Daily Coding Problem #66

Problem

This problem was asked by Square.

Assume you have access to a function toss_biased() which returns 0 or 1 with a probability that's not 50-50 (but also not 0-100 or 100-0). You do not know the bias of the coin.

Write a function to simulate an unbiased coin toss.

Solution

Since we don't know the bias of the coin, it sounds like we need to roll the coin more than once and do some calculations to find something with a 50-50 chance of occurring. Let's draw out the probability chart for tossing our coin twice. Let's say the probability of getting heads is p, so tails is 1 - p:

- HH: p * p
- HT: p * (1 p)
- TH: (1 p) * p
- TT: (1 p) * (1 p)

Since multiplication is commutative, we find that flipping heads and then tails has the same probability of flipping tails, then heads! Then, our strategy looks like this:

- Toss our coin twice.
- If we get heads and then tails, return heads. (It doesn't really matter which as long as the inverse one is opposite)
- If we get heads and then tails, return tails.
- Otherwise if we get the same outcome for both coins, re-toss.

```
from random import random

BIAS = 0.66

def toss_biased():
    return random() > BIAS

def toss_fair():
    t1, t2 = toss_biased(), toss_biased()
    if t1 and not t2:
        return True
    elif not t1 and t2:
        return False
    else:
        return toss_fair()
```

Testing this seems to bear it out:

```
from collections import defaultdict

c = defaultdict(int)

for i in range(1000000):
    c[toss_fair()] += 1

print(c)
```

```
defaultdict(<class 'int'>, {False: 500104, True: 499896})
```

Because there's a possibility that we always roll the same two values, there is a possibility that this function never terminates.

© Daily Coding Problem 2019

Privacy Policy

Terms of Service

Press