Directional Dipole for Subsurface Scattering

Pan An

BSSRDF vs Directional Methods

BSSRDF considers all medium as infinite deep.

BSSRDF vs Directional Methods

Directional Methods

Directional Methods

Basic Raytracer

- Diffuse
- Specular
 - Perfect
 - Non-Perfect
- Transparent
- Subsurface Scattering
- Directional Dipole
- Additional:
 - DoF

Platform

- i7 4700MQ
- NVIDIA GeForce GTX
 - 780m
 - DRAM: 3GB
 - Calc Power: 3.0
- RAM 16GB
- Windows 7

- CIS 565 Path Tracer
- C++, Python
- A little lisp but later omitted

400 X 400

2.63 Iterations
Per Second

:(

- Simple Logarithmic Sampling:

- Simple Logarithmic Sampling:

- Simple Logarithmic Sampling:

- Simple Logarithmic Sampling :

Directional Dipole

Directional Dipole

Directional Dipole

BSRDF vs Directional Dipole

Now About the Time

- BSSRDF: Monte Carlo
- Directional: Holson Sequence

400 X 400

- Holsen Sequence is not O(1)
- Better efficiency can be achieved by improving the sampling

- Definitions:
 - $^{\bullet}U$: random variable uniformly distributed on [0, 1];
 - $^{\bullet}U'$: approximated variable of U;
 - ${}^{ullet}R^{O(1)}$: random number generated with constant time(and bits);

Method – Exponentially Distributed Random Variable:

R^{O(1)}: random number generated with constant time (and bits)

- A1. Choose an integer $M = R^{O(1)}$
- A2. Select an integer N from [1, M] using $O(\log R)$ random bits
- A3. $U' = \frac{N}{M'}$; U' is then the approximation of U
- A4. Compute $X = -\frac{\ln U'}{w}$ where we use the first $O(\log R)$ terms of the Taylor expansion of $\ln U'$;

Thanks

Andy Pan