EBU4375 Signals and Systems Theory

Dr Maged Elkashlan

we previously found that convolution with the impulse response gets us the system output:

- but how to calculate y(n) from x(n) and h(n)?
- ▶ that is: how do we calculate the convolution y(n) = x(n) * h(n)?

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$

= ... + h(-1)x(n+1) + h(0)x(n) + h(1)x(n-1) + h(2)x(n-2) + ...

The sequences h(k) and x(k) are interchangeable.

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

= ... + x(-1)h(n+1) + x(0)h(n) + x(1)h(n-1) + x(2)h(n-2) + ...

$$y(0) = \sum_{k=-\infty}^{\infty} x(k)h(-k) = \dots + x(-1)h(1) + x(0)h(0) + x(1)h(-1) + x(2)h(-2) + x(2)h$$

$$y(1) = \sum_{k=-\infty}^{\infty} x(k)h(1-k) = \dots + x(-1)h(2) + x(0)h(1) + x(1)h(0) + x(2)h(-1) + x(2)h$$

$$y(2) = \sum_{k=-\infty}^{\infty} x(k)h(2-k) = \dots + x(-1)h(3) + x(0)h(2) + x(1)h(1) + x(2)h(0) + \dots$$

. . .

Example

Given a sequence,

$$h(k) = \begin{cases} 3, & k = 0,1 \\ 1, & k = 2,3 \\ 0 & elsewhere \end{cases}$$

where k is the time index or sample number,

- a. Sketch the sequence h(k) and reversed sequence h(-k).
- b. Sketch the shifted sequences h(-k+3) and h(-k-2).

Digital convolution using the graphical method

- Step 1. Obtain the reversed sequence h(-k).
- Step 2. Shift h(-k) by |n| samples to get h(n-k). If $n \ge 0$, h(-k) will be shifted to the right by n samples; but if n < 0, h(-k) will be shifted to the left by |n| samples.
- Step 3. Perform the convolution sum that is the sum of the products of two sequences x(k) and h(n-k) to get y(n).
- Step 4. Repeat steps 1 to 3 for the next convolution value y(n).

Example

Using the following sequences

evaluate the digital convolution

- a. By the graphical method.
- b. By applying the formula directly.

Solution:

a. To obtain y(0), we need the reversed sequence h(-k); and to obtain y(1), we need the reversed sequence h(1-k), and so on.

sum of product of x(k) and h(-k): $y(0) = 3 \times 3 = 9$ sum of product of x(k) and h(1-k): $y(1) = 1 \times 3 + 3 \times 2 = 9$ sum of product of x(k) and h(2-k): $y(2) = 2 \times 3 + 1 \times 2 + 3 \times 1 = 11$ sum of product of x(k) and h(3-k): $y(3) = 2 \times 2 + 1 \times 1 = 5$ sum of product of x(k) and h(4-k): $y(4) = 2 \times 1 = 2$ sum of product of x(k) and x(k) and


```
sum of product of x(k) and h(-k): y(0) = 3 \times 3 = 9
sum of product of x(k) and h(1-k): y(1) = 1 \times 3 + 3 \times 2 = 9
sum of product of x(k) and h(2-k): y(2) = 2 \times 3 + 1 \times 2 + 3 \times 1 = 11
sum of product of x(k) and h(3-k): y(3) = 2 \times 2 + 1 \times 1 = 5
sum of product of x(k) and h(4-k): y(4) = 2 \times 1 = 2
sum of product of x(k) and x(k) and
```


Applying

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

= ... + x(-1)h(n+1) + x(0)h(n) + x(1)h(n-1) + x(2)h(n-2) + ...

we get

$$y(n) = x(0)h(n) + x(1)h(n-1) + x(2)h(n-2)$$

$$n = 0, y(0) = x(0)h(0) + x(1)h(-1) + x(2)h(-2) = 3 \times 3 + 1 \times 0 + 2 \times 0 = 9$$

$$n = 1, y(1) = x(0)h(1) + x(1)h(0) + x(2)h(-1) = 3 \times 2 + 1 \times 3 + 2 \times 0 = 9$$

$$n = 2, y(2) = x(0)h(2) + x(1)h(1) + x(2)h(0) = 3 \times 1 + 1 \times 2 + 2 \times 3 = 11$$

$$n = 3, y(3) = x(0)h(3) + x(1)h(2) + x(2)h(1) = 3 \times 0 + 1 \times 1 + 2 \times 2 = 5$$

$$n = 4, y(4) = x(0)h(4) + x(1)h(3) + x(2)h(2) = 3 \times 0 + 1 \times 0 + 2 \times 1 = 2$$

$$n \ge 5, y(n) = x(0)h(n) + x(1)h(n-1) + x(2)h(n-2) = 3 \times 0 + 1 \times 0 + 2 \times 0 = 0$$

Convolution sum using the table method

<i>k</i> :	-2	-1	0	1	2	3	4	5	
x(k):			3	1	2				
h(-k):	1	2	3						$y(0) = 3 \times 3 = 9$
h(1-k)		1	2	3					$y(1) = 3 \times 2 + 1 \times 3 = 9$
h(2-k)			1	2	3				$y(2) = 3 \times 1 + 1 \times 2 + 2 \times 3 = 11$
h(3-k)				1	2	3			$y(3) = 1 \times 1 + 2 \times 2 = 5$
h(4-k)					1	2	3		$y(4) = 2 \times 1 = 2$
h(5-k)						1	2	3	y(5) = 0 (no overlap)

Example

Given the following two rectangular sequences,

$$x(n) = \begin{cases} 1 & n = 0,1,2 \\ 0 & otherwise \end{cases} \text{ and } h(n) = \begin{cases} 0 & n = 0 \\ 1 & n = 1,2 \\ 0 & otherwise \end{cases}$$

a. Convolve them using the table method.

<i>k</i> :	-2	-1	0	1	2	3	4	5	
x(k):			1	1	1				
h(-k):	1	1	0						y(0) = 0 (no overlap)
h(1-k)		1	1	0					$y(1) = 1 \times 1 = 1$
h(2-k)			1	1	0				$y(2) = 1 \times 1 + 1 \times 1 = 2$
h(3-k)				1	1	0			$y(3) = 1 \times 1 + 1 \times 1 = 2$
h(4-k)					1	1	0		$y(4) = 1 \times 1 = 1$
h(n-k)						1	1	0	$y(n) = 0$, $n \ge 5$ (no overlap)
									Stop

Convolution (DT Systems) – Example using the graphical method and the table method

- $\{x(n)\} = \{\dots, 0, \underline{4}, 5, 6, 0, \dots\},\$ $\{h(n)\} = \{\dots, 0, \underline{1}, 2, 3, 4, 0, \dots\}$ (position zero underlined)
- ► calculate $\{y(n)\} = \{x(n) * h(n)\} = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$
- ▶ need only calculate for $0 \le n \le (2+3)$
- $\{y(n)\} = \{\ldots, 0, \underline{4}, 13, 28, 43, 38, 24, 0, \ldots\}$

Note:

▶ if both x and h have finite duration, then convolution sum is non-zero only from $(n_{\text{begin }h} + n_{\text{begin }x})$ to $(n_{\text{end }h} + n_{\text{end }x})$

Quick convolution by hand – example

•
$$\{x(n)\} = \{\ldots, 0, \underline{4}, 5, 6, 0, \ldots\}$$

•
$$\{h(n)\} = \{\ldots, 0, \underline{1}, 2, 3, 4, 0, \ldots\}$$

x(n)		4	5	6		
n						y(n)
0						
1						
2						
3						
4						
5						

Quick convolution by hand – example

•
$$\{x(n)\} = \{\ldots, 0, \underline{4}, 5, 6, 0, \ldots\}$$

•
$$\{h(n)\} = \{\ldots, 0, \underline{1}, 2, 3, 4, 0, \ldots\}$$

x(n)				4	5	6				
n										y(n)
0	4	3	2	1						
1		4	3	2	1					
2			4	3	2	1				
3				4	3	2	1			
4					4	3	2	1		
5						4	3	2	1	

Quick convolution by hand – example

•
$$\{x(n)\} = \{\ldots, 0, \underline{4}, 5, 6, 0, \ldots\}$$

•
$$\{h(n)\} = \{\ldots, 0, \underline{1}, 2, 3, 4, 0, \ldots\}$$

x(n)				4	5	6				
n										y(n)
0	4	3	2	1						4
1		4	3	2	1					13
2			4	3	2	1				28
3				4	3	2	1			43
4					4	3	2	1		38
5						4	3	2	1	24

Convolution (DT Systems) - Theorem

Theorem

Convolution is the time domain equivalent to multiplication in the frequency domain: if

$$Y(\omega) = X(\omega) \times H(\omega)$$

then

$$y(n) = x(n) * h(n)$$