Chapter 4: Limits and Continuity

Author: Meng-Gen Tsai Email: plover@gmail.com

Continuity of real-valued functions

Exercise 4.19. Let f be continuous on [a,b] and define g as follows: g(a) = f(a) and, for $a < x \le b$, let g(x) be the maximum value of f in the subinterval [a,x]. Show that g is continuous on [a,b].

Indeed, $g(x) = \max_{a < t < x} f(t)$ for $x \in [a, b]$.

Proof.

- (1) f is continuous on [a,b] at a point $p \iff$ Given any $\epsilon' > 0$, there exists $\delta' > 0$ such that $|f(x) f(p)| < \epsilon'$ whenever $|x p| < \delta'$ (and $x \in [a,b]$). We left ϵ' and δ' undecided temporarily.
- (2) To estimate g on

$$[p-\delta',p+\delta']\cap [a,b],$$

we need to study the behavior of f on $[a, p + \delta'] \cap [a, b]$ (by the definition of g(x)), and then use the continuity of f to establish the desired result.

- (3) Look at where f takes the maximum value over on $[a, p + \delta'] \cap [a, b]$ at. There are two possible cases (might overlapped):
 - (a) At a point in $[a, p \delta'] \cap [a, b]$. In this case g is constant on $[p \delta', p + \delta'] \cap [a, b]$, or |g(x) g(p)| = 0.
 - (b) At a point $q \in (p \delta', p + \delta'] \cap [a, b]$. For any $x \in [p \delta', p + \delta'] \cap [a, b]$,
 - (i) $f(p) \epsilon' < g(x)$ by the maximality of g on [a, x].
 - (ii) $g(x) \leq f(q) < f(p) + \epsilon'$ since g is an increasing function and f takes the maximum value over on $[a, p + \delta'] \cap [a, b]$ at $q \in (p \delta', p + \delta'] \cap [a, b]$.

By (i)(i),

$$f(p) - \epsilon' < g(x) < f(p) + \epsilon'$$

for any $x \in [p - \delta', p + \delta'] \cap [a, b]$ (especially x = p). Therefore,

$$|g(x) - g(p)| < 2\epsilon'$$
 whenever $|x - p| < \delta'$ (and $x \in [a, b]$).

By (a)(b), we have $|g(x)-g(p)|<2\epsilon'$ whenever $|x-p|<\delta'(\text{and }x\in[a,b])$ in any cases.

(4) Retake $\epsilon' = \frac{\epsilon}{2} > 0$ and $\delta = \delta' > 0$.

Continuity in metric spaces

In Exercise 4.29 through 4.33, we assume that $f: S \to T$ is a function from one metric space (S, d_S) to another (T, d_T) .

Exercise 4.29. Prove that f is continuous on S if and only if

$$f^{-1}(B^{\circ}) \subseteq (f^{-1}(B))^{\circ}$$
 for every subset B of T.

Denote the interior of any set S by S° for convenience sake.

Proof. Only assume S and T are topological spaces.

- (1) (\Longrightarrow) Given any $x \in f^{-1}(B^{\circ})$. $f(x) \in B^{\circ}$. So there is an open neighborhood $V \subseteq B^{\circ} \subseteq B$ containing f(x). So $x \in f^{-1}(V) \subseteq f^{-1}(B)$. Since f is continuous, the inverse image $f^{-1}(V)$ is open in S. Hence, $f^{-1}(V)$ is an open neighborhood containing x in $f^{-1}(B)$. $x \in (f^{-1}(B))^{\circ}$.
- (2) (\iff) Given any open subset V of T. $V = V^{\circ}$ clearly. So

$$f^{-1}(V) = f^{-1}(V^{\circ}) \subseteq (f^{-1}(V))^{\circ} \subseteq f^{-1}(V),$$

that is, $f^{-1}(V) = (f^{-1}(V))^{\circ}$, or the inverse image $f^{-1}(V)$ is open in S for every open subset V of T, or f is continuous.