學號:B03902125 系級: 資工四 姓名: 林映廷

1. (1%)請比較有無 normalize(rating)的差別。並說明如何 normalize. (collaborator:)

無 normalize: $\sqrt{(private^2 + public^2)/2} = \sqrt{(0.84702^2 + 0.84827^2)/2} = 0.84765$ 有 normalize: $\sqrt{(private^2 + public^2)/2} = \sqrt{(0.86003^2 + 0.85992^2)/2} = 0.85998$ normalize 方法:做 z-normalization

$$mean = (\sum_{i=1}^{n} rating_i)/n$$

$$std = \sqrt{\left(\sum_{i=1}^{n} |rating_i - mean|^2\right)/n}$$

$$rating_i = \frac{(rating_i - mean)}{std}, \quad \forall i = 1, 2, ..., n \ for \ training \ datas$$

 $rating_i = \frac{(rating_i - mean)}{std}$, $\forall i = 1,2,...,n$ for training datas $prediction_i = prediction_i \times std + mean$, $\forall i = 1,2,...,m$ for testing datas $math{m}$ mormalize 比有 normalize 好,但我覺得是因為有 normalize 會有浮點數計算上的誤差導致。在 training 過程中,有 normalize 會比無 normalize 讓 loss function 下降更快。

2. (1%)比較不同的 *latent dimension* 的結果。 (collaborator:)

$$RMSE = \sqrt{\left(private^2 + public^2\right)/2}$$

latent dimension	private	public	RMSE
4	0.86990	0.87090	0.87040
8	0.86093	0.86193	0.86143
16	0.85434	0.85257	0.85345
32	0.85217	0.85277	0.85247
64	0.84829	0.84817	0.84823
128	0.84702	0.84827	0.84765

Latent dimension 越大, RMSE 越小, performance 也越好, 且所需要的 epochs

也越少,但是執行一個 epoch 的時間也就越多。

3. (1%)比較有無 bias 的結果。

(collaborator:)

$$RMSE = \sqrt{\left(private^2 + public^2\right)/2}$$

 $\text{A. } bias: \sqrt{(private^2 + public^2)/2} = \sqrt{(0.84849^2 + 0.84681^2)/2} = 0.84765$

有 bias: $\sqrt{(private^2 + public^2)/2} = \sqrt{(0.84702^2 + 0.84827^2)/2} = 0.84765$

無 bias 和有 bias 雨者的 RMSE 相差不多, performance 幾乎一樣好。

4. (1%)請試著用 DNN 來解決這個問題,並且說明實做的方法(方法不限)。並比較 MF 和 NN 的結果,討論結果的差異。

(collaborator:)

DNN 實做方法:

將 user embedding matrix 和 movie embedding matrix 兩個 matrix concatenate 在一起,過三層 dense layer 得到 rating。

MF:
$$\sqrt{(private^2 + public^2)/2} = \sqrt{(0.84702^2 + 0.84827^2)/2} = 0.84765$$

NN:
$$\sqrt{(private^2 + public^2)/2} = \sqrt{(0.86382^2 + 0.86287^2)/2} = 0.86335$$

MF的RMSE比NN的還低, MF的performance比NN的好。

5. (1%)請試著將 movie 的 embedding 用 tsne 降維後,將 movie category 當作 label 來作圖。

(collaborator:)

Animation, Children's, Comedy, Adventure, Fantasy 分為一類,用紅色來代表 Sci-Fi, Mystery, Film-Noir 分為一類,用藍色來代表

Romance, Drama, Musical 分為一類,用綠色來代表

Action, Crime, Thriller, Horror, War 分為一類,用黃色來代表

Documentary, Western 分為一類,用黑色來代表

6. (BONUS)(1%)試著使用除了 rating 以外的 feature, 並說明你的作法和結果,結果好壞不會影響評分。

(collaborator:)

Step1.將 age normalize

Step2.將 user 的 occupations 和 movie 的 genres 都做 one-hot encoding

Step3.將 user 的 embedding matrix、movie 的 embedding matrix、user 的 age 和 occupations 及 movie 的 genres concatenate 在一起

Step4.concatenate 完後,進入三層 dense layer

 $RMSE = \sqrt{(private^2 + public^2)/2} = \sqrt{(0.85639^2 + 0.85673^2)/2} = 0.85656$

這個 case RMSE 比之前 NN 版本的 RMSE 低, performance 也比較好;但是, 比之前 MF 版本的 RMSE 高, performance 相較之下比較差。