Logistic regression: introduction

CREDIT RISK MODELING IN R

Lore Dirick

Manager of Data Science Curriculum at Flatiron School

Final data structure

str(training_set)

```
'data.frame':\t19394 obs. of 8 variables:
$ loan_status : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 1 1 ...
$ loan_amnt : int 25000 16000 8500 9800 3600 6600 3000 7500 6000 22750 ...
$ grade : Factor w/ 7 levels "A","B","C","D",..: 2 4 1 2 1 1 1 2 1 1 ...
$ home_ownership: Factor w/ 4 levels "MORTGAGE","OTHER",..: 4 4 1 1 1 3 4 3 4 1 ...
$ annual_inc : num 91000 45000 110000 102000 40000 ...
$ age : int 34 25 29 24 59 35 24 24 26 25 ...
$ emp_cat : Factor w/ 5 levels "0-15","15-30",..: 1 1 1 1 1 2 1 1 1 1 ...
$ ir_cat : Factor w/ 5 levels "0-8","11-13.5",..: 2 3 1 4 1 1 1 4 1 1 ...
```

What is logistic regression?

A regression model with output between 0 and 1

$$P(ext{loan status} = 1 | x_1, ..., x_m) = rac{1}{1 + e^{-(eta_0 + eta_1 x_1 + ... + eta_m x_m)}}$$

• $x_1,...,x_m$:

loan_amnt grade age annual_inc home_ownership emp_cat ir_cat

- $\beta_0, ...\beta_m$: Parameters to be estimated
- $\beta_0 + \beta_1 x_1 + ... + \beta_m x_m$: Linear predictor

Fitting a logistic model in R

$$P(ext{loan status} = 1| ext{age}) = rac{1}{1 + e^{-(\hat{eta_0} + \hat{eta_1} ext{age})}}$$

Probabilities of default

$$P(ext{loan status} = 1 | x_1, ..., x_m) = rac{1}{1 + e^{-(eta_0 + eta_1 x_1 + ... + eta_m x_m)}} = rac{e^{eta_0 + eta_1 x_1 + ... + eta_m x_m}}{1 + e^{eta_0 + eta_1 x_1 + ... + eta_m x_m}}$$

$$P(ext{loan status} = 0 | x_1, ..., x_m) = 1 - rac{e^{eta_0 + eta_1 x_1 + ... + eta_m x_m}}{1 + e^{eta_0 + eta_1 x_1 + ... + eta_m x_m}} = rac{1}{1 + e^{eta_0 + eta_1 x_1 + ... + eta_m x_m}}$$

$$rac{P(ext{loan status}=1|x_1,...,x_m)}{P(ext{loan status}=0|x_1,...,x_m)}=e^{eta_0+eta_1x_1+...+eta_mx_m}$$

Odds in favor of loan_status = 1

Interpretation of coefficient

- If variable x_j goes up by 1
 - \circ The odds are multiplied by $e^{eta j}$
- $egin{array}{ccc} oldsymbol{\circ} & eta_j < 0 \ oldsymbol{\circ} & e^{eta j} < 1 \end{array}$
 - \circ The odds decrease as x_i increases
- $egin{array}{ll} ullet eta_j > 0 \ ullet e^{eta j} > 1 \end{array}$
 - \circ The odds increase as x_{j} increases

Applied to our model:

- If variable age goes up by 1
 - $\circ~$ The odds are multiplied by $e^{-0.009726}$
 - The odds are multiplied by 0.991

Let's practice!

CREDIT RISK MODELING IN R

Logistic regression: predicting the probability of default

CREDIT RISK MODELING IN R

Lore Dirick

Manager of Data Science Curriculum at Flatiron School

An example with "age" and "home ownership"

```
log_model_small <- glm(loan_status ~ age + home_ownership, family = "binomial", data = training_set)
log_model_small</pre>
```

```
Call: glm(formula = loan_status ~ age + home_ownership,
         family = "binomial", data = training_set)
Coefficients:
(Intercept)
             age home_ownershipOTHER
                                                      home_ownershipOWN
                                                                        home_ownershipRENT
-1.886396
          -0.009308
                                       0.129776
                                                         -0.019384
                                                                             0.158581
Degrees of Freedom: 19393 Total (i.e. Null); 19389 Residual
Null Deviance:
                13680
Residual Deviance: 13660 AIC: 13670
```

$$P(ext{loan status} = 1 | ext{age, home ownership}) = rac{1}{1 + e^{-(\hat{eta_0} + \hat{eta_1} ext{age} + \hat{eta_2} ext{OTHER} + \hat{eta_3} ext{OWN} + \hat{eta_4} ext{RENT})}$$

Test set example

P(loan status = 1|age = 33, home ownership = RENT)

$$=rac{1}{1+e^{-(\hat{eta_0}+\hat{eta_1}33+\hat{eta_2}0+\hat{eta_3}0+\hat{eta_4}1)}$$

$$=rac{1}{1+e^{(-(1.886396+(-0.009308) imes33+(0.158581) imes1))}}$$

= 0.115579

```
test_case <- as.data.frame(test_set[1,])
test_case</pre>
```

```
loan_status loan_amnt grade home_ownership annual_inc age emp_cat ir_cat
1 0 5000 B RENT 24000 33 0-15 8-11
```

predict(log_model_small, newdata = test_case)

$$-\hat{eta_0}+\hat{eta_1}age+\hat{eta_2} ext{OTHER}+\hat{eta_3} ext{OWN}+\hat{eta_4} ext{RENT}$$

predict(log_model_small, newdata = test_case, type = "response")

0.1155779

Let's practice!

CREDIT RISK MODELING IN R

Evaluating the logistic regression model result

CREDIT RISK MODELING IN R

Lore Dirick

Manager of Data Science Curriculum at Flatiron School

Recap: model evaluation

test_set\$lo	an_status	model_prediction	
[8066,]	1	1	
[8067,]	0	0	
[8068,]	0	0	
[8069,]	0	0	
[8070,]	0	0	
[8071,]	0	1	
[8072,]	1	0	
[8073,]	1	1	
[8074,]	0	0	
[8075,]	0	0	
[8076,]	0	0	
[8077,]	1	1	
[8078,]	0	0	
[8079,]	0	1	
		•••	

Actual loan status v. Model prediction

	No default (0)	Default (1)
No default (0)	8	2
Default (1)	1	3

In reality...

test_set\$loa	n_status	model_prediction	
	• • •		
[8066,]	1	0.09881492	
[8067,]	0	0.09497852	
[8068,]	0	0.21071984	
[8069,]	0	0.04252119	
[8070,]	0	0.21110838	
[8071,]	0	0.08668856	
[8072,]	1	0.11319341	
[8073,]	1	0.16662207	
[8074,]	0	0.15299176	
[8075,]	0	0.08558058	
[8076,]	0	0.08280463	
[8077,]	1	0.11271048	
[8078,]	0	0.08987446	
[8079,]	0	0.08561631	
•••	•	••••	

Actual loan status v. Model prediction

	No default (0)	Default (1)
No default (0)	?	?
Default (1)	?	?

In reality...

test_set\$loan_	status	model_prediction
		••••
[8066,]	1	0.09881492
[8067,]	0	0.09497852
[8068,]	0	0.21071984
[8069,]	0	0.04252119
[8070,]	0	0.21110838
[8071,]	0	0.08668856
[8072,]	1	0.11319341
[8073,]	1	0.16662207
[8074,]	0	0.15299176
[8075,]	0	0.08558058
[8076,]	0	0.08280463
[8077,]	1	0.11271048
[8078,]	0	0.08987446
[8079,]	0	0.08561631
		••••

Cutoff or threshold value

• Between 0 and 1

Cutoff = 0.5

test_set\$loan	_status	model_prediction	
[8066,]	1	0	
[8067,]	0	0	
[8068,]	0	0	
[8069,]	0	0	
[8070,]	0	0	
[8071,]	0	0	
[8072,]	1	0	
[8073,]	1	0	
[8074,]	0	0	
[8075,]	0	0	
[8076,]	0	0	
[8077,]	1	0	
[8078,]	0	0	
[8079,]	0	0	
•••		•••	

Cutoff = 0.5

test_set\$loan_	status	model_prediction	
		• • •	
[8066,]	1	0	
[8067,]	0	0	
[8068,]	0	0	
[8069,]	0	0	
[8070,]	0	0	
[8071,]	0	0	
[8072,]	1	0	
[8073,]	1	0	
[8074,]	0	0	
[8075,]	0	0	
[8076,]	0	0	
[8077,]	1	0	
[8078,]	0	0	
[8079,]	0	0	
•••		•••	

Actual loan status v. Model prediction

	No default (0)	Default (1)
No default (0)	10	0
Default (1)	4	0

Sensitivity =
$$0/(4+0) = 0\%$$

Accuracy =
$$10/(10+4+0+0) = 71.4\%$$

Cutoff = 0.1

test_set\$loan_	_status	model_prediction	
[8066,]	1	0	
[8067,]	0	0	
[8068,]	0	0	
[8069,]	0	0	
[8070,]	0	0	
[8071,]	0	0	
[8072,]	1	0	
[8073,]	1	0	
[8074,]	0	0	
[8075,]	0	0	
[8076,]	0	0	
[8077,]	1	0	
[8078,]	0	0	
[8079,]	0	0	
		•••	

Actual loan status v. Model prediction

	No default (0)	Default (1)
No default (0)	7	3
Default (1)	1	3

Sensitivity =
$$3/(3+1) = 75\%$$

Accuracy =
$$10/(10+4+0+0) = 71.4\%$$

Let's practice!

CREDIT RISK MODELING IN R

Wrap-up and remarks

CREDIT RISK MODELING IN R

Lore Dirick

Manager of Data Science Curriculum at Flatiron School

$$Accuracy = \frac{TP+TN}{TP+FP+TN+FN}$$

Accuracy =
$$\frac{TP+TN}{TP+FP+TN+FN}$$

Accuracy =
$$\frac{TP+TN}{TP+FP+TN+FN}$$

$$Accuracy = \frac{TP+TN}{TP+FP+TN+FN}$$

Accuracy = 89.31%

Actual defaults in test set = 10.69%

$$=(100-89.31)\%$$

What about sensitivity or specificity?

Sensitivity =
$$1037/(1037 + 0) = 100\%$$

Specificity =
$$0/(0 + 864) = 0\%$$

What about sensitivity or specificity?

What about sensitivity or specificity?

Sensitivity =
$$0/(0 + 1037) = 0\%$$

Specificity =
$$8640/(8640+0) = 100\%$$

About logistic regression...

```
log_model_full <- glm(loan_status ~ ., family = "binomial", data = training_set)</pre>
```

Is the same as:

log_model_full <- glm(loan_status ~ ., family = binomial(link = logit), data = training_set)</pre>

Recall:

$$P(ext{loan status} = 1 | x_1, ..., x_m) = rac{1}{1 + e^{-(eta_0 + eta_1 x_1 + ... + eta_m x_m)}}$$

- $\beta_i < 0$
 - \circ The probability of default decreases as x_{i} increases
- $\beta_j > 0$
 - \circ The probability of default increases as x_i increases

$$P(ext{loan status} = 1 | x_1, ..., x_m) = rac{1}{1 + e^{-(eta_0 + eta_1 x_1 + ... + eta_m x_m)}}$$

Let's practice!

CREDIT RISK MODELING IN R

