TRUMP, TWEETS AND THE STOCK MARKET

DSI Capstone Project By: Russell Quah

ITABLE OF CONTENTS

Problem statement

PROBLEM Statement

The US market team at a local bank has seen literature on models that are able to predict market movement based on tweets by Donald Trump:

- JP Morgan creating a 'Volfefe index to track tweets vs bond market
- Bank of America has stated that on the days when President Trump tweets a lot, the stock market falls

They have tasked the data science team to build a classification model using Natural Language Processing to predict if Donald Trump's tweets are market moving.

PROBLEM Statement

- Logistic Regression
- XGBoost
- Long Short Term Memory Neural Network
- Evaluate the models based on:
 - accuracy (% predictions the model gets correct, both a significant movement and a non-significant movement)
- precision (% predicted significant movement when it is actually significant movement)
- sensitivity (% predicted significant movement out of all correct predictions)
- choose the best performing model to test it on the holdout csv

Datasets

DATA SETSI

@REALDONALDTRUMP TWEETS

Kaggle dataset

- 04 May '09 to 17 June '20
- 43352 tweets
- 8 columns
- Removed unnecessary features (id, link, mentions and hashtags)

S&P500 RETURNS

Yahoo finance API

- May '09 to June '20
- 2805 days
- 8 columns

TRAIN, VALIDATION, HOLDOUT

Training: 64%

Validation: 16%

Holdout: 20%

Feature engineering & EDA

IFEATURE ENGINEERING ON TWEETS

CYCLICAL DATA

Date was split into cyclical features:

- Month, Day, Hour, Minute
- Sin and Cosine

VADER SENTIMENT ANALYSIS

- Specifically designed to handle social media
- Compound = Positive + Neutral Negative

LOUGHRAN MCDONALD FINANCIAL SENTIMENT ANALYSIS

- Dictionary
- Counts the number of times words appear in 9 different categories

IFEATURE ENGINEERING ON S&P500

INTRADAY DIFFERENCE

Target variable: Opening price - closing price

DEFINING THE POSITIVE CLASS

Positive Class

• 1 standard deviation away from the mean

TOTAL NUMBER OF TWEETS SINCE MAY'09

34,595

TOTAL NUMBER OF TWEETS AS POTUS:

→ 9,644

7.75 AVERAGE* TWEETS A DAY AS POTUS

- + CLASS 9.00 AVERAGE* TWEETS A DAY AS POTUS
- CLASS 7.77 AVERAGE* TWEETS A DAY AS POTUS

WORDCLOUD

WORDCLOUD

POSITIVE CLASS MOST USED WORDS

NEGATIVE CLASS MOST USED WORDS

Modelling

IMODELLING

IMODELLING

IMODEL PERFORMANCE

	gs1 (cvec->Ls)	gs2 (tfidf->Ls)	gs3 (cvec->XGB)	gs4 (tfidf->XGB)	gs6 (Bilateral LSTM)	best_model (cvecc->xgboost)
accuracy(train)	0.661	0.600	0.999	0.992	0.877	0.998
accuracy(val)	0.665	0.591	0.905	0.895	0.806	0.906
precision	0.331	0.455	0.462	0.401	0.087	0.469
sensitivity	0.180	0.177	0.854	0.830	0.200	0.857
F1	0.233	0.255	0.600	0.541	0.122	0.606
roc_auc	0.547	0.552	0.925	0.908	0.512	0.925

Baseline:

• 0.846 of negative class

ROC AUC

IROC AUC

The model is able to accuractely predict with a high degree of certainty the negative class outcome, however, it is unable to perform as well on the positive class.

IMAP OF XGBOOST TREE

Conclusion

CONCLUSION

Best model is CVEC into XGBoost.

- Accuracy of 0.906
- Precision of 0.469
- Sensitivity of 0.857

Recommendation for the US market team:

- On days of positive class, Trump tends to tweet more on average
- The model is able to accurately predict when his tweets will not move the market

Limitations

- Model falls short on precision
- It is not a parametric model
- etc...

THANKS

Does anyone have any questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik** and illustrations by **Stories**

Please keep this slide for attribution.