Algorithms - CS5800 - Assignment 1

1. Recall that:

- f(n) = O(g(n)) if there exist constants N > 0, c > 0 such that for any $n \ge N$ we have $0 \le f(n) \le c \cdot g(n)$.
- f(n) = o(g(n)) if for any c > 0 there exists N > 0, such that for any $n \ge N$ we have $0 \le f(n) \le c \cdot g(n)$.
- $f(n) = \Omega(g(n))$ if there exist constants N > 0, c > 0 such that for any $n \ge N$ we have $0 \le c \cdot g(n) \le f(n)$.
- $f(n) = \Theta(g(n))$ if there exist constants N > 0, $c_1 > 0$, $c_2 > 0$ such that for any $n \ge N$ we have $0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$.

Answer the following question:

- (a) Does $2^{n+1} = O(2^n)$?
- (b) Prove that for $n \ge 10$ we have $2^n \ge n^3$ and deduce that $2^n = \Omega(n^3)$.
- (c) Show that for any a, b > 0 we have $(n + a)^b = \Theta(n^b)$.

For the following, let f(n) and g(n) be two positive functions.

- (d) Prove or disprove: $\max\{f(n), g(n)\} = \Theta(f(n) + g(n)).$
- (e) Prove or disprove:
- $f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)).$
- (f) Prove or disprove:

$$f(n) = o(g(n)) \iff f(n) = O(g(n)) \text{ and } f(n) \neq \Theta(g(n)).$$

2. Let T(n) be a function defined by the recurrence relation.

$$T(n) = \begin{cases} 1, & n = 1; \\ T(\lfloor \frac{n}{2} \rfloor) + T(\lceil \frac{n}{2} \rceil) + 1, & n > 1 \end{cases}$$

Prove that T(n) = O(n) (Do not use the Master theorm).

- 3. Use the Master theorem to find the asymptotic behavior of the function T(n) in the following cases:
 - (a) $T(n) = 4T(\lfloor \frac{n}{2} \rfloor) + 7n$, T(1) = 1.
 - (b) $T(n) = 4T(\lfloor \frac{n}{2} \rfloor) + 5n^2$, T(1) = 1.
 - (c) $T(n) = 4T(\lfloor \frac{n}{2} \rfloor) + 12n^3$, T(1) = 1.
- 4. If x equals one of the elements of the **sorted** array $A = (a_1, a_2, ..., a_n)$ (here $a_1 < a_2 < ... < a_n$) then we can find x using binary search in the following way:

1

- Compare $a_{\frac{n}{2}}$ to x ($\frac{n}{2}$ may be $\lfloor \frac{n}{2} \rfloor$ for example).
- If $a_{\frac{n}{2}} < x$ use binary search to look for x in $(a_{\frac{n}{2}+1}, ..., a_n)$.
- If $a_{\frac{n}{2}} > x$ use binary search to look for x in $(a_1, ..., a_{\frac{n}{2}})$.

(a) Write pseudo code for an algorithm BinarySearch(A, n, x) that gets a sorted array A of length n and an element x as input, and returns the index of x in the array. (What happens if x is not in the array?)

Make sure that your algorithm performs $O(\log(n))$ comparisons in the worst case (prove it).

- (b) Use binary search to improve the insertion sort algorithm that we described in class, so that it can sort an array using $O(n \log(n))$ comparisons in the worst case.
- 5. Describe a comparison algorithm that gets an array of numbers $A = (a_1, a_2, ..., a_n)$ and a real number x as input, and checks whether there are 2 elements in the array A whose sum equals x.

For example: if A = (1, 4, 2, 7, 10, 11) and x = 18, the algorithm should return Yes (and possibly the indices 4 and 6).

If A = (1, 4, 2, 7, 10, 11) and x = 16 the algorithm should return No.

You should find an algorithm with complexity $O(n \log_2(n))$ and prove it.

Write the pseudo code of your algorithm.

6. We saw that we can find the minimal element of an array of length n using n-1 comparisons. It immediately follows that we can find the first two smallest elements using 2n-3 comparisons. We want to do better.

Describe a comparison algorithm that gets an array $A = (a_1, a_2, ..., a_n)$ and returns the index of the minimal element and the index of the second smallest element using no more than $n + \log_2(n)$ comparisons (Note: this is not $O(n + \log(n))$ (which is just O(n)) but exactly $n + \log(n)$). You may assume that $n = 2^k$.

You do not have to write a pseudo code for the algorithm but you must explain how the algorithm works in a clear way that would enable its implementation. Prove that the algorithm you described performs at most $n + \log_2(n)$ comparisons.