Universidad Mayor de San Andrés Maestría en Ciencia y Análisis de Datos Series de Tiempo

Taller - Modelamiento ARMA

NOMBRE: Lucy Gabriela Cuarita Ajno

Aplicar el modelo ARMA(p,q) para los datos del PIB caso ECUADOR, colocar todos los resultados obtenidos en R incluido el SSE.

SOLUCION

ANÁLISIS DESCRIPTIVO DE LOS DATOS

El gráfico muestra la serie temporal del PIB del Ecuador, donde existen picos sobresalientes en el año 1973, 1999 y 2020, en este último caso es probable que se deba a la pandemia y en los otros casos corresponde revisar los hechos acontecidos en esos periodos.:

Asimismo, se advierte lo siguiente:

- En el boxplot se observan los 3 datos atípicos identificados en el gráfico de la serie de tiempo del PIB del Ecuador.
- El histograma muestra un sesgo a la izquierda esto debido posiblemente a los datos atípicos identificados

Histograma del PIB Ecuador

PRUEBAS ESTADÍSTICAS APLICADAS A LA SERIE DE TIEMPO

Prueba de estacionariedad

Aplicando la prueba de Dickey-Fuller se tiene un p-valor de 0.219738 a un nivel de significancia del 5% se concluye que *la serie es no estacionaria por lo tanto tiene raíz unitaria*.

Prueba de explosividad

Aplicando la prueba de Dickey-Fuller se tiene un p-valor de 0.780262 a un nivel de significancia del 5% se concluye que *la serie no es explosiva por lo tanto tiene varianza constante.*

Prueba de nivel estacionario

Aplicando la prueba de Kwiatkowski- Phillips-Schmidt se tiene un p-valor de 0.1 a un nivel de significancia del 5% se concluye que *la serie tiene nivel estacionario.*

Prueba de tendencia estacionaria

Aplicando la prueba de Kwiatkowski- Phillips-Schmidt se tiene un p-valor de 0.1 a un nivel de significancia del 5% se concluye que *la serie tiene tendencia estacionaria.*

La aplicación de las últimas pruebas corrobora el análisis descriptivo donde se advierte que la **serie es estacionaria** tanto en nivel como en tendencia. Asimismo, el ACF muestra que la autocorrelación se encuentra dentro de las bandas de confianza puede dar indicios de que la serie es estacionaria.

SELECCIÓN DEL MODELO ARMA

En la selección del modelo realizamos las permutaciones correspondientes de tal manera que luego se elija las que tengan los valores más pequeños en las métricas, como se muestra en la siguiente tabla:

ARMA	sigma2	loglik	aic	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	BIC
(0,1)	11,932	-167,511	341,021	-0,003	3,454	2,513	-29,785	208,888	0,757	0,017	347,45
(0,2)	11,888	-167,395	342,79	-0,005	3,448	2,525	-31,727	213,845	0,76	0,008	351,363
(0,3)	11,774	-167,102	344,203	-0,004	3,431	2,498	-28,719	213,922	0,752	0,016	354,919
(0,4)	11,37	-166,116	344,231	-0,013	3,372	2,513	-35,839	212,198	0,757	0,012	357,09
(1,0)	11,862	-167,329	340,658	-0,005	3,444	2,518	-31,4	211,961	0,758	-0,01	347,088
(1,1)	11,735	-167,002	342,004	-0,011	3,426	2,519	-33,593	220,432	0,759	0,01	350,576
(1,2)	11,73	-166,989	343,978	-0,011	3,425	2,519	-33,451	218,744	0,758	0,001	354,693
(1,3)	11,601	-166,665	345,33	-0,011	3,406	2,482	-30,982	214,014	0,747	0,011	358,189
(1,4)	11,344	-166,051	346,103	-0,016	3,368	2,51	-36,61	212,634	0,756	0,003	361,105
(2,0)	11,821	-167,222	342,445	-0,007	3,438	2,524	-32,683	217,515	0,76	-0,004	351,017
(2,1)	11,732	-166,993	343,986	-0,011	3,425	2,519	-33,509	219,352	0,759	0,004	354,702
(2,2)	11,715	-166,95	345,899	-0,011	3,423	2,513	-32,75	216,602	0,757	-0,006	358,758
(2,3)	10,42	-164,948	343,895	-0,013	3,228	2,388	-26,004	188,775	0,719	0,026	358,897
(2,4)	10,246	-164,564	345,128	-0,016	3,201	2,381	-30,845	190,708	0,717	0,006	362,273
(3,0)	11,661	-166,814	343,628	-0,008	3,415	2,489	-30,195	212,813	0,749	-0,004	354,343
(3,1)	11,637	-166,751	345,502	-0,01	3,411	2,491	-31,556	213,272	0,75	0	358,361
(3,2)	10,252	-164,55	343,1	-0,015	3,202	2,372	-29,289	188,279	0,714	-0,006	358,102
(3,3)	10,244	-164,518	345,035	-0,015	3,201	2,372	-30,106	190,416	0,714	0,003	362,181
(3,4)	10,18	-164,405	346,81	-0,015	3,191	2,412	-30,656	188,09	0,726	0,004	366,098
(4,0)	11,584	-166,618	345,235	-0,015	3,403	2,503	-35,565	215,223	0,754	0,009	358,094
(4,1)	11,487	-166,389	346,777	-0,011	3,389	2,513	-34,409	212,65	0,757	0,005	361,779
(4,2)	11,48	-166,376	348,752	-0,009	3,388	2,513	-33,876	212,082	0,757	0,003	365,897
(4,3)	9,998	-164,195	346,39	-0,014	3,162	2,349	-41,217	193,653	0,707	-0,009	365,679
(4,4)	9,314	-163,634	347,268	0	3,052	2,364	-26,796	164,038	0,712	0,065	368,7

Por lo expuesto en la tabla e identificando los valores menos en cada una de las métricas se advierten tres posibles modelos:

- ARMA(1,0)
- ARMA(4,3)
- ARMA(4,4)

Normalidad - Histograma de los residuales

Los histogramas muestran el sesgo negativo debido a los datos atípicos, no obstante los residuales del modelo ARMA(4,4) muestran cierta normalidad en los datos.

Normalidad - Gráfico de cuantiles

El gráfico de los cuantiles muestra que los residuales del modelo <u>ARMA(4,4)</u> aparentemente son normales con la salvedad de algunos atípicos.

Normalidad - Prueba de Shapiro

Modelo	W	P-valor	Conclusión
ARMA(1,0)	0.94828	0.0102	Residuales no son normales
ARMA(4,3)	0.96597	0.07864	Residuales son normales
ARMA(4,4)	0.97294	0.1791	Residuales son normales

Normalidad - Kolmogorov Smirnov

Modelo	D	P-valor	Conclusión
ARMA(1,0)	0.091096	0.2176	Residuales son normales
ARMA(4,3)	0.067898	0.6684	Residuales son normales
ARMA(4,4)	0.073217	0.5494	Residuales son normales

Gráfico de las autocorrelaciones de los residuales

El gráfico muestra que los residuales son independientes salvo en los puntos donde se identificaron los 3 puntos atípicos. Los residuales son incorrelacionados y posiblemente normales.

PREDICCIONES

Utilizando los tres modelos se realizan las predicciones, como se muestra:

Año	Dato real	ARMA(1,0)	ARMA(4,3)	ARMA(4,4)
2022	6,1861	5.168741	3.805524	2.721077
2023	2,3552	4.133980	3.482484	3.415379
	SSE	18.12481	17.79484	23.67120

Las predicciones muestran que:

- ARMA(1,0) provee la mejor predicción para el año 2022.
- ARMA(4,4) se aproxima más al dato del año 2023.

Sin embargo, el SSE muestra que ARMA(4,3) proporciona predicciones más cercanas a los datos reales, aunque el modelo ARMA(1,0) también está muy cerca.

CONCLUSIÓN.

Por todo lo expuesto en los apartados anteriores se elige al modelos ARMA(4,3), con el que se deberían seguir aplicando pruebas adicionales, para consolidar la selección.

MODELO ARMA(4,3)

$$\begin{array}{lll} X_t = 3.8070 + 0.5100 X_{t-1} & -0.0525 X_{t-2} & -0.6411 X_{t-3} + 0.2839 X_{t-4} + W_t \\ & -0.4013 W_{t-1} + 0.1510 W_{t-2} + 0.7424 W_{t-3} \end{array}$$