The Eigenfunctions of Stationary and Oscillatory Processes on the Real Line

BY STEPHEN CROWLEY
August 5, 2025

Table of contents

Definitions
Eigenfunctions for Stationary Processes
Eigenfunctions for Oscillatory Processes
Symmetry and Real-Valued Processes
Dual Fourier Structure of the Filter Kernel
Time Domain Filter Representation

Definitions

Definition 1. (Stationary Process) A stochastic process $\{X(t), t \in \mathbb{R}\}$ is stationary if its covariance function satisfies R(s,t) = R(t-s) for all $s,t \in \mathbb{R}$.

Definition 2. (Oscillatory Process (Priestley)) A process $\{Y(t), t \in \mathbb{R}\}$ is called oscillatory if it possesses an evolutionary spectral representation

$$Y(t) = \int_{-\infty}^{\infty} A(t, \omega) e^{i\omega t} dZ(\omega),$$

where $A(t,\omega)$ is the gain function and $Z(\omega)$ is an orthogonal increment process with spectral measure $F(\omega)$.

Eigenfunctions for Stationary Processes

Theorem 3. (Eigenfunction Property for Stationary Processes) Let $\{X(t)\}$ be stationary with covariance kernel $R(\tau)$ and covariance operator

$$(Kf)(t) = \int_{-\infty}^{\infty} R(t-s) f(s) ds.$$

Then the complex exponentials $e^{i\omega t}$ are eigenfunctions of K with eigenvalue

$$S(\omega) = \int_{-\infty}^{\infty} R(\tau) e^{-i\omega\tau} d\tau,$$

the power spectral density.

Proof. Set $f(t) = e^{i\omega t}$. Then

$$(Kf)(t) = \int_{-\infty}^{\infty} R(t-s) e^{i\omega s} ds.$$

Make the change of variable $\tau = t - s$, so $s = t - \tau$, $ds = -d\tau$:

$$(Kf)(t) = \int_{-\infty}^{\infty} R(\tau) e^{i\omega(t-\tau)} (-d\tau) = \int_{-\infty}^{\infty} R(\tau) e^{i\omega t} e^{-i\omega \tau} d\tau = e^{i\omega t} \int_{-\infty}^{\infty} R(\tau) e^{-i\omega \tau} d\tau.$$

Thus $e^{i\omega t}$ is an eigenfunction with eigenvalue $S(\omega)$.

Eigenfunctions for Oscillatory Processes

Theorem 4. (Eigenfunction Property for Oscillatory Processes) Let $Y(t) = \int_{-\infty}^{\infty} A(t,\omega) e^{i\omega t} dZ(\omega)$ with covariance function

$$C(s,t) = \int_{-\infty}^{\infty} A(s,\omega) A^*(t,\omega) dF(\omega),$$

and covariance operator

$$(Kf)(t) = \int_{-\infty}^{\infty} C(t,s) f(s) ds.$$

Define $\phi(t,\omega) = A(t,\omega) e^{i\omega t}$. Then

$$K \phi(\cdot, \omega) = \phi(\cdot, \omega) \ dF(\omega),$$

that is, $\phi(t,\omega)$ are eigenfunctions of K with eigenvalue element $dF(\omega)$.

Proof. Compute $(K\phi(\cdot,\omega))(t)$:

$$(K\phi(\cdot,\omega))(t) = \int_{-\infty}^{\infty} C(t,s) A(s,\omega) e^{i\omega s} ds.$$

Substitute the definition of C(t, s):

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} A(t,\lambda) A^*(s,\lambda) dF(\lambda) \right) A(s,\omega) e^{i\omega s} ds.$$

Interchange the order of integration:

$$= \int_{-\infty}^{\infty} A(t,\lambda) \left(\int_{-\infty}^{\infty} A^*(s,\lambda) A(s,\omega) e^{i\omega s} ds \right) dF(\lambda).$$

Now consider the inner integral:

$$\int_{-\infty}^{\infty} A^*(s,\lambda) A(s,\omega) e^{i\omega s} ds.$$

By the orthogonality property for evolutionary spectra, this is $\delta(\lambda - \omega)$. Thus,

$$(K\phi(\cdot,\omega))(t) = \int_{-\infty}^{\infty} A(t,\lambda) \,\delta(\lambda-\omega) \,dF(\lambda) = A(t,\omega) \,dF(\omega) = \phi(t,\omega) \,dF(\omega). \quad \Box$$

Lemma 5. (Orthogonality Property for Evolutionary Amplitudes)

$$\int_{-\infty}^{\infty} A^*(s,\lambda) A(s,\omega) e^{i\omega s} ds = \delta (\lambda - \omega).$$

Proof. The orthogonality of the increments $dZ(\omega)$, together with the spectral representation, guarantees this inner product relation between gain functions indexed by different frequencies. The delta function expresses the continuous orthogonality for the integral operator.

Symmetry and Real-Valued Processes

Theorem 6. (Reality and Conjugate Symmetry) X(t) is real-valued if and only if $A(t,\omega) = A^*(t,-\omega)$ and $dZ(-\omega) = dZ^*(\omega)$ for all t,ω . The eigenfunctions then satisfy $\phi^*(t,\omega) = \phi(t,-\omega)$.

Proof. Write the conjugate of X(t):

$$X^*(t) = \left(\int_{-\infty}^{\infty} A(t,\omega) e^{i\omega t} dZ(\omega)\right)^* = \int_{-\infty}^{\infty} A^*(t,\omega) e^{-i\omega t} dZ^*(\omega).$$

Set $\nu = -\omega$, $d\omega = -d\nu$, so

$$X^*(t) = \int_{+\infty}^{-\infty} A^*(t, -\nu) e^{i\nu t} dZ^*(-\nu) (-d\nu) = \int_{-\infty}^{\infty} A^*(t, -\nu) e^{i\nu t} dZ^*(-\nu) d\nu.$$

Relabel $\nu \mapsto \omega$:

$$X^*(t) = \int_{-\infty}^{\infty} A^*(t, -\omega) e^{i\omega t} dZ^*(-\omega) d\omega.$$

For real-valued X(t), $X^*(t) = X(t)$ requires

$$A(t,\omega) = A^*(t,-\omega), \qquad dZ(-\omega) = dZ^*(\omega),$$

by the uniqueness of the stochastic integral representation. For the eigenfunctions,

$$\phi^*(t,\omega) = [A(t,\omega) e^{i\omega t}]^* = A^*(t,\omega) e^{-i\omega t} = A(t,-\omega) e^{i(-\omega)t} = \phi(t,-\omega). \qquad \Box$$

Dual Fourier Structure of the Filter Kernel

Theorem 7. (Explicit Fourier Structure of the Filter Kernel) Let $A(t,\omega)$ be the gain function and $\phi(t,\omega) = A(t,\omega) e^{i\omega t}$ the oscillatory function. Then for any $t,u \in \mathbb{R}$,

$$h(t,u) = \frac{1}{2\pi} \int_{-\infty}^{\infty} A(t,\omega) \, e^{i\omega(t-u)} \, d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi(t,\omega) \, e^{-i\omega u} \, d\omega.$$

Proof. Substitute $\phi(t,\omega) = A(t,\omega) e^{i\omega t}$ in the second integral:

$$\int_{-\infty}^{\infty} \phi(t,\omega) \, e^{-i\omega u} \, d\,\omega = \int_{-\infty}^{\infty} A(t,\omega) \, e^{i\omega t} \, e^{-i\omega u} \, d\,\omega = \int_{-\infty}^{\infty} A(t,\omega) \, e^{i\omega(t-u)} \, d\,\omega.$$

The two forms are equal.

Theorem 8. (Inverse Formulae for Gain and Oscillatory Functions) For fixed t,

$$A(t,\omega) = \int_{-\infty}^{\infty} h(t,u) \, e^{-i\omega(t-u)} \, d\, u, \qquad \phi(t,\omega) = \int_{-\infty}^{\infty} h(t,u) \, e^{-i\omega u} \, d\, u.$$

Proof. Start from

$$h(t,u) = \frac{1}{2\pi} \int_{-\infty}^{\infty} A(t,\lambda) e^{i\lambda(t-u)} d\lambda.$$

Multiply both sides by $e^{-i\omega(t-u)}$ and integrate over u:

$$\int_{-\infty}^{\infty} h(t,u) e^{-i\omega(t-u)} du = \frac{1}{2\pi} \int_{-\infty}^{\infty} A(t,\lambda) \int_{-\infty}^{\infty} e^{i\lambda(t-u)} e^{-i\omega(t-u)} du d\lambda.$$

Collapsing the exponentials:

$$e^{i\lambda(t-u)}e^{-i\omega(t-u)} = e^{i(\lambda-\omega)(t-u)}$$

Interchange integrals and use the identity $\int_{-\infty}^{\infty} e^{i(\lambda-\omega)(t-u)} du = 2\pi\delta(\lambda-\omega)$:

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} A(t,\lambda) \, 2\pi \, \delta(\lambda - \omega) \, d\lambda = A(t,\omega).$$

Similarly,

$$\phi(t,\omega) = \int_{-\infty}^{\infty} h(t,u) e^{-i\omega u} du.$$

Time Domain Filter Representation

Theorem 9. (Time Domain Filter Representation of Oscillatory Processes) If $X(u) = \int_{-\infty}^{\infty} e^{i\omega u} dZ(\omega)$ is a stationary process, then the oscillatory process

$$Y(t) = \int_{-\infty}^{\infty} A(t, \omega) e^{i\omega t} dZ(\omega)$$

can be written as

$$Y(t) = \int_{-\infty}^{\infty} h(t, u) X(u) du$$

where h(t, u) is as above.

Proof. Insert the spectral representation for X(u):

$$\int_{-\infty}^{\infty} h(t,u) \, X(u) \, du = \int_{-\infty}^{\infty} h(t,u) \bigg(\int_{-\infty}^{\infty} e^{i\omega u} \, dZ(\omega) \bigg) du = \int_{-\infty}^{\infty} \bigg(\int_{-\infty}^{\infty} h(t,u) \, e^{i\omega u} \, du \bigg) dZ(\omega).$$

Substitute the expression for h(t, u):

$$\begin{split} \int_{-\infty}^{\infty} h(t,u) \, e^{i\omega u} \, d\, u &= \frac{1}{2\,\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A(t,\lambda) \, e^{i\lambda(t-u)} \, e^{i\omega u} \, d\, \lambda \, d\, u \\ &= \frac{1}{2\,\pi} \int_{-\infty}^{\infty} A(t,\lambda) \, e^{i\lambda t} \int_{-\infty}^{\infty} e^{i(\omega-\lambda)u} \, d\, u \, d\, \lambda \\ &= \frac{1}{2\,\pi} \int_{-\infty}^{\infty} A(t,\lambda) \, e^{i\lambda t} \, 2\,\pi \, \delta \, (\omega-\lambda) \, d\, \lambda = A(t,\omega) \, e^{i\omega t}. \end{split}$$

Therefore,

$$Y(t) = \int_{-\infty}^{\infty} A(t, \omega) e^{i\omega t} dZ(\omega).$$