

Configuration File:

Astellas Infectivity Assay Report Test Article Report

Data File(s):

Approver Signature/Date

INFECT-26AUG2024-01_INF2_P1_R1 INFECT-26AUG2024-01_INF2_P2_R1	INFECT-26AUG2024-01_INF2_R1_Configuration update	22Jan2025:13:31:33
Total Number of Plate(s):		
2		
Assay Details		
User Information		
User Name: harding Computer Name: DESKTOP-RFHI5SO Logon Server: \\DESKTOP-RFHI5SO User Domain: DESKTOP-RFHI5SO		
Astellas Infectivity PLA Script Version 3 JMP Version 18.1.0	3.1	
Analyst Signature/Date		

Date:

RS-Pompe-DS000008 Reference Standard Data

	Sample			Std			Log10 MOI			Outlier	Externally	Outlier
Group	Group	N Rows	Vg/mL	Dev(Vg/mL)	CV(%)	MOI (Vg/cell)	(Vg/cell)	Log10 Vg/mL	Jackknife z	Within Group	Studentized Residuals	Between Group
RS-Pompe-DS000008	1	2	2.245e+10	1787565942.8	7.9631412279	1e+3	3	10.351177654	3.086	Pass	0.615	Ok
RS-Pompe-DS000008	2	2	1.057e+10	650538238.69	6.1534074791	5e+2	2.6989700043	10.024157154	1.822	Pass	1.555	Ok
RS-Pompe-DS000008	3	2	3.480e+9	79195959.493	2.2757459624	2.5e+2	2.3979400087	9.5415792439	2.910	Pass	-0.299	Ok
RS-Pompe-DS000008	4	2	1.304e+9			1.25e+2	2.096910013	9.1152775914	1.274	Pass	-1.164	Ok
RS-Pompe-DS000008	5	2	7.992e+8			6.25e+1	1.7958800173	8.9026554752	1.398	Pass	2.039	Ok
RS-Pompe-DS000008	6	2	1.955e+10	1261478497.6	6.453235613	1e+3	3	10.29110233	0.180	Pass	-0.442	Ok
RS-Pompe-DS000008	7	2	1.002e+10	729734198.18	7.282776429	5e+2	2.6989700043	10.000867722	0.084	Pass	1.079	Ok
RS-Pompe-DS000008	8	2	3.198e+9	127844906.04	3.9981519276	2.5e+2	2.3979400087	9.5048241353	1.615	Pass	-0.925	Ok
RS-Pompe-DS000008	9	2	1.807e+9	125582164.34	6.9489909439	1.25e+2	2.096910013	9.2570062179	4.235	Outlier	1.291	Ok
RS-Pompe-DS000008	10	2	7.144e+8			6.25e+1	1.7958800173	8.8539414459	0.243	Pass	0.913	Ok
RS-Pompe-DS000008	11	2	1.782e+10	1538664355.9	8.6325423915	1e+3	3	10.251005173	1.548	Pass	-1.207	Ok
RS-Pompe-DS000008	12	2	9.320e+9	509116882.45	5.4626274941	5e+2	2.6989700043	9.9694159124	2.500	Pass	0.517	Ok
RS-Pompe-DS000008	13	2	3.308e+9	62225396.744	1.8810579427	2.5e+2	2.3979400087	9.5195655009	0.154	Pass	-0.666	Ok
RS-Pompe-DS000008	14	2	1.448e+9			1.25e+2	2.096910013	9.1607685619	0.302	Pass	-0.351	Ok
RS-Pompe-DS000008	15	2	5.408e+8			6.25e+1	1.7958800173	8.7330366829	3.602	Pass	-1.343	Ok

Outliers detected in Outlier Within Group column are Jackknife z greater than 4 and RLU outside of 95% analytical error

Between Group Outliers are aboslute value of Externally Studentized Residuals greater than 4

35737 AC Sample Data

	Sample			Std			Log10 MOI		C	Outlier	Externally Outlier
Group	Group	N Rows	Vg/mL	Dev(Vg/mL)	CV(%)	MOI (Vg/cell)	(Vg/cell)	Log10 Vg/mL	Jackknife z V	Vithin Group	Studentized Residuals Between Group
35737 AC	16	2	1.869e+10			1e+3	3	10.271562825	3.832 P	ass	0.193 Ok
35737 AC	17	2	9.432e+9	758018469.43	8.0366674028	5e+2	2.6989700043	9.9746037921	2.094 P	ass	0.739 Ok
35737 AC	18	2	2.899e+9	153866435.59	5.3072032142	2.5e+2	2.3979400087	9.462278176	1.138 P	ass	-1.908 Ok
35737 AC	19	2	1.736e+9			1.25e+2	2.096910013	9.2395497208	0.566 P	ass	-0.117 Ok
35737 AC	20	2	1.064e+9			6.25e+1	1.7958800173	9.026941628	3.619 P	ass	1.987 Ok
35737 AC	21	2	1.738e+10	1408556708.1	8.1044689765	1e+3	3	10.240049772	0.266 P	ass	-0.261 Ok
35737 AC	22	2	9.840e+9	1108743432.9	11.267717814	5e+2	2.6989700043	9.9929950984	0.007 P	ass	1.018 Ok
35737 AC	23	2	2.978e+9	337148513.27	11.322827555	2.5e+2	2.3979400087	9.4738663558	0.377 P	ass	-1.674 Ok
35737 AC	24	2	1.710e+9	105217489.04	6.1545091858	1.25e+2	2.096910013	9.2328945092	0.864 P	ass	-0.208 Ok
35737 AC	25	2	7.312e+8			6.25e+1	1.7958800173	8.8640361827	1.394 P	ass	-0.707 Ok
35737 AC	26	2	1.679e+10	571342279.2	3.4032778127	1e+3	3	10.224998961	1.347 P	ass	-0.482 Ok
35737 AC	27	2	1.026e+10	429920922.96	4.1918966747	5e+2	2.6989700043	10.010978012	2.149 P	ass	1.313 Ok
35737 AC	28	2	3.235e+9	63356767.594	1.9583570597	2.5e+2	2.3979400087	9.5099011339	5.354 C	Outlier	-1.048 Ok
35737 AC	29	2	1.974e+9	9050966.7992	0.4584160656	1.25e+2	2.096910013	9.2954351424	13.478 C	Outlier	0.677 Ok
35737 AC	30	2	8.400e+8			6.25e+1	1.7958800173	8.9242792861	0.245 P	ass	0.188 Ok

Outliers detected in Outlier Within Group column are Jackknife z greater than 4 and RLU outside of 95% analytical error Between Group Outliers are aboslute value of Externally Studentized Residuals greater than 4

35737 Sample Data

	Sample			Std			Log10 MOI			Outlier	Externally Outlier
Group	Group	N Rows	Vg/mL	Dev(Vg/mL)	CV(%)	MOI (Vg/cell)	(Vg/cell)	Log10 Vg/mL	Jackknife z	Within Group	Studentized Residuals Between Group
35737	16	2	1.869e+10			1e+3	3	10.271562825	3.832	Pass	0.193 Ok
35737	17	2	9.432e+9	758018469.43	8.0366674028	5e+2	2.6989700043	9.9746037921	2.094	Pass	0.739 Ok
35737	18	2	2.899e+9	153866435.59	5.3072032142	2.5e+2	2.3979400087	9.462278176	1.138	Pass	-1.908 Ok
35737	19	2	1.736e+9			1.25e+2	2.096910013	9.2395497208	0.566	Pass	-0.117 Ok
35737	20	2	1.064e+9			6.25e+1	1.7958800173	9.026941628	3.619	Pass	1.987 Ok
35737	21	2	1.738e+10	1408556708.1	8.1044689765	1e+3	3	10.240049772	0.266	Pass	-0.261 Ok
35737	22	2	9.840e+9	1108743432.9	11.267717814	5e+2	2.6989700043	9.9929950984	0.007	Pass	1.018 Ok
35737	23	2	2.978e+9	337148513.27	11.322827555	2.5e+2	2.3979400087	9.4738663558	0.377	Pass	-1.674 Ok
35737	24	2	1.710e+9	105217489.04	6.1545091858	1.25e+2	2.096910013	9.2328945092	0.864	Pass	-0.208 Ok
35737	25	2	7.312e+8			6.25e+1	1.7958800173	8.8640361827	1.394	Pass	-0.707 Ok
35737	26	2	1.679e+10	571342279.2	3.4032778127	1e+3	3	10.224998961	1.347	Pass	-0.482 Ok
35737	27	2	1.026e+10	429920922.96	4.1918966747	5e+2	2.6989700043	10.010978012	2.149	Pass	1.313 Ok
35737	28	2	3.235e+9	63356767.594	1.9583570597	2.5e+2	2.3979400087	9.5099011339	5.354	Outlier	-1.048 Ok
35737	29	2	1.974e+9	9050966.7992	0.4584160656	1.25e+2	2.096910013	9.2954351424	13.478	Outlier	0.677 Ok
35737	30	2	8.400e+8			6.25e+1	1.7958800173	8.9242792861	0.245	Pass	0.188 Ok

Outliers detected in Outlier Within Group column are Jackknife z greater than 4 and RLU outside of 95% analytical error

Between Group Outliers are aboslute value of Externally Studentized Residuals greater than 4

Summary Statistics 35737 AC

				Std			Sample	Standard	Curve
MOI (Vg/cell)	Group	N Rows	Mean(Vg/mL)	Dev(Vg/mL)	CV(%)	CV Check	Size Check	Curve Depth	Depth Test
6.25e+1	RS-Pompe-DS000008	3	6.85e+8	1.32e+8	19.2	FIO	Pass	1.9e+10	Pass
1.25e+2	RS-Pompe-DS000008	2	1.38e+9	1.02e+8	7.4	FIO	Pass		
2.5e+2	RS-Pompe-DS000008	3	3.33e+9	1.42e+8	4.3	FIO	Pass		
5e+2	RS-Pompe-DS000008	3	9.97e+9	6.27e+8	6.3	FIO	Pass		
1e+3	RS-Pompe-DS000008	3	2e+10	2.34e+9	11.7	FIO	Pass		
6.25e+1	35737 AC	3	8.78e+8	1.7e+8	19.3	FIO	Pass		
1.25e+2	35737 AC	2	1.72e+9	1.87e+7	1.1	FIO	Pass		
2.5e+2	35737 AC	2	2.94e+9	5.54e+7	1.9	FIO	Pass		
5e+2	35737 AC	3	9.84e+9	4.12e+8	4.2	FIO	Pass		
16+3	35737 AC	3	1.8e+10	9 720+8	5.5	FIO	Pass		

Coefficient of Variation Alert Limit (≤): 20 Minimum Sample Size (≥): 2

Curve Depth Limit (≥): 1.0e+9

Model Selection 35737 AC

	Parallelism	Linearity			Validity	
Model	Slope Ratio	Ratio	R2	RMSE	Evaluation	Selected Model
Model 2, Low Standard and Test Doses Excluded	0.899	2.974	0.982	0.062	Parallel and Linear	Model 2, Low Standard and Test Doses Excluded
Model 1, All Doses	0.890	1.966	0.986	0.068	Parallel and Linear	
Model 3, High Standard and Test Doses Excluded	0.886	9.980	0.976	0.075	Parallel and Linear	
Model 6, Test Low Dose Only Excluded	0.938	0.649	0.986	0.066	Parallel and Linear	
Model 9, Standard High Dose and Test Low Dose Excluded	0.916	5.132	0.983	0.068	Parallel and Linear	
Model 7, Test High Dose Only Excluded	0.908	3.959	0.983	0.072	Parallel and Linear	
Model 8, Standard Low Dose and Test High Dose Excluded	0.870	4.009	0.981	0.070	Parallel and Linear	
Model 5, Standard High Dose Only Excluded	0.869	4.773	0.983	0.070	Parallel and Linear	
Model 4, Standard Low Dose Only Excluded	0.853	0.696	0.985	0.065	Parallel and Linear	

Graphs 35737 AC

Validity Report 35737 AC

	Validity	Validity		Overall
Validity Criteria	Limits	Results	Assay Validity	Validity
Reference Standard Curve Depth ≥	1e+9	19255200000	Pass Validity Criterion	Assay is Valid
Sample Size Per Dose ≥	2	2	Pass Validity Criterion	
Parallelism Slope Ratio Lower Limit ≥	0.5	0.9	Pass Validity Criterion	
Parallelism Slope Ratio Upper Limit ≤	1.5	0.9	Pass Validity Criterion	
Linearity Ratio ≤	20	2.97	Pass Validity Criterion	
R-squared ≥	0.8	0.98	Pass Validity Criterion	
Abs(Unconstrained - Constrained Relative Potency Delta) \leq	15	0	Pass Validity Criterion	
Dose Reponse Test ≤	0.05	0	Pass Validity Criterion	
EC50 5 Dose Standard Unconstrained LSL Vg/cell ≥	10	341	Pass Validity Criterion	
EC50 5 Dose Standard Unconstrained USL Vg/cell ≤	800	341	Pass Validity Criterion	

Relative Potency and Infectious Particle Ratio 35737 AC

EC50 Reference	e	Relative Po	otency Refe	erence Standard	Refe	rence Standard	Relative Potency	Assay RP	Assay RP
Standar			,				Reportable Result	Upper 95%	Lower 95%
395.07	3 398.8145		99.1	0		0	99.1	107.3	91.5
Particle Ratio 0.5	Ratio Lower Limi 0.3		oper Limit 1.0						
Fitting	EC50 Reference	EC50 Test	Relative	Relative	Acceptance	RP Delta			
Fitting Method	EC50 Reference Standard			Relative Potency Delta	•	RP Delta Check			
3				Potency Delta	Criterion				

Summary Statistics 35737

				Std			Sample	Standard Curve
MOI (Vg/cell)	Group	N Rows	Mean(Vg/mL)	Dev(Vg/mL)	CV(%)	CV Check	Size Check	Curve Depth Depth Test
6.25e+1	RS-Pompe-DS000008	3	6.85e+8	1.32e+8	19.2	FIO	Pass	1.9e+10 Pass
1.25e+2	RS-Pompe-DS000008	2	1.38e+9	1.02e+8	7.4	FIO	Pass	
2.5e+2	RS-Pompe-DS000008	3	3.33e+9	1.42e+8	4.3	FIO	Pass	
5e+2	RS-Pompe-DS000008	3	9.97e+9	6.27e+8	6.3	FIO	Pass	
1e+3	RS-Pompe-DS000008	3	2e+10	2.34e+9	11.7	FIO	Pass	
6.25e+1	35737	3	8.78e+8	1.7e+8	19.3	FIO	Pass	
1.25e+2	35737	2	1.72e+9	1.87e+7	1.1	FIO	Pass	
2.5e+2	35737	2	2.94e+9	5.54e+7	1.9	FIO	Pass	
5e+2	35737	3	9.84e+9	4.12e+8	4.2	FIO	Pass	
1e+3	35737	3	1.8e+10	9.72e+8	5.5	FIO	Pass	

Coefficient of Variation Alert Limit (≤): 20 Minimum Sample Size (≥): 2 Curve Depth Limit (≥): 1.0e+9

Model Selection 35737

	Parallelism	Linearity			Validity	
Model	Slope Ratio	Ratio	R2	RMSE	Evaluation	Selected Model
Model 2, Low Standard and Test Doses Excluded	0.899	2.974	0.982	0.062	Parallel and Linear	Model 2, Low Standard and Test Doses Excluded
Model 1, All Doses	0.890	1.966	0.986	0.068	Parallel and Linear	
Model 3, High Standard and Test Doses Excluded	0.886	9.980	0.976	0.075	Parallel and Linear	
Model 6, Test Low Dose Only Excluded	0.938	0.649	0.986	0.066	Parallel and Linear	
Model 9, Standard High Dose and Test Low Dose Excluded	0.916	5.132	0.983	0.068	Parallel and Linear	
Model 7, Test High Dose Only Excluded	0.908	3.959	0.983	0.072	Parallel and Linear	
Model 8, Standard Low Dose and Test High Dose Excluded	0.870	4.009	0.981	0.070	Parallel and Linear	
Model 5, Standard High Dose Only Excluded	0.869	4.773	0.983	0.070	Parallel and Linear	
Model 4, Standard Low Dose Only Excluded	0.853	0.696	0.985	0.065	Parallel and Linear	

Graphs 35737

Validity Report 35737

	Validity	Validity		Overall
Validity Criteria	Limits	Results	Assay Validity	Validity
Reference Standard Curve Depth ≥	1e+9	19255200000	Pass Validity Criterion	Assay is Valid
Sample Size Per Dose ≥	2	2	Pass Validity Criterion	
Parallelism Slope Ratio Lower Limit ≥	0.5	0.9	Pass Validity Criterion	
Parallelism Slope Ratio Upper Limit ≤	1.5	0.9	Pass Validity Criterion	
Linearity Ratio ≤	20	2.97	Pass Validity Criterion	
R-squared ≥	0.8	0.98	Pass Validity Criterion	
Abs(Unconstrained - Constrained Relative Potency Delta) \leq	15	0	Pass Validity Criterion	
Dose Reponse Test ≤	0.05	0	Pass Validity Criterion	
EC50 5 Dose Standard Unconstrained LSL Vg/cell ≥	10	341	Pass Validity Criterion	
EC50 5 Dose Standard Unconstrained USL Vg/cell ≤	800	341	Pass Validity Criterion	

Relative Potency and Infectious Particle Ratio 35737

EC50 Reference	9	Relative Po	tency Ref	erence Standard	Refer	rence Standard	Relative Potency	Assay RP	Assay RP
Standard	EC50 Test	Uncorr	rected C	orrection Factor	Stability Co	rrection Factor	Reportable Result	Upper 95%	Lower 95%
395.07	398.8145		99.1	0		0	99.1	107.3	91.5
	Ratio Lower Limi	it Ratio Up							
Particle Ratio 0.5	Ratio Lower Limi	it Ratio Up							
		it Ratio Up	per Limit	Relative	Acceptance	RP Delta			
0.5	0.	it Ratio Up	pper Limit 1.0 Relative	Relative Potency Delta	•	RP Delta Check			
0.5 Fitting	0 EC50 Reference	it Ratio Up	pper Limit 1.0 Relative	Potency Delta	Criterion				

Relative Potency All Samples

Overall

	EC50 Reference				
Sample Name	Standard	EC50 Test	Reportable RP	RP Lower 95	RP Upper 95
35737 AC	395.07301355	398.81447301	99.1	91.5	107.3
35737	395.07301355	398.81447301	99.1	91.5	107.3
•	cation Limit: 70				

Input Files - Configuration File and Plate File(s)

Systo	em Suitability and Limits			ı	_imit			Colum	nn 3		ddPCR Dilution	Factor Man -	High Colun	nn 5	1 2	2	4		5 6	7	8	
	er Specification Limit (≥)				70			Colum	1111 3		dar er Bilation	ractor wap	A A						1600 6400			
Uppe	er Specification Limit (≤)				130								В		1600 6	400 1	600 6	400	1600 6400	1600	6400	
	rence Standard Curve Dep	oth (≥)			10000000	000							С						1600 6400			
	ole Size Per Dose (≥) Instrained EC50 Standard	Lower Limit	(≥)		<u>2</u> 10								D E						1600 6400 1600 6400			
	nstrained EC50 Standard				300								F						1600 6400			
	lative Potency Delta (Con	strained – U	Inconstrai										G						1600 6400			
	uared (≥) in Group Jackknife z Outli	er Limit (<)		2).8 1								Н		1600 6	400 N	IIC P		1600 6400	NIC	Р	
	een Group Studentized R		tlier Limit								ddPCR Dilution	Factor Map -	Medium		1 2	3	4		5 6	7	8	
	lelism Slope Ratio Lower				0.5								А		1600 6	400 1	600 6	400	1600 6400	1600	6400	
	lelism Slope Ratio Upper	Limit (≤)			1.5								В						1600 6400			
	rity Ratio (≤)				20								С						1600 6400			
	Response Test (≤) lert Limit (≤)				0.05 20								D E						1600 6400 1600 6400			
	tious Particles Ratio Lowe	r Specificati	on Limit (0.3								F						1600 6400			
Infec	tious Particles Ratio Uppe	r Specificati	on Limit ((≤) 1	1								G		1600 6	400 1	600 6	400	1600 6400	1600	6400	
_	. 57. 14				NEECT O		4 04 11150	LIBG	DD1.4 5 . 14 . 40 .		,		Н		1600 6	400 N	NTC P	1	1600 6400	NTC	Р	
	ort File Name rence Standard					6AUG202 e-DS0000		High	R Dilution Factor Map (High,	, Medium, Lo	ddPCR Dilution	Factor Man -	Low		1 2	3	4		5 6	7	8	
	y Control				35737 AC		00	High			dar en Bilation	ructor map	A						1600 6400		-	
Samp	ole 1			3	35737			Mediu	um				В		1600 6	400 1	600 6	400	1600 6400	1600	6400	
Samp								Mediu	um				C						1600 6400			
Samp Samp								Low					D F						1600 6400 1600 6400			
Samp	ле 4							LOW					F						1600 6400			
Total	Number of Plates			2	2								G						1600 6400			
	_												Н		1600 6	400 N	NTC P		1600 6400	NTC	Р	
	Concentrations I Dilution 1				/g/mL 1000																	
	Dilution 1				500																	
	I Dilution 3				250																	
	Dilution 4				125																	
Seria	l Dilution 5			6	52.5																	
Well	ExptType	Experiment	Sample	TargetTy	pe Targe	et Status	Concent	tration	Supermix		CopiesPer20uLWell	TotalConfMax	TotalConfMir	n Pois	ssonCo	nfMax	x Pois	sonC	ConfMin	Р	ositives	Negative
	Absolute Quantification	ABS	1.3	Unknowr		ОК	2964		ddPCR Supermix for Probes	(no dUTP)											19818	1730
A02	Absolute Quantification		1.4	Unknowr		OK	662		ddPCR Supermix for Probes												9194	12174
B01 B02	Absolute Quantification Absolute Quantification		2.3	Unknowr		OK OK	1379 316		ddPCR Supermix for Probes												14623 5136	656° 1665°
C01	Absolute Quantification		3.3	Unknown		OK	442		ddPCR Supermix for Probes												6653	14573
	Absolute Quantification		3.4	Unknowr		ОК	107		ddPCR Supermix for Probes												1878	1972
D01	Absolute Quantification	ABS	4.3	Unknowr	n	ОК	163		ddPCR Supermix for Probes	(no dUTP)											2702	1815
D02	Absolute Quantification		4.4	Unknowr		OK	35.9		ddPCR Supermix for Probes												660	2132
E01	Absolute Quantification Absolute Quantification		5.3 5.4	Unknowr		OK OK	99.9 22.4		ddPCR Supermix for Probes												1559 396	1759 2059
F01	Absolute Quantification		6.3	Unknown		OK	2555		ddPCR Supermix for Probes												16984	218
F02	Absolute Quantification	ABS	6.4	Unknowr	n	ОК	583		ddPCR Supermix for Probes	(no dUTP)											8395	1310
G01	Absolute Quantification		7.3	Unknowr		ОК	1317		ddPCR Supermix for Probes												12949	628
G02	Absolute Quantification		7.4	Unknown		OK	297		ddPCR Supermix for Probes												4687	1629
H01 H02	Absolute Quantification Absolute Quantification		8.3 8.4	Unknowr		OK OK	411 97.1		ddPCR Supermix for Probes												6182 1708	1480 1985
A03	Absolute Quantification		9.3	Unknowr		ОК	237		ddPCR Supermix for Probes												3883	1739
A04	Absolute Quantification	ABS	9.4	Unknowr	n	ОК	53.7		ddPCR Supermix for Probes	(no dUTP)											1017	2179
B03	Absolute Quantification		10.3	Unknowr		OK	89.3		ddPCR Supermix for Probes												1644	2084
B04 C03	Absolute Quantification Absolute Quantification		10.4	Unknowr		OK OK	19.1 2364		ddPCR Supermix for Probes												368 19305	2246 298
C04	Absolute Quantification		11.4	Unknown		ОК	523		ddPCR Supermix for Probes												7914	1415
D03	Absolute Quantification	ABS	12.3	Unknowr	n	ОК	1210		ddPCR Supermix for Probes	(no dUTP)											13575	755
D04	Absolute Quantification		12.4	Unknowr		OK	280		ddPCR Supermix for Probes												4831	1800
E03 E04	Absolute Quantification Absolute Quantification		13.3 13.4	Unknowr		OK OK	419 102		ddPCR Supermix for Probes												6079 1682	1422 1852
F03	Absolute Quantification		14.3	Unknown		OK	181		ddPCR Supermix for Probes												2951	1773
F04	Absolute Quantification		14.4	Unknowr		ОК	38.8		ddPCR Supermix for Probes												720	2145
G03	Absolute Quantification		15.3	Unknowr		OK	67.6		ddPCR Supermix for Probes												1169	1975
G04	Absolute Quantification		15.4	Unknown		OK	18.5		ddPCR Supermix for Probes												339	2143
A05 A06	Absolute Quantification Absolute Quantification		16.3 16.4	Unknowr		OK	No Call 584		ddPCR Supermix for Probes												8343	1298
B05	Absolute Quantification		17.3	Unknown		OK	1246		ddPCR Supermix for Probes												14542	772
B06	Absolute Quantification		17.4	Unknowr		OK	278		ddPCR Supermix for Probes												4861	1822
C05	Absolute Quantification		18.3	Unknow		OK	376 87.2		ddPCR Supermix for Probes												5760	1530
C06 D05	Absolute Quantification Absolute Quantification		18.4 19.3	Unknowr		OK OK	217		ddPCR Supermix for Probes												1473 3703	1913 1831
D06	Absolute Quantification		19.4	Unknown		OK	49.8		ddPCR Supermix for Probes												859	1987
E05	Absolute Quantification		20.3	Unknowr		OK	133		ddPCR Supermix for Probes												2190	1835
E06	Absolute Quantification		20.4	Unknown		OK	29.3		ddPCR Supermix for Probes												532	2110
F05 F06	Absolute Quantification Absolute Quantification		21.3	Unknowr		OK OK	2297 512		ddPCR Supermix for Probes												18958 7080	313 1298
G05	Absolute Quantification		22.3	Unknown		OK	1328		ddPCR Supermix for Probes												14799	707
G06	Absolute Quantification		22.4	Unknowr	n	OK	283		ddPCR Supermix for Probes	(no dUTP)											4655	1712
H05	Absolute Quantification		23.3	Unknowr		OK	402		ddPCR Supermix for Probes												5853	1438
H06 A07	Absolute Quantification Absolute Quantification		23.4	Unknowr		OK OK	85.6 223		ddPCR Supermix for Probes												1393 3994	1845 1916
A07 A08	Absolute Quantification		24.3	Unknown		OK	51.1		ddPCR Supermix for Probes												988	2227
B07	Absolute Quantification		25.3	Unknowr		OK	91.4		ddPCR Supermix for Probes												1678	2076
B08	Absolute Quantification		25.4	Unknowr		OK	22		ddPCR Supermix for Probes												411	2175
	Absolute Quantification		26.3	Unknown		OK	2149		ddPCR Supermix for Probes												17588	337
	Absolute Quantification Absolute Quantification		26.4 27.3	Unknowr		OK OK	512 1320		ddPCR Supermix for Probes												7998 15506	1465 748
D08	Absolute Quantification		27.4	Unknown		OK	311		ddPCR Supermix for Probes												5328	1760
E07	Absolute Quantification	ABS	28.3	Unknowr	n	OK	410		ddPCR Supermix for Probes	(no dUTP)											6579	1577
E08	Absolute Quantification		28.4	Unknowr		OK	99.7		ddPCR Supermix for Probes												1711	1935
F07	Absolute Quantification		29.3	Unknown		OK	246 61.9		ddPCR Supermix for Probes												4055	1741
F08 G07	Absolute Quantification Absolute Quantification		29.4 30.3	Unknowr		OK OK	61.9 105		ddPCR Supermix for Probes												1134 1920	2098 2049
G07	Absolute Quantification		30.4	Unknown		OK	25.1		ddPCR Supermix for Probes												437	2030
	Absolute Quantification		NTC	Unknowr			No Call		ddPCR Supermix for Probes												0	2063
H07	Absolute Quantification		NTC	Unknowr			No Call		ddPCR Supermix for Probes												0	21844
H11	Absolute Quantification	ADC	NTC	Unknowr		CLIECK	No Call		ddPCR Supermix for Probes	(ILITEN											0	21503

NTC

Unknown

Unknown

Unknown

Unknown

CHECK No Call

2011

1948

OK 1869

OK

OK

H11 Absolute Quantification ABS

H04 Absolute Quantification ABS

H08 Absolute Quantification ABS

H12 Absolute Quantification ABS

ddPCR Supermix for Probes (no dUTP)

21503

4665

3847

3897

18188

17406

16521

10	11	12
10	11	12
10	11	12

+Ch2+ Ch1+Ch	h2- Ch1-Ch2+ Ch1-Ch2- Linkage	AcceptedDroplets CNV T	otalCNVMax T	otalCNVMin	PoissonCNVMax	PoissonCNVMin	ReferenceCopies	UnknownCopies R	atio TotalRatioN	lax TotalRatioMir	n PoissonRatioMax	PoissonRatio
		21554										
		21368										
		21184										
		21787										
		21226										
		21607										
		20855										
		21986										
		19153										
		20991										
		19168										
		21497										
		19229										
		20985										
		20985										
		21564										
		21282										
		22809										
		22489										
		22836										
		22293										
		22065										
		21134										
		22838										
		20306										
		20202										
		20683										
		22172										
		20926										
		21771										
		0										
		21324										
		22264										
		23089										
		21062										
		20611										
		22020										
		20729										
		20548										
		21640										
		22094										
		20061										
		21876										
		21777										
		20235										
		19851										
		23157										
		23258										
		22438										
		22170										
		20961										
		22655										
		22991										
		22932										
		22357										
		21063										
		21472										
		22122										
		22414										
		20738										
		20639										
		21844										
		21503										
		22853										
		21253										
		20418										

FractionalAbundance	TotalFractionalAbundanceMax	TotalFractionalAbundanceMin	PoissonFractionalAbundanceMax	PoissonFractionalAbundanceMin	ReferenceAssayNumber	TargetAssayNumber Threshold	MeanAmplitudeofPositives
					1	1	
					1		
					1	1	
					1		
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1		
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1		
					1		
					1		
					1		
					1		
					1		
					1		
					1		
					1		
					1	1	
						1	
					1		
					1		
					1		
					1		
					1		
					1		
					1		
					1		

MeanAmplitudeofNegatives	MeanAmplitudeTotal	ExperimentComments	MergedWells	TotalConfMax68	TotalConfMin68	PoissonConfMax68	PoissonConfMin68	TotalCNVMax68	TotalCNVMin68	PoissonCNVMax68	PoissonCNVMin68	TotalRatioMax68

TotalRatioMin68	PoissonRatioMax68	PoissonRatioMin68	TotalFractionalAbundanceMax68	TotalFractionalAbundanceMin68	PoissonFractionalAbundanceMax68	PoissonFractionalAbundanceMin68

Well	ExptType	Experiment	Sample	TargetType	Target Star	us Concentra	ion Supermix	CopiesPer20uLWell	TotalConfMax	TotalConfMin	${\sf PoissonConfMax}$	PoissonConfMin	Positives	Negatives
A01	Absolute Quantification	ABS	16.3	Unknown	CHI	CK No Call	ddPCR Supermix for Probes (no dUTP)						0	0
A02	Absolute Quantification	ABS	16.4	Unknown	OK	584	ddPCR Supermix for Probes (no dUTP)						8343	12981
B01	Absolute Quantification	ABS	17.3	Unknown	OK	1246	ddPCR Supermix for Probes (no dUTP)						14542	7722
B02	Absolute Quantification	ABS	17.4	Unknown	OK	278	ddPCR Supermix for Probes (no dUTP)						4861	18228
C01	Absolute Quantification	ABS	18.3	Unknown	OK	376	ddPCR Supermix for Probes (no dUTP)						5760	15302
C02	Absolute Quantification	ABS	18.4	Unknown	OK	87.2	ddPCR Supermix for Probes (no dUTP))					1473	19138
D01	Absolute Quantification	ABS	19.3	Unknown	OK	217	ddPCR Supermix for Probes (no dUTP)						3703	18317
D02	Absolute Quantification	ABS	19.4	Unknown	OK	49.8	ddPCR Supermix for Probes (no dUTP))					859	19870
E01	Absolute Quantification	ABS	20.3	Unknown	OK	133	ddPCR Supermix for Probes (no dUTP)						2190	18358
E02	Absolute Quantification	ABS	20.4	Unknown	OK	29.3	ddPCR Supermix for Probes (no dUTP)						532	21108
F01	Absolute Quantification	ABS	21.3	Unknown	OK	2297	ddPCR Supermix for Probes (no dUTP)						18958	3136
F02	Absolute Quantification	ABS	21.4	Unknown	OK	512	ddPCR Supermix for Probes (no dUTP)						7080	12981
G01	Absolute Quantification	ABS	22.3	Unknown	OK	1328	ddPCR Supermix for Probes (no dUTP)						14799	7077
G02	Absolute Quantification	ABS	22.4	Unknown	OK	283	ddPCR Supermix for Probes (no dUTP)						4655	17122
H01	Absolute Quantification	ABS	23.3	Unknown	OK	402	ddPCR Supermix for Probes (no dUTP))					5853	14382
H02	Absolute Quantification	ABS	23.4	Unknown	OK	85.6	ddPCR Supermix for Probes (no dUTP)						1393	18458
A03	Absolute Quantification	ABS	24.3	Unknown	OK	223	ddPCR Supermix for Probes (no dUTP))					3994	19163
A04	Absolute Quantification	ABS	24.4	Unknown	OK	51.1	ddPCR Supermix for Probes (no dUTP)						988	22270
B03	Absolute Quantification	ABS	25.3	Unknown	OK	91.4	ddPCR Supermix for Probes (no dUTP))					1678	20760
B04	Absolute Quantification	ABS	25.4	Unknown	OK	22	ddPCR Supermix for Probes (no dUTP))					411	21759
C03	Absolute Quantification	ABS	26.3	Unknown	OK	2149	ddPCR Supermix for Probes (no dUTP)						17588	3373
C04	Absolute Quantification	ABS	26.4	Unknown	OK	512	ddPCR Supermix for Probes (no dUTP))					7998	14657
D03	Absolute Quantification	ABS	27.3	Unknown	OK	1320	ddPCR Supermix for Probes (no dUTP)						15506	7485
D04	Absolute Quantification	ABS	27.4	Unknown	OK	311	ddPCR Supermix for Probes (no dUTP))					5328	17604
E03	Absolute Quantification	ABS	28.3	Unknown	OK	410	ddPCR Supermix for Probes (no dUTP)						6579	15778
E04	Absolute Quantification	ABS	28.4	Unknown	OK	99.7	ddPCR Supermix for Probes (no dUTP)						1711	19352
F03	Absolute Quantification	ABS	29.3	Unknown	OK	246	ddPCR Supermix for Probes (no dUTP)						4055	17417
F04	Absolute Quantification	ABS	29.4	Unknown	OK	61.9	ddPCR Supermix for Probes (no dUTP)						1134	20988
G03	Absolute Quantification	ABS	30.3	Unknown	OK	105	ddPCR Supermix for Probes (no dUTP)						1920	20494
G04	Absolute Quantification	ABS	30.4	Unknown	OK	25.1	ddPCR Supermix for Probes (no dUTP))					437	20301

1+Ch2+ Ch1+Ch2- Ch1-Ch	2+ Ch1-0	Ch2- Linkage	AcceptedDroplets CNV	TotalCNVMax	TotalCNVMin	PoissonCNVMax	PoissonCNVMin	ReferenceCopies	UnknownCopies	Ratio	TotalRatioMax	TotalRatioMin	PoissonRatioMax	PoissonRatioM
			0											
			21324											
			22264											
			23089											
			21062											
			20611											
			22020											
			20729											
			20548											
			21640											
			22094											
			20061											
			21876											
			21777											
			20235											
			19851											
			23157											
			23258											
			22438											
			22170											
			20961											
			22655											
			22991											
			22932											
			22357											
			21063											
			21472											
			22122											
			22414											
			20738											

FractionalAbundance	Total Fractional Abundance Max	TotalFractionalAbundanceMin	Poisson Fractional Abundance Max	Poisson Fractional Abundance Min	ReferenceAssayNumber	TargetAssayNumber Thre	shold MeanAmplitudeofPositives
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	
					1	1	

Mean Amplitude of Negatives	MeanAmplitudeTotal	ExperimentComments	MergedWells	TotalConfMax68	TotalConfMin68	PoissonConfMax68	PoissonConfMin68	TotalCNVMax68	TotalCNVMin68	PoissonCNVMax68	PoissonCNVMin68	TotalRatioMax68

TotalRatioMin68	PoissonRatioMax68	PoissonRatioMin68	TotalFractionalAbundanceMax68	TotalFractionalAbundanceMin68	PoissonFractionalAbundanceMax68	PoissonFractionalAbundanceMin68