Topic 6G. Buffers

- 6G. I Buffer Action
- 6G.2 Designing a Buffer
- 6G.3 Buffer Capacity

Buffer Action

- Buffer: a mixed solution in which the pH resists change when small amounts of strong acids or bases are added.
 - Consists of an aqueous solution of a weak
 acid and its conjugate base supplied as a salt,
 or a weak base and its conjugate acid
 supplied as a salt.
 - Functions as a sink for or source of protons
 - Could an aqueous solution of glycine,
 ⁻O₂CCH₂NH₃⁺, which contains both acidic and basic groups, act as a buffer?

Acid buffer consists of a weak acid and its conjugate base provided as a salt.

Ex) 0.05 M CH₃COOH (aq) + 0.05 M CH₃COONa (aq)

 Base buffer consists of a weak base and its conjugate acid provided as a salt.

Ex) $0.05 \text{ M NH}_3 \text{ (aq)} + 0.05 \text{ M NH}_4\text{Cl (aq)}$

 Equimolecular buffer solution with the same concentrations of the conjugate acid and base.

HA (aq) + H₂O (I)
$$\leftrightarrow$$
 H₃O⁺ (aq) + A⁻ (aq)
$$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$$

$$Cancel$$
blue
$$terms$$

$$K_{a} \approx \frac{[H_{3}O^{+}][A^{-}]_{initial}}{[HA]_{initial}} \stackrel{\leftarrow}{=} [H_{3}O^{+}]$$

$$pH = pK_{a}$$

TABLE 6G.1	The Composition of Buffers					
	Composition	Calculate pH from	Examples	pK_a		
Acid buffers (f acid (HA)	for pH < 7) conjugate base (A ⁻) as the salt MA	$pK_a(HA)$	CH ₃ COOH/CH ₃ CO ₂ ⁻ HNO ₂ /NO ₂ ⁻ HClO ₂ /ClO ₂ ⁻	4.75 3.37 2.00		
Base buffers (for pH > 7)						
base (B)	conjugate acid (HB ⁺) as the salt HBX	$pK_a(HB^+)$ by using $pK_a(HB^+) +$ $pK_b(B) = pK_w$	NH ₄ ⁺ /NH ₃ (CH ₃) ₃ NH ⁺ /(CH ₃) ₃ N H ₂ PO ₄ ⁻ /HPO ₄ ²⁻	9.25 9.81 7.21		

Henderson—Hasselbalch equation

HA (aq) + H₂O (l)
$$\leftrightarrow$$
 H₃O⁺ (aq) + A⁻ (aq)

$$[H_3O^+] = K_a \times \frac{[HA]}{[A^-]}$$

$$pH = pK_a - log \frac{[HA]}{[A^-]} = pK_a + log \frac{[A^-]}{[HA]}$$

$$pH \approx pK_a + log \frac{[base]_{initial}}{[acid]_{initial}}$$

Buffer Capacity

 Buffer capacity: the maximum amount of acid or base that can be added before the buffer loses its ability to resist large changes in pH

Topic 6H. Acid-Base Titration

- 6H.I Strong Acid—Strong Base Titrations
- 6H.2 Strong Acid-Weak Base and Weak Acid-Strong Base Titrations
- 6H.3 Acid—Base Indicators
- 6H.4 Polyprotic Acid Titrations

Strong Acid-Strong Base Titrations

- pH curve: a plot of the pH of the analyte solution against the volume of titrant added during a titration.
- In strong acid-base titration, the pH changes slowly initially, changes rapidly through pH = 7 at the stoichiometric point, and then changes slowly again.

Strong Acid-Weak Base and Weak Acid-Strong Base

- Titration of a weak acid with strong base: the pH is greater than 7 at the stoichiometric point.
- Titration of a weak base with strong acid: the pH is less than 7 at the stoichiometric point.

Strong Acid-Weak Base and Weak Acid-Strong Base

Strong Acid-Weak Base and Weak Acid-Strong Base

Point in titration	Primary species	Proton transfer equilibrium	Related Toolbox
1 Weak acid HA titrated w	vith strong base		
initial	HA	$HA(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + A^-(aq)$	6D.1
buffer region	HA, A^-	$HA(aq) + H_2O(1) \Longrightarrow H_3O^+(aq) + A^-(aq)$	6H.2
stoichiometric point	A^-	$A^{-}(aq) + H_2O(l) \Longrightarrow HA(aq) + OH^{-}(aq)$	6D.2
At the stoichiometric point	, the solution is of a salt with	a basic anion	
2 Weak base B titrated wit	th strong acid		
initial	В	$B(aq) + H_2O(1) \Longrightarrow HB^+(aq) + OH^-(aq)$	6D.2
buffer region	B, HB ⁺	$B(aq) + H_2O(1) \Longrightarrow HB^+(aq) + OH^-(aq)$	6H.2
stoichiometric point	HB^+	$HB^+(aq) + H_2O(1) \rightleftharpoons H_3O^+(aq) + B(aq)$	6D.1

Acid—base indicator

- A water- soluble dye with a color that depends on the pH.
- A weak acid that has one color in its acid form (HIn) and another color in its conjugate base form (In⁻)

HIn (aq) +
$$H_2O$$
 (I) \leftrightarrow H_3O^+ (aq) + In^- (aq)

At end point, [HIn] = [In⁻]
$$\rightarrow$$
 [H₃O⁺] = pH = p K_{In}

Phenolphthalein

Bromothymol blue

Phenolphthalein

Indicator	$\mathbf{p}K_{\mathbf{In}}$	pH range of color change	Color of acid form		Color of base form
thymol blue	1.7	1.2 to 2.8	red		yellow
methyl orange	3.4	3.2 to 4.4	red		yellow
bromophenol blue	3.9	3.0 to 4.6	yellow		blue
bromocresol green	4.7	3.8 to 5.4	yellow		blue
methyl red	5.0	4.8 to 6.0	red		yellow
litmus	6.5	5.0 to 8.0	red	- 1100000	blue
bromothymol blue	7.1	6.0 to 7.6	yellow		blue
phenol red	7.9	6.6 to 8.0	yellow		red
thymol blue	8.9	8.0 to 9.6	yellow		blue
phenolphthalein	9.4	8.2 to 10.0	colorless		pink
alizarin yellow R	11.2	10.1 to 12.0	yellow		red
alizarin	11.7	11.0 to 12.4	red		purple

• Recommended indicator $pK_{ln} = pH$ (at the stoichiometric point) ± 1

Polyprotic Acid Titrations

■ Titration of a solution of the dichloride salt of the amino acid histidine, $C_6H_{11}N_3O_2Cl_2$ (aq) $[H_3A^{2+}]$, with a solution of NaOH.

$$H_3A^{2+}$$
 (aq) + OH⁻ (aq) \rightarrow H_2A^+ (aq) + H_2O (I)
 H_2A^+ (aq) + OH⁻ (aq) \rightarrow HA (aq) + H_2O (I)
HA (aq) + OH⁻ (aq) \rightarrow A⁻ (aq) + H_2O (I)

