Devoir maison 16

Le premier exercice est obligatoire. Pour la suite, vous traiterez soit l'exercice 2 soit l'exercice 2 bis (plus dur). Et de même, vous traiterez soit l'exercice 3 soit l'exercice 3 bis (plus dur).

► Exercice 1 : endomorphismes laissant stables toutes les droites

Soit **K** un corps, soit *E* un **K**-espace vectoriel, et soit $u \in \mathcal{L}(E)$ un endomorphisme de *E*.

On suppose que toutes les droites vectorielles de E sont stables par u, c'est-à-dire que pour tout $x \in E \setminus \{0_E\}$, Vect(x) est stable par u.

1. Justifier que pour tout $x \in E \setminus \{0_E\}$, il existe un unique $\lambda \in K$ tel que $u(x) = \lambda x$.

Dans la suite, pour $x \in E \setminus \{0_E\}$, on note λ_x l'unique scalaire tel que $u(x) = \lambda_x x$.

- **2.** Soient x et y deux vecteurs non nuls de E.
 - **a.** Prouver que si la famille (x, y) est liée, alors $\lambda_x = \lambda_y$.
 - **b.** Montrer que si (x, y) est libre, alors $\lambda_x = \lambda_y$ (on pourra considérer u(x + y)).
- 3. Prouver que u est une homothétie de E.

Fun fact : cet exercice montre que dans un cadre particulier, on peut échanger un quantificateur universel et un quantificateur existentiel.

En effet, nous venons de dire que si $\forall x \in E, \exists \lambda \in K, u(x) = \lambda x, alors \exists \lambda \in K, \forall x \in E, u(x) = \lambda x.$

► Exercice 2

Soient E, F, G trois **K**-espaces vectoriels, et soient $f \in \mathcal{L}(E, F), g \in \mathcal{L}(F, G)$.

- **1.** Montrer que $\operatorname{Ker}(g \circ f) = \operatorname{Ker} f \iff \operatorname{Ker} g \cap \operatorname{Im} f = \{0_F\}.$
- 2. Montrer que $\text{Im}(q \circ f) = \text{Im}(q) \iff \text{Ker } q + \text{Im } f = F$.

\blacktriangleright Exercice 2 bis : endomorphismes de $\mathcal{M}_n(\mathbb{C})$ colinéaires à la trace.

Soit $n \in \mathbb{N}^*$ et soit $\varphi \in \mathcal{L}(\mathcal{M}_n(\mathbb{C}), \mathbb{C})$.

Montrer que $\varphi \in \text{Vect}(\text{tr})$ si et seulement si $\forall A, B \in \mathcal{M}_n(\mathbb{C}), \varphi(AB) = \varphi(BA)$.

► Exercice 3 : composée de deux projecteurs qui commutent

Soit E un R-espace vectoriel et soient $p, q \in \mathcal{L}(E)$ deux projecteurs de E qui commutent (donc avec $p \circ q = q \circ p$). Montrer que $p \circ q$ est un projecteur, avec $\operatorname{Ker}(p \circ q) = \operatorname{Ker} p + \operatorname{Ker} q$ et $\operatorname{Im}(p \circ q) = \operatorname{Im} p \cap \operatorname{Im} q$.

► Exercice 3 bis : théorème de Maschke

Dans tout l'exercice, E désigne un espace vectoriel, et F est un sous-espace vectoriel de E, non réduit à $\{0_E\}$ ni égal à E.

On suppose que F admet un supplémentaire H dans E (ce qui est toujours le cas mais que nous admettons pour l'instant, nous le prouverons bientôt dans le cas de la dimension finie), et on note q la projection sur F parallèlement à H.

On suppose qu'il existe un sous-groupe fini G de GL(E) tel que F soit stable par tous les éléments de G (on dit que F est stable par G).

Le but de l'exercice est de prouver que F admet alors un supplémentaire qui est lui aussi stable par G.

- 1. Soient f et g deux endomorphismes de E qui commutent. Prouver que $\operatorname{Im} f$ et $\operatorname{Ker} f$ sont stables par g.
- 2. On pose $p = \frac{1}{|G|} \sum_{g \in G} g \circ q \circ g^{-1}$.

Montrer que $p \in \mathcal{L}(E)$, puis que son image est incluse dans F. Prouver alors que p est un projecteur dont l'image est F.

- 3. Montrer que p commute avec tous les éléments de G
- 4. Conclure.