

# ЭТИКЕТКА

СЛКН.431271.011 ЭТ Микросхема интегральная 564 ЛН2В Функциональное назначение – Шесть логических элементов «НЕ»

Климатическое исполнение УХЛ Схема расположения выводов



Условное графическое обозначение



## Таблица назначения выводов

| №<br>вывода | Назначение вывода | №<br>вывода | Назначение вывода |
|-------------|-------------------|-------------|-------------------|
| 1           | Вход              | 8           | Выход             |
| 2           | Выход             | 9           | Вход              |
| 3           | Вход              | 10          | Выход             |
| 4           | Выход             | 11          | Вход              |
| 5           | Вход              | 12          | Выход             |
| 6           | Выход             | 13          | Вход              |
| 7           | Общий             | 14          | Питание           |

## 1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при  $t = (25\pm10)$  °C) Таблица 1

| Наименование параметра, единица измерения, режим измерения                                                                     | Буквенное                  | Норма        |             |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|-------------|
| типменование наражетра, единица измерения, режим измерения                                                                     | обозначение                | не менее     | не более    |
| 1                                                                                                                              | 2                          | 3            | 4           |
| 1. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5 \; B, \; 10 \; B$                                                   | $\mathrm{U}_{\mathrm{OL}}$ | -            | 0,01        |
| 2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5 \; B$ $U_{CC} = 10 \; B$                                           | $ m U_{OH}$                | 4,99<br>9,99 | -           |
| 3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC} = 5$ B, $U_{IH} = 3.5$ B $U_{CC} = 10$ B, $U_{IH} = 7.0$ B | U <sub>OL max</sub>        | -            | 0,95<br>2,9 |
| 4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC}$ = 5 B, $U_{IL}$ = 1,0 B $U_{CC}$ = 10 B, $U_{IL}$ = 2,0 B | $U_{\mathrm{OHmin}}$       | 3,6<br>7,2   | -           |
| 5. Входной ток низкого уровня, мкА, при: $U_{CC} = 15~{\rm B}$                                                                 | $I_{\rm IL}$               | -            | /-0,1/      |
| 6. Входной ток высокого уровня, мкА, при: $U_{CC} = 15~\mathrm{B}$                                                             | $I_{IH}$                   | -            | 0,1         |

| Продолжение таблицы 1                                                                                                    |                  |                    |                    |  |
|--------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|--------------------|--|
| 1                                                                                                                        | 2                | 3                  | 4                  |  |
| 7. Выходной ток низкого уровня, мА, при: $U_{CC}$ = 4,5 B, $U_{O}$ = 0,4 B $U_{CC}$ = 10 B, $U_{O}$ = 0,5 B              | $I_{OL}$         | 2,6<br>8,0         | -<br>-             |  |
| 8. Выходной ток высокого уровня, мА, при: $U_{CC} = 5 \; B, \; U_O = 2,5 \; B \\ U_{CC} = 10 \; B, \; U_O = 9,5 \; B$    | І <sub>ОН</sub>  | /-1,25/<br>/-1,25/ |                    |  |
| 9. Ток потребления, мкА, при: $U_{CC} = 5 \ B$ $U_{CC} = 10 \ B$ $U_{CC} = 15 \ B$                                       | I <sub>CC</sub>  | -<br>-<br>-        | 0,25<br>0,5<br>1,0 |  |
| 10. Ток потребления в динамическом режиме, мА, при: $U_{CC} = 10~B,~C_L = 50~\pi\Phi$                                    | I <sub>OCC</sub> | -                  | 0,2                |  |
| 11. Время задержки распространения при включении, нС, при: $U_{CC}=5$ B, $C_{L}=50$ пФ $U_{CC}=10$ B, $C_{L}=50$ пФ      | t <sub>PHL</sub> |                    | 110<br>50          |  |
| 12. Время задержки распространения при выключении, нС, при: $U_{CC}$ = 5 B, $C_L$ = 50 пФ $U_{CC}$ = 10 B, $C_L$ = 50 пФ | t <sub>PLH</sub> | -                  | 120<br>90          |  |
| 13. Входная емкость, п $\Phi$ , при: $U_{CC}$ = 10 В                                                                     | Cı               | -                  | 30                 |  |

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г,

в том числе:

золото г/мм

на 14 выводах, длиной мм.

Цветных металлов не содержится.

### 2 НАДЕЖНОСТЬ

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В  $11\,0398-2000\,$  и ТУ, при температуре окружающей среды (температуре эксплуатации) не более  $65\,^{\circ}$ С не менее  $100000\,$  ч., а в облегченных режимах, которые приводят в ТУ при  $U_{CC}=5B\pm10\%$  - не менее  $120000\,$  ч.

 $\Gamma$ амма – процентный ресурс ( $T_{p\gamma}$ ) микросхем устанавливают в ТУ при  $\gamma$  = 95% и приводят в разделе " Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (Т см) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- 3.1 Гарантии предприятия изготовителя по ОСТ В 11 0398 2000:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

## 4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ЛН2В соответствуют техническим условиям бК0.347.064 ТУ 2/02 и признаны годными для эксплуатации.

| Приняты по   |                        | OT       |        |                     |
|--------------|------------------------|----------|--------|---------------------|
|              | (извещение, акт и др.) |          | (дата) |                     |
| Место для шт | Место для штампа ВП    |          |        |                     |
| Место для шт | ампа «Перепроверка     | произвед | цена   |                     |
| Приняты по   | (извещение, акт и др.) | от       | (дата) |                     |
|              | (извещение, акт и др.) |          | (дата) |                     |
| Место для шт | ампа ОТК               |          |        | Место для штампа ВП |

### Цена договорная

## 5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.