Rising from Obscurity: Optical Signatures of Outflows & Interactions in CONs & Related LIRGs

Jay Gallagher, U. Wisconsin w/Ralf Kotulla & undergraduate students

CON-quest: Susanne Aalto, Niklas Falstad, Sabine König, Youichi Ohyama, George Privon, Kazuchi Sakamoto...

Katey Alatolo & crew

(NICMOS HST Pioneers include Alonso-Herrero, Scoville)

Curtain of Dust III – Sexten, Italy

Lauren Laufman
Wisconsin→ Minnesota
Dust opacity modles

Emily Geist –NSF Summer
Student
Juniata College
GALFIT modeling & galaxy
structures

Eowyn Yangyang Liu Wisconsin CMZs, bars & star formation

Jalyn Krause
Wisconsin
Dust opacity &
gas masses

Project Goals

- Explore connections between obscured nuclei and larger scale structures
 - > Stellar substructures—indication of interactions
 - ightharpoonup t_{dynamical} \sim V/R \propto 1/R outer regions retain dynamical record
 - Asymmetric structures generally last few t_{dynamical}
 - > Features due to dust obscuration
 - \triangleright Dust absorption -- τ ≅κ(dust) $\rho(gas)$ ($\frac{dust}{gas}$) L \rightarrow N(H+H₂)
 - Locations & gas column densities—mass cycling process
 - \triangleright Connect kinematics (multi- λ spectra) to structures.

Minor Mergers: A Path to Obscured Nuclei

HI tails
Outer stellar tidal debris
Growth in central gas

concentration

Medusa—see S. König Talk

Optical Diagnostics

- IMAGING Early Structural Class Galaxies (Simplicity?):
 - Stellar features—bars, arms, tidal debris
 - Colors & stellar populations
 - > Dust structures—ISM concentrations
 - Polar vs. disk components orbiting gas from geometry
 - Outflows—unique linear strucures
 - Optical depths—gas mass/phase estimates
 - Ionized gas—star forming sites, AGN, ...

Low resolution: range of host structures

Possible sequence in terms outer structural disturbances

NGC1377

IC 860

NGC 1266

HST (JSG+ & ATALOLO+ GO): More details

Multiple—bands: optical depth of dust obscuration & locations of younger stars.

Analysis needs to deal with presence of dust

Interstellar Obscuration vs. Wavelength

- 1. $\tau(\lambda)/\tau(V)$ fixed by obscuration model
- 2. $\tau(\lambda)/\tau(V)$ decreases as λ increases

Longer wavelengths: More transparency & probe higher column density gas

Example: IC860 HST (K. Alatolo)

HST "B-band" traces lower column dust extent of outflow

Model NIR HST images via simple GALFIT solution: approximate smooth light distributions

Ratio of model to observed image reveals small scale structures (& errors since the models aren't perfect!).

F125W Ratio Image: Tourist Guide

- "Nick's pillar" (arrow)
- High opacity regions, N≥10²³ cm²
- Inner arms (SF Lightning strike))
- Smooth disk

Zw049 F555W Ratio model [$\tau(V) \approx 4.5 \tau(F125W)$]

Young(ish) stellar populations exist

Characterizing the Core SO/a Group

- ➤ HST GO Imaging JSG+ (NGC1377, NGC4418, Zw049.057), *Katy Atalolo+* (NGC1266, IC860).
- "Wisconsin" team: JSG; Scientists: Tova Yoast-Hull (now CITA), Ralf Kotulla; Undergraduates Lauren Laufman (to U. Minnesota), Emily Geist (Juaniata College), Eowyn Yangyang Liu
- > Structures: stellar substructures; dust absorption levels
 - Symmetric model light distributions to detect substructures—GALFIT models. NGC 1377 & Zw049.057

Multiple wavelengths solve for x and
$$\tau(V)$$
 $\rightarrow N_{gas}$

$$I_{\text{obs }\lambda} = S_{\star \lambda}(L-X) + (S_{\star \lambda}X)e^{-\tau(\lambda)}$$

Example: Zw049 (Gallagher, (Laufman)+ in prep)

Results

- $N(H \cong \tau(V)(2E21) \text{ cm}^{-2} \text{ Low density Galactic. Better Choice?}$
 - Depth of feature = projected size (spherical cow approximation)
- Results likely underestimates—only dense gas, model ignores scattering, etc.
- Nick's column in Zw049 $M_{gas} \ge 2-10E6$ Msun
- Dust columns contain substantial mass, but likely ~10% of inner molecular mass in discreet features
- Total masses in outflows difficult to estimate

Spectra & Evolutionary Phases

Spectra & Evolutionary Phase: Zw049.057

Starburst CMZ?

Preliminary Results

- ➤ Early--type hosts of obscured nuclei show evidence for past interactions in terms of structures and in some cases post-starburst spectra. → ~Gyr time scales.
- ➤ Bipolar dusty winds appear to correlate with presence of obscured nuclei. These features are rare in early-type galaxies → important phase of rapid evolution. Possibly in systems where star formation was previously dying?
- ➤ Winds appear to be multi-phase but cool (NaD absorption, HII emission) and slow (see also excellent spectrscopic study of NGC 4418 by Ohyama+ 2019, ApJ
- Outflows may contain few-10% of central molecular mass in the form of dense gas; total mass likely substantially higher.
- > Structures suggest both starburst and AGN wind components could be present.
- ➤ NEXT steps: Zw049 pilot paper in prep; analysis of HST imaging sample under way; SALT spectra obtained for NGC 1377 & Zw049,

NGC 1266 & NGC 4418 HST

