

100

FIG. 1

FIG. 2

FIG. 3A

FIG. 3B

FIG. 3C

FIG. 3D

FIG. 4A

FIG. 4B

FIG. 5

600

FIG. 6A

600

FIG. 6B

600

FIG. 6C

FIG. 6D

FIG. 6E

FIG. 6F

FIG. 7

FIG. 8A

FIG. 8B

FIG. 8C

FIG. 9

FIG. 10

FIG. 11A

FIG. 11B

FIG. 12

FIG. 13A

FIG. 13B

FIG. 13C

FIG. 14

FIG. 15A

FIG. 15B

FIG. 16

FIG. 17A

FIG. 17B

FIG. 18A

FIG. 18B

FIG. 18C

FIG. 19 C

FIG. 19D

FIG. 19E

FIG. 19F

FIG. 20A

FIG. 20B

FIG. 21

FIG. 22

FIG. 24

FIG. 25

FIG. 26

FIG. 27

FIG. 28

2902 ↓	2904 ↓	2906 ↓	2900 ↓
Semiconductor	Effective mass m_{eff}/m_0	Band gap E_g (eV)	
Diamond	0.57	5.5	
Si	0.33	1.14	
Ge	0.2	0.67	
AlN	0.4	6.2	
AlSb	0.12	1.58	
GaN	0.13	3.2	
GaP	0.38	2.9	
GaAs	0.067	1.5	
GaSb	0.041	0.72	
InN	0.11	2.0	
InP	0.07	1.29	
InAs	0.02	0.33	
InSb	0.013	0.16	
ZnO	0.27	3.35	
Zns	0.40	3.68	

FIG. 29

FIG. 30

	3102	3104	3106	3108		
Material	E_g (eV)	Δ (eV)	E_g (eV)	m_e/m_h	m_s/m_e	m_d/m_o
AlAs	3.13	0.275	21.1	0.124	0.26	0.5
GalP	2.895	0.08	22.2	-	0.17	0.67
GaAs	1.519	0.34	25.7	0.0065	0.082	0.45
InP	1.473	0.108	20.4	0.079	0.12	0.65
InAs	0.418	0.38	22.2	0.024	0.025	0.41
InSb	0.23	0.8	23.1	0.014	0.016	0.4

Table 1.1. Parameters for various zinc blende III-V semiconductors (all quoted for low temperature). (Note: all values are for the direct gap at zone center, though AlAs and GaP are indirect gap semiconductors, having lower conduction band minima away from zone center.)

FIG. 31

FIG. 32

FIG. 33

Source Source

Source Drain

FIG. 34 A

FIG. 34 B

FIG. 34 C

3500

FIG. 35A

FIG.35B

FIG. 35C

FIG.35D

FIG. 36 A

FIG. 36 B

FIG. 36 C

FIG. 36 D

FIG. 37A

FIG. 37B

FIG. 37C

FIG. 37D

A

G (NaCl solution)

FIG. 38A

B

FIG. 38B

3802

FIG. 38C

FIG. 39A

FIG. 39B

FIG. 39C

FIG. 40

FIG. 4A

FIG. 4B

FIG. 41

FIG.43

A: a-Si Technology

FIG.44A

B: poly-Si Technology

FIG.44B

C: Si Nanowire Technology

FIG.44C

FIG. 45

FIG. 46

FIG 47

FIG. 48A

FIG. 48B