

Anuncios

- Evaluaciones a profesores
 - Retroalimentación directa
- Retroalimentación clase pasada

Discusión tarea

- Tipos de diferencias finitas
- Ecuaciones diferenciales en la vida real

Diferencias finitas

. Diferencias primer grado

Por definición la derivada está dada por

$$f'(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

En diferencias finitas podemos verla como

$$f'(x) \approx \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$
 donde $x_0 < x < x_1$

A esto se le llama primera diferencia dividida y se denota

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Diferencias de orden superior

Que pasa con la segunda derivada

• La diferencia de orden 2 es

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

• La diferencia de orden 3 es

$$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$$

Ejercicio

Calcula

$$f[x_1, x_2, x_3]$$

$$f[x_1, x_2, x_3, x_4]$$

Puntos equidistantes

- Si tenemos una seria de puntos equidistantes $x_0, x_1, x_2, ..., x_n$
 - Para la diferencia finita en x_1 necesitamos x_1 y x_2
 - Para la diferencia finita en x_2 necesitamos x_2 y x_3
 - ¿No importa el valor de x_1 ? ¿Debería?
 - Diferencias hacia adelante

Diferencias hacia atrás

• En x_1 tenemos dos valores de diferencias finitas

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} \neq \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

¿Cuál es mejor?

. ¿Y si las juntamos?

Promedio de diferencias hacia adelante y atrás
$$\left(\frac{f(x_1) - f(x_0)}{x_1 - x_0} + \frac{f(x_2) - f(x_1)}{x_2 - x_1} \right) / 2$$

$$x_1 = h$$

$$\frac{\left(f(x_{1}) - f(x_{0}) + f(x_{2}) - f(x_{1})\right)}{h} / \frac{f(x_{2}) - f(x_{0})}{2h}$$

Diferencias centrales

Diferencias multivariable

Funciones multivariables

Si tenemos f(x, y)

Derivadas parciales

$$\frac{\partial f(x,y)}{\partial x} = \lim_{x \to x_0} \frac{f(x,y) - f(x_0,y)}{x - x_0}$$

$$\frac{\partial f(x,y)}{\partial y} = \lim_{y \to y_0} \frac{f(x,y) - f(x,y_0)}{y - y_0}$$

En diferencias finitas

$$\frac{f(x,y) - f(x_0,y)}{x - x_0} \vee \frac{f(x,y) - f(x,y_0)}{y - y_0}$$

diferencias finitas direccionales

Notas

- •¿Qué tan pequeño el espacio entre puntos?
 - •¿Mas pequeño es mejor? No
 - •¿Más grande es mejor? No

Descenso de Gradiente

- Imagina la función $f(x) = x^2$ entonces f'(x) = 2x
- f tiene su mínimo en 0
- f'(0) = 0
- f' < 0 para x < 0
- f' > 0 para x > 0
- Para encontrar el mínimo

$$x_{i+1} = x_i - hf'(x_i)$$

Donde h es el tamaño de paso

Descenso de gradiente multivariable

- Para cada variable podemos saber hacia donde crece/decrece
- Podemos unirlas en un vector: Gradiente

$$\nabla f(x_1, x_1, \dots, x_n) = \left[\frac{\partial f(x_1, x_1, \dots, x_n)}{\partial x_1}, \frac{\partial f(x_1, x_1, \dots, x_n)}{\partial x_2}, \dots, \frac{\partial f(x_1, x_1, \dots, x_n)}{\partial x_n} \right]$$

Para encontrar el mínimo entonces

$$X_{i+1} = X_i - h\nabla f$$

Tarea

Encuentra 4 funciones diferenciables (de una y varias variables) calcula grafica

- Función
- 1ª y 2ª Derivada
- Diferencias finitas de 1er y 2º orden