

Presentation Outline

- 1. SHEQ Moment
- 2. ALP introduction
- 3. The Bapco Challenge
- 4. Carbon Dioxide, the Kyoto Protocol, Clean Development Mechanism
- 5. Vision
- 6. CDM Project Plan
- 7. CDM Project Recommendation
- 8. Ambitious Ideas
- 9. Campaign Aim & Objectives
- 10. Campaign Design
- 11. Personal Learning and Experience
- 12. Summary

ALP

- 🌞 Action Learning Program
- Based on action learning, whereby we study our own actions and experience to improve performance
- Balancing behavior and results

Bapco Challenge

"Identify and Evaluate Carbon Credit Opportunities to Improve the Environmental Impact of the Bahrain Petroleum Company"

The Team:

- Ebrahim Al-Qassab (Oundle School, U.K.)
- # Hassan Al-Halwachi (Sherborne School, U.K.)
- Mishal Awadah (University of Pennsylvania, U.S.)
- * Zainab Abbas (Sedbergh School, U.K.)
- Abdulla Al-Ansari (Bapco, Environmental Engineer, Engineering Division)
- Faisal Ahmed (Bapco, Special Projects Manager, Refining Division)

Project Objectives & Scope

- Define the relevance of Carbon Credit Trading to Bapco & Bahrain.
- *** Calculate** carbon emissions in Bapco.
- ***** Identify **feasible** Carbon Credit opportunities in Bapco.
- Calculate the carbon credit benefit by implementing projects.
- Identify methods to communicate the benefits and rationale of CDMs within Bapco & Bahrain.
- Prepare a business case for implementing the identified carbon credit opportunities.

About Bapco

- Bapco is owned by the Government of Bahrain, and is an integrated oil and gas company:
 - * Bapco was formed in 1929
 - Oil was first discovered in Bahrain in 1932
 - ***** Crude oil and natural gas production
 - Refining crude to produce petroleum products
 - Storage and export of the refined products

Carbon Dioxide ... How is it affecting us?

- 🌞 Fossil fuels contain carbon
- Burning them generates
 CO₂
- CO₂ is a greenhouse gas
- # It lets heat in, but not out
- The more we emit, the less heat escapes
- Result: temperature rises

It's not just CO₂

Greenhouse gas	Global Warming Potential
Carbon dioxide	1
Methane	21
Nitrous oxide	310
CFCs	125 - 152
HFCs	125
Perfluorocarbon	6500
Sulfur hexafluoride	23900

It's not just CO₂

Greenhouse gases	Chemical formula	Pre-industrial concentration	Concentration in 1994	Atmospheric lifetime (years)***	Anthropogenic sources	Global warming potential (GWP)
Carbon-dioxide	CO2	280 ppmv	358 ppmv	50-200	Fossil fuel combustion Land use conversion Cement production	1
Methane	CH ₄	700 ppbv	1720 ppmv	12-17	Fossil fuels Rice paddies Waste dumps Livestock	21 **
Nitrous oxide	N ₂ O	275 ppbv	312 ppmv	120-150	Fertilizer industrial processes combustion	310
CFCs	CFC12	0	503 pptv	102	Liquid coolants. Foams	125-152
HCFCs	HCFC-22	0	105 pptv	13	Liquid coolants	125
Perfluorocarbon	CF ₄	0	110 pptv	50 000	Production of aluminium	6 500
Sulphur hexa-fluoride	SF ₆	0	72 pptv	1 000	Production of magnesium	23 900

Note: pptv= 1 part per trillion by volume; pptv= 1 part per billion by volume, ppmv= 1 part per million by volume

^{*} GWP for 100 year time horizon. *** On page 15 of the IPCC SAR. No single lifetime for CO₂ can be defined because of the different rates of uptake by different sink processes.

What can be done?

Kyoto Protocol: Reduce emissions of greenhouse gases or engage in emissions trading

- **Covers 181 countries (including Bahrain)
- **Annex I and Non-Annex I countries
- Carbon Credits and Trading

Clean Development Mechanism

- It is more expensive for developed countries to reduce emissions through project investment
- * Developing countries do not possess the same technological standards
- Allows industrialized countries with a reduction commitment (Annex 1) to invest in projects that reduce emissions in developing countries (Non-Annex 1)
- Slobal cost of reducing net global emissions is lower

Clean Development Mechanism Diagram

Accepted CDM Sectors

- ***** End-use energy efficiency improvement
- ** Supply-side energy efficiency improvement
- Fuel switching
- Industrial Processes
- ***** Waste management
- * Sinks (afforestation and reforestation)

Important CDM Regulations

"Additionality":

- Project should not be "Business as Usual (BAU)"
- There must be some "barrier" that the project could NOT overcome on a BAU basis.
- The applied project is commercially / technically not viable without CER revenue

Baseline & Monitoring methodology*:

- Approved by CDM Executive Board (*Method to calculate the CER amount.)
- Joint project between Annex-I country(ies) and non-Annex-I country.

Our Vision

To Surpass Global CO₂ Reduction Targets <</p>

***** G8 emission reduction target is ≈ 50% by 2050

***** Bahrain has no obligation to reduce emissions

CDM Project Plan

Step 1-A: Identify the Problem

- ** Researched registered CDM projects
- * Meetings with carbon credit specialists
- Site visits to different Bapco sectors, specifically within the refinery
- Discussions with respective specialists, engineers, and superintendents
- * Spoke to more than 50 Bapco employees

Step 1-B: What Emits CO₂ in Bapco?

- #Heaters: Combustion of natural gas to generate heat for specific operations $CH_4 + O_2 \rightarrow CO_2 + H_2O + Heat$
- Gas Turbines: Natural Gas is burned to drive a turbine which generates electricity

- Process Units: Units whereby a specific process produces CO₂ as a byproduct
- *Flaring: Excess gas is flared into atmosphere producing CO₂
- Transportation: CO₂ released from vehicles

Step 1-C: Calculating the Baseline

- 1. Duty per Stack (heaters and turbines)
 - Calculating amount of energy released by burning fuel
- 2. FCCU Regenerator
 - Analyzing air flow in and out of regenerator
- 3. Hydrogen Reformer
 - Combustion of khuff gas + purge gas
- Calculated Baseline is 3,749,165 Tonnes/Yr
- Error in Bapco's figure: 19% less than the figure v
- Leading cause of error was the lack of inclusion of purge gas in the calculations done for No. 2 H₂ Reformer

Bapco Sitra Tanks **Bahrain Field Refinery Wharf** - No CDMs No significant No significant Applicable Total CO₂ Emission: CO₂ emission CO₂ emission - CO₂ emitted only during 3,749,165 Tons/Yr flaring

"Bad Actors" of the Refinery

Step 2: CDMs Applicable to Bapco

- 1. Supply-Side Energy Efficiency Improvement
 - Utilizing as much heat as possible from combustion of gas
 - Reduces required amount of gas to produce the same amount of energy
 - Overall emissions decrease as a result of combusting less gas

- 2. Carbon Capture (Concern: Not yet accepted as CDM)
 - Capture waste gas from stacks
 - Filter to separate CO₂
 - Liquify CO₂ for storage and export to CO₂ market as product

Step 3: Our CDM Approach

- Identifying potential CDMs
- 🌞 Ranking CDM
 - \clubsuit CO₂ Reduction (20%)
 - 🌞 Cost-Benefit Analysis (20%)
 - Feasibility (20%)
 - 🌞 Reliability & Additionality (40%)
- ***** Estimating Capital Cost
- ** Determining Return on Investment
- Calculating Certified Emission Reductions (CERs)
- ***** Calculating Simple Payback

Top CO₂ Emitters in Bapco

	Unit	Quantity Tons/Yr	Contribution to total CO ₂ emission/%
1	No. 2 Hydrogen Reformer	1,006,313	27
2	Power & Utilities	526, 040	14
3	4A Crude Distillation Unit	266,159	7
4	FCCU Regenerator	208, 319	6
5	6 Vacuum Distillation Unit	161,998	4
6	Benfield Unit (LSFO)	141,380	3

These six units emit 61% of total CO₂ emissions in the Refinery

Step 4: Recommendation

Phase 1: Increasing Efficiency

- 🌞 Considered Units:
 - Gas Turbines 13, 14, & 15
- The Problem:
 - The efficiency of gas turbines is low (18%)
 - Turbines run on open cycle configuration
- **Solution:**
 - Installation of new gas turbines
 - Increased efficiency (18% → 40%)
 - 🌼 Install combined cycle
 - Utilization of waste heat to generate steal
 - Further increases efficiency (40% → 50%)

Phase 1: Increasing Efficiency

CDM Project Rank:

Project	CO ₂ Reduction (20%)	Cost-Return Benefit (20%)	Feasibility (20%)	Reliability & Additionality (40%)	Weighted Mean
Phase 1	2.5	4.0	9.5	9.0	6.8

Capital cost	\$ 60 million
Fuel Savings	\$ 3.7 million/Yr
CER Benefit	\$ 5.6 million/Yr
Total Return	\$ 9.3 million/Yr
Simple Payback	6 years

Phase 2: Waste Heat Recovery

- Units Considered:
 - 🐝 4A Crude Distillation Unit (CDU)
 - Fluid Catalytic Cracking Unit (FCCU) Regenerator
 - 👺6 Vacuum Distillation Unit (VDU)
 - K-3650 Platformer Gas Turbine
- The Problem:
 - ♣Inefficiency → Flue gases are very hot
 - 👺 Waste heat is not utilized
- **Solution:**
 - Install waste heat boilers on stacks
 - Utilizes the heat to produce steam
 - This enables the shutdown of 2 boilers

Phase 2: Waste Heat Recovery

CDM Project Rank:

Project	CO ₂ Reduction (20%)	Cost-Return Benefit (20%)	Feasibility (20%)	Reliability & Additionality (40%)	Weighted Mean
Phase 2	2.0	3.0	8.5	9.0	6.3

Capital cost	\$ 40 million
Fuel Savings	\$ 2.6 million/Yr
CER Benefit	\$ 3.9 million/Yr
Total Return	\$ 6.5 million /Yr
Simple Payback	7 years

Phase 3-A: Installing Carbon Capture Complex

- 🌞 Units Considered:
 - No. 2 Hydrogen Reformer

Hydrocarbons react with steam to produce H₂ and CO₂

🌞 Benfield Unit at LSFO

Filters CO₂ and steam from the other gases emitted

- The Problem:
 - Hydrogen Reformer produces the largest amount of CO₂
 - **EXECUTE** Senfield unit is releasing pure CO₂ stream to atmosphere
- **Solution:**
 - * H₂ Reformer waste gases to New Benfield Unit for CO₂ capture
 - Benfield unit pure CO₂ stream to Carbon Complex for capture
 - \clubsuit Price of CO₂ per ton varies between \$160 in MENA to \$507 in N.A.

Phase 3-A: New Equipment Needed

- 🌞 Benfield Unit
- # 1 Sea water cooling unit
- 4 Compressors
- Dehydrator
- CO₂ storage tanks

Phase 3-A: Installing Carbon Capture Complex

CDM Project Rank:

Project	CO ₂ Reduction (20%)	Cost-Return Benefit (20%)	Feasibility (20%)	Reliability & Additionality (40%)	Weighted Mean
Phase 3A	10	9.0	6.0	3.5	6.4

Capital cost	\$ 250 million
CO ₂ Sales	\$ 184 million/Yr*
CER Benefit	\$ 27 million/Yr
Total Return	\$ 211 million /Yr
Simple Payback	2 years

* Based on lowest CO₂ price, \$160/ton or around 60fils/kg.

Phase 3B: Expanding the Carbon Capture Complex

- 🌞 Units Considered:
 - 🜞 4A Crude Distillation Unit (CDU)
 - 🌞 6 Vacuum Distillation Unit (VDU)
 - FCCU Regenerator
- The Problem:
 - \clubsuit A large amount of CO_2 is released
 - Heaters at 4A CDU and 6 VDU are already efficient (70-80%)
 - **FCCU Regen is a Process Unit (CO₂ must be produced)
- **Solution**
 - Gases transferred to New Benfield Unit for CO₂ capture.

hase 3B: Expanding the Carbon Capture Comples

mpl:

CDM Project Rank:

Project	CO ₂ Reduction (20%)	Cost-Return Benefit (20%)	Feasibility (20%)	Reliability & Additionality (40%)	Weighted Mean
Phase 3B	6.5	8.0	4.5	4.5	5.6

Capital cost	\$ 160 million
CO ₂ Sales	\$ 95 million/Yr
CER Benefit	\$ 15 million/Yr
Total Return	\$ 110 million /Yr
Simple Payback	2 years

Ranking Summary

Project	CO ₂ Reduction (20%) Cost-Return Benefit (20%)		Feasibility (20%)	Reliability & Additionality (40%)	Weighted Mean
Phase 1	2.5	4.0	9.5	9.0	6.8
Phase 2	2.0	3.0	8.5	9.0	6.3
Phase 3A	10	9.0	6.0	3.5	6.4
Phase 3B	6.5	8.0	4.5	4.5	5.6

Total CO₂ Reduction

Phase	Expected Reduction (Tons/Yr)	% Reduction of Total Emissions							
1 (P&U)	192,643	5.1							
2 (WHR)	134,474	3.6							
3A (No. 1&2 H ₂ Reformer)	918,199	24.5							
3B (FCCU Regen + 4A CDU + 6 VDU)	509,183	13.6							
Total	1,754,499	46.8							

Ambitious Ideas

- Use hybrid cars for transportation in Bapco (less pollution and conveys a good image)
- * Power street lights using solar panels (savings on electricity)
- Provide district cooling for the whole of Bahrain (big savings on energy and electricity because of high efficiency)

Ambitious Ideas (cont'd)

- Industrial firms utilizing heat to produce steam to drive turbines and supply excess electricity to the national grid (savings on electricity and natural gas consumption)
- * Install vapor recovery systems in petrol stations
- Massively improve the public transport system of Bahrain to reduce traffic, congestion and emissions
- Encourage the use of heat insulation in households to cut down on electricity consumption

Aim of the Campaign

The aim of the campaign is to raise awareness about the Clean Development Mechanism (CDM) and the importance of CO_2 reduction, which Bapco is on the path of implementing.

Challenges Faced

- The concept of CDM is difficult to get across considering the complexity of its details.
- * Different languages spoken, age groups and working hours.
- Not all employees have the same knowledge and are able to grasp new ideas.
- *A campaign has to be delivered in different methods which might increase the costs.
- A considerable percentage of the employees do not have access to Bapco's internet portal.

CDM Campaign In & Out of Bapco

Phases of the Campaign

Phase 1

- Contact department managers
- Initiate a page on Bapco's Intranet portal

Phase 2

- Sending letters to employees and distribute brochures, posters & mugs
- Plant in helmet for each employee
- Paint vehicles with logo & slogan

Phase 3

- Community garden
- Bicycle marathon
- Initiate CDM Week

Phase 4

- Cooperate with other CDM appliers in gulf to deliver cooperative CDM campaign.
- Radio station with part-time operator.
- Introduce Bapco & CDM in Environmental Studies curriculum in schools.

Teamwork Dynamics

- Group Process Evaluation
- Self Perception Analysis
- * Six Thinking Hats
- 🌞 Feedback Formula
- * Keeping track progress of the whole project

Track Progress

		3	Progress						Time Assigned					Completion Expecte					
ACTIVITY	ACTION	STATUS	7 8 9	Jul 2008 9 13 15 17 19 21 22				22 23	277	0 31	1 5	7 9	Aug 2008 9 11 12 13 17			7 10	10 21 22		
CE Weekly Progress Meeting	All	72%	7 0 7	/ 13	, 13 1	/ 1/	<u> </u>		21 2	.7 31		-		1 12	13 1	17	21 22		
H&S Induction Day, talking to group members	Students	Complete																	
Bring group members up to speed	FA/MA/AE/EQ	Complete			-														
Research carbon credit, CDM, etc.	All	Complete											+		+				
Theoretical calculations of emissions	HH/EQ	Complete	-																
Meeting with carbon creditors	All	Complete																	
Investigate potential CDM projects for BAPCO	Students	Complete											_						
Physical/Theoretical calculation of carbon emission per project	Students	Complete																	
Research and develop technical solutions applicable to CDM projects	Students	In Progress (95%)													-				
PR meetings and campaign design	Students	In Progress (80%)																	
Intermidiary recommendations to company CE and management	All	Complete																	
Prepare business case	All	In Progress (20%)																	
							1						工		工	$oldsymbol{oldsymbol{oldsymbol{\Box}}}$			

In Progress (5%) Prepare the final report MA Prepare final presentation In Progress (10%) ZΑ Presentation to BAPCO's CE and Management All N/A Presentation to H.H. the Crown Prince and CPISP All N/A

Summary

- Phases 1 & 2 are well established CDM projects that should be implemented immediately.
- Phase 3 has not been certified as a CDM project and will therefore need to undergo registration procedures. However, it is the most lucrative.
- * A successful campaign would require effective planning, starting within Bapco and expanding.

Personal Learning & Experience

Our leader in action. Time: 16.25

Personal Learning & Experience

Our leader in action. Time: 17.25

Personal Learning & Experience

