Lecture Notes for

Neural Networks and Machine Learning

Introduction to Reinforcement Learning

Logistics and Agenda

- Logistics
 - Grading Update
 - Finish Student Presentation Next Time
- Agenda
 - Final Lab Town Hall
 - Basics of PyTorch (4 slides)
 - Basics of Reinforcement Learning (4 slides)
 - Markov Processes and Markov Rewards
 - Reinforcement Learning Categorization
 - OpenAl Gym
 - The Cross Entropy Method

Basics of Pytorch

When you're the only one of your friends who uses PyTorch instead of TensorFlow

why I am more successful than you.

Chip Huyen @chipro · 17h

Sometimes I feel like R. Nobody's favorite but functional and pretty good with data.

Q 9

1]23

C 237

Wait, why are we switching to Pytorch?

- Well, its good to know more than just Tensorflow
- Pytorch has some distinct advantages:
 - No need to setup a static computation graph—graph can be dynamic (like eager execution)
 - Lazy computations still happen on dynamic graph
 - Integration with numpy code on the fly is much easier and faster (compared to TF)
 - Can tradeoff computations with numpy easily, though not neccessarily with autograd
- Also, all the book examples are in Pytorch... so this is nice for following along with the examples

	Keras	TensorFlow	PyTorch C
Level of API	high-level API ¹	Both high & low level APIs	Lower-level API ²
Speed	Slow	High	High
Architecture	Simple, more readable and concise	Not very easy to use	Complex ³
Debugging	No need to debug	Difficult to debugging	Good debugging capabilities
Dataset Compatibility	Slow & Small	Fast speed & large	Fast speed & large datasets
Popularity Rank	1	2	3
Uniqueness	Multiple back-end support	Object Detection Functionality	Flexibility & Short Training Duration
Created By	Not a library on its own	Created by Google	Created by Facebook ⁴
Ease of use	User-friendly	Incomprehensive API	Integrated with Python language
Computational graphs used	Static graphs	Static graphs	Dynamic computation graphs ⁵

Pytorch General Flow Training Flow

- Inherit from torch.nn.Module
- Define ___init__ and forward
- Run epochs in a loop with explicit calls to:
 - loss creation (for batch) as variable
 - loss.backward() calculation, gradient for batch
 - optimizer.step() of optimizer for batch
 - Gives a great deal of flexibility to design and optimization process
- Lots of different pythonic ways to carry this out
 - Your book likes to setup steps of model through iterators (yield the batch, loss, etc.)

A Simple Definition (much like Keras!)

```
import torch
    import torchann as nn
    class OurModule(nn.Module):
        def init (self, num inputs, num classes, dropout prob=0.3):
            super(OurModule, self).__init__()
            self.pipe = nn.Sequential(
                nn.Linear(num_inputs, 5),
                nn.ReLU(),
                nn.Linear(5, 20),
                                                    Sequential
                nn.ReLU().
                                                    Definitions
                nn.Linear(20, num_classes),
                nn.Dropout (p=dropout_prob),
13
                nn.Softmax(dim=1)
14
15
16
17
        def forward(self, x):
18
            return self.pipe(x)
19
    if name == " main ":
20
        net = OurModule(num inputs=2, num classes=3)
        print(net)
                                                     Common Functions
        v = torch.FloatTensor([[2, 3]])
        put = net(v)
24
        print(out)
        print("Cuda's availability is %s" % torch.cuda.is_available())
        if torch.cuda.is_available():
27
            print("Data from cuda: %s" % out.to('cuda'))
28
```

The MNIST Example (like gradient tape)

```
import torch
          import torch.nn as nn
          import torch.nn.functional as F
          import torch.optim as optim
          class Net(nn.Module):
              def __init__(self):
                  super(Net, self).__init__()
                  self.conv1 = nn.Conv2d(1, 20, 5, 1)
Functional
                  self.conv2 = nn.Conv2d(20, 50, 5, 1)
Definitions
                  self.fc1 = nn.Linear(4*4*50, 500)
                  self.fc2 = nn.Linear(500, 10)
              def forward(self, x):
                  x = F.relu(self.conv1(x))
                  x = F.max pool2d(x, 2, 2)
                  x = F.relu(self.conv2(x))
                  x = F.max_pool2d(x, 2, 2)
                  x = x.view(-1, 4*4*50)
                  x = F_*relu(self_*fc1(x))
                  x = self.fc2(x)
                  return F.log_softmax(x, dim=1)
```

Definitions

```
torch.nn.Conv2d(in\_channels, out\_channels, kernel\_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

view(*shape) \rightarrow Tensor reshape without copy
```

https://github.com/pytorch/examples/blob/master/mnist/main.py

Training One Epoch

```
def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
```

Training Multiple Epochs

```
model = Net().to("cpu")
optimizer = optim.SGD(model.parameters()

for epoch in range(1, args.epochs + 1):
    train(args, model, "cpu", train_loader, optimizer, epoch)
```

Utils

PyTorch

- In the past: we would have used this for GANs and this would not be the introduction (but still high level)
- We will go more into this as needed for demonstrations using RL (skipping code for brevity)
- Its only a tool for optimizing and defining a neural network

And its nice to know Tensorflow and PyTorch so that you

can work with either

Final Project Draft Town Hall

Reinforcement Learning Basics

History of RL from Two Paths

Optimal Control

- Model processes via Markov property
- Optimal paths through states calculated through dynamic programming

- Animals learn by trial and error
- Formalized by Thorndike, 1911. Strengthen through pleasure and weaken through pain
- Paylov and B.F. Skinner would conduct experiments proving that behavior could be influenced with RL

Claude Shannon, J. Deutsch, Marvin Minsky, F. Rosenblatt, Widrow, Hoff

Edward Thorndike

B.F. Skinner

Bernard Widrow

Marvin Minsky

Ted Hoff

Ivan Pavlov

Claude Shannon

Conditioning, Skinner and Pavlov

Continuous Reinforcement

Partial Reinforcement

Desired behavior is reinforced every time it occurs

Most effective once a behavior has been established

Most effective when teaching a new behavior

New behavior is less likely to disappear

Creates a strong association between behavior and response

Various partial reinforcement schedules available to suit individual needs

verywell

12

How to condition a machine learning model?

- Hybrid of Supervised and Unsupervised Learning
- Reinforcement Learning
 - Possibly "specific" labels given, but not necessarily with supervision for how labels are achieved
 - labels can also be probabilistic
 - Uses many techniques from supervised learning, but applied towards a different objective function
 - Rewards (positive and negative) are possible to assess behavior in an environment
 - Not specific to Machine Learning community, is a major part of optimization, control, and psychology

Generic RL Landscape

Agent

Interacts with the environment. Your model guides the Agent's decisions

Environment

Anything that is not the agent, defines rules of the game

Observations

What the agent knows about the environment (usually a numeric state)

Actions

What an agent can perform with the given environment (possibly stochastic)

OpenAl Gym

Object Oriented Agent and Environment

- Basics:
 - Define object instance for Agent () and the Env()
 - Define what observations will return
 - Run env_step(action)
 - Get new observations and reward from env
- action_space and observation_space
 - Possible actions to execute, Observations to get
 - Discrete or continuous?
 - Can multiple actions be given simultaneously?

Basics of Cartpole

```
import gym
if name == " main ":
    env = gym.make("CartPole-v0")
    total_reward = 0.0
    total_steps = 0
    obs = env.reset()
    while True:
        action = env.action_space.sample()
        obs, reward, done, _ = env.step(action)
        total_reward += reward
        total_steps += 1
        if done:
            break
```


Action Space: One input, [0, 1] pull left or pull right

Obs Space: Dynamic state variables (continuous and four dimensional)

End: When more than 15 degrees off or too far from center

Reward: +1 for each time step

17

Wrapping the Environment

- When you want some extra action, observation, reward processing
- Expose function with ActionWrapper,
 RewardWrapper, ObservationWrapper

```
class RandomActionWrapper(gym.ActionWrapper):
                                                           if __name__ == "__main__":
    def init (self, env, epsilon=0.1):
                                                               env = RandomActionWrapper(gym.make("CartPole-v0"))
        super(RandomActionWrapper, self).__init__(env)
        self.epsilon = epsilon
                                                               obs = env.reset()
                                                               total_reward = 0.0
    def action(self, action):
        if random.random() < self.epsilon:</pre>
                                                               while True:
            print("Random!")
                                                                   obs, reward, done, _ = env.step(0)
            return self.env.action_space.sample()
                                                                   total_reward += reward
        return action
                                                                   if done:
                                                                        break
```

Might return different action than user supplied with small probability

OpenAl Gym

https://gym.openai.com

We provide the environment; you provide the algorithm. You can write your agent using your existing numerical computation library,

RL Categorization

RL Categorizations

- On-Policy, Off-Policy
 - On-policy
 - We must interact with environment to learn a policy
 - Off-policy
 - Can learn also from historical data or humans
- Model-based versus Model-free
- Policy-based versus Value-based

Model-based versus Model-free

Model Based

- Predict the next observation and reward based on an understanding (model) of the rules in environment
- Often look a number of moves ahead (like in chess or similar game)
- Hard to construct in complex environments
- NOT what we will be studying... needs domain expertise

Model Free

- Don't care what the environment is
- Directly try to connect observations to actions (or values from which an action can be inferred)
- Just use a neural network! That is our style!
- Mixed: Sure, like Alpha-Go

Policy Based versus Value Based

- Policy Based Learning
 - Directly approximate the policy of the agent
 - Policy is typically a probability distribution of actions that we sample from for next action
 - Could also be a "see this, do that" configuration
- Value Based
 - Calculate an intermediate value function for all possible actions
 - Iterate over possible action values to choose action
 - Policy becomes choosing the best action based on value function

Cross Entropy Method

Direct Policy Exploration and Optimization

- Instead of defining what is optimal, just setup a comparison of different actions we might take (policy)
- A **policy** is defined as $\pi(a, s) = P(a_t = a \mid s_t = s)$
 - Given the current state, we have a certain probability of selecting each action
 - Action selection is **probabilistic**, but easy to discover deterministic actions (set one action to 1.0, all others to 0.0)
- Try different policies, select one with best average reward
- First try: Cross Entropy Method

Cross Entropy Method

- Create a random neural network, with output p(a|s)
- Let it interact with the environment (randomly)
 - For some set of episodes (e.g., 20)
 - Use network output to sample from possible actions
 - Run episode to completion
 - Repeat
- Calculate reward for each episode
- Keep best episodes (some percentile, e.g., best five)
- For the given best episodes, develop loss function incentivizing the actions taken based upon the input observations

Repeat until desired performance!

Cross Entropy Method

- Model based or Model Free?
 - Model Free (no assumptions of problem)
- Value or Policy Based?
 - Policy Based (randomly sample actions based on policy)
- On-policy or Off-Policy?
 - On-Policy (need to interact with environment to get better)
- Has some similarity to Simulated Annealing Optimization

Mathematical Motivation

 If we have the optimal policy p(x) and a reward function H(x), then maximize

$$\mathbf{E}_{x \leftarrow p(x)}[H(x)] = \mathbf{E}_{x \leftarrow q(x)}[\frac{p(x)}{q(x)}H(x)]$$

- We can approximate the distribution by: $\frac{1}{N} \sum_{i} \frac{p(x_i)}{q(x_i)} H(x_i)$
- Proven that this is optimized when KL(q(x) || p(x)H(x)) is minimized. But its intractable, so we can only optimize upper bound ... minimizing (neg) cross entropy of samples

$$\pi_{k+1}(a \mid s) = \underset{\pi_k}{\operatorname{arg max}} \mathbf{E}_{z \leftarrow \pi_k} [\mathbf{1}_{R(z) > \psi}^{\text{Performance}} \log \pi_k(a \mid s)]$$

min CrossEntropy(neural_net_actions, best_actions)

28

Review: Basics of Cartpole

```
import gym
if name == " main ":
    env = gym.make("CartPole-v0")
    total_reward = 0.0
    total_steps = 0
    obs = env.reset()
    while True:
        action = env.action_space.sample()
        obs, reward, done, _ = env.step(action)
        total_reward += reward
        total_steps += 1
        if done:
            break
```


Action Space: One input, [0, 1] pull left or pull right

Obs Space: Dynamic state variables (continuous and four dimensional)

End: When more than 15 degrees off or too far from center

Reward: +1 for each time step

Cross Entropy Reinforcement Learning

M. Lapan Implementation for CartPole and Frozen Lake

```
Follow Along: 08a_Basics_Of_Reinforcement_Learning.ipynb
```

