PCR em Tempo Real

Alan Silva

Aulas 17 e 18

PCR em tempo real

Conceitos

- Reação de PCR onde o acúmulo de produtos é medido em tempo real
- Medição dos produtos no final de cada ciclo
- Objetiva a quantificação do material inicial e não final
- Reação sensível, rápida, eficiente e reproduzível
- Permite uma enorme variedade de detecções

Aplicações

- Quantificação de DNA específico em uma amostra
- Quantificação dos níveis de expressão de um gene (mRNA)
- Quantificação como parte de outra técnica (ex.: ChIP)

Fases de uma PCR

- Fase basal
 - Apenas ruído de DNA-molde e início de amplificação
- Fase Exponencial
 - Duplicação de produto
- Fase Linear
 - Decaimento da reação
 - Alta variabilidade
- Fase de Platô
 - Limite da reação
 - Alta degradação de produto

PCR: tradicional vs tempo real

- PCR tradicional (end-point)
 - Resultado coletado na fase de platô
- PCR em tempo real
 - Resultado coletado na fase exponencial

Plateau effect

- As amostras no platô não refletem a quantidade de DNA/RNA molde inicial
 - Mais DNA molde
 - Mais produto final

PCR em tempo real (quantitativa)

- Vantagens
 - Dados medidos na fase exponencial
 - Sem efeito platô
 - Quantificação precisa da quantidade de material inicial
- Componentes de uma PCR quantitativa
 - Reagentes:
 - Master mix: tampão de enzima, enzima e dNTPs
 - Primers
 - DNA/cDNA molde
 - água
 - Detecção: após cada ciclo de reação fluoróforos

Detecção em qPCR: Sondas de Hidrólise

- Sistema TaqMan®
 - Necessita de uma sonda específica para a região alvo
 - A sonda possui um *reporter* e um *quencher* nas pontas
 - Na amplificação, a polimerase degrada a sonda (5′-3′ exonuclease)
 - Separado do quencher, o reporter emite sinal fluorescente mais forte
 - Altamente específico porém exclusivo para um produto

Detecção em qPCR: Intercalante de DNA

- SYBR® green
 - Fluoróforo que se liga à qualquer DNA/cDNA dupla fita
 - Sinal muito mais forte quando conectado, permitindo a detecção
 - Quanto mais produto de PCR, mais sonda intercalada e mais sinal
 - Altamente versátil mas pouco específico
 - Pode ser utilizado para qualquer produto, apenas mudando primers
 - Detecta produtos inespecíficos ou até dímeros de primers

Nomenclaturas e Siglas

- Baseline: acúmulo de repórter abaixo do limite de detecção
 - Pode ser representado em forma de ruídos
 - Ruídos podem ultrapassar threshold se concentração de molde for alta
- Threshold: nível de detecção acima do sinal basal
 - Determinado automaticamente pelo equipamento (pode ser alterado)
- Ct: Ciclo de PCR em que o sinal da amostra ultrapassa o threshold
 - Leitura que permite a análise dos dados
 - Quanto menor o Ct, mais DNA alvo na amostra inicial

Desenho de Primers para qPCR

- Critérios gerais: mesmos dos primers comuns
 - 18-23 pb, ΔTm ≤ 5 °C, 40-60 % CG, evitar repetições e estruturas secundárias
- Critérios específicos:
 - Tm de cada primer: ≈ 60 °C (indicado pelos kits)
 - Tamanho do amplicon: 75 250 pb, sendo ideal 90 150 pb
 - Método de purificação: RP-OC, HPLC ou mesmo PAGE (evitar dessalinização)

Local de desenho dos primers:

- qPCR para biomassa:
 - gene multicópia, não presente no hospedeiro
- RT-qPCR para expressão de genes:
 - evitar introns, priorizar exons diferentes para cada primers ou junção entre exons

Primers para biomassa

- Região conservada de gene com múltiplas cópias: ITS
 - Maior sensibilidade e detecção
- Extrair DNA puro sem RNA
 - Primers em exons amplificam tanto DNA quanto RNA
- Verificar match em outras espécies
 - Se desejar medir quantidade de uma espécie em um hospedeiro
 - Para distinguir uma espécie entre outras semelhantes, evitar Sybr® Green

Primers para expressão gênica: gene com intron

- Primers pulando intron
 - DNA e RNA com amplicons de tamanhos diferentes (*Melting curve*)
 - DNA não amplifica se introns forem grandes (não é o caso de fungos)
- Primers na junção entre exons
 - Não amplifica a partir de DNA
 - Expressão de um mRNA variante em genes com splicing alternativo
 - Exige cDNA para o teste dos primers (expressão baixa / fase específica)

Primers para expressão gênica: gene sem intron

- Garantir ausência de DNA contaminante
 - Algumas colunas de kits costumam reter resíduos de DNA
 - Tratar com DNAse na coluna ou após extração com Trizol
- Distinção de genes semelhantes: Primers na região UTR
 - Região UTR costuma ser menos conservada

Especificidade dos Primers

- Testar os primers em reação end-point
 - Incluir controles com gDNA e NTC
 - Verificar bandas esperadas e inespecíficas
 - Se necessário, sequenciar o produto para confirmar
 - Ao confirmar amplificação, fazer análise de eficiência

Eficiência dos Primers

• Princípio:

- 100% eficiência: dobro de produto em cada ciclo (2ⁿ)
- Eficiência aceita para qPCR: 90–105%
- Amplificação exponencial = escala logarítmica
- − Diluição seriada = amplificação constante → alta eficiência
- Ex.: DNA de concentração conhecida a 100 ng
 - Diluição seriada 1:10 (100ng 10ng 1ng 0,1ng 0,01ng 0,001ng)
 - $-2^{n} = 10 \text{ ou } \text{Log}_{2}10; n = 3,321928$
 - qPCR: Ct baixo = alvo detectado antes = amostra mais concentrada
 - A diferença de Ct das diluições será exatamente 3,32 ciclos
 - Ex: 100ng Ct 16,27, se o primer é 100% eficiente, a amostra de 10ng terá Ct 18,27 + 3,32 = 19,59
 - Valores de Cts plotados em uma Regressão linear

Eficiência dos Primers: Simulação Ideal

Passos

- Diluição seriada 1:10 de uma amostra
- Plotar o Log10 das diluições x Cts
- Construir uma regressão linear

Conc.	Ct	Log10 DNA
100	16,27	2
10	19,59	1
1	22,91	0
0,1	26,23	-1
0,01	29,55	-2
0,001	32,87	-3

Eficiência =
$$-1 + 10^{(-1/\text{slope})}$$

$$y = -3.32x + 22.91$$

X = Log10 concentração Y = Ct

Ex: Amostra Ct = 18,15

x = (y - 22,91)/-3,32 x = (18,15 - 22,91)/-3,32x = -4,76/-3,32

x = 1,43373

 $10^{1,43373} = 27,14 \text{ ng}$

Teste de Primers: Xln1 de C. graminicola

Ī	Well ◊	Fluor Δ	Target ◊	Content	◊	Sample	\Diamond	Cq ◊	SQ ◊
	A04	SYBR	XIn1	Std-08				16.02	1.000E+02
	A05	SYBR	XIn1	Std-08				16.00	1.000E+02
	A06	SYBR	XIn1	Std-08				16.02	1.000E+02
	B04	SYBR	XIn1	Std-09				19.17	1.000E+01
	B05	SYBR	XIn1	Std-09				19.14	1.000E+01
	B06	SYBR	XIn1	Std-09				19.19	1.000E+01
	C04	SYBR	XIn1	Std-10				22.81	1.000E+00
	C05	SYBR	XIn1	Std-10				22.62	1.000E+00
	C06	SYBR	XIn1	Std-10				22.84	1.000E+00
	D04	SYBR	XIn1	Std-11				26.11	1.000E-01
	D05	SYBR	XIn1	Std-11				26.32	1.000E-01
	D06	SYBR	XIn1	Std-11				26.23	1.000E-01
	E04	SYBR	XIn1	Std-12				29.67	1.000E-02
	E05	SYBR	XIn1	Std-12				29.53	1.000E-02
	E06	SYBR	XIn1	Std-12				29.80	1.000E-02
	F04	SYBR	XIn1	Std-13				32.55	1.000E-03
	F05	SYBR	XIn1	Std-13				32.44	1.000E-03
	F06	SYBR	XIn1	Std-13				33.38	1.000E-03
	G04	SYBR	XIn1	Std-14				N/A	1.000E-04
	G05	SYBR	XIn1	Std-14				36.14	1.000E-04
	G06	SYBR	XIn1	Std-14				N/A	1.000E-04
	H04	SYBR	XIn1	NTC				N/A	N/A
	H05	SYBR	XIn1	NTC				N/A	N/A
	H06	SYBR	XIn1	NTC				N/A	N/A

Well ◊	Fluor	Δ	Target	◊	Content	♦	Sample	♦	Melt Temp ◊
A06	SYBR		XIn1		Std-08				78.00
B04	SYBR		XIn1		Std-09				78.00
B05	SYBR		XIn1		Std-09				78.00
B06	SYBR		XIn1		Std-09				78.00
C04	SYBR		XIn1		Std-10				78.00
C05	SYBR		XIn1		Std-10				78.00
C06	SYBR		XIn1		Std-10				78.00
D04	SYBR		XIn1		Std-11				78.50
D05	SYBR		XIn1		Std-11				78.00
D06	SYBR		XIn1		Std-11				78.00
E04	SYBR		XIn1		Std-12				78.00
E05	SYBR		XIn1		Std-12				78.00
E06	SYBR		XIn1		Std-12				78.00
F04	SYBR		XIn1		Std-13				78.00
F05	SYBR		XIn1		Std-13				78.00
F06	SYBR		XIn1		Std-13				78.00
G04	SYBR		XIn1		Std-14				None
G05	SYBR		XIn1		Std-14				78.00
G06	SYBR		XIn1		Std-14				None
H04	SYBR		XIn1		NTC				None
H05	SYBR		XIn1		NTC				None
H06	SYBR		XIn1		NTC				None

Teste de Primers: Xln2 de C. graminicola

Well ♦	Fluor Δ	Target ◊	Content 💠	Sample 💠	Melt Temp ♦
A07	SYBR	XIn2	Std-15		83.00
A08	SYBR	XIn2	Std-15		83.00
A09	SYBR	XIn2	Std-15		83.00
B07	SYBR	XIn2	Std-16		83.00
B08	SYBR	XIn2	Std-16		83.00
B09	SYBR	XIn2	Std-16		83.00
C07	SYBR	XIn2	Std-17		83.00
C08	SYBR	XIn2	Std-17		83.00
C09	SYBR	XIn2	Std-17		83.00
D07	SYBR	XIn2	Std-18		83.00
D08	SYBR	XIn2	Std-18		83.00
D09	SYBR	XIn2	Std-18		83.00
E07	SYBR	XIn2	Std-19		83.00
E08	SYBR	XIn2	Std-19		83.00
E09	SYBR	XIn2	Std-19		83.00
F07	SYBR	XIn2	Std-20		83.00
F08	SYBR	XIn2	Std-20		83.00
F09	SYBR	XIn2	Std-20		83.00
G07	SYBR	XIn2	Std-21		83.00
G08	SYBR	XIn2	Std-21		83.00
G09	SYBR	XIn2	Std-21		None
H07	SYBR	XIn2	NTC		None
H08	SYBR	XIn2	NTC		76.50

Tipos de Quantificação

- Relativa (Comparativa)
 - Quantidade de DNA/RNA inicial em relação a um controle
 - Controle: exógeno, endógeno, lista de referências
 - Não necessita de curva padrão ou quantidades conhecidas
 - Amostras normalizadas em relação ao controle
 - Amostras normalizadas comparadas:
 - Tratamento x controle
 - Selvagem x mutante
 - Indivíduos saudáveis x doentes

Tipos de Quantificação

Absoluta

- Quantidade de DNA/RNA inicial "relativa" a uma curva padrão
- Curva padrão na mesma placa ou feita nas mesmas condições
 - Mesmo kit, mesmo aparelho, mesma threshold
- Amostras comparadas com a curva padrão
- Quantificação relacionada a um parâmetro biológico
 - Massa de tecido coletado
 - Quantidade de células
 - Número de cópias de um gene
 - Massa total de DNA do alvo na amostra (em μg, ng, pg...)

Desenho Experimental: Réplicas ou Repetições

Réplica biológica

- Repetições experimentais da mesma amostra
- Importante para avaliar variações biológicas do experimento
 - 3 coletas independentes no mesmo local
 - organismo selvagem inoculado 3x independentemente
 - 3 plantas independentes tratadas com o promotor de crescimento

Réplica técnica

- Repetições de uma amostra experimental durante a análise
- Importante para avaliar variações de manuseio/pipetagem
 - DNA da mesma amostra biológica em 3 poços da placa de qPCR

Outros Tipos de Réplicas (menos utilizadas)

- Réplica de extração
 - Mesma amostra biológica submetida a mais de uma extração de DNA/RNA independentes
 - Importante para avaliar variações da extração
- Réplica de conversão RNA → cDNA
 - RNA extraído de uma amostra convertido em cDNA mais de uma vez independentemente
 - Importante para avaliar variações de eficiência de conversão

Como controlar variações

- Variação biológica
 - Variação real existente entre amostras
 - Aquela que queremos analisar e comparar
- Variação técnica
 - Variações introduzidas em qualquer etapa:
 - Coleta: peso, número de células ou fragmentos coletados
 - Processamento: armazenamento, transporte, resfriamento, extração
 - Análise: tipo de detecção (TaqMan ou SybrGreen), primers eficientes, repetições técnicas, controles positivo, negativo, NTC e NRT.
 - Maior fonte de variação: Extração de DNA/RNA
 - Podemos reduzir por meio da NORMALIZAÇÃO

Como controlar variações

- Variação biológica
 - Variação real existente entre amostras
 - Aquela que queremos analisar e comparar
- Variação técnica
 - Variações introduzidas em qualquer etapa:
 - Coleta: peso, número de células ou fragmentos coletados
 - Processamento: armazenamento, transporte, resfriamento, extração
 - Análise: tipo de detecção (TaqMan ou SybrGreen), primers eficientes, repetições técnicas, controles positivo, negativo, NTC e NRT.
 - Maior fonte de variação: Extração de DNA/RNA
 - Podemos reduzir por meio da NORMALIZAÇÃO

Normalização

- Concentração e qualidade do DNA/RNA
 - Nanodrop, gel de agarose, bioanalyzer, qbit...
- Controle de amplificação
 - DNA/RNA externo ou alvo interno de valores constantes
 - Controle exógeno: DNA conhecido (plasmídeo) adicionado imediatamente antes de iniciar a extração, em quantidade igual para todas amostras.
 Amplificar por qPCR o alvo na amostra e o alvo no plasmídeo, usado para normalizar.
 - Desvantagens: não valida as fases anteriores (lise de células)
 - Controle endógeno: Outro alvo na mesma amostra de expressão constitutiva, sendo usado para normalizar a quantificação do alvo principal.
 - Desvantagens: gene não pode ser afetado pelo experimento

Estudo de Caso: Biomassa de C.g. em milho

- Objetivo: avaliar a diferença de patogenicidade em mutantes
- Método: quantificar a biomassa total do fungo na planta
- Genes utilizados:
 - Gene alvo: ITS (60 cópias no genoma do fungo)
 - Gene normalizador: M13 (controle exógeno com plasmídeo pUC18)
- Desenho experimental:
 - Linhagens: Selvagem, Ectópico e 3 mutantes independentes
 - 3 repetições experimentais: 1 rep = 3 folhas x 4 inóculos = 12 fragmentos
 - 5 linhagens x 3 repetições = 15 extrações de DNA
 - 50 pg de pUC18 por amostra antes da extração
 - 3 repetições técnicas na placa de qPCR (para ITS e M13)
 - Incluir controle positivo (gDNA), negativo (gDNA planta) e NTC (água)

Estudo de Caso: Biomassa de C.g. em milho

Cálculo manual de algumas amostras

Fórmula para o ITS:

Log 10: = (Ct - 17,889)/-3,3897

- Formula para o M13:

Log 10: = (Ct - 28,946)/-3,2442

	ITS (fungo)												
	tubo (ng)	dil. (ng)	usado	Ct	Log10	DNA (ng) poço	DNA (ng) tubo	DNA total (ng)					
Wt	67	67 10 20		14,19	1,091247	12,33806384	4133,251386	5838,45					
Ect	52,1	10 20		14,46	1,011594	10,2705558	2675,479785	5483,34					
Δ23	72,8	10	10 20		-0,57262	0,267536446	97,3832665	272,48					
Δ25	?5 73,4 10 20		18,64	-0,22155	0,600408	220,349736	476,99						
Δ31	31 72 10 20		18,93	-0,30711	0,493052513	177,4989046	301,24						

	M13 (pUC18)												
	tubo (ng)	dil. (ng)	usado	Ct	Log10	DNA (fg)	DNA (pg) poço	DNA (pg) tubo					
Wt	67	10	20	22,38	2,02392	105,6621906	0,105662191	35,40					
Ect	52,1	10	20	22,55	1,971518	93,65229017	0,09365229	24,40					
Δ23	72,8	10	20	23,46	1,691018	49,09280155	0,049092802	17,87					
Δ25	73,4	10	20	23,11	1,798903	62,93651009	0,06293651	23,10					
Δ31	72	10	20	22,74	1,912952	81,83749845	0,081837498	29,46					

WT Ect Δ23 Δ25 Δ31

DNA no poço:

=POTÊNCIA(10;Log10)

Unidade: mesma da curva padrão ITS = ng; M13 = fg

DNA no tubo:

=tubo/usado*DNApoço*100

Estudo de Caso: Expressão de CgXLN3 in planta

- Objetivo: comparar a expressão de um gene específico entre selvagem e mutantes durante a infecção
- Método: quantificar a expressão do gene alvo em relação a um gene normalizador (constitutivo)
- Genes utilizados:
 - Gene alvo: XLN3
 - Gene normalizador: H3 (controle endógeno com gene constitutivo)
- Desenho experimental:
 - Linhagens: Selvagem, Ectópico e 3 mutantes independentes
 - 3 repetições experimentais: 1 rep = 3 folhas x 4 inóculos = 12 fragmentos
 - 5 linhagens x 3 repetições = 15 extrações de RNA
 - 3 repetições técnicas na placa de qPCR (para XLN3 e H3)
 - Incluir C+ (cDNA), C- (RNA planta), NTC (água) e NRT (sem enzima RT)

Estudo de Caso: Expressão de CgXLN3 in planta

Eficiência dos primers

												- ^										
Well	♦ Fluor	Δ	Target	\Diamond	Content	\	Sample	\Diamond	Cq 🗘) SQ	♦	Well	\	Fluor	Δ	Target	\Diamond	Content	\Diamond	Sample	\Diamond	Melt Temp ◊
A10	SYBR		XIn3		Std-22				16.04	1.000	E+02	A10	S	YBR		Xln3		Std-22				81.50
A11	SYBR		XIn3		Std-22				16.09	1.000	E+02	A11	S	YBR		Xln3		Std-22				81.50
A12	SYBR		XIn3		Std-22				16.09	1.000	E+02	A12	S	YBR		Xln3		Std-22				81.50
B10	SYBR		XIn3		Std-23				19.25	1.000	E+01	B10	S	YBR		Xln3		Std-23				81.50
B11	SYBR		XIn3		Std-23				19.17	1.000	E+01	B11	S	YBR		Xln3		Std-23				81.50
B12	SYBR		XIn3		Std-23				19.20	1.000	E+01	B12	S	YBR		Xln3		Std-23				81.50
C10	SYBR		XIn3		Std-24				22.76	1.000	E+00	C10	S	YBR		Xln3		Std-24				81.50
C11	SYBR		XIn3		Std-24				22.67	1.000	E+00	C11	S	YBR		Xln3		Std-24				81.50
C12	SYBR		Xln3		Std-24				22.67	1.000	E+00	C12	S	YBR		Xln3		Std-24				81.50
D10	SYBR		XIn3		Std-25				26.21	1.000	E-01	D10	S	YBR		Xln3		Std-25				81.50
D11	SYBR		XIn3		Std-25				26.24	1.000	E-01	D11	S	YBR		Xln3		Std-25				81.50
D12	SYBR		XIn3		Std-25				26.17	1.000	E-01	D12	S	YBR		Xln3		Std-25				81.50
E10	SYBR		XIn3		Std-26				29.72	1.000	E-02	E10	S	YBR		Xln3		Std-26				81.50
E11	SYBR		XIn3		Std-26				29.82	1.000	E-02	E11	S	YBR		Xln3		Std-26				81.50
E12	SYBR		XIn3		Std-26				29.70	1.000	E-02	E12	S	YBR		Xln3		Std-26				81.50
F10	SYBR		XIn3		Std-27				33.35	1.000	E-03	F10	S	YBR		Xln3		Std-27				81.50
F11	SYBR		XIn3		Std-27				33.52	1.000	E-03	F11	S	YBR		Xln3		Std-27				81.50
F12	SYBR		XIn3		Std-27				33.70	1.000	E-03	F12	S	YBR		Xln3		Std-27				81.50
G10	SYBR		XIn3		Std-28				34.82	1.000	E-04	G10	S	YBR		Xln3		Std-28				82.00
G11	SYBR		Xln3		Std-28				N/A	1.000	E-04	G11	S	YBR		Xln3		Std-28				None
G12	SYBR		XIn3		Std-28				37.38	1.000	E-04	G12	S	YBR		Xln3		Std-28				81.50
H10	SYBR		XIn3		NTC				N/A		N/A	H10	S	YBR		Xln3		NTC				None
H11	SYBR		XIn3		NTC				N/A		N/A	H11	S	YBR		Xln3		NTC				None
H12	SYBR		Xln3		NTC				42.74		N/A	H12	S	YBR		Xln3		NTC				74.50

Qualidade do RNA

- Nanodrop
 - RNA puro:
 - A260/A280 ~ 2.0
 - A260/A230 > A260/A280
 (1.8 2.2)

- Gel de Agarose comum
 - Agarose 2% in TAE 1x
 - Utensílios limpos com RNAse Away
 - 2 μL RNA + 2 μL Tampão de Corrida
 + 6 μL Água
 - 5 min 70 °C, gelo, 70V 1h

Estudo de Caso: Expressão de CgXLN3 in planta

• Cálculo com base em Livak ou método 2-ΔΔCt

ΔCt: Ct_{gene alvo} – Ct_{gene normalizador}

 $\Delta\Delta$ Ct: Δ Ct_{tratamento} – Δ Ct_{controle}

Expressão Relativa: 2-ΔΔCt

- Resultado dado em fold-change
 - acima de 1: upregulation
 - abaixo de 1: downregulation
 - 1,11 = 111% de expressão
 - 0,06 = 6% de expressão ou 15,4 fold

	XLN3											
	Ct H3	Fold										
Wt	19,11	21,71	2,6	0	1	1						
Ect	19,19	21,63	2,44	-0,16	1,117287138	1,117287						
Δ23	21,81	28,36	6,55	3,95	0,064704058	-15,455						
Δ25	23,22	29,57	6,35	3,75	0,074325445	-13,4543						
Δ31	22,39	29,93	7,54	4,94	0,032577055	-30,6965						

Fold: =SE (X>=1;X;(1/X)*(-