Problem 1. Determine the Fourier series coefficients of the following discrete-time signals by assume the fundamental period is N=8.

Problem 2. The following periodic functional

$$x(t) = \sum_{m = -\infty}^{\infty} \delta(t - 3m) + \delta(t - 1 - 3m) - \delta(t - 2 - 3m)$$

is the input to an LSI system that maps e^{st} into $(e^{s/4} - e^{-s/4})e^{st}$ (for all $s \in \mathbb{C}$). If the Fourier series coefficients of the output signal, y(t), are denoted by b_k , find b_3 .

Problem 3. For each set of Fourier series coefficients below, find the explicit form of the continuous-domain periodic signal with period T=4 in time (determine the signal within $0 \le t < 4$).

(1)
$$a_k = \begin{cases} jk & |k| < 3\\ 0 & \text{otherwise} \end{cases}$$
 (2) $b_k = \begin{cases} 1 & k \text{ odd}\\ 0 & k \text{ even} \end{cases}$

Problem 4. x[n] is a periodic signal with period N.

- (1) Show that if N is even and $x[n] = -x[n + \frac{N}{2}]$, then, a_k would be zero for even ks. $(a_k$ is the kth Fourier series coefficient of x[n].)
- (2) Show that if N is divisible by an integer m and $\sum_{r=0}^{(N/m)-1} x[n+r\frac{N}{m}] = 0$, then, a_k would be zero if k is a mutiple of m.

Problem 5.

(1) x[n] and y[n] are two periodic signals with period N. If the Fourier series coefficients of these signals are denoted by a_k and b_k , respectively, find (with proof) the Fourier series coefficients of the signal z[n] = x[n]y[n].

(2) If N = 5 and for $3 \le k < 8$ we have $a_k = (-1)^k b_k = k$, find the Fourier series coefficients of the signal z[n].

Problem 6. x(t) is a real periodic continuous-domain signal with period T=6, Fourier series coefficients $\{a_k\}_k$, and the following properties:

- $\bullet \ x(t) = -x(t-3)$
- $\bullet \ \forall |k| > 3, \quad a_k = 0$
- $a_3 a_{-3}^* = 25$
- $\frac{1}{6} \int_{-3}^{3} |x(t)|^2 dt = 50$

Determine x(t) based on the given information.