Metody Numeryczne sprawozdanie projekt nr 2

Bartosz Jamroży, grupa laboratoryjna nr 1 22 grudnia 2020

Polecenie

Rozwiązywanie układu równań liniowych Ax=b, gdzie $A\in\mathbb{R}^{n\times n}$ jest macierzą pięciodiagonalną, $b\in\mathbb{R}^n$, metodą eliminacji Gaussa. Obliczanie $\det(A)$ i $\det(A^{-1})$.

W pamięci komputera należy przechowywać wyłącznie niezerowe przekątne macierzy A (w postaci pięciu wektorów lub macierzy $n\times 5$ lub $5\times n$).

Porównać wyniki z otrzymanymi wbudowaną funkcją Matlaba.

Program obliczeniowy

Zaimplementowana funkcja obliczająca to [x,det_A,det_A_inverse] = RozwiazanieUkladuPieciodiagonalna(A,b)

Parametry

Wejście

- A Macierz ukladu linowego
 Macierz kwadratowa pięciodiagonalna o elementach rzeczywistych
- b Wyrazy wolne układu wektor liczb rzeczywistych

Wyjście

- x Rozwiązanie układu wektor rzeczywisty
- det wyznacznik macierzy A
- det_inverse wyznacznik macierzy odwrotnej do A

Opis działania

Funkcja Rozwiazanie Ukladu Pieciodiagonalna składa się z następujących podfuncji:

Pienciodiagonalna Jako
Prostokatna(A) Zwraca macierz, której wiersze są diagonalami (odpowiednio rozszerzonymi zerami do długości n
 rozmiaru A, diagonala 1 i 2 przedłużone z tyłu, 4 i 5 z przodu) z A Niezerowe elem
nty poza diagonalami zostają zignorowane

EliminacjaGaussa(B,b) Dokonuje operacji na kwadratowym odpowiedniku A odpowiadającej podstawowej eliminacji gausa na oryginalniej macierzy pięciodiagonalnej.

Obliczaniex(Be,be) Wyzancza rozwiazanie ukladu

Przykłady obliczeniowe

Normalne działanie, krok po kroku

Przykładowa losowa macierz pięciodiagonalna:

45	10	43	0	0	0	0	0	0	0
8	96	91	62	0	0	0	0	0	0
									- 1
22	0	18	35	90	0	0	0	0	0
0	77	26	51	94	40	0	0	0	0
0	0	14	40	49	9	4	0	0	0
0	0	0	7	48	13	16	18	0	0
0	0	0	0	33	94	64	36	50	0
0	0	0	0	0	95	73	62	51	55
0	0	0	0	0	0	64	78	81	62
0	0	0	0	0	0	0	8	79	58

Oraz wektor wyrazów wolnych:

30 47 23 84 19 22 17 22 43

Po przekształceniu do postaci 5xn:

43	62	90	40	4	18	50	55	0	0
10	91	35	94	9	16	36	51	62	0
45	96	18	51	49	13	64	62	81	58
0	8	0	26	40	48	94	73	78	79
0	0	22	77	14	7	33	95	64	8

Po elimancji gaussa:

```
1.0e+03 *
0.0430
          0.0620
                    0.0900
                              0.0400
                                        0.0040
                                                  0.0180
                                                            0.0500
          0.0834
                    0.0382
                              3.0036
                                                           -0.0118
                                                                      -0.0952
0.0100
                                        0.0210
                                                  0.0232
                                                                               -0.0724
0.0450
          0.0942
                     0.0013
                                                                      0.0000
```

Wyarazy wolne:

```
1.0e+03 *

0.0200 0.0264 0.0386 1.2491 0.0439 0.0909 -0.1353 0.2417 0.2928 5.6711
```

Teraz zgausowana macierz 5xn jest odpowiednikiem takiej kwadratowej macierzy(tylko dla zobrazowia co sie stało w obliczeniach,program nadal korzysta z formatu 5xn):

.0e+03 *									
0.0450	0.0100	0.0430	0	0	0	0	0	0	(
0	0.0942	0.0834	0.0620	0	0	0	0	0	(
0	0	0.0013	0.0382	0.0900	0	0	0	0	
0	0	0	1.2359	3.0036	0.0400	0	0	0	
0	0	0	0	-0.0172	0.0210	0.0040	0	0	
0	0	0	0	0	0.0505	0.0232	0.0180	0	
0	0	0	0	0	0	0.0101	-0.0118	0.0500	
0	0	0	0	0	0	0.0000	0.0627	-0.0952	0.055
0	0	0	0	0	0	0	0	-0.0047	-0.072
0	0	0	0	0	0	0	0	0	-1.349

Ostateczny wektor rozwiązań:

0.3855 -2.8191 0.7172 3.7464 -1.1724 3.5140 -12.5188 11.3150 2.4848 -4.2038

Zero na diagonali

Jako ze funcja realizowana jest poprzez podstawą eliminacje Gaussa nie jest odporna na pojawienie sie zera na diagonali. W takim przypadku funcja zwróci wektor NaN-óW.

Macierz powstała z wyboru diagonali z macierzy pascala:

1	1	1	0	0	0	0	0	0	0
1	2	3	4	0	0	0	0	0	0
1	3	6	10	15	0	0	0	0	0
0	4	10	20	35	56	0	0	0	0
0	0	15	35	70	126	210	0	0	0
0	0	0	56	126	252	462	792	0	0
0	0	0	0	210	462	924	1716	3003	0
0	0	0	0	0	792	1716	3432	6435	11440
0	0	0	0	0	0	3003	6435	12870	24310
0	0	0	0	0	0	0	11440	24310	48620

Jakiś wektor wyrazów wolnych (bez znaczenia jaki nie on jest tu problemem):

1	1	1	1	1	1	1	1	1	1	

Wynik:

Macierz nie pięciodiagonalna

Gdy jako maciez podana zostanie macierz nie pięciagonalna, alementy poza diagonalami zostaną zignorowane:

A =						
46	52	91	29	44	10	50
76	33	10	13	1	99	76
81	17	74	21	89	33	63
10	20	73	89	19	29	8
17	90	56	7	9	6	8
35	67	18	24	30	29	77
5	46	59	5	45	4	90
A5 =						
46	52	91	0	0	0	0
76	33	10	13	0	0	0
81	17	74	21	89	0	0
0	20	73	89	19	29	0
0	0	56	7	9	6	8
0	0	0	24	30	29	77
0	0	0	0	45	4	90
b =						
10	10	10	10	10	10	10

Wywołanie dla obu macierzy da ten sam efekt: Rozwiazanie Ukladu
Pieciodiagonalna(A,b)==Rozwiazanie Ukladu Pieciodiagonalna(A5,b)

Niepoprawne argumenty

```
>> RozwiazanieUkladuPieciodiagonalna([1 1; 1 1; 1 1],1:2)
Error using RozwiazanieUkladuPieciodiagonalna (line 24)
Macierz nie jest kwadratowa

>> RozwiazanieUkladuPieciodiagonalna([1 1; 1 1],1:3)
Error using RozwiazanieUkladuPieciodiagonalna (line 27)
Wymiar macierzy i wektora wyrazów wolnych nie odpowiadają sobie
```

Analiza działania programu

Wizualizacja błędu rozwiązywania układu dla loosowych macierzy różnych wymiarach. Błąd został wyliczony jako różnica napisanej funkcji do wbudowanej A b. Rozbierzności sa niewielki.

Po powiększeniu wykresu widać wartosci liczbowe

Róż	nica nor	m z napi	saj func	ji do roz	wiązania	system	owego: A	A\ b ×10 ⁻¹
1	4.441e-16	-4.441e-16	8.527e-14	-3.553e-15	1.421e-14	-8.527e-14	0	8
2	2.22e-16	4.441e-16	4.441e-14	-8.882e-16	1.776e-14	-3.553e-14	0	6
3	2.22e-16	4.441e-16	3.908e-14	-8.882e-16	1.421e-14	-2.842e-14	-3.553e-15	2
Norma ₄	2.22e-16	4.441e-16	3.375e-14	-4.441e-16	1.066e-14	-3.553e-14	3.553e-15	- 0
5	0	4.441e-16	3.553e-14	0	1.421e-14	-2.842e-14	0	2
6	2.22e-16	4.441e-16	3.375e-14	4.441e-16	1.066e-14	-2.842e-14	3.553e-15	4
7	2.22e-16	4.441e-16	3.375e-14	-4.441e-16	1.421e-14	-2.842e-14	3.553e-15	-6
	3	4	5 Rozma	6 iar macie	7 rzy nxn	8	9	