Laboratorium 5 Aproksymacja

Mateusz Król

17/04/2024 r.

Zadanie 1.

Wykonaj aproksymację średniokwadratową punktową populacji Stanów Zjednoczonych w przedziale [1900;1980] wielomianami stopnia m dla $0 \le m \le 6$.

Wykres błędów względnych w zależności od liczby węzłów wielomianu interpolacyjnego:

Wykres wartości skorygowanego kryterium informacyjnego $Akaike\ (AIC_c)$ w zależności od liczby węzłów wielomianu interpolacyjnego:

Zadanie 2.

Wykonaj aproksymację średniokwadratową ciągłą funkcji $f(x)=\sqrt{x}$ w przedziale [0;2] wielomianem drugiego stopnia, używając wielomianów Czebyszewa.

Wykres przedstawiający porównanie prawdziwych wartości funkcji $f(x) = \sqrt{x}$ oraz wartości aproksymowanych za pomocą aproksymacji średniokwadratowej ciągłej używająć wielomianów $T_k(x)$ Chebyshev'a.

Wnioski

W zadaniu 1, błąd względny był najmniejszy (≈ 0.022) dla m=4, co nie zgadza się z odpowiednio najmniejszą wartością AIC_c dla m=2. Druga najmniejsza wartość błędu jest przyjmowana dla m=2.

W zadaniu 2, metoda aproksymacji średniokwadratowej ciągłej jest tańsza obliczeniowo od aproksymacji jednostajnej.