PIZZO - Zadanie domowe nr 1

a. $3COL \leq_p Tutorzy$

Redukcja

Mamy graf G = (V,E), |V| = n, |E| = m, który chcemy pokolorować na 3 kolory: c_1 , c_2 , c_3 .

Wynik redukcji f(G) to n+1 studentów takich, że

- dla i = 1, 2, ..., n student s_i reprezentuje wierzchołek v_i w grafie G tj. jeśli $(v_i, v_j) \in E$, to s_i nie lubi s_i
- Student s_{n+1} nie lubi nikogo

Dowód poprawności

• Istnieje 3-kolorowanie dla grafu G.

Weźmy to kolorowanie. Jeśli wierzchołek v_i ma kolor c_k to student s_i trafia do tutora t_k . Student S_{n+1} trafia do tutora t_4 . Żadne 2 wierzchołki połączone krawędzią w G nie mają tego samego koloru, więc żaden student nie w grupie studenta, którego nie lubi.

• Nie istnieje 3-kolorowanie grafu G.

Załóżmy, że istnieje poprawny podział studentów dla f(G), ale wtedy jeśli dla studenta s_i , w grupie t_k , pokolorujemy wierzchołek v_i na kolor c_k to otrzymamy poprawne 3-kolorowanie G – sprzeczność.

b. Problem *Tutorzy*, można rozwiązać w czasie wielomianowym dla co najwyżej 15 zrzęd

- 1. Znajdujemy wszystkie poprawne przydziały tutorów dla samych zrzęd. Do sprawdzenia mamy najwyżej 4¹⁵ przydziałów, sprawdzenie poprawności przydziału zajmie najwyżej O(n).
- 2. Bierzemy poprawne rozmieszczenie zrzęd i sprawdzamy czy każdego z pozostałych studentów możemy przydzielić do jakiegoś tutora, jeśli tak to zwracamy rozwiązanie. Sprawdzenie jednego studenta zajmie O(n), czyli O(n²) dla wszystkich studentów.
- 3. Powtarzamy krok 2. dla wszystkich poprawnych przydziałów zrzęd z kroku 1.