

Reusable Design of Metaheuristics for Multi-objective Optimization

July 2007

E.-G. Talbi and the ParadisEO team

http://paradiseo.gforge.inria.fr paradiseo-help@lists.gforge.inria.fr

Framework and Tutorial Application

- A framework for the design of metaheuristics for multi-objective optimization (mainly evolutionary algorithms)
- → ParadisEO-MOEO (Multi-Objective Evolving Objects)

A. Liefooghe, M. Basseur, L. Jourdan, E.-G. Talbi: "ParadisEO-MOEO: A Framework for Evolutionary Multi-Objective Optimization", EMO 2007, LNCS vol. 4408, pp. 386-400, Matsushima, Japan, 2007

- Tutorial application
- → A bi-objective flow-shop scheduling problem

ParadisEO: Module-based Architecture

Evolutionary computation, Swarm intelligence: population-based metaheuristics

Multi-Objective Evolving Objects (MOEO)

- A framework dedicated to the flexible design of metaheuristics for multi-objective optimization
 - Extends the EO library
 - ANSI-C++
 - Open-source
 - White-box
 - Object-oriented
 - Template-based
 - Paradigm-free
- Design/development team:
 - A. Liefooghe, T. Legrand, S. Cahon, L. Jourdan and E-G Talbi
 OPAC team (LIFL) / Dolphin project (INRIA)

Design Issues

- Maximum design and code reuse
 - Distinction between resolution methods and tackled problems
- Flexibility and Adaptability
 - Adding or updating other optimization methods, search mechanisms, operators, representation...
- Utility
 - Large panel of methods, strategies...
- Portability
 - Deployment on different platforms (thanks to ParadisEO-PEO)
- Transparent access to performance and robustness
 - Parallel and hybrid implementation is transparent to the target hardware platform

Flow-shop Scheduling Problem

- N jobs to schedule on M machines
- Machines are critical resources
- 2 objectives to optimize (minimize)
 - Makespan (C_{max})
 - Total tardiness (T)

Multi-Objective EAs Design Issues

The goal of approximating the Pareto set is itself bi-objective

- Minimizing the distance of the solutions to the real Pareto set
 - → well-converged Pareto set approximation
- Maximizing the diversity of the solutions
 - → well-diversified Pareto set approximation

Three specific aspects have to be taken into account

- Fitness assignment
- Diversity preservation
- Elitism

- 1. Representation
- 2. Initialization
- 3. Evaluation
- 4. Variation operators
- 5. Fitness assignment
- 6. Diversity assignment
- 7. Selection
- 8. Replacement
- 9. Stopping criteria

- 1. Representation
- 2. Initialization
- 3. Evaluation
- 4. Variation operators
- 5. Fitness assignment
- 6. Diversity assignment
- 7. Selection
- 8. Replacement
- 9. Stopping criteria

Representation in the Objective Space

- In mono-objective optimization (EO)
 - fitness value = objective value
- In multi-objective optimization (MOEO)
 - fitness value ≠ objective values

 Individuals are represented in the objective space as a tuple of n values

$$F(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_n(x) \end{bmatrix} \qquad F: X \to Z$$

Representation: Application to the Flow-shop

- Static class to set
 - The number of objectives
 - If they are to be minimized or maximized

Objective Vector: Core Classes

Representation: Application to the Flow-shop

Representation in the Decision Space

- As in the mono-objective case, it depends of the tackled problem
 - Discrete representation
 - Real-valued representation
 - •
- Flow-shop: order-based representation
 - Scheduling of the jobs on one machine

Representation: Core Classes

Representation: Application to the Flow-shop

- 1. Representation
- 2. Initialization → same as within ParadisEO-EO
- 3. Evaluation
- 4. Variation operators
- 5. Fitness assignment
- 6. Diversity assignment
- 7. Selection
- 8. Replacement
- 9. Stopping criteria

- 1. Representation
- 2. Initialization
- 3. Evaluation
- 4. Variation operators
- 5. Fitness assignment
- 6. Diversity assignment
- 7. Selection
- 8. Replacement
- 9. Stopping criteria

Evaluation

- Most computationally expensive step for real-world problems
- Evaluation of a solution in the objective space for every objective
- Application to the flow-shop
 - Makespan

$$-C_{max} = max [s_{iM} + p_{iM}]$$

Total tardiness

$$-T = \sum \max(0, s_{iM} + p_{iM} - d_i)$$

- 1. Representation
- 2. Initialization
- 3. Evaluation
- 4. Variation operators → same as within ParadisEO-EO
- 5. Fitness assignment
- 6. Diversity assignment
- 7. Selection
- 8. Replacement
- 9. Stopping criteria

- 1. Representation
- 2. Initialization
- 3. Evaluation
- 4. Variation operators
- 5. Fitness assignment
- 6. Diversity assignment
- 7. Selection
- 8. Replacement
- 9. Stopping criteria

Fitness Assignment

Fitness (x) reflects the quality of x in term of convergence

- Three kinds of fitness assignment strategies
 - Scalar approaches
 - Criterion-based approaches
 - Pareto-based approaches
 - Indicator-based approaches

Fitness Assignment: Core Classes

- 1. Representation
- 2. Initialization
- 3. Evaluation
- 4. Variation operators
- 5. Fitness assignment
- 6. Diversity assignment
- 7. Selection
- 8. Replacement
- 9. Stopping criteria

Diversity preservation

- Incorporating density information into the selection processes
- The probability to select an individual decreases the greater is the density of individuals in its neighbourhood
- Various kinds of methods for diversity preservation
 - Kernel methods, nearest neighbour techniques, histograms (hypergrid), ...
- Some methods need a distance measure that can be defined on
 - The objective space
 - The decision space

Diversity Assignment: Core Classes

- 1. Representation
- 2. Initialization
- 3. Evaluation
- 4. Variation operators
- 5. Fitness assignment
- 6. Diversity assignment
- 7. Selection
- 8. Replacement
- 9. Stopping criteria

Selection

- The selection process differs of the mono-objective case as it have to use fitness and diversity values, and not objective value(s)
- Provided selection strategies
 - Random
 - Deterministic tournament between N individuals
 - Stochastic tournament between 2 individuals
 - Elitist

Selection: Core Classes

How to compare solution?

According to fitness values?

According to diversity values?

Both?

Comparator: Core Classes

- 1. Representation
- 2. Initialization
- 3. Evaluation
- 4. Variation operators
- 5. Fitness assignment
- 6. Diversity assignment
- 7. Selection
- 8. Replacement
- 9. Stopping criteria

Replacement

- Generational
 - Only the offspring survives
- Elitist
 - The worst N solutions don't survive in the population of generation G+1
- Environmental
 - Repeat until the population size = N
 - The worst solution is deleted
 - The fitness and diversity values are updated
- Solutions are compared using a moeoComparator

Replacement: Core Classes

- 1. Representation
- 2. Initialization
- 3. Evaluation
- 4. Variation operators
- 5. Fitness assignment
- 6. Diversity Assignment
- 7. Selection
- 8. Replacement
- 9. Stopping criteria → same as within ParadisEO-EO

Archiving

- Secondary population that stores non-dominated solutions found during the optimization process
 - Preserving non-dominated solutions
- Objective vector comparison strategies
 - Pareto dominance
 - G-dominance [Molina et al. 2007]

Statistical Tools

- Saving the Pareto front at each generation
- On-line metrics computation
 - Entropy
 - Contribution

- Metrics for pairwise comparisons (can be used within IBEA)
 - Additive epsilon metric
 - Hypervolume metric

Implementation of a Multi-Objective EA

```
/* population */
eoPop <MOEOT> pop;
moeoArchive <MOEOT> archive;
                                  /* PO* */
                                  /* initialization */
eoInit <MOEOT> init;
eoEvalFunc <MOEOT> eval;
                                  /* evaluation */
eoTransform <MOEOT> transform;
                                  /* variation operators */
moeoFitnessAssignment <MOEOT> fitness;
moeoDiversityAssignment <MOEOT> diversity;
                                  /* selection scheme */
moeoSelect <MOEOT> select;
moeoReplacement <MOEOT> replace; /* replacement scheme */
eoCheckPoint <MOEOT> checkpoint;  /* checkpointing */
                           /* stopping criteria */
eoContinue <MOEOT> stop;
moeoEasyEA <MOEOT> algo (stop, eval, select, transform,
replace, fitness, diversity);
                                  /* run the algorithm */
algo(pop);
```

Core Classes of the EA

Easy-to-use EAs

Conclusion

- Download, test and enjoy
 - http://paradiseo.gforge.inria.fr
 - Free download of paradiseo-1.0-beta
- Future works
 - More fitness and diversity assignment strategies
 - More easy-to-use EAs (SPEA2...)
 - More metrics (Hypervolume...)
 - More archiving strategies
 - Multi-objective local search (IBMOLS)
 - Interactive resolution (coupled with GUIMOO)