Le dioptre sphérique

Définition et représentation schématique

Un dioptre sphérique est constitué de deux milieux transparents homogènes d'indices optiques différents, séparés par une surface sphérique.

Relations de conjugaison

Soit A un point lumineux sur l'axe optique et A' son image au travers du dioptre sphérique.

La relation des sinus dans le triangle (AIC) donne : $\frac{\sin(i)}{CA} = \frac{\sin(\omega - i)}{CI}$ De même dans le triangle (A'IC) :

$$\frac{\sin(\pi - r)}{CA'} = \frac{\sin(r - \omega)}{CI} \quad \text{soit} \quad \frac{\sin(r)}{CA'} = \frac{\sin(r - \omega)}{CI}$$

Comme pour le miroir sphérique, le stigmatisme n'est pas rigoureux. Toutefois, dans le cadre des conditions de Gauss (angles $i,\ r$ et ω très petits), les égalités précédentes se simplifient :

$$\begin{cases} \frac{i}{CA} = \frac{\omega - i}{SC} \\ \frac{r}{CA'} = \frac{r - \omega}{SC} \end{cases}$$
 soit
$$\begin{cases} \frac{1}{CA} = \frac{-1}{SC} + \frac{1}{SC} \frac{\omega}{i} \\ \frac{1}{CA'} = \frac{1}{SC} - \frac{1}{SC} \frac{\omega}{r} \end{cases}$$

On obtient donc:

$$\frac{n'}{CA} + \frac{n}{CA'} = \frac{1}{SC}(n - n') + \frac{\omega}{SC} \frac{n'.r - n.i}{i.r}$$

$$(6.1)$$

La loi de la réfraction dans les conditions de Gauss n'.r = n.i annule le second terme de l'expression (6.1), il reste simplement :

$$\frac{n'}{CA} + \frac{n}{CA'} = \frac{n - n'}{SC} \tag{6.2}$$

Relation de conjugaison avec l'origine au centre C

La (6.2) sous forme algébrique constitue la relation de conjugaison avec l'origine au centre C :

$$-\frac{n'}{\overline{CA}} + \frac{n}{\overline{CA'}} = \frac{n - n'}{\overline{CS}} \tag{6.3}$$

Relation de conjugaison avec l'origine au sommet S

La (6.3) peut s'exprimer par rapport au sommet S (voir calculs miroir sphérique) :

$$\boxed{-\frac{n}{\overline{SA}} + \frac{n'}{\overline{SA'}} = \frac{n' - n}{\overline{SC}}}$$
(6.4)

Foyer objet F et distance focale objet f

Le foyer objet F est le point de l'axe optique dont l'image est située à l'infini $(\frac{n'}{\overline{SA'}} = 0)$, la relation (6.4) donne : $-\frac{n}{\overline{SF}} = \frac{n'-n}{\overline{SC}}$

la position du foyer objet F est caractérisée par la distance focale objet f:

$$f = \overline{SF} = -\frac{n}{n' - n}\overline{SC} \tag{6.5}$$

Le plan focal objet est le plan perpendiculaire à l'axe optique, passant par F.

Foyer image F' et distance focale image f'

Le foyer image F' est l'image d'un point objet situé sur l'axe et à l'infini $(\frac{n'}{\overline{SA}} = 0)$, donc $\frac{n'}{\overline{SF'}} = \frac{n'-n}{\overline{SC}}$

la position du foyer image F' est caractérisée par la distance focale image f':

$$f' = \overline{SF'} = \frac{n'}{n'-n}\overline{SC}$$
 f' et f sont liées par la relation : $\frac{f}{n} = -\frac{f'}{n'}$ (6.6)

Le plan focal image est le plan perpendiculaire à l'axe optique et passant par F'.

La relation de conjugaison du dioptre sphérique peut s'écrire de façon symétrique :

$$\frac{f}{\overline{SA}} + \frac{f'}{\overline{SA'}} = 1 \tag{6.7}$$

Relation de Newton pour le dioptre sphérique

Comme pour le miroir sphérique, la relation de conjugaison avec origine aux foyers s'écrit :

$$\overline{FA}.\overline{F'A'} = f.f'$$
(6.8)

Grandissement transversal

En procédant comme pour le miroir sphérique on obtient les expressions suivantes :

par rapport au sommet S du dioptre sphérique : $g_y = \frac{n}{n'} \frac{\overline{SA'}}{\overline{SA}}$ (6.9)

• par rapport aux foyers F et F': $g_y = -\frac{f}{\overline{FA}}$ et $g_y = -\frac{\overline{F'A'}}{f'}$ (6.10)

Construction graphique d'une image

Les plans focaux du dioptre simplifient le tracé des rayons issus du point objet B :

- ① Le rayon passant par le centre de courbure C est transmis sans aucune déviation.
- ② Le rayon incident parallèle à l'axe optique est réfracté en passant par le foyer image F' du dioptre.
- 3 Le rayon incident passant par le foyer objet F est transmis dans le second milieu, parallèle à l'axe optique.
- ① Comme pour le miroir sphérique, l'utilisation du plan focal image et d'un foyer secondaire permet de construire la marche de n'importe quel autre rayon.

Fig. 6.1 - Construction graphique d'une image

Ex 25: Grandissement transversal

1. Grandissement transversal avec origine au centre

En utilisant le théorème de Thalès (FIG. 6.1), montrer que : $g_y = \frac{CA'}{\overline{CA}}$

2. Grandissement avec origine aux foyers

2.1. Toujours à l'aide du théorème de Thalès, montrer :
$$g_y = -\frac{\overline{F'A'}}{f'}$$
 et $g_y = -\frac{f}{\overline{FA}}$

- **2.2.** En déduire la relation de Newton : $\overline{FA}.\overline{F'A'} = f.f'$
- 3. Grandissement transversal avec origine au sommet

La relation de Chasles permet d'écrire : $\overline{SA} = \overline{SF} + \overline{FA}$ et $\overline{SA'} = \overline{SF'} + \overline{F'A'}$ En déduire l'égalité suivante : $\frac{\overline{SA'}}{\overline{SA}} = -\frac{f'}{f}g_y$ puis $g_y = \frac{n}{n'}\frac{\overline{SA'}}{\overline{SA}}$

Ex 26 : Construction graphique - objet réel

Construire graphiquement l'image de l'objet AB au travers du dioptre sphérique dans les deux cas suivants :

Ex 27: Construction graphique - objet virtuel

Ex 28 : Construction graphique d'un faisceau lumineux

Compléter le tracé du faisceau délimité par les deux rayons dans les cas suivants :

Ex 29: Relations de conjugaison

On considère un dioptre sphérique air/verre ($n_{air} = 1, 0$ et $n_{verre} = 1, 5$). Son rayon de courbure vaut $\overline{SC} = 30 \, mm$.

- 1. Représenter graphiquement le dioptre (échelle horizontale : 1/1), en plaçant le sommet, le centre ainsi que les foyers objet et image.
- 2. Un objet AB de hauteur $\overline{AB} = 20 \, mm$ est placé $30 \, mm$ devant le sommet du dioptre. Construire graphiquement l'image A'B' de l'objet AB donnée par le dioptre.
- 3. Déterminer, par le calcul:
 - 3.1. La position de l'image par rapport au sommet S.
 - 3.2. Le grandissement transversal g_y de l'image.
- 4. Déterminer la position de l'objet de sorte que son image se forme 14 cm derrière le sommet du dioptre. L'image est-elle plus grande ou plus petite que l'objet?

Ex 30: La lentille boule

Les lentilles «boule» sont des lentilles sphériques, souvent de petites tailles; elles sont utilisées par exemple dans le couplage des fibres optiques.

La lentille a un rayon $R = 1,0 \, cm$, son indice optique vaut n = 2,0

 $\stackrel{.}{U}$ n objet AB de hauteur 5 mm est placé devant la lentille : $\stackrel{.}{C}$ A = -1,5 cm.

On note A_1B_1 l'image de AB donnée par le 1^{er} dioptre (air/verre); le second dioptre (verre/air) donne l'image finale A'B':

$$AB \xrightarrow{dioptre 1} A_1B_1 \xrightarrow{dioptre 2} A'B'$$

1. Calculer les distances focales objet et image f_1 , f'_1 , f_2 et f'_2 des deux dioptres sphériques.

2. Image intermédiaire A₁B₁

- 2.1. Placer les foyers F_1 , F_1' , F_2 et F_2' sur une construction graphique (échelle horizontale : 2/1), et construire graphiquement A_1B_1 .
- **2.2.** Calculer la valeur de $\overline{S_1A_1}$. Quelle est la nature de l'image intermédiaire?
- **2.3.** Calculer le grandissement transversal de l'image intermédiaire A_1B_1 .

3. Image finale A'B'

- **3.1.** Construire graphiquement A'B'.
- **3.2.** Calculer la valeur de $\overline{S_2A'}$.
- 3.3. Calculer le grandissement transversal de l'image finale par rapport à l'objet AB.

Ex 31 : Lentille épaisse biconcave

Une lentille biconcave est composée de deux dioptres sphériques symétriques :

- face d'entrée : dioptre air/verre de rayon $\overline{S_1C_1}=R=-50\,mm$
- ullet face de sortie : dioptre verre/air de rayon $\overline{S_2C_2}=50\,mm$

L'épaisseur de la lentille est $\overline{S_1S_2}=e=12,5\,mm$ et l'indice optique du verre est n=1,6.

1. Calculer les distances focales f_1 f'_1 , f_2 et f'_2 des deux dioptres.

Un objet est placé $200\,mm$ devant le foyer objet F_1 de la face d'entrée : $\overline{F_1A} = -200\,mm$.

2. Calculer la position et le grandissement de l'image A'B' en utilisant la relation de Newton.

Ex 32 : Objectif de microscope

La lentille objet d'un objectif de microscope est assimilable à l'association d'un dioptre plan air/verre et d'un dioptre sphérique verre/air.

Cette lentille d'épaisseur $e = 5,0 \, mm$, est taillée dans un verre d'indice n = 1,5.

La distance focale objet du dioptre sphérique est f = -8,0 mm.

L'objet observé AB est situé $4,0\,mm$ devant la lentille : $\overline{HA} = -4,0\,mm$.

On considère la chaîne d'image suivante :

$$AB \xrightarrow{dioptre\ plan} A_1B_1 \xrightarrow{dioptre\ sph\'erique} A'B'$$

1. Utilisation d'un objectif sec

- 1.1. Calculer la position $\overline{SA_1}$ de l'image intermédiaire A_1B_1 par rapport à S.
- 1.2. Calculer la position et le grandissement transversal de l'image finale A'B'.

2. Utilisation d'un objectif à immersion

En microscopie à immersion, on dépose une goutte d'huile d'indice optique n=1,5 entre l'objet et le dioptre plan de la lentille de l'objectif.

Calculer la nouvelle position de l'image finale A'B' ainsi que la nouvelle valeur du grandissement transversal.

SOLUTIONS

Ex 25: Grandissement transversal

1. Le théorème de Thalès dans le triangle (CAB) donne :
$$\frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{CA'}}{\overline{CA}}$$
 donc $g_y = \frac{\overline{CA'}}{\overline{CA}}$

- 2. Grandissement avec origine aux foyers
 - **2.1.** Dans le triangle (ABF), (SJ)//(AB), le théorème de Thalès permet d'écrire :

$$\frac{\overline{JS}}{\overline{AB}} = \frac{\overline{FA}}{\overline{SF}}$$
 donc $\frac{-\overline{A'B'}}{\overline{AB}} = \frac{\overline{FA}}{\overline{f}}$ $g_y = -\frac{f}{\overline{FA}}$

On montre de la même façon dans le triangle (A'B'F'): $g_y = -\frac{\overline{F'A'}}{f'}$

2.2. Le quotient des deux expressions précédentes donne :

$$\frac{g_y}{g_y} = \frac{\overline{F'A'}}{f'} \times \frac{\overline{FA}}{f} = \frac{\overline{F'A'}.\overline{FA}}{f.f'}$$
 d'où le résultat : $\overline{FA}.\overline{F'A'} = f.f'$

3. Grandissement transversal avec origine au sommet

$$\frac{\overline{SA'}}{\overline{SA}} = \frac{\overline{SF'} + \overline{F'A'}}{\overline{SF} + \overline{FA}} = \frac{f' + \overline{F'A'}}{f + \overline{FA}} = \frac{\overline{SA'}}{\overline{SA}} = \frac{f'}{f} \cdot \frac{1 + \frac{\overline{F'A'}}{f'}}{1 + \frac{\overline{f}}{FA}} = \frac{f'}{f} \cdot \frac{1 - g_y}{1 - \frac{1}{g_y}} = -\frac{f'}{f} \cdot g_y$$

On en déduit l'expression du grandissement transversal : $g_y = \frac{n}{n'} \frac{\overline{S'A'}}{\overline{SA}}$

Ex 26: Construction graphique - objet réel

Ex 27: Construction graphique - objet virtuel

Ex 28: Construction graphique d'un faisceau lumineux

Ex 29: Relations de conjugaison

1. Position du foyer objet F :
$$\overline{SF} = -\frac{n}{n'-n}\overline{SC}$$
 $f = \overline{SF} = -60\,mm$
Position du foyer image F' : $\overline{SF'} = \frac{n'}{n'-n}\overline{SC}$ $f' = \overline{SF'} = 90\,mm$

2. L'image formée est virtuelle

3.1. La relation de conjugaison avec origine au sommet s'écrit :
$$\frac{f}{\overline{SA}} + \frac{f'}{\overline{SA'}} = 1$$

$$\frac{f'}{\overline{SA'}} = 1 - \frac{f}{\overline{SA}} = \frac{\overline{SA} - f}{\overline{SA}} \quad \text{et finalement} \quad \overline{SA'} = \frac{\overline{SA} \cdot f'}{\overline{SA} - f} \quad \overline{\overline{SA'}} = -90 \, mm$$

3.2. Le grandissement transversal de l'image :
$$g_y = \frac{\overline{A'B'}}{\overline{AB}} = \frac{n}{n'} \cdot \frac{\overline{SA'}}{\overline{SA}}$$
 $g_y = +2,0$

4. Position de l'objet :
$$\frac{f}{\overline{SA}} + \frac{f'}{\overline{SA'}} = 1$$
 $\overline{SA} = \frac{\overline{SA'} \cdot f}{\overline{SA'} - f'}$ $\overline{SA} = -16, 8 cm$

Grandissement transversal:
$$g_y = \frac{n}{n'} \cdot \frac{\overline{SA'}}{\overline{SA}}$$
 $g_y = -0, 56$

L'image est presque deux fois plus petite que l'objet et inversée par rapport à celui-ci.

Ex 30: La lentille boule

1. •
$$f_1 = \frac{-1}{n-1}\overline{S_1C}$$
 $f_1 = \frac{-1}{n-1}R$ $f_1 = -R = -10 \, mm$
• $f_1' = \frac{n}{n-1}\overline{S_1C}$ $f_1' = \frac{n}{n-1}R$ $f_1' = 2R = 20 \, mm$

•
$$f'_1 = \frac{n}{n-1}\overline{S_1C}$$
 $f'_1 = \frac{n}{n-1}R$ $f'_1 = 2R = 20 \, mm$

•
$$f_2 = \frac{-n}{1-n}\overline{S_2C}$$
 $f_2 = \frac{-n}{n-1}R$ $f_2 = -2R = -20 \, mm$

•
$$f_2' = \frac{1}{1-n}\overline{S_2C}$$
 $f_2' = \frac{1}{n-1}R$ $f_2' = R = 10 \, mm$

2.2.
$$\frac{f_1}{\overline{S_1 A}} + \frac{f_1'}{\overline{S_1 A_1}} = 1$$
 donc $\frac{f_1'}{\overline{S_1 A_1}} = 1 - \frac{f_1}{\overline{S_1 A}} = \frac{\overline{S_1 A} - f_1}{\overline{S_1 A}}$ $\overline{S_1 A_1} = \frac{\overline{f_1'.S_1 A}}{\overline{S_1 A} - f_1}$ $\overline{S_1 A} = \overline{S_1 C} + \overline{CA} = -5,0 \, mm$ $\overline{S_1 A_1} = -20 \, mm$

2.3. Grandissement transversal :
$$g_{y1} = \frac{\overline{A_1 B_1}}{\overline{AB}} = \frac{1}{n} \frac{\overline{S_1 A_1}}{\overline{S_1 A}}$$
 $g_{y1} = 2, 0$

3.2. Position de l'image finale :

$$\overline{S_2A'} = \frac{f_2'.\overline{S_2A_1}}{\overline{S_2A_1} - f_2} \quad \text{avec} \quad \overline{S_2A_1} = \overline{S_2S_1} + \overline{S_1A_1} = -40 \, mm \quad \boxed{\overline{S_2A'} = +20 \, mm}$$

3.3. Grandissement lié au second dioptre :
$$g_{y\,2} = n \frac{\overline{S_2 A'}}{\overline{S_2 A_1}}$$
 $g_{y\,2} = -1$ Grandissement global de la lentille boule : $g_y = g_{y\,1} \times g_{y\,2}$ $g_y = -2, 0$

Ex 31 : Lentille épaisse biconcave

1. •
$$f_1 = -\frac{1}{n-1}\overline{S_1C_1}$$
 $f_1 = 83,3 \, mm$ $f_1' = \frac{n}{n-1}\overline{S_1C_1}$ $f_1' = -133,3 \, mm$

•
$$f_2 = -\frac{n}{1-n}\overline{S_2C_2}$$
 $f_2 = 133, 3 \, mm$ $f_2' = \frac{1}{1-n}\overline{S_2C_2}$ $f_2' = -83, 3 \, mm$

2. La relation de Newton appliquée au 1er dioptre donne :

$$\overline{F_1A} \cdot \overline{F_1'A_1} = f_1 \cdot f_1' \quad \text{donc} \quad \overline{F_1'A_1} = \frac{f_1 \cdot f_1'}{\overline{F_1A}} \quad \boxed{\overline{F_1'A_1} = 55, 5 \, mm}$$

Grandissement de l'image intermédiaire :
$$\frac{\overline{A_1B_1}}{\overline{AB}} = -\frac{f_1}{\overline{F_1A}} \quad \boxed{\frac{\overline{A_1B_1}}{\overline{AB}}} = 0,42$$

Relation de Newton appliquée au $2^{\text{ème}}$ dioptre : $\overline{F_2A_1} \cdot \overline{F_2'A'} = f_2 \cdot f_2'$ $\overline{F_2'A'} = \frac{f_2 \cdot f_2'}{\overline{F_2A_1}}$

avec
$$\overline{F_2 A_1} = \overline{F_2 S_2} + \overline{S_2 S_1} + \overline{S_1 F_1'} + \overline{F_1' A_1} = -f_2 - e + f_1' + \overline{F_1' A_1} = -223,6 \, mm$$

$$\overline{\overline{F_2' A'}} = 49,6 \, mm$$

Grandissement de
$$A'B'$$
 par rapport à A_1B_1 : $\frac{\overline{A'B'}}{\overline{A_1B_1}} = -\frac{\overline{F_2'A'}}{\overline{f_2'}}$ $\boxed{\frac{\overline{A_1B_1}}{\overline{AB}}} = 0,59$

Grandissement transversal de la lentille :
$$\frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{A_1B_1}}{\overline{AB}} \cdot \frac{\overline{A_1B_1}}{\overline{AB}} = 0,25$$

Ex 32: Objectif de microscope

1.1. La relation de conjugaison du dioptre plan s'écrit :

$$\frac{\overline{HA}}{1} = \frac{\overline{HA_1}}{n} \quad \text{soit} \quad \overline{HA_1} = n\overline{HA} \quad \overline{HA_1} = -6,0 \, mm$$

$$\overline{SA_1} = \overline{SH} + \overline{HA_1} = \overline{HA_1} - e \quad \overline{SA_1} = -11 \, mm$$

1.2. La relation de conjugaison du dioptre sphérique s'écrit : $\frac{f}{\overline{SA_1}} + \frac{f'}{\overline{SA'}} = 1$

donc
$$\overline{SA'} = \frac{f'.\overline{SA_1}}{\overline{SA_1} - f}$$
 avec $f' = -\frac{f}{n} = 5,33 \, mm$ $\overline{SA'} = 19,5 \, mm$

Le dioptre plan ne modifie pas la taille de l'image $(\overline{A_1B_1} = \overline{AB})$, le grandissement transversal de la lentille est donc simplement égal à celui du dioptre sphérique :

$$g_y = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{A'B'}}{\overline{A_1B_1}} = n \frac{\overline{SA'}}{\overline{SA_1}}$$
 $g_y = -2,66$

2. Utilisation d'un objectif à immersion

L'indice optique de l'huile est égal à celui du verre de la lentille, le dioptre plan ne joue plus aucun rôle. La chaîne d'image se simplifie : $AB \xrightarrow{\text{dioptre sphérique}} A'B'$

$$\overline{SA'} = \frac{f'.\overline{SA}}{\overline{SA} - f}$$
 avec $\overline{SA} = \overline{HA} - e = -9,0 \, mm$ $\overline{SA'} = 48,0 \, mm$

Nouvelle valeur du grandissement transversal :
$$g_y = n \cdot \frac{\overline{SA'}}{\overline{SA}}$$
 $g_y = -8, 0$