# **RJC Enterprises, LLC**

ADDENDUM TEST REPORT TO 93114-11

Endophys Pressure Monitor, Endophys 651 Power Supply, GTM 21091-5012

**Tested To The Following Standards:** 

FCC Part 15 Subpart C Sections 15.207, 15.225 and RSS 210 Issue 8

Report No.: 93114-11A

Date of issue: October 2, 2012



This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.



## **TABLE OF CONTENTS**

| Administrative Information                              | 3  |
|---------------------------------------------------------|----|
| Test Report Information                                 | 3  |
| Revision History                                        | 3  |
| Report Authorization                                    | 3  |
| Test Facility Information                               | 4  |
| Site Registration & Accreditation Information           | 4  |
| Summary of Results                                      | 5  |
| Conditions During Testing                               | 5  |
| Equipment Under Test                                    | 6  |
| Peripheral Devices                                      | 6  |
| FCC Part 15 Subpart C                                   | 7  |
| 15.207 AC Conducted Emissions                           | 7  |
| -20dBc Occupied Bandwidth                               | 14 |
| 15.225(a)(b)(c)(d) Field Strength of Spurious Emissions | 16 |
| 15.225(e) Frequency Tolerance and Voltage Variations    | 22 |
| RSS-210                                                 | 25 |
| 99 % Bandwidth                                          | 25 |
| Supplemental Information                                | 27 |
| Measurement Uncertainty                                 | 27 |
| Emissions Test Details                                  | 27 |



## **ADMINISTRATIVE INFORMATION**

## **Test Report Information**

REPORT PREPARED FOR: REPORT PREPARED BY:

RJC Enterprises, LLC Joyce Walker

11711 N. Creek Parkway S., Ste. D-103 CKC Laboratories, Inc.

Bothell, WA 98011 5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Rondii Lynberg Project Number: 93114

Customer Reference Number: 12-05029

**DATE OF EQUIPMENT RECEIPT:** May 18, 2012 **DATE(S) OF TESTING:** May 18-30, 2012

## **Revision History**

**Original:** Testing of the Endophys Pressure Monitor and Endophys 651 Power Supply, GTM 21091-5012 to FCC Part 15 Subpart C Sections 15.207, 15.225 and rss 210 issue 8.

**Addendum A:** This addendum adds test conditions in the "Summary of Conditions" section and adds two peripheral devices.

# **Report Authorization**

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Steve 2 8

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Page 3 of 28 Report No.: 93114-11A



# **Test Facility Information**



Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive S.E., Suite A Bothell, WA 98021-4413

# **Site Registration & Accreditation Information**

| Location | CB#    | Taiwan         | Canada  | FCC    | Japan                      |  |
|----------|--------|----------------|---------|--------|----------------------------|--|
| Bothell  | US0081 | SL2-IN-E-1145R | 3082C-1 | 318736 | R-2296 C-2506 T-1489 G-284 |  |

Page 4 of 28 Report No.: 93114-11A



## **SUMMARY OF RESULTS**

Standard / Specification: FCC Part 15 Subpart C

| Description                | Test Procedure/Method                                         | Results |
|----------------------------|---------------------------------------------------------------|---------|
|                            |                                                               |         |
| Conducted Emissions        | FCC Part 15 Subpart C Section 15.207 / ANSI C63.4 (2009)      | Pass    |
|                            |                                                               |         |
| -20dBc Occupied Bandwidth  | FCC Part 15 Subpart C Section / ANSI C63.4 (2009)             | Pass    |
|                            |                                                               |         |
| Field Strength of Spurious | FCC Part 15 Subpart C Section 15.225(a)(b)(c)(d) / ANSI C63.4 | Pass    |
| Emissions                  | (2009)                                                        | Pa55    |
|                            |                                                               |         |
| Frequency Tolerance and    | FCC Part 15 Subpart C Section 15.225(e)/ ANSI C63.4 (2009)    | Pass    |
| Voltage Variations         |                                                               | Pa55    |
|                            |                                                               |         |
| 99% Bandwidth              | RSS 210 Issue 8                                               | Pass    |
|                            |                                                               |         |

# **Conditions During Testing**

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

### **Summary of Conditions**

Radiated measurements: EUT was located on the test table, 80cm above the ground plane. The EUT was separated from the table by a piece of Styrofoam. The EUT's USB is connected to a laptop outside the test chamber through a USB-Fiber optic converter. The fiber optic port was populated with a fiber optic. The BPN port was connected to a terminated cable.

Page 5 of 28 Report No.: 93114-11A



# **EQUIPMENT UNDER TEST (EUT)**

### **EQUIPMENT UNDER TEST**

Endophys Pressure MonitorPower Supply (#1)Manuf:RJC Enterprises, LLCManuf:Glob Tek, Inc.Model:Endophys 651Model:GTM 21091-5012Serial:8989Serial:RoHS022581010612

### **PERIPHERAL DEVICES**

The EUT was tested with the following peripheral devices:

<u>Laptop</u> <u>USB 2.0 to Fiber Bit-Driver</u>

Manuf:CompaqManuf:S.I. TechModel:2105USModel:2172Serial:CN30215791Serial:079535

Page 6 of 28 Report No.: 93114-11A



# **FCC PART 15 SUBPART C**

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

## **15.207 AC Conducted Emissions**

### **Test Data Sheets**

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: RJC Enterprises, LLC
Specification: 15.207 AC Mains - Average

Work Order #: 93114 Date: 5/30/2012
Test Type: Conducted Emissions Time: 4:19:27 PM

Equipment: Endophys Pressure Monitor Sequence#: 3

Manufacturer: RJC Enterprises, LLC Tested By: Armando Del Angel

Model: Endophys 651 120V 60Hz

S/N: 8989

#### Test Equipment:

| Test Equi | pincini  |                   |              |                  |              |
|-----------|----------|-------------------|--------------|------------------|--------------|
| ID        | Asset #  | Description       | Model        | Calibration Date | Cal Due Date |
| T1        | ANP05435 | Attenuator        | PE7015-10    | 9/8/2010         | 9/8/2012     |
| T2        | AN03227  | Cable             | 32026-29080- | 5/2/2011         | 5/2/2013     |
|           |          |                   | 29080-84     |                  |              |
| Т3        | ANP05542 | Cable             | Heliax       | 9/27/2011        | 9/27/2013    |
| T4        | AN01492  | 50uH LISN-Line    | 3816/2NM     | 6/14/2011        | 6/14/2013    |
|           | AN01492  | 50uH LISN-Neutral | 3816/2NM     | 6/14/2011        | 6/14/2013    |
|           | AN02871  | Spectrum Analyzer | E4440A       | 4/22/2011        | 4/22/2013    |
| T5        | AN01717  | High Pass Filter  | F3440-P005   | 5/11/2012        | 5/11/2014    |

### Equipment Under Test (\* = EUT):

|                               | ,                    |                |                  |
|-------------------------------|----------------------|----------------|------------------|
| Function                      | Manufacturer         | Model #        | S/N              |
| Endophys Pressure<br>Monitor* | RJC Enterprises, LLC | Endophys 651   | 8989             |
| Power Supply (#1)             | Glob Tek, Inc.       | GTM 21091-5012 | RoHS022581010612 |

#### Support Devices:

| E        | M C            | N.C. 1.1.4 | C/NT |  |
|----------|----------------|------------|------|--|
| Hunction | Maniitaciiirer | Model #    | S/IN |  |

Page 7 of 28 Report No.: 93114-11A



## Test Conditions / Notes:

Temp: 24°C Humidity: 33% Pressure: 102.9kPa Frequency: 0.150-30MHz

Vertical ground plane is 40cm from the EUT. TX frequency is 13.56MHz.

Ext Attn: 0 dB

|          | rement Data: | Re        | eading lis   | ted by ma | argin. |        |        | Test Lead | d: Line |        |            |
|----------|--------------|-----------|--------------|-----------|--------|--------|--------|-----------|---------|--------|------------|
| #        | Freq         | Rdng      | T1           | T2        | T3     | T4     | Dist   | Corr      | Spec    | Margin | Polar      |
|          | - 1          |           | T5           |           |        |        |        |           | r       | 8      |            |
|          | MHz          | $dB\mu V$ | dB           | dB        | dB     | dB     | Table  | $dB\mu V$ | dΒμV    | dB     | Ant        |
| 1        | 150.000k     | 40.9      | +9.7         | +0.0      | +0.0   | +2.4   | +0.0   | 53.0      | 56.0    | -3.0   | Line       |
|          |              |           | +0.0         |           |        |        |        |           |         |        |            |
| 2        | 13.562M      | 33.1      | +9.7         | +0.1      | +0.2   | +0.4   | +0.0   | 43.5      | 50.0    | -6.5   | Line       |
|          |              |           | +0.0         |           |        |        |        |           |         |        |            |
| 3        | 453.972k     | 27.0      | +9.7         | +0.0      | +0.0   | +0.6   | +0.0   | 37.3      | 46.8    | -9.5   | Line       |
| <u> </u> |              |           | +0.0         |           |        |        |        |           | 10.0    |        |            |
| 4        | 392.160k     | 27.5      | +9.7         | +0.0      | +0.0   | +0.7   | +0.0   | 37.9      | 48.0    | -10.1  | Line       |
|          | 2247101      | 20.0      | +0.0         | . 0. 0    | . 0. 0 | . 0. 0 | . 0. 0 | 20.5      | 40.2    | 10.0   | T ·        |
| 5        | 334.710k     | 28.0      | +9.7<br>+0.0 | +0.0      | +0.0   | +0.8   | +0.0   | 38.5      | 49.3    | -10.8  | Line       |
| 6        | 3.705M       | 25.1      | +9.7         | +0.0      | +0.1   | +0.3   | +0.0   | 35.2      | 46.0    | -10.8  | Line       |
| 0        | 3.703WI      | 23.1      | +0.0         | +0.0      | +0.1   | +0.3   | +0.0   | 33.2      | 40.0    | -10.8  | Line       |
| 7        | 4.097M       | 24.7      | +9.7         | +0.1      | +0.1   | +0.3   | +0.0   | 34.9      | 46.0    | -11.1  | Line       |
| ,        | 1.057111     | 21.7      | +0.0         | 10.1      | 10.1   | 10.5   | 10.0   | 31.7      | 10.0    | 11.1   | Line       |
| 8        | 4.292M       | 24.5      | +9.7         | +0.1      | +0.1   | +0.3   | +0.0   | 34.7      | 46.0    | -11.3  | Line       |
|          |              |           | +0.0         |           |        |        |        |           |         |        |            |
| 9        | 4.356M       | 24.3      | +9.7         | +0.1      | +0.1   | +0.3   | +0.0   | 34.5      | 46.0    | -11.5  | Line       |
|          |              |           | +0.0         |           |        |        |        |           |         |        |            |
| 10       | 3.901M       | 24.3      | +9.7         | +0.0      | +0.1   | +0.3   | +0.0   | 34.4      | 46.0    | -11.6  | Line       |
|          |              |           | +0.0         |           |        |        |        |           |         |        |            |
| 11       | 4.033M       | 24.2      | +9.7         | +0.1      | +0.1   | +0.3   | +0.0   | 34.4      | 46.0    | -11.6  | Line       |
|          |              |           | +0.0         |           |        |        |        |           |         |        |            |
| 12       | 398.704k     | 25.3      | +9.7         | +0.0      | +0.0   | +0.7   | +0.0   | 35.7      | 47.9    | -12.2  | Line       |
| 10       | 4.0003.6     | 22.5      | +0.0         | 0.1       | 0.1    | 0.2    | 0.0    | 22.0      | 150     | 10.0   | <u>.</u> . |
| 13       | 4.228M       | 23.6      | +9.7         | +0.1      | +0.1   | +0.3   | +0.0   | 33.8      | 46.0    | -12.2  | Line       |
| 1.4      | 2 6 4 1 1 1  | 22.4      | +0.0         | +0.0      | +0.1   | +0.2   | +0.0   | 22.5      | 46.0    | 12.5   | Lina       |
| 14       | 3.641M       | 23.4      | +9.7<br>+0.0 | +0.0      | +0.1   | +0.3   | +0.0   | 33.5      | 46.0    | -12.5  | Line       |
| 15       | 4.165M       | 23.2      | +9.7         | +0.1      | +0.1   | +0.3   | +0.0   | 33.4      | 46.0    | -12.6  | Line       |
| 13       | 4.103101     | 23.2      | +9.7         | +0.1      | +0.1   | +0.3   | +0.0   | 33.4      | 40.0    | -12.0  | Line       |
| L        |              |           | 10.0         |           |        |        |        |           |         |        |            |

Page 8 of 28 Report No.: 93114-11A



CKC Laboratories, Inc. Date: 5/30/2012 Time: 4:19:27 PM RJC Enterprises, LLC WO#: 93114 15.207 AC Mains - Average Test Lead: Line Line Sequence#: 3 Ext ATTN: 0 dB





Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: RJC Enterprises, LLC
Specification: 15.207 AC Mains - Average

Work Order #: 93114 Date: 5/30/2012
Test Type: Conducted Emissions Time: 4:24:40 PM

Equipment: Endophys Pressure Monitor Sequence#: 4

Manufacturer: RJC Enterprises, LLC Tested By: Armando Del Angel

Endophys 651 120V 60Hz

S/N: 8989

### Test Equipment:

Model:

|    | •        |                   |              |                  |              |
|----|----------|-------------------|--------------|------------------|--------------|
| ID | Asset #  | Description       | Model        | Calibration Date | Cal Due Date |
| T1 | ANP05435 | Attenuator        | PE7015-10    | 9/8/2010         | 9/8/2012     |
| T2 | AN03227  | Cable             | 32026-29080- | 5/2/2011         | 5/2/2013     |
|    |          |                   | 29080-84     |                  |              |
| T3 | ANP05542 | Cable             | Heliax       | 9/27/2011        | 9/27/2013    |
|    | AN01492  | 50uH LISN-Line    | 3816/2NM     | 6/14/2011        | 6/14/2013    |
| T4 | AN01492  | 50uH LISN-Neutral | 3816/2NM     | 6/14/2011        | 6/14/2013    |
|    | AN02871  | Spectrum Analyzer | E4440A       | 4/22/2011        | 4/22/2013    |
| T5 | AN01717  | High Pass Filter  | F3440-P005   | 5/11/2012        | 5/11/2014    |

**Equipment Under Test (\* = EUT):** 

| Function                   | Manufacturer         | Model #        | S/N              |
|----------------------------|----------------------|----------------|------------------|
| Endophys Pressure Monitor* | RJC Enterprises, LLC | Endophys 651   | 8989             |
| Power Supply (#1)          | Glob Tek, Inc.       | GTM 21091-5012 | RoHS022581010612 |

#### Support Devices:

| TI TO THE TOTAL TOTAL TO THE TO |              |         |     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|-----|--|
| Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Manufacturer | Model # | S/N |  |

### Test Conditions / Notes:

Temp: 24°C Humidity: 33% Pressure: 102.9kPa Frequency: 0.150-30MHz

Vertical ground plane is 40cm from the EUT.

TX frequency is 13.56MHz.

#### Ext Attn: 0 dB

| Measi | irement Data: | Reading listed by margin. |      |      |      | Test Lead: Neutral |       |      |      |        |       |
|-------|---------------|---------------------------|------|------|------|--------------------|-------|------|------|--------|-------|
| #     | Freq          | Rdng                      | T1   | T2   | T3   | T4                 | Dist  | Corr | Spec | Margin | Polar |
|       |               |                           | T5   |      |      |                    |       |      |      |        |       |
|       | MHz           | dΒμV                      | dB   | dB   | dB   | dB                 | Table | dΒμV | dΒμV | dB     | Ant   |
| 1     | 151.454k      | 40.9                      | +9.7 | +0.0 | +0.0 | +2.3               | +0.0  | 52.9 | 55.9 | -3.0   | Neutr |
|       |               |                           | +0.0 |      |      |                    |       |      |      |        |       |
| 2     | 455.427k      | 29.0                      | +9.7 | +0.0 | +0.0 | +0.6               | +0.0  | 39.3 | 46.8 | -7.5   | Neutr |
|       |               |                           | +0.0 |      |      |                    |       |      |      |        |       |
| 3     | 13.562M       | 30.9                      | +9.7 | +0.1 | +0.2 | +0.4               | +0.0  | 41.3 | 50.0 | -8.7   | Neutr |
|       |               |                           | +0.0 |      |      |                    |       |      |      |        |       |

Page 10 of 28 Report No.: 93114-11A



| 4  | 390.705k   | 28.0 | +9.7<br>+0.0 | +0.0  | +0.0   | +0.7  | +0.0   | 38.4 | 48.0 | -9.6  | Neutr     |
|----|------------|------|--------------|-------|--------|-------|--------|------|------|-------|-----------|
|    | 204.1.601- | 24.0 |              | .00   | .00    | .0.7  | . 0. 0 | 25.2 | 40.2 | 12.0  | Manada    |
| 5  | 384.160k   | 24.8 | +9.7         | +0.0  | +0.0   | +0.7  | +0.0   | 35.2 | 48.2 | -13.0 | Neutr     |
| 6  | 502 6001-  | 22.6 | +0.0         | +0.0  | ι O. 1 | +0.5  | + O O  | 32.9 | 46.0 | -13.1 | Marren    |
| 0  | 582.688k   | 22.6 | +9.7         | +0.0  | +0.1   | +0.3  | +0.0   | 32.9 | 40.0 | -13.1 | Neutr     |
|    |            |      | +0.0         |       |        |       |        |      |      |       |           |
| 7  | 398.704k   | 24.1 | +9.7         | +0.0  | +0.0   | +0.7  | +0.0   | 34.5 | 47.9 | -13.4 | Neutr     |
|    |            |      | +0.0         |       |        |       |        |      |      |       |           |
| 8  | 2.408M     | 22.4 | +9.7         | +0.0  | +0.1   | +0.3  | +0.0   | 32.5 | 46.0 | -13.5 | Neutr     |
|    |            |      | +0.0         |       |        |       |        |      |      |       |           |
| 9  | 4.097M     | 21.8 | +9.7         | +0.1  | +0.1   | +0.3  | +0.0   | 32.0 | 46.0 | -14.0 | Neutr     |
|    |            |      | +0.0         |       |        |       |        |      |      |       |           |
| 10 | 3.446M     | 21.7 | +9.7         | +0.0  | +0.1   | +0.3  | +0.0   | 31.8 | 46.0 | -14.2 | Neutr     |
| 10 | 01110111   |      | +0.0         | . 0.0 | . 0.1  | . 0.0 | . 0.0  | 01.0 |      | - ··- | 1 10 0101 |
| 11 | 2.472M     | 21.6 | +9.7         | +0.0  | +0.1   | +0.3  | +0.0   | 31.7 | 46.0 | -14.3 | Neutr     |
| 11 | 2.172111   | 21.0 | +0.0         | 10.0  | 10.1   | 10.5  | 10.0   | 31.7 | 10.0 | 11.5  | ricuti    |
| 12 | 2.208M     | 21.4 | +9.7         | +0.0  | +0.1   | +0.3  | +0.0   | 31.5 | 46.0 | -14.5 | Neutr     |
| 12 | 2.206WI    | 21.4 |              | +0.0  | +0.1   | +0.5  | +0.0   | 31.3 | 40.0 | -14.5 | Neuu      |
|    |            |      | +0.0         |       |        |       |        |      |      |       |           |
| 13 | 446.700k   | 22.0 | +9.7         | +0.0  | +0.0   | +0.6  | +0.0   | 32.3 | 46.9 | -14.6 | Neutr     |
|    |            |      | +0.0         |       |        |       |        |      |      |       |           |
| 14 | 3.123M     | 21.3 | +9.7         | +0.0  | +0.1   | +0.3  | +0.0   | 31.4 | 46.0 | -14.6 | Neutr     |
|    |            |      | +0.0         |       |        |       |        |      |      |       |           |
| 15 | 3.705M     | 21.2 | +9.7         | +0.0  | +0.1   | +0.3  | +0.0   | 31.3 | 46.0 | -14.7 | Neutr     |
|    |            |      | +0.0         |       |        |       |        |      |      |       |           |



CKC Laboratories, Inc. Date: 5/30/2012 Time: 4:24:40 PM RJC Enterprises, LLC WO#: 93114 15:207 AC Mains - Average Test Lead: Neutral Neutral Sequence#: 4 Ext ATTN: 0 dB









# -20dBc Occupied Bandwidth

## **Test Conditions / Setup**

The EUT is located on the test table over a block of Styrofoam. The antenna is located at 3m from the EUT. Measurement performed at ambient temperature. TX frequency is 13.56MHz.

Frequency: 0.009-1000MHz

Temp: 24°C Humidity: 33% Pressure: 102.9kPa

Engineer Name: Armando Del Angel

|                | Test Equipment    |                          |              |           |           |  |  |  |
|----------------|-------------------|--------------------------|--------------|-----------|-----------|--|--|--|
| Asset/Serial # | Description       | Model                    | Manufacturer | Cal Date  | Cal Due   |  |  |  |
| 02872          | Spectrum Analyzer | E4440A                   | Agilent      | 7/23/2011 | 7/23/2013 |  |  |  |
| 00052          | Loop Antenna      | 6502                     | EMCO         | 5/16/2012 | 5/16/2014 |  |  |  |
| 03227          | Cable             | 32026-29080-<br>29080-84 | Astrolab     | 5/2/2011  | 5/2/2013  |  |  |  |
| P05542         | Cable             | Heliax                   | Andrews      | 9/27/2011 | 9/27/2013 |  |  |  |

Page 14 of 28 Report No.: 93114-11A



### **Test Plots**







# 15.225(a)(b)(c)(d) Field Strength of Spurious Emissions

## **Test Data Sheets**

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: RJC Enterprises, LLC

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

 Work Order #:
 93114
 Date: 5/30/2012

 Test Type:
 Radiated Scan
 Time: 16:03:50

Equipment: Endophys Pressure Monitor Sequence#: 1

Manufacturer: RJC Enterprises, LLC Tested By: Armando Del Angel

Model: Endophys 651

S/N: 8989

Test Equipment:

| ID | Asset #  | Description       | Model        | Calibration Date | Cal Due Date |
|----|----------|-------------------|--------------|------------------|--------------|
| T1 | AN00052  | Loop Antenna      | 6502         | 5/16/2012        | 5/16/2014    |
| T2 | AN03227  | Cable             | 32026-29080- | 5/2/2011         | 5/2/2013     |
|    |          |                   | 29080-84     |                  |              |
| T3 | ANP05542 | Cable             | Heliax       | 9/27/2011        | 9/27/2013    |
| T4 | AN02871  | Spectrum Analyzer | E4440A       | 4/22/2011        | 4/22/2013    |
| T5 | AN01316  | Preamp            | 8447D        | 4/3/2012         | 4/3/2014     |
| T6 | ANP05360 | Cable             | RG214        | 11/8/2010        | 11/8/2012    |
| T7 | ANP05366 | Cable             | RG-214       | 10/14/2011       | 10/14/2013   |
| Т8 | AN01993  | Biconilog Antenna | CBL6111C     | 3/2/2012         | 3/2/2014     |

## Equipment Under Test (\* = EUT):

| Function                   | Manufacturer         | Model #        | S/N              |
|----------------------------|----------------------|----------------|------------------|
| Endophys Pressure Monitor* | RJC Enterprises, LLC | Endophys 651   | 8989             |
| Power Supply               | Glob Tek, Inc.       | GTM 21091-5012 | RoHS022581010612 |

#### Support Devices:

| Function | Manufacturer | Model # | S/N |  |
|----------|--------------|---------|-----|--|

### Test Conditions / Notes:

Temp: 24°C Humidity: 33% Pressure: 102.9kPa

Frequency: 0.009-1000MHz

EUT is located on the test table over a block of Styrofoam.

Antenna is located at 3m from the EUT.

TX frequency is 13.56MHz.

9-150kHz 200Hz RBW 600Hz VBW 0.150-30MHz 9kHz RBW 27kHz VBW 30-1000MHz 120kHz RBW 360kHz VBW

Voltage Variations of 85% and 115% from nominal voltage was performed to satisfy FCC 15.31(e).

Page 16 of 28 Report No.: 93114-11A



Ext Attn: 0 dB

|          | rement Data: | Re   | eading lis    | ted by ma | argin.         |       | Тє          | est Distance | e: 3 Meters |        |            |
|----------|--------------|------|---------------|-----------|----------------|-------|-------------|--------------|-------------|--------|------------|
| #        | Freq         | Rdng | T1            | T2        | T3             | T4    | Dist        | Corr         | Spec        | Margin | Polar      |
|          | 1            | 2    | T5            | T6        | T7             | T8    |             |              | 1           | C      |            |
|          | MHz          | dΒμV | dB            | dB        | dB             | dB    | Table       | $dB\mu V/m$  | $dB\mu V/m$ | dB     | Ant        |
| 1        | 135.600M     | 48.9 | +0.0          | +0.3      | +0.0           | +0.0  | +0.0        | 33.1         | 43.5        | -10.4  | Horiz      |
|          |              |      | -29.1         | +0.6      | +0.7           | +11.7 | 360         |              |             |        | 152        |
| 2        | 54.240M      | 48.4 | +0.0          | +0.2      | +0.0           | +0.0  | +0.0        | 27.7         | 40.0        | -12.3  | Vert       |
|          |              |      | -29.3         | +0.3      | +0.3           | +7.8  | 214         |              |             |        | 99         |
| 3        | 94.920M      | 46.5 | +0.0          | +0.3      | +0.0           | +0.0  | +0.0        | 28.0         | 43.5        | -15.5  | Vert       |
|          |              |      | -29.3         | +0.5      | +0.5           | +9.5  | 214         |              |             |        | 99         |
| 4        | 108.482M     | 45.1 | +0.0          | +0.3      | +0.0           | +0.0  | +0.0        | 27.9         | 43.5        | -15.6  | Horiz      |
|          |              |      | -29.3         | +0.6      | +0.6           | +10.6 | 360         |              |             |        | 152        |
| 5        | 108.480M     | 45.1 | +0.0          | +0.3      | +0.0           | +0.0  | +0.0        | 27.9         | 43.5        | -15.6  | Vert       |
|          |              |      | -29.3         | +0.6      | +0.6           | +10.6 | 214         |              |             |        | 99         |
| 6        | 94.918M      | 46.3 | +0.0          | +0.3      | +0.0           | +0.0  | +0.0        | 27.8         | 43.5        | -15.7  | Horiz      |
|          |              |      | -29.3         | +0.5      | +0.5           | +9.5  |             |              |             |        | 148        |
| 7        | 81.360M      | 44.0 | +0.0          | +0.3      | +0.0           | +0.0  | +0.0        | 24.0         | 40.0        | -16.0  | Vert       |
|          |              |      | -29.4         | +0.5      | +0.5           | +8.1  | 214         |              |             |        | 99         |
| 8        | 122.066M     | 43.5 | +0.0          | +0.3      | +0.0           | +0.0  | +0.0        | 27.3         | 43.5        | -16.2  | Horiz      |
|          |              |      | -29.2         | +0.6      | +0.6           | +11.5 |             |              |             |        | 152        |
| 9        | 40.680M      | 38.1 | +0.0          | +0.2      | +0.0           | +0.0  | +0.0        | 23.3         | 40.0        | -16.7  | Vert       |
| 10       | 107 (00) (   | 10.5 | -29.4         | +0.3      | +0.3           | +13.8 | 214         | 240          | 10.7        | 10.5   | 99         |
| 10       | 135.600M     | 40.6 | +0.0          | +0.3      | +0.0           | +0.0  | +0.0        | 24.8         | 43.5        | -18.7  | Vert       |
| 1.1      | 01.2603.6    | 41.0 | -29.1         | +0.6      | +0.7           | +11.7 | 214         | 21.2         | 40.0        | 10.0   | 99         |
| 11       | 81.368M      | 41.2 | +0.0          | +0.3      | +0.0           | +0.0  | +0.0        | 21.2         | 40.0        | -18.8  | Horiz      |
| 10       | 54.02014     | 41.0 | -29.4         | +0.5      | +0.5           | +8.1  | 360         | 20.5         | 40.0        | 10.5   | 156        |
| 12       | 54.232M      | 41.2 | +0.0          | +0.2      | +0.0           | +0.0  | +0.0        | 20.5         | 40.0        | -19.5  | Horiz      |
| 12       | 67.000M      | 41.3 | -29.3         | +0.3      | +0.3           | +7.8  | 360         | 10.6         | 40.0        | 20.4   | 178        |
| 13       | 67.800M      | 41.3 | +0.0<br>-29.3 | +0.2 +0.4 | $+0.0 \\ +0.4$ | +0.0  | +0.0<br>214 | 19.6         | 40.0        | -20.4  | Vert<br>99 |
| 14       | 67.794M      | 41.3 | +0.0          | +0.4      | +0.4           | +6.6  | +0.0        | 19.6         | 40.0        | -20.4  | Horiz      |
| 14       | 07.794WI     | 41.3 | +0.0<br>-29.3 | +0.2      | +0.0           | +6.6  | +0.0        | 19.0         | 40.0        | -20.4  | 178        |
| 15       | 162.720M     | 38.2 | +0.0          | +0.4      | +0.4           | +0.0  | +0.0        | 21.8         | 43.5        | -21.7  | Vert       |
| 13       | 102.720W     | 30.2 | -28.9         | +0.4      | +0.8           | +10.6 | +0.0        | 21.0         | 43.3        | -21.7  | 99         |
| 16       | 149.160M     | 37.4 | +0.0          | +0.4      | +0.0           | +0.0  | +0.0        | 21.7         | 43.5        | -21.8  | Vert       |
|          | 1 17.10011   | 57.4 | -29.0         | +0.7      | +0.7           | +11.5 | 10.0        | 21.7         | 13.3        | 21.0   | 99         |
| 17       | 203.386M     | 38.7 | +0.0          | +0.4      | +0.0           | +0.0  | +0.0        | 21.2         | 43.5        | -22.3  | Vert       |
| 1        | 202.2001.1   | 20.7 | -28.8         | +0.8      | +0.9           | +9.2  | 303         | -1.2         |             |        | 99         |
| 18       | 122.040M     | 37.2 | +0.0          | +0.3      | +0.0           | +0.0  | +0.0        | 21.0         | 43.5        | -22.5  | Vert       |
|          |              |      | -29.2         | +0.6      | +0.6           | +11.5 | 214         |              |             |        | 99         |
| 19       | 189.836M     | 38.2 | +0.0          | +0.4      | +0.0           | +0.0  | +0.0        | 20.4         | 43.5        | -23.1  | Vert       |
|          |              |      | -28.8         | +0.8      | +0.8           | +9.0  | 305         |              |             |        | 99         |
| 20       | 176.280M     | 36.2 | +0.0          | +0.4      | +0.0           | +0.0  | +0.0        | 18.6         | 43.5        | -24.9  | Vert       |
|          |              |      | -28.9         | +0.7      | +0.8           | +9.4  | 306         |              |             |        | 99         |
| 21       | 40.666M      | 27.8 | +0.0          | +0.2      | +0.0           | +0.0  | +0.0        | 13.0         | 40.0        | -27.0  | Horiz      |
| <u> </u> |              |      | -29.4         | +0.3      | +0.3           | +13.8 | 106         |              |             |        | 178        |
| 22       | 3.941M       | 19.1 | +9.7          | +0.0      | +0.1           | +0.0  | -40.0       | -11.1        | 29.5        | -40.6  | Perpe      |
|          |              |      | +0.0          | +0.0      | +0.0           | +0.0  |             |              |             |        | 99         |
| 23       | 3.941M       | 19.0 | +9.7          | +0.0      | +0.1           | +0.0  | -40.0       | -11.2        | 29.5        | -40.7  | Paral      |
| 1        |              |      | +0.0          | +0.0      | +0.0           | +0.0  | 360         |              |             |        | 99         |



| 24 | 27.120M | 49.1 | +5.2<br>-29.5        | +0.1<br>+0.2         | +0.0<br>+0.2         | +0.0<br>+0.0         | -40.0<br>360        | -14.7 | 29.5                                     | -44.2 | Paral<br>99       |
|----|---------|------|----------------------|----------------------|----------------------|----------------------|---------------------|-------|------------------------------------------|-------|-------------------|
| 25 | 6.580M  | 14.0 | +9.8<br>+0.0         | +0.1<br>+0.0         | +0.2<br>+0.0         | +0.0+0.0             | -40.0<br>360        | -15.9 | 29.5                                     | -45.4 | Paral<br>99       |
| 26 | 27.120M | 47.4 | +5.2<br>-29.5        | +0.1<br>+0.2         | +0.0<br>+0.2         | +0.0 +0.0            | -40.0<br>360        | -16.4 | 29.5                                     | -45.9 | Perpe<br>99       |
| 27 | 11.553M | 11.0 | +9.7<br>+0.0         | +0.1<br>+0.0         | +0.2<br>+0.0         | +0.0 +0.0            | -40.0               | -19.0 | 29.5                                     | -48.5 | Perpe<br>99       |
| 28 | 13.110M | 8.7  | +9.5                 | +0.1                 | +0.2                 | +0.0                 | -40.0               | -21.5 | 29.5                                     | -51.0 | Perpe             |
| 29 | 14.010M | 8.3  | +0.0                 | +0.0                 | +0.0                 | +0.0                 | -40.0               | -22.0 | 29.5                                     | -51.5 | 99<br>Perpe       |
| 30 | 13.567M | 22.5 | +0.0                 | +0.0                 | +0.0                 | +0.0                 | -40.0               | -7.8  | 50.5                                     | -58.3 | 99<br>Perpe       |
| 31 | 13.553M | 20.6 | +0.0                 | +0.0                 | +0.0                 | +0.0                 | -40.0               | -9.6  | 50.5                                     | -60.1 | 99<br>Perpe       |
| 32 | 13.710M | 9.7  | +0.0                 | +0.0                 | +0.0                 | +0.0                 | -40.0               | -20.6 | 40.5                                     | -61.1 | 99<br>Perpe       |
| 33 | 13.410M | 9.0  | +0.0<br>+9.5<br>+0.0 | +0.0<br>+0.1<br>+0.0 | +0.0<br>+0.2<br>+0.0 | +0.0<br>+0.0<br>+0.0 | 262<br>-40.0<br>262 | -21.2 | 40.5                                     | -61.7 | 99<br>Perpe<br>99 |
| 34 | 58.180k | 40.0 | +0.0<br>+9.6<br>+0.0 | +0.0<br>+0.0<br>+0.0 | +0.0<br>+0.0<br>+0.0 | +0.0<br>+0.0<br>+0.0 | -80.0<br>360        | -30.4 | 32.3                                     | -62.7 | Paral<br>99       |
| 35 | 19.704k | 43.5 | +12.5<br>+0.0        | +0.0<br>+0.0<br>+0.0 | +0.0<br>+0.0<br>+0.0 | +0.0<br>+0.0<br>+0.0 | -80.0<br>360        | -24.0 | 41.7                                     | -65.7 | Perpe<br>99       |
| 36 | 9.640k  | 44.5 | +16.2<br>+0.0        | +0.0<br>+0.0<br>+0.0 | +0.0<br>+0.0<br>+0.0 | +0.0<br>+0.0<br>+0.0 | -80.0               | -19.3 | 47.9                                     | -67.2 | Paral<br>99       |
| 37 | 13.560M | 34.3 | +9.4<br>+0.0         | +0.0 +0.0            | +0.0 +0.0 +0.0       | +0.0 +0.0            | -40.0<br>262        | 4.0   | 84.0<br>Fundament<br>115% Nom            |       | Perpe<br>99       |
| 38 | 13.560M | 34.3 | +9.4                 | +0.1                 | +0.2                 | +0.0                 | -40.0               | 4.0   | Voltage<br>84.0                          | -80.0 | Perpe             |
| 36 | 13.300W | 34.3 | +0.0                 | +0.1 +0.0            | +0.2 +0.0            | +0.0                 | 262                 | 4.0   | Fundament<br>100% Non<br>Voltage         | tal @ | 99                |
| 39 | 13.560M | 34.3 | +9.4<br>+0.0         | +0.1<br>+0.0         | +0.2 +0.0            | +0.0 +0.0            | -40.0<br>262        | 4.0   | 84.0<br>Fundament<br>85% Nomi<br>Voltage |       | Perpe<br>99       |
| 40 | 13.560M | 32.9 | +9.4<br>+0.0         | +0.1<br>+0.0         | +0.2<br>+0.0         | +0.0 +0.0            | -40.0<br>-16        | 2.6   | 84.0<br>Fundament<br>100% Non<br>Voltage |       | Paral<br>99       |
| 41 | 13.560M | 32.9 | +9.4<br>+0.0         | +0.1<br>+0.0         | +0.2<br>+0.0         | +0.0 +0.0            | -40.0<br>-16        | 2.6   | 84.0<br>Fundament<br>85% Nomi<br>Voltage |       | Paral<br>99       |
| 42 | 13.560M | 32.9 | +9.4<br>+0.0         | +0.1<br>+0.0         | +0.2<br>+0.0         | +0.0 +0.0            | -40.0<br>-16        | 2.6   | 84.0<br>Fundament<br>115% Nom<br>Voltage |       | Paral<br>99       |



CKC Laboratories, Inc. Date: 5/30/2012 Time: 16:03:50 RJC Enterprises, LLC WO#: 93114 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Vert Sequence#: 1 Ext ATTN: 0 dB





O Peak Readings

\* Average Readings
1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)













# 15.225(e) Frequency Tolerance and Voltage Variations

## **Test Conditions / Setup**

The EUT is located inside the temperature chamber. All ports are terminated. EUT is connected to a variable power supply to change the input voltage into the unit. This change will be performed at ambient temperature ( $\pm$ 20°C). The temperature will change from  $\pm$ 20°C to  $\pm$ 50°C in 10° increments. An infrared thermometer with a thermocouple attachment is being used to monitor the actual temperature on the EUT. After the EUT has reached thermal stabilization the measurements are performed. The EUT will be transmitting an un-modulated signal at 13.56MHz. Frequency variation cannot be higher than  $\pm$ 0.01% or  $\pm$ 1.356kHz.

Engineer Name: Armando Del Angel

|                | Test Equipment                |            |              |           |           |  |  |  |
|----------------|-------------------------------|------------|--------------|-----------|-----------|--|--|--|
| Asset/Serial # | Description                   | Model      | Manufacturer | Cal Date  | Cal Due   |  |  |  |
| 02757          | Temperature<br>Chamber        | F100/350-8 | Bemco        | 1/30/2011 | 1/30/2013 |  |  |  |
| 03029          | Thermometer, Digital Infrared | 566        | Fluke        | 1/24/2011 | 1/24/2013 |  |  |  |
| 02872          | Spectrum Analyzer             | E4440A     | Agilent      | 7/23/2011 | 7/23/2013 |  |  |  |

### **Test Data**

| Temp  | Voltage   | Freq (MHz) |
|-------|-----------|------------|
| -20°C | 120V/60Hz | 13.56028   |
| -10°C | 120V/60Hz | 13.56034   |
| 0°C   | 120V/60Hz | 13.56036   |
| 10°C  | 120V/60Hz | 13.56022   |
|       | 102V/60Hz | 13.56038   |
| 20°C  | 120V/60Hz | 13.5603    |
|       | 138V/60Hz | 13.56028   |
| 30°C  | 120V/60Hz | 13.56046   |
| 40°C  | 120V/60Hz | 13.56032   |
| 50°C  | 120V/60Hz | 13.5604    |

Page 22 of 28 Report No.: 93114-11A













# **RSS-210**

# 99 % Bandwidth

## **Test Conditions / Setup**

The EUT is located on the test table over a block of Styrofoam. The antenna is located at 3m from the EUT. Measurement performed at ambient temperature. TX frequency is 13.56MHz.

Frequency: 0.009-1000MHz

Temp: 24°C Humidity: 33% Pressure: 102.9kPa

Engineer Name: Armando Del Angel

| Test Equipment |                   |                          |              |           |           |  |
|----------------|-------------------|--------------------------|--------------|-----------|-----------|--|
| Asset/Serial # | Description       | Model                    | Manufacturer | Cal Date  | Cal Due   |  |
| 02872          | Spectrum Analyzer | E4440A                   | Agilent      | 7/23/2011 | 7/23/2013 |  |
| 00052          | Loop Antenna      | 6502                     | EMCO         | 5/16/2012 | 5/16/2014 |  |
| 03227          | Cable             | 32026-29080-<br>29080-84 | Astrolab     | 5/2/2011  | 5/2/2013  |  |
| P05542         | Cable             | Heliax                   | Andrews      | 9/27/2011 | 9/27/2013 |  |

## **Test Data**

| Freq     | 99% BW    | Limit |
|----------|-----------|-------|
| 13.56MHz | 2.6615kHz | 14kHz |
|          |           |       |

Page 25 of 28 Report No.: 93114-11A









# SUPPLEMENTAL INFORMATION

## **Measurement Uncertainty**

| Uncertainty Value | Parameter                 |
|-------------------|---------------------------|
| 4.73 dB           | Radiated Emissions        |
| 3.34 dB           | Mains Conducted Emissions |
| 3.30 dB           | Disturbance Power         |

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

## **Emissions Test Details**

#### **TESTING PARAMETERS**

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

#### **CORRECTION FACTORS**

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in  $dB\mu V/m$ , the spectrum analyzer reading in  $dB\mu V$  was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 27 of 28 Report No.: 93114-11A



| SAMPLE CALCULATIONS |                     |          |  |  |  |  |
|---------------------|---------------------|----------|--|--|--|--|
|                     | Meter reading       | (dBμV)   |  |  |  |  |
| +                   | Antenna Factor      | (dB)     |  |  |  |  |
| +                   | Cable Loss          | (dB)     |  |  |  |  |
| -                   | Distance Correction | (dB)     |  |  |  |  |
| -                   | Preamplifier Gain   | (dB)     |  |  |  |  |
| =                   | Corrected Reading   | (dBμV/m) |  |  |  |  |

#### TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

| MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE |                     |                  |                   |
|------------------------------------------------------------|---------------------|------------------|-------------------|
| TEST                                                       | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |
| CONDUCTED EMISSIONS                                        | 150 kHz             | 30 MHz           | 9 kHz             |
| RADIATED EMISSIONS                                         | 30 MHz              | 1000 MHz         | 120 kHz           |
| RADIATED EMISSIONS                                         | 1000 MHz            | >1 GHz           | 1 MHz             |

#### SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("A") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

#### <u>Peak</u>

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

### Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

#### **Average**

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 28 of 28 Report No.: 93114-11A