Set 3: Paired data, Sections 2.5

Scatterplots:

- a graphical descriptive statistic
- ullet for paired quantitative data $(x_1,y_1),\ldots,(x_n,y_n)$
- always label axes and provide a title
- \bullet focus is on the relationship between x and y
- scatterplots aid in prediction
- interpolation versus extrapolation

Example:

x 10 8 13 9 11 14 6 4 12 7 5 y 8.04 6.95 7.58 8.81 8.33 9.96 7.24 4.26 10.84 4.82 5.68

Y1 vs X1

Examples: data appropriate for a scatterplot?
(a) Consider 20 patients who take drug 1 and we record their blood pressure (x's). There
are 20 other patients who take drug 2 and we record their blood pressure (y's).

(b) Consider the monthly immigration rates (x's) into British Columbia and the monthly emigration rates from British Columbia (y's).

(c) We consider 10 different colours. In a neighbourhood, we count the number of houses of each colour.

Sample correlation coefficient r:

- a numerical descriptive statistic
- for paired quantitative data $(x_1, y_1) \dots, (x_n, y_n)$
- ullet r describes linearity between x and y

•
$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$

•
$$r = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{\sqrt{(\sum x_i^2 - n\bar{x}^2)(\sum y_i^2 - n\bar{y}^2)}}$$
 Computing Formula

Example: r=.82

x 10 8 13 9 11 14 6 4 12 7 5 y 8.04 6.95 7.58 8.81 8.33 9.96 7.24 4.26 10.84 4.82 5.68

Y1 vs X1

Example: r=0.06

Y vs X

Example: r=.82

x 10 8 13 9 11 14 6 4 12 7 5 y 9.14 8.14 8.74 8.77 9.26 8.1 6.13 3.1 9.13 7.26 4.74

Y2 vs X2

Example: r=.82

x 10 8 13 9 11 14 6 4 12 7 5 y 7.46 6.77 12.74 7.11 7.81 8.84 6.08 5.39 8.15 6.42 5.73

Y3 vs X3

Example: r=.82 x 8 8 8 8 8 8 8 8 19 8 8 8 y 6.58 5.76 7.71 8.84 8.47 7.04 5.25 12.5 5.56 7.91 6.89

Y4 vs X4

Association versus cause-effect:

- correlation does not imply causation
- the role of lurking variables in causation
- observational studies
- randomized experiments

Example for discussion: