Condiciones iniciales

Vectorizador: TfidfVectorizer

- max_features = 10000 # Máximo de palabras que toma para la matriz
- min_df = 0.0001 # Toma todas las palabras que tengan este mínimo de frecuencia
- ngram_range = (1,1) || (1,2) || (2,2)

Train-Test Split:

- Tamaño del set de entrenamiento: 15839
- Tamaño del set de prueba: 6789

A continuación, se analizarán 3 modelos predictivos y se entrenarán con datos lematizados y stemmizados, y también probando con monogramas, monogramas+bigramas y únicamente bigramas.

En el siguiente cuadro se sintetizan los resultados, evaluados por accuracy en la validación cruzada:

Modelo	Datos	Monogramas	Monogramas + Bigramas	Bigramas
Naive Bayes	Lemma	0.40	0.70	0.73
(Benchmark)	Stem	0.38	0.71	0.74
Random Forest	Lemma	0.87	0.88	0.86
	Stem	0.87	0.87	0.86
SVM	Lemma	0.90	0.90	0.86
	Stem	0.90	0.90	0.86

Conclusión:

Se elige el modelo SVM con monogramas lematizados, ya que fue el que demostró un mejor desempeño y también fue el más equilibrado en cuanto a precisión y recall, ya que no se quiere un modelo que tienda a clasificar siempre con el mismo valor ante la duda.

Naive Bayes - Lemma - Monogramas

Naive Bayes - Modelo Benchmark

```
nb = GaussianNB()
nb.fit(xtrain,ytrain)

y_pred = nb.predict(xtest)
print(color.BOLD + 'Accuracy : ' + color.END, accuracy_s
```

Accuracy: 0.41036971571660036

```
print(color.BOLD + 'Validación cruzada:' + color.END)
k_validacion_cruzada(nb,X,recom,5)
```

Validación cruzada:

0.40 de precisión con desviación estándar de 0.01

```
print(color.BOLD + 'Reporte de clasificación : '+ color.
```

Reporte de clasificación :

	precision	recall	f1-score	support
No Rec	0.20	0.78	0.32	1230
Rec	0.87	0.33	0.48	5559
accuracy			0.41	6789
macro avg	0.54	0.56	0.40	6789
weighted avg	0.75	0.41	0.45	6789

Matriz de confusión :

Observaciones:

Se ve que identifica bien a los no recomendados, pero tiene una tendencia a predecir que una prenda no será recomendada y se manifiesta en la baja precisión de la clase "No recomendado".

Con estos parámetros, el modelo no termina siendo efectivo.

Naive Bayes - Lemma <mark>- Monogramas + Bigramas</mark>

Naive Bayes - Modelo Benchmark

```
nb = GaussianNB()
nb.fit(xtrain,ytrain)
y pred = nb.predict(xtest)
print(color.BOLD + 'Accuracy : ' + color.END, accuracy_s
```

Accuracy: 0.701870673147739

```
print(color.BOLD + 'Validación cruzada:' + color.END)
k validacion cruzada(nb,X,recom,5)
```

Validación cruzada:

0.70 de precisión con desviación estándar de 0.01

```
print(color.BOLD + 'Reporte de clasificación : '+ color.
```

Reporte de clasificación :

		precision	recall	f1-score	support
No	Rec	0.33	0.60	0.42	1230
	Rec	0.89	0.72	0.80	5559
accur	acy			0.70	6789
macro	avg	0.61	0.66	0.61	6789
weighted	avg	0.79	0.70	0.73	6789

Matriz de confusión :

Observaciones:

Aumenta considerablemente su score respecto del modelo que sólo tomaba monogramas. Sin embargo, todavía no logra diferenciar del todo bien entre recomendados y no recomendados.

Naive Bayes - Lemma - Bigramas

Naive Bayes - Modelo Benchmark

```
nb = GaussianNB()
nb.fit(xtrain,ytrain)
y pred = nb.predict(xtest)
print(color.BOLD + 'Accuracy : ' + color.END, accuracy s
```

Accuracy: 0.7207247017233761

```
print(color.BOLD + 'Validación cruzada:' + color.END)
k validacion cruzada(nb,X,recom,5)
```

Validación cruzada:

0.73 de precisión con desviación estándar de 0.01

```
print(color.BOLD + 'Reporte de clasificación : '+ color.
```

Reporte de clasificación :

		precision	recall	f1-score	support
No	Rec	0.33	0.55	0.41	1230
	Rec	0.88	0.76	0.82	5559
accur	racy			0.72	6789
macro	avg	0.61	0.65	0.62	6789
weighted	avg	0.78	0.72	0.74	6789

Matriz de confusión :

Observaciones:

Hay una leve mejora respecto del modelo anterior al tomar sólo bigramas, ya que se hace más preciso. Pero aún hay un gran porcentaje de errores. De hecho, bajó el recall de los no recomendados.

Naive Bayes - Stem -

Monogramas

Naive Bayes - Modelo Benchmark

```
nb = GaussianNB()
nb.fit(xtrain,ytrain)

y_pred = nb.predict(xtest)
print(color.BOLD + 'Accuracy : ' + color.END, accuracy_
```

Accuracy : 0.3913683900427162

```
print(color.BOLD + 'Validación cruzada:' + color.END)
k_validacion_cruzada(nb,X,recom,5)
```

Validación cruzada:

0.38 de precisión con desviación estándar de 0.00

```
print(color.BOLD + 'Reporte de clasificación : '+ color
```

Reporte de clasificación :

	precision	recall	f1-score	support
No Rec	0.20	0.80	0.32	1230
Rec	0.87	0.30	0.45	5559
accuracy			0.39	6789
macro avg	0.54	0.55	0.38	6789
weighted avg	0.75	0.39	0.43	6789

Observaciones:

Tiene peor desempeño que el mismo modelo con las reviews lematizadas. Confunde gravemente las recomendadas con las no recomendadas. No logra distinguir bien los límites.

Naive Bayes - Stem - Monogramas + Bigramas

Naive Bayes - Modelo Benchmark

```
nb = GaussianNB()
nb.fit(xtrain,ytrain)
y_pred = nb.predict(xtest)
print(color.BOLD + 'Accuracy : ' + color.END, accuracy s
```

Accuracy: 0.7082044483723671

```
print(color.BOLD + 'Validación cruzada:' + color.END)
k validacion cruzada(nb,X,recom,5)
```

Validación cruzada:

0.71 de precisión con desviación estándar de 0.00

```
print(color.BOLD + 'Reporte de clasificación : '+ color.
```

Reporte de clasificación :

	precision	recall	f1-score	support
No Rec	0.33	0.60	0.43	1230
Rec	0.89	0.73	0.80	5559
accuracy			0.71	6789
macro avg	0.61	0.67	0.62	6789
weighted avg	0.79	0.71	0.74	6789

Matriz de confusión :

Observaciones:

Aumenta la precisión en la identificación de las clases respecto del modelo con el dataset lemmatizado, pero aún siguen habiendo confusiones que hacen que su rendimiento no sea bueno.

Naive Bayes - Stem - Bigramas

Naive Bayes - Modelo Benchmark

```
nb = GaussianNB()
nb.fit(xtrain,ytrain)
y_pred = nb.predict(xtest)
print(color.BOLD + 'Accuracy : ' + color.END, accuracy_
```

Accuracy: 0.7266165856532626

print(color.BOLD + 'Validación cruzada:' + color.END) k_validacion_cruzada(nb,X,recom,5)

Validación cruzada:

0.74 de precisión con desviación estándar de 0.00

```
print(color.BOLD + 'Reporte de clasificación : '+ color
```

Reporte de clasificación :

	precision	recall	f1-score	support
No Rec	0.34	0.56	0.43	1230
Rec	0.89	0.76	0.82	5559
accuracy			0.73	6789
macro avg weighted avg	0.62 0.79	0.66 0.73	0.62 0.75	6789 6789

Matriz de confusión :

Observaciones:

Si bien mejora levemente su score respecto de su par lemmatizado, sigue siendo muy desparejo en las métricas de precisión y recall entre clases: las de una son muy buenas y las de la otra son muy bajas.

Matriz de confusión :

463

Random Forest - Lemma - Monogramas

Random Forest

```
rf = RandomForestClassifier()
rf.fit(xtrain,ytrain)

y_pred = rf.predict(xtest)
print(color.BOLD + 'Accuracy : ' + color.END, accuracy_s
```

Accuracy: 0.8755339519811459

print(color.BOLD + 'Validación cruzada:' + color.END)
k_validacion_cruzada(rf,X,recom,3)

Validación cruzada:

0.87 de precisión con desviación estándar de 0.00

print(color.BOLD + 'Reporte de clasificación : '+ color.

Reporte de clasificación :

	precision	recall	f1-score	support
No Rec	0.86	0.38	0.52	1230
Rec	0.88	0.99	0.93	5559
accuracy			0.88	6789
macro avg	0.87	0.68	0.73	6789
weighted avg	0.87	0.88	0.85	6789

- 3000

767

Aumenta la precisión para reconocer las clases recomendadas, pero aún confunde con las no recomendadas. Pareciera que tiende a decir que todas son de la clase "Recomendadas".

Random Forest - Lemma - Monogramas + Bigramas

Random Forest

```
rf = RandomForestClassifier()
rf.fit(xtrain,ytrain)
y pred = rf.predict(xtest)
print(color.BOLD + 'Accuracy : ' + color.END, accuracy_
```

Accuracy: 0.877301517160112

```
print(color.BOLD + 'Validación cruzada:' + color.END)
k_validacion_cruzada(rf,X,recom,3)
```

Validación cruzada:

0.88 de precisión con desviación estándar de 0.00

```
print(color.BOLD + 'Reporte de clasificación : '+ color
```

Reporte de clasificación :

	precision	recall	f1-score	support
No Rec	0.82	0.42	0.55	1230
Rec	0.88	0.98	0.93	5559
accuracy			0.88	6789
macro avg	0.85	0.70	0.74	6789
weighted avg	0.87	0.88	0.86	6789

Observaciones:

Contra lo que se hubiese esperado, no mejora demasiado la precisión al utilizar monogramas y bigramas.

Random Forest - Lemma - Bigramas

Random Forest

```
rf = RandomForestClassifier()
rf.fit(xtrain,ytrain)
y pred = rf.predict(xtest)
print(color.BOLD + 'Accuracy : ' + color.END, accuracy_s
```

Accuracy: 0.855796140816026

print(color.BOLD + 'Validación cruzada:' + color.END) #k_validacion_cruzada(rf,X,recom,3)

Validación cruzada:

```
print(color.BOLD + 'Reporte de clasificación : '+ color.
```

Reporte de clasificación :

	precision	recall	f1-score	support
No Re Re		0.43 0.95	0.52 0.92	1230 5559
accurac macro av weighted av	g 0.77	0.69 0.86	0.86 0.72 0.84	6789 6789 6789

Observaciones:

Contra lo que se hubiese esperado, baja la precisión en las clases de los extremos, pero en contraparte aumenta en las clases intermedias.

Las *features* de mayor importancia tienen algunas palabras muy generales como 'producto', 'comprar' y 'tener' cuya relevancia puede estar dada por frecuencia pero estimo que no por semántica positiva o negativa. Podría probarse a futuro filtrarlas.

SVM

```
# En vez de utilizar SVC, vamos a usar LinearSVC,
# ya que para el Kernel Lineal esta función es MUCHO ma
svc = LinearSVC(C = 1)
svc.fit(xtrain,ytrain)
y pred = svc.predict(xtest)
print(color.BOLD + 'Accuracy : ' + color.END, accuracy_
Accuracy: 0.9019001325673884
print(color.BOLD + 'Validación cruzada:' + color.END)
k validacion cruzada(svc,X,recom,5)
Validación cruzada:
0.90 de precisión con desviación estándar de 0.00
print(color.BOLD + 'Reporte de clasificación : '+ color
Reporte de clasificación :
               precision
                            recall f1-score
                                              support
                   0.77
                             0.65
                                       0.71
      No Rec
                                                 1230
         Rec
                   0.93
                             0.96
                                       0.94
                                                 5559
                                       0.90
                                                 6789
    accuracy
                                       0.82
                                                 6789
   macro avg
                   0.85
                             0.80
weighted avg
                   0.90
                             0.90
                                       0.90
                                                 6789
```


Observaciones:

Tiene una precisión increíblemente alta y trata de emparejar el recall. Aún así, todavía se podría mejorar.

SVM

```
# En vez de utilizar SVC, vamos a usar LinearSVC,
# ya que para el Kernel Lineal esta función es MUCHO mas
svc = LinearSVC(C = 1)
svc.fit(xtrain,ytrain)

y_pred = svc.predict(xtest)
print(color.BOLD + 'Accuracy : ' + color.END, accuracy_s
```

Accuracy: 0.8968920312269848

```
print(color.BOLD + 'Validación cruzada:' + color.END)
k_validacion_cruzada(svc,X,recom,5)
```

Validación cruzada:

0.90 de precisión con desviación estándar de 0.00

```
print(color.BOLD + 'Reporte de clasificación : '+ color.
```

Reporte de clasificación :

		precision	recall	f1-score	support
No	Rec	0.76	0.63	0.69	1230
	Rec	0.92	0.96	0.94	5559
accur	racy			0.90	6789
macro	avg	0.84	0.79	0.81	6789
weighted	avg	0.89	0.90	0.89	6789

Matriz de confusión :

Observaciones:

Al utilizar tanto monogramas como bigramas juntos se observa que el desempeño disminuye levemente, aunque el score sigue siendo alto.

SVM

```
# En vez de utilizar SVC, vamos a usar LinearSVC,
# ya que para el Kernel Lineal esta función es MUCHO mas
svc = LinearSVC(C = 1)
svc.fit(xtrain,ytrain)

y_pred = svc.predict(xtest)
print(color.BOLD + 'Accuracy : ' + color.END, accuracy_s
```

Accuracy: 0.8587420827809692

```
print(color.BOLD + 'Validación cruzada:' + color.END)
k_validacion_cruzada(svc,X,recom,5)
```

Validación cruzada:

0.86 de precisión con desviación estándar de 0.00

```
print(color.BOLD + 'Reporte de clasificación : '+ color.
```

Reporte de clasificación :

		precision	recall	f1-score	support
No i	Rec	0.65	0.47	0.54	1230
ł	Rec	0.89	0.95	0.92	5559
accura	асу			0.86	6789
macro a	avg	0.77	0.71	0.73	6789
weighted a	avg	0.85	0.86	0.85	6789

Matriz de confusión :

Observaciones:

En general baja el rendimiento respecto de los modelos con monogramas.

SVM - Stem - Monogramas

SVM

```
# En vez de utilizar SVC, vamos a usar LinearSVC,
# ya que para el Kernel Lineal esta función es MUCHO mas

svc = LinearSVC(C = 1)
svc.fit(xtrain,ytrain)

y_pred = svc.predict(xtest)
print(color.BOLD + 'Accuracy : ' + color.END, accuracy_sc

Accuracy : 0.8983650022094565

print(color.BOLD + 'Validación cruzada:' + color.END)
k_validacion_cruzada(svc,X,recom,5)
```

Validación cruzada:

0.90 de precisión con desviación estándar de 0.00

print(color.BOLD + 'Reporte de clasificación : '+ color.E

Reporte de clasificación :

	precision	recall	f1-score	support
No Rec Rec	0.77 0.92	0.63 0.96	0.69 0.94	1230 5559
accuracy macro avg weighted avg	0.84 0.89	0.79 0.90	0.90 0.82 0.89	6789 6789 6789

Matriz de confusión :

Observaciones:

El desempeño es levemente peor que su contraparte lemmatizada, pero aún así su score es alto. Acierta bien en la clase de "Recomendados", pero no tanto en los "No recomendados".

– Monogramas + Bigramas

SVM

```
# En vez de utilizar SVC, vamos a usar LinearSVC,
# ya que para el Kernel Lineal esta función es MUCHO mas
svc = LinearSVC(C = 1)
svc.fit(xtrain,ytrain)

y_pred = svc.predict(xtest)
print(color.BOLD + 'Accuracy : ' + color.END, accuracy_s
```

Accuracy: 0.9002798644866696

```
print(color.BOLD + 'Validación cruzada:' + color.END)
k_validacion_cruzada(svc,X,recom,5)
```

Validación cruzada:

0.90 de precisión con desviación estándar de 0.00

```
print(color.BOLD + 'Reporte de clasificación : '+ color.
```

Reporte de clasificación :

		precision	recall	f1-score	support
No	Rec	0.77	0.64	0.70	1230
	Rec	0.92	0.96	0.94	5559
accur	acy			0.90	6789
macro	avg	0.85	0.80	0.82	6789
weighted	avg	0.90	0.90	0.90	6789

Matriz de confusión :

Observaciones:

Tiene un muy buen score para la clase recomendada y también es parejo con el score de las no recomendadas, ya que ambas métricas están por encima del 60%.

Este modelo es un buen candidato para ser elegido.

SVM - Stem

Bigramas

SVM

```
# En vez de utilizar SVC, vamos a usar LinearSVC,
# ya que para el Kernel Lineal esta función es MUCHO mas
svc = LinearSVC(C = 1)
svc.fit(xtrain,ytrain)
y pred = svc.predict(xtest)
print(color.BOLD + 'Accuracy : ' + color.END, accuracy_s
Accuracy: 0.8585947856827221
print(color.BOLD + 'Validación cruzada:' + color.END)
k_validacion_cruzada(svc,X,recom,5)
Validación cruzada:
0.86 de precisión con desviación estándar de 0.00
print(color.BOLD + 'Reporte de clasificación : '+ color.
Reporte de clasificación :
               precision
                            recall f1-score
                                               support
                   0.66
                             0.46
                                       0.54
      No Rec
                                                 1230
                   0.89
                             0.95
                                       0.92
                                                 5559
         Rec
    accuracy
                                       0.86
                                                 6789
   macro avg
                   0.77
                             0.70
                                       0.73
                                                 6789
weighted avg
                   0.85
                             0.86
                                       0.85
                                                 6789
```


Matriz de confusión :

Observaciones:

Nuevamente baja el rendimiento respecto de modelos anteriores y empeora el recall de la clase no recomendada.