

Aula 6 – Topologias de circuitos incluindo semicondutores

Disciplina: Eletrônica Analógica e Digital

Professor: Daniel Gueter

Cronograma

- 18/02 Aula 1 Introdução da disciplina e Semicondutores
- 25/02 Aula 2 Revisão de circuitos
- 04/03 Feriado Carnaval
- 11/03 Aula 3 Diodo Zener e Introdução a Transistores
- 18/03 Aula 4 Continuação da aula 3
- 25/03 Aula 5 Outros dispositivos semicondutores, Optoeletrônica e Acopladores Ópticos
- 01/04 Aula 6 (Semana de Oficina) Topologias de circuitos incluindo semicondutores
- 08/04 Aula 7
- 15/04 Prova
- 22/04 Prova substitutiva

Topologias de circuitos incluindo semicondutores

O que é uma topologia de circuito?

- Topologia é o estudo da disposição e das propriedades dos diferentes elementos de um conjunto.
- No contexto de um circuito elétrico ou eletrônico, uma topologia de circuito representa como os componentes de um circuito são interconectados e relacionados para atingir um certo objetivo.
- A seguir, veremos as principais topologias de circuitos contendo semicondutores, e suas principais aplicações.

Circuito retificador - Meia onda

• O diodo permite a passagem de corrente somente em um sentido, gerando uma saída positiva de meia onda.

Topologia de um retificador meia onda

Entrada e saída de um retificador meia onda

Aula 6 - Topologias de circuitos incluindo semicondutores

Circuito retificador – Onda completa em ponte

- Utilizando 4 diodos ao invés de 1, o retificador de onda completa consegue gerar ondas positivas a partir de uma senoide.
- O transformador no começo do circuito serve para abaixar a tensão para valores menores.

Topologia de um retificador de onda completa

Entrada e saída de um retificador de onda completa

Aula 6 – Topologias de circuitos incluindo semicondutores

Circuito retificador – Incluindo um capacitor

 Como o capacitor armazena cargas elétricas (energia), ele "segura" a tensão de saída, parecendo mais com um sinal de corrente contínua. Chamamos isso de filtro capacitivo.

Retificador meia onda com um filtro capacitivo

Topologia completa de uma fonte de alimentação

Topologia completa de uma fonte de alimentação

Aula 6 – Topologias de circuitos incluindo semicondutores

Regulador Zener

• Utiliza um Diodo Zener operando na região de ruptura para manter a tensão constante em uma carga.

Topologia de um regulador Zener

Circuito amplificador – Amplificador com polarização do emissor com fonte dupla (PEFD)

• Ao polarizar o transistor com CC, pode-se amplificar um sinal em CA.

Topologia de um amplificador PEFD

Circuito amplificador – Amplificador com estágios em cascata

• Ao combinar circuitos amplificadores em cascata, o ganho de tensão será o produto dos ganhos de tensão.

Topologia de um amplificador em cascata de dois estágios

Circuito amplificador – Conexões Darlington

• Ao combinar dois transistores e interligar os seus coletores, temos um ganho final equivalente ao produto dos ganhos.

Esquerda: Par de transistores com uma conexão Darlington Direita: Transistor Darlington

$$\beta = \beta_1 \beta_2$$

Caso o ganho seja 200 para ambos os transistores:

$$\beta = (200)(200) = 40.000$$