

AC101 User Manual

Revision 0.1

2014/3/3

Declaration

This documentation is the original work and copyrighted property of X-Powers. Reproduction in whole or in part must obtain the written approval of X-Powers and give clear acknowledgement to the copyright owner.

The information furnished by X-Powers is believed to be accurate and reliable. X-Powers reserves the right to make changes in circuit design and/or specifications at any time without notice. X-Powers does not assume any responsibility and liability for its use. Nor for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Allwinner. This documentation neither states nor implies warranty of any kind, including fitness for any particular application.

Third party licences may be required to implement the solution/product. Customers shall be solely responsible to obtain all appropriately required third party licences. X-Powers shall not be liable for any licence fee or royalty due in respect of any required third party licence. X-Powers shall have no warranty, indemnity or other obligations with respect to matters covered under any required third party licence.

About Documentation

This documentation of AC101 is intended to be used by board-level product designers and product software developers. The manual assumes that the reader has a background in computer engineering and/or software engineering and understands concepts of digital system design, microprocessor architecture, Input / Output (I/O) devices, industry standard communication and device interface protocols.

Organization

This document aims to describe the AC101 from following aspects: block diagram, pin assignment, pin/signal description, electrical characteristics, typical application, system description and register description.

Revision History

Version	Date	Description
V1.0	2014/12/1	Completed Draft

Table of Contents

Declaration	2
About Documentation	3
Revision History	4
Table of Contents	5
1. Description.	10
2. Features	11
3. Applications	12
4. Functional Block Diagram	12
4.1. Functional Block Diagram	12
4.2. Data Path Diagram	13
5. Pin Assignment	14
6. Package Dimension	15
7. Pin/Signal Description	16
8. Electrical Characteristics	18
8.1. Absolute Maximum Ratings	18
8.2. Recommended Operating Conditions	18
8.3. Static Characteristics	19
9. Analog Performance Characteristics	20
10. Typical Power Consumption.	22
11. Function Description.	23
11.1. Power	23
11.2. Clock	24
11.3. PLL	25
11.4 TWI/RSR Interface	26

	11.4.1. TWI Interface	26
	11.4.2. RSB Interface	27
	11.5. I2S/PCM Interface	29
	11.6. Stereo ADC	33
	11.7. Stereo DAC	33
	11.8. Mixer	33
	11.8.1. DAC Output Mixers	33
	11.8.2. ADC Record Mixers	33
	11.8.3. Digital Mixers	34
	11.9. Analogue Audio Input Path	35
	11.9.1. Microphone Input	35
	11.9.2. LINEINL/R Input	35
	11.10. Analogue Audio Output Path	36
	11.10.1. Headphone Output	36
	11.10.2. Speaker Output	36
	11.11. Digital Microphone Interface	38
	11.12. Audio Jack Detect	39
	11.13. Interrupt	40
	11.14. Digital Audio Process for ADC	41
	11.14.1. High Pass Filter	42
	11.14.2. Auto Gain Control.	42
	11.15. Digital Audio Process for DAC	46
	11.15.1. High Pass Filter	47
	11.15.2. Dynamic Range Control	47
12.	. Register List	50
	Reg 00h_Chip Soft Reset Register	51

Reg 01h_PLL Configure Control 1 Register	51
Reg 02h_PLL Configure Control 2 Register	52
Reg 03h_System Clocking Control Register	52
Reg 04h_Module Clock Enable Control Register	53
Reg 05h_Module Reset Control Register	53
Reg 06h_ADDA Sample Rate Configuration Register	54
Reg 10h_I2S1 BCLK/LRCK Control Register	54
Reg 11h_I2S1 SDOUT Control Register	56
Reg 12h_I2S1 SDIN Control Register	57
Reg 13h_I2S1 Digital Mixer Source Select Register	58
Reg 14h_I2S1 Volume Control 1 Register	59
Reg 15h_I2S1 Volume Control 2 Register	59
Reg 16h_I2S1 Volume Control 3 Register	60
Reg 17h_I2S1 Volume Control 4 Register	60
Reg 18h_I2S1 Digital Mixer Gain Control Register	61
Reg 40h_ADC Digital Control Register	62
Reg 41h_ADC Volume Control Register	62
Reg 44h_HMIC Control 1 Register	63
Reg 45h_HMIC Control 2 Register	63
Reg 46h_HMIC Status Register	64
Reg 48h_DAC Digital Control Register	65
Reg 49h_DAC Volume Control Register	65
Reg 4ch_DAC Digital Mixer Source Select Register	66
Reg 4dh_DAC Digital Mixer Gain Control Register	66
Reg 50h_ADC Analog Control Register	67
Reg 51h_ADC Source Select Register	67

Reg 52h_ADC Source Boost Control Register	68
Reg 53h_Output Mixer & DAC Analog Control Register	69
Reg 54h_Output Mixer Source Select Register	69
Reg 55h_Output Mixer Source Boost Register	70
Reg 56h_Headphone Output Control Register	70
Reg 58h_Speaker Output Control Register	71
Reg 80h_ADC DAP Left Status Register	72
Reg 81h_ADC DAP Right Status Register	72
Reg 82h_ADC DAP Left Channel Control Register	72
Reg 83h_ADC DAP Right Channel Control Register	73
Reg 84h_ADC DAP Left Target Level Register	74
Reg 85h_ADC DAP Right Target Level Register	74
Reg 86h_ADC DAP Left High Average Coef Register	74
Reg 87h_ADC DAP Left Low Average Coef Register	74
Reg 88h_ADC DAP Right High Average Coef Register	75
Reg 89h_ADC DAP Right Low Average Coef Register	75
Reg 8ah_ADC DAP Left Decay Time Register	75
Reg 8bh_ADC DAP Left Attack Time Register	75
Reg 8ch_ADC DAP Right Decay Time Register	76
Reg 8dh_ADC DAP Right Attack Time Register	76
Reg 8eh_ADC DAP Noise Threshold Register	76
Reg 8fh_ADC DAP Left Input Signal High Average Coef Register	77
Reg 90h_ADC DAP Left Input Signal Low Average Coef Register	77
Reg 91h_ADC DAP Right Input Signal High Average Coef Register	77
Reg 92h_ADC DAP Right Input Signal Low Average Coef Register	77
Reg 93h_ADC DAP High HPF Coef Register	77

Reg 94h_ADC DAP Low HPF Coef Register	78
Reg 95h_ADC DAP Optimum Register	78
Reg a0h_DAC DAP Control Register	79
Reg a1h_DAC DAP High HPF Coef Register	79
Reg a2h_DAC DAP Low HPF Coef Register	79
Reg a3h_DAC DAP Left High Energy Average Coef Register	79
Reg a4h_DAC DAP Left Low Energy Average Coef Register	79
Reg a5h_DAC DAP Right High Energy Average Coef Register	80
Reg a6h_DAC DAP Right Low Energy Average Coef Register	80
Reg a7h_DAC DAP High Gain Decay Time Coef Register	80
Reg a8h_DAC DAP Low Gain Decay Time Coef Register	80
Reg a9h_DAC DAP High Gain Attack Time Coef Register	80
Reg aah_DAC DAP Low Gain Attack Time Coef Register	80
Reg abh_DAC DAP High Energy Threshold Register	81
Reg ach_DAC DAP Low Energy Threshold Register	81
Reg adh_DAC DAP High Gain K Parameter Register	81
Reg aeh_DAC DAP Low Gain K Parameter Register	81
Reg afh_DAC DAP High Gain Offset Parameter Register	81
Reg b0h_DAC DAP Low Gain Offset Parameter Register	81
Reg b1h _DAC DAP Optimum Register	82
Reg b4h_ADC DAP Enable Register	82
Reg b5h_DAC DAP Enable Register	83

1. Description

The AC101 is a highly integrated audio codec designed for player and tablet application platforms. It has one I2S/PCM interface, 2 channel DAC and 2 channel ADC with a high level of mixed-signal integration.

An integrated digital PLL supports a large range of input/output frequencies, and It can generate required audio clocks for codec from standard audio crystal rate such as 22.5792MHz and 24.576MHz, also can be from common reference clock frequencies such as 12MHz, 13MHz and 19.2MHz, and an internal RC oscillator can be used in Free-running Mode, where the application processor can be inactive during voice call application. The 2 ADC and 2 DAC in device use advanced multi-bit delta-sigma modulation technique to convert data between analog and digital. The SNR performance can reach 100 dB A-wight.

Three analog input paths allow diverse analog audio sources such as two sets of differential microphone, one differential or single-ended linein or stereo FM input.

One ground-reference headphone output is provided. The output amplifier are powered from an integrated Charge Pump in order to achieve a higher quality, less power consumption in headphone playback, whist without any DC blocking capacitor and avoiding unwanted noise.

Two stereo differential speaker output is available by using an external amplifier to drive the loud-speaker. It can also be configured as single-ended output pin for some application of external single-ended amplifier.

The flexible analogue and digital mixers form a varied signal routing to support a complicated application.

AC101 is controlled through TWI (2-wire serial interface) or RSB^{\odot} (reduced serial bus) . It works only in the slave mode .

The integrated DRC(Dynamic Range Controller) function in AC101 provide an useful digital sound processing capability in DAC playback path to speaker. It is uesed to attenuate the peak signals and boost the low-level signals by adjusting the output signal gain in some conditions. The DRC functions can be enable or disable in the playback path .

The integrated AGC(Automatic Gain Controller) function can be used to maintain a constant recording level in ADC record path . The DRC can make an improvement in background noise by setting a programmable Noise Gate to attenuate very low-level input signals .

Note: ① The RSB is independent R&D by x-powers, supports a special protocols with a simplified two wire protocol on a push-pull bus. The transfer speed in AC101 can be up to 10MHz.

2. Features

The AC101 features:

- 2 ADCs and 2 DACs @ 24-bit and inter PLL processing with flexible clocking scheme
- Up to 100dB SNR during DAC playback path (A 'weight)
- Up to 95dB SNR during ADC record path (A 'weight)
- Capless stereo headphone driver
 - Integrated charge pump for 0V reference
 - 18mW @1.8V
- Two stereo differential speaker outputs using external amplifier to drive the loud speaker
- Three audio inputs
 - Two differential analog microphone inputs with 30dB~48dB boost amplifier gain
 - One mono differential or single-ended line-in input
- Two low noise analog microphone bias
- Audio jack insert/ button press detection
- TWI/RSB control interface
- 24-bit 8KHz ~ 192KHz I2S/PCM interface
- Support Dynamic Range Controller (DRC) adjusting the DAC playback output
- Support Automatic Gain Control (AGC) adjusting the ADC recording output
- SRC for synchronnisation between audio interface or digital aduio data mixing
- Soft mute circuit for pop noise suppression
- Support one stereo digital microphone interface
- QFN 40-pin package, 5mm x 5mm

3. Applications

- Tablets
- Box/Player

4. Functional Block Diagram

4.1. Functional Block Diagram

Figure 1 Functional Block Diagram

4.2. Data Path Diagram

Figure 2 Data Path Diagram

5. Pin Assignment

Figure 3 Pin Assignment

6. Package Dimension

SYMBOL	MI	LLIMET	ER	
SYMBOL	MIN	NOM	MAX	
A	0.70	0. 75	0.80	
A1		0.02	0.05	
b	0. 15	0. 20	0. 25	
С	0. 18	0. 20	0. 25	
D	4. 90	5.00	5. 10	
D2	3. 30	3. 50		
е	0. 40BSC			
Nd	3	. 60BSC		
Е	4.90	5. 00	5. 10	
E2	3. 30	3. 40	3. 50	
Ne	3	60BSC		
L	0.35	0.40	0. 45	
K	0. 20			
h	0. 30	0.35	0.40	
L/F载体尺寸 (mil)		150*15	0	

Figure 4 Package Dimension

7. Pin/Signal Description

This chapter describes the 68 pins of AC101 from four aspects: pin number, signal name, type, and pin definition. All the pins are classified into four groups, including digital IO pin, analog IO pin, filter/reference, and power/ground.

There are five pin types here: O for output, I for input, I/O for input/output, P for power, and G for ground.

Pin Number	Signal Name	Туре	Description	
Digital IO Pin	IS			
30	MCLK1	I	I2S interface master input clock	
26	SDIN1	I	I2S interface serial data input	
27	SDOUT1	О	I2S interface serial data output	
29	BCLK1	I/O	I2S interface serial bit clock	
28	LRCK1	I/O	I2S interface synchronous clock	
31	SDA	I/O	TWI interface serial data(Open-drain)	
			RSB interface serial data	
32	SCK	I	TWI interface serial clock input	
	TD 0		RSB interface serial clock input	
24	IRQ	О	IRQ for accessory insert and button detect(Open-drain)	
Analog IO Pin		1.		
40	MIC1P	I	Positive differential input for MIC1	
1	MIC1N	I	Negative differential input for MIC1	
37	MIC2P/	I	Analog Positive differential input for MIC2	
	DMICCLK	О	Digital microphone clock output	
39	MIC2N/	I	Negative differential input for MIC2	
	DMICDAT	О	Digital microphone data input	
4	LINEINL	I	Left single-end or differential input for LINE-IN	
3	LINEINR	I	Right single-end or differential input for LINE-IN	
17	HPOUTL	О	Headphone amplifier left channel output	
19	HPOUTR	О	Headphone amplifier right channel output	
11	SPOLP	О	Differential positive output to speaker1 amplifier	
12	SPOLN	О	Differential negative output to speaker1 amplifier	
9	SPORP	О	Differential positive output to speaker2 amplifier	
10	SPORN	О	Differential negative output to speaker2 amplifier	
Filter/Referen	ice			
38	MBIAS	О	First bias voltage output for main microphone	
2	HBIAS	О	Second bias voltage output for headset microphone	
18	HPOUTFB	I	Pseudo differential headphone ground reference	
21	CPN	I/O	Charge pump flying-back capacitor	
23	CPP	I/O	Charge pump flying-back capacitor	
14	VRA1	О	Internal reference voltage	
13	VRA2	О	Internal reference voltage	
5	VRP	О	Internal reference voltage	
6	VRN	О	Internal reference voltage	
Power/Groun	d	1		

8	AVCC	P	Analog power
7	AGND	G	Analog ground
22	CPVDD	P	Analog power for headphone charge pump
20	CPVEE	P	Charge pump negative decoupling Pin
15	VPP	P	Headphone PA positive voltage input
16	VEE	P	Headphone PA negative voltage input
35	VDD_CORE	P	Digital power for digital core
33	VCC_IO1	P	Digital power for digital I/O buffer (I2S1)
25	VCC_IO0	P	Digital power for digital I/O buffer (I2C and RSB)
36	LDOIN	P	Input power for Audio_LDO
34	BYPASS	P	Bypass for Digital core
41	GND	G	Digital ground

8. Electrical Characteristics

8.1. Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under electrical characteristics at the test conditions specified.

Symbol	Parameter	MIN	MAX	Unit
LDO_IN	LDO Input power for AudioCODEC	-0.3	3.63	V
VDD_CORE	Digital power for Audio digital core, it can be generate by inner LDO	-0.3	1.32	V
VCC_IO1	Digital power for digital I/O buffer (I2S1)	-0.3	3.63	V
VCC_IO0	Digital power for digital I/O buffer (I2C and RSB)	-0.3	3.63	V
CPVDD	Analog power for headphone charge pump	-0.3	2.0	V
T _A	Operating Ambient Temperature	-20	85	°C
V _{ESD}	ESD	4		KV

8.2. Recommended Operating Conditions

Parameter	Description	MIN	TPY	MAX	Unit
LDO_IN	LDO Input power for AudioCODEC	1.35	1.8/1.5	3.63	V
VDD_CORE	Digital power for Audio digital core, it can be generate by inner	1.08	1.2	1.32	V
	LDO				
VCC_IO1	Digital power for digital I/O buffer (I2S1)	-	1.8/3.3	3.63	V
VCC_IO0	Digital power for digital I/O buffer (I2C and RSB)		1.8/3.3	3.63	V
CPVDD	Analog power for headphone charge pump	1.2	1.8	1.98	V
GND,AGND	Ground reference	1	0	ı	V

8.3. Static Characteristics

Symbol	Parameter	Test condition	Min	Typical	Max	Units
V	In a Walter Daniel		-0.3		VCCIO1+0.3	v
V_{IN}	Input Voltage Range		-0.3		VCCIO2+0.3	·
V	High Level Input Voltage	VCCIO=3.0v	2.4		3.6	V
V _{IH}		VCCIO=1.8V	1.4		1.98] v
V	Land Land Input Valters	VCCIO=3.0v	-0.3		0.7	v
V _{IL}	V _{IL} Low Level Input Voltage	VCCIO=1.8V	-0.3		0.7	·
V		VCCIO=3.0v	2.7		NA	V
V _{OH}	High Level Input Voltage	VCCIO=1.8V	1.5		NA	
V	Law Law Law Law Walters	VCCIO=3.0v	NA		0.4	v
V _{OL}	Low Level Input Voltage	VCCIO=1.8V	NA		0.4] v
I _{oz}	Tri-state Output Leakage Current		TBD	TBD	TBD	uA
C _{IN}	Input Capacitance		NA	NA	5	pF
C _{OUT}	Output Capacitance		NA	NA	5	pF

9. Analog Performance Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UINT			
DAC Output Path	DAC to Headphone on HPC	OUTL or HPOUTR(R=10kΩ)		, ,					
Performance	FScale Output Level	0dB 1KHz		0.9		Vrms			
	SNR(A-weighted)	0dB 1KHz		100		dB			
	THD+N(NO-Aweight)	0dB 1KHz		-84		dB			
	Crosstalk (L/R)	0dB 1KHz		-88/-88		dB			
	DAC to Headphone on HPOUTL or HPOUTR(R=16Ω)								
	FScale Output Level	0dB 1KHz		0.5		Vrms			
	SNR(A-weighted)	0dB 1KHz		99		dB			
	THD+N(P0=15mW)	0dB 1KHz		-81		dB			
	THD+N(P0=5mW)	0dB 1KHz		-82		dB			
	Crosstalk (L/R)	0dB 1KHz		-82/-82		dB			
	DAC to Headphone on HPC	DAC to Headphone on HPOUTL or HPOUTR(R=32Ω)							
	FScale Output Level	0dB 1KHz		0.7		Vrms			
	SNR(A-weighted)	0dB 1KHz		100		dB			
	THD+N(P0=15mW)	0dB 1KHz		-83		dB			
	THD+N(P0=5mW)	0dB 1KHz		-83		dB			
	Crosstalk (L/R)	0dB 1KHz		-86/-86		dB			
	DAC to SPK signal on SPKOUTLP and SPKOUTLN(R=10KΩ)								
	FScale Output Level	0dB 1KHz		1.8		Vrms			
	SNR(A-weighted)	0dB 1KHz		102		dB			
	THD+N	0dB 1KHz		-82		dB			
	DC Offset at load	0dB 1KHz		0.7		mV			
ADC Input Path	MIC1 /2 to ADC via ADC n	nixer							
Performance	FScale Input Level	0dB Gain 1KHz		0.5		Vrms			
	SNR(A-weighted)	-1dB 1KHz, 0dB Gain		96		dB			
	THD+N	-1dB 1KHz, 0dB Gain		-85		dB			
	SNR(A-weighted)	30mV,1KHz, 30dB Gain		81		dB			
	THD+N	30mV,1KHz, 30dB Gain		-76		dB			
	SNR(A-weighted)	30mV,1KHz, 39dB Gain		81		dB			
	THD+N	30mV,1KHz, 39dB Gain		-76		dB			
	SNR(A-weighted)	10mV,1KHz, 48dB Gain		73		dB			
	THD+N	10mV,1KHz, 48dB Gain		-72		dB			
	LINEIN to ADC via ADC mixer								
	FScale Input Level	0dB 1KHz		0.9		Vrms			
	SNR(A-weighted)	1KHz		93		dB			
	THD+N	1KHz		-85		dB			

	Crosstalk (L/R)	1KHz	-85/-85	dB			
Bypass Path	MIC1/2 to Headphone via output mixer						
Performance	FScale Input Level	0dB Gain 1KHz	0.5	Vrms			
	SNR(A-weighted)	-1dB 1KHz, 0dB Gain	98	dB			
	THD+N	-1dB 1KHz, 0dB Gain	-91	dB			
	SNR(A-weighted)	30mV,1KHz, 30dB Gain	83	dB			
	THD+N	30mV,1KHz, 30dB Gain	-78	dB			
	SNR(A-weighted)	30mV,1KHz, 39dB Gain	83	dB			
	THD+N	30mV,1KHz, 39dB Gain	-79	dB			
	SNR(A-weighted)	10mV,1KHz, 48dB Gain	74	dB			
	THD+N	10mV,1KHz, 48dB Gain	-73	dB			
	LINEIN to Headphone via output mixer						
	FScale Input Level	0dB 1KHz	1	Vrms			
	SNR(A-weighted)	-1dB 1KHz	98	dB			
	THD+N(-1dBFS)	-1dB 1KHz	-92	dB			
	Crosstalk (L/R)	-1dB 1KHz	-89/-89	dB			

10. Typical Power Consumption

Default Test Conditions:

LDOIN=CPVDD=1.5V,AVCC=3.0V,VCC-IO1=1.8V,VCC-IO0=3.0V

OPERATING MODE	TEST CONDITIONS	LDOIN	AVCC	VCC-IO1	VCC-IO0	CPVDD
LDO enabled	LDOIN,VCC-IO0 supplies,	1.8V	3V	1.8V	3V	1.8V
XTAL enabled	32.768KHz clock,	0uA	0uA	0uA	12uA	0uA
LDO enabled	All supplies present,	1.8V	3V	1.8V	3V	1.8V
XTAL enabled	No clocks supply, Default register settings	73uA	62uA	0uA	12uA	0uA
AIF1 to DAC to HPOUT(stereo)	fs=44.1KHz, SYSCLK=MCLK=24.576MHz, 24bit I2S,Slave mode	1.8V	3V	1.8V	3V	1.8V
		1.5mA	4.1mA	0.013mA	12uA	2.4mA
MIC1 to ADC to AIF1(mono)	fs=44.1KHz, SYSCLK=MCLK=24.576MHz, 24bit I2S,Slave mode	1.8V	3V	1.8V	3V	1.8V
		1.4mA	4.5mA	0.023mA	12uA	0mA
Mic1 to Lineout, Linein to Hp,	fs=8 kHz, SYSCLK=MCLK=24.576MHz	1.8V	3V	1.8V	3V	1.8V
		0.75mA	4.1mA	0mA	12uA	2.0mA

11. Function Description

11.1. Power

There are a Power-Reset circuit in AC101 uesed to reset all the circuit and register to a standby state after power up. The Power-Reset circuit make all the supply power need no specific timing. All the supply voltages are illustrated in the below figure.

Figure 5 Power Management

VDD-CORE is 1.2V for audio digital core power generated from LODIN pin, which also can be direct supplied from VDD-CORE pin. VDD-IO0 is digital I/O power for I2C/RSB . VDD-IO1 is digital I/O power for I2S1. AVCC is for analog power. CPVDD for charge pump power.

When the AC101 is not working, it need to set the supply properly to prevent power leakage. There are two settings to select. It's best to power off all the supply. The other is to make sure AVCC and CPVDD both power on.

At the setting below, AC101 has the best performance.

LDOIN	VDD_CORE	AVCC	CPVDD	VCC-IO0	VCC-IO1	BYPASS
1.5~~3.3 V	1.2 V	3 V	1.8 V	1.8/3.3 V	1.8/3.3 V	1.2 V
Supplied	N/A	Supplied	Supplied	Supplied	Supplied	N/A

^{*} VDD CORE and BYPASS generated by internal LDO.

11.2. Clock

The system clock(SYSCLK) of AC101 must be 512*fs(fs=48KHz or 44.1KHz). So the system should arrange the divider to generate 24.576MHz for audio clock series of 48KHz or 22.5792MHz for series of 44.1KHz.

SYSCLK is the reference of ADC, DAC, DVC, MIXER, AGC and DRC module. SYSCLK can be selected from I2S1CLK which derived from MCLK1 or PLL. MCLK1 are always provided externally while the PLL reference clock can be select from MCLK1 and BCLK1.

I2S1CLK is the reference of the first I2S clocking zone. In master mode, LRCK and BCLK are derived internally from I2SnCLK. In slave mode, LRCK and SCLK are supplied externally and BCLK can be used as the PLL input reference.

There are also an internal Oscillator to generate a clock signal for direct-path mode. In this mode, the oscillator supply clock to charge pump, adjustment circuit, headphone detect circuite.g... In direct-path case, no external clock need.

Figure 6 Clocking Management

11.3. PLL

A Phase-Locked Loop(PLL) is used to provide a flexible input clock range from 128KHz to 24MHz. The source of the PLL can be set to MCLK1 or BCLK1 by setting register. The PLL output is always used to provide the system clock(SYSCLK) of AUDIO codec when 24.576MHz or 22.5792MHz can not be provided from MCLK.

The PLL transmit formula as below:

FOUT =
$$(FIN * N) / (M * (2K+1));$$
 (N= N_i + 0.2*N_f)

Table 1 clock setting for SYSCLK=24.576 MHz

FIN	M	N	K	FOUT
128K	1	576	1	24.576M
192K	1	384	1	24.576M
256K	1	288	1	24.576M
384K	1	192	1	24.576M
			1	24.576M
6M	25	307.2	1	24.576M
13M	42	238.2	1	24.576M
19.2M	25	96	1	24.576M

Table 2 clock setting for SYSCLK=22.5792 MHz

FIN	M	N	K	FOUT
128K	1	529.2	1	22.5792M
192K	1	352.8	1	22.5792M
256K	1	264.6	1	22.5792M
384K	1	176.4	1	22.5792M
			1	22.5792M
6M	38	429	1	22.5789M
13M	19	99	1	22.5789M
19.2M	25	88.2	1	22.5792M

11.4. TWI/RSB Interface

AC101 can support two series control interface protocol for writing to or readback from registers on SCK and SDA pins. One is TWI interface, the other is RSB interface. RSB is top-priority for higher efficiency and lower power consumption.

11.4.1. TWI Interface

TWI is a 2-wire (SCK/SDA) half-duplex serial communication interface, supporting only slave mode. SCK is used for clock and SDA is for data. SCK clock supports up to 400 KHz rate and SDA data is a open drain structure.

A master controller initiates the transmission by sending a "start" signal, which is defined as a high-to-low transition at SDA while SCK is high. The first byte transferred is the slave address. It is a 7-bit chip address followed by a R/W bit. The chip address must be 0011010x. The R/W bit indicates the slave data transfer direction. Once an acknowledge bit is received, the data transfer starts to proceed on a byte-by-byte basis in the direction specified by the R/W bit. The master can terminate the communication by generating a "stop" signal, which is defined as a low-to-high transition at SDA while SCK is high.

Figure 7 TWI Interface

The formats of "write" and "read" instructions are shown in below.

Figure 8 TWI Read and Write

11.4.2. RSB Interface

RSB interface supports a special protocols with a simplified two wire protocol on a push-pull bus. So the transfer speed can be up to 10MHz and the performance will be improved much. AC101 works only in slave mode.

RSB support multi-slaves. It uses CK as clock and uses CD to transmit command and data.the Bus Topology is showed below:

Figure 9 RSB Bus Topology

The start bit marks the beginning of a transaction with the slave device. When CK is high, a change from high to low on CD is defined as a start condition. This start condition notifies the selected device to start a transfer.

Figure 10 Start signal

RSB protocol uses parity bit to check the correction of every byte, The checked object is the 7, 8 or 15 bit in front of the parity bit.

ACK bit is the acknowledgement from device to host, The ACK is active low. When device finds the parity bit is error, it will not send ACK to host, so host can know that an error happens in the transaction.

Set run-time slave address(RTSADDR) command. It is used to set run time slave address(RTSADDR) for different devices in the same system. There are 15 devices in a system at most. The RTSADDR can be selected from the command code set and a device 's RTSADDR can be modified many times by using set run-time slave address command.

Figure 12 RTSADDR command

Read command is used to read data from device. It has byte, half word and word operation. When devices receives the command, they shall check if the command's RTSADDR matches their own RTSADDR. The device's RTSADDR is setted by set run-time slave address (RTSADDR) command.

Figure 13 Read command

Write command is used to write data to the devices. It has byte, half word and word operation. When devices receive the command, they shall check if the command's RTSADDR matches their own RTSADDR. The device's RTSADDR is setted by set run-time slave address (RTSADDR) command.

Figure 14 Write command

11.5. I2S/PCM Interface

There are one I2S/PCM interface which can be configured as master mode or slave mode in AC101. In the general case, the digital audio interface uses four pins as below:

- BCLK: Bit clock for data synchronization
- LRCK: Left/Right data alignment clock
- SDOUT: output data for ADC data
- SDIN: input data for DAC data

I2S audio interface support four different data formats as below. On the I2S interface, TDM is available for all four farmart and AC101 can use it to transmit or receive up to four channel data on timeslot0 and timeslot1 simultaneously.

- I2S mode
- Left justified mode
- Right justified mode
- PCM short mode

Figure 15 I2S Justified mode

Figure 16 Left Justified mode

Figure 17 Right Justified mode

Figure 18 Pcm mode A(LRCK_INV=0)

Figure 19 Pcm mode B(LRCK_INV=1)

Figure 20 Pcm mode A mono(LRCK_INV=0)

Figure 21 Pcm mode B mono(LRCK_INV=1)

Figure 22 I2S TDM mode

Figure 23 PCM TDM mode

11.6. Stereo ADC

The stereo ADC is used for recording stereo sound. The sample rate of the stereo ADC can not be independent of DAC sample rate. In other words, the stereo ADC and DAC must work at a same sample rate. The sample rate is configured by the register ADDA_FS_I2S1.

In order to save power, the left and right analog ADC part can be enabled/disabled separately by setting register ADC_APC_CTRL Bit15 & Bit11. The digital ADC part can be enabled/disabled by ADC DIG CTRL Bit15.

The volume control of the stereo ADC is set via register ADC_APC_CTRL Bit14:12 & ADC_APC_CTRL Bit10:8.

11.7. Stereo DAC

The stereo DAC sample rate is the same as the stereo ADC. The sample rate is configured by the register ADDA FS 12S1.

In order to save power, the left and right DAC can be enabled/disabled separately by setting register OMIXER_DACA_CTRL Bit15:14. The digital DAC part can be enabled/ disabled by DAC_DIG_CTRL Bit15.

11.8. **Mixer**

The Codec supports three series of mixers for all function requirements:

- 2 channels DAC Output mixers
- 2 channels ADC Record mixers
- Digital mixers

11.8.1. DAC Output Mixers

The output mixer is used to drive analogut output, including headphone, earpiece, speaker,lineout. The following signals can be mixed into the output mixer:

- LINEINL/R
- MIC1P/N,MIC2P/N
- Stereo DAC output

11.8.2. ADC Record Mixers

The ADC record mixer is used to mix analog signals as input to the Stereo ADC for recording. The following signals can be mixed into the output mixer:

- LINEINL/R
- MIC1P/N,MIC2P/N
- Stereo DAC output

11.8.3. Digital Mixers

The digital mixers are provided for digital audio data mixing on one I2S path, two ADC output paths and two input paths to the stereo DAC. It's separately controlled by the register I2S1_MXR_SRC and DAC_MXR_SRC.

Figure 24 Digital Data Path

11.9. Analogue Audio Input Path

The Codec supports five Analogue Audio Input paths:

- LINEINL/R
- MIC1P/N,MIC2P/N

11.9.1. Microphone Input

MICIN1P/N, MICIN2P/N provide differential input that can be mixed into the ADC record mixer, or DAC output mixer. MICIN is high impedance, low capacitance input suitable for connection to a wide range of differential microphones of different dynamics and sensitive. There are two microphone pre-amplifiers for the 2 differential microphone inputs. MICIN1P/N are input to the first pre-amplifier, MICIN2P/N multiplexed as digital pin DMICCLK/DMICDAT are input to the 2nd pre-amplifier. Each microphone preamplifier has a separate enable bit, ADC_SRCBST_CTRL Bit15 & Bit11. The gain for each pre-amplifer can be set independently using MIC1BOOST, MIC2BOOST. MBIAS provide reference voltage for electret condenser type(ECM) microphones.

Figure 25 Suggested External Microphone Input

11.9.2. LINEINL/R Input

LINEINL/R provide one-channel mono differential input or stereo single-ended input that can be mixed into the ADC record mixer or the stereo output mixer. The inputs are suited to receiving line level signals such as external audio equipment or baseband module.

When the line in input is set as differential signal input LINEINL-LININR to the ADC or to DAC mixer, the line in gain is logarithmically adjustable from -9dB to 12dB in 1.5dB step by the register LINEIN DIFF PREG set.

11.10. Analogue Audio Output Path

The Codec supports five Analogue Audio Output paths:

- HPOUTL/R, HPOUTFB
- SPOLP/N
- SPORP/N

11.10.1. Headphone Output

HPOUTL/R provides two-channel single-ended output to headphone driver. The HPOUTL/R PA input source can be selected from output mixer or directly from DAC by register HPOUT_CTRL Bit15 & Bit14 set. It also can be muted by register HPOUT_CTRL Bit13 & Bit12 set. The headphone PA power up or down by register HPOUT_CTRL Bit11 set.

HPOUTL/R can drive a 16R or 32R headphone load without DC capacitors by using Charge Pump to generate the negative rails. HPOUTFB is the ground loop noise rejection feedback. HBIAS provides reference voltage for electret condenser type(ECM) microphones. Audio jack insert/ button press detection function is also provided through measuring the HBIAS current.

Figure 27 Suggested Headphone Output Application

HPOUTL/R volumes can be independently adjusted under software control using the HP_VOL[5:0] of the headphone output control registers. The adjustment is logarithmic with an 64dB rang in 1dB step from 0dB to -62dB. The headphone outputs can be muted by writing codes 0x0 to HP_VOL[5:0] bits.

There are a DC offset cancellation circuit to remove the headphone output DC offset for preventing POP noise in AC101. The function can be enabled or disabled by the register HP_DCRM_EN. This bit must be set 0xf before headphone PA enabled, and this bit must be set 0x0 before headphone PA disabled.

A zero cross detect circuit is provided at the input to the headphones under the control of the ZCROSS_EN bit . Using these controls the volume control values are only updated when the input signal to the gain stage is close to the analogue ground level. This minimizes and audible clicks and zipper noise as the gain values are changed or the device muted.

11.10.2. Speaker Output

SPOLP/N, SPORP/N provides two differential output without internal speaker amplifier. Using external amplifier, a stereo speakers can be implemented. The SPOLP/N input source can be selected from left output mixer or (left+right) output mixer. The SPORP/N input source can be selected from right output mixer or (left+right) output mixer. So in mono speaker application, The best choice for SPOLP/N or

SPORP/N input source is selected from (left+right) output mixer avoiding sound loss. The volume control is logarithmic with an 43.5dB rang in 1.5dB step from -43.5dB to 0dB. The left and right speaker output buffer can independently power up or down by register SPKOUT_CTRL Bit11 & Bit7 set.

11.11. Digital Microphone Interface

AC101 supports a stereo digital micriphone interface. The DMICCLK/ DMICDAT pins are multiplexed on the MIC3P/MIC3N pins. The circuit share decimation filter with audio ADC. And DMICCLK can be output 128fs (fs= ADC sample rate).

Digital Microphone power usually falls between the range 1.6V-3.6V, typical 1.8V. And the Clock frequency is between the the range 1.0MHz-3.25MHz, typical 2.4MHz.

Digital Microphone Block Diagram as below:

Figure 28 Digital Microphone Block Diagram

Digital Microphone timing as below:

Figure 29 Digital Microphone timing

Digital Microphone application as below:

Figure 30 Digital Microphone Application

11.12. Audio Jack Detect

The microphone bias output pin HBIAS provide a low noise reference voltage suitable for biasing electrets type microphones and the associated external resistor biasing network. Hbias is designed to drive headset microphone, and a bias current detect function is provided for external accessory detection by measuring the Hbias current. In some application, it's used to detect the insertion/removal of a aduio jack and the button press. These events will cause a significant change in bias current flow, which can be detected and used to generate a signal to the processor.

When HBIAS current detect is enabled, 5 bit ADC will send out sample data at 16/32/64/128Hz clock rate. Digital logic trigger an interrupt event controlled by register setting when the data is changed.

The digital circuit generate five IRQ signals that can be disabled by register, the data from ADC can be read from register HMIC_STATUS Bit12:8.

IRQ Timing Diagram:

Figure 31 HBIAS Detect IRQ Timing Diagram

11.13. Interrupt

The Interrupt circuits in AC101 generate an Interrupt (IRQ) event to enable the detection of audio jack status. The Interrupt pin IRQ_AUDIO is open-drain. It's usually drives a high level voltage via the external pull-up resistor while it output a low level when the IRQ is active.

It supports the following triggered events illustrated in the figure below:

Figure 32 Interrupt trigger Diagram

11.14. Digital Audio Process for ADC

The DAP System Block Diagram For ADC.

Figure 33 ADC DAP System Block

DAP for ADC Data Flow:

Figure 34 ADC DAP Data Flow

11.14.1. High Pass Filter

The High Pass Filter (HPF, -3dB cutoff < 1Hz) remove DC offset from ADC recording data. The HPF can also be bypassed.

Figure 35 HPF Characteristic in DAP

11.14.2. Auto Gain Control

The automatic gain control(AGC) can be enabled in the digital recording path of AC101. It automatically adjusts the ADC recording volume gain to a target volume level.

Figure 36 AGC Response Characteristic

The ADC Digital Part includes automatic gain control (AGC) for ADC recording. AGC can be used to maintain a nominally-constant output level when recording speech. As opposed to manually setting the PGA gain, in the AGC mode, the circuitry automatically adjusts the PGA gain as the input signal becomes overly loud or weak, such as when aperson speaking into a microphone moves closer to or farther from the microphone. The AGC algorithm has several programmable parameters, including target gain, attack and decay time constants, noise threshold, and max PGA applicable, that allow the algorithm to be fine-tuned for any particular application. The algorithm uses the absolute average of the signal (which is the average of the absolute value of the signal) as a measure of the nominal amplitude of the output signal. Because the gain can be changed at the sample interval time, the AGC algorithm operates at the ADC sample rate. The AGC programs to a wide range of attack and decay skew time from 32/fs to $2^15*32/fs$.

When noise cancellation used in system, the AGC should be implement by soft because of no hardware noise cancellation. The AGC process should be after noise cancellation process.

♦ The AGC Control Parameters

- •Target level represents the nominal output level at which the AGC attempts to hold the ADC output signal level. The ADC allows programming of different target levels, which can be programmed from –1dB to –30dB relative to a full-scale signal. Because the ADC reacts to the signal absolute average and not to peak levels, it is recommended that the target level be set with enough margins to avoid clipping at the occurrence of loud sounds.
- •Attack skew time determine show quickly the AGC circuitry reduces the PGA gain when the output signal level exceeds the target level due to increase in input signal level. A wide range of attack-time programmability is supported in terms of number of samples (i.e., number of ADC sample-frequency clock cycles).
- •Decay skew time determine show quickly the PGA gain is increased when the output signal level falls below the target level due to reduction in input signal level. A wide range of decay time programmability is supported in terms of number of samples (i.e., number of ADC sample-frequency clock cycles).
- •Noise threshold is a reference level. If the input speech average value falls below the noise threshold, the AGC considers it as asilence and hence brings down the gain to 0dB in steps of 0.5dB every sample period and sets the noise-threshold flag. The gain stay sat 0dB unless the input speech signal average is es above the noise threshold setting. This ensures that noise is not amplified in the absence of speech. Noise threshold level in the AGC algorithm is programmable from –30dB to –90dB of full-scale. This operation includes hysteresis and debounce to avoid the AGC gain from cycling between high gain and 0dB when signals are near the noise threshold level. The noise (or silence) detection feature can be entirely disabled by the user.
- •Max PGA applicable allows the designer to restrict the maximum gain applied by the AGC. This can be used for limiting PGA gain in situations where environmental noise is greater than the programmed noise threshold. Microphone input Max PGA applicable can be programmed from 0dB to 40dB in steps of 0.5dB.
- •Hysteresis, as the name suggests, determines a window around the noise threshold which must be exceeded to detect that the recorded signal is indeed either noise or signal. If initially the energy of the recorded signal is greater than the noise threshold, then the AGC recognizes it as noise only when the energy of the recorded signal falls below the noise threshold by a value given by hysteresis. Similarly, after the recorded signal is recognized as noise, for the AGC to recognize it as a signal, its energy must exceed the noise threshold by a value given by the hysteresis setting. In order to prevent the AGC from jumping between noise and signal states, (which can happen when the energy of recorded signal is close to the noise threshold) a non-zero hysteresis value should be chosen. The hysteresis feature can also be disabled.
- •Debounce time (noise and signal) determines the hysteresis in time domain for noise detection. The AGC continuously calculates the energy of the recorded signal. If the calculated energy is less than the set noise threshold, then the AGC does not increase the input gain to achieve the target level. However, to handle audible artifacts which can occur when the energy of the input signal is close to the noise threshold, the AGC checks if the energy of the recorded signal is less than the noise threshold for a time greater than the noise debounce time. Similarly, the AGC starts increasing the input-signal gain to reach the target level when the calculated energy of the input signal is greater than the noise threshold. Again, to avoid audible

artifacts when the input-signal energy is close to noise threshold, the energy of the input signal must continuously exceed the noise threshold value for the signal-debounce time. If the debounce times are kept small, then audible artifacts can result by rapid enabling and disabling the AGC function. At the same time, if the debounce time is kept too large, then the AGC may take time to respond to changes in levels of input signal swith respect to the noise threshold. Both noise and signal-debouncet ime can be disabled.

♦ The AGC Output Information

•TheAGC noise-threshold flag is a read-only flag indicating that the input signal has levels lower than the noise threshold, and thus is detected as noise (or silence). In such a condition, the AGC applies a gain of 0 dB.

•Gain applied by AGC is a read-only register setting which gives a real-time feed back to the system on the gain applied by the AGC to the recorded signal. This, a long with the target setting, can be used to determine the input signal level. In a steady-state situation TargetLevel (dB) = GainAppliedbyAGC(dB) +Input SignalLevel(dB) When the AGC noise threshold flag is set, then the status of gain applied by AGC is not valid.

•The AGC saturation flag is a read-only flag indicating that the ADC output signal has not reached its target level. However, the AGC is unable to increase the gain further because the required gain is higher than the maximum allowed PGA gain. Such a situation can happen when the input signal has low energy and the noise threshold is also set low. When the AGC noise threshold flag is set, the status of AGC saturation flag should be ignored.

•The ADC saturation flag is a read-only flag indicating an overflow condition in the ADC channel. On overflow, the signal is clipped and distortion results. This typically happens when the AGC target level is kept high and the energy in the input signal increases faster than the attack time.

◆ The AGC signal level detect

Figure 37 AGC Signal level detect

• An AGC low-pass filter is used to help determine the average level of the input signal. This average level is compared to the programmed detection levels in the AGC to provide the correct functionality. This low-pass filter is in the form of a first-order IIR filter. The transfer function of the filter implemented for signal level detection is given by

$$H(z) = \frac{\alpha}{1 - (1 - \alpha)z^{-1}}$$

Where: Coefficient α (3.24 format) is 26-bit 2s complement and will determine the time window over which average level to be made. The parameter is computed by.

$$\alpha = 1 - e^{-2.2Ts/ta}$$

Default time window is 108.8963 *Ts.

♦ The AGC Characteristics

Figure 38 AGC Module Characteristic

11.15. Digital Audio Process for DAC

The DAP System Block Diagram For DAC.

Figure 39 DAC DAP System Block

DAP for DAC Data Flow:

Figure 40 DAC DAP Data Flow

11.15.1. High Pass Filter

The DAP has individual channel high pass filter that can be enabled and disabled. The filter cutoff frequency is less than 1Hz.

$$H(z) = \frac{1 - z^{-1}}{1 - az^{-1}}$$

11.15.2. Dynamic Range Control

The dynamic range control(DRC) can be enabled in the digital playback path of AC101. It automatically adjusts the wide volume gain to flatten volume level.

Figure 41 DRC Response Characteristic

The DRC supports the main feature below:

Figure 42 DRC Block and Register Control

- Adjustable threshold, offset, and compression levels
- Programmable energy coefficient, attack, and decay time constants
- Transparent compression: Compressors can attack fast enough to avoid apparent clipping before engaging, and decay times can be set slow enough to avoid pumping.

♦ DRC parameter setting

Numbers formatted as N.M numbers means that there are N bits to the left of the decimal point including the sign bit and M bits to the right of the decimal point. For example, Numbers formatted 3.24 means that there are 3 bits at the left of the decimal point and 24 bits at the right decimal point.

♦ Energy Filter

The Energy Filter is to estimate of the RMS value of the audio data stream into DRC, and has two parameters, which determine the time window over which RMS to be made. The parameter is computed by

$$\alpha = 1 - e^{-2.2 T_{S}/ta}$$

Figure 43 Energy Filter Structure

♦ Compression Control

This element has three parameters (T, K, O), which are all programmable, and the computation will be explained as below:

T parameter (Threshold Parameter Computation)

The threshold is the value that determines the signal to be compressed or not. When the signal's RMS is larger than the threshold, the signal will be compressed. The value of threshold input to the coefficient register is computed by

$$Tin = -\frac{T_{dB}}{6.0206}$$

There, T_{dB} must less than zero, the positive value is illegal.

For example, it desired to set the T=-30dB, then $T_{in} = -\frac{-30}{6.0206} = 4.982$, and the 8.24 format of the Tin is $0x04FB_9ED0$.

K parameter (Slope Parameter Computation)

The K is the slope within compression region. For example, a n:1 compression means that an output increase 1dB as RMS input increase n dB. The k input to the coefficient register is computed by

$$k = \frac{1}{n} - 1$$

There, n is from 1 to 50, and must be integer.

For example, for n=5, the
$$k = \frac{1}{5} - 1 = -0.8$$
, and the 3.24 format of the k is 0x733_3333

O parameter (Offset Parameter Computation)

The O is the offset of the compression static curve. The offset input to the coefficient register is computed by $O_{in} = 10^{O/20}$

There, O is -24dB to 24dB.

For example, it desired to set O=6dB, then $O_{in} = 10^{6/20} = 1.995$, and the 5.24 format of the O_{in} is $0x1FE_C982$.

♦ Gain Smooth Filter

The Gain Smooth Filter is to smooth the gain and control the ratio of gain increase and decrease. The decay time and attack is shown in Figure 5. The structure of the Gain Smooth filter is also the Alpha filter, so the rise time computation is the same as the Energy filter which is

$$\alpha = 1 - e^{-2.2 Ts/ta}$$

Figure 44 Smooth Filter Characteristic

12. Register List

Register Name	Offset	Description
CHIP_AUDIO_RST	00H	Chip Soft Reset
PLL_CTRL1	02H	PLL Configure Control 1
PLL_CTRL2	03H	PLL Configure Control 2
SYSCLK_CTRL	04H	System Clocking Control
MOD_RST_CTRL	05H	Module Clock Enable Control
ADDA_SR_CTRL	06H	ADDA Sample Rate Configuration
I2S1LCK_CTRL	10H	I2S1 BCLK/LRCK Control
I2S1_SDIN_CTRL	11H	I2S1 SDIN Control
I2S1_SDOUT_CTRL	12H	I2S1 SDOUT Control
I2S1_DIG_MIXER	13H	I2S1 Digital Mixer Control
I2S1_VOL_CTRL1	14H	I2S1 Volume Control 1
I2S1_VOL_CTRL2	15H	I2S1 Volume Control 2
I2S1_VOL_CTRL3	16H	I2S1 Volume Control 3
I2S1_VOL_CTRL4	17H	I2S1 Volume Control 4
I2S1_MXR_GAIN	18H	I2S1 Digital Mixer Gain Control
ADC_DIG_CTRL	40H	ADC Digital Control
TBD		

Reg 00h_Chip Soft Reset Register

Default: 0x0101			Register Name: CHIP_AUDIO_RST
Bit	Read/Write	Default	Description
15.0	15:0 R/W 0x01	0.0101	Writing to this register resets all register to their default state.
13.0		UXUIUI	Reading from this register will indicate device type and version.

Reg 01h_PLL Configure Control 1 Register

Default	Default: 0x0141		Register Name: PLL_CTRL1
Bit	Read/Write	Default	Description
			DPLL_DAC_BIAS
15:14	R/W	0x0	00: min
			11: max
			PLL_POSTDIV_M
			PLL Post-Divider Factor M
13:8	R/W	0x1	Factor=0, M=64
13.6	IX/ W	UXI	Factor=1, M=1
			Factor=63, M=63
7	R/W	0x0	Reserved
			Close_loop.
6	R/W	0x1	1: work as a PLL.
			0: work as a free running VCO at a pre-fixed frequency.
			INT
			Integ[5:0], the loop bandwidth config.
			0: works as free running mode.
5:0	R/W	0x1	1: small bandwidth, need more time to lock.
			63: large bandwidth, need less time to lock, but may result in failing.

Reg 02h_PLL Configure Control 2 Register

Default: 0x0000			Register Name: PLL_CTRL2
Bit	Read/Write	Default	Description
			PLL_EN
			PLL Enable
15	R/W	0x0	0: Disable
			1: Enable
			The PLL output FOUT= FIN*N/(M*(2K+1)), N=N_i+N_f;
			PLL Locked status
14	R	0x0	0: Not locked or not enabled
			1: Enabled and locked
		0x0	PLL_PREDIV_NI
			PLL Integer Part of Pre-Divider Factor N.
13:4	R/W		Factor=0, N_i=0;
13.4	IV W		Factor=1, N_i=1;
			Factor=1023, N_i=1023;
3	/	/	/
			PLL_POSTDIV_NF
			PLL Fractional Part of Pre-Divider Factor N.
2:0	R/W	0x0	Factor=0, N_f=0*0.2;
2.0		UAU	Factor=1, N_f=1*0.2;
			Factor=7, N_f=7*0.2;

Reg 03h_System Clocking Control Register

Default	Default: 0x0000		Register Name: SYSCLK_CTRL
Bit	Read/Write	Default	Description
			PLLCLK_ENA
15	R/W	0x0	PLLCLK Enable
13	IN/ W	UXU	0: Disable
			1: Enable
14	R/W	0x0	Reserved
			PLLCLK_SRC
		0x0	PLL Clock Source Select
13:12	R/W		00: MCLK1
13.12	IN/ W		01: Reserved
			10: BCLK1
			11: Reserved
		0.0	I2S1CLK_ENA
11	R/W		I2S1CLK Enable
11	IN/ W	0x0	0: Disable
			1: Enable
10	R/W	0x0	Reserved

9:8	R/W	0x0	I2S1CLK_SRC I2S1CLK Source Select 00: MLCK1 01: Reserved
			1X: PLL
7:4	R/W	0x0	Reserved
			SYSCLK_ENA
3	2 D/W	0x0	SYSCLK Enable
3	R/W	UXU	0: Disable
			1: Enable
2:0	R/W	0x0	Reserved

Reg 04h_Module Clock Enable Control Register

Default	Default: 0x0000		Register Name: MOD_CLK_ENA
Bit	Read/Write	Default	Description
			Module clock enable control
			0-Clock disable
			1-Clock enable
			BIT15-I2S1
			BIT14-Reserved
			BIT13-Reserved
			BIT12-Reserved
			BIT11-Reserved
			BIT10-Reserved
15:0	R/W	0x0	BIT9-Reserved
			BIT8-Reserved
			BIT7-HPF & AGC
			BIT6-HPF & DRC
			BIT5-Reserved
			BIT4-Reserved
			BIT3-ADC Digital
			BIT2-DAC Digital
			BIT1-Reserved
			BIT0-Reserved

Reg 05h_Module Reset Control Register

Default	Default: 0x0000		Register Name: MOD_RST_CTRL
Bit	Read/Write	Default	Description
			Module reset control
			0-Reset asserted
			1-Reset de-asserted
15:0	R/W	0x0	BIT15-I2S1
13.0	15:0 K/W	UXU	BIT14-Reserved
			BIT13-Reserved
			BIT12-Reserved
			BIT11-Reserved

BIT10-Reserved
BIT9-Reserved
BIT8-Reserved
BIT7-HPF & AGC
BIT6-HPF & DRC
BIT5-Reserved
BIT4-Reserved
BIT3-ADC Digital
BIT2-DAC Digital
BIT1-Reserved
BIT0-Reserved

Reg 06h_ADDA Sample Rate Configuration Register

Default	Default: 0x0000		Register Name: I2S_SR_CTRL
Bit	Read/Write	Default	Description
			ADDA_FS_I2S1
			ADDA Sample Rate synchronised with I2S1 clock zone
			0000: 8KHz
			0001: 11.025KHz
			0010: 12KHz
			0011: 16KHz
15:12	R/W	0x0	0100: 22.05KHz
13.12	IC/ VV	UXU	0101: 24KHz
			0110: 32KHz
			0111: 44.1KHz
			1000: 48KHz
			1001: 96KHz
			1010: 192KHz
			Other: Reserved
11:0	R/W	0x0	Reserved

Reg 10h_I2S1 BCLK/LRCK Control Register

Default	Default: 0x0000		Register Name: I2S1LCK_CTRL
Bit	Read/Write	Default	Description
			I2S1_MSTR_MOD
15	R/W	0x0	I2S1 Audio Interface mode select
13	K/W	UXU	0 = Master mode
			1 = Slave mode
		0x0	I2S1_BCLK_INV
14	R/W		I2S1 BCLK Polarity
14	K/W		0: Normal
			1: Inverted
		0x0	I2S1_LRCK_INV
13	R/W		I2S1 LRCK Polarity
13	K/W		0: Normal
			1: Inverted

			I2S1_BCLK_DIV
			Select the I2S1CLK/BCLK1 ratio
			0000: I2S1CLK/1
			0001: I2S1CLK/2
			0010: I2S1CLK/4
			0011: I2S1CLK/6
			0100: I2S1CLK/8
			0101: I2S1CLK/12
12:9	R/W	0x0	0110: I2S1CLK/16
12.7	IX/ W	UXU	0111: I2S1CLK/24
			1000: I2S1CLK/32
			1001: I2S1CLK/48
			1010: I2S1CLK/64
			1011: I2S1CLK/96
			1100: I2S1CLK/128
			1101: I2S1CLK/192
			1110: Reserved
			1111: Reserved
			I2S1_LRCK_DIV
			Select the BCLK1/LRCK ratio
			000: 16
0.6	D/III		001: 32
8:6	R/W	0x0	010: 64
			011: 128
			100: 256
			1xx: Reserved
			I2S1_WORD_SIZ
			I2S1 digital interface word size
	D /777		00: 8bit
5:4	R/W	0x0	01: 16bit
			10: 20bit
			11: 24bit
			I2S1 DATA FMT
			I2S digital interface data format
			00: I2S mode
3:2	R/W	0x0	01: Left mode
			10: Right mode
			11: DSP mode
			DSP MONO PCM
1 R			DSP Mono mode select
	R/W	0x0	0: Stereo mode select
			1: Mono mode select
			I2S1_TDMM_ENA
0 R/V			I2S1 TDM Mode enable
	R/W	0x0	0: Disable
			1: Enable
		1	1. Linutto

Reg 11h_I2S1 SDOUT Control Register

Default	:: 0x0000		Register Name: I2S1_SDOUT_CTRL
Bit	Read/Write	Default	Description
			I2S1_ADCL0_ENA
1.5	D /W/	00	I2S1 ADC Timeslot 0 left channel enable
15	R/W	0x0	0: Disable
			1: Enable
			I2S1_ADCR0_ENA
1.4	D /W/	00	I2S1 ADC Timeslot 0 right channel enable
14	R/W	0x0	0: Disable
			1: Enable
			I2S1_ADCL1_ENA
13	R/W	0x0	I2S1 ADC Timeslot 1 left channel enable
13	K/W	UXU	0: Disable
			1: Enable
			I2S1_ADCR1_ENA
12	R/W	0x0	I2S1 ADC Timeslot 1 right channel enable
12	IX/ VV	UXU	0: Disable
			1: Enable
			I2S1_ADCL0_SRC
			I2S1 ADC Timeslot 0 left channel data source select
11:10	R/W	0x0	00: I2S1_ADCL0
11.10	K/W	OXO	01: I2S1_ADCR0
			10: (I2S1_ADCL0+ I2S1_ADCR0)
			11: (I2S1_ADCL0+ I2S1_ADCR0)/2
			I2S1_ADCR0_SRC
			I2S1 ADC Timeslot 0 right channel data source select
9:8	R/W	0x0	00: I2S1_ADCR0
7.0	IV W	OAO	01: I2S1_ADCL0
			10: (I2S1_ADCL0+I2S1_ADCR0)
			11: (I2S1_ADCL0+I2S1_ADCR0)/2
			I2S1_ADCL1_SRC
			I2S1 ADC Timeslot 1 left channel data source select
7:6	R/W	0x0	00: I2S1_ADCL1
,			01: I2S1_ADCR1
			10: (I2S1_ADCL1+I2S1_ADCR1)
			11: (I2S1_ADCL1+I2S1_ADCR1)/2
			I2S1_ADCR1_SRC
			I2S1 ADC Timeslot 1 right channel data source select
5:4	R/W	0x0	00: I2S1_ADCR1
		OXO	01: I2S1_ADC1L
			10: (I2S1_ADCL1+I2S1_ADCR1)
			11: (I2S1_ADCL1+I2S1_ADCR1)/2
			I2S1_ADCP_ENA
3	R/W	0x0	I2S1 ADC Companding enable(8-bit mode only)
			0: Disable

			1: Enable
			I2S1_ADCP_SEL
2	R/W	0x0	I2S1ADC Companding mode select
4	IX/ VV	UXU	0: A-law
			1: u-law
	R/W	0x0	I2S1_SLOT_SIZ
			Select the slot size(only in TDM mode)
1:0			00: 8
1.0			01: 16
			10: 32
			11: Reserved

Reg 12h_I2S1 SDIN Control Register

Default: 0x0000			Register Name: I2S1_SDIN_CTRL
Bit	Read/Write	Default	Description
			I2S1_DACL0_ENA
15	R/W	0x0	I2S1 DAC Timeslot 0 left channel enable
13	K/W	UXU	0: Disable
			1: Enable
			I2S1_DACR0_ENA
14	R/W	0x0	I2S1 DAC Timeslot 0 right channel enable
14	K/W	UXU	0: Disable
			1: Enable
			I2S1_DACL1_ENA
13	R/W	0x0	I2S1 DAC Timeslot 1 left channel enable
13	IN/ W	UXU	0: Disable
			1: Enable
	R/W		I2S1_DACR1_ENA
12		0x0	I2S1 DAC Timeslot 1 right channel enable
12			0: Disable
			1: Enable
			I2S1_DACL0_SRC
			I2S1 DAC Timeslot 0 left channel data source select
11:10	R/W	0x0	00: I2S1_DACL0
11.10	IV W	OAO	01: I2S1_DACR0
			10: (I2S1_DACL0+I2S1_DACR0)
			11: (I2S1_DACL0+I2S1_DACR0)/2
			I2S1_DACR0_SRC
			I2S1 DAC Timeslot 0 right channel data source select
9:8	R/W	0x0	00: I2S1_DACR0
7.0	10 11	ONO	01: I2S1_DACL0
			10: (I2S1_DACL0+I2S1_DACR0)
			11: (I2S1_DACL0+I2S1_DACR0)/2
			I2S1_DACL1_SRC
7:6	R/W	0x0	I2S1 DAC Timeslot 1 left channel data source select
'	IV W		00: I2S1_DACL1
			01: I2S1_DACR1

			10: (I2S1_DACL1+I2S1_DACR1)
			11: (I2S1_DACL1+I2S1_DACR1)/2
			I2S1_DACR1_SRC
			I2S1 DAC Timeslot 1 right channel data source select
5:4	R/W	0x0	00: I2S1 DACR1
3.4	IX/ VV	UXU	01: I2S1 DACL1
			10: (I2S1 DACL1+I2S1 DACR1)
			11: (I2S1 DACL1+I2S1 DACR1)/2
			I2S1_DACP_ENA
3	R/W	0x0	I2S1 DAC Companding enable(8-bit mode only)
3	K/W	UXU	00: Disable
			01: Enable
			I2S1_DACP_SEL
2	R/W	0x0	I2S1 DAC Companding mode select
2	K/W	UXU	0: A-law
			1: u-law
1	R/W	0x0	Reserved
			I2S1_LOOP_ENA
	D/W	0.0	I2S1 loopback enable
0	R/W	0x0	0: No loopback
			1: Loopback(SDOUT1 data output to SDOUT1 data input)

Reg 13h_I2S1 Digital Mixer Source Select Register

Default: 0x0000			Register Name: I2S1_MXR_SRC
Bit	Read/Write	Default	Description
			I2S1_ADCL0_MXL_SRC
			I2S1 ADC Timeslot 0 left channel mixer source select
			0: Disable 1: Enable
15:12	R/W	0x0	Bit15: I2S1_DA0L data
			Bit14: Reserved
			Bit13: ADCL data
			Bit12: Reserved
			I2S1_ADCR0_MXR_SRC
			I2S1 ADC Timeslot 0 right channel mixer source select
			0: Disable 1: Enable
11:8	R/W	0x0	Bit11: I2S1_DA0R data
			Bit10: Reserved
			Bit9: ADCR data
			Bit8: Reserved
			I2S1_ADCL1_MXR_SRC
			I2S1 ADC Timeslot 1 left channel mixer source select
7:6	R/W	0x0	0: Disable 1: Enable
			Bit7: Reserved
			Bit6: ADCL data
5:4	R/W	0x0	Reserved
3:2	R/W	0x0	I2S1_ADCR1_MXR_SRC

			I2S1 ADC Timeslot 1 right channel mixer source select
			0: Disable 1: Enable
			Bit3: Reserved
			Bit2: ADCR data
1:0	R/W	0x0	Reserved

Reg 14h_I2S1 Volume Control 1 Register

Default	: 0xA0A0		Register Name: I2S1_VOL_CTRL1
Bit	Read/Write	Default	Description
			I2S1_ADCL0_VOL
			I2S1 ADC Timeslot 0 left channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)
			0x00: Mute
			0x01: -119.25dB
15:8	R/W	0xA0	
			0x9F = -0.75dB
			0xA0 = 0dB
			0xA1 = 0.75dB
			0xFF = 71.25dB
			I2S1_ADCR0_VOL
			I2S1 ADC Timeslot 0 right channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)
			0x00: Mute
			0x01: -119.25dB
7:0	R/W	0xA0	
			0x9F = -0.75dB
			0xA0 = 0dB
			0xA1 = 0.75dB
			0xFF = 71.25dB

Reg 15h_I2S1 Volume Control 2 Register

Default	0xA0A0		Register Name: I2S1_VOL_CTRL2
Bit	Read/Write	Default	Description
			I2S1_ADCL1_VOL
			I2S1 ADC Timeslot 1 left channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)
			0x00: Mute
			0x01: -119.25dB
15:8	R/W	0xA0	
			0x9F = -0.75dB
			0xA0 = 0dB
			0xA1 = 0.75dB
			0xFF = 71.25dB

			I2S1_ADCR1_VOL I2S1 ADC Timeslot 1 right channel volume (-119.25dB To 71.25dB, 0.75dB/Step) 0x00: Mute 0x01: -119.25dB
7:0	R/W	0xA0	0x9F = -0.75dB $0xA0 = 0dB$ $0xA1 = 0.75dB$
			0xFF = 71.25dB

Reg 16h_I2S1 Volume Control 3 Register

Default	: 0xA0A0		Register Name: I2S1_VOL_CTRL3
Bit	Read/Write	Default	Description
			I2S1_DACL0_VOL
			I2S1 DAC Timeslot 0 left channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)
			0x00: Mute
			0x01: -119.25dB
15:8	R/W	0xA0	
			0x9F = -0.75dB
			0xA0 = 0dB
			0xA1 = 0.75dB
			0xFF = 71.25dB
			I2S1_DACR0_VOL
			I2S1 DAC Timeslot 0 right channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)
			0x00: Mute
			0x01: -119.25dB
7:0	R/W	0xA0	
			0x9F = -0.75dB
			0xA0 = 0dB
			0xA1 = 0.75dB
			0xFF = 71.25dB

Reg 17h_I2S1 Volume Control 4 Register

Default: 0xA0A0			Register Name: I2S1_VOL_CTRL4
Bit	Read/Write	Default	Description
			I2S1_DACL1_VOL
			I2S1 DAC Timeslot 1 left channel volume
15:8	R/W	0xA0	(-119.25dB To 71.25dB, 0.75dB/Step)
			0x00: Mute
			0x01: -119.25dB

			0x9F = -0.75dB
			0xA0 = 0dB
			0xA1 = 0.75dB
			0xFF = 71.25dB
			I2S1_DACR1_VOL
			I2S1 DAC Timeslot 1 right channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)
			0x00: Mute
			0x01: -119.25dB
7:0	R/W	0xA0	
			0x9F = -0.75dB
			0xA0 = 0dB
			0xA1 = 0.75dB
			0xFF = 71.25dB

Reg 18h_I2S1 Digital Mixer Gain Control Register

Default: 0x0000			Register Name: I2S1_MXR_GAIN
Bit	Read/Write	Default	Description
			I2S1_ADCL0_MXR_GAIN
			I2S1 ADC Timeslot 0 left channel mixer gain control
			0: 0dB 1: -6dB
15:12	R/W	0x0	Bit15: I2S1_DA0L data
			Bit14: Reserved
			Bit13: ADCL data
			Bit12: Reserved
			I2S1_ADCR0_MXR_GAIN
			I2S1 ADC Timeslot 0 right channel mixer gain control
			0: 0dB 1: -6dB
11:8	R/W	0x0	Bit11: I2S1_DA0R data
			Bit10: Reserved
			Bit9: ADCR data
			Bit8: Reserved
			I2S1_ADCL1_MXR_GAIN
			I2S1 ADC Timeslot 1 left channel mixer gain control
7:6	R/W	0x0	0: 0dB 1: -6dB
			Bit7: Reserved
			Bit6: ADCL data
5:4	R/W	0x0	Reserved
			I2S1_ADCR1_MXR_GAIN
			I2S1 ADC Timeslot 1 right channel mixer gain control
3:2	R/W	0x0	0: 0dB 1: -6dB
			Bit3: Reserved
			Bit2: ADCR data
1:0	R/W	0x0	Reserved

Reg 40h_ADC Digital Control Register

Defaul	t: 0x0000		Register Name: ADC_DIG_CTRL
Bit	Read/Write	Default	Description
			ENAD
1.5	R/W		ADC Digital part enable
15	K/W	0x0	0: Disable
			1: Enable
			ENDM
14	R/W	0x0	Digital microphone enable
14	K/W	UXU	0: Analog ADC mode
			1: Digital microphone mode
			ADFIR32
13	R/W	0x0	Enable 32-tap FIR filter
13	IN/ W		0: 64-tap
			1: 32-tap
12:4	R/W	0x0	Reserved
			ADOUT_DTS
			ADC Delay Time For transmitting data after ENAD
3:2	R/W	0x0	00:5ms
3.2	IN/ W	0x0	01:10ms
			10:20ms
			11:30ms
			ADOUT_DLY
1	R/W	0x0	ADC Delay Function enable for transmitting data after ENAD
1			0: Disable
			1: Enable
0	R/W	0x0	Reserved

Reg 41h_ADC Volume Control Register

Default	: 0xA0A0		Register Name: ADC_VOL_CTRL
Bit	Read/Write	Default	Description
			ADC_VOL_L
			ADC left channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)
		0xA0	0x00: Mute
	R/W		0x01: -119.25dB
15:8			
			0x9F = -0.75dB
			0xA0 = 0dB
			0xA1 = 0.75dB
			0xFF = 71.25dB
7.0	D/W/	0xA0	ADC_VOL_R
7:0	R/W		ADC left channel volume

(-119.25dB To 71.25dB, 0.75dB/Step)
0x00: Mute
0x01: -119.25dB
0x9F = -0.75dB
0xA0 = 0dB
0xA1 = 0.75dB
0xFF = 71.25dB

Reg 44h_HMIC Control 1 Register

Default: 0x0000			Register Name: HMIC_CTRL1
Bit	Read/Write	Default	Description
15.10	D/III	0.0	HMIC_M
15:12	R/W	0x0	debounce when Key down or key up
11.0	D/W	0.0	HMIC_N
11:8	R/W	0x0	debounce when earphone plug in or pull out
			HMIC_DATA_IRQ_MODE
7	R/W	0x0	Hmic Data Irq Mode Select
/	K/W	UXU	0: Hmic data irq once after key down
			1: Hmic data irq from key down, util key up
			HMIC_TH1_HYSTERESIS
			Hmic Hysteresis Threshold1
6:5	R/W	0x0	00: no Hysteresis
0.3	IN/ W	OXO	01: Pull Out when Data <= (Hmic_th2-1)
			10: Pull Out when Data <= (Hmic_th2-2)
			11: Pull Out when Data <= (Hmic_th2-3)
			HMIC_PULLOUT_IRQ_EN
4	R/W	0x0	Hmic Earphone Pull out Irq Enable
			00: disable 11: enable
			HMIC_PLUGIN_IRQ_EN
3	R/W	0x0	Hmic Earphone Plug in Irq Enable
			00: disable 11: enable
			HMIC_KEYUP_IRQ_EN
2	R/W	0x0	Hmic Key Up Irq Enable
			00: disable 11: enable
			HMIC_KEYDOWN_IRQ_EN
1	R/W	0x0	Hmic Key Down Irq Enable
			00: disable 11: enable
		0x0	HMIC_DATA_IRQ_EN
0	R/W		Hmic Data Irq Enable
			0: disable 1: enable

Reg 45h_HMIC Control 2 Register

Default: 0x0000	Register Name: HMIC_CTRL2
-----------------	---------------------------

Bit	Read/Write	Default	Description
			HMIC_SAMPLE_SELECT
			Down Sample Setting Select
15:14	R/W	0x0	00: Down by 1, 128Hz
15:14	R/W	UXU	01: Down by 2, 64Hz
			10: Down by 4, 32Hz
			11: Down by 8, 16Hz
			HMIC_TH2_HYSTERESIS
13	R/W	0.0	Hmic Hysteresis Threshold2
13	K/W	0x0	0: no Hysteresis
			1: Key Up when Data <= (Hmic_th2-1)
12:8	R/W	0x0	HMIC_TH2
12.0			Hmic_th2 for detecting Key down or Key up.
		0x0	HMIC_SF
			Hmic Smooth Filter setting
7:6	R/W		00: by pass
7.0	K/W		01: (x1+x2)/2
			10: (x1+x2+x3+x4)/4
			11: (x1+x2+x3+x4+ x5+x6+x7+x8)/8
			KEYUP_CLEAR
5	R/W	0x0	Key Up Irq Pending bit auto clear when Key Down Irq
			0: don't clear 1: auto clear
4:0	R/W	0x0	HMIC_TH1
⊤. ∪	IV/ VV		Hmic_th1[4:0], detecting eraphone plug in or pull out.

Reg 46h_HMIC Status Register

Default: 0x0000			Register Name: HMIC_STATUS
Bit	Read/Write	Default	Description
15:13	R/W	0x0	Reserved
12.0	R	00	HMIC_DATA
12:8	K	0x0	HMIC Average Data
7:5	R/W	0x0	Reserved
			HMIC_PULLOUT_PENDING
4	R/W	00	Hmic Earphone Pull out Irq pending bit, write 1 to clear
4	K/W	0x0	0: No Pending Interrupt
			1: Pull out Irq Pending Interrupt
			HMIC_PLUGIN_PENDING
3	R/W	0x0	Hmic Earphone Plug in Irq pending bit, write 1 to clear
3	IX/ W	OXO	0: No Pending Interrupt
			1: Plug in Irq Pending Interrupt
			HMIC_KEYUP_PENDING
2	R/W	0x0	Hmic Key Up Irq pending bit, write 1 to clear
2	IV W		0: No Pending Interrupt
			1: Key up Irq Pending Interrupt
1	R/W	0x0	HMIC_KEYDOWN_PENDING
1	IN/ W	UXU	Hmic Key Down Irq pending bit, write 1 to clear

			0: No Pending Interrupt 1: Key down Irq Pending Interrupt
			HMIC_DATA_PENDING
0	R/W	0x0	Hmic Data Irq pending bit, write 1 to clear
	K/W		0: No Pending Interrupt
			1: Data Irq Pending Interrupt

Reg 48h_DAC Digital Control Register

Defaul	t: 0x0000		Register Name: DAC_DIG_CTRL
Bit	Read/Write	Default	Description
			ENDA.
15	R/W	0x0	DAC Digital Part Enable
13	K/W	UXU	0: Disabe
			1: Enable
			ENHPF
14	R/W	0x0	HPF Function Enable
14	IV/ VV	UXU	0: Enable
			1: Disable
			DAFIR32
13	R/W	0x0	Enable 32-tap FIR filter
13	K/W	UXU	0: 64-tap
			1: 32-tap
12	R/W	0x0	Reserved
			MODQU
11:8	R/W	0x0	Internal DAC Quantization Levels
11.0	K/W		Levels=[7*(21+MODQU[3:0])]/128
			Default levels=7*21/128=1.15
7:0	R/W	0x0	Reserved

Reg 49h_DAC Volume Control Register

Default:	0xA0A0		Register Name: DAC_VOL_CTRL
Bit	Read/Write	Default	Description
			DAC_VOL_L
			DAC left channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)
			0x00: Mute
	R/W	0xA0	0x01: -119.25dB
15:8			
			0x9F = -0.75dB
			0xA0 = 0dB
			0xA1 = 0.75dB
			0xFF = 71.25dB
7.0	R/W	0xA0	DAC_VOL_R
7:0			DAC right channel volume

(110 25 dD To 71 25 dD 0 75 dD/Ston)
(-119.25dB To 71.25dB, 0.75dB/Step)
0x00: Mute
0x01: -119.25dB
0x9F = -0.75dB
0xA0 = 0dB
0xA1 = 0.75dB
0xFF = 71.25dB

Reg 4ch_DAC Digital Mixer Source Select Register

Default	: 0x0000		Register Name: DAC_MXR_SRC
Bit	Read/Write	Default	Description
			DACL_MXR_SRC
			DAC left channel mixer source select
			0: Disable 1:Enable
15:12	R/W	0x0	Bit15: I2S1_DA0L
			Bit14: I2S1_DA1L
			Bit13: Reserved
			Bit12: ADCL
			DACR_MXR_SRC
			DAC right channel mixer source select
			0: Disable 1:Enable
11:8	R/W	0x0	Bit11: I2S1_DA0R
			Bit10: I2S1_DA1R
			Bit9: Reserved
			Bit8: ADCR
7:0	R/W	0x0	Reserved

Reg 4dh_DAC Digital Mixer Gain Control Register

Default:	0x0000		Register Name: DAC_MXR_GAIN
Bit	Read/Write	Default	Description
			DACL_MXR_GAIN
			DAC left channel mixer gain control
			0: 0dB 1: -6dB
15:12	R/W	0x0	Bit15: I2S1_DA0L
			Bit14: I2S1_DA1L
			Bit13: Reserved
			Bit12: ADCL
			DACR_MXR_GAIN
			DAC right channel mixer gain control
			0: 0dB 1: -6dB
11:8	R/W	0x0	Bit11: I2S1_DA0R
			Bit10: I2S1_DA1R
			Bit9: Reserved
			Bit8: ADCR

0x0 Reserved		R/W	7:0	
--------------	--	-----	-----	--

Reg 50h_ADC Analog Control Register

Defaul	t:0x3340		Register Name: ADC_APC_CTRL
Bit	R/W	Default	Description
			ADCREN
15	R/W	0x0	ADC Right channel Enable
			0: Disable; 1: Enable
			ADCRG
14:12	R/W	0x3	ADC Right channel input Gain control
			From -4.5dB to 6dB, 1.5dB/step, default is 0dB
			ADCLEN
11	R/W	0x0	ADC Left channel Enable
			0: Disable; 1: Enable
			ADCLG
10:8	R/W	0x3	ADC Left channel input Gain control
			From -4.5dB to 6dB, 1.5dB/step, default is 0dB
			MBIASEN
7	R/W	0x0	Master microphone BIAS Enable
			0: Disable; 1: Enable
	R/W		MMIC_BIAS_CHOPPER_EN
6		0x1	Main MICrophone BIAS chopper Enable
			0: Disable; 1: Enable
			MMIC_BIAS_CHOPPER_CKS
			Main MICrophone BIAS chopper Clock select
5:4	D/W	020	00: 250k
3.4	R/W	0x0	01: 500k
			10: 1Meg
			11: 2Meg
3	/	/	/
			HBIASMOD
2	R/W	020	HBIAS&ADC working mode
2	N/W	0x0	0: HBIAS is enabled only when with load
			1: HBIAS is enabled when HBIASEN write 1
· · ·			HBIASEN
1	R/W	0x0	Headset microphone BIAS Enable
			0: Disable; 1: Enable
			HBIASADCEN
0	R/W	0x0	Headset microphone BIAS Current sensor & ADC Enable
			0: Disable; 1: Enable

Reg 51h_ADC Source Select Register

Default:0x0000			Register Name: ADC_SRC
Bit	R/W	Default	Description
15:14	/	/	/

			RADC_MIXMUTE
			Right ADC Mixer Mute Control:
			0: Mute; 1:On
			Bit 13: MIC1 Boost stage
13:7	R/W	0x0	Bit 12: MIC2 Boost stage
13.7	K/W	UXU	Bit 11: LINEINL-LINEINR
			Bit 10: LINEINR
			Bit 9: Reserved
			Bit 8: Right output mixer
			Bit 7: Left output mixer
		/W 0x0	LADC_MIXMUTE
			Left ADC Mixer Mute Control:
			0: Mute; 1:On
			Bit 6: MIC1 Boost stage
6:0	R/W		Bit 5: MIC2 Boost stage
0.0	IX/ W		Bit 4: LINEINL-LINEINR
			Bit 3: LINEINL
			Bit 2: Reserved
			Bit 1: Left output mixer
			Bit 0: Right output mixer

Reg 52h_ADC Source Boost Control Register

Default	:0x4444		Register Name: ADC_SRCBST_CTRL
Bit	R/W	Default	Description
			MIC1AMPEN
15	R/W	0x0	MIC1 boost AMPlifier ENable
			0: Disable; 1: Enable
			MIC1BOOST
14:12	R/W	0x4	MIC1 boost amplifier Gain control
			0dB when 000, and from 30dB to 48dB when 001 to 111
			MIC2AMPEN
11	R/W	0x0	MIC2 boost AMPlifier ENable
			0: Disable; 1: Enable
			MIC2BOOST
10:8	R/W	0x4	MIC2 boost amplifier Gain control
			0dB when 000, and from 30dB to 48dB when 001 to 111
			MIC2PEN
7	R/W	0x0	MIC2 Pin Enable
			0: Disable; 1: MIC2
			LINEIN_DIFF_PREG
6:4	R/W	0x4	LINEINL-LINEINR differential signal pre-amplifier gain control
			-12dB to 9dB, 3dB/step, default is 0dB
3	/	/	
2:0	R/W	0x4	Reserved

Reg 53h_Output Mixer & DAC Analog Control Register

Defaul	Default:0x0f80		Register Name: OMIXER_DACA_CTRL
Bit	R/W	Default	Description
			DACAREN
1.5	R/W	0x0	Internal DAC Analog Right channel Enable
15	K/W	UXU	0:Disable
			1:Enable
			DACALEN
14	R/W	0x0	Internal DAC Analog Left channel Enable
14	IX/ W	UXU	0:Disable
			1:Enable
			RMIXEN
13	R/W	0x0	Right Analog Output Mixer Enable
13	IC/ VV		0:Disable
			1:Enable
			LMIXEN
12	R/W	0x0	Left Analog Output Mixer Enable
12	10/ 11		0:Disable
			1:Enable
			HP_DCRM_EN
			Headphone DC offset remove function enable
			0:Disable
11:9	R/W	0xf	1:Enable
			To remove the headphone buffer DC offset, this bit must be set 0xf before
			headphone PA enabled, and this bit must be set 0x0 before headphone PA
			disabled
7:0	R/W	0x80	Reserved

Reg 54h_Output Mixer Source Select Register

Default:0x0000			Register Name: OMIXER_SR
Bit	R/W	Default	Description
15:14	/	/	/
			RMIXMUTE
			Right Output Mixer Mute Control
			0-Mute, 1-On
	R/W	0x0	Bit 13: MIC1 Boost stage
13:7			Bit 12: MIC2 Boost stage
13.7			Bit 11: LINEINL-LINEINR
			Bit 10: LINEINR
			Bit 9: Reserved
			Bit 8: DACR
			Bit 7: DACL
		0x0	LMIXMUTE
6:0	R/W		Left Output Mixer Mute Control
			0-Mute, 1-On

	Bit 6: MIC1 Boost stage
	Bit 5: MIC2 Boost stage
	Bit 4: LINEINL-LINEINR
	Bit 3: LINEINL
	Bit 2: Reserved
	Bit 1: DACL
	Bit 0: DACR

Reg 55h_Output Mixer Source Boost Register

Default	Default:0x56DB		Register Name: OMIXER_BST1_CTRL
Bit	R/W	Default	Description
			HBIASSEL
			HMICBIAS voltage level select
15:14	R/W	0x1	00: 1.88V
13.14	K/W	UXI	01: 2.09V
			10: 2.33V
			11: 2.50V
			MBIASSEL
			MMICBIAS voltage level select
13:12	R/W	0x1	00: 1.88V
13.12	IX/ W	UXI	01: 2.09V
			10: 2.33V
			11: 2.50V
11:9	R/W	0x3	Reserved
			MIC1G
8:6	R/W	0x3	MIC1 to L or R output mixer Gain Control
			From -4.5dB to 6dB, 1.5dB/step, default is 0dB
			MIC2G
5:3	R/W	0x3	MIC2 to L or R output mixer Gain Control
			From -4.5dB to 6dB, 1.5dB/step, default is 0dB
			LINEING
2:0	R/W	0x3	LINEINL/R to L/R output mixer Gain Control
			From -4.5dB to 6dB, 1.5dB/step, default is 0dB

Reg 56h_Headphone Output Control Register

Defaul	lt:0x0001		Register Name: HPOUT_CTRL
Bit	R/W	Default	Description
15	R/W	0x0	RHPS
			Right Headphone Power Amplifier (PA) Input Source Select
			0: DACR
			1: Right Analog Mixer
14	R/W	0x0	LHPS
			Left Headphone Power Amplifier (PA) Input Source Select
			0: DACL
			1: Left Analog Mixer

1.0	D /III		DIMPA MUTE	
13	R/W	0x0	RHPPA_MUTE	
			All input source to Right Headphone PA mute, including Right Output	
			mixer and Internal DACR:	
			0:Mute, 1: On	
12	R/W	0x0	LHPPA_MUTE	
			All input source to Left Headphone PA mute, including Left Output mixer	
			and Internal DACL:	
			0:Mute, 1: On	
11	R/W	0x0	HPPA_EN	
			Right & Left Headphone Power Amplifier Enable	
			0: Disable	
			1: Enable	
10	/	/	/	
9:4	R/W	0x0	HP_VOL	
			Headphone Volume Control, (HPVOL): Total 64 level, from 0dB to	
			-62dB, 1dB/step, mute when 000000	
			HPPA_DEL	
			Headphone delay time when start up	
			00: 4ms	
3:2	R/W	0x0	01: 8ms	
			10: 16ms	
			11: 32ms	
			HPPA IS	
1:0	R/W	0x1	Headphone PA output stage current select	
1.0			00 is minimum, 11 is maximum	
			ov is minimum, 11 is maximum	

Reg 58h_Speaker Output Control Register

Default	Default:0x0880		Register Name: SPKOUT_CTRL	
Bit	R/W	Default	Description	
15:13	R/W	0x0	Reserved	
			RSPKS	
12	R/W	0x0	Right speaker input source select	
12	IN/ VV	UXU	0: MIXR	
			1: MIXL+MIXR	
			RSPKINVEN	
11	R/W	0x1	0x1 Right speaker negative output enable	
			0: Disable; 1: Enable	
10	/	/	1	
			RSPK_EN	
9	R/W	0x0	Right Speaker Enable	
			0: Disable; 1: Enable	
			LSPKS	
8	R/W	0x0	Left speaker input source select	
O	IN/ VV		0: MIXL	
			1: MIXL+MIXR	
7	R/W	0x1	LSPKINVEN	

			Left speaker negative output enable			
			0: Disable; 1: Enable			
6	/	/	/			
			LSPK_EN			
5	R/W	0x0	Left Speaker Enable			
			0: Disable; 1: Enable			
			SPK_VOL			
$\begin{vmatrix} 4:0 & R/W & 0x \end{vmatrix}$		0x0	Right & Left speaker VOLume control			
4:0	IX/ W	UXU	Total 31 level, from 0dB to -43.5dB, 1.5db/step, mute when			
			00000&00001			

Reg 80h_ADC DAP Left Status Register

Default: 0x0000			Register Name: AC_ADC_DAPLSTA	
Bit	Read/Write	Default	Description	
15:10	R	0x0	Reserved	
9	R	0x0	Left AGC saturation flag	
8	R	0x0	Left AGC noise-threshold flag	
7:0	R	0x0	Left Gain applied by AGC (7.1 format 2s complement(-20dB – 40dB), 0.5B/ step) 0x50: 40dB 0x4F: 39.5dB 0x00: 00dB 0xFF: -0.5dB	

Reg 81h_ADC DAP Right Status Register

Default: 0x0000			Register Name: AC_ADC_DAPRSTA
Bit	Read/Write	Default	Description
11:10	R	0x0	Reserved
9	R	0x0	Right AGC saturation flag
8	R	0x0	Right AGC noise-threshold flag
			Right Gain applied by AGC
			(7.1 format 2s complement(-20dB – 40dB), 0.5dB /step)
			0x50: 40dB
7:0	R	0x0	0x4F: 39.5dB
			0x00: 00dB
			0xFF: -0.5dB

Reg 82h_ADC DAP Left Channel Control Register

Default: 0x0000			Register Name: AC_ADC_DAPLCTRL
Bit	Read/Write	Default	Description
15	R/W	0x0	Reserved
14	R/W	0x0	Left AGC enable

			0: disable 1: enable
13	R/W	0x0	Left HPF enable
13	K/W	UXU	0: disable 1: enable
12	R/W	0x0	Left Noise detect enable
12	K/W	UXU	0: disable 1: enable
11:10	R/W	0x0	Reserved
			Left Hysteresis setting
			00: 1dB
9:8	R/W	0x0	01: 2dB
			10: 4dB
			11: disable;
			Left Noise debounce time
			0000: disable
			0001: 4/fs
7:4	R/W	0x0	0010: 8/fs
			1111: 16*4096/fs
			$T=2^{(N+1)}/fs$, except N=0
			Left Signal debounce time
			0000: disable
			0001: 4/fs
3:0	R/W	0x0	0010: 8/fs
			1111: 16*4096/fs
			$T=2^{(N+1)}/fs$, except N=0

Reg 83h_ADC DAP Right Channel Control Register

Default: 0	x0000		Register Name: AC_ADC_DAPRCTRL
Bit	Read/Write	Default	Description
15	R/W	0x0	Reserved
14	R/W	0x0	Right AGC enable
14	IX/ W	UXU	0: disable 1: enable
13	R/W	0x0	Right HPF enable
13	K/W	UXU	0: disable 1: enable
12	R/W	0x0	Right Noise detect enable
12	IX/ W		0: disable 1: enable
11:10	R/W	0x0	Reserved
			Right Hysteresis setting
		0x0	00: 1dB
9: 8	R/W		01: 2dB
			10: 4dB
			11: disable
		0x0	Right Noise debounce time
7: 4	R/W		0000: disable
/.4	R/W		0001: 4/fs
			0010: 8/fs

			1111: 16*4096/fs
			$T=2^{(N+1)}/fs$,except $N=0$
			Right Signal debounce time
			0000: disable
			0001: 4/fs
3: 0	R/W	0x0	0010: 8/fs
			1111: 16*4096/fs
			$T=2^{(N+1)}/fs$, except N=0

Reg 84h_ADC DAP Left Target Level Register

Default: 0x2C28			Register Name: AC_ADC_DAPLTL
Bit	Read/Write	Default	Description
15:14	/	/	/
13:8	R/W	0x2C	Left channel target level setting(-1dB
13.8	K/W	(-20dB)	-30dB).(6.0format 2s complement)
7.0	D/W/	0x28	Left channel max gain setting(0-40dB).(7.1format 2s
7:0	R/W	(20dB)	complement)

Reg 85h_ADC DAP Right Target Level Register

Default: 0	0x2C28		Register Name: AC_ADC_DAPRTL
Bit	Read/Write	Default	Description
15:14	/	/	/
13:8	R/W	0x2C(-20dB)	Right channel target level setting(-1dB30dB).(6.0format 2s complement)
7:0	R/W	0x28(20dB)	Right channel max gain setting (0-40dB). (7.1 format 2s complement)

Reg 86h_ADC DAP Left High Average Coef Register

Default: 0x0005			Register Name: AC_ADC_DAPLHAC
Bit	Read/Write	Default	Description
15:11	/	/	1
10:0	R/W	0x0005	Left channel output signal average level coefficient setting(the coefficient [reg86[10:0],reg87] is 3.24 format 2s complement)

Reg 87h_ADC DAP Left Low Average Coef Register

Default: 0x1EB8			Register Name: AC_ADC_DAPLLAC
Bit	Read/Write	Default	Description
15:0	R/W	0x1EB8	Left channel output signal average level coefficient setting(the coefficient [reg86[10:0],reg87] is 3.24 format 2s complement)

Reg 88h_ADC DAP Right High Average Coef Register

Default: 0x0005			Register Name: AC_ADC_DAPRHAC
Bit	Read/Write	Default	Description
15:11	/	/	/
10:0	R/W	0x0005	Right channel output signal average level coefficient setting(the coefficient [reg88[10:0],reg89] is 3.24 format 2s complement)

Reg 89h_ADC DAP Right Low Average Coef Register

Default: 0x1EB8			Register Name: AC_ADC_DAPRLAC
Bit	Read/Write	Default	Description
15:0	R/W	0x1EB8	Right channel output signal average level coefficient setting(the coefficient [reg88[10:0],reg89] is 3.24 format 2s complement)

Reg 8ah_ADC DAP Left Decay Time Register

Default:	0x001F		Register Name: AC_ADC_DAPLDT
Bit	Read/Write	Default	Description
15	/	/	/
			Left decay time coefficient setting
			0000: 1x32/fs
			0001: 2x32/fs
14:0	R/W	0x001F	
14.0	K/W	(32x32fs)	7FFF: 2 ¹⁵ x32/fs
			T=(n+1)*32/fs
			When the gain increases, the actual gain will increase 0.5dB
			at every decay time.

Reg 8bh_ADC DAP Left Attack Time Register

Default: 0x0000			Register Name: AC_ADC_DAPLAT
Bit	Read/Write	Default	Description
15	/	/	/
		0x0000	Left attack time coefficient setting
			0000: 1x32/fs
			0001: 2x32/fs
14:0	R/W		7FFF: 2 ¹⁵ x32/fs
			T=(n+1)*32/fs
			When the gain decreases, the actual gain will decrease
			0.5dB at every attack time.

Reg 8ch_ADC DAP Right Decay Time Register

Default:	Default: 0x001F		Register Name: AC_ADC_DAPRDT
Bit	Read/Write	Default	Description
15	/	/	/
			Right decay time coefficient setting
			0000: 1x32/fs
			0001: 2x32/fs
14.0	D/W/	0x001F	
14:0	R/W	(32x32fs)	7FFF: 2 ¹⁵ x32/fs
			T=(n+1)*32/fs
			When the gain increases, the actual gain will increase 0.5dB
			at every decay time.

Reg 8dh_ADC DAP Right Attack Time Register

Default: 0x0000			Register Name: AC_ADC_DAPRAT
Bit	Read/Write	Default	Description
15	/	/	/
14:0	R/W	0x0000	Right attack time coefficient setting 0000: 1x32/fs 0001: 2x32/fs 7FFF: 2 ¹⁵ x32/fs T=(n+1)*32/fs When the gain decreases, the actual gain will decrease 0.5dB at every attack time.

Reg 8eh_ADC DAP Noise Threshold Register

Default: 0x1E1E			Register Name: AC_ADC_DAPNTH
Bit	Read/Write	Default	Description
15:13	/	/	/
			Left channel noise threshold setting.
			0x00: -30dB
			0x01: -32dB
12.0	R/W	0x1E	0x02: -34dB
12:8	K/W	(-90dB)	
			0x1D: -88dB
			0x1E: -90dB
			0x1F: -90dB(the same as 0x1E)
7:5	/	/	/
			Right channel noise threshold setting(-9030dB).
			0x00: -30dB
4:0	R/W	0x1E(-90dB)	0x01: -32dB
			0x02: -34dB

	0x1D: -88dB
	0x1E: -90dB
	0x1F: -90dB(the same as 0x1E

Reg 8fh_ADC DAP Left Input Signal High Average Coef Register

Default: 0x0005			Register Name: AC_ADC_DAPLHNAC
Bit	Read/Write	Default	Description
15:11	/	/	/
10:0	R/W	0x0005	Left input signal average filter coefficient to check noise or not(the coefficient [reg8f[10:0],reg90] is 3.24 format 2s complement), always the same as the left output signal average filter's.

Reg 90h_ADC DAP Left Input Signal Low Average Coef Register

Default: 0x1EB8			Register Name: AC_ADC_DAPLLNAC
Bit	Read/Write	Default	Description
15:0	R/W	0x0005	Left input signal average filter coefficient to check noise or not(the coefficient [reg8f[10:0],reg90] is 3.24 format 2s complement) always the same as the left output signal average filter's

Reg 91h_ADC DAP Right Input Signal High Average Coef Register

Default: 0x0005			Register Name: AC_ADC_DAPRHNAC
Bit	Read/Write	Default	Description
15:11	/	/	/
10:0	R/W	0x0005	Right input signal average filter coefficient to check noise or not(the coefficient [reg91[10:0],reg92] is 3.24 format 2s complement), always the same as the right output signal average filter's

Reg 92h_ADC DAP Right Input Signal Low Average Coef Register

Default: 0x1EB8			Register Name: AC_ADC_DAPRLNAC
Bit	Read/Write	Default	Description
15:0	R/W	0x1EB8	Right input signal average filter coefficient to check noise or not(the coefficient [reg91[10:0],reg92] is 3.24 format 2s complement), always the same as the right output signal average filter's

Reg 93h_ADC DAP High HPF Coef Register

Default: 0x00FF			Register Name: AC_DAPHHPFC
Bit	Read/Write Default		Description
15:11	/	/	/

0:0 R/W 0x00F

Reg 94h_ADC DAP Low HPF Coef Register

Default: 0xFAC1			Register Name: AC_DAPLHPFC
Bit	Read/Write	Default	Description
15:0	15:0 R/W	0xFAC1	HPF coefficient setting(the coefficient [reg93[10:0],reg14]
13.0	K/W		is 3.24 format 2s complement)

Reg 95h_ADC DAP Optimum Register

Default: (0x0000		Register Name: AC_DAPOPT	
Bit	Read/Write	Default	Description	
15:11	/	/	/	
			Left energy default value setting(include the input and	
10	R/W	0	output)	
10	IN/ W	U	0: min	
			1: max	
			Left channel gain hystersis setting.	
			The different between target level and the signal level must	
			larger than the hystersis when the gain change.	
9:8	R/W	00	00: 0.4375db	
			01: 0.9375db	
			10: 1.9375db	
			11: 3db	
7:6	/	/	/	
			The input signal average filter coefficient setting	
5	R/W	0	0: is the [reg8f[10:0], reg90] and [reg91[1:0], reg92];	
			1: is the [reg86[10:0], reg87] and [reg88[1:0], reg89];	
			AGC output when the channel in noise state	
4	R/W	0	0: output is zero	
			1: output is the input data	
3	/	/	/	
			Right energy default value setting(include the input and	
2	R/W	0	output)	
_			0: min	
			1: max	
			Right channel gain hystersis setting.	
			The different between target level and the signal level must	
		00	larger than the hystersis when the gain change.	
1:0	R/W		00: 0.4375db	
			01: 0.9375db	
			10: 1.9375db	
			11: 3db	

Reg a0h_DAC DAP Control Register

Default: 0x0000			Register Name: AC_DAC_DAPCTRL
Bit	Read/Write	Default	Description
15:3	/	/	/
2	D/W/	0	DRC enable control
2	R/W	0	0: disable 1: enable
			Left channel HPF enable control
1	R/W	0	0: disable 1: enable
0 R/W	D/W/	0	Right channel HPF enable control
	K/W		0: disable 1: enable

Reg a1h_DAC DAP High HPF Coef Register

Default: 0x00FF			Register Name: AC_DAC_DAPHHPFC
Bit	Read/Write	Default	Description
15:11	/	/	/
10:0	R/W	0xFF	HPF coefficient setting(the coefficient [reg a1[10:0], reg a2] is 3.24 format 2s complement)

Reg a2h_DAC DAP Low HPF Coef Register

Default: 0xFAC1			Register Name: AC_DAC_DAPLHPFC
Bit	Read/Write	Default	Description
15:0	R/W	0xFAC1	HPF coefficient setting(the coefficient [reg a1[10:0], reg a2]
15.0			is 3.24 format 2s complement)

Reg a3h_DAC DAP Left High Energy Average Coef Register

Default: 0x0100			Register Name: AC_DAC_DAPLHAVC
Bit	Read/Write	Default	Description
15:11	/	/	1
10:0	R/W	0x0100	Left channel energy average filter coefficient setting(the coefficient [reg a3[10:0], reg a4] is 3.24 format 2s complement)

Reg a4h_DAC DAP Left Low Energy Average Coef Register

Default: 0x0000			Register Name: AC_DAC_DAPLLAVC
Bit	Read/Write	Default	Description
15:0	R/W	0x0000	Left channel energy average filter coefficient setting(the coefficient [rega3[10:0],rega4] is 3.24 format 2s
			complement)

Reg a5h_DAC DAP Right High Energy Average Coef Register

Default: 0x0100			Register Name: AC_DAC_DAPRHAVC
Bit	Read/Write	Default	Description
15:11	/	/	/
10:0	R/W	0x0100	Right channel energy average filter coefficient setting(the coefficient [reg a5[10:0], reg a6] is 3.24 format 2s complement)

Reg a6h_DAC DAP Right Low Energy Average Coef Register

Default: 0x0000			Register Name: AC_DAC_DAPRLAVC
Bit	Read/Write	Default	Description
			Right channel energy average filter coefficient setting(the
15:0	R/W	0x0000	coefficient [reg a5[10:0],reg a6] is 3.24 format 2s
			complement)

Reg a7h_DAC DAP High Gain Decay Time Coef Register

Default: 0x0100			Register Name: AC_DAC_DAPHGDEC
Bit	Read/Write	Default	Description
15:11	/	/	/
10:0	R/W	0x0100	Gain smooth filter decay time coefficient setting(the coefficient [reg a7[10:0], reg a8] is 3.24 format 2s complement)

Reg a8h_DAC DAP Low Gain Decay Time Coef Register

Default: 0x0000			Register Name: AC_DAC_DAPLGDEC
Bit	Read/Write	Default	Description
15:0	R/W	0x0000	Gain smooth filter decay time coefficient setting(the coefficient [reg a7[10:0], reg a8] is 3.24 format 2s complement)

Reg a9h_DAC DAP High Gain Attack Time Coef Register

Default: 0x0100			Register Name: AC_DAC_DAPHGATC
Bit	Read/Write	Default	Description
15:11	/	/	1
10:0	R/W	0x0100	Gain smooth filter attack time coefficient setting(the coefficient [reg a9[10:0], reg aa] is 3.24 format 2s complement)

Reg aah_DAC DAP Low Gain Attack Time Coef Register

Default: 0x0000			Register Name: AC_DAC_DAPLGATC
Bit	Read/Write	Default	Description

			Gain smooth filter attack time coefficient setting(the
15:0	R/W	0x0000	coefficient [reg a9[10:0], reg aa] is 3.24 format 2s
			complement)

Reg abh_DAC DAP High Energy Threshold Register

Default: 0x04FB			Register Name: AC_DAC_DAPHETHD
Bit	Read/Write	Default	Description
			The DRC Energy compress threshold parameter T
15:0	R/W	0x04FB	setting(the T = [reg ab, reg ac] is 8.24 format 2s
			complement)

Reg ach_DAC DAP Low Energy Threshold Register

Default: 0x9ED0			Register Name: AC_DAC_DAPLETHD
Bit	Read/Write	Default	Description
			The DRC Energy compress threshold parameter T
15:0	R/W	0x9ED0	setting(the T = [reg ab, reg ac] is 8.24 format 2s
			complement)

Reg adh_DAC DAP High Gain K Parameter Register

Default: 0x0780			Register Name: AC_DAC_DAPHGKPA
Bit	Read/Write	Default	Description
15:11	/	/	/
10.0	0:0 R/W 0x078	00790	The DRC gain curve slope k parameter setting(the K = [reg
10:0		0X0780	ad[10:0], reg ae] is 3.24 format 2s complement)

Reg aeh_DAC DAP Low Gain K Parameter Register

Default: 0x0000			Register Name: AC_DAC_DAPLGKPA
Bit	Read/Write	Default	Description
15:0	R/W	0x0000	The DRC gain curve slope k parameter setting(the K = [reg ad[10:0], reg ae] is 3.24 format 2s complement)

Reg afh_DAC DAP High Gain Offset Parameter Register

Default: 0x0100			Register Name: AC_DAC_DAPHGOPA
Bit	Read/Write	Default	Description
15:13	/	/	/
12:0	R/W	0x0100	The DRC gain curve offset O parameter setting(the O = [reg af[12:0], reg b0] is 5.24 format 2s complement)

Reg b0h_DAC DAP Low Gain Offset Parameter Register

Default: 0x0000			Register Name: AC_DAC_DAPLGOPA
Bit	Bit Read/Write Default		Description

15:0	R/W	0x0000	The DRC gain curve offset O parameter setting(the K = [reg af[12:0], regb0] is 5.24 format 2s complement)
------	-----	--------	---

Reg b1h _DAC DAP Optimum Register

Default: 0x0000			Register Name: AC_DAC_DAPOPT
Bit	Read/Write	Default	Description
15:6	/	/	/
		0	DRC gain defaut value setting
5	R/W		0: The default gain is 1
			1: The default gain is 0
	R/W	0x00	The hysteresis of the gain smooth filter to use the decay time
			coefficient or the attack time coefficient.
			When in the decay time state, if g(n-1)-g(n)>hysteresis, then
			the state will change to attack time state, and when in the
			attack time, if g(n)-g(n-1)>hysteresis, then the state will
			change to decay time state. Note the hysteresis of 0x00 and
			0x04 is the same.
4:0			$00000: 2^{-16}$
4.0			$00001: 2^{-19}$
			$00010: 2^{-18}$
			$00011: 2^{-17}$
			$00100: 2^{-16}$
			10011: 2^{-1}
			10100 ~11111: 1
			hysteresis = 2^{n-20} ,except n=0x00, and n less 0x14.

Reg b4h_ADC DAP Enable Register

Default: 0x0000			Register Name: ADC_DAP_ENA
Bit	Read/Write	Default	Description
		0x0	I2S1_ADCL0_AGC_ENA
15	R/W		I2S1 ADC timeslot 0 left channel AGC enable
13	IN/ VV		0: Disable
			1: Enable
		0x0	I2S1_ADCR0_AGC_ENA
14	R/W		I2S1 ADC timeslot 0 right channel AGC enable
14	R/W		0: Disable
			1: Enable
		0x0	I2S1_ADCL1_AGC_ENA
13	R/W		I2S1 ADC timeslot 1 left channel AGC enable
13			0: Disable
			1: Enable
	R/W	0x0	I2S1_ADCR1_AGC_ENA
12			I2S1 ADC timeslot 1 right channel AGC enable
			0: Disable

			1: Enable
11:8	R/W	0x0	Reserved
7	R/W	0x0	ADCL_AGC_ENA
			ADC left channel AGC enable
			0: Disable
			1: Enable
6	R/W	0x0	ADCR_AGC_ENA
			ADC right channel AGC enable
			0: Disable
			1: Enable
5:0	R/W	0x0	Reserved

Reg b5h_DAC DAP Enable Register

Default: 0x0000			Register Name: DAC_DAP_ENA
Bit	Read/Write	Default	Description
		0x0	I2S1_DAC0_DRC_ENA
15	R/W		I2S1 DAC timeslot 0 DRC enable
13	K/W		0: Disable
			1: Enable
14	R/W	0x0	Reserved
		0x0	I2S1_DAC1_DRC_ENA
12	D/W		I2S1 DAC timeslot 1 DRC enable
13	R/W		0: Disable
			1: Enable
12:8	R/W	0x0	Reserved
		0x0	DAC_DRC_ENA
7	R/W		DAC DRC enable
7			0: Disable
			1: Enable
6:0	R/W	0x0	Reserved