

# PCT WELTORGANISATION FUR GEISTIGES EIGENTUM Internationales Büro INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C08G 63/685, 75/26, 69/26, C07D 211/58

(11) Internationale Veröffentlichungsnummer:

WO 97/49751

(43) Internationales Veröffentlichungsdatum:

31. Dezember 1997 (31.12.97)

(21) Internationales Aktenzeichen:

PCT/EP97/03043

A1

(22) Internationales Anmeldedatum:

12. Juni 1997 (12.06.97)

(30) Prioritätsdaten:

196 25 287.3

25. Juni 1996 (25.06.96)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): KRAUSE, Alfred [DE/DE]; Sankt-Klara-Klosterweg 2d, D-67346 Speyer (DE). AUMULLER, Alexander [DE/DE]; Rieslingweg 25, D-67435 Neustadt (DE). TRAUTH, Hubert [DE/DE]; Milanstrasse 6, D-67373 Dudenhofen (DE). LANGGUTH, Ernst [DE/DE]; Am Friedhof 3, D-67281 Kirchheim (DE).
- (74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten: CN, IL, JP, TR, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

#### Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Anderungen

(54) Title: POLYCONDENSATES CONTAINING TETRAMETHYLPIPERIDINE GROUPS

(54) Bezeichnung: TETRAMETHYLPIPERIDINGRUPPEN ENTHALTENDE POLYKONDENSATE

#### (57) Abstract

Polycondensates containing tetramethylpiperidine groups of general formula (I) in which the variables have the following meaning: R1, R2 are hydrogen, C1-C12-alkyl, C2-C4-hydroxyalkyl, C1-C20-alkoxy, oxyl, hydroxyl, allyl, benzyl, formyl or a residue of formula (a), R3 is hydroxy, C1-C12-alkoxy, C3-C8cycloalkoxy, C<sub>3</sub>-C<sub>8</sub>-cycloalkylmethoxy, phenoxy or a residue (b), R<sup>4</sup> is hydrogen or a residue (c), R<sup>5</sup> is -COOR<sup>8</sup>, -COR<sup>9</sup>, -CONR<sup>9</sup>R<sup>10</sup> or cyano, R<sup>6</sup> is an R<sup>5</sup> residue, hydrogen or C<sub>1</sub>-C<sub>12</sub>-alkyl, R<sup>7</sup> is hydrogen, C<sub>1</sub>-C<sub>12</sub>-alkyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, C<sub>3</sub>-C8-cycloalkylmethyl or phenyl, R8 is hydrogen, C1-C8-alkyl, C5-C8-cycloalkyl, C3-C5-alkenyl or phenyl, which can be substituted by one to three methyl or ethyl residues, C1-C4-alkoxy residues, C1-C4-alkoxycarbonyl residues, halogens, hydroxy groups, phenoxy groups, phenyl groups, tolyl residues or xylyl residues, R9, R10 are hydrogen, C1-C12-alkyl, C5-C8-cycloalkyl or phenyl, which can be substituted by one to three methyl or ethyl residues, C1-C4-alkoxy residues, C1-C4-alkoxycarbonyl residues, halogens, hydroxy groups, phenoxy groups, phenyl groups, tolyl residues or xylyl residues, X is oxygen, sulphur or -NR9-, A is C2-C30-alkylene, wherein non-adjacent CH2 groups can be replaced by oxygen, C3-C8-cycloalkylene, C3-C8-cycloalkyl-bismethylene, phenylene, biphenylene or the residues (d), (e), (f), (g) or (h), (i) or (j) in which n means 2 to 12, m means 1 to 2 000 and o means 2 or 3.

### (57) Zusammenfassung

Tetramethylpiperidingruppen enthaltende Polykondensate der allgemeinen Formel (I), in der die Variablen die folgende Bedeutung haben: R¹, R² Wasserstoff, C₁-C₁₂-Alkyl, C₂-C₄-Hydroxyalkyl, C₁-C₂₀-Alkoxy, Oxyl, Hydroxyl, Allyl, Benzyl, Formyl oder ein Rest der Formel (a), R³ Hydroxy, C₁-C₁₂-Alkoxy, C₃-C₆-Cycloalkoxy, C₃-C₆-Cycloalkylmethoxy, Phenoxy oder ein Rest (b), R⁴ Wasserstoff oder ein Rest (c), R⁵ -COOR⁶, -CONR⁶R¹o oder Cyano, R⁶ ein Rest R⁵, Wasserstoff oder C₁-C₁₂-Alkyl, Rⁿ Wasserstoff, C₁-C₁₂-Alkyl, C₃-C₆-Cycloalkyl, C₃-C₆-Cycloalkyl oder Phenyl, R⁶ Wasserstoff, C₁-C₆-Alkoxycarbonylreste, Halogene, Hydroxygruppen, Phenoxygruppen, Phenylgruppen, Tolylreste oder Xylylreste substituiert sein kann, R⁶, R¹o Wasserstoff, C₁-C₁₂-Alkyl, C₅-C₆-Cycloalkyl oder Phenyl, welches durch ein bis drei Methyl- oder Ethylreste, C₁-C₄-Alkoxyreste, C₁-C₄-Alkoxycarbonylreste, Halogene, Hydroxygruppen, Phenylgruppen, Tolylreste oder Xylylreste substituiert sein kann, X Sauerstoff, Schwefel oder -NR⁶-, A C₂-C₃o-Alkylen, wobei nicht benachbarte CH₂-Gruppen durch Sauerstoff ersetzt sein können, C₃-C₆-Cycloalkylen, C₃-C₆-Cycloalkyl-bismethylen, Phenylen, Biphenylen oder Reste (d), (c), (f), (g) oder (h), (i) oder (j), in denen n 2 bis 12, m 1 bis 2000 und o 2 oder 3 bedeuten.

#### LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

| AL | Albanien                     | ES  | Spanien                     | LS | Lesotho                     | SI | Slowenien              |
|----|------------------------------|-----|-----------------------------|----|-----------------------------|----|------------------------|
| AM | Armenien                     | FI  | Pinnland                    | LT | Litauen                     | SK | Slowakci               |
| AT | Österreich                   | FR  | Frankreich                  | LU | Luxemburg                   | SN | Senegal                |
| ΑU | Australien                   | GA  | Gabun                       | LV | Lettland                    | SZ | Swasiland              |
| ΑZ | Aserbaidschan                | GB  | Vereinigtes Königreich      | MC | Monaco                      | TD | Tschad                 |
| BA | Bosnien-Herzegowina          | GE  | Georgien                    | MD | Republik Moldau             | TG | Togo                   |
| BB | Barbados                     | GH  | Ghana                       | MG | Madagaskar                  | TJ | Tadachikistan          |
| BE | Belgien                      | GN  | Guinea                      | MK | Die ehemalige jugoslawische | TM | Turkmenistan           |
| BF | Burkina Faso                 | GR  | Griechenland                |    | Republik Mazedonien         | TR | Türkei                 |
| BG | Bulgarien                    | HU  | Ungarn                      | ML | Mali                        | TT | Trinidad und Tobago    |
| BJ | Benin                        | IE  | Irland                      | MN | Mongolei                    | ÜA | Ukraine                |
| BR | Brasilien                    | IL. | Israel                      | MR | Mauretanien                 | UG | Uganda                 |
| BY | Belarus                      | IS  | [sland                      | MW | Malawi                      | US | Vereinigte Staaten von |
| CA | Kanada                       | [T  | Italien                     | MX | Mexiko                      |    | Amerika                |
| CF | Zentralafrikanische Republik | JP  | Japan                       | NE | Niger                       | UZ | Usbekistan             |
| CG | Kongo                        | KE  | Kenia                       | NL | Niederlande                 | VN | Vietnam                |
| СН | Schweiz                      | KG  | Kirgisistan                 | NO | Norwegen                    | YU | Jugoslawien            |
| CI | Côte d'Ivoire                | KP  | Demokratische Volksrepublik | NZ | Neusceland                  | zw | Zimbabwe               |
| CM | Kamerun                      |     | Korea                       | PL | Polen                       | 2  | ZIIIOZOWE              |
| CN | China                        | KR  | Republik Korea              | PT | Portugal                    |    |                        |
| CU | Kuba                         | KZ  | Kasachstan                  | RO | Rumanien                    |    |                        |
| CZ | Tachechische Republik        | LC  | St. Lucia                   | RU | Russische Föderation        |    |                        |
| DE | Deutschland                  | u   | Liechtenstein               | SD | Sudan                       |    |                        |
| DK | Dänemark                     | LK  | Sri Lanka                   | SE | Schweden                    |    |                        |
| EE | Estland                      | LR  | Liberia                     | SG | Singapur                    |    |                        |
|    |                              |     |                             |    |                             |    |                        |
|    |                              |     |                             |    |                             |    |                        |

Tetramethylpiperidingruppen enthaltende Polykondensate

Beschreibung

5

Gegenstand der vorliegenden Erfindung sind Tetramethylpiperidingruppen enthaltende Polykondensate der allgemeinen Formel I

10
$$R^{3} = C = CH - N - (CH_{2})_{n} - N - CH = C - C - X - A - X - R^{4}$$

$$H_{3}C = CH_{3} H_{3}C = CH_{3}$$

in der die Variablen die folgende Bedeutung haben:

20  $R^1$ ,  $R^2$  Wasserstoff,  $C_1$ - $C_{12}$ -Alkyl,  $C_2$ - $C_4$ -Hydroxyalkyl,  $C_1$ - $C_{20}$ -Alkoxy, Oxyl, Hydroxyl, Allyl, Benzyl, Formyl oder ein Rest der Formel

$$-C = CH - R^5$$

$$\begin{vmatrix} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

 $R^3$  Hydroxy,  $C_1 \cdot C_{12} \cdot Alkoxy$ ,  $C_3 \cdot C_8 \cdot Cycloalkoxy$ ,  $C_3 \cdot C_8 \cdot Cycloalkoxy$ , Phenoxy oder ein Rest

\_\_\_ X \_\_\_ A \_\_\_ XH

R4 Wasserstoff oder ein Rest

45 R<sup>5</sup> -COOR<sup>8</sup>, -COR<sup>9</sup>, -CONR<sup>9</sup>R<sup>10</sup> oder Cyano,

- $R^6$  ein Rest  $R^5$ , Wasserstoff oder  $C_1 C_{12} Alkyl$ ,
- $R^7$  Wasserstoff,  $C_1 C_{12} Alkyl$ ,  $C_3 C_8 Cycloalkyl$ ,  $C_3 C_8 Cycloalkyl$ ,  $C_3 C_8 Cycloalkyl$ , alkylmethyl oder Phenyl,
- R8 Wasserstoff, C<sub>1</sub>-C<sub>8</sub>-Alkyl, C<sub>5</sub>-C<sub>8</sub>-Cycloalkyl, C<sub>3</sub>-C<sub>5</sub>-Alkenyl oder Phenyl, welches durch ein bis drei Methyl- oder Ethylreste, C<sub>1</sub>-C<sub>4</sub>-Alkoxyreste, C<sub>1</sub>-C<sub>4</sub>-Alkoxycarbonylreste, Halogene, Hydroxygruppen, Phenoxygruppen, Phenylgruppen, Tolylreste oder Xylylreste substituiert sein kann,
- R<sup>9</sup>, R<sup>10</sup> Wasserstoff, C<sub>1</sub>-C<sub>12</sub>-Alkyl, C<sub>5</sub>-C<sub>8</sub>-Cycloalkyl oder Phenyl, welches durch ein bis drei Methyl- oder Ethylreste, C<sub>1</sub>-C<sub>4</sub>-Alkoxyreste, C<sub>1</sub>-C<sub>4</sub>-Alkoxycarbonylreste, Halogene, Hydroxygruppen, Phenoxygruppen, Phenylgruppen, Tolylreste oder Xylylreste substituiert sein kann,
  - X Sauerstoff, Schwefel oder -NR9-
- 20 A  $C_2-C_{30}$ -Alkylen, wobei nicht benachbarte  $CH_2$ -Gruppen durch Sauerstoff ersetzt sein können,  $C_3-C_8$ -Cycloalkylen,  $C_3-C_8$ -Cycloalkyl-bismethylen, Phenylen, Biphenylen oder folgende Reste

H<sub>3</sub>C 
$$CH_3$$
  $H_3C$   $CH_3$   $CH_2$   $CH_2$   $CH_3$   $C$ 

35

15 in denen

n 2 bis 12

m 1 bis 2 000 und

20 · 2 oder 3

bedeuten.

25 Weiterhin betrifft die Erfindung Tetramethylpiperidingruppen enthaltende 2-Methyl-3-aminoacrylate der allgemeinen Formel II

in welcher die Variablen die oben angegebene Bedeutung haben, die Herstellung der Polykondensate I und der Tetramethylpiperidin-

- 40 gruppen enthaltenden 2-Methyl-3-aminoacrylate, die Verwendung der Polykondensate zum Stabilisieren von organischem Material sowie gegen die Einwirkung von Licht, Sauerstoff und Wärme stabilisiertes organisches Material, welches die Polykondensate I enthält.
- 45 Organisches Material; insbesondere Kunststoffe und Lacke, wird bekanntermaßen schnell durch die Einwirkung von Licht, Sauerstoff und Wärme zerstört. Diese Zerstörung zeigt sich üblicherweise in

Vergilbung, Verfärbung, Rißbildung oder Versprödung des Materials. Mit Lichtschutzmitteln und Stabilisatoren soll daher ein zufriedenstellender Schutz gegen die Zerstörung von organischem Material durch Licht, Sauerstoff und Wärme erzielt werden.

5

Aus WO-9311111 sind Tetramethylgruppen enthaltende Polykondensate bekannt, die  $\beta$ -Aminoacrylsäureestergruppen enthalten und als Stabilisatoren für organisches Material, insbesondere für Kunststoffe, Verwendung finden.

10

Die bekannten Tetramethylgruppen enthaltenden Polykondensate lassen jedoch hinsichtlich ihrer Verträglichkeit mit verschiedenen Kunststoffen sowie besonders hinsichtlich der Dauer ihrer Schutzwirkung noch zu wünschen übrig.

15

Die Aufgaben der vorliegenden Erfindung war es daher, Stabilisatoren für organisches Material bereitzustellen, welche einen wirkungsvolleren Schutz mit sich bringen und insbesondere eine lange Schutzwirkung aufweisen.

20

Demgemäß wurden die eingangs beschriebenen Polykondensate der allgemeinen Formel I gefunden.

Als C<sub>1</sub>-C<sub>12</sub>-Alkylreste für R<sup>1</sup>, R<sup>2</sup>, R<sup>6</sup>, R<sup>7</sup>, R<sup>9</sup> und R<sup>10</sup> kommen

25 beispielsweise Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Amyl, iso-Amyl, sec.-Amyl, tert.-Amyl, Neopentyl, n-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, iso-Nonyl, n-Decyl, n-Undecyl, und n-Dodecyl in Betracht.

30

Als  $C_1$ - $C_8$ -Alkylreste  $R^8$  kommen z. B. die entsprechenden oben genannten Alkylreste in Betracht.

Geeignete C<sub>1</sub>-C<sub>20</sub>-Alkoxygruppen für R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> enthalten

35 beispielsweise die oben genannten Alkylreste sowie n-Tridecyl,
iso-Tridecyl, n-Tetradecyl, n-Pentadecyl, n-Hexadecyl, n-Heptadecyl n-Octadecyl, n-Nonadecyl oder Eicosyl sowie deren verzweigte
Isomere oder auch Gemische verschiedener dieser Alkylreste.

40 Als  $C_3$ - $C_8$ -Cycloalkylgruppen für  $R^7$  und  $R^8$  kommen beispielsweise Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl und Cyclooctyl in Betracht. Auch als Cycloalkoxygruppen für  $R^3$ , als Cycloalkylmethoxygruppen für  $R^3$  sowie als Cycloalkylmethylgruppen für  $R^7$  kommen Reste in Betracht, welche diese Cycloalkylgruppen 45 enthalten.

Als Reste  $R^9$  und  $R^{10}$  kommen beispielsweise Cyclopentyl, Cyclohexyl, Cycloheptyl und Cyclooctyl in Betracht.

Als  $C_3$ - $C_5$ -Alkenylgruppen für  $R^8$  kommen beispielsweise die ver-  $S_5$  schiedenen isomeren Propenyl-, Butenyl- und Pentenylreste in Betracht.

Als Reste R<sup>2</sup> und R<sup>2</sup> kommen weiterhin  $C_2$ - $C_4$ -Hydroxyalkylreste in Betracht, wie die verschiedenen Isomere von Hydroxyethyl, 10 Hydroxypropyl und Hydroxybutyl.

Als Brückenglieder A kommen beispielsweise  $C_2 \cdot C_{30} \cdot Alkylen$ , wie besonders Ethylen und die linearen Isomere von Butylen, Hexylen, Octylen, Decylen und Dodecylen in Betracht. Besonders bevorzugt

15 ist der 1,2-Ethylen- und der Hexamethylenrest. Bevorzugter Cycloalkylenrest A ist der Cyclohexylenrest.

Bevorzugte Tetramethylpiperidingruppen enthaltende Polykondensate I sind solche, in denen  $R^1$  und  $R^2$  Wasserstoff, Methyl, Formyl, 20 Oxyl oder einen Rest der Formel -CR6=CH-R5 bedeuten.

Weiterhin sind Tetramethylpiperidingruppen enthaltende Polykondensate I bevorzugt, in denen m eine Zahl zwischen 3 und 150 ist.

25

Ebenfalls bevorzugt sind Polykondensate I, in denen A  $C_2$ - $C_{20}$ -Alkylen oder eine Gruppe

30

$$CH_3$$
 $CH_3$ 
 $CH_3$ 

35

bedeutet.

Als synthetische Vorstufen für die Polykondensate I können Tetra40 methylpiperidingruppen enthaltende 2-Methyl-3-aminoacrylate der
allgemeinen Formel II dienen. Von den 2-Methyl-3-aminoacrylatderivaten II sind solche bevorzugt, in denn R<sup>7</sup> Wasserstoff oder
C1-C12-Alkyl bedeutet.

PCT/EP97/03043

Ein erfindungsgemäßes Verfahren zur Herstellung von Tetramethylgruppen enthaltenden 2-Methyl-3-aminoacrylaten der allgemeinen Formel II ist dadurch gekennzeichnet, daß man Tetramethylpiperidin enthaltende Diamine der allgemeinen Formel III

5

10

$$H - N - (CH_2)_n - N - H$$
 $H_3C$ 
 $CH_3$ 
 $H_3C$ 
 $CH_3$ 
 $CH_3$ 

15 mit 2-Formylpropionsäurederivaten der allgemeinen Formel IV

$$O = C - CH - C - OR^7$$
IV

20

umsetzt.

Die Umsetzung wird vorzugsweise in einem organischen Lösungs25 mittel durchgeführt, welches gleichzeitig als Wasserschlepper
dient. Durch azeotrope Destillation wird die Kondensation unterstützt. Temperatur und Druck sind für die Reaktion keine
kritischen Parameter. Die Reaktion wird üblicherweise zwischen
20 und 150°C durchgeführt, vorzugsweise bei der Siedetemperatur
30 des Azeotrops.

Als inerte organische Lösungsmittel für diese Umsetzung kommen z. B. Aromaten wie Benzol, Toluol, Xylol, Mesitylen, Chlorbenzol, Nitrobenzol oder Dichlorbenzol, Ether wie Glykoldimethylether, 35 Glykoldiethylether oder Methyl-tert.-butylether, Etherole wie Glykolmonomethylether, Glykolmonoethylether oder Glykolmonobutylether, Amide wie Dimethylformamid oder Dimethylacetamid, Ester wie Essigsäurebutylester, Essigsäureethylester, Propionsäuremethylester, Benzoesäuremethylester oder Benzoesäureethylester oder 40 Alkohole wie Methanol, Ethanol, n-Propanol, iso-Propanol, n-

Unter den Reaktionsbedingungen wird der Piperidinstickstoff nicht zur Reaktion gebracht. Die Einführung der Substituenten R<sup>1</sup> und R<sup>2</sup> 45 kann daher auch nach der Umsetzung mit der Verbindung IV erfolgen, beispielsweise durch Umsetzung mit Acetylencarbonsäurestern, wie in DE-A-4140304 beschrieben, durch Alkylierung mit Alkyl-

Butanol, iso-Butanol, tert.-Butanol oder Glykol in Betracht.

halogeniden, beispielsweise unter den Bedingungen der Leukart-Wallach-Reaktion, durch Formylierung mit Ameisensäure/Essigsäureanhydrid oder durch Oxidation mit Wasserstoffperoxid zum N-Oxyl.

Ein erfindungsgemäßes Verfahren zur Herstellung von Tetramethylpiperidingruppen enthaltenden Polykondensaten I gemäß den Ansprüchen 1 bis 4 ist dadurch gekennzeichnet, daß man Verbindungen der allgemeinen Formel II

20 mit Verbindungen der allgemeinen Formel V

25 in der die Variablen die oben angegebene Bedeutungen haben, in der Schmelze oder in einem inerten Lösungsmittel umsetzt und dabei die entstehenden flüchtigen Produkte R<sup>7</sup>OH abdestilliert.

Diese Kondensationsreaktion kann z. B. wie die oben geschilderte 30 Reaktion in den genannten inerten organischen Lösungsmitteln durchgeführt werden. Vorzugsweise wird die Reaktion jedoch in der Schmelze bei Temperaturen von 120° - 260°C, besonders bevorzugt bei 160° - 240°C in Gegenwart eines Katalysators durchgeführt.

- 35 Als Katalysator sind beispielsweise Tetraalkylorthotitanate, Zinn-Verbindungen wie Dialkylzinnacetat oder Zinnoxid, basische Verbindungen wie Alkalimetallalkoholate, insbesondere Natriummethylat sowie Lithium- oder Natriumamid geeignet.
- 40 Die Katalysatoren werden üblicherweise in Konzentrationen zwischen 0,01 und 10 mol-%, bevorzugt zwischen 0,1 und 5 mol-%, jeweils bezogen auf die Molmenge der Komponente II, eingesetzt.

Die Polykondensationsreaktion kann z.B. in üblichen Rühr-45 reaktoren durchgeführt werden. Bevorzugt nimmt man die Umsetzung jedoch in Knetern oder Ein- oder Doppelschneckenextrudern vor. Die bei der Reaktion entstehenden Reaktionsprodukte wie Methanol oder Ethanol werden dabei vorzugsweise kontinuierlich, unter Normaldruck oder unter vermindertem Druck, abdestilliert.

Die erfindungsgemäßen Polykondensate I finden Verwendung als 5 Stabilisatoren von organischem Material gegen die Einwirkung von Licht, Sauerstoff und Wärme.

Insbesondere eignen sich die erfindungsgemäßen Polykondensate I zur Stabilisierung von Kunststoffen und Lacken.

10

Die erfindungsgemäßen Polykondensate zeichnen sich neben ihrer geringen Migrationsneigung insbesondere durch ihre gute Kompatibilität mit verschiedenen Kunststoffen sowie durch die lange Dauer ihrer Schutzwirkung aus.

15

Beispiele

Beispiel 1:

. 20 Herstellung der Verbindung

30

394 g N,N'-Bis-(2,2,6,6-tetramethyl-4-piperidyl)-1,6-hexandiamin wurden in 1500 ml Toluol bei 60°C gelöst. Dann wurden langsam 255 g 2-Formylpropionsäuremethylester zudosiert, wobei die Innentemperatur kräftig anstieg. Nach Zulaufende wurden weitere 3 Stunden 35 am Wasserauskreiser gekocht, wobei insgesamt 36 ml Wasser abgetrennt wurden. Die Reaktionsmischung wurde unter Rühren auf 10°C abgekühlt, das ausgefallene Produkt wurde abgesaugt, mit 500 ml Petrolether gewaschen und anschließend im Vakuum bei 50°C getrocknet. Die Rohausbeute betrug 535 g. Nach Umkristallisation aus 40 Essigester erhielt man 511 g farbloses Wertprodukt

Ausbeute 87 % Schmelzp. 163 - 164°C

Beispiel 2:

Herstellung der Verbindung

59 g der Verbindung aus Beispiel 1 wurden in 100 ml Ethanol gelöst und auf 50°C erwärmt. Dann wurden 24 g Propiolsäureethylester zugetropft und weitere fünf Stunden unter Rückfluß erhitzt. Nach dem Abkühlen wurde das auskristallisierte Produkt abgesaugt und mit Petrolether gewaschen. Man erhielt 71,2 g Rohprodukt (Schmelzp. 160 - 162°C), welches aus Methanol umkristallisiert wurde.

25

Ausbeute: 72 %

Schmelzp. 163 - 164°C

Beispiel 3:

30

Herstellung der Verbindung

MeO<sub>2</sub>C 
$$N$$
  $CH_3$   $CH$ 

29,5 g der Verbindung aus Beispiel 1 wurden mit 23,0 g Ameisen-45 säure vermischt und 20 min gerührt, wobei die Temperatur auf 36°C anstieg. Dann wurden 9,72 g 37%ige Formaldehydlösung langsam zugetropft. Anschließend wurde noch zwei Stunden bei 95 - 100°C gerührt.

Nach dem Abkühlen auf Raumtemperatur wurden 150 ml Eiswasser
5 zugesetzt, der pH-Wert mit 10%iger Natronlauge auf 9,5 eingestellt und zweimal mit Methylenchlorid extrahiert. Nach dem Trocknen über Natriumsulfat wurde das Lösungsmittel abdestilliert und der Rückstand durch Chromatografie an Kieselgel gereinigt. Man erhielt 16 g eines leicht gelblichen Öles.

10

Beispiel 4

Herstellung des Polykondensats

25 20,5 g der Verbindung aus Beispiel 1, 5,9 g 1,6-Hexandiol und 0,1 g Natriummethylat wurden für 1 Stunde bei 1900 unter Abdestillieren der flüchtigen Reaktionsprodukte gerührt. Die erstarrte Produktschmelze wurde aufgemahlen. Man erhielt 29 g Polymer.

30

Analog wurden die folgenden Beispielversuche durchgeführt

|    | Beispiel | Reaktionszeit<br>[Stunden] | Temperatur [°C] | k-Wert<br>[2%ig; CH <sub>2</sub> Cl <sub>2</sub> ) | Molmasse<br>osmometrisch |
|----|----------|----------------------------|-----------------|----------------------------------------------------|--------------------------|
| 35 | 4        | 1                          | 190             | 13,9                                               | 1200                     |
| 33 | 5        | 4                          | 190             | 15,5                                               | 1700                     |
|    | 6        | 7                          | 160             | 16,8                                               | 2300                     |
|    | 7        | 1                          | 220             | 24,9                                               | 4000                     |
| !  | 8        | 7                          | 220             | 29,5                                               | 7600                     |
| 40 | 9        | 7                          | 190             | 21,6                                               | 3300                     |
|    | 10       | 4                          | 160             | 19,9                                               | 2600                     |
|    | 11       | 4<br>+ 1 (50mbar)          | 160             | 27,3                                               | 6400                     |

Beispiel 12

Vergleichsversuch

5 0.1 Gew.-% des Stabilisators aus Beispiel 7 bzw. 0.1 Gew.-% der Verbindung

10 
$$C-CH = CH-N-(CH_2)_6 - N-CH = CH-C-O-(CH_2)_6-O$$
 $H_3C$ 
 $CH_3$ 
 $H_3C$ 
 $CH_3$ 
 $CH$ 

(Herstellung siehe DE-A-4139606) wurden in Polyethylen vom Typ

20 Lupolen® 1840 D (Hersteller BASF AG, Ludwigshafen) durch einmaliges Extrudieren bei 220°C Massetemperatur im Polymer gelöst und das anfallende Granulat zu einer 200 μm dicken Folie bei 220°C verpresst. Die Folienprüfkörper wurden in einem Schnellbewitterungsgerät vom Typ Xenotest 1200 auf ihre Licht- und Wetterechtbeit getestet. Ein Maß für den photooxidativen Abbau des Polyme-

ren ist die Abhängigkeit der mechanischen Eigenschaften des Prüfkörpers von der Bewitterungszeit. Gemessen wird die Zeit bis zur Versprödung der Folie. Die Vergleichsverbindung war bereits nach 3000 Stunden, die Verbindung aus Beispiel 7 erst nach 4000 Stun-

30 den versprödet.

35

40

20

25

30

Patentansprüche

Tetramethylpiperidingruppen enthaltende Polykondensate der
 allgemeinen Formel I

in der die Variablen die folgende Bedeutung haben:

 $R^1, R^2$  Wasserstoff,  $C_1$ - $C_{12}$ -Alkyl,  $C_2$ - $C_4$ -Hydroxyalkyl,  $C_1$ - $C_{20}$ -Alkoxy, Oxyl, Hydroxyl, Allyl, Benzyl, Formyl oder ein Rest der Formel

 $R^3$  Hydroxy,  $C_1$ - $C_{12}$ -Alkoxy,  $C_3$ - $C_8$ -Cycloalkoxy,  $C_3$ - $C_8$ -Cycloalkylmethoxy, Phenoxy oder ein Rest

R4 Wasserstoff oder ein Rest

35 
$$CH_3$$
  $CH_3$   $CH_3$ 

R<sup>5</sup> -COOR<sup>8</sup>, -COR<sup>9</sup>, -CONR<sup>9</sup>R<sup>10</sup> oder Cyano,

45  $R^6$  ein Rest  $R^5$ , Wasserstoff oder  $C_1 - C_{12} - Alkyl$ ,

- $R^7$  Wasserstoff,  $C_1$ - $C_{12}$ -Alkyl,  $C_3$ - $C_8$ -Cycloalkyl,  $C_3$ - $C_8$ -Cycloalkylmethyl oder Phenyl,
- R8 Wasserstoff, C<sub>1</sub>-C<sub>8</sub>-Alkyl, C<sub>5</sub>-C<sub>8</sub>-Cycloalkyl,

  C<sub>3</sub>-C<sub>5</sub>-Alkenyl oder Phenyl, welches durch ein bis drei

  Methyl- oder Ethylreste, C<sub>1</sub>-C<sub>4</sub>-Alkoxyreste,

  C<sub>1</sub>-C<sub>4</sub>-Alkoxycarbonylreste, Halogene, Hydroxygruppen,

  Phenoxygruppen, Phenylgruppen, Tolylreste oder Xylyl
  reste substituiert sein kann,
- 10

  R<sup>9</sup>, R<sup>10</sup> Wasserstoff, C<sub>1</sub>-C<sub>12</sub>-Alkyl, C<sub>5</sub>-C<sub>8</sub>-Cycloalkyl oder
  Phenyl, welches durch ein bis drei Methyl- oder
  Ethylreste, C<sub>1</sub>-C<sub>4</sub>-Alkoxyreste, C<sub>1</sub>-C<sub>4</sub>-Alkoxycarbonylreste, Halogene, Hydroxygruppen, Phenoxygruppen,
  Phenylgruppen, Tolylreste oder Xylylreste substituiert sein kann,
  - X Sauerstoff, Schwefel oder -NR9-
- 20 A  $C_2$ - $C_{30}$ -Alkylen, wobei nicht benachbarte  $CH_2$ -Gruppen durch Sauerstoff ersetzt sein können,  $C_3$ - $C_8$ -Cyclo-alkylen,  $C_3$ - $C_8$ -Cycloalkyl-bismethylen, Phenylen, Biphenylen oder folgende Reste

H<sub>3</sub>C 
$$CH_3$$
  $H_3C$   $CH_2$   $CH_2$   $CH_2$   $CH_2$   $CH_3$   $C$ 

35

$$-CH_{2}-CH_{2}-N-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{3}$$

$$-CH_{3}-CH_{3}$$

$$-CH_{3}-CH_{3}$$

$$-CH_{3}-CH_{3}$$

$$-CH_{3}-CH_{3}$$

$$-CH_{3}-CH_{3}$$

15 in denen

n 2 bis 12

m 1 bis 2 000 und

o 2 oder 3

bedeuten.

- 25 2. Tetramethylpiperidingruppen enthaltende Polykondensate nach Anspruch 1, in denen  $\mathbb{R}^1$  und  $\mathbb{R}^2$  Wasserstoff, Methyl, Formyl, Oxyl oder einen Rest der Formel  $-\mathbb{CR}^6=\mathbb{CH}-\mathbb{R}^5$  bedeuten.
- Tetramethylpiperidingruppen enthaltende Polykondensate nach
   Anspruch 1 oder 2, in denen m eine Zahl zwischen 3 und 150 ist.
- Tetramethylpiperidingruppen enthaltende Polykondensate nach den Ansprüchen 1 bis 3, in denen A C<sub>2</sub>-C<sub>20</sub>-Alkylen oder eine
   Gruppe der Formel

bedeutet.

5. Tetramethylpiperidingruppen enthaltende 2-Methyl-3-aminoacrylate der allgemeinen Formel II

in welcher die Variablen die oben angegebene Bedeutung haben.

- 6. Tetramethylpiperidingruppen enthaltende 2-Methyl-3-aminoacry-late nach Anspruch 5, in denen  $R^7$  Wasserstoff oder  $C_1 \cdot C_{12} \cdot Alkyl$  bedeutet.
- Verfahren zur Herstellung von Tetramethylpiperidingruppen enthaltenden 2-Methyl-3-aminoacrylaten der allgemeinen Formel II gemäß Anspruch 6, dadurch gekennzeichnet, daß man Tetramethylpiperidin enthaltende Diamine der allgemeinen Formel III

25
$$H = N - (CH2)n - N - H$$

$$H_{3}C \downarrow_{R_{1}} CH_{3} H_{3}C \downarrow_{R_{2}} CH_{3}$$

$$CH_{3} H_{3}C \downarrow_{R_{1}} CH_{3}$$

$$CH_{3} H_{3}C \downarrow_{R_{2}} CH_{3}$$

mit 2-Formylpropionsäurederivaten der allgemeinen Formel IV

umsetzt.

40 8. Verfahren zur Herstellung von Tetramethylpiperidingruppen enthaltenden Polykondensaten I gemäß den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß man Verbindungen der allgemeinen Formel II gemäß Anspruch 5

5

mit Verbindungen der allgemeinen Formel V

- in der die Variablen die oben angegebenen Bedeutungen haben, in der Schmelze oder in einem inerten Lösungsmittel umsetzt und dabei die entstehenden flüchtigen Produkte R<sup>7</sup>OH abdestilliert.
- 20 9. Verwendung der Polykondensate gemäß den Ansprüchen 1 bis 4 zum Stabilisieren von organischem Material gegen die Einwirkung von Licht, Sauerstoff und Wärme.
- 10. Verwendung der Polykondensate nach Anspruch 9 zum Stabilisie-25 ren von Kunststoffen und Lacken.
  - 11. Gegen die Einwirkung von Licht, Sauerstoff und Wärme stabilisiertes organisches Material enthaltend als Stabilisatoren Polykondensate gemäß den Ansprüchen 1 bis 4 in zur Stabilisierung geeigneter Menge.

35

30

40

### INTERNATIONAL SEARCH REPORT

int ional Application No PCT/EP 97/03043

| A CLASS       | SEICATION OF SUBJECT MATTER                                                                              |                                                                                                      |                                            |
|---------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------|
| IPC 6         | CO8G63/685 CO8G75/26 CO8G69                                                                              | /26 C07D211/58                                                                                       |                                            |
|               | ha laterantica di Ordani Ottoriti atia (ICO) ante hatta atianal alematica                                | action and IRC                                                                                       |                                            |
|               | to International Patent Classification (IPC) or to both national classifi<br>S SEARCHED                  | cator sid ir d                                                                                       |                                            |
|               | ocumentation searched (classification system followed by classifica                                      | tion symbols)                                                                                        |                                            |
| IPC 6         | C08G C07D                                                                                                |                                                                                                      |                                            |
| Documenta     | ation searched other than minimum documentation to the extent that                                       | such documents are included in the fields sea                                                        | rched                                      |
|               |                                                                                                          |                                                                                                      |                                            |
| Eleatronic d  | data base consulted during the international search (name of data be                                     | ase and, where practical, search terms used)                                                         |                                            |
|               |                                                                                                          |                                                                                                      |                                            |
| C. DOCUM      | ENTS CONSIDERED TO BE RELEVANT                                                                           |                                                                                                      |                                            |
| Category *    | Citation of document, with indication, where appropriate, of the rel                                     | evant passages                                                                                       | Relevant to olaim No.                      |
| A             | DE 41 39 606 A (BASF) 3 June 199 cited in the application see the whole document                         | 93                                                                                                   | 1-3,9-11                                   |
|               |                                                                                                          |                                                                                                      | -                                          |
|               |                                                                                                          |                                                                                                      | 4                                          |
|               |                                                                                                          |                                                                                                      |                                            |
|               |                                                                                                          |                                                                                                      |                                            |
|               |                                                                                                          |                                                                                                      |                                            |
|               | ·                                                                                                        |                                                                                                      |                                            |
|               | •                                                                                                        |                                                                                                      |                                            |
|               |                                                                                                          |                                                                                                      |                                            |
|               |                                                                                                          |                                                                                                      |                                            |
|               |                                                                                                          |                                                                                                      |                                            |
|               |                                                                                                          |                                                                                                      |                                            |
|               |                                                                                                          |                                                                                                      |                                            |
| Furti         | her documents are listed in the continuation of box C.                                                   | X Patent family members are listed in                                                                | ı annex.                                   |
| ° Special ca  | tegories of cited documents :                                                                            | "T" later document published after the intern                                                        |                                            |
|               | ent defining the general state of the art which is not<br>lered to be of particular relevance            | or priority date and not in conflict with t<br>cited to understand the principle or the<br>invention |                                            |
| "E" earlier o | document but published on or after the international late                                                | *X* document of particular relevance; the of<br>cannot be considered novel or cannot                 |                                            |
| "L" docume    | ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another | involve an inventive step when the doc  "Y" document of particular relevance; the ol                 | ument is taken alone                       |
|               | n or other special reason (as specified)<br>ant referring to an oral disclosure, use, exhibition or      | cannot be considered to involve an inv<br>document is combined with one or mo                        | entive step when the<br>e other such doou- |
| other n       | means<br>ant published prior to the international filing date but                                        | ments, such combination being obviou<br>in the art.                                                  | ·                                          |
| later th      | nan the priority date claimed                                                                            | *&* document member of the same patent for                                                           |                                            |
| vate of the s | actual completion of the international search                                                            | Date of mailing of the international sear                                                            |                                            |
| 1             | October 1997                                                                                             | 2 4. 10. 97                                                                                          |                                            |
| Name and n    | naiting address of the ISA  European Patent Office, P.B. 5818 Patentlaan 2                               | Authorized afficer                                                                                   |                                            |
|               | NL - 2280 HV Rijawijk<br>Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,                                      | Decocker, L                                                                                          |                                            |
|               | Fax: (+31-70) 340-3016                                                                                   | , Josephan ,                                                                                         | į.                                         |

Form PCT/ISA/210 (second sheet) (July 1992)

# INTERNATIONAL SEARCH REPORT

Information on patent family members

Int. Ional Application No PCT/EP 97/03043

| Patent document cited in search report | Publication date | Patent family<br>member(s) | Publication date |
|----------------------------------------|------------------|----------------------------|------------------|
| DE 4139606 A                           | 03-06-93         | WO 9311111 A               | 10-06-93         |
|                                        |                  | EP 0614458 A               | 14-09-94         |
|                                        |                  | JP 7501530 T               | 16-02-95         |
|                                        |                  | US 5504211 A               | 02-04-96         |

Form PCT/ISA/210 (patent family annex) (July 1992)

# INTERNATIONALER RECHERCHENBERICHT

Inte onales Aktenzeichen
PCT/EP 97/03043

|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 701/11 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , 55545                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A. KLASSI<br>IPK 6                                                                      | FIZIERUNG DES ANMELDUNGSGEGENSTANDES<br>C08G63/685 C08G75/26 C08G69/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26 C07D211/58                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · <u>-</u> -                                                                                                                                                                                                                                     |
| Nach der in                                                                             | ternationalen Patentklassifikation (IPK) oder nach der nationalen Klas                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | aifikation und der IPK                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                            |
|                                                                                         | RCHIERTE GEBIETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ···                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                  |
| Recherchie<br>IPK 6                                                                     | rter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbo<br>C08G C07D                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ie )                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                  |
| Recherchie                                                                              | rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, so                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | weit diese unter die recherchierten Gebiete                                                                                                                                                                                                                                                                                                                                                                                                                              | fallen                                                                                                                                                                                                                                           |
| Während de                                                                              | er internationalen Recherche konsultierte elektronische Datenbank (N                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ame der Datenbank und evtl. verwendete S                                                                                                                                                                                                                                                                                                                                                                                                                                 | Suchbegriffe)                                                                                                                                                                                                                                    |
| C. ALS WE                                                                               | SENTLICH ANGESEHENE UNTERLAGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                  |
| Kategone°                                                                               | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | der in Betracht kommenden Teile                                                                                                                                                                                                                                                                                                                                                                                                                                          | Betr. Anspruch Nr.                                                                                                                                                                                                                               |
| Α                                                                                       | DE 41 39 606 A (BASF) 3.Juni 1993<br>in der Anmeldung erwähnt<br>siehe das ganze Dokument                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-3,9-11                                                                                                                                                                                                                                         |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N.                                                                                                                                                                                                                                               |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                  |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                  |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                  |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                  |
|                                                                                         | tere Veröffentlichungen sind der Fortsetzung von Feld C zu<br>nehmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X Siehe Anhang Patentfamilie                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                  |
| "A" Veröffe<br>aber r<br>"E" ätteres<br>Anme<br>"L" Veröffe<br>schei<br>ander<br>soll o | e Kategorien von angegebenen Veröffentlichungen intlichung, die den allgemeinen Stand der Technik definiert, nicht als besonders bedeutsam anzusehen ist.  Dokument, das jedoch erst em oder nach dem internationalen iddedatum veröffentlicht worden ist intlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft ernen zu lassen, oder durch die das Veröffentlichungsdatum einer en im Recherchenbericht genannten Veröffentlichung belegt werden der die aus einem anderen besonderen Grund angegeben ist (wie international). | *T' Spätere Veröffentlichung, die nach den<br>oder dem Prioritätsdatum veröffentlich<br>Anmeldung nicht kolliciert, sondern nu<br>Erfindung zugrundellegenden Prinzips<br>Theorie angegeben ist<br>*X' Veröffentlichung von besonderer Bede-<br>kann allein aufgrund dieser Veröffentli-<br>erfinderischer Tätigkeit beruhend betri<br>"Y' Veröffentlichung von besonderer Bede-<br>kann nicht als auf erfinderischer Tätigkeit<br>werden, wenn die Veröffentlichung mit | t worden ist und mit der<br>r zum Verständn is des der<br>coder der ihr zugrundeliegenden<br>utung; die beanspruchte Erfindung<br>ohung nicht als neu oder auf<br>schlet werden<br>utung; die beanspruchte Erfindung<br>reit beruhend betrachtet |
| *O* Veröffe<br>eine E<br>*P* Veröffe                                                    | sultiohung, die sich auf eine mündliche Offenbarung,<br>Benutzung, eine Ausstellung oder andere Maßnahmen bezieht<br>Intlichung, die vor dem internationalen Armeldedatum, aber nach<br>beanspruchten Prioritätsdatum veröffentlicht worden ist                                                                                                                                                                                                                                                                                              | Veröffentlichungen dieser Kategorie in<br>diese Verbindung für einen Fachmann<br>*&* Veröffentlichung, die Mitglied derselber                                                                                                                                                                                                                                                                                                                                            | i Verbindung gebracht wird und<br>i naheliegend ist<br>i Patentfamilie ist                                                                                                                                                                       |
| Datum des                                                                               | Abschlusses der internationalen Recherche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Absendedatum des internationalen Re                                                                                                                                                                                                                                                                                                                                                                                                                                      | echerchenberichts                                                                                                                                                                                                                                |
| 1                                                                                       | .0ktober 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 4. 10. 97                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                |
| Name und                                                                                | Postanschrift der Internationale Recherchenbehörde<br>Europäisches Patentamt, P.B. 5818 Patentiaan 2<br>NL - 2280 HV Rijswijk<br>Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,                                                                                                                                                                                                                                                                                                                                                                  | Bevollmächtigter Bediensteter  Decocker, L                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                  |
|                                                                                         | Fax; (+31-70) 340-3016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , , , , -                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                  |

Formblatt PCT/ISA/210 (Blatt 2) (Juli 1992)

## INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Ir. ationales Aktenzeichen
PCT/EP 97/03043

| im Recherchenbericht angeführtes Patentdokument | Datum der        | Mitglied(er) der                                             | Datum der                                    |
|-------------------------------------------------|------------------|--------------------------------------------------------------|----------------------------------------------|
|                                                 | Veröffentlichung | Patentfamilie                                                | Veröffentlichung                             |
| DE 4139606 A                                    | 03-06-93         | W0 9311111 A<br>EP 0614458 A<br>JP 7501530 T<br>US 5504211 A | 10-06-93<br>14-09-94<br>16-02-95<br>02-04-96 |

Formblatt PCT/ISA/210 (Anhang Patentfamilie)(Juli 1992)