Lecture#

4.4 Two-Level Voltage Source Converters

4.4.1 Sinusoidal PWM

4.4 Two-Level Voltage Source Converters

Simplified circuit diagram for 3-phase 2-level voltage source converter.

Q. What is meant by 2-level?

Waveform of v_{aN} will have only 2 levels, (i) Vdc & (ii) 0

Composition of 2-Level Voltage Source Converters

- Converter is composed of 6 switches, $S1 \sim S6$,
- with an anti-parallel freewheeling diode with each switch.

Switches of 2-Level Voltage Source Converters

• Switches can be IGBT or IGCT devices, depending on power & voltage ratings of converter.

What are IGBT or IGCT devices?

IGBT Vs IGCT

- •In industrial applications, Insulated Gate Bipolar Transistor (IGBT) is favourable. IGBT is a voltage controlled device, hence it requires less gate drive power, thus simplifies gate driver design.
- •Integrated gate-commutated thyristor (IGCT)......Low losses, small size, reliable, modular & cost-effective uncompromising implementation of IGCT technology creates medium voltage converters with entirely new characteristics

Converter has been widely used in industry for many different applications

b) Inverter

Difference between inverter & rectifier?

Difference between inverter & rectifier

Inverter

When converter converts a fixed dc voltage to 3-phase ac voltage with variable magnitude & frequency for an ac load, it is called **inverter**.

Rectifier

When converter converts an ac grid voltage with fixed magnitude & frequency to an adjustable dc voltage for a dc load, it is active rectifier or PWM rectifier.

Whether it serves as an inverter or a rectifier, power flow in converter circuit is bidirectional: power can flow from its dc side to ac side, & vice versa.

d) Grid-tied Converter

In wind energy conversion systems, converter is connected to an electric grid & delivers power generated from generator to grid

• Converter in this application is referred to as grid-connected or grid-tied converter.

Grid-tied Converter

This section will focus on:

- 1. Pulse Width Modulation (PWM) schemes for 2-level voltage source converter.
- 2. An introduction to carrier based Sinusoidal PWM (SPWM) schemes,
- 3. Detailed analysis on Space Vector Modulation (SVM) algorithms.

Sinusoidal PWM

Principle of sinusoidal PWM scheme for 2-level converter

• where *vma*, *vmb* and *vmc* are 3-phase sinusoidal modulating waves & *vcr* is triangular carrier wave.

v_{ma} is 1-phase sinusoidal modulating wave and v_{cr} is triangular carrier wave.

Q. What is definition of Amplitude modulation index ma.

Amplitude modulation index ma is ratio of modulating & carrier waves.

 $m_a = \frac{V_m}{\hat{V}_{cr}}$

V m and *V* cr are peak values of modulating & carrier waves.

$$m_a = \frac{\hat{V_m}}{\hat{V_{cr}}}$$

Amplitude modulation index ma is usually adjusted by varying \hat{v}_m while keeping \hat{v}_{cr} fixed. $m_a = \hat{V}_m$

Fundamental-frequency component in inverter output voltage *vab1* can be controlled by amplitude modulation index ma.

Frequency modulation index m_f?

Frequency modulation index m_f

$$m_f = \frac{f_{cr}}{f_m}$$

• fm & fcr are frequencies of modulating and carrier waves respectively.

Operation of switches *S*1 to *S*6 can be determined:

• By comparing modulating waves with carrier wave.

When inverter terminal voltage v_{aN} is equal to the dc voltage v_{dC} ?

When $v_{ma} > v_{cr}$, upper switch S1 in inverter leg a is turned on. Lower switch S4 operates in a complementary manner & thus is switched off.

Resultant inverter terminal voltage v_{aN} , which is voltage at phase-a terminal w.r.t -ve dc bus N, is equal to dc voltage Vdc.

Q. When inverter terminal voltage $v_{aN}=0$

When $v_{ma} < v_{cr}$, S_4 is on & S_1 is off, leading to $v_{aN} = 0$

What is Blanking time?

Blanking time

- •To avoid possible short circuit during switching transients of upper & lower devices in an inverter leg,
- •a blanking time should be implemented, during which both switches are turned off.

Q.How to obtain Inverter line-to-line voltage vab?

Inverter line-to-line voltage

Vab = VaN - VbN

Waveform of fundamental-frequency component *v*_{ab1} of line-to-line voltage *v*_{ab}

Magnitude & frequency of vab1 can be independently controlled by ma(Amplitude modulation index) & fm(Frequency modulation index)

How to find Switching frequency *fsw* of active switches in 2-level inverter?

By using Frequency modulation index m_f

$$m_f = \frac{f_{cr}}{f_m}$$

Switching frequency of active switches in 2-level inverter can be found from $fsw = fcr = fm \times mf$.

Q. How many pulses vaN contains per cycle of fundamental frequency?

vaN contains 9 pulses per cycle of fundamental frequency. Each pulse is produced by turning S1 on and off once.

Q. Fundamental frequency fm should be?

Fundamental frequency=60Hz

• As $fsw = fcr = fm \times mf$. With fm=60Hz, the resultant switching frequency for S1 is $fsw = 60 \times 9 = 540$ Hz, which is also carrier frequency fcr.

The device switching frequency may not always be equal to the carrier frequency in multilevel inverters.

Synchronous Vs asynchronous PWM

- •When carrier wave is synchronized with modulating wave (*mf* is an integer), modulation scheme is known as synchronous PWM
- •In asynchronous PWM carrier frequency *fcr* is usually fixed and independent of *fm*.

Synchronous Vs asynchronous PWM

- Asynchronous PWM features a fixed switching frequency and easy implementation with analog circuits.
- Asynchronous PWM may generate non-characteristic harmonics, whose frequency is not a multiple of fundamental frequency.
- Synchronous PWM scheme is more suitable for implementation with a digital processor.