Appendix D

Magnetics Design Tables

Geometrical data for several standard ferrite core shapes are listed here. The geometrical constant K_g is a measure of core size, useful for designing inductors and transformers that attain a given copper loss [1]. The K_g method for inductor design is described in Chapter 14. K_g is defined as

$$K_g = \frac{A_c^2 W_A}{MLT} \tag{D.1}$$

netics design is described in Chapter 15. $K_{g/e}$ is defined as where A_c is the core cross-sectional area, W_A is the window area, and MLT is the winding mean-length-per-turn. The geometrical constant K_{ylc} is a similar measure of core size, which is useful for designing ac inductors and transformers when the total copper plus core loss is constrained. The K_{yle} method for mag-

$$K_{ge} = \frac{W_{\Lambda} A_g^{2(1 - 1/\beta)}}{MLT} \frac{u(\beta)}{u(\beta)} u(\beta)$$
 (D.2)

where ℓ_m is the core mean magnetic path length, and β is the core loss exponent:

$$P_{fe} = K_{fe} B_{max}^{\beta} \tag{D.3}$$

For modern ferrite materials, β typically lies in the range 2.6 to 2.8. The quantity $u(\beta)$ is defined as

$$u(\beta) = \left[\left(\frac{\beta}{2} \right)^{-\left(\frac{\beta}{\beta + 2} \right)} + \left(\frac{\beta}{2} \right)^{\left(\frac{\beta}{\beta + 2} \right)} \right]^{-\left(\frac{\beta + 2}{\beta} \right)} \tag{D.4}$$

864

 $\mu(\beta)$ is equal to 0.305 for $\beta=2.7$. This quantity varies by roughly 5% over the range $2.6 \le \beta \le 2.8$. Values of K_{gfe} are tabulated for $\beta=2.7$; variation of K_{gfe} over the range $2.6 \le \beta \le 2.8$ is typically quite small. Thermal resistances are listed in those cases where published manufacturer's data are available. The thermal resistances listed are the approximate temperature rise from the center leg of the core to ambient, per watt of total power loss. Different temperature rises may be observed under conditions of forced air cooling, unusual power loss distributions, etc. Listed window areas; are the winding areas for conventional single-section bobbins.

An American Wire Gauge table is included at the end of this appendix.

D.1 POT CORE DATA

Fig. D.1

104	13.5	6.81	8.60	1.40	2.66	$41.1 \cdot 10^{-3}$	1.15	4229
57	19	5.30	7.42	0.748	2.02	$21.7 \cdot 10^{-3}$	0.411	3622
34	23	4.50	6.20	0.587	1.38	$14.2 \cdot 10^{-3}$	0.180	3019
20	30	3.75	5.28	0.406	0.948	$8.2 \cdot 10^{-3}$	$69.1 \cdot 10^{-3}$	2616
13	38	3.15	4.42	0.297	0.635	$4.9 \cdot 10^{-3}$	27.1.10-3	2213
7.3	60	2.60	3.71	0.187	0.433	2.6·10 ⁻³	9.45·10 ⁻³	1811
3.2	100	2.00	2.90	0.097	0.251	1.1.10-3	$2.107 \cdot 10^{-3}$	1408
1.8		1.55	2.30	0.055	0.167	554-10-6	$0.667 \cdot 10^{-3}$	1107
1.0		1.26	1.90	0.034	0.101	256-10-6	$0.183 \cdot 10^{-3}$	905
0.5		1.0	1.46	$0.22 \cdot 10^{-3}$	0.070	1.61.10-6	$0.738 \cdot 10^{-6}$	704
(g)	(°C/W)	(cm)	(cm)	(cm ²)	(cm ²)	cmx	cm ³	(mm)
	R_{th}	ℓ_m	MLT	WA	Ac	K_{gfe}	K_g	(AH)
		length	per turn	area	area			
weight	resistance	path	length	winding	sectional	constant	constant	type
Core	Thermal	Magnetic	Mean	Bobbin	Cross-	Geometrical	Geometrical	Core

.2 EE CORE DATA

1		2	1	
	•			

Core	Geometrical	Geometrical	Cross-	Bobbin	Mean	Magnetic	Core
type	constant	constant	sectional	winding	length	path	weight
			area	area	per turn	length	
(A)	K ₈	K_{gfe}	A_c	¥.	MLT	ϵ_m	
(mm)	(cm ⁵)	(cm ⁵)	(cm ²)	(cm ²)	(cm)	(cm)	(g)
EE12	0.731·10-3	0.458-10-3	0.14	0.085	2.28	2.7	2.34
EE16	$2.02 \cdot 10^{-3}$	$0.842 \cdot 10^{-3}$	0.19	0.190	3.40	3.45	3.29
EE19	$4.07 \cdot 10^{-3}$	$1.3 \cdot 10^{-3}$	0.23	0.284	3.69	3.94	4.83
EE22	8.26-10-3	$1.8 \cdot 10^{-3}$	0.41	0.196	3.99	3.96	8.81
EE30	85.7·10-3	6.7·10-3	1.09	0.476	6.60	5.77	32.4
EE40	0.209	11.8.10-3	1.27	1.10	8.50	7.70	50.3
EE50	0.909	$28.4 \cdot 10^{-3}$	2.26	1.78	10.0	9.58	116
EE60	1.38	$36.4 \cdot 10^{-3}$	2.47	2.89	12.8	11.0	135
EE70/68/19	5.06	75.9-10-3	3.24	6.75	14.0	18.0	280

Magnetics Design Tables

866

EC CORE DATA

Fig. D.3

ш	ш	ш	н	-			_	
C70	C52	C41	C35	mm)	(A)		ype	ore
2.84	0.914	0.374	0.131	(cm ⁵)	K_g		constant	Geometrical
56.2-10-3	$31.7 \cdot 10^{-3}$	$19.5 \cdot 10^{-3}$	9.9.10-3	(cm ^x)	K_{gfe}		constant	Geometrical
2.79	1.80	1.21	0.843	(cm ²)	A_c	area	sectional	Cross-
4.71	2.12	1.35	0.975	(cm ²)	W_A	area	winding	Bobbin
12.9	7.50	5.30	5.30	(cm)	MLT	per turn	length	Mean
14.4	10.5	8.93	7.74	(cm)	ℓ_m	length	path	Magnetic
7.5	11.0	16.5	18.5	(°C/W)	R_{th}		resistance	Thermal
256	Ξ	57.0	35.5	(g)			weight	Core

D.4 ETD CORE DATA

Fig. D,4

constant	Geometrical	
sectional	Cross-	
winding	Bobbin	
length	Mean	
path	Magnetic	
resistance	Thermal	

Core	Geometrical constant	Geometrical constant	Cross- sectional	Bobbin winding	Mean length	Magnetic path	Thermal resistance	Core weight
			area	area	per turn	length		
(A)	K_{s}	K_{gfe}	A_c	W_{A}	MLT	ℓ_m	R_{th}	
(mm)	(cm ⁵)	(cm ^x)	(cm ²)	(cm ²)	(cm)	(cm)	(°C/W)	(g)
ETD29	0.0978	8.5-10-3	0.76	0.903	5.33	7.20		30
ETD34	0.193	$13.1 \cdot 10^{-3}$	0.97	1.23	6.00	7.86	19	40
ETD39	0.397	$19.8 \cdot 10^{-3}$	1.25	1.74	6.86	9.21	15	60
ETD44	0.846	$30.4 \cdot 10^{-3}$	1.74	2.13	7.62	10.3	12	94
ETD49	1.42	$41.0 \cdot 10^{-3}$	2.11	2.71	8.51	11.4	=	124

D.5 PQ CORE DATA

 A_{l}

Fig. D.5

Core	Geometrical	Geometrical	Cross-	Bobbin	Mean	Magnetic	Cor
type	constant	constant	sectional	winding	length	path	weigh
			area	area	per turn	length	
$(A_1/2D)$	K_g	K_{gfe}	A_c	W_A	MLT	e_m	
(mm)	(cm ⁵)	(cm ^x)	(cm ²)	(cm ²)	(cm)	(cm)	9
PQ 20/16	22.4·10-3	3.7-10-3	0.62	0.256	4.4	3.74	13
PQ 20/20	$33.6 \cdot 10^{-3}$	$4.8 \cdot 10^{-3}$	0.62	0.384	4.4	4.54	15
PQ 26/20	83.9.10-3	7.2-10-3	1.19	0.333	5.62	4.63	ယ
PQ 26/25	0.125	$9.4 \cdot 10^{-3}$	1.18	0.503	5.62	5.55	3(
PQ 32/20	0.203	11.7·10-3	1.70	0.471	6.71	5.55	4
PQ 32/30	0.384	18.6-10-3	1.61	0.995	6.71	7.46	55
PQ 35/35	0.820	30.4·10-3	1.96	1.61	7.52	8.79	73
PQ 40/40	1.20	$39.1 \cdot 10^{-3}$	2.01	2.50	8.39	10.2	9.5

Magnetics Design Tables

D.6

AMERICAN WIRE GAUGE DATA

28 0.8046 2142.7 29 0.6470 2664.3	1.021	1.280	25 1.623 1062.0	2.04/ 542.1	2.308	2 508	3.243	20 5.188 332.3 21 4.116 418.9	5.188	19 6.531 263.9	18 8.228 209.5	17 10.39 165.8	16 13.07 131.8	15 16.51 104.3	14 20.02 82.80	13 26.26 69.64		11 41.60 41.37	10 52.41 32.9	9 66.32 26.0		7 105.5 16.3	6 133.0 13.0	5 167.7 10.28	4 211.5 8.153	3 266.7 6.463	2 336.3 5.128	1 424.1 4.065	0 534.8 3.224	00 674.2 2.557	000 850.3 2.027	0000 1072.3 1.608	TO CIII TO 22/CIII
0.0366	0.0409	0.0452	0.0505	0.0366	0.0652	0.0701	0.0701	0.0874	0 0874	0.0948	0.109	0.122	0.137	0.153	0.171	0.190	0.213	0.238	0.267	0.291	0.326	0.366	0.411	0.462	0.519	0.583	0.654	0.735	0.825	0.927	1.040	1.168	cm

869

AWG#	Bare area, 10^{-3} cm ²	Resistance,	Diameter,
30	0.5067	3402.2	0.0294
31	0.4013	4294.6	0.0267
32	0.3242	5314.9	0.0241
33	0.2554	6748.6	0.0236
34	0.2011	8572.8	0.0191
35	0.1589	10849	0.0170
36	0.1266	13608	0.0152
37	0.1026	16801	0.0140
38	0.08107	21266	0.0124
39	0.06207	27775	0.0109
40	0.04869	35400	0.0096
41	0.03972	43405	0.00863
42	0.03166	54429	0.00762
43	0.02452	70308	0.00685
			0000

REFERENCES

- \equiv C. W. T. McLyman, Transformer and Inductor Design Handbook, Second edition, New York: Marcel Dekker, 1988.
- Ferrite Materials and Components Catalog, Philips Components.

[2]