Name: _____

Lesson 1.10 Rotations

Geometry GT

Recall

For each figure, which pair of angles appears congruent? How could you check?

Explore

Use the grids to complete the rotations.

- **A.** Rotate ABCD 90° clockwise around Q.
- **B.** Rotate ABCD 180° around R.
- C. Rotate HJKLMN 120° clockwise around O.
- **D.** Rotate HJKLMN 60° counterclockwise around P.

Discuss

Draw a segment. Label the endpoints A and B.

- **A.** Rotate segment \overline{AB} clockwise around center B by 90°. Label the new endpoint A'.
- **B.** Connect A to A' and lightly shade in the resulting triangle.
- C. What kind of triangle did you draw? What other properties do you notice in the figure? Explain your reasoning.

Draw a segment. Label the endpoints C and D.

A. Rotate segment \overline{CD} counterclockwise around center D by 30°. Label the new endpoint C'.

B. Rotate segment $\overline{C'D}$ counterclockwise around center D by 30°. Label the new endpoint C''.

C. Connect C to C'' and lightly shade in the resulting triangle.

D. What kind of triangle did you draw? What other properties do you notice in the figure? Explain your reasoning.

Definition

Rotation: a rigid transformation that takes a point to another point on the circle through the original point with a given center by a directed angle

Demonstrate

AJ suspects $\triangle ABC$ is congruent to $\triangle DEF$. They think these steps will work to show there is a rigid transformation from ABC to DEF:

- Translate by directed line segment v
- \bullet Rotate the image ____ degrees clockwise around point D
- Reflect that image over segment \overline{DE}

Draw each image and determine the angle of rotation needed for these steps to takes ABC to DEF.

Practice

- 1. Here are 2 polygons, P and Q. Select all sequences of translations, rotations, and reflections below that would take polygon P to polygon Q.
 - **A.** Rotate 180° around point A.
 - **B.** Rotate 60° counterclockwise around point A and then reflect over segment \overline{FA} .
 - **C.** Translate so that A is taken to J. Then reflect over segment \overline{BA} .
 - **D.** Reflect over segment \overline{BA} and then translate by directed line segment \overline{BA} .
 - **E.** Reflect over segment \overline{BA} and then rotate 60° counterclockwise around point A.

2. Draw the image of quadrilateral ABCD when rotated 120° counterclockwise around the point D.

3. There is an equilateral triangle, $\triangle ABC$, inscribed in a circle with center D. What is the smallest angle you can rotate $\triangle ABC$ around D so that the image of A is B?

4. Which segment is the image of \overline{AB} when rotated 90° counterclockwise around point P?

