```
L = 20
M = 30
X = 2
R0 = L/M
F = 1
R = 1
S = 1
for i in range(1,X+1):
    F = F * i
    R = R * R0
    S = S + R/F
S = S + (R * R0)/(F * (X - R0))
P0 = 1/S
Y1 = (R * R0 * P0)/((F/X)*(X-R0)*(X-R0))
Y2 = Y1 + R0
Y3 = Y1/L
Y4 = Y2/L
print("P0 = ", str(P0))
print()
F = 1
R = 1
Pall = P0
for i in range(1,X):
    F = F * i
    R = R * R0
    PI = R/F*P0
    print("P",str(i)," = ", str(PI))
    #print(PI)
    print()
    Pall += PI
print("1-summ(P) = ", str(1-Pall))
print()
print("Y1 =")
print(Y1)
print("Y2 =")
print(Y2)
print("Y3 =")
print(Y3)
print("Y4 =")
print(Y4)
```

Необходимо чтобы параметр 1-summ(P) был меньше 0,05

При х=2 получается 0.16

При x = 3 получается 0.032

```
P0 = 0.5121951219512195

P 1 = 0.3414634146341463

P 2 = 0.11382113821138211

1-summ(P) = 0.0325203252032521

Y1 = 0.009291521486643434

Y2 = 0.6759581881533101

Y3 = 0.00046457607433217173

Y4 = 0.033797909407665506
```

Ответ: Необходимо три полосы

х1 – кол-во пиломатериалов, м^3

x2 – кол-во фанеры, м^2

кол-во еловых лесоматериалов: x1+5x2, м^3

кол-во пихтовых лесоматериалов: 2,5х1+10х2, м^3

Таким образом, ограничения:

$$x1+5x2 \le 80$$

$$2,5x1+10x2 \le 180$$

x1 > 10

x2 > 12

 $x1, x2 \ge 0$

Целевая функция:

$$F=16x1+60x2 \rightarrow max$$

Решение с помощью сервиса «math.semestr.ru»:

$$x_1 + 5x_2 + x_3 = 80$$

$$2.5x_1 + 10x_2 + x_4 = 180$$

$$x_1 - x_5 = 10$$

$$x_2 - x_6 = 12$$

1	5	1	0	0	0	80
2.5	10	0	1	0	0	180
-1	0	0	0	1	0	-10
0	-1	0	0	0	1	-12

Поскольку в системе имеется единичная матрица, то в качестве базисных переменных принимаем X = (3,4,5,6).

Выразим базисные переменные через остальные:

$$x_3 = -x_1 - 5x_2 + 80$$

$$x_4 = -2.5x_1 - 10x_2 + 180$$

$$x_5 = x_1-10$$

$$x_6 = x_2 - 12$$

Подставим их в целевую функцию:

$$F(X) = 16x_1 + 60x_2$$

Среди свободных членов b_i имеются отрицательные значения, следовательно, полученный базисный план не является опорным.

Вместо переменной x_6 следует ввести переменную x_2 .

Выполняем преобразования симплексной таблицы методом Жордано-Гаусса.

Базис	В	x ₁	X ₂	x ₃	x ₄	x ₅	x ₆
x ₃	20	1	0	1	0	0	5
x ₄	60	2.5	0	0	1	0	10
x ₅	-10	-1	0	0	0	1	0
X 2	12	0	1	0	0	0	-1
F(X0)	-720	16	0	0	0	0	60

Представим расчет каждого элемента в виде таблицы:

В	x ₁	x ₂	x ₃	x ₄	x ₅	x ₆
80-(-12*5):-1	1-(0*5):-1	5-(-1*5):-1	1-(0*5):-1	0-(0*5):-1	0-(0*5):-1	0-(1*5):-1
180- (-12*10):-1	2.5	10- (-1*10):-1	0- (0*10):-1	1- (0*10):-1	0- (0*10):-1	0- (1*10):-1
-10-(-12*0):-1	-1- (0*0):-1	0-(-1*0):-1	0-(0*0):-1	0-(0*0):-1	1-(0*0):-1	0-(1*0):-1
-12 : -1	0 : -1	-1 : -1	0 : -1	0 : -1	0 : -1	1 : -1

Среди свободных членов b_і имеются отрицательные значения, следовательно, полученный базисный план не является опорным.

Вместо переменной х₅ следует ввести переменную х₁.

Выполняем преобразования симплексной таблицы методом Жордано-Гаусса.

Базис	В	x ₁	x ₂	x ₃	x ₄	x ₅	x ₆
x ₃	10	0	0	1	0	1	5
x_4	35	0	0	0	1	2.5	10
x ₁	10	1	0	0	0	-1	0
x ₂	12	0	1	0	0	0	-1
F(X1)	-880	0	0	0	0	16	60

Представим расчет каждого элемента в виде таблицы:

В	x ₁	x ₂	x ₃	x ₄	x ₅	x ₆
20-(-10*1):-1	1-(-1*1):-1	0-(0*1):-1	1-(0*1):-1	0-(0*1):-1	0-(1*1):-1	5-(0*1):-1
60	2.5	0	0	1	0	10
-10 : -1	-1 : -1	0 : -1	0 : -1	0 : -1	1:-1	0 : -1
12-(-10*0):-1	0-(-1*0):-1	1-(0*0):-1	0-(0*0):-1	0-(0*0):-1	0-(1*0):-1	-1-(0*0):-1

Выразим базисные переменные через остальные:

$$x_3 = -x_5 - 5x_6 + 10$$

$$x_4 = -2.5x_5 - 10x_6 + 35$$

$$x_1 = x_5 + 10$$

$$x_2 = x_6 + 12$$

Подставим их в целевую функцию:

$$F(X) = 16(x_5+10)+60(x_6+12)$$

$$F(X) = 16x_5 + 60x_6 + 880$$

$$x_3 + x_5 + 5x_6 = 10$$

$$x_4+2.5x_5+10x_6=35$$

$$x_1-x_5=10$$

$$x_2-x_6=12$$

При вычислениях значение Fc = 880 временно не учитываем.

Матрица коэффициентов А = a(ij) этой системы уравнений имеет вид:

	0	0	1	0	1	5
	0	0	0	1	2,5	10
A =	1	0	0	0	-1	0
	0	1	0	0	0	-1

Полагая, что свободные переменные равны 0, получим первый опорный план:

$$X0 = (10,12,10,35,0,0)$$

Базисное решение называется допустимым, если оно неотрицательно.

Базис	В	x ₁	x ₂	x ₃	x ₄	x ₅	x ₆
x ₃	10	0	0	1	0	1	5
x ₄	35	0	0	0	1	2.5	10
x ₁	10	1	0	0	0	-1	0
x ₂	12	0	1	0	0	0	-1
F(X0)	0	0	0	0	0	-16	-60

Переходим к основному алгоритму симплекс-метода.

Итерация №0.

1. Проверка критерия оптимальности.

Текущий опорный план неоптимален, так как в индексной строке находятся отрицательные коэффициенты.

2. Определение новой базисной переменной.

В качестве ведущего выберем столбец, соответствующий переменной х6, так как это наибольший коэффициент по модулю.

3. Определение новой свободной переменной.

Вычислим значения Di по строкам как частное от деления: bi / ai6 и из них выберем наименьшее:

$$\min (10:5,35:10,-,-)=2$$

Следовательно, 1-ая строка является ведущей.

Разрешающий элемент равен (5) и находится на пересечении ведущего столбца и ведущей строки.

Базис	В	X ₁	x ₂	x ₃	x ₄	X 5	x ₆	min
x 3	10	0	0	1	0	1	5	2
x ₄	35	0	0	0	1	2.5	10	7/2
x ₁	10	1	0	0	0	-1	0	-
x ₂	12	0	1	0	0	0	-1	-
F(X1)	0	0	0	0	0	-16	-60	0

4. Пересчет симплекс-таблицы.

Формируем следующую часть симплексной таблицы. Вместо переменной х3 в план 1 войдет переменная х6.

Получаем новую симплекс-таблицу:

,	,					.,	
Базис	В	x ₁	x ₂	x ₃	x ₄	X ₅	x ₆
x ₆	2	0	0	1/5	0	1/5	1
x ₄	15	0	0	-2	1	0.5	0
x ₁	10	1	0	0	0	-1	0
X 2	14	0	1	1/5	0	1/5	0
F(X1)	120	0	0	12	0	-4	0

Итерация №1.

1. Проверка критерия оптимальности.

Текущий опорный план неоптимален, так как в индексной строке находятся отрицательные коэффициенты.

2. Определение новой базисной переменной.

В качестве ведущего выберем столбец, соответствующий переменной х5, так как это наибольший коэффициент по модулю.

3. Определение новой свободной переменной.

Вычислим значения Di по строкам как частное от деления: bi / ai5 и из них выберем наименьшее:

min
$$(2:1/5, 15:0.5, -, 14:1/5) = 10$$

Следовательно, 1-ая строка является ведущей.

Разрешающий элемент равен (1/5) и находится на пересечении ведущего столбца и ведущей строки.

Базис	В	x ₁	x ₂	x ₃	x ₄	X ₅	x ₆	min
x ₆	2	0	0	1/5	0	1/5	1	10
x ₄	15	0	0	-2	1	0.5	0	30
x ₁	10	1	0	0	0	-1	0	-
x ₂	14	0	1	1/5	0	1/5	0	70
F(X2)	120	0	0	12	0	-4	0	0

4. Пересчет симплекс-таблицы.

Формируем следующую часть симплексной таблицы. Вместо переменной х6 в план 2 войдет переменная х5.

Получаем новую симплекс-таблицу:

-	-					•	
Базис	В	x ₁	x ₂	x ₃	x ₄	x ₅	x ₆
x ₅	10	0	0	1	0	1	5
X 4	10	0	0	-2.5	1	0	-2.5
x ₁	20	1	0	1	0	0	5
x ₂	12	0	1	0	0	0	-1
F(X2)	160	0	0	16	0	0	20

1. Проверка критерия оптимальности.

Среди значений индексной строки нет отрицательных. Поэтому эта таблица определяет оптимальный план задачи.

Окончательный вариант симплекс-таблицы:

Базис	В	x ₁	x ₂	x ₃	x ₄	X ₅	x ₆
x ₅	10	0	0	1	0	1	5
x ₄	10	0	0	-2.5	1	0	-2.5
x ₁	20	1	0	1	0	0	5
x ₂	12	0	1	0	0	0	-1
F(X3)	160	0	0	16	0	0	20

Оптимальный план можно записать так:

$$x_1 = 20, x_2 = 12$$

$$F(X) = 16*20 + 60*12 = 1040$$

Расширенная матрица системы ограничений-равенств данной задачи:

8	2	-1	-1	0	0	0
5	3	-1	0	-1	0	0
3	6	-1	0	0	-1	0
1	1	0	0	0	0	1

Приведем систему к единичной матрице методом жордановских преобразований.

Выразим базисные переменные через остальные:

$$x_1 = -2/11x_6 + \frac{1}{11}$$

$$x_4 = 4/3x_5 - 25/33x_6 + \frac{7}{33}$$

$$x_2 = -1/3x_5 + 7/33x_6 + 2/33$$

$$x = x_3 + 7/3x_5 + 8/33x_6 + 7/33$$

Подставим их в целевую функцию:

$$F(X) = x_3$$

или

$$F(X) = -2x_5 - 3/11x_6$$

$$x_1+2/11x_6=^1/_{11}$$

$$x_4$$
-4/3 x_5 +25/33 x_6 = 7 /₃₃

$$x_2+1/3x_5-7/33x_6=^2/_{33}$$

$$-x_3-7/3x_5-8/33x_6=7/33$$

Матрица коэффициентов A = a(ij) этой системы уравнений имеет вид:

	1	0	0	0	0	2/11
	0	0	0	1	-4/3	25/33
A =	0	1	0	0	1/3	-7/33
	0	0	-1	0	-7/3	-8/33

Полагая, что свободные переменные равны 0, получим первый опорный план:

$$X0 = (\frac{1}{11}, \frac{2}{33}, 0, \frac{7}{33}, 0, 0)$$

Базисное решение называется допустимым, если оно неотрицательно.

Базис	В	x ₁	x ₂	x ₃	x ₄	X 5	x ₆
x ₁	1/11	1	0	0	0	0	2/11
x ₄	7/33	0	0	0	1	-4/3	25/33
x ₂	2/33	0	1	0	0	1/3	-7/33
x	7/33	0	0	-1	0	-7/3	-8/33
F(X0)	0	0	0	0	0	2	3/11

Переходим к основному алгоритму симплекс-метода.

1. Проверка критерия оптимальности.

Среди значений индексной строки нет отрицательных. Поэтому эта таблица определяет оптимальный план задачи.

Окончательный вариант симплекс-таблицы:

Базис	В	X ₁	x ₂	x ₃	x ₄	X 5	x ₆
X 1	1/11	1	0	0	0	0	2/11
x ₄	7/33	0	0	0	1	-4/3	25/33
x ₂	2/33	0	1	0	0	1/3	-7/33
x	7/33	0	0	-1	0	-7/3	-8/33
F(X1)	0	0	0	0	0	2	3/11

Оптимальный план можно записать так:

$$x_1 = {}^{1}/_{11}, x_2 = {}^{2}/_{33}, x_3 = 0$$

$$F(X) = 1*0 = 0$$

Задача коммивояжера

	База	Точка	очка Точка2 Т		Точка	Точка
		1		3	4	5
База	0	12	8	6	10	7
Точка 1	12	0	5	13	6	10
Точка 2	8	5	0	8	4	3
Точка 3	6	13	8	0	8	15
Точка 4	10	6	4	8	0	6
Точка 5	7	10	3	15	6	0

Код программы на python:

from itertools import permutations

```
# Матрица расстояний
distance matrix = [
  [0, 12, 8, 6, 10, 7], #База
  [12, 0, 5, 13, 6, 10], # Точка 1
  [8, 5, 0, 8, 4, 3], # Точка 2
  [6, 13, 8, 0, 8, 15], #Точка 3
  [10, 6, 4, 8, 0, 6], #Точка 4
  [7, 10, 3, 15, 6, 0] # Точка 5
# Точки для посещения (1-5, без базы)
points = [1, 2, 3, 4, 5]
# Инициализируем минимальное расстояние и лучший маршрут
min distance = float('inf')
best route = []
# Перебор всех перестановок точек
for perm in permutations(points):
  # Добавляем путь из базы в первую точку и возвращение на базу
  current distance = distance matrix[0][perm[0]] # База -> первая точка
  for i in range(len(perm) - 1):
    current distance += distance matrix[perm[i]][perm[i + 1]] # Точки между
собой
  current distance += distance matrix[perm[-1]][0] # Последняя точка -> база
  # Проверяем, является ли данный маршрут минимальным
  if current distance < min distance:
    min distance = current distance
    best route = perm
```

Конвертируем маршрут в читаемый формат (добавляем базу)

Оптимальный маршрут:

База
$$\rightarrow$$
 Точка 3 \rightarrow Точка 4 \rightarrow Точка 1 \rightarrow Точка 2 \rightarrow Точка 5 \rightarrow База

Длина маршрута: 35 км

Задача Джонсона

Номера	· · <i>J</i>	Номера деталей								
станков	1	2	3	4	5	6				
1	7	3	5	8	2	4				
2	3	5	2	5	2	7				

```
Код программы на python:
# Исходные данные: время обработки деталей на двух станках
jobs = [
  (1, 7, 3), #Деталь 1: Станок 1 = 7, Станок 2 = 3
  (2, 3, 5), # Деталь 2: Станок 1 = 3, Станок 2 = 5
  (3, 5, 2), #Деталь 3: Станок 1 = 5, Станок 2 = 2
  (4, 8, 5), #Деталь 4: Станок 1 = 8, Станок 2 = 5
  (5, 2, 2), #Деталь 5: Станок 1 = 2, Станок 2 = 2
  (6, 4, 7) # Деталь 6: Станок 1 = 4, Станок 2 = 7
1
# Алгоритм Джонсона для двух станков
def johnson algorithm(jobs):
  sequence = []
  jobs copy = jobs.copy()
  while jobs copy:
    # Найти минимальное время обработки
    min time = min(min(job[1], job[2]) for job in jobs copy)
    for job in jobs copy:
       if job[1] == min time: # Время на станке 1 минимально -> начало
         sequence.insert(0, job[0])
         jobs copy.remove(job)
         break
       elif job[2] == min time: #Время на станке 2 минимально -> конец
         sequence.append(job[0])
         jobs copy.remove(job)
         break
  return sequence
# Получаем оптимальную последовательность
optimal sequence = johnson algorithm(jobs)
print(optimal sequence)
```

Оптимальная последовательность обработки деталей:

$$6 \rightarrow 2 \rightarrow 5 \rightarrow 3 \rightarrow 1 \rightarrow 4$$

Общее время обработки: 34 минуты

Расчет сетевого графика

No	Наименование работы (процесса)	Предшествующие	Длительность
работы		работы	(дней)
1	Очистка строительного участка	-	1
2	Завоз оборудования	-	2
3	Земляные работы	1	1
4	Заливка фундамента	3	2
5	Наружные водопроводно-канализационные	3,4	6
	работы		
6	Возведение каркаса дома	4	10
7	Прокладка электропроводки	6	3
8	Установка перекрытий	7	1
9	Создание каркаса крыши	6	1
10	Внутренние водопроводно-канализационные	5,8	5
	работы		
11	Покрытие крыши	9	2
12	Наружные изоляционные работы	6,10	1
13	Установка окон и наружных дверей	6	2
14	Обкладка дома кирпичом	12,13	4
15	Штукатурка стен и потолков	7,10	2
16	Облицовка стен и потолков	15	2
17	Изоляция крыши	9,16	1
18	Окончательные внутренние отделочные работы	16	7
19	Окончательные наружные отделочные работы	9,14	7
20	Ландшафтные работы	19	3

1. Определим узлы и связи между ними

Каждая работа представляет собой узел в графике, а зависимости (предшествующие работы) — это связи (дуги), указывающие направление выполнения.

Работы и зависимости:

- 1. $1 \rightarrow 3 \rightarrow 4 \rightarrow 6$
- $2. \quad 1 \rightarrow 3 \rightarrow 5$
- $3. \quad 6 \rightarrow 7 \rightarrow 8$
- $4. \quad 6 \rightarrow 9 \rightarrow 11$
- 5. $5, 8 \rightarrow 10$
- 6. $6, 10 \rightarrow 12$
- 7. $6 \rightarrow 13$
- 8. $12, 13 \rightarrow 14$
- 9. $7, 10 \rightarrow 15 \rightarrow 16$
- 10. $9, 16 \rightarrow 17$
- 11. $16 \rightarrow 18$
- 12. $9, 14 \rightarrow 19$
- 13. $19 \rightarrow 20$

2. Упрощённое представление графика

Начало → Очистка участка (1) и Завоз оборудования (2).

 $1 \rightarrow 3 \rightarrow 4 \rightarrow 6$ (ветка для строительства каркаса).

Параллельные работы:

 $6 \rightarrow 7 \rightarrow 8$ (электропроводка и перекрытия),

 $6 \rightarrow 9 \rightarrow 11$ (каркас и покрытие крыши),

 $6 \rightarrow 13$ (установка окон и дверей),

 $5, 8 \to 10$ (внутренние водопроводные работы).

Завершающие работы:

12, 13 → 14 (обкладка кирпичом),

7, 10 → 15 → 16 (штукатурка и облицовка стен),

16 → 18 (внутренняя отделка),

9, 16 → 17 (изоляция крыши),

 $9, 14 \rightarrow 19 \rightarrow 20$ (наружная отделка и ландшафтные работы).

Ранние сроки:

Nº	G		ES (ранний	EF (раннее
работы	Предшествующие	Длительность	старт)	завершение)
1		1	0	1
2		2	0	2
3	1	1	1	2
4	3	2	2	4
5	3, 4	6	4	10
6	4	10	4	14
7	6	3	14	17
8	7	1	17	18
9	6	1	14	15
10	5, 8	5	18	23
11	9	2	15	17
12	6, 10	1	23	24
13	6	2	14	16
14	12, 13	4	24	28
15	7, 10	2	18	20
16	15	2	20	22
17	9, 16	1	22	23
18	16	7	22	29
19	9, 14	7	28	35
20	19	3	35	38

Поздние сроки:

№ работы	Длительность	LF (позднее завершение)	LS (поздний старт)
20	3	38	35
19	7	35	28
18	7	29	22
17	1	23	22
16	2	22	20
15	2	20	18
14	4	28	24
13	2	24	22
12	1	24	23
11	2	17	15
10	5	23	18
9	1	15	14
8	1	18	17
7	3	17	14
6	10	14	4
5	6	18	12
4	2	4	2
3	1	2	1
2	2	2	0
1	1	1	0

Критический путь:

$$1 \rightarrow 3 \rightarrow 4 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 10 \rightarrow 12 \rightarrow 14 \rightarrow 19 \rightarrow 20$$

Общее время выполнения проекта: 38 дней.

х1 – количество использования процесса 1

х2 - количество использования процесса 2

$$x1+4x2 \le 100$$

$$3x1+2x2 \le 150$$

$$5x1+3x2 \ge 200$$

$$2x1+8x2 \ge 75$$

$$x1, x2 \ge 0$$

Целевая функция:

$$F=15*7x1+20*11x2 \rightarrow max$$

Решим с помощью симплекс-метода:

Полагая, что свободные переменные равны 0, получим первый опорный план:

$$X0 = (500/_{17}, 300/_{17}, 0, 450/_{17}, 0, 125)$$

Базисное решение называется допустимым, если оно неотрицательно.

Базис	В	x ₁	x ₂	x ₃	x ₄	x ₅	x ₆
X ₁	500/17	1	0	-3/17	0	-4/17	0
X 4	450/17	0	0	-1/17	1	10/17	0
x ₂	300/17	0	1	5/17	0	1/17	0
x ₆	125	0	0	2	0	0	1
F(X0)	0	0	0	785/17	0	-200/17	0

Окончательный вариант симплекс-таблицы:

Базис	В	X ₁	X ₂	X 3	X 4	X 5	x ₆
x ₁	40	1	0	-1/5	2/5	0	0
x ₅	45	0	0	-1/10	17/10	1	0
x ₂	15	0	1	3/10	-1/10	0	0
x ₆	125	0	0	2	0	0	1
F(X2)	9000/17	0	0	45	20	0	0

Оптимальный план можно записать так:

$$x_1 = 40, x_2 = 15$$

$$F(X) = 105*40 + 220*15 = 7500$$