Lab 3 – Day 2 Model of DC-DC converters and battery

Simulink implementation

DC-DC converter of PV module

- DC-DC converter of the photovoltaic module
 - Contains a lookup table of efficiency given input PV voltage
 - Efficiency in [0, 1]
 - Block implementation:
 - $(V_{PV} \cdot I_{PV}) \cdot efficiency = (V_{OUT} \cdot I_{OUT})$
 - V_{OUT} = 3.3V (DC bus voltage)
 - $I_{OUT} = (V_{PV} \cdot I_{PV} \cdot efficiency)/V_{OUT}$

DC-DC converter of PV module

- Must populate the lookup table of efficiency given input voltage of the photovoltaic module
 - Open thePV_DCDCconverter.pdf file
 - Page 5: curve of efficiency w.r.t. input voltage
 - Use the samples of the curve to populate the lookup table

DC-DC converter of PV module

- How to:
 - 1. Digitize the curve
 - 2. Import file in Matlab
 - 3. Set the lookup table parameters
 - Voltage samples = breakpoints
 - Efficiency samples = table data
 - More digitized samples = more accurate

Simulink implementation

 DC-DC converter of the battery $(V_{DCBUS} \cdot I_{DCBUS}) \cdot efficiency = (V_{BATT} \cdot I_{BATT})$ $I_{BATT} = (V_{DCBUS} \cdot I_{DCBUS} \cdot efficiency)/V_{BATT}$ simulation > DC converter (battery) Current requested from battery REQUESTED BY DC BUS dcToBatt current from DC to battery efficiencyBattery DC-DC- conversion efficiency function To Zero IF VOLTAGE OF BATTERY IS 0, **USE REFERENCE BATTERY** 3.6 VOLTAGE (i.e., 3.6V) TO AVOID **DIVISION BY 0 ERROR**

- Open the BATT_DCDCconv.pdf file
 - Page 4: curve of efficiency given input current with voltage to the bus = 3.3V
- How to:
 - 1. Digitize one of the two curves
 - We avoid dependency from battery voltage
 - 2. Import the data in Matlab

- Open the BATT_DCDCconv.pdf file
 - Page 4: curve of efficiency given input current with voltage to the bus = 3.3V
- How to:
 - 1. Digitize one of the two curves
 - We avoid dependency from battery voltage
 - ISSUE: x axis is in logarithmic scale
 - Sample points corresponding to the vertical lines
 - Can replace the x coordinate of samples with known values
 - 2. Import the data in Matlab

- 3. Fit the samples to a polynomial with CurveFit tool
 - Apps > Curve Fitting

- 3. Fit the samples to a polynomial with CurveFit tool
 - Apps > Curve Fitting

3. Fit the samples to a polynomial with CurveFit tool

Apps > Curve Fitting (<u>link</u>)

4. Write the polynomial in the efficiency function block

Simulink implementation

- Model: a circuit model
 - Configuration and settings extracted solely from data provided in the datasheet
 - Model made of two branches:
 - Left: models battery lifetime and the SOC
 - Right: models battery dynamics

Left:

- $-C_M$ available usable capacity
- $-I_B$ discharge current
- $-V_{SOC}$ state of charge

Right:

- V_{OC} models the dependency between battery voltage vs. the SOC
- $-I_B$ discharge current
- R series resistance modeling voltage drop due to ohmic losses (i.e., the internal resistance of the battery)
- $-V_B$ is battery voltage

- Not implemented as a circuit but as equations solving the circuit
 - Simulation faster than implementing the circuit

- Not implemented as a circuit but as equations solving the circuit
 - Simulation faster than implementing the circuit

- We must reconstruct the values for the single elements of the circuit from the datasheet
- Capacity
 - 3200mAh (3.2 Ah)
 - Timestep is 1s
 - Multiply per 3600 (seconds in 1 hour)

Specifications

Rated capacity ⁽¹⁾	Min. 3200mAh
Capacity ⁽²⁾	Min. 3250mAh Typ. 3350mAh
Nominal voltage	3.6V
Charging	CC-CV, Std. 1625mA, 4.20V, 4.0 hrs
Weight (max.)	48.5 g
Temperature	Charge*: 0 to +45°C Discharge: -20 to +60°C Storage: -20 to +50°C
Energy density ⁽³⁾	Volumetric: 676 Wh/l Gravimetric: 243 Wh/kg

- V_B battery voltage
 - Function of the load current and of the SOC

Simulink implementation

- Simulink models the battery as V_{OC} and R as a function of SOC
 - How can we relate V_{OC} and R to V, and thus SOC?

- Derive V_{OC} and R as a function of V
 - Solving the equations associated with the right hand side branch of the circuit

$$-V_{OC} = V_{curve1} + R \cdot I_{curve1}$$
$$-R = \frac{V_{curve2} - V_{curve1}}{I_{curve1} - I_{curve2}}$$

- Notation:
 - curve1 and curve2 refer to the operation with two different discharge currents, i.e., to two different discharge curves obtained with different discharge current values

- In case you were wondering how we got here...
 - Equation solving the system:

•
$$V_{OC} = R I + V$$

– Applied for both currents:

$$\begin{cases} V_{OC} = RI_{curve1} + V_{curve1} \\ V_{OC} = RI_{curve2} + V_{curve2} \end{cases}$$

$$-V_{OC} = RI_{curve1} + V_{curve1} = RI_{curve2} + V_{curve2}$$

$$-R(I_{curve1} - I_{curve2}) = V_{curve2} - V_{curve1}$$

$$-R = \frac{V_{curve2} - V_{curve1}}{I_{curve1} - I_{curve2}}$$

- Derive V_{QC} and R as a function of V
 - Solving the equations associated with the right hand side branch of the circuit

$$-V_{OC} = V_{curve1} + R \cdot I_{curve1}$$

$$-R = \frac{V_{curve2} - V_{curve1}}{I_{curve1} - I_{curve2}}$$

– How do we populate the equations?

• Derive V_{QC} and R as a function of V

$$-V_{OC} = V_{curve1} + R \cdot I_{curve1}$$

$$-R = \frac{V_{curve2} - V_{curve1}}{I_{curve1} - I_{curve2}}$$

- Need two curves of
 V given the discharge capacity
 - See example →
 - Values of V given SOC and discharge current

- V battery voltage: how to
 - 1. Download the datasheet figure (course website)
 - 2. Determine SOC axis
 - Fix the origin where the lower curve ends

- Vbattery voltage: how to
 - 3. Use one of the image digitizer tools to extract data from the figure
 - Extract values of two of the voltage vs. SOC curves
 - 4. Interpolate the two data sets
 - Given the same value of SOC, we have the corresponding value of V for both the curves

- Interpolation: Matlab function interp1 (<u>link</u>)
 - newY = interp1(x,y,newX)
 - Given the known samples: x values and corresponding y values
 - And the new x values newX
 - Calculate the corresponding y values newY
 - In our case:
 - x and y are the coordinates of the digitized samples
 - newX are samples of SOC (e.g., from 0 to 1 with step 0.1)

- Why do we need interpolation?
 - The samples of the two curves will most probably correspond to different values of SOC (i.e., x)
 - Thus we can not compare the two curves!

We have y values corresponding to different x coordinates!

- Derive V_{QC} and R
 - Solving the equations associated with the right hand side branch of the circuit

$$-V_{OC} = V_{curve1} + R \cdot I_{curve1}$$
$$-R = \frac{V_{curve2} - V_{curve2}}{I_{curve1} - I_{curve2}}$$

 Obtain values for the parameters of our battery model in some points of the SOC range

$$-SOC \rightarrow V \rightarrow V_{OC}$$
 , R

WE KNOW FROM WE DERIVE FROM THE SAMPLES THE EQUATIONS

- So we fit the resulting data into functions by using the CurveFit app (<u>link</u>)
 - Express V_{OC} and R as functions of V_{SOC} , i.e., of the state of charge
 - Allow to derive V_{OC} and R for any value of SOC as some function/polynomial

- This gives us all information to populate the battery model!
 - We derived the values or the equations modeling the various elements of the circuit

Simulink implementation

