Egzamin Teoria Katagorii

Łukasz Magnuszewski

 $7 \ {\rm lutego} \ 2024$

Zadanie 1 1

Kandydat na izomorfizm 1.1

Zdefiniujmy lambda term który odpowiada morfizmowi z A^{1+1} do $A \times A$.

$$F := \lambda f. < fL(1), fR(1) >$$

Oraz jego potencjalną odwrotność:

$$G := \lambda p. \ \lambda t. \ match \ t \ with \{L(x) \mapsto \pi_1 \ p, R(x) \mapsto \pi_2 \ p\}$$

$G \circ F = \lambda x. \ x$ 1.2

Wszystkie przejścia łączymy przechodniością β , η -redukcji.

$$\lambda x. \ (\lambda p. \ \lambda t. \ match \ t \ with \ \{L(x) \mapsto \pi_1 \ p, R(x) \mapsto \pi_2 \ p\}) \ ((\lambda f. \ < fL(1), fR(1) >) \ x)$$

$$(\beta - abs)$$

$$\lambda x. \ (\lambda p. \ \lambda t. \ match \ t \ with \ \{L(x) \mapsto \pi_1 \ p, R(x) \mapsto \pi_2 \ p\}) \ (\ < xL(1), xR(1) >)$$

$$(\beta - abs)$$

$$\lambda x. \ (\lambda t. \ match \ t \ with \ \{L(x) \mapsto \pi_1 \ (\ < xL(1), xR(1) >), R(x) \mapsto \pi_2 \ (\ < xL(1), xR(1) >)\})$$

$$(\beta - proj_{1,2})$$

$$\lambda x. \ (\lambda t. \ match \ t \ with \{L(x) \mapsto xL(1), R(x) \mapsto xR(1)\})$$
 (równosciowa definicja koproduktu)

 $\lambda x. x$

$F \circ G = \lambda x. \ x$ 1.3

Wszystkie przejścia łączymy przechodniością β , η -redukcji.

$$\lambda x. \ (\lambda f. < fL(1), fR(1) >) \ ((\lambda p. \ \lambda t. \ match \ t \ with \ \{L(x) \mapsto \pi_1 \ p, R(x) \mapsto \pi_2 \ p\}) \ x)$$

$$(\beta - abs)$$

$$\lambda x. \ (\lambda f. < fL(1), fR(1) >) \ (\lambda t. \ match \ t \ with \ \{L(x) \mapsto \pi_1 \ x, R(x) \mapsto \pi_2 \ x\})$$

$$(\beta - abs)$$

$$\lambda x. < (\lambda t. match \ t \ with \{L(x) \mapsto \pi_1 x, R(x) \mapsto \pi_2 x\}) L(1), (\lambda t. \ match \ t \ with \{L(x) \mapsto \pi_1 x, R(x) \mapsto \pi_2 x\}) R(1) >$$

$$(\beta - abs)$$

$$\lambda x. < (match \ L(1) \ with \{L(x) \mapsto \pi_1 x, R(x) \mapsto \pi_2 x\}), (match \ R(1) \ with \{L(x) \mapsto \pi_1 x, R(x) \mapsto \pi_2 x\}) >$$

$$(\beta - match_{L,R})$$

(równosciowa definicja produktu)

 $\lambda x. < \pi_1 x, \pi_2 x >$

 $\lambda x. x$

Izomorfizm

Z tego że pokazaliśmy powyższe β, η -równosci, oraz z twierdzenia o poprawności interpretacji Rachunku Lambda, możemy stwierdzić, że $F\circ G=id$ oraz $G\circ F=id$ czyli F,G są izomorfizmami. Co pokazuje, że $A^{1+1}\cong A\times A$.

2 Zadanie 2

2.1 Informacje z wykładu i ćwiczeń

Przypomijmy następujące fakty z wykładu i ćwiczeń:

- W kategorii Sets*, singletony to jednocześnie obiekty początkowe i końcowe.
- Dowolne dwa obiekty początkowe są izomorficzne, podobnie jak dwa obiekty końcowe.

2.2 1+1 to Obiekt początkowy

Ustalmy dowolny obiekt X w $Sets_*$ i pokażemy, że istnieje dokładnie jeden morfizm z 1+1 do X.

2.2.1 Istnienie

Korzystając z diagramu powyżej, konstruujemy morfizm U z 1+1 do X następująco: Skoro 1 jest obiektem początkowym, to istnieje morfizm z 1 do X, oznaczmy go X_0 . I wstawmy X_0 do diagramu, jako morfizm z 1 do X, na obu ramionach. I teraz z definicji koproduktu istnieje morfizm U z 1+1 do X taki, że $U \circ L_1 = X_0$ i $U \circ R_1 = X_0$.

2.2.2 Unikalność

Załóżmy, że istnieją dwa morfizmy U_1 i U_2 z 1+1 do X. Pokażemy, że $U_1=U_2$.

Korzystając z tego samego diagramu (Ważne jest to że istnieje dokładnie jeden morfizm z 1 do X), zauważmy że oba morfizmy muszą spełniać równość $U_1 \circ L_1 = X_0$ oraz $U_2 \circ L_1 = X_0$. Bo 1 jest obiektem początkowym. Analogicznie dla R_1 .

Czyli oba morfizmy sprawiają, że diagram komutuje, więc $U_1 = U_2$. Bo istnieje dokładnie jeden morfizm by diagram koproduktu komutował.

2.3 $1+1 \cong 1$

Jako że 1, oraz 1+1 są obiektami początkowymi, to są izomorficzne.