MATH2111 Tutorial 4

QUAN Xueyang (xquan@connect.ust.hk)

T1A: Tue (18:00-18:50) 2465

T1B: Thu (18:00-18:50) 6591

1 Linear Independence

1. Definition (Linear Independence):

(a) An indexed set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is said to be **linearly independent** if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution.

(b) The set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is said to be **linearly dependent** if there exist weights c_1, \dots, c_p , not all zero, such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0}$$

2. Theorem (Linear Independence of Columns of Matrix):

The columns of a matrix A are linearly independent if and only if the equation $A\mathbf{x} = \mathbf{0}$ has **only** the trivial solution.

3. Theorem (Characterization of Linearly Dependent Sets):

An indexed set $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ of two or more vectors is linearly dependent iff at least one of the vectors in S is a linear combination of the others.

4. Theorem (Conditions For Linear Dependence):

- (a) If a set contains more vectors than the entries in each vector, then the set is linearly dependent. That is, any set $\{v_1, \ldots, v_p\}$ in \mathbb{R}^n is linearly dependent if p > n.
- (b) If a set $S = \{v_1, \dots, v_p\}$ in \mathbb{R}^n contains the zero vector, then the set is linearly dependent.

2 Transformations

1. **Definition (Transformation):**

A transformation (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n to a vector $T(\mathbf{x})$ in \mathbb{R}^m .

The set \mathbb{R}^n is called the domain of T, and \mathbb{R}^m is called the codomain of T.

The notation $T: \mathbb{R}^n \to \mathbb{R}^m$ indicates that the domain of T is \mathbb{R}^n and the codomain is \mathbb{R}^m .

For \mathbf{x} in \mathbb{R}^n , the vector $T(\mathbf{x})$ in \mathbb{R}^m is called the image of \mathbf{x} (under the action of T). The set of all images $T(\mathbf{x})$ is called the range of T.

3 Exercises

1(a). Express the general solutions of the following non-homogeneous systems in terms of the given particular solutions.

$$\begin{cases} x_1 + x_2 + 3x_3 + 4x_4 + 3x_5 = 5 \\ 2x_1 + 2x_2 + 2x_4 + 4x_5 = 4 \\ -x_1 - x_2 + x_3 - x_5 = -1 \end{cases}$$

 $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ is a solution of the above linear system.

1(b). Denote the coefficient matrix as A. Use as many columns of A as possible to construct a matrix B with the property that the equation Bx = 0 has only the trivial solution. (Solve Bx = 0 to verify your work.)

2. Find conditions on p and q such that the set of vectors

$$\left\{ \begin{bmatrix} 1\\2\\3\\0 \end{bmatrix}, \begin{bmatrix} 2\\5\\5\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\4\\p \end{bmatrix}, \begin{bmatrix} 3\\8\\9\\q \end{bmatrix} \right\}$$

is linearly independent.

3. Consider matrix A,

$$A = \left[\begin{array}{ccc|c} | & | & | & | \\ a_1 & a_2 & a_3 & a_4 \\ | & | & | & | \end{array} \right] = \left[\begin{array}{ccc|c} 1 & 2 & 1 & 3 \\ 2 & 5 & 2 & 8 \\ 3 & 5 & 4 & 9 \end{array} \right],$$

Find a vector which is in Span $\{a_1, a_2\}$ and also in Span $\{a_3, a_4\}$, or explain why such a vector cannot exist.

(Given
$$\begin{bmatrix} 3 \\ -2 \\ -2 \\ 1 \end{bmatrix}$$
 is a solution to $Ax = \mathbf{0}$.)

- 4. State whether each of the following statement is true or false. (If it is true, give a brief justification; if it is false, give a counterexample.)
- (a) If $A \begin{bmatrix} 4 \\ 0 \\ 2 \\ -3 \end{bmatrix} = \mathbf{0}$, then Ae_4 is a linear combination of the first three columns of A.
- (b) Let A be a 4×3 matrix with columns a_1 , a_2 , a_3 , and suppose b is a vector in \mathbb{R}^4 such that $\{a_1, a_2, a_3, b\}$ is linearly dependent. Then Ax = b has a solution.

5. Consider

$$F\left(\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right]\right) = \left[\begin{array}{c} x_1 + x_3 \\ 0 \\ 0 \\ 3x_1 - x_2 \end{array}\right]$$

- (a) What is the domain of F?
- (b) Find the image of $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ under F.