31026 - INTRODUCTION À L'INTELLIGENCE ARTIFICIELLE ET AUX DATA SCIENCES

Vincent Guigue Christophe Marsala

Sorbonne Université

Feedback semaine précédente

UE IADS = triple difficulté

- Dimension mathématique et statistique
- Dimension algorithmique
- Dimension implémentation

Plan statistique:

- Définir une gaussienne, en 1D, en 2D
- Travailler sur une multinomiale
- Générer des points tirés selon une gaussienne en 2D

Feedback semaine précédente

UE IADS = triple difficulté

- Dimension mathématique et statistique
- Dimension algorithmique
- Dimension implémentation

Plan algorithmique:

- Gérer les itérations de l'algorithme du perceptron
- Algorithmes full gradient / batch / purement stochastique
- Notion d'*epoch*
- Détection de la convergence dans une descente de gradient

Feedback semaine précédente

UE IADS = triple difficulté

- Dimension mathématique et statistique
- Dimension algorithmique
- Dimension implémentation

Plan implémentation :

- A-t-on besoin de fournir les dimensions des entrées/sorties pour la création du classifieur?
- Quand initialiser les paramètres du classifieur?
- Comment gérer les epochs (solutions internes & externes)

Visualisation

■ InfoVis = Information Visualization

The use of computer-supported interactive, visual representation of abstract data to amplify cognition Card, Mackinlay & Shneiderman

- DataVis = Data Visualization
- Deux problèmes extrêmement importants dans la data science
- Deux problèmes peu abordés...

Référence utile : Cours de F. Rossi http://apiacoa.org/teaching/visualization/index.fr.html

⇒ Lien avec l'apprentissage statistique : Quelles méthodes permettent de trouver automatiquement de bonnes visualisations des données ?

Humain = machine visuelle très perfectionnée

- Extraction de caractéristiques de base en 200ms
- Possibilités d'analyse de densité / détection d'anomalie très rapide

https://www.csc2.ncsu.edu/faculty/healey/PP/index.html

- Focus sur une dimension X_i
 - N Observations x_{ij}
- Solution pour la visualisation du contenu : l'histogramme

Données orgininales = Iris, 4D : comment visualiser? \Rightarrow Scatter plot

Données orgininales = Iris, 4D : comment visualiser? ⇒ Scatter plot

Anderson's/Fisher's Iris

Avec les informations de classes

Please write down your estimation of the ratio of the areas of those disks.

Limites humaines

Please write down your estimation of the ratio of the lengths of those bars.

Another visual abstraction

Using the same counting data, replace the ${\it Q}$ pie slices by ${\it Q}$ bars with length/height proportional to ${\it N}_{\it q}$

And the views are

Malédiction de la dimensionnalité

Objectifs de la visualisation de données

- 1 Eliminer du bruit
 - Labélisation
 - captation
 - ⇒ Transformation légère
- 2 Comprendre des modes de fonctionnement des données
 - Zones de densités
 - Feature engineering
 - \Rightarrow Transformation avancée

A classical toy example to illustrate the curse of dimensionality :

Distance matrix

Matrix of distance between points

Easy problem / classes are clearly separated

A classical toy example to illustrate the curse of dimensionality :

Original dataset: Matrix view Matrix of raw points -2 -3

Adding some noisy dimensions in the dataset

A classical toy example to illustrate the curse of dimensionality :

Original dataset : Matrix view

Matrix of raw points

Distance matrix

Matrix of distance between points

Adding more noisy dimensions in the dataset

 \Rightarrow Euclidian distance is very sensitive to the dimensionality issue

A classical toy example to illustrate the curse of dimensionality :

 \Rightarrow All points tend to lay on an hypersphere (they become equidistant)

Transformations avancées

ACP : analyse en composantes principales

ACP (PCA) = outil de base pour

- La visualisation de données en grande dimension
- 2 La réduction de la dimension et du bruit

ACP: analyse en composantes principales

ACP (PCA) = outil de base pour

- La visualisation de données en grande dimension
- La réduction de la dimension et du bruit

ldée : trouver des axes qui maximise la variance ⇒ projeter sur ces axes

- Transformation non supervisée
- Transformation applicable sur de nouveaux points
 - $X \in \mathbb{R}^{N \times d}$
 - **2** ACP sur $X^TX \in \mathbb{R}^{d \times d}$
 - **3** Récupétation de $\{V_i \in \mathbb{R}^d, \lambda_i \in \mathbb{R}_+\}_{i=1,\dots,d}$
 - d Axes de projection V_i ... associés à leur force d'explication λ_i
 - 5 Utilisation des Vi sur les données de test

Idée : Les données sont organisées selon une variété

LLE: local linear embedding

MDS: multi-dimensional scaling

	Atlanta (1)	Boston (2)	Cincinnati (3)	Columbus (4)	Dallas (5)	Indianapolis (6)	Little Rock (7)	Los Angeles (8)	Memphis (9)	St. Louis (10)	Spokane (11)	Tampa (12)
(1)	0											
(2)	1068	0										
(3)	461	867	0									
(4)	549	769	107	0								
(5)	805	1819	943	1050	0							
(6)	508	941	108	172	882	0						
(7)	505	1494	618	725	325	562	0					
(8)	2197	3052	2186	2245	1403	2080	1701	0				
(9)	366	1355	502	586	464	436	137	1831	0			
(10)	558	1178	338	409	645	234	353	1848	294	0		
(11)	2467	2747	2067	2131	1891	1959	1988	1227	2042	1820	0	
(12)	467	1379	928	985	1077	975	912	2480	779	1016	2821	0

Two dimensional clustering of UK Members of Parliament

Step		
1	Construct neighborhood graph	Define the graph G over all data points by connecting points i and j if [as measured by $d_X(i,j)$] they are closer than ϵ (ϵ -Isomap), or if i is one of the K nearest neighbors of j (K -Isomap). Set edge lengths equal to $d_X(i,j)$.
2	Compute shortest paths	Initialize $d_G(i,j) = d_X(i,j)$ if i,j are linked by an edge; $d_G(i,j) = \infty$ otherwise. Then for each value of $k = 1, 2, \ldots, N$ in turn, replace all entries $d_G(i,j)$ by $\min\{d_G(i,j), d_G(i,k) + d_G(k,j)\}$. The matrix of final values $D_G = \{d_G(i,j)\}$ will contain the shortest path distances between all pairs of points in G (16, 19).
3	Construct <i>d</i> -dimensional embedding	Let λ_p be the p -th eigenvalue (in decreasing order) of the matrix $\tau(D_G)$ (17), and v_p' be the i -th component of the p -th eigenvector. Then set the p -th component of the d -dimensional coordinate vector \mathbf{y}_i equal to $\sqrt{\lambda_p}v_p'$.

Que se passe-t-il sur des données USPS ou MNIST ? 256/384 dimensions $\Rightarrow 2D!$

Sur USPS

Que se passe-t-il sur des données USPS ou MNIST ? 256/384 dimensions $\Rightarrow 2D!$

ACP/PCA

Que se passe-t-il sur des données USPS ou MNIST ? 256/384 dimensions $\Rightarrow 2D!$

Projection non linéaire

Visualizing MNIST with MDS

Visualizing MNIST as a Graph

Sur USPS

Que se passe-t-il sur des données USPS ou MNIST ? 256/384 dimensions \Rightarrow

T-SNE

