

ENGENHARIA DE SOFTWARE

Aula 1

Professor.: Prof. Me. João Paulo Biazotto

Aula 1 - Engenharia de Software

Tópicos a serem discutidos:

Conceitos Básicos e Aplicações de Software

História da Engenharia de Software

Tipos de Aplicações de Software

O que é um Software?

O que é um Software?

Um software é um conjunto de instruções ou programas que permitem ao hardware do computador realizar tarefas específicas.

Podem variar **desde simples aplicativos** que executam funções básicas, como processadores de texto e navegadores de internet, **até sistemas operacionais complexos** que gerenciam todos os recursos do hardware do computador.

- Software é um segmento de instruções que serão analisadas e processadas pelo computador: ele é quem dará significado a elas, com o objetivo de executar tarefas específicas.
- Os softwares comandam o funcionamento de qualquer computador, uma vez que são a parte lógica que fornece explicações para o hardware do computador.
- O software é composto não somente pelos programas, mas também pela documentação associada a esses programas.

O que é um Software?

Outros termos:

- Sistemas de software;
- Aplicações, aplicativos;
- Produto de Software.

Software é qualquer conjunto de instruções que direciona o processador de um computador (o hardware) a executar operações específicas.

Um produto de software é qualquer software que tenha usuários.

Então, todo software pode ser considerado um produto de software?

Não, existem softwares que não têm usuários. São softwares de interface com outros softwares.

Exemplos:

- Drivers de dispositivos de hardware;
- Firmware, instruções programadas diretamente no hardware de um equipamento.
- Camada de compatibilidade, permite softwares rodarem em um ambiente no qual não foram originalmente programados para rodar.

Os softwares para computadores são uma das tecnologias mais influentes e essenciais no cenário global.

À medida que a importância do software cresce, novas tecnologias são desenvolvidas para tornar o processo de criação e manutenção de programas de alta qualidade mais fácil, rápido e econômico.

Os softwares estão presentes em todas as áreas:

- Transportes;
- Medicina;
- Telecomunicações;
- Militar;
- Aeroespacial;
- Industrial;
- Entretenimento;
- Máquinas e equipamentos;

O software distribui o produto mais importante que existe atualmente! (Alguém sabe o que é?)

A Informação

Os softwares transformam dados, gerenciam informações, fornecem acesso a redes globais de informação, podem ameaçar a privacidade pessoal e também possibilitam a prática de crimes.

Características que diferenciam o software do hardware?

- O software é desenvolvido por meio de um processo de engenharia.
- Embora não se desgaste nem seja suscetível a fatores ambientais, ele pode deteriorar-se devido a modificações.
- Além disso, o software continua a ser construído sob medida para atender a necessidades específicas.

Tipos de Software

- Software básico (de sistema);
- Software comercial;
- Software para engenharia e aplicações científicas;
- Software embarcado;
- Software para computadores pessoais;
- Software baseados em inteligência artificial;
- Software de entretenimento;
- Software legado.

História da Engenharia de Software

O termo engenharia do software foi mencionado pela primeira vez em uma conferência da OTAN (Organização do Tratado do Atlântico Norte) conduzida na Alemanha em 1968.

História da Engenharia de Software

Essa disciplina ou área de conhecimento surgiu como uma resposta à crise no desenvolvimento de software, buscando aplicar princípios de engenharia para abordar e resolver esses desafios.

Crise do Software

Causas dos Problemas:

1. **Próprio Caráter do Software**:

O software é um componente lógico, não físico, de um sistema. Portanto, seu sucesso é avaliado pela qualidade de uma única entidade.

Crise do Software

Causas dos Problemas:

- 2. **Falhas das pessoas responsáveis pelo desenvolvimento de software**:
- Gerentes sem experiência prévia em software
- Falta de treinamento formal em novas técnicas
- Resistência a mudanças

Crise do Software

Causas dos problemas:

3. **Mitos do software**:

Os principais:

- Administrativos;
- Cliente;
- Profissional;

Administrativo – Mito 1:

Temos um manual completo com padrões e procedimentos para desenvolver software. Isso não fornecerá todas as informações necessárias para minha equipe?

Realidade:

- Será que o manual é usado?
- Os profissionais sabem que ele existe?
- Ele reflete a prática moderna de desenvolvimento de software?
- Ele é completo?
- Ele está atualizado?
- O código em geral é a documentação mais atualizada.

Administrativo Mito 2:

Possuo uma equipe equipada com ferramentas de desenvolvimento de software de última geração.

Realidade:

Desenvolver software de alta qualidade requer mais do simplesmente utilizar os computadores mais avançados e as melhores ferramentas disponíveis.

Administrativo Mito 3:

Caso estejamos com prazos atrasados, podemos aumentar a equipe de programadores para recuperar o tempo perdido.

Realidade:

Adicionar pessoas a um projeto pode resultar em ainda mais atrasos. É possível incluí-las, mas apenas de maneira estratégica e planejada.

Cliente - Mito 1:

Uma declaração inicial dos objetivos é o bastante para iniciar o desenvolvimento do software, os detalhes podem ser completados posteriormente.

Realidade:

Uma declaração inicial ruim é a principal causa de fracassos dos esforços de desenvolvimento de software.

É fundamental uma descrição formal e detalhada do domínio da informação, função, desempenho, interfaces, restrições de projeto e critérios de validação.

Cliente - Mito 2:

Os requisitos de projeto estão sujeitos a mudanças frequentes, porém o software possui flexibilidade para acomodá-las facilmente.

Realidade:

Uma alteração solicitada tardiamente em um projeto pode custar significativamente mais do que a mesma mudança solicitada nas fases iniciais, muitas vezes ultrapassando em ordens de grandeza o custo inicial.

Magnitude:

- Inicial: 1
- Desenvolvimento :1,5 a 6
- Manutenção: 60 a 100

Profissional - Mito 1:

Assim que escrevermos o programa e o colocarmos em funcionamento nosso trabalho estará finalizado.

Realidade:

As estatísticas da indústria mostram que entre 50% e 70% do esforço total dedicado a um programa ocorrerá após sua entrega inicial ao cliente.

Profissional - Mito 2:

Até que o programa esteja operacional, não poderei verdadeiramente avaliar sua qualidade.

Realidade:

Um programa em operação representa apenas uma parte de uma Configuração de Software, que abrange todos os elementos de informação gerados durante o desenvolvimento e manutenção do software.

- Por que os programas levam tanto tempo para serem concluídos?
- Por que os custos são tão elevados?
- Por que n\u00e3o \u00e9 poss\u00e1vel identificar todos os erros antes do software ser lançado para os clientes?
- Por que é difícil avaliar o progresso à medida que o software é desenvolvido?

A necessidade de abordar esses desafios tem motivado a adoção das práticas da Engenharia de Software.

Definição (1) - (Nato Conference 1968)

Estabelecimento e uso de sólidos princípios de engenharia para que se possa obter economicamente software que seja confiável e que funcione eficientemente em máquinas reais.

Definição (2) - (IEEE Glossary of Software Engineering)

Aplicação de uma abordagem sistêmica, disciplinada e mensurável para o desenvolvimento, operação e manutenção de software, isto é, a aplicação da engenharia ao software.

Definição (3) – (SEI Report on Undergraduate Software Engineering Education)

Engenharia de software é o ramo da engenharia que aplica os princípios da ciência da computação e da matemática para obter tais soluções para os problemas de software.

Definição (4) Sommerville (2011),

É uma disciplina cujo **foco está em todos os aspectos da produção de software**, desde os estágios iniciais da especificação do sistema até sua manutenção.

O que se almeja:

- - Rigor
- - Disciplina
- Qualidade
- Para alcançar isso, é fundamental contar com processos e ferramentas que garantam excelência.

Aborda:

- Modelos e processos de desenvolvimento de software;
- Padrões de design;
- Testes de software;
- Métricas;
- Manutenção;
- Garantia de qualidade;
- Entre outros tópicos;

Quando discutimos engenharia de software, não estamos apenas focando no código do programa em si, mas também na documentação necessária e nos dados de configuração indispensáveis para garantir o correto funcionamento desse programa.

A engenharia de software também abrange diretrizes tanto para a aquisição de conhecimento por parte dos profissionais quanto para as práticas comportamentais adotadas por eles.

Dúvidas ou perguntas?

