San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Grammars

(Part 2)

Lecture 22 Day 26/31

CS 154
Formal Languages and Computability
Spring 2019

Agenda of Day 26

- Solution and Feedback of Quiz 8
- Summary of Lecture 21
- Lecture 22: Teaching ...
 - Grammars (Part 2)

Solution and Feedback of Quiz 8 (Out of 20)

Section	Average	High Score	Low Score
01 (TR 3:00 PM)	16.37	20	12
02 (TR 4:30 PM)	16.65	20	12
03 (TR 6:00 PM)	16.57	20	9.5

Summary of Lecture 21: We learned ...

Grammars

- We were looking for a more powerful and practical tool to represent formal languages.
- Roughly speaking, a set of production rules is called grammar.
- A sentence is well-formed if ...
 - ... we can derive it from the grammar.
- Associated language to the grammar G is ...
 - the set of all strings generated by it.
 - ... denoted by L(G).

Any Question

Definitions

Formal Definition of Grammar

A grammar G is defined by the quadruple:

$$G = (V, T, S, P)$$

- Where:
 - V is a nonempty finite set of variables.
 - T is a nonempty finite set of symbols (aka terminals) called terminal alphabet.
 - $-S \in V$ is a special symbol called start variable.
 - P is a finite set of production rules (or simply rules) of the form

$$xAy \rightarrow z$$

where:

 $A \in V$ and $x, y, z \in (T \cup V)^*$

Note that in this course, we'd always have only one variable in LHS.

Formal Definition of Grammar

Formal Definition of Grammar: Example

Example 13

As we saw before, the following grammar

```
S \rightarrow aSb \mid \lambda
generates the language L = \{a^nb^n : n \ge 0\}.
```

Write V, T, Starting variable, and P.

Solution

```
V = \{S\}
T = \{a, b\}
Start variable: S \in V
P = \{S \rightarrow aSb, S \rightarrow \lambda\}
```

Equivalency of Grammars

A given language can be generated by many grammars.

Definition

 Two grammars G₁ and G₂ are equivalent iff both has the same associated language.

$$G_1 \equiv G_2 \leftrightarrow L(G_1) = L(G_2)$$

• What is the relationship between:

the set of Grammars, and

the set of all formal languages?

- You agree that "every grammar represents a language".
- BUT we don't know yet whether we can represent every language, by a grammar or not!
 - Our knowledge is not enough yet.

Types of Grammars

Linear Grammars

Definition

 A grammar G is linear if the right hand side of every production rule has at most one variable.

Where A, B \in V and w, u \in T*

Example 14

Is the following grammar linear?

$$S \rightarrow A$$

$$A \rightarrow baBb \mid \lambda$$

$$B \rightarrow Abb$$

 Yes, because all production rules have at most one variable in the RHS.

Note that in this course, we'd always have only one variable in LHS.

Right-Linear Grammars

Definition

A linear grammar is said to be right-linear if all production rules are of the form:

 In the case of A → w, we consider $A \rightarrow wB^0$.

 $A \rightarrow w \mid u \mid B$ Where A, B \in V and w, $u \in T^*$

Example 15

Is the following grammar right-linear?

$$S \rightarrow abS \mid a$$

Yes, it is right-linear.

Left-Linear Grammars

Definition

A linear grammar is said to be left-linear if all production rules are of the form:

 In the case of A → w, we consider $A \rightarrow B^0 w$.

$$A \rightarrow w \mid B u$$

Where A, B \in V and w, u \in T*

Example 16

Is the following grammar left-linear?

 $S \rightarrow Aab$

 $A \rightarrow Bab \mid B$

 $B \rightarrow a$

Yes, it is left-linear.

Regular Grammars

Definition

A grammar is said to be regular if it is either right-linear or left-linear.

Example 17

Is the following grammar regular?

 $S \rightarrow A$

 $A \rightarrow aB \mid \lambda$

 $B \rightarrow Ab$

It is NOT regular because it is neither right-linear nor left-linear.

Regular Grammars and Regular Languages

Theorem

Let G be a regular grammar, then L(G) is a regular language over T.

Theorem

Let L be a regular language over Σ.
 Then there exists a regular grammar G such that L = L(G).

Regular Languages Representations

- Now, we have three ways for representing Regular Languages:
 - DFA / NFA
 - REGEX
 - Regular Grammar

- We've already known that "every grammar represents a language".
- At this moment we know that:
 Regular grammars represent regular languages.
 - Every regular language can be represented by a regular grammar.

Context-Free Grammars (CFG)

Context-Free Grammars (CFGs)

Definition

- - A grammar G is said to be context-free (CFG) if all production rules are of the form:
- Note again that: In this course, LHS has always one variable.

$$A \rightarrow V$$

Where $A \in V$ and $v \in (V \cup T)^*$

Example 18

- Is the following grammar context-free?
 - $S \rightarrow a S b \mid \lambda$
- Yes, it is a context free grammar.

CFGs Examples

Example 19

• Let the grammar G be:

$$S \rightarrow a S a | b S b | \lambda$$

- 1. Is G context-free?
- 2. L(G) = ? // show it by a set-builder.

Solution

23

CFGs Examples

Example 20

Let the grammar G be:

$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

- 1. Is G context-free?
- 2. L(G) = ? // show it by a set-builder.

Solution

What would happen if:

```
a = (
b = )
```

Context-Free Languages (CFL)

Definition

- A language L is said to be context-free (CFL) iff there exists a context-free grammar G such that L = L(G).
 - In other words, CFGs generates CFLs, and
 - ... for every CFL, we can create a CFG.
- Therefore, all of the following languages are context-free:
- $L = \{a^nb^n : n \ge 0\}$
- $L = \{ww^R : w \in \Sigma^*\}$
- L = {w : $n_a(w) = n_b(w), w \in \{a, b\}^*$ }
- Note that a regular grammar is a CFG but NOT vice versa!

PDAs and Languages Association

- We mentioned CFLs when we introduced PDAs.
 - We were supposed to explain them later.

PDAs can recognize CFLs.

CFLs Representations

- So, now we have two ways for representing CFLs:
 - PDAs
 - CFGs

Let's revisit the grammars and languages association.

Application of CFGs in Programming Languages

Example 21

- Consider $L_1 = \{a^nb^n : n \ge 0\}$ over $\Sigma = \{a, b\}$.
- Let's take a different look at this language.
- For example, consider this language:
- $L_2 = \{(n)^n : n \ge 0\}$ over $\Sigma = \{(,)\}$ //parentheses are just symbols!
 - 1. What strings would this language contain?
 - 2. What strings do not belongs to this language?

• What is L₂ representing?

Grammars Hierarchy

CFG for More Complex Languages

Find a grammar for each of the following languages:

```
1. L = \{a^nb^nc^n : n \ge 0\} over \Sigma = \{a, b, c\}
```

2. L = {ww :
$$w \in \Sigma^*$$
} over $\Sigma = \{a, b\}$

Solution

- ...!
- Struggling?!
- After some struggling, you realize that you cannot find any grammar for these languages! Why?
 - Recall that we could not construct PDAs for these languages too!

Machines, Languages, and Grammars Association

Is there any other grammar that can produce more complex languages like "Turing-recognizable"?

Recursively enumerable Grammar

Definition

 A grammar G is said to be Recursively enumerable (aka unrestricted) if all production rules are of the form:

Example 22

```
S \rightarrow bcA \mid aAbB \mid A
aAbB \rightarrow bcA \mid A \mid \lambda
A \rightarrow a \mid \lambda
bcA \rightarrow bbA \mid \lambda
...
```

$$xAy \rightarrow z$$
Where $A \in V$, x , y , $z \in (V \cup T)^*$

This type of grammar can produce Turing-recognizable languages.

Machines, Languages, and Grammars Association

Revisited

Note that recursively enumerable grammars include all formal grammars.

Grammars Hierarchy

- There are still another type of grammars between CFGs and recursively enumerable called "context-sensitive grammars".
- Note that both "recursively enumerable" and "context-sensitive" grammars are beyond the scope of this course.

 These categorizations was defined by Noam Chomsky (next slide).

Chomsky's Hierarchy

 Avram Noam Chomsky, the American linguist, philosopher, and historian (1928 - ?), has categorized formal languages that is called "Chomsky's Hierarchy".

 He categorized formal grammars into 4 types as:

- Type 0: Recursively-enumerable
 - Type 1: Context-sensitive
 - Type 2: Context-free
 - Type 3: Regular

Derivations Techniques

Derivations Techniques

Consider a production rule that has two or more variables.

```
S \rightarrow a A B

A \rightarrow ...

B \rightarrow ...
```

- To derive a string, we should substitute A and B with some other production rules.
- But in what order?
 - We can substitute them randomly.
 - Or we can pick a specific order. (e.g. left var first or right var first ...)
- Note that we are looking into this question from a software angle, not a human.

Derivations Techniques Example

Example 23

Derive string "aab" from the following grammar:

$$\begin{array}{l} S \rightarrow AB \\ A \rightarrow aaA \mid \lambda \\ B \rightarrow Bb \mid \lambda \end{array}$$

Approach 1: Substitute the leftmost variables first

1 2 3 4 5
$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaB \Rightarrow aaBb \Rightarrow aab$$

Approach 2: Substitute the rightmost variables first

1 4 5 2 3
$$S \Rightarrow AB \Rightarrow ABb \Rightarrow Ab \Rightarrow aaAb \Rightarrow aab$$

Both derivations yielded the same results.

Leftmost / Rightmost Derivations

Definition

 A derivation is said to be leftmost if in each step the leftmost variable in the sentential form is substituted.

Definition

- A derivation is said to be rightmost if in each step the rightmost variable in the sentential form is substituted.
- The default method would be "leftmost" if we don't mention specifically.

Homework

- Derive string "abbbb" from the following grammar:
 - 1. $S \rightarrow aAB$
 - 2. $A \rightarrow bBb$
 - 3. $B \rightarrow A \mid \lambda$
- Leftmost derivation:

Rightmost derivation:

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790
- 3. The ELLCC Embedded Compiler Collection, available at: http://ellcc.org/