

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C07D 235/06, A61K 31/395, C07D 403/10, 471/04, 401/06, 209/08, 209/16, 401/12, 209/14, 231/12, 231/56		A1	(11) International Publication Number: WO 98/01428 (43) International Publication Date: 15 January 1998 (15.01.98)
(21) International Application Number: PCT/US97/11325 (22) International Filing Date: 30 June 1997 (30.06.97)		(74) Agent: VANCE, David, H.; The Du Pont Merck Pharmaceutical Company, Legal/Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).	
(30) Priority Data: 08/676,766 8 July 1996 (08.07.96) US 60/049,519 13 June 1997 (13.06.97) US		(81) Designated States: AM, AU, AZ, BR, BY, CA, CN, CZ, EE, HU, IL, JP, KG, KR, KZ, LT, LV, MD, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, UA, VN, Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(71) Applicant: THE DU PONT MERCK PHARMACEUTICAL COMPANY (US/US); 1007 Market Street, Wilmington, DE 19898 (US).		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(72) Inventors: DOMINGUEZ, Celia; 202 Sleepy Hollow Court, Newark, DE 19711 (US). HAN, Qi; 2609 Marhill Drive, Wilmington, DE 19810 (US). DUFFY, Daniel, Emmett; 42 Paschall Road, Wilmington, DE 19803 (US). PARK, Jeongsook, Maria; 241 Cornwell Drive, Bear, DE 19701 (US). QUAN, Mimi, Lifen; 113 Venus Drive, Newark, DE 19711 (US). ROSSI, Karen, Anita; Apartment D3, 5414 Valley Green, Wilmington, DE 19808 (US). WEXLER, Ruth, Richmond; 2205 Patwynn Road, Wilmington, DE 19810 (US).			
(54) Title: AMIDINOINDOLES, AMIDINOAZOLES, AND ANALOGS THEREOF AS INHIBITORS OF FACTOR Xa AND OF THROMBIN			
(57) Abstract The present application describes amidinoindoles, amidinoazoles, and analogs thereof of formula (I): wherein W, W ¹ , W ² , and W ³ are selected from CH and N, provided that one of W ¹ and W ² is C(C(=NH)NH ₂) and at most two of W, W ¹ , W ² , and W ³ are N and one of J ^a and J ^b is substituted by -(CH ₂) _n -Z-A-B, which are useful as inhibitors of factor Xa or thrombin.			
 (I)			
<input type="checkbox"/>			
Express Mail No. EF378134428US			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KR	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

TITLE

AMIDINOINDOLES, AMIDINOAZOLES, AND ANALOGS THEREOF AS INHIBITORS OF FACTOR Xa AND OF THROMBIN

5

FIELD OF THE INVENTION

This invention relates generally to amidinoindoles, amidinoazoles, and analogs which are inhibitors of trypsin-like serine protease enzymes, especially thrombin and factor Xa, pharmaceutical compositions containing the same, and methods of using the same as anticoagulant agents for treatment and prevention of thromboembolic disorders.

BACKGROUND OF THE INVENTION

EP 0,540,051 and JP 06227971 describe a series of compounds useful as factor Xa inhibitors or to treat influenza based on the formula:

wherein A is an alkylene linker optionally substituted by hydroxyalkyl, carboxyl, alkoxy carbonyl, alkoxy carbonyl alkyl, or carboxy alkyl, X is a bond, O, S, or carbonyl, n is 0-4, and Y is an optionally substituted carbocycle or heterocycle. The present invention does not involve compounds containing the above noted combination of A, X, n, and Y.

Tidwell et al, *Thrombosis Research* 1981, 24, 73-83, describe factor Xa inhibitory activity of a series of aromatic mono- and di-amidines. The amidino aromatic moieties are include indole, indoline, benzofuran and benzimidazole.

Tidwell et al, *J. Med. Chem.* 1983, 26, 294-298, report a series of amidinoindoles of the formula:

30

wherein one of R¹ and R² is amidine, X may be methyl or ethyl when Y and Z are H, Y may be C(O)CH₂CH₃ when X and Z are H, and

Z may be CHO, COCH₃, COCF₃, or C(O)Ph when X and Y are H.
 Thrombin inhibition constants are given for these compounds.
 EP 0,655,439 discuss IIb/IIIa antagonists of the formula:

wherein the core ring is a heterocycle, B is a basic group, A is an acidic group, R₁ is an optional substituent, R₂ is an optional substituent, and L_a and L_b are linkers which may optionally be substituted. The present invention does not contain the L_a-A group.

10 Fairley et al., *J. Med. Chem.* 1993, 36, 1746-1753, illustrate a series of bis(amidinobenzimidazoles) and bis(amidinoindoles) of the formulae:

15

20

wherein R is an amidine or derivative thereof and X is an alkylene, alkenylene, phenylene or phenylenedimethylene linker. The DNA binding capabilities of these compounds were studied and reported, but inhibition of trypsin-like enzymes was not discussed.

WO 95/08540 depicts bis(amidinobenzimidazolyl)alkanes of the formula:

25

wherein Z is an amidine derivative and R and R¹ are selected from a variety of substituents including hydroxyl, amino, and alkoxy. These compounds are said to be useful in the treatment of viruses, specifically HIV. No mention is made of Xa or thrombin inhibition.

30

Trypsin-like enzymes are a group of proteases which hydrolyzed peptide bonds at basic residues liberating either a C-terminal arginyl or lysyl residue. Among these are enzymes of the blood coagulation and fibrinolytic system required for

hemostasis. They are Factors II, X, VII, IX, XII, kallikrein, tissue plasminogen activators, urokinase-like plasminogen activator, and plasmin. Elevated levels of proteolysis by these proteases can result in disease states. For example, 5 consumptive coagulopathy, a condition marked by a decrease in the blood levels of enzymes of both the coagulation system, the fibrinolytic system and accompanying protease inhibitors is often fatal. More specifically, proteolysis by thrombin is required for blood clotting. Inhibition of thrombin results 10 in an effective inhibitor of blood clotting. The importance of an effective inhibitor of thrombin is underscored by the observation that conventional anticoagulants such as heparin (and its complex with the protein inhibitor, antithrombin III) are ineffective in blocking arterial thrombosis associated 15 with myocardial infarctions and other clotting disorders. However, a low molecular weight thrombin inhibitor, containing a different functionality, was effective in blocking arterial thrombosis (Hanson and Harker, *Proc. Natl. Acad. Sci. U.S.A.* 85, 3184 (1988)).

20 Activated factor Xa, whose major practical role is the generation of thrombin by the limited proteolysis of prothrombin, holds a central position that links the intrinsic and extrinsic activation mechanisms in the final common pathway of blood coagulation. The generation of thrombin, the 25 final serine protease in the pathway to generate a fibrin clot, from its precursor is amplified by formation of prothrombinase complex (factor Xa, factor V, Ca^{2+} and phospholipid). Since it is calculated that one molecule of factor Xa can generate 138 molecules of thrombin (Elodi, S., 30 Varadi, K.: *Optimization of conditions for the catalytic effect of the factor IXa-factor VIII Complex: Probable role of the complex in the amplification of blood coagulation.* *Thromb. Res.* 1979, 15, 617-629), inhibition of factor Xa may be more efficient than inactivation of thrombin in 35 interrupting the blood coagulation system.

Therefore, efficacious and specific inhibitors of factor Xa or thrombin are needed as potentially valuable therapeutic agents for the treatment of thromboembolic disorders. It is

thus desirable to discover new thrombin or factor Xa inhibitors.

SUMMARY OF THE INVENTION

5 Accordingly, one object of the present invention is to provide novel amidinoindoles and analogs thereof which are useful as factor Xa or thrombin inhibitors or pharmaceutically acceptable salts or prodrugs thereof.

10 It is another object of the present invention to provide pharmaceutical compositions comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of at least one of the compounds of the present invention or a pharmaceutically acceptable salt or prodrug form thereof.

15 It is another object of the present invention to provide a method for treating thromboembolic disorders comprising administering to a host in need of such treatment a therapeutically effective amount of at least one of the compounds of the present invention or a pharmaceutically acceptable salt or prodrug form thereof.

20 These and other objects, which will become apparent during the following detailed description, have been achieved by the inventors' discovery that compounds of formula (I):

I

25 or pharmaceutically acceptable salt or prodrug forms thereof, wherein D, D^a, J, J^a, J^b, W, W¹, W², and W³, are defined below, are effective factor Xa or thrombin inhibitors.

30 DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[1] Thus, in a first embodiment, the present invention provides a novel compound of formula I:

or stereoisomer or pharmaceutically acceptable salt form thereof wherein:

5

W and W³ are selected from CH and N;

W¹ and W² are selected from C, CH, and N;

10 provided that from 0-2 of W, W¹, W², and W³ are N;

one of D and D^a is selected from H, C₁₋₄ alkoxy, CN, C(=NR⁷)NR⁸R⁹, NHC(=NR⁷)NR⁸R⁹, NR⁸CH(=NR⁷), C(O)NR⁸R⁹, and (CH₂)_tNR⁸R⁹, and the other is absent;

15

provided that if one of D and D^a is H, then at least one of W, W¹, W², and W³ is N;

one of J^a and J^b is substituted by -(CH₂)_n-Z-A-B;

20

J, J^a, and J^b combine to form an aromatic heterocyclic system containing from 1-2 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R¹, provided that J^b can only be C or N;

25

J, J^a, and J^b can, alternatively, combine to form a heterocyclic ring wherein J^b is N and J and J^a are CH₂ substituted with 0-1 R¹;

30 J, J^a, and J^b can, alternatively, combine to form a heterocyclic ring wherein J^b is CH, J is NR¹ and J^a is CH₂ substituted with 0-1 R¹;

35 R¹ is selected from H, C₁₋₄ alkyl, (CH₂)_rOR³, (CH₂)_rNR³R^{3'}, (CH₂)_rC(=O)R², (CH₂)_r(CH=CH)(CH₂)_rC(=O)R², (CH₂)_rNR³C(=O)R², (CH₂)_rSO₂R⁴, (CH₂)_rNR³SO₂R⁴, and (CH₂)_r-

5-membered heterocyclic system having 1-4 heteroatoms selected from N, O, and S;

5 R² is selected from H, OR³, C₁₋₄ alkyl, NR³R^{3'}, CF₃, and C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶;

R³ and R^{3'} are independently selected from H, C₁₋₄ alkyl, and C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶;

10 R⁴ is selected from C₁₋₄ alkyl, NR³R^{3'}, and C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶;

Z is selected from CH=CH, CH((CH₂)_mQ(CH₂)_mR⁵),
 15 CH((CH₂)_mQ(CH₂)_mR⁵)C(O)NR³, CH((CH₂)_mC(O)(CH₂)_mR^{5a}),
 N((CH₂)_qQ(CH₂)_mR⁵), N(Q'(CH₂)_mR⁵),
 C(O)N((CH₂)_mQ'(CH₂)_mR^{5a}), C(O)(CH₂)_r, C(O)O(CH₂)_r,
 OC(O)(CH₂)_r, C(O)(CH₂)_rNR³(CH₂)_r, NR³C(O)(CH₂)_r,
 OC(O)NR³(CH₂)_r, NR³C(O)O(CH₂)_r, NR³C(O)NR³(CH₂)_r,
 20 S(O)_p(CH₂)_r, SO₂CH₂, SCH₂C(O)NR³, SO₂NR³(CH₂)_r,
 NR³SO₂(CH₂)_r, and NR³SO₂NR³(CH₂)_r;

Q is selected from a bond, O, NR³, C(O), C(O)NR³, NR³C(O), SO₂,
 NR³SO₂, and SO₂NR³;

25 Q' is selected from a bond, C(O), C(O)NR³, SO₂, and SO₂NR³;

30 R⁵ is selected from H, C₁₋₄ alkyl, C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶, and 5-10 membered heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶, provided that when Q is SO₂ or NR³SO₂, R⁵ is other than H and when Q' is SO₂, R⁵ is other than H;

35 R^{5a} is selected from NHR⁵, OR⁵, and R⁵;

A is selected from:

benzyl substituted with 0-2 R⁶,
 phenethyl substituted with 0-2 R⁶,

phenyl-CH= substituted with 0-2 R⁶,
C₃-10 carbocyclic residue substituted with 0-2 R⁶, and
5-10 membered heterocyclic system containing from 1-3
heteroatoms selected from the group consisting of N, O, and S
5 substituted with 0-2 R⁶;

B is selected from:

- X-Y, C₃-6 alkyl, NR³R^{3'}, C(=NR³)NR³R^{3'}, NR³C(=NR³)NR³R^{3'},
benzyl substituted with 0-2 R⁶,
10 C₃-10 carbocyclic residue substituted with 0-2 R⁶, and
5-10 membered heterocyclic system containing from 1-3
heteroatoms selected from the group consisting of N, O, and S
substituted with 0-2 R⁶;
15 A and B can, alternatively, combine to form a C₉-10 carbocyclic
residue substituted with 0-2 R⁶ or a 9-10 membered
heterocyclic system containing from 1-3 heteroatoms
selected from the group consisting of N, O, and S
substituted with 0-2 R⁶;

20 X is selected from C₁-4 alkylene, -C(O)-, -C(O)CR³R^{3'}-,
-CR³R^{3'}C(O), -S(O)_p-, -S(O)_pCR³R^{3'}-, -CR³R^{3'}S(O)_p-,
-S(O)₂NR³-, -NR³S(O)₂-, -C(O)NR³-, -NR³C(O)-, -NR³-,
-NR³CR³R^{3'}-, -CR³R^{3'}NR³-, O, -CR³R^{3'}O-, and -OCR³R^{3'}-;

25 Y is selected from:
C₃-10 carbocyclic residue substituted with 0-2 R⁶, and
5-10 membered heterocyclic system containing from 1-3
heteroatoms selected from the group consisting of N, O, and S
30 substituted with 0-2 R⁶;

35 R⁶ is selected from H, OH, (CH₂)_nOR³, halo, C₁-4 alkyl, CN, NO₂,
(CH₂)_rNR³R^{3'}, (CH₂)_rC(O)R³, NR³C(O)R^{3'}, NR³C(O)NR³R^{3'},
CH(=NH)NH₂, NHC(=NH)NH₂, SO₂NR³R^{3'}, CONHSO₂R⁴,
NR³SO₂NR³R^{3'}, NR³SO₂-C₁-4 alkyl, and (C₁-4 alkyl)-
tetrazolyl;

5 R⁷ is selected from H, OH, C₁₋₆ alkyl, C₁₋₆ alkylcarbonyl, C₁₋₆ alkoxy, C₁₋₄ alkoxycarbonyl, C₆₋₁₀ aryloxy, C₆₋₁₀ aryloxycarbonyl, C₆₋₁₀ arylmethylcarbonyl, C₁₋₄ alkylcarbonyloxy C₁₋₄ alkoxycarbonyl, C₆₋₁₀ arylcarbonyloxy C₁₋₄ alkoxycarbonyl, C₁₋₆ alkylaminocarbonyl, phenylaminocarbonyl, and phenyl C₁₋₄ alkoxycarbonyl;

10 R⁸ is selected from H, C₁₋₆ alkyl and (CH₂)_n-phenyl;

15 R⁹ is selected from H, C₁₋₆ alkyl and (CH₂)_n-phenyl;

n is selected from 0, 1, 2, 3, and 4;

15 m is selected from 0, 1, and 2;

p is selected from 0, 1, and 2;

q is selected from 1 and 2; and,

20 r is selected from 0, 1, 2, 3, and 4;

provided that:

25 (a) Z is other than CH₂; and,
 (b) if Z is CH((CH₂)_mQ(CH₂)_mR⁵) or CH((CH₂)_mC(O)(CH₂)_mR^{5a}),
 then B is other than X-Y, a C₃₋₁₀ carbocyclic residue or a 5-10
 membered heterocyclic system.

30 [2] In a preferred embodiment, the present invention provides
 compounds of formula II:

II

35 wherein: from 0-1 of W, W¹, W², and W³ are N;

5 R¹ is selected from H, C₁₋₄ alkyl, (CH₂)_rOR³, (CH₂)_rNR³R^{3'},
 (CH₂)_rC(=O)R², (CH₂)_rNR³C(=O)R², (CH₂)_rSO₂R⁴,
 (CH₂)_rNR³SO₂R⁴, and (CH₂)_r-5-membered heterocyclic system
 having 1-4 heteroatoms selected from N, O, and S;

10 R² is selected from H, OR³, C₁₋₄ alkyl, NR³R^{3'}, and CF₃;

15 R³ and R^{3'} are independently selected from H, C₁₋₄ alkyl, and
 phenyl;

20 R⁴ is selected from C₁₋₄ alkyl, phenyl and NR³R^{3'};

25 Z is selected from CH=CH, CH((CH₂)_mQ(CH₂)_mR⁵),
 CH((CH₂)_mQ(CH₂)_mR⁵)C(O)NR³, CH((CH₂)_mC(O)(CH₂)_mR^{5a}),
 N((CH₂)_qQ(CH₂)_mR⁵), N(Q'(CH₂)_mR⁵),
 C(O)N((CH₂)_mQ'(CH₂)_mR^{5a}), C(O), C(O)CH₂, C(O)O, OC(O),
 C(O)(CH₂)_rNR³(CH₂)_r, NR³C(O), OC(O)NR³, NR³C(O)O,
 NR³C(O)NR³, S(O)_p, SO₂CH₂, SO₂NR³, NR³SO₂, and NR³SO₂NR³;

20 B is selected from:
 X-Y, C₃₋₆ alkyl,
 benzyl substituted with 0-2 R⁶,
 C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶, and
 25 5-10 membered heterocyclic system containing from 1-3
 heteroatoms selected from the group consisting of N, O, and S
 substituted with 0-2 R⁶;

30 A and B can, alternatively, combine to form a C₉₋₁₀ carbocyclic
 residue substituted with 0-2 R⁶ or a 9-10 membered
 heterocyclic system containing from 1-3 heteroatoms
 selected from the group consisting of N, O, and S
 substituted with 0-2 R⁶; and,

35 R⁶ is selected from H, OH, (CH₂)_nOR³, halo, C₁₋₄ alkyl, CN, NO₂,
 (CH₂)_rNR³R^{3'}, (CH₂)_rC(O)R³, NR³C(O)R^{3'}, NR³C(O)NR³R^{3'},
 SO₂NR³R^{3'}, CONHSO₂R⁴, NR³SO₂NR³R^{3'}, NR³SO₂-C₁₋₄ alkyl and
 (C₁₋₄ alkyl)-tetrazolyl.

[3] In a more preferred embodiment, the present invention provides compounds of formula II, wherein:

5

J, J^a, and J^b combine to form an aromatic heterocyclic system containing from 1-2 nitrogen atoms, substituted with 0-1 R¹;

10 J, J^a, and J^b can, alternatively, combine to form a heterocyclic ring wherein J^b is N and J and J^a are CH₂ substituted with 0-1 R¹;

15 J, J^a, and J^b can, alternatively, combine to form a heterocyclic ring wherein J^b is CH, J is NR¹ and J^a is CH₂ substituted with 0-1 R¹;

20 R¹ is selected from H, C₁₋₄ alkyl, (CH₂)_rOR³, (CH₂)_rNR³R^{3'}, (CH₂)_rC(=O)R², (CH₂)_rNR³C(=O)R², (CH₂)_rSO₂R⁴, and (CH₂)_rNR³SO₂R⁴;

25 Z is selected from CH((CH₂)_mQ(CH₂)_mR⁵), CH((CH₂)_mQ(CH₂)_mR⁵)C(O)NR³, CH((CH₂)_mC(O)(CH₂)_mR^{5a}), N((CH₂)_qQ(CH₂)_mR⁵), N(Q'(CH₂)_mR⁵), C(O)N((CH₂)_mQ'(CH₂)_mR^{5a}), C(O), C(O)CH₂, C(O)(CH₂)_rNR³(CH₂)_r, NR³C(O), NR³C(O)NR³, S(O)₂, SO₂CH₂, SO₂NR³, NR³SO₂, and NR³SO₂NR³;

A is selected from:

30 benzyl substituted with 0-2 R⁶, C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶, and 5-10 membered heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶;

35

B is selected from:

X-Y, C₃₋₆ alkyl, benzyl substituted with 0-2 R⁶,

C₅₋₆ carbocyclic residue substituted with 0-2 R⁶, and 5-6 membered heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶;

5

X is selected from -C(O)-, -C(O)CR³R^{3'}-, -S(O)₂-, -S(O)_pCR³R^{3'}-, -S(O)₂NR³-, -C(O)NR³-, -NR³-, -NR³CR³R^{3'}-, and O;

Y is selected from:

10 C₅₋₆ carbocyclic residue substituted with 0-2 R⁶, and 5-6 membered heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶;

15 R⁶ is selected from H, OH, (CH₂)_nOR³, halo, C₁₋₄ alkyl, CN, NO₂, (CH₂)_rNR³R^{3'}, (CH₂)_rC(O)R³, NR³C(O)R^{3'}, NR³C(O)NR³R^{3'}, SO₂NR³R^{3'}, CONHSO₂R⁴, NR³SO₂NR³R^{3'}, NR³SO₂-C₁₋₄ alkyl and (C₁₋₄ alkyl)-tetrazolyl;

20 n is selected from 0, 1, and 2; and,

r is selected from 0, 1, and 2.

25 [4] In an even more preferred embodiment, the present invention provides compounds of formula II:

30 wherein:

J and J^b combine to form an aromatic heterocyclic system containing from 1-2 nitrogen atoms, substituted with 0-1 R¹;

35

J and J^b can, alternatively, form a heterocyclic ring wherein
J^b is N and J is CH₂ substituted with 0-1 R¹;

5 J and J^b can, alternatively, form a heterocyclic ring wherein
J^b is CH and J is NR¹;

Z is selected from C(O)N(Q'R^{5a}), C(O), C(O)NR³, NR³C(O), and
SO₂NR³;

10 Q' is selected from C(O) and C(O)NR³;

R⁵ is selected from H and C₁₋₄ alkyl;

15 R^{5a} is selected from NHR⁵, OR⁵, and R⁵;

A is selected from:
benzyl substituted with 0-1 R⁶,

phenyl substituted with 0-1 R⁶,

piperidinyl substituted with 0-1 R⁶,

20 piperazinyl substituted with 0-1 R⁶, and
pyridyl substituted with 0-1 R⁶;

B is selected from:

X-Y,

25 benzyl substituted with 0-1 R⁶,
phenyl substituted with 0-2 R⁶,
cyclohexyl substituted with 0-1 R⁶, and
pyridyl substituted with 0-1 R⁶;

30 X is selected from: -C(O)-, -S(O)₂-, SO₂CH₂, -S(O)₂NR³-, -NR³-
and -C(O)NR³-;

Y is selected from:

phenyl substituted with 0-2 R⁶, and

35 pyridyl substituted with 0-1 R⁶;

R⁶ is selected from H, OH, (CH₂)_nOR³, halo, C₁₋₄ alkyl, CN, NO₂,
(CH₂)_rNR³R^{3'}, (CH₂)_rC(O)R³, NR³C(O)R^{3'}, NR³C(O)NR³R^{3'},

$\text{SO}_2\text{NR}^3\text{R}^3'$, $\text{CONHSO}_2\text{R}^4$, $\text{NR}^3\text{SO}_2\text{NR}^3\text{R}^3'$, $\text{NR}^3\text{SO}_2\text{-C}_{1-4}$ alkyl and (C_{1-4} alkyl)-tetrazolyl;

n is selected from 0, 1, and 2.

5

[5] In a further preferred embodiment, the present invention provides compounds of formula IV:

10

IV

wherein A, B, D, and Z are as defined above.

15 [6] In a still further preferred embodiment, the present invention provides compounds selected from:

3-((4-cyclohexyl)phenylaminomethylcarbonyl)methyl-5-amidinoindole

20

3-(4-p-toluenesulfonyl-piperazinecarbonyl)methyl-5-amidinoindole

25

3-(4-(2-aminosulfonylphenyl)pyridine-2-aminocarbonyl)methyl-5-amidinoindole;

3-(4-[2-tetrazole]phenyl)phenylaminocarbonyl)methyl-5-amidinoindole;

30 3-(4-biphenylaminocarbonyl)methyl-5-amidinoindole;

3-(4-(phenylmethylsulfonyl)piperazinecarbonyl)methyl-5-amidinoindole;

35 3-(4-cyclohexylphenylaminocarbonyl)methyl-5-amidinoindole;

- 3-(4-benzylpiperazinecarbonyl)methyl-5-amidinoindole;
- 3-(3-amidinobenzylamino(methylcarbonylmethoxy)carbonyl)methyl-
5-amidinoindole;
- 3-(4-(2-aminosulfonyl)phenyl)phenylaminocarbonylmethyl-5-
amidinoindole;
- 10 3-(1-benzylpiperidine-4-aminocarbonyl)methyl-5-amidinoindole;
- 3-(4-phenylpiperazinecarbonyl)methyl-5-amidinoindole;
- 3-(4-benzylpiperidinecarbonyl)methyl-5-amidinoindole;
- 15 3-(2-bromo-4-(2-
aminosulfonyl)phenylphenylaminocarbonyl)methyl-5-
cyanoindole;
- 20 3-(2-methyl-4-(2-
aminosulfonyl)phenylphenylaminocarbonyl)methyl-5-
methylamino indole;
- 25 3-(2-fluoro-4-(2-
aminosulfonyl)phenylphenylaminocarbonyl)methyl-5-
amidnoindole;
- 30 3-(2-chloro-4-(2-
aminosulfonyl)phenylphenylaminocarbonyl)methyl-5-
cyanoindole;
- 3-(2-iodo-4-(2-aminosulfonyl)phenylphenylaminocarbonyl)methyl-
5-cyanoindole;
- 35 3-(2-methyl-4-(2-
aminosulfonyl)phenylphenylaminocarbonyl)methyl-5-
amidinoindole;

- 3-(2-methyl-4-(2-(*t*-butylaminosulfonyl)phenyl)phenylaminocarbonylmethyl-5-amidinoindole;
- 5 3-(4-(2-aminosulfonyl)phenyl)phenylaminocarbonylmethyl- α -(methylcarboxy methyl ether)-5-amidinoindole;
- 10 3-(4-(2-aminosulfonyl)phenyl)phenylaminocarbonylmethyl- α -(benzyl)-5-amidinoindole;
- 15 3-(4-(2-trifluoromethyl)phenyl)pyrid-2-ylaminocarbonylmethyl-5-amidinoindole;
- 3-(4-(2-ethylaminosulfonyl)phenyl)phenylaminocarbonylmethyl-5-amidinoindole;
- 20 2-methyl-3-(2-iodo-4-(2-aminosulfonyl)phenyl)phenyl)aminocarbonylmethyl-5-amidinoindole;
- 25 2-methyl-3-(4-(2-aminosulfonyl)phenyl)phenyl)aminocarbonylmethyl-5-amidinoindole;
- 30 3-(4-(2-aminosulfonyl)phenyl)phenyl)-N-methylaminocarbonylmethyl-5-amidinoindole;
- 35 2-methyl-3-(4-(2-*t*-butylaminosulfonyl)phenyl)phenyl)aminocarbonylmethyl-5-methoxyindole; and,
- 35 3-(4-(2-N-methylaminosulfonyl)phenyl)phenyl)-N-methylaminocarbonylmethyl-5-amidinoindole;

or a stereoisomer or pharmaceutically acceptable salt form thereof.

5 [7] In another further preferred embodiment, the present invention provides compounds of formula IVa:

10 wherein A, B, D, and Z are as defined above.

[8] In another still further preferred embodiment, the present invention provides compounds selected from:

15

3-{4-(2-(n-
butylaminosulfonyl)phenylphenylaminocarbonyl)methyl-5-
cyanoindoline;

20 3-{4-(2-(n-

propylaminosulfonyl)phenylphenylaminocarbonyl)methyl-5-
amidinoindoline;

(-)-3-{4-(2-aminosulfonyl)phenyl}pyrid-2-

25 ylaminocarbonylmethyl-5-amidinoindoline;

3-{4-(2-aminosulfonyl)phenyl}pyrid-2-ylaminocarbonylmethyl-5-
amidinoindoline;

30 3-{4-(2-

dimethylaminosulfonyl)phenyl)phenylaminocarbonylmethyl-5-
amidinoindoline;

(+)-3-{4-(2-t-butylaminosulfonyl)phenyl}pyrid-2-

35 ylaminocarbonylmethyl-5-amidinoindoline;

(--)-3-{4-(2-t-butylaminosulfonyl)phenyl}pyrid-2-ylaminocarbonylmethyl-5-amidinoindoline;

5 3-(4-(2-aminosulfonyl)phenyl)pyrid-2-ylaminocarbonylmethyl-5-aminocarboxyindoline;

3-(4-(2-t-butylaminosulfonyl)phenyl)phenyl}aminocarbonylmethyl-5-
10 amidinoindoline; and,

3-{4-(2-t-butylaminosulfonyl)phenyl}pyrid-2-ylaminocarbonylmethyl-5-amidinoindoline;

15 or a stereoisomer or pharmaceutically acceptable salt form thereof.

[9] In another further preferred embodiment, the present
20 invention provides compounds of formula IVb:

IVb

wherein A, B, D, and Z are as defined above.

25

[10] In another still further preferred embodiment, the present invention provides compounds selected from:

30 3-(4-(2-aminosulfonyl)phenyl)pyrid-2-ylaminocarbonylmethyl-6-amidinoindazole;

3-(4-(2-aminosulfonyl)phenyl)phenyl aminocarbonylmethyl-6-amidinoindazole;

35

3-(4-(2-t-butyl aminosulfonyl)phenyl)pyrid-2-ylaminocarbonylmethyl-6-amidinoindazole; and,

5 3-(4-(2-t-butylaminosulfonyl)phenyl)phenyl aminocarbonylmethyl-6-amidinoindazole;

or a stereoisomer or pharmaceutically acceptable salt form thereof.

10

[11] In another further preferred embodiment, the present invention provides compounds of formula IVc:

15

IVc

wherein D, D^a, Z, A, and B are as defined above.

[12] In another still further preferred embodiment, the
20 present invention provides compounds selected from:

[4-(phenyl)phenylcarbonyl)methyl-6-amidinobenzimidazole;

[4-(phenyl)phenylcarbonyl)methyl-5-amidinobenzimidazole;

25

[4-(3-aminophenyl)phenylcarbonyl)methyl-6-
amidinobenzimidazole;

30

[4-(3-aminophenyl)phenylcarbonyl)methyl-5-
amidinobenzimidazole;

[4-(4-fluorophenyl)phenylcarbonyl)methyl-6-
amidinobenzimidazole;

[4-(4-formylphenyl)phenylcarbonyl]methyl-6-amidinobenzimidazole;

5 [4-(2-aminosulfonylphenyl)phenylcarbonyl]methyl-6-amidinobenzimidazole;

[4-(2-tert-butylaminosulfonylphenyl)phenylcarbonyl]methyl-6-amidinobenzimidazole;

10 (4-[(2-tetrazolyl)phenyl]phenylcarbonyl)methyl-6-amidinobenzimidazole;

[4-(2-aminosulfonylphenyl)phenylaminocarbonyl]methyl-6-amidinobenzimidazole;

15 [4-(2-aminosulfonylphenyl)phenylaminocarbonyl]methyl-5-amidinobenzimidazole;

20 1-(4-benzylpiperidinecarbonyl)methyl-6-amidinobenzimidazole;

1-(4-benzylpiperidinecarbonyl)methyl-5-amidinobenzimidazole;

1-(4-benzylpiperidinecarbonyl)methyl-6-amidinobenzimidazole;

25 2-[4-(2-aminosulfonylphenyl)phenylcarbonyl]methyl-6-amidinobenzimidazole;

2-[4-(2-tert-butylaminosulfonylphenyl)phenylcarbonyl]methyl-5-azabenzimidazole;

30 2S-[4-(2-tert-aminosulfonylphenyl)phenylaminocarbonyl]methyl-thio-1H-imidazo(4,5-C) pyridine; and,

35 2S-[4-(2-aminosulfonylphenyl)phenylaminocarbonyl]methyl-thio-1H-imidazo(4,5-C) pyridine;

or a stereoisomer or pharmaceutically acceptable salt form thereof.

[13] In a preferred embodiment, the present invention provides compounds of formula V:

5

wherein one of R and R^a is -(CH₂)_n-Z-A-B and the other H;

10 W, W², and W³ are selected from CH and N, provided that at most one of W, W², and W³ can be N;

J is selected from N and C-R¹;

15 R¹ is selected from H, O, (CH₂)_rOR³, (CH₂)_rC(=O)R², (CH=CH)C(=O)R², (CH₂)_rNR³C(=O)R², (CH₂)_rSO₂R⁴, (CH₂)_rNR³SO₂R⁴, and (CH₂)_r-5-membered heterocyclic system having 1-4 heteroatoms selected from N, O, and S;

20 R² is selected from H, OR³, C₁₋₄ alkyl, NR³R^{3'}, CF₃, and C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶;

R³ and R^{3'} are independently selected from H, C₁₋₄ alkyl, and C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶;

25

R⁴ is selected from OR³, C₁₋₄ alkyl, NR³R^{3'}, and C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶;

Z is selected from CH=CH, CH(CH₂)_mQ(CH₂)_mR⁵,

30 CH((CH₂)_mQ(CH₂)_mR⁵)C(O)NR³, CH(CH₂)_mC(O)(CH₂)_mR^{5a}, N(CH₂)_qQ(CH₂)_mR⁵, NQ'(CH₂)_mR⁵, C(O)N((CH₂)_mQ'(CH₂)_mR^{5a}), C(O), C(O)CH₂, C(O)O, OC(O), C(O)NR³(CH₂)_r, NR³C(O), OC(O)NR³, NR³C(O)O, NR³C(O)NR³, S(O)_p, SO₂CH₂, SO₂NR³, NR³SO₂, and NR³SO₂NR³;

35

Q is selected from a bond, O, NR³, C(O), C(O)NR³, NR³C(O), SO₂, NR³SO₂, and SO₂NR³;

5 Q' is selected from a bond, C(O), C(O)NR³, SO₂, and SO₂NR³;

10 R⁵ is selected from H, C₁₋₄ alkyl, C₃₋₈ carbocyclic residue substituted with 0-2 R⁶, and 5-10 membered heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶, provided that when Q is SO₂ or NR³SO₂, R⁵ is other than H and when Q' is SO₂, R⁵ is other than H;

15 R^{5a} is selected from NHR⁵, OR⁵, and R⁵;

15 A is selected from:

benzyl substituted with 0-2 R⁶,
 C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶, and
 5-10 membered heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶;

B is selected from:

25 H, X-Y, NR³R^{3'}, C(=NR³)NR³R^{3'}, NR³C(=NR³)NR³R^{3'}, benzyl substituted with 0-2 R⁶,
 C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶, and 5-10 membered heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶;

30 X is selected from C₁₋₄ alkylene, -C(O)-, -C(O)CR³R^{3'}-,
 -CR³R^{3'}C(O), -S(O)_p-, -S(O)_pCR³R^{3'}-, -CR³R^{3'}S(O)_p-,
 -S(O)₂NR³-, -NR³S(O)₂-, -C(O)NR³-, -NR³C(O)-, -NR³-,
 -NR³CR³R^{3'}-, -CR³R^{3'}NR³-, O, -CR³R^{3'}O-, and -OCR³R^{3'}-;

35 Y is selected from:

C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶, and

5-10 membered heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶;

5 R⁶ is selected from H, OH, (CH₂)_nOR³, halo, C₁₋₄ alkyl, CN, NO₂, (CH₂)_rNR³R^{3'}, (CH₂)_rC(O)R³, NR³C(O)R^{3'}, NR³C(O)NR³R^{3'}, CH(=NH)NH₂, NHC(=NH)NH₂, C(=O)R³, SO₂NR³R^{3'}, NR³SO₂NR³R^{3'}, and NR³SO₂-C₁₋₄ alkyl;

10 n is selected from 0, 1, 2, 3, and 4;

m is selected from 0, 1, and 2;

p is selected from 0, 1, and 2;

15 q is selected from 1 and 2; and,

r is selected from 0, 1, 2, 3, and 4.

20

[14] In another more preferred embodiment, the present invention provides compounds of formula VI:

VI

wherein one of R and R^a is -(CH₂)_n-Z-A-B and the other H;

W and W² are selected from CH and N, provided that at most one of W and W² can be N;

30

J is selected from N and C-R¹;

R¹ is selected from H, (CH₂)_rOR³, (CH₂)_rC(=O)R², (CH₂)_rNR³C(=O)R², (CH=CH)C(=O)R², (CH₂)_rSO₂R⁴, and (CH₂)_rNR³SO₂R⁴;

R² is selected from H, OR³, C₁₋₄ alkyl, NR³R^{3'}, and CF₃;

5 R³ and R^{3'} are independently selected from H, C₁₋₄ alkyl, and phenyl;

R⁴ is selected from OR³, C₁₋₄ alkyl, NR³R^{3'}, and phenyl;

10 Z is selected from C(O), C(O)CH₂, C(O)NR³, NR³C(O), S(O)₂, SO₂CH₂, SO₂NR³, NR³SO₂, and NR³SO₂NR³;

A is selected from:

15 C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶, and 5-10 membered heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶;

B is selected from:

20 X-Y,
C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶, and 5-10 membered heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶;

25 X is selected from -C(O)-, -C(O)CR³R^{3'}-, -CR³R^{3'}C(O), -S(O)_p-, -S(O)_pCR³R^{3'}-, -CR³R^{3'}S(O)_p-, -S(O)₂NR³-, -NR³S(O)₂-, -C(O)NR³-, -NR³-, -NR³CR³R^{3'}-, and -CR³R^{3'}NR³-;

Y is selected from:

30 C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶, and 5-10 membered heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶;

35 R⁶ is selected from H, OH, (CH₂)_nOR³, halo, C₁₋₄ alkyl, CN, NO₂, (CH₂)_rNR³R^{3'}, (CH₂)_rC(O)R³, NR³C(O)R^{3'}, NR³C(O)NR³R^{3'}, C(=O)R³, SO₂NR³R^{3'}, NR³SO₂NR³R^{3'}, and NR³SO₂-C₁₋₄ alkyl;

n is selected from 0, 1, 2, 3, and 4;

p is selected from 0, 1, and 2; and,

5 r is selected from 0, 1, 2, 3, and 4.

[15] In another even more preferred embodiment, the present invention provides compounds of formula VII:

10

VII

wherein, W and W² are selected from CH and N, provided that at most one of W and W² can be N;

15

R¹ is selected from H, (CH₂)_rOR³, (CH₂)_rC(=O)R², (CH₂)_rNR³C(=O)R², (CH=CH)C(=O)R², (CH₂)_rSO₂R⁴, and (CH₂)_rNR³SO₂R⁴;

20 R² is selected from H, OR³, C₁₋₄ alkyl, NR³R^{3'}, and CF₃;

R³ and R^{3'} are independently selected from H, C₁₋₄ alkyl, and phenyl;

25 R⁴ is selected from OR³, C₁₋₄ alkyl, NR³R^{3'}, and phenyl;

Z is selected from C(O), C(O)CH₂, C(O)NR³, S(O)₂, SO₂CH₂, SO₂NR³, and NR³SO₂NR³;

30 A is selected from:

C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶, and 5-10 membered heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶;

B is selected from:

X-Y,

5 C₃-10 carbocyclic residue substituted with 0-2 R⁶, and
5-10 membered heterocyclic system containing from 1-3
heteroatoms selected from the group consisting of N, O, and S
substituted with 0-2 R⁶;

10 X is selected from -S(O)_p-, -S(O)_pCR³R³'-, -CR³R³'S(O)_p-,
-S(O)₂NR³-, -NR³S(O)₂-, and -C(O)NR³-;

Y is selected from:

15 C₃-10 carbocyclic residue substituted with 0-2 R⁶, and
5-10 membered heterocyclic system containing from 1-3
heteroatoms selected from the group consisting of N, O, and S
substituted with 0-2 R⁶;

20 R⁶ is selected from H, OH, (CH₂)_nOR³, halo, C₁₋₄ alkyl, CN, NO₂,
(CH₂)_rNR³R³', (CH₂)_rC(O)R³, NR³C(O)R³', NR³C(O)NR³R³',
C(=O)R³, SO₂NR³R³', NR³SO₂NR³R³', and NR³SO₂-C₁₋₄ alkyl;

n is selected from 0, 1, 2, 3, and 4;

25 p is selected from 0, 1, and 2; and,

r is selected from 0, 1, 2, 3, and 4.

30 [16] In another further preferred embodiment, the present
invention provides compounds selected from:

1-(4-benzylpiperidinecarbonyl)methyl-5-amidinoindole;

35 1-(4-benzylpiperidinecarbonyl)ethyl-5-amidinoindole;

1-(4-(3-fluoro)benzylpiperidinecarbonyl)methyl-5-
amidinoindole;

1-(1-(4-amidino)benzyl-N-(methylacetate)aminocarbonyl)methyl-5-amidinoindole;

5 methyl 1-(4-benzylpiperidinecarbonyl)methyl-5-amidinoindole-3-propanoate;

1-(4-benzylpiperidinecarbonyl)methyl-(3-ethanehydroxyl)-5-amidinoindole;

10 1-(4-benzylpiperidine-1-carbonyl)methyl-3-methylcarboxylic acid-5-amidinoindole;

1-(1-benzylpiperidine-4-aminocarbonyl)methyl-5-amidinoindole;

15 1-(4-benzoylpiperidinecarbonyl)methyl-5-amidinoindole;

1-(4-(3-fluoro)benzylpiperazinecarbonyl)methyl-5-amidinoindole;

20 1-(4-phenylbenzylaminocarbonyl)methyl-5-amidinoindole;

methyl 1-(4-benzylpiperidinecarbonyl)methyl-5-amidinoindole-3-propenoate; and,

25 1-(4-(2-fluoro)benzylpiperidinecarbonyl)methyl-5-amidinoindole;

or a stereoisomer or pharmaceutically acceptable salt form thereof.

30

In a second embodiment, the present invention provides novel pharmaceutical compositions, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt or prodrug form thereof.

In a third embodiment, the present invention provides a novel method for treating or preventing a thromboembolic disorder, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt or prodrug form thereof.

DEFINITIONS

The compounds herein described may have asymmetric centers. Compounds of the present invention containing an asymmetrically substituted atom may be isolated in optically active or racemic forms. It is well known in the art how to prepare optically active forms, such as by resolution of racemic forms or by synthesis from optically active starting materials. Many geometric isomers of olefins, C=N double bonds, and the like can also be present in the compounds described herein, and all such stable isomers are contemplated in the present invention. Cis and trans geometric isomers of the compounds of the present invention are described and may be isolated as a mixture of isomers or as separated isomeric forms. All chiral, diastereomeric, racemic forms and all geometric isomeric forms of a structure are intended, unless the specific stereochemistry or isomeric form is specifically indicated.

When any variable (e.g., R⁶) occurs more than one time in any constituent or formula for a compound, its definition on each occurrence is independent of its definition at every other occurrence. Thus, for example, if a group is shown to be substituted with 0-2 R⁶, then said group may optionally be substituted with up to two R⁶ and R⁶ at each occurrence is selected independently from the defined list of possible R⁶. Also, combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.

As used herein, "C₁₋₄ alkyl" is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms, examples of which include, but are not limited to, methyl, ethyl,

n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, and t-butyl; "Alkenyl" is intended to include hydrocarbon chains of either a straight or branched configuration and one or more unsaturated carbon-carbon bonds which may occur in any stable 5 point along the chain, such as ethenyl, propenyl, and the like.

"Halo" or "halogen" as used herein refers to fluoro, chloro, bromo, and iodo; and "counterion" is used to represent a small, negatively charged species such as chloride, bromide, 10 hydroxide, acetate, sulfate, and the like.

As used herein, "carbocycle" or "carbocyclic residue" is intended to mean any stable 3- to 7-membered monocyclic or bicyclic or 7- to 10-membered bicyclic or tricyclic, any of which may be saturated, partially unsaturated, or aromatic. 15 Examples of such carbocycles include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0]bicyclooctane, [4.3.0]bicyclononane, [4.4.0]bicyclodecane (decalin), [2.2.2]bicyclooctane, phenyl, naphthyl, indanyl, adamantyl, or 20 tetrahydronaphthyl (tetralin).

As used herein, the term "heterocycle" or "heterocyclic system" is intended to mean a stable 5- to 7- membered monocyclic or bicyclic or 7- to 10-membered bicyclic heterocyclic ring which is saturated partially unsaturated or 25 unsaturated (aromatic), and which consists of carbon atoms and from 1 to 4 heteroatoms independently selected from the group consisting of N, O and S and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring. The nitrogen and sulfur heteroatoms may 30 optionally be oxidized. The heterocyclic ring may be attached to its pendant group at any heteroatom or carbon atom which results in a stable structure. The heterocyclic rings described herein may be substituted on carbon or on a nitrogen atom if the resulting compound is stable. If specifically 35 noted, a nitrogen in the heterocycle may optionally be quaternized. It is preferred that when the total number of S and O atoms in the heterocycle exceeds 1, then these heteroatoms are not adjacent to one another.

As used herein, the term "aromatic heterocyclic system" is intended to mean a stable 5- to 7- membered monocyclic or bicyclic or 7- to 10-membered bicyclic heterocyclic ring which consists of carbon atoms and from 1 to 4 heterotams

- 5 independently selected from the group consisting of N, O and S. It is preferred that the total number of S and O atoms in the aromatic heterocycle is not more than 1.

Examples of heterocycles include, but are not limited to, 1H-indazole, 2-pyrrolidonyl, 2H,6H-1,5,2-dithiazinyl, 2H-pyrrolyl, 3H-indolyl, 4-piperidonyl, 4aH-carbazole, 4H-quinolizinyl, 6H-1,2,5-thiadiazinyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiophenyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazalonyl, carbazolyl, 4aH-carbazolyl, β -carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H,6H-1,5,2-dithiazinyl, dihydrofuro[2,3-*b*]tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, isobenzofuranyl, isochromanyl, isoindolinyl, isoindolyl, 20 isoquinolinyl (benzimidazolyl), isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxazolidinyl, oxazolyl, oxazolidinylperimidinyl, phenanthridinyl, phenanthrolinyl, phenarsazinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, 25 piperazinyl, piperidinyl, pteridinyl, 4-piperidonyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, pyrrolyl, quinazolinyl, 30 quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, carbolinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 6H-1,2,5-thiadiazinyl, thianthrenyl, thiazolyl, thienyl, thienothiazole, thienooxazole, thienoimidazole, thiophenyl, triazinyl, xanthenyl. Preferred 35 heterocycles include, but are not limited to, pyridinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, indolyl, benzimidazolyl, 1H-indazolyl, oxazolidinyl, benztriazolyl, benzisoxazolyl, oxindolyl, benzoxazolinyl, or isatinoyl. Also

included are fused ring and spiro compounds containing, for example, the above heterocycles.

When a bond to a substituent is shown to cross the bond connecting two atoms in a ring, then such substituent may be bonded to any atom on the ring. When a substituent is listed without indicating the atom via which such substituent is bonded to the rest of the compound of a given formula, then such substituent may be bonded via any atom in such substituent. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.

The term "substituted", as used herein, means that any one or more hydrogens on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency is not exceeded, and that the substitution results in a stable compound. When a substituent is keto (i.e., =O), then 2 hydrogens on the atom are replaced.

As used herein, "pharmaceutically acceptable salts" refer to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts thereof. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. The pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. For example, such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, and the like.

The pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting 5 the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of 10 suitable salts are found in *Remington's Pharmaceutical Sciences*, 17th ed., Mack Publishing Company, Easton, PA, 1985, p. 1418, the disclosure of which is hereby incorporated by reference.

The phrase "pharmaceutically acceptable" is employed 15 herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or 20 complication, commensurate with a reasonable benefit/risk ratio.

"Prodrugs" are intended to include any covalently bonded carriers which release the active parent drug according to formula (I) *in vivo* when such prodrug is administered to a 25 mammalian subject. Prodrugs of a compound of formula (I) are prepared by modifying functional groups present in the compound in such a way that the modifications are cleaved, either in routine manipulation or *in vivo*, to the parent compound. Prodrugs include compounds of formula (I) wherein a 30 hydroxy, amino, or sulfhydryl group is bonded to any group that, when the prodrug or compound of formula (I) is administered to a mammalian subject, cleaves to form a free hydroxyl, free amino, or free sulfhydryl group, respectively. Examples of prodrugs include, but are not limited to, acetate, 35 formate and benzoate derivatives of alcohol and amine functional groups in the compounds of formula (I), and the like. Preferred prodrugs are amidine prodrugs wherein either D or Da is C(=NH)N(H)R¹⁰, and R¹⁰ is selected from OH, C₁₋₄

alkoxy, C₆-10 aryloxy, C₁₋₄ alkoxycarbonyl, C₆-10 aryloxycarbonyl, C₆-10 arylmethylcarbonyl, C₁₋₄ alkylcarbonyloxy C₁₋₄ alkoxycarbonyl, and C₆-10 arylcarbonyloxy C₁₋₄ alkoxycarbonyl. More preferred prodrugs are where R⁷ is
5 OH, methoxy, ethoxy, benzyloxycarbonyl, methoxycarbonyl, and methylcarbonyloxymethoxycarbonyl.

"Stable compound" and "stable structure" are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction
10 mixture, and formulation into an efficacious therapeutic agent.

SYNTHESIS

Compounds of the present invention can be prepared in a
15 number of ways well known to one skilled in the art of organic synthesis. The compounds of the present invention can be synthesized using the methods described below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those
20 skilled in the art. Preferred methods include, but are not limited to, those methods described below. Each of the references cited below are hereby incorporated herein by reference. All the temperatures are reported herein in degrees Celsius.

25 The compounds of Formula I can be prepared using the reactions and techniques described below. The reactions are performed in a solvent appropriate to the reagents and materials employed and suitable for the transformations being effected. It will be understood by those skilled in the art
30 of organic synthesis that the functionality present on the molecule should be consistent with the transformations proposed. This will sometimes require a judgment to modify the order of the synthetic steps or to select one particular process scheme over another in order to obtain a desired
35 compound of the invention. It will also be recognized that another major consideration in the planning of any synthetic route in this field is the judicious choice of the protecting group used for protection of the reactive functional groups

present in the compounds described in this invention. An authoritative account describing the many alternatives to the trained practitioner is Greene and Wuts (*Protective Groups In Organic Synthesis*, Wiley and Sons, 1991).

5 The following descriptions detail general methods of making benzimidazoles, indazoles and indoles through a variety of intermediates. These methods are not intended to represent all of the possible means of making the above compounds, merely a broad representation. One of ordinary skill in the
10 art would readily understand what starting groups would be necessary to make all of the present compounds.

15 Intermediate 1 which can be formed via acylation of 4-amino-3-nitrobenzonitrile (Aldrich Chemical Co.) with an acyl chloride (R^1CO) or an anhydride ($(R^1CO)_2O$) in the presence of a base, followed by hydrogenation is shown below in Scheme 1.
Reductive amination of an aldehyde ($RCHO$) in the presence of 1 using borane-pyridine in acetic acid can afford *N*-alkylated product 2. Alkylation of 1 with a halide (P_3X) in the presence of a base, such as Cs_2CO_3 , can provide compound 3. Compounds 2
20 and 3 can be subjected to the Pinner reaction to give 6-amidino-benzimidazole derivative 4 and 5-amidino-benzimidazole derivative 5, respectively (see Khanna et al *J. Org. Chem.* 1995, 60, 960).

25 Scheme 1: **Amidino-benzimidazoles via 4-amino-3-nitrobenzonitrile**

Scheme 2 shows palladium (0) catalyzed coupling of 3-amino-4-nitrophenyl halides with zinc cyanide in DMF under reflux can provide compound 6 (see Lawton et al J. Org. Chem. 1959, 24, 26). Acylation of 6 with an acyl chloride or anhydride in the presence of base, followed by hydrogenation can form compound 7. Alkylation of 7 with a halide in the presence of a base, such as Cs_2CO_3 , can provide compound 8. Reductive amination of an aldehyde with 7 using borane-pyridine in acetic acid can afford N-alkylated product 9. Compounds 8 and 9 can be converted to either their 6-amidino-benzimidazole or 5-amidino-benzimidazole derivatives, respectively via the Pinner reaction.

15

Scheme 2: Amidino-benzimidazoles via 3-amino-4-nitrophenyl halides

Ullmann reaction of 4-chloro-3-nitrobenzonitrile with an amine (P_3NH_2) in the presence of a base, such as $NaHCO_3$, can form compound 10 shown in Scheme 3. Hydrogenation of 10, followed by cyclization with an acid, such as formic acid, can give compound 5, which can be converted to its 5-amidino-benzimidazole derivatives as described above. In addition, compound 5 could be derivatized by addition of $Br-(CH_2)_n-Z-A-B$ and the resulting mixture subjected to the Pinner reaction and separated by standard techniques.

Scheme 3: Amidino-benzimidazoles via the Ullmann Reaction

As described in Scheme 4, bromination of 4-amino-benzonitrile with NBS, followed by treatment with $NaNO_2$ and Cu_2O in conc. HCl can provide compound 11 (see Tsuji et al *Chem. Pharm. Bull.* 1992, 40, 2399). Ullmann reaction of 11 with an amine in the presence of a base, such as $NaHCO_3$, can form compound 12. Hydrogenation of 11, followed by cyclization with formic acid can give compound 8, which can be

convert d to its 6-amidino-benzimidazole derivative as described above.

Scheme 4: Amidino-benzimidazoles via the Ullmann Reaction

5

Scheme 5 details the synthesis of 2-substituted-amidino-benzimidazoles from 3,4-diamino-benzonitrile and 3-amino-4-hydroxybenzonitrile 13 which are obtained by hydrogenation of 4-amino-3-nitro-benzonitrile or 4-hydroxy-3-nitrobenzonitrile. Treatment of 13 with an acyl chloride or an acid in the presence of PPA can form compound 14 (see Walker et al *Synthesis* 1981, 303). Compound 14 can be converted to its amidino derivative via the Pinner reaction. Alternatively, when Y is NH, alkylation of 14 with a halide in the presence of a base, such as K2CO3, can afford a mixture of two regioisomers 15 and 16, which can, after being separated, be subjected to the Pinner reaction to give 2-substituted-6-amidino-benzimidazoles and 2-substituted-5-amidino-benzimidazole derivatives, respectively.

Scheme 5: 2-Substituted-amidino-benzimidazoles

Protection of 6-hydroxy-indazole with pivalic anhydride in the presence of a base, followed by treatment with triflic anhydride can give compound 17 as shown in Scheme 6.

Palladium (0) catalyzed coupling of 17 with zinc cyanide can provide compound 18. Deprotection of compound 18 under acidic conditions, followed by alkylation of with a halide in the presence of a base can yield compound 19, which can be converted to its 6-amidino-indazole derivative via the Pinner reaction.

Scheme 6: Amidino-benzindazoles via 6-hydroxy-indazole

1-Substituted-amidino-indoles and -indazoles could be made from 5-cyanoindole as outlined below in Scheme 7. Intermediate 21 can easily be obtained via alkylation of 20 with $\text{Br}(\text{CH}_2)_n\text{Z}$. Peptide coupling with H-A-B using the BOP

reagent or alkylation should afford intermediate 22 which is can then be converted to amidine 23 under Pinner conditions.

5 Scheme 7: 1-Substituted-amidino-indoles and -indazoles from
5-cyanoindole ($J^a=CH$ or N)

10 Scheme 8 shows 3-substituted-amidino-indoles and
-indazoles are also derivable from 5-cyanoindole. Compound 26
may be obtained by substitution of R^1 on 24 to form 25 and
acylation of 25 in the presence of oxalyl chloride at r.t.
under nitrogen atmosphere. The compound can be subjected to
selective ketone reduction with triethylsilane in
15 trifluoroacetic acid for 3h and then coupled with H-A-B.

Scheme 8: 3-Substituted-amidino-indoles and indazoles from 5-cyanoindole ($J^a=CH$ or N)

The piperazine phenylsulfonamide, 31, and various other sulfonamide analogues can be prepared from commercially available BOC-piperazine via sulfonation with phenylsulfonyl chloride in CH_2Cl_2 and triethylamine as indicated in Scheme 9.

Scheme 9: Phenylsulfonylpiperazines from Boc-piperazine

Biphenyl compounds may be prepared by procedures known to those of skill in the art. For example, Scheme 10 shows how to obtain substituted biphenyls via a Suzuki coupling with BOC protected 4-bromoaniline (or 1-bromo-4-nitrobenzene) to afford compound 35.

Scheme 10: Biphenyls from bromoaniline

Compound 38 can be obtained via deprotection of the t-butyl group when $R^6 = \text{SO}_2\text{NH-t-Bu}$, with TFA followed by alkylation or acylation with $R^3\text{X}$ as outlined in Scheme 11.

Scheme 11: Preparation of 4'-amino-biphenyl-2-sulfonamides

10

Scheme 12 shows how intermediates 43-45 may be obtained via the same intermediate 39. Acylation with oxalyl chloride followed by addition of methanol should yield ketoester 40 and selective reduction with triethyl silane may afford methyl acetate 42. Reduction with sodium borohydride can give the alcohol which then can be converted to 45 with $R^3\text{X}$. Intermediate 43 may be obtained via formylation with POCl_3 in DMF to yield aldehyde 41 which could then subjected to a Wittig olefination to afford compound 43.

15

Scheme 12: Addition of R^1 substituent to 1-substituted indoles or indazoles

Sulfonyl chloride **49** may be obtained via aldehyde **47**. The aldehyde can be reduced with sodium borohydride, 5 sulfonated with methane sulfonyl chloride, and displaced with sodium sulfite in ethanol. Sulfonyl chloride **49** should then be obtained via chlorination with sulfonyl chloride as detailed in Scheme 13.

Scheme 13: Addition of R¹ to 1-protected indoles or indazoles

5 P is a protecting group e.g. MEM-group.

- Scheme 14 details how substitution at the 2-position of the indole may be accomplished via lithiation with s-BuLi at -78°C followed by addition of R¹X to yield compound 51.
 10 Compound 51 can then converted to compound 52 by the previously mentioned methodology.

Scheme 14: Addition of two R¹'s to 1-protected indole

- In Scheme 15, it is shown how the 5-cyanoindole compound 54 may be prepared via compound 53 by using sodium methoxide in the presence of nitromethane, followed by Zn reduction and condensation.
 20

Scheme 15: Formation of indoles

5

Groups A and B are available either through commercial sources, known in the literature or readily synthesized by the adaptation of standard procedures known to practitioners skilled in the art of organic synthesis. The required reactive functional groups appended to analogs of A and B are also available either through commercial sources, known in the literature or readily synthesized by the adaptation of standard procedures known to practitioners skilled in the art of organic synthesis. In the tables that follow the chemistry required to effect the coupling of A to B is outlined.

Table 1: Preparation of Amide, Ester, Urea, Sulfonamide and Sulfamide linkages between A and B.

Rxn. No.	if A contains :	then the reactive substituent of Y is :	to give the following product A-X-Y :
1	A-NHR ³ as a substituent	C1C(O)-Y	A-NR ³ -C(O)-Y
2	a secondary NH as part of a ring or chain	C1C(O)-Y	A-C(O)-Y
3	A-OH as a substituent	C1C(O)-Y	A-O-C(O)-Y
4	A-NHR ³ as a substituent	C1C(O)-CR ³ R ^{3'} -Y	A-NR ³ -C(O)-CR ³ R ^{3'} -Y
5	a secondary NH as part of a ring or chain	C1C(O)-CR ³ R ^{3'} -Y	A-C(O)-CR ³ R ^{3'} -Y

6	A-OH as a substituent	$\text{ClC(O)-CR}^3\text{R}^3'-\text{Y}$	$\text{A-O-C(O)-CR}^3\text{R}^3'-\text{Y}$
7	A-NHR ³ as a substituent	$\text{ClC(O)NR}^3-\text{Y}$	$\text{A-NR}^3-\text{C(O)NR}^3-\text{Y}$
8	a secondary NH as part of a ring or chain	$\text{ClC(O)NR}^3-\text{Y}$	$\text{A-C(O)NR}^3-\text{Y}$
9	A-OH as a substituent	$\text{ClC(O)NR}^3-\text{Y}$	$\text{A-O-C(O)NR}^3-\text{Y}$
10	A-NHR ³ as a substituent	ClSO_2-Y	$\text{A-NR}^3-\text{SO}_2-\text{Y}$
11	a secondary NH as part of a ring or chain	ClSO_2-Y	$\text{A-SO}_2-\text{Y}$
12	A-NHR ³ as a substituent	$\text{ClSO}_2-\text{CR}^3\text{R}^3'-\text{Y}$	$\text{A-NR}^3-\text{SO}_2-\text{CR}^3\text{R}^3'-\text{Y}$
13	a secondary NH as part of a ring or chain	$\text{ClSO}_2-\text{CR}^3\text{R}^3'-\text{Y}$	$\text{A-SO}_2-\text{CR}^3\text{R}^3'-\text{Y}$
14	A-NHR ³ as a substituent	$\text{ClSO}_2-\text{NR}^3-\text{Y}$	$\text{A-NR}^3-\text{SO}_2-\text{NR}^3-\text{Y}$
15	a secondary NH as part of a ring or chain	$\text{ClSO}_2-\text{NR}^3-\text{Y}$	$\text{A-SO}_2-\text{NR}^3-\text{Y}$
16	A-C(O)Cl	HO-Y as a substituent	A-C(O)-O-Y
17	A-C(O)Cl	NHR ³ -Y as a substituent	$\text{A-C(O)-NR}^3-\text{Y}$
18	A-C(O)Cl	a secondary NH as part of a ring or chain	A-C(O)-Y
19	$\text{A-CR}^3\text{R}^3'\text{C(O)Cl}$	HO-Y as a substituent	$\text{A-CR}^3\text{R}^3'\text{C(O)-O-Y}$
20	$\text{A-CR}^3\text{R}^3'\text{C(O)Cl}$	NHR ³ -Y as a substituent	$\text{A-CR}^3\text{R}^3'\text{C(O)-NR}^3-\text{Y}$

21	$A-CR^3R^3'C(O)Cl$	a secondary NH as part of a ring or chain	$A-C(R^3)_2C(O)-Y$
22	$A-SO_2Cl$	NHR^3-Y as a substituent	$A-SO_2-NR^3-Y$
23	$A-SO_2Cl$	a secondary NH as part of a ring or chain	$A-SO_2-Y$
24	$A-CR^3R^3'SO_2Cl$	NHR^3-Y as a substituent	$A-CR^3R^3'SO_2-NR^3-Y$
25	$A-CR^3R^3'SO_2Cl$	a secondary NH as part of a ring or chain	$A-CR^3R^3'SO_2-Y$

The chemistry of Table 1 can be carried out in aprotic solvents such as a chlorocarbon, pyridine, benzene or toluene, at temperatures ranging from -20°C to the reflux point of the solvent and with or without a trialkylamine base.

Table 2: Preparation of ketone linkages between A and B.

Rxn. No.	if A contains :	then the reactive substituent of Y is :	to give the following product $A-X-Y$:
1	$A-C(O)Cl$	$BrMg-Y$	$A-C(O)-Y$
2	$A-CR^3R^3'C(O)Cl$	$BrMg-Y$	$A-CR^3R^3'_2C(O)-Y$
3	$A-C(O)Cl$	$BrMgCR^3R^3'-Y$	$A-C(O)CR^3R^3'-Y$
4	$A-CR^3R^3'C(O)Cl$	$BrMgCR^3R^3'-Y$	$A-CR^3R^3'C(O)CR^3R^3'-Y$

The coupling chemistry of Table 2 can be carried out by a variety of methods. The Grignard reagent required for Y is prepared from a halogen analog of Y in dry ether, dimethoxyethane or tetrahydrofuran at 0°C to the reflux point of the solvent. This Grignard reagent can be reacted directly under very controlled conditions, that is low temperature (-20°C or lower) and with a large excess of acid chloride or with catalytic or stoichiometric copper bromide-dimethyl

sulfide complex in dimethyl sulfide as a solvent or with a variant thereof. Other methods available include transforming the Grignard reagent to the cadmium reagent and coupling according to the procedure of Carson and Prout (Org. Syn. Col. Vol. 3 (1955) 601) or a coupling mediated by $\text{Fe}(\text{acac})_3$ according to Fiandanese et al. (Tetrahedron Lett., (1984) 4805), or a coupling mediated by manganese (II) catalysis (Cahiez and Laboue, Tetrahedron Lett., 33(31), (1992) 4437).

10 **Table 3: Preparation of ether and thioether linkages between A and B**

Rxn. No.	if A contains :	then the reactive substituent of Y is :	to give the following product A-X-Y :
1	A-OH	Br-Y	A-O-Y
2	$\text{A}-\text{CR}^3\text{R}^3'-\text{OH}$	Br-Y	$\text{A}-\text{CR}^3\text{R}^3'\text{O}-\text{Y}$
3	A-OH	$\text{Br}-\text{CR}^3\text{R}^3'-\text{Y}$	$\text{A}-\text{OCR}^3\text{R}^3'-\text{Y}$
4	A-SH	Br-Y	A-S-Y
5	$\text{A}-\text{CR}^3\text{R}^3'-\text{SH}$	Br-Y	$\text{A}-\text{CR}^3\text{R}^3'\text{S}-\text{Y}$
6	A-SH	$\text{Br}-\text{CR}^3\text{R}^3'-\text{Y}$	$\text{A}-\text{SCR}^3\text{R}^3'-\text{Y}$

15 The ether and thioether linkages of Table 3 can be prepared by reacting the two components in a polar aprotic solvent such as acetone, dimethylformamide or dimethylsulfoxide in the presence of a base such as potassium carbonate, sodium hydride or potassium t-butoxide at temperature ranging from ambient temperature to the reflux point of the solvent used.

Table 4: Preparation of -SO- and -SO₂- linkages from thioethers of Table 3.

Rxn. No.	if the starting material is :	and it is oxidized with Alumina (wet)/ Oxone (Greenhalgh, Synlett, (1992) 235) the product is :	and it is oxidized with m-chloroper- benzoic acid (Satoh et al., Chem. Lett. (1992) 381, the product is :
1	A-S-Y	A-S(O)-Y	A-SO ₂ -Y
2	A-CR ³ R ^{3'} S-Y	A-CR ³ R ^{3'} S(O)-Y	A-CR ³ R ^{3'} SO ₂ -Y
3	A-SCR ³ R ^{3'} -Y	A-S(O)CR ³ R ^{3'} -Y	A-SO ₂ CR ³ R ^{3'} -Y

The thioethers of Table 3 serve as a convenient starting material for the preparation of the sulfoxide and sulfone analogs of Table 4. A combination of wet alumina and oxone provides a reliable reagent for the oxidation of the thioether to the sulfoxide while m-chloroperbenzoic acid oxidation will give the sulfone.

10

Other features of the invention will become apparent in the course of the following descriptions of exemplary embodiments which are given for illustration of the invention and are not intended to be limiting thereof.

15

Examples

The synthesis of representative compounds according to the invention is described in further detail below with reference to the following specific, but non-limiting examples.

Abbreviations used in the Examples are defined as follows: "°C" for degrees Celsius, "d" for doublet, "dd" for doublet of doublets, "DAST" for diethylaminosulfur trifluoride, "eq" for equivalent or equivalents, "g" for gram or grams, "mg" for milligram or milligrams, "mL" for milliliter or milliliters, "H" for hydrogen or hydrogens, "hr" for hour or hours, "m" for multiplet, "M" for molar, "min" for minute or minutes, "MHz" for megahertz, "MS" for mass spectroscopy, "nmr" or "NMR" for nuclear magnetic resonance

spectroscopy, "t" for triplet, "TLC" for thin layer chromatography.

Examples 1-15 were prepared by Michael addition of 5-cyano-benzimidazole to the α,β -unsaturated esters by using 5 K_2CO_3 (2 mmol) as a base in DMF (10 mL) at 90-110°C for 16-24 hours, followed by the Pinner reaction. A mixture of meta- and para-isomers was obtained by purification on TLC plates with 10-20% MeOH in CH_2Cl_2 . The pure meta- or para-isomer was separated by HPLC.

10

5-Cyanobenzimidazole

15 A solution of 4-amino-3-nitrobenzonitrile (20 mmol) in MeOH (300mL) in the presence of 5% of Pd/C (1 g) was treated with hydrogen at room temperature for 16 hours. The reaction mixture was filtered and concentrated to give 3,4-diaminobenzonitrile (2.4 g, 90% of yield), which was directly 20 treated with formic acid (20 mL) under reflux for 4 hours. After removal of the excess formic acid, the residue was dissolved in EtOAc, washed with 10% sodium bicarbonate and brine, and dried over $MgSO_4$. Concentration gave 5-cyanobenzimidazole (2.2 g, 85%). 1H NMR (CD_3OD) δ 8.39 (s, 1H), 8.05 (s, 1H), 7.76 (d, $J = 8.4$ Hz, 1H), 7.59 (dd, $J = 8.4$ Hz, $J = 1.1$ Hz, 1H); MS: 144 ($M+H$).

25 30 8.05 (s, 1H), 7.76 (d, $J = 8.4$ Hz, 1H), 7.59 (dd, $J = 8.4$ Hz, $J = 1.1$ Hz, 1H); MS: 144 ($M+H$).

Preparation of Ethyl 2-(3-cyanophenyl)ethacrylate and Ethyl 2-(4-cyanophenyl)ethacrylate

30

To a stirred suspension of zinc powder (22 mmol) in THF (10 mL) was added 1,2-dibromoethylene (0.2 g) at room temperature and the mixture was stirred for 30 minutes. A solution of 3-cyanobenzylbromide or 4-cyanobenzylbromide (20 35 mmol) in THF (25 mL) was slowly added at a rate of one drop

per five seconds at 5-10°C. The mixture was stirred for 3 hours, and then transferred into a solution of copper (I) cyanide (20 mmol) and lithium chloride (40 mmol) in THF (20 mL) at -78°C. The resulting mixture was warmed up and stirred 5 at -20°C for 20 minutes, and was then cooled to -78°C. After ethyl 2-(bromomethyl)acrylate (20 mmol) was slowly added, the mixture was stirred at -78°C for 2 hours, and then warmed to room temperature overnight. Ether (100 mL) and aqueous 10 saturated ammonium chloride (50 mL) were added to the mixture and the mixture filtered. The filtrate was washed with water and brine, and dried over MgSO₄. Concentration gave a residue, which was purified by column chromatography with gradient solvent system (CH₂Cl₂-EtOAc) to give ethyl 2-(3- 15 cyanophenyl)ethacrylate (1.2 g, 26.2%) and ester ethyl 2-(4- cyanophenyl)ethacrylate (3.6 g, 78.6%).

For ethyl 2-(4-cyanophenyl)ethacrylate: ¹H NMR (CDCl₃) δ 7.58 (dd, J = 8.4 Hz, J = 1.8 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 6.17 (d, J = 1.1 Hz, 1H), 5.48 (dd, J = 2.6 Hz, J = 1.1 Hz, 1H), 4.22 (q, J = 7.3 Hz, 2H), 2.86 (dd, J = 8.6 Hz, J = 7.1 Hz, 2H), 2.61 (dd, J = 8.6 Hz, J = 7.0 Hz, 2H), 1.32 (t, J = 7.0 Hz, 3H); MS: 247 (M+NH₄)⁺.

For ethyl 2-(3-cyanophenyl)ethacrylate: ¹H NMR (CDCl₃) δ 7.51-7.36 (m, 4H), 6.17 (s, 1H), 5.48 (d, J = 1.1 Hz, 1H), 4.22 (q, J = 7.3 Hz, 2H), 2.84 (dd, J = 8.4 Hz, J = 7.0 Hz, 2H), 2.61 (dd, J = 8.4 Hz, J = 7.0 Hz, 2H), 1.32 (t, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃) δ 166.80, 142.85, 139.41, 133.14, 132.05, 129.85, 129.17, 118.94, 112.43, 60.79, 34.50, 33.57, 14.22; MS 247 (M+NH₄)⁺.

30 Preparation of Ethyl [3-(4-cyanophenyl)-2-bromomethyl]acrylate

To a solution of 4-cyanobenzylbromide (40 mmol) in xylene (40 mL) was added triphenylphosphine (40 mmol) and the resulting solution was heated at 110°C for 2 hours. After 35 removal of xylene, a white solid was obtained, which was dissolved in a mixture of THF (40 mL) and EtOH (40 mL), treated with DBU (40 mmol) at room temperature for one hour, and then to it was added ethyl pyruvate (40 mmol). The

resulting mixture was stirred at room temperature overnight and filtrated to remove Ph_3PO . The filtrate was concentrated, dissolved in EtOAc, washed with 1N HCl, water and brine, and dried over MgSO_4 . Concentration gave a mixture of *cis* and
5 trans olefins in almost quantitative yield. A solution of the olefins (5 mmol), NBS (5 mmol), and AIBN (0.25 mmol) in CCl_4 (200 mL) was refluxed under nitrogen for 16 hours, filtered, concentrated and purified by column chromatography with gradient solvent system (CH_2Cl_2 -EtOAc) to give the title
10 compound (1.25 g, 85 %) as a white solid. ^1H NMR (CDCl_3) δ 7.71 (d, $J = 1.4$ Hz, 1H), 7.68 (d, $J = 8.8$ Hz, 2H), 7.58 ($J = 8.5$ Hz, 2H), 4.29 (q, $J = 7.3$ Hz, 2H), 4.23 (s, 2H), 1.32 (t, $J = 7.3$ Hz, 3H).

15 **Preparation of Ethyl 2-(4-benzyloxyphenyl)methacrylate**

A mixture of 4-bromophenol (40 mmol), benzylbromide (40 mmol) and Na_2CO_3 in DMF (200 mL) was stirred at room temperature for 24 hours and was then poured into water. A
20 solid was collected and was further recrystallized from hexane to give 4-benzyloxybenzene bromide in almost quantitative yield. A solution of the bromide in THF (100 mL) was treated with BuLi (44 mmol) at -78°C over 30 minutes and then with a solution of ZnI_2 (40 mmol) in THF (40 mL) over 20 minutes.
25 After the resulting mixture was warmed to room temperature over an hour, it was cooled to -78°C and a solution of copper (I) cyanide (40 mmol) and lithium chloride (80 mmol) in THF (50 mL) was slowly added. The resulting mixture was warmed and stirred at -20°C for 20 minutes, cooled to -78°C, and to it
30 was added ethyl 2-(bromomethyl)acrylate (40 mmol). The resulting mixture was stirred at -78°C for 2 hours and was then warmed to room temperature overnight. Ether and aqueous saturated ammonium chloride were added and filtered. The filtrate was washed with water and brine, and dried over MgSO_4 .
35 Concentration gave a residue, which was purified by column chromatography with gradient solvent system (CH_2Cl_2 -EtOAc) to give the title compound (3.6 g, 30.4%): ^1H NMR (CDCl_3) δ 7.44-7.26 (m, 5H), 7.12 (d, $J = 8.4$ Hz, 2H), 6.91 (d, $J = 8.4$ Hz,

2H), 6.20 (s, 1H), 5.92 (s, 1H), 5.07 (s, 2H), 4.18 (q, J = 7.4 Hz, 2H), 3.57 (s, 2H), 1.27 (t, J = 7.4 Hz, 3H); MS: 314 (M+NH₄)⁺.

5

Example 1

Preparation of Ethyl 2-(3-amidinophenyl)ethyl-3-(5-amidinobenzimidazole)propionate and Ethyl 2-(3-amidinophenyl)ethyl-3-(6-amidinobenzimidazole)propionate

10 A mixture of 5-cyanobenzimidazole (2 mmol), ethyl 2-(3-cyanophenyl)ethacrylate (2 mmol) and K₂CO₃ (2 mmol) in DMF (10 mL) was heated at 90°C under nitrogen for 16 hours. The mixture was diluted with EtOAc (150 mL), washed with 1N HCl, water, and brine, and dried over MgSO₄. After filtration and 15 concentration, a residue was purified by column chromatography with gradient solvent system (CH₂Cl₂-EtOAc) to give a mixture of ethyl 2-(3-cyanophenyl)ethyl-3-(6-cyanobenzimidazole)propionate and ethyl 2-(3-cyanophenyl)methyl-3-(5-cyanobenzimidazole)propionate (0.57 g, 76.4%) as a colorless oil. ¹H NMR (CDCl₃) δ 8.13-7.36 (m, 8H), 4.55 (dd, J = 14.3 Hz, J = 9.2 Hz, 1H), 4.28 (dd, J = 14.3 Hz, J = 5.5 Hz, 1H), 4.07 (q, J = 7.0 Hz, 2H), 3.00-2.91 (m, 1H), 2.80-2.64 (m, 2H), 2.18-2.07 (m, 1H), 1.92-1.82 (m, 1H), 1.12 (t, J = 7.0, 3H).

25

Examples 2 and 3

Preparation of Ethyl 2-(3-amidinophenyl)ethyl-3-(5-amidinobenzimidazole)propionate and Ethyl 2-(3-amidinophenyl)ethyl-3-(6-amidinobenzimidazole)propionate

30

The mixture of esters obtained in Example 1 was treated with HCl (gas) in anhydrous ethanol (10 mL) for 15 minutes at 0°C and then stirred for 16 hours. After removal of excess HCl (gas) and ethanol, the residue was treated with (NH₄)₂CO₃ (5 equivalents) in anhydrous ethanol (10 mL) at room temperature for 24 hours. Concentration gave a residue, which was purified on TLC plates with 10% MeOH in CH₂Cl₂ to give a mixture of the title compounds (400 mg, 65.4%): mp 160-165°C;

ESMS: 204.2 ($M+2H$)²⁺. The mixture was further separated by HPLC on chiral OJ column with CO₂/MeOH/TEA (80/20/0.1) to give Example 2, ethyl 2-(3-amidinophenyl)ethyl-3-(5-amidinobenzimidazole)propionate, and Example 3, ethyl 2-(3-amidinophenyl)ethyl-3-(6-amidinobenzimidazole)propionate.

Example 2: ¹H NMR (CD₃OD) δ 8.36 (s, 1H), 8.17 (s, 1H), 7.75-7.72 (m, 2H), 7.63 (bs, 2H), 7.50-7.48 (m, 2H), .4.66 (dd, J = 9.5 Hz, J = 14.3 Hz, 1H), 4.55 (dd, J = 5.5 Hz, J = 14.2 Hz, 1H), 4.02-3.92 (m, 2H), 3.14-3.08 (m, 1H), 2.81 (t, J = 7.0 Hz, 2H), 2.19-1.93 (m, 2H), 1.04 (t, J = 7.0 Hz, 3H); ESMS: 204.2 ($M+2H$)²⁺.

Example 3: ¹H NMR (CD₃OD) δ 8.37 (s, 1H), 8.10 (s, 1H), 7.84 (d, J = 8.4 Hz, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.65-7.62 (m, 2H), 7.55-7.46 (m, 2H), 4.68 (dd, J = 9.5 Hz, J = 14.3 Hz, 1H), 4.56 (dd, J = 5.5 Hz, J = 14.2 Hz, 1H), 4.04-3.94 (m, 2H), 3.24-3.18 (m, 1H), 2.83 (t, J = 7.0 Hz, 2H), 2.19-1.95 (m, 2H), 1.05 (t, J = 7.0 Hz, 3H); ESMS: 204.2 ($M+2H$)²⁺.

20

Example 4

Preparation of Ethyl 2-(4-amidinophenyl)ethyl-3-(5-amidinobenzimidazole)propionate and Ethyl 2-(4-amidinophenyl)ethyl-3-(6-amidinobenzimidazole)propionate

25

Example 4 was made using the same method as described for Example 1, except ethyl 2-(4-cyanophenyl)ethacrylate (2 mmol) was used (100 mg, 13% for two steps): mp 230°C (Dec.); ESMS: 407 ($M+H$)⁺; HRMS: 407.2200 (obs.), 407.2195 (calcd.) for C₂₂H₂₆N₆O₂. Example 4 was further separated to give Examples 5 and 6.

Examples 5 and 6

Preparation of Ethyl 2-(4-amidinophenyl)ethyl-3-(5-amidinobenzimidazole)propionate and Ethyl 2-(4-amidinophenyl)ethyl-3-(6-amidinobenzimidazole)propionate

The mixture of compounds obtained in Example 4 were further separated to give Examples 5 and 6.

Example 5, ethyl 2-(4-amidinophenyl)ethyl-3-(5-amidinobenzimidazole)propionate: ^1H NMR (DMSO-d₆): δ 9.43-9.08 (m, 6H), 7.74-7.65 (m, 2H), 7.40-7.38 (m, 2H), 7.35-7.00 (m, 4H), 4.67-4.55 (m, 2H), 4.06 (bs, 2H), 3.48 (bs, 2H), 3.20 (bs, 1H), 2.70 (bs, 2H), 1.00 (bs, 3H); ESMS: 407 (M+H)⁺.

Example 6, ethyl 2-(4-amidinophenyl)ethyl-3-(6-amidinobenzimidazole)propionate: ^1H NMR (DMSO-d₆): δ 9.23-9.12 (m, 6H), 8.41 (s, 1H), 8.21 (s, 1H), 7.84-7.82 (m, 1H), 7.74 (d, J = 8.1 Hz, 2H), 7.41 (d, J = 7.8 Hz, 2H), 7.24 (bs, 1H), 4.58-4.56 (m, 2H), 3.95-3.89 (m, 2H), 3.10-3.00 (m, 1H), 2.73-2.71 (m, 2H), 1.90-1.88 (m, 2H), 0.98-0.96 (m, 3H); ESMS: 407 (M+H)⁺.

Example 7

Preparation of Ethyl [3-(4-amidinophenyl)-2-(5-amidinobenzimidazole)methyl]acrylate

A mixture of 5-cyanobenzimidazole (2 mmol), ethyl [3-(4-cyanophenyl)-2-bromomethyl]acrylate (2 mmol) and K₂CO₃ (2 mmol) in DMF (10 mL) was heated at 90°C under nitrogen for 24 hours. The mixture was diluted with EtOAc (150 mL), washed with 1N HCl, water, and brine, and dried over MgSO₄. After filtration and concentration, the residue was purified by column chromatography (CH₂Cl₂-EtOAc) to give ethyl [3-(4-cyanophenyl)-2-(5-cyanobenzimidazole)methyl]acrylate (0.401 g, 56.3 %) as a colorless oil. ^1H NMR (CDCl₃) δ 8.10-8.00 (m, 4H), 7.83-7.77 (m, 2H), 7.52-7.44 (m, 2H), 7.01-6.98 (m, 1H), 5.20 (s, 2H), 4.24 (q, J = 7.3 Hz, 2H), 1.25 (t, J = 7.3 Hz, 3H); MS: 357 (M+H)⁺.

The Pinner reaction converted ethyl [3-(4-cyanophenyl)-2-(5-cyanobenzimidazole)methyl]acrylate (0.42 mmol) to the title compound (400 mg, 65.4%): ^1H NMR (CD₃OD) δ 8.19-8.12 (m, 2H), 7.92-7.88 (m, 3H), 7.74-7.69 (m, 4H), 4.22-4.19 (m, 2H), 1.24-

1.20 (m, 3H); ESMS: 196.2 ($M+2H$) $^{2+}$; HRMS: 391.1889 (obs.), 391.1882 (calcd.).

Example 8

5

Preparation of Ethyl 2-(4-amidinophenyl)methyl-3-(6-amidinobenzimidazole)propionate and Ethyl 2-(4-amidinophenyl)methyl-3-(5-amidinobenzimidazole)propionate

Ethyl [3-(4-cyanophenyl)-2-(5-cyanobenzimidazole)methyl]acrylate was hydrogenated in MeOH in the presence of 10% palladium on active carbon to give ethyl 2-(4-cyanophenyl)methyl-3-(6-cyanobenzimidazole)propionate and ethyl 2-(4-cyanophenyl)methyl-3-(5-cyanobenzimidazole)propionate: 1H NMR ($CDCl_3$) δ 8.24-8.02 (m, 2H), 7.87-7.50 (m, 4H), 7.34-7.28 (m, 2H), 4.58-4.55 (m, 1H), 4.32-4.27 (m, 1H), 4.12-3.93 (m, 2H), 3.20-2.91 (m, 2H), 2.79-2.72 (m, 1H), 1.10-0.95 (m, 3H).

15

The mixture obtained (1.5 mmol) was subjected to the Pinner reaction to obtain the title compound (300 mg, 48%): 1H NMR (CD_3OD): δ 8.63 (bs, 1H), 8.27-7.96 (m, 7H), 4.98-4.54 (m, 2H), 3.98-3.80 (m, 2H), 3.53-3.45 (m, 1H), 3.37-3.09 (m, 2H), 1.00-0.96 (m, 3H); ESMS: 197 ($M+2H$) $^{2+}$.

25

Examples 51-63 were prepared by Method A, B, or C. All compounds were finally purified by HPLC ($CH_3CN/H_2O/0.05\%$ TFA).

30

Method A: Examples 51-59 were made by Suzuki coupling reactions of [(4-bromophenyl)carbonyl)methyl]-6-cyanobenzimidazole or [(4-bromophenyl)carbonyl)methyl]-5-cyanobenzimidazole with a variety of boronic acids by using Na_2CO_3 (2-4 equivalents) and $Pd(PPh_3)_4$ (5-10% mmol $^{-1}$) as catalyst in THF (80% in H_2O , 10 mL/mmol), followed by Pinner reactions.

35

A mixture of [(4-bromophenyl)carbonyl)methyl]-6-cyanobenzimidazole and [(4-bromophenyl)carbonyl)methyl]-5-cyanobenzimidazole was made in over 90% yield by alkylation of 5-cyano-benzimidazole (36 mmol) with 2, 4'-dibromoacetophenone (36 mmol) by using NaH (48 mmol) as a base in THF (80 mL).

The mixture were isolated by HPLC on chiralcel OJ column with MeOH/CO₂ (20/80) to give pure individual compounds.

[(4-Bromophenyl)carbonyl]methyl-6-cyanobenzimidazole: ¹H NMR (CDCl₃) δ 8.35 (s, 1H), 8.11 (dd, J = 1.1 Hz, J = 0.7 Hz, 5 1H), 8.08 (d, J = 8.8 Hz, 2H), 7.81 (d, J = 8.4 Hz, 2H), 7.56 (dd, J = 8.4 Hz, J = 1.8 Hz, 1H), 6.16 (s, 1H); ESMS: 340/342 (M+H)⁺.

[(4-Bromophenyl)carbonyl]methyl-5-cyanobenzimidazole: ¹H NMR (CDCl₃) δ 8.31 (s, 1H), 8.13 (t, J = 0.7 Hz, 1H), 8.07 (d, J = 8.8 Hz, 2H), 7.81 (d, J = 8.8 Hz, 2H), 7.75 (dd, J = 8.4 Hz, J = 0.7 Hz, 1H), 7.57 (dd, J = 8.4 Hz, J = 1.1 Hz, 1H), 6.15 (s, 1H); ESMS: 340/342 (M+H)⁺.

Example 51
15 Preparation of [4-(phenyl)phenylcarbonylmethyl-6-
amidinobenzimidazole

MP: 155-157°C; ¹H NMR (CD₃OD) δ 8.44 (s, 1H), 8.23 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 1.1 Hz, 1H), 7.91 (d, J = 8.8 Hz, 20 1H), 7.88 (dd, J = 8.4, 2H), 7.72 (dd, J = 8.4 Hz, J = 1.1 Hz, 3H), 7.52-7.41 (m, 3H), 6.10 (s, 2H); MS: 355 (M+H)⁺, HRMS: 355.1554 (obs.), 355.1559 (calcd.); Anal.: (C₂₂H₁₈N₄O₁ + 0.9TFA + 1.2HCl + 0.5H₂O) C, H, N, F, Cl.

25 Example 52
Preparation of [4-(phenyl)phenylcarbonylmethyl-5-
amidinobenzimidazole

MP: 260-261°C; ¹H NMR (CD₃OD) δ 8.41 (s, 1H), 8.22 (s, 30 1H), 8.20 (d, J = 8.8 Hz, 2H), 7.87 (d, J = 8.4 Hz, 2H), 7.73-7.70 (m, 4H), 7.51-7.41 (m, 3H), 6.10 (s, 2H); MS: 355.2 (M+H)⁺; HRMS: 355.1538 (obs.), 355.1559 (calcd.); Anal.: (C₂₂H₁₈N₄O₁ + 1.5TFA + 0.08HCl + 1H₂O) C, H, N, Cl.

35 Example 53
Preparation of [4-(3-aminophenyl)phenylcarbonylmethyl-6-
amidinobenzimidazole

5 ^1H NMR (DMSO-d₆) δ 9.22 (s, 1.5 H), 9.04 (s, 1.5 H), 8.48 (s, 1H), 8.22 (d, J = 1.4 Hz, 1H), 8.18 (d, J = 8.3 Hz, 2H), 7.91 (d, J = 8.5 Hz, 1H), 7.84 (d, J = 8.5 Hz, 2H), 7.69 (dd, J = 8.6 Hz, 1.7 Hz, 1H), 7.21 (t, J = 1.8 Hz, 1H), 7.04 (s, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.73 (d, J = 8.1 Hz, 1H), 6.14 (s, 2H); ^{13}C NMR (DMSO-d₆) δ 192.4, 165.9, 148.6, 147.6, 146.7, 146.2, 139.3, 134.3, 132.9, 129.7, 128.8, 126.8, 121.8, 121.3, 119.7, 115.6, 115.1, 113.0, 111.8, 51.0; MS: 370 (M+H)⁺; HRMS: 370.1664 (obs.), 370.1668 (calcd.)

10

Example 54Preparation of [4-(3-aminophenyl)phenylcarbonylmethyl-5-amidinobenzimidazole]

15 ^1H NMR (CD₃OD) δ 8.48 (s, 1H), 8.32 (d, J = 8.4 Hz, 2H), 7.87 (d, J = 845 Hz, 2H), 7.74 (s, 2H), 7.62-7.56 (m, 2H), 7.53 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 7.4 Hz, 1H), 6.12 (s, 2H); MS: 370 (M+H)⁺; HRMS: 370.1664 (obs.), 370.1668 (calcd.)

20

Example 55Preparation of [4-(4-fluorophenyl)phenylcarbonylmethyl-6-amidinobenzimidazole]

25 MP: 102-105°C; ^1H NMR (CD₃OD) δ 8.54 (bs, 1H), 8.23 (d, J = 8.8 Hz, 2H), 8.10 (bs, 1H), 7.92 (bs, 1H), 7.86 (d, J = 8.4 Hz, 2H); ^{19}F NMR δ -116.3, -77.65 (TFA); ^{13}C NMR (CD₃OD) δ 192.9, 168.6, 165.0, 163.5, 147.2, 137.1, 134.3, 130.3, 130.2, 130.1, 128.5, 124.7, 123.4, 120.8, 117.1, 116.9, 112.9, 52.5; MS: 373.2 [(M+H)⁺]; HRMS: 373.1481 (obs.), 373.1465 (calcd.);
30 Anal.: (C₂₂H₁₇N₄O₁F₁ + 1.9TFA + 0.1HCl + 2H₂O) C, H, N, F, Cl.

Example 56Preparation of [4-(4-formylphenyl)phenylcarbonylmethyl-6-amidinobenzimidazole]

35

MP: 125-128°C; ^1H NMR (CD₃OD) δ 10.05 (s, 1H), 8.48 (s, 1H), 8.27 (d, J = 8.4 Hz, 1H), 8.07 (bs, 1H), 8.05 (d, J = 8.4 Hz, 2H), 7.97 (d, J = 8.1 Hz, 2H), 7.95 (d, J = 8.1 Hz, 2H),

7.93 (d, J = 8.4 Hz, 2H), 7.73 (dd, J = 8.4 Hz, J = 1.8 Hz, 1H), 6.12 (s, 2H); ^{13}C NMR (CD₃OD) δ 192.99, 168.67, 147.86, 140.90, 140.15, 134.44, 130.10, 128.64, 128.57, 128.09, 124.63, 123.41, 120.75, 112.87, 104.26, 54.45; MS: 192.2
 5 (M+2H)²⁺; HRMS: 383.1531 (obs.), 383.1508 (calcd.).

Example 57

10

Preparation of [4-(2-
aminosulfonylphenyl)phenylcarbonylmethyl-6-
amidinobenzimidazole

15

MP: 126-128°C; ^1H NMR (CD₃OD) δ 8.55 (bs, 1H), 8.18 (d, J = 8.4 Hz, 2H), 8.13 (dd, J = 7.7 Hz, J = 1.4 Hz, 1H), 8.09 (s, 1H), 7.94 (d, J = 8.8 Hz, 1H), 7.71 (dd, J = 8.4 Hz, J = 1.4 Hz, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.65 (d, J = 8.1 Hz, 2H), 7.60 (dd, J = 7.8 Hz, J = 1.4 Hz, 1H), 7.36 (dd, J = 7.3 Hz, J = 1.4 Hz, 1H), 6.13 (s, 2H); MS: 217.7 (M+2H)²⁺; HRMS: 434.1303 (obs.), 434.1287 (calcd.)

20

Example 58

25

Preparation of [4-(2-tert-
butylaminosulfonylphenyl)phenylcarbonylmethyl-6-
amidinobenzimidazole

30

MP: 118-120°C; ^1H NMR (CD₃OD) δ 8.60 (bs, 1H), 8.19 (d, J = 8.4 Hz, 2H), 8.13 (dd, J = 7.7 Hz, J = 1.4 Hz, 1H), 8.09 (s, 1H), 7.95 (d, J = 8.8 Hz, 1H), 7.76 (dd, J = 8.4 Hz, J = 1.4 Hz, 1H), 7.67 (d, J = 8.4 Hz, 2H), 7.63 (dd, J = 7.7 Hz, J = 1.5 Hz, 1H), 7.60 (dd, J = 7.7 Hz, J = 1.4 Hz, 1H), 7.34 (dd, J = 7.7 Hz, J = 1.4 Hz, 1H), 6.14 (s, 2H), 1.09 (s, 9H); ^{13}C NMR (CD₃OD) δ 193.25, 168.78, 149.52, 147.86, 143.50, 140.87, 134.76, 133.27, 133.07, 132.83, 131.58, 130.45, 129.77, 129.49, 128.76, 127.34, 124.45, 123.22, 120.99, 112.68, 55.30, 52.38, 30.22; Anal.: (C₂₆H₂₇N₅O₃S₁ + 1.9TFA + 35 1H₂O) C, H, N, F, S, Cl.

Example 59Prparation of [4-[(2-tetrazolyl)phenylphenylcarbonyl]methyl-6-amidinobenzimidazole

5 MP: 144-145°C; ^1H NMR (CD_3OD) δ 8.56 (bs, 1H), 8.11-8.09 (m, 3H), 7.93 (d, J = 8.5 Hz, 1H), 7.76 (dd, J = 8.5 Hz, J = 1.7 Hz, 1H), 7.73 (d, J = 7.3 Hz, 2H), 7.67-7.62 (m, 2H), 7.38 (d, J = 8.8 Hz, 2H), 6.09 (s, 2H); ^{13}C NMR (CD_3OD) δ 192.97, 168.66, 156.91, 149.40, 147.07, 146.51, 142.32, 135.60, 134.66, 132.64, 131.79, 131.71, 130.90, 129.88, 129.47, 124.56, 123.43, 120.75, 112.87, 52.45; MS: 212.2 ($M+2\text{H}$) $^{2+}$; HRMS: 423.1686 (obs.), 423.1682 (calcd.); Anal.: ($\text{C}_{23}\text{H}_{18}\text{N}_8\text{O}_1$ + 1.9TFA + 1 HCl + 0.5 H_2O) C, H, N, F, S, Cl.

10 15 **Method B:** Examples 60, 61 and 62 were made by alkylation of 5-cyanobenzimidazole with [4-(2-tert-butylaminosulfonylphenyl)phenylaminocarbonyl]methylene chloride, or (4-benzylpiperidinecarbonyl)methylene chloride, followed by Pinner reactions.

20

Examples 60 and 61Preparation of [4-(2-amino sulfonvlphenyl)phenylaminocarbonyl]methyl-6-amidinobenzimidazole (Example 60) and [4-(2-

25 amino sulfonvlphenyl)phenylaminocarbonyl]methyl-5-
amidinobenzimidazole (Example 61)

30 [4-(2-tert-Butylaminosulfonylphenyl)phenyl-aminocarbonyl]methylene chloride was prepared by acylation of 4-[($\text{o-SO}_2\text{NHtBu}$)phenyl]aniline (3 mmol) with α -chloroacetyl chloride (4 mmol) in CH_3CN (100 mL) and K_2CO_3 (4 mmol).

35 Alkylation of 5-cyanobenzimidazole (2 mmol) with [4-(2-tert-butylaminosulfonylphenyl)phenyl-aminocarbonyl]methylene chloride (2 mmol) in DMF (10 mL) and K_2CO_3 (4 mmol) at r.t. over 16 hours, followed by purification on thin layer TLC plates, and further isolation by HPLC gave [4-(2-tert-butylaminosulfonylphenyl)phenylaminocarbonyl]methyl-6-cyanobenzimidazole (240 mg, 56%) and [4-(2-tert-

butylaminosulfonylphenyl)phenylaminocarbonylmethyl-5-cyanobenzimidazole (160 mg, 37%).

[4-(2-*tert*-Butylaminosulfonylphenyl)phenylaminocarbonylmethyl-6-cyanobenzimidazole was converted to Example 60 via the Pinner reaction and purified by HPLC: MP: 134-136°C; ^1H NMR (CD_3OD) δ 8.73 (bs, 1H), 8.15 (s, 1H), 8.10 (dd, $J = 8.6$ Hz, $J = 1.2$ Hz, 1H), 7.93 (d, $J = 8.3$ Hz, 1H), 7.75 (d, $J = 7.4$ Hz, 1H), 7.64 (d, $J = 8.4$ Hz, 2H), 7.60 (dd, $J = 7.6$ Hz, $J = 1.2$ Hz, 1H), 7.52 (td, $J = 7.6$, $J = 1.4$ Hz, 1H), 7.40 (d, $J = 8.8$ Hz, 2H), 7.32 (dd, $J = 7.6$ Hz, $J = 1.2$ Hz, 1H), 5.36 (s, 2H); ^{13}C NMR (CD_3OD) δ 168.79, 166.75, 143.05, 141.48, 138.93, 137.50, 133.63, 132.92, 131.28, 128.75, 128.59, 124.63, 123.35, 120.96, 120.53, 112.80, 47.51; MS: 449.3 ($\text{M}+\text{H})^+$; HRMS: 449.1401 (obs.), 449.1396 (Calcd.); Anal.: ($\text{C}_{22}\text{H}_{20}\text{N}_6\text{O}_3\text{S}_1 + 1.8\text{TFA} + 0.25\text{ HCl} + 1\text{H}_2\text{O}$) C, H, N, F, S, Cl.

[4-(2-*tert*-Butylaminosulfonylphenyl)phenylaminocarbonylmethyl-5-cyanobenzimidazole was converted to Example 61 via the Pinner reaction and purified by HPLC: MP: 254°C (Dec.); ^1H NMR (CD_3OD) δ 8.55 (s, 1H), 8.22 (s, 1H), 8.08 (d, $J = 6.6$ Hz, 1H), 7.83-7.75 (m, 2H), 7.62 (d, $J = 8.8$ Hz, 2H), 7.59-7.52 (m, 2H), 7.39 (d, $J = 8.4$ Hz, 2H), 7.31 (d, $J = 7.4$ Hz, 1H), 5.33 (s, 2H); ^{13}C NMR (DMSO-d_6) δ 165.73, 164.97, 147.72, 142.58, 142.19, 139.43, 138.17, 137.63, 135.23, 132.31, 131.35, 129.69, 127.39, 127.23, 122.20, 121.03, 120.96, 120.17, 118.21, 118.12, 111.24, 47.51; MS: 449.3 ($\text{M}+\text{H})^+$; HRMS: 449.1414 (obs.), 449.1396 (calcd.); Anal.: ($\text{C}_{22}\text{H}_{20}\text{N}_6\text{O}_3\text{S}_1 + 2\text{TFA} + 0.15\text{ HCl} + 1.5\text{H}_2\text{O}$) C, H, N, F, S, Cl.

30

Example 62

Preparation of 1-(4-benzylpiperidinecarbonyl)methyl-6-amidinobenzimidazole and 1-(4-benzylpiperidinecarbonyl)methyl-5-amidinobenzimidazole

35.

(4-Benzylpiperidinecarbonyl)methylene chloride was prepared by acylation of 4-benzylpiperidine (100 mmol) with a-chloroacetyl chloride (100 mmol) in THF (250 mL) and K_2CO_3 (100

mL. Alkylation of 5-cyanobenzimidazole (2 mmol) with (4-benzylpiperidinecarbonyl)methylene chloride (2 mmol) in DMF (5 mL) in the presence of NaH (3 mmol) at from 0°C to room temperature over 16 hours, followed by purification on TLC plates gave 1-(4-benzylpiperidinecarbonyl)methyl-6-cyanobenzimidazole and 1-(4-benzylpiperidinecarbonyl)methyl-5-cyanobenzimidazole (0.4 g, 56% of yield). This mixture (1.11 mmol) was then carried through the Pinner reaction, followed by purification on TLC plates with 10% MeOH in CH₂Cl₂, and further purification by HPLC to give the title compounds: MP: 54-56°C; MS: 376.4 (M+H)⁺; HRMS: 376.2118 (obs.), 376.2137 (calcd.); Anal.: (C₂₂H₂₅N₅O₁+ 1.8TFA + 0.1 HCl).

Method C: Example 63 was made by Ulmann coupling reaction of 4-chloro-3-nitrobenzonitrile with (4-benzylpiperidinecarbonyl)methylamine, followed by reduction of 4-[(4-benzylpiperidinecarbonyl)methyl]amino-3-nitrobenzonitrile, cyclization with formic acid, and finally the Pinner reaction.

20

Example 63Preparation of 1-(4-benzylpiperidinecarbonyl)methyl-6-amidinobenzimidazole

(4-Benzylpiperidinecarbonyl)methylamine was made by treatment of (4-benzylpiperidinecarbonyl)methylene chloride with NaN₃ in aqueous acetone, followed by hydrogenation with 5% Pd/C. Reaction of (4-benzylpiperidinecarbonyl)methylamine (8.6 mmol) with 4-chloro-3-nitro-benzonitrile (10 mmol) in DMF (10 mL) in the presence of NaHCO₃ (10 mmol) at 100°C for 16 hours gave 4-[(4-benzylpiperidinecarbonyl)methyl]amino-3-nitrobenzonitrile (1.6 g, 49.2% of yield), which was then hydrogenated in MeOH in the presence of 5% of Pd/C (10% w/w) to produce 1-(4-benzylpiperidinecarbonyl)methyl-6-cyanobenzimidazole (1.3 g, 90% of yield). 1-(4-Benzylpiperidinecarbonyl)methyl-6-cyanobenzimidazole (0.57 mmol) was then carried through the Pinner reaction, followed by purification on TLC plates with 10% MeOH in CH₂Cl₂, and

further purification by HPLC to give the title compound: mp: 68-70°C; ^1H NMR (CD_3OD) δ 8.52 (s, 1H), 8.20 (s, 1H), 7.75 (s, 2H), 7.29-7.24 (m, 2H), 7.18-7.16 (m, 3H), 5.43 (dd, J = 17.2 Hz, J = 24.5 Hz, 2H), 4.40 (d, J = 12.8 Hz, 1H), 4.00 (d, J = 12.8 Hz, 1H), 3.18 (t, J = 12.8 Hz, 1H), 2.68 (t, J = 12.8 Hz, 1H), 2.59 (d, J = 7.00 Hz, 2H), 1.87-1.78 (m, 2H), 1.72-1.68 (m, 1H, 1.42-1.35 (m, 1H), 1.22-1.15 (m, 1H); ^{13}C NMR (CD_3OD) δ 168.76, 166.06, 148.73, 141.23, 139.50, 130.17, 129.45, 129.33, 127.35, 127.11, 124.04, 120.40, 113.19, 47.38, 46.36, 43.93, 43.73, 39.15, 33.35, 32.73; MS: 188.8 ($M+2\text{H}$) $^{2+}$; HRMS: 376.2130 (obs.), 376.2137 (calcd.); Anal.: ($\text{C}_{22}\text{H}_{25}\text{N}_5\text{O}_1$ + 1.85TFA + 0.18HCl+ 0.5H₂O).

Example 64

15 Preparation of 2-[4-(2-aminosulfonylphenyl)phenylcarbonylmethyl-6-amidinobenzimidazole

N-ethylmalonyl-4'-aminobiphenyl-2-tert-butylsulfonamide. To a solution of 1.01 g of 4'-aminobiphenyl-2-tert-butylsulfonamide in 30 mL anhydrous methylene chloride and 0.93 mL triethylamine was added 0.43 mL of ethylmalonyl chloride by dropwise addition. Let reaction mixture stir overnight at ambient temperature. Concentrated in vacuo to give a residue which was taken up in 50mL ethyl acetate. The organics were washed 3x20 mL water. The resulting organics were dried over magnesium sulfate and concentrated under reduced pressure to give the crude product. The crude product was purified via standard chromatographic technique to give 0.70 g of N-ethylmalonyl-4'-aminobiphenyl-2-tert-butylsulfonamide.
 LRMS (NH₃-CI): 436 ($M+\text{NH}_4$). ^1H NMR (CDCl_3 , 300MHz): δ 9.42 (s, 1H), 8.18 (d, 1H), 7.79 (d, 2H), 7.52 (m, 3H), 7.49 (d, 1H), 7.30 (d, 1H), 4.30 (q, 2H), 3.60 (s, 1H), 3.50 (s, 2H), 1.35 (t, 3H), 1.0 (s, 9H).

35 **2-[4-(2-aminosulfonylphenyl)phenylcarbonyl]methyl-6-cyanobenzimidazole.** A mixture of 0.32 g of 3,4-diaminobzonitrile and 0.70 g of N-ethylmalonyl-4'-

aminobiphenyl-2-tert-butylsulfonamide was heated to 180°C for 20h. Let mixture cool to ambient temperature. Concentration and high vacuum gave 0.09 g of crude 2-[4-(2-aminosulfonylphenyl)phenylcarbonyl]methyl-6-

5 cyanobenzimidazole. The crude material was carried through to the next reaction sequence. LRMS(ES+): 431(M+H).

2-[4-(2-aminosulfonylphenyl)phenylcarbonyl]methyl-6-amidinobenzimidazole.

A solution of the crude 2-[4-(2-aminosulfonylphenyl) phenylcarbonyl]methyl-6-cyanobenzimidazole in 10 mL 1:1 anhydrous chloroform to anhydrous ethanol was stirred in an ice bath. Hydrogen chloride gas was bubbled into the reaction vessel for 20 minutes. Then the reaction mixture was allowed to warm to 15 ambient temperature over 15h. Concentrated the reaction mixture under reduced pressure and placed the crude product on high vacuum. The resultant ethylimidate was treated directly with 0.30 g of ammonium carbonate in anhydrous ethanol. The reaction mixture was stirred at ambient temperature for 24h.

20 Concentrated reaction mixture under reduced pressure and purified crude product via standard HPLC technique to give purified 2-[4-(2-aminosulfonylphenyl)phenylcarbonyl]methyl-6-amidinobenzimidazole. LRMS(ES+): 449(m+H). HRMS(FAB): calcd 449.139586 mass 449.139273. ¹H NMR (DMSO,d₆,300MHz): δ 10.50 (s, 1H), 9.20 (bs, 2H), 8.67 (bs, 2H), 7.79 (d, 2H), 7.55 (m, 4H), 7.25 (m, 4H), 4.05 (s, 2H).

Example 65

Preparation of 2-[4-(2-tert-

30 **butylaminosulfonylphenyl)phenylcarbonyl]methyl-5-**
azabenzimidazole

N-ethylmalonyl-4'-aminobiphenyl-2-tert-butylsulfonamide. To a solution of 1.01 g of 4'-aminobiphenyl-2-tert-butylsulfonamide in 30 mL anhydrous THF and 0.93 mL of triethylamine was added 0.43 mL of ethylmalonyl chloride by dropwise addition. Let reaction mixture stir for 24h. Concentrated in vacuo to give a residue which was taken up in 50mL ethyl acetate. The

organics were washed 3x20mL water. The resultant organics were dried over magnesium sulfate and concentrated under reduced pressure. The crude product was purified via standard chromatographic technique to give 0.63g of N-ethylmalonyl-4'-aminobiphenyl-2-tert-butylsulfonamide. LRMS(NH₃-CI): 436(M+NH₄). ¹H NMR(CDCl₃, 300MHz): δ 9.42 (s,1H), 8.18 (d,1H), 7.79 (d,2H), 7.52 (m,3H), 7.49 (d,1H), 7.30 (d,1H).

2-[4-(2-tert-butylaminosulfonylphenyl)phenylcarbonyl]methyl-5-azabenzimidazole. A mixture of 0.026 g of 3,4-diaminopyridine and 0.10 g of N-ethylmalonyl-4'-aminobiphenyl-2-tert-butylsulfonamide was heated to 165 °C for 20h. Let mixture cool to ambient temperature. Purified crude material by standard chromatographic technique to give the 2-[4-(2-tert-butylaminosulfonylphenyl)phenylcarbonyl]methyl-6-azabenzimidazole. LRMS(ES+): 464(M+H). HRMS(NH₄-CI): Mass 464.175637 Calcd 464.175630. ¹H NMR(CDCl₃, 300MHz): δ 9.49 (s,1H), 8.40 (s,1H), 8.15 (d,1H), 7.98 (s,1H), 7.47 (m,3H), 7.31 (d,2H), 7.25 (d,2H), 4.30 (s,2H), 1.0 (s,9H).

20

Example 66Preparation of 2S-[4-(2-tert-aminosulfonylphenyl)phenylaminocarbonyl]methyl-thio-1H-imidazo(4,5-C) pyridine

25

To a solution of 1H-imidazo(4,5-C) pyridine-2-thiol (37 mg, 0.245 mmol) in DMF (2.5 mL) was added 4-(2-tert-butylaminosulfonylphenyl)phenylaminocarbonyl)methyl chloride (75 mg, 0.197 mmol) and then K₂CO₃ (58 mg, 0.42 mmol), and the resulting mixture was heated at 120°C for 1 hour. To the mixture at room temperature was added HCl (1N in Et₂O, 1 mL) and then MeOH (6 mL), a clear solution was obtained. To it was then slowly added Et₂O (200 ml), and a white suspension was observed, which was filtered and a white solid (120 mg) was collected. The solid was soluble in DMSO (8 mL), and the resulting solution was purified by HPLC with H₂O-CH₃CN-TFA to give the title compound (60 mg). HRMS (M+H)⁺ calc. m/z: 496.1477, obs: 496.1492.

Example 67

Preparation of 2S-[4-(2-
aminosulfonylphenyl)phenylaminocarbonyl]methyl-thio-1H-
imidazo(4,5-C) pyridine

5

A solution of Example 66 (26 mg) in TFA (0.5 mL) was heated for 16 hours. Removed all of the solvent and purified by HPLC with H₂O-CH₃CN-TFA to give the title compound (13 mg).
 10 HRMS (M+H)⁺ calc. m/z : 440.0851, obs : 440.0831.

Example 101

Preparation of 1-(4-benzylpiperidinecarbonyl)methyl-5-
amidinoindole

15

5-Cyanoindole-1-methylacetate. To a stirred solution of 5-cyanoindole (5.0 g, 35.2 mmol) in 10 mL of dry DMF at 0°C under N₂ atmosphere was added NaH (1.1g, 42.2mmol). The reaction was stirred for 30 min. and then α-bromomethyl-acetate (5.4g, 35.2mmol) was added and stirred at room temperature for 2h. It was then quenched with H₂O, extracted with ethyl acetate (3x), dried with Na₂SO₄, filtered and concentrated in vacuo to afford a light yellow solid (7.5g, 35.2 mmol). ¹H NMR (CDCl₃) δ ppm 3.2 (s, 2H), 3.8 (s, 3H), 7.03 (s, 1H), 7.32 (d, 1H, J= 7.5Hz), 7.41 (d, 1H, J=7.5Hz), 7.61 (s, 1H), 7.81 (s, 1H). LRMS NH₃-CI m/z (M+H)⁺ 229, (M+NH₄)⁺ 246.

30

3-(5-Cyanoindole) acetic acid. Methyl-5-cyanoindole-1-acetate was saponified in MeOH, KOH (3.3eq) at rt for 18h. The mixture was concentrated in vacuo, dissolved in water, extracted with diethylether (2x) and the acidic aqueous layer was acidified with 2N HCl. The resulting white solid was filtered and dried in a vacuum oven to afford 6.2 g of the title compound. LRMS ESI (M+H)⁺ 201.

35

1-(4-Benzylpiperidinecarbonyl)methyl-5-cyanoindole. To a stirred complex of 3-acetic acid-5-cyanoindole (2.0g,

0.1mmol) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (DEC) in dry CH₂Cl₂ was added 4-benzylpiperidine (1.8g, 0.01mmol). The mixture was stirred under N₂ atmosphere for 18h, then concentrated in vacuo, dissolved in ethyl acetate, washed with 1N HCl (3x), NaHCO₃ (3x), brine (2x), dried with Na₂SO₄, filtered and concentrated in vacuo to afford a white solid (2.8g). HRMS for C₂₃H₂₄N₃O (M+H)⁺ calc. 358.191938, found 358.193278.

10 **1-(4-Benzylpiperidinecarbonyl)methyl-5-amidinoindole.** N-1-Acetyl-1-N'-piperidinyl-4-benzyl-5-cyanoindole (500mg), was dissolved in dry MeOH (30 mL) cooled to 0°C and saturated with HCl(g). The resulting solution was allowed to warm up to rt over 18h. The mixture was concentrated in vacuo, re-dissolved in dry MeOH and (NH₄)₂CO₃ (672.0 mg) was added, flask sealed and stirred for 18 at rt. The resulting suspension was filtered through Celite®, rinsed with dry MeOH, concentrated in vacuo to afford 997mg of product (89% by HPLC); 100 mg of which was further purified via prep HPLC to afford 29 mg (100% purity by HPLC). M.p. 214-215 °C HRMS (NH₃-CI) for C₂₃H₂₆N₄O (M+H)⁺ calc. 375.217601, found 375.218487. ¹H NMR (CD₃OD) δ ppm 1.05 (qd, 1H, J= 7.5 Hz, J= 2.5 Hz), 1.25 (qd, 1H, J=7.5, J=2.5 Hz), 1.65 (bd, 1H, J=7.5 Hz), 1.76 (bd, 1H, J=7.5 Hz), 1.83 (m, 1H), 2.58 (d, 2H, J=6.0 Hz), 2.63 (t, 1H, J= 75 Hz), 3.07 (t, 1H, J=7.5 Hz), 4.03 (bd, 1H, J=7.5 Hz), 4.2 (bd, 1H, J=7.5 Hz), 5.21 (qd, 2H, J= 7.5 Hz), 6.63 (s, 1H), 7.18 (m, 3H), 7.23 (m, 2H), 7.38 (s, 1H), 7.51 (d, 1H, J= 5.0 Hz), 7.58 (d, 1H, J=5.0 Hz), 8.05 (s, 1H).

30

Example 102Preparation of 1-(4-benzylpiperidinecarbonyl)ethyl-5-amidinoindole

35 **Methyl-5-cyanoindole-3-propionate.** To a stirred solution of 5-cyanoindole (1.0g, 7.0mmol), K₂CO₃ (0.966 g, 7.0mmol) in acetonitrile was added 3-bromomethylpropionate (1.17 g, 7.0mmol). The mixture was stirred at reflux for 18h under a nitrogen atmosphere, cooled, diluted with H₂O, extracted with

ethyl acetate, dried with Na_2SO_4 , filtered and concentrated in vacuo to afford 1.59 g of product. ^1H NMR (CD_3OD) δ ppm 2.85 (t, 2H, $J= 6.6$ Hz), 3.61 (s, 3H), 4.58 (t, 2H, $J= 6.6$ Hz), 6.61 (s, 1H), 7.42, (m, 3H), 7.62 (d, 1H, $J= 8.4$ Hz), 7.99 (s, 1H).

5-Cyanoindole-3-propionic acid. Methyl-5-cyanoindole-3-propionate (200 mg) was saponified in MeOH (10mL)/KOH (150 mg, 0.88mmol) at rt for 18h. The solution was concentrated in vacuo, dissolved in water and washed with chloroform. The acidic layer was acidified and extracted with ethyl acetate, dried with Na_2SO_4 , filtered and concentrated in vacuo to afford 188 mg of product. ^1H NMR (CD_3OD) δ ppm 2.83 (t, 2H, $J=6.6$ Hz), 4.43 (t, 2H, $J=6.6$ Hz), 6.6 (nd,1H, J3.2 Hz), 7.42 (d, 2H, $J= 7.3$ Hz), 7.43 (s, 1H), 7.61 (d, 1H, $J=7.3$ Hz), 7.99 (s, 1H); LRMS ESI ($M+\text{H}$)⁺ 215.

1-(4-Benzylpiperidinecarbonyl)ethyl-5-amidinoindole.

Preparation follows the same last two steps of example 101. Afforded 156 mg of the TFA salt ^1H NMR (DMSO-d_6) δ ppm 2.42 (m, 4H), 2.89 (m, 4H), 3.21 (d, 2H, $J= 5.0$ Hz), 3.72 (bd, 1H, $J=10.0$ Hz), 4.12 (m,1H), 4.38 (bd, 1H, $J= 10$ Hz), 4.51 (m, 2H), 6.62 (s, 1H), 7.1-7.31 (m, 5H), 7.62 (m,2H), 7.72 (d, 1H, $J=6.0$ Hz), 8.21 (bs, 1H); HRMS ($M+\text{H}$)⁺ for $\text{C}_{24}\text{H}_{29}\text{N}_4\text{O}$ calc. 389.234137, found 389.231258.

Example 103

Preparation of 1-(4-(3-fluoro)benzylpiperidinecarbonyl)methyl-5-amidinoindole

4-(3-Fluorobenzyl)piperidine. To a stirred solution of 1-benzylpiperidin-4-one (0.99mL, 5.34mmol) in THF was added $\text{Ph}_3\text{P}=\text{CH}-$ (3-fluoro)phenyl (2.41g, 5.34mmol) at 0°C under a nitrogen atmosphere. After stirring for 4h at rt, the reaction was quenched with H_2O , concentrated in vacuo and the residue was chromatographed on silica gel using 1:1 hexanes:ethyl acetate as the eluant to afford 313mg of product. LRMS NH₃-CI ($M+\text{H}$)⁺ 282. The product (330 mg) was

hydrogenated in MeOH, 10% Pd/C (300mg) and conc. HCl (5mL) in a parr shaker at 50psi for 18h. The reaction was filtered through Celite® and the filtrate was concentrated in vacuo to afford 250 mg of the title compound. LRMS NH₃-CI (M+H)⁺ 194.

5

1-(4-(3-Fluoro)benzylpepiridinocarbonyl)methyl-5-cyanoindole.

Prepared as in example 101. LRMS ESI (M+H)⁺ 376.

10 **1-(4-(3-Fluoro)benzylpepiridinocarbonyl)methyl-5-amidinoindole.** Example 103 was prepared via the same method as example 101. HRMS FAB glycerol matrix for C₂₃H₂₆N₄FO (M+H)⁺ calc. 393.209065, found 393.208858.

Example 104

15 **Preparation of 1-(1-(4-amidino)benzyl-N-(methylacetate)aminocarbonyl)methyl-5-amidinoindole**

20 **(4-Cyano)benzyl-N-(methylacetate)amine.** α-Bromo-tolunitrile (2.0g, 10.5mmol) was dissolved in CHCl₃ and glycine methyl ester (2.64g, 21.0mmol) and triethyl amine (2.92mL, 10.5mmol) was added. The mixture was stirred for 18h under nitrogen atmosphere, concentrated in vacuo and purified via silica gel column using 1:1 hexanes:ethyl acetate as the eluant to afford 1.07g of the title compound (5.25mmol). LRMS ESI (M+H)⁺ 205. 25 ¹H NMR (CDCl₃) δ ppm 3.42 (s, 2H), 3.78 (s, 3H), 3.91 (s, 2H), 7.42 (d, 2H, J=8.0 Hz), 7.62 (d, 2H, J=8.0 Hz).

30 **1-(1-(4-Cyano)benzyl-N-(methylacetate)aminocarbonyl)methyl-5-cyanoindole.** Compound was prepared using the same coupling procedure as in example 101. HRMS NH₃-CI for C₂₃H₂₀N₄O₃ (M+H)⁺ calc. 401.161366, found 401.159527.

35 **1-(1-(4-Amidino)benzyl-N-(methylacetate)aminocarbonyl)methyl-5-amidinoindole.** Prepared by the same Pinner conditions as example 101. LRMS ESI (M+2H)⁺² 218.

Example 105Preparation of Methyl 1-(4-benzylpiperidine-1-carbonyl)methyl-5-amidinoindole-3-propanoate

- 5 **Methyl 1-(4-benzylpiperidine-1-carbonyl)methyl-5-cyanoindole-3-propanoate.** 1-(4-Benzylpiperidine-1-carbonyl)-5-cyanoindole (1.0g, 2.8mmol) was dissolved in 20mL of dry CH₂Cl₂, cooled to 0°C and oxalyl chloride (1.07g, 8.4 mmol) was added. The reaction stirred for 3h at rt. It was then concentrated in vacuo and dissolved in dry MeOH (20mL) and stirred for 18h. The resulting yellow solution was concentrated in vacuo and 1.0g (2.3mmol) was taken up in TFA (20mL) at 0°C and triethylsilane (535 mg, 4.6mmol) was slowly added. The reaction stirred at 0°C for 3h and then it was concentrated in vacuo, dissolved in CH₂Cl₂ and washed with sat. NaHCO₃, dried with sodium sulfate, filtered and concentrated. The resulting residue was chromatographed via silica gel using 7% MeOH/CHCl₃ as the eluant to afford 840 mg of the title compound. LRMS ESI (M+H)⁺ 430.
- 10
- 15
- 20
- 25
- 1-(4-Benzylpiperidine-1-carbonyl)methyl-3-methylacetate-5-amidinoindole.** The amidine was prepared as in example 101. HRMS NH₃-CI for C₂₆H₃₄N₄O₃ (M+H)⁺ calc. 447.239616, found 447.241907.

Example 106Preparation of 1-((4-benzylpiperidinecarbonyl)methyl-(3-ethanehydroxyl)-5-amidinoindole

- 30 **1-(4-Benzylpiperidine-1-carbonyl)methyl-3-ethanehydroxyl-5-cyanoindole.** Methyl 1-acetyl-(4-benzylpiperidin-1-yl)-3-acetate-5-cyanoindole (100mg, 0.233 mmol) was dissolved in ethanol and sodium borohydride (20mg, 0.51mmol) was added and the solution stirred at rt for 18h. The reaction was
- 35
- concentrated in vacuo diluted with water and extracted with methylene chloride (3x), dried over sodium sulfate, filtered and concentrated in vacuo to afford 93.0 mg of the title compound. LRMS DCI-NH₃ (M+NH₄)⁺ 419.

1-(4-Benzylpiperidine-1-carbonyl)methyl-3-ethanehydroxyl-5-amidinoindole. The amidine was prepared as in example 101. HRMS NH₃-CI for C₂₅H₃₁N₄O₂ (M+H)⁺ calc. 419.244702, found
5 419.245383.

Example 107

Preparation of 1-(4-benzylpiperidine-1-carbonyl)methyl-3-methylcarboxylic acid-5-amidinoindole

10 Methyl 1-acetyl-(4-benzylpiperidin-1-yl)-3-acetate-5-amidinoindole was hydrolyzed in TFA/H₂O for 18h. Purified via prep HPLC to afford the title compound. LRMS (M+H)⁺ 433.

15 Example 108

Preparation of 1-(1-Benzylpiperidine-4-aminocarbonyl)methyl-5-amidinoindole

1-(1-Benzylpiperidine-4-aminocarbonyl)methyl-5-cyanoindole.
20 To a stirred complex of N-1-methylenecarbohydroxy-5-cyanoindole (300mg, 1.5mmol) and DEC was added 4-amino-1-benzylpiperidine and triethylamine (0.209 mL, 1.5mmol). The reaction was stirred at rt for 18h. The volatiles were removed in vacuo and the residue was purified via silica gel 25 using 1%MeOH/CH₂Cl₂ as the eluant to afford 160 mg of product. HRMS NH₃-CI for C₂₃H₂₄N₄O (M+H)⁺ calc 373.204.204739, found 373.202837.

1-(1-Benzylpiperidine-4-aminocarbonyl)methyl-5-amidinoindole.
30 The amidine was prepared as in example 101 to afford 96mg of the title compound. HRMS NH₃-CI calc. 390.229386, found 390.229386.

Example 109

Preparation of 1-(4-benzoylpiperidinecarbonyl)methyl-5-amidinoindole

1-(4-Benzoylpiperidinecarbonyl)methyl-5-cyanoindole. Prepared as in example 108 except using 4-benzoylpiperidine. HRMS NH₃-CI (M+H)⁺ for C₂₃H₂₁N₃O₂ calc. 372.171702, found 372.171620.

- 5 **1-(4-Benzoylpiperidinecarbonyl)methyl-5-amidinoindole.** The amidine was prepared using the same method as in example 101. HRMS (M+H)⁺ for C₂₃H₂₄N₄O₃ calc. 389.197751, found 389.198109.

Example 110

- 10 Preparation of 1-(4-(3-fluoro)benzylpiperazinecarbonyl)methyl-5-amidinoindole

1-(4-(3-Fluoro)benzylpiperazinecarbonyl)methyl-5-cyanoindole. To a stirred solution of 1-acetyl-(1-piperazine)-5-cyanoindole (400mg, 1.31mmol), triethylamine (0.0.36 mL, 2.62mmol) in diethyl ether was added 3-fluorobenzyl bromide (0.161 mL, 1.31 mmol) and stirred at room temperature under N₂ atmosphere for 18h. The reaction quenched with water, extracted with ethyl acetate, dried with sodium sulfate, filtered and concentrated in vacuo to afford 438mg product. LRMS (M+H)⁺ 377.

1-(4-(3-Fluoro)benzylpiperazinecarbonyl)methyl-5-amidinoindole. Prepared as in example 101. HRMS (M+H)⁺ for C₂₂H₂₄N₅O₂F calc. 394.204314, found 394.204917.

25

Example 111

- Preparation of 1-(4-phenylbenzylaminocarbonyl)methyl-5-amidinoindole

30 **1-(4-Phenylbenzylaminocarbonyl)methyl-5-cyanoindole.** To a stirred complex of 1-acetic acid 5-cyanoindole (250mg, 1.25mmol) and DEC (239mg, 1.25mmol) in methylene chloride was added 4-phenylbenzylamine (228mg, 1.25mmol). After stirring at rt for 18h under a nitrogen atmosphere, the reaction was concentrated in vacuo, dissolved in ethyl acetate, washed with 1N HCl, sodium bicarbonate, and brine, dried with sodium sulfate, filtered and concentrated in vacuo to afford 215mg of product. HRMS (M+H)⁺ calc. 366.260637, found 366.160323.

1-(4-Phenylbenzylaminocarbonyl)methyl-5-amidinoindole.

Prepared as in example 101. HRMS calc. 383.187187 found 383.189667.

5

Example 112Preparation of methyl 1-(4-benzylpiperidinecarbonyl)methyl-5-amidinoindole-3-propenoate

10 **Methyl 1-(4-benzylpiperidinecarbonyl)methyl-5-cyanoindole-3-propenoate.** To a stirred solution of DMF (15mL) and POCl_3 (256mg, 1.7mmol) at 0°C was added 1-(4-benzylpiperidinecarbonyl)methyl-5-cyanoindole (199mg, 0.56mmol). After stirring 3h, the reaction was quenched with 2N sodium hydroxide and stirred for 30 min. It was then extracted with chloroform, dried with sodium sulfate, filtered and concentrated in vacuo to afford product. LRMS $(\text{M}+\text{H})^+$ 386. The product was then refluxed in the presence of triphenyl phosphonium(methylenecarbomethoxy)ylide in THF under a nitrogen atmosphere for 18h. The reaction was concentrated in vacuo and the residue purified via silica gel chromatography using 7% MeOH/CHCl₃ as the eluant to afford 140mg of product.

15

20

25 **Methyl 1-(4-benzylpiperidinecarbonyl)methyl-5-amidinoindole-3-propenoate.** Prepared as in example 101. LRMS $(\text{M}+\text{H})^+$ 459.

Example 113Preparation of 1-(4-(2-fluoro)benzylpiperidinecarbonyl)methyl-5-amidinoindole

30 **4-(2-Fluoro)benzylpiperidine.** To a stirred solution of triphenylphosphonium-2-fluorobenzylbromide in dry THF at -78°C was added n-buLi (2.5M, 2.13mL) and stirred for 30 min. To it was then added 1-benzyl-4-piperidinene (0.99mL) and the mixture stirred at rt for 4h. The reaction was quenched with water and concentrated in vacuo. The resulting residue was purified via silica gel chromatography using 1:1 hexanes:ethyl acetate as the eluant to afford 313mg. LRMS

35

(M+H)⁺ 282. The product was hydrogenated in a parr shaker at 50psi in MeOH (10mL), 5.0mL conc. HCl and 10%Pd/C (300mg) for 18h. The mixture was filterd through celite® and concentrated in vacuo to afford 250mg of product. LRMS (M+H)⁺ 194.

5

1-(4-(2-Fluoro)benzylpiperidinecarbonyl)methyl-5-cyanoindole. Prepared by coupling 3-acetic acid-5-cyanoindole with 4-(2-fluoro)benzylpiperidine using the method described in example 101. LRMS (M+H)⁺ 376.

10

1-(4-(2-Fluoro)benzylpiperidinecarbonyl)methyl-5-amidinoindole. Prepared as in example 101. HRMS (M+H)⁺ calc. 393.209065, found 393.208858.

15

Example 201

Preparation of 3-((4-cyclohexyl)phenylaminomethylcarbonyl)methyl-5-amidinoindole

Methyl 5-cyanoindole-3-acetate. To a stirred solution of 5-cyanoindole (10.0g) in dry methylene chloride was added (3.0eq, 61.43mL) of oxalyl chloride. After stirring for 1h under a nitrogen atmosphere at rt, the resulting precipitate was filtered and rinsed with diethyl ether. The solids were then taken up in dry MeOH and stirred for 1h. At this time the solids were filtered and rinsed with MeOH and diethyl ether to afford 5.93g of methyl α -ketoacetate 5-cyanoindole. LRMS (M+H)⁺ 229. Methyl α -ketoacetate (4.90g) was dissolved in 50 mL trifluoro acetic acid at 0°C and triethyl silane (5.0g) was slowly added via a drop funnel (20 min.). It was then stirred at 0°C for 3h. The resulting yellow solution was concentrated in vacuo, neutralized with sodium bicarbonate, extracted with diethyl acetate, dried with magnesium sulfate filtered and concentrated in vacuo. Purification was accomplished via silica gel chromatography using 1% MeOH/CH₂Cl₂ as the eluant to afford 2.48g of product. LRMS (M+H)⁺ 232.

3-(5-Cyanoindole) acetic acid. The above ester was saponified in KOH/MeOH at rt for 18h. The solution 3 was then concentrated in vacuo, dissolved in water, extracted with ethylacetate and the acidic layer was then acidified with 1N HCl at 0°C. The resulting white solids were filtered and further dried under high vacuum to afford the product. M.p. 196.5-198.5; Calc. C66.00 H4.04 N13.99, found C65.71 H4.24 N13.94. ^1H NMR (CD_3OD) δ ppm 3.78 (s, 2H), 7.28 (s, 1H), 7.38 (d, 1H, J = 8.6 Hz), 7.45 (d, 1H, J = 8.6 Hz), 7.89 (s, 1H); LRMS $(\text{M}^+)^+$ 199.

3-(4-Cyclohexylphenylaminomethylcarbonyl)methyl-5-cyanoindole. To a stirred complex of the 5-cyanoindole acetic acid (312mg, 1.5mmol) and BOP reagent (1.03g) in DMF was added 4-cyclohexylphenylaminomethyl. After heating at 50°C under a nitrogen atmosphere for 18h, the reaction was cooled to rt diluted with water and extracted with ethyl acetate, washed with 1N HCl, sat. sodium bicarbonate, and brine, dried with sodium sulfate, filtered and concentrated in vacuo. The residue was purified via chromatography using 100% ethyl acetate as the eluant to afford 210mg of product. LRMS $(\text{M}+\text{H})^+$ 372.

3-((4-Cyclohexyl)phenylaminomethylcarbonyl)methyl-5-amidinoindole. Prepared as in example 101. HRMS $(\text{M}+\text{H})^+$ for $\text{C}_{24}\text{H}_{29}\text{N}_4\text{O}$ calc. 389.234137, found 389.232086.

Example 202

Preparation of 3-(4-p-toluenesulfonyl-piperazinecarbonyl)methyl-5-amidinoindole

3-(4-Paratoluensulfonylpiperazinecarbonyl)methyl-5-cyanoindole. To a stirred solution of 3-(piperazinecarbonyl)methyl-5-cyanoindole hydrochloride (200mg, 0.66mmol) and triethylamine (134mg, 185 μL) in chloroform was added toluenesulfonylchloride (126mg, 0.66mmol). After stirring for 18h at rt under a nitrogen atmosphere, the reaction was quenched with water, extracted with chloroform,

washed with 1N HCl, sat sodium bicarbonate, and brine, dried with sodium sulfate, filtered and concentrated in vacuo to afford 237mg of product. LRMS $(M+H)^+$ 423.

- 5 **3-(4-Paratoluensulfonylpiperazinecarbonyl)methyl-5-amidinoindole.** Prepared as in example 101. HRMS $(M+H)^+$ for C₂₂H₂₆N₅O₃S, calc. 440.174611, found 440.175637.

Example 203

- 10 **Preparation of 3-(4-(2-aminosulfonylphenyl)pyridine-2-aminocarbonyl)methyl-5-amidinoindole**

3-(4-(2-Aminosulfonylphenyl)pyridine-2-aminocarbonyl)methyl-5-cyanoindole. To a stirred solution of 5-cyano-3-acetic acid indole (400mg, 2.0mmol), BOP (884mg, 3.0mmol) in DMF (15mL) was added 4-(2-aminosulfonyl)phenyl-2-aminopyridine (912mg, 3.0mmol) and heated at 50°C for 3h. The reaction was diluted with water, extracted with ethyl acetate, washed with 10% HCl, sodium bicarbonate, brine, and water, dried with magnesium sulfate, filtered and concentrated in vacuo to afford 420mg of product. LRMS 488. The t-butyl group was removed in TFA reflux for 1h and the product purified via silica gel using 100% ethyl acetate as the eluant to afford 101 mg of product. LRMS 432.

- 25 **3-(4-(2-Aminosulfonylphenyl)pyridine-2-aminocarbonyl)methyl-5-amidinoindole.** Prepared as in example 101. HRMS $(M+H)^+$ for C₂₂H₂₂N₅O₃S calc. 449.139586, found 449.139058.

30 Example 204

- Preparation of 3-(4-[2-tetrazole]phenyl)phenylaminocarbonyl)methyl-5-amidinoindole

35 **3-(4-[2-Tetrazole]phenyl)phenylaminocarbonyl)methyl-5-cyanoindole.** 5-cyanoindole-3-acetic acid was dissolved in DMF/CH₂Cl₂, DEC (382mg), and DMAP (10mg) and the reaction mixture stirred for 15 min. 4-((2-Tetrazole)phenyl)aniline was added and the reactin mixture stirred for 2h. The

reaction was concentrated in vacuo, dissolved in ethylacetate and washed with water and brine, dried with magnesium sulfate, filtered and concentrated in vacuo. Purification was done via silical gel using 1:1 hexanes:ethylacetate to afford 660mg of product. The trityl group was cleaved in THF (30mL) and 4M HCl dioxane (0.988mL) at rt for 18h. It was then basified with NaOH to pH 11, washed with ether, acidified to pH 3 with 10% HCl and the precipitate was collected and dried under high vacuum to afford 250mg of product. LRMS ($M+H$)⁺ 420.

10

3-(4-[2-Tetrazole]phenyl)phenylaminocarbonylmethyl-5-amidinoindole. Prepared as in example 101. HRMS for C₂₃H₂₀N₈O ($M+H$)⁺ calc. 437.183833, found 437.186710.

15

Example 205

Preparation of 3-(4-biphenylaminocarbonylmethyl-5-amidinoindole)

20

The title compound was prepared as in example 101. HRMS ($M+H$)⁺ for C₂₃H₂₀N₄O calc. 369.172173, found 369.171537.

Example 206

Preparation of 3-(4-(phenylmethylsulfonyl)piperazinocarbonylmethyl-5-amidinoindole)

25

The title compound was prepared as in example 101. HRMS ($M+H$)⁺ C₂₂H₂₅N₅O₃S calc. 440.176204, found 440.175637.

30

Example 207

Preparation of 3-(4-cyclohexylphenylaminocarbonylmethyl-5-amidinoindole)

35

The title compound was prepared as in example 101. HRMS ($M+H$)⁺ C₂₃H₂₆N₄O calc. 375.218732, found 375.218487.

Example 208Preparation of 3-(4-benzylpiperazinecarbonyl)methyl-5-amidinoindole

- 5 The title compound was prepared as in example 101. HRMS $(M+H)^+$ for C₂₂H₂₅N₅O calc. 376.213722, found 376.213736.

Example 209Preparation of 3-(3-

- 10 amidinobenzylamino(methylcarbonylmethoxy)carbonyl)methyl-5-
amidinoindole

The title compound was prepared as in example 101. HRMS cal. 435.214464, found 435.216822.

15

Example 210Preparation of 1-methyl-3-(4-
amidinobenzylamino(methylcarbonylmethoxy)carbonyl)methyl-5-
amidinoindole

20

The title compound was prepared as in example 101. HRMS calc. 435.214464, found 435.213247.

Example 211

- 25 Preparation of 1-methyl-3-(4-[2-
aminosulfonyl]phenylbenzylaminocarbonyl)methyl-5-amidinoindole

The title compound was prepared as in example 201. LRMS 476, m.p. 231°C.

30

Example 212Preparation of 1-methyl-3-(4-phenylbenzylaminocarbonyl)methyl-5-amidinoindole

- 35 The title compound was prepared as in example 201. HRMS calc. 397.202837, found 397.204520.

Example 213Preparation of 1-methyl-3-(4-phenylpiperazinecarbonyl)methyl-5-amidinoindole

5 The title compound was prepared as in example 201. HRMS calc. 389.234137, found 389.234635.

Example 214Preparation of 3-(4-[2-

10 aminosulfonyl]phenylphenylaminocarbonyl)methyl-5-amidinoindole

The title compound was prepared as in example 203. HRMS calc. 448.144337 found 448.143656.

15

Example 215Preparation of 3-(1-benzylpiperidine-4-aminocarbonyl)methyl-5-
amidinoindole

The title compound was prepared as in example 201. HRMS calc. 20 390.229386, found 390.230305.

Example 216Preparation of 3-(4-phenylpiperazinecarbonyl)methyl-5-
amidinoindole

25

The title compound was prepared as in example 201. HRMS calc. 362.198086, found 362.197315.

Example 217

30 Preparation of 3-(4-benzylpiperidinecarbonyl)methyl-5-
amidinoindole

The title compound was prepared as in example 201. HRMS calc. 374.210662 found 374.210386.

35

Example 218Preparation of 1-methyl-3-(5-(2-aminosulfonyl)phenylpyridine-2-aminocarbonyl)methyl-5-amidinoindole

The title compound was prepared as in example 201. HRMS calc. 463.155236, found 463.155236.

5

Example 219

Preparation of 3-(2-bromo-4-(2-aminosulfonyl)phenylphenylaminocarbonyl)methyl-5-cyanoindole

A solution of 3-(2-bromo-4-(2-aminosulfonyl)phenylphenylaminocarbonyl)methyl-5-cyanoindoline (1.2378 mmol, 0.7 g) in anhydrous methyl acetate (15 mL) and anhydrous methanol (0.5 mL, 10.0 eq) was saturated with dry hydrogen chloride gas at -20°C for 20 min. The reaction mixture was stoppered tightly and left at ambient temperature for 18 h. This reaction mixture was evaporated and pumped on for several hours to remove any residual HCl. To this imidate in anhydrous methanol (15 mL) was added ammonium carbonate (1.189 g, 10.0 eq.). This reaction mixture was allowed to stir at ambient temperature for 24 h. This final reaction mixture was evaporated and purified by HPLC on a C-18 column eluted with solvent mixture A (water:TFA 99.95:0.05) and solvent mixture B (acetonitrile:TFA 99.95:0.05) using a gradient starting with A at 80 % and changing to B at 100 % over 60 min. After lyophylization, 0.122 g of pure product (15%) was obtained; HRMS (M+H)⁺ calc. 526.054848, found 526.053791 for o-Br compound.

Example 220

Preparation of 3-(2-methyl-4-(2-aminosulfonyl)phenylphenylaminocarbonyl)methyl-5-methylamino indole

To the solution of 3-(2-methyl-4-(2-aminosulfonyl)phenylphenylaminocarbonyl)methyl-5-cyano indole (0.5992 mmol, 0.3 g) in absolute ethanol:TFA 4:6 was added palladium hydroxide on carbon (0.06 g, 20 % weight equivalent of starting material used). This reaction mixture was stirred under house vacuum for 10 minutes at ambient temperature to

remove oxygen. Then subjected to 1 atm H₂ via balloon method for 3 h. The reaction mixture was filtered through celite to remove catalyst and washed with ethanol (20 mL). The filtrate was evaporated to give the desired product with t-butyl sulfonamide. This product was treated with trifluoroacetic acid at 55°C for 2 h for deprotection of sulfonamide. The reaction mixture was evaporated and purified by HPLC on a C-18 column eluted with solvent mixture A (water:TFA 99.95:0.05) and solvent mixture B (acetonitrile:TFA 99.95:0.05) using a gradient starting with A at 80 % and changing to B at 100 % over 60 min. to give 10.0 mg of pure product (3 %, poor yield due to poor solubility); HRMS (M+H)⁺ calc. 449.164738, found 449.165207.

15

Example 221

Preparation of 3-(2-fluoro-4-(2-aminosulfonyl)phenylphenylaminocarbonyl)methyl-5-amidinoindole

The titled compound was prepared as in Example 203. HRMS (NH₃-CI/DEP) (M+H)⁺ for C₂₃H₂₁N₅SO₃F calculated 466.134915; found 466.133832.

Example 222

25 **Preparation of 3-(2-chloro-4-(2-aminosulfonyl)phenylphenylaminocarbonyl)methyl-5-cyanoindole**

The titled compound was prepared as in Example 203. HRMS for C₂₅H₂₁N₅SO₃Cl (M+H)⁺ calc. 482.105364; found 482.103835.

30

Example 223

Preparation of 3-(2-iodo-4-(2-aminosulfonyl)phenylphenylaminocarbonyl)methyl-5-cyanoindole

35 The titled compound was prepared as in Example 203. HRMS for C₂₃H₂₁IN₅O₃S (M+H)⁺ calc. 574.040989; found 574.042800.

Example 224**Preparation of 3-(2-methyl-4-(2-aminosulfonyl)phenylphenylaminocarbonyl)methyl-5-amidinoindole**

5 The titled compound was prepared as in Example 203. HRMS for C₂₄H₂₄N₅O₃S (M+H)⁺ calc. 462.159987; found 462.158553.

Example 225

10 **Preparation of 3-(2-methyl-4-(2-(t-butylaminosulfonyl)phenylphenylaminocarbonyl)methyl-5-amidinoindole**

The titled compound was prepared as in Example 203. HRMS for C₂₈H₃₂N₅O₃S (M+H)⁺ calc. 518.222587; found 518.221998.

15

Example 226

20 **Preparation of 3-(4-(2-aminosulfonyl)phenyl)phenylaminocarbonylmethyl- α -(methylcarboxy methyl ether)-5-amidinoindole**

20

The titled compound (racemic) was prepared as in Example 203. HRMS for C₂₆H₂₅N₅O₅S (M+H)⁺ calc 520.166599; found 520.165466.

Example 227

25 **Preparation of 3-(4-(2-aminosulfonyl)phenyl)phenylaminocarbonylmethyl- α -(benzyl)-5-amidinoindole**

30 The titled compound (racemic) was prepared as in Example 203. HRMS for C₃₀H₂₉N₅O₃S (M+H)⁺ calc. 538.191287; found 538.191263.

Example 228

35 **Preparation of 3-(4-(2-trifluoromethyl)phenyl)pyrid-2-ylaminocarbonylmethyl-5-amidinoindole**

The titled compound was prepared as in Example 203. HRMS for C₂₃H₂₀N₅O₁F₃ (M+H)⁺ 438.154170; found 438.152166.

Example 229

**Preparation of 3-(4-(2-
ethylaminosulf nyl)phenyl)phenylaminocarbonylmethyl-5-
amidinoindole**

5

The titled compound was prepared as in Example 203. HRMS for C₂₆H₂₇N₅O₃S₁ (M+H)⁺ calc. 476.175637; found 476.175892.

Example 230

10 **Preparation of 3-(4-(2-
propylaminosulfonyl)phenyl)phenyl)aminocarbonylmethyl-5-
amidinoindole**

15 The titled compound was prepared as in Example 203. HRMS for C₂₆H₂₇N₅O₃S (M+H)⁺ calc. 490.191287; found 490.190996.

Example 231

20 **Preparation of 2-methyl-3-(2-iodo-4-(2-
aminosulfonyl)phenyl)phenyl)aminocarbonylmethyl-5-
amidinoindole**

The titled compound was prepared as in Example 203. HRMS for C₂₄H₂₃IN₅O₃S₁ (M+H)⁺ calc. 558.056639; found 558.057057.

25

Example 232

Preparation of 2-methyl-3-(4-(2-
aminosulfonyl)phenyl)phenyl)aminocarbonylmethyl-5-
amidinoindole

30 The titled compound was prepared as in Example 203. LRMS for C₂₄H₂₃N₅O₃S₁ (M+H)⁺ 462.

Example 233

35 **Preparation of 3-(4-(2-aminosulfonyl)phenyl)phenyl)-N-
methylaminocarbonylmethyl-5-amidinoindole**

The titled compound was prepared as in Example 203. LRMS for C₂₄H₂₄N₅O₃S₁ (M+H)⁺ 462.

Example 234

Preparation of 2-methyl-3-(4-(2-t-butylaminosulfonyl)phenyl)phenyl)aminocarbonylmethyl-5-methoxyindole
5

The titled compound was prepared as in Example 203. LRMS for C₂₈H₃₁N₃O₄S₁ (M+H)⁺ 506.

10

Example 235

Preparation of 3-(4-(2-N-methylaminosulfonyl)phenyl)phenyl)-N-methylaminocarbonylmethyl-5-amidinoindole

15 The titled compound was prepared as in Example 203. HRMS for C₂₄H₂₃N₅O₃S (M+H)⁺ cacl. 462.159987; found 462.159054.

20

Example 236

Preparation of 3-(4-(2-(n-butylaminosulfonyl)phenylphenylaminocarbonyl)methyl-5-cyanoindoline

To a solution of 3-acetic acid indoline (0.001 mol, 0.2 g) [or indoline acid (0.001 mol, 0.202 g)] in anhydrous acetonitrile (10 mL) was added thionyl chloride (0.3 mL, 4.0 eq.) [for indoline, 1.0 M HCl in ethyl ether (0.05 mL, 1.0 eq.) was added before thionyl chloride]. This reaction mixture was warmed up at 50°C for 10 min. then allowed to cool to ambient temperature and stirred for 2 h. The solvent and extra thionyl chloride were removed in vacuo and the residue was pumped on for several hours for further dry. To this dried residue was added a mixture of A-B (0.338 g, 1.0 eq.) and triethyl amine (0.14 mL, 1.0 eq.; 2.0 eq. for HCl salt) in anhydrous methylene chloride (10 mL). This reaction mixture was allowed to stir at ambient temperature for 2 h. The reaction mixture was evaporated and purified by flash chromatography on a silica gel column (50 g) eluted with 3:1 hexane:ethyl acetate to give 0.4 g of pure product with n-butyl sulfonamide (51 %).

Example 237

Preparation of 3-(4-(2-(n-propylaminosulfonyl)phenylphenoxyaminocarbonyl)methyl-5-amidinoindoline

5

The titled compound was prepared as in Example 203. HRMS for C₂₆H₃₀N₅SO₃ (M+H)⁺ calc. 492.206937; found 492.207667.

10

Example 238

Preparation of (-)-3-(4-(2-aminosulfonyl)phenyl)pyrid-2-ylaminocarbonylmethyl-5-amidinoindoline

The titled compound was prepared as in Example 203. HRMS for C₂₂H₂₄N₆O₃S₁ (M+H)⁺ calc. 451.155236; found 451.154317.

20

Example 239

Preparation of 3-(4-(2-aminosulfonyl)phenyl)pyrid-2-ylaminocarbonylmethyl-5-amidinoindoline

25

The titled compound (racemic) was prepared as in Example 203. HRMS for C₂₂H₂₄N₆O₃S₁ (M+H)⁺ calc. 451.155236; found 451.154317.

30

Example 240

Preparation of 3-(4-(2-dimethylaminosulfonyl)phenyl)phenylaminocarbonylmethyl-5-amidinoindoline

35

The titled compound (racemic) was prepared as in Example 203. HRMS for C₂₅H₂₆N₅O₃S₁ (M+H)⁺ calc. 450.159987; found 450.159435.

Example 241

Preparation of (+)-3-(4-(2-t-butylaminosulfonyl)phenyl)pyrid-2-ylaminocarbonylmethyl-5-amidinoindoline

The titled compound was prepared as in Example 203. HRMS for C₂₆H₃₀N₆O₃S₁ (M+H)⁺ calc. 507.217836; found 507.217901. 98%ee; rotation (+) 19.23.

5

Example 242**Preparation of (-)-3-(4-(2-t-butylaminosulfonyl)phenyl)pyrid-2-ylaminocarbonylmethyl-5-amidinoindoline**

10 The titled compound was prepared as in Example 203. HRMS for C₂₆H₃₀N₆O₃S₁ (M+H)⁺ calc. 507.217836; found 507.217678. 98%ee; rotaion -16.28.

Example 243**Preparation of 3-(4-(2-aminosulfonyl)phenyl)pyrid-2-yl)aminocarbonylmethyl-5-aminocarboxyindoline**

The titled compound (racemic) was prepared as in Example 203. HRMS for C₂₂H₂₃N₆O₃S₁ (M+H)⁺ calc. 451.1552036; found 451.154691.

20

Example 244**Preparation of 3-(4-(2-t-butylaminosulfonyl)phenyl)phenyl)aminocarbonylmethyl-5-amidinoindoline**

25

The titled compound was prepared as in Example 203. LRMS for C₂₇H₃₁N₅O₃S₁ (M+H)⁺ calc. 506.3; found 506.4.

Example 245**Preparation of 3-(4-(2-t-butylaminosulfonyl)phenyl)pyrid-2-yl)aminocarbonylmethyl-5-amidinoindoline**

The titled compound (racemic) was prepared as in Example 203. LRMS for C₂₆H₃₀N₆O₃S₁ (M+H)⁺ calc. 507.3; found 507.4.

35

Example 246**Preparation of 3-(4-(2-aminosulfonyl)phenyl)pyrid-2-ylaminocarbonylmethyl-6-amidinoindazole**

The titled compound was prepared as in Example 203. HRMS for C₂₁H₂₁N₇O₃S₁ (M+H)⁺ calc. 450.134835; found 450.134725.

5

Example 247

**Preparation of 3-(4-(2-amino sulfonyl)phenyl)phenyl
aminocarbonylmethyl-6-amidinoindazole**

10 The titled compound was prepared as in Example 203. HRMS for C₂₂H₂₂N₆O₃S₁ (M+H)⁺ calc. 449.139586; found 449.138515.

Example 248

**Preparation of 3-(4-(2-t-butyl amino sulfonyl)phenyl)pyrid-2-
ylaminocarbonylmethyl-6-amidinoindazole**

15

The titled compound was prepared as in Example 203. HRMS for C₂₅H₂₉N₇O₃S₁ (M+H)⁺ calc. 450.134835; 450.134725

Example 249

20 **Preparation of 3-(4-(2-t-butylamino sulfonyl)phenyl)phenyl
aminocarbonylmethyl-6-amidinoindazole**

The titled compound was prepared as in Example 203. HRMS for C₂₆H₃₀N₆O₃S₁ (M+H)⁺ calc. 505.202186; found 505.202631.

25

Table 5

Ex	Am. Pos.	A	B	MS (100%) or HRMS
1	a+b	phenethyl	3-amidino	204 (M+2H) 2+
2	b	phenethyl	3-amidino	204.2 (M+2H) 2+
3	a	phenethyl	3-amidino	204.2 (M+2H) 2+
4	a+b	phenethyl	4-amidino	407.2200
5	b	phenethyl	4-amidino	204 (M+2H) 2+
6	a	phenethyl	4-amidino	204 (M+2H) 2+
7	a+b	phenyl-CH=	4-amidino	196.2 (M+2H) 2+
8	a+b	phenyl	4-amidino	197 (M+2H) 2+

5

Table 6a

Ex	Am. Pos.	Z	A	B	MS (100%) or HRMS
51	a	C(O)	phenyl	4-phenyl	355.1554
52	b	C(O)	phenyl	4-phenyl	355.1559
53	a	C(O)	phenyl	4-(3-NH ₂)phenyl	370 (M+H) ⁺
54	b	C(O)	phenyl	4-(3-NH ₂)phenyl	370 (M+H) ⁺
55	a	C(O)	phenyl	4-(4-F)phenyl	373.1481
56	a	C(O)	phenyl	4-(4-CHO)phenyl	383.1531
57	a	C(O)	phenyl	4-(2-NH ₂ SO ₂)phenyl	434.1303
58	a	C(O)	phenyl	4-(2-tBuNHSO ₂)phenyl	
59	a	C(O)	phenyl	4-(2-tetrazolyl)phenyl	423.1686
60	a	C(O)NH	phenyl	4-(2-NH ₂ SO ₂)phenyl	449.1414
61	b	C(O)NH	phenyl	4-(2-NH ₂ SO ₂)phenyl	449.1401
62	a+b	C(O)	1-piperidine	4-benzyl	376.2118
63	b	C(O)	1-piperidine	4-benzyl	376.2130
64	a	C(O)	phenyl	4-(2-NH ₂ SO ₂)phenyl	449.1393
65*	6-aza	C(O)	phenyl	4-(2-tBuNHSO ₂)phenyl	436

5 *Ex. 65 contains the CH₂-Z-A-B group at the 2-position.

Table 6b

Ex	Z'	A	B	HRMS
65*	CH ₂ C(O)	phenyl	4-(2-tBuNHSO ₂)phenyl	464.1756
66	SCH ₂ C(O)NH	phenyl	4-(2-tBuNHSO ₂)phenyl	496.1477
67	SCH ₂ C(O)NH	phenyl	4-(2-NH ₂ SO ₂)phenyl	440.0831

5

Tabl 7

Ex	R¹	Z'	A	B	MS or HRMS
101	H	C(O)	1-piperidine	4-benzyl	375.218
102	H	CH ₂ C(O)	1-piperidine	4-benzyl	389.231
103	H	C(O)	1-piperidine	4-(3-F)benzyl	393.209
104	H	C(O)N(CH ₂ CO ₂ CH ₃)	benzyl	4-amidino	218
105	CH ₂ -CO ₂ Me	C(O)	1-piperidine	4-benzyl	447.242
106	CH ₂ -CH ₂ OH	C(O)	1-piperidine	4-benzyl	419.245
107	CH ₂ -CO ₂ H	C(O)	1-piperidine	4-benzyl	433
108	H	C(O)NH	4-piperidine	1-benzyl	390.229
109	H	C(O)	1-piperidine	4-benzoyl	389.198
110	H	C(O)	1-piperazinyl	4-(3-F)benzyl	394.205
111	H	C(O)NH	benzyl	4-phenyl	383.190
112	CH=CH-CO ₂ Me	C(O)	piperidine	4-benzyl	459
113	H	C(O)	piperidine	4-(2-F)benzyl	393.209

Table 8a*

Ex	D	R¹	Z	A	B	MS or HRMS
201	Am	H	C(O)-CH ₂ NH	phenyl	4-cyclohexyl	389.232
202	Am	H	C(O)	1-piperazinyl	4-p-toluenesulfonyl	440.176
203	Am	H	C(O)NH	2-pyridyl	4-(2-aminosulfonyl)phenyl	449.139
204	Am	H	C(O)NH	1-phenyl	4-(2-tetrazol-5-yl)phenyl	437.187
205	Am	H	C(O)NH	1-phenyl	4-phenyl	369.171
206	Am	H	C(O)	1-piperazinyl	4-phenyl-methylsulfonyl	440.176
207	Am	H	C(O)NH	1-phenyl	4-cyclohexyl	375.218
208	Am	H	C(O)	1-piperazinyl	4-benzyl	376.214
209	Am	Me	C(O)N-(CH ₂ CO ₂ CH ₃)	benzyl	3-amidino	435.217
210	Am	Me	C(O)N-(CH ₂ CO ₂ CH ₃)	benzyl	4-amidino	435.213
211	Am	Me	C(O)NH	benzyl	4-(2-aminosulfonyl)phenyl	476
212	Am	Me	C(O)NH	benzyl	4-phenyl	397.205
213	Am	Me	C(O)CH ₂	1-piperazinyl	4-benzyl	389.235

214	Am	H	C(O)NH	phenyl	4-(2-aminosulfonyl)phenyl	448.144
215	Am	H	C(O)	4-piperidinyl	1-benzyl	390.230
216	Am	H	C(O)	1-piperazinyl	4-phenyl	362.197
217	Am	H	C(O)	1-piperidinyl	4-benzyl	374.210
218	Am	Me	C(O)NH	2-pyridyl	5-(2-aminosulfonyl)phenyl	463.155
219	CN	H	C(O)NH	2-Br-phenyl	4-(2-aminosulfonyl)phenyl	526.054
220	CH ₃ -NH	H	C(O)NH	2-Me-phenyl	4-(2-aminosulfonyl)phenyl	449.164
221	Am	H	C(O)NH	2-F-phenyl	4-(2-aminosulfonyl)phenyl	466.134
222	CN	H	C(O)NH	2-Cl-phenyl	4-(2-aminosulfonyl)phenyl	482.104
223	CN	H	C(O)NH	2-I-phenyl	4-(2-aminosulfonyl)phenyl	574.043
224	Am	H	C(O)NH	2-Me-phenyl	4-(2-aminosulfonyl)phenyl	462.156
225	Am	H	C(O)NH	2-Me-phenyl	4-(2-t-Bu-aminosulfonyl)phenyl	518.222
226	Am	H	(CH ₃ O-C(O)-CH ₂)CH	phenyl	4-(2-aminosulfonyl)phenyl	520.165

227	Am	H	(phenyl -CH ₂)CH	phenyl	4-(2- aminosulfonyl) phenyl	538.191
228	Am	H	C(O)NH	2-pyridyl	4-(2-CF ₃ -phenyl)	438.152
229	Am	H	C(O)NH	phenyl	4-(2- ethylaminosulfonyl)phenyl	476.176
230	Am	H	C(O)NH	phenyl	4-(2- propylamino- sulfonyl)phenyl	490.191
231	Am	H	C(O)NH (R ¹ =2- methyl)	2-I-phenyl	4-(2- aminosulfonyl) phenyl	558.057
232	Am	H	C(O)NH (R ¹ =2- methyl)	phenyl	4-(2- aminosulfonyl) phenyl	462
233	Am	H	C(O)- NCH ₃	phenyl	4-(2- aminosulfonyl) phenyl	462
234	CH ₃ O	H	C(O)NH (R ¹ =2- methyl)	phenyl	4-(2-t-Bu- aminosulfonyl) phenyl	506
235	Am	H	C(O)- NCH ₃	phenyl	4-(2- methylamino- sulfonyl)phenyl	462.160

*For all Examples, but 226 and 277, n=1. For Examples 226 and 227, n=0.

Table 8b

Ex	D	R ¹	Z	A	B	MS or HRMS
236	CN	H	C(O)NH	phenyl	4-(2-n-Bu-aminosulfonyl)phenyl	
237	Am	H	C(O)NH	phenyl	4-(2-propylamino-sulfonyl)phenyl	492.208
238	Am	H	C(O)NH	2-pyridyl	4-(2-aminosulfonyl)phenyl	451.154
(-)						
239	Am	H	C(O)NH	2-pyridyl	4-(2-aminosulfonyl)phenyl	451.155
240	Am	H	C(O)NH	phenyl	4-(2-N,N-dimethylamino-sulfonyl)phenyl	450.160
241	Am	H	C(O)NH	2-pyridyl	4-(2-t-Bu-amino-sulfonyl)phenyl	507.218
(+)						
242	Am	H	C(O)NH	2-pyridyl	4-(2-t-Bu-amino-sulfonyl)phenyl	507.218
(-)						
243	NH ₂ -C(O)	H	C(O)NH	2-pyridyl	4-(2-aminosulfonyl)phenyl	451.154
244	Am	H	C(O)NH	phenyl	4-(2-t-Bu-amino-sulfonyl)phenyl	506.4
245	Am	H	C(O)NH	2-pyridyl	4-(2-t-Bu-amino-sulfonyl)phenyl	507.4

Table 8c

Ex	D	R ¹	Z	A	B	MS or HRMS
246	Am	H	C(O)NH	2-pyridyl	4-(2-aminosulfonyl)phenyl	450.135
247	Am	H	C(O)NH	phenyl	4-(2-aminosulfonyl)phenyl	449.139
248	Am	H	C(O)NH	2-pyridyl	4-(2-t-Bu-amino-sulfonyl)phenyl	450.135
249	Am	H	C(O)NH	phenyl	4-(2-t-Bu-amino-sulfonyl)phenyl	505.203

Table 9

Ex	n	Z	A-B
301	1	C(O)	4-(2-aminosulfonylphenyl)phenyl
302	1	C(O)	4-(2-aminosulfonylphenyl)-2-pyridyl
303	1	C(O)	4-(2-methylaminosulfonyl-phenyl)phenyl
304	1	C(O)	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
305	1	C(O)	2-aminosulfonyl-4-cyclohexylphenyl
306	1	C(O)	3-aminosulfonyl-4-t-butyl-2-pyridyl
307	1	C(O)	2-(5-indazol-5-yl)furan
308	1	C(O)	2-(5-indazol-6-yl)thienyl
309	1	C(O)	4-(2-tetrazolylphenyl)phenyl
310	1	C(O)NH	4-(2-aminosulfonylphenyl)phenyl
311	1	C(O)NH	4-(2-aminosulfonylphenyl)-2-pyridyl
312	1	C(O)NH	4-(2-methylaminosulfonyl-phenyl)phenyl
313	1	C(O)NH	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
314	1	C(O)NH	2-aminosulfonyl-4-cyclohexylphenyl
315	1	C(O)NH	3-aminosulfonyl-4-t-butyl-2-pyridyl
316	1	C(O)NH	2-(5-indazol-5-yl)furan
317	1	C(O)NH	2-(5-indazol-6-yl)thienyl

318	1	C(O)NH	4-(2-tetrazolylphenyl)phenyl
319	1	NHC(O)	4-(2-aminosulfonylphenyl)phenyl
320	1	NHC(O)	4-(2-aminosulfonylphenyl)-2-pyridyl
321	1	NHC(O)	4-(2-methylaminosulfonylphenyl)phenyl
322	1	NHC(O)	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
323	1	NHC(O)	2-aminosulfonyl-4-cyclohexylphenyl
324	1	NHC(O)	3-aminosulfonyl-4-t-butyl-2-pyridyl
325	1	NHC(O)	2-(5-indazol-5-yl)furanyl
326	1	NHC(O)	2-(5-indazol-6-yl)thienyl
327	1	NHC(O)	4-(2-tetrazolylphenyl)phenyl
328	1	SO ₂ NH	4-(2-aminosulfonylphenyl)phenyl
329	1	SO ₂ NH	4-(2-aminosulfonylphenyl)-2-pyridyl
330	1	SO ₂ NH	4-(2-methylaminosulfonylphenyl)phenyl
331	1	SO ₂ NH	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
332	1	SO ₂ NH	2-aminosulfonyl-4-cyclohexylphenyl
333	1	SO ₂ NH	3-aminosulfonyl-4-t-butyl-2-pyridyl
334	1	SO ₂ NH	2-(5-indazol-5-yl)furanyl
335	1	SO ₂ NH	2-(5-indazol-6-yl)thienyl
336	1	SO ₂ NH	4-(2-tetrazolylphenyl)phenyl
337	0	CH(CH ₂ CH ₂ OH)C(O)NH	4-(2-aminosulfonylphenyl)phenyl
338	0	CH(CH ₂ CH ₂ OH)C(O)NH	4-(2-aminosulfonylphenyl)-2-pyridyl

339	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	4-(2-methylaminosulfonyl-phenyl)phenyl
340	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
341	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-aminosulfonyl-4-cyclohexylphenyl
342	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	3-aminosulfonyl-4-t-butyl-2-pyridyl
343	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-(5-indazol-5-yl)furan
344	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-(5-indazol-6-yl)thienyl
345	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	4-(2-tetrazolylphenyl)phenyl
346	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-aminosulfonylphenyl)phenyl
347	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-aminosulfonylphenyl)-2-pyridyl
348	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-methylaminosulfonyl-phenyl)phenyl
349	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
350	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-aminosulfonyl-4-cyclohexylphenyl
351	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	3-aminosulfonyl-4-t-butyl-2-pyridyl
352	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-(5-indazol-5-yl)furan
353	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-(5-indazol-6-yl)thienyl
354	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-tetrazolylphenyl)phenyl

Table 10

Ex	n	Z	A-B
401	1	C(O)	4-(2-amino sulfonylphenyl)phenyl
402	1	C(O)	4-(2-aminosulfonylphenyl)-2-pyridyl
403	1	C(O)	4-(2-methylaminosulfonylphenyl)phenyl
404	1	C(O)	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
405	1	C(O)	2-aminosulfonyl-4-cyclohexylphenyl
406	1	C(O)	3-aminosulfonyl-4-t-butyl-2-pyridyl
407	1	C(O)	2-(5-indazol-5-yl)furanyl
408	1	C(O)	2-(5-indazol-6-yl)thienyl
409	1	C(O)	4-(2-tetrazolylphenyl)phenyl
410	1	C(O)NH	4-(2-aminosulfonylphenyl)phenyl
411	1	C(O)NH	4-(2-aminosulfonylphenyl)-2-pyridyl
412	1	C(O)NH	4-(2-methylaminosulfonylphenyl)phenyl
413	1	C(O)NH	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
414	1	C(O)NH	2-aminosulfonyl-4-cyclohexylphenyl
415	1	C(O)NH	3-aminosulfonyl-4-t-butyl-2-pyridyl
416	1	C(O)NH	2-(5-indazol-5-yl)furanyl
417	1	C(O)NH	2-(5-indazol-6-yl)thienyl

418	1	C(O)NH	4-(2-tetrazolylphenyl)phenyl
419	1	NHC(O)	4-(2-aminosulfonylphenyl)phenyl
420	1	NHC(O)	4-(2-aminosulfonylphenyl)-2-pyridyl
421	1	NHC(O)	4-(2-methylaminosulfonylphenyl)phenyl
422	1	NHC(O)	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
423	1	NHC(O)	2-aminosulfonyl-4-cyclohexylphenyl
424	1	NHC(O)	3-aminosulfonyl-4-t-butyl-2-pyridyl
425	1	NHC(O)	2-(5-indazol-5-yl)furan
426	1	NHC(O)	2-(5-indazol-6-yl)thienyl
427	1	NHC(O)	4-(2-tetrazolylphenyl)phenyl
428	1	SO ₂ NH	4-(2-aminosulfonylphenyl)phenyl
429	1	SO ₂ NH	4-(2-aminosulfonylphenyl)-2-pyridyl
430	1	SO ₂ NH	4-(2-methylaminosulfonylphenyl)phenyl
431	1	SO ₂ NH	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
432	1	SO ₂ NH	2-aminosulfonyl-4-cyclohexylphenyl
433	1	SO ₂ NH	3-aminosulfonyl-4-t-butyl-2-pyridyl
434	1	SO ₂ NH	2-(5-indazol-5-yl)furan
435	1	SO ₂ NH	2-(5-indazol-6-yl)thienyl
436	1	SO ₂ NH	4-(2-tetrazolylphenyl)phenyl
437	0	CH(CH ₂ CH ₂ OH)C(O)NH	4-(2-aminosulfonylphenyl)phenyl
438	0	CH(CH ₂ CH ₂ OH)C(O)NH	4-(2-aminosulfonylphenyl)-2-pyridyl

439	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	4-(2-methylaminosulfonyl-phenyl)phenyl
440	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
441	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-aminosulfonyl-4-cyclohexylphenyl
442	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	3-aminosulfonyl-4-t-butyl-2-pyridyl
443	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-(5-indazol-5-yl)furan
444	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-(5-indazol-6-yl)thienyl
445	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	4-(2-tetrazolylphenyl)phenyl
446	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-aminosulfonylphenyl)phenyl
447	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-aminosulfonylphenyl)-2-pyridyl
448	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-methylaminosulfonyl-phenyl)phenyl
449	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
450	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-aminosulfonyl-4-cyclohexylphenyl
451	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	3-aminosulfonyl-4-t-butyl-2-pyridyl
452	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-(5-indazol-5-yl)furan
453	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-(5-indazol-6-yl)thienyl
454	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-tetrazolylphenyl)phenyl

Table 11

Ex	n	Z	A-B
501	1	C(O)	4-(2-aminosulfonylphenyl)-2-pyridyl
502	1	C(O)	4-(2-methylaminosulfonyl-phenyl)phenyl
503	1	C(O)	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
504	1	C(O)	2-aminosulfonyl-4-cyclohexylphenyl
505	1	C(O)	3-aminosulfonyl-4-t-butyl-2-pyridyl
506	1	C(O)	2-(5-indazol-5-yl)furan
507	1	C(O)	2-(5-indazol-6-yl)thienyl
508	1	C(O)	4-(2-tetrazolylphenyl)phenyl
509	1	C(O)NH	4-(2-aminosulfonylphenyl)-2-pyridyl
510	1	C(O)NH	4-(2-methylaminosulfonyl-phenyl)phenyl
511	1	C(O)NH	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
512	1	C(O)NH	2-aminosulfonyl-4-cyclohexylphenyl
513	1	C(O)NH	3-aminosulfonyl-4-t-butyl-2-pyridyl
514	1	C(O)NH	2-(5-indazol-5-yl)furan
515	1	C(O)NH	2-(5-indazol-6-yl)thienyl
516	1	C(O)NH	4-(2-tetrazolylphenyl)phenyl
517	1	NHC(O)	4-(2-aminosulfonylphenyl)phenyl

518	1	NHC(O)	4-(2-aminosulfonylphenyl)-2-pyridyl
519	1	NHC(O)	4-(2-methylaminosulfonyl-phenyl)phenyl
520	1	NHC(O)	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
521	1	NHC(O)	2-aminosulfonyl-4-cyclohexylphenyl
522	1	NHC(O)	3-aminosulfonyl-4-t-butyl-2-pyridyl
523	1	NHC(O)	2-(5-indazol-5-yl)furanyl
524	1	NHC(O)	2-(5-indazol-6-yl)thienyl
525	1	NHC(O)	4-(2-tetrazolylphenyl)phenyl
526	1	SO ₂ NH	4-(2-aminosulfonylphenyl)phenyl
527	1	SO ₂ NH	4-(2-aminosulfonylphenyl)-2-pyridyl
528	1	SO ₂ NH	4-(2-methylaminosulfonyl-phenyl)phenyl
529	1	SO ₂ NH	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
530	1	SO ₂ NH	2-aminosulfonyl-4-cyclohexylphenyl
531	1	SO ₂ NH	3-aminosulfonyl-4-t-butyl-2-pyridyl
532	1	SO ₂ NH	2-(5-indazol-5-yl)furanyl
533	1	SO ₂ NH	2-(5-indazol-6-yl)thienyl
534	1	SO ₂ NH	4-(2-tetrazolylphenyl)phenyl
535	0	CH(CH ₂ CH ₂ OH)C(O)NH	4-(2-aminosulfonylphenyl)phenyl
536	0	CH(CH ₂ CH ₂ OH)C(O)NH	4-(2-aminosulfonylphenyl)-2-pyridyl
537	0	CH(CH ₂ CH ₂ OH)C(O)NH	4-(2-methylaminosulfonyl-phenyl)phenyl
538	0	CH(CH ₂ CH ₂ OH)C(O)NH	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl

539	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-amino sulfonyl-4-cyclohexylphenyl
540	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	3-amino sulfonyl-4-t-butyl-2-pyridyl
541	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-(5-indazol-5-yl)furan
542	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-(5-indazol-6-yl)thienyl
543	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	4-(2-tetrazolylphenyl)phenyl
544	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-amino sulfonylphenyl)phenyl
545	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-amino sulfonylphenyl)-2-pyridyl
546	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-methylamino sulfonylphenyl)phenyl
547	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-ethylamino sulfonylphenyl)-2-pyridyl
548	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-amino sulfonyl-4-cyclohexylphenyl
549	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	3-amino sulfonyl-4-t-butyl-2-pyridyl
550	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-(5-indazol-5-yl)furan
551	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-(5-indazol-6-yl)thienyl
552	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-tetrazolylphenyl)phenyl

Table 12

Ex	n	Z	A-B
601	1	C(O)	4-(2-aminosulfonylphenyl)phenyl
602	1	C(O)	4-(2-aminosulfonylphenyl)-2-pyridyl
603	1	C(O)	4-(2-methylaminosulfonyl-phenyl)phenyl
604	1	C(O)	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
605	1	C(O)	2-aminosulfonyl-4-cyclohexylphenyl
606	1	C(O)	3-aminosulfonyl-4-t-butyl-2-pyridyl
607	1	C(O)	2-(5-indazol-5-yl)furan
608	1	C(O)	2-(5-indazol-6-yl)thienyl
609	1	C(O)	4-(2-tetrazolylphenyl)phenyl
610	1	C(O)NH	4-(2-aminosulfonylphenyl)phenyl
611	1	C(O)NH	4-(2-aminosulfonylphenyl)-2-pyridyl
612	1	C(O)NH	4-(2-methylaminosulfonyl-phenyl)phenyl
613	1	C(O)NH	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
614	1	C(O)NH	2-aminosulfonyl-4-cyclohexylphenyl
615	1	C(O)NH	3-aminosulfonyl-4-t-butyl-2-pyridyl
616	1	C(O)NH	2-(5-indazol-5-yl)furan
617	1	C(O)NH	2-(5-indazol-6-yl)thienyl

618	1	C(O)NH	4-(2-tetrazolylphenyl)phenyl
619	1	NHC(O)	4-(2-aminosulfonylphenyl)phenyl
620	1	NHC(O)	4-(2-aminosulfonylphenyl)-2-pyridyl
621	1	NHC(O)	4-(2-methylaminosulfonylphenyl)phenyl
622	1	NHC(O)	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
623	1	NHC(O)	2-aminosulfonyl-4-cyclohexylphenyl
624	1	NHC(O)	3-aminosulfonyl-4-t-butyl-2-pyridyl
625	1	NHC(O)	2-(5-indazol-5-yl)furan
626	1	NHC(O)	2-(5-indazol-6-yl)thienyl
627	1	NHC(O)	4-(2-tetrazolylphenyl)phenyl
628	1	SO ₂ NH	4-(2-aminosulfonylphenyl)phenyl
629	1	SO ₂ NH	4-(2-aminosulfonylphenyl)-2-pyridyl
630	1	SO ₂ NH	4-(2-methylaminosulfonylphenyl)phenyl
631	1	SO ₂ NH	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
632	1	SO ₂ NH	2-aminosulfonyl-4-cyclohexylphenyl
633	1	SO ₂ NH	3-aminosulfonyl-4-t-butyl-2-pyridyl
634	1	SO ₂ NH	2-(5-indazol-5-yl)furan
635	1	SO ₂ NH	2-(5-indazol-6-yl)thienyl
636	1	SO ₂ NH	4-(2-tetrazolylphenyl)phenyl
637	0	CH(CH ₂ CH ₂ OH)C(O)NH	4-(2-aminosulfonylphenyl)phenyl
638	0	CH(CH ₂ CH ₂ OH)C(O)NH	4-(2-aminosulfonylphenyl)-2-pyridyl

639	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	4-(2-methylaminosulfonyl-phenyl)phenyl
640	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
641	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-aminosulfonyl-4-cyclohexylphenyl
642	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	3-aminosulfonyl-4-t-butyl-2-pyridyl
643	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-(5-indazol-5-yl)furan
644	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-(5-indazol-6-yl)thienyl
645	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	4-(2-tetrazolylphenyl)phenyl
646	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-aminosulfonylphenyl)phenyl
647	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-aminosulfonylphenyl)-2-pyridyl
648	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-methylaminosulfonyl-phenyl)phenyl
649	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
650	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-aminosulfonyl-4-cyclohexylphenyl
651	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	3-aminosulfonyl-4-t-butyl-2-pyridyl
652	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-(5-indazol-5-yl)furan
653	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-(5-indazol-6-yl)thienyl
654	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-tetrazolylphenyl)phenyl

Table 13

Ex	n	Z	A-B
701	1	C(O)	4-(2-aminosulfonylphenyl)phenyl
702	1	C(O)	4-(2-aminosulfonylphenyl)-2-pyridyl
703	1	C(O)	4-(2-methylaminosulfonyl-phenyl)phenyl
704	1	C(O)	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
705	1	C(O)	2-aminosulfonyl-4-cyclohexylphenyl
706	1	C(O)	3-aminosulfonyl-4-t-butyl-2-pyridyl
707	1	C(O)	2-(5-indazol-5-yl)furan
708	1	C(O)	2-(5-indazol-6-yl)thienyl
709	1	C(O)	4-(2-tetrazolylphenyl)phenyl
710	1	C(O)NH	4-(2-methylaminosulfonyl-phenyl)phenyl
711	1	C(O)NH	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
712	1	C(O)NH	2-aminosulfonyl-4-cyclohexylphenyl
713	1	C(O)NH	3-aminosulfonyl-4-t-butyl-2-pyridyl
714	1	C(O)NH	2-(5-indazol-5-yl)furan
715	1	C(O)NH	2-(5-indazol-6-yl)thienyl
716	1	C(O)NH	4-(2-tetrazolylphenyl)phenyl
717	1	NHC(O)	4-(2-aminosulfonylphenyl)phenyl

718	1	NHC(O)	4-(2-aminosulfonylphenyl)-2-pyridyl
719	1	NHC(O)	4-(2-methylaminosulfonyl-phenyl)phenyl
720	1	NHC(O)	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
721	1	NHC(O)	2-aminosulfonyl-4-cyclohexylphenyl
722	1	NHC(O)	3-aminosulfonyl-4-t-butyl-2-pyridyl
723	1	NHC(O)	2-(5-indazol-5-yl)furan
724	1	NHC(O)	2-(5-indazol-6-yl)thienyl
725	1	NHC(O)	4-(2-tetrazolylphenyl)phenyl
726	1	SO ₂ NH	4-(2-aminosulfonylphenyl)phenyl
727	1	SO ₂ NH	4-(2-aminosulfonylphenyl)-2-pyridyl
728	1	SO ₂ NH	4-(2-methylaminosulfonyl-phenyl)phenyl
729	1	SO ₂ NH	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
730	1	SO ₂ NH	2-aminosulfonyl-4-cyclohexylphenyl
731	1	SO ₂ NH	3-aminosulfonyl-4-t-butyl-2-pyridyl
732	1	SO ₂ NH	2-(5-indazol-5-yl)furan
733	1	SO ₂ NH	2-(5-indazol-6-yl)thienyl
734	1	SO ₂ NH	4-(2-tetrazolylphenyl)phenyl
735	0	CH(CH ₂ CH ₂ OH)C(O)NH	4-(2-aminosulfonylphenyl)phenyl
736	0	CH(CH ₂ CH ₂ OH)C(O)NH	4-(2-aminosulfonylphenyl)-2-pyridyl
737	0	CH(CH ₂ CH ₂ OH)C(O)NH	4-(2-methylaminosulfonyl-phenyl)phenyl
738	0	CH(CH ₂ CH ₂ OH)C(O)NH	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl

739	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C}(\text{O})\text{NH}$	2-amino sulfonyl-4-cyclohexylphenyl
740	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C}(\text{O})\text{NH}$	3-amino sulfonyl-4-t-butyl-2-pyridyl
741	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C}(\text{O})\text{NH}$	2-(5-indazol-5-yl) furanyl
742	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C}(\text{O})\text{NH}$	2-(5-indazol-6-yl) thieryl
743	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C}(\text{O})\text{NH}$	4-(2-tetrazolylphenyl) phenyl
744	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C}(\text{O})\text{NH}$	4-(2-amino sulfonylphenyl) phenyl
745	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C}(\text{O})\text{NH}$	4-(2-amino sulfonylphenyl)-2-pyridyl
746	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C}(\text{O})\text{NH}$	4-(2-methylamino sulfonyl-phenyl) phenyl
747	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C}(\text{O})\text{NH}$	4-(2-ethylamino sulfonyl-phenyl)-2-pyridyl
748	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C}(\text{O})\text{NH}$	2-amino sulfonyl-4-cyclohexylphenyl
749	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C}(\text{O})\text{NH}$	3-amino sulfonyl-4-t-butyl-2-pyridyl
750	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C}(\text{O})\text{NH}$	2-(5-indazol-5-yl) furanyl
751	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C}(\text{O})\text{NH}$	2-(5-indazol-6-yl) thieryl
752	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C}(\text{O})\text{NH}$	4-(2-tetrazolylphenyl) phenyl

Table 14

Ex	n	Z	A-B
801	1	C(O)	4-(2-aminoethyl)-3-(aminosulfonylphenyl)phenyl
802	1	C(O)	4-(2-aminoethyl)-3-(4-(2-aminosulfonylphenyl)-2-pyridyl)phenyl
803	1	C(O)	4-(2-methylaminosulfonyl-phenyl)phenyl
804	1	C(O)	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
805	1	C(O)	2-aminoethyl-4-(cyclohexylphenyl)
806	1	C(O)	3-aminoethyl-4-t-butyl-2-pyridyl
807	1	C(O)	2-(5-indazol-5-yl)furan
808	1	C(O)	2-(5-indazol-6-yl)thienyl
809	1	C(O)	4-(2-tetrazolylphenyl)phenyl
810	1	C(O)NH	4-(2-aminoethyl)-3-(aminosulfonylphenyl)phenyl
811	1	C(O)NH	4-(2-aminoethyl)-3-(aminosulfonylphenyl)-2-pyridyl
812	1	C(O)NH	4-(2-methylaminosulfonyl-phenyl)phenyl
813	1	C(O)NH	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
814	1	C(O)NH	2-aminoethyl-4-(cyclohexylphenyl)
815	1	C(O)NH	3-aminoethyl-4-t-butyl-2-pyridyl
816	1	C(O)NH	2-(5-indazol-5-yl)furan
817	1	C(O)NH	2-(5-indazol-6-yl)thienyl

818	1	C(O)NH	4-(2-tetrazolylphenyl)phenyl
819	1	NHC(O)	4-(2-aminosulfonylphenyl)phenyl
820	1	NHC(O)	4-(2-aminosulfonylphenyl)-2-pyridyl
821	1	NHC(O)	4-(2-methylaminosulfonylphenyl)phenyl
822	1	NHC(O)	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
823	1	NHC(O)	2-aminosulfonyl-4-cyclohexylphenyl
824	1	NHC(O)	3-aminosulfonyl-4-t-butyl-2-pyridyl
825	1	NHC(O)	2-(5-indazol-5-yl)furan
826	1	NHC(O)	2-(5-indazol-6-yl)thienyl
827	1	NHC(O)	4-(2-tetrazolylphenyl)phenyl
828	1	SO ₂ NH	4-(2-aminosulfonylphenyl)phenyl
829	1	SO ₂ NH	4-(2-aminosulfonylphenyl)-2-pyridyl
830	1	SO ₂ NH	4-(2-methylaminosulfonylphenyl)phenyl
831	1	SO ₂ NH	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
832	1	SO ₂ NH	2-aminosulfonyl-4-cyclohexylphenyl
833	1	SO ₂ NH	3-aminosulfonyl-4-t-butyl-2-pyridyl
834	1	SO ₂ NH	2-(5-indazol-5-yl)furan
835	1	SO ₂ NH	2-(5-indazol-6-yl)thienyl
836	1	SO ₂ NH	4-(2-tetrazolylphenyl)phenyl
837	0	CH(CH ₂ CH ₂ OH)C(O)NH	4-(2-aminosulfonylphenyl)phenyl
838	0	CH(CH ₂ CH ₂ OH)C(O)NH	4-(2-aminosulfonylphenyl)-2-pyridyl

839	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	4-(2-methylaminosulfonyl-phenyl)phenyl
840	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
841	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-aminosulfonyl-4-cyclohexylphenyl
842	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	3-aminosulfonyl-4-t-butyl-2-pyridyl
843	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-(5-indazol-5-yl)furan
844	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-(5-indazol-6-yl)thienyl
845	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	4-(2-tetrazolylphenyl)phenyl
846	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-aminosulfonylphenyl)phenyl
847	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-aminosulfonylphenyl)-2-pyridyl
848	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-methylaminosulfonyl-phenyl)phenyl
849	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
850	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-aminosulfonyl-4-cyclohexylphenyl
851	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	3-aminosulfonyl-4-t-butyl-2-pyridyl
852	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-(5-indazol-5-yl)furan
853	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-(5-indazol-6-yl)thienyl
854	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-tetrazolylphenyl)phenyl

Table 15

Ex	n	Z	A-B
901	1	C(O)	4-(2-aminosulfonylphenyl)phenyl
902	1	C(O)	4-(2-aminosulfonylphenyl)-2-pyridyl
903	1	C(O)	4-(2-methylaminosulfonylphenyl)phenyl
904	1	C(O)	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
905	1	C(O)	2-aminosulfonyl-4-cyclohexylphenyl
906	1	C(O)	3-aminosulfonyl-4-t-butyl-2-pyridyl
907	1	C(O)	2-(5-indazol-5-yl)furan
908	1	C(O)	2-(5-indazol-6-yl)thienyl
909	1	C(O)	4-(2-tetrazolylphenyl)phenyl
910	1	C(O)NH	4-(2-aminosulfonylphenyl)phenyl
911	1	C(O)NH	4-(2-aminosulfonylphenyl)-2-pyridyl
912	1	C(O)NH	4-(2-methylaminosulfonylphenyl)phenyl
913	1	C(O)NH	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
914	1	C(O)NH	2-aminosulfonyl-4-cyclohexylphenyl
915	1	C(O)NH	3-aminosulfonyl-4-t-butyl-2-pyridyl
916	1	C(O)NH	2-(5-indazol-5-yl)furan
917	1	C(O)NH	2-(5-indazol-6-yl)thienyl

918	1	C(O)NH	4-(2-tetrazolylphenyl)phenyl
919	1	NHC(O)	4-(2-aminosulfonylphenyl)phenyl
920	1	NHC(O)	4-(2-aminosulfonylphenyl)-2-pyridyl
921	1	NHC(O)	4-(2-methylaminosulfonylphenyl)phenyl
922	1	NHC(O)	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
923	1	NHC(O)	2-aminosulfonyl-4-cyclohexylphenyl
924	1	NHC(O)	3-aminosulfonyl-4-t-butyl-2-pyridyl
925	1	NHC(O)	2-(5-indazol-5-yl)furan
926	1	NHC(O)	2-(5-indazol-6-yl)thienyl
927	1	NHC(O)	4-(2-tetrazolylphenyl)phenyl
928	1	SO ₂ NH	4-(2-aminosulfonylphenyl)phenyl
929	1	SO ₂ NH	4-(2-aminosulfonylphenyl)-2-pyridyl
930	1	SO ₂ NH	4-(2-methylaminosulfonylphenyl)phenyl
931	1	SO ₂ NH	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
932	1	SO ₂ NH	2-aminosulfonyl-4-cyclohexylphenyl
933	1	SO ₂ NH	3-aminosulfonyl-4-t-butyl-2-pyridyl
934	1	SO ₂ NH	2-(5-indazol-5-yl)furan
935	1	SO ₂ NH	2-(5-indazol-6-yl)thienyl
936	1	SO ₂ NH	4-(2-tetrazolylphenyl)phenyl
937	0	CH(CH ₂ CH ₂ OH)C(O)NH	4-(2-aminosulfonylphenyl)phenyl
938	0	CH(CH ₂ CH ₂ OH)C(O)NH	4-(2-aminosulfonylphenyl)-2-pyridyl

939	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	4-(2-methylaminosulfonyl-phenyl)phenyl
940	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
941	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-aminosulfonyl-4-cyclohexylphenyl
942	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	3-aminosulfonyl-4-t-butyl-2-pyridyl
943	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-(5-indazol-5-yl)furan
944	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-(5-indazol-6-yl)thienyl
945	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	4-(2-tetrazolylphenyl)phenyl
946	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-aminosulfonylphenyl)phenyl
947	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-aminosulfonylphenyl)-2-pyridyl
948	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-methylaminosulfonyl-phenyl)phenyl
949	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
950	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-aminosulfonyl-4-cyclohexylphenyl
951	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	3-aminosulfonyl-4-t-butyl-2-pyridyl
952	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-(5-indazol-5-yl)furan
953	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-(5-indazol-6-yl)thienyl
954	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-tetrazolylphenyl)phenyl

Tabl 16

Ex	n	Z	A-B
1001	1	C(O)	4-(2-aminoethylsulfonylphenyl)phenyl
1002	1	C(O)	4-(2-aminoethylsulfonylphenyl)-2-pyridyl
1003	1	C(O)	4-(2-methylaminosulfonylphenyl)phenyl
1004	1	C(O)	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
1005	1	C(O)	2-aminoethylsulfonyl-4-cyclohexylphenyl
1006	1	C(O)	3-aminoethylsulfonyl-4-t-butyl-2-pyridyl
1007	1	C(O)	2-(5-indazol-5-yl)furan
1008	1	C(O)	2-(5-indazol-6-yl)thienyl
1009	1	C(O)	4-(2-tetrazolylphenyl)phenyl
1010	1	C(O)NH	4-(2-aminoethylsulfonylphenyl)phenyl
1011	1	C(O)NH	4-(2-aminoethylsulfonylphenyl)-2-pyridyl
1012	1	C(O)NH	4-(2-methylaminosulfonylphenyl)phenyl
1013	1	C(O)NH	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
1014	1	C(O)NH	2-aminoethylsulfonyl-4-cyclohexylphenyl
1015	1	C(O)NH	3-aminoethylsulfonyl-4-t-butyl-2-pyridyl
1016	1	C(O)NH	2-(5-indazol-5-yl)furan
1017	1	C(O)NH	2-(5-indazol-6-yl)thienyl

1018	1	C(O)NH	4-(2-tetrazolylphenyl)phenyl
1019	1	NHC(O)	4-(2-aminosulfonylphenyl)phenyl
1020	1	NHC(O)	4-(2-aminosulfonylphenyl)-2-pyridyl
1021	1	NHC(O)	4-(2-methylaminosulfonylphenyl)phenyl
1022	1	NHC(O)	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
1023	1	NHC(O)	2-aminosulfonyl-4-cyclohexylphenyl
1024	1	NHC(O)	3-aminosulfonyl-4-t-butyl-2-pyridyl
1025	1	NHC(O)	2-(5-indazol-5-yl)furan
1026	1	NHC(O)	2-(5-indazol-6-yl)thienyl
1027	1	NHC(O)	4-(2-tetrazolylphenyl)phenyl
1028	1	SO ₂ NH	4-(2-aminosulfonylphenyl)phenyl
1029	1	SO ₂ NH	4-(2-aminosulfonylphenyl)-2-pyridyl
1030	1	SO ₂ NH	4-(2-methylaminosulfonylphenyl)phenyl
1031	1	SO ₂ NH	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
1032	1	SO ₂ NH	2-aminosulfonyl-4-cyclohexylphenyl
1033	1	SO ₂ NH	3-aminosulfonyl-4-t-butyl-2-pyridyl
1034	1	SO ₂ NH	2-(5-indazol-5-yl)furan
1035	1	SO ₂ NH	2-(5-indazol-6-yl)thienyl
1036	1	SO ₂ NH	4-(2-tetrazolylphenyl)phenyl
1037	0	CH(CH ₂ CH ₂ OH)C(O)NH	4-(2-aminosulfonylphenyl)phenyl
1038	0	CH(CH ₂ CH ₂ OH)C(O)NH	4-(2-aminosulfonylphenyl)-2-pyridyl

1039	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	4-(2-methylaminosulfonyl-phenyl)phenyl
1040	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
1041	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-aminosulfonyl-4-cyclohexylphenyl
1042	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	3-aminosulfonyl-4-t-butyl-2-pyridyl
1043	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-(5-indazol-5-yl)furan
1044	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-(5-indazol-6-yl)thienyl
1045	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	4-(2-tetrazolylphenyl)phenyl
1046	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-aminosulfonylphenyl)phenyl
1047	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-aminosulfonylphenyl)-2-pyridyl
1048	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-methylaminosulfonyl-phenyl)phenyl
1049	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
1050	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-aminosulfonyl-4-cyclohexylphenyl
1051	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	3-aminosulfonyl-4-t-butyl-2-pyridyl
1052	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-(5-indazol-5-yl)furan
1053	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-(5-indazol-6-yl)thienyl
1054	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-tetrazolylphenyl)phenyl

Table 17

Ex	n	Z	R ¹	A-B
1101	1	C(O)	H	3-acetyl-4-benzylpiperidine
1102	1	C(O)	H	4-(4-fluorobenzyl)piperidine
1103	1	C(O)	H	4-(2,3-difluorobenzyl) piperidine
1104	1	C(O)	H	4-(2-chloro-4-fluorobenzyl) piperidine
1105	1	C(O)	CH ₂ CH ₂ OH	3-acetyl-4-benzylpiperidine
1106	1	C(O)	CH ₂ CH ₂ OH	4-(3-fluorobenzyl)piperidine
1107	1	C(O)	CH ₂ CH ₂ OH	4-(4-fluorobenzyl)piperidine
1108	1	C(O)	CH ₂ CH ₂ OH	4-(2,3-difluorobenzyl) piperidine
1109	1	C(O)	CH ₂ CH ₂ OH	4-(2-chloro-4-fluorobenzyl) piperidine
1110	1	C(O)	CH ₂ OCH ₃	4-benzylpiperidine
1111	1	C(O)	CH ₂ OCH ₃	3-acetyl-4-benzylpiperidine
1112	1	C(O)	CH ₂ OCH ₃	4-(3-fluorobenzyl)piperidine
1113	1	C(O)	CH ₂ OCH ₃	4-(4-fluorobenzyl)piperidine
1114	1	C(O)	CH ₂ OCH ₃	4-(2,3-difluorobenzyl) piperidine
1115	1	C(O)	CH ₂ OCH ₃	4-(2-chloro-4-fluorobenzyl) piperidine
1116	1	C(O)	CH ₂ CH ₂ - tetrazolyl	4-benzylpiperidine
1117	1	C(O)	CH ₂ CH ₂ - tetrazolyl	3-acetyl-4-benzylpiperidine
1118	1	C(O)	CH ₂ CH ₂ - tetrazolyl	4-(3-fluorobenzyl)piperidine

1119	1	C(O)	CH ₂ CH ₂ - tetrazolyl	4-(4-fluorobenzyl)piperidine
1120	1	C(O)	CH ₂ CH ₂ - tetrazolyl	4-(2,3-difluorobenzyl) piperidine
1121	1	C(O)	CH ₂ CH ₂ - tetrazolyl	4-(2-chloro-4-fluorobenzyl) piperidine
1122	1	C(O)NH	H	3-acetyl-4-benzylpiperidine
1123	1	C(O)NH	H	4-(3-fluorobenzyl)piperidine
1124	1	C(O)NH	H	4-(4-fluorobenzyl)piperidine
1125	1	C(O)NH	H	4-(2,3-difluorobenzyl) piperidine
1126	1	C(O)NH	H	4-(2-chloro-4-fluorobenzyl) piperidine
1127	1	C(O)NH	CH ₂ CH ₂ OH	4-benzylpiperidine
1128	1	C(O)NH	CH ₂ CH ₂ OH	3-acetyl-4-benzylpiperidine
1129	1	C(O)NH	CH ₂ CH ₂ OH	4-(3-fluorobenzyl)piperidine
1130	1	C(O)NH	CH ₂ CH ₂ OH	4-(4-fluorobenzyl)piperidine
1131	1	C(O)NH	CH ₂ CH ₂ OH	4-(2,3-difluorobenzyl) piperidine
1132	1	C(O)NH	CH ₂ CH ₂ OH	4-(2-chloro-4-fluorobenzyl) piperidine
1133	1	C(O)NH	CH ₂ OCH ₃	4-benzylpiperidine
1134	1	C(O)NH	CH ₂ OCH ₃	3-acetyl-4-benzylpiperidine
1135	1	C(O)NH	CH ₂ OCH ₃	4-(3-fluorobenzyl)piperidine
1136	1	C(O)NH	CH ₂ OCH ₃	4-(4-fluorobenzyl)piperidine
1137	1	C(O)NH	CH ₂ OCH ₃	4-(2,3-difluorobenzyl) piperidine
1138	1	C(O)NH	CH ₂ OCH ₃	4-(2-chloro-4-fluorobenzyl) piperidine
1139	1	C(O)NH	CH ₂ CH ₂ - tetrazolyl	4-benzylpiperidine
1140	1	C(O)NH	CH ₂ CH ₂ - tetrazolyl	3-acetyl-4-benzylpiperidine
1141	1	C(O)NH	CH ₂ CH ₂ - tetrazolyl	4-(3-fluorobenzyl)piperidine

1142	1	C(O)NH	CH ₂ CH ₂ - tetrazolyl	4-(4-fluorobenzyl)piperidine
1143	1	C(O)NH	CH ₂ CH ₂ - tetrazolyl	4-(2,3-difluorobenzyl) piperidine
1144	1	C(O)NH	CH ₂ CH ₂ - tetrazolyl	4-(2-chloro-4-fluorobenzyl) piperidine
1145	1	SO ₂ NH	H	4-benzylpiperidine
1146	1	SO ₂ NH	H	3-acetyl-4-benzylpiperidine
1147	1	SO ₂ NH	H	4-(3-fluorobenzyl)piperidine
1148	1	SO ₂ NH	H	4-(4-fluorobenzyl)piperidine
1149	1	SO ₂ NH	H	4-(2,3-difluorobenzyl). piperidine
1150	1	SO ₂ NH	H	4-(2-chloro-4-fluorobenzyl) piperidine
1151	1	SO ₂ NH	CH ₂ CH ₂ OH	4-benzylpiperidine
1152	1	SO ₂ NH	CH ₂ CH ₂ OH	3-acetyl-4-benzylpiperidine
1153	1	SO ₂ NH	CH ₂ CH ₂ OH	4-(3-fluorobenzyl)piperidine
1154	1	SO ₂ NH	CH ₂ CH ₂ OH	4-(4-fluorobenzyl)piperidine
1155	1	SO ₂ NH	CH ₂ CH ₂ OH	4-(2,3-difluorobenzyl) piperidine
1156	1	SO ₂ NH	CH ₂ CH ₂ OH	4-(2-chloro-4-fluorobenzyl) piperidine
1157	1	SO ₂ NH	CH ₂ OCH ₃	4-benzylpiperidine
1158	1	SO ₂ NH	CH ₂ OCH ₃	3-acetyl-4-benzylpiperidine
1159	1	SO ₂ NH	CH ₂ OCH ₃	4-(3-fluorobenzyl)piperidine
1160	1	SO ₂ NH	CH ₂ OCH ₃	4-(4-fluorobenzyl)piperidine
1161	1	SO ₂ NH	CH ₂ OCH ₃	4-(2,3-difluorobenzyl) piperidine
1162	1	SO ₂ NH	CH ₂ OCH ₃	4-(2-chloro-4-fluorobenzyl) piperidine
1163	1	SO ₂ NH	CH ₂ CH ₂ - tetrazolyl	4-benzylpiperidine
1164	1	SO ₂ NH	CH ₂ CH ₂ - tetrazolyl	3-acetyl-4-benzylpiperidine
1165	1	SO ₂ NH	CH ₂ CH ₂ - tetrazolyl	4-(3-fluorobenzyl)piperidine

1166	1	SO ₂ NH	CH ₂ CH ₂ - tetrazolyl	4-(4-fluorobenzyl)piperidine
1167	1	SO ₂ NH	CH ₂ CH ₂ - tetrazolyl	4-(2,3-difluorobenzyl) piperidine
1168	1	SO ₂ NH	CH ₂ CH ₂ - tetrazolyl	4-(2-chloro-4-fluorobenzyl) piperidine

Table 18

Ex	n	Z	R¹	A-B
1201	1	C(O)	H	4-benzylpiperidine
1202	1	C(O)	H	3-acetyl-4-benzylpiperidine
1203	1	C(O)	H	4-(3-fluorobenzyl)piperidine
1204	1	C(O)	H	4-(4-fluorobenzyl)piperidine
1205	1	C(O)	H	4-(2,3-difluorobenzyl) piperidine
1206	1	C(O)	H	4-(2-chloro-4-fluorobenzyl) piperidine
1207	1	C(O)	CH ₂ CH ₂ OH	4-benzylpiperidine
1208	1	C(O)	CH ₂ CH ₂ OH	3-acetyl-4-benzylpiperidine
1209	1	C(O)	CH ₂ CH ₂ OH	4-(3-fluorobenzyl)piperidine
1210	1	C(O)	CH ₂ CH ₂ OH	4-(4-fluorobenzyl)piperidine
1211	1	C(O)	CH ₂ CH ₂ OH	4-(2,3-difluorobenzyl) piperidine
1212	1	C(O)	CH ₂ CH ₂ OH	4-(2-chloro-4-fluorobenzyl) piperidine
1213	1	C(O)	CH ₂ OCH ₃	4-benzylpiperidine
1214	1	C(O)	CH ₂ OCH ₃	3-acetyl-4-benzylpiperidine
1215	1	C(O)	CH ₂ OCH ₃	4-(3-fluorobenzyl)piperidine
1216	1	C(O)	CH ₂ OCH ₃	4-(4-fluorobenzyl)piperidine
1217	1	C(O)	CH ₂ OCH ₃	4-(2,3-difluorobenzyl) piperidine
1218	1	C(O)	CH ₂ OCH ₃	4-(2-chloro-4-fluorobenzyl) piperidine
1219	1	C(O)	CH ₂ CH ₂ - tetrazolyl	4-benzylpiperidine
1220	1	C(O)	CH ₂ CH ₂ - tetrazolyl	3-acetyl-4-benzylpiperidine

1221	1	C(O)	CH ₂ CH ₂ - tetrazolyl	4-(3-fluorobenzyl)piperidine
1222	1	C(O)	CH ₂ CH ₂ - tetrazolyl	4-(4-fluorobenzyl)piperidine
1223	1	C(O)	CH ₂ CH ₂ - tetrazolyl	4-(2,3-difluorobenzyl) piperidine
1224	1	C(O)	CH ₂ CH ₂ - tetrazolyl	4-(2-chloro-4-fluorobenzyl) piperidine
1225	1	C(O)NH	H	4-benzylpiperidine
1226	1	C(O)NH	H	3-acetyl-4-benzylpiperidine
1227	1	C(O)NH	H	4-(3-fluorobenzyl)piperidine
1228	1	C(O)NH	H	4-(4-fluorobenzyl)piperidine
1229	1	C(O)NH	H	4-(2,3-difluorobenzyl) piperidine
1230	1	C(O)NH	H	4-(2-chloro-4-fluorobenzyl) piperidine
1231	1	C(O)NH	CH ₂ CH ₂ OH	4-benzylpiperidine
1232	1	C(O)NH	CH ₂ CH ₂ OH	3-acetyl-4-benzylpiperidine
1233	1	C(O)NH	CH ₂ CH ₂ OH	4-(3-fluorobenzyl)piperidine
1234	1	C(O)NH	CH ₂ CH ₂ OH	4-(4-fluorobenzyl)piperidine
1235	1	C(O)NH	CH ₂ CH ₂ OH	4-(2,3-difluorobenzyl) piperidine
1236	1	C(O)NH	CH ₂ CH ₂ OH	4-(2-chloro-4-fluorobenzyl) piperidine
1237	1	C(O)NH	CH ₂ OCH ₃	4-benzylpiperidine
1238	1	C(O)NH	CH ₂ OCH ₃	3-acetyl-4-benzylpiperidine
1239	1	C(O)NH	CH ₂ OCH ₃	4-(3-fluorobenzyl)piperidine
1240	1	C(O)NH	CH ₂ OCH ₃	4-(4-fluorobenzyl)piperidine
1241	1	C(O)NH	CH ₂ OCH ₃	4-(2,3-difluorobenzyl) piperidine
1242	1	C(O)NH	CH ₂ OCH ₃	4-(2-chloro-4-fluorobenzyl) piperidine
1243	1	C(O)NH	CH ₂ CH ₂ - tetrazolyl	4-benzylpiperidine
1244	1	C(O)NH	CH ₂ CH ₂ - tetrazolyl	3-acetyl-4-benzylpiperidine

1245	1	C(O)NH	CH ₂ CH ₂ - tetrazolyl	4-(3-fluorobenzyl)piperidine
1246	1	C(O)NH	CH ₂ CH ₂ - tetrazolyl	4-(4-fluorobenzyl)piperidine
1247	1	C(O)NH	CH ₂ CH ₂ - tetrazolyl	4-(2,3-difluorobenzyl) piperidine
1248	1	C(O)NH	CH ₂ CH ₂ - tetrazolyl	4-(2-chloro-4-fluorobenzyl) piperidine
1249	1	SO ₂ NH	H	4-benzylpiperidine
1250	1	SO ₂ NH	H	3-acetyl-4-benzylpiperidine
1251	1	SO ₂ NH	H	4-(3-fluorobenzyl)piperidine
1252	1	SO ₂ NH	H	4-(4-fluorobenzyl)piperidine
1253	1	SO ₂ NH	H	4-(2,3-difluorobenzyl) piperidine
1254	1	SO ₂ NH	H	4-(2-chloro-4-fluorobenzyl) piperidine
1255	1	SO ₂ NH	CH ₂ CH ₂ OH	4-benzylpiperidine
1256	1	SO ₂ NH	CH ₂ CH ₂ OH	3-acetyl-4-benzylpiperidine
1257	1	SO ₂ NH	CH ₂ CH ₂ OH	4-(3-fluorobenzyl)piperidine
1258	1	SO ₂ NH	CH ₂ CH ₂ OH	4-(4-fluorobenzyl)piperidine
1259	1	SO ₂ NH	CH ₂ CH ₂ OH	4-(2,3-difluorobenzyl) piperidine
1260	1	SO ₂ NH	CH ₂ CH ₂ OH	4-(2-chloro-4-fluorobenzyl) piperidine
1261	1	SO ₂ NH	CH ₂ OCH ₃	4-benzylpiperidine
1262	1	SO ₂ NH	CH ₂ OCH ₃	3-acetyl-4-benzylpiperidine
1263	1	SO ₂ NH	CH ₂ OCH ₃	4-(3-fluorobenzyl)piperidine
1264	1	SO ₂ NH	CH ₂ OCH ₃	4-(4-fluorobenzyl)piperidine
1265	1	SO ₂ NH	CH ₂ OCH ₃	4-(2,3-difluorobenzyl) piperidine
1266	1	SO ₂ NH	CH ₂ OCH ₃	4-(2-chloro-4-fluorobenzyl) piperidine
1267	1	SO ₂ NH	CH ₂ CH ₂ - tetrazolyl	4-benzylpiperidine
1268	1	SO ₂ NH	CH ₂ CH ₂ - tetrazolyl	3-acetyl-4-benzylpiperidine

1269	1	SO ₂ NH	CH ₂ CH ₂ - tetrazolyl	4-(3-fluorobenzyl)piperidine
1270	1	SO ₂ NH	CH ₂ CH ₂ - tetrazolyl	4-(4-fluorobenzyl)piperidine
1271	1	SO ₂ NH	CH ₂ CH ₂ - tetrazolyl	4-(2,3-difluorobenzyl) piperidine
1272	1	SO ₂ NH	CH ₂ CH ₂ - tetrazolyl	4-(2-chloro-4-fluorobenzyl) piperidine

Table 19

Ex	n	Z	R ¹	A-B
1301	1	C(O)	H	4-benzylpiperidine
1302	1	C(O)	H	3-acetyl-4-benzylpiperidine
1303	1	C(O)	H	4-(3-fluorobenzyl)piperidine
1304	1	C(O)	H	4-(4-fluorobenzyl)piperidine
1305	1	C(O)	H	4-(2,3-difluorobenzyl) piperidine
1306	1	C(O)	H	4-(2-chloro-4-fluorobenzyl) piperidine
1307	1	C(O)	CH ₂ CH ₂ OH	4-benzylpiperidine
1308	1	C(O)	CH ₂ CH ₂ OH	3-acetyl-4-benzylpiperidine
1309	1	C(O)	CH ₂ CH ₂ OH	4-(3-fluorobenzyl)piperidine
1310	1	C(O)	CH ₂ CH ₂ OH	4-(4-fluorobenzyl)piperidine
1311	1	C(O)	CH ₂ CH ₂ OH	4-(2,3-difluorobenzyl) piperidine
1312	1	C(O)	CH ₂ CH ₂ OH	4-(2-chloro-4-fluorobenzyl) piperidine
1313	1	C(O)	CH ₂ OCH ₃	4-benzylpiperidine
1314	1	C(O)	CH ₂ OCH ₃	3-acetyl-4-benzylpiperidine
1315	1	C(O)	CH ₂ OCH ₃	4-(3-fluorobenzyl)piperidine
1316	1	C(O)	CH ₂ OCH ₃	4-(4-fluorobenzyl)piperidine
1317	1	C(O)	CH ₂ OCH ₃	4-(2,3-difluorobenzyl) piperidine
1318	1	C(O)	CH ₂ OCH ₃	4-(2-chloro-4-fluorobenzyl) piperidine
1319	1	C(O)	CH ₂ CH ₂ - tetrazolyl	4-benzylpiperidine
1320	1	C(O)	CH ₂ CH ₂ - tetrazolyl	3-acetyl-4-benzylpiperidine

1321	1	C(O)	CH ₂ CH ₂ - tetrazolyl	4-(3-fluorobenzyl)piperidine
1322	1	C(O)	CH ₂ CH ₂ - tetrazolyl	4-(4-fluorobenzyl)piperidine
1323	1	C(O)	CH ₂ CH ₂ - tetrazolyl	4-(2,3-difluorobenzyl) piperidine
1324	1	C(O)	CH ₂ CH ₂ - tetrazolyl	4-(2-chloro-4-fluorobenzyl) piperidine
1325	1	C(O)NH	H	4-benzylpiperidine
1326	1	C(O)NH	H	3-acetyl-4-benzylpiperidine
1327	1	C(O)NH	H	4-(3-fluorobenzyl)piperidine
1328	1	C(O)NH	H	4-(4-fluorobenzyl)piperidine
1329	1	C(O)NH	H	4-(2,3-difluorobenzyl) piperidine
1330	1	C(O)NH	H	4-(2-chloro-4-fluorobenzyl) piperidine
1331	1	C(O)NH	CH ₂ CH ₂ OH	4-benzylpiperidine
1332	1	C(O)NH	CH ₂ CH ₂ OH	3-acetyl-4-benzylpiperidine
1333	1	C(O)NH	CH ₂ CH ₂ OH	4-(3-fluorobenzyl)piperidine
1334	1	C(O)NH	CH ₂ CH ₂ OH	4-(4-fluorobenzyl)piperidine
1335	1	C(O)NH	CH ₂ CH ₂ OH	4-(2,3-difluorobenzyl) piperidine
1336	1	C(O)NH	CH ₂ CH ₂ OH	4-(2-chloro-4-fluorobenzyl) piperidine
1337	1	C(O)NH	CH ₂ OCH ₃	4-benzylpiperidine
1338	1	C(O)NH	CH ₂ OCH ₃	3-acetyl-4-benzylpiperidine
1339	1	C(O)NH	CH ₂ OCH ₃	4-(3-fluorobenzyl)piperidine
1340	1	C(O)NH	CH ₂ OCH ₃	4-(4-fluorobenzyl)piperidine
1341	1	C(O)NH	CH ₂ OCH ₃	4-(2,3-difluorobenzyl) piperidine
1342	1	C(O)NH	CH ₂ OCH ₃	4-(2-chloro-4-fluorobenzyl) piperidine
1343	1	C(O)NH	CH ₂ CH ₂ - tetrazolyl	4-benzylpiperidine
1344	1	C(O)NH	CH ₂ CH ₂ - tetrazolyl	3-acetyl-4-benzylpiperidine

1345	1	C(O)NH	CH ₂ CH ₂ - tetrazolyl	4-(3-fluorobenzyl)piperidine
1346	1	C(O)NH	CH ₂ CH ₂ - tetrazolyl	4-(4-fluorobenzyl)piperidine
1347	1	C(O)NH	CH ₂ CH ₂ - tetrazolyl	4-(2,3-difluorobenzyl) piperidine
1348	1	C(O)NH	CH ₂ CH ₂ - tetrazolyl	4-(2-chloro-4-fluorobenzyl) piperidine
1349	1	SO ₂ NH	H	4-benzylpiperidine
1350	1	SO ₂ NH	H	3-acetyl-4-benzylpiperidine
1351	1	SO ₂ NH	H	4-(3-fluorobenzyl)piperidine
1352	1	SO ₂ NH	H	4-(4-fluorobenzyl)piperidine
1353	1	SO ₂ NH	H	4-(2,3-difluorobenzyl) piperidine
1354	1	SO ₂ NH	H	4-(2-chloro-4-fluorobenzyl) piperidine
1355	1	SO ₂ NH	CH ₂ CH ₂ OH	4-benzylpiperidine
1356	1	SO ₂ NH	CH ₂ CH ₂ OH	3-acetyl-4-benzylpiperidine
1357	1	SO ₂ NH	CH ₂ CH ₂ OH	4-(3-fluorobenzyl)piperidine
1358	1	SO ₂ NH	CH ₂ CH ₂ OH	4-(4-fluorobenzyl)piperidine
1359	1	SO ₂ NH	CH ₂ CH ₂ OH	4-(2,3-difluorobenzyl) piperidine
1360	1	SO ₂ NH	CH ₂ CH ₂ OH	4-(2-chloro-4-fluorobenzyl) piperidine
1361	1	SO ₂ NH	CH ₂ OCH ₃	4-benzylpiperidine
1362	1	SO ₂ NH	CH ₂ OCH ₃	3-acetyl-4-benzylpiperidine
1363	1	SO ₂ NH	CH ₂ OCH ₃	4-(3-fluorobenzyl)piperidine
1364	1	SO ₂ NH	CH ₂ OCH ₃	4-(4-fluorobenzyl)piperidine
1365	1	SO ₂ NH	CH ₂ OCH ₃	4-(2,3-difluorobenzyl) piperidine
1366	1	SO ₂ NH	CH ₂ OCH ₃	4-(2-chloro-4-fluorobenzyl) piperidine
1367	1	SO ₂ NH	CH ₂ CH ₂ - tetrazolyl	4-benzylpiperidine
1368	1	SO ₂ NH	CH ₂ CH ₂ - tetrazolyl	3-acetyl-4-benzylpiperidine

1369	1	SO ₂ NH	CH ₂ CH ₂ - tetrazolyl	4-(3-fluorobenzyl)piperidine
1370	1	SO ₂ NH	CH ₂ CH ₂ - tetrazolyl	4-(4-fluorobenzyl)piperidine
1371	1	SO ₂ NH	CH ₂ CH ₂ - tetrazolyl	4-(2,3-difluorobenzyl) piperidine
1372	1	SO ₂ NH	CH ₂ CH ₂ - tetrazolyl	4-(2-chloro-4-fluorobenzyl) piperidine

Table 20

Ex	n	Z	A-B
1401	1	C(O)	4-(2-aminosulfonylphenyl)phenyl
1402	1	C(O)	4-(2-aminosulfonylphenyl)-2-pyridyl
1403	1	C(O)	4-(2-methylaminosulfonylphenyl)phenyl
1404	1	C(O)	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
1405	1	C(O)	2-aminosulfonyl-4-cyclohexylphenyl
1406	1	C(O)	3-aminosulfonyl-4-t-butyl-2-pyridyl
1407	1	C(O)	2-(5-indazol-5-yl)furan
1408	1	C(O)	2-(5-indazol-6-yl)thienyl
1409	1	C(O)	4-(2-tetrazolylphenyl)phenyl
1410	1	C(O)NH	4-(2-aminosulfonylphenyl)phenyl
1411	1	C(O)NH	4-(2-aminosulfonylphenyl)-2-pyridyl
1412	1	C(O)NH	4-(2-methylaminosulfonylphenyl)phenyl
1413	1	C(O)NH	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
1414	1	C(O)NH	2-aminosulfonyl-4-cyclohexylphenyl
1415	1	C(O)NH	3-aminosulfonyl-4-t-butyl-2-pyridyl
1416	1	C(O)NH	2-(5-indazol-5-yl)furan
1417	1	C(O)NH	2-(5-indazol-6-yl)thienyl

1418	1	C(O)NH	4-(2-tetrazolylphenyl)phenyl
1419	1	NHC(O)	4-(2-aminosulfonylphenyl)phenyl
1420	1	NHC(O)	4-(2-aminosulfonylphenyl)-2-pyridyl
1421	1	NHC(O)	4-(2-methylaminosulfonylphenyl)phenyl
1422	1	NHC(O)	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
1423	1	NHC(O)	2-aminosulfonyl-4-cyclohexylphenyl
1424	1	NHC(O)	3-aminosulfonyl-4-t-butyl-2-pyridyl
1425	1	NHC(O)	2-(5-indazol-5-yl)furanyl
1426	1	NHC(O)	2-(5-indazol-6-yl)thienyl
1427	1	NHC(O)	4-(2-tetrazolylphenyl)phenyl
1428	1	SO ₂ NH	4-(2-aminosulfonylphenyl)phenyl
1429	1	SO ₂ NH	4-(2-aminosulfonylphenyl)-2-pyridyl
1430	1	SO ₂ NH	4-(2-methylaminosulfonylphenyl)phenyl
1431	1	SO ₂ NH	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
1432	1	SO ₂ NH	2-aminosulfonyl-4-cyclohexylphenyl
1433	1	SO ₂ NH	3-aminosulfonyl-4-t-butyl-2-pyridyl
1434	1	SO ₂ NH	2-(5-indazol-5-yl)furanyl
1435	1	SO ₂ NH	2-(5-indazol-6-yl)thienyl
1436	1	SO ₂ NH	4-(2-tetrazolylphenyl)phenyl
1437	0	CH(CH ₂ CH ₂ OH)C(O)NH	4-(2-aminosulfonylphenyl)phenyl
1438	0	CH(CH ₂ CH ₂ OH)C(O)NH	4-(2-aminosulfonylphenyl)-2-pyridyl

1439	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	4-(2-methylaminosulfonyl-phenyl)phenyl
1440	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
1441	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-aminosulfonyl-4-cyclohexylphenyl
1442	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	3-aminosulfonyl-4-t-butyl-2-pyridyl
1443	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-(5-indazol-5-yl)furan
1444	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	2-(5-indazol-6-yl)thienyl
1445	0	$\text{CH}(\text{CH}_2\text{CH}_2\text{OH})\text{C(O)NH}$	4-(2-tetrazolylphenyl)phenyl
1446	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-aminosulfonylphenyl)phenyl
1447	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-aminosulfonylphenyl)-2-pyridyl
1448	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-methylaminosulfonyl-phenyl)phenyl
1449	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
1450	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-aminosulfonyl-4-cyclohexylphenyl
1451	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	3-aminosulfonyl-4-t-butyl-2-pyridyl
1452	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-(5-indazol-5-yl)furan
1453	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	2-(5-indazol-6-yl)thienyl
1454	0	$\text{CH}(\text{CH}_2\text{-tetrazolyl})\text{C(O)NH}$	4-(2-tetrazolylphenyl)phenyl

Tabl 21

Ex	Z'	A-B
1501	CH ₂ C(O)NH	4-(2-aminosulfonylphenyl)phenyl
1502	CH ₂ C(O)NH	4-(2-aminosulfonylphenyl)-2-pyridyl
1503	CH ₂ C(O)NH	4-(2-methylaminosulfonyl-phenyl)phenyl
1504	CH ₂ C(O)NH	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
1505	CH ₂ C(O)NH	2-aminosulfonyl-4-cyclohexylphenyl
1506	CH ₂ C(O)NH	3-aminosulfonyl-4-t-butyl-2-pyridyl
1507	CH ₂ C(O)NH	2-(5-indazol-5-yl)furan
1508	CH ₂ C(O)NH	2-(5-indazol-6-yl)thienyl
1509	CH ₂ C(O)NH	4-(2-tetrazolylphenyl)phenyl
1510	CH ₂ CH ₂ C(O)NH	4-(2-aminosulfonylphenyl)phenyl
1511	CH ₂ CH ₂ C(O)NH	4-(2-aminosulfonylphenyl)-2-pyridyl
1512	CH ₂ CH ₂ C(O)NH	4-(2-tert-butylaminosulfonyl-phenyl)phenyl
1513	CH ₂ CH ₂ C(O)NH	4-(2-ethylaminosulfonyl-phenyl)-2-pyridyl
1514	CH ₂ CH ₂ C(O)NH	2-aminosulfonyl-4-cyclohexylphenyl
1515	CH ₂ CH ₂ C(O)NH	3-aminosulfonyl-4-t-butyl-2-pyridyl
1516	CH ₂ CH ₂ C(O)NH	2-(5-indazol-5-yl)furan
1517	CH ₂ CH ₂ C(O)NH	2-(5-indazol-6-yl)thienyl
1518	CH ₂ CH ₂ C(O)NH	4-(2-tetrazolylphenyl)phenyl

1519	SCH ₂ C(O)NH	4-(2-aminosulfonylphenyl)phenyl
1520	SCH ₂ C(O)NH	4-(2-aminosulfonylphenyl)-2-pyridyl
1521	SCH ₂ C(O)NH	4-(2-methylaminosulfonylphenyl)phenyl
1522	SCH ₂ C(O)NH	4-(2-ethylaminosulfonylphenyl)-2-pyridyl
1523	SCH ₂ C(O)NH	2-aminosulfonyl-4-cyclohexylphenyl
1524	SCH ₂ C(O)NH	3-aminosulfonyl-4-t-butyl-2-pyridyl
1525	SCH ₂ C(O)NH	2-(5-indazol-5-yl)furan
1526	SCH ₂ C(O)NH	2-(5-indazol-6-yl)thienyl
1527	SCH ₂ C(O)NH	4-(2-tetrazolylphenyl)phenyl

Utility

The compounds of this invention are useful as anticoagulants for the treatment or prevention of thromboembolic disorders in mammals. The term "thromboembolic disorders" as used herein includes arterial or venous cardiovascular or cerebrovascular thromboembolic disorders, including, for example, unstable angina, first or recurrent myocardial infarction, ischemic sudden death, transient ischemic attack, stroke, atherosclerosis, venous thrombosis, deep vein thrombosis, thrombophlebitis, arterial embolism, coronary and cerebral arterial thrombosis, cerebral embolism, kidney embolisms, and pulmonary embolisms. The anticoagulant effect of compounds of the present invention is believed to be due to inhibition of factor Xa or thrombin.

The effectiveness of compounds of the present invention as inhibitors of factor Xa was determined using purified human factor Xa and synthetic substrate. The rate of factor Xa hydrolysis of chromogenic substrate S2222 (Kabi Pharmacia, Franklin, OH) was measured both in the absence and presence of compounds of the present invention. Hydrolysis of the substrate resulted in the release of pNA, which was monitored spectrophotometrically by measuring the increase in absorbance at 405 nm. A decrease in the rate of absorbance change at 405 nm in the presence of inhibitor is indicative of enzyme inhibition. The results of this assay are expressed as inhibitory constant, K_i .

Factor Xa determinations were made in 0.10 M sodium phosphate buffer, pH 7.5, containing 0.20 M NaCl, and 0.5 % PEG 8000. The Michaelis constant, K_m , for substrate hydrolysis was determined at 25°C using the method of Lineweaver and Burk. Values of K_i were determined by allowing 0.2-0.5 nM human factor Xa (Enzyme Research Laboratories, South Bend, IN) to react with the substrate (0.20 mM-1 mM) in the presence of inhibitor. Reactions were allowed to go for 30 minutes and the velocities (rate of absorbance change vs time) were measured in the time frame of 25-30 minutes. The following relationship was used to calculate K_i values:

$$(v_0 - v_s) / v_s = I / (K_i (1 + S/K_m))$$

where:

v_0 is the velocity of the control in the absence of inhibitor;

v_s is the velocity in the presence of inhibitor;

5 I is the concentration of inhibitor;

K_i is the dissociation constant of the enzyme:inhibitor complex;

S is the concentration of substrate;

K_m is the Michaelis constant.

10 Using the methodology described above, a number of compounds of the present invention were found to exhibit a K_i of $\leq 5 \mu\text{M}$, thereby confirming the utility of the compounds of the present invention as effective Xa inhibitors.

The antithrombotic effect of compounds of the present invention can be demonstrated in a rabbit arterio-venous (AV) shunt thrombosis model. In this model, rabbits weighing 2-3 kg anesthetized with a mixture of xylazine (10 mg/kg i.m.) and ketamine (50 mg/kg i.m.) are used. A saline-filled AV shunt device is connected between the femoral arterial and the femoral venous cannulae. The AV shunt device consists of a piece of 6-cm tygon tubing which contains a piece of silk thread. Blood will flow from the femoral artery via the AV-shunt into the femoral vein. The exposure of flowing blood to a silk thread will induce the formation of a significant thrombus. After forty minutes, the shunt is disconnected and the silk thread covered with thrombus is weighed. Test agents or vehicle will be given (i.v., i.p., s.c., or orally) prior to the opening of the AV shunt. The percentage inhibition of thrombus formation is determined for each treatment group.

30 The ID₅₀ values (dose which produces 50% inhibition of thrombus formation) are estimated by linear regression.

The compounds of formula (I) are also considered to be useful as inhibitors of serine proteases, notably human thrombin, plasma kallikrein and plasmin. Because of their inhibitory action, these compounds are indicated for use in the prevention or treatment of physiological reactions, blood coagulation and inflammation, catalyzed by the aforesaid class of enzymes. Specifically, the compounds have utility as drugs

for the treatment of diseases arising from elevated thrombin activity such as myocardial infarction, and as reagents used as anticoagulants in the processing of blood to plasma for diagnostic and other commercial purposes.

5 Some compounds of the present invention were shown to be direct acting inhibitors of the serine protease thrombin by their ability to inhibit the cleavage of small molecule substrates by thrombin in a purified system. *In vitro* inhibition constants were determined by the method described
10 by Kettner et al. in *J. Biol. Chem.* **265**, 18289-18297 (1990), herein incorporated by reference. In these assays, thrombin-mediated hydrolysis of the chromogenic substrate S2238 (Helena Laboratories, Beaumont, TX) was monitored spectrophotometrically. Addition of an inhibitor to the assay
15 mixture results in decreased absorbance and is indicative of thrombin inhibition. Human thrombin (Enzyme Research Laboratories, Inc., South Bend, IN) at a concentration of 0.2 nM in 0.10 M sodium phosphate buffer, pH 7.5, 0.20 M NaCl, and 0.5% PEG 6000, was incubated with various substrate
20 concentrations ranging from 0.20 to 0.02 mM. After 25 to 30 minutes of incubation, thrombin activity was assayed by monitoring the rate of increase in absorbance at 405 nm which arises owing to substrate hydrolysis. Inhibition constants were derived from reciprocal plots of the reaction velocity as
25 a function of substrate concentration using the standard method of Lineweaver and Burk. Using the methodology described above, some compounds of this invention were evaluated and found to exhibit a K_i of less than 5 μM , thereby confirming the utility of the compounds of the invention as
30 effective thrombin inhibitors.

The compounds of the present invention can be administered alone or in combination with one or more additional therapeutic agents. These include other anti-coagulant or coagulation inhibitory agents, anti-platelet or
35 platelet inhibitory agents, thrombin inhibitors, or thrombolytic or fibrinolytic agents.

The compounds are administered to a mammal in a therapeutically effective amount. By "therapeutically"

effective amount" it is meant an amount of a compound of Formula I that, when administered alone or in combination with an additional therapeutic agent to a mammal, is effective to prevent or ameliorate the thromboembolic disease condition or
5 the progression of the disease.

By "administered in combination" or "combination therapy" it is meant that the compound of Formula I and one or more additional therapeutic agents are administered concurrently to the mammal being treated. When administered in combination
10 each component may be administered at the same time or sequentially in any order at different points in time. Thus, each component may be administered separately but sufficiently closely in time so as to provide the desired therapeutic effect. Other anticoagulant agents (or coagulation inhibitory
15 agents) that may be used in combination with the compounds of this invention include warfarin and heparin, as well as other factor Xa inhibitors such as those described in the publications identified above under Background of the Invention.

20 The term anti-platelet agents (or platelet inhibitory agents), as used herein, denotes agents that inhibit platelet function such as by inhibiting the aggregation, adhesion or granular secretion of platelets. Such agents include, but are not limited to, the various known non-steroidal anti-
25 inflammatory drugs (NSAIDS) such as aspirin, ibuprofen, naproxen, sulindac, indomethacin, mefenamate, droxicam, diclofenac, sulfipyrazone, and piroxicam, including pharmaceutically acceptable salts or prodrugs thereof. Of the NSAIDS, aspirin (acetylsalicylic acid or ASA), and piroxicam
30 are preferred. Other suitable anti-platelet agents include ticlopidine, including pharmaceutically acceptable salts or prodrugs thereof. Ticlopidine is also a preferred compound since it is known to be gentle on the gastro-intestinal tract in use. Still other suitable platelet inhibitory agents
35 include IIb/IIIa antagonists, thromboxane-A2-receptor antagonists and thromboxane-A2-synthetase inhibitors, as well as pharmaceutically acceptable salts or prodrugs thereof.

The term thrombin inhibitors (or anti-thrombin agents), as used herein, denotes inhibitors of the serine protease thrombin. By inhibiting thrombin, various thrombin-mediated processes, such as thrombin-mediated platelet activation (that is, for example, the aggregation of platelets, and/or the granular secretion of plasminogen activator inhibitor-1 and/or serotonin) and/or fibrin formation are disrupted. A number of thrombin inhibitors are known to one of skill in the art and these inhibitors are contemplated to be used in combination with the present compounds. Such inhibitors include, but are not limited to, boroarginine derivatives, boropeptides, heparins, hirudin and argatroban, including pharmaceutically acceptable salts and prodrugs thereof. Boroarginine derivatives and boropeptides include N-acetyl and peptide derivatives of boronic acid, such as C-terminal α-aminoboronic acid derivatives of lysine, ornithine, arginine, homoarginine and corresponding isothiouronium analogs thereof. The term hirudin, as used herein, includes suitable derivatives or analogs of hirudin, referred to herein as hirulogs, such as disulfatohirudin. Boropeptide thrombin inhibitors include compounds described in Kettner et al., U.S. Patent No. 5,187,157 and European Patent Application Publication Number 293 881 A2, the disclosures of which are hereby incorporated herein by reference. Other suitable boroarginine derivatives and boropeptide thrombin inhibitors include those disclosed in PCT Application Publication Number 92/07869 and European Patent Application Publication Number 471,651 A2, the disclosures of which are hereby incorporated herein by reference.

The term thrombolytics (or fibrinolytic) agents (or thrombolytics or fibrinolytics), as used herein, denotes agents that lyse blood clots (thrombi). Such agents include tissue plasminogen activator, anistreplase, urokinase or streptokinase, including pharmaceutically acceptable salts or prodrugs thereof. The term anistreplase, as used herein, refers to anisoylated plasminogen streptokinase activator complex, as described, for example, in European Patent Application No. 028,489, the disclosure of which is hereby

incorporated herein by reference herein. The term urokinase, as used herein, is intended to denote both dual and single chain urokinase, the latter also being referred to herein as prourokinase.

5 Administration of the compounds of Formula I of the invention in combination with such additional therapeutic agent, may afford an efficacy advantage over the compounds and agents alone, and may do so while permitting the use of lower doses of each. A lower dosage minimizes the potential of side
10 effects, thereby providing an increased margin of safety.

The compounds of the present invention are also useful as standard or reference compounds, for example as a quality standard or control, in tests or assays involving the inhibition of factor Xa. Such compounds may be provided in a
15 commercial kit, for example, for use in pharmaceutical research involving factor Xa. For example, a compound of the present invention could be used as a reference in an assay to compare its known activity to a compound with an unknown activity. This would ensure the experimenter that the assay
20 was being performed properly and provide a basis for comparison, especially if the test compound was a derivative of the reference compound. When developing new assays or protocols, compounds according to the present invention could be used to test their effectiveness.

25 The compounds of the present invention may also be used in diagnostic assays involving factor Xa. For example, the presence of factor Xa in an unknown sample could be determined by addition of chromogenic substrate S2222 to a series of solutions containing test sample and optionally one of the
30 compounds of the present invention. If production of pNA is observed in the solutions containing test sample, but no compound of the present invention, then one would conclude factor Xa was present.

35 Dosage and Formulation

The compounds of this invention can be administered in such oral dosage forms as tablets, capsules (each of which includes sustained release or timed release formulations),

5 pills, powders, granules, elixirs, tinctures, suspensions, syrups, and emulsions. They may also be administered in intravenous (bolus or infusion), intraperitoneal, subcutaneous, or intramuscular form, all using dosage forms well known to those of ordinary skill in the pharmaceutical arts. They can be administered alone, but generally will be administered with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice.

10 The dosage regimen for the compounds of the present invention will, of course, vary depending upon known factors, such as the pharmacodynamic characteristics of the particular agent and its mode and route of administration; the species, age, sex, health, medical condition, and weight of the recipient; the nature and extent of the symptoms; the kind of concurrent treatment; the frequency of treatment; the route of administration, the renal and hepatic function of the patient, and the effect desired. A physician or veterinarian can determine and prescribe the effective amount of the drug required to prevent, counter, or arrest the progress of the thromboembolic disorder.

15 By way of general guidance, the daily oral dosage of each active ingredient, when used for the indicated effects, will range between about 0.001 to 1000 mg/kg of body weight, preferably between about 0.01 to 100 mg/kg of body weight per day, and most preferably between about 1.0 to 20 mg/kg/day. Intravenously, the most preferred doses will range from about 1 to about 10 mg/kg/minute during a constant rate infusion. Compounds of this invention may be administered in a single 20 daily dose, or the total daily dosage may be administered in divided doses of two, three, or four times daily.

25 Compounds of this invention can be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal routes, using transdermal skin patches. When administered in the form of a transdermal delivery system, the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.

The compounds are typically administered in admixture with suitable pharmaceutical diluents, excipients, or carriers (collectively referred to herein as pharmaceutical carriers) suitably selected with respect to the intended form of 5 administration, that is, oral tablets, capsules, elixirs, syrups and the like, and consistent with conventional pharmaceutical practices.

For instance, for oral administration in the form of a tablet or capsule, the active drug component can be combined 10 with an oral, non-toxic, pharmaceutically acceptable, inert carrier such as lactose, starch, sucrose, glucose, methyl cellulose, magnesium stearate, dicalcium phosphate, calcium sulfate, mannitol, sorbitol and the like; for oral administration in liquid form, the oral drug components can be 15 combined with any oral, non-toxic, pharmaceutically acceptable inert carrier such as ethanol, glycerol, water, and the like. Moreover, when desired or necessary, suitable binders, lubricants, disintegrating agents, and coloring agents can also be incorporated into the mixture. Suitable binders 20 include starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth, or sodium alginate, carboxymethylcellulose, polyethylene glycol, waxes, and the like. Lubricants used in these dosage forms include sodium 25 oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride, and the like. Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum, and the like.

The compounds of the present invention can also be 30 administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine, or phosphatidylcholines.

35 Compounds of the present invention may also be coupled with soluble polymers as targetable drug carriers. Such polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxypropylmethacrylamide-phenol,

polyhydroxyethylaspartamidephenol, or polyethyleneoxide-polylysine substituted with palmitoyl residues. Furthermore, the compounds of the present invention may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacylates, and crosslinked or amphipathic block 10 copolymers of hydrogels.

Dosage forms (pharmaceutical compositions) suitable for administration may contain from about 1 milligram to about 100 milligrams of active ingredient per dosage unit. In these pharmaceutical compositions the active ingredient will 15 ordinarily be present in an amount of about 0.5-95% by weight based on the total weight of the composition.

Gelatin capsules may contain the active ingredient and powdered carriers, such as lactose, starch, cellulose derivatives, magnesium stearate, stearic acid, and the like. 20 Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of hours. Compressed tablets can be sugar coated or film coated to mask any unpleasant taste and protect the 25 tablet from the atmosphere, or enteric coated for selective disintegration in the gastrointestinal tract.

Liquid dosage forms for oral administration can contain coloring and flavoring to increase patient acceptance.

In general, water, a suitable oil, saline, aqueous 30 dextrose (glucose), and related sugar solutions and glycols such as propylene glycol or polyethylene glycols are suitable carriers for parenteral solutions. Solutions for parenteral administration preferably contain a water soluble salt of the active ingredient, suitable stabilizing agents, and if 35 necessary, buffer substances. Antioxidizing agents such as sodium bisulfite, sodium sulfite, or ascorbic acid, either alone or combined, are suitable stabilizing agents. Also used are citric acid and its salts and sodium EDTA. In addition,

parenteral solutions can contain preservatives, such as benzalkonium chloride, methyl- or propyl-paraben, and chlorobutanol.

Suitable pharmaceutical carriers are described in 5 Remington's Pharmaceutical Sciences, Mack Publishing Company, a standard reference text in this field.

Representative useful pharmaceutical dosage-forms for administration of the compounds of this invention can be illustrated as follows:

10 Capsules

A large number of unit capsules are prepared by filling standard two-piece hard gelatin capsules each with 100 milligrams of powdered active ingredient, 150 milligrams of lactose, 50 milligrams of cellulose, and 6 milligrams 15 magnesium stearate.

Soft Gelatin Capsules

A mixture of active ingredient in a digestable oil such as soybean oil, cottonseed oil or olive oil is prepared and injected by means of a positive displacement pump into gelatin 20 to form soft gelatin capsules containing 100 milligrams of the active ingredient. The capsules are washed and dried.

Tablets

A large number of tablets are prepared by conventional procedures so that the dosage unit is 100 milligrams of active 25 ingredient, 0.2 milligrams of colloidal silicon dioxide, 5 milligrams of magnesium stearate, 275 milligrams of microcrystalline cellulose, 11 milligrams of starch and 98.8 milligrams of lactose. Appropriate coatings may be applied to increase palatability or delay absorption.

30 Injectable

A parenteral composition suitable for administration by injection is prepared by stirring 1.5% by weight of active ingredient in 10% by volume propylene glycol and water. The solution is made isotonic with sodium chloride and sterilized.

35 Suspension

An aqueous suspension is prepared for oral administration so that each 5 mL contain 100 mg of finely divided active ingredient, 200 mg of sodium carboxymethyl

cellulose, 5 mg of sodium benzoate, 1.0 g of sorbitol solution, U.S.P., and 0.025 mL of vanillin.

Where the compounds of this invention are combined with other anticoagulant agents, for example, a daily dosage may be 5 about 0.1 to 100 milligrams of the compound of Formula I and about 1 to 7.5 milligrams of the second anticoagulant, per kilogram of patient body weight. For a tablet dosage form, the compounds of this invention generally may be present in an amount of about 5 to 10 milligrams per dosage unit, and the 10 second anti-coagulant in an amount of about 1 to 5 milligrams per dosage unit.

Where the compounds of Formula I are administered in combination with an anti-platelet agent, by way of general guidance, typically a daily dosage may be about 0.01 to 25 15 milligrams of the compound of Formula I and about 50 to 150 milligrams of the anti-platelet agent, preferably about 0.1 to 1 milligrams of the compound of Formula I and about 1 to 3 milligrams of antiplatelet agents, per kilogram of patient body weight.

20 Where the compounds of Formula I are administered in combination with thrombolytic agent, typically a daily dosage may be about 0.1 to 1 milligrams of the compound of Formula I, per kilogram of patient body weight and, in the case of the thrombolytic agents, the usual dosage of the thrombolytic agent 25 when administered alone may be reduced by about 70-80% when administered with a compound of Formula I.

Where two or more of the foregoing second therapeutic agents are administered with the compound of Formula I, generally the amount of each component in a typical daily 30 dosage and typical dosage form may be reduced relative to the usual dosage of the agent when administered alone, in view of the additive or synergistic effect of the therapeutic agents when administered in combination.

Particularly when provided as a single dosage unit, the 35 potential exists for a chemical interaction between the combined active ingredients. For this reason, when the compound of Formula I and a second therapeutic agent are combined in a single dosage unit they are formulated such that

although the active ingredients are combined in a single dosage unit, the physical contact between the active ingredients is minimized (that is, reduced). For example, one active ingredient may be enteric coated. By enteric coating 5 one of the active ingredients, it is possible not only to minimize the contact between the combined active ingredients, but also, it is possible to control the release of one of these components in the gastrointestinal tract such that one of these components is not released in the stomach but rather 10 is released in the intestines. One of the active ingredients may also be coated with a material which effects a sustained-release throughout the gastrointestinal tract and also serves to minimize physical contact between the combined active ingredients. Furthermore, the sustained-released component 15 can be additionally enteric coated such that the release of this component occurs only in the intestine. Still another approach would involve the formulation of a combination product in which the one component is coated with a sustained and/or enteric release polymer, and the other component is 20 also coated with a polymer such as a lowviscosity grade of hydroxypropyl methylcellulose (HPMC) or other appropriate materials as known in the art, in order to further separate the active components. The polymer coating serves to form an additional barrier to interaction with the other component..

25 These as well as other ways of minimizing contact between the components of combination products of the present invention, whether administered in a single dosage form or administered in separate forms but at the same time by the same manner, will be readily apparent to those skilled in the 30 art, once armed with the present disclosure.

Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced 35 otherwise than as specifically described herein.

WHAT IS CLAIMED AS NEW AND DESIRED TO BE SECURED BY LETTER
PATENT OF UNITED STATES IS:

1. A compound of formula I:

5

I

or stereoisomer or pharmaceutically acceptable salt form thereof wherein:

10

W and W³ are selected from CH and N;

W¹ and W² are selected from C, CH, and N;

15 provided that from 0-2 of W, W¹, W², and W³ are N;

one of D and D^a is selected from H, C₁₋₄ alkoxy, CN, C(=NR⁷)NR⁸R⁹, NHC(=NR⁷)NR⁸R⁹, NR⁸CH(=NR⁷), C(O)NR⁸R⁹, and (CH₂)_tNR⁸R⁹, and the other is absent;

20

provided that if one of D and D^a is H, then at least one of W, W¹, W², and W³ is N;

one of J^a and J^b is substituted by -(CH₂)_n-Z-A-B;

25

J, J^a, and J^b combine to form an aromatic heterocyclic system containing from 1-2 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R¹, provided that J^b can only be C or N;

30

J, J^a, and J^b can, alternatively, combine to form a heterocyclic ring wherein J^b is N and J and J^a are CH₂ substituted with 0-1 R¹;

J, J^a, and J^b can, alternatively, combine to form a heterocyclic ring wherein J^b is CH, J is NR¹ and J^a is CH₂ substituted with 0-1 R¹;

5 R¹ is selected from H, C₁₋₄ alkyl, (CH₂)_rOR³, (CH₂)_rNR³R^{3'}, (CH₂)_rC(=O)R², (CH₂)_r(CH=CH)(CH₂)_rC(=O)R², (CH₂)_rNR³C(=O)R², (CH₂)_rSO₂R⁴, (CH₂)_rNR³SO₂R⁴, and (CH₂)_r-5-membered heterocyclic system having 1-4 heteroatoms selected from N, O, and S;

10

R² is selected from H, OR³, C₁₋₄ alkyl, NR³R^{3'}, CF₃, and C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶;

15 R³ and R^{3'} are independently selected from H, C₁₋₄ alkyl, and C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶;

R⁴ is selected from C₁₋₄ alkyl, NR³R^{3'}, and C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶;

20 Z is selected from CH=CH, CH((CH₂)_mQ(CH₂)_mR⁵), CH((CH₂)_mQ(CH₂)_mR⁵)C(O)NR³, CH((CH₂)_mC(O)(CH₂)_mR^{5a}), N((CH₂)_qQ(CH₂)_mR⁵), N(Q'(CH₂)_mR⁵), C(O)N((CH₂)_mQ'(CH₂)_mR^{5a}), C(O)(CH₂)_r, C(O)O(CH₂)_r, OC(O)(CH₂)_r, C(O)(CH₂)_rNR³(CH₂)_r, NR³C(O)(CH₂)_r, 25 OC(O)NR³(CH₂)_r, NR³C(O)O(CH₂)_r, NR³C(O)NR³(CH₂)_r, S(O)_p(CH₂)_r, SO₂CH₂, SCH₂C(O)NR³, SO₂NR³(CH₂)_r, NR³SO₂(CH₂)_r, and NR³SO₂NR³(CH₂)_r;

30 Q is selected from a bond, O, NR³, C(O), C(O)NR³, NR³C(O), SO₂, NR³SO₂, and SO₂NR³;

Q' is selected from a bond, C(O), C(O)NR³, SO₂, and SO₂NR³;

35 R⁵ is selected from H, C₁₋₄ alkyl, C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶, and 5-10 membered heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶,

provided that when Q is SO₂ or NR³SO₂, R⁵ is other than H and when Q' is SO₂, R⁵ is other than H;

R^{5a} is selected from NHR⁵, OR⁵, and R⁵;

5

A is selected from:

benzyl substituted with 0-2 R⁶,

phenethyl substituted with 0-2 R⁶,

phenyl-CH= substituted with 0-2 R⁶,

10 C₃-10 carbocyclic residue substituted with 0-2 R⁶, and 5-10 membered heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶;

15 B is selected from:

X-Y, C₃-6 alkyl, NR³R^{3'}, C(=NR³)NR³R^{3'}, NR³C(=NR³)NR³R^{3'},

benzyl substituted with 0-2 R⁶,

C₃-10 carbocyclic residue substituted with 0-2 R⁶, and

5-10 membered heterocyclic system containing from 1-3

20 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶;

A and B can, alternatively, combine to form a C₉-10 carbocyclic residue substituted with 0-2 R⁶ or a 9-10 membered

25 heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶;

X is selected from C₁-4 alkylene, -C(O)-, -C(O)CR³R^{3'}-,

30 -CR³R^{3'}C(O), -S(O)_p-, -S(O)_pCR³R^{3'}-, -CR³R^{3'}S(O)_p-,

-S(O)₂NR³-, -NR³S(O)₂-, -C(O)NR³-, -NR³C(O)-, -NR³-,

-NR³CR³R^{3'}-, -CR³R^{3'}NR³-, O, -CR³R^{3'}O-, and -OCR³R^{3'}-,

Y is selected from:

35 C₃-10 carbocyclic residue substituted with 0-2 R⁶, and 5-10 membered heterocyclic system containing from 1-3

heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶;

- R⁶ is selected from H, OH, (CH₂)_nOR³, halo, C₁₋₄ alkyl, CN, NO₂, (CH₂)_rNR³R^{3'}, (CH₂)_rC(O)R³, NR³C(O)R^{3'}, NR³C(O)NR³R^{3'}, CH(=NH)NH₂, NHC(=NH)NH₂, SO₂NR³R^{3'}, CONHSO₂R⁴, 5 NR³SO₂NR³R^{3'}, NR³SO₂-C₁₋₄ alkyl, and (C₁₋₄ alkyl)-tetrazolyl;
- R⁷ is selected from H, OH, C₁₋₆ alkyl, C₁₋₆ alkylcarbonyl, C₁₋₆ alkoxy, C₁₋₄ alkoxycarbonyl, C₆₋₁₀ aryloxy, C₆₋₁₀ 10 aryloxycarbonyl, C₆₋₁₀ arylmethylcarbonyl, C₁₋₄ alkylcarbonyloxy C₁₋₄ alkoxycarbonyl, C₆₋₁₀ arylcarbonyloxy C₁₋₄ alkoxycarbonyl, C₁₋₆ alkylaminocarbonyl, phenylaminocarbonyl, and phenyl C₁₋₄ alkoxycarbonyl; 15
- R⁸ is selected from H, C₁₋₆ alkyl and (CH₂)_n-phenyl;
- R⁹ is selected from H, C₁₋₆ alkyl and (CH₂)_n-phenyl;
- 20 n is selected from 0, 1, 2, 3, and 4;
- m is selected from 0, 1, and 2;
- p is selected from 0, 1, and 2; 25
- q is selected from 1 and 2; and,
- r is selected from 0, 1, 2, 3, and 4;
- 30 provided that:
- (a) Z is other than CH₂; and,
 - (b) if Z is CH((CH₂)_mQ(CH₂)_mR⁵) or CH((CH₂)_mC(O)(CH₂)_mR^{5a}), then B is other than X-Y, a C₃₋₁₀ carbocyclic residue or a 5-10 membered heterocyclic system.

35

2. A compound according to Claim 1, wherein the compound is of formula II:

II

or a stereoisomer or pharmaceutically acceptable salt,
5 wherein:

from 0-1 of W, W¹, W², and W³ are N;

10 R¹ is selected from H, C₁₋₄ alkyl, (CH₂)_rOR³, (CH₂)_rNR³R^{3'},
(CH₂)_rC(=O)R², (CH₂)_rNR³C(=O)R², (CH₂)_rSO₂R⁴,
(CH₂)_rNR³SO₂R⁴, and (CH₂)_r-5-membered heterocyclic system
having 1-4 heteroatoms selected from N, O, and S;

15 R² is selected from H, OR³, C₁₋₄ alkyl, NR³R^{3'}, and CF₃;

15 R³ and R^{3'} are independently selected from H, C₁₋₄ alkyl, and
phenyl;

20 R⁴ is selected from C₁₋₄ alkyl, phenyl and NR³R^{3'};

20 Z is selected from CH=CH, CH((CH₂)_mQ(CH₂)_mR⁵),
CH((CH₂)_mQ(CH₂)_mR⁵)C(O)NR³, CH((CH₂)_mC(O)(CH₂)_mR^{5a}),
N((CH₂)_qQ(CH₂)_mR⁵), N(Q'(CH₂)_mR⁵),
C(O)N((CH₂)_mQ'(CH₂)_mR^{5a}), C(O), C(O)CH₂, C(O)O, OC(O),
25 C(O)(CH₂)_rNR³(CH₂)_r, NR³C(O), OC(O)NR³, NR³C(O)O,
NR³C(O)NR³, S(O)_p, SO₂CH₂, SO₂NR³, NR³SO₂, and NR³SO₂NR³;

B is selected from:

30 X-Y, C₃₋₆ alkyl,
benzyl substituted with 0-2 R⁶,
C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶, and
5-10 membered heterocyclic system containing from 1-3
heteroatoms selected from the group consisting of N, O, and S
substituted with 0-2 R⁶;

35

A and B can, alternatively, combine to form a C₉₋₁₀ carbocyclic residue substituted with 0-2 R⁶ or a 9-10 membered heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶; and,

R⁶ is selected from H, OH, (CH₂)_nOR³, halo, C₁₋₄ alkyl, CN, NO₂, (CH₂)_rNR³R^{3'}, (CH₂)_rC(O)R³, NR³C(O)R^{3'}, NR³C(O)NR³R^{3'}, SO₂NR³R^{3'}, CONHSO₂R⁴, NR³SO₂NR³R^{3'}, NR³SO₂-C₁₋₄ alkyl and (C₁₋₄ alkyl)-tetrazolyl.

3. A compound according to Claim 2, wherein:

J, J^a, and J^b combine to form an aromatic heterocyclic system containing from 1-2 nitrogen atoms, substituted with 0-1 R¹;

J, J^a, and J^b can, alternatively, combine to form a heterocyclic ring wherein J^b is N and J and J^a are CH₂ substituted with 0-1 R¹;

J, J^a, and J^b can, alternatively, combine to form a heterocyclic ring wherein J^b is CH, J is NR¹ and J^a is CH₂ substituted with 0-1 R¹;

R¹ is selected from H, C₁₋₄ alkyl, (CH₂)_rOR³, (CH₂)_rNR³R^{3'}, (CH₂)_rC(=O)R², (CH₂)_rNR³C(=O)R², (CH₂)_rSO₂R⁴, and (CH₂)_rNR³SO₂R⁴;

Z is selected from CH((CH₂)_mQ(CH₂)_mR⁵), CH((CH₂)_mQ(CH₂)_mR⁵)C(O)NR³, CH((CH₂)_mC(O)(CH₂)_mR^{5a}), N((CH₂)_qQ(CH₂)_mR⁵), N(Q'(CH₂)_mR⁵), C(O)N((CH₂)_mQ'(CH₂)_mR^{5a}), C(O), C(O)CH₂, C(O)(CH₂)_rNR³(CH₂)_r, NR³C(O), NR³C(O)NR³, S(O)₂, SO₂CH₂, SO₂NR³, NR³SO₂, and NR³SO₂NR³;

A is selected from:

benzyl substituted with 0-2 R⁶,
C₃-10 carbocyclic residue substituted with 0-2 R⁶, and
5-10 membered heterocyclic system containing from 1-3
heteroatoms selected from the group consisting of N, O, and S
5 substituted with 0-2 R⁶;

B is selected from:

- X-Y, C₃-6 alkyl,
benzyl substituted with 0-2 R⁶,
10 C₅-6 carbocyclic residue substituted with 0-2 R⁶, and
5-6 membered heterocyclic system containing from 1-3
heteroatoms selected from the group consisting of N, O, and S
substituted with 0-2 R⁶;
- 15 X is selected from -C(O)-, -C(O)CR³R^{3'}-, -S(O)₂-, -S(O)_pCR³R^{3'}-,
-S(O)₂NR³-, -C(O)NR³-, -NR³-, -NR³CR³R^{3'}-, and O;

Y is selected from:

- C₅-6 carbocyclic residue substituted with 0-2 R⁶, and
20 5-6 membered heterocyclic system containing from 1-3
heteroatoms selected from the group consisting of N, O, and S
substituted with 0-2 R⁶;

- 25 R⁶ is selected from H, OH, (CH₂)_nOR³, halo, C₁-4 alkyl, CN, NO₂,
(CH₂)_rNR³R^{3'}, (CH₂)_rC(O)R³, NR³C(O)R^{3'}, NR³C(O)NR³R^{3'},
SO₂NR³R^{3'}, CONHSO₂R⁴, NR³SO₂NR³R^{3'}, NR³SO₂-C₁-4 alkyl and
(C₁-4 alkyl)-tetrazolyl;

30 n is selected from 0, 1, and 2; and,

r is selected from 0, 1, and 2.

- 35 4. A compound according to Claim 3, wherein the compound
is of formula III:

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein:

5

J and J^b combine to form an aromatic heterocyclic system containing from 1-2 nitrogen atoms, substituted with 0-1 R¹;

10 J and J^b can, alternatively, form a heterocyclic ring wherein J^b is N and J is CH₂ substituted with 0-1 R¹;

J and J^b can, alternatively, form a heterocyclic ring wherein J^b is CH and J is NR¹;

15

Z is selected from C(O)N(Q'R^{5a}), C(O), C(O)NR³, NR³C(O), and SO₂NR³;

Q' is selected from C(O) and C(O)NR³;

20

R⁵ is selected from H and C₁₋₄ alkyl;

R^{5a} is selected from NHR⁵, OR⁵, and R⁵;

25 A is selected from:

benzyl substituted with 0-1 R⁶,
phenyl substituted with 0-1 R⁶,
piperidinyl substituted with 0-1 R⁶,
piperazinyl substituted with 0-1 R⁶, and
30 pyridyl substituted with 0-1 R⁶;

B is selected from:

X-Y,
benzyl substituted with 0-1 R⁶,
35 phenyl substituted with 0-2 R⁶,

cyclohexyl substituted with 0-1 R⁶, and
pyridyl substituted with 0-1 R⁶;

X is selected from: -C(O)-, -S(O)₂-, SO₂CH₂, -S(O)₂NR³-, -NR³-
5 and -C(O)NR³-;

Y is selected from:

phenyl substituted with 0-2 R⁶, and
pyridyl substituted with 0-1 R⁶;

10

R⁶ is selected from H, OH, (CH₂)_nOR³, halo, C₁₋₄ alkyl, CN, NO₂,
(CH₂)_rNR³R^{3'}, (CH₂)_rC(O)R³, NR³C(O)R^{3'}, NR³C(O)NR³R^{3'},
SO₂NR³R^{3'}, CONHSO₂R⁴, NR³SO₂NR³R^{3'}, NR³SO₂-C₁₋₄ alkyl and
(C₁₋₄ alkyl)-tetrazolyl;

15

n is selected from 0, 1, and 2.

20 5. A compound according to Claim 4, wherein the compound
is of formula IV:

25 or stereoisomer or pharmaceutically acceptable salt form
thereof, wherein A, B, D, and Z are as defined above.

30 6. A compound according to Claim 1, wherein the compound
is selected from:

3-((4-cyclohexyl)phenylaminomethylcarbonyl)methyl-5-
amidinoindole

35 3-(4-p-toluenesulfonyl-piperazinecarbonyl)methyl-5-
amidinoindole

- 3-(4-(2-amino sulfonylphenyl)pyridine-2-aminocarbonyl)methyl-5-amidinoindole;
- 5 3-(4-[2-tetrazole]phenyl)phenylaminocarbonylmethyl-5-amidinoindole;
- 3-(4-biphenylaminocarbonyl)methyl-5-amidinoindole;
- 10 3-(4-(phenylmethylsulfonyl)piperazinecarbonyl)methyl-5-amidinoindole;
- 3-(4-cyclohexylphenylaminocarbonyl)methyl-5-amidinoindole;
- 15 3-(4-benzylpiperazinecarbonyl)methyl-5-amidinoindole;
- 3-(3-amidinobenzylamino(methylcarbonylmethoxy)carbonyl)methyl-5-amidinoindole;
- 20 3-(4-(2-amino sulfonyl)phenylphenylaminocarbonyl)methyl-5-amidinoindole;
- 3-(1-benzylpiperidine-4-aminocarbonyl)methyl-5-amidinoindole;
- 25 3-(4-phenylpiperazinecarbonyl)methyl-5-amidinoindole;
- 3-(4-benzylpiperidinecarbonyl)methyl-5-amidinoindole;
- 3-(2-bromo-4-(2-
- 30 aminosulfonyl)phenylphenylaminocarbonyl)methyl-5-cyanoindole;
- 3-(2-methyl-4-(2-
- aminosulfonyl)phenylphenylaminocarbonyl)methyl-5-methylamino indole;

- 3-(2-fluoro-4-(2-aminosulfonyl)phenylphenylaminocarbonyl)methyl-5-amidinoindole;
- 5 3-(2-chloro-4-(2-aminosulfonyl)phenylphenylaminocarbonyl)methyl-5-cyanoindole;
- 10 3-(2-iodo-4-(2-aminosulfonyl)phenylphenylaminocarbonyl)methyl-5-cyanoindole;
- 15 3-(2-methyl-4-(2-aminosulfonyl)phenylphenylaminocarbonyl)methyl-5-amidinoindole;
- 20 3-(2-methyl-4-(2-(t-butylaminosulfonyl)phenylphenylaminocarbonyl)methyl-5-amidinoindole;
- 25 3-(4-(2-aminosulfonyl)phenyl)phenylaminocarbonylmethyl- α -(methylcarboxy methylether)-5-amidinoindole;
- 30 3-(4-(2-aminosulfonyl)phenyl)phenylaminocarbonylmethyl- α -(benzyl)-5-amidinoindole;
- 35 3-(4-(2-trifluoromethyl)phenyl)pyrid-2-ylaminocarbonylmethyl-5-amidinoindole;
- 30 3-(4-(2-ethylaminosulfonyl)phenyl)phenylaminocarbonylmethyl-5-amidinoindole;
- 35 3-(4-(2-propylaminosulfonyl)phenyl)phenylaminocarbonylmethyl-5-amidinoindole;
- 35 2-methyl-3-(2-iodo-4-(2-aminosulfonyl)phenyl)phenylaminocarbonylmethyl-5-amidinoindole;

2-methyl-3-(4-(2-aminosulfonyl)phenyl)phenyl)aminocarbonylmethyl-5-amidinoindole;

5 3-(4-(2-aminosulfonyl)phenyl)phenyl)-N-methylaminocarbonylmethyl-5-amidinoindole;

10 2-methyl-3-(4-(2-t-butylaminosulfonyl)phenyl)phenyl)aminocarbonylmethyl-5-methoxyindole; and,

3-(4-(2-N-methylaminosulfonyl)phenyl)phenyl)-N-methylaminocarbonylmethyl-5-amidinoindole;

15 or a stereoisomer or pharmaceutically acceptable salt form thereof.

7. A compound according to Claim 4, wherein the compound
20 is of formula IVa:

IVa

or a stereoisomer or pharmaceutically acceptable salt thereof,
25 wherein A, B, D, and Z are as defined above.

8. A compound according to Claim 1, wherein the compound
is selected from:

30

3-(4-(2-(n-butylaminosulfonyl)phenyl)phenylaminocarbonyl)methyl-5-cyanoindoline;

3-(4-(2-(n-

propylaminosulfonyl)phenylphenylaminocarbonyl)methyl-5-
amidinoindoline;

5 (-)-3-(4-(2-aminosulfonyl)phenyl)pyrid-2-
ylaminocarbonylmethyl-5-amidinoindoline;

3-(4-(2-aminosulfonyl)phenyl)pyrid-2-ylaminocarbonylmethyl-5-
amidinoindoline;

10

3-(4-(2-

dimethylaminosulfonyl)phenyl)phenylaminocarbonylmethyl-5-
amidinoindoline;

15

(+)-3-(4-(2-t-butylaminosulfonyl)phenyl)pyrid-2-
ylaminocarbonylmethyl-5-amidinoindoline;

(-)-3-(4-(2-t-butylaminosulfonyl)phenyl)pyrid-2-
ylaminocarbonylmethyl-5-amidinoindoline;

20

3-(4-(2-aminosulfonyl)phenyl)pyrid-2-yl)aminocarbonylmethyl-5-
aminocarboxyindoline;

3-(4-(2-t-

25

butylaminosulfonyl)phenyl)phenyl)aminocarbonylmethyl-5-
amidinoindoline; and,

3-(4-(2-t-butylaminosulfonyl)phenyl)pyrid-2-
yl)aminocarbonylmethyl-5-amidinoindoline;

30

or a stereoisomer or pharmaceutically acceptable salt form
thereof.

35

9. A compound according to Claim 4, wherein the compound
is of formula IVb:

or a stereoisomer or pharmaceutically acceptable salt thereof, wherein A, B, D, and Z are as defined above.

5

10. A compound according to Claim 1, wherein the compound is selected from:

10 3-(4-(2-amino sulfonyl)phenyl)pyrid-2-ylaminocarbonylmethyl-6-amidinoindazole;

3-(4-(2-amino sulfonyl)phenyl)phenyl aminocarbonylmethyl-6-amidinoindazole;

15

3-(4-(2-t-butyl aminosulfonyl)phenyl)pyrid-2-ylaminocarbonylmethyl-6-amidinoindazole; and,

20 3-(4-(2-t-butylaminosulfonyl)phenyl)phenyl aminocarbonylmethyl-6-amidinoindazole; and,

or a stereoisomer or pharmaceutically acceptable salt form thereof.

25

11. A compound according to Claim 4, wherein the compound is of formula IVc:

30

IVc

or a stereoisomer or pharmaceutically acceptable salt thereof, wherein D, D^a, Z, A, and B are as defined above.

5 12. A compound according to Claim 1, wherein the compound is selected from:

[4-(phenyl)phenylcarbonyl]methyl-6-amidinobenzimidazole;

10 [4-(phenyl)phenylcarbonyl]methyl-5-amidinobenzimidazole;

[4-(3-aminophenyl)phenylcarbonyl]methyl-6-amidinobenzimidazole;

15 [4-(3-aminophenyl)phenylcarbonyl]methyl-5-amidinobenzimidazole;

[4-(4-fluorophenyl)phenylcarbonyl]methyl-6-amidinobenzimidazole;

20

[4-(4-formylphenyl)phenylcarbonyl]methyl-6-amidinobenzimidazole;

25 [4-(2-aminosulfonylphenyl)phenylcarbonyl]methyl-6-amidinobenzimidazole;

[4-(2-tert-butylaminosulfonylphenyl)phenylcarbonyl]methyl-6-amidinobenzimidazole;

30 {4-[(2-tetrazolyl)phenyl]phenylcarbonyl}methyl-6-amidinobenzimidazole;

[4-(2-aminosulfonylphenyl)phenylaminocarbonyl]methyl-6-amidinobenzimidazole;

35

[4-(2-aminosulfonylphenyl)phenylaminocarbonyl]methyl-5-amidinobenzimidazole;

1-(4-benzylpiperidinecarbonyl)methyl-6-amidinobenzimidazole;

1-(4-benzylpiperidinecarbonyl)methyl-5-amidinobenzimidazole;

5 1-(4-benzylpiperidinecarbonyl)methyl-6-amidinobenzimidazole;
and,

• 2-[4-(2-tert-butylaminosulfonylphenyl)phenylcarbonyl]methyl-5-azabenzimidazole;

10

2S-[4-(2-tert-aminosulfonylphenyl)phenylaminocarbonyl]methyl-thio-1H-imidazo(4,5-C) pyridine; and,

15 2S-[4-(2-aminosulfonylphenyl)phenylaminocarbonyl]methyl-thio-1H-imidazo(4,5-C) pyridine;

or a stereoisomer or pharmaceutically acceptable salt form thereof.

20

13. A compound according to Claim 1, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein the compound is of formula V:

V

25

or a stereoisomer or pharmaceutically acceptable salt thereof, wherein one of R and R^a is -(CH₂)_n-Z-A-B and the other H;

30 W, W², and W³ are selected from CH and N, provided that at most one of W, W², and W³ can be N;

J is selected from N and C-R¹;

R¹ is selected from H, O, (CH₂)_rOR³, (CH₂)_rC(=O)R², (CH=CH)C(=O)R², (CH₂)_rNR³C(=O)R², (CH₂)_rSO₂R⁴, (CH₂)_rNR³SO₂R⁴, and (CH₂)_r-5-membered heterocyclic system having 1-4 heteroatoms selected from N, O, and S;

5

R² is selected from H, OR³, C₁₋₄ alkyl, NR³R^{3'}, CF₃, and C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶;

R³ and R^{3'} are independently selected from H, C₁₋₄ alkyl, and 10 C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶;

R⁴ is selected from OR³, C₁₋₄ alkyl, NR³R^{3'}, and C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶;

15 Z is selected from CH=CH, CH(CH₂)_mQ(CH₂)_mR⁵, CH((CH₂)_mQ(CH₂)_mR⁵)C(O)NR³, CH(CH₂)_mC(O)(CH₂)_mR^{5a}, N(CH₂)_qQ(CH₂)_mR⁵, NQ'(CH₂)_mR⁵, C(O)N((CH₂)_mQ'(CH₂)_mR^{5a}), C(O), C(O)CH₂, C(O)O, OC(O), C(O)NR³(CH₂)_r, NR³C(O), OC(O)NR³, NR³C(O)O, NR³C(O)NR³, S(O)_p, SO₂CH₂, SO₂NR³, 20 NR³SO₂, and NR³SO₂NR³;

Q is selected from a bond, O, NR³, C(O), C(O)NR³, NR³C(O), SO₂, NR³SO₂, and SO₂NR³;

25 Q' is selected from a bond, C(O), C(O)NR³, SO₂, and SO₂NR³;

30 R⁵ is selected from H, C₁₋₄ alkyl, C₃₋₈ carbocyclic residue substituted with 0-2 R⁶, and 5-10 membered heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶, provided that when Q is SO₂ or NR³SO₂, R⁵ is other than H and when Q' is SO₂, R⁵ is other than H;

R^{5a} is selected from NHR⁵, OR⁵, and R⁵;

35

A is selected from:

benzyl substituted with 0-2 R⁶,

C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶, and

5-10 membered heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶;

5 B is selected from:

H, X-Y, NR³R^{3'}, C(=NR³)NR³R^{3'}, NR³C(=NR³)NR³R^{3'}, benzyl substituted with 0-2 R⁶,

C₃-10 carbocyclic residue substituted with 0-2 R⁶, and 5-10 membered heterocyclic system containing from 1-3

10 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶;

X is selected from C₁-4 alkylene, -C(O)-, -C(O)CR³R^{3'}-, -CR³R^{3'}C(O), -S(O)_p-, -S(O)_pCR³R^{3'}-, -CR³R^{3'}S(O)_p-,

15 -S(O)₂NR³-, -NR³S(O)₂-, -C(O)NR³-, -NR³C(O)-, -NR³-, -NR³CR³R^{3'}-, -CR³R^{3'}NR³-, O, -CR³R^{3'}O-, and -OCR³R^{3'}-,

Y is selected from:

C₃-10 carbocyclic residue substituted with 0-2 R⁶, and

20 5-10 membered heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶;

R⁶ is selected from H, OH, (CH₂)_nOR³, halo, C₁-4 alkyl, CN, NO₂, 25 (CH₂)_rNR³R^{3'}, (CH₂)_rC(O)R³, NR³C(O)R^{3'}, NR³C(O)NR³R^{3'}, CH(=NH)NH₂, NHC(=NH)NH₂, C(=O)R³, SO₂NR³R^{3'}, NR³SO₂NR³R^{3'}, and NR³SO₂-C₁-4 alkyl;

n is selected from 0, 1, 2, 3, and 4;

30

m is selected from 0, 1, and 2;

p is selected from 0, 1, and 2;

35 q is selected from 1 and 2; and,

r is selected from 0, 1, 2, 3, and 4.

14. A compound according to Claim 13, wherein the compound is of formula VI:

5

VI

or a stereoisomer or pharmaceutically acceptable salt thereof, wherein one of R and R^a is -(CH₂)_n-Z-A-B and the other H;

10 W and W² are selected from CH and N, provided that at most one of W and W² can be N;

J is selected from N and C-R¹;

15 R¹ is selected from H, (CH₂)_rOR³, (CH₂)_rC(=O)R², (CH₂)_rNR³C(=O)R², (CH=CH)C(=O)R², (CH₂)_rSO₂R⁴, and (CH₂)_rNR³SO₂R⁴;

R² is selected from H, OR³, C₁₋₄ alkyl, NR³R^{3'}, and CF₃;

20 R³ and R^{3'} are independently selected from H, C₁₋₄ alkyl, and phenyl;

R⁴ is selected from OR³, C₁₋₄ alkyl, NR³R^{3'}, and phenyl;

25 Z is selected from C(O), C(O)CH₂, C(O)NR³, NR³C(O), S(O)₂, SO₂CH₂, SO₂NR³, NR³SO₂, and NR³SO₂NR³;

A is selected from:

30 C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶, and 5-10 membered heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶;

35 B is selected from:

X-Y,

C₃-10 carbocyclic residue substituted with 0-2 R⁶, and

5-10 membered heterocyclic system containing from 1-3

heteroatoms selected from the group consisting of N, O, and S
5 substituted with 0-2 R⁶;

X is selected from -C(O)-, -C(O)CR³R³'-, -CR³R³'C(O), -S(O)_p-,
-S(O)_pCR³R³'-, -CR³R³'S(O)_p-, -S(O)₂NR³-, -NR³S(O)₂-,
-C(O)NR³-, -NR³-, -NR³CR³R³'-, and -CR³R³'NR³-;

10

Y is selected from:

C₃-10 carbocyclic residue substituted with 0-2 R⁶, and

5-10 membered heterocyclic system containing from 1-3

heteroatoms selected from the group consisting of N, O, and S
15 substituted with 0-2 R⁶;

R⁶ is selected from H, OH, (CH₂)_nOR³, halo, C₁-4 alkyl, CN, NO₂,
(CH₂)_rNR³R³', (CH₂)_rC(O)R³, NR³C(O)R³', NR³C(O)NR³R³',
C(=O)R³, SO₂NR³R³', NR³SO₂NR³R³', and NR³SO₂-C₁-4 alkyl;

20

n is selected from 0, 1, 2, 3, and 4;

p is selected from 0, 1, and 2; and,

25

r is selected from 0, 1, 2, 3, and 4.

15. A compound according to Claim 14, wherein the compound is of formula VII:

30

VII

or a stereoisomer or pharmaceutically acceptable salt thereof, wherein, W and W² are selected from CH and N, provided that at most one of W and W² can be N;

5 R¹ is selected from H, (CH₂)_rOR³, (CH₂)_rC(=O)R², (CH₂)_rNR³C(=O)R², (CH=CH)C(=O)R², (CH₂)_rSO₂R⁴, and (CH₂)_rNR³SO₂R⁴;

R² is selected from H, OR³, C₁₋₄ alkyl, NR³R^{3'}, and CF₃;

10 R³ and R^{3'} are independently selected from H, C₁₋₄ alkyl, and phenyl;

R⁴ is selected from OR³, C₁₋₄ alkyl, NR³R^{3'}, and phenyl;

15 Z is selected from C(O), C(O)CH₂, C(O)NR³, S(O)₂, SO₂CH₂, SO₂NR³, and NR³SO₂NR³;

A is selected from:

20 C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶, and 5-10 membered heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶;

25 B is selected from:

X-Y,
C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶, and 5-10 membered heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶;

30 X is selected from -S(O)_p- , -S(O)_pCR³R^{3'}- , -CR³R^{3'}S(O)_p- , -S(O)₂NR³- , -NR³S(O)₂- , and -C(O)NR³- ;

35 Y is selected from:

C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶, and

5-10 membered heterocyclic system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶;

5 R⁶ is selected from H, OH, (CH₂)_nOR³, halo, C₁₋₄ alkyl, CN, NO₂, (CH₂)_rNR³R^{3'}, (CH₂)_rC(O)R³, NR³C(O)R^{3'}, NR³C(O)NR³R^{3'}, C(=O)R³, SO₂NR³R^{3'}, NR³SO₂NR³R^{3'}, and NR³SO₂-C₁₋₄ alkyl;

n is selected from 0, 1, 2, 3, and 4;

10

p is selected from 0, 1, and 2; and,

r is selected from 0, 1, 2, 3, and 4.

15

16. A compound according to Claim 13, wherein the compound is selected from:

1-(4-benzylpiperidinecarbonyl)methyl-5-amidinoindole;

20

1-(4-benzylpiperidinecarbonyl)ethyl-5-amidinoindole;

1-(4-(3-fluoro)benzylpiperidinecarbonyl)methyl-5-amidinoindole;

25

1-(1-(4-amidino)benzyl-N-(methylacetate)aminocarbonyl)methyl-5-amidinoindole;

30

methyl 1-(4-benzylpiperidinecarbonyl)methyl-5-amidinoindole-3-propanoate;

1-((4-benzylpiperidinecarbonyl)methyl-(3-ethanehydroxyl)-5-amidinoindole;

35

1-(4-benzylpiperidine-1-carbonyl)methyl-3-methylcarboxylic acid-5-amidinoindole;

1-(1-benzylpiperidine-4-aminocarbonyl)methyl-5-amidinoindole;

1-(4-benzoylpiperidinecarbonyl)methyl-5-amidinoindole;

5 1-(4-(3-fluoro)benzylpiperazinecarbonyl)methyl-5-
 amidinoindole;

10 1-(4-phenylbenzylaminocarbonyl)methyl-5-amidinoindole;

15 methyl 1-(4-benzylpiperidinecarbonyl)methyl-5-amidinoindole-3-
 propenoate; and,

20 1-(4-(2-fluoro)benzylpiperidinecarbonyl)methyl-5-
 amidinoindole;

25 15 or a stereoisomer or pharmaceutically acceptable salt form
 thereof.

30 17. A pharmaceutical composition, comprising: a
 pharmaceutically acceptable carrier and a therapeutically
 effective amount of a compound according to Claim 1 or a
 pharmaceutically acceptable salt thereof.

35 18. A pharmaceutical composition, comprising: a
 pharmaceutically acceptable carrier and a therapeutically
 effective amount of a compound according to Claim 2 or a
 pharmaceutically acceptable salt thereof.

40 19. A method for treating or preventing a thromboembolic
 disorder, comprising: administering to a patient in need
 thereof a therapeutically effective amount of a compound
 according to Claim 1 or a pharmaceutically acceptable salt
 thereof.

45 20. A method for treating or preventing a thromboembolic
 disorder, comprising: administering to a patient in need
 thereof a therapeutically effective amount of a compound
 according to Claim 2 or a pharmaceutically acceptable salt
 thereof.

INTERNATIONAL SEARCH REPORT

International Application No.

PCT/US 97/11325

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6	C07D235/06	A61K31/395	C07D403/10	C07D471/04	C07D401/06
	C07D209/08	C07D209/16	C07D401/12	C07D209/14	C07D231/12
	C07D231/56				

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 540 051 A (DAIICHI PHARMACEUTICAL CO.,LTD.) 5 May 1993 cited in the application see claims ---	1,16
A	R.R. TIDWELL ET AL.: "Aromatic amidines: JOURNAL OF MEDICINAL CHEMISTRY., vol. 262, - 1983 WASHINGTON US, pages 294-298, XP002044077 cited in the application see page 295-296 -----	1,16

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- *Z* document member of the same patent family

1

Date of the actual completion of the international search

20 October 1997

Date of mailing of the international search report

04.11.97

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Van Bijlen, H

INTERNATIONAL SEARCH REPORT

Intern. Appl. No.

PCT/US 97/11325

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
**Remark: Although claim(s) 19-20
is(are) directed to a method of treatment of the human/animal
body, the search has been carried out and based on the alleged
effects of the compound/composition.**
2. Claims Nos.: 1 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see annex
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US 97 11325

FURTHER INFORMATION CONTINUED FROM PCT/ISA/10

The vast number of theoretically conceivable compounds comprised under formula(I) of claim 1 precludes a comprehensive documentary search as well as a comprehensive on line search in a structure data base and would not be economically justified (cf. Arts. 6,15 and Rule 33 PCT; see Guidelines B III 2.1).

Based upon the preferred type of substituent for D and Da, the latter search was limited to compounds of formula (I) wherein either D or Da is an amidino group.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internat. Application No

PCT/US 97/11325

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 540051 A	05-05-93	AT 136293 T	15-04-96
		AU 666137 B	01-02-96
		AU 2747092 A	06-05-93
		CA 2081836 A	01-05-93
		CN 1072677 A	02-06-93
		DE 69209615 D	09-05-96
		DE 69209615 T	09-01-97
		ES 2088073 T	01-08-96
		FI 924932 A	01-05-93
		HR 921147 A	31-10-95
		HU 65890 A	28-07-94
		JP 5208946 A	20-08-93
		MX 9206295 A	01-08-93
		NZ 244936 A	26-05-95
		PL 170312 B	29-11-96
		US 5576343 A	19-11-96
		US 5620991 A	15-04-97
		ZA 9208276 A	06-05-93