Math 623, Fall 2013: Problem set 3

1. Let I = [a, b] be a finite closed interval. The function f is said to be Lipschitz continuous on I if there exists a constant L such that for all $x, y \in I$ we have

$$|f(x) - f(y)| \le L|x - y|.$$

- (a) Show that if f is Lipschitz continuous then f is continuous.
- (b) Show that if f is continuously differentiable on I then f is Lipschitz continuous.
- (c) Show that if $A \subset I$ has measure 0 and f is Lipschitz continuous then f(A) has measure 0. *Hint*: Use the definition of the exterior measure.
- 2. Prove that if f is measurable and f = g almost everywhere then g is measurable.
- 3. Suppose $f: \mathbf{R}^d \to \mathbf{R}$ is finite-valued. Show that f is measurable if and only if $f^{-1}(A)$ is measurable for every Borel set A.
- 4. Suppose $f: \mathbf{R} \to \mathbf{R}$ is differentiable. Show that f and f' are measurable functions.
- 5. (a) Suppose $f: \mathbf{R} \to \mathbf{R}$ is a monotone function. Show that $f^{-1}(A)$ is a Borel set for every Borel set A. In particular f is measurable.
 - (b) Suppose that $f: \mathbf{R} \to \mathbf{R}$ is a one to one continuous function. Show that f maps Borel sets onto Borel sets.
- 6. (a) Give an example of a function $f: \mathbf{R} \to \mathbf{R}$ and a measurable set A such that f(A) is not measurable.
 - (b) Give an example of a function $g: \mathbf{R} \to \mathbf{R}$ and a measurable set A such that $g^{-1}(A)$ is not measurable.
 - (c) Give an example of a measurable set such which is not a Borel set.
 - (d) Give an example of a continuous function g and a measurable function h such that $h \circ g$ is not measurable.

Hint: Let $F:[0,1] \to [0,1]$ be the Cantor Lebesgue function constructed in Exercise 2, chapter 1, and extend it to **R** by setting F(x) = 0 for $x \leq 0$ and F(x) = 1 for $x \geq 1$. Finally let

$$f(x) = x + F(x).$$

Use problem 6(b) to show that if C is the middle third cantor set then m(f(C)) = 1 and so f maps a set of measure 0 onto a set of positive measure.

Using this function f, the problem 5 in Problem set 2 (Exercise 32 (b) in the book), and problem 6 again, you can now deduce (a), (b), (c), (d).