18

Reinforced Concrete Design

Design of Columns 2

- Combined Axial-Bending
- Interaction Diagram
- Biaxially Loaded Column

Mongkol JIRAVACHARADET

SURANAREE

UNIVERSITY OF TECHNOLOGY

SCHOOL OF CIVIL ENGINEERI

Equivalent Eccentricity e = M/P

Minimum Eccentricity: $e_{min} = 0.6 + 0.03h$

Working Stress Design (WSD): $P_a \ge P$, $M_a \ge M$

Strength Design Method (SDM): $\phi P_n \ge P_u$, $\phi M_n \ge M_u$

Column2 03

Combined Axial Load and Bending Moments

Bending moments can occur in columns because:

- Unbalance gravity loads
- Lateral loads: wind, earthquake

Column subjected to eccentric compression

Equilibrium between external and internal axial forces requires that

$$\left[\Sigma F_{y}\right] \qquad P_{n} = 0.85 f_{c}' a b + A_{s}' f_{s}' - A_{s} f_{s}$$

Moment about centerline of the section of internal stresses and forces must be equal and opposite to the moment of external force P_n , so that

$$[\Sigma M_{\mathbb{Q}}]$$
 $M_n = P_n e = 0.85 f'_c ab \left(\frac{h}{2} - \frac{a}{2}\right) + A'_s f'_s \left(\frac{h}{2} - d'\right) + A_s f_s \left(d - \frac{h}{2}\right)$

Moment Strength of Column

Taking moment about centroid of section:

$$M_{n1} = C_c \left(\frac{h}{2} - \frac{a}{2}\right) + C_s \left(\frac{h}{2} - d'\right) + T\left(d - \frac{h}{2}\right)$$
$$= P_n \cdot e$$

Taking moment about tension steel:

$$M_{n2} = C_c \left(d - \frac{a}{2} \right) + C_s \left(d - d' \right)$$
$$= P_n \cdot \left(e + d - \frac{h}{2} \right)$$

Column2_05

If we know

Column2 07

Tension steel:

$$\varepsilon_{s} = \varepsilon_{cu} \frac{d - c}{c}$$

$$f_{s} = \varepsilon_{s} E_{s} = \varepsilon_{cu} E_{s} \frac{d - c}{c} \le f_{y}$$

Compression steel:

$$\varepsilon'_{s} = \varepsilon_{cu} \frac{c - d'}{c}$$

$$f'_{s} = \varepsilon'_{s} E_{s} = \varepsilon_{cu} E_{s} \frac{c - d'}{c} \le f_{y}$$

Concrete stress block:

$$a = \beta_1 c \le h$$

$$C = 0.85 f'_c a b$$

Column2_06

Small Eccentricity

Large Eccentricity

Large $e \rightarrow f_s = f_v$ when $\varepsilon_c = \varepsilon_{cu} = 0.003$ (tension failure)

Small $e \rightarrow f_s < f_v$ when $\varepsilon_c = \varepsilon_{cu} = 0.003$ (compression failure)

Interaction Diagram for Combined Bending and Axial Load

Failure Mode Justification using e_h

Case 1: $e < e_h$

$$c > c_b \longrightarrow \varepsilon_s < \varepsilon_y \longrightarrow f_s < f_y$$
Compression Failure

Case 2: $e > e_h$

$$c < c_b \longrightarrow \mathcal{E}_s > \mathcal{E}_y \longrightarrow f_s > f_y$$
Tension Failure

Column2 11

Balanced Failure, e_b

 $M_b = P_b e_b$ Condition of failure that :

Concrete reaches the strain limit: ε_{cu} and

Tensile steel reaches the yield strain: ε_{v}

$$c_b = d \frac{\varepsilon_{cu}}{\varepsilon_{cu} + \varepsilon_y} = d \frac{6,120}{6,120 + f_y}$$

Column2 10

$$a_b = \beta_1 c_b$$

$$f'_{s} = \varepsilon'_{s} E_{s} = \varepsilon_{cu} E_{s} \frac{c_{b} - d'}{c_{b}} \leq f_{y}$$

$$P_{b} = 0.85 f'_{c} a_{b} b + A'_{s} f'_{s} - A_{s} f_{y}$$

$$M_{b} = 0.85 f'_{c} a_{b} b \left(\frac{h}{2} - \frac{a_{b}}{2}\right) + A'_{s} f'_{s} \left(\frac{h}{2} - d'\right) + A_{s} f_{y} \left(d - \frac{h}{2}\right)$$

$$e_{b} = M_{b} / P_{b}$$

EXAMPLE 1 Column strength interaction diagram. A 25 x 40 cm column is reinforced with 4DB28. Concrete strength f'_c = 280 ksc and the steel yield strength f_v = 4,000 ksc

Balance condition:

$$c_b = \left(\frac{6,120}{6,120+4,000}\right)$$
35 = 21.2 cm, $a_b = 0.85(21.2) = 18.0$ cm

$$C_c = 0.85(0.28)(18)(25) = 107 \text{ ton}$$

$$f_s' = E_s \varepsilon_{cu} \left(\frac{c - d'}{c} \right) = 6.120 \left(\frac{21.2 - 5}{21.2} \right) = 4,677 \text{ ksc}$$
 Yielding $\to f_s' = 4,000 \text{ ksc}$

$$C_s = A_s' f_v = 12.32(4.0) = 49.3 \text{ ton}$$

$$T = A_s f_v = 12.32(4.0) = 49.3 \text{ ton}$$

$$P_b = C_c + C_s - T = 107 + 49.3 - 49.3 = 107$$
 ton

$$M_b = C_c \left(\frac{h}{2} - \frac{a}{2}\right) + C_s \left(\frac{h}{2} - d'\right) + T \left(d - \frac{h}{2}\right)$$

$$=107(20-18/2)+49.3(20-5)+49.3(35-20)$$

$$= 2,656 \text{ ton-cm} = 26.6 \text{ ton-m}$$

$$e_b = \frac{M_b}{P_b} = \frac{2,656}{107} = 24.8 \text{ cm}$$

For c smaller than c_b = 21.2 cm will give e larger than e_b : tension failure

For example, choose c = 10 cm. By definition $f_s = f_v$

$$f_s' = 6.120 \left(\frac{10-5}{10} \right) = 3.060 \text{ ksc}$$

$$a = 0.85 \times 10 = 8.5$$
 cm

$$C = 0.85(0.28)(8.5)(25) = 50.6$$
 ton

$$P_n = 50.6 + 12.32 \times 3.06 - 12.32 \times 4.0 = 39$$
 ton

Column2_13

Column2 14

h = 40 cm

d' = 5 cm

d = 35 cma = 18 cm

Interaction Diagram

Column2 15

$M_n = 50.6(20 - 8.5/2) + 12.32 \times 3.06(20 - 5) + 12.32 \times 4.0(35 - 20)$ = 2,102 ton-cm = 21.0 t-m $e = \frac{M_n}{P} = \frac{2,102}{39} = 53.9 \text{ cm}$

For c larger than c_b = 21.2 cm will give e smaller than e_b : compression failure

For example, choose c = 30 cm.

$$a = 0.85 \times 30 = 25.5$$
 cm

$$C = 0.85(0.28)(25.5)(25) = 152 \text{ ton}$$

$$f_s = E_s \varepsilon_{cu} \left(\frac{d-c}{c} \right) = 6,120 \left(\frac{35-30}{30} \right) = 1,020 \text{ ksc}$$

$$f_s' = 6,120 \left(\frac{30-5}{30} \right) = 5,100 \text{ ksc}$$

Yielding
$$\rightarrow f'_s = 4,000 \text{ ksc}$$

$$P_n = 152 + 12.32 \times 4.0 - 12.32 \times 1.02 = 189$$
 ton

$$M_n = 152(20 - 25.5/2) + 12.32 \times 4.0(20 - 5) + 12.32 \times 1.02(35 - 20)$$

$$= 2,030 \text{ ton-cm} = 20.3 \text{ t-m}$$

$$e = \frac{M_n}{P_n} = \frac{2,030}{189} = 10.7 \text{ cm}$$

Maximum Strength in Axial Compression-ACI Code

Tied column: $P_n = 0.80 \left[0.85 f_c' \left(A_g - A_{st} \right) + f_y A_{st} \right]$

Spiral column: $P_n = 0.85 \left[0.85 f_c' \left(A_g - A_{st} \right) + f_y A_{st} \right]$

Minimum eccentricity: e = 0.6 + 0.03 h

USE $P_{n(max)}$

USE P_n at point A

Concrete strength $f_c = 280$ ksc and the steelyield strength $f_v = 4,000$ ksc

Steel Layer No.	Steel Area A _s mm^2	Dist. from bottom Y _s mm
1	1232.00	50.00
2	1232.00	350.00
3		

	Factored Loads		
	Pu	Mu	
	kN	kN-M	
1	1050	261	
2	382	206	
3	1852	199	

Column Interaction I Units: kN, kN-	
φP _n	
2,500	2,637
2,000	
1,500	X
1,000)
500 -	
-300 -200 100 0	φM _n 100 200 300 Column2 17

Interaction Diagram of Rectangular Columns

Column2 19

Interaction Diagram for Design

Example: Design a rectangular reinforced concrete column with ties for service dead and live loads of 120 and 80 tons, respectively. Service dead and live load moments at the top about the strong axis are 15 and 8 t-m, respectively. Moments are negligible about weak axis. Assume moments at the bottom of the column as half those at the top. The column has unsupported height of 2.5 m and is bent in double curvature about strong axis and single curvature about the weak axis. Use $f'_c = 210$ ksc and $f_v = 4,000$ ksc.

1) Determine required strength

$$P_{u} = 1.4(120) + 1.7(80) = 304 \text{ ton}$$

$$M_{II} = 1.4(15) + 1.7(8) = 34.6 \text{ t-m}$$

2) Check column slenderness. Assume a 40 x 60 cm column size

a. Slenderness about weak axis (40 cm width)

k = 1.0 for braced compression member

$$r = 0.3x40 = 12 cm$$

$$kL_{IJ}/r = (1.0)(250)/12 = 20.8$$

Column2 18

h = 40 cm

d' = 5 cm

d = 35 cm

With negligible moment about the weak axis, assume $M_1/M_2 = 1.0$

$$kL_{1}/r < 34 - 12(M_{1}/M_{2}) = 22$$
 (single curvature)

Therefore, slenderness may be neglect about the weak axis.

b. Slenderness about strong axis (60 cm width)

k = 1.0 for braced compression member

$$r = 0.3x60 = 18 cm$$

$$kL_u/r = (1.0)(250)/18 = 13.9$$

$$M_1/M_2 = -0.5$$

$$kL_{11}/r < 34 - 12(-0.5) = 40$$

Therefore, slenderness may be neglect about the strong axis.

Column2_21

Normalized Interaction Diagram

Column2 23

 M_{nv}

Column2 24

3) Design of column reinforcement

Compute
$$\frac{P_u}{A_g} = \frac{304(1,000)}{40 \times 60} = 126.7$$

 $\frac{M_u}{A_a h} = \frac{34.6(1,000)(100)}{40 \times 60 \times 60} = 24.03$

From interaction diagram, read $\rho_g = 0.025$

$$A_{st} = \rho_a A_a = 0.025(40)(60) = 60.0 \text{ cm}^2$$

USE 10DB28(A_s=61.58cm²) Place 5DB28 bars on each 40 cm side.

4) Select lateral reinforcement

Use DB10 ties with DB28 longitudinal bars

Spacing not greater than: 16(2.8) = 44.8 cm

48(1.0) = 48.0 cm

column size = 40 cm (control)

USE DB10 @ 40 cm

Column2 22

Biaxial Bending and Compression

 $\rightarrow M_{nx}$

 M_{0x}

Modified Load Contour Method

The interaction expression for the load and bending moments about the two axes is

$$\left(\frac{P_{n} - P_{nb}}{P_{no} - P_{nb}}\right) + \left(\frac{M_{nx}}{M_{nbx}}\right)^{1.5} + \left(\frac{M_{ny}}{M_{nby}}\right)^{1.5} = 1.0$$

where

d - h/2

d

P_n = nominal axial compression (positive), or tension (negative)

 M_{nx} , M_{nv} = nominal bending moments about the x- and y-axis respectively

P_{no} = maximum nominal axial compression (positive) or axial tension (negative)

$$= 0.85 \, f'_c \, (A_q - A_{st}) + f_v \, A_{st}$$

 $P_{nb} = nominal axial compression at the limit strain states (<math>\epsilon_t = 0.002$)

 M_{nbx} , M_{nby} = nominal bending moment about the *x*- and *y*-axis respectively, at the limit strain state (ε_{t} = 0.002)

Column2_25

The value of P_{nb} and M_{nb} can be obtained from:

$$M_{nb} = P_{nb}e_b = C_c \left(d - \frac{a}{2} - d''\right) + C_s(d - d' - d'') + Td''$$

where

 $a = depth of the equivalent block = \beta_1 c_b$

$$c_b \ = \left(\frac{0.003}{f_y/E_s + 0.003}\right) d \ = \left(\frac{6,120}{6,120 + 4,000}\right) d$$

 $f_s' = stress$ in the compressive reinforcement $= f_v \ \ \text{if} \ \ f_s' \geq f_v$

T = Force in the tensile side reinforcement

EXAMPLE 18 – 3: Design of a Biaxially Loaded Column by the Modified Load Contour Method

A nonslender corner column is subjected to a factored compressive load P_u = 100 ton, a factored bending moment M_{ux} = 18 t-m about the x axis, and a factored bending moment M_{uv} = 12 t-m about y axis. Given f'_c = 280 ksc, f_v = 4,000 ksc

Solution: Step 1: Calculate equivalent uniaxial bending moment assuming equal numbers of bars on all faces

Assume that $\phi = 0.70$ for tied columns.

Required nominal $P_n = 100/0.7 = 143$ ton

Column2 27

Required nominal $M_{nx} = 18/0.7 = 25.7$ t-m Required nominal $M_{ny} = 12/0.7 = 17.1$ t-m $e_y = M_{nx} / P_n = 25.7(100)/143 = 18.0$ cm $e_x = M_{ny} / P_n = 17.1(100)/143 = 12.0$ cm x : axis parallel to the shorter side by : axis parallel to the longer side h

Assume column section : b = 30 cm, h = 50 cm, d' = 5 cm, and $A_s = 8DB25$

 $\frac{c}{d} = \frac{0.003}{0.003 + 0.002} = 0.6$

c = 0.6(45) = 27 cm

 $a = \beta_1 c = 0.85(27) = 23 \text{ cm}$

$$P_{no} = 0.85 f'_{c} (A_{g} - A_{st}) + A_{st} f_{y}$$

$$= 0.85 \times 0.24 (30 \times 50 - 8 \times 4.91) + 8 \times 4.49 \times 4.0$$

$$= 442 \text{ ton}$$

Using the interaction surface expression for biaxial bending

$$\left(\frac{P_{n} - P_{nb}}{P_{no} - P_{nb}}\right) + \left(\frac{M_{nx}}{M_{nbx}}\right)^{1.5} + \left(\frac{M_{ny}}{M_{nby}}\right)^{1.5}$$

$$= \frac{143 - 168.7}{442 - 168.7} + \left(\frac{25.7}{45.7}\right)^{1.5} + \left(\frac{17.1}{24.7}\right)^{1.5}$$

$$= -0.094 + 0.422 + 0.576 = 0.904 < 1.00$$
 OK

Hence, accept the design, namely,

 $b = 30 \text{ cm}, h = 50 \text{ cm}, d = 45 \text{ cm}, and A_s = 8DB25$

Column2_29

Compute M_{nbx}:

$$M_{\text{nbx}} = C_{\text{c}} \bigg(\frac{h}{2} - \frac{a}{2} \bigg) + C_{\text{s}} \bigg(\frac{h}{2} - d' \bigg) + T \bigg(d - \frac{h}{2} \bigg)$$

$$M_{\text{nbx}} = 164.2(25 - 23/2) + 58.9(25 - 5) + 58.9(45 - 25)$$

T = (3DB25=14.73)(4.0) = 58.9 ton

 $P_{nb} = 164.2 + 58.9 + 4.5 - 58.9 = 168.7 \text{ ton}$

$$e_{by} = \frac{M_{nbx}}{P_{ob}} = \frac{4573}{168.7} = 27.1 \text{ cm}$$

 $\varepsilon_{\text{cu}} = 0.003$ $\varepsilon_{\text{y}} = 0.002$

 $e_{by} > e_y = 17.8$ cm, hence compression failure

Compute M_{nby}:

$$a_{nbx} = \beta_1 c_{nbx} = 0.85(0.6)(d=25) = 13 \text{ cm}$$

$$\begin{split} M_{nby} &= 0.85 \times 0.28 \times 50 \times 12.75 (15-13/2) + 58.9 (15-5) \\ &+ 58.9 (25-15) \end{split}$$

$$= 2468 \text{ t-cm} = 24.7 \text{ t-m}$$

