AAHLS (Lab 1)

1. 簡介

本報告探討 AAHLS (Lab1),主要目的是透過 AXI-Lite 來實現簡單的乘法器,透過此 Lab 讓同學能夠認識使用 VIVADO HLS 在 PYNQ-Z2 board 上的基本開發流程,詳細內容會在後面呈現。

2. 報告內容

(1) 內容

本次 Lab 實作一個 32bits fix-point 的乘法器,其中 input 以及 output 皆使用 AXI-Lite 進行傳輸。由於此 module 是 always active 因此 control signal 選擇為 ap_ctrl_none。在本次 Lab 有特別提到關於 interface 設定主要有兩種方法,分別是 inline 以及 directive,directive 和 inline 不同的是它沒有寫在 code 裡面,因此在開發階段可以更方便調適,當開發完成就應該改成 inline 方便其他專案使用,不需要再手動調整。

此外,此次 Lab 也有使用 vivado 進行 block 的 connect,由於 AXI-Lite 是透過 master GP port 連接,zynq master port 預設是開啟的因此不用特別設定。原本 PL clock 助教是設定 5ns,但因為觀察到 slack 是負的 (time violation),因此把它調回 10ns。

最後是透過 jupyter lab server 連線 pynq-z2 board,透過 python code 調用 API 來進行 host 以及 kernel 的 communication。Kernel 的 address 可以從*_hw.h file 中查看,裡面顯示的 address 都是相較於 base address 的位移,這些設定可以協助 python code 進行調用 kernel。Python code 首先透過 o1.multip_2num_0 得到 base address,再調用 API 的 READ/WRITE function,透過輸入相對 address 來進行 communication。

(2) 相關截圖

= Synthesis Summary Report of 'multip 2num' + General Information: * Date:	
* Product family: zynq * Target device: xc7z020-clg400-1 + Performance & Resource Estimates:	
PS: '4' for module: '0' for loop: '*' for dataflow	
Modules Issue Latency Latency Iteration Trip	URAM
+	
= HW Interfaces	
* S AXILITE Interfaces	
Interface Data Width Address Width Offset Register	
s axi control 32 6 16 0	
+ + + + +	
* S AXILITE Registers	
Interface Register Offset Width Access Description Bit Fields	
s axi control n32In1	
* TOP LEVEL CONTROL	
Interface Type Ports	
4	
ap clk	
+	
= Vitis HLS Report for 'multip 2num'	
* Date: Mon Mar 3 08:52:36 2025	
* Version: 2022.1 (Build 3526262 on Mon Apr 18 15:47:01 MDT 2022) * Project: his Multiplication * Solution: solution! (Vivado IP Flow Target)	
* Solution: Solution! (vivado IP Flow larget) * Product family: zyno * Target device: xc7z020-clg400-1	
= Performance Estimates	
+ Timing:	
* Summary:	
lap clk 10.00 ns 6.912 ns 2.70 ns	
10.00 131 0.32 1131 2.70 1131	
I latency:	

Pe	riormance	Estimates					
	ing: Summary:						
†	Clock	Target	Estimated	Uncertainty	İ		
Ť:	ap clk	10.00 ns	6.912 ns	2.70 ns	ţ		
Late	ency: Summary:		,				
Ī	Latency min		Latency (absolute) max			Pipeline Type
†	3	31	30.000 ns	30.000 ns	41	41	nol
+	Detail: * Inst N/A * Loop						
Ut:	N/A ilization	Estimates					
Sumr	narv:						

* Summary:			- 22		
Name Name	BRAM 18K	DSP I	FF I	LUT	URAM
IDSP	-	-1	-1		
Expression	-	1 -1	-1	- 1	-
IFIFO	1 -	1 -1	-	-	-
Instance	1 0	1 31	3091	2821	-
Memory	1 -	1 -1	- 1	-	-
Multiplexer	1 -	1 -1	- 1	251	-
Register	-	1 -1	1001	-1	-
Total	0	31	4091	3071	0
 Available	280	2201	1064001	532001	0
 Utilization (%)	† 0	1 1	~01	~01	0

Entry: /usr/local/share/pynq-venv/lib/python3.8/site-packages/ipykernel_launcher.py
System argument(s): 3
Start of "/usr/local/share/pynq-venv/lib/python3.8/site-packages/ipykernel_launcher.py"

1 * 1 = 1
1 * 2 = 2
1 * 3 = 3
1 * 4 = 4
1 * 5 = 5
1 * 6 = 6
1 * 7 = 7
1 * 8 = 8
1 * 9 = 9

```
2 * 1 = 2
2 * 2 = 4
2 * 3 = 6
2 * 4 = 8
2 * 5 = 10
2 * 6 = 12
2 * 7 = 14
2 * 8 = 16
2 * 9 = 18
3 * 1 = 3
3 * 1 = 3
3 * 2 = 6
3 * 3 = 9
3 * 4 = 12
3 * 5 = 15
3 * 6 = 18
3 * 7 = 21
3 * 5 = 15
3 * 6 = 18
3 * 7 = 21
4 * 1 = 4
4 * 2 = 8
4 * 3 = 12
4 * 4 = 16
4 * 5 = 20
4 * 6 = 24
4 * 7 = 28
4 * 8 = 32
4 * 9 = 36
5 * 1 = 5
5 * 2 = 10
5 * 3 = 15
5 * 3 = 15
5 * 3 = 15
5 * 4 = 20
5 * 5 = 25
5 * 6 = 30
5 * 7 = 35
5 * 8 = 40
6 * 9 = 54
                6 * 5 = 30

6 * 6 = 36

6 * 7 = 42

6 * 8 = 48

6 * 9 = 54

7 * 1 = 7

7 * 2 = 14

7 * 3 = 21

7 * 4 = 28

7 * 5 = 35

7 * 6 = 42

7 * 7 = 9

6 = 42

8 * 1 = 8

8 * 2 = 16

8 * 3 = 24

8 * 4 = 32

8 * 5 = 40

8 * 7 = 56

8 * 8 = 64

8 * 7 = 56

8 * 8 = 64

8 * 7 = 56

9 * 8 = 72

9 * 4 = 36

9 * 6 = 54

9 * 7 = 54

9 * 7 = 54

9 * 6 = 54

9 * 7 = 54

9 * 7 = 54

9 * 6 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 7 = 54

9 * 8 = 54

9 * 8 = 54

9 * 8 = 54

9 * 9 * 8 = 72

9 * 9 * 9 * 81
```

Exit process