## Relational Database Management System



Education, Training and Assessment We enable you to leverage knowledge anytime, anywhere!



#### **Copyright Guideline**

© 2017 Infosys Limited, Bangalore, India. All Rights Reserved.

Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

#### **Confidential Information**

- This Document is confidential to Infosys Limited. This document contains information and data that Infosys considers confidential and proprietary ("Confidential Information").
- Confidential Information includes, but is not limited to, the following:
  - Corporate and Infrastructure information about Infosys
  - Infosys' project management and quality processes
  - Project experiences provided included as illustrative case studies
- Any disclosure of Confidential Information to, or use of it by a third party, will be damaging to Infosys.
- Ownership of all Infosys Confidential Information, no matter in what media it resides, remains with Infosys.
- Confidential information in this document shall not be disclosed, duplicated or used in whole or in part –
  for any purpose other than reading without specific written permission of an authorized representative of
  Infosys.
- This document also contains third party confidential and proprietary information. Such third party information has been included by Infosys after receiving due written permissions and authorizations from the party/ies. Such third party confidential and proprietary information shall not be disclosed, duplicated or used in whole or in part for any purpose other than reading without specific written permission of an authorized representative of Infosys.

#### **Course Information**

- Course Code: CCFP4.1-RDBMS
- Course Name: Relational Database Management System
- Document Number: RDBMS-02
- Version Number: 4.1

# Conversion of Entity Relationship Diagram to Relational Schema





## Data representation in RDBMS(Revisit)





# Conversion of ER model to relational schema



#### Schema

- A description of a database
- Specifies the relations, their attributes and the domains of the attributes

#### Conversion guidelines

- Each entity in ER diagram becomes a table in relational schema
- Each single-valued attribute in ER diagram becomes a column of the table
- Derived attributes of entities are ignored
- Composite attributes of an entity are represented by its equivalent parts
- Multi-valued attributes are kept in a separate table
- The key attribute of an entity is chosen as the primary key of the table
- Converting relationships is based on degree and cardinality of relationship

## **Example: Strong entity (1 of 2)**



Relational Schema:

employee (<u>empid</u>, empname, dateofjoining)

## **Example: Strong entity (2 of 2)**



Relational Schema:

employee(empid, empname, state, city)

employeequalification (empid, qualification)

## **Example: Weak entity**



#### Relational Schema:

employee(empid, empname, designation, emailid)

dependent (empid, dname, relationship)

## **Example: Unary 1:1**



Relational Schema:

customer( <u>customerid</u>, customername,...spouse)

## **Example: Unary 1:M**

The primary key of the table will itself become foreign key of the same table



Relational Schema:

employee(empid, empname, designation, ...., managerid)

#### **Example: Unary M:N**



#### Relational Schema:

```
employee(<u>empid</u>, empname, designation,....)

guaranty (<u>guarantorid</u>, <u>beneficiaryid</u>)
```

## **Example: Binary 1:1**

 The key attribute of any of the participating entities in a relationship can become a foreign key in the other participating entity



#### Relational Schema:

employee(empid, empname, designation, ....., salary)

retailoutlet (<u>retailoutletid</u>, retailoutletlocation, <u>retailouletmanagerid</u>)



employee(empid, empname, designation,....,salary, retailoutletid)

retailoutlet (<u>retailoutletid</u>, retailoutletlocation)

## **Example: Binary 1:M**

 The key attribute of entity on the "1" side of the relationship becomes a foreign key of entity towards the "M" side



#### Relational Schema:

```
supplier (supplierid, suppliername, suppliercontactno, supplieremailid)
quotation (quotationid, itemcode, quotedprice, supplierid)
```

## **Example: Binary M:N**



#### Relational Schema:

```
retailoutlet (retailoutletid, retailoutletlocation)

purchasesfrom (customerid, retailoutletid)
```

## **Example: Ternary relationship**



Relational Schema:

retailoutlet (retailoutletid, retailoutletlocation)

item (itemid, description, recrderlevel, itemclass)

purchases(customerid, retailoutletid, itemcode, date, qty)

Guided Activity: CC-FP4.1-RDBMSAssignments, Database Basics, Assignment 5 (Estimated Time: 45 mins.)

#### **Summary**:

ER model

Conversion of ER model to relational schema

Normalization

## Database life cycle – Logical design



## Top down approach (Entity – Relationship (ER) model)

- •This approach is used when application requirements are clear
- •Represents the application requirements in a pictorial form
- •The real world objects and their corresponding attributes are identified from the requirements hence it is top down
- This model helps in
  - analysis and design
  - re-validating the requirements

# Bottom up approach (Normalization)

- •This approach is used when application requirements are not very clear
- •First define the required data items and then group the related data items
- •Further refinement may be carried out depending on the application need



# Normalization - A Bottom-Up Approach





## **Functional dependency**

Guided Activity: CC-FP4.1-RDBMSAssignments - Database basics, Assignment 6 (Estimated Time: 30 mins.)

#### Solution to Guided activity:

- The identified **Relation** with respective attributes as per the requirement is:
  - Name of the relation is: retailoutletstock
  - Attributes of the relation are:

retailoutletid, itemcode, description, retailoutletlocation (street name, city, pincode), qtyavailable, retailunitprice, itemclass

The above relation is represented as:

**retailoutletstock** (retailoutletid, itemcode, description, retailoutletlocation(streetname, city, pincode), qtyavailable, retailunitprice, itemclass)

## **Functional dependency (contd.)**

#### Dependency in a Relation:

- An attribute of a relation can be determined by knowing one/more attributes of the same relation
- The <u>attribute</u> which determines the value of other attributes is known as "Determinant"

Guided Activity: Identify all the possible dependencies in the relation retailoutletstock (Estimated Time: 10 mins.)

retailoutletstock (retailoutletid, itemcode, description, retailoutletlocation(streetname, city, pincode), qtyavailable, retailunitprice, itemclass)

Determinant

{retailoutletid, itemcode} → qtyavailable {retailoutletid, itemcode} → retailunitprice retailoutletid → retailoutletlocation retailunitprice → itemclass itemcode → description Functional Dependencies

Dependents

## **Functional dependency (contd.)**

- In a given relation R, A and B are attributes.
- Attribute B is functionally dependent on attribute A if each value of A
  determines EXACTLY ONE value of B, which is represented as A -> B (A can be
  composite in nature).
- A is called determinant and B is called dependent

## **Functional dependency: Types**

Candidate key

retailoutletstock (<u>retailoutletid</u>, <u>itemcode</u>, retailoutletlocation, qtyavailable,

description, retailunitprice, itemclass)

Full functional dependency

<u>retailoutletid</u>

Partial functional dependency

<u>itemcode</u>

<u>retailoutletid</u>

description

retailoutletid, itemcode retailunitprice itemclass

Transitive functional dependency

retailoutletstock

| retailoutletid                           | retailoutletlocation                 | itemcode | description                     | qtyavailable | retailunitprice | itemclass |
|------------------------------------------|--------------------------------------|----------|---------------------------------|--------------|-----------------|-----------|
| R1001                                    | King Street, California, 123456      | I1001    | Britannia Marie<br>Gold Cookies | 25           | 1600            | В         |
| R1001                                    | King Street, California, 123456      | I1002    | Brooke Bond Tea                 | 30           | 850             | С         |
| R1002                                    | Victoria Street, New York,<br>654897 | I1001    | Britannia Marie<br>Gold Cookies | 25           | 1650            | В         |
| R1002                                    | Victoria Street, New York,<br>654897 |          | Best Rice                       | 50           | 6600            | А         |
| R1002                                    | Victoria Street, New York,<br>654897 | I1004    | Modern Bread                    | 20           | 5200            | А         |
| R1003 Saint James Avenue, Dallas, 426987 |                                      | I1005    | Bourbon Cookies                 | 20           | 5500            | А         |

What will happen if we try to insert(add) the details of a new retail outlet that currently has no items in its stock?

NULL values would be inserted into the itemdetails column, which is not preferable

retailoutletstock

| retailoutletid | retailoutletlocation                 | itemcode | description                     | qtyavailable | retailunitprice | itemclass |
|----------------|--------------------------------------|----------|---------------------------------|--------------|-----------------|-----------|
| R1001          | 1001 King Street, California, 123456 |          | Britannia Marie<br>Gold Cookies | 25           | 1600            | В         |
| R1001          | King Street, California, 123456      | I1002    | Brooke Bond Tea                 | 30           | 850             | С         |
| R1002          | Victoria Street, New York,<br>654897 | I1001    | Britannia Marie<br>Gold Cookies | 25           | 1650            | В         |
| R1002          | Victoria Street, New York,<br>654897 |          | Best Rice                       | 50           | 6600            | А         |
| R1002          | Victoria Street, New York,<br>654897 | I1004    | Modern Bread                    | 20           | 5200            | А         |
| R1003          | Saint James Avenue Dallas            |          | Bourbon Cookies                 | 20           | 5500            | А         |

What will happen if we try to delete the item details for an Item I1005?

The details of the retail outlet R1003 will also be lost from the database

#### retailoutletstock

| retailoutletid | retailoutletlocation                     | itemcode | description                     | qtyavailable | retailunitprice | itemclass |
|----------------|------------------------------------------|----------|---------------------------------|--------------|-----------------|-----------|
| R1001          | Ning Street, California, 123456          |          | Britannia Marie<br>Gold Cookies | 25           | 1600            | В         |
| R1001          | King Street, California, 123456          | I1002    | Brooke Bond Tea                 | 30           | 850             | С         |
| R1002          | Victoria Street, New York,<br>654897     | I1001    | Britannia Marie<br>Gold Cookies | 25           | 1650            | В         |
| R1002          | Victoria Street, New York,<br>654897     | I1003    | Best Rice                       | 50           | 6600            | А         |
| R1002          | Victoria Street, New York,<br>654897     | I1004    | Modern Bread                    | 20           | 5200            | А         |
| R1003          | R1003 Saint James Avenue, Dallas, 426987 |          | Bourbon Cookies                 | 20           | 5500            | А         |

 How many rows will be updated if the retail outlet location of R1002 is changed from Victoria Street to Saint John Street?

3 rows will be updated.

retailoutletstock

| retailoutletid | retailoutletlocation                    | itemcode | description                     | qtyavailable | retailunitprice | itemclass |
|----------------|-----------------------------------------|----------|---------------------------------|--------------|-----------------|-----------|
| R1001          | King Street, California, 123456         |          | Britannia Marie<br>Gold Cookies | 25           | 1600            | В         |
| R1001          | King Street, California, 123456         | I1002    | Brooke Bond Tea                 | 30           | 850             | С         |
| R1002          | Victoria Street, New York,<br>654897    | I1001    | Britannia Marie<br>Gold Cookies | 25           | 1650            | В         |
| R1002          | R1002 Victoria Street, New York, 654897 |          | Best Rice                       | 50           | 6600            | А         |
| R1002          | Victoria Street, New York,<br>654897    | I1004    | Modern Bread                    | 20           | 5200            | А         |
| R1003          | Saint James Avenue, Dallas,<br>426987   | I1005    | Bourbon Cookies                 | 20           | 5500            | А         |

 What are the details we need to insert when new items are supplied to a retail outlet?

Apart from all necessary details, retailoutletlocation will also be inserted, which is redundant

#### retailoutletstock

| retailoutletid | retailoutletlocation                  | itemcode | description                     | qtyavailable | retailunitprice | itemclass |
|----------------|---------------------------------------|----------|---------------------------------|--------------|-----------------|-----------|
| R1001          | King Street, California, 123456       | I1001    | Britannia Marie<br>Gold Cookies | 25           | 1600            | В         |
| R1001          | King Street, California, 123456       | I1002    | Brooke Bond Tea                 | 30           | 850             | С         |
| R1002          | Victoria Street, New York,<br>654897  | I1001    | Britannia Marie<br>Gold Cookies | 25           | 1650            | В         |
| R1002          | Victoria Street, New York,<br>654897  | I1003    | Best Rice                       | 50           | 6600            | А         |
| R1002          | Victoria Street, New York,<br>654897  | I1004    | Modern Bread                    | 20           | 5200            | А         |
| R1003          | Saint James Avenue, Dallas,<br>426987 | I1005    | Bourbon Cookies                 | 20           | 5500            | А         |

## Following challenges are observed in the relation: insert, delete, update anomalies and data redundancy

- Functional dependencies may lead to anomalies.
- To minimize anomalies there is need to refine functional dependencies.
- This process is called Normalization

#### **Definition: Normalization**

- It is a step-by-step process where in a complex relation is decomposed into simple relations
- It is a formal process of achieving a good database design
- "Normal Forms" (NF) are the different stages of normalization
  - 1NF
  - 2NF
  - 3NF

#### **First Normal Form: 1NF**

- A relation R is in 1NF if and only if :
  - All the attributes of R are atomic in nature
  - There should not be any multi valued attribute

#### retailoutletstock

| retailoutletid | street                | city       | zipcode | itemcode | description                     | qtyavailable | retailunitprice | itemclass |
|----------------|-----------------------|------------|---------|----------|---------------------------------|--------------|-----------------|-----------|
| R1001          | King Street           | California | 123456  | l1001    | Britannia Marie<br>Gold Cookies | 25           | 1600            | В         |
| R1001          | King Street           | California | 123456  | l1002    | Brooke Bond Tea                 | 30           | 850             | С         |
| R1002          | Victoria Street       | New York   | 654897  | l1001    | Britannia Marie<br>Gold Cookies | 25           | 1650            | В         |
| R1002          | Victoria Street       | New York   | 654897  | l1003    | Best Rice                       | 50           | 6600            | А         |
| R1002          | Victoria Street       | New York   | 654897  | l1004    | Modern Bread                    | 20           | 5200            | А         |
| R1003          | Saint James<br>Avenue | Dallas     | 426987  | I1005    | Bourbon Cookies                 | 20           | 5500            | А         |

#### **Second Normal Form: 2NF**

- A relation R is in second normal form if and only if :
  - R is already in 1NF, and
  - There is no partial dependency in R which exists between non-key attributes and key attributes
- To make a table 2NF compliant, remove all such partial dependencies and decompose the relation

#### item

| itemcode | description                  |
|----------|------------------------------|
| I1001    | Britannia Marie Gold Cookies |
| I1002    | Brooke Bond Tea              |
| I1003    | Best Rice                    |
| I1004    | Modern Bread                 |
| I1005    | Bourbon Cookies              |

#### retailoutlet

| retailoutletid | street             | city       | zipcode |
|----------------|--------------------|------------|---------|
| R1001          | King Street        | California | 123456  |
| R1002          | Victoria Street    | New York   | 654897  |
| R1003          | Saint James Avenue | Dallas     | 426987  |



#### retailstockdetails

| retailoutletid | itemcode | qtyavailable | retailunitprice | itemclass |
|----------------|----------|--------------|-----------------|-----------|
| R1001          | I1001    | 25           | 1600            | В         |
| R1001          | l1002    | 30           | 850             | С         |
| R1002          | I1001    | 25           | 1650            | В         |
| R1002          | I1003    | 50           | 6600            | А         |
| R1002          | I1004    | 20           | 5200            | А         |
| R1003          | I1005    | 20           | 5500            | A         |

retailstockdetails

| retailoutletid | itemcode | qtyavailable | retailunitprice | itemclass |
|----------------|----------|--------------|-----------------|-----------|
| R1001          | I1001    | 25           | 1600            | В         |
| R1001          | l1002    | 30           | 850             | С         |
| R1002          | I1001    | 25           | 1650            | В         |
| R1002          | I1003    | 50           | 6600            | А         |
| R1002          | I1004    | 20           | 5200            | А         |
| R1003          | I1005    | 20           | 5500            | А         |

Are all anomalies eliminated?

retailstockdetails

| retailoutletid | itemcode | qtyavailable | retailunitprice | itemclass |
|----------------|----------|--------------|-----------------|-----------|
| R1001          | I1001    | 25           | 1600            | В         |
| R1001          | l1002    | 30           | 850             | С         |
| R1002          | I1001    | 25           | 1650            | В         |
| R1002          | I1003    | 50           | 6600            | А         |
| R1002          | I1004    | 20           | 5200            | А         |
| R1003          | I1005    | 20           | 5500            | А         |

What will happen if we try to delete the record containing item code I1002?

The definition of item class C will also be lost from the database

retailstockdetails

| retailoutletid | itemcode | qtyavailable | retailunitprice | itemclass |
|----------------|----------|--------------|-----------------|-----------|
| R1001          | I1001    | 25           | 1600            | В         |
| R1001          | l1002    | 30           | 850             | С         |
| R1002          | I1001    | 25           | 1650            | В         |
| R1002          | I1003    | 50           | 6600            | А         |
| R1002          | I1004    | 20           | 5200            | А         |
| R1003          | I1005    | 20           | 5500            | А         |

 What if there is a change in the business rule for the item class, say the retail unit price range has been increased by 1000 for every item class?

| retailunitprice    | itemclass |  |
|--------------------|-----------|--|
| <1000              | С         |  |
| >=1000 and <5000   | В         |  |
| >=5000 and <100000 | Α         |  |

Multiple rows will be updated

retailstockdetails

| retailoutletid | itemcode | qtyavailable | retailunitprice | itemclass |
|----------------|----------|--------------|-----------------|-----------|
| R1001          | I1001    | 25           | 1600            | В         |
| R1001          | l1002    | 30           | 850             | С         |
| R1002          | I1001    | 25           | 1650            | В         |
| R1002          | I1003    | 50           | 6600            | А         |
| R1002          | I1004    | 20           | 5200            | А         |
| R1003          | I1005    | 20           | 5500            | А         |

**insert**, **delete**, **update** anomalies still exist which needs to be eliminated. This necessitates for further normalization

The root cause of these anomalies is transitive dependency between retailoutletid, itemcode, retailunitprice and itemclass. This needs to be eliminated

## **Third Normal Form: 3NF**

- A relation R is said to be in the Third Normal Form (3NF) if and only if:
  - It is in 2NF and
  - There is no transitive dependency which exists between key attributes and non-key attributes
     through another non-key attribute
- To make a table 3NF compliant, we have to remove all such transitive dependencies by decomposing the relation



#### retailstock

| retailoutletid | itemcode | qtyavailable | retailunitprice |
|----------------|----------|--------------|-----------------|
| R1001          | I1001    | 25           | 1600            |
| R1001          | l1002    | 30           | 850             |
| R1002          | I1001    | 25           | 1650            |
| R1002          | I1003    | 50           | 6600            |
| R1002          | I1004    | 20           | 5200            |
| R1003          | I1005    | 20           | 5500            |

#### itemclass

| retailunitprice | itemclass |
|-----------------|-----------|
| 1600            | В         |
| 850             | С         |
| 1650            | В         |
| 6600            | А         |
| 5200            | А         |
| 5500            | A         |

# Improved database design

 Storing itemclass for every retailunitprice is not the efficient way, so it is more appropriate to store it in the following way:

### itemclassrange

| minretailunitprice | maxretailunitprice | itemclass |
|--------------------|--------------------|-----------|
| 1                  | 999                | С         |
| 1000               | 4999               | В         |
| 5000               | 99999              | А         |

# **Normalization guidelines**

- Depending on the business requirements, the tables can be normalized up to 2<sup>nd</sup> normal form or 3<sup>rd</sup> normal form
- Tables in 3 NF are preferred in applications with extensive data modifications,
- Tables in 2 NF are preferred in applications with extensive data retrieval
  - Reason: retrieving data from multiple tables is a costly operation
- Converting the tables from higher normal form to lower normal form is called "Denormalization"

## **Normalization**

Guided Activity: CC-FP4.1-RDBMSAssignments - Database basics, Assignment 7 (Estimated Time: 50 mins.)

- To summarize:
  - Need for normalization
  - Functional dependencies
  - Types of functional dependencies
  - Normal forms

# **Database lifecycle revisited**





## SQL



### Demo: EasyShop application

### Modules in EasyShop





## **SQL** statements



# Data types and operators in SQL

Logical Relational Data types operators operators **NUMBER** AND CHAR OR VARCHAR2 NOT DATE

### **DDL** and **DML**

### **Constraints - Types:**

- UNIQUE
- NOT NULL
- PRIMARY KEY
- CHECK
- FOREIGN KEY

#### **Constraints - Levels:**

- Column level
- Table level

Guided Activity / Demos: CC-FP4.1-RDBMSAssignments - SQL basics, Assignments 1, 2 and 3 (Estimated Time: 80 mins.)

## **ALTER TABLE**

- ALTER TABLE statement is used to modify the structure of an existing table
- Modification of structure includes
  - Adding/Dropping columns or constraints
  - Modifying the data type or size of columns

Guided Activity: CCFP4.1-RDBMSAssignments - SQL Basics, Assignment 4, 5 (Estimated Time: 50 mins.)

## **SELECT**

### **Operators**:

- IN
- LIKE

- IS NULL
- BETWEEN AND

Guided Activity: To familiarize with the tables of EasyShop retail application, read the documents:

CCFP4.1-RDBMS-EasyShop Retail Application\_DB\_Structure.docx and CCFP4.1-RDBMS-EasyShop Retail Application\_DB\_Design.docx (Estimated Time: 20 mins.)

Guided Activity: CCFP4.1-RDBMSAssignments - SQL Basics, Assignment 7, 8 (Estimated Time: 90 mins.)

## **DISTINCT, ORDER BY**

- DISTINCT is used to get the discrete values from column(s)
- ORDER BY is used to sort the records while retrieving
  - The data stored in the table will not be sorted
  - By default the order is ASCENDING

Guided Activity: CCFP4.1-RDBMSAssignments - SQL Basics, Assignment 9, 10 (Estimated Time: 60 mins.)

# **CASE**







### CASE

### Requirement:

• Salary increments are to be given to all employees of EasyShop based on their role. The percentage increase is given below:

| Designation   | Increment in % |
|---------------|----------------|
| Security      | 25             |
| Billing Staff | 20             |
| Administrator | 10             |
| Manager       | 5              |
| Others        | 2              |

Write a query to display the employee details along with their increased salary

Guided Activity: CCFP4.1-RDBMSAssignments - SQL Basics, Assignment 11, 12

(Estimated Time: 60 mins.)

## **SQL** functions

### Single row functions

- Numeric
  - ROUND
  - CEIL
  - FLOOR
  - ABS
- Character
  - LOWER
  - UPPER
  - SUBSTR
  - LENGTH
- DATE
  - ADD\_MONTHS
  - MONTHS\_BETWEEN
  - TO\_CHAR
- Conversion
  - TO\_CHAR
  - TO\_NUMBER
  - TO\_DATE
- Others
  - NVL

# Multi row functions (Aggregate functions)

- MIN
- MAX
- SUM
- AVG
- COUNT

# **Guided activity**

• Retrieve the retail outlet id and associated manager id to the retail outlet. If a retail outlet doesn't have a manger display "Manager not allocated".

```
SELECT retailoutletid, NVL(TO_CHAR(retailoutletmanagerid), 'Manager not allocated') retailoutletmanagerid FROM retailoutlet;
```

Guided Activity: CCFP4.1-RDBMSAssignments - SQL Basics, Assignment 13, 14

(Estimated Time: 60 mins.)

# **GROUP BY**







## **GROUP BY**

Manager of EasyShop needs a report of total amount collected daily



Demo: EasyShop application → Bill Amount – All Dates report

purchasebill

| billid | retailoutletid | customerid | billamount | billdate    |
|--------|----------------|------------|------------|-------------|
| 10001  | R1001          | 1001       | 10355      | 02-JUN-2011 |
| 10002  | R1001          | 1002       | 9021       | 02-JUN-2011 |
| 10003  | R1001          | 1002       | 4900       | 03-JUN-2011 |
| 10004  | R1002          | 1003       | 2940       | 03-JUN-2011 |
| 10005  | R1002          | 1005       | 7663       | 04-JUN-2011 |
| 10006  | R1002          | 1004       | 8730       | 04-JUN-2011 |
| 10007  | R1002          | 1001       | 4900       | 05-JUN-2011 |

Expected output:

| billdate    | SUM(billamount) |
|-------------|-----------------|
| 02-JUN-2011 | 19376           |
| 03-JUN-2011 | 7840            |
| 04-JUN-2011 | 16393           |
| 05-JUN-2011 | 4900            |

SELECT billdate, SUM(billamount) FROM purchasebill GROUP BY billdate;

# **Working of GROUP BY**

SELECT billdate, SUM(billamount) FROM purchasebill GROUP BY billdate;

purchasebill

| billid | retailoutletid | customerid | billamount | billdate    |
|--------|----------------|------------|------------|-------------|
| 10001  | R1001          | 1001       | 10355      | 02-JUN-2011 |
| 10002  | R1001          | 1002       | 9021       | 02-JUN-2011 |
| 10003  | R1001          | 1002       | 4900       | 03-JUN-2011 |
| 10004  | R1002          | 1003       | 2940       | 03-JUN-2011 |
| 10005  | R1002          | 1005       | 7663       | 04-JUN-2011 |
| 10006  | R1002          | 1004       | 8730       | 04-JUN-2011 |
| 10007  | R1002          | 1001       | 4900       | 05-JUN-2011 |

| billdate    | SUM(billamount) |
|-------------|-----------------|
| 02-JUN-2011 | 19376           |
| 03-JUN-2011 | 7840            |
| 04-JUN-2011 | 16393           |
| 05-JUN-2011 | 4900            |

## **HAVING**

 Manager of EasyShop needs a report, that has daily total collection amount greater than 5000, billed everyday

Expected output:

Write a SQL query for this requirement

| billdate    | SUM(billamount) |
|-------------|-----------------|
| 02-JUN-2011 | 19376           |
| 03-JUN-2011 | 7840            |
| 04-JUN-2011 | 16393           |



Demo: EasyShop application → Bill Amount – Purchase Based report



Solution:

Guided Activity: CCFP4.1-RDBMSAssignments – Assignments on GROUP BY and HAVING, Assignment 1a, 1b (Estimated Time: 40 mins.)

# **Summary**

- Conversion of ER model to relational schema
- Normalization
- Introduction to SQL
- SQL data types and operators
- DDL statements
- DML statements
- Operators in SQL
- Usage of SELECT Statements with
  - Operators
  - DISTINCT
  - ORDER BY
  - CASE

# **Summary**

- SQL Functions
  - Single row
  - Multi row (Aggregate)
- GROUP BY
- HAVING

# **Self-Study**

Refer to NPTEL course: <a href="http://nptel.ac.in/courses.php">http://nptel.ac.in/courses.php</a>

Course: NPTEL >> Computer Science and Engineering >> **Database Design Videos:** 

ER Model to Relational Mapping

Functional Dependencies and Normal Form

ER Model to Relational Model Mapping

Structured Query Language

Structured Query Language II

#### Refer to:

https://class.stanford.edu/courses/Home/Databases/Engineering/about

Study Material – RDBMS

### References

- Abraham Silberschatz, Henry Korth and S. Sudarshan, Database System Concepts Jan 27, 2010
- C.J. Date, Database Design and Relational Theory: Normal Forms and All That Jazz (Theory in Practice) Apr 24, 2012
- Kevin Loney, George Koch "Oracle 9i, The Complete reference" Oracle Press
- http://en.wikipedia.org/wiki/Entity%E2%80%93relationship\_model
- http://www.w3schools.com/sql/default.asp
- http://docs.oracle.com/cd/E11882\_01/server.112/e41084/toc.htm
- http://online.stanford.edu/course/intro-to-databases-winter-2014
- http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-830database-systems-fall-2010/lecture-notes/
- http://www.techopedia.com/definition/1245/structured-query-language-sql

# Thank You



© 2013 Infosys Limited, Bangalore, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this documentation nor any part of it may be reproduced, stored in a review or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

