ELL100: Fundamentals of Electrical Engineering Minor Exam I (Semester II 2014-15)

Duration: 1 hour

Total Marks: 20

1. For a linear resistive network as shown in Fig. 1, when the resistance across the terminals ab i.e., R_{ab} =10 Ω , the voltage V_{ab} =2V. For the same network, when R_{ab} =20 Ω , V_{ab} =3V. Find V_{ab} for R_{ab} =5 Ω .

2. Consider the circuit shown in Fig. 2, where Vo is unknown. When the switch S is open (as shown in the figure), the voltage $'V_R'$ across the 30 Ω resistor is measured to be V_R =22.5 V. Determine V_R after the switch S is closed.

3. Consider the circuit shown in Fig. 3. The switch S is closed for a long time. At time t = 0, S is thrown open. Find the voltage $v_L(t)$ and the current $i_L(t)$ for $t \ge 0$. 852

4. For the circuit shown in Fig. 4,

a. Calculate $Y_{ab} = Y_{ab} / \Phi_{ab}$

b. Calculate the current i(t) for $t \ge 0$. (Note the switch is closed at t = 0).

Scanned by CamScanner