

Open Addressing

Lecture Overview

- ·Open Addressing, Probing Strategies
- · Uniform Hashing, Analysis
- · Advanced Hashing

Readings

CLRS Chapter 11.4 (and 11.3.3 and 11.5 if interested)

Open Addressing

Another approach to collisions

- · no linked lists
- · all items stored in table (see Fig. 1)

	item ₂	
V	item ₁	
	item ₃	

Figure 1: Open Addressing Table

- · one item per slot $\Rightarrow m \geq n$
- · hash function specifies <u>order</u> of slots to probe (try) for a key, not just one slot: (see Fig. 2)

Insert(k,v)

```
for i in xrange(m):

if T[h(k,i)] is None:

T[h(k,i)] = (k,v)

return

raise 'full'
```


Figure 2: Order of Probes

Example: Insert k = 496

Figure 3: Insert Example

Search(k)

```
for i in xrange(m):

if T[h(k,i)] is None:
	return None
	elif T[h(k,i)][\varphi] == k:
	return T[h(k,i)]

return None

\varphi empty slot?

\varphi end of "chain"

\varphi matching key
	return item

return None
```


Delete(k)

- · can't just set T[h(k, i)] = None
- example: delete(586) \Rightarrow search(496) fails
- · replace item with DeleteMe, which Insert treats as None but Search doesn't

Probing Strategies

Linear Probing

 $h(k, i) = (h^{\prime}(k) + i) \mod m$ where $h^{\prime}(k)$ is ordinary hash function

- like street parking
- problem: clustering as consecutive group of filled slots grows, gets more likely to grow (see Fig. 4)

Figure 4: Primary Clustering

- for 0.01 < α < 0.99 say, clusters of $\Theta(\lg n)$. These clusters are known
- · for $\alpha = 1$, clusters of $\Theta(\sqrt[n]{n})$ These clusters are known

Double Hashing

 $h(k, i) = (h_1(k) + i \cdot h_2(k)) \mod m$ where $h_1(k)$ and $h_2(k)$ are two ordinary hash functions.

- actually hit all slots (permutation) if $h_2(k)$ is relatively prime to m
- e.g. $m = 2^r$, make $h_2(k)$ always odd

Uniform Hashing Assumption

Each key is equally likely to have any one of the m! permutations as its probe sequence

- · not really true
- · but double hashing can come close

Analysis

Open addressing for *n* items in table of size *m* has expected cost of $\leq \frac{1}{n}$ per operation,

where $\alpha = n/m(<1)$ assuming uniform hashing

Example: $\alpha = 90\% \implies 10$ expected probes

Proof:

Always make a first probe. With probability n/m, first slot occupied. In worst case (e.g. key not in table), go to next. With probability $\frac{n-1}{m-1}$, second slot occupied. Then, with probability $\frac{n-2}{m-2}$, third slot full. Etc. (n possibilities)

So expected cost
$$= 1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\dots\right)\right)\right)$$
Now
$$\frac{n-1}{m-1} \le \frac{n}{m} = \alpha \text{ for } i = \varphi, \dots, n \le m$$
So expected cost
$$\le 1 + \alpha \left(1 + \alpha \left(1 + \alpha \left(\dots\right)\right)\right)$$

$$= 1 + \alpha + \alpha^2 + \alpha^3 + \dots$$

$$= \frac{1}{1-\alpha}$$

Open Addressing vs. Chaining

Open Addressing: better cache performance and rarely allocates memory

Chaining: less sensitive to hash functions and $\boldsymbol{\alpha}$

Advanced Hashing

Universal Hashing

Instead of defining one hash function, define a whole family and select one at random

- e.g. multiplication method with random a
- can prove Pr (over random h) $\{h(x) = h(y)\} = \frac{1}{m}$ for every (i.e. not random) $x \diamondsuit = y$
- => O(1) expected time per operation <u>without</u> assuming simple uniform hashing! CLRS 11.3.3

Perfect Hashing

Guarantee *O*(1) worst-case search

- <u>idea:</u> if $m = n^2$ then $E[\phi \text{ collisions}] \approx \frac{1}{2}$ = \Rightarrow get ϕ after O(1) tries . . . but $O(n^2)$ space
- · use this structure for storing chains

Figure 5: Two-level Hash Table

- can prove O(n) expected total space!
- · if ever fails, rebuild from scratch