COMP 2711H Discrete Mathematical Tools for Computer Science Solutions to Tutorial Problems: Logic and Proofs

- Q1. (a) $r \wedge \neg q$
 - (b) $p \wedge q \wedge r$
 - (c) $r \to p$
 - (d) $p \wedge \neg q \wedge r$
 - (e) $(p \wedge q) \rightarrow r$
 - (f) $(p \lor q) \leftrightarrow r$
- Q2. The proof using truth table is omitted here. The proof without using truth table is the following.

$$\begin{array}{l} p \leftrightarrow q \\ \equiv (p \rightarrow q) \wedge (q \rightarrow p) \\ \equiv (\neg p \vee q) \wedge (\neg q \vee p) \\ \equiv ((\neg p \vee q) \wedge (\neg q \vee p) \\ \equiv ((\neg p \vee q) \wedge \neg q) \vee ((\neg p \vee q) \wedge p) \\ \equiv (\neg p \wedge \neg q) \vee (q \wedge \neg q) \vee (\neg p \wedge p) \vee (p \wedge q) \\ \equiv (\neg p \wedge \neg q) \vee F \vee F \vee (p \wedge q) \\ \equiv (\neg p \wedge \neg q) \vee (p \wedge q) \end{array} \qquad \begin{array}{l} \text{(Distributive laws)} \\ \equiv (\neg p \wedge \neg q) \vee F \vee F \vee (p \wedge q) \\ \equiv (\neg p \wedge \neg q) \vee (p \wedge q) \end{array} \qquad \begin{array}{l} \text{(Identity laws)} \\ \end{array}$$

- Q3. To prove that $\exists x \forall y P(x,y) \rightarrow \forall y \exists x P(x,y)$ is a tautology, it suffices to show that whenever $\exists x \forall y P(x,y)$ is true, $\forall y \exists x P(x,y)$ is also true. If $\exists x \forall y P(x,y)$ is true, then there is some x, namely x_0 , such that for all y, $P(x_0,y)$ is true. Therefore, for all y, x_0 makes $P(x_0,y)$ true, which implies that $\forall y \exists x P(x,y)$ is true.
- Q4. Let the domain consist of all people in the world.

$$\forall x \exists y \exists z, [(y \neq z) \land (\forall w, (w = y) \lor (w = z) \leftrightarrow P(w, x))].$$

- Q5. For all $i \in \mathbb{Z}$, i can be written as i = 5q + r for some $q \in \mathbb{Z}$ and some $r \in \{0, 1, 2, 3, 4\}$. If i is not divisible by 5, r cannot be 0. There are four cases remaining.
 - case 1: i = 5q + 1. Then we have $i^2 = 25q^2 + 10q + 1$. Then divide i^2 by 5, the remainder is 1.
 - case 2: i = 5q + 2. Then we have $i^2 = 25q^2 + 20q + 4$. Then divide i^2 by 5, the remainder is 4.
 - case 3: i = 5q + 3. Then we have $i^2 = 25q^2 + 30q + 9$. Then divide i^2 by 5, the remainder is 4.
 - case 4: i = 5q + 4. Then we have $i^2 = 25q^2 + 40q + 16$. Then divide i^2 by 5, the remainder is 1.

In conclusion, if i is not divisible by 5, then dividing i^2 by 5 leaves a remainder of 1 or 4.

Q6. Suppose, for the sake of contradiction, that $\sqrt{2} + \sqrt{3}$ is rational. Then $\sqrt{2} + \sqrt{3} = \frac{p}{q}$ for some integer p and q. Now let's consider $(\sqrt{2} + \sqrt{3})^2$. We have that

$$\frac{p^2}{q^2} = (\sqrt{2} + \sqrt{3})^2$$
$$= 5 + 2\sqrt{6},$$

and consequently, we have that

$$\sqrt{6} = \frac{p^2 - 5q^2}{2q^2},$$

which implies that $\sqrt{6}$ is rational.

Next, we will prove that $\sqrt{6}$ is not rational, which leads to a contradiction. Suppose that $\sqrt{6}$ is rational. Then $\sqrt{6} = \frac{m}{n}$ for some integer m and n that are co-prime. Then we have that

$$m^2 = 6n^2$$

Consequently, m must be a multiple of 6, i.e., m = 6k for some integer k. Replacing m with 6k, we get

$$n^2 = 6k^2.$$

So n must be a multiple of 6. Since m and n have a common factor 6, they are not co-prime. This is a contradiction, and it completes the proof.

Q7. Suppose, for the sake of contradiction, that there is some rational solution $\frac{p}{q}$ where p and q are two co-prime integers. Then we have that

$$\frac{p^3}{q^3} + \frac{p}{q} + 1 = 0,$$

or, equivalently,

$$p^3 + pq^2 + q^3 = 0. (*)$$

Next we will show that no co-prime integers p and q will make equation (*) hold, which leads to a contradiction. Since p and q are co-prime, there are three cases.

- (i) p is odd, and q is odd. Then we have that p^3 , pq^2 , and q^3 are all odd. As a result $p^3 + pq^2 + q^3$ is also odd and cannot be 0.
- (ii) p is odd, and q is even. Then we have that p^3 is odd, pq^2 is even, and q^3 is even. Again, $p^3 + pq^2 + q^3$ is odd and cannot be 0.
- (iii) p is even, and q is odd. Similar to that in (ii), we can show $p^3 + pq^2 + q^3$ is odd and cannot be 0.
- Q8. Let p be one of these six people. One of the following two cases must hold for the remaining five people.

2

- (i) At least three of them have shaken hands with p. Now consider these three people. If any two of them have shaken hands, then these two people, together with p, form a triangle. Otherwise, no pair within the three people have shaken hands, they form a triangle.
- (ii) At least three of them haven't shaken hands with p. The proof is similar to that in (i).