PRESENTATION TITLE

Author

Date

Paper available at https://github.com/pmichaillat/latex-presentation

SLIDE TITLE

- lorem ipsum dolor sit amet
- consectetur adipiscing elit
- sed do eiusmod tempor incididunt
 - ut labore et dolore magna aliqua
 - ut enim ad minim veniam
- quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat
- duis aute irure dolor in reprehenderit in voluptate velit esse
 cillum dolore eu fugiat nulla pariatur

A TEXT SLIDE WITH ALERTS

- 1. sed do eiusmod tempor incididunt
 - ut labore et dolore magna aliqua
 - ut enim ad minim veniam
- 2. ut enim ad minim veniam
- quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo conseguat
- duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur

A TEXT SLIDE WITH ALERTS

- 1. sed do eiusmod tempor incididunt
 - ut labore et dolore magna aliqua
 - ut enim ad minim veniam
- 2. ut enim ad minim veniam
- quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat
- duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur

SLIDE WITH GRAPH

SEVERAL GRAPHS (USE TITLE AS CAPTION)

SEVERAL GRAPHS

SEVERAL GRAPHS

SEVERAL GRAPHS

SLIDE WITH MATH

• self-employed household $j \in \mathbb{R}$ maximizes utility

$$\int_0^\infty \mathrm{e}^{-\delta t} \left[\ln \left(c_j(t) \right) + \mathcal{U} \left(\frac{b_j(t)}{p(t)} - \frac{\mathcal{B}(t)}{p(t)} \right) - \frac{\zeta}{2} h_j(t) - \frac{\gamma}{2} \pi_j(t)^2 \right] dt$$

- consumption index: $c_j(t) = \left[\int_0^1 c_{jk}(t)^{(\epsilon-1)/\epsilon} dk \right]^{\epsilon/(\epsilon-1)}$
- aggregate wealth: $\mathcal{B}(t) = \int_0^1 b_j(t) dj$
- inflation: $\pi_i(t) = \dot{p}_i(t)/p_i(t)$
- subject to budget constraint:

$$\dot{b}_j(t) = i(t)b_j(t) + p_j(t)y_j(t) - \int_0^1 p_k(t)c_{jk}(t) dk$$

SLIDE WITH TABLE AND ALERTS

	<i>m</i> < 0	<i>m</i> = 0	<i>m</i> > 0
$u > u^*$	$g/c < (g/c)^*$	$g/c = (g/c)^*$	$g/c > (g/c)^*$
$u = u^*$	$g/c = (g/c)^*$	$g/c = (g/c)^*$	$g/c = (g/c)^*$
$u < u^*$	$g/c > (g/c)^*$	$g/c = (g/c)^*$	$g/c < (g/c)^*$
$\alpha = \beta$	φ = μ	ω = θ	$\mathbb{Q} = \mathbb{N}$

SLIDE WITH TABLE AND ALERTS

	<i>m</i> < 0	<i>m</i> = 0	<i>m</i> > 0
$u > u^*$	$g/c < (g/c)^*$	$g/c = (g/c)^*$	$g/c > (g/c)^*$
$u = u^*$	$g/c = (g/c)^*$	$g/c = (g/c)^*$	$g/c = (g/c)^*$
$u < u^*$	$g/c > (g/c)^*$	$g/c = (g/c)^*$	$g/c < (g/c)^*$
$\alpha = \beta$	φ = μ	ω = θ	$\mathbb{Q} = \mathbb{N}$

SLIDE WITH TABLE AND ALERTS

	<i>m</i> < 0	<i>m</i> = 0	<i>m</i> > 0
$u > u^*$	$g/c < (g/c)^*$	$g/c = (g/c)^*$	$g/c > (g/c)^*$
$u = u^*$	$g/c = (g/c)^*$	$g/c = (g/c)^*$	$g/c = (g/c)^*$
$u < u^*$	$g/c > (g/c)^*$	$g/c = (g/c)^*$	$g/c < (g/c)^*$
$\alpha = \beta$	φ = μ	$\omega = \theta$	$\mathbb{Q} = \mathbb{N}$

