

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY
HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2021

MATHEMATICS Extended Part Module 2 (Algebra and Calculus) Question-Answer Book

 $8:30 \text{ am} - 11:00 \text{ am} (2\frac{1}{2} \text{ hours})$ This paper must be answered in English

INSTRUCTIONS

- (1) After the announcement of the start of the examination, you should first write your Candidate Number in the space provided on Page 1 and stick barcode labels in the spaces provided on Pages 1, 3, 5, 7, 9, 11 and 13.
- (2) This paper consists of TWO sections, A and B.
- (3) Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- (4) Graph paper and supplementary answer sheets will be supplied on request. Write your Candidate Number, mark the question number box and stick a barcode label on each sheet, and fasten them with string INSIDE this book.
- (5) Unless otherwise specified, all working must be clearly shown.
- (6) Unless otherwise specified, numerical answers must be exact.
- (7) No extra time will be given to candidates for sticking on the barcode labels or filling in the question number boxes after the 'Time is up' announcement.

©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2021

Please stick	the	ba	arc	ode	e la	abe	el h	ere	€.
٠									
Candidate Number									

FORMULAS FOR REFERENCE

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$2\sin A\cos B = \sin (A+B) + \sin (A-B)$$

$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

$$2\sin A\sin B = \cos(A - B) - \cos(A + B)$$

$$\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

SECTION A (50 marks)

not be marked.	1.	Let $f(x) = \frac{1}{3x^2 + 4}$. Find $f'(x)$ if	from first principles.	(4 marks)
will				
the margins				
written in				
Answers				

2

Answers written in the margins will not be marked.

Please stick the barcode label here.

2.	Using mathematical induction, prove that $\sum_{k=1}^{n} (3k^5 + k^3) = \frac{n^3(n+1)^3}{2}$ for all positive integers	n .
		(5 mark

Answers written in the margins will not be marked.

3

Please stick the barcode label here.

4.	(a)	Prove that $\cos 2x + \cos 4x + \cos 6x = 4\cos x \cos 2x \cos 3x - 1$.	
	(b)	Solve the equation $\cos 4\theta + \cos 8\theta + \cos 12\theta = -1$, where $0 \le \theta \le \frac{\pi}{2}$.	(6 marks)
	,		

(a)	c;	
(b)	the area of the region bounded by L , Γ and the straight line $x=c$. (7 mar	ks

		,,,,,,,,,,,

(b)	Consider the curve $C: y = \sqrt{x} \ln(x^2 + 1)$, where $x \ge 0$. Let R be the region bounded by C the straight line $x = 1$ and the x -axis. Find the volume of the solid of revolution generated by revolving R about the x -axis.
	(7 mark

,	

8.	Consi	ider the system of linear equations in real variables x , y , z	
		(E): $\begin{cases} x + (d-1)y + (d+3)z = 4-d \\ 2x + (d+2)y - z = 2d-5, \text{ where } d \in \mathbb{R} \\ 3x + (d+4)y + 5z = 2 \end{cases}$	
	It is g	given that (E) has infinitely many solutions.	
	(a)	Find d . Hence, solve (E) .	
	(b)	Someone claims that (E) has a real solution (x, y, z) satisfying $xy + 2xz = 3$. Is the class correct? Explain your answer. (8 marks)	
	4		
	<u></u>		
		•	
			•••••

SECTION B (50 marks)

- 9. (a) Let $\frac{-\pi}{2} < \theta < \frac{\pi}{2}$.
 - (i) Find $\frac{d}{d\theta} \ln(\sec \theta + \tan \theta)$.
 - (ii) Using the result of (a)(i), find $\int \sec \theta \, d\theta$. Hence, find $\int \sec^3 \theta \, d\theta$.

(4 marks)

(b) Let g(x) and h(x) be continuous functions defined on \mathbf{R} such that g(x) + g(-x) = 1 and h(x) = h(-x) for all $x \in \mathbf{R}$.

Using integration by substitution, prove that $\int_{-a}^{a} g(x)h(x)dx = \int_{0}^{a} h(x)dx$ for any $a \in \mathbf{R}$.

(3 marks)

Answers written in the margins will not be marked.

(c) Evaluate $\int_{-1}^{1} \frac{3^{x} x^{2}}{(3^{x} + 3^{-x})\sqrt{x^{2} + 1}} dx$ (5 marks)

	10.	where the p	0 < x oint Q	graph of $y = \sqrt{x^2 + 36}$ and the graph of $y = -\sqrt{(20 - x)^2 + 16}$ by F and G respectively, $x < 20$. Let P be a moving point on F . The vertical line passing through P cuts G at G . Denote the X -coordinate of G by G at G is given that the length of G at G at G is G .
		minin	num val	lue when $u = a$.
		(a)	Find	a. (4 marks)
		(b)	The h	provided the passing through P cuts the y-axis at the point R while the horizontal line age through Q cuts the y-axis at the point S .
			(i)	Someone claims that the area of the rectangle $PQSR$ attains its minimum value when $u = a$. Do you agree? Explain your answer.
			(ii)	The length of OP increases at a constant rate of 28 units per minute. Find the rate of change of the perimeter of the rectangle $PQSR$ when $u = a$. (9 marks)
				(3 marks)
ا ;				
Iainc				
1 00 1				
w curs				
mai		***************************************		
VIIII				
Answers withou in the margins will not be marked				
SILC		***************************************		

11.	Defir	the $P = \begin{pmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{pmatrix}$, where $\frac{\pi}{2} < \theta < \pi$.
	(a)	Let $A = \begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix}$, where $\alpha, \beta \in \mathbf{R}$.
		Prove that $PAP^{-1} = \begin{pmatrix} -\alpha\cos 2\theta + \beta\sin 2\theta & -\beta\cos 2\theta - \alpha\sin 2\theta \\ -\beta\cos 2\theta - \alpha\sin 2\theta & \alpha\cos 2\theta - \beta\sin 2\theta \end{pmatrix}$. (3 marks)
	(b)	Let $B = \begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$.
		(i) Find θ such that $PBP^{-1} = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$, where $\lambda, \mu \in \mathbb{R}$.
		(ii) Using the result of (b)(i), prove that $B^n = 2^{n-2} \begin{pmatrix} (-1)^n + 3 & \sqrt{3}(-1)^{n+1} + \sqrt{3} \\ \sqrt{3}(-1)^{n+1} + \sqrt{3} & 3(-1)^n + 1 \end{pmatrix}$ for any positive integer n .
		(iii) Evaluate $(B^{-1})^{555}$.
		(9 marks)
	,	

26