LIST OF FIGURES

Figure No.	Figure No. Name of the Figure		
2.1	Character Segmentation-Columns sum grapf	4	
2.2	The Digit Images obtained by character segmentation machine		
3.1	Block Diagram of Proposed System		
3.2	Overall Flow Chart		
4.1	Block Diagram of ANPR System		
4.2	Over and Under-Segmentation		
4.3	Segmentation by Thresholding		
4.4	Threshold selection from Histogram		
4.5	An Objects on a Background Image		
4.6	Comparing a Threshold midway Peaks & minimum between Peaks		
4.7	Iterative Thresholding	15	
4.8	Noise causing small erroneous segments and object holes		
4.9	Edge Segmentation		
4.10	Edge linking using the Hough transform		
4.11	Noise and Thick edges	22	
4.12	Creating a network from a gradient image		
4.13	Split and merge segmentation	27	
4.14	Morphology Dilation of Binary Image		
4.15	Morphology Dilation of Grayscale Image	29	
4.16	Origin of a Diamond-Shaped Structuring Element		
4.17	Dilation	30	

4.18	Erosion	31
4.19	Opening	31
4.20	Closing	32
4.21	3X3 original image	33
4.22	Example of median filter	33
4.23	Template matching flow chart	35
4.24	Template	35
4.25	Car image	36
4.26	After Morphological operations and removal of noise	36
4.27	After segmentation	36
4.28	recognizing the character	36
4.29	Output after OCR	37
5.1	Pin diagram of RS 232	39
5.2	Frame Format of UART	41
6.1	FPGA Structure	42
6.2	XC3S50AN-4TQG144C Numbering Format	43
6.3	Digital Clock Manager Blocks	45
6.4	Block Diagram	47
6.5	40 pins Connector	47
6.6	JTAG Connector	48
6.7	LCD Interface	50
6.8	RS-232 Communication	51
6.9	Clock Source	51
6.10	Power Supply Circuit	53
7.1	Piezo electric sensors	54

7.2	Pressure sensor operations	55
7.3	Flow chart for pressure sensor module	56
7.4	Gas Sensor (type-MQ2)	56
7.5	Structure and Configuration of M0Q2 sensor	57
7.6	Sensitivity Characteristics of MQ2 sensor	58
7.7	Flow chart for the gas sensor module	58
7.8	pin diagram and pin details of LM 324	59
7.9	Pin details of LM 358	60
7.10	RF communication block diagram	61
7.11	Pin diagram of RF transmitter	62
7.12	pin diagram of RF receiver	63
7.13	pin details of HT12E	64
7.14	Interfacing between HT-12E & RF Transmitter	64
7.15	Pin details of HT12D	65
7.16	Interfacing between HT-12D & RF Receiver	66
7.17	parts of a DC motor	67
7.18	Inside the motor	68
7.19	Armature	69
7.20	commutator and brushes	69
7.21	Relay Design	71
7.22	Relay operation	72
7.23	Energized Relay (ON)	72
7.24	De-Energized Relay (OFF)	73
7.25	5 Volt DPDT Relay Pin Connection	73
8.1	Overall Hardware	76
8.2	Motor and Gas sensor Module	76

8.3	RF Transmitter	77
8.4	RF receiver	77
8.5	Creating DataBase	78
8.6	DataBase created Successfully	78
8.7	Browse an image	79
8.8	Select an image	79
8.9	Segment the image	80
8.10	Recognize the image & Click on matching	80
8.11	Output (Amount and pressure chart)	81

LIST OF TABLES

Table No.	Name of the Table	Page No.
6.1	JTAG Programmer	48
6.2	Power Supply	49
6.3	LED Connection Table	49
6.4	Buzzer Interface Table	50
7.1	Pin details of RF transmitter	62
7.2	Pin details of RF receiver	63

ABBRIVATIONS

ANPR Aoutomatic Number Plate Reconition

LPR License Plate Reconition

RFID Radio Frequency Identificaion

LP License Plate

FPGA Field Programmable Gate Array

PC Personal Computer

RF Radio Frequency

UART Universal Asynchronous Receiver/Transmitter

RTS Request to Send

CTS Clear to Send

DTR Data Terminal Ready

DSR Data Set Ready

CLB Configuration Logic Blocks

LUT Look Up Table

RAM Random Access Memory

DCM Digital Clock Manager

ADC Analog to Digital Converter

DAC Digital to Analog Converter

JTAG Joint Test Action Group

DDR Double Data Rate

CMOS Complimentary Metal Oxide Semiconductor

SPI Serial Peripharal Interface

BPI Byte Peripheral Interface

LED Light Emitting Diode

USART Universal Synchronous Asynchronous Receiver Transmitter

NO Normally Open

NC Normally Close

DT Double Throw

SPST Single Pole Single Throw Switch

SPDT Single Pole Double Throw Switch

DPST Double Pole Single Throw Switch

ABSTRACT

This paper reveals about the design and development for automated toll collection through number plate recognition. Since it is simpler and faster than the traditional token based ticket system, it has all the potential to replace the existing system. Moreover, it saves users valuable time by reducing the queue length in front of the toll counter. It is used to pay the amount automatically and open & close the toll gate automatically.

We aim to reduce the time consumed to pay the toll gate amount and also to help the police department to trace the vehicle, incase if it was stolen or used for any illegal activities. As well as we are going to increase the security features in the toll gate, because now a day's toll gate are the entrance to the main cities. If we increase the security in the toll gate section automatically the security in the city will be also increased. The proposed applications has been designed using very high-speed integrated circuit hardware description language (VHDL) and simulated .Finally, it is downloaded in a field programmable gate array (FPGA) chip and tested on some given scenarios.

The entire system is developed as hardware based system using FPGA kit and associated devices. The software for this system has been developed using VHDL language developed in the Xilinx tool and MATLAB for number plate recognition automatically. The system is connected to a PC using the RS232C interface in the system. This allows the system to read and write data from/to a database that is being maintained in the PC connected to it. If the Vehicle passed before paying the money the buzzer will automatically ring & the alert will be given to the police also. If any vehicle carries suspicious gas means the buzzer will ring so improved security than the existing systems.