DEC 6 3 7 mg

SEQUENCE LISTING

📶10> Raucy, Judy Composition and Methods for Induction of Proteins Involved in <120> Xenobiotic Metabolism <130> PUR-00114.P.1.1.1.1 <150> US 10/222,679 <151> 2002-08-16 <150> US 09/832,621 <151> 2001-04-11 <150> US 60/196,681 <151> 2000-04-12 <150> US 60/241,391 <151> 2000-10-17 <160> 37 <170> PatentIn version 3.2 <210> 1 <211> 21 <212> DNA <213> artificial sequence <220> <223> synthetic construct <400> 1 atggaggtga gacccaaaga a 21 <210> 2 <211> 21 <212> DNA <213> artificial sequence <220> <223> synthetic construct <400> 2 ctcagctacc tgtgatgccg a 21

<210>	3	
	23	
<212>		
<213>		
(413)	artificial sequence	
-220-		
<220>		
<223>	synthetic construct	
400		
<400>	3	
agactc	acct ctgttcaggg aaa	23
-210-	A	
<210>	4	
<211>		
<212>		
<213>	artificial sequence	
<220>		
<223>	synthetic construct	
<400>	4	
		16
Caccit	ggaa gttggc	ТР
	•	
<210>	5	
<211>		
<212>		
	artificial sequence	
\ 2 13/	arerretar bequence	
<220>	r	
<223>	synthetic construct	
10007	b b	
<400>	5	
	tcaa agtggacccc a	21
JJ-		
<210>	6	
<211>	21	
<212>		
	artificial sequence	
_	2	
<220>		
<223>	synthetic construct	
_		
<400>	6	
tgtcct	tcct gaggaatgct a	21

<210><211><212><213>	7 21 DNA arti	ificial sequ	ıence				
<220> <223>	synt	chetic const	truct		,		
<400> atggagg	7 gtga	gacccaaaga	a				21
<210><211><211><212><213>	8 22 DNA arti	ificial sequ	ıence				
<220> <223>	synt	chetic const	truct				
<400> tcagcta	8 accc	cgtgatgccg	aa				22
<210><211><211><212><213>	9 1305 DNA Monl						
<400> ctggagg	9 gtga	gacccaaaga	aggctggaac	catgctgact	ttgtatactg	tgaggacaca	60
gagttt	gctc	ctggaaagcc	cactgtcaac	gcagatgagg	aagttggggg	tccccaaatc	120
tgccgtg	gtat	gtggggacaa	ggccactggt	tatcacttca	atgtcatgac	atgtgaaggg	180
tgcaagg	ggct	ttttcaggag	ggccatgaaa	cgcaacgccc	gccttaggtg	ccccttccgg	240
aagggcg	gcct	gcgagatcac	ccggaagacc	cggcgacagt	gccaggcctg	ccggctgcgc	300
aagtgc	ctgg	agagcggcat	gaagaaggag	atgatcatgt	ccgacgcggc	cgtagaggag	360
aggcggg	gcct	tgatcaagag	gaagaaaaga	gaacggatcg	ggactcagcc	acccggagtg	420
cagggg	etga	cggaggagca	gcggatgatg	atcagggagc	tgatggacgc	tcagatgaaa	480
accttt	gaca	ctaccttctc	ccatttcaag	aatttccggc	tgccaggggt	gcttagcagt	540
ggctgtg	gaga	tgccagagtc	tctgcaggcc	ccatcgaggg	aagaagctgc	caagtggaac	600
caggtca	agga	aagatctgtg	gtctgtgaag	gtctccgtgc	agctgcgggg	ggaggatggc	660
agtgtct	gga	actacaaacc	cccagccgac	aatggcggga	aagagatctt	ctccctgctg	720
cccaca	atgg	ctgacatgtc	aacctacatg	ttcaaaggca	tcatcaactt	tgccaaagtc	780
atctcct	act	tcagggacct	gcccattgag	gaccagatet	ccctactgaa	agaaaccact	840

tttgagctgt gccagctgag attcaacaca gtattcaacq tggagactgg aacttgggag 900 tgtggccggc tgtcctactg cttggaagac cctgcaggtg gtttccagca acttctgctg 960 gagcccatgc tgaaattcca ctacatgctg aagaagctgc agctacacga ggaggagtat 1020 gtgctgatgc aggccatctc cctcttctcc ccagaccgcc caggtgtggt gcagcaccac 1080 gtggtggacc agctgcagga gcaatacgct attactctga agtcctacat tgaatgcaat 1140 eggeeceage etgeteatag gtteetgtte etgaagatea tggetatget eacegagete 1200 cgcagcatca acgcccagca cacccagcgg ctgctgcgca tccaggacat acaccccttt 1260 gctacgcccc tcatgcagga gttgttcggc atcacgggta gctga 1305

<210> 10

<211> 434

<212> PRT

<213> Monkey

<400> 10

Leu Glu Val Arg Pro Lys Glu Gly Trp Asn His Ala Asp Phe Val Tyr

5 10 15

Cys Glu Asp Thr Glu Phe Ala Pro Gly Lys Pro Thr Val Asn Ala Asp . 20 25 30

Glu Glu Val Gly Gly Pro Gln Ile Cys Arg Val Cys Gly Asp Lys Ala 35 40 45

Thr Gly Tyr His Phe Asn Val Met Thr Cys Glu Gly Cys Lys Gly Phe 50 55 60

Phe Arg Arg Ala Met Lys Arg Asn Ala Arg Leu Arg Cys Pro Phe Arg 65 70 75 80

Lys Gly Ala Cys Glu Ile Thr Arg Lys Thr Arg Arg Gln Cys Gln Ala 85 90 95

Cys Arg Leu Arg Lys Cys Leu Glu Ser Gly Met Lys Lys Glu Met Ile 100 105 110

Met Ser Asp Ala Ala Val Glu Glu Arg Arg Ala Leu Ile Lys Arg Lys
115 120 125

Lys Arg Glu Arg Ile Gly Thr Gln Pro Pro Gly Val Gln Gly Leu Thr 130 135 140 Glu Glu Gln Arg Met Met Ile Arg Glu Leu Met Asp Ala Gln Met Lys 145 150 155 160

Thr Phe Asp Thr Thr Phe Ser His Phe Lys Asn Phe Arg Leu Pro Gly
165 170 175

Val Leu Ser Ser Gly Cys Glu Met Pro Glu Ser Leu Gln Ala Pro Ser 180 185 190

Arg Glu Glu Ala Ala Lys Trp Asn Gln Val Arg Lys Asp Leu Trp Ser 195 200 205

Val Lys Val Ser Val Gln Leu Arg Gly Glu Asp Gly Ser Val Trp Asn 210 215 220

Tyr Lys Pro Pro Ala Asp Asn Gly Gly Lys Glu Ile Phe Ser Leu Leu 225 230 235 240

Pro His Met ala Asp Met Ser Thr Tyr Met Phe Lys Gly Ile Ile Asn 245 250 255

Phe Ala Lys Val Ile Ser Tyr Phe Arg Asp Leu Pro Ile Glu Asp Gln 260 265 270

Ile Ser Leu Leu Lys Gly Ala Thr Phe Glu Leu Cys Gln Leu Arg Phe 275 280 285

Asn Thr Val Phe Asn Val Glu Thr Gly Thr Trp Glu Cys Gly Arg Leu 290 295 300

Ser Tyr Cys Leu Glu Asp Pro Ala Gly Gly Phe Gln Gln Leu Leu 305 310 315 320

Glu Pro Met Leu Lys Phe His Tyr Met Leu Lys Lys Leu Gln Leu His 325 330 335

Glu Glu Glu Tyr Val Leu Met Gln Ala Ile Ser Leu Phe Ser Pro Asp 340 345 350

Arg Pro Gly Val Val Gln His His Val Val Asp Gln Leu Gln Glu Gln 355 360 365

Tyr Ala Ile Thr Leu Lys Ser Tyr Ile Glu Cys Asn Arg Pro Gln Pro 370 380	
Ala His Arg Phe Leu Phe Leu Lys Ile M <i>et al</i> a Met Leu Thr Glu Leu 385 390 395 400	
Arg Ser Ile Asn Ala Gln His Thr Gln Arg Leu Leu Arg Ile Gln Asp 405 410 415	
Ile His Pro Phe Ala Thr Pro Leu Met Gln Glu Leu Phe Gly Ile Thr 420 425 430	
Gly Ser	
<210> 11 <211> 21 <212> DNA <213> artificial sequence	
<220> <223> synthetic construct	
<400> 11 atgacagcca ccccaacacg t	21
<210> 12 <211> 21 <212> DNA <213> artificial sequence	
<220> <223> synthetic construct	
<400> 12 aaggaagtga gcatggcctc a	21
<210> 13 <211> 1104 <212> DNA <213> Monkey	
<400> 13 atgacagcca ccccaacacg tgatgtcatg gccagtaggg aagatgagct gaggaactgt	60
gtggtatgtg gggaccaggc cacaggctac cacttcaacg cgctgacttg tgagggctgc	120
aagggtttct tcaggagaac agtcagcaaa agcattggtc ccacctgccc ctttgctgga	180

agctgtgaag tcagcaagat tcagaggcgc cactgcccag cctgcaggtt gcagaagtgc 240

ttagatgctg gcatgagga	a agacatgata	ctgtcggcag	aagccctggc	attgcggcga	300
gcaaagcagg cccagcggc	g ggcacagcaa	acacctatgc	aactgagtaa	tgagcaagaa	360
gagttgatcc agacactcc	gggggcccac	acccgccaca	tgggcaccat	gtttgaacag	420
tttgtgcagt ttaggcctc	agctcatctg	ttcatccatc	accagccctt	gcccaccctg	480
gcgcctgtgc tgcctctgg	cacacacttc	gcagacgtca	acacgttcat	ggtacagcaa	540
gtcatcaagt ttaccaagg	a cctgcctgtc	ttccgttctc	tgcccattga	agaccagatc	600
tcccttctca agggagcag	tgtggaaatc	tgtcatatcg	tactcaatac	cactttctgt	660
ctccaaacac aaaacttcc	ctgcgggcct	cttcgctaca	caattgaaga	cgcagcccgt	720
gtatctcccg cagtggggt	ccaggtagag	tttttggagt	tgctctttca	cttccatgga	780
acactacgaa aactgcagc	ccaggagcct	gagtatgtgc	tcttggctgc	catggccctc	840
ttctctcctg accgacctg	g agttacccag	agacatgaga	ttgatcagct	gcaagaggag	900
atggcactga ctctgcaaa	g ctacatcaag	ggccagcagc	aaaggccccg	ggatcggttt	960
ctgtatgcga agttgctgg	g cctgctggct	gagctccgga	gcattaatga	ggcctacggg	1020
taccaaatcc agcacatcc	a gggcctgtct	gccatgatgc	cattgctcca	ggagatctgc	1080
agctgaggcc atgctcact	cctt				1104

```
<210> 14
```

<211> 361

<212> PRT

<213> Monkey

<400> 14

Met Thr Ala Thr Pro Thr Arg Asp Val Met ala Ser Arg Glu Asp Glu 1 5 15

Leu Arg Asn Cys Val Val Cys Gly Asp Gln Ala Thr Gly Tyr His Phe 20 25 30

Asn Ala Leu Thr Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Thr Val 35 40 45

Ser Lys Ser Ile Gly Pro Thr Cys Pro Phe Ala Gly Ser Cys Glu Val 50 55 60

Ser Lys Ile Gln Arg Arg His Cys Pro Ala Cys Arg Leu Gln Lys Cys 70 75 80

Leu Asp Ala Gly Met Arg Lys Asp Met Ile Leu Ser Ala Glu Ala Leu 85 90 95

Ala Leu Arg Arg Ala Lys Gln Ala Gln Arg Arg Ala Gln Gln Thr Pro
100 105 110

Met Gln Leu Ser Asn Glu Gln Glu Glu Leu Ile Gln Thr Leu Leu Gly 115 120 125

Ala His Thr Arg His Met Gly Thr Met Phe Glu Gln Phe Val Gln Phe 130 140

Arg Pro Pro Ala His Leu Phe Ile His His Gln Pro Leu Pro Thr Leu 145 150 155 160

Ala Pro Val Leu Pro Leu Val Thr His Phe Ala Asp Val Asn Thr Phe 165 170 175

Met Val Gln Gln Val Ile Lys Phe Thr Lys Asp Leu Pro Val Phe Arg 180 185 190

Ser Leu Pro Ile Glu Asp Gln Ile Ser Leu Leu Lys Gly Ala Ala Val

Glu Ile Cys His Ile Val Leu Asn Thr Thr Phe Cys Leu Gln Thr Gln 210 215 220

Asn Phe Leu Cys Gly Pro Leu Arg Tyr Thr Ile Glu Asp Ala Ala Arg 225 230 235 240

Val Ser Pro Ala Val Gly Phe Gln Val Glu Phe Leu Glu Leu Leu Phe 245 250 255

His Phe His Gly Thr Leu Arg Lys Leu Gln Leu Gln Glu Pro Glu Tyr 260 265 270

Val Leu Leu Ala Ala Met ala Leu Phe Ser Pro Asp Arg Pro Gly Val 275 280 285

Thr Gln Arg His Glu Ile Asp Gln Leu Gln Glu Met ala Leu Thr 290 295 300

Leu Gln Ser Tyr Ile Lys Gly Gln Gln Gln Arg Pro Arg Asp Arg Phe 305 310 315 320

Leu Tyr Ala Lys Leu Leu Gly Leu Leu Ala Glu Leu Arg Ser Ile Asn 325 330 335

Glu Ala Tyr Gly Tyr Gln Ile Gln His Ile Gln Gly Leu Ser Ala Met 340 345 350

Met Pro Leu Leu Gln Glu Ile Cys Ser 355 360

```
<210> 15
<211>
       26
<212>
       DNA
       Homo sapiens
<213>
<400> 15
aaccaaactc ttctgacccc caatct
                                                                             26
<210> 16
<211> 6
<212> DNA
<213> Homo sapiens
<400> 16
                                                                              6
aggtca
<210> 17
<211> 6
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222>
       (1)..(6)
<223> n is t or g
<400> 17
agntca
                                                                              6
<210> 18
<211> 12
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(1)
<223> n is t or g
<220>
<221> misc_feature
<222>
      (2)..(2)
<223> n is any nucleotide
<220>
<221> misc_feature
<222>
       (9)..(9)
<223> n is a or c
<220>
<221> misc_feature
<222> (10)..(10)
```

<223>	n is g or c	
<400> nngcgt	18 gann aa	12
<210><211><211><212><213>		
<220> <223>	synthetic construct	
<400> ttgcgt	19 gcga ttgcgtgcga ttgcgtgcga	30
<210><211><211><212><213>		
<400> ttgcgt	20 gcga	10
<210><211><211><212><213>		
<220> <223>	synthetic construct	
<400> tcgatc	21 gcac gcaatcgcac gcaatcgcac gcaagtac	38
<210><211><211><212><213>	22 10 DNA Homo sapiens	
<400> tcgcac	22 gcaa	10

<210><211><212><212><213>		
<220> <223>	synthetic construct	
<400> aaataa	23 gctt gaggagctca cctctg	26
<210><211><212><212><213>	25	
<220> <223>	synthetic construct	
<400> aggttt	24 ccat ggccaagtct gggat	25
<210><211><212><213>	24	
<220> <223>	synthetic construct	
<400> atttga	25 gctc tggggtcccc cttg	24
<210><211><211><212><213>	26	
<220> <223>	synthetic construct	
<400> cacagc	26 tagc aatgatcaaa gatgac	26
<210><211><211><212><213>		

<210> 28	24		
taaagtcgac aaaaatttaa cgcg <210> 28	24		
<210> 28			
	_ •		
<211> 21			
<212> DNA <213> artificial sequence			
<220> <223> synthetic construct			
2237 Synthetic Constitute			
<400> 28	21		
agaggtcgac ggtatacaga c	21		
210. 20			
<210> 29 <211> 25			
<212> DNA			
<213> artificial sequence			
<220>			
<223> synthetic construct			
<400> 29			
ataaggtacc aactgttcat tggtc	25		
<210> 30			
<211> 25 <212> DNA			
<213> artificial sequence			
<220>			
<223> synthetic construct			
	25		
<210> 31			
<211> 25			
<212> DNA <213> artificial sequence			
<213> artificial sequence			
<220>			
<223> synthetic construct			
<400> 31			
ggttggaagc taacccttgt gattt 25			
<210> 32			
<211> 25			

<213>	artificial sequence	
<220> <223>	synthetic construct	
<400>	32 gggt aactgaagtg aacat	25
ogugue		23
<210>	33	
<211>		
<212>		
	artificial sequence	
<220>		
<223>	synthetic construct	
<400>	33	
tcccga	aaga totgtgotot t	21
.210-	24	
<210> <211>	34 21	
<212>		
	artificial sequence	
<220>		
<223>	synthetic construct	
<400>	34	
agtctc	ttcc aagcagtagg a	21
<210>		
<211>		
<212>		
<213>	Homo sapiens	
<400>	35	
aatgaa	ccct atcataaact atgag	25
.010		
<210>	36	
<211><212>	22 DNA	
	Homo sapiens	
	nomo saprens	
<400>	36	
cctota	cttt cctgaccctg aa	22

```
<210> 37
<211> 21
<212> DNA
<213> Homo sapiens
<400> 37
aatgaacttg ctgaccctct g
```

21