

Meta-Analysis of Thyroid Cancer Expression Profiling Studies Identification of Most Promising Biomarkers For Tissue Microarray Analysis

Obi L Griffith¹, Sam M Wiseman², and Steven JM Jones¹

1. Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency 2. Genetic Pathology Evaluation Center, Prostate Research Center of Vancouver General Hospital & British Columbia Cancer Agency

British Columbia Cancer Agency Vancouver, British Columbia, Canada

Genome Sciences Centre

Serial analysis of gene expression (SAGE) is a service of SAGE (SaGE) as a service of SAGE (SaGE) as a service of SAGE (SAGE) as a service of SAGE (SAGE) and service of sage control of sage

cDNA Microarrays

1. Abstract

Objective and Design
It is estimated that 5-10% of the population will develop a clinically significant thyroid
nodule during their lifetime. In one third or more of these patients, pre-operative
diagnoses by needle biopsy are inconclusive. In many cases, a patient will undergo
unnecessary surgery for what ultimately proves to be a benign lesion. Thus, there is a
clear need for improved diagnostic tests to distinguish malignant from benign samples.
evaluation of potential new markers. However, researchers are faced with an
overwhelming number of potential markers from numerous thyroid cancer profiling and
classification studies. We present a systematic and comprehensive selection of potential
thyroid cancer biomarkers from published studies by meta-analysis for use in tissue
"accorates markets (Takh)."

Materials & Methods
A total of 21 published studies were identified from the literature. Each study reported differentially expressed genes for at least one comparison type (eg. Normal versus PTC). The following information was recorded wherever possible: unique identified compared, (probel agiaccession), gene name, gene description, gene symbol. Isoc. IEC. Western), and pubmed ID. Whenever possible, the mapping of clone accession, probe id or SAGE tag was updated using NCBI mapping files, Affymetrix annotation files, and the plasoverySpace SAGE tag mapsing to le respectively. A heuristic system was devised to identify the most promising markers, taking into consideration the number of studies reporting the potential marker, sample sizes and fold-change.

Results
In total, 1.78 potential biomarkers were identified (not considering overlap) from 21 gene expression studies considering 34 different tumour or tissue type comparisons. This resource allows the identification of markers that consistently differentiate on the other consistently differentiate of the description of the descripti

Conclusion

Bondownsties meta-analysis and tissue microarray analysis represents a powerful approach to identifying new thyroid cancer biomarkers. Such markers could prove invaluable for the diagnosis and proposis of tumours in the clinical setting. The meta-analysis of published thyroid studies should prove a useful resource for many thyroid cancer researchers.

2. Methods

published studies. Each study consists of one or more comparisons between pairs of conditions (e.g. PIC vs. norm). The following information was recorded (grobe, tag, accession); gene description; generally conditions; sample numbers for each conditions; sample numbers of change. (g) SAGE probe ids were mapped to Entires General unit; (g) the DiscoverySpace software package[1]; (d) the DAVID Resources[2]; (e) Center and Conditions to several to the condition to the condition to several to the condition to several to the condition to the condition to several to the condition to the condition to several to the condition to several to the condition to several to the condition to the condition to several to the condition to the condition to the condition to several to the condition to the (c) the Affymetrix annotation files[3], 63, Genes are ranked according to several criteria in the following order of importance: (a) number of comparisons i agreement (ie. listing the same gene as differentially expressed and with the consistent direction of change), (b) total agreement, and (c) average fold change reported for comparisons in agreement. Table 1: Lists all abbreviations used to describe the samples and conditions compared in the various studies.

Gene List 1 MET SERPINAT TFF3 TIMP1 FN1	Gene List 2 MET SERPINA1 TIMP1 FN1 TGFA		Gene List 3 MET SERPINA1 TFF3 FN1 EPS8	
(3)				
Gene	Overlan	Samples	Fold change	
MET	3	122	4.5	

TIMP1 FN1	TC	FN1 TGFA		
(3)				
Gene	Overlan	Ramelas	Fold chang	
MET	3	122	4.5	
SERPINA1	3	122	3.4	
FN1	3	109	4.3	
TFF3	2	87	6.5	
TIMP1	2	87	5.3	
TGFA	1	24	2.6	
EDGS	- 1	- 4	3.0	

Table 2: A total of 34 comparisons were available from 21 studies, utilizing at least 10 different expression platforms. Platforms can be generally grouped into cDNA arrays (blue), digonucleotide arrays (purple) and SAGE (pink). The numbers of 'up-/down-regulated genes reported are for condition 1 relative to reported are for condition 1 relative to condition 2 for each comparison as provided. Only genes that could be mapped to a common identifier were use in our subsequent overlap analyses (see Analysis methods).

ACL	Anaplastic thyroid cancer cell line
AFTN	Autonomously functioning thyroid nodules
ATC	Anaplastic thyroid cancer
CTN	Cold thyroid nodule
FA	Follicular adenoma
FCL	Follicular carcinoma cell line
FTC	Follicular thyroid carcinoma
FVPTC	Folicular variant papillary carcinoma
GT	Goiter
HCC	Hurthle cell carcinoma
HN	Hyperplastic nodule
M	Metastatic
MACL	Anaplastic thyroid cancer cell line with metastatic capacity
Norm	Normal
PCL	Papillary carcinoma cell line
PTC	Papillary thyroid carcinoma
TCVPTC	Tall-cell variant PTC
HCL.	

3. Thyroid cancer expression data

Genes/ Comparison

Study	Platform	features	Condition 1 (No. samples)	(No. samples)	Up-/down
Chen et al. 2001	Atlas cDNA	588	M (1)	FTC (1)	18/40
Chen et al. 2001	(Clontech)	900	* * *	- 4.7	20.20
	Custom cDNA		FCL(1)	Norm (1)	9/20
Arnaldi et al. 2005		1807	PCL(1)	Norm (1)	1/8
Armaidi et di. 2000			UCL(1)	Norm (1)	1/7
			FCL(1), PCL(1), UCL(1)	Norm (1)	3/6
Huang et al. 2001	Affymetrix HG- U95A	12558	PTC (8)	Norm (8)	24/27
Aldred et al. 2004	Affymetrix HG-	12558	FTC (9)	PTC(6), Norm(13)	142/0
Aldred et al. 2004	U95A	12558	PTC (6)	FTC(9), Norm(13)	0/68
Cerutti et al. 2004	SAGE	N/A	FA(1)	FTC(1), Norm(1)	5/0
Cerutti ei di. 2004		14/74	FTC(1)	FA(1), Norm(1)	12/0
Eszlinger et al. 2001	Atlas cDNA (Clontech)	588	AFTN(3), CTN(3)	Norm(6)	0/16
Finley et al. 2004	Affymetrix HG-	12558	PTC(7), FVPTC(7)	FA(14), HN(7)	48/85
Zou et al. 2004	Atlas cancer array	1176	MACL(1)	ACL(1)	43/21
Weber et al. 2005	Affymetrix HG- U133A	22283	FA(12)	FTC(12)	12/84
			GT(6)	Norm(6)	1/7
Hawthorne et al. 2004	Affymetrix HG- U95A	12558	PTC(8)	GT(6)	10/28
			PTC(8)	Norm(8)	4/4
Onda et al. 2004	Amersham custom cDNA	27648	ACL(11), ATC(10)	Norm(10)	31/56
Wasenius et al. 2003	Atlas cancer cDNA	1176	PTC(18)	Norm(3)	12/9
Barden et al. 2003	Affymetrix HG- U95A	12558	FTC(9)	FA(10)	59/45
Yano et al. 2004	Amersham custom cDNA	3968	PTC(7)	Norm(7)	54/0
			FTC(3)	FA(4)	12/31
Chevillard et al. 2004	custom cDNA	5760	FVPTC(3)	PTC(2)	123/16
Mazzanti et al. 2004	Hs-UniGem2 cDNA	10000	PTC(17), FVPTC(15)	FA(16), HN(15)	5/41
			FTC(1)	ATC(1)	3/10
			FTC(1)	FA(1)	4/1
			Norm(1)	FA(1)	6/0
Takano et al. 2000	SAGE	N/A	PTC(1)	ATC(1)	2/11
			PTC(1)	FA(1)	7/0
			PTC(1)	FTC(1)	2/1
Finley et al. 2004	Affymetrix HG- U95A	12558	FTC(9), PTC(11), FVPTC(13)	FA(16), HN(10)	50/55
Pauws et al. 2004	SAGE	N/A	FVPTC(1)	Norm(1)	33/9
Jarzab et al. 2005	Affymetrix HG- U133A	22283	PTC(16)	Norm(16)	75/27
Giordano et al. 2005	Affymetrix HG- U133A	22283	PTC(51)	Norm(4)	90/151
21 studies	10 platforms		34 comparisons (473 samples)	1785
			· · · · · · · · · · · · · · · · · · ·	, item,	

4. Overlap analysis results

Overlap analysis group	condition set 1	Condition set 2	comps	# genes (multi-study)	
All	Any	Any	34		
Cancer vs. non-cancer	ACL, ATC, FCL, FTC, FVPTC, HCC, M, MACL, PCL, PTC, TCVPTC, UCL	AFTN, CTN, FA, GT, HN, Norm	21	755 (107)	
Cancer vs. normal	ACL, ATC, FCL, FTC, FVPTC, HCC, M, MACL, PCL, PTC, TCVPTC, UCL	Norm	12	478 (53)	
Cancer vs. benign	ACL, ATC, FCL, FTC, FVPTC, HCC, M, MACL, PCL, PTC, TCVPTC, UCL	MACL, PCL, PTC, GT, HN			
Normal vs. benign	Norm	AFTN, CTN, FA, GT, HN	3	19 (1)	
Papillary cancer vs. non- cancer	FVPTC, PCL, PTC, TCVPTC	AFTN, CTN, FA, GT, HN, Norm	12	503 (82)	
	FVPTC, PCL, PTC, TCVPTC	Norm	8	369 (49)	
Papillary cancer vs. benign	FVPTC, PCL, PTC, TCVPTC	AFTN, CTN, FA, GT, HN	4	183 (13)	
Papillary cancer vs. other	FVPTC, PCL, PTC, TCVPTC	Any other	15	528 (107)	
FVPTC vs. other	FVPTC	Any other	2	157(0)	
FTC vs. FA	FTC	FA	6	222 (3)	
Follicular cancer vs. other		Any other	10	403 (15)	
Aggressive cancer vs. other		Any other	4	145 (4)	
Anaplastic cancer vs. other	ACL, ATC, MACL	Any other	3	91 (6)	

Table 3: Each overlap analysis gro Table & Each overlap analysis group defines an artificial group of comparisons for which gene overlap was analyzed. In define and the gene overlap was analyzed in the control of the gene overlap was the gene overlap was example, the 'cancer vs. non-cancer cample, the 'cancer vs. non-cancer comparisons between what we would comparisons between what we would comparisons between what we would comparison between what we would compare to the cancer (as in condition set 1) in and non-cancer (as in condition set 1) and produced a late of 755 potential terms and produced a late of 755 potential terms and produced a late of 755 potential terms and produced as late of 755 potential terms and produced as low of 755 potential terms and produced as lower of the control of the produced terms and produced as lower of the produced terms and produced as lower of the produced terms and the produced terms are considered to the produced terms and the produced terms are considered to the produced terms and the produced terms are considered to the produced terms and the produced terms are considered to the produced terms are 'multi-study cancer versus markers' are summarized further in figures 2-3 and tables 4-5.

Fig. 2: A breakdown of the 107 genes found in multiple studies for the cancer versus non-cancer analysis. Some genes were observed in as many as six studies.

4. Overlap analysis results (cont'd)

Fig 3. Of the 478 genes in the cancer/normal comparison and 332 genes of the cancer/benign group, a total of 63 genes were found in both.

Table 4: shows a partial list (genes identified in 4 or more comparisons) from the cancer vs. non-cancer analysis
A complete table for this group and all
others are available as supplementary
data (www.begsc.ca/bioinfo/ge/thyroid/).

Table 5: Of the 107 genes with multi-study confirmation from the cancer versus non-cancer overlap analysis group, 102 were present in the Gene Ontology set of 15240 human genes. From this list, a cloud of 1200 Lerens were found to be attaistically over-grow-genetic 3.7 From this list, a cloud of 1200 Lerens were found to be attaistically over-grow-genetic 3.7 color of the state o

Table 4. Cancer versus non-cancer genes identified in 4 or more independent studies

Gene	Description	(Up/Down)	N	Fold Change
MET	met proto-oncogene (hepatocyte growth factor receptor)	6/0	202	3.03
TFF3	trefoil factor 3 (intestinal)	0/6	196	-14.70
SERPINA1	serine (or cysteine) proteinase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1	6/0	192	15.84
EPS8	epidermal growth factor receptor pathway substrate 8	5/0	186	3.15
TIMP1	tissue inhibitor of metalloproteinase 1 (erythroid potentiating activity, collagenase inhibitor)	5/0	142	5.38
TGFA	transforming growth factor, alpha	4/0	165	4.64
QPCT	glutaminyl-peptide cyclotransferase (glutaminyl cyclase)	4/0	153	7.31
PROS1	protein S (alpha)	4/0	149	4.32
CRABP1	cellular retinoic acid binding protein 1	0/4	146	-11.55
FN1	fibronectin 1	4/0	128	7.68
FCGBP	Fc fragment of IgG binding protein	0/4	108	-2.41
TPO	thyroid peroxidase	0/4	91	-4.69

GO term	Ontology	obs/total	p-value	Genes in test set
extracellular region	С	23/1093	4.09E-04	CYR61, CHI3L1, TIMP1, TNFRSF11B,
		l		ADM, GPC3, LOX, PLAU, TFF3,
	l			LGALS3, TGFA, CCL21, SPINT1,
		l		SERPINA1, RNASE1, PROS1, TNC,
		l		DPT, MATN2, IGFBP3, COL9A3,
		l		BMP1, FN1
cadmium ion binding	F	3/4	4.09E-04	MT1F, MT1E, MT1A
thyroid hormone generation	P			DIO2, DIO1, TPO
thyroid hormone metabolism	P			DIO2, DIO1, TPO
selenium binding	F	3/7	1.41E-03	DIO2, SELENBP1, DIO1
hormone metabolism	P	5/48	1.97E-03	HSD17B6, DIO2, DIO1, TPO, ADM
MAP kinase phosphatase	F	3/10	3.40E-03	DUSP6, DUSP4, DUSP1
activity				
thyroxine 5'-deiodinase	F	2/3	1.16E-02	DIO2, DIO1
activity				
copper ion binding	F	4/41	1.25E-02	MT1F, MT1E, MT1A, LOX
extracellular matrix	С	9/342	3.45E-02	CHI3L1, TIMP1, TNC, DPT, MATN2,
(sensu Metazoa)		l		COL9A3, GPC3, LOX, FN1
extracellular matrix	С	9/347	3.49E-02	CHI3L1, TIMP1, TNC, DPT, MATN2,
				COL9A3, GPC3, LOX, FN1
retinoic acid receptor activity	F	2/6	3.82E-02	RXRG, RARA

5. Conclusions and Future work

Conclusions:

A significant number of genes are consistently identified in the literature as differentially expressed between different thyroid tissue and tumour subtypes > These consistent genes represent a useful starting point for a large-scale tissue microarray analysis to identify useful prognostic and diagnostic markers in a chimal setting

Future work:

ruture work:

> Probability simulation to assess significance

> Meta-analysis starting from raw expression data

> Selection of final candidates for tissue microarray
(TMA) analysis

Development of classifier for thyroid tissue based on sults of TMA

6. Acknowledgments

funding | Natural Sciences and Engineering Council of Canada (OG); Michael Smith Foundation for Health Research (OG, SW, and SJ); Canadian Institutes of Health Research (OG); BC Cancer Econdation.

references | 1. Varhol et al. unpublished, http://david.abcc.neiferf.gov/; 3. Affymetrix, http://www.affymetrix.com/support/index.affx; 4. Maere et al. 2005, <a href="http://www.psb.ugersh.be/cbd/papers/BINGOJ/; 5. Shannon et al. 2003,