Life Expectancy Analysis

George Matlis, Xaris Moutafidis

Aristotle University of Thessaloniki

February 14, 2024

Presentation Contents

- Project Overview
- 2 Variables Description
- 3 Hypothesis Testing
- 4 Correlation Analysis
- Model Building

Project Overview

This project aims to

- Describe the variables
- Define theoretical assumptions about the variables and the data
- Test the theoretical assumptions using the proper statistical testing methods
- Compute the correlation of the independent variables with the target variable
- Build models using the target variable and the independent variables

Variables Description

Name	Definition	Categories
Country	Country name	
Year	Year	
Status	Status	Developed Developing
Life Expectancy	Life Expectancy in age	
Adult Mortality(both sexes)	Probability of dying between 15 and 60 years per 1000 population	
Infant Deaths	Number of Infant Deaths per 1000 population	
Alcohol	Alcohol, recorded per capita (15+) consumption (in litres of pure alcohol)	
Percentage Expenditure	Expenditure on health as a percentage of Gross Domestic Product per capita (%)	
Hepatitis B	Hepatitis B immunization coverage among 1-year-olds (%)	
Measles	Measles - number of reported cases per 1000 population	
BMI	Average Body Mass Index of entire population	
Under-five Deaths	Number of under-five deaths per 1000 population	
Polio	Polio (Pol3) immunization coverage among 1-year-olds (%)	
Total Expenditure	General government expenditure on health as a percentage of total government expenditure (%)	
Diphtheria	Diphtheria tetanus toxoid and pertussis (DTP3) immunization coverage among 1-year-olds (%)	
HIV/AIDS	Deaths per 1 000 live births HIV/AIDS (0-4 years)	
GDP	Gross Domestic Product per capita (in USD)	
Population	Population of the country	
Thinness 1-19 years	Prevalence of thinness among children and adolescents for Age 10 to 19 (%)	
Thinness 5-9 years	Prevalence of thinness among children for Age 5 to 9(%)	
Income Composition of Resources	Human Development Index in terms of income composition of resources (index ranging from 0 to 1)	
Schooling	Number of years of Schooling	1=Low (≤8) 2=Medium (>8 & ≤12) 3=High (>12)

Independent Variables Distribution

Life Expectancy

Status Variable

Hypothesis: The level of development in a country is expected to influence life expectancy


```
group: Developed vars n mean sd median trimmed mad min max range skew kurtosis se X1 1 512 79.2 3.93 79.25 79.15 3.63 69.9 89 19.1 0.09 -0.14 0.17 group: Developing vars n mean sd median trimmed mad min max range skew kurtosis se X1 1 2416 67.11 9.01 69 67.81 8.45 36.3 89 52.7 -0.62 -0.37 0.18
```

data: Life Expectancy by Status W = 1131521, p-value < 2.2e-16 alternative hypothesis: true location shift is not equal to 0

Descriptive statistics by group

Schooling Variable

Hypothesis: The number of years of schooling has an impact on life expectancy.

data: Life Expectancy by Schooling Kruskal-Wallis chi-squared = 1479.3, df = 2, p-value < 2.2e-16

Pairwise comparisons using Wilcoxon rank sum test with continuity correction data: le\$`Life Expectancy` and le\$Schooling

Low Medium <2e-16 -High <2e-16 <2e-16

Medium P value adjustment method: BH

We assume that the following variables will have a significant impact to *Life Expectancy*:

- Adult Mortality: High mortality probability in both genders lowers life expectancy, lacking insights into specific causes
- Percentage Expenditure: A substantial allocation of a country's GDP per capita to health-related activities suggests a potential link to increased life expectancy
- Body Mass Index (BMI): A higher average body mass suggests an unhealthy lifestyle, potentially contributing to lower mortality
- **Total Expenditure:** Government investment in healthcare is anticipated to boost life expectancy
- **GDP**: A higher GDP correlates with improved life expectancy through increased investments in healthcare, education, and living standards
- Income Composition of Resources: Higher income links to better healthcare, living standards, and education

Table: Correlation table for a limited number of indicators that demonstrated a meaningful and strong correlation with life expectancy

Indicator	r
Adult Mortality	-0.65
Infant Deaths	-0.60
Percentage Expenditure	0.43
BMI	0.58
Under-five Deaths	-0.62
Polio	0.53
Diphtheria	0.54
HIV/AIDS	-0.75
GDP	0.64
Thinness 1-19	-0.61
Thinenss 5-9	-0.62
Income Composition of Resources	0.86

Linear Regression Model

Among the indicators showing a correlation with Life Expectancy, only the *Thinness 5-9 years* variable was excluded from the linear regression model using the forward insertion method.

Step	Df	Deviance	Resid. Df	Resid. Dev	AIC
<i<chr>>></i<chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
	NA	NA	2449	227595.19	11104.127
+ 'Income Composition of Resources'	-1	124704.85642	2448	102890.33	9161.060
+ `HIV/AIDS`	-1	34988.01000	2447	67902.32	8144.856
+ Schooling	-2	12145.13925	2445	55757.18	7666.050
+ `Adult Mortality`	-1	8985.83780	2444	46771.34	7237.498
+ Status	-1	2584.40399	2443	44186.94	7100.236
+ Diphtheria	-1	2380.59323	2442	41806.35	6966.552
+ BMI	-1	1393.95677	2441	40412.39	6885.469
+ `Percentage Expenditure`	-1	1055.56633	2440	39356.82	6822.624
+ Polio	-1	434.68216	2439	38922.14	6797.414
+ ThinnessAyears	-1	340.43582	2438	38581.71	6777.891
+ `Under-five Deaths`	-1	49.43720	2437	38532.27	6776.750
+ `Infant Deaths`	-1	1996.95007	2436	36535.32	6648.369
+ GDP	-1	64.19707	2435	36471.12	6646.060

Linear Regression Model

However, the model summary indicated that *GDP* was not statistically different from zero, thereby removing it from the final model.

```
Residuals:
    Min
              10
                   Median
                                       Max
-19.2955 -2.1240 -0.0719
                            2.1326 15.0807
Coefficients:
                                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                 5.944e+01 5.607e-01 106.017 < 2e-16 ***
StatusDeveloping
                                 -2.239e+00 2.479e-01 -9.031 < 2e-16 ***
                                 -1.704e-02 7.914e-04 -21.536 < 2e-16 ***
`Adult Mortalitv`
`Infant Deaths`
                                 9.304e-02 7.907e-03 11.766 < 2e-16 ***
`Percentage Expenditure`
                                 3.891e-04 4.217e-05 9.229 < 2e-16 ***
RMT
                                 3.651e-02 4.929e-03
                                                       7.407 1.72e-13 ***
`Under-five Deaths`
                                 -6.954e-02 5.821e-03 -11.946 < 2e-16 ***
Polio
                                 2.465e-02 4.455e-03 5.533 3.45e-08 ***
                                 2.491e-02 4.489e-03 5.549 3.14e-08 ***
Diphtheria
`HIV/AIDS`
                                 -4.761e-01 1.694e-02 -28.111 < 2e-16 ***
                                 -8.200e-02 2.255e-02 -3.636 0.000282 ***
ThinnessAvears
`Income Composition of Resources` 8.107e+00 5.905e-01 13.729 < 2e-16 ***
                                 3.777e+00 2.877e-01
                                                       13.131 < 2e-16 ***
SchoolinaMedium
SchoolingHigh
                                 6.794e+00 3.559e-01 19.087 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.859 on 2714 degrees of freedom
  (210 observations deleted due to missingness)
Multiple R-squared: 0.8296.
                              Adjusted R-squared: 0.8288
F-statistic: 1016 on 13 and 2714 DF, p-value: < 2.2e-16
```

Linear Regression Model Unique Countries

After keeping only one entry per country in our dataset, we have created the following model.

```
Residuals:
   Min
          10 Median
-9.3340 -1.5518 0.1779 1.5454 8.8663
Coefficients:
                             Estimate Std. Error t value Pr(>|t|)
                            48.992050 2.026358 24.177 < 2e-16 ***
(Intercept)
`HTV/ATDS`
                           -1.267662 0.262873 -4.822 4.92e-06 ***
`Adult Mortality`
                           -0.023041
                                      0.004908 -4.695 8.25e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.623 on 103 degrees of freedom
Multiple R-squared: 0.9158, Adjusted R-squared: 0.9133
F-statistic: 373.4 on 3 and 103 DF, p-value: < 2.2e-16
```

Evaluating The Model

Table: Model error evaluation for a training set of 80%

Metric	Model1 Error	Model2 Error		
ME	0.09	-0.48		
MdE	0.03	-0.083		
MAE	2.79	2.31		
MdAE	2.22	1.63		
MMRE	0.04	0.04		
MdMRE	0.03	0.02		
MMER	0.041	0.034		
MdMER	0.03	0.023		

Thank You!