Relativistic Behavior Detection through Electron Acceleration

Henry Shackleton

April 5, 2017

Classical Mechanics

1 / 21

Classical Mechanics

• Formalized by Newton in 1687

1 / 21

Classical Mechanics

- Formalized by Newton in 1687
- No limit to the speed of a particle

Classical Mechanics

- Formalized by Newton in 1687
- No limit to the speed of a particle

Special Relativity

1 / 21

Classical Mechanics

- Formalized by Newton in 1687
- No limit to the speed of a particle

Special Relativity

Developed by Einstein in 1905

1 / 21

Classical Mechanics

- Formalized by Newton in 1687
- No limit to the speed of a particle

Special Relativity

- Developed by Einstein in 1905
- The speed of light, c, is constant in all reference frames

1 / 21

Classical Mechanics

- Formalized by Newton in 1687
- No limit to the speed of a particle

Special Relativity

- Developed by Einstein in 1905
- The speed of light, c, is constant in all reference frames
- The velocity of any particle is capped at c

1 / 21

Classical and Relativistic Kinetic Energies are Different

Classical Kinetic Energy

$$K=\frac{p^2}{2m}$$

Classical and Relativistic Kinetic Energies are Different

Classical Kinetic Energy

$$K = \frac{p^2}{2m}$$

Relativistic Kinetic Energy

$$K = \sqrt{p^2c^2 + m^2c^4} - mc^2$$

Electrons in Magnetic Fields are Accelerated in Circular Orbits

$$\bullet \ \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = e\left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B}\right)$$

• Electrons follow a circular orbit with radii ρ proportional to their momentum, $p = \frac{\rho e}{c} B$

Lorentz Law Yields Kinetic Energy vs. Magnetic Field Relations

Classically,

$$K = \frac{e^2 \rho^2}{2mc^2} B^2$$

Relativistically,

$$K = \sqrt{e^2 \rho^2 B^2 + m^2 c^4} - mc^2$$

Experimentally measuring K vs. B will let us pick the more likely model

Experimental Setup Constrains Radius of Electron Orbit

Experimental Setup Constrains Radius of Electron Orbit

Experimental Setup Constrains Radius of Electron Orbit

Barium-133 Produces MCA Peaks at Known Energies

MCA Readout for Sr-90/Y-90 Sharply Peaked around Energy Range

Magnetic Field Affects Peak Energy Range

10 / 21

Kinetic Energy Determined through Gaussian Fitting

April 5, 2017

11 / 21

Gaussian Fits Bring Uncertainty in Kinetic Energy

B_{approx} (G)	K (kEv)	σ_K (kEv)
90	222	1.47
100	265	1.08
110	312	.79
120	355	.66

Uncertainties in Magnetic Field

Uncertainties in Magnetic Field

Variations during individual runs from coil heating

Uncertainties in Magnetic Field

- Variations during individual runs from coil heating
- Variations between runs

13 / 21

Uncertainties in Magnetic Field

- Variations during individual runs from coil heating
- Variations between runs
- Inhomogeneous magnetic field during individual runs

Uncertainties in Magnetic Field

- Variations during individual runs from coil heating
- Variations between runs
- Inhomogeneous magnetic field during individual runs
- Systematic uncertainty in magnetometer

13 / 21

Inhomogeneity Addressed by Averaging over Multiple Points

- Measured at point C during experimental runs
- Determined correspondance between magnetic field at point C and the average magnetic field over the path of the electron

14 / 21

Data Follows Relativistic Trend

Relativistic Fit Predicts Realistic Constants

	Measured Values	Expected Values
e (esu)	$5.02\pm.03$	4.8
mc^2 (kEv)	505 ± 76	511

Correlated fit pays off - uncertainty in mc^2 reduces from 200 kEv to 76 kEv.

16 / 21

Rest Energy Is Not Dominant In Our Regime

$$K = \sqrt{\rho^2 e^2 B^2 - m^2 c^4} - mc^2$$

• Special Relativity and Classical Mechanics make different predictions for K(p)

- Special Relativity and Classical Mechanics make different predictions for K(p)
- Using Lorentz's Law, we can determine electron momentum by the magnetic field supplied

18 / 21

- Special Relativity and Classical Mechanics make different predictions for K(p)
- Using Lorentz's Law, we can determine electron momentum by the magnetic field supplied
- Experimentally determined relationship of K and B follow relativistic trends and predict electron charge and rest energy within expected values

$$K = \sqrt{p^2c^2 + m^2c^4} - mc^2$$

$$K = \sqrt{p^{2}c^{2} + m^{2}c^{4}} - mc^{2}$$

$$= \sqrt{m^{2}c^{4}\left(1 + \frac{p^{2}}{m^{2}c^{2}}\right)} - mc^{2}$$

$$K = \sqrt{p^{2}c^{2} + m^{2}c^{4}} - mc^{2}$$

$$= \sqrt{m^{2}c^{4}\left(1 + \frac{p^{2}}{m^{2}c^{2}}\right)} - mc^{2}$$

$$= mc^{2}\sqrt{1 + \frac{p^{2}}{m^{2}c^{2}}} - mc^{2}$$

$$K = \sqrt{p^{2}c^{2} + m^{2}c^{4}} - mc^{2}$$

$$= \sqrt{m^{2}c^{4}\left(1 + \frac{p^{2}}{m^{2}c^{2}}\right)} - mc^{2}$$

$$= mc^{2}\sqrt{1 + \frac{p^{2}}{m^{2}c^{2}}} - mc^{2}$$

$$\approx mc^{2}\left(1 + \frac{p^{2}}{2m^{2}c^{2}}\right) - mc^{2}$$

$$K = \sqrt{p^{2}c^{2} + m^{2}c^{4}} - mc^{2}$$

$$= \sqrt{m^{2}c^{4}\left(1 + \frac{p^{2}}{m^{2}c^{2}}\right)} - mc^{2}$$

$$= mc^{2}\sqrt{1 + \frac{p^{2}}{m^{2}c^{2}}} - mc^{2}$$

$$\approx mc^{2}\left(1 + \frac{p^{2}}{2m^{2}c^{2}}\right) - mc^{2}$$

$$= \frac{p^{2}}{2m}$$

Voltage for Curvature Correction Dependent on Velocity

 For detection, the trajectory of the electron must be adjusted to a straight line

20 / 21

Voltage for Curvature Correction Dependent on Velocity

- For detection, the trajectory of the electron must be adjusted to a straight line
- From Lorentz's Law, the required electric field is $E = \frac{vB}{c}$

20 / 21

Voltage for Curvature Correction Dependent on Velocity

- For detection, the trajectory of the electron must be adjusted to a straight line
- ullet From Lorentz's Law, the required electric field is $E=rac{vB}{c}$
- For two plates separated by a distance d, the voltage required is $V = \frac{dvB}{c}$

20 / 21

Calibration Fit for Magnetometer Results in Large Errors

21 / 21