Image Encoding

Scott Carda, Benjamin Kaiser, Christopher Smith

Overview

- What's the point?
- Huffman Encoding
- Predictive Encoding
- Run Length Encoding

What's the point?

- What is it?
 - Process of reducing the amount of data required to represent information
- Uses
 - Saves storage space
 - Network transmission

Huffman Encoding

- Data is Chunked into 'Symbols'
- Lossless, Variable-Length Encoding
- Uses Statistics to Improve Size of Compression
- More Frequently Used Symbols are Given Smaller Codes
- Uses a Binary Tree Data Structure to Determine Encoding

Huffman Encoding Cont.

- First Pass: Get Image Histogram
- Create Tree with the Histogram
- Encode Huffman Tree to Compressed File
- Second Pass: Encode all symbols by their Path in the Huffman Tree

Creating the Huffman Tree

- Create List of Nodes out of Frequency-Symbol Pairs, Sorted by Frequency
- 2. Pop Least Frequent Two Nodes
- 3. Create New Node with Two Popped Nodes as Children
- 4. New Node's Frequency is Sum of Children's Frequencies

Creating the Huffman Tree

- Insert New Node back into List of Nodes in Sorted Order
- Repeat From Step 2, until only One Node Remains, this is Root Node
- 7. Assign '0' to left edges, '1' to right edges

Predictive Encoding

- Can be lossless and lossy
- Good compression
- Eliminates redundancies of closely spaced pixels
- Difference between the actual and predicted value of the pixel

Lossless Predictive Coding

- Encoder
 - Predictor generates anticipated value
 - Predictor output is rounded
- Decoder
 - Uses same predictor as encoder

Previous Pixel

Lossy Predictive Coding

- Encoding
 - Quantization step added
 - Maps prediction error into limited range
 - Predictor
 - Uses past predictions
- Decoding
 - Unchanged

Delta Modulation

- Predictor
 - Same as Previous Pixel
- Quantizer
 - $\circ \quad \text{If } e(n) >= 0$
 - Positive delta is used
 - $\circ \quad \text{If } e(n) < 0$
 - Negative delta is used

Code Rate: 1 bit/pixel

Delta Modulation Results

Original

Delta of 4.3

Delta of 1

Delta Modulation Results

Original

Delta of 4.3

Delta of 50

Run-Length Encoding

- Creates "runs" of horizontal pixel intensities
- Can be lossy or lossless

https://www.mathworks.com/matlabcentral/fileexchange/31123-rle-run-length-encoding

Lossless - Bit Plane

```
For each bit plane
    Set starting state as bit set or not set
    Write starting state
    For each pixel in image
         If bit state != starting state
              Starting state becomes bit state
              Write count
              Reset count to 0
         Increment count
```

Lossy - Range of Intensities

```
Set base intensity to first intensity in image
For current pixel in image
If current pixel intensity outside of +/- range of base intensity
Write count and base intensity
Set base intensity to current pixel intensity
Reset count to 0
Increment count
Write count and base intensity
```

Lossy - Range of Intensities

Lossy - Range of Intensities

16 level intensity

32 level intensity

64 level intensity

Statistics and Analysis

Compression

- Lossy Compresses on average between 40% and 60% while retaining quality
 - Binary images can get as much as 93% compression
 - Best case (all white image): 99%
- Lossless on average actually increases image size
 - Binary images and those with little to no variation work the best
 - Best case 93%

Percent Error

- Lossy: Less than 10% for +/- 4 range
- Lossless: Not Applicable

Applications

- Fax machines
 - Primarily binary images
- Truevision TGA (TARGA)
 - Simple icons etc
 - Commonly used in early 2000's video games

Questions?

Resources

http://www.fileformat.info/mirror/egff/ch09_03.htm

https://en.wikipedia.org/wiki/Quadtree

https://upload.wikimedia.org/wikipedia/commons/thumb/d/d8/HuffmanCodeAlg.png/220px-HuffmanCodeAlg.png

https://en.wikipedia.org/wiki/Truevision_TGA

https://www.mathworks.com/matlabcentral/fileexchange/31123-rle-run-length-encoding