

Macchieu Marquer 23 Occobre 2023

sommaire

re concexte

Objectif neutralité carbone

La Démarche

Nettoyage Graphique Modèles

Les résulcacs

re contexte

L'objectif est de proposer le model le plus adapté pour prédire les émissions de CO2 ainsi que la consommation totale d'énergie des bâtiments non destinés à l'habitation.

re concexce

L'intégralité des données provient de Seattle Open Data: https://data.seattle.gov/dataset/2016-Building-Energy-Benchmarking/2bpz-gwpy

Données initiales : 2016_Building_Energy_Benchmarking.csv

La Démarche

Nettoyage

Visualisation

Modèles

Vérification: Neccoyage

- des types par variable
- des valeurs manquantes par variable
- des valeurs uniques par variable
- calcul du taux de remplissage des variables

Suppression de variables:

"Comments","Outlier","DataYear","City","State","YearsENERGYSTARCertified",

"ThirdLargestPropertyUseType", "ThirdLargestPropertyUseTypeGFA"...

Suppression des doublons:

TaxParcelldentificationNumber et PropertyName

Ajout de la surface total pour chaque batiment et du ratio surface batiment/parking Suppression des batiments résidentiels

Binarisation de Electricity(kBtu) et GHGEmissionsIntensity Utilisation de OneHotEncoder sur les variables catégorielles

Graphique

Utilisation de missingno

неастар

Corrélation entre les différentes variables

densité et corrélation

Vérification de la densité sur les variables cibles:

Ainsi que la corrélation entre ces deux variables:

Evolution de la consommation moyenne par année pour SiteEnergyUse(kBtu)

consommation / surface

Lien entre surface des bâtiments et SiteEnergieUse(kBtu)

consommation par quartier

Représentation des consommations de TotalGHGEmissions par quartier

CONSOMMACION PAR CYPE DE BÂCIMENC

Représentation des consommations de SiteEnergyUse(kBtu) par type de bâtiment

RÉPARTITION PAR TYPES DE BÂTIMENTS

Protocole expérimental

Utilisation de train_test_split pour découpe du jeu en 70% d'entrainement et 30% de test.

Liste des modèles utilisé:

DummyRegressor, LinearRegression Lasso, Rigde, ElasticNet DecisionTreeRegressor,RandomForestRegressor, XGBRegressor

Métriques utilisée: RMSE, MAE, R²

Passage d'une partie des hyperparamètres au logarithme

Graphiques des nuage d'erreur pour comparaison des différents modèles utilisé

Graphiques des résultats

Les résultats

Pour SiteEnergyUse(kBtu):

	Model	RMSE	MAE	R²
0	DummyRegressor	1.16	0.57	-0.15
1	LinearRegression	54446427422.71	3104053900.17	-2558863623205183029248.00
2	Lasso	0.51	0.30	0.77
3	Ridge	0.52	0.30	0.76
4	ElasticNet	0.52	0.30	0.77
5	DecisionTreeRegressor	0.55	0.28	0.74
6	RandomForestRegressor	0.54	0.27	0.75
7	XGBRegressor	0.55	0.25	0.74

Les résultats

Pour TotalGHGEmissions:

	Model	RMSE	MAE	R²
0	DummyRegressor	1.04	0.50	-0.14
1	LinearRegression	11295499.16	553078.52	-134886047540599.64
2	Lasso	0.62	0.38	0.59
3	Ridge	0.61	0.38	0.60
4	ElasticNet	0.61	0.38	0.60
5	DecisionTreeRegressor	0.59	0.29	0.64
6	RandomForestRegressor	0.51	0.26	0.72
7	XGBRegressor	0.53	0.26	0.70

Pour TotalGHGEmissions:							
EnergyStarScore		Model	RMSE	MAE	R²		
0	Avec	RandomForestRegressor	0.51	0.25	0.76		
1	Sans	RandomForestRegressor	0.51	0.25	0.75		

Interprétation global

Utilisation de GridSearchCV et de la cross-validation

Visuel de Feature Importances

Interprétation Local

Utilisation de SHAP pour une interprétation local

conclusion

Il est plus facile de prédire TotalEnergieUse que TotalGHGEmissions,

Nous pourrions envisager de prendre des données sur plusieurs années puis le comparer entre elles

Ajout de variables liées au temps moyen sur l'année, ainsi que les pics haut et bas des températures

Concernent EnergieStarScore sont utilisation ne change pas les résultats sur SiteEnergyUse et l'améliore que très peu pour TotalGHGEmissions

