L'usage de la calculatrice et du mobile est interdit.

N.B:

Le barême est approximatif.

Il sera tenu compte de la présentation de la copie.

Toute réponse doit être justifiée.

Exercice 1: (9 pts)

Soient $a \in \mathbb{R}$ et f_a un endomorphisme du \mathbb{R} -e.v. \mathbb{R}^3 dont la matrice associée relativement à la base canonique $B = (e_1, e_2, e_3)$ de \mathbb{R}^3 est :

$$M_a = \left(egin{array}{ccc} -1 & 0 & 0 \ 2 & a & 0 \ 1 & 2 & a+2 \end{array}
ight).$$

1- Pour quelles valeurs de $a \in \mathbb{R}$, la matrice M_a est-elle inversible ?

2- Dans le cas où la matrice M_a n'est pas inversible , déterminer suivant le paramètre a une base de $\ker f_a$ et une base de $\operatorname{Im} f_{a}$.

3- Soit $C = (v_1 = (1, 0, -1), v_2 = (0, -1, 1), v_3 = (1, 1, 0))$ une famille de vecteurs de \mathbb{R}^3 .

i/ Vérifier que C est une base de \mathbb{R}^3 .

ii/ Déterminer la matrice de passage P de B vers C.

iii/ Calculer P-1.

4- En déduire :

i/Les coordonnées d'un vecteur $w=(x,y,z)\in\mathbb{R}^3$ dans la base C.

ii/ La matrice $M'_a = M_C(f_a)$.

Exercice 2: (6 pts) Les questions suivantes sont indépendantes.

1- Soit la matrice
$$A=\left(\begin{array}{ccc} 1 & \lambda & \alpha \\ 0 & 1 & 0 \\ 0 & \beta & 1 \end{array}\right)\in M_3\left(\mathbb{R}\right).$$

i/ Ecrire A comme somme de la matrice identité I_3 et une matrice $N\in M_3\left(\mathbb{R}\right)$.

ii/ Montrer que N est une matrice nilpotente (i.e. il existe un entier $k \ge 1$ tel que : $N^k = 0$).

iii/ En déduire A^n pour tout $n \in \mathbb{N}$.

2- Soit $n, p \in \mathbb{N}^*$. Montrer que pour toute matrice $M \in M_{n,p}(\mathbb{R})$ la matrice : $M \cdot M$ est une matrice symétrique (M désigne la transposée de M).

3- Soient $n \in \mathbb{N}^*$ et $A \in M_n(\mathbb{R})$ vérifiant : $A^2 = I_n$. Déterminer $A^{\mathbb{K}}$ pour $\mathbb{K} \in \mathbb{IN}$.

4- Soient $n \in \mathbb{N}^*$ et $A \in M_n(\mathbb{R})$. Ecrire la matrice A comme somme d'une matrice symétrique et d'une matrice antisymétrique.

Bon courage.