Cálculo Numérico - IME/UERJ

Lista de Exercícios 4

Interpolação polinomial e Método dos Mínimos Quadrados

- 1. (a) $f(2.35) \approx 0.37684$; $E_2(2.35) \leq 0.04446$.
 - (b) $f(2.5) \approx 0.0775$; $E_2(2.5) \le 0.008458$.
- 2. (a) $P_1(0.83) \approx 17,87833$; $P_2(0.83) \approx 17,70208$; $P_3(0.83) \approx 17,87714$;
 - (b) $|E_1(0.83)| \approx 1,2 \times 10^{-3}; |E_2(0.83)| \approx 1,24998 \times 10^{-5};$

Não é possível determinar $|E_3(0.83)|$ porque não temos as diferenças divididas de ordem 4.

3. (a) Não podemos interpolar todos os pontos da tabela com um polinômio de grau 5 porque não temos a coluna de Ordem 6 na tabela de diferenças divididas para poder estimar o erro.

Então, temos que interpolar com um polinômio de grau 4, já que temos a coluna de Ordem 5 com apenas um elemento se aproximando suficientemente de zero.

Portanto,

$$f(1,7) \approx P_4(1,7) \approx -1,343.$$

(b) O enunciado do item (a) diz que devemos estimar f(1,7) de maneira que se possa estimar o erro cometido.

A coluna de Ordem 5 possui todos os elementos (no caso, apenas um) se aproximando suficientemente de zero. Portanto, o polinômio de grau 4 tem a melhor estimativa para resolver o item (a).

4. $P_2(2018, 5) = 7575$.

A coluna de Ordem 3 possui todos os elementos iguais a zero.

5. $x \approx P_3(y=2,3) \approx 0,6776$.

$$E_3(2,3) \approx 0,007845.$$

- 6. Duas maneiras de resolver:
 - 1. Usando interpolação inversa:

$$P_2(y=2) \approx 1,3652.$$

Estimativa de erro: $|E_2(2)| \approx 0,4542$.

2. Usando interpolação normal:

Resolver a equação $P_2(x) = 2$ usando como pontos da interpolação $x_0 = 1, 2; x_1 =$

```
2, 3; x_3 = 3, 1.
x \approx 1,3925.
```

Estimativa de erro: $|E_2(1, 3925)| \approx 0,4238$.

- 7. Após arrumar a tabela de diferenças divididas, vemos na coluna de Ordem 5 um elemento que está se aproximando suficientemente de zero. Logo, a melhor estimativa é um polinômio de grau 4.
- 8. (a) $\varphi(x) = 0,175 + 0,2167x;$ $y(9) \approx \varphi(9) = 2.1253.$ (b) $\varphi(x) = 0,4071 + 0,0774x + 0,0155x^2;$ $y(9) \approx \varphi(9) = 2.3592.$
- 9. (a) $\varphi(x) = 32,1469 \ e^{0.3555 \ x}$.
 - (b) Aproximadamente 11.6191 horas.

10.
$$\varphi(x) = 1 + 1,8171 \ e^{0,7994 \ x}.$$

 $y(4,0) \approx \varphi(4,0) \approx 45,4658.$

- 11. (a) $P_2(70) \approx 174,375$ cm
 - (b) $|E_2(70)| \approx 0,27885$
 - (c) $\varphi(x) = 190,717 \operatorname{sen}(x) 15,187 \cos(x).$ $\varphi(70) \approx 174,021.$