<u>Cátedra de Geoquímica – Trabajo Práctico Nº5</u> <u>Obtención de fórmulas minerales de porcentajes en óxidos o elementos</u>

Se pueden presentar diferentes casos según de qué tipo de mineral se trate, a saber:

Caso 1: Análisis expresado en porcentaje de elementos

- A- Calcular la relación atómica de cada elemento, catiónico y aniónico, dividiendo el porcentaje del mismo por su peso atómico.
- **B-** Sobre la base de los radios iónicos de los cationes **sumar las relaciones atómicas obtenidas en A**, para aquellos que pueden **sustituirse diadócicamente** para formar soluciones sólidas.
- C- Expresar la fórmula relacionando los cationes con los aniones.
- D- Discriminación del paréntesis de la sumatoria de las relaciones catiónicas.

Ejemplo 1:

<u>Análisis</u>	A- Relación atómica	B- <u>Sumatoria de cationes</u>
Fe: 18,25%	18,25 / 55,85 = 0,327	Σ (Fe ⁺² + Mn ⁺² + Cd ⁺² + Zn ⁺²)
Mn: 2,66%	2,66 / 54,90 = 0,048	Σ_{cat} = 0,327 + 0,48 + 0,003 + 0,684
Cd: 0,28%	0,28 / 112,4 = 0,003	$\Sigma_{\rm cat}$ = 1,062
Zn: 44,66%	44,66 / 65,40 = 0,684	
S: 33,57%	33,57 / 32,00 = 1,049	

C- Relación catión / anión

<u>Fórmula</u>: (Fe, Mn, Cd, Zn) S

D- Discriminación del paréntesis:

Fe = 0.327 / 1.062 = 0.31 Mn = 0.048 / 1.062 = 0.05

 $Cd = 0.003 / 1.062 \cong 0.003$ Zn = 0.684 / 1.062 = 0.64

<u>Fórmula discriminada</u>: (Fe_{0,31}; Mn_{0,05}; Cd_{0,003}; Zn_{0,64})S

<u>Cátedra de Geoquímica – Trabajo Práctico Nº5</u> Obtención de fórmulas minerales de porcentajes en óxidos o elementos

Caso 2: Análisis expresado en porcentaje de óxidos

- A- Calcular la relación molecular de cada óxido, dividiendo su porcentaje por el peso molecular del mismo.
- **B-** Calcular la **relación atómica de cada elemento**. Para el **oxígeno** se deberán **sumar los resultados parciales**.
- **C- Agrupar los elementos diadócicos**, por ejemplo: Mg⁺²-Fe⁺²; Al⁺³-Fe⁺³; etc. Aquí se deberá **aplicar criterio de acuerdo al número de coordinación** con que actúen (recordar el caso del Al visto en el TP Nº5).
- D- Dividir cada relación atómica obtenida en C por el M.C.D.
- E- Expresar la fórmula, aplicando criterio, reordenar los elementos.

El H puede aparecer como H₂O o como OH⁻.

Ejemplo 1:

	<u>Análisis</u>	A- Relación molecular	B- Relación atómica		
Diád.[$Al_2O_3 = 66,27\%$	66,27/102,0 = 0,63	$AI^{+3} = 2 \times 0,63 = 1,26$		
	$Fe_2O_3 = 4,07\%$	4,07/159,6 = 0,03	$Fe^{+3} = 2 \times 0.03 = 0.06$		
Diád.[•	19,94/ 40,0 = 0,50	$Mg^{+2} = 1 \times 0,50 = 0,50$		
		11,30/71,8 = 0,16	$Fe^{++} = 1 \times 0,16 = 0,16$		
$\Sigma \mathbf{O}^{=} = (0.63 \times 3) + (0.03 \times 3) + 0.5 + 0.16 = 2.64$					
$C-[AI^{+3} + Fe^{+3}] = 1,26 + 0,06 = 1,32$					
$[Mg^{+2} + Fe^{+2}] = 0.50 + 0.16 = 0.66 = M.C.D.$					
$O^{=} = 2,64$					
D-(Al⁺³ + Fe⁺³) = 1,32/0,66 = 2 (Mg ⁺² + Fe ⁺²) = 0,66/0,66 = 1 $O^{=}$ = 2,64/0,66 = 4					
Fórmula: (Mg,Fe)(Al,Fe) ₂ O ₄ espinela					

Todavía se pueden **discriminar las relaciones diadócicas** de los paréntesis, por ejemplo:

$$Al^{+3} = 1,26/1,32 = 0,95$$
; $Fe^{+3} = 0,06/1,32 = 0,05$; $Mg^{+2} = 0,50/0,66 = 0,76$; $Fe^{+2} = 0,16/0,66 = 0,24$

Fórmula con la discriminación de los contenidos de los elementos diádocos:

 $(Mg_{0,76}Fe_{0,24})(Al_{0,95}Fe_{0,05})_2O_4$

<u>Cátedra de Geoquímica – Trabajo Práctico Nº5</u> Obtención de fórmulas minerales de porcentajes en óxidos o elementos

Ejemplo 2:

<u>Análisis</u>	A-Relación molecular	B-Relación atómica		
$SiO_2 = 57,41\%$	57,41/60,09 = 0,96	$Si^{+4} = 0.96 \times 1 = 0.96$		
$Al_2O_3 = 16,43\%$	16,43/102,00 = 0,16	$AI^{+3} = 0.16 \times 2 = 0.32$		
CaO = 8,93%	8,93/56,00 = 0,16	$Ca^{+2} = 0.16 \times 1 = 0.16$		
$H_2O = 17,23\%$	17,23/18,00 = 0,96	$\mathbf{H}^{+} = 0.96 \times 2 = 1.92$		
Ta: (0.00 0) (0.10 0) 0.10 0.00 0.50				

$$\Sigma O^{=} = (0.96 \times 2) + (0.16 \times 3) + 0.16 + 0.96 = 3.52$$

C- El Al⁺³, en determinadas condiciones, puede ser díádoco del Si⁺⁴, pero como no siempre lo es y además muchas veces en una misma fórmula puede ocupar posiciones tetraédricas y octaédricas, no se considera esta diadocia sino que cada catión se calcula por separado y luego se ubican en la fórmula, aplicando criterio, según corresponda.

D-El $Ca^{+2} = 0,16$ será el **M.C.D.**

$$Si^{+4} \ 0 \ 0,96/0,16 = 6$$
 $AI^{+3} = 0,32/0,16 = 2$ $Ca^{+2} = 0,16/0,16 = 1$ $H^{+1} = 1,92/0,16 = 12$ $O^{-2} = 3,52/0,16 = 22$

Armado de la fórmula: CaSi₆Al₂H₁₂O₂₂

 $Ca(Si_6AI_2O_{16})$. $6H_2O$

Fórmula: Ca(AlSi₃O₈)₂ . 6H₂O Ceolita cálcica