

POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ INFORMATYKI Bezpieczeństwo sieci komputerowych

PRACOWNIA SPECJALISTYCZNA 2-3 DR INŻ. MACIEJ BRZOZOWSKI

TEMAT: IMPLEMENTACJA PODSTAWOWYCH MODUŁÓW KRYPTOGRAFICZNYCH.

Przykład 1. Rail fence

M = CRYPTOGRAPHY, n=3

Przykład 2a. Przestawienia macierzowe

M = CRYPTOGRAPHYOSA, key=3-1-4-2

$$\frac{1}{C} \frac{2}{R} \frac{3}{Y} \frac{4}{P}$$

$$T O G R$$

$$A P H Y$$

$$O S A$$

$$C = YCPRGTROHAYPAOS^{1}$$

Przykład 2b.

M=HERE IS A SECRET MESSAGE ENCIPHERED BY TRANSPOSITION² Key=CONVENIENCE

	Rey-convenience														
C	Ο	N	V	E	N	I	E	N	C	E					
1	10	7	11	3	8	6	4	9	2	5					
Н	Е	R	Е	I	S	A	S	Е	С	R					
E	T	M	E	S	S	A	G	\mathbf{E}	\mathbf{E}	N					
C	I	P	Η	E	R	E	D	В	Y	T					
R	A	N	S	P	Ο	S	I	T	I	Ο					
N															

C=HECRN CEYI ISEP SGDI RNTO AAES RMPN SSRO EEBT ETIA EEHS³

¹Proszę zwrócić uwagę na prawidłowe zaszyfrowanie i rozszyfrowanie niepełnego bloku!

²W powyższym rozwiązaniu znaki białe zostały usunięte w celu zwiększenia czytelności przykładu.

³W powyższym rozwiązaniu znaki białe zostały wstawione w celu zwiększenia czytelności przykładu. W implementacjach autorskich powyższe znaki białe mają nie występować!

Przykład 2c.

C	Ο	N	V	E	N	I	E	N	C	E
1	10	7	11	3	8	6	4	9	2	5
Н										
E	R	E	I	S	A	S	E	C	R	
E	T	M	E	S						
S	A	G	E	E	N	C	I			
P	Η	E	R	E	D	В	Y	T	R	A
N	S	P	O	S	I	T				
I	O	N								

C=HEESPNI RR SSEES EIY A SCBT EMGEPN ANDI CT RTAHSO IEERO⁴

Przykład 3a. Szyfrowanie cezara (Caesar cipher)

szyfrowanie: $c=(a+k) \mod n$ deszyfrowanie: $a = [c + (n-k)] \mod n$

gdzie:

n - liczba znaków w alfabecie

k - klucz

c - znak do zaszyfrowania

a - znak zaszyfrowany

Dla k=3 oraz wiadomości jawnej M = CRYPTOGRAPHY otrzymujemy EK(M)=FUBSWRJUDSKB

Przykład 3b. Szyfrowanie cezara (Caesar cipher)

szyfrowanie: $c=(a*k_1+k_0) \mod n$ deszyfrowanie: $a=[c+(n-k_0)]k_1^{\varphi(n)-1} \mod n$

dla n=21 $\varphi(n)$ =12

k₁,k₀ muszą być pierwsze względem n.

⁴W powyższym rozwiązaniu znaki białe zostały wstawione w celu zwiększenia czytelności przykładu. W implementacjach autorskich powyższe znaki białe mają nie występować! Proszę zwrócić uwagę na prawidłowe szyfrowanie oraz deszyfrowanie tekstu przy niepełnych blokach!

Przykład 4. Szyfrowanie Vigenere'a

Tekst																										
Klucz	Α	В	C	D	E	F	G	Η	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
A	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z
В	В	C	D	Е	F	G	Η	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	Α
C	C	D	E	F	G	Η	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	В
D	D	Е	F	G	Η	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C
E	Е	F	G	Η	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	\mathbf{Z}	A	В	C	D
F	F	G	Η	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	Е
G	G	Η	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	Е	F
Н	Н	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	\mathbf{Z}	Α	В	C	D	Е	F	G
I	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	Е	F	G	Η
J	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	Е	F	G	Η	I
K	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	E	F	G	Η	I	J
L	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	Е	F	G	Η	L	J	K
M	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	Е	F	G	Η	I	J	K	L
N	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	E	F	G	Η	I	J	K	L	M
O	О	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	Е	F	G	Η	I	J	K	L	M	N
P	P	Q	R	S	T	U	V	W	X	Y	\mathbf{Z}	Α	В	C	D	Е	F	G	Η	I	J	K	L	M	N	O
Q	Q	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	Е	F	G	Η	I	J	K	L	M	N	O	P
R	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	Е	F	G	Η	I	J	K	L	M	N	O	P	Q
S	S	T	U	V	W	X	Y	Z	Α	В	C	D	Е	F	G	Η	I	J	K	L	M	N	O	P	Q	R
T	T	U	V	W	X	Y	Z	Α	В	C	D	Е	F	G	Η	I	J	K	L	M	N	O	P	Q	R	S
U	U	V	W	X	Y	Z	Α	В	C	D	Е	F	G	Η	I	J	K	L	M	N	O	P	Q	R	S	T
V	V	W	X	Y	Z	Α	В	C	D	Е	F	G	Η	I	J	K	L	M	N	O	P	Q	R	S	T	U
W	W	X	Y	Z	Α	В	C	D	Е	F	G	Η	I	J	K	L	M	N	O	P	Q	R	S	T	U	V
X	X	Y	Z	Α	В	C	D	Е	F	G	Η	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W
Y	Y	Z	Α	В	C	D	Е	F	G	Η	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X
Z	Z	Α	В	C	D	Е	F	G	Η	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y

Dla litery tekstu jawnego a i klucza k, zaszyfrowany tekst c jest literą w kolumnie a i wierszu k. Dla szyfrogramu c, plaintext a jest kolumną zawierającą c w wierszu k.

M = CRYPTOGRAPHY K = BREAKBREAKBR EK(M) = DICPDPXVAZIP

Zadania (maksymalnie 7 punktów):

- 1. Zaimplementuj algorytm kodujący i dekodujący z wykorzystaniem szyfru prostego przestawiania "rail fence" dla k=n. Skorzystaj z przykładu 1 (1 punkt).
- 2. Zaimplementuj kryptosystem przedstawieniowy bazujący na przykładzie 2a dla d = 5 oraz klucza key = 3-4-1-5-2 (1 punkt).
- 3. Zaimplementuj kryptosystem przedstawieniowy bazujący na przykładzie 2b (1 punkt) oraz 2c (2 punkty) dla dowolnego klucza.
- 4. Zaimplementuj szyfr cezara bazując na przykładzie 3b (1 punkt).
- 5. Zaimplementuj kryptosystem bazujący na tablicy Vigenere'a (1 punkt).