281 Live Session

Week 6 - 2023/2/15

Agenda

Final Project Q&A

Intro to Assignment 4

Overview of Fourier Decomposition

Practical applications of frequency analysis

Exercise on Frequencies

Assignment 4 – Frequencies

Part 1: Hybrid Images

Part 2: Multi-Resolution Blending

Discussion Questions

1: Perspective Projection

2: Image Formation

3: Image Artifacts

4: Convolution

5: Fourier

6: Pyramids, Edges, and Features

7: Image Analysis

8: Least-Squares

9: Total and Iterative Least-Squares

10: Clustering

11: Dimensionality Reduction

12: Linear Classifiers

13: Nonlinear Classifiers

- What is a linear time invariant system?
- Why are LTIs useful for image processing?
- What is the basis used for Fourier decomposition?
- Why is frequency decomposition useful for image processing?

- What is being plotted in a Fourier diagram? What is omitted?
- What are edge artifacts?How can they be avoided?
- What is a discrete Fourier transform?
- How does sampling rate influence signal reconstruction in a DFT?
- What is the Nyquist limit?

Linear Time Invariant Systems

Image filters can be separated out and recombined independently at lower cost

$$I_{b} = k_{b} * I$$

$$I_{s} = I + [I - I_{b}]$$

$$I_{s} = 2 I - I_{b}$$

$$I_{s} = [k_{2x} * I] - [k_{b} * I]$$

$$I_{s}' = [k_{2x} - k_{b}] * I$$

Linear → obeys superposition

Time Invariant → input shifted == output shifted

Fourier Basis

Sine & Cosine are translated into a complex exponential

Phase information is discarded

$$f_{\text{Magnitude}} = \operatorname{sqrt}(f_{\text{Real}}^2 + f_{\text{Imaginary}}^2)$$

 $f_{\text{Phase}} = \operatorname{atan}(f_{\text{Imaginary}} / f_{\text{Real}})$

$$\begin{array}{lcl} f[x] & = & \frac{1}{m} \sum_{k=0}^{m-1} a_k \cos(\omega_k x) + b_k \sin(\omega_k x) & \text{Fourier series} \\ \\ a_k & = & \sum_{l=0}^{m-1} f[l] \cos(\omega_k l) & \text{and} & b_k & = & \sum_{l=0}^{m-1} f[l] \sin(\omega_k l) \\ \\ & & & \text{Fourier transform} \\ e^{i\omega x} & = & \cos(\omega x) + i \sin(\omega x) \end{array}$$

Phase Misalignment

Edge Artifacts

All images are treated as periodic signals across the image boundary Mismatched boundaries produce false edges Windowing can reduce artifacts

Source: www.cs.unm.edu

Natural Images

Usually power at many spatial frequencies

Sharp low frequency edges are composed of high frequencies

Specific frequencies can be used to extract features from an image

Sources: ritchievink.com, www.cs.unm.edu

Image vs Frequency Domain

Laplacian Pyramid

DCT and Nyquist Frequency

Pixels are discrete signals, usually also sampled by discrete frequency decomposition When sampling frequencies are not aligned, you get aliasing (corrupted signal)

Nyquist limit – maximum frequency that can be represented given a sampling interval Blurring before sampling (removing high frequencies) can prevent aliasing

Source: nvidia.com

Applications of Fourier Transform

Image Analysis

- detecting images that have a particular frequency distribution

Image Processing

- faster convolution
- filtering out specific frequencies from images

Discussion Questions

- 1: Perspective Projection
- 2: Image Formation
- 3: Image Artifacts
- 4: Convolution
- 5: Fourier
- 6: Pyramids, Edges, and Features
- 7: Image Analysis
- 8: Least-Squares
- 9: Total and Iterative Least-Squares
- 10: Clustering
- 11: Dimensionality Reduction
- 12: Linear Classifiers
- 13: Nonlinear Classifiers

- What is a linear time invariant system?
- Why are LTIs useful for image processing?
- What is the basis used for Fourier decomposition?
- Why is frequency decomposition useful for image processing?

- What is being plotted in a Fourier diagram? What is omitted?
- What are edge artifacts?How can they be avoided?
- What is a discrete Fourier transform?
- How does sampling rate influence signal reconstruction in a DFT?
- What is the Nyquist limit?

Practical applications of frequency analysis

Eulerian Video Magnification for Revealing Subtle Changes in the World

Practical applications of frequency analysis

The Visual Microphone: Passive Recovery of Sound from Video

 $\label{eq:abelian} Abe\ Davis^1 \quad Michael\ Rubinstein^{2,1} \quad Neal\ Wadhwa^1 \quad Gautham\ J.\ Mysore^3 \quad Fr\'edo\ Durand^1 \quad William\ T.\ Freeman^1 \\ \quad ^1MIT\ CSAIL \quad ^2Microsoft\ Research \quad ^3Adobe\ Research$

http://people.csail.mit.edu/mrub/VisualMic/

Group Exercise – Frequencies

Upcoming ToDo's

Assignment 4 due Feb 27th

Watch Async lectures for Unit 6

Continue work on final project proposals