Design and Analysis of Sample Surveys

Andrew Gelman

Department of Statistics and Department of Political Science

Columbia University

Class 12a: Multilevel regression

Multilevel regression

- Simple multilevel modeling
- Partial pooling
- Multilevel regression

Simplest example of multilevel modeling

	Estimated treatment	Standard error of effect
School	effect, y_j	estimate, σ_j
A	28	15
В	8	10
C	-3	16
D	7	11
Е	-1	9
F	1	11
G	18	10
Н	12	18

- Separate experiment in each school
- Variation in treatment effects is indistinguishable from 0
- Multilevel Bayes analysis
 - Overlapping confidence intervals for the 8 school effects
 - Statements such as Pr (effect in A > effect in C)= 0.7

The mathematics of multilevel modeling

	Estimated treatment	Standard error of effect
School	effect, y_j	estimate, σ_j
A	28	15
В	8	10
C	-3	16
D	7	11
E	-1	9
F	1	11
G	18	10
Н	12	18

- What happens when you . . .
 - Decrease the standard errors by a factor of 10?
 - ▶ Increase the standard errors by a factor of 10?
 - ▶ Move the estimates apart? Together?
 - Take the estimate for school A and move it away from all the others?

Another example

Estimates with statistical significance

Estimates ± standard errors

- ► Effects of electromagnetic fields at 38 frequencies
- Original article summarized using p-values
- ▶ Confidence intervals show comparisons more clearly

Separate estimates and multilevel estimates

What should we believe?

Multilevel estimates ± standard errors

Some other examples

- Teacher effects in schools
- ► Longitudinal studies
- State-level opinions
- Controlling for "country effects"
- Time series cross sections
- Common theme:
 - Sparse data
 - Small sample size in some groups
 - Partial pooling

Sample size and partial pooling

Multilevel regression

- Individual-level predictors
- Group-level predictors
- ▶ In either case, partially pool toward the regression line
- Simple example on blackboard: Advanced Placement scores and grades in Calculus 2
- More complicated example: public opinion among low-income white Catholics in Montana

Sample size and variability

Figure 12.2 Complete-pooling (dashed lines, $y=\alpha+\beta x$) and no-pooling (solid lines,

Sample size and partial pooling

Figure 12.4 Multilevel (partial pooling) regression lines $y = \alpha_j + \beta x$ fit to radon data from Minnesota, displayed for eight counties. Light-colored dashed and solid lines show the complete-pooling and no-pooling estimates, respectively, from Figure 12.3a.

Varying intercepts and slopes

Varying intercepts

Varying slopes

Varying intercepts and slopes

How not to code your multilevel data

ID	dad	mom	informal	city	city	enforce	benefit	c	•	ndicate	
ID	age	race	support	ID	name	intensity	level	1	2	•••	20
1	19	$_{ m hisp}$	1	1	Oakland	0.52	1.01	1	0		0
2	27	black	0	1	Oakland	0.52	1.01	1	0		0
3	26	black	1	1	Oakland	0.52	1.01	1	0	• • •	0
:	:	:	:	:	:	:	:	:	:		:
248	19	white	1	3	Baltimore	0.05	1.10	0	0		0
249	26	black	1	3	Baltimore	0.05	1.10	0	0	• • • •	0
•	•	•	•	•	•	•	•	:	•		•
:		:		:	:	:		:	:		:
1366	21	black	1	20	Norfolk	-0.11	1.08	0	0		1
1367	28	$_{ m hisp}$	0	20	Norfolk	-0.11	1.08	0	0	• • • •	1

How to code your multilevel data

ID	dad age	mom race	$ \begin{array}{c} \text{informal} \\ \text{support} \end{array} $	city ID
1	19	hisp	1	1
2	27	black	0	1
3	26	black	1	1
:	÷	÷	÷	÷
248	19	white	1	3
249	26	black	1	3
:	÷	÷	:	÷
1366	21	black	1	20
1367	28	hisp	0	20

city ID	city name	enforce- ment	benefit level
1	Oakland	0.52	1.01
2	Austin	0.00	0.75
3	Baltimore	-0.05	1.10
: 20	: Norfolk	∶ -0.11	: 1.08

Before doing multilevel regression

- Complete pooling
- No pooling
- Two-stage regression
- Difficulties with these approaches

Multilevel regression in R

- Imer
- glmer
- Individual-level predictors
- Group-level predictors
- Main effects
- ► Two-way interactions
- Varying intercepts and slopes
- Fake-data simulation
- Checking model fit

Why multilevel regression and poststratification?

- ► Goal 1: State-level estimates from national surveys
 - Need to correct for known differences between sample and population
 - ► Compare to alternatives
- ▶ Goal 2: Inference for small subgroups of the population

Ethnicity/religion, income, and school vouchers

The raw data

Applying MRP to U.S. politics

- Census
- Post-election supplement
- Adjusting for state-level vote
- State-level predictors