9 以定义扩展 λC

Extension of λC with definitions

读书笔记

许博

1 λC 扩展到系统 λD_0

本章在 λC 的基础上扩展通常意义上定义的形式化版本,也即所谓的描述性定义(descriptive definitions)。扩展后的系统 λD_0 尚不能完全支持公理以及公理概念的表示,相应的扩展会在下一章引入 λD 时说明。

为给出 λD_0 的合适的描述,首先扩展表达式的集合。 λD_0 中的表达式与 λD 中相同,因此记集合为 $\mathcal{E}_{\lambda D}$ 。

假设除了之前定义的变量集合 V 以外,还有常量的集合 C。使用符号 $a,a_1,a_i,a',b,...$ 作为常量的名字,正如我们使用 $x,x_1,x_i,x',y,...$ 作为变量的名字一样。另外,还假设变量和常量来自不相交的集合,而 * 和 \square 是特殊符号,不属于 V 和 C:

 $V \cap C = \emptyset, * \neq \square, *, \square \notin V \cup C$

定义 $1.1(\mathcal{E}_{\lambda D})$

 $\mathcal{E}_{\lambda \mathrm{D}} = V |\Box| * |(\mathcal{E}_{\lambda \mathrm{D}} \mathcal{E}_{\lambda \mathrm{D}})| (\lambda V : \mathcal{E}_{\lambda \mathrm{D}}.\mathcal{E}_{\lambda \mathrm{D}})| (\Pi V : \mathcal{E}_{\lambda \mathrm{D}}.\mathcal{E}_{\lambda \mathrm{D}})| C(\overline{\mathcal{E}_{\lambda \mathrm{D}}})$

其中 $\overline{\mathcal{E}_{\lambda D}}$ 中的上划线表示这是一个 $\mathcal{E}_{\lambda D}$ -表达式的列表。

引入"环境, environment"表示一个定义的列表。

定义 1.2 (λD_0 中的描述性定义; 环境)

(1) 在 $\mathcal{E}_{\lambda D}$ 中,一个(描述性)定义具有形式

 $\overline{x}: \overline{A} \triangleright a(\overline{x}) := M: N$

其中所有的 $x_i \in V, a \in C$, 并且所有的 $A_i, M, N \in \mathcal{E}_{\lambda D}$

(2) 一个环境 Δ 是一个有限(空或非空)的定义列表。

使用诸如 $\mathcal{D},\mathcal{D}_i,\dots$ 等符号作为元名称表示定义。一个长度为 k 的环境可以被表示为如 $\Delta\equiv\mathcal{D}_1,\dots,\mathcal{D}_k$ 。

关于定义,区分以下元素:

定义 1.3 (定义中的元素)

令 $\mathcal{D} \equiv \overline{x} : \overline{A} \triangleright a(\overline{x}) := M : N$ 是一个定义。则:

- $-\overline{x}:\overline{A}$ 是 \mathcal{D} 中的上下文
- -a 是 D 中被定义的常量, \overline{x} 是参数列表
- $a(\overline{x})$ 是 D 中的 definiendum
- -M:N 是 D 中的语句, M 是 definiens 或 D 的主体, N 是 D 的类型。