

公開特許公報

昭52—129716

⑤Int. Cl²
C 03 C 3/14
C 03 C 3/30

識別記号
101

⑥日本分類
21 A 22

庁内整理番号
7417—41

⑦公開 昭和52年(1977)10月31日

発明の数 1
審査請求 有

(全3頁)

⑧光学ガラス

⑨特 許 願 昭51—47552
⑩出 許 願 昭51(1976)4月26日
⑪發 明 者 相樂弘治

秋川市小川589—5
⑫出 許 人 株式会社保谷硝子
東京都新宿区中落合2丁目7番
5号
⑬代 理 人 弁理士 旦六郎治 外1名

明細書

1. 発明の名称 光学ガラス

2. 特許請求の範囲

重量%で、 B_2O_3 14~19, SiO_2 0~5, La_2O_3 3.9~5.1, Y_2O_3 1~5, ZrO_3 2~7, WO_3 2~2.7, $Ta_2O_5 + Nb_2O_5 + TiO_2$ 7~2.4, 但し、 Ta_2O_5 0~2.0, Nb_2O_5 0~1.3, TiO_2 0~9, $ZnO + PbO + アルカリ土類酸化物$ 0~3, $GeO_2 + Yb_2O_3$ 0~2.5 からなる光学ガラス。

3. 発明の詳細な説明

本発明は屈折率 n_{D} 1.85~1.96, アッペ数 ν_d 2.9~4.1 なる光学恒数を有し、 ThO_2 及び CdO を含まないことを特徴とする高屈折率・低分散光学ガラスに関するもの。

この範囲の光学恒数を有するガラスは既に数多く知られているが、それ等の多くは、例えば特公昭38-10719号や特公昭42-23027号のように、人体に有害な ThO_2 や CdO を含むものである。又、 ThO_2 や CdO を含まないものも幾つか知られているが、例えば特公昭47-

16811号は比較的多量の SiO_2 と Al_2O_3 を含み、難溶性でかつ脱泡が困難であると言う欠点を有する。更に例えば仏国特許第1529537号のように、多量の希少希土類酸化物 Gd_2O_3 を含むものが知られているが、高価であるばかりでなく耐失透性に難点がある。

本発明の目的はこれらの欠点を改善することにある。

本発明の光学ガラスは重量%で、 B_2O_3 14~19, SiO_2 0~5, La_2O_3 3.9~5.1, Y_2O_3 1~5, ZrO_3 2~7, WO_3 2~2.7, $Ta_2O_5 + Nb_2O_5 + TiO_2$ 7~2.4, 但し、 Ta_2O_5 0~2.0, Nb_2O_5 0~1.3, TiO_2 0~9, $ZnO + PbO + アルカリ土類酸化物$ 0~3, $GeO_2 + Yb_2O_3$ 0~2.5 なる組成を有する。

本発明ガラスの特徴は、人体に有害な ThO_2 及び CdO を含まないばかりでなく、難溶性と難揮発性との原因となる多量の SiO_2 と Al_2O_3 を排除し、少量の SiO_2 しか含まないこと、及び本発明ガラスの光学恒数範囲で、耐失透性の改善に WO_3 及び少量の Y_2O_3 が顕著な効果を持つこと

を見い出した点にあり、従つて本発明によるガラスは工業的規模で大量生産する際に必要な秀れた耐失透性及び良好な溶解性と清潔性とを有し、かつ比較的安価である。

特に、本発明によるガラスが前記の特公昭47-16811号のものに比べて溶解性が良いことを示す為に、次の実験を行つた。

表1に示す原料組成で秤量し、良く混合したバッチを白金坩堝中で1300℃に保持すると、A1組成のものは数分でガラス化する。一方、A2組成のものは2時間でもガラス化しない。A1組成は後掲の表I-表1に相当し、A2組成は特公昭47-16811号の表I-指標59に相当する。

	A1 (グラム)	A2 (グラム)	
硫酸	15.9	硼酸	7.0
硅石粉	2.0	硅石粉	5.9
酸化ランタン	21.6	酸化ランタン	51.3
酸化イットリウム	2.0	水酸化アルミニウム	2.2
酸化ジルコン	2.5	酸化ジルコン	2.6
酸化タンクスチタン	3.5	酸化タンタル	6.4
酸化タンタル	9.1	水晶石	0.5
硝酸銘	1.5		
炭酸バリウム	0.6		
合計	56.7	合計	55.9

次に各成分の限定理由を述べると、B₂O₃は1.4%以下では失透傾向が増大し、1.9%以上では所望の高屈折率を維持できない。SiO₂は5%以上では難溶性になるばかりでなく、分相傾向を生じる。La₂O₃は3.9%以下では所望の高屈折率と低分散を維持できず、5.1%以上では失透傾向が増大する。Y₂O₃は耐失透性の改善

に効果的であり、1%以上必要だが、5%を越えるとその効果が減少するばかりでなく、高価になる。同様にZrO₃及びWO₃は耐失透性の改善に効果的で、夫々2%以上必要だが、夫々7%及び27%以上では失透傾向が強くなる。特に失透に対して安定なガラスを得るには、B₂O₃+SiO₂量の減少に伴つて、WO₃量を増大させることが肝要である。Ta₂O₅、Nb₂O₅及びTiO₂は高屈折率の維持の為に含量で7%以上必要だが、24%以上では失透傾向を増大する。これらの内、Ta₂O₅及びNb₂O₅は夫々2.0%及び1.3%以上では失透傾向を増大させ、TiO₂は9%以上では着色を強くするので好ましくない。又主として、光学恒数の調整及び溶解性の改善の目的で、ZnO、PbO及びアルカリ土類酸化物を含量で3%以下、GeO₂及びYb₂O₃を含量で2.5%以下の範囲で加えることができる。

次に本発明の実施例(成分は重量%)とその光学恒数を示す。

番号	A1	A2	A3	A4	A5	A6
B ₂ O ₃	15.7	16.3	17.0	16.9	15.5	17.0
SiO ₂	4.0	3.0	3.0	1.0		
La ₂ O ₃	4.52	4.50	4.84	4.85	4.44	4.10
Y ₂ O ₃	4.0	2.0	2.0	3.0	4.0	3.0
ZrO ₂	5.0	5.0	3.0	4.0	5.0	4.0
WO ₃	7.0	8.7	10.5	9.0	15.5	23.0
Ta ₂ O ₅	1.81	11.0	6.3		2.8	2.0
Nb ₂ O ₅		3.0	4.0	9.6	2.8	3.0
TiO ₂		3.0	6.0	8.0	7.5	7.0
GeO ₂					2.5	
Yb ₂ O ₃		2.0				
ZnO			1.0			
PbO	2.0					
BaO	1.0					
nd	1.8720	1.8965	1.9067	1.9492	1.9437	1.9350
vd	3.88	3.55	3.34	3.06	3.10	3.05

これ等の光学ガラスは硼酸、硅石粉、酸化ランタン、酸化イットリウム、酸化ジルコン、酸

化タングステン、酸化タンタル、酸化ニオブ、
酸化チタン、亜鉛華、硝酸銘、炭酸バリウム、
酸化ガルマニウム、酸化イツテルビウム等の原
料の混合物を白金製るつぼ中で1200～
1300℃で溶融し、攪拌して充分均質化、泡
切れを行つた後、適当な温度で予熱した金型内
に鋳込み、徐冷することによつて得られる。

特許出願人 株式会社 保谷硝子

代理人 且 大郎治

同 且 篤之