MS-E1600 - Probability theory, 2019/III

Problem set 2

Lien Tran - 510299

January 20, 2019

- 1. Truncation and conditioning.
 - (a) Let ν be a measure on (S, \mathscr{S}) and let $B \in \mathscr{S}$. Show that also $A \to \nu[A \cap B]$ defines a measure on (S, \mathscr{S}) .

Proof. In order to show that $A \to \nu[A \cap B]$ defines a measure on (S, \mathscr{S}) , we need to check if $A \to \nu[A \cap B]$ satisfy the measure definition

i. Measure of an empty set

$$\emptyset \to \nu[\emptyset \cap B] = \nu[\emptyset] = 0$$

ii. (Close under union of countably many sets) Assume $E_1, E_2, \dots \in \mathscr{S}$ are disjoint sets,

$$\left(\cup_{j=1}^{\infty} E_j\right) \to \nu\left[\left(\cup_{j=1}^{\infty} E_j\right) \cap B\right] = \nu\left[\cup_{j=1}^{\infty} (E_j \cap B)\right] = \sum_{j=1}^{\infty} \nu\left[E_j \cap B\right]$$

which shows that $A \to \nu[A \cap B]$ defines a measure on (S, \mathscr{S}) .

(b) Let P be a probability measure on (Ω, \mathscr{F}) , and let B be an event such that P[B] > 0. Show that the conditional probability $A \to P[A|B] := \frac{P[A \cap B]}{P[B]}$ is a probability measure.

Proof. Similarly, we will check if $A \to P[A|B] := \frac{P[A \cap B]}{P[B]}$ satisfies the necessary condition of a probability measure.

i.

$$\emptyset \to P[\emptyset|B] := \frac{P[\emptyset \cap B]}{P[B]} = \frac{P[\emptyset]}{P[B]} = \frac{0}{P[B]} = 0.$$

ii. Assume $E_1, E_2, \dots \in \mathscr{S}$ are disjoint,

$$\left(\cup_{j=1}^{\infty} E_j \right) \to P[\left(\cup_{j=1}^{\infty} E_j \right) | B] := \frac{P[\left(\cup_{j=1}^{\infty} E_j \right) \cap B]}{P[B]}$$

$$= \frac{P[\cup_{j=1}^{\infty} (E_j \cap B)]}{P[B]} = \frac{\sum_{j=1}^{\infty} P[(E_j \cap B)]}{P[B]}$$

$$= \sum_{j=1}^{\infty} \frac{P[(E_j \cap B)]}{P[B]} .$$

iii. Measure of the whole space

$$\Omega \to P[\Omega|B] := \frac{P[\Omega \cap B]}{P[B]} = \frac{P[B]}{P[B]} = 1,$$

which show that the conditional probability $A \to P[A|B] := \frac{P[A \cap B]}{P[B]}$ is a probability measure.

2. Indicators of sets. The indicator function of a set $A \subset S$ is the function $1_A : S \to \mathbb{R}$ defined by

$$1_A(x) = \begin{cases} 1, & \text{if } x \in A, \\ 0, & \text{otherwise.} \end{cases}$$

(a) Let $\mathscr S$ be a sigma-algebra on S. Show that the indicator function 1_A of $A \subset S$ is a $\mathscr S$ measurable function if and only if A is a $\mathscr S$ -measurable set.

Proof. " \Longrightarrow " Suppose that the indicator function 1_A of $A \subset S$ is a \mathscr{S} measurable function

(b) Show that $1_{A \cap B} = 1_A 1_B$.

Proof. Let $A, B \in \mathcal{S}$,

$$1_{A\cap B}(x) = \begin{cases} 1, & \text{if } x \in A \cap B, \\ 0, & \text{otherwise.} \end{cases}$$

$$1_A(x)1_B(x) = \begin{cases} 1, & \text{if } x \in A \text{ and } x \in B \text{ or } x \in A \cap B, \\ 0, & \text{otherwise.} \end{cases}$$

which show $1_{A \cap B} = 1_A 1_B$.

(c) When is it true that $1_{A \cup B} = 1_A + 1_B$?

Proof. We observe that

$$1_{A \cup B}(x) = \begin{cases} 1, & \text{if } x \in A \cup B, \\ 0, & \text{otherwise.} \end{cases}$$

$$1_A(x) + 1_B(x) = \begin{cases} 1, & \text{if } x \in A \text{ or } x \in B \\ 0, & \text{if } x \notin A \text{ and } x \notin B. \end{cases}$$

In order to have $1_{A \cup B} = 1_A + 1_B$?, we require $A \cap B = \emptyset$. In other words, A and B are disjoint.

- 3. The sigma-algebra generated by a random variable. Let Y be a real-valued random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$.
 - (a) Show that the σ -algebra $\sigma(Y)$ generated by the random variable Y coincides with the σ -algebra $\sigma(Y^{-1}(\mathcal{B}))$ generated by the collection of events $Y^{-1}(\mathcal{B}) = \{Y^{-1}(B) \mid B \in \mathcal{B}\}.$

Proof. Inclusion $\sigma(Y) \subset \sigma(Y^{-1}(\mathscr{B}))$. $\sigma(Y)$ is a collection of By assumption, Y is a real-valued random variable defined on a probability space $(\Omega, \mathscr{F}, \mathbf{P})$, thus Y is \mathscr{F}/\mathscr{B} - measurable.

(b) Show that we in fact have the equality $\sigma(Y) = Y^{-1}(\mathscr{B})$.

- (c) Show that for any Borel function $h:\mathbb{R}\to\mathbb{R}$ the random variable h(Y) is $\sigma(Y)$ -measurable.
- 4. Limsup and liminf.
 - (a) Show that $\liminf_n x_n \leq \limsup_n x_n$.

Proof. Define $x_m^+ := \sup(x_n)_{n=m}^{\infty}$ and $x_m^- := \inf(x_n)_{n=m}^{\infty}$, thus we have $x_m^+ \le x_m^-$

(b) For any $A \subset S$, denote by $1_A : S \to R$ the indicator function of A as in Exercise 2.2. Show that for all $s \in S$

$$\limsup_{n} 1_{A_n}(s) = 1_{\limsup_{n} A_n}(s) \quad \text{and} \quad \liminf_{n} 1_{A_n}(s) = 1_{\liminf_{n} A_n}(s)$$

(c) Use (a) and (b) to conclude that $\liminf_n A_n \leq \limsup_n A_n$.

5. Let $U: \Omega \to R$ be a random variable on some probability space (Ω, \mathscr{F}, P) following the uniform distribution on the unit interval, so that $P[\{\omega in\Omega \mid a < U(\omega) < b\}] = b - a$ whenever $0 \le a \le b \le 1$. Define $X: \Omega \to \mathbb{R}$ by

$$X(\omega) = \inf\{z \in \mathbb{R} \mid F(z) \ge U(\omega)\}.$$

- (a) Show that for any $c \in \mathbb{R}$ we have $X(\omega) \leq c$ if and only if $U(\omega) \leq F(c)$.
- (b) Using (a), show that for any $c \in \mathbb{R}$ we have $X^{-1}((-\infty, c]) \in \mathscr{F}$
- (c) Conclude that X is a \mathscr{F} -measurable random variable.
- (d) Using (a) and the distribution of U, show that $P[X \leq c] = F(c)$, i.e., the cumulative distribution function of the random variable X is F.