Solutions: Sheet 3

Question 1

a) We need to show

$$M^{*}(S) \geq M(S \cap A) + M^{*}(S \cap A^{C})$$
.

By monotonicity,

 $M^{*}(S \cap A) \leq M^{*}(A) = 0$
 $M^{*}(S \cap A^{C}) \leq M^{*}(S)$

So (ex) holds.

b) Suppose
$$\mu^*(Z) = 0$$
 and NCZ . By monotonially $\mu^*(N) = 0$, so by part a), $N \in \mathcal{M}$. Hence (X, \mathcal{M}, μ) is complete.

Q223: see printed solutions

Put
$$X = \mathbb{R}$$
, $\Delta S = \mathcal{I}$,
$$\tau(A) = \begin{cases} 0 & A = \emptyset, \\ A = S & \text{otherwise}. \end{cases}$$

This has many extensions, eq:

$$π(A) = ∞ ∀A ∈ B except Ø$$

• $π(A) = counting meane$

$$\pi(A) = \begin{cases} 0 & A \in B \text{ countable} \\ \infty & A \in B \text{ unratable} \end{cases}$$

ete.