Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК	«Информатика	и управление))	
КАФЕДРА _	ИУК4	«Программное	обеспечение	ЭВМ,	информационные
технологии»					

ЛАБОРАТОРНАЯ РАБОТА №1

«Моделирование и расчет электрических цепей постоянного тока»

ДИСЦИПЛИНА: «Основы электроники»

Выполнил: студент гр. ИУ	К4-32Б (Подпись)	<u>(Карельский М.К.</u>)
Проверил:	(Подпись)	(Козина А.В)
Дата сдачи (защиты):		
): - Балльная оценка: - Оценка:	
_	Калуга, 2021	

Цель:

- 1. Приобретение навыков моделирования электрических цепей.
- 2. Получение опыта использования методов для расчета электрических цепей.

Задание:

Для заданной электрической цепи определить значения токов в ветвях:

- 1. с помощью моделирования схемы;
- 2. с использованием расчетных формул.

Вариант 10

Рис. 1. Исследуемая электрическая цепь

Моделирование:

Puc. 2. Схема электрической цепи в Multisim

Расчетная часть:

$$\begin{cases} I_1 + I_2 + I_3 = 0 \\ I_3 + I_5 = I_4 \\ -R_1I_1 = E_1 - E_2 \\ R_2I_3 + R_3I_4 = E_2 \\ -R_4I_5 - R_5I_5 - R_3I_4 = 0 \end{cases} \begin{cases} I_1 + I_2 + I_3 = 0 \\ I_3 + I_5 = I_4 \\ -15I_1 = 30 \\ 20I_3 + 20I_4 = 10 \\ -50I_5 - 10I_5 - 20I_4 = 0 \end{cases} \begin{cases} I_2 + I_3 = 2 \\ I_3 + I_5 = I_4 \\ I_1 = -2A \\ 2I_3 + 2I_4 = 1 \\ 6I_5 + 2I_4 = 0 \end{cases}$$

$$\begin{pmatrix} 1 & 1 & 0 & 0 & |2 \\ 0 & 1 & -1 & 1 & |0 \\ 0 & 2 & 2 & 0 & |1 \\ 0 & 0 & 2 & 6 & |0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 0 & |2 \\ 0 & 1 & -1 & 1 & |0 \\ 0 & 0 & 4 & -2 & |1 \\ 0 & 0 & 2 & 6 & |0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 0 & |2 \\ 0 & 1 & -1 & 1 & |0 \\ 0 & 0 & 4 & -2 & |1 \\ 0 & 0 & 0 & 7 & |-0,5 \end{pmatrix}$$

$$7I_5 = -0,5; \ I_5 = -\frac{1}{14}A \approx -0,071A$$

$$4I_4 + \frac{1}{7} = 1; \ I_4 = \frac{3}{14}A \approx 0,214A$$

$$I_3 - \frac{3}{14} - \frac{1}{14} = 0; \ I_3 = \frac{2}{7}A \approx 0,286A$$

$$I_2 + \frac{2}{7} = 2; \ I_2 = \frac{12}{7}A \approx 1,714A$$

Вывод: в ходе выполнения лабораторной работы были получены навыки моделирования электрических цепей с использованием Multisim, опыт использования методов для расчета электрических цепей.