Contrôle continu 3 - correction

Exercice 1. (Question de cours) Soit A un événement aléatoire. On appelle variable aléatoire indicatrice de A une variable aléatoire $\mathbb{1}_A$ qui vaut 1 si A est réalisé et 0 sinon. Soit $A, B, C \subset \Omega$:

1. Exprimer en fonction de $\mathbb{1}_A$ et $\mathbb{1}_B$ les variables $\mathbb{1}_{A \cup B}$, $\mathbb{1}_{A \cap B}$ et $\mathbb{1}_{A \Delta B}$. Faire les démontrations!

Remarquer que les évenements $A \setminus B$, $A \cap B$, $B \setminus A$ et $(A \cup B)^c$ forment une partition de Ω . On récapitule sous forme de tableau les valeurs prises par les indicatrices :

	$A \setminus B$	$A \cap B$	$B \setminus A$	$(A \cup B)^c$
$\mathbb{1}_A$	1	1	0	0
$\mathbb{1}_B$	0	1	1	0
$\mathbb{1}_{A\cap B}$	0	1	0	0
$\mathbb{1}_{A\Delta B}$	1	0	1	0
$\mathbb{1}_{A\cup B}$	1	1	1	0

Donc $\mathbb{1}_{A \cap B} = \min \{\mathbb{1}_A, \mathbb{1}_B\} = \mathbb{1}_A \mathbb{1}_B, \mathbb{1}_{A \Delta B} = |\mathbb{1}_A - \mathbb{1}_B| \text{ et } \mathbb{1}_{A \cup B} = \max \{\mathbb{1}_A, \mathbb{1}_B\} = \mathbb{1}_A + \mathbb{1}_B - \mathbb{1}_{A \cup B}.$

2. Que dire de A et B si $\mathbb{1}_A \leq \mathbb{1}_B$

Si pour tout $\omega \in \Omega$ on a $\mathbb{1}_A(\omega) \leq \mathbb{1}_B(\omega)$ on a : si $\mathbb{1}_A(\omega) = 1$ alors $\mathbb{1}_B(\omega) = 1$ (en particulier $\mathbb{1}_{A \setminus B} = 0$). Ainsi on a $A \subset B$.

Exercice 2. (Longueur de courbes) Calculer la longueur des courbes paramétrées suivantes :

1. $\gamma(t) = ((1-t)^2 e^t, 2(1-t)e^t), t \in [0,1].$

On a
$$\gamma'(t) = (-2(1-t)e^t + (1-t)^2e^t, -2e^t + 2(1-t)e^t = ((t^2-1)e^t, -2te^t)$$
. Il vient
$$\|\gamma'(t)\|^2 = (t^2-1)^2e^{2t} + 4t^2e^{2t}$$
$$= ((t^2-1)^2 + 4t^2)e^{2t}$$
$$= (t^4-2t^2+1+4t^2)e^{2t}$$
$$= (t^4+2t^2+1)e^{2t}$$
$$= (t^2+1)^2e^{2t}$$

La longueur de γ est donc $\int_0^1 \sqrt{(t^2+1)^2 e^{2t}} dt = \int_0^1 (t^2+1) e^t dt$. Une double intégration par parties en intégrant e^t et en dérivant (t^2+1) donne L=2e-3.

- 2. γ est la courbe d'équation polaire $r(t) = \sin(t)$, $\theta(t) = t$, $t \in [0, 2\pi]$.
 - Méthode 1 : On a $r'(t) = \cos(t)$ donc $\sqrt{r'(t)^2 + r(t)^2} = \sqrt{\cos^2(t) + \sin^2(t)} = 1$. La longueur de γ est donc $\int_0^{2\pi} dt = 2\pi$.
 - Méthode 2 : On passe en coordonnées cartésiennes φ : $t \mapsto (\sin(t)\cos(t), \sin^2(t))$ et on fait les calculs directement. On a $\|\varphi'(t)\|^2 = (\cos^2(t) \sin^2(t))^2 + 4\sin^2(t)\cos^2(t) = 1$. Et on retrouve la longueur de Γ égale à 2π .

Exercice 3. (Intégrale de Gauss) Pour R>0, on pose $D_R=\{(x,y)\in\mathbb{R}^2,x^2+y^2\leq R^2\}$ et $\Delta_R=[-R,R]\times[-R,R]$.

1. Montrer que $D_R \subset \Delta_R \subset D_{\sqrt{2}R}$. En déduire que :

$$\iint_{D_R} e^{-x^2 - y^2} dx dy \le \iint_{\Delta_R} e^{-x^2 - y^2} dx dy \le \iint_{D_{\sqrt{2}R}} e^{-x^2 - y^2} dx dy.$$

Pour $(x,y) \in D_R$, on a $|x| \le \sqrt{x^2 + y^2} \le R$, d'uù $x \in [-R,R]$, de même pour y. Pour $(x,y) \in \Delta_R$, on a $x^2 + y^2 \le R^2 + R^2 = 2R^2$, donc $\sqrt{x^2 + y^2} \le \sqrt{2}R$ et $(x,y) \in D_{\sqrt{2}R}$. Puisque $e^{-x^2-y^2}$ est **positive**, on a immédiatement l'inégalité demandée. 2. En utilisant les coordonnées polaires, calculer $\iint_{D_R} e^{-x^2-y^2} dxdy$.

On pose $x = r\cos(\theta)$, $y = r\sin(\theta)$. On a alors $x^2 + y^2 = r^2$, $D_R = \{(r, \theta) \in [0, R] \times [0, 2\pi]\}$, et $dxdy = rdrd\theta$. Ainsi, $I = \iint_{D_R} e^{-x^2 - y^2} dxdy = \int_0^{2\pi} \int_0^R re^{-r^2} drd\theta$. On reconnait une forme $u'e^u$. Pour finir, on a donc $I = \int_0^{2\pi} \left[-1/2e^{-r^2} \right]_0^R d\theta = \pi(1 - e^{-R^2})$.

3. Montrer que $\iint_{\Delta_R} e^{-x^2 - y^2} dx dy = \left(\int_{-R}^R e^{-t^2} dt \right)^2$

Il suffit de remarquer que $e^{-x^2-y^2}=e^{-x^2}e^{-y^2}$ et que $\int_{-R}^R e^{-y^2}dy$ ne dépend pas de x.

4. En déduire la valeur de $\int_{-\infty}^{\infty} e^{-t^2} dt = \lim_{R \to +\infty} \int_{-R}^{R} e^{-t^2} dt.$

L'inégalité de la question 1 et le calcul de la question 2 donnent :

$$\pi \left(1 - e^{-R^2}\right) \le \left(\int_{-R}^R e^{-t^2} dt\right)^2 \le \pi \left(1 - e^{-2R^2}\right).$$

Pour $R \to \infty$, le théorème des gendarmes donne $\left(\int_{-\infty}^{\infty} e^{-t^2} dt\right)^2 = \pi$ soit $\int_{-\infty}^{\infty} e^{-t^2} dt = \sqrt{\pi}$.