SECURITY (COMP0141): MATH MEETS CRYPTOGRAPHY

MATH MEETS CRYPTOGRAPHY

Two interesting settings to consider from a cryptographic perspective:

The finite field F_p for a very large prime p (1024 bits or more)

The ring $(Z/NZ)^*$ for N = pq for very large primes p,q (1024 bits or more)

DISCRETE LOGARITHM

Discrete logarithm problem: for a fixed prime p, given g and y, find x such that $g^x = y \mod p$

Example: $6^x = 10000 \mod 17627$

This problem seems to be very difficult to solve (like for modern computers and large enough p, until the heat death of the sun)

MATH MEETS CRYPTOGRAPHY

Two interesting settings to consider from a cryptographic perspective:

The finite field F_p for a very large prime p (1024 bits or more)

The ring $(Z/NZ)^*$ for N = pq for very large primes p,q (1024 bits or more)

THE RING (Z/NZ)*

Euler totient function φ is $\varphi(N) = |\{x \text{ in } \{0,...,N-1\} \mid \gcd(x,N) = 1\}|$

Euler's theorem: $x^{\phi(N)} = 1 \mod N$ for $x \in (Z/NZ)^*$

Now let N = pq for p and q two different odd primes

RSA

RSA problem: given an integer N = pq, find p and q

Example: the RSA-1024 challenge is to find p and q for N = 1350664108659952233496032162788059699388814756056670 2752448514385152651060485953383394028715057190944179 82072821644715513736804197039641917430464965892742562 3934102086438320211037295872576235850964311056407350 1508187510676594629205563685529475213500852879413773 28533906109750544334999811150056977236890927563

THE RING (Z/NZ)*

Euler totient function φ is $\varphi(N) = |\{x \text{ in } \{0,...,N-1\} \mid \gcd(x,N) = 1\}|$

Euler's theorem: $x^{\phi(N)} = 1 \mod N$ for $x \in (Z/NZ)^*$

Now let N = pq for p and q two different odd primes

$$\phi(N) = \phi(pq) = pq - |x : gcd(x,pq) \neq 1\}|$$

$$= pq - |\{x : p | x\}| - |\{x : q | x\}| + |\{0\}|$$

$$= pq - q - p + 1 = (p-1)(q-1)$$

This means that $(Z/NZ)^*$ has $\varphi(N) = (p-1)(q-1)$ elements

ONE-WAY FUNCTIONS

More generally, discrete log and RSA are examples of something called a one-way function

This is a function f() such that

- -(1) it is easy to compute f(x) for all x, but
- -(2) it is assumed to be very difficult to compute x given f(x), or in fact to compute any y such that f(y) = f(x)

Discrete log: $f(x) = g^x \mod p$

RSA: f(p,q) = pq

