SSD1329

Advance Information

128 x 128 OLED Segment / Common Driver with Controller **Equips with 16 Gray Scale Levels and 64 Hard Icon Lines**

This document contains information on a new product. Specifications and information herein are subject to change without notice.

CONTENTS

1	GENERAL DESCRIPTION	6
2	FEATURES	6
3	ORDERING INFORMATION	6
4	BLOCK DIAGRAM	7
5	DIE PAD FLOOR PLAN	8
6	PIN ARRANGEMENT	12
6.	.1 SSD1329U1 PIN ASSIGNMENT	12
7	PIN DESCRIPTIONS	14
8	FUNCTIONAL BLOCK DESCRIPTIONS	
8.	.1 MPU INTERFACE SELECTION	16
	8.1.1 MPU Parallel 6800-series Interface	
	8.1.2 MPU Parallel 8080-series Interface	
(8.1.3 MPU Serial Interface	18
8.2		
8		
8.4		
8.:		
8.6		
8.		
8.8		
	.10 GRAPHIC DISPLAY DATA RAM (GDDRAM)	
9	COMMAND TABLE	
9.	.1 Data Read / Write	33
10	COMMAND DESCRIPTIONS	34
10	0.1 SET COLUMN ADDRESS (15H)	34
	0.2 SET ROW ADDRESS (75H)	
	0.3 SET CONTRAST CURRENT (81H)	
	0.4 SET SECOND PRE-CHARGE SPEED (82H)	
	0.5 SET MASTER ICON CONTROL (90H)	
	0.6 SET ICON CURRENT RANGE (91H)	
	0.7 SET INDIVIDUAL ICON CURRENT (92H)	
	0.9 SET INDIVIDUAL ICON ON / OFF REGISTERS (93H)	
	0.10 SET ICON BLINKING CYCLE (95H)	
	0.11 Set Icon Duty (96h)	
	0.12 SET RE-MAP(A0H)	
	0.13 SET DISPLAY START LINE (A1H)	
	0.14 SET DISPLAY OFFSET (A2H)	
10	0.15 Set Display Mode ($\stackrel{.}{A}$ 4H $\stackrel{.}{\sim}$ A7H)	
	0.16 SET MUX RATIO (A8H)	42
	0.17 SET SLEEP MODE ON/OFF (AEH / AFH)	
	0.18 SET PHASE LENGTH (B1H)	
	0.19 SET FRAME FREQUENCY (B2H)	
	0.20 SET FRONT CLOCK DIVIDER / OSCILLATOR FREQUENCY (B3H)	
10	0.21 SET DEFAULT GRAY SCALE TABLE (B7H)	42

10.2	22 LOOK UP TABLE FOR GRAY SCALE PULSE WIDTH (B8H)	42
10.2		
10.2		43
10.2	25 Set V_{COMH} (BEH)	43
10.2	26 No Operation (E3H)	43
10.2		43
11	MAXIMUM RATINGS	44
12	DC CHARACTERISTICS	45
14	DC CHARACTERISTICS	
13	AC CHARACTERISTICS	47
14	APPLICATION EXAMPLES	51
15	PACKAGE INFORMATION	55
15.1	1 SSD1329Z DIE TRAY INFORMATION	55
15.2		

SSD1329 Rev 1.1 P 3/58 Dec 2005 **Solomon Systech**

TABLES

Table 3-1 : Ordering Information	6
TABLE 5-1: SSD1329Z BUMP DIE PAD COORDINATES	10
TABLE 6-1: SSD1329U1 PIN ASSIGNMENT TABLE	13
TABLE 7-1: PIN DESCRIPTIONS	14
TABLE 7-2: MCU BUS INTERFACE PIN SELECTION	15
TABLE 8-1: CONTROL PINS OF 6800 INTERFACE	16
TABLE 8-2: CONTROL PINS OF 8080 INTERFACE	17
TABLE 8-3: CONTROL PINS OF 8080 INTERFACE (ALTERNATIVE FORM)	17
TABLE 8-4: CONTROL PINS OF SERIAL INTERFACE	
TABLE 8-5: GDDRAM ADDRESS MAP 1	24
TABLE 8-6: GDDRAM ADDRESS MAP 2	24
TABLE 8-7: GDDRAM ADDRESS MAP 3	25
TABLE 8-8: GDDRAM ADDRESS MAP 4	25
TABLE 8-9: GDDRAM ADDRESS MAP 5	26
TABLE 9-1 : COMMAND TABLE	27
TABLE 9-2: READ COMMAND TABLE	33
TABLE 9-3: ADDRESS INCREMENT TABLE (AUTOMATIC)	33
TABLE 11-1 : MAXIMUM RATINGS (VOLTAGE REFERENCED TO $ m V_{SS}$)	
TABLE 12-1: DC CHARACTERISTICS	45
TABLE 13-1: AC CHARACTERISTICS	47
TABLE 13-2: 6800-SERIES MPU PARALLEL INTERFACE TIMING CHARACTERISTICS	48
TABLE 13-3: 8080-SERIES MPU PARALLEL INTERFACE TIMING CHARACTERISTICS	
TABLE 13-4: SERIAL INTERFACE TIMING CHARACTERISTICS	50

 Solomon Systech
 Dec 2005
 P 4/58
 Rev 1.1
 SSD1329

FIGURES

Figure 4-1 : SSD1329 Block Diagram	7
FIGURE 5-1 : SSD1329Z DIE DRAWING	
FIGURE 5-2: SSD1329Z ALIGNMENT MARK DIMENSIONS	9
FIGURE 6-1: SSD1329U1 PIN ASSIGNMENT	. 12
FIGURE 8-1: DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ	16
FIGURE 8-2: DISPLAY DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ	17
FIGURE 8-3: DISPLAY DATA WRITE PROCEDURE IN SPI MODE	18
FIGURE 8-4: SEGMENT AND COMMON DRIVER BLOCK DIAGRAM	19
FIGURE 8-5: SEGMENT AND COMMON DRIVER SIGNAL WAVEFORM	20
FIGURE 8-6: GRAY SCALE CONTROL BY PWM IN SEGMENT	21
FIGURE 8-7: OSCILLATOR CIRCUIT AND DISPLAY TIME GENERATOR	22
FIGURE 10-1: EXAMPLE OF COLUMN AND ROW ADDRESS POINTER MOVEMENT	34
FIGURE 10-2: EXAMPLE OF SEGMENT CURRENT VERSUS CONTRAST SETTING	35
FIGURE 10-3: EFFECT OF SETTING THE SECOND PRE-CHARGE UNDER DIFFERENT SPEEDS	35
FIGURE 10-4: ADDRESS POINTER MOVEMENT OF HORIZONTAL ADDRESS INCREMENT MODE	37
FIGURE 10-5: ADDRESS POINTER MOVEMENT OF VERTICAL ADDRESS INCREMENT MODE	37
FIGURE $10-6$: OUTPUT PIN ASSIGNMENT WHEN COMMAND A 0 H BIT A $[6]=0$	37
FIGURE 10-7: OUTPUT PIN ASSIGNMENT WHEN COMMAND A0H BIT A[6]=1	38
FIGURE 10-8: EXAMPLE OF SET DISPLAY START LINE WITH NO REMAPPING	39
FIGURE 10-9: EXAMPLE OF SET DISPLAY OFFSET WITH NO REMAPPING	40
FIGURE 10-10: EXAMPLE OF NORMAL DISPLAY	41
FIGURE 10-11 : EXAMPLE OF ENTIRE DISPLAY ON	41
FIGURE 10-12: EXAMPLE OF ENTIRE DISPLAY OFF	41
FIGURE 10-13 : EXAMPLE OF INVERSE DISPLAY	41
FIGURE 10-14: EXAMPLE OF GAMMA CORRECTION BY GRAY SCALE TABLE SETTING	43
FIGURE 13-1: 6800-SERIES MPU PARALLEL INTERFACE CHARACTERISTICS	48
FIGURE 13-2: 8080-SERIES MPU PARALLEL INTERFACE CHARACTERISTICS	49
FIGURE 13-3 : SERIAL INTERFACE CHARACTERISTICS	50
FIGURE 14-1: APPLICATION EXAMPLE FOR SSD1329 8-BIT 6800-PARALLEL INTERFACE MODE	51
FIGURE 14-2: APPLICATION EXAMPLE FOR SSD1329 8-BIT 8080-PARALLEL INTERFACE MODE	52
FIGURE 14-3: APPLICATION EXAMPLE FOR SSD1329 8-BIT SPI-SERIAL INTERFACE MODE	53
FIGURE 14-4: APPLICATION EXAMPLE FOR SSD1329 WHEN HARD ICONS ARE NOT USED	54
FIGURE 15-1 : DIE TRAY INFORMATION	55
FIGURE 15-2: SSD1329U1 DETAIL DIMENSION	56

SSD1329 Rev 1.1 P 5/58 Dec 2005 **Solomon Systech**

1 GENERAL DESCRIPTION

SSD1329 is a single-chip CMOS OLED/PLED driver with controller for 16 gray scale levels organic / polymer light emitting diode dot-matrix graphic display system. SSD1329 consists of 128 segments, 128 commons and 64 hard icons. This IC is designed for Common Cathode type OLED / PLED panel.

SSD1329 displays data directly from its internal 128 x 128 x 4 bits Graphic Data RAM (GDDRAM). Data/Commands are sent from general MCU through the hardware selectable 6800/8000 series compatible Parallel Interface or Serial Peripheral Interface.

2 FEATURES

- Support max. 128 x 128 matrix panel
- Support 64 hard icons, 2 icon rows with 2 pins for each row
- Power supply: $V_{DD} = 2.4 \sim 3.5 \text{V}$

$$V_{CI} = 3.2 \sim 4.2 V$$

 $V_{DDIO} = 1.7V \sim 3.5V$ (must be smaller than or equal to V_{DD})

$$V_{CC} = 9.0V \sim 18.0V$$

- For matrix display:
 - o OLED driving output voltage, 16V maximum
 - o Can output maximum segment source current: 350uA
 - o Common maximum sink current: 40mA
 - o Common R_{on} resistance: 20Ω
- For hard icons:
 - o Segment maximum source current: 127.5uA
 - o 128 steps current control
- DC-DC 2X voltage converter for hard icons
- Embedded 128 x 128 x 4 bit SRAM display buffer
- 256 steps contrast current control
- Internal oscillator
- Programmable frame rate
- 8-bit 6800-series Parallel Interface, 8080-series Parallel Interface and Serial Peripheral Interface.
- Wide range of operating temperature: -40 to 85 °C

3 ORDERING INFORMATION

Table 3-1: Ordering Information

Ordering Part Number	SEG	СОМ	Icon SEG	Icon COM	Package Form	Reference	Remark
SSD1329Z	128	128	64	2	COG	Page 8	Min SEG pad pitch: 43.2 umMin COM pad pitch: 51.8 um
SSD1329U1	128	128	-	-	COF	Page 12, 56	 Punch out COF with stiffener 80 / 68 / SPI interface Output lead pitch: 0.1mm

 Solomon Systech
 Dec 2005
 P 6/58
 Rev 1.1
 SSD1329

4 BLOCK DIAGRAM

Figure 4-1 : SSD1329 Block Diagram

SSD1329 | Rev 1.1 | P 7/58 | Dec 2005 | **Solomon Systech**

5 DIE PAD FLOOR PLAN

Figure 5-1: SSD1329Z Die Drawing

Note

¹+ represents the center of the alignment mark

	X-Axis (um)	Y-Axis (um)
Ŀ	+5300.0	-100.0
4	-5300.0	-100.0

All alignment keys have size 75 um x 75 um

Die Size	13410 um x 1504 um
Die Thickness	$457 \text{ um} \pm 25 \text{ um}$
Min I/O pad pitch	76.2 um
Min SEG pad pitch	43.2 um
Min COM pad pitch	51.8 um
Bump Height	Nominal 15 um

Bump Size

Pad #	X [um]	Y [um]
1, 196, 197, 477	50	52
2-35, 162-195	38	52
36-161	56	44
198-264, 410-476	38	52
265-409	31	64

Pad 1,2,3 ...→

 Solomon Systech
 Dec 2005
 P 8/58
 Rev 1.1
 SSD1329

Figure 5-2: SSD1329Z Alignment Mark Dimensions

SSD1329 Rev 1.1 P 9/58 Dec 2005 **Solomon Systech**

Table 5-1: SSD1329Z Bump Die Pad Coordinates

Pag #	Pad Name	X-AXIS	Y-AXIS	Pag #	Pag Name	X-AXIS	Y-AXIS	Pag #	Pad Name	X-AXIS	Y-AXIS	Pag #	Pad Name	X-AXIS	Y-AXIS
1	DUMMY	-6640.0		81	VLSS	-1333.5		161	VCC	4762.5	-690.0	241	COM20	4349.8	
2	ICC1	-6582.0	-686.0	82	VLSS	-1257.3	-690.0	162	ICC0	4859.4	-686.0	242	COM19	4298.0	686.0
3	ICS32	-6529.8		83	VLSS	-1181.1	-690.0	163	ICS0	4911.6	-686.0	243	COM18	4246.2	686.0
<u>4</u> 5	ICS33	-6477.6 -6425.4		84 85	VLSS	-1104.9 -1028.7	-690.0 -690.0	164 165	ICS1	4963.8 5016.0	-686.0	244 245	COM17 COM16	4194.4 4142.6	686.0 686.0
6	ICS34 ICS35	-6373.2	-686.0 -686.0	86	VLSS VLSS	-952.5	-690.0	166	ICS2 ICS3	5068.2	-686.0 -686.0	246	COM15	4090.8	686.0
7	ICS36	-6321.0		87	TR3	-876.3	-690.0	167	ICS4	5120.4	-686.0	247	COM14	4039.0	686.0
8	ICS37	-6268.8	-686.0	88	TR2	-800.1	-690.0	168	ICS5	5172.6	-686.0	248	COM13	3987.2	686.0
9	ICS38	-6216.6		89	TR1	-723.9	-690.0	169	ICS6	5224.8	-686.0	249	COM12	3935.4	686.0
10	ICS39	-6164.4		90	TR0	-647.7	-690.0	170	ICS7	5277.0	-686.0	250	COM11	3883.6	686.0
11	ICS40	-6112.2	-686.0	91	VSS	-571.5	-690.0	171	ICS8	5329.2	-686.0	251	COM10	3831.8	686.0
12 13	ICS41 ICS42	-6060.0 -6007.8	-686.0 -686.0	92 93	VSS VSS	-495.3 -419.1	-690.0 -690.0	172 173	ICS9 ICS10	5381.4 5433.6	-686.0 -686.0	252 253	COM9 COM8	3780.0 3728.2	686.0 686.0
14	ICS43	-5955.6		94	BS0	-342.9	-690.0	174	ICS10	5485.8	-686.0	254	COM7	3676.4	686.0
15	ICS44	-5903.4		95	VDDIO	-266.7	-690.0	175	ICS12	5538.0	-686.0	255	COM6	3624.6	686.0
16	ICS45	-5851.2	-686.0	96	BS1	-190.5	-690.0	176	ICS13	5590.2	-686.0	256	COM5	3572.8	686.0
17	ICS46	-5799.0		97	VSS	-114.3	-690.0	177	ICS14	5642.4	-686.0	257	COM4	3521.0	686.0
18	ICS47	-5746.8	-686.0	98	BS2	-38.1	-690.0	178	ICS15	5694.6	-686.0	258	COM3	3469.2	686.0
19 20	ICS48 ICS49	-5694.6 -5642.4		99 100	VDDIO IREF	38.1 114.3	-690.0 -690.0	179 180	ICS16 ICS17	5746.8 5799.0	-686.0 -686.0	259 260	COM2 COM1	3417.4 3365.6	686.0 686.0
21	ICS50	-5590.2	-686.0	101	VCC	190.5	-690.0	181	ICS18	5851.2	-686.0	261	COM0	3313.8	686.0
22	ICS51	-5538.0		102	VCC	266.7	-690.0	182	ICS19	5903.4	-686.0	262	DUMMY	3262.0	686.0
23	ICS52	-5485.8	-686.0	103	VCC	342.9	-690.0	183	ICS20	5955.6	-686.0	263	DUMMY	3210.2	686.0
24	ICS53	-5433.6		104	VCC	419.1	-690.0	184	ICS21	6007.8	-686.0	264	DUMMY	3158.4	686.0
25	ICS54	-5381.4		105	VCC	495.3	-690.0	185	ICS22	6060.0	-686.0	265	DUMMY	3110.4	680.0
26 27	ICS55 ICS56	-5329.2 -5277.0	-686.0 -686.0	106 107	VCC VDD	571.5 647.7	-690.0 -690.0	186 187	ICS23 ICS24	6112.2 6164.4	-686.0 -686.0	266 267	SEG0 SEG1	3067.2 3024.0	680.0 680.0
28	ICS57	-5224.8	-686.0	107	VDD	723.9	-690.0	188	ICS24	6216.6	-686.0	268	SEG2	2980.8	680.0
29	ICS58	-5172.6		109	VDD	800.1	-690.0	189	ICS26	6268.8	-686.0	269	SEG3	2937.6	680.0
30	ICS59	-5120.4		110	VDD	876.3	-690.0	190	ICS27	6321.0	-686.0	270	SEG4	2894.4	680.0
31	ICS60	-5068.2	-686.0	111	VDD	952.5	-690.0	191	ICS28	6373.2	-686.0	271	SEG5	2851.2	680.0
32	ICS61	-5016.0		112	VDD	1028.7	-690.0	192	ICS29	6425.4	-686.0	272	SEG6	2808.0	680.0
33	ICS62	-4963.8	-686.0	113 114	CL	1104.9	-690.0	193	ICS30	6477.6	-686.0	273 274	SEG7	2764.8	680.0
34 35	ICS63 ICC1	-4911.6 -4859.4		115	VSS CS#	1181.1 1257.3	-690.0 -690.0	194 195	ICS31 ICC0	6529.8 6582.0	-686.0 -686.0	275	SEG8 SEG9	2721.6 2678.4	680.0 680.0
36	VICON	-4762.5	-690.0	116	VDDIO	1333.5	-690.0	196	DUMMY	6640.0	-686.0	276	SEG10	2635.2	680.0
37	VICON	-4686.3		117	RES#	1409.7	-690.0	197	DUMMY	6640.0	686.0	277	SEG11	2592.0	680.0
38	VICON	-4610.1	-690.0	118	VSS	1485.9	-690.0	198	COM63	6577.2	686.0	278	SEG12	2548.8	680.0
39	VICON	-4533.9		119	D/C#	1562.1	-690.0	199	COM62	6525.4	686.0	279	SEG13	2505.6	680.0
40 41	VCIR	-4457.7	-690.0	120	VDDIO	1638.3	-690.0	200	COM61	6473.6	686.0	280	SEG14	2462.4	680.0
41	VCIR VCIR	-4381.5 -4305.3	-690.0 -690.0	121 122	R/W# E/RD#	1714.5 1790.7	-690.0 -690.0	201	COM60 COM59	6421.8 6370.0	686.0 686.0	281 282	SEG15 SEG16	2419.2 2376.0	680.0 680.0
43	VCIR	-4229.1	-690.0	123	VSS	1866.9	-690.0	203	COM58	6318.2	686.0	283	SEG17	2332.8	680.0
44	VCIR	-4152.9		124	D0	1943.1	-690.0	204	COM57	6266.4	686.0	284	SEG18	2289.6	680.0
45	VCIR	-4076.7		125	D1	2019.3	-690.0	205	COM56	6214.6	686.0	285	SEG19	2246.4	680.0
46	VCI1	-4000.5		126	D2	2095.5	-690.0	206	COM55	6162.8	686.0	286	SEG20	2203.2	680.0
47	VCI1	-3924.3		127	D3	2171.7	-690.0	207	COM54	6111.0	686.0	287	SEG21	2160.0	680.0
48 49	VCI1 VCI1	-3848.1 -3771.9	-690.0 -690.0	128 129	D4 D5	2247.9 2324.1	-690.0 -690.0	208	COM53 COM52	6059.2 6007.4	686.0 686.0	288 289	SEG22 SEG23	2116.8	680.0 680.0
50	CYP	-3695.7	-690.0	130	D6	2400.3	-690.0	210	COM51	5955.6	686.0	290	SEG24	2030.4	680.0
51	CYP	-3619.5	-690.0	131	D7	2476.5	-690.0	211	COM50	5903.8	686.0	291	SEG25	1987.2	680.0
52	CYP	-3543.3	-690.0	132	VDDIO	2552.7	-690.0	212	COM49	5852.0	686.0	292	SEG26	1944.0	680.0
53	CYP	-3467.1	-690.0	133	CLS	2628.9	-690.0	213	COM48	5800.2	686.0	293	SEG27	1900.8	680.0
54	CYN	-3390.9		134	VSS	2705.1	-690.0	214	COM47	5748.4	686.0	294	SEG28	1857.6	680.0
55 56	CYN CYN	-3314.7 -3238.5	-690.0 -690.0	135 136	VSS VSS	2781.3 2857.5	-690.0 -690.0	215 216	COM46 COM45	5696.6 5644.8	686.0 686.0	295 296	SEG29 SEG30	1814.4 1771.2	
57	CYN	-3162.3		137	VLSS	2933.7	-690.0	217	COM44	5593.0	686.0	297	SEG31	1728.0	680.0
58	CYN	-3086.1		138	VLSS	3009.9	-690.0	218	COM43	5541.2	686.0	298	SEG32	1684.8	680.0
59	CYN	-3009.9		139	VLSS	3086.1	-690.0	219	COM42	5489.4	686.0	299	SEG33	1641.6	
60	CYN	-2933.7		140	VLSS	3162.3	-690.0	220	COM41	5437.6	686.0	300	SEG34	1598.4	680.0
61 62	VCHS VCHS	-2857.5 -2781.3		141 142	VLSS VLSS	3238.5 3314.7	-690.0 -690.0	221 222	COM40 COM39	5385.8 5334.0	686.0 686.0	301 302	SEG35 SEG36	1555.2 1512.0	680.0 680.0
63	VCHS	-2705.1		143	VLSS	3390.9	-690.0	223	COM38	5282.2	686.0	303	SEG37	1468.8	680.0
64	VCHS	-2628.9		144	VLSS	3467.1	-690.0	224	COM37	5230.4	686.0	304	SEG38	1425.6	
65	VCC	-2552.7		145	VLSS	3543.3	-690.0	225	COM36	5178.6	686.0	305	SEG39	1382.4	
66	VCC	-2476.5		146	NC	3619.5	-690.0	226	COM35	5126.8	686.0	306	SEG40	1339.2	680.0
67	VCOMH	-2400.3		147	VCOMH	3695.7	-690.0	227	COM34	5075.0	686.0	307	SEG41	1296.0	680.0
68	VCOMH	-2324.1		148	VCOMH	3771.9	-690.0	228	COM33	5023.2	686.0	308	SEG42	1252.8	680.0
69 70	VCOMH VCOMH	-2247.9 -2171.7		149 150	VCOMH VCOMH		-690.0 -690.0	229	COM32 COM31	4971.4 4919.6	686.0 686.0	309 310	SEG43 SEG44	1209.6 1166.4	
71	VCOMH	-2095.5		151	VCOMH	4000.5	-690.0	231	COM30	4867.8	686.0	311	SEG45	1123.2	680.0
72	VCOMH	-2019.3		152	VCOMH		-690.0	232	COM29	4816.0	686.0	312	SEG46	1080.0	680.0
73	VDD	-1943.1		153	VDD	4152.9	-690.0	233	COM28	4764.2	686.0	313	SEG47	1036.8	680.0
74	VDD	-1866.9		154	VDD	4229.1	-690.0	234	COM27	4712.4	686.0	314	SEG48	993.6	680.0
75 70	GPIO0	-1790.7		155	VICON	4305.3	-690.0	235	COM26	4660.6	686.0	315	SEG49	950.4	680.0
76 77	GPIO1 VSS	-1714.5 -1638.3		156 157	VICON	4381.5 4457.7	-690.0 -690.0	236	COM25 COM24	4608.8 4557.0	686.0 686.0	316 317	SEG50 SEG51	907.2 864.0	680.0 680.0
78	VSS	-1562.1	-690.0	158	VICON	4533.9	-690.0	238	COM23	4505.2	686.0	318	SEG52	820.8	680.0
79	VSS	-1485.9		159	VICON	4610.1	-690.0	239	COM22	4453.4	686.0	319	SEG53	777.6	680.0
80	VLSS		-690.0	160	VCC	4686.3	-690.0	240	COM21	4401.6	686.0	320	SEG54	734.4	680.0

 Solomon Systech
 Dec 2005
 P 10/58
 Rev 1.1
 SSD1329

Pad#	Pad Name	X-Axis	Y-Axis	П	Pad#	Pad Name	X-Axis	Y-A xis
321	SEG55	691.2	680.0		401	SEG120	-2764.8	680.0
322	SEG56	648.0	680.0		402	SEG121	-2808.0	680.0
323	SEG57	604.8	680.0	Ц	403	SEG122	-2851.2	680.0
324 325	SEG58 SEG59	561.6 518.4	680.0		404 405	SEG123 SEG124	-2894.4 -2937.6	680.0
326	DUMMY	475.2	680.0 680.0	Н	405	SEG 125	-2980.8	680.0 680.0
327	DUMMY	432.0	680.0	Н	407	SEG126	-3024.0	680.0
328	DUMMY	388.8	680.0		408	SEG127	-3067.2	680.0
329	DUMMY	345.6	680.0		409	DUMMY	-3110.4	680.0
330	DUMMY	302.4	680.0		410	DUMMY	-3158.4	686.0
331	DUMMY	259.2	680.0	Ц	411	DUMMY	-3210.2	686.0
332 333	DUM M Y	216.0 172.8	680.0 680.0	Н	412 413	DUMMY COM64	-3262.0 -3313.8	686.0 686.0
334	DUMMY	129.6	680.0	Н	414	COM 65	-3365.6	686.0
335	DUMMY	86.4	680.0	Н	415	COM 66	-3417.4	686.0
336	DUMMY	43.2	680.0		416	COM 67	-3469.2	686.0
337	DUMMY	0.0	680.0		417	COM 68	-3521.0	686.0
338	DUMMY	-43.2	680.0		418	COM 69	-3572.8	686.0
339 340	DUM M Y DUM M Y	-86.4 -129.6	680.0 680.0	Н	419 420	COM 70 COM 71	-3624.6 -3676.4	686.0 686.0
341	SEG60	-172.8	680.0	_	420	COM 72	-3728.2	686.0
342	SEG61	-216.0	680.0	Н	422	COM 73	-3780.0	686.0
343	SEG62	-259.2	680.0		423	COM 74	-3831.8	686.0
344	SEG63	-302.4	680.0		424	COM 75	-3883.6	686.0
345	SEG64	-345.6	680.0	Ц	425	COM 76	-3935.4	686.0
346	SEG65	-388.8	680.0	Ц	426	COM 77 COM 78	-3987.2	686.0
347	SEG66 SEG67	-432.0 -475.2	680.0 680.0	Н	427 428	COM 78 COM 79	-4039.0 -4090.8	686.0 686.0
349	SEG68	-518.4	680.0	Н	429	COM 80	-4142.6	686.0
350	SEG69	-561.6	680.0		430	COM 81	-4194.4	686.0
351	SEG70	-604.8	680.0		431	COM 82	-4246.2	686.0
352	SEG71	-648.0	680.0		432	COM 83	-4298.0	686.0
353	SEG72	-691.2	680.0		433	COM 84	-4349.8	686.0
354 355	SEG73 SEG74	-734.4 -777.6	680.0 680.0	Н	434 435	COM 85 COM 86	-4401.6 -4453.4	686.0 686.0
356	SEG75	-820.8	680.0	Н	436	COM 87	-4505.2	686.0
357	SEG76	-864.0	680.0		437	COM 88	-4557.0	686.0
358	SEG77	-907.2	680.0		438	COM 89	-4608.8	686.0
359	SEG78	-950.4	680.0		439	COM 90	-4660.6	686.0
360	SEG79	-993.6	680.0		440	COM91	-4712.4	686.0
361 362	SEG80 SEG81	-1036.8 -1080.0	680.0 680.0	Н	441 442	COM 92 COM 93	-4764.2 -4816.0	686.0 686.0
363	SEG82	-1123.2	680.0	Н	443	COM 94	-4867.8	686.0
364	SEG83	-1166.4	680.0		444	COM 95	-4919.6	686.0
365	SEG84	-1209.6	680.0		445	COM 96	-4971.4	686.0
366	SEG85	-1252.8	680.0		446	COM 97	-5023.2	686.0
367	SEG86	-1296.0	680.0		447	COM 98	-5075.0	686.0
368 369	SEG87 SEG88	-1339.2 -1382.4	680.0 680.0	Н	448 449	COM 99 COM 100	-5126.8 -5178.6	686.0 686.0
370	SEG89	-1425.6	680.0	Н	450	COM 101	-5230.4	686.0
371	SEG90	-1468.8	680.0	Н	451	COM 102	-5282.2	686.0
372	SEG91	-1512.0	680.0	П	452	COM 103	-5334.0	686.0
373	SEG92	-1555.2	680.0		453	COM 104	-5385.8	686.0
374	SEG93	-1598.4	680.0		454	COM 105	-5437.6	686.0
375 376	SEG94 SEG95	-1641.6 -1684.8	680.0 680.0	Н	455 456	COM 106 COM 107	-5489.4 -5541.2	686.0 686.0
376	SEG95 SEG96	-1728.0	680.0	Н	456	COM 107	-5593.0	686.0
378	SEG97	-1771.2	680.0	Н	458	COM 109	-5644.8	686.0
379	SEG98	-1814.4	680.0		459	COM 110	-5696.6	686.0
380	SEG99	-1857.6	680.0		460	COM 111	-5748.4	686.0
381	SEG100	-1900.8	680.0	Ц	461	COM 112	-5800.2	686.0
382 383	SEG101 SEG102	-1944.0 -1987.2	680.0	Н	462 463	COM 113 COM 114	-5852.0 -5903.8	686.0 686.0
383	SEG102 SEG103	-1987.2	680.0 680.0	Н	464	COM 115	-5955.6	686.0
385	SEG104	-2073.6	680.0	Н	465	COM 116	-6007.4	686.0
386	SEG105	-2116.8	680.0		466	COM 117	-6059.2	686.0
387	SEG106	-2160.0	680.0		467	COM 118	-6111.0	686.0
388	SEG107	-2203.2	680.0	Ц	468	COM 119	-6162.8	686.0
389 390	SEG108 SEG109	-2246.4 -2289.6	680.0	Н	469 470	COM 120 COM 121	-6214.6 -6266.4	686.0
390	SEG 109 SEG 110	-2289.6	680.0 680.0	Н	470	COM 122	-6318.2	686.0 686.0
392	SEG111	-2376.0	680.0	Н	472	COM 123	-6370.0	686.0
393	SEG112	-2419.2	680.0	Н	473	COM 124	-6421.8	686.0
394	SEG113	-2462.4	680.0		474	COM 125	-6473.6	686.0
395	SEG114	-2505.6	680.0		475	COM 126	-6525.4	686.0
396 397	SEG115 SEG116	-2548.8 -2592.0	680.0 680.0	Ц	476 477	COM 127 DUM M Y	-6577.2 -6640.0	686.0 686.0
398	SEG 116 SEG 117	-2635.2	680.0	Н	711	D OINI INI I	0.040.0	000.0
399	SEG 118	-2678.4	680.0	Н				
400	SEG119	-2721.6	680.0	П				
				_				

SSD1329 Rev 1.1 P 11/58 Dec 2005 **Solomon Systech**

6 PIN ARRANGEMENT

6.1 SSD1329U1 pin assignment

Figure 6-1: SSD1329U1 Pin Assignment

Solomon Systech Dec 2005 | P 12/58 | Rev 1.1 | SSD1329

Table 6-1: SSD1329U1 Pin Assignment Table

Din 4	Din Name	Din 4	I Din Name	 Din #	Din Name	Din 4	Din Name
Pin #	Pin Name	Pin #	Pin Name	Pin #	Pin Name	Pin #	Pin Name
1	NC	81	COM21	161	SEG76	241	NC
2	VLSS	82	COM19	162	SEG75	242	NC
3	VCC	83	COM17	163	SEG74	243	NC
4 5	VCOMH NC	84 85	COM15 COM13	164 165	SEG73 SEG72	244 245	NC NC
6	D7	86	COM13	166	SEG71	246	NC NC
7	D6	87	COM9	167	SEG70	247	NC
8	D5	88	COM7	168	SEG69	248	NC
9	D4	89	COM5	169	SEG68	249	NC
10	D3	90	COM3	170	SEG67	250	NC
11	D2	91	COM1	171	SEG66	251	NC
12	D1	92	NC	172	SEG65	252	NC
13	D0	93	NC NC	173	SEG64	253	NC
14 15	RD R/W	94 95	NC NC	174 175	SEG63 SEG62	254	NC NC
16	D/C	96	NC NC	175	SEG62 SEG61	255 256	COMO
17	RES	97	NC NC	177	SEG60	257	COM2
18	CS	98	NC	178	SEG59	258	COM4
19	IREF	99	NC	179	SEG58	259	COM6
20	BS2	100	NC	180	SEG57	260	COM8
21	BS1	101	NC	181	SEG56	261	COM10
22	BS0	102	NC	182	SEG55	262	COM12
23	VDD	103	NC	183	SEG54	263	COM14
24	VCC	104	NC	184	SEG53	264	COM16
25	VSS	105	NC NC	185	SEG52	265	COM18
26 27	NC NC	106 107	NC NC	186 187	SEG51 SEG50	266 267	COM20 COM22
28	COM127	107	NC NC	188	SEG49	268	COM24
29	COM127	108	NC NC	189	SEG49 SEG48	269	COM26
30	COM123	110	SEG127	190	SEG47	270	COM28
31	COM121	111	SEG126	191	SEG46	271	COM30
32	COM119	112	SEG125	192	SEG45	272	COM32
33	COM117	113	SEG124	193	SEG44	273	COM34
34	COM115	114	SEG123	194	SEG43	274	COM36
35	COM113	115	SEG122	195	SEG42	275	COM38
36	COM111	116	SEG121	196	SEG41	276	COM40
37 38	COM109 COM107	117 118	SEG120 SEG119	197 198	SEG40 SEG39	277 278	COM42 COM44
39	COM107	119	SEG118	199	SEG38	279	COM46
40	COM103	120	SEG117	200	SEG37	280	COM48
41	COM101	121	SEG116	201	SEG36	281	COM50
42	COM99	122	SEG115	202	SEG35	282	COM52
43	COM97	123	SEG114	203	SEG34	283	COM54
44	COM95	124	SEG113	204	SEG33	284	COM56
45	COM93	125	SEG112	205	SEG32	285	COM58
46 47	COM91 COM89	126 127	SEG111 SEG110	206 207	SEG31 SEG30	286 287	COM60 COM62
48	COM87	127	SEG109	207	SEG30	288	COM64
49	COM85	129	SEG108	209	SEG28	289	COM66
50	COM83	130	SEG107	210	SEG27	290	COM68
51	COM81	131	SEG106	211	SEG26	291	COM70
52	COM79	132	SEG105	212	SEG25	292	COM72
53	COM77	133	SEG104	213	SEG24	293	COM74
54	COM75	134	SEG103	214	SEG23	294	COM76
55	COM73	135	SEG102	215	SEG22	295	COM78
56 57	COM71	136 137	SEG101 SEG100	216 217	SEG21	296 297	COM80 COM82
57	COM69 COM67	137	SEG100 SEG99	217	SEG20 SEG19	297	COM84
59	COM65	139	SEG98	219	SEG18	299	COM86
60	COM63	140	SEG97	220	SEG17	300	COM88
61	COM61	141	SEG96	221	SEG16	301	COM90
62	COM59	142	SEG95	222	SEG15	302	COM92
63	COM57	143	SEG94	223	SEG14	303	COM94
64	COM55	144	SEG93	224	SEG13	304	COM96
65	COM53	145	SEG92	225	SEG12	305	COM98
66 67	COM51	146	SEG91 SEG90	226	SEG11	306	COM100
67 68	COM49 COM47	147 148	SEG90 SEG89	227 228	SEG10 SEG9	307 308	COM102 COM104
69	COM45	148	SEG89 SEG88	229	SEG9 SEG8	308	COM104 COM106
70	COM43	150	SEG87	230	SEG7	310	COM108
71	COM41	151	SEG86	231	SEG6	311	COM110
72	COM39	152	SEG85	232	SEG5	312	COM112
73	COM37	153	SEG84	233	SEG4	313	COM114
74	COM35	154	SEG83	234	SEG3	314	COM116
75	COM33	155	SEG82	235	SEG2	315	COM118
76 77	COM31	156	SEG81	236	SEG1	316	COM120
77	COM29	157	SEG80	237	SEG0	317	COM122
78 79	COM27 COM25	158 159	SEG79 SEG78	238 239	NC NC	318 319	COM124 COM126
80	COM23	160	SEG77	240	NC NC	320	NC NC
- 50	CONIEC	100	5_5,,		0	320	

Pin # Pin Name
321 NC

SSD1329 Rev 1.1 P 13/58 Dec 2005 **Solomon Systech**

7 PIN DESCRIPTIONS

Key:

I = Input

O =Output

IO = Bi-directional (input/output)

P = Power pin

Table 7-1: Pin Descriptions

Pin Name	Pin Type	Description
RES#	Ι	This pin is reset signal input. When the pin is LOW, initialization of the chip is executed. Keep this pin HIGH during normal operation.
CS#	Ι	This pin is the chip select input. The chip is enabled for MCU communication only when CS# is pulled LOW.
D/C#	I	This pin is Data/Command control pin. When the pin is pulled HIGH, the data at D[7:0] is treated as data. When the pin is pulled LOW, the data at D[7:0] will be transferred to the command register. For detail relationship to MCU interface signals, please refer to the Timing Characteristics Diagrams in Figure 13-1, Figure 13-2, Figure 13-3.
E (RD#)	I	This pin is MCU interface input. When interfacing to a 6800-series microprocessor, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled HIGH and the chip is selected. When connecting to an 8080-microprocessor, this pin receives the Read (RD#) signal. Data read operation is initiated when this pin is pulled LOW and the chip is selected.
R/W# (WR#)	I	This pin is MCU interface input. When interfacing to a 6800-series microprocessor, this pin will be used as Read/Write (R/W#) selection input. Read mode will be carried out when this pin is pulled HIGH and write mode will be carried out when LOW. When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled LOW and the chip is selected.
D[7:0]	IO	These pins are 8-bit bi-directional data bus to be connected to the microprocessor's data bus.
BS[2:0]	I	MCU bus interface selection pins. Please refer to Table 7-2 for the details of the selection.
$V_{ m DDIO}$	P	This pin is a power supply pin of I/O buffer. It should be connected to V_{DD} or external source. All I/O signal should have voltage high reference to V_{DDIO} . When I/O signal pins (BS0, BS1, BS2, CLS, CL, D[7:0], interface signals) pull HIGH, they should be connected to V_{DDIO} .
$V_{ m DD}$	P	Power Supply pin. It must be connected to external source.
V _{SS} , V _{LSS}	P	These pins are ground pin and also act as ground reference for the logic pins. They must be connected to external ground.
CL	IO	This pin is the system clock input. When internal oscillator is disabled, this pin receives display clock signal from external clock source. When internal clock is enabled, this pin should be left open and nothing should be connected to this pin.
CLS	I	This pin is internal clock enable. When this pin is pulled HIGH, internal oscillator is selected. The internal clock will be disabled when it is pulled LOW, an external clock source must be connected to CL pin for normal operation.
V _{CC}	P	This is the most positive voltage supply pin of the chip. It is supplied either by external high voltage source or internal booster.

 Solomon Systech
 Dec 2005
 P 14/58
 Rev 1.1
 SSD1329

Pin Name	Pin Type	Description
V _{COMH}	IO	This pin is the input pin for the voltage output high level for COM signals. It can be supplied externally or internally. When V_{COMH} is generated internally, a capacitor should be connected between this pin and V_{SS} .
I_{REF}	I	This pin is the segment output current reference pin. I_{SEG} is derived from I_{REF} . A resistor should be connected between this pin and V_{DD} to maintain the current around $10uA$.
COM0 ~ COM127	О	These pins provide the Common switch signals to the OLED panel. These pins are in high impedance state when display is OFF.
SEG0 ~ SEG127	О	These pins provide the OLED segment driving signals. These pins are in high impedance state when display is OFF.
ICS0 ~ ICS63	0	These pins provide the Segment driving signals for hard icons.
ICC0 ~ ICC1	0	These pins provide the Common driving signals for hard icons.
$V_{\rm CI}$	P	This is the power supply pin of hard icon DC-DC voltage converter. It must be supplied externally.
V _{ICON}	P	This is the power output pin for DC-DC converter to drive hard icons. A 2uF capacitor is recommended to connect from this pin to the ground. If internal DC-DC converter is disabled, this pin is acted as the power input pin for hard icons.
V _{CHS}	P	This is the ground pin for hard icons DC-DC voltage converter. It must be connected to external ground.
CYP, CYN	О	These pins are used to connect a capacitor between the PMOS and NMOS for hard icons DC-DC voltage converter. The recommended value of this capacitor is 1uF.
V _{CIR}	0	When internal charge pump is used, a resistor is connected between $V_{\rm CI}$ and this pin. The recommended value of this resistor is 20Ω .

Table 7-2: MCU Bus Interface Pin Selection

Pin Name	6800- parallel interface (8 bit)	8080- parallel interface (8 bit)	Serial interface
BS0	0	0	0
BS1	0	1	0
BS2	1	1	0

SSD1329 Rev 1.1 P 15/58 Dec 2005 **Solomon Systech**

8 FUNCTIONAL BLOCK DESCRIPTIONS

8.1 MPU Interface selection

8.1.1 MPU Parallel 6800-series Interface

The parallel interface consists of 8 bi-directional data pins (D[7:0]), R/W#, D/C#, E and CS#.

A LOW in R/W# indicates WRITE operation and HIGH in R/W# indicates READ operation. A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. The E input serves as data latch signal while CS# is LOW. Data is latched at the falling edge of E signal.

Table 8-1: Control pins of 6800 interface

Function	E	R/W#	CS#	D/C#
Write command	↓	L	L	L
Read status	↓	Н	L	L
Write data	↓	L	L	Н
Read data	↓	Н	L	Н

Note

(1)↓ stands for falling edge of signal H stands for HIGH in signal

L stands for LOW in signal

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 8-1.

Figure 8-1: Data read back procedure - insertion of dummy read

Solomon Systech Dec 2005 | P 16/58 | Rev 1.1 | SSD1329

8.1.2 MPU Parallel 8080-series Interface

The parallel interface consists of 8 bi-directional data pins (D[7:0]), RD#, WR#, D/C# and CS#.

A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. A rising edge of RD# input serves as a data READ latch signal while CS# is kept LOW. A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept LOW.

Table 8-2: Control pins of 8080 interface

Function	RD#	WR#	CS#	D/C#
Write command	Н	1	L	L
Read status	1	Н	L	L
Write data	Н	1	L	Н
Read data	1	Н	L	Н

Note

(1) ↑ stands for rising edge of signal

H stands for HIGH in signal

L stands for LOW in signal

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 8-2.

Figure 8-2: Display data read back procedure - insertion of dummy read

Alternatively, RD# and WR# can be keep stable while CS# serves as the data/command latch signal.

Table 8-3: Control pins of 8080 interface (Alternative form)

Function	RD#	WR#	CS#	D/C#
Write command	Н	L	1	L
Read status	L	Н	↑	L
Write data	Н	L	↑	Н
Read data	L	Н	1	Н

Note

(1) ↑ stands for rising edge of signal H stands for HIGH in signal

L stands for LOW in signal

SSD1329 | Rev 1.1 | P 17/58 | Dec 2005 | **Solomon Systech**

8.1.3 MPU Serial Interface

The serial interface consists of serial clock SCLK, serial data SDIN, D/C#, CS#. In SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to D7, E and R/W# can be connected to an external ground.

Table 8-4: Control pins of Serial interface

Function	E	R/W#	CS#	D/C#
Write command	Tie LOW	Tie LOW	L	L
Write data	Tie LOW	Tie LOW	L	Н

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6, ... D0. D/C# is sampled on every eighth clock and the data byte in the shift register is written to the Graphic Display Data RAM (GDDRAM) or command register in the same clock.

Under serial mode, only write operations are allowed. And during data writing, an additional NOP command should be inserted before the CS# goes HIGH as shown in Figure 8-3

Figure 8-3: Display data write procedure in SPI mode

Solomon Systech Dec 2005 | P 18/58 | Rev 1.1 | SSD1329

8.2 Segment Drivers/Common Drivers

Segment drivers have 128 current sources to drive OLED panel. The driving current can be adjusted from 0 to 300uA with 8 bits, 256 steps. Common drivers generate voltage scanning pulses. The block diagrams and waveforms of the segment and common driver are shown as follow.

Figure 8-4: Segment and Common Driver Block Diagram

The commons are scanned sequentially, row by row. If a row is not selected, all the pixels on the row are in reverse bias by driving those commons to voltage V_{COMH} as shown in Figure 8-5.

In the scanned row, the pixels on the row will be turned ON or OFF by sending the corresponding data signal to the segment pins. If the pixel is turned OFF, the segment current is kept at 0. On the other hand, the segment drives to I_{SEG} when the pixel is turned ON.

SSD1329 | Rev 1.1 | P 19/58 | Dec 2005 | **Solomon Systech**

Figure 8-5: Segment and Common Driver Signal Waveform

 Solomon Systech
 Dec 2005
 P 20/58
 Rev 1.1
 SSD1329

There are four phases to driving an OLED a pixel. In phase 1, the pixel is reset by the segment driver to V_{LSS} in order to discharge the previous data charge stored in the parasitic capacitance along the segment electrode. The period of phase 1 can be programmed by command B1h A[3:0] from 1 to 16 DCLK. An OLED panel with larger capacitance requires a longer period for discharging.

In phase 2, first pre-charge is performed. The pixel is driven to attain the corresponding voltage level V_P from V_{LSS} . The amplitude of V_P can be programmed by the command BCh. The period of phase 2 can be programmed in length from 1 to 16 DCLK by command B1h A[7:4]. If the capacitance value of the pixel of OLED panel is larger, a longer period is required to charge up the capacitor to reach the desired voltage.

In phase 3, the OLED pixel is driven to the targeted driving voltage through second pre-charge. The second pre-charge can control the speed of the charging process. The period of phase 3 can be programmed by command BBh.

Last phase (phase 4) is current drive stage. The current source in the segment driver delivers constant current to the pixel. The driver IC employs PWM (Pulse Width Modulation) method to control the gray scale of each pixel individually. The wider pulse widths in the current drive stage results in brighter pixels and vice versa. This is shown in the following figure.

Figure 8-6: Gray Scale Control by PWM in Segment

After finishing phase 4, the driver IC will go back to phase 1 to display the next row image data. This four-step cycle is run continuously to refresh image display on OLED panel.

The length of phase 4 is defined by command B7h "Set Default Gray Scale Table" or B8h "Set Gray Scale Table". In the table, the gray scale is defined in incremental way, with reference to the length of previous table entry.

SSD1329 | Rev 1.1 | P 21/58 | Dec 2005 | **Solomon Systech**

8.3 Oscillator Circuit and Display Time Generator

Internal
Oscillator
Fosc

M
U
X

Divider

Display
Clock

Figure 8-7: Oscillator Circuit and Display Time Generator

This module is an On-Chip low power RC oscillator circuitry. The operation clock (CLK) can be generated either from internal oscillator or external source CL pin. This selection is done by CLS pin. If CLS pin is pulled HIGH, internal oscillator is chosen and CL should be left open. Pulling CLS pin LOW disables internal oscillator and external clock must be connected to CL pins for proper operation. When the internal oscillator is selected, its output frequency F_{OSC} can be changed by command B3h, please refer to Table 9-1.

The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor "D" can be programmed from 1 to 16 by command B3h

$$DCLK = F_{OSC} / D$$

The frame frequency of display is determined by the following formula.

$$F_{FRM} = \frac{F_{osc}}{D \times K \times No. \text{ of Mux}}$$

where

- D stands for clock divide ratio. It is set by command B3h A[3:0]. The divide ratio has the range from 1 to 16
- K is row period. It is configured by command B2h. This value should comply with following condition. $K \ge Phase 1 + Phase 2 + Phase 3 + GS15$
- Number of multiplex ratio is set by command A8h. The power ON reset value is 7Fh.
- F_{OSC} is the oscillator frequency. It can be changed by command B3h A[7:4]. The higher the register setting results in faster frequency.

If the frame frequency is set too low, flickering may occur. On the other hand, higher frame frequency leads to higher power consumption on the whole system.

Solomon Systech Dec 2005 | P 22/58 | Rev 1.1 | **SSD1329**

8.4 Command Decoder and Command Interface

This module determines whether the input data is interpreted as data or command. Data is interpreted based upon the input of the D/C# pin.

If D/C# pin is HIGH, [7:0] is treated as either the data bytes of multiple byte command or display data written to Graphic Display Data RAM (GDDRAM). If it is LOW, the input at D[7:0] is interpreted as a command. Then data input will be decoded and written to the corresponding command register.

8.5 Reset Circuit

When RES# input is LOW, the chip is initialized with the following status:

- 1. Display is OFF
- 2. 128 x 128 Display Mode
- 3. Normal segment and display data column address and row address mapping (SEG0 mapped to address 00h and COM0 mapped to address 00h)
- 4. Shift register data clear in serial interface
- 5. Display start line is set at display RAM address 0
- 6. Column address counter is set at 0
- 7. Normal scan direction of the COM outputs
- 8. Contrast control register is set at 80h

8.6 Current Control and Voltage Control

This block is used to derive the incoming power sources into the different levels of internal use voltage and current. V_{CC} and V_{DD} are external power supplies. I_{REF} is a reference current source for segment current drivers

8.7 Hard icons column and row drivers

There are 64 segment drivers as the current sources to hard icons and 2 common drivers with 2 pins each to sink the current. The hard icons drivers support either DC or AC driving method.

8.8 DC-DC converter for Hard icons

It is a 2X charge-pump type voltage generator circuit. It doubles the voltage input V_{CI} to generate V_{ICON} . V_{ICON} is the voltage supply to the hard icons driver.

8.9 Gray Scale Decoder

In SSD1329 there are 16 gray levels from GS0 to GS15. The gray scale of the display is defined by the pulse width (PW) of current drive phase, except GS0 there is no pre-charge (phase 2,3) and current drive (phase 4).

SSD1329 | Rev 1.1 | P 23/58 | Dec 2005 | **Solomon Systech**

8.10 Graphic Display Data RAM (GDDRAM)

The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is 128x128x4 bits. For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software. The GDDRAM address maps in Table 8-5 to Table 8-9 show some examples on using the command "Set Re-map" A0h to re-map the GDDRAM. In the following tables, the lower nipple and higher nibble of D0 ,D1, D2, ...,D8189, D8190, D8191 represent the 128x128 data bytes in the GDDRAM.

Table 8-5 shows the GDDRAM map under the following condition:

• Command "Set Re-map" A0h is set to:

Disable Column Address Re-map
(A[0]=0)
Disable Nibble Re-map
(A[1]=0)
Enable Horizontal Address Increment
(A[2]=0)
Disable COM Re-map
(A[4]=0)

- Display Start Line=00h
- Data byte sequence: D0, D1, D2 ... D8191

Table 8-5: GDDRAM Address Map 1

Table 8-6 shows the GDDRAM map under the following condition:

Command "Set Re-map" A0h is set to :

Disable Column Address Re-map (A[0]=0)
Disable Nibble Re-map (A[1]=0)
Enable Vertical Address Increment (A[2]=1)
Disable COM Re-map (A[4]=0)

- Display Start Line=00h
- Data byte sequence: D0, D1, D2 ... D8191

Table 8-6: GDDRAM Address Map 2

Solomon Systech Dec 2005 | P 24/58 | Rev 1.1 | SSD1329

Table 8-7 shows the GDDRAM map under the following condition:

• Command "Set Re-map" A0h is set to:

Enable Column Address Re-map (A[0]=1)
Enable Nibble Re-map (A[1]=1)
Enable Horizontal Address Increment (A[2]=0)
Disable COM Re-map (A[4]=0)

• Display Start Line=00h

• Data byte sequence: D0, D1, D2 ... D8191

Table 8-7: GDDRAM Address Map 3

For vertical scrolling of the display, an internal register storing display start line can be set to control the portion of the RAM data to be mapped to the display. The Table 8-8 shows the example in which the display start line register is set to 78h with the following condition:

• Command "Set Re-map" A0h is set to:

Disable Column Address Re-map
(A[0]=0)
Disable Nibble Re-map
(A[1]=0)
Enable Horizontal Address Increment
(A[2]=0)
Enable COM Re-map
(A[4]=1)

- Display Start Line=78h (corresponds to COM119)
- Data byte sequence: D0, D1, D2 ... D8191

Table 8-8: GDDRAM Address Map 4

SSD1329 | Rev 1.1 | P 25/58 | Dec 2005 | **Solomon Systech**

Table 8-9 shows the GDDRAM map under the following condition:

Command "Set Re-map" A0h is set to:

Disable Column Address Re-map (A[0]=0)Disable Nibble Re-map (A[1]=0)Enable Horizontal Address Increment (A[2]=0) Disable COM Re-map (A[4]=0)

- Display Start Line=00h
- Column Start Address=01h
- Column End Address=3Eh
- Row Start Address=01h
- Row End Address=7Eh
- Data byte sequence: D0, D1, D2 ... D7811

Table 8-9: GDDRAM Address Map 5

	I	SEG0	SEG1	SEG2	SEG3	SEG124	SEG125	SEG126	SEG127	SEG Outputs
-		C	00	C)1	3	Ε	3	3F	Column Address
COM0	00									(HEX)
COM1	01			D0[3:0]	D0[7:4]	D61[3:0]	D61[7:4]			
I	I					1				
COM126	7E			D7750[3:0]	D7750[7:4]	D7811[3:0]	D7811[7:4]			
COM127	7F									
COM Outputs	Row Address (HEX)									•
(Display Startline=0)								Nibble Re-n	nap A[1]=0	

- (1) Please refer to Table 9-1 for the details of setting command "Set Re-map" A0h.
 (2) The "Display Start Line" is set by the command "Set Display Start Line" A1h and please refer to Table for the setting
- (3) The "Column Start/End Address" is set by the command "Set Column Address" 15h and please refer to Table 9-1 for the setting details
- (4) The "Row Start/End Address" is set by the command "Set Row Address" 75h and please refer to Table 9-1 for the setting details

Rev 1.1 **SSD1329** Solomon Systech Dec 2005 | P 26/58 |

9 COMMAND TABLE

Table 9-1 : Command Table

(D/C# = 0, R/W# (WR#) = 0, E (RD#) = 1) unless specific setting is stated

Fund	lamenta	l Com	ımano	d Tabl	e						•
D/C #	Hex	D7	D6	D5	D4	D3	D2	D2	D0	Command	Description
0 0 0	15 A[5:0] B[5:0]	0 *	0 *	$egin{array}{c} 0 \\ \mathbf{A}_5 \\ \mathbf{B}_5 \end{array}$	1 A ₄ B ₄	0 A ₃ B ₃	1 A ₂ B ₂	$egin{array}{c} 0 \\ A_1 \\ B_1 \end{array}$	\mathbf{A}_0 \mathbf{B}_0	Set Column Address	Setup Column start and end address A[5:0]: Start Address, range:00h~3Fh, (POR = 00h) B[5:0]: End Address, range:00h~3Fh, (POR = 3Fh) Please refers to Section 8.10 Graphic Display Data RAM (GDDRAM) for relationship between Column Address setting and GDDRAM structure.
0 0 0	75 A[6:0] B[6:0] 81 A[7:0]	0 * *	1 A ₆ B ₆	1 A ₅ B ₅	1 A ₄ B ₄	0 A ₃ B ₃	1 A ₂ B ₂	0 A ₁ B ₁	1 A ₀ B ₀	Set Row Address	Setup Row start and end address A[6:0]: Start Address, range:00h~7Fh, (POR = 00h) B[6:0]: End Address, range:00h~7Fh, (POR = 7Fh) Please refers to 8.10 Graphic Display Data RAM (GDDRAM) for relationship between Row Address setting and GDDRAM structure. A[7:0]: Set Contrast Value, range:0~255, (POR = 80h)
0	82 A[7:0]	1	0 A ₆	0 A ₅	0 A ₄	0 A ₃	0 A ₂	1 A ₁	0 A_0	Set Second Pre-charge Speed	A[7:1]: Set Second Pre-charge Speed A[7:1] = 00000000b, Second Pre-charge speed = 1 A[7:1] = 00000001b, Second Pre-charge speed = 3 : A[7:1] = 11111111b, Second Pre-charge speed = 255 The RESET value of A[7:1] depends on the value of the contrast current (81h) and is equal to: 2*81h A[7:0] +1 (maximum 7Fh) A[0] = 0, Disable doubling the Second Pre-charge speed (POR) A[0] = 1, Enable doubling the Second Pre-charge speed Please refer to Figure 10-3 for the illustration of difference Second Pre-charge speed settings.
0	90 A[7:0]	1 **	0 *	0 A ₅	1 A ₄	0 *	0 *	0 A ₁	0 A ₀	Set Master Icon Control	A[1:0]: Icon control A[1:0] = 00b, Icon RESET to normal display (POR) A[1:0] = 01b, Icon All ON (without altering icon ON / OFF register) A[1:0] = 10b, Icon All OFF (without altering icon ON/ OFF register) A[4] = 0b, Disable icon display (POR) A[4] = 1b, Enable icon display A[5] = 0b, Disable V _{ICON} charge pump circuit (POR) A[5] = 1b, Enable V _{ICON} charge pump circuit

SSD1329 Rev 1.1 P 27/58 Dec 2005 **Solomon Systech**

Fund	amenta	l Com	ımand	Tabl	e						
D/C #		D7		D5	D4	D3	D2	D2	D0	Command	Description
0	91	1	0	0	1	0	0	0	1		A[7:0]: Set Icon current
0	A[7:0]	A_7	A_6	A_5	A ₄	A_3	A_2	A_1	A_0	Set Icon Current Range	A[7:0] = 00h, max icon current = 0.0uA A[7:0] = 01h, max icon current = 0.5uA A[7:0] = 02h, max icon current = 1.0uA A[7:0] = 03h, max icon current = 1.5uA A[7:0] = 04h, max icon current = 2.0uA A[7:0] = FCh, max icon current = 126.0uA A[7:0] = FDh, max icon current = 126.5uA A[7:0] = FBh, max icon current = 127.0uA A[7:0] = FFh, max icon current = 127.5uA (POR) Note (1) The larger is the icon current range, the better the uniformity is.
0	92	1	0	0	1	0	0	1	0		Set each Icon current by the formula:
0	A0[6:0] A1[6:0]	*	A0 ₆ A1 ₆	A0 ₅ A1 ₅	A0 ₄ A1 ₄	$A0_3$	A0 ₂ A1 ₂	A0 ₁ A1 ₁	A0 ₀ A1 ₀		(AN[6:0] / 127) x max icon current, where the max icon current is defined by the command "Set icon current range" 91h and N=0~63.
	•••										e.g. Icon Current of ICS0 = $(A0[6:0]/127)$ x max icon
0	A62[6:0]		1				A62 ₂	A62 ₁	A62 ₀		current.
0	A63[6:0]	*	A63 ₆	A63 ₅			A63 ₂	A63 ₁	A63 ₀	Set Individual Icon Current	A0[6:0]: icon current for ICS0, range: 00h~7Fh A1[6:0]: icon current for ICS1, range: 00h~7Fh A63[6:0]: icon current for ICS62, range: 00h~7Fh A64[6:0]: icon current for ICS63, range: 00h~7Fh Note (1) All 64 levels (1 level for each ICS signals) of icon current must be entered to operate this command properly. (2) The icon current of the unselected icon pins must be set to zero by this command.
0	93 A[7:0]	1 A ₇	0 A ₆	0 A ₅	1 A ₄	0 A ₃	0 A ₂	1 A ₁	A_0		Individual icon selection: A[5:0]: select one of the 64 icons from ICS0 ~ ICS63 A[7:6] = 00b, turn OFF selected icon A[7:6] = 01b, turn ON selected icon A[7:6] = 11b, blink selected icon e.g A[7:0] = 01000000b, turn ON icon ICS0 A[7:0] = 00111111b, turn OFF icon ICS63
0	94 A[7:6]	1 A ₇	0 A ₆	0 *	1	0 *	1	0	0	Set Icon ON / OFF Registers	A[7:6]: Icon register A[7:6] = 00b, turn OFF all icon A[7:6] = 01b, turn ON all icon A[7:6] = 11b, blink all icons

 Solomon Systech
 Dec 2005
 P 28/58
 Rev 1.1
 SSD1329

Fund	amenta	l Com	mand	l Tabl	e						
D/C#		D7	D6	D5	D4	D3	D2	D2	D0	Command	Description
0	95 A[7:0]	1	0 *	0 A ₅	1 A ₄	0 *	1 A ₂	0 A ₁	1 A ₀	Set Icon Blinking Cycle	A[2:0]: Set Icon blinking cycle: 000b
0 0	96 A[7:0]	1 A ₇	0 A ₆	0 A ₅	1 A ₄	0 *	1 A ₂	1 A ₁	0 A ₀	Set Icon Duty	frequency and duty ratio of 50% A[2:0]: Set icon AC drive 000b DC drive (POR) 001b 63 / 64 duty ratio 010b 62 / 64 duty ratio 011b 61 / 64 duty ratio 100b 60 / 64 duty ratio 101b 59 / 64 duty ratio 110b 58 / 64 duty ratio 111b 57 / 64 duty ratio A[7:4]: Set icon frame frequency Note (1) Icon frame frequency must NOT be set to 0000b
0	A0 A[7:0]		0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	0 A ₁	0 A ₀	Set Re-map	Re-map setting in Graphic Display Data RAM (GDDRAM) A[7:0]: Remap (POR = 00h) A[0] = 0b, Disable Column Address Re-map (POR) A[0] = 1b, Enable Column Address Re-map A[1] = 0b, Disable Nibble Re-map (POR) A[1] = 1b, Enable Nibble Re-map A[2] = 0b, Enable Horizontal Address Increment (POR) A[2] = 1b, Enable Vertical Address Increment A[4] = 0b, Disable COM Re-map (POR) A[4] = 1b, Enable COM Re-map A[6] = 0b, Disable COM Split Odd Even (POR) A[6] = 1b, Enable COM Split Odd Even

SSD1329 Rev 1.1 P 29/58 Dec 2005 **Solomon Systech**

Fun	damenta	l Con	ımand	l Tabl	e						
D/C#	Hex	D7	D6	D5	D4	D3	D2	D2	D0	Command	Description
0	A1 A[7:0]	1	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	0 A ₁	1 A ₀	Set Display Start Line	A[6:0]: Vertical scroll by setting the starting address of display RAM from $0 \sim 127$ (POR = 00h)
0	A2 A[7:0]	1 *	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	1 A ₁	0 A ₀	Set Display Offset	A[6:0]: Set vertical offset by COM from 0 ~ 127 (POR = 00h) e.g. Set A[6:0] to 010000b to move COM16 towards COM0 direction for 16 row
0 0 0 0	A4 A5 A6 A7	1 1 1 1	0 0 0 0	1 1 1	0 0 0 0	0 0 0 0	1 1 1	0 0 1 1	0 1 0 1	Set Display Mode	 A4: Normal display (POR) A5: All ON (All pixels have gray scale of 15, GS15) A6: All OFF (All pixels have gray scale of 0, GS0) A7: Inverse Display (GS0 → GS15, GS1 → GS14, GS2 → GS13,)
0	A8 A[6:0]	0 *	0 A ₆	0 A ₅	1 A ₄	0 A ₃	1 A ₂	0 A ₁	1 A ₀	Set MUX Ratio	A[6:0]: Set MUX ratio from 16MUX ~ 128MUX: A[6:0] = 15 represents 16MUX A[6:0] = 16 represents 17MUX : A[6:0] = 126 represents 127MUX A[6:0] = 127 represents 128MUX (POR) It should be noted that A[6:0]=0~14 is not allowed.
0	AE AF	1	0	1	0	1 1	1 1	1 1	0	Set Sleep mode ON / OFF	A[0] = 0b, Sleep mode ON (The display is OFF) A[0] = 1b, Sleep mode OFF (The display is ON)
0 0	B1 A[7:0]	1 A ₇	0 A ₆	1 A ₅	1 A ₄	0 A ₃	0 A ₂	0 A ₁	1 A ₀	Set Phase Length	A[7:0]: RESET and first pre-charge phase length (POR=53h) A[3:0]: Phase 1 period of 1~16 DCLK's (POR=3h) e.g. A[3:0] = 1111b, 16 DCLK Clock A[7:4]: Phase 2 period of 1~16 DCLK's (POR=5h) e.g. A[7:4] = 1111b, 16 DCLK Clocks
0	B2 A[6:0]	1 *	0 A ₆	1 A ₅	1 A ₄	0 A ₃	0 A ₂	1 A ₁	0 A ₀	Set Frame Frequency	Set the frame frequency of the matrix display A[6:0]:Total number of DCLK's per row. Ranging from 14h to 4Eh DCLK's (POR = 23h) Then the frame Frequency = DCLK freq /A[6:0].

 Solomon Systech
 Dec 2005
 P 30/58
 Rev 1.1
 SSD1329

Func	lamenta	l Com	ımand	Tabl	e						
D/C #		D7	D6	D5	D4	D3	D2	D2	D0	Command	Description
0	B3 A[7:0]	1 A ₇	0 A ₆	1 A ₅	1 A ₄	0 A ₃	0 A ₂	1 A ₁	1 A ₀	Set Front Clock Divider /Oscillator Frequency	A[3:0]: Define divide ratio (D) of display clock (DCLK) Divide ratio=A[3:0]+1 (POR is 0000b, i.e. divide ratio = 1) A[7:4]: Set the Oscillator Frequency, F _{OSC} . Oscillator Frequency increases with the value of A[7:4] and vice versa. Range:0h~Fh (POR= 0h represents 500KHz, typical step value: 4% of previous value)
0	B7	1	0	1	1	0	1	1	1	Set Default Gray Scale Table	The default gray scale table is set in unit of DCLKs as follow: GS1 level Pulse width = 2 DCLKs GS2 level Pulse width = 4 DCLKs GS3 level Pulse width = 6 DCLKs GS13 level Pulse width = 26 DCLKs GS14 level Pulse width = 28 DCLKs GS15 level Pulse width = 30 DCLKs
0 0 0 0 0	B8 A1[5:0] A2[5:0] A14[5:0] A15[5:0]	* *	0 * * * *	A2 ₅	1 A1 ₄ A2 ₄ A14 ₄ A15 ₄	A2 ₃	0 A1 ₂ A2 ₂ A14 ₂ A15 ₂	0 A1 ₁ A2 ₁ A14 ₁ A15 ₁	0 A1 ₀ A2 ₀ A14 ₀ A15 ₀	Look Up Table for Gray Scale Pulse width	Set gray scale (GS1~GS15) pulse width in unit of DCLKs. A1[5:0], value for GS1 level Pulse width A2[5:0], value for GS2 level Pulse width A14[5:0], value for GS14 level Pulse width A15[5:0], value for GS15 level Pulse width Note (1] The pulse width value of GS1, GS2,, GS15 should not be equal. i.e. 0 <gs1<gs2 <gs15<="" td=""></gs1<gs2>
0 0	BB A[3:0]	1 *	0 *	1 *	1 *	1 A ₃	0 A ₂	1 A ₁	1 A ₀	Set Second Pre-charge Period	A[3:0]: Set Second pre-charge period 0000b

SSD1329 Rev 1.1 P 31/58 Dec 2005 **Solomon Systech**

D/C #	Hex	D7	D6	D5	D4	D3	D2	D2	D 0	Command	Description
)	ВС	1	0	1	1	1	1	0	0		A[5:0]: Set First Pre-charge voltage
)	A[5:0]	*	*	A_5	A_4	A_3	A_2	A_1	A_0		$\begin{array}{ccc} 000000b & 0.30 \text{ x V}_{CC} \\ 000001b & 0.31 \text{ x V}_{CC} \end{array}$
										Set First Pre- charge voltage, V _P	
											011111b 0.63 x V_{CC} 1xxxxxb 1.00 x V_{CC} or connect to V_{COMH} if $V_{CC} > V_{COMH}$
	BE	1	0	1	1	1	1	1	0		A[6:0] : Output level high voltage for COM signal
	A[6:0]	*	A_6	A_5	A_4	A_3	A_2	A_1	A_0		$\begin{array}{ccc} 000000b & 0.51 \text{ x V}_{CC} \\ 000001b & 0.52 \text{ x V}_{CC} \end{array}$
										Set V _{COMH}	 011110b 0.82 x V _{CC} 011111b 0.84 x V _{CC} (POR)
1	E3	1	1	1	0	0	0	1	1	NOP	Command for No Operation
	FD	1	1	1	1	1	1	0	1		A[2]: MCU protection status (POR = 12h)
	A[2]	0	0	0	1	0	\mathbf{A}_2	1	0	Set Command Lock	A[2] = 0h, disable locking the MCU from entering command (POR) A[2] = 1h, enable locking the MCU from entering command
											Note (1) Locking prohibits all commands and memory access

Dec 2005 | P 32/58 | Rev 1.1 | SSD1329 **Solomon Systech**

Note
(1) "*" stands for "Don't care".
(2) POR stands for Power On Reset.

Table 9-2: Read Command Table

(D/C#=0, R/W# (WR#)=1, E (RD#)=1 for 6800 or E (RD#)=0 for 8080)

(B) Ch 0, le Wh (With) 1, E (REH) 1 for 0000 of E (REH) 0 for 0000)							
		D[7]=0:reserved					
		D[7]=1:reserved					
		D[6]=0:indicates the display is ON					
$D_7D_6D_5D_4D_3D_2D_1D_0$	Status Basistar Band	D[6]=1:indicated the display is OFF					
	Status Register Read	D[5]=0:reserved					
		D[5]=1:reserved					
		D[4]=0:reserved					
		D[4]=1:reserved					

Note

9.1 Data Read / Write

To read data from the GDDRAM, input HIGH to R/W# (WR#) pin and D/C# pin for 6800-series parallel mode, LOW to E (RD#) pin and HIGH to D/C# pin for 8080-series parallel mode.

In horizontal address increment mode, GDDRAM column address pointer will be increased by one automatically after each data read. In vertical address increment mode, GDDRAM row address pointer will be increased by one automatically after each data read.

Also, a dummy read is required before the first data read.

To write data to the GDDRAM, input LOW to R/W# (WR#) pin and HIGH to D/C# pin for 6800-series parallel mode and 8080-series parallel mode. For serial interface mode, it is always in write mode. In horizontal address increment mode, GDDRAM column address pointer will be increased by one automatically after each data write. In vertical address increment mode, GDDRAM row address pointer will be increased by one automatically after each data write.

It should be noted that, in horizontal address increment mode, the row address pointer would be increased by one automatically if the column address pointer wraps around. In vertical address increment mode, the column address pointer will be increased by one automatically if the row address pointer wraps around.

Table 9-3: Address Increment Table (Automatic)

D/C#	R/W# (WR#)	Comment	Address Increment
0	0	Write Command	No
0	1	Read Status	No
1	0	Write Data	Yes
1	1	Read Data	Yes

SSD1329 | Rev 1.1 | P 33/58 | Dec 2005 | **Solomon Systech**

⁽¹⁾ Patterns other than that given in Command Table are prohibited to enter to the chip as a command; Otherwise, unexpected result will occur

10 COMMAND DESCRIPTIONS

10.1 Set Column Address (15h)

This triple byte command specifies column start address and end address of the display data RAM. This command also sets the column address pointer to column start address. This pointer is used to define the current read/write column address in graphic display data RAM. If horizontal address increment mode is enabled by command A0h, after finishing read/write one column data, it is incremented automatically to the next column address. Whenever the column address pointer finishes accessing the end column address, it is reset back to start column address and the row address is incremented to the next row.

10.2 Set Row Address (75h)

This triple byte command specifies row start address and end address of the display data RAM. This command also sets the row address pointer to row start address. This pointer is used to define the current read/write row address in graphic display data RAM. If vertical address increment mode is enabled by command A0h, after finishing read/write one row data, it is incremented automatically to the next row address. Whenever the row address pointer finishes accessing the end row address, it is reset back to start row address.

The diagram below shows the way of column and row address pointer movement though the example: column start address is set to 2 and column end address is set to 125, row start address is set to 1 and row end address is set to 126; Horizontal address increment mode is enabled by command A0h. In this case, the graphic display data RAM column accessible range is from column 2 to column 125 and from row 1 to row 126 only. In addition, the column address pointer is set to 2 and row address pointer is set to 1. After finishing read/write one pixel of data, the column address is increased automatically by 1 to access the next RAM location for next read/write operation (*solid line in Figure 10-1*). Whenever the column address pointer finishes accessing the end column 125, it is reset back to column 2 and row address is automatically increased by 1 (*solid line in Figure 10-1*). While the end row 126 and end column 125 RAM location is accessed, the row address is reset back to 1 and the column address is reset back to 2 (*dotted line in Figure 10-1*).

Figure 10-1: Example of Column and Row Address Pointer Movement

Solomon Systech Dec 2005 | P 34/58 | Rev 1.1 | SSD1329

10.3 Set Contrast Current (81h)

This double byte command is to set Contrast Setting of the display. The chip has 256 contrast steps from 00h to FFh. The segment output current increases linearly with the increase of contrast step

Figure 10-2: Example of Segment current versus Contrast setting

10.4 Set Second Pre-charge Speed (82h)

This command is used to set the speed of second pre-charge in phase 3. This speed can be doubled to achieve faster pre-charging through setting 82h A[0]. Please refer to Table 9-1: Command Table for the details of setting. Figure 10-3 shows the effect of setting second pre-charge under different speeds through using command 82h.

Figure 10-3: Effect of setting the second pre-charge under different speeds

10.5 Set Master Icon Control (90h)

This double command is used to set the ON / OFF conditions of internal charge pump, icon circuits and overall icon status.

10.6 Set Icon Current Range (91h)

This double byte command is used to set one fix current range for all icons between the range of 0uA and 127.5uA. The uniformity improves as the icon current range increases. Please refer to Table 9-1 for detail information and breakdown levels of each step.

SSD1329 | Rev 1.1 | P 35/58 | Dec 2005 | **Solomon Systech**

10.7 Set Individual Icon Current (92h)

This double byte command is used to fine tune the current for each of the 64 icons. Command 92h followed by 64 single byte data. These 64 byte data have to be entered in order to make this command function. Below is the formula for calculating the icon current. Please also refer to Table 9-1 for detail information and breakdown levels of each step.

Icon Current = Single byte value / 127 x Maximum icon current set with command 91h.

10.8 Set Individual Icon ON / OFF Registers (93h)

This double byte command is used to select one of the 64 icons and choose the ON, OFF or blinking condition of the selected icon.

10.9 Set Icon ON / OFF Registers (94h)

This double byte command is used to set the ON / OFF status of all 64 icons.

10.10 Set Icon Blinking Cycle (95h)

This double byte command is used to set icon oscillator frequency and blinking cycle selected with above command 93h. Please refer to Table 9-1 for detail information and breakdown levels of each step.

10.11 Set Icon Duty (96h)

This double byte command is used to set the icon frame frequency and icon AC drive duty ratio. Please refer to Table 9-1 for detail information and breakdown levels of each step.

10.12 Set Re-Map(A0h)

This double command has multiple configurations and each bit setting is described as follows:

• Column Address Remapping (A[0])

This bit is made for increase the flexibility layout of segment signals in OLED module with segment arranged from left to right (when A[0] is set to 0) or from right to left (when A[0] is set to 1).

• Nibble Remapping (A[1])

When A[1] is set to 1, the two nibbles of the data bus for RAM access are re-mapped, such that (D7, D6, D5, D4, D3, D2, D1, D0) acts like (D3, D2, D1, D0, D7, D6, D5, D4)

If this feature works together with Column Address Re-map, it would produce an effect of flipping the outputs from SEG0~127 to SEG127~SEG0 as show in Table 8-7.

Address increment mode (A[2])

When A[2] is set to 0, the driver is set as horizontal address increment mode. After the display RAM is read/written, the column address pointer is increased automatically by 1. If the column address pointer reaches column end address, the column address pointer is reset to column start address and row address pointer is increased by 1. The sequence of movement of the row and column address point for horizontal address increment mode is shown in Figure 10-4.

Solomon Systech Dec 2005 | P 36/58 | Rev 1.1 | SSD1329

Figure 10-4: Address Pointer Movement of Horizontal Address Increment Mode

	Col 0	Col 1		Col 126	Col 127
Row 0					
Row 1					
:	+	÷	÷	·	 :
Row 126					†
Row 127	1				†

When A[2] is set to 1, the driver is set to vertical address increment mode. After the display RAM is read/written, the row address pointer is increased automatically by 1. If the row address pointer reaches the row end address, the row address pointer is reset to row start address and column address pointer is increased by 1. The sequence of movement of the row and column address point for vertical address increment mode is shown in Figure 10-5.

Figure 10-5: Address Pointer Movement of Vertical Address Increment Mode

	Col 0	Col 1		Col 126	Col 127
Row 0		7	.,/	1	1
Row 1			/		
:			: /		
Row 126			/		
Row 127	*	•		*	•

• COM Remapping (A[4])

This bit defines the scanning direction of the common for flexible layout of common signals in OLED module either from up to down (when A[4] is set to 0) or from bottom to up (when A[4] is set to 1). Table 8-8 shows one example of the using the COM Remapping to perform vertical scrolling.

• Splitting of Odd / Even COM Signals (A[6])
This bit is made to match the COM layout connection on the panel.

When A[6] is set to 0, no splitting odd / even of the COM signal is performed, output pin assignment sequence is shown as below (for 128MUX ratio):

Figure 10-6: Output pin assignment when command A0h bit A[6]=0.

Output Pin	Connection
SSD1329Z	Panel
COM0	ROW0
COM1	ROW1
COM2	ROW2
COM3	ROW3
:	:
COM63	ROW63
COM64	ROW64
:	:
COM125	ROW125
COM126	ROW126
COM127	ROW127

SSD1329 | Rev 1.1 | P 37/58 | Dec 2005 | **Solomon Systech**

When A[6] is set to 1, splitting odd / even of the COM signal is performed, output pin assignment sequence is shown as below (for 128MUX ratio):

Figure 10-7: Output pin assignment when command A0h bit A[6]=1.

Output Pin Connection					
Panel					
ROW0 (Even)					
ROW2					
ROW4					
:					
ROW122					
ROW124					
ROW126					
ROW1 (Odd)					
ROW3					
ROW5					
:					
ROW123					
ROW125					
ROW127					

10.13 Set Display Start Line (A1h)

This double byte command is to set Display Start Line register for determining the starting address of display RAM to be displayed by selecting a value from 0 to 127. Figure 10-8 shows an example using this command of this command when MUX ratio= 128 and MUX ratio= 90 and Display Start Line = 40. In there, "ROW" means the graphic display data RAM row.

Figure 10-8: Example of Set Display Start Line with no Remapping

	MUX ratio (A8h) = 128	MUX ratio (A8h) = 128	MUX ratio (A8h) = 90	MUX ratio (A8h) = 90
COM Pin	Display Start Line (A1h)			
	= 0	= 40	= 0	= 40
COM0	ROW0	ROW40	ROW0	ROW40
COM1	ROW1	ROW41	ROW1	ROW41
COM2	ROW2	ROW42	ROW2	ROW42
COM3	ROW3	ROW43	ROW3	ROW43
	•	:	•	:
	•	:	•	:
COM48	ROW48	ROW88	ROW48	ROW88
COM49	ROW49	ROW89	ROW49	ROW89
COM50	ROW50	ROW90	ROW50	ROW90
COM51	ROW51	ROW91	ROW51	ROW91
	:	:	:	:
	:	:	:	:
COM86	ROW86	ROW126	ROW86	ROW126
COM87	ROW87	ROW127	ROW87	ROW127
COM88	ROW88	ROW0	ROW88	ROW0
COM89	ROW89	ROW1	ROW89	ROW1
COM90	ROW90	ROW2	-	-
COM91	ROW91	ROW3	-	-
	•	:	•	:
	:	:	:	:
COM124	ROW124	ROW36	-	-
COM125	ROW125	ROW37	-	-
COM126	ROW126	ROW38	-	-
COM127	ROW127	ROW39	-	-
Display Example	SOLOMON SYSTECH	SOLOMON	SOLOMON.	SOLOMON SYSTECH

SSD1329 | Rev 1.1 | P 39/58 | Dec 2005 | **Solomon Systech**

10.14 Set Display Offset (A2h)

This double byte command specifies the mapping of display start line (it is assumed that COM0 is the display start line, display start line register equals to 0) to one of COM0~COM127. Figure 10-9 shows an example using this command when MUX ratio= 128 and MUX ratio= 90 and Display Offset = 40. In there, "Row" means the graphic display data RAM row.

Figure 10-9: Example of Set Display Offset with no Remapping

		9 : Example of Set Displa		
	MUX ratio (A8h) = 128	MUX ratio $(A8h) = 128$	MUX ratio $(A8h) = 90$	MUX ratio (A8h) = 90
COM Pin	Display Offset (A2h)=0	Display Offset (A2h)=40	Display Offset (A2h)=0	Display Offset (A2h)=40
COM0	ROW0	ROW40	ROW0	ROW40
COM1	ROW1	ROW41	ROW1	ROW41
COM2	ROW2	ROW42	ROW2	ROW42
COM3	ROW3	ROW43	ROW3	ROW43
:	:	:		:
:	:	:		:
COM48	ROW48	ROW88	ROW48	ROW88
COM49	ROW49	ROW89	ROW49	ROW89
COM50	ROW50	ROW90	ROW50	-
COM51	ROW51	ROW91	ROW51	-
:	:	:	•	:
:	:	:	•	:
COM86	ROW86	ROW126	ROW86	-
COM87	ROW87	ROW127	ROW87	-
COM88	ROW88	ROW0	ROW88	ROW0
COM89	ROW89	ROW1	ROW89	ROW1
COM90	ROW90	ROW2	=	R0W2
COM91	ROW91	ROW3	=	ROW3
:	:	:		:
:	:	:		:
COM124	ROW124	ROW36	=	ROW36
COM125	ROW125	ROW37	=	ROW37
	ROW126	ROW38	-	ROW38
	ROW127	ROW39	-	ROW39
Display Example	SOLOMON	SOLOMON		COLOMON

 Solomon Systech
 Dec 2005 | P 40/58 | Rev 1.1 | SSD1329

10.15 Set Display Mode $(A4h \sim A7h)$

These are single byte commands and are used to set display status to Normal Display, Entire Display ON, Entire Display OFF or Inverse Display.

• Normal Display (A4h)
Reset the "Entire Display ON, Entire Display OFF or Inverse Display" effects and turn the data to ON at the corresponding gray level. Figure 10-10 shows an example of Normal Display.

Figure 10-10: Example of Normal Display

Memory

Dis

 Set Entire Display ON (A5h)
 Force the entire display to be at gray scale level GS15, regardless of the contents of the display data RAM. Figure 10-11

Figure 10-11: Example of Entire Display ON

• Set Entire Display OFF (A6h)
Force the entire display to be at gray scale level GS0, regardless of the contents of the display data RAM. Figure 10-12

Figure 10-12: Example of Entire Display OFF

ory Dis

• Inverse Display (A7h)
The gray scale level of display data are swapped such that "GS0" <-> "GS15", "GS1" <-> "GS14", etc. Figure 10-13 shows an example of inverse display.

Figure 10-13: Example of Inverse Display

SSD1329 Rev 1.1 P 41/58 Dec 2005 **Solomon Systech**

10.16 Set MUX Ratio (A8h)

This double byte command sets multiplex ratio (MUX ratio) from 16MUX to 128MUX. In POR, multiplex ratio is 128MUX. Please refer to Figure 10-8 and Figure 10-9 for the example of setting different MUX ratio.

10.17 Set Sleep Mode ON/OFF (AEh / AFh)

These single byte commands are used to turn the matrix display on the OLED panel display either ON or OFF. When the sleep mode is set to ON (AEh), the display is OFF, the segment and common output are in high impedance state and circuits will be turned OFF. When the sleep mode is set to OFF (AFh), the display is ON.

10.18 Set Phase Length (B1h)

In the second byte of this double command, lower nibble and higher nibble is defined separately. The lower nibble adjusts the phase length of Reset (phase 1). The higher nibble is used to select the phase length of first pre-charge phase (phase 2). The phase length is ranged from 1 to 16 DCLK's.

RESET for A[3:0] is set to 3h which means 4 DCLK's selected for Reset phase. POR for A[7:4] is set to 5h which means 6 DCLK's is selected for first pre-charge phase. Please refer to Table 9-1 for detail breakdown levels of each step.

10.19 Set Frame Frequency (B2h)

This double byte command is used to set the number of DCLK's per row between the range of 14h and 7Fh. Then the Frame frequency of the matrix display is equal to DCLK frequency / A[6:0].

10.20 Set Front Clock Divider / Oscillator Frequency (B3h)

This double command is used to set the frequency of the internal display clocks, DCLK's. It is defined by dividing the oscillator frequency by the divide ratio (Value from 1 to 16). Frame frequency is determined by divide ratio, number of display clocks per row, MUX ratio and oscillator frequency. The lower nibble of the second byte is used to select the oscillator frequency. Please refer to Table 9-1 for detail breakdown levels of each step.

10.21 Set Default Gray Scale Table (B7h)

This single byte command is used to set the gray scale table to initial default setting.

10.22 Look Up Table for Gray Scale Pulse width (B8h)

This command is used to set each individual gray scale level for the display. Except gray scale level GS0 that has no pre-charge and current drive, each gray scale level is programmed in the length of current drive stage pulse width with unit of DCLK. The longer the length of the pulse width, the brighter the OLED pixel when it's turned ON.

The setting of gray scale table entry can perform gamma correction on OLED panel display. Normally, it is desired that the brightness response of the panel is linearly proportional to the image data value in display data RAM. However, the OLED panel is somehow responded in non-linear way. Appropriate gray scale table setting like example below can compensate this effect.

Solomon Systech Dec 2005 | P 42/58 | Rev 1.1 | SSD1329

Figure 10-14: Example of gamma correction by gray scale table setting

10.23 Set Second Pre-charge period (BBh)

This double byte command is used to set the phase 3 second pre-charge period. The period of phase 3 can be programmed by command BBh and it is ranged from 0 to 15 DCLK's. Please refer to Table 9-1: Command Table for the details of setting.

10.24 Set First Pre-charge voltage, V_P (BCh)

This double byte command is used to set phase 2 first pre-charge voltage level. It can be programmed to set the first pre-charge voltage reference to V_{CC} or V_{COMH} . Please refer to Table 9-1 for detail information and breakdown levels of each step.

10.25 Set V_{COMH} (BEh)

This double byte command sets the high voltage level of common pins, V_{COMH} . The level of V_{COMH} is programmed with reference to V_{CC} . Please refer to Table 9-1 for detail information and breakdown levels of each step.

10.26 No Operation (E3h)

This is a no operation command.

10.27 Set Command Lock (FDh)

This command is used to lock the MCU from accepting any command.

SSD1329 | Rev 1.1 | P 43/58 | Dec 2005 | **Solomon Systech**

11 MAXIMUM RATINGS

Table 11-1 : Maximum Ratings (Voltage Referenced to $V_{\text{SS}})$

Symbol	Parameter	Value	Unit
$V_{ m DD}$		-0.3 to +4.0	V
$V_{ m DDIO}$	Supply Voltage	-0.3 to +4.0	V
V_{CC}		0 to 18.0	V
V_{COMH}	Supply Voltage/Output voltage	0 to 16.0	V
-	SEG/COM output voltage	0 to 16.0	V
V_{in}	Input voltage	Vss-0.3 to V_{DD} +0.3	V
T_{A}	Operating Temperature	-40 to +85	°C
T_{stg}	Storage Temperature Range	-65 to +150	℃

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section

 Solomon Systech
 Dec 2005
 P 44/58
 Rev 1.1
 SSD1329

12 DC CHARACTERISTICS

Conditions (Unless otherwise specified):

Voltage referenced to V_{SS} $V_{DD} = 2.4$ to 3.5V $V_{CC} = 12$ V $V_{CI} = 3.5$ V $T_A = 25$ °C

Table 12-1: DC Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
V_{CC}	Operating Voltage		9.0	12.0	16.0	V
V_{DD}	Logic Supply Voltage		2.4	3.0	3.5	V
V_{DDIO}	Power Supply for I/O pins		1.7	3.0	$V_{ m DD}$	V
V_{CI}	Charge Pump Supply Voltage		3.2	3.5	4.2	V
V _{ICON}	Icon Supply Voltage		6.4	7.0	8.4	V
V_{OH}	High Logic Output Level	$I_{OUT} = 100uA, 3.3MHz$	$0.9 \times V_{DDIO}$	-	$V_{ m DDIO}$	V
V_{OL}	Low Logic Output Level	$I_{OUT} = 100uA, 3.3MHz$	0	-	$0.1 \times V_{DDIO}$	V
V_{IH}	High Logic Input Level	$I_{OUT} = 100uA, 3.3MHz$	$0.8 \times V_{DDIO}$	-	$V_{ m DDIO}$	V
$V_{\rm IL}$	Low Logic Input Level	$I_{OUT} = 100uA, 3.3MHz$	0	-	$0.2 \text{ x V}_{\text{DDIO}}$	V
IDD, SLEEP	Sleep mode Current	$V_{DD} = 3.0V$, Display OFF, No panel attached	-5	0	5	uA
ICC, SLEEP	Sleep mode Current	$V_{DD} = 3.0V$, Display OFF, No panel attached	-5	0	5	uA
Idd	V _{DD} Supply Current	V _{DD} = 3.0V, Display ON, All 1's Contrast = 80h, No panel attached	50	72	80	uA
Icc	V _{CC} Supply Current	V _{DD} = 3.0V, Display ON, All 1's Contrast = 80h, No panel attached	900	980	1100	uA
Idd	V _{DD} Supply Current	V _{DD} = 3.0V, Display ON, All 0's Contrast = 80h, No panel attached	40	61	70	uA
Icc	V _{CC} Supply Current	V _{DD} = 3.0V, Display ON, All 0's Contrast = 80h, No panel attached	210	240	250	uA
Iseg	Segment Output Current Setting:	Contrast = FFh	290	320	350	uA
	$V_{DD} = 3.0 V, I_{REF} = 10 uA,$	Contrast = AFh	200	220	240	uA
	All 1's pattern, Display ON, Segment pin under test is	Contrast = 5Fh	110	120	130	uA
	connected with a 20K Ω resistive load to V_{SS} .	Contrast = 0Fh	15	20	25	uA
Dev	Segment output current uniformity	$Dev = (I_{SEG} - I_{MID})/I_{MID}$	-	-	±3	%
		where: $I_{MID} = (I_{MAX} + I_{MIN})/2$ $I_{SEG}[0:127] = Segment$ current at contrast = FFh				
Adj. Dev	Adjacent pin output current uniformity (contrast = FFh)	Adj Dev = $(I[n] - I[n+1]) / (I[n]+I[n+1])$	-	±2.0	-	%
Ics	Icon Segment Output Current Setting: V _{DD} = 3.0V, Icon Current Range = FFh, Individual Icon Current = 7Fh	$V_{\rm DD} = 3.0 \text{V}$, Display ON, No panel attached	120	132	140	uA
	for all 64 icons. Icon segment pins under test is connected with a $20K\Omega$ resistive load to V_{SS} .	$V_{\rm DD}$ = 3.0V, Display OFF, No panel attached	-5	0	5	uA

SSD1329 Rev 1.1 P 45/58 Dec 2005 **Solomon Systech**

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
Icon Dev	Icon Segment Output Current	$Dev = (I_{SEG} - I_{MID})/I_{MID}$	-	-	±3	%
	Uniformity					
		where: $I_{MID} = (I_{MAX} + I_{MIN})/2$				
		$I_{SEG}[0:127] = Segment$				
		current at contrast = FFh				
Icon Adj.	Adjacent pin output current	Adj Dev = (I[n] - I[n+1]) /	-	±2.0		%
Dev	uniformity	(I[n]+I[n+1])				

 Solomon Systech
 Dec 2005
 P 46/58
 Rev 1.1
 SSD1329

13 AC CHARACTERISTICS

Conditions (Unless otherwise specified):

Voltage referenced to V_{SS} $V_{DD} = V_{DDIO} = 2.4 \text{ to } 3.5 \text{V}$ $V_{CC} = 9 \text{ to } 18 \text{V}$ $T_A = 25^{\circ}\text{C}$

Table 13-1: AC Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
$F_{OSC}^{(1)}$	Oscillation Frequency of	$V_{DD} = 3.0V$	-	500	-	KHz
	Display Timing					
	Generator					
F_{FRM}	Frame Frequency	Display ON, Internal Oscillator	-	$F_{OSC} \times 1 / (D \times K \times N)$	-	Hz
		Enabled		(2)		

Note
(1) Fosc stands for the frequency value of the internal oscillator
(2) D stands for divide ratio

K stands for total number of display clocks per row defined by command B2h

N stands for number of MUX selected by command A8h

SSD1329 Rev 1.1 P 47/58 **Solomon Systech** Dec 2005

Conditions:

 $V_{DD} \sim V_{SS} = 2.4 \text{ to } 3.5 \text{V}$ $T_A = 25 ^{\circ}\text{C}$

Table 13-2: 6800-Series MPU Parallel Interface Timing Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
$t_{\rm cycle}$	Clock Cycle Time	300	-	-	ns
t_{AS}	Address Setup Time	0	-	-	ns
t_{AH}	Address Hold Time	0	-	-	ns
$t_{ m DSW}$	Write Data Setup Time	40	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	15	-	-	ns
$t_{ m DHR}$	Read Data Hold Time	20	-	-	ns
t_{OH}	Output Disable Time	-	-	70	ns
t_{ACC}	Access Time	-	-	140	ns
PW_{CSL}	Chip Select Low Pulse Width (read)	120	-	-	ns
	Chip Select Low Pulse Width (write)	60			
PW_{CSH}	Chip Select High Pulse Width (read)	60	-	-	ns
	Chip Select High Pulse Width (write)	60			
t_R	Rise Time	-	-	15	ns
t_{F}	Fall Time	-	-	15	ns

Figure 13-1: 6800-series MPU parallel interface characteristics

 Solomon Systech
 Dec 2005
 P 48/58
 Rev 1.1
 SSD1329

Conditions:

 $V_{DD} \sim V_{SS} = 2.4$ to 3.5V $T_A = 25^{\circ}C$

Table 13-3: 8080-Series MPU Parallel Interface Timing Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t_{AS}	Address Setup Time	0	-	-	ns
t_{AH}	Address Hold Time	0	-	-	ns
$t_{ m DSW}$	Write Data Setup Time	40	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	15	-	-	ns
t_{DHR}	Read Data Hold Time	20	-	-	ns
t_{OH}	Output Disable Time	-	-	70	ns
t_{ACC}	Access Time	-	-	140	ns
PW_{CSL}	Chip Select Low Pulse Width (read)	120	-	-	ns
	Chip Select Low Pulse Width (write)	60			
PW_{CSH}	Chip Select High Pulse Width (read)	60	-	-	ns
	Chip Select High Pulse Width (write)	60			
t_R	Rise Time	-	-	15	ns
t_{F}	Fall Time	-	-	15	ns

Figure 13-2: 8080-series MPU parallel interface characteristics

SSD1329 Rev 1.1 P 49/58 Dec 2005 **Solomon Systech**

Conditions:

 $V_{DD} \sim V_{SS} = 2.4$ to 3.5V $T_A = 25^{\circ}C$

Table 13-4 : Serial Interface Timing Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	250	-	-	ns
t_{AS}	Address Setup Time	150	-	-	ns
t_{AH}	Address Hold Time	150	-	-	ns
t_{CSS}	Chip Select Setup Time	120	-	-	ns
t_{CSH}	Chip Select Hold Time	60	-	-	ns
$t_{ m DSW}$	Write Data Setup Time	100	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	100	-	-	ns
$t_{\rm CLKL}$	Clock Low Time	100	-	-	ns
t_{CLKH}	Clock High Time	100	-	-	ns
t_R	Rise Time	-	-	15	ns
$t_{\rm F}$	Fall Time	-	-	15	ns

Figure 13-3: Serial interface characteristics

 Solomon Systech
 Dec 2005
 P 50/58
 Rev 1.1
 SSD1329

14 APPLICATION EXAMPLES

Figure 14-1: Application Example for SSD1329 8-bit 6800-parallel interface mode

SSD1329 | Rev 1.1 | P 51/58 | Dec 2005 | **Solomon Systech**

Figure 14-2: Application Example for SSD1329 8-bit 8080-parallel interface mode

Solomon Systech Dec 2005 | P 52/58 | Rev 1.1 | SSD1329

Figure 14-3: Application Example for SSD1329 8-bit SPI-serial interface mode

SSD1329 | Rev 1.1 | P 53/58 | Dec 2005 | **Solomon Systech**

Figure 14-4: Application Example for SSD1329 when hard icons are not used.

Solomon Systech Dec 2005 | P 54/58 | Rev 1.1 | SSD1329

15 PACKAGE INFORMATION

15.1 SSD1329Z Die Tray Information

Figure 15-1: Die Tray Information

	Spec			
	mm	(mil)		
W1	76.00 ± 0.1	(2992)		
W 2	68.00 ± 0.1	(2677)		
W3	68.30 ± 0.1	(2689)		
X1	4.00 ± 0.1	(157)		
Y1	1.25 ± 0.1	(49)		
Px	16.30 ± 0.05	(642)		
Py	2.90 ± 0.05	(114)		
X	13.56 ± 0.05	(534)		
Y	1.65 ± 0.05	(65)		

 0.61 ± 0.05

88

(24)

 \mathbf{Z}

Remark

1. Depth of text: Max. 0.1mm

2. Tray material: ABS

3. Tray color code: Black

4. Surface resistance $10^9 \sim 10^{11} \Omega$

5. Tray warpage: Max 0.10mm

6. Unspecifier dim's tolerance: ± 0.15 mm

7. Pocket size: 13.56 x 1.65 x 0.61mm

SSD1329 Rev 1.1 P 55/58 Dec 2005 **Solomon Systech**

15.2 SSD1329U1 Detail Dimension

Figure 15-2: SSD1329U1 detail dimension

Solomon Systech Dec 2005 | P 56/58 | Rev 1.1 | **SSD1329**

NOTE:

1. GENERAL TOLERANCE: ±0.05MM

2. MATERIAL

PI: 38±4UM CU: 8±2UM

SR: 15±10UM , SR TOLERANCE±0.2

3. AU/Ni PLATING: AU 0.4±0.1UM

Ni 0.5±0.1UM

4. TAPSITE: 8 SPH, 38MM

SSD1329 | Rev 1.1 | P 57/58 | Dec 2005 | **Solomon Systech**

Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part. http://www.solomon-systech.com

 Solomon Systech
 Dec 2005
 P 58/58
 Rev 1.1
 SSD1329