# FBA

QUANTITATIVE FINANCE RESEARCH GROUP

# FBA Quant 7주차 과제 후편

작성자 : 송용재, 이후범, 한정화, 홍성희

### 1절 : 서론

#### 1.1 논문의 목적

주식 및 채권 수익률에서 5가지 공통 리스크 팩터를 확인하는 것이 핵심 목표.

주식시장: 3가지 팩터 (시장 리스크, 회사 사이즈, book-to-market 비율)

채권시장: 2가지 팩터 (만기 리스크, 디폴트 리스크)

주식 및 채권 수익률 간의 상관성을 파악하고, 이들이 공통적인 리스크 팩터에 의해 어떻게 설명될 수 있는지 분석.

### 1.2 연구 배경

이전 연구에서 시장 베타와 주식 평균수익률의 연관성이 거의 없음을 확인 (Sharpe(1964), Lintner(1965)). 대신, 사이즈(ME), 레버리지, E/P, BE/ME와 같은 경험적 변수들이 주식 수익률을 설명하는 데 중요한 역할을함.

Fama and French(1992a)의 연구에서, 시장 베타보다 사이즈와 BE/ME가 주식 수익률을 잘 설명하는 것으로 나타남.

### 1절: 서론

#### 1.3 연구 방법론

Fama and French(1992a)의 연구를 세 가지 방식으로 확장:

자산 수익률 집합 확대: 주식뿐만 아니라 채권(미국 정부채 및 회사채)을 포함.

변수 집합 확대: 기존 사이즈와 BE/ME 외에 채권 수익률을 설명하는 기간구조 변수 포함.

자산가격 결정 모델의 테스트 방법 변화: 시계열 회귀분석 사용 (Black, Jensen, Scholes(1972)), 이를 통해 주식과 채권 모두에서 리스크 팩터의 민감도를 분석.

#### 1.4시계열 회귀분석의 목적

주식 및 채권 수익률에 대한 민감도를 리스크 팩터와 연결.

시계열 회귀 기울기 및 R<sup>2</sup> 값으로 사이즈와 BE/ME가 리스크 팩터의 민감도를 대변하는지 확인.

절편값 분석을 통해 자산가격 결정 모델의 적합성 테스트.

### 1절 : 서론

#### 1.5 주요 결론

#### 1. 주식 수익률:

사이즈 및 BE/ME 팩터는 주식 수익률의 공통 변동을 잘 포착함.

시장 팩터, 사이즈 및 BE/ME 관련 리스크 팩터의 모방 포트폴리오가 평균 주식 수익률을 설명함.

#### 2. 채권 수익률:

기간구조 팩터(만기 리스크, 디폴트 리스크)가 대부분의 채권 수익률 변동을 설명.

채권의 초과수익률 및 평균수익률도 기간구조 팩터에 의해 잘 설명됨.

#### 3. 주식과 채권의 상관성:

주식 및 채권 시장은 확률적으로 분리되지 않음.

주식 시장 팩터와 기간구조 팩터가 주식 및 채권의 수익률 변동을 설명.

단, 저등급 회사채를 제외하고는 채권 수익률 변동의 대부분은 기간구조 팩터에 의해 설명됨.

### 2절: 횡단면 회귀분석

Factor를 Known 이라 가정하고, n X k 행렬을 만들어 수익률 f를 추정.

각 자산 마다 알맞은 Factor를 적절하게 조합하여, 설명력 있는 수익률을 도출해야 함.



모분산 없이(=표본분산만을 사용) 표본평균의 분포를 만들 때 사용. 회귀계수의 유의성 검정에 사용됨.

### t-distributions comparison



### 2절 : 시계열 회귀분석에 들어가는 입력 값

설명변수(=시장 포트폴리오 수익률, ROA)

- $\rightarrow$  Size
- → BE/ME (장부가 대비 시장가)
- → Return of Replicated Term Structure

종속변수(=초과 수익률)

- → 두 가지 만기 범위의 Treasury Bond Portfolio
- → 다섯 등급으로 나뉜 회사채 (CB, BW, EB, PB ... )
- → Size & BE/ME로 구성된 25개의 Stocks

높은 BE/ME를 가진 기업은 낮은 ROA의 경향성을 가짐 →양(+)의 상관관계

낮은 Size를 가진 기업은 낮은 ROA의 경향성을 가짐 →음(-)의 상관관계

따라서, BE/ME와 Size의 각각의 변동을 하나로 통합 시키는 변수를 만들어야 함.

# 2절: 포트폴리오 기술 통계량

# $\{t\text{-}1년의 회계기말의 BE \div t\text{-}1년의 12월말 ME\}$ w/ size

| 사이즈   |        |         |                  |          | BE/    | ME 5분위 |          |         |            |       |       |
|-------|--------|---------|------------------|----------|--------|--------|----------|---------|------------|-------|-------|
| 5분위   | Low    | 2       | 3                | 4        | High   |        | Low      | 2       | 3          | 4     | High  |
|       |        | 연평균 7   | ' 업 사이즈의         | 평균       |        |        | <u> </u> | 트폴리오의 인 | 년간 BE/ME 비 | 율의 평균 |       |
| Small | 20.6   | 20.8    | 20.2             | 19.4     | 15.1   | _      | 0.30     | 0.62    | 0.84       | 1.09  | 1.80  |
| 2     | 89.7   | 89.3    | 89.3             | 89.9     | 88.5   |        | 0.31     | 0.60    | 0.83       | 1.09  | 1.71  |
| 3     | 209.3  | 211.9   | 210.8            | 214.8    | 210.7  |        | 0.31     | 0.60    | 0.84       | 1.08  | 1.66  |
| 4     | 535.1  | 537.4   | 545.4            | 551.6    | 538.7  |        | 0.31     | 0.61    | 0.84       | 1.09  | 1.67  |
| Big   | 3583.7 | 2885.8  | 2819.5           | 2700.5   | 2337.9 |        | 0.29     | 0.59    | 0.83       | 1.08  | 1.56  |
|       | 포      | 트폴리오의 연 | 년간 시총 비 <i>중</i> | 등(%)의 평균 |        |        | 王        | 트폴리오에 있 | l는 연간 기업   | 수의 평균 |       |
| Small | 0.69   | 0.49    | 0.46             | 0.48     | 0.64   | _      | 428.0    | 276.6   | 263.8      | 291.5 | 512.7 |
| 2     | 0.92   | 0.71    | 0.65             | 0.61     | 0.55   |        | 121.6    | 94.0    | 86.7       | 79.8  | 71.3  |
| 3     | 1.78   | 1.36    | 1.26             | 1.14     | 0.82   |        | 102.7    | 78.3    | 73.0       | 64.5  | 45.9  |
| 4     | 3.95   | 3.01    | 2.71             | 2.41     | 1.50   |        | 90.1     | 68.9    | 60.7       | 53.1  | 33.4  |
| Big   | 30.13  | 15.87   | 12.85            | 10.44    | 4.61   |        | 93.6     | 63.7    | 52.7       | 44.0  | 23.6  |
|       |        | 포트폴리오의  | 니 연간 E/P(%       | o)의 평균   |        |        |          | 포트폴리오의  | 연간 D/P(%   | )의 평균 |       |
| Small | 2.42   | 7.24    | 8.26             | 9.06     | 2.66   | _      | 1.00     | 1.94    | 2.60       | 3.13  | 2.82  |
| 2     | 5.20   | 8.61    | 10.16            | 10.95    | 9.28   |        | 1.59     | 2.45    | 3.45       | 4.25  | 4.53  |
| 3     | 5.91   | 8.72    | 10.43            | 11.62    | 10.78  |        | 1.56     | 3.03    | 4.04       | 4.68  | 4.64  |
| 4     | 5.85   | 8.94    | 10.45            | 11.64    | 11.39  |        | 1.80     | 3.09    | 4.22       | 5.01  | 4.94  |
| Big   | 6.00   | 9.07    | 10.90            | 12.45    | 13.92  |        | 2.34     | 3.69    | 4.68       | 5.49  | 5.90  |

# 2절: 포트폴리오 기술 통계량

최소 Size p.f. : 시총 합산액에서 평균적으로 0.7%보다 작은 비중을 차지. 최대 Size p.f. : 수치적으로 가장 적은수, but TOP5가 전체 시가총액의 74% 담당.

| 사이즈   |        |         |            |          | BE/IV  | E 5분위 |         |            |         |       |
|-------|--------|---------|------------|----------|--------|-------|---------|------------|---------|-------|
| 5분위   | Low    | 2       | 3          | 4        | High   | Low   | 2       | 3          | 4       | High  |
|       |        | 연평균 7   | 기업 사이즈의    | 평균       |        | 丑     | 트폴리오의 연 | 면간 BE/ME L | 비율의 평균  |       |
| Small | 20.6   | 20.8    | 20.2       | 19.4     | 15.1   | 0.30  | 0.62    | 0.84       | 1.09    | 1.80  |
| 2     | 89.7   | 89.3    | 89.3       | 89.9     | 88.5   | 0.31  | 0.60    | 0.83       | 1.09    | 1.71  |
| 3     | 209.3  | 211.9   | 210.8      | 214.8    | 210.7  | 0.31  | 0.60    | 0.84       | 1.08    | 1.66  |
| 4     | 535.1  | 537.4   | 545.4      | 551.6    | 538.7  | 0.31  | 0.61    | 0.84       | 1.09    | 1.67  |
| Big   | 3583.7 | 2885.8  | 2819.5     | 2700.5   | 2337.9 | 0.29  | 0.59    | 0.83       | 1.08    | 1.56  |
|       | 포.     | 트폴리오의 인 | 년간 시총 비견   | 등(%)의 평균 |        | 포     | 트폴리오에 있 | l는 연간 기업   | 선 수의 평균 |       |
| Small | 0.69   | 0.49    | 0.46       | 0.48     | 0.64   | 428.0 | 276.6   | 263.8      | 291.5   | 512.7 |
| 2     | 0.92   | 0.71    | 0.65       | 0.61     | 0.55   | 121.6 | 94.0    | 86.7       | 79.8    | 71.3  |
| 3     | 1.78   | 1.36    | 1.26       | 1.14     | 0.82   | 102.7 | 78.3    | 73.0       | 64.5    | 45.9  |
| 4     | 3.95   | 3.01    | 2.71       | 2.41     | 1.50   | 90.1  | 68.9    | 60.7       | 53.1    | 33.4  |
| Big   | 30.13  | 15.87   | 12.85      | 10.44    | 4.61   | 93.6  | 63.7    | 52.7       | 44.0    | 23.6  |
|       |        | 포트폴리오의  | 의 연간 E/P(% | o)의 평균   |        |       | 포트폴리오의  | 연간 D/P(%   | )의 평균   |       |
| Small | 2.42   | 7.24    | 8.26       | 9.06     | 2.66   | 1.00  | 1.94    | 2.60       | 3,13    | 2.82  |
| 2     | 5.20   | 8.61    | 10.16      | 10.95    | 9.28   | 1.59  | 2.45    | 3.45       | 4.25    | 4.53  |
| 3     | 5.91   | 8.72    | 10.43      | 11.62    | 10.78  | 1.56  | 3.03    | 4.04       | 4.68    | 4.64  |
| 4     | 5.85   | 8.94    | 10.45      | 11.64    | 11.39  | 1.80  | 3.09    | 4.22       | 5.01    | 4.94  |
| Big   | 6.00   | 9.07    | 10.90      | 12.45    | 13.92  | 2.34  | 3.69    | 4.68       | 5.49    | 5.90  |

# 2절: 포트폴리오 Historical Data

최저 BE/ME p.f. : 시가총액이 최대 Size 쪽으로 편향된 분포를 띔. etc) Amex, NASDAQ 최고 BE/ME p.f. : 구성종목의 수와 시가총액 비중이 점점 감소. etc) NYSE
→ NYSE에는 주가가 낮은 우량기업(=저평가 기업)이 많을 가능성이 높다는 가설을 만들 수 있음.

| 사이즈   |        |         |            |          | BE/I   | ME 5분위 |      |         |            |       |       |
|-------|--------|---------|------------|----------|--------|--------|------|---------|------------|-------|-------|
| 5분위   | Low    | 2       | 3          | 4        | High   |        | Low  | 2       | 3          | 4     | High  |
|       |        | 연평균 기   | 업 사이즈의     | 평균       |        |        | 王    | 트폴리오의 인 | 년간 BE/ME 비 | 율의 평균 |       |
| Small | 20.6   | 20.8    | 20.2       | 19.4     | 15.1   |        | 0.30 | 0.62    | 0.84       | 1.09  | 1.80  |
| 2     | 89.7   | 89.3    | 89.3       | 89.9     | 88.5   |        | 0.31 | 0.60    | 0.83       | 1.09  | 1.71  |
| 3     | 209.3  | 211.9   | 210.8      | 214.8    | 210.7  |        | 0.31 | 0.60    | 0.84       | 1.08  | 1.66  |
| 4     | 535.1  | 537.4   | 545.4      | 551.6    | 538.7  |        | 0.31 | 0.61    | 0.84       | 1.09  | 1.67  |
| Big   | 3583.7 | 2885.8  | 2819.5     | 2700.5   | 2337.9 |        | 0.29 | 0.59    | 0.83       | 1.08  | 1.56  |
|       | 포      | 트폴리오의 연 | 년간 시총 비중   | §(%)의 평균 |        |        | 포!   | 트폴리오에 있 | 는 연간 기업    | 수의 평균 |       |
| Small | 0.69   | 0.49    | 0.46       | 0.48     | 0.64   | 42     | 28.0 | 276.6   | 263.8      | 291.5 | 512.7 |
| 2     | 0.92   | 0.71    | 0.65       | 0.61     | 0.55   | 1      | 21.6 | 94.0    | 86.7       | 79.8  | 71.3  |
| 3     | 1.78   | 1.36    | 1.26       | 1.14     | 0.82   | 10     | 02.7 | 78.3    | 73.0       | 64.5  | 45.9  |
| 4     | 3.95   | 3.01    | 2.71       | 2.41     | 1.50   |        | 90.1 | 68.9    | 60.7       | 53.1  | 33.4  |
| Big   | 30.13  | 15.87   | 12.85      | 10.44    | 4.61   | Ġ      | 93.6 | 63.7    | 52.7       | 44.0  | 23.6  |
|       |        | 포트폴리오의  | 니 연간 E/P(% | )의 평균    |        |        |      | 포트폴리오의  | 연간 D/P(%   | )의 평균 |       |
| Small | 2.42   | 7.24    | 8.26       | 9.06     | 2.66   |        | 1.00 | 1.94    | 2.60       | 3.13  | 2.82  |
| 2     | 5.20   | 8.61    | 10.16      | 10.95    | 9.28   |        | 1.59 | 2.45    | 3.45       | 4.25  | 4.53  |
| 3     | 5.91   | 8.72    | 10.43      | 11.62    | 10.78  |        | 1.56 | 3.03    | 4.04       | 4.68  | 4.64  |
| 4     | 5.85   | 8.94    | 10.45      | 11.64    | 11.39  |        | 1.80 | 3.09    | 4.22       | 5.01  | 4.94  |
| Big   | 6.00   | 9.07    | 10.90      | 12.45    | 13.92  |        | 2.34 | 3.69    | 4.68       | 5.49  | 5.90  |

# 3절: 회귀분석 요약 통계량

주식 보다 밋밋한 채권 수익률, 이는 오히려 횡단면 패턴 예측에는 효과적이다.

|       |      |      |       |              | 시차에 다   | 대한 자기상관  | 계수                 |       | <br>と | ·관계수  |        |         |
|-------|------|------|-------|--------------|---------|----------|--------------------|-------|-------|-------|--------|---------|
| Name  | Mean | Std. | t(mn) |              | 1       | 2        | 12                 |       |       |       |        |         |
|       |      |      |       |              | 선       | 명변수 수익률  | -                  |       |       |       |        |         |
| RM    | 0.97 | 4.52 | 3.97  |              | 0.05    | -0.05    | 0.03               |       |       |       |        |         |
| TB    | 0.54 | 0.22 | 45.97 |              | 0.94    | 0.90     | 0.65               |       |       |       |        |         |
| LTG   | 0.60 | 3.03 | 3.66  |              | 0.05    | -0.00    | 0.00               |       |       |       |        |         |
| СВ    | 0.62 | 2.24 | 5.10  |              | 0.20    | -0.04    | 0.04               |       |       |       |        |         |
| RM-RF | 0.43 | 4.54 | 1.76  | [            | 0.05    | -0.04    | 0.03               | RM-RF | RMO   | SMB   | HML    | TERM    |
| RMO   | 0.50 | 3.55 | 2.61  |              | -0.10   | -0.05    | 0.02               | 0.78  | 1.00  | 31110 | 111112 | 1211111 |
| SMB   | 0.27 | 2.89 | 1.73  |              | 0.19    | 0.07     | 0.23               | 0.32  | -0.00 | 1.00  |        |         |
| HML   | 0.40 | 2.54 | 2.91  |              | 0.18    | 0.06     | 0.07               | -0.38 | -0.00 | -0.08 | 1.00   |         |
| TERM  | 0.06 | 3.02 | 0.38  | i            | 0.05    | -0.00    | -0.00              | 0.34  | 0.00  | -0.07 | -0.05  | 1.00    |
| DEF   | 0.02 | 1.60 | 0.21  |              | -0.20   | -0.04    | -0.00              | -0.07 | -0.00 | 0.17  | 0.08   | -0.69   |
|       |      |      |       | <u>종</u> 속변- | 수: 정부채! | 와 회사채에 [ | 대한 초과수익률           |       |       |       |        |         |
| 1-5G  | 0.12 | 1.25 | 1.71  |              | 0.15    | -0.08    | 0.01               | i     |       |       |        |         |
| 6-10G | 0.14 | 2.03 | 1.24  |              | 0.12    | -0.05    | 0.02               |       |       |       |        |         |
| AAA   | 0.06 | 2.34 | 0.44  |              | 0.16    | -0.04    | 0.02               |       |       |       |        |         |
| AA    | 0.07 | 2.23 | 0.58  |              | 0.19    | -0.04    | 0.03               |       |       |       |        |         |
| Α     | 0.08 | 2.25 | 0.63  |              | 0.21    | -0.03    | 0.04               |       |       |       |        |         |
| BAA   | 0.14 | 2.35 | 1.09  |              | 0.21    | 0.00     | 0.03               |       |       |       |        |         |
| LG    | 0.13 | 2.52 | 0.98  |              | 0.23    | 0.05     | 0.08               |       |       |       |        |         |
| LG    | 0.13 | 2.32 |       | >: ME와 BE,   |         |          | 0.06<br>식 포트폴리오의 . | 초과수익률 |       |       |        |         |

# 3절: 회귀분석 요약 통계량

RM-RF의 평균값은 한 달에 0.43%이지만, 표준오차가 1.76이다.

SMB의 평균값은 한 달에 겨우 0.27%(t=1.73)이다. 하지만, 주식 포트폴리오에서 기울기가 1.7을 초과하며, 추정 스프레드는 0.46%로 높다.

BE/ME Factor인 HML의 평균값은 한 달에 0.40%(t=2.91)로 준수하게 높다.

| 사이즈   |      |      |          |      | BE/ME 5 | 분위   |      |      |      |      |
|-------|------|------|----------|------|---------|------|------|------|------|------|
| 5분위   | Low  | 2    | 3        | 4    | High    | Low  | 2    | 3    | 4    | High |
|       |      |      | 평균       |      |         |      | Ŧ    | 표준편차 |      |      |
| Small | 0.39 | 0.70 | 0.79     | 0.88 | 1.01    | 7.76 | 6.84 | 6.29 | 5.99 | 6.27 |
| 2     | 0.44 | 0.71 | 0.85     | 0.84 | 1.02    | 7.28 | 6.42 | 5.85 | 5.33 | 6.06 |
| 3     | 0.43 | 0.66 | 0.68     | 0.81 | 0.97    | 6.71 | 5.71 | 5.27 | 4.92 | 5.69 |
| 4     | 0.48 | 0.35 | 0.57     | 0.77 | 1.05    | 5.97 | 5.44 | 5.03 | 4.95 | 5.75 |
| Big   | 0.40 | 0.36 | 0.32     | 0.56 | 0.59    | 4.95 | 4.70 | 4.38 | 4.27 | 4.85 |
|       |      | 평균에  | 대한 t-통계형 | 량    |         |      |      |      |      |      |
| Small | 0.93 | 1.88 | 2.33     | 2.73 | 2.97    |      |      |      |      |      |
| 2     | 1.11 | 2.05 | 2.69     | 2.91 | 3.11    |      |      |      |      |      |
| 3     | 1.18 | 2.12 | 2.39     | 3.04 | 3.15    |      |      |      |      |      |
| 4     | 1.49 | 1.19 | 2.08     | 2.88 | 3.36    |      |      |      |      |      |
| Big   | 1.50 | 1.42 | 1.34     | 2.43 | 2.26    |      |      |      |      |      |
|       |      |      |          |      |         |      |      |      |      |      |

### 4절: Table of Contents

### 4절에서는 시계열 회귀 기울기(회귀계수)와 R^2 값을 사용

Table 3: TERM, DEF를 설명변수로 사용

Table 4: RM-RF를 사용

Table 5 : SMB, HML을 사용

Table 6: RM-RF, SMB, HML를 사용

Table 7 : RM-RF, SMB, HML, TERM, DEF를 사용 Table 8 : RMO, SMB, HML, TERM, DEF를 사용

### 4절 결론을 주식시장에 한정해서 정리하면

- 1. Table 6에서는 3개의 주식시장 팩터들을 주식수익률의 공통 변동을 잘 포착한다. 25개 주식 포트폴리오들에게 3가지 주식시장 팩터의 기울기는 대부분 높은 t-통계량을 보인다. 소형주 그룹에서 대형주 그룹으로 갈수록 SMB 기울기는 s는 낮아진다.
- 2. Table 6에서 저-BE/ME/ 그룹에서 고BE/ME 그룹으로 갈수록 HML 기울기는 h는 높아진다. 즉, 주식 포트폴리오들에 존재하는 사이즈 효과와 가치 주 효과를 3-팩터 모델이 잘 반영하고 있다.
- 3. Table 6에서 25개 주식 포트폴리오의 회귀분석 R^2(수정결정계수)값은 0.83~0.97로 매우 높다. 즉, 주식시장에서 3-팩터모델이 설명력이 높다는 결론이다.
- 4. Table 7,8을 보면 채권의 기간구조 팩터 2개를 포함한 5-팩터 회귀분석도 주식의 수익률 변동을 잘 설명해준다. (다만, 사후적으로는 채권시장 팩터를 포함한 5-팩터 모델보다는, 주식시장의 3-팩터 모델을 더 많이 사용함.

### 수익률에서 공통 변동

가정 : 채권시장 팩터들과 주식시장 팩터들의 설명력을 분리해서 조사

목적 : 주식 및 채권 수익률의 확률 과정들간 겹치는 부분이 있는지 테스트하기 위함.

채권수익률 설명에 중요한 채권시장 팩터가 주식 수익률의 공통 변동도 포착하고 반대도 마찬가지인지 확인!

Table 3

| 사이즈            |      |       | 8 7 D T . A VI          | 4 DE/IVIES |          | 주식 포트폴리오의<br>ME 5분위 | エギーラ   |      |      |       |
|----------------|------|-------|-------------------------|------------|----------|---------------------|--------|------|------|-------|
| 5분위            | Low  | 2     | 3                       | 4          | High     | Low                 | 2      | 3    | 4    | High  |
|                |      |       | m                       |            |          |                     |        | t(m) |      |       |
| Small          | 0.93 | 0.90  | 0.89                    | 0.86       | 0.89     | 5.02                | 5.50   | 5.95 | 6.08 | 6.01  |
| 2              | 0.99 | 0.96  | 0.99                    | 1.01       | 0.98     | 5.71                | 6.32   | 7.29 | 8.34 | 6.92  |
| 3              | 0.99 | 0.94  | 0.94                    | 0.95       | 0.99     | 6.25                | 7.10   | 7.80 | 8.50 | 7.60  |
| 4              | 0.92 | 0.95  | 0.97                    | 1.05       | 1.03     | 6.58                | 7.57   | 8.53 | 9.64 | 7.83  |
| Big            | 0.82 | 0.82  | 0.80                    | 0.80       | 0.77     | 7.14                | 7.60   | 8.09 | 8.26 | 6.84  |
|                |      |       | d                       |            |          |                     |        | t(d) |      |       |
| Small          | 1.39 | 1,31  | 1,33                    | 1.45       | 1.52     | 3.96                | 4.27   | 4.73 | 5.45 | 5.45  |
| 2              | 1.26 | 1.28  | 1.35                    | 1.38       | 1.41     | 3.84                | 4.47   | 5.28 | 6.05 | 5.29  |
| 3              | 1,21 | 1.19  | 1,25                    | 1.24       | 1,21     | 4.05                | 4.74   | 5.49 | 5.89 | 4.88  |
| 4              | 0.96 | 1.01  | 1.13                    | 1.21       | 1.22     | 3.65                | 4.28   | 5.25 | 5.89 | 4.92  |
| Big            | 0.78 | 0.73  | 0.78                    | 0.83       | 0.89     | 3.59                | 3.60   | 4.18 | 4.56 | 4.15  |
|                |      |       | R <sup>2</sup> [수정결정계수] |            |          |                     |        | s(e) |      |       |
| Small          | 0.06 | 0.08  | 0.09                    | 0.10       | 0.10     | 7.50                | 6.57   | 6.00 | 5.68 | 5.95  |
| 2              | 0.08 | 0.10  | 0.13                    | 0.17       | 0.12     | 6.97                | 6.09   | 5.45 | 4.87 | 5.69  |
| 3              | 0.10 | 0.12  | 0.15                    | 0.17       | 0.14     | 6.38                | 5.35   | 4.86 | 4.48 | 5.28  |
| 4              | 0.11 | 0.14  | 0.17                    | 0.21       | 0.15     | 5.63                | 5.04   | 4.57 | 4.39 | 5.31  |
| Big            | 0.13 | 0.15  | 0.16                    | 0.17       | 0.12     | 4.61                | 4.33   | 4.00 | 3.89 | 4.55  |
|                |      |       | 2                       | §속변수: 정    | 성부채와 회사채 | 의 초과수익률             |        |      |      |       |
|                |      | 1-5G  | 6-10G                   |            | Aaa      | Aa                  | Α      |      | Baa  | LG    |
| m              |      | 0.45  | 0.72                    |            | 1.02     | 0.99                | 1.00   |      | 1.01 | 0.81  |
| t(m)           |      | 31.73 | 38.80                   |            | 99.94    | 130.44              | 139.80 | 56   | 5.24 | 18.05 |
| d              |      | 0.25  | 0.27                    |            | 0.94     | 0.96                | 1.02   |      | 1.10 | 1.01  |
| t(d)           |      | 9.51  | 7.85                    |            | 48.95    | 67.54               | 75.74  | 32   | 2.33 | 11.95 |
| R <sup>2</sup> |      | 0.79  | 0.87                    |            | 0.97     | 0.98                | 0.98   | (    | 0.90 | 0.49  |
| s(e)           |      | 0.57  | 0.75                    |            | 0.41     | 0.30                | 0.27   |      | 0.72 | 1.80  |

#### 1. 주식 포트폴리오 부분 (상단)

주식 포트폴리오는 **사이즈**(Small, Big)와 **BE/ME 비율**(Low, High)로 나눠져 있으며, 각각의 포트폴리오에 대해 여러 변수들이 나타낸다.

주요 변수: t(m) = TERM 기울기(m)의 t 통계량 / DEF 기울기(d)의 t 통계량 / 오차항의 표준편차 s(e) 오차항의 표준편차

- •m (TERM 기울기): 금리 구조 변동(TERM)이 주식 수익률에 미치는 영향을 나타냅니다.
  - 예: **Small 포트폴리오**에서 "Low" BE/ME 비율을 가진 주식의 TERM 기울기는 0.93, "High" BE/ME 비율을 가진 주식의 TERM 기울기는 0.89입니다. 대체로 TERM 기울기는 BE/ME 비율에 따라 크게 변동하지 않지만, 작은 포트폴리오에서는 다소 큰 영향을 미치는 것을 볼 수 있습니다.
- •d (DEF 기울기): 신용 스프레드(DEF)가 주식 수익률에 미치는 영향을 나타냅니다.
  - 예: **Small 포트폴리오**에서 "Low" BE/ME 비율을 가진 주식의 DEF 기울기는 1.39, "High" BE/ME 비율을 가진 주식의 DEF 기울기는 1.52입니다. 이는 DEF 변수가 수익률 변동에 상당히 중요한 역할을 한다는 것을 보여줍니다.
- •R<sup>2</sup> (수정 결정계수): 주식 포트폴리오 수익률의 변동성을 TERM과 DEF로 얼마나 잘 설명하는지 나타냅니다.
  - Small 포트폴리오의 R<sup>2</sup> 값은 0.06~0.10 사이에 있으며, 이는 TERM과 DEF가 주식 수익률 변동을 설명하는 비율이 매우 낮음을 의미합니다. 주식 포트폴리오의 R<sup>2</sup> 값은 대체로 낮아, 주식 수익률 변동을 이 두 변수만으로는 충분히 설명하기 어렵다는 것을 보여줍니다.

#### 2. 채권 포트폴리오 부분 (하단)

채권 포트폴리오는 정부채 및 회사채(등급별: Aaa, Aa, A, Baa, LG)로 나뉘어 있으며, TERM과 DEF에 의한 수익률 변동을 분석한다.

#### 주요 변수:

- •m (TERM 기울기): 채권 포트폴리오에서 TERM이 금리 변동에 미치는 영향을 나타냅니다.
  - **1-5G**(1~5년 만기 정부채)의 TERM 기울기는 0.45로, 금리 변동이 상대적으로 작게 영향을 미칩니다. 반면, **Aaa 등급 채권**의 TERM 기울기는 1.02로, 금리 변동이 더 큰 영향을 미치는 것을 보여줍니다.
- •d (DEF 기울기): 채권 수익률에 대한 신용 스프레드의 영향을 나타냅니다.
  - LG 등급 채권(저등급 회사채)의 DEF 기울기는 1.01로 가장 높은 DEF 기울기를 보이며, 신용 스프레드가 해당 채권 수익률에 매우 큰 영향을 미친다는 것을 보여줍니다.
- •R<sup>2</sup> (수정 결정계수): 채권 포트폴리오의 수익률 변동을 TERM과 DEF로 얼마나 설명하는지를 나타냅니다.
  - 채권 포트폴리오에서 R<sup>2</sup> 값은 0.49에서 0.98 사이로, 주식 포트폴리오에 비해 TERM과 DEF가 채권 수익률의 변동을 더 잘 설명하고 있음을 보여줍니다. 특히 고등급 채권에서는 R<sup>2</sup> 값이 0.97~0.98로 매우 높습니다.

### Table 3에서

시계열 회귀분석에서 TERM과 DEF만 설명변수로 사용될 경우 주식 및 채권 수익률의 공통 변동을 포착한다는 것을 보여주었다.

Table 3에서는, 시계열 회귀분석에서 TERM과 DEF만 설명변수로 사용될 경우, 주식 및 채권 수익률의 공통 변동을 포착

- 1. 25개의 주식 포트폴리오가 가지는 각각의 TERM 기울기는 모두 0으로부터 5 표준오차 이상에 있다.
- 2. 7개 채권 포트폴리오의 TERM 기울기 중 가 장 작은 값이 0으로부터 18 표준오차에 위치해 있다.
- 3. DEF 기울기는 모든 채권에 대해 0으로부터 7.8 표준오차 이상이고, 모든 주식에 대해 0으로부터 3.5 표준오차 이상이다.

#### 용어 Check!

TERM: 장기채와 단기채의 금리 차이를 나타낸다. 이는 일반적으로 경기 상황을 반영하며, 경제가 성장할 때 장기 금리는 상승하고, 불황일 때는 단기 금리가 상승하는 경향이 있다.

DEF: 신용 스프레드로, 회사채와 정부채의 금리 차이를 나타낸다. 이는 회사채의 위험도를 반영하는데, 경제 상황이 악화되면 회사채 금리가 상대적으로 더 높아지는 경향이 있다.

Table 3 주식 및 채권의 초과수익률(%)을 채권시장의 수익률인 TERM과 DEF에 대해 회귀분석 한 결과 : 1963년 7월부터 1991년 12월까지, 342개월

|                |      |               | R(t)                  | -RF(t)=c   | i + mTERM( | $t) + dDEF(t) + \epsilon$ | e(t)   |      | TERM 표준된 | <br>편차 5이상<br> | 5          |
|----------------|------|---------------|-----------------------|------------|------------|---------------------------|--------|------|----------|----------------|------------|
|                |      |               |                       |            |            |                           |        |      |          |                |            |
|                |      | I             | 종속변수: 사이              | 기즈와 BE/ME로 | - 형성된 25개  | 주식 포트폴리오의 :               | 초과수익률  |      |          |                |            |
| 사이즈            |      |               |                       |            | BE/N       | ΛE 5분위                    |        |      |          | _ r            | DEE        |
| 5분위            | Low  | 2             | 3                     | 4          | High       | Low                       | 2      | 3    | 4        | High           | DEF        |
|                |      |               | m                     |            |            |                           |        | t(m) |          | 7              | 표준편차       |
| Small          | 0.93 | 0.90          | 0.89                  | 0.86       | 0.89       | 5.02                      | 5.50   | 5.95 | 6.08     | 6.01           | 3.5이상      |
| 2              | 0.99 | 0.96          | 0.99                  | 1.01       | 0.98       | 5.71                      | 6.32   | 7.29 | 8.34     | 6.92           | 3.5 0      |
| 3              | 0.99 | 0.94          | 0.94                  | 0.95       | 0.99       | 6.25                      | 7.10   | 7.80 | 8.50     | 7.60           |            |
| 4              | 0.92 | 0.95          | 0.97                  | 1.05       | 1.03       | 6.58                      | 7.57   | 8.53 | 9.64     | 7.83           | 1 /        |
| Big            | 0.82 | 0.82          | 0.80                  | 0.80       | 0.77       | 7.14                      | 7.60   | 8.09 | 8.26     | 6.84           | <i>)</i> / |
|                |      |               | d                     |            |            |                           |        | t(d) |          | $\overline{}$  | , /        |
| Small          | 1.39 | 1.31          | 1.33                  | 1.45       | 1.52       | 3.96                      | 4.27   | 4.73 | 5.45     | 5.45           | 1/         |
| 2              | 1.26 | 1.28          | 1.35                  | 1.38       | 1.41       | 3.84                      | 4.47   | 5.28 | 6.05     | 5.29           | ĺ          |
| 3              | 1,21 | 1.19          | 1.25                  | 1.24       | 1.21       | 4.05                      | 4.74   | 5.49 | 5.89     | 4.88           | 1          |
| 4              | 0.96 | 1.01          | 1,13                  | 1,21       | 1.22       | 3.65                      | 4.28   | 5.25 | 5.89     | 4.92           | 1          |
| Big            | 0.78 | 0.73          | 0.78                  | 0.83       | 0.89       | 3.59                      | 3.60   | 4.18 | 4.56     | 4.15           | J          |
|                |      |               | R <sup>2</sup> [수정결정계 |            |            |                           |        | s(e) |          |                |            |
| Small          | 0.06 | 0.08          | 0.09                  | 0.10       | 0.10       | 7.50                      | 6.57   | 6.00 | 5.68     | 5.95           |            |
| 2              | 0.08 | 0.10          | 0.13                  | 0.17       | 0.12       | 6.97                      | 6.09   | 5.45 | 4.87     | 5.69           | │ 18 이상    |
| 3              | 0.10 | 0.12          | 0.15                  | 0.17       | 0.14       | 6.38                      | 5.35   | 4.86 | 4.48     | 5.28           | 표준오차       |
| 4              | 0.11 | 0.14          | 0.17                  | 0.21       | 0.15       | 5.63                      | 5.04   | 4.57 | 4.39     | 5.31           |            |
| Big            | 0.13 | 0.15          | 0.16                  | 0.17       | 0.12       | 4.61                      | 4.33   | 4.00 | 3.89     | 4.55           |            |
|                |      | <br>7.8 이상 표준 | <br>F오차               | 조소벼스: 3    | 성부채와 회사채의  | 이 호교스이르                   |        |      |          |                |            |
|                | L    | 7.0   6 == E  | 6-10                  |            | Aaa        | 의 조파우익률<br>Aa             | А      |      | Ваа      | LG             | 1          |
| m              |      | 0.45          | 0.7                   |            | 1.02       | 0.99                      | 1.00   |      | 1.01     | 0.81           | 1          |
| t(m)           |      | 31.73         | 38.8                  |            | 99.94      | 130.44                    | 139.80 |      | 56.24    | 18.05          |            |
| L(ffi)         |      | 31./3         | \ 30.0                | 30         | 99.94      | 130.44                    | 139.00 |      | 50.24    | 10.05          | J          |
| d              |      | 0.25          | 0.2                   | 27         | 0.94       | 0.96                      | 1.02   |      | 1.10     | 1.01           |            |
| t(d)           |      | 9.51          | 7.8                   |            | 48.95      | 67.54                     | 75.74  |      | 32.33    | 11.95          |            |
| R <sup>2</sup> |      | 0.79          | 0.0                   | 87         | 0.97       | 0.98                      | 0.98   |      | 0.90     | 0.49           |            |
| s(e)           |      | 0.57          | 0.7                   | 75         | 0.41       | 0.30                      | 0.27   |      | 0.72     | 1.80           |            |

### Table 3 결과

TERM과 DEF에 의해 포착되는 공통 변동은, 오히려 채권보다 주식에 더 강하게 나타난다.

주식의 DEF 기울기들은 대부분 채권의 기울기보다 더 크다.

주식의 TERM 기울기들(거의 모두 1에 가깝다)은 채권의 기울기 중 가장 큰 것과 비슷하다. 그러나, 예상하다시피, 수익률 분산 중에서 TERM과 DEF에 의해 설명되는 비율은 채권에서 더 크다.

채권 회귀분석에서, R<sup>2</sup>의 범위는 저-등급채의 0.49에서 고등급채의 0.97, 0.98까지 걸쳐져 있다. 대조적으로, 주식에서는 R<sup>2</sup>의 범위가 0.06에서 0.21에 걸쳐져 있다. so TERM과 DEF 는 주식과 채권 수익률의 공유 변동을 명확하게 확인시켜 주지만, 주식과 저-등급 채에 대해서는, 주식시장의 팩터들에 의해 설명되어야 할 많은 변동들이 남아있다.

TERM에 의해 측정된 금리 변화에 단기채보다는 장기채가 더욱 민감하다. 장기채는 금리 변화에 더 민감한 이유는 금리 리스크가 크고, 할인율의 변화가 더 많이 누적되며, 수익률 곡선의 변화에 따라 장기 금리가 더 많은 영향을 받기 때문이다.

**25개의 주식 포트폴리오는 장기채와 유사한 TERM 기울기를 가진다.** TERM이 포착하는 리스크가, 장기 증권인 채권과 주식에 같은 방식으로 영향을 주는 할인율에 대한 충격으로 발생한다는 것을 시사하는 것을 보여준다.

### Table 3 결과

DEF 기울기에서 소형주 수익률은 대형주 수익률보다 DEF에 의해 포착된 리스크에 더 민감하다. 주식의 DEF 기울기는 회사채보다 높고, 또 회사채 기울기는 정부채보다 높다.

DEF는 정부채에서 회사채로, 채권에서 주식으로, 대형주에서 소형주 로 갈수록 높아지는 공통의 '디폴트' 리스크를 포착하는 것으로 보인다.

DEF 기울기에서 보이는 패턴과, 주식과 채권 수익률을 DEF의 ex ante 버전(저 등급채 금리 – 고 등급채 금리 스프레드)으로 시계열 회귀분석 한 Fama and French(1989)의 패턴 간에 흥미로운 유사성이 있다는 것을 보였다.

사이즈와 DEF 기울기 간 음(-)의 관계를 고려할 때, 왜 DEF 기울기가 사이즈 포트폴리오의 횡단면 수익률 회귀분석에서 잘 작동하는지를 알아보는 것은 쉽다. DEF가 평균주식수익률에 있어 사이즈 효과를 설명할 수 없다 는 것을 시사한다.

설명: 사이즈 포트폴리오에서 사이즈가 커질수록 DEF 기울기가 낮아진다는 관계를 의미하며 표의 'd' 값을 확인하면 된다.

- 1.표의 상단부에서 사이즈 5분위에 따라 Small에서 Big으로 갈수록 "d" 값을 확인한다.
- 2.D 값(DEF 기울기)는 사이즈가 커질수록 감소하는 패턴을 보인다. 예를 들어:
  - 1. Small 포트폴리오에서 d 값은 1.39입니다.
  - 2. Big 포트폴리오에서는 d 값이 0.78로 줄어듭니다.
- 즉, **사이즈가 작은 포트폴리오일수록 DEF 기울기가 크고**, 사이즈가 커질수록 DEF 기울기가 작아집니다. 이 관계가 "음(-)의 관계"로 표현된다.

알 수 있는 내용들

시계열 회귀분석에서, DEF 기울기 1단위 당 평균 프리미엄은 DEF의 평균값인 데, 한 달에 고작 0.02%이다. 유사하게, TERM 수익률 평균도 한 달에 겨우 0.06%이라고 합니다.

그 결과, 주식수익률을 TERM과 DEF에 대해 회귀분석 한 절편은 평균수익률에 있어서 강한 사이즈 효과와 BE/ME 효과를 남겨둔다는 것을 알게 되었다고 합니다.

주식시장의 팩터들이 회귀분석에 추가되면, Table 3에 있는 사이즈와 DEF 기울기 간 음(-)의 관계가 사라진다는 것을 발견하였다고합니다.

주식시장 팩터들의 역할에 대해 3단계로 진행한다.

- (a) 채권과 주식의 초과수익률을 설명 하기 위해 시장초과수익률인 RM-RF를 사용한 회귀분석
- (b) 사이즈와 BE/ME 팩터의 모방수익률인 SMB와 HML을 설명변수로 사용한 회귀분석
- (c) RM-RF, SMB, HML을 사용한 회귀분석을 조사하였다.

RM-RF를 사용한 회귀분석 (1-팩터 모델): 시장초과수익률(RM-RF)은 시장 전체의 수익률에서 무위험수익률(RF)을 뺀 값이다. 이 값은 주식 및 채권 포트폴리오의 초과수익률을 설명하는 데 사용된다.

Table 4에서 "b" 값은 각 포트폴리오의 시장 베타(β)를 나타낸다. 이는 RM-RF가 해당 포트폴리오의 수익률 변동성을 얼마나 잘 설명하는지를 나타내는 계수이다.

#### 주식 포트폴리오:

- •Small 포트폴리오에서 b 값은 1.40에서 1.06 사이이며, Big 포트폴리오에서는 1.03에서 0.84까지 낮아집니다. 이는 대형주(Big)가 시장 수익률의 변동에 덜 민감하고, 소형주(Small)는 더 민감하다는 것을 나타낸다.
- •R² 값(결정계수)은 해당 모델이 수익률 변동성을 얼마나 잘 설명하는지를 나타낸다.
- •대형주 포트폴리오에서는 R2 값이 0.89에서 0.92로 높은 반면, 소형주 포트폴리오에서는 0.67~0.70으로 다소 낮습니다.

#### 채권 포트폴리오:

- •채권에서도 b 값을 통해 시장초과수익률이 채권 수익률을 얼마나 잘 설명하는지 확인하여야 한다.
- •1-5G 정부채의 b 값은 0.08로, 정부채는 시장 변동성에 거의 영향을 받지 않는다. 반면, LG 저-등급 채권의 b 값은 0.30으로 시장 변동성에 더 큰 영향을 받는다는 것을 보여준다.
- •채권 포트폴리오의 R² 값은 저-등급 채권(LG)에서 0.29로, RM-RF가 채권 수익률 변동성 중 29%를 설명하는 것을 나타냅니다.

Table 4

주식 및 채권의 초과수익률(%)을 주식시장의 초과수익률인 RM-RF에 대해 회귀분석한 결과: 1963년 7월부터 1991년 12월까지, 342개월<sup>a</sup>

$$R(t) - RF(t) = a + b[RM(t) - RF(t)] + e(t)$$

| 사이즈   |      |      |                |      | BE/ME | 5분위   |       |       |       |       |
|-------|------|------|----------------|------|-------|-------|-------|-------|-------|-------|
| 5분위   | Low  | 2    | 3              | 4    | High  | Low   | 2     | 3     | 4     | High  |
|       |      |      | b              |      |       |       |       | t(b)  |       |       |
| Small | 1.40 | 1.26 | 1.14           | 1.06 | 1.08  | 26.33 | 28.12 | 27.01 | 25.03 | 23.01 |
| 2     | 1.42 | 1.25 | 1.12           | 1.02 | 1,13  | 35.76 | 35.56 | 33.12 | 33.14 | 29.04 |
| 3     | 1.36 | 1.15 | 1.04           | 0.96 | 1.08  | 42.98 | 42.52 | 37.50 | 35.81 | 31.16 |
| 4     | 1.24 | 1.14 | 1.03           | 0.98 | 1.10  | 51.67 | 55.12 | 46.96 | 37.00 | 32.76 |
| Big   | 1.03 | 0.99 | 0.89           | 0.84 | 0.89  | 51.92 | 61.51 | 43.03 | 35.96 | 27.75 |
|       |      |      | R <sup>2</sup> |      |       |       |       | s(e)  |       |       |
| Small | 0.67 | 0.70 | 0.68           | 0.65 | 0.61  | 4.46  | 3.76  | 3.55  | 3.56  | 3.92  |
| 2     | 0.79 | 0.79 | 0.76           | 0.76 | 0.71  | 3.34  | 2.96  | 2.85  | 2.59  | 3.25  |
| 3     | 0.84 | 0.84 | 0.80           | 0.79 | 0.74  | 2.65  | 2.28  | 2.33  | 2.26  | 2.90  |
| 4     | 0.89 | 0.90 | 0.87           | 0.80 | 0.76  | 2.01  | 1.73  | 1.84  | 2.21  | 2.83  |
| Big   | 0.89 | 0.92 | 0.84           | 0.79 | 0.69  | 1.66  | 1.35  | 1.73  | 1.95  | 2.69  |

|                |      | 종속변   | 수: 정부채와 회사치 | l의 초과수익률 |      |      |       |
|----------------|------|-------|-------------|----------|------|------|-------|
|                | 1-5G | 6-10G | Aaa         | Aa       | A    | Baa  | LG    |
| b              | 0.08 | 0.13  | 0.19        | 0.20     | 0.21 | 0.22 | 0.30  |
| t(b)           | 5.24 | 5.57  | 7.53        | 8.14     | 8.42 | 8.73 | 11.90 |
| R <sup>2</sup> | 0.07 | 0.08  | 0.14        | 0.16     | 0.17 | 0.18 | 0.29  |
| s(e)           | 1,21 | 1.95  | 2.17        | 2.05     | 2.05 | 2.12 | 2.12  |

<sup>®</sup>RM은 25개의 사이즈-BE/ME 포트폴리오에 들어있는 모든 주식들과, BE가 음(-)이라 제외된 주식들의 시총가중 월별수익률(%)이다. RF는 월초에 관측되는 1개월 treasury bill 금리 이다.

초과수익률 회귀분석에서 종속변수로 사용된 7개의 채권 포트폴리오들은, 1-5년, 6-10년 정부채(1-5G, 6-10G)와 무디스에 의해 Aaa, Aa, A, Baa, Baa 미만(LG) 등급을 받은 회사채이다. 25개의 사이즈-BE/ME 포트폴리오는 다음과 같이 만들어진다. 1963년에서 1991년 기간 동안 각 t년 6월 말에 NYSE 주식으로 사이즈(ME, 주가×주식수)의 5분위 기준점을 측정해, 이를 NYSE, Amex, NASDAQ 주식들을 할당하는데 사용한다. 이와 유사하게, NYSE 주식으로 BE/ME의 5분위 기준점을 측정해, 이를 NYSE, Amex, NASDAQ 주식들을 할당하는데 사용한다. BE/ME에서, BE는 t-1년 회계기말의 보통주 장부가치이고, ME는 t-1년 12월 말 데이터를 사용한다. 25개의 사이즈-BE/ME 포트폴리오는 사이즈 그룹 5개와 BE/ME 그룹 5개의 교집합으로 형성된다. 포트폴리오에 대한 시총가중 월별수익률이 t년 7월부터 t+1년도 6월까지 계산된다.

R<sup>2</sup>과 잔차의 표준오차인 s(e)는 자유도가 조정되었다.

#### SMB와 HML을 사용한 회귀분석 (2-팩터 모델):

- •SMB (Small Minus Big): 사이즈 팩터로, 소형주와 대형주의 수익률 차이를 설명한다.
- •HML (High Minus Low): BE/ME 팩터로, 고 BE/ME 주식과 저 BE/ME 주식의 수익률 차이를 설명한다.
- •문장에서 언급된 대로, 소형주와 고 BE/ME 포트폴리오는 SMB와 HML 팩터가 추가적인 설명력을 발휘할 수 있는 기회가 있다. 즉, 1-팩터 모델(RM-RF만 사용한 회귀분석)에서는 소형주와 고 BE/ME 주식에서 설명되지 않은 변동성이 많지만, SMB와 HML 팩터를 추가하면 더 잘 설명될 수 있다는 뜻입니다.

#### RM-RF, SMB, HML을 사용한 회귀분석 (3-팩터 모델):

- •3-팩터 모델은 시장 초과수익률(RM-RF), 사이즈 팩터(SMB), BE/ME 팩터(HML)를 모두 사용하여 주식 및 채권 수익률의 변동을 설명하는 모델이다.
- •문장에서 언급된 것처럼, **3-팩터 모델**이 주식에서 더 잘 작동할 수 있는데, 이는 각 포트폴리오의 수익률 변동을 시장 베타뿐만 아니라 사이즈와 BE/ME 팩터를 통해 추가적으로 설명할 수 있기 때문이다.
- 1-팩터 모델 (RM-RF): 주식과 채권의 수익률 변동을 시장 초과수익률로 설명하며, 주식에서는 소형주와 고 BE/ME 포트폴리오에서 R<sup>2</sup> 값이 상대적으로 낮아 추가적인 팩터가 필요할 수 있다.
- 2-팩터 및 3-팩터 모델: 사이즈와 BE/ME 팩터(SMB, HML)를 추가하여 주식 수익률 변동을 더 잘 설명할 수 있으며, 이는 특히 소형 주와 고 BE/ME 주식에서 중요한 설명력을 가진다.

채권: 회사채는 정부채보다 시장 변동성에 더 민감하고, 저 등급 회사채(LG)는 특히 시장 변동성에 높은 민감도를 나타낸다.

Table 5

주식 및 채권의 초과수익률(%)을 사이즈와 BE/ME 팩터의 모방수익률(SMB와 HML)에 대해 회귀분석한 결과: 1963년 7월부터 1991년 12월까지, 342개월<sup>a</sup>

$$R(t) - RF(t) = a + sSMB(t) + hHML(t) + e(t)$$

|                |       | 3     | 종속변수: 사이즈:     | 와 BE/ME로 | 형성된 25개 - | 주식 포트폴리오의 : | 초과수익률 |       |       |       |
|----------------|-------|-------|----------------|----------|-----------|-------------|-------|-------|-------|-------|
| 사이즈            |       |       |                |          | BE/MI     | E 5분위       |       |       |       |       |
| 5분위            | Low   | 2     | 3              | 4        | High      | Low         | 2     | 3     | 4     | High  |
|                |       |       | S              |          |           |             |       | t(s)  |       |       |
| Small          | 1.93  | 1.73  | 1.63           | 1.59     | 1.67      | 22.52       | 21.38 | 21.88 | 22.30 | 22.16 |
| 2              | 1.52  | 1.46  | 1.35           | 1.18     | 1.40      | 17.23       | 17.68 | 17.08 | 15.47 | 16.42 |
| 3              | 1.28  | 1.12  | 1.05           | 0.93     | 1.16      | 14.43       | 13.89 | 13.42 | 12.13 | 13.45 |
| 4              | 0.86  | 0.82  | 0.77           | 0.72     | 0.95      | 10.16       | 9.64  | 9.29  | 8.57  | 10.02 |
| Big            | 0.28  | 0.35  | 0.22           | 0.29     | 0.44      | 3.70        | 4.39  | 2.79  | 3.69  | 5.02  |
|                |       |       | h              |          |           |             |       | t(h)  |       |       |
| Small          | -0.95 | -0.57 | -0.35          | -0.18    | 0.01      | -9.72       | -6.19 | -4.10 | -2.20 | 0.16  |
| 2              | -1.23 | -0.66 | -0.38          | -0.16    | 0.00      | -12.25      | -7.02 | -4.20 | -1.82 | 0.05  |
| 3              | -1.09 | -0.65 | -0.31          | -0.11    | -0.01     | -10.84      | -7.07 | -3.43 | -1.23 | -0.12 |
| 4              | -1,11 | -0.65 | -0.36          | -0.11    | -0.01     | -11.43      | -6.69 | -3.80 | -1.12 | -0.09 |
| Big            | -1.07 | -0.65 | -0.42          | -0.06    | 0.08      | -12.46      | -7.07 | -4.64 | -0.66 | 0.81  |
|                |       |       | R <sup>2</sup> |          |           |             |       | s(e)  |       |       |
| Small          | 0.65  | 0.60  | 0.60           | 0.60     | 0.59      | 4.57        | 4.31  | 3.98  | 3.79  | 4.01  |
| 2              | 0.59  | 0.53  | 0.49           | 0.42     | 0.44      | 4.68        | 4.41  | 4.20  | 4.06  | 4.53  |
| 3              | 0.51  | 0.43  | 0.37           | 0.31     | 0.35      | 4.71        | 4.31  | 4.19  | 4.10  | 4.60  |
| 4              | 0.43  | 0.30  | 0.24           | 0.18     | 0.23      | 4.53        | 4.55  | 4.40  | 4.48  | 5.06  |
| Big            | 0.34  | 0.18  | 80.0           | 0.04     | 0.06      | 4.02        | 4.27  | 4.20  | 4.19  | 4.69  |
|                |       |       | ş              | 족속변수: 정  | 부채와 회사채:  | 의 초과수익률     |       |       |       |       |
|                |       | 1-5G  | 6-10G          |          | Aaa       | Aa          | Α     |       | Baa   | LG    |
| S              |       | -0.02 | -0.06          |          | -0.00     | 0.00        | 0.03  | (     | 0.09  | 0.19  |
| t(s)           |       | -0.66 | -1.50          |          | -0.15     | 0.22        | 0.77  | 1     | 1.99  | 4.19  |
| h              |       | 0.00  | -0.03          |          | -0.02     | -0.01       | -0.00 | (     | 0.02  | 0.00  |
| t(h)           |       | 0.24  | -0.71          |          | -0.45     | -0.22       | -0.05 | (     | 0.46  | 0.15  |
| R <sup>2</sup> |       | -0.00 | 0.00           |          | -0.00     | -0.00       | -0.00 |       | 0.00  | 0.04  |
| s(e)           |       | 1.26  | 2.03           |          | 2.34      | 2.24        | 2.25  |       | 2.34  | 2.46  |

#### Table 5

설명변수 중에서 시장 포트폴리오가 없을 때, SMB와 HML이 전형적으로 주식수익률의 시계열 변동을 상당 부분 포착한다는 것을 보여준다. 25개 중 20개의 R<sup>2</sup>값이 0.2 이상이고, 8개는 0.5 이상이다. 하지만 좀 더 큰 사이즈 분위의 포트폴리오에서는, SMB와 HML이 Table 4의 시장 포트폴리오가 포착했던 주식수익률의 공통 변동을 설명하지 못하고 있다.

시장, SMB, HML – Table 5에서는, SMB와 HML만 사용할 경우 채권수익률을 거의 설명하지 못한 다는 것을 보여준다.

Table 6에서는 시장초과수익률이 회귀분석에 같이 들어가면, 3개의 주식시장 팩터들 각각이 채권수익률의 변동을 포착한다는 것을 보여준다. 하지만 채권 회귀분석에 기간구 조 팩터들을 추가하면, 주식시장 팩터들의 설명력을 대부분 없앤다는 것을 알게 될 것이다. 그러 므로, Table 6의 채권수익률에 있어 주식시장 팩터들의 명백한 역할은 기간구조와 주식시장 팩터 들의 공변동(상관관계)으로부터 초래된 것이다.

#### Table 5

설명변수 중에서 시장 포트폴리오가 없을 때, SMB와 HML이 전형적으로 주식수익률의 시계열 변동을 상당 부분 포착한다는 것을 보여준다. 25개 중 20개의 R<sup>2</sup>값이 0.2 이상이고, 8개는 0.5 이상이다. 하지만 좀 더 큰 사이즈 분위의 포트폴리오에서는, SMB와 HML이 Table 4의 시장 포트폴리오가 포착했던 주식수익률의 공통 변동을 설명하지 못하고 있다.

시장, SMB, HML – Table 5에서는, SMB와 HML만 사용할 경우 채권수익률을 거의 설명하지 못한 다는 것을 보여준다.

#### Table 6

시장초과수익률이 회귀분석에 같이 들어가면, 3개의 주식시장 팩터들 각각이 채권수익률의 변동을 포착한다는 것을 보여준다. 하지만 채권 회귀분석에 기간구 조 팩터들을 추가하면, 주식시장 팩터들의 설명력을 대부분 없앤다는 것을 알게 될 것이다. 그러 므로, Table 6의 채권수익률에 있어 주식시장 팩터들의 명백한 역할은 기간구조와 주식시장 팩터 들의 공변동(상관관계)으로부터 초래된 것이다.

#### Table 6

주식 수익률의 강력한 공통 변동은 시장, 사이즈(SMB), BE/ME(HML) 팩터로 잘 포착되었다.

- •시장 베타는 모두 0에서 38 표준오차 이상으로 유의미하게 나타나고, SMB 기울기도 대부분 t-통계량이 4 이상, 심지어 10을 넘는 경우가 많다.
- •SMB 기울기는 사이즈와 관련이 있으며, 소형주에서 대형주로 갈수록 단조적으로 감소한다.
- •HML 기울기는 BE/ME와 체계적으로 연관되어 있으며, BE/ME가 낮을수록 음(-)의 기울기를, 높을수록 양(+)의 기울기를 보인다.

SMB와 HML을 회귀분석에 추가하면, 주식 수익률 설명력이 크게 증가한다.

- •시장 베타만 사용한 1-팩터 모델에서는 2개 포트폴리오만 R² 값이 0.9를 넘었지만, 3-팩터 모델에서는 **25개 중 21개**가 R² 값이 0.9이상이다.
- •특히 소형주 포트폴리오에서 R<sup>2</sup> 값이 0.61~0.70에서 0.94~0.97로 증가한다.
- •가장 작은 R<sup>2</sup> 값은 대형주/고 BE/ME 포트폴리오에서 0.83인데, 이는 시장만 사용했을 때 0.69보다 훨씬 크다.

SMB와 HML을 회귀분석에 추가하면 주식의 시장 베타가 주식의 시장 베타 값이 1.0에 가까워지게 된다.

- •1-팩터 모델에서는 소형주/저 BE/ME 주식의 베타가 1.40, 대형주/고 BE/ME 주식의 베타가 0.89였지만, 3-팩터 모델에서는 이 값들이 각각 1.04와 1.06으로 1.0에 더 가까워졌고 한다.
- •이는 SMB와 HML이 시장 베타에 상관관계를 가지면서 베타를 1.0으로 압축하는 효과를 낳는다.
- •RM-RF와 SMB, RM-RF와 HML의 상관관계는 각각 0.32와 -0.38로, 시장 베타에 영향을 미친다.

•

Table 6

주식 및 채권의 초과수익률(%)을 시장초과수익률(RM-RF), 사이즈와 BE/ME 팩터의 모방수익률(SMB와 HML)로 회귀분석한 결과: 1963년 7월부터 1991년 12월까지, 342개월<sup>a</sup>

$$R(t) - RF(t) = a + b[RM(t) - RF(t)] + sSMB(t) + hHML(t) + e(t)$$

|                |       | 2     | 종속변수: 사이즈      | 와 BE/ME | 로 형성된 25개 - | 주식 포트폴리오의 | 초과수익률 |       |       |       |
|----------------|-------|-------|----------------|---------|-------------|-----------|-------|-------|-------|-------|
| 사이즈            |       |       |                |         | BE/M        | 5분위       |       |       |       |       |
| 5분위            | Low   | 2     | 3              | 4       | High        | Low       | 2     | 3     | 4     | High  |
|                |       |       | b              |         |             |           |       | t(b)  |       |       |
| Small          | 1.04  | 1.02  | 0.95           | 0.91    | 0.96        | 39.37     | 51.80 | 60.44 | 59.73 | 57.89 |
| 2              | 1.11  | 1.06  | 1.00           | 0.97    | 1.09        | 52.49     | 61.18 | 55.88 | 61.54 | 65.52 |
| 3              | 1.12  | 1.02  | 0.98           | 0.97    | 1.09        | 56.88     | 53.17 | 50.78 | 54.38 | 52.52 |
| 4              | 1.07  | 1.08  | 1.04           | 1.05    | 1.18        | 53.94     | 53.51 | 51.21 | 47.09 | 46.10 |
| Big            | 0.96  | 1.02  | 0.98           | 0.99    | 1.06        | 60.93     | 56.76 | 46.57 | 53.87 | 38.61 |
|                |       |       | S              |         |             |           |       | t(s)  |       |       |
| Small          | 1.46  | 1.26  | 1.19           | 1.17    | 1.23        | 37.92     | 44.11 | 52.03 | 52.85 | 50.97 |
| 2              | 1.00  | 0.98  | 0.88           | 0.73    | 0.89        | 32.73     | 38.79 | 34.03 | 31.66 | 36.78 |
| 3              | 0.76  | 0.65  | 0.60           | 0.48    | 0.66        | 26.40     | 23.39 | 21.23 | 18.62 | 21.91 |
| 4              | 0.37  | 0.33  | 0.29           | 0.24    | 0.41        | 12.73     | 11.11 | 9.81  | 7.38  | 11.01 |
| Big            | -0.17 | -0.12 | -0.23          | -0.17   | -0.05       | -7.18     | -4.51 | -7.58 | -6.27 | -1.18 |
|                |       |       | h              |         |             |           |       | t(h)  |       |       |
| Small          | -0.29 | 0.08  | 0.26           | 0.40    | 0.62        | -6.47     | 2.35  | 9.66  | 15.53 | 22.24 |
| 2              | -0.52 | 0.01  | 0.26           | 0.46    | 0.70        | -14.57    | 0.41  | 8.56  | 17.24 | 24.80 |
| 3              | -0.38 | -0.00 | 0.32           | 0.51    | 0.68        | -11.26    | -0.05 | 9.75  | 16.88 | 19.39 |
| 4              | -0.42 | 0.04  | 0.30           | 0.56    | 0.74        | -12.51    | 1.04  | 8.83  | 14.84 | 17.09 |
| Big            | -0.46 | 0.00  | 0.21           | 0.57    | 0.76        | -17.03    | 0.09  | 5.80  | 18.34 | 16.24 |
|                |       |       | R <sup>2</sup> |         |             |           |       | s(e)  |       |       |
| Small          | 0.94  | 0.96  | 0.97           | 0.97    | 0.96        | 1.94      | 1.44  | 1.16  | 1.12  | 1.22  |
| 2              | 0.95  | 0.96  | 0.95           | 0.95    | 0.96        | 1.55      | 1.27  | 1.31  | 1.16  | 1.23  |
| 3              | 0.95  | 0.94  | 0.93           | 0.93    | 0.93        | 1.45      | 1.41  | 1.43  | 1.32  | 1.52  |
| 4              | 0.94  | 0.93  | 0.91           | 0.89    | 0.89        | 1.46      | 1.48  | 1.49  | 1.63  | 1.88  |
| Big            | 0.94  | 0.92  | 0.88           | 0.90    | 0.83        | 1.16      | 1.32  | 1.55  | 1.36  | 2.02  |
|                |       |       |                | 조소벼스:   | 정부채와 회사채의   | 이 초과스이류   |       |       |       |       |
|                |       | 1-5G  | 6-10G          | 8721.   | Aaa         | Aa        | Α     |       | Baa   | LG    |
| b              |       | 0.10  | 0.18           |         | 0.25        | 0.25      | 0.26  |       | 0.27  | 0.34  |
| t(b)           |       | 6.45  | 6.75           |         | 8.60        | 9.30      | 9.46  |       | 9.58  | 12.22 |
| C(D)           |       | 0.45  | 0.75           |         | 0.00        | 5.50      | 5.40  |       | 5.50  | 12.22 |
| S              |       | -0.06 | -0.14          |         | -0.12       | -0.11     | -0.09 |       | -0.04 | 0.04  |
| t(s)           |       | -2.70 | -3.65          |         | -2.89       | -2.72     | -2.18 |       | -0.91 | 0.89  |
|                |       |       |                |         |             |           |       |       |       |       |
| h              |       | 0.07  | 0.08           |         | 0.14        | 0.15      | 0.16  |       | 0.20  | 0.23  |
| t(h)           |       | 2.66  | 1.83           |         | 2.77        | 3.26      | 3.51  |       | 4.08  | 4.75  |
| R <sup>2</sup> |       | 0.10  | 0.12           |         | 0.17        | 0.20      | 0.20  |       | 0.22  | 0.33  |
| s(e)           |       | 1.19  | 1.91           |         | 2.13        | 2.00      | 2.01  |       | 2.08  | 2.06  |

### 4.3 주식시장과 채권시장의 팩터들 (Table -7a & 7b)

#### Table 7

#### 채권과 주식 수익률의 공통 변동성

- •채권시장 팩터는 채권 수익률 뿐만 아니라 주식 수익률의 변동성도 설명할 수 있다. (Table 3).
- 주식시장 팩터는 주식 수익률 뿐만 아니라 채권 수익률의 변동성도 설명할 수 있다. (Table 6).
- 이는 채권과 주식 수익률 간에 공통된 요소가 있음을 시사한다.

#### 첫 번째 검토: 채권과 주식 수익률의 독립적 설명

• Table 7에서는 채권시장 팩터와 주식시장 팩터가 각각 **채권과 주식 수익률에 강력한 설명력을 유지**함을 보여줍니다. 채권 수익률을, 주식시장 팩터는 주식 수익률을 설명하는 데 여전히 **강한 역할**을 합니다.

#### 주식과 채권 회귀분석에서의 팩터 영향

- •주식 수익률에 TERM과 DEF를 추가하더라도 주식시장 팩터들(RM-RF, SMB, HML)의 설명력에는 거의 변화가 없다.
- Table 7a에서 주식시장 팩터들의 기울기는 여전히 강하며, Table 6의 결과와 유사하다.
- 비슷하게, **채권 수익률에 RM-RF, SMB, HML을 추가**해도 TERM**과** DEF의 설명력에는 거의 영향을 미치지 않으며, Table 3과 유사한 결과를 보여진다.

#### 4. 5-팩터 회귀분석의 결과

- 5-팩터 회귀분석은 주식과 채권 수익률 간의 겹치는 부분에 대한 Table 3과 Table 6의 증거를 반박하는 것으로 보였다. 주식 회귀분석에 주식시장 팩터를 추가하면 TERM과 DEF의 설명력이 약화됐다. 채권 수익률이 주식시장 팩터에 반응한다는 Table 6의 증거는 Table 7b에서 대부분 사라진다.
- •저등급 채권(LG)만이 여전히 주식시장 팩터에 대해 유의미한 기울기를 보이며, 이는 5-팩터 모델에서 주식시장 팩터와의 상관성이 존재함을 나타낸다.

# 4.3 주식시장과 채권시장의 팩터들 (Table -7a & 7b)

Table 7a

사이즈와 BE/ME로 형성된 25개 주식 포트폴리오의 초과주식수익률(%)을 주식시장의 수익률인 RM-RF, SMB, HML과 채권시장 수익률인 TERM, DEF로 회귀분석 한 결과: 1963년 7월부터 1991년 12월까지, 342개월<sup>3</sup>

R(t) - RF(t) = a + b[RM(t) - RF(t)] + sSMB(t) + hHML(t) + mTERM(t) + dDEF(t) + e(t)

| 사이즈   |       |       |                |       | BE/ME | 5분위    |       |       |       |       |
|-------|-------|-------|----------------|-------|-------|--------|-------|-------|-------|-------|
| 5분위   | Low   | 2     | 3              | 4     | High  | Low    | 2     | 3     | 4     | High  |
|       |       |       | b              |       |       |        |       | t(b)  |       |       |
| Small | 1.06  | 1.04  | 0.96           | 0.92  | 0.98  | 35.97  | 47.65 | 54.48 | 54.51 | 53.15 |
| 2     | 1.12  | 1.06  | 0.98           | 0.94  | 1.10  | 47.19  | 54.95 | 49.01 | 54.19 | 59.00 |
| 3     | 1.13  | 1.01  | 0.97           | 0.95  | 1.08  | 50.93  | 46.95 | 44.57 | 47.59 | 46.92 |
| 4     | 1.07  | 1.07  | 1.01           | 1.00  | 1.17  | 48.18  | 47.55 | 44.83 | 41.02 | 41.02 |
| Big   | 0.96  | 1.02  | 0.98           | 1.00  | 1.10  | 53.87  | 51.01 | 41.35 | 48.29 | 35.96 |
|       |       |       | S              |       |       |        |       | t(s)  |       |       |
| Small | 1.45  | 1.26  | 1.20           | 1.15  | 1.21  | 37.02  | 43.42 | 50.89 | 51.36 | 49.55 |
| 2     | 1.01  | 0.98  | 0.89           | 0.74  | 0.89  | 32.06  | 38.10 | 33.68 | 32.12 | 35.79 |
| 3     | 0.76  | 0.66  | 0.60           | 0.49  | 0.68  | 25.82  | 22.97 | 20.83 | 18.54 | 22.32 |
| 4     | 0.38  | 0.34  | 0.30           | 0.26  | 0.42  | 12.71  | 11.36 | 9.99  | 8.05  | 11.07 |
| Big   | -0.17 | -0.11 | -0.23          | -0.17 | -0.06 | -7.03  | -4.07 | -7.31 | -6.07 | -1.44 |
|       |       |       | h              |       |       |        |       | t(h)  |       |       |
| Small | -0.27 | 0.10  | 0.27           | 0.40  | 0.63  | -5.95  | 2.90  | 9.82  | 15.47 | 22.27 |
| 2     | -0.51 | 0.02  | 0.25           | 0.44  | 0.71  | -14.01 | 0.69  | 8.11  | 16.50 | 24.61 |
| 3     | -0.37 | -0.00 | 0.31           | 0.50  | 0.69  | -10.81 | -0.11 | 9.28  | 16.18 | 19.34 |
| 4     | -0.42 | 0.04  | 0.29           | 0.53  | 0.75  | -12.09 | -1.10 | 8.37  | 14.20 | 16.88 |
| Big   | -0.46 | 0.01  | 0.21           | 0.58  | 0.78  | -16.85 | 0.38  | 5.70  | 18.16 | 16.59 |
|       |       |       | m              |       |       |        |       | t(m)  |       |       |
| Small | -0.10 | -0.11 | -0.05          | -0.04 | -0.06 | -1.93  | -2.70 | -1.49 | -1.19 | -1.87 |
| 2     | -0.05 | -0.04 | 0.07           | 0.14  | -0.05 | -1.16  | -1.12 | 1.90  | 4.33  | -1.48 |
| 3     | -0.04 | 0.02  | 0.06           | 0.09  | 0.01  | -0.91  | 0.53  | 1.48  | 2.48  | 0.25  |
| 4     | -0.02 | 0.00  | 80.0           | 0.18  | -0.01 | -0.55  | 0.19  | 1.92  | 3.98  | -0.19 |
| Big   | 0.03  | -0.04 | -0.00          | -0.04 | -0.16 | 0.82   | -0.98 | -0.06 | -0.98 | -2.82 |
|       |       |       | d              |       |       |        |       | t(d)  |       |       |
| Small | -0.17 | -0.19 | -0.10          | 0.06  | 0.02  | -1.74  | -2.70 | -1.76 | 1.06  | 0.34  |
| 2     | -0.12 | -0.11 | 0.04           | 0.15  | -0.07 | -1.59  | -1.83 | 0.61  | 2.64  | -1.24 |
| 3     | -0.09 | -0.01 | 0.07           | 0.10  | -0.16 | -1.25  | -0.17 | 1.00  | 1.51  | -2.11 |
| 4     | -0.11 | -0.10 | 0.04           | 0.13  | -0.12 | -1.51  | -1.44 | 0.59  | 1.64  | -1.30 |
| Big   | 0.06  | -0.14 | -0.02          | -0.07 | -0.18 | 0.97   | -2.15 | -0.25 | -1.08 | -1.84 |
|       |       |       | R <sup>2</sup> |       |       |        |       | s(e)  |       |       |
| Small | 0.94  | 0.96  | 0.97           | 0.97  | 0.96  | 1.93   | 1.43  | 1.16  | 1.11  | 1.20  |
| 2     | 0.95  | 0.96  | 0.95           | 0.95  | 0.96  | 1.55   | 1.27  | 1.31  | 1.13  | 1.23  |
| 3     | 0.95  | 0.94  | 0.93           | 0.93  | 0.93  | 1.45   | 1.41  | 1.43  | 1.31  | 1.50  |
| 4     | 0.94  | 0.93  | 0.91           | 0.90  | 0.89  | 1.46   | 1.47  | 1.48  | 1.59  | 1.88  |
| Big   | 0.94  | 0.92  | 0.87           | 0.90  | 0.83  | 1.17   | 1.31  | 1.55  | 1.36  | 2.00  |

# 4.3 주식시장과 채권시장의 팩터들 (Table -7a & 7b)

Table 7b

정부채와 회사채의 초과수익률(%)을 주식시장의 수익률인 RM-RF, SMB, HML과 채권시장 수익률인 TERM, DEF로 회귀분석 한 결과: 1963년 7월부터 1991년 12월까지, 342개월<sup>8</sup>

$$R(t) - RF(t) = a + b[RM(t) - RF(t)] + sSMB(t) + hHML(t) + mTERM(t) + dDEF(t) + e(t)$$

|                | 채권 포트폴리오 |       |       |        |        |       |       |  |  |  |
|----------------|----------|-------|-------|--------|--------|-------|-------|--|--|--|
|                | 1-5G     | 6-10G | Aaa   | Aa     | А      | Baa   | LG    |  |  |  |
| b              | -0.02    | -0.04 | -0.02 | 0.00   | 0.00   | 0.02  | 0.18  |  |  |  |
| t(b)           | -2.84    | -3.14 | -2.96 | 0.06   | 1.05   | 1.99  | 7.39  |  |  |  |
| S              | 0.00     | -0.02 | -0.02 | -0,01  | 0.00   | 0.05  | 0.08  |  |  |  |
| t(s)           | 0.30     | -1.12 | -2.28 | -2.42  | 0.40   | 3.20  | 2.34  |  |  |  |
| h              | 0.00     | -0.02 | -0.02 | -0.00  | 0.00   | 0.04  | 0.12  |  |  |  |
| t(h)           | 0.44     | -1.29 | -2.46 | -0.40  | 0.90   | 2.39  | 3.13  |  |  |  |
| m              | 0.47     | 0.75  | 1.03  | 0.99   | 1.00   | 0.99  | 0.64  |  |  |  |
| t(m)           | 30.01    | 36.84 | 93.30 | 117.30 | 124.19 | 50.50 | 14.25 |  |  |  |
| d              | 0.27     | 0.32  | 0.97  | 0.97   | 1.02   | 1.05  | 0.80  |  |  |  |
| t(d)           | 9.87     | 8.77  | 49.25 | 65.04  | 71.51  | 30.33 | 9.92  |  |  |  |
| R <sup>2</sup> | 0.80     | 0.87  | 0.97  | 0.98   | 0.98   | 0.91  | 0.58  |  |  |  |
| s(e)           | 0.56     | 0.73  | 0.40  | 0.30   | 0.29   | 0.70  | 1.63  |  |  |  |

### 5절: 평균수익률의 횡단면변동

5절. 평균수익률의 횡단면 변동 평균수익률 테스트와 절편을 통해 3-팩터 모델이 횡단면 변동을 잘 설명하는지 확인하는 것이 목적.

- 1. 평균주식수익률의 횡단면
- 2. 평균채권수익률의 횡단면
- 3. 결합 테스트

### 5절: 평균수익률의 횡단면변동

### 5절. 평균수익률의 횡단면 변동

평균수익률 테스트와 절편을 통해 3-팩터 모델이 횡단면 변동을 잘 설명하는지 확인하는 것이 목적.

- 1. 평균주식수익률의 횡단면
- 2. 평균채권수익률의 횡단면
- 3. 결합 테스트

#### <횡단면 변동>

시계열 : 여러 시점에서 한 개체 횡단면 : 한 시점에서 복수의 개체

-> 횡단면 변동을 살펴보는 것이 곧 서로 다른 주식 포트폴리오에서 특정 시점에서의 수익률 차이를 살펴보는 것

#### <평균수익률 테스트>

설명변수가 RM-RF, TERM, SMB, HML, DEF, 종속변수가 포트폴리오의 초과수익률인 모델에서 시계열 회귀분석의 절편이 0과 구별되지 않을 때, 해당 설명변수로 이루어진 공통 리스크 팩터 모델이 평균수익률의 횡단면 변동을 잘 설명한다고 결론지을 수 있는 테스트

-> 절편이 0과 구별되지 않는다는 것이 곧 예측된 수익률이 과소 혹은 과대평가되지 않았다는 의미가 됨. 해당 논문에서는 사이즈가 5분위와 BE/ME 5분위로 구분된 25개 주식 포트폴리오의 초과수익률 회귀분석에서의 절편값과 t값을 구해 절편이 0과 의미있게 다른지 판단하고 있음.

# 5절: 평균수익률의 횡단면변동

Table 9a

### 1. 평균주식수익률의 횡단면변동

사이즈와 BE/ME로 만들어진 25개 주식 포트폴리오의 초과주식수익률 회귀분석에서의 절편: 1963/7~1991/12, 342개월°

|            |              |              |              |                          | BE/ME               | 5분위                |              |              |              | 4 High       |  |  |  |  |  |  |  |  |
|------------|--------------|--------------|--------------|--------------------------|---------------------|--------------------|--------------|--------------|--------------|--------------|--|--|--|--|--|--|--|--|
| 사이즈        |              |              | a            |                          | t(a)                |                    |              |              |              |              |  |  |  |  |  |  |  |  |
| 5분위        | Low          | 2            | 3            | 4                        | High                | Low                | 2            | 3            | 4            | High         |  |  |  |  |  |  |  |  |
|            |              |              |              | (1) P(1)                 | D.T.(:)             |                    |              |              |              |              |  |  |  |  |  |  |  |  |
| Cmall      | 0.21         | 0.63         | 0.71         |                          |                     | ERM(t) + dDEF(t)   |              | 2.20         | 2.61         | 2 07         |  |  |  |  |  |  |  |  |
| Small<br>2 | 0.31<br>0.35 | 0.62<br>0.63 | 0.71<br>0.77 | 0.80<br>0.75             | 0.92<br>0.93        | 0.75<br>0.93       | 1.73<br>1.91 | 2.20<br>2.60 | 2.61<br>2.85 | 2.87<br>3.03 |  |  |  |  |  |  |  |  |
| 3          |              |              |              | 0.73                     |                     |                    |              |              |              |              |  |  |  |  |  |  |  |  |
|            | 0.34         | 0.58         | 0.60         |                          | 0.89                | 1.00               | 1.99         | 2.28         | 3.01         | 3,11         |  |  |  |  |  |  |  |  |
| 4          | 0.41         | 0.27         | 0.49         | 0.69                     | 0.96                | 1.34               | 1.01         | 1.96         | 2.88         | 3,35         |  |  |  |  |  |  |  |  |
| Big        | 0.34         | 0.30         | 0,25         | 0.50                     | 0.53                | 1,35               | 1,27         | 1.17         | 2.36         | 2.14         |  |  |  |  |  |  |  |  |
|            |              |              |              | (ii) <i>R</i> ( <i>t</i> | (1) - RF(t) = a + b | p[RM(t) - RF(t)] + | e(t)         |              |              |              |  |  |  |  |  |  |  |  |
| Small      | -0.22        | 0.15         | 0.30         | 0.42                     | 0.54                | -0.90              | 0.73         | 1.54         | 2.19         | 2,53         |  |  |  |  |  |  |  |  |
| 2          | -0.18        | 0.17         | 0.36         | 0.39                     | 0.53                | -1.00              | 1.05         | 2.35         | 2.79         | 3.01         |  |  |  |  |  |  |  |  |
| 3          | -0.16        | 0.15         | 0.23         | 0.39                     | 0.50                | -1.12              | 1,25         | 1.82         | 3.20         | 3.19         |  |  |  |  |  |  |  |  |
| 4          | -0.05        | -0.14        | 0.12         | 0.35                     | 0.57                | -0.50              | -1.50        | 1.20         | 2.91         | 3.71         |  |  |  |  |  |  |  |  |
| Big        | -0.04        | -0.07        | -0.07        | 0.20                     | 0.21                | -0.49              | -0.95        | -0.70        | 1.89         | 1.41         |  |  |  |  |  |  |  |  |
|            |              |              |              | (iii) R(t)               | -RF(t) = a + s      | SMB(t) + hHML(t)   | + e(t)       |              |              |              |  |  |  |  |  |  |  |  |
| Small      | 0,24         | 0.46         | 0.49         | 0.53                     | 0.55                | 0.97               | 1,92         | 2.24         | 2,52         | 2.49         |  |  |  |  |  |  |  |  |
| 2          | 0,52         | 0.58         | 0.64         | 0.58                     | 0.64                | 2.00               | 2,40         | 2.76         | 2,61         | 2.56         |  |  |  |  |  |  |  |  |
| 3          | 0,52         | 0.61         | 0.52         | 0.60                     | 0,66                | 2.00               | 2,58         | 2.25         | 2.66         | 2,61         |  |  |  |  |  |  |  |  |
| 4          | 0.69         | 0.39         | 0.50         | 0.62                     | 0.79                | 2.78               | 1,55         | 2.07         | 2.51         | 2.85         |  |  |  |  |  |  |  |  |
| Big        | 0.76         | 0.52         | 0.43         | 0.51                     | 0.44                | 3.41               | 2.23         | 1.84         | 2.20         | 1.70         |  |  |  |  |  |  |  |  |
|            |              |              |              |                          |                     |                    |              |              |              |              |  |  |  |  |  |  |  |  |
|            |              |              |              |                          |                     | RF(t)] + sSMB(t) + | ` '          | . ,          |              |              |  |  |  |  |  |  |  |  |
| Small      | -0.34        | -0.12        | -0.05        | 0.01                     | 0.00                | -3.16              | -1.47        | -0.73        | 0.22         | 0.14         |  |  |  |  |  |  |  |  |
| 2          | -0.11        | -0.01        | 80.0         | 0.03                     | 0.02                | -1.24              | -0,20        | 1.04         | 0.51         | 0.34         |  |  |  |  |  |  |  |  |
| 3          | -0.11        | 0.04         | -0.04        | 0.05                     | 0.05                | -1.42              | 0.47         | -0.47        | 0.71         | 0.56         |  |  |  |  |  |  |  |  |
| 4          | 0.09         | -0.22        | -0.08        | 0.03                     | 0.13                | 1.07               | -2.65        | -0.99        | 0.33         | 1,24         |  |  |  |  |  |  |  |  |
| Big        | 0,21         | -0.05        | -0.13        | -0.05                    | -0,16               | 3,27               | -0.67        | -1.46        | -0.69        | -1,41        |  |  |  |  |  |  |  |  |
|            |              | (v) R(t      | -RF(t) =     | a + b[RM(t)]             | -RF(t)] + sSM       | B(t) + hHML(t) + n | nTERM(t) +   | dDEF(t) + e  | e(t)         |              |  |  |  |  |  |  |  |  |
| Small      | -0.35        | -0.13        | -0.05        | 0.01                     | 0.00                | -3.24              | -1,58        | -0.79        | 0.20         | 0.09         |  |  |  |  |  |  |  |  |
| 2          | -0.11        | -0.02        | 0.08         | 0.04                     | 0.02                | -1.29              | -0.24        | 1.10         | 0.67         | 0.29         |  |  |  |  |  |  |  |  |
| 3          | -0.12        | 0.04         | -0.03        | 0.06                     | 0.05                | -1.45              | 0.48         | -0.42        | 0.79         | 0.56         |  |  |  |  |  |  |  |  |
| 4          | 0.08         | -0.22        | -0.08        | 0.04                     | 0.13                | 1.04               | -2,67        | -0.94        | 0.47         | 1.23         |  |  |  |  |  |  |  |  |
| Big        | 0,21         | -0.05        | -0.13        | -0.06                    | -0.17               | 3.29               | -0.72        | -1.46        | -0.73        | -1.51        |  |  |  |  |  |  |  |  |
| Dig        | 0,21         | 0.03         | 0,15         | 0,00                     | 0,17                | 3,23               | 0.72         | 1,40         | 0.75         | 1,51         |  |  |  |  |  |  |  |  |

사이즈 5분위

Table 9a

### 1. 평균주식수익률의 횡단면변동

사이즈와 BE/ME로 만들어진 25개 주식 포트폴리오의 초과주식수익률 회귀분석에서의 절편: 1963/7~1991/12, 342개월<sup>a</sup>

|       |       |          | BE/ME 5분위 |                          |            |               |             |            |             |       |      |  |
|-------|-------|----------|-----------|--------------------------|------------|---------------|-------------|------------|-------------|-------|------|--|
| 사이즈   | a     |          |           |                          |            |               | t(a)        |            |             |       |      |  |
| 5분위   | Low   | 2        | 3         | 4                        | High       |               | Low         | 2          | 3           | 4     | High |  |
|       |       |          |           |                          |            |               |             |            |             |       |      |  |
| . "   |       |          |           |                          |            | + mTERM(t)    |             |            |             |       |      |  |
| Small | 0.31  | 0.62     | 0.71      | 0.80                     | 0.92       |               | 0.75        | 1.73       | 2.20        | 2.61  | 2.8  |  |
| 2     | 0.35  | 0.63     | 0.77      | 0.75                     | 0.93       |               | 0.93        | 1.91       | 2.60        | 2.85  | 3.0  |  |
| 3     | 0.34  | 0.58     | 0.60      | 0.73                     | 0.89       |               | 1.00        | 1,99       | 2.28        | 3.01  | 3,1  |  |
| 4     | 0.41  | 0.27     | 0.49      | 0.69                     | 0.96       |               | 1.34        | 1.01       | 1.96        | 2,88  | 3,3  |  |
| Big   | 0.34  | 0.30     | 0.25      | 0.50                     | 0.53       |               | 1,35        | 1.27       | 1.17        | 2,36  | 2.1  |  |
|       |       |          |           | (ii) <i>R</i> ( <i>t</i> | -RF(t) =   | a + b[RM(t)]  | -RF(t)] +   | e(t)       |             |       |      |  |
| Small | -0,22 | 0.15     | 0.30      | 0.42                     | 0.54       | _             | -0.90       | 0.73       | 1.54        | 2.19  | 2.5  |  |
| 2     | -0.18 | 0.17     | 0.36      | 0.39                     | 0.53       |               | -1.00       | 1.05       | 2,35        | 2.79  | 3.0  |  |
| 3     | -0.16 | 0.15     | 0.23      | 0.39                     | 0.50       |               | -1.12       | 1,25       | 1.82        | 3,20  | 3.1  |  |
| 4     | -0.05 | -0.14    | 0.12      | 0.35                     | 0.57       |               | -0.50       | -1.50      | 1.20        | 2.91  | 3.7  |  |
| Big   | -0.04 | -0.07    | -0.07     | 0.20                     | 0.21       |               | -0.49       | -0.95      | -0.70       | 1.89  | 1.4  |  |
|       |       |          |           | (iii) R(t)               | -RF(t) = t | a + sSMB(t)   | + hHM1.(t)  | + e(t)     |             |       |      |  |
| Small | 0.24  | 0.46     | 0.49      | 0.53                     | 0.55       | t   3514B (t) | 0.97        | 1.92       | 2.24        | 2,52  | 2.4  |  |
| 2     | 0.52  | 0.58     | 0.64      | 0.58                     | 0.64       |               | 2.00        | 2.40       | 2.76        | 2.61  | 2.5  |  |
| 3     | 0.52  | 0.61     | 0.52      | 0.60                     | 0.66       |               | 2.00        | 2.58       | 2.25        | 2.66  | 2.6  |  |
| 4     | 0.69  | 0.39     | 0.50      | 0.62                     | 0.79       |               | 2.78        | 1,55       | 2.07        | 2.51  | 2.8  |  |
| Big   | 0.76  | 0.52     | 0.43      | 0.51                     | 0.44       |               | 3.41        | 2.23       | 1.84        | 2.20  | 1.7  |  |
|       |       |          |           |                          |            |               |             |            |             |       |      |  |
| c "   |       | 0.40     |           |                          | -          | = RF(t)] +    |             |            | . ,         |       |      |  |
| Small | -0.34 | -0.12    | -0.05     | 0.01                     | 0.00       |               | -3.16       | -1.47      | -0.73       | 0.22  | 0.1  |  |
| 2     | -0.11 | -0.01    | 80.0      | 0.03                     | 0.02       |               | -1.24       | -0.20      | 1.04        | 0.51  | 0.3  |  |
| 3     | -0.11 | 0.04     | -0.04     | 0.05                     | 0.05       |               | -1.42       | 0.47       | -0.47       | 0.71  | 0.5  |  |
| 4     | 0.09  | -0.22    | -0.08     | 0.03                     | 0.13       |               | 1.07        | -2.65      | -0.99       | 0.33  | 1.2  |  |
| Big   | 0.21  | -0.05    | -0.13     | -0.05                    | -0.16      |               | 3.27        | -0.67      | -1.46       | -0.69 | -1.4 |  |
|       |       | (v) R(t) | -RF(t) =  | a + b[RM(t)]             | -RF(t)] +  | sSMB(t) + I   | hHML(t) + i | nTERM(t) + | dDEF(t) + c | e(t)  |      |  |
| Small | -0.35 | -0.13    | -0.05     | 0.01                     | 0.00       |               | -3.24       | -1.58      | -0.79       | 0.20  | 0.0  |  |
| 2     | -0.11 | -0.02    | 80.0      | 0.04                     | 0.02       |               | -1.29       | -0.24      | 1.10        | 0.67  | 0.2  |  |
| 3     | -0.12 | 0.04     | -0.03     | 0.06                     | 0.05       |               | -1.45       | 0.48       | -0.42       | 0.79  | 0.5  |  |
| 4     | 0.08  | -0.22    | -0.08     | 0.04                     | 0,13       |               | 1.04        | -2.67      | -0.94       | 0.47  | 1,2  |  |
| Big   | 0,21  | -0.05    | -0.13     | -0.06                    | -0.17      |               | 3.29        | -0.72      | -1.46       | -0.73 | -1.5 |  |

BE/ME 5분위 사이즈

5분위

Table 9a

#### 1. 평균주식수익률의 횡단면변동

사이즈와 BE/ME로 만들어진 25개 주식 포트폴리오의 초과주식수익률 회귀분석에서의 절편: 1963/7~1991/12, 342개월®

모델의 회귀분석 절편 a t값 t(a) BE/ME 5분위 사이즈 t(a) a 5분위 2 3 2 3 High Low 4 High Low 4 (i) R(t) - RF(t) = a + nTERM(t + dDEF(t) + e(t)Small 0.31 0.62 0.71 0.80 0.92 0.75 1.73 2.20 2.61 2.87 2 0.35 0.63 0.77 0.75 0.93 0.93 1,91 2,60 2.85 3,03 3 0.34 0.58 0,60 0.73 0.89 1,00 1,99 2.28 3.01 3,11 4 0.41 0.27 0.49 0.69 0.96 1.34 1,01 1.96 2.88 3,35 Big 1.35 1,27 0.34 0.30 0.50 0.53 1,17 2,36 2.14 0.25 (ii) R(t) - RF(t) = a + b[RM(t)]RF(t)] + e(t)Small -0.220.15 0.30 0.42 0.54 -0.90 0.73 1.54 2.19 2,53 -0.180.17 0.36 0.39 0.53 1,05 2,35 2.79 3,01 -1,00 3 -0.160.15 0.50 1,25 1.82 3,19 0.23 0.39 -1.12 3.20 4 -0.05 -0.140.12 0.35 0.57 -0.50 -1.50 1.20 2.91 3.71 Big -0.04-0.07-0.070.20 0.21 -0.49-0.95 -0.701.89 1.41 (iii) R(t) - RF(t) = a - sSMB(t) +hHML(t) + e(t)Small 0.24 0.46 0.49 0.53 0.55 0.97 1,92 2.24 2.52 2.49 0.52 0.58 0.58 0.64 2.40 2.76 2,61 2.56 0.64 2.00 3 0.52 0.61 0.52 0,60 0.66 2.00 2.58 2.25 2,66 2,61 4 0.69 0.39 0.50 0.62 0.79 2.78 1.55 2.07 2.51 2,85 Big 0.76 0.52 0.51 3.41 2.23 1.84 2.20 1.70 0.43 0.44 (iv) R(t) - RF(t) = a + b[RM(t) - RF(t)]sSMB(t) + hHML(t) + e(t)Small -0.34 -0.12 -0.05 0.01 0.00 -3.16 -1.47 -0.73 0.22 0.14 0.02 0.51 0.34 -0,11 -0.01 0.08 0.03 -1.24 -0.20 1.04 3 -0.110.04 -0.040.05 0.05 -1.420.47 -0.470.71 0,56 0.09 -0.22-0,08 0.03 0.13 1,07 -2.65 -0.990.33 1,24 Big 0,21 -0.05 -0.13 -0.05 -0,16 3,27 -0.67 -1.46-0,69 -1,41 -RF(t) =+ b[RM(t)]-RF(t)] +sSMB(t) + nHML(t) + mTERM(t)dDEF(t) + e(t)(v) R(t)Small -0.35 -0,13 -0.05 0.01 0.00 -1,58 -0.79 0,20 0.09 -3.24-0.11-0.02 0.08 0.04 0.02 -1.29-0.241.10 0.67 0,29 3 0.05 0.56 -0.120.04 -0.03 0.06 -1.45 0.48 -0.420.79 4 0.08 -0.22 -0.08 0.04 0,13 1.04 -2.67 -0.940.47 1,23 Big 0.21 -0.05 -0.13 -0.06-0.173.29 -0.72 -1.46 -0.73-1,51

BE/ME 5분위

Table 9a

## 1. 평균주식수익률의 횡단면변동

사이즈와 BE/ME로 만들어진 25개 주식 포트폴리오의 초과주식수익률 회귀분석에서의 절편: 1963/7~1991/12, 342개월°

|                  |                                                   |       |          |          |              | RE/MA              | · 5분위              |             |             |       |        |
|------------------|---------------------------------------------------|-------|----------|----------|--------------|--------------------|--------------------|-------------|-------------|-------|--------|
|                  | 사이즈                                               |       |          | a        |              | DL/IVIL            | . JETI             |             | t(a)        |       |        |
|                  | 5분위                                               | Low   | 2        | 3        | 4            | High               | Low                | 2           | 3           | 4     | High   |
|                  | 2문 1                                              | LOVV  |          |          |              | Tilgii             | LOW                |             |             |       | Tilgii |
|                  |                                                   |       |          |          | (i) R(t) -   | -RF(t) = a + mT    | TERM(t) + dDEF(t)  | + e(t)      |             |       |        |
|                  | Small                                             | 0.31  | 0.62     | 0.71     | 0.80         | 0.92               | 0.75               | 1.73        | 2.20        | 2.61  | 2.87   |
|                  | 2                                                 | 0.35  | 0.63     | 0.77     | 0.75         | 0.93               | 0.93               | 1,91        | 2.60        | 2.85  | 3.03   |
|                  | 3                                                 | 0.34  | 0.58     | 0.60     | 0.73         | 0.89               | 1.00               | 1.99        | 2.28        | 3.01  | 3,11   |
|                  | 4                                                 | 0.41  | 0.27     | 0.49     | 0.69         | 0.96               | 1.34               | 1.01        | 1.96        | 2.88  | 3,35   |
|                  | Big                                               | 0.34  | 0.30     | 0.25     | 0.50         | 0.53               | 1,35               | 1,27        | 1.17        | 2.36  | 2.14   |
| 니자★기스이르 pag pe기  | (ii) $R(t) - RF(t) = a + b[RM(t) - RF(t)] + e(t)$ |       |          |          |              |                    |                    |             |             |       |        |
| 시장초과수익률 RM-RF가   | Small                                             | -0.22 | 0.15     | 0.30     | 0.42         | 0.54               | -0.90              | 0.73        | 1.54        | 2.19  | 2.53   |
| 유일한 설명변수인        | 2                                                 | -0.18 | 0.17     | 0.36     | 0.39         | 0.53               | -1.00              | 1.05        | 2.35        | 2.79  | 3.01   |
|                  | 3                                                 | -0.16 | 0.15     | 0.23     | 0.39         | 0.50               | -1.12              | 1.25        | 1.82        | 3.20  | 3.19   |
| 1-팩터 모델의 회귀분석    | 4                                                 | -0.05 | -0.14    | 0.12     | 0.35         | 0.57               | -0.50              | -1.50       | 1,20        | 2.91  | 3.71   |
|                  | Big                                               | -0.04 | -0.07    | -0.07    | 0.20         | 0.21               | -0.49              | -0.95       | -0.70       | 1.89  | 1.41   |
|                  |                                                   |       |          |          | (iii) R(t)   | -RF(t) = a + s     | SMB(t) + hHML(t)   | + e(t)      |             |       |        |
|                  | Small                                             | 0.24  | 0.46     | 0.49     | 0.53         | 0.55               | 0.97               | 1,92        | 2.24        | 2.52  | 2.49   |
| SMB와 HML 설명변수인   | 2                                                 | 0,52  | 0.58     | 0.64     | 0.58         | 0.64               | 2.00               | 2.40        | 2.76        | 2,61  | 2.56   |
|                  | 3                                                 | 0.52  | 0.61     | 0.52     | 0.60         | 0.66               | 2.00               | 2.58        | 2.25        | 2.66  | 2,61   |
| 2-팩터 모델          | 4                                                 | 0.69  | 0.39     | 0.50     | 0.62         | 0.79               | 2.78               | 1.55        | 2.07        | 2.51  | 2.85   |
|                  | Big                                               | 0,76  | 0.52     | 0.43     | 0.51         | 0.44               | 3.41               | 2.23        | 1.84        | 2.20  | 1.70   |
|                  |                                                   |       |          | (iv) R(  | t) - RF(t) = | = a + b[RM(t) - t] | RF(t)] + sSMB(t) + | hHML(t) + c | e(t)        |       |        |
| RM-RF, SMB, HML0 | Small                                             | -0.34 | -0.12    | -0.05    | 0.01         | 0.00               | -3.16              | -1.47       | -0.73       | 0.22  | 0.14   |
|                  | 2                                                 | -0.11 | -0.01    | 0.08     | 0.03         | 0.02               | -1.24              | -0,20       | 1.04        | 0.51  | 0.34   |
| 설명변수인 3-팩터 모델    | 3                                                 | -0,11 | 0.04     | -0.04    | 0.05         | 0.05               | -1.42              | 0.47        | -0.47       | 0.71  | 0.56   |
|                  | 4                                                 | 0.09  | -0.22    | -0.08    | 0.03         | 0.13               | 1.07               | -2.65       | -0.99       | 0.33  | 1,24   |
|                  | Big                                               | 0,21  | -0.05    | -0,13    | -0.05        | -0.16              | 3,27               | -0.67       | -1.46       | -0.69 | -1.41  |
|                  |                                                   |       | (v) R(t) | -RF(t) = | a + b[RM(t   | (1) - RF(t) + sSM  | B(t) + hHML(t) + n | nTERM(t) +  | dDEF(t) + e | e(t)  |        |
| -11-1 11-011     | Small                                             | -0.35 | -0.13    | -0.05    | 0.01         | 0.00               | -3.24              | -1.58       | -0.79       | 0.20  | 0.09   |
| 3-팩터 모델에         | 2                                                 | -0.11 | -0.02    | 0.08     | 0.04         | 0.02               | -1.29              | -0.24       | 1.10        | 0.67  | 0.29   |
|                  | 3                                                 | -0.12 | 0.04     | -0.03    | 0.06         | 0.05               | -1.45              | 0.48        | -0.42       | 0.79  | 0.56   |
| TERM, DEF 팩터 추가  | 4                                                 | 80.0  | -0.22    | -0.08    | 0.04         | 0.13               | 1.04               | -2.67       | -0.94       | 0.47  | 1,23   |
|                  | Big                                               | 0,21  | -0.05    | -0.13    | -0.06        | -0.17              | 3.29               | -0.72       | -1.46       | -0.73 | -1.51  |

#### 1. 평균주식수익률의 횡단면변동

## (1) RM-RF가 유일한 설명변수인 1-팩터 모델

|       |       |       |       |                            |         | BE/ME 5분위              |        |       |      |      |
|-------|-------|-------|-------|----------------------------|---------|------------------------|--------|-------|------|------|
| 사이즈   |       |       | а     |                            |         |                        |        | t(a)  |      |      |
| 5분위   | Low   | 2     | 3     | 4                          | High    | Low                    | 2      | 3     | 4    | High |
|       |       |       |       | (ii) <i>R</i> ( <i>t</i> ) | )-RF(t) | = a + b[RM(t) - RF(t)] | ]+e(t) |       |      |      |
| Small | -0.22 | 0.15  | 0.30  | 0.42                       | 0.54    | -0.90                  | 0.73   | 1.54  | 2.19 | 2.53 |
| 2     | -0.18 | 0.17  | 0.36  | 0.39                       | 0.53    | -1.00                  | 1.05   | 2.35  | 2.79 | 3.01 |
| 3     | -0.16 | 0.15  | 0.23  | 0.39                       | 0.50    | -1.12                  | 1,25   | 1.82  | 3.20 | 3.19 |
| 4     | -0.05 | -0.14 | 0.12  | 0.35                       | 0.57    | -0,50                  | -1,50  | 1.20  | 2.91 | 3,71 |
| Big   | -0.04 | -0.07 | -0.07 | 0.20                       | 0.21    | -0.49                  | -0.95  | -0.70 | 1.89 | 1.41 |

절편이 일정하지 않고 사이즈, BE/ME에 따라 점점 커짐

=> 1-팩터 모델로는 사이즈, BE/ME과 관련된 횡단면 변동을 포착하지 못함

#### 1. 평균주식수익률의 횡단면변동

## (2) SMB와 HML 설명변수인 2-팩터 모델

|       |      |      |      |            |          | BE/ME 5분위             |        |      |      |      |
|-------|------|------|------|------------|----------|-----------------------|--------|------|------|------|
| 사이즈   |      |      | a    |            |          |                       |        | t(a) |      |      |
| 5분위   | Low  | 2    | 3    | 4          | High     | Low                   | 2      | 3    | 4    | High |
|       |      |      |      | (iii) R(t) | -RF(t) = | a + sSMB(t) + hHML(t) | + e(t) |      |      |      |
| Small | 0.24 | 0.46 | 0.49 | 0.53       | 0.55     | 0.97                  | 1.92   | 2.24 | 2.52 | 2.49 |
| 2     | 0.52 | 0.58 | 0.64 | 0.58       | 0.64     | 2.00                  | 2.40   | 2.76 | 2.61 | 2.56 |
| 3     | 0.52 | 0.61 | 0.52 | 0.60       | 0.66     | 2.00                  | 2.58   | 2.25 | 2.66 | 2.61 |
| 4     | 0.69 | 0.39 | 0.50 | 0.62       | 0.79     | 2.78                  | 1,55   | 2.07 | 2.51 | 2.85 |
| Big   | 0.76 | 0.52 | 0.43 | 0.51       | 0.44     | 3,41                  | 2,23   | 1.84 | 2.20 | 1.70 |

절편들의 값이 비슷함

t값이 0~2 표준오차 근방이나 그 이상

=> 사이즈, BE/ME와 관련된 횡단면의 변동을 포착함

=> 잘 설명하는 모델이라고는 할 수 없음

## 1. 평균주식수익률의 횡단면변동

(3) RM-RF, SMB, HML이 설명변수인 3-팩터 모델

|       |       |       |         |               | [          | /ME 5분위                |             |       |       |       |
|-------|-------|-------|---------|---------------|------------|------------------------|-------------|-------|-------|-------|
| 사이즈   |       |       | a       |               |            |                        |             | t(a)  |       |       |
| 5분위   | Low   | 2     | 3       | 4             | High       | Low                    | 2           | 3     | 4     | High  |
|       |       |       | (iv) R( | (t) - RF(t) = | = a + b[RM | (r) - RF(t)] + sSMB(t) | + hHML(t) + | e(t)  |       |       |
| Small | -0.34 | -0.12 | -0.05   | 0,01          | 0.00       | -3.16                  | -1.47       | -0.73 | 0.22  | 0.14  |
| 2     | -0.11 | -0.01 | 0.08    | 0.03          | 0.02       | -1,24                  | -0.20       | 1.04  | 0.51  | 0.34  |
| 3     | -0.11 | 0.04  | -0.04   | 0.05          | 0.05       | -1.42                  | 0.47        | -0.47 | 0.71  | 0.56  |
| 4     | 0.09  | -0.22 | -0.08   | 0.03          | 0.13       | 1.07                   | -2.65       | -0.99 | 0.33  | 1.24  |
| Big   | 0.21  | -0.05 | -0.13   | -0.05         | -0.16      | 3,27                   | -0.67       | -1.46 | -0.69 | -1.41 |

절편들의 값이 o에 가까워짐

=> 3-팩터 모델이 횡단면 변동을 잘 설명함

#### 1. 평균주식수익률의 횡단면변동

## (4) 3-팩터 모델에 TERM, DEF 팩터 추가

|       |       |          |          |            | E         | E/ME 5분위             |             |             |       |       |
|-------|-------|----------|----------|------------|-----------|----------------------|-------------|-------------|-------|-------|
| 사이즈   |       |          | a        |            |           |                      |             | t(a)        |       |       |
| 5분위   | Low   | 2        | 3        | 4          | High      | Low                  | 2           | 3           | 4     | High  |
|       |       | (v) R(t) | -RF(t) = | a + b[RM(t | -RF(t)] - | -sSMB(t) + hHML(t) + | -mTERM(t) + | dDEF(t) + c | e(t)  |       |
| Small | -0.35 | -0.13    | -0.05    | 0,01       | 0.00      | -3.24                | -1.58       | -0.79       | 0.20  | 0.09  |
| 2     | -0.11 | -0.02    | 0.08     | 0.04       | 0.02      | -1.29                | -0.24       | 1.10        | 0.67  | 0.29  |
| 3     | -0.12 | 0.04     | -0.03    | 0.06       | 0.05      | -1.45                | 0.48        | -0.42       | 0.79  | 0.56  |
| 4     | 0.08  | -0.22    | -0.08    | 0.04       | 0.13      | 1.04                 | -2.67       | -0.94       | 0.47  | 1,23  |
| Big   | 0.21  | -0.05    | -0.13    | -0.06      | -0.17     | 3.29                 | -0.72       | -1.46       | -0.73 | -1.51 |

3-팩터 모델의 절편값과 큰 차이가 없음

=> TERM과 DEF의 평균수익률이 매우 작아 평균주식수익률의 횡단면 변동의 많은 부분을 설명하지 못하기 때문임.

## 2. 평균채권수익률의 횡단면 변동

## TERM과 DEF가 채권수익률의 공통 변동에 있어 가장 지배적인 변수임을 확인할 수 있음.

Table 9b 2개 정부채와 5개 회사채 채권 포트폴리오의 초과채권수익률 회귀분석에서의 절편: 1963/7~1991/12, 342개월<sup>a</sup>

|      |        |                      | 채권                  | 포트폴리오            |                     |               |       |
|------|--------|----------------------|---------------------|------------------|---------------------|---------------|-------|
|      | 1-5G   | 6-10G                | Aaa                 | Aa               | А                   | Ваа           | LC    |
|      |        | (i) <i>i</i>         | R(t) - RF(t) = a +  | mTERM(t) + dDEI  | F(t) + e(t)         |               |       |
| а    | 0.08   | 0.09                 | -0.02               | -0.00            | -0.00               | 0.06          | 0.06  |
| t(a) | 2.70   | 2.16                 | -1.10               | -0.55            | -0.29               | 1.42          | 0.67  |
|      |        | (i                   | i) R(t) - RF(t) = a | +b[RM(t)-RF(t)]  | ]+e(t)              |               |       |
| а    | 0.08   | 0.08                 | -0.03               | -0.02            | -0.01               | 0.04          | 0.00  |
| t(a) | 1.27   | 0.76                 | -0.24               | -0.15            | -0.11               | 0.37          | 0.03  |
|      |        | (iii)                | R(t) - RF(t) = a    | + sSMB(t) + hHML | a(t) + e(t)         |               |       |
| а    | 0.12   | 0.16                 | 0.07                | 0.07             | 0.07                | 0.11          | 0.08  |
| t(a) | 1.70   | 1.47                 | 0.52                | 0.58             | 0.55                | 0.82          | 0.58  |
|      |        | (iv) $R(t) - RI$     | F(t) = a + b[RM(t)] | -RF(t)] + sSMB(  | t) + hHML(t) + e(t) | )             |       |
| a    | 0.06   | 0.07                 | -0.07               | -0.07            | -0.08               | -0.05         | -0.11 |
| t(a) | 0.89   | 0.62                 | -0.62               | -0.64            | -0.69               | -0.41         | -1.00 |
|      | (v) R( | (t) - RF(t) = a + b[ | RM(t) - RF(t)] + s  | SMB(t) + hHML(t) | ) + mTERM(t) + dI   | DEF(t) + e(t) |       |
| а    | 0.09   | 0.11                 | -0.00               | -0.00            | -0.00               | 0.02          | -0.07 |
| t(a) | 2,84   | 2.77                 | -0.17               | -0.25            | -0,57               | 0.52          | -0.77 |

#### 3. 회귀분석 절편에 대한 결합 테스트

#### 각 모델들이 0에 가까운 회귀분석 절편을 만든다는 가정에 대한 F-테스트

Table 9c 초과수익률의 회귀분석 상의 절편의 0에 대한 F-검정통계량과 연결 bootstrap과 F-분포의 확률 수준\*

|                |       | 회귀분석 (Table 9a과 9b에서) |       |       |       |  |  |  |  |
|----------------|-------|-----------------------|-------|-------|-------|--|--|--|--|
|                | (i)   | (ii)                  | (iii) | (iv)  | (v)   |  |  |  |  |
| F-검정통계량        | 2.09  | 1.91                  | 1.78  | 1.56  | 1.66  |  |  |  |  |
| 확률 수준          |       |                       |       |       |       |  |  |  |  |
| Bootstrap      | 0.998 | 0.996                 | 0.985 | 0.951 | 0.971 |  |  |  |  |
| F-distribution | 0.999 | 0.996                 | 0.990 | 0,961 | 0.975 |  |  |  |  |

#### 3. 회귀분석 절편에 대한 결합 테스트

#### 각 모델들이 0에 가까운 회귀분석 절편을 만든다는 가정에 대한 F-테스트

Table 9c 초과수익률의 회귀분석 상의 절편의 0에 대한 F-검정통계량과 연결 bootstrap과 F-분포의 확률 수준\*

|                |       | 회귀분석 (Table 9a과 9b에서) |       |       |       |  |  |  |  |
|----------------|-------|-----------------------|-------|-------|-------|--|--|--|--|
|                | (i)   | (ii)                  | (iii) | (iv)  | (v)   |  |  |  |  |
| F-검정통계량        | 2.09  | 1.91                  | 1.78  | 1,56  | 1,66  |  |  |  |  |
| 확률 수준          |       |                       |       |       |       |  |  |  |  |
| Bootstrap      | 0.998 | 0.996                 | 0.985 | 0.951 | 0.971 |  |  |  |  |
| F-distribution | 0.999 | 0.996                 | 0.990 | 0.961 | 0.975 |  |  |  |  |

3-팩터 모델이 가장 좋은 절편을 만듦

#### 3. 회귀분석 절편에 대한 결합 테스트

각 모델들이 0에 가까운 회귀분석 절편을 만든다는 가정에 대한 F-테스트

Table 9c 초과수익률의 회귀분석 상의 절편의 0에 대한 F-검정통계량과 연결 bootstrap과 F-분포의 확률 수준 채권으로 인해 5-팩터 모델의 F값이 더 큼

|                    |       | 히귀부/  | 석 (Table 9a과 9b에 | 서)    |       |
|--------------------|-------|-------|------------------|-------|-------|
|                    | (j)   | (ii)  | (iii)            | (iv)  | (v)   |
| F-검정통계량            | 2.09  | 1.91  | 1,78             | 1.56  | 1,66  |
| 확률 수준<br>Bootstrap | 0,998 | 0.996 | 0.985            | 0,951 | 0.971 |
| F-distribution     | 0.999 | 0.996 | 0.990            | 0.961 | 0.975 |

3-팩터 모델이 가장 좋은 절편을 만듦

=> 채권 및 주식의 수익률과 평균수익률에 대해 최적의 모델을 제공하는 것은 5-팩터 회귀분석이라는 결론을 내릴 수 있음

5절의 결론

채권 및 주식의 수익률과 평균수익률에 대해 최적의 모델을 제공하는 것은 5-팩터 회귀분석

#### 6절. 진단

회귀분석의 잔차를 통해 5절의 결론이 명확한 지 확인하는 것이 목적

- 1. 회귀분석 잔차의 예측 가능성
- 2. 1월 계절성
- 3. 분할 표본 테스트
- 4. E/P 기준의 5개 주식 포트폴리오 테스트
- 5. D/P 기준의 5개 주식 포트폴리오 테스트

#### 5절의 결론

채권 및 주식의 수익률과 평균수익률에 대해 최적의 모델을 제공하는 것은 5-팩터 회귀분석

#### 6절. 진단

회귀분석의 잔차를 통해 5절의 결론이 명확한 지 확인하는 것이 목적

- 1. 회귀분석 잔차의 예측 가능성
- 2. 1월 계절성
- 3. 분할 표본 테스트
- 4. E/P 기준의 5개 주식 포트폴리오 테스트
- 5. D/P 기준의 5개 주식 포트폴리오 테스트

#### <잔차>

표본으로 추정한 회귀식과 실제 관측값의 차이 모델에서 잔차가 예측 가능한 패턴이 있으면 자기 상관이므로 모델의 설명력이 떨어지는 것

-> 32개의 포트폴리오에서 잔차가 랜덤하게 분포하고 있음을 증명함.

#### <1월 계절성>

소형주의 수익률이 1월에 더 높은 경향이 있다는 현상

-> 모델에서 1월 계절성이 존재하는지 확인하여 모델이 1월 계절성까지 잘 설명하고 있다는 것을 증명하고 있음.

5절의 결론

채권 및 주식의 수익률과 평균수익률에 대해 최적의 모델을 제공하는 것은 5-팩터 회귀분석

#### 6절. 진단

회귀분석의 잔차를 통해 5절의 결론이 명확한 지 확인하는 것이 목적

- 1. 회귀분석 잔차의 예측 가능성
- 2. 1월 계절성
- 3. 분할 표본 테스트
- 4. E/P 기준의 5개 주식 포트폴리오 테스트
- 5. D/P 기준의 5개 주식 포트폴리오 테스트

#### <E/P와 D/P>

평균수익률에 유용하다고 알려진 다른 변수인 E/P, D/P를 기준으로 형성된 포트폴리오의 수익률을 모델이 잘 설명하고 있는지 추가적으로 보여주고 있음

#### 1. 회귀분석 잔차의 예측 가능성

$$e_p(t+1) = k_0 + k_1 D(t) / P(t) + k_2 DFS(t) + k_3 TS(t) + k_4 RF(t) + \eta_p(t+1).$$

27개의 주식과 7개의 채권 포트폴리오에 대한 잔차가 양의 값과 음의 값 사이에 고르게 나뉘어있음을 확인함 => 5-팩터 회귀분석에서 잔차를 예측하지 못하므로, 5절의 결론을 지지하는 또 다른 근거가 됨.

## 2. 1월 계절성

1월일 때 1, 다른 달일 때 0값을 가지는 더미변수로 회귀분석한 결과 테이블

Table 10
5-팩터 회귀분석의 종속변수 수익률, 독립변수 수익률, 잔차의 1월 계절성 테스트 결과: 1963년 7월부터 1991년 12월까지, 342개월\* R(t) = a + bJAN(t) + e

|          |       |       |                    | κ(ε) –      | u + bjAiv(t) + |       |       |       |       |                |
|----------|-------|-------|--------------------|-------------|----------------|-------|-------|-------|-------|----------------|
|          | a     | b     | t(a)               | t(b)        | R <sup>2</sup> | a     | b     | t(a)  | t(b)  | R <sup>2</sup> |
| 팩터       |       | 5-팩터  | 설명변수의              | 수익률         |                |       |       |       |       |                |
| RM-RF    | 0.31  | 1.49  | 1,22               | 1.67        | 0.00           |       |       |       |       |                |
| RMO      | 0.40  | 1.19  | 2.03               | 1.70        | 0.00           |       |       |       |       |                |
| SMB      | 0.05  | 2.74  | 0.30               | 4.96        | 0.06           |       |       |       |       |                |
| HML      | 0.21  | 2.29  | 1.53               | 4.70        | 0.06           |       |       |       |       |                |
| TERM     | 0.10  | -0.41 | 0.56               | -0.69       | -0.00          |       |       |       |       |                |
| DEF      | -0.07 | 1.10  | -0.81              | 3.56        | 0.03           |       |       |       |       |                |
| 주식 포트폴리오 |       | Ź     | ·<br>라주식수익         | B           |                |       | 5-팩E  | 회귀분석의 | 의 잔차  |                |
|          |       |       |                    |             | 5 최소분위         |       |       |       |       |                |
| BE/ME 최저 | -0.13 | 6.31  | -0.30              | 4.23        | 0.05           | -0.12 | 1.51  | -1.17 | 4.09  | 0.04           |
| BE/ME 2  | 0.24  | 5.62  | 0.63               | 4.27        | 0.05           | -0.05 | 0.56  | -0.57 | 2.01  | 0.00           |
| BE/ME 3  | 0.31  | 5.91  | 0.90               | 4.93        | 0.06           | -0.06 | 0.69  | -0.88 | 3.06  | 0.02           |
| BE/ME 4  | 0.37  | 6.29  | 1.14               | 5.55        | 0.08           | -0.06 | 0.76  | -1.02 | 3.57  | 0.03           |
| BE/ME 최고 | 0.40  | 7.39  | 1.20               | 6.31        | 0.10           | -0.09 | 1,13  | -1.41 | 4.94  | 0.06           |
|          |       |       |                    | 사0          | 즈 2분위          |       |       |       |       |                |
| BE/ME 최저 | 0.20  | 2.92  | 0.48               | 2.04        | 0.00           | 0.02  | -0.23 | 0.21  | -0.74 | -0.00          |
| BE/ME 2  | 0.37  | 4.17  | 1.04               | 3.34        | 0.03           | 0.00  | -0.04 | 0.04  | -0.15 | -0.00          |
| BE/ME 3  | 0.53  | 3.95  | 1.63               | 3.48        | 0.03           | 0.04  | -0.55 | 0.62  | -2.16 | 0.01           |
| BE/ME 4  | 0.48  | 4.32  | 1.65               | 4.22        | 0.05           | 0.02  | -0.22 | 0.28  | -0.97 | -0.00          |
| BE/ME 최고 | 0.55  | 5.76  | 1.66               | 4.99<br>ለł0 | 0.07<br> 즈 3분위 | -0.01 | 0.12  | -0.14 | 0.49  | -0.00          |
| BE/ME 최저 | 0.24  | 2.35  | 0.62               | 1.78        | 0.00           | 0.04  | -0.49 | 0.50  | -1.74 | 0.00           |
| BE/ME 2  | 0.42  | 2.87  | 1,31               | 2.57        | 0.02           | 0.03  | -0.41 | 0.42  | -1,48 | 0.00           |
| BE/ME 3  | 0.43  | 3.06  | 1,47               | 2.99        | 0.02           | 0.07  | -0.80 | 0.83  | -2.90 | 0.02           |
| BE/ME 4  | 0.52  | 3.51  | 1.92               | 3,68        | 0.04           | 0.04  | -0.46 | 0.52  | -1,80 | 0.00           |
| BE/ME 최고 | 0.60  | 4.53  | 1.91               | 4,12        | 0.04           | 0.03  | -0.34 | 0.33  | -1.15 | 0,00           |
| ,        |       |       |                    |             | 즈 4분위          |       |       |       |       |                |
| BE/ME 최저 | 0,39  | 1.12  | 1,16               | 0.95        | -0.00          | 0.04  | -0.46 | 0.46  | -1,60 | 0.00           |
| BE/ME 2  | 0,21  | 1,77  | 0.68               | 1.65        | 0.00           | 0.06  | -0.73 | 0.73  | -2.54 | 0.02           |
| BE/ME 3  | 0.40  | 2.08  | 1.40               | 2,11        | 0.01           | 0.08  | -0.93 | 0.93  | -3,27 | 0.03           |
| BE/ME 4  | 0.52  | 3.12  | 1.88               | 3.24        | 0.03           | 0.03  | -0.37 | 0.34  | -1,17 | 0.00           |
| BE/ME 최고 | 0.68  | 4.45  | 2.15               | 4.00        | 0.04           | 0.00  | -0.03 | 0.03  | -0.09 | -0.00          |
|          | 0,00  | .,    | 2,10               |             | 도 최대분위         | 0.00  | 0,05  | 0,00  | 0,05  | 0,00           |
| BE/ME 최저 | 0.37  | 0.34  | 1,34               | 0.35        | -0.00          | -0.03 | 0.38  | -0.48 | 1,67  | 0.00           |
| BE/ME 2  | 0.27  | 1,11  | 1.02               | 1.19        | 0.00           | 0.00  | -0.00 | 0.00  | -0.02 | -0.00          |
| BE/ME 3  | 0.23  | 1,11  | 0.92               | 1,28        | 0.00           | 0.01  | -0.17 | 0,16  | -0.57 | -0,00          |
| BE/ME 4  | 0.37  | 2.38  | 1.54               | 2.85        | 0.02           | -0.00 | 0.08  | -0.09 | 0.31  | -0,00          |
| BE/ME 최고 | 0.32  | 3.38  | 1.17               | 3.59        | 0.03           | -0.02 | 0.25  | -0.18 | 0.63  | -0.00          |
| 채권 포트폴리오 |       | ž     | <sup>논</sup> 과채권수익 |             |                |       | 5-팩E  | 회귀분석의 | 의 잔차  |                |
| 1-5G     | 0,11  | 0.05  | 1,58               | 0.20        | -0.00          | 0.00  | -0.04 | 0.12  | -0.40 | -0.00          |
| 6-10G    | 0.16  | -0.22 | 1.35               | -0.56       | -0.00          | 0.00  | -0.11 | 0.23  | -0.79 | -0.00          |
| Aaa      | 0.03  | 0.34  | 0.21               | 0.74        | -0.00          | 0.01  | -0.17 | 0.62  | -2.17 | 0.01           |
| Aa       | 0.03  | 0.51  | 0.23               | 1,15        | 0.00           | 0.00  | -0,11 | 0,53  | -1,85 | 0,00           |
| A        | 0,00  | 0.86  | 0.05               | 1.94        | 0.00           | -0,01 | 0,12  | -0.60 | 2.08  | 0.01           |
| Baa      | 0.05  | 1,14  | 0.35               | 2.48        | 0.01           | -0.01 | 0.14  | -0.29 | 1.01  | 0,00           |
| LG       | 0.00  | 1.56  | 0.05               | 3.17        | 0.03           | -0.02 | 0.19  | -0.17 | 0.58  | -0.00          |

2. 1월 계절성

1월일 때 1, 다른 달일 때 0값을 가지는 더미변수로 회귀분석한 결과 테이블

R(t) = a + bIAN(t) + eR<sup>2</sup> а t(a) t(a) t(b) 팩터 설명변수의 수익률 5-팩터 RM-RF 0,31 1.49 1,22 1.67 0.00 RMO 2.03 0.40 1.19 1.70 0.00 SMB 2.74 0.30 4.96 0,06 HML 0,21 2,29 1,53 4.70 0,06 TERM 0.10 -0.41 0.56 -0.69 -0.00 -0.07 3,56 1,10 -0,81 0.03 초과주식수익률 5-팩터 회귀분석의 잔차 사이즈 최소분위 -0,13 6,31 -0,30 4,23 0.05 -0,12 1,51 -1,17 4.09 0.04 0.24 5,62 0,63 4.27 0.05 -0.05 0,56 -0.57 2,01 0,00 5.91 0.90 4.93 0.06 -0.06 0.69 -0.88 3.06 0.02 1.14 0.37 6.29 5.55 0.08 -0,06 0.76 -1.02 3.57 0.03 0.40 7.39 1,20 6,31 0.10 -0.09 1,13 -1 41 4.94 0.06 사이즈 2분위 BE/ME 최저 0.20 2,92 0.48 2.04 0.00 0.02 -0.230,21 -0.74-0.00 BE/ME 2 0,37 0,00 4,17 1,04 3,34 0,03 -0.040.04 -0.15 -0,00 BE/ME 3 0.53 3.95 1.63 3.48 0.03 0.04 -0.55 0.62 -2.16 0.01 BE/ME 4 0.48 1,65 4,22 0,05 4,32 0,02 -0.220,28 -0,97 -0,00 BE/ME 최고 0.55 5.76 1.66 4.99 0.07 -0.01 0.12 -0.140.49 -0.00 사이즈 3분위 BE/ME 최저 0.24 2.35 0.62 1.78 0.00 0.04 -0.490.50 -1.74 0.00 BE/ME 2 0.42 2.87 1,31 2,57 0,02 0.03 -0.41 0.42 -1,48 0,00 BE/ME 3 0.43 3.06 1,47 2.99 0,02 0.07 -0.80 0.83 -2.90 0.02 BE/ME 4 0.52 3,51 1,92 3,68 0.04 0.04 -0.460.52 -1,80 0,00 BE/ME 최고 0.60 4.53 1.91 4.12 0.04 0.03 -0.340.33 -1.15 0.00 사이즈 4분위 BE/ME 최저 0.39 1.16 0.95 0.04 -0.46 0.46 -1.60 0.00 1.12 -0.00BE/ME 2 0.21 1,77 0,06 -0.73 0.73 -2.54 0.68 1.65 0.00 0,02 BE/ME 3 2.08 1.40 2.11 0.08 -0.93 0.93 -3.27 0.40 0.01 0.03 BE/ME 4 0.52 3.12 1.88 3.24 0.03 0.03 -0.370.34 -1.17 0.00 BE/ME 최고 0.68 4.45 2.15 4.00 0.04 0,00 -0.03 0.03 -0.09 -0.00 사이즈 최대분위 BE/ME 최저 0.37 1.34 0.35 -0,00 -0,03 0,38 -0,48 1,67 0.00 BE/ME 2 0.27 1,11 1,02 1,19 0.00 0,00 -0,00 0.00 -0.02 -0,00 BE/ME 3 0.23 1,11 0.92 1,28 0.00 0.01 -0.17 0.16 -0.57 -0.00 BE/ME 4 0.37 2.38 1.54 2.85 0.02 -0,00 0.08 -0.09 0.31 -0.00 BE/ME 최고 0.32 3.38 1.17 3.59 0.03 -0,02 0.25 -0.18 0.63 -0,00 초과채권수익률 채권 포트폴리오 5-팩터 회귀분석의 잔차 1-5G 0.11 0.00 0.05 1.58 0.20 -0.00 -0.040.12 -0.40-0,00 6-10G 0,16 -0.221.35 -0.56-0,00 0.00 -0,11 0.23 -0.79-0,00 0.03 -2.17 Aaa 0.34 0.21 0.74 -0.00 0.01 -0.17 0.62 0.01 0.03 Aa 0,51 0,23 1,15 0.00 0.00 -0,11 0,53 -1,85 0.00

1,94

2.48

3,17

0,00

0.01

0.03

-0,01

-0.01

-0.02

0,12

0.19

0,00

0.05

0.00

Baa

LG

0,86

1,56

0,05

0.05

Table 10 5-팩터 회귀분석의 종속변수 수익률. 독립변수 수익률. 장차의 1월 계절성 테스트 결과: 1963년 7월부터 1991년 12월까지, 342개월

= 1월이 아닌 달의 평균 수익률

2,08

1.01

0.58

0,01

0.00

-0.00

-0,60

-0.29

-0,17

2. 1월 계절성

1월일 때 1, 다른 달일 때 0값을 가지는 더미변수로 회귀분석한 결과 테이블

회귀 분석 절편

5-팩터 회귀분석의 종속변수 수익률, 독립변수 수익률, 잔차의 1월 계절성 테스트 결과: 1963년 7월부터 1991년 12월까지, 342개월<sup>3</sup> R(t) = a + bJAN(t) + eR<sup>2</sup> t(a) 팩터 설명변수의 수익률 RM-RF 0,31 1.49 1,22 1.67 0.00 RMO 2.03 0.40 1.19 1.70 0.00 2.74 0,30 4.96 2,29 1,53 0,21 0,06 TERM 0.10 -0.410.56 -0.69 -0.00 -0.07 1,10 -0,81 3,56 0.03 초과주식수익률 5-팩터 회귀분석의 잔차 사이즈 최소분위 -0,13 6,31 -0,30 4,23 0.05 -0,12 1,51 -1,17 4,09 0.04 0.24 5,62 0,63 4.27 0.05 -0.05 -0,57 2,01 0,00 5.91 0.90 4.93 0.06 -0.06 -0.88 3.06 0.02 = 1월이 아닌 달의 평균 수익률 0.37 1.14 -0,06 6.29 5.55 0.08 0.76 -1.02 3.57 0.03 0.40 7.39 -0.09 -1.41 1,20 6,31 0.10 1,13 4.94 0.06 사이즈 2분위 0.02 BE/ME 최저 0.20 2,92 0.48 2.04 0.00 -0.230.21 -0.74-0,00 BE/ME 2 0,37 4,17 1,04 0,03 0.00 -0.04 0.04 3,34 -0.15 -0,00 BE/ME 3 0.53 3.95 1.63 3.48 0.03 0.04 -0.55 0.62 -2.16 0.01 BE/ME 4 0.48 1,65 4,22 0,05 0.02 -0,22 4,32 0,28 -0,97 -0,00 BE/ME 최고 0.55 5.76 1.66 4.99 0.07 -0.01 0.12 -0.140.49 -0.00 사이즈 3분위 기울기 0.62 1.78 0.00 0.04 -0.49 0.50 -1.74 0.00 2.87 1,31 2,57 0,02 0.03 -0.41 0.42 -1,48 0,00 3,06 1,47 2.99 0,02 0.07 -0,80 0.83 -2.90 0.02 1,92 3,68 0.04 0.04 -0.460.52 -1,80 0,00 1.91 4.12 0.04 0.03 -0.340.33 -1.15 0.00 = 1월의 평균수익률과 사이즈 4분위 1.16 0.04 -0.46 0.46 -1.60 0.00 나머지 평균수익률의 차 1,77 0.68 0,06 -0.73 0.73 -2.54 1,65 0.00 0.02 2.08 0.08 1.40 2.11 0.01 -0.93 0.93 -3.27 0.03 3.12 1.88 3.24 0.03 0.03 -0.370.34 -1.17 0.00 BE/ME 최고 0,68 4.45 2.15 4.00 0.04 0.00 -0.03 0.03 -0.09 -0.00 사이즈 최대분위 BE/ME 최저 0.37 0.34 1.34 0.35 -0,03 0,38 -0.48 1,67 0.00 BE/ME 2 0.27 1,11 1,02 1,19 0.00 0,00 -0,00 0.00 -0.02 -0,00 0.01 BE/ME 3 0.23 1,11 0.92 1,28 0.00 -0.17 0.16 -0.57 -0.00 BE/ME 4 0.37 2.38 1.54 2.85 0.02 -0,00 0.08 -0.09 0.31 -0.00 BE/ME 최고 0.32 3.38 1.17 3.59 0.03 -0,02 0.25 -0,18 0.63 -0,00 과채권수익률 채권 포트폴리오 5-팩단 회귀분석의 잔차 1-5G 0.11 0.05 0.00 -0.04 1.58 0,20 -0.00 0.12 -0.40-0,00 6-10G 0,16 -0.221,35 -0.56-0,00 0.00 -0.11 0.23 -0.79-0,00

-0.00

0.00

0,00

0.01

0.03

0.74

1,15

1,94

2.48

3,17

0.21

0,23

0,05

0.35

0.05

0.01

0.00

-0,01

-0.01

-0.02

-0.17

-0.11

0,12

0.14

0.19

0.62

0,53

-0,60

-0.29

-0,17

0.03

0.03

0,00

0.05

0.00

0.51

0,86

1.14

1,56

Aaa

Aa

LG

Table 10

-2.17

-1,85

2,08

1.01

0.58

0.01

0.00

0,01

0.00

-0,00

- 2. 1월 계절성
- (1) 초과주식수익률에서 계절성이 확인되는가?
- (2) 5-팩터 모델의 잔차에 계절성이 없는가?

## 2. 1월 계절성

(1) 초과주식수익률에서 계절성이 확인되는가?

| 주식 포트폴리오 | 초과주식수익률 |      |          |        |            |  |  |  |
|----------|---------|------|----------|--------|------------|--|--|--|
|          |         |      |          | 사이2    | <br>즈 최소분위 |  |  |  |
| BE/ME 최저 | -0.13   | 6.31 | -0.30    | 4.23   | 0.05       |  |  |  |
| BE/ME 2  | 0.24    | 5,62 | 0.63     | 4.27   | 0.05       |  |  |  |
| BE/ME 3  | 0.31    | 5.91 | 0.90     | 4.93   | 0.06       |  |  |  |
| BE/ME 4  | 0.37    | 6.29 | 1.14     | 5,55   | 0.08       |  |  |  |
| BE/ME 최고 | 0.40    | 7.39 | 1,20     | 6.31   | 0.10       |  |  |  |
|          |         |      |          | 사이     | 즈 2분위      |  |  |  |
| BE/ME 최저 | 0.20    | 2.92 | 0.48     | 2.04   | 0.00       |  |  |  |
| BE/ME 2  | 0.37    | 4.17 | 1.04     | 3.34   | 0.03       |  |  |  |
| BE/ME 3  | 0.53    | 3.95 | 1.63     | 3,48   | 0.03       |  |  |  |
| BE/ME 4  | 0.48    | 4.32 | 1.65     | 4.22   | 0.05       |  |  |  |
| BE/ME 최고 | 0.55    | 5.76 | 1.66     | 4.99   | 0.07       |  |  |  |
|          |         |      |          | 사이     | 즈 3분위      |  |  |  |
| BE/ME 최저 | 0.24    | 2.35 | 0.62     | 1.78   | 0.00       |  |  |  |
| BE/ME 2  | 0.42    | 2.87 | 1.31     | 2.57   | 0.02       |  |  |  |
| BE/ME 3  | 0.43    | 3.06 | 1.47     | 2.99   | 0.02       |  |  |  |
| BE/ME 4  | 0.52    | 3,51 | 1.92     | 3,68   | 0.04       |  |  |  |
| BE/ME 최고 | 0.60    | 4.53 | 1.91     | 4.12   | 0.04       |  |  |  |
|          |         |      |          | 사0     | 즈 4분위      |  |  |  |
| BE/ME 최저 | 0.      | 001  | <b>.</b> | 0 +1 = | 립니어가       |  |  |  |
| BE/ME 2  | 0       | 0.5  | 2 共世     | 소시를    | 불넘어감       |  |  |  |
| BE/ME 3  | 0.      |      |          |        |            |  |  |  |
| BE/ME 4  | 0.      | 、人六  | ᄌᅁ       | ᆺᆯᇫ    | 의계저서이      |  |  |  |
| BE/ME 최고 | 0.      |      |          |        | 월 계절성이     |  |  |  |
|          |         |      | 조재함      | 을 확인   | 인 가능       |  |  |  |
| BE/ME 최저 | 0.      |      |          |        | - 10       |  |  |  |
| BE/ME 2  | 0.27    | 1.11 | 1.02     | 1.19   | 0.00       |  |  |  |
| BE/ME 3  | 0.23    | 1,11 | 0.92     | 1.28   | 0.00       |  |  |  |
| BE/ME 4  | 0.37    | 2.38 | 1.54     | 2,85   | 0.02       |  |  |  |
| BE/ME 최고 | 0.32    | 3,38 | 1.17     | 3.59   | 0.03       |  |  |  |

2. 1월 계절성

(2) 5-팩터 모델의 잔차에 계절성이 없는가?

최소 사이즈 분위를 제외하고 기울기가 전부 음(-)

| â | a .          | b              | t(a)         | t(b)           | R <sup>2</sup> |                 |
|---|--------------|----------------|--------------|----------------|----------------|-----------------|
|   |              | 5-팩티           | 너 회귀분석의      | 잔차             |                | -               |
|   | -0.12        | 1,51           | -1.17        | 4.09           | 0.04           |                 |
|   | -0.05        | 0.56           | -0.57        | 2.01           | 0.04           |                 |
|   | -0.06        | 0.69           | -0.88        | 3.06           | 0.02           |                 |
|   | -0.06        | 0.76           | -1.02        | 3.57           | 0.03           |                 |
|   | -0.09        | 1.13           | -1.41        | 4.94           | 0.06           |                 |
|   |              |                |              |                |                |                 |
|   | 0.02         | -0.23          | 0.21         | -0.74          | -0.00          |                 |
|   | 0.00<br>0.04 | -0.04<br>-0.55 | 0.04<br>0.62 | -0.15<br>-2.16 | -0.00<br>0.01  |                 |
|   | 0.04         | -0.33          | 0.62         | -0.97          | -0.00          |                 |
|   | -0.01        | 0.22           | -0.14        | 0.49           | -0.00          |                 |
|   | 0,01         | 0.12           | 0,14         | 0,45           | 0.00           |                 |
|   | 0.04         | -0.49          | 0.50         | -1.74          | 0.00           |                 |
|   | 0.03         | -0.41          | 0.42         | -1.48          | 0.00           |                 |
|   | 0.07         | -0.80          | 0.83         | -2.90          | 0.02           |                 |
|   | 0.04         | -0.46          | 0.52         | -1.80          | 0.00           |                 |
|   | 0.03         | -0.34          | 0.33         | -1.15          | 0.00           | 대부분 0~2 표준오차 이나 |
|   | 0.04         | 0.46           | 0.46         | 1.00           | 0.00           |                 |
|   | 0.04<br>0.06 | -0.46<br>-0.73 | 0.46<br>0.73 | -1.60<br>-2.54 | 0.00<br>0.02   |                 |
|   | 0.08         | -0.73          | 0.73         | -2.54          | 0.02           |                 |
|   | 0.03         | -0.37          | 0.34         | -1.17          | 0.00           |                 |
|   | 0.00         | -0.03          | 0.03         | -0.09          | -0.00          |                 |
|   | 0,00         | 5,55           | 5,55         | 0,00           |                |                 |
|   | -0.03        | 0.38           | -0.48        | 1.67           | 0.00           |                 |
|   | 0.00         | -0.00          | 0.00         | -0.02          | -0.00          |                 |
|   | 0.01         | -0.17          | 0.16         | -0.57          | -0.00          |                 |
|   | -0.00        | 0.08           | -0.09        | 0.31           | -0.00          |                 |
|   | -0.02        | 0.25           | -0.18        | 0.63           | -0.00          |                 |
|   |              |                |              |                | l              |                 |
|   |              |                |              |                |                |                 |

=> 초과수익률에서 1월 계절성이 발견되는 반면, 회귀분석한 잔차에서는 1월 계절성이 발견되지 않음. 따라서, 5-팩터 모델이 초과수익률의 1월 계절성을 잘 설명하고 있다고 할 수 있음

3. 분할 표본 테스트

25개의 사이즈-BE/ME 포트폴리오 각각에 있는 주식을 동일한 두 그룹으로 분리하여 다시 회귀분석

=> 세 개의 팩터의 기울기는 기존 테스트의 기울기(Table 6)와, 절편은 기존 테스트의 절편(Table 9)와 유사했음

## 4. E/P 기준의 5개 주식 포트폴리오 테스트

Table 11

배당금/주가(D/P)와 이익/주가(E/P)로 형성된 포트폴리오의 시총가중 월별초과수익률(%)의 요약 통계량, 포트폴리오의 초과수익률을 (i) 시장초과수익률(RM-RF), (ii) 시장초과수익률(RM-RF)과 사이즈 팩터의 모방수익률(SMB), BE/ME 팩터의 모방수익률 (HML)로 회귀분석 한 요약 통계량: 1963년 7월부터 1991년 12월까지, 342개월<sup>8</sup>

(i) 
$$R(t) - RF(t) = a + b[RM(t) - RF(t)] + e(t)$$

(ii) 
$$R(t) - RF(t) = a + b[RM(t) - RF(t)] + sSMB(t) + hHML(t) + e(t)$$

|       | E/P. | 로 형성된 포트플 | 플리오   |      | D/P로 형성된 포트폴리. | 오     |
|-------|------|-----------|-------|------|----------------|-------|
| 포트폴리오 | Mean | Std.      | t(mn) | Mean | Std.           | t(mn) |
| ≤0    | 0.72 | 7.77      | 1.72  | 0.48 | 7.36           | 1,20  |
| Low   | 0.27 | 5.23      | 0.96  | 0.39 | 5.48           | 1.30  |
| 2     | 0.47 | 4.76      | 1.82  | 0.44 | 4.83           | 1.68  |
| 3     | 0.46 | 4.68      | 1.83  | 0.47 | 4.65           | 1.87  |
| 4     | 0.55 | 4.48      | 2.27  | 0.57 | 4.32           | 2.42  |
| High  | 0,86 | 4.84      | 3.30  | 0.56 | 3,86           | 2.67  |

E/P 포트폴리오의 평균수익률은 U-자 형태

#### 4. E/P 기준의 5개 주식 포트폴리오 테스트

Table 11

배당금/주가(D/P)와 이익/주가(E/P)로 형성된 포트폴리오의 시총가중 월별초과수익률(%)의 요약 통계량, 포트폴리오의 초과수익률을 (i) 시장초과수익률(RM-RF), (ii) 시장초과수익률(RM-RF)과 사이즈 팩터의 모방수익률(SMB), BE/ME 팩터의 모방수익률 (HML)로 회귀분석 한 요약 통계량: 1963년 7월부터 1991년 12월까지, 342개월<sup>8</sup>

(i) 
$$R(t) - RF(t) = a + b[RM(t) - RF(t)] + e(t)$$

(ii) 
$$R(t) - RF(t) = a + b[RM(t) - RF(t)] + sSMB(t) + hHML(t) + e(t)$$

|       | E/P. | 로 형성된 포트폴 | 플리오   |      | D/P로 형성된 포트폴 | 리오    |
|-------|------|-----------|-------|------|--------------|-------|
| 포트폴리오 | Mean | Std.      | t(mn) | Mean | Std.         | t(mn) |
| ≤0    | 0.72 | 7.77      | 1.72  | 0.48 | 7.36         | 1,20  |
| Low   | 0.27 | 5,23      | 0.96  | 0.39 | 5.48         | 1,30  |
| 2     | 0.47 | 4.76      | 1.82  | 0.44 | 4.83         | 1,68  |
| 3     | 0.46 | 4.68      | 1.83  | 0.47 | 4.65         | 1.87  |
| 4     | 0.55 | 4.48      | 2.27  | 0.57 | 4.32         | 2.42  |
| High  | 0,86 | 4.84      | 3,30  | 0.56 | 3,86         | 2.67  |

## E/P 포트폴리오의 평균수익률은 U-자 형태

음의 이익을 가진 기업의 포트폴리오와 최고 분위 기업의 포트폴리오가 가장 높은 수익률을 가짐 양수 E/P에서는 E/P 분위가 높을수록 평균수익률이 증가

## 4. E/P 기준의 5개 주식 포트폴리오 테스트

|       | E/P로 형성된 포트폴리오 |      |       |  |  |  |  |  |
|-------|----------------|------|-------|--|--|--|--|--|
| 포트폴리오 | Mean           | Std. | t(mn) |  |  |  |  |  |
| ≤0    | 0.72           | 7.77 | 1.72  |  |  |  |  |  |
| Low   | 0.27           | 5.23 | 0.96  |  |  |  |  |  |
| 2     | 0.47           | 4.76 | 1.82  |  |  |  |  |  |
| 3     | 0.46           | 4.68 | 1.83  |  |  |  |  |  |
| 4     | 0.55           | 4.48 | 2.27  |  |  |  |  |  |
| High  | 0,86           | 4.84 | 3.30  |  |  |  |  |  |
|       |                |      |       |  |  |  |  |  |

## E/P 포트폴리오의 평균수익률은 U-자 형태

음의 E/P 포트폴리오와 최고 분위 기업의 포트폴리오가 가장 높은 수익률을 가짐

양수 E/P에서는 E/P 분위가 높을수록 평균수익률이 증가

## 4. E/P 기준의 5개 주식 포트폴리오 테스트

|       | E/P로 형성된 포트폴리오 |      |       |  |  |  |  |  |
|-------|----------------|------|-------|--|--|--|--|--|
| 포트폴리오 | Mean           | Std. | t(mn) |  |  |  |  |  |
| ≤0    | 0.72           | 7.77 | 1,72  |  |  |  |  |  |
| Low   | 0.27           | 5.23 | 0.96  |  |  |  |  |  |
| 2     | 0.47           | 4.76 | 1.82  |  |  |  |  |  |
| 3     | 0.46           | 4.68 | 1.83  |  |  |  |  |  |
| 4     | 0.55           | 4.48 | 2.27  |  |  |  |  |  |
| High  | 0,86           | 4.84 | 3,30  |  |  |  |  |  |
|       |                |      |       |  |  |  |  |  |

## E/P 포트폴리오의 평균수익률은 U-자 형태

음의 E/P 포트폴리오와 최고 분위 기업의 포트폴리오가 가장 높은 수익률을 가짐

양수 E/P에서는 E/P 분위가 높을수록 평균수익률이 증가

## RM-RF의 1- 팩터 모델

|       |         | _        |       | E/P로 형성된 포트폴리오 |         |           |          |                |
|-------|---------|----------|-------|----------------|---------|-----------|----------|----------------|
|       |         | 회귀분석 (i) |       |                |         | 회귀분석 (ii) |          |                |
| 포트폴리오 | a       | b        | $R^2$ | a              | b       | S         | h        | R <sup>2</sup> |
| E/P≤0 | 0.13    | 1,37     | 0,64  | -0,30          | 1.24    | 1,13      | 0.46     | 0.82           |
|       | (0.50)  | (24.70)  |       | (-1,68)        | (27.82) | (17.42)   | (6.10)   |                |
| Low   | -0.20   | 1.10     | 0.91  | 0.04           | 0.99    | -0.01     | -0.50    | 0.96           |
|       | (-2.35) | (57.42)  |       | (0.70)         | (66.78) | (-0.55)   | (-19.73) |                |
| 2     | 0.03    | 1.01     | 0.94  | 0.03           | 1,01    | 0.02      | -0.00    | 0.94           |
|       | (0.46)  | (70.24)  |       | (0.40)         | (61.17) | (1.01)    | (80.0-)  |                |
| 3     | 0.04    | 0.99     | 0.92  | -0.00          | 1.00    | 0.01      | 0.09     | 0.92           |
|       | (0.50)  | (61,62)  |       | (-0.12)        | (55.46) | (0.40)    | (2.86)   |                |
| 4     | 0.15    | 0.93     | 0.88  | -0.02          | 0.98    | 0.05      | 0,33     | 0.91           |
|       | (1.76)  | (49.78)  |       | (-0,28)        | (53.57) | (1.95)    | (10.44)  |                |
| High  | 0.46    | 0.94     | 0.78  | 0,08           | 1.03    | 0.24      | 0.67     | 0.91           |
|       | (3.69)  | (34.73)  |       | (1.01)         | (51,56) | (8.34)    | (19.62)  |                |

#### 4. E/P 기준의 5개 주식 포트폴리오 테스트

|       | E/P로 형성된 포트폴리오 |      |       |  |  |  |  |  |
|-------|----------------|------|-------|--|--|--|--|--|
| 포트폴리오 | Mean           | Std. | t(mn) |  |  |  |  |  |
| ≤0    | 0.72           | 7.77 | 1,72  |  |  |  |  |  |
| Low   | 0.27           | 5.23 | 0.96  |  |  |  |  |  |
| 2     | 0.47           | 4.76 | 1.82  |  |  |  |  |  |
| 3     | 0.46           | 4.68 | 1.83  |  |  |  |  |  |
| 4     | 0.55           | 4.48 | 2.27  |  |  |  |  |  |
| High  | 0.86           | 4.84 | 3.30  |  |  |  |  |  |
|       |                |      |       |  |  |  |  |  |

#### 기울기가 모두 1에 가까움

## E/P 포트폴리오의 평균수익률은 U-자 형태

음의 E/P 포트폴리오와 최고 분위 기업의 포트폴리오가 가장 높은 수익률을 가짐

양수 E/P에서는 E/P 분위가 높을수록 평균수익률이 증가

#### RM-RF의 1- 팩터 모델

=> 양수 E/P에서 E/P 분위와 평균수익률 사이의 양의 관계성을 설명하지 못함

E/P로 형성된 포트폴리오

| 회귀분석 (i) |                  |                 |       |                  |                 | 회귀분석 (ii)        |                   |                |
|----------|------------------|-----------------|-------|------------------|-----------------|------------------|-------------------|----------------|
| 포트폴리오    | a                | b               | $R^2$ | a                | b               | S S              | h                 | R <sup>2</sup> |
| E/P≤0    | 0.13<br>(0.50)   | 1.37<br>(24.70) | 0.64  | -0.30<br>(-1.68) | 1,24<br>(27,82) | 1.13<br>(17.42)  | 0.46<br>(6.10)    | 0,82           |
| Low      | -0.20<br>(-2.35) | 1.10<br>(57.42) | 0,91  | 0.04<br>(0.70)   | 0,99<br>(66,78) | -0.01<br>(-0.55) | -0.50<br>(-19.73) | 0.96           |
| 2        | 0.03<br>(0.46)   | 1.01<br>(70.24) | 0.94  | 0.03<br>(0.40)   | 1.01<br>(61.17) | 0.02<br>(1.01)   | -0.00<br>(80.0-)  | 0.94           |
| 3        | 0.04<br>(0.50)   | 0.99<br>(61.62) | 0.92  | -0.00<br>(-0.12) | 1.00<br>(55.46) | 0.01<br>(0.40)   | 0.09<br>(2.86)    | 0.92           |
| 4        | 0.15<br>(1.76)   | 0.93<br>(49.78) | 0,88  | -0.02<br>(-0.28) | 0.98<br>(53.57) | 0.05<br>(1.95)   | 0.33<br>(10.44)   | 0.91           |
| High     | 0.46<br>(3.69)   | 0.94<br>(34.73) | 0.78  | 0.08<br>(1.01)   | 1.03<br>(51.56) | 0.24<br>(8.34)   | 0.67<br>(19.62)   | 0.91           |

## 4. E/P 기준의 5개 주식 포트폴리오 테스트

|       | E/P로 형성된 포트폴리오 |      |       |  |  |  |  |  |
|-------|----------------|------|-------|--|--|--|--|--|
| 포트폴리오 | Mean           | Std. | t(mn) |  |  |  |  |  |
| ≤0    | 0.72           | 7.77 | 1.72  |  |  |  |  |  |
| Low   | 0.27           | 5.23 | 0.96  |  |  |  |  |  |
| 2     | 0.47           | 4.76 | 1.82  |  |  |  |  |  |
| 3     | 0.46           | 4.68 | 1.83  |  |  |  |  |  |
| 4     | 0.55           | 4.48 | 2.27  |  |  |  |  |  |
| High  | 0,86           | 4.84 | 3,30  |  |  |  |  |  |
|       |                |      |       |  |  |  |  |  |

## E/P 포트폴리오의 평균수익률은 U-자 형태

음의 E/P 포트폴리오와 최고 분위 기업의 포트폴리오가 가장 높은 수익률을 가짐

양수 E/P에서는 E/P 분위가 높을수록 평균수익률이 증가

#### E/P로 형성된 포트폴리오

|       | 회귀분석 (i) |         |                | 회귀분석 (ii) |         |         |          |                |
|-------|----------|---------|----------------|-----------|---------|---------|----------|----------------|
| 포트폴리오 | a        | b       | R <sup>2</sup> | a         | b       | S       | h        | R <sup>2</sup> |
| E/P≤0 | 0,13     | 1.37    | 0.64           | -0.30     | 1,24    | 1,13    | 0.46     | 0.82           |
|       | (0.50)   | (24.70) |                | (-1,68)   | (27.82) | (17.42) | (6.10)   |                |
| Low   | -0.20    | 1.10    | 0.91           | 0.04      | 0.99    | -0,01   | -0.50    | 0.96           |
|       | (-2.35)  | (57.42) |                | (0.70)    | (66.78) | (-0.55) | (-19.73) |                |
| 2     | 0.03     | 1.01    | 0.94           | 0.03      | 1.01    | 0.02    | -0.00    | 0.94           |
|       | (0.46)   | (70.24) |                | (0.40)    | (61,17) | (1.01)  | (80.0-)  |                |
| 3     | 0.04     | 0.99    | 0.92           | -0.00     | 1.00    | 0.01    | 0.09     | 0.92           |
|       | (0.50)   | (61.62) |                | (-0.12)   | (55.46) | (0.40)  | (2.86)   |                |
| 4     | 0.15     | 0.93    | 0.88           | -0.02     | 0.98    | 0.05    | 0,33     | 0.91           |
|       | (1.76)   | (49.78) |                | (-0.28)   | (53.57) | (1.95)  | (10.44)  |                |
| High  | 0.46     | 0.94    | 0.78           | 0.08      | 1.03    | 0.24    | 0.67     | 0.91           |
|       | (3.69)   | (34.73) |                | (1.01)    | (51,56) | (8.34)  | (19.62)  |                |
|       |          |         |                | , , ,     | , , , , |         |          |                |

#### 4. E/P 기준의 5개 주식 포트폴리오 테스트

|       | E/P로 형성된 포트폴리오 |      |       |  |  |  |  |  |
|-------|----------------|------|-------|--|--|--|--|--|
| 포트폴리오 | Mean           | Std. | t(mn) |  |  |  |  |  |
| ≤0    | 0.72           | 7.77 | 1.72  |  |  |  |  |  |
| Low   | 0.27           | 5.23 | 0.96  |  |  |  |  |  |
| 2     | 0.47           | 4.76 | 1.82  |  |  |  |  |  |
| 3     | 0.46           | 4.68 | 1.83  |  |  |  |  |  |
| 4     | 0.55           | 4.48 | 2.27  |  |  |  |  |  |
| High  | 0,86           | 4.84 | 3,30  |  |  |  |  |  |
|       |                |      |       |  |  |  |  |  |

## E/P 포트폴리오의 평균수익률은 U-자 형태

음의 E/P 포트폴리오와 최고 분위 기업의 포트폴리오가 가장 높은 수익률을 가짐

양수 E/P에서는 E/P 분위가 높을수록 평균수익률이 증가

# 3- **팩터 모델** E/P로 형성된 포트폴리오

|       |                  | 회귀분석 (i)         |                |                  |                 | 회귀분석 (ii)       |                   |                |
|-------|------------------|------------------|----------------|------------------|-----------------|-----------------|-------------------|----------------|
| 포트폴리오 | a                | b                | R <sup>2</sup> | a                | b               | S               | h                 | R <sup>2</sup> |
| E/P≤0 | 0.13<br>(0.50)   | 1,37<br>(24,70)  | 0.64           | -0.30<br>(-1.68) | 1,24<br>(27,82) | 1.13<br>(17.42) | 0.46<br>(6.10)    | 0.82           |
| Low   | -0.20<br>(-2.35) | 1.10<br>(57.42)  | 0.9            | 최저 BE/ME         | 기울기오            | 나 유사            | -0.50<br>(-19.73) | 0.96           |
| 2     | 0.03<br>(0.46)   | 1.01<br>(70.24)  | 0.94           | 0.03<br>(0.40)   |                 | 0.02<br>(1.01)  | -0.00<br>(-0.08)  | 0.94           |
| 3     | 0.04<br>(0.50)   | 0.99<br>(61.62)  | 0.92           | -0.00<br>(-0.12) | 1.00<br>(55.46) | 0.01<br>(0.40)  | 0.09<br>(2.86)    | 0.92           |
| 4     | 0,15<br>(1,76)   | 0.93<br>(49 78)  | 0,88           | -0.02<br>(-0.28) | 0,98<br>(53 57) | 0,05<br>(1 95)  | 0.33<br>(10.44)   | 0.91           |
| High  | 0.46<br>(3.69)   | 최고BE/<br>(34.73) | 'ME 분우         | <b>포트폴리오</b>     |                 | 와 유사<br>(8.34)  | 0.67 (19.62)      | 0.91           |

## 4. E/P 기준의 5개 주식 포트폴리오 테스트

|       | E/P로 형성된 포트폴리오 |      |       |  |  |  |  |  |
|-------|----------------|------|-------|--|--|--|--|--|
| 포트폴리오 | Mean           | Std. | t(mn) |  |  |  |  |  |
| ≤0    | 0.72           | 7.77 | 1,72  |  |  |  |  |  |
| Low   | 0.27           | 5.23 | 0.96  |  |  |  |  |  |
| 2     | 0.47           | 4.76 | 1.82  |  |  |  |  |  |
| 3     | 0.46           | 4.68 | 1.83  |  |  |  |  |  |
| 4     | 0.55           | 4.48 | 2.27  |  |  |  |  |  |
| High  | 0.86           | 4.84 | 3,30  |  |  |  |  |  |
|       |                |      |       |  |  |  |  |  |

## E/P 포트폴리오의 평균수익률은 U-자 형태

음의 E/P 포트폴리오와 최고 분위 기업의 포트폴리오가 가장 높은 수익률을 가짐

양수 E/P에서는 E/P 분위가 높을수록 평균수익률이 증가

## 3-팩터 모델은 양수 E/P에서 E/P 분위와 평균수익률의 양의 관계를 HML의 노출도 때문이라는 것을 설명해냄

#### 3- 팩터 모델

|       |                  |                  |        | 나 포 항하면 포프리네포    |                 |                 |                   |                |
|-------|------------------|------------------|--------|------------------|-----------------|-----------------|-------------------|----------------|
|       |                  | 회귀분석 (i)         |        |                  |                 | 회귀분석 (ii)       |                   |                |
| 포트폴리오 | a                | b                | $R^2$  | a                | b               | S               | h                 | R <sup>2</sup> |
| E/P≤0 | 0.13<br>(0.50)   | 1.37<br>(24.70)  | 0.64   | -0.30<br>(-1.68) | 1.24<br>(27.82) | 1,13<br>(17,42) | 0.46<br>(6.10)    | 0,82           |
| Low   | -0.20<br>(-2.35) | 1.10<br>(57.42)  | 0.9    | 최저 BE/ME         | 기울기와            | 유사              | -0.50<br>(-19.73) | 0.96           |
| 2     | 0.03<br>(0.46)   | 1.01<br>(70.24)  | 0,94   | 0.03<br>(0.40)   | 1,01<br>(61,17) | 0.02<br>(1.01)  | -0.00<br>(-0.08)  | 0.94           |
| 3     | 0.04<br>(0.50)   | 0.99<br>(61.62)  | 0.92   | -0.00<br>(-0.12) | 1.00<br>(55.46) | 0.01<br>(0.40)  | 0.09<br>(2.86)    | 0,92           |
| 4     | 0.15<br>(1.76)   | 0.93<br>(49 78)  | 0,88   | -0.02<br>(-0.28) | 0.98<br>(53 57) | 0.05<br>(1.95)  | 0.33<br>(10.44)   | 0.91           |
| High  | 0.46<br>(3.69)   | 최고BE/<br>(34.73) | 'ME 분약 | 위 포트폴리오의         | 기울기.<br>(51.56) | 와 유사<br>(8.34)  | 0.67<br>(19.62)   | 0.91           |
|       |                  |                  |        |                  |                 |                 |                   |                |

F/P로 형성된 포트폭리오

## 5. D/P 기준의 5개 주식 포트폴리오 테스트

Table 11

배당금/주가(D/P)와 이익/주가(E/P)로 형성된 포트폴리오의 시총가중 월별초과수익률(%)의 요약 통계량, 포트폴리오의 초과수익률을 (i) 시장초과수익률(RM-RF), (ii) 시장초과수익률(RM-RF)과 사이즈 팩터의 모방수익률(SMB), BE/ME 팩터의 모방수익률 (HML)로 회귀분석 한 요약 통계량: 1963년 7월부터 1991년 12월까지, 342개월<sup>2</sup>

(i) 
$$R(t) - RF(t) = a + b[RM(t) - RF(t)] + e(t)$$

(ii) 
$$R(t) - RF(t) = a + b[RM(t) - RF(t)] + sSMB(t) + hHML(t) + e(t)$$

|       | E/P로 형성된 포트폴리오 |      |       |      | D/P로 형성된 포트폴리오 |       |  |
|-------|----------------|------|-------|------|----------------|-------|--|
| 포트폴리오 | Mean           | Std. | t(mn) | Mean | Std.           | t(mn) |  |
| ≤0    | 0.72           | 7.77 | 1.72  | 0.48 | 7.36           | 1.20  |  |
| Low   | 0.27           | 5.23 | 0.96  | 0.39 | 5.48           | 1.30  |  |
| 2     | 0.47           | 4.76 | 1.82  | 0.44 | 4.83           | 1.68  |  |
| 3     | 0.46           | 4.68 | 1.83  | 0.47 | 4.65           | 1.87  |  |
| 4     | 0.55           | 4.48 | 2.27  | 0.57 | 4.32           | 2.42  |  |
| High  | 0.86           | 4.84 | 3,30  | 0.56 | 3,86           | 2.67  |  |

D/P 포트폴리오의 평균수익률은 U-자 형태

#### 5. D/P 기준의 5개 주식 포트폴리오 테스트

Table 11

배당금/주가(D/P)와 이익/주가(E/P)로 형성된 포트폴리오의 시총가중 월별초과수익률(%)의 요약 통계량, 포트폴리오의 초과수익률을 (i) 시장초과수익률(RM-RF), (ii) 시장초과수익률(RM-RF)과 사이즈 팩터의 모방수익률(SMB), BE/ME 팩터의 모방수익률 (HML)로 회귀분석 한 요약 통계량: 1963년 7월부터 1991년 12월까지, 342개월<sup>2</sup>

(i) 
$$R(t) - RF(t) = a + b[RM(t) - RF(t)] + e(t)$$

(ii) 
$$R(t) - RF(t) = a + b[RM(t) - RF(t)] + sSMB(t) + hHML(t) + e(t)$$

|       | E/P로 형성된 포트폴리오 |      |       |      | D/P로 형성된 포트폴리오 |       |  |
|-------|----------------|------|-------|------|----------------|-------|--|
| 포트폴리오 | Mean           | Std. | t(mn) | Mean | Std.           | t(mn) |  |
| ≤0    | 0.72           | 7.77 | 1.72  | 0.48 | 7.36           | 1.20  |  |
| Low   | 0.27           | 5,23 | 0.96  | 0.39 | 5.48           | 1.30  |  |
| 2     | 0.47           | 4.76 | 1.82  | 0.44 | 4.83           | 1.68  |  |
| 3     | 0.46           | 4.68 | 1.83  | 0.47 | 4.65           | 1.87  |  |
| 4     | 0.55           | 4.48 | 2.27  | 0.57 | 4.32           | 2.42  |  |
| High  | 0.86           | 4.84 | 3.30  | 0.56 | 3.86           | 2.67  |  |
|       |                |      |       |      |                |       |  |

음의 이익을 가진 기업의 포트폴리오와 최고 분위 기업의 포트폴리오가 가장 높은 수익률을 가짐 양수 D/P에서는 D/P 분위가 높을수록 평균수익률이 증가 D/P 포트폴리오의 평균수익률은 U-자 형태

## 5. D/P 기준의 5개 주식 포트폴리오 테스트

| D/P로 형성된 포트폴리오 |      |       |  |  |  |  |  |  |
|----------------|------|-------|--|--|--|--|--|--|
| Mean           | Std. | t(mn) |  |  |  |  |  |  |
| 0.48           | 7.36 | 1.20  |  |  |  |  |  |  |
| 0.39           | 5.48 | 1.30  |  |  |  |  |  |  |
| 0.44           | 4.83 | 1.68  |  |  |  |  |  |  |
| 0.47           | 4.65 | 1.87  |  |  |  |  |  |  |
| 0.57           | 4.32 | 2.42  |  |  |  |  |  |  |
| 0.56           | 3.86 | 2.67  |  |  |  |  |  |  |
|                |      |       |  |  |  |  |  |  |

## D/P 포트폴리오의 평균수익률은 U-자 형태

음의 D/P 포트폴리오와 최고 분위 기업의 포트폴리오가 가장 높은 수익률을 가짐

양수 D/P에서는 D/P 분위가 높을수록 평균수익률이 증가

## 5. D/P 기준의 5개 주식 포트폴리오 테스트

| D/P로 형성된 포트폴리오 |      |       |  |  |  |  |  |  |
|----------------|------|-------|--|--|--|--|--|--|
| Mean           | Std. | t(mn) |  |  |  |  |  |  |
| 0.48           | 7.36 | 1.20  |  |  |  |  |  |  |
| 0.39           | 5.48 | 1.30  |  |  |  |  |  |  |
| 0.44           | 4.83 | 1,68  |  |  |  |  |  |  |
| 0.47           | 4.65 | 1,87  |  |  |  |  |  |  |
| 0.57           | 4.32 | 2.42  |  |  |  |  |  |  |
| 0.56           | 3.86 | 2.67  |  |  |  |  |  |  |
|                |      |       |  |  |  |  |  |  |

## D/P 포트폴리오의 평균수익률은 U-자 형태

음의 D/P 포트폴리오와 최고 분위 기업의 포트폴리오가 가장 높은 수익률을 가짐

양수 D/P에서는 D/P 분위가 높을수록 평균수익률이 증가

#### RM-RF의 1- 팩터 모델

|       |         |          |                | D/P로 형성된 포트폴리오 |         |           |          |       |
|-------|---------|----------|----------------|----------------|---------|-----------|----------|-------|
|       |         | 회귀분석 (i) |                |                |         | 회귀분석 (ii) |          |       |
| 포트폴리오 | a       | b        | R <sup>2</sup> | a              | b       | S         | h        | $R^2$ |
| D/P=0 | -0.15   | 1.45     | 0.80           | -0.23          | 1,20    | 0.99      | -0,21    | 0.94  |
|       | (-0.86) | (37.18)  |                | (-2.30)        | (49.45) | (28.09)   | (-5.17)  |       |
| Low   | -0.11   | 1,15     | 0.91           | 0,11           | 1,03    | 0.09      | -0.48    | 0.95  |
|       | (-1.29) | (59.15)  |                | (1.64)         | (65.09) | (3.92)    | (-17.92) |       |
| 2     | -0.01   | 1.04     | 0,96           | 0,06           | 1,01    | -0.01     | -0.14    | 0.96  |
|       | (-0.19) | (85,34)  |                | (1.17)         | (77.07) | (-0.66)   | (-6.49)  |       |
| 3     | 0.04    | 0.99     | 0.93           | -0.03          | 1.02    | 0.02      | 0.14     | 0.94  |
|       | (0.64)  | (69.14)  |                | (-0.44)        | (64.43) | (0.72)    | (5.09)   |       |
| 4     | 0.17    | 0.91     | 0.91           | 0.04           | 0.98    | -0.06     | 0.30     | 0.94  |
|       | (2.45)  | (58.42)  |                | (0.59)         | (66.51) | (-2.80)   | (12.00)  |       |
| High  | 0.24    | 0.72     | 0.73           | -0.01          | 0,85    | -0.05     | 0.54     | 0.84  |
| -     | (2.22)  | (30.16)  |                | (0.16)         | (40.08) | (-1.77)   | (15.04)  |       |

#### 5. D/P 기준의 5개 주식 포트폴리오 테스트

| D/P로 형성된 포트폴리오 |      |       |  |  |  |  |  |  |
|----------------|------|-------|--|--|--|--|--|--|
| Mean           | Std. | t(mn) |  |  |  |  |  |  |
| 0.48           | 7.36 | 1.20  |  |  |  |  |  |  |
| 0.39           | 5.48 | 1.30  |  |  |  |  |  |  |
| 0.44           | 4.83 | 1.68  |  |  |  |  |  |  |
| 0.47           | 4.65 | 1.87  |  |  |  |  |  |  |
| 0.57           | 4.32 | 2.42  |  |  |  |  |  |  |
| 0.56           | 3.86 | 2.67  |  |  |  |  |  |  |
|                |      |       |  |  |  |  |  |  |

#### 기울기가 모두 1에 가까움

=> 양수 D/P에서 D/P 분위와 평균수익률 사이의

양의 관계성을 설명하지 못함

## D/P 포트폴리오의 평균수익률은 U-자 형태

RM-RF의 1- 팩터 모델

음의 D/P 포트폴리오와 최고 분위 기업의 포트폴리오가 가장 높은 수익률을 가짐

양수 D/P에서는 D/P 분위가 높을수록 평균수익률이 증가

|       |         |          |       | D/P로 형성된 포트폴리오 |         |           |          |                |
|-------|---------|----------|-------|----------------|---------|-----------|----------|----------------|
|       |         | 회귀분석 (i) |       | 5, 002 2       |         | 회귀분석 (ii) |          |                |
| 포트폴리오 | a       | b        | $R^2$ | a              | b       | S         | h        | R <sup>2</sup> |
| D/P=0 | -0.15   | 1.45     | 0.80  | -0,23          | 1.20    | 0.99      | -0.21    | 0.94           |
|       | (-0.86) | (37.18)  |       | (-2.30)        | (49.45) | (28.09)   | (-5.17)  |                |
| Low   | -0.11   | 1,15     | 0.91  | 0.11           | 1.03    | 0.09      | -0.48    | 0.95           |
|       | (-1.29) | (59.15)  |       | (1.64)         | (65.09) | (3.92)    | (-17.92) |                |
| 2     | -0.01   | 1,04     | 0,96  | 0.06           | 1.01    | -0.01     | -0.14    | 0.96           |
|       | (-0.19) | (85.34)  |       | (1.17)         | (77.07) | (-0.66)   | (-6.49)  |                |
| 3     | 0.04    | 0.99     | 0,93  | -0.03          | 1.02    | 0.02      | 0.14     | 0.94           |
|       | (0.64)  | (69.14)  |       | (-0.44)        | (64.43) | (0.72)    | (5.09)   |                |
| 4     | 0.17    | 0.91     | 0.91  | 0.04           | 0.98    | -0.06     | 0.30     | 0.94           |
|       | (2.45)  | (58.42)  |       | (0.59)         | (66.51) | (-2.80)   | (12.00)  |                |
| High  | 0.24    | 0.72     | 0.73  | -0.01          | 0,85    | -0.05     | 0.54     | 0.84           |
|       | (2.22)  | (30.16)  |       | (0.16)         | (40.08) | (-1.77)   | (15.04)  |                |

## 5. D/P 기준의 5개 주식 포트폴리오 테스트

| D/P로 형성된 포트폴리오 |      |       |  |  |  |  |  |  |
|----------------|------|-------|--|--|--|--|--|--|
| Mean           | Std. | t(mn) |  |  |  |  |  |  |
| 0.48           | 7.36 | 1.20  |  |  |  |  |  |  |
| 0.39           | 5.48 | 1.30  |  |  |  |  |  |  |
| 0.44           | 4.83 | 1.68  |  |  |  |  |  |  |
| 0.47           | 4.65 | 1.87  |  |  |  |  |  |  |
| 0.57           | 4.32 | 2.42  |  |  |  |  |  |  |
| 0.56           | 3.86 | 2.67  |  |  |  |  |  |  |
|                |      |       |  |  |  |  |  |  |

## D/P 포트폴리오의 평균수익률은 U-자 형태

음의 D/P 포트폴리오와 최고 분위 기업의 포트폴리오가 가장 높은 수익률을 가짐

양수 D/P에서는 D/P 분위가 높을수록 평균수익률이 증가

|         |                                                                                              |                                                                                                                                                   | MIT 895                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , <u> </u>                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
|---------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|         | 회귀분석 (i)                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 회귀분석 (ii)                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| a       | b                                                                                            | R <sup>2</sup>                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a                                                                                                                                                                                                | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S                                                                                                                                                                                                                                                                                                                                                              | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R <sup>2</sup> |
| -0.15   | 1.45                                                                                         | 0.80                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0,23                                                                                                                                                                                            | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.99                                                                                                                                                                                                                                                                                                                                                           | -0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.94           |
| (-0.86) | (37.18)                                                                                      |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (-2.30)                                                                                                                                                                                          | (49.45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (28.09)                                                                                                                                                                                                                                                                                                                                                        | (-5.17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| -0.11   | 1,15                                                                                         | 0.91                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.11                                                                                                                                                                                             | 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.09                                                                                                                                                                                                                                                                                                                                                           | -0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.95           |
| (-1.29) | (59.15)                                                                                      |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1.64)                                                                                                                                                                                           | (65.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3.92)                                                                                                                                                                                                                                                                                                                                                         | (-17.92)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| -0.01   | 1.04                                                                                         | 0.96                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,06                                                                                                                                                                                             | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.01                                                                                                                                                                                                                                                                                                                                                          | -0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96           |
| (-0.19) | (85.34)                                                                                      |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1.17)                                                                                                                                                                                           | (77.07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (-0.66)                                                                                                                                                                                                                                                                                                                                                        | (-6.49)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 0.04    | 0.99                                                                                         | 0.93                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.03                                                                                                                                                                                            | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                                                                                                           | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.94           |
| (0.64)  | (69.14)                                                                                      |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (-0.44)                                                                                                                                                                                          | (64.43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.72)                                                                                                                                                                                                                                                                                                                                                         | (5.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| 0.17    | 0.91                                                                                         | 0.91                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.04                                                                                                                                                                                             | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.06                                                                                                                                                                                                                                                                                                                                                          | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.94           |
| (2.45)  | (58.42)                                                                                      |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.59)                                                                                                                                                                                           | (66.51)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (-2.80)                                                                                                                                                                                                                                                                                                                                                        | (12.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 0,24    | 0.72                                                                                         | 0.73                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.01                                                                                                                                                                                            | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.05                                                                                                                                                                                                                                                                                                                                                          | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.84           |
| (2.22)  | (30.16)                                                                                      |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.16)                                                                                                                                                                                           | (40.08)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (-1.77)                                                                                                                                                                                                                                                                                                                                                        | (15.04)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|         | -0.15<br>(-0.86)<br>-0.11<br>(-1.29)<br>-0.01<br>(-0.19)<br>0.04<br>(0.64)<br>0.17<br>(2.45) | -0.15 1.45 (-0.86) (37.18)  -0.11 1.15 (-1.29) (59.15)  -0.01 1.04 (-0.19) (85.34)  0.04 0.99 (0.64) (69.14)  0.17 0.91 (2.45) (58.42)  0.24 0.72 | a         b         R²           -0.15         1.45         0.80           (-0.86)         (37.18)         0.91           -0.11         1.15         0.91           (-1.29)         (59.15)         0.96           -0.01         1.04         0.96           (-0.19)         (85.34)         0.93           (0.64)         (69.14)         0.91           0.17         0.91         0.91           (2.45)         (58.42)           0.24         0.72         0.73 | 회귀분석 (i) a b R²  -0.15 1.45 0.80 (-0.86) (37.18)  -0.11 1.15 0.91 (-1.29) (59.15)  -0.01 1.04 0.96 (-0.19) (85.34)  0.04 0.99 0.93 (0.64) (69.14)  0.17 0.91 0.91 (2.45) (58.42)  0.24 0.72 0.73 | a         b         R²         a           -0.15         1.45         0.80         -0.23           (-0.86)         (37.18)         (-2.30)           -0.11         1.15         0.91         0.11           (-1.29)         (59.15)         (1.64)           -0.01         1.04         0.96         0.06           (-0.19)         (85.34)         (1.17)           0.04         0.99         0.93         -0.03           (0.64)         (69.14)         (-0.44)           0.17         0.91         0.91         0.04           (2.45)         (58.42)         (0.59)           0.24         0.72         0.73         -0.01 | 회귀분석 (i) a b R² a b R² a b C-0.15 1.45 0.80 C-0.23 1.20 (-0.86) (37.18) C-2.30) (49.45)  -0.11 1.15 0.91 0.11 1.03 (-1.29) (59.15) (1.64) (65.09)  -0.01 1.04 0.96 0.06 1.01 (-0.19) (85.34) (1.17) (77.07)  0.04 0.99 0.93 C-0.03 1.02 (0.64) (69.14) (-0.44) (64.43)  0.17 0.91 0.91 0.91 0.04 0.98 (2.45) (58.42) (0.59) (66.51)  0.24 0.72 0.73 -0.01 0.85 | 회귀분석 (i)   회귀분석 (ii)   경기분석 (ii)   경기본석 | 회귀분석 (i)       |

## 5. D/P 기준의 5개 주식 포트폴리오 테스트

| D/P로 형성된 포트폴리오 |      |       |  |  |  |  |  |  |
|----------------|------|-------|--|--|--|--|--|--|
| Mean           | Std. | t(mn) |  |  |  |  |  |  |
| 0.48           | 7.36 | 1.20  |  |  |  |  |  |  |
| 0.39           | 5.48 | 1.30  |  |  |  |  |  |  |
| 0.44           | 4.83 | 1.68  |  |  |  |  |  |  |
| 0.47           | 4,65 | 1.87  |  |  |  |  |  |  |
| 0.57           | 4.32 | 2.42  |  |  |  |  |  |  |
| 0.56           | 3.86 | 2.67  |  |  |  |  |  |  |
|                |      |       |  |  |  |  |  |  |

## D/P 포트폴리오의 평균수익률은 U-자 형태

음의 D/P 포트폴리오와 최고 분위 기업의 포트폴리오가 가장 높은 수익률을 가짐

양수 D/P에서는 D/P 분위가 높을수록 평균수익률이 증가

|       |                      |                 | D,             | /P도 영싱된 포드:     | 들디오              |                 |                  |                              |                |
|-------|----------------------|-----------------|----------------|-----------------|------------------|-----------------|------------------|------------------------------|----------------|
|       |                      | 회귀분석 (i)        |                |                 |                  |                 | 회귀분석 (ii)        |                              |                |
| 포트폴리오 | a                    | b               | R <sup>2</sup> |                 | a                | b               | S                | h                            | R <sup>2</sup> |
| D/P=0 | -0.15                | 1.45            | 0.80           |                 | -0.23            | 1.20            | 0.99             | -0,21                        | 0.94           |
| Low   | (-<br>- <del>-</del> |                 | -              | 등 가장 늦<br>강한 음의 | _                |                 | 견됨               | (-5.17)<br>-0.48<br>(-17.92) | 0.95           |
| 2     | -0.01<br>(-0.19)     | 1.04<br>(85.34) | 0,96           |                 | 0.06<br>(1.17)   | 1.01<br>(77.07) | -0.01<br>(-0.66) | -0.14<br>(-6.49)             | 0.96           |
| 3     | 0.04<br>(0.64)       | 0.99<br>(69.14) | 0.93           |                 | -0.03<br>(-0.44) | 1.02<br>(64.43) | 0.02<br>(0.72)   | 0.14<br>(5.09)               | 0.94           |
| 4     | 0.17                 | 0.91            | 0.91           |                 | 0.04             | 0.98            | -0.06            | 0.30                         | 0.94           |
| High  | _ 王.                 |                 | -              | 가장 높<br>강한 양의   |                  | -               | 견됨               | (12,00)<br>0.54<br>(15,04)   | 0.84           |

## 5. D/P 기준의 5개 주식 포트폴리오 테스트

|      | D/P로 형성된 포트폴리오 |       |
|------|----------------|-------|
| Mean | Std.           | t(mn) |
| 0.48 | 7.36           | 1.20  |
| 0.39 | 5.48           | 1.30  |
| 0.44 | 4,83           | 1.68  |
| 0.47 | 4,65           | 1.87  |
| 0.57 | 4.32           | 2.42  |
| 0.56 | 3.86           | 2.67  |
|      |                |       |

## D/P 포트폴리오의 평균수익률은 U-자 형태

음의 D/P 포트폴리오와 최고 분위 기업의 포트폴리오가 가장 높은 수익률을 가짐

양수 D/P에서는 D/P 분위가 높을수록 평균수익률이 증가

## 3-팩터 모델은 양수 D/P 분위에서 D/P 분위와 평균수익률 간의 양의 관계를 잘 설명함

|       |             |          | D/F            | 로 형성된 포트폴리오 |         |           |          |       |
|-------|-------------|----------|----------------|-------------|---------|-----------|----------|-------|
|       |             | 회귀분석 (i) |                |             |         | 회귀분석 (ii) |          |       |
| 포트폴리오 | a           | b        | R <sup>2</sup> | a           | b       | S         | h        | $R^2$ |
| D/P=0 | -0.15       | 1.45     | 0.80           | -0,23       | 1.20    | 0.99      | -0.21    | 0.94  |
|       | (-(         | OE       | <b>5</b> 6 6   | 7171 40 5   | /5 H 0I |           | (-5.17)  |       |
| Low   |             |          | -              | 가장 낮은 🗅     | -       |           | -0.48    | 0.95  |
| LOVV  | (- <b>王</b> | [트폴리]    | 오에서            | 강한 음의 기·    | 웈기가 빝   | ֈ겨됟       | (-17.92) | 0.95  |
|       | `           |          | _ " ' '        |             |         |           | (17.52)  |       |
| 2     | -0.01       | 1.04     | 0.96           | 0,06        | 1,01    | -0.01     | -0.14    | 0.96  |
|       | (-0.19)     | (85.34)  |                | (1.17)      | (77.07) | (-0.66)   | (-6.49)  |       |
| 3     | 0.04        | 0.99     | 0.93           | -0.03       | 1.02    | 0.02      | 0.14     | 0.94  |
|       | (0.64)      | (69.14)  | 0,55           | (-0.44)     | (64.43) | (0.72)    | (5.09)   | 0,5 . |
|       | , , ,       |          |                | , ,         |         | , , ,     | , , ,    |       |
| 4     | 0.17        | 0.91     | 0.91           | 0.04        | 0.98    | -0.06     | 0.30     | 0.94  |
|       |             | 야스       | D/D 주          | 가장 높은 [     | )/D 보의  |           | (12.00)  |       |
| High  |             |          |                |             |         |           | 0.54     | 0.84  |
|       | 포           | 트쏠리오     | 2에서 김          | ያ한 양의 기원    | 울기가 밑   | [견됨       | (15,04)  | 3,0   |
|       |             |          |                |             |         |           |          |       |
|       |             |          |                |             |         |           |          |       |

# 7절: 해석 및 결론

## 7.1 주식 및 채권 수익률 관련 팩터 간 상관관계

Table2에 따르면 주식시장 팩터 (RMO, SMB, HML)와 기간구조 팩터(TERM, DEF)간 거의 관련성 없음

|       |      |      |       | 시차에 대한 자기상관계수 |         |       |       | 싱     | 관계수   |       |       |
|-------|------|------|-------|---------------|---------|-------|-------|-------|-------|-------|-------|
| Name  | Mean | Std. | t(mn) | 1             | 2       | 12    |       |       |       |       |       |
|       |      |      |       | 선             | 명변수 수익률 |       |       |       |       |       |       |
| RM    | 0.97 | 4.52 | 3.97  | 0.05          | -0.05   | 0.03  |       |       |       |       |       |
| TB    | 0.54 | 0.22 | 45.97 | 0.94          | 0.90    | 0.65  |       |       |       |       |       |
| LTG   | 0.60 | 3.03 | 3.66  | 0.05          | -0.00   | 0.00  |       |       |       |       |       |
| СВ    | 0.62 | 2.24 | 5.10  | 0.20          | -0.04   | 0.04  |       |       |       |       |       |
| RM-RF | 0.43 | 4.54 | 1.76  | 0.05          | -0.04   | 0.03  | RM-RF | RMO   | SMB   | HML   | TERM  |
| RMO   | 0.50 | 3.55 | 2.61  | -0.10         | -0.05   | 0.02  | 0.78  | 1.00  |       |       |       |
| SMB   | 0.27 | 2.89 | 1.73  | 0.19          | 0.07    | 0.23  | 0.32  | -0.00 | 1.00  |       |       |
| HML   | 0.40 | 2.54 | 2.91  | 0.18          | 0.06    | 0.07  | -0.38 | -0.00 | -0.08 | 1.00  |       |
| TERM  | 0.06 | 3.02 | 0.38  | 0.05          | -0.00   | -0.00 | 0.34  | 0.00  | -0.07 | -0.05 | 1.00  |
| DEF   | 0.02 | 1.60 | 0.21  | -0.20         | -0.04   | -0.00 | -0.07 | -0.00 | 0.17  | 0.08  | -0.69 |

주식과 채권 수익률을 설명하기 위해 5개의 팩터(RMO, SMB, HML, TERM, DEF)를 사용한 Table 8의 회귀분석이 5개 팩터의 독립적인 역할을 잘 요약함.

# 7절: 해석 및 결론

#### 7.2 RMO의 역할

25개 주식 포트폴리오는 직교화된 시장수익률인 RMO에 대해 1에 가까운 기울기를 가짐.

RMO는 월 3.55%의 표준편차로 모든 주식 포트폴리오의 공통 변동성을 설명.

$$R(t) - RF(t) = a + bRMO(t) + sSMB(t) + hHML(t) + mTERM(t) + dDEF(t) + e(t)$$

| 사이즈   | BE/ME 5분위 |      |      |      |      |       |       |       |       |       |  |
|-------|-----------|------|------|------|------|-------|-------|-------|-------|-------|--|
| 5분위   | Low       | 2    | 3    | 4    | High | Low   | 2     | 3     | 4     | High  |  |
|       |           |      | b    |      |      |       |       | t(b)  |       |       |  |
| Small | 1.06      | 1.04 | 0,96 | 0.92 | 0.98 | 35.97 | 47.65 | 54.48 | 54.51 | 53.15 |  |
| 2     | 1.12      | 1.06 | 0.98 | 0.94 | 1.10 | 47.19 | 54.95 | 49.01 | 54.19 | 59.00 |  |
| 3     | 1,13      | 1.01 | 0.97 | 0.95 | 1.08 | 50.93 | 46.95 | 44.57 | 47.59 | 46.92 |  |
| 4     | 1.07      | 1.07 | 1.01 | 1.00 | 1.17 | 48,18 | 47.55 | 44.83 | 41.02 | 41.02 |  |
| Big   | 0.96      | 1.02 | 0.98 | 1.00 | 1.10 | 53.87 | 51.01 | 41.35 | 48.29 | 35.96 |  |
|       |           |      |      |      |      |       |       | - 4 5 |       |       |  |

평균 RMO 수익률은 월 0.50%(t = 2.61)로, 주식의 평균 초과수익률과도 연관됨.

RMO의 수익률은 주식시장 리스크를 공유하는 것에 대한 프리미엄으로 해석됨.

# 7절 : 해석 및 결론

## 7.3 TERM과 DEF의 역할

주식의 경우, TERM과 DEF에 대한 기울기는 0.8에 근접.

TERM(월 3.02%)은 모든 주식 포트폴리오의 유사 변동성을 설명, 반면 DEF(월 1.60%)는 수익률에 대한 공통 변동성이 낮음.

TERM과 DEF의 평균수익률은 각각 월 0.06%, 0.02%로, 주식의 평균 초과수익률을 설명하는 데 기여하지 않음.

R(t) - RF(t) = a + bRMO(t) + sSMB(t) + hHML(t) + mTERM(t) + dDEF(t) + e(t)

| 사이즈   |      |      |      |      | BE/ME | 5분위   |       |       |       |       |  |
|-------|------|------|------|------|-------|-------|-------|-------|-------|-------|--|
| 5분위   | Low  | 2    | 3    | 4    | High  | Low   | 2     | 3     | 4     | High  |  |
|       |      |      | m    |      |       |       |       | t(m)  |       |       |  |
| Small | 0.75 | 0.73 | 0.73 | 0.71 | 0.73  | 15,66 | 20,60 | 25,32 | 25.67 | 24.24 |  |
| 2     | 0.85 | 0.82 | 0.86 | 0.89 | 0.84  | 22,08 | 25.96 | 26.40 | 31.68 | 27.57 |  |
| 3     | 0.88 | 0.84 | 0.84 | 0.86 | 0.88  | 24.21 | 23.85 | 23.73 | 26.34 | 23.52 |  |
| 4     | 0.85 | 0.87 | 0.90 | 0.98 | 0.94  | 23,24 | 23.77 | 24.35 | 24.76 | 20.11 |  |
| Big   | 0.80 | 0.79 | 0.79 | 0.77 | 0.73  | 27.60 | 24.17 | 20.42 | 22.83 | 14.66 |  |
|       |      |      | d    |      |       | t(d)  |       |       |       |       |  |
| Small | 0.67 | 0.63 | 0,66 | 0.78 | 0.79  | 7,25  | 9.20  | 11,90 | 14,81 | 13,73 |  |
| 2     | 0.76 | 0.72 | 0.81 | 0.89 | 0.79  | 10,23 | 11.94 | 12.96 | 16,36 | 13,57 |  |
| 3     | 0.80 | 0.78 | 0.83 | 0.84 | 0.69  | 11,53 | 11.64 | 12.25 | 13,53 | 9.63  |  |
| 4     | 0.74 | 0.74 | 0.84 | 0.91 | 0.80  | 10.56 | 10.48 | 11.88 | 12.01 | 8.98  |  |
| Big   | 0.81 | 0.66 | 0.75 | 0.72 | 0,68  | 14.56 | 10,62 | 10.15 | 11.04 | 7.15  |  |

그러나, TERM과 DEF는 시계열 변동성을 만들어내며, 저등급 회사채를 제외한 채권 수익률의 공통 변동성을 포착함.

# 7절 : 해석 및 결론

## 7.4. 채권 수익률과 TERM, DEF의 설명력

Table 8에서 채권 수익률의 변동성은 거의 TERM과 DEF에 의해 설명됨. 채권의 낮은 평균 초과수익률은 이 두 팩터의 낮은 평균 수익률과 일치. TERM과 DEF의 기울기는 1에 가까워, 고등급(Aaa, Aa, A) 회사채 수익률 변동성을 거의 모두 설명.

| R(t) –           | RF(t) = a | t + hRMO(t)                  | + sSMR(t) | +) + hHML(t)   | ) + mTERM(t       | + dDEF   | (t) 4   | + p(t) | ١ |
|------------------|-----------|------------------------------|-----------|----------------|-------------------|----------|---------|--------|---|
| $\Lambda(\iota)$ | KF(t) - u | $\iota + \iota \cap (\iota)$ | T 35MD(0  | r + range L(c) | ) T 1111 LINI ( ( | I + uDLI | ( , ) 7 |        | , |

|       |       |       | 채균     | 및 포트폴리오 |        |       |       |
|-------|-------|-------|--------|---------|--------|-------|-------|
|       | 1-5G  | 6-10G | Aaa    | Aa      | Α      | Baa   | LG    |
| b     | -0.02 | -0.04 | -0.02  | 0.00    | 0.00   | 0.02  | 0.18  |
| t(b)  | -2.84 | -3.14 | -2.96  | 0.06    | 1.05   | 1.99  | 7.39  |
| S     | -0.00 | -0.03 | -0.03  | -0.01   | 0.00   | 0.06  | 0.16  |
| t(s)  | -0.68 | -2.30 | -3.47  | -2.55   | 0.80   | 4.09  | 5.09  |
| h     | 0.02  | -0.00 | -0.01  | -0.00   | 0.00   | 0.03  | 0.00  |
| t(h)  | 1.76  | -0.00 | -1.36  | -0.47   | 0.52   | 1.72  | 0.12  |
| m     | 0.45  | 0.72  | 1.02   | 0,99    | 1,00   | 1.01  | 0.79  |
| t(m)  | 32.09 | 39,55 | 102,65 | 130,93  | 139,11 | 57.34 | 19.56 |
| d     | 0.25  | 0.29  | 0.95   | 0.97    | 1.02   | 1.07  | 0.94  |
| t(d)  | 9.46  | 8,25  | 50.04  | 67.08   | 74.00  | 31.77 | 12.09 |
| $R^2$ | 0.80  | 0.87  | 0.97   | 0.98    | 0.98   | 0.91  | 0.58  |
| s(e)  | 0.56  | 0.73  | 0.40   | 0.30    | 0.29   | 0.70  | 1.63  |

주식도 고등급 회사채 수익률의 변동성과 비슷한 변동성을 공유하지만, 주식시장 팩터로 인한 추가적 변동성이 존재.

# 7절 : 해석 및 결론

# 7.5. 주식 수익률에 대한 RMO, TERM, DEF의 역할

Table 8의 회귀분석에서 RMO, TERM, DEF에 대한 기울기는 25개 주식 포트폴리오 간 차이가 크지 않음.

RMO, TERM, DEF의 역할은 Table 7에서 시장초과수익률 RM-RF에 의해 포착됨. 그러나, RM-RF와 RMO의 기울기는 유사하며, 시장초과수익률은 평균 주식 수익률이나 변동성에 대한 강한 차이를 설명하지 않음.

사이즈와 BE/ME에 관련된 SMB와 HML이 그 역할을 설명함.

| R(t) - RF(t) = a + bRMO(t) | + sSMB(t) + hHML(t) | ) + mTERM(t) + | dDEF(t) + e(t) |
|----------------------------|---------------------|----------------|----------------|
|----------------------------|---------------------|----------------|----------------|

| 사이즈   | BE/ME 5분위 |      |      |      |      |       |       |       |       |       |  |
|-------|-----------|------|------|------|------|-------|-------|-------|-------|-------|--|
| 5분위   | Low       | 2    | 3    | 4    | High | Low   | 2     | 3     | 4     | High  |  |
|       |           |      | m    |      |      | t(m)  |       |       |       |       |  |
| Small | 0.75      | 0.73 | 0.73 | 0.71 | 0.73 | 15.66 | 20,60 | 25.32 | 25.67 | 24.24 |  |
| 2     | 0.85      | 0.82 | 0,86 | 0.89 | 0.84 | 22.08 | 25,96 | 26.40 | 31.68 | 27.57 |  |
| 3     | 0.88      | 0.84 | 0.84 | 0.86 | 0.88 | 24.21 | 23.85 | 23.73 | 26.34 | 23.52 |  |
| 4     | 0.85      | 0.87 | 0.90 | 0.98 | 0.94 | 23.24 | 23.77 | 24.35 | 24.76 | 20.11 |  |
| Big   | 0.80      | 0.79 | 0.79 | 0.77 | 0.73 | 27.60 | 24.17 | 20.42 | 22.83 | 14.66 |  |
|       |           |      | d    |      |      | t(d)  |       |       |       |       |  |
| Small | 0.67      | 0.63 | 0.66 | 0.78 | 0.79 | 7.25  | 9.20  | 11.90 | 14.81 | 13.73 |  |
| 2     | 0.76      | 0.72 | 0.81 | 0.89 | 0.79 | 10.23 | 11.94 | 12.96 | 16.36 | 13.57 |  |
| 3     | 0.80      | 0.78 | 0.83 | 0.84 | 0.69 | 11.53 | 11.64 | 12.25 | 13.53 | 9.63  |  |
| 4     | 0.74      | 0.74 | 0.84 | 0.91 | 0.80 | 10.56 | 10,48 | 11.88 | 12.01 | 8.98  |  |
| Big   | 0.81      | 0.66 | 0.75 | 0.72 | 0,68 | 14.56 | 10.62 | 10.15 | 11.04 | 7.15  |  |

그러나, TERM과 DEF는 시계열 변동성을 만들어내며, 저등급 회사채를 제외한 채권 수익률의 공통 변동성을 포착함.

# 7절: 해석 및 결론

## 7.6. SMB와 HML의 역할

SMB 기울기는 최소 사이즈 분위 포트폴리오에서 1.5를 넘고, 최대 사이즈 분위로 갈수록 0.3으로 하락. SMB의 표준편차는 월 2.89%로 크며, 사이즈 관련 리스크 팩터가 소형주와 대형주의 수익률 차이를 설명. HML 기울기는 최저 BE/ME 분위 포트폴리오에서 -1 근처에, 최고 BE/ME 분위에서는 0 근처에 위치.

$$R(t) - RF(t) = a + bRMO(t) + sSMB(t) + hHML(t) + mTERM(t) + dDEF(t) + e(t)$$

| BE/ME 5분위 |                                                                          |                                                                                                                           |                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|-----------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Low       | 2                                                                        | 3                                                                                                                         | 4                                                                                                                                                                               | High                                                                                                                                                                                                    | Low                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|           |                                                                          | S                                                                                                                         |                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 1.92      | 1.72                                                                     | 1,62                                                                                                                      | 1,56                                                                                                                                                                            | 1.64                                                                                                                                                                                                    | 51,96                                                                                                                                                                                                                                                                          | 62,88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 73.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 1.50      | 1.45                                                                     | 1,33                                                                                                                      | 1.16                                                                                                                                                                            | 1.38                                                                                                                                                                                                    | 50,66                                                                                                                                                                                                                                                                          | 59.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 58.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 1,26      | 1,11                                                                     | 1.03                                                                                                                      | 0.91                                                                                                                                                                            | 1.16                                                                                                                                                                                                    | 45,37                                                                                                                                                                                                                                                                          | 40.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 0.85      | 0.81                                                                     | 0.75                                                                                                                      | 0.70                                                                                                                                                                            | 0.94                                                                                                                                                                                                    | 30.49                                                                                                                                                                                                                                                                          | 28.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 0.26      | 0.34                                                                     | 0.20                                                                                                                      | 0,28                                                                                                                                                                            | 0.43                                                                                                                                                                                                    | 11,56                                                                                                                                                                                                                                                                          | 13,69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|           |                                                                          | h                                                                                                                         |                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t(h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| -0.94     | -0.56                                                                    | -0.34                                                                                                                     | -0,18                                                                                                                                                                           | 0.01                                                                                                                                                                                                    | -22,65                                                                                                                                                                                                                                                                         | -18,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -13,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -7.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| -1.22     | -0.65                                                                    | -0.37                                                                                                                     | -0.15                                                                                                                                                                           | 0.01                                                                                                                                                                                                    | -36,52                                                                                                                                                                                                                                                                         | -23.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -13.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -6.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| -1.08     | -0.64                                                                    | -0.30                                                                                                                     | -0.10                                                                                                                                                                           | 0.00                                                                                                                                                                                                    | -34,68                                                                                                                                                                                                                                                                         | -21,18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -9.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3,61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| -1.09     | -0.64                                                                    | -0.35                                                                                                                     | -0.10                                                                                                                                                                           | 0.00                                                                                                                                                                                                    | -34.85                                                                                                                                                                                                                                                                         | -20.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -10.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| -1.07     | -0.63                                                                    | -0.41                                                                                                                     | -0.05                                                                                                                                                                           | 0.09                                                                                                                                                                                                    | -42.62                                                                                                                                                                                                                                                                         | -22.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -12.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|           | 1.92<br>1.50<br>1.26<br>0.85<br>0.26<br>-0.94<br>-1.22<br>-1.08<br>-1.09 | 1.92 1.72<br>1.50 1.45<br>1.26 1.11<br>0.85 0.81<br>0.26 0.34<br>-0.94 -0.56<br>-1.22 -0.65<br>-1.08 -0.64<br>-1.09 -0.64 | 1.92 1.72 1.62<br>1.50 1.45 1.33<br>1.26 1.11 1.03<br>0.85 0.81 0.75<br>0.26 0.34 0.20<br>h<br>-0.94 -0.56 -0.34<br>-1.22 -0.65 -0.37<br>-1.08 -0.64 -0.30<br>-1.09 -0.64 -0.35 | S 1.92 1.72 1.62 1.56 1.50 1.45 1.33 1.16 1.26 1.11 1.03 0.91 0.85 0.81 0.75 0.70 0.26 0.34 0.20 0.28 h -0.94 -0.56 -0.34 -0.18 -1.22 -0.65 -0.37 -0.15 -1.08 -0.64 -0.30 -0.10 -1.09 -0.64 -0.35 -0.10 | Low 2 3 4 High  s  1.92 1.72 1.62 1.56 1.64  1.50 1.45 1.33 1.16 1.38  1.26 1.11 1.03 0.91 1.16  0.85 0.81 0.75 0.70 0.94  0.26 0.34 0.20 0.28 0.43  h  -0.94 -0.56 -0.34 -0.18 0.01  -1.22 -0.65 -0.37 -0.15 0.01  -1.08 -0.64 -0.30 -0.10 0.00  -1.09 -0.64 -0.35 -0.10 0.00 | Low         2         3         4         High         Low           s           1.92         1.72         1.62         1.56         1.64         51.96           1.50         1.45         1.33         1.16         1.38         50.66           1.26         1.11         1.03         0.91         1.16         45.37           0.85         0.81         0.75         0.70         0.94         30.49           0.26         0.34         0.20         0.28         0.43         11.56           h           -0.94         -0.56         -0.34         -0.18         0.01         -22.65           -1.22         -0.65         -0.37         -0.15         0.01         -36.52           -1.08         -0.64         -0.30         -0.10         0.00         -34.68           -1.09         -0.64         -0.35         -0.10         0.00         -34.85 | Low         2         3         4         High         Low         2           5           1.92         1.72         1.62         1.56         1.64         51.96         62.88           1.50         1.45         1.33         1.16         1.38         50.66         59.80           1.26         1.11         1.03         0.91         1.16         45.37         40.94           0.85         0.81         0.75         0.70         0.94         30.49         28.84           0.26         0.34         0.20         0.28         0.43         11.56         13.69           h           -0.94         -0.56         -0.34         -0.18         0.01         -22.65         -18.19           -1.22         -0.65         -0.37         -0.15         0.01         -36.52         -23.89           -1.08         -0.64         -0.30         -0.10         0.00         -34.68         -21.18           -1.09         -0.64         -0.35         -0.10         0.00         -34.85         -20.12 | Low         2         3         4         High         Low         2         3           s         t(s)           1.92         1.72         1.62         1.56         1.64         51.96         62.88         73.21           1.50         1.45         1.33         1.16         1.38         50.66         59.80         53.02           1.26         1.11         1.03         0.91         1.16         45.37         40.94         37.83           0.85         0.81         0.75         0.70         0.94         30.49         28.84         26.42           0.26         0.34         0.20         0.28         0.43         11.56         13.69         6.85           h         t(h)           -0.94         -0.56         -0.34         -0.18         0.01         -22.65         -18.19         -13.67           -1.22         -0.65         -0.37         -0.15         0.01         -36.52         -23.89         -13.09           -1.08         -0.64         -0.30         -0.10         0.00         -34.68         -21.18         -9.82           -1.09         -0.64         -0.35         -0.10         0.00 </td <td>Low         2         3         4         High         Low         2         3         4           s         t(s)           1.92         1.72         1.62         1.56         1.64         51.96         62.88         73.21         73.72           1.50         1.45         1.33         1.16         1.38         50.66         59.80         53.02         53.20           1.26         1.11         1.03         0.91         1.16         45.37         40.94         37.83         36.47           0.85         0.81         0.75         0.70         0.94         30.49         28.84         26.42         23.02           0.26         0.34         0.20         0.28         0.43         11.56         13.69         6.85         10.62           h         t(h)         t(h)         t(h)         1.22         -0.56         -0.34         -0.18         0.01         -22.65         -18.19         -13.67         -7.49           -1.22         -0.65         -0.37         -0.15         0.01         -36.52         -23.89         -13.09         -6.22           -1.08         -0.64         -0.30         -0.10</td> | Low         2         3         4         High         Low         2         3         4           s         t(s)           1.92         1.72         1.62         1.56         1.64         51.96         62.88         73.21         73.72           1.50         1.45         1.33         1.16         1.38         50.66         59.80         53.02         53.20           1.26         1.11         1.03         0.91         1.16         45.37         40.94         37.83         36.47           0.85         0.81         0.75         0.70         0.94         30.49         28.84         26.42         23.02           0.26         0.34         0.20         0.28         0.43         11.56         13.69         6.85         10.62           h         t(h)         t(h)         t(h)         1.22         -0.56         -0.34         -0.18         0.01         -22.65         -18.19         -13.67         -7.49           -1.22         -0.65         -0.37         -0.15         0.01         -36.52         -23.89         -13.09         -6.22           -1.08         -0.64         -0.30         -0.10 |  |  |

HML은 저-BE/ME 주식 수익률의 변동성을 높이며, 평균 HML 수익률은 월 0.40%(t = 2.91)로 최저-BE/ME 포트폴리오 수익률을 감소시킴

# 7절: 해석 및 결론

### 7.7. 팩터 분석의 한계

팩터 변수를 변형해도 절편과 R<sup>2</sup> 값은 동일하게 나타남.

RMO와 RM-RF는 5-팩터 모델에서 동일한 절편과 R<sup>2</sup> 값을 생성하지만, 기울기와 평균 프리미엄은 다를 수있음.

팩터 선택은 실증적 경험에 따른 결과이며, 팩터와 관련된 기울기와 평균 프리미엄은 확정적이지 않음.

#### 7.8. 응용

주식 및 채권 수익률에 대한 리스크 팩터를 포트폴리오 선택, 성과 측정, 자본비용 추정 등에 다양하게 응용

포트폴리오 선택: 5개의 팩터에 대한 포트폴리오의 노출도를 추정하고, 과거 수익률을 바탕으로 기대수익률을 계산하는 데 사용할 수 있음.

성과 측정: 포트폴리오의 초과수익률을 설명변수로 회귀분석하여, 펀드 매니저가 시장을 이길 수 있는지 평가할 수 있음.

자본비용 추정: 5개의 팩터를 이용해 개별 회사나 증권의 기대수익률을 추정하고, 이를 바탕으로 자본비용을 계산할 수 있음.

=> 사이즈와 가치 관련 팩터를 고려하면 기존의 단일 팩터 모델(SCAPM)을 사용하는 것보다 더 정확한 비정상수익률을 측정할 수 있음

# FBA

# QUANTITATIVE FINANCE RESEARCH GROUP