de iones en la pila.

DATO: Potencial normal de reducción del electrodo de cobre = 0,34V

7.- (1 punto)

En la pila formada por los electrodos de cinc y de hidrógeno: $Zn(s)/Zn^{2+}(aq)//H^{+}(aq)/H_{2}(g),Pt$ Calcule la masa de hidrógeno gas, H_{2} , que se habrá generado cuando por la pila haya pasado 1 F (faraday) de corriente.

- 8.- (1 punto) De las siguientes reacciones, diga cuáles son ácido-base, cuáles de oxidación-reducción, cuáles de síntesis, cuáles de descomposición, y por qué:
 - a) $HNO_3 + NaOH \rightarrow NaNO_3 + H_2O$
 - b) $N_2 + 3H_2 \rightleftharpoons 2NH_3$
 - c) $CO_2 + CaO \rightarrow CaCO_3$
 - d) $ZnO + C \rightarrow Zn + CO$
 - e) $CaCO_3 \rightleftharpoons CaO + CO_2$
- 9.- (1 punto) Ponga un ejemplo de anhidrido orgánico, de ácido carboxílico y de amida, y nombre los compuestos que ha puesto como ejemplo.

QUÍMICA (Grado en Física) Febrero 2019 Nacional y UE 2ª semana [2]

NOTA: NO ESTA PERMITIDA CALCULADORA, ni ningún tipo de material

1.- (1 punto) La primera y segunda energías de ionización de los elementos litio y berilio son:

(kJ/mol)	1 ^a	2 ^a
Li	520	7.300
Ве	900	1.760

¿Por qué la primera es mayor en el berilio, y por qué la segunda es mucho mayor en el litio?

- 2.- (1 punto) Diga cuál es la *valencia iónica* de los metales alcalinos y alcalinotérreos, de los halógenos y de los gases nobles. Explique por qué tienen esa valencia iónica.
- 3.- (1 punto) Razone por qué estará semillena la banda de un metal alcalino, al ser éste un elemento con un solo electrón en su capa externa.
- 4.- (1 punto) Las entalpías normales de formación de los óxidos de nitrógeno NO y NO₂ son, a 25 °C (en kJ): 90,4 (NO) y 33,9 (NO₂). Dedúzca en qué sentido se desplazará el equilibrio: $2NO + O_2 = 2NO_2$, si de 25 °C pasamos a 50 °C.
- 5.- (1,5 puntos) La constante de ionización o disociación del ácido nitroso (HNO₂) en agua vale $K_a = 4,5\cdot 10^{-4}$ (a 25 °C). Calcule cuánto valdrá su grado de disociación, α , en una disolución acuosa 0,5 M.
- 6.- (1,5 puntos) La sal fluoruro cálcico, CaF_2 , se disuelve poco en agua, alcanzando una concentración máxima o de saturación igual a 2,0x10⁻⁴ M. Calcule su producto de solubilidad, $K_{\rm ps}$.
- 7.- (1 punto) La reacción: $Zn(s) + CuSO_4(aq) = ZnSO_4(aq) + Cu(s)$, puede ocurrir directamente, introduciendo cinc en disolución de sulfato de cobre, o puede ocurrir en una pila galvánica formada por los electrodos de cinc y cobre. ¿Explique qué diferencias hay entre ambos casos?
- 8.- (1 punto) Explique por qué en las reacciones en disolución en las cuales algún producto es insoluble y precipita, o es gaseoso y se desprende, el equilibrio de la reacción se desplaza hacia la formación de productos.
- 9.- (1 punto) Explique por qué los puntos de fusión y ebullición son mucho más altos en los alcoholes que en los hidrocarburos

QUÍMICA (Grado en Física) Setiembre 2019 Nacional y Unión Europea Original [1]

NOTA: NO ESTA PERMITIDA CALCULADORA, ni ningún tipo de material

- 1.- (1 punto) Explique qué es carga nuclear efectiva y qué es efecto pantalla en un átomo.
- 2.- (1 punto) ¿Por qué el azufre, cuya capa electrónica más externa es 3s²3p⁴, puede actuar con las valencias covalentes dos, cuatro y seis?
- 3.- (1 punto) ¿Cómo se explican las bandas de energía en los metales a partir de la teoría de orbitales moleculares deslocalizados?
- 4.- (1,5 punto) La constante de equilibrio de la reacción H_2 + I_2 = 2HI, a 425 °C, vale K_c = 49. Si en un recipiente de 1 litro introducimos 1 mol de H_2 y 1 mol de I_2 , ¿qué concentración de HI se alcanzará en el equilibrio, a esa temperatura?
- 5.- (1 punto) En la teoría del estado de transición se postula un complejo activado, intermedio entre reaccionantes y productos. Una vez que se ha formado este complejo, ¿qué caminos puede seguir la reacción? Explíquelo tomando como ejemplo la formación de fluoruro de hidrógeno, a partir de flúor e hidrógeno.
- 6.- (1 punto) Escriba la reacción de ácido clorhídrico con amoniaco y diga cuáles son los ácidos y las bases conjugadas en ella.
- 7.- (1,5 puntos) De un cierto sulfato, medimos su solubilidad en agua, obteniendo que el valor de su concentración máxima o de saturación es 0,020 M. Tenemos anotado su producto de solubilidad: $K_{ps} = 1.10^{-10}$, pero no sabemos cuál es el catión de esta sal. <u>Deduzca</u>, a partir de estos datos, si puede ser plata (Ag_2SO_4), o si es otro catión.
- 8.- (1 punto) Indicar en las siguientes pilas: Zn-Pb; Ag-Cu; Pb-Cu, cuál es el polo positivo, el valor del potencial normal de la pila, y la reacción que en ella tiene lugar en condiciones normales. Datos Potencial normal de reducción de electrodo, Eº:

Zn ²⁺ /Zn	Pb ²⁺ /Pb	Cu ²⁺ /Cu	Ag⁺/Ag
-0,76 V	-0,13 V	0,34 V	0,80 V
	50000000000		

- 9.- (1 punto) Cuales de las siguientes oleofínas presentan isomería geometría?. Justifique **para cada uno de ellos** la razón de su selección.
 - a) CH₃-CH=CH-CH₂-CH₃
 - b) CH₃-CH₂-CH=CH-CH₂-CH₃
 - c) CH₃-CH₂-CH=CH₂
 - d) CH₃-CH=Ç-CH₃ CH₃