Bad Arguments

James McIvor

I have written some arguments for various claims in HW2, # 7. Each contains (at least) on logical, stylistic, or perhaps a missing explanation of some point. Read these carefully and mathink the errors are. Try to pin down exactly what's wrong in each case. Discuss them with your logical of (v_1, \ldots, v_{n-1}) is linearly independent, and $v_n \in \mathbb{R}^n$.	ark where you
1. Claim: If (v_1, \ldots, v_{n-1}) is linearly independent, and $v_n \notin \text{Span}(v_1, \ldots, v_{n-1})$, then (linearly independent.	
<i>Proof.</i> If (v_1, \ldots, v_n) were linearly dependent, then by the linear dependence lemma 2.4, in the span of (v_1, \ldots, v_{n-1}) , contradicting our choice of v_n .	v_n would be
2. Claim:If V is infinite-dimensional, then there exists a sequence v_1, v_2, \ldots such that (linearly independent, for all n .	$v_1,\ldots,v_n)$ is
Proof 1. Assume V is infinite-dimensional. The list (v_1) is linearly independent, because cannot be the zero space, since it's infinite-dimensional). For every $n > 1$, the list (independent because v_n is not in the span of (v_1, \ldots, v_{n-1}) (if it were, V would have dimensional, contradiction). Thus we have produced an infinite sequence of v_i 's that are independent from each other.	v_1,\ldots,v_n) is
Proof 2. We prove the contrapositive: if there exists a sequence v_1, v_2, \ldots such that (v_1, \ldots, v_k) is independent for all n , then V is finite-dimensional. To show this, let v_1, v_2, \ldots sequence. Since (v_1, \ldots, v_n) is not linearly independent for all n , there is some k such that (v_1, \ldots, v_k) is dependent. Let's choose k to be the smallest positive integer such that (v_1, \ldots, v_k) is dependent. Then by removing the k th vector, we get an independent list (v_1, \ldots, v_{k-1}) . We therefore 2.12 that every linearly independent list can be extended to a basis. Since (v_1, \ldots, v_k) an independent list which, whenever a vector v_k is added, yields a dependent list, it must a basis. Therefore V has dimension k . In particular, it is finite-dimensional.	that the list (v_1, \dots, v_k) is (v_1, \dots, v_k)
2 (%)	
3. Claim: If there exists a sequence v_1, v_2, \ldots such that (v_1, \ldots, v_n) is linearly independent then V is infinite-dimensional.	t, for all n ,
<i>Proof.</i> Suppose for contradiction that V is finite-dimensional. Then by definition of finite-dimensional is a list that spans V . Let this list be (v_1, \ldots, v_n) . By our assumption, the list (v_1, \ldots, v_n) is linearly independent. But this independent list is longer than our spanning list (v_1, \ldots, v_n) theorem 2.6 says that any spanning list is at least as long as any independent list. So we have a contradiction, and hence V is infinite-dimensional.	(v_n, v_{n+1})
4 Claim: All moth CCT.	
4. Claim: All math GSIs are hedgehogs.	
Proof. The statement is false! We give a counterexample: James is not a hedgehog.	, 🗆 .