© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°11

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

1 Si s_1 et s_2 sont les racines de $aX^2 + bX + c$, on a : $aX^2 + bx + c = a(X - s_1)(X - s_2)$ donc $\sigma_1 = s_1 + s_2 = -\frac{b}{a}$ et $\sigma_2 = s_1s_2 = \frac{c}{a}$

- 2 On note (C) l'équation caractéristique
 - Si r_1 et r_2 sont deux solutions réelles distinctes de (C). Alors $\exists (A, B) \in \mathbb{R}^2 | \forall n \in \mathbb{N}, \ u_n = Ar_1^n + Br_2^n$
 - Si r est solution double de (C). Alors $\exists (A, B) \in \mathbb{R}^2 | \forall n \in \mathbb{N}, \ u_n = (An + B)r^n$
 - Si (C) possède deux racines r_1 et r_2 non réelles conjuguées. On note ces racines $re^{i\theta}$ et $re^{-i\theta}$ avec $r \in \mathbb{R}_+^*$ et $\theta \in]0, \pi[$. Alors $\exists (A, B) \in \mathbb{R}^2 | \forall n \in \mathbb{N}, \ u_n = (A\cos(n\theta) + B\sin(n\theta))r^n$
- 3 La suite $\left(\frac{1}{\operatorname{ch} n}\right)_{n\in\mathbb{N}}$ est une suite de réels indexée par \mathbb{Z} telle que les sous-suites $\left(\frac{1}{\operatorname{ch} n}\right)_{n\in\mathbb{N}}$ et $\left(\frac{1}{\operatorname{ch}(-n)}\right)_{n\in\mathbb{N}}$ convergent. Par ailleurs ce n'est pas une suite constante. On a bien trouvé une suite non constante élément de \mathcal{C} .
- C' est une partie non vide de E (contient la suite précédente).
 - Soit $(x, x') \in \mathcal{C}^2$ et $(\alpha, \beta) \in \mathbb{R}^2$. On pose $y = \alpha x + \beta x'$ et on note x_n, x'_n, y_n les termes généraux des suites x, x', y'.

On a: $\forall n \in \mathbb{Z}, y_n = \alpha x_n + \beta x_n' \text{ donc } \forall n \in \mathbb{N}, y_n = \alpha x_n + \beta x_n' \text{ et } \forall n \in \mathbb{N}, y_{-n} = \alpha x_{-n} + \beta x_{-n}'.$

Comme les suites $(x_n)_{n\in\mathbb{N}}$ et $(x_n')_{n\in\mathbb{N}}$ convergent, il en est de même pour $(y_n)_{n\in\mathbb{N}}$.

Comme les suites $(x_{-n})_{n\in\mathbb{N}}$ et $(x'_{-n})_{n\in\mathbb{N}}$ convergent, il en est de même pour $(y_{-n})_{n\in\mathbb{N}}$

Ainsi $y \in \mathcal{C}$. Et donc \mathcal{C} est stable par combinaison linéaire.

Donc par caractérisation des sous-espaces vectoriels, $\ensuremath{\mathcal{C}}$ est un sous-espace de E

5 Soit $x = (x_n)_{n \in \mathbb{Z}} \in \mathcal{C}$.

La suite $(x_n)_{n\in\mathbb{N}}$ converge donc est bornée : il existe A>0 tel que $\forall n\in\mathbb{N}, |x_n|\leq A$.

De même, la suite $(x_{-n})_{n\in\mathbb{N}}$ converge donc est bornée : il existe B>0 tel que $\forall n\in\mathbb{N}, |x_{-n}|\leq B$.

On pose alors $C = \max(A, B)$, et on a : $\forall n \in \mathbb{Z}, |x_n| \le C$: la suite x est bornée.

Ainsi toute suite dans $\mathcal C$ est bornée

- 6 Soit $x = (x_n)_{n \in \mathbb{Z}} \in \mathcal{C}$. Soit $y = T(x) = (y_n)_{n \in \mathbb{Z}}$. On a: $\forall n \in \mathbb{Z}, y_n = x_{n-1} + x_{n+1}$. Ainsi:
 - $\forall n \in \mathbb{N}^*, y_n = x_{n-1} + x_{n+1}$ donc la suite $(y_n)_{n \in \mathbb{N}^*}$ est la somme des suites $(x_{n-1})_{n \in \mathbb{N}^*}$ et $(x_{n+1})_{n \in \mathbb{N}^*}$ qui sont extraites de $(x_n)_{n \in \mathbb{N}}$ donc qui convergent. Ainsi $(y_n)_{n \in \mathbb{N}^*}$ et donc, comme la convergence d'une suite ne dépend pas des premiers termes, $(y_n)_{n \in \mathbb{N}}$ converge.
 - De même $(y_{-n})_{n\in\mathbb{N}}$ converge

Ainsi $y \in \mathcal{C}$.

On en déduit que T est une application de \mathcal{C} vers \mathcal{C} .

Montrons la linéarité. Soit $(x, x') \in \mathcal{C}^2$ et $(\alpha, \beta) \in \mathbb{R}^2$. On pose y = T(x), y' = T(x'), $z = \alpha x + \beta x'$, et w = T(z) et $v = \alpha y + \beta y'$. On doit établir : $T(\alpha x + \beta x') = \alpha T(x) + \beta T(x')$ i.e. v = w. On note $x_n, x'_n, y_n, y'_n, z_n, w_n, v_n$ les termes généraux des suites x, x', y, y', z, w, v. On a, pour tout $n \in \mathbb{Z}$:

 $v_n = \alpha y_n + \beta y_n' = \alpha (x_{n-1} + x_{n+1}) + \beta (x_{n-1}' + x_{n+1}') = (\alpha x_{n-1} + \beta x_{n-1}') + (\alpha x_{n+1} + \beta x_{n+1}')$. Or dans ces derniers termes on reconnaît $z_{n-1} + z_{n+1} = w_n$. Donc v = w.

1

Ainsi T est bien une application linéaire de $\mathcal C$ vers $\mathcal C$ i.e. T est un endomorphisme de $\mathcal C$

© Laurent Garcin MP Dumont d'Urville

• Méthode 1. On a clairement $S \circ S = Id_E = Id_{\mathcal{C}}$. Donc comme l'énoncé nous dit que S est un endomorphisme de \mathcal{C} , on en déduit que S est une symétrie de \mathcal{C} et donc son axe, $Ker(S-Id_{\mathcal{C}})$, et sa direction, $Ker(S+Id_{\mathcal{C}})$, sont supplémentaires dans \mathcal{C} .

Or on a tout aussi clairement $F = \{x \in \mathcal{C}; \forall n \in \mathbb{Z}, x_n = x_{-n}\} = \{x \in \mathcal{C}; S(x) = x\} = Ker(S - Id_{\mathcal{C}})$ et $G = Ker(S + Id_{\mathcal{C}})$, donc F et G sont deux sous-espaces supplémentaires dans \mathcal{C}

Méthode 2. On a F = Ker (S - Id_C) et G = Ker (S + Id_C) donc ce sont des sous-espaces de C, propres pour l'endomorphisme S, associés à des valeurs propres différentes : 1 et -1. Donc F et G sont en somme directe i.e. F + G = F ⊕ G.

De plus, si $x \in \mathcal{C}$, $x' = \frac{1}{2}(x + S(x))$ et $x'' = \frac{1}{2}(x - S(x))$, on montre aisément x = x' + x'', $x' \in F$ et $x'' \in G$, donc tout élément de S s'écrit comme somme d'un élément de F et d'un élément de G. Donc comme ce sont des sous-espaces de \mathcal{C} , on a $\mathcal{C} = F + G$.

Ainsi par caractérisation des sous-espaces supplémentaires, | F et G sont supplémentaires dans $\mathcal C$

- 8 En reprenant ce qui a été fait dans la méthode 1 dans la question précédente, on a : S symétrie d'axe F et de direction G
- 9 9.a Si $\lambda \in \mathbb{R} \setminus \{2, -2\}$. Soit $x \in \text{Ker}(T \lambda \text{Id}_{\mathcal{C}})$. On a : $\forall n \in \mathbb{Z}, x_{n-1} + x_{n+1} = \lambda x_n$. En particulier : $\forall n \in \mathbb{N}, x_{n+2} \lambda x_{n+1} + x_n = 0$ et, en posant $(x'_n)_{n \in \mathbb{N}} = (x_{-n})_{n \in \mathbb{N}}, \forall n \in \mathbb{N}, x'_{n+2} \lambda x'_{n+1} + x'_n = 0$. On considère donc l'équation caractéristique \mathcal{C} de ces suites récurrentes linéaires doubles : $X^2 \lambda X + 1 = 0$ dont le discriminant est $\Delta = \lambda^2 4$ donc est non nul car λ est différent de 2 et de -2
 - Si $\Delta > 0$. Alors les racines de $\mathcal C$ sont réelles, distinctes et de produit 1. Donc l'une d'entre elles est de module strictement supérieur à 1 et l'autre est son inverse. On note r la racine de module strictement supérieur à 1. D'après l'expression des suites récurrentes linéaires doubles, On a l'existence de 4 réels A, B, C, D tels que : $\forall n \in \mathbb{N}, x_n = Ar^n + \frac{B}{r^n}$ et $x_n' = Cr^n + \frac{D}{r^n}$. Or les suites $(x_n)_{n \in \mathbb{N}}$ et $(x_n')_{n \in \mathbb{N}}$ convergent donc A = 0 = C. De plus $x_0 = x_0'$ donc B = D. Enfin $x_1' + x_1 = \lambda x_0$ donc $(\lambda 2r) B = 0$. Or les racines de $\mathcal C$ sont $\frac{\lambda \pm \sqrt{\Delta}}{2}$ donc $|\lambda 2r| = \sqrt{\Delta} \neq 0$. Ainsi B = D = 0 et donc x est la suite nulle. Donc $Ker(T \lambda \operatorname{Id}_{\mathcal C}) \subset \{0_{\mathcal C}\}$ S'agissant d'un sous-espace, on en déduit que $Ker(T \lambda \operatorname{Id}_{\mathcal C}) = \{0_{\mathcal C}\}$
 - Si $\Delta < 0$. Alors les racines de $\mathcal C$ sont complexes non réelles et conjugués distinctes et de produit 1. Donc elles sont de module 1 et on peut les écrire sous la forme $e^{i\theta}$ et $e^{-i\theta}$ avec $\theta \in]0, 2\pi[$. D'après l'expression des suites récurrentes linéaires doubles réelles, On a l'existence de 4 réels A, B, α , β tels que : $\forall n \in \mathbb{N}, x_n = A(\cos(n\theta + \alpha))$ et $x'_n = B(\cos(n\theta + \beta))$. Or les suites $(x_n)_{n \in \mathbb{N}}$ et $(x'_n)_{n \in \mathbb{N}}$ convergent alors que les suites $(\cos(n\theta + \alpha))_{n \in \mathbb{N}}$ et $(\cos(n\theta + \beta))_{n \in \mathbb{N}}$ divergent α car α n'est pas un multiple de α donc α est la suite nulle. Donc α et α d'un sous-espace, on en déduit que α for α l' α l' α et α l' α l' α et α l' α et l' α l' α et l'est pas un multiple de α d'un sous-espace, on en déduit que α l' α l'

Ainsi si $\lambda \in \mathbb{R} \setminus \{2, -2\}, \overline{\operatorname{Ker}(T - \lambda \operatorname{Id}_{\mathcal{C}}) = \{0_{\mathcal{C}}\}}$

- **9.b** On applique le résultat précédent avec $\lambda=0$. On a $Ker(T)=\{0_{\mathcal{C}}\}$, donc par caractérisation de l'injectivité des applications linéaires, T est injectif
- 9.c $\underline{\operatorname{Si}} \lambda = 2$. Soit $x \in \operatorname{Ker}(T 2\operatorname{Id}_{\mathcal{C}})$. On a : $\forall n \in \mathbb{Z}, x_{n+2} 2x_{n+1} + x_n = 0$. Donc en généralisant le résultat du cours, comme l'équation caractéristique possède une solution double : 1, il existe $(A, B) \in \mathbb{R}^2$ tel que $\forall n \in \mathbb{Z}, x_n = A + Bn$. Comme $(x_n)_{n \in \mathbb{N}}$ converge, on a B = 0 et donc x est une suite constante. Réciproquement, les suites constantes sont clairement dans $\operatorname{Ker}(T 2\operatorname{Id}_{\mathcal{C}})$.

 Ainsi $\operatorname{Ker}(T 2\operatorname{Id}_{\mathcal{C}})$ est l'ensemble des suites constantes
 - Si $\lambda = -2$. Soit $x \in \text{Ker}(T + 2 \text{Id}_{\mathcal{C}})$. On a : $\forall n \in \mathbb{Z}, x_{n+2} + 2x_{n+1} + x_n = 0$. Donc en généralisant le résultat du cours, comme l'équation caractéristique possède une solution double : -1, il existe $(A, B) \in \mathbb{R}^2$ tel que $\forall n \in \mathbb{Z}, x_n = (A + Bn)(-1)^n$. Comme $(x_n)_{n \in \mathbb{N}}$ est bornée, on a B = 0 et, comme $(x_n)_{n \in \mathbb{N}}$ converge, on a A = 0 donc x est la suite nulle. Ainsi $Ker(T + 2 \text{Id}_{\mathcal{C}}) = \{0_{\mathcal{C}}\}$
- **9.d** Avec les 3 questions précédentes, on a établi que T ne possède qu'une valeur propre : 2
- **10 10.a** Soit $x \in \mathcal{C}$. D'après la question 2, on sait que x est bornée, donc il existe A > 0 tel que $\forall n \in \mathbb{Z}, |x_n| \le A$. Ainsi, si on pose $u_n = \frac{|x_n| + |x_{-n}|}{2^n}$, on $a : \forall n \in \mathbb{N}, 0 \le u_n \le \frac{2A}{2^n}$ qui est le terme général d'une série convergente. Ainsi $\sum u_n$ converge i.e. N(x) est bien définie.
 - **10.b** N est bien une application de \mathcal{C} vers \mathbb{R}^+

¹Fallait-il démontrer ce résultat classique ici?

© Laurent Garcin MP Dumont d'Urville

• Séparation. Soit $x \in \mathcal{C}$ telle que N(x) = 0. On note $x = (x_n)_{n \in \mathbb{Z}}$ et $u_n = \frac{|x_n| + |x_{-n}|}{2^n}$. On a $N(x) = \sum_{n=0}^{+\infty} u_n = 0$ alors que $\sum u_n$ est une série convergente de réels positifs. Donc comme la somme est nulle, on a : $\forall n \in \mathbb{N}$, $u_n = 0$. En particulier, $\forall n \in \mathbb{Z}$, $x_n = 0$ i.e. x est la suite nulle.

- Homogénéité. Soit $x \in \mathcal{C}$ et $\lambda \in \mathbb{R}$. Soit $y = \lambda x$, $u_n = \frac{|x_n| + |x_{-n}|}{2^n}$ et $v_n = \frac{|y_n| + |y_{-n}|}{2^n}$ en notant les termes généraux de x et de y sous la forme x_n et y_n . On a : $\forall n \in \mathbb{N}, v_n = \frac{|\lambda x_n| + |\lambda x_{-n}|}{2^n} = |\lambda| \frac{|x_n| + |x_{-n}|}{2^n} = |u_n|. \text{ Ainsi par linéarité du passage à la somme pour les séries convergentes, } \sum_{n=0}^{+\infty} v_n = |\lambda| \sum_{n=0}^{+\infty} u_n \text{ i.e. } \underline{N(\lambda x)} = |\lambda| N(x)$
- Inégalité triangulaire. Soit $(x,y) \in \mathcal{C}^2$. Soit z = x + y. On note x_n, y_n, z_n les termes généraux de ces suites. On a : $\forall n \in \mathbb{Z}, |z_n| = |x_n + y_n| \le |x_n| + |y_n|$. Ainsi : $\forall n \in \mathbb{N}, \frac{|z_n| + |z_{-n}|}{2^n} \le \frac{|x_n| + |x_{-n}|}{2^n} + \frac{|y_n| + |y_{-n}|}{2^n}$. Donc en passant à la somme, on obtient $N(x + y) \le N(x) + N(y)$

Ainsi N est une norme sur C

10.c Soit $x \in \mathcal{C}$ et x' = S(x). On note $u_n = \frac{|x_n| + |x_{-n}|}{2^n}$ et $v_n = \frac{|x'_n| + |x'_{-n}|}{2^n}$. On a pour tout $n \in \mathbb{N}$, $u_n = v_n$ donc N(x') = N(x).

Ainsi S conserve la norme N i.e. S est une isométrie de l'espace vectoriel normé (\mathcal{C}, N) .

En prenant k = 1, on a établi : $\forall x \in \mathcal{C}$, $N(S(x)) \leq kN(x)$. Ainsi par caractérisation de la continuité des applications linéaires, S est un endomorphisme continu de (\mathcal{C}, N) .

10.d $Id_{\mathcal{C}}$ est également une application continue de (\mathcal{C},N) vers lui-même, donc $R=S-Id_{\mathcal{C}}$ est continue sur (\mathcal{C},N) . Donc $F=Ker(S-Id_{\mathcal{C}})=R^{-1}(\{0_{\mathcal{C}}\})$ est l'image réciproque d'un fermé par une application continue donc F est une partie fermé de l'espace vectoriel normé (\mathcal{C},N) .

De même G est une partie fermé de l'espace vectoriel normé (\mathcal{C}, N) car $G = (S + Id_{\mathcal{C}})^{-1} (\{0_{\mathcal{C}}\})$.

10.e On considère la suite $(x^{(p)})_{p \in \mathbb{N}^*}$ la suite d'éléments de $\mathcal C$ définie par : $\forall n \in \mathbb{Z}, x_n^{(p)} = 2^n$ si $n \in [1, p], x_n^{(p)} = 0$ sinon. Les suites $x^{(p)}$ sont bien dans $\mathcal C$ et on a $\mathrm{N}(x^{(p)}) = \sum_{n=1}^p 1 = p$ et $\|x^{(p)}\|_{\infty} = 2^p$. Comme la suite $\left(\frac{2^p}{p}\right)_{p \in \mathbb{N}^*} = 2^p$

 $\left(\frac{\left\|x^{(p)}\right\|_{\infty}}{N(x^{(p)})}\right)_{p\in\mathbb{N}^*} \text{ n'est pas majorée, on ne peut pas trouver de constante } K>0 \text{ telle que } \forall x\in\mathcal{C}\setminus\{0_{\mathcal{C}}\}, \|x\|_{\infty}\leq KN(x)$

Ainsi les deux normes N et $\| \|_{\infty}$ ne sont pas équivalentes