Apuntes de clase

José Antonio de la Rosa Cubero

Definición 1 (Centro de un grupo). Sea G un grupo. Se define su centro como

$$Z(G) = \{ a \in G : ax = xa \forall x \in G \}$$

Proposición 1. El centro de un grupo es siempre un subgrupo normal en G.

Observación 1. Z(G) es abeliano siempre.

Observación 2. G es abeliano si y solo si coincide con su centro.

Proposición 2. A_3 coincide con su centro y $Z(A_n) = \{id\}$ para n > 3.

Demostración. $A_3 = \{id, (1 \ 2 \ 3), (1 \ 3 \ 2)\} = \langle (1 \ 2 \ 3) \rangle$ es abeliano, luego coincide con su centro.

Sea n > 3 y $\sigma \in A_n \setminus \{id\}$. Existe un α con el que no conmuta. Existen i, j distintos tales que $\sigma(i) = j$. Elegimos k, l distintos tales que tampoco coinciden con i o j. Podemos elegirlos porque $n \ge 4$. Sea $\alpha = (j k l) \in A_n$. Entonces

$$\sigma\alpha(i) = \sigma(i) = j$$

$$\alpha\sigma(i)=\alpha(j)=k$$

Luego $\sigma \alpha \neq \alpha \sigma$, y por tanto $\sigma \notin Z(A_n)$, y como era arbitrario $Z(G) = \{id\}$.

Proposición 3. Demostrar que $Z(D_n) = \{1, r^m\}$ si n es par y $Z(D_n) = \{id\}$ si n es impar.

Demostración.

$$D_n = \langle r, s : r^n = 1 = s^2, sr = r^{-1}s \rangle = \{1, r, \dots, r^{n-1}, s, rs, \dots, r^{n-1}s\}$$

Observamos que $r^k s \notin Z(D_n)$.

$$(r^k s)r = r^{k-1}s \neq r^{k+1}s = r(r^k s)$$

puesto que si no tendríamos que $\operatorname{ord}(r) = 2 \neq n$.

¿Cuándo $r^k \in Z(D_n)$? Evidentemente, conmuta con r^j para cualquier j. Veamos cuando conmuta con las simetrías r^js . Esto ocurre cuando

$$r^{k+j} = r^{j-k}$$

y esto es lo mismo que

$$r^k = r^{-k}$$

o lo que es lo mismo, que $(r^k)^2 = 1$, es decir, el orden es 2.

Como $\operatorname{ord}(r^k) = \frac{n}{\gcd(n,k)}$, y por tanto $n = 2 \gcd(n,k)$ y n ha de ser par.

En el caso que n=2m sea par $m=\gcd(2m,k)$, tenemos que k=m y por tanto $Z(D_{2m})=\{\mathrm{id},r^m\}$.

Definición 2 (Automorfismo). Sea G un grupo. Un automorfismo de G es un isomorfismo $f:G\longrightarrow G$.

$$\operatorname{Aut}(G) = \{ f : G \longrightarrow G : f \text{ es isomorfismo} \}$$

Aut(G) con la composición es un grupo.

Proposición 4. Sea C_n el grupo cíclico de orden n. Existe un isomorfismo entre $\mathbb{Z}_n^{\times} \cong \operatorname{Aut}(G)$.

Demostración. Si $\theta: C_n \longrightarrow G$ es un homomorfismo de grupos con $\theta(x) = g$, entonces $\operatorname{ord}(g)|n \ y \ \theta(x^k) = g^k$.

La segunda igualdad es obvia por definición de homomorfismo.

Puesto que θ es un hmomorfismo:

$$1 = \theta(1) = \theta(x^n) = \theta(x)^n = g^n$$

Por tanto q tiene orden finito y además $\operatorname{ord}(q)|n$.

Demostremos que para cada $g \in G$ tal que $\operatorname{ord}(g)|n$ existe un único homomorfismo de grupos $\theta_g : C_n \longrightarrow G$ tal que $\theta_g(x) = g$.

La unicidad es obvia, dado que es el grupo cíclico.

Veamos la existencia. Definimos $\theta_g: C_n \longrightarrow G$ por $\theta_g(x^k) = g^k$ para $0 \le k < n$. Veamos que θ_g es un homomorfismo. Hay que ver que

$$\theta_a(x^k x^r) = \theta_a(x^k)\theta_a(x^r)$$

Vemos que:

$$\theta_g(x^k x^r) = \theta_g(x^s) = g^s = g^t$$

donde s es el resto de dividir k+r entre n. t es el resto de dividir s entre ord(g).

$$\theta_q(x^k)\theta_q(x^r) = g^k g^r = g^u$$

donde u es el resto de dividir k + r entre ord(g).

Basta comprobar que u=t, que no es difícil usando propiedades de la división entera.

Sea $g \in G$ tal que $\operatorname{ord}(g)|n.$ Veamos que θ_g es monomorfismo si y solo si $\operatorname{ord}(g) = n.$

Supongamos que θ_g es monomorfismo.

$$\ker(\theta_g) = \{1\}$$

Sea t el orden de g, entonces:

$$1 = g^t = \theta_g(x^t)$$

tenemos que

$$x^t \in \ker(\theta_g) = \{1\}$$