Multi-Rate Moving Horizon Estimation for an Electric Arc Furnace Steelmaking Process

Smriti Shyamal Christopher L.E. Swartz

Department of Chemical Engineering, McMaster University

2016 AIChE Annual Meeting

Outline

- 1 Introduction and Background
 - Nonlinear State Estimation
 - Dynamic Optimization Solution Methods
 - Objectives
 - Electric Arc Furnace Model
- Multi-rate MHE Formulation
 - Parameter Estimation Framework
 - Novel Initialization Scheme for MHE
- Implementation
- 4 Case Study
 - MHE Results
 - Computational Performance
- 5 Conclusions and Future Work

Introduction

High energy intensive batch process, Low level of automation

Objective: Develop estimation and control strategies for EAF

Nonlinear State Estimation Methods

We apply MHE with irregular sampling:

¹Rao, C.V., Rawlings, J.B. and Lee, J.H., (2001). Automatica, 37(10), 1619-1628.

Dynamic Optimization Solution Methods

Key challenge: Online computational complexity for large scale application

²Zavala, V.M. and Biegler, L.T., (2001). Computers & Chemical Engineering, 33(1), 379-390.

³Kraus, T., Kuhl, P., Wirsching, L., Bock, H.G., and Diehl, M. (2006). 2006 IEEE International Conference, 377-382.

⁴Shyamal, S. and Swartz, C.L.E, (2016). 2016 DYCOPS-CAB, 1175-1180.

Objectives

- Application of multi-rate MHE for EAF
- Compare 2 implementation strategies:

 Development of implementation/computation enhancement strategies

Dynamic First Principles Model of EAF⁵

- Multi-zone System: Chemical equilibrium within slag and gas zones (reactions limited by mass transfer)
- Mass and energy balances; diffusion and heat transfer relationships

Parameter estimation using plant data

DAE system in gPROMS:
28 differential & 518 algebraic variables

⁵ MacRosty, R. D. & Swartz, C. L. E. (2005). Ind.Eng.Chem.Res., 44, 8067-8083.

Multi-rate MHE (w/ Batch MHE)

$$\begin{aligned} \min_{\mathbf{x}_{i-N},\mathbf{w}_k} \ \sum_{k=i-N}^{i-1} \underbrace{||\mathbf{w}_k||_{Q^{-1}}^2 + \sum_{k=i-N}^{i} \underbrace{||\mathbf{v}_k^F||_{(R^F)^{-1}}^2}_{\text{Measurement noise (only fast)}} \\ + \sum_{k=i-N}^{i} \underbrace{||\mathbf{v}_k^{SF}||_{(R^{SF})^{-1}}^2}_{\text{K} \in \mathbb{I}_{SF}} + \underbrace{||\mathbf{x}_{i-N} - \hat{\mathbf{x}}_{i-N}||_{S_i^{-1}}}_{\text{Initial state discrepancy}} \end{aligned}$$

Subject to:
$$\mathbf{x}_{k+1} = \mathbf{f}(\mathbf{x}_k, \mathbf{u}_k) + \mathbf{w}_k,$$
 $\mathbf{y}_k^F = \mathbf{h}^F(\mathbf{x}_k) + \mathbf{v}_k^F, \quad k \in \mathbb{I}_F;$ State constraints, $\mathbf{w}_k \in W$
$$\mathbf{y}_k^{SF} = \mathbf{h}^{SF}(\mathbf{x}_k) + \mathbf{v}_k^{SF}, \quad k \in \mathbb{I}_{SF}$$

Tuning matrices : Q, R and S_i (with EKF update)

Sequential Approach: Model Noise Approximation

gPROMS does not permit direct specification of \mathbf{w} as in eq. (1)

$$W_i'(t, w_k) = \frac{1}{2}(w_{i-N} + w_{i-1})$$

$$+\sum_{k=i-N}^{i-2}(w_{k+1}-w_k)\tanh\frac{\alpha}{\delta t}(t-t_k)$$

Artificial measurement points

Term in MHE objective function: $\sum_{i=N}^{i-1} ||W_i'(t_{k+\delta t/2}, w_k) - 0||_{Q^{-1}}^2$

Parameter Estimation Framework

Objective function

$$\min_{\mathbf{x0_{i}, w_{k}}} \quad \sum_{\substack{\text{past time history}}} ||\mathbf{W}_{i}'(t_{k+\frac{\delta t}{2}}, \mathbf{w}_{k})||_{Q^{-1}}^{2} + \sum_{k \in \mathbb{I}_{F}} |\underset{\text{measurements}}{\text{Noise of fast}}|_{(R^{F})^{-1}}^{2} \\ + \sum_{k \in \mathbb{I}_{SF}} |\underset{\text{fast measurements}}{\text{Noise of slow and}}|_{(R^{SF})^{-1}}^{2} + \underbrace{J_{i}}_{\sqrt{\left(\underset{\text{discrepancy}}{\text{Initial state}}\right)_{S_{i}^{-1}}^{2}}}^{2}$$

Constraints

• Nonlinear Model:
$$\dot{\mathbf{x}}(t) = \mathbf{f}(\cdot) + \mathbf{W}_i'(t, \mathbf{w}_k),$$
 Algebraic equations

- Model noise function: $\mathbf{W}'_i(t, \mathbf{w}_k) = \text{tanh approximation function}$
- Equations to express initial condition as parameters
- Bounds on initial state and model noise parameters

linitialization Scheme for Simultaneous Approach

⁶Eliminate algebraic variables and equations by transforming them into outputs.

Case Study

- Length of batch process: 60 minutes
- Estimation horizon: 6 min
- MHE's ability demonstrated in presence of
 - Plant-model mismatch
 - Unknown initial conditions of states
 - Measurement noise

Time (min)	042	43	44 46	47	4860
Number of measured variables	6	13	6	8	6

Off-gas compositions (CO, CO ₂ , O ₂ , H ₂), T _{roof} , T _{wall}	Every 1 min	
Slag compositions (FeO, Al ₂ O ₃ , SiO ₂ , MgO, CaO)	t=43 min	
Molten-metal temperature and carbon content	t=43 & 47 min	

ullet System observable (Lowest observability metric 7 value: $7 imes 10^{-07}$)

 $^{^7\}mathrm{Ji}$, L. and Rawlings, J.B., (2015). Computers & Chemical Engineering, 80, 63-72.

Results (State Estimates)

Computational Results

Sequential method using g0:Run/gEST: Average CPU time: 39 sec

Simultaneous method using CasADi/IPOPT:

Average CPU time: 1 sec (nominal MHE), 0.5 sec (fast MHE)

Summary

- Multi-rate MHE implemented for EAF operation using CasADi and gPROMS: demonstrated excellent performance
- MHE formulation can readily include multi-rate measurements

Presented novel initialization scheme for MHE

Simultaneous approach showed better computational performance

50% solve time reduction due to better initialization of MHE

Current Work and Future Directions

Incorporate MHE within real-time optimization framework

- Explore effects of increased frequency of slow measurements
- Use information from optimization solve to update arrival cost⁸
- Embed MHE within NMPC/EMPC application
- Apply the initialization scheme for NMPC/EMPC

⁸López-Negrete, R. and Biegler, L.T., (2012). Journal of Process Control, 22(4), 677-688.

Acknowledgements

- McMaster Advanced Control Consortium
- McMaster Steel Research Center (SRC)

