Primitives-Calcul d'intégrales

I. Primitives

1. Définition-Structure

Définition. Soit f une fonction définie sur D. On appelle primitive de f sur D toute fonction dérivable sur D et dont la dérivée est égale à f.

Proposition. (*) Soit f une fonction définie sur un intervalle I. Si F est une primitive de f sur I alors l'ensemble des primitives de f est :

$$\{F+C,C\in\mathbb{K}\}$$

c'est-à-dire qu'une fonction G est une primitive de f si, et seulement si :

$$\exists C \in \mathbb{K} : \forall x \in I, \ G(x) = F(x) + C.$$

Remarque: Pour déterminer les primitives d'une fonction sur un intervalle, il suffit donc d'en déterminer une. Toutes les autres s'en déduisent à une constante additive près.

Ce résultat est bien sûr faux si l'on ne se place pas sur un intervalle.

Remarque : Par la suite, lorsque l'on cherchera l'ensemble des primitives d'une fonction f définie sur un intervalle I, on se contentera d'en donner une.

Exercice. Déterminer les primitives de la fonction $f: x \mapsto 1/x$ sur \mathbb{R}^{-*} , \mathbb{R}^{-*} puis \mathbb{R}^* .

Remarque: Si F_1 est une primitive de Réf et si F_2 est une primitive de Imf, alors $F_1 + iF_2$ est une primitive de f. Pour trouver une primitive d'une fonction à valeurs complexes, il suffit donc de trouver une primitive de sa partie réelle et une primitive de sa partie imaginaire.

Exercice. (*) Soit $\lambda \in \mathbb{R}$. Déterminez les primitives sur \mathbb{R} de la fonction $f: x \mapsto e^{\lambda x} \cos x$.

2. Calculs de primitives

Le résultat suivant permet d'obtenir les primitives des fonctions que l'on peut décomposer comme combinaison linéaire de fonctions usuelles.

Proposition. Soit f (respectivement g) une fonction continue sur D et F (respectivement G) une primitive de f sur D. Alors pour tout $(\lambda, \mu) \in \mathbb{K}^2$, la fonction $\lambda F + \mu G$ est une primitive sur D de la fonction $\lambda f + \mu g$.

Remarque : Ce résultat permet de trouver les primitives de toute fonction polynomiale.

Plus précisément, la fonction polynomiale $f: x \mapsto \sum_{k=0}^n a_k x^k$ admet pour primitive sur $\mathbb R$ la

fonction
$$F: x \mapsto \sum_{k=0}^{n} \frac{a_k}{k+1} x^{k+1}$$
.

Exercice. (*) Déterminez les primitives sur \mathbb{R} de la fonction $x \mapsto \cos^3 x$.

Exercice. Soit f une fonction définie sur \mathbb{R} et F une primitive de f sur \mathbb{R} . Soit $(a,b) \in \mathbb{R}^2$. Déterminer une primitive sur \mathbb{R} de $x \mapsto f(ax+b)$.

Grâce à la proposition sur la dérivée de la composée de deux fonctions, on obtient le résultat suivant :

Proposition. Soit f une fonction dérivable sur D et à valeurs dans D' et ϕ une fonction dérivable sur D'. Alors la fonction $x \mapsto u'(x) \phi'(u(x))$ admet la fonction $x \mapsto \phi(u(x))$ comme primitive sur D.

Remarque : En particulier, soit u une fonction réelle dérivable sur D.

- Pour tout $n \in \mathbb{N}$, une primitive de $x \mapsto u'(x)u(x)^n$ sur D est $x \mapsto \frac{u(x)^{n+1}}{n+1}$.
- Pour tout $n \in \mathbb{N} \setminus \{1\}$, si la fonction u ne s'annule pas sur D, alors une primitive de $x \mapsto \frac{u'(x)}{u(x)^n}$ sur D est $x \mapsto \frac{1}{(1-n)u(x)^{n-1}}$.
- Si la fonction u ne s'annule pas sur D, alors une primitive de $x \mapsto \frac{u'(x)}{u(x)}$ sur D est $x \mapsto \ln |u(x)|$.

Exercice. (*) Déterminer les primitives des fonctions :

1.
$$x \mapsto \tan x \ sur \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[;$$
 3. $x \mapsto \frac{\ln x}{x} \ sur \ \mathbb{R}_+^*.$
2. $x \mapsto \frac{x}{(1+x^2)^2} \ sur \ \mathbb{R};$ 4. $x \mapsto \cos^5 x.$

Remarque: Lorsque l'on cherche une primitive de la fonction $x \mapsto \cos^k x$ et plus généralement de tout polynôme en $\cos x$ et $\sin x$, on peut :

- soit essayer de se ramener à la dérivée d'une composée $(\cos^3 = \sin'(1 \sin^2))$;
- soit linéariser.

Exercice. Déterminer une primitive sur \mathbb{R} de la fonction $x \mapsto \cos(2x)\sin(3x)$.

3. Un exemple important (*)

Exercice.

1. Soit
$$f_1: x \mapsto \frac{1}{x^2 - 3x + 2}$$
.

Déterminer D_{f_1} puis des réels A et B tels que $\forall x \in D_{f_1}$, $f_1(x) = \frac{A}{x - 1} + \frac{B}{x - 2}$.

En déduire les primitives de f_1

- 2. Déterminer les primitives de $f_2: x \mapsto \frac{1}{x^2 4x + 4}$
- 3. Déterminer les primitives de $f_3: x \mapsto \frac{1}{x^2 + x + 1}$.

 On pourra écrire $x^2 + x + 1$ sous forme canonique, c'est-à-dire sous la forme $(x a)^2 + b$.

Cas général:

Pour déterminer une primitive de la fonction $x\mapsto \frac{1}{ax^2+bx+c}$, on distingue trois cas en fonction du nombre de racines réelles du polynôme aX^2+bX+c , c'est-à-dire en fonction du signe du discriminant $\Delta=b^2-4ac$.

• Cas
$$\Delta = 0$$
.
Soit α un réel. Une primitive sur $\mathbb{R} \setminus \{\alpha\}$ de la fonction $x \mapsto \frac{1}{(x-\alpha)^2}$ est $x \mapsto \frac{-1}{x-\alpha}$.

• Cas $\Delta > 0$.

Soit α et β deux réels distincts et I un intervalle ne contenant ni α ni β .

Pour obtenir une primitive sur I de $f: x \mapsto \frac{1}{(x-\alpha)(x-\beta)}$, on détermine des constantes A et B telles que :

$$\forall x \in I, \quad f(x) = \frac{A}{x - \alpha} + \frac{B}{x - \beta}$$

Une primitive de f est alors F : $x \mapsto A \ln(|x - \alpha|) + B \ln(|x - \beta|)$

• Cas $\Delta < 0$.

On met la fonction polynomiale $x \mapsto ax^2 + bx + c$ sous forme canonique, c'est-à-dire sous la forme $x \mapsto a\left((x-A)^2 + B^2\right)$. En utilisant le fait qu'une primitive sur $\mathbb R$ de $x \mapsto \frac{1}{x^2 + c^2}$ est $x \mapsto \frac{1}{c} \arctan\left(\frac{x}{c}\right)$, on en déduit qu'une primitive de f est $F: x \mapsto \frac{1}{aB} \arctan\left(\frac{x-A}{B}\right)$

4. Primitives usuelles (*)

f	Une primitive de f	Intervalle
$x\mapsto x^n,n\in\mathbb{N}$	$x \mapsto \frac{x^{n+1}}{n+1}$	\mathbb{R}
$x \mapsto \frac{1}{x^n}, \ n \in \mathbb{N}^* \setminus \{1\}$	$x \mapsto \frac{1}{(-n+1)x^{n-1}}$	\mathbb{R}_{-}^{*} ou \mathbb{R}_{+}^{*}
$x \mapsto \frac{1}{x}$	$x \mapsto \ln x $	\mathbb{R}_{-}^{*} ou \mathbb{R}_{+}^{*}
$x \mapsto x^{\alpha} \ , \ \alpha \in \mathbb{R} \setminus \{1\}$	$x \mapsto \frac{x^{\alpha+1}}{\alpha+1}$	ℝ*,
$x \mapsto e^x$	$x \mapsto e^x$	\mathbb{R}
$x \mapsto \ln x$	$x \mapsto x \ln x - x$	\mathbb{R}_+^*
$x \mapsto \mathrm{ch} x$	$x \mapsto \mathrm{sh}x$	\mathbb{R}
$x \mapsto \mathrm{sh}x$	$x \mapsto \mathrm{ch} x$	\mathbb{R}
$x \mapsto \cos x$	$x \mapsto \sin x$	\mathbb{R}
$x \mapsto \sin x$	$x \mapsto -\cos x$	\mathbb{R}
$x \mapsto \tan x$	$x \mapsto -\ln \cos x $	$]-\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi[\ ,k\in\mathbb{Z}$
$x \mapsto \frac{1}{1+x^2}$	$x \mapsto \arctan x$	\mathbb{R}
$x \mapsto \frac{1}{1+x^2}$ $x \mapsto \frac{1}{\sqrt{1-x^2}}$	$x \mapsto \arcsin x$] - 1, 1[
$x\mapsto e^{\lambda x},\ \lambda\in\mathbb{C}^*$	$x \mapsto \frac{e^{\lambda x}}{\lambda}$	\mathbb{R}

II. Recherches de primitives et calculs d'intégrales

1. Existence de primitives. Lien avec l'intégration

Le théorème fondamental suivant permet :

- d'assurer l'existence de primitives pour une fonction continue sur un intervalle;
- de ramener la recherche de primitives à un calcul d'intégrale.

Il est admis à ce stade.

Pour l'instant, nous utiliserons les connaissances vues dans le secondaire en généralisant au cas des fonctions à valeurs complexes de la façon suivante : si f est une fonction continue sur un intervalle I à valeurs dans $\mathbb C$ et si $(a,b)\in I^2$, alors l'intégrale de f entre a et b est définie par :

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} \operatorname{Re} f(t) dt + i \int_{a}^{b} \operatorname{Im} f(t) dt.$$

Théorème. (admis) Soit f une fonction continue sur un intervalle I et $a \in I$ alors la fonction :

$$F: I \to \mathbb{K}, \ x \mapsto \int_a^x f(t) \, \mathrm{d}t$$

est dérivable sur I et a pour dérivée la fonction f.

En particulier, F est l'unique primitive de f s'annulant en a.

Proposition. (*) Si f est une fonction continue sur un intervalle I et si F est une primitive de f sur I, alors:

$$\forall (a,b) \in I^2, \quad \int_a^b f(t) dt = F(b) - F(a).$$

La quantité F(b) - F(a) est notée $[F]_a^b$ ou $[F(t)]_a^b$.

Définition. On dit qu'une fonction est de classe C^1 sur D si elle est dérivable sur D et si sa dérivée est continue sur D.

Remarque : Le produit et la somme de deux fonctions de classe \mathcal{C}^1 sont aussi de classe \mathcal{C}^1 . Si f est de classe \mathcal{C}^1 sur D à valeurs dans D' et si g est de classe \mathcal{C}^1 sur D', alors $g \circ f$ est de classe \mathcal{C}^1 sur D.

Corolaire. Soit f une fonction de classe C^1 sur un intervalle I. Alors :

$$\forall (a,b) \in I^2, \quad f(b) - f(a) = \int_a^b f'(t) dt.$$

2. Intégration par parties

Proposition. (*) Soit u et v deux fonctions de classe C^1 sur un intervalle I. Alors :

$$\forall (a,b) \in I^2, \quad \int_a^b u(t)v'(t) \, \mathrm{d}t = u(b)v(b) - u(a)v(a) - \int_a^b u'(t)v(t) \, \mathrm{d}t$$

ce qui peut aussi s'écrire :

$$\forall (a,b) \in I^2, \quad \int_a^b u(t)v'(t) dt = [u \, v]_a^b - \int_a^b u'(t)v(t) dt.$$

Remarque: La formule d'intégration par parties est en général utilisée pour éliminer une fonction dont la dérivée est plus simple. Par exemple, pour les fonctions ln, arcsin, arctan...

Exercice. (*) Déterminer une primitives sur \mathbb{R} de la fonction arctan.

Exercice. (*) Déterminer les primitives sur \mathbb{R} des fonctions $x \mapsto x e^x$ et $x \mapsto x^2 e^x$.

Exercice. (*) Déterminer les primitives sur]-1,1[de $\arcsin x$.

3. Changement de variable

Proposition. (*) Soit I et J deux intervalles, f une fonction continue de I dans \mathbb{R} et ϕ une fonction de classe C^1 sur J à valeurs dans I. Alors:

$$\forall (\alpha, \beta) \in J^2, \quad \int_{\alpha}^{\beta} f(\phi(u)) \phi'(u) du = \int_{\phi(\alpha)}^{\phi(\beta)} f(t) dt.$$

Remarque: On dit que l'on effectue le changement de variable $t = \phi(u)$. Intuitivement, on remplace t par $\phi(u)$ et dt par $\phi'(u)$ du et on change les bornes.

Exercice. (*) Trouver une primitive de $x \mapsto \frac{1}{\operatorname{ch}(x)}$

Exercice. (*) Trouver une primitive de $x \mapsto \sqrt{1-x^2}$

Exercice. (*) Trouver une primitive de $x \mapsto \frac{1}{\sin(x)} sur \]0, \pi[.$