

Precipitation Strengthenable NiTiPd High Temperature Shape Memory Alloys

Glen Bigelow,¹ Anita Garg,² Othmane Benafan,¹ Ronald Noebe,¹ Darrell Gaydosh,³ and Santo Padula II¹

¹NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135

²University of Toledo, Toledo, OH 43606

³Ohio Aerospace Institute, Cleveland, OH 44142

This work is funded by NASA's Transformational Tools & Technologies Project

Presented at SMST 2017

Opportunities for SMA Actuators

NiTiPd is expensive

=> Actuators most likely wire based

Can be drawn to fine wire

Shape set to form springs, etc.

Compositional Control is IMPORTANT!!!

- High temperature shape memory alloys (HTSMAs) formed by alloying with Au, Hf, Pd, Pt, or Zr.
- Ni-rich alloys: stability, bandwidth
- Tf Temps drop drastically with Ni content for Ni-rich alloys
- Compositional control with such precision is difficult
- Aging can be used to regain Tf temps.
- M_S: Martensite Start, M_P: Martensite Peak

NiTi - F. Sczerzenie, Proc of SMST 2004

Prior State of the Art

Approach

- Produce range of alloys having target Ti contents of 50.5, 49.7, and 49.2 at%
 - Vacuum Induction Melting (VIM) in graphite crucible
- Age samples at various times and temperatures
- Determine microstructure as extruded and aged
- Load biased test in tension in series w/2 cycles per stress (MPa) level:
 - No-load, 50, 100, 200, 300, 400MPa, No-load
- Load biased cycle temperatures:
 - Ext 181: (50.5Ti) 30°C to 400C
 - Ext 182: (49.7Ti) 30C to 350C
 - Ext 183: (49.2Ti) 30C to 350C
- Determine effect of aging on actuator type properties

Compositions and Heat Treats

Ext 181	Ext 182	Ext 183
$Ti_{50.5}Ni_{17.5}Pd_{32}$	$Ti_{49.7}Ni_{18.3}Pd_{32}$	Ti _{49.2} Ni _{18.8} Pd ₃₂
As Extruded	As Extruded	As Extruded
	350C/24hr/AC*	350C/24hr/AC*
	350C/66hr/AC	350C/66hr/AC
350C/100hr/AC	350C/100hr/AC	350C/100hr/AC
	400C/24hr/AC*	400C/24hr/AC*
400C/52hr/AC	400C/52hr/AC	400C/52hr/AC
	450C/24hr/AC	450C/24hr/AC

*Solutionized 1050C/24hr/WQ before aging.

Microstructure: As Extruded

http://www.grc.nasa.gov/WWW/StructuresMaterials/AdvMet/rese arch/shape_memory.html

Microstructure: 50.5Ti

As Extruded

350C/100hr

Ti rich: No Precipitates

Microstructure: 49.7Ti

NASA

As-Ext **No Ppts.**

350C/66h

Ppts.
Av. Size
~ 50nm

450C/24h
Ppts.
Av. Size
~ 500nm

Microstructure: 49.2Ti

As-Ext
Ppts.
Av. Size
~ 2nm

350C/66h

Ppts. Av. Size ~ 60nm

450C/24h
Ppts.
Av. Size
~ 250nm

400C/24h

Ppts.
Av. Size
~ 120nm

Transformation Strain

Work Output

Austenite Start

Austenite Finish

Unrecovered Strain

Optimization of Properties

Microstructure: 49.2Ti

As-Ext
Ppts.
Av. Size
~ 2nm

50nm

100nm

350C/66h

Ppts. Av. Size ~ 60nm

450C/24h
Ppts.
Av. Size
~ 250nm

400C/24h

Ppts. Av. Size

~ 120nm

49.2Ti Dynamic Creep Overview: Shows Effect of Upper Cycle Temp

340°C UCT Training Increases Transformation Temperature

After Training Cycles, Transformation is Stable

NASA

Ti_{49.2}Ni_{18.8}Pd₃₂350C/100hr

NASA

Ti_{49.2}Ni_{18.8}Pd₃₂350C/100hr

Precipitates Coarsen/Grow

Precipitates Grow Faster

Precipitates Grow Faster

Aging Continues To Decrease Transformation Temp

Dynamic Creep Begins

Dynamic Creep Dominates

Dynamic Creep Dominates

Higher UCT: Increases Tf Strain, Decreases Stability

Ti Rich Material: Tf Temps Don't Change

NASA

Conclusions

- 1. Decreasing Ti content
 - 1. Increases second phase content
 - 2. Decreases Tf Temp
 - 3. Decreases Work Output
 - 4. Improves Dimensional Stability
- 2. Aging Time/Temp Effects:
 - 1. Low Temp
 Small ppts increase Tf Temp, decrease Tf Strain
 - 2. High Temp

 Large ppts decrease Tf Temp, increase Tf Strain
- 3. Optimum Transformation Strain & Temp
 - 1. Low Temp (350°C) aging for short times
 - 2. Moderate Temp (400°C) aging for longer times
 - 1. Higher Unrecovered Strain