Chapter 1

Vector Spaces

1.A \mathbf{R}^n and \mathbf{C}^n

Definition 1.1 (Complex numbers)

- A complex number is an ordered pair (a, b), where $a, b \in \mathbb{R}$, but we will write this as a + bi.
- The set of all complex numbers is denoted by C:

$$\mathbf{C} = \{a + bi : a, b \in \mathbf{R}\}.$$

• Addition and multiplication on C are defined by

$$(a+bi) + (c+di) = (a+c) + (b+d)i,$$

 $(a+bi)(c+di) = (ac-bd) + (ad+bc)i;$

here $a, b, c, d \in \mathbf{R}$.

If $a \in \mathbf{R}$, we identity a + 0i with the real number a. Thus we can think of \mathbf{R} as a subset of \mathbf{C} . We also usually write 0 + bi as just bi, and we usually write 0 + 1i as just i.

Theorem 1.1 (Properties of complex arithmetic)

Commutativity

$$\alpha + \beta = \beta + \alpha$$
 and $\alpha\beta = \beta\alpha$ for all $\alpha, \beta \in \mathbb{C}$.

Associativity

$$(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$$
 and $(\alpha \beta)\lambda = \alpha(\beta \lambda)$ for all $\alpha, \beta, \lambda \in \mathbb{C}$.

Identities

$$\lambda + 0 = \lambda$$
 and $\lambda \cdot 1 = \lambda$ for all $\lambda \in \mathbb{C}$.

• Additive inverse

For every $\alpha \in \mathbb{C}$, there exists a unique $\beta \in \mathbb{C}$ such that $\alpha + \beta = 0$.

• Multiplicative inverse

For every $\alpha \in \mathbb{C}$ with $\alpha \neq 0$, there exists a unique $\beta \in \mathbb{C}$ such that $\alpha\beta = 1$.

• Distributive property

$$\lambda(\alpha + \beta) = \lambda\alpha + \lambda\beta$$
 for all $\lambda, \alpha, \beta \in \mathbb{C}$.

Definition 1.2 ($-\alpha$, subtraction, $1/\alpha$, division) Let $\alpha, \beta \in \mathbb{C}$.

• Let $-\alpha$ denote the additive inverse of α . Thus $-\alpha$ is the unique complex number such that

$$\alpha + (-\alpha) = 0.$$

• Subtraction on C is defined by

$$\beta - \alpha = \beta + (-\alpha).$$

• For $\alpha \neq 0$, let $1/\alpha$ denote the multiplicative inverse of α . Thus $1/\alpha$ is the unique complex number such that

$$\alpha \cdot \frac{1}{\alpha} = 1.$$

• **Division** on **C** is defined by

$$\frac{\beta}{\alpha} = \beta \cdot \frac{1}{\alpha}.$$

Notation 1.1 (F) F stands for either R or C. Elements of F are called scalars. For $\alpha \in F$ and m a positive integer, we define α^m to denote the product of α with itself m times.

Corollary 1.1 For all $\alpha, \beta \in \mathbf{F}$ and all positive integers m, n, there is $(\alpha^m)^n = \alpha^{mn}$ and $(\alpha\beta)^m = \alpha^m\beta^m$.

2

Definition 1.3 (List, length) Suppose n is a nonnegative integer. A **list** of **length** n is an ordered collection of n elements (which might be numbers, other lists, or more abstract entities) separated by commas and surrounded by parentheses. A list of length n looks like this:

$$(x_1,\cdots,x_n).$$

Two lists are equal if and only if they have the same length and the same elements in the same order. A list of length 0 looks like this: (). A list of length n can also be called as n-tuple.

Definition 1.4 (\mathbf{F}^n) \mathbf{F}^n is the set of all lists of length n of elements of \mathbf{F} :

$$\mathbf{F}^n = \{(x_1, \dots, x_n) : x_j \in \mathbf{F} \text{ for } j = 1, \dots, n\}.$$

For $(x_1, \dots, x_n) \in \mathbf{F}^n$ and $j \in \{1, \dots, n\}$, we say that x_j is the j^{th} coordinate of (x_1, \dots, x_n) .

Definition 1.5 (Addition in \mathbf{F}^n) Addition in \mathbf{F}^n is defined by adding corresponding coordinates:

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n).$$

Theorem 1.2 (Commutativity of addition in \mathbf{F}^n **)** If $x, y \in \mathbf{F}^n$, then x + y = y + x.

Definition 1.6 (0) Let 0 denote the list of length n whose coordinates are all 0:

$$0 = (0, \cdots, 0).$$

Definition 1.7 (Additive inverse in \mathbf{F}^n) For $x \in \mathbf{F}^n$, the **additive inverse** of x, denoted -x, is the vector $-x \in \mathbf{F}^n$ such that

$$x + (-x) = 0.$$

In other words, if $x=(x_1,\cdots,x_n)$, then $-x=(-x_1,\cdots,-x_n)$.

Definition 1.8 (Scalar multiplication in Fⁿ) The **product** of a number λ and a vector in \mathbf{F}^n is computed by multiplying each coordinate of the vector by λ :

$$\lambda(x_1, \cdots, x_n) = (\lambda x_1, \cdots, \lambda x_n);$$

here $\lambda \in \mathbf{F}^n$ and $(x_1, \dots, x_n) \in \mathbf{F}^n$.

1.B Definition of Vector Space

Definition 1.9 (Addition, scalar multiplication)

- An addition on a set V is a function that assigns an element $u + v \in V$ to eaach pair of elements $u, v \in V$.
- A scalar multiplication on a set V is a function that assigns an element $\lambda v \in V$ to each $\lambda \in V$ to each $\lambda \in F$ and each $v \in V$.

Definition 1.10 (Vector space) A **vector space** is a set V along with an addition on V and a scalar multiplication on V such that the following properties hold:

Commutativity

$$u + v = v + u$$
 for all $u, v \in V$.

Associativity

$$(u+v)+w=u+(v+w)$$
 and $(ab)v=a(bv)$ for all $u,v,w\in V$ and all $a,b\in \mathbf{F}$.

Additive identity

There exists an element $0 \in V$ such that v + 0 = v for all $v \in V$.

Additive inverse

For every $v \in V$, there exists $w \in V$ such that v + w = 0.

• Multiplicative identity

$$1 \cdot v = v$$
 for all $v \in V$.

• Distributive identity

$$a(u+v) = au + av$$
 and $(a+b)v = av + bv$ for all $a, b \in \mathbf{F}$ and all $u, v \in V$.

Definition 1.11 (Vector, point) Elements of a vector space are called **vectors** or **points**.

Definition 1.12 (Real vector space, complex vector space)

- A vector space over **R** is called a **real vector space**.
- A vector space over C is called a complex vector space.

Notation 1.2 (F^S)

- If S is a set, then \mathbf{F}^S denotes the set of functions from S to \mathbf{F} .
- For $f,g\in {\bf F}^S$, the sum $f+g\in {\bf F}^S$ is the function defined by

$$(f+g)(x) = f(x) + g(x)$$

for all $x \in S$.

• For $\lambda \in \mathbf{F}$ and $f \in \mathbf{F}^S$, the **product** $\lambda f \in \mathbf{F}^S$ is the function defined by

$$(\lambda f)(x) = \lambda f(x)$$

for all $x \in S$.

Theorem 1.3 (Unique additive identity) A vector space has a unique additive indentity.

Theorem 1.4 (Unique additive inverse) Every element in a vector space has a unique additive inverse.

Notation 1.3 (-v, w - v) Let $v, w \in V$. Then

- -v denotes the additive inverse of v.
- w-v is defined to be w+(-v).

Notation 1.4 (V) V denotes a vector space over F.

Theorem 1.5 (The number 0 times a vector) $0 \cdot v = 0$ for every $v \in V$.

Theorem 1.6 (A number times the vector 0) $a \cdot 0 = 0$ for every $a \in \mathbf{F}$.

Theorem 1.7 (The number -1 times a vector) $(-1) \cdot v = -v$ for every $v \in V$.

1.C Subspace

Definition 1.13 (Subspace) A subset U of V is called a **subspace** of V if U is also a vector space (using the same addition and scalar multiplication as on V).

Theorem 1.8 (Conditions for a subspace) A subset U of V is a subspace of V if and only if U satisfies the following three conditions:

· Additive identity

$$0 \in U$$
.

· Closed under addition

$$u, w \in U$$
 implies $u + w \in U$.

Closed under scalar multiplication

$$a \in \mathbf{F}$$
 and $u \in U$ implies $au \in U$.

Definition 1.14 (Sum of subsets) Suppose U_1, \dots, U_m are subsets of V. The **sum** of U_1, \dots, U_m denoted $U_1 + \dots + U_m$, is the set of all possible sums of elements of U_1, \dots, U_m . More precisely,

$$U_1 + \cdots + U_m = \{u_1 + \cdots + u_m : u_1 \in U_1, \cdots, u_m \in U_m\}.$$

Theorem 1.9 (Sum of subspaces is the smallest containing subspace) Suppose

 U_1, \dots, U_m are subspaces of V. Then $U_1 + \dots + U_m$ is the smallest subspace of V containing U_1, \dots, U_m .

Definition 1.15 (Direct sum) Suppose U_1, \dots, U_m are subspaces of V.

- The sum $U_1 + \cdots + U_m$ is called a **direct sum** if each element of $U_1 + \cdots + U_m$ can be written in only one way as a sum $u_1 + \cdots + u_m$, where each u_j is in U_j .
- If U₁ + · · · + U_m is a direct sum, then U₁ ⊕ · · · ⊕ U_m denotes U₁ + · · · + U_m, with the
 ⊕ notation serving as an indication that this is a direct sum.

Theorem 1.10 (Condition for a direct sum) Suppose U_1, \dots, U_m are subspaces of V. Then $U_1 + \dots + U_m$ is a direct sum if and only if the only way to write 0 as a sum $u_1 + \dots + u_m$, where each u_j is in U_j , is by taking each u_j equal to 0.

Theorem 1.11 (Direct sum of two subspaces) Suppose U and W are subspaces of V. Then U+W is a direct sum if and only if $U\cap W=\{0\}$.