Examenul național de bacalaureat 2023 Proba E. c) Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 5

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$4 \cdot \left(1 - \frac{4}{5}\right) + \frac{1}{5} = 4 \cdot \frac{1}{5} + \frac{1}{5} =$	3p
	$=\frac{4}{5}+\frac{1}{5}=1$	2p
2.	f(0)=2	2p
	$f(1) = 5 \Rightarrow f(0) \cdot f(1) = 2 \cdot 5 = 10$	3 p
3.	2x-3=x	3 p
	x=3	2p
4.	Mulțimea A are 10 elemente, deci sunt 10 cazuri posibile	2p
	Numerele n din mulțimea A pentru care $n^2 \le 23$ sunt $0, 1, 2, 3$ și 4 , deci sunt 5 cazuri	
	favorabile, de unde obținem $p = \frac{5}{10} = \frac{1}{2}$	3p
5.	OA = 3, $OB = 4$	2p
	$AB = 5$, deci $P_{\Delta OAB} = 3 + 4 + 5 = 12$	3p
6.	$\cos 60^{\circ} = \frac{1}{2}, \sin 30^{\circ} = \frac{1}{2}$	2p
	$(1+2\cos 60^\circ)\cdot \sin 30^\circ = (1+2\cdot\frac{1}{2})\cdot\frac{1}{2} = 2\cdot\frac{1}{2} = 1$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 0 \\ 1 & 3 \end{vmatrix} = 1 \cdot 3 - 0 \cdot 1 =$ $= 3 - 0 = 3$	3p 2p
b)	$B(8) - 3B(2) = \begin{pmatrix} 8 & 0 \\ -1 & 6 \end{pmatrix} - 3\begin{pmatrix} 2 & 0 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 2 & 6 \end{pmatrix} =$	3p
	$=2\begin{pmatrix}1&0\\1&3\end{pmatrix}=2A$	2 p
c)	$A \cdot B(x) = \begin{pmatrix} x & 0 \\ x - 3 & 3x - 6 \end{pmatrix}, \text{ pentru orice număr real } x$	3 p
	$\begin{pmatrix} x & 0 \\ x-3 & 3x-6 \end{pmatrix} = \begin{pmatrix} x & 0 \\ -1 & x-2 \end{pmatrix}, \text{ de unde obținem } x = 2$	2 p
2.a)	$f = X^3 - 2X^2 - 2X + 3 \Rightarrow f(1) = 1^3 - 2 \cdot 1^2 - 2 \cdot 1 + 3 =$	3 p
	=1-2-2+3=0	2p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

b)	$x_1x_2 + x_2x_3 + x_3x_1 = -2$ și $x_1x_2x_3 = -m \Rightarrow x_1x_2 + x_2x_3 + x_3x_1 + x_1x_2x_3 = -2 - m$	3 p
	-2 - m = 1, de unde obținem $m = -3$	2p
c)	f(-2) = m - 12, pentru orice număr real m	2p
	m-12=0, de unde obținem $m=12$	3p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{3(x^2 + 1) - 3x \cdot 2x}{(x^2 + 1)^2} =$	3 p
	$= \frac{3 - 3x^2}{\left(x^2 + 1\right)^2} = \frac{3\left(1 - x^2\right)}{\left(x^2 + 1\right)^2}, \ x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{3x}{x^2 + 1} = \lim_{x \to +\infty} \frac{3}{x \left(1 + \frac{1}{x^2}\right)} = 0$	3 p
	Dreapta de ecuație $y = 0$ este asimptota orizontală spre $+\infty$ la graficul funcției f	2p
c)	$f'(x) = 0 \Leftrightarrow x = -1 \text{ sau } x = 1$	2p
	$f'(x) \le 0$, pentru orice $x \in (-\infty, -1] \Rightarrow f$ este descrescătoare pe $(-\infty, -1]$; $f'(x) \ge 0$, pentru	_
		2
	orice $x \in [-1,1] \Rightarrow f$ este crescătoare pe $[-1,1]$; $f'(x) \le 0$, pentru orice $x \in [1,+\infty) \Rightarrow f$ este	3 p
	descrescătoare pe $[1,+\infty)$	
2.a)	$\int_{0}^{1} (f(x) - 1) dx = \int_{0}^{1} 2x^{2} dx = \frac{2x^{3}}{3} \Big _{0}^{1} =$	3 p
	$=\frac{2\cdot 1^3}{3} - \frac{2\cdot 0^3}{3} = \frac{2}{3}$	2p
b)	$\int_{0}^{2} \frac{4x}{f(x)} dx = \int_{0}^{2} \frac{4x}{2x^{2} + 1} dx = \int_{0}^{2} \frac{\left(2x^{2} + 1\right)'}{2x^{2} + 1} dx = \ln\left(2x^{2} + 1\right)\Big _{0}^{2} =$	3 p
	$= \ln 9 - \ln 1 = 2 \ln 3$	2p
c)	$\int_{1}^{e} f\left(\frac{1}{x}\right) \cdot \ln x dx = \int_{1}^{e} \left(\frac{2}{x^{2}} + 1\right) \cdot \ln x dx = \int_{1}^{e} \left(-\frac{2}{x} + x\right)' \cdot \ln x dx = \left(-\frac{2}{x} + x\right) \cdot \ln x \left \frac{e}{1} - \left(\frac{2}{x} + x\right)\right _{1}^{e} = 3 - \frac{4}{e}$	3 p
	$3 - \frac{4}{e} = 2n^2 + 1 - \frac{4}{e}$ şi, cum <i>n</i> este număr natural, obținem $n = 1$	2p