Einführung in die Produktion, Tutorium 3

HENRY HAUSTEIN

Aufgabe 5

(a) Für die variablen Stückkosten müssen wir die Faktorverbräuche v_1 und v_2 mit ihren Preisen gewichten:

$$k_v(d) = 2\left(\frac{1}{3}d^2 - 8.04d + 34\right) + 13\left(\frac{4}{5}d^2 - 5d + 23\right)$$
$$= \frac{2}{3}d^2 - 8.04d + 34 + 10.04d^2 - 65d + 299$$
$$= \frac{166}{15}d^2 - \frac{1826}{25}d + 333$$

Um die optimale Leistungsschaltung zu finden (variable Stückkosten sind minimal) müssen wir die Ableitung nullsetzen

$$\frac{dk_v(d)}{dd} = \frac{332}{15}d - \frac{1826}{25} = 0$$
$$\frac{332}{15}d = \frac{1826}{25}$$
$$d = \frac{33}{10}$$

Da aber das minimale d 4 ist, ergibt sich für $d_{opt} = 4$.

(b) Mit $d_{opt} = 4$ können wir in $t_{max} = 10$ Stunden genau 40 Einheiten produzieren. In diesem Bereich ist die Kostenfunktion durch $k_v(d=4) \cdot x$ gegeben:

$$K(x) = \left(\frac{166}{15} \cdot 4^2 - \frac{1826}{25} \cdot 4 + 333\right) \cdot x$$
$$= \frac{16343}{75} x$$

Wenn wir mehr produzieren möchten, müssen wir von d_{opt} abweichen und $d=\frac{x}{t_{max}}$ wählen. Wir können so $d_{max} \cdot t_{max} = 120$ Einheiten produzieren mit der folgenden Kostenfunktion:

$$K(x) = k_v \left(\frac{x}{10}\right) \cdot x = \left[\frac{166}{15} \left(\frac{x}{10}\right)^2 - \frac{1826}{25} \left(\frac{x}{10}\right) + 333\right] \cdot x$$
$$= \frac{166}{1500} x^3 - \frac{1826}{250} x^2 + 333x$$

Die gesamte Kostenfunktion ist also

$$K(x) = \begin{cases} \frac{16343}{75}x & 0 \le x \le 40\\ \frac{166}{1500}x^3 - \frac{1826}{250}x^2 + 333x & 40 < x \le 120 \end{cases}$$

- (c) Wenn man nur eine Einheit (bzw. nur sehr wenige Einheiten) produzieren möchte, kann man mit beiden Maschinen mit d_{opt} produzieren. Aber Maschine B hat in diesem Bereich geringere Grenzkosten.
- (d) Mit Maschine B kann man mit d_{opt} und 10 Stunden Zeit genau 50 Einheiten produzieren, also $50 = d_{opt} \cdot 10 \Rightarrow d_{opt} = 5$.
- (e) Wir wollen den Punkt gleicher Grenzkosten x_G bestimmen:

Kostenfunktion Maschine B, Kostenfunktion Maschine A

$$GK(B_{intens}) = GK(A_{zeit})$$

$$\frac{21}{20}x^2 - 70x + 1350 = 650$$

$$\frac{21}{20}x^2 - 70x + 700 = 0$$

$$x_1 = -\frac{20}{3}\left(\sqrt{10} - 5\right) \approx 12.25$$

$$x_2 = \frac{20}{3}\left(5 + \sqrt{10}\right) \approx 54$$

Es kann nur $x_2 = x_G$ gelten. Im Intervall $(40, x_G]$ ist die Kostenfunktion durch $\frac{7}{20}x^3 - 35x^2 + 1350x$ (Maschine B nicht mehr im optimalen Bereich, aber immer noch günstiger als Maschine A im optimalen Bereich) gegeben. Wollen wir mehr als x_G Einheiten produzieren, so müssen wir auch Maschine A benutzen. Die Kosten hierfür setzen sich dann zusammen aus den Kosten von Maschine B um x_G Einheiten zu produzieren und den Kosten für Maschine A $x - x_G$ Einheiten zu produzieren, also

$$\begin{split} K(x) &= K_B(x_G) + K_A(x - x_G) \\ &= \frac{1000}{27} \left(515 + 61\sqrt{10} \right) + 650 \left(x - \frac{20}{3} \left(5 + \sqrt{10} \right) \right) \\ &= -\frac{14000}{27} \left(5 + 4\sqrt{10} \right) + 650x \end{split}$$

Wenn man nun für alle Intervalle die Kostenfunktionen zusammenführt ergibt sich:

$$K(x) = \begin{cases} 475x & 0 \le x \le 40\\ \frac{7}{20}x^3 - 35x^2 + 1350x & 40 < x \le \frac{20}{3} \left(5 + \sqrt{10}\right)\\ -\frac{14000}{27} \left(5 + 4\sqrt{10}\right) + 650x & \frac{20}{3} \left(5 + \sqrt{10}\right) < x \le 90 \end{cases}$$

(f) Es lohnt sich noch mal das Diagramm aus (e) zu sehen, um die richtige Produktionsplanung für die verschiedenen x aufzuschreiben:

\boldsymbol{x}	x_A	x_B	d_A	d_B	t_A	t_B	K(x)
52	0	52	0	5.2	0	10	24772.80
60	5.6^{1}	54.4^{2}	4	5.44	1.4	10	29848.61

Aufgabe 6

Die zu produzierende Menge liegt im Bereich, wo wir Maschine B³ bis zu x_G voll auslasten und den Rest mit Maschine A produzieren. Wir können ablesen, dass $x_G = 94.55$ ist und damit ergibt sich:

 $^{^3}$ Maschine B ist billiger, was man daran erkennt, dass die erste Einheit mit ihr erstellt wird.