```
!pip install --upgrade scikit-learn
```

```
Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (1.2.2)
     Collecting scikit-learn
       Downloading scikit_learn-1.4.1.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.1 MB)
                                                   12.1/12.1 MB 53.9 MB/s eta 0:00:00
     Requirement already satisfied: numpy<2.0,>=1.19.5 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.25.2)
     Requirement already satisfied: scipy>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.11.4)
     Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.3.2)
     Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (3.4.0)
     Installing collected packages: scikit-learn
       Attempting uninstall: scikit-learn
         Found existing installation: scikit-learn 1.2.2
         Uninstalling scikit-learn-1.2.2:
           Successfully uninstalled scikit-learn-1.2.2
     Successfully installed scikit-learn-1.4.1.post1
import sklearn
print(sklearn.__version__)
     1.4.1.post1
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
#Load the data
from google.colab import files
uploaded = files.upload()
     Choose Files No file chosen
                                       Upload widget is only available when the cell has been
     executed in the current browser session. Please rerun this cell to enable.
     Saving IBM HR Final cleaned Data.xlsm to IBM HR Final cleaned Data.xlsm
df=pd.read_excel('IBM_HR_Final_cleaned_Data.xlsm')
df.head()
```

	Age	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Environm
0	49	Travel_Frequently	279	Research & Development	8	1	
1	59	Non-Travel	1420	Human Resources	2	4	
2	59	Non-Travel	1420	Human Resources	2	4	
3	49	Travel_Frequently	279	Research & Development	8	1	
4	49	Travel_Frequently	279	Research & Development	8	1	
5 rc	ws ×	30 columns					

df.tail()

	Age	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Envi
19473	47	Travel_Rarely	465	Research & Development	1	3	
19474	38	Travel_Rarely	371	Research & Development	2	3	
19475	34	Travel_Rarely	629	Research & Development	27	2	
19476	55	Non-Travel	177	Research & Development	8	1	
19477	27	Travel_Rarely	1134	Research & Development	16	4	
5 rows ×	30 cc	olumns					

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19478 entries, 0 to 19477 Data columns (total 30 columns):

#	Columns (total 30 columns,	Non-Null Count	Dtype
0	Age	19478 non-null	int64
1	BusinessTravel	19478 non-null	object
2	DailyRate	19478 non-null	int64
3	Department	19478 non-null	object
4	DistanceFromHome	19478 non-null	int64
5	Education	19478 non-null	int64
6	EnvironmentSatisfaction	19478 non-null	int64
7	Gender	19478 non-null	object
8	HourlyRate	19478 non-null	int64
9	JobInvolvement	19478 non-null	int64
10	JobLevel	19478 non-null	int64
11	JobRole	19478 non-null	object
12	JobSatisfaction	19478 non-null	int64
13	MaritalStatus	19478 non-null	object
14	MonthlyIncome	19478 non-null	int64
15	MonthlyRate	19478 non-null	int64
16	NumCompaniesWorked	19478 non-null	int64
17	OverTime	19478 non-null	object
18	PercentSalaryHike	19478 non-null	int64
19	RelationshipSatisfaction	19478 non-null	int64
20	StandardHours	19478 non-null	int64
21	StockOptionLevel	19478 non-null	int64
22	TotalWorkingYears	19478 non-null	int64
23	TrainingTimesLastYear	19478 non-null	int64
24	WorkLifeBalance	19478 non-null	int64
25	YearsAtCompany	19478 non-null	int64
26	YearsInCurrentRole	19478 non-null	int64
27	YearsSinceLastPromotion	19478 non-null	int64
28	YearsWithCurrManager	19478 non-null	int64
29	Employee Source	19478 non-null	object
dtype	es: int64(23), object(7)		
mamai	ον μεασρ• Λ 5+ MR		

memory usage: 4.5+ MB

in this dataset we have 19478 rows and 30 columns in which 23 are int datatype and 7 are object with no null values present

df.describe()

	Age	DailyRate	DistanceFromHome	Education	EnvironmentSatisfac
count	19478.000000	19478.000000	19478.000000	19478.000000	19478.00
mean	37.524489	812.367697	8.945836	2.924274	2.74
std	8.860420	402.778087	8.006485	1.026008	1.08
min	18.000000	102.000000	1.000000	1.000000	1.00
25%	31.000000	477.000000	2.000000	2.000000	2.00
50%	36.000000	813.000000	7.000000	3.000000	3.00
75%	43.000000	1176.000000	13.000000	4.000000	4.00
max	60.000000	1499.000000	29.000000	5.000000	4.00
8 rows ×	23 columns				

→ Now lets find null values

df.isnull().sum()/len(df)*100

BusinessTravel 0.0 DailyRate 0.0 Department 0.0 DistanceFromHome 0.0 Education 0.0 EnvironmentSatisfaction 0.0 Gender HourlyRate JobInvolvement JobLevel 0.0 JobRole 0.0 JobSatisfaction 0.0 MaritalStatus 0.0 MonthlyIncome 0.0 MonthlyRate 0.0 NumCompaniesWorked 0.0 OverTime 0.0 PercentSalaryHike 0.0 RelationshipSatisfaction StandardHours StockOptionLevel 0.0 TotalWorkingYears 0.0 TrainingTimesLastYear 0.0 WorkLifeBalance 0.0 YearsAtCompany 0.0 YearsInCurrentRole 0.0 YearsSinceLastPromotion 0.0 YearsWithCurrManager 0.0 Employee Source 0.0 dtype: float64

▼ There is no null values present in this dataset

```
for i in df:
    print(i)
    print(df[i].unique())
```

Separating cat and num columns

```
cat_col=df.select_dtypes(object)
cat_col
```

	BusinessTravel	Department	Gender	JobRole	MaritalStatus	OverTime	Er
0	Travel_Frequently	Research & Development	Male	Research Scientist	Married	No	
1	Non-Travel	Human Resources	Male	Research Scientist	Married	No	
2	Non-Travel	Human Resources	Male	Research Scientist	Married	No	
3	Travel_Frequently	Research & Development	Male	Research Scientist	Married	No	
4	Travel_Frequently	Research & Development	Male	Research Scientist	Married	No	
19473	Travel_Rarely	Research & Development	Female	Laboratory Technician	Single	No	
10171	T 15 1	Research &		Research	2: 1	V	C

num_col=df.select_dtypes([int,float])
num_col

	Age	DailyRate	DistanceFromHome	Education	${\bf Environment Satisfaction}$	HourlyRa
0	49	279	8	1	3	
1	59	1420	2	4	1	
2	59	1420	2	4	1	
3	49	279	8	1	3	
4	49	279	8	1	3	
19473	47	465	1	3	4	
19474	38	371	2	3	4	
19475	34	629	27	2	4	
19476	55	177	8	1	4	
19477	27	1134	16	4	4	
19478 rd	ows ×	23 columns				

```
for i in cat_col:
    print(i)
    print(cat_col[i].unique())

    BusinessTravel
    ['Travel_Frequently' 'Non-Travel' 'Travel_Rarely']
    Department
    ['Research & Development' 'Human Resources' 'Sales']
    Gender
    ['Male' 'Female']
    JobRole
```

```
['Research Scientist' 'Manufacturing Director' 'Laboratory Technician'
      'Sales Representative' 'Sales Executive' 'Manager'
                                                     'Human Resources
      'Healthcare Representative' 'Research Director']
    MaritalStatus
    ['Married' 'Single' 'Divorced']
    OverTime
    ['No' 'Yes']
    Employee Source
    ['Seek' 'Indeed' 'Referral' 'Company Website' 'Adzuna' 'GlassDoor' 'Jora'
      'LinkedIn' 'Recruit.net']
for i in num_col:
   print(i)
   print(num_col[i].unique())
     1448 601 1221 383 1109 264 918 788 1313 1186 1464 196 796 723
      415 337 937 1492 801 704 301 1120 469 1262 1308 984 174
                                                                  718
      367 1384 902 669 1457 1421
                                  150 179
                                            363 107 1465 1098
                                                              969 1320
     1429 603 968 879 640 266
                                  412 1138
                                            325 634 1253 1202
                                                              256 1405
      999 285 404 683 1462 949 652 332
                                            560 359 866 1326
                                                              748 990
     1193 271 333 1440 674 441 1342
                                       898
                                            350
                                               992 1288 1108
                                                              479 1059
      457 241 1015 1387 1470 365 486 1037
                                            392 567 148 786 370 146
      611 897 1054 181 734 1128 1180 431
                                            572 352 1172 1079 1394 1239
      911 1162 234 468 613 1023 628 590
                                           953 355 835 219 1096 1444
     1382 1378 1266 529]
    DistanceFromHome
    [ 8 2 26 3 9 10 13 23 18 24 1 5 7 27 6 25 20 16 15 19 21 4 11 29
     22 28 14 12 17]
    Education
    [1 4 3 2 5]
    EnvironmentSatisfaction
    [3 1 2 4]
    HourlyRate
    [ 61 37 95 87 56 79 62 40 33 57 42 81
                                                   67
                                                       90
                                                          44
      94 55 93 84 49 38 32 52 69 86 70 30
                                                   50 51 88 80
                                                                  96
      78 45 46 41 82 99 58 39 48 63 72 83
                                                   97
                                                       75
                                                          73
                                                              98
                                                                  36
                                                                      47
      71 77 43 59 76 60 54 100 35 64 92 91 34 89
    JobInvolvement
    [2 3 1 4]
    JobLevel
    [2 1 5 3 4]
    JobSatisfaction
    [2 3 1 4]
    MonthlyIncome
    [5130 6499 4810 ... 9991 5390 4404]
    MonthlyRate
    [24907 22656 26314 ... 5174 13243 10228]
    NumCompaniesWorked
    [1 2 3 6 4 9 0 7 8 5]
    PercentSalaryHike
    [23 13 14 15 11 16 12 17 21 20 22 18 19 24 25]
    RelationshipSatisfaction
    [4 3 2 1]
    StandardHours
    [80]
    StockOptionLevel
    [1 0 2 3]
    TotalWorkingYears
    [10 16 6 19 7 8 5 2 38 3 20 17 1 12 22 21 13 9 14 11 4 30 23 28
     15 32 24 31 26 37 0 40 29 18 25 34 36 35 33 27]
    TrainingTimesLastYear
    [3 5 2 4 0 1 6]
    WorkLifeBalance
    [3 2 4 1]
    YearsAtCompany
    [10 14 6 0 8 3 5 2 1 37 7 4 20 17 9 15 16 11 12 13 22 18 25 21
     27 40 33 24 19 36 29 31 32 26 30 34 23]
    YearsInCurrentRole
    [ 7 8 5 0 2 3 10 4 15 1 9 13 11 6 12 16 14 18 17]
    YearsSinceLastPromotion
    [1603247
                         5 8 12 13 11 10 9 15 14]
    YearsWithCurrManager
    [ 7 9 3 8 0 2 4 6 12 5 15 1 10 11 17 13 16 14]
```

Encoding

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()

```
for i in cat_col:
     cat_col[i]=le.fit_transform(cat_col[i])
     print(cat_col[i].unique())
     print(le.classes_)
      [1 0 2]
       ['Non-Travel' 'Travel_Frequently' 'Travel_Rarely']
       [1 0 2]
       ['Human Resources' 'Research & Development' 'Sales']
       [1 0]
       ['Female' 'Male']
       [6 4 2 8 7 3 1 0 5]
      ['Healthcare Representative' 'Human Resources' 'Laboratory Technician' 'Manager' 'Manufacturing Director' 'Research Director' 'Research Scientist' 'Sales Executive' 'Sales Representative']
       [1 2 0]
       ['Divorced' 'Married' 'Single']
       [0 1]
['No' 'Yes']
       [8 3 7 1 0 2 4 5 6]
['Adzuna' 'Company Website' 'GlassDoor' 'Indeed' 'Jora' 'LinkedIn' 'Recruit.net' 'Referral' 'Seek']
```

cat_col.head()

	BusinessTravel	Department	Gender	JobRole	MaritalStatus	OverTime	Employee Source
0	1	1	1	6	1	0	8
1	0	0	1	6	1	0	8
2	0	0	1	6	1	0	8
3	1	1	1	6	1	0	8
4	1	1	1	6	1	0	8

new_df=pd.concat([cat_col,num_col],axis=1)

new_df

	BusinessTravel	Department	Gender	JobRole	MaritalStatus	OverTime	Employee Source
0	1	1	1	6	1	0	8
1	0	0	1	6	1	0	8
2	0	0	1	6	1	0	8
3	1	1	1	6	1	0	8
4	1	1	1	6	1	0	8
19473	2	1	0	2	2	0	4
19474	2	1	1	6	2	1	1
19475	2	1	0	6	2	0	1
19476	0	1	0	4	1	1	6
19477	2	1	1	1	1	1	1

19478 rows × 30 columns

```
new df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19478 entries, 0 to 19477
Data columns (total 30 columns):

_			
Data	columns (total 30	columns):	
#	Column	Non-Null Count	Dtype
0	BusinessTravel	19478 non-null	int64
1	Department	19478 non-null	int64
2	Gender	19478 non-null	int64
3	JobRole	19478 non-null	int64
4	MaritalStatus	19478 non-null	int64
5	OverTime	19478 non-null	int64
6	Employee Source	19478 non-null	int64
7	Age	19478 non-null	int64
8	DailyRate	19478 non-null	int64
9	DistanceFromHome	19478 non-null	int64

	10	Education	19478	non-null	int64	
	11	EnvironmentSatisfaction	19478	non-null	int64	
	12	HourlyRate	19478	non-null	int64	
	13	JobInvolvement	19478	non-null	int64	
	14	JobLevel	19478	non-null	int64	
	15	JobSatisfaction	19478	non-null	int64	
	16	MonthlyIncome	19478	non-null	int64	
	17	MonthlyRate	19478	non-null	int64	
	18	NumCompaniesWorked	19478	non-null	int64	
	19	PercentSalaryHike	19478	non-null	int64	
	20	RelationshipSatisfaction	19478	non-null	int64	
	21	StandardHours	19478	non-null	int64	
	22	StockOptionLevel	19478	non-null	int64	
	23	TotalWorkingYears	19478	non-null	int64	
	24	TrainingTimesLastYear	19478	non-null	int64	
	25	WorkLifeBalance	19478	non-null	int64	
	26	YearsAtCompany	19478	non-null	int64	
	27	YearsInCurrentRole	19478	non-null	int64	
	28	YearsSinceLastPromotion	19478	non-null	int64	
	29	YearsWithCurrManager	19478	non-null	int64	
dtypes: int64(30)						
m	emor	^y usage: 4.5 MB				

EDA

sns.countplot(data=df, x='JobSatisfaction')
plt.title('Distribution of JobSatisfaction')
plt.show()


```
sns.histplot(data=df, x='Age', hue='JobSatisfaction', kde=True)
plt.title('Age Distribution by JobSatisfaction')
plt.show()
sns.boxplot(data=df, x='JobSatisfaction', y='MonthlyIncome')
plt.title('MonthlyIncome by JobSatisfaction')
plt.show()
```



```
plt.figure(figsize=(12, 6))
sns.countplot(data=df, x='BusinessTravel', hue='JobSatisfaction')
plt.title('BusinessTravel vs. JobSatisfaction')
plt.xticks(rotation=45)
plt.show()

plt.figure(figsize=(10, 6))
sns.countplot(data=df, x='JobRole', hue='JobSatisfaction')
plt.title('JobRole vs. JobSatisfaction')
plt.xticks(rotation=45)
plt.show()
```



```
correlation_matrix = df.corr()
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Matrix')
plt.show()
```



```
plt.figure(figsize=(10, 6))
sns.countplot(data=df, x='Education', hue='JobSatisfaction')
plt.title('Education vs. JobSatisfaction')
plt.xticks(rotation=45)
plt.show()
```



```
plt.figure(figsize=(10, 6))
sns.countplot(data=df, x='WorkLifeBalance', hue='JobSatisfaction')
plt.title('WorkLifeBalance vs. JobSatisfaction')
plt.xticks(rotation=45)
plt.show()
```


sns.boxplot(data=df, x='JobSatisfaction', y='YearsAtCompany')
plt.title('JobSatisfaction vs. YearsAtCompany')
plt.show()


```
plt.figure(figsize=(12, 6))
sns.countplot(data=df, x='Employee Source', hue='JobSatisfaction')
plt.title('Employee Source vs. JobSatisfaction')
plt.xticks(rotation=45)
plt.show()
```



```
df['AgeGroup'] = pd.cut(df['Age'], bins=[18, 30, 40, 50, 60, np.inf], labels=['18-30', '31-40', '41-50', '51-60', '61+'])
plt.figure(figsize=(10, 6))
sns.countplot(data=df, x='AgeGroup', hue='JobSatisfaction')
plt.title('AgeGroup vs. JobSatisfaction')
plt.xticks(rotation=45)
plt.show()
```



```
sns.countplot(data=df, x='OverTime', hue='JobSatisfaction')
plt.title('OverTime vs. JobSatisfaction')
plt.show()
```


sns.boxplot(data=df, x='JobSatisfaction', y='DistanceFromHome')
plt.title('JobSatisfaction vs. DistanceFromHome')
plt.show()

Feature selection

plt.figure(figsize=(20,10))
sns.heatmap(new_df.corr(),annot=True,cmap='coolwarm',fmt=".3f")

corr=new_df.corr()['JobSatisfaction'].reset_index()
corr.sort_values('JobSatisfaction',ascending=False)

	index	JobSatisfaction
15	JobSatisfaction	1.000000
4	MaritalStatus	0.048312
19	PercentSalaryHike	0.040541
5	OverTime	0.034882
2	Gender	0.028142
3	JobRole	0.020238
1	Department	0.012380
8	DailyRate	0.011897
6	Employee Source	-0.000816
17	MonthlyRate	-0.000979
9	DistanceFromHome	-0.003112
22	StockOptionLevel	-0.005881
24	TrainingTimesLastYear	-0.008429
27	YearsInCurrentRole	-0.012658
26	YearsAtCompany	-0.013406
25	WorkLifeBalance	-0.018608
14	JobLevel	-0.020063
18	NumCompaniesWorked	-0.021878
16	MonthlyIncome	-0.023214
10	Education	-0.024319
20	RelationshipSatisfaction	-0.028806
28	YearsSinceLastPromotion	-0.029380
29	YearsWithCurrManager	-0.030053
13	JobInvolvement	-0.031465
11	EnvironmentSatisfaction	-0.032697
23	TotalWorkingYears	-0.038994
12	HourlyRate	-0.043590
7	Age	-0.046104
0	BusinessTravel	-0.055352
21	StandardHours	NaN

```
corelation = pd.DataFrame(new_df.corr())
corelation = pd.DataFrame(corelation['JobSatisfaction'])
corelation=corelation.sort_values('JobSatisfaction',ascending=False)
indices_to_remove = ['JobSatisfaction']
corelation = corelation.drop(indices_to_remove)
plt.figure(figsize=(8,8))
sns.barplot(x=corelation['JobSatisfaction'],y=corelation.index)
```

<Axes: xlabel='JobSatisfaction', ylabel='None'>

new_df.columns

selected_columns = ['MaritalStatus', 'PercentSalaryHike', 'OverTime', 'Gender', 'JobRole', 'EnvironmentSatisfaction', 'TotalWorkingYear:
sat= new_df[selected_columns]

sat

	MaritalStatus	PercentSalaryHike	OverTime	Gender	JobRole	EnvironmentSatisf
0	1	23	0	1	6	
1	1	23	0	1	6	
2	1	23	0	1	6	
3	1	23	0	1	6	
4	1	23	0	1	6	
19473	2	13	0	0	2	
19474	2	11	1	1	6	
19475	2	15	0	0	6	
19476	1	14	1	0	4	
19477	1	11	1	1	1	
19478 rc	ows × 12 columns)

Feature Selection

```
X=sat.drop('JobSatisfaction',axis=1)
X
```

	MaritalStatus	PercentSalaryHike	OverTime	Gender	JobRole	EnvironmentSatisf
0	1	23	0	1	6	
1	1	23	0	1	6	
2	1	23	0	1	6	
3	1	23	0	1	6	
4	1	23	0	1	6	
19473	2	13	0	0	2	
19474	2	11	1	1	6	
19475	2	15	0	0	6	
19476	1	14	1	0	4	
19477	1	11	1	1	1	
19478 rows × 11 columns						

sns.countplot(df['JobSatisfaction'])

Train test split

 $from \ sklearn.model_selection \ import \ train_test_split$

 $\label{train_Xtest_ytrain_ytest_train_test_split} X train_X test_y train_y test_size=0.2, random_s tate=42)$

Scaling

```
from sklearn.preprocessing import StandardScaler
se=StandardScaler()

Xtrain=se.fit_transform(Xtrain)
Xtest=se.fit_transform(Xtest)
```

Training models

```
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from \ sklearn.tree \ import \ Decision Tree Classifier
from sklearn.ensemble import RandomForestClassifier
from \ sklearn.ensemble \ import \ Bagging Classifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import accuracy_score,classification_report
from sklearn.metrics import roc_auc_score,roc_curve
knn=KNeighborsClassifier(n_neighbors=3)
lr=LogisticRegression()
dt=DecisionTreeClassifier()
ra=RandomForestClassifier()
ad=AdaBoostClassifier()
svm=SVC(probability=True)
gau=GaussianNB()
bag=BaggingClassifier()
{\tt Gr=GradientBoostingClassifier()}
Training_score= []
Testing_score= []
def model_building(model):
    model.fit(Xtrain, ytrain)
    ytrain_pred= model.predict(Xtrain)
    ytest_pred= model.predict(Xtest)
    a= accuracy_score(ytrain, ytrain_pred)
   b= accuracy_score(ytest, ytest_pred)
    Training_score.append(a)
    Testing score.append(b)
    print(model)
    print("Train Data\n", accuracy_score(ytrain,ytrain_pred))
    print("Test Data\n", accuracy_score(ytest,ytest_pred))
model_building(knn)
     KNeighborsClassifier(n_neighbors=3)
     Train Data
      0.9896675651392632
     Test Data
      0.981776180698152
model_building(lr)
     LogisticRegression()
      0.34539853677319987
     Test Data
      0.3408624229979466
```

```
model_building(dt)
      DecisionTreeClassifier()
     Train Data
      1.0
      Test Data
      0.8986139630390144
model_building(ra)
      RandomForestClassifier()
      Train Data
      1.0
      Test Data
       0.9961498973305954
model_building(ad)
     AdaBoostClassifier()
     Train Data
      0.3762674881273264
      Test Data
      0.36113963039014374
model_building(svm)
     SVC(probability=True)
     Train Data
      0.6419586702605571
      Test Data
      0.6054928131416838
model_building(gau)
     GaussianNB()
      Train Data
      0.340007701193685
     Test Data
      0.32931211498973306
model_building(bag)
     BaggingClassifier()
      Train Data
       0.9998074701578745
      Test Data
      0.9840862422997947
model building(Gr)
     GradientBoostingClassifier()
     Train Data
       0.6336798870491593
      Test Data
      0.48716632443531827
Models= ["k-Nearest Neighbors","Logistic Regression" ,"Decision Tree Classifier", "Random forest Classifier" ,
"Ada-Boosting Classifier","svm","GaussianNB","Bagging Classifier", "Gradiant- Bossting Classifier"]
new_df1 = pd.DataFrame({"Algorithms":Models,
                     "Training Score":Training_score,
                     "Testing Score":Testing_score,})
new_df1
```

Algorithms Training Score Testing Score

Hypertunning

Random forest

```
svm
                                              0.641959
                                                               0.605493
from sklearn.model_selection import RandomizedSearchCV
                  _ . _. ..
ra=RandomForestClassifier()
                                              -----
random_forest_params = {
    'n_estimators': [25,50,75,100],
     'max_depth': [2, 3, 5, 10, 20],
    'min_samples_leaf': [5, 10, 20, 50, 100],
    'min_samples_split': [2, 5, 10],
'criterion': ["gini", "entropy"],
    'max_features': ['auto', 'sqrt'],
    'bootstrap': [True, False],
    'class_weight' : ["balanced", "balanced_subsample"]
}
ra\_reg=Randomized Search CV (ra,param\_distributions=random\_forest\_params, random\_state=42, scoring='accuracy', cv=5, n\_jobs=-1)
model_building(ra_reg)
      RandomizedSearchCV(cv=5, estimator=RandomForestClassifier(), n_jobs=-1,
                            param_distributions={'bootstrap': [True, False],
                                                    'class_weight': ['balanced',
                                                                        'balanced_subsample'],
                                                    'criterion': ['gini', 'entropy'],
'max_depth': [2, 3, 5, 10, 20],
'max_features': ['auto', 'sqrt'],
                                                    'min_samples_leaf': [5, 10, 20, 50,
                                                                           100],
                                                    'min_samples_split': [2, 5, 10],
'n_estimators': [25, 50, 75, 100]},
                           random_state=42, scoring='accuracy')
     Train Data
      0.835515338210756
     Test Data
      0.7517967145790554
```

y gaussianNB

from sklearn.model_selection import GridSearchCV
from sklearn.naive_bayes import GaussianNB