TRƯỜNG ĐẠI HỌC CẦN THƠ KHOA SƯ PHẠM BỘ MÔN SỬ PHẠM TOÁN HỌC

Bài tập nhóm **GIẢI TÍCH SỐ**

Nhóm 3

Nguyễn Ngọc Đăng Duy	B1700014
Lê Hữu Kiệt	B1700024
Phan Thanh Tâm	B1700038
Nguyễn Hiếu Thanh	B1700039

Số gần đúng và sai số

Bài 1. Xác định sai số tuyệt đối giới hạn của số xấp xỉ sau:

$$c = 1.3241$$
; $\Delta_c = 0.23.10^{-2}$

Giải

Sai số tuyệt đối giới hạn: $\Delta_c = 0,23.10^{-2}$.

Sai số tương đối giới hạn: $\delta_c = \frac{\Delta_c}{|a|} = 0,00173702893.$

Bài 2. Xác định các chữ số đáng tin và đáng nghi trong trường hợp

$$b = 0,2351; \Delta_b = 0,5.10^{-3}$$

Giải

Ta có $\Delta_b = 0, 5.10^{-3}$.

Dễ thấy $0, 5.10^{-4} \leq \Delta_b \leq 0, 5.10^{-3}$ nên các chữ số 0, 2, 3, 5 là các chữ số đáng tin; chữ số 1 là chữ số đáng nghi.

Bài 3. Xác định các chữ số đáng tin và đáng nghi trong trường hợp

$$c = 0,2164; \delta_c = 0,5.10^{-3}$$

Giải

Ta có $\delta_c = \frac{\Delta_c}{|c|} \Rightarrow \Delta_c = \delta_c. |c| = 0, 5.10^{-3}.0, 2164 = 0, 0001082 = 0, 1082.10^{-3}.$

Đễ thấy $0,5.10^{-4} \leqslant \Delta_c \leqslant 0,5.10^{-3}$ nên các chữ số 0,2,1,6 là đáng tin; chữ số 4 là đáng nghi

Bài 4. Tìm sai số tuyệt đối giới hạn và sai số tương đối giới hạn của hàm số

$$y = (1 + abc)^{\alpha}$$
 biết $a = 2, 13; b = 4, 39; c = 0, 72$

Giải

Ta có: $a=2, 13\pm 0, 5.10^{-2}$, $b=4, 39\pm 0, 5.10^{-2}, \, c=0, 72\pm 0, 5.10^{-2}$

Lại có:
$$\begin{cases} y_a' = \alpha.bc.(1+abc)^{\alpha-1} \\ y_b' = \alpha.ac.(1+abc)^{\alpha-1} \\ y_c' = \alpha.ab.(1+abc)^{\alpha-1} \end{cases}$$

Sai số tuyệt đối giới hạn của hàm số là:

$$\Delta_y = |y_a'| \cdot \Delta_a + |y_b'| \cdot \Delta_b + |y'c| \cdot \Delta_c$$

$$= 3,1608 \cdot \alpha \cdot 7,732504^{\alpha-1} + 9,3507 \cdot \alpha \cdot 7,732504^{\alpha-1} + 1,5336 \cdot \alpha \cdot 7,732504^{\alpha-1}$$

$$= \alpha \cdot 7,732504^{\alpha-1} \cdot 14,0451$$

$$= \alpha \cdot 7,732504^{\alpha} \cdot 1,816371514$$

Sai số tương đối giới hạn của hàm số là

$$\delta_y = \frac{\Delta_y}{|y|} = \frac{\alpha.7,732504^{\alpha}.1,816371514}{(1+2,13.4,39.0,72)^{\alpha}} = \alpha.1,816371514$$

Lý thuyết nội suy

Bài 1. Tìm đa thức nội suy Larange của hàm số y = f(x) cho bằng bảng sau:

	\boldsymbol{x}	321	322,8	324,2	325
Ī	y	2,50651	2,50893	2,51081	2,51188

x	-2	1	3	4	7
y	12	37	51	67	127

Và tính gần đúng giá trị f(323, 5).

Và tính gần đúng giá trị f(5,1).

Giải:

d) Ta có:

$$y_0.L_0(x) = 2,50651 \cdot \frac{(x - 322, 8)(x - 324, 2)(x - 325)}{(321 - 322, 8)(321 - 324, 2)(321 - 325)}$$

$$= \frac{250651}{100000} \cdot \frac{-25}{576} \left(x^3 - \frac{4862}{5} x^2 + \frac{7879661}{25} x - 34053968 \right)$$

$$= \frac{1420849532687}{384000} - \frac{1973417683019}{57600000} x + \frac{6767577}{64000} x^2 - \frac{250651}{2304000} x^3$$

Thay x = 323, 5, ta được $y_0.L_0(323, 5) = -0,07996027$

$$y_1.L_1(x) = 2,50893 \cdot \frac{(x-321)(x-324,2)(x-325)}{(322,8-321)(322,8-324,2)(322,8-325)}$$
$$= -\frac{188572098741}{12320} + \frac{6247598101}{44000}x - \frac{1756251}{4000}x^2 + \frac{27877}{61600}x^3$$

Thay x = 323, 5, ta được $y_1.L_1(323, 5) = 1,18794034$

$$y_2.L_2(x) = 2,51081 \cdot \frac{(x-321)(x-322,8)(x-325)}{(324,2-321)(324,2-322,8)(324,2-325)}$$
$$= \frac{845543137491}{35840} - \frac{56108317827}{256000}x + \frac{43437013}{64000}x^2 - \frac{251081}{358400}x^3$$

Thay x = 323, 5, ta được $y_2.L_2(323, 5) = 1,83897216$

$$y_3.L_3(x) = 2,51188 \cdot \frac{(x-321)(x-322,8)(x-324,2)}{(325-321)(325-322,8)(325-324,2)}$$
$$= -\frac{26369413998039}{2200000} + \frac{490348427793}{4400000}x - \frac{690767}{2000}x^2 + \frac{62797}{176000}x^3$$

Thay x = 323, 5, ta được $y_3.L_3(323, 5) = -0,43708139$

Do đó ta có đa thức nội suy Larange có dạng:

$$P(x) = y_0.L_0(x) + y_1.L_1(x) + y_2.L_2(x) + y_3.L_3(x)$$

$$= \frac{6766686623}{369600000} - \frac{47439221}{316800000}x + \frac{3}{6400}x^2 - \frac{43}{88704000}x^3$$

và

$$L(323,5) = y_0.L_0(323,5) + y_1.L_1(323,5) + y_2.L_2(323,5) + y_3.L_3(323,5)$$

= 2,50987084

Vậy giá trị gần đúng của f(323,5) là $P(323,5)\approx 2,50987084$ e) Ta có:

$$y_0 L_0(x) = 12 \cdot \frac{(x-1)(x-3)(x-4)(x-7)}{(-2-1)(-2-3)(-2-4)(-2-7)}$$
$$= \frac{56}{45} - \frac{58}{27}x + \frac{10}{9}x^2 - \frac{2}{9}x^3 + \frac{2}{135}x^4$$

$$y_1 L_1(x) = 37 \cdot \frac{(x+2)(x-3)(x-4)(x-7)}{(1+2)(1-3)(1-4)(1-7)}$$
$$= \frac{518}{9} - \frac{703}{54}x - \frac{407}{36}x^2 + \frac{37}{9}x^3 - \frac{37}{108}x^4$$

$$y_2 L_2(x) = 51 \cdot \frac{(x+2)(x-1)(x-4)(x-7)}{(3+2)(3-1)(3-4)(3-7)}$$
$$= -\frac{357}{5} + \frac{255}{4}x + \frac{153}{8}x^2 - \frac{51}{4}x^3 + \frac{51}{40}x^4$$

$$y_3 L_3(x) = 67 \cdot \frac{(x+2)(x-1)(x-3)(x-7)}{(4+2)(4-1)(4-3)(4-7)}$$
$$= \frac{469}{9} - \frac{2747}{54}x - \frac{67}{6}x^2 + \frac{67}{6}x^3 - \frac{67}{54}x^4$$

$$y_4 L_4(x) = 127 \cdot \frac{(x+2)(x-1)(x-3)(x-4)}{(7+2)(7-1)(7-3)(7-4)}$$
$$= -\frac{127}{27} + \frac{1651}{324}x + \frac{127}{216}x^2 - \frac{127}{108}x^3 + \frac{127}{648}x^4$$

Do đó ta có đa thức nội suy Larange có dạng:

$$P(x) = y_0.L_0(x) + y_1.L_1(x) + y_2.L_2(x) + y_3.L_3(x)$$
$$= \frac{4699}{135} + \frac{455}{162}x - \frac{89}{54}x^2 + \frac{61}{54}x^3 - \frac{79}{810}x^4$$

và giá trị gần đúng của f(5,1) là $P(5,1) \approx 90,1281$.

Tính gần đúng đạo hàm và tích phân

Bài 1. Bằng phương pháp hình thang và Simpson 1/3, với n=10 để tính gần đúng và đánh giá sai số các tích phân sau:

b)
$$I = \int_0^{\pi} \sin x dx$$

d)
$$I = \int_0^6 \frac{1}{x^2 + 1} dx$$

Giải

b) * Công thức Simpson 1/3

Ta có $h = \frac{\pi - 0}{10} = \frac{\pi}{10}$ Ta có bảng sau:

i	x_i	y_i	$=f(x_i)$	$=\sin x$
0	0	0		
1	$\frac{\pi}{10}$		0,3090	
2	$\frac{\pi}{5}$ 3π			0,5878
3	$\frac{3\pi}{10}$ 2π		0,8090	
4	$\frac{2\pi}{5}$			0,9511
5	$\frac{\pi}{2}$ 3π		1	
6	$\frac{\frac{3\pi}{5}}{7\pi}$			0,9511
7	$\frac{7\pi}{10}$ 4π		0,8090	
8	$\frac{\frac{4\pi}{5}}{9\pi}$			0,5878
9	$\frac{9\pi}{10}$		0,3090	
10	π	0		_

Theo công thức Simpson 1/3, ta có:

$$I_S \approx \frac{\pi}{30} \cdot [0 + 4.3, 2361 + 2.3, 0777] \approx 2,000105435$$

Đánh giá sai số:

$$|I - I_S| \le \frac{\max\limits_{0 \le x \le \pi} |f^{(4)}(x)|}{180} (\pi - 0) h^4 = \frac{1}{180} . \pi . \left(\frac{\pi}{10}\right)^4 \approx 0,00017$$

 \star Công thức hình thang

Ta có
$$h = \frac{\pi - 0}{10} = \frac{\pi}{10}$$

Ta được bảng sau:

x_i	y_i	$= f(x_i) = \sin x$
0	0	
$\frac{\pi}{10}$		0,3090
$\frac{\pi}{5}$ 3π		0,5878
l —		0,8090
$\begin{array}{c c} 10 \\ \hline 2\pi \\ \hline 5 \\ \hline \pi \end{array}$		0,9511
$\frac{\pi}{2}$ 3π		1
$\frac{3\pi}{5}$ 7π		0,9511
l —		0,8090
$\frac{10}{4\pi}$		0,5878
$\frac{5}{9\pi}$		0,3090
1	0	
	0	6,3138

Do đó giá trị gần đúng của tích phân đã cho là:

$$I_T \approx \frac{\pi}{2.10}.(0 + 2.6, 3138) \approx 1,9835$$

* Đánh giá sai số: Ta có
$$M = \max_{0\leqslant x\leqslant \pi} |f''(x)| = 1$$
 và $\bar{I} = 1,98$

nên
$$|I_T - \bar{I}| \leqslant \frac{M}{12}.(\pi - 0). \left(\frac{\pi}{10}\right)^2 \approx 0,026$$

và
$$|I_T - \bar{I}| = 3, 5.10^{-3}$$

Do đó
$$|I - \bar{I}| \leq |I - I_T| + |I_T - \bar{I}| \leq 0,0295.$$

d) \star Công thức Simpson 1/3

Ta có
$$h=\frac{6-0}{10}=\frac{3}{5}$$

Ta có bảng sau:

i	x_i	$y_i = f(x_i) = \frac{1}{x}$		$\frac{1}{c^2+1}$
0	0	1		
1	0,6		0,7353	
2	1, 2			0,4098
3	1,8		0,2358	
4	2,4			0,1479
5	3		0, 1	
6	3,6			0,0716
7	4, 2		0,0536	
8	4,8			0,0416
9	5,4		0,0332	
10	6	0,0270		

Theo công thức Simpson 1/3, ta có:

$$I_S \approx \frac{1}{5} \cdot [1,0270 + 4.1,1579 + 2.0,6980] \approx 1,410973$$

Đánh giá sai số:

$$|I - I_S| \le \frac{\max_{0 \le x \le 6} |f^{(4)}(x)|}{180} (6 - 0) h^4 = \frac{24}{180} \cdot 6 \cdot \left(\frac{3}{5}\right)^4 = 0,10368$$

★ Công thức hình thang

Ta có
$$h = \frac{6-0}{10} = \frac{3}{5}$$
 Ta có bảng sau:

i	x_i	$y_i =$	$f(x_i) = \frac{1}{x^2 + 1}$
0	0	1	
1	0,6		$\frac{25}{34}$
2	1, 2		$ \begin{array}{r} 25 \\ \hline 61 \\ \hline 25 \end{array} $
3	1,8		$ \begin{array}{r} \frac{25}{106} \\ \hline 25 \end{array} $
4	2,4		$ \begin{array}{r} \frac{25}{169} \\ \hline 1 \end{array} $
5	3		$\begin{array}{c} \frac{1}{10} \\ 25 \end{array}$
6	3,6		$ \begin{array}{r} 25 \\ \hline 349 \\ \hline 25 \end{array} $
7	4, 2		$ \begin{array}{r} 25 \\ \hline 466 \\ \hline 25 \end{array} $
8	4,8		$\frac{25}{601}$
9	5,4		$\frac{25}{754}$
10	6	$\frac{1}{37}$	
		38	$\frac{11967477}{11967477}$
		37	6543383

Do đó giá trị gần đúng của tích phân đã cho là:

$$I_T \approx \frac{6-0}{2.10} \cdot (\frac{38}{37} + 2 \cdot \frac{11967477}{6543383}) = 1,40547$$

* Đánh giá sai số Ta có $M = \max_{0 \leqslant 6} |f''(x)| = 2$ và $\bar{I} = 1,41$

nên
$$|I_T - \bar{I}| \le \frac{M}{12} \cdot (6 - 0) \cdot \left(\frac{3}{5}\right)^2 = 0,36$$

và
$$|I_T - \bar{I}| = 4,53.10^{-3}$$

Do đó
$$|I - \bar{I}| \le |I - I_T| + |I_T - \bar{I}| \le 0,364653.$$

Bài 5: Tính gần đúng tích phân $I=\int_{-0,8}^{0,8}\frac{\sin^2x}{\sqrt{1-\cos x}}\mathrm{d}x$ bằng công thức Simpson với n=16 và đánh giá sai số của kết quả vừa nhận được.

Giải

Ta có
$$h = \frac{0,8 - (-0,8)}{16} = 0,1.$$

Ta lập được bảng sau:

	1		. ,)
$ $ $_{i}$	x_i	$u_i =$	$f(x_i) = \frac{\sin^2 x}{\sqrt{1 - x^2}}$	<u> </u>
		91	$\cos x$	
0	-0,8	0,934411509		
1	-0,7		0,85582621	
2	-0,6			0,762860112
3	-0,5		0,656932407	
4	-0,4			0,539742953
5	-0,3		0,413235796	
6	-0,2			0,279557228
7	-0,1		0,141009326	
8	0,001			0,001414213
9	0,1		0,141009326	
10	0,2			0,279557228
11	0,3		0,413235796	
12	0,4			0,539742953
13	0,5		0,656932407	
14	0,6			0,762860112
15	0,7		0,85582621	
16	0,8	0,934411509		
		1,868823017	4,134007477	3,165734799

Theo công thức Simpson 1/3, ta có:

$$I_S \approx \frac{0,1}{3}$$
. $[1,868823017 + 4.4,134007477 + 2.3,165734799] $\approx 0,824544084$$

* Đánh giá sai số:

$$|I - I_S| \le \frac{\max_{-0.8 \le x \le 0.8} |f^{(4)}(x)|}{180} (0.8 + 0.8) h^4 = \frac{3.35366}{180} \cdot 1, 6 \cdot (0.1)^4 \approx 1.98103 \cdot 10^{-6}$$

Giải gần đúng phương trình đại số và siêu viêt

Bài 2. Dùng phương pháp lặp đơn, hãy tìm nghiệm của các phương trình: i) $(x-1)^2 = \frac{1}{2}e^x$ với sai số 10^{-2} trong khoảng phân ly nghiệm (0;0,5) j) $x = \ln x + 3$ với sai số 10^{-3} trong khoảng phân ly nghiệm (4;5)

Giải

i) Đặt
$$f(x)=(x-1)^2-\frac{1}{2}e^x=0$$
, ta có:
$$f'(x)=2(x-1)-\frac{1}{2}e^x<0 \forall x\in(0;0,5)$$

$$f(0)=\frac{1}{2}$$

$$f(0,5)=\frac{1}{4}-\frac{1}{2}.e^{\frac{1}{2}}$$

Từ đây ta có f(0).f(0,5) < 0 và f(x) đơn điệu giảm trên khoảng (0;0,5) nên phương trình f(x) = 0 có duy nhất nghiệm trên khoảng (0;0,5)

Phương trình đã cho tương đương với

$$x = 1 - \sqrt{\frac{e^x}{2}}$$

Đặt $\varphi(x) = 1 - \sqrt{\frac{e^x}{2}}$, ta có:

$$\varphi'(x) = -\sqrt{\frac{e^x}{8}}$$

$$\max_{x \in [0;0,5]} |\varphi'(x)| \approx 0,45397$$

Do đó $|x_n - x^*| \le 0,83140|x_n - x_{n-1}|$ Chọn x = 0,1, ta có xấp xỉ nghiệm của phương trình được cho trong bảng sau:

n	$x_n = \varphi(x_{n-1})$	$0.83140 x_n - x_{n-1} $
1	0,25664	0,13023
2	0,19608	0,05035
3	0,22006	0,01994
2	0,21065	$0,78210.10^{-2}$

Vậy nghiệm của phương trình đã cho với sai số 10^{-2} trong khoảng phân ly nghiệm (0;0,5) là $x\approx 0,21065$.

j)Đặt $f(x) = x - \ln x - 3$, ta có:

$$f'(x) = 1 - \frac{1}{x} > 0 \forall x \in (4; 5)$$
$$f''(x) = -\frac{1}{x^2}$$
$$f(4) = 1 - \ln 4$$
$$f(5) = 2 - \ln 5$$

Từ đây ta có f(4).f(5) < 0 và f(x) đơn điệu tăng trên khoảng (4;5) nên phương trình f(x) = 0 có duy nhất nghiệm trên khoảng (4;5)

Đặt $\varphi(x) = \ln x + 3$, ta có:

$$\varphi'(x) = \frac{1}{x}$$
$$\max_{x \in [4,5]} |\varphi'(x)| = 0,25$$

Do đó
$$|x_n - x^*| \le \frac{1}{3} |x_n - x_{n-1}|$$

Chọn x=4,1, ta có xấp xỉ nghiệm của phương trình được cho trong bảng sau:

n	$x_n = \varphi(x_{n-1})$	$\frac{1}{3} x_n - x_{n-1} $
1	4,41099	0,10366
2	4, 48410	0,02437
3	4,50054	$0,54797.10^{-2}$
4	4,50420	$0,12198.10^{-2}$
5	4,50500	$0,27092.10^{-3}$

Vậy nghiệm của phương trình đã cho với sai số 10^{-3} trong khoảng phân ly nghiệm (4; 5) là $x\approx 4,50500$.