

KBase Variation Services

Overview and Demo

Michael Schatz, James Gurtowski Cold Spring Harbor Laboratory

- 1. Introduction to KBase
- 2. Resequencing and variation calling theory
- 3. KBase services for variation calling
- 4. Live Demo
- 5. Additional Resources

- 1. Introduction to KBase
- 2. Resequencing and variation calling theory
- 3. KBase services for variation calling
- 4. Live Demo
- 5. Additional Resources

Knowledgebase enabling predictive systems biology.

- Powerful modeling framework.
- *Community-driven*, extensible and scalable *open-source* software and application system.
- Infrastructure for integration and reconciliation of *algorithms* and *data sources*.
- Framework for standardization, search, and association of data
- Resources to enable experimental design and interpretation of results.

Microbes

Communities

Plants

Model development Hypothesis testing Knowledge Synthesis

KBase Infrastructure and Services

Variation Services: Samples to Discoveries

Powered by KBase

- 1. Introduction to KBase
- 2. Resequencing and variation calling theory
- 3. KBase services for variation calling
- 4. Live Demo
- 5. Additional Resources

How does your sample compare to the reference?

- Sequencing instruments make mistakes
 - Quality of read decreases over the read length
- A single read differing from the reference is probably just an error, but it becomes more likely to be real as we see it multiple times
 - Often framed as a Bayesian problem of more likely to be a real variant or chance occurrence of N errors
 - Accuracy improves with deeper coverage

$$Q_{\text{sanger}} = -10 \log_{10} p$$

Coverage

Typical contig coverage

Imagine raindrops on a sidewalk

Wintegram of balls in each bin Total balls 2000 Empty bins: 143

Mintegram of balls in each bin Tetal balls: 2000 Empty bins: 49

Genome Coverage Distribution

Expect Poisson distribution on depth Standard Deviation = sqrt(cov)

This is the mathematically model => reality may be much worse Double your coverage for diploid genomes

Bowtie2 Overview

Fast gapped-read alignment with Bowtie 2.

Langmead B, Salzberg S. Nature Methods. 2012, 9:357-359.

- Distinguishing SNPs from sequencing error typically a likelihood test of the coverage
 - Probability of seeing the data from a heterozygous SNP versus from sequencing error
 - However, some sequencing errors are systematic!

Identification and correction of systematic error in high-throughput sequence data Meacham et al. (2011) BMC Bioinformatics. 12:451

A closer look at RNA editing.

Lior Pachter (2012) Nature Biotechnology. 30:246-247

CNV calling Beware of (Systematic) Errors

(A) Plot of sequencing depth across a one megabase region of A/J chromosome 17 clearly shows both a region of 3-fold increased copy number (30.6–31.1 Mb) and a region of decreased copy number (at 31.3 Mb).

Simpson J T et al. Bioinformatics 2010;26:565-567

- Identify CNVs through increased depth of coverage & increased heterozygosity
 - Segment coverage levels into discrete steps
 - Be careful of GC biases and mapping biases of repeats

- 1. Introduction to KBase
- 2. Resequencing and variation calling theory
- 3. KBase services for variation calling
- 4. Live Demo
- 5. Additional Resources

Sequence to Discovery

Illumina HiSeq 2000
Sequencing by Synthesis
>60Gbp / day

Assays
Read QA/QC
Mapping Stats
SNVs / Indels
CNVs / SVs
RNA-seq
ChIP-seq
DNase-seq
FAIRE-seq
Methyl-seq
ChIA-PET
Hi-C

Genotyping API

- Bowtie: Launch alignment task with Bowtie
- BWA: Launch alignment task with BWA
- SNPCalling: Launch SNPcalling task with SAMTools
- SortAlignments: Launch task to sort by chromosome

Job API

- ClusterStatus: return basic status of cluster (jobs running, nodes available, etc)
- JobStatus: Given a JobID, returns current status
- ListJobs: List JobID running with a given username
- KillJob: Kills a given JobID

Data API

- List: List files in a directory
- Fetch: Fetch files from HDFS
- Put: Put files into HDFS
- RM: Delete files on HDFS
- FetchBAM: On-the-fly conversion to BAM
- PutFastq: Put reads into HDFS with conversion

Notes:

All calls are authenticated with KBase username/password

Reads to SNPs in Five Easy Steps

1. Identify reference genome

\$ all_entities_Genome -f scientific_name | grep -i 'Populus'

2. Upload Reads to KBase cloud

\$ jk_fs_put_pe populus.1.fq.gz populus.2.fq.gz populus

3. Align Reads with Bowtie2

\$ jk_compute_bowtie -in=populus.pe -org=populus -out=populus_align

4. Call SNPs with SAMTools

\$ jk_compute_samtools_snp -in=populus_align -org=populus -out=populus_snps

5. Merge and Download VCF files

\$ jk_compute_vcf_merge -in=populus_snps --alignments=populus_align -out=populus.vcf \$ jk_fs_get populus.vcf

Identify a Reference Genome

Select the proper KBase ID

Identify reference genome

\$ all_entities_Genome -f scientific_name | grep -i 'Populus'

Upload Reads to KBase Cloud

Upload Reads to KBase cloud

\$ jk_fs_put_pe populus.1.fq.gz populus.2.fq.gz populus

Align Reads with Bowtie2

DOE Systems Biology Knowledgebase

Align Reads with Bowtie2

\$ jk_compute_bowtie -in=populus.pe -org='kb|g.3907' -out=populus_align

Call SNPs with SAMTools

Call SNPs with SAMTools

\$ jk_compute_samtools_snp -in=populus_align -org='kb|g.3907' -out=populus_snps

Merge and Download VCF Files

Merge and Download

\$ jk_compute_vcf_merge -in=populus_snps -alignments=populus_align -out=populus.vcf \$ jk_fs_get populus.vcf

Reads to SNPs in Five Easy Steps

1. Identify reference genome

\$ all_entities_Genome -f scientific_name | grep -i 'Populus'

2. Upload Reads to KBase cloud

\$ jk_fs_put_pe populus.1.fq.gz populus.2.fq.gz populus

3. Align Reads with Bowtie2

\$ jk_compute_bowtie -in=populus.pe -org=populus -out=populus_align

4. Call SNPs with SAMTools

\$ jk_compute_samtools_snp -in=populus_align -org=populus -out=populus_snps

5. Merge and Download VCF files

\$ jk_compute_vcf_merge -in=populus_snps --alignments=populus_align -out=populus.vcf \$ jk_fs_get populus.vcf

Jnomics: Cloud-scale genomics

- Rapid parallel execution of data-intensive analysis
 - FASTX, BWA, Bowtie2, Novoalign, SAMTools, Hydra
 - Sorting, merging, filtering, selection, clustering, correlating
 - Supports BAM, SAM, BED, fastq

Answering the demands of digital genomics

Titmus, MA, Gurtowski, J, Schatz, MC (2012) Concurrency & Computation

Align & call SNPs from 35M 80bp (14Gbp) reads with maize genome (zmb73v2) Identified 372k high confidence SNPs

	Serial	Multitcore	KBase Cloud
Config	1 core (1 node)	44 core (1 node)	118 cores (15 nodes)
Bowtie2	45 h*	1h 10m	23 m
Sort	2 hr	2 hr	N/A
Samtools	2 hr	2 hr	12 m
End-to-End Speedup	50h* 1x	5h 10m 9.6x	35 m 86x

*estimated time

Maize Population Analysis

Align & call SNPs from 131 maize samples ITB fastq / 408Gbp input data

	Serial	KBase cloud (small)	KBase Cloud (large)
Config	1 core (1 node)	210 cores (15 nodes)	854 cores (61 nodes)
Bowtie2	1311 hr*	19.5 hr	5 hr
Sort	58 hr*	N/A	N/A
Samtools	58 hr*	3.5 hr	1.5 hr
End-to-End Speedup	1427 hr* 1x	23 hr 62x	6.5 hr 219x

*estimated time

- 1. Introduction to KBase
- 2. Resequencing and variation calling theory
- 3. KBase services for variation calling
- 4. Live Demo
- 5. Additional Resources

Online Demo

- 1. Browse to KBase website: http://kbase.us/
- 2. Sign up for KBase account: https://gologin.kbase.us/SignUp
- 3. Download KBase DMG: http://kbase.us/services/docs/invocation/Iris/
- 4. Variation Services Tutorial: http://kbase.us/for-users/tutorials/analyzing-data/variation-service/
- 5. Summarize mutations:

\$ cat yeast.vcf

\$ grep -v '^#' yeast.vcf | cut -f1 | sort | uniq -c

\$ grep -v '^#' yeast.vcf | cut -f 4,5 | sort | uniq -c | sort -nrk1 | head

- 1. Introduction to KBase
- 2. Resequencing and variation calling theory
- 3. KBase services for variation calling
- 4. Live Demo
- 5. Additional Resources

Additional Resources

Resource	URL		
KBase	http://kbase.us/		
Getting Started	http://kbase.us/for-users/user-home/		
Variation Services	http://kbase.us/for-users/tutorials/analyzing-data/variation-service/		
Bowtie2	http://bowtie-bio.sourceforge.net/bowtie2/index.shtml		
BWA	http://bio-bwa.sourceforge.net/		
SAMTools	http://samtools.sourceforge.net/		
VCF Spec	http://www.1000genomes.org/wiki/Analysis/Variant%20Call %20Format/vcf-variant-call-format-version-40		
SNPeff	http://snpeff.sourceforge.net/		
KBase Contact	http://kbase.us/contact-us/		
Survey	https://www.surveymonkey.com/s/KB-user-info		

Thank You!

http://schatzlab.cshl.edu @mike_schatz / @DOEKBase

