DPENCLASSROOMS

Parcours Data Scientist

Projet 7

Implémenter un modèle de scoring dans le secteur bancaire

Home Credit Default Risk

Claire-Marie BESNIER 9 août 2021

Implémenter un modèle de scoring dans le secteur bancaire

CONTEXTE

Une entreprise souhaite développer un modèle de scoring pour prédire la probabilité de défaut de paiement d'un client à partir d'informations diverses. Ce modèle servira d'aide à la décision pour octroyer ou non un crédit.

L'entreprise souhaite aussi créer un **dashboard interactif** afin de communiquer de manière transparente avec ses clients.

DONNÉES

On dispose d'un jeu de données comportant plusieurs tables avec des informations sur plus de 307k clients et comprenant des informations très diverses : données comportementales, données provenant d'autres institutions financières, etc.

https://www.kaggle.com/c/home -credit-default-risk/data

OBJECTIF

Construire un modèle de scoring permettant de prédire la probabilité de faillite d'un client

Construire un dashboard interactif à destination des gestionnaires clients permettant d'interpréter les prédictions du modèle et d'améliorer la connaissance du profil client.

Démarche

Remarques:

- Analyse exploratoire et FE : Sélection de kernel Kaggle pour faciliter la compréhension des données et l'analyse
- Pre-processing, sélection et optimisation du modèle : utilisation de la librairie Pycaret
- Dashboard : Utilisation de la librairie Streamlit

Plan de la présentation

- 1. Analyse exploratoire
- 2. Création et Sélection de variables
- Modélisation
 - 3.1 Pre-processing
 - 3.2 Métriques
 - 3.3 Résultats
 - 3.4 Interprétation
 - 3.5 Optimisation du seuil
- 4. Dashboard
- 5. Conclusion

1.

Analyse exploratoire

Objectif : Mieux comprendre le jeu de données et déterminer les variables les plus liées à la variable cible

Présentation des données

application, train credit card balance pos CASH balance previous application bureau

Lignes	307 511	3 840 312	13 605 401	10 001 358	1 670 214	1 716 428	27 299 925
Colonnes	122	23	8	8	37	17	3
Var. quanti	65	22	8	7	21	14	2
Var. quali	57	1	0	1	16	3	1
Col. Nan	67/122	9/23	2/8	2/7	16/37	7/17	0/3
Taux max Nan	70%	20%	<1%	<1%	100%	70%	-
% clients sur 307 511 clients dans application (SK_ID_CURR)	100%	28 %	95 %	94 %	95 %	86 %	30 %

bureau balance

Variable cible

0 : Non defaulter

1: Defaulter

TARGET

→ Déséquilibre des classes

Valeurs manquantes

67 colonnes concernées avec taux max de 70%

Données normalisées concernant le logement du client : différentes surfaces, nombre d'accès, d'ascenseurs, etc. + statistiques associées : AVG, MEDI, MODE 50-70% Nan

Variables quantitatives les plus corrélées à la variable cible

Variable	Corr.	Définition
EXT_SOURCE_3	0.247	
EXT_SOURCE_1	0.217	Scores normalisés de sources externes
EXT_SOURCE_2	0.213	
DAYS_BIRTH	0.102	âge du client (jours)
DAYS_LAST_PHONE_CHANGE	0.073	Nombre de jours depuis changement de téléphone
DAYS_EMPLOYED	0.072	Nombre de jours au poste actuel
DAYS_ID_PUBLISH	0.067	Nombre de jours au poste actuel
AMT_GOODS_PRICE	0.059	Montant du bien pour lequel le crédit est attribué

Variables quantitatives les plus corrélées à la variable cible

Variables qualitatives les plus corrélées à la variable cible

Variable	Corr.	Définition
OCCUPATION_TYPE	0.102	Type de profession exercée par le client
ORGANIZATION_TYPE	0.089	Type d'organismes où travaille le client
NAME_INCOME_TYPE	0.084	Type de revenus (employé, retraité, étudiant, etc.)
REG_CITY_NOT_WORK_CITY	0.079	1 si l'adresse permanente et professionnelle pas dans la même ville
FLAG_EMP_PHONE	0.072	1 si le client a fourni un numéro de téléphone professionnel, 0 sinon
REG_CITY_NOT_LIVE_CITY	0.069	1 si l'adresse permanente et l'adresse de contact sont différentes
FLAG_DOCUMENT_3	0.069	1 si le client a fourni le document 3
NAME_FAMILY_STATUS	0.056	Status familial (célibataire, marié, etc.)

Variables qualitatives les plus corrélées à la variable cible

2. Création & Sélection de variables

Objectif : Créer des variables supplémentaires permettant de mieux interpréter le comportement des clients Defaulters, puis sélectionner les meilleures variables

Nettoyage & Création de variables

Nettoyage

- Suppression de 47
 variables concernant le
 logement avec 50-70%
 de valeurs manquantes
- CODE_GENDER:
 Suppression de 4
 observation avec XNA
- DAYS_EMPLOYED: Remplacement de valeurs aberrantes 365243 par Nan

Création de variables

- Durée du crédit
- Ratio entre les principales variables du prêt
- Différence entre les principales variables du prêt
- Somme des différentes alertes (flags)

13 nouvelles variables CREDIT_TERM
CREDIT_INCOME_RATIO
ANNUITY_INCOME_RATIO
INCOME_ANNUITY_DIFF
CREDIT_GOODS_RATIO
CREDIT_GOODS_DIFF
DAYS_EMPLOYED_RATIO
FLAG_CONTACTS_SUM
CNT_NON_CHILDREN
CHILDREN_INCOME_RATIO
PER_CAPITA_INCOME
FLAG_REGIONS
SUM_FLAGS_DOCUMENTS

Nettoyage & Création de variables

Nettoyage

- Suppression des crédits vieux de plus de 50 ans
- Encodage des statuts de crédits (0/1)

Création de variables

Agrégation des données par identifiant client

- Nombre de compte et de types de comptes
- % de comptes actifs

- Somme des dettes, des crédits, des retards de paiement
- Nombre de jours moyens entre les différents crédits
- Ratio entre les différentes variables créées

14 nouvelles variables BUREAU_COUNT
BUREAU_TYPES_COUNT
BUREAU_ACTIVE_LOANS_PCT
BUREAU_PAST_DUE_LOANS_PCT
BUREAU_TOTAL_DEBT
BUREAU_TOTAL_CREDIT
BUREAU_TOTAL_OVERDUE
BUREAU_CREDIT_PROL_AVG
BUREAU_OVERDUE_COUNT
BUREAU_DAYS_DIFF_AVG
BUREAU_AVG_TYPES_COUNT
BUREAU_RATIO_DEBT_CREDIT
BUREAU_RATIO_OVERDUE_DEBT

Nettoyage & Création de variables

Création de variables

- Nombre de demande Création de variables et sélection de la valeur correspondante à la dernière demande de crédit
- Données sur le crédit : montant emprunté, annuité, montant du bien, etc.
- Ratios et différences entre les variables créées

19 nouvelles variables PREVAPP SK ID PREV COUNT PREVAPP AMT ANNUITY LAST PREVAPP AMT APPLICATION LAST PREVAPP_AMT_CREDIT_LAST PREVAPP_AMT_DOWN_PAYMENT_LAST, PREVAPP AMT GOODS PRICE LAST PREVAPP FLAG LAST APPL PER CONTRACT LAST PREVAPP DAYS FIRST DUE LAST PREVAPP_DAYS_LAST_DUE_1ST_VERSION_LAST PREVAPP_DAYS_LAST_DUE LAST PREVAPP AMT DECLINED LAST PREVAPP AMT CREDIT GOODS RATIO LAST PREVAPP AMT CREDIT GOODS DIFF LAST PREVAPP_AMT_CREDIT_APPLICATION_RATIO_LAST PREVAPP_CREDIT_DOWNPAYMENT_RATIO_LAST, PREVAPP GOOD DOWNPAYMET RATIO LAST PREVAPP ANNUITY LAST PREVAPP ANNUITY GOODS LAST

Sélection de variables

previous_application

Sélection de 3 fichiers

Pipeline Pycaret pour sélection de variables :

- Suppression de variables à faible variance
- Suppression des variables corrélées avec seuil de 0,8
- Sélection de 15% des variables initiales

Variables retenues

DAYS_EMPLOYED_RATIO

EXT SOURCE 1 EXT SOURCE 2 DAYS BIRTH DAYS LAST PHONE CHANGE DAYS ID PUBLISH AMT GOODS PRICE DAYS REGISTRATION REG CITY NOT WORK CITY FLAG EMP PHONE REG CITY NOT LIVE CITY FLAG DOCUMENT 3 CODE GENDER F NAME_INCOME_TYPE_Working OCCUPATION TYPE XNA OCCUPATION TYPE Laborers REGION POPULATION RELATIVE REGION RATING CLIENT W CITY NAME_EDUCATION_TYPE

PREVAPP AMT DECLINED LAST'

18

3. Pre-processing & Modélisation

Objectif : pré-traiter les données pour optimiser la modélisation, définir la métrique, entrainer et optimiser des modèles puis retenir le meilleur modèle

Preprocessing

Pipeline Pycaret

Essai de plusieurs paramétrages

 $70/30, 80/20 \rightarrow 80/20$

Imputation

moyenne/médiane → médiane ('XNA' pour variables qualitatives)

Normalisation

Standard / MinMax / MaxAbs / Robust Scaler → Standard Scaler

Transformation

PowerTransformer / Quantile Transformer → PowerTransformer

Déséquilibre des classe

Oversampling (SMOTE), Pondération → Pondération

Métriques

Certaines métriques classiques ne sont pas adaptées à un jeu de données présentant un déséquilibre. D'autres métriques sont plus intéressantes :

- accuracy non adaptée
- précision : taux d'observations positives parmi les observations prédites positives
- recall : taux de vrais positifs, qui permet de limiter les FN
- ROC-AUC : permet de maximiser l'aire sous la courbe ROC (sensibilité / spécificité)

Fonction coût

Définition d'une métrique spécifique

Hypothèses coût

	0	1
0	TN + 25 000 Remboursement moyen	FP - 250 Manque à gagner (pénalité)
1	FN -250 000 50% montant moyen emprunté	TP 0 Aucun coût associé

Coût

$$cost = 25\ 000\ TN$$

- 250 FP - 250 000 FN

Score

$$\frac{cost - baseline}{best - baseline}$$

best: coût associé à un modèle parfait, sans FN et FP baseline: coût associé à un modèle classant tous les clients comme Non Defaulters

Modèles

Optimisation des hyper-paramètres par validation croisée (folds = 10)

Régression Logistique

Après optimisation

Score: 0,2735

ROC-AUC: 0,7229

LightGBM

Après optimisation

Score: 0,3299

ROC-AUC: 0,7520

Essai Blending et Stacking

Régression Logistique

37 275	19 272
1 631	3 324

Score : 0,2735 ROC-AUC : 0,7229 Light GBM

41 167	15 380
1 767	3 188

Score : 0,3299 ROC-AUC : 0,7520

Blending

Méthode = soft

39 736	16 811	
1 663	3 292	

Score: 0,3217 ROC-AUC: 0,7468 **Stacking**

Meta model = Ir

38 471	18 076
1 516	3 439

Score: 0,3256 ROC-AUC: 0,7520 Meta model = Igbm

40 694	15 853	
1 734	3 221	

Score: 0,3269 ROC-AUC: 0,7505

Interprétation

Régression Logistique

LightGBM

Optimisation du seuil

Choix du modèle

Light GBM

Meilleur seuil

• 0,516

42 248	14 299
1 852	3 103

Score: 0,3348

ROC-AUC: 0,7520

Dashboard

- Sauvegarde du preprocessing et du meilleur modèle
- Création d'un dashboard intercatif avec Streamlit
 - → Caractéristique client
 - → Prédiction de défaut de paiement
 - → Comparaison des variables principales avec les autres clients

Dashboard: https://share.streamlit.io/cmbesnier/credit-dashboard/main/main.py

Github: https://github.com/cmbesnier/credit-dashboard

Conclusion

Synthèse

- Sélection de 35 variables (3 fichiers)
- Définition d'un score
- Optimisation de 2 modèles
- Essais de Blending et Stacking
- Choix d'un seuil
- Dashboard interactif

Modèle final

- LightGBM
- Seuil: 0,516

42 248	14 299	
1 852	3 103	

Matrice de confusion

Score: 0,3348

ROC-AUC: 0,7520

Pistes d'amélioration

- Inclure un plus grand nombre de variables (plus de fichiers, FE, ...)
- Optimiser la gestion et l'imputation des valeurs manquantes
- Optimiser la fonction coût et le score avec un expert métier (coûts des FN, TP)

ANNEXES

Régression Logistique

Hyper-paramètres retenus

LogisticRegression(C=0.472, class_weight='balanced', dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=1000, multi_class='auto', n_jobs=None, penalty='l2', random_state=123, solver='lbfgs', tol=0.0001, verbose=0, warm_start=False)

37 275	19 272
1 631	3 324

Score: 0,2735

ROC-AUC: 0,7229

Recall: 0.6664

Precision: 0,1463

Light GBM

Hyper-paramètres retenus

LGBMClassifier(bagging_fraction=0.7, bagging_freq=6, boosting_type='gbdt', class_weight='balanced', colsample_bytree=1.0, feature_fraction=0.5, importance_type='split', learning_rate=0.1, max_depth=-1, min_child_samples=66, min_child_weight=0.001, min_split_gain=0.4, n_estimators=90, n_jobs=-1, num_leaves=90, objective=None, random_state=123, reg_alpha=0.0005, reg_lambda=0.1, silent=True, subsample=1.0, subsample_for_bin=200000, subsample_freq=0)

41 167	15 380
1 767	3 188

Score: 0,3299

ROC-AUC: 0,7520

Recall: 0,6434

Precision: 0,1717

