

تمرین سری چهارم درس معماری سیستمهای کامپیوتری نیمسال دوم ۹۸–۱۳۹۷ دکتر کریمی

*موعد تحویل ۱۰ خرداد ۱۳۹۸ خواهد بود.

*تحویل تکلیف تنها از طریق کلاس تعریف شده برای درس در Quera مورد پذیرش خواهد بود. *تکلیف شامل ۶ سوال است.

سوال-۱) سوال ۴ از تمرینات فصل ۷ کتاب موریس مانو.

سوال-۲) سوال ۶ از تمرینات فصل ۷ کتاب موریس مانو.

سوال-۳) سوال ۱۶ از تمرینات فصل ۷ کتاب موریس مانو (موارد BP و SEQ و BPNZ) (SUB)

سوال-۴) بلاک دیاگرام یک ALU در کنار رجیسترهای آن در شکل زیر نشان داده شده است:

حال می خواهیم رابطه ی زیر را در کامپیوتر محاسبه نماییم:

$$X = \frac{A - B}{(A + B) * (C + D)}$$

الف) برنامه ی ارزیابی رابطه ی فوق را به صورت $\frac{7}{1}$ آدرسه و همچنین $\frac{7}{1}$ آدرسه بنویسید. (از حداقل رجیستر ممکن استفاده کنید و به ترتیب از رجیستر $\frac{81}{1}$ پیش بروید)

ب) با کمک جدول های $1-\Lambda$ و $1-\Lambda$ و $1-\Lambda$ حافظه ی کنترلی بلاک فوق را که دارای کلمات $1+\Lambda$ بیتی است، برای برنامه ی $1-\Lambda$ و قسمت الف بنویسید. (در صورت لزوم جدول $1-\Lambda$ را اصلاح کرده و به آن OPR اضافه کنید.)

ج) اگر مقدار رجیستر شاخص برابر ۲۰۰ و مقدار رجیستر پایه برابر ۳۰۰ باشد، بر اساس اولین سطر از برنامهی <u>تک آدرسه</u>، جدول زیر را پر کنید.(اطلاعات این اولین سطر به صورت زیر در حافظه ثبت شده است :)

Address	Word	
150	Load A to AC	
299	1151	
300	450	
301	480	
302	1200	
1000	A=301	
1151	360	
1200	790	

Addressing Mode	Effective Address	Content of AC
Direct Address		
Immediate Operand		
Indirect Address		
Relative Address		
Index Address		
Register		
Register Indirect		
Autodecrement		

سوال (-0) پیاده سازی پشته در یک کامپیوتر به صورت حافظه ای است و از خانه ی (-0) تا (-0) حافظه به آن اختصاص داده شده است؛ عبارت زیر را با کمک این ساختار محاسبه کنید. لازم است محتویات پشته و مقدار رجیستر (-0) در هر مرحله رسم شود.

$$\frac{8*(5+6*(7-2))}{7*(7-3)}$$

سوال -9) در یک کامپیوتر دستورات +9 بیتی هستند و و حافظه +1.17 کلمه دارد. دستورات +1.18 آدرسه و تک آدرسه بدون وجود بیت های تعیین نوع آدرس دهی، در این کامپیوتر وجود دارند. اگر دستورات +1.18 آدرسه +1.18 آدرسه +1.18 تا باشند، حداکثر چند دستور تک آدرسه می توانیم داشته باشیم +1.18