Dirichlet Processes, Chinese Restaurant Processes and All That

Michael I. Jordan

Department of Statistics and Computer Science Division University of California, Berkeley

http://www.cs.berkeley.edu/~jordan

Acknowledgments: David Blei, Yee Whye Teh

Introduction

Some Well-Worn but Still-Very-Useful Distinctions

	Frequentist	Bayesian
Parametric	I	IV
Semiparametric	П	V
Nonparametric	Ш	VI

I: Logistic regression, ANOVA, Fisher discriminant analysis, ARMA, etc.

II: Independent component analysis, Cox model, nonmetric MDS, etc.

III: Nearest neighbor, kernel methods, bootstrap, decision trees, neural nets,

etc (a focus point for machine learning research)

IV: Graphical models, hierarchical models, etc.

V ?

VI: Gaussian processes, ?

Some Well-Worn but Still-Very-Useful Distinctions

	Frequentist	Bayesian
Parametric	I	IV
Semiparametric	II	V
Nonparametric	Ш	VI

- What do we mean by "parameters" anyway?
 - note in particular that "nonparametric" doesn't mean "no parameters"
 - it means (very roughly) that the number of parameters grows with the number of data points

The De Finetti Perspective on Parameters

- For Bayesians, the De Finetti theorem is a compelling motivation for both "parameters" and priors on parameters
 - but everyone should know what the De Finetti theorem is, not just Bayesians...
- What is the De Finetti theorem?
- It's the "bag-of-words theorem"

The De Finetti Perspective on Parameters (cont.)

- Suppose that we agree that if our data are reordered, it doesn't matter
 - this is generally **not** an assertion of "independent and identically distributed"; rather, it is an assertion of "exchangeability"
- Exchangeability: the joint probability distribution underlying the data is invariant to permutation

Theorem (De Finetti, 1935). If $(x_1, x_2, ...)$ are infinitely exchangeable, then the joint probability $p(x_1, x_2, ..., x_N)$ has a representation as a mixture:

$$p(x_1, x_2, \dots, x_N) = \int \left(\prod_{i=1}^N p(x_i \mid \theta) \right) dP(\theta)$$

for some random variable θ .

• I.e., if you assert exchangeability, it is reasonable to act as if there is an underlying parameter, there is a prior on that parameter, and the data are conditionally IID given that parameter

The De Finetti Perspective on Parameters (cont.)

Theorem (De Finetti, 1935). If $(x_1, x_2, ...)$ are infinitely exchangeable, then the joint probability $p(x_1, x_2, ..., x_N)$ has a representation as a mixture:

$$p(x_1, x_2, \dots, x_N) = \int \left(\prod_{i=1}^N p(x_i \mid \theta) \right) dP(\theta)$$

for some random variable θ .

- ullet The theorem wouldn't be true if we limited ourselves to random variables heta ranging over Euclidean vector spaces
- ullet In particular, we need to allow heta to range over measures, in which case P(heta) is a distribution on measures
 - the Dirichlet process is an example of a distribution on measures...

Bayesian Nonparametrics

- There are Bayesian nonparametric approaches to many of the main problems in statistics:
 - regression
 - classification
 - clustering
 - survival analysis
 - time series analysis
 - spatial data analysis
 - etc
- These generally involve assumptions of exchangeability or partial exchangeability
 - and corresponding distributions on random objects of various kinds (functions, monotone functions, partitions, measures, etc)
- We'll focus on one problem for concreteness—clustering

Clustering—How to Choose *K***?**

- Adhoc approaches (e.g., hierarchical clustering)
 - they do often yield a data-driven choice of K
 - but there is little understanding of how good these choices are
- Methods based on objective functions (M-estimators)
 - e.g., K-means, spectral clustering
 - do come with some frequentist guarantees
 - but it's hard to turn these into data-driven choices of K
- Parametric likelihood-based approaches
 - finite mixture models, Bayesian variants thereof
 - various model choice methods: hypothesis testing, cross-validation, bootstrap, AIC, BIC, DIC, Laplace, bridge sampling, reversible jump, etc
 - but do the assumptions underlying the method really apply to this setting?
 (not often)
- Let's try something different...

Chinese Restaurant Process (CRP)

- ullet A random process in which n customers sit down in a Chinese restaurant with an infinite number of tables
 - first customer sits at the first table
 - -mth subsequent customer sits at a table drawn from the following distribution:

$$\frac{P(\text{previously occupied table } i \mid \mathcal{F}_{m-1}) \quad \propto \quad n_i}{P(\text{the next unoccupied table} \mid \mathcal{F}_{m-1}) \quad \propto \quad \alpha_0} \tag{1}$$

where n_i is the number of customers currently at table i and where \mathcal{F}_{m-1} denotes the state of the restaurant after m-1 customers have been seated

The CRP and Clustering

- Data points are customers; tables are clusters
 - the CRP defines a prior distribution on the partitioning of the data and on the number of tables
- This prior can be completed with:
 - a likelihood—e.g., associate a parameterized probability distribution with each table
 - a prior for the parameters—the first customer to sit at table k chooses the parameter vector for that table (ϕ_k) from the prior

So we now have a distribution—or can obtain one—for any quantity that
we might care about in the clustering setting

CRP Prior, Gaussian Likelihood, Conjugate Prior

$$\phi_k = (\mu_k, \Sigma_k) \sim N(a, b) \otimes IW(\alpha, \beta)$$

 $x_i \sim N(\phi_k)$ for a data point i sitting at table k

Exchangeability

(Blackwell & MacQueen; Kingman; Aldous; Pitman)

- As a prior on the partition of the data, the CRP is exchangeable
- The prior on the parameter vectors associated with the tables is also exchangeable
- The latter probability model is generally called the Pólya urn model. Letting θ_i denote the parameter vector associated with the *i*th data point, we have:

$$\theta_i \mid \theta_1, \dots, \theta_{i-1} \sim \alpha_0 G_0 + \sum_{j=1}^{i-1} \delta_{\theta_j}$$

- From these conditionals, a short calculation shows that the joint distribution for $(\theta_1, \dots, \theta_n)$ is invariant to order (this is the exchangeability proof)
 - De Finetti implies that there is an underlying random "parameter" and a distribution on that parameter. What are they?

The CRP (cont)

- An additional fact about the CRP:
 - as a prior on the number of tables, the CRP is nonparametric—the number of occupied tables grows (roughly) as $O(\log n)$ —we're in the world of nonparametric Bayes
- How do we do inference with a CRP?
- How does this relate to more standard model-based clustering?
- Any theory behind this?
- What can we do that's new with this setup?

Outline

- Background
- Bayesian mixture models, stick-breaking, Dirichlet processes
- Inference
- Hierarchical and dependent Dirichlet processes
- Semiparametric models
- Applications
- Further directions in nonparametric Bayes: tail-free processes, neutral-to-the-right processes, Polya trees, diffusion trees, Pitman-Yor processes

Background

Directed Graphical Models

ullet Given a graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$, where each node $v\in\mathcal{V}$ is associated with a random variable X_v :

• The joint distribution on (X_1, X_2, \dots, X_N) factorizes according to the "parent-of" relation defined by the edges \mathcal{E} :

$$p(x_1, x_2, x_3, x_4, x_5, x_6; \theta) = p(x_1; \theta_1) \ p(x_2 \mid x_1; \theta_2)$$
$$p(x_3 \mid x_1; \theta_3) \ p(x_4 \mid x_2; \theta_4) \ p(x_5 \mid x_3; \theta_5) \ p(x_6 \mid x_2, x_5; \theta_6)$$

Plates

• A *plate* is a "macro" that allows subgraphs to be replicated:

- Shading denotes observed variables; i.e., conditioning
- Note that this graph represents the following marginal probability for the observations (x_1, x_2, \dots, x_N) :

$$p(x_1, x_2, \dots, x_N) = \int \left(\prod_{i=1}^N p(x_i \mid \theta) \right) dP(\theta)$$

Gibbs Sampling

- A Markov chain Monte Carlo (MCMC) method
- ullet Consider a set of variables X_V , with distribution $p(x_V)$ (which may be a conditional distribution)
- Set up a Markov chain as follows:
 - initialize the X_i to arbitrary values
 - choose i randomly
 - sample from $p(x_i | x_{V \setminus i})$
 - iterate
- ullet Under (usually) easily-checkable conditions, this scheme has $p(x_V)$ as its equilibrium distribution