Adiabatenexponent von Gasen

Protokoll zum Versuch Nummer W5 vom 11. Mai 2015

Frederik Edens, Dennis Eckermann

 $Gruppe\ 6mo$ $f_\ eden01@uni-muenster.de$ $dennis.\ eckermann@gmx.\ de$

Inhaltsverzeichnis

1.	Einl	leitung		1			
2.	Versuchsteil						
	2.1.	Bestimmung von κ nach Rüchardt-Flammersfeld					
		2.1.1.	Durchführung	3			
		2.1.2.	Auswertung	3			
	2.2.	Bestim	nmung von κ nach Clément-Desormes	6			
		2.2.1.	Durchführung	6			
		2.2.2.	Auswertung	7			
3.	Diskussion						
	3.1.	1. Bestimmung von κ nach Rüchardt-Flammersfeld					
	3.2.	Bestimmung von κ nach Clément-Desormes					
Α.	Anh	ang		10			
	A.1.	rechnung	10				
		A.1.1.	Adiabatenexponent im Rüchardt-Flammersfeld-Versuch	10			
		A.1.2.	Adiabatenexponent im Clément-Desormes-Versuch	10			
		A.1.3.	Freiheitsgrade im Clément-Desormes-Versuch	10			

1. Einleitung

In diesem Versuch wird der Adiabatenexponent κ mit Hilfe zweier Methoden bestimmt.

Essentiell sind hier die Poissonschen Gleichungen, welche Druck, Volumen und Temperatur bei adiabatischen Zustandsänderungen verknüpfen. Die Poissonschen Gleichungen lauten,

$$T \cdot V^{\kappa - 1} = const'$$

$$p \cdot V^{\kappa} = const''$$

$$\frac{T^{\kappa}}{p^{\kappa - 1}} = const'''$$
(1.1)

unter Verwendung dieser Gleichungen lassen sich geschlossene Formeln für κ herleiten. κ ist der Quotient der molaren Wärmekapazitäten $c_{m,p}$ und $c_{m,V}$.

 $c_{m,p}$ ist die Wärmekapazität bei konstantem Druck und $c_{m,V}$ die Wärmekapazität bei konstantem Volumen, für κ folgt,

$$\kappa = \frac{c_{m,p}}{c_{m,V}} = \frac{f+2}{f} \tag{1.2}$$

f ist die Zahl der Freiheitsgrade.

Die erste Methode ist die Bestimmung von κ nach Rüchard-Flammersfeld. In diesem Versuchsaufbau befindet sich ein Glasrohr, welches mit einem Gummistopfen an einer großen Flasche befestigt ist. In die Flasche wird konstant entweder Luft, Argon oder CO2 hineingepumpt. Das Glasrohr hat auf etwa halber Höhe einen Schlitz durch den Gas entweichen kann, das Glasrohr besitzt die Fläche A.

In diesem Rohr befindet sich ein Schwingkörper, der durch das zuströmende Gas und dem Schlitz zu einer harmonischen Schwingung angeregt wird.

Die Kreifrequenz lässt sich herleiten zu,

$$\omega^2 = +\frac{\kappa p_0 A^2}{mV_0} \tag{1.3}$$

mit Hilfe der Schwingungsdauer $T = \frac{2\pi}{\omega}$ folgt für κ ,

$$\kappa = \frac{4\pi^2 m V_0}{p_0 A^2 T^2} = \frac{4\pi^2 m V_0 f^2}{p_0 A^2} \tag{1.4}$$

 V_0 und p_0 sind Volumen und Druck des Gases in der Gleichgewichtslage, m ist die Masse des Schwingkörpers.

Somit kann anhand der Schwingungsdauer des Schwingkörpers der Adiabatenexponent bestimmt werden.

Die zweite Methode ist die Bestimmung von κ nach Clément-Desormes.

Bei dieser Methode ist ein großes Glasgefäß mit Luftgefüllt und mit einem Flüssigketsbarometer verbunden. Während der Belüftungshahn geschlossen ist wird der Druck im Gefäß erhöht.

Durch richtiges Timing beim Umdrehen des Hahns kann der Expansionsprozess als adiabatisch angesehen werden. Durch weitere thermodynamische Überlegungen und Annahmen und unter der Verwendung der Poissonschen Gleichungen folgt für den Adiabatenexponent,

$$\kappa = \frac{h_1}{h_1 - h_3} \tag{1.5}$$

 h_1 ist die Höhe des Flüssigkeitsbarometers nachdem der Druck erhöht wurde und h_3 ist die Höhe nachdem der Hahn umgedreht wurde. Mit Hilfe dieser Formel lässt sich mit diesem Versuchsaufbau der Adiabatenexponent bestimmen. Mit (1.2) folgt daraus

$$f = 2\frac{h_1 - h_3}{h_3} \tag{1.6}$$

2. Versuchsteil

2.1. Bestimmung von κ nach Rüchardt-Flammersfeld

2.1.1. Durchführung

Um den Adiabetenexponent nach Rüchardt-Flammersfeld zu bestimmen, wird in die große Flasche ein Gas gepumpt. Dadurch wird der Schwingkörper nach oben gedrückt. Wenn der Schwingkörper über dem Schlitz im Glasrohr gelangt, entweicht das Gas dort hindurch. Das führt dazu, dass der Druck abnimmt und der Schwingkörper nach unten fällt. Je nach Art des Gases fällt dieser mehr oder weniger tief hinunter und wird anschließend wieder hochgedrückt - eine harmonische Schwingung entsteht.

Nun wird die Zeit gemessen in der etwas 100 Schwingungen gezählt werden, daraus lässt sich die Frequenz der Schwingung und somit auch der Adiabatenexponent bestimmen.

Es werden die Gase Argon (einatomig, 3 Freiheitsgrade), Luft (in Näherung zweiatomig, 5 Freiheitsgrade) und CO2(dreiatomig, gestreckt, 5 Freiheitsgrade) verwendet. Durch zwei Schellen am Glasrohr lässt sich die Spaltbreite variieren.

Abbildung 1 – Versuchsaufbau nach Rüchardt-Flammersfeld (Quelle: [1])

2.1.2. Auswertung

Wenn der Schellenabstand verschwindet lässt sich mit (1.4) der Adiabatenexponent κ aus der Masse des Schwingkörpers, Volumen des Komprimierten Gases und dem Druck im Gleichgewicht zusammen. Die Masse des Schwingkörpers kann direkt ge-

wogen werden und beträgt bei uns $m=(7.19\pm0.01)\,\mathrm{g}$. Das Volumen setzt sich additiv aus dem Volumen der Flasche $V_F=5350\,\mathrm{cm}^3$ und dem Volumen des Rohres zusammen. Das Volumen des Rohres wird aus Radius r und Höhe h bis zu Schlitz berechnet. Das ergibt $V_R=\pi r^2 h=(94.9\pm1.6)\,\mathrm{cm}^3$. Das Gesamtvolumen beträgt somit $V=(5444.9\pm1.6)\,\mathrm{cm}^3$. Der Druck p_0 setzt sich zusammen aus dem Umgebungsdruck von $p_L=(1011.7\pm0.1)\,\mathrm{hPa}$ und dem von der Masse ausgeübten Druck $p_m=\frac{mg}{A}=\frac{mg}{\pi r^2}=(352.9\pm4.5)\,\mathrm{Pa}$. Somit ist $p_0=(1015.43\pm0.15)\,\mathrm{hPa}$.

Um die Frequenz zu ermitteln wird mit einem *Least-Squares-Fit* eine Ausgleichsgerade durch die Messwerte gelegt. An den Abbildungen 2 bis 4 lässt sich damit der für eine verschwindene Spaltbreite extrapolierte Wert grafisch Ablesen.

Die so ermittelten Frequenzen betragen $f_{\rm L} = (1,880 \pm 0,015)\,{\rm s}^{-1}$ für Luft,

 $f_{\rm Ar}=(1,900\pm0,015)\,{\rm s}^{-1}$ für Argon und $f_{\rm CO_2}=(1,86\pm0,03)\,{\rm s}^{-1}$ für CO₂. Bei CO₂ wurde dabei eine weitere Ausgleichsgerade verwendet, die nicht alle Messungen mit gleicher Gewichtung berücksichtigt. Diese Vorgehen wurde gewählt, da aufgrund der Ergebnisse von Luft und Argon von einem linearen Zusammenhang ausgegangen wird. Da dieser sonst nicht gegeben ist, gehen wir von auftretenden Messfehlern aus, die wir so kompensieren wollen. Setzt man dies mit den anderen Werten in (1.4) und (A.2) ein, erhält man die Adiabatenexponenten

 $\kappa_{\rm Luft} = 1.34 \pm 0.04$

 $\kappa_{\rm Argon} = 1.38 \pm 0.05$

 $\kappa_{\rm CO_2} = 1.31 \pm 0.06$

Daraus erhält man mit (1.2) und (A.3) die Zahl der Freiheitsgrade:

 $f_{\rm Luft} = 5.9 \pm 0.8$

 $f_{\text{Argon}} = 5.3 \pm 0.6$

 $f_{\rm CO_2} = 6.5 \pm 1.2$

Abbildung 2 – b-f-Diagramm mit Luft

Abbildung 3 – b-f-Diagramm mit Argon

Abbildung 4 - b - f-Diagramm mit CO₂

2.2. Bestimmung von κ nach Clément-Desormes

2.2.1. Durchführung

Zunächst wird im Behälter ein Druck aufgebaut. Da die Temperatur im Behälter dabei ansteigt muss daraufhin gewartet werden, bis sich der vom Manometer angezeigte Wert nicht mehr ändert und die Luft im Behältnis somit wieder die Umgebungstemperatur angenommen hat. Nun misst man den Manometer-Stand h_1 ab. Daraufhin wird sichergestellt, dass der Drucklufthahn geschlossen ist und der Belüftungshahn kurz aufgedreht. Dabei muss beachtet werden, dass wenn der Hahn zu kurz offen ist, sich nicht der gesamte Druck abbauen kann. Wird dagegen der Hahn zu lange offen gelassen, kann nicht mehr von Adiabasie¹ ausgegangen werden.

Durch die nach Möglichkeit adiabatische Expansion kommt es im Behälter zur Abkühlung während Umgebungsdruck herrscht. Bei der Erwärmung baut sich wieder ein Druck auf und man ließt am Manometer h_3 ab.

¹Der Begriff kommt aus der Versuchsanleitung

Abbildung 5 – Aufbau nach Clément-Desormes (Quelle: [1])

2.2.2. Auswertung

Aus h_1 und h_3 lassen sich mit (1.5) und (1.2) Adiabatenexponent und Anzahl der Freiheitsgrade direkt berechnen. Die dazugehörigen Fehler erhält man aus (A.3) und (A.4). Daraus resultieren die Ergebnisse aus Tabelle 1. Im Mittel liegt die Zahl der Freiheitsgrade bei $\bar{f} = 5.51 \pm 0.56$ und der Adiabatenexponent bei $\bar{\kappa}_{\text{Luft}} = 1.36 \pm 0.04$.

$h_1[\mathrm{cm}]$	$h_3[\mathrm{cm}]$	κ	f
$10,6 \pm 0,1$	$2,9 \pm 0,1$	$1,377 \pm 0,019$	$5,31 \pm 0,27$
$10,6 \pm 0,1$	$2{,}7\pm0{,}1$	$1,342 \pm 0,018$	$5,85 \pm 0,31$
$10,2\pm0,1$	$2,\!6\pm0,\!1$	$1,342 \pm 0,019$	$5,\!85\pm0,\!32$
$13,5\pm0,1$	$3,6 \pm 0,1$	$1,364 \pm 0,015$	$5,\!50\pm0,\!22$
$8,5 \pm 0,1$	$2{,}3\pm0{,}1$	$1,371 \pm 0,023$	$5,\!39\pm0,\!34$
$8,2 \pm 0,1$	$2,3 \pm 0,1$	$1,390 \pm 0,025$	$5,13 \pm 0,33$

Tabelle 1 – Ergebnisse für κ und f

3. Diskussion

 $\kappa_{\text{Luft}} = 1,40$ $\kappa_{\text{Argon}} = 1,67$ $\kappa_{\text{CO}_2} = 1,29$

Tabelle 2 – Literaturwerte für Adiabentenindizes (Quelle: [2])

3.1. Bestimmung von κ nach Rüchardt-Flammersfeld

Zumindest qualitativ haben wir durch den Versuch ein zu erwartendes Ergebnis erhalten. Während CO₂ die höchste Anzahl von Freiheitsgraden hat, hat Argon die geringste und Luft liegt dazwischen. Jedoch ließen sich die genauen Werte nicht bestätigen. Während der Literaturwert für CO₂gut innerhalb des Konfidenzintervalls unseres Wertes liegt, und für Luft nur knapp außerhalb, ist die Abweichung bei Argon sehr deutlich. Auch fällt auf, dass unsere Werte deutlich dichter beieinander liegen als die Literaturwerte. Dies könnte daran liegen, dass der Versuch zu Anfällig auf äußere Störungen reagiert, so dass der Einfluss des verwendeten Gases vermindert wird. Wir konnten bei der Durchführung beobachten, dass der Schwingkörper schon bei geringfügig zu wenig Druck auf Höhe des Schlitzes feststecken konnte.

Auch die systematischen Fehler sind unter Umständen zu hoch, um ein eindeutiges Ergebnis zu erhalten. Das haben wir bei CO₂unter Umständen selbst verschuldet, da wir nicht alle Messwerte einbeziehen konnten. Jedoch können auch die bei Luft und Argon auftretenden Fehler der Größenordnung von mehr als 0,5 bei ansonsten guten Werten möglicherweise kein genaues Ergebnis liefern.

3.2. Bestimmung von κ nach Clément-Desormes

Da Stickstoff und Sauerstoff, die beiden Haupbestandteile der Luft, beides zweiatomige Gase sind, wären 5 Freiheitsgrade zu erwarten gewesen. Jedoch streuten unsere Messwerte zwischen 5,13 und 5,85, bei einem Mittelwert von 5,51. Somit läge nach unseren Ergebnissen nicht nur die erwartete Zahl im Konfidenzintervall, sondern auch 6 Freiheitsgrade. Entsprechend liegt auch für den Adiabatenexponent der Literaturwert gerade noch im Vertrauensintervall.

Da der statistische Fehler naturgemäß abnimmt für eine größere Anzahl von Messungen,

könnte man das Ergebnis durch Vergrößerung der Messreihe verbessern. Dies würde auch durch zu schnelles oder zu langsames Drehen auftretende Fehler kompensieren.

A. Anhang

A.1. Fehlerrechnung

Für Messgrößen $y(x_1, ..., x_n)$, die von x_i nur proportional und anti-proportional abhängen, ist die Fehlerfortpflanzung gegeben durch

$$\Delta y = \sqrt{\sum_{i=1}^{n} \left(y \frac{\Delta x_i}{x_i} \right)^2} = |y| \sqrt{\sum_{i=1}^{n} \left(\frac{\Delta x_i}{x_i} \right)^2}$$
 (A.1)

A.1.1. Adiabatenexponent im Rüchardt-Flammersfeld-Versuch

Der Adiabatenexponent ist gegeben durch (1.4).

Aus der gauß'schen Fehlerfortpflanzung folgt

$$\Delta \kappa = \kappa \sqrt{\left(\frac{\Delta m}{m}\right)^2 + \left(\frac{\Delta V_0}{V_0}\right)^2 + \left(\frac{\Delta p_0}{p_0}\right)^2 + \left(2\frac{\Delta A}{A}\right)^2 + \left(2\frac{\Delta f}{f}\right)^2} \tag{A.2}$$

A.1.2. Adiabatenexponent im Clément-Desormes-Versuch

Der Adiabatenexponent ist gegeben durch

$$\kappa = \frac{h_1}{h_1 - h_3} = \frac{1}{1 - \frac{h_3}{h_1}}$$

Aus der gauß'schen Fehlerfortpflanzung folgt

$$\Delta \kappa = \kappa^2 \sqrt{\left(\frac{h_3}{h_1^2} \Delta h_1\right)^2 + \left(\frac{1}{h_1} \Delta h_3\right)^2} \tag{A.3}$$

A.1.3. Freiheitsgrade im Clément-Desormes-Versuch

Die Zahl der Freiheitsgrade ist gegeben durch

$$f = 2\frac{h_1 - h_3}{h_3} = 2\left(\frac{h_1}{h_3} - 1\right)$$

Aus der gauß'schen Fehlerfortpflanzung folgt

$$\Delta f = 2\sqrt{\left(\frac{\Delta h_1}{h_3}\right)^2 + \left(\frac{h_1}{h_3^2}\Delta h_3\right)^2} \tag{A.4}$$

Wenn man dagegen f aus κ bestimmt mit

$$f = \frac{2}{\kappa - 1}$$

gilt

$$\Delta f = \left| \frac{2}{(\kappa - 1)^2} \Delta \kappa \right| \tag{A.5}$$

Literatur

- [1] Markus Donath und Anke Schmidt, Hrsg. Anleitung zu den Experimentellen Übungen zur Optik, Wärmelehre und Atomphysik. Auflage 2015. Stand 10. April 2015. Physikalisches Institut, 2015.
- [2] Wikipedia. Isentropenexponent Wikipedia, Die freie Enzyklopädie. [Online; Stand 17. Mai 2015]. 2015. URL: http://de.wikipedia.org/w/index.php?title=Isentropenexponent&oldid=141567737.