Лекция №1: Интерактивное принятие решений: игры и равновесия

3 балла посещаемость, 17 баллов успеваемость (домашняя работа, активность, контрольная работа)

План

- 1. Индивидуальное принятие решений;
- 2. Интерактивное принятие решений;
- 3. Бескоалиционная игра в нормальной форме;
- 4. Принципы оптимальности в бескоалиционных играх;

Модель индивидуального рационального поведения 1

- Пусть агент (игрок) способен выбирать некоторое действие (стратегию) x из множества X допустимых действий;
- В результате выбора действия $x \in X$ агент получает выйшгрыш f(x), где $f: X \to R^1$ целевая функция (выйгрыш функция), отражающая предпочтения агента;
- Выбор действия агентом определяется правилом индивидуального рационального выбора $P(f,X)\subseteq X$:

$$P(f,X) = Arg \max_{x \in X} f(x)$$

Модель рационального поведения 2:

- Пусть агент способен выбирать некоторые действие x из множества X допустимых действий с учётом неопределенного параметра $\theta \in \Theta$ состояние природы;
- В результате выбора действий $x \in X$ и реализации состояния природы $\theta \in \Theta$ агент получает выйгрыш $f(\theta \in \Theta)$, где $f: \theta \times X \to R^1$ целевая функция, отражающая предпочтения агента.

Уровни информированности агента в условиях индивидульного выбора:

- Интервальная неопределённость (известно только множество θ);
- Вероятностная неопределённость (известно вероятностное распределение значений неопределённых параметров $\theta \in \Theta$);

- Нечеткая неопределённость (известна функция принадлежности значений неопределённых параметров $\theta \in \Theta$)
- Процедура устранения неопредедленности

$$f \underset{I}{\Rightarrow} \hat{f}$$

• Выбор действия агентом определяется правилом индивидуального рационального выбора

 $P(f,X,I) = Arg \max_{x \in X} \hat{f}(x)$

Полная неопределённость устраняется принципом гарантированного результата при условии, что множество состояния природы образуют полную группу событий.

Интерактивное принятие решений — это принятие решений в условии конфликта интересов многих сторон с непротивоположными интересами (с возможностью объединения в коалицию). При этом также могут учитываться разлициные уровни информированности сторон.

Теоретико-игровая модель (бескоалиционная игра)

Система:

$$\Gamma = (N, \{X_i\}_{i \in N}, \{H_i\}_{i \in N}),$$

 $N=\{1,2,\cdots,n\}$ – множество игроков,

 X_i – множество статегий игрока i;

 H_i — Функция выигрыша игрока i, определённая на декартовом произведении множеств стратегий игроков $X = \prod_{i=1}^n = X_i$ (множество ситуаций игры)

Игроки одновременно и независимо друг от друга выбирают свои стратегии x_i из множества стратегий $X_i, i=1,2,\cdots,n$, в результате формируется ситуация:

$$x = (x_1, x_2, \cdots, x_n),$$
$$x_i \in X_i$$

После этого каждый игрок i получает выигрыш $H_i(x)$

Случай двух игроков

Игра двух лиц Γ в нормальной форме определяется системой:

$$\Gamma = (x_1, x_2, H_1, H_2)$$

где X_1 – множество стратегий первого игрока,

 X_2 – множество стратегий второго игрока

 $X_1 \times X_2$ – множество ситуаций игры,

 $H_1: X_1 \times X_2 \to R^1, H_2: X_1 \times X_2 \to R^1$ – функция выйгрыша игроков 1 и 2. Конечная бескоалиционная игра двух лиц называется биоматричной:

$$H_1 = A = \begin{bmatrix} \alpha_{11} & \cdots & \alpha_{1n} \\ \cdots & \cdots & \cdots \\ \alpha_{m1} & \cdots & \alpha_{mn} \end{bmatrix}$$

$$H_2 = B = \begin{bmatrix} \beta_{11} & \cdots & \beta_{1n} \\ \cdots & \cdots & \cdots \\ \beta_{m1} & \cdots & \beta_{mn} \end{bmatrix}$$

Для игры двух лиц: $\Gamma=(x_1,x_2,H_1,H_2)$ ситуация (x_1^*,x_2^*) является равновестной по Нэшу, если неравенства:

$$H_1(x_1, x_2^*) \le H_1(x_1^*, x_2^*)$$

$$H_2(x_1^*, x_2) \le H_2(x_1^*, x_2^*)$$

выполняются для всех $x_1 \in X_1, x_2 \in X_2$.

Игровая ситуация в неантоганистической игре называется *равновестной по Нэшу*, если не один из игроков в единоличном порядке не может её ищменить не ухудшив своего положения. Справедливо для бескоалиционной игры.

Ситуация x с черточкой в бескоалиционной игре Γ называется оптимальной по Парето, если не существует ситуации х принадлежит X, для которой справедливо

$$H_i(x) \geqslant H_i(\overline{x}), \forall i \in N$$

 $H_{i_0}(x) > H_{i_0}(\overline{x})$

хотя бы для одного $i_0 \in N$

т.е. не существует другой ситуации x, которая была бы предпочтительней x с черточкой для всех игроков.

Игровая ситуация называется *оптимальной по Парето*, если не один из игроков не может в единоличном порядке улучшить своё положение не ухудшив хотя бы одного из игроков.

Примеры

$$(A,B) = \begin{bmatrix} \beta_1 & \beta_2 \\ a_1 & (5;5) & (0;10) \\ a_2 & (10;0) & (1;1) \end{bmatrix}$$

(1, 1) оптимально по Нэша

(5, 5) оптимальная по Парето

$$(A,B) = \begin{array}{|c|c|c|c|c|} \hline & \beta_1 & \beta_2 \\ \hline a_1 & (4;1) & (0;0) \\ \hline a_2 & (0;0) & (1;4) \\ \hline \end{array}$$