

Esercizi di Sistemi

Università di Verona Imbriani Paolo -VR500437 Professor Francesco Visentin

November 25, 2024

Contents

1	Esercizi su risposta libera e impulsiva		
	1.1	Esercizio 1	3
	1.2	Esercizio 2	4
	1.3	Esercizio 3	6
2	Esercizi sulla convoluzione e la risposta forzata		
	2.1	Esercizio 1	8
3	Esercizi fatti in classe		
	3.1	Esercizio 1	10
	3.2	Esercizio 2	12

1 Esercizi su risposta libera e impulsiva

1.1 Esercizio 1

Consegna

Dato il seguente sistema a tempo continuo (LTI):

$$v''(t) - 5v'(t) - 6v(t) = u'(t) + 5u(t)$$

e le seguenti condizioni iniziali:

$$\begin{cases} v(0) = 3 \\ v'(0) = 1 \end{cases}$$

Calcolare la risposta libera (1) e la risposta forzata/impulsiva del sistema (2).

 $1.\ \mbox{Per calcolare la risposta libera iniziamo a calcolare il polinomio caratteristico:}$

$$s^{2} - 5s - 6 = (s+1)(s-6)$$
$$\lambda_{1} = -1, \lambda_{2} = 6$$
$$\mu_{1} = 1, \mu_{2} = 1, r = 2$$
$$v_{l}(t) = c_{1}e^{-t} + c_{2}e^{6t}$$

Ora derivo v(t):

$$v'(t) = -c_1 e^{-t} + 6c_2 e^{6t}$$

Applico le condizioni iniziali:

$$\begin{cases} v(0) = 3 \\ v'(0) = 1 \end{cases} \begin{cases} c_1 e^{-t} + c_2 e^{6t} = 3 \\ -c_1 e^{-t} + 6c_2 e^{6t} = 1 \end{cases} \implies \begin{cases} c_1 + c_2 = 3 \\ -c_1 + 6c_2 = 1 \end{cases} \implies \begin{cases} c_1 = \frac{17}{7} \\ c_2 = \frac{4}{7} \end{cases}$$

$$v_l(t) = \frac{17}{7}e^{-t} + \frac{4}{7}e^{6t}$$

2. Ora calcoliamo la risposta impulsiva.

$$h(t) = d_0 \delta_0(t) + \left[\sum_{i=1}^r \sum_{l=0}^{\mu_i - 1} d_{i,l} e^{\lambda_i t} \frac{t^l}{l!} \right] \delta_{-1}(t)$$

Essendo $n \neq m$ il sistema non è proprio perciò $d_0 = 0$.

$$h(t) = \left[\sum_{i=1}^{r} \sum_{l=0}^{\mu_i - 1} d_{i,l} e^{\lambda_i t} \frac{t^l}{l!} \right] \delta_{-1}(t)$$
$$= (d_1 e^{-t} + d_2 e^{6t}) \delta_{-1}(t)$$

Calcoliamo ora le derivate di h(t) (Questa in basso è un'equazione unica):

$$h'(t) = (-d_1e^{-t} + 6d_2e^{6t})\delta_{-1}(t) + (d_1e^{-t} + d_2e^{6t})\delta_0(t)$$

$$h''(t) = (d_1e^{-t} - 36d_2e^{6t})\delta_{-1}(t) + (-d_1e^{-t} + 6d_2e^{6t})\delta_0(t) + \dots$$

$$\dots + (-d_1e^{-t} + 6d_2e^{6t})\delta_0(t) + (d_1e^{-t} + d_2e^{6t})\delta'(t)$$

Ora poniamo v(t) = h(t) e $u(t) = \delta(t)$ nell'equazione del sistema iniziale:

$$h''(t) - 5h'(t) - 6h(t) = \delta'(t) + 5\delta(t)$$

Sostituiamo ed elimino i gradini:

$$\underbrace{(d_1e^{-t} - 36d_2e^{6t})\delta_{-1}(t) + 2\delta_0(t)(-d_1e^{-t} + 6d_2e^{6t}) + (d_1e^{-t} + d_2e^{6t})\delta'(t) - \dots}_{h'(t)} - \underbrace{(d_1e^{-t} + 6d_2e^{6t})\delta_{-1}(t) + (d_1e^{-t} + d_2e^{6t})\delta_0(t)}_{h(t)} - \underbrace{\left[(d_1e^{-t} + d_2e^{6t})\delta_{-1}(t)\right]}_{h(t)} - \underbrace{\left[(d_1e^{-t} + d_2e^{6t})\delta_{-1}($$

Ora raccolgo le funzioni delta e le metto a sistema. Ricordiamo di imporre t=0:

$$\begin{cases} \delta'(t)(d_1e^{-t} + d_2e^{6t}) = \delta'(t) \\ 2\delta_0(t)(-d_1e^{-t} + 6d_2e^{6t}) - 5\delta_0(t)(d_1e^{-t} + d_2e^{6t}) = 5\delta(t) \end{cases}$$

$$\begin{cases} d_1 + d_2 = 1 \\ -2d_1\delta_0(t) + 12d_2\delta_0(t) - 5d_1\delta_0(t) - 5d_2\delta_0(t) = 5\delta(t) \end{cases}$$

$$\begin{cases} d_1 = 1 - d_2 \\ -7d_1\delta_0(t) + 7d_2\delta_0(t) = 5\delta(t) \end{cases}$$

$$\begin{cases} d_1 = \frac{1}{7} \\ d_2 = \frac{6}{7} \end{cases}$$

Quindi la risposta forzata è:

$$h(t) = \frac{1}{7}e^{-t}\delta_{-1}(t) + \frac{6}{7}e^{6t}\delta_{-1}(t)$$

1.2 Esercizio 2

Consegna

Dato il seguente sistema a tempo continuo (LTI):

$$2v''(t) - 3v'(t) - 2v(t) = 2u'(t) + u(t)$$

e le seguenti condizioni iniziali:

$$\begin{cases} v(0) = 4\\ v'(0) = -2 \end{cases}$$

Calcolare la risposta libera (1) e la risposta forzata/impulsiva del sistema (2).

1. Polinomio caratteristico:

$$2s^{2} - 3s - 2 = (2s + 1)(s - 2)$$

$$\lambda_{1} = -\frac{1}{2}, \lambda_{2} = 2$$

$$\mu_{1} = 1, \mu_{2} = 1, r = 2$$

$$v_{l}(t) = c_{1}e^{-\frac{1}{2}t} + c_{2}e^{2t}$$

Ora derivo v(t):

$$v'(t) = -\frac{1}{2}c_1e^{-\frac{1}{2}t} + 2c_2e^{2t}$$

Applico le condizioni iniziali:

$$\begin{cases} v(0) = 4 \\ v'(0) = -2 \end{cases} \begin{cases} c_1 e^{-\frac{1}{2}t} + c_2 e^{2t} = 4 \\ -\frac{1}{2}c_1 e^{-\frac{1}{2}t} + 2c_2 e^{2t} = -2 \end{cases} \Longrightarrow \begin{cases} c_1 + c_2 = 4 \\ -\frac{1}{2}c_1 + 2c_2 = -2 \end{cases}$$
$$\begin{cases} c_1 = 4 - c_2 \\ -\frac{1}{2}(4 - c_2) + 2c_2 = -2 \end{cases} \begin{cases} c_1 = 4 - c_2 \\ \frac{5}{2}c_2 = 0 \end{cases} \Longrightarrow \begin{cases} c_1 = 4 \\ c_2 = 0 \end{cases}$$

Quindi la risposta libera è:

$$v_l(t) = 4e^{-\frac{1}{2}t}$$

2. Ora calcoliamo la risposta impulsiva.

$$h(t) = d_0 \delta_0(t) + \left[\sum_{i=1}^r \sum_{l=0}^{\mu_i - 1} d_{i,l} e^{\lambda_i t} \frac{t^l}{l!} \right] \delta_{-1}(t)$$
$$= (d_1 e^{-\frac{1}{2}t} + d_2 e^{2t}) \delta_{-1}(t)$$

Calcoliamo le deritate bla bla bla mi sono rotto:

$$h'(t) = \left(-\frac{1}{2}d_1e^{-\frac{1}{2}t} + 2d_2e^{2t}\right)\delta_{-1}(t) + \left(d_1e^{-\frac{1}{2}t} + d_2e^{2t}\right)\delta_0(t)$$

$$h''(t) = \left(\frac{1}{4}d_1e^{-\frac{1}{2}t} + 4d_2e^{2t}\right)\delta_{-1}(t) + \left(-\frac{1}{2}d_1e^{-\frac{1}{2}t} + 2d_2e^{2t}\right)\delta_0(t) + \dots$$
$$+ \left(-\frac{1}{2}d_1e^{-\frac{1}{2}t} + 2d_2e^{2t}\right)\delta_0(t) + (d_1e^{-\frac{1}{2}t} + d_2e^{2t})\delta'(t)$$

Ora poniamo v(t) = h(t) e $u(t) = \delta(t)$ nell'equazione del sistema iniziale:

$$2h''(t) - 3h'(t) - 2h(t) = 2\delta'(t) + \delta(t)$$

Ora sostituiamo ed eliminiamo i gradini (Questa è un'equazione unica):

$$2\left[\underbrace{\left(\frac{1}{4}d_{1}e^{-\frac{1}{2}t} + 4d_{2}e^{2t}\right)\delta_{-1}(t) + 2\delta_{0}(t)\left(-\frac{1}{2}d_{1}e^{-\frac{1}{2}t} + 2d_{2}e^{2t}\right) + \left(d_{1}e^{-\frac{1}{2}t} + d_{2}e^{2t}\right)\delta'(t)}\right] - \frac{h'(t)}{\left[\left(-\frac{1}{2}d_{1}e^{-\frac{1}{2}t} + 2d_{2}e^{2t}\right)\delta_{-1}(t) + \left(d_{1}e^{-\frac{1}{2}t} + d_{2}e^{2t}\right)\delta_{0}(t)\right]} - 2\underbrace{\left(d_{1}e^{-\frac{1}{2}t} + d_{2}e^{2t}\right)\delta_{-1}(t)}_{h(t)}$$

$$= 2\delta'(t) + \delta(t)$$

Mettiamo a sistema i corrispettivi delta:

$$\begin{cases} \underline{\delta'(t)}(d_1e^{-\frac{1}{2}t} + d_2e^{2t}) = \underline{\delta'(t)} \\ 2\delta_0(t) \left(-\frac{1}{2}d_1e^{-\frac{1}{2}t} + 2d_2e^{2t} \right) + \delta_0(t)(d_1e^{-\frac{1}{2}t} + d_2e^{2t}) = \delta(t) \end{cases}$$

$$\begin{cases} d_1 + d_2 = 1 \\ -\underline{d_1\delta_0(t)} + 4d_2\delta_0(t) + \underline{d_1\delta_0(t)} + d_2\delta_0(t) = \delta_0(t) \end{cases}$$

$$\begin{cases} d_1 = 1 - d_2 \\ \underline{\delta_0(t)}5d_2 = \underline{\delta_0(t)} \end{cases}$$

$$\begin{cases} d_1 = \frac{4}{5} \\ d_2 = \frac{1}{5} \end{cases}$$

Quindi la risposta forzata è:

$$h(t) = \frac{4}{5}e^{-\frac{1}{2}t}\delta_{-1}(t) + \frac{1}{5}e^{2t}\delta_{-1}(t)$$

1.3 Esercizio 3

Consegna

Dato il seguente sistema a tempo continuo (LTI):

$$v''(t) + 2v'(t) + v(t) = u''(t) + u(t)$$

e le seguenti condizioni iniziali:

$$\begin{cases} v(0) = 4 \\ v'(0) = -2 \end{cases}$$

Calcolare la risposta libera (1) e la risposta forzata/impulsiva del sistema (2).

1. Polinomio caratteristico:

$$s^2 + 2s + 1 = (s+1)^2$$

$$\lambda_1 = -1, \mu_1 = 2$$

$$r = 1$$

$$v(t) = c_{1.0}e^{-t} + c_{1.1}e^{-t}t$$

Per semplicità chiamerò $c_{1,0}=c_1$ e $c_{1,1}=c_2$. Ora derivo v(t):

$$v'(t) = -c_1 e^{-t} - c_2 e^{-t} t + c_2 e^{-t}$$

Applico le condizioni iniziali:

$$\begin{cases} v(0) = 4 \\ v'(0) = -2 \end{cases} \begin{cases} c_1 \stackrel{1}{e^{-t}} + \stackrel{0}{c_2 e^{-t}} t = 4 \\ -c_1 \stackrel{1}{e^{-t}} - \stackrel{0}{c_2 e^{-t}} t + c_2 \stackrel{1}{e^{-t}} = -2 \end{cases} \implies \begin{cases} c_1 = 4 \\ c_2 = 2 \end{cases}$$

Quindi la risposta libera è:

$$v_l(t) = 4e^{-t} + 2e^{-t}t$$

2. Ora calcoliamo la risposta impulsiva.

$$h(t) = \overbrace{d_0}^0 \delta_0(t) + \left[\sum_{i=1}^r \sum_{l=0}^{\mu_i - 1} d_{i,l} e^{\lambda_i t} \frac{t^l}{l!} \right] \delta_{-1}(t)$$
$$= (d_1 e^{-t} + d_2 e^{-t} t) \delta_{-1}(t)$$

Calcoliamo le derivate di h(t):

$$h'(t) = (-d_1e^{-t} + -d_2e^{-t}t + d_2e^{-t})\delta_{-1}(t) + (d_1e^{-t} + d_2e^{-t}t)\delta_0(t)$$

$$h''(t) = (d_1e^{-t} + d_2e^{-t}t - 2(d_2e^{-t}))\delta_{-1}t + 2\delta_0(t)((-d_1e^{-t} + -d_2e^{-t}t + d_2e^{-t})) + \dots$$

$$\dots + (d_1e^{-t} + d_2e^{-t}t)\delta'(t)$$

Ora poniamo v(t) = h(t) e $u(t) = \delta(t)$ nell'equazione del sistema iniziale:

$$h''(t) + 2h'(t) + h(t) = \delta''(t) + \delta(t)$$

Sostituiamo ed eliminiamo i gradini:

$$\underbrace{(d_{1}e^{-t} + d_{2}e^{-t}t - 2(\overline{d_{2}e^{-t}}))\delta_{-1}t + 2\delta_{0}(t)((-d_{1}e^{-t} + -d_{2}e^{-t}t + d_{2}e^{-t})) + (d_{1}e^{-t} + d_{2}e^{-t}t)\delta'(t) + \dots}_{h'(t)} \\
2\underbrace{\left[(-d_{1}e^{-t} + -d_{2}e^{-t}t + \overline{d_{2}e^{-t}})\delta_{-1}(t) + (d_{1}e^{-t} + d_{2}e^{-t}t)\delta_{0}(t)\right]}_{= \delta''(t) + \delta(t)} + \underbrace{(d_{1}e^{-t} + d_{2}e^{-t}t)\delta_{-1}(t)}_{h'(t)} \\
= \delta''(t) + \delta(t)$$

Mettiamo a sistema i corrispettivi delta e poniamo t = 0:

$$\begin{cases} 0 = \delta''(t) \\ (d_1e^{-t} + d_2e^{-t}t)\delta'(t) = 0 \\ 2\delta_0(t)((-d_1e^{-t} + d_2e^{-t}t + d_2e^{-t})) + 2\delta_0(t)(d_1e^{-t} + d_2e^{-t}t) = \delta_0(t) \end{cases}$$

$$\begin{cases} d_1 = 0 \\ 2\delta_0(t)(-d_1 + d_2) + 2d_1\delta_0(t) = \delta_0(t) \end{cases}$$

$$\begin{cases} d_1 = 0 \\ -2d_1\delta_\theta(t) + 2d_2\delta_\theta(t) + 2d_1\delta_\theta(t) = \delta_\theta(t) \end{cases}$$

$$\begin{cases} d_1 = 0 \\ -2d_1\delta_\theta(t) + 2d_2\delta_\theta(t) + 2d_1\delta_\theta(t) = \delta_\theta(t) \end{cases}$$

$$\begin{cases} d_1 = 0 \\ 2d_2 = 1 \Longrightarrow d_2 = \frac{1}{2} \end{cases}$$

Quindi la risposta forzata è:

$$h(t) = \frac{1}{2}e^{-t}t\delta_{-1}(t)$$

2 Esercizi sulla convoluzione e la risposta forzata

2.1 Esercizio 1

calcolare il prodotto di convoluzione tra:

$$h(t) = \delta_0(t) - 2e^{-t}\delta_{-1}(t)$$
$$u(t) = (1 + e^{-t})\delta_{-1}(t)$$

Procediamo con il calcolo della convoluzione utilizzando l'integrale:

$$\begin{split} v_f(t) &= (h*u)(t) = \int_{-\infty}^{+\infty} h(\tau)u(t-\tau)d\tau \\ &= \int_{-\infty}^{+\infty} u(\tau)h(t-\tau)d\tau \\ &= \int_{-\infty}^{+\infty} (\delta_0(\tau) - 2e^{-\tau}\delta_{-1}(\tau)) \cdot (1 + e^{-t+\tau})\delta_{-1}(t-\tau)d\tau \\ &= \int_{-\infty}^{+\infty} (\delta_0(\tau))(1 + e^{-t+\tau})\delta_{-1}(t-\tau)d\tau \\ &= \int_{-\infty}^{+\infty} (\delta_0(\tau))(1 + e^{-t+\tau})\delta_{-1}(t-\tau)d\tau \\ &- 2\left[\int_{-\infty}^{+\infty} e^{-t}(\delta_{-1}(\tau))(1 + e^{-t+\tau})\delta_{-1}(t-\tau)d\tau\right] \\ &= \int_{\infty}^{+\infty} \delta_0(\tau)\delta_{-1}(t-\tau)d\tau + \int_{-\infty}^{+\infty} \delta_0(\tau)e^{-t+\tau}\delta_{-1}(t-\tau)d\tau \\ &- 2\left[\int_{\infty}^{\infty} e^{-t}\delta_{-1}(\tau)\delta_{-1}(t-\tau)d\tau + \int_{-\infty}^{+\infty} e^{-\tau}\delta_{-1}(\tau)e^{-t+\tau}\delta_{-1}(t-\tau)d\tau\right] \end{split}$$

$$\begin{split} &= \int_{0^{-}}^{0^{+}} d\tau + \int_{0^{-}}^{0^{+}} e^{-t+\tau} d\tau - 2 \left[\int_{0}^{t} e^{-\tau} d\tau + \int_{0}^{t} e^{-t} d\tau \right] \\ &= 0 + e^{-t} + 2e^{-t} - 2 + 2e^{-t} t \\ &= 3e^{-t} + 2e^{-t} t - 2 \end{split}$$

3 Esercizi fatti in classe

3.1 Esercizio 1

Consegna

$$v''(t) - 5v'(t) + 4v(t) = u'(t) - 3u(t)$$

$$C.I = \begin{cases} v(0) = 9 \\ v'(0) = 1 \end{cases}$$

$$u(t) = e^t \delta_{-1}(t)$$

- 1. Discutere la stabilità del sistema.
- 2. Determinare la FdT (H(s)) (Solo in Laplace quindi non serve in t)
- 3. Calcolare la risposta impulsiva h(t) (quindi $\mathcal{L}^{-1}[H(s)](t)$)
- 4. Calcolare la risposta totale $v_t(t)$

$$s^{2} - 5s + 4 = 0$$
$$\lambda_{1} = +1, \lambda_{2} = +4, \mu_{i} = 1$$

Sistema instabile poiché $Re(\lambda_i) > 0$.

$$\mathcal{L}[v''(t)] = s^2 V(s) - sv(0) - v'(0) = s^2 V(s) - 1$$
$$-5\mathcal{L}[v'(t)](s) = -5[SV(s) - sv(0)] = -5SV(s)$$

 $\mathcal{L}[v''(t) - 5v'(t) + 4v(t)](s) = \mathcal{L}[u'(t) - 3u(t)](s)$

$$+4\mathcal{L}[v(t)](s) = +4V(s)$$

È sempre sottinteso che $u^i(0) = 0$.

$$\mathcal{L}[u'(t)] = sU(s) + su(0) = sU(s)$$

$$\mathcal{L}[u(t)](s) = -3U(s)$$

Ora che abbiamo i diversi pezzetini possiamo ricostruire l'equazione iniziale:

$$S^{2}V(s) - 1 - 5V(s) + 4V(s) = sU(s) - 3U(s)$$

$$V(s)(S^{2} - 5 + 4) - 1 = sU(s) - 3U(s)$$

$$V(s) = \underbrace{\frac{p(s)}{1}}_{(s-1)(s-4)} + \underbrace{\frac{n(s)}{s-3}}_{(s-1)(s-4)}U(s)$$

Parliamo della BIBO stabilità. Sia λ_i polo di H(s) e $Re(\lambda_i) < 0$ allora il sistema è BIBO stabile. In questo caso abbiamo due poli $\lambda_1 = 1$ e $\lambda_2 = 4$ che sono

entrambi positivi quindi il sistema non è né stabile né BIBO stabile.

2. Calcoliamo la FdT che abbiamo già trovato precedentemente:

$$H(s) = \frac{s-3}{(s-1)(s-4)}$$

3.

$$h(t) = \mathcal{L}^{-1}[H(s)](t)$$

Controlliamo i gradi di n(s) e d(s).

$$V(s) = \frac{n(s)}{d(s)} \Longrightarrow \begin{cases} \underbrace{\deg[n(s)] \geq \deg[d(s)]}_{\text{Sistema proprio}} \\ \underbrace{\deg[n(s)] < \deg[d(s)]}_{\text{Sistema strett. proprio}} \end{cases}$$

Se il sistema è proprio allora \Longrightarrow Divisione fra polinomi poi Fratti semplici e poi antitrasformata. Altrimenti se è strettamente proprio allora \Longrightarrow Fratti semplici e poi antitrasformata.

In questo caso il sistema è strettamente proprio quindi dobbiamo fare i fratti semplici:

$$H(s) = \frac{s-3}{(s-1)(s-4)} = \frac{A}{s-1} + \frac{B}{s-4}$$

Utilizziamo il metodo dei limiti per trovare A e B:

$$c_{i} = \lim_{s \to \lambda_{i}} \frac{d^{\mu-l-1}n(s)}{ds^{s-l-1}d(s)} (s - \lambda)^{\mu}$$

$$A = \lim_{s \to +1} \frac{d^{1-0-1}(s-3)}{ds^{1-0-1}(s-1)(s-4)} (s-1) = \frac{2}{3}$$

$$B = \lim_{s \to +4} \frac{d^{1-0-1}(s-3)}{ds^{1-0-1}(s-4)(s-1)} (s-1) = \frac{1}{3}$$

$$h(t) = \frac{2}{3} \frac{1}{(s-1)} + \frac{1}{3} \frac{1}{(s-4)} \stackrel{\mathcal{L}^{-1}}{=} \left(\frac{2}{3}e^{t} + \frac{1}{3}e^{4t}\right) \delta_{-1}(t)$$

4. Risposta totalen $v_t(t)$:

$$V(s) = \underbrace{\frac{1}{(s-1)(s-4)}}_{V_{I}(s)} + \underbrace{\frac{s-3}{(s-1)(s-4)}}_{V_{f}(s)} U(s)$$

Ora dobbiamo trovare U(s):

$$U(s) = \mathcal{L}[u(t)](s) = \mathcal{L}[e^t \delta_{-1}(t)](s) = \frac{1}{s-1}$$

Quindi:

$$V(s) = \underbrace{\frac{1}{(s-1)(s-4)}}_{V_l(s)} + \underbrace{\frac{s-3}{(s-1)^2(s-4)}U(s)}_{V_f(s)}$$
$$= \frac{s-1+s-3}{(s-1)^2(s-4)}$$
$$= \frac{2s-4}{(s-1)^2(s-4)} = v_t(s)$$

Ora dobbiamo trovare $V_f(s)$:

$$V_f(s) = \frac{A}{(s-1)} + \frac{B}{(s-1)^2} + \frac{C}{(s-4)}$$

Qua ci torna utile il metodo dei limiti:

$$A = \lim_{s \to 1} \frac{d^{2-0-1}(s-1)^2}{ds^{2-0-1}(s-1)^2} \frac{2s-4}{(s-1)^2(s-4)}$$

$$= \frac{d}{ds} \frac{2s-4}{s-4} \Big|_{s=1}$$

$$= \frac{2(s-4)-(2s-4)(1)}{(s-4)^2} \Big|_{s=1}$$

$$= \frac{-4}{(1-4)^2} = -\frac{4}{9}$$

$$B = \lim_{s \to 1} \frac{d^{2-1-1}}{ds^{2-1-1}} (s-1)^2 \frac{2s-4}{(s-1)^2(s-4)}$$
$$= \lim_{s \to 1} \frac{2s-4}{s-4} = \frac{2}{3}$$

$$C = \lim_{s \to 4} \frac{d^{1-0-1}}{ds^{1-0-1}} \underbrace{(s-4)} \frac{2s-4}{(s-1)^2} \underbrace{(s-1)^2}_{s-4}$$
$$= \lim_{s \to 4} \frac{2s-4}{(s-1)^2} = \frac{4}{9}$$

Quindi:

$$V_t(s) = -\frac{4}{9} \frac{1}{(s-1)} + \frac{2}{3} \frac{1}{(s-1)^2} + \frac{4}{9} \frac{1}{(s-4)}$$

Quindi $v_f(t)$, applichiamo l'antitrasformata e otteniamo:

$$v_t(t) = \left(-\frac{4}{9}e^t + \frac{2}{3}te^t + \frac{4}{9}e^{4t}\right)\delta_{-1}(t)$$

3.2 Esercizio 2

Consegna

$$v''(t) + 4v'(t) + 4v(t) = u'(t)$$

$$C.I = \begin{cases} v(0) = 1 \\ v'(0) = 0 \end{cases}$$

$$u(t) = \sin(t)\cos(t)\delta_{-1}(t)$$

- 1. Risposta libera
- 2. Risposta forzata

$$S^{2}V(s) - sv(0) - y'(0) + 4(SV(s) - v(0)) + 4V(s) = sU(s)$$

$$V(s)(s^{2} - 4s + 4) - s - 4 = sU(s)$$

$$V(s) = \frac{s+4}{(s^{2} + 4s + 4)} + \frac{s}{(s^{2} + 4s + 4)}U(s)$$

$$= \frac{s+4}{(s+2)^{2}} + \frac{s}{(s+2)^{2}}U(s)$$

Questo sistema è stabile e quindi anche BIBO stabile.

1.

$$v_l(s) = \frac{s+4}{(s+4)^2} = \frac{A}{s+2} + \frac{B}{(s+2)^2}$$

Troviamo $A \in B$:

$$A = \lim_{s \to -2} \frac{d}{ds} (s+2)^2 \frac{s+4}{(s+2)^2}$$
$$= \lim_{s \to -2} \frac{d(s+4)}{ds} = 1$$

$$B = \lim_{s \to -2} (s+2) \frac{s+4}{(s+2)^2} = 2$$

$$V_l(s) = \frac{1}{s+2} + \frac{2}{(s+2)^2}$$
$$= \mathcal{L}^{-1} \left[\frac{1}{s+2} + \frac{2}{(s+2)^2} \right]$$
$$\stackrel{\mathcal{L}^{-1}}{=} (e^{-2t} + 2te^{-2t}) \delta_{-1}(t)$$

2.

$$v_f(s) = \frac{s}{(s+2)^2} U(s)$$

Troviamo U(s):

$$U(s) = \mathcal{L}^{-1}[u(t)](s)$$

Utilizziamo Eulero per trasformare l'antitrasformata di $u(t) = \sin(t)\cos(t)\delta_{-1}(t)$:

$$\cos(t) = \frac{e^{jt} + e^{-jt}}{2}$$

$$\sin(t) = \frac{e^{jt} - e^{-jt}}{2j}$$

$$= \mathcal{L}\left[\frac{e^{jt} - e^{[jt]}}{2} \frac{e^{jt} + e^{-jt}}{2j} \delta_{-1}(t)\right](s)$$

$$= \frac{1}{4j} \mathcal{L}[(e^{2jt} - e^{-2jt}) \delta_{-1}(t)](s)$$

$$= \frac{1}{4j} \left(\frac{1}{s - 2j} - \frac{1}{s + 2j}\right) = \frac{1}{s^2 + 4}$$

Quindi $V_f(s)$:

$$V_f(s) = H(s)U(s)$$

$$= \frac{s}{(s+2)^2} \frac{1}{s^2+4}$$

$$= \frac{s}{(s+2)^2(s-2j)(s+2j)}$$

$$= \frac{A}{s+2} + \frac{B}{(s+2)^2} + \frac{C}{s-2j} + \frac{D}{s+2j}$$

Troviamo A, B, C, D:

$$A = \lim_{s \to -2} \frac{d}{ds} (s+2)^2 \frac{s}{(s+2)^2 (s^2 - 4)} = \frac{1}{16}$$

$$B = \lim_{s \to -2} (s+2)^2 \frac{s}{(s+2)^2 (s^2 + 4)} = -\frac{1}{4}$$

$$C = \lim_{s \to 2j} (s-2j) \frac{s}{(s+2)^2 (s-2j)(s+2j)} = \frac{1}{16j}$$

$$D = \lim_{s \to -2j} (s+2j) \frac{s}{(s+2)^2 (s+2j)(s-2j)} = -\frac{1}{16i}$$

Andiamo a sostituire e otteniamo:

$$V_f(s) = \frac{1}{16} \frac{1}{s+2} - \frac{1}{4} \frac{1}{(s+2)^2} + \frac{1}{16j} \frac{1}{(s-2j)} - \frac{1}{16j} \frac{1}{(s+2j)}$$

Applichiamo Laplace e otteniamo $v_f(t)$:

$$v_f(t) = \left(\frac{\frac{1}{16}e^{-2t} - \frac{1}{4}te^{-2t} + \underbrace{\frac{1}{16j}e^{2jt} - \frac{1}{16j}e^{-2jt}}_{\left(\frac{e^{2jt} - e^{-2jt}}{2j}\right) = sin(2t)}\right) \delta_{-1}(t)$$

Possiamo semplificare e quindi:

$$v_f(t) = \left(\frac{1}{16}e^{-2t} - \frac{1}{4}te^{-2t} + \frac{1}{8}sin(2t)\right)\delta_{-1}(t)$$