

A DATA-DRIVEN METHOD TO IDENTIFY FREQUENCY BOUNDARIES IN MULTICHANNEL ELECTROPHYSIOLOGY DATA

| Cohen, Journal of Neuroscience Methods, 2021

StepUp Journal Club *15th February 2023*

AUTHOR

Location	Research Area	H-Index
PI Donders Neuroinformatics	-Theta and cognitive control - LFP & single unit	119 Analyzing neural time series data: theory and practice (~2100)

INTRO

- Methods focused paper
- Define boundaries of frequency bands in multichannel electrophysiological data (e.g. beta)
- Works on individual data

Not covered today:

- Regularization methods
- Clustering in depth

FREQUENCY BANDS

MOTIVATION

"[...] existing methods of empirically detecting frequencies rely on the peaks, typically from individual channels [...]"

https://bycyde-tools.github.io/bycyde/index.html

MOTIVATION

A) Multiple sources, multiple electrodes

B1) Univariate approach

B2) Multivariate approach

"[...] these arbitrary (and nearly always integerbased) cut-offs probably do fairly little damage to the final conclusions of each individual publication [...]"

GOAL | individual beta band

GET BOUNDS

Assumptions

"Frequency bands" have similar spatiotemporal characteristics

- 2. Boundaries between bands can be defined as changes in those similarities
- 3. Signal with narrowband activity is expected

METHOD | 5 steps

- 1. Create a channel covariance matrix using broadband data. (R)
- In desired frequency range (e.g. 13-35 Hz) create channel covariance (S) per frequency bin
- 3. Compute generalized eigendecomposition (GED) on R&S -> spatial filter, maximally separates S from R
- Compute pairwise squared correlations across "best" eigenvectors from all frequencies → matrix of eigenvector similarities
- 5. Apply cluster analysis to this matrix to identify "blocks" on the diagonal that have high similarities

PIPELINE 1

GED | a spatial filter?

PIPELINE 2

- Eigenvector correlation matrix
 - Using top eigenvector from each frequency in [S] -> best separator
- Clustering into frequency bins
 - Dbscan (density-based spatial clustering)
 - ... a lot of tuning possibilities

INTERPRETATION

Correlation matrix of Eigenvectors at each Frequency

- Maximal separates what exactly?
- ✓ Narrowband from Broadband data!
- In what regard?
- ✓ Spatial characteristics
- → When two spectral bands have different anatomical origins, GED will decouple the spectral features

| sometimes yes

sometimes no

MORE PD DATA | alpha band

TAKE HOME

- GED can be used for the detection of individual frequency boundaries
- Depending on spatial characteristics, the results can vary a lot
- Clustering of eigenvector correlations seems unstable if correlation between different frequency bands

THANKS FOR LISTENING CAREFULLY

NEXT JC

- Next journal club:
 - 15.03.23 10am (UTC+1)
 - Topics: Beta in PD, EEG & Gait, ...
- Slides and code
 - https://github.com/JuliusWelzel/StepUp-jc

NON SINUSOIDAL WAVEFORMS

FOOOF

b

Iterate

JPND CALL

A three year project:

Steps against the burden of Parkinson's Disease (StepuP)