

CONTENT

- Business Discovery
- Data Preparation
- Data Preprocessing
- Model Building
- Model's performances
- User Experience
- Openings

Business Discovery

Business Domain

AI in medicine market value: from USD 4490.3 million in 2020

Expectations by 2026: and is expected to reach USD 34882.58 million.

Challenges: Data repositories, Regulations and Integration

Frame the business problem as an analytics challenge

As an AI Consultant working for Business&Decision, we can applicate big data solutions to improve medical diagnostics. In fact, based on ML classification, we want to incorporate data from diabetes in order to create a fuller picture of the user preferences and potential needs about all our solutions, through a Diabetes Detection API.

O Data Preparation

Assess the resources available to support the project

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
5	5	116	74	0	0	25.6	0.201	30	0
6	3	78	50	32	88	31.0	0.248	26	1
7	10	115	0	0	0	35.3	0.134	29	0
8	2	197	70	45	543	30.5	0.158	53	1
9	8	125	96	0	0	0.0	0.232	54	1

Data Preprocessing (& Visualization)

- Replacing missing values
- Overview of the dataset (Boxplots Summary)
- Viewing the distribution of the target variable

Model Building

- Splitting dataset between predictor and target variables
 (80% training 20% testing)
- Using a Standard Scaler on predictor variables (X)
- Comparison between 4 classification models (AUC Metric)
- Using the Gradient Boosting Classifier to make classification (AUC Metric)

Model's Performances

Confusion Matrix

0 - 95 5 5 -70 -60 -50 -40 -30 -20 -10 predicted label

O ROC Curve on Test Set (AUC=0.952)

User Experience / User Interface

- Using streamlit to build interactive data app
- Unique layout design
- Batch inference

Sample View

DIABETES DETECTION

Class PROBABILITY in %

Diabetic

50.91

No Diabetic

49.09

Sample View

Openings

Code optimization

Need to implement more functions to lighten the code and do the pep8 check (python coding convention)

Model Optimization

Missing tuning hyper-parameters: The number of weak learners (regression trees) with n_estimators and the size of each tree with max_depth + class probability are made with a 0.5 threshold set

Dataset

Data used from a toy dataset (quite balanced but not very representative of reality)

Model Serving

Layout

Pima Indians Dataset

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
5	5	116	74	0	0	25.6	0.201	30	0
6	3	78	50	32	88	31.0	0.248	26	1
7	10	115	0	0	0	35.3	0.134	29	0
8	2	197	70	45	543	30.5	0.158	53	1
9	8	125	96	0	0	0.0	0.232	54	1

Dataset Overview

Data Imbalance

Correlation plot

Distribution/Variable

ROC Curve Model Comparison

GB Classifier Confusion Matrix

GB Classifier Feature Importance

Predicition's Shap Values

Kernel Density Plot (Pregnancies Variable)

