MUSIC GENRE CLASSIFICATION

Aayush Sagar CB.EN.U4ELC20002 Hari Varsha CB.EN.U4ELC20021 Naveen US CB.EN.U4ELC20043

References

- https://www.geeksforgeeks.org/ml-determine-the-optimal-value-of-k-in-k-means-clustering/
- https://www.geeksforgeeks.org/silhouette-algorithm-to-determine-the-optimal-value-of-k/?ref=rp
- https://www.geeksforgeeks.org/elbow-method-for-optimal-value-of-k-in-kmeans/?ref=rp
- https://www.w3schools.com/python/matplotlib_scatter.as
 p
- Colab link: https://colab.research.google.com/drive/1XXy
 qGkhqIadtbkB65wlMlxsqxKgqi2b9?usp=sharing

PCA application (10 marks)

- Normalisation is done before PCA as it projects the original data onto directions which maximize the variance and brings all features at the same scale.
- Eigenvalues represent the total amount of variance that can be explained by a given principal component.
- Suitable eigen values are selected and insignificant features are dropped.
- Covariance matrix is calculated before and after PCA.

$$C = \begin{bmatrix} cov(X, X) & cov(X, Y) & cov(X, Z) \\ cov(Y, X) & cov(Y, Y) & cov(Y, Z) \\ cov(Z, X) & cov(Z, Y) & cov(Z, Z) \end{bmatrix}$$

Finding the covariance matrix

```
from sklearn import datasets
         import matplotlib.pyplot as plt
         import numpy as np
         dataset = pd.read csv('music samples.csv')
         dataset.head(5)
                                                                                                                                                                                                                                                                 1 to 5 of 5 entries Filter
                                                                                                             rms_var spectral_centroid_mean spectral_centroid_var spectral_bandwidth_mean spectral_bandwidth_var rolloff_mean rolloff_var spectral_bandwidth_var rolloff_mean rolloff_var spectral_bandwidth_var rolloff_mean rolloff_var spectral_bandwidth_var rolloff_var spect
          index length chroma_stft_mean chroma_stft_var rms_mean
                0 66149
                                         0.335406363
                                                                   0.091048293 0.130405024 0.003521004
                                                                                                                                                 1773.065032
                                                                                                                                                                                  167541.6309
                                                                                                                                                                                                                          1972.744388
                                                                                                                                                                                                                                                               117335.7716 3714.560359 1080789
                                         0.343065351
                1 66149
                                                                  0.086146526 0.112699248 0.001449685
                                                                                                                                                 1816.693777
                                                                                                                                                                                  90525.69087
                                                                                                                                                                                                                          2010.051501
                                                                                                                                                                                                                                                               65671.87567 3869.682242 672244.7
                2 66149
                                         0.346814752
                                                                   0.092242889 0.132003382 0.004620399
                                                                                                                                                 1788.539719
                                                                                                                                                                                  111407.4376
                                                                                                                                                                                                                          2084.565132
                                                                                                                                                                                                                                                               75124.92172
                                                                                                                                                                                                                                                                                    3997.63916 790712.6
                3 66149
                                         0.363638788
                                                                                                                                                 1655.289045
                                                                                                                                                                                  111952.2845
                                                                                                                                                                                                                          1960.039988
                                                                  0.086856157 0.132564723 0.002447563
                                                                                                                                                                                                                                                               82913.63927 3568.300218 921652.4
                4 66149
                                         0.335579425
                                                                                                                                                 1630.656199
                                                                                                                                                                                                                          1948.503884
                                                                  0.088128544 0.143288806 0.001700886
                                                                                                                                                                                 79667.26765
                                                                                                                                                                                                                                                               60204.02027 3469.992864 610211.0
 [4] cols = dataset.columns.tolist()
          cols.insert(0, cols.pop(cols.index('label')))
          dataset = dataset.reindex(columns= cols)
          X = dataset.iloc[:,1:59].values
          y = dataset.iloc[:,0].values
[5] from sklearn.preprocessing import StandardScaler
          X std = StandardScaler().fit transform(X)
  #Finding Co-variance matrix of actual dataset
          data = pd.DataFrame(X std)
          covMatrix=pd.DataFrame.cov(data)
          covMatrix=np.round(covMatrix, decimals=2)
          print("\nCo-variance matrix of actual dataset after normalization\n",covMatrix)
              0.30 0.11 0.30 -0.17 0.30 0.11 0.28 -0.17 0.29
               -0.03 -0.01 -0.04 0.09 -0.05 0.02 -0.06 0.08 -0.10
                 0.16 0.14 0.14 -0.00 0.10 0.14 0.10 0.02 0.07
               -0.03 0.03 -0.02 0.18 -0.01 0.02 -0.01 0.19 -0.05
                 0.13 0.13 0.12 -0.05 0.09 0.12 0.07 -0.01 0.05
               -0.02 0.09 -0.02 0.08 -0.01 0.07 -0.02 0.13 -0.06
                            0.09 0.08 -0.12 0.05 0.09 0.02 -0.09 0.02
          9 -0.03 0.04 -0.03 0.16 -0.01 0.03 -0.02 0.18 -0.07
          10 0.11 0.10 0.10 -0.11 0.07 0.09 0.04 -0.09 0.03
          11 -0.04 -0.05 -0.03 0.23 -0.01 -0.06 -0.01 0.21 -0.03
          12 0.12 0.11 0.12 0.04 0.10 0.10 0.10 0.06 0.07
          13 -0.02 0.01 -0.03 -0.06 -0.02 0.04 -0.03 -0.04 -0.02
          14 0.02 0.07 0.01 0.05 0.01 0.07 -0.01 0.03 -0.03
          15 0.05 0.06 0.04 -0.08 0.05 0.07 0.04 -0.08 0.05
```

[3] import pandas as pd

16 0.07 0.09 0.06 0.10 0.04 0.09 0.03 0.12 -0.01

Heatmap of covariance matrix before PCA

```
[22] import seaborn as sns
  plt.figure(figsize=(58,58))
  sns.heatmap(covMatrix, vmax=1, square=True,annot=True,cmap='cubehelix')

plt.title('Covariance between different features')

plt.title('Correlation between different features')
```


Finding the eigen values and eigen vector

```
eig vals, eig vecs = np.linalg.eig(covMatrix)
    print('Eigenvectors \n%s' %eig_vecs)
    print('\nEigenvalues \n%s' %eig vals)

    □ Eigenvectors

    [[ 0.
       1.
     [-0.01085409 \quad 0.27966744 \quad 0.0141295 \quad \dots \quad 0.00726114 \quad -0.07511056
     [-0.14625596 - 0.14898455 \quad 0.04462647 \dots \quad 0.15776689 - 0.15613246
       0.
     [-0.09155678 - 0.10639622 \quad 0.14098028 \dots -0.01168182 \quad 0.12998387
     [0.0186369 \quad 0.09058497 \quad 0.05793939 \quad \dots \quad -0.10315841 \quad 0.08035949
     [-0.08819064 -0.12538107 \ 0.12995034 \dots \ 0.00838401 -0.0053148
                  11
    Eigenvalues
    [1.14229517e+01 7.72275973e+00 5.89736407e+00 3.75969252e+00
     2.48752010e+00 2.09365023e+00 1.68501391e+00 1.51363860e+00
     1.43054219e+00 1.22005260e+00 1.05794669e+00 9.93506315e-01
     9.70156630e-01 8.46588631e-01 7.74195395e-01 6.70581746e-01
     6.37889716e-01 6.14520040e-01 1.16266684e-03 4.50521943e-03
     8.89535206e-03 3.61425840e-02 5.14140681e-02 6.42899843e-02
     1.08382313e-01 5.56539279e-01 1.45750501e-01 5.21600738e-01
     1.64340114e-01 4.99132980e-01 1.80923039e-01 1.93651640e-01
     4.85493720e-01 4.75929800e-01 2.13634950e-01 4.59811661e-01
     2.31087100e-01 2.32731997e-01 2.41958992e-01 2.55589388e-01
     2.57717852e-01 2.71492942e-01 2.84736884e-01 2.97382323e-01
     3.08896780e-01 4.46151146e-01 4.35780145e-01 4.22884799e-01
     4.17479201e-01 3.28071897e-01 3.35579308e-01 3.47975884e-01
     3.69683948e-01 3.66554486e-01 4.00031639e-01 3.87077554e-01
     3.90964313e-01 0.00000000e+00]
```

Listing out the index of eigen values that are less than one

```
for i in range(len(eig_vals)):
      temp = eig_vals[i]
      if temp<1:</pre>
         print (i)
[→ 11
    12
    13
    14
    15
    16
    17
    18
    19
    21
    22
    23
    24
    25
    26
    27
    28
```

Dropping the eigen vectors having eigen values less than one

```
[ ] d=pd.DataFrame(eig vecs)
    d=d.drop([11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
    (58, 11)
[ ] #PCA algorithm
    a = np.asarray(d)
    a=np.transpose(a)
    data modd=np.transpose(X std) #Finding the transpose of the actual dataset
    res=np.dot (a, data modd) #Dot - product
    data=np.transpose(res) #Assigning the transpose of the result value to the new variable #updated dataset after removing insignificant features
    data=pd.DataFrame(data) #Converting into new dataset with the help of DataFrame
    print("The new dataset after removing insignificant features")
    data.head()
    data.shape
    The new dataset after removing insignificant features
    (9990, 11)
     covMatrix1.shape
```

```
Co-variance matrix of actual dataset after normalization
                              0.00
                                    0.00
                                         0.00
                                                0.00
                   0.42
                         0.24 0.53
                                    0.25
                                          0.46
                                                0.10
   0.0 -0.44 1.00 -0.08
                         0.25 - 0.21
                                    0.28 - 0.03
                                                0.29 - 0.14
        0.42 - 0.08
                   1.00 0.55 0.47
                                    0.24 0.50
                                                0.09
                                                    0.50
                        1.00
                              0.33
                                    0.51 0.38
                                                0.29
                   0.47
                         0.33
                             1.00
                                    0.48
                                          0.89
                                                0.02
                                                    0.97
        0.25 0.28
                   0.24 0.51 0.48
                                   1.00
                                          0.56
                                                0.61 0.49
        0.46 - 0.03
                   0.50
                         0.38
                              0.89
                                    0.56 1.00
                                                0.22 0.95
                   0.09
                         0.29
                              0.02
                                   0.61
                                          0.22 1.00
                                                     0.07
        0.53 - 0.14
                   0.50
                         0.35
                              0.97
                                    0.49
                                         0.95
                                                0.07
                                                     1.00
        0.14 0.33
                   0.16
                         0.38
                              0.17
                                    0.78
                                          0.41
                                                0.89
                                                     0.24
                              0.87
                                          0.58 - 0.19
                   0.29
                         0.14
                                    0.24
                         0.45
                              0.58
                                    0.82
                                          0.51
        0.03 - 0.01
                         0.07
                              0.05
                                    0.05
                                          0.06
                                                0.01 0.05
                                    0.19
```

Covariance Matrix after PCA

```
[ ] sum=0
   for i in range(len (covMatrix1)):
     for j in range(len (covMatrix1)):
      if i>j:
        sum += covMatrix1[i][j]
      sum-round (sum, 2)
   print("Sum of upper triangle covariance matrix before PCA :", sum)
   Sum of upper triangle covariance matrix before PCA: 170.87999999999997
  #Finding Co-variance matrix of actual dataset
   data = pd.DataFrame(data)
   covMatrix=pd.DataFrame.cov(data)
   covMatrix=np.round(covMatrix, decimals=2)
   print("\nCo-variance matrix of actual dataset after normalization\n",covMatrix)
   covMatrix.shape
C→
   Co-variance matrix of actual dataset after normalization
      11.43 0.00 -0.00 -0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
      -0.00 0.00 5.90 0.00 0.00 -0.01 0.00 -0.00
     -0.00 0.00 0.00 3.76 -0.00 0.00 -0.00 -0.01
      0.00 -0.00 0.00 -0.00 2.48 -0.01 0.00 0.00
                                              0.00 -0.00 0.00
     -0.00 0.00 -0.01 0.00 -0.01 2.10 0.00 0.00
                                              0.00 0.00 0.00
      0.00 -0.00 0.00 -0.00 0.00 0.00 1.68 0.00
      -0.00 -0.00 -0.00 -0.01 0.00 0.00 0.00 1.51
     10 0.01 0.00 -0.00 -0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.00 1.06
   (11, 11)
[ ] sum1=0
    for i in range(len (covMatrix)):
      for j in range(len (covMatrix)):
        if i>j:
          sum1 += covMatrix[i][j]
        sum1-round (sum1, 2)
    print("Sum of upper triangle covariance matrix after PCA:", sum1)
    Sum of upper triangle covariance matrix before PCA: -0.04
```

PCA inference

- The idea behind Principal Component Analysis is "Dimensionally reduction" to reduce the features which has low to zero impact in the dataset.
- The eleven highest eigen values from all the eigen values of the dataset were selected as they can explain most of the variance in the data.
- Before application of PCA, the dataset was a 9990x58 matrix.
- The sum of the upper triangular matrix was 170.88 before application of PCA.
- After application of PCA, the dataset was reduced to a 9990x11 matrix.
- The sum of the upper triangular matrix was -0.04 after application of PCA.
- It can be inferred from the sum of upper triangular matrix that the covariance among any two features have drastically reduced.

PCA inference

From the heat covariance heat map after PCA we can see that That the covariance between any two Principle component is very low

K Means Clustering (10 marks)

- K Means clustering is applied to the principal components of the Dataset after PCA.
- The effect of PCA on K Means clustering is K means accuracy increased after the dimension reduction.
- The effect of normalisation is it increases the clustering quality and helps to improve the speed, accuracy, and efficiency of the database.

K Means Clustering

```
[14] #K-Means model with two clusters
    from sklearn.cluster import KMeans
    kmeans = KMeans(n_clusters=2, random_state=0)
    kmeans.fit(data)
    kmeans.cluster_centers_
    kmeans.inertia_
```

327094.1444743024

```
from sklearn.cluster import KMeans
cs = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters = i, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0)
    kmeans.fit(data)
    cs.append(kmeans.inertia_)
plt.plot(range(1, 11), cs)
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('CS')
plt.show()
```



```
[ ] from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=4,random_state=0)
kmeans.fit(data)
labels = kmeans.labels_

plt.figure(figsize=(30,30))
plt.scatter(data[1], data[2])
plt.scatter(kmeans.cluster_centers_[:, 1], kmeans.cluster_centers_[:, 2], s=500, c='red')
plt.show()
```


K Means Clustering inference

- The elbow method was used to find the optimal K value for applying the K-Means clustering algorithm.
- K=4 was chosen as the K value for clustering by seeing the curve.

Clustering inference

- The data was then plotted into a scatter plot and distributed into four clusters; decent clustering was observed for certain set of principal components.
- The original dataset has 10 predefined labels meant for supervised learning but when K-Means clustering (an unsupervised learning algorithm) is applied on the dataset, it reduces the labels to 4. Thus, it can be concluded that the K-Means clustering algorithm is not a suitable fit for this particular-dataset.

• The different types of scaling like Robust scaling, Standard scaling, Min-Max scaling were understood, and the Standard Scaler was implemented for normalizing the data. -Reference link.

• An Alternate method - the silhouette algorithm, to find the optimal K-value before applying K-Means clustering.- https://www.kaggle.com/code/funxexcel/p2-sklearn-k-means-elbow-and-silhouette-method/notebook

Optimal K value using Silhouette algorithm

```
[17] import sklearn.metrics as metrics
     import sklearn.cluster as cluster
     SK = range(3, 13)
     sil_score = []
     for i in SK:
         labels=cluster.KMeans(n_clusters=i,init="k-means++",random state=200).fit(data).labels_
         score = metrics.silhouette score(data,labels,metric="euclidean",sample size=1000,random state=200)
         sil score.append(score)
         print ("Silhouette score for k(clusters) = "+str(i)+" is "
                +str(metrics.silhouette score(data,labels,metric="euclidean",sample size=1000,random state=200)))
     Silhouette score for k(clusters) = 3 is 0.19917714634535774
     Silhouette score for k(clusters) = 4 is 0.20350306830513312
     Silhouette score for k(clusters) = 5 is 0.21050556456444933
     Silhouette score for k(clusters) = 6 is 0.21468768647843395
     Silhouette score for k(clusters) = 7 is 0.1665354059090207
     Silhouette score for k(clusters) = 8 is 0.14772112366370566
     Silhouette score for k(clusters) = 9 is 0.14414638157583776
     Silhouette score for k(clusters) = 10 is 0.1425089138113267
     Silhouette score for k(clusters) = 11 is 0.13441458072570267
     Silhouette score for k(clusters) = 12 is 0.13989401140389154
```


• The various built-in styles in style package of matplotlib was explored.- https://www.geeksforgeeks.org/style-plots-using-matplotlib/

dark_background

Solarize_Light2

- Plotting clusters using Scatter plot was learnt https://stackoverflow.com/questions/12487060/matplotlib-color-according-to-class-labels
- Plotting of heat maps using seaborn was learnt -https://blog.quantinsti.com/creating-heatmap-using-python-seaborn/