How Central Banks Should Use Their Balance Sheets to Control Flight-to-Safety

Fengfan Xiang

University of Western Ontario

May 27, 2025

Flight-to-Safety

- ▶ Investors reallocate their portfolio from riskier assets toward safer ones
- ▶ Reflect *large shifts in asset demand* during financial crises

Flight-to-Safety

- ▶ Investors reallocate their portfolio from riskier assets toward safer ones
- ▶ Reflect *large shifts in asset demand* during financial crises

My focus: panics in the wholesale banking sector

- Beyond the coverage of financial regulations and supervision
 - Wholesale banks: fin. intermediaries operate outside of the regular banking system (BIS and Financial Stability Board: e.g., money market funds, hedge funds)
 - Held \$63 trillion in 2020, representing 79% of global GDP (S&P Global)
- ► Have driven several flight-to-safety events in the last decades
 - September 2008: \$400B withdrawal (2% of U.S. GDP); March 2020: \$100B withdrawal

This Paper

Implications of wholesale banking panics for central bank balance sheet policies

Key finding: Balance sheet expansions *mitigate panics but reduce asset returns/welfare*

- Expansions through open market operations involve purchasing Treasury bills
 - Lower T-bill returns → reduce investors' incentive to seek refuge in them
 - Decreased returns hinder transactions involving T-bills, like repo transactions
 - General asset returns/welfare reduction through endogenous shifts in asset demand
 - Mitigating flight-to-safety \longrightarrow increased demand for bank liabilities, bidding down returns

Endogenous shifts in asset demand can lead to unintended policy implications!

Model

Three-period Two-Sector Banking Model

- ► Three sets of private agents: convert labor (h) to goods (c) one-for-one
 - 1. Measure one of depositors:

$$\underbrace{-h_1}_{\text{work and deposit}} \underbrace{+u(c_2)}_{\text{consume}} \underbrace{-h_3}_{\text{work to pay taxes}} \text{ where } -c\frac{u''(c)}{u'(c)} < 1 \text{ and } u(0) = 0$$

- 2. Measure one of producers: $-h_2$ + c_3 consume returns
- 3. Infinite measure of bankers self-select to operate retail or wholesale banks:

$$c_1^B - h_1^B + c_3^B - h_3^B$$

work in t = 1 to raise (sweat) equity and in t = 3 to pay debts; consume profits

► Government: fiscal authority and central bank ► details

Trading Frictions Give Rise to Demand for Assets

- ► Exchanges are essential because goods are perishable
 - Depositors trade bilaterally with producers in period 2, making take-it-or-leave-it offer
- lackbox Limited commitment \longrightarrow no unsecured IOU \longrightarrow exchanges are supported by assets
 - Depositors and banks trade goods and assets in a Walrasian market in period 1

Underlying assets

- ► Central bank reserves: restricted to retail banks only (less liquid)
- ► Government bonds: everyone, including depositors, can hold them (liquid)

Banking & Risk of Wholesale Banking Failure

- ▶ Banks have access to a **collateral technology** to secure their liabilities
 - Deposit claims: A valid means of payment between depositors and producers
 - Interbank loans: Allow wholesale banks to hold reserves indirectly
- lacktriangle An *exogenous* fraction $1-\delta$ of wholesale banks fail in period 2 (collapse in collateral tech.)
 - Failed banks default on their liabilities and abscond with assets

Risk of Banking Failure Sparks Wholesale Banking Panics (Gertler and Kiyotaki, 2015)

- Depositors make their withdrawal decision with imperfect information in period 1
- **Panicking depositors** choose to withdraw with an **endogenous** probability η
 - Also, the fraction of panicking depositors flee to bonds, capturing the severity of panics

Retail Bank retail bank's problem

- 1. Deposit contract: required deposits (k^r), deposit claims (d^r) (secured and tradeable IOUs)
- 2. Financial portfolio: reserves (m), government bonds (b^r), interbank borrowing (ℓ^r)

Subject to a leverage constraint (0 $< \theta <$ 1) (collateral constraint holds automatically)

- \triangleright A fraction θ of their return on assets should cover their payments on liabilities
- ▶ Finance 1θ of their assets with bank capital (sweat equity) \longrightarrow balance sheet cost

Asset	Liability & Equity	
$r^m m$	d^r	
r^bb^r	$r^\ell\ell^r$	
	e ► equity	

- 1. Deposit contract: k^w , quantity of bonds if withdrawal (b'), and d^w
 - $oldsymbol{
 ho}$ of depositors must trade with bonds (demand for bonds to support wholesale payments)
- 2. Financial portfolio: government bonds (b^w), interbank lending (ℓ^w)

Subject to a collateral constraint (no leverage requirement \longrightarrow no bank capital)

Asset	Liability		
r^bb^w	$r^b[ho+(1- ho){\color{red}\eta}]b'$		
$r^\ell\ell^w$	$(1- ho)(1-{\color{red}\eta})d^w$		

Endogenous withdrawal probability η adjusts the composition bank liabilities

Will wholesale bank depositors withdraw their funds?

Wholesale bank depositors' ex ante expected utility

$$\underbrace{-k^{w}}_{\text{deposits}} + \underbrace{\left[\rho + (1-\rho)\eta\right]u(r^{b}b') + (1-\rho)\left(1-\frac{\eta}{\rho}\right)\delta u\left(d^{w}\right)}_{\text{expected return on deposit contract}}$$

Withdraw: Get b' units of government bonds with gross interest rate of r^b

Not withdraw: Get a tradeable claim to d^r units of consumption goods with probability δ

(i) No banking panic:
$$\eta = 0, \quad \text{if } u\left(r^bb'\right) \leq \delta u\left(d^w\right) + (1-\delta)u\left(0\right);$$
 (ii) Partial banking panic:
$$0 < \eta < 1, \quad \text{if } u\left(r^bb'\right) = \delta u\left(d^w\right) + (1-\delta)u\left(0\right);$$
 (iii) Full banking panic:
$$\eta = 1, \quad \text{if } u\left(r^bb'\right) \geq \delta u\left(d^w\right) + (1-\delta)u\left(0\right).$$

No Bank Holds Government Bonds as Collateral

Retail Bank

Asset Liability & Equity $r^m m$ $r^b b^r$ $r^\ell \ell^r$ e

Wholesale Bank

Asset	Liability
$egin{aligned} r^b b^w &= [ho + (1- ho)\eta] b' \ r^\ell \ell^w \end{aligned}$	$r^{b}[\rho + (1-\rho)\eta]b'$ $(1-\rho)(1-\eta)d^{w}$

No Bank Holds Government Bonds as Collateral

	Retai	l Bank	Wholesale Bank			
Asset Liability & Equity $r^m m \qquad \qquad d^r$ $r^b b^r \qquad \qquad r^\ell \ell^r$		Asset	Liability			
		d^r	$r^bb^w = [\rho + (1-\rho)\eta]b'$	$r^b[ho + (1- ho)\eta]b'$		
		$r^\ell\ell^r$	$r^\ell\ell^w$	$(1- ho)(1-\eta)d^w$		
		e				

Lemma 1

Retail banks never hold government bonds

▶ Wholesale banks value bonds more as they are not subject to leverage requirements

Lemma 2

Wholesale banks only purchase government bonds for their depositors' withdrawal requests

▶ Wholesale bank depositors directly use government bonds in exchange to avoid risk

Today: Partial Banking Panic Equilibrium • quilibrium type

Only case that withdrawal probability (0 < η < 1) changes in response to policies (constant η in full/partial panic)

Proposition 1

An expansion in the size of the central bank's balance sheet **mitigates wholesale banking panics**, i.e., $\frac{\partial \eta}{\partial \tilde{m}} < 0$. However, this expansion **reduces welfare**, i.e., $\frac{\partial c_2^b}{\partial \tilde{m}} < 0$, $\frac{\partial c_2^r}{\partial \tilde{m}} < 0$. In notice, $\frac{\partial c_2^b}{\partial \tilde{m}} < 0$.

Mitigation of Wholesale Banking Panics

A central bank balance sheet expansion, through open market operations, has three effects

- 1. government bond supply $\downarrow \longrightarrow$ interest rate on government bonds \downarrow (price \uparrow)
- 2. reserve supply $\uparrow \longrightarrow \text{relax banks' constraints} \longrightarrow \text{returns on deposits} \uparrow$
 - Directly relax retail banks' leverage constraint
 - Indirectly relax wholesale banks' collateral constraint through the interbank market
- \rightarrow 3. deposits become more attractive relative to bonds \longrightarrow withdrawal probability $\eta \downarrow$

Interaction of three effects determines the GE effects on asset returns and welfare

Reduction in Asset Returns & Welfare

Retail Bank

Temi bulii			Tribleshie Bullik			
Asset Liability & Equity $r^m m$ d^r		Asset	Liability $r^b[\rho + (1-\rho)\eta \downarrow]b'$			
		$r^bb^w\downarrow$				
		$r^\ell\ell^r$	$r^\ell\ell^w$	$r^{b}[\rho + (1-\rho)\eta \downarrow]b'$ $(1-\rho)(1-\eta)d^{w}$		
		е				

Wholesale Bank

An expansion in the size of the central bank's balance sheet $(\bar{m} \uparrow \text{ and } \bar{b} \downarrow)$

- ▶ Harms depositors trade with government bonds: lower r^b and c_2^b
 - Decreased supply of government bonds dominates decreased demand for bonds
 - Lower interest rate on government bonds ($\frac{\partial r^b}{\partial \bar{m}} < 0$)
 - Lower trading volume for transactions settled with government bonds ($\frac{\partial c_2^b}{\partial m}$ < 0)

Reduction in Asset Returns & Welfare

Retail Bank

Town Built			Triologic Bulli		
Asset Liability & Equity		Asset	Liability		
$r^m m \uparrow$		d^r	r^bb^w	$r^b[ho + (1- ho)\eta]b'$	
		$r^\ell\ell^r\uparrow$	$r^\ell\ell^w\uparrow$	$ r^{b}[\rho + (1-\rho)\eta]b' $ $ (1-\rho)(1-\eta \downarrow)d^{w}\uparrow $	
		e			

Wholesale Bank

An expansion in the size of the central bank's balance sheet $(\bar{m} \uparrow \text{ and } \bar{b} \downarrow)$

- lacktriangle Harms depositors trade with government bonds: lower r^b and c_2^b
- ▶ Harms depositors trade with wholesale deposits: lower c_2^w , r^ℓ , and r^m
 - Increased demand for wholesale bank deposits dominates the increased supply
 - Lower trading volume for transactions settled with wholesale deposits ($\frac{\partial c_2^w}{\partial \bar{m}} < 0$)
 - Intensify banks' competition for collateral ($\frac{\partial r^\ell}{\partial \bar{m}} < 0$ and $\frac{\partial r^m}{\partial \bar{m}} < 0$)

Reduction in Asset Returns & Welfare

	Retail Bank			Wholesale Bank		
Asset Liability & Equity			Asset	Liability		
$r^m m \uparrow \qquad \qquad d^r \downarrow$			r^bb^w	$r^b[ho + (1- ho)\eta]b'$		
		$r^\ell\ell^r\uparrow$		$r^\ell\ell^w$	$(1-\rho)(1-\eta)d^w$	
		e				

An expansion in the size of the central bank's balance sheet ($\bar{m} \uparrow$ and $\bar{b} \downarrow$)

- ightharpoonup Harms depositors trade with government bonds: lower r^b and c_2^b
- ► Harms depositors trade with wholesale deposits: lower c_2^w , r^ℓ , and r^m
- **Harms depositors trade with retail deposits:** lower c_2^r
 - Retail banks substitute their funding source to cheaper interbank borrowing
 - Reduce the supply of retail deposits (no shift in demand for retail deposits)
 - Lower trading volume for transactions settled with retail deposits ($\frac{\partial c_2'}{\partial \bar{m}} < 0$)

Conclusions

- Two-sector banking model with flight-to-safety driven by wholesale banking panics
- Endogenous shifts of asset demand in response to central bank crisis interventions
- Expanding the balance sheet mitigates banking panics but reduces welfare
 - Differ from scenarios when there is no shift in asset demands (no/full banking panic)

Extension: Swapping reserves for ON-RRPs mitigates panics and improves welfare!

▶ Moderate shifts of asset demand: swap of central bank liabilities does not take out government bonds, putting no direct pressure on making bonds less attractive

Appendix

Fiscal Authority & Central Bank Phack

Fiscal authority issues government bonds (\hat{b}) and transfer revenue (τ_1) to depositors:

$$\hat{b} = \tau_1$$

► Central bank purchases $\hat{b} - \bar{b}$ with reserves \bar{m} : • central bank balance sheet

$$\bar{m} = \hat{b} - \bar{b}$$

- Government liabilities are redeemed in period 3
 - **Fiscal authority** taxes depositors τ_3 , pays off debt, transfers τ^{cb} to **central bank**:

$$r^b\hat{b} + \tau^{cb} = \tau_3$$

• Central bank pays off its debt:

$$r^m \bar{m} = r^b (\hat{b} - \bar{b}) + \tau^{cb}$$

Fiscal policy: determine the total government bonds supply $\hat{b} = \bar{m} + \bar{b}$ (exogenous, fixed)

Monetary policy: determine the size of the central bank's balance sheet, described by \bar{m}

Central Bank's Balance Sheet

Baseline case

Asset	Liability	
$\hat{b} - \bar{b}$	\bar{m}	

ightharpoonup Central bank purchases $\hat{b} - \bar{b}$ to back its reserves \bar{m}

After introducing ON-RRPs

Asset	Liability	
$\hat{b} - \bar{b}$	\bar{m}	
	ō	

lacktriangle Central bank purchases $\hat{b}-\bar{b}$ to back reserves \bar{m} and ON-RRPs \bar{o}

▶ back ON-RRPs

Perfectly Competitive Retail Banking ••back

► Maximize depositors' utility (infinite mass of potential entrants & free entry):

$$-k^r + u(d^r)$$

Subject to

► Nonnegative profit:

profits from deposit contract

$$\overbrace{k^r - d^r}_{profits from portfolio decision} \underbrace{-m - b^r + \ell^r + r^m m + r^b b^r - r^\ell \ell^r}_{profits from portfolio decision} \ge 0$$

Leverage constraint:

$$\frac{\theta}{(r^m m + r^b b^r)} \ge \underline{d}^r + r^\ell \ell^r$$
payments on liabilities

Nonnegative constraints: k^r , d^r , m, $b^r \ge 0$

"Sweat Equity" back

Retail banks finance part of their assets by supplying their own capital

Nonnegative profit constraint holds in equality due to free entry, implying

$$\underbrace{m + b^r - k^r - \ell^r}_{\text{equity raised at } t = 1} = \underbrace{r^m m + r^b - d^r - r^\ell \ell^r}_{\text{equity return at } t = 3} = e$$

• Leverage requirement further implies a positive equity holdings (e > 0), recall

$$\underbrace{\theta\left(r^mm+r^bb^r\right)}_{\text{payments on liabilities}} \geq \underbrace{d^r+r^\ell\ell^r}_{\text{payments on liabilities}}$$

lacktriangle "Sweat equity" requires banks to work \longrightarrow costly internal funding source

Perfectly Competitive Wholesale Banking • back

Maximize depositors' expected utility, considering potential banking panic η
 (infinite mass of potential entrants & free entry)

$$\underbrace{-k^{w}}_{\text{deposits}} + \underbrace{\left[\rho + (1-\rho)\eta\right]u(r^{b}b') + (1-\rho)\left(1-\frac{\eta}{\rho}\right)\delta u\left(d^{w}\right)}_{\text{expected return on deposit contract}}$$

Subject to

► Nonnegative profits:

$$\underbrace{k^{w} - (1 - \rho) \left(1 - \frac{\eta}{\eta}\right) \delta d^{w}}_{\text{profits from deposit contract}} \underbrace{-b^{w} - \ell^{w} + r^{b} \left[b^{w} - \left[\rho + (1 - \rho) \frac{\eta}{\eta}\right] b'\right] + r^{\ell} \ell^{w}}_{\text{profits from portfolio decision}} \ge 0$$

► Collateral constraint (holds for all wholesale banks ex-ante):

$$\underbrace{r^b \left[b^w - \left[\rho + (1 - \rho) \, \frac{\eta}{\eta} \right] b' \right] + r^\ell \ell^w}_{\text{returns on assets}} \ge \underbrace{\left(1 - \rho \right) \left(1 - \frac{\eta}{\eta} \right) d^w}_{\text{payments on liabilities}}$$

Nonnegative constraints: k^w , b', d^w , b^w , $b^w - [\rho + (1 - \rho) \eta] b' \ge 0$

Timing • back

Retail Banks Never Invest in Government Bonds: Intuition

Asset Liability & Equity $r^m m \qquad \qquad d^r \\ b^r \qquad \qquad r^\ell \ell^r$		Asset	Liability $r^b[\rho + (1-\rho)\eta]b'$		
		r^bb^w			
		$r^\ell \ell^w$	$r^b[ho+(1- ho)\eta]b' \ (1- ho)(1-\eta)d^w$		
	е				

Wholesale Bank

- lacktriangle Retail banks invest in a positive stock of government bonds only if $r^b > r^\ell$
 - Strict inequality comes from their costs of holding assets due to leverage requirements
- ▶ Wholesale banks ask a higher return on loans than bonds, i.e., $r^{\ell} \ge r^b$
 - Government bonds provide a greater liquidity, which are always available to them
- ► Contradiction retail banks never invest in bonds

Retail Bank

How Monetary Policy Determines the Type of Equilibrium

Size of the Central Bank's Balance Sheet

- ▶ Two thresholds \bar{m}_1 and \bar{m}_2 characterize three types of equilibrium
- ► Expanding the size of the central bank's balance sheet mitigates banking panic
- lacktriangle These thresholds increase with the risk of wholesale banking failure $1-\delta$

No Banking Panic ($\eta = 0$) & Full Banking Panic ($\eta = 1$)

	∂c_2^r	∂c_2^w	∂c_2^b	∂r^m	∂r^ℓ	∂r^b
$\partial \bar{m}$	+	+	_	+	+	_

Expanding the size of the central bank's balance sheet has only two effects

- ▶ government bond supply ↓: reduce transactions settled with government bonds
- ▶ effective collateral supply ↑: increase transactions settled with deposit claims

No change in withdrawal behavior given η constant (endogenously determined)

▶ Different effects compared to the baseline case

▶ Central bank cannot improve welfare (in Pareto sense) by adjusting its balance sheet size

Scarcity of Total Government Bond Supply

Assumption 1

Total supply of government bonds is scarce, such that $\theta \hat{b} < \alpha c^*$, where $u'(c^*) = 1$.

- Retail bank's leverage and wholesale bank's collateral constraints bind
 - Otherwise, depositors consume a satiated level c^* and monetary policy becomes neutral
 - Low return on safe assets, particularly, government bonds

Characterization of Equilibrium

Express conditions on consumption allocation (c_2^r, c_2^b, c_2^w) and withdrawal probability η

$$c_2^r = d^r$$
, $c_2^b = r^b b'$, $c_2^w = d^w$

Depositors' consumption level reflects overall welfare

(competitive producers and bankers earn zero profit)

- ► No-arbitrage interbank market
- Collateral market clearing
- Bond market clearing
- One of depositors' incentive conditions to determine η (no banking panic $\eta = 0$, partial banking panic $0 < \eta < 1$, and full banking panic $\eta = 1$)

Equilibrium Conditions

No-arbitrage Interbank Market:

$$\underbrace{u'\left(c_{2}^{r}\right)}_{\text{marginal return on retail bank's deposit claims}} = \underbrace{1-\delta+\delta u'\left(c_{2}^{w}\right)}_{\text{marginal return on wholesale bank's deposit claims}}$$

- ► Equate depositors' marginal returns from trading with retail and wholesale deposits
- Marginal returns determine interest rates (consumption-based asset pricing)
 - e.g., $\frac{1}{r^{\ell}} = u'(c_2^r)$, marginal utility of trading retail deposits

Equilibrium Conditions

No-arbitrage Interbank Market:

$$u'\left(c_{2}^{r}\right) = 1 - \delta + \delta u'\left(c_{2}^{w}\right)$$

Collateral Market Clearing:

effective collateral supply (i.e., reserves) =
$$\alpha c_2^r \left[1 - \theta + \theta u'(c_2^r)\right]$$
 retail banks' demand for collateral

$$+\underbrace{\left(1-\alpha\right)\left(1-\rho\right)\left(1-\frac{\eta}{l}\right)c_{2}^{w}\left[1-\theta\delta+\theta\delta u'\left(c_{2}^{w}\right)\right]}_{\text{wholesale banks' demand for collateral}}$$

- ightharpoonup Expanding central bank balance sheet (\bar{m}) increases the effective collateral supply
- The severity of wholesale banking panics η determines the demand for collateral
 - By mitigating banking panics, policy shifts this demand upward

▶ ON-RRP

Equilibrium Conditions

No-arbitrage Interbank Market:

$$u'\left(c_{2}^{r}\right) = 1 - \delta + \delta u'\left(c_{2}^{w}\right)$$

Collateral Market Clearing:

$$\begin{split} \theta \bar{m} = & \alpha c_2^r \left[1 - \theta + \theta u' \left(c_2^r \right) \right] \\ & + \left(1 - \alpha \right) \left(1 - \rho \right) \left(1 - \frac{\eta}{l} \right) c_2^w \left[1 - \theta \delta + \theta \delta u' \left(c_2^w \right) \right] \end{split}$$

Bond Market Clearing

$$\hat{\underline{b}} - \underline{\overline{m}} = \underbrace{(1-\alpha)[\rho + (1-\rho)\eta]c_2^b u'(c_2^b)}_{\text{wholesale bank depositors' demand for bonds}}$$

- Expanding central banks balance sheet reduce the supply of government bonds
- ightharpoonup The severity of banking panics η determines the aggregate demand for bonds
 - By mitigating banking panics, policy shifts this demand downward

No-arbitrage Condition: Inituition

	Retail Bank			Wholesale Bank		
Asset Liability & Equity $r^m m$ d^r			Asset	Liability $r^b[\rho + (1-\rho)\eta]b'$		
			r^bb^w			
		$r^\ell\ell^r$		$r^\ell\ell^w$	$(1-\rho)(1-\eta)d^w$	
		e				

On the liability side of the retail bank

return rate on retail deposits = return rate on interbank borrowing

► Wholesale banks use claims on interbank lending back deposit claims

return rate on interbank lending = return rate on wholesale deposits adjusted by risk

Giving Wholesale Banks Direct Aceess to Central Bank Liabilities

Add a new central bank liability (*o*) in addition to reserves (*m*)

- ▶ Both retail and wholesale banks can hold this interest-bearing central bank liability
 - Example: Fed's overnight reverse repo (ON-RRP) facility
- ► Monetary policy has two dimensions central bank balance sheet
 - Size of its balance sheet $s = \bar{m} + \bar{o}$
 - Composition of its liabilities (relative supply of reserves and ON-RRPs)

Goals: Show a swap of reserves (\bar{m}) for ON-RRPs (\bar{o})

- Mitigates wholesale banking panics and improves welfare
- ▶ Serve as a counterfactual for previous case as no change in government bond supply

Mitigation of Wholesale Banking Panics

Effective collateral supply (determined by \bar{o} for any s): • collateral market clearing

reserve supply balance sheet size
$$\theta \times \overbrace{\bar{m}} + \underbrace{\bar{o}}_{\text{ON-RRP supply}} = \theta \times \underbrace{s} + (1-\theta) \, \bar{o}$$

- A swap increases effective collateral supply by avoiding retail banks' regulatory costs
- Wholesale banks provide more attractive deposits to compete for depositors:

Mitigating Wholesale Banking Panics (withdrawal probability $\eta \downarrow$)

Welfare Improvement details

Recall that central bank balance sheet expansions reduce welfare because

A large change in withdrawals $\eta \longrightarrow$ large shifts in asset demands

A swap of reserves for ON-RRPs improves welfare

Bond market clearing:

$$\hat{\underline{b}} - \underline{s}$$
 bonds circulating in private sector wholesale bank depositors' demand for bonds to settle transactions

- ► A swap does not take out government bonds (only depends on the size s)
 - Put no direct force that makes bonds less attractive \longrightarrow change in η is not too large

Welfare Improvement

Retail Bank

Asset	Liability	Asset	Liability	
$r^m m$	d^r	r^bb^w	$r^b[ho + (1- ho)\eta \downarrow]b'$	
	$r^\ell\ell^r$	$r^\ell \ell^w$	$(1-\rho)(1-\eta)d^w$	
	e	$r^o o$		

Wholesale Bank

A swap of reserves for ON-RRPs benefits depositors trade with government bonds

- Decreased demand for government bonds (no shift in bond supply)
 - Higher interest rate on government bonds $(\frac{\partial r^b}{\partial \bar{m}} > 0)$
 - Higher trading volume for transactions settled with government bonds ($\frac{\partial c_2^b}{\partial \tilde{m}} > 0$)

Welfare Improvement

Retail Bank

Asset	Liability	Asset	Liability
$r^m m \downarrow$	d^r	r^bb^w	$r^b[ho+(1- ho)\eta]b'$
	$r^\ell\ell^r\downarrow$	$r^\ell\ell^w\downarrow$	$r^{b}[\rho + (1-\rho)\eta]b'$ $(1-\rho)(1-\frac{\eta}{\sqrt{10}})d^{w}\uparrow$
	е	$r^{o}o\uparrow$	

Wholesale Bank

A swap of reserves for ON-RRPs benefits depositors trade with wholesale deposits

- Increased supply of wholesale deposits dominates their increased demand
 - $o \uparrow > \ell^w \downarrow$: avoiding the inefficiency comes from the leverage requirement
 - Higher trading volume for transactions settled with these claims $(\frac{\partial c_u^w}{\partial \bar{o}} > 0)$
 - Reduce banks' competition for collateral $(\frac{\partial r^{\ell}}{\partial \bar{o}} > 0 \text{ and } \frac{\partial r^{m}}{\partial \bar{o}} > 0)$

Welfare Improvement back

Retail Bank

Wholesale Bank

Asset	Liability	Asset	Liability
$r^m m \downarrow$	$d^r \uparrow$	r^bb^w	$r^b[ho+(1- ho)\eta]b'$
	$r^\ell\ell^r\downarrow$	$r^\ell\ell^w$	$(1- ho)(1-\eta)d^w$
	e	$r^{o}o$	

A swap of reserves for ON-RRPs benefits depositors trade with retail depositors

- ▶ Retail banks substitute their funding source to cheaper deposits
- ▶ Increased supply of retail banks' deposit claims (no shift in demand for these claims)
 - Higher trading volume for transactions settled with these claims $(\frac{\partial c_2'}{\partial \bar{o}} > 0)$