电子技术基础实验 实验二 三极管放大电路

祝尔乐 未央-电 01 2021 年 10 月 27 日

一. 实验目的

- 1、掌握三极管放大电路静态工作点的测量方法。
- 2、掌握放大电路主要性能参数的测量方法。
- 3、熟悉用 LTspice 仿真电路。

二. 实验内容

1. 测量三极管 2N3904 的输入输出特性

采用图 1 的电路测量三极管 2N3904 的输入输出特性。通过调整 V1,V2 的值,使三极管的 U_{BE} 和 U_{CE} 不断发生变化,测量 $U_{BE},\,U_{CE},I_C,I_B$ 的值就可以得到三极管的输入输出特性。

输入特性测量结果见下表:

表 1: 三极管的输入特性测量

《 1. 二似自引制八行任则里											
$U_{CE} = 0.0V$	U_{BE}/V	0.504	0.537	0.555	0.572	0.574	0.578	0.590	0.597		
	$I_B/\mu A$	0.8	5.2	9.0	15.0	18.0	21.0	32.0	42.0		
$U_{CE} = 2.0V$	U_{BE}/V	0.635	0.648	0.658	0.667	0.678	0.680	0.681	0.682		
	$I_B/\mu A$	0.8	4.8	9.2	15.8	26.0	34.2	43.8	46.5		

画出输入特性的图:

输出特性曲线见下表:

表 2: 三极管的输出特性测量

$I_B = 34\mu A$	- /										
	I_C/mA	0.8	2.4	3.3	4.2	6.6	6.0	6.2	6.2		
$I_B = 22\mu A$	U_{CE}/V I_{C}/mA										
$I_B = 10\mu A$	U_{CE}/V	0.69	1.49	2.36	3.26	4.40	5.56	7.20	8.12		
	I_C/mA	0.8	1.6	2.0	2.1	2.1	2.0	2.0	2.0		

可以估算出该三极管的 β 的值约为 200。 画出输出特性的图:

2. 共射级放大电路分析

搭建图 2 所示电路。 $VCC = 15V, R_L = 10k\Omega$ 。

(1) 测量电路的静态工作点

测量结果如下表:

表 3: 静态工作点测量 U_E/V U_B/V U_C/V 4.258 4.91 10.36

(2)测量电压放大倍数、输入电阻 R_i 、输出电阻 R_o ;设置正弦波输入信号,有效值 $VRMS\approx 5mV$,频率为 ${\bf 10kHz}$

得到的波形为:

电压放大倍数为:

$$A_u = \frac{U_o}{U_i} = \frac{1.66}{10\sqrt{2}m} \approx 117.4 \tag{1}$$

采用附件中的方法测量输入电阻, $R_1 = 10K\Omega, U_S = 50mVrms$,使得 $U_i' = 56.6mV, U_i = 9.62mV$,

$$R_i = \frac{U_i}{U_i' - U_i} R_1 \approx 2k\Omega \tag{2}$$

采用附件中的方法测量输出电阻, $U_S=10mVrms, R_L=10k\Omega$,测出 $U_o'=1.2mv, U_{OL}=1.1mv$,

$$R_o = \left(\frac{U_o'}{U_{oL}} - 1\right) R_L \approx 1k\Omega \tag{3}$$

(3) 改变输入信号频率(100Hz、1kHz……),测量输出信号幅值,画出幅频特性曲线

改变输入信号频率,测量输出信号的幅值,测量结果如下表:

表 4: 静态工作点测量 $f/Hz \quad U_O/V(-)$ A_u 10 0.0328 2.32 100 0.2215.56 500 0.4330.46 0.781k55.155k1.48 104.56 10k 1.62 114.55 100k1.72 121.62

(4) 在发射极与 R_E 之间串联一个 $\mathbf{100\Omega}$ 电阻(保持 C_E 与 R_E 并联),测量输出波形及电压放大倍数,与上面结果比较,分析发射极电阻对放大电路的影响

串联 100Ω 电阻,输入电压仍采用 5mVrms, 10kHz, 得到输出电压的波形 计算放大倍数:

$$A_u = \frac{184m}{10\sqrt{2}m} \approx 13.0\tag{4}$$

可以看出在串联 100Ω 后电路引入了交流负反馈, 使得放大倍数减小。

(5) 将 R_1 更换为 $5k\Omega$ 电阻,测量静态工作点、输出波形及电压放大倍数等参数 将 R_1 改为 $5k\Omega$,测量静态工作点如下表:

表 5: 更换 R_1 后静态工作点测量

$$\frac{U_E/V}{6.79} \quad \frac{U_B/V}{7.43} \quad \frac{U_C/V}{8.64}$$

输入电压为 5mVrms, 频率为 10kHz, 测量输出波形:

由此可以计算出放大倍数:

$$A_u = \frac{U_o}{U_i} = \frac{126m}{10\sqrt{2}m} \approx 8.91 \tag{5}$$

可以看出电路参数改变,输出电压的值也会改变。

3. 用 LTspice 软件仿真图 2 所示电路。

仿真结果如下:

仿真结果与实验测量结果相近。