ORIGAMI, TESELACIONES Y TEORÍA DE CONJUNTOS.

Por Erick Rodríguez.

UAA, LMA.

DEFINICIONES BÁSICAS.

Definición.

- ① Sea $X \neq \emptyset$. El conjunto que consta de todos los subconjuntos de X se llama *conjunto potencia de* X. $\mathscr{P}(X) = \{A \mid A \subseteq X\}$.
- 2 Sea $X \neq \emptyset$. Una partición $\mathscr{A} \subseteq \mathscr{P}(X)$ es una colección de conjuntos de X, tal que
 - $X = \bigcup A$.
 - $\forall A, B \in \mathscr{A} : A \neq B \implies A \cap B = \varnothing$.
- § Sean $A, B \neq \emptyset$. Si $a \in A$, y $b \in B$, definitions al par ordenado, $(a,b) = \{\{a\}, \{a,b\}\}$. Definitions el producto cartesiano,

$$A \times B = \{(a,b) \mid a \in A, b \in B\}.$$

① Sean a < b, c < d. El conjunto $[a,b] \times [c,d] \subseteq \mathbb{R}^2$ se llama *rectángulo*.

Definiciones Báscias.

- $oldsymbol{\mathfrak{S}}$ i Si $x\in\mathbb{R}^n$, denotamos $|x|=\left(\sum_{i=1}^n x_i^2\right)^{1/2}$.
- $egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} tx + (1-t)y \in A \ , \ orall t \in [0,1]. \end{aligned}$

El resto de definiciones se darán sobre la marcha.

ORIGAMIS Y TESELACIONES.

Origami.

El *origami* ("ori" significa doblar, y "kami", significa papel), es el arte de crear superficies de papel a través de realizar dobleces a una sola hoja.

TIPOS DE DOBLECES.

Nosotros nos concentraremos en origamis *rígidos*, *i.e.* sólo en aquellos donde es posible hacer dobleces Mountain, Valley, Squash y Pleat.

TIPOS DE DOBLECES.

Nosotros nos concentraremos en origamis *rígidos*, *i.e.* sólo en aquellos donde es posible hacer dobleces Mountain, Valley, Squash y Pleat.

Notación.

Objetivo.

Esperamos convertir la superficie de papel en una superficie doblada (sin curvar las caras).

Para definir un doblez, primero hagamos el doblez y veamos su marca. Entonces podemos ver a $R = [a, b] \times [c, d]$, en \mathbb{R}^3 , con $R \times \{0\}$.

Definición.

Un doblez en origami es una transformación continua

 $T:[a,b] imes[c,d] imes\{0\}\longrightarrow\mathbb{R}^3$, y esperamos que satisfaga lo siguiente.

① Existe una partición (de polígonos convexos) \mathscr{A} de $[a,b] \times [c,d] \times \{0\}$ tal que $T\big|_A$ es inyectiva para cada A en la partición \mathscr{A} .

 $\mathbf{O} T |_{A}$ preserva ángulos y distancias entre pares de elementos de A.

Se tiene:

$$\begin{array}{l} \bullet \ \ arccos \bigg(\frac{\langle Tx - Tz, Ty - Tz \rangle}{|Tx - Tz| \cdot |Ty - Tz|} \bigg) = arccos \bigg(\frac{\langle x - z, y - z \rangle}{|x - z| \cdot |y - z|} \bigg), \\ \forall x, y, z \in A. \end{array}$$

•
$$|Tx - Ty| = |x - y|$$
, $\forall x, y \in A$. (i.e. $T|_A$ es una isometría).

§ Si $T|_A$ manda de los vértices de A, a los vértices de T(A), $\forall A \in \mathscr{A}$. entonces, area(A) = area(T(A)).

(Notamos que no podemos usar la medida de Lebesgue para obtener el área, ni $detT|_A$ en caso de que $T|_A$ fuera lineal). Si $A \in \mathscr{A}$, consideremos una división de A por triángulos. Usamos la fórmula de Herón: Si D es un triángulo de lados a,b,c,y s=(a+b+c)/2, entonces $area(D)=\sqrt{s(s-a)(s-b)(s-c)}$.

Sean entonces $\mathscr{D} = \{D_i \mid i \leqslant n_A\}$ una partición de A, por triángulos.

Probemos que $T(\mathscr{D}) = \{T(D_i) \mid i \leqslant n_A\}$ es una partición de T(A).

$$\bullet \ A = \bigcup_{i=1}^{n_A} D_i.$$

Luego,

•
$$T(A) = T\left(\bigcup_{i=1}^{n_A} D_i\right) = \bigcup_{i=1}^{n_A} T(D_i)$$
.

• Como T es inyectiva en A,

$$T(D_i) \cap T(D_i) = T(D_i \cap D_i) = T(\emptyset) = \emptyset.$$

Así $T(\mathcal{D})$ es partición de T(A). Sean x,y,z los vértices de D_i . Sea a=|x-y|,b=|y-z|,c=|x-z|, entonces con s=(a+b+c)/2,

$$area(D_i) = \sqrt{s(s-a)(s-b)(s-c)}.$$

Como $T(\{x,y,z\})$ son los vértices de $T(D_i)$, y es isometría

$$|Tx - Ty| = |x - y| = a$$
,
 $|Ty - Tz| = |y - z| = b$,
 $|Tx - Tz| = |x - z| = c$. Por la fórmula de Herón,

$$area(D_i) = area(T(D_i)), \forall i \leq n_A.$$

Y como \mathcal{D} es partición de A.

$$area(A) := \sum_{i=1}^{n_A} area(D_i).$$

Al ser $T(\mathcal{D})$ partición de T(A),

$$area(T(A)) := \sum_{i=1}^{n_A} area(T(D_i)) = \sum_{i=1}^{n_A} area(D_i) = area(A).$$

Más aún, cada doblez debe tener una relación de homotopía.

Es decir, debe existir $H: A \times [0,1] \longrightarrow \mathbb{R}^3$ continua, tal que

 $\forall t \in [0,1], T_t : A \longrightarrow \mathbb{R}^3, \text{ por } T_t(x) = H(x,t), \text{ es una función continua que satisface las propiedades } 0, 2 y 3.$

Observar que no estamos dando las reglas de correspondencia de T y H explícitamente. Sólo son las propiedades que se requieren satisfacer.

Observación.

Las definiciones anteriores fueron dadas para un sólo doblez. Sin embargo, se cumplen para todo el conjunto de funciones que aplican un doblez nuevo sobre $[a,b] \times [c,d] \times \{0\}$, o sobre $T([a,b] \times [c,d] \times \{0\})$.

1 La composición de isometrías es isometría.

$$|TUx - TUy| = |Ux - Uy| = |x - y|.$$

2 La composición de funciones que preservan ángulos, preserva ángulos.

$$\arccos\frac{\langle TUx, TUy \rangle}{|TUx| \cdot |TUy|} = \arccos\frac{\langle Ux, Uy \rangle}{|Ux| \cdot |Uy|} = \arccos\frac{\langle x, y \rangle}{|x| \cdot |y|}.$$

- 3 La composición de dos funciones que mandan vértices a vértices, manda de vértices a vértices.
- ① Si U, T son inyectivas, mandan una partición $\mathscr A$ a una partición en $T(\mathscr A)$. Su composición es inyectiva.

Si A y T(A) satisfacen una relación de homotopía, y T(A) y UT(A) satisfacen una relación de homotopía, entonces A y UT(A) también. Considérese $H(x,t)=H_T(x,2t)$, para $t\in[0,1/2]$, $H(x,t)=H_U(x,2t-1)$, para $t\in[1/2,1]$.

Siempre y cuando $H_T(x,1) = H_U(x,0)$, $\forall x \in [a,b] \times [c,d] \times \{0\}$.

TESELACIONES.

Definición.

Una teselación es una partición de \mathbb{R}^2 , con figuras repetidas.

Teorema.

Sólo hay tres polígonos regulares capaces de particionar el plano.

- Los triángulos equiláteros.
- Los cuadrados.
- 8 Los hexágonos.

Demostración.

Sea P_n el polígono regular con n lados.

Sea $\alpha(n)$ su ángulo interior.

Debe existir $k \in \mathbb{N}$, tal que $k\alpha(n) = 2\pi$.

La suma de ángulos exteriores es 2π , *i.e.*

$$\sum_{i=1}^{n} (\pi - \alpha(n)) = 2\pi.$$

Entonces
$$n(\pi - \alpha(n)) = 2\pi$$
.
 $\alpha(n) = \pi - \frac{2\pi}{n} = (2\pi) \frac{n-2}{2n}$.

Entonces
$$2\pi/\alpha(n)=\frac{2n}{n-2}=k\in\mathbb{N}.$$
 Grafiquemos a sucesión.

Notamos que n=3,4,6, son los únicos valores para $k\in\mathbb{N}$. Dado que $\forall n>6, k=\frac{2n}{n-2}\in(2,3),$ y $\lim_{n\to\infty}\frac{2n}{n-2}=2$.

PROBLEMA A RESOLVER.

Manifold. The Origami Mindbender.

El juego de origami de BrainwrightTM, Manifold©, es un producto de 100 rejillas de papel 8×8 coloreadas de forma diferente por un único lado.

El objetivo es que por medio de dobleces se consiga construir una rejilla 4×4 , con una cara blanca, y que su reverso conste de una cara negra.

EJEMPLOS.

8.

41.

EJEMPLOS.

94.

PRIMEROS INTENTOS.

PRIMER INTENTO.

Definición.

Sea $V \neq \emptyset$. Un *grafo* es un par (V, E), donde $E \subseteq V^2$.

Example

Sea $V=\{1,\;\ldots,\;7\}$, y $E=\left\{\;\{1,2\}\;,\;\{1,5\}\;,\;\{2.5\}\;,\;\{3,4\}\;,\;\{5,7\}\right\}$, se representa de la siguiente forma.

Primer Intento.

Consideremos los siguientes subconjuntos en \mathbb{R}^2 .

REDUCCIÓN DEL PROBLEMA.

SEGUNDO INTENTO.

TERCER INTENTO.

MAP FOLDINGS.

CUARTO INTENTO.

Matriz de Adyacencia.

PI-SISTEMAS.

PI-SISTEMAS.

Observación.

La intersección de rectángulos siempre es un rectángulo.

La unión de rectángulos nonecesariamente es rectángulo.

$$\left(\bigcup_{i=1}^{n} A_i\right) \times \left(\bigcup_{i=1}^{m} B_i\right) = \bigcup_{i,j=1}^{n,m} A_i \times B_j.$$

Es decir, no se puede definir una topología cuyos abiertos sólo sean rectángulos.

Definición.

Sea $X \neq \emptyset$. Una colección $\mathscr{C} \subseteq \mathscr{P}(X)$, es un π -sistema si satisface la siguiente condición.

Lema.

Sea \mathscr{A} conjunto de índices. Si \mathscr{C}_{α} , $\alpha \in \mathscr{A}$ es un π -sistema, para todo $\alpha \in \mathscr{A}$, entonces $\bigcap_{\alpha \in \mathscr{A}} \mathscr{C}_{\alpha}$ es un π -sistema.

Demostración.

- Si $A_1, \ldots, A_n \in \bigcap_{\alpha \in \mathscr{A}} \mathscr{C}_{\alpha}$, entonces
- $A_1, \ldots, A_n \in \mathscr{C}_{\alpha}, \forall \alpha \in \mathscr{A}$. Por ser $\mathscr{C}_{\alpha}, \pi$ -sistema:
- $igoplus_{i=1}^{n}A_{i}\in\mathscr{C}_{lpha},oralllpha\in\mathscr{A}$. Por tanto $\bigcap_{i=1}^{n}A_{i}\in\bigcap_{lpha\in\mathscr{A}}\mathscr{C}_{lpha}$.

ÁLGEBRA.

EL GRUPO SIMÉTRICO.

Definición.

Sea $G \neq \emptyset$. Un *grupo* es un par (G, f) donde $f: G^2 \longrightarrow G$, con las siguientes propiedades.

- $\exists e \in G : f(a,e) = f(e,a) = a, \forall a \neq G.$
- **3** $\forall a \in G \; , \; \exists b \in G \; : f(a,b) = f(b,a) = e.$