

Conjuntos Numéricos: Operações com números reais

Resumo

Operação com numerais

Adição de números naturais:

Essa é uma operação fechada no conjunto dos naturais, ou seja, a adição de dois números naturais resulta em um número natural.

Exemplo: 17 + 8 = 25, ou seja, somando dois naturais, resultado natural.

Propriedades

Associativa: (a + b) + c = a + (b + c) = b + (a + c)

Comutativa: a + b = b + a

Elemento Neutro: O zero é o elemento neutro da adição pois ao somarmos zero, o resultado não se altera.

Multiplicação de números naturais

A multiplicação no conjunto dos naturais também é uma operação fechada pois na multiplicação de quaisquer dois naturais, o resultado também é natural.

Exemplo: 15 x 8 = 120, ou seja, multiplicando dois naturais, resultado natural.

Propriedades:

Comutativa: a . b = b . a

Associativa: (a . b) . c = a . (b . c) = b . (a . c)

Distributiva: a. (b + c) = ab + ac e a.(b - c) = ab - ac

Elemento Neutro: O elemento neutro da multiplicação é o **um** pois ao multiplicarmos um número por um, o resultado não se altera.

Divisão de números naturais

Na divisão de números naturais, nem todos os resultados são naturais.

Exemplos: 15 : 5 = 3, porém, 7 : 2 = 3,5 e 3,5 não é natural.

Operações com Inteiros

As operações com números inteiros funcionam como no conjunto dos naturais. O que difere os inteiros são os números negativos, assim, entramos com a propriedade dos números opostos.

Exemplo: O oposto de 3 = (-1) . 3 = -3; O oposto de -4 = (-1) . (-4) = 4.

Operações com Racionais

Com os números racionais, além das propriedades já vistas, adicionamos a propriedade do inverso de um número.

Exemplo: O inverso de $4 = 4^{-1} = 1/4$

Operações entre frações

Soma e subtração: Caso os denominadores sejam iguais, bastar somar os numeradores e repetir o denominador. Exemplo: $\frac{1}{6} + \frac{4}{6} = \frac{1+4}{6} = \frac{5}{6}$. Caso os denominadores sejam diferentes, calcula-se o menor

múltiplo comum entre os denominadores. Exemplo $\frac{1}{2} + \frac{2}{3} = \frac{3}{6} + \frac{4}{6} = \frac{7}{6}$ (MMC entre 2 e 3 = 6).

Multiplicação: Multiplica-se numerador com numerador e denominador com denominador, simplificando, se possível, o resultado.

$$\frac{1}{2}x\frac{2}{3} = \frac{1x2}{2x3} = \frac{2}{6} = \frac{1}{3}$$

Divisão: Repete a primeira fração e multiplica pelo inverso da segunda fração $\frac{1}{2}: \frac{2}{3} = \frac{1}{2} \times \frac{3}{2} = \frac{3}{4}$

Operações com Irracionais

Como os números irracionais são números infinitos e não periódicos, não os representamos como decimais. Assim, normalmente não efetuamos operações com números irracionais, os deixando indicados quando isso ocorre.

Exemplo: $1 + \sqrt{2}$ é uma soma que deixamos indicados por não conseguir somar ao certo esses valores.

Quer ver este material pelo Dex? Clique aqui

Exercícios

1. Em um aeroporto, os passageiros devem submeter suas bagagens a uma das cinco máquinas de raio-X disponíveis ao adentrarem a sala de embarque. Num dado instante, o tempo gasto por essas máquinas para escanear a bagagem de cada passageiro e o número de pessoas presentes em cada fila estão apresentados em um painel, como mostrado na figura.

Um passageiro, ao chegar à sala de embarque desse aeroporto no instante indicado, visando esperar o menor tempo possível, deverá se dirigir à máquina:

- a) 1.
- **b)** 2.
- **c)** 3.
- **d)** 4.
- **e)** 5.
- 2. Em um parque há dois mirantes de alturas distintas que são acessados por elevador panorâmico. O topo do mirante 1 é acessado pelo elevador 1, enquanto que o topo do mirante 2 é acessado pelo elevador 2. Eles encontram-se a uma distância possível de ser percorrida a pé, e entre os mirantes há um teleférico que os liga que pode ou não ser utilizado pelo visitante.

O acesso aos elevadores tem os seguintes custos:

- Subir pelo elevador 1: R\$ 0,15;
- Subir pelo elevador 2: R\$ 1,80;
- Descer pelo elevador 1: R\$ 0,10;
- Descer pelo elevador 2: R\$ 2,30.

O custo da passagem do teleférico partindo do topo do mirante 1 para o topo do mirante 2 é de R\$ 2,00, e do topo do mirante 2 para o topo do mirante 1 é de R\$ 2,50. Qual é o menor custo, em real, para uma pessoa visitar os topos dos dois mirantes e retornar ao solo?

- a) 2,25
- **b)** 3,90
- **c)** 4,35
- **d)** 4,40
- **e)** 4,45

- 3. Às 17 h 15 min começa uma forte chuva, que cai com intensidade constante. Uma piscina em forma de um paralelepípedo retângulo, que se encontrava inicialmente vazia, começa a acumular a água da chuva e, às 18 horas, o nível da água em seu interior alcança 20 cm de altura. Nesse instante, é aberto o registro que libera o escoamento da água por um ralo localizado no fundo dessa piscina, cuja vazão é constante. Às 18 h 40 min a chuva cessa e, nesse exato instante, o nível da água na piscina baixou para 15 cm.O instante em que a água dessa piscina terminar de escoar completamente está compreendido entre
 - a) 19 h 30 min e 20 h 10 min.
 - **b)** 19 h 20 min e 19 h 30 min.
 - c) 19 h 10 min e 19 h 20 min.
 - **d)** 19 h e 19 h 10 min.
 - **e)** 18 h 40 min e 19 h.
- **4.** Em um teleférico turístico, bondinhos saem de estações ao nível do mar e do topo de uma montanha. A travessia dura 1,5 minuto e ambos os bondinhos se deslocam à mesma velocidade. Quarenta segundos após o bondinho A partir da estação ao nível do mar, ele cruza com o bondinho B, que havia saído do topo da montanha. Quantos segundos após a partida do bondinho B partiu o bondinho A?
 - **a)** 5.
 - **b)** 10.
 - **c)** 15.
 - **d)** 20.
 - **e)** 25.
- 5. Um executivo sempre viaja entre as cidades A e B, que estão localizadas em fusos horários distintos. O tempo de duração da viagem de avião entre as duas cidades é de 6 horas. Ele sempre pega um voo que sai de A às 15h e chega à cidade B às 18h (respectivos horários locais). Certo dia, ao chegar à cidade B, soube que precisava estar de volta à cidade A, no máximo, até as 13h do dia seguinte (horário local de A). Para que o executivo chegue à cidade A no horário correto e admitindo que não haja atrasos, ele deve pegar um voo saindo da cidade B, em horário local de B, no máximo à(s)
 - **a)** 16h.
 - **b)** 10h.
 - **c)** 7h.
 - **d)** 4h.
 - e) 1h.

6. Uma pesquisa realizada por estudantes da Faculdade de Estatística mostra, em horas por dia, como os jovens entre 12 e 18 anos gastam seu tempo, tanto durante a semana (de segunda-feira a sexta-feira), como no fim de semana (sábado e domingo). A seguinte tabela ilustra os resultados da pesquisa.

Rotina Juvenil	Durante a semana	No fim de semana
Assistir à televisão	3	3
Atividades domésticas	1	1
Atividades escolares	5	1
Atividades de lazer	2	4
Descanso, higiene e alimentação	10	12
Outras atividades	3	3

De acordo com esta pesquisa, quantas horas de seu tempo gasta um jovem entre 12 e 18 anos, na semana inteira (de segunda-feira a domingo), nas atividades escolares?

- **a)** 20
- **b)** 21
- **c)** 24
- **d)** 25
- **e)** 27
- 7. Uma bicicleta do tipo mountain bike tem uma coroa com 3 engrenagens e uma catraca com 6 engrenagens, que, combinadas entre si, determinam 18 marchas (número de engrenagens da coroa vezes o número de engrenagens da catraca).

Os números de dentes das engrenagens das coroas e das catracas dessa bicicleta estão listados no quadro.

Engrenagens	1 ^a	2ª	3ª	4ª	5ª	6ª
Nº de dentes da coroa	46	36	26	-	-	-
Nº de dentes da catraca	24	22	20	18	16	14

Sabe-se que o número de voltas efetuadas pela roda traseira a cada pedalada é calculado dividindo-se a quantidade de dentes da coroa pela quantidade de dentes da catraca.

Durante um passeio em uma bicicleta desse tipo, deseja-se fazer um percurso o mais devagar possível, escolhendo, para isso, uma das seguintes combinações de engrenagens (coroa x catraca):

I	II	III	IV	V
$1^a \times 1^a$	$1^a \times 6^a$	$2^a\times 4^a$	$3^a \times 1^a$	$3^a \times 6^a$

A combinação escolhida para realizar esse passeio da forma desejada é

- a) |
- **b**) ||
- c) III
- d) IV
- e) V

8. O ábaco é um antigo instrumento de cálculo que usa notação posicional de base dez para representar números naturais. Ele pode ser apresentado em vários modelos, um deles é formado por hastes apoiadas em uma base. Cada haste corresponde a uma posição no sistema decimal e nelas são colocadas argolas; a quantidade de argolas na haste representa o algarismo daquela posição. Em geral, colocam-se adesivos abaixo das hastes com os símbolos U, D, C, M, DM e CM que correspondem, respectivamente, a unidades, dezenas, centenas, unidades de milhar, dezenas de milhar e centenas de milhar, sempre começando com a unidade na haste da direita e as demais ordens do número no sistema decimal nas hastes subsequentes (da direita para esquerda), até a haste que se encontra mais à esquerda. Entretanto, no ábaco da figura, os adesivos não seguiram a disposição usual.

Nessa disposição, o número que está representado na figura é

- **a)** 46 171.
- **b)** 147 016
- **c)** 171 064.
- **d)** 460 171.
- e) 610 741.
- **9.** Deseja-se comprar lentes para óculos. As lentes devem ter espessuras mais próximas possíveis da medida 3 mm. No estoque de uma loja, há lentes de espessuras: 3,10 mm; 3,021 mm; 2,96 mm; 2,099 mm e 3,07 mm. Se as lentes forem adquiridas nessa loja, a espessura escolhida será, em milímetros, de
 - a) 2,099.
 - **b)** 2,96.
 - **c)** 3,021.
 - **d)** 3,07.
 - **e)** 3,10.

10. A expressão "Fórmula de Young" é utilizada para calcular a dose infantil de um medicamento, dada a dose do adulto:

Dose de criança = <u>Idade da criança (em anos)</u> · dose de adulto Idade da criança (em anos) + 12

Uma enfermeira deve administrar um medicamento X a uma criança inconsciente, cuja dosagem de adulto é de 60 mg. A enfermeira não consegue descobrir onde está registrada a idade da criança no prontuário, mas identifica que, algumas horas antes, foi administrada a ela uma dose de 14 mg do medicamento Y, cuja dosagem de adulto é 42 mg. Sabe-se que a dose da medicação Y administrada à criança estava correta. Então, a enfermeira deverá ministrar uma dosagem do medicamento X, em miligramas, igual a:

- **a)** 15
- **b)** 20
- **c)** 30
- **d)** 36
- **e)** 40

Gabarito

1. B

O tempo de espera nas máquinas 1,2,3,4 e 5 são, respectivamente, iguais a $35 \cdot 5 = 175$ s, $25 \cdot 6 = 150$ s, $22 \cdot 7 = 154$ s, $40 \cdot 4 = 160$ s e $20 \cdot 8 = 160$ s.

Portanto, o passageiro deverá se dirigir à máquina 2.

2. C

O menor custo será dado por: subir no elevador 1= 0,15; descer no elevador 1= 0,10; subir no elevador 2= 1,80; descer no elevador 2= 2,30. Cujo custo será de R\$4,35.

3. D

Apenas chuva: $\frac{20 \text{ cm}}{45 \text{ min}} = \frac{4}{9} \text{ cm/min}$

Chuva – ralo: $\frac{4}{9} - R = \frac{5}{40}$. Simplificando $\frac{5}{40} = \frac{1}{8}$, logo $R = \frac{4}{9} + \frac{1}{8} = \frac{32}{72} + \frac{9}{72} = \frac{41}{72}$

$$\left(\frac{41}{72}\right).t = 15 \Leftrightarrow t = \frac{15.72}{41} = 26$$

18h40 min + 26 min = 19 h 6 min

4. E

Tt=90 segundos.

Ta = tb = 40 segundos.

Como eles se encontraram e faltam 50 segundos para a encontrar B, então B partiu 10 segundos depois do bondinho A .

5. E

Temos que a viagem demorou 6 horas, assim, quando a pessoa decolou às 15 h da cidade A, a hora na cidade B era de 18 - 6 = 12 h. Assim, podemos perceber que, entre as cidades A e B, há diferença de fuso horário de 3 horas. Assim, quando forem 13 h em A, serão 10 h em B, assim, para chegar na cidade A nesse horário, ele teria que decolar as 4 h da cidade B, já que a viagem leva 6 h.

6. E

De acordo com a tabela, os estudantes passam 5 horas por dia estudando em cada um dos 5 dias da semana e 1 hora a cada dia no fim de semana. Assim estudam 5.5+1.2=27 horas por semana.

7. D

Devemos buscar a menor razão. Logo a IV que é 26/24=1,08 é o valor procurado.

8. D

O número de argolas nas hastes referentes a CM, DM, M, C, D e U são 4, 6, 0, 1, 7 e 1, respectivamente. Dessa maneira, o número representado é 460171.

9. C

Basta avaliar qual número está menos distante do valor 3mm, que é a alternativa C.

10. B

Usando a expressão dada no enunciado, temos do prontuário:

$$\frac{42.i}{(i+12)} = 14 \iff 42i = 14i + 168 \iff 28i = 168$$
, logo i=6

Assim, como a idade da criança é de 6 anos, a dosagem será
$$\frac{60.6}{(6+12)} = 20$$