Data Structures & Algorithms

Week 3 - Queues, Hashing (HashTables, HashMaps, Dictionaries)

Subodh Sharma, Rahul Garg {svs,rahulgarg}@iitd.ac.in

In-Class Discussion: Provide Loop Invariants

- What are loop invariants?
 - A property that holds:
 - At the start of the loop
 - Is maintained at the end of each iteration of the loop

```
int main(){
int done;
do{
  done = 1;
  for (i = 0; i \le length(S) - 1; i++) {
     if ((S[i] == '(' && S[i+1] == ')') ||
         (S[i] == '{' && S[i+1] == '}') ||
         (S[i] == '[' && S[i+1] == ']')) {
       for (j = i + 2; j \le length(S) - 1; j++)
         S[j - 2] = S[j];
       done = 0; i = 0;
       UpdateLength(S);
     } while (done == 1);
    if (length(S) == 0) return true else return false;
```

Hash Functions

Hashing and Hash Tables

- It is a function **H(.)** storing and retrieving data **x efficiently**.
 - Maps an arbitrary sized values to a fixed-length output
 - The value returned by H(.) is called a hash, hash code, or digest
- Sometimes the retrieval can be done in constant time, O(1), as opposed to O(log n) average cost of the Binary Search
- Hash values are stored in a fixed-size table called Hash Table
 - The use of hash functions to index in to hash tables is called Hashing
- SUMMARY: $\forall i \in [0, m-1], H(x) = i \land HT[i] = x$

History of Hashing

- Hans Peter Luhn: A German researcher from IBM
 - Started as a Textile Engineer; Invented Lunometer: Thread counting Gauge
 - Joined IBM in 1941 in the Information Processing Division
 - Invented Hash Codes, Selective Dissemination of Information etc.

Example Applications of Hashing

- Cybersecurity: Use of crypto hashes
- Blockchain: Hash pointers
- Error detection and correction: in ECCs
- String matching, Data duplication etc.
 - Genomic data processing
- Load Balancing in Distributed Systems
- Machine Learning Model watermarking
- Nearest Neighbour Search in high dimensional spaces: Use of Locality-sensitive hashing

Hashing: Collisions

- Collision: $\exists x, y : x \neq y \land H(x) = H(y) = i$
 - This happens when the HT size < Data Domain size
- Collisions adversely affects retrieval, insertion and deletion from HTs.
 - Worst case complexity is O(n)
 - One can design the slots/buckets smartly to reduce the worst case complexity to O(log n)
 - Thus, hashing is not good for applications where multiple records have the same key
- Collision Resolution: Open hashing, Closed hashing

Collision Resolution: Open Hashing

- Suppose n is the number of keys and m is the number is slots/buckets
 - Then we expect $\alpha = n/m$ elements per bucket. α is the load factor of the hash table
- Under open hashing a set of elements can be assigned to a bucket
 - If the set implementation has linear performance then the time complexity of add, insert and search is $O(1+\alpha)$
 - If $\alpha < \alpha_{max}$ where α_{max} is a constant, then operations have O(1) on average

Collision Resolution: Closed Hashing

- Instead of storing a set of elements at each HT index, only a single element is stored here
- If collision is found, then second possible location is computed.
- Strategies for generating a sequence of hash values:
 - Linear probing: Next free location is linearly searched (ie. searching adjacent slots)
 - Invented by Gene Amdahl, Elaine McGraw, Aurther Samuel from IBM in 1954
 - Quadratic probing: Successive values of arbitrary quadratic polynomial are added to hash index. Eg: $h + 1^2, h + 2^2, ..., h + k^2$. **READING ASSIGNMENT**
 - Double hashing: Using a second hash to compute probing step-size. READING ASSIGNMENT

A Good Hash Function: Reqs

- Uniform Distribution: Distribution of keys uniformly across the HT
 - This minimises collision, improves HT utilisation!
- **Deterministic and Collision Resistant:** Computationally infeasible to find $x, y: H(x) = H(y) \land x \neq y$
- Fast computation
- Using all of the input data: Every part of input affects the output hash
 - $\exists i \in \mathbb{N} : x_i \neq y_i \Rightarrow P(H(x) \neq H(y)) > 0$
- Dynamic: Dynamic resizing of HT should be possibles

Cryptographic Hashing vs Hashing

- Cryptographic hashes require additional properties
 - Preimage Resistance (One Way property): Let H(x) = h. Given h, it is computationally intractable to find x
 - Second Preimage Resistance: Given x_1 , it should be computationally infeasible to find x_2 s.t. $x_1 \neq x_2 \land H(x_1) = H(x_2)$
 - Avalanche effect: Small change in the input produces significant change in the output
 - $\forall x, y : d_H(x, y) = 1 \Rightarrow P(H(x)_j \neq H(y)_j) \ge 0.5$

Creating a Simple Hash Function

- Let us use Primes!
 - Choose a prime number P such that is not close to a power of 2. Why?
- $\forall k \in \mathbb{I}, H(k) = k \mod P$
- For string inputs: $H(s) = \sum ASCII(s_i) \mod P$
 - Fast to compute: integer modulo ops are fast to compute
 - Each character of the string affects the output hash value
 - Modulo Prime gives a more uniform distribution, therefore fewer collisions

Some Questions?

- Supposed H(k) = k mod 16. Do you see a problem?
- Suppose you did binning. Keys range from 0 to 999, |HT| = 10. Grouped 100 keys to one bucket. Do you see a problem?