Metody systemowe i decyzyjne w informatyce

Laboratorium – Python – Zadanie nr 2

 κ -NN i Naive Bayes

autorzy: M. Zięba, J.M. Tomczak, A. Gonczarek, S. Zaręba, J. Kaczmar

Cel zadania

Celem zadania jest implementacja klasyfikatorów κ -NN oraz Naive Bayes w zadaniu analizy dokumentów tekstowych.

Zadanie klasyfikacji dokumentów tekstowych

Rozważmy problem klasyfikacji dokumentu tekstowego \mathcal{T} do jednej z kategorii tematycznych. Każdy dokument tekstowy opisany jest za pomocą wektora cech $\mathbf{x} = (\phi^1(\mathcal{T}), \dots, \phi^D(\mathcal{T}))^T$, gdzie każda cecha $\phi^d(\mathcal{T}) \in \{0,1\}$ określa, czy d-te słowo występuje w dokumencie \mathcal{T} , tj. $\phi^d(\mathcal{T}) = 1$, czy teżnie, $\phi^d(\mathcal{T}) = 0$. Dla każdego dokumentu należy rozwiązać problem klasyfikacji z wieloma klasami $y \in \{0,1,2,3\}$, gdzie każda wartość określa grupę tematyczną (0-computer, 1-recreation, 2-science, 3-talk).

Zadanie klasyfikacji nowego dokumentu tekstowego \mathbf{x}^{new} do jednej z grup tematycznych polega na wyznaczeniu prawdopodobieństwa $p(y|\mathbf{x}^{new})$, a następnie wyboru tej klasy, dla której prawdopodobieństwo warunkowe jest największe:

$$y^* = \arg\max_{y} p(y|\mathbf{x}^{new}). \tag{1}$$

Kluczową wielkością w problemie klasyfikacji jest rozkład warunkowy $p(y|\mathbf{x})$, dlatego jest on celem modelowania. Zauważmy, że wielkość te można modelować co najmniej na dwa sposoby:

• Podejście generujące: zauważmy, że rozkład warunkowy $p(y|\mathbf{x})$ można wyznaczyć korzystając ze wzoru Bayesa:

$$\begin{aligned} p(y|\mathbf{x}) &= \frac{p(\mathbf{x}|y)p(y)}{p(\mathbf{x})} \\ &= \frac{p(\mathbf{x}|y)p(y)}{\sum_{y'} p(\mathbf{x}|y')p(y')} \end{aligned}$$

W celu poznania rozkładu warunkowego $p(y|\mathbf{x})$ będziemy modelować wielkości $p(\mathbf{x}|y,\theta)$ i $p(y|\pi)$, gdzie θ i π oznaczają parametry modelu.

• Podejście dyskryminujące: rozkład warunkowy $p(y|\mathbf{x})$ modelujemy wprost za pomocą modelu $p(y|\mathbf{x}, \theta)$, gdzie θ oznacza parametry modelu.

Podejście generujące: Naive Bayes

Model W podejściu generującym naszym celem jest modelowanie rozkładów $p(\mathbf{x}|y,\theta)$ i $p(y|\theta)$. Rozkład na grupę tematyczną wyrażać będziemy za pomocą rozkładu wielopunktowego:

$$p(y|\pi) = M(y|\pi), \tag{2}$$

gdzie $\pi = (\pi_0, \dots, \pi_{K-1})$, a π_k oznacza prawdopodobieństwo a priori k-tej grupy tematycznej.

W rozważanym przypadku cechy opisujące dokument są binarne, dlatego odpowiednim rozkładem byłby taki rozkład, który każdej możliwej konfiguracji słów przyporządkowuje wartość prawdopodobieństwa. Zwróćmy jednak uwagę, że takich konfiguracji jest 2^D , a zatem model musiałby posiadać 2^D-1 parametrów. Przykładowo, dla D=100 wyuczenie takiego modelu jest w praktyce niemożliwe. Dlatego dalej przyjmować będziemy, że występowanie słów jest niezależne od siebie, wówczas rozważany model będzie posiadał jedynie D parametrów. Naturalnie w ten sposób tracimy możliwość modelowania współzależności między występowaniem słów, ale zyskujemy możliwość wyuczenia takiego modelu. Model, który zakłada niezależność cech, nazywa się Naive Bayes i wyraża się następująco:

$$p(\mathbf{x}|y,\theta) = \prod_{d=1}^{D} p(x_d|y,\theta) \tag{3}$$
 iloczyn prawd dla każdego słowa

gdzie dla rozpatrywanego zadania rozkład warunkowy na cechy modelujemy za pomocą rozkładu dwupunktowego:

$$p(x_d|y=k,\theta) = B(x_d|\theta_{d,k}) \tag{4}$$

$$= \theta_{d,k}^{x_d} (1 - \theta_{d,k})^{1 - x_d}. \tag{5}$$

Uczenie Celem uczenia w przypadku modelu Naive Bayes jest oszacowanie prawdopodobieństw $\{\pi_k\}_{k=0,...,3}$ oraz prawdopodobieństw $\{\theta_{d,k}\}_{\substack{d=1,...,D\\k=0,...,3}}$ w oparciu o dane uczące \mathcal{D} .

Korzystając z metody największej wiarygodności (estymator ML) wielkości te możemy wyznaczyć w następujący sposób:

$$\pi_k = \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}(y_n = k), \text{ wektor prawdopod a priori prawd. wystap kategori sum } \theta_{d,k} = \frac{\sum_{n=1}^{N} \mathbb{I}(y_n = k, x_{n,d} = 1)}{\sum_{n=1}^{N} \mathbb{I}(y_n = k)},$$

$$(6) 1$$

gdzie $\mathbb{I}(\cdot)$ oznacza indykator, który zwraca wartość 1, gdy wszystkie warunki logiczne, które są jego argumentami, są prawdziwe i wartość 0 – w przeciwnym przypadku.

Często w praktyce może wystąpić problem, że pewne słowo może nie pojawić się w danych uczących lub posiadamy zbyt mało danych, aby dostatecznie dobrze oszacować interesujące nas prawdopodobieństwo. Wówczas stosuje się dodatkowy rozkład *a priori* na słowa, dla których określamy

założoną wartość występowania słowa a oraz jego niewystępowania b. W rozważanym przypadku, dla cech binarnych, wygodnym rozkładem a priori jest rozkład beta:

$$p(\theta_{d,k}) = \text{Beta}(\theta_{d,k}|a,b), \tag{8}$$

gdzie a, b > 0 są tzw. hiperparametrami. Wówczas można wyznaczyć estymator maksymalnej a posteriori (MAP) dla $\theta_{d,k}$:

$$\theta_{d,k} = \frac{\sum_{n=1}^{N} \mathbb{I}(y_n = k, x_{n,d} = 1) + a - 1}{\sum_{n=1}^{N} \mathbb{I}(y_n = k) + a + b - 2}.$$
(9)

Podejście dyskryminujące: κ-NN

Model κ -Nearest Neighbors (κ -NN) jest przykładem modelu **dyskryminującego** oraz modelu **niepa- rametrycznego** tzn. takiego, dla którego parametrami modelu są dane uczące. Rozkład warunkowy dla grupy tematycznej pod warunkiem dokumentu tekstowego określa się w następujący sposób:

$$p(y|\mathbf{x},\kappa) = \frac{1}{\kappa} \sum_{i \in N_{\kappa}(\mathbf{x},\mathcal{D})} \mathbb{I}(y_i = y)$$
(10)

gdzie κ oznacza liczbę najbliższych sąsiadów, $N_{\kappa}(\mathbf{x}, \mathcal{D})$ oznacza zbiór indeksów κ najbliższych sąsiadów dla dokumentu \mathbf{x} w zbiorze treningowym \mathcal{D} .

Zauważmy, że model κ -NN zależy od zbioru treningowego oraz wartości parametru κ , czyli liczby sąsiadów. Wartość κ musi być zadana przed dokonaniem predykcji.

Kluczowym pojęciem dla κ -NN jest **odległość** za pomocą której wyznacza się najbliższych sąsiadów. W rozważanym przypadku do czynienia mamy z dokumentemi tekstowymi opisanymi za pomocą D cech binarnych określających występowanie słów w dokumencie. W celu wyznaczenia odległości między dwoma dokumentami posłużymy się **metryką Hamminga**, która określa liczbę miejsc, na których dwa ciągi różnią się od siebie. Na przykład, dla $\mathbf{x}_1 = (1,0,0,1)$ i $\mathbf{x}_2 = (1,1,0,0)$ odległość Hamminga między \mathbf{x}_1 i \mathbf{x}_2 wynosi 2:

Selekcja modelu

W rozważanym problemie mamy do czynienia z trzema wielkościami, których nie wyuczamy w oparciu o dane, tj. liczbę sąsiadów κ dla κ -NN oraz wartości rozkładu *a priori* dla Naive Bayes. W przypadku, gdy dysponujemy zbiorem walidacyjnym \mathcal{D}_{val} o długości N_{val} , możemy przeprowadzić

selekcję tych wartości. W celu oceny modelu w oparciu o wspomniane wielkości, stosować będziemy miarę błąd klasyfikacji:

$$E(\mathcal{D}_{val}; \alpha) = \frac{1}{N_{val}} \sum_{n=1}^{N_{val}} \mathbb{I}(y_n \neq \hat{y}_n),$$
(11)

gdzie α jest hiperparametrem κ w przypadku κ -NN lub (a,b) dla Naive Bayes, oraz \hat{y}_n jest predykowaną przez model wartością klasy dla n-tego przykładu ze zbioru walidacyjnego.

```
Algorithm 1: Procedura selekcji modelu dla modelu \kappa-NN lub Naive Bayes.

Wejście: Zbiór walidacyjny \mathcal{D}_{val}, zbiór wartości hiperparametru(-ów) \Lambda

Wyjście: Wartość \alpha

1 for \alpha \in \Lambda do

2 | if Naive Bayes then

3 | Znajdź estymatory dla \pi i \theta z użyciem a i b;

4 | Policz wartość E(\mathcal{D}_{val}; (a, b));

5 | else if \kappa-NN then

6 | Policz wartość E(\mathcal{D}_{val}; \kappa);

7 end

8 Zwróć wartość \alpha, dla której E(\mathcal{D}_{val}; \alpha) jest najniższa.
```

Testowanie poprawności działania

Do sprawdzania poprawności działania zaproponowanych rozwiązań służy funkcja main w pliku main.py.

W pliku main.py nie wolno czegokolwiek zmieniać ani dopisywać.

Dodatkowo, aby program zadziałał, należy zainstalować pakiet wordcloud. W Windowsie można zrobić to w następujący sposób:

- 1. Zainstalować Visual C++ 2015 Build Tools ze strony: http://landinghub.visualstudio.com/visual-cpp-build-tools
- 2. Uruchomić linię poleceń Start -> cmd i wpisać: pip install wordcloud

Instrukcja wykonania zadania

Instrukcja: Należy zaimplementować wszystkie funkcje w pliku content.py

1. Zaimplementować funkcję hamming_distance liczącą odległości Hamminga. Funkcja przyjmuje dwie macierze rzadkie reprezentujące dwa zbiory obiektów i wyznacza macierz zawierającą odległości Hamminga pomiędzy obiektami z jednego i drugiego zbioru.

- 2. Zaimplementować funkcję sort_train_labels_knn liczącą macierz posortowanych etykiet klas względem macierzy odległości. Dla danej macierzy odległości i zadanych etykiet klas należy zbudować macierz, która w każdym wierszu zawiera etykiety klas posortowane zgodnie z odległościami z tego samego wiersza w macierzy odległości.¹
- 3. Zaimplementować funkcję p_y_x_knn wyznaczającą macierz prawdopodobieństw przynależności do każdej z klas dla modelu KNN (10).
- 4. Zaimplementować funkcję classification_error liczącą błąd klasyfikacji (11). Jeżeli dla danego przykładu \mathbf{x} prawdopodobieństwo $p(y=k|\mathbf{x})$ dla kilku klas k jest maksymalne, to jako predykcję modelu wybieramy klasę o najwyższym numerze k.
- 5. Zaimplementować funkcję model_selection_knn dokonującą selekcji modelu KNN dla zadanych wartości κ .
- 6. Zaimplementować funkcję estimate_a_priori_nb liczącą estymator ML dla klas, π_k (6), dla modelu NB.
- 7. Zaimplementować funkcję estimate_p_x_y_nb liczącą estymator MAP dla cech, $\theta_{d,k}$ (9), dla modelu NB.
- 8. Zaimplementować funkcję estimate_p_y_x_nb wyznaczającą macierz prawdopodobieństw przynależności do każdej z klas dla modelu NB.
- 9. Zaimplementować funkcję model_selection_nb dokonującą selekcji modelu NB dla zadanych wartości parametrów a i b.

UWAGA! Wszelkie nazwy funkcji i zmiennych w pliku content.py muszą pozostać zachowane.

Pytania kontrolne

- 1. Prosze wyznaczyć estymator największej wiarygodności dla rozkładu wielopunktowego.
- 2. Proszę wyznaczyć estymator największej wiarygodności dla rozkładu dwupunktowego.
- 3. Proszę wyznaczyć estymator maksymalnego a posteriori dla rozkładu dwupunktowego.
- 4. Dlaczego stosujemy założenie o niezależności cech określających wystąpienie słowa w dokumencie? Jaka jest korzyść z takiego podejścia, a jaka jest strata?

¹PRZYKŁAD: macierz odległości: [2 5 3; 6 7 1], zadane etykiety klas: [0 3 2], macierz posortowanych etykiet: [0 2 3; 2 0 3].

- 5. Jaka jest interpretacja parametrów θ ? Ile jest takich parametrów dla D cech i K klas?
- 6. Jaka jest interpretacja parametrów π ? Ile jest takich parametrów dla D cech i K klas?
- 7. Jaka jest interpretacja hiperparametru κ ? Za co odpowiada? Jaka jest jego interpretacja geometryczna? Jak jego wartość wpływa na rozwiązanie?
- 8. W jaki sposób wyznaczamy sąsiedztwo w modelu κ -NN?
- 9. Czy model κ -NN jest modelem generującym, czy dyskryminującym? Czy jest to model parametryczny, czy nieparametryczny?
- 10. Czy model Naive Bayes jest modelem generującym, czy dyskryminującym? Czy jest to model parametryczny, czy nieparametryczny?