

Number Theory

Chapter 4

Edited by: Dr. Meshal Alfarhood

Solving Congruences

Section 4.4

Section Summary

Linear Congruences

Finding Inverses

The Chinese Remainder Theorem

Fermat's Little Theorem

The Euler's Generalization

Fermat's Little Theorem

Fermat's Little Theorem: If p is prime and a is an integer not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$

Furthermore, for every integer a we have $a^p \equiv a \pmod{p}$

Examples:

- 1. $6^{10} \equiv 1 \pmod{11}$
- \rightarrow because p=11 is prime, and 11 \nmid 6
- 2. $7^{10} \equiv 1 \pmod{11}$
- \rightarrow because p=11 is prime, and 11 \nmid 7

Exercise:

Find 7²²² **mod** 11?

- $7^{10} \equiv 1 \pmod{11}$
- $(7^{10})^{22} \equiv (1)^{22} \pmod{11}$
- $7^{220} \equiv 1 \pmod{11}$
- $7^{220} \cdot 7^2 \equiv 1 \cdot 7^2 \pmod{11}$
- 7^{222} mod $11 = 7^2$ mod 11 = 5.
- Hence, 7²²² mod 11 = 5.

from Fermat's Little Theorem.

 $(7^{10})^k \equiv (1)^k \pmod{11}$

because $7^{222} = 7^{10 \cdot 22 + 2}$

 $7^{222} \equiv 5 \pmod{11}$

Fermat's Little Theorem₂

Exercise: Find 15¹⁰⁰ mod 31?

• $15^{30} \equiv 1 \pmod{31}$

from Fermat's Little Theorem.

- $(15^{30})^3 \equiv (1)^3 \pmod{31}$
- $15^{90} \equiv 1 \pmod{31}$
- $15^{90} \cdot 15^{10} \equiv 1 \cdot 15^{10} \pmod{31}$ because $15^{100} = 15^{30 \cdot 3 + 10}$
- $15^{100} \mod 31 = 15^{10} \mod 31$.
- 15¹⁰ is still a big number:
 - $15 \equiv 15 \pmod{31}$
 - $15^2 \equiv 225 \equiv 8 \pmod{31}$
 - $15^4 \equiv 8^2 \equiv 2 \pmod{31}$
 - $15^8 \equiv 2^2 \equiv 4 \pmod{31}$
 - $15^8 \cdot 15^2 \equiv 4 \cdot 15^2 \pmod{31}$
 - $15^{10} \equiv 4 \cdot 8 \pmod{31}$
 - $15^{10} \equiv 32 \equiv 1 \pmod{31}$
 - Hence, 15^{100} mod 31 = 1

any number is always congruent to itself

 $15^{100} \equiv 1 \pmod{31}$

The Euler's Generalization

Euler's Totient function $\Phi(n)$: the count of numbers < n that are relatively prime to n.

Examples:

- 1. $\Phi(2) = 1;$ |{1}| 2. $\Phi(3) = 2;$ |{1,2}| 3. $\Phi(12) = 4;$ |{1,5,7,11}| 4. $\Phi(15) = 8;$ |{1,2,4,7,8,11,13,14}|
- Note: if n is a prime number, then $\Phi(n) = n-1$
- Φ(n) can also be calculated using the following formula:
 - $\Phi(n) = n \prod \frac{p-1}{p}$ where p is prime < n, and p|n.
 - Examples:

The Euler's Generalization 2

If **a** and **n** are relatively prime, then $a^{\phi(n)} \equiv 1 \pmod{n}$.

- Note: if n is a prime number, then Φ(n) = n-1
- Therefore, let n=p, that leads to Fermat's theorem: $a^{p-1} \equiv 1 \pmod{p}$.
- Example: What is the last two digits of 27¹²⁰³?
 - The last two digits = 27¹²⁰³ **mod** 100
 - Can't use Fermat's because 100 is not prime.
 - Using Euler: Φ(100)=40.
 - $27^{40} \equiv 1 \pmod{100}$
 - $(27^{40})^{30} \cdot 27^3 \equiv \mathbf{1^{30}} \cdot 27^3 \pmod{100}$

because $27^{1203} = 27^{40 \cdot 30 + 3}$

• $27^{1203} \mod 100 = 27^3 \mod 100 = 83$