Значення, задані за варіантом:

$x_{imin}\!\coloneqq\!-2$	$k \coloneqq 4$	$b \coloneqq 1 \cdot 10^{-2}$	$S2_{a\partial} = 0.900$
$x_{imax} \coloneqq 0$	p = 0.900	$d \coloneqq 3$	
$y_{11} = 5.1$	$y_{21}\!\coloneqq\!6.3$	$y_{31} = 7.5$	$y_{41}\!:=\!8.1$
$y_{12} = 5.2$	$y_{22} \coloneqq 6.1$	$y_{32} = 7.1$	$y_{42}\!\coloneqq\!8.4$
$y_{13} = 5.4$	$y_{23}\!\coloneqq\!6.2$	$y_{33} = 7.4$	$y_{43}\!\coloneqq\!8.2$
$y_{14} = 5.3$	$y_{24}\!\coloneqq\!6.4$	$y_{34} = 7.2$	$y_{44} = 8.3$
$y_{15} = 5.5$	$y_{25}\!\coloneqq\!6.5$	$y_{35} \coloneqq 7.3$	$y_{45}\!\coloneqq\!8.5$

Кодовані значення

Абсолютні значення

$$\begin{array}{ll} x_{kimin} \coloneqq -1 & x_{imin} \coloneqq -2 \\ \\ x_{kimax} \coloneqq 1 & x_{imax} \coloneqq 0 \\ \\ x_{ki0} \coloneqq \frac{x_{kimax} + x_{kimin}}{2} \equiv 0 & x_{i0} \coloneqq \frac{x_{imax} + x_{imin}}{2} \equiv -1 \\ \\ x_{kil1} \coloneqq \sqrt{k} \equiv 2 & x_{il1} \coloneqq x_{kil1} \cdot \left(x_{i0} - x_{imax}\right) \equiv -2 \\ \\ x_{kil2} \coloneqq -\sqrt{k} \equiv -2 & x_{il2} \coloneqq -x_{kil1} \cdot \left(x_{i0} - x_{imax}\right) \equiv 2 \end{array}$$

Знаходимо середньоарифметичне значення Ym (m=1, 4)

$$\begin{split} y_1 &\coloneqq \frac{y_{11} + y_{12} + y_{13} + y_{14} + y_{15}}{5} = 5.3 \\ y_2 &\coloneqq \frac{y_{21} + y_{22} + y_{23} + y_{24} + y_{25}}{5} = 6.3 \\ y_3 &\coloneqq \frac{y_{31} + y_{32} + y_{33} + y_{34} + y_{35}}{5} = 7.3 \\ y_4 &\coloneqq \frac{y_{41} + y_{42} + y_{43} + y_{44} + y_{45}}{5} = 8.3 \end{split}$$

Знаходимо значення статистичних оцінок дисперсії

 $m\!:=\!5$ -> кількість повторень одної комбінації $N\!:=\!4$ -> кількість комбінацій

$$S2_{y1} \coloneqq \frac{\left(y_{11} - y_{1}\right)^{2} + \left(y_{12} - y_{1}\right)^{2} + \left(y_{13} - y_{1}\right)^{2} + \left(y_{14} - y_{1}\right)^{2} + \left(y_{15} - y_{1}\right)^{2}}{m - 1} = 0.025$$

$$S2_{y2} \coloneqq \frac{\left(y_{21} - y_{2}\right)^{2} + \left(y_{22} - y_{2}\right)^{2} + \left(y_{23} - y_{2}\right)^{2} + \left(y_{24} - y_{2}\right)^{2} + \left(y_{25} - y_{2}\right)^{2}}{m - 1} = 0.025$$

$$S2_{y3} \coloneqq \frac{\left(y_{31} - y_{3}\right)^{2} + \left(y_{32} - y_{3}\right)^{2} + \left(y_{33} - y_{3}\right)^{2} + \left(y_{34} - y_{3}\right)^{2} + \left(y_{35} - y_{3}\right)^{2}}{m - 1} = 0.025$$

$$S2_{y4} \coloneqq \frac{\left(y_{41} - y_{4}\right)^{2} + \left(y_{42} - y_{4}\right)^{2} + \left(y_{43} - y_{4}\right)^{2} + \left(y_{44} - y_{4}\right)^{2} + \left(y_{45} - y_{4}\right)^{2}}{m - 1} = 0.025$$

Середнє значення статистичної оцінки дисперсії:

$$S2\!\coloneqq\!\frac{S2_{y1}\!+\!S2_{y2}\!+\!S2_{y3}\!+\!S2_{y4}}{4}\!=\!0.025$$

Розраховуємо критерій Кохрена

$$\begin{split} S2_{max} &\coloneqq \max\left(S2_{y1}, S2_{y2}, S2_{y3}, S2_{y4}\right) = 0.025 \\ G &\coloneqq \frac{S2_{max}}{S2_{y1} + S2_{y2} + S2_{y3} + S2_{y4}} = 0.25 \end{split}$$

Степені свободи: f1 := m-1=4 f2 := N=4

Рівень значимості: q = 1 - p = 0.1

Таблица П1.3. Критерий Кохрена. Значения критерия G, построенного $\nu=m-1$ по и N(m- число повторений каждого из N опытов), при 95%-ной доверительной вероятности

	Т											
N	v										,	
	1	2	3	4	5	6	7	8	9	10	16	œ
2	0,998	0,975	0,939	0,916	0,858	0,853	0,833	0,816	0,801	0,788	0,734	0,500
3	0,967	0,871	0,798	0,746	0,707	0,677	0,653	0,633	0,617	0,602	0,547	0,338
- 4	0,906	0,768	0,684	0,628	0,590	0,560	0,536	0,518	0,502	0,488	0,437	0,250
5	0,841	0,648	0,591	0,544	0,506	0,478	0,456	0,439	0,424	0,419	0,364	0,200
6	0,781	0,616	0,532	0,480	0,445	0,418	0,398	0,382	0,368	0,357	0,314	0,167
7	0,727	0,561	0,480	0,431	0,391	0,373	0,356	0,339	0,325	0,315	0,276	0,143
8	0,680	0,516	0,438	0,391	0,360	0,336	0,319	0,304	0,293	0,283	0,246	0,125
9	0,639	0,478	0,403	0,358	0,329	0,307	0,290	0,277	0,260	0,257	0,223	0,111
10	0,602	0,445	0,373	0,331	0,303	0,282	0,267	0,254	0,244	0,235	0,203	0,100
12	0,541	0,392	0,326	0,288	0,262	0,244	0,230	0,219	0,210	0,202	0,174	0,083
15	0,471	0,335	0,276	0,242	0,220	0,203	0,191	0,182	0,174	0,167	0,143	0,067
20	0,389	0,271	0,221	0,192	0,174	0,160	0,150	0,142	0,136	0,130	0,111	0,050
30	0,293	0,198	0,159	0,138	0,124	0,114	0,106	0,100	0,096	0,092	0,077	0,033
40	0,237	0,158	0,126	0,108	0,097	0,089	0,083	0,978	0,074	0,071	0,060	0,025
60	0,174	0,113	0,090	0,077	0,068	0,062	0,058	0,055	0,052	0,050	0,041	0,017
120	0,100	0,063	0,050	0,042	0,037	0,034	0,031	0,029	0,028	0,027	0,021	0,008
œ	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000

3 таблиці обираємо $G_{\kappa\rho}\!\coloneqq\!0.628$

Так як $G\!\leq\!G_{\!\scriptscriptstyle K\!p}$, то з імовірністю $p\!=\!0.9$ однорідність дисперсії підтверджується.

Розраховуємо критерій Стьюдента

$$m \coloneqq 5$$
 $k \coloneqq 2$ $N \coloneqq 4$

$$S2_b := \frac{S2}{N \cdot m} = 0.001$$

$$t\!\coloneqq\!\frac{\left|b\right|}{S2_b}\!=\!8$$

Кількість ступенів вільності: $f3 := f1 \cdot f2 = 16$

$$q = 0.1$$
 $p = 0.9$

Критические значения коэффициента Стьюдента ($t_{p,v}$ -критерия) для различной доверительной вероятности р (%) и числа степеней свободы v

		вероятно		и числа с					
Число степеней	Доверительная вероятность, р, %								
свободы, у	80	90	95	98	99	99,5	99,8	99,9	
1	3,0777	6,3138	12,7062	31,8205	63,6567	127,3213	318,3088	636,6192	
2	1,8856	2,9200	4,3027	6,9646	9,9248	14,0890	22,3271	31,5991	
3	1,6377	2,3534	3,1824	4,5407	5,8409	7,4533	10,2145	12,9240	
4	1,5332	2,1318	2,7764	3,7469	4,6041	5,5976	7,1732	8,6103	
5	1,4759	2,0150	2,5706	3,3649	4,0321	4,7733	5,8934	6,8688	
6	1,4398	1,9432	2,4469	3,1427	3,7074	4,3168	5,2076	5,9588	
7	1,4149	1,8946	2,3646	2,9980	3,4995	4,0293	4,7853	5,4079	
8	1,3968	1,8595	2,3060	2,8965	3,3554	3,8325	4,5008	5,0413	
9	1,3830	1,8331	2,2622	2,8214	3,2498	3,6897	4,2968	4,7809	
10	1,3722	1,8125	2,2281	2,7638	3,1693	3,5814	4,1437	4,5869	
11	1,3634	1,7959	2,2010	2,7181	3,1058	3,4966	4,0247	4,4370	
12	1,3562	1,7823	2,1788	2,6810	3,0545	3,4284	3,9296	4,3178	
13	1,3502	1,7709	2,1604	2,6503	3,0123	3,3725	3,8520	4,2208	
14	1,3450	1,7613	2,1448	2,6245	2,9768	3,3257	3,7874	4,1405	
15	1,3406	1,7531	2,1314	2,6025	2,9467	3,2860	3,7328	4,0728	
16	1,3368	1,7459	2,1199	2,5835	2,9208	3,2520	3,6862	4,0150	
17	1,3334	1,7396	2,1098	2,5669	2,8982	3,2224	3,6458	3,9651	
18	1,3304	1,7341	2,1009	2,5524	2,8784	3,1966	3,6105	3,9216	
19	1,3277	1,7291	2,0930	2,5395	2,8609	3,1737	3,5794	3,8834	
20	1,3253	1,7247	2,0860	2,5280	2,8453	3,1534	3,5518	3,8495	

3 таблиці $t_{\kappa p}\!\coloneqq\!1.7459$ $t\!>\!t_{\kappa p}$, отже коефіцієнт рівняння регресії значимий з імовірністю $p\!=\!0.9$

 $d_{\kappa oe\phi}\!\coloneqq\!4$ -> кількість значущих коефіцієнтів лінійної регресії

Розраховуємо критерій Фішера

$$F \coloneqq \frac{S2_{a\partial}}{S2} = 36$$

Кількість ступенів вільності: $f3 \coloneqq f1 \cdot f2 = 16$ $f4 \coloneqq N-d=1$

Значения критерия Фишера (F-критерия) для уровня значимости q = 5%

 v_1 – число степеней свободы большей дисперсии; v_2 – число степеней свободы меньшей дисперсии

V1		V ₁											
v_2	1	2	3	4	5	6	7	8	9	10	15	20	
1	161,4	199,5	215,7	224,6	230,2	234,0	236,8	238,9	240,5	241,9	245,9	248,0	
2	18,51	19,00	19,16	19,25	19,30	19,33	19,35	19,37	19,38	19,40	19,43	19,45	
3	10,13	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81	8,79	8,70	8,66	
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,96	5,86	5,80	
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77	4,74	4,62	4,56	
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06	3,94	3,87	
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68	3,64	3,51	3,44	
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39	3,35	3,22	3,15	
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18	3,14	3,01	2,94	
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02	2,98	2,85	2,77	
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90	2,85	2,72	2,65	
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80	2,75	2,62	2,54	
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71	2,67	2,53	2,46	
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65	2,60	2,46	2,39	
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59	2,54	2,40	2,33	
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54	2,49	2,35	2,28	
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49	2,45	2,31	2,23	
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46	2,41	2,27	2,19	
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42	2,38	2,23	2,16	
20	4,35	3,49	3,10	2,87	2,71	2,60	2,51	2,45	2,39	2,35	2,20	2,12	

3 таблиці $F_{\kappa p}\!\coloneqq\!4.49$ $F\!>\!F_{\kappa p}$, отже модель не адеквадна оригіналу

Розраховуємо коефіцієнти рівняння регресії $y = b_0 + b_1 \cdot x$

Дано:
$$m_x\!\coloneqq\!-1$$
 $a_2\!\coloneqq\!-1$ $m_y\!\coloneqq\!-2$ $a_{11}\!\coloneqq\!3$

Розрахунки:

$$b_0 + m_x \cdot b_1 = m_y$$

 $m_x \cdot b_0 + a_2 \cdot b_1 = a_{11}$

$$b_0 \coloneqq \frac{\left| \begin{bmatrix} m_y & m_x \\ a_{11} & a_2 \end{bmatrix} \right|}{\left| \begin{bmatrix} 1 & m_x \\ m_x & a_2 \end{bmatrix} \right|} = -2.5 \qquad b_1 \coloneqq \frac{\left| \begin{bmatrix} 1 & m_y \\ m_x & a_{11} \end{bmatrix} \right|}{\left| \begin{bmatrix} 1 & m_x \\ m_x & a_2 \end{bmatrix} \right|} = -0.5$$