Learning Objectives

<u>Describe</u> sampling distributions of means

Calculate the standard error of the mean

Understand Central Limit Theorem, and its effect on distributions

Conduct z-tests (in 6 baby steps)

Samples of Sample Means

- Imagine drawing 30 samples of 4 student exam scores from our class
 - Sample 1: 63, 70, 72, 98
 - Sample 2: 59, 65, 71, 74
 - Sample N: 60, 66, 72, 73

 Sample means would be different each time we collected a new sample...

Sampling Distribution of Sample Means

Sampling Distribution of Sample Scores

(we've already been doing this...)

- Not with means, but with proportions
 - If H_0 is true, then distribution is:

Other Random Distributions

 Distribution shape varies depending on the scale of IV/DV & research design

Sampling Distribution of Sample Means If H_0 is true, then distribution is:

Sampling Distribution of Sample Means

 Mean of the distribution (of sample means) is the same as population mean (mean of all cases)

$$\mu_{\bar{X}} = \mu$$

 Standard deviation of distribution (of sample means) is equal to the population standard deviation, divided by square root of N

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{N}}$$

Standard Error

• Standard Error of the Mean is the average (mean) difference between \bar{X} 's and μ

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{N}}$$

- Each sample mean is an estimate of μ
 - As σ decreases, $\sigma_{\bar{X}}$ decreases
 - As N increases, $\sigma_{\bar{X}}$ decreases
 - Sampling distribution narrows, $\sigma_{\bar{X}}$ decreases

Central Limit Theorem

- No matter what the distribution of individual observations $(X_1, X_2...X_N)$ looks like...
 - As N increases, sampling distribution of means approaches the normal distribution (z)
 - Where N is the size of the <u>sample</u>

- Knowing the size of <u>our</u> sample tells us...
 - How 'normal' the distribution will look under H_0
 - How close our X will be, on average, to μ

Comparing distributions of scores to distributions of means

	Raw Score Distribution (Parent Population)	Sampling Distribution of the Mean
Each observation	Χ	\overline{X}
Mean	μ	$\mu_{\overline{X}} = \mu$
Standard Deviation	σ	$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{N}}$
Shape	Normal, skewed, rectangular, bimodal, etc	Approximately normal (as N increases)