Stanislas Thème

Interpolation de LAGRANGE & Zéros des polynômes de

PSI 2020-2021

TCHEBYCHEV

Pour tous $i, j \in \mathbb{N}$, on définit le symbole de Kronecker par $\delta_{i,j} = 1$ si i = j et $\delta_{i,j} = 0$ sinon. Dans tout cet exercice, n désigne un entier naturel non nul et (a_0, \ldots, a_n) une famille de nombres réels distincts appartenant à l'intervalle [-1, 1] tels que $a_0 < \cdots < a_n$.

Partie I : Interpolation de Lagrange

- **1.** Soit $i \in [0, n]$. Montrer qu'il existe un unique polynôme $L_i \in \mathbb{R}_n[X]$ tel que pour tout $j \in [0, n]$, $L_i(a_j) = \delta_{ij}$.
- **2.** Montrer que $\varepsilon : \mathbb{R}_n[X] \to \mathbb{R}^{n+1}$, $P \mapsto (P(a_i))_{i \in \llbracket 0, n \rrbracket}$ est un isomorphisme.
- **3.** Soit $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$. Montrer qu'il existe un unique polynôme $P \in \mathbb{R}_n[X]$ tel que pour tout $i \in [0, n]$, $P(a_i) = f(a_i)$.

Ce polynôme s'appelle le polynôme d'interpolation de Lagrange associé à la fonction f aux points (a_0, \ldots, a_n) . Pour toute fonction $f \in \mathscr{C}([-1, 1])$, on note $||f||_{\infty} = \sup_{[-1, 1]} |f|$.

Partie II: Polynômes de Tchebychev

On définit par récurrence la suite de polynômes

$$T_0 = 1, T_1 = X, T_{n+2}(X) = 2XT_{n+1}(X) - T_n(X).$$

Le polynôme T_n est le nème polynôme de Tchebychev.

- **4.** Expliciter, sous forme canonique, T_1 , T_2 , T_3 et T_4 .
- **5.** Soit $n \in \mathbb{N}$. Montrer que T_n est un polynôme à coefficients entiers dont vous déterminerez la parité, le degré et le coefficient dominant.
- **6.** Soit $n \in \mathbb{N}$.

Stanislas

- a) Montrer que, pour tout $x \in [-1, 1], T_n(x) = \cos(n \arccos x)$.
- **b)** Montrer que, pour tout $tg \in [0, \pi], T_n(\cos \theta) = \cos(n\theta)$.
- 7. Montrer que pour tout $n \in \mathbb{N}^*$, T_n possède exactement n racines distinctes.

Partie III: Erreur d'interpolation

8. Soient $f \in \mathcal{C}^{n+1}([-1,1],\mathbb{R})$ et P_f le polynôme d'interpolation de Lagrange associé à f. Montrer que

$$\forall x \in [-1, 1], \exists \xi \in]-1, 1[; f(x) - P_f(x) = f^{(n+1)}(\xi) \cdot \frac{\prod_{i=0}^{n} (x - a_i)}{(n+1)!}.$$

On pourra considérer la fonction $\varphi: [-1,1] \to \mathbb{R}, t \mapsto f(t) - P_f(t) - K \prod_{i=0}^n (t-a_i).$

Pour tout entier naturel n, on note $t_{n+1} = 2^{-n}T_{n+1}$.

- **9.** Montrer que t_{n+1} est un polynôme unitaire.
- **10.** Montrer que, pour tout polynôme Q unitaire de degré n+1, $||Q||_{\infty} \ge 2^{-n}$ avec égalité si et seulement si $Q = t_{n+1}$.
- **11.** Quel est l'intérêt des racines des polynômes de Tchebychev dans l'interpolation de Lagrange?

Mathématiciens

Kronecker Leopold (7 déc. 1823 à Liegnitz-29 déc. 1891 à Berlin).