An introduction to survival analysis

Georg Wölflein

School of Computer Science, University of St Andrews

April 11, 2022

Contents

- Time-to-event data
- 2 Survival function
- Hazard function
- Cox's proportional hazards model

What is time-to-event (TTE) data?

We can measure **time** in:

years

Time-to-event data 00000

- months
- seconds

The **event** could be:

- death from disease must be a binary variable product failure losing a customer
 - yes/no

TTE data consists of (time, event) tuples.

Time-to-event (TTE) data

TTE analysis is also known as:

- survival analysis
- failure time analysis
- reliability theory (engineering)
- duration modelling (economics)
- event history analysis (sociology)

Use cases for TTE analysis:

TODO

Example: Covid-19 treatment trial

A randomised controlled trial (n = 4) was conducted to assess the efficacy of drug ABC in treating Covid-19. This is what happened to the patients:

patient	received ABC?	outcome
1	yes	died from Covid-19 on day 15
2	no	dropped out of the study after day 3
3	yes	died by a lightning stroke on day 5
4	no	survived the study (30 days)

Example: Covid-19 treatment trial

Time-to-event data 00000

The **time** is the number of days since testing positive for Covid-19. The **event** is whether the patient died due to Covid-19.

Time-to-event data			
	patient	time	event
·	1	15	yes
	2	?[0, 3]	?no
	3	?[0,5)	?no
	4	?[0, 30]	no

Censoring

Time-to-event data 00000

> We just saw examples of **right-censored** data. **TODO**

Survival function

Let T be a continuous random variable representing survival time. The **survival function** S(t) is the probability that an individual will survive past time t.

Survival function

$$S(t) = \Pr(T > t)$$

Survival curve

Modelling the survival function

The **Kaplan-Meier estimator** provides a non-parametric estimate of the survival function S(t) using the survival curve.

Kaplan-Meier estimator

$$\hat{S}(t) = \prod_{i:t_i \le t} \left(1 - \frac{d_i}{n_i}\right)$$

where

- t_i is an event time
- di is the number of deaths at time ti
- n_i is the number of individuals known to have survived until t_i

Survival curve and Kaplan-Meier estimator

—Survival curve and Kaplan-Meier estimator

- When there is no censoring, $S(t) = \hat{S}(t)$.
- Commonly used to compare two study populations.
- Does not control for covariates.

The **hazard function** expresses the *instantaneous rate* of occurrence of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

Hazard function

$$\lambda(t) = \lim_{dt \to 0} \frac{\Pr\left(t \le T \le t + dt | T \ge t\right)}{dt}$$
$$= \lim_{dt \to 0} \frac{\Pr\left(t \le T \le t + dt\right)}{dt \cdot \Pr\left(T \ge t\right) S(t)}$$

What does survival depend on?

Recall the survival function $S(t) = \Pr(T > t)$ as the probability that an individual will survive past time t. Let's assume that S(t)depends on

- 1 the **baseline hazard function** (how risk of event occurence changes over time at baseline covariates); and
- 2 the effect parameters (how hazard varies due to the covariates), also known as the partial hazard.

Cox's proportional hazards model

Cox's proportional hazards model uses both factors to provide a semi-parametric estimate of the hazard function $\lambda(t)$ conditioned on the covariates \mathbf{x} .

Cox's proportional hazards model

$$\lambda(t|\mathbf{x}) = \overbrace{\lambda_0(t)}^{\text{baseline}} \underbrace{\exp\left(\sum_{i=1}^n \beta_i \mathbf{x}_i\right)}^{\text{partial hazard}}$$

—Cox's proportional hazards model

- $\lambda_0(t)$ is a population-level baseline hazard that changes over time (for a reference individual with zeroed covariates).
- The partial hazard is a linear function of the covariates that is exponentiated. Each coefficient β_i is the relative risk associated with covariate \mathbf{x}_i .

Proportional hazards assumption

The model assumes fixed **proportional hazards**, i.e. the hazard for an individual i in proportion to the hazard of any other individual j is fixed over time. That is.

$$rac{\lambda_i(t|\mathbf{X}_i)}{\lambda_j(t|\mathbf{X}_j)} = \exp\left(eta(\mathbf{X}_i - \mathbf{X}_j)\right).$$

Therefore,

- the baseline hazard $\lambda_0(t)$ is independent of the covariates, and
- the partial hazard is time-independent.

Proportional hazards assumption

The model assumes fixed **proportional hazards**, i.e. the hazard for an individual i in proportion to the hazard of any other individual j is fixed over time. That is,

 $\frac{\lambda_i(t|\mathbf{X}_i)}{\lambda_j(t|\mathbf{X}_j)} = \exp(\beta(\mathbf{X}_i - \mathbf{X}_j))$

refore,

the baseline hazard λ₀(t) is independent of the covariates, and
 the partial hazard is time-independent.

The so-called **extended Cox model** allows the partial hazard to vary with time, and therefore no longer satisfies the proportional hazards assumption.

Partial likelihood

For each individual i. let

- T_i be a possibly censored survival time random variable, and
- X; denote the covariates.

Further, let the **risk set** $\mathcal{R}(t) = \{i : T_i \geq t\}$ be the set of individuals that are "at risk" at time t.

Cox proposed a **partial likelihood** for β without involving $\lambda_0(t)$.

Maximising this function allows us to estimate the parameters β .

$$L(\beta) = \prod_{i=1}^{N} \Pr(\text{individual } j \text{ dies } | \text{ one death from } \mathcal{R}(T_j))$$

 $L(\beta) = \prod Pr (individual i dies | one death from <math>R(T_i)$)

• $L_j(\beta)$ is a *partial* likelihood because it considers only patients who died, not those that are censored.

Partial likelihood formula

$$L(\beta) = \prod_{j=1}^{N} \Pr\left(\text{individual } j \text{ dies } | \text{ one death from } \mathcal{R}(T_j)\right)$$

$$= \dots$$

$$= \prod_{j=1}^{N} \frac{\lambda(T_j | \mathbf{X}_j)}{\sum_{k \in \mathcal{R}(T_j)} \lambda(T_j | \mathbf{X}_k)}$$

$$= \prod_{j=1}^{N} \frac{\lambda_0(T_j) \exp\left(\beta \mathbf{X}_j\right)}{\sum_{k \in \mathcal{R}(T_j)} \lambda_0(T_j) \exp\left(\beta \mathbf{X}_k\right)}$$

$$= \prod_{j=1}^{N} \frac{\exp\left(\beta \mathbf{X}_j\right)}{\sum_{k \in \mathcal{R}(T_j)} \exp\left(\beta \mathbf{X}_k\right)}$$

Parameter estimation

We can estimate the parameters β by minimizing the negative partial log-likelihood, i.e. $-\log L(\beta)$, by taking the partial derivatives with respect to the parameters $oldsymbol{eta}$ and solving for the minimum using e.g. the Newton-Raphson algorithm.

Hazard ratios

The fraction used to express the proportional hazards assumption is actually the **hazard ratio** of individuals *i* and *j*.

$$HR = rac{\lambda(t|\mathbf{X}_i)}{\lambda(t|\mathbf{X}_i)} = \exp\left(eta(\mathbf{X}_i - \mathbf{X}_j)\right).$$