Assignment 3 Solutions:

Equations / statements marked in blue casey | point each.

Alternate solutions are accepted (as long as they are well reasoned). Message any of the TAs it you have a problem.

I let $A \in \mathbb{R}^{m \times n}$ and $||\cdot||$ be a vector norm on \mathbb{R}^m . Let $||x||_A \triangleq ||Ax||$. Prove or disprove: (6)

(a) $||\cdot||_A$ is a norm on \mathbb{R}^n when $\operatorname{sank}(A) = n$.

(b) $||\cdot||_A$ is a norm on \mathbb{R}^n when $\operatorname{sank}(A) = k < n$.

A. (a) $||\cdot||_A$ is a norm when $\operatorname{sank}(A) = n$.

Given: $||\cdot||_A$ is a norm when $\operatorname{sank}(A) = n$.

Proof: (1) II is a vector norm on R...

Proof: (1) II x IIA = II Ax II > 0 (1) IIy II > 0, since

=> 11>11/A > 0 (11-11 is a norm

=> Non-regativity satisfied.

If x=0, 11x(1A=1/A.01)=0.

Since
$$N(A) = \{0\}$$
 $Ax = 0 \Rightarrow x = 0$

Thus $||x||_A = 0 \Rightarrow x = 0$
 \Rightarrow Partitivity satisfied

$$||x||_A = ||x||_A + ||x||_A + ||x||_A = ||x||_A + ||x||_A = ||x||_A + ||x||_A = ||x||_A + ||$$

The
$$||Ax|| = 0$$
 (: $||y|| = 0 \Leftrightarrow y = 0$)
 $|+||x|| = 0$ (: Above)

Thus, Positivity is not entisfied. — 2

Hence II. II a is not a norm when $\operatorname{Rank}(A) = \operatorname{k}(n)$. For example, if $A = \begin{bmatrix} 1 & 0 \end{bmatrix}$, $\chi = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$, $A\chi = 0$ for $\chi \neq 0$.

Note: 1 11 11 is a given vector norm. It read not necessarily be the lp norm. Do not assume that it is the lp norm.

- 2. There are NO alternate solutions to such proofs.
- 2. Let $C \in \mathbb{C}^{m \times n}$, $D \in \mathbb{C}^{n \times m}$. Prove or disprove:

 (4)

 (b) |CD| = |DC|, when m = n.
- A. @ When m=n, both C and D are square matrices and determinants can be defined for both C and D.

Thus det (CD) = det (DC)

6) When m>n, C and D are not square and hence determinant cannot be defined for both.

Let
$$C = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
 $CD = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \Rightarrow |CD| = 0$
 $DC = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow |DC| = 1$

Thus |CD| \$ 1001 in general, when C and D are sectangular materices.

Note: Take simple counter-examples. Complicated counter-examples may lead to errors.