Föreläsningsanteckningar Transformer, signaler och system SSY080

Hugo Simonsson 3 oktober 2019

Innehåll

1	För	eläsnir	ng 19-09-03	6
	1.1	Klassi	ficering av signaler	6
		1.1.1	Diskret/Kontinuerlig signal	6
		1.1.2	Jämn/Udda signal	6
		1.1.3	Periodisk signal	6
		1.1.4	Deterministisk (Känd, förutsägbar)/Slumpmässig (Stokas-	
			tisk) signal	6
	1.2	Signal	manipulering	7
		1.2.1	Amplitudskalning	7
		1.2.2	Ändra tidsskala	7
		1.2.3	Spegling	7
		1.2.4	(Tids)skift	7
		1.2.4 $1.2.5$	Samtida operationer	7
	1.3		modeller	8
	1.0	1.3.1	Komplex exponential (kontinuerlig)	8
	1 /			8
	1.4		epetition av komplexa tal	8
	1.5		olika fall	
		1.5.1	Fall 1	8
		1.5.2	Fall 2	8
	1.0	1.5.3	Fall 3	8
	1.6		et exponential	8
		1.6.1	Fall 1	9
		1.6.2	Fall 2	9
		1.6.3	Fall 3	9
2	För	eläsnir	ng 19-09-05	9
	2.1	Fler si	$\mathrm{ignaler}$	9
		2.1.1	Enhetssteg (kontinuerligt)	9
		2.1.2	Enhetsimpuls	9
		2.1.3		.0
		2.1.4		.0
		2.1.5		1
	2.2			1
	2.3			1
		2.3.1	0 1	1
		2.3.2		2
		2.3.3		2
				2
		2.3.4 $2.3.5$		2
		2.3.6		3
		2.3.0	willinesiosnet/Statiskt system	
3				4
	3.1			4
	3.2		0 / 0 /	4
		3.2.1		4
		3.2.2	O	4
	2.2	Systor	noganskapor kopplado till impulsevar	6

		3.3.1 3.3.2	Kausalt I Stabilt L											16 16
4	Före 4.1	Diff. el 4.1.1 4.1.2	g 19-09- kvationer Kontinue Stabilitet ta fallet .	 rliga fa i kaus	llet . ala fa	 11 .			 					16 16 16 17 18
5	Före 5.1 5.2 5.3	Approx Fourier 5.2.1	g 19-09-2 ximation a rserier Kompakt nsspektru	av signa . form					 					19 19 20 22 22
6	Före 6.1 6.2 6.3 6.4 6.5 6.6	Diskret $6.1.1$ Fourier $\delta(t)$. Transfer Period	g 19-09- t Fouriert Syntes . rtransform ormpar . isk återbli	ransformen				 	 	 	 	 	· · · ·	 23 23 24 25 25 26 26
7	Före 7.1 7.2 7.3	Egensk Räkner	g 19-09-3 kaper hos regler för terels sats	Fourier Fourier	trans	form	nen		 					27 27 27 31
8	Före 8.1 8.2	Fourier	g 19-09- rserier och nanalys .	-trans										31 31 32
9	För 6		g 19-09-2 struktion Ideal rek Praktisk Aliasing/	 onstruk rekonst	tion rukti	on			 					32 32 33 34 35
10		Laplac 10.1.1	g 19-09- 2 etransforr Tvåsidig Egenskap	nen					 					37 37 37 38
11		Laplac	g 19-10-0 e och diffe Mer allm	erential										39 39 41
12	12.1	Laplac	g 19-10- 0 etransforr Laplacetr	nen till:										42 42 44

13 Föreläsning 19-10-03	44
13.1 Kort repetition	44
13.2 Bodediagram/Bode plots	44
13.2.1 Frekvenssvarets belopp	45
13.3 Fourierrepresentationer	46
13.3.1 Egenskaper	46
13.4 Syntesekvation/Invers DTFT	47
· · · · · · · · · · · · · · · · · · ·	

List of Theorems

1	Sats
1	Definition (Energisignal)
2	Definition (Effektsignal)
3	Definition
4	Definition
2	Sats
3	Sats
5	Definition (Fouriertransformen)
4	Sats (Rekonstruktion av signal från Fourierserie) 24
5	Sats (Linearitet av Fouriertransformer)
6	Sats (Linearitet av Fouriertransformen)
7	Sats (Tidsskalning Fouriertransform)
8	Sats (Tidsskifte Fouriertransform)
9	Sats (Derivata och Fouriertransform)
10	Sats (Fouriertransform för $t \cdot f(t)$)
11	Sats (Sambandet mellan $\frac{d}{dt}$ och δ')
12	Sats
13	Sats
14	Sats (Samplingsteoremet)
6	Definition (Nyquistfrekvens)
7	Definition (sinc)
8	Definition (Tvåsidig Laplacetransform)
9	Definition (Ensidig Laplacetransform)
10	Definition (Exponentiellt begränsad)
15	Sats (Likhet av två signaler och dess två Laplacetransformer) 39
16	Sats (Slutvärdessatsen)

1 Föreläsning 19-09-03

I kursen studerar vi tekniska/fysikaliska system och deras egenskaper. Vi kan till exempel vara intresserade av hur de reagerar på olika exciteringar (insignaler). Vi begränsar oss till system med en in- och en utsignal. In- och utsignaler kan vara ex. kraft, tryck, spänning, ström o.s.v. Vi använder oss av matematiska modeller för att beskriva signaler (funktioner) och system (ekvationer).

1.1 Klassificering av signaler

1.1.1 Diskret/Kontinuerlig signal

Kontinuerlig (tid) signal x(t) där $t \in \mathbb{R}$

Diskret (tid/oberoende variabel) signal x[n] där $n \in \mathbb{Z}$

Kontinuerlig amplitud $x(t), x[n] \in \mathbb{R}$

Diskret amplitud x(t), x[n] kvantiserad

Digital signal betecknar vanligen en signal som är diskret både i tid och amplitud.

1.1.2 Jämn/Udda signal

Jämn signal $\forall t, x(t) = x(-t)$ kallas vanligtvis $x_e(t)$

Udda signal $\forall t, x(t) = -x(-t)$ kallas vanligtvis $x_o(t)$

Sats 1. En godtycklig signal x(t) kan alltid delas upp i en jämn signal $x_e(t)$ och en udda signal $x_o(t)$. Den jämna delen $x_e(t) = \frac{1}{2}(x(t) + x(-t))$ och den udda delen $x_o(t) = \frac{1}{2}(x(t) - x(-t))$

Bevis.
$$x_e(-t) = \frac{1}{2}(x(-t) + x(t)) = x_e(t)$$
 och $x_o(-t) = \frac{1}{2}(x(-t) - x(t)) = -\frac{1}{2}(x(t) - x(-t)) = -x_o(t)$. Summan $x_e(t) + x_o(t) = \frac{1}{2}(x(t) + x(-t) + x(t) - x(-t)) = x(t)$.

1.1.3 Periodisk signal

Periodisk signal $\forall t, x(t) = x(t+T)$ där T är en konstant period för signalen.

Exempelvis sinusformad signal, fyrkantsvåg, triangelvåg o.s.v.

Periodisk diskret signal $\forall n, x[n] = x[n+N]$ där $N \in \mathbb{Z}^+$ och konstant.

1.1.4 Deterministisk (Känd, förutsägbar)/Slumpmässig (Stokastisk) signal

En signal kallas slumpmässig om den inte kan förutsägas helt.

Definition 1 (Energisignal). Låt den totala energin vara $E = \lim_{T \to \infty} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x(t)|^2 dt$

alt.
$$E = \sum_{n=-\infty}^{\infty} |x[n]|^2$$
. Om $0 < E < \infty$ är x en energisignal.

Definition 2 (Effektsignal). Låt medeleffekten $P = \lim_{T \to \infty} \frac{1}{T} \int_{-T}^{\frac{T}{2}} |x(t)|^2 dt$ alt.

$$P = \lim_{T \to \infty} \frac{1}{2N+1} \sum_{n=-\infty}^N |x[n]|^2.$$
 Om $0 < P < \infty$ är x en effektsignal.

Notera att för en energisignal gäller $P \to 0$ eftersom $E < \infty$ och på samma sätt gäller att för en effektsignal går $E \to \infty$.

1.2 Signalmanipulering

1.2.1 Amplitudskalning

y[n]=ax[n]+b där vi exempelvis kan kalla a för förstärkning och b inom elektronik för DC-skift. a,b är konstanter. På samma sätt för kontinuerliga signaler y(t)=ax(t)+b.

1.2.2 Ändra tidsskala

$$y(t) = x(at), a \in \mathbb{R} \text{ och } y[n] = x[kn], k \in \mathbb{Z}$$

1.2.3 Spegling

$$\forall t, y(t) = x(-t) \text{ och } \forall n, y[n] = x[-n]$$

1.2.4 (Tids)skift

$$y(t) = x(t - t_0) \text{ och } y[n] = x[n - n_0]$$

1.2.5 Samtida operationer

Låt x(t) vara en signal.

Ändra tidsskala så att $t \to at \implies x(at)$ sen en tidsskift $t \to t - t_0' \implies x(a(t-t_0')) = x(at-at_0')$. Nu ändrar vi först tidsskift $t \to t - t_0 \implies x(t-t_0)$ och sen tidsskalan $t \to at \implies x(at-t_0)$. Notera att det är blir olika beroende på i vilken ordning det tas i. För att det ska vara lika måste $at_0' = t_0$.

1.3 Signalmodeller

1.3.1 Komplex exponential (kontinuerlig)

 $x(t)=Ce^{at}$ där $C,a,x\in\mathbb{C}$. Komplexa tal förekommer oftast inte i fysikaliska system men är mycket användbara som matematiska modeller. Den fysikaliska signalen kan fås ur $\text{Re}\{x(t)\}$ eller $\text{Im}\{x(t)\}$. Jämför $j\omega$ -metoden (phasors) för beräkning av stationära växelströmskretsar.

1.4 Lite repetition av komplexa tal

$$\cos(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2} \text{ och } \sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j}.$$

Tidsvariation $\theta = \omega t$

1.5 Några olika fall

1.5.1 Fall 1

Anta $C, a \in realn$. Då är $x(t) = Ce^{at}$. För a < 0 och C > 0 beskriver x ett exponentiellt avtagande förlopp. För a > 0 beskriver x ett exponentiellt stigande förlopp. Om a = 0 är x(t) = C.

1.5.2 Fall 2

 $a, C \in \mathbb{C}$ och $\operatorname{Re}\{a\} = 0$. Låt $a = j\omega_0$ och $C = Ae^{j\Phi}(= A\angle\Phi)$. $x(t) = Ae^{j\Phi}e^{j\omega_0t} = Ae^{j(\omega_0t+\Phi)} = A\cos(\omega_0t+\Phi) + jA\sin(\omega_0t+\Phi)$. $\operatorname{Re}\{x(t)\}$ är sinusformad med amplitud A och fasförskjutning Φ . Det är en odämpad sinusformad signal.

1.5.3 Fall 3

 $C, a \in \mathbb{C}$. Låt $C = Ae^{j\Phi}$ och $a = \sigma_0 + j\omega$. Då är $x(t) = Ae^{j\Phi}e^{(\sigma_0 + j\omega_0)t} = Ae^{\sigma_0 t}e^{j(\omega_0 t + \Phi)} = Ae^{\sigma_0 t}\cos(\omega_0 t + \Phi) + jAe^{\sigma_0 t}\sin(\omega_0 t + \Phi)$. Om $\sigma_0 < 0$ blir signalen en dämpad sinusformad signal. Om $\sigma_0 > 0$ blir signalen en anti-dämpad sinusformad signal. Om $\sigma_0 = 0$ är det bara fall 2 igen.

8

1.6 Diskret exponential

Låt $x[n] = Ca^n$. Allmänt är $C, a, x \in \mathbb{C}$ och $n \in \mathbb{Z}$.

1.6.1 Fall 1

 $C, a \in \mathbb{R}$. Då gäller $x[n] = Ca^n$. För olika intervall ser graferna ut precis som man kan tänka sig. a < 0 gör att tecknet på x[n] växlar och är negativt för udda n.

1.6.2 Fall 2

 $C,a\in\mathbb{C}$ men |a|=1. Låt $a=e^{j\Omega_0}$ och $C=Ae^{j\Phi}$. Då är $Ae^{j\Phi}e^{j\Omega_0n}=Ae^{j(\Omega_0n+\Phi)}=A\cos(\Omega_0n+\Phi)+jA\sin(\Omega_0n+\Phi)$. x[n] är då en diskret odämpad sinusformad signal.

1.6.3 Fall 3

 $C, a \in \mathbb{C}$. Låt $C = Ae^{j\Phi}$ och $a = e^{\Sigma_0}e^{j\Omega_0} = e^{\Sigma_0 + j\Omega_0}$. Då är $x[n] = Ae^{j\Phi}e^{(\Sigma_0 + j\Omega_0)n} = Ae^{\Sigma_0 n}e^{j(\Sigma_0 n + \Phi)}$. Σ_0 bestämmer om signalen blir dämpad eller anti-dämpad.

2 Föreläsning 19-09-05

2.1 Fler signaler

2.1.1 Enhetssteg (kontinuerligt)

Betecknas u(t) = 1 om $t \ge 0, 0$ annars.

Den används oftast ihop med en generell signal $x(t) \cdot u(t)$ så att den får signalvärden 0 när t < 0.

2.1.2 Enhetsimpuls

Tekniskt sett inte en "vanlig" funktion, det är snarare en distribution eftersom den inte har väldefinierade amplitudvärden för alla invärden.

9

Definition 3.
$$\delta(t) = 0$$
 för $t \neq 0$ men $\int_{-\infty}^{\infty} \delta(t) dt = 1$

Möjlig grafisk beskrivning:

Det är en "o
ändligt kort" signal med en "o
ändligt hög" amplitud. Amplituden vid t=0 är inte begränsad. Vår grafiska notation är följande:

Enhetsimpulsen definieras utifrån sina egenskaper.

Låt f(t) vara en godtycklig funktion (signal) som är kontinuerlig vid $t = t_0$. Då är $f(t)\delta(t-t_0) = f(t_0)\delta(t-t_0)$. Vidare gäller

$$\int_{-\infty}^{\infty} f(t)\delta(t - t_0)dt$$

$$= \int_{-\infty}^{\infty} f(t_0)\delta(t - t_0)dt$$

$$= f(t_0) \int_{-\infty}^{\infty} \delta(t - t_0)dt$$

$$= f(t_0).$$

2.1.3 Samband mellan enhetssteg och enhetsimpuls

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau \text{ och } \delta(t) = \frac{du(t)}{dt}.$$

2.1.4 Diskreta varianter

Motsvarande gäller för diskreta varianter av enhetssteg och enhetsimpuls.

Definition 4. Den diskreta enhetsimpulsen $\delta[n] = 1$ om n = 0, 0 annars.

2.1.5 Samband mellan diskreta varianter

$$\delta[n] = u[n] - u[n-1] \text{ och } u[n] = \sum_{k=-\infty}^{n} \delta[k]$$

2.2 System

En process där det finns en relation mellan orsak (insignal) och verkan (utsignal). Kan symboliseras som ett vanligt blockschema med en låda och pilar. En matematisk ekvation kan användas för att beskriva systemet, ex. elektriska kretsar och mekaniska system. Oftast differentialekvationer.

2.3 Systemegenskaper

2.3.1 Tidsinvarians

För ett tidsinvariant system gäller

Insignal
$$\Longrightarrow$$
 Utsignal $x(t) \Longrightarrow y(t)$ $x(t-t_0) \Longrightarrow y(t-t_0)$

"Nu är det så att jag använder språket svenska."

- Ants Silberberg

Ett system är då tidsinvariant om $y(t-t_0)=y_d(t)$ och samma gäller för ett diskret system.

2.3.2 Linearitet

För ett linjärt system gäller

Insignal
$$\Longrightarrow$$
 Utsignal
$$x(t) \Longrightarrow y(t)$$

$$a \cdot x(t) \Longrightarrow a \cdot y(t), a \text{ konstant (Systemet homogent)}$$

$$x_1(t) \Longrightarrow y_1(t)$$

$$x_2(t) \Longrightarrow y_2(t)$$

$$x_1(t) + x_2(t) \Longrightarrow y_1(t) + y_2(t), \text{ (Systemet additivt)}$$

$$a_1x_1(t) + a_2x_2(t) + \dots \Longrightarrow a_1y_1(t) + a_2y_2(t) + \dots \text{ (Kallas superposition)}$$

Om ett system är homogent och additivt är det linjärt.

2.3.3 Stabilitet

Ett system är stabilt om en begränsad insignal ger en begränsad utsignal. På engelska BIBO (Bounded input bounded output).

$$\forall t |x(t)| < M_x < \infty \implies |y(t)| < M_y < \infty$$

2.3.4 Kausalitet

Ett system är kausalt om utsignalen y(t) endast beror på samtida och/eller tidigare värden på insignalen x(t). Alla fysikaliska system är kausala om t är tid.

2.3.5 Minne/Dynamiskt system

Ett system har minne om dess utsignal vid tidpunkten $t_0, y(t_0)$, beror på fler insignaler än bara $x(t_0)$.

Exempel 1 (Spänning över en kondensator). Insignalen är strömmen genom kondensatorn i(t) och utsignalen är spänningen v(t). Då är $v(t) = \frac{1}{\zeta}C$ $\int_0^t i(\tau) d\tau + v(0)$. v(t) beror på tidigare värden, alltså är systemet dynamiskt/har minne.

2.3.6 Minneslöshet/Statiskt system

Exempel 2 (Spänning över en resistans). In- och utsignaler som förra exemplet, då är $v(t) = R \cdot i(t)$. Eftersom det bara beror på i(t) och inga andra i är systemet minneslöst/statiskt.

Alla dessa egenskaper gäller även för diskreta system. **Exempel 3** (Diskret exempel).

$$y[n] = n \cdot x[n]$$

Vi ser om det är tidsinvariant.

Inte tidsinvariant eftersom $y_d[n] \neq y[n - n_0]$.

Kollar om det är linjärt:

Insignal
$$\Longrightarrow$$
 Utsignal
$$x_1[n] \implies y_1[n] = n \cdot x_1[n]$$

$$x_2[n] \implies y_2[n] = n \cdot x_2[n]$$

$$x_3[n] = a_1x_1[n] + a_2x_2[n] \implies y_3[n] = n \cdot x_3[n] = n(a_1x_1[n] + a_2x_2[n]) = a_1nx_1[n] + a_2nx_2[n] = a_1y_1[n] + a_2x_2[n]$$

Alltså är det linjärt.

Det är inte stabilt eftersom $y[n] = n \cdot x[n]$ inte är begränsat ty n inte är begränsat. Det är dock kausalt, vilket inses lätt.

3 Föreläsning 19-09-06

3.1 LTI-system

Ett vanligt sätt att karakterisera ett system är att ange dess utsignal för en given och känd insignal. För insignalen $x(t) = \delta(t)$ blir utsignalen y(t) = h(t). Det kallas för systemets *impulssvar*. Motsvarande samband gäller för ett diskret system. Andra vanliga insignaler för att beskriva system är

$$\begin{array}{ccc} \text{In} & \Longrightarrow \text{ ut} \\ & \text{Enhetssteg} & \Longrightarrow \text{Stegsvar} \\ & \text{Sinusformad signal med } \omega = \omega_0 & \Longrightarrow \text{Frekvenssvar} \end{array}$$

3.2 Samband mellan insignal, utsignal och LTI-system (i tidsdomänen)

3.2.1 Diskret fall

Anta att vi känner impulssvaret h[n] till ett diskret LTI-system.

Låt x[n] vara en godtycklig diskret signal.

Bilda $x[n] \cdot \delta[n] = x[0]\dot{\delta}[n]$ och därefter bilda $x[n] \cdot \delta[n-k] = x[k]\delta[n-k]$. Tydligen kan vi teckna x[n] som en summa av viktade och skiftade enhetsimpulser. Alltså

För ett LTI-system gäller

Insignal
$$\Longrightarrow$$
 Utsignal
$$\delta[n] \implies h[n]$$

$$\delta[n-k] \implies h[n-k]$$

$$x[k] \cdot \delta[n-k] \implies x[k]h[n-k]$$

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot \delta[n-k] \implies y[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k]$$

y[n] ovan kallas för Faltningssumman. Förenklat skrivs y[n] = x[n] * h[n]. Med en variabelsubstitution kan man visa att $x[n]*h[n] = h[n]*x[n] \implies \sum_{k=-\infty}^{\infty} x[k] \cdot$

$$h[n-k] = \sum_{k=-\infty}^{\infty} h[k] \cdot x[n-k].$$

3.2.2 Kontinuerligt fall

Anta att vi känner impulssvaret h(n) till ett kontinuerligt LTI-system. Låt också x(t) vara en godtycklig (in)signal och låt $\hat{x}(t)$ vara en approximation av x(t) där

 $\hat{x}(t)$ är summan av pulserna x_{-1}, x_0, x_1, \dots o.s.v.

Vi definierar en enhetspuls som $\delta_{\epsilon}(t) = \frac{1}{\epsilon}$ när $0 \le t < \epsilon$ och 0 annars.

Våra pulser kan vi nu teckna som . . . , $x_{-1} = \delta_{\epsilon}(t+\epsilon)x(-\epsilon)\epsilon$, $x_0 = \delta_{\epsilon}(t)x(0)\epsilon$, $x_1 = \delta_{\epsilon}(t-\epsilon)x(\epsilon)\epsilon$, . . . och $\hat{x}(t) = \sum_{-\infty}^{\infty} \delta_{\epsilon}(t-k\epsilon)x(k\epsilon)\epsilon$. Låt $h_{\epsilon}(t)$ vara systemets utsignal för insignalen $\delta_{\epsilon}(t)$ (pulssvar). För ett LTI-system gäller då

$$\begin{array}{ccc} \operatorname{Insignal} & \Longrightarrow & \operatorname{Utsignal} \\ \delta_{\epsilon}(t) & \Longrightarrow & h_{\epsilon}(t) \\ \delta_{\epsilon}(t-k\epsilon) & \Longrightarrow & h_{\epsilon}(t-k\epsilon) \\ \delta_{\epsilon}(t-k\epsilon)x(k\epsilon)\epsilon & \Longrightarrow & h_{\epsilon}(t-k\epsilon)x(k\epsilon)\epsilon \\ \\ \sum_{k=-\infty}^{\infty} \delta_{\epsilon}(t-k\epsilon)x(k\epsilon)\epsilon = \hat{x}(t) & \Longrightarrow & \sum_{k=-\infty}^{\infty} h_{\epsilon}(t-k\epsilon)x(k\epsilon)\epsilon = \hat{y}(t) \end{array}$$

Låt $\epsilon \to 0$, då gäller

$$\begin{split} & \delta_{\epsilon}(t) \to \delta(t) \\ & h_{\epsilon}(t) \to h(t) \\ & k\epsilon \to \tau \text{ (En kontinuerlig variabel)} \epsilon \\ & \sum \to \int \\ & \hat{x}(t) \to x(t) \\ & \hat{y}(t) \to y(t) \end{split}$$

Vi får då

$$y(t) = \int_{-\infty}^{\infty} h(t - \tau)x(\tau)d\tau$$

vilket kallas faltningsintegralen. Förenklat skrivsätt är y(t)=h(t)*x(t). Genom en variabelsubstitution kan man visa h(t)*x(t)=x(t)*h(t), alltså att $\int_{-\infty}^{\infty}h(t-\tau)x(\tau)\mathrm{d}\tau=\int_{-\infty}^{\infty}x(t-\tau)h(\tau)\mathrm{d}\tau$

"Det är backe upp här och backe ner där."

- Ants Silberberg

3.3 Systemegenskaper kopplade till impulssvar

3.3.1 Kausalt LTI-system

Diskret: h[k] = 0 för k < 0 och därmed $y[n] = \sum_{k=0}^{\infty} h[k]x[n-k]$. Motsvarande gäller för kontinuerliga system: $y(n) = \int_0^{\infty} h(\tau)x(t-\tau)d\tau$

3.3.2 Stabilt LTI-system

Diskret: Anta $\forall n: |x[n]| \leq M_x < \infty$ d.v.s. att insignalen är begränsad. Utifrån det kan vi resonera att $|y[n]| = \left|\sum_{k=-\infty}^{\infty} h[k]x[n-k]\right|$ och eftersom $|a+b| \leq |a| + |b|$ gäller $|y[n]| \leq \sum_{k=-\infty}^{\infty} |h[k]x[n-k]|$ och än en gång, eftersom $|ab| = |a| \cdot |b|$ får vi $|y[n]| \leq \sum_{k=-\infty}^{\infty} |h[k]| |x[n-k]|$ men eftersom $|x[k]| \leq M_x$ vet vi att $|y[n]| \leq M_x \sum_{k=-\infty}^{\infty} |h[k]|$. Med kravet på stabila system att $\forall n: |y[n]| < \infty$ följer villkoret $\sum_{k=-\infty}^{\infty} |h[k]| < \infty$. Det kallar man att impulssvaret är absolutsummerbart.

Samma gäller för kontinuerliga system, då får man villkoret $\int_{\infty}^{\infty} |h(\tau)| d\tau < \infty$ och det kallas för att impulssvaret är absolutintegrerbart.

4 Föreläsning 19-09-10

4.1 Diff. ekvationer

Vi kommer att titta på (LTIC-)system som beskrivs med Q(D)y = P(D)x eller Q[E]y = P[E]x i det diskreta fallet där $D = \frac{\mathrm{d}}{\mathrm{d}t}$ och Ef[k] = f[k+1]. Systemen är kausala, d.v.s. alltid = 0 för t < 0 eller k < 0. Alltså har vi ett begynnelsetillstånd. Den allmänna lösningen är $y = y_0 + y_i$ där y_0 är zerostate och y_i är zeroinput. Vanligtvis är $y_0 = h * x$, d.v.s. någon slags faltning.

Notation: $Q(D) = D^m + a_{m-1}D^{m-1} + \dots + a_1D + a_0 \text{ där } m = ord(Q)$

4.1.1 Kontinuerliga fallet

Q(D)y = P(d)x och $y^{(k)}(0)$ är givna för $k = 0, \dots, \operatorname{ord}(Q) - 1$.

Först löser vi $Q(D)y_0 = P(D)f$ för $y^{(k)}(0) = 0$. Sedan löser vi $Q(D)y_i = 0$ givet $y_i^{(k)}(0) = y^{(k)}(0)$. Detta är partikulär- och homogenlösningar i "vanliga" termer. $y_0 = h * x$ där h är impulssvaret.

Exempel 4. Anta y' + ay = x, y(0) = b, Q(D) = D + a och P(D) = 1.

Eftersom systemet är tidsinvariant är a en konstant. Först löser vi $y'_0 + ay_0 = x$ givet $y_0(0) = 0$. Sedan komemr vi att lösa $y'_i + ay_i = 0$ givet $y_i(0) = b$. Vi använder integrerande faktor, d.v.s. $(e^g y)' = (y' + g'y)e^g$ men eftersom vi veta har vi $g' = a \implies g = at$. Alltså är $e^{at}(y'_0 + ay_0) = (e^{at}y_0)'$ och därmed

$$(e^{at}y_0)' = xe^{at} \implies e^{at}y_0(t) = e^{a0}y_0(0) + \int_0^t x(s)e^{as}ds = \int_0^t x(s)e^{as}ds \implies$$

$$y_0(t) = \int_0^t x(s)e^{a(s-t)} ds = \int_0^t x(s)e^{-a(t-s)} ds = x * h_{-a}(t) \text{ där } h_{-a}(t) = e^{at}u(t).$$

Alltså $y_0 = x * h_{-a}(t)$. Nu kollar vi om y_0 är en lösning vårt inledande problem. Först kollar vi om $y_0(0) = 0$ och det är fine eftersom det då blir en integral från 0 till 0, vilket är 0. Nu kollar vi om $y'_0 + ay_0 = x$. $y'_0 = x(t)e^{-a(t-t)}$

$$a \int_{0}^{t} x(s)e^{-a(t-s)} ds = x(t) - ay_0(t)$$

Nu löser vi för y_i . $y_i' + ay_i = 0 \iff (e^{at}y_i) = 0 \iff e^{at}y_i(t) = y_i(0) = b \iff y_i(t) = be^{-at}$.

Alltså är $y(t) = be^{-at} + x * h_{-a}(t)$

"Det verkar trivialt att t - t = 0 men det är det som räddar oss."

- Mattesnubben

4.1.2 Stabilitet i kausala fall

$$\operatorname{Om} \int\limits_{0}^{\infty} |h(t)| \mathrm{d}t < \infty. \ h(t) = h_{-a}(t) = e^{-at} u(t). \int\limits_{0}^{\infty} |h(t)| \mathrm{d}t = \int\limits_{0}^{\infty} e^{-\operatorname{Re}\{a\}t} \ \text{vilket}$$

är ändligt om $Re\{a\} > 0$ och oändligt annars.

Exempel 5. Lös $y'' + a_1 y' + a_0 y = x$ där y(0) och y'(0) givna. Vi vet att P(D) = 1 och $Q(D) = D^2 + a_1 D + a_0$.

Vi börjar med att lösa ekvationen $Q(\lambda) = \lambda^2 + a_1\lambda + a_0 = 0$. Lösningarna till

$$Q(\lambda) = 0 \text{ är } \lambda_{\pm} = -\frac{a_1}{2} \pm \sqrt{\frac{a_1^2}{4} - a_0} \implies Q(\lambda) = (\lambda - \lambda_+)(\lambda - \lambda_-).$$

Några exempel, om $a_1=0$ får vi $\lambda_{\pm}=\pm\sqrt{-a_0} \implies \lambda^2+a_0=(\lambda-\sqrt{-a_0})(\lambda+\sqrt{-a_0})$, om $a_0=0$ får vi $\lambda_{\pm}=0$ eller $-a_1 \implies \lambda(\lambda 2+a_1)$.

Vi börjar med att lösa zeroinput-lösningen. Observera att $D^n(e^{\lambda t}) = \lambda^n e^{\lambda t} \Longrightarrow Q(D)e^{\lambda t} = Q(\lambda)e^{\lambda t} \Longrightarrow Q(D)(\mu_1 e^{\lambda_+ t} + \mu_2 e^{\lambda_- t}) = 0$. Om $\lambda_+ \neq \lambda_-$ hittar vi y_i genom ansatsen $y_i(t) = \mu_1 e^{\lambda_+ t} + \mu_2 e^{\lambda_- t}$ så att $y_i(0) = \mu_1 + \mu_2$ och $y_i'(0) = \mu_1 \lambda_+ + \mu_2 \lambda_-$.

Observera nu också att $Q(D)(te^{\lambda t}) = Q'(\lambda)e^{\lambda t} + Q(\lambda)te^{\lambda t}$. Om $\lambda_+ = \lambda_-$, d.v.s. att $Q(\lambda) = (\lambda - \lambda_+)^2$ gäller $Q(D)(\mu_1 e^{\lambda_+ t} + \mu_2 te^{\lambda_+ t}) = 0$. Ansätt $y_i(t) = \mu_1 e^{\lambda_+ t} + \mu_2 te^{\lambda_+ t}$

 $\mu_2 t e^{\lambda_- t}$ och finn μ_1 och μ_2 från $y_i(0) = \mu_1$ och $y_i'(0) = \lambda_+ \mu_+ + \mu_2$.

Nu löser vi zerostate: $Q(D) = (D - \lambda_{+})(D - \lambda_{-})$. Notera att $D^{n}(h * f) =$ $(D^n h) * f$, vilket går att bevisa relativt lätt. Eftersom faltning är kommutativt kan vi även derivera f.

$$Q(D)(h*f) = (Q(D)h)*f.$$
 Ansätt $h = h_{\lambda_+}*h_{\lambda_-}.$

Ansätt också $y_0 = h * f$, då är $(D - \lambda_-)y_0 = h_{\lambda_+} * f$ och $h_{\lambda_+} * f(0) = 0$.

Jag orkade inte anteckna här, massa steg typ. Det blir enklare med Laplace.

– Person som frågade och mattesnubben

"Om vi nu delar den här skiten."

- Mattesnubben

4.2Diskreta fallet

I det diskreta fallet har vi ekvationen Q(E)y = P(E)x där E(f[k]) = f[k+1]och har y[-k] givna för $k=0,\ldots,ord(Q)-1$. Funkar annars på samma sätt förutom att D ersätts med E och y(0) med y[-k].

I kontinuerliga fall har vi $D(e^{\lambda}t)=\lambda e^{\lambda t}$ som genom $e_a[k]=a^k$ motsvaras av $E(e_a[k])=e_a[k+1]=a^{k+1}=a\cdot a^k=ae_a.$ **Exempel 6.** Vi löser y[k+1]+ay[k]=x[k] där y[0] är given.

Vi har Q(E) = E + a. Vi börjar med att lösa y_i , d.v.s. $Q(E)y_i = 0$ och $y_i[0] = 0$ y[0]. Ansätt $y_i=ce_{-a}$ så att $(E+a)e_{-a}=0$. Då har vi $y_i[0]=ce_{-a}[0]=c=y[0]$ och därmed $y_i[k] = y_i[0]a^k$

Nu löser vi för y_0 , då börjar vi med att ansätta $h[k] = h_{-a}[k] = e_a[k]u[k]$ och

$$E(h * x[m]) = \sum_{l=1}^{m+1} h[l]x[m+1-l] = \sum_{l=1}^{m} h[l+1]x[m-l] + h[1]x[m] \text{ eftersom}$$

$$h*x = \text{ (om båda är kausala)} = \sum_{l=0}^{m} h[l]x[m-l] = \sum_{l=1}^{m} h[l]x[m-l]. \text{ Allt som}$$

allt gäller E(h*x) = ah*x + ax. Alltså $y_0 = \frac{1}{a}h*x$ vilket löser det ville innan.

- Mattesnubben

[&]quot;Vad kom µ ifrån?"

[&]quot;Från ovan!"

[&]quot;Det kommer bara bli blodsspillan om vi har k där"

"Vad gör vi nu, vad gör vi här, vem är jag?"

- Mattesnubben

"Nu börjar det lukta fågel"

- Mattesnubben

"När jag var i Tyskland var jag tvungen att dra bajsskämt för att det skulle gå, men här verkar det funka ändå."

- Mattesnubben

"Fourier-serier är något extremt vackert, tårar kommer att fällas."

- Mattesnubben

5 Föreläsning 19-09-12

5.1 Approximation av signaler

Låt f vara en signal och x vara en modellsignal som vi förstår. Vi vill modellera f m.h.a. x, så ungefär $f \approx cx \implies$ Ett fel e = f - cx.

Kom ihåg linalgens "inre produktrum":

Vär ett vektorrum över $\mathbb R$ eller $\mathbb C,\ \langle\cdot,\cdot\rangle,$ en inre/skalär produkt på V. Den uppfyller $\langle x,y\rangle=\langle y,x\rangle,\ \langle x,x\rangle\geq 0 (=0\iff x=0)$ och $\langle x,\lambda y_1+y_2\rangle=\langle x,y_1\rangle\,\lambda+\langle x,y_2\rangle.$

 f_1, f_2 är signaler, då är här $\langle f_1, f_2 \rangle = \int\limits_{-\infty}^{\infty} f_1(t) f_2(t) dt$.

I det periodiska fallet är $\langle f_1, f_2 \rangle = \int\limits_0^T f_1^-(t) f_2(t) \mathrm{d}t.$

Mellan två signaler f_1, f_2 har vi en vinkel θ som definieras genom $\cos(\theta) = \frac{\langle f_1, f_2 \rangle}{|f_1| \cdot |f_2|}$ där $|f| = \sqrt{\langle f, f \rangle}$.

Felet e är litet om |e| är litet. När är då |e| som minst? D.v.s. vad är min |f-cx| över \mathbb{C} ? Går att härleda att det uppnås för $c=\frac{\langle x,f\rangle}{|x|^2}$. Det betyder att $f\approx\frac{\langle x,f\rangle}{|x|^2}x$.

"Jag växte också upp på Lindholmen."

- Mattesnubben

Om f är en signal definierad för $-\infty < t < \infty$ är dess energi $E_f = \int\limits_{-\infty}^{\infty} |f(t)|^2 \mathrm{d}t = |f|^2$.

Om f_1, f_2 är signaler definierade för $-\infty < t < \infty$ är $\frac{\int\limits_{-\infty}^{} \infty f_1(t) f_2(t) \mathrm{d}t}{\sqrt{E_{f_1} E_{f_2}}} = \frac{\langle f_1, f_2 \rangle}{|f_2||f_2|}$ korrelationen mellan signalerna. Den är $1 \iff f_1 = f_2$ och $-1 \iff f_1 = -f_2$.

Anta att vi har flera modellsignaler x_1, x_2, \ldots, x_N så att $f \approx c_1 x_1 + c_2 x_2 + \cdots + c_N x_N$. Vi vill då minimera $e = f - \sum_{n=1}^N c_k e_k$. Det uppnås för $c_k = \frac{\langle x_n, f \rangle}{|x_n|^2}$ **OM** x_1, x_2, \ldots, x_n inte är korrelerade, d.v.s. de är ortogonala eller den inre/skalärprodukten är 0.

5.2 Fourierserier

Fourierserier appliceras på periodiska signaler. Lå
tfvara en signal med period ${\cal T}.$

Vi tittar på följande modellsignaler: $\{1, \cos(\omega_0 t), \dots, \cos(N\omega_0 t), \sin(\omega_0 t), \dots, \sin(N\omega_0 t)\}$.

$$\langle \cos(k\omega_{0}t), \cos(l\omega_{0}t) \rangle = \int_{0}^{T} \cos(k\omega_{0}t) \cos(l\omega_{0}t) dt = \int_{0}^{T} \frac{e^{jk\omega_{0}t} + e^{-jk\omega_{0}t}}{2} \frac{e^{jl\omega_{0}t} + e^{-jl\omega_{0}t}}{2} dt = \frac{1}{4} \int_{0}^{T} e^{j(k+l)\omega_{0}t} + e^{j(k-l)\omega_{0}t} + e^{j(-k+l)\omega_{0}t} + e^{-j(k+l)\omega_{0}t} dt = T \text{ om } k = l = 0, \frac{T}{2} \text{ om } k = \frac{T}{2}$$

l > 0,0 annars. På samma sätt är $\int_{0}^{T} \cos(k\omega_{0}t) \sin(l\omega_{0}t) dt = 0 \text{ och } \int_{0}^{T} \sin(k\omega_{0}t) \sin(l\omega_{0}t) dt =$ $\frac{T}{2} \text{ om } k = l \text{ och } 0 \text{ annars.}$

Alltså är den bästa approximationen

$$f \approx \frac{a_0}{2} + \sum_{k=1}^{N} a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t)$$

$$\operatorname{d\ddot{a}r} a_k = \frac{2}{T} \int_0^T f(t) \cos(k\omega_0 t) dt = \frac{\langle \cos(k\omega_0 t), f \rangle}{\left| \cos(k\omega_0 t) \right|^2} \operatorname{och} b_k = \frac{2}{T} \int_0^T f(t) \sin(k\omega_0 t) dt =$$

$$\frac{\langle \sin(k\omega_0 t), f \rangle}{\left| \sin(k\omega_0 t) \right|^2}.$$

Sats 2. Om f är T-periodisk och $\int_{0}^{T} |f(t)| dt < \infty$ existerar a_k och b_k .

Sats 3. Om f dessutom är kontinuerlig på intervallet på $0 \le t \le T$ utom i ändligt många punkter och $f(t+) = \lim_{h \to 0} f(t+h)$ och $f(t-) = \lim_{h \to 0} f(t-h)$

$$h$$
) existerar för alla t så är $\frac{f(t+)+f(t-)}{2}=\lim_{N\to\infty}\frac{a_0}{2}+\sum_{k=1}^N a_k\cos(k\omega_0t)+b_n\sin(k\omega_0t).$

"Det här är högst icke-trivialt."

- Mattesnubben

"Om man stoppar in något i datorn som inte konvergerar kommer det gå åt röven."

- Mattesnubben

Exempel 7.

Vi har ju
$$f = \frac{a_0}{2} + \sum_{k=1}^{N} a_k \cos(k\omega_0 t) + b_n \sin(k\omega_0 t)$$
, för $k \geq 0$ har vi $a_k = 0$

$$\frac{2}{T} \int_{0}^{T} f(t) \cos(k\omega_0 t) dt = \frac{2}{T} \int_{0}^{\frac{T}{2}} \cos(k\omega_0 t) dt = 1 \text{ för } k = 0, \frac{2}{Tk\omega_0} [\sin(k\omega_0 t)]_{0}^{\frac{T}{2}} =$$

1 för
$$k = 0, 0$$
 annars. och för $k > 0$ har vi $b_k = \frac{2}{T} \int_0^T f(t) \sin(k\omega_0 t) dt = \frac{2}{T} \int_0^{\frac{T}{2}} \sin(k\omega_0 t) dt = \frac{2}{T} \int_0^{\frac{T}{2}} \sin(k\omega_0 t) dt$

$$\frac{2}{Tk\omega_0} \left[-\cos(k\omega_0 t) \right]_0^{\frac{T}{2}} = \frac{1}{\pi k} (-\cos(k\pi) + 1) = \frac{1}{\pi k} (-(-1)^k + 1) = 0 \text{ för } k = 0$$

$$2m \text{ och } \frac{2}{\pi(2m+1)} \text{ annars.}$$

$$f = \frac{1}{2} + \frac{2}{\pi} \sum_{m=0}^{\infty} \frac{\sin((2m+1)\omega_0 t)}{\pi(2m+1)}$$

5.2.1 Kompakt form

$$f = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t)$$
$$= \sum_{n=0}^{\infty} c_n \cos(k\omega_0 t + \theta_n)$$

$$c_n \cos(k\omega_0 t + \theta_n) = c_n \cos(\theta_n) \cos(k\omega_0 t) - c_n \sin(\theta_n) \sin(k\omega_0 t)$$
$$\tan(\theta_n) = \frac{-b_n}{a_n} \text{ och } c_n^2 = a_n^2 + b_n^2$$

5.3 Frekvensspektrum

Används för att visualisera fourierserier.

Exempel 8.

$$f = \frac{a_0}{2} + \sum_{k=1}^{N} a_k \cos(k\omega_0 t) + b_n \sin(k\omega_0 t)$$
, och vi börjar med fallet där $k > \frac{T}{2}$

0. Då är
$$a_n = \frac{2}{T} \int_0^{\frac{t}{2}} t \cos(k\omega_0 t) dt$$
 och med partiell integrering får vi $a_n =$

$$\frac{2}{T} \left[t \frac{\sin(k\omega_0 t)}{k\omega_0} \right]_0^{\frac{T}{2}} - \frac{2}{T} \int_0^{\frac{1}{2}} \frac{\sin(k\omega_0 t)}{k\omega_0} dt = 0 + \frac{2}{T\omega_0^2 k^2} \left[\cos(k\omega_0 t) \right]_0^{\frac{T}{2}} = 0 \text{ n\"ar } k = 0$$

$$2m, \frac{-2}{\pi\omega_0(2m+1)^2}$$
 annars. Vi har också $a_0 = \frac{2}{T}\int_0^T f(t)dt = \frac{2}{T}\int_0^{\frac{T}{2}}tdt = \frac{T}{2}$.

Om man räknar på b_n blir det likt, men till slut får vi $f = \frac{T}{4} + \frac{2}{\pi} \sum_{m=0}^{\infty} \frac{-\cos((2m+1)\omega_0 t)}{\omega_0 (2m+1)^2} + \frac{\sin((2m+1)\omega_0 t)}{2m+1}$ eller i kompakt form $\sum_{n=0}^{\infty} c_n \cos((2n+1)\omega_0 t + \theta_n)$ där $\theta_n = \arctan\left(\frac{-b_{2n+1}}{a_{2n+1}}\right) = \arctan(\omega_0 (2n+1)).$

6 Föreläsning 19-09-17

6.1 Diskret Fouriertransform

Idén för att göra den diskret är sampling. Det innebär att man väljer en upplösning N så att man tar värdet på funktionen i punkterna $0, \epsilon, 2\epsilon, \ldots$ där $\epsilon = \frac{T}{N}$. Alltså approximerar vi f m.h.a. $f(\frac{kT}{N})$ där N går från 0 till N-1.

Ansats 1.
$$D[n] = \frac{1}{T} \sum_{k=0}^{N-1} \int_{\frac{kT}{N}}^{\frac{k+1}{T}N} f\left(\frac{kT}{N}\right) e^{-i\omega_0 n \frac{kT}{N}} dt = \frac{1}{N} \sum_{k=0}^{N-1} f\left(\frac{kT}{N}\right) e^{-i\frac{2\pi}{N}kn}$$

$$D_x[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] e^{-i\frac{2\pi}{N}kn}$$

6.1.1 Syntes

$$x[k] = \sum_{k=0}^{N-1} D_x[n] e^{i\frac{2\pi}{N}kn}$$

"Ni fnissar på tok för lite"

- Mattesnubben om den k:te punkten

"Jag har approximerat allt med en konstant, så det är ganska grovt."

- Mattesnubben

Anledning till att det här gäller är följande:

Steg 1
$$1-z^N = (1-z)(1+z+z^2+\cdots+z^{N-1}) = 1+z+z^2+\cdots+z^{N-1}-z-z^2-\cdots-z^{N-1}-z^N$$

Steg 2
$$z_k = e^{\frac{2\pi i}{N}k}$$
 uppfyller $z_k^N = 1$

Steg 3 $1 + z_k + z_k^2 + \cdots + z_k^{N-1}$ är antingen N när k = 0 och 0 annars.

$$HL = \sum_{n=0}^{N} N - 1D_x[n]z_k^n = \frac{1}{N} \sum_{n,l=0}^{N-1} x[l]z_{-l}^n z_k^n = \frac{1}{N} \sum_{l=0}^{N-1} \left(\sum_{n=0}^{N-1} x[l]z_{k-l}^n \right) = \frac{1}{N} \sum_{l=0}^{N-1} x[k] = x[k]$$

6.2 Fouriertransformen

Här kollar vi på signaler $f(t), -\infty < t < \infty$.

För
$$T>>t$$
 kan vi skriva $f(t)=\frac{1}{2\pi}\sum_{k=-\infty}^{\infty}\frac{2\pi}{T}\left(\int\limits_{-\frac{T}{2}}^{\frac{T}{2}}f(u)e^{-i\frac{2\pi k}{T}u}\mathrm{d}u\right)e^{i\frac{2\pi k}{T}t}$

$$\omega = \frac{2\pi k}{T}$$

Definition 5 (Fouriertransformen).
$$F(i\omega) = \int_{-\infty}^{\infty} f(u)e^{j\omega u} du$$

Sats 4 (Rekonstruktion av signal från Fourierserie).
$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{2\pi}{T} F(i\omega) e^{ij\omega t}$$

Låt y=h*x vara ett LTI-system. Då är $H(i\omega)$ överföringsfunktionen och om vi tar $x(t)=e^{i\omega t}$ så är $y(t)=h*x(t)=\int\limits_{-\infty}^{\infty}h(u)e^{i\omega(t-a)}\mathrm{d}u=e^{i\omega t}\int\limits_{-\infty}^{\infty}h(u)e^{-i\omega u}\mathrm{d}u=e^{i\omega t}H(i\omega).$

När man tar $h * \cos(\omega t + \theta) = |H(i\omega)| \cos(\omega t + \theta + \angle H(i\omega))$

"Keepin' it real"

- Mattesnubben om cosinus-funktioner

Exempel 9. Låt $f_1(t) = e^{-at}u(t)$ där a > 0. Räkna ut $F_1(i\omega)$.

$$F_1(i\omega) = \int_{-\infty}^{\infty} e^{-at} u(t) e^{-i\omega t} dt = \int_{-\infty}^{\infty} e^{-(a+i\omega)t} dt = \left[\frac{e^{-(a+i\omega)t}}{-(a+i\omega)} \right]_{t=0}^{\infty} = \frac{1}{a+i\omega}.$$

Exempel 10. Låt $f_2(t) = e^{-a|t|}$. Räkna ut F_2 .

Notera att $f_2 = f_1(t) + f_1(-t)$ där f_1 kommer från förra exemplet.

Låt
$$f_{op}(t) = f(-t)$$
. $F_{op}(i\omega) = \int_{-\infty}^{\infty} f(-t)e^{-i\omega t} dt = (u = -t) = \int_{-\infty}^{\infty} f(u)e^{-i(-\omega u)} = \int_{-\infty}^{\infty} f(u)e^{-i(-\omega u)} dt$

$$F(-i\omega)$$
. Alltså är $F_2(i\omega) = F_1(i\omega) + F_1(i\omega) = \frac{1}{a+i\omega} + \frac{1}{a-i\omega} = \frac{2a}{a^2 + \omega^2}$

Sats 5 (Linearitet av Fouriertransformer). Fouriertransformen är linjär, d.v.s. om $f = f_1 + \lambda \cdot f_2$ är $F = F_1 + \lambda \cdot F_2$.

Bevis. Visas lätt från definitionen av Fouriertransformen och faktumet att integrering är linjärt.

6.3 $\delta(t)$

$$\int_{-\infty}^{\infty} \delta(t-a)x(t)dt = x(a)$$

Fouriertransformen av $\delta(t-a)$ är då $F(i\omega)=\int\limits_{-\infty}^{\infty}\delta(t)e^{-i\omega t}\mathrm{d}t=e^{-i\omega a}.$

6.4 Transformpar

Ett transformpar är paret $(f(t),F(i\omega))$, d.v.s. f(t) svarar mot $F(i\omega)$. Exempelvis svarar $e^{-at}u(t)$ mot $\frac{1}{a+i\omega}$. **Exempel 11.** Låt $f(t)=\frac{2a}{a^2+t^2}$. F(t) är då

$$F(t) = \int_{-\infty}^{\infty} \frac{2a}{a^2 + t^2} e^{-i\omega t} dt$$

$$= 2\pi \cdot \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{2a}{a^2 + t^2} e^{j(-\omega)t} dt$$

$$= \text{(via syntesformeln)}$$

$$= 2\pi e^{-a|-\omega|}$$

$$= 2\pi e^{-a|\omega|}.$$

"Lägg inte in någon magi i detta, bara lite fantasi."

- Mattesnubben

Påstående 1. $(f(t), F(i\omega))$ är ett transformpar \iff $(F(-it), 2\pi f(\omega))$ är ett transformpar.

Exempel 12. $(\delta(t-a), e^{-i\omega a})$ är ett transformpar.

Alltså är $(e^{ita}, 2\pi \cdot \delta(\omega - a))$ ett transformpar.

En ren frekvens a ger en Fouriertransform som är $\delta(t-a)$.

Följande gäller:

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} F(i\omega)e^{i\omega t} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u)e^{i\omega(u-t)} du d\omega$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} f(u) \int_{-\infty}^{\infty} e^{i\omega u} e^{i\omega t} d\omega du$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} f(u)2\pi \delta(t-u) du$$
$$= f(t).$$

6.5 Periodisk återblick

Låt x vara en T-periodisk signal. Då vet vi att vi kan skriva $x(t) = \sum_{k=-\infty}^{\infty} c_k e^{i\omega_0 kt}$.

Lineariteten av Fouriertransformen ger då $X(i\omega) = \sum_{k=-\infty}^{\infty} c_k \delta(\omega - k\omega_0)$.

6.6 Faltning

Låt x_1, x_2 vara signaler. Då är $x_1 * x_2 = \int\limits_{-\infty}^{\infty} x_1(u) x_2(t-u) \mathrm{d}u.$

Påstående 2. $x_1 * x_2$ är ett transformpar med X_1X_2 .

Exempel 13. Låt $x_1 = \delta(t - b), x_2 = \bar{\delta}(t - a).$

Då är
$$x_1 * x_2(t) = \int_{-\infty}^{\infty} \delta(u-b)\delta(t-u-a)du = \delta(t-b-a).$$

Fouriertransformen av $x_1 * x_2 = e^{-i(a+b)t} = e^{-iat}e^{ibt} = X_1(i\omega)X_2(i\omega)$.

Bevis.

$$\int_{-\infty}^{\infty} x_1 * x_2 e^{-i\omega t} dt = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1(u) x_2(t-u) e^{-i\omega t} du dt$$

$$= (\text{Variabelbyte d\"ar } v = t-u)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1(u) x_2(v) e^{-i\omega(v+u)} du dv$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1(u) e^{-i\omega u} x_2(v) e^{-i\omega v} du dv$$

$$= \int_{-\infty}^{\infty} x_1(u) e^{-i\omega u} du \cdot \int_{-\infty}^{\infty} x_2(v) e^{-i\omega v} dv$$

$$= X_1(i\omega) \cdot X_2(i\omega)$$

Påstående 3. $x_1(t)x_2(t)$ är ett transformpar med $2\pi X_1*X_2(-i\omega)$.

$$x(t)\delta(t-a) = x(a)\delta(t-a) \text{ ger att } H(i\omega)X(i\omega) = \sum_{k=-\infty}^{\infty} c_k H(i\omega_0 k)\delta(\omega - k\omega_0).$$

7 Föreläsning 19-09-18

7.1 Egenskaper hos Fouriertransformen

"Det är naturligtvis lite mer delikat än så."

– Pokèmon #109

$$\operatorname{Om} \int\limits_{-\infty}^{\infty} |f(t)| \mathrm{d}t < \infty \text{ är alltid } F(i\omega) \text{ kontinuerlig och } \lim_{|\omega| \to \infty} F(i\omega) = 0.$$

Exempel 14. Om $f = \delta$ saknar $\int |f| dt$ mening. Trots det är $F(i\omega) = 1$ kontinuerlig, men $\lim_{|\omega| \to \infty} = 1 \neq 0$.

Exempel 15.
$$f(t) = e^{-|a|t}$$
 bildar transformpar med $F(i\omega) = \frac{2a}{a^2 + \omega^2}$.

$$f(t)=e^{-at}u(t)$$
 bildar transformpar med $F(i\omega)=\frac{1}{a+i\omega}.$

7.2 Räkneregler för Fouriertransformen

Sats 6 (Linearitet av Fouriertransformen). Om $Af_1(t) + Bf_2(t)$ är dess Fouriertransform $AF_1(i\omega) + BF_2(i\omega)$.

Sats 7 (Tidsskalning Fouriertransform). Om f(at) när $a \neq 0$ är dess Fouriertransform $\frac{1}{|a|}F(\frac{i\omega}{a})$.

Bevis.
$$\int_{-\infty}^{\infty} f(at)e^{-i\omega t} dt = \{u = at \implies du = adt\} = \frac{1}{|a|} \int_{-\infty}^{\infty} f(u)e^{-j\frac{\omega}{a}u} du. \quad \Box$$

Sats 8 (Tidsskifte Fouriertransform). Om f(t+a) är dess Fouriertransform $e^{i\omega a}F(i\omega).$

Bevis.
$$\int_{-\infty}^{\infty} f(t+a)e^{-i\omega t} dt = \{u = t+a\} = \int_{-\infty}^{\infty} f(u)e^{i\omega a}e^{-i\omega u} du = e^{i\omega a}F(i\omega).$$

Exempel 16. Låt $f_1(t) = \begin{cases} \frac{1}{2a}, |t| \leq a \\ 0, \text{ annars} \end{cases}$

Då är
$$F_1(i\omega) = \int_{-\infty}^{\infty} f_1(t)e^{-i\omega t} dt = \frac{1}{2a} \int_{-a}^{a} e^{-i\omega t} dt = \frac{1}{2a} = \left[\frac{e^{-i\omega t}}{-i\omega}\right]_{t=-a}^{a} = \frac{e^{i\omega a} - e^{-i\omega a}}{2i} \frac{1}{\omega a} = \frac{\sin(\omega a)}{\omega a}.$$

Låt
$$x$$
 vara en signal. Då är $f_1*x=\int\limits_{-\infty}^{\infty}f_1(s)x(t-s)\mathrm{d}s=\frac{1}{2a}\int_{-a}^ax(t-s)\mathrm{d}s$

vilket är medelvärdet av x(t) i punkten t när man går a steg till både höger och vänster. Inses rätt lätt om man ritar upp det.

 f_1*x bildat transformpar med $\frac{\sin(\omega a)}{\omega a}X(i\omega)$. **Sats 9** (Derivata och Fouriertransform). Om f(t) är en signal bildar $\frac{\mathrm{d}}{\mathrm{d}t}f(t)$ ett transformpar med $i\omega F(i\omega)$.

Bevis.
$$\int\limits_{-\infty}^{\infty}\frac{\mathrm{d}}{\mathrm{d}t}f(t)e^{-i\omega t}\mathrm{d}t=\text{(med partiell integration och antagandet att }f\text{ går}$$

$$\text{mot 0 i o\"{a}nd ligheten}) = -\int\limits_{-\infty}^{\infty} f(t) \left(\frac{\mathrm{d}}{\mathrm{d}t} e^{-i\omega t}\right) \mathrm{d}t = i\omega \int\limits_{-\infty}^{\infty} f(t) e^{-i\omega t} \mathrm{d}t \qquad \qquad \Box$$

Exempel 17. Tillbaka till förra exemplet, vad är f'_1 ?

Jo,
$$f_1'$$
 kan definieras av att
$$\int_{-\infty}^{\infty} f'(t)x(t)dt = -\int_{-\infty}^{\infty} f_1(t)x'(t)dt = -\frac{1}{2a}\int_{-a}^{a} x'(t)dt = \frac{1}{2a}(x(-a) - x(a)) = \int_{-\infty}^{\infty} \frac{1}{2a}(\delta(t+a) - \delta(t-a))x(t)dt$$
. Alltså är $f_1' = \frac{1}{2a}(\delta(t+a) - \delta(t-a))$.

Om man tittar på grafen för f_1 kan man, om man tänker på vad derivatan måste vara i varje punkt, se att detta är rimligt.

Vi vill kolla att detta stämmer. $f_1' = \frac{1}{2a}(\delta(t+a) - \delta(t-a))$ bildar transformpar med $\frac{1}{2a}(e^{i\omega a} - e^{-i\omega a}) = i\omega \frac{1}{2ia\omega}(e^{i\omega a} - e^{-i\omega a}) = i\omega \frac{1}{a\omega}\sin(a\omega) = i\omega F_1(i\omega)$, vilket är rimligt med tanke på tidigare räkneregler.

Sats 10 (Fouriertransform för $t \cdot f(t)$). Om vi har en signal $t \cdot f(t)$ bildar det ett transformpar med $i \frac{d}{d\omega} F(i\omega)$.

Bevis.
$$\int_{-\infty}^{\infty} t \cdot f(t) e^{-i\omega t} dt = \int_{-\infty}^{\infty} f(t) t e^{-i\omega t} dt = \int_{-\infty}^{\infty} f(t) i \frac{d}{d\omega} e^{-i\omega t} dt = i \int_{-\infty}^{\infty} f(t) \frac{d}{d\omega} e^{-i\omega t} dt = i \int_{-\infty}^{\infty} f(t) \frac{d}{d\omega} e^{-i\omega t} dt = i \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

"Låt oss vara lite casual"

– Pokémon #109 om räkneregler

VARNING: I boken skrivs $F(\omega)$ för Fouriertransformen i kapitel < 6 men $F(i\omega)$ i kapitel $\geq 6.$

Exempel 18. Låt $f_2(t) = e^{-at^2}$, a > 0. Vad är Fouriertransformen F_2 ?

Vi ska ta en systemapproach istället för att göra jobbiga integraler.

$$\frac{\mathrm{d}}{\mathrm{d}t}f_2(t) = -2te^{-at^2} = -2atf_2(t), \text{ d.v.s. } \left(\frac{\mathrm{d}}{\mathrm{d}t} + 2at\right)f_2(t) = 0 \iff (i\omega + 2ai\frac{\mathrm{d}}{\mathrm{d}\omega})F_2 = 0 \iff \left(\frac{\mathrm{d}}{\mathrm{d}\omega} + \frac{1}{2a}\omega\right)F_2 = 0 \iff F_2(\omega) = Ce^{-\frac{\omega^2}{4a}} \implies C = F_2(\omega = 0) \cdot e^{\frac{0^2}{4a}} = F_2(0) = \int\limits_{-\infty}^{\infty} e^{-at^2} \mathrm{d}t = \sqrt{\frac{\pi}{a}}. \text{ Alltså bildar } e^{-at^2} \text{ transformpar } \text{med } \sqrt{\frac{\pi}{a}}e^{-\frac{\omega^2}{4a}}.$$

Anmärkning 1. f_2 avtar superexponentiellt när $t \to \pm \infty$, d.v.s. f_2 inte en lösning till en stabil LTI.

"Den går snabbare än örnen mot noll."

- Pokèmon #109

Vad betyder egentligen $\frac{d}{dt}$?

Jo, $\frac{\mathrm{d}}{\mathrm{d}t}(h*x) = \frac{\mathrm{d}h}{\mathrm{d}t}*x = h*\frac{\mathrm{d}x}{\mathrm{d}t}$. $\frac{\mathrm{d}}{\mathrm{d}t}$ är också tidsinvariant, vilket betyder att det måste ges av någon faltning. Vad för h uppfyller att $h*x?\frac{\mathrm{d}}{\mathrm{d}t}x$?

$$x(t) = \int x(u)\delta(t-u)\mathrm{d}u = x * \delta(t) = \delta * x(t). \text{ Då är } \frac{\mathrm{d}}{\mathrm{d}t}x = \frac{\mathrm{d}}{\mathrm{d}t}(\delta * x) = (\frac{\mathrm{d}}{\mathrm{d}t}\delta) * x. \delta \text{ definieras av att} \int_{-\infty}^{\infty} \delta(t)x(t)\mathrm{d}t = x(0), \text{ alltså måste} \int_{-\infty}^{\infty} \delta'(t)x(t)\mathrm{d}t = -\int_{-\infty}^{\infty} \delta(t)x'(t)\mathrm{d}t \text{ så att } \delta' \text{ definieras av } \int_{-\infty}^{\infty} \delta'(t)x(t)\mathrm{d}t = -x'(0). \text{ Då är } \frac{\mathrm{d}}{\mathrm{d}t}x = \delta' * x.$$

Sats 11 (Sambandet mellan $\frac{d}{dt}$ och δ'). $\frac{d}{dt}x = \delta' * x$

Bevis. Se ovan. \Box

Exempel 19. Vad är Fouriertransformen av δ' ?

$$\int_{-\infty}^{\infty} \delta'(t)e^{-i\omega t} dt = \{e^{-i\omega t} = x(t)\} = -x'(0) = -i\omega$$

Exempel 20. Skriv $(-\frac{d^2}{dt^2} + a^2)y = x$ som en LTI på formen y = h * x.

 $(-\frac{\mathrm{d}^2}{\mathrm{d}t^2}+a^2)y$ bildar transformpar med $(-(i\omega)^2+a^2)Y=(\omega^2+a^2)Y.$

$$(-\frac{\mathrm{d}^2}{\mathrm{d}t^2} + a^2)y = x \iff (\omega^2 + a^2)Y = X \iff Y = \frac{1}{\omega^2 + a^2}X \iff y = h * x \text{ för ett } h \text{ s.a. } H(i\omega) = \frac{1}{\omega^2 + a^2}.$$

 e^{-at} har en Fouriertransform $\frac{2a}{a^2+\omega^2}$, då har $h(t)=\frac{1}{2a}e^{-at}$ överföringsfunktion $H(i\omega)=\frac{1}{a^2+\omega^2}$.

Då får vi från ursprungliga problemet $h*x(t)=y(t)=\frac{1}{2a}\int\limits_{-\infty}^{\infty}e^{-a|t-u|}x(u)\mathrm{d}u.$

"En pil säger mer än två ord i det här fallet"

– Pokèmon #109

Sats 12. Låt f vara en signal. Då har $\int_{-\infty}^t f(\tau) d\tau$ Fouriertransform $\frac{F(i\omega)}{i\omega} + \pi F(0)\delta(\omega)$.

Bevis. Idén bakom beviset är att
$$\int_{-\infty}^t f(\tau) \mathrm{d}\tau = \int_{-\infty}^\infty f(\tau) u(t-\tau) \mathrm{d}\tau = f * u.$$

Eftersom f*u bildar transformpar med FU vill vi visa att det är lika med $F(i\omega)\left(\frac{1}{i\omega}+\pi\delta(\omega)\right)$. Vi vill alltså att $U(i\omega)=\frac{1}{i\omega}+\pi\delta(\omega)$.

Eftersom $u'=\delta$ får vi att det bildar transformpar med $i\omega U(i\omega)=1\implies U(i\omega)=\frac{1}{i\omega}.$

Man får i någon mån halva bidraget från den konstanta funktionen 1, vilket är $2\pi\delta(\omega)$, alltså får vi en faktor $\pi\delta(\omega)$ i lösningen.

Om
$$\int_{-\infty}^{\infty} f(\tau) d\tau = 0$$
 måste $F(0) = 0$.

7.3 Plancherels sats

Sats 13. Låt $L^2(-\infty,\infty)=\{$ signaler f med ändlig energi $\}$ Kom ihåg att energin $E=\int\limits_{-\infty}^{\infty}|f(t)|^2\mathrm{d}t$. Kom också ihåg $\langle f_1,f_2\rangle=\int\limits_{-\infty}^{\infty}\overline{f_1(t)}f_2(t)\mathrm{d}t$. Då är, för $f_1,f_2\in L^2(-\infty,\infty)$, både F_1 och $F_2\in L^2(-\infty,\infty)$. Vidare är $\int\limits_{-\infty}^{\infty}\overline{f_1(t)}f_2(t)\mathrm{d}t=\frac{1}{2\pi}\int\limits_{-\infty}^{\infty}\overline{f_1(t)}f_2(t)\mathrm{d}t$.

8 Föreläsning 19-09-19

8.1 Fourierserier och -transformer

Påminnelse 1. Kom ihåg Eulers formel: $\cos(x) = \frac{1}{2}(e^{ix} + e^{-ix})$. Kom också ihåg den allmänna formeln: $x(t) = A\cos(\omega t + \theta) = \frac{A}{2}\left(e^{i(\omega t + \theta)} + e^{-i(\omega t + \theta)}\right) = \frac{A}{2}e^{i\theta}e^{i\omega t} + \frac{A}{2}e^{-i\theta}e^{-i\omega t}$. Om $\omega = k\omega_0$ kan vi skriva $x(t) = \frac{A}{2}e^{i\theta}e^{ik\omega_0t} + \frac{A}{2}e^{-i\theta}e^{-ik\omega_0t}$ där vi ger namnen $c_k = \frac{A}{2}e^{i\theta}$ och $c_{-k} = \frac{A}{2}e^{-i\theta}$. Allmännt för en periodisk signal med flera sinsuformade signaler med $\omega = t\omega_0$ får vi $x(t) = \sum_{k=-\infty}^{\infty} c_k e^{-ik\omega_0 t}$ vilket är Fourierserien på komplex form. c_k anger amplitud hos varje komplex exponential i formeln ovan.

 c_k och $X(i\omega)$ ger information om en signals frekvensinnehåll. Signalens amplitud fördelad över de olika frekvenserna är $|c_k|$ eller $|X(i\omega)|$ i det periodiska och icke-periodiska fallet. Vi kan från detta skapa amplitudspektrum. Signalens fas fördelad över de olika frekvenserna är arg c_k och arg $X(i\omega)$ för de två huvudfallen.

Från Parsevals formel fås för en periodisk signal (effektsignal) den totala medeleffekten $\overline{P}=\frac{1}{T}\int_{T}|x(t)|^{2}\mathrm{d}t=c_{0}^{2}+\sum_{k=1}^{\infty}2|c_{k}|^{2}$ vilket kan kallas effekttäthetsspektrat. Den kan delas upp efter frekvens om man vill. För en kontinu-

erlig signal (energisignal) definierar vi den totala energin $E = \int_{-\infty}^{\infty} |x(t)|^2 dt =$

 $\frac{1}{2\pi}\int\limits_{-\infty}^{\infty}|X(i\omega)|^2\mathrm{d}\omega$. Det är ett energi(täthets)spektrum och kan delas upp per frekvens.

8.2 Systemanalys

$$y(t) = \int\limits_{-\infty}^{\infty} h(\tau)x(t-\tau)\mathrm{d}\tau. \ \mathrm{Låt} \ x(t) = e^{i\omega t}. \ \mathrm{D} \mathring{\mathrm{a}} \ \mathrm{är} \ y(t) = h(t)*x(t) = \int\limits_{-\infty}^{\infty} h(\tau)e^{i\omega(t-\tau)}\mathrm{d}\tau = \int\limits_{-\infty}^{\infty} h(\tau)e^{i\omega t}\mathrm{d}\tau = e^{i\omega t}\int\limits_{-\infty}^{\infty} h(\tau)e^{-i\omega\tau}\mathrm{d}\tau = e^{i\omega t}H(i\omega).$$

I vår Fourierserie ingår frekvenserna $k\omega_0, k \in \mathbb{Z}$.

$$x_k(t) = e^{ik\omega_0 t} \to y_k(t) = e^{ik\omega_0 t} H(ik\omega_0)$$

$$x_{-k}(t) = e^{-ik\omega_0 t} \to y_{-k}(t) = e^{-ik\omega_0 t} H(-ik\omega_0)$$

 $x(t) = \frac{1}{2}(x_k(t) + x_{-k}(t)) = \cos(k\omega_0 t) \rightarrow y(t) = \frac{1}{2}y_k(t) + \frac{1}{2}y_{-k}(t)$. Låt $H(ik\omega_0) = H_k = |H_k|e^{i\theta_k} \in \mathbb{C}$. Då är $H(-ik\omega_0) = H_{-k} = |H_k|e^{-i\theta_k} \in \mathbb{C}$. Om man summerar (använder superposition) får man då $y(t) = \frac{1}{2}|H_k|\left(e^{ik\omega_0 t}e^{i\theta_k} + e^{-ik\omega_0 t}e^{i\theta_k}\right) = |H_k|\cos(k\omega_0 t + \theta_k)$ vilket är den ursprungliga signalen med en amplitudpåverkan och en faspåverkan.

 $H_k = H(ik\omega_0)$ är systemets frekvenssvar $(H(i\omega))$. Den ändrar amplitud och fas på varje sinusformad med frekvensen ω .

9 Föreläsning 19-09-25

"När ni lyssnar på Spotify är det ju inte ettor och nollor som strömmar in i örat på er."

- Antman

9.1 Rekonstruktion

Sats 14 (Samplingsteoremet). Låt x(t) ha Fouriertransformen $X(i\omega)$ och vara en bandbegränsad signal, d.v.s. $X(i\omega) = 0$ för något $|\omega| > \omega_M$.

Då, om samplingsfrekvensen $\omega_s > 2\omega_M$ kan x(t) återskapas utifrån sina sampelvärden $x[n] = x(nT), n \in \mathbb{Z}$ där $\omega_s = \frac{2\pi}{T}$.

Definition 6 (Nyquistfrekvens). Halva samplingsfrekvensen $\frac{\omega_s}{2}$ kallas Nyquistfrekvensen. Den jämförs med ω_M .

Om x(t) inte är bandbegränsad kan man använda ett antivikningsfilter/anti aliasing filter, d.v.s. ett kontinuerligt lågpassfilter. Det reducerar bandbredden hos en signal x(t) och appliceras innan sampling. Tanken är att det ska ta bort frekvenser som är större än $\frac{\omega_s}{2}$ och därmed minska effekten av vikning/aliasing.

9.1.1 Ideal rekonstruktion

Handlar om att återskapa x(t) utifrån sina sampelvärden x[n] := x(nT).

 $x(t) \stackrel{\text{FT}}{\longleftrightarrow} X(i\omega)$ och $x_p(t) \stackrel{\text{FT}}{\longleftrightarrow} X_p(i\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(i(\omega - k\omega_s))$. Applicera ett idealt rekontruktionsfilter/-system

$$H_r(i\omega) = \begin{cases} T & |\omega| < \frac{\omega_s}{2} \\ 0 & \text{annars} \end{cases}$$

Vi får då $Y(i\omega)=H_r(i\omega)X_p(i\omega)$ och i tidsdomänen $y(t)=h_r(t)*x_p(t)=h_r(t)*(\sum_{n=-\infty}^{\infty}x[n]\delta(t-nT))=\sum_{n=-\infty}^{\infty}x[n]h_r(t-nT).$ y(t) är då en summa av viktade och skiftade impulssvar $h_r(t)$. Nu vill vi beräkna de impulssvaren.

$$h_r(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H_r(i\omega) e^{i\omega t} d\omega$$

$$= \frac{T}{2\pi} \int_{-\frac{\omega_2}{2}}^{\frac{\omega_s}{2}} e^{i\omega t} d\omega$$

$$= \frac{T}{2\pi} \left[\frac{e^{i\omega t}}{it} \right]_{-\frac{\omega_2}{2}}^{\frac{\omega_s}{2}}$$

$$= \frac{T}{\pi t} \frac{1}{2i} \left(e^{i\frac{\omega_s}{2}t} - e^{-i\frac{\omega_s}{2}t} \right)$$

$$= \frac{T}{\pi t} \sin\left(\frac{\omega_s}{2}t\right)$$

$$= \left\{ T = \frac{2\pi}{\omega_2} \right\}$$

$$= \frac{2\pi}{\omega_s \pi t} \sin\left(\frac{\omega_s}{2}t\right)$$

$$= \frac{\sin\left(\frac{\omega_s}{2}t\right)}{\frac{\omega_s}{2}t}$$

$$= \operatorname{sinc}\left(\frac{\omega_s}{2}t\right).$$

Definition 7 (sinc). $\operatorname{sinc}(x) := \frac{\sin(x)}{x}$

Ett praktiskt problem med detta är att $h_r(t)$ inte är kausalt och har oändlig utsträckning.

9.1.2 Praktisk rekonstruktion

För att göra det praktiskt att rekonstruera måste systemet vara kausalt. Vi gör det genom att arbeta med hållkretsar, och vi börjar med nollte ordningens hållkrets. Det är ett system där $x_p(t)$ ger en utsignal $x_0(t)$ med impulssvaret

$$h_0(t) = \begin{cases} 1 & 0 \le t < T \\ 0 & \text{annars} \end{cases}$$

Sampelvärdet hålls kvar på sin nivå tills nästa sampelvärde kommer.

 $x_0(t)=h_0(t)*x_p(t)=\{x[n]=x(nT)\}=h_0(t)*\sum_{n=-\infty}^{\infty}x[n]\delta(t-nT)=\sum_{n=-\infty}^{\infty}x[n]h_0(t-nT).$ Nu analyserar vi med Fouriertransformen/i frekvensdomänen: $X_0(i\omega)=H_0(i\omega)X_p(i\omega).$ Då är $h_0(t)\overset{\mathrm{FT}}{\longleftrightarrow}2e^{-i\frac{\omega T}{2}\frac{\sin\left(\frac{\omega T}{2}\right)}{\omega}}$ vilket i princip är en sinc-funktion.

9.1.3 Aliasing/vikning

Exempel 21. Låt $x(t) = A\cos(\omega_M t) = \frac{A}{2}(e^{i\omega_M t} + e^{-i\omega_M t})$.

Fouriertransformen av det är $X(i\omega) = A\pi(\delta(\omega - \omega_M) + \delta(\omega + \omega_M)).$

Sen samplar vi vilket ger $X_p(i\omega)=\frac{1}{T}\sum_{k=-\infty}^{\infty}X(i(\omega-k\omega_s))$. Om $\omega_M<\frac{\omega_s}{2}$ får vi

Med ett idealt rekonstruktionsfilter $H_r(i\omega)$ får vi $H_r(i\omega)X_p(i\omega)=T\frac{A\pi}{T}(\delta(\omega-\omega_M)+\delta(\omega+\omega_M))$. Vi får alltså tillbaka $x(t)=A\cos(\omega_M t)$

Annars, om $\omega_M > \frac{\omega_s}{2}$ får vi

Med det ideala rekonstruktionsfiltret får vi då $X_p(i\omega)H_r(i\omega) = A\pi(\delta(\omega - (\omega_s - \omega_M)) + \delta(\omega + (\omega_s - \omega_M)))$ vilket svarar mot $x_1(t) = A\cos((\omega_s - \omega_M)t)$.

Med ett numeriskt exempel med konstanterna

$$\omega_s = 200 \, \text{rad/s}$$
 $\omega_M = 120 \, \text{rad/s}$

Den rekonstruerade signalen har då vinkelfrekvensen $\omega_s - \omega_M = 200 - 120 =$ 80 rad/s. Det är en "falsk" frekvens, d.v.s. aliasing/vikning.

10 Föreläsning 19-09-26

10.1 Laplacetransformen

Man brukar prata om en- och tvåsidiga Laplacetransformer.

10.1.1Tvåsidig

Definition 8 (Tvåsidig Laplacetransform). Låt $f(t), -\infty < t < \infty$ vara en signal. Då är Laplacetransformen $F(s)=\int\limits_{-\infty}^{\infty}f(t)e^{-st}\mathrm{d}t$ där $s\in\mathbb{C},$ vilket typ är FT(f).

Följande är det kausala fallet av den tvåsidiga transformen.

Definition 9 (Ensidig Laplacetransform). Låt f(t) vara en kausal signal, d.v.s. f(t) = 0 för t < 0.

Då är $F(s) = \int_0^\infty f(t)e^{-st} dt$ där $s \in \mathbb{C}$. **Definition 10** (Exponentiellt begränsad). f är exponentiellt begränsad om efter något t_0 beter den sig som en exponentiell funktion.

Matematiskt säger vi att $\exists c \in \mathbb{R}, t_0 > 0 : |f(t)| \le e^{ct} \forall t > t_0.$

Exempel 22. $f(t) = \delta(t - a)$. Om $a \ge 0$ är den kausal.

För alla $t_0 > a$ är $f(t) = 0 \forall t > t_0$ och därmed $|f(t)| \leq e^{ct} \forall c \in \mathbb{R}$. Alltså är den exponentiellt begränsad.

Påstående 4 (När Laplace är definierat). Om f är exponentiellt begränsad för något $c \in \mathbb{R}$ så är Laplacetransformen F(s) väldefinierad för $\text{Re}\{s\} > c$.

Bevis. Tanken är att man visar att andra termen i $F(s) = \int_0^{t_0} f(t)e^{-st} dt + \int_0^{t_0} f(t)e^{-st} dt$ $\int_0^{t_0} f(t)e^{-st}dt$ är begränsad.

Exempel 23. Låt $f(t) = \delta(t - a)$ för något a > 0.

Då är $F(s) = \int_0^\infty \delta(t-a)e^{-st} dt = e^{-sa}$. Exempel 24. Låt f(t) = u(t).

Då är $F(s) = \int_0^\infty e^{-st} dt = \frac{1}{s}$. Exempel 25. Låt f(t) = tu(t).

Då är $F(s)=\int_0^\infty t e^{-st} \mathrm{d}t = \{\text{Partiell integrering}\} = \frac{n!}{s^{n+1}}.$

Exempel 26. Låt $f(t) = \delta'(t-a)$ för något a > 0.

Då är $F(s) = \int_0^\infty \delta'(t-a)e^{-st}dt = se^{-sa}$. **Exempel 27.** Låt $f(t) = e^{at}u(t)$.

Då är $F(s) = \int_0^\infty e^{at} e^{-st} dt = \frac{1}{s-a}$ om $\text{Re}\{s\} > \text{Re}\{a\}$. **Påstående 5** (Laplace av faltning). Om x_1, x_2 är ensidiga gäller att Laplacetransformen av $x_1 * x_2 = X_1 X_2$.

Bevis. Laplace av
$$x_1 * x_2 = \int_0^\infty (x_1 * x_2) e^{-st} dt = \int_0^\infty \int_0^t x_1(\tau) x_2(t-\tau) e^{-st} d\tau dt = \{v = t - \tau\} = \int_0^\infty \int_0^\infty x_1(\tau) x_2(v) e^{-s(\tau+v)} d\tau dv = X_1(s) X_2(s).$$

För en kausal LTI gäller att $y = h * x \iff Y = HX$. För att visa det här måste vi veta att Laplacetransformen av en signal är unik.

10.1.2 Egenskaper för Laplace

Vi skriver $\mathcal{L} f(s) := F(s)$.

- 1. \mathcal{L} är linjär, d.v.s. $\mathcal{L}(f_1 + \lambda f_2) = \mathcal{L} f_1 + \lambda \mathcal{L}(f_2)$.
- 2. $f(t-a) \stackrel{\mathcal{L}}{\mapsto} e^{-as} F(s)$
- 3. $e^{-zt} f(t) \xrightarrow{\mathcal{L}} F(s+z)$
- 4. $f'(t) \stackrel{\mathcal{L}}{\mapsto} s \mathcal{L}(f)(s) f(0)$ eftersom $\mathcal{L}(f'(s)) = \int_0^\infty f'(t)e^{-st} dt = [f(t)e^{-st}]_{t=0}^\infty \int_0^\infty f(t) \cdot (-s)e^{-st} dt = f(\infty)e^{-s\infty} f(0) + s \int_0^\infty f(t)e^{-st} dt = sF(s) f(0)$

Om f är en signal med c < 0 är F(s) definierad för Re(s) = 0. Då kan vi definiera $F(i\omega) = FT$ för f.

Laplace kan definieras i vissa fall när FT inte existerar, ex. $f(t)=e^tu(t)$. Då är FT $\approx \int_0^\infty e^t e^{-i\omega t} \mathrm{d}t$. $\mathcal{L}(f)(s)=\frac{1}{s-1}, \mathrm{Re}\{s\}>1$.

För en kausal LTI y = h * x, om vi stoppar in $x(t) = e^{st}$, ger $y(t) = h * e^{st} = \int_0^\infty h(\tau) e^{s(t-\tau)} \mathrm{d}\tau = e^{st} \int_0^\infty h(\tau) e^{-s\tau} \mathrm{d}\tau = \mathcal{L}(H)(s) x(t)$.

Låt $y' + ay = x \, \text{där } y(0) \, \text{är given.}$

Genom Laplace får vi $\mathcal{L}(y' + ay) = sY(s) - y(0) + aY = X \implies Y(0) =$ $\frac{X+y(0)}{s+a} = \mathcal{L}(e^{-at}u(t)) \cdot (X+y(0)) = \mathcal{L}(e^{-at}u(t)*(x+y(0)\delta(t)))$ vilket om \mathcal{L} är inverterbar ger att $y(t) = e^{-at}u(t) * (x(t) + y(0)\delta(t)) = y(0)e^{-at}u(t) + y(0)\delta(t)$ $\int_0^t e^{-a\tau} x(t-\tau) d\tau.$

Exempel 28. Låt $f(t) = \cos(at)u(t)$ där $a \in \mathbb{R}$.

$$f(t) = \frac{e^{iat} + e^{-iat}}{2}u(t). \text{ Då är } F(s) = \frac{1}{2}(\mathcal{L}(e^{iat}u(t)) + \mathcal{L}(e^{-iat}u(t))) = \frac{1}{2}(\frac{1}{s - ia} + \frac{1}{s + ia}) = \frac{s}{s^2 + a^2}.$$

Exempel 29. Låt $f(t) = \sin(at), a \in \mathbb{R}$.

$$\frac{\mathrm{d}}{\mathrm{d}t}\sin(at) = a\cos(at) \implies s\,\mathcal{L}(\sin(at))(s) - \sin(a\cdot 0) = a\cdot\frac{s}{s^2+a^2} \implies s\,\mathcal{L}(\sin(at))(s) = \frac{a}{a^2+s^2} \implies \mathcal{L}(\sin(at))(s) = \frac{a}{a^2+s^2}$$

Om $|f(t)| \leq e^{ct}$ och $\sigma > c$ är $\int_0^\infty |f(t)e^{-\sigma t}| dt < \infty$ vilket ger att FT för $f(t)e^{-\sigma t}$ är väldefinierad. Utöver det bildar $f(t)e^{-\sigma t}$ ett Fouriertransformpar med $F(i\omega + \sigma)$.

Alltså är
$$f(t)e^{-\sigma t} = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(i\omega + \sigma)e^{i\omega t} d\omega \implies f(t) = \frac{e^{\sigma t}}{2\pi} \int_{-\infty}^{\infty} F(i\omega + \sigma)e^{i\omega t} d\omega$$

 $\sigma)e^{i\omega t}\mathrm{d}\omega = \{s=i\omega+\sigma\} = \frac{1}{2\pi i}\int_{\sigma-i\omega}^{\sigma+i\omega} F(s)e^{st}\mathrm{d}s \text{ vilket kallas för } Bromwichin-icolor for the sum of the$

Sats 15 (Likhet av två signaler och dess två Laplacetransformer). Om f_1 och

 f_2 är två kausala signaler med $F_1 = F_2$ är $f_1 = f_2$. **Exempel 30.** Vi vill finna den signal f(t) så att $\mathcal{L}(f)(s) = \frac{s+1}{s^2+2} = \frac{s}{s^2} + \frac{1}{s^2+2} = \frac{s}{s^2+\sqrt{2}^2} + \frac{1}{\sqrt{2}} \frac{\sqrt{2}}{s^2+\sqrt{2}^2} = \mathcal{L}(\cos(\sqrt{2}t)) + \mathcal{L}(\frac{1}{\sqrt{2}}\sin(\sqrt{2}t)) \implies f(t) = \cos(\sqrt{2}t) + \frac{1}{\sqrt{2}}\sin(\sqrt{2}t)$. **Exempel 31.** Anta att insignalen x uppfyller x(0) = 0. Vi ska skriva om (x'' + 2x - x' + x)

 $\begin{cases} y'' + 2y = x' + x \\ y(0) = y'(0) = 0 \end{cases}$ på formen y = h * x.

Laplacetransform ger $s^2Y + 2Y = sX + X \iff Y = \frac{s+1}{s^2+2}X \iff y =$ $(\cos(\sqrt{2}t) + \frac{1}{\sqrt{2}}\sin(\sqrt{2}t)) * x.$

Sats 16 (Slutvärdessatsen). Låt f vara en kausal och begränsad signal, d.v.s. $\exists c > 0 \text{ s.a. } |f(t)| < c.$

Satsen är att $f(0+) = \lim_{\epsilon \to 0+} f(\epsilon) = \lim_{s \to \infty} sF(s)$ och $\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$.

Bevis. Om
$$s > 0$$
 är $sF(s) = s \int_0^\infty f(t)e^{-st}dt = \{u = st\} = \int_0^\infty f(\frac{u}{s})e^{-u}du \Longrightarrow sF(s) = \lim_{s\to 0} \int_0^\infty f(\frac{u}{s})e^{-u}du = \int_0^\infty \lim_{t\to \infty} f(t)e^{-u}du = \lim_{t\to \infty} f(t) \int_0^\infty e^{-u}du = \lim_{t\to \infty} f(t).$

Föreläsning 19-10-01 11

"Bupp bupp bupp"

- Mattemannen

11.1Laplace och differentialekvationer

Exempel 32. Vi har en RLC-krets:

Vi är intresserade av strömmen y(t) som går genom kretsen.

Kirchoff ger att $V_L(t) + V_R(t) + V_C(t) = x(t)$. Vi vet också att $V_L(t) = L \cdot y'(t)$, $V_R(t) = R \cdot y(t)$ och $V_C(t) = \frac{1}{C} \int_{-\infty}^t y(\tau) d\tau$.

Därmed har vi $Ly'+Ry+\frac{1}{C}\int_{-\infty}^ty(\tau)\mathrm{d}\tau=x(t)$ eller genom att derivera en gång till $Ly''+Ry'+\frac{1}{C}y=x'\iff Q(D)y=P(D)x$ där $Q(D)=D^2+\frac{R}{L}D+\frac{1}{LC}$ och $P(D)=\frac{1}{L}D.$ Detta är en andra ordningens differentialekvation.

Vi kommer tillbaka till hur vi löser detta, men först tittar vi på hur vi löser enklare fall.

Om P(D)=1 kan vi använda $y=y_0+y_{\rm in}$ där zerostate y_0 löser $\begin{cases} Q(D)y_0=x\\ y_0^{(j)}(0)=0 \ \forall \ j \end{cases}$

och zeroinput y_{in} löser $\begin{cases} Q(D)y_{\text{in}} = 0 \\ y_{\text{in}}^{(j)}(0) = y^{(j)}(0) \; \forall \; j \end{cases}.$

Vi börjar med att lösa zerostate. Vi vet att $\mathcal{L}(Q(D)y_0) = X(s)$ och $\mathcal{L}(D^2y_0) = s^2 \mathcal{L}(y)(s)$. Därmed har vi att $Y_0(s) = \frac{1}{Q(s)}X(s) \iff y_0(t) = h * x(t)$ där h uppfyller att $H(s) = \frac{1}{Q(s)}$.

uppfyller att $H(s) = \frac{1}{Q(s)}$. **Exempel 33.** Q(D) = D + a, d.v.s. vi tittar på y' + ay = x. Då är Q(s) = s + a så att $H(s) = \frac{1}{s+a} = \mathcal{L}(e^{-at}u(t))(s)$ och därmed är $h(t) = e^{-at}u(t)$ och $y_0(t) = h * x(t) = \int_0^t e^{-a(t-\tau)}x(\tau)d\tau$.

 $h*x(t) = \int_0^t e^{-a(t-\tau)}x(\tau)d\tau$. **Exempel 34.** Låt $Q(D) = D^2 + aD + b$. Då är $Q(s) = s^2 + as + b$ och därmed $H(s) = \frac{1}{s^2 + as + b}$. Viktigt här (men även generellt) är partialbråksuppdelning.

I det här fallet vill vi hitta λ_{\pm} som löser $\lambda^2 + a\lambda + b = 0$. Då är $s^2 + as + b = (s - \lambda_+)(s - \lambda_-)$.

Vi vill förenkla $\frac{1}{(s-\lambda_+)(s-\lambda_-)}$ och använder partialbråksuppdelning för det. Då får vi att det är lika med $\frac{1}{\lambda_+-\lambda_-}\left(\frac{1}{s-\lambda_+}-\frac{1}{s-\lambda_-}\right)$.

Då är
$$\frac{1}{s^2+as+b}=\left\{ egin{array}{ll} \frac{1}{\lambda_+-\lambda_-}\left(\frac{1}{s-\lambda_+}-\frac{1}{s-\lambda_-}
ight) & \lambda_+
eq \lambda_- \\ \frac{1}{(2-\lambda_+)^2} & \lambda_+ = \lambda_- \end{array}
ight.$$
 vilket då när vi använder Laplace ger att det är lika med
$$\left\{ egin{array}{ll} \frac{u(t)}{\lambda_+-\lambda_-}\left(e^{\lambda_+t}-e^{\lambda_-t}\right) & \lambda_+
eq \lambda_- \\ te^{\lambda_+t}u(t) & \lambda_+ = \lambda_- \end{array}
ight.$$

Vi går sedan vidare till att lösa zeroinput: Då vill vi lösa $\begin{cases} Q(D)y_{\rm in} = 0 \\ y_{\rm in}^{(j)}(0) = y^{(j)}(0) \ \forall \ j \end{cases}$ **Exempel 35.** Låt $Q(D) = D^2 + aD + b$. Då är $\mathcal{L}(Q(D)y_{\rm in}) = \mathcal{L}(D^2y_{\rm in}) + a\mathcal{L}(Dy_{\rm in}) + b\mathcal{L}(y_{\rm in}) = \mathcal{L}(y_{\rm in}) - sy(0) - y'(0) + as\mathcal{L}(y_{\rm in}) - ay(0) + b\mathcal{L}(y_{\rm in}) = (s^2 + as + b)\mathcal{L}(y_{\rm in}) - y'(0) - (s + a)y(0) \text{ vilket med antaganden som gjordes för zeroinput ger att <math>\mathcal{L}(y_{\rm in})(s) = \frac{y'(0) + (s + a)y(0)}{Q(s)}$. Det löses på ett liknande sätt som det andra, med partialbråksuppdelning.

$$\mathcal{L}(y_{\rm in})(s) = \frac{y'(0) + (s+a)y(0)}{Q(s)}$$

$$= \frac{y'(0) + (\lambda_{+} + a)y(0) + (s - \lambda_{+})y(0)}{(s - \lambda_{+})(s - \lambda_{-})}$$

$$= (y'(0) + (\lambda_{+} + a)y(0))H(s) + \frac{y(0)}{s - \lambda_{-}}$$

$$= \mathcal{L}((y'(0) + (\lambda_{+} + a)y(0))h(t) + y(0)e^{\lambda_{-}t}u(t)) \iff y_{\rm in}(t) = (y'(0) + (\lambda_{+} + a)y(0))h(t) + y(0)e^{\lambda_{-}t}u(t))$$

Allmänt, om $Q(D)y_{\text{in}}=0$ är $Q(s)y_{\text{in}}(s)=\sum_{k=0}^{n-1}g_{Q,k}(s)y^{(k)}(0)$ där $g_{Q,k}$ ges av att $g_{Q,n-1}(s)=1,\ g_{Q,n-2}(s)=s+a_{n-1},\ g_{Q,n-3}(s)=s^2+a_{n-1}s+a_{n-2},\ \ldots,\ g_{Q,0}(s)=s^{n-1}+a_{n-1}s^{n-2}+\cdots+a_2s+a_1.$

Då är
$$Y_m(s) = \frac{\sum_{k=0}^{n-1} g_{Q,k}(s) y^{(k)}(0)}{Q(s)}$$

"Låt oss ta ett ruggigt konkret exempel."

- Goffeng

"Förr, när det var bättre."

- Goffeng

11.1.1 Mer allmänt

För en differentialekvation Q(D)y = P(D)x med givet x och $y^{(j)}(0)$ givna för relevanta j får vi av Laplace $Q(s)Y(s) - \sum_{k=0}^{n-1} g_{Q,k}(s)y^{(k)}(0) = P(s)X(s) - \sum_{k=0}^{n-1} g_{P,k}(s)x^{(k)}(0)$ och därmed $Y(s) = H(s)X(s) + \frac{1}{Q(s)}\sum_{k=0}^{n-1} \left(g_{Q,k}(s)y^{(k)}(0) - g_{P,k}(s)x^{(k)}(0)\right)$ där $H(s) = \frac{P(s)}{Q(s)}$ är överföringsfunktionen. Detta ger att $y(t) = h * x(t) + \sum_{k=0}^{n-1} \left(\alpha_{Q,k}(t)y^{(k)}(0) - \beta_{P,k}(t)x^{(k)}(0)\right)$ där $h = \mathcal{L}^{-1}(H), \alpha_{Q,k} = \mathcal{L}^{-1}(\frac{g_{Q,k}}{Q})$ och $\beta_{P,k} = \mathcal{L}^{-1}(\frac{g_{P,k}}{Q})$.

Hur hittar vi h, $\alpha_{Q,k}$ och $\beta_{P,k}$?

Båda handlar om att inverstransformera uttryck på formen $\frac{s^m}{Q(s)}$ där $m \leq n.$

Påstående 6. Om vi kan faktorisera $Q(s) = (s - \lambda_1)^{\gamma_1} (s - \lambda_2)^{\gamma_2} \cdots (s - \lambda_p)^{\gamma_p}$ så är $\frac{s^m}{Q(s)}$ en summa av termer på formen $\frac{s^l}{(s - \lambda_j)^{\gamma_j}}$ där $l < \gamma_p$ eller l = 1.

Påstående 7. För $h = \mathcal{L}^{-1}(\frac{P}{Q})$ gäller att för några konstanter l_k och $c_{j,k}$ är $\sum_{k=1}^{P} \sum_{i=1}^{l_k} \left(c_{i,k} t^i e^{\lambda_k t} u(t) \right) + b_n \delta(t)$.

Som följd av dessa påståenden får vi att h är stabil $(\int |h(t)| dt < \infty)$ om och endast om $Q(\lambda) = 0$ saknar lösningar med $\text{Re}\{\lambda\} \geq 0$.

Påstående 8. Om h är stabil gäller att

- 1. Om ylöser y = h * x följer att x begränsad $\implies y$ begränsad.
- 2. Om y löser y = h * x följer att $\int_0^\infty |x(t)| dt < \infty \implies \int_0^\infty |y(t)| dt < \infty$.

Bevis.

1. Om $|x(t)| \leq C \ \forall \ t$ gäller att $|y(t)| = \left| \int_0^t h(t-\tau)x(\tau) d\tau \right| \leq \int_0^t |h(t-\tau)||x(\tau)| d\tau \leq C \int_0^\infty |h(\tau)| d\tau$.

2. Bevisas inte här, finns i boken.

Exempel 36. Lös y''(t) + ay'(t) + by(t) = cx'(t) + dx(t) där y(0), y'(0) och x(t) är givna.

Då har vi att $\mathcal{L}(y'' + ay' + by) = (s^2 + as + b)Y - y'(0) - (s + a)y(0)$ och $\mathcal{L}(cx' + dx) = (cs + d)X - cx(0)$. Därmed är $(s^2 + as + c)Y(s) - y'(0) - (s + a)y(0) = (cs + d)X - cx(0) \implies Y(s) = \frac{cs + d}{s^2 + as + b}X(s) + \frac{y'(0) + (s + a)y(0) - cx(0)}{s^2 + as + b}$.

 $\begin{array}{l} \text{Vi vet att } H(s) = \frac{cs+d}{s^2+as+b}. \text{ Vad \"{a}r d\^{a}} \ h? \ \text{Vi skriver } s^2+as+b = (s+\frac{a}{2})^2+b-\frac{a^2}{4}. \\ \text{D\^{a} \"{a}r } H(s) = \frac{cs+d}{(s+\frac{a}{2})^2+b-\frac{a^2}{4}} = \frac{c(s+\frac{a}{2}-\frac{ac}{2}+d)}{(s+\frac{a}{2})^2+b-\frac{a^2}{4}} = c\frac{s+\frac{a}{2}}{(s+\frac{a}{2})^2+b-\frac{a^2}{4}} + \frac{d-\frac{ac}{2}}{(s+\frac{a}{2})^2+b-\frac{a^2}{4}} = \mathcal{L}\left(ce^{-\frac{a}{2}t}\cos\left(\sqrt{b-\frac{a^2}{4}t}\right)\right) + \mathcal{L}\left(\frac{d-\frac{ac}{2}}{\sqrt{b-\frac{a^2}{4}}}e^{-\frac{a}{2}t}\sin\left(\sqrt{b-\frac{a^2}{4}t}\right)\right). \end{array}$

12 Föreläsning 19-10-02

12.1 Laplacetransformen tillämpad på LTI-system

Anta att vi har ett kontinuerligt LTI-system där sambandet mellan in- och utsignal beskrivs av en differentialekvation

$$a_N \frac{d^N y}{dt^N} + a_{N-1} \frac{d^{N-1} y}{dt^{N-1}} + \dots + a_1 \frac{dy}{dt} + a_0 y = b_M \frac{d^M x}{dt^M} + b_{M-1} \frac{d^{M-1} x}{dt^{M-1}} + \dots + b_1 \frac{dx}{dt} + b_0 x$$

alternativt som

$$\sum_{k=0}^{N} a_k \frac{\mathrm{d}^k y}{\mathrm{d}t^k} = \sum_{k=0}^{M} b_k \frac{\mathrm{d}^k x}{\mathrm{d}t^k}.$$

Anta nu att systemet är i vila, d.v.s. alla begynnelsevärden är 0. När vi Laplacetransformerar får vi då $\sum_{k=0}^{N} a_k s^k Y(s) = \sum_{k=0}^{M} b_k s^k X(s)$ och därmed $Y(s) \sum_{k=0}^{N} a_k s^k = X(s) \sum_{k=0}^{M} b_k s^k \implies \frac{Y(s)}{X(s)} \coloneqq H(s) = \frac{\sum_{k=0}^{M} b_k s^k}{\sum_{k=0}^{N} a_k s^k} = b_M s^M + b_{M-1} s^{M-1} + \dots + b_1 s + b_0 a_N s^N + a_{N-1} s^{N-1} + \frac{B(s)}{A(s)}$. Detta är en kvot mellan två polynom beroende på s, d.v.s. en rationell funktion. Den formen fås väldigt ofta från Laplacetransformen i ingenjörstillämpningar. Notera att $B(s) \neq Y(s)$ och $A(s) \neq X(s)$, även om det ser ut så. Polynomen kan även skrivas på faktoriserad form enligt $H(s) = \frac{b_M \prod_{k=1}^{M} (s-c_k)}{a_N \prod_{k=1}^{N} (s-d_k)} = \frac{b_M (s-c_1)(s-c_2)\cdots(s-c_M)}{a_N(s-d_1)(s-d_2)\cdots(s-d_N)}$ där c_k är nollställen till H(s) och rötter till täljaren med symbolen \circ . d_k är poler till H(s) och är rätter till nämnarpolynomet har symbolen \times . En graf för ett H(s) kan se ut som följer:

Det innehållet all information om H(s) förutom konstanten $\frac{b_M}{a_N}$. Allmänt kan c_k och d_k vara antingen reella eller komplexa. Om det finns något komplext c_k eller d_k måste dess konjugat också vara ett nollställe så länge koefficienterna i polynomen är reella. Det kommer allt som oftast vara fallet för vanliga fysikaliska system.

Låt följande beskriva ett LTI-system: $x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s), \stackrel{\mathcal{L}}{\longleftrightarrow} Y(s)$ och $h(t) \stackrel{\mathcal{L}}{\longleftrightarrow} H(s)$.

I tidsdomänen har vi för systemet y(t) = h(t) * x(t), i frekvensdomänen Y(s) = H(s)X(s). Då skapar vi kvoten $H(s) = \frac{Y(s)}{X(s)}$ vilket vi även fick när vi Laplacetransformerade den generella differentialekvationen tidigare. Vi kallar H(s) för systemets överföringsfunktion. $\mathcal{L}^{-1}(H(s)) = h(t)$ är systemets impulssvar. För kausala system använder vi den enkelsidiga Laplacetransformen. Det räcker i den här kursen.

12.2 Invers Laplacetransform

Utgå från en kvot mellan våra polynom, exempelvis $H(s) = \frac{B(s)}{A(s)}$. Anta att $\operatorname{grad}(B(s)) = M$ och $\operatorname{grad}(A(s)) = N$. För fysikaliska system är alltid $M \leq N$. Om M = N vet vi att $H(s) = c_0 + \frac{\widetilde{B}(s)}{A(s)}$ där $\operatorname{grad}(\widetilde{B}(s)) = M - 1$. Sen partialbråksuppdelar vi $\frac{\widetilde{B}(s)}{A(s)}$ om M = N och $\frac{B(s)}{A(s)}$ direkt om M < N. Resultatet av partialbråksuppdelningen ger en summa av två typer av termer beroende på om rötterna är komplexa eller reella. Varje term kan sedan inverstransformeras

Man kan skriva partialbråksuppdelningsansatsen $\frac{As+B}{(s+\alpha)^2+\omega^2}$ som $\frac{A(s+\alpha)+B-A\alpha}{(s+\alpha)^2+\omega^2}=A\frac{s+\alpha}{(s+\alpha)^2+\omega^2}+\frac{B-A\alpha}{\omega}\cdot\frac{\omega}{(s+\alpha)^2+\omega^2}$ vilket ger inverstransformen $A\left(e^{-\alpha t}\cos(\omega t)+\frac{B-A\alpha}{\omega}e^{-\alpha t}\sin(\omega t)\right)u(t)$. För att den ska vara konvergera måste $\mathrm{Re}\{s_1\}=\mathrm{Re}\{s_2\}<0$.

För att ett kausalt system ska vara stabilt måste alla poler till H(s) ligga i vänstra halvplanet.

13 Föreläsning 19-10-03

13.1 Kort repetition

Kom ihåg att för ett LTI-system gäller att för ett system med insignal $x(t) = \sin(\omega t)$ och frekvenssvar (FT av impulssvaret) $G(i\omega)$ får vi utsignalen $y(t) = |G(i\omega)|\sin(\omega t + \arg G(i\omega))$ i stationärtillstånd. Om man vill ha hela förloppet kan man Laplacetransformera och räkna som vanligt.

13.2 Bodediagram/Bode plots

En grafisk presentation av frekvenssvaret:

Innehåller två delar:

- Amplituddiagram, ofta med logaritmisk frekvens- och amplitudskala (i dB). $|G(i\omega)| = 20 \cdot \log_{10}(|G(i\omega)|)$
- Fasdiagram, ofta med logaritmisk frekvensskala men linjär fasskala (d.v.s. plottar mot arg $G(i\omega)$)

För att konstruera dessa diagram utgår vi ifrån en överföringsfunktion G(s) och sätter $s=i\omega$ så att vi får $G(i\omega)$. Sedan faktoriserar vi överföringsfunktionen G(s) så att $G(s)=\frac{C_1(s)C_2(s)\cdots C_M(s)}{D_1(s)D_2(s)\cdots C_N(s)}$. Faktorerna $C_k(s)$ och $D_k(s)$ är antingen k (en konstant), s (derivering i täljaren, integrering i nämnaren), $1+\frac{s}{\omega_1}$ (förstagradsfaktor p.g.a. en reell rot) eller $1+s\frac{2a}{\omega_2}+\frac{s^2}{\omega_2^2}$ (andragradsfaktor p.g.a. komplexa rötter).

13.2.1 Frekvenssvarets belopp

$$\begin{split} |G(i\omega)| &= \tfrac{|C_1(s)||C_2(s)|\cdots|C_M(s)|}{|D_1(s)||D_2(s)|\cdots|C_N(s)|}. \text{I dB \"{a}r det } |G(i\omega)|_{\text{dB}} = |C_1(i\omega)|_{\text{dB}} + |C_2(i\omega)|_{\text{dB}} + \\ &\cdots + |C_M(i\omega)|_{\text{dB}} - |D_1(i\omega)|_{\text{dB}} - |D_2(i\omega)|_{\text{dB}} - \cdots - |D_N(i\omega)|_{\text{dB}} \text{ och deras fasbidrag } \\ \text{fås som arg } G(i\omega) &== \text{arg } C_1(i\omega) + \text{arg } C_2(i\omega) + \cdots + \text{arg } C_M(i\omega) - \text{arg } D_1(i\omega) - \\ &\text{arg } D_2(i\omega) - \cdots - \text{arg } D_N(i\omega). \text{ Notera att superpositionen av bidragen från varje } \\ \text{delfaktor ger både } |G(i\omega)|_{\text{dB}} \text{ och arg } G(i\omega). \end{split}$$

Studera $\frac{1}{1+\frac{s}{\omega_1}}\Big|_{s=i\omega}=\frac{1}{1+i\frac{\omega}{\omega_1}}$. Dess belopp är $\frac{1}{\sqrt{1+\frac{\omega}{\omega_1}^2}}=|G_1(i\omega)|$. Bodediagrammet blir då

Argumentet för den är arg $G_1(i\omega) = -\arctan\left(\frac{\omega}{\omega_1}\right)$. Bodediagrammet blir

Lutningen på amplituddiagrammet är $-20 \frac{dB}{dekad}$.

13.3 Fourierrepresentationer

Ordlista: CT – Continuous time, DT – Discrete time, FS – Fourier series, FT – Fourier transform

En tabell som beskriver vad vi använder i olika fall:

Ç	Signal	Periodisk	Ickeperiodisk						
(CT	CTFS $(c_k \text{ eller } a_k \text{ och } b_k)$	$CTFT(X(i\omega))$						
I	DT	Vi väntar med denna.	DTFT						
Påminnelse 2 (Kort repetition av sampling). För $x_p(t) = p(t) \cdot x(t)$ är $X_p(i\omega) =$									
$\frac{1}{T} \sum_{k=-\infty}^{\infty} X(i(\omega - k\omega_s)) \operatorname{där} \omega_2 = \frac{2\pi}{T} \operatorname{och} p(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT).$									

Om vi Fouriertransformerar $x_n(t)$ direkt får vi

$$\begin{split} X_p(t) &= \int\limits_{-\infty}^{\infty} x_p(t) e^{-i\omega t} \mathrm{d}t \\ &= \int\limits_{-\infty}^{\infty} \left(\sum_{n=-\infty}^{\infty} x(t) \cdot \delta(t-nT) \right) e^{-i\omega t} \mathrm{d}t \\ &= \sum_{n=-\infty}^{\infty} \int\limits_{-\infty}^{\infty} x(t) \cdot \delta(t-nT) e^{-i\omega t} \mathrm{d}t \\ &= \{ \text{Får endast bidrag} \quad \neq 0 \quad \text{vid impuls, d.v.s. vid} \quad t = nT \} \\ &= \sum_{n=-\infty}^{\infty} x(nT) e^{-i\omega nT} \int\limits_{-\infty}^{\infty} \delta(t-nT) \mathrm{d}T \\ &= \sum_{n=-\infty}^{\infty} x(nT) e^{-i\omega nT} \\ &= \{ \text{Låt} \quad x(nT) = x[n] \quad \text{och} \quad \omega T = \Omega \} \\ &= \sum_{n=-\infty}^{\infty} x[n] e^{-i\Omega n} \end{split}$$

vilket är Fouriertransformen för en ickeperiodisk diskret signal och vi skriver den som $X(e^{i\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-i\Omega n}$. Kallas Diskret Tid FourierTransform och förkortas DTFT. Kursboken använder beteckningen $X(\Omega)$ men det är "bättre" med konventionen ovan eftersom det matchar bättre mot z-transformen senare i kursen.

13.3.1 Egenskaper

 $X(e^{i\Omega})$ är...

- kontinuerlig i Ω .
- periodisk i Ω eftersom $X(e^{i(\Omega+2\pi k)}) = \sum_{n=-\infty}^{\infty} x[n]e^{-i(\Omega+2\pi k)n} = \sum_{n=-\infty}^{\infty} x[n]e^{-i\Omega n} \cdot e^{-i2\pi kn} = \sum_{n=-\infty}^{\infty} x[n]e^{-i\Omega n} = X(e^{i\Omega})$

Alltså är x[n] innan DTFT både diskret och icke-periodisk, men $X(e^{i\Omega})$ är både kontinuerlig och periodisk.

Kom ihåg hur Fouriertransformen för vårt viktade impulståg $x_p(t)$ såg ut:

Den är också periodisk, men i ω och med "perioden" $\omega = \omega_s$. Men $\Omega = \omega T$ vilket vid $\Omega = 2\pi$ ger $\omega = \frac{2\pi}{T} = \omega_s$ eftersom T är samplingsintervallet. $\Omega = 2\pi$ motsvarar samplingsvinkelfrekvensen. $e^{i\Omega n} = \cos(\Omega n) + i\sin(\Omega n)$. Enheten för Ω är då rad alt $\frac{\mathrm{rad}}{\mathrm{sampel}}$.

13.4 Syntesekvation/Invers DTFT

$$x[n]=\int_{2\pi}X(e^{i\Omega})e^{i\Omega n}\mathrm{d}\Omega.$$