COMP3670/6670: Introduction to Machine Learning

Release Date. Aug 3th, 2023

Due Date. 11:59pm, Aug 28th, 2023

Maximum credit. 100

Exercise 1

Properties of Matrices

(2+2+2+3+3+4+3 credits)

- (a) Let $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$ be a square matrix. Show that \mathbf{A} is symmetric.
- (b) Compute the square of A, that is A^2 and show that A^2 is also symmetric.
- (c) Is it true for any symmetric matrix A, A^2 is also symmetric? Show your working.
- (d) Let **A** be a square matrix and $f(\mathbf{X})$ and $g(\mathbf{X})$ be *n*-th order polynomials, defined by $\sum_{i=0}^{n} a_i \mathbf{X}^i$ where a_i are arbitrary real numbers. Show that the matrices $f(\mathbf{A})$ and $g(\mathbf{A})$ commute, i.e, $f(\mathbf{A})g(\mathbf{A}) = g(\mathbf{A})f(\mathbf{A})$ for arbitrary order n.
- (e) Let **A** and **B** be rectangular matrices of orders $n \times k$ and $r \times s$, respectively. The matrix of order $nr \times ks$ represented in a block form as

$$\begin{bmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} & \dots & a_{1k}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} & \dots & a_{2k}\mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}\mathbf{B} & a_{n2}\mathbf{B} & \dots & a_{nk}\mathbf{B} \end{bmatrix}$$

is called the Kronecker product $\mathbf{A} \otimes \mathbf{B}$ of the matrices \mathbf{A} and \mathbf{B} .

Let

$$\mathbf{X} = \begin{bmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{bmatrix}.$$

X is a so-called magic square, since its row sums, column sums, principal diagonal sum, and principal counter diagonal sum are all equal. Is $X \otimes X$ a magic square?

- (f) Determine if $\mathbf{X} \otimes \mathbf{X}$ is a magic square for any magic matrix \mathbf{X} of order $n \times n$. Show an example of a magic square with n=2 for which $\mathbf{X} \otimes \mathbf{X}$ is also a magic square.
- (g) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$. What conditions should \mathbf{x}, \mathbf{y} satisfy such that $\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{x} = \mathbf{y} \otimes \mathbf{x} \otimes \mathbf{y}$?

Exercise 2

Solving Linear Systems

(3+3 credits)

Find the set S of all solutions \mathbf{x} of the following inhomogenous linear systems $\mathbf{A}\mathbf{x} = \mathbf{b}$, where \mathbf{A} and \mathbf{b} are defined as follows. Write the solution space S in parametric form.

(a)
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 6 & 2 & -5 \\ 2 & 1 & -1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 5 \\ -2 \\ 3 \end{bmatrix}$$

(b)

$$\mathbf{A} = \begin{bmatrix} 4 & 3 & 2 & 2 & -2 \\ 0 & 1 & 2 & 2 & 6 \\ 3 & 2 & 1 & 1 & -3 \\ -1 & 0 & 1 & 1 & 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 5 \\ 23 \\ -2 \\ 16 \end{bmatrix}$$

Exercise 3

Inverses and rank

(3+4+6 credits)

- (a) Let $\mathbf{A} \in \mathbb{M}_{n \times n}(\mathbb{R})$ be an invertible matrix. Show that the transpose of the inverse of \mathbf{A} , denoted $(\mathbf{A}^{-1})^T$, is equal to the inverse of the transpose of \mathbf{A} , denoted $(\mathbf{A}^T)^{-1}$.
- (b) Find the values of $[a, b, c]^T \in \mathbb{R}^3$ for which the inverse of the following matrix exists.

$$\begin{bmatrix} 1 & 1 & b \\ 1 & a & c \\ 1 & 1 & 1 \end{bmatrix}$$

(c) Let **A** be an arbitrary matrix in $\mathbb{M}_{m \times n}(\mathbb{R})$, where m and n denote the number of rows and columns of **A**, respectively. Prove that $\mathbf{rk}(\mathbf{A}) = \mathbf{rk}(\mathbf{A}^T)$, where $\mathbf{rk}(\mathbf{A})$ denotes the rank of matrix **A**.

Exercise 4 Subspaces (2+2+2+3+4 credits)

- (a) Which of the following sets are subspaces of \mathbb{R}^n ? Prove your answer. (That is, if it is a subspace, you must demonstrate the subspace axioms are satisfied, and if it is not a subspace, you must show which axiom fails.)
 - (i) $A = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : x_1 \ge 0, x_2 \ge 0, \dots, x_n \ge 0\}$
 - (ii) $B = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : \text{at least one } x_i \text{ is irrational}\}$
 - (iii) $C = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : \sum_{i=1}^n (-1)^{i+1} x_i \ge 0\}$
 - (iv) D =The set of all solutions \mathbf{x} to the matrix equation $\mathbf{A}\mathbf{x} = \mathbf{b}$, for some matrix \mathbf{A} and some vector \mathbf{b} . (Hint: Your answer may depend on \mathbf{A} and \mathbf{b} .)
- (b) Let V be an inner product space, and let W be a subspace of V. The orthogonal complement of W, denoted W^{\perp} , is defined as the set of all vectors in V that are orthogonal to every vector in W. Show that W^{\perp} is also a subspace of V.

Exercise 5

Linear Independence

(4+4+4+4+4 credits)

Let V and W be vector spaces. Let $T: V \to W$ be a linear transformation.

The image of T is defined as:

$$\mathbf{Im}(T) = \{ w \in W \mid \exists v \in V \text{ such that } w = T(v) \}.$$

The kernel of T is defined as:

$$\mathbf{Ker}(T) = \{ v \in V \, | \, T(v) = 0 \}.$$

We say that T is *injective* if for all $u, v \in V$, T(u) = T(v) implies u = v.

- (a) Show that $T(\mathbf{0}) = \mathbf{0}$.
- (b) For any integer $n \geq 1$, show that given a set of vectors $\{\mathbf{v}_1, \dots \mathbf{v}_n\}$ in V and a set of coefficients $\{c_1, \dots, c_n\}$ in \mathbb{R} , that

$$T(c_1\mathbf{v}_1 + \ldots + c_n\mathbf{v}_n) = c_1T(\mathbf{v}_1) + \ldots + c_nT(\mathbf{v}_n)$$

(c) Prove that $\mathbf{Im}(T)$ is a vector subspace of W and $\mathbf{Ker}(T)$ is a vector subspace of V.

(d) The Rank-Nullity Theorem states that for a linear map $T:V\to W$, the dimension of the finite-dimensional domain V is equal to the sum of the dimensions of the kernel and the image of T, i.e.,

$$\dim(V) = \dim(\mathbf{Ker}(T)) + \dim(\mathbf{Im}(T)).$$

Give an example of a linear map T such that dim(Im(T)) = 3 and dim(Ker(T)) = 2.

(e) Consider the transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$, where

$$\mathbf{A} = \begin{bmatrix} 1 & a & b \\ 1 & 1 & c \\ 1 & 1 & 1 \end{bmatrix}$$

with $[a, b, c]^T \in \mathbb{R}^3$. Find the conditions on a, b, and c for which this transformation is injective.

Exercise 6 Inner Products (3+3+4+3+5 credits)

- (a) Show that if an inner product $\langle \cdot, \cdot \rangle$ is symmetric and linear in the second argument, then it is bilinear.
- (b) Given a 2×2 rotation matrix **R** represented as

$$\mathbf{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix},$$

show that it preserves the standard inner product, i.e., for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$, we have $\mathbf{x}^T \mathbf{y} = (\mathbf{R} \mathbf{x})^T (\mathbf{R} \mathbf{y})$.

(c) Now, let us consider an inner product in \mathbb{R}^2 defined by the 2×2 matrix

$$\mathbf{D} = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}.$$

Find the matrix \mathbf{D}' (in terms of \mathbf{R} and \mathbf{D}) such that the inner product defined by \mathbf{D} is preserved under the rotation by \mathbf{R} , i.e., for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$, we have $\mathbf{x}^T \mathbf{D} \mathbf{y} = (\mathbf{R} \mathbf{x})^T \mathbf{D}' (\mathbf{R} \mathbf{y})$.

- (d) For $\theta = \pi/4$, compute **D**' explicitly.
- (e) Consider $\mathbf{u} = [1,1]^T \in \mathbb{R}^2$ and $\mathbf{v} = [2,-1]^T \in \mathbb{R}^2$. Compute the angle between \mathbf{u} and \mathbf{v} under the inner product defined by \mathbf{D} , and the angle between $\mathbf{R}\mathbf{u}$ and $\mathbf{R}\mathbf{v}$ under the inner product defined by \mathbf{D}' .

Exercise 7 Orthogonality (7+4 credits)

(a) Let V denote a vector space together with an inner product $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$.

Let \mathbf{x}, \mathbf{y} be **non-zero** vectors in V.

Prove or disprove that if \mathbf{x} and \mathbf{y} are orthogonal, then they are linearly independent.

(b) Determine if the 'vectors' defined by the functions $p(x) = 3x^2 - 1$ and q(x) = 2x + 1 in the inner product space of continuous functions on the interval [0,1] with the inner product defined by $\langle f,g\rangle = \int_0^1 f(x)g(x) \, dx$ are orthogonal.

You may find the formulae helpful:

$$\int_{a}^{b} \alpha x^{n} dx = \left[\frac{\alpha x^{n+1}}{n+1} \right]_{a}^{b} = \frac{\alpha b^{n+1}}{n+1} - \frac{\alpha a^{n+1}}{n+1}$$

$$\int_a^b (f(x)+g(x))\,dx = \int_a^b f(x)\,dx + \int_a^b g(x)\,dx$$