```
#Import the library
import pandas as pd
```

1. Choose a binary classification dataset

#load the dataset df=pd.read_csv('/content/data.csv')

#check the first 5 rows df.head()

•	_
7	4
_	_
	ð

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_ma
0	842302	M	17.99	10.38	122.80	1001.0	0.11840	0.27
1	842517	M	20.57	17.77	132.90	1326.0	0.08474	0.07{
2	84300903	M	19.69	21.25	130.00	1203.0	0.10960	0.159
3	84348301	M	11.42	20.38	77.58	386.1	0.14250	0.283
4	84358402	М	20.29	14.34	135.10	1297.0	0.10030	0.132

5 rows × 33 columns

#check the row & column no. df.shape

→ (569, 33)

#check the information of the dataset df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 569 entries, 0 to 568 Data columns (total 33 columns):

	Calumn	,	Dturns
#	Column	Non-Null Count	Dtype
0	id	569 non-null	int64
1	diagnosis	569 non-null	object
2	radius_mean	569 non-null	float64
3	texture_mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64
5	area_mean	569 non-null	float64
6	smoothness_mean	569 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	<pre>fractal_dimension_mean</pre>	569 non-null	float64
12	radius_se	569 non-null	float64
13	texture_se	569 non-null	float64
14	perimeter_se	569 non-null	float64
15	area_se	569 non-null	float64
16	smoothness_se	569 non-null	float64
17	compactness_se	569 non-null	float64
18	concavity_se	569 non-null	float64
19	concave points_se	569 non-null	float64
20	symmetry_se	569 non-null	float64
21	<pre>fractal_dimension_se</pre>	569 non-null	float64
22	radius_worst	569 non-null	float64
23	texture_worst	569 non-null	float64
24	perimeter_worst	569 non-null	float64
25	area_worst	569 non-null	float64
26	smoothness_worst	569 non-null	float64
27	compactness_worst	569 non-null	float64
	_		

569 non-null

569 non-null

28 concavity_worst

```
29 concave points_worst
      30 symmetry_worst
                                   569 non-null
                                                   float64
      31 fractal_dimension_worst 569 non-null
                                                   float64
      32 Unnamed: 32
                                   0 non-null
                                                   float64
     dtypes: float64(31), int64(1), object(1)
     memory usage: 146.8+ KB
#drop unnecessary columns
df=df.drop(columns=['id','Unnamed: 32'])
#convert diagnosis to binary (M=1, B=0)
df['diagnosis']=df['diagnosis'].map({'M': 1, 'B': 0})
2. Train/test split and standardize features.
#split features and target
X = df.drop('diagnosis', axis=1)
y = df['diagnosis']
from sklearn.model_selection import train_test_split
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
from sklearn.preprocessing import StandardScaler
# Standardize features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Output the shapes
X_train_scaled.shape, X_test_scaled.shape, y_train.shape, y_test.shape
((455, 30), (114, 30), (455,), (114,))
3.Fit a Logistic Regression model
from sklearn.linear_model import LogisticRegression
# Create the logistic regression model instance
lr= LogisticRegression(random_state=42, max_iter=10000)
# Fit the model on training data
lr.fit(X_train_scaled, y_train)
\rightarrow
                    LogisticRegression
     LogisticRegression(max_iter=10000, random_state=42)
# Predict on the test set
y_pred = lr.predict(X_test_scaled)
```

float64

float64

4. Evaluate with confusion matrix, precision, recal, ROC-AUC.

```
from sklearn.metrics import confusion_matrix, classification_report, roc_auc_score, RocCurveDisplay
# Compute confusion matrix
cm = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:\n",cm)
→ Confusion Matrix:
      [[70 1]
      [ 2 41]]
# Generate classification report for precision, recall, f1-score
cr= classification_report(y_test, y_pred, output_dict=True)
print("Classification Report:\n",cr)
Classification Report:
      {'0': {'precision': 0.97222222222222, 'recall': 0.9859154929577465, 'f1-score': 0.9790209790209791,
# Compute ROC-AUC score
y_prob = lr.predict_proba(X_test_scaled)[:, 1]
roc_auc = roc_auc_score(y_test, y_prob)
# Display ROC curve
roc_display = RocCurveDisplay.from_estimator(lr, X_test_scaled, y_test)
₹
         1.0
      Frue Positive Rate (Positive label: 1)
         0.8
         0.6
         0.4
         0.2
                                LogisticRegression (AUC = 1.00)
         0.0
                                           0.6
             0.0
                       0.2
                                 0.4
                                                     0.8
                                                               1.0
                     False Positive Rate (Positive label: 1)
ra=roc_auc
```

```
print("ROC-AUC Score:", ra)
```

ROC-AUC Score: 0.99737962659679

5. Tune threshold and explain sigmoid function

```
import numpy as np
from sklearn.metrics import precision_score, recall_score, f1_score
```

```
# Get predicted probabilities for the positive class
y_prob = lr.predict_proba(X_test_scaled)[:, 1]
# Define thresholds to test
thresholds = [0.4, 0.5, 0.6]
results = []
# Evaluate performance at each threshold
for thresh in thresholds:
    y_pred_thresh = (y_prob >= thresh).astype(int)
    precision = precision_score(y_test, y_pred_thresh)
    recall = recall_score(y_test, y_pred_thresh)
    f1 = f1_score(y_test, y_pred_thresh)
    results.append((thresh, precision, recall, f1))
# Convert to DataFrame for display
results_df = pd.DataFrame(results, columns=["Threshold", "Precision", "Recall", "F1 Score"])
results_df
\rightarrow
         Threshold Precision
                                 Recall F1 Score
      0
               0.4 0.976744 0.976744 0.976744
      1
               0.5
                     0.976190 0.953488 0.964706
               0.6
                     1.000000 0.953488 0.976190
 Next steps: (
             Generate code with results_df

    ▼ View recommended plots

                                                                         New interactive sheet
Start coding or generate with AI.
Start coding or generate with AI.
Start coding or generate with AI.
```