Sistemas Operativos II

Comunicación entre procesos

Universidad Arturo Jauretche Ingeniería Informática

Docentes:

Ing. Eduardo Kunysz

Ing. Jose Vera

Ing. Daniel Alonso

Introducción

 Con frecuencia los procesos necesitan comunicarse con otros.

 Existe una necesidad de comunicación entre procesos, de preferencia en una forma bien estructurada sin utilización de interrupciones

 A esto de le llama "Comunicación entre procesos" o "IPC"

Cuestiones

- ¿Cómo un proceso puede pasar información a otro?
- ¿Cómo hacer que dos o más procesos no se interpongan entre si?
- Obtener una secuencia apropiada cuando hay dependencias presentes:
 - Ejemplo: si el proceso A produce datos y el proceso B los imprime, B tiene que esperar hasta que A haya producido algún dato antes de empezar a imprimir

iEstas cuestiones también se aplican a hilos!

Mecanismo de comunicación Memoria Compartida.

- Necesitan un mecanismo de sincronización externo.
- La responsabilidad de la comunicación recae en los procesos (el sistema operativo sólo proporciona llamadas para manipular dicha memoria compartida).

Paso de Mensajes.

- La responsabilidad de la comunicación y sincronización recae en el Sistema Operativo que proporciona un enlace lógico entre procesos.
- Los procesos sólo tienen que invocar correctamente a dos llamadas básicas: send y receive (bloqueantes o no).

Problemas de memoria compartida

- El modelo de memoria compartida es difícil o imposible de implementar en ciertos casos:
 - en sistemas con protección de memoria, como sistemas multiusuario, en los que los procesos corren en espacios de direcciones diferentes
 - en sistemas donde los procesos corren en ordenadores diferentes (sistemas distribuidos)
 - en sistemas multiprocesador en los que es deseable mantener flexibilidad a la hora de decidir dónde ubicar los procesos
 - en sistemas multiprocesador en los que se quiere implementar balance de carga (reasignación de procesos en tiempo de

Paso de mensajes

 Los procesos no comparten memoria (variables, objetos, etc.)

 La comunicación se hace mediante operaciones explícitas de envío y recepción

Modelo general

Ventajas del paso de mensajes

- Válido para cualquier arquitectura de computadores
 - sistemas distribuidos
 - arquitecturas paralelas sin memoria compartida
 - también en sistemas de memoria compartida

 No existe el problema universal del acceso en exclusión mutua a datos

Memoria Compartida *Vs* Paso de Mensajes

Ambos esquemas de comunicación
 NO son mutuamente exclusivos

 Podrían utilizarse simultáneamente dentro de un mismo SO, o incluso dentro de un mismo proceso

Cuestiones básicas de la comunicación

- Sincronización entre emisor y receptor
 - Comunicación síncrona/asíncrona

- Identificación en el proceso de comunicación
 - Comunicación directa/indirecta
 - Comunicación simétrica/asimétrica

Características del canal

Comunicación síncrona o asíncrona

- Com. síncrona. El intercambio de un mensaje es una operación atómica que exige la participación simultánea del emisor y el receptor (rendezvous).
- Com. asíncrona. El emisor puede enviar un mensaje sin bloquearse; el receptor lo puede recoger más tarde.

Comunicación síncrona o asíncrona

- Símil:
 - Comunicación síncrona [] llamada telefónica
 - Comunicación asíncrona 🛘 correo postal
- La comunicación síncrona es en principio más sencilla de implementar
- Podemos emular comunicación síncrona usando primitivas de comunicación asíncrona. P.ej. usando SEND y REPLY.
- Podemos emular comunicación asíncrona usando primitivas de comunicación síncrona. Símil: contestador automático

Repercusiones de la comunicación asíncrona

- El emisor puede enviar varios mensajes:
 - NECESIDAD de disponer de búferes
- ¿Cuándo sabe el emisor que su mensaje ha llegado/se ha atendido?
 - conveniencia de operaciones de "acuse de recibo" o de respuesta (send [] receive [] send_reply [] receive reply)

Llamadas bloqueantes / no bloqueantes

- Las operaciones de envío y recepción pueden estar definidas como bloqueantes o no bloqueantes
- Un envío/recepción con bloqueo es un ejemplo de comunicación síncrona
- Un envío/recepción sin bloqueo es un ejemplo de comunicación asíncrona

Identificación: Directa

- Comunicación directa
 - Cada proceso que desea comunicarse debe nombrar explícitamente el destinatario o el remitente de la comunicación
 - enviar(P, mensaje)
 - -Enviar un mensaje al proceso P
 - recibir(Q, mensaje)
 - -Recibir un mensaje del proceso Q

Identificación: Indirecta

- Comunicación indirecta
 - Con la comunicación indirecta, los mensajes se envían a, y se reciben de, buzones de correo (también llamados puertos)
 - enviar(A, mensaje)
 - -Enviar un mensaje al buzón A
 - recibir(A, mensaje)
 - -Recibir un mensaje del buzón A

Comunicación indirecta: PROPIEDADES

- Puede establecerse un enlace entre un par de procesos sólo si ambos tienen un buzón de correo compartido
- Un enlace puede asociarse con mas de dos procesos
- Entre cada par de procesos en comunicación, puede haber una serie de enlaces diferentes, correspondiendo cada enlace a un buzón de correo.

Comunicación indirecta Relaciones emisor - receptor

- Uno a uno: enlace privado entre dos procesos
- Muchos a uno: un proceso ofrece un servicio a un conjunto de procesos (buzón llamado Puerto)
- Uno a muchos: útil para aplicaciones en las que un mensaje se difunda a un conjunto de procesos

Comunicación indirecta

 Un buzón puede ser propiedad de un proceso o del sistema

Comunicación indirecta ejemplo:

 P1, P2, P3 comparten un buzón A. P1 envía un mensaje a A, y P2 y P3 ejecutan cada uno un recibir de A.

¿Qué proceso recibirá el mensaje que envió P1?

Depende de los siguientes métodos:

Comunicación indirecta ejemplo:

- Permitir que c/ enlace esté asociado como máximo a dos procesos
- Permitir que sólo un proceso, como máximo, ejecute una operación de recepción en c/ momento.
- Permitir que el sistema seleccione arbitrariamente que proceso recibirá el mensaje.

Características del buzón de <u>correo</u>

Buzón de correo

Propiedad Proceso

Propiedad Sistema Operativo

- Propietario: aquél que sólo recibe mensajes a través de este buzón
- Usuario: aquél que sólo puede enviar mensajes a dicho buzón de correo

Cuando termina, dicho buzón desaparece

Características del buzón de correo

Buzón de correo

Propiedad Proceso Propiedad Sistema Operativo

- Tiene existencia propia, debe proporcionar mecanismo para:
 - Crear un buzón nuevo
 - Enviar y recibir mensajes a través del buzón
 - Eliminar un buzón de correo

Identificación: Simétrica /asimétrica

- Comunicación simétrica
 - Los procesos tanto receptor como emisor necesitan nombrar al otro para comunicarse
- Comunicación asimétrica
 - Sólo el emisor nombra al destinatario. El destinatario no tiene que nombrar al emisor

 Otra forma más flexible: bulletin boards (tablones) => nadie nombra a nadie

Identificación: Simétrica /asimétrica

- En este esquema las primitivas send()
 y receive() se definen:
 - send(p, mensaje) -> envía un mensaje al proceso P
 - receive(id, mensaje) -> recibe un mensaje de cualquier proceso; a la variable id se le asigna el nombre del proceso con el que se ha llevado a cabo la comunicación.

Desventajas simétrico / asimétrico

- Limitada modularidad de las definiciones de procesos resultantes:
 - Cambiar el id de un proceso requiere que se modifiquen las definiciones del resto de los procesos.

Cualquier técnica de **precodificación**, en la que los identificadores deban establecerse explícitamente es menos deseable que las técnicas basadas en **indirecciones**

Características del canal (1)

- Punto a punto, multipunto
- Unidireccional, bidireccional
- Capacidad del canal
 - cero
 - limitada
 - infinita (teórico)

Características del canal (2)

- Mensajes:
 - Tamaño fijo o variable
 - Canales con tipo o sin tipo
 - Paso por copia o por referencia (icuidado!)

Tamaño de mensaje fijo

Minimiza el procesamiento

 Si se pasan gran cantidad de datos, los datos se ponen en un archivo y el mensaje hace referencia al archivo

Tamaño de mensaje variable

- Cabecera: información sobre el mensaje
- Cuerpo: contenido real del mensaje

Características del canal de comunicación: directa

- Comunicación directa
 - Se establece automáticamente
 - Un canal se asocia a exactamente dos procesos
 - Entre cada par de procesos sólo existe un canal
 - El enlace puede ser unidireccional, pero suele ser bidireccional

Características del canal de comunicación: indirecta

- Comunicación indirecta
 - Se establece un canal entre un par de procesos sólo si tienen un buzón compartido
 - Un canal puede estar asociado a más de dos procesos
 - Entre cada par de procesos en comunicación puede haber varios enlaces distintos, cada uno de los cuales corresponderá a un buzón
 - Los enlaces pueden ser unidireccionales o bidireccionales

- 1 máquina => los mensajes se implementan (generalmente) en memoria compartida
 - Fallo => falla todo el sistema

- Entornos distribuidos => procesos residen en diferentes máquinas
 - Los mensajes se transfieren por líneas de comunicación
 - La probabilidad de que ocurra un error durante la comunicación y el procesamiento es mucho mayor que en un entorno de una sola máquina

 Cuando ocurre un fallo en un sistema, sea centralizado o distribuido, el sistema debe intentar recuperarse del error

- Algunas situaciones de error:
 - El emisor o el receptor podría terminar antes de que se procese un mensaje
 - P espera un mensaje de Q (proceso terminado)
 - P envía un mensaje a Q (proceso terminado)

- Mensajes perdidos
 - Fallo hardware o de la línea de comunicación
- Tres métodos para enfrentar este suceso en función de quien asume la responsabilidad de detectar el fallo:
 - -SO
 - Emisor
 - SO/Emisor

- No siempre es necesario detectar los mensajes perdidos => protocolos de red que garantizan la confiabilidad
- ¿Cómo detectar la pérdida de mensajes?
 - El método de detección más común consiste en emplear tiempos límite o plazos

- Mensajes alterados
 - es común el uso de códigos de verificación de errores (paridad, etc...)

Bibliografía

- Cap 2, Tanembaum "Sistemas Operativos modernos"
- Cap 4, William Stallings "Sistemas Operativos"
- Cap 3, Silberschatz "Fundamentos de sistemas operativos"