CS189/CS289A Introduction to Machine Learning Lecture 4: Decision Theory

Peter Bartlett

January 29, 2015

Decision theory

- Decision theory
 - Loss functions

- Decision theory
 - Loss functions
 - Probabilistic assumptions

- Decision theory
 - Loss functions
 - Probabilistic assumptions
 - Risk.

- Decision theory
 - Loss functions
 - Probabilistic assumptions
 - Risk.
 - Bayes decision rule.

- Decision theory
 - Loss functions
 - Probabilistic assumptions
 - Risk.
 - Bayes decision rule.
 - Excess risk.

- Decision theory
 - Loss functions
 - Probabilistic assumptions
 - Risk.
 - Bayes decision rule.
 - Excess risk.
 - Risk, Bayes decision rule, excess risk in regression.

- Decision theory
 - Loss functions
 - Probabilistic assumptions
 - Risk.
 - Bayes decision rule.
 - Excess risk.
 - Risk, Bayes decision rule, excess risk in regression.
- Three approaches to estimating a classifier: generative models, discriminative models, decision rules.

- Decision theory
 - Loss functions
 - Probabilistic assumptions
 - Risk.
 - Bayes decision rule.
 - Excess risk.
 - Risk, Bayes decision rule, excess risk in regression.
- Three approaches to estimating a classifier: generative models, discriminative models, decision rules.

The Prediction Problem

Given a training set of n pairs:

$$(x_1,y_1),\ldots,(x_n,y_n),$$

The Prediction Problem

Given a training set of n pairs:

$$(x_1,y_1),\ldots,(x_n,y_n),$$

choose a function $f:\mathcal{X} o \mathcal{Y}$

The Prediction Problem

Given a training set of n pairs:

$$(x_1, y_1), \ldots, (x_n, y_n),$$

choose a function $f: \mathcal{X} \to \mathcal{Y}$ so that, for *subsequent* (x, y) pairs, f(x) is a good prediction of y.

The Prediction Problem

Given a training set of n pairs:

$$(x_1,y_1),\ldots,(x_n,y_n),$$

choose a function $f: \mathcal{X} \to \mathcal{Y}$ so that, for subsequent (x, y) pairs, f(x) is a good prediction of y.

For example, the patterns $x \in \mathcal{X}$ might be vectors in \mathbb{R}^{400} .

The Prediction Problem

Given a training set of n pairs:

$$(x_1,y_1),\ldots,(x_n,y_n),$$

choose a function $f: \mathcal{X} \to \mathcal{Y}$ so that, for subsequent (x, y) pairs, f(x) is a good prediction of y.

For example, the patterns $x \in \mathcal{X}$ might be vectors in \mathbb{R}^{400} . The labels $y \in \mathcal{Y}$ might be class labels in $\{0, 1, \dots, 9\}$.

The Prediction Problem

Given a *training set* of n pairs:

$$(x_1, y_1), \ldots, (x_n, y_n),$$

choose a function $f: \mathcal{X} \to \mathcal{Y}$ so that, for subsequent (x, y) pairs, f(x) is a good prediction of y.

For example, the patterns $x \in \mathcal{X}$ might be vectors in \mathbb{R}^{400} . The labels $y \in \mathcal{Y}$ might be class labels in $\{0, 1, \dots, 9\}$.

To define the notion of a 'good prediction,' we can define a **loss function** $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$.

The Prediction Problem

Given a training set of n pairs:

$$(x_1, y_1), \ldots, (x_n, y_n),$$

choose a function $f: \mathcal{X} \to \mathcal{Y}$ so that, for subsequent (x, y) pairs, f(x) is a good prediction of y.

For example, the patterns $x \in \mathcal{X}$ might be vectors in \mathbb{R}^{400} . The labels $y \in \mathcal{Y}$ might be class labels in $\{0, 1, \dots, 9\}$.

To define the notion of a 'good prediction,' we can define a **loss function** $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$.

 $\ell(\hat{y}, y)$ is the cost of predicting \hat{y} when the outcome is y.

The Prediction Problem

Given a *training set* of n pairs:

$$(x_1, y_1), \ldots, (x_n, y_n),$$

choose a function $f: \mathcal{X} \to \mathcal{Y}$ so that, for subsequent (x, y) pairs, f(x) is a good prediction of y.

For example, the patterns $x \in \mathcal{X}$ might be vectors in \mathbb{R}^{400} . The labels $y \in \mathcal{Y}$ might be class labels in $\{0, 1, \dots, 9\}$.

To define the notion of a 'good prediction,' we can define a **loss function** $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$.

 $\ell(\hat{y}, y)$ is the cost of predicting \hat{y} when the outcome is y.

Aim: $\ell(f(x), y)$ small.

Example: Classification

$$\ell(\hat{y}, y) = 1[\hat{y} \neq y] = \begin{cases} 1 & \text{if } \hat{y} \neq y, \\ 0 & \text{otherwise.} \end{cases}$$

Example: Classification

$$\ell(\hat{y}, y) = 1[\hat{y} \neq y] = \begin{cases} 1 & \text{if } \hat{y} \neq y, \\ 0 & \text{otherwise.} \end{cases}$$

$\ell(\hat{y},y)$	$\hat{y} = 0$	$\hat{y} = 1$	$\hat{y} = 2$	• • •	$\hat{y} = 9$
y = 0					
y=1					
y=2					
:					
y=9					

Example: Classification

$$\ell(\hat{y}, y) = 1[\hat{y} \neq y] = \begin{cases} 1 & \text{if } \hat{y} \neq y, \\ 0 & \text{otherwise.} \end{cases}$$

$\ell(\hat{y},y)$	$\hat{y} = 0$	$\hat{y} = 1$	$\hat{y} = 2$	 $\hat{y} = 9$
y = 0	0			
y=1				
y=2				
:				
y = 9				

Example: Classification

$$\ell(\hat{y}, y) = 1[\hat{y} \neq y] = \begin{cases} 1 & \text{if } \hat{y} \neq y, \\ 0 & \text{otherwise.} \end{cases}$$

$\ell(\hat{y},y)$	$\hat{y} = 0$	$\hat{y} = 1$	$\hat{y} = 2$		$\hat{y} = 9$
y = 0	0	1	1	• • •	1
y=1					
y=2					
:					
y=9					

Example: Classification

$$\ell(\hat{y}, y) = 1[\hat{y} \neq y] = \begin{cases} 1 & \text{if } \hat{y} \neq y, \\ 0 & \text{otherwise.} \end{cases}$$

$\ell(\hat{y},y)$	$\hat{y} = 0$	$\hat{y} = 1$	$\hat{y} = 2$	 $\hat{y} = 9$
y = 0	0	1	1	 1
y=1		0		
y=2				
:				
y = 9				

Example: Classification

$$\ell(\hat{y}, y) = 1[\hat{y} \neq y] = \begin{cases} 1 & \text{if } \hat{y} \neq y, \\ 0 & \text{otherwise.} \end{cases}$$

$\ell(\hat{y},y)$	$\hat{y} = 0$	$\hat{y} = 1$	$\hat{y} = 2$	 $\hat{y} = 9$
y = 0	0	1	1	 1
y=1	1	0		
y=2				
:				
y = 9				

Example: Classification

$$\ell(\hat{y}, y) = 1[\hat{y} \neq y] = \begin{cases} 1 & \text{if } \hat{y} \neq y, \\ 0 & \text{otherwise.} \end{cases}$$

$\ell(\hat{y},y)$	$\hat{y} = 0$	$\hat{y} = 1$	$\hat{y} = 2$	• • •	$\hat{y} = 9$
y = 0	0	1	1		1
y=1	1	0	1		1
y=2					
:					
y=9					

Example: Classification

$$\ell(\hat{y}, y) = 1[\hat{y} \neq y] = \begin{cases} 1 & \text{if } \hat{y} \neq y, \\ 0 & \text{otherwise.} \end{cases}$$

$\ell(\hat{y},y)$	$\hat{y} = 0$	$\hat{y} = 1$	$\hat{y} = 2$		$\hat{y} = 9$
y = 0	0	1	1		1
y=1	1	0	1		1
y=2	1	1	0		1
:	:	÷		٠.,	÷
y=9	1	1	1		0

Example: Spam Classification

Example: Spam Classification

$$\ell(\hat{y},y)$$
 $\hat{y} = \operatorname{Spam}$ $\hat{y} = \operatorname{Ham}$ $y = \operatorname{Spam}$ $y = \operatorname{Ham}$

Example: Spam Classification

$\ell(\hat{y},y)$	$\hat{y} = Spam$	$\hat{y} = Ham$
y = Spam	0	
y = Ham		0

Example: Spam Classification

$\ell(\hat{y},y)$	$\hat{y} = Spam$	$\hat{y} = Ham$
y = Spam	0	1
y = Ham		0

Example: Spam Classification

$\ell(\hat{y},y)$	$\hat{y} = Spam$	$\hat{y} = Ham$
y = Spam	0	1
y = Ham	100	0

Example: Regression

Loss Functions

Example: Regression

Outcomes are in $\mathcal{Y}=\mathbb{R}$

Loss Functions

Example: Regression

Outcomes are in $\mathcal{Y} = \mathbb{R}$, we might choose the quadratic loss function, $\ell(\hat{y}, y) = (\hat{y} - y)^2$.

Loss Functions

Example: Regression

Outcomes are in $\mathcal{Y} = \mathbb{R}$, we might choose the quadratic loss function, $\ell(\hat{y}, y) = (\hat{y} - y)^2$.

Outline

- Decision theory
 - Loss functions
 - Probabilistic assumptions
 - Risk.
 - Bayes decision rule.
 - Excess risk.
 - Risk, Bayes decision rule, excess risk in regression.
- Three approaches to estimating a classifier: generative models, discriminative models, decision rules.

The Prediction Problem

Given a *training set* of n pairs:

$$(x_1, y_1), \ldots, (x_n, y_n),$$

The Prediction Problem

Given a training set of n pairs:

$$(x_1, y_1), \ldots, (x_n, y_n),$$

choose a function $f: \mathcal{X} \to \mathcal{Y}$ so that, for subsequent (x, y) pairs, f(x) is a good prediction of y.

• We need to assume something about the relationship between the data $(x_1, y_1), \ldots, (x_n, y_n)$ and the subsequent (x, y) pairs.

The Prediction Problem

Given a *training set* of n pairs:

$$(x_1, y_1), \ldots, (x_n, y_n),$$

- We need to assume something about the relationship between the data $(x_1, y_1), \ldots, (x_n, y_n)$ and the subsequent (x, y) pairs.
- A common formulation: Assume that they are randomly chosen, and have the same probability distribution.

The Prediction Problem

Given a training set of n pairs:

$$(x_1, y_1), \ldots, (x_n, y_n),$$

- We need to assume something about the relationship between the data $(x_1, y_1), \ldots, (x_n, y_n)$ and the subsequent (x, y) pairs.
- A common formulation: Assume that they are randomly chosen, and have the same probability distribution.
- This is not an unreasonable assumption.

The Prediction Problem

Given a training set of n pairs:

$$(x_1, y_1), \ldots, (x_n, y_n),$$

- We need to assume something about the relationship between the data $(x_1, y_1), \ldots, (x_n, y_n)$ and the subsequent (x, y) pairs.
- A common formulation: Assume that they are randomly chosen, and have the same probability distribution.
- This is not an unreasonable assumption. But keep in mind that it is a model that is typically wrong at some level of detail.

The Prediction Problem

Given a training set of n pairs:

$$(x_1, y_1), \ldots, (x_n, y_n),$$

choose a function $f: \mathcal{X} \to \mathcal{Y}$ so that, for *subsequent* (x, y) pairs, f(x) is a good prediction of y.

- We need to assume something about the relationship between the data $(x_1, y_1), \ldots, (x_n, y_n)$ and the subsequent (x, y) pairs.
- A common formulation: Assume that they are randomly chosen, and have the same probability distribution.
- This is not an unreasonable assumption. But keep in mind that it is a model that is typically wrong at some level of detail.

(Think about the MNIST digits data versus your handwriting.)

The Prediction Problem

Given a training set of n pairs:

$$(X_1, Y_1), \ldots, (X_n, Y_n),$$

The Prediction Problem

Given a training set of n pairs:

$$(X_1, Y_1), \ldots, (X_n, Y_n),$$

choose a function $f: \mathcal{X} \to \mathcal{Y}$ so that, for *subsequent* (X, Y) pairs, f(X) is a good prediction of Y.

• Assume that (X_i, Y_i) and (X, Y) are chosen i.i.d. (independently and identically distributed), according to some probability distribution on $\mathcal{X} \times \mathcal{Y}$.

P(X, Y)

$$P(X,Y) = P(Y)P(X|Y)$$

P(X,Y) = P(Y)P(X|Y) = P(X)P(Y|X).

$$P(X, Y) = P(Y)P(X|Y) = P(X)P(Y|X).$$
 $P(X \in S \text{ and } Y = 1)$

$$P(X,Y) = P(Y)P(X|Y) = P(X)P(Y|X).$$

$$P(X \in S \text{ and } Y = 1) = P(Y = 1)P(X \in S|Y = 1)$$

$$P(X, Y) = P(Y)P(X|Y) = P(X)P(Y|X).$$

 $P(X \in S \text{ and } Y = 1) = P(Y = 1)P(X \in S|Y = 1) = P(X \in S)P(Y = 1|X \in S).$

$$P(Y = +1|X) =$$

$$P(Y = +1|X) = \frac{P(X|Y = +1)P(Y = +1)}{}$$

$$P(Y = +1|X) = \frac{P(X|Y = +1)P(Y = +1)}{P(X|Y = +1)P(Y = +1) + P(X|Y = -1)P(Y = -1)}.$$

$$P(Y = +1|X) = \frac{P(X|Y = +1)P(Y = +1)}{P(X|Y = +1)P(Y = +1) + P(X|Y = -1)P(Y = -1)}.$$

The Prediction Problem

Given a training set of n pairs:

$$(X_1, Y_1), \ldots, (X_n, Y_n),$$

choose a function $f: \mathcal{X} \to \mathcal{Y}$ so that, for *subsequent* (X, Y) pairs, f(X) is a good prediction of Y.

• Assume that (X_i, Y_i) and (X, Y) are chosen i.i.d. (independently and identically distributed), according to some probability distribution on $\mathcal{X} \times \mathcal{Y}$.

The Prediction Problem

Given a training set of n pairs:

$$(X_1, Y_1), \ldots, (X_n, Y_n),$$

- Assume that (X_i, Y_i) and (X, Y) are chosen i.i.d. (independently and identically distributed), according to some probability distribution on $\mathcal{X} \times \mathcal{Y}$.
- A good prediction means small expected loss

The Prediction Problem

Given a training set of n pairs:

$$(X_1, Y_1), \ldots, (X_n, Y_n),$$

- Assume that (X_i, Y_i) and (X, Y) are chosen i.i.d. (independently and identically distributed), according to some probability distribution on $\mathcal{X} \times \mathcal{Y}$.
- A good prediction means small expected loss: The aim is to choose f with small risk,

$$R(f) = \mathbb{E}\ell(f(X), Y).$$

Example: Pattern classification

Example: Pattern classification

Example: Pattern classification

$$R(f) = \mathbb{E}\ell(f(X), Y)$$

Example: Pattern classification

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}1[f(X) \neq Y]$$

Example: Pattern classification

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}1[f(X) \neq Y] = \Pr(f(X) \neq Y).$$

Example: Pattern classification

Risk is misclassification probability:

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}1[f(X) \neq Y] = \Pr(f(X) \neq Y).$$

• Notation: Capital letters denote random variables.

Example: Pattern classification

Risk is misclassification probability:

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}1[f(X) \neq Y] = \Pr(f(X) \neq Y).$$

- Notation: Capital letters denote random variables.
- The probability distribution models the relative frequency of different (X, Y) pairs.

Example: Pattern classification

Risk is misclassification probability:

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}1[f(X) \neq Y] = \Pr(f(X) \neq Y).$$

- Notation: Capital letters denote random variables.
- The probability distribution models the relative frequency of different (X, Y) pairs.
- It is crucial that the distribution of the training points (X_i, Y_i) is the same as that of the subsequent (X, Y) pair.

Outline

- Decision theory
 - Loss functions
 - Probabilistic assumptions
 - Risk
 - Bayes decision rule
 - Excess risk
 - Risk, Bayes decision rule, excess risk in regression
- Three approaches to estimating a classifier: generative models, discriminative models, decision rules

Two-class classification: $\mathcal{Y} = \{-1, +1\}$

16 / 34

Two-class classification: $\mathcal{Y} = \{-1, +1\}$

$$R(f) = \mathbb{E}\ell(f(X), Y)$$

Two-class classification: $\overline{\mathcal{Y}} = \{-1, +1\}$

$$R(f) = \mathbb{E}\ell(f(X), Y)$$
$$= \mathbb{E}\mathbb{E}[\ell(f(X), Y)|X]$$

Two-class classification: $\mathcal{Y} = \overline{\{-1, +1\}}$

$$R(f) = \mathbb{E}\ell(f(X), Y)$$

$$= \mathbb{E}\mathbb{E}[\ell(f(X), Y)|X]$$

$$= \mathbb{E}[\ell(f(X), +1)P(Y = +1|X) + 1]$$

Two-class classification: $\mathcal{Y} = \{-1, +1\}$

$$R(f) = \mathbb{E}\ell(f(X), Y)$$

$$= \mathbb{E}\mathbb{E}[\ell(f(X), Y)|X]$$

$$= \mathbb{E}\left[\ell(f(X), +1)P(Y = +1|X) + \ell(f(X), -1)P(Y = -1|X)\right]$$

Two-class classification: $\mathcal{Y} = \{-1, +1\}$

```
R(f) = \mathbb{E}\ell(f(X), Y)
= \mathbb{E}\mathbb{E}[\ell(f(X), Y)|X]
= \mathbb{E}\left[\ell(f(X), +1)P(Y = +1|X) + \ell(f(X), -1)P(Y = -1|X)\right]
= \mathbb{E}\left[1[f(X) = -1]P(Y = +1|X) + 1[f(X) = +1]P(Y = -1|X)\right].
```

Two-class classification: $\mathcal{Y} = \{-1, +1\}$

$$R(f) = \mathbb{E}\ell(f(X), Y)$$

$$= \mathbb{E}\mathbb{E}[\ell(f(X), Y)|X]$$

$$= \mathbb{E}\left[\ell(f(X), +1)P(Y = +1|X) + \ell(f(X), -1)P(Y = -1|X)\right]$$

$$= \mathbb{E}\left[1[f(X) = -1]P(Y = +1|X) + 1[f(X) = +1]P(Y = -1|X)\right].$$

16/34

Bayes Decision Rule

Optimizing our choice for each X, we see that risk is minimized when $f = f^*$:

$$f^*(x) = \begin{cases} 1 & \text{if } P(Y=1|x) > P(Y=-1|x), \\ -1 & \text{otherwise.} \end{cases}$$

Bayes Decision Rule

Optimizing our choice for each X, we see that risk is minimized when $f = f^*$:

$$f^*(x) = \begin{cases} 1 & \text{if } P(Y=1|x) > P(Y=-1|x), \\ -1 & \text{otherwise.} \end{cases}$$

This is called the Bayes decision rule.

Bayes Decision Rule

Optimizing our choice for each X, we see that risk is minimized when $f = f^*$:

$$f^*(x) = \begin{cases} 1 & \text{if } P(Y=1|x) > P(Y=-1|x), \\ -1 & \text{otherwise.} \end{cases}$$

This is called the *Bayes decision rule*. Denote the optimal risk (the *Bayes risk*), by

$$R^* = \inf_f R(f)$$

Bayes Decision Rule

Optimizing our choice for each X, we see that risk is minimized when $f = f^*$:

$$f^*(x) = \begin{cases} 1 & \text{if } P(Y=1|x) > P(Y=-1|x), \\ -1 & \text{otherwise.} \end{cases}$$

This is called the *Bayes decision rule*. Denote the optimal risk (the *Bayes risk*), by

$$R^* = \inf_f R(f) = R(f^*).$$

Bayes Decision Rule

Optimizing our choice for each X, we see that risk is minimized when $f = f^*$:

$$f^*(x) = \begin{cases} 1 & \text{if } P(Y=1|x) > P(Y=-1|x), \\ -1 & \text{otherwise.} \end{cases}$$

This is called the *Bayes decision rule*. Denote the optimal risk (the *Bayes risk*), by

$$R^* = \inf_f R(f) = R(f^*).$$

If
$$P(Y = +1|x) = P(Y = -1|x) = 1/2$$
,

Bayes Decision Rule

Optimizing our choice for each X, we see that risk is minimized when $f = f^*$:

$$f^*(x) = \begin{cases} 1 & \text{if } P(Y=1|x) > P(Y=-1|x), \\ -1 & \text{otherwise.} \end{cases}$$

This is called the *Bayes decision rule*. Denote the optimal risk (the *Bayes risk*), by

$$R^* = \inf_f R(f) = R(f^*).$$

If P(Y = +1|x) = P(Y = -1|x) = 1/2, choice does not affect the risk. In that case, any choice for $f^*(x)$ is equally good. So there can be several Bayes decision rules.

Bayes Decision Rule

Optimizing our choice for each X, we see that risk is minimized when $f = f^*$:

$$f^*(x) = \begin{cases} 1 & \text{if } P(Y=1|x) > P(Y=-1|x), \\ -1 & \text{otherwise.} \end{cases}$$

This is called the *Bayes decision rule*. Denote the optimal risk (the *Bayes risk*), by

$$R^* = \inf_f R(f) = R(f^*).$$

If P(Y = +1|x) = P(Y = -1|x) = 1/2, choice does not affect the risk. In that case, any choice for $f^*(x)$ is equally good. So there can be several Bayes decision rules.

(How does f^* change if we have a different ℓ ? c.f. the spam loss.)

Excess risk

$$R(f) - R^* =$$

Excess risk

$$R(f) - R^* =$$

Excess risk

$$R(f) - R^* = \mathbb{E}\left(1[f(X) \neq f^*(X)]\right)$$

Excess risk

$$R(f) - R^* = \mathbb{E}(1[f(X) \neq f^*(X)]|P(Y = +1|X) - P(Y = -1|X)|)$$

Excess risk

For any $f: \mathcal{X} \to \{-1, +1\}$,

$$R(f) - R^* = \mathbb{E}\left(1[f(X) \neq f^*(X)]|P(Y = +1|X) - P(Y = -1|X)|\right)$$

= $\mathbb{E}\left(1[f(X) \neq f^*(X)]|2P(Y = +1|X) - 1|\right)$.

18 / 34

Excess risk

For any
$$f: \mathcal{X} \to \{-1, +1\}$$
,

$$R(f) - R^* = \mathbb{E}\left(1[f(X) \neq f^*(X)]|P(Y = +1|X) - P(Y = -1|X)|\right)$$

= $\mathbb{E}\left(1[f(X) \neq f^*(X)]|2P(Y = +1|X) - 1|\right)$.

Excess risk

For any $f: \mathcal{X} \rightarrow \{-1, +1\}$,

$$R(f) - R^* = \mathbb{E}\left(1[f(X) \neq f^*(X)]|P(Y = +1|X) - P(Y = -1|X)|\right)$$

= $\mathbb{E}\left(1[f(X) \neq f^*(X)]|2P(Y = +1|X) - 1|\right)$.

That is, the excess risk of a decision rule (above the Bayes risk) can be quantified in terms of a certain distance from f^* .

Excess risk

For any $f: \mathcal{X} \rightarrow \{-1, +1\}$,

$$R(f) - R^* = \mathbb{E}(1[f(X) \neq f^*(X)]|P(Y = +1|X) - P(Y = -1|X)|)$$

= $\mathbb{E}(1[f(X) \neq f^*(X)]|2P(Y = +1|X) - 1|).$

That is, the excess risk of a decision rule (above the Bayes risk) can be quantified in terms of a certain distance from f^* .

(Not quite a distance: differences between functions at an x with P(Y = +1|x) = 1/2 have no influence on the risk.)

Outline

- Decision theory
 - Loss functions
 - Probabilistic assumptions
 - Risk
 - Bayes decision rule
 - Excess risk
 - Risk, Bayes decision rule, excess risk in regression
- Three approaches to estimating a classifier: generative models, discriminative models, decision rules

Example: Regression with squared loss

Example: Regression with squared loss

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^{2}.$$

Example: Regression with squared loss

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^{2}.$$

Example: Regression with squared loss

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^{2}.$$

Risk in Regression

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^{2}$$

Risk in Regression

Risk is expected squared error:

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}\left(f(X) - Y\right)^2 = \mathbb{E}\mathbb{E}\left[(f(X) - Y)^2 | X\right].$$

Risk in Regression

Risk is expected squared error:

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^2 = \mathbb{E}\mathbb{E}[(f(X) - Y)^2|X].$$

Just as in the classification case, for each X, we minimize the conditional expectation of the loss,

$$\mathbb{E}\left[\left(f(X)-Y\right)^2|X\right].$$

Risk in Regression

Risk is expected squared error:

$$R(f) = \mathbb{E}\ell(f(X), Y) = \mathbb{E}(f(X) - Y)^2 = \mathbb{E}\mathbb{E}[(f(X) - Y)^2|X].$$

Just as in the classification case, for each X, we minimize the conditional expectation of the loss,

$$\mathbb{E}\left[\left(f(X)-Y\right)^2|X\right].$$

$$R(f) = \mathbb{E}(f(X) - Y)^2$$

$$R(f) = \mathbb{E}(f(X) - Y)^{2}$$
$$= \mathbb{E}\mathbb{E}\left[(f(X) - Y)^{2} | X\right]$$

$$R(f) = \mathbb{E} (f(X) - Y)^{2}$$

$$= \mathbb{E} \mathbb{E} \left[(f(X) - Y)^{2} | X \right]$$

$$= \mathbb{E} \mathbb{E} \left[(f(X) - \mathbb{E}[Y|X] + \mathbb{E}[Y|X] - Y)^{2} | X \right]$$

$$R(f) = \mathbb{E}(f(X) - Y)^{2}$$

$$= \mathbb{E}\mathbb{E}\left[(f(X) - Y)^{2} | X\right]$$

$$= \mathbb{E}\mathbb{E}\left[(f(X) - \mathbb{E}[Y|X] + \mathbb{E}[Y|X] - Y)^{2} | X\right]$$

$$= \mathbb{E}\mathbb{E}\left[(f(X) - \mathbb{E}[Y|X])^{2} + (\mathbb{E}[Y|X] - Y)^{2} + 2(f(X) - \mathbb{E}[Y|X]) \underbrace{(\mathbb{E}[Y|X] - Y)}_{X}\right]$$

$$R(f) = \mathbb{E}(f(X) - Y)^{2}$$

$$= \mathbb{E}\mathbb{E}\left[(f(X) - Y)^{2} | X\right]$$

$$= \mathbb{E}\mathbb{E}\left[(f(X) - \mathbb{E}[Y|X] + \mathbb{E}[Y|X] - Y)^{2} | X\right]$$

$$= \mathbb{E}\mathbb{E}\left[(f(X) - \mathbb{E}[Y|X])^{2} + (\mathbb{E}[Y|X] - Y)^{2} | X\right]$$

$$+ 2(f(X) - \mathbb{E}[Y|X]) \underbrace{(\mathbb{E}[Y|X] - Y)}_{\text{bias}^{2}} | X\right]$$

$$= \mathbb{E}\left[\underbrace{(f(X) - \mathbb{E}[Y|X])^{2}}_{\text{bias}^{2}} + \mathbb{E}\left[(\mathbb{E}[Y|X] - Y)^{2}\right]$$
variance

Bias-variance decomposition

$$R(f) = \mathbb{E}(f(X) - Y)^{2}$$

$$= \mathbb{E}\mathbb{E}\left[(f(X) - Y)^{2} | X\right]$$

$$= \mathbb{E}\mathbb{E}\left[(f(X) - \mathbb{E}[Y|X] + \mathbb{E}[Y|X] - Y)^{2} | X\right]$$

$$= \mathbb{E}\mathbb{E}\left[(f(X) - \mathbb{E}[Y|X])^{2} + (\mathbb{E}[Y|X] - Y)^{2} | X\right]$$

$$+ 2(f(X) - \mathbb{E}[Y|X]) \underbrace{(\mathbb{E}[Y|X] - Y)}_{\text{bias}^{2}} | X\right]$$

$$= \mathbb{E}\left[\underbrace{(f(X) - \mathbb{E}[Y|X])^{2}}_{\text{bias}^{2}} + \mathbb{E}\left[(\mathbb{E}[Y|X] - Y)^{2}\right] | X\right]$$

$$R(f) = \mathbb{E}\left[\underbrace{\left[(f(X) - \mathbb{E}[Y|X])^2\right]}_{\mathsf{bias}^2} + \mathbb{E}\left[\underbrace{\left(\mathbb{E}[Y|X] - Y\right)^2\right]}_{\mathsf{variance}}.$$

$$R(f) = \mathbb{E}\underbrace{\left[(f(X) - \mathbb{E}[Y|X])^2 \right]}_{\text{bias}^2} + \mathbb{E}\underbrace{\left[(\mathbb{E}[Y|X] - Y)^2 \right]}_{\text{variance}}.$$

Low Variance

No Bias

Bias

$$R(f) = \mathbb{E}\left[\underbrace{\left[(f(X) - \mathbb{E}[Y|X])^2\right]}_{\text{bias}^2} + \mathbb{E}\left[\underbrace{\left[(\mathbb{E}[Y|X] - Y)^2\right]}_{\text{variance}}\right].$$

Low Variance

No Bias

Bias

$$R(f) = \mathbb{E}\left[\underbrace{\left(f(X) - \mathbb{E}[Y|X]\right)^{2}}_{\text{bias}^{2}} + \mathbb{E}\underbrace{\left[\left(\mathbb{E}[Y|X] - Y\right)^{2}\right]}_{\text{variance}}$$

$$R(f) = \mathbb{E}\underbrace{\left[(f(X) - \mathbb{E}[Y|X])^2 \right]}_{\text{bias}^2} + \mathbb{E}\underbrace{\left[(\mathbb{E}[Y|X] - Y)^2 \right]}_{\text{variance}}$$
$$= \mathbb{E}\left[(f(X) - f^*(X))^2 \right] + \mathbb{E}\left[(f^*(X) - Y)^2 \right]$$

$$R(f) = \mathbb{E}\underbrace{\left[(f(X) - \mathbb{E}[Y|X])^2 \right]}_{\text{bias}^2} + \mathbb{E}\underbrace{\left[(\mathbb{E}[Y|X] - Y)^2 \right]}_{\text{variance}}$$

$$= \mathbb{E}\left[(f(X) - f^*(X))^2 \right] + \mathbb{E}\left[(f^*(X) - Y)^2 \right]$$

$$= \mathbb{E}\left[(f(X) - f^*(X))^2 \right] + R(f^*).$$

$$R(f) = \mathbb{E}\underbrace{\left[(f(X) - \mathbb{E}[Y|X])^2 \right]}_{\text{bias}^2} + \mathbb{E}\underbrace{\left[(\mathbb{E}[Y|X] - Y)^2 \right]}_{\text{variance}}$$

$$= \mathbb{E}\left[(f(X) - f^*(X))^2 \right] + \mathbb{E}\left[(f^*(X) - Y)^2 \right]$$

$$= \mathbb{E}\left[(f(X) - f^*(X))^2 \right] + R(f^*).$$

$$R(f) - R^* = \mathbb{E}\left[(f(X) - f^*(X))^2 \right].$$

• We use randomly chosen training data $(X_1, Y_1), \ldots, (X_n, Y_n)$ to choose a prediction rule \hat{f} .

• We use randomly chosen training data $(X_1, Y_1), \ldots, (X_n, Y_n)$ to choose a prediction rule \hat{f} . So that prediction rule is random, and its risk $R(\hat{f})$ is a random variable.

- We use randomly chosen training data $(X_1, Y_1), \ldots, (X_n, Y_n)$ to choose a prediction rule \hat{f} . So that prediction rule is random, and its risk $R(\hat{f})$ is a random variable.
- We'd like $\mathbb{E}R(\hat{f})$ to be small:

- We use randomly chosen training data $(X_1, Y_1), \ldots, (X_n, Y_n)$ to choose a prediction rule \hat{f} . So that prediction rule is random, and its risk $R(\hat{f})$ is a random variable.
- We'd like $\mathbb{E}R(\hat{f})$ to be small:

$$\mathbb{E}R(\hat{f}) - R^* = \mathbb{E}\left[\left(\hat{f}(X) - f^*(X)\right)^2\right]$$

- We use randomly chosen training data $(X_1, Y_1), \ldots, (X_n, Y_n)$ to choose a prediction rule \hat{f} . So that prediction rule is random, and its risk $R(\hat{f})$ is a random variable.
- We'd like $\mathbb{E}R(\hat{f})$ to be small:

$$\mathbb{E}R(\hat{f}) - R^* = \mathbb{E}\left[\left(\hat{f}(X) - f^*(X)\right)^2\right]$$
$$= \mathbb{E}\left[\left(\hat{f}(X) - \mathbb{E}\hat{f}(X) + \mathbb{E}\hat{f}(X) - f^*(X)\right)^2\right]$$

- We use randomly chosen training data $(X_1, Y_1), \ldots, (X_n, Y_n)$ to choose a prediction rule \hat{f} . So that prediction rule is random, and its risk $R(\hat{f})$ is a random variable.
- We'd like $\mathbb{E}R(\hat{f})$ to be small:

$$\mathbb{E}R(\hat{f}) - R^* = \mathbb{E}\left[\left(\hat{f}(X) - f^*(X)\right)^2\right]$$

$$= \mathbb{E}\left[\left(\hat{f}(X) - \mathbb{E}\hat{f}(X) + \mathbb{E}\hat{f}(X) - f^*(X)\right)^2\right]$$

$$= \mathbb{E}\left[\left(\hat{f}(X) - \mathbb{E}\hat{f}(X)\right)^2\right] + \mathbb{E}\left[\left(\mathbb{E}\hat{f}(X) - f^*(X)\right)^2\right].$$
variance
bias²

$$\mathbb{E}R(\hat{f}) - R^* = \underbrace{\mathbb{E}\left[\left(\hat{f}(X) - \mathbb{E}\hat{f}(X)\right)^2\right]}_{\text{variance}} + \underbrace{\mathbb{E}\left[\left(\mathbb{E}\hat{f}(X) - f^*(X)\right)^2\right]}_{\text{bias}^2}.$$

$$\mathbb{E}R(\hat{f}) - R^* = \underbrace{\mathbb{E}\left[\left(\hat{f}(X) - \mathbb{E}\hat{f}(X)\right)^2\right]}_{\text{variance}} + \underbrace{\mathbb{E}\left[\left(\mathbb{E}\hat{f}(X) - f^*(X)\right)^2\right]}_{\text{bias}^2}.$$

Low Variance

High Variance

No Bias

Bias

$$\mathbb{E}R(\hat{f}) - R^* = \underbrace{\mathbb{E}\left[\left(\hat{f}(X) - \mathbb{E}\hat{f}(X)\right)^2\right]}_{\text{variance}} + \underbrace{\mathbb{E}\left[\left(\mathbb{E}\hat{f}(X) - f^*(X)\right)^2\right]}_{\text{bias}^2}.$$

Low Variance

High Variance

No Bias

Bias

Outline

- Decision theory
 - Loss functions
 - Probabilistic assumptions
 - Risk
 - Bayes decision rule
 - Excess risk
 - Risk, Bayes decision rule, excess risk in regression
- Three approaches to estimating a classifier: generative models, discriminative models, decision rules

• Choose a classifier directly, based on optimization of some criterion.

Choose a classifier directly, based on optimization of some criterion.
 (c.f. perceptron algorithm, SVMs)

- Choose a classifier directly, based on optimization of some criterion.
 (c.f. perceptron algorithm, SVMs)
- 2 Estimate a model for the joint probability distribution of (X, Y):

and use it to construct a classifier.

- Choose a classifier directly, based on optimization of some criterion.
 (c.f. perceptron algorithm, SVMs)
- 2 Estimate a model for the joint probability distribution of (X, Y):

 (a) Generative model P(X, Y) = P(Y)P(X|Y)

and use it to construct a classifier.

- Choose a classifier directly, based on optimization of some criterion. (c.f. perceptron algorithm, SVMs)
- 2 Estimate a model for the joint probability distribution of (X, Y):
 - (a) Generative model

$$P(X,Y) = P(Y)P(X|Y)$$

(b) Discriminative model
$$P(X, Y) = P(X)P(Y|X)$$

and use it to construct a classifier.

Discriminative models

- Estimate P(Y|X).
- ② Pretend that our estimate $\hat{P}(Y|X)$ is actually P(Y|X) and substitute it in the expression for the Bayes rule:

Discriminative models

- Estimate P(Y|X).
- ② Pretend that our estimate $\hat{P}(Y|X)$ is actually P(Y|X) and substitute it in the expression for the Bayes rule:

$$\hat{f}(x) = \begin{cases} 1 & \text{if } \hat{P}(Y=1|x) \\ & > \hat{P}(Y=-1|x), \\ -1 & \text{otherwise.} \end{cases}$$

Discriminative models

- Estimate P(Y|X).
- ② Pretend that our estimate $\hat{P}(Y|X)$ is actually P(Y|X) and substitute it in the expression for the Bayes rule:

$$\hat{f}(x) = \begin{cases} 1 & \text{if } \hat{P}(Y=1|x) \\ & > \hat{P}(Y=-1|x), \\ -1 & \text{otherwise.} \end{cases}$$

Called a plug-in estimator.

Generative models

Generative models

• Estimate P(Y) and P(X|Y).

Generative models

- **1** Estimate P(Y) and P(X|Y).
- Use Bayes theorem:

$$P(Y = +1|X) = \frac{P(X|Y = +1)P(Y = +1)}{P(X|Y = +1)P(Y = +1) + P(X|Y = -1)P(Y = -1)}.$$

Generative models

- Estimate P(Y) and P(X|Y).
- Use Bayes theorem:

$$P(Y = +1|X) = \frac{P(X|Y = +1)P(Y = +1)}{P(X|Y = +1)P(Y = +1) + P(X|Y = -1)P(Y = -1)}.$$

Oefine the plug-in estimator as for a discriminative model.

Estimate a generative model

Estimate a generative model

Estimate a discriminative model

1 Estimate a generative model

2 Estimate a discriminative model

• Estimate a generative model: Estimate P(X|Y).

Estimate a discriminative model

- Estimate a generative model:
 Estimate P(X|Y).
 But ultimately, all it uses is the conditional probability P(Y|X).
- Estimate a discriminative model

- Estimate a generative model:
 Estimate P(X|Y).
 But ultimately, all it uses is the conditional probability P(Y|X).
- 2 Estimate a discriminative model: Directly estimate the conditional probability P(Y|X).

- Estimate a generative model:
 Estimate P(X|Y).
 But ultimately, all it uses is the conditional probability P(Y|X).
- ② Estimate a discriminative model: Directly estimate the conditional probability P(Y|X). But it typically aims to estimate it accurately across all values of X, when all that matters is whether P(Y=+1|X)>P(Y=-1|X), so accuracy only matters where P(Y=+1|X) is near 1/2.
- Choose a classifier directly

- Estimate a generative model:
 Estimate P(X|Y).
 But ultimately, all it uses is the conditional probability P(Y|X).
- ② Estimate a discriminative model: Directly estimate the conditional probability P(Y|X). But it typically aims to estimate it accurately across all values of X, when all that matters is whether P(Y=+1|X)>P(Y=-1|X), so accuracy only matters where P(Y=+1|X) is near 1/2.
- Ohoose a classifier directly: By not solving a more difficult problem (e.g., density estimation), we might hope that this approach will do better.

This is not the whole story:

• If we have a lot of information about the class-conditional distributions P(X|Y), they might be much easier to estimate than conditionals or decision rules.

- If we have a lot of information about the class-conditional distributions P(X|Y), they might be much easier to estimate than conditionals or decision rules.
- If we have a lot of information about the conditional P(Y|X), that might be informative about the decision boundary.

- If we have a lot of information about the class-conditional distributions P(X|Y), they might be much easier to estimate than conditionals or decision rules.
- If we have a lot of information about the conditional P(Y|X), that might be informative about the decision boundary.
- Estimating a model can give extra information:

- If we have a lot of information about the class-conditional distributions P(X|Y), they might be much easier to estimate than conditionals or decision rules.
- If we have a lot of information about the conditional P(Y|X), that might be informative about the decision boundary.
- Estimating a model can give extra information: e.g. an estimate of P(Y = +1|X = x) conveys uncertainty.

- If we have a lot of information about the class-conditional distributions P(X|Y), they might be much easier to estimate than conditionals or decision rules.
- If we have a lot of information about the conditional P(Y|X), that might be informative about the decision boundary.
- Estimating a model can give extra information: e.g. an estimate of P(Y = +1|X = x) conveys uncertainty. e.g. an estimate of P(X = x) can indicate if a point is an outlier.

Outline

- Decision theory
 - Loss functions
 - Probabilistic assumptions
 - Risk
 - Bayes decision rule
 - Excess risk
 - Risk, Bayes decision rule, excess risk in regression
- Three approaches to estimating a classifier: generative models, discriminative models, decision rules