Matrix Plots

Matrix plots allow you to plot data as color-encoded matrices.

```
In [1]: import seaborn as sns
         %matplotlib inline
In [2]: flights = sns.load_dataset('flights')
In [3]: tips = sns.load dataset('tips')
In [4]: tips.head()
Out[4]:
            total_bill
                            sex smoker day
                      tip
                                              time size
          0
               16.99 1.01
                         Female
                                    No Sun
                                             Dinner
                                                     2
               10.34 1.66
                           Male
                                    No Sun
                                             Dinner
                                                     3
               21.01 3.50
                                                     3
                                    No Sun Dinner
                           Male
               23.68 3.31
                                        Sun
                                             Dinner
                                                     2
                           Male
                                    No
               24.59 3.61 Female
                                    No Sun Dinner
                                                     4
In [5]: flights.head()
Out[5]:
             year
                   month passengers
          0 1949
                  January
                                112
          1 1949 February
                                118
          2 1949
                   March
                                132
          3 1949
                                129
                     April
          4 1949
                     May
                                121
```

Heatmap

In order for a heatmap to work properly, your data should already be in a matrix form

```
In [6]: # Matrix form for correlation data tips.corr()

Out[6]: total_bill tip size total_bill 1.000000 0.675734 0.598315 tip 0.675734 1.000000 0.489299 size 0.598315 0.489299 1.000000
```

```
In [7]: sns.heatmap(tips.corr())
```

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x1a221c26d0>

In [8]: sns.heatmap(tips.corr(),cmap='coolwarm',annot=True)

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x1a2318d5d0>

Or for the flights data:

```
In [9]: flights.pivot_table(values='passengers', index='month', columns='year')
```

Out[9]:

year	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960
month												
January	112	115	145	171	196	204	242	284	315	340	360	417
February	118	126	150	180	196	188	233	277	301	318	342	391
March	132	141	178	193	236	235	267	317	356	362	406	419
April	129	135	163	181	235	227	269	313	348	348	396	461
May	121	125	172	183	229	234	270	318	355	363	420	472
June	135	149	178	218	243	264	315	374	422	435	472	535
July	148	170	199	230	264	302	364	413	465	491	548	622
August	148	170	199	242	272	293	347	405	467	505	559	606
September	136	158	184	209	237	259	312	355	404	404	463	508
October	119	133	162	191	211	229	274	306	347	359	407	461
November	104	114	146	172	180	203	237	271	305	310	362	390
December	118	140	166	194	201	229	278	306	336	337	405	432

```
In [10]: pvflights = flights.pivot_table(values='passengers', index='month', columns='year')
sns.heatmap(pvflights)
```

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x1a232da550>


```
In [11]: sns.heatmap(pvflights, cmap='magma', linecolor='white', linewidths=1)
```

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x1a234394d0>

clustermap

The clustermap uses hierarchal clustering to produce a clustered version of the heatmap.

Out[12]: <seaborn.matrix.ClusterGrid at 0x1a23567cd0>

The years and months are no longer in order, but grouped by similarity in value. We can begin to infer things from this plot.

Out[13]: <seaborn.matrix.ClusterGrid at 0x1a239786d0>

Grids

Grids are general types of plots that allow you to map plot types to rows and columns of a grid, this helps you create similar plots separated by features.

```
In [1]:
         import seaborn as sns
         import matplotlib.pyplot as plt
         %matplotlib inline
In [2]: iris = sns.load dataset('iris')
In [3]: iris.head()
Out[3]:
            sepal_length sepal_width petal_length petal_width species
                    5.1
                               3.5
                                          1.4
                                                     0.2
          0
                                                          setosa
          1
                    4.9
                               3.0
                                                     0.2
                                          1.4
                                                          setosa
          2
                    4.7
                               3.2
                                          1.3
                                                     0.2
                                                          setosa
          3
                    4.6
                               3.1
                                          1.5
                                                     0.2
                                                          setosa
                    5.0
                               3.6
                                          1.4
                                                     0.2 setosa
          4
```

PairGrid

Pairgrid is a subplot grid for plotting pairwise relationships in a dataset.

Out[4]: <seaborn.axisgrid.PairGrid at 0x1a187ae650>

Out[5]: <seaborn.axisgrid.PairGrid at 0x1a19223cd0>


```
In [6]: # Map to upper,lower, and diagonal
    g = sns.PairGrid(iris)
    g.map_diag(plt.hist)
    g.map_upper(plt.scatter)
    g.map_lower(sns.kdeplot)
```

Out[6]: <seaborn.axisgrid.PairGrid at 0x1a19d24fd0>

PairPlot

pairplot is a simpler version of PairGrid

Out[7]: <seaborn.axisgrid.PairGrid at 0xlalaal19d0>

Out[8]: <seaborn.axisgrid.PairGrid at 0x1a1b4f2110>

Regression Plots

Implot allows you to display linear models, and it allows to split up those plots based off of features, as well as coloring the hue based off of features.

```
import seaborn as sns
In [1]:
          %matplotlib inline
In [2]: | tips = sns.load_dataset('tips')
In [3]: tips.head()
Out[3]:
             total bill
                       tip
                             sex smoker day
                                               time
                                                    size
                16.99
                     1.01
                10.34
                     1.66
                                                       3
                            Male
                                      No
                                         Sun
                                              Dinner
               21.01 3.50
                                        Sun
                            Male
                                     No
                                              Dinner
               23.68 3.31
                            Male
                                         Sun
                                              Dinner
                                     No
               24.59 3.61 Female
                                     No Sun Dinner
```

Implot()

```
In [4]: sns.lmplot(x='total_bill', y='tip', data=tips)
Out[4]: <seaborn.axisgrid.FacetGrid at 0x1a22b75150>
```



```
In [5]: sns.lmplot(x='total_bill', y='tip', data=tips, hue='sex')
```

Out[5]: <seaborn.axisgrid.FacetGrid at 0x1a23e6c3d0>

Using a Grid

```
In [7]: sns.lmplot(x='total_bill', y='tip', data=tips, col='sex')
```

Out[7]: <seaborn.axisgrid.FacetGrid at 0x1a2421e510>


```
In [8]: sns.lmplot(x="total_bill", y="tip", row="sex", col="time", data=tips)
 Out[8]: <seaborn.axisgrid.FacetGrid at 0x1a243d1610>
                             sex = Male | time = Lunch
                                                                            sex = Male | time = Dinner
             10
           ф
                            sex = Female | time = Lunch
                                                                           sex = Female | time = Dinner
             10
           ф
                                                         50
                                   total bill
                                                                                  total bill
In [10]: sns.lmplot(x='total_bill', y='tip', data=tips, col='day', hue='sex')
Out[10]: <seaborn.axisgrid.FacetGrid at 0x1a24f32e10>
```

Aspect and Size

Seaborn figures can have their size and aspect ratio adjusted with the **height** and **aspect** parameters:

Out[12]: <seaborn.axisgrid.FacetGrid at 0x1a25e66d10>

Style and Color

```
In [1]: import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
tips = sns.load_dataset('tips')
```

Styles

```
In [2]: sns.countplot(x='sex', data=tips)
```

Out[2]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1a504110>


```
In [3]: sns.set_style('white')
sns.countplot(x='sex',data=tips)
```

Out[3]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1b4484d0>

Female

Spine Removal

Male

Scale and Context

The set_context() allows you to override default parameters:

```
In [10]: sns.set_context('poster', font_scale=1)
sns.countplot(x='sex', data=tips, palette='coolwarm')
```

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1ba9bdd0>

Seaborn Exercises - Solutions

The Data

We will be working with a famous titanic data set for these exercises.

```
In [1]:
         import seaborn as sns
          import matplotlib.pyplot as plt
          %matplotlib inline
In [2]: sns.set_style('whitegrid')
In [3]: titanic = sns.load_dataset('titanic')
In [4]: titanic.head()
Out[4]:
             survived pclass
                                                       fare embarked class
                                                                              who adult_male deck embark_town
                                   age sibsp parch
                                                                                                               alive
                              sex
          0
                                   22.0
                                                     7.2500
                                                                   S
                                                                      Third
                                                                                              NaN
                                                                                                    Southampton
                             male
                                                                              man
                                                                                        True
                                                                                                                 no
                          1 female
                                   38.0
                                                   71.2833
                                                                   С
                                                                      First
                                                                            woman
                                                                                        False
                                                                                                С
                                                                                                      Cherbourg
                                                                                                                 yes
                                           0
                                                 0
                                                     7.9250
                                                                   S
                                                                      Third
          2
                          3 female
                                   26.0
                                                                            woman
                                                                                        False
                                                                                              NaN
                                                                                                    Southampton
                                                                                                                 yes
          3
                   1
                                   35.0
                                           1
                                                  0 53.1000
                                                                   S
                                                                      First woman
                                                                                        False
                                                                                                С
                                                                                                    Southampton
                            female
                                                                                                                 yes
                                                     8.0500
                   0
                          3
                              male 35.0
                                           0
                                                                   S
                                                                      Third
                                                                                        True
                                                                                             NaN
                                                                                                    Southampton
                                                                              man
                                                                                                                 no
```

Exercises

- · Recreate the plots below using the titanic dataframe.
- In order not to lose the plot image, code in the cell with # CODE HERE
- · The palettes are not important

```
In [5]: # CODE HERE
```

```
In [6]: sns.jointplot(x='fare', y='age', data=titanic)
```

Out[6]: <seaborn.axisgrid.JointGrid at 0x1a15de5850>


```
In [7]: # CODE HERE
```

```
In [8]: sns.distplot(titanic['fare'], bins=30, kde=False, color='red')
```

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x1a16979710>


```
In [9]: # CODE HERE
```

```
In [10]: sns.boxplot(x='class', y='age', data=titanic, palette='rainbow')
```

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x1a169aa410>


```
In [11]: # CODE HERE
In [12]: sns.swarmplot(x='class', y='age', data=titanic, palette='Set2')
Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x1a16b6f3d0>
             80
             70
             60
             50
           g 40
             30
             20
             10
              0
                      First
                                     dass
In [13]: # CODE HERE
In [14]: sns.countplot(x='sex', data=titanic)
Out[14]: <matplotlib.axes._subplots.AxesSubplot at 0x1a16bcbc50>
             500
             400
           300
Til 300
             200
             100
               0
                           male
                                                 female
                                       sex
          # CODE HERE
In [15]:
In [16]: sns.heatmap(titanic.corr(), cmap='coolwarm')
           plt.title('titanic.corr()')
Out[16]: Text(0.5, 1, 'titanic.corr()')
                                 titanic.corr()
                                                             1.0
             survived
                                                            - 0.8
              pclass
                                                            - 0.6
                age
                                                            - 0.4
               sibsp
                                                            - 0.2
               parch
                                                            - 0.0
                fare
```

- -0.2

adult_male alone

Pandas Built-in Data Visualization

In this lecture we will learn about pandas built-in capabilities for data visualization! It's built-off of matplotlib, but it baked into pandas for easier usage!

Imports

```
In [1]: import numpy as np
import pandas as pd
%matplotlib inline
```

The Data

There are some fake data csv files you can read in as dataframes:

Out[3]: <matplotlib.axes._subplots.AxesSubplot at 0x11ee9a5d0>

Add a style:

```
In [4]: import matplotlib.pyplot as plt
plt.style.use('ggplot')
In [5]: df1['A'].hist()
```

Out[5]: <matplotlib.axes._subplots.AxesSubplot at 0x11f8cc150>


```
In [6]: plt.style.use('bmh')
df1['A'].hist()
```

Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x11fa16910>


```
In [7]: plt.style.use('dark_background')
    df1['A'].hist()
```

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x11fb07090>


```
In [8]: plt.style.use('fivethirtyeight')
df1['A'].hist()
```

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x11fab7150>


```
In [9]: plt.style.use('ggplot')
```

Plot Types

There are several plot types built-in to pandas, most of them statistical plots by nature:

- df.plot.area
- df.plot.barh
- df.plot.density
- df.plot.hist
- df.plot.line
- df.plot.scatter
- df.plot.bar
- df.plot.box
- df.plot.hexbin
- df.plot.kde
- df.plot.pie

You can also just call df.plot(kind='hist')

Area

```
In [10]: df2.plot.area(alpha=0.4)
```

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x11fceaed0>

Barplots

```
In [11]: df2.head()
Out[11]:
```

	а	b	С	d
0	0.039762	0.218517	0.103423	0.957904
1	0.937288	0.041567	0.899125	0.977680
2	0.780504	0.008948	0.557808	0.797510
3	0.672717	0.247870	0.264071	0.444358
4	0.053829	0.520124	0.552264	0.190008

```
In [12]: df2.plot.bar()
```

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x11fe29690>


```
In [13]: df2.plot.bar(stacked=True)
```

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x11ff28050>

Histograms

```
In [14]: df1['A'].plot.hist(bins=50)
```

Out[14]: <matplotlib.axes._subplots.AxesSubplot at 0x120033ed0>

Scatter Plots

```
In [16]: df1.plot.scatter(x='A', y='B')
```

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x1203d4210>

- You can use c to color based off another column value
- · Use cmap to indicate colormap to use.
- For all the colormaps, check out: http://matplotlib.org/users/colormaps.html (http://matplotlib.org/users/colormaps.html)

```
In [17]: df1.plot.scatter(x='A', y='B', c='C', cmap='coolwarm')
```

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x11ff6dad0>

Or use s to indicate size based off another column. s parameter needs to be an array, not just the name of a column:

```
In [21]: df1.plot.scatter(x='A', y='B', s=df1['C']*100.0)
```

Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x1208a59d0>

BoxPlots

```
In [22]: df2.plot.box() # Can also pass a by= argument for groupby
```

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x1209c0410>

Hexagonal Bin Plot

Useful for Bivariate Data, alternative to scatterplot:

```
In [23]: df = pd.DataFrame(np.random.randn(1000, 2), columns=['a', 'b'])
df.plot.hexbin(x='a', y='b', gridsize=25, cmap='Oranges')
```

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x120aec610>

Kernel Density Estimation plot (KDE)

```
In [24]: df2['a'].plot.kde()
```

Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x120c233d0>

In [25]: df2.plot.density()

Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x12099cdd0>

Geographic Plotting with Geopandas

```
In [1]: #%pip install geopandas
         #%pip install descartes
         import matplotlib.pyplot as plt
         import geopandas as gpd
         import pandas as pd
         %matplotlib inline
In [2]: # https://ourworldindata.org/obesity
         df = pd.read_csv('overweight.csv')
         df.head()
Out[2]:
                Entity Code Year Share of adults that are overweight (%)
                       AFG 1975
         0 Afghanistan
                                                            5.3
         1 Afghanistan
                       AFG 1976
                                                            5.5
         2 Afghanistan
                       AFG 1977
                                                            5.7
         3 Afghanistan
                       AFG 1978
                                                            5.9
          4 Afghanistan
                       AFG 1979
                                                            6.1
In [3]: columns = list(df.columns)
         columns[3] = 'Overweight'
         df.columns = columns
         df.head()
Out[3]:
                Entity Code Year Overweight
         0 Afghanistan
                       AFG 1975
                                       5.3
         1 Afghanistan
                       AFG 1976
                       AFG 1977
         2 Afghanistan
                                       5.7
         3 Afghanistan
                       AFG 1978
                                       5.9
         4 Afghanistan
                       AFG 1979
                                       6.1
In [4]: | df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 8316 entries, 0 to 8315
         Data columns (total 4 columns):
         Entity
                        8316 non-null object
                        8022 non-null object
         Code
         Year
                        8316 non-null int64
         Overweight
                       8316 non-null float64
         dtypes: float64(1), int64(1), object(2)
         memory usage: 260.0+ KB
```

```
In [5]: shapefile = 'ne_110m_admin_0_countries/ne_110m_admin_0_countries.shp'
    gdf = gpd.read_file(shapefile)
    gdf.head(2)
```

Out[5]:

	featurecla	scalerank	LABELRANK	SOVEREIGNT	SOV_A3	ADM0_DIF	LEVEL	TYPE	ADMIN	ADM0_A3	 NAM
0	Admin-0 country	1	6	Fiji	FJI	0	2	Sovereign country	Fiji	FJI	
1	Admin-0 country	1	3	United Republic of Tanzania	TZA	0	2	Sovereign country	United Republic of Tanzania	TZA	 탄

2 rows × 95 columns

```
In [6]: gdf = gdf[['ADMIN', 'ADM0_A3', 'geometry']]
gdf.head()
```

Out[6]:

geometry	ADM0_A3	ADMIN	
MULTIPOLYGON (((180.00000 -16.06713, 180.00000	FJI	Fiji	0
POLYGON ((33.90371 -0.95000, 34.07262 -1.05982	TZA	United Republic of Tanzania	1
POLYGON ((-8.66559 27.65643, -8.66512 27.58948	SAH	Western Sahara	2
MULTIPOLYGON (((-122.84000 49.00000, -122.9742	CAN	Canada	3
MULTIPOLYGON (((-122.84000 49.00000, -120.0000	USA	United States of America	4

```
In [7]: df_2016 = df[df['Year'] == 2016]
```

In [8]: merged = gdf.merge(df_2016, left_on='ADMO_A3', right_on='Code')
 merged.head()

Out[8]:

	ADMIN	ADM0_A3	geometry	Entity	Code	Year	Overweight
0	Fiji	FJI	MULTIPOLYGON (((180.00000 -16.06713, 180.00000	Fiji	FJI	2016	63.4
1	United Republic of Tanzania	TZA	POLYGON ((33.90371 -0.95000, 34.07262 -1.05982	Tanzania	TZA	2016	24.5
2	Canada	CAN	MULTIPOLYGON (((-122.84000 49.00000, -122.9742	Canada	CAN	2016	67.5
3	United States of America	USA	MULTIPOLYGON (((-122.84000 49.00000, -120.0000	United States	USA	2016	70.2
4	Kazakhstan	KAZ	POLYGON ((87.35997 49.21498, 86.59878 48.54918	Kazakhstan	KAZ	2016	53.9

In [9]: merged.plot()

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x1199ea1d0>

In [10]: ax = merged.plot(column='Overweight', cmap='Blues', figsize=(20,6), legend=True)
 ax.set_title('Percentage of adults who are overweight (2016)')
 ax.set_axis_off()

London

Out[11]:

	Code	Area_name	Inner/_Outer_London	GLA_Population_Estimate_2017	GLA_Household_Estimate_2017	Inland_Area
0	E09000001	City of London	Inner London	8800	5326	
1	E09000002	Barking and Dagenham	Outer London	209000	78188	
2	E09000003	Barnet	Outer London	389600	151423	
3	E09000004	Bexley	Outer London	244300	97736	
4	E09000005	Brent	Outer London	332100	121048	

5 rows × 84 columns

Out[12]:

	NAME	GSS_CODE	HECTARES	NONLD_AREA	ONS_INNER	SUB_2009	SUB_2006	geometry
0	Kingston upon Thames	E09000021	3726.117	0.000	F	None	None	POLYGON ((516401.600 160201.800, 516407.300 16
1	Croydon	E09000008	8649.441	0.000	F	None	None	POLYGON ((535009.200 159504.700, 535005.500 15
2	Bromley	E09000006	15013.487	0.000	F	None	None	POLYGON ((540373.600 157530.400, 540361.200 15
3	Hounslow	E09000018	5658.541	60.755	F	None	None	POLYGON ((521975.800 178100.000, 521967.700 17
4	Ealing	E09000009	5554.428	0.000	F	None	None	POLYGON ((510253.500 182881.600, 510249.900 18

```
In [13]: london_gdf.plot()
```

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x1199e5650>


```
In [14]: merged = london_gdf.merge(london, left_on='GSS_CODE', right_on='Code')
    merged.head(2)
```

Out[14]:

	NAME	GSS_CODE	HECTARES	NONLD_AREA	ONS_INNER	SUB_2009	SUB_2006	geometry	Code	Area_nan
0	Kingston upon Thames	E09000021	3726.117	0.0	F	None	None	POLYGON ((516401.600 160201.800, 516407.300 16	E09000021	Kingsti upi Tham
1	Croydon	E09000008	8649.441	0.0	F	None	None	POLYGON ((535009.200 159504.700, 535005.500 15	E09000008	Croyd

2 rows × 92 columns

