Сходимость в метрических пространствах

Пусть (X, ρ) - метрическое пространство.

Опр: 1. Последовательность $\{x_n\}$ сходится к $x\colon x_n\to x,$ если $\rho(x_n,x)\to 0.$

Утв. 1. Предел определен единственным образом, то есть $x_n \to x$ и $x_n \to y \Rightarrow x = y$.

$$\square \quad \rho(x,y) \le \rho(x,x_n) + \rho(x_n,y) \xrightarrow[n \to \infty]{} 0 \Rightarrow 0 \le \rho(x,y) \le 0 \Rightarrow \rho(x,y) = 0 \Rightarrow x = y.$$

Утв. 2. Если последовательность сходится, то она ограниченна, то есть лежит в некотором шаре.

$$\square$$
 $x_n \to x \Leftrightarrow \rho(x_n, x) \to 0 \Rightarrow \exists N : \forall n > N, \, \rho(x_n, x) < 1.$ Возьмем

$$R = \max\{1, \rho(x_1, x), \rho(x_2, x), \dots, \rho(x_N, x)\}$$

Ясно, что $\forall x_n, x_n \in \overline{B}(x,R)$, то есть последовательность ограниченна.

Лемма 1. $|\rho(x, u) - \rho(x, v)| \le \rho(u, v)$.

$$\rho(x, u) - \rho(x, v) \le \rho(u, v) \Leftrightarrow \rho(x, u) \le \rho(x, v) + \rho(v, u)$$

верно по неравенству треугольника.

$$\rho(x, v) - \rho(x, u) \le \rho(u, v) \Leftrightarrow \rho(x, v) \le \rho(x, u) + \rho(u, v)$$

верно по неравенству треугольника.

Тогда

$$-\rho(u,v) \le \rho(x,u) - \rho(x,v) \le \rho(u,v) \Rightarrow |\rho(x,u) - \rho(x,v)| \le \rho(u,v)$$

Утв. 3. (непрерывность ρ) Если $x_n \to x$ и $y_n \to y$, то $\rho(x_n, y_n) \to \rho(x, y)$.

 \square Используя неравенство $|\rho(x,u)-\rho(x,v)| \leq \rho(u,v),$ рассмотрим следующую разность:

$$|\rho(x_n, y_n) - \rho(x, y)| = |\rho(x_n, y_n) - \rho(x_n, y) + \rho(x_n, y) - \rho(x, y)| \le$$

$$\le |\rho(x_n, y_n) - \rho(x_n, y)| + |\rho(x_n, y) - \rho(x, y)| \le \rho(y_n, y) + \rho(x_n, x) \xrightarrow[n \to \infty]{} 0$$

Метрическое пространство \mathbb{R}^n

Расммотрим следующее метрическое пространство: \mathbb{R}^n , $\rho(x,y) = \sqrt{\sum_{k=1}^n (x_k - y_k)^2}$.

Лемма 2. Верно неравенство
$$\max_{1 \le k \le n} |x_k| \le \sqrt{\sum_{k=1}^n x_k^2} \le \sqrt{n} \max_{1 \le k \le n} |x_k|.$$

Пример: Очевидно, что $\max\{|a|,|b|\} \le \sqrt{a^2+b^2} \le \sqrt{2}\max\{|a|,|b|\}.$

Теорема 1. Последовательность $x^m \in \mathbb{R}^n, x^m = (x_1^m, \dots x_n^m)$ сходится к $x \in \mathbb{R}^n, x = (x_1, \dots, x_n)$ по

метрике $\rho = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2} \Leftrightarrow \forall k = \overline{1, n}, x_k^m \to x_k$. То есть сходимость в пространстве \mathbb{R}^n равносильна

покоординатной сходимости.

 \mathbf{Rm} : 1. В зависимости от контекста, мы рассматриваем элементы в \mathbb{R}^n как точки или вектора, показывающие эти точки. Если складываем что-то, то считаем элементы векторами, а если рассматриваем метрические пространства, то видим за этим точки.

- 1) Если $|x_k^m x_k| \le \rho(x^m, x) \to 0 \Rightarrow x_k^m \to x_k$, по первому неравенству из леммы;
- 2) Если $\forall k, \, x_k^m \to x_k \Rightarrow \max_k |x_k^m x^k| \to 0 \Rightarrow$ из 2-го неравенства леммы $\rho(x^m, x) \to 0;$

Теорема 2. (Больцано) Из ограниченной последовательности элементов \mathbb{R}^n можно выбрать сходящуюся подпоследовательность.

 \mathbf{Rm} : 2. Если не указывается метрика \mathbb{R}^n в явном виде, то подразумевается Евклидова метрика.

 $\Box x^m$ - ограничена $\Rightarrow x^m \in B(x^0,R) \Rightarrow |x_k^m-x_k^0| \leq \rho(x^m,x^0) \leq R, \forall k=\overline{1,n} \Rightarrow x_k^m$ - ограниченная последовательность \Rightarrow по теореме Больцано для одномерного случая \exists сходящаяся подпоследовательность, но номера могут оказаться разными \Rightarrow нужно делать выбор внутри выбранной последовательности.

<u>Первые координаты</u> x_1^m в последовательности $x^m \Rightarrow$ возьмем сходящуюся подпоследовательность \Rightarrow среди последовательности x^m возьмем те номера, по которым сходится подпоследовательность первой координаты $\Rightarrow x^{m_s}$.

Вторые координаты $x_2^{m_s}$ в подпоследовательности $x^{m_s} \Rightarrow$ выделим сходящуюся подпоследовательность, при этом сходимость по первой координате сохранится в силу того, что всякая подпоследовательность сходящейся последовательности сходится к одному и тому же пределу.

Продолжим процедуру до координаты n и в результате получим некоторую подпоследовательность последовательности x^m , сходящуюся по каждой из координат.

Случай $n=2 \Rightarrow x_1^m$ - ограничена \Rightarrow по теореме Больцано \exists сходящаяся подпоследовательность: $x_1^{m_s} \to a_1$. Рассмотрим последовательность $x_2^{m_s}$ - ограничена \Rightarrow по теореме Больцано \exists сходящаяся подпоследовательность: $x_2^{m_{s_t}} \to a_2$. Если взяли сходящуюся последовательность и в ней возьмем подпоследовательность, то она будет сходиться к тому же самому $\Rightarrow x^{m_{s_t}} = (x_1^{m_{s_t}}, x_2^{m_{s_t}}) : x^{m_{s_t}} \xrightarrow{t \to \infty} (a_1, a_2)$

Полные метрические пространства

Опр: 2. Метрическое пространство (X, ρ) называется полным, если в нем выполняется критерий Коши, то есть: последовательность x_n - сходится $\Leftrightarrow \forall \varepsilon > 0, \exists N \colon \forall n, m > N, \rho(x_n, x_m) < \varepsilon$. Такие последовательности называются фундаментальными или последовательностями Коши.

Rm: 3. Из сходимости всегда следует фундаментальность:

$$x_n \to x \Rightarrow \rho(x_n, x_m) \le \rho(x_n, x) + \rho(x, x_m), \ \forall \varepsilon > 0, \exists N : \forall n > N, \ \rho(x_n, x) < \varepsilon \Rightarrow \forall n, m > N \Rightarrow \rho(x_n, x) + \rho(x, x_m) < 2\varepsilon$$

Пример: \mathbb{R} , $\rho(x,y) = |x-y|$ - полное пространство (см. первый семестр).

Пример: \mathbb{Q} , $\rho(x,y) = |x-y|$ - неполное пространство (на примере про $\sqrt{2}$ или e: последовательность будет сходится к числу не из этого пространства \Rightarrow не будет сходиться).

Пример: $X \neq \emptyset$, $\rho(x,y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$, это дискретная метрика, тогда

$$x_n \to x \Leftrightarrow \rho(x_n, x) \to 0, \exists N : \forall n > N, \ \rho(x_n, x) < 1 \Rightarrow \rho(x_n, x) = 0$$

По этой метрике сходятся только те последовательности, которые начиная с некоторого номера становятся постоянными. Будет ли это пространство полным? Возьмем $\varepsilon=\frac{1}{2}\Rightarrow$ фундаментальность означает следующее:

$$\exists N : \forall n, m > N, \ \rho(x_n, x_m) < \varepsilon \Rightarrow x_n = x_m$$

в частности $\forall n > N, x_n = x_{N+1}$ и сходятся к x_{N+1} . Таким образом, это полное пространство.

 \mathbf{Rm} : 4. Полнота пространства зависит не только от множества, но и от метрики пространства. Пространство $\mathbb Q$ с дискретной метрикой будет полным пространством.

Пример: \mathbb{R} , $\rho(x,y) = |\arctan x - \arctan y|$. В этом случае, $x_n = n$ - фундаментальна с указанной метрикой:

$$x_n \to +\infty \Rightarrow \arctan x_n \to \frac{\pi}{2} \Rightarrow \rho(x_n, x_m) \to 0$$

но при этом последовательность не сходится (например, зафиксировали x, а вместо y взяли $n \Rightarrow$ получим $\arctan x - \frac{\pi}{2}) \Rightarrow$ нет сходимости (метрика не стремится к $0) \Rightarrow$ неполное пространство.

Теорема 3. \mathbb{R}^n - полное метрическое пространство.

 \square Пусть x^m - фундаментальная \Rightarrow по лемме $|x_k^m - x_k^l| \le \rho(x^m, x^l) \Rightarrow \forall k = \overline{1, n}, x_k^m$ - фундаментальна $\Rightarrow x_k^m \to a_k$. То есть каждая координата сходится к какому-то пределу. Сходимость по координатам \Leftrightarrow сходимости по метрике.

Пополнение метрического пространства

Можно ли из неполного пространства сделать полное? Например, каким-то образом дополнить исходное неполное пространство.

Пусть $X \subset Y$, так что на обоих пространствах одинаковая метрика. Напрямую это обычно сделать не получается, поэтому рассмотрим $f \colon X \to Y$, $\rho_Y(f(x_1), f(x_2)) = \rho_X(x_1, x_2)$, в этом случае говорят, что сделано изометрическое вложение.

Хотим, чтобы Y было самым маленьким полным пространством, содержащем X и тогда $\overline{X} = Y$, то есть замыкание множества X совпало бы с полным пространством $Y \Rightarrow Y$ - это пополнение X.

Способ пополнения пространств: хотим, чтобы фундаментальные последовательности $\{x_n\}$ сходились \Rightarrow вместо X будем рассматривать всевозможные фундаментальные последовательности:

$$Y = \{ \phi$$
ундаментальные последовательности $\{x_n\} \}$

Мы рассматриваем фундаментальные последовательности, поскольку так мы можем разделять последовательности, которые что-то приближают и которые должны бы сходится от всех остальных последовательностей. Когда одно и то же число можно представить разными последовательностями, то

$$\{x_n\} \sim \{y_n\} \Leftrightarrow \rho(x_n, y_n) \to 0$$

Таким образом, элементы Y - это классы эквивалентности. Как ввести метрику? Например

$$\rho(\lbrace x_n\rbrace, \lbrace y_n\rbrace) = \lim_{n \to \infty} \rho(x_n, y_n)$$

Если бы последовательности сходились, то $\lim_{n\to\infty} \rho(x_n,y_n)$ сходилось бы к расстоянию между их пределами. Можно доказать, что из фундаментальности этих последовательностей, такой предел существует, можно показать, что он не зависит от выбора представителя класса эквивалентности и удовлетворяет свойствам метрики \Rightarrow появилось метрическое пространство (Y, ρ) .

В этом пространстве хотим найти $X \Rightarrow x \in X \mapsto \{x_n \equiv x\}$. Можно показать, что в силу определения это изометрическое вложение. Осталось проверить:

- 1. Получившееся пространство полное;
- 2. Любой элемент Y приближается "постоянной" последовательностью ($\{x_n \equiv x_N\}$);

Это как раз и означает, что $\overline{X} = Y$. Таким образом добавлено лишь то, что можно приблизить элементами из X.

Пример: Таким способом можно получить вещественные числа: Есть рациональные числа ⇒ объявляем вещественным числом - класс эквивалентности фундаментальной последовательности.

 \mathbf{Rm} : 5. Описанный способ пополнения не единственный, но если были какие-то свойства на X помимо метрики, то они переносятся естественным способом на Y.

Упр. 1. Проверить эту процедуру пополнения и дополнить \mathbb{Q} до \mathbb{R} (см. книгу Львовский: Математический анализ).

Сходимость в нормированных пространствах

Опр: 3. Линейное пространство X (над \mathbb{R}) называется <u>нормированным</u>, если задана функция $\|\cdot\|: X \to [0, +\infty)$, удовлетворяющая свойствам:

- $1) ||x|| = 0 \Leftrightarrow x = 0;$
- 2) $\|\alpha x\| = |\alpha| \cdot \|x\|$;
- 3) $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника);

На нормированном пространстве есть метрика $\rho(x,y) = \|x-y\|$, где $\|\cdot\|$ называется <u>нормой</u>.

Поскольку это метрическое пространство, то на нем можно определить сходимость. Но перед этим убедимся, что нормированные пространства немного лучше, чем метрические.

Утв. 4. В нормированном пространстве шар $B(a,R) \supset B(b,r) \Rightarrow R > r$.

Пусть $b = a \Rightarrow \{x \mid \rho(a, x) < R\} \supset \{x \mid \rho(a, x) < r\}$, тогда $\forall x \in B(a, r)$

$$\rho(a,x) = \|x - a\| < R \Rightarrow \forall x \in B(a,R) \land x \notin B(a,r), r \le \rho(a,x) = \|x - a\| < R \Rightarrow r < R$$

Рис. 1: Шары в нормированном пространстве.

Пусть $b \neq a \Rightarrow$ если $y = t \frac{(b-a)}{\|b-a\|} + (b-a) \in B(b,r)$, где 0 < t < r, то получим следующее

$$\left\| t \frac{b-a}{\|b-a\|} + (b-a) \right\| < R \Rightarrow \left\| t \frac{(b-a)}{\|b-a\|} + (b-a) \right\| = \left\| \left(1 + \frac{t}{\|b-a\|} \right) (b-a) \right\| = \left(1 + \frac{t}{\|b-a\|} \right) \|b-a\| = t + \|b-a\| < R, \ \forall \ 0 < t < r$$

Устремляем $t \to r \Rightarrow t + \|b - a\| < R \to r + \|b - a\| \le R \Rightarrow r < R$, так как $\|b - a\| > 0$.

Утв. 5. Если в нормированном пространстве $x_n \to x, y_n \to y, \alpha_n \in \mathbb{R} \colon \alpha_n \to \alpha$, то

- $(1) x_n + y_n \to x + y;$
- (2) $\alpha_n \cdot x_n \to \alpha \cdot x$;
- \square Пусть $x_n \to x, \, y_n \to y, \, \alpha_n \in \mathbb{R} \colon \alpha_n \to \alpha, \,$ тогда
 - (1) По определению:

$$||(x+y)-(x_n+y_n)|| = ||(x-x_n)+(y-y_n)|| \le ||x-x_n|| + ||y-y_n|| \to 0$$

(2) По определению:

$$\|\alpha_n x_n - \alpha x\| = \|(\alpha_n x_n - \alpha_n x) + (\alpha_n x - \alpha x)\| \le |\alpha_n| \cdot \|x_n - x\| + |x| \cdot \|\alpha_n - \alpha\|$$

Поскольку $\alpha_n \to \alpha \Rightarrow$ это ограниченная последовательность и $x_n \to x$, то

$$|\alpha_n| \cdot ||x_n - x|| + |\alpha_n - \alpha| \cdot ||x|| \to |\alpha| \cdot 0 + 0 \cdot ||x|| = 0$$

Упр. 2. Доказать:

1) $|||x|| - ||y||| \le ||x - y||$

 \square Используем лемму: $|\rho(z,x)-\rho(z,y)|\leq \rho(x,y)\Rightarrow z=x+y\Rightarrow$

$$|\rho(z,x) - \rho(z,y)| = |||x + y - x|| - ||x + y - y||| = |||x|| - ||y||| \le ||x - y||;$$

 $2) x_n \to x \Rightarrow ||x_n|| \to ||x||$

 \square По определению $x_n \to x \Leftrightarrow \rho(x_n, x) \to 0 \Rightarrow \|x_n - x\| \to 0 \Rightarrow$ используя утверждение выше:

$$0 \le |||x_n|| - ||x||| \le ||x_n - x|| \to 0 \Rightarrow ||x_n|| \to ||x||;$$

Нормы в \mathbb{R}^n

Пусть $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, тогда можно рассматривать следующие нормы:

(1)
$$||x||_{l_2} = \sqrt{\sum_{k=1}^n x_k^2}$$
 (Евклидова норма);

(2)
$$||x||_{l_{\infty}} = \max_{1 \le k \le n} |x_k|;$$

(3)
$$||x||_{l_1} = \sum_{k=1}^{n} |x_k|$$

Теорема 4. Если $\|\cdot\|_1$ и $\|\cdot\|_2$ - произвольные нормы на \mathbb{R}^n , то существуют числа $c_1, c_2 > 0$: $\forall x \in \mathbb{R}^n$

$$c_1 ||x||_1 \le ||x||_2 \le c_2 ||x||_1$$