0.1 正测度集与矩体的关系

定理 0.1

设 $E \in \mathbb{R}^n$ 中的可测集, 且 $m(E) > 0.0 < \lambda < 1$, 则存在矩体 I, 使得

$$\lambda |I| < m(I \cap E). \tag{1}$$

注 上述定理告诉我们, 任何一个正测集, 其中总有一部分被一个矩体套住, 使两者的测度差小于预先给定的正数 ε . 当然, 这一测度差不一定能等于零.

证明 情形 I: 当 $m(E) < +\infty$ 时, 对于 $0 < \varepsilon < (\lambda^{-1} - 1)m(E)$, 作 E 的 L-覆盖 $\{I_k\}$, 使得

$$\sum_{k=1}^{\infty} |I_k| < m(E) + \varepsilon.$$

从而存在 k_0 , 使得 $\lambda |I_{k_0}| < m(I_{k_0} \cap E)$. 事实上, 若对一切 k, 有

$$\lambda |I_k| \geqslant m(I_k \cap E),$$

则可得

$$m(E) = m(E \cap \bigcup_{k=1}^{\infty} I_k) \leqslant \sum_{k=1}^{\infty} m(I_k \cap E) \leqslant \lambda \sum_{k=1}^{\infty} |I_k| \leqslant \lambda(m(E) + \varepsilon) < m(E).$$

这就导致 m(E) < m(E), 产生矛盾.

情形 II: $\exists m(E) = +\infty$ 时, 由定理??(ii) 可知, 存在闭集 $F \subset E$, 使得 $m(E \setminus F) < 1$. 记 $H = E \setminus F$, 则 m(H) < 1 且 $H \subset E$. 于是由**情形** I 可知, 存在矩体 I, 使得

$$\lambda |I| < m(I \cap H)$$
.

再由 $I \cap H \subset I \cap E$ 及测度的单调性可得

$$\lambda |I| < m(I \cap H) \leqslant m(I \cap E).$$

故结论得证.

例题 0.1 [0, 1] 中存在正测集 E, 使对 [0, 1] 中任一开区间 I, 有

$$0 < m(E \cap I) < m(I).$$

解 首先, 在 [0,1] 中作类 Cantor 集 H_1 : $m(H_1)=1/2$. 其次, 在 [0,1] 中 H_1 的邻接区间 $\{I_{1j}\}$ 的每个 I_{1j} 内再作类 Cantor 集 H_{1j} : $m(H_{1j}) = |I_{1j}|/2^2$, 并记 $H_2 = \bigcup_{j=1}^{\infty} H_{1j}$. 然后, 对 $H_1 \cup H_2$ 的邻接区间 $\{I_{2j}\}$ 的每个 I_{2j} , 又作类 Cantor 集 H_{2j} : $m(H_{2j}) = |I_{2j}|/2^3$. 再记 $H_3 = \bigcup_{j=1}^{\infty} H_{2j}$, 依次继续进行, 则得 $\{H_m\}$. 令 $E = \bigcup_{n=1}^{\infty} H_n$, 得证.

集
$$H_{2j}$$
: $m(H_{2j}) = |I_{2j}|/2^3$. 再记 $H_3 = \bigcup_{j=1}^{\infty} H_{2j}$, 依次继续进行, 则得 $\{H_m\}$. 令 $E = \bigcup_{n=1}^{\infty} H_n$, 得证.

定理 0.2 (Steinhaus 定理)

设 $E \neq \mathbb{R}^n$ 中的可测集, 且 m(E) > 0. 作 (向量差) 点集

$$E - E \stackrel{\text{def}}{=} \{x - y : x, y \in E\},\$$

则存在 $\delta_0 > 0$, 使得 $E - E \supset B(0, \delta_0)$.

证明 取 λ 满足 $1-2^{-(n+1)} < \lambda < 1$. 由定理 0.1可知, 存在矩阵 I, 使得 $\lambda |I| < m(I \cap E)$. 现在记 I 的最短边长为 δ , 并 作开矩阵

$$J = \left\{ x = (\xi_1, \xi_2, \dots, \xi_n) : |\xi_i| < \frac{\delta}{2} (i = 1, 2, \dots, n) \right\}.$$

从而只需证明 $J \subset E - E$ 即可, 也就是只要证明对每个 $x_0 \in J$, 点集 $E \cap I$ 必与点集 $(E \cap I) + \{x_0\}$ 相交 (此时有 $y,z \in E \cap I$, 使得 $y-z=x_0$) 即可. 因为 J 是以原点为中心, 边长为 δ 的开矩阵, 所以 I 的平移矩阵 $I+\{x_0\}$ 仍含有 I的中心,从而知

$$m(I \cap (I + \{x_0\})) > 2^{-n}|I|.$$

由此可得

$$m(I \cup (I + \{x_0\})) = |I| + m(I + \{x_0\}) - m(I \cap (I + \{x_0\})) < 2|I| - 2^{-n}|I|,$$

即

$$m(I \cup (I + \{x_0\})) < 2\lambda |I|.$$

但由于 $E \cap I = (E \cap I) + \{x_0\}$ 有着相同的测度并且都大于 $\lambda |I|$,同时又都含于 $I \cup (I + \{x_0\})$ 之中,故它们必定相交,否则其并集测度要大于 $2\lambda |I|$,从而引起矛盾.