STAT 345/445 Lecture 7

Section 2.1: Distributions of Functions of a Random Variable

Functions of random variables

Sometimes we want to transform a random variable.

For example:

• If X is the temperature in Fahrenheit, what is the distribution of the temperature in Celsius?

$$Y=(X-32)\frac{5}{9}$$

• If X and Y denote height and weight, what is the distribution of the BMI?

$$B = \frac{X}{Y^2}$$

Functions of random variables

• Let X be a random variable and let $g(\cdot)$ be a function.

Functions of random variables

- What is the distribution of the random variable Y=g(X)?
- Have the cdf $F_X(x)$ or pmf/pdf $f_X(x)$ of X
 - want to find the cdf $F_Y(y)$ or pmf/pdf $f_Y(y)$ of Y.

That to find the cdf
$$F_Y(y)$$
 or pmf/pdf $f_Y(y)$ of Y .

$$F_Y(y) = P(Y = y) = P(g(X) = y)$$

$$= P(X = g^{-1}(y)) \qquad \text{notice trust}$$

Let's review *inverse mappings...*

Inverse mapping

• For a function $g(x): \mathcal{X} \to \mathcal{Y}$ we define an **inverse mapping** as

$$g^{-1}(A) = \{x \in \mathcal{X} : g(x) \in A\}$$

for any set $A \subset \mathcal{Y}$

- Note that $g^{-1}(A) \subset \mathcal{X}$
- In particular:

$$g^{-1}(\{y\}) = \{x \in \mathcal{X} : g(x) = y\}$$

- ullet Can still be a set in ${\mathcal X}$ rather than just one number
- Usually just write $g^{-1}(y)$

More on inverse mapping

• A function $g(x): \mathcal{X} \to \mathcal{Y}$ is a **one-to-one** function if and only if $\forall y \in \mathcal{Y}$ we have

$$g^{-1}(\{y\}) = \{x\}$$

- Can write $g^{-1}(y) = x$
- Strictly monotone functions are one-to-one

Probability of a transformation

- Let X be a random variable in (S, \mathcal{B}, P) and let Y = g(X).
- Probabilities for Y can be obtained from probabilities of X and the inverse mapping $g^{-1}(\cdot)$
- In general $A \subset \mathcal{Y}$ inverse mapping $P(Y \in A) = P(X \in g^{-1}(A))$
- Will look at discrete and continuous variables separately

$$P(Y \in A) = P(X \in g^{-1}(A))$$

In particular:

$$F(g) = P(Y \leq g) = P(X \in g^{-1}(1-\infty, g])$$

$$Y \in (-\infty, g]$$

Discrete random variables

- Let X be a discrete random variable and let Y = g(X) for some function $g(\cdot)$.
- Then Y is a discrete random variable
- Then

$$f_{Y}(y) = P(Y=y) = P(g(X)=y)$$

= $P(X \in g^{-1}(y)) = P(X \in \{x : g(x)=y\}\}$
= $Z P(X=x) = Z \{x \in g^{-1}(y)\}$

and

$$F_{Y}(y) = 2 f_{Y}(y)$$

Discrete example 1

• Let $X \sim \text{Binom}(n, p)$, i.e. X has pmf

$$f_X(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & \text{for } x \in \{0, 1, 2, \dots, n\} \\ 0 & \text{otherwise} \end{cases}$$

- X can be thought of as the number of successes in n independent Bernoulli trials
- What is the distribution of Y = n X?

Lecture 7

Discrete example 2

• Let $X \sim \text{Binom}(10,p)$. What is the distribution of Y = |X-5|?

Continuous random variables Monotone trans f.

• It's easiest to deal with *monotone* functions *g*:

Increasing:
$$u > v \Rightarrow g(u) > g(v)$$
 $\forall u_i \cup Q(v)$ Decreasing: $u > v \Rightarrow g(u) < g(v)$

The support of a distribution (or random variable) is defined as

$$\mathcal{X} = \{x : f_X(x) > 0\}$$
and let $\mathcal{Y} = \{y : \exists x \in \mathcal{X} \text{ such that } g(x) = y\}$ (2)

- If g is monotone on $\mathcal X$ then it is *one-to-one* and *onto* from $\mathcal X$ to $\mathcal Y$.
 - Uniquely pairs an x to one y
 - Get an inverse function: $g^{-1}(y) = x$

STAT 345/445

cdf - method

Theorem ("cdf-method")

Let X be a random variable with cdf $F_X(x)$ and let Y = g(X). Then

(a) If g is an increasing function on \mathcal{X} then

$$F_Y(y) = F_X(g^{-1}(y))$$

(b) If g is a decreasing function on \mathcal{X} and \underline{X} is continuous, then

$$F_Y(y) = 1 - F_X(g^{-1}(y))$$

In general: i.e. for both discrete and continous

$$F_Y(y) = 1 - F_X(g^{-1}(y)) + P(X = g^{-1}(y))$$

STAT 345/445 Theoretical Statistics I Lecture 7

cdf - method, proof

(a) If g is an increasing function on \mathcal{X} then

$$F_Y(y) = F_X(g^{-1}(y))$$

(b) If g is a decreasing function on \mathcal{X} and \underline{X} is continuous, then

$$F_Y(y) = 1 - F_X(q^{-1}(y))$$

11/21 - 12/9 (27)

In general: i.e. for both discrete and contidous

$$F_Y(y) = 1 - F_X(g^{-1}(y)) + P(X = g^{-1}(y))$$

Example: Exponential and Weibull

Let $X \sim \text{Expo}(1)$, i.e.

$$F_X(x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-x}, & x \ge 0 \end{cases}$$

Let $Y = X^{\alpha}$ for $\alpha > 0$. What is the distribution of Y?

STAT 345/445 Theoretical Statistics I Lecture 7 14/19

pdf - method

Theorem ("pdf method")

Let X be a continuous random variable with pdf $f_X(s)$ and let Y = g(X) where g is a *monotone* function.

Suppose that $f_X(x)$ is continuous on \mathcal{X} and that $g^{-1}(y)$ has a continuous derivative on \mathcal{Y} .

Then the pdf of Y is given by

$$f_Y(y) = \int_X (g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right| \quad \text{for } g \in \mathcal{J}$$

of the wise

proof on whiteboard

Example: Exponential and Uniform

Let $X \sim \text{Expo}(1)$, i.e.

$$f_X(x) = \begin{cases} e^{-x} & , x \ge 0 \\ 0 & , x < 0 \end{cases}$$

Let $Y = 1 - e^{-X}$. What is the distribution of Y? on whiteboard

Note:
$$F_{x}(x) = \begin{cases} 1 - e^{-x} & x > 0 \\ 0 & x < 0 \end{cases}$$

i.e. $g(x) = \overline{f_x}(x)$

Probability integral transformation

Theorem

Let X have a continuous cdf $F_X(x)$ and let $Y = F_X(X)$. Then Y is uniformly distributed on (0, 1), i.e.

$$F_Y(y) = \begin{cases} 0, & y \le 0 \\ y, & 0 < y < 1 \\ 1, & y \ge 1 \end{cases}$$

$$= > \qquad Y = F_X(X) \sim Uniform(0,i)$$

17/19

$$X \sim F_X(x) = > Y = F_X(X) \sim Uniform(0)$$

and $Y \sim Uniform = > X = F_X'(Y) \sim F_X$

STAT 345/445 Theoretical Statistics I Lecture 7

When g is monotone only on certain intervals

- See Theorem 2.1.8 for more detail
- If \mathcal{X} can be split into sets A_1, \ldots, A_k and g can be split into $g_1(x), \ldots, g_k(x)$ such that
 - $g(x) = g_i(x)$ for $x \in A_i$
 - g_i is a monotone function from A_i onto \mathcal{Y}

then

$$f_Y(y) = \begin{cases} \sum_{i=1}^k f_X\left(g_i^{-1}(y)\right) \left| rac{d}{dy}g_i^{-1}(y)
ight| &, \ y \in \mathcal{Y} \\ 0 &, \ ext{otherwise} \end{cases}$$

STAT 345/445 Theoretical Statistics I Lecture 7

Example: Standard normal and χ^2 distribution

Let $X \sim N(0, 1)$, i.e.

$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \qquad \text{for } x \in \mathbb{R}$$

Let $Y = X^2$. What is the distribution of Y?

STAT 345/445 Theoretical Statistics I