

O Equilíbrio Liquido/ Vapor

Professor: Ricardo Pires

OBJETIVOS

- Entender a natureza do equilíbrio.
- Entender/Articular o uso da Lei de Raoult e Lei de Raoult Modificada e da Lei de Henry.
- Apresentar e definir simples formulações para calcular pressões, temperaturas e composições das fases para problemas de equilíbrio liquido/vapor.

Propriedades da Fase liquida a partir de dados de ELV

Para um sistema fechado em que tem-se uma mistura em ELV.

T e P são uniformes em todo o vaso (sistema).

Podem ser medidas por instrumentos apropriados.

REGRA DAS FASES E TEOREMA DE DUHEM

Teorema de Duhem: Para qualquer sistema fechado formado por espécies químicas com quantidades de massa especificadas, o estado de equilíbrio é completamente definido quando são fixadas quaisquer 2 variáveis independentes.

REGRA DAS FASES
$$F = 2 - \pi + N$$

Para o ELV:

$$\pi=2$$

 $F = N$
Se $N = 2 \rightarrow F = 2$

Dita quantas das propriedades indicadas pelo teorema de Duhem devem ser intensivas.

Diagrama PTxy para o ELV.

(a) Pxy diagram for three temperatures.
 (b) Txy diagram for three pressures.
 Saturated liquid (bubble line); - - Saturated vapor (dew line)

PT diagram for several compositions.

- Saturated liquid (bubble line)
- - Saturated vapor (dew line)

Condensação retrograda

Diagrama PT para o sistema Etano/n-heptano.

Figure 10.8: Pxy diagrams at constant T: (a) tetrahydrofuran(1)/carbon tetrachloride(2) at 30°C; (b) chloroform(1)/tetrahydrofuran(2) at 30°C; (c) furan(1)/carbon tetrachloride(2) at 30°C; (d) ethanol(1)/toluene(2) at 65°C. Dashed lines: Px relation for Raoult's law.

Azeotropia

São os diagramas de maior aplicação.

Figure 10.9: txy diagrams at 1(atm): (a) tetrahydrofuran(1)/carbon tetrachloride(2); (b) chloroform(1)/tetrahydrofuran(2); (c) furan(1)/carbon tetrachloride(2); (d) ethanol(1)/ toluene(2).

A Lei de Raoult

Em sistemas em ELV, a pressões baixas o suficiente, pode-se aplicar a LEI DE RAOULT e considerar:

A fase vapor um GI;

A fase liquida uma solução ideal.

$$y_i P = x_i P_i^{Sat} \quad (1)$$

Enunciado matemático da Lei de Raoult.

Cálculos de pontos de bolha e orvalho com a Lei de Raoult

BOL P: Calculate $\{y_i\}$ and P, given $\{x_i\}$ and T

ORV P: Calculate $\{x_i\}$ and P, given $\{y_i\}$ and T

BOL T: Calculate $\{y_i\}$ and T, given $\{x_i\}$ and P

ORV T: Calculate $\{x_i\}$ and T, given $\{y_i\}$ and **P**

Usada nos cálculos dos pontos de orvalho, em que a composição da fase liquida é desconhecida

$$P = \frac{1}{\sum_{i} y_i / P_i^{\text{sat}}} \quad (2)$$

Usada nos cálculos dos pontos de bolha, em que a composição da fase vapor é desconhecida

$$P = \sum_{i} x_i P_i^{\text{sat}} (3)$$

Exemplo 10.1: Fazer um gráfico Pxy para o sistema acetonitrila(1)/nitrometano(2). Suponha que o sistema seja descrito pela Lei de Raoult.

$$\ln P_1^{Sat} / KPa = 14,2724 - \frac{2945,47}{t/^{\circ}C + 224,0} \qquad \ln P_2^{Sat} / KPa = 14,2043 - \frac{2972,64}{t/^{\circ}C + 209,0}$$

Solução:

T=75°C				
x1	x2	Р	y1	y2
0	1	41,9827	0	1
0,1	0,9	46,10512	0,180472	0,819528
0,2	0,8	50,22754	0,33132	0,66868
0,3	0,7	54,34995	0,459284	0,540716
0,4	0,6	58,47237	0,569205	0,430795
0,5	0,5	62,59478	0,664647	0,335353
0,6	0,4	66,7172	0,748295	0,251705
0,7	0,3	70,83961	0,822207	0,177793
0,8	0,2	74,96203	0,887989	0,112011
0,9	0,1	79,08444	0,946914	0,053086
1	0	83,20686	1	0

Algoritmos para cálculos de pontos de bolha e orvalho com a Lei de Raoult

Nos casos em que T está explicita, os cálculos são feitos facilmente.

BOL P

- 1) Ler x_i e T
- 2) Calcular as pressões de saturação dos compostos puros (P_i^{Sat}) usando Antoine.
- 3) Aplicar a Lei de Raoult e calcular y_i para cada um dos componentes através da Eq (3):

$$P = \sum_{i} x_{i} P_{i}^{\text{sat}}$$

* Lembrar que $\Sigma x_i=1$ e $\Sigma y_i=1$

ORV P

- 1) Ler y_i e T
- 2) Calcular as pressões de saturação dos compostos puros (P_i^{Sat}) usando Antoine.
- 3) Aplicar a Lei de Raoult e calcular P para o sistema através da Eq (2):

$$P = \frac{1}{\sum_{i} y_i / P_i^{\text{sat}}}$$

* Lembrar que $\Sigma x_i=1$ e $\Sigma y_i=1$

Nos casos em que T <u>não</u> está explicito os cálculos são feitos através do seguinte artificio: <u>Embora as pressões de vapor, individualmente, dependam fortemente da temperatura, razões entre pressões de vapor não o são.</u>

Elege-se um componente j e multiplicam-se e dividem-se os lados direitos das Eqs (2) e (3) (fora e dentro do somatório) pela pressão de saturação do componente j.

$$P_j^{\text{sat}} = P \sum_i \left(\frac{y_i}{P_i^{\text{sat}} P_j^{\text{sat}}} \right) \tag{4}$$

$$P_j^{\text{sat}} = \frac{P}{\sum_i (x_i)(P_i^{\text{sat}}/P_j^{\text{sat}})}$$
(5)

BOL T

- 2) Calcular as temperaturas de saturação dos compostos puros (T_i^{Sat}) pressão P usando Antoine: $T_i^{Sat} = \frac{B_i}{A_i \ln P} C_i$

$$T_i^{\text{ sat}} = \frac{B_i}{A_i - \ln P} - C_i$$

- 3) Estimar uma T⁰ para o sistema por meio da formula: $T = \sum x_i T_i^{\text{sat}}$
- 4) Calcular as pressões de saturação dos compostos puros (PiSat) usando Antoine e a T estimada no passo 3.

5) Usar as P_i^{Sat} estimadas no passo 4 para calcular P_i^{Sat} por meio da formula:

$$P_j^{\text{sat}} = \frac{P}{\sum_i (x_i)(P_i^{\text{sat}}/P_j^{\text{sat}})}$$

6) Usar a formula:
$$T = \frac{B_j}{A_j - \ln P_j^{\text{sat}}} - C_j$$

Para calcular a verdadeira T através de P_jSat.

7) Recalcular as pressões de saturação dos compostos puros (P_i^{Sat}) usando Antoine e a verdadeira T calculada no passo 6.

8) Usar as P_i Sat calculadas no passo 7 para calcular as y_i por meio da lei de Raoult:

ORV T

- 1) Ler y_i e P
- 2) Calcular as temperaturas de saturação dos compostos puros (T_iSat) usando Antoine:

$$T_i^{\text{ sat}} = \frac{B_i}{A_i - \ln P} - C_i$$

- 3) Estimar uma T⁰ para o sistema por meio da formula: $T = \sum y_i T_i^{\text{sat}}$
- 4) Calcular as pressões de saturação dos compostos puros (P_iSat) usando Antoine e a T estimada no passo 3.

5) Identificar a espécie j e usar as P_i^{Sat} estimadas no passo 4 para calcular

Identificar a especie j e usar as
$$P_i^{\text{Sat}}$$
 estimadas no passo 4
$$P_j^{\text{Sat}} \text{ por meio da formu}^{1}$$

$$P_j^{\text{sat}} = P \sum_i y_i \left(\frac{P_j^{\text{sat}}}{P_i^{\text{sat}}}\right)$$

6) Usar a formula:
$$T = \frac{B_j}{A_j - \ln P_j^{\text{sat}}} - C_j$$

Para calcular a verdadeira T através de P_jSat.

7) Recalcular as pressões de saturação dos compostos puros (P_i^{Sat}) usando Antoine e a verdadeira T calculada no passo 6.

8) Usar as P_i^{Sat} calculadas no passo 7 para calcular as x_i por meio da lei de Raoult.

Pontos de bolha e orvalho com a LEI DE RAOULT MODIFICADA

Uma forma mais realista da LEI DE RAOULT é obtida quando são admitidas as não idealidades na fase liquida por meio da introdução do coeficiente de atividade.

$$y_i P = x_i \gamma_i P_i^{\text{sat}} \qquad (i = 1, 2, \dots, N)$$
 (6)

Assim, as Eqs (2) e (3) passam a ser:

$$P = \sum x_i \gamma_i P_i^{\text{sat}} (7) \qquad P = \frac{1}{\sum y_i / \gamma_i P_i^{\text{sat}}} (8)$$

Mudam também as Eqs para P^{Sat} do componente j (Eqs (4) e (5)). Estas ficam da seguinte forma:

$$P_j^{\text{sat}} = \frac{P}{\sum_i (x_i \gamma_i) (P_i^{\text{sat}} / P_j^{\text{sat}})}$$
(9)

$$P_j^{\text{sat}} = P \sum_i \frac{y_i}{\gamma_i} \left(\frac{P_j^{\text{sat}}}{P_i^{\text{sat}}} \right)$$
 (10)

Algoritmo do cálculo BOL P com a LEI DE RAOULT MODIFICADA

- 1) Ler x_i e T
- 2) Com a T, calcular as pressões de saturação dos compostos puros (P_i^{Sat}) usando Antoine e os coeficientes de atividade (γ_i) , usando x_i .
- 3) Calcular *P* através da Eq (7):

$$P = \sum x_i \gamma_i P_i^{\text{sat}}$$

4) Calcular y_i por meio da lei de raoult modificada: $y_i P = x_i \gamma_i P_i^{\text{sat}}$

ORV P com a LEI DE RAOULT MODIFICADA: Procedimento iterativo

- 1) Ler y_i e T
- 2) Com a T, calcular as pressões de saturação dos compostos puros (P_i^{Sat}) usando Antoine.
- 3) Fazer os γ_i =1 e calcular P para o sistema através da Eq (8):

$$P = \frac{1}{\sum y_i / \gamma_i P_i^{\text{sat}}}$$

- 4) Calcular x_i por meio da lei de raoult modificada: $y_i P = x_i \gamma_i P_i^{\text{sat}}$
- 5) Determinar, novamente, os γ_i . Recalcular P e obter $\delta P = P^1 P^0$.
- 6) Se o valor de δP estiver "grande", volta-se no passo 4 com os novos valores de γ_i .
- 7) Quando δP obedecer à tolerância estabelecida, calcula-se a P final.
- 8) Com P e γ_i atuais calcular x_i .

BOL T com a LEI DE RAOULT MODIFICADA: Procedimento iterativo

- 1) Ler x_i e P
- 2) Calcular as temperaturas de saturação dos compostos puros (T_i^{Sat}) na pressão P usando Antoine: $T_i^{Sat} = \frac{B_i}{A_i \ln P} C_i$
- 3) Estimar uma T⁰ inicial por meio da formula: $T = \sum x_i T_i^{\text{sat}}$
- 4) Estimar P_iSat por meio de Antoine e da T calculada atual.
- 5) Com T e x_i , calcular os γ_i .
- 6) Identificar j e calcular (P_j^{Sat}) usando as P_i^{Sat} calculadas no passo 4 e a formula:

$$P_j^{\text{sat}} = \frac{P}{\sum_i (x_i)(P_i^{\text{sat}}/P_j^{\text{sat}})}$$

5) Com P_j^{Sat} , recalcular T^1 com a equação: $T = \frac{B_j}{A_j - \ln P_j^{sat}} - C_j$

- 6) Calcular $\delta T = T^1$ T^0 e verificar se δT está dentro da tolerância estabelecida. Se δT estiver dentro da tolerância passa-se para a etapa 7 senão temos que voltar na etapa 4.
- rância apa 7

- 7) Com os valores atuais de T e x_i calcular os γ_i , P_i^{Sat} .
- 8) Com os valores de γ_i , $P_i^{\,Sat}$ e x_i , calcular y_i com a LEI DE RAOULT MODIFICADA:

$$y_i P = x_i \gamma_i P_i^{\text{sat}}$$

ORV T com a LEI DE RAOULT MDIFICADA: Procedimento iterativo

- 1) Ler y_i e P
- 2) Calcular as temperaturas de saturação dos compostos puros (T_i^{Sat}) usando Antoine:

$$T_i^{\text{ sat}} = \frac{B_i}{A_i - \ln P} - C_i$$

- 3) Estimar uma T^0 para o sistema por meio da formula: $T = \sum y_i T_i^{\text{sat}}$ Fazer $\gamma i = 1$.
- 4) Calcular as pressões de saturação dos compostos puros (P_i^{Sat}) e todas as variáveis dependentes de T⁰ usando a T⁰ estimada no passo 3.
- 5) Calcular x_i com a formula: $y_i P = x_i \gamma_i P_i^{\text{sat}}$
- 6) Calcular os valores de γ_i pelo modelo de G^E fornecido.

$$P_j^{\text{sat}} = P \sum_{i} \frac{y_i}{\gamma_i} \left(\frac{P_j^{\text{sat}}}{P_i^{\text{sat}}} \right)$$

8) Calcular o $\delta T = T^1$ - T^0 e verificar se δT está dentro da tolerância estabelecida. Se δT estiver dentro da tolerância passa-se para a etapa 9, senão temos que voltar na etapa 4 usando no lugar da T^0 a T^1 para reestimar os valores da etapa 4.

9) Recalcular as P_i^{Sat} e γ_i com a T atual.

O Coeficiente de Partição

$$K_i = \frac{y_i}{x_i}$$

Para a lei de Raoult.

$$K_i = \frac{P_i^{\text{sat}}}{P}$$

Para a lei de Raoult modificada.

$$K_i = \frac{\gamma_i P_i^{\text{sat}}}{P}$$

$$\sum_{i} y_i = 1, \quad y_i = K_i x_i \qquad \sum_{i} K_i x_i = 1$$

$$\sum_{i} x_i = 1 \qquad x_i = y_i / K_i \qquad \sum_{i} \frac{y_i}{K_i} = 1$$

FLASH - Usando a Lei de Raoult

Balanço de massa total (1 mol de alimentação)

$$L+V=1$$

Balanço de massa por componente

$$z_i = x_i L + y_i V$$

Eliminando L destas equações

$$z_i = x_i(1 - V) + y_i V$$

$$x_{i} = y_{i}/K_{i} \qquad y_{i} = K_{i}x_{i}$$

$$y_{i} = \frac{z_{i}K_{i}}{1 + V(K_{i} - 1)} \qquad x_{i} = \frac{z_{i}}{1 + V(K_{i} - 1)}$$

$$\downarrow \qquad \downarrow$$

$$F_{y} = \sum_{i=1}^{N} \frac{z_{i}K_{i}}{1 + V(K_{i} - 1)} = 1$$

$$F_{x} = \sum_{i=1}^{N} \frac{z_{i}}{1 + V(K_{i} - 1)} = 1$$

$$\mathbf{F} = \mathbf{F}_{y} - \mathbf{F}_{x} = \mathbf{0} \longrightarrow F = \sum_{i=1}^{N} \frac{z_{i}(K_{i} - 1)}{1 + V(K_{i} - 1)} = 0$$