# Lecture 8: Relations and functions CAB203 Discrete Structures

Matthew McKague

Queensland University of Technology cab203@qut.edu.au



#### Outline

Relations

**Functions** 

Recursion

# Readings

#### This week:

▶ Pace: 5.1 to 5.3, 6.1.4, 6.2

► Lawson: 3.3 to 3.6

#### Next week:

▶ Pace: 7.3

#### Outline

Relations

**Functions** 

Recursion

# **Tuples**

The notation (a, b) is a *ordered pair*, and the order matters. Sets of two:

- $ightharpoonup \{a, b\}$  is a set with elements a and b
- ▶  ${a,b} = {b,a}$
- ▶  ${a,a} = {a}$

#### Pairs:

- $\blacktriangleright$   $(a,b) \neq (b,a)$  unless a=b
- $\blacktriangleright (a,a) \neq (a)$

More generally, we have  $(a_1, \ldots, a_n)$  is an *n*-tuple: *n* elements, where the order matters.

### Tuples examples

- **►** (1, 2)
- **▶** (2,2)
- ► (*cat*, *dog*)
- ► ("John", "Smith", 36)

Formally, an ordered pair is usually defined by the Kuratowski definition:  $(x, y) = \{\{x\}, \{x, y\}\}.$ 

### Cartesian product

Given sets A and B we define the Cartesian product to be the set

$$A \times B = \{(a, b) : a \in A, b \in B\}$$

The size of  $A \times B$  is given by  $|A \times B| = |A||B|$ .

### More Cartesian products

#### More generally we have:

$$\blacktriangleright A_1 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) : a_1 \in A_1, \dots, a_n \in A_n\}$$

$$A^n = A \times A \times \cdots \times A \ (n \text{ copies of } A)$$

$$|A_1 \times \cdots \times A_n| = |A_1| \cdots |A_n|$$

### Some examples

- $ightharpoonup \mathbb{R}^2$  describes points on a 2-dimensional plane
- $\triangleright$   $\{0,1\}^n$  is (equivalent to) the set of bit strings of length n
- KEYS × VALUES might describe the possible key-value pairs in a hash map
- ▶  $\{0, ..., 1919\} \times \{0, ..., 1079\}$  encodes (x, y)co-ordinates on a 1080p screen.

#### Relations

Relations are a basic building block in mathematics:

- ▶ A *relation* on  $A_1 ... A_n$  is a subset of  $A_1 \times \cdots \times A_n$
- ▶ A binary relation between A and B is a subset of  $A \times B$
- ► A binary relation between A and A is called a *relation over A* We'll concentrate on binary relations.

### Relation examples

- $\blacktriangleright$  {(1,1),(2,2)}
- $\blacktriangleright$  { $(a,b) \in \mathbb{R}^2 : a = b$ } (equality)
- ▶  $\{(a,b) \in \mathbb{R}^2 : b = a^2\}$
- **▶** ≤, <, =, ≥, >
- ► The rows in a relational database
- Key-value pairs in an associative array (hash map)
- ▶ The (x, y)co-ordinates for drawing a happy face

If R is a binary relation then we write aRb to mean  $(a,b) \in R$ . Hence  $a \le b$  is shorthand for  $(a,b) \in \le$ .

### Properties of relations

We can identify special properties that some binary relations will have

- symmetric
- reflexive
- transitive
- anti-symmetric
- irreflexive

We also identify special kinds of binary relations that have some of these properties

# Symmetry

We say that a binary relation  $R \subseteq A \times A$  is *symmetric* if

$$\forall (a,b) \in A \times A \ (aRb \leftrightarrow bRa)$$

That is, whenever we have (a, b) we also have (b, a).

- **=**
- ▶  $a \equiv b \pmod{n}$  (equivalence modulo n)
- ▶  $\emptyset$ ,  $A \times A$  (i.e. the trivial relations)

# Anti-symmetry

A binary relation  $R \subseteq A \times A$  is anti-symmetric if

$$\forall x, y \in A ((xRy \land yRx) \rightarrow x = y)$$

or, using the contrapositive

$$\forall x,y \in A \ (x \neq y \rightarrow \neg (xRy \land yRx))$$

In other words, if x and y are different then we can't have both xRy and yRx.

- **▶** <. >
- **▶** ≤, ≥
- ightharpoonup  $\subseteq$ ,  $\subset$

# Reflexivity

We say that a binary relation  $R \subseteq A \times A$  is *reflexive* if

$$\forall a \in A \ aRa$$

- **▶** ≤, ≥
- **>** =
- ightharpoons
- $a \equiv b \pmod{n}$

# Irreflexivity

We say that a binary relation  $R \subseteq A \times A$  is *irreflexive* if

$$\forall x \in A (x, x) \notin R$$

- **▶** <, >
- **▶** ≠

# Transitivity

We say that a relation  $R \subseteq A \times A$  is *transitive* if

$$\forall a, b, c \in A ((aRb \land bRc) \rightarrow aRc)$$

- **▶** ≤, ≥
- **▶** <, >
- **=**
- ightharpoonup  $\subseteq$ ,  $\subset$
- $a \equiv b \pmod{n}$

### Equivalence relations

An equivalence relation is a binary relation that is:

- symmetric
- reflexive
- transitive

- **>** =
- $ightharpoonup a \equiv b \pmod{n}$
- $ightharpoonup A \times A$

### Equivalence relations

An equivalence relation  $R \subseteq A \times A$  separates a set into *equivalence* classes, which are subsets of A that are all related by the relation.

- ▶ the relation = on  $\mathbb{Z}$  separates  $\mathbb{Z}$  into an infinite number of equivalence classes, each of which has only one member
- ▶ the equivalence relation given by  $a \equiv b \pmod{2}$ , gives two equivalence classes, the even and odd numbers
- ▶ the relation  $A \times A$  has one equivalence class that contains all of A

# Partial orderings

A partial ordering on a set A is a binary relation over A which is:

- reflexive
- transitive
- ▶ anti-symmetric

#### Examples:

- **▶** ≤, ≥
- ightharpoonup

Partial orderings capture the idea of one thing being "before" another in some sense.

If the relation is irreflexive instead of reflexive, it is called a *strict* partial ordering.

# Total ordering

A total ordering on A is a partial ordering R over A that also has the property:

$$\forall x, y \in A (xRy \lor yRx)$$

This means that we can always compare any two elements of A. Examples:

- **▶** <, >
- lexicographical ordering

If the relation is irreflexive instead of reflexive, it is called a *strict* total ordering.

#### Example: ancestry

Let H be the set of all humans. Define R over H by aRb if b is an ancestor of a. I.e. b is a parent, grandparent, great-grandparent, etc. of a.

#### Is R:

- Symmetric?
- Anti-symmetric?
- ► Transitive?
- ► Reflexive?
- ► Irreflexive?
- ► An equivalence relation, (strict) partial ordering or total ordering?

### Example: marriage

Let H be the set of all humans in Australia. Define R over H by aRb if a is married to b.

#### Is *R*:

- Symmetric?
- Anti-symmetric?
- ► Transitive?
- Reflexive?
- ► Irreflexive?
- ► An equivalence relation, (strict) partial ordering or total ordering?
- ▶ What if you also say aRa for all a?

#### Example: city location

Let S be the set of all cities in Australia. Define R over S by aRb if a is south of b or at the same latitude as b. Is R:

- ► Symmetric?
- ► Anti-symmetric?
- ▶ Transitive?
- ► Reflexive?
- ► Irreflexive?
- ► An equivalence relation, (strict) partial ordering or total ordering?

#### Hashes

Let S be the set  $\{0,1\}^*$  of bit strings of any length and let H(x) be the SHA256 hash\* of x. Define R over S by aRb if H(a) = H(b).

#### Is R:

- Symmetric?
- Anti-symmetric?
- ▶ Transitive?
- ► Reflexive?
- ► Irreflexive?
- ► An equivalence relation, (strict) partial ordering or total ordering?
- \* The cyrptographic hash function SHA256 is an algorithm that maps data of arbitrary size to a string of 256 bits.

#### Outline

Relations

**Functions** 

Recursion

#### **Functions**

A function is a relation f between A and B where for each  $a \in A$  there is exactly one  $b \in B$  such that  $(a, b) \in f$ . In other words:

$$((a,b)\in f\wedge (a,c)\in f)\to b=c$$

We write:

$$f: A \rightarrow B$$

and f(a) is the unique  $b \in B$  such that  $(a, b) \in f$ .

#### **Functions**

We usually demand that a function  $f: A \rightarrow B$  is defined an *all* of A. I.e.

$$\forall a \in A \ \exists b \in B \ (a, b) \in f$$

We can use an extra bit of notation ! meaning unique to give a concise definition of when a relation f is a function:

$$\forall a \in A \exists! b \in B (a, b) \in f$$

# Domain and range

For a function  $f: A \rightarrow B$ , A is called the *domain* of f and B is called the *co-domain*. The set

$$\{f(x):x\in A\}$$

is called the range of f.

The domain is the set of all elements for which f is defined, that is the possible "inputs" to f. The range is the set of all possible "outputs" from the function.

### Domain problems?

Consider the function f(x) = 1/x. f is not defined for x = 0, but we still call it a function with domain  $\mathbb{R} \setminus \{0\}$ .

$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$$

### Function examples

#### Some functions:

- $\blacktriangleright$  {(1,  $\pi$ ), (2,  $\beta$ ), (3,  $\delta$ ), (4,  $\gamma$ )}
- $\blacktriangleright \{(1,\pi),(2,\pi),(3,\pi),(4,\pi)\}$
- ▶  $\{(a,b) \in \mathbb{R}^2 : b = a^2\}$
- ▶  $\{(a,b) \in \mathbb{R}^2 : b = 2a + 6\}$
- $ightharpoonup = (S o S ext{ for any } S)$
- (x, y) co-ordinates for drawing a 45 degree line (or horizontal line)

(for appropriate domains and co-domains)

### Non-math function examples

- ▶ f(x) given by the last name of the QUT student with student number x.
- ► f(x) given by the URL for the first response for a google search on x
- ightharpoonup f(x) given by the MD5 hash of the bit string x
- ightharpoonup f(x) given by the string "w00t" for any input x

# Non-function examples

#### These are not functions:

- $\blacktriangleright$  {(1,  $\pi$ ), (1,  $\gamma$ )}
- ▶  $\{(a,b) \in \mathbb{R}^2 : a = b^2\}$
- **▶** ≤, ≥
- $\blacktriangleright$  (x, y) co-ordinates for drawing a happy face

# Composing functions

Suppose we have  $f: A \rightarrow B$  and  $g: B \rightarrow C$ . Then we can define

$$g \circ f : A \to C$$

given by

$$(g\circ f)(x)=g(f(x))$$

called g of f of x.

Formally:

$$g \circ f = \{(x,z) \in A \times C : \exists y \in B \ (x,y) \in f \land (y,z) \in g\}$$



#### Inverses

Some functions have a partner, called its *inverse*. Given  $f: A \to B$ , the inverse  $f^{-1}: B \to A$  is a function such that

$$\forall x \in A \ (f^{-1} \circ f(x) = x).$$

Note that the range of f must match the domain of  $f^{-1}$ , and the range of  $f^{-1}$  must be the domain of f.

Not all functions have inverses. Example: f(x) = 0 has no inverse.

#### Set builder notation revisited

Recall in set theory we can specify sets by *replacement*:

$$T = \{f(x) : x \in S\}$$

We can now specify that f must be a function from S to T.

## Functions in Python

Python has its own notion of what a function is, and it isn't the same!

- Every computable mathematical function can be written as a function in Python
- ► Functions in Python that are *side-effect free* and *deterministic* are also functions in the mathematical sense
- Side-effect free means that the function doesn't modify the state of the program
- Deterministic means that there is no randomness
- Together, side-effect free and deterministic mean that, for given values of the arguments a Python function always returns the same value

## Function examples in Python

```
def myPolynomial(x):  # function in the mathematical sense
  return x ** 2 + 3 * x + 1

x = 3
def changex(y):  # modifies state, not a function
  global x  # in the mathematical sense
  x = y

import random as R
def d6():  # not deterministic, not a function
  return R.randint(1,6) # in the mathematical sense
```

### Relations in Python

Python has several built in relations, eg.

- Internally, these are all functions that take two arguments and return a bool. They are called operators in Python, just like -, /, \* etc.
- ► The relations all have a function form, eg. operator.eq(a,b) does exactly the same thing as a == b

$$a == b$$

- Python doesn't support adding new relations with the aRb syntax (infix notation) but workarounds exist
- ▶ To make a custom relation, define a function that takes two arguments and returns True or False
- For a custom class, you can define relations (and operators) using existing symbols



### Example Python relation

```
def equivMod7(a, b): # custom relation is just a function
   return (a - b) \% 7 == 0
class myClass():
   def __init__(self, x):
      self.x = x
   def __gt__(self, y): # overload the > operator
      return False # trivial (empty) relation
>>> x = myClass(3)
>>> x > 4
                        # calling the overloaded > operator
False
                        # Always returns False!
>>> x > 0
False
                        # Always returns False!
>>>
```

### Outline

Relations

**Functions** 

Recursion

#### Recursive definitions

When defining a type of object, sometimes it is easiest to define it in terms of itself. This is called a recursive definition.

Example: The factorial function on  $\mathbb{N}$  can be defined by:

$$n! = \prod_{j=1}^{n} j = 1 \times 2 \times \cdots \times (n-1) \times n$$

We can also define *n*! recursively by

$$n! = \begin{cases} 1 & : n = 1 \\ (n-1)! \times n & : n > 1 \end{cases}$$

#### Parts of a recursive definition

There are two main parts of a recursive definition:

- ▶ base cases: these can be evaluated without any reference to the object
- recursive cases: these cases will refer back to the definition of the object
- Bases cases are often trivial cases, with the interesting part being the recursive cases.
- ▶ At least one base case is required, but there may be several

## Types of recursive definitions

Recursive definitions are used frequently in computer science and mathematics. Some types of things defined recursively:

- ► functions (mathematical)
- functions (in computer programs)
- data structures
- programming languages
- languages (in theoretical computer science)
- algorithms

### Example: Fibonacci sequence

The Fibonacci sequence is a classic example of a recursive definition:

$$f(n) = \begin{cases} 1 & : n = 1 \\ 1 & : n = 2 \\ f(n-1) + f(n-2) & : n > 2 \end{cases}$$

The sequence given by f(n)/f(n-1) converges to the golden ratio, which plays a special role in mathematics and art.

# Python example

```
def F(n):
    if n == 1: return 1
    elif n == 2: return 1
    else: return F(n-1)+F(n-2)
```

More discussion about the python example available on Stack Overflow

## Arithmetic expression example

Programming languages are often expressed in terms of multiple types, in a big recursive pile.

Example, we might define an expression like so:

$$EXPR := \begin{cases} VALUE \\ EXPR "+" VALUE \\ EXPR "-" VALUE \end{cases}$$

$$VALUE := \begin{cases} CONSTANT \\ VARIABLE \end{cases}$$

One formal system for specifying languages in this way is Parsing expression grammar, which can be used to automatically generate a program which parses the language.

### Recursion we've seen before

- ► Well formed Boolean formulas
  - ► Base case: single letters
  - Recursive cases: rules for each logical connective
- ► Truth value of compound propositions
  - Base case: truth value of atomic propositions
  - ► Recursive case: truth tables for logical connectives
- Proofs
  - Base case: premises
  - Recursive cases: adding lines by logical equivalence or implication

#### Recursion and induction

Induction is the perfect tool for proving correctness with recursion!

```
# Recursive function to sum 1 to n:
def sumton(n):
    if n == 1:
        return 1
    else:
        return sumton(n-1) + n
```

Using program correctness we can easily prove

$$orall n \in \mathbb{Z}^+ \ n = 1 o \mathsf{sumton}(n) = 1$$
  $orall n \in \mathbb{Z}^+ \ n > 1 o \mathsf{sumton}(n) = \mathsf{sumton}(n-1) + n$ 

. . .

# Recursion and induction (2)

We can quickly turn this into a proof: Claim:

$$orall n \in \mathbb{Z}^+ \ \mathsf{sumton}(n) = \sum_{i=1}^n j_i$$

#### Proof.

Base case: sumton(1) =  $1 = \sum_{i=1}^{1} j$ .

Inductive case: assume sumton $(n-1) = \sum_{i=1}^{n-1} j$ . Then we have

$$sumton(n) = sumton(n-1) + n$$

$$= \sum_{j=1}^{n-1} j + n$$

$$= \sum_{j=1}^{n} j$$

