- Take several pictures of the same scene, and focus on one given pixel,
- There are always unwanted fluctuations around the "true" pixel value,
- This fluctuations are called noise,
- Usually described by a probability density or mass function (pdf/pmf),
- ullet Stochastic process Y parametrized by a deterministic signal of interest x.

- Take several pictures of the same scene, and focus on one given pixel,
- There are always unwanted fluctuations around the "true" pixel value,
- This fluctuations are called noise,
- Usually described by a probability density or mass function (pdf/pmf),
- ullet Stochastic process Y parametrized by a deterministic signal of interest x.

- Take several pictures of the same scene, and focus on one given pixel,
- There are always unwanted fluctuations around the "true" pixel value,
- This fluctuations are called noise,
- Usually described by a probability density or mass function (pdf/pmf),
- ullet Stochastic process Y parametrized by a deterministic signal of interest x.

- Take several pictures of the same scene, and focus on one given pixel,
- There are always unwanted fluctuations around the "true" pixel value,
- This fluctuations are called noise,
- Usually described by a probability density or mass function (pdf/pmf),
- ullet Stochastic process Y parametrized by a deterministic signal of interest x.

- Take several pictures of the same scene, and focus on one given pixel,
- There are always unwanted fluctuations around the "true" pixel value,
- This fluctuations are called noise,
- Usually described by a probability density or mass function (pdf/pmf),
- ullet Stochastic process Y parametrized by a deterministic signal of interest x.

x true unknown pixel value, y noisy observed value (a realization of Y), link: $p_Y(y;x)$ noise model

Shot noise

ullet Number of captured photons $y \in \mathbb{N}$ fluctuates around the signal of interest

$$x = PQ_e t$$

• x: expected quantity of light

• Q_e : quantum efficiency (depends on wavelength)

• P: photon flux (depends on light intensity and pixel size)

• t: integration time

• Variations depends on exposure times and light conditions.

Shot noise

ullet Number of captured photons $y \in \mathbb{N}$ fluctuates around the signal of interest

$$x = PQ_e t$$

• x: expected quantity of light

• Q_e : quantum efficiency (depends on wavelength)

• P: photon flux (depends on light intensity and pixel size)

• t: integration time

• Variations depends on exposure times and light conditions.

Shot noise and Poisson distribution

Distribution of Y modeled by the Poisson distribution

$$p_Y(y;x) = \frac{x^y e^{-x}}{y!}$$

• Number of photons $y \in \mathbb{N}$ fluctuates around the signal of interest $x \in \mathbb{R}$

$$\mathbb{E}[Y] = \sum_{y=0}^{\infty} y p_Y(y; x) = x$$

• Fluctuations proportional to $\operatorname{Std}[Y] = \sqrt{\operatorname{Var}[Y]} = \sqrt{x}$

$$Var[Y] = \sum_{y=0}^{\infty} (y - x)^{2} p_{Y}(y; x) = x$$

• Inherent when counting particles in a given time window

We write
$$Y \sim \mathcal{P}(x)$$

Figure 1 – Distribution of Y for a given quantity of light x

• For x = 0.5: mostly 0 photons, Spread ≈ 0.7

• For x = 1: mostly 0 or 1 photons, Spread = 1

• For $x \gg 1$: bell shape around x, Spread = \sqrt{x}

Spread is higher when $x=PQ_e t$ is large. Should we prefer small exposure time t? and lower light conditions P?

Figure 2 – Aspect of shot noise under different light conditions. Peak $= \max_i x_i$.

Figure 2 – Aspect of shot noise under different light conditions. Peak = $\max_i x_i$.

Signal to Noise Ratio

$$SNR = \frac{x}{\sqrt{Var[Y]}}, \quad \text{for shot noise} \quad SNR = \sqrt{x}$$

- Measure of difficulty/quality The higher the easier/better
- Rose criterion: an SNR of at least 5 is needed to be able to distinguish image features at 100% certainty.

The spread (variance) is not informative, what matters is the spread relatively to the signal (SNR)

Readout noise (a.k.a, electronic noise)

- Inherent to the process of converting CCD charges into voltage
- Measures $y \in \mathbb{R}$ fluctuate around a voltage $x \in \mathbb{R}$

$$\mathbb{E}[Y] = \int y p_Y(y; x) \, \mathrm{d}y = x$$

Fluctuations are independent of x

$$Var[Y] = \int (y-x)^2 p_Y(y; x) dy = \sigma^2$$

• Described as Gaussian distributed

$$p_Y(y; x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y-x)^2}{2\sigma^2}\right)$$

• Additive behavior: $Y = x + W, \quad W \sim \mathcal{N}(0, \sigma^2)$

We write
$$Y \sim \mathcal{N}(x, \sigma^2)$$

Gaussian/Normal distribution

- Symmetric with bell shape.
- Common to models $\pm \sigma$ uncertainties with very few outliers $\mathbb{P}[|Y-x|\leqslant\sigma]\approx0.68,\ \mathbb{P}[|Y-x|\leqslant2\sigma]\approx0.95,\ \mathbb{P}[|Y-x|\leqslant3\sigma]\approx0.99.$
- Arises in many problems due to the Central Limit Theorem.
- Simple to manipulate: ease computation in many cases.

Digital optical imagery – Shot noise vs Readout noise

Shot noise is signal-dependent (Poisson noise)

Readout noise is signal-independent (Gaussian noise)

Digital optical imagery – Thermal and total noise

Thermal noise (a.k.a, dark noise)

- Number of generated electrons fluctuates with the CCD temperature
- $\bullet \ \ \text{Additive Poisson distributed:} \ Y = x + N \quad \text{with} \quad N \sim \mathcal{P}(\lambda)$
- Signal independent

Digital optical imagery - Thermal and total noise

Thermal noise (a.k.a, dark noise)

- Number of generated electrons fluctuates with the CCD temperature
- Additive Poisson distributed: Y = x + N with $N \sim \mathcal{P}(\lambda)$
- Signal independent

Total noise in CCD models

$$Y = Z + N + W$$
 with
$$\begin{cases} Z \sim \mathcal{P}(x), \\ N \sim \mathcal{P}(\lambda), \\ W \sim \mathcal{N}(0, \sigma^2). \end{cases}$$

$$SNR = \frac{x}{\sqrt{x + \lambda + \sigma^2}}$$

where
$$x = PQ_e t$$
, $\lambda = Dt$

- *t*: exposure time
- P: photon flux per pixel (depends on luminosity)
- Q_e : quantum efficiency (depends on wavelength)
- D: dark current (depends on temperature)
- σ: readout noise
 (depends on electronic design)

Digital optical imagery – How to reduce noise?

$$SNR = \frac{x}{\sqrt{x + \lambda + \sigma^2}}$$
 where $x = PQ_e t$, $\lambda = Dt$

Photon noise

- Cannot be reduced via camera design
- ullet Reduced by using a longer exposure time t
- Reduced by increasing the scene luminosity, higher P (e.g., using a flash)
- \bullet Reduced by increasing the aperture, higher P

Digital optical imagery – How to reduce noise?

$$SNR = \frac{x}{\sqrt{x + \lambda + \sigma^2}}$$
 where $x = PQ_e t$, $\lambda = Dt$

Photon noise

- Cannot be reduced via camera design
- Reduced by using a longer exposure time t
- Reduced by increasing the scene luminosity, higher P (e.g., using a flash)
- Reduced by increasing the aperture, higher P

Thermal noise

- Reduced by cooling the CCD, *i.e.*, lower $D \Rightarrow \text{More expensive cameras}$
- ullet Or by using a longer exposure time t

Digital optical imagery - How to reduce noise?

$$SNR = \frac{x}{\sqrt{x + \lambda + \sigma^2}}$$
 where $x = PQ_e t$, $\lambda = Dt$

Photon noise

- Cannot be reduced via camera design
- Reduced by using a longer exposure time t
- \bullet Reduced by increasing the scene luminosity, higher P (e.g., using a flash)
- Reduced by increasing the aperture, higher P

Thermal noise

- Reduced by cooling the CCD, *i.e.*, lower $D \Rightarrow More$ expensive cameras
- Or by using a longer exposure time t

Readout noise

- Reduced by employing carefully designed electronics, *i.e.*, lower σ
 - ⇒ More expensive cameras

Or, reduced by image restoration software. But only if such models are accurate

Digital optical imagery – Are these models accurate?

Processing pipeline

• There are always some pre-processing steps such as

• white balance: to make sure neutral colors appear neutral,

• demosaicing: to create a color image from incomplete color samples,

• γ -correction: to optimize the usage of bits,

and fit human perception of brightness,

• compression: to improve memory usage (e.g., JPEG).

• Technical details often hidden by the camera vendors

• The noise in the resulting becomes much harder to model

Source: Y. Gong and Y. Lee

Digital optical imagery - Noise models and post-processing

Example (γ -correction)

$$y^{\text{(new)}} = Ay^{\gamma}$$

(b) γ -corrected

(c) Zoom $\times 8$

(d) Zoom $\times 30$

What is the influence on the noise?

- $\begin{array}{ll} \bullet \ \ \mathsf{CCD} \ \ \mathsf{model:} & \mathbb{E}[Y] = x + \lambda \ \mathsf{and} \ \mathrm{Var}[Y] = x + \lambda + \sigma^2 \\ \bullet \ \ \mathsf{Delta} \ \ \mathsf{method:} & \mathrm{Var}[f(Y)] \approx f'(\mathbb{E}[Y])^2 \mathrm{Var}[Y] \\ \bullet \ \ \mathsf{Resulting} \ \ \mathsf{model:} & \mathrm{Var}[Y^{(\mathrm{new})}] \approx A^2 \gamma^2 (x + \lambda)^{2(\gamma 1)} (x + \lambda + \sigma^2) \\ \end{array}$
- \bullet But A and γ are usually not known \circledcirc

Digital optical imagery - Noise models and post-processing

Basic idea:

- Use interpolation techniques.
- Bilinear interpolation: the red value of a non-red pixel is computed as the average of the two or four adjacent red pixels, and similarly for blue and green.

What is the influence on the noise?

- noise is no longer independent from one pixel to another,
- noise becomes spatially correlated.

Compression also create spatial correlations.

Reminder of basic statistics

ullet X and Y two real random variables

• Independence:
$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$

• Decorrelation:
$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

• Covariance:
$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] + \text{Cov}(X, Y)$$

$$Var(X) = Cov(X, X)$$

• Correlation:
$$\mathrm{Corr}(X,Y) = \frac{\mathrm{Cov}(X,Y)}{\sqrt{\mathrm{Var}[X]\mathrm{Var}[Y]}}$$

$$\mathrm{Corr}(X,X) = 1$$

$$Corr(X, X) = 1$$

Independence
$$\Leftrightarrow/\Rightarrow/\Leftarrow$$
 Decorrelation $Corr(X,Y)=1$ $\Leftrightarrow/\Rightarrow/\Leftarrow$ $X=Y$ $Corr(X,Y)=-1$ $\Leftrightarrow/\Rightarrow/\Leftarrow$ $X=aY+b,\ a<0$

$$\mathbf{G} \quad \operatorname{Corr}(X,Y) = -1 \qquad \Leftrightarrow / \Rightarrow / \Leftarrow \qquad X = aY + b, \ a < 0 \quad ?$$

$$\mathbf{r} = \alpha \mathbf{r} + \mathbf{o}, \ \alpha < \mathbf{o}$$
.

?

?

Reminder of multivariate statistics

$$\bullet \ \ X = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix} \ \text{and} \ \ Y = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_m \end{pmatrix} \ \text{two real random vectors}$$

- Entries are independent: $p_X(x) = \prod_k p_{X_k}(x_k)$
- Covariance matrix: $\operatorname{Var}(X) = \mathbb{E}[(X \mathbb{E}[X])(X \mathbb{E}[X])^T] \in \mathbb{R}^{n \times n}$

$$Var(X)_{ij} = Cov(X_i, X_j)$$

- Correlation matrix $Corr(X)_{ij} = Corr(X_i, X_j)$
- Cross-covariance matrix: $Cov(X,Y) = \mathbb{E}[(X \mathbb{E}[X])(Y \mathbb{E}[Y])^T] \in \mathbb{R}^{m \times n}$
- Cross-correlation matrix: $Corr(X, Y)_{ij} = Corr(X_i, Y_j)$

NB: cross-correlation definition is slightly different in signal processing (in few slides)

- See an image x as a vector of \mathbb{R}^n ,
- Its observation y is a realization of a random vector

$$Y = x + W$$
 and $p_Y(y;x) = p_W(y - x;x),$

ullet In general, noise is assumed to be zero-mean $\mathbb{E}[W]=0$, then

$$\mathbb{E}[Y] = x$$
 and $\operatorname{Var}[Y] = \operatorname{Var}[W] = \mathbb{E}[WW^T] = \Sigma$.

- Σ encodes variances and correlations (may depend on x).
- ullet p_Y is often modeled with a multivariate Gaussian/normal distribution

$$p_Y(y;x) \approx \frac{1}{\sqrt{2\pi}^n |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(y-x)^T \Sigma^{-1}(y-x)\right).$$

Underlying noise distribution

Gaussian approximation $Y \sim \mathcal{N}(x; \Sigma)$

Properties of covariance matrices

• $\Sigma = Var[Y]$ is square, symmetric and non-negative definite:

$$x^T \Sigma x \geqslant 0$$
, for all $x \neq 0$ (eigenvalues $\lambda_i \geqslant 0$).

- If all Y_k are linearly independent, then
 - Σ is positive definite: $x^T \Sigma x > 0$, for all $x \neq 0$ ($\lambda_i > 0$),
 - ullet Σ is invertible and Σ^{-1} is also symmetric positive definite,
 - Mahanalobis distance: $\sqrt{(y-x)^T\Sigma^{-1}(y-x)}=\|\Sigma^{-1/2}(y-x)\|_2$,
 - Its isoline $\left\{x \; ; \; \|\Sigma^{-1/2}(y-x)\|_2 = c, c > 0\right\}$ describes an ellipsoid of center x and semi-axes the eigenvectors e_i with length $c\lambda_i$.

Digital optical imagery - Noise dictionary

Vocabulary in signal processing

• White noise: zero-mean noise + no correlations

• Stationary noise: identically distributed whatever the location

Colored noise: stationary with pixels influencing their neighborhood

• Signal dependent: noise statistics depends on the signal intensity

Space dependent: noise statistics depends on the location

• AWGN: Additive White Gaussian Noise: $Y \sim \mathcal{N}(x; \sigma^2 \mathrm{Id}_n)$

How is it encoded in Σ ?

1 Σ diagonal: noise is uncorrelated - white

2 $\Sigma_{i,i} = f(s_i)$: variance depends on pixel location s_i – space dependent

3 $\Sigma_{i,i} = f(x_i)$: variance depends on pixel value x_i - signal dependent

4 $\Sigma_{i,j} = f(s_i - s_j)$: correlations depends on the shift

For 1d signals,
$$\Sigma$$
 is Toeplitz: $\Sigma = \begin{pmatrix} a & b & \dots & c \\ d & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ e & \dots & d & a \end{pmatrix}$

$$\Sigma = \underbrace{\begin{pmatrix} \sigma^2 & 0 \\ \vdots & \ddots & \ddots & b \\ e & \dots & d & a \end{pmatrix}}_{=\sigma^2 \mathrm{Id}_n}$$
: noise is homoscedastic (\neq heteroscedastic)

Digital optical imagery – Settings to avoid noise

(a) Very short exposure

(b) Short exposure

(c) Flash

(d) Normal exposure

(e) Long exposure

(f) Long + hand shaking

• Short exposure: too much noise

• Using a flash: change the aspect of the scene

• Long exposure: subject to blur and saturation (use a tripod)

What is blur?

Blur: The best of, 2000

Digital optical imagery – Blur

Motion blur

- Moving object
- Camera shake
- Atmospheric turbulence
- Long exposure time

Camera blur

- Limited resolution
- Diffraction
- Bad focus
- Wrong optical design

Bokeh

- Out-of-focus parts
- Often for artistic purpose

London (UK)

Munich (Germany)

Hubble Space Telescope (NASA)

Christmas tree

Mulholand drive (2001)

Digital optical imagery – Blur

Motion blur

- Moving object
- Camera shake
- Atmospheric turbulence
- Long exposure time

Camera blur

- Limited resolution
- Diffraction
- Bad focus
- Wrong optical design

Bokeh

- Out-of-focus parts
- Often for artistic purpose

London (UK)

Munich (Germany)

Hubble Space Telescope (NASA)

Christmas tree

Mulholand drive (2001)

How to model blur?

Digital optical imagery – Blur – Linear property

Blur is linear

Digital optical imagery - Linear blur

Linear model of blur

• Observed pixel values are a mixture of the underlying ones

$$y_{i,j}=\sum_{k=1}^n\sum_{l=1}^nh_{i,j,k,l}x_{k,l}$$
 where $h_{k,l}\geqslant 0$ and $\sum_{l=1}^nh_{k,l}=1$

ullet Matrix/vector representation: y=Hx $y\in\mathbb{R}^n$, $x\in\mathbb{R}^n$, $H\in\mathbb{R}^{n\times n}$

Digital optical imagery - Linear blur

Linear model of blur

• Observed pixel values are a mixture of the underlying ones

$$y_{i,j}=\sum_{k=1}^n\sum_{l=1}^nh_{i,j,k,l}x_{k,l}$$
 where $h_{k,l}\geqslant 0$ and $\sum_{l=1}^nh_{k,l}=1$

• Matrix/vector representation: y = Hx $y \in \mathbb{R}^n$, $x \in \mathbb{R}^n$, $H \in \mathbb{R}^{n \times n}$

$$y = \begin{pmatrix} & & & & & & & & & & & & & \\ \hline h_{1,1,1,1} & \dots & h_{1,1,1,n_2} & \dots & & & & & & & & \\ \hline h_{1,1,1,1} & \dots & h_{1,1,1,n_2} & \dots & & & & & & & \\ \vdots & & \vdots & & & & \vdots & & & \vdots & & \\ \hline h_{1,n_2,1,1} & \dots & h_{1,n_2,1,n_2} & \dots & & h_{1,n_2,n_1,1} & \dots & h_{1,n_2,n_1,n_2} \\ \hline \vdots & & \vdots & & & \vdots & & & \vdots & \\ \hline h_{n_1,1,1,1} & \dots & h_{n_1,1,1,n_2} & \dots & & h_{n_1,1,n_1,1} & \dots & h_{n_1,1,n_1,n_2} \\ \vdots & & & \vdots & & & \vdots & & \vdots \\ \hline h_{n_1,n_2,1,1} & \dots & h_{n_1,n_2,1,n_2} & \dots & & h_{n_1,n_2,n_1,1} & \dots & h_{n_1,n_2,n_1,n_2} \end{pmatrix} \begin{pmatrix} x_{1,1} \\ \vdots \\ x_{1,n_2} \\ \vdots \\ x_{n_1,n_2} \\ \vdots \\ x_{n_1,n_2} \end{pmatrix}$$

Digital optical imagery - Point Spread Function (PSF)

$$\operatorname{Blur}\left(\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \end{array}\right) = \bullet$$

Digital optical imagery – Point Spread Function (PSF)

Stationary blur

• Shift invariant: blurring depends only on the relative position:

$$h_{i,j,k,l} = \kappa_{k-i,l-j},$$

i.e., same PSF everywhere.

• Corresponds to the (discrete) cross-correlation (not the same as in statistics)

$$y = \kappa \star x \quad \Leftrightarrow \quad y_{i,j} = \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \kappa_{k,l} x_{i+k,j+l}$$

Stationary blur

• Shift invariant: blurring depends only on the relative position:

$$h_{i,j,k,l} = \kappa_{k-i,l-j},$$

i.e., same PSF everywhere.

• Corresponds to the (discrete) cross-correlation

(not the same as in statistics)

$$y = \kappa \star x \quad \Leftrightarrow \quad y_{i,j} = \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \kappa_{k,l} x_{i+k,j+l}$$

Here κ has a $q=3\times 3$ support

$$\Rightarrow \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \equiv \sum_{k=-1}^{+1} \sum_{l=-1}^{+1} q \text{ called window size.}$$

Direct computation requires O(nq).

$$\Rightarrow q \ll n$$

Cross-correlation vs Convolution product

ullet If κ is complex then the cross-correlation becomes

$$y = \kappa \star x \quad \Leftrightarrow \quad y_{i,j} = \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \kappa_{k,l}^* x_{i+k,j+l}.$$

- Complex conjugate: $(a+ib)^* = a-ib$.
- $y = \kappa \star x$ can be re-written as the (discrete) convolution product

$$y = \nu * x \quad \Leftrightarrow \quad y_{i,j} = \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \nu_{k,l} x_{i-k,j-l} \quad \text{with} \quad \nu_{k,l} = \kappa_{-k,-l}^*.$$

 \bullet ν called convolution kernel.

Why convolution instead of cross-correlation?

- Associative: (f * g) * h = f * (g * h)
- Commutative: f * g = g * f

For cross-correlation, only true if the signal is Hermitian, i.e., if $f_{k,l}=f_{-k,-l}^{*}$.

3×3 box convolution

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

3×3 box convolution

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90		90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

3×3 box convolution

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

3×3 box convolution

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90		90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

3×3 box convolution

0	0	0	0		0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

3×3 box convolution

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0		0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

							<u> </u>	
0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	
	0 0 0 0 10	0 20 0 30 0 30 0 30 0 20 10 20	0 20 40 0 30 60 0 30 50 0 30 50 0 20 30	0 20 40 60 0 30 60 90 0 30 50 80 0 30 50 80 0 20 30 50	0 20 40 60 60 0 30 60 90 90 0 30 50 80 80 0 30 50 80 80 0 20 30 50 50 10 20 30 30 30	0 20 40 60 60 60 0 30 60 90 90 90 0 30 50 80 80 90 0 30 50 80 80 90 0 20 30 50 50 60 10 20 30 30 30 30	0 20 40 60 60 60 40 0 30 60 90 90 90 60 0 30 50 80 80 90 60 0 30 50 80 80 90 60 0 20 30 50 50 60 40 10 20 30 30 30 30 20	0 20 40 60 60 60 40 20 0 30 60 90 90 90 60 30 0 30 50 80 80 90 60 30 0 30 50 80 80 90 60 30 0 20 30 50 50 60 40 20 10 20 30 30 30 30 20 10

Digital optical imagery - Convolution kernels

Classical kernels

• Box kernel:

$$\kappa_{i,j} = \frac{1}{Z} \begin{cases} 1 & \text{if } \max(|i|,|j|) \leqslant \tau \\ 0 & \text{otherwise} \end{cases}$$

• Gaussian kernel:

$$\kappa_{i,j} = \frac{1}{Z} \exp\left(-\frac{i^2 + j^2}{2\tau^2}\right)$$

• Exponential kernel:

$$\kappa_{i,j} = \frac{1}{Z} \exp\left(-\frac{\sqrt{i^2 + j^2}}{\tau}\right)$$

• Z normalization constant: $Z = \sum_{i,j} \kappa_{i,j}$

Digital optical imagery – Gaussian kernel

$$\kappa_{i,j} = \frac{1}{Z} \exp\left(-\frac{i^2 + j^2}{2\tau^2}\right)$$

Influence of τ

• $\sqrt{i^2 + j^2}$: distance to the central pixel,

• τ : controls the influence of neighbor pixels, *i.e.*, the strength of the blur

Small au

 $\mathsf{Medium}\ \tau$

Large au

Digital optical imagery – Boundary conditions

How to deal when the kernel window overlaps outside the image domain?

i.e., how to evaluate $y_{i,j} = \sum_{k,l} \kappa_{k,l} x_{i+k,j+l}$ when $(i+k,j+l) \notin \Omega$?

Digital optical imagery – Boundary conditions

Standard techniques:

zero-padding

mirror

extension

periodical