Algorithms for the Edit Distance Between Trees

Shaofeng Jiang

Western University sjian7@uwo.ca

December 11, 2017

Overview

- Introduction
- 2 Notation
- Recursive Solution
- 4 Algorithms for the Tree Editing Distance
 - A Simple Algorithm
 - Zhang and Shasha's Algorithm
 - Klein's Algorithm
 - Demaine's Algorithm
- 5 Algorithmic Improvement
- 6 Applications in the RNA Secondary Structure Comparison
- Conclusion

Ordered Labelled Tree

An ordered labelled tree is a tree in which the nodes are labeled and the left-to-right order among siblings is significant.

Figure: Ordered Labelled Tree

The ordered labelled tree can represent:

- an XML document
- a natural language parse
- RNA secondary structure
- and so on...

Tree Edit Distance

- The string edit distance is the minimum cost to transform one string to another.
 - Align two sequences of nucleotides

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

Resulting alignment

```
-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC
```

- The tree edit distance is introduced by Tai as a generalization of the string edit distance.
- The edit distance between two trees *P* and *D* is the minimum cost to change *P* to *D* via a sequence of basic edit operations.

Edit Operations

- Three valid edit operations supported:
 - Substitution. replace a label of a node by another label.

• **Deletion.** deletion of a node

• Insertion. insertion of a node.

Edit Operations

Cost of Edit Operations

- Each edit operations has a cost.
- Let γ be a cost function of each operations. The cost function γ is a distance metric.
 - $\gamma(a \to b)$ can be 1 or other user defined value.

 The edit distance is the sum of the cost of the minimum cost sequence.

Mapping in Trees

- Mapping between trees.
- The cost of a mapping is the sum of its insertion, deletion and substitutions.

Figure: The Edit Sequence and its Cost

Matching in Trees

- **Input:** Two labelled ordered trees *T* and *P*.
- Constraints:
 - One-to-one relationship
 - Sibling order is preserved.

• Ancestor order is preserved.

not valid

valid

• **Output:** Mapping between *T* and *P*.

Notation

Tree

I(f)

Let T be a tree,

- r(T)
- T°
- Ir(T)
- rr(T)

the root of T

$$T - r(T)$$

the root of the leftmost tree in the forest T° the root of the rightmost tree in the forest T°

Notation

Forest

- I(f) ∘ t

• $t \circ I(f)$

Let F be a forest.

- |F|
- #leaves(F)
- *F*(*i*)
- F − i
- Ir(F)
- rr(F)

the number of nodes in the forest F the number of leaves in the forest F the sub-tree of F rooted at node i the forest after deleting node i the root of the leftmost tree in the forest F

the root of the rightmost tree in the forest F

String Edit Distance and its Recursive Solution

- String edit distance is the minimum cost to change one string to another via a sequence of basic edit operations.
- The recursive solution of the string edit problem $d(S_1, S_2)$ is

$$d(S_1, S_2) = min \begin{cases} d(S_1 - u, S_2) + \delta(u, \emptyset) \\ d(S_1, S_2 - v) + \delta(\emptyset, v) \\ d(S_1 - u, S_2 - v) + \delta(u, v) \end{cases}$$

String Edit Distance and its Recursive Solution

• If u and v is both the first element of string S_1 and S_2 , then it is a leftmost decomposition.

• If u and v is both the last element of string S_1 and S_2 , then it is a rightmost decomposition.

Tree Edit Distance and its Recursive Solution

For tree-to-tree distance, Let T_1 and T_2 are both trees of the form I(f) and I'(f'),

$$d(I(f),I'(f')) = min \begin{cases} d(f,I'(f')) + \delta(I,\varnothing) \\ d(I(f),I'(f')) + \delta(\varnothing,I') \\ d(f,f') + \delta(I,I') \end{cases}$$

Figure: Tree-to-Tree Edit Distance

Tree Edit Distance and its Recursive Solution

For forest-to-forest distance, Let F_1 and F_2 are both trees of the form $I(f) \circ t$ and $I'(f') \circ t'$,

$$d(I(f) \circ t, I'(f') \circ t') = min \begin{cases} d(f \circ t, I'(f') \circ t') + \delta(I, \emptyset) \\ d(I(f) \circ t, f' \circ t') + \delta(\emptyset, I') \\ d(f \circ t, f' \circ t') + \delta(I, I') \end{cases}$$

$$l(f) \circ t$$
 $l'(f') \circ t$

Leftmost decomposition

Tree Edit Distance and its Recursive Solution

For forest-to-forest distance, Let F_1 and F_2 are both trees of the form $I(f) \circ t$ and $I'(f') \circ t'$,

$$d(t \circ I(f), t' \circ I'(f')) = min \begin{cases} d(t \circ f, t' \circ I'(f')) + \delta(I, \emptyset) \\ d(t \circ I(f), t' \circ f') + \delta(\emptyset, I') \\ d(t \circ f, t' \circ f') + \delta(I, I') \end{cases}$$

Rightmost decomposition

Relevant Sub-forests and Full Decomposition

Relevant sub-forests

The full decomposition

Root-leaf Path and Relevant Sub-trees

Root-leaf path

Relevant sub-trees

Path decomposition

Tree Indexing

- $preOrder_left_to_right \rightarrow preL$
- $preOrder_right_to_left \rightarrow preR$
- $postOrder_left_to_right \rightarrow postL$
- $postOrder_right_to_left \rightarrow postR$

Consider a tree T(preL, preR, postL, postR)

Note:

- preL + postR = treeSize + 1
- preR + postL = treeSize + 1

Bottom-up Enumeration

Two orders of the enumeration of the full decomposition:

Prefix-suffix order

Suffix-prefix order

A Simple Algorithm

Main Idea:

Enumerate each pairs of sub-forests in tree A and B in prefix-suffix post order or suffix-prefix post order.

Pseudocode:

```
Algorithm 1: Compute tree edit distance by enumerating all pairs in O(m^2n^2) time.
```

```
inputs: (T_1, T_2), with |T_1| = m and |T_2| = n

output: d(T_1[i], T_2[j]) for 1 \le i \le m and 1 \le j \le n

1 L_1 \leftarrow \text{POSTORDER}(T_1);

2 L_2 \leftarrow \text{POSTORDER}(T_2);

3 for i = 1 to |L_1| do

4 | for j = 1 to |L_2| do

5 | compute d(L_1[i], L_2[j]) as in Equation 2.3

6 | end

7 end

8 d(T_1[i], T_2[j]) \leftarrow d(L_1[|L_1|][|L_2|]);

9 return d(T_1[i], T_2[j]);
```

A Simple Algorithm

Implementation:

- Implemented in dynamic programming.
- Runs in $\mathcal{O}(m^2n^2)$ time using $\mathcal{O}(m^2n^2)$ space.

• The upper bound of the post-order enumeration method for the tree edit distance problem is $\mathcal{O}(n^4)$

Improved Algorithmic Path Strategies

Key Ideas:

- Different path decomposition creates different number of relevant sub-forests.
- Take advantage of the overlap among sub-forests that are contained in the same sub-tree, and the overlap of sub-trees as well.

Zhang and Shasha's Algorithm

Key Ideas:

- Fixed direction in each recursive calls.
 - Recursive right decomposition leftmost paths.
 - Recursive left decomposition rightmost paths.

(a) leftmost paths

(b) rightmost paths

Zhang and Shasha's Algorithm

Implementation:

- Implemented via dynamic programming.
- Enumerates sub-trees pairs rooted at key roots.
 - Leftmost paths: either tree root or has a left sibling
 - Rightmost paths: either tree root or has a right sibling
- Uses two memorized tables to store intermediate results:
 - a temporary table to store forest-forest distance.
 - a permanent table to store tree-tree distance.
- Runs in

```
\mathcal{O}(|A|*|B|*min\{depth(A), leaves(A)\}*min\{depth(B), leaves(B)\}) time and \mathcal{O}(|A|*|B|) space.
```

Klein's Algorithm

Key Ideas:

- Zhang and Shasha's algorithm depends on shapes of trees.
- Heavy paths generate the least number of sub-forests on one tree.

Klein's Algorithm

Implementation:

- Implemented via dynamic programming.
- applies heavy paths to the larger tree and fully decomposes the smaller tree.
- Uses temporary tables to store forest-forest distance and a permanent tables to store tree-tree distance.
- Runs in $\mathcal{O}(|A|\log(|A|)*|B|^2)$ time using $\mathcal{O}(|A|*|B|)$ space.

Demaine's Algorithm

Key Ideas:

- Klein's algorithm consider the shape of one tree with no consideration on the other tree.
- Heavy paths can be applied on both trees.
- Always applies heavy paths on the larger tree.

Implementation:

- Implemented via dynamic programming.
- Runs in $\mathcal{O}(|A||B|^2(1+\log(\frac{|A|}{|B|}))$ time using $\mathcal{O}(|A|*|B|)$ space.

Conclusion

	Time	Space	Comments
Simple Algorithm	$\mathcal{O}(n^4)$	$\mathcal{O}(n^4)$	first algorithm
Zhang	$\mathcal{O}(n^2 \log^2(n))$	$\mathcal{O}(n^2)$	efficient for balanced trees
Klein	$\mathcal{O}(n^3 \log(n))$	$\mathcal{O}(n^2)$	no consider smaller trees
Demaine	$\mathcal{O}(n^3)$	$\mathcal{O}(n^2)$	worse case is frequent

Table: State-of-the-Art Algorithms in the Tree Edit Distance Problem

Optimal Root-leaf Path

Key Idea:

- heavy paths is a kind of greedy algorithm which usually lead to the local optimum rather than global optimum.
- quantifies each possible paths and selects the path with the least number of sub-problems is selected
- implemented via dynamic programming.
- Preprocessing time is bounded by $\mathcal{O}(|A||B|)$

Relevant Leftmost/Rightmost/Special Sub-forests

- Relevant sub-forests are forests created in each recursive call.
- Relevant leftmost sub-forests are forests obtaining from applying the leftmost path decomposition to the whole tree and its relevant sub-trees.

 Relevant rightmost sub-forests are forests obtaining from applying the rightmost path decomposition to the whole tree and its relevant sub-trees.

Relevant special sub-forests are forests obtaining from the full

Relevant Leftmost/Rightmost/Special Sub-forests

Let T be a tree of the form $I(T_1 \circ \cdots \circ T_n)$ and the size of T is n,

• The Number of Relevant Leftmost Sub-forests(#left(T))

$$\#left(T) = |T| - |T_1| + \sum_{i=1}^{n} \#left(T_i)$$

• The Number of Relevant Rightmost Sub-forests(#right(T))

$$\#right(T) = |T| - |T_n| + \sum_{i=1}^n \#right(T_i)$$

Relevant Special Sub-forests(#special(T))

$$\#spec(T) = \frac{n(n+3)}{2} - \sum_{i \in T} |T(i)|$$

Status of a Node in a Tree

Let T be a tree with a root-leaf path,

- Free node: the node is the root of T, or is not on the root-leaf path.
- Left node: the node is on the root-leaf path and is the leftmost child of its parent.
- Right node: the node is on the root-leaf path and is the rightmost child of its parent.
- All node: the node is on the root-leaf path and is neither the leftmost child nor the rightmost child of its parent.

Quantify the Number of Sub-Problem

- Seven memorized tables to store intermediate results.
 - Free
 - LeftA
 - RightA
 - AllA
 - LeftB
 - RightB
 - AIIB
- Dynamic programming.

Quantify the Number of Sub-Problem

Let A be a tree with a root-leaf path and B be another tree,

Quantify the Number of Sub-Problem

Let A be a tree with a root-leaf path and B be another tree.

#leftA(1,1) = Free(3,1) + Free(4,1) + LeftA(2,1)
+
$$|A - A(2)| * \#left(B)$$

= $\#left(B) + \#left(B) + \#left(B) + 3 * \#left(B)$

Quantify the Number of Sub-Problem

Let A be a tree with a root-leaf path and B be another tree.

#leftA(1,1) = Free(2,1) + Free(4,1) + AllA(3,1)
+
$$|1 + A(4)| * #left(B) + |A(2)| * #special(B)$$

= #right(B) + #left(B) + #special(B)
+ #special(B) + 2 * #left(B)

Quantify the Number of Sub-Problem

Let A be a tree with a root-leaf path and B be another tree.

$$\#AIIA(1,1) = Free(3,1) + Free(4,1) + AIIA(2,1)$$

+ $|A - A(2)| * \#special(B)$
= $\#left(B) + \#left(B) + \#special(B) + 3 * \#special(B)$

Vertical Reduction on Trees

Key Ideas:

 A large number of non-branching nodes can be compressed into one node.

• The compact representation of the original tree can aid in improving the running time for computing the tree edit distance.

Algorithm

Forest-to-Forest Distance:

Algorithm

Tree-to-Tree Distance:

• Compute $d(\widetilde{T_1}, \widetilde{T_2}^{\circ})$

ullet The computation of $d(\widetilde{T_1}^{\circ},\widetilde{T_2})$ is symmetric.

Implementation

- three memorized tables to store intermediate results:
 - D_t : a $(|T_1|+1)*(|T_2|+1)$ two dimensional permanent array.

 - \widetilde{D}_t : a $(\left|\widetilde{T}_1\right|+1)*(\left|\widetilde{T}_2\right|+1)$ two dimensional permanent array. \widetilde{D}_f : a $(\left|\widetilde{T}_1\right|+1)*(\left|\widetilde{T}_2\right|+1)$ two dimensional temporary array.
- Dynamic programming.

Algorithm

Tree-to-Tree Distance:

• Compute $d(\widetilde{T_1}, \widetilde{T_2})$

RNA

- RNA is an essential molecule in organisms.
 - Cellular organisms
 - Viruses
- RNA is assembled as a chain of nucleotides.
 - 1 AAAGCAGGCC AGGCAACCGC UGCCUGCACC GCAAGGUGCA GGGGGAGGAA
 - 51 AGUCCGGACU CCACAGGGCA GGGUGUUGGC UAACAGCCAU CCACGGCAAC
 - 101 GUGCGGAAUA GGGCCACAGA GACGAGUCUU GCCGCCGGGU UCGCCCGGCG
 - 151 GGAAGGGUGA AACGCGGUAA CCUCCACCUG GAGCAAUCCC AAAUAGGCAG
 - 201 GCGAUGAAGC GGCCCGCUGA GUCUGCGGGU AGGGAGCUGG AGCCGGCUGG
 - 251 HAACAGCCGG CCHAGAGGAA HGGHHGHCAC GCACCGHHHG CCGCAAGGCG
 - 301 GGCGGGGCGC ACAGAAUCCG GCUUAUCGGC CUGCUUUGCU U
- RNA is unstable.

RNA Secondary Structure

- a list of base pairs satisfies the following constraints:
 - A base cannot participate in more than one base pair,
 - No two base pairs cross.

(1)	1	337	10
(2)	11	326	1
(3)	12	278	7
(4)	20	45	2
(5)	23	42	8
(6)	59	183	4
(7)	71	179	5
(8)	77	89	4
(9)	91	105	1
(10)	92	103	4
(11)	106	174	2
(12)	111	172	2
(13)	127	156	4
(14)	132	151	8
(15)	187	235	4
(16)	197	226	6
(17)	206	220	5
(18)	242	261	8
(19)	281	308	2
(20)	284	305	9

RNA Secondary Structure Representation

String representation

Graph representation

Tree Representation of the RNA Secondary Structure

Base pair labelling

Base Pairs	Label
A = U	F
$G\equiv C$	J
U = A	Р
$C\equiv G$	М

Table: The Label of Base Pair

Tree representation

Tree Representation of the RNA Secondary Structure

Experiment

Experiment

Experiment Result

```
Alcaligenes eutrophus ~ Streptomyces bikiniens
deletion: 1 insertion: 1 substitution: 1 distance: 134
AAAG-CAGGCAGCAACCGCUGCCUGCACCG-CAAGGUGCAGGGGGGGAGGAAAGUCCGGACUCCACAGGGCAGG-GUGU-UGGCUAACAGCCAU-CCAC
CGAGCC-GGGCGGCCGCCGCGLGGGG-GLICULCG-GAC-CLICCCCGAGGAACGLICCGGGCLICCACAGAGCA-GGGLIG-GLIGGCLIAACGGCCA-CCCGG
ĠGCAAĆĠÚĠCĠĠÀAUAĠĠGCCACAGAGA-CGAGUCUUĠĊĊĠĊĠ-ĠĠ--UUCĠ--ĆĆ-ĆĠĠĆ--ĠĠGAAGG-GU----------G-AA-A------
GGLIGACCC GC GGGAC AGLIGCC AC AGAAAAC -AG----ACC GCC GGGGAC C LIC GGLIC C LIC GGLICAAGGG-----LIGAAAC GGLIGGLIGLIAAGAGAC C ACC AGC
GCC LIGAGGC GAC UC AGGC GGC LIAGGLIAAAC C C C AC LIC – GGAGC AAGGLIC AAGAGGGGAC AC C C C GGLIGLIC C C LIGC GC GGALIGLILIC GAGGGC LIGC LIC GC C
CGAGUCCGCGGGUAGACCGCACGAGGCCGGC-GGCAAC-GCCGGCCCUAGAUGGA-UGGCCGUCG-CC-CCG---ACGACCGCGAGGUC---CCGG-GG
GCACAGAAUCCGGCUUAUCGGCCUG-CUUUGCUU
```

-- ACAGAACCCGGCGUACAGCCC-GACUCGUCUG

Evaluation

Conclusion

- Tree edit distance quantifies the similarity between two ordered labelled trees.
- The time complexity of the post-order enumeration solution is bounded by $\mathcal{O}(n^4)$
- Three kinds of root-leaf path are introduced to take the advantages of the overlapping relevant sub-forests and sub-trees in different ways.
- The optimal root-leaf path can be found via dynamic programming.
- The comparison between RNA secondary structures is an application of the tree edit distance.

Path Decomposition

• Leftmost path decomposition

• Rightmost path decomposition

Bottom-up Enumeration

Two orders of the enumeration of the path decomposition:

• LR-postorder enumeration

• RL-postorder enumeration

