ノンコーディングで行う機械入門

Lesson 1 機械学習概要、ソフトウェアRapidMiner Studio概要と事例デモ・実習

Lesson 2 分類1:主要なアルゴリズム説明と応用事例デモ・実習

Lesson 3 分類2: データ前処理と後処理、教師データと

テストデータの分割による分類問題の実習

Lesson 4 分類3:交差検証、最適アルゴリズム探索の実習

Lesson 5 回帰:主要なアルゴリズム説明と実習

Lesson 6 (応用)時系列データの機械学習

Lesson 7 (応用) Extensionによる機能拡張と画像の分類

Lesson 8 自ら学ぶ: RapidMiner のウェブサイトの活用

機械学習プロセス

今回取り扱うデータセット

天体の構成がパルサー星かどうかを判別する → True or False の2値問題

- (1) Mean of the integrated profile
- (2) Standard deviation of the integrated profile
- (3) Excess kurtosis of the integrated profile
- (4) Skewness of the integrated profile
- (5) Mean of the DM-SNR curve
- (6) Standard deviation of the DM-SNR curve
- (7) Excess kurtosis of the DM-SNR curve
- (8) Skewness of the DM-SNR curve

上記8つの説明変数を基に、パルサーがどうか(目的変数)の判別を行う。

→ 機械学習を行う上ではその分野の専門知識は一切なくても行える。

(つまり、経験や勘に頼らなくてもよい。時には専門知識による常識が、機械学習の妨げになることもある)

1. データ前処理

機械学習デモ+実習

相関係数が設定値以上の項目(attribute) は 集約して1つにする。

機械学習デモ+実習

1. データ前処理 項目の相関結果

1. データ前処理 機械学習デモ十実習 項目の相関係数の閾値以上の項目削除結果

説明変数が8個から6個に減少

2. 欠損値の処理

2. 欠損値の処理

3. 欠損値のテスト

機械学習デモ+自習

結論だけ書くと、 今回の条件では k-NN法での欠損 値の置き換えが 一番精度が高った

データセットや機械 学習アルゴリズムに より、結果は違う

過学習

表現能力の高いモデルには過学習 (over fitting) が避けられない

内挿の失敗:こんな予測を信じますか?

回帰曲線で起こる 過学習は、モデルを 複雑にすると、他の 分類器でも起きうる。

過学習と実際の精度検証

本勉強会では、2つの手法を取り扱います。

(1)教師(訓練)データとテストデータに分割

(2)交差検証(Cross Validation) → 次回の勉強会で取り扱います。

3. データ分割による検証

3. データ分割による検証

機械学習デモ+実習

学習データ: テストデータ= 7:3

Table View Plot View				
accuracy: 98.16%				
	true false	true true	class precision	
pred. false	4872	81	98.36%	
pred. true	18	398	95.67%	
class recall	99.63%	83.09%		

学習データ = テストデータ (2回目で実習)

Table View Plot View

accuracy: 99.99%

	true false	true true	class precision
pred. false	16259	2	99.99%
pred. true	0	1637	100.00%
class recall	100.00%	99.88%	

3. データ分割による検証 ROC曲線 と AUC

機械学習デモ+実習

効果がない分類器

機械学習デモ+実習

4. Model Simulator とModel保存

4. Model Simulator

機械学習デモ+実習

Compare ROCs

• Optimize Parameters