

Neural Networks

Machine Learning Decal

Hosted by Machine Learning at Berkeley

Agenda

Motivation

Linear and Logistic Regression Recap

The Perceptron

The Neural Network

Learning

Coding Demo

Questions

Motivation

'Intuition' is hard to program

AI APPLICATIONS

Different modes of interpretation

What I see

What a computer sees

Manual feature extraction is difficult and lacks generalizability.

The "One Learning Algorithm" Hypothesis

Biological inspiration

Neurone firing

Biological Inspiration

Recap from last lecture

Linear and Logistic Regression
Recap

Linear Regression

$$Y = f(X, \mathbf{w_1}, b_1)$$
$$f(x, w, b) = x \cdot w + b$$

Logistic Regression

$$Z = f(X, \mathbf{w_1}, b_1)$$

$$Y = g(Z)$$

$$g(x) = \frac{1}{1 + e^{-x}}$$

$$J(b) = -\sum_{i=1}^{m} \left(y^{(i)} \cdot \ln z^{(i)} + (1 - y^{(i)}) \cdot \ln (1 - z^{(i)}) \right)$$

In practice...

We want to mimic neurone firings

Activation Functions (non-linearities)

For gradient descent to work, we need activation functions that are

- Continuous
- Monotonically increasing
- Differentiable

Sigmoid/Logistic

Hyperbolic Tangent (tanh)

Rectified Linear Unit (ReLU)

$$f(x) = \max(0, x)$$

- Inputs to the neuron are multiplied by weights (the parameters) and then summed
- A bias term (another parameter) is added to the sum
- An activation is then applied (for instance, tanh(x) or ReLU(x))

McCulloch and Pitts (1943) proposed the 'integrate and fire' model:

Let $f(x) = x^2$, x = (1, 4, -2), w = (-2, 3, 2). What is the output? McCulloch and Pitts (1943) proposed the 'integrate and fire' model:

McCulloch and Pitts (1943) proposed the 'integrate and fire' model:

$$\sum_{i} x_{i} w_{i} = (1)(-2) + (4)(3) + (-2)(2) = 6$$

$$f(\sum_{i} x_i w_i) = f(6) = 36$$

The Neural Network

Linking it Together

• The output of a neuron becomes the input for another neuron

Neural Network Architecture

- Layered Architecture
- Three types of layers:
 - Input Layer Data is passed into these neurons
 - Hidden Layer These neurons are "hidden from view"
 - Output Layer These neurons output the result of the network

Feedforward Example

$$f(v) = \begin{cases} 1 & \text{if } v \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Feedforward

$$w_{13}(1) + w_{23}(2) = (2)(1) + (-3)(2) = -4$$

$$w_{14}(1) + w_{24}(2) = (1)(1) + (4)(2) = 9$$

$$z_3 = 0$$

$$z_4 = 1$$

$$z_5 = f(w_{35}(0) + w_{45}(1)) = f((-1)(1)) = 0$$

Why having more perceptrons works?

- Hubel and Weisel
 - https://www.youtube.com/watch?v=IOHayh06LJ4
- Biological neurons in the visual cortex are edge detectors

Some intuition

• By combining the output of edge detecting neurons, we can make more complex detectors

What does a neural network do?

- Neural networks are function approximators
 - So what?
 - Everything we are interested in is a function!
- What is a function?
 - Anything that maps an input to a single output

$$f:X\to Y$$

Neural Networks

• Take for example a self driving car

$$f: X \to Y$$

- f is a function that maps sensor readings to a driver's action
- X is the set of all possible combinations of sensor readings
- Y is the set of all possible outputs to a car

- Somewhere out there, there's a perfect function that tells you exactly what to do for some sensor input (Platonist view)
 - We want to approximate that function using a neural network
 - Using training data we've obtained from somewhere

Neural Networks as a Black Box

- Neural networks approximate functions by adjusting parameters
 - Modern networks often times have hundreds of millions of parameters
 - We train neural networks to find parameters that approximate our function as closely as possible

Learning

Learning

- So this architecture can (theoretically) approximate any function.
- But how do we actually find the correct parameters?
- Gradient Descent!

Gradient Descent

We can define a cost function

$$C(x, \text{parameters}) = \frac{1}{2}(y - \hat{f}(x))^2$$

- x is our input training example
- y is our training example label
- $\hat{f}(x)$ is the output of our network (a function of the parameters and x)
- Gradient descent allows us to find a local minimum of C given the derivatives of C with respect to the parameters

Input layer

Hidden layer Output layer

Neural network:

$$\begin{split} h_{\Theta}(x) &\in \mathbb{R}^{K} \quad (h_{\Theta}(x))_{i} = i^{th} \text{ output} \\ J(\Theta) &= -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_{k}^{(i)} \log(h_{\Theta}(x^{(i)}))_{k} + (1 - y_{k}^{(i)}) \log(1 - (h_{\Theta}(x^{(i)}))_{k}) \right] \\ &+ \frac{\lambda}{2m} \sum_{i=1}^{L-1} \sum_{i=1}^{s_{l}} \sum_{i=1}^{s_{l+1}} (\Theta_{ji}^{(l)})^{2} \end{split}$$

Coding Demo

Questions

Questions?