

Figure 47.3: The \mathcal{H} -polytope for the linear program of Example 47.1. Note $x_1 \to x$ and $x_2 \to y$.

the action of y on the *columns* of A. This is the sense in which (D) is the *dual* (P). In most presentations, the fact that (P) and (D) perform a search for a solution in spaces that are dual to each other is obscured by excessive use of transposition.

To convert the Dual Program (D) to a standard maximization problem we change the objective function yb to $-b^{\mathsf{T}}y^{\mathsf{T}}$ and the inequality $yA \geq c$ to $-A^{\mathsf{T}}y^{\mathsf{T}} \leq -c^{\mathsf{T}}$. The Dual Linear Program (D) is now stated as (D')

where $y \in (\mathbb{R}^m)^*$. Observe that the dual in maximization form (D'') of the Dual Program (D') gives back the Primal Program (P).

The above discussion established the following inequality known as weak duality.

Proposition 47.6. (Weak Duality) Given any Linear Program (P)

maximize
$$cx$$

subject to $Ax \le b$ and $x \ge 0$,

with A an $m \times n$ matrix, for any feasible solution $x \in \mathbb{R}^n$ of the Primal Problem (P) and every feasible solution $y \in (\mathbb{R}^m)^*$ of the Dual Problem (D), we have

$$cx \leq yb$$
.

Definition 47.3. We say that the Dual Linear Program (D) is bounded below if $\{yb \mid y^{\top} \in \mathcal{P}(-A^{\top}, -c^{\top})\}$ is bounded below.