only once. If we did not do this, the algorithm would have exponential worst-case complexity. The process of storing the values as each is computed is known as **memoization** and is an important technique for making recursive algorithms efficient.

```
ALGORITHM 1 Dynamic Programming Algorithm for Scheduling Talks.
procedure Maximum Attendees (s_1, s_2, ..., s_n): start times of talks;
  e_1, e_2, \ldots, e_n: end times of talks; w_1, w_2, \ldots, w_n: number of attendees to talks)
  sort talks by end time and relabel so that e_1 \le e_2 \le \cdots \le e_n
for i := 1 to n
      if no job i with i < j is compatible with job j
            p(j) = 0
      else p(j) := \max\{i \mid i < j \text{ and job } i \text{ is compatible with job } j\}
      T(0) := 0
for j := 1 to n
      T(j) := \max(w_j + T(p(j)), T(j-1))
return T(n){T(n) is the maximum number of attendees}
```

In Algorithm 1 we determine the maximum number of attendees that can be achieved by a schedule of talks, but we do not find a schedule that achieves this maximum. To find talks we need to schedule, we use the fact that talk j belongs to an optimal solution for the first j talks if and only if $w_i + T(p(j)) \ge T(j-1)$. We leave it as Exercise 53 to construct an algorithm based on this observation that determines which talks should be scheduled to achieve the maximum total number of attendees.

Algorithm 1 is a good example of dynamic programming as the maximum total attendance is found using the optimal solutions of the overlapping subproblems, each of which determines the maximum total attendance of the first j talks for some j with $1 \le j \le n-1$. See Exercises 56 and 57 and Supplementary Exercises 14 and 17 for other examples of dynamic programming.

Exercises

- 1. Use mathematical induction to verify the formula derived in Example 2 for the number of moves required to complete the Tower of Hanoi puzzle.
- 2. a) Find a recurrence relation for the number of permutations of a set with n elements.
 - b) Use this recurrence relation to find the number of permutations of a set with n elements using iteration.
- **3.** A vending machine dispensing books of stamps accepts only one-dollar coins, \$1 bills, and \$5 bills.
 - a) Find a recurrence relation for the number of ways to deposit n dollars in the vending machine, where the order in which the coins and bills are deposited matters.
 - **b)** What are the initial conditions?
 - c) How many ways are there to deposit \$10 for a book
- **4.** A country uses as currency coins with values of 1 peso, 2 pesos, 5 pesos, and 10 pesos and bills with values of

- 5 pesos, 10 pesos, 20 pesos, 50 pesos, and 100 pesos. Find a recurrence relation for the number of ways to pay a bill of n pesos if the order in which the coins and bills are paid matters.
- 5. How many ways are there to pay a bill of 17 pesos using the currency described in Exercise 4, where the order in which coins and bills are paid matters?
- *6. a) Find a recurrence relation for the number of strictly increasing sequences of positive integers that have 1 as their first term and n as their last term, where n is a positive integer. That is, sequences a_1, a_2, \ldots, a_k , where $a_1 = 1$, $a_k = n$, and $a_j < a_{j+1}$ for j = $1, 2, \ldots, k-1.$
 - **b)** What are the initial conditions?
 - c) How many sequences of the type described in (a) are there when *n* is an integer with $n \ge 2$?
- 7. a) Find a recurrence relation for the number of bit strings of length n that contain a pair of consecutive 0s.

- **b)** What are the initial conditions?
- How many bit strings of length seven contain two consecutive 0s?
- **8.** a) Find a recurrence relation for the number of bit strings of length n that contain three consecutive 0s.
 - **b)** What are the initial conditions?
 - c) How many bit strings of length seven contain three consecutive 0s?
 - **9.** a) Find a recurrence relation for the number of bit strings of length n that do not contain three consecutive 0s.
 - **b)** What are the initial conditions?
 - c) How many bit strings of length seven do not contain three consecutive 0s?
- *10. a) Find a recurrence relation for the number of bit strings of length n that contain the string 01.
 - **b)** What are the initial conditions?
 - c) How many bit strings of length seven contain the string 01?
- **11.** a) Find a recurrence relation for the number of ways to climb n stairs if the person climbing the stairs can take one stair or two stairs at a time.
 - **b)** What are the initial conditions?
 - c) In how many ways can this person climb a flight of eight stairs?
- **12.** a) Find a recurrence relation for the number of ways to climb *n* stairs if the person climbing the stairs can take one, two, or three stairs at a time.
 - **b)** What are the initial conditions?
 - c) In many ways can this person climb a flight of eight

A string that contains only 0s, 1s, and 2s is called a ternary string.

- 13. a) Find a recurrence relation for the number of ternary strings of length n that do not contain two consecutive
 - **b)** What are the initial conditions?
 - c) How many ternary strings of length six do not contain two consecutive 0s?
- 14. a) Find a recurrence relation for the number of ternary strings of length n that contain two consecutive 0s.
 - **b)** What are the initial conditions?
 - c) How many ternary strings of length six contain two consecutive 0s?
- *15. a) Find a recurrence relation for the number of ternary strings of length n that do not contain two consecutive 0s or two consecutive 1s.
 - **b)** What are the initial conditions?
 - c) How many ternary strings of length six do not contain two consecutive 0s or two consecutive 1s?
- *16. a) Find a recurrence relation for the number of ternary strings of length n that contain either two consecutive 0s or two consecutive 1s.
 - **b)** What are the initial conditions?
 - c) How many ternary strings of length six contain two consecutive 0s or two consecutive 1s?

- *17. a) Find a recurrence relation for the number of ternary strings of length n that do not contain consecutive symbols that are the same.
 - **b)** What are the initial conditions?
 - c) How many ternary strings of length six do not contain consecutive symbols that are the same?
- **18. a) Find a recurrence relation for the number of ternary strings of length n that contain two consecutive symbols that are the same.
 - **b)** What are the initial conditions?
 - c) How many ternary strings of length six contain consecutive symbols that are the same?
 - 19. Messages are transmitted over a communications channel using two signals. The transmittal of one signal requires 1 microsecond, and the transmittal of the other signal requires 2 microseconds.
 - a) Find a recurrence relation for the number of different messages consisting of sequences of these two signals, where each signal in the message is immediately followed by the next signal, that can be sent in n microseconds.
 - **b)** What are the initial conditions?
 - c) How many different messages can be sent in 10 microseconds using these two signals?
 - 20. A bus driver pays all tolls, using only nickels and dimes, by throwing one coin at a time into the mechanical toll collector.
 - a) Find a recurrence relation for the number of different ways the bus driver can pay a toll of n cents (where the order in which the coins are used matters).
 - **b)** In how many different ways can the driver pay a toll of 45 cents?
 - **21. a)** Find the recurrence relation satisfied by R_n , where R_n is the number of regions that a plane is divided into by n lines, if no two of the lines are parallel and no three of the lines go through the same point.
 - **b)** Find R_n using iteration.
- *22. a) Find the recurrence relation satisfied by R_n , where R_n is the number of regions into which the surface of a sphere is divided by n great circles (which are the intersections of the sphere and planes passing through the center of the sphere), if no three of the great circles go through the same point.
 - **b**) Find R_n using iteration.
- *23. a) Find the recurrence relation satisfied by S_n , where S_n is the number of regions into which three-dimensional space is divided by n planes if every three of the planes meet in one point, but no four of the planes go through the same point.
 - **b)** Find S_n using iteration.
 - 24. Find a recurrence relation for the number of bit sequences of length n with an even number of 0s.
 - 25. How many bit sequences of length seven contain an even number of 0s?

- **26. a)** Find a recurrence relation for the number of ways to completely cover a $2 \times n$ checkerboard with 1×2 dominoes. [*Hint:* Consider separately the coverings where the position in the top right corner of the checkerboard is covered by a domino positioned horizontally and where it is covered by a domino positioned vertically.]
 - b) What are the initial conditions for the recurrence relation in part (a)?
 - c) How many ways are there to completely cover a 2×17 checkerboard with 1×2 dominoes?
- 27. a) Find a recurrence relation for the number of ways to lay out a walkway with slate tiles if the tiles are red, green, or gray, so that no two red tiles are adjacent and tiles of the same color are considered indistinguishable.
 - **b)** What are the initial conditions for the recurrence relation in part (a)?
 - c) How many ways are there to lay out a path of seven tiles as described in part (a)?
- 28. Show that the Fibonacci numbers satisfy the recurrence relation $f_n = 5f_{n-4} + 3f_{n-5}$ for n = 5, 6, 7, ..., together with the initial conditions $f_0 = 0$, $f_1 = 1$, $f_2 = 1$, $f_3 = 2$, and $f_4 = 3$. Use this recurrence relation to show that f_{5n} is divisible by 5, for n = 1, 2, 3, ...
- ***29** Let S(m, n) denote the number of onto functions from a set with m elements to a set with n elements. Show that S(m, n) satisfies the recurrence relation

$$S(m,n) = n^m - \sum_{k=1}^{n-1} C(n,k)S(m,k)$$

whenever $m \ge n$ and n > 1, with the initial condition S(m, 1) = 1.

- **30.** a) Write out all the ways the product $x_0 \cdot x_1 \cdot x_2 \cdot x_3 \cdot x_4$ can be parenthesized to determine the order of multiplication.
 - **b)** Use the recurrence relation developed in Example 5 to calculate C_4 , the number of ways to parenthesize the product of five numbers so as to determine the order of multiplication. Verify that you listed the correct number of ways in part (a).
 - c) Check your result in part (b) by finding C_4 , using the closed formula for C_n mentioned in the solution of Example 5.
- **31. a)** Use the recurrence relation developed in Example 5 to determine C_5 , the number of ways to parenthesize the product of six numbers so as to determine the order of multiplication.
 - **b**) Check your result with the closed formula for C_5 mentioned in the solution of Example 5.
- *32. In the Tower of Hanoi puzzle, suppose our goal is to transfer all *n* disks from peg 1 to peg 3, but we cannot move a disk directly between pegs 1 and 3. Each move of a disk must be a move involving peg 2. As usual, we cannot place a disk on top of a smaller disk.

- **a)** Find a recurrence relation for the number of moves required to solve the puzzle for *n* disks with this added restriction.
- **b)** Solve this recurrence relation to find a formula for the number of moves required to solve the puzzle for *n* disks
- c) How many different arrangements are there of the n disks on three pegs so that no disk is on top of a smaller disk?
- **d)** Show that every allowable arrangement of the *n* disks occurs in the solution of this variation of the puzzle.

Exercises 33–37 deal with a variation of the **Josephus problem** described by Graham, Knuth, and Patashnik in [GrKnPa94]. This problem is based on an account by the historian Flavius Josephus, who was part of a band of 41 Jewish rebels trapped in a cave by the Romans during the Jewish-Roman war of the first century. The rebels preferred suicide to capture; they decided to form a circle and to repeatedly count off around the circle, killing every third rebel left alive. However, Josephus and another rebel did not want to be killed this way; they determined the positions where they should stand to be the last two rebels remaining alive. The variation we consider begins with n people, numbered 1 to n, standing around a circle. In each stage, every second person still left alive is eliminated until only one survives. We denote the number of the survivor by J(n).

- **33.** Determine the value of J(n) for each integer n with $1 \le n \le 16$.
- **34.** Use the values you found in Exercise 33 to conjecture a formula for J(n). [Hint: Write $n = 2^m + k$, where m is a nonnegative integer and k is a nonnegative integer less than 2^m .]
- **35.** Show that J(n) satisfies the recurrence relation J(2n) = 2J(n) 1 and J(2n + 1) = 2J(n) + 1, for $n \ge 1$, and J(1) = 1.
- **36.** Use mathematical induction to prove the formula you conjectured in Exercise 34, making use of the recurrence relation from Exercise 35.
- **37.** Determine J(100), J(1000), and J(10,000) from your formula for J(n).

Exercises 38-45 involve the Reve's puzzle, the variation of the Tower of Hanoi puzzle with four pegs and n disks. Before presenting these exercises, we describe the Frame-Stewart algorithm for moving the disks from peg 1 to peg 4 so that no disk is ever on top of a smaller one. This algorithm, given the number of disks n as input, depends on a choice of an integer k with $1 \le k \le n$. When there is only one disk, move it from peg 1 to peg 4 and stop. For n > 1, the algorithm proceeds recursively, using these three steps. Recursively move the stack of the n - k smallest disks from peg 1 to peg 2, using all four pegs. Next move the stack of the k largest disks from peg 1 to peg 4, using the three-peg algorithm from the Tower of Hanoi puzzle without using the peg holding the n-k smallest disks. Finally, recursively move the smallest n - k disks to peg 4, using all four pegs. Frame and Stewart showed that to produce the fewest moves using their algorithm, k should be chosen to be the smallest integer Note that a_n satisfies the linear nonhomogeneous recurrence relation

$$a_n = a_{n-1} + n.$$

(To obtain a_n , the sum of the first n positive integers, from a_{n-1} , the sum of the first n-1positive integers, we add n.) Note that the initial condition is $a_1 = 1$.

The associated linear homogeneous recurrence relation for a_n is

$$a_n = a_{n-1}$$
.

The solutions of this homogeneous recurrence relation are given by $a_n^{(h)} = c(1)^n = c$, where c is a constant. To find all solutions of $a_n = a_{n-1} + n$, we need find only a single particular solution. By Theorem 6, because $F(n) = n = n \cdot (1)^n$ and s = 1 is a root of degree one of the characteristic equation of the associated linear homogeneous recurrence relation, there is a particular solution of the form $n(p_1n + p_0) = p_1n^2 + p_0n$.

Inserting this into the recurrence relation gives $p_1n^2 + p_0n = p_1(n-1)^2 + p_0(n-1) + n$. Simplifying, we see that $n(2p_1-1) + (p_0-p_1) = 0$, which means that $2p_1 - 1 = 0$ and $p_0 - p_1 = 0$, so $p_0 = p_1 = 1/2$. Hence,

$$a_n^{(p)} = \frac{n^2}{2} + \frac{n}{2} = \frac{n(n+1)}{2}$$

is a particular solution. Hence, all solutions of the original recurrence relation $a_n = a_{n-1} + n$ are given by $a_n = a_n^{(h)} + a_n^{(p)} = c + n(n+1)/2$. Because $a_1 = 1$, we have $1 = a_1 = c + 1 \cdot 2/2 = 1$ c+1, so c=0. It follows that $a_n=n(n+1)/2$. (This is the same formula given in Table 2 in Section 2.4 and derived previously.)

Exercises

- 1. Determine which of these are linear homogeneous recurrence relations with constant coefficients. Also, find the degree of those that are.
 - a) $a_n = 3a_{n-1} + 4a_{n-2} + 5a_{n-3}$
 - **b)** $a_n = 2na_{n-1} + a_{n-2}$ **c)** $a_n = a_{n-1} + a_{n-4}$ **d)** $a_n = a_{n-1} + 2$ **e)** $a_n = a_{n-1}^2 + a_{n-2}$

 - **f**) $a_n = a_{n-2}$
- **g**) $a_n = a_{n-1} + n$
- 2. Determine which of these are linear homogeneous recurrence relations with constant coefficients. Also, find the degree of those that are.
 - **a**) $a_n = 3a_{n-2}$
- **c**) $a_n = a_{n-1}^2$
- **b**) $a_n = 3$ **d**) $a_n = a_{n-1} + 2a_{n-3}$
- **e**) $a_n = a_{n-1}^n / n$
- $\mathbf{f)} \ \ a_n = a_{n-1} + a_{n-2} + n + 3$
- $a_n = 4a_{n-2} + 5a_{n-4} + 9a_{n-7}$
- 3. Solve these recurrence relations together with the initial conditions given.
 - a) $a_n = 2a_{n-1}$ for $n \ge 1$, $a_0 = 3$
 - **b**) $a_n = a_{n-1}$ for $n \ge 1$, $a_0 = 2$
 - c) $a_n = 5a_{n-1} 6a_{n-2}$ for $n \ge 2$, $a_0 = 1$, $a_1 = 0$
 - **d)** $a_n = 4a_{n-1} 4a_{n-2}$ for $n \ge 2$, $a_0 = 6$, $a_1 = 8$
 - e) $a_n = -4a_{n-1} 4a_{n-2}$ for $n \ge 2$, $a_0 = 0$, $a_1 = 1$
 - **f**) $a_n = 4a_{n-2}$ for $n \ge 2$, $a_0 = 0$, $a_1 = 4$ g) $a_n = a_{n-2}/4$ for $n \ge 2$, $a_0 = 1$, $a_1 = 0$

- 4. Solve these recurrence relations together with the initial conditions given.
 - a) $a_n = a_{n-1} + 6a_{n-2}$ for $n \ge 2$, $a_0 = 3$, $a_1 = 6$
 - **b)** $a_n = 7a_{n-1} 10a_{n-2}$ for $n \ge 2$, $a_0 = 2$, $a_1 = 1$
 - c) $a_n = 6a_{n-1} 8a_{n-2}$ for $n \ge 2$, $a_0 = 4$, $a_1 = 10$
 - **d**) $a_n = 2a_{n-1} a_{n-2}$ for $n \ge 2$, $a_0 = 4$, $a_1 = 1$
 - e) $a_n = a_{n-2}$ for $n \ge 2$, $a_0 = 5$, $a_1 = -1$
 - **f**) $a_n = -6a_{n-1} 9a_{n-2}$ for $n \ge 2$, $a_0 = 3$, $a_1 = -3$
 - g) $a_{n+2} = -4a_{n+1} + 5a_n$ for $n \ge 0$, $a_0 = 2$, $a_1 = 8$
- 5. How many different messages can be transmitted in n microseconds using the two signals described in Exercise 19 in Section 8.1?
- **6.** How many different messages can be transmitted in nmicroseconds using three different signals if one signal requires 1 microsecond for transmittal, the other two signals require 2 microseconds each for transmittal, and a signal in a message is followed immediately by the next signal?
- 7. In how many ways can a $2 \times n$ rectangular checkerboard be tiled using 1×2 and 2×2 pieces?
- 8. A model for the number of lobsters caught per year is based on the assumption that the number of lobsters caught in a year is the average of the number caught in the two previous years.

- (a) Find a recurrence relation for $\{L_n\}$, where L_n is the number of lobsters caught in year n, under the assumption for this model.
- **b)** Find L_n if 100,000 lobsters were caught in year 1 and 300,000 were caught in year 2.
- 9. A deposit of \$100,000 is made to an investment fund at the beginning of a year. On the last day of each year two dividends are awarded. The first dividend is 20% of the amount in the account during that year. The second dividend is 45% of the amount in the account in the previous
 - a) Find a recurrence relation for $\{P_n\}$, where P_n is the amount in the account at the end of n years if no money is ever withdrawn.
 - **b)** How much is in the account after n years if no money has been withdrawn?
- *10. Prove Theorem 2
- 11. The Lucas numbers satisfy the recurrence relation

$$L_n = L_{n-1} + L_{n-2},$$

and the initial conditions $L_0 = 2$ and $L_1 = 1$.

- a) Show that $L_n = f_{n-1} + f_{n+1}$ for n = 2, 3, ...,where f_n is the nth Fibonacci number.
- b) Find an explicit formula for the Lucas numbers.
- **12.** Find the solution to $a_n = 2a_{n-1} + a_{n-2} 2a_{n-3}$ for n = 3, 4, 5, ..., with $a_0 = 3$, $a_1 = 6$, and $a_2 = 0$.
- **13.** Find the solution to $a_n = 7a_{n-2} + 6a_{n-3}$ with $a_0 = 9$, $a_1 = 10$, and $a_2 = 32$.
- **14.** Find the solution to $a_n = 5a_{n-2} 4a_{n-4}$ with $a_0 = 3$, $a_1 = 2$, $a_2 = 6$, and $a_3 = 8$.
- **15.** Find the solution to $a_n = 2a_{n-1} + 5a_{n-2} 6a_{n-3}$ with $a_0 = 7$, $a_1 = -4$, and $a_2 = 8$.
- *16. Prove Theorem 3.
- (17.) Prove this identity relating the Fibonacci numbers and the binomial coefficients:

$$f_{n+1} = C(n, 0) + C(n-1, 1) + \cdots + C(n-k, k),$$

where *n* is a positive integer and $k = \lfloor n/2 \rfloor$. [*Hint:* Let $a_n = C(n, 0) + C(n - 1, 1) + \dots + C(n - k, k)$. Show that the sequence $\{a_n\}$ satisfies the same recurrence relation and initial conditions satisfied by the sequence of Fibonacci numbers.]

- **18.** Solve the recurrence relation $a_n = 6a_{n-1} 12a_{n-2} +$ $8a_{n-3}$ with $a_0 = -5$, $a_1 = 4$, and $a_2 = 88$.
- **19.** Solve the recurrence relation $a_n = -3a_{n-1} 3a_{n-2}$ a_{n-3} with $a_0 = 5$, $a_1 = -9$, and $a_2 = 15$.
- 20. Find the general form of the solutions of the recurrence relation $a_n = 8a_{n-2} - 16a_{n-4}$.
- 21. What is the general form of the solutions of a linear homogeneous recurrence relation if its characteristic equation has roots 1, 1, 1, 1, -2, -2, -2, 3, 3, -4?
- 22. What is the general form of the solutions of a linear homogeneous recurrence relation if its characteristic equation has the roots -1, -1, -1, 2, 2, 5, 5, 7?

- 23. Consider the nonhomogeneous linear recurrence relation $a_n = 3a_{n-1} + 2^n$.
 - a) Show that $a_n = -2^{n+1}$ is a solution of this recurrence
 - **b)** Use Theorem 5 to find all solutions of this recurrence
 - c) Find the solution with $a_0 = 1$.
- **24.** Consider the nonhomogeneous linear recurrence relation $a_n = 2a_{n-1} + 2^n.$
 - a) Show that $a_n = n2^n$ is a solution of this recurrence
 - **b)** Use Theorem 5 to find all solutions of this recurrence relation.
 - c) Find the solution with $a_0 = 2$.
- **25.** a) Determine values of the constants A and B such that $a_n = An + B$ is a solution of recurrence relation $a_n = 2a_{n-1} + n + 5.$
 - **b)** Use Theorem 5 to find all solutions of this recurrence relation.
 - c) Find the solution of this recurrence relation with $a_0 = 4$.
- **26.** What is the general form of the particular solution guaranteed to exist by Theorem 6 of the linear nonhomogeneous recurrence relation $a_n = 6a_{n-1} - 12a_{n-2} + 8a_{n-3} + F(n)$ if
 - **a)** $F(n) = n^2$?
- **b**) $F(n) = 2^n$?
- c) $F(n) = n2^n$?
- **d**) $F(n) = (-2)^n$?
- e) $F(n) = n^2 2^n$?
- **f**) $F(n) = n^3(-2)^n$?
- **g**) F(n) = 3?
- 27. What is the general form of the particular solution guaranteed to exist by Theorem 6 of the linear nonhomogeneous recurrence relation $a_n = 8a_{n-2} - 16a_{n-4} + F(n)$ if
 - **a)** $F(n) = n^3$?
- **b)** $F(n) = (-2)^n$?
- c) $F(n) = n2^n$?
- **d**) $F(n) = n^2 4^n$?
- e) $F(n) = (n^2 2)(-2)^n$? f) $F(n) = n^4 2^n$?
- **g**) F(n) = 2?
- 28. a) Find all solutions of the recurrence relation $a_n = 2a_{n-1} + 2n^2.$
 - **b)** Find the solution of the recurrence relation in part (a) with initial condition $a_1 = 4$.
- 29. a) Find all solutions of the recurrence relation $a_n = 2a_{n-1} + 3^n$.
 - **b)** Find the solution of the recurrence relation in part (a) with initial condition $a_1 = 5$.
- **30.** a) Find all solutions of the recurrence relation $a_n =$ $-5a_{n-1}-6a_{n-2}+42\cdot 4^n$.
 - **b)** Find the solution of this recurrence relation with $a_1 =$ 56 and $a_2 = 278$.
- **31.** Find all solutions of the recurrence relation $a_n =$ $5a_{n-1} - 6a_{n-2} + 2^n + 3n$. [Hint: Look for a particular solution of the form $qn2^n + p_1n + p_2$, where q, p_1 , and p_2 are constants.]
- **32.** Find the solution of the recurrence relation $a_n =$ $2a_{n-1} + 3 \cdot 2^n$.
- **33.** Find all solutions of the recurrence relation $a_n =$ $4a_{n-1} - 4a_{n-2} + (n+1)2^n$.

- **34.** Find all solutions of the recurrence relation $a_n = 7a_{n-1} 16a_{n-2} + 12a_{n-3} + n4^n$ with $a_0 = -2$, $a_1 = 0$, and $a_2 = 5$.
- **35.** Find the solution of the recurrence relation $a_n = 4a_{n-1} 3a_{n-2} + 2^n + n + 3$ with $a_0 = 1$ and $a_1 = 4$.
- **36.** Let a_n be the sum of the first n perfect squares, that is, $a_n = \sum_{k=1}^n k^2$. Show that the sequence $\{a_n\}$ satisfies the linear nonhomogeneous recurrence relation $a_n = a_{n-1} + n^2$ and the initial condition $a_1 = 1$. Use Theorem 6 to determine a formula for a_n by solving this recurrence relation.
- **37.** Let a_n be the sum of the first n triangular numbers, that is, $a_n = \sum_{k=1}^n t_k$, where $t_k = k(k+1)/2$. Show that $\{a_n\}$ satisfies the linear nonhomogeneous recurrence relation $a_n = a_{n-1} + n(n+1)/2$ and the initial condition $a_1 = 1$. Use Theorem 6 to determine a formula for a_n by solving this recurrence relation.
- **38. a)** Find the characteristic roots of the linear homogeneous recurrence relation $a_n = 2a_{n-1} 2a_{n-2}$. [*Note:* These are complex numbers.]
 - **b**) Find the solution of the recurrence relation in part (a) with $a_0 = 1$ and $a_1 = 2$.
- *39. a) Find the characteristic roots of the linear homogeneous recurrence relation $a_n = a_{n-4}$. [*Note:* These include complex numbers.]
 - **b)** Find the solution of the recurrence relation in part (a) with $a_0 = 1$, $a_1 = 0$, $a_2 = -1$, and $a_3 = 1$.
- *40. Solve the simultaneous recurrence relations

$$a_n = 3a_{n-1} + 2b_{n-1}$$

$$b_n = a_{n-1} + 2b_{n-1}$$

with $a_0 = 1$ and $b_0 = 2$.

*41. a) Use the formula found in Example 4 for f_n , the *n*th Fibonacci number, to show that f_n is the integer closest to

$$\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n.$$

b) Determine for which n f_n is greater than

$$\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n$$

and for which n f_n is less than

$$\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n.$$

- **42.** Show that if $a_n = a_{n-1} + a_{n-2}$, $a_0 = s$ and $a_1 = t$, where s and t are constants, then $a_n = sf_{n-1} + tf_n$ for all positive integers n.
- **43.** Express the solution of the linear nonhomogenous recurrence relation $a_n = a_{n-1} + a_{n-2} + 1$ for $n \ge 2$

- where $a_0 = 0$ and $a_1 = 1$ in terms of the Fibonacci numbers. [*Hint*: Let $b_n = a_n + 1$ and apply Exercise 42 to the sequence b_n .]
- *44. (Linear algebra required) Let A_n be the $n \times n$ matrix with 2s on its main diagonal, 1s in all positions next to a diagonal element, and 0s everywhere else. Find a recurrence relation for d_n , the determinant of A_n . Solve this recurrence relation to find a formula for d_n .
- **45.** Suppose that each pair of a genetically engineered species of rabbits left on an island produces two new pairs of rabbits at the age of 1 month and six new pairs of rabbits at the age of 2 months and every month afterward. None of the rabbits ever die or leave the island.
 - a) Find a recurrence relation for the number of pairs of rabbits on the island n months after one newborn pair is left on the island.
 - **b)** By solving the recurrence relation in (a) determine the number of pairs of rabbits on the island *n* months after one pair is left on the island.
- **46.** Suppose that there are two goats on an island initially. The number of goats on the island doubles every year by natural reproduction, and some goats are either added or removed each year.
 - a) Construct a recurrence relation for the number of goats on the island at the start of the nth year, assuming that during each year an extra 100 goats are put on the island.
 - b) Solve the recurrence relation from part (a) to find the number of goats on the island at the start of the nth year.
 - c) Construct a recurrence relation for the number of goats on the island at the start of the nth year, assuming that n goats are removed during the nth year for each n > 3.
 - **d)** Solve the recurrence relation in part (c) for the number of goats on the island at the start of the *n*th year.
- **47.** A new employee at an exciting new software company starts with a salary of \$50,000 and is promised that at the end of each year her salary will be double her salary of the previous year, with an extra increment of \$10,000 for each year she has been with the company.
 - a) Construct a recurrence relation for her salary for her nth year of employment.
 - **b**) Solve this recurrence relation to find her salary for her *n*th year of employment.

Some linear recurrence relations that do not have constant coefficients can be systematically solved. This is the case for recurrence relations of the form $f(n)a_n = g(n)a_{n-1} + h(n)$. Exercises 48–50 illustrate this.

*48. a) Show that the recurrence relation

$$f(n)a_n = g(n)a_{n-1} + h(n),$$

for $n \ge 1$, and with $a_0 = C$, can be reduced to a recurrence relation of the form

$$b_n = b_{n-1} + Q(n)h(n),$$

where
$$b_n = g(n+1)Q(n+1)a_n$$
, with
$$Q(n) = (f(1)f(2)\cdots f(n-1))/(g(1)g(2)\cdots g(n)).$$

b) Use part (a) to solve the original recurrence relation

$$a_n = \frac{C + \sum_{i=1}^{n} Q(i)h(i)}{g(n+1)Q(n+1)}.$$

- *49. Use Exercise 48 to solve the recurrence relation $(n+1)a_n = (n+3)a_{n-1} + n$, for $n \ge 1$, with $a_0 = 1$.
- **50.** It can be shown that C_n , the average number of comparisons made by the quick sort algorithm (described in preamble to Exercise 50 in Section 5.4), when sorting nelements in random order, satisfies the recurrence relation

$$C_n = n + 1 + \frac{2}{n} \sum_{k=0}^{n-1} C_k$$

for n = 1, 2, ..., with initial condition $C_0 = 0$.

- a) Show that $\{C_n\}$ also satisfies the recurrence relation $nC_n = (n+1)C_{n-1} + 2n$ for n = 1, 2, ...
- b) Use Exercise 48 to solve the recurrence relation in part (a) to find an explicit formula for C_n .
- ****51.** Prove Theorem 4.
- ****52.** Prove Theorem 6.
 - **53.** Solve the recurrence relation $T(n) = nT^2(n/2)$ with initial condition T(1) = 6 when $n = 2^k$ for some integer k. [Hint: Let $n = 2^k$ and then make the substitution $a_k = \log T(2^k)$ to obtain a linear nonhomogeneous recurrence relation.]

Divide-and-Conquer Algorithms and Recurrence Relations

Introduction

"Divide et impera" (translation: "Divide and conquer" - Julius Caesar Many recursive algorithms take a problem with a given input and divide it into one or more smaller problems. This reduction is successively applied until the solutions of the smaller problems can be found quickly. For instance, we perform a binary search by reducing the search for an element in a list to the search for this element in a list half as long. We successively apply this reduction until one element is left. When we sort a list of integers using the merge sort, we split the list into two halves of equal size and sort each half separately. We then merge the two sorted halves. Another example of this type of recursive algorithm is a procedure for multiplying integers that reduces the problem of the multiplication of two integers to three multiplications of pairs of integers with half as many bits. This reduction is successively applied until integers with one bit are obtained. These procedures follow an important algorithmic paradigm known as divide-and-conquer, and are called divide-and-conquer algorithms, because they divide a problem into one or more instances of the same problem of smaller size and they conquer the problem by using the solutions of the smaller problems to find a solution of the original problem, perhaps with some additional work.

In this section we will show how recurrence relations can be used to analyze the computational complexity of divide-and-conquer algorithms. We will use these recurrence relations to estimate the number of operations used by many different divide-and-conquer algorithms, including several that we introduce in this section.

Divide-and-Conquer Recurrence Relations

Suppose that a recursive algorithm divides a problem of size n into a subproblems, where each subproblem is of size n/b (for simplicity, assume that n is a multiple of b; in reality, the smaller problems are often of size equal to the nearest integers either less than or equal to, or greater than or equal to, n/b). Also, suppose that a total of g(n) extra operations are required in the conquer step of the algorithm to combine the solutions of the subproblems into a solution of the original problem. Then, if f(n) represents the number of operations required to solve the problem of size n, it follows that f satisfies the recurrence relation

$$f(n) = af(n/b) + g(n).$$

This is called a **divide-and-conquer recurrence relation**.