2009-XE 37-48

AI24BTECH11002 - K. Akshay Teja

37) Equal size spherical balls when packed together will yield maximum theoretical packing of

c) 74%

d) 86%

b) 68%

a) 52%

atoms shown in Column II.

temperature is soft, because it consists of lamellae of		
a) Ferrite and cementite	c) Ferrite and bainite	
b) Ferrite and austenite	d) Ferrite and martensite	
39) Line broadening in X-ray diffraction pattern occ	curs on account of	
a) Coarse crystallite size	c) Multiplicity of phases	
b) Residual stresses	d) Coring of crystallites	
40) Inter-granular corrosion of austenitic stainless st	teel is promoted by	
a) Fine grained microstructure	c) Soaking steel at 700°C in air	
b) Coarse grained microstructure	d) Quenching from 1000°C	
41) Ferrites are preferred materials for use in high f other ferromagnetic materials because ferrites aa) High permeability		
b) High electrical resistivity	d) Low coercivity	
 42) During indirect intra-band transition, electrons u a) Change in energy and momentum b) Change in momentum but no change in energy c) Change neither in energy nor in momentum d) Change in energy but no change in momentum 	zy	
43) A material has a band gap of 2.4 eV. Which of the following wavelengths of light will it absorb?		
a) 700 nm b) 550 nm	c) 650 nm d) 400 nm	
44) Thermal conductivity of a material at a tempera	ture greater than Debye temperature	
 a) is independent of temperature b) decreases inversely with temperature c) increases linearly with temperature d) increases exponentially with temperature 		
45) Match the following classes of materials given	in Column I with the electron spin alignments in	

	Column I		Column II
P	Ferromagnetic	1.	$\uparrow\downarrow\uparrow\downarrow$
Q	Anti-ferromagnetic	2.	\rightarrow \nearrow \checkmark \checkmark \checkmark
R	Ferrimagnetic	3.	1111
S	Paramagnetic	4.	$\downarrow\downarrow\downarrow$
		5.	$\uparrow \uparrow$

- a) P-3, Q-1, R-4, S-5 b) P-4, Q-2, R-5, S-3 c) P-3, Q-1, R-5, S-2 d) P-3, Q-2, R-4, S-1
- 46) Match the following experimental techniques given in Column I with applications given in Column II.

	Column I		Column II
P	Differential Scanning Calorimetry	1.	Dislocation studies
Q	Atomic Absorption Spectroscopy	2.	Surface Topography
R	Scanning Electron Microscopy	3.	Electrical Conductivity
S	Transmission Electron Microscopy	4.	Trace Element Analysis
		5.	Phase Transformation

- a) P-5, Q-4, R-2, S-1 b) P-5, Q-1, R-3, S-2 c) P-2, Q-5, R-3, S-1 d) P-1, Q-5, R-4, S-2
- 47) Match the following materials given in Column I with their applications given in Column II.

	Column I		Column II
P	Nylon	1.	Electrical switch housing
Q	Urea formaldehyde	2.	Conducting polymers
R	Polyaniline	3.	Heating Element
S	Alumina	4.	Gears for toys
		5.	Polishing material

- a) P-2, Q-4, R-3, S-5 b) P-4, Q-1, R-2, S-5 c) P-3, Q-4, R-2, S-1 d) P-4, Q-5, R-3, S-2
- 48) Match the following materials given in Column I with their applications given in Column II.

	Column I		Column II
P	Silicon carbide fibre	1.	Fibre glass boat
Q	Polyester fibre	2.	Heating element
R	Thoria doped tungsten	3.	Magnetic material
S	Nichrome	4.	Electric bulb filament
		5.	Armour material

a) P-5, Q-1, R-3, S-2 b) P-1, Q-5, R-4, S-2 c) P-5, Q-3, R-2, S-1 d) P-5, Q-1, R-4, S-2