МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1
по дисциплине «Качество и метрология программного обеспечения»
ТЕМА: «Расчет метрических характеристик качества разработки
программ по метрикам Холстеда»

Студент гр. 6304	Иванов В.С.
Преподаватель	Кирьянчиков В.А.

Санкт-Петербург 2020

Задание

Для заданного варианта программы обработки данных, представленной на языке Паскаль, разработать вычислительный алгоритм и также варианты программ его реализации на языках программирования Си и Ассемблер. Добиться, чтобы программы на Паскале и Си были работоспособны и давали корректные результаты (это потребуется в дальнейшем при проведении с ними измерительных экспериментов).

Для каждой из разработанных программ (включая исходную программу на Паскале) определить следующие метрические характеристики (по Холстеду):

- 1. Измеримые характеристики программ:
 - число простых (отдельных) операторов, в данной реализации;
 - число простых (отдельных) операндов, в данной реализации;
 - общее число всех операторов в данной реализации;
 - общее число всех операндов в данной реализации;
 - число вхождений ј-го оператора в тексте программы;
 - число вхождений ј-го операнда в тексте программы;
 - словарь программы;
 - длину программы.
- 2. Расчетные характеристики программы:
 - длину программы;
 - реальный и потенциальный объемы программы;
 - уровень программы;
 - интеллектуальное содержание программы;
 - работу программиста;
 - время программирования;
 - уровень используемого языка программирования;
 - ожидаемое число ошибок в программе.

Для характеристик длина программы, уровень программы, время программирования следует рассчитать как саму характеристику, так и ее оценку.

Ход работы

1. Определение метрических характеристик для программы на Pascal.

Код программы представлен в приложении А.

Ручной расчёт измеримых характеристик представлен в таблице 1.

Таблица 1 – Ручной расчёт измеримых характеристик (Pascal)

№	Оператор	Количество	№	Операнд	Количество
1	;	27	1	X	3
2	:=	13	2	у	2
3	() или begin end	16	3	i	10
4		12	4	j	11
5	+	4	5	a	12
6	-	2	6	n	5
7	>	2	7	p	3
8	for to do	4	8	q	3
9	If then	2	9	hold	6
10	repeat until	1	10	no_change	4
11	sort1	1	11	1	9
12	sort2	1	12	1000	3
13	swap	1	13	999	1
14	randomize	1	14	true	1
15	random	1	15	false	1
Bcei	O	88	Всего)	74

Программный расчёт измеримых характеристик представлен в таблицу 2. Файл с результатами программных расчётов представлен в приложении Б. Таблица 2 – Программный расчёт измеримых характеристик (Pascal)

№	Оператор	Количество	$N_{\underline{0}}$	Операнд	Количество
1	()	10	1	1	10
2	+	4	2	1000	4
3	-	2	3	999	1
4	;	39	4	a	12
5	=	10	5	bubble_sort	1
6	>	2	6	false	1
7	[]	13	7	hold	6
8	boolean	1	8	i	9
9	for	4	9	j	9
10	if	2	10	n	6
11	Integer	5	11	no_change	4
12	procedure	3	12	p	3
13	program	1	13	q	3
14	random	1	14	true	1
15	randomize	1	15	x	4
16	real	6	16	у	3
17	repeat	1	Bcei	ГО	77
18	sort1	2			
19	sort2	2			
20	swap	2			
Bce	ΓΟ	111			

Определение расчетных характеристик представлено в таблице 3.

Таблица 3 – Расчёт расчетных характеристик (Pascal)

Характеристика	Ручной расчёт	Программный расчёт
Число простых операторов n ₁	15	20
Число простых операндов n ₂	15	16
Общее число всех операторов N ₁	88	111
Общее число всех операндов N ₂	74	77
Словарь п	30	36
Длина N _{опыт}	162	188
Теоретическая длина N _{теор}	190	150
Объём V	794.916	971.946
Потенциальный объём V*	19.65	19.65
Уровень программы L	0.026	0.02
Оценка уровня программы L [~]	0.027	0.021
Интеллектуальное содержание I	21.46	20.19
Работа программирования Е	30574	48071
Оценка времени	3057.4	2079.4
программирования Т^		
Время программирования Т	2941.2	2670.65
Уровень языка λ	0.486	0.397
Ожидаемое число ошибок в	1.99	0.44
программе В		

2. Определение метрических характеристик для программы на Си.

Код программы представлен в приложении В.

Ручной расчёт измеримых характеристик представлен в таблице 4.

Таблица 4 – Ручной расчёт измеримых характеристик (Си)

№	Оператор	Количество	№	Операнд	Количество
1	;	25	1	x	14
2	=	15	2	у	2
3	() или {}	27	3	i	12
4	[]	13	4	n	5
5	for	4	5	a	3
6	if	2	6	hold	5
7	>	2	7	no_change	4
8	<	4	8	j	13
9	+	4	9	0	6
10	++	4	10	1	7
11	-	2	11	999	1
12	%	1	12	1000	3
13	*	7	13	NULL	1
14	&	2	Bcer	ro O	76
15	return	1			1
16	sort1	1			
17	sort2	1			
18	swap	1			
19	srand	1			
20	time	1			
21	rand	1			
22	!	1			
Всего		120			

Программный расчёт измеримых характеристик представлен в таблицу 5. Файл с результатами программных расчётов представлен в приложении Г.

Таблица 5 – Программный расчёт измеримых характеристик (Си)

№	Оператор	Количество	№	Операнд	Количество
1	!	1	1	0	6
2	%	1	2	1	7
3	()	13	3	1000	5
4	+	4	4	999	1
5	++	4	5	NULL	1
6	,	6	6	a	3
7	-	2	7	b	3
8	;	35	8	hold	5
9	<	4	9	i	13
10	=	15	10	j	13
11	>	2	11	n	5
12	[]	13	12	no_change	4
13	_&	2	13	X	16
14	*	4	14	У	3
15	_[]	2	Bce	ГО	85
16	*	4			
17	float	8			
18	for	4			
19	if	2			
20	int	8			
21	main	1			
22	rand	1			
23	return	1			
24	sort1	2			
25	sort2	2			
26	srand	1			
27	swap	2			
28	time	1			
29	void	3			
30	while	1			
Bcer	0	149			

Определение расчетных характеристик представлено в таблице 6.

Таблица 6 – Расчёт расчетных характеристик (Си)

Число простых операторов	22	30
n_1		
Число простых операндов	13	14
n_2		
Общее число всех	120	149
операторов N_1		
Общее число всех	76	85
операндов N ₂		
Словарь п	35	44
Длина Nопыт	196	234
Теоретическая длина N _{теор}	241.7	200.51
Объём V	1044.3	1277.5
Потенциальный объём V*	19.65	19.65
Уровень программы L	0.019	0.015
Оценка уровня программы	0.015	0.011
L~		
Интеллектуальное	15.66	14.03
содержание I		
Работа программирования	54963	83048
Е		
Оценка времени	5496.3	5538.5
программирования Т^		
Время программирования Т	7021	4613
Уровень языка λ	0.37	0.302
Ожидаемое число ошибок в	2.61	0.63
программе В		

3. Определение метрических характеристик для программы на Си.

Код программы представлен в приложении Д.

Ручной расчёт измеримых характеристик представлен в таблице 7.

Таблица 7 – Ручной расчёт измеримых характеристик (Ассемблер)

№	Оператор	Количество	№	Операнд	Количество
1	pushq	4	1	%rbp	74
2	movq	29	2	%rsp	6
3	movl	38	3	%rdi	6
4	jmp .L2	1	4	-24(%rbp)	15
5	addl	6	5	%esi	4
6	jmp .L3	1	6	-28(%rbp)	5
7	cltq	13	7	\$0	8
8	leaq	12	8	-12(%rbp)	7
9	addq	12	9	%eax	43
10	movss	19	10	\$1	13
11	ucomiss	2	11	-8(%rbp)	12
12	jbe .L4	1	12	0(,%rax,4)	10
13	cmpl	5	13	%rdx	19
14	jl .L6	1	14	%rax	57
15	subl	4	15	%xmm0	20
16	jl .L7	1	16	%xmm1	4
17	nop	3	17	-4(%rbp)	11
18	popq	2	18	%rcx	2
19	ret	4	19	%rsi	4
20	jmp .L11	1	20	-32(%rbp)	3
21	jmp .L12	1	21	\$32	1
22	jbe .L13	1	22	\$8032	1
23	call swap	1	23	%fs:40	2
24	jl .L15	1	24	-8020(%rbp)	6
25	je .L16	1	25	%ecx	5
26	leave	2	26	%edx	5
27	subq	2	27	\$9	1
28	xorl	1	28	\$31	1

29	call	1	29	\$999	2
	time@PLT				
30	call	1	30	-8016(%rbp,%rax,4)	2
	srand@PLT				
31	call	1	31	-4016(%rbp,%rax,4)	1
	rand@PLT				
32	imull	2	32	-8016(%rbp)	1
33	leal	1	33	\$1000	2
34	sarl	2	34	-4016(%rbp)	1
35	cvtsi2ss	1	Bce	го	354
36	jle .L20	1			
37	call sort1	1			
38	call sort2	1			
39	je .L22	1			
Bce	го	182			

Определение расчетных характеристик представлено в таблице 8.

Таблица 8 – Расчёт расчетных характеристик (Ассемблер)

Характеристика	Ручной расчёт
Число простых операторов n ₁	39
Число простых операндов n ₂	34
Общее число всех операторов N ₁	182
Общее число всех операндов N ₂	354
Словарь п	73
Длина Nonыт	536
Теоретическая длина N _{теор}	580.7
Объём V	3317.7
Потенциальный объём V*	19.65
Уровень программы L	0.006
Оценка уровня программы L~	0.005
Интеллектуальное содержание I	16.59
Работа программирования Е	552950
Оценка времени программирования Т^	55295
Время программирования Т	67360
Уровень языка λ	0.12
Ожидаемое число ошибок в программе В	8.3

4. Сравнение результатов определения метрических характеристик.

Таблица 9 – Сводная таблица расчетов на трех языках

Характеристика	Ручной	Програм-	Ручной	Програм-	Ручной
	расчёт	мный расчёт	расчёт	мный расчёт	расчёт
	Pascal	Pascal	Си	Си	Ассемблер
Число простых	15	20	22	30	39
операторов n ₁					
Число простых	15	16	13	14	34
операндов n ₂					
Общее число всех	88	111	120	149	182
операторов N_1					
Общее число всех	74	77	76	85	354
операндов N ₂					
Словарь п	30	36	35	44	73
Длина Nопыт	162	188	196	234	536
Теоретическая длина	190	150	241.7	200.51	580.7
N_{Teop}					
Объём V	794.916	971.946	1044.3	1277.5	3317.7
Потенциальный объём	19.65	19.65	19.65	19.65	19.65
V*					
Уровень программы	0.026	0.02	0.019	0.015	0.006
Оценка уровня	0.027	0.021	0.015	0.011	0.005
программы L~					
Интеллектуальное	21.46	20.19	15.66	14.03	16.59
содержание I					
Работа	30574	48071	54963	83048	552950
программирования Е					
Оценка времени	3057.4	2079.4	5496.3	5538.5	55295
программирования Т^					
Время	2941.2	2670.65	7021	4613	67360
программирования Т					
Уровень языка λ	0.486	0.397	0.37	0.302	0.12
Ожидаемое число	1.99	0.44	2.61	0.63	8.3
ошибок в программе В					

В результате сравнения видно, что уровень программы самый низкий у программы на Ассемблере, а самый высокий у программы на Pascal. Наибольшие показатели времени программирования, работы программирования и ожидаемого числа ошибок, наоборот, соответствуют Ассемблеру, а наименьший – Pascal.

Выводы

В результате выполнения данной лабораторной работы была изучена система метрик Холстеда. Было проведено сравнение программ, реализующих алгоритмы сортировки пузырьком, на языках Pascal, Си и Ассемблер.

ПРИЛОЖЕНИЕ А

Код программы на Pascal.

```
program bubble_sort;
var x,y: array[1..1000] of real; i,n: integer;
procedure sort1(var a: array of real; n: integer);
var i,j: integer; hold: real;
begin
 for i:=1 to n-1 do
    for j:=i+1 to n do
      begin
      if a[i]>a[j] then
        begin
          hold:=a[i];
          a[i]:=a[j];
          a[j]:=hold;
        end
      end
end;
procedure sort2(var a: array of real; n: integer);
var no_change: boolean; j: integer;
procedure swap(var p, q: real);
var hold: real;
begin
 hold:=p;
  p:=q;
  q:=hold;
end;
begin
 repeat
   no_change:=true;
    for j:=1 to n-1 do
      begin
      if a[j]>a[j+1] then
        begin
           swap(a[j],a[j+1]);
           no change:=false;
        end
      end
 until no_change;
end;
begin
    randomize;
    for i:= 1 to 1000 do
      begin
        x[i] := random(999) + 1;
        y[i] := x[i];
      end;
    sort1(x, 1000);
    sort2(y, 1000);
end.
```

приложение б

r_pas.exe

F	Р езульта	Tl	ы parser_
Statistics for module Z:\pass	out.lxm		
The number of different operative total number of operators. The total number of operands	:	20 16 111 77	
Dictionary Length Length estimation Volume Potential volume Limit volume Programming level Programming level estimation Intellect Time of programming Time estimation Programming language level Work on programming Error Error estimation	(D) (N) (N) (V) (*V) (**V) (L) (^L) (I) (T) ((T) ((ambda) (E) (B) (^B)		36 188 150.439 971.946 19.6515 38.2071 0.0202187 0.0207792 20.1963 2670.65 2079.42 0.397328 48071.6 0.440695 0.323982
Table:			

```
10
   5
   6
          2
   7
         13
               []
   8
          1
               boolean
               for
   9
          4
          2
               if
   10
               integer
   11
          5
          3
               procedure
   12
   13
          1
               program
   14
         1
               random
               randomize
   15
         1
               real
   16
          6
   17
         1
               repeat
   18
         2
               sort1
   19
         2
               sort2
   20
          2
             | swap
Operands:
         10
               1
   1
   2
               1000
          4
               999
   3
         1
   4
         12
   5
               bubble_sort
         1
   6
         1
               false
   7
               hold
         6
   8
         9
             | i
   9
          9
               j
```

| n

```
| 11 | 4 | no_change
| 12 | 3 | p
| 13 | 3 | q
| 14 | 1 | true
| 15 | 4 | x
| 16 | 3 | y
```

Summary:

The number of different operators	:	20
The number of different operands	:	16
The total number of operators	:	111
The total number of operands	:	77

Dictionary	(D)	:	36
Length	(N)	:	188
Length estimation	(^N)	:	150.439
Volume	(V)	:	971.946
Potential volume	(*V)	:	19.6515
Limit volume	(**V)	:	38.2071
Programming level	(L)	:	0.0202187
Programming level estimation	n (^L)	:	0.0207792
Intellect	(I)	:	20.1963
Time of programming	(T)	:	2670.65
Time estimation	(^T)	:	2079.42
Programming language level	(lambda)	:	0.397328
Work on programming	(E)	:	48071.6
Error	(B)	:	0.440695
Error estimation	(^B)	:	0.323982

ПРИЛОЖЕНИЕ В

Код программы на Си

```
#include <math.h>
#include <stdlib.h>
#include <time.h>
#include <stdio.h>
void sort1(float* x, int n){
    float hold;
    for (int i = 0; i < n - 1; i++) {
        for (int j = i + 1; j < n; j++) {
            if (x[i] > x[j]) {
                hold = x[i];
                x[i] = x[j];
                x[j] = hold;
            }
        }
    }
void swap(float *a, float *b) {
    float hold = (*a);
    *a = (*b);
    *b = hold;
void sort2(float *x, int n){
    int no_change = 0;
    while(!no_change) {
        no_change = 1;
        for (int j=0; j < n-1; j++) \{
            if (x[j] > x[j+1]) {
                swap(&x[j], &x[j+1]);
                no_change = 0;
            }
        }
    }
int main(){
    float x[1000];
    float y[1000];
    srand(time(NULL));
    for (int i=0; i <1000; i++) {
        x[i] = 1 + rand() \% 999;
        y[i] = x[i];
    }
    sort1(x,1000);
    sort2(y,1000);
    return 0;
}
```

приложение г

Результаты parser_c.exe

Statistics for module Z:\output.lxm		
	==	
The number of different operators	:	30
The number of different operands	:	14
The total number of operators	:	149
The total number of operands	:	85
Dictionary (D)	:	44
Length (N)	:	234
Length estimation (^N)	:	200.51
Volume (V)	:	1277.51
Potential volume (*V)	:	19.6515
Limit volume (**V)	:	38.2071
Programming level (L)	:	0.0153827
Programming level estimation (^L)	:	0.0109804
Intellect (I)	:	14.0275
Time of programming (T)	:	4613.8
Time estimation (^T)	:	5538.5
Programming language level (lambd	a) :	0.302293
Work on programming (E)	:	83048.4
Error (B)	:	0.634502
Error estimation (^B)	:	0.425836

Table:

=							
Operators:							
	1	1	!				
	2	1	%				
	3	13	()				
	4	4	+				
	5	4	++				
	6	6	,				
	7	2	-				
	8	35	;				
	9	4	<				
	10	15	=				
	11	2	>				
	12	13	[]				
	13	2	_&				
	14	4	<u>*</u>				
	15	2	_[]				
	16	4	*				
	17	8	float				
	18	4	for				
	19	2	if				
	20	8	int				
	21	1	main				
	22	1	rand				
	23	1	return				
	24	2	sort1				
	25	2	sort2				
	26	1	srand				
	27	2	swap				
	28	1	time				
	29	3	void				
	30	1	while				
(Operands:						

```
0
1
      6
2
      7
           1
3
      5
           1000
4
         999
      1
5
      1
         NULL
6
      3
         | a
7
      3
         l b
8
      5
         hold
9
      13
           i
10
      13
           j
11
           n
12
      4
         no_change
13
      16
           Х
14
      3
         Ιу
```

Summary:

The number of different operators : 30
The number of different operands : 14
The total number of operators : 149
The total number of operands : 85

Dictionary D) : 44 Length N) : 234 Length estimation ^N) : 200.51 Volume V) : 1277.51 Potential volume *V) : 19.6515 Limit volume (**V) : 38.2071 Programming level L) : 0.0153827 Programming level estimation (^L) : 0.0109804 : 14.0275 Intellect I) Time of programming T) : 4613.8 Time estimation (^T) : 5538.5 Programming language level (lambda): 0.302293 Work on programming (E) : 83048.4 Error : 0.634502 B) (^B) Error estimation : 0.425836

приложение д

Код программы на Ассемблер

```
sort1:
.LFB5:
      .cfi_startproc
      pushq %rbp
      .cfi_def_cfa_offset 16
      .cfi_offset 6, -16
      movq %rsp, %rbp
      .cfi def cfa register 6
      movq %rdi, -24(%rbp)
            %esi, -28(%rbp)
      movl
            $0, -12(%rbp)
      movl
      jmp
            .L2
.L7:
      movl
            -12(%rbp), %eax
      addl
            $1, %eax
            %eax, -8(%rbp)
      movl
            .L3
      jmp
.L6:
      movl
            -12(%rbp), %eax
      cltq
      leaq
            0(,%rax,4), %rdx
            -24(%rbp), %rax
      movq
            %rdx, %rax
      addq
      movss (%rax), %xmm0
      movl
            -8(%rbp), %eax
      cltq
      leaq 0(,%rax,4), %rdx
            -24(%rbp), %rax
      movq
      addq %rdx, %rax
      movss (%rax), %xmm1
                  %xmm1, %xmm0
      ucomiss
      jbe
      movl
           -12(%rbp), %eax
      cltq
            0(,%rax,4), %rdx
      leaq
      movq
            -24(%rbp), %rax
     addq
            %rdx, %rax
      movss (%rax), %xmm0
      movss %xmm0, -4(%rbp)
      movl -8(%rbp), %eax
      cltq
            0(,%rax,4), %rdx
      leaq
      movq
            -24(%rbp), %rax
      addq %rax, %rdx
      movl
            -12(%rbp), %eax
      cltq
            0(,%rax,4), %rcx
      leaq
            -24(%rbp), %rax
      movq
      addq %rcx, %rax
      movss (%rdx), %xmm0
      movss %xmm0, (%rax)
      movl -8(%rbp), %eax
      cltq
      leaq 0(,%rax,4), %rdx
      movq
            -24(%rbp), %rax
            %rdx, %rax
      addq
      movss -4(%rbp), %xmm0
      movss %xmm0, (%rax)
```

```
.L4:
      addl $1, -8(%rbp)
.L3:
      movl
            -8(%rbp), %eax
      cmpl
            -28(%rbp), %eax
      jl
             .L6
      addl
            $1, -12(%rbp)
.L2:
      movl
            -28(%rbp), %eax
      subl
            $1, %eax
      cmpl
            %eax, -12(%rbp)
      jl
             .L7
      nop
            %rbp
      popq
      .cfi_def_cfa 7, 8
      .cfi_endproc
.LFE5:
      .size sort1, .-sort1
      .globl swap
      .type swap, @function
swap:
.LFB6:
      .cfi_startproc
      pushq %rbp
      .cfi_def_cfa_offset 16
      .cfi offset 6, -16
      movq %rsp, %rbp
      .cfi_def_cfa_register 6
      movq %rdi, -24(%rbp)
      movq %rsi, -32(%rbp)
            -24(%rbp), %rax
      movq
      movss (%rax), %xmm0
      movss %xmm0, -4(%rbp)
      movq -32(%rbp), %rax
      movss (%rax), %xmm0
      movq -24(%rbp), %rax
      movss %xmm0, (%rax)
            -32(%rbp), %rax
      movss -4(%rbp), %xmm0
      movss %xmm0, (%rax)
      nop
      popq
            %rbp
      .cfi_def_cfa 7, 8
      .cfi_endproc
.LFE6:
      .size swap, .-swap
      .globl sort2
      .type sort2, @function
sort2:
.LFB7:
      .cfi_startproc
      pushq %rbp
      .cfi def cfa offset 16
      .cfi_offset 6, -16
      movq %rsp, %rbp
      .cfi_def_cfa_register 6
      subq $32, %rsp
      movq %rdi, -24(%rbp)
      movl %esi, -28(%rbp)
      movl $0, -8(%rbp)
```

```
jmp
             .L11
.L16:
      movl
            $1, -8(%rbp)
      movl
            $0, -4(%rbp)
             .L12
      jmp
.L15:
            -4(%rbp), %eax
      movl
      cltq
           0(,%rax,4), %rdx
      leaq
      movq
            -24(%rbp), %rax
      addq %rdx, %rax
      movss (%rax), %xmm0
      movl -4(%rbp), %eax
      cltq
      addq
           $1, %rax
      leag
            0(,%rax,4), %rdx
            -24(%rbp), %rax
      movq
      addq
            %rdx, %rax
      movss (%rax), %xmm1
                   %xmm1, %xmm0
      ucomiss
      jbe
             .L13
      movl
            -4(%rbp), %eax
      cltq
      addq
            $1, %rax
      leaq
            0(,%rax,4), %rdx
      movq
            -24(%rbp), %rax
      addq
            %rax, %rdx
      movl
            -4(%rbp), %eax
      cltq
      leaq
            0(,%rax,4), %rcx
            -24(%rbp), %rax
      movq
            %rcx, %rax
      addq
            %rdx, %rsi
      movq
      movq
            %rax, %rdi
      call
            swap
      movl
            $0, -8(%rbp)
.L13:
      addl $1, -4(%rbp)
.L12:
      movl
            -28(%rbp), %eax
      subl
            $1, %eax
      cmpl
            %eax, -4(%rbp)
      j1
             .L15
.L11:
      cmpl
            $0, -8(%rbp)
      je
             .L16
      nop
      leave
      .cfi_def_cfa 7, 8
      .cfi_endproc
.LFE7:
      .size sort2, .-sort2
      .globl main
      .type main, @function
main:
.LFB8:
      .cfi_startproc
      pushq %rbp
      .cfi_def_cfa_offset 16
      .cfi_offset 6, -16
      movq %rsp, %rbp
```

```
.cfi_def_cfa_register 6
      subq $8032, %rsp
            %fs:40, %rax
      movq
      movq
            %rax, -8(%rbp)
      xorl
            %eax, %eax
      movl $0, %edi
      call time@PLT
      movl
            %eax, %edi
      call
            srand@PLT
      movl $0, -8020(%rbp)
      jmp
            .L19
.L20:
      call rand@PLT
      movl %eax, %ecx
      movl $-2093742815, %edx
      movl %ecx, %eax
      imull %edx
      leal
            (%rdx,%rcx), %eax
      sarl $9, %eax
      movl %eax, %edx
      movl %ecx, %eax
      sarl
            $31, %eax
      subl
            %eax, %edx
      movl %edx, %eax
      imull $999, %eax, %eax
      subl %eax, %ecx
      movl %ecx, %eax
      addl $1, %eax
                  %eax, %xmm0
      cvtsi2ss
      movl -8020(%rbp), %eax
      cltq
      movss %xmm0, -8016(%rbp,%rax,4)
      movl -8020(%rbp), %eax
      cltq
      movss -8016(%rbp,%rax,4), %xmm0
      movl -8020(%rbp), %eax
      cltq
      movss %xmm0, -4016(%rbp,%rax,4)
      addl $1, -8020(%rbp)
.L19:
      cmpl $999, -8020(%rbp)
      jle
            .L20
      leag
            -8016(%rbp), %rax
      movl
            $1000, %esi
      movq
            %rax, %rdi
      call
            sort1
      leaq
          -4016(%rbp), %rax
      movl
            $1000, %esi
      movq %rax, %rdi
      call
            sort2
      movl $0, %eax
            -8(%rbp), %rsi
      movq
            %fs:40, %rsi
      xorq
      je
            .L22
            __stack_chk_fail@PLT
      call
.L22:
      leave
      .cfi_def_cfa 7, 8
      ret
      .cfi_endproc
```