

MACHINE LEARNING

Support Vector Machines

PhD. César Astudillo | Facultad de Ingeniería

Hyperplanes in 2D and 3D

A hyperplane in \mathbb{R}^3 is a plane

¿Qué es un Hiperplano?

- Un **hiperplano** es una superficie de dimensión *d-1* que divide un espacio de dimensión *d* en dos regiones.
- En un espacio bidimensional (d=2), es una línea recta que separa dos clases.
- En un espacio tridimensional (d=3), es un plano.

SVM

Margin (gap between decision boundary and hyperplanes)

¿Cómo se Vinculan los Hiperplanos con SVM?

- En **SVM (Support Vector Machines)**, un **hiperplano** es la frontera de decisión que separa las clases en el espacio de características.
- El objetivo de SVM es encontrar el **hiperplano óptimo**, es decir, aquel que **maximiza el margen** entre las clases, lo que mejora la capacidad de generalización del modelo.
- Los **vectores de soporte** son los puntos de datos más cercanos al hiperplano. Estos puntos son cruciales, ya que definen la orientación y posición del hiperplano.
- Si los datos no son linealmente separables, SVM utiliza la técnica de **kernels** para transformar los datos a un espacio de mayor dimensión donde un hiperplano puede separarlos.

SVM en Problemas de Alta Dimensión

- SVM es efectivo en espacios con muchas variables (alta dimensionalidad).
- La búsqueda del hiperplano óptimo no se ve afectada negativamente por un número elevado de atributos.
- Ejemplo: Datos genéticos o imágenes con miles de píxeles como variables.

SVM en Problemas de Datos Complejos

- SVM puede manejar relaciones no lineales mediante el uso de kernels.
- Los kernels transforman los datos a un espacio de mayor dimensión donde se vuelven separables.
- Ejemplo: Detección de patrones en datos biométricos o análisis de texto con miles de palabras clave.

Kernel Trick

¿Qué es un Kernel?

- Un kernel es una función matemática que transforma los datos originales a un espacio de mayor dimensión donde las clases pueden ser separables.
- Utilizado cuando los datos no son linealmente separables en su espacio original.
- Evita la necesidad de realizar transformaciones manuales de los datos.
- Permiten encontrar un hiperplano óptimo incluso con datos complejos.

¿Qué es el Kernel Trick?

Definición:

- El **Kernel Trick** (truco del kernel) es una técnica matemática utilizada en SVM para manejar datos no linealmente separables.
- Permite proyectar los datos a un espacio de mayor dimensión donde las clases puedan separarse con un hiperplano.

Idea Clave:

 En lugar de transformar directamente los datos, el kernel calcula el producto escalar entre los datos en un espacio de alta dimensión sin necesidad de transformar los datos explícitamente.

¿Cómo Funciona el Kernel Trick?

- 1. Datos Originales: Los puntos no son separables linealmente en el espacio original.
- 2. Proyección Implícita: Se utiliza una función kernel para mapear los datos a un espacio de mayor dimensión.
- 3. Separación Lineal: En este nuevo espacio, un hiperplano puede separar las clases.

Kernel trick: ejemplo

Kernel trick: ejemplo

Kernel Lineal

- Definición: Separa las clases con un hiperplano lineal.
- Fórmula: $K(x, y) = x \cdot y$
- Aplicaciones:
 - Datos con clases linealmente separables.
 - Problemas de texto y datos con alta dimensionalidad.
- Ventaja: Simple y eficiente en datos lineales.
- Desventaja: No funciona bien con datos no linealmente separables.

Kernel Polinomial

- Definición: Extiende la separación lineal utilizando funciones polinomiales.
- Fórmula: $K(x, y) = (x \cdot cdot y + c)^d$.
- Aplicaciones: Datos con relaciones cuadráticas o cúbicas entre variables.
- Ventaja: Modela relaciones no lineales de bajo orden.
- Desventaja: Menos eficiente con datos de alta dimensionalidad.

Kernel RBF (Radial Basis Function) o Gaussiano

- Definición: Mapea los datos a un espacio infinito dimensional.
- Fórmula: $K(x, y) = \exp\left(-\frac{y}{2}\right).$
- Aplicaciones: Problemas con datos altamente no lineales.
- Ventaja: Altamente flexible y efectivo para problemas complejos.
- Desventaja: Requiere ajuste cuidadoso del parámetro \gamma.

Kernel Sigmoide

- Definición: Basado en la función sigmoide, similar al comportamiento de una neurona en redes neuronales.
- Fórmula: K(x, y) = \tanh(\alpha\cdot x \cdot y + c).
- Aplicaciones:
- Problemas de clasificación similares a redes neuronales.
- Ventaja: Adecuado para problemas complejos con fronteras no lineales.
- Desventaja: Menor uso en la práctica comparado con RBF.

Comparación General de los Kernels

- Lineal: Datos simples y lineales.
- Polinomial: Datos con relaciones no lineales simples.
- RBF: Datos complejos con fronteras curvas.
- Sigmoide: Problemas inspirados en redes neuronales.
- Importancia de la Normalización:
- Los datos deben ser normalizados para un mejor desempeño de los kernels.

Ejemplos de SVM usando diferentes Kernel

Conclusiones respecto a los Kernels

- Los kernels permiten que SVM se adapte a diferentes problemas de clasificación.
- La elección del kernel debe basarse en la naturaleza de los datos.
- Es importante realizar una validación cruzada para ajustar los hiperparámetros correctamente.

Parámetro C en SVM

¿Qué es el Parámetro C en SVM?

- El parámetro C controla la tolerancia al error en SVM.
- Es un hiperparámetro clave que ajusta el balance entre un margen grande y la correcta clasificación de los puntos.
- C afecta directamente la complejidad del modelo y su capacidad de generalización.

Ejemplo de diferentes valores para C

Comparación: C Grande vs. C Pequeño

C Grande

- Penaliza más los errores de clasificación.
- Intenta clasificar todos los puntos correctamente.
- Resulta en un margen más estrecho.

C Pequeño

- Permite más errores de clasificación.
- Busca un margen más amplio.
- Mejora la capacidad de generalización, pero puede aumentar el error.

Efecto Visual del Parámetro C

- C Grande: Margen pequeño, más riesgo de sobreajuste.
- C Pequeño: Margen amplio, menos riesgo de sobreajuste pero más error en entrenamiento.
- La selección óptima de C depende del nivel de ruido y complejidad del dataset.

Cómo Seleccionar el Valor de C

- Usar validación cruzada para probar diferentes valores de C.
- Un valor medio suele ser ideal para datasets con ruido moderado.
- Evitar valores extremos sin probar múltiples opciones.
- Considerar el equilibrio entre sesgo y varianza.

MACHINE LEARNING

Support Vector Machines

PhD. César Astudillo | Facultad de Ingeniería