

Fall Semester – 2019~2020 Continuous Assessment Test – II

Programme Name & Branch: B.Tech./M.Tech.

Course Code & Name : MAT2001 – Statistics for Engineers

Exam Duration: 90 Minutes Maximum Marks: 50

Instruction: Use of Statistical table is allowed.

Answer ALL the Questions

Each question carries equal marks ( $5 \times 10 = 50 \text{ Marks}$ )

1. Given the data:

| x: | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9    |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| y: | 9.1 | 7.3 | 3.2 | 4.6 | 4.8 | 2.9 | 5.7 | 7.1 | 8.8 | 10.2 |

Fit a regression curve of the form  $y = \beta_0 + \beta_1 x$  and also, find the estimate value of y at when x = 2.

[10 M] [CO:3]

Slot: B2+TB2

2. An insurance sales representative sells policies to 5 men, all of identical age and in good health. According to the actuarial tables, the probability that a man of this particular age will be alive 30 years is <sup>2</sup>/<sub>3</sub>. Find the probability that in 30 years (i) all 5 men, (ii) at least 3 men, (iii) only 2 men, (iv) at least 1 man will be alive.

[10 M] [CO: 2]

- 3. Suppose that buses arrive are scheduled to arrive at a bus stop at noon but are always X minutes late, where X is an exponential random variable with probability density function  $f(x) = \lambda e^{-\lambda x}$ , x > 0. Suppose that you arrive at the bus stop precisely at noon.
  - (a) Compute the probability that you have to work for more than five minutes for the bus to arrive.
  - (b) Suppose that you have already waiting for 10 minutes. Compute the probability that you have to wait an additional five minutes or more. [10 M] [CO: 2]
- 4. Two groups A and B, each consist of 100 people who have a disease. A serum is given to Group A but not to Group B (which is called the control group); otherwise, the two groups are treated identically. It is found that in Groups A and B, 75 and 65 people, respectively, recover from the disease. Test the hypothesis that the serum helps to cure the disease using a level of significance of (i) 0.01, (ii) 0.05. And also find the P value of the test.
  [10 M] [CO: 4]
- 5. You independently draw 100 data points from a normal distribution.
  - (a) Suppose you know that the distribution is  $N(\mu, 4)(4 = \sigma^2)$  and you want to test the null hypothesis  $H_0: \mu = 3$  against hypothesis  $H_1: \mu \neq 3$ . If you want a significance level of  $\alpha = 0.05$ . What is your rejection region? (You must state clearly that what test statistic you are using).
  - (b) Suppose that the 100 data points have sample mean 5. What is the P-value for this data? Should you reject  $H_0$ ? [10 M] [CO: 4]

\*\*\*\*\*\*



SEARCH VIT QUESTION PAPERS ON TELEGRAM TO JOIN