DEPARTMENT OF ELECTRICAL ENGINEERING FIRST YEAR E.T. LAB EXP. NO. – 4

THREE PHASE POWER MEASUREMENT

OBJECTIVES:

To measure power in a three phase circuit under

- i) balanced resistive load condition.
- ii) balanced reactive load condition.
- iii) unbalanced resistive load condition.
- iv) unbalanced reactive load condition.

BALANCED LOAD

CIRCUIT DIAGRAM

(A) Resistive Circuit:

Fig.1

- 1. Connect the circuit as shown in Fig.1
- 2. Adjust the ganged rheostat for the maximum resistance.
- 3. Close switch S1.
- 4. Read the meters to obtain V_L , I_1 , I_2 and I_3 . Note the wattmeter reading W_1 and W_2 (Note the multiplying factor.).
- 5. Vary the load resistance and obtain at least three sets of observations, the current should not exceed the limit (4.1 A).
- 6. Tabulate the readings and check the results by completing the calculations indicated in the table.
- 7. For any one above situation, measure the voltage between neutral and the start point of the rheostat connection and note it down.

OBSERVATION TABLE – 1 (Three phase power in a balanced resistive load)

Sl.	V_{L}	I_1	I_2	I ₃	$\mathbf{W_1}$	\mathbf{W}_{2}	Calculated		Error
No.							power (Wc)=	$\mathbf{W_m} =$	Wm - Wc
	(V)	(A)	(A)	(A)	(W)	(W)	$(\mathbf{V_L}/\sqrt{3})\mathbf{x}$	(**** ****)	Wc
							$(I_1+I_2+I_3)$	$(\mathbf{W}_1 + \mathbf{W}_2)$	x 100%
						ĺ			

(B) Capacitive Circuit:

Fig.2

- 1. Connect the circuit as shown in Fig.2
- 2. Switch on the supply.
- 3. Close switch S1.
- 4. Read the meters to obtain V_L , I_1 , I_2 and I_3 . Note the wattmeter readings W_1 and W_2 with proper sign. Calculate W=W1+W2 (Note the multiplying factor.)
- 5. Measure the voltage between neutral and the start point of the capacitor connection and note it down.

OBSERVATION TABLE – 2 (Three phase power in a balanced capacitive load)

SI. No.	V _L (V)	(A)	I ₂ (A)	I ₃ (A)	(W)	(W)	Error= (W1 + W2)

UNBALANCED LOAD

CIRCUIT DIAGRAM

(A) Resistive Circuit:

Fig.3

- 1. Connect the circuit as shown in Fig.3.
- 2. Use three separate rheostats of 26 Ω , 4.1A and connect in a star.
- 3. Adjust the three rheostats at the maximum values.
- 4. Close switch S1 and take three sets of observation for different rheostat settings such that the reading of I_1 , I_2 and I_3 in each set is appreciably different to create unbalanced loading condition. The current should not exceed the limits in each arm.
- 5. Tabulate and check the results by completing the computations indicated in Table-3.
- 6. For any one above situation, measure the voltage between neutral and the star point of the rheostat connection and note it down.

Sl. No.	(V)	(V)	V ₃ (V)	I ₁ (A)	I ₂ (A)	I ₃ (A)	(W)	W ₂ (W)	Calculated Power Wc =V ₁ I ₁ +V ₂ I ₂ +V ₃ I ₃	$W_{m} = \\ (W_{1} + W_{2})$	Error Wm - Wc Wc X 100%

(B)Capacitive Circuit:

Fig.4

- 1. Connect the circuit as shown in Fig.4
- 2. Adjust the three rheostats at the maximum values.
- 3. Close switch S1 and S2 and note down the readings for two cases (70uF and 35 uF).
- 4. Tabulate and check the results after completing the computations as in Table:-4.
- 5. For any one above situation, measure the voltage between neutral and the star point of the rheostat connection and note it down.

Capacitance	(V)	(V)	(V)	I ₁ (A)	(A)	I ₃ (A)	(W)	W ₂ (W)	Calculated Power Wc =V ₁ I ₁ +V ₂ I ₂ +V ₃ I ₃	Wm = (W ₁ +W ₂)	Error Wm - Wc Wc x 100%
70uF											
35uF											

Special Precaution- Discharge the capacitors before further connection.

DISCUSSION:

- 1. What do you understand by a balanced three-phase load?
- 2. How would you measure power using a) Three watt meters and b) One wattmeter for balanced/unbalanced loads?
- 3. Is it possible to measure power factor of the balanced (three –phase load by two-wattmeter method)?
- 4. Draw the phasor diagrams for the four situations in the experiment.
- 5. Incase S2 is open in Fig.4 for case 1 (70uF), will the wattmeter readings change? Discuss.
- 6. Comment on the neutral to start point voltage for each case.