Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

https://arxiv.org/abs/2107.07651

O. Introduction

- 비전과 언어 멀티모달 표현 학습 문제 다룸
- 기존엔 두 모달리티를 단순히 결합(fuse)하는 데 집중함
- 본 논문은 먼저 각 모달리티 표현을 의미적으로 정렬(align)함
- 정렬 후 결합하는 새로운 학습 방식 제안함
- momentum distillation 기법 도입해 학습 안정성과 효율 높임
- 다양한 멀티모달 태스크에서 성능 개선 확인함

1. Overview

- 비전과 언어 표현 학습에서 단순 결합보다 의미적 정렬이 중요함
- 논문은 두 단계로 학습 프로세스 구성함
- 첫째, Align Before Fuse: 모달리티별 표현을 먼저 정렬함
- 둘째, Momentum Distillation: momentum 기반 지식 증류로 학습 안정화함
- 이 방식을 통해 멀티모달 표현 품질을 크게 높임
- 이미지-텍스트 검색, VQA 등 다양한 태스크에서 우수한 성능 달성함

2. Challenges

- 비전과 언어 표현 공간이 달라서 바로 결합하면 잡음이 많아짐
- 멀티모달 모델 학습이 불안정해지는 문제 있음
- 모달리티 간 의미적 불일치 현상이 자주 발생함
- 기존 퓨전 방법은 정렬 과정 없이 결합하는 경우가 많음
- 이런 방식은 표현 일관성 유지에 한계가 있음
- 효과적인 지식 증류 방법도 찾기 어려운 과제임

3. Method

Figure 1: **Illustration of ALBEF.** It consists of an image encoder, a text encoder, and a multimodal encoder. We propose an image-text contrastive loss to align the unimodal representations of an image-text pair before fusion. An image-text matching loss (using in-batch hard negatives mined through contrastive similarity) and a masked-language-modeling loss are applied to learn multimodal interactions between image and text. In order to improve learning with noisy data, we generate pseudo-targets using the momentum model (a moving-average version of the base model) as additional supervision during training.

- 각 모달리티에서 특징 추출 후 별도 네트워크로 표현 생성함
- 모달리티별 표현을 의미적으로 정렬하는 모듈 도입함
- 정렬 과정을 통해 두 모달리티 간 의미 간극을 좁힘
- momentum 기반 teacher 모델을 만들어 student 모델을 지도함
- momentum distillation으로 학습 안정성 높임
- 정렬과 결합을 단계별로 분리해 잡음 감소 효과 봄
- 이 과정에서 의미적 통일성과 표현 품질 크게 개선됨

4. Experiments

- MSCOCO, Flickr30k, Visual Genome 데이터셋 사용함
- 이미지-텍스트 검색, VQA, 이미지 캡셔닝 태스크로 평가함
- 기존 멀티모달 학습 방법들과 성능 비교함
- 동일 backbone 기반으로 ablation study 진행함
- 각 구성 요소별 효과를 자세히 분석함
- 학습 안정성과 표현력 향상 여부 집중 점검함

5. Results

#Pre-train Images	Training tasks	TR (flick	IR r test)	SNLI-VE (test)	NLVR ² (test-P)	VQA (test-dev)
	MLM + ITM	93.96	88.55	77.06	77.51	71.40
	ITC + MLM + ITM	96.55	91.69	79.15	79.88	73.29
4M	$ITC + MLM + ITM_{hard}$	97.01	92.16	79.77	80.35	73.81
4101	$ITC_{MoD} + MLM + ITM_{hard}$	97.33	92.43	79.99	80.34	74.06
	$Full (ITC_{MoD} + MLM_{MoD} + ITM_{hard})$	97.47	92.58	80.12	80.44	74.42
	ALBEF (Full + MoD _{Downstream})	97.83	92.65	80.30	80.50	74.54
14M	ALBEF	98.70	94.07	80.91	83.14	75.84

Table 1: Evaluation of the proposed methods on four downstream V+L tasks. For text-retrieval (TR) and image-retrieval (IR), we report the average of R@1, R@5 and R@10. ITC: image-text contrastive learning. MLM: masked language modeling. ITM $_{hard}$: image-text matching with contrastive hard negative mining. MoD: momentum distillation. MoD $_{Downstream}$: momentum distillation on downstream tasks.

Method	# Pre-train	Flickr30K (1K test set)				MSCOCO (5K test set)							
Method	Images	TR		IR		TR			IR				
		R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10
UNITER	4M	87.3	98.0	99.2	75.6	94.1	96.8	65.7	88.6	93.8	52.9	79.9	88.0
VILLA	4M	87.9	97.5	98.8	76.3	94.2	96.8	-	-	-	-	-	-
OSCAR	4M	-	-	-	-	-	-	70.0	91.1	95.5	54.0	80.8	88.5
ALIGN	1.2B	95.3	99.8	100.0	84.9	97.4	98.6	77.0	93.5	96.9	59.9	83.3	89.8
ALBEF	4M	94.3	99.4	99.8	82.8	96.7	98.4	73.1	91.4	96.0	56.8	81.5	89.2
ALBEF	14M	95.9	99.8	100.0	85.6	97.5	98.9	77.6	94.3	97.2	60.7	84.3	90.5

Table 2: Fine-tuned image-text retrieval results on Flickr30K and COCO datasets.

Method	# Pre-train	Flickr30K (1K test set)						
Method	Images	l	TR		IR			
10		R@1	R@5	R@10	R@1	R@5	R@10	
UNITER [2]	4M	83.6	95.7	97.7	68.7	89.2	93.9	
CLIP [6]	400M	88.0	98.7	99.4	68.7	90.6	95.2	
ALIGN [7]	1.2B	88.6	98.7	99.7	75.7	93.8	96.8	
ALBEF	4M	90.5	98.8	99.7	76.8	93.7	96.7	
ALBEF	14M	94.1	99.5	99.7	82.8	96.3	98.1	

Table 3: Zero-shot image-text retrieval results on Flickr30K.

Method	V	QA	NL	VR^2	SNLI-VE	
Method	test-dev	test-std	dev	test-P	val	test
VisualBERT [13]	70.80	71.00	67.40	67.00	-5	-
VL-BERT [10]	71.16	-	-	-		100
LXMERT [1]	72.42	72.54	74.90	74.50	-	-
12-in-1 [12]	73.15	-	-	78.87	-11	76.95
UNITER [2]	72.70	72.91	77.18	77.85	78.59	78.28
VL-BART/T5 [54]	_	71.3	-	73.6	-	-
ViLT [21]	70.94	-	75.24	76.21	-	-
OSCAR [3]	73.16	73.44	78.07	78.36	-	-
VILLA [8]	73.59	73.67	78.39	79.30	79.47	79.03
ALBEF (4M)	74.54	74.70	80.24	80.50	80.14	80.30
ALBEF (14M)	75.84	76.04	82.55	83.14	80.80	80.91

Table 4: Comparison with state-of-the-art methods on downstream vision-language tasks.

Method	Val	TestA	TestB	
ARN [57]	32.78	34.35	32.13	
CCL [58]	34.29	36.91	33.56	
$ALBEF_{itc}$	51.58	60.09	40.19	
$ALBEF_{\mathrm{itm}}$	58.46	65.89	46.25	

ALBEF_{itm} | **58.46 65.89 46.25**Table 5: Weakly-supervised visual grounding on RefCOCO+ [56] dataset.

Figure 4: Grad-CAM visualization on the cross-attention maps in the 3rd layer of the multimodal encoder.

Figure 5: Grad-CAM visualizations on the cross-attention maps of the multimodal encoder for the VQA model.

"a little girl holding a kitten next to a blue fence"

Figure 6: Grad-CAM visualizations on the cross-attention maps corresponding to individual words.

- Align Before Fuse가 단순 fusion보다 성능 더 좋음
- Momentum Distillation 도입 시 학습이 안정적임
- 표현의 일반화 능력도 함께 개선됨
- 이미지-텍스트 검색, VQA 등에서 SOTA 수준 성능 달성함

- Ablation 결과 각 구성 요소가 성능 향상에 기여함 확인됨
- 실험 통해 본 방법의 효과와 우수성 입증됨

6. Insight

- 멀티모달 학습에서 의미적 정렬이 결합보다 더 중요함
- momentum 기반 지식 증류가 학습 안정성에 큰 도움 됨
- 'align before fuse' 패러다임이 멀티모달 AI 발전에 기여 가능함
- 표현의 의미 일관성과 안정성에 집중한 학습 전략 필요함
- 본 연구는 향후 다양한 멀티모달 응용에 확장 적용 가능성 보여줌
- 하지만 네트워크 구조와 추가 모듈로 계산 비용이 늘어남
- momentum distillation 최적화가 까다로워 실무 적용에 어려움 있을 수 있음
- 데이터셋 편향 문제나 일반화에 대한 언급이 다소 부족함
- 최신 멀티모달 방법과 비교가 제한적임
- 실시간 처리나 경량화 측면에서는 추가 연구가 필요함