1. Gradient Descent for Matrices of Full Row Rank

Consider a matrix $X \in \mathbb{R}^{n \times d}$ with n < d and a vector $\vec{y} \in \mathbb{R}^n$, both of which are known and given to you. Suppose X has full row rank.

(a) Consider the following problem:

$$X\vec{w} = \vec{y} \tag{1}$$

where $\vec{w} \in \mathbb{R}^d$ is unknown. How many solutions does (1) have? *Justify your answer*.

(b) Consider the minimum-norm problem

$$\vec{w}_{\star} = \underset{\vec{w} \in \mathbb{R}^d}{\operatorname{argmin}} \|\vec{w}\|_2^2. \tag{2}$$
$$\underset{\vec{X} = \vec{y}}{\vec{w} = \vec{y}}$$

We know that the optimal solution to this problem is $\vec{w}_\star = X^\top (XX^\top)^{-1} \vec{y}$. Now let

 $X = U\Sigma V^{\top} = U\begin{bmatrix} \Sigma_1 & 0 \end{bmatrix} V^{\top}$ be the SVD of X, where $\Sigma_1 \in \mathbb{R}^{n \times n}$. Recall that this is possible because n < d and X is full row rank. Prove that \vec{w}_{\star} is given by

$$\vec{w}_{\star} = V \begin{bmatrix} \Sigma_1^{-1} \\ 0 \end{bmatrix} U^{\top} \vec{y}. \tag{3}$$

(c) Let $\eta > 0$, and I be the identity matrix of the appropriate dimension. Using the SVD $X = U \begin{bmatrix} \Sigma_1 & 0 \end{bmatrix} V^{\top}$, prove the following identity for all positive integers i > 0:

$$(I - \eta X^{\top} X)^{i} = V \left(I - \eta \begin{bmatrix} \Sigma_{1}^{2} & 0 \\ 0 & 0 \end{bmatrix} \right)^{i} V^{\top}.$$

$$(4)$$

(d) Recall that $X \in \mathbb{R}^{n \times d}$, and that we can write the SVD of X as $X = U \begin{bmatrix} \Sigma_1 & 0 \end{bmatrix} V^{\top}$. We will use gradient descent to solve the minimization problem

$$\min_{\vec{w} \in \mathbb{R}^d} \frac{1}{2} \left\| X \vec{w} - \vec{y} \right\|_2^2, \tag{5}$$

with step-size $\eta>0$. Let $\vec{w}_0=\vec{0}$ be the initial state, and \vec{w}_k be the $k^{\rm th}$ iterate of gradient descent. Use the identity:

$$(I - \eta X^{\top} X)^{i} = V \left(I - \eta \begin{bmatrix} \Sigma_{1}^{2} & 0 \\ 0 & 0 \end{bmatrix} \right)^{i} V^{\top}.$$
 (6)

to prove that after k steps, we have

$$\vec{w}_k = \eta \sum_{i=0}^{k-1} V \left(I - \eta \begin{bmatrix} \Sigma_1^2 & 0 \\ 0 & 0 \end{bmatrix} \right)^i \begin{bmatrix} \Sigma_1 \\ 0 \end{bmatrix} U^\top \vec{y}. \tag{7}$$

HINT: Remember to set $\vec{w}_0 = \vec{0}$.

EECS 127/227AT Discussion 9 2023-10-19 15:40:24-07:00

(e) Now let $0 < \eta < \frac{1}{\sigma_1^2}$, where σ_1 denotes the maximum singular value of $X = U \begin{bmatrix} \Sigma_1 & 0 \end{bmatrix} V^\top$. Let \vec{w}_k be given as

$$\vec{w}_k = \eta \sum_{i=0}^{k-1} V \left(I - \eta \begin{bmatrix} \Sigma_1^2 & 0 \\ 0 & 0 \end{bmatrix} \right)^i \begin{bmatrix} \Sigma_1 \\ 0 \end{bmatrix} U^\top \vec{y}. \tag{8}$$

and let \vec{w}_{\star} be the minimum norm solution given as

$$\vec{w}_{\star} = V \begin{bmatrix} \Sigma_1^{-1} \\ 0 \end{bmatrix} U^{\top} \vec{y}. \tag{9}$$

Prove that $\lim_{k\to\infty} \vec{w}_k = \vec{w}_{\star}$.

HINT: You may use the following result without proof. When all eigenvalues of $A \in \mathbb{R}^{n \times n}$ have magnitude < 1, we have the identity $(I-A)^{-1} = I + A + A^2 + \dots$

EECS 127/227AT Discussion 9 2023-10-19 15:40:24-07:00

2. Stochastic Gradient Method

Given a differentiable function $f: \mathbb{R}^n \to \mathbb{R}$, with domain \mathbb{R}^n , whose minimum we seek to find, we could use the gradient descent algorithm $\vec{\theta}_{k+1} = \vec{\theta}_k - \eta \nabla f(\vec{\theta}_k)$, with fixed step size $\eta > 0$, starting from an initial condition $\vec{\theta}_0 \in \mathbb{R}^n$. As we have seen, there is no guarantee that this algorithm converges, and even if it does it may only converge to a local minimum of the function.

One issue with the gradient descent algorithm is the complexity of computing the gradient at each time step. If the function could be decomposed as a summation of multiple functions $f(\vec{\theta}) = \sum_{l=1}^{m} f_l(\vec{\theta})$, for each of which the gradient is easily computable, then we can use the *stochastic gradient* method. For instance, the squared-error-loss function which shows up in the least squares problem is well-suited for minimization with the stochastic gradient method. Here our problem is

$$\min_{\theta \in \mathbb{R}^n} \frac{1}{2} \|X\vec{\theta} - \vec{y}\|_2^2 = \frac{1}{2} \sum_{i=1}^m (\vec{x}_i^\top \vec{\theta} - y_i)^2,$$

where \vec{x}_i^T is the *i*-th row of $X \in \mathbb{R}^{m \times n}$, and $\vec{y} \in \mathbb{R}^m$ (recall that the rows of X are the transposes of the *feature vectors* and the entries of \vec{y} are the corresponding *responses*). We can write this objective function as $f(\vec{\theta}) = \sum_{i=1}^m f_i(\vec{\theta})$, with

$$f_i(\vec{\theta}) := \frac{1}{2} (\vec{x}_i^{\top} \vec{\theta} - y_i)^2, \text{ for } i = 1, \dots, m.$$

Then the stochastic gradient method gives the update rule

$$\vec{\theta}_{k+1} = \vec{\theta}_k - \eta_k \nabla f_{s[k]}(\vec{\theta}_k),$$

where η_k is the step size at time $k \in \mathbb{N}$, and $s[k] \in \{1, \dots, m\}$ is the index of the component function chosen at time k in order to decide the update. The value of s[k] is usually chosen by drawing a number at random from the set $\{1, \dots, m\}$, or by randomly shuffling this set and going over it sequentially in cyclic order. However this choice is done, we will assume that each $i \in \{1, \dots, n\}$ is chosen infinitely often.

(a) Assume that $\{\vec{x}_i\}_{i=1}^m$ is a set of mutually orthogonal vectors. Find a fixed step size η so that the stochastic gradient method converges to a solution of the least squares problem.

(b) If we no longer assume $\{\vec{x}_i\}_{i=1}^m$ is orthogonal, can we still find a fixed step size small enough that the stochastic gradient method converges?