Ausgabe: 27. Juni 2023 _______ Besprechung: 3. Juli 2023

Einführung in die angewandte Stochastik

Übungsblatt 9

Aufgabe 36

An einer Klausur haben 15 Studierende teilgenommen. Es konnten nur ganzzahlige Punkte erreicht werden, die Maximalpunktzahl betrug 20 Punkte und es ergaben sich folgende Punktzahlen:

$$5, 10, 17, 12, 10, 13, 20, 13, 5, 13, 17, 17, 10, 20, 17$$

- (a) Geben Sie die Ordnungsstatistik an und bestimmen Sie die absoluten und relativen Häufigkeiten.
- (b) Bestimmen und skizzieren Sie die zugehörige empirische Verteilungsfunktion.
- (c) Zum Bestehen der Klausur waren 8 Punkte nötig, ab 17 Punkten gab es die Note *gut*. Bestimmen Sie mit Hilfe der empirischen Verteilungsfunktion die relative Häufigkeit dafür, dass ein Student
 - (i) die Klausur nicht bestanden hat,
 - (ii) mindestens die Note qut erhielt,
 - (iii) bestanden hat, aber eine schlechtere Note als *qut* erhielt.

Aufgabe 37

Die Zufallsvariablen X_1, \ldots, X_n seien stochastisch unabhängig und jeweils Pareto-verteilt mit (unbekanntem) Parameter $\alpha > 0$. Die zugehörige Dichtefunktion f_{α} und die zugehörige Verteilungsfunktion F_{α} der Zufallsvariablen X_i für $i \in \{1, \ldots, n\}$ in Abhängigkeit vom Parameter α sind gegeben durch

$$f_{\alpha}(x) = \begin{cases} \frac{\alpha}{x^{\alpha+1}} & , & x \ge 1 \ , \\ 0 & , & x < 1 \end{cases} \quad \text{bzw.} \quad F_{\alpha}(x) = \begin{cases} 1 - \frac{1}{x^{\alpha}} & , & x \ge 1 \ , \\ 0 & , & x < 1 \ . \end{cases}$$

Bestimmen Sie eine Maximum-Likelihood-Schätzung $\widehat{\alpha}$ für den Parameter α .

Aufgabe 38

Seien X_1, X_2 und X_3 i.i.d. Zufallsvariablen auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) mit $X_i \sim \mathcal{N}(\mu, 1), i = 1, 2, 3$, wobei $\mu \in \mathbb{R}$ unbekannt sei. Betrachten Sie die folgenden beiden Schätzer für μ :

$$\hat{\mu}_1 = \frac{1}{3} (X_1 + 2X_2), \quad \hat{\mu}_2 = \frac{1}{3} \sum_{i=1}^3 X_i.$$

- (a) Sind $\hat{\mu}_1$ und $\hat{\mu}_2$ erwartungstreu für μ ?
- (b) Berechnen Sie für $\hat{\mu}_1$ und $\hat{\mu}_2$ jeweils die Varianz und entscheiden Sie auf Basis Ihrer Ergebnisse, welcher der beiden Schätzer für eine Schätzung von μ verwendet werden sollte.

Aufgabe 39

Seien X_1, X_2 i.i.d. Zufallsvariablen auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) mit $X_i \sim \text{Exp}(\lambda), i = 1, 2$, wobei $\lambda > 0$ unbekannt sei. Betrachten Sie den folgenden Schätzer für λ :

$$\hat{\lambda} = \frac{1}{2}(X_1 + X_2)$$

Bestimmen Sie den mittleren quadratischen Fehler $MSE(\hat{\lambda}, \lambda)$.

Aufgabe 40

Seien $X_1,\ldots,X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu_1,\sigma^2)$ und $Y_1,\ldots,Y_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu_2,\sigma^2)$ zwei unabhängige Folgen von normalverteilten Zufallsvariablen auf einem Wahrscheinlichkeitsraum (Ω,\mathcal{F},P) mit Erwartungswerten $\mu_1,\mu_2\in\mathbb{R}$ und Varianz $\sigma^2>0$. Um zu überprüfen, ob die beiden Erwartungswerte μ_1 und μ_2 übereinstimmen oder voneinander abweichen, kann z.B. der Schätzer

$$T_n = T_n(X_1, \dots, X_n, Y_1, \dots, Y_n) := \frac{1}{n} \sum_{i=1}^n (X_i - Y_i)$$

verwendet werden.

- (a) Ist der Schätzer T_n erwartungstreu für den Parameter $\vartheta := \mu_1 \mu_2$?
- (b) Ist der Schätzer T_n schwach bzw. stark konsistent für den Parameter ϑ ?