- E1
- **a.** Placez dans un repère orthonormé les points A(-3; 2), B(6; -1) et C(-1; -2).
- **b.** Déterminez par lecture graphique les coordonnées du point D pied de la hauteur issue de C dans le triangle ABC.
- c. Déterminez par lecture graphique les coordonnées du point E pied de la hauteur issue de B dans le triangle ABC.
- $\ensuremath{\mathbf{d}}.$ Déterminez par lecture graphique le point de concours des hauteurs du triangle ABC.
- **e.** Placez le point F projeté orthogonal du point A sur (BC).

Propriété: La distance d'un point à une droite est la longueur du segment joignant le point à son projeté orthogonal sur cette droite.

- **f.** Montrez que la distance de C à (AB) est $\sqrt{10}$.
- **g.** Montrez que la distance de B à (AC) est $3\sqrt{5}$.
- **h.** Montrez que ABE est rectangle isocèle en E.
- i. Notons G le projeté orthogonal du point E sur (AB).

Démontrez que G est le milieu de [AB].

j. Montrez que la distance de E à (AB) est $\frac{3\sqrt{10}}{2}$.

- Tracer un triangle ABC rectangle en A tel que $AB=3\,\mathrm{cm}$ et $AC=4\,\mathrm{cm}.$
- **a.** Quel est le projeté orthogonal de B sur $\left(AC\right)$?
- **b.** Quel est le projeté orthogonal de C sur (AB) ?
- ${\bf c.}$ Placez le projeté orthogonal H de A sur (BC).
- **d.** Montrez que l'aire du triangle ABC est $6\,\mathrm{cm}^2$.
- **e.** Justifiez que $\frac{5AH}{2}=6.$
- **f.** En déduire la longueur AH.
- **g.** Calculez la distance de B à (AH).
- h. Montrez que $BH^2=3^2-\left(rac{12}{5}
 ight)^2.$
- i. En déduire à l'aide d'une identité remarquable que $BH=rac{9}{5}.$
- **j.** En déduire la distance de C à (AH).
- Soient [Ox) et [Oy) deux demi-droites d'origine un point O du plan et soit A un point distinct de O et équidistant de ces deux demidroites.

Démontrer que (OA) est la bissectrice de l'angle \widehat{xOy} .

- Pour cet exercice on admettra que $sin(30^\circ)=cos(60^\circ)=rac{1}{2}$ et $sin(60^\circ)=cos(30^\circ)=rac{\sqrt{3}}{2}$ ABC est un triangle tel que $AB=8\,\mathrm{cm}$, $AC=11\,\mathrm{cm}$ et $\widehat{BAC}=30^\circ$. Le point H est le projeté orthogonal de B sur (AC).
 - 1. Calculer BH.
 - 2. Calculer l'aire du triangle ABC.
 - 3. Calculer la distance du point C à la droite (AB).
 - 4. Calculer la distance arrondie au millimètre près, du point C à la droite (BH).