FACULTY OF ENGINEERING

B.E. 2/4 (CSE) II Sem. (Main) Examination, May/June 2011 ELECTRICAL CIRCUITS AND MACHINES

Time: 3 Hours] [Max. Marks: 75

Note: Answer all questions from Part – A. Answer any five questions from Part – B.

1.01	PART – A State Thevenin's theorem and give the utility of this theorem.	5)
2.	A coil has a resistance of 10 Ω and draws a current of 5 A when connected across 100 V, 50 Hz source. Determine the reactive power of the circuit.	2
3.	A balanced star-connected load of $(8 + j6)\Omega$ per phase is connected to a 3- ϕ , 230 V, 50 Hz supply. Draw the phasor diagram for the above circuit.	3
4.	Give the expression for regulation of a transformer.	2
5.	Draw the characteristics of DC series motors.	3
6.	Give the applications of dc motors.	2
7. 01	A 4 pole induction motor is running at 1440 rpm from a 50 Hz supply. Find the percentage slip and frequency of rotor current.	3
8.	List the methods of starting of Induction Motors.	2
9.	Why single phase induction motors are not self starting?	3
10.	What is universal motor?	2

PART – B (Marks : 50)
flowing through the 5 O resistor in the network

. (a) Determine the current flowing through the 5 Ω resistor in the network shown below using Thevenin's theorem.

(b) An a.c. sinusoidal current has an rms value of 40 A at 50 Hz frequency. Write expression of instantaneous current and obtain its value 0.002 sec after passing through maximum positive value.

12.	Explain with a neat diagram OC and SC tests on a single phase transformer. Explain how can you draw the equivalent circuit with the help of the above tests.
13.	(a) Derive emf equation for a dc generator. 5 (b) A 400 V dc motor takes 5A at no-load. Its armature and field resistances are $0.5~\Omega$ and $200~\Omega$ respectively. Calculate the efficiency of the motor when motor takes 40 A on full load. 5
14.	Describe the construction and principle of operation of a 3-Ph induction motor.
15.	 (a) Explain the principle of operation of a split phase motor. (b) Explain the principle of operation of a Brushless DC motor. 5
16.	 (a) Explain the measurement of power of 3-φ circuit by using two wattmeter method. (b) A 4700 Ω resistor and a 2 μF capacitor are connected in parallel across a 240 V, 50 Hz source. Determine the circuit impedance and line current.
17.	Write short notes on the following: (a) Dot convention (b) Auto transformer (c) Losses in a D.C. machine