

Correcting a Single Deletion in Reads from a Nanopore Sequencer

Anisha Banerjee¹

Joint work with Yonatan Yehezkeally¹, Antonia Wachter-Zeh¹, and Eitan Yaakobi²

¹Technical University of Munich Institute for Communications Engineering

²Technion – Israel Institute of Technology Department of Computer Science

Tun Vhoruturm

July 8, 2024

Outline

Introduction

Channel Model

Minimum Redundancy

Multiple Reads

Conclusion

Introduction

Channel Mode

Minimum Redundancy

Multiple Reads

Conclusion

Motivation

- Need for dense, reliable, robust storage media
 - ► Molecular storage paradigms e.g., DNA storage.¹

¹ R. Heckel *et al.*, "A characterization of the DNA data storage channel," *Scientific Reports*, 2019

² D. Deamer et al., "Three decades of nanopore sequencing," Nat. Biotech., 2016

² A. H. Laszlo *et al.*, "Decoding long nanopore sequencing reads of natural DNA," *Nat. Biotech.*, 2014

Motivation

- Need for dense, reliable, robust storage media
 - ► Molecular storage paradigms e.g., DNA storage.¹
- Faster, cheaper sequencers in development.

¹ R. Heckel *et al.*, "A characterization of the DNA data storage channel," *Scientific Reports*, 2019

² D. Deamer et al., "Three decades of nanopore sequencing," Nat. Biotech., 2016

² A. H. Laszlo et al., "Decoding long nanopore sequencing reads of natural DNA," Nat. Biotech., 2014

Motivation

- Need for dense, reliable, robust storage media
 - ► Molecular storage paradigms e.g., DNA storage.¹
- Faster, cheaper sequencers in development.
- Nanopore sequencing²:
 - + Can read longer DNA strands
 - + More portable
 - High error rates

Source: "Decoding DNA with a pocket-sized sequencer," Science in School. //www.scienceinschool.org/article/2018/ decoding-dna-pocket-sized-sequencer/

¹ R. Heckel et al., "A characterization of the DNA data storage channel," Scientific Reports, 2019

² D. Deamer et al., "Three decades of nanopore sequencing," Nat. Biotech., 2016

² A. H. Laszlo et al., "Decoding long nanopore sequencing reads of natural DNA," Nat. Biotech., 2014

Motivation.

101,100,201

- Need for dense, reliable, robust storage media
 - ► Molecular storage paradigms e.g., DNA storage.¹
- Faster, cheaper sequencers in development.
- Nanopore sequencing²:
 - + Can read longer DNA strands
 - + More portable
 - High error rates
- Aim: Design coding techniques tailored for nanopore sequencing!

SOURCE: "Decoding DNA with a pocket-sized sequencer," Science in School. https://www.scienceinschool.org/article/2018/decoding-dna-pocket-sized-sequencer/

¹ R. Heckel *et al.*, "A characterization of the DNA data storage channel," *Scientific Reports*, 2019

² D. Deamer et al., "Three decades of nanopore sequencing," Nat. Biotech., 2016

² A. H. Laszlo *et al.*, "Decoding long nanopore sequencing reads of natural DNA," *Nat. Biotech.*, 2014

Nanopore Sequencing

 $\textbf{Source: "What is Oxford Nanopore Technology (ONT) sequencing?", https://www.yourgenome.org/facts/what-is-oxford-nanopore-technology-ont-sequencing/", https://www.yourgenome.org/", https://www.yourgenome.o$

- Sources of noise [MDK18] :
 - ▶ Nanopore holds $\ell > 1$ nucleotides at a time \rightarrow Intersymbol interference (ISI)!
 - \blacktriangleright Strand moves irregularly \rightarrow backtracking & skipping.
 - Noisy measurements

[MDK18] W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," T/T, 2018

- [MDK18] → Mathematical model, capacity bounds.
- [HCW21] → Algorithm to compute capacity of an abstracted, deterministic channel model.
- $[MVS22] \rightarrow Finite$ -state semi-Markov channel model with major noise sources.

[MDK18] W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," TIT, 2018 [HCW21] R. Hulett et al., "On coding for an abstracted nanopore channel for DNA storage," in ISIT, 2021 [MVS22] B. McBain et al., "Finite-state semi-markov channels for nanopore sequencing," in ISIT, 2022 [CVVY21] Y. M. Chee et al., "Coding for transverse-reads in domain wall memories," in ISIT, 2021 [BYWY24] A. Banerjee et al., "Error-correcting codes for nanopore sequencing," TIT, 2024 [YEY24] O. Yerushalmi et al., "The capacity of the weighted read channel," in ISIT, 2024 [CIV24] Y. M. Chee et al., "Coding scheme for noisy nanopore sequencing with backtracking and skipping errors," in ISIT, 2024

- [MDK18] → Mathematical model, capacity bounds.
- ullet [HCW21] \to Algorithm to compute capacity of an abstracted, deterministic channel model.
- $\bullet \quad [\text{MVS22}] \quad \to \text{Finite-state semi-Markov channel model with major noise sources}.$
- [CVVY21] considered a similar channel for racetrack memories:
 - ightarrow Computed information limits, proposed error-correcting codes.

[MDK18] W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," TIT, 2018 [HCW21] R. Hulett et al., "On coding for an abstracted nanopore channel for DNA storage," in ISIT, 2021 [MVS22] B. McBain et al., "Finite-state semi-markov channels for nanopore sequencing," in ISIT, 2022 [CVVY21] Y. M. Chee et al., "Coding for transverse-reads in domain wall memories," in ISIT, 2021 [BYWY24] A. Banerjee et al., "Error-correcting codes for nanopore sequencing," TIT, 2024 [YEY24] O. Yerushalmi et al., "The capacity of the weighted read channel," in ISIT, 2024 [CIV24] Y. M. Chee et al., "Coding scheme for noisy nanopore sequencing with backtracking and skipping errors," in ISIT, 2024

- [MDK18] → Mathematical model, capacity bounds.
- [HCW21] → Algorithm to compute capacity of an abstracted, deterministic channel model.
- $[MVS22] \rightarrow Finite$ -state semi-Markov channel model with major noise sources.
- [CVVY21] considered a similar channel for racetrack memories:
 - → Computed information limits, proposed error-correcting codes.
- [BYWY24] → Optimal single-substitution-correcting code for this channel.

[MDK18] W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," TIT, 2018 [HCW21] R. Hulett et al., "On coding for an abstracted nanopore channel for DNA storage," in ISIT, 2021 [MVS22] B. McBain et al., "Finite-state semi-markov channels for nanopore sequencing," in ISIT, 2022 [CVVY21] Y. M. Chee et al., "Coding for transverse-reads in domain wall memories," in ISIT, 2021 [BYWY24] A. Banerjee et al., "Error-correcting codes for nanopore sequencing," TIT, 2024 [YEY24] O. Yerushalmi et al., "The capacity of the weighted read channel," in ISIT, 2024 [CIV24] Y. M. Chee et al., "Coding scheme for noisy nanopore sequencing with backtracking and skipping errors," in ISIT, 2024

- [MDK18] → Mathematical model, capacity bounds.
- $\bullet \quad [HCW21] \quad \to Algorithm \ to \ compute \ capacity \ of \ an \ abstracted, \ deterministic \ channel \ model.$
- $\bullet \quad [\text{MVS22}] \quad \to \text{Finite-state semi-Markov channel model with major noise sources}.$
- [CVVY21] considered a similar channel for racetrack memories:
 - ightarrow Computed information limits, proposed error-correcting codes.
- $[BYWY24] \rightarrow Optimal single-substitution-correcting code for this channel.$
- $\bullet \ \, \text{At ISIT'24} \rightarrow \text{[YEY24]} \;, \text{[CIV24]} \;, \ldots$

```
[MDK18] W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," TIT, 2018 [HCW21] R. Hulett et al., "On coding for an abstracted nanopore channel for DNA storage," in ISIT, 2021 [MVS22] B. McBain et al., "Finite-state semi-markov channels for nanopore sequencing," in ISIT, 2022 [CVVY21] Y. M. Chee et al., "Coding for transverse-reads in domain wall memories," in ISIT, 2021 [BYWY24] A. Banerjee et al., "Error-correcting codes for nanopore sequencing," TIT, 2024 [YEY24] O. Yerushalmi et al., "The capacity of the weighted read channel," in ISIT, 2024 [CIV24] Y. M. Chee et al., "Coding scheme for noisy nanopore sequencing with backtracking and skipping errors," in ISIT, 2024
```

Introduction

Channel Model

Minimum Redundancy

Multiple Reads

Conclusion

W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," TIT, 2018

5

We model

- ISI as length-ℓ-sliding window
- Skipping effects as deletions

W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," TIT, 2018

We model

- ISI as length-ℓ-sliding window
- Skipping effects as deletions

- Input $\mathbf{x} \in \{0, 1\}^n$
- DMC maps ℓ -mers to Hamming weights.

W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," T/T, 2018

We model

- ISI as length-ℓ-sliding window
- Skipping effects as deletions

Assumptions:

- Input $\mathbf{x} \in \{0, 1\}^n$
- DMC maps ℓ -mers to Hamming weights.

Example ($\ell = 3$)

$$(1,0,1,1,0,0) = \mathbf{x} \longrightarrow \ell \text{- windowing} \xrightarrow{\ell\text{-mers}} \operatorname{wt}(\cdot)$$

W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," TIT, 2018

We model

- ISI as length-ℓ-sliding window
- Skipping effects as deletions

Assumptions:

- Input $x \in \{0, 1\}^n$
- DMC maps ℓ -mers to Hamming weights.

Example ($\ell = 3$)

$$(1, 0, 1, 1, 0, 0) = x \longrightarrow \ell \text{- windowing} \xrightarrow{\ell\text{-mers}} \text{wt}(\cdot) \longrightarrow (1, 0, 0, 0)$$

W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," TIT, 2018

We model

- ISI as length-ℓ-sliding window
- Skipping effects as deletions

- Input $\mathbf{x} \in \{0, 1\}^n$
- DMC maps ℓ -mers to Hamming weights.

Example (
$$\ell = 3$$
)

$$(1,0,1,1,0,0) = \mathbf{x} \longrightarrow \ell \text{- windowing} \xrightarrow{\ell\text{-mers}} \operatorname{wt}(\cdot) \longrightarrow (1,1,0)$$

W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," TIT, 2018

We model

- ISI as length-ℓ-sliding window
- Skipping effects as deletions

- Input $x \in \{0, 1\}^n$
- DMC maps ℓ -mers to Hamming weights.

Example (
$$\ell = 3$$
)

$$(1,0,1,1,0,0) = x \longrightarrow \ell - \text{windowing} \xrightarrow{\ell\text{-mers}} \text{wt}(\cdot) \longrightarrow (1,1,2,0)$$

W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," TIT, 2018

We model

- ISI as length-ℓ-sliding window
- Skipping effects as deletions

- Input $x \in \{0, 1\}^n$
- DMC maps ℓ -mers to Hamming weights.

Example (
$$\ell = 3$$
)

$$(1, 0, 1, 1, 0, 0) = x \longrightarrow \ell - \text{windowing} \xrightarrow{\ell - \text{mers}} \text{wt}(\cdot) \longrightarrow (1, 1, 2, 2, 2, \dots)$$

W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," TIT, 2018

We model

- ISI as length-ℓ-sliding window
- Skipping effects as deletions

- Input $x \in \{0, 1\}^n$
- DMC maps ℓ -mers to Hamming weights.

Example (
$$\ell = 3$$
)

$$(1, 0, 1, 1, 0, 0) = x \longrightarrow \ell - \text{windowing} \xrightarrow{\ell - \text{mers}} \text{wt}(\cdot) \longrightarrow (1, 1, 2, 2, 2, 2, 0)$$

W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," TIT, 2018

We model

- ISI as length-ℓ-sliding window
- · Skipping effects as deletions

- Input $x \in \{0, 1\}^n$
- DMC maps ℓ -mers to Hamming weights.

Example (
$$\ell = 3$$
)

$$(1, 0, 1, 1, 0, 0) = \mathbf{x} \longrightarrow \ell \text{- windowing } \xrightarrow{\ell\text{-mers}} \text{wt}(\cdot) \longrightarrow (1, 1, 2, 2, 2, 1, 0)$$

W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," TIT, 2018

We model

- ISI as length-ℓ-sliding window
- Skipping effects as deletions

Assumptions:

- Input $x \in \{0, 1\}^n$
- DMC maps ℓ -mers to Hamming weights.

Example ($\ell = 3$)

$$(1,0,1,1,0,0) = \mathbf{x} \longrightarrow \ell - \text{windowing} \quad \text{wt}(\cdot) \quad \longrightarrow (1,1,2,2,1,0),$$

W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," TIT, 2018

We model

- ISI as length-ℓ-sliding window
- Skipping effects as deletions

Assumptions:

- Input $\mathbf{x} \in \{0, 1\}^n$
- DMC maps ℓ -mers to Hamming weights.

Example ($\ell = 3$)

$$(1,0,1,1,0,0) = \mathbf{x} \longrightarrow \ell \text{-windowing} \quad \text{wt}(\cdot) \quad \longrightarrow (1,1,2,2,1,0,0)$$

W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," TIT, 2018

We model

- ISI as length-ℓ-sliding window
- Skipping effects as deletions

Assumptions:

- Input $x \in \{0, 1\}^n$
- DMC maps ℓ -mers to Hamming weights.

Example ($\ell = 3$)

$$(1, 0, 1, 1, 0, 0) = \mathbf{x} \longrightarrow \ell - \text{windowing} \xrightarrow{\ell - \text{mers}} \text{wt}(\cdot) \longrightarrow (1, 1, 2, 2, 2, 1, 0, 0) = \mathcal{R}(\mathbf{x})$$

W. Mao et al., "Models and information-theoretic bounds for nanopore sequencing," TIT, 2018

Definition

The ℓ -*read vector* of any $\mathbf{x} \in \Sigma_2^n$ is

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n))$$

where $\operatorname{wt}(\cdot)$ denotes Hamming weight.

Definition

The ℓ -*read vector* of any $\mathbf{x} \in \Sigma_2^n$ is

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n))$$

where $\operatorname{wt}(\cdot)$ denotes Hamming weight.

Our Results

• $\geq \log n - \ell - o(1)$ min redundancy to correct 1 deletion.

Y. M. Chee et al., "Coding for transverse-reads in domain wall memories," in ISIT, 2021

Definition

The ℓ -*read vector* of any $\mathbf{x} \in \Sigma_2^n$ is

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n))$$

where $\operatorname{wt}(\cdot)$ denotes Hamming weight.

Our Results

- $\geq \log n \ell o(1)$ min redundancy to correct 1 deletion.
- 1-deletion correcting code, optimal up to additive constant.

Y. M. Chee et al., "Coding for transverse-reads in domain wall memories," in ISIT, 2021

Definition

The ℓ -*read vector* of any $\mathbf{x} \in \Sigma_2^n$ is

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n))$$

where $wt(\cdot)$ denotes Hamming weight.

Our Results

- $\geq \log n \ell o(1)$ min redundancy to correct 1 deletion.
- 1-deletion correcting code, optimal up to additive constant.
- No redundancy to reconstruct from two noisy ℓ -read vectors.

Y. M. Chee et al., "Coding for transverse-reads in domain wall memories," in ISIT, 2021

Error-correcting Code

Definition

C is a t- deletion ℓ -read code if for all $x, y \in C$,

$$D_t(\mathcal{R}(\boldsymbol{x})) \cap D_t(\mathcal{R}(\boldsymbol{y})) = \emptyset,$$

where $D_t(\cdot)$ is the *t*-deletion ball.

Error-correcting Code

Definition

C is a t- deletion ℓ -read code if for all $x, y \in C$,

$$D_t(\mathcal{R}(\boldsymbol{x})) \cap D_t(\mathcal{R}(\boldsymbol{y})) = \emptyset,$$

where $D_t(\cdot)$ is the *t*-deletion ball.

• Aim: Find an optimal 1-deletion ℓ -read code.

Definition (Read vector)

The ℓ -read vector of any $\mathbf{x} \in \Sigma_2^n$ is of length $n+\ell-1$ and denoted by

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n)).$$

Here $\mathcal{R}(\mathbf{x})_i = \operatorname{wt}(\mathbf{x}_{i-\ell+1}^i)$ where for $j \notin [n]$, let $x_j = 0$.

Definition (Read vector)

The ℓ -read vector of any $\mathbf{x} \in \Sigma_2^n$ is of length $n + \ell - 1$ and denoted by

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n)).$$

Here $\mathcal{R}(\boldsymbol{x})_i = \operatorname{wt}(\boldsymbol{x}_{i-\ell+1}^i)$ where for $j \notin [n]$, let $x_j = 0$.

$$\bullet \ \mathcal{R}(\boldsymbol{x})_i - \mathcal{R}(\boldsymbol{x})_{i-1} = x_i - x_{i-\ell}.$$

Definition (Read vector)

The ℓ -read vector of any $\mathbf{x} \in \Sigma_2^n$ is of length $n + \ell - 1$ and denoted by

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n)).$$

Here $\mathcal{R}(\boldsymbol{x})_i = \operatorname{wt}(\boldsymbol{x}_{i-\ell+1}^i)$ where for $j \notin [n]$, let $x_j = 0$.

- $\mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}$.
- x uniquely determined from the n-prefix of $\mathcal{R}(x)$.

Definition (Read vector)

The ℓ -read vector of any $\mathbf{x} \in \Sigma_2^n$ is of length $n + \ell - 1$ and denoted by

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n)).$$

Here $\mathcal{R}(\boldsymbol{x})_i = \operatorname{wt}(\boldsymbol{x}_{i-\ell+1}^i)$ where for $j \notin [n]$, let $x_j = 0$.

- $\mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}$.
- x uniquely determined from the n-prefix of $\mathcal{R}(x)$ mod 2.

Naive Deletion Correction

Definition (Read vector)

The ℓ -read vector of any $\mathbf{x} \in \Sigma_2^n$ is of length $n + \ell - 1$ and denoted by

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n)).$$

Here $\mathcal{R}(\boldsymbol{x})_i = \operatorname{wt}(\boldsymbol{x}_{i-\ell+1}^i)$ where for $j \notin [n]$, let $x_j = 0$.

- $\mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}$.
- x uniquely determined from the n-prefix of $\mathcal{R}(x)$ mod 2. \leftarrow Use VT code!

Naive Deletion Correction

Definition (Read vector)

The ℓ -read vector of any $\mathbf{x} \in \Sigma_2^n$ is of length $n + \ell - 1$ and denoted by

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n)).$$

Here $\mathcal{R}(\mathbf{x})_i = \operatorname{wt}(\mathbf{x}_{i-\ell+1}^i)$ where for $j \notin [n]$, let $x_j = 0$.

- $\bullet \ \mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}.$
- x uniquely determined from the n-prefix of $\mathcal{R}(x)$ mod 2. \leftarrow Use VT code!

Construction

$$C(n,\ell,a) = \{ \boldsymbol{x} \in \Sigma_2^n : \sum_{i=1}^n i(\mathcal{R}(\boldsymbol{x})_i \bmod 2) = a(\bmod n+1) \},$$

where $a \in \{0, \dots, n\}$.

Naive Deletion Correction

Definition (Read vector)

The ℓ -read vector of any $\mathbf{x} \in \Sigma_2^n$ is of length $n + \ell - 1$ and denoted by

$$\mathcal{R}(\boldsymbol{x}) = (\operatorname{wt}(x_1), \operatorname{wt}(\boldsymbol{x}_1^2), \dots, \operatorname{wt}(\boldsymbol{x}_{n-1}^n), \operatorname{wt}(x_n)).$$

Here $\mathcal{R}(\mathbf{x})_i = \operatorname{wt}(\mathbf{x}_{i-\ell+1}^i)$ where for $j \notin [n]$, let $x_j = 0$.

- $\bullet \ \mathcal{R}(\mathbf{x})_i \mathcal{R}(\mathbf{x})_{i-1} = x_i x_{i-\ell}.$
- x uniquely determined from the n-prefix of $\mathcal{R}(x)$ mod 2. \leftarrow Use VT code!

Construction

$$\mathcal{C}(n,\ell,a) = \{ \mathbf{x} \in \Sigma_2^n : \sum_{i=1}^n i(\mathcal{R}(\mathbf{x})_i \bmod 2) = a(\bmod n+1) \},$$
 where $a \in \{0,\ldots,n\}$.

 \rightarrow Requires $\log_2(n+1)$ redundant bits.

Introduction

Channel Mode

Minimum Redundancy

Multiple Reads

Conclusion

• ℓ -sticky deletion \to delete in a run with $\ge \ell$ bits.

• ℓ -sticky deletion \rightarrow delete in a run with $\geq \ell$ bits.

Example ($\ell = 3$)

$$\mathbf{x} = (1, 0, \underline{1, 1, 1, 1}, 0, 0, 0)$$

$$\mathcal{R}(\mathbf{x}) = (1, 1, 2, 2, 3, 3, 2, 1, 0, 0, 0)$$

• ℓ -sticky deletion \rightarrow delete in a run with $> \ell$ bits.

Example $(\ell = 3)$

Anisha Banerjee 9

• ℓ -sticky deletion \rightarrow delete in a run with $> \ell$ bits.

Example ($\ell = 3$)

Anisha Banerjee

• ℓ -sticky deletion \rightarrow delete in a run with $> \ell$ bits.

Example ($\ell = 3$)

- ℓ -Sticky deletion in $\mathbf{x} \to 0/\ell$ -deletion in $\mathcal{R}(\mathbf{x})$!
 - ▶ A 1-deletion ℓ -read code also corrects an ℓ -sticky deletion in message.

Lemma

Any single-deletion $\ell\text{-read}$ code is also a single- $\ell\text{-sticky-deletion-correcting}$ code.

Lemma

Any single-deletion ℓ -read code is also a single- ℓ -sticky-deletion-correcting code.

From [FVY15] and concentration arguments,

Theorem

The redundancy of any $\underline{\text{single-}\ell\text{-sticky-deletion-correcting code}}$ is bounded from below by

$$\log_2 n - \ell - o(1).$$

Lemma

Any single-deletion $\ell\text{-read}$ code is also a single- $\ell\text{-sticky-deletion-correcting}$ code.

From [FVY15] and concentration arguments,

Theorem

The redundancy of any

single-deletion $\ell\text{-read}$ code

is bounded from below by

$$\log_2 n - \ell - o(1).$$

[[]FVY15] A. Fazeli et al., "Generalized sphere packing bound," TIT, 2015

Lemma

Any single-deletion $\ell\text{-read}$ code is also a single- $\ell\text{-sticky-deletion-correcting}$ code.

From [FVY15] and concentration arguments,

Theorem

The redundancy of any

single-deletion $\ell\text{-read}$ code

is bounded from below by

$$\log_2 n - \ell - o(1).$$

→ Naive VT-like construction optimal up to additive constant!

[FVY15] A. Fazeli et al., "Generalized sphere packing bound," TIT, 2015

Introduction

Channel Mode

Minimum Redundanc

Multiple Reads

Conclusion

- 'Classical' $\rightarrow \ell = 1$.
- 'Nanopore' $\rightarrow \ell \geq 2$.

- 'Classical' $\rightarrow \ell = 1$.
- 'Nanopore' $\rightarrow \ell \geq$ 2.

	Classical	Nanopore
1 substitution	log n	¹ log log <i>n</i>
1 deletion	log n	$\log n - \ell$

¹ A. Banerjee et al., "Error-correcting codes for nanopore sequencing," TIT, 2024

- 'Classical' $\rightarrow \ell = 1$.
- 'Nanopore' $\rightarrow \ell \geq$ 2.

	Classical	Nanopore
1 substitution	log n	¹ log log <i>n</i>
1 deletion	log n	$\log n - \ell$

¹ A. Banerjee et al., "Error-correcting codes for nanopore sequencing," TIT, 2024

- 'Classical' $\rightarrow \ell = 1$.
- 'Nanopore' $\rightarrow \ell \geq$ 2.

	Classical	Nanopore
1 substitution	log n	¹ log log <i>n</i>
1 deletion	log n	$\log n - \ell$
1 deletion, 2 reads	² log log <i>n</i>	?

¹ A. Banerjee et al., "Error-correcting codes for nanopore sequencing," TIT, 2024

² J. Chrisnata *et al.*, "Correcting deletions with multiple reads," *TIT*, 2022

- 'Classical' $\rightarrow \ell = 1$.
- 'Nanopore' $\rightarrow \ell \geq$ 2.

	Classical	Nanopore
1 substitution	log n	¹ log log <i>n</i>
1 deletion	log n	$\log n - \ell$
1 deletion, 2 reads	² log log <i>n</i>	0

¹ A. Banerjee et al., "Error-correcting codes for nanopore sequencing," TIT, 2024

² J. Chrisnata *et al.*, "Correcting deletions with multiple reads," *TIT*, 2022

Lemma

When $\ell \geq 2$, for any two distinct $\boldsymbol{x}, \boldsymbol{y} \in \Sigma_2^n$,

$$|D_1(\mathcal{R}(\boldsymbol{x})) \cap D_1(\mathcal{R}(\boldsymbol{y}))| \leq 1.$$

Lemma

When $\ell \geq 2$, for any two distinct $\boldsymbol{x}, \boldsymbol{y} \in \Sigma_2^n$,

$$|D_1(\mathcal{R}(\boldsymbol{x})) \cap D_1(\mathcal{R}(\boldsymbol{y}))| \leq 1.$$

Proof sketch:

• [L01] \rightarrow Distinct x, y have

$$|D_1(x) \cap D_1(y)| \leq 2.$$

Lemma

When $\ell \geq 2$, for any two distinct $\boldsymbol{x}, \boldsymbol{y} \in \Sigma_2^n$,

$$|D_1(\mathcal{R}(\boldsymbol{x})) \cap D_1(\mathcal{R}(\boldsymbol{y}))| \leq 1.$$

Proof sketch:

• [L01] \rightarrow Distinct \boldsymbol{x} , \boldsymbol{y} have $|D_1(\mathcal{R}(\boldsymbol{x})) \cap D_1(\mathcal{R}(\boldsymbol{y}))| \leq 2$.

[L01] V. Levenshtein, "Efficient reconstruction of sequences," TIT, 2001
[BYWY24] A. Banerjee et al., "Error-correcting codes for nanopore sequencing," TIT, 2024
[CMNY22] K. Cai et al., "Coding for sequence reconstruction for single edits," TIT, 2022

Lemma

When $\ell \geq 2$, for any two distinct $\boldsymbol{x}, \boldsymbol{y} \in \Sigma_2^n$,

$$|D_1(\mathcal{R}(\mathbf{x})) \cap D_1(\mathcal{R}(\mathbf{y}))| \leq 1.$$

Proof sketch:

- [L01] \rightarrow Distinct \mathbf{x} , \mathbf{y} have $|D_1(\mathcal{R}(\mathbf{x})) \cap D_1(\mathcal{R}(\mathbf{y}))| \leq 2$.
- [BYWY24] \rightarrow For $\ell \geq 2$, distinct \boldsymbol{x} and \boldsymbol{y} satisfy $d_H(\mathcal{R}(\boldsymbol{x}), \mathcal{R}(\boldsymbol{y})) \geq 2$.

Lemma

When $\ell \geq 2$, for any two distinct $\boldsymbol{x}, \boldsymbol{y} \in \Sigma_2^n$,

$$|D_1(\mathcal{R}(\mathbf{x})) \cap D_1(\mathcal{R}(\mathbf{y}))| \leq 1.$$

Proof sketch:

- [L01] \rightarrow Distinct \mathbf{x} , \mathbf{y} have $|D_1(\mathcal{R}(\mathbf{x})) \cap D_1(\mathcal{R}(\mathbf{y}))| \leq 2$.
- [BYWY24] \rightarrow For $\ell \geq 2$, distinct \boldsymbol{x} and \boldsymbol{y} satisfy $d_H(\mathcal{R}(\boldsymbol{x}), \mathcal{R}(\boldsymbol{y})) \geq 2$.
- [CMNY22] $\rightarrow |D_1(\mathcal{R}(\textbf{\textit{x}})) \cap D_1(\mathcal{R}(\textbf{\textit{y}}))| = 2$ holds iff

$$\mathcal{R}(\mathbf{x}) = (\mathbf{a} \quad \alpha \beta \alpha \beta \dots \alpha \beta \quad \mathbf{b})$$

$$\mathcal{R}(\mathbf{y}) = (\mathbf{a} \ \beta \alpha \beta \alpha \dots \beta \alpha \ \mathbf{b})$$

[L01] V. Levenshtein, "Efficient reconstruction of sequences," TIT, 2001
[BYWY24] A. Banerjee et al., "Error-correcting codes for nanopore sequencing," TIT, 2024
[CMNY22] K. Cai et al., "Coding for sequence reconstruction for single edits," TIT, 2022

4周トイラトイラ)

Lemma

When $\ell \geq$ 2, for any two distinct ${\pmb x}, {\pmb y} \in \Sigma_2^n$,

$$|D_1(\mathcal{R}(\boldsymbol{x})) \cap D_1(\mathcal{R}(\boldsymbol{y}))| \leq 1.$$

Proof sketch:

- [L01] \rightarrow Distinct \mathbf{x} , \mathbf{y} have $|D_1(\mathcal{R}(\mathbf{x})) \cap D_1(\mathcal{R}(\mathbf{y}))| \leq 2$.
- [BYWY24] \rightarrow For $\ell \geq 2$, distinct \boldsymbol{x} and \boldsymbol{y} satisfy $d_H(\mathcal{R}(\boldsymbol{x}), \mathcal{R}(\boldsymbol{y})) \geq 2$.
- [CMNY22] $\rightarrow |D_1(\mathcal{R}(\mathbf{x})) \cap D_1(\mathcal{R}(\mathbf{y}))| = 2$ holds iff

$$\mathcal{R}(\mathbf{x}) = (\mathbf{a} \quad \alpha \beta \alpha \beta \dots \alpha \beta \quad \mathbf{b})$$
 \rightarrow Never occurs! $\mathcal{R}(\mathbf{v}) = (\mathbf{a} \quad \beta \alpha \beta \alpha \dots \beta \alpha \quad \mathbf{b})$

[L01] V. Levenshtein, "Efficient reconstruction of sequences," TIT, 2001
[BYWY24] A. Banerjee et al., "Error-correcting codes for nanopore sequencing," TIT, 2024
[CMNY22] K. Cai et al., "Coding for sequence reconstruction for single edits," TIT, 2022

• Can reconstruct from two noisy reads with no additional redundancy!

Can reconstruct from two noisy reads with no additional redundancy!

Algorithm: Reconstruct

Input: n, ℓ , set $\{\mathcal{R}', \mathfrak{R}'\} \subseteq D_1(\mathcal{R}(\textbf{\textit{x}}))$ for some $\textbf{\textit{x}} \in \Sigma_2^n$ Output: $\mathcal{R}(\textbf{\textit{x}})$

Can reconstruct from two noisy reads with no additional redundancy!

Can reconstruct from two noisy reads with no additional redundancy!

```
\label{eq:local_adjoint_problem} \begin{split} & \overline{\textbf{Algorithm:}} \  \, \text{Reconstruct} \\ & \overline{\textbf{Input:}} \  \, n, \ell, \text{ set } \{\mathcal{R}', \mathfrak{R}'\} \subseteq \mathcal{D}_1(\mathcal{R}(\textbf{\textit{x}})) \text{ for some } \textbf{\textit{x}} \in \Sigma_2^n \\ & \overline{\textbf{Output:}} \  \, \mathcal{R}(\textbf{\textit{x}}) \\ & 1 \  \, \text{init} \\ & 2 \  \, \Big[ \  \, \text{Let} \  \, \boldsymbol{i} \  \, \text{and} \  \, \boldsymbol{j} \  \, \text{be the first and last indices at which } \mathcal{R}' \text{ and } \mathfrak{R}' \text{ disagree.} \\ & 3 \  \, & \widehat{\mathcal{R}}(\textbf{\textit{x}}) \leftarrow (\mathcal{R}'_1, \dots, \mathcal{R}'_{l-1}, \  \, \mathfrak{R}'_l, \mathcal{R}'_l, \dots, \mathcal{R}'_{n+\ell-2}); \\ & 4 \  \, & \widehat{\mathcal{R}}(\textbf{\textit{x}}) \leftarrow (\mathcal{R}'_1, \dots, \mathcal{R}'_j, \  \, \mathfrak{R}'_j, \mathcal{R}'_{j+1}, \dots, \mathcal{R}'_{n+\ell-2}). \\ & 5 \  \, \text{if } \widehat{\mathcal{R}}(\textbf{\textit{x}}) \text{ is the $\ell$-read vector of any vector in } \Sigma_2^n \text{ then} \\ & 6 \  \, & \mathbb{R}(\textbf{\textit{x}}) \leftarrow \widehat{\mathcal{R}}(\textbf{\textit{x}}). \end{split}
```

Efficient verification process [BYWY23] .

[BYWY23] A. Banerjee et al., "Error-correcting codes for nanopore sequencing," in ISIT, 2023

Can reconstruct from two noisy reads with no additional redundancy!

Efficient verification process [BYWY23] .

[BYWY23] A. Banerjee et al., "Error-correcting codes for nanopore sequencing," in ISIT, 2023

Introduction

Channel Mode

Minimum Redundanc

Multiple Reads

Conclusion

Summary

Results

For a simplified model of nanopore sequencing, we show

- $\log n \ell o(1)$ min redundancy needed to correct 1 deletion.
- Explicit construction, optimal up to additive constant.
- $\ell \ge 2 \rightarrow No$ redundancy to recover from two noisy reads.

Summary

Results

For a simplified model of nanopore sequencing, we show

- $\log n \ell o(1)$ min redundancy needed to correct 1 deletion.
- Explicit construction, optimal up to additive constant.
- $\ell \ge 2 \rightarrow$ No redundancy to recover from two noisy reads.

Future work

- Multiple deletions & combination with substitutions.
- Levenshtein's sequence reconstruction for ℓ -read vectors.

Summary

Results

For a simplified model of nanopore sequencing, we show

- $\log n \ell o(1)$ min redundancy needed to correct 1 deletion.
- Explicit construction, optimal up to additive constant.
- $\ell \ge 2 \rightarrow$ No redundancy to recover from two noisy reads.

Future work

- Multiple deletions & combination with substitutions.
- Levenshtein's sequence reconstruction for ℓ -read vectors.

Thank you!

References I

- [1] R. Heckel, G. Mikutis, and R. N. Grass, "A characterization of the DNA data storage channel," *Scientific Reports*, vol. 9, no. 9663, Jul. 2019.
- [2] D. Deamer, M. Akeson, and D. Branton, "Three decades of nanopore sequencing," *Nat. Biotech.*, vol. 34, no. 5, pp. 518–524, May 2016.
- [3] A. H. Laszlo *et al.*, "Decoding long nanopore sequencing reads of natural DNA," *Nat. Biotech.*, vol. 32, no. 8, pp. 829–833, Aug. 2014.
- [4] W. Mao, S. N. Diggavi, and S. Kannan, "Models and information-theoretic bounds for nanopore sequencing," *TIT*, vol. 64, no. 4, pp. 3216–3236, Apr. 2018.
- [5] R. Hulett, S. Chandak, and M. Wootters, "On coding for an abstracted nanopore channel for DNA storage," in ISIT, Jul. 2021, pp. 2465–2470.
- [6] B. McBain, E. Viterbo, and J. Saunderson, "Finite-state semi-markov channels for nanopore sequencing," in *ISIT*, Jun. 2022, pp. 216–221.
- [7] Y. M. Chee, A. Vardy, V. K. Vu, and E. Yaakobi, "Coding for transverse-reads in domain wall memories," in *ISIT*, Jul. 2021, pp. 2924–2929.

Anisha Banerjee 14

References II

4周 > 4 至 > 4 至 >

- [8] A. Banerjee, Y. Yehezkeally, A. Wachter-Zeh, and E. Yaakobi, "Error-correcting codes for nanopore sequencing," *TIT*, 2024.
- [9] O. Yerushalmi, T. Etzion, and E. Yaakobi, "The capacity of the weighted read channel," in *ISIT*, 2024, (arXiv preprint arXiv:2401.15368).
- [10] Y. M. Chee, K. A. Schouhamer Immink, and V. K. Vu, "Coding scheme for noisy nanopore sequencing with backtracking and skipping errors," in *ISIT*, 2024.
- [11] A. Fazeli, A. Vardy, and E. Yaakobi, "Generalized sphere packing bound," *TIT*, vol. 61, no. 5, pp. 2313–2334, May 2015.
- [12] J. Chrisnata, H. M. Kiah, and E. Yaakobi, "Correcting deletions with multiple reads," *TIT*, vol. 68, no. 11, pp. 7141–7158, Nov. 2022.
- [13] V. Levenshtein, "Efficient reconstruction of sequences," *TIT*, vol. 47, no. 1, pp. 2–22, Jan. 2001.
- [14] K. Cai, H. M. Kiah, T. T. Nguyen, and E. Yaakobi, "Coding for sequence reconstruction for single edits," *TIT*, vol. 68, no. 1, pp. 66–79, Jan. 2022.
- [15] A. Banerjee, Y. Yehezkeally, A. Wachter-Zeh, and E. Yaakobi, "Error-correcting codes for nanopore sequencing," in *ISIT*, Jun. 2023, pp. 364–369.

Anisha Banerjee 14