Esercizio 8.10 — Sorgente lineare nel piano. Utilizzando l'espressione dela velocità indotta da una sorgente puntiforme di intensità unitaria,

$$\boldsymbol{u} = \frac{1}{2\pi r}\hat{\boldsymbol{r}} , \qquad (8.43)$$

dimostrare che la velocità indotta nel punto P da una sorgente di intensità unitaria uniforme distribuita sul segmento che congiunge i due punti N_1 , N_2 vale

$$\boldsymbol{u} = -\frac{1}{2\pi} \ln \frac{|\boldsymbol{r}_2|}{|\boldsymbol{r}_1|} \hat{\boldsymbol{x}} + \frac{1}{2\pi} \beta \hat{\boldsymbol{y}} , \qquad (8.44)$$

essendo $\hat{\boldsymbol{x}}$, $\hat{\boldsymbol{y}}$ i versori in direzione tangente e normale al segmento $\boldsymbol{N}_1\boldsymbol{N}_2$, i vettori $\boldsymbol{r}_i = \boldsymbol{P} - \boldsymbol{N}_i, i = 1:2$ e β l'angolo compreso tra il vettore \boldsymbol{r}_1 e il vettore \boldsymbol{r}_2 , positivo se si deve ruotare il vettore \boldsymbol{r}_1 in senso antiorario per farlo coincidere con \boldsymbol{r}_2 .

Figura 8.4: Rappresentazione di una sorgente puntiforme e della sorgente distribuita sul segmento N_1N_2 : definizione della "densità lineare di sorgente" σ e delle quantità geometriche.

Facendo riferimento alla figura 8.4, i punti appartenenti al segmento hanno coordinate (x,0), con $x \in (x_{N_1},x_{N_2})$. Il contributo elementare di velocità indotta nel punto \boldsymbol{P} dal segmento di lunghezza infinitesima dx vale

$$d\mathbf{u} = \frac{\sigma dx}{2\pi \ell} \hat{\boldsymbol{\ell}} = \frac{\sigma dx}{2\pi \ell^2} \boldsymbol{\ell} , \qquad (8.45)$$

avendo indicato con $\ell = (x_0 - x) \hat{x} + y_0 \hat{y}$ il vettore di lunghezza ℓ che congiunge il generico punto sul segmento $N_1 N_2$ con il punto P e con $\hat{\ell} = \ell/\ell$ il versore che ne identifica la direzione. Per risolvere il problema risulta comodo esprimere la coordinata x in funzione dell'angolo θ formato dal vettore ℓ con l'asse x e usare l'angolo θ come coordinata indipendente per parametrizzare i punti del segmento. Si può scrivere

$$\ell = \ell \cos \theta \hat{\boldsymbol{x}} + \ell \sin \theta \hat{\boldsymbol{y}} = (x_0 - x)\hat{\boldsymbol{x}} + y_0 \hat{\boldsymbol{x}} , \qquad (8.46)$$

per ricavare il legame tra $x \in \theta$,

$$\ell \cos \theta = x_0 - x$$
 , $\ell \sin \theta = y_0$ \rightarrow $x - x_0 = y_0 \frac{\cos \theta}{\sin \theta}$, (8.47)

e l'espressione che lega i differenziali dx e $d\theta$,

$$dx = \frac{y_0}{\sin^2 \theta} d\theta \ . \tag{8.48}$$

Se la sorgente ha densità uniforme unitaria, allora $\sigma=1$ e si può scrivere

$$d\mathbf{u} = \frac{1}{2\pi} \frac{1}{\ell^2} \boldsymbol{\ell} dx =$$

$$= \frac{1}{2\pi} \frac{\sin^2 \theta}{y_0^2} \left[y_0 \frac{\cos \theta}{\sin \theta} \hat{\mathbf{x}} + y_0 \hat{\mathbf{y}} \right] \frac{y_0}{\sin^2 \theta} d\theta =$$

$$= \frac{1}{2\pi} \left[\frac{\cos \theta}{\sin \theta} \hat{\mathbf{x}} + \hat{\mathbf{y}} \right] d\theta$$
(8.49)

Per ottenere il contributo integrale di tutta la sorgente lineare, è necessario svolgere l'integrale del contributo elementare su tutto il segmento

$$u = \int_{N_1}^{N_2} d\mathbf{u} =$$

$$= \frac{1}{2\pi} \int_{\theta_1}^{\theta_2} \left[\frac{\cos \theta}{\sin \theta} \hat{\mathbf{x}} + \hat{\mathbf{y}} \right] d\theta =$$

$$= \frac{1}{2\pi} \left[\ln \frac{\sin \theta_2}{\sin \theta_1} \hat{\mathbf{x}} + (\theta_2 - \theta_1) \hat{\mathbf{y}} \right] =$$

$$= -\frac{1}{2\pi} \ln \frac{|\mathbf{r}_2|}{|\mathbf{r}_1|} \hat{\mathbf{x}} + \frac{1}{2\pi} \beta \hat{\mathbf{y}} .$$
(8.50)

L'ultima espressione è stata ricavata utilizzando il legame $\theta_2 = \theta_1 + \beta$ tra angoli interni ed esterni di un triangolo ed elaborando il termine del logaritmo come

$$\ln \frac{\sin \theta_2}{\sin \theta_1} = \ln \frac{\sin \theta_2 / y_0}{\sin \theta_1 / y_0} = \ln \frac{1 / |\boldsymbol{r}_2|}{1 / |\boldsymbol{r}_1|} = \ln \frac{|\boldsymbol{r}_1|}{|\boldsymbol{r}_2|} = -\ln \frac{|\boldsymbol{r}_2|}{|\boldsymbol{r}_1|}. \tag{8.51}$$

Esercizio 8.11 — Vortice lineare nel piano. Utilizzando l'espressione dela velocità indotta da un vortice irrotazionale puntiforme di intensità unitaria,

$$\boldsymbol{u} = \frac{1}{2\pi r} \hat{\boldsymbol{\theta}} , \qquad (8.52)$$

dimostrare che la velocità indotta nel punto P da un vortice di intensità unitaria uniforme distribuito sul segmento che congiunge i due punti N_1 , N_2 vale

$$\boldsymbol{u} = -\frac{1}{2\pi}\beta\hat{\boldsymbol{x}} - \frac{1}{2\pi}\ln\frac{|\boldsymbol{r}_2|}{|\boldsymbol{r}_1|}\hat{\boldsymbol{y}}, \qquad (8.53)$$

essendo \hat{x} , \hat{y} i versori in direzione tangente e normale al segmento N_1N_2 , i vettori $r_i = P - N_i$, i = 1 : 2 e β l'angolo compreso tra il vettore r_1 e il vettore r_2 , positivo se si deve ruotare il vettore r_1 in senso antiorario per farlo coincidere con r_2 .

Figura 8.5: Rappresentazione di un vortice irrotazionale puntiforme e del vortice distribuita sul segmento N_1N_2 : definizione della "densità lineare di vortice" γ e delle quantità geometriche.