Simulación de Sistemas

Lattice gas celular automata

Nicastro, Julian Sespede, Braulio

Fundamentos

- Problema a resolver
 - Flujo de fluidos con geometría compleja
- Modelos
 - Lattice gas
 - Lattice Bolzmann

Fundamentos

- Lattice gas
 - Autómata celular
 - Posibles estados
 - Espacio discreto
- Evolución
 - Pasos discretos
 - Determinación de nuevos estados
 - Dos procesos: propagación y colisión

Fundamentos

- Primer modelo de lattice gas HPP
 - Posibles estados: 4
 - Regla de colisión
 - Consecuencia vortices
- Segundo modelo de lattice gas FHP
 - Posibles estados: 6/7
 - Regla de colisión

Posibles colisiones

Implementación

- Inicialización
 - Tamaño del dominio
 - Barrera
 - Reglas de creación de partículas
 - Regla de colisión con obstáculos
- Colisiones

Implementación

```
public void simulate(int n) {
    for (int i = 0; i < n; i++) {
        moveParticles();
        checkParticleCollisions();
        if(i % 4 == 0){
            addParticles();
        }
        FileProcessor.outputState(cells, particles,"./output" + i +".txt");
        }
}</pre>
```

Mostrar animaciones

Resultados

L	Tiempo de ejecucion (min)
30	14
50	14,6
70	15,4

Resultados

- Al crecer L crece el tiempo linealmente

Conclusiones

- Problemas lattice-gas
 - Simplificación del problema -> Perdida de precisión
 - Trade-off: precisión/tamaño dominio/pasos/RAM/CPU
- Posibles mejoras
 - Problema paralelizable: multithreading