

minimum
$$f(x_0) < f(x)$$
 all a

where $f(x_0) < f(x)$ all a
 $f(x_0) < f(x_0)$ all a

Ekstrema

Mówimy, że funkcja f ma w punkcie x_0 minimum lokalne, jeżeli

$$\bigvee_{\delta>0} \bigwedge_{x\in S(x_0,\delta)} f(x) \geqslant f(x_0). \qquad (x_0^{-\delta} | x_0^{+\delta}) \subset 0$$

Jeżeli nierówność \geqslant zamienimy na >, to powiemy, że jest to minimum lokalne właściwe.

Ekstrema

Mówimy, że funkcja f ma w punkcie x_0 maksimum lokalne, jeżeli

$$\bigvee_{\delta>0} \bigwedge_{x\in S(x_0,\delta)} f(x) \widehat{\leqslant} f(x_0).$$

Jeżeli nierówność zamienimy na to powiemy, że jest to maksimum lokalne właściwe.

Warunek konieczny istnienia ekstremum

Twierdzenie Fermata

Jeśli funkcja $f((a,b)) \to \mathbb{R}$ ma w punkcie x_0 ekstremum lokalne i jest w

tym punkcie różniczkowalna, to

$$f'(x_0) = 0.$$

$$f(x_0) = \frac{1}{x_0} = \frac{1}{x_0} = \frac{1}{x_0} = 0.$$

$$f'(x_0) = 0.$$

$$f'(x_0) = \frac{1}{x_0} = \frac{1}{x_0} = 0.$$

$$f'(x_0) = 0.$$

$$f'(x_$$

u ×_e

$$f(x) = x^3$$

$$f(x) = x^3 \qquad f'(x) = 3x$$

Niech funkcja $f:(a,b)\to\mathbb{R}$ będzie **ciągła** w punkcie x_0 oraz dla pewnego $\delta>0$ **różniczkowalna** w zbiorze $S(x_0,\delta)$.

- Jeżeli f'(x) < 0 dla każdego $x \in (x_0 \delta, x_0)$ oraz f'(x) > 0 dla każdego $x \in (x_0, x_0 + \delta)$, to f ma w punkcie x_0 minimum lokalne właściwe,
- Jeżeli f'(x) > 0 dla każdego $x \in (x_0 \delta, x_0)$ oraz f'(x) < 0 dla każdego $x \in (x_0, x_0 + \delta)$, to f ma w punkcie x_0 maksimum lokalne właściwe.

Physical
$$f(x) = x^3 e^{-x}$$
, $x \in \mathbb{R}$
 $f'(x) = 3x e^{-x} - x^3 e^{-x} = \frac{-x}{20} \cdot \frac{x}{20} \cdot \frac{3-x}{20}$
 $f'(x) = 0 = x^2 \cdot (3-x) = 0 = x = 0 \cdot x = 3$

The Fermetre $= x = x = x = x = 0 \cdot x = 3$

The Fermetre $= x = x = x = x = 0 \cdot x = 3$

The Fermetre $= x = x = x = 0 \cdot x = 3$

The Fermetre $= x = x = x = 0 \cdot x = 3$

The Fermetre $= x = x = x = 0 \cdot x = 3$

The Fermetre $= x = x = x = 0 \cdot x = 3$

The Fermetre $= x = x = x = 0 \cdot x = 3$

The Fermetre $= x = x = x = 0 \cdot x = 3$

The Fermetre $= x = x = x = 0 \cdot x = 3$

The Fermetre $= x = x = x = 0 \cdot x = 3$

The Fermetre $= x = x = x = 0 \cdot x = 3$

The Fermetre $= x = x = x = 0 \cdot x = 3$

The Fermetre $= x = x = x = 0 \cdot x = 3$

The Fermetre $= x = x = x = 0 \cdot x = 3$

The Fermetre $= x = x = x = 0 \cdot x = 3$

The Fermetre $= x = x = x = 0 \cdot x = 3$

The Fermetre $= x = x = x = 0 \cdot x = 3$

The Fermetre $= x = x = x = 0 \cdot x = 3$

The Fermetre $= x = x = x = 0 \cdot x = 3$

The Fermetre $= x = x = x = 0 \cdot x = 3$

The Fermetre $= x = x = x = 0 \cdot x = 3$

The Fermetre $= x = x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0 \cdot x = 3$

The Fermetre $= x = x = 0$

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(c)}{2!}(x - x_0)$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(c)}{2!}(x - x_0)$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(c)}{2!}(x - x_0)$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(c)}{2!}(x - x_0)$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(c)}{2!}(x - x_0)$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(c)}{2!}(x - x_0)$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(c)}{2!}(x - x_0)$$

$$f(x) = f(x_0) + f''(x_0)(x - x_0) + \frac{f''(c)}{2!}(x - x_0)$$

$$f(x) = f(x_0) + f''(x_0)(x - x_0) + \frac{f''(c)}{2!}(x - x_0)$$

$$f(x) = f(x_0) + f''(x_0)(x - x_0) + \frac{f''(c)}{2!}(x - x_0)$$

$$f(x) = f(x_0) + f''(x_0)(x - x_0) + \frac{f''(c)}{2!}(x - x_0)$$

$$f(x) = f(x_0) + f''(x_0)(x - x_0) + \frac{f''(c)}{2!}(x - x_0)$$

$$f(x) = f(x_0) + f''(x_0)(x - x_0) + \frac{f''(c)}{2!}(x - x_0)$$

$$f(x) = f(x_0) + f''(x_0)(x - x_0) + \frac{f'''(c)}{2!}(x - x_0)$$

$$f(x) = f(x_0) + f''(x_0)(x - x_0) + \frac{f'''(c)}{2!}(x - x_0)$$

$$f(x) = f(x_0) + f''(x_0)(x - x_0)$$

$$f(x) = f(x_0) + f''(x_0)$$

Załóżmy, że

 \rightarrow funkcja f ma w pewnym otoczeni<u>u punktu x_0 pochodną f' oraz</u> istnieje druga pochodna $f''(x_0)$. i $f''(x_0)$ istnieje druga pochodna $f''(x_0)$.

Jeżeli

$$f'(x_0) = 0 \qquad \text{oraz} \qquad f''(x_0) \neq 0,$$

to funkcja f ma w punkcie x_0 ekstremum lokalne właściwe: maksimum, gdy $f''(x_0) < 0$, a minimum, gdy $f''(x_0) > 0$.

$$f(x) = x^{3}e^{-x} \qquad f'(x) = 3x^{2}e^{-x} - x^{3}e^{-x}$$

$$f''(x) = 6xe^{x} - 3xe^{x} - 3xe^{x} + x^{3}e^{-x} = e^{-x}x(6-6x+x^{2})$$

$$f''(0) = 0 \implies ? \text{ NIE LIADOMO}$$

$$f''(3) = e^{-3} \cdot 3 \cdot (-3) < 0 \implies 4 \times 6 = 3 \text{ Jest modsimum}$$

Załóżmy, że

funkcja f ma w pewnym otoczeniu punktu x_0 pochodne do rzędu n-1, a pochodna $f^{(n)}(x_0)$ istnieje.

Jeżeli

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$$
 oraz $f^{(n)}(x_0) \neq 0$

i *n* jest liczbą **parzystą**, to funkcja *f* ma w punkcie x_0 ekstremum lokalne właściwe: **maksimum**, gdy $f^{(n)}(x_0) < 0$, a **minimum**, gdy $f^{(n)}(x_0) > 0$.

Jeżeli liczba n jest nieparzysta, to funkcja nie posiada ekstremum w punkcie x_0 .

(cu.)
$$f(x) = x^3 e^{-x}$$
 $f'(0) = f''(0) = 0$
 $f'''(0) + 0$

Przykład

Przykład

$$\lim_{X \to x_0} \frac{f(x)}{g(x)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \sqrt{\begin{bmatrix} \infty \\ \infty \end{bmatrix}}$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Regula de l'Hospitala

Jeżeli funkcje f i g spełniają warunki: f i g sp dwedone u docent Xo

- $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$, przy czym $g(x) \neq 0$ w pewnym otoczeniu x_0 (poza, być może, samym punktem x_0),
- f' i g' istnieją w pewnym otoczeniu x_0 (poza, być może, samym punktem x_0) oraz istnieje granica $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ (właściwa lub niewłaściwa),

to

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\lim_{x\to x_0}\frac{f'(x)}{g'(x)}.$$

$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - 4x + 3} = \begin{bmatrix} 0 \\ 6 \end{bmatrix}$$

$$\lim_{x \to 1} \frac{(x^2 - 3x + 2)'}{(x^2 - 4x + 3)'} = \lim_{x \to 1} \frac{2x - 3}{2x - 4} = \begin{bmatrix} -1 \\ -2 \end{bmatrix} = \frac{1}{2}$$

Nied x + x0 leig u douensu x0 2def. niv jung funkcip h uvoren $h(t) = \begin{cases} 0, & t = x_0 \\ f(t) - A_x g(t), & t \neq x_0 \end{cases}$ When h(x) = f(x) - Axg(x) = f(x) - f(x) = 0. Furhers h gert obvestore ne prieduale (x, x_0) lib (x_0, x) over Spermone so repositione tu. Rolle e.

The Rolle e => $c \in (x_{0}, x)$ $h(c_{x}) = 0$.

The Rolle e => $c \in (x_{0}, x)$ $h(c_{x}) = 0$.

The Rolle e => $c \in (x_{0}, x)$ $h(c_{x}) = 0$ $h(c_{x}) = f(c_{x}) = f(c_{x})$ $f(c_{x}) - A_{x} f(c_{x}) = 0$ is the given in the property of the p

$$\begin{array}{ll}
\text{lim } \times \ln x \\
\times > 0
\end{array}$$

$$\begin{array}{ll}
\text{lim } \times \ln x \\
\times > 0
\end{array}$$

$$\begin{array}{ll}
\text{lim } \times \ln x \\
\times > 0
\end{array}$$

$$\begin{array}{ll}
\text{lim } \frac{\ln x}{\sqrt{x}} = \begin{bmatrix} -\infty \\ +\infty \end{bmatrix}
\end{array}$$

$$\begin{array}{ll}
\text{lim } \frac{\ln x}{\sqrt{x}} = \begin{bmatrix} -\infty \\ +\infty \end{bmatrix}$$

$$\begin{array}{ll}
\text{lim } \frac{\ln x}{\sqrt{x}} = \begin{bmatrix} -\infty \\ +\infty \end{bmatrix}
\end{array}$$

$$\lim_{x\to 0} \frac{(\ln x)^{1}}{(\frac{1}{x})^{1}} = \lim_{x\to 0} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}} = \lim_{x\to 0} \frac{-x^{2}}{x} = \lim_{x\to 0} (-x) = 0$$

$$\lim_{x\to 0} \frac{(\ln x)^{1}}{(x^{2})^{1}} = \lim_{x\to 0} \frac{x}{-\alpha x^{2}} = \lim_{x\to 0} (-x) = 0$$

$$\lim_{x\to 0} \frac{(\ln x)^{1}}{(x^{2})^{1}} = \lim_{x\to 0} \frac{\frac{1}{x}}{-\alpha x^{2}} = \lim_{x\to 0} (-x) = 0$$

$$\lim_{x\to 0} \frac{(\ln x)^{1}}{(x^{2})^{1}} = \lim_{x\to 0} \frac{x}{-\alpha x^{2}} = \lim_{x\to 0} (-x) = 0$$

$$\lim_{x\to 0} x^{\lambda} \ln x = 0 \qquad , \quad \lambda > 0$$

Regula de l'Hospitala

Jeżeli funkcje f i g spełniają warunki:

$$\leadsto \lim_{x \to x_0} g(x) = \pm \infty$$
,

$$(x) = \frac{1}{x} \infty - (0) \text{ (NIB)}$$

f' i g' istnieją w pewnym otoczeniu x_0 (poza, być może, samym punktem x_0) oraz istnieje granica $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ (właściwa lub niewłaściwa),

to

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\lim_{x\to x_0}\frac{f'(x)}{g'(x)}.$$

Reguła de l'Hospitala: uwagi

- Obie reguły de l'Hospitala są prawdziwe także dla granic jednostronnych oraz dla granic w $+\infty$ lub w $-\infty$.
- Reguły de l'Hospitala można również wykorzystywać do obliczania granic typu $0\cdot\infty,\,\infty-\infty,\,1^\infty,\,\infty^0,\,0^0.$

3
$$\lim_{x \to +\infty} x e^{-x} = [+\infty, 0]$$

 $= \lim_{x \to +\infty} \frac{x}{e^{x}} = [+\infty, 0]$
 $= \lim_{x \to +\infty} \frac{x}{e^{x}} = [+\infty, 0]$

If
$$\lim_{x \to +\infty} x^n e^{-x} = \lim_{x \to +\infty} \frac{x^n}{e^x} = \left[\frac{+\infty}{+\infty}\right]$$
 $\lim_{x \to +\infty} \frac{(x^2)!}{(e^x)!} = \lim_{x \to +\infty} \frac{2x}{e^x} = 0$
 $\lim_{x \to +\infty} \frac{(x^2)!}{(e^x)!} = \lim_{x \to +\infty} \frac{2x}{e^x} = 0$
 $\lim_{x \to +\infty} \frac{(x^2)!}{(e^x)!} = \lim_{x \to +\infty} \frac{2x}{e^x} = 0$
 $\lim_{x \to +\infty} \frac{2x + \sin x}{x + \sin x} = \left[\frac{+\infty}{+\infty}\right] \frac{x^n}{e^x} = 0$
 $\lim_{x \to +\infty} \frac{2x + \sin x}{x + \sin x} = \lim_{x \to +\infty} \frac{2 + (\cos x)}{1 + \cos x} = 0$
 $\lim_{x \to +\infty} \frac{2x + \sin x}{x + \sin x} = \lim_{x \to +\infty} \frac{2 + (\cos x)}{1 + \cos x} = 0$
 $\lim_{x \to +\infty} \frac{2x + \sin x}{x + \sin x} = \lim_{x \to +\infty} \frac{2 + (\cos x)}{1 + \cos x} = 0$
 $\lim_{x \to +\infty} \frac{2x + \sin x}{x + \sin x} = \lim_{x \to +\infty} \frac{2 + (\cos x)}{1 + (\cos x)} = 0$
 $\lim_{x \to +\infty} \frac{2x + \sin x}{x + \sin x} = \lim_{x \to +\infty} \frac{2 + (\cos x)!}{1 + (\cos x)!} = 0$
 $\lim_{x \to +\infty} \frac{2x + \sin x}{x + \sin x} = \lim_{x \to +\infty} \frac{2 + (\cos x)!}{1 + (\cos x)!} = 0$

(a)
$$\lim_{x \to 0} \frac{\sin x}{x} = \frac{0}{0} = 1$$
 $\lim_{x \to 0} \frac{(\sin x)}{x} = \lim_{x \to 0} \frac{\cos x}{1} = 1$
 $\lim_{x \to 0} \frac{(\sin x)}{x} = \cos x$
 $\lim_{x \to \infty} \frac{\sin x - \sin x_0}{x} = 1$
 $\lim_{x \to \infty} \frac{\sin x - \sin x_0}{x} = 1$
 $\lim_{x \to \infty} \frac{\sin x - \sin x_0}{x} = 1$