Organic Chemistry, Lab 5: carbon-carbon bond formation in aldol and diels-Alder Reactions

Keelan Krinsky

Submission Information

Name: Keelan Krinksy Student number: 1634953 Locker number: 365 Group: 7 Experiment Number: O4 Demonstrator: Thabo

Date of Experiment: 02/08/2018

Title: Synthesis and purification, of carboxylic acid, by purification.

Reaction Scheme

Yield Calculations.

Part A

Table 1: Limiting Reagent Calculations

Reactants Used	${\bf Molecular\ Weight}(g\cdot mol^{-1})$	Mass(g)	Number of Moles(mol)
Maleic Anhydride	98.06	0.201g	$\left(\frac{0.201g}{98.06g \cdot mol^{-1}}\right) = 2.05 \cdot 10^{-3}$
Cyclopentadiene	66.10	$0.786g \cdot ml^{-1} \cdot 0.20ml = 0.16g$	$\left(\frac{0.16g}{66.10g \cdot mol^{-1}}\right) = 2.4 \cdot 10^{-1}$

Limiting Reagent: Maleic Acid

Molecular Weight of Product: $164.16g \cdot mol^{-1}$

Mass of Product: 8.0149g - 7.864g = 0.1509g

Theoretical Yield: $2.05 \cdot 10^{-3} mol \cdot 164.16g \cdot mol^{-1} = 0.337g$ Percentage Yield: $\frac{1.509g}{0.337g} \cdot 100\% = 44.8\%$

Part B

Table 2: Limiting Reagent Calculations

Reactants Used	$\textbf{Molecular Weight}(g \cdot mol^{-1})$	Mass(g)	Number of Moles(mol)
Benzyldehyde	106.12	$1.044g \cdot ml^{-1} \cdot 0.60ml = 0.63g$	$\left(\frac{0.63g}{106.12g \cdot mol^{-1}}\right) = 5.9 \cdot 10^{-3}$
Acetone	58.08	$0.7845g \cdot ml^{-1} \cdot 0.22ml = 0.17g$	$\left(\frac{0.17g}{58.08g \cdot mol^{-1}}\right) = 2.9 \cdot 10^{-3}$

Limiting Reagent: Acetone

Molecular Weight of Product: $234.29 \cdot mol^{-1}$ Mass of Product: 8.5849g - 8.0090g = 0.1509g

Theoretical Yield: $2.9 \cdot 10^{-3} mol \cdot 234.29g \cdot mol^{-1} = 0.68g$ Percentage Yield: $\frac{0.5759g}{0.68g} \cdot 100\% = 85\%$

Product analysis and observation

Part A

Physical state of product

white (crystalline) solid

Melting point

Expected:

 $165^{\circ}C - 167^{\circ}C$

Found:

 $162^{\circ}C - 168^{\circ}C$

NMR/IR spectra

 ${\bf cis\text{-}5\text{-}Norbornene\text{-}endo\text{-}5,} {\bf 6\text{-}dicarboxylic \ anhydride}$

Structure

Figure 1: cis-5-Norbornene-endo-5,6-dicarboxylic anhydride

Table 3: Limiting Reagent Calculations

Reactants Used	$\mathbf{Molecular} \ \mathbf{Weight}(g \cdot mol^{-1})$	$\mathbf{Mass}(g)$	Number of Moles(mol)
Benzyldehyde	106.12	$1.044g \cdot ml^{-1} \cdot 0.60ml = 0.63g$	$\left(\frac{0.63g}{106.12g \cdot mol^{-1}}\right) = 5.9 \cdot 10^{-3}$
Acetone	58.08	$0.7845g \cdot ml^{-1} \cdot 0.22ml = 0.17g$	$\left(\frac{0.17g}{58.08g \cdot mol^{-1}}\right) = 2.9 \cdot 10^{-3}$

Table 4: Interpretation of ^{13}C NMR spectroscopic data

	Signal 1	Signal 2	Signal 3	Signal 4	Signal 5
Chemical Shift	172.88	135.97	52.89	47.55	45.81
Assignment	$CH - \underline{C}O_2 -$	$-CH = \underline{C}H -$	$-CH\underline{C}H - CO_2$	$CH - \underline{C}H(-CH_2) - CH$	$CH - \underline{C}H_2 - CH$

Table 5: Interpretation of IR spectroscopic data

	Signal 1	Signal 2	Signal 3	Signal 4	Signal 5
Position of Signal (cm^{-1})	3010	2980	1780	1690	1050
Intensity	weak	weak	intermediate	strong	strong
Assignment	=C-H stretch	C-H stretch	C=O stretch	C = C, stretch	C-O, stretch

Part B

Physical state of product

light yellow (crystalline) solid

Melting point

Expected:

 $110^{\circ}C - 111^{\circ}C$

Found:

 $109^{\circ}C - 111^{\circ}C$

NMR/IR spectra

${\bf Dibenzylide neace tone}$

Structure

Figure 2: cis-5-Norbornene-endo-5,6-dicarboxylic anhydride

Table 6: Interpretation of 1H NMR spectroscopic data

	Signal 1	Signal 2	Signal 3	Signal 4	Signal 5
Chemical Shift	7.745	7.605	7.4	7.395	7.075
Ratio of signal	2	4	4	2	2
Multiplicity	doublet	multiplet	doublet	doublet	doublet
No. of H on Adjacent C	2(1 unique)	2	2(1 unique)	1	1
Assignment	$Ar - C_4C\underline{H}$	$Ar - C_{3,5}C\underline{H}$	$Ar - C_{2,6}C\underline{H}$	$CH = C\underline{H} - C = O -$	$Ar - C\underline{H} + Ch - C(= O) -$
Special features (e.g. Coupling costants)	$J_2 = 15Hz$	$J_2 = 2.5Hz, J_3 = 1.25Hz$	$J_2 = 1Hz$	$J_2 = 5.0Hz$	$J_2 = 1Hz$

Table 7: Interpretation of ^{13}C NMR spectroscopic data

cis-5-Norbornene-endo-5,6-dicarboxylic anhydride							
	Signal 1	Signal 2	Signal 3	Signal 4	Signal 5	Signal 6	NA
Chemical Shift	188.85	143.27	134.79	130.47	128.94	128.37	125.42
Assignment	$\underline{C} = O$	$Ar - \underline{C}H = CH$	$Ar - CH = \underline{C}H - CO_2$	$Ar - \underline{C_4}$	$Ar-C_{3,5}$	$Ar - C_{2,6}$	$Ar - \underline{C_1}(-CH)$

Table 8: Interpretation of IR spectroscopic data

	Signal 1	Signal 2	Signal 3	Signal 4	Signal 5
Position of Signal (cm^{-1})	3020	3000	1700	1640	1590
Intensity	weak	weak	very strong	intermediate	strong
Assignment	=C-H stretch	C-H stretch	C=O stretch	C = C, stretch	C = C, conjugated

Discussion and Conclusion

Date Submitted: $16/08/2018$	Signature: