Due: Friday, October 5th

1. Exercise 3.2.K in the text.

2. Exercise 3.2.N in the text.

3. Suppose (a_n) is a strictly decreasing positive sequence, i.e., $0 < a_{n+1} < a_n$.

(a) Suppose that (g_k) is a strictly increasing sequence of integers and there is a constant C so that for $k=2,3,\ldots,\,g_{k+1}-g_k\leq C(g_k-g_{k-1})$. Prove that $\sum_{n=1}^{\infty}a_n$ converges if and only if $\sum_{k=1}^{\infty}(g_{k+1}-g_k)a_{g_k}$ converges.

(b) By a suitable choice of (g_k) , prove that $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} 2^n a_{2^n}$ converges

(c) Similarly, prove that $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} na_{n^2}$ converges.

4. Suppose (a_n) is a decreasing positive sequence, i.e., $0 < a_{n+1} \le a_n$.

(a) Prove that if $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} na_n = 0$.

(b) Give a sequence (a_n) as above so that $\lim_{n\to\infty} na_n = 0$ but $\sum_{n=1}^{\infty} a_n$ diverges.

5. Exercise 3.4.G in the text.