CPGE

Année académique 2021 – 2022

Enseignants: Dr OUOBA; Dr BORO

Travaux dirigés d'électrocinétique/PCSI (Fiche N1)

A. Lois générales de l'électrocinétique dans l'approximation des régimes quasi-stationnaires

Exercice 1

On considère les circuits suivants.

$$R_1 = R_2 = R_3 = R_4 = R_5 = 25 \ \Omega$$

$$R_1 = R_5 = 15 \Omega$$
; $R_2 = R_3 = R_4 = 5 \Omega$

$$E = 25 V I = 5 A$$

- **1.** Calculer les résistances équivalentes R_{AB} et R_{CD} des figures 1 et 2 ci-dessus.
- **2.** Déterminer le générateur équivalent de Norton du dipôle *MN* (*figure 3*). En déduire le générateur équivalent de Thévenin.
- **3.** On branche aux bornes de ce générateur de Thévenin, une résistance R de 10Ω . Calculer la tension aux bornes de cette résistance et en déduire l'intensité du courant qui la traverse.

Exercice 2

1. On considère le montage de la figure 1, déterminer la résistance équivalente entre les points A et E. Application numérique : $R_1 = R_5 = 2 \text{ k}\Omega$, $R_3 = R_7 = 3 \text{ k}\Omega$, $R_2 = R_6 = 5 \text{k}\Omega$, $R_4 = 1 \text{ k}\Omega$ $R_8 = R_9 = 8 \text{ k}\Omega$.

2. Calculer la résistance équivalente R_{AB} (figure 2) vue entre les bomes A et B ainsi que les intensités des courants I_1 , I_2 et I_3 . On donne $R=10 \Omega$ E=48 V

Figure 1

Figure 2

Exercice 3

1) Déterminer en fonction de R la résistance équivalente des dipôles suivants :

- 2) On donne $U_{AC} = 30 \text{ V. Déterminer}$:
 - a) la résistance équivalente entre les nœuds A et C
 - b) la valeur de la tension U_{BC} ,
 - c) les intensités des courants dans chaque résistanc
 - d) la puissance Joule dissipée dans R₄.

Exercice 4

On considère le circuit de la figure ci-dessous. On veut calculer l'intensité i du courant circulant entre A et B.

- 1. Effectuer le calcul avec la méthode des noeuds (transformer les modèles de Thévenin en modéles de Norton puis appliquer la loi des noeuds).
- 2. Effectuer le calcul en déterminant le modèle de Norton du circuit à gauche de AB (circuit moins la résistance 2R). Utiliser les transformations et associations de générateurs.
- 3. Effectuer le calcul en déterminant le modèle de Thévenin du circuit à gauche de AB (circuit moins la résistance 2R). Utiliser les transformations et associations de générateurs.
- 4. Effectuer le calcul en utilisant le théorème de superposition sans utiliser les transformations de générateur.

Exercice 5

On considère le circuit de la figure ci-dessous. On veut calculer l'intensité i du courant circulant entre A et B.

- 1. Déterminer le modèle de Thévenin et le modèle de Norton équivalent au circuit entre A et B en l'absence de R par transformations et associations de générateurs.
- 2. Déterminer l'intensité du courant dans R.