THENA 协议分析

1. 概述

THENA主要是解决AMM流动性激励问题给出的解决方案。在Solidly基础上, 改进了费用分配、流动性挖矿和启动流动性等问题, 保留了时间加权平均价格(TWAP)等受欢迎的功能。

2. 合约地址

Contract Name	Info	Address
PermissionRegistry	handle access to Thena ecosystem	0xe3Db58904B868eFDECD374Ed4f7b75e2A0f3e0E
BribeFactory	Create bribes contracts	0xD50CEAB3071c61c85D04bDD65Feb12FEe7C913
GaugeFactoryV2	Create Gauges for s/vAMM LP	0x2c788FE40A417612cb654b14a944cd549B5BF13(
GaugeFactoryV2_CL	Create Gauges and FeeVault for CL LPs	0xb065E4F5D71a55a4e4FC2BD871B36E33053cabl
PairFactory	Create sAMM and vAMM pairs	0xAFD89d21BdB66d00817d4153E055830B1c2B397
AlgebraFactory	Create Con. Liq. LP	0x306F06C147f064A010530292A1EB6737c3e378e4
VoterV3	Voter contract	0x3A1D0952809F4948d15EBCe8d345962A282C4fC
Minter	Minter of \$THE token	0x86069FEb223EE303085a1A505892c9D4BdBEE99
Thena	Thena ERC20 token	0xF4C8E32EaDEC4BFe97E0F595AdD0f4450a863a
veThena	Thena Governance veNFT	0xfBBF371C9B0B994EebFcC977CEf603F7f31c070[

Contract Name	Info	Address
veArtProxy	Art proxy for veNFT	0xb2B37c4221DaBFFF5B34883e95D88d498F03E51
Thenian	theNFT	0x2Af749593978CB79Ed11B9959cD82FD128BA4f8
Royalties	theNFT sales royalties	0xBB2caf56BF29379e329dFED453cbe60E4d913882
theNFT Staking	theNFT staking contract	0xe58E64fb76e3C3246C34Ee596fB8Da300b5Adfbb
RewardDistributor	Rebase distributor for veNFT	0xC6bE40f6a14D4C2F3AAdf9b02294b003e3967779 (new)
AlgebraRouter	Router for Conc. Liq. Swaps	0x327Dd3208f0bCF590A66110aCB6e5e6941A4EfA(
RouterV2	Router for Solidly LP	0xd4ae6eca985340dd434d38f470accce4dc78d109
UniProxy	Proxy to interface with Gamma	0xF75c017E3b023a593505e281b565ED35Cc120efa (new)
PairAPI	help read LP info	0xE89080cEb6CAEb9Eba5a0d4Aa13686eFcB78A32
RewardsAPI	help read bribe info	0x0b6CFf48836Eea83795Ab8b9a04b1b4654d96c46 (new)
veNFT API	help read veNFT info	0xe09E1aA537382c82245C04536E90fDB7121283b((new)

3. 分析

3.1 添加流动性

THENA的流动性池结合了集中流动性(CL)、动态费用结构和与GAMMA和Algebra的无缝集成,为用户提供了更好的体验和资本效率。集中流动性是一种技术,让用户可以指定一个价格区间,只在该区间内提供流动性,从而提高交易深度和收益。GAMMA和Algebra是两个DeFi项目,分别提供了流动性管理和风险控制的解决方案。

THENA的最新创新是FUSION池,它是与GAMMA和Algebra合作开发的一种集中流动性池。 FUSION池简化了集中流动性的管理,降低了暂时损失(IL)的风险,适应了市场波动,并优化了动态费用。

Algebra是一种基于集中流动性的池技术,让LP可以通过自定义价格区间来提供流动性,并支持高级的做市操作。Algebra为FUSION提供了底层技术。

GAMMA是一种流动性管理协议,可以根据市场波动、流动性和交易量自动调整LP的价格区间,以最大化收益并减少无常损失。GAMMA与FUSION无缝集成,为LP提供了便捷的服务和经过验证的做市服务。

FUSION池采用了基础费用和动态费用的结构,让协议合作伙伴可以灵活地设置和修改费用水平,而不需要重新部署流动性。基础费用是固定的组成部分,可以由核心团队自由设定。动态费用是根据市场波动自动调整的组成部分,以适应不同的市场情况。

除了FUSION池外,THENA还提供了经典的vAMM和sAMM池。

Thena协议合约为流动性池提供了2个接口合约:

• UniProxy: 用来为FUSION池添加流动性

UniProxy.deposit->Hypervisor.deposit->AlgebraPool.mint

这里, Hypervisor是一个FUSION lp池. Hypervisor合约也是一个的ERC20合约, 在 Hypervisor.deposit函数最后, 会mint Hypervisor lp代币给到调用者, lp代币数量代表此次添加的流动性数量. AlgebraPool合约用于管理流动性池, 包括流动性的提供和销毁, 以及交换以及闪电贷. AlgebraPool.mint就是提供流动性的函数.

• RouterV2: 用来为V1的stable池(sAMM pool)或volatile池(vAMM pool)

RouterV2.addLiquidity->Pair.mint

RouterV2.addLiquidity用于添加流动性. 如果没有对应的Pair合约, 会创建相应的Pair合约, Pair合约会调用mint, 创建lp代币给到调用者. Pair合约包含了Hypervisor和AlgebraPool的功能, 既是ERC20代币合约, 也是用于swap操作的流动性池.

用户可以把代币添加流动性获取的Ip代币抵押到Gauge中, 获得额外的THE 奖励.

3.2 投票

通过锁定THE代币获取veTHE代币. THE是Thena的主代币, veTHE是Thena的治理代币, 也可以认为是DAO代币. veTHE是一种NFT, 用户锁定THE代币, 可以获得veTHE, 锁定THE的数量即为veTHE的投票权重, 但是投票权重随着时间递减.

拥有veTHE的用户可以对lp pool进行投票, 投票是通过gauge进行的, 因为gauge和lp pool是一对一的关系. 每个veTHE都有不同的tokenId, 也有不同的投票权重.

投票的操作是在VoterV3合约进行的.

投票是把用户持有的的veThe代币, 抵押到Gauge中. 每个Gauge对应一个lp池. 每次可以对多个池投票, 每个池子不同的权重比例, 比如vote(tokenId, [pool1, pool2, pool3], [20, 30, 50]), 表示tokenId的代币同时给三个池子投票, 每个池子的权重分别是20%, 30%和50%, 假设用户的tokenId抵押了100个THE代币, 那么每个池子的票数分别是20, 30和50. 但是同一个池子,同一个tokenId不能投2次. 投票的用户在投票周期结束后, 有3种奖励, 一种是lp pool的交易费, 一种是贿赂, 还有一种是THE的排放.

VoterV3.vote->Bribe.deposit

VoterV3合约管理了所有gauges和bribes. 所以投票, 取消投票, 以及获取奖励都从VoterV3合约进行. VoterV3.vote会调用相应的gauge的bribe的deposit函数. 把veThe的tokenId抵押在bribe中. bribe负责结算lp 池的交易费和贿赂费用.

3.3 创建Gauge

如上所述, 创建Gauge和Bribe都是在VoterV3合约中进行的. createGauge创建gauge时, 要提供 lp pool的地址作为参数. 也就是一个gauge对应一个lp pool. 还要提供一个表示gauge的类型参数, 0表示普通式, 1表示CL. createGauge内部会调用2次createBribe, 创建两个Bribe合约, 一个用于管理lp pool的交易费, 一个用于lp pool的贿赂. createGauge会调用IGaugeFactory.createGaugeV2接口. 根据gauge类型参数, 使用GaugeFactoryV2或GaugeFactoryV2_Cl实例化IGaugeFactory接口. 其中GaugeFactoryV2_Cl和GaugeFactoryV2区别在于创建GaugeV2_Cl还是GaugeV2, GaugeV2_CL合约在构造的时候多了个CLFeesVault合约地址, 通过名字可知, CLFeeVault是一个集中流动性交易费的资金池. 在Hypervisor合约里, 有个feeRecipient成员, 是个address类型, 用于保存Hypervisor提供流动性费用奖励, 这个地址其实就是CLFeesVault的合约地址.

3.4 获取奖励

Thena主代币THE每周排放会根据每个lp pool的投票数量进行奖励. gauge会把获取的THE根据lp抵押的lp代币数量进行奖励. THE只会奖励lp, 不会对veTHE投票进行奖励.

lp用户通过gauge的getReward函数获取THE排放奖励.

而veTHE投票获取的奖励是pool的交易费和贿赂费用.

上面提到过, 交易费和会路费是在Bribe合约计算的. 用户可以根据VoteV3中的poolVote获取自己tokenId对应的pool, 然后通过gauges获取pool对应的gauge, 然后internal_bribes获取gauge对应的internal_bribes, internal_bribe用来计算交易费的; 通过external_bribes获取gauge对应的external_bribes, external_bribe用来计算贿赂的. 同过Bribe合约的getReward获取不同的tokenId和不同tokens的奖励.

3.5 锁定THE

锁定THE代币, 获得veTHE代币. 通过合约VotingEscrow.create_lock函数, 输入锁定THE数量和周期, 既可获得veTHE NFT tokenId.

3.6 Swap

Thena支持的交易类型有:

- market: 就是现价交易. 又分为:
 - 。 MAIN: Thena默认使用的, 应该是直接调用OpenOcean API进行的, 利用OpenOcean先进的路由技术.
 - 。 FUSION: 应该是在FUSION池中进行的. 通过Hypervisor.pool调用的是 AlgebraPool.swap实现的.
 - 。 V1: 应该是在V1池进行的. 通过RouterV2合约的swapExactTokensForTokensSimple和 swapExactTokensForTokens进行的, 前者直接在在对应的池子, 通过Pair.swap实现交易. 后者需要提供会提供一个 route[] 类型的参数,这个参数是一个包含了多个路由的数组. 每个路由是一个结构体,包含了交易的输入代币地址(from)、输出代币地址(to)和 是否稳定(stable)三个字段。这个路由数组描述了代币交易的路径,例如,如果用户 想要通过一个中间代币从代币 A 兑换到代币 B,他们可以提供一个包含两个路由的数组,第一个路由的 from 是代币 A,to 是中间代币,第二个路由的 from 是中间代币,to 是代币 B。

这种设计使得用户可以灵活地选择交易路径,可以通过中间代币进行交易,也可以直接进行交易。同时,由于路由数组是由用户提供的,所以用户可以根据市场情况自由选择最优的交易路径。

- limit: THENA集成了由Orbs提供支持的dLIMIT协议,以去中心化的方式将这种订单类型带入 DeFi。dLIMIT协议为DEXs确保了限价单以最佳价格和公平费用执行,以去中心化和可靠的 方式。
- twap: TWAP(时间加权平均价格)是CeFi中的一种常用订单类型,它将一个大订单分割成多个小订单,并按照一定的时间间隔执行。TWAP订单的主要目的是减少订单对价格的影响。如果用户想要实施定投策略(DCA),并按照一定的时间表购买某种代币(例如每月一次),TWAP订单也很有用。当订单规模与可用流动性相比较大,或者当用户预期一个高波动性且没有明显趋势的时期时,TWAP是最合适的。THENA集成了由Orbs支持的dTWAP协议,以去中心化的方式将这种订单类型引入DeFi。
- Cross-chain:THENA的跨链交换由Axelar和Squid Router提供支持,实现了不同区块链之间的无缝和安全的通信和交换。Axelar是一个强大的区块链"互联网基础设施",Squid Router是一个应用层工具。它们结合起来,可以让用户用一键完成跨链资产转移和交换。THENA的跨链交换,借助Axelar和Squid Router的能力,保证了效率和安全。用户可以在多个区块链之间自由地交换资产,或者连接不同的区块链生态系统。

3.7 外围合约

• BeefyVaultV7: 地址, 代码

• AlgebraPool: 地址, 代码

• StrategyThenaGamma: 地址, 没有开源

• Hypervisor: 地址, 代码

4. 部署

Thena合约提供了部署脚本, 但是许多地址都是硬编码的. 测试代码都是在主链跑的, 需要修改后才能再本地链或者测试链上跑起来.