Unidad I: Conceptos Preliminares

B. Algebra lineal y funciones

- subespacios y subespacios afines, vectores independientes
- matrices, espacio columna, rango, núcleo, inversa
- funciones, gradiente, matriz hessiana
- teorema de Taylor

Unidad I - B 1 / 15

Subespacios

 $\mathcal{S} \subseteq \mathbb{R}^n \ (\mathcal{S} \neq \emptyset)$ se llama un *subespacio* si

$$x, y \in \mathcal{S}, \quad \alpha, \beta \in \mathbb{R} \quad \Rightarrow \quad \alpha x + \beta y \in \mathcal{S}$$

 $\alpha x + \beta y$ es una combinación lineal de x e y

ejemplos (en \mathbb{R}^n)

- $S = \mathbb{R}^n$, $S = \{0\}$
- $S = {\alpha \mathbf{v} \mid \alpha \in \mathbb{R}}$ donde $\mathbf{v} \in \mathbb{R}^n$ (i.e, una línea que pasa por el origen)
- $S = \text{span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k) = \{\alpha_1 \mathbf{v}_1 + \dots + \alpha_k \mathbf{v}_k \mid \alpha_i \in \mathbb{R}\}, \text{ donde } \mathbf{v}_i \in \mathbb{R}$
- conjunto de vectores ortogonales a vectores dados $\mathbf{v}_1, \dots, \mathbf{v}_k$:

$$\mathcal{S} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{v}_1^{\mathrm{T}} \mathbf{x} = 0, \dots, \mathbf{v}_k^{\mathrm{T}} \mathbf{x} = 0 \}$$

Unidad I - B 2 / 15

Vectores independientes

los vectores $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ son independientes si y solo si

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0} \quad \Rightarrow \quad \alpha_1 = \alpha_2 = \dots = \alpha_k = 0$$

algunas condiciones equivalentes:

• los coeficientes de $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_k \mathbf{v}_k$ son únicamente determinados, i.e.,

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + \dots + \beta_k \mathbf{v}_k$$

implica
$$\alpha_1 = \beta_1, \alpha_2 = \beta_2, \dots, \alpha_k = \beta_k$$

• ningun vector \mathbf{v}_i puede expresarse como combinación lineal de los demás vectores $\mathbf{v}_1, \dots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \dots, \mathbf{v}_k$

Unidad I - B

Base y Dimensión

 $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ es una *base* del subespacio $\mathcal{S} \subseteq \mathbb{R}^n$ si

- $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ generan \mathcal{S} , i.e., $\mathcal{S} = \operatorname{span}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k)$
- $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ son linealmente independientes

equivalentemente: todo $x \in \mathcal{S}$ puede expresarse en forma única como

$$\mathbf{x} = \boldsymbol{\alpha}_1 \, \mathbf{x}_1 + \dots + \boldsymbol{\alpha}_k \mathbf{x}_k$$

Para un dado subespacio \mathcal{S} , el número de vectores en cualquier base no varia, y se llama dimensión de \mathcal{S} , denotado dim \mathcal{S}

Unidad I - B 4 / 15

Conjuntos Afines

Tambien conocidos como subespacios afines o variedades lineales

 $\mathcal{V} \subseteq \mathbb{R}^n \ (\mathcal{V} \neq \emptyset)$ es un *conjunto afin* si

$$x, y \in \mathcal{V}, \ \alpha + \beta = 1 \implies \alpha x + \beta y \in \mathcal{V}$$

 $\alpha x + \beta y$ es una combinación afin de x e y

Ejemplos (en \mathbb{R}^n)

- subespacios
- $V = b + S = \{x + b \mid x \in S\}$ donde S es un subespacio
- $\mathcal{V} = \{\alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k \mid \alpha_i \in \mathbb{R}, \, \mathbf{x}_i \in \mathcal{V}, \, \sum \alpha_i = 1\}$
- $\mathcal{V} = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{A} \in \mathbb{R}^{k \times n}\}$

Todo conjunto afin \mathcal{V} puede escribirse como $\mathcal{V} = \mathbf{x}_0 + \mathcal{S}$, donde $\mathbf{x}_0 \in \mathcal{V}$, y \mathcal{S} es un subespacio

 $\dim(\mathcal{V} - \mathbf{x}_0)$ es la dimensión de \mathcal{V}

Matrices

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

algunas matrices especiales:

- $\mathbf{A} = \mathbf{0}$ (matriz zero): $a_{ij} = 0$
- $\mathbf{A} = \mathbf{I}$ (matriz identidad): m = n; $a_{ii} = 1, i = 1, \dots, n$; $a_{ij} = 0, i \neq j$
- $\mathbf{A} = \operatorname{diag}(\mathbf{x})$ donde $\mathbf{x} \in \mathbb{R}^n$ (matriz diagonal): m = n,

$$\mathbf{A} = \begin{bmatrix} x_1 & 0 & \cdots & 0 \\ 0 & x_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x_n \end{bmatrix}$$

Operaciones Matriciales

- suma, resta, multiplicación por un escalar
- transpuesta:

$$\mathbf{A}^{\mathrm{T}} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix} \in \mathbb{R}^{n \times m}$$

• multiplicación: $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times q}, \mathbf{AB} \in \mathbb{R}^{m \times q}$

$$\mathbf{AB} = \begin{bmatrix} \sum_{i=1}^{n} a_{1i}b_{i1} & \sum_{i=1}^{n} a_{1i}b_{i2} & \cdots & \sum_{i=1}^{n} a_{1i}b_{iq} \\ \sum_{i=1}^{n} a_{2i}b_{i1} & \sum_{i=1}^{n} a_{2i}b_{i2} & \cdots & \sum_{i=1}^{n} a_{2i}b_{iq} \\ \vdots & \vdots & & \vdots \\ \sum_{i=1}^{n} a_{mi}b_{i1} & \sum_{i=1}^{n} a_{mi}b_{i1} & \cdots & \sum_{i=1}^{n} a_{mi}b_{iq} \end{bmatrix}$$

Unidad I - B

Imagen

la *imagen* de $A \in \mathbb{R}^{m \times n}$ se define como

$$\mathcal{R}(\mathbf{A}) = \{ \mathbf{A} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n \} \subseteq \mathbb{R}^m$$

es la *imagen* (también conocida como *alcance* o *recorrido*) de la transformación lineal $f: \mathbb{R}^n \to \mathbb{R}^m$ dada por $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$

- un subespacio
- conjunto de vectores que pueden ser 'alcanzados' por y = Ax
- el espacio generado por las columnas de $\mathbf{A} = [\mathbf{a}_1 \cdots \mathbf{a}_n]$

$$\mathcal{R}(\mathbf{A}) = \operatorname{span}(\mathbf{a}_1, \dots, \mathbf{a}_n)$$

Unidad I - B 8 / 15

Rango

el rango de $A \in \mathbb{R}^{m \times n}$ se define como la dimensión del conjunto imagen de A o como el número de columnas linealmente independientes de A

$$rank(\mathbf{A}) = \dim \mathcal{R}(\mathbf{A})$$

propiedades (no triviales):

- $rank(\mathbf{A}) = rank(\mathbf{A}^{T})$
- rank(A) es el máximo número de columnas (o filas) independientes de A, luego

$$rank(\mathbf{A}) \le min\{m, n\}$$

decimos que $\mathbf{A} \in \mathbb{R}^{m \times n}$ es de *rango máximo* si

$$rank(\mathbf{A}) = min\{m, n\}$$

• para matrices cuadradas, rango máximo implica que A no es singular

Unidad I - B 9 / 15

Núcleo

el *núcleo* de $A \in \mathbb{R}^{m \times n}$ se define como

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{0} \}$$

- un subespacio
- conjunto de vectores ortogonales a todas las filas de A:

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}_1^{\mathrm{T}} \mathbf{x} = \dots = \mathbf{a}_m^{\mathrm{T}} \mathbf{x} = 0 \}$$

donde $\mathbf{A} = [\mathbf{a}_1 \cdots \mathbf{a}_m]^{\mathrm{T}}$

núcleo cero : $\mathcal{N}(\mathbf{A}) = \{0\} \Leftrightarrow$

- x se puede determinar de forma única de y = Ax
- las columnas de A son independientes

la nulidad de $\mathbf{A} \in \mathbb{R}^{m \times n}$ se define como la dimensión del núcleo de \mathbf{A}

$$\text{nulidad}(\mathbf{A}) = n - \text{rank}(\mathbf{A})$$

Unidad I - B

Inversa

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ es invertible o no singular si $\det \mathbf{A} \neq 0$

condiciones equivalentes:

- ullet las columnas de ${f A}$ son una base para ${\Bbb R}^n$
- las filas de **A** son una base para \mathbb{R}^n
- $\mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}$
- $\mathcal{R}(\mathbf{A}) = \mathbb{R}^n$
- y = Ax tiene una solución única x para todo $y \in \mathbb{R}^n$
- A tiene una inversa $\mathbf{A}^{-1} \in \mathbb{R}^{n \times n}$, con $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$

Unidad I - B 11 / 15

Funciones

 $f(\mathbf{x}) \in \mathbb{R}, \quad \mathbf{x} \in \mathbb{R}^n$

la notación $f: \mathcal{S} \to \mathbb{R}$ denota que el dominio de f es \mathcal{S} y que su alcance es un subconjunto de números reales

• $f: \mathbb{R}^n \to \mathbb{R}$ está definida en todas partes

 $f: \mathcal{S} \to \mathbb{R}$ es *continua* en $\overline{\mathbf{x}} \in \mathcal{S}$ si para cualquier $\varepsilon > 0$, existe $\delta > 0$ tal que $\mathbf{x} \in \mathcal{S}$ y $\|\mathbf{x} - \overline{\mathbf{x}}\| < \delta$ implica $|f(\mathbf{x}) - f(\overline{\mathbf{x}})| < \varepsilon$

equivalentemente $f: \mathcal{S} \to \mathbb{R}$ es *continua* en $\overline{\mathbf{x}} \in \mathcal{S}$ si para cualquier secuencia $\{\mathbf{x}_k\} \to \overline{\mathbf{x}}$ tal que $\{f(\mathbf{x}_k)\} \to \overline{f}$, tenemos que $f(\overline{\mathbf{x}}) = \overline{f}$

la función vector $\mathbf{f}(\mathbf{x}) \in \mathbb{R}^m$ es continua en \mathbf{x} si cada función componente $f_j(\mathbf{x}), j = 1, \dots, m$, es continua en \mathbf{x} lo cual se denota $\mathbf{f} \in \mathbb{C}$

Unidad I - B 12 / 15

Funciones diferenciables

la notación $\mathbf{f} \in \mathbb{C}^p$ significa que cada función componente de \mathbf{f} tiene derivadas parciales de orden p continuas

si $f \in \mathbb{C}^1$, definida en \mathbb{R}^n , $f(\mathbf{x})$; $\mathbf{x} \in \mathbb{R}^n$, definimos el *gradiente* de f como el vector fila

$$\nabla f(\mathbf{x}) = \frac{\partial f}{\partial \mathbf{x}}(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}), \frac{\partial f}{\partial x_2}(\mathbf{x}), \cdots, \frac{\partial f}{\partial x_n}(\mathbf{x})\right)$$

si $f \in \mathbb{C}^2$, definida en \mathbb{R}^n , $f(\mathbf{x})$; $\mathbf{x} \in \mathbb{R}^n$, definimos la *matriz hesiana* de f en \mathbf{x} como la matriz

$$\nabla^2 f(\mathbf{x}) = \frac{\partial^2 f}{\partial \mathbf{x}^2}(\mathbf{x}) \in \mathbb{R}^{n \times n}$$

dado que

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

la matriz hesiana es simétrica

Teorema del valor medio

si $f \in \mathbb{C}^1$ en una región que contiene el segmento $[\mathbf{x}_1, \mathbf{x}_2]$ luego existe $\lambda \in (0, 1)$ tal que

$$f(\mathbf{x}_2) = f(\mathbf{x}_1) + \nabla f(\overline{\mathbf{x}})(\mathbf{x}_2 - \mathbf{x}_1),$$

donde $\overline{\mathbf{x}} = \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2$

si $f \in \mathbb{C}^2$ en una región que contiene el segmento $[\mathbf{x}_1, \mathbf{x}_2]$ luego existe $\lambda \in (0, 1)$ tal que

$$f(\mathbf{x}_2) = f(\mathbf{x}_1) + \nabla f(\mathbf{x}_1)(\mathbf{x}_2 - \mathbf{x}_1) + \frac{1}{2}(\mathbf{x}_2 - \mathbf{x}_1)^{\mathrm{T}} \nabla^2 f(\overline{\mathbf{x}})(\mathbf{x}_2 - \mathbf{x}_1),$$

donde $\overline{\mathbf{x}} = \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2$

Unidad I - B 14 / 15

Teorema de Taylor

si $f \in \mathbb{C}^1$ luego para \mathbf{x}_2 próximo a \mathbf{x}_1

$$f(\mathbf{x}_2) = f(\mathbf{x}_1) + \nabla f(\mathbf{x}_1)(\mathbf{x}_2 - \mathbf{x}_1) + o(\|\mathbf{x}_2 - \mathbf{x}_1\|)$$

si $f \in \mathbb{C}^2$ luego para \mathbf{x}_2 próximo a \mathbf{x}_1

$$f(\mathbf{x}_2) = f(\mathbf{x}_1) + \nabla f(\mathbf{x}_1)(\mathbf{x}_2 - \mathbf{x}_1) + \frac{1}{2}(\mathbf{x}_2 - \mathbf{x}_1)^{\mathrm{T}} \nabla^2 f(\mathbf{x}_1)(\mathbf{x}_2 - \mathbf{x}_1) + o\left(\left\|\mathbf{x}_2 - \mathbf{x}_1\right\|^2\right),$$

Notación o, O:

sea $g(x), x \in \mathbb{R}$, la notación g(x) = O(x) significa que g(x) tiende a cero al menos tan rápido como lo hace x

mas precisamente, existe $K \ge 0$ tal que

$$\left| \frac{g(x)}{x} \right| \le K$$
 cuando $x \to 0$

la notación g(x) = o(x) significa que g(x) tiende a cero mas rápido que x, (K = 0)

Unidad I - B 15 / 15