Análisis Estadístico de Datos Multivariantes (AEDM)

Juana Mari Vivo

Análisis de Conglomerados: Introducción

Procedimientos para la identificación de grupos (clúster o conglomerados) de individuos lo más homogéneos posible dentro de si mismos y heterogéneos entre sí.

Figure 1: Diferentes clusterings para 22 puntos (Franco and Vivo, 2019)

Análisis de Conglomerados: Clasificación de métodos

Figure 2: Métodos de clasificación no supervisada (Franco and Vivo, 2019)

Franco M, Vivo JM. Cluster Analysis of Microarray Data. Methods Mol Biol. 2019;1986:153-183. doi: 10.1007/978-1-4939-9442-7_7. PMID: 31115888. https://pubmed.ncbi.nlm.nih.gov/31115888/

Análisis de Conglomerados: Clasificación de métodos

 Métodos no jerárquicos: partición de los individuos en k conglomerados.

 Métodos jeráquicos: secuencia de conglomerados anidados (dendrograma): aglomerativos y divisivos.

Análisis de Conglomerados: Medidas de distancia o similitud Los métodos basados en la matriz de distancia/similaridad (orden n)

Los métodos basados en la matriz de distancia/similaridad (orden n) derivada de la matriz de datos usan el criterio de mínima distancia (o máxima similitud) entre los individuos $x_i, x_j \in \Re^k$ de cada conglomerado.

Medida de asociación: Distancia

$$ightharpoonup d: \Re^k \times \Re^k \to \Re^+$$
, i.e., $d(x_i, x_i) \ge 0$. (no negativa)

$$d(x_i, x_i) = 0, \forall i$$

$$ightharpoonup d(x_i,x_j)=d(x_j,x_i)$$
 (simetría)

$$lackbrack d(x_i,x_j) \geq d(x_i,x_p) + d(x_s,x_p)$$
 (propiedad triangular)

$$ightharpoonup s: \Re^k imes \Re^k o \Re^+$$
, i.e., $s(x_i, x_j) \leq s_0$.

$$ightharpoonup s(x_i, x_i) = s_0, \forall i$$

$$\triangleright$$
 $s(x_i, x_i) = s(x_i, x_i)$

Similaridad Métrica

$$ightharpoonup s(x_i, x_i) = s_0 \Rightarrow x_i = x_i$$

$$|s(x_i,x_p)+s(x_p,x_i)|s(x_i,x_i)\geq s(x_i,x_p)s(x_p,x_i), \forall z\in\Re^k$$

Ejemplo 1

- > x <- matrix(c(1,2,3,4,5,1,2,4,7,5,1,1,5,7,7),ncol=3)
- > colnames(x)<- c("Individuos", "Variable1", "Variable2")</pre>
- > X <- data.frame(x);attach(X)</pre>
- > plot(Variable1, Variable2, type="n")
- > text(Variable1, Variable2, labels=Individuos)

Cluster jerárquico

- Característica: Estructura jerárquica en forma de árbol (dendrograma), proceso no iterativo que resulta dificil de representar e interpretar para muestras de tamaño grande.
- Requerimiento: Elección de medida de distancia (sensible a las unidades de medida) y método de enlace. Se recomienda comparar soluciones.
- Finalidad: Permite determinar el número adecuado de conglomerados.

Majority rule (50%) consensus trees depicting living amphibian relationships. Mitochondrial protein-coding, tRNA, and rRNA gene sequences were combined into a single data set. Zardoya, R. and Meyer, A. (2001). On the origin of phylogenetic relationships among living amphibians. Proceedings of the National Academy of Sciences

Figure 3: Métodos de Enlace Simple y Enlace Completo

Figure 4: Métodos de Enlace Promedio y Enlace Centroide

Figure 5: Método de Enlace de Ward


```
> d=dist(X)
> s=hclust(d,method="single")
> c=hclust(d)
> a=hclust(d,method="average")
> ct=hclust(d,method="centroid")
```


Número idóneo de conglomerados que mejor representa la estructura natural de los datos

Número idóneo de clusters que mejor representa la estructura natural de los datos

Coeficiente de correlación cofenético (Sokal y Rohlf, 1962)

¿En qué medida representa la estructura final obtenida las similitudes o diferencias entre los individuos?

```
> sing=cor(d,cophenetic(s))
> comp=cor(d,cophenetic(c))
> cent=cor(d,cophenetic(ct))
> ave=cor(d,cophenetic(a))
> best=data.frame(sing,comp,cent, ave)
> round(best,2)
```

```
sing comp cent ave
1 0.46 0.54 0.63 0.56
```

Cluster jerárquico: Tanglegrama

> library(dendextend)

Warning: package 'dendextend' was built under R version 4.3.2

> tanglegram(c,s)

Cluster jerárquico: Tanglegrama

> tanglegram(c,a)

Cluster jerárquico: Tanglegrama

> tanglegram(c,ct)

Caso Práctico: Aplicación en la búsqueda de perfiles de expresión génica.

```
> library(spikeslab)
```

Warning: package 'spikeslab' was built under R version 4.3

```
> data(leukemia)
```

- > leukemia.reorg <- leukemia[,order(apply(leukemia,2,var),decreasing = T)]
- > golub <- leukemia.reorg[, 1:20]</pre>
- > golub\$factor<- factor(leukemia\$Y,labels=c("ALL","AML"))</pre>
- > summary(golub[,c(1,21)])

```
x.2404 factor
Min. :-1.5102 ALL:47
1st Qu.:-1.2745 AML:25
Median :-0.8029
Mean : 0.3716
3rd Qu.: 2.3283
Max. : 3.5859
```

Caso Práctico: Aplicaciones en la búsqueda de perfiles de expresión génica.

```
> boxplot(golub[,-21],col="bisque",las=3)
```


Caso Práctico: Aplicaciones en la búsqueda de perfiles de expresión génica (COMPLETAR)

```
> op <- par(mfrow=c(2,4))
> for (i in 1:8){
+ boxplot(golub[,i]~golub$factor, col=4:5,ylab= i)
+ }
```


Case Dráctico: Matriz de distancias

	1	2	3	4	5	6	7
2	10.182443						
3	6.831756	8.727722					
4	6.001261	10.176839	6.347463				
5	7.134927	9.126192	6.886402	5.236026			
6	8.735941	6.640957	6.072125	8.889741	8.646766		
7	6.812986	10.294829	5.378266	4.896185	7.712764	7.693773	
8	4.715508	8.778836	6.809226	3.347906	5.329942	8.389874	6.199585
9	7.612305	6.622893	5.760861	8.393424	8.474659	2.793623	6.575162
10	11.426064	7.143968	8.197921	10.301719	8.767153	7.210174	11.281478
11	9.366939	6.245271	7.081070	8.325381	9.099069	5.607322	8.112438
12	8.426692	8.764975	7.086010	8.800827	7.981258	7.897956	8.035802
13	8.598377	10.169067	8.895116	7.977931	6.862684	10.848323	10.448584
14	9.794777	5.274218	7.064936	8.844600	7.891872	4.091677	8.529847
15	3.538174	10.307686	6.935482	4.784636	5.304782	8.636724	6.242910
16	9.396050	10.176675	8.447568	8.678355	6.663784	10.768575	10.558730
17	10.742676	8.937560	8.932809	9.769462	8.446197	10.305437	10.445858
18	5.594843	9.554297	7.268978	7.697748	6.912916	9.442217	9.105423
19	9.314970	9.151449	8.286285	7.469733	6.097739	9.690181	9.710827
20	9.615792	9.730984	8.778830	6.852357	5.958512	10.828532	10.084208
21	8.976860	10.307404	7.391920	7.238824	6.922167	10.383689	9.837293
22	5.021659	10.903166	6.539420	3.476532	6.568782	8.599795	4.149635
23	8.406190	8.383414	6.813377	8.656667	9.301717	3.176257	6.556650
24	9.201343	10.185681	7.918074	7.104227	6.796406	10.175638	9.620366
25	7.421390	9.343274	8.726218	5.561709	7.909588	10.160564	6.722062
26	8.514161	10.394033	8.327434	6.949551	6.170123	11.091517	10.413384
27	3.149544	10.551376	5.686559	3.860180	5.811052	8.415630	5.665371
28	9.208188	5.642360	8.232374	8.957967	8.563151	8.937808	8.840432
29	13.731759	10.330223	12.847312	12.953878	11.159089	12.716778	13.686705
30	12.933339	7.806302	10.892649	12.444197	9.927072	10.811391	13.184173
31	9.789709	8.813154	8.868411	10.090065	8.491775	8.744979	9.341765
32	9.642892	4.737058	8.338512	9.831794	9.325114	7.076777	9.653403
	13.687941	8.883538	12.126681	12.744425	10.535857	12.039194	13.290795
34	11.785491	8.800296	10.959861	11.918667	9.934777	11.640607	12.571503

Caso Práctico: Enlace simple

```
> golub.single <- hclust (dist.golub, method = "single")
> par(mfrow=c(1,2))
> plot (golub.single, ylab = "distancia",cex=0.6)
> plot (golub.single, ylab = "dist", hang=-1, cex=0.6)
```


Caso Práctico: Enlace completo

```
> golub.complete <- hclust (dist.golub, method = "complete")
> plot(golub.complete, ylab = "dist", hang=-1, cex=0.6)
```


Caso Práctico: Enlace completo

- > golub.com.d<-as.dendrogram(golub.complete)</pre>
- > par(mfrow=c(1,2))
- > plot(golub.com.d,cex=0.5)
- > plot(golub.com.d,type="triangle",cex=0.5)

Caso Práctico: Enlace promedio o UPGMA (Unweighted Pair Group Mean Averaging)

- > golub.avg <- hclust (dist.golub, method = "average")
- > plot (golub.avg, ylab = "dist", hang=-1, cex=0.5)

Caso Práctico: Enlace Centroide

- > golub.ct <- hclust (dist.golub, method = "centroid")</pre>
- > plot (golub.ct, ylab = "distancia", hang=-1, cex=0.5)

Cluster Dendrogram

Caso Práctico: Enlace Ward

- > golub.ward <- hclust (dist.golub, method = "ward")</pre>
- > plot (golub.ward, ylab = "distancia", hang=-1, cex=0.5)


```
> sing=cor(dist.golub,cophenetic(golub.single))
> comp=cor(dist.golub,cophenetic(golub.complete))
> cent=cor(dist.golub,cophenetic(golub.ct))
> ave=cor(dist.golub,cophenetic(golub.avg))
> ward=cor(dist.golub,cophenetic(golub.ward))
> best=data.frame(sing,comp,cent, ave, ward)
> round(best,2)
```

```
sing comp cent ave ward
1 0.57 0.69 0.46 0.75 0.67
```

> tanglegram(golub.avg,golub.complete)

> tanglegram(golub.avg,golub.single)

> tanglegram(golub.avg,golub.ct)

> tanglegram(golub.avg,golub.ward)

Representación: Mapa de Calor

```
> library(gplots)
> library(RColorBrewer)
> heatmap.2(as.matrix(golub[,-21]), trace="none",labRow = golub$factor)
```


Cluster no jeraquico: K-medias

- ▶ Objetivo: Partición de los individuos en k conglomerados, que deben ser especificados a priori.
- Procedimiento: Asignación de individuos a los conglomerados mediante proceso que optimice el criterio de selección.
- Datos: Sobre la matriz de datos original (no precisa matriz de distancias o similitudes)
- Procedimiento iterativo que permite reasignar un individuo asignado a un conglomerado en un paso posterior, si ello optimiza el criterio de selección.
- El proceso acaba cuando no quedan individuos cuya reasignación permita optimizar el resultado que se ha conseguido.

Cluster no jeraquico: K-medias con k=3

```
> km <- kmeans(golub[,-21],3)
> km
K-means clustering with 3 clusters of sizes 42, 22, 8
Cluster means:
     x.2404 x.3129
                      x.6 x.918
                                           x.979
                                                    x.973 x.1182
1 1 1033638 -0 2853359 0 58201624 -0 4698614 -0 7280187 -0 5959974 -1 2198154
2 -1.2244043 1.4782747 0.09363294 1.5749173 2.2072110 -0.6006823 1.5782372
3 0.9187424 3.1562029 -1.05381865 2.0126642 0.6928560 2.8262984 0.2503659
     x.3117
               x.435
                      x.3199
                                        x.3127
                                  x.7
                                                 x.1211
                                                            x.16
1 -0.4384181 1.0956989 0.4035406 0.3231800 -1.2338590 0.4866934 1.0779109
2 2.3326985 -1.0922888 1.4200661 -0.5396924 0.3352632 0.8550848 0.2244293
3 -0.8397041 0.9487188 1.9581791 -1.1857717 2.2584884 0.8689226 -0.6316053
      x 927
              x 3389
                      x 3116
                                x 3126
                                                  x 3327
                                           y 8
1 -0.2199108 0.2582944 -0.878439 -0.9260892 0.2953275 -0.2913221
2 1.2167893 -0.1701823 1.565261 0.7984783 -0.3019417 -0.8053451
3 2 8747844 1 8849892 -1 046417 2 5633752 -1 1857717 -1 1857717
Clustering vector:
Within cluster sum of squares by cluster:
[1] 1423.9640 631.4231 227.8747
 (between_SS / total_SS = 36.3 %)
Available components:
[1] "cluster"
                                                     "tot.withinss"
                "centers"
                            "totss"
                                         "withinss"
[6] "betweenss"
              "size"
                            "iter"
                                         "ifault"
```

Cluster no incomuios. K modias con L-3

> golub.km <- lapply(1:3, function(nc) row.names(golub)[km\$cluster==nc]) > golub.km [[1]] [1] "1" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14" "15" "16" [16] "17" "18" "19" "20" "21" "22" "23" "24" "25" "26" "27" "35" "39" "40" "41" [31] "44" "45" "46" "47" "48" "49" "66" "68" "69" "70" "71" "72" [[2]] [1] "2" "28" "29" "30" "31" "32" "33" "34" "36" "37" "38" "50" "51" "52" "53" [16] "58" "61" "62" "63" "64" "65" "67" [[3]] [1] "42" "43" "54" "55" "56" "57" "59" "60" #Cluster no jeraquico: K-medias con k=3

- > #km\$cluster
- > #km\$centers
- > km\$tots
- [1] 3581.748
- > km\$withinss
- [1] 1423.9640 631.4231 227.8747
- > km\$tot.withinss
- [1] 2283.262
- > km\$betweenss

Aumento de estabilidad del resultado

- ▶ 1º incrementando el número mínimo de iteraciones y
- ≥ 2º el uso de diferentes comienzos aleatorios.

Aumento de estabilidad del resultado

```
> km.clust <- kmeans(golub[.-21], centers=3, iter.max=100, nstart=25)
> km.clust
K-means clustering with 3 clusters of sizes 22, 27, 23
Cluster means:
     x.2404 x.3129
                          x.6 x.918 x.979
                                                    x.973
                                                             x.1182
1 -1 1957982 1 7874161 -0 2052690 2 1530745 2 3304996 -0 1623667 2 115245
2 1.6215319 0.3333517 -0.9838259 -0.1373348 -0.8631533 0.4603144 -1.195866
3 0.4035011 -0.1102648 2.1370989 -0.5497513 -0.1930935 -1.0649102 -1.250223
     x.3117
                       x.3199
                                          x.3127
               x.435
                                   x.7
                                                   x.1211
1 1.8349081 -1.1129927 1.6753013 -0.6998895 1.0157898 0.6354326 -0.10839001
3 0.2308680 0.3751353 0.4672519 1.6112598 -1.2634510 0.5851188 1.98738750
      x 927
              x 3389
                        x 3116
                                  x 3126
                                              x 8
1 1.5195319 0.2635748 1.1306930 1.3856057 -0.6093418 -1.1065979
2 0.4914964 0.7033441 -0.9843273 -0.3309225 -1.1078576 -0.7412255
3 -0 2682050 -0 1132465 -0 3968884 -0 9726365 1 7214148 0 2138673
Clustering vector:
 [1] 3 3 3 3 2 3 3 3 3 2 3 3 2 3 3 2 3 3 2 2 3 2 2 3 3 2 3 3 2 3 3 1 1 1 3 1 1 3 1 1 1
Within cluster sum of squares by cluster:
[1] 685.7660 767.4956 710.6209
 (between_SS / total_SS = 39.6 %)
Available components:
[1] "cluster"
                "centers"
                             "totss"
                                          "withinss"
                                                        "tot.withinss"
[6] "betweenss"
              "size"
                             "iter"
                                          "ifault"
```

Clustering (PAM) y medidas de bondad (Silhouette)

```
> library("cluster")
> kmed <- pam(dist.golub, k=3, diss=T)
> par(mfrow=c(1,2))
> plot(kmed,which.plots=1)
> plot(kmed)
```


Escalamiento multidimensional

- ➤ Técnica de análisis multivariante: Escalado o Escalamiento Multidimensional (MDS).
- Datos: Matriz de distancias (o de similitud) entre individuos.
- Objetivo: Hallar una configuración de puntos (coordenadas principales) que los represente en un espacio de reducida dimensión las distancias entre las observaciones.
- También conocido como análisis de coordenadas principales.
- ▶ Representación Gráfica: Bidimensional o Tridimensional.
- Las técnicas MDS pueden ser métricas (distancia) y no métricas (similitud).

Escalamiento multidimensional métrico

MDS se basa en la descomposición espectral de la matriz de similitudes entre individuos Q cuyos elementos q_{ij} se obtienen a partir de la matriz de distancias D

$$q_{ij} = -\frac{1}{2}(d_{ij}^2 - d_{..}^2 - d_{.j}^2 + d_{..}^2)$$

indicando por $d_{i.}^2$ la suma de la fila i, por $d_{.j}^2$ la suma de la columna j y por $d_{..}^2$ la suma de todos los elementos de la matriz D^2 , d_{ij}^2 .

Si la matriz Q es semidefinida positiva de rango m, entonces $Q = V \lambda V'$, donde V es la matriz formada por los m vectores propios asociados a los autovalores no nulos de Q, contenidos en la matriz diagonal λ . Si tomamos la matriz

$$Y = V\lambda^{\frac{1}{2}}$$

se obtiene una matriz de orden *nxm* con *m* variables centradas e incorreladas, cuyas distancias euclídeas entre los puntos fila reproducen la métrica inicial.

Escalamiento multidimensional métrico

- Las coordenadas principales se ordenan en orden de importancia
- Representación bidimensional (o tridimensional) de la configuración de los individuos con las 2 (o 3) primeras

$$Y_k = V_k \lambda_k^{\frac{1}{2}}$$

donde V_k es la matriz con los k vectores propios asociados a los k mayores propios de Q.

Aplicable en los casos en que la matriz D es compatible con la métrica euclídea: la matriz Q no tiene valores propios negativos.

Escalamiento multidimensional métrico: Bondad de ajuste

El coeficiente de bondad de la representación, dado por

$$P_k = 100 \frac{\lambda_1 + \dots + \lambda_k}{\lambda_1 + \dots + \lambda_m}$$

- ► Se sugiere un ajuste razonable por encima del 80%.
- ➤ Si la matriz de distancias D no es compatible con la distancia euclídea
- Aplicar los métodos clásicos de MDS modificando la matriz D mediante una constante c que sumada a los elementos no diagonales la convierten a ésta en una matriz compatible con la métrica euclídea.
- Aplicar los métodos no métricos de MDS.

Ejemplo leukemia: Escalamiento multidimensional métrico

```
> library(readx1)

> leukemia <- read_excel("E:/6648Bioestadistica/leukemia.xlsx")
> leukemia.reorg <- leukemia[,order(apply(leukemia,2,var),decreasing = T)]
> golub <- leukemia.reorg[, 1:10]
> golub$factor<- factor(leukemia$Y,labels=c("ALL","AML"))</pre>
```

Ejemplo leukemia: Escalamiento multidimensional métrico

```
> mdist.golub <- dist(golub[,-11])
> mds.golub <- cmdscale(mdist.golub, k=3, eig = TRUE)
> mds.golub$eig;cumsum(mds.golub$eig)/sum(mds.golub$eig)
                                 1.702442e+02
 [1]
     8.725715e+02 3.858317e+02
                                               1.565615e+02 1.107740e+02
 [6]
     8.762776e+01
                   7.975574e+01
                                 3 891393e+01
                                               3 497876e+01 2 413623e+01
[11]
     3.554286e-13 1.069758e-13
                                 6.571872e-14 4.357083e-14 4.100801e-14
[16]
     3.047438e-14 3.019422e-14
                                 2.683104e-14 2.673591e-14 2.510493e-14
[21]
     2.486741e-14 1.754858e-14 1.716504e-14 1.317953e-14 1.226099e-14
[26]
     1.078804e-14 9.715034e-15 8.783630e-15 6.025776e-15 4.790451e-15
[31] 2.850036e-15 1.904374e-15 1.881397e-15 1.822781e-15 1.705617e-15
[36] 1.629362e-15 1.298512e-15 1.092506e-15 4.299353e-16 3.912349e-16
[41]
     3.204102e-16 -6.128697e-16 -1.508103e-15 -1.709628e-15 -1.850680e-15
[46] -2.354465e-15 -2.716028e-15 -3.204411e-15 -3.389295e-15 -3.841448e-15
[51] -3.850481e-15 -4.350717e-15 -5.653133e-15 -6.318383e-15 -6.468747e-15
[56] -8.383940e-15 -8.990269e-15 -1.063772e-14 -1.145454e-14 -1.176056e-14
[61] -1.259643e-14 -1.273964e-14 -1.328356e-14 -1.687934e-14 -1.756129e-14
[66] -1.778212e-14 -2.075904e-14 -2.233000e-14 -2.248773e-14 -2.851895e-14
[71] -4.531291e-14 -5.377502e-14
 [1] 0.4448728 0.6415857 0.7283832 0.8082047 0.8646818 0.9093581 0.9500208
 [8] 0.9698608 0.9876944 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[15] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[22] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[29] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[36] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[43] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[50] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[57] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[64] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[71] 1.0000000 1.0000000
> mds.golub$GOF
```

[1] 0.7283832 0.7283832

Ejemplo leukemia: Escalamiento multidimensional métrico

```
> set.seed(12345); km.golub=kmeans(golub[,-11],centers=3)
> plot(mds.golub$points,col=km.golub$cluster, xlab="componente 1", ylab = "Componente2",pch=19)
> abline(v=0,h=0,lty=2)
> title(main="MDS PLOT \ resultados k-means")
```


Escalamiento multidimensional no métrico

Proporciona una configuración de puntos a partir de S una matriz de similaridades o proximidades entre individuos que se transforma en la matriz simétrica de disimilaridades Δ haciendo:

$$\delta_{ij} = s_{ii} + s_{jj} - 2s_{ij}$$

Transformación consiste en deformar las similaridades originales mediante una función monótona creciente

- conservando las relaciones de orden de proximidad entre los n individuos.
- la matriz resultante D de elementos d_{ij} sea compatible con la distancia euclídea.

Escalamiento multidimensional no métrico: Procedimiento

Fijada la dimensión k para la representación de los puntos, el algoritmo comienza con una configuración inicial de la que obtenemos las distancias euclídeas d_{ij} y éstas se relacionan con las originales mediante un modelo de regresión

$$d_{ij} = \varphi(\delta_{ij}) + \varepsilon$$

donde la transformación φ es monótona creciente y ε es un término de error. Si llamamos disparidades a las distancias ajustadas

$$\widehat{d}_{ij} = \varphi(\delta_{ij})$$

la configuración final es la que hace mínima la expresión $\sum_{i < j} (d_{ij} - \hat{d}_{ij})^2$.

Escalamiento multidimensional no métrico: Bondad de ajuste

En este caso, la bondad de la representación se determina a través del stress, dado por:

$$S = \sqrt{\frac{\sum_{i < j} (d_{ij} - \hat{d}_{ij})^2}{\sum_{i < j} \hat{d}_{ij}^2} \cdot 100\%}$$

que se considera buena si S < 5%.

Escalamiento multidimensional no métrico: Ejemplo

```
> library("MASS")
> nmds.golub <- isoMDS(mdist.golub)
initial value 16,002030
iter 5 value 13,773373
iter 10 value 13 485720
final value 13.440296
converged
> head(nmds.golub$points)
           Γ.17
                     Γ.27
[1,] 4.3690622 -1.8473859
[2,] -1,3642321 -0,9325571
[3,] 1,6019554 -2,7323373
[4,] 4.4160747 -1.3651751
[5,] 2.6080467 0.4764981
[6,] 0.1864187 -2.8175870
> nmds.golub$stress
```

[1] 13.4403

Escalamiento multidimensional no métrico: Ejemplo

```
> plot(nmds.golub$points,col=km.golub$cluster, xlab="Componente 1", ylab = "Componente2", pch=19)
> abline(v=0,h=0,lty=2)
> title(main="NMDS PLOT \ resultados k-means")
```


Análisis de correspondencias

- ► Técnica descriptiva multivariante para representar en un plano la relación existente entre dos o más variables cualitativas.
- Las distancias sobre un gráfico entre los puntos de categorías reflejan las relaciones entre las categorías, mayor proximidad mayor similitud.
- Datos: Matriz de frecuencias absolutas observadas
- Reportes: medidas de correspondencia, perfiles de fila y de columna, valores propios, puntuaciones de fila y de columna, inercia, masa, estadísticos de confianza para las puntuaciones de fila y de columna, estadísticos de confianza para los valores propios, gráficos de transformación, gráficos de los puntos de fila, gráficos de los puntos de columna y diagramas de dispersión biespaciales.

Análisis de correspondencias: Independencia

Dos variables aleatorias, X e Y, son independientes si

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j) = p_{ij} = p_{i.}p_{.j}$$

para todo i, j.

Así, bajo la hipótesis de independencia, la frecuencia esperada:

$$e_{ij} = n_{..}f_{ij} = n_{..}p_{i.}p_{.j} = \frac{n_{i.}n_{.j}}{n_{..}}$$

El contraste de la chi-cuadrado mide si las diferencias entre las frecuencias observadas y las frecuencias esperadas bajo la hipótesis de independencia, son estadísticamente significativas.

$$\chi^2 = \sum_{i=1}^r \sum_{i=1}^c \frac{(n_{ij} - e_{ij})^2}{e_{ij}}$$

En un estudio sobre la enfermedad de Hodgkin, un cáncer de los nodos linfáticos, cada uno de los 538 pacientes fue clasificado según el tipo de histología y su respuesta al tratamiento después de 3 meses. Los tipos de Histología considerados fueron, Predominancia de Linfocitos (PL), Esclerosis Nodular (EN), Celularidad Mixta (CM) y Agotamiento de los Linfocitos (AL). Realiza un análisis de correspondencias con los datos que se muestran en la siguiente tabla:

```
> X1 <- c(74,68,154,18)
> X2 <- c(18,16,54,10)
> X3 <- c(12,12,58,44)
> X <- data.frame(X1,X2,X3)
> rownames(X) <- c("PL","EN","CM","AL")
> colnames(X) <- c("positiva","parcial","ninguna")
> X
```

	positiva	parcial	ninguna
${\tt PL}$	74	18	12
EN	68	16	12
\mathtt{CM}	154	54	58
AL	18	10	44

> chisq.test(X)

Pearson's Chi-squared test

```
data: X
X-squared = 75.89, df = 6, p-value = 2.517e-14
> library(ca)
> res.ca=ca(X):res.ca
 Principal inertias (eigenvalues):
Value
          0.13839 0.00267
Percentage 98.11% 1.89%
 Rows:
              PI.
                        EN
                                           AT.
        0.193309 0.178439 0.494424 0.133829
Mass
ChiDist 0.297921 0.280844 0.059490 0.898658
Inertia 0.017158 0.014074 0.001750 0.108078
Dim. 1 -0.790844 -0.736320 -0.078243 2.413154
Dim. 2 -0.908411 -1.199689 1.004090 -0.797822
 Columns:
        positiva parcial ninguna
        0.583643 0.182156 0.234201
Mass
ChiDist 0.247372 0.125697 0.661451
Inertia 0.035715 0.002878 0.102467
Dim. 1 -0.660941 -0.167593 1.777457
```

Dim. 2 -0.525864 2.112276 -0.332396

> plot(res.ca)

