Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>М3216</u>	К работе допущен			
Студент <u>Квачук Сергей и Орлов</u> Владимир	Работа выполнена			
Преподаватель Тимофеева Эльвира	Отчет принят			

Рабочий протокол и отчет по лабораторной работе №3.06

Изучение электрических свойств сегнетоэлектриков

- 1. Цель работы.
 - 1. Определение значений электрического смещения насыщения Ds, остаточной поляризации Pr, коэрцитивной силы Ec для предельной петли гистерезиса сегнетоэлектрика.
 - 2. Расчет диэлектрических потерь за цикл переполяризации сегнетоэлектрика.
 - 3. Получение зависимостей смещения D и диэлектрической проницаемости ε от напряженности электрического поля E.
 - 4. Определение значений начальной и максимальной диэлектрической проницаемости.
- 2. Задачи, решаемые при выполнении работы.

Исследование электрических свойств сегнетоэлектриков.

3. Объект исследования.

Сегнетоэлектрический конденсатор и его петля гистерезиса.

4. Метод экспериментального исследования.

Многократное изменение электрического поля и анализ различных петель гистерезиса.

- 5. Рабочие формулы и исходные данные.
 - 1. Модуль вектора электрической индукции \vec{D} :

$$D = \sigma = \frac{q}{S} = \frac{C_2 U_{C_2}}{S} = \frac{C_1}{S} \cdot U_{C_1},$$

2. Напряженность электрического поля E в сегнетоэлектрике:

$$E = \frac{U_{C_2}}{d} = \frac{U}{d} = \frac{R_1 + R_2}{R_1} \cdot \frac{U_{R_1}}{d}.$$

3. Тангенс угла диэлектрических потерь в сегнетоэлектриках:

$$\operatorname{tg} \delta = \frac{1}{\pi} \frac{\oint DdE}{D_s E_s}.$$

4. Вектор электрического смещения \vec{D} :

$$\vec{D} = \varepsilon \varepsilon_0 \vec{E},$$

Откуда выводится формула диэлектрической проницаемости среды:

$$\varepsilon = \frac{D}{\varepsilon_0 E}$$

5. Характеристики прибора:

$$\begin{split} R_1 &= 47 \text{kOm} \pm 10\% \\ R_2 &= 470 \text{kOm} \pm 10\% \\ C_1 &= 1 \text{mk} \Phi \pm 10\% \\ C_2 &= 0.01 \text{mk} \Phi \pm 10\% \\ S &= 500 \text{mm}^2 \pm 10\% \\ d &= 0.5 \text{mm} \pm 10\% \end{split}$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора	
1	ИCX1	Цифровой	0-5 дел	± 0.1 ∂ел	

7. Схема установки (перечень схем, которые составляют Приложение 1).

РИС. 3. Общий вид лабораторной установки

Рис. 5. Общий вид панели лицевой панели «ИСХ1»

- 1. графический дисплей;
- 2. кнопка выбора режима работы «F»;
- 3. кнопка выбора шкалы «Шкл.»;
- 4. кнопка запоминания оцифрованного сигнала «Стоп»;
- 5. кнопка выбора температурного режима «Темп»;
- 6. кнопка управления генератором «Генер.»;
- 7. кнопка выбора коэффициента отклонения «К_{vc}»;
- 8. кнопка уменьшения выбранной величины «-»;
- 9. кнопка увеличения выбранной величины «+»;
- 10.кнопка выключателя «Сеть»;
- 11.выход генератора;
- 12.вход тока *I*;
- 13.вход напряжения U_1 ;
- 14.вход напряжения U_2 ;

Принципиальная электрическая схема установки представлена на рис. 7.

Рис. 7. Принципиальная электрическая схема установки

8. Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*).

Задание 1.

Значения с графика:

$$D_s = 2.4$$
 дел $E_s = 2.8$ дел $D_r = 0.7$ дел $E_c = 0.45$ дел

Вычисления значений:

$$D_{S} = \frac{C_{1}}{S} * U_{C_{1}} = \frac{10^{-6}}{5 * 10^{-4}} * 2.4 = 0.0048 \frac{\text{K} \text{J}}{\text{M}^{2}}$$

$$E_{S} = \frac{U_{C_{2}}}{d} = \frac{2.8}{5 * 10^{-4}} = 5.6 \frac{\text{KB}}{\text{M}}$$

$$E_{C} = \frac{0.45}{0.0005} = 0.9 \frac{\text{KB}}{\text{M}}$$

$$P_{r} = D_{r} = \frac{10^{-6}}{5 * 10 - 4} * 0.7 = 0.014 \frac{\text{K} \text{J}}{\text{M}^{2}}$$

График имеет площадь примерно равную 3.965 дел 2 . Зная, что $\oint DdE = S_0$ Воспользуемся формулой 3.

$$tg\delta = \frac{1}{\pi} \frac{S}{D_S * E_S} = \frac{1}{\pi} \frac{3.965}{2.4 * 2.8} \approx 0.188$$

Задание 2.

	Физические величины							
Nº	U, B	$K_{x}, \frac{\mathrm{B}}{\mathrm{дел}}$	$K_y \frac{\mathrm{B}}{\mathrm{дел}}$	Х, дел	Ү, дел	$E\frac{\mathrm{B}}{\mathrm{M}}$	$D\frac{\mathrm{K}\pi}{\mathrm{M}^2}$	E
1	17	5	5	2,8	2,2	1870000	0,00034	20,5444273
2	15	5	5	2,4	1,4	1650000	0,0003	20,5444273
3	13	5	5	2,2	1,6	1430000	0,00026	20,5444273
4	11	5	5	1,8	1,3	1210000	0,00022	20,5444273

5	9	2	2	3,7	2,5	396000	0,00018	51,3610683
6	7	2	2	2,8	1,6	308000	0,00014	51,3610683
7	5	2	2	2	1	220000	0,0001	51,3610683
8	4,4	1	1	3,6	1,7	96800	0,000088	102,722137
9	3,8	1	1	3,1	1,3	83600	0,000076	102,722137
10	3,2	1	1	2,6	1	70400	0,000064	102,722137
11	2,6	1	1	1,2	0,7	57200	0,000052	102,722137
12	2	0,5	0,2	3,2	2,5	22000	0,00004	205,444273
13	1,4	0,5	0,2	2,2	1,5	15400	0,000028	205,444273
14	0,8	0,2	0,1	3,1	1,6	3520	0,000016	513,610683
15	0,2	0,1	0,05	1,6	1	440	0,000004	1027,22137

Примеры расчетов приведены раньше.

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

По графику 2 можно заметить, что зависимость имеет вид похожий на обратную пропорциональность, соответственно, чем меньше E, тем больше ε . Исходя из этого, диэлектрическая проницаемость стремится к бесконечности. При этом $\varepsilon_{\rm нач}=\varepsilon_{\rm макс}$. Исходя из значений полученных в результате обработки измерений, то $\varepsilon_{\rm макс}=1072.22$ при $E=440\frac{\rm B}{\rm M}$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Погрешности для 1 задания:

$$\begin{split} &\Delta D_s = 0.00049 \frac{\mathrm{K}_{\pi}}{\mathrm{M}^2}; \varepsilon_{D_s} = 8.16\% \\ &\Delta P_r = 0.001265 \frac{\mathrm{K}_{\pi}}{\mathrm{M}^2}; \varepsilon_{P_r} = 11.5\% \\ &\Delta E_c = 78.84 \frac{\mathrm{B}}{\mathrm{M}}; \varepsilon_{E_c} = 8.76\% \end{split}$$

Погрешности для 2 задания:

К сожалению, погрешности нет возможности рассчитать.

11. Графики (перечень графиков, которые составляют Приложение 2).

График 1. Функция зависимости D(E):

График 2. Функция зависимости ε(ε):

12. Окончательные результаты.

В ходе выполнения данной лабораторной работы были рассчитаны следующие значения:

$$\begin{split} &D_{s}=0.0048\,\pm0.00049\frac{\mathrm{K}_{n}}{\mathrm{M}^{2}}; \varepsilon_{D_{s}}=8.16\%\\ &P_{r}=0.011\,\pm0.001265\frac{\mathrm{K}_{n}}{\mathrm{M}^{2}}; \varepsilon_{P_{r}}=11.5\%\\ &E_{c}=900\,\pm78.84\frac{\mathrm{B}}{\mathrm{M}}; \varepsilon_{E_{c}}=8.76\%\\ &\mathrm{tg}\,\delta\,=\,0.186 \end{split}$$

Значение начального диэлектрической проницаемости не было найдено.

$$\varepsilon_{\text{Makc}} = 1027.22$$

13. Выводы и анализ результатов работы.

В результате выполнения данной лабораторной работы были изучены электрические свойства сегнетоэлектриков и определены значения электрического смещения насыщений, остаточной поляризации и коэрцитивной силы для предельной петли гистерезиса. Рассчитаны диэлектрические потери за цикл переполяризации, и так как тангенс угла диэлектрических потерь мал (равен 0.186), то сами потери энергии малы.

Получены зависимости смещения и диэлектрической проницаемости от напряжения электрического поля. График функции зависимости смещения возрастает и имеет вид ветви параболы. График функции зависимости диэлектрической проницаемости убывает и имеет вид ветви гиперболы.