南京大学数学课程试卷 (商学院18级)

<u>2019/2020</u> 学年 第 __ 学期 考试形式 闭卷 课程名称 概率统计 (A卷)

老 沿时间 2010 15					1 1 10 10 10 10
考试时间_2019.12.30	委别	77	中	姓名	
	21/11		- 5	 姓石	

题号	-36	二12	三10	四 10	五 10	六12	七10	合计
得分								

 Φ (1. 0)=0. 8413, Φ (1.28) = 0.90, Φ (1.38)=0.9162, Φ (1.58)=0.943, Φ (1.645) = 0.95, Φ (1.96) = 0.975, Φ (2)=0.977 Φ (2.33) = 0.99, $\mathbf{t}_{0.025}$ (8)=2.306, $\mathbf{t}_{0.025}$ (9)=2.262, $\mathbf{t}_{0.05}$ (8)=1.86, $\mathbf{t}_{0.05}$ (9)=1.83, $\mathbf{t}_{0.025}$ (15)=2.131, $\mathbf{t}_{0.05}$ (15)=1.750, $\mathbf{t}_{0.025}$ (16)=2.12, $\mathbf{t}_{0.05}$ (16)=1.746 $\mathbf{t}_{0.025}$ (48)=2.01, $\mathbf{t}_{0.025}$ (49)=2.009, $\mathbf{t}_{0.05}$ (48)=1.679, $\mathbf{t}_{0.05}$ (49)=1.678, $\chi^2_{0.025}$ (8)=17.535, $\chi^2_{0.025}$ (9)=19.023, $\chi^2_{0.025}$ (10) =20.483, $\chi^2_{0.05}$ (8)=15.507 $\chi^2_{0.05}$ (9)=16.919 $\chi^2_{0.05}$ (10)=18.3, $\chi^2_{0.1}$ (9)=14.68, $\chi^2_{0.1}$ (10)=16, $\chi^2_{0.25}$ (9)=11.4, $\chi^2_{0.25}$ (10)=12.5

1. 三人独立地去破译一份密码,已知各人能译出的概率分别为 $\frac{1}{5}$, $\frac{1}{3}$, $\frac{1}{4}$, 问此密码被译出的概率是多少?

2. 设随机变量 X, Y, Z 相互独立, 且 X~U[0, 6], Y~N(0, 4), Z~P(3), 设 W=X-2Y+3Z+4, 求期望 E(W) 和方差 D(W).

3. 设 X_1, X_2, \cdots, X_{10} 和 $Y_1, Y_2, \cdots Y_{15}$ 相互独立且都是总体 $\xi \sim N$ (20, 3)的样本,求 $P(|\bar{X} - \bar{Y}| > \sqrt{2}$).

4. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_{16} 是样本,样本均值 \overline{X} ,样本方差 $S^2 = \frac{1}{15} \sum_{i=1}^{16} (X_i - \overline{X})^2$, 试求满足 $P(\overline{X} > \mu + kS) = 0.95$ 的 k 值.

- 5. 设某铁矿区的磁化率服从 N (μ, σ^2) 分布. 现从中抽取了 n=49 的样本,计算得 \bar{x} =0.132, S= $\sqrt{\frac{1}{48}\sum_{i=1}^{49}(x_i-\bar{x})^2}$ =0.07. 求磁化率的数学期望 μ 的置信度为 95%的置信区间.
- 6. 对总体 X, 有 EX= μ , DX= σ^2 均存在, X₁, X₂, … X_n为样本, 设 $\hat{\mu}_1 = \bar{X}$ 和 $\hat{\mu}_2 = \sum_{i=1}^n C_i X_i$ (其中 $C_i > 0$, $\sum_{i=1}^n C_i = 1$) 为 μ 的两个估计量. (1) 证明 $\hat{\mu}_1$ 和 $\hat{\mu}_2$ 都是 μ 的无偏估计; (2) 比较 $\hat{\mu}_1$ 和 $\hat{\mu}_2$ 的有效性.

二. (12 分)某商店正在销售一批产品共 10 件,其中有 3 件次品,其余是正品。某顾客去选购时,商店已售出 2 件,该顾客从剩下的 8 件中任意选购一件,试求: (1)该顾客购到正品产品的概率; (2)若已知该顾客购到正品产品,则已售出的两件产品都是次品的概率.

NN TO CO D N 表現 A NN TO ELESS.

三. (10 分)设随机变量 X 与 Y 相互独立, 且 X~E(3), Y~E(4), 求 Z=3X+4Y 的概率密度.

四. $(10 \, f)$ 检验员逐个地检查某种产品,每次花 $10 \, f$ 的 检查一个,但也有可能有的产品需要重复检查一次再用去 $10 \, f$ 的 使定每个产品需要重复检查的概率为 $\frac{1}{2}$,求在 $10 \, f$ 的产品数不少于 $100 \, f$ 的概率.

(共中年、この、生の三日、万戸的関个位計画、(自由別点和項、都建川出天門市。

(2) 此程点和 互助调整性。

五. (10 分)从正态总体 $N(\mu, 0.5^2)$ 中抽取样本 X_1, X_2, \dots, X_{10} , (1) 已知 μ = 0 ,求概率 $P(\sum_{i=1}^{10} X_i^2 \ge 4)$; (2) μ 未知,求概率 $P(\sum_{i=1}^{10} (X_i - \overline{X})^2 \ge 2.85)$.

二、(12 分)来商店上老物售一批产品共 10 件,其中有工作效品,其全是压品,基则各去运换时。 每店已售出 2 件,会员存从野下出来将中也显成之一作。武夫 (1) 途便 客款到正量产品的货率; (2) 名已知应以李临至江北产品,现亡四出。对作产品严重改品的概果。

六. (12 分)设总体 X 的密度函数为
$$p(x; \theta) = \begin{cases} \frac{2}{\theta^2}(\theta - x), & 0 < x < \theta \\ 0, & \text{其它} \end{cases}$$
, $X_1, X_2, \cdots X_n$ 为样本, (1)求 θ 的矩估计 $\hat{\theta}$; (2)此估计量 $\hat{\theta}$ 是无偏和一致的吗? 说明理由.

七. $(10\ \mathcal{H})$ 一种元件,要求其平均使用寿命不得低于 $1000\ \mathcal{H}$ 小时,今从这批元件中随机地抽取 $25\ \mathcal{H}$ 件,测得其平均寿命为 $950\ \mathcal{H}$. 已知该种元件寿命 X 服从标准差 $\sigma=100\ \mathcal{H}$ 小时的正态分布. (1) 试在显著水平 $\alpha=0.05$ 下确定这批元件是否合格? (2) 求 $\mu=EX$ 的置信度为 95%的置信区间.

第4页(共四页)