ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012

Lecture 3: Time-Domain Reflectometry & S-Parameter Channel Models

Sam Palermo
Analog & Mixed-Signal Center
Texas A&M University

Announcements

 This Thursday lab time will be used for a make-up lecture

No class next Monday

- Reference Material Posted on Website
 - TDR theory application note
 - S-parameter notes

Agenda

- Interconnect measurement techniques
 - Time-domain reflectometry (TDR)
 - Network analyzer
- S-parameters
- Cascading S-parameter models
- Full S-parameter channel model
- Transient simulations
 - Impulse response generation
 - Eye diagrams
 - Inter-symbol interference

Lecture References

 Majority of TDR material from Dally Chapter 3.4, 3.6 - 3.7

 Majority of s-parameter material from Hall "Advanced Signal Integrity for High-Speed Digital Designs" Chapter 9

Interconnect Modeling

- Why do we need interconnect models?
 - Perform hand calculations and simulations (Spice, Matlab, etc...)
 - Locate performance bottlenecks and make design trade-offs
- Model generation methods
 - Electromagnetic CAD tools
 - Actual system measurements
- Measurement techniques
 - Time-Domain Reflectometer (TDR)
 - Network analyzer (frequency domain)

Time-Domain Reflectometer (TDR)

- TDR consists of a fast step generator and a high-speed oscilloscope
- TDR operation
 - Outputs fast voltage step onto channel
 - Observe voltage at source, which includes reflections
 - Voltage magnitude can be converted to impedance
 - Impedance discontinuity location can be determined by delay
- Only input port access to characterize channel

TDR Impedance Calculation

TDR Waveforms (Open & Short)

Open termination

Short termination

TDR Waveforms (Matched & Mismatched)

Matched termination

Mismatched termination

TDR Waveforms (C & L Discontinuity)

Shunt C discontinuity

Series L discontinuity

Peak voltage spike magnitude:

$$\frac{\Delta V}{V} = \left(\frac{\tau}{t_r}\right) \left[1 - e^{\left(-\frac{t_r}{\tau}\right)}\right]$$

TDR Rise Time and Resolution

- TDR spatial resolution is set by step risetime $\Delta x > t_r v$
- Step risetime degrades with propagation through channel
 - Dispersion from skin-effect
 - Lump discontinuities low-pass filter the step
- Causes difficulty in estimating L & C values
- Channel filtering can actually compensate for lump discontinuity spikes ☺

TDR Multiple Reflections

TDR Waveforms (Multiple Discontinuities)

Time-Domain Transmission (TDT)

 Hard to isolate impedance discontinuities, as they are superimposed on a single rising edge

Network Analyzer

- Stimulates network with swept-frequency source
- Measures network response amplitude and phase
- Can measure transfer function, scattering matrices, impedance, ...

Transfer Function & Impedance Measurements

Test Set for Transfer Function

Test Set for Impedance Measurements

Scattering (S) Parameters

- Why S Parameters?
 - Easy to measure
 - Y, Z parameters need open and short conditions
 - S parameters are obtained with nominal termination
 - S parameters based on incident and reflected wave ratio

$$\frac{A_1}{B_1} \underbrace{\begin{array}{c} A_2 \\ Network \\ \hline B_2 \end{array}} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \cdot \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$
S-matrix [Dally]

Formal S-Parameter Definitions

[Agilent]

$$s_{11} = \frac{b_1}{a_1}\Big|_{\substack{a_2=0}} = \text{Input reflection coefficient with the output port terminated by a matched load } (Z_L = Z_0 \text{ sets } a_2 = 0)$$

$$s_{22} = \frac{b_2}{a_2} \Big|_{a_1=0}$$
 = Output reflection coefficient with the input terminated by a matched load ($Z_S = Z_0$ sets $V_s = 0$)

$$s_{21} = \frac{b_2}{a_1}\Big|_{a_2=0}$$
 = Forward transmission (insertion) gain with the output port terminated in a matched load.

$$s_{12} = \frac{b_1}{a_2} \Big|_{a_1=0}$$
 = Reverse transmission (insertion) gain with the input port terminated in a matched load.

Cascading S-Parameters

 Network analysis allows cascading of independently characterized structures

 However, can't directly cascade sparameter matrices and multiply

Must first convert to an ABCD matrix (or T matrix)

ABCD Parameters

$$A = \frac{v_1}{v_2} \bigg|_{i_{2=0}} \quad B = \frac{v_1}{i_2} \bigg|_{v_{2=0}} \quad C = \frac{i_1}{v_2} \bigg|_{i_{2=0}} \quad D = \frac{i_1}{i_2} \bigg|_{v_{2=0}}$$

$$\begin{vmatrix} v_1 \\ i_i \end{vmatrix} = \begin{vmatrix} A & B \\ C & D \end{vmatrix} \bullet \begin{vmatrix} v_2 \\ i_2 \end{vmatrix}$$

Converting Between S & ABCD Parameters

TABLE 9-3. Relationships Between Two-Port S and ABCD Parameters^a

$$\begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \qquad \begin{bmatrix} \frac{B - Z_n(D - A + CZ_n)}{B + Z_n(D + A + CZ_n)} & \frac{2Z_n(AD - BC)}{B + Z_n(D + A + CZ_n)} \\ \frac{2Z_n}{B + Z_n(D + A + CZ_n)} & \frac{B - Z_n(A - D + CZ_n)}{B + Z_n(D + A + CZ_n)} \end{bmatrix}$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \qquad \begin{bmatrix} \frac{(1 + S_{11})(1 - S_{22}) + S_{12}S_{21}}{2S_{21}} & Z_n \frac{(1 + S_{11})(1 + S_{22}) - S_{12}S_{21}}{2S_{21}} \\ \frac{1}{Z_n} \frac{(1 - S_{11})(1 - S_{22}) - S_{12}S_{21}}{2S_{21}} & \frac{(1 - S_{11})(1 + S_{22}) + S_{12}S_{21}}{2S_{21}} \end{bmatrix}$$

[Hall]

 $^{{}^{}a}Z_{n}$ is the termination impedance at the ports.

Example: Cascaded Via & Transmission Line

Taken from "Advanced Signal Integrity for High-Speed Digital Designs" by Hall

Example: Cascaded Via & Transmission Line

$$R = \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{\text{cascade}} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{\text{via}} \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{\text{t-line}}$$

$$= \begin{bmatrix} 0.790 & j22.22 \\ j0.01686 & 0.790 \end{bmatrix} \cdot \begin{bmatrix} -1 & j0.3228 \\ j0.000129 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} -0.790 & -j21.965 \\ -j0.01686 & -0.795 \end{bmatrix}$$

Using conversion table:

$$\begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix}_{\text{cascade}} = \begin{bmatrix} -0.1259 - j0.1553 & -0.7635 + j0.6186 \\ -0.7645 + j0.6182 & -0.1200 - j0.1565 \end{bmatrix}$$

- Can also use T matrixes to cascade
- Taken from "Advanced Signal Integrity for High-Speed Digital Designs" by Hall

S-Parameter Channel Example

[Peters, IEEE Backplane Ethernet Task Force]

S-Parameter Channel Example (4-port differential)

! peters_01_0605 rzv channel thru response					
# HZ	S RI	R 50			
1					
! FREQ	S11	S12	S13	S14	
1	521	S22	S23	524	
!	531	532	S33	534	
1	S41	542	S43	S44	
!	REAL IMAG	REAL IMAG	REAL IMAG	REAL IMAG	
5.00000000e+007	6.279266901548e-002	-5.256007502766e-002 -1.99536	3973143e-001 -9.018006169275e-00	1 7.405252014369e-002 -1.653914717779e	-002 4.694410796534e-004 2.855671737566e-003
	-1.993592781969e-001	-9.017752677900e-001 6.84704	9395661e-002 -3.537762509466e-00	2 6.592975593456e-004 2.6007336903736	-003 7.478976460177e-002 -1.488182269791e-002
	7.438370524663e-002	-1.650568516548e-002 6.66395	7537997e-004 2.723661634513e-00	3 5.641343731365e-002 -5.693035832892e	-002 -2.070369894915e-001 -8.986367167361e-001
	3.380698172980e-004	2.715033111885e-003 7.49776	5935351e-002 -1.488546535615e-00	2 -2.063544808970e-001 -9.002700655374e	-001 6.856095801756e-002 -3.019606086420e-002
6.00000000e+007	4.829977376755e-002	-6.288238652440e-002 -4.92383	2497425e-001 -7.721510464035e-00	1 6.298956599590e-002 -3.938489680891e	-002 1.125377257145e-003 1.921732299021e-003
	-4.925547500023e-001	-7.726263821707e-001 6.16345	0406360e-002 -4.486265928179e-00	2 1.299644022342e-003 1.492436402394e	-003 6.462146347807e-002 -3.736630924981e-002
	6.308085276969e-002	-3.947655302643e-002 1.38674	1613180e-003 1.653454474207e-00	3 4.393874455850e-002 -6.448913049207e	-002 -4.992743919180e-001 -7.660808533046e-001
	1.280875740087e-003	1.936760526874e-003 6.48236	9657086e-002 -3.743006383763e-00	2 -4.995203164654e-001 -7.674804458241e	-001 6.284893613667e-002 -4.132139739274e-002

Data from 50MHz to 15GHz in 10MHz steps

$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{21} & S_{22} & S_{23} & S_{24} \\ S_{31} & S_{32} & S_{33} & S_{34} \\ S_{41} & S_{42} & S_{43} & S_{44} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{21} & S_{22} & S_{23} & S_{24} \\ S_{31} & S_{32} & S_{33} & S_{34} \\ S_{41} & S_{42} & S_{43} & S_{44} \end{bmatrix} \begin{bmatrix} v \\ 0 \\ -v \\ 0 \end{bmatrix}$$

$$S_{dd11} = \frac{b_{d1}}{a_{d1}}\Big|_{a_2 = a_4 = 0} = \frac{1}{2} (S_{11} + S_{33} - S_{13} - S_{31})$$

$$S_{dd21} = \frac{b_{d2}}{a_{d1}}\Big|_{a_1 = a_2 = 0} = \frac{1}{2} (S_{21} + S_{43} - S_{23} - S_{41})$$

S-Parameter Channel Example

Impulse Response

- Channel impulse responses are used in
 - Time domain simulations
 - Link analysis tools

Generating an Impulse Response from S-Parameters

- Perform the inverse Fourier transform on the s-parameter of interest
- Step 1: For ifft, produce negative frequency values and append to sparameter data in the following manner

$$S(-f) = S(f)^*$$

$$h(t) = F^{-1}\{S(\omega)\}$$

Increasing Impulse Response Resolution

 Could perform ifft now, but will get an impulse response with time resolution of

$$\frac{1}{2f_{\text{max}}} = \frac{1}{2(15\text{GHz})} = 33.3\text{ps}$$

 To improve impulse response resolution expand frequency axis and "zero pad" For 1ps resolution: zero pad to +/-500GHz

Channel Impulse Response

- Now perform ifft to produce impulse response
- Can sanity check by doing an fft on impulse response and comparing to measured data

Impulse Response of Different Channels

Channel Impulse Responses

Channel Transient Response

Eye Diagrams

Eye Diagrams vs Data Rate

Eye Diagrams vs Channel

Inter-Symbol Interference (ISI)

- Previous bits residual state can distort the current bit, resulting in inter-symbol interference (ISI)
- ISI is caused by
 - Reflections, Channel resonances, Channel loss (dispersion)

ISI Impact

- At channel input (TX output), eye diagram is wide open
- As data pulses propagate through channel, they experience dispersion and have significant ISI
 - Result is a closed eye at channel output (RX input)

[Meghelli (IBM) ISSCC 2006]

Next Time

Channel pulse response model

Modulation schemes