STATISTICS FOR WRITING PAPER

2021. 12. 03.

Hyunsoo, Yu

INDEX

1. Statistics

- 1. Descriptive statistics
 - : To show numerical materials with summary (scatter, histogram, etc)
- 2. Inferential statistics
 - : To generalize the research results from samplings
 - 1. Terminology
 - 2. Hypothesis test
 - 1. Set a 'null hypothesis' and a 'alternative hypothesis'
 - 2. Set a significance level (alpha)
 - 3. Acquire sampling (physical experiment)
 - 4. Compute 'test statistic' (p-value)
 - 5. Based on p-value, accept the hypothesis

3. Test statistics

- ✓ Normality test
- 1. Difference test
 - 1. Parametric test
 - 1. T-test
 - 2. Anova
 - ✓ Post hoc
 - 2. Non-parametric test
 - 1. Wilcoxon-signed rank test
 - 2. Kruskalwallis test

2. Relation test

- 1. Parametric test
 - 1. Pearson's correlation coefficient
 - 2. Regression
- 2. Non-parametric test
 - 1. Spearman's rho
 - 2. Chi-square test

1. DESCRIPTIVE STATISTICS

- Statistics which explain the attributes of materials
 - Measure of central tendency
 - Mean, median, mode
 - Variance
 - Standard deviation, quantile
 - Graph
 - Bar graph, histogram
 - Scatter

Scatterplot for quality characteristic XXX

2.1 TERMINOLOGY

Parameter name	Population parameter symbol	Sample statistic	
Number of cases	N	n	
Mean	μ (mu)	\overline{x} (Sample mean)	
Proportion	π (Pi)	P (Sample proportion)	
Variance	σ^2 (Sigma-square)	s² (Sample variance)	
Standard deviation	σ (Sigma)	s (sample standard deviation)	
Correlation	ρ (rho)	r (Sample correlation)	
Regression Coefficient	β (beta)	b (sample regression coefficient)	

2. INFERENTIAL STATISTICS2.2 HYPOTHESIS TEST

1. Sort

- 1. One-sided test (Bigger or smaller)
 - 1. H_0 : $\mu_1 \le \mu_2$, H_1 : $\mu_1 > \mu_2$
 - 2. H_0 : $\mu_1 \ge \mu_2$, H_1 : $\mu_1 < \mu_2$
- 2. Two-sided test (Different)
 - 1. H_0 : $\mu_1 = \mu_2$, H_1 : $\mu_1 \neq \mu_2$

2. Order

- 1. Set a 'null hypothesis(H_0)' and a 'alternative hypothesis(H_1)'
- 2. Set a significance level (alpha)
- 3. Acquire sampling (physical experiment)
- 4. Compute 'test statistic' (p-value)
- 5. Based on p-value, accept one of 2 hypothesis

2.2 HYPOTHESIS TEST

2.2.1 SET A 'NULL HYPOTHESIS' AND A 'ALTERNATIVE HYPOTHESIS'

- Alternative hypothesis (H_1)
 - The hypothesis that the researcher wants to prove based on the data obtained
 - $Ex>H_1: \mu_1 \neq \mu_2$
- Null hypothesis (H_0)
 - The opposite of the alternative hypothesis
 - The subject of the test
 - Ex> H_0 : $\mu_1 = \mu_2$,

2. INFERENTIAL STATISTICS2.2 HYPOTHESIS TEST

2.2.2 SET A SIGNIFICANCE LEVEL (ALPHA)

- Significance level (α)
 - Maximum allowable range of error for rejecting the null hypothesis
 - Commonly 0.05

- 2.2 HYPOTHESIS TEST
 - 2.2.3 ACQUIRE SAMPLING (PHYSICAL EXPERIMENT)

2.2 HYPOTHESIS TEST

2.2.4 COMPUTE 'TEST STATISTIC' (P-VALUE)

1. Test statistic

- 1. Difference test
 - 1. Parametric test
 - 2. Non-parametric test
- 2. Relation test
 - 1. Parametric test
 - 2. Non-parametric test

2.2.5 BASED ON P-VALUE, ACCEPT THE HYPOTHESIS

- 2.3 TEST STATISTICS
 - * NORMALITY TEST

Shapiro-Wilk test

- N < 2000
- Kolmogorove-Smirnov test
 - N > 2000
- Quantile-Quantile plot (Graphic test)
 - Visual analysis method
 - If N is too small, it is intuitive to check normality with visual methods.

2. INFERENTIAL STATISTICS2.3 TEST STATISTICS2.3.1 DIFFERENCE TEST

2.3 TEST STATISTICS2.3.1 DIFFERENCE TEST2.3.1.1 PARAMETRIC TEST

2 groups

- T-test : Check whether two groups are different
 - One sample t-test : mean of a group vs a constant
 - Paired sample t-test : mean of a group vs mean of a group
 - Independent two sample t-test: mean of an independent group vs mean of an independent group

12

- When the sample passes the homogeneity of variance test
- Welch t-test: mean of an independent group vs mean of an independent group
 - When the sample doesn't pass the homogeneity of variance test
- 3+ groups
 - ANOVA(ANalysis Of VAriance)

2.3 TEST STATISTICS2.3.1 DIFFERENCE TEST2.3.1.1 PARAMETRIC TEST

- 2 groups
 - T-test
- 3+ groups
 - ANOVA(ANalysis Of VAriance): Check whether three or more groups are different
 - One-way ANOVA : # of factor is one
 - Two-way ANOVA : # of factor is two
 - MANOVA (Multivariate ANOVA) : # of factor is three or more
 - rmANOVA(Repeated Measures ANOVA): Deal with repeatedly measured data (same group)

ANOVAs with vs. without repeated measures	ANOVA without repeated measures		Repeated M	easures ANOVA	
see the data differently	Compares 3 independent groups (n = 30, 10/group)	40	•	Compares 10 pairs of related observations (n = 10)	40 - 20 - 11 12 13

Factor: variable which cause the observation

2.3 TEST STATISTICS2.3.1 DIFFERENCE TEST2.3.1.2 NON-PARAMETRIC TEST

- 2 groups
 - Wilcoxon signed rank test (alternatives to paired t-test)
 - Mann-Whiteney U test ((alternatives to independent t-test)
- 3+ groups
 - Kruskal-Wallis test (alternatives to ANOVA)
 - Freidman test (alternatives to rmANOVA)

		Criterion / Measure / Dependent Variable (Continuous)		
		Non-Parametric Test	Parametric Equivalent	
Categorical	1 Variable 2 Categories Between-subjects	Mann-Whitney U Test (Nonparametric Tests → Legacy Dialogs → 2 Independent Samples)	Independent t Test	
	1 Variable 2 Categories Within-subjects	Wilcoxon Signed Rank Test (Nonparametric Tests → Legacy Dialogs → 2 Related Samples)	Paired <i>t</i> Test	
	1 Variable >2 Categories Between-subjects	Kruskal-Wallis H Test (Nonparametric Tests → Legacy Dialogs → K Independent Samples)	One-Way ANOVA	
	1 Variable >2 Categories Within-subjects	Friedman Test (Nonparametric Tests → Legacy Dialogs → K Related Samples)	Repeated Measures ANOVA	

2.3 TEST STATISTICS 2.3.1 DIFFERENCE TEST 2.3.1.3 POST HOC

- After variance test with three or more groups, Post hoc analysis is required.
 - We only know the difference among three groups, not the difference each other.
- Commonly pair-wise t-test is used.
- There are various way to solve this problem.

2. INFERENTIAL STATISTICS2.3 TEST STATISTICS2.3.2 RELATION TEST

- Parametric
 - Pearson's correlation coefficient
 - Assess the linear relation of two variables
- Non-parametric
 - Spearman's rho
 - Assess the linear relation of two variables based on rank

