HHL - Algorithmus

Alfred Nguyen

Fakultät der Informatik Technische Universität München 85758 Garching, Bavaria

June 2023

Gliederung

Einführung

HHL Algorithmus

Einfaches Beispiel

Evaluierung

Zukunftsperspektiven

Gliederung

Einführung

HHL Algorithmus

Einfaches Beispiel

Evaluierung

Zukunftsperspektiver

Einführung

Wir haben schon viel über die wichtigsten Algorithmen gehört

- ► Shors-Algorithmus
- Grover-Algorithmus

Der HHL-Algorithmus

- erstellt von Aram Harrow, Avinatan Hassidim und Seth Lloyd
- lösen von sehr großen linearen Gleichungen

$$A\vec{x} = \vec{b}$$

Motivation

Es löst grundlegendes Probleme in der Mathematik

- Least square fitting
- Optimierungs Probleme
- Simulationen und Imageprocessing
- **.**..

Kleine Revolution insbesondere bei Quantum Machine Learning

- ▶ HHL als Subroutine oder in erweiterten Form benutzt
- ► Approximation mit Computern braucht min *N* Zeitschritte!

Das Problem

Gegeben:

- \triangleright A Matrix der Form $n \times n$
- \triangleright \vec{b}

Löse das System:

$$A\vec{x} = \vec{b}$$

$$\vec{x} = A^{-1}\vec{b}$$

Wir sind also daran interessiert das Inverse A^{-1} zu finden

Gliederung

Einführung

HHL Algorithmus

Einfaches Beispiel

Evaluierung

Zukunftsperspektiver

Übersicht

Unser Ziel:

$$|x\rangle = A^{-1}|b\rangle$$

Wenn
$$A = A^{\dagger}$$
:

$$\ket{x} = e^{-iAt} \ket{b}$$

Wenn $A \neq A^{\dagger}$:

$$\begin{aligned}
A\vec{x} &= \vec{b} \\
\begin{pmatrix} 0 & A \\ A^T & 0 \end{pmatrix} \begin{pmatrix} 0 \\ \vec{x} \end{pmatrix} &= \begin{pmatrix} \vec{b} \\ 0 \end{pmatrix}
\end{aligned}$$

Wir können A diagonalisieren

$$A = U \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix} U^T$$

$$\Rightarrow A^{-1} = U^T \begin{pmatrix} \lambda_1^{-1} & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_n^{-1} \end{pmatrix} U$$

Der Algorithmus

Ablauf

- 1. State Preparation
 - ► Enkodiert Vektor und Matrix in Quanten Computer
- 2. Quantum Phase Estimation
 - ermittelt Eigenwerte
- 3. Ancilla Bit Rotation
 - Invertiert Eigenwerte
- 4. Inverse Quantum Phase Estimation
 - löst verschränkte Qubits auf
- 5. Messung
 - liest das Ergebnis $|x\rangle$ aus

Gliederung

Einführung

HHL Algorithmus

Einfaches Beispiel

Evaluierung

Zukunftsperspektiven

Einfaches Beispiel

Matrix A und Vektor \vec{b} :

$$A = \begin{pmatrix} 1 & -\frac{1}{3} \\ -\frac{1}{3} & 1 \end{pmatrix}$$

Klassische Lösung

$$\vec{x} = \begin{pmatrix} \frac{3}{8} \\ \frac{9}{8} \end{pmatrix}$$

$$\vec{b} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Verhältnis der Lösung:

$$\frac{|x_0|^2}{|x_1|^2} = \frac{\frac{9}{64}}{\frac{81}{64}} = \frac{1}{9}$$

Einfach Beispiel

Eigenvektoren von A sind:

$$\vec{u_0} = \begin{pmatrix} \frac{-1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix}$$

$$\vec{u_1} = \begin{pmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

Enkodiert

$$|u_0\rangle = \frac{-1}{\sqrt{2}}|0\rangle + \frac{-1}{\sqrt{2}}|1\rangle$$
 $|u_1\rangle = \frac{-1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$

Einfach Beispiel

Eigenvektoren von A sind:

$$\lambda_0 = \frac{2}{3} \qquad \qquad \lambda_1 = \frac{4}{3}$$

Einkodiert:

$$|\widetilde{\lambda_0}
angle = |01
angle \qquad |\widetilde{\lambda_1}
angle = |10
angle$$

State Preparation

- $ightharpoonup \vec{b}$ wird als Quantenzustand $|b\rangle$ kodiert
- in unserem Fall ist es sehr einfach

$$ec{b} = egin{pmatrix} 0 \ 1 \end{pmatrix} \Leftrightarrow \ket{b} = 0\ket{0} + 1\ket{1} = \ket{1}$$

State Preparation

- 1. Anzahl Qubit for a-register: 1
- 2. Anzahl Qubits für das c-Register: N=2
- 3. Anzahl Qubits für \vec{b} : $n_b = log_2(N) = log_2(2) = 1$

State Preparation

Wir starten im 1 Zustand

$$|\Psi_1\rangle = |1\rangle_b \ |00\rangle_c \ |0\rangle_a = |1000\rangle$$

Quantum Phase Estimation

Wir führen QPE aus:

$$|\Psi_2\rangle = |b\rangle_b \, |\widetilde{\lambda}_j\rangle_c \, |0\rangle_a$$

$$=\left(-rac{1}{\sqrt{2}}\ket{u_0}\ket{01}+rac{1}{\sqrt{2}}\ket{u_1}\ket{10}
ight)\ket{0}$$

- **b**-register: Zustand $|b\rangle$ in Eigenbasis von A: $|u_0\rangle$ or $|u_1\rangle$
- **•** jeweilige Koeffizienten: $b_0 = \frac{-1}{\sqrt{2}}$ and $b_1 = \frac{1}{\sqrt{2}}$
- \blacktriangleright c-register: Eigenwerte $|\widetilde{\lambda}_0\rangle$ und $|\widetilde{\lambda}_1\rangle$ enkodiert als $|01\rangle$ und $|10\rangle$
- ► a-register: ancilla Qubit |0⟩

Quantum Phase Estimation

Wir erhalten:

$$\ket{\Psi_2} = \ket{b}_b \ket{\widetilde{\lambda_j}}_c \ket{0}_a$$
 $\ket{\Psi_2} = \left(-\frac{1}{\sqrt{2}}\ket{u_0}\ket{01} + \frac{1}{\sqrt{2}}\ket{u_1}\ket{10}\right)\ket{0}_a$

Ancilla Roation - Eigenwerte invertieren

Wir invertieren das Ancilla Qubit:

$$\left|\Psi_{3}\right\rangle = \sum_{j=0}^{2^{1}-1} b_{j} \left|u_{j}\right\rangle \left|\widetilde{\lambda}_{j}\right\rangle \left(\sqrt{1 - \frac{C^{2}}{\widetilde{\lambda}_{j}^{2}}} \left|0\right\rangle + \frac{C}{\widetilde{\lambda}_{j}} \left|1\right\rangle\right)$$

Wir gehen davon aus, dass wir $|1\rangle$ messen.

$$\ket{\Psi_3} = \sqrt{rac{8}{5}} \left(-rac{1}{\sqrt{2}} \ket{u_0} \ket{01} \ket{1} + rac{1}{2\sqrt{2}} \ket{u_1} \ket{10}
ight) \ket{1}_a$$

Ancilla Roation - Eigenwerte invertieren

$$\ket{\Psi_3} = \sqrt{rac{8}{5}} \left(-rac{1}{\sqrt{2}} \ket{u_0} \ket{01} \ket{1} + rac{1}{2\sqrt{2}} \ket{u_1} \ket{10}
ight) \ket{1}_{ extsf{a}}$$

Inverse Quantum Phase Estimation

Wir führen IQPE aus:

$$\begin{aligned} |\Psi_4\rangle &= |x\rangle_b |00\rangle_c |1\rangle_a \\ |x\rangle_b &= A^{-1} |b\rangle = \sum_{i=0}^{2^1 - 1} \lambda_i^{-1} b_i |u_i\rangle \\ |\Psi_4\rangle &= \frac{2}{3} \sqrt{\frac{8}{5}} \left(-\frac{1}{\frac{2}{3}\sqrt{2}} |u_0\rangle + \frac{1}{\frac{4}{3}\sqrt{2}} |u_1\rangle \right) |00\rangle_b |1\rangle_a \end{aligned}$$

Wir erinnern uns an unsere Eigenvektoren:

$$|u_0\rangle = \frac{-1}{\sqrt{2}}|0\rangle + \frac{-1}{\sqrt{2}}|1\rangle$$

$$|u_1\rangle = \frac{-1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

$$\left|\Psi_{4}
ight
angle = \left(rac{1}{2}\sqrt{rac{2}{5}}\left|0
ight
angle + rac{1}{2}\sqrt{rac{2}{5}}*3\left|1
ight
angle
ight) \left|00
ight
angle_{b}\left|1
ight
angle_{a}$$

Ancilla Roation - Eigenwerte invertieren

Wir erhalten:

$$\left|\Psi_{4}\right\rangle = \left(\frac{1}{2}\sqrt{\frac{2}{5}}\left|0\right\rangle + \frac{1}{2}\sqrt{\frac{2}{5}}*3\left|1\right\rangle\right)\left|00\right\rangle_{b}\left|1\right\rangle_{a}$$

Measurment

Um die Wahrscheinlichkeit von $|u_0\rangle$ und $|u_1\rangle$ zu erhalten, müssen wir ihre Koeffizienten quadrieren

$$c_0 = \left| \frac{1}{2} \sqrt{\frac{2}{5}} * 1 \right|^2 = \frac{1}{20}$$
$$c_1 = \left| \frac{1}{2} \sqrt{\frac{2}{5}} * 3 \right|^2 = \frac{9}{20}$$

Das Verhältnis im b-Register ist wie erwartet 1:9.

Gesamte Rechnung

Gliederung

Einführung

HHL Algorithmus

Einfaches Beispiel

Evaluierung

Zukunftsperspektiven

Laufzeit

Gauß Verfahren

$$\mathcal{O}(N^3)$$

- ▶ nicht der schnellste Algorithmus
- ▶ gleiche constraints sind zu beachten!!

Laufzeit

Klassisch

Conjugate gradient descent

$$\mathcal{O}(\kappa slog\left(\frac{1}{\epsilon}\right)N)$$

- N := Anzahl an unbekannten
- $\kappa = \frac{\lambda_{max}}{\lambda_{min}}$: condition number

Quanten Version

HHL

$$\mathcal{O}(\frac{\kappa^2 s^2}{\epsilon} log N)$$

- $ightharpoonup \epsilon :=$ Fehler des Ergebnisses
- s := is s-sparse Matrix: jede Zeile hat max. s Einträge

Laufzeit

Klassisch

Quanten Version

Conjugate gradient descent

HHL

$$\mathcal{O}(\kappa s \log\left(\frac{1}{\epsilon}\right) N) \qquad \qquad \mathcal{O}(\frac{\kappa^2 s^2}{\epsilon} \log N)$$

$$\Rightarrow \mathcal{O}(N) \qquad \qquad \Rightarrow \mathcal{O}(\log(N))$$

Takeaway

- ightharpoonup exponentialer speed up $\mathcal{O}(N)$ vs $\mathcal{O}(\log(N))$
- klassischer algorithmus hat bessere Fehlerabhängigkeit: $log(\frac{1}{\epsilon})$ vs $\frac{1}{\epsilon}$

Einschränkungen

- 1. einfache Zustandsvorbereitung des Vektors \vec{b} zum Quantenzustand $|b\rangle$
- 2. niedrige condition number κ
- 3. A muss s-sparse sein
- 4. nicht jeder Eintrag von $|x\rangle$ auslesbar
- 5. Der Ressourcenbedarf sehr hoch

Einschränkungen

- 1. niedrige condition number (es ist außerdem nicht einfach κ im vorhinein zu ermitteln)
- 2. muss s-sparse sein
- 3. einfache Zustandsvorbereitung des Vektors \vec{b} zum Quantenzustand $|b\rangle$
 - wenn man $|b\rangle$ klassisch lesen/schreiben muss, ist der Geschwindigkeitsgewinn weg, da $|b\rangle$ N Einträge hat \rightarrow qram
- 4. nicht jeder Eintrag von $|x\rangle$ auslesbar
 - Nachbearbeitung muss erfolgen
 - ▶ nur $log_2(n)$ Qubits -¿ nur eine Näherung
 - statistische Informationen möglich (Verhältnis, Bereiche großer Einträge, ...)
- 5. Der Ressourcenbedarf sehr hoch
 - Shors Algorithmus ist dem HHL-Algorithmus sehr ähnlich (aufgrund von QPE)
 - untere Grenze von 4000 logischen Qubits (2048bit RSA)
 - d.h. millionen physikalischer Qubits (für Fehlerkorrektur)

Gliederung

Einführung

HHL Algorithmus

Einfaches Beispiel

Evaluierung

Zukunftsperspektiven

Anwendungen

Hauptproblem

- ► Hauptproblem: gibt keinen vollständigen Vektor aus
- ► Aber einige Probleme können mit dieser Methode gelöst werden:

Anwendungen

Machine Learning: Least-Square-Fitting

- Datenanpassung mit Least Square Fitting
- durch Berechnung einer Schätzung der inversen Matrix

Analysis of Large Sparse Electrical Networks

- Elektrizitätsnetz vielen verbundenen Komponenten
- geringe Anzahl Verbindungen zwischen den Komponenten
- Berechnung des Widerstands durch approximation von Erwartungswerten

Es wäre wichtig, mehr Anwendungen zu finden, welche den Anforderungen entsprechen.

Anwendung in IT-Security

HHL in der IT-Security

- in erster Linie nur für Lösen von linearen Systemen
- nicht direkt mit IT-Security verbunden
- aber Potenzial als Subroutine angewendet zu werden

Mögliche Anwendungen

- secure multi-party computation
- zero-knowledge proofs
- cryptographic key generation and management
- big data analysis/pattern recognition (für Betrugserkennung)

Variationen

Modifikationen und Optimierung

- ▶ QRAM zur Vorbereitung von |b⟩
- kein Ancilla-Bit erforderlich unter bestimmten Voraussetzungen
- ightharpoonup Variable time amplitude amplification um condition number κ zu verbessern

Perspektive

- ▶ Großer Einfluss im Bereich Quantum Machine Learning
- noch keine bahnbrechenden Anwendungen (wie z.B. Shors Algorithmus zum Brechen von RSA)
- aber viel aktive Forschung um neue Verbesserungen im Algorithmus zu finden
- zeigt deutlichen Fortschritt in der Quantencomputing Welt