Г.Э. Юлдашева, Ижевский институт повышения квалификации; О.С. Авсентьев, доктор технических наук, профессор, Воронежский институт МВД России

МОДЕЛИРОВАНИЕ ПРОЦЕССА ФОРМИРОВАНИЯ ЭЛЕКТРИЧЕСКОГО КАНАЛА УТЕЧКИ ИНФОРМАЦИИ ПРИ РАБОТЕ УСИЛИТЕЛЯ НИЗКОЙ ЧАСТОТЫ НА ОСНОВЕ СЕТЕЙ ПЕТРИ

Физические процессы, происходящие при функционировании как основных, так и вспомогательных технических средств и систем (ОТСС и ВТСС, соответственно) объектов информатизации ОВД, обуславливают создание в окружающей среде побочных излучений.

Так как эти излучения в той или иной степени связаны с обрабатываемой информацией, а физические явления, лежащие в их основе, имеют различный характер, то создание адекватных математических моделей механизмов противодействия утечке информации возможно лишь при тщательном анализе физических явлений и процессов, протекающих в технических средствах и системах.

Опасность этих явлений и процессов заключается в том, что рассматриваемые физические поля являются основой для формирования технических каналов утечки информации (ТКУИ).

При этом особого внимания заслуживают ТКУИ, в которых противник имеет возможность применения технических средств разведки (ТСР) для съема информации за пределами контролируемой зоны с соединительных линий ВТСС, посторонних проводников, цепей электропитания и заземления [1], вследствие наводок информативных сигналов ОТСС на такого рода линии и проводники [1], а также вследствие просачивания этих сигналов в цепи рассматриваемого типа. Такие ТКУИ в известной литературе [1] получили название электрических, так как физическим носителем информации в рассматриваемых случаях являются колебания электрического тока.

Рассмотрим физические явления и процессы, проявляющиеся при просачивании информативных сигналов в цепи электропитания. Эти явления и процессы становятся возможными, например, при наличии магнитной связи между выходным трансформатором усилителя низкой частоты (УНЧ) и трансформатором выпрямительного устройства[1].

УНЧ с выходным трансформатором применяется в ряде случаев, когда для передачи сигналов тревоги или речевых сообщений, источниками которых, как правило, являются микрофон, DVD, CD, MP3-плееры, используются мощные системы селекторной или трансляционной сети связи,

а расстояние от усилителя до нагрузки - акустической системы (выходной проводной линии) имеет большую протяженность.

Характеризовать работу, физические и эксплуатационные свойства любого УНЧ, в том числе и УНЧ с выходным трансформатором, можно по основным параметрам, к которым относятся: коэффициент усиления (в зависимости от назначения — по напряжению, по мощности или току) и диапазон рабочих частот, определяемый как интервал частот, в котором коэффициент усиления остается неизменным в пределах $\pm 3dB$ относительно коэффициента усиления, измеренного на частоте 1kHz[2].

Функционально УНЧ состоит из двух каскадов - это усилитель по напряжению (предварительный усилитель) и усилитель мощности (выходной усилитель) (рисунок 1).

Рис.1. Обобщенная схема усилителя низкой частоты

Предназначенный для повышения напряжения (U_{ex}), подаваемого на вход, до необходимого значения на выходе, предварительный усилитель является первым каскадом, включаемым между источником сигнала и усилителем мощности, в котором с входным сигналом производятся основные изменения, прежде всего по напряжению (усиление) и спектру частот (коррекция частотной характеристики, регулировка тембра)[2].

Назначение усилителя мощности или выходного усилителя — это передача в цепь нагрузки колебаний требуемой мощности $(U_{\text{вых}})[3]$.

Работа входящего в его состав выходного трансформатора сопровождается формированием магнитного поля рассеяния ($M_{y_{H^{\prime}}}$), которое попадая в трансформатор источника питания, наводит напряжение в его обмотках, создавая, таким образом, в усилителе паразитную индуктивную обратную связь. При достаточном усилении эта связь изменяет характеристики устройства или даже вызывает его самовозбуждение в области рабочих частот[4].

Несмотря на большое разнообразие конкретных технических решений схем построения, один из важнейших элементов УНЧ - источник питания, содержит в своем составе трансформатор, выпрямитель, фильтр, стабилизатор и обладает конечным внутренним сопротивлением (рисунок 2) [3].

Рис.2.Обобщенная схема источника питания УНЧ

Причиной наводок напряжений во всех проводниках, находящихся рядом с источником питания, является входящий в его состав трансформатор, создающий магнитное поле рассеивания (M_n) . Несмотря на то, что наводимые паразитные напряжения, чаще всего невелики и обычно не превышают нескольких милливольт, необходимо ослабить влияние трансформатора, удалив его от цепей, на которые возможны наводки напряжений — это входы УНЧ, предварительный усилитель, регуляторы громкости — тембра, или экранировать его [5].

Анализируя рассматриваемые физические явления и процессы, способствующие формированию исследуемого ТКУИ, отметим, что изучаемый объект представляет собой большую и сложную систему, исследование функционирования которой представляет серьёзную проблему, вследствие большого количества входящих в нее элементов и сложности взаимосвязей между ними.

В связи с этим при исследовании характеристик ТКУИ рассматриваемого типа возникают существенные трудности, для устранения которых с целью формализации исследуемых явлений и процессов используются модели. При этом моделирование целесообразно осуществлять в два этапа. На первом этапе строятся функциональные модели, а затем им в соответствие ставятся аналитические модели.

Результатом формализации является математическая модель, которая, как и всякая другая модель будет обладать наглядностью, или сводиться к удобным для исследования логическим схемам, упрощающим рассуждения и логические построения или позволяющим проводить эксперименты, уточняющие природу явлений.

Модель (лат.modulus—мера) — объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала [6], позволит определить выполняет ли исследуемая система те функции, для которых она предназначена, её надежность и уязвимость, проблемные места, возможность возникновения ошибок, возможность её усовершенствования.

Удобным механизмом моделирования больших и сложных систем рассматриваемого типа, позволяющим решать задачи по их исследованию, являются сети Петри[5],графически изображаемые в виде двудольного ориентированного графа и определяемые как совокупность множеств

 $C = \{P, T, I, O\}$, где:

- P— конечное множество, элементы которого называются позициями, характеризующими состояние системы $P = \{p_1, p_2, p_n\}$, n > 0;
- T конечное множество, элементы которого называются переходами, характеризующими действия происходящие в системе $T = \{t_1, t_2, t_m\}$, m > 0, $P \cap T = 0$;

I-множество входных функций ($I:T \rightarrow P$);

O – множество выходных функций $(O:T \rightarrow P)$.

Элементами множества позиций P модели ТКУИ исследуемого типа, построенной на основе сетей Петри будут являться следующие события (рисунок 3):

- p_{I} существование информации и наличие оснований для её передачи;
 - p_2 наличие информации в нагрузке УНЧ;
- p_3 наличие магнитного поля рассеивания выходного трансформатора УНЧ при формировании ($U_{\rm выx}$), способного создать паразитную индуктивную обратную связь в усилителе;
 - p_4 наличие информативного сигнала в сети электропитания;
 - p_5 наличие информативного сигнала (на входе TCP).

Элементами множества переходов T будут являться следующие операции (рисунок 3):

- t_I -преобразование информационного сигнала (U_{ex}) в усилителе;
- t_2 формирование магнитного поля рассеивания, модулированного информационным сигналом ($M_{y_{H^q}}$) выходного трансформатора при преобразовании информационного сигнала;
 - *t*₃— просачивание информативного сигнала в цепи электропитания.
 - t_4 регистрация информативного сигнала TCP.

Для представления динамических свойств объекта в сетях Петри вводится понятие маркировки (разметки) $M: P \rightarrow \{0, 1, 2,\}$. Маркировка M есть присвоение неких абстрактных объектов, называемых метками (фишками), позициям, причем количество меток, соответствующее каждой позиции, может меняться. При графическом задании разметка отображается помещением внутри вершин-позиций соответствующего числа точек (когда точек много, ставят цифры)[6].

Для иллюстрации обобщенной модели ТКУИ исследуемого типа на основе сети Петри используем её графическое представление (рисунок 3).

Рис. 3. Обобщенная модель ТКУИ на основе сети Петри

На этом рисунке переход t_1 показывает, что после его срабатывания информационный сигнал передается в нагрузку, переход t_2 - что информационный сигнал будет передаваться в нагрузку вне зависимости от процесса формирования магнитного поля рассеивания, модулированного информационным сигналом (M_{yrq}) выходного трансформатора при преобразовании информационного сигнала.

Начальная маркировка (рисунок 3) $M_0 = \{1,0,0.0,0\}$, после срабатывания перехода t_1 $M_1 = \{1,1,0,0,0\}$, после срабатывания перехода t_2 $M_2 = \{1,1,1,0,0\}$.

Анализируя обобщенную модель ТКУИ исследуемого типа, построенную на основе сетей Петри (рисунок 3), можно утверждать, что она наглядно отображает всю последовательность процесса его формирования, в том числе просачивание информативных сигналов в цепи электропитания, выходящие за пределы контролируемой зоны, и как следствие - возможность ТСР восстанавливать информацию по результатам её регистрации.

Это говорит о возможности моделирования такого рода процессов, с использованием аппарата сетей Петри, позволяющего не только отображать последовательность процесса формирования ТКУИ, но и обыгрывать различные ситуации, учитывающие характеристики элементов исследуемой системы, например, характеристики источника информации (уровень сигнала), характеристики ТСР (например, чувствительность), вводить вероятности обеспечениятех или иных характеристик и многое другое.

А так как применение трансляционных и селекторных систем и сетей связи возможно во многих структурах, это свидетельствует об актуальности исследования вопросов защиты информации по такому каналу утечки и целесообразности использования сетей Петри для их моделирования.

ЛИТЕРАТУРА

- 1. Хорев А.А. Защита информации от утечки по техническим каналам. Часть 1. Технические каналы утечки информации. Учебное пособие. М.: Гостехкомиссия России, 1998. 320 с.
- 2. Турута Е.Ф. Предварительные усилители низкой частоты.-М.:ДМК Пресс,2008-176с.
- 3. Адаменко М.В.Секреты ламповых усилителей низкой частоты. М.: НТ Пресс, 2007. 384 с.
- 4. Цыкин Г. С.Усилительные устройства. М.: Книга по Требованию, 2012. –186 с.
- 5. Рогов И.Е. Конструирование источников питания звуковых усилителей.-М.:Инфра-Инженерия,2011-160с.
- 6. Советов Б. Я., Яковлев С. А.С. Моделирование систем: Учебник для вузов. М.: Высшая школа, 2001. 343 с: ил.