Algorithme de Backtrack:

un outil de base pour résoudre de nombreux problèmes d'IA

Cours de HMIN107 (IA)

ML Mugnier

Une famille de problèmes fréquente en IA

- Problèmes définis sous la forme (X,D,C) :
 - **X**: ensemble de variables
 - **D** : ensemble de **domaines** (valeurs possibles)
 - C : ensemble de conditions sur la compatiblité des valeurs que peuvent prendre simultanément des variables
- Une assignation sur Y ⊆ X est une application qui associe à chaque variable de Y une valeur de son domaine
- Elle est totale si Y = X
- Elle est consistante si elle satisfait les conditions qui portent sur les variables de Y (« solution partielle »)
- Une solution est une assignation totale consistante
- **Exemple**: **CSP** (« Constraint Satisfaction Problem »)

Nous allons en voir d'autres!

EXEMPLE DE CSP

Réseau de contraintes

- Ensemble de variables **X**={x1,x2,x3,x4}
- Ensemble de contraintes **C**={C1,C2,C3}
 - ---- hypergraphe
- Domaines des variables D1=D2=D3=D4={a,b}
 (D : union des Di)
- Définitions des contraintes

C2					C3	
	x2	х3	х4		x1	х4
	а	b	а		a	b
	b	а	b		b	b
				•		

Une assignation f sur $Y \subseteq X$ est **consistante** si : pour tout Ci sur (y1,...,yk), (f(y1),...,f(yk)) appartient à la définition de Ci

ALGORITHME DE BACKTRACK (EXISTENCE D'UNE SOLUTION)

```
Fonction BacktrackingSearch(): Booléen // accès aux données du problème // retourne vrai ssi il existe une solution

Début

Prétraitements;
retourner BT({});
Fin

Fonction BT(Assignation a): Booléen // accès aux données du problème // retourne vrai ssi il existe une solution étendant a

Début

si |a| = |X| alors retourner vrai; //solution trouvée
x 	 ChoixVariableNonAssignée(a);
pour tout v 	 Domaine(x) faire

si Consistant(aU{(x,v)}) alors
si BT(aU{(x,v)}) alors retourner vrai
retourner faux;

Fin
```

```
ALGORITHME DE BACKTRACK (CALCUL D'UNE SOLUTION)
 Fonction BacktrackingSearch(): Assignation (ou « échec », « null »)
    // retourne une solution s'il en existe une, sinon échec
    Début
          Prétraitements;
          retourner BT({});
    Fin
 Fonction BT(Assignation a): Assignation (ou échec)
 // retourne une solution s'il en existe une étendant a
 Début
     \underline{si} |a| = |X| \underline{alors} retourner a; //solution trouvée
    x \leftarrow ChoixVariableNonAssignée(a);
    pour tout v ∈ Domaine(x) faire
          si Consistant(a∪{(x,v)}) alors
                    Assignation b = BT(a \cup \{(x,v)\})
                   Si b ≠ échec alors retourner b
    retourner échec;
```

```
ALGORITHME DE BACKTRACK (CALCUL DE TOUTES LES SOLUTIONS)

Fonction BacktrackingSearch(): Ensemble d'Assignation

// retourne l'ensemble des solutions

Début

Prétraitements;

Ens → vide // ensemble de solutions

BT(Ens, {}) // alimente Ens

Retourner Ens

Fin

Fonction BT(Ens d'Assignation Ens, Assignation a)

// met dans Ens les solutions étendant a

Début

si |a| = |X| alors ajouter a à Ens; //solution trouvée

sinon

x ← ChoixVariableNonAssignée(a);

pour tout v ∈ Domaine(x) faire

si Consistant(a∪{(x,v)}) alors BT(Ens, a∪{(x,v)})

Fin
```

Un problème proche : Coloration de graphe

- Problème : étant donné un graphe G = (V,E)
 déterminer s'il existe une k-coloration de G
- k-coloration : assignation d'une couleur prise dans {1,..., k} à chaque sommet de V, telle que deux sommets adjacents n'aient pas la même couleur
- → Variables ?
- → Domaines ?
- → Conditions?
- o Variante : colorer les arêtes

BD RELATIONNELLE (→ VUE LOGIQUE)

- o **Schéma** de BD : ensemble de relations (avec leurs attributs)
- ex: Film [titre, directeur, acteur]

Pariscope [salle, titre, horaire]

Coordonnées [salle, adresse, téléphone]

On peut remplacer les attributs par une numérotation : 1,2,3

- → Vue logique : Film, Pariscope, Coordonnées
 - sont des relations (prédicats) ternaires
- o Instance d'une relation : ensemble de k-uplets

(k = arité de la relation)

→ Vue logique :

valeurs : constantes

instance de relation : ensemble d'atomes

o Instance de BD : ensemble des instances de relation

Une instance de la relation Film

titre	directeur	acteur
The trouble	Hitchcock	Green
The trouble	Hitchcock	Forsythe
The trouble	Hitchcock	MacLaine
The trouble	Hitchcock	Hitchcock
Cries and Whispers	Bergman	Anderson

Vue logique:

{ film(t,h,g), film(t,h,f), film(t,h,m), film(t,h,h), film(c,b,a) }

REQUÊTES CONJONCTIVES

En SQL: « SELECT ... FROM ... WHERE conditions de jointure »

Exemple:

« trouver les noms des films où Hitchcok joue »

SELECT Film.Titre FROM Film

WHERE Film.Acteur = « Hitchcock »

Vue logique?

trouver x tel que l'on ait Film(x,y,h)

Exemple:

« trouver les noms des salles dans lesquelles on joue un film de Bergman »

- Requête SQL?
- Vue logique?

Exemple:

« trouver les noms des salles dans lesquelles on joue un film de Bergman »

SELECT Pariscope.Salle
FROM Films, Pariscope
WHERE
Films.Directeur = « Bergman »
AND Films.Titre=Pariscope.Titre

Vue logique:

trouver z tel que Films(x,Bergman,y) A Pariscope(z,x,t)

Vue logique d'une requête conjonctive :

ensemble d'atomes

+ une liste de « variables réponses » (à retourner comme réponse)

Si la liste des variables est vide, on a une requête booléenne

RÉPONDRE À UNE REQUÊTE CONJONCTIVE

- Requête **Q** et base de données **D** : deux ensembles d'atomes
- Un homomorphisme h de Q dans D est une substitution des variables de Q par des constantes de D

telle que:

Pour tout atome p(x1,...,xk) de Q p(h(x1),...,h(xk)) est dans D

On considère que si xi est une constante, h(xi) = xi

 Les réponses à Q dans D sont obtenues en prenant les images des « variables réponses » par les homomorphismes de Q dans D

Recherche d'homomorphismes de Q dans D

Représentation sous la forme (X,D,C) ?

X = variables de Q

D = constantes de D

C = conditions à satisfaire par une assignation ?

Pour chaque atome p(x1,...,xk) de Q

p(h(x1),...,h(xK)) est dans D

Exemple: $Q = \{ p(x,y,z), s(z,t) \}$

 $D = \{ p(a,b,c), s(b,a), s(c,b) \}$

Dérouler l'algorithme de backtrack

en prenant un ordre statique sur les variables : z t x y

· Quels sont les atomes à tester à chaque étape ?

EXEMPLE (RECHERCHE D'HOMOMORPHISME(S))

 $\mathcal{A}1 = \{ p(x,y), p(y,z), q(z,x) \}$, où x, y et z sont des variables $\mathcal{A}2 = \{ p(a,b), p(b,a), q(b,b), q(a,c), q(b,c) \}$ où a, b et c sont des constantes

- Quels sont les **homomorphismes** de $\mathcal{A}1$ dans $\mathcal{A}2$?
- Dessiner l'arbre de recherche du backtrack obtenu :
 - en s'arrêtant dès qu'une solution est trouvée
 - en considérant les variables et les constantes selon l'ordre lexicographique

DE HOM à CSP

Problème de décision HOM

Données : $\mathcal{A}1$, $\mathcal{A}2$ « *instance* de HOM » **Question** : existe-t-il un homomorphisme de $\mathcal{A}1$ dans $\mathcal{A}2$?

Problème de décision CSP

Données : réseau (X,D,C) « instance de CSP »

Question : ce réseau est-il (globalement) consistant ?

Peut-on résoudre HOM en utilisant un algorithme qui résout CSP ?

(et on aimerait bien aussi trouver les homomorphismes)

EXEMPLE (RECHERCHE D'HOMOMORPHISME(S))

 \mathcal{A} 1 = { p(x,y), p(y,z), q(z,x) }, où x, y et z sont des variables \mathcal{A} 2 = { p(a,b), p(b,a), q(b,b), q(a,c), q(b,c) } où a, b et c sont des constantes

- Quels sont les homomorphismes de A1 dans A2?
- Dessiner l'arbre de recherche du backtrack obtenu :
 - en s'arrêtant dès qu'une solution est trouvée
 - en considérant les variables et les constantes selon l'ordre lexicographique

$HOM \rightarrow CSP$

 $\mathcal{A}1$ et $\mathcal{A}2 \rightarrow (X,D,C)$

Supposons que $\mathcal{A}1$ n'ait pas de constantes et qu'il n'y ait pas deux fois la même variable dans un atome

- ensemble des termes (variables) de $A1 \rightarrow X$
- ensemble des termes (constantes) de $A2 \rightarrow$

Di pour tout xi $\in A1$

toutes les variables de X ont le même domaine

- on note A1 ... An les atomes de $\mathcal{A}1$

C = { Ci(x1, ..., xk) | Ai = p(x1, ..., xk) $\in A1$ } La définition de Ci est l'ensemble des tuples (a1, ..., ak) tels que p(a1, ..., ak) $\in A2$

$HOM \rightarrow CSP$ (suite)

- transformation de p(x,x) ?
 p(x,y) et x = y
- transformation de p(x,a) où a est une constante?
 p(x,y) où y est une nouvelle variable
 et domaine(y) = {a}

Cas général:

- on remplace les multi-occurrences de variables dans un atome en introduisant de nouvelles variables et en ajoutant des contraintes d'égalité
- on remplace chaque constante par une nouvelle variable dont le domaine est réduit à cette constante

CSP (Constraint Satisfaction Problem)

Données: un réseau de contraintes P = (X, D, C)

Question: P admet-il une solution? [trouver toutes les solutions]

Exemple de réseau de contraintes

- Ensemble de variables X={x1,x2,x3,x4}
- Ensemble de contraintes C={C1,C2,C3}
 - --- hypergraphe

• Définitions des contraintes

C3

x1 x4

a b

b b

Réduction (polynomiale) de CSP à HOM (qui, de plus, préserve les solutions ?)

CSP → HOM

Illustrer sur l'exemple

 $(X,D,C) \rightarrow A1 \text{ et } A2$

 $X \rightarrow$ ensemble des termes (variables) de A1

D \rightarrow ensemble des termes (constantes) de $\mathcal{A}2$

$$\mathcal{A}$$
1 = { Ci(x1, ..., xk) | Ci \in C
et porte sur (x1 ... xk) }

$$\mathcal{A}2$$
 = { Ci(a1, ..., ak) | Ci \in C et (a1, ..., ak) est dans sa définition }

RÉDUCTION DE PROBLÈMES

- Soient deux problèmes de décision P1 et P2.
 P1 se réduit à P2 s'il existe une transformation t qui,
 à toute instance I1 de P1 associe une instance t(I1) de P2,
 tel que la réponse à t(I1) est oui ssi la réponse à I1 est oui
- La transformation t est dite polynomiale si elle est polynomiale en la taille de I1
- Elle **préserve les solutions** s'il existe une **bijection** entre les solutions à **I1** et les solutions à **I(I1)**

Nous avons construit

- une réduction polynomiale de HOM à CSP
- une réduction polynomiale de CSP à HOM

Ces réductions préservent les solutions

SAT (« PROBLÈME DE SATISFIABILITÉ D'UNE FORME CLAUSALE EN LOGIQUE DES PROPOSITIONS »)

- symbole propositionnel, variable propositionnelle, atome
- Littéral : variable propositionnelle ou sa négation
- Clause : disjonction de littéraux
- Forme clausale : conjonction de disjonctions
- Problème SAT : déterminer si une forme clausale est satisfiable

Exemple

$$F = (p \lor \neg q) \land (q \lor r) \land (\neg p \lor \neg r)$$

F est-elle satisfiable ?

Comment représenter SAT sous la forme

(variables, domaines, conditions de consistance)?

- o CSP
- SAT
- o coloration de graphe
- o recherche d'homomorphismes

[...]

On peut passer de n'importe lequel de ces problèmes à n'importe quel autre

- par une transformation polynomiale
- qui respecte les ensembles de solutions