Conditional Generators of Words Definitions

Artyom Gadetsky

Introduction

Data: Oxford dictionaries

NOUN

1 A small domesticated carnivorous mammal with soft fur, a short snout, and retractable claws. It is widely kept as a pet or for catching mice, and many breeds have been developed.

Felis catus, family Felidae (the cat family); it was probably domesticated in ancient Egypt from the local race of wildcat. The cat family also includes the ocelot, serval, margay, lynx, and the big cats

Example sentences

'Various species have been used as models of human asthma, including guinea pigs, mice, rats, cats, and dogs.'

Related Work: definition modeling

- w* word being defined
- $D = \{w_1, ..., w_T\}$ definition

$$p(D|w^*) = \prod_{t=1}^{T} p(w_t|w_{i< t}, w^*)$$

Noraset et al. Definition modeling: Learning to define word embeddings in natural language, AAAI 2017

Definition modeling: types of conditioning

• Seed (S) - append w* to definition sequence: D = {w*, w_1, ..., w_T} (Sutskever et al. 2011)

• Input (I) $-h_t = g([v^*; v_t], h_{t-1})$

• (CH) - capture sub-word information (Kim et al. 2016)

Noraset et al. Definition modeling: Learning to define word embeddings in natural language, AAAI 2017

Proposed generative model

- w* word being defined
- $D = \{w_1, ..., w_T\} definition$
- $C = \{c_1, ..., c_M\}$ context (e.g. example of word usage)

$$p(D|w^*, C) = \prod_{t=1}^{T} p(w_t|w_{i< t}, w^*, C)$$

Adaptive Skip-gram based (Input Adaptive)

$$h_t = g([v^*; v_t], h_{t-1})$$

$$v^* = disambiguation(w^*|C)$$

Bartunov et al. Breaking sticks and ambiguities with adaptive skip-gram. In AISTATS 2016

Attention based (Input Attention)

$$h_t = g([a^*; v_t], h_{t-1})$$

$$a = v^* \odot mask$$

$$mask = \sigma(W \frac{\sum_{i=1}^{M} ANN(c_i)}{M} + b)$$

Experiments: definitions generation

Word	Context	Definition
star	she got star treatment	a person who is very important
star	bright star in the sky	a small circle of a celestial object or planet that is seen in a circle
sentence	sentence in prison	an act of restraining someone or something
sentence	write up the sentence	a piece of text written to be printed

Experiments: mask exploration

• For word w take C_{verb} and C_{noun} contexts

• Compute \mathbf{m}_{verb} and \mathbf{m}_{noun} masks

• Look at boxplot for averaged diffences between m_{verb} and m_{noun}

Experiments: mask exploration

Word	Noun Definition
judge	a person who is responsible for the legal proceedings of a jury
answer	a statement that solves a problem or explains how to solve the problem

Noun Context	Verb Definition
he is due to appear before a judge and jury on monday	act as a judge
he knocked and entered without waiting for an answer	express the opinion of

Takeaways

• Word embedding contains information about most of its meanings

• Even simple language model can restore word's definition using word's embedding