

Course > Non-M... > Measu... > Lebesg...

Lebesgue Measure

As it turns out, there is *exactly one* natural way of extending the ordinary notion of length so that it applies to all Borel Sets. More precisely, there is exactly one function λ on the Borel Sets that satisfies these three conditions:

Length on Segments

$$\lambda([a,b]) = b - a.$$

(This condition is meant to ensure that λ counts as an extension, rather than a modification, of the notion of length.)

Countable Additivity

Let A_1, A_2, \ldots be a countable family of disjoint sets. Whenever $\lambda(A_i)$ is defined for each A_i , we have:

$$\lambda\left(igcup\left\{A_{1},A_{2},A_{3},\ldots
ight\}
ight)=\lambda\left(A_{1}
ight)+\lambda\left(A_{2}
ight)+\lambda\left(A_{3}
ight)+\ldots$$

(For A_1, A_2, \ldots to be *disjoint* is for A_i and A_j to have no elements in common whenever $i \neq j$.)

Non-Negativity

For any set A in the domain of λ , λ (A) is either a non-negative real number, or the infinite value ∞ .

(Note that the length of a line-segment [a,b] is always a non-negative real number. When we transition from measuring line-segments to measuring Borel Sets, however, we allow for sets of "infinite length", such as $[0,\infty)$, which is the set of non-negative real numbers, or $(-\infty,\infty)=\mathbb{R}$.)

The unique function λ on the Borel Sets that satisfies these three conditions is called the **Lebesgue Measure**, in honor of another great French mathematician: Henry Lebesgue.

We will not prove that λ exists here, or that it is unique. We will simply assume that λ exists and is well-defined for every Borel Set. (If you'd like to learn how to prove the relevant result, I recommend a measure-theory textbook in Lecture 7.3.)

Problem 1

1/1 point (ungraded)

Identify the value of λ (\emptyset), where \emptyset is the empty set.

Explanation

Since [0,1] and the empty set are both Borel Sets, $\lambda\left([0,1]\right)$ and $\lambda\left(\emptyset\right)$ are both well-defined. So we can use Countable Additivity to get

$$\lambda\left(\left[0,1
ight]
ight)=\lambda\left(\left[0,1
ight]
ight)+\lambda\left(\emptyset
ight)$$

But it follows from Length on Segments that $\lambda([0,1]) = 1$. So $\lambda(\emptyset) = 1 - 1 = 0$.

Submit

1 Answers are displayed within the problem

Problem 2

1/1 point (ungraded)

Identify the value of λ ([a,b)), where [a,b) = [a,b] – {b}.

$$\bigcirc b-a$$

$$\bigcirc a-b$$

Explanation

Since [a,b] and $\{b\}$ are Borel Sets, it follows from an exercise from the previous section that [a,b) is a Borel Set. So we know that both $\lambda([a,b))$ and $\lambda(\{b\})$ are defined. We can therefore use Countable Additivity to get the following:

$$\lambda\left(\left[a,b
ight]
ight)=\lambda\left(\left[a,b
ight)
ight)+\lambda\left(\left\{b
ight\}
ight)$$

But since $\{b\}=[b,b]$ and $\lambda\left([b,b]\right)=b-b=0$ (by Length on Segments), $\lambda\left(\{b\}\right)=0$. So $\lambda\left([a,b)\right)=\lambda\left([a,b]\right)=b-a$.

Submit

1 Answers are displayed within the problem

Problem 3

1/1 point (ungraded) Identify the value of λ (\mathbb{R}).

 $\bigcirc 0$

 $\bigcirc -\infty$

None of the above

Explanation

Since each set [n, n + 1) is a Borel Set for each integer n, we know that $\lambda([n, n + 1)$ is defined for each n. We can therefore use Countable Additivity to get the following:

$$\lambda\left(\mathbb{R}
ight)=\ldots\lambda\left(\left[-2,-1
ight)
ight)+\lambda\left(\left[-1,0
ight)
ight)+\lambda\left(\left[0,1
ight)
ight)+\lambda\left(\left[1,2
ight)
ight)+\ldots$$

But the previous answer entails that $\lambda([a, a + 1)) = 1$ for each a. So we have:

$$\lambda\left(\mathbb{R}
ight)=\ldots1+1+1+1\ldots$$

Since no real number is equal to an infinite sum of ones, Non-Negativity entails that $\lambda(\mathbb{R}) = \infty$.

Submit

• Answers are displayed within the problem

Problem 4

1/1 point (ungraded)

True or false?

Every countable (i.e. finite or countably infinite) set has Lebesgue Measure zero.

Explanation

Let A be the countable set $\{a_0, a_1, a_2, \ldots\}$. Since each $\{a_i\}$ is a Borel Set, we know that each $\lambda(\{a_i\})$ is defined. We can therefore use Countable Additivity to get:

$$\lambda\left(\left\{a_{0},a_{1},a_{2},\ldots\right\}
ight)=\lambda\left(\left\{a_{0}
ight\}
ight)+\lambda\left(\left\{a_{1}
ight\}
ight)+\lambda\left(\left\{a_{2}
ight\}
ight)+\ldots$$

But since $\{a_i\}=[a_i,a_i]$, it follows from [Length on Line-Segments] that $\lambda\left(\{a_i\}\right)=0$ for each i. So we have:

$$\lambda\left(\{a_0, a_1, a_2, \ldots\}\right) = 0 + 0 + 0 + \cdots = 0$$

Submit

1 Answers are displayed within the problem

Problem 5

1/1 point (ungraded)

True or false?

If A and B are both Borel Sets and $B \subseteq A$, then $\lambda(B) \le \lambda(A)$.

True			
False			

Explanation

Since A and B are both Borel Sets, so is A - B. So Countable Additivity entails

$$\lambda\left(A\right) = \lambda\left(A - B\right) + \lambda\left(B\right)$$

But Non-Negativity entails that λ (A-B) is either a non-negative real number or ∞ . In either case, it follows that $\lambda(B) \leq \lambda(A)$.

Submit

Answers are displayed within the problem

Problem 6

1/1 point (ungraded)

Countable Additivity gives us an additivity condition for finite or countably infinite families of disjoint sets. Would it be a good idea to insist on an additivity condition for uncountable families of disjoints sets?

Yes, it would be a great idea!

O No, it would not be a good idea.

Explanation

Recall that for any $x \in \mathbb{R}$, $\lambda(\{x\}) = 0$. So an uncountable additivity principle would entail that $\lambda([0,1]) = 0$:

$$\lambda\left(\left[0,1
ight]
ight)=\lambda\left(igcup_{x\in\left[0,1
ight]}\left(\left\{x
ight\}
ight)
ight)=\sum_{x\in\left[0,1
ight]}\left(\lambda\left(\left\{x
ight\}
ight)
ight)=\sum_{x\in\left[0,1
ight]}\left(0
ight)=0$$

Submit

Discussion	Hide Discussion
Topic: Week 7 / Lebesgue Measure	
	Add a Po
Show all posts 🕶	by recent activity 🗸
There are no posts in this topic yet.	

© All Rights Reserved