Regressions- och tidsserieanalys

Föreläsning 10 - Autokorrelation. Autoregressiva modeller.

Mattias Villani

Statistiska institutionen Stockholms universitet

Institutionen för datavetenskap Linköpings universitet

Översikt

- Autokorrelation
- Autoregressiva modeller
- Tidsserieregression
- Prognosutvärderingsmått

Repetition - Korrelation

Kovarians mellan två variabler

$$s_{xy} = \text{cov}(x, y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

Korrelation mellan två variabler:

$$r_{xy} = \operatorname{corr}(x, y) = \frac{s_{xy}}{s_x s_y}$$

där

$$s_x^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}$$

Samma formel som i F2, men med andra symboler:

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}_i)(y_i - \bar{y}_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x}_i)^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y}_i)^2}}$$

Mattias Villani

Repetition - Korrelation

Autokorrelation av ordning 1

- Observationerna i en tidsserie y_t är ofta beroende/korrelerade.
- Autokorrelation av ordning 1:

$$r_1 = \operatorname{corr}(y_t, y_{t-1})$$

- "Korrelation mellan dagens värde och gårdagens värde."
- "Korrelation mellan denna månad och förra månaden".
- Första laggen": y_{t-1} .

Inflation

Laggade variabler - inflation

	А	В	С	D	Е	F
1	Månad	Inflation(t)	Inflation(t-1)	Inflation(t-2)	Inflation(t-3)	Inflation(t-4)
2	1995-05-01	2.96				
3	1995-06-01	2.88	2.96			
4	1995-07-01	2.79	2.88	2.96		
5	1995-08-01	2.68	2.79	2.88	2.96	
6	1995-09-01	2.39	2.68	2.79	2.88	2.96
7	1995-10-01	2.58	2.39	2.68	2.79	2.88
8	1995-11-01	2.65	2.58	2.39	2.68	2.79
9	1995-12-01	2.6	2.65	2.58	2.39	2.68
10	1996-01-01	1.75	2.6	2.65	2.58	2.39
11	1996-02-01	1.47	1.75	2.6	2.65	2.58
12	1996-03-01	1.56	1.47	1.75	2.6	2.65
13	1996-04-01	1.31	1.56	1.47	1.75	2.6
14	1996-05-01	1.06	1.31	1.56	1.47	1.75
15	1996-06-01	1.04	1.06	1.31	1.56	1.47
16	1996-07-01	0.88	1.04	1.06	1.31	1.56
17	1996-08-01	0.66	0.88	1.04	1.06	1.31
18	1996-09-01	0.25	0.66	0.88	1.04	1.06
19	1996-10-01	0.03	0.25	0.66	0.88	1.04
20	1996-11-01	-0.05	0.03	0.25	0.66	0.88
21	1996-12-01	0.12	-0.05	0.03	0.25	0.66
22	1997-01-01	0.69	0.12	-0.05	0.03	0.25

Mattias Villani

Inflation - autokorrelation lag 1

Mattias Villani

Autokorrelation av ordning 2

Autokorrelation av ordning 2:

$$r_2 = \operatorname{corr}(y_t, y_{t-2})$$

- "Korrelation mellan dagens värde och förrgårs värde."
- "Korrelation mellan denna månad och förrförra månaden".
- \blacksquare "Andra laggen": y_{t-2} .

Inflation - autokorrelation lag 2

Mattias Villani

Autokorrelationsfunktionen

Autokorrelation av ordning k

$$r_k = \operatorname{corr}(y_t, y_{t-k})$$

- \blacksquare "Korrelation mellan månadens värde och k månader innan".
- Autokorrelationsfunktionen (ACF) är r_k som en funktion av tidsavståndet k.

Mattias Villani

Inflation - autokorrelationsfunktion

Mattias Villani

Autoregressiva modeller

Autoregressiv modell av ordning 1 (AR(1))

$$y_t = \alpha + \beta y_{t-1} + \varepsilon_t, \qquad \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$$

- AR(1) är regression med y_{t-1} som förklarande variabel!
- Skattas med minstakvadrat-metoden

$$y_t = a + by_{t-1}$$

Autoregressiv modell av ordning p(AR(p))

$$y_t = \alpha + \beta_1 y_{t-1} + \ldots + \beta_p y_{t-p} + \varepsilon_t$$

AR(p) är en multipel regression med de p förklarande variablerna $y_{t-1}, ..., y_{t-p}$.

Autoregressiva modeller

AR(1)

$$y_t = \alpha + \beta y_{t-1} + \varepsilon_t, \qquad \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$$

Autokorrelationsfunktion för AR(1) i populationen:

$$\rho_{k} = \beta^{k}, \text{ för } k = 1, 2, \dots$$

$$\beta = 0.8$$

$$0.8 \atop 0.6 \atop 0.0.0 \atop$$

Mattias Villani

ST1230

Autoregressiva modeller - stationäritet

AR(1) är stationär (icke-explosiv) modell om $-1 < \beta < 1$.

Autoregressiva modeller - prognoser

Skattad AR(1)-modell

$$y_t = a + b \cdot y_{t-1}$$

■ Vid tidpunkt T, prognos för nästa månad T+1

$$\hat{y}_{T+1} = a + b \cdot y_T$$

Prognos för T+2

$$\hat{y}_{T+2} = a + b \cdot \hat{y}_{T+1}$$

Regression för tidsserier

Regression

$$y = \alpha + \beta_1 x_1 + \ldots + \beta_k x_k + \varepsilon$$

där feltermerna ε antas bara oberoende från $N(0, \sigma_{\varepsilon}^2)$.

- Oberoende = korrelerade för normalfördelade variabler.
- Regressionen skattas med

$$y = a + b_1 x_1 + \ldots + b_k x_k$$

och vi får residualer

$$e_t = y_t - \hat{y}_t$$
.

- Vi kan undersöka om residualerna är okorrelerade.
- Två metoder:
 - ▶ Visuellt genom att plotta autokorrelationsfunktionen för et
 - Durbin-Watson test

ACF residualer - temp

Mattias Villani

ACF residualer - alla variabler

Regression med alla förklarande variabler: temp, hum, windspeed, holiday, workingday, säsong, yr.

Regression för tidsserier

Regressionsmodeller för tidsserier

$$y_t = \alpha + \beta_1 x_t + \varepsilon_t$$

får ofta korrelerade residualer. 🧐

$$y_t = \alpha + \beta_1 x_t + \beta_2 y_{t-1} + \varepsilon_t$$

Kombinera multipel regression och AR(p)

$$y_t = \alpha + \beta_1 x_t + \ldots + \beta_k x_{kt} + \beta_{k+1} y_{t-1} + \ldots + \beta_{k+p} y_{t-p} + \varepsilon_t$$

Cykeluthyrning:

$$\texttt{AntalUthyr}_{\text{idag}} = \textit{a} + \textit{b}_1 \cdot \texttt{temp}_{\text{idag}} + \textit{b}_2 \cdot \texttt{AntalUthyr}_{\text{igar}}$$

ACF residualer - enbart lag 1

Mattias Villani

ACF residualer - alla variabler + lag 1-4

Durbin-Watson test

- Test för autokorrelation (i feltermer).
- Teststatistika

$$d = \frac{\sum_{t=2}^{T} (e_t - e_{t-1})^2}{\sum_{t=1}^{T} e_t^2}$$

Durbin-Watson testar första autokorrelationen (AJÅ)

$$d \approx 2(1-r_1)$$

Teststatistikan uppfyller

$$0 \le d \le 4$$

Grova kritiska gränser:

$$d$$
 nära $2 \implies$ ej signifikant $d < 1 \implies$ signifikant positiv autokorrelation $d > 1 \implies$ signifikant negativ autokorrelation

Durbin-Watson test kan inte användas när man har laggar av målvariabeln (y_{t-1} etc) som förklarande variabler.

Mattias Villani ST1230

Durbin-Watson test - cykeluthyrning

Förklarande variabler	R ²	$r_1^{(\mathrm{res})}$	d	<i>p</i> -värde
temp	0.385	0.764	0.471***	< 1e-93
temp, hum, windspeed, holiday, working day, s äs ong, yr	0.795	0.447	1.104***	< 1e-33

Mattias Villani

Cykeluthyrningar - utvärdera prognosförmåga

- Träningsdata: Jan 1, 2011 Aug 31, 2012.
- **Testdata**: Sept 1, 2012 Dec 31, 2012.
- Prediktionsmått RMSE

$$RMSE_{test} = \sqrt{\frac{1}{n_{test}} \sum_{t \in Testdata} (y_t - \hat{y}_t)^2}$$

Cykeluthyrningar

- Training data: Jan 1, 2011 Aug 31, 2012.
- Test data: Sept 1, 2012 Dec 31, 2012.

Förklarande variabler		RMSE _{test}
temp	0.385	2346.60
temp,hum,windspeed,holiday,workingday,säsong,yr	0.795	1292.07
lagi	0.714	1274.32
lag1,lag2	0.730	1279.30
lag1-lag4	0.746	1267.84
lag1-lag6	0.764	1262.10
temp, hum, windspeed, holiday, working day, säsong, yr, lag1		1127.63
temp, hum, windspeed, holiday, working day, säsong, yr, lag1-lag4		1118.83
temp, hum, windspeed, holiday, working day, säsong, yr, lag1-lag6		1117.63
temp,hum,windspeed,holiday,workingday,säsong,yr,lag1-lag6,Lasso	NA	1118.34

Mattias Villani

ST1230