Sample problems for the 12th lecture (May 31)

1. Let

$$P_{X^3}(x^3) = \begin{cases} \frac{1}{20}, & x^3 = 000\\ \frac{1}{20}, & x^3 = 001\\ \frac{1}{10}, & x^3 = 010\\ \frac{1}{10}, & x^3 = 011\\ \frac{3}{20}, & x^3 = 100\\ \frac{3}{20}, & x^3 = 101\\ \frac{1}{5}, & x^3 = 110\\ \frac{1}{5}, & x^3 = 111 \end{cases}$$

Define $h_{X^3}(x^3) \triangleq \log \frac{1}{P_{X^3}(x^3)}$.

- (a) List the distribution of the entropy density $h_{X^3}(X^3)$.
- (b) Is it true that $h_{X^3}(u^3) > h_{X^3}(v^3)$ iff $P_{X^3}(u^3) < P_{X^3}(v^3)$? Justify your answer.
- (c) Define $\mathcal{D}(R) \triangleq \{x^3 \in \{0,1\}^3 : \frac{1}{3}h_{X^3}(x^3) \leq R\}$. Find the range of R such that $\Pr[X^3 \in \mathcal{D}(R)] = 0.7$.

Solution.

(a)

$$h_{X^n}(X^n) = \begin{cases} \log(20) & \text{with probability } \frac{1}{10} = 0.1\\ \log(10) & \text{with probability } \frac{1}{5} = 0.2\\ \log(20/3) & \text{with probability } \frac{3}{10} = 0.3\\ \log(5) & \text{with probability } \frac{2}{5} = 0.4 \end{cases}$$

(b) Yes since

$$h_{X^3}(u^3) > h_{X^3}(v^3)$$

 $\Leftrightarrow \log \frac{1}{P_{X^n}(u^3)} > \log \frac{1}{P_{X^n}(v^3)}$
 $\Leftrightarrow P_{X^n}(u^3) < P_{X^n}(v^3)$

- (c) $\log(20/3) \le R < \log(10)$
- 2. (a) Prove that the number of x^n 's satisfying $P_{X^n}(x^n) \ge \frac{1}{N}$ is at most N.

(b) Let \mathcal{C}_n^* be the set that maximizes $\Pr[X^n \in \mathcal{C}_n^*]$ among all sets of the same size M_n . Prove that

$$\Pr[X^n \notin \mathcal{C}_n^*] \le \Pr\left[\frac{1}{n}h_{X^n}(X^n) > \frac{1}{n}\log M_n\right].$$

Hint: Use (a).

(c) Let C_n be a subset of \mathcal{X}^n , satisfying that $|C_n| = M_n$. Prove that for every $\gamma > 0$,

$$\Pr[X^n \notin \mathcal{C}_n] \ge \Pr\left[\frac{1}{n}h_{X^n}(X^n) > \frac{1}{n}\log M_n + \gamma\right] - \exp\{-n\gamma\},$$

where $h_{X^n}(X^n)$ is defined in Problem 1.

Solution.

- (a) This can be proved by contradiction. Suppose there are N+1 x^n 's satisfying $P_{X^n}(x^n) \geq \frac{1}{N}$. Then, $1 = \sum_{x^n \in \mathcal{X}^n} P_{X^n}(x^n) \geq \frac{N+1}{N}$, which is a contradiction. Hence, the number of x^n 's satisfying $P_{X^n}(x^n) \geq \frac{1}{N}$ is at most N.
- (b) From (a), the number of x^n 's satisfying $P_{X^n}(x^n) \geq \frac{1}{M_n}$ is at most M_n . Since \mathcal{C}_n^* should consist of M_n words with larger probabilities, we have

$$\Pr[X^n \in \mathcal{C}_n^*] \geq \Pr\left[P_{X^n}(X^n) \geq \frac{1}{M_n}\right]$$

$$= \Pr\left[\frac{1}{n}\log\frac{1}{P_{X^n}(X^n)} \leq \frac{1}{n}\log M_n\right]$$

$$= \Pr\left[\frac{1}{n}h_{X^n}(X^n) \leq \frac{1}{n}\log M_n\right],$$

which implies

$$\Pr[X^n \notin \mathcal{C}_n^*] \le \Pr\left[\frac{1}{n}h_{X^n}(X^n) > \frac{1}{n}\log M_n\right].$$

(c) It suffices to prove that

$$\Pr\left[X^{n} \in \mathcal{C}_{n}\right] \leq \Pr\left[\frac{1}{n}h_{X^{n}}(X^{n}) \leq \frac{1}{n}\log M_{n} + \gamma\right] + \exp\{-n\gamma\}$$

$$= \Pr\left[\frac{1}{n}\log\frac{1}{P_{X^{n}}(X^{n})} \leq \frac{1}{n}\log M_{n} + \gamma\right] + \exp\{-n\gamma\}$$

$$= \Pr\left[P_{X^{n}}(X^{n}) \geq \frac{1}{M_{n}}e^{-n\gamma}\right] + \exp\{-n\gamma\}.$$

We then derive

$$\Pr\left[X^{n} \in \mathcal{C}_{n}\right] = \Pr\left[X^{n} \in \mathcal{C}_{n} \text{ and } P_{X^{n}}(X^{n}) \geq \frac{1}{M_{n}} e^{-n\gamma}\right]$$

$$+ \Pr\left[X^{n} \in \mathcal{C}_{n} \text{ and } P_{X^{n}}(X^{n}) < \frac{1}{M_{n}} e^{-n\gamma}\right]$$

$$\leq \Pr\left[P_{X^{n}}(X^{n}) \geq \frac{1}{M_{n}} e^{-n\gamma}\right]$$

$$+ \Pr\left[X^{n} \in \mathcal{C}_{n} \text{ and } P_{X^{n}}(X^{n}) < \frac{1}{M_{n}} e^{-n\gamma}\right]$$

$$= \Pr\left[P_{X^{n}}(X^{n}) \geq \frac{1}{M_{n}} e^{-n\gamma}\right]$$

$$+ \sum_{x^{n} \in \mathcal{C}_{n}} P_{X^{n}}(x^{n}) \cdot \mathbf{1} \left\{P_{X^{n}}(x^{n}) < \frac{1}{M_{n}} e^{-n\gamma}\right\}$$

$$< \Pr\left[P_{X^{n}}(X^{n}) \geq \frac{1}{M_{n}} e^{-n\gamma}\right]$$

$$+ \sum_{x^{n} \in \mathcal{C}_{n}} \frac{1}{M_{n}} e^{-n\gamma} \cdot \mathbf{1} \left\{P_{X^{n}}(x^{n}) < \frac{1}{M_{n}} e^{-n\gamma}\right\}$$

$$= \Pr\left[P_{X^{n}}(X^{n}) \geq \frac{1}{M_{n}} e^{-n\gamma}\right] + |\mathcal{C}_{n}| \frac{1}{M_{n}} e^{-n\gamma}$$

$$= \Pr\left[P_{X^{n}}(X^{n}) \geq \frac{1}{M_{n}} e^{-n\gamma}\right] + e^{-n\gamma}.$$

3. Let $\{\mathcal{C}_n^*\}_{n=1}^{\infty}$ be a sequence of the optimal codes that satisfy i) $\mathcal{C}_n^* \subset \mathcal{X}^n$; ii) $\Pr[X^n \in \mathcal{C}_n^*]$ is maximized among codes of the same size; and iii) $\lim_{n\to\infty} \frac{1}{n} \log |\mathcal{C}_n^*| = R$. Show that

$$\lim_{n \to \infty} \Pr[X^n \notin \mathcal{C}_n^*] = \Lambda(R),$$

provided that

$$\Lambda(x) \triangleq \lim_{n \to \infty} \Pr\left[\frac{1}{n} h_{X^n}(X^n) > x\right]$$

is continuous at x = R.

Hint: Use Problems 2(b) and 2(c).

Solution. $\lim_{n\to\infty} \frac{1}{n} \log |\mathcal{C}_n^*| = R$ implies that for every $\delta > 0$,

$$R - \delta < \frac{1}{n} \log |\mathcal{C}_n^*| < R + \delta$$
 for sufficiently large n .

Hence, from Problem 2(b), we have

$$\Pr[X^n \notin \mathcal{C}_n^*] \leq \Pr\left[\frac{1}{n}h_{X^n}(X^n) > \frac{1}{n}\log|\mathcal{C}_n^*|\right]$$

$$\leq \Pr\left[\frac{1}{n}h_{X^n}(X^n) > R - \delta\right].$$

Problem 2(c) additionally gives

$$\Pr[X^n \notin \mathcal{C}_n^*] \geq \Pr\left[\frac{1}{n}h_{X^n}(X^n) > \frac{1}{n}\log|\mathcal{C}_n^*| + \gamma\right] - e^{-n\gamma}$$
$$\geq \Pr\left[\frac{1}{n}h_{X^n}(X^n) > R + \delta + \gamma\right] - e^{-n\gamma}.$$

These two inequalities indicate

$$\begin{split} &\Lambda(R+\delta+\gamma) = \liminf_{n\to\infty} \Pr\left[\frac{1}{n}h_{X^n}(X^n) > R+\delta+\gamma\right] \\ &\leq & \liminf_{n\to\infty} \Pr[X^n \not\in \mathcal{C}_n^*] \leq \limsup_{n\to\infty} \Pr[X^n \not\in \mathcal{C}_n^*] \\ &\leq \limsup_{n\to\infty} \Pr\left[\frac{1}{n}h_{X^n}(X^n) > R-\delta\right] = \Lambda(R-\delta). \end{split}$$

Since $\Lambda(x)$ is continuous at x = R, we can take $\delta \downarrow 0$ and $\gamma \downarrow 0$ to obtain

$$\lim_{n \to \infty} \Pr[X^n \notin \mathcal{C}_n^*] = \Lambda(R).$$

- 4. Continue from Problem 3.
 - (a) If

$$\Lambda(R) = \begin{cases} 1, & 0 \le R < 0.1; \\ 2 - 10R, & 0.1 \le R < 0.2; \\ 0, & R \ge 0.2, \end{cases}$$

what is the minimum (asymptotic) data compression rate (in nats per source letter) for a sequence of codes with decompression error no larger than 0.1?

(b) If $X_1, X_2, X_3, ...$ is an i.i.d. sequence of random variables, what is $\Lambda(R)$ for this sequence? Is this $\Lambda(R)$ continuous for R > H(X)? Is this $\Lambda(R)$ continuous for R < H(X)?

Solution.

(a)

$$\min\{R: \Lambda(R) \leq 0.1\} \quad \Leftrightarrow \quad \min\{R: 2 - 10R \leq 0.1\}$$

$$\Leftrightarrow \quad \min\{R: 10R \geq 1.9\} = 0.19$$

(b) Since

$$\frac{\log \frac{1}{P_X(X_1)} + \dots + \log \frac{1}{P_X(X_n)}}{n}$$

converges to $E[\log \frac{1}{P_X(X)}] = H(X)$ in probability, we have

$$\Lambda(R) = \begin{cases} 1, & R < H(X); \\ 0, & R > H(X) \end{cases}.$$

Apparently, $\Lambda(R)$ is only discontinuous at R=H(X).