Linear filtering

Motivation: Image denoising

How can we reduce noise in a photograph?

Moving average

- Let's replace each pixel with a weighted average of its neighborhood
- The weights are called the filter kernel
- What are the weights for the average of a 3x3 neighborhood?

<u>1</u> 9	1	1	1
	1	1	1
	1	1	1

"box filter"

Defining convolution

Let f be the image and g be the kernel. The output of convolving f with g is denoted f * g.

$$(f * g)[m,n] = \sum_{k,l} f[m-k,n-l]g[k,l]$$

Convention: kernel is "flipped"

MATLAB functions: conv2, filter2, imfilter

Key properties

- Linearity: filter($f_1 + f_2$) = filter(f_1) + filter(f_2)
- Shift invariance: same behavior regardless of pixel location: filter(shift(f)) = shift(filter(f))
- Theoretical result: any linear shift-invariant operator can be represented as a convolution

Properties in more detail

- Commutative: a * b = b * a
 - Conceptually no difference between filter and signal
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: (((a * b₁) * b₂) * b₃)
 - This is equivalent to applying one filter: a * (b₁ * b₂ * b₃)
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...],
 a * e = a

Annoying details

What is the size of the output?

- MATLAB: filter2(g, f, shape)
 - shape = 'full': output size is sum of sizes of f and g
 - shape = 'same': output size is same as f
 - shape = 'valid': output size is difference of sizes of f and g

Annoying details

What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Annoying details

What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- methods (MATLAB):

```
– clip filter (black): imfilter(f, g, 0)
```

– wrap around: imfilter(f, g, 'circular')

– copy edge: imfilter(f, g, 'replicate')

- reflect across edge: imfilter(f, g, 'symmetric')

\bigcirc	•	•	1
()	r19	711	ıal
•		>**	101

0	0	0
0	1	0
0	0	0

Original

0	0	0
0	7	0
0	0	0

Filtered (no change)

\bigcirc	•	•	1
()	r19	711	ıal
•		>**	101

0	0	0
0	0	1
0	0	0

Original

Shifted *left*By 1 pixel

Original

1	1	1	1
9	1	1	1
	1	1	1

?

Original

Blur (with a box filter)

Original

0	0	0	1	1	1	1
0	2	0	■ 1	1	1	1
0	0	0	9	1	1	1

(Note that filter sums to 1)

0	0	0
0	2	0
0	0	0

Original

Sharpening filter

- Accentuates differences with local average

Sharpening

before after

Sharpening

What does blurring take away?

Let's add it back:

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?

Source: D. Forsyth

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?
 - To eliminate edge effects, weight contribution of neighborhood pixels according to their closeness to the center

"fuzzy blob"

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

$$5 \times 5$$
, $\sigma = 1$

 Constant factor at front makes volume sum to 1 (can be ignored when computing the filter values, as we should renormalize weights to sum to 1 in any case)

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

• Standard deviation σ : determines extent of smoothing

Choosing kernel width

 The Gaussian function has infinite support, but discrete filters use finite kernels

Choosing kernel width

• Rule of thumb: set filter half-width to about 3σ

Gaussian vs. box filtering

Gaussian filters

- Remove high-frequency components from the image (low-pass filter)
- Convolution with self is another Gaussian
 - So can smooth with small- σ kernel, repeat, and get same result as larger- σ kernel would have
 - Convolving two times with Gaussian kernel with std. dev. σ is same as convolving once with kernel with std. dev. $\sigma\sqrt{2}$
- Separable kernel
 - Factors into product of two 1D Gaussians
 - Discrete example:

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^{2}}{2\sigma^{2}}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^{2}}{2\sigma^{2}}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Why is separability useful?

- Separability means that a 2D convolution can be reduced to two 1D convolutions (one among rows and one among columns)
- What is the complexity of filtering an n×n image with an m×m kernel?
 - O(n² m²)
- What if the kernel is separable?
 - O(n² m)

Noise

Original

Impulse noise

Salt and pepper noise

Gaussian noise

- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Gaussian noise

- Mathematical model: sum of many independent factors
- Good for small standard deviations
- Assumption: independent, zero-mean noise

Source: M. Hebert

Reducing Gaussian noise

Smoothing with larger standard deviations suppresses noise, but also blurs the image

Reducing salt-and-pepper noise

What's wrong with the results?

Alternative idea: Median filtering

 A median filter operates over a window by selecting the median intensity in the window

Is median filtering linear?

Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

Source: K. Grauman

Median filter

MATLAB: medfilt2(image, [h w])

Source: M. Hebert

Gaussian vs. median filtering

Sharpening revisited

before after

Sharpening revisited

What does blurring take away?

Let's add it back:

Unsharp mask filter

