ALGORITMOS: AYUDANTÍA 6

Ayudante: Yerko Ortiz

"Good abstractions turn a nearly impossible task into two manageable ones. The first one is defining and implementing the abstraction. The second is using these abstractions to solve the problem at hand."

Andrew Tanenbaum, Modern Operating Systems.

Objetivo de la ayudantía: Resolver problemas de divide and conquer y un ejemplo de ordenamiento de strings

Máximo prefijo en común

Dado un conjunto de N palabras, compute el máximo prefijo que tienen en común todas las palabras del conjunto. El prefijo de un string se define como un substring de caracteres adyacentes, donde el primer caracter del substring corresponde al primer caracter del string. Por ejemplo sea la palabra banana, se dice que banan es un prefijo de banana, así mismo ban es prefijo de banana, pero por otro lado anana no es prefijo de banana.

Formato de la entrada

- La primera linea contiene un entero N que representa la cantidad de palabras.
- \blacksquare Las siguientes N lineas contienen N strings que representan la palabra S_i .

Dominio de la entrada

- $2 < N < 10^3$
- $1 \le |S_i| \le 100$

Formato de la salida

 Una linea que imprima el substring que corresponde al prefijo en común de largo máximo que las palabras tienen en común.

Caso de prueba

■ Entrada:

5

banana

barco

bardo

banal

baneado

Salida:

ba

Diccionario de palabras

Franco tiene un sueño - el quiere crear su propio diccionario; esta no es una tarea fácil ya que el número de palabras que conoce, no es suficiente. Para compensar las pocas palabras que conoce piensa en una brillante idea: crear un diccionario usando las palabras de algún libro en la biblioteca de su hermano. Su diccionario contendrá las palabras del libro ordenadas alfabeticamente y sin palabras repetidas.

Su tarea como ninja de la programación es diseñar e implementar un programa en java, que simule el proceso que Franco realiza para crear su diccionario.

Nota: su programa debe ser case insensitive(tomar todas las letras mayúsculas o minúsculas como si fuesen las mismas letras), es decir que si por ejemplo su programa lee la palabra "naranja" la considera igual a la palabra "NaraNja".

Entrada

■ La entrada consiste en un texto T con no más de 5000 lineas, cada linea tiene a lo más 200 caracteres. El input termina con EOF.

Dominio

 $0 \le |T| \le 10^6$

Salida

■ Las palabras del diccionario ordenadas de forma alfabética, escritas en minúsculas y sin palabras repetidas.

Caso de prueba

• Entrada:

Adventures in park. Two guys were going to the park when they came to a fork in the road. The sign read: "park Closed." So they went home.

Salida:

adventures came road closed sign fork SO going the guys they home tointwo park went read were when

Gracias por su atención!