SCHOOLOFCOMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE				DEPARTMENTOFCOMPUTER SCIENCE ENGINEERING		
ProgramName:B. Tech			Assignr	mentType: Lab	Type: Lab AcademicYear	
CourseCoordinatorName			Venkataraman	Venkataramana Veeramsetty		
Instructor	(s)Nam	ne	Dr. V. Venka	taramana (Co-ordir	nator)	
			Dr. T. Sampath Kumar			
			Dr. Pramoda Patro			
			Dr. Brij Kishor Tiwari			
			Dr.J.Ravichan	nder		
			Dr. Mohamm	and Ali Shaik		
			Dr. Anirodh I	Kumar		
			Mr. S.Naresh	Kumar		
			Dr. RAJESH	VELPULA		
			Mr. Kundhan	Kumar		
			Ms. Ch.Rajith			
			Mr. M Prakas	sh		
			Mr. B.Raju			
			Intern 1 (Dharma teja)			
			Intern 2 (Sai Prasad)			
			Intern 3 (Sow	- ·		
la 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			NS_2 (Mour		4:	
Coursecode		24CS002PC215	CourseTitle	AI Assisted Cod	ding	
Year/Sem		II/I	Regulation	R24		
DateandDay of Assignment		Week6 - WednesDay	Time(s)			
Duration		2 Hours	Applicableto Batches			
Assignmer	ntNum	ber:12.3(Presenta	 assignmentnumb	er)/ 24 (Totalnumbe	erofassignments)	
Q.No.	Que	Question				Expected
						me
						to
	Lab	12 Algorith	ag swith AT Azzi	stance Couting	soorohing and	complete
		Lab 12 – Algorithms with AI Assistance: Sorting, searching, and optimizing algorithms				
	_	Lab Objectives				
1	Lab	Lab Objectives				
		To implement	classical alace	thme (corting cos	arching) with the	Monda
	•	• To implement classical algorithms (sorting, searching) with the help of AI tools.				
	•	To analyze AI suggestions for efficiency and correctness.				

- To explore AI-assisted optimizations of existing algorithms.
- To compare naive vs. optimized approaches generated by AI.

Learning Outcomes

After completing this lab, students will be able to:

- Implement sorting and searching algorithms using AI suggestions.
- Compare AI-generated algorithm variants in terms of readability and efficiency.
- Use AI to optimize brute-force algorithms into more efficient ones.
- Analyze algorithm complexity (time and space) with AI explanations.
- Critically reflect on correctness, clarity, and maintainability of AIgenerated algorithms.

Task Description #1 – Linear Search implementation

Task: Write python code for linear_search() function to search a value in a list and extract it's index.

CODE:

```
def linear search(lst, value):
    Performs a linear search for 'value' in 'lst'.
    Returns the index if found, otherwise returns -1.
    for idx, item in enumerate(lst):
            return idx
if __name__ == "__main__":
    test_list1 = [1, 3, 5, 7, 9, 11, 13, 15]
    result1 = linear_search(test_list1, search_value1)
    print(f"Searching for {search_value1} in {test_list1}")
    print(f"Result: {result1}")
    print()
    test_list2 = [2, 4, 6, 8, 10]
    result2 = linear_search(test_list2, search_value2)
    print(f"Searching for {search_value2} in {test_list2}")
    print(f"Result: {result2}")
    print()
    test list3 = []
    result3 = linear_search(test_list3, search_value3)
    print(f"Searching for {search_value3} in {test_list3}")
    print(f"Result: {result3}")
    print()
    test_list4 = [10, 20, 30, 40, 50]
 test_list4 = [10, 20, 30, 40, 50]
 search value4 = 10
 result4 = linear_search(test_list4, search_value4)
 print(f"Searching for {search_value4} in {test_list4}")
 print(f"Result: {result4}")
 print()
 test_list5 = [100, 200, 300, 400, 500]
 result5 = linear_search(test_list5, search_value5)
 print(f"Searching for {search_value5} in {test_list5}")
 print(f"Result: {result5}")
OUTPUT:
```

```
Searching for 7 in [1, 3, 5, 7, 9, 11, 13, 15]
Result: 3

Searching for 5 in [2, 4, 6, 8, 10]
Result: -1

Searching for 1 in []
Result: -1

Searching for 10 in [10, 20, 30, 40, 50]
Result: 0

Searching for 500 in [100, 200, 300, 400, 500]
Result: 4
```

Task Description #2 – Sorting Algorithms

Task: Ask AI to implement Bubble Sort and check sorted output CODE:

```
def bubble_sort(arr):
    Performs bubble sort on the input list 'arr' in-place.
   n = len(arr)
    for i in range(n):
       for j in range(0, n - i - 1):
           if arr[j] > arr[j + 1]:
               arr[j], arr[j + 1] = arr[j + 1], arr[j]
if name == " main ":
       [64, 34, 25, 12, 22, 11, 90],
        [5, 1, 4, 2, 8],
       [2, 2, 2, 2],
       [10, 9, 8, 7, 6, 5],
    for idx, arr in enumerate(test_cases):
       print(f"Original List {idx+1}: {arr}")
       bubble_sort(arr)
       print(f"Sorted List {idx+1}: {arr}")
       print()
```

OUTPUT:

```
Original List 1: [64, 34, 25, 12, 22, 11, 90]
Sorted List 1: [11, 12, 22, 25, 34, 64, 90]

Original List 2: [5, 1, 4, 2, 8]
Sorted List 2: [1, 2, 4, 5, 8]

Original List 3: []

Original List 4: [1]
Sorted List 4: [1]

Original List 5: [2, 2, 2, 2]

Sorted List 5: [2, 2, 2, 2]

Original List 6: [10, 9, 8, 7, 6, 5]
Sorted List 6: [5, 6, 7, 8, 9, 10]
```

Task Description #3 - Optimization

Task: Write python code to solve below case study using linear optimization

Consider a chocolate manufacturing company that produces only two types of chocolate i.e. A and B. Both the chocolates require Malk and Choco only.

To manufacture each unit of A and B, the following quantities required:

Each unit of A requires 1 unit of Milk and 3 units of Choco

Each unit of B requires 1 unit of Milk and 2 units of Choco

The company kitchen has a total of 5 units of Milk and 12 units of Choco. On each sale, the company makes a profit of Rs 6 per unit A sold and Rs 5 per unit B sold.

Now, the company wishes to maximize its profit. How many units of A and B should it produce respectively?

CODE:

```
[3, 2],
b = [5, 12]
x0_bounds = (0, None)
x1_bounds = (0, None)
res = linprog(
   A_ub=A,
   b_ub=b,
   bounds=[x0_bounds, x1_bounds],
   method='highs'
   A_opt, B_opt = res.x
   A opt_int = int(A_opt)
    A_opt, b_opt =
    A_opt_int = int(A_opt)
    B opt int = int(B opt)
    print(f"Optimal units to produce: A = {A_opt_int}, B = {B_opt_int}")
    print(f"Maximum profit: Rs {max_profit}")
    print("Optimization failed:", res.message)
OUTPUT:
Optimal units to produce: A = 2, B = 3
Maximum profit: Rs 27
Task Description #4 – Gradient Descent Optimization
 Task: Write python code to find value of x at which the function
f(x)=2X^3+4x+5 will be minimum
 CODE:
```

```
def f(x):
    return 2 * x**3 + 4 * x + 5

# To find the minimum, we find the critical points by setting f'(x) = 0
# f'(x) = 6x^2 + 4
# 6x^2 + 4 = 0 -> x^2 = -4/6 -> x^2 = -2/3

# Since x^2 cannot be negative for real values,
# the function has no real critical points: it is monotonic.
# Since the leading coefficient in x^3 is positive, function decreases to -infinity as x goes to -infinity
# So f(x) has no finite minimum for real x; it decreases without bound for x->-infinity.

print("f(x) = 2x^3 + 4x + 5 has no finite minimum for real x. It decreases without bound as x -> -infinity."

OUTPUT:

PS C:\Users\Detx\SHA\UNEUFIVe\Uesktop\AIAC\Lab-12> & C:\Users\Detx\SHA\App\Data/Local/Microsoft/WindowsApf(x) = 2x^3 + 4x + 5 has no finite minimum for real x. It decreases without bound as x -> -infinity.
```