CS1231S Discrete Structures Notes on Graphs and Trees

Subgraphs

A graph H is said to be a **subgraph** of graph G if, and only if,

- every vertex in H is also a vertex in G;
- every edge in H is also an edge in G;
- every edge in H has the same endpoints as it has in G.

Degree	
Degree of a vertex v, deg(v) The degree of this vertex equals 5.	The number of edges that are incident on v, with an edge that is a loop counted twice.
Total degree of a graph G • • • • • • • • • • • • • • • • • •	 The sum of all the degrees of all the vertices in G. Total degree of G = deg(v₁) + deg(v₂) + deg(v₃) Handshake Theorem: Total degree of G = 2 × Number of edges in G. Total degree of a graph is always even. In any graph, there is an even number of vertices of odd degree.

	+ Passes through every edge exactly once			
Hamiltonian Circuit	Not allowed	Only 1st and last	Required	Required
	+ Contains every vertex of G.			

Connected G	raphs
	v_4
v_2 v_3 v_1	v_6

Connected Vertices

Connectedness

You can remove this

still connected

from the circuit and G is

Two vertices v and w are connected iff there is a walk from v to w.

The graph G is connected iff given any two vertices v and w in G, there is a walk from v to w.

Connected graph: \forall *vertices* $v, w \in V(G)$, \exists a walk from v to w.

What happens when a graph G is connected?

- 1. **Paths everywhere!** Any two distinct vertices in G can be connected by a path.
- 2. **Edge removability!** If edges v and w are part of a circuit, and one edge is removed from the circuit,
 - o There still exists a trail from v to w in G,
 - o G will still be connected.

Connected Components

A connected component of a graph is a connected subgraph of the largest possible size.

A graph *H* is a **connected component** of a graph *G* if, and only if,

- 1. The graph H is a subgraph of G;
- 2. The graph H is connected; and
- 3. No connected subgraph of G has H as a subgraph and contains vertices or edges that are not in *H*.

Euler and Hamilton

An Eulerian Graph.

Euler circuit for G is a circuit that contains every vertex and every edge of G.

- Has at least one edge, uses every edge of G exactly once;
- Starts and ends at the same vertex, uses every vertex of G at least once.

Graph has an Euler Circuit

⇔ Graph is connected and every vertex has a positive even degree
 ⇒ Every vertex has a positive even degree

Contrapositive: Some vertex has an odd degree ⇒ Graph does not have an Euler Circuit.

There is an Euler Trail between the vertices of odd degree.

Euler trail/path from v to w (distinct vertices) starts at v, ends at w,

- Passes through every vertex of *G* at least once.
- o Traverses every edge of *G* exactly once.

Adding an edge between the two vertices v and w will give an Euler Circuit.

There is an Euler Trail from vertices v to w in graph G

 \Leftrightarrow Graph is connected, v and w have odd degree, and all other vertices have a positive even degree.

Hamiltonian circuit for G is a simple circuit that includes every vertex of G.

• Every vertex of *G* appears exactly once, except for the first and the last, which are the same.

Graph has an Hamiltonian Circuit

 \Rightarrow G has a subgraph H with the following properties:

- 1. H contains every vertex of G.
- 2. H is connected.
- 3. H has the same number of edges as vertices.
- 4. Every vertex of H has degree 2.

Contrapositive: If a graph G does *not* have a subgraph H with properties (1)–(4), then G does *not* have a Hamiltonian circuit.

For this section, I have omitted most of the formulae regarding matrix manipulation because it is covered in MA1101R Linear Algebra.

Adjacency Matrix		
Of a directed graph	a_{ij} = Number of arrows from v_i to v_j	
Of an undirected graph	a_{ij} = Number of edges connecting v_i to v_j	
	The matrix is symmetric.	
Of a graph with connected components G_1, G_2, \dots, G_k	$\begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_k \end{pmatrix}$ Each A_i is an $n_i \times n_i$ adjacency matrix for G_i , and the Os represent matrices whose entries are all 0s.	
Counting Walks of Length n		
Number of walks of length n from v_i to v_i is the (i,j)-entry of A^n , where A is the adjacency matrix.		

G is isomorphic to G' if, and only if,

- there exist one-to-one correspondences $g: V(G) \rightarrow V(G')$ and h: $E(G) \rightarrow E(G')$; and
- for all vertices and endpoints in G, v is an endpoint of e ⇔ g(v) is an endpoint of g(e).

Let S be a set of graphs and let R be the relation of graph isomorphism on S. Then R is an equivalence relation on S.

 Graph isomorphism is symmetric, reflexive and transitive.

Planar Graphs

A graph G is a tree

- \Leftrightarrow it is circuit-free and connected
- \Leftrightarrow G is a connected graph with n vertices and n-1 edges.

A graph is a **forest** if, and only if, it is circuit-free and not connected.

Properties of Trees	
Vertices of a tree	Any non-trivial tree (more than one vertex) has at least one vertex of degree
	1 (terminal vertex).
Edges of a tree	Any tree with n vertices has $n-1$ edges.

Vertices in the enclosed region are descendants of u, which is an ancestor of each.

Types of Trees		
Rooted Tree	There is 1 vertex, the root, that is distinguished from the others.	
Binary Tree	Rooted tree where every parent has at most 2 children.	
	Relation between its height (h) and number of terminal vertices (t)	
	$t \le 2^h \equiv \log_2 t \le h$	
Full Binary Tree	A binary tree in which each parent has exactly two children.	
(a) (b) (+)	Full Binary Tree Theorem: If T is a full binary tree with k internal vertices, then T has a total of $2k+1$ vertices and $k+1$ terminal vertices.	
Spanning Tree	Subgraph of G that contains every vertex of G and is a tree.	
(for a graph G)	 Any two spanning trees for a graph has the same number of edges. 	
Minimum Spanning Tree	Spanning tree that has the least possible total weight compared to all	
(for a connected weighted	other spanning trees for the graph.	
graph)		

Algorithms for Constructing a Minimum Spanning Tree		
Kruskal's Algorithm	Examine the edges of the graph one-by-one from the smallest weight	
	to the largest weight. At each stage of examination, add the edge to the	
	minimum spanning tree only if this addition does not create a circuit.	
Prim's Algorithm	Pick any vertex in the graph. Then, choose the smallest edge that	
	connects the vertex to another unvisited vertex.	

Binary Tree Traversal	
1 2 3 5 6 7	Breadth-First Search Starts at the root and visits its adjacent vertices, and then moves to the next level.
B G G H	 Pre-Order Depth-First Search Print the data of the root (or current vertex). Traverse the left subtree by recursively calling the pre-order function. Traverse the right subtree by recursively calling the pre-order function.
B G G L H	 In-Order Depth-First Search Traverse the left subtree by recursively calling the in-order function Print the data of the root (or current vertex) Traverse the right subtree by recursively calling the in-order function

Post-Order Depth-First Search

- Traverse the left subtree by recursively calling the post-order function
- Traverse the right subtree by recursively calling the post-order function
- Print the data of the root (or current vertex)

Table of Edgy Vertices		
	Edges, $ E $	Vertices, $ V =n$
Graphs	Maximum $ E = \binom{n}{2}$	There is an even number of vertices
	Total degree of the graph = $2 \times$	with an odd degree.
	E and is always even.	
Complete Graph	Every edge has a degree of $n-1$.	
Eulerian Graphs		Every vertex has a positive even
		degree.
Non-Eulerian Graphs		Some vertex has an odd degree.
Hamiltonian Graphs	Graph has a subgraph where	Every vertex of the subgraph H has
	E = V .	degree of 2.
Planar Graphs	Number of faces	
	= Number of edges $ E $ $-$ Number	
Non-Trivial Trees	E = n - 1	Has at least one vertex of degree 1
	A graph who fulfils the property	
	above is a tree iff the graph is	
	connected.	
Full Binary Tree		k: Number of internal vertices
		t: Number of terminal vertices
		V = 2k + 1
		t = k + 1
0		$t \le 2^h \equiv \log_2 t \le h$
Spanning Trees	Any two spanning trees for a	
	graph has the same number of	
	edges.	