Application No.: 09/891,504

Page 2

IN THE CLAIMS:

Please amend the claims as follows:

Claim 1 (Original): A method for driving a liquid crystal of a thin film transistor liquid crystal display, the method comprising the steps of:

applying a first voltage corresponding to a real data during a data voltage applying frame; and

applying a second voltage for maintaining a bend state and preventing the liquid crystal from restoring to a splay state during a maintenance voltage applying frame,

wherein the real one frame for driving the liquid crystal includes the data voltage applying frame and the maintenance voltage applying frame subsequent to the data voltage applying frame, and the data voltage applying frame is a data applying time and the maintenance voltage applying frame is a maintenance time, and the data voltage applying frame and the maintenance voltage applying frame are determined by a period of a signal applying to a gate of the liquid crystal display.

Claim 2 (Original): The method according to claim 2, wherein the first voltage, the second voltage, the data voltage applying frame, the maintenance voltage applying frame, and the real one frame satisfy the following equation:

(the first voltage x the data voltage applying frame + the second voltage x the maintenance voltage applying frame)/ the real one frame \geq a threshold voltage, wherein the

CW/

Application No.: 09/891,504

Page 3

threshold voltage is a minimum voltage for the liquid crystal to transit to the bend state from the

splay state.

Claim 3 (Original): The method according to claim 1, wherein each of the data voltage

applying frame and the maintenance voltage-applying frame is a half of the real one frame.

Claim 4 (Original): The method according to claim 1, wherein the maintenance voltage

is a maximum driving voltage.

Claims 5 and 6 (Cancelled)

Claim 7 (Original): A method for driving a liquid crystal of a thin film transistor liquid

crystal display, wherein the thin film transistor includes first and second substrates having first

and second orientation directions parallel to each other and the liquid crystal has a splay state

without applying a driving voltage, the method comprising the steps of:

applying a first voltage corresponding to a real data during a data voltage applying

frame; and

applying a second voltage for maintaining a bend state and preventing the liquid crystal

from restoring to a splay state during the maintenance voltage applying frame, wherein the data

voltage applying frame and the maintenance voltage applying frame are a data applying time and

a maintenance time in the real one frame, respectively.

1-WA/2100171.2

Application No.: 09/891,504

Page 4

Claim 8 (Original): The method according to claim 7, wherein the maintenance voltage applying frame is subsequent to the data voltage-applying frame.

Claim 9 (Original): The method according to claim 7, wherein the data voltage applying frame and the maintenance voltage applying frame are determined by a period of a signal applying to a gate of the liquid crystal display.

al Cont

Claim 10 (Original): The method according to claim 7, wherein an average voltage of the first voltage and the second voltage applied for driving the liquid crystal during the real one frame is greater than a threshold voltage which initiates a transition from the splay state to the bend state.

Claim 11 (Original): The method according to claim 10, wherein the first voltage, the second voltage, the threshold voltage, the data voltage applying frame, the maintenance voltage applying frame, and the real one frame satisfy the following equation:

(the first voltage x the data voltage applying frame + the second voltage x the maintenance voltage applying frame)/ the real one frame ≥ the threshold voltage.

Claim 12 (Original): The method according to claim 7, wherein each of the data voltage applying frame and the maintenance voltage-applying frame is a half of the real one frame.

Application No.: 09/891,504

Page 5

Claim 13 (Original): The method according to claim 7, wherein the maintenance voltage

is a maximum driving voltage.