Chapitre 10: Borne sup, partie entière, suites classiques

Exercice type 1

Soient A et B deux parties non vides et majorées de \mathbb{R} , justifier que $A \cup B$ admet une borne sup et l'exprimer en fonction de celles de A et B.

Solution: On pose $C = A \cup B$, puisque A et B sont non vides et majorées, $\sup A$ et $\sup B$ existent. Soit $M = \max(\sup A, \sup B)$ Si $c \in C$, alors, ou bien $c \in A \Longrightarrow c \leqslant \sup A \leqslant M$, ou bien $c \in B \leqslant \sup B \leqslant M$. Puisque $C \neq \emptyset$ et est majorée par M, on en déduit que $\sup C$ existe et $\sup C \leqslant M$.

Il reste à prouver la réciproque i.e. que $M \leq \sup C$.

Soit S un majorant de C. $\forall a \in A$, on a $a \in C$, alors $a \leqslant S$, ainsi S majore A donc sup $A \leqslant S$. De même (symétrie des rôles) sup $B \leqslant M$ d'où $M = \max(\sup A, \sup B) \leqslant S$. Ceci prouve que M est le plus petit des majorants de C. Conclusion

$$M = \sup C$$

Exercice type 2

Soient A et B deux parties non vides et majorées de \mathbb{R} , on définit $A+B=\{a+b,\ a\in A,\ b\in B\}$. Justifier que sup (A+B) existe et l'exprimer en fonction de celles de A et B.

Solution: Puisque A et B sont non vides et majorées, sup A et sup B existent. On pose alors C = A + B, si $c \in C$, alors

$$\exists (a,b) \in A \times B, c = a + b$$

Puisque $a \leq M_A$ et $b \leq M_B$ on en déduit que

$$c \leqslant \sup A + \sup B$$

Ainsi C est majorée par $\sup A + \sup B = M$. Puisque $C \neq \emptyset$ et est majorée par M, on en déduit que $\sup C$ existe et $\sup C \leqslant M$.

Pour la réciproque, on a deux méthodes :

Première méthode : soit S un majorant de C. Soit $b \in B$ fixé, on a $\forall a \in A, a+b \in C \Longrightarrow a+b \leqslant S \Longrightarrow a \leqslant S-b$. Ainsi S-b majore A d'où

$$\sup A \leqslant S - b$$

Puisque b est quelconque, on en déduit que

$$\forall b \in B, b \leqslant S - \sup A$$

Ainsi $S - \sup A$ majore B d'où

$$\sup B \leqslant S - \sup A \Longrightarrow \sup A + \sup A \leqslant S$$

Ceci prouve que sup $A + \sup B$ est le plus petit des majorants donc que

$$\sup A + \sup B = \sup (A + B)$$

Seconde méthode : On sait qu'il existe deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ telles que $a_n\in A,\ b_n\in B,\ a_n\xrightarrow[n\to+\infty]{}\sup A$ et $b_n\xrightarrow[n\to+\infty]{}\sup B$. On pose $c_n=a_n+b_n$ alors $c_n\in C$ et $\int_n\xrightarrow[n\to+\infty]{}\sup A+\sup B$. Ainsi $\sup (C)=\sup A+\sup B$.

Exercice type 3

Soit A une partie non vide et bornée de \mathbb{R} , on déinit $B = \{|x - y|, (x, y) \in A^2\}$. Montrer que $\sup B = \sup A - \inf A$.

Solution: Notons $M = \sup A$ et $m = \inf A$ qui existent car A est non vide et bornée. Soit $(x, y) \in A^2$, on a $m \le x \le M$ et $m \le y \le M$, donc $m - M \le x - y \le M - m$, soit

$$|x-y| \leqslant M-m$$

On en déduit que $B = \{|x - y|, x \in A, y \in A\}$ est non vide majorée par M - m, ainsi sup B existe et

$$\sup_{(x,y)\in A^2} |x-y| \leqslant M - m$$

Reste à prouver que M-m est bien égal à sup B.

Première méthode : Soit M_1 un majorant de B, alors pour tout $(x,y) \in A^2$, on a $x-y \leq |x-y| \leq M_1 \Longrightarrow x \leq M_1+y$. Ceci prouve que, à $y \in A$ fixé, M_1+y majore tous les éléments x de A, donc est un majorant de A. En particulier, sup A=M lui est inférieur. Donc

$$\forall y \in A, \ M \leqslant M_1 + y \Longrightarrow \forall y \in A, \ M - M_1 \leqslant y$$

On en déduit que $M-M_1$ est un minorant de A, en partculier

$$M - M_1 \leqslant m \Longrightarrow M - m \leqslant M_1$$

donc M-m est bien le plus petit des majorants de B, il s'agit bien de la borne sup de B. Seconde méthode : il existe deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ telles que $(a_n,b_n)\in A^2$, $a_n\xrightarrow[n\to+\infty]{}\sup A$ et $b_n\xrightarrow[n\to+\infty]{}\inf A$. On a alors $|a_n-b_n|\in B$ et $|a_n-b_n|\xrightarrow[n\to+\infty]{}|\sup A-\inf A|=\sup A-\inf A$ (car $\sup\geqslant\inf$!). On a donc une suite de B qui converge vers un majorant de B, ce majorant est la borne \sup de B.

Exercice type 4

PCSI 2

Soit x un réel, et n un entier supérieur ou égal à 1, montrer que $\left|\frac{\lfloor nx\rfloor}{n}\right| = \lfloor x\rfloor$.

Solution: Soit la fonction f définie sur \mathbb{R} par $f(x) = \left| \frac{\lfloor nx \rfloor}{n} \right| - \lfloor x \rfloor$. On a

$$f(x+1) = \left\lfloor \frac{\lfloor nx+n \rfloor}{n} \right\rfloor - \lfloor x+1 \rfloor = \left\lfloor \frac{\lfloor nx \rfloor + n}{n} \right\rfloor - \lfloor x+1 \rfloor = \left\lfloor \frac{\lfloor nx \rfloor}{n} + 1 \right\rfloor - \lfloor x+1 \rfloor$$
$$= f(x) \text{ car si } \alpha \in \mathbb{R}, \ \lfloor x+1 \rfloor = \lfloor x \rfloor + 1$$

La fonction f est donc 1- périodique. Si $0 \le x < 1$, on a

$$0 \leqslant nx < n \Longrightarrow 0 \leqslant |nx| \leqslant nx < n$$

(attention, on ne peut pas passer à la partie entière directement qui n'est pas strictement croissante) d'où $0 \le \frac{\lfloor nx \rfloor}{n} < 1$ et ainsi f(x) = 0 sur [0,1]. La fonction f est donc nulle sur [0,1] et 1-périodique donc identiquement nulle.

Exercice type 5

Montrer que $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}^*, \sum_{k=0}^{n-1} \left\lfloor x + \frac{k}{n} \right\rfloor = \lfloor nx \rfloor.$

Solution: Soit
$$f(x) = \left(\sum_{k=0}^{n-1} \left\lfloor x + \frac{k}{n} \right\rfloor\right) - \lfloor nx \rfloor$$
, alors
$$f\left(x + \frac{1}{n}\right) = \sum_{k=0}^{n-1} \left\lfloor x + \frac{1}{n} + \frac{k}{n} \right\rfloor - \lfloor nx + 1 \rfloor = \sum_{k=0}^{n-1} \left\lfloor x + \frac{k+1}{n} \right\rfloor - \lfloor nx \rfloor - 1$$

$$= \sum_{j=1}^{n} \left\lfloor x + \frac{j}{n} \right\rfloor - \lfloor nx \rfloor - 1 = \lfloor x + 1 \rfloor + \sum_{j=1}^{n-1} \left\lfloor x + \frac{j}{n} \right\rfloor - \lfloor nx \rfloor - 1 \text{ (on a posé } j = k+1)$$

$$= \lfloor x \rfloor + 1 + \sum_{j=1}^{n-1} \left\lfloor x + \frac{j}{n} \right\rfloor - \lfloor nx \rfloor - 1 = \left\lfloor x + \frac{0}{n} \right\rfloor + \sum_{j=1}^{n-1} \left\lfloor x + \frac{j}{n} \right\rfloor - \lfloor nx \rfloor$$

$$= \sum_{k=0}^{n-1} \left\lfloor x + \frac{j}{n} \right\rfloor - \lfloor nx \rfloor = f(x)$$

ainsi la fonction f est $\frac{1}{n}$ périodique, il suffit de prouver qu'elle est nulle sur l'intervalle $\left[0,\frac{1}{n}\right[$. Mais

$$\begin{array}{c} 0 \leqslant x < \frac{1}{n} \\ 0 \leqslant k \leqslant n-1 \end{array} \right\} \Longrightarrow \begin{array}{c} 0 \leqslant x < \frac{1}{n} \\ 0 \leqslant \frac{k}{n} \leqslant 1 - \frac{1}{n} \end{array} \right\} \Longrightarrow \begin{array}{c} 0 \leqslant nx < 1 \\ 0 \leqslant x + \frac{k}{n} < 1 \end{array} \right\} \Longrightarrow \begin{array}{c} \left\lfloor x + \frac{k}{n} \right\rfloor = 0 \\ \left\lfloor nx \right\rfloor = 0 \end{array} \right\}$$

d'où

$$f(x) = 0 \text{ sur } \left[0, \frac{1}{n}\right]$$

et par périodicité on a f = 0 sur \mathbb{R} .

Exercice 1

Soit x un réel, on a défini les valeurs décimales approchées de x par $d_n = \frac{\lfloor 10^n x \rfloor}{10^n}$ et $D_n = u_n + 10^{-n}$. Montrer que les suites $(d_n)_{n \in \mathbb{N}}$ et $(D_n)_{n \in \mathbb{N}}$ sont monotones.

Solution: Montrons que $(D_n)_{n\in\mathbb{N}}$ est croissante. On a $d_{n+1}-d_n=\frac{1}{10^{n+1}}\left(\left\lfloor 10^{n+1}x\right\rfloor -10\left\lfloor 10^nx\right\rfloor\right)$. Or

$$10^nx - 1 < \lfloor 10^nx \rfloor \leqslant 10^nx \Longrightarrow 10^{n+1}x - 10 < 10 \lfloor 10^nx \rfloor \leqslant 10^{n+1}x$$

d'où

$$\begin{array}{c} -10^{n+1}x \leqslant -10 \left \lfloor 10^n x \right \rfloor < 10 - 10^{n+1}x \\ 10^{n+1}x - 1 < \left \lfloor 10^{n+1}x \right \rfloor \leqslant 10^{n+1}x \end{array} \right\} \Longrightarrow -1 < \left \lfloor 10^{n+1}x \right \rfloor - 10 \left \lfloor 10^n x \right \rfloor < 10$$

Puisque $\lfloor 10^{n+1}x \rfloor - 10 \lfloor 10^nx \rfloor$ est un entier, on en déduit que $0 \leqslant \lfloor 10^{n+1}x \rfloor - 10 \lfloor 10^nx \rfloor \leqslant 9$ ainsi $0 \leqslant d_{n+1} - d_n \leqslant \frac{9}{10^{n+1}}$. Ceci prouve la croissance de $(d_n)_{n \in \mathbb{N}}$.

Pour la décroissance de $(D_n)_{n\in\mathbb{N}}$, on a

$$v_{n+1} - v_n = \frac{1}{10^{n+1}} \left(\lfloor 10^{n+1} x \rfloor - 10 \lfloor 10^n x \rfloor - 9 \right)$$

Compte tenu de ce qui précède, on a

$$-9 \leqslant \left| 10^{n+1} x \right| - 10 \left\lfloor 10^n x \right\rfloor - 9 \leqslant 0$$

ce qui prouve la décroissance de $(D_n)_{n\in\mathbb{N}}$.

Exercice 2

Si on suppose que x et y sont des réels non-entiers et que x+y est un entier $(x\notin\mathbb{Z},y\notin\mathbb{Z}$ et $x+y\in\mathbb{Z})$, montrer qu'on a :

$$|x| + |y| = x + y - 1.$$

Solution: Par hypothèse $x \notin \mathbb{Z}$ et $y \notin \mathbb{Z}$, mais $x + y = n \in \mathbb{Z}$. On a donc $\lfloor x \rfloor \neq x$ car sinon $x \in \mathbb{Z}$, contraire à l'hypothèse, et de même $E(y) \neq y$, ceci justifie la double inégalité stricte

$$x-1 < |x| < x \text{ et } y-1 < |y| < y$$

(d'après la définition, on a juste $x-1 < \lfloor x \rfloor \leqslant x$). En sommant, il vient $n-2 = x+y-2 < \lfloor x \rfloor + \lfloor y \rfloor < x+y=n$. L'entier |x|+|y| est donc entre n-2 et n, il est donc égal à n-1

$$|x| + |y| = n - 1 = x + y - 1$$

Exercice 3

- 1. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ croissante telle que si $x \in \mathbb{Q}$ alors f(x) = x, montrer que $f = Id_{\mathbb{R}}$.
- 2. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ monotone telle que $(E): (x,y) \in \mathbb{R}^2$, f(x+y) = f(x) + f(y). Montrer que f est de la forme $f(x) = \alpha x$ où α est une constante.

Solution: Pour $x \in \mathbb{R}$, on désigne par d_n et D_n es approximations décimales par défaut et par excès de x. On sait que $(d_n, D_n) \in \mathbb{Q}^2$ convergent vers x et $d_n \leq x \leq D_n$

1. Soit $x \in \mathbb{R}$, par croissance de f, on a

$$f(d_n) = d_n \leqslant f(x) \leqslant D_n = f(D_n)$$

En passant à la limite, on obtient f(x) = x.

2. Si f est décroissante, alors -f est croissante et -f(x+y) = -f(x) - f(y), ainsi -f vérifie (E). On peut donc supposer que f est croissante.

On commence par calculer f(0). Avec x = y = 0, on a f(0) = 2f(0) d'où f(0) = 0.

Avec y = -x, on en déduit que $f(0) = f(x) + f(-x) \Longrightarrow f(-x) = -f(x)$, ainsi f est impaire.

Puis par récurrence, on prouve $\mathcal{P}(n) = \text{``} \forall x \in \mathbb{R}, f(nx) = nf(x)\text{''}$. C'est vrai au rang n = 0 puisque f(0) = 0. Supposons que $\mathcal{P}(n)$ soit vraie au rang n, alors

$$f((n+1)x) = f(nx) + f(1x) = nf(x) + f(x) = (n+1)f(x)$$

On prouve ensuite que f(px) = pf(x) lorsque $p \in \mathbb{Z}$ et $x \in \mathbb{R}$. Si $p \ge 0$, alors $p \in \mathbb{N}$ et on vient de le prouver. Si p < 0, alors $-p \in \mathbb{N}$ et ainsi

$$f\left(-px\right)=\left(-p\right)f\left(x\right)=-f\left(1x\right)$$
mais $f\left(-px\right)=-f\left(px\right)$ par imparité d'où $f\left(px\right)=pf\left(x\right)$

On va maintenant prouver que f(r) = rf(1) si $r \in \mathbb{Q}$. Soit $r \in \mathbb{Q}$, il existe $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ tel que $r = \frac{p}{q}$. On a alors

$$qf(r) = qf\left(\frac{p}{q}\right) = f(p) = pf(1) \iff f(r) = rf(1)$$

Pour conclure : soit $x \in \mathbb{R}$, par croissance de f, on a

$$f(d_n) = d_n f(1) \leqslant f(x) \leqslant D_n f(1) = f(D_n)$$

d'où en passant à la limite $f(x) = xf(1) = \alpha x$ où $\alpha = f(1)$.

Exercice type 6

On définit pour $n \ge 2$, $u_n = \prod_{k=2}^n \cos\left(\frac{\pi}{2^k}\right)$. Soit $v_n = u_n \sin\left(\frac{\pi}{2^n}\right)$, monter que $(v_n)_n$ est géométrique, en déduire u_n et

la convergence de $(u_n)_{n\geqslant 2}$.

 $\underbrace{\text{Solution}}_{:} : \text{Soit } n \geqslant 2, \text{ alors } v_{n+1} = u_{n+1} \sin \left(\frac{\pi}{2^{n+1}} \right), \text{ mais } u_{n+1} = u_n \times \cos \left(\frac{\pi}{2^{n+1}} \right) \text{ d'où alors } v_{n+1} = u_{n+1} \sin \left(\frac{\pi}{2^{n+1}} \right), \text{ mais } u_{n+1} = u_n \times \cos \left(\frac{\pi}{2^{n+1}} \right) \text{ d'où alors } v_{n+1} = u_{n+1} \sin \left(\frac{\pi}{2^{n+1}} \right), \text{ mais } u_{n+1} = u_n \times \cos \left(\frac{\pi}{2^{n+1}} \right) \text{ d'où alors } v_{n+1} = u_{n+1} \sin \left(\frac{\pi}{2^{n+1}} \right), \text{ mais } u_{n+1} = u_n \times \cos \left(\frac{\pi}{2^{n+1}} \right) \text{ d'où alors } v_{n+1} = u_{n+1} \sin \left(\frac{\pi}{2^{n+1}} \right), \text{ mais } u_{n+1} = u_n \times \cos \left(\frac{\pi}{2^{n+1}} \right) \text{ d'où alors } v_{n+1} = u_{n+1} \sin \left(\frac{\pi}{2^{n+1}} \right), \text{ mais } u_{n+1} = u_n \times \cos \left(\frac{\pi}{2^{n+1}} \right) \text{ d'où alors } v_{n+1} = u_{n+1} \sin \left(\frac{\pi}{2^{n+1}} \right), \text{ mais } u_{n+1} = u_n \times \cos \left(\frac{\pi}{2^{n+1}} \right) \text{ d'où alors } v_{n+1} = u_{n+1} \sin \left(\frac{\pi}{2^{n+1}} \right), \text{ mais } u_{n+1} = u_n \times \cos \left(\frac{\pi}{2^{n+1}} \right) \text{ d'où alors } v_{n+1} = u_{n+1} \sin \left(\frac{\pi}{2^{n+1}} \right), \text{ mais } u_{n+1} = u_n \times \cos \left(\frac{\pi}{2^{n+1}} \right) \text{ d'où alors } v_{n+1} = u_{n+1} \sin \left(\frac{\pi}{2^{n+1}} \right), \text{ mais } u_{n+1} = u_{n+1} \cos \left(\frac{\pi}{2^{n+1}} \right) \text{ d'où alors } v_{n+1} = u_{n+1} \sin \left(\frac{\pi}{2^{n+1}} \right), \text{ mais } u_{n+1} = u_{n+1} \cos \left(\frac{\pi}{2^{n+1}} \right) \text{ d'où alors } v_{n+1} = u_{n+1} \cos \left(\frac{\pi}{2^{n+1}} \right)$

$$v_{n+1} = u_n \sin\left(\frac{\pi}{2^{n+1}}\right) \cos\left(\frac{\pi}{2^{n+1}}\right) = \frac{1}{2}u_n \sin\left(\frac{2\pi}{2^{n+1}}\right) = \frac{1}{2}u_n \sin\left(\frac{\pi}{2^n}\right) = \frac{1}{2}v_n$$

La suite $(v_n)_{n\geq 2}$ et donc géométrique de raison $\frac{1}{2}$. On en déduit que, pour $n\geqslant 1$

$$v_n = \frac{v_2}{2^{n-2}} = \frac{u_2 \sin \frac{\pi}{4}}{2^{n-2}} = \frac{\cos \frac{\pi}{4} \sin \frac{\pi}{4}}{2^{n-2}} = \frac{\frac{1}{2} \sin \frac{\pi}{2}}{2^{n-2}} = \frac{1}{2^{n-1}}$$

et

$$u_n = \frac{v_n}{\sin\frac{\pi}{2^n}} = \frac{1}{2^{n-1}\sin\frac{\pi}{2^n}} \sim \frac{1}{2^{n-1}\frac{\pi}{2^n}} = \frac{2}{\pi}$$

ce qui prouve que

$$u_n \xrightarrow[n \to +\infty]{} \frac{2}{\pi}$$

Exercice type 7

Déterminer l'expression générale de $(u_n)_{n\in\mathbb{N}}$ lorsque,

- 1. $\forall n \in \mathbb{N}, u_{n+2} = 4u_{n+1} 4u_n, u_0 = 1 \text{ et } u_1 = 0.$
- 2. $\forall n \in \mathbb{N}, u_{n+2} = 5u_{n+1} 6u_n, u_0 = \frac{5}{6} \text{ et } u_1 = \frac{13}{6}, \text{ calculer alors } S_n = \sum_{k=0}^n u_k.$
- 3. $\forall n \in \mathbb{N}, u_{n+2} = 2u_{n+1} 2u_n, u_0 = 1 \text{ et } u_1 = 3, \text{ puis montrer que } u_n \text{ peut s'écrire } \rho^n G \cos (n\theta \varphi).$

Solution: On applique le cours.

- 1. L'équation caractéristique est $r^2 4r + 4 = (r 2)^2$. Il existe donc $(A, B) \in \mathbb{R}^2$ tels que $u_n = (A + Bn) 2^n$. Avec les conditions initiales,on a $\begin{cases} u_0 = A = 1 \\ u_1 = 3(A + B) = 0 \end{cases}$ d'où $u_n = (1 n) 2^n$.
- 2. L'équation caractéristique est $r^2 5r + 6 = (r 2)(r 3)$, il existe donc $(A, B) \in \mathbb{R}^2$ tels que $u_n = A \times 2^n + B \times 3^n$. Avec les conditions initiales, on a $\begin{cases} u_0 = A + B = \frac{5}{6} \\ u_1 = 2A + 3B = \frac{13}{6} \end{cases}$ ce qui donne $B = \frac{13}{6} \frac{10}{6} = \frac{1}{2}$ et $A = \frac{5}{6} \frac{1}{2} = \frac{1}{3}$. Ainsi $u_n = \frac{2^n}{3} + \frac{3^n}{2}$ pour $n \in \mathbb{N}$. On a alors

$$S_n = \frac{1}{3} \sum_{k=0}^{n} 2^k + \frac{1}{2} \sum_{k=0}^{n} 3^k = \frac{2^{n+1} - 1}{3} + \frac{3^{n+1} - 1}{4} = \frac{2^{n+3} + 3^{n+2} - 7}{12}.$$

3. L'équation caractéristique est r^2-2r+2 dont les racines sont $r=1+i=\sqrt{2}e^{i\frac{\pi}{4}}$ et \overline{r} . Il existe donc $(A,B)\in\mathbb{R}^2$ tels que $u_n=\left(\sqrt{2}\right)^n\left(A\cos\left(\frac{n\pi}{4}\right)+B\sin\left(\frac{n\pi}{4}\right)\right)$. Avec les conditions initiales,on a $\begin{cases} u_0=A=1\\ u_1=A+B=3 \end{cases}$. Ainsi $u_n=2^{\frac{n}{2}}\left(\cos\left(\frac{n\pi}{4}\right)+2\sin\left(\frac{n\pi}{4}\right)\right)=2^{\frac{n}{2}}\sqrt{5}\cos\left(\frac{n\pi}{4}-\varphi\right)$ où $\cos\varphi=\frac{1}{\sqrt{5}}$ et $\sin\varphi=\frac{2}{\sqrt{5}}$ d'où $\varphi\in\left[0,\frac{\pi}{2}\right]$ et $\tan\varphi=2$, ce qui donne $\varphi=\arctan(2)$. On a donc $u_n=2^{\frac{n}{2}}\sqrt{5}\cos\left(\frac{n\pi}{4}-\arctan 2\right)$

Exercice type 8

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ les suites déterminées par $u_0=1, v_0=2$ et pour $n\in\mathbb{N}$

$$\begin{cases} u_{n+1} = 3u_n + 2v_n \\ v_{n+1} = 2u_n + 3v_n \end{cases}$$

Etudier la suite $(v_n - u_n)_n$. En déduire les expressions de u_n et v_n pour $n \in \mathbb{N}$.

Solution: On a $v_{n+1} - u_{n+1} = (2u_n + 3v_n) - (3u_n + 2v_n) = v_n - u_n$, cette suite est constante égale à son premier terme qui vaut donc 1. On en déduit que

$$\forall n \in \mathbb{N}, v_n = u_n + 1$$

On remplace dans la relation $u_{n+1}=3u_n+2v_n$ pour avoir $u_{n+1}=3u_n+2(u_n+1)=5u_n+2$, la suite $(u_n)_{n\in\mathbb{N}}$ est arithmético-géométrique. Soit ℓ tel que $\ell=5\ell+2\Longleftrightarrow\ell=-\frac{1}{2}$, on pose $w_n=u_n+\frac{1}{2}$. Alors

$$w_{n+1} = u_{n+1} + \frac{1}{2} = 5u_n + 2 + \frac{1}{2} = 5\left(u_n + \frac{1}{2}\right) = 5w_n$$

La suite $(w_n)_n$ est géométrique de raison 5 de premier terme $u_0 + \frac{1}{2} = \frac{3}{2}$. On a donc $w_n = \frac{3 \times 5^n}{2}$ et, pour $n \in \mathbb{N}$

$$u_n = \frac{3 \times 5^n - 1}{2}, v_n = \frac{3 \times 5^n + 1}{2}$$

Remarque: On peut aussi utilise $(u_n + v_n)_n$ qui est géométrique.

Exercice type 9

On définit $(u_n)_{n\in\mathbb{N}}$ par $u_0=1,\ u_1=2$ et $u_{n+2}=\sqrt{\frac{u_{n+1}^9}{u_n^4}}$. Montrer que $(u_n)_{n\in\mathbb{N}}$ est bien définie et calculer u_n en fonction de n.

Solution: Par récurrence immédiate à deux termes. Pour $n \in \mathbb{N}$, on définit la propriété $\mathcal{P}(n) = "u_n$ existe et $u_n > 0"$. On a $\widetilde{\mathcal{P}(0)}$ et $\mathcal{P}(1)$ qui sont vraies (car u_0 et u_1 sont donnés). Supposons à n fixé, $n \ge 0$ que $\mathcal{P}(n)$ et $\mathcal{P}(n+1)$ soient vraies. Alors $u_{n+2} = \sqrt{\frac{u_{n+1}^9}{u_n^4}}$ existe et est strictement positif. On en déduit donc que $\mathcal{P}(n+2)$ est vraie. Par récurrence, on a $\mathcal{P}(n)$ vraie pour tout $n \in \mathbb{N}$.

On peut alors considérer $v_n = \ln u_n$ qui vérifie $v_{n+2} = \frac{1}{2} \left(9v_{n+1} - 4v_n \right) = \frac{9}{2} v_{n+1} - 2v_n$. Ainsi $(v_n)_{n \in \mathbb{N}}$ est une suite récurrente linéaire d'ordre 2.L'équation caractéristique est $r^2 - \frac{9}{2}r + 2$ dont les solutions sont $r_1 = \frac{1}{2}$ et $r_2 = 4$. Il existe $(\lambda, v) \in \mathbb{R}^2$ tels que, pour tout entier n,

$$v_n = \lambda r_1^n + \mu r_2^n$$

On calcule λ et μ avec $v_0 = \ln u_0 = 0 = \lambda + \mu$ et $v_1 = \ln 2 = \lambda r_1 + \mu r_2 = \mu (r_2 - r_1) = \frac{7\mu}{2}$. En conclusion

$$v_n = \lambda r_1^n + \mu r_2^n = \frac{2\ln 2}{7} \left(4^n - \frac{1}{2^n} \right) \text{ et } u_n = \exp\left(\frac{2\ln 2}{7} \left(4^n - \frac{1}{2^n} \right) \right) = 2^{\frac{2}{7} \left(4^n - \frac{1}{2^n} \right)}$$

Exercice 4

Soient $(a, b) \neq (0, 0) \in \mathbb{R}^2$ et soit $(u_n)_{n \in \mathbb{N}}$ la suite définie par $u_0 = 0$, $u_1 = 1$ et $u_{n+2} = (a+b)u_{n+1} - abu_n$. Déterminer une expression de u_n en fonction de n. Lorsque $a \neq b$, on donnera deux expressions pour u_n .

Solution: Il s'agit d'une suite récurrente linéaire d'ordre 2 dont l'équation caractéristique est $r^2 - (a+b)r + ab = 0$. Les racines de l'équation caractéristique sont a et b. On a donc deux cas.

Si $a \neq b$, alors $\exists (\lambda, \mu) \in \mathbb{R}^2$ tels que $\forall n \in \mathbb{N}$, $u_n = \lambda a^n + \mu b^n$. Puisque $u_0 = 0 = \lambda + \mu$ et $u_1 = 1 = \lambda a + \mu b$, on obtient

$$\left\{ \begin{array}{l} \lambda + \mu = 0 \\ \lambda a + \mu b = 1 \end{array} \right. \underset{\text{Cramer}}{\Longleftrightarrow} \lambda = \frac{1}{a - b}, \mu = -\frac{1}{a - b}$$

Ainsi

$$u_n = \frac{a^n - b^n}{a - b} = a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1} = \sum_{k=0}^{n-1} a^{n-1-k}b^k$$

Si a = b, alors $\exists (\lambda, \mu) \in \mathbb{R}^2$ tels que $\forall n \in \mathbb{N}$, $u_n = (\lambda n + \mu) a^n$. Puisque $u_0 = 0 = \mu$ et $u_1 = 1 = (\lambda + \mu) a = \lambda a$, on obtient

$$u_n = na^{n-1}$$

Remarque: Si a = b, on a $\sum_{k=0}^{n-1} a^{n-1-k} b^k = na^{n-1}$. Si a = b = 0, alors $u_n = 0$ pour $n \ge 2$.

Exercice 5

On considère la suite de polynôme $P_n(x)$ définie par

$$\forall x \in \mathbb{R}, P_0(x) = 0, P_1(x) = a$$

 $P_{n+2}(x) = xP_{n+1}(x) + (1-x)P_n(x)$

Déterminer $P_n(x)$ en fonction de x.

Solution: Soit a fixé dans \mathbb{R} , alors la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=P_n$ (a) est une suite récurrente linéaire d'ordre 2. L'équation caractéristique est $r^2-ar+(a-1)=0$ dont les racines évidentes sont 1 et a-1 (on peut aussi calculer $\Delta=a^2-4a+4=(a-2)^2$). On a donc deux cas:

Premier cas $1 \neq a - 1 \iff a \neq 2$

On sait qu'il existe λ et μ réels tels que $\forall n \in \mathbb{N}$, $u_n = \lambda \times 1^n + \mu \times (a-1)^n$. Or $u_0 = 0 \Longrightarrow \lambda + \mu = 0$ et $u_1 = a \Longrightarrow \lambda + (a-1)\mu = a$. On a donc le système

$$\begin{cases} \lambda + \mu = 0 \\ \lambda + (a - 1) \mu = a \end{cases}$$

dont la solution est (immédiate) $\mu = \frac{a}{a-2} = -\lambda$ (oh! oh! le cas a=2!). Ainsi

$$u_n = \frac{a}{a-2} ((a-1)^n - 1) = \frac{a}{a-2} ((a-2+1)^n - 1) = \frac{a}{a-2} \left[-1 + \sum_{k=0}^n \binom{n}{k} (a-2)^k \right]$$
$$= \frac{a}{a-2} \left[\sum_{k=1}^n \binom{n}{k} (a-2)^k \right] \operatorname{car} \binom{n}{0} (a-2)^0 = 1 = \sum_{k=1}^n \binom{n}{k} a (a-2)^{k-1}$$

Ainsi

Pour
$$a \neq 2$$
, on a $P_n(a) = \sum_{k=1}^n \binom{n}{k} a (a-2)^{k-1} = \sum_{i=0}^{n-1} \binom{n}{i+1} a (a-2)^i$

Reste à déterminer $P_n(2)$, on dispose de deux méthodes :

Première méthode (bof, bof) : On résout la récurrence dans le cas a=2. Il existe λ et μ tels que $u_n=(\lambda+\mu n)\times 1^n=\lambda+\mu n$. Avec $u_0=0=\lambda$ et $u_1=\lambda+\mu=2$, on a

$$u_n = P_n(2) = 2r$$

Seconde méthode : La fonction P_n est continue donc $P_n\left(a\right) \xrightarrow[a \to 2]{} P_n\left(2\right)$, or

$$P_n(a) = \sum_{i=0}^{n-1} \binom{n}{i+1} a (a-2)^i = \underbrace{\binom{n}{1} a (a-2)^0}_{=na} + \underbrace{\binom{n}{2} a (a-2)^1 + \cdots}_{=na}$$

Donc $P_n(a) \xrightarrow[a \to 2]{} 2n = P_n(2)$.

Exercice 6

Soit $(u_n)_{n\in\mathbb{N}}$ définie par $u_0\in\mathbb{R}$ et $\forall n\in\mathbb{N},\ u_{n+1}=2^n-3u_n$. Comment choisir u_0 pour que la suite soit croissante?

Solution: On va déterminer u_n en fonction de n. On commence par chercher une solution particulière de la récurrence sous la forme $u_n = \alpha 2^n$. On a alors $u_{n+1} = \alpha 2^{n+1} = 2\alpha \times 2^n$ et $2^n - 3u_n = 2^n - 3\alpha \times 2^n = (1 - 3\alpha) \times 2^n$, ainsi $\forall n \in \mathbb{N}$, $u_{n+1} = 2^n - 3u_n$ si et seulement si

$$2\alpha = 1 - 3\alpha \iff \alpha = \frac{1}{5} \text{ soit } u_n = \frac{2^n}{5}$$

On pose alors $a_n = \frac{2^n}{5}$ et $u_n = a_n + v_n$, on a alors

$$u_{n+1} = 2^n - 3u_n \iff a_{n+1} + v_{n+1} = 2^n - 3a_n - 3v_n \iff v_{n+1} = -3v_n$$

En effet $a_{n+1} = 2^n - 3a_n$ (la suite $(a_n)_n$ est une solution particulière de la récurrence, avez-vous l'analogie avec les équations différentielles). La suite $(v_n)_{n \in \mathbb{N}}$ est donc géométrique, d'où $v_n = (-3)^n v_0$ avec $u_0 = a_0 + v_0 = \frac{1}{5} + v_0 \Longrightarrow v_0 = a_0 - \frac{1}{5}$. On a donc

$$\forall n \in \mathbb{N}, u_n = \frac{2^n}{5} + \left(a_0 - \frac{1}{5}\right) \times (-3)^n$$

Lorsque n tend vers l'infini, on a

$$u_n \sim \left(a_0 - \frac{1}{5}\right) \times \left(-3\right)^n \text{ pour } a_0 \neq \frac{1}{5}$$

Ainsi $u_{n+1} \sim -3u_n \Longrightarrow u_n u_{n+1} \sim -3u_n^2 < 0$, ce qui prouve que u_{n+1} et u_n sont, pour n assez grand, de signe opposé, la suite ne peut être monotone

Reste le cas où $a_0 = \frac{1}{5}$ qui donne la suite croissante $u_n = \frac{2^n}{5}$.