APRINDIZAJI AUTOMATICO

Javier Diaz Cely, PhD

AGENDA

Aprendizaje no supervisado

Aprendizaje supervisado

Machine Learning

what society thinks I

what my friends think I do

what my parents think I do

$$\begin{split} L_r &= \frac{1}{2} \|\mathbf{v}\|^2 - \sum_{i=1}^{\ell} \alpha_i y_i (\mathbf{x}_i \cdot \mathbf{w} + b) + \sum_{i=\ell}^{\ell} \alpha_i \\ \alpha_i &\geq 0, \nabla \ell \\ \mathbf{w} &= \sum_{i=\ell}^{\ell} c_i y_i \mathbf{x}_i, \sum_{i=\ell}^{\ell} \alpha_i v_i = 0 \\ \nabla \dot{y}(\theta_t) &= \frac{1}{\pi} \sum_{i=1}^{n} \nabla \ell(\mathbf{x}_i, y_i; \theta_t) + \nabla r(\theta_t). \\ \ell_{\ell-1} &= \theta_t = \eta_t \nabla \ell(\mathbf{x}_{i(t)}, y_{i(t)}; \theta_t) = \eta_t \cdot \nabla r(\theta_t). \end{split}$$

what other programmers think I do

 $\mathbb{E}_{i[t]}[\ell(x_{i[t]}, y_{i[t]}; \theta_i)] = \frac{1}{n} \sum_i \ell(x_i, y_i; \theta_i).$

what I think I do

library(ggplot2)
library(caret)

canciones <- read.table('
str(canciones)
summary(canciones)
head(canciones)</pre>

what I really do

- •¿Por qué es necesario?
 - Tareas complejas extremamente difíciles de programar
 - Poder computacional disponible para tratar grandes volúmenes de datos

Las máquinas tienen que aprender por sí solas

Definición:

El aprendizaje automático es la ciencia que permite a los computadores aprender, sin ser explícitamente programados¹

Modelo tradicional

Ciencia de datos

1. Andrew Ng, Stanford University, 2014

Aprendizaje supervisado

- Aprender a partir de un "experto"
- Datos de entrenamiento etiquetados con una clase o valor:

• Meta: predecir una clase o valor

Aprendizaje no supervisado

- Sin conocimiento de una clase o valor objetivo
- Datos no están etiquetados

 Meta: descubrir factores no observados, estructura, o una representación mas simple de los datos

Aprendizaje supervisado

Factores/atributos/variables independientes, Dependiente, objetivo,

Aprendizaje no supervisado

Edad	Ingresos	Tiene carro?
24	1'200.000	NO Datos etiquetados:
23	4'500.000	SI "Respuestas correctas"
45	1'250.000	SI
32	1'100.000	NO

1'200.000
4'500.000
1'250.000
1'100.000

Factores/atributos/variables

34 3'500.000

predictores, explicativos

?

respuesta, salida

¿Cuál es el valor predicho para una instancia dada?

¿Se puede encontrar alguna estructura en los datos?

Aprendizaje supervisado

Aprendizaje no supervisado

MÉTRICAS DE EVALUACIÓN

- Necesidad de evaluar la calidad de los modelos de aprendizaje automático
- Diferentes criterios a tener en cuenta:
 - Correctitud de la predicción
 - Simplicidad (parsimonia)
 - Interpretabilidad
 - Tiempo de aprendizaje o de predicción
 - Escalabilidad (importante para Big Data)

AGENDA

9 0.55 0.07 0.075

Métricas de Evaluación de la regresión

Aprendizaje supervisado

RECRESION

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

REGRESIÓN

- Encontrar modelos que permitan predecir valores continuos:
 - KNN
 - Regresión lineal
 - Regresión polinómica
 - Árboles de regresión
 - . . .
- Valores continuos de la variable objetivo
- Baseline: medida de evaluación dada por un modelo que predice una medida de tendencia central (e.g. el promedio)

REGRESIÓN

Predicción:

- Procesos de caja negra
- Estimar el valor objetivo Y dado los valores de los predictores X

Inferencia:

- ¿Cuáles son los predictores asociados con la respuesta?
- ¿Cuál es la relación entre la variable respuesta y cada uno de los predictores?
- ¿Se puede resumir esa relación linealmente o se trata de una relación mas compleja?

Ventas = f(TV, Radio, Peri'odicos)

RESIDUOS

Residuos: diferencia entre los valores reales y los valores predichos

MÉTRICAS DE REGRESIÓN

Coeficiente de correlación (Pearson $\rho \in [-1;1]$): indica la fuerza de la relación linear entre los predictores y la variables objetivo, que puede ser positive o negativa

- $|\rho| = 0$ no hay correlación
- $|\rho| = 0.10$ correlación muy débil
- | ρ | = 0.25 correlación débil
- | ρ | = 0.50 correlación media
- $| \rho | = 0.75$ correlación fuerte
- $|\rho| = 0.90$ correlación muy fuerte
- $|\rho| = 1$ correlación perfecta

$$\rho_{x,y} = \frac{Cov(x,y)}{\sigma_x \sigma_y}$$

Coeficiente de determinación ($R^2 = \rho^2$): indica el porcentaje de la varianza universidado ser explicada por los predictores a partir de la relación lineal

MÉTRICAS DE REGRESIÓN

• MAE (mean absolute error):

$$\frac{1}{m}\sum_{1}^{m}|h_{\theta}(x_{i})-y_{i}|$$

• MSE (mean square error):

$$\frac{1}{m}\sum_{1}^{m}(h_{\theta}(x_i)-y_i)^2$$

RMSE (root mean square error):

$$\sqrt{\frac{1}{m}\sum_{1}^{m}(h_{\theta}(x_i)-y_i)^2}$$

• R² (coeficiente de determinación):

$$1 - \frac{\sum_{1}^{m} (h_{\theta}(x_{i}) - y_{i})^{2}}{\sum_{1}^{m} (y_{i} - \bar{y})^{2}}$$

VARIABLES CATEGÓRICAS

- Las variables predictoras deben ser numéricas.
- Las variables categóricas debes ser convertidas en numéricas:
 - One hot encoding: se crea una variable para cada valor posible de cada variable categórica
 - Contraste o "dummy": se crea una variable para cada valor posible menos 1 de cada variable categórica.

Ejemplo: variable estrato con 3 valores posibles (bajo, medio y alto)

	Estrato_bajo	Estrato_medio
Valor = bajo	1	0
Valor = medio	0	1
Valor = alto	0	0

REGRESIÓN — CUIDADO!

Correlación y causalidad son dos cosas muy diferentes

REGRESIÓN — CUIDADO!

AGENDA

Aprendizaje no supervisado

Aprendizaje supervisado

100% Malignant WO Volume Fraction × Benign 80% 60% 40% 20% 0% Lesion Size (cm)

CLASIFICACIÓN

- Encontrar modelos que describan clases para futuras predicciones:
 - KNN
 - Árboles de decisión
 - Regresión logística
 - Redes neuronales
 - ...
- Valores discretos de la variable objetivo
- Incluye la estimación de probabilidades de clase
- Baseline: medida de evaluación dada por un clasificador que escoge siempre la clase mayoritaria

- Se usa una matriz de confusión para evaluar diferentes métricas de correctitud/error
- Se utilizan dos calificadores para describir cada una de sus casillas:
 - Un calificador de la correctitud de la predicción con respecto a la realidad: Verdadero o Falso
 - Un calificador del tipo de la predicción:
 Positivo o Falso, con respecto a cada clase de interés (i.e churn)
- Dependiendo del contexto los tipos de error pueden ser mas graves que otros

		Predicción		
		Churn P	No churr	
Realidad	Churn ⁺	VP	FN - Tipo II	
Realiuau	No churn	FP - Tipo I	VN	

- La diagonal (en verde)
 muestra las instancias
 correctamente
 clasificadas. Las demás
 casillas resume diferentes
 tipos de error:
 - Tipo I: Falsos positivos
 - Tipo II: Falsos negativos

 Interpretarían el caso de la detección de un email spam

TP, TN:

FP: , consecuencia:

FN: , consecuencia:

 Interpretar el caso del diagnóstico de una enfermedad grave?

TP, TN:

FP:

, consecuencia:

, consecuencia:

Predicción Churn P No churn Churn VP FN - Tipo II Realidad FP - Tipo I No churn VN

 Interpretar el caso de la prospección de clientes de un crédito de consumo (baja aceptación)

TP, TN:

FP: , consecuencia:

FN: , consecuencia:

- Tasa de correctitud (accuracy) = (VP+VN)/(VP+VN+FP+FN)
- Error de mala clasificación (contrario de accuracy) = (FP+FN)/(VP+VN+FP+FN): probabilidad de error
- Precisión= VP / (VP+FP): valor de predicción positiva, P(Real+ | Predicho+)
- Recall (o TPR o sensibilidad) = VP / (VP+FN): qué proporción de todos los positivos reales pude identificar como tal, P(Predicho+ | Real+)
- Especificidad (o TNR): = VN / (VN+FP): qué proporción de todos los negativos reales pude identificar como tal, P(Predicho-|Real-)
- Valor de predicción negativa (FPR) = VN / (VN+FN)
- F1-Measure = $2 * \frac{precision*recall}{precision+recall}$ (promedio armónico)

Imaginemos el problema de detección de spam mail e interpretemos cada métrica

Imaginemos el problema de diagnóstico de cáncer e interpretemos cada métrica

- Coeficiente de concordancia Kappa
 - Para datos nominales u ordinales
 - Concordancia entre las predicciones y las clases reales
 - Sustrae el efecto de concordancia por suerte (AC) del valor del accuracy (concordancia observada - OA)
 - Valores van de 0 a 1
 - Muy útil sobretodo cuando las clases no están balanceadas
 - Diagnóstico de enfermedades raras
 - Clientes que acepten productos de crédito)

• Kappa =
$$\frac{OA - AC}{1 - AC}$$

- Coeficiente de concordancia Kappa
 - Para datos nominales u ordinales
 - Concordancia entre las predicciones y las clases reales
 - Sustrae el efecto de concordancia por suerte (AC) del valor del accuracy (concordancia observada - OA)
 - Valores van de 0 a 1
 - Muy útil sobretodo cuando las clases no están balanceadas
 - Diagnóstico de enfermedades raras
 - Clientes que acepten productos de crédito)

VII		+	-	TOTAL	OA	=	0,63
reales	+	10	4	14	AC	=	0,59
reales	-	3	2	5	Карр	a =	0,11
	TOTAL	13	6	19			

Accuracy (OA) = (10+2)/19=0,63 (AC) = (13/19 * 14/19) + (6/19 * 5/19) = 0,59 Kappa = (OA-AC)/(1-AC) = 0,11

		Predic	Predicciones				
		+	-	TOTAL	OA	=	0,97
roolos	+	0	3	3	AC	=	0,97
reales	-	0	97	97	Карр	a =	0,00
	TOTAL	0	100	100			

Accuracy (OA) = (0+97)/100=0.97(AC) = (0/100 * 3/100) + (100/100 * 97/100) = 0.97Kappa = (OA-AC)/(1-AC) = 0

_	-				-			
			Predicciones			_		
			+	-	TOTAL	OA	=	0,69
	rooloo	+	1475	988	2463	AC	=	0,50
	reales	•	556	1981	2537	Карр	a =	0,38
		TOTAL	2031	2969	5000			

Comparación de varios modelos:

- Validación cruzada con accuracy o error de mala clasificación
- Medida-F=
 - 2* (Precisión*Recall) / (Precisión+Recall)
- Área debajo de la curve ROC
- Todas las métricas son insensibles a los diferentes costos del error de las diferentes clases, que depende del contexto. Pueden tener impactos diferentes.

MÉTRICAS DE CLASIFICACIÓN TALLER: CÁLCULO DE MÉTRICAS

Calcule las métricas de evaluación de un modelo de clasificación cuyos resultados están reflejados en la tabla siguiente

- Error, Accuracy y Kappa global
- Precisión, Recall, especificidad, F-Measure de cada clase

	PREDICCIÓN								
REAL	Esporádico	Fiel	Parcial	Promocional	Total				
Esporádico	61	8	1	0	70				
Fiel	0	56	17	0	73				
Parcial	0	0	15	0	15				
Promocional	0	0	0	24	24				
Total	61	64	33	24	182				

REFERENCIAS

- Introduction to Statistical Learning with Applications in R (ISLR), G. James, D. Witten, T. Hastie & R. Tibshirani, 2014
- Data Mining (4th Edition), Ian Witten, Eibe Frank, Mark A. Hall & Christopher J. Pal, Elsevier, 2016
- Machine Learning, Tom M. Mitchell, McGraw-Hill, 1997
- Data Science for Business, Foster Provost & Tom Fawcett, O'Reilly, 2013
- False positives, false negatives and confusion matrices, Carlos Guestrin, 2017
- http://www.cs.waikato.ac.nz/ml/weka/mooc/dataminingwithweka/
- https://www.ibm.com/developerworks/library/os-wekal/

