FSM in Verilog

Given the following device

Device protocol

1. Inputs:

- clk: Clock signal.
- reset: Resets signal.
- req: Request signal to determine paths a or b.
- x and y: Operands inputs.
- op: Operation code.

2. Process:

- a. The device performs a computation (F) based on the opcode.
- b. It selects either a or b, depending on the req signal:
 - When req = 1, selected bus a (computation).
 - When req = 0, selected bus b (output).
- c.On a positive edge of clk, the computation (F) happens based on the current opcode.
- d. If reset != 1 device uses as x a result from previous computation.

3. Output:

a. The result is shown when req = 0.

4. Reset:

a.Reset signal sets all registers and inputs to 0.

5. Opcode encoding:

- opcode = 00: AND (x & y).
- opcode = 01: NAND \sim (x & y).
- opcode = 10: NOR \sim (x | y).
- opcode = 11: XOR (a ^ b).

Tasks

1.Draw the FSM diagram for this device.

Hint. Answer the following questions:

- a. What states this device can be in?
- b.How does the transition between states happen
 (e.g. what signals change)?
- 2.Write a Verilog code.

Code Run

iverilog -o FSM_sim solution.v computation_device_tb.v
vvp FSM_sim