溶液的用途

干燥的硫酸铜和锌?

不起作用!

 $CuSO_4 + Zn = ZnSO_4 + Cu$

在溶液中进行的化学反应速率较快

养料的吸收

对动植物的生理活动的重要意义

第六章 水溶液中的平衡与滴定分析

- 6.1 电解质溶液理论简介
- 6.2 酸碱理论简介
- 6.3 单相离子平衡
- 6.4 多相离子平衡
- 6.5 配位平衡
- 6.6 氧化还原平衡

6.1 电解质溶液理论简介

1. 强电解质和弱电解质

在水溶液中或熔融状态下能导电的物质称**电解质**, 不能导电的称非电解质。根据其水溶液导电能力强弱可 分为强电解质和弱电解质

一些电解质水溶液凝固点降低值

$c/\text{mol}\cdot\text{kg}^{-1}$	Į.	$\Delta T_{ m f}$		
c/morkg	KNO ₃	NaCl	$MgSO_4$	(理论)/K
0.01	0.03587	0.03606	0.0300	0.01858
0.05	0.1718	0.1758	0.1294	0.09290
0.10	0.3331	0.3470	0.2420	0.1858
0.50	1.414	1.692	1.018	0.9290

电离学说和电离度

Svante August Arrhenius $(1859 \sim 1927)$

瑞典物理化学家

1887年,瑞典化学家 Arrhenius 依 据电解质溶液依数性和导电性的关系, 提出电离学说

- > 电解质在溶液中自动解离成带电质点 (离子) 的现象叫电离
- 正负离子不停运动,相互碰撞又结合 成分子,因此在溶液里电解质仅部分

获1903年Nobel化学奖 电离,电离的百分率叫电离度 (α)

2. 活度和活度系数

由电解度计算得到的平衡常数K

$c/\text{mol}\cdot L^{-1}$	K (CH ₃ COOH)	K (NaCl)	K (KCl)
0.0001	1.78×10^{-5}	0.0129	0.0126
0.001	1.80×10^{-5}	0.0419	0.0480
0.01	1.83×10^{-5}	0.1358	0.1516
0.1	1.85×10^{-5}	0.4854	0.5349

1907 年,Lewis 提出**有效浓度**概念: 非理想溶液不符合拉乌尔定律,是因为溶剂和溶质间有复杂的作用,尚未弄清前,用实验数据对实际浓度 c 校正

$$a = \gamma c$$
 $0.5 < \gamma < 0.9$

a:有效浓度,称<mark>活度</mark>; γ :校正因子,称<mark>活度系数</mark>。

3. 强电解质溶液理论

1912年,X射线结构分析确认强电解质 NaCl 晶体由 Na⁺和 Cl⁻组成,不存在 NaCl 分子;同年,荷兰物理学家 Debye 和德国物理学家 Huckel 提出强电

解质理论

- > 强电解质在水溶液中完全电离
- 因异性离子间的相互吸引,离子的行动不完全自由
- ▶ 中心离子周围形成一个带相反 电荷的离子氛

离子氛示意图

4. 离子强度的概念

强电解质溶液中离子受带相反电荷离子氛影响,表观上离子数目减少,有效浓度(活度)低于实际浓度;活度系数 (通常 γ < 1) 反映溶液中离子间作用力,与所有离子浓度和所带电荷有关,为此提出离子强度

$$I = 1/2 \sum m_i (z_i)^2$$

 m_i : 第 i 种离子的质量摩尔浓度; Z_i : 该离子电荷数

离子强度 / 反映离子间作用力的强弱:

I 值 \uparrow , 离子间作用力 \uparrow , $\gamma \downarrow$

I 值 ↓ ,离子间作用力 ↓ , γ ↑

很稀的溶液, $\gamma \approx 1$,不考虑活度系数的校正

6.2 酸碱理论简介

> 酸和碱的古典定义

酸	碱		
使石蕊溶液变红	使石蕊溶液变蓝		
味道是酸的	味道是苦的		
与活泼金属反应	手感滑腻		
与碱反应	与酸反应		

1. 酸碱电离理论

1887年,瑞典化学家 Arrhenius 提出酸碱电离理

论:凡是在水溶液中电离出阳离子都为 H+的物质叫

酸,凡是电离出阴离子都为 OH- 的物质叫碱

$$HC1 \iff H^+ + C1^-$$

NaOH
$$\rightleftharpoons$$
 Na⁺ + OH⁻

Arrhenius 的盐总是中性的

酸碱电离理论的优缺点

优点:

可解释许多水溶液中发生的过程,也可定量描述酸碱的相对强弱

局限:

- (1) Arrhenius 酸碱理论仅限于水溶液,而未包含非水溶液;
- (2) Arrhenius 的盐总是中性的,但有些盐是有酸碱性的,如 NaHCO₃和 NaHSO₄;
- (3) H^+ 在水中只是瞬时存在,应写为水合质子 H_3O^+

2. 酸碱质子理论

1923年,丹麦化学家Brønsted和英国化学家Lowry 分别独立提出了更基本的<mark>酸碱质子理论</mark>:凡是能提供 质子的物质叫酸,凡是能接受质子的物质叫碱

$$HNO_3$$
 (酸₁) + H_2O (碱₂) \Longrightarrow H_3O^+ (酸₂) + NO_3^- (碱₁)

$$H_2O$$
 (酸₁) + NH_3 (碱₂) $\Longrightarrow NH_4^+$ (酸₂) + OH^- (碱₁)

$$HAc$$
 (酸₁) + NH_3 (碱₂) \Longrightarrow NH_4^+ (酸₂) + Ac^- (碱₁)

根据此理论,酸给出质子变成碱,碱接受质子 变成酸,成**共轭酸碱对**

$$H_2O$$
 (酸₁) + NH_3 (碱₂) $\Longrightarrow NH_4^+$ (酸₂) + OH^- (碱₁)

 H_2O 与 OH^- , NH_3 与 NH_4^+ 各是一对共轭酸碱对

酸碱质子理论的优缺点

优点:

(1) 扩大了酸碱的范围

酸: 分子酸 HCl,H₂SO₄ 多元酸的酸式阴离子 HCO₃-,HSO₄-阳离子酸 H₃O+,NH₄+,[Al(OH)₂]+

碱: 分子碱 NH₃,OH⁻ 弱酸的酸根阴离子 Ac⁻,H₂PO₄⁻ 阳离子碱 [Al(OH)₂]⁺

既能提供又能接受质子的物质,称<mark>两性物质:</mark> H_2O , H_2PO_4 , $[AlOH]^{2+}$

盐的概念消失了

(2) 扩大了酸碱反应的范围,适用于任何溶剂系统和气相反应系统。例如:

$$NH_4^+ + NH_2^- \Longrightarrow 2NH_3$$
(液氨中)
 $HCl(g) + NH_3(g) \Longrightarrow NH_4^+ Cl^-(s)$

局限:

必须有质子,必须有溶剂

3. 酸碱电子理论

1938年,美国化学家 Lewis 提出了一个普遍性的酸碱理论,即酸碱电子理论: 凡是能接受电子对的物质为酸,凡是能给出电子对的物质为碱

Lewis 酸 Lewis 碱

Lewis 酸碱电子理论几乎适用于所有的无机化合物,特别是配合物,又称广义酸碱理论

4. 软硬酸碱理论

1963年,Pearson 在 Lewis 酸碱电子理论基础上,提出**软硬酸碱理论**:根据 Lewis 酸碱得失电子对难易程度,将酸分为软、硬酸,碱分为软、硬碱

硬酸: Al³⁺、Ti⁴⁺...; 软酸: Ag⁺、Pt²⁺、Hg²⁺...

硬碱: F-、Cl-、H₂O ...; 软碱: I-、S²⁻...

交界酸: Cu²⁺、Fe²⁺...; 交界碱: Br⁻、SO₃²⁻...

酸碱结合倾向的规律: 硬酸优先和硬碱结合, 软酸优先和软碱结合

本书大部分仍沿用 Arrhenius 酸碱电离理论

5. 水的解离和水溶液的 pH

> 水的解离

常温下纯水是中性的,有极微弱的导电能力,说 明水是很弱的电解质,发生微弱解离,存在解离平衡:

$$H_2O(1) \longrightarrow H^+(aq) + OH^-(aq);$$

$$\Delta_r H^{\theta}_m = 55.90 \text{ kJ} \cdot \text{mol}^{-1}$$

既是质子酸,又是质子碱;同时水分子间可发生 质子转移,即所谓<mark>自偶电离</mark>

根据热力学数据可以计算:

$$H_{2}O(1) \Longrightarrow H^{+}(aq) + OH^{-}(aq);$$

$$\Delta_{f}G^{\theta}_{m}/kJ \cdot mol^{-1} - 237.18 \qquad 0 \qquad -157.30$$

$$\Delta_{r}G^{\theta}_{m}(298 \text{ K}) = -157.30 + 237.18 = 79.88 \text{ kJ} \cdot mol^{-1}$$

$$\Delta_{r}G^{\theta}_{m} = -2.303RTlgK^{\theta}$$

$$\lg K^{\theta} = \frac{-\Delta G^{\theta}_{m}}{2.303RT} = \frac{-(79.88) \times 10^{3}}{2.303 \times 8.314 \times 298} = -14.00$$

$$\therefore K^{\theta}(298 \text{ K}) = 1.0 \times 10^{-14}$$

水的离子积

$$H_2O(1) \longrightarrow H^+(aq) + OH^-(aq);$$
 $K^{\theta}(298 \text{ K}) = 1.0 \times 10^{-14}$

将此平衡常数 K^{θ} 称为**水的离子积**,记为 K^{θ}_{w} ,即解离平衡时

$$K_{\text{w}}^{\theta} (298 \text{ K}) = \frac{c(\text{H}^{+})}{c^{\theta}} \frac{c(\text{OH}^{-})}{c^{\theta}} = 1.0 \times 10^{-14}$$

298 K 时, 纯水中

$$c(H^+) = c(OH^-) = 1.0 \times 10^{-7} \text{ mol} \cdot L^{-1}$$

水的离子积 K^{θ}_{w} 不随组成而变,只是温度的函数

$$\lg K^{\theta} = -\left(\frac{\Delta_{\rm r} H^{\theta}_{\rm m}}{2.303R}\right) \frac{1}{T} + \frac{\Delta_{\rm r} S^{\theta}_{\rm m}}{2.303R}$$

$$\Delta_{\rm r} H^{\rm \theta}_{\rm m} = 55.90 \text{ kJ} \cdot \text{mol}^{-1}$$

水的解离是吸热反应,温度升高时,水的解离度增大, K^{θ}_{w} 增大

不同温度下水的离子积

温度/°C	0	10	20	25	30	40	50	100
$K_{\rm w}^{\theta}/10^{-14}$	0.114	0.292	0.681	1.01	1.47	2.92	5.50	51.3

在电解质水溶液中:

(1) 有些电解质电离出 H+或 OH-

$$HC1 \longrightarrow H^+ + C1^-$$

$$NaOH \longrightarrow Na^+ + OH^-$$

(2) 水溶液中的某些离子与 H+或 OH-发生反应

$$CO_3^{2-} + H^+ \longrightarrow HCO_3^-$$

$$NH_4^+ + OH^- \longrightarrow NH_3 \cdot H_2O$$

使水溶液中

 $c(H^+) \neq c(OH^-)$ 水溶液不再呈中性

$$K_{\text{w}}^{\theta} (298 \text{ K}) = \frac{c(\text{H}^{+})}{c^{\theta}} \frac{c(\text{OH}^{-})}{c^{\theta}} = 1.0 \times 10^{-14}$$

只要知道水溶液的 $c(H^+)$ 或 $c(OH^-)$,就可计算另一个。为简便,提出 **pH** 函数概念

➤ pH 函数

定义: p表示负对数, 即 p = -lg

pH =
$$-\lg[c(H^+)/c^{\theta}]$$
, pOH = $-\lg[c(OH^-)/c^{\theta}]$
p $K^{\theta}_{w} = -\lg K^{\theta}_{w}$

$$\therefore pK^{\theta}_{w} = pH + pOH = 14$$

水溶液的酸碱性

$$pK_{W}^{\theta} = pH + pOH = 14$$

当溶液为中性时,pH = pOH = 7;

当溶液显酸性时,pH < 7,pOH > 7;

当溶液显碱性时, pH > 7, pOH < 7

通常只用 pH 表示溶液的酸碱性,仅适用于 $c(H^+)$ 或 $c(OH^-)$ 均小于 1 mol·L⁻¹ 的稀溶液

水溶液酸碱性的判断方法

1. 用指示剂判断

大多酸碱指示剂是结构复杂的**有机弱酸或有机弱碱**,在水溶液中产生解离平衡,且当溶液的酸碱性改变时会使平衡移动

指示剂在解离前后有不同的颜色,根据其不同颜 色反映水溶液的酸碱性变化

甲基橙 (MO)

$$\dot{N}(H_3C)_2$$
 — SO $_3$ 红色 (配式)
$$H^+ OH^- pK_a = 3.4$$

黄色 (偶氮式)

酚酞 (PP)

无色

红色 (醌式)

几种常见酸碱指示剂的颜色变化

	颜色	变色的	
指示剂	酸色	碱色	pH 范围
甲基橙	红	黄	3.1 ~ 4.4
甲基红	红	黄	4.2 ~ 6.3
石蕊	红	蓝	5.0 ~ 8.0
西分 西太	无色	红	8.3 ~ 10.0

2. pH 试纸测量

3. pH 计测量

pH 计,又称酸度计,专门用于测量 pH 的仪器:用对 $c(H^+)$ 敏感的电极组成原电池,准确测量溶液的 pH

身边物质的 pH 值

6.3 单相离子平衡

电解质在解离前后,相态相同(都为液态)的平衡 叫单相离子平衡

强酸和强碱

- ➤ 常见强酸: HCl、HBr、HI、HNO₃、H₂SO₄、HClO₄
- ➤ 常见强碱: NaOH、KOH、Ca(OH)₂
- ightharpoonup 某些金属氧化物 (Na₂O、CaO) 与水反应也生成强碱

强酸和强碱的性质

- ▶ 都属于强电解质,在水中完全电离
- 溶液中存在较高浓度的强酸或强碱时,通常可忽略 其他弱酸或弱碱的电离,包括水的自偶电离

1. 一元弱酸、弱碱的解离平衡

设某一元弱酸 HA 溶液, 部分电离, 达平衡时:

$$HA (aq) \implies H^+ (aq) + A^- (aq)$$

$$K^{\theta}$$
 表达式:
$$K^{\theta}_{a} = \frac{[c(H^{+})/c^{\theta}][c(A^{-})/c^{\theta}]}{c(HA)/c^{\theta}}$$

简写为:
$$K^{\theta}_{a} = \frac{c(H^{+})c(A^{-})}{c(HA)}$$

 $c(H^+)$, $c(A^-)$, c(HA): 平衡浓度,单位 $mol \cdot L^{-1}$;

 c^{θ} : 标准浓度,1 mol·L⁻¹;

 K_{a}^{θ} : 弱酸标准解离常数,弱酸相对强弱的量度,无量纲,温度的函数,一般指 298 K 的数值

同样,对于一元弱碱 BOH 溶液,则有:

BOH (aq)
$$\Longrightarrow$$
 B⁺ (aq) + OH⁻ (aq)

 K^{θ} 表达式:

$$K^{\theta}_{b} = \frac{\left[c(B^{+})/c^{\theta}\right]\left[c(OH^{-})/c^{\theta}\right]}{c(BOH)/c^{\theta}}$$

简写为:

$$K^{\theta}_{b} = \frac{c(B^{+})c(OH^{-})}{c(BOH)}$$

 K^{θ}_{b} : 弱碱标准解离常数

常见弱酸、弱碱标准解离常数值见附录三

在弱酸、弱碱的水溶液中,

$$c(H^+) \neq c(OH^-)$$

计算溶液中的 $c(H^+)$ 或 pH 是重要内容

设一元弱酸溶液中 HA 的起始浓度为 c,平衡时 H⁺ 的浓度为 x,则有:

HA (aq)
$$\Longrightarrow$$
 H⁺ (aq) + A⁻ (aq)
起始: c 0 0
平衡: $c-x$ x x
$$\therefore K^{\theta}{}_{a} = \frac{c(H^{+})c(A^{-})}{c(HA)} = \frac{x^{2}}{c-x}$$

$$K^{\theta}_{a} = \frac{x^{2}}{c - x}$$

由于弱酸的 K_a^{θ} 很小,x 也很小,并且远小于 c,故

$$c - x \approx c$$

$$∴ K^{\theta}_{a} = \frac{x^{2}}{c} \qquad \overrightarrow{\mathfrak{g}} \qquad cK^{\theta}_{a} = x^{2}$$

$$\text{II} \quad c(\mathbf{H}^+) = x = \sqrt{cK^{\theta}_{\mathbf{a}}}$$

上述计算没有考虑水的离解,通常在酸、碱溶液中,水的离解非常小,可不考虑

解离度

设弱酸的解离度为α,根据定义有

$$\alpha = c(H^+)/c(HA)$$
 起始

因为
$$c(H^+) = x = \sqrt{cK^{\theta}}$$
a

$$\therefore \alpha = \sqrt{K^{\theta} a/c}$$

一定温度下, K^{θ}_{a} 是常数,上式表明:溶液稀释时,弱电解质的解离度必然增大,称**稀释**定律

对于一元弱酸:
$$c(H^+) = x = \sqrt{cK^{\theta}}$$

$$\alpha = c(H^+)/c(HA) = \sqrt{K^{\theta}_{a}/c}$$

同样,对于一元弱碱:

$$c(OH^-) = x = \sqrt{cK^{\theta}_b}$$

$$\alpha = c(OH^-)/c(BOH) = \sqrt{K^{\theta}b/c}$$

由于采取了近似处理,上述公式的适用条件:

离解度较小的弱酸、弱碱溶液,一般 $\alpha < 5\%$ 或 $c/K^{\theta} \ge 400$

2. 多元弱酸、弱碱的解离平衡

多步解离
$$H_2CO_3$$
 (aq) \longrightarrow H^+ (aq) $+$ HCO_3^- (aq)

$$K^{\theta}_{a1} = \frac{[c(H^{+})/c^{\theta}][c(HCO_{3}^{-})/c^{\theta}]}{c(H_{2}CO_{3})/c^{\theta}} = 4.30 \times 10^{-7}$$

$$HCO_3^-(aq) \longrightarrow H^+(aq) + CO_3^{2-}(aq)$$

$$K^{\theta_{a2}} = \frac{[c(H^{+})/c^{\theta}][c(CO_{3}^{2-})/c^{\theta}]}{c(HCO_{3}^{-})/c^{\theta}} = 5.61 \times 10^{-11}$$

一般 $K^{\theta_1} >> K^{\theta_2}$, $c(H^+)$ 由一级解离决定,对多元弱酸、弱碱,只按一级解离常数算 $c(H^+)$ 或 $c(OH^-)$,通常 $K^{\theta_1}/K^{\theta_2} \geq 10^4$ 误差可忽略

对多元弱酸、弱碱,有时整体考虑更简便

$$H_3A (aq) \implies 3H^+ (aq) + A^{3-}(aq)$$

总的标准解离常数

$$K^{\theta} = \frac{[c(H^{+})/c^{\theta}]^{3}[c(A^{3^{-}})/c^{\theta}]}{c(H_{3}A)/c^{\theta}}$$

简写为
$$K^{\theta} = \frac{[c(H^+)]^3 c(A^{3^-})}{c(H_3 A)}$$

多元弱酸、弱碱的总标准解离常数与分级标准解 离常数的关系 $K^{\theta} = K^{\theta}_{1} \cdot K^{\theta}_{2} \cdot K^{\theta}_{3}$

3. 电解质对酸碱解离平衡的影响

电离平衡和其他化学平衡一样,也是一个暂时的、相对的动态平衡。外界条件改变,旧平衡被破坏,经 过分子或离子间的相互作用,在新条件下建立新平衡

> 浓度对酸碱解离平衡的影响

HAc + H₂O → H₃O⁺ + Ac⁻
↑ [HAc], 平衡右移
加入 NaAc, ↑ [Ac⁻], 平衡左移
加入 HCl, ↑ [H₃O⁺], 平衡左移

> 同离子效应

HAc +
$$H_2O \longrightarrow H_3O^+ + Ac^-$$

$$\uparrow [H_3O^+] \stackrel{\bullet}{\text{I}} [Ac^-], \text{ 平衡左移}$$

在**弱电解质**溶液中加入含共同离子的**强电解质**, 弱电解质的解离平衡向左移动,使弱电解质的解离度 降低,称同离子效应

反之,减小解离平衡产物离子的浓度,平衡右移

【例题1】向 $0.100 \text{ mol}\cdot\text{L}^{-1}$ HAc 溶液中加入固体NaAc,使溶液中 [NaAc] = $0.100 \text{ mol}\cdot\text{L}^{-1}$ 。求在 NaAc 加入前后溶液的 pH 和 HAc 的解离度的变化。

解: 已知
$$K_a^{\theta} = 1.76 \times 10^{-5}$$

加入 NaAc 前

$$c(H^+) = \sqrt{cK_a^{\theta}} = \sqrt{0.100 \times 1.76 \times 10^{-5}} = 1.33 \times 10^{-3}$$

$$\therefore$$
 pH = 2.88

$$\alpha(\text{HAc}) = \sqrt{K^{\theta} a/c} = \sqrt{1.76 \times 10^{-5}/0.100} = 1.33\%$$

0.100 mol·L⁻¹ HAc 液中加入 0.1 mol·L⁻¹ NaAc 后

$$HAc (aq) \implies H^+ (aq) + Ac^- (aq)$$

起始: 0.100

0

0.100

平衡: 0.100-x

x = 0.100 + x

根据标准平衡常数关系式

$$K_{a}^{\theta} = \frac{c(H^{+}) c(Ac^{-})}{c(HAc)} = \frac{x(0.100 + x)}{0.100 - x} \approx x = 1.76 \times 10^{-5}$$

$$c(H^+) = 1.76 \times 10^{-5}$$
, pH = 4.75

$$\alpha(\text{HAc}) = c(\text{H}^+) / 0.100 = 1.76 \times 10^{-5} / 0.100 = 0.0176\%$$

加入 NaAc 前后: pH 从 2.88 升至 4.75,

解离度从 1.33% 降至 0.0176%

> 缓冲溶液

缓冲溶液的概念

计算

50 mL 纯水 pH = 7

50 mL HAc - NaAc c(HAc) = c(NaAc) $= 0.10 \text{ mol} \cdot \text{L}^{-1}$ pH = 4.75

$$\Delta pH = 4$$

$$pH = 4.74$$

$$pH = 4.76$$

$$\Delta$$
pH = **0.01**

缓冲作用与缓冲溶液

含共轭酸碱对 (如 HAc 和 Ac⁻) 的混合溶液能缓解外加少量酸、碱或水的影响,保持溶液 pH 不发生显著变化的作用叫缓冲作用,具有缓冲能力的溶液叫缓冲溶液

缓冲溶液的组成

- (a) 一定量弱酸与其共轭碱的混合溶液,HAc 和 NaAc
- (b) 一定量<mark>弱碱与其共轭酸</mark>的混合溶液, $NH_3 \cdot H_2O$ 和 NH_4Cl

缓冲溶液作用原理

$$HAc (aq) \Longrightarrow H^+ (aq) + Ac^- (aq)$$

起始: c(弱酸) 0 c(弱酸盐)

平衡: c(弱酸) - x

x c(弱酸盐) + x

根据标准平衡常数关系式

$$K^{\theta_a} = \frac{c(H^+) c(Ac^-)}{c(HAc)} = x \cdot \frac{c(弱酸盐) + x}{c(弱酸) - x}$$

因为
$$x$$
很小 $\therefore K^{\theta}_{a} \approx x \cdot \frac{c(弱酸盐)}{c(弱酸)}$

$$c(\mathbf{H}^+) = x \approx K^{\theta_a} \frac{c(弱酸)}{c(弱酸盐)}$$

$$c(\mathbf{H}^+) = x \approx K^{\theta_a} \frac{c(弱酸)}{c(弱酸盐)}$$

$$\therefore pH = pK^{\theta}_{a} + \lg \frac{c(弱酸盐)}{c(弱酸)}$$

外加少量 OH-

外加少量 H+

缓冲作用的基本原理

弱酸 – 弱酸盐缓冲溶液的 $c(H^+)$ 的计算公式

$$c(\mathbf{H}^+) \approx K^{\theta} \operatorname{a} \frac{c(弱酸)}{c(弱酸盐)}$$

$$\therefore pH = pK^{\theta}_{a} + \lg \frac{c(弱酸盐)}{c(弱酸)}$$

同理,弱碱 – 弱碱盐缓冲溶液的 c(OH)的计算公式

$$c(OH^-) \approx K^{\theta} b \frac{c(弱碱)}{c(弱碱盐)}$$

$$\therefore pOH = pK^{\theta}_{b} + \lg \frac{c(锅碱盐)}{c(锅碗)}$$

缓冲溶液的缓冲能力

缓冲溶液的缓冲能力称<mark>缓冲容量</mark>,有一定限度

$$pH = pK^{\theta}_{a} + \lg \frac{c(弱酸盐)}{c(弱酸)} \qquad pOH = pK^{\theta}_{b} + \lg \frac{c(弱碱盐)}{c(弱碱)}$$

对同一缓冲溶液,pH 决定于共轭酸碱对的浓度比;仅当比值改变不大,pH 才不会有大的变化

二 保持共轭酸碱对的浓度接近,一般以 1: 1 或相近比例配制,溶液的缓冲能力最大

从弱酸或弱碱的标准解离常数,可知道该缓冲 溶液的缓冲范围

常用缓冲溶液的配比及缓冲范围

$$\frac{c(共轭碱/酸)}{c(共轭酸/碱)} = 1:10 \sim 10:1$$

: 其相应 pH 及 pOH 变化范围为

$$pH = pK_a^{\theta} \pm 1$$
; $pOH = pK_b^{\theta} \pm 1$

称缓冲溶液的有效缓冲范围,取决于解离常数 K_a^{θ} 和 K_b^{θ}

实际配缓冲溶液: 需用 pK^{θ}_{a} 或 pK^{θ}_{b} 等于或接近该 pH 的共轭酸碱对, K^{θ}_{a} 、 K^{θ}_{b} 是配缓冲溶液的主要依据,并适当调节酸碱比例,即得所需 pH

常用的缓冲溶液和缓冲范围 (计算值)

缓冲溶液	K^{Θ}	pK^{θ}	缓冲范围
ClCH ₂ CO ₂ H – ClCH ₂ CO ₂ Na	1.40×10^{-3}	2.85	1.85 - 3.85
HCOOH – HCOONa	1.77×10^{-4}	3.75	2.75 - 4.75
HAc – NaAc	1.76×10^{-5}	4.75	3.75 - 5.75
NaH ₂ PO ₄ – Na ₂ HPO ₄	6.23×10^{-8}	7.21	6.21 - 8.21
$NH_3 \cdot H_2O - NH_4C1$	1.77×10^{-5}	9.25	8.25 - 10.25
NaHCO ₃ – Na ₂ CO ₃	5.61×10^{-11}	10.25	9.25 – 11.25

欲配 pH = 7 的缓冲溶液,选哪组合适?

缓冲溶液的应用

血液的 pH 缓冲作用

▶ 血液中的主要缓冲体系是碳酸-碳酸氢盐 (pH ~ 7.4):

$$H^+(aq) + HCO_3^-(aq) \longrightarrow H_2CO_3(aq) \longrightarrow CO_2(g) + H_2O(l)$$

扫描电镜下的血红细胞

包含两个平衡:第一个是H₂CO₃的第一电离平衡,第二是CO₂与水的化合平衡

▶ 上述缓冲体系对血液的<mark>吸氧</mark>-放氧平衡有直接影响

血红蛋白 $\underline{Hb}H^+ + O_2 \Longrightarrow HbO_2(aq) + H^+$

▶ 盐效应

 $HAc + H_2O \longrightarrow H_3O^+ + Ac^-$ 加入 NaAc, Ac^- 产生同离子效应, Na^+ 也会有影响

在弱电解质溶液中强电解质,该弱电解质的解离 度会增大,称<u>盐效应</u>

加入强电解质,离子强度↑,使得活度系数↓, 偏离1的程度↑,原来解离出的离子的有效浓度(活 度)↓,只有再解离出部分离子,才能维持平衡

.: 实际解离的离子浓度增加,即解离度增大

4. 酸碱滴定法

用已知浓度的标准溶液标定未知 溶液浓度的方法,称滴定法,包括酸 碱滴定、氧化还原滴定等

酸碱滴定使用酸碱指示剂来指示等当点物质的量相等

滴定装置通常使用酸碱滴定管, 如图示

> 酸碱指示剂

理想的<mark>酸碱指示剂</mark>应在酸碱等当点处变色,但 具体实验中此要求没必要,因为在等当点附近,pH 变化常较剧烈,一滴试剂足以使指示剂立即变色

用碱滴定酸,以酚酞为滴定终点指示剂

> 酸碱滴定曲线

强碱—强酸 (0.1 mol·L⁻¹ NaOH 滴定 0.1 mol·L⁻¹ HCl 为例)

- 滴定开始,溶液酸性,pH = 1
- 等当点处,溶液酸碱量相当,pH= 7
- 等当点后,溶液碱性,pH=14-pOH
- NaOH 加入量 (ᠬ) 强碱—强酸滴定具有显著的滴定

0.1 mol·L⁻¹ NaOH 滴定 <mark>突跃</mark>,便于选择指示剂 0.1 mol·L⁻¹ HCl 滴定曲线

等当点前后加少量酸碱使溶液 pH 显著改变

0.1 mol·L⁻¹ NaOH 滴定 0.1 mol·L⁻¹ HAc 滴定曲线

强碱—弱酸 (0.1 mol·L⁻¹ NaOH 滴定 0.1 mol·L⁻¹ HAc 为例)

- •相同浓度下滴定开始,HAc溶液 pH 显著高于强酸 pH
- •强碱—弱酸滴定曲线的突跃区间 显著小于强酸—强碱滴定曲线的 - 突跃区间

• 该体系**等当点的 pH 较高**,酚酞 、指示剂是较好的选择

6.4 多相离子平衡

任何物质在水中都有一定程度的溶解,没有绝对不溶的物质,常以<mark>溶解度</mark>区分:

物质在水中的溶解有很大不同:对难溶和微溶电解质,溶解前是固体,溶解在水中的全部解离成水合离子,存在沉淀-溶解平衡;解离前后物质不属同一相,称多相离子平衡

生物矿化

贝壳: 由碳酸钙组成的坚固材料

1. 溶解度与溶度积

难溶电解质的<mark>溶解度</mark>定义为:一定温度,饱和溶液中溶解的溶质的物质的量浓度,s表示,单位 $mol\cdot L^{-1}$

饱和难溶电解质 A_mB_n 水溶液,存在多相离子平衡:

$$A_m B_n(s) \longrightarrow mA^{n+}(aq) + nB^{m-}(aq)$$

标准平衡常数
$$K^{\theta} = \left[\frac{c(A^{n+})}{c^{\theta}}\right]^m \left[\frac{c(B^{m-})}{c^{\theta}}\right]^n = \left[c(A^{n+})\right]^m \left[c(B^{m-})\right]^n$$

难溶电解质解离的标准平衡常数,称标准溶度积常数,简称溶度积,记为 K^{θ}_{sp} ; 温度的函数,一般指 298 K 的数值,常见难溶电解质的溶度积见附录四

溶度积 K^{θ}_{sp} 与溶解度 s 的换算

各类难溶电解质的 K^{θ}_{sp} 与 s 的关系

难溶电解质的类型	K^{θ}_{sp} 与 s 的关系	
AB	$K_{\rm sp}^{\theta} = s^2$	
AB_2 或 A_2B	$K^{\theta}_{\rm sp} = 4s^3$	
AB ₃ 或A ₃ B	$K^{\theta}_{\rm sp} = 27s^4$	

一般形式:

$$A_m B_n(s) = mA^{n+}(aq) + nB^{m-}(aq)$$

平衡浓度(mol·L-1)

$$A_m B_n$$
型:

$$K^{\theta}_{sp} = (ms)^m \times (ns)^n = (m^m \times n^n) s^{m+n}$$

ns

【例题2】 25 °C 时,AgSCN 和 $Cd(OH)_2$ 的溶度积分别 $K^{\theta}_{sp}(AgSCN) = 1.03 \times 10^{-12}$, $K^{\theta}_{sp}\{Cd(OH)_2\} = 4.0 \times 10^{-15}$ 计算它们在该温度下的溶解度

解:设溶解度为s

$$K_{\rm sp}^{\theta}({\rm AgSCN}) = s^2 = 1.03 \times 10^{-12}$$
,

$$\therefore$$
 s (AgSCN) = 1.0 × 10⁻⁶ mol·L⁻¹

$$K^{\theta}_{\rm sp}\{{\rm Cd}({\rm OH})_2\}=4s^3=4.0\times 10^{-15},$$

:
$$s\{Cd(OH)_2\} = 1.0 \times 10^{-5} \text{ mol} \cdot L^{-1}$$

$$K_{\text{sp}}^{\theta}(\text{AgSCN}) > K_{\text{sp}}^{\theta}\{\text{Cd}(\text{OH})_2\}$$

但 $s(AgSCN) < s\{Cd(OH)_2\}$

 K^{θ}_{sp} 的大小不能直接反映难溶电解质溶解度 s 大小,仅相同类型的化合物,如 A_2B 或 AB_2 等,才能用 K^{θ}_{sp} 直接比较溶解度 s 大小

例如:
$$K^{\theta}_{sp}(AgCl) = s^2 = 1.77 \times 10^{-10}$$
 $K^{\theta}_{sp}(AgI) = s^2 = 8.51 \times 10^{-17}$ $K^{\theta}_{sp}(AgCl) > K^{\theta}_{sp}(AgI)$ $\therefore s(AgCl) > s(AgI)$

2. 溶度积规则

在某一系统中,沉淀的生成或溶解,可用溶度积 K^{θ}_{sn} 判断

$$A_m B_n(s) \longrightarrow mA^{n+}(aq) + nB^{m-}(aq)$$

定义离子积:

$$J = \left[\frac{c(\mathbf{A}^{n+})}{c^{\theta}}\right]^{m} \left[\frac{c(\mathbf{B}^{m-})}{c^{\theta}}\right]^{n} = \left[c(\mathbf{A}^{n+})\right]^{m} \left[c(\mathbf{B}^{m-})\right]^{n}$$

离子积:溶液中某难溶电解质,任意时刻以解离方程 式中化学计量数为方次的各离子相对浓度的 乘积, *J* 表示,特殊的反应商

溶度积规则

比较 $J = K^{\theta}_{sp}$,判断沉淀—溶解平衡的移动

(1)
$$J = [c(A^{n+})]^m [c(B^{m-})]^n > K^{\theta}_{sp}$$

溶液过饱和,反应有沉淀,随着沉淀析出,离子浓度减小,直到 $J = K^{\theta}_{sp}$

(2)
$$J = [c(A^{n+})]^m [c(B^{m-})]^n = K^{\theta}_{sp}$$
 溶液饱和,固态电解质与溶液达沉淀 — 溶解平衡

(3)
$$J = [c(A^{n+})]^m [c(B^{m-})]^n < K_{sp}^{\theta}$$

溶液不饱和,无沉淀,若将电解质放入溶液,会向沉淀溶解方向进行,直到达到饱和,即 $J = K^{\theta}_{sp}$

沉淀 - 溶解平衡的移动 (影响因素)

- > 温度
- > 同离子效应

在溶液中加入与难溶电解质有相同离子的易溶电解质,会使难溶电解质的溶解度减小

例如: 在饱和 CaCO₃ 溶液中,存在平衡

$$CaCO_3(s) \longrightarrow Ca^{2+}(aq) \uparrow + CO_3^{2-}(aq) \uparrow s(CaCO_3) \downarrow$$

➢ 溶液 pH 值 生成难溶盐、配离子、氧化还原反应等
Mg(OH)₂(s) → Mg²+(aq) + 2OH⁻(aq)

由于该平衡存在 OH-, 改变溶液 pH 将使平衡发生移动

3. 溶度积规则的应用

(1) 沉淀的生成

向电解质溶液中加入某种沉淀剂,使某电解质的J大于 K^{θ}_{sp} ,该难溶电解质沉淀析出

若溶液中含几种均能与加入的沉淀剂作用,生成几种难溶电解质时,通常最先达到溶度积的难溶电解质先析出

KI 和 KCl 溶液c(KI) = c(KCl)

【例题3】在含有 KI 和 KCl 各 0.0100 mol·L⁻¹ 的混合溶液中,逐滴加入 $AgNO_3$ 溶液,当AgCl 沉淀开始析出时,溶液中 $c(I^-)$ 和 $c(Ag^+)$ 各为多少?要使 $c(Cl^-)$ 降到10⁻⁵ mol·L⁻¹以下,溶液中 $c(Ag^+)$ 至少应为多少?已知 $K^{\theta}_{sp}(AgCl)$ = 1.77×10^{-10} , $K^{\theta}_{sp}(AgI) = 8.51 \times 10^{-17}$

解:
$$K_{\text{sp}}^{\theta}(\text{AgCl}) = c(\text{Ag}^{+}) c(\text{Cl}^{-}) = 1.77 \times 10^{-10}$$

要使 AgCl ↓ 析出,溶液中的 Ag+浓度

$$c(Ag^{+}) \ge \frac{K^{\theta_{sp}}(AgCl)}{c(Cl^{-})} = \frac{1.77 \times 10^{-10}}{0.0100} = 1.77 \times 10^{-8} \text{ mol} \cdot L^{-1}$$

这时溶液中
$$I^-$$
浓度 $K_{sp}^{\theta}(AgI) = c(Ag^+) c(I^-) = 8.51 \times 10^{-17}$ $c(I^-) = 8.51 \times 10^{-17} / (1.77 \times 10^{-8}) = 4.81 \times 10^{-9} \text{ mol} \cdot \text{L}^{-1}$

要使溶液中 Cl^- 去除完全,即 $c(Cl^-) \leq 1.0 \times 10^{-5}$,则

$$c(Ag^{+}) \ge \frac{K^{\theta}_{sp}(AgCl)}{c(Cl^{-})} = \frac{1.77 \times 10^{-10}}{1.00 \times 10^{-5}} = 1.77 \times 10^{-5} \text{ mol}\cdot\text{L}^{-1}$$

∴ 当 AgCl ↓ 开始析出时,溶液中

$$c(I^{-}) = 4.81 \times 10^{-9} \,\text{mol} \cdot L^{-1}$$

$$c(Ag^{+}) = 1.77 \times 10^{-8} \,\text{mol} \cdot L^{-1}$$

说明 AgCl ↓ 开始析出时, I 早已沉淀完全,溶液中 $c(Ag^+)$ 也很小

在同一溶液中,几种物质先后沉淀的过程,称分 步沉淀,可分离不同离子;难溶电解质的<mark>溶度积相差</mark> 越大,分离越完全

(2) 沉淀的溶解

根据溶度积规则,向含难溶电解质的饱和溶液,加入某种试剂,若能降低该电解质沉淀的某一离子浓度,使其 $J < K^{\theta}_{sp}$,沉淀就会逐步溶解

降低离子浓度的方法

降低离子浓度的方法很多:

可利用生成气体、弱电解质、难溶盐、难溶氢氧化物、配离子反应、氧化还原反应等

$$Fe(OH)_3(s) \Longrightarrow Fe^{3+}(aq) + 3OH^{-}(aq) + H^{+} \longrightarrow H_2O(1)$$

$$ZnCO_3(s) \longrightarrow Zn^{2+}(aq) + CO_3^{2-}(aq)$$

通过<mark>加酸</mark>生成弱电解质,可使难溶氢氧化物和弱酸的难溶盐<mark>溶解</mark>

+
$$2H^+ \longrightarrow H_2CO_3$$
 (aq)
 $\downarrow \qquad \qquad \downarrow$
 H_2O (1) + CO_2 (g) \uparrow

锅炉除垢

沉淀 - 溶解平衡

$$CaCO_3(s) \Longrightarrow Ca^{2+}(aq) + CO_3^{2-}(aq)$$
 (1)
 $K^{\theta}_{sp}(CaCO_3)$

酸碱平衡

$$CO_3^{2-}(aq) + H^+(aq) \Longrightarrow HCO_3^-(aq)$$
 (2)
 $1/K_{a2}^{\theta}(H_2CO_3)$

$$HCO_3^-(aq) + H^+(aq) \Longrightarrow H_2O(1) + CO_2(g) \uparrow (3)$$

 $1/K_{a1}^{\theta}(H_2CO_3)$

$$(1)+(2)+(3)$$
,得

$$CaCO_3(aq) + 2H^+(aq) \longrightarrow Ca^{2+}(aq) + H_2O(1) + CO_2(g) \uparrow$$

已知 $K_{\text{sp}}^{\theta}(\text{CaCO}_3) = 4.96 \times 10^{-9}$, $K_{\text{al}}^{\theta}(\text{H}_2\text{CO}_3) = 4.30 \times 10^{-7}$, $K_{\text{al}}^{\theta}(\text{H}_2\text{CO}_3) = 5.61 \times 10^{-11}$

根据多重平衡法则,总反应的标准平衡常数

$$K^{\theta} = \frac{K^{\theta}_{sp}(CaCO_3)}{K^{\theta}_{a1}(H_2CO_3)K^{\theta}_{a2}(H_2CO_3)} = \frac{4.96 \times 10^{-9}}{(4.30 \times 10^{-7}) \times (5.61 \times 10^{-11})}$$
 $= 2.06 \times 10^{8}$ 总反应的标准平衡常数大

加酸溶解:包含沉淀—溶解和酸碱平衡的多重平衡,平衡常数由 K^{θ}_{sp} 和 K^{θ}_{a} 共同决定, K^{θ}_{sp} 越大, K^{θ}_{a} 越小,酸溶解进行得越彻底

【思考题】

- 1. 为什么 MnS(s) 溶于 HCl, CuS(s) 不溶 HCl?
- 2. 为什么 CaCO₃(s) 溶于 HAc, CaC₂O₄(s) 不溶 HAc?

提示:

加酸溶解 = 沉淀 - 溶解平衡 + 酸碱平衡

$$K^{\theta} = \frac{K^{\theta}_{\rm sp}}{K^{\theta}_{\rm al} K^{\theta}_{\rm a2}}$$

配离子反应

$$AgCl(s) \implies Ag^{+}(aq) + Cl^{-}(aq)$$

$$Ag^{+}(aq) + 2NH_{3}(aq) \implies [Ag(NH_{3})]^{2+}(aq)$$

氧化还原反应

CuS (s)
$$\Longrightarrow$$
 Cu²⁺ (aq) + S²⁻ (aq)
3S²⁻ (aq) + 8HNO₃ (aq) \Longrightarrow
3S (s) + 2NO (g) \uparrow + 4H₂O (l) + 6NO₃⁻ (aq)

(3) 沉淀的转化

由一种难溶电解质沉淀转化为另一种难溶电解质沉淀,称**沉淀的转化**,向生成更难溶解物质的方向进行:可应用于水垢去除、污水处理和固体分离等

在分析化学中常先将难溶强酸盐转化为难溶弱酸盐,然后再用酸溶解使阳离子进入溶液

锅炉除垢

锅垢成分: CaCO₃、MgCO₃、Mg(OH)₂、CaSO₄

清除:

$$CaSO_4(s) + CO_3^{2-}(aq) \longrightarrow CaCO_3(s) + SO_4^{2-}(aq)$$
 转化相当完全

包含两个沉淀 - 溶解平衡:

CaSO₄(s)
$$\Longrightarrow$$
 Ca²⁺ (aq) + SO₄²⁻ (aq) (1)
 $K_{\text{sp}}^{\theta}(\text{CaSO}_4) = 7.10 \times 10^{-5}$

$$CaCO_3(s) \implies Ca^{2+}(aq) + CO_3^{2-}(aq)$$
 (2)
 $K^{\theta}_{sp}(CaCO_3) = 4.96 \times 10^{-9}$

$$\therefore K^{\theta} = \frac{K^{\theta}_{sp}(CaSO_4)}{K^{\theta}_{sp}(CaCO_3)} = \frac{7.10 \times 10^{-5}}{4.96 \times 10^{-9}} = 1.43 \times 10^4$$

黄铁矿渣治理重金属 (FeS)

FeS (s) + Hg²⁺ (aq)
$$\Longrightarrow$$
 HgS (s) \downarrow + Fe²⁺ (aq)

FeS (s) + Pb²⁺ (aq)
$$\Longrightarrow$$
 PbS (s) \downarrow + Fe²⁺ (aq)

FeS (s) + Cd²⁺ (aq)
$$\longrightarrow$$
 CdS (s) \downarrow + Fe²⁺ (aq)

已知:
$$K_{\rm sp}^{\theta}({\rm FeS}) = 1.59 \times 10^{-19}$$
, $K_{\rm sp}^{\theta}({\rm HgS}) = 6.44 \times 10^{-53}$

$$K_{\rm sp}^{\theta}({\rm PbS}) = 9.04 \times 10^{-27}, K_{\rm sp}^{\theta}({\rm CdS}) = 1.40 \times 10^{-29}$$

思考: 为什么沉淀转化能够发生?

提示:
$$K^{\theta} = \frac{K^{\theta} \operatorname{sp}(\operatorname{FeS})}{K^{\theta} \operatorname{sp}(\operatorname{MS})}$$

大化实验: 沉淀转化

$$2Ag^{+}(aq) + CrO_4^{2-}(aq) \longrightarrow Ag_2CrO_4(s)$$
 砖红色沉淀

$$Ag_2CrO_4(s) + 2Cl^-(aq)$$
 \longrightarrow $2AgCl(s) + CrO_4^{2-}(aq)$
白色沉淀

$$K_{\rm sp}^{\theta}({\rm Ag_2CrO_4}) = 1.12 \times 10^{-12}, K_{\rm sp}^{\theta}({\rm AgCl}) = 1.77 \times 10^{-10}$$

思考: 为什么沉淀转化能够发生?

$$K_{\rm sp}^{\theta}(Ag_2CrO_4) = 1.12 \times 10^{-12}, K_{\rm sp}^{\theta}(AgCl) = 1.77 \times 10^{-10}$$

- (1) 通过计算 J 和 K^{θ}_{sp} ,判断沉淀的生成或溶解 比较溶液中 J (AgCl) 与 K^{θ}_{sp} (AgCl) 比较溶液中 J (Ag₂CrO₄) 与 K^{θ}_{sp} (Ag₂CrO₄)
- (2) 通过溶解度 s 计算

$$K_{\text{sp}}^{\theta} (\text{Ag}_{2}\text{CrO}_{4}) = 4s^{3} = 1.12 \times 10^{-12}$$

 $K_{\text{sp}}^{\theta} (\text{AgCl}) = s^{2} = 1.77 \times 10^{-10}$

$$\therefore s(Ag_2CrO_4) > s(AgCl)$$

$$K_{\rm sp}^{\theta}({\rm Ag_2CrO_4}) = 1.12 \times 10^{-12}, K_{\rm sp}^{\theta}({\rm AgCl}) = 1.77 \times 10^{-10}$$

(3) 通过计算总反应的标准平衡常数 K^{θ}

$$Ag_2CrO_4(s) + 2Cl^-(aq) \Longrightarrow 2AgCl(s) + CrO_4^{2-}(aq)$$

$$Ag_{2}CrO_{4}(s) = 2Ag^{+}(aq) + CrO_{4}^{2-}(aq) (1)$$

$$K^{\theta}_{sp}(Ag_{2}CrO_{4})$$

$$2AgCl(s) \Longrightarrow 2Ag^{+}(aq) + 2Cl^{-}(aq) (2)$$
$$[K^{\theta}_{sp}(AgCl)]^{2}$$

$$K^{\theta} = \frac{K^{\theta}_{sp}(Ag_2CrO_4)}{[K^{\theta}_{sp}(AgCl)]^2} = \frac{1.12 \times 10^{-12}}{(1.77 \times 10^{-10})^2} = 3.57 \times 10^7$$

3. 沉淀滴定法

- > 沉淀滴定的条件
- 沉淀反应完全程度高
- 沉淀组成固定,溶解度小
- 反应迅速, 达到平衡时间短
- 有合适的指示终点的方法

银量法: 生成难溶性银盐反应为基础的沉淀方法

定量

恒定的化学计量关系

$$Ag^+ + X^- \rightarrow AgX \downarrow X^- = Cl^-$$
、Br-、I-等

指示剂:过量滴定剂与指示剂反应形成另一种不

同颜色的沉淀而指示终点到达

> 铬酸钾指示剂法

AgNO₃ 滴定 Cl⁻或 Br⁻,K₂CrO₄ 为指示剂

等当点前: Ag⁺ + Cl⁻ → AgCl ↓ 白色

等当点: 2Ag⁺ + CrO₄²⁻ → Ag₂CrO₄ ↓ 砖红色

滴定条件

- 指示剂用量控制
- 酸度控制
- 滴定时充分振摇
- 预分离干扰离子
- 适用范围

 CrO_4^{2-} 浓度约为0.005 mol·L⁻¹ pH = 6.5 ~ 10.5

使沉淀吸附的CI-或 Br-及时释放

PO₄³⁻、CO₃²⁻、Pb²⁺、Cu²⁺等

不适用 I-, AgI 强吸附作用,

终点不明显

6.5 配位平衡

- 1. 配位平衡
- > 配离子的解离平衡

$$CuSO_4 + 2NH_3 \cdot H_2O = Cu(OH)_2 + (NH_4)_2SO_4$$

$$Cu(OH)_2 + 4NH_3 \cdot H_2O = [Cu(NH_3)_4]^{2+} + 2OH^- + 4H_2O$$

实验:将铜氨配离子溶液分为三份

(1) Ba²⁺ + SO₄²⁻ == BaSO₄
$$\downarrow K_{sp}^{\theta}(CuS) = 1.27 \times 10^{-36}$$

(2) 加 OH⁻ 无变化, c(Cu²⁺) 很低,不形成 Cu(OH)₂ ↓

(3)
$$[Cu(NH_3)_4]^{2+} + S^{2-} = CuS(s) \downarrow + 4NH_3$$

[Cu(NH₃)₄]SO₄配合物溶液中,有极少量 Cu²⁺, 表明 [Cu(NH₃)₄]²⁺发生了解离平衡:

$$[Cu(NH_3)_4]^{2+} \longrightarrow Cu^{2+} + 4NH_3$$

标准平衡常数

$$K^{\theta}$$
 不稳 =
$$\frac{[c(Cu^{2+})/c^{\theta}][c(NH_3)/c^{\theta}]^4}{c\{[Cu(NH_3)_4]^{2+}\}/c^{\theta}}$$

简写

$$K^{\theta}$$
 不稳 = $\frac{c(\text{Cu}^{2+})[c(\text{NH}_3)]^4}{c\{[\text{Cu}(\text{NH}_3)_4]^{2+}\}}$

Κ^θ_{不稳}: 不稳定常数,数值越大,表明配合物越不稳定,解离程度越大,常见配离子不稳定常数见附录五

> 累积不稳定/稳定常数

由于配体是多个,配合物解离是分步进行的,每步都有一解离平衡,存在相应的标准平衡常数 $K^{\theta}_{7,0}$, $K^{\theta}_{7,0}$, $K^{\theta}_{7,0}$, $K^{\theta}_{7,0}$, ..., 称分级不稳定常数

 $[Cu(NH_3)_4]^{2+}$ 配离子的各级平衡:

$$[Cu(NH_3)_4]^{2+}$$
 — $[Cu(NH_3)_3]^{2+}$ + NH₃ $K^{\theta}_{\pi t 1}$
 $[Cu(NH_3)_3]^{2+}$ — $[Cu(NH_3)_2]^{2+}$ + NH₃ $K^{\theta}_{\pi t 2}$
 $[Cu(NH_3)_2]^{2+}$ — $[CuNH_3]^{2+}$ + NH₃ $K^{\theta}_{\pi t 3}$
 $[CuNH_3]^{2+}$ — Cu^{2+} + NH₃ $K^{\theta}_{\pi t 4}$

显然 $K^{\theta}_{\text{不稳}} = K^{\theta}_{\text{不稳}1} \cdot K^{\theta}_{\text{不稳}2} \cdot K^{\theta}_{\text{不稳}3} \cdot K^{\theta}_{\text{不稳}4}$

同样,也可用配离子生成,即配位反应的标准 平衡常数,衡量其稳定性

如 $[Cu(NH_3)_4]^{2+}$ 配离子的形成:

$$Cu^{2+} + 4NH_3 \longrightarrow [Cu(NH_3)_4]^{2+}$$

简写
$$K^{\theta} \approx \frac{c\{[\text{Cu(NH}_3)_4]^{2+}\}}{c(\text{Cu}^{2+})[c(\text{NH}_3)]^4}$$

 K^{θ}_{a} : 稳定常数,数值越大,表明配合物越稳定,解 离程度越小,也称累积稳定常数 配离子形成也是分步进行的,每一步配位反应,也存在分步配位反应的标准平衡常数,即**分级稳定常数** $K^{\theta}_{a_1}, K^{\theta}_{a_2}, K^{\theta}_{a_3}, \dots$

显然,根据多重平衡法则

$$K^{\theta}_{a} = K^{\theta}_{a_1} \cdot K^{\theta}_{a_2} \cdot K^{\theta}_{a_3} \cdot K^{\theta}_{a_4}$$

并且

$$K^{\theta}_{1} = 1/K^{\theta}_{7}$$
 不稳4, $K^{\theta}_{1} = 1/K^{\theta}_{7}$ 不稳3, ...

配离子的解离平衡或配位平衡的移动

遵守平衡移动原理: 配离子溶液中加入某种电解质, 平衡将向生成更难溶物质或更稳定的配离子方向移动

$$[\operatorname{Cu}(\operatorname{NH}_3)_4]^{2+} \longrightarrow \operatorname{Cu}^{2+} + 4\operatorname{NH}_3 + \operatorname{S}^{2-} \longrightarrow \operatorname{CuS}(s) \downarrow$$

溶液颜色变浅

$$[Cu(NH3)4]2+ \longrightarrow Cu2+ + 4NH3 + 4H+ \longrightarrow 4NH4+$$

配离子稳定性

与中心离子和配体的结构、电荷、半径等诸多因素有关,一般:

- 过渡金属离子形成的配合物比主族金属离子形成的配合物稳定;
- ▶ 同一金属, 高价态的离子形成的配合物比低价态的 离子形成的配合物稳定;
- > 螯合物比具有相同配位原子的非螯合物稳定

配合物的应用

(1) 判断配离子与配离子、配离子与难溶物的转化

利用配离子的 K^0_{R} 可判断配离子与另一种配离子、配离子与难溶物间的相互转化

相同类型配离子可用 K^{θ} _{不稳} 直接判断

[Ag(NH₃)₂]⁺
$$\longrightarrow$$
 Ag⁺ + 2NH₃
 $K^{\theta}_{\pi \hat{\otimes}} \{ [Ag(NH_3)_2]^+ \} = 8.91 \times 10^{-8}$

[Ag(CN)₂]⁻
$$\longrightarrow$$
 Ag⁺ + 2CN⁻
 $K^{\theta}_{\pi \hat{\otimes}} \{ [Ag(CN)_{2}]^{-} \} = 7.94 \times 10^{-22}$

$$[Ag(NH_3)_2]^+ + 2CN^- \longrightarrow [Ag(CN)_2]^- + 2NH_3$$

不同类型配离子、配离子与难溶盐转化,要计算

总反应的标准平衡常数 K^{θ} 不稳 K^{θ}_{sp} 1.77 × 10^{-10} $NH_3 \cdot H_2O$ $[Ag(NH_3)_2]^+ \longrightarrow Ag^+ + 2NH_3 \qquad 8.91 \times 10^{-8}$ 淡黄色 $AgBr(s) \longrightarrow Ag^+ + Br^-$ 沉淀 $Ag^+ + Br^ 5.35 \times 10^{-13}$ $\int S_2O_3^{2-}$ $[Ag(S_2O_3)_2]^{3-} \longrightarrow Ag^+ + 2S_2O_3^{2-} \quad 3.46 \times 10^{-14}$ 黄色 $AgI(s) \longrightarrow Ag^+ + I^-$ 江淀 $AgI(s) \longrightarrow Ag^+ + I^ 8.51 \times 10^{-17}$ $[Ag(CN)_2]^- \longrightarrow Ag^+ + 2CN^- \qquad 7.94 \times 10^{-22}$ 黑色 S^{2-} 沉淀 $Ag_2S \longrightarrow 2Ag^+ + S^{2-}$ 6.3×10^{-50}

【例题4】计算 AgBr 在 1.0 mol·L-1 氨水中的溶解度。

已知:
$$K^{\theta}_{\$}\{[Ag(NH_3)_2]^+\} = 1.12 \times 10^7$$

 $K^{\theta}_{\$p}(AgBr) = 5.35 \times 10^{-13}$

解:
$$AgBr + 2NH_3 \Longrightarrow [Ag(NH_3)_2]^+ + Br^-$$
 平衡 (mol·L⁻¹) $1.0 - 2s$ s s

$$K^{\theta}_{\text{\tiny R}}$$
{ [Ag(NH₃)₂]⁺}· K^{θ}_{sp} (AgBr)= 5.99 × 10⁻⁶ = $\frac{s^2}{(1.0-2s)^2}$
≈ s^2

$$s = 2.45 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$$

AgBr 在氨水中溶解度不大,或者说 AgBr 难溶于氨水

这类<mark>沉淀和配位</mark>的多重平衡在生产和科学实验中 均有广泛应用:

ightharpoonup 必须要用海波 $(Na_2S_2O_3)$ 溶液溶解胶片上未感光的 AgBr 乳胶,而不是用氨水

 \rightarrow 可用生成 Ag_2S 沉淀的方法回收 $Ag(S_2O_3)_2^{3-}$ 定影液或 $Ag(CN)_2^-$ 电镀液中的 Ag^+

(2) 配合物在其他方面的应用

分析化学

$$Fe^{3+}$$
 + SCN⁻ \Longrightarrow [Fe(SCN)]²⁺ 血红色

定性鉴定

$$Fe^{3+}$$
 + $[Fe(CN)_6]^{4-}$ + K^+ + H_2O — KFe $[Fe(CN)_6]\cdot H_2O$ ↓ 普鲁士蓝↓

定量分析

生物体中的配合物

已知的多种生物酶,约 1/3 是复杂金属离子配合物,金属离子(Cu²⁺、Zn²⁺、Fe²⁺等) 起催化剂作用,如起光合作用的叶绿素,起运送氧作用的血红素

叶绿素

血红素

2. 配位滴定法

- ➤ 螯合剂是最常用的滴定试剂 EDTA 二钠盐
- > 金属离子指示剂

能与金属离子生成有色配合物,指示滴定过程中金属离子浓度变化的显色剂

> 酸度选择和控制

> 指示剂的封闭与消除

- 指示剂的封闭:某些 M 与 In 生成极稳定配合物, 过量 EDTA 不能从 MIn 中将金属离子夺出,等当
 - 点时指示剂不变色或终点推后
- 消除: 加入掩蔽剂
- ➤ 常用金属离子指示剂 铬黑 T (EBT)
- 终点: 酒红→纯蓝 适宜 pH: 7.0~11.0
- 缓冲体系: NH₃-NH₄Cl
- 封闭离子: Al³⁺、Fe³⁺、Cu²⁺、Ni²⁺
- 掩蔽剂:三乙醇胺

6.6 氧化还原平衡

- 1. 氧化还原反应
- > 氧化还原反应概念的发展

$$2Mg + O_2 = MgO$$

与氧结合

$$Zn + Cu^{2+} == Zn^{2+} + Cu$$

电子得失

$$2P + 3Cl_2 = 2PCl_3$$

电子偏移

定义: 在化学反应过程中有电子得失或偏移的反应 称氧化还原反应

> 氧化数

又称氧化态或氧化值,表示一种元素的原子在 化合物中所带的形式 (表观) 电荷数

与中学化学中所讲的化合价概念总体是一致的, 但化合价只能是整数,氧化数可以为分数

确定氧化数的原则:

- (1) 单质中元素原子的氧化数等于零;
- (2) 离子化合物中,元素原子的氧化数等于相应离子的 正、负电荷数;

NaCl: Na 的氧化数为 + 1, Cl 的氧化数为 - 1

复杂离子中,所有元素原子氧化数的代数和等于该 离子的电荷数

 $S_4O_6^{2-}$: S 的氧化数为 + 5/2

Fe₃O₄: Fe 的氧化数为 + 8/3

(3) 共价化合物中,电负性较大的元素氧化数为负,电 负性较小元素的氧化数为正,总的代数和为零;

 CH_4 : C 的氧化数为 -4,H 的氧化数 +1

(4) 氢的氧化数为 + 1 或 – 1 (在盐型氢化物中);

BaH₂: H 的氧化数为 -1

氧的氧化数一般为-2,在过氧化物中为-1;

H₂O₂: O 的氧化数为 - 1

氟化物 OF_2 、 O_2F_2 中 O 的氧化数分别为 + 2 和 + 1

各元素可能存在的氧化数与它在周期表中的位置 密切相关,大多数元素的最高氧化态都等于它们的族 数。了解各元素常见氧化态,对系统掌握无机化学知 识很有帮助

根据氧化数的概念,重新定义氧化还原反应:

在化学反应过程中由于有电子得失或偏移,从而引起元素氧化数改变的反应称<mark>氧化还原反应</mark>

> 氧化还原反应的相关概念

氧化反应和还原反应

反应中失去电子或电子偏离,使元素氧化数升高的反应称**氧化反应**;

反应中得到电子或电子偏近,使元素氧化数降低的反应称<mark>还原反应</mark>

氧化剂和还原剂

失去电子或电子偏离,使本身氧化数升高的物质叫<mark>还原剂</mark>;

得到电子或电子偏近,使本身氧化数降低的物质叫氧化剂

$$Zn + Cu^{2+} = Zn^{2+} + Cu$$

还原剂: Zn 氧化剂: Cu^{2+}

氧化半反应和还原半反应

$$Zn + Cu^{2+} = Zn^{2+} + Cu$$

氧化半反应:
$$Zn - 2e^- \longrightarrow Zn^{2+}$$

还原剂失去电子被氧化

还原半反应:
$$Cu^{2+} + 2e^{-} \longrightarrow Cu$$

氧化剂得到电子被还原

氧化半反应

Fe²⁺ - e⁻
$$\longrightarrow$$
 Fe³⁺

Pb - 2e⁻ + SO₄²⁻ \longrightarrow PbSO₄

2Hg - 2e⁻ + 2Cl⁻ \longrightarrow Hg₂Cl₂

还原半反应

$$Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$$
 $PbSO_4 + 2e^{-} \longrightarrow Pb + SO_4^{2-}$
 $Hg_2Cl_2 + 2e^{-} \longrightarrow 2Hg + 2Cl^{-}$

氧化态和还原态

每一半反应都分别包含着同一元素不同氧化态的两种物质:氧化数较高的物质叫氧化态,氧化数较低的物质叫还原态

氧化半反应: $Zn - 2e^- \longrightarrow Zn^{2+}$

还原态 氧化态

还原半反应: $Cu^{2+} + 2e^{-} \longrightarrow Cu$

氧化态 还原态

氧化半反应: $Zn - 2e^- \longrightarrow Zn^{2+}$

还原态 - $2e^-$ 氧化态

还原半反应: $Cu^{2+} + 2e^{-} \longrightarrow Cu$

氧化态 $+ 2e^- \longrightarrow$ 还原态

一般表达式: 氧化态 + ne- — 还原态

一般表达式: 氧化态 + ne- — 还原态

氧化还原电对

上述关系式称为氧化还原电对,常表示为:

氧化态 / 还原态

这种同一元素的氧化态和还原态的彼此依靠、相互转化的关系,是一种共<mark>轭关系</mark>

氧化态 / 还原态

$$Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$$

$$Fe^{3+}/Fe^{2+}$$

$$PbSO_4 + 2e^- \longrightarrow Pb + SO_4^2 - PbSO_4/Pb$$

$$Hg_2Cl_2 + 2e^- \longrightarrow 2Hg + 2Cl^- \qquad Hg_2Cl_2 / Hg$$

> 氧化还原电对的特点

(1) 氧化还原电对构成了同一元素的共轭关系: 强的氧化态对应弱的还原态

强氧化剂 1 + 强还原剂 2 → 弱还原剂 1 + 弱氧化剂 2

弱的氧化态对应强的还原态

例如: $Cr_2O_7^{2-}/Cr^{3+}$, $I_2/I^ Cr_2O_7^{2-}+I^-\longrightarrow Cr^{3+}+I_2$

(2) 物质的氧化性和还原性是相对的

例如: Cr^{3+}/Cr , $Cr_2O_7^{2-}/Cr^{3+}$

2. 氧化还原反应方程式配平 (离子-电子法)

离子-电子法配平原则:

A. 得失电子总数相等; B. 反应前后原子数相等

离子-电子法配平步骤:

1. 分解

3. 合并

2. 配平

4. 检查

【例题1】配平反应方程式

$$MnO_4^- + SO_3^{2-} + H^+ \longrightarrow Mn^{2+} + SO_4^{2-} + H_2O$$

写出半反应式:

$$MnO_4^- + 5e^- \longrightarrow Mn^{2+}$$

 $SO_3^{2-} - 2e^- \longrightarrow SO_4^{2-}$

配平半反应式:

$$MnO_4^- + 5e^- + 8H^+ \longrightarrow Mn^{2+} + 4H_2O \times 2$$

 $SO_3^{2-} - 2e^- + H_2O \longrightarrow SO_4^{2-} + 2H^+ \times 5$

+)
$$2MnO_4^- + 5SO_3^{2-} + 6H^+ = 2Mn^{2+} + 5SO_4^{2-} + 3H_2O$$

【例题2】配平反应方程式

$$MnO_4^- + SO_3^{2-} + OH^- \longrightarrow MnO_4^{2-} + SO_4^{2-} + H_2O$$

写出半反应式:

$$MnO_4^- + e^- \longrightarrow MnO_4^{2-}$$

 $SO_3^{2-} - 2e^- \longrightarrow SO_4^{2-}$

配平半反应式:

$$MnO_4^- + e^- \longrightarrow MnO_4^{2-} \times 2$$

$$SO_3^{2-} - 2e^- + 2OH^- \longrightarrow SO_4^{2-} + H_2O \times 1$$

+)
$$2MnO_4^- + SO_3^{2-} + 2OH^- = 2MnO_4^{2-} + SO_4^{2-} + H_2O$$

【例题3】配平反应方程式

$$MnO_4^- + SO_3^{2-} + H_2O \longrightarrow MnO_2(s) + SO_4^{2-}$$

写出半反应式:

$$MnO_4^- + 3e^- \longrightarrow MnO_2(s)$$

 $SO_3^{2-} - 2e^- \longrightarrow SO_4^{2-}$

配平半反应式:

$$MnO_4^- + 3e^- + 2H_2O \longrightarrow MnO_2(s) + 4OH^- \times 2$$

 $SO_3^{2-} - 2e^- + H_2O \longrightarrow SO_4^{2-} + 2H^+ \times 3$

+)
$$2MnO_4^- + 3SO_3^{2-} + H_2O == 2MnO_2(s) + 3SO_4^{2-} + 2OH^-$$

参与反应的介质的配平

参与反应的介质: H^+ , OH^- , H_2O

介质种类	反应物中	
	多一个O (需消耗)	少一个O (需提供)
酸性	$2H^+ \xrightarrow{O} H_2O$	$H_2O \xrightarrow{-O} 2H^+$
碱性	$H_2O \xrightarrow{O} 2OH^-$	$2OH^{-} \xrightarrow{-O} H_{2}O$
中性	$H_2O \xrightarrow{O} 2OH^-$	$H_2O \xrightarrow{-O} 2H^+$

配平注意事项

总原则: 写出的方程式必须与实验事实相符

▶ 反应介质:

酸性介质中,不能出现 OH-碱性介质中,不能出现 H+

- 难溶或弱电解质应写成分子形式
- > 注明沉淀的生成,气体的产生等

3. 氧化还原反应的标准平衡常数

氧化还原反应进行的限度可用反应的标准平衡 常数 K^0 表示

$$\Delta_{\rm r}G^{\theta}_{\rm m} = -RT \ln K^{\theta}$$

 ΔG 物理意义: 恒温恒压下,系统所做最大有用功

恒温恒压下
$$\Delta_{\mathbf{r}}G^{\theta}_{\mathbf{m}} = W'_{\mathbf{max}} = -nFE^{\theta}$$

$$RT \ln K^{\theta} = nFE^{\theta}$$

$$E^{\theta} = (RT/nF) \ln K^{\theta}$$

两电对标准电极电势相差越大, E^{θ} 越大, K^{θ} 越大,氧化还原反应进行得越完全

4. 氧化还原滴定

氧化还原反应的速度氧化剂或还原剂的性质、浓度、温度、催化剂

> 指示剂

自身指示剂:MnO₄— 粉红色

特殊指示剂:淀粉 + I₃- 深蓝色配合物

分类与应用高锰酸钾法、重铬酸钾法、碘量法等

➤ KMnO₄法

原理

$$MnO_4^- + 5e + 8H^+ \longrightarrow Mn^{2+} + 4H_2O$$
 $E^{\theta} = 1.51V$ 常用

$$MnO_4^- + 2H_2O + 3e \implies MnO_2 \downarrow + 4OH^- \quad E^\theta = 0.59 \text{ V}$$

$$MnO_4^- + e \longrightarrow MnO_4^{2-}$$
 $E^\theta = 0.56 \text{ V}$

► K₂Cr₂O₇ 法

原理

$$Cr_2O_7^{2-} + 4H^+ + 6e \implies 2Cr^{3+} + 7H_2O \qquad E^{\theta} = 1.33 \text{ V}$$

优点:

易提纯,可用作标准物质,溶液稳定不与Cl-反应,可在 HCl 介质进行

缺点:

滴定时需指示剂: $K_2Cr_2O_7$ (橙色)、 Cr^{3+} (绿色) 氧化能力低于 $KMnO_4$, $KMnO_4$ 应用更广有毒

> 碘量法

原理

$$I_2 + 2e \longrightarrow I^- \qquad E^{\theta} = 0.53 \text{ V}$$

特点:

 I_2/I^- 电对的可逆性好,副反应少电极电位在很大 pH 范围内 (pH < 9) 不受酸度影响以淀粉为指示剂,灵敏度高

第六章 小结

■ 1. 弱电解质溶液的特性

单相离子平衡:一元弱酸、弱碱的解离平衡和解

离常数,解离度、pH计算,稀释

定律

同离子效应

缓冲溶液的配制和有关计算

■ 2. 多相离子平衡

难溶电解质溶液的溶度积和溶解度

溶度积规则和应用

■ 3. 配位平衡

配离子的解离平衡 配位平衡的移动

■ 4. 氧化还原平衡

氧化还原电对 氧化还原方程式<mark>半反应式法的配平</mark> 氧化还原反应的标准平衡常数