Galaxy Clusters & AGN Feedback

The Clusters Hiding in Plain Sight (CHiPS) Survey

KIPAC Tea talk 12-05-2020

Taweewat Somboonpanyakul | Massachusetts Institute of Technology

Advisor: Michael McDonald

In collaboration with: A. Nobel, M. Bayliss, M. Gaspari, A. Stark, B. Stadler

Galaxy Clusters Typical Properties

- Most massive gravitational bounded objects in the universe
- Consist of many galaxy members
- Host a central BCG and giant dark matter halo
- Contain extremely hot gas (10⁷ K) inside a halo (ICM)
 - Emitting X-ray radiation

Two type of Clusters

Relaxed Clusters vs Disturbed Clusters

- E.g., Abell 1835
 - Mostly cool core (cool/denser in a core)
 - Has some cooling (~100 M_☉ yr⁻¹)
 - Host a radio-loud AGN

Two type of Clusters

Disturbed Cluster

- E.g., El Gordo •
- Mostly non-cool core •
- Has almost no cooling (<10 M_☉ yr⁻¹)
 - Host a radio-quiet AGN •
- Highly disturbed morphology for the ICM •

Two type of Clusters Relaxed Cluster

- E.g., Abell 1835
 - Mostly cool core (cool/denser in a core)
 - Has some cooling (~100 M_☉ yr⁻¹)
 - Host a radio-loud AGN

Disturbed Cluster

- E.g., El Gordo •
- Mostly non-cool core •
- Has almost no cooling (<10 M_☉ yr⁻¹)
 - Host a radio-quiet AGN •
- Highly disturbed morphology for the ICM •

These are what massive clusters look like.

But they are not what clusters should look like.

Suppression of Star Formation

Flow Problem

eedback

The Phoenix Cluster The most famous exception to the rule

- Extremely high star formation rate (~600 M_☉ yr⁻¹)
- A strong cool core (core X-ray density > 0.1 cm⁻³)
- Relaxed morphology for the ICM

Wh How rare is the Phoenix Cluster? er?

The Clusters Hiding in Plain Sight (CHiPS) Survey

Goal: To find Phoenix-like clusters from X-ray all-sky surveys

The Tale of the Phoenix Discovery

How many of these so-called X-ray point sources are in fact clusters?

ROSAT ALL-SKY SURVEY Bright Sources

Aitoff Projection
Galactic II Coordinate System

Energy range: 0.1 - 2.4 keV Number of RASS-II sources: 18811

Hardness ratio: -1.0 | -0.4 | -0.2 | 0.2 | 0.6 | 1.0 (soft -> hard : magenta - red - yellow - green - cyan)

Matching with other all-sky surveys

(X-ray=ROSAT, Mid-IR=WISE, Near-IR=2MASS, Radio=NVSS/SUMSS)

Optical Follow-up

Cluster Richness vs Redshift

Cluster Richness vs Redshift

CHIPS1911+4455

Phoenix meets El Gordo

The Phoenix Cluster The most famous exception

- Extremely high star formation rate
- A strong cool core
- Relaxed morphology for the ICM

El Gordo The most massive cluster

- Very low star formation rate
- Non cool-core clusters
- Highly disturbed morphology for the ICM

CHIPS1911+4455

- Extremely high star formation rate
- A strong cool core
- Relaxed morphology for the ICM

- Very low star formation rate
 - Non cool-core clusters
- Highly disturbed morphology for the ICM

BUT, this is not what massive clusters should look like.

100 kpc

CHIPS1911+44555

Phoenix meet El Gordo (z=0.485)

Nordic Optical Telescope for optical spectra

- Extremely high star formation rate
- A strong cool core
- Highly disturbed morphology for the ICM

SFR [OII] = $120\pm15 \text{ M}_{\odot} \text{ yr}^{-1}$ SFR [WISE4] = $143\pm30 \text{ M}_{\odot} \text{ yr}^{-1}$ Chandra X-ray Image

- Observed in 2019 with ACIS-I for 30.5 ks
- This image is adaptively smoothed.
- It shows a cool-core in the center
- Also shows highly asymmetries on large scale.

CHIPS1911+4455 Phoenix meet El Gordo

- Extremely high star formation rate
- A strong cool core
- Highly disturbed morphology for the ICM

100 kpc

Hubble Image

- Observed in 2019 during Cycle 27 Mid-Cycle
- With F550M (1 orbit) and F110W (1 orbit) using ACS/WFC
- F550M: blue continuum and bright [OII] doublets
- F110W: red continuum for elliptical galaxies

100 kpc

What we learned from CHiPS

- The rarity of these extreme cases told us that CCA might be a mechanism for the feedback
- The survey found a new mode of cooling with CHIPS1911+4455 (massive starburst in a merging cluster)

Pretty rare (2±1%)

Contributions

AGN Feedback in Galaxy Clusters

Finding more extreme clusters will help us unlock mysteries of AGN feedback.