MATEMATIK 2 - OPVARMNING 2

Definer talfølgerne $(x_n)_{n\in\mathbb{N}} = (x_1, x_2, ..., x_n, ...)$ og $(y_n)_{n\in\mathbb{N}} = (y_1, y_2, ..., y_n, ...)$ der begge er reelle. Afgør om følgende pastande er sande.

OPG 1

Hvis xn og yn er konvergente så er

a) xn+yn altid konvergent.

Sand. Fx $x_n \rightarrow 2$ for $n \rightarrow \infty$ og $y_n \rightarrow 3$ for $n \rightarrow \infty$.

så vil xn+yn >5 for n > 00 og være konvergent.

b) xnyn altid konvergent.

Sand. Samme arsag som for xnyn > 6 for n > 00.

C) Hvis xn ≠0 for alle nEN så er I altid konvergent

Falsk: Fx er $x_n = \frac{1}{n}$ konvergent og forskellig fra 0.

Men $\frac{1}{x_n} = \frac{1}{y_n} = n \rightarrow \infty$ for $n \rightarrow \infty$ (divergent)

OPG 2

Hvis xn er konvergent og yn er divergent så er

d) xn+yn altid divergent.

Sand: $fx \times xn = \frac{1}{n} \rightarrow 0$ for $n \rightarrow \infty$ og $y_n = n \rightarrow \infty$ for $n \rightarrow \infty$.

e) Xn yn er altid divergent.

Falsh: $x_n = \frac{1}{n}$ er konvergent, $y_n = n$ er divergent. $x_n y_n = \frac{1}{n} \cdot n = 1 \rightarrow 1$ for $n \rightarrow \infty$ (konvergent.)

OPG 3

Hvis xn og yn er divergente så er

f) $x_n + y_n$ altid divergent. Falsk: $x_n = cos(n\pi) \rightarrow [-1,1]$ for $n \rightarrow \infty$ (divergent) og

 $y_n = -\cos(n\pi) \rightarrow [-1,1]$ for $n \rightarrow \infty$ (divergent)

Men xn + yn =0 > 6 for n > 00 (konvergent)

9) Xn yn er altid divergent.

Falsk: $x_n = cos(n\pi)$ og $y_n = \frac{1}{cos(n\pi)}$ er divergente men $x_n y_n = \frac{cos(n\pi)}{cos(n\pi)} = 1 \rightarrow 1$ for $n \rightarrow \infty$ (konvergent)