SUICIDE RATE OVERVIEW

DATA 603

SUBMITTED TO: PROFESSOR ANDREW ENKEBOLL

SUBMITTED BY: ANUJA YAWAR

ABOUT THE DATA

- Globally, the availability and quality of data on suicide and suicide attempts is poor. Only some 80 Member States have good-quality vital registration data that can be used directly to estimate suicide rates. This problem of poor-quality mortality data is not unique to suicide, but given the sensitivity of suicide and the illegality of suicidal behavior in some countries it is likely that under-reporting and misclassification are greater problems for suicide than for most other causes of death.
- The data set is compiled dataset pulled from four other datasets linked by time and place, and was built to find signals correlated to increased suicide rates among different cohorts globally, across the socio-economic spectrum from the year 1985-2016.
- The data set contains 27820 data points and 12 features such as sex, age-group, year, gross domestic product, population etc.
- Data Set Source Kaggle

WHAT ARE WE TRYING TO DO HERE?

- Perform Exploratory Data Analysis to pre-process the data and gathering insights from it using PySpark.
- Building Machine Learning model to predict the rate of Suicide gobally using PySpark Machine Learning libraries
- Finally, using Tableau, Matplotlib and Seaborn for creating Visualization

PYSPARK DATAFRAME

only showing top 30 rows

country year sex	age	suicides_no	population s	uicides/100k pop	country-year HD]	I for year g	dp_for_year (\$) g	dp_per_capita (\$)	generatio
Albania 1987 male 15-2	4 years	21	312900	6.71	Albania1987	null	2,156,624,900	 796	Generation
Albania 1987 male 35-5	4 years	16	308000	5.19	Albania1987	null	2,156,624,900	796	Siler
Albania 1987 female 15-2	4 years	14	289700	4.83	Albania1987	null	2,156,624,900	796	Generation
Albania 1987 male 75	+ years	1	21800	4.59	Albania1987	null	2,156,624,900	796	G.I. Generati
Albania 1987 male 25-3	4 years	9	274300	3.28	Albania1987	null	2,156,624,900	796	Boome
Albania 1987 female 75	+ years	1	35600	2.81	Albania1987	null	2,156,624,900	796	G.I. Generati
Albania 1987 female 35-5	4 years	6	278800	2.15	Albania1987	null	2,156,624,900	796	Sile
Albania 1987 female 25-3	4 years	4	257200	1.56	Albania1987	null	2,156,624,900	796	Boome
Albania 1987 male 55-7	4 years	1	137500	0.73	Albania1987	null	2,156,624,900	796	G.I. Generati
Albania 1987 female 5-1	4 years	0	311000	0.0	Albania1987	null	2,156,624,900	796	Generation
Albania 1987 female 55-7	4 years	0	144600	0.0	Albania1987	null	2,156,624,900	796	G.I. Generati
Albania 1987 male 5-1	4 years	0	338200	0.0	Albania1987	null	2,156,624,900	796	Generation
Albania 1988 female 75	+ years	2	36400	5.49	Albania1988	null	2,126,000,000	769	G.I. Generati
Albania 1988 male 15-2	4 years	17	319200	5.33	Albania1988	null	2,126,000,000	769	Generation
Albania 1988 male 75	+ years	1	22300	4.48	Albania1988	null	2,126,000,000	769	G.I. Generati
Albania 1988 male 35-5	4 years	14	314100	4.46	Albania1988	null	2,126,000,000	769	Sile
Albania 1988 male 55-7	4 years	4	140200	2.85	Albania1988	null	2,126,000,000	769	G.I. Generati
Albania 1988 female 15-2	4 years	8	295600	2.71	Albania1988	null	2,126,000,000	769	Generation
Albania 1988 female 55-7	4 years	3		2.03	Albania1988	null	2,126,000,000	769	G.I. Generati
Albania 1988 female 25-3	4 years	5	262400	1.91	Albania1988	null	2,126,000,000	769	Boome
Albania 1988 male 25-3	4 years	5		1.79	Albania1988	null	2,126,000,000	769	Boome
Albania 1988 female 35-5	4 years	4	284500	1.41	Albania1988	null	2,126,000,000	769	Sile
Albania 1988 female 5-1	4 years	0		0.0	Albania1988	null	2,126,000,000	769	Generation
Albania 1988 male 5-1	4 years	0		0.0	Albania1988	null	2,126,000,000	769	Generation
Albania 1989 male 75	+ years	2	22500	8.89	Albania1989	null	2,335,124,988	833	G.I. Generati
Albania 1989 male 25-3	4 years	18	283600	6.35	Albania1989	null	2,335,124,988	833	Boome
Albania 1989 male 35-5	4 years	15	318400	4.71	Albania1989	null	2,335,124,988	833	Sile
Albania 1989 male 55-7		6	142100	4.22	Albania1989	null	2,335,124,988	833	G.I. Generati
Albania 1989 male 15-2	4 years	12	323500	3.71	Albania1989	null	2,335,124,988	833	Generation
Albania 1989 female 35-5	4 years	7	288600	2.43	Albania1989	null	2,335,124,988	833	Sile

COUNT OF CATEGORY COLUMNS

```
data_clean.groupBy("age").count().show()
     |55-74 years| 4642
     |25-34 years| 4642
      5-14 years | 4610
      75+ years | 4642
     |15-24 years| 4642
     |35-54 years| 4642
[20] data_clean.groupBy("sex").count().show()
     +----+
        sex count
     +-----
     |female|13910|
       male | 13910 |
```

RESEARCH QUESTIONS

- Research Question1: How did the Rate of Suicide changed over time?
- Research Question 2: What is the relationship between the gender and the number of suicides?
- Research Question 3: Countries with highest rate of Suicides
- Research Question 4: How different generation have affected Suicides?
- Research Question 5: Are certain age groups more inclined to suicide?

Suicide is a hugely sensitive, complex issue with a tangled multitude of causes – and the very nature of a death by suicide means we can never fully know the reasons behind it.

Country	Year of Year				
(AII)		(AII)			

Total Number of Suicide by Country from 1985 - 2016

Country =	
Russian Federation	1,209,742
United States	1,034,013
Japan	806,902
France	329,127
Ukraine	319,950
Germany	291,262
Republic of Korea	261,730

Time Line Series of Suicidal Rate (1985-2016)

In countries around the world, women are more likely to be diagnosed with depression and to attempt suicide.

So why is the male suicide rate still several times higher than female?

In the UK, the male suicide rate is its lowest since 1981 - 15.5 deaths per 100,000.

But suicide is still the single biggest killer of men under the age of 45. And a marked gender split remains. For UK women, the rate is a third of men's: 4.9 suicides per 100,000.

As person gets older it tends to be more suicidal.

Some of the causes could be:

- 1. Breaking medical regimens
- 2. Loss of interest in things or activities that are usually found enjoyable
- 3. Experiencing or expecting a significant personal loss (spouse or other)
- 4. Stock-piling medication or obtaining other lethal means

INSIGHTS

- There was a decrease in suicide towards the 80's. This could be due to the awareness of suicides and mental health in 80s as well as improved recognition if those at risk.
- Russian levels of alcohol consumption plays an immense role in it's large suicide count, but their is a lack of data to support this due to Soviet secrecy.
- Data show alarming differences in suicide for different sexes. It's evident that males are more inclined to suicide, than
 females.
- the G.I. Generation or the Greatest Generation (the generation who lived during the WWII) has the highest suicide rate
 with almost 25 suicides per 100,000 person. This is a very big number compared to younger generations, this might be
 due to the fact that this generation suffered a lot during the WWII, many of them lost their loved ones and experienced
 different traumatic events. The suicide rates decrease from a generation to another, where Generation Z has the lowest
 suicide rates with 1 suicide per 100,000 person.
- We can see that as the person gets older it tends to be more suicidal. This could be explained by the fact that important life changes that happen as we get older may cause feelings of uneasiness, stress, and sadness. But this might be due to the fact that old people (75+ years) belong to the G.I. Generation which already has the highest suicide rates. To further explore this, we must check the number of people that committed suicide within each age category with respect to their generation. This way we can find out the distribution of ages of suicidal people within each generation. This will help us to identify if suicide is due to the age factor or to the generation.

MODEL BULLDING USING PYSPARK MACHINE LEARNING LIBRARIES

```
data_clean.printSchema()
```

```
root
|-- country: string (nullable = true)
|-- year: integer (nullable = true)
|-- sex: string (nullable = true)
|-- age: string (nullable = true)
|-- suicides_no: integer (nullable = true)
|-- population: integer (nullable = true)
|-- suicides/100k pop: float (nullable = true)
|-- gdp_for_year ($): string (nullable = true)
|-- gdp_per_capita ($): integer (nullable = true)
|-- generation: string (nullable = true)
```

STRING INDEXER

```
1. Using String Indexer to convert all categorical columns to numerical
[ ] from pyspark.ml.feature import StringIndexer
     from pyspark.ml.feature import VectorAssembler
    indexer = StringIndexer(inputCol="country", outputCol= "country cat")
     indexed = indexer.fit(data clean).transform(data clean)
    indexer = StringIndexer(inputCol="sex", outputCol= "sex_cat")
     indexed = indexer.fit(indexed).transform(indexed)
    indexer = StringIndexer(inputCol="age", outputCol= "age_cat")
     indexed = indexer.fit(indexed).transform(indexed)
[ ] indexer = StringIndexer(inputCol="generation", outputCol= "generation_cat")
     indexed = indexer.fit(indexed).transform(indexed)
    indexed.show(5)
                                  age|suicides no|population|suicides/100k pop|gdp per capita ($)|
                                                                                                       generation | country cat | sex cat | age cat | generation cat |
     country year
     |Albania|1987| male|15-24 years|
                                                      312900
                                                                          6.71
                                                                                                     Generation X
                                                                                                                                  1.0
                                                                                                                                                         0.0
                                                                                                                         63.0
                                                                                                                                          0.0
     |Albania|1987| male|35-54 years
                                                                          5.19
                                                                                                                                                         1.0
                                                      308000
                                                                                              796
                                                                                                           Silent
                                                                                                                         63.0
                                                                                                                                          2.0
     |Albania|1987|female|15-24 years|
                                               14
                                                      289700
                                                                          4.83
                                                                                                     Generation X
                                                                                                                         63.0
                                                                                                                                  0.0
                                                                                                                                          0.0
                                                                                                                                                         0.0
     |Albania|1987| male| 75+ years|
                                                                                              796 G.I. Generation
```

VECTOR ASSEMBLER

2. Using VectorAssembler to combines a given list of columns into a single vector column

5 rows

output.show(5)										↑ ↓ 🖼	☆ Fi ■ :
sex age suic	ides_no po	opulation suicid	+- es/100k pop go	dp_for_year (\$) gdp_per	+ capita (\$)	generation cou	+ ntry_cat se	+- x_cat ag	+ ge_cat gener	 ation_cat	feature
+ ale 15-24 years	+ 21	 3 12900	 6.71	 2,156,624,900	+- 796	Generation X	63 . 0	+ 1.0	0.0	+ 0.0 [63.0,1	,0,0,0,0.0
ale 35-54 years	16	308000	5.19	2,156,624,900	796	Silent	63.0	1.0	2.0	1.0 [63.0,1	1.0,2.0,1.0
ale 15-24 years	14	289700	4.83	2,156,624,900	796	Generation X	63.0	0.0	0.0	0.0 [63.0,6	0.0,0.0,0.0
ale 75+ years	1	21800	4.59	2,156,624,900	796 G	.I. Generation	63.0	1.0	4.0	4.0 [63.0,1	1.0,4.0,4.0
ale 25-34 years	9	274300	3.28	2,156,624,900	796	Boomers	63.0	1.0	1.0		1.0,1.0,3.0

STANDARDZINGTHE DATA

3. Standardising the Data

StandardScaler performs the task of Standardization. Usually a dataset contains variables that are different in scale. For e.g. an Employee dataset will contain AGE column with values on scale 20-70 and SALARY column with values on scale 10000-80000. As these two columns are different in scale, they are Standardized to have common scale while building machine learning model.

[65] scaledData.show()

â	ge suicides	no p	opulation s	uicides/100k pop	gdp_per_capita (\$)	generation	country_cat	sex_cat a	ge_cat g	generation_cat	features	scaledFeatures
15-24 yea	rs 	21	312900	6.71	796	Generation X	63.0	1.0	0.0	0.0	 [63.0,1.0,0.0,0.0	 [2.50531438222025
35-54 yea	ars	16	308000	5.19	796	Silent	63.0	1.0	2.0	1.0	[63.0,1.0,2.0,1.0	[2.50531438222025]
15-24 yea	ars	14	289700	4.83	796	Generation X	63.0	0.0	0.0	0.0	[63.0,0.0,0.0,0.0	[2.50531438222025]
75+ yea	ars	1	21800	4.59	796	G.I. Generation	63.0	1.0	4.0	4.0	[63.0,1.0,4.0,4.0	[2.50531438222025]
25-34 yea	ars	9	274300	3.28	796	Boomers	63.0	1.0	1.0	3.0	[63.0,1.0,1.0,3.0	[2.50531438222025]
75+ yea	ars	1	35600	2.81	796	G.I. Generation	63.0	0.0	4.0	4.0	[63.0,0.0,4.0,4.0	[2.50531438222025]
35-54 yea	ars	6	278800	2.15	796	Silent	63.0	0.0	2.0			[2.50531438222025]

LINEAR REGRESSION MODEL - COMPARING ACTUAL AND PREDICTED VALLES

CONCLUSION

- Conclusion Our model doesn't seem to be doing a good job, this might be due to fact that the
 features we selected aren't good enough, or it might be due the fact that the data we have isn't
 linear so a similar model won't be any good to estimate the values.
- Future Scope: Maybe the decision tree will perform better.