Topologie I Blatt 1

1 | Stehgreiffragen: Topologie

Alle Fragen sollten lediglich eine kurze Antwort benötigen:

- (a) Sei X eine Menge und \mathcal{T}_1 , \mathcal{T}_2 zwei Topologien auf X mit $\mathcal{T}_1 \subseteq \mathcal{T}_2$. Für welche $i, j \in \{1, 2\}$ gelten die folgenden Aussagen:
 - (i) Ist X kompakt bzgl. \mathcal{T}_i , so auch bzgl. \mathcal{T}_i .
 - (ii) Ist X Hausdorff bzgl. \mathcal{T}_i , so auch bzgl. \mathcal{T}_i .
 - (iii) Ist $f: X \to Y$ eine stetige Abbildung bzgl. \mathcal{T}_i , so auch bzgl. \mathcal{T}_j .
 - (iv) Ist $f: Y \to X$ eine stetige Abbildung bzgl. \mathcal{T}_i , so auch bzgl. \mathcal{T}_i .
- (b) Wahr oder falsch: Ist $f: X \to Y$ injektiv/surjektiv, so auch $f_*: \pi_1(X) \to \pi_1(Y)$.
- (c) Wahr oder falsch: Ist $f_*: \pi_1(X) \to \pi_1(Y)$ injektiv/surjektiv, so auch $f: X \to Y$.
- (d) Wahr oder falsch: Ist $\pi_1(X, x_0) = 0$ für X wegzusammenhängend, so ist X kontrahierbar.
- (e) Wie sehen wie sehen Produkte/Koprodukte in **Top** aus?

2 | Rechtecklemma

Seien X und Y topologische Räume, seien $K \subseteq X$ und $L \subseteq Y$ kompakte Teilräume, und sei $O \subseteq X \times Y$ eine offene Teilmenge des Produkts, mit $K \times L \subseteq O$.

Zeigen Sie, dass offene Teilmengen $U \subseteq X$ und $V \subseteq Y$ existieren, mit:

$$K \times L \subseteq U \times V \subseteq O$$
.

Slogan: "Jede offene Umgebung eines kompakten Rechtecks enthält ein offenes Rechteck."

3 | Lokal kompakt

Ein topologischer Raum X heißt lokal kompakt, wenn für jeden Punkt $x \in X$ und jede offene Umgebung $x \in U \subseteq X$ eine kompakte Umgebung K existiert mit $x \in K \subseteq U$.

- (a) Zeigen Sie, dass abgeschlossene Unterräume von lokal kompakten Räumen lokal kompakt sind.
- (b) Zeigen Sie, dass offene Unterräume von lokal kompakten Hausdorff Räumen lokal kompakt sind.
- (c) Zeigen Sie, dass \mathbb{R}^n lokal kompakt ist.
- (d) Zeigen Sie, dass $(\mathbb{R} \setminus \{0\})^2 \cup \{(0,0)\}$ nicht lokal kompakt ist.
- (e) Zeigen Sie, dass Q nicht lokal kompakt ist.
- (f) Finden Sie einen kompakten Raum mit einem offenen nicht-lokal kompaktem Unterraum. (Hinweis: modifizieren Sie (e))
- (g) Finden Sie lokal kompakte Räume A_n für $n \in \mathbb{N}$, sodass $\prod_{n \in \mathbb{N}} A_n$ nicht lokal kompakt ist.

4 | The (trivial) legend of Zelda

Welche Fundamentalgruppe hat das Komplement von n disjunkten unverschlungenen und unverknoteten Kreisen in \mathbb{R}^3 ?

Konkreter: Sei S^1 der Einheitskreis in \mathbb{R}^2 . Berechnen Sie die Fundamentalgruppe des Komplements von $(S^1 \times \{1\}) \cup \cdots \cup (S^1 \times \{n\})$ in \mathbb{R}^3 .

5 | Es gibt kein Exponentialgesetz in Top

Ziel dieser Aufgabe ist es zu zeigen, dass es kein allgemeines Exponnetialgesetz in **Top** geben kann.

- (a) Zeigen Sie, dass $\operatorname{coeq}(i \times \mathbb{Q}, j \times \mathbb{Q}) \to \operatorname{coeq}(i, j) \times \mathbb{Q}$ kein Homöomorphismus ist. (Hinweis: Nehmen Sie die Inklusion $i : \mathbb{Z} \hookrightarrow \mathbb{R}$ und $j : \mathbb{Z} \hookrightarrow \mathbb{R}$, $n \mapsto n+1$)
- (b) Zeigen Sie, dass es kein Exponentialgesetz in **Top** gibt.

In anderen Worten: Top ist nicht kartesisch abgeschlossen.

6 | KO war die einzige Möglichkeit ★

Ziel dieser Aufgabe ist es zu zeigen, dass es maximal eine Topologie auf $\operatorname{Hom}_{\mathbf{Top}}(X,Y)$ gibt, sodass ein Exponentialgesetz gilt.

- (i) Eine Topologie auf $\operatorname{Hom}_{\mathbf{Top}}(X,Y)$ heißt "grob genug", wenn für $f\colon Z\times X\to Y$ stetig auch $f^{\sharp}\colon Z\to \operatorname{Hom}_{\mathbf{Top}}(X,Y)$ stetig ist.
- (ii) Eine Topologie auf $\operatorname{Hom}_{\mathbf{Top}}(X,Y)$ heißt "fein genug", wenn für $f^{\sharp} \colon Z \to \operatorname{Hom}_{\mathbf{Top}}(X,Y)$ auch $f \colon Z \times X \to Y$ stetig ist.

Eine Topologie, die ein Exponentialgesetz erfüllt muss "grob genug" und "fein genug" sein.

- (a) Zeigen Sie, dass eine eine Topologie auf $\operatorname{Hom}_{\mathbf{Top}}(X,Y)$ genau dann "fein genug" ist, wenn die Auswertungsabbildung $ev\colon X\times \operatorname{Hom}_{\mathbf{Top}}(X,Y)\to Y$ stetig ist.
- (b) Sei \mathcal{T}_{grob} eine Topologie, die "grob genug" ist und \mathcal{T}_{fein} eine Topologie, die "fein genug" ist. Zeigen Sie, dass $\mathcal{T}_{grob} \subseteq \mathcal{T}_{fein}$.
- (c) Zeigen Sie, dass es höchstens eine Topologie gibt, die "grob genug" und "fein genug" ist. (Bemerkung: Es gibt eine konkrete Beschreibung aller Räume die eine solche Topologie erlauben)

In der Vorlesung wurde gezeigt, dass eine solche Topologie für lokal-kompakte Räume durch die kompakt-offen Topologie gegeben ist. Nach Teil c) gibt es auch nur diese.