Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu nr 5, zadanie nr 3

Sobolewski Konrad, Różański Antoni, Giełdowski Daniel

Spis treści

1.	Opis	obiek	tu	2
2.	Zada	anie 1:	Weryfikacja punktu pracy	3
3.	Zada	anie 2:	Odpowiedzi skokowe	4
	3.1.	Odpow	viedzi skokowe	4
4.	Zada	anie 3:	Algorytmy PID i DMC	5
	4.1.	Cyfrow	vy algorytm PID	5
	4.2.		yczny algorytm DMC	5
5.	Zada	anie 4:	Strojenie regulatorów	9
	5.1.			9
	-	5.1.1.	Konfiguracja	9
		5.1.2.	PID - konfiguracja pierwsza	11
		5.1.3.	PID - konfiguracja druga	28
		5.1.4.	PID - konfiguracja trzecia	37
		5.1.5.	PID - konfiguracja czwarta	44
		5.1.6.	Wnioski	51
	5.2.	DMC		51
		5.2.1.	Pierwszy współczynnik psi	54
		5.2.2.	Drugi współczynnik psi	54
		5.2.3.	Trzeci współczynnik psi	54
		5.2.4.	Pierwszy współczynnik lambda	61
		5.2.5.	Drugi współczynnik lambda	61
		5.2.6.	Trzeci współczynnik lambda	61
		5.2.7.	Czwarty współczynnik lambda	68
		5.2.8.	Wnioski	68
6.	Zada	anie 5:	Automatyczne dobieranie nastaw	71
	6.1.	PID .		71
		6.1.1.	Konfiguracja pierwsza	71
		6.1.2.	Konfiguracja druga	74
		6.1.3.	Konfiguracja trzecia	77
		6.1.4.	Konfiguracja czwarta	80
	6.2.	DMC		
		6.2.1.	Wnioski	
7.	Zada	nie 6:	Uproszczony obliczeniowo DMC	87

1. Opis obiektu

Obiekt używany w projekcie opisany jest daną przez prowadzącego funkcją:

```
\begin{split} [y1(k),y2(k),y3(k)] &= symulacja\_obiektu3(u1(k-1),u1(k-2),u1(k-3),u1(k-4),\\ &u2(k-1),u2(k-2),u2(k-3),u2(k-4),\\ &u3(k-1),u3(k-2),u3(k-3),u3(k-4),\\ &u4(k-1),u4(k-2),u4(k-3),u4(k-4),\\ &y1(k-1),y1(k-2),y1(k-3),y1(k-4),\\ &y2(k-1),y2(k-2),y2(k-3),y2(k-4),\\ &y3(k-1),y3(k-2),y3(k-3),y3(k-4)) \end{split}
```

gdzie k jest aktualną chwilą symulacji sygnału próbkowanego.

Wartości sygnałów w punkcie pracy (w stanie ustalonym) mają wartość u1=u2=u3=u4=y1=y2=y3=0. Okres próbkowania obiektu wynosi $T_p=0,5s$.

2. Zadanie 1: Weryfikacja punktu pracy

Pierwszym poleceniem było zweryfikowanie poprawności punktu pracy obiektu. Udało się to osiągnąć za pomocą prostego sprawdzenia, przy jakich wartościach wyjść stabilizuje się obiekt przy stałym sterowaniu, równym jego wartości w punkcie pracy $(U1_{pp}=0,U2_{pp}=0,U3_{pp}=0,U4_{pp}=0)$. Eksperyment potwierdził wcześniej podane wartości wyjść $(Y1_{pp}=0,Y2_{pp}=0,Y3_{pp}=0)$, a jego przebieg obrazuje wykres 2.1.

Rys. 2.1. Zachowanie obiektu w punkcie pracy

3. Zadanie 2: Odpowiedzi skokowe

3.1. Odpowiedzi skokowe

W tej części projektu należało wyznaczyć symulacyjnie wszystkie odpowiedzi skokowe (rys. 3.1). Eksperyment zakładał, iż obiekt będzie na początku w punkcie pracy, a następnie zostanie wykonany skok jednostkowy jednego z sygnałów sterujących. Poniżej przedstawiono odpowiedzi jednostkowe wszystkich wyjść dla skoków wszystkich sygnałów sterujących.

Rys. 3.1. Wartości wyjść po skokach jednostkowych sterowań kolejno: u1, u2, u3 i u4

4. Zadanie 3: Algorytmy PID i DMC

4.1. Cyfrowy algorytm PID

W projekcie został wykorzystany regulator cyfrowy PID, którego parametry są opisane poniższymi wzorami, gdzie K - wzmocnienie członu P , T_p - czas próbkowania, T_i - czas zdwojenia członu całkującego I, T_d - czas wyprzedzenia członu różniczkującego D , n_u - ilość sterowań , n_y - ilość wyjść.

$$r_0^j = K^j * (1 + T_p/(2 * T_i^j) + T_d^j/T_p) \quad \forall j \in \{1, n_u\}$$
 (4.1)

$$r_1^j = K^j * (T_p/(2 * T_i^j) - 2 * T_d^j/T_p - 1) \quad \forall j \in \{1, n_u\}$$
 (4.2)

$$r_2{}^j = K * T_d{}^j / T_p \quad \forall j \in <1, n_u >$$
 (4.3)

W każdej iteracji pętli sterowania są obliczane uchyby wyjść obiektu.

$$e(k)^{j} = y^{\operatorname{zad}}(k)^{j} - y(k)^{j} \quad \forall j \in \{1, n_{y}\}$$

$$\tag{4.4}$$

Sterowania regulatora zostają wyliczone na bieżącą chwile przy użyciu wzoru:

$$U(k)^{j} = r_{2}^{j} * e(k-2)^{i} + r_{1}^{j} * e(k-1)^{i} + r_{0}^{j} * e(k)^{i} + u(k-1)^{j} \quad gdzie \quad j \in <1, n_{u}>, \quad i \in <1, n_{y}>$$

$$(4.5)$$

Każdemu wyjściu przypada jedno sterowanie, przy tym każde sterowanie może być wykorzystane tylko do jednego wyjścia, a każde wyjście ma przyporządkowane inne sterowanie. Ponieważ w naszym przykładzie mamy 3 wyjścia i 4 wejścia, to jedno z wejść będziemy musieli odrzucić.

4.2. Analityczny algorytm DMC

Do obliczeń wykorzystujemy następujące wzory:

$$\mathbf{y}^{\text{zad}}(k) = \begin{bmatrix} y_1^{\text{zad}}(k) \\ \vdots \\ y_{ny}^{\text{zad}}(k) \end{bmatrix}_{n = x_1}$$
(4.6)

$$\mathbf{y}(k) = \begin{bmatrix} y_1(k) \\ \vdots \\ y_{ny}(k) \end{bmatrix}_{\mathbf{n}_{y} \times 1}$$

$$(4.7)$$

$$\boldsymbol{u}(k) = \begin{bmatrix} u_1(k) \\ \vdots \\ u_{n_u}(k) \end{bmatrix}_{n_u \times 1}$$
(4.8)

$$\Delta \boldsymbol{u}(k) = \begin{bmatrix} \Delta u_1(k) \\ \vdots \\ \Delta u_{n_u}(k) \end{bmatrix}_{\mathbf{n_u} \times 1}$$

$$(4.9)$$

$$\mathbf{Y}(k) = \begin{bmatrix} y(k|k) \\ \vdots \\ y(k|k) \end{bmatrix}_{N*n,x1}$$
(4.10)

$$\mathbf{Y}^{\text{zad}}(k) = \begin{bmatrix} y^{\text{zad}}(k|k) \\ \vdots \\ y^{\text{zad}}(k|k) \end{bmatrix}_{N*n, x1}$$
(4.11)

$$\Delta U(k) = \begin{bmatrix} \Delta u(k|k) \\ \vdots \\ \Delta u(k+N_u-1|k) \end{bmatrix}_{N_u*n_u*1}$$
(4.12)

$$\Delta \boldsymbol{U}^{\boldsymbol{P}}(k) = \begin{bmatrix} \Delta u(k-1) \\ \vdots \\ \Delta u(k-(D-1)) \end{bmatrix}_{(D-1)*n.x1}$$
(4.13)

$$S_{l} = \begin{bmatrix} s_{l}^{11} & s_{l}^{12} & \dots & s_{l}^{1n_{u}} \\ s_{l}^{21} & s_{l}^{22} & \dots & s_{l}^{2n_{u}} \\ \vdots & \vdots & \ddots & \vdots \\ s_{l}^{n_{y}1} & s_{l}^{n_{y}2} & \dots & s_{l}^{n_{y}n_{u}} \end{bmatrix}_{n,\text{xm.}}, l = 1, \dots, D.$$

$$(4.14)$$

$$\mathbf{M} = \begin{bmatrix} S_1 & 0 & \dots & 0 \\ S_2 & S_1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ S_N & S_{N-1} & \dots & S_{N-N_{\mathrm{u}}+1} \end{bmatrix}_{(N*n_{\mathrm{u}})_{\mathbf{X}}(N_{\mathrm{u}}*n_{\mathrm{u}})}$$
(4.15)

$$\mathbf{M}^{P} = \begin{bmatrix} S_{2} - S_{1} & S_{3} - S_{2} & \dots & S_{D} - S_{D-1} \\ S_{3} - S_{1} & S_{4} - S_{2} & \dots & S_{D+1} - S_{D-1} \\ \vdots & \vdots & \ddots & \vdots \\ S_{N+1} - S_{1} & S_{N+2} - S_{2} & \dots & S_{N+D-1} - S_{D-1} \end{bmatrix}_{(N*n_{y})x((D-1)*n_{u})}$$
(4.16)

$$\boldsymbol{\Lambda} = \begin{bmatrix} \lambda_{0,1} & & & & & \\ & \ddots & & & & \\ & & \lambda_{0,n_u} & & & \\ & & & \lambda_{1,1} & & & \\ & & & \ddots & & & \\ & & & & \lambda_{1,n_u} & & & \\ & & & & \ddots & & \\ & & & & & \lambda_{N_u-1,1} & & \\ & & & & & \lambda_{N_u-1,n_u} \end{bmatrix}_{(N_u*n_u)x(N_u*n_u)} \tag{4.18}$$

$$Y^{0}(k) = Y(k) + M^{P} \triangle U^{P}(k)$$
(4.19)

$$K = (M^T \Psi M + \Lambda)^{-1} M^T \Psi \tag{4.20}$$

$$\Delta U(k) = K(Y^{zad}(k) - Y^{0}(k)) \tag{4.21}$$

W naszej regulacji potrzebujemy wyznaczyć tylko pierwszy element macierzy $\triangle U(k)$ czyli $\triangle u(k|k)$. W tym celu rozwijamy macierz K do postaci:

$$\boldsymbol{K} = \begin{bmatrix} K_1 \\ K_2 \\ \vdots \\ K_{N_u} \end{bmatrix} = \begin{bmatrix} k_{1,1} & k_{1,2} & \dots & k_{1,N} \\ k_{2,1} & k_{2,2} & \dots & k_{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ k_{N_u,1} & k_{N_u,2} & \dots & k_{N_u,N} \end{bmatrix}$$
(4.22)

gdzie $k_{i,j}$ jest macierzą o wymiarach $n_u \times n_y$, a co za tym idzie K_i jest macierzą o wymiarach $n_u \times (N^*n_y)$. Teraz prawo regulacji można zapisać:

$$\Delta u(k) = K_1(Y^{zad}(k) - Y^0(k)) = K_1(Y^{zad}(k) - Y(k) - M^P \Delta U^P(k))$$
(4.23)

Aktualne sterowanie otrzymujemy poprzez zsumowanie poprzedniego sterowania i aktualnie wyliczonego $\triangle u(k|k)$.

Dodatkowo nakład obliczeń można znacznie zmniejszyć jeszcze bardziej upraszczając to równanie (o co poproszono nas w zadaniu 6). W tym celu zmieniamy wzór regulacji na:

$$\Delta u(k|k) = k_e e(k) - k_u \Delta U^P \tag{4.24}$$

gdzie:

$$e(k) = y^{zad}(k) - y(k) \tag{4.25}$$

Ponieważ nasze $n_u = 4$ i $n_y = 3$ to:

$$\mathbf{k}_{e} = \begin{bmatrix} k_{e}^{1,1} & k_{e}^{1,2} & k_{e}^{1,3} \\ k_{e}^{2,1} & k_{e}^{2,2} & k_{e}^{2,3} \\ k_{e}^{3,1} & k_{e}^{3,2} & k_{e}^{3,3} \\ k_{e}^{4,1} & k_{e}^{4,2} & k_{e}^{4,3} \end{bmatrix}$$
(4.26)

gdzie dla każdego i oraz j, $k_e^{i,j}$ to suma elementów znajdująceych się w wierszu i-tym licząc od j-tego elementu co 3 elementy.

$$k_u = K_1 M^P (4.27)$$

5. Zadanie 4: Strojenie regulatorów

Następnym zadaniem było wyznaczenie optymalnych parametrów algorytmów PID i DMC odpowiednio za pomocą metody inżynierskiej(PID) i eksperymentalnej(DMC). Jakość regulacji oceniana była wizualnie - na podstawie wykresów - oraz obliczeniowo na podstawie wskaźnika jakości regulacji. Wzór na ten wskaźnik znajduje się poniżej.

$$E = \sum_{k=1}^{k_{konc}} (Y^{zad}(k) - Y(k))^2$$
 (5.1)

5.1. PID

Nastawy PID dobieramy włączając w tym samym czasie tylko jeden tor regulacji z istniejących trzech i dobierając jego parametry. Na końcu łączymy 3 tory i korygujemy nastawy. Strojąc jeden tor nie będziemy się przejmować innymi, więc nie umieszczaliśmy ich wykresów, a przedstawione wartości błędów będą sumą tylko z tego jednego toru.

5.1.1. Konfiguracja

Ponieważ posiadamy 4 wejścia i 3 wyjścia w celu napisania regulatora PID jedno z wejść będziemy musieli odrzucić. Pozostaje zdecydować które. W tym celu tworzymy macierz wzmocnień KKK zawierającą wzmocnienia statyczne wszystkich torów procesów (wersy odzwierciedlają kolejne sterowania, a kolumny kolejne wyjścia).

$$KKK = \begin{bmatrix} 0.5 & 1.5 & 1.3 \\ 1.25 & 1.1 & 0.4 \\ 0.9 & 0.1 & 0.3 \\ 1.2 & 0.45 & 1.15 \end{bmatrix}$$
 (5.2)

Oczywiście już na jej podstawie moglibyśmy wybrać niezłą konfigurację wyjść, jednakże my szukamy najlepszej. W tym celu dzielimy macierz KKK na cztery macierze KK $_i$ o wymiarach 3x3 usuwając za każdym razem inny wiersz (numer i nowej macierzy to numer usuniętego wiersza).

$$KK_1 = \begin{bmatrix} 1,25 & 1,1 & 0,4\\ 0,9 & 0,1 & 0,3\\ 1,2 & 0,45 & 1,15 \end{bmatrix}$$
 (5.3)

$$KK_2 = \begin{bmatrix} 0.5 & 1.5 & 1.3 \\ 0.9 & 0.1 & 0.3 \\ 1.2 & 0.45 & 1.15 \end{bmatrix}$$
 (5.4)

$$KK_3 = \begin{bmatrix} 0.5 & 1.5 & 1.3 \\ 1.25 & 1.1 & 0.4 \\ 1.2 & 0.45 & 1.15 \end{bmatrix}$$
 (5.5)

$$KK_4 = \begin{bmatrix} 0.5 & 1.5 & 1.3 \\ 1.25 & 1.1 & 0.4 \\ 0.9 & 0.1 & 0.3 \end{bmatrix}$$
 (5.6)

Następnie obliczamy w Matlabie wskaźniki uwarunkowania tych macierzy, które wynosza odpowiednio:

- cond(KK₁)=6,7173
- cond(KK₂)=11,1599
- cond(KK₃)=4,2242
- cond(KK₄)=6,9254

Następnie wybieramy ta, której wskaźnik jest najmniejszy (w naszym przypadku KK₃) i obliczamy dla niej (w matlabie) macierz KK_i .* (KK_i^{-1}) '. Następnie wybieramy z obliczonej macierzy 3 elementy, po jednym na każdy wiersz i kolumnę, mające wartości jak najbliższe jeden (wartości ujemne są wykluczone). Położenie tych elementów określa które sterowanie powinno odpowiadać któremu wyjściu. Poniżej przedstawiam wyniki tego równania dla wszystkich maicerzy KK_i.

$$Dla \quad KK_1: \begin{bmatrix} 0,0383 & 1,1362 & -0,1744 \\ 1,4943 & -0,1465 & -0,3477 \\ -0,5325 & 0,0103 & 1,5222 \end{bmatrix}$$
 (5.7)

$$Dla \quad KK_2 : \begin{bmatrix} 0,0153 & 1,5529 & -0,5683 \\ 1,5736 & 0,1511 & -0,7247 \\ -0,5890 & -0,7040 & 2,2929 \end{bmatrix}$$
 (5.8)

$$Dla \quad KK_3: \begin{bmatrix} -0,2888 & 0,7646 & 0,5242 \\ 0,7586 & 0,5768 & -0,3354 \\ 0,5302 & -0,3414 & 0,8112 \end{bmatrix}$$
 (5.9)

$$Dla \quad KK_{1} : \begin{bmatrix} 0,0383 & 1,1362 & -0,1744 \\ 1,4943 & -0,1465 & -0,3477 \\ -0,5325 & 0,0103 & 1,5222 \end{bmatrix}$$

$$Dla \quad KK_{2} : \begin{bmatrix} 0,0153 & 1,5529 & -0,5683 \\ 1,5736 & 0,1511 & -0,7247 \\ -0,5890 & -0,7040 & 2,2929 \end{bmatrix}$$

$$Dla \quad KK_{3} : \begin{bmatrix} -0,2888 & 0,7646 & 0,5242 \\ 0,7586 & 0,5768 & -0,3354 \\ 0,5302 & -0,3414 & 0,8112 \end{bmatrix}$$

$$Dla \quad KK_{4} : \begin{bmatrix} -0,1447 & 0,0225 & 1,1223 \\ 0,3992 & 1,1198 & -0,5190 \\ 0,7455 & -0,1422 & 0,3967 \end{bmatrix}$$

$$(5.7)$$

Normalnie wybralibyśmy jedynie konfigurację uzyskaną z macierzy o najniższym wskaźniku uwarunkowania (KK₃), jednakże zadanie nakazuje przetestować różne konfiguracje regulatora PID. Z tego powodu zdecydowaliśmy się wybrać po jednej (najlepszej) konfiguracji z każdej z macierzy. Beda to:

- Dla KK1: y1-u3 y2-u2 y3-u4
- Dla KK2: y1-u3 y2-u1 y3-u4
- Dla KK3: y1-u2 y2-u1 y3-u4
- Dla KK4: v1-u3 v2-u2 v3-u1

5.1.2. PID - konfiguracja pierwsza

Pierwsza konfiguracja naszego PID'a zakłada, że wyjście pierwsze sterujemy wejściem trzecim, wyjście drugie wejściem drugim, a wyjście trzecie wejściem czwartym.

Tor pierwszy

Nastawy PID wyznaczamy metodą inżynierską. Oznacza to, że zaczynamy od wyznaczenia wzmocnienia K. Jego wartość ustawiamy na połowę wartości, dla której obiekt wpada w niekończące się i nierosnące oscylacje. Dla pierwszego toru $K_{osc}=13,3642$, co oznacza, że jako wartość K przyjmujemy K=6,6821. Oscylacje przedstawia poniższy wykres 5.1.

Następnie przystąpiliśmy do wyznaczenia czasu zdwojenia T_i . Po wielu testach zdecydowaliśmy się, że najlepszy przebieg oraz najniższa wartość błędu występuje dla $T_i=3$. Choć w przebiegu sterowania nie ma ona większej przewagi, to przebieg wyjścia jest o wiele lepszy od konkurentów. Na wykresie wyjście dosłownie stapia się w jeden przebieg z wartością zadaną. Poniżej w tabeli 5.2 przedstawiono wartości błędów dla różnych wartości T_i . Przebiegi dla tych wartości pokazano na wykresie 5.2.

Ostatnim dobieranym parametrem był czas wyprzedzenia T_d . Niemniej okazało się, że włączenie członu różniczkowego powoduje bardziej pogorszenie przebiegu niż jego polepszenie. Z tego powodu postanowiliśmy pozostać przy wartości $T_d=0$. Wartości błędów dla wybranych wartości przedstawione zostały w tabeli 5.3, a przebiegi na wykresie 5.3.

\boldsymbol{y}	\boldsymbol{u}
y_1	u_3
y_2	u_2
y_3	u_4

Tab. 5.1. Pierwsza konfiguracja

T_i	E1	
1	15,7016	
3	14,0000	
10	15,6587	
100	$34,\!8237$	

Tab. 5.2. Wartości błędu dla różnych wartości T_i

T_i	E1	
0	14,0000	
0.01	14,0113	
0.1	15,5293	

Tab. 5.3. Wartości błędu dla różnych wartości T_d

Rys. 5.1. Przebieg wyjścia pierwszego i wejścia trzeciego dla wzmocnienia oscylacyjnego $K_{osc}=13,3642$

Rys. 5.2. Przebieg wyjścia pierwszego i wejścia trzeciego dla różnych wartości ${\cal T}_i$

Rys. 5.3. Przebieg wyjścia pierwszego i wejścia trzeciego dla różnych wartości ${\cal T}_d$

Tor drugi

Oczywiście zaczynamy od dobrania wzmocnienia K. Dla wyjścia drugiego sterowanego drugim wejściem wartość wzmocnienie dla którego wpada ono w oscylacje to K_{osc} =18,197. Oznacza to, że dla regulatora przyjmiemy wzmocnienie równe K=9,0985. Wykres zawierający przebiegi dla wzmocnienia oscylacyjnego umieściliśmy pod numerem 5.4.

Następną dobieraną wartością było T_i . Po kilku próbach doszliśmy do wniosku, że najlepszą wartością jest T_i =5. Dla tej wartości zarówno przebieg jak i wartość błędu są najlepsze. Błędy dla różnych wartości znajdują się w tabeli 5.4. Przebiegi zamieściliśmy na wykresie 5.5.

Ostatnim dobieranym parametrem był czas wyprzedzenia T_d . Niemniej okazało się, że włączenie członu różniczkowego powoduje bardziej pogorszenie przebiegu niż jego polepszenie. Z tego powodu postanowiliśmy pozostać przy wartości $T_d=0$. Wartości błędów dla wybranych wartości przedstawione zostały w tabeli 5.5, a przebiegi na wykresie 5.6.

T_i	E2
1	16,6367
5	14,0000
10	14,3245
100	21,2770

Tab. 5.4. Wartości błędu dla różnych wartości T_i

T_i	E2	
0	14,0000	
0.01	14,0114	
0.1	15,5409	

Tab. 5.5. Wartości błędu dla różnych wartości ${\cal T}_d$

Rys. 5.4. Przebieg wyjścia drugiego i wejścia drugiego dla wzmocnienia oscylacyjnego $K_{osc}=18,197$

Rys. 5.5. Przebieg wyjścia drugiego i wejścia drugiego dla różnych wartości ${\cal T}_i$

Rys. 5.6. Przebieg wyjścia drugiego i wejścia drugiego dla różnych wartości ${\cal T}_d$

Tor trzeci

Zaczynamy od wyznaczenia wzmocnienia K. Dla trzeciego toru $K_{osc} = 10,459$, co oznacza, że jako wartość K przyjmujemy K = 5,2295. Oscylacje przedstawia poniższy wykres 5.7.

Następnie przystąpiliśmy do wyznaczenia czasu zdwojenia T_i . Po wielu testach zdecydowaliśmy się, że najlepszy przebieg oraz najniższa wartość błędu występuje dla $T_i=3$. Choć w przebiegu sterowania nie ma ona większej przewagi, to przebieg wyjścia jest o wiele lepszy od konkurentów. Na wykresie wyjście dosłownie stapia się w jeden przebieg z wartością zadaną. Poniżej w tabeli 5.6 przedstawiono wartości błędów dla różnych wartości T_i . Przebiegi dla tych wartości pokazano na wykresie 5.8.

Ostatnim dobieranym parametrem był czas wyprzedzenia T_d . Niemniej okazało się, że włączenie członu różniczkowego powoduje bardziej pogorszenie przebiegu niż jego polepszenie. Z tego powodu postanowiliśmy pozostać przy wartości $T_d=0$. Wartości błędów dla wybranych wartości przedstawione zostały w tabeli 5.7, a przebiegi na wykresie 5.9.

T_i	E3
1	15,7016
3	14,0000
10	15,6585
100	29,845

Tab. 5.6. Wartości błędu dla różnych wartości T_i

T_i	E3	
0	14,0000	
0.01	14,0113	
0.1	15,5294	

Tab. 5.7. Wartości błędu dla różnych wartości T_d

Rys. 5.7. Przebieg wyjścia trzeciego i wejścia czwartego dla wzmocnienia oscylacyjnego $K_{osc}=10,459$

Rys. 5.8. Przebieg wyjścia trzeciego i wejścia czwartego dla różnych wartości T_i

Rys. 5.9. Przebieg wyjścia trzeciego i wejścia czwartego dla różnych wartości ${\cal T}_d$

Całość

Poniżej na wykresach 5.10 oraz 5.11 znajduje się przebieg działania całego procesu (wszystkie tory aktywne, trzy sterowania w odpowiedniej kolejności i trzy wyjścia) dla nastaw wybranych w poprzednich podpunktach. Wartości błędów znajdują się w tabeli 5.9. Jak można zauważyć przebiegi nie są idealne, zwłaszcza dla toru pierwszego z którym występują znaczne odchylenia. Fakt, że nastawy należy poprawić nie był dla nas zaskoczeniem, w końcu każde sterowanie ma wpływ na każde wyjście. Po wielu próbach doszliśmy do następujących wniosków:

- włączenie któregokolwiek członu D pogarsza regulację
- zmienianie czasu T_I członów ma bardzo mały wpływ na poprawę regulacji i często ją pogarsza
- najlepszy wpływ na regulację ma zmniejszanie wzmocnień członów

Ostatecznie zdecydowaliśmy się pozostawić wartości T_i i T_d członów niezmienione oraz zmniejszyć wzmocnienia toru drugiego i trzeciego (sterowania u2 i u4) dwukrotnie. Powód dla którego nie zmieniliśmy wzmocnienie pierwszego z torów wynika z tabeli wzmocnień znajdującej się na początku sekcji PID. Wyraźnie widać w niej, że u3 ma mały wpływ na wyjścia y2 oraz y3. Z drugiej strony u2 i u4 mają bardzo duży wpływ na y1. Wzmocnienia dla wszystkich torów po poprawkach przyjmują wartości $K_1=6,6821,\ K_2=4,4592,\ K_3=2,6147.$ Poniżej w tabeli 5.11 znajdują się wyliczone nowe wartości błędów. Dużą poprawę widać zwłaszcza dla toru pierwszego. Błąd dla y2 nieco się powiększył, ale mimo to i tak jest najmniejszy ze wszystkich. Przebiegi sterowań i wyjść dla poprawionych nastaw znajdują się na wykresach 5.12 oraz 5.13. Tu także widać ogromną poprawę przebiegu regulacji, zwłąszcza dla wyjścia pierwszego, ale nie tylko.

	y1	y2	y3
\boldsymbol{K}	6,6821	9,0985	5,2295
T_i	3	5	3
T_d	0	0	0

Tab. 5.8. Nastawy oryginalne

$oldsymbol{E}$	E1	E2	E3
284,3723	242,0791	15,0974	27,1958

Tab. 5.9. Wartości błędów dla nastaw oryginalnych

	y1	y2	y3
\boldsymbol{K}	6,6821	4,4592	2,6147
T_i	3	5	3
T_d	0	0	0

Tab. 5.10. Nastawy poprawione

$oldsymbol{E}$	E1	E2	E3
93,5137	47,3773	19,8595	26,2770

Tab. 5.11. Wartości błędów dla nastaw poprawionych

Rys. 5.10. Przebiegi sterowań dla oryginalnych nastaw

Rys. 5.11. Przebiegi wyjść dla oryginalnych nastaw

Rys. 5.12. Przebiegi sterowań dla poprawionych nastaw

Rys. 5.13. Przebiegi wyjść dla poprawionych nastaw

5.1.3. PID - konfiguracja druga

Druga konfiguracja naszego PID'a zakłada, że wyjście pierwsze sterujemy wejściem trzecim, wyjście drugie wejściem pierwszym, a wyjście trzecie wejściem czwartym. Ponieważ nastawy dla toru pierwszego i drugiego wyliczyłem już w poprzedniej konfiguracji nie będę zamieszczał ponownie tych procesów.

Tor drugi

Jest to jedyny tor, który musimy obliczyć w tej konfiguracji (reszta torów jest taka sama jak w pierwszej konfiguracji). Zaczynamy od wzmocnienia K. Po kilku próbach znaleźliśmy do wartość wzmocnienia oscylacyjnego $K_{osc}=5,3611$, co daje końcową wartość wzmocnienia K=2,6806. Przebieg przedstawiliśimy na wykresie 5.14.

Następną dobieraną wartością było T_i . Po kilku próbach doszliśmy do wniosku, że najlepszą wartością jest T_i =2. Dla tej wartości zarówno przebieg jak i wartość błędu są najlepsze. Błędy dla różnych wartości znajdują się w tabeli 5.13. Przebiegi zamieściliśmy na wykresie 5.15.

Ostatnim dobieranym parametrem był czas wyprzedzenia T_d . Niemniej okazało się, że włączenie członu różniczkowego powoduje bardziej pogorszenie przebiegu niż jego polepszenie. Z tego powodu postanowiliśmy pozostać przy wartości $T_d = 0$. Wartości błędów dla wybranych wartości przedstawione zostały w tabeli 5.14, a przebiegi na wykresie 5.16.

\boldsymbol{y}	\boldsymbol{u}
y_1	u_3
y_2	u_1
y_3	u_4

Tab. 5.12. Druga konfiguracja

T_i	E2
1	14,8853
2	14,0000
10	18,5170
100	53,6244

Tab. 5.13. Wartości błędu dla różnych wartości T_i

T_i	E2	
0	14,0000	
0.01	14,0111	
0.1	15,5134	

Tab. 5.14. Wartości błędu dla różnych wartości ${\cal T}_d$

Rys. 5.14. Przebieg wyjścia drugiego i wejścia pierwszego dla wzmocnienia oscylacyjnego $K_{osc}=5,3611$

Rys. 5.15. Przebieg wyjścia drugiego i wejścia pierwszego dla różnych wartości ${\cal T}_i$

Rys. 5.16. Przebieg wyjścia drugiego i wejścia pierwszego dla różnych wartości ${\cal T}_d$

Całość

Poniżej na wykresach 5.17 oraz 5.18 znajduje się przebieg działania całego procesu (wszystkie tory aktywne, trzy sterowania w odpowiedniej kolejności i trzy wyjścia) dla nastaw wybranych w poprzednich podpunktach. Wartości błędów znajdują się w tabeli 5.16. Jak można zauważyć przebiegi nie są idealne, zwłaszcza dla toru pierwszego z którym występują znaczne odchylenia. Fakt, że nastawy należy poprawić nie był dla nas zaskoczeniem, w końcu każde sterowanie ma wpływ na każde wyjście. Po wykonaniu kilku testów zdecydowaliśmy się zmniejszyć wzmocnienie trzeciego toru trzykrotnie (u4), bo w przeciwieństwie do toru drugiego (u1) ma on znaczny wpływ na pierwsze wyjście. Spowodowało to jednak znaczne pogorszenie przebiegu wyjścia trzeciego (pojawił się uchyb ustalony) co wymusiło na nas zmniejszenie czasu T_i tego toru do wartości 1. Pozostałe tory pozostawiliśmy bez zmian. Poniżej w tabeli 5.18 znajdują się wyliczone nowe wartości błędów. Dużą poprawę widać zwłaszcza dla toru pierwszego. Błąd dla y3 nieco się powiększył, ale przebieg nie pogorszył się bardzo. Przebiegi sterowań i wyjść dla poprawionych nastaw znajdują się na wykresach 5.19 oraz 5.20.

	y1	y2	y3
\boldsymbol{K}	6,6821	2,6806	5,2295
T_i	3	2	3
T_d	0	0	0

Tab. 5.15. Nastawy oryginalne

$oldsymbol{E}$	E1	E2	E3
171,6336	139,8074	14,5997	17,2265

Tab. 5.16. Wartości błędów dla nastaw oryginalnych

	y1	y2	y3
\boldsymbol{K}	6,6821	2,6806	1,7432
T_i	3	2	1
T_d	0	0	0

Tab. 5.17. Nastawy poprawione

$oldsymbol{E}$	E1	E2	E3
84,5872	43,0392	14,1660	27,3819

Tab. 5.18. Wartości błędów dla nastaw poprawionych

Rys. 5.17. Przebiegi sterowań dla oryginalnych nastaw

Rys. 5.18. Przebiegi wyjść dla oryginalnych nastaw

Rys. 5.19. Przebiegi sterowań dla poprawionych nastaw

Rys. 5.20. Przebiegi wyjść dla poprawionych nastaw

5.1.4. PID - konfiguracja trzecia

Trzecia konfiguracja naszego PID'a zakłada, że wyjście pierwsze sterujemy wejściem drugim, wyjście drugie wejściem pierwszym, a wyjście trzecie wejściem czwartym. Ponieważ nastawy dla toru drugiego i trzeciego wyliczyłem już w poprzednich konfiguracjach nie będę zamieszczał ponownie tych procesów. Ta konfiguracja miała najniższy wskaźnik uwarunkowania macierzy, więc potencjalnie powinna być najlepsza.

Tor pierwszy

Jest to jedyny tor, który musimy obliczyć w tej konfiguracji (reszta torów jest taka sama jak w innych konfiguracjach). Zaczynamy od wzmocnienia K. Po kilku próbach znaleźliśmy do wartość wzmocnienia oscylacyjnego $K_{osc}=27,2078$, co daje końcową wartość wzmocnienia K=13,6039. Przebieg przedstawiliśmy na wykresie 5.21.

Następną dobieraną wartością było T_i . Po kilku próbach doszliśmy do wniosku, że najlepszą wartością jest T_i =2. Dla tej wartości zarówno przebieg jak i wartość błędu są najlepsze. Błędy dla różnych wartości znajdują się w tabeli 5.20. Przebiegi zamieściliśmy na wykresie 5.22.

Ostatnim dobieranym parametrem był czas wyprzedzenia T_d . Niemniej okazało się, że włączenie członu różniczkowego powoduje bardziej pogorszenie przebiegu niż jego polepszenie. Z tego powodu postanowiliśmy pozostać przy wartości $T_d=0$. Wartości błędów dla wybranych wartości przedstawione zostały w tabeli 5.21, a przebiegi na wykresie 5.23.

$oldsymbol{y}$	\boldsymbol{u}
y_1	u_2
y_2	u_1
y_3	u_4

Tab. 5.19. Trzecia konfiguracja

T_i	E1
1	17,3693
9	14,0013
20	14,3052
100	$16,\!5877$

Tab. 5.20. Wartości błędu dla różnych wartości T_i

T_i	ig E1	
0	14,0013	
0.01	14,0135	
0.1	15,5541	

Tab. 5.21. Wartości błędu dla różnych wartości T_d

Rys. 5.21. Przebieg wyjścia pierwszego i wejścia drugiego dla wzmocnienia oscylacyjnego $K_{osc}=27,2078$

Rys. 5.22. Przebieg wyjścia pierwszego i wejścia drugiego dla różnych wartości ${\cal T}_i$

Rys. 5.23. Przebieg wyjścia pierwszego i wejścia drugiego dla różnych wartości ${\cal T}_d$

Całość

Przy oryginalnych nastawach PID nie działa w ogóle, dlatego nie zamieszczałem ich wykresów. Wartości błędów dążą do nieskończoności. Choć ta kombinacja miała najmniejszy ze wszystkich wskąźnik uwarunkowania okazało się, że nie jest ona aż taka dobra. Nastawy należało całkowicie zmienić, aby osiągnąc logicznie wyglądający przebieg. Wartości błędów są o wiele wyższe niż te znalezione dla poprzednich konfiguracji. Tylko błąd toru drugiego jest dość niski. Może być to spowodowane tym, że każde z używanych w konfiguracji sterowań ma mocny wpływ na przynajmniej 2 różne wyjścia, co widać w macierzy wzmocnień. Przebiegi nie są idealne, ale akceptowalne. Inną możliwością jest to, że po prostu nie udało nam się znaleźć odpowiednich nastaw. Poniżej w tabeli 5.24 znajdują się wyliczone nowe wartości błędów. Przebiegi sterowań i wyjść dla poprawionych nastaw znajdują się na wykresach 5.24 oraz 5.25.

	y1	y2	y3
K	13,6039	2,6806	5,2295
T_i	9	2	3
T_d	0	0	0

Tab. 5.22. Nastawy oryginalne

	y1	y2	y3
\boldsymbol{K}	1,1337	2,6806	0,5811
T_i	6	1	4
T_d	2	0	0

Tab. 5.23. Nastawy poprawione

$oldsymbol{E}$	E1	E2	E3
295,8916	139,8703	21,7816	134,2398

Tab. 5.24. Wartości błędów dla nastaw poprawionych

Rys. 5.24. Przebiegi sterowań dla poprawionych nastaw

Rys. 5.25. Przebiegi wyjść dla poprawionych nastaw

5.1.5. PID - konfiguracja czwarta

Czwarta konfiguracja naszego PID'a zakłada, że wyjście pierwsze sterujemy wejściem trzecim, wyjście drugie wejściem drugim, a wyjście trzecie wejściem pierwszym. Ponieważ nastawy dla toru pierwszego i drugiego wyliczyłem już w poprzednich konfiguracjach nie będę zamieszczał ponownie tych procesów. Ta konfiguracja miała najniższy wskaźnik uwarunkowania macierzy, więc potencjalnie powinna być najlepsza.

Tor trzeci

Jest to jedyny tor, który musimy obliczyć w tej konfiguracji (reszta torów jest taka sama jak w pierwszej konfiguracji). Zaczynamy od wzmocnienia K. Po kilku próbach znaleźliśmy do wartość wzmocnienia oscylacyjnego $K_{osc}=15,3974$, co daje końcową wartość wzmocnienia K=7,6987. Przebieg przedstawiliśmy na wykresie 5.26.

Następną dobieraną wartością było T_i . Po kilku próbach doszliśmy do wniosku, że najlepszą wartością jest T_i =5. Dla tej wartości zarówno przebieg jak i wartość błędu są najlepsze. Błędy dla różnych wartości znajdują się w tabeli 5.26. Przebiegi zamieściliśmy na wykresie 5.27.

Ostatnim dobieranym parametrem był czas wyprzedzenia T_d . Niemniej okazało się, że włączenie członu różniczkowego powoduje bardziej pogorszenie przebiegu niż jego polepszenie. Z tego powodu postanowiliśmy pozostać przy wartości $T_d=0$. Wartości błędów dla wybranych wartości przedstawione zostały w tabeli 5.27, a przebiegi na wykresie 5.28.

$oldsymbol{y}$	\boldsymbol{u}
y_1	u_3
y_2	u_2
y_3	u_1

Tab. 5.25. Czwarta konfiguracja

T_i	E3
1	16,6366
5	14,0000
10	14,3245
100	19,9801

Tab. 5.26. Wartości błędu dla różnych wartości T_i

T_i	E3	
0	14,0000	
0.01	14,0114	
0.1	15,5408	

Tab. 5.27. Wartości błędu dla różnych wartości T_d

Rys. 5.26. Przebieg wyjścia trzeciego i wejścia pierwszego dla wzmocnienia oscylacyjnego $K_{osc}=15,3974$

Rys. 5.27. Przebieg wyjścia trzeciego i wejścia pierwszego dla różnych wartości ${\cal T}_i$

Rys. 5.28. Przebieg wyjścia trzeciego i wejścia pierwszego dla różnych wartości ${\cal T}_d$

Całość

Przy oryginalnych nastawach PID nie działa w ogóle (wartości dążą do nieskończoności), dlatego nie zamieszczałem ich wykresów. Wartości błędów także dążą do nieskończoności. Nastawy należało całkowicie zmienić, aby osiągnąc logicznie wyglądający przebieg. Wartości błędów są o wiele wyższe niż te znalezione dla pierwszych dwóch konfiguracji, nie licząc toru pierwszego, którego błąd jest niski. Może być to spowodowane tym, że nie udało nam się znaleźć odpowiednich nastaw. Przebiegi nie są idealne, ale akceptowalne. Poniżej w tabeli 5.30 znajdują się wyliczone nowe wartości błędów. Przebiegi sterowań i wyjść dla poprawionych nastaw znajdują się na wykresach 5.29 oraz 5.30.

	y1	y2	y3
\boldsymbol{K}	6,6821	9,0985	7,6987
T_i	3	5	5
T_d	0	0	0

Tab. 5.28. Nastawy oryginalne

	y1	y2	y3
\boldsymbol{K}	6,6821	3,0328	0,7699
T_i	1	7	5
T_d	0	0	1

Tab. 5.29. Nastawy poprawione

$oldsymbol{E}$	E1	E2	E3
279,8519	17,2126	84,7003	177,9390

Tab. 5.30. Wartości błędów dla nastaw poprawionych

Rys. 5.29. Przebiegi sterowań dla poprawionych nastaw

Rys. 5.30. Przebiegi wyjść dla poprawionych nastaw

5.1.6. Wnioski

Regulacja PID nie w każdej konfiguracji sprawuje się dobrze. W pierwszych dwóch wypróbowywanych konfiguracjach zarówno obliczone wartości błędów jak i przebiegi były bardzo dobre. W pozostałych dwóch część wyjść była regulowana dobrze, jednakże dla większości jakość regulacji nie była idealna, a błędy znaczne. Najdziwniejszą rzeczą było jednak to, że badany obiekt prawie nigdy nie wymagał od nas użycia członu różniczkującego (człon zwiększał błąd i psuł przebiegi). Prawdopodobnie jest to spowodowane jakąś specyficzną własnością obiektu.

5.2. DMC

Podczas dobierania DMC dobieramy takie parametry jak:

- D horyzont dynamiki
- N horyzont predykcji
- N_u horyzont sterowania
- współczynniki wagowe macierzy Ψ w ilości n_y =3
- współczynniki wagowe macierzy Λ w ilości $n_u=4$

W tym przypadku wszystkie horyzonty przyjmiemy jako stałe przy czym przyjmujemy D=N= N_u =200, co jest równe liczbie zebranych kroków odpowiedzi skokowych. Zmniejszanie horyzontów żadko poprawia jakość regulacji, celem takich działań najczęściej jest zmniejszenie złożoności obliczeniowej i tym samym czasu obliczeń. Dobieranie nastaw zaczęliśmy od dobrania kolejnych współczynników wagowych ψ , a następnie współczynników λ . Poniżej zamieściliśmy wykresy sterowań i wyjść dla nastaw początkowych (wszystkie współczynniki równe 1) oraz tabelkę w wartościami błędów dla wszystkich wyjść.

$oldsymbol{E}$	E1	E2	E3
118,9959	30,7112	31,6862	56,5985

Tab. 5.31. Wartości błędów dla nastaw początkowych

Rys. 5.31. Wartości wejść przy nastawach początkowych DMC

Rys. 5.32. Wartości wyjść przy nastawach początkowych DMC

5.2.1. Pierwszy współczynnik psi

Po kilku testach doszliśmy do wniosku, że najlepsza wartość ψ_1 to 2,7. Zmniejszając lub zwiekszając tę wartość zwiększają się błędy. Wartości błędów dla różnych wartości ψ_1 znajdują się w tabeli 5.32. Przebiegi sygnałów sterujących i wyjść są się na wykresach 5.33 oraz 5.34. Większość wykresów nie różni się tak bardzo. Najbardziej poprawił się przebieg y1, co ma sens biorąc pod uwagę, że kolejne współczynniki psi mają największy wpływ na kolejne wyjścia.

5.2.2. Drugi współczynnik psi

Najlepsza znaleziona przez nas podczas testowania wartość ψ_2 (taka dla której błąd E jest najniższy) to 40. Błędy dla różnych wartości znajdują się w tabeli 5.33. Przebiegi znajdują się na wykresach 5.35 i 5.36. Wartości wejścia trzeciego nieco się pogorszyły, ale za to widać znaczną poprawę w regulacji sygnału y2.

5.2.3. Trzeci współczynnik psi

Najlepsza znaleziona przez nas podczas testowania wartość ψ_3 (taka dla której błąd E jest najniższy) to 7. Błędy dla różnych wartości znajdują się w tabeli 5.34. Przebiegi znajdują się na wykresach 5.37 i 5.38. Dobranie tego parametru najbardziej wyrównało wartości błędów wszystkich torów. Przebiegi sterowań widocznie się pogorszyły. Mimo wszystko osiągane przez nie wartości nie są nieakceptowalne. Nieco gorzej wygląda również regulacja wartości y1, za to polepszył się przebieg wyjścia y3.

$\boldsymbol{\psi_1}$	$oldsymbol{E}$	E1	E2	E3
1	118,9959	30,7112	31,6862	56,5985
2,7	116,2096	20,3765	$32,\!4374$	63,3958
5	116,5936	17,5255	32,7217	66,3464

Tab. 5.32. Wartości błędów dla różnych wartości ψ_1

ψ_{2}	$oldsymbol{E}$	E1	E2	E3
1	116,2096	20,4374	32,4374	63,3958
40	$110,\!5704$	20,6878	14,9057	74,9769
100	110,6651	20,7139	14,2842	75,6670

Tab. 5.33. Wartości błędów dla różnych wartości ψ_2

ψ_{i}	3	$oldsymbol{E}$	$oldsymbol{E1}$	E2	E3
1		110,5704	20,6878	14,9057	74,9769
7		85,3216	35,4493	15,0596	34,8127
15	5	90,5030	49,4658	15,2455	25,7917

Tab. 5.34. Wartości błędów dla różnych wartości ψ_3

Rys. 5.33. Wartości wejść przy różnych wartościach ψ_1

Rys. 5.34. Wartości wyjść przy różnych wartościach ψ_1

Rys. 5.35. Wartości wejść przy różnych wartościach ψ_2

Rys. 5.36. Wartości wyjść przy różnych wartościach ψ_2

Rys. 5.37. Wartości wejść przy różnych wartościach ψ_3

Rys. 5.38. Wartości wyjść przy różnych wartościach ψ_3

5.2.4. Pierwszy współczynnik lambda

Najlepsza znaleziona przez nas podczas testowania wartość λ_1 (taka dla której błąd E jest najniższy) to 0.05. Błędy dla różnych wartości znajdują się w tabeli 5.35. Przebiegi znajdują się na wykresach 5.39 i 5.40. Obniżenie λ_1 do 0.05 spowodowałoby zminimalizowanie błędu. Z drugiej strony zwiększenie parametru do 10, a nawet 20 nie daje pogorszenia w przebiegu wyjść, ale za to znacznie poprawia wykresy sterowań u1, u3 i u4. Mimo, że pogorszenia się sterowania u2, zdecydowaliśmy się ostatecznie na podniesienie parametru λ_1 do 20.

5.2.5. Drugi współczynnik lambda

Teoretycznie najlepsza znaleziona przez nas podczas testowania wartość λ_2 (taka dla której błąd E jest najniższy) to 0.01. Błędy dla różnych wartości znajdują się w tabeli 5.36. Przebiegi znajdują się na wykresach 5.41 i 5.42. Obniżenie λ_2 do 0.01 spowodowałoby zminimalizowanie błędu, ale pogorszyłoby przebiegi zarówno sterowań jak i wyjść. Jego powiększenie powoduje zwiększenie błędu i nie poprawia znacznie ani stanu wyjść ani sterowań (niektóre fragmenty wyglądają nawet gorzej). Dlatego właśnie zdecydowaliśmy się ostatecznie na zostawienie parametru $\lambda_2=1$.

5.2.6. Trzeci współczynnik lambda

Najlepszą możliwością jest według nas ustawienie parametru λ_3 na wartość 0. Mimo że powoduje to duże pogorszenie przebiegów sterowań, umożliwia także zmniejszenie wszystkich błędów oraz poprawę przebiegów wszystkich wyjść. Wartości błędów dla róźnych wartości λ_3 znajdują się w tabeli 5.37, a wykresy mają numery 5.43 i 5.44.

λ_1	$oldsymbol{E}$	E1	E2	E3
1	85,3216	35,4493	15,0596	34,8127
0.05	84,5415	35,5348	14,1362	34,8705
10	89,7500	35,7278	18,3551	35,6671
20	91,5219	35,9948	19,3204	36,2067

Tab. 5.35. Wartości błędów dla różnych wartości λ_1

λ_2	$oldsymbol{E}$	E1	E2	E3
1	91,5219	35,9948	19,3204	36,2067
0.01	89,9007	36,0121	$14,\!3511$	39,5375
10	94,0455	36,3659	22,3931	35,2866

Tab. 5.36. Wartości błędów dla różnych wartości λ_2

λ_3	$oldsymbol{E}$	E1	E2	E3
1	91,5219	35,9948	19,3204	36,2067
0	60,9477	16,5775	19,0707	25,2996
5	120,3487	57,0457	19,3272	43,9759

Tab. 5.37. Wartości błędów dla różnych wartości λ_3

Rys. 5.39. Wartości wejść przy różnych wartościach λ_1

Rys. 5.40. Wartości wyjść przy różnych wartościach λ_1

Rys. 5.41. Wartości wejść przy różnych wartościach λ_2

Rys. 5.42. Wartości wyjść przy różnych wartościach λ_2

Rys. 5.43. Wartości wejść przy różnych wartościach λ_3

Rys. 5.44. Wartości wyjść przy różnych wartościach λ_3

5.2.7. Czwarty współczynnik lambda

Czwarty współczynnik lambda był ostatnim dobieranym przez nas parametrem regulatora DMC. Najlepszą możliwością jest według nas ustawienie parametru λ_4 na wartość 0, tak jak λ_3 . Mimo że powoduje to duże pogorszenie przebiegów sterowań (zwłaszcza u3 i u4), umożliwia także duże zmniejszenie błędów oraz poprawę przebiegów wyjść (widoczne zwłaszcza dla y3). Wartości błędów dla róźnych wartości λ_3 znajdują się w tabeli 5.37, a wykresy mają numery 5.43 i 5.44.

5.2.8. Wnioski

Ostateczne parametry naszego regulatora DMC znajdują się w tabeli 5.39. Dobierając je osiągnęliśmy niższą wartość błędu niż dla którejkolwiek konfiguracji PID, choć przebiegi sterowań nie wyglądają idealnie (zwłaszcza u3 oraz u4, których przebiegi wpadają w widoczne oscylacje i zawierają duże skoki wartości). Choć taki wygląd sterowań mógłby być nieodpowiedni dla niektórych obiektów rzeczywistych, jest całkowicie akceptowalny przy programowej regulacji sygnału.

λ_3	$oldsymbol{E}$	E1	E2	E3
1	60,9477	16,5775	19,0707	25,2996
0	49,5733	16,8105	18,6579	14,1050
5	72,3782	16.5540	19,2844	36.5397

Tab. 5.38. Wartości błędów dla różnych wartości λ_3

ψ_1	ψ_{2}	ψ_3	λ_1	λ_2	λ_3	λ_4
2,7	40	7	20	1	0	0

Tab. 5.39. Ostateczne nastawy DMC

Rys. 5.45. Wartości wejść przy różnych wartościach λ_4

Rys. 5.46. Wartości wyjść przy różnych wartościach λ_4

6. Zadanie 5: Automatyczne dobieranie nastaw

W tym zadaniu naszym zadaniem było automatyczne dobranie nastaw regulatorów w wyniku optymalizacji wskaźnika jakości. Użyliśmy w tym celu wbudowanej w pakiet Matlab funkcji fmincon, podając jako początkowe parametry wyliczone przez nas konfiguracje.

6.1. PID

6.1.1. Konfiguracja pierwsza

Jak widzimy w tym przypadku wyliczone przez funkcję parametry są podobne do naszych, aczkolwiek dają nieco lepsze rozwiązanie pod kątem wielkości wskaźnika regulacji. Wizualnie przebiegi prawie się nie różnią.

	y1	y2	y3
\boldsymbol{K}	6,6821	4,4592	2,6147
T_i	3	5	3
T_d	0	0	0

Tab. 6.1. Nasze nastawy

$oldsymbol{E}$	E1	E2	E3
93,5137	47,3773	19,8595	26,2770

Tab. 6.2. Wartości błędów dla naszych nastaw

	y1	y2	y3
\boldsymbol{K}	7,8600	4,2845	1,6460
T_i	2,1371	4,3444	1,8913
T_d	9,0673e-9	0,0132	1,4253e-7

Tab. 6.3. Wyliczone nastawy

$oldsymbol{E}$	E1	E2	E3
85,3434	30,8617	19,8453	34,6364

Tab. 6.4. Wartości błędów dla wyliczonych nastaw

Rys. 6.1. Porównanie wyliczonych i optymalnych nastaw dla konfiguracji pierwszej - sterowanie

Rys. 6.2. Porównanie wyliczonych i optymalnych nastaw dla konfiguracji pierwszej - wyjścia

6.1.2. Konfiguracja druga

Parametry obliczone przez program nie są bardzo oddalone od naszych, ale gwarantują mniejszą wartość błędu. Choć przebiegi sterowań są prawie identyczne, na wykresach wyjść w definitywnie widać poprawę.

	y1	y2	y3
\boldsymbol{K}	6,6821	2,6806	1,7432
T_i	3	2	1
T_d	0	0	0

Tab. 6.5. Nasze nastawy

$oldsymbol{E}$	E1	E2	E3
84,5872	43,0392	14,1660	27,3819

Tab. 6.6. Wartości błędów dla naszych nastaw

	y1	y2	y3
K	8,0752	2,3354	1,5439
T_i	1,8399	2,3517	1,4822
T_d	4,3152e-9	0,0086	8,0777e-7

Tab. 6.7. Wyliczone nastawy

$oldsymbol{E}$	E1	E2	E3
74,8601	28,8221	14,6279	31,4101

Tab. 6.8. Wartości błędów dla wyliczonych nastaw

Rys. 6.3. Porównanie wyliczonych i optymalnych nastaw dla konfiguracji drugiej - sterowanie

Rys. 6.4. Porównanie wyliczonych i optymalnych nastaw dla konfiguracji drugiej - wyjścia

6.1.3. Konfiguracja trzecia

Przy nastawach wyliczonych za pomocą optymalizacji poprawiły się zarówno błędy jak i przebiegi wykresów wyjść. Mimo wszystko wartości błędów wciąż są dość duże w porównaniu do dwóch pierwszych konfiguracji. Wzbucziło to w nas pewne zdumienie, bo to właśnie ta konfiguracja była wskazywana przez wskaźnik uwarunkowania jako potentat do bycia najlepszą ze wszystkich.

	y1	y2	y3
\boldsymbol{K}	1,1337	2,6806	0,5811
T_i	6	1	4
T_d	2	0	0

Tab. 6.9. Nasze nastawy

$oldsymbol{E}$	E1	E2	E3
295,8916	139,8703	21,7816	134,2398

Tab. 6.10. Wartości błędów dla naszych nastaw

	y1	y2	y3
\boldsymbol{K}	5,0737	2,9191	0,7908
T_i	16,1926	0,5115	3,9598
T_d	3,8791e-6	6,1826e-6	0,4474

Tab. 6.11. Wyliczone nastawy

$oldsymbol{E}$	E1	E2	E3
205,9376	63,2208	26,6137	116,1032

Tab. 6.12. Wartości błędów dla wyliczonych nastaw

Rys. 6.5. Porównanie wyliczonych i optymalnych nastaw dla konfiguracji trzeciej - sterowanie

Rys. 6.6. Porównanie wyliczonych i optymalnych nastaw dla konfiguracji trzeciej - wyjścia

6.1.4. Konfiguracja czwarta

Wyliczenie nastaw za pomocą optymalizacji nie dało dużej poprawy zarówno w wartościach błędów jak i w wyglądzie przebiegów. Najwyraźniej akurat ta konfiguracja nie jest najlepszym wyborem jeśli chodzi o sterowanie posiadanym obiektem.

	y1	y2	y3
\boldsymbol{K}	6,6821	3,0328	0,7699
T_i	1	7	5
T_d	0	0	1

Tab. 6.13. Nasze nastawy

$oldsymbol{E}$	E1	E2	E3
279,8519	17,2126	84,7003	177,9390

Tab. 6.14. Wartości błędów dla naszych nastaw

	y1	y2	y3
\boldsymbol{K}	6,9911	5,2839	1,1192
T_i	1,0949	12,0669	0,5076
T_d	8,8144e-5	3,1067e-6	0,5076

Tab. 6.15. Wyliczone nastawy

$oldsymbol{E}$	E1	E2	E3
259,3231	19,3182	65,3477	174,6572

Tab. 6.16. Wartości błędów dla wyliczonych nastaw

Rys. 6.7. Porównanie wyliczonych i optymalnych nastaw dla konfiguracji czwartej - sterowanie

Rys. 6.8. Porównanie wyliczonych i optymalnych nastaw dla konfiguracji czwartej - wyjścia

6.2. DMC

Ostatnią optymalizacją jaką należy przeprowadzić jest optymalizacja DMC. Większość nastaw obliczonych w wyniku optymalizacji jest podobna do wyliczonych przez nas. Mimo wszystko optymalizacja zmniejszyła już małe błędy przebiegów i definitywnie poprawiła wykresy wyjść.

ψ	, 1	ψ_{2}	ψ_3	λ_1	λ_2	λ_3	λ_4
2	,7	40	7	20	1	0	0

Tab. 6.17. Nasze nastawy

$oldsymbol{E}$	E1	E2	E3	
49,5733	16,8105	18,6579	14,1050	

Tab. 6.18. Wartości błędów dla naszych nastaw

ψ_1	ψ_{2}	ψ_3	λ_1	λ_2	λ_3	λ_4
6,7137	40,1488	7,3852	20,0812	0,0007	2,1222e-5	6,7126e-5

Tab. 6.19. Wyliczone nastawy

$oldsymbol{E}$	E1	E2	E3	
42,0328	14,0032	14,0061	14,0235	

Tab. 6.20. Wartości błędów dla wyliczonych nastaw

Rys. 6.9. Porównanie wyliczonych i optymalnych nastaw dla DMC - sterowanie

Rys. 6.10. Porównanie wyliczonych i optymalnych nastaw dla DMC - wyjścia

6.3. Wnioski

Optymalizacja wskaźnika jakości poprawiła przebiegi wszystkich regulatorów. Regulacja uzyskana z użyciem regulatora DMC uzyskała definitywnie lepsze wyniki niż którykolwiek PID, jeśli chodzi o błąd regulacji i wygląd przebiegów wyjść. Mimo to tak gwałtowny regulator mógłby być niemożliwy do wykorzystania w realnym życiu ze względu na duże wachania sterowań.

7. Zadanie 6: Uproszczony obliczeniowo DMC

Ostatnim zadaniem było zaimplementowanie DMC w postaci wymagającej jak najmniejszego nakładu obliczeń. Sposób implementacji został opisany w zadaniu trzecim. Następnie należało sprawdzić, czy wersja ta zwraca takie same wyniki co wersja z zadania czwartego. W tym celu wywołaliśmy ją z obliczonymi przez nas końcowymi nastawami DMC. Parametry błędów uzyskanych za pomocą obydwu tych implementacji zamieściliśmy poniżej w tabelach 7.2 i 7.3. Jak widać są one identyczne. Zamieściliśmy również wykresy porównujące przebiegi sterowań i wyjść obiektu dla obydwu implementacji. Widać na nich wyraźnie, że wykresy nakładają się.

ψ_1	ψ_{2}	ψ_3	λ_1	λ_2	λ_3	λ_4
2,7	40	7	20	1	0	0
Tab. 7.1. Nasze						

$oldsymbol{E}$	E1	E2	E3	
49,5733	16,8105	18,6579	14,1050	

Tab. 7.2. Wartości błędów dla oryginalnej wersji

$oldsymbol{E}$	E1	E2	E3	
49,5733	16,8105	18,6579	14,1050	

Tab. 7.3. Wartości błędów dla uproszczonej obliczeniowo wersji

Rys. 7.1. Wartości wejść przy różnych wartościach λ_4

Rys. 7.2. Wartości wyjść przy różnych wartościach λ_4