Diplomatico – A Graph-based Game Analysis

Filippo Garagnani 199670

October 24, 2025

Tesina del corso Graph Analytics, Prof.ssa Laura Po

Outline

Introduction

Theoretical Results

Empirical Results

References

Introduction

The game is played on a $n \times m$ **Board**:

The player chooses a square (i, j) in which to start – writing a 1:

Each turn, the player can write the next integer, either moving horizontally/vertically by three squares or moving diagonally by two squares:

5

1

Goal of the game is to fill the whole grid:

6

The Game as a Graph

The game can be represented by an undirected graph. Assuming the Board to be of size $n \times m$:

♦ Nodes – Represent the cells of the grid:

$$V = \{v_{(i,j)}, i \in \mathbb{N}_n, j \in \mathbb{N}_m\}$$

The Game as a Graph

The game can be represented by an undirected graph. Assuming the Board to be of size $n \times m$:

♦ **Nodes** – Represent the *cells* of the grid:

$$V = \{v_{(i,j)}, i \in \mathbb{N}_n, j \in \mathbb{N}_m\}$$

♦ Edges – Represent possible moves between cells:

$$E \subseteq \binom{V}{2}$$
 s.t.

$$\forall e = \{v_{(i,j)}, \ v_{(k,\ell)}\} \in E, \quad (|i-k| = 3 \land j = \ell) \quad \text{(vertical move)}$$

$$\lor (|j-\ell| = 3 \land i = k) \quad \text{(horizontal move)}$$

$$\lor (|i-k| = |j-\ell| = 2) \quad \text{(diagonal move)}$$

The Game as a Graph

A **solution** to the game is an **Hamiltonian Path** of the graph – a sequence of nodes that contains each vertex once and exactly once:

$$\mathfrak{h}=(v^1,\,v^2,\,\ldots,\,v^{n\times m})$$

$$\begin{split} &\forall \ell \in \mathbb{N}_{n \times m}, \ \{v^{(\ell)}, \ v^{(\ell+1)}\} \in E \quad \text{(path)} \\ &\forall v_{(i,j)} \in V, \ \exists ! \ell \in \mathbb{N}_{n \times m} \text{ s.t. } v^{\ell} \equiv v_{(i,j)} \quad \text{(hamiltonian)} \end{split}$$

Theoretical Results

Theoretical Results

Theorem (Solvability)

Each Graph representing a board of size $n \times m$ is solvable (i.e., the graph admits at least one hamiltonian path) iff:

$$m \geq n \geq 4 \wedge (n, m) \neq (4, 4)$$

Theoretical Results

Theorem (Solvability)

Each Graph representing a board of size $n \times m$ is solvable (i.e., the graph admits at least one hamiltonian path) iff:

$$m \geq n \geq 4 \wedge (n, m) \neq (4, 4)$$

Theorem (Number of Solutions)

Given a solvable graph $\mathfrak{G}_{n\times m}$ representing a grid of size $n\times m$, the number of solutions $\mathbf{N}(\mathfrak{G}_{n\times m})$ (i.e., how many distinct hamiltonian paths it has) is:

$$2^{(n-4)(m-4)/25} \le \mathbf{N}(\mathfrak{G}_{n \times m}) < 7^{nm-1}$$

9

Empirical Results

Four different approaches have been tried to find hamiltonian paths:

Four different approaches have been tried to find hamiltonian paths:

- ♦ Neo4J:
 - Raw Expand all possible paths of length n × m and check which are hamiltonian;

Four different approaches have been tried to find hamiltonian paths:

- Raw Expand all possible paths of length n × m and check which are hamiltonian;
- Constructive The query is built dynamically, at each step pruning choices that would not yield an hamiltonian path;

Four different approaches have been tried to find hamiltonian paths:

- Raw Expand all possible paths of length n × m and check which are hamiltonian;
- **Constructive** The query is built dynamically, at each step pruning choices that would not yield an hamiltonian path;
- APOC Calling the apposite APOC function to return an hamiltonian path;

Four different approaches have been tried to find hamiltonian paths:

- Raw Expand all possible paths of length n × m and check which are hamiltonian;
- **Constructive** The query is built dynamically, at each step pruning choices that would not yield an hamiltonian path;
- APOC Calling the apposite APOC function to return an hamiltonian path;
- Python: Building the graph and searching a path using a backtracking algorithm.

Finding a Solution — Raw Implementation

Finding a Solution — Constructive Implementation

```
MATCH (n0:Node) - [:MOVE] -> (n1:Node)

WHERE id(n1) NOT IN {id(n0)}

MATCH (n1) - [:MOVE] -> (n2:Node)

WHERE id(n2) NOT IN {id(n0), id(n1)}
...
```

Finding a Solution — APOC Implementation

```
MATCH (start: Node)
CALL apoc.path.expandConfig(
startNode, {
        relationshipFilter: "MOVE>",
        minLevel: {parameters["pathLength"]},
        maxLevel: {parameters["pathLength"]},
        uniqueness: "NODE_GLOBAL",
        labelFilter: 'Node'
 YIELD path
```

Time Results

Board Size	Raw	Constructive	APOC	Python
4 × 5	1.1492s	0.0331s	0.0143s	0.0034s
4 × 6	>30s	0.6907s	0.0307s	0.0503s
4 × 7	>30s	16.6208s	0.6338s	0.6547s
5 × 5	>30s	3.1501s	2.9022s	0.4530s

Table 1: Time results in finding every solution, with constraints on the starting and ending nodes.

Time Results

Board Size	APOC	Python
5 × 6	0.0578s	0.4754s
4 × 8	3.9755s	6.3072s
5 × 7	0.1442s	0.0007s
6 × 6	0.2700s	0.5473s

Table 2: Time results in finding only one solution for larger boards.

So: as boards get larger, the usage of **GraphDBs seems more effective** than a more traditional approach. The APOC library also provides several critical optimization to reduce computing time.

Centrality in a Board

Centrality and Number of Solutions

Board	Betweenness	Closeness	Degree	Eigenvector
4 × 5	-0.8228***	-0.5899**	-0.7845***	-0.1728
4 × 6	-0.7744***	-0.6316***	-0.7197***	-0.5179**
5×5	-0.6820***	-0.2543	-0.4037*	-0.1460
4 × 7	-0.9098***	-0.8204***	-0.8596***	-0.5842**
5 × 6	-0.7353*	-0.4310	-0.7729*	-0.5072

Table 3: Correlation coefficients (r) between Hamiltonian paths and centrality measures across different board sizes.

So: the more central a node is, **the less solutions** can be found starting from that node. It's empirically better to start the game from nodes **with low centrality values**.

References

References i

- R. C. contributors, "Solve a hopido puzzle," https://rosettacode.org/wiki/Solve_a_Hopido_puzzle, 2025, accessed: 2025-09-17.
- Neo4j Labs, "Apoc: Awesome procedures on cypher," 2025, version 2025.07.1core. [Online]. Available: https://neo4j.com/labs/apoc
- Neo4j, Inc., Neo4j Graph Data Science Library Manual, 2025, online documentation and software plugin. [Online]. Available: https://neo4j.com/docs/graph-data-science/current/
- M. Sipser, *Introduction to the Theory of Computation*, 3rd ed. Cengage Learning, 2013, pp. 292–314.

References ii

H. C. von Warnsdorff, "Des rösselsprunges einfachste und allgemeinste lösung." [Online]. Available: https://zs.thulb.uni-jena.de/receive/jportal_iparticle_00189099

Thank you!

Questions?