2023-2024

ESCOLA
SUPERIOR
DE TECNOLOGIA
E GESTÃO

REDES DE COMPUTADORES

Trabalho Prático – época normal

Trabalho elaborado por:

Grupo 7

8220337 – Hugo Ricardo Almeida Guimarães 8220307 – Pedro Marcelo Santos Pinho

Índice

Ínc	lic	e de Figuras	2
Ch	av	e de Siglas	3
Int	ro	dução	4
i	а.	Contextualização	4
ı	b.	Apresentação do Caso Estudo	4
(С.	Estrutura do Relatório	4
1.		Planeamento	5
í	а.	Número de equipamentos na rede	5
ı	b.	Cálculo do primeiro endereço	5
(c.	Plano de endereçamento	5
2.		Packet Tracer	6
i	а.	Ligações	6
ı	b.	VLANS	7
(c.	IPs dos equipamentos	7
(d.	Esquema final da rede	9
(e.	Configuração dos Equipamentos	10
		Switch – Sede	10
		Switch – Filial 1	12
		Switch – Filial 2	14
		Router – Sede	16
		Router – Filial 1	18
		Router – Filial 2	19
		Router Central	21
		Rotina em caso de troca de router	22
3.		Testes na Rede	23
4.		Plano de orçamento	24
5.		Decisões Tomadas	30
I	Di	stribuição de IP's	30
,	۷L	AN's	30
I	RII	P	30
$C \sim$	nc	ducão	21

Índice de Figuras

Figura 1 - Necessidades atuais da empresa fictícia	4
Figura 2 - Esquema dos equipamentos e ligações que já existem na empresa fictícia	4
Figura 3 - Número de equipamentos que a rede deve suportar	5
Figura 4 - Necessidades da rede distribuídas pelas VLANs	5
Figura 5 - Plano de Endereçamento da Rede	5
Figura 6 - Ligações dos Switches e dos Routers da rede	6
Figura 7 - VLANs criadas para a rede	7
Figura 8 - Configuração dos endereços dos equipamentos da rede	7
Figura 9 – Configuração das Ligações dos Routers	8
Figura 10 - Configuração do switch da sede	10
Figura 11 - Configuração do switch da filial 1	12
Figura 12 - Configuração do Switch da filial 2	14
Figura 13 - Configuração do router da sede	16
Figura 14 - Configuração do router da filial 1	18
Figura 15 - Configuração do router da filial 2	19
Figura 16 - Configuração do router central	21
Figura 17 - Testes de conectividade de todos os computadores ao servidor	23
Figura 18 - Plano de orçamento para toda a rede	24
Figura 19 - Switch escolhido no plano de orçamento	25
Figura 20 - Router escolhido no plano de orçamento	25
Figura 21 - Modulo escolhido no plano de orçamento	26
Figura 22 – Servidor escolhido no plano de orçamento	26
Figura 23 - Computador escolhido no plano de orçamento	
Figura 24 - Bobina de 305 metros escolhida para o plano de orçamento	27
Figura 25 - Cabeças RJ45 para montar os cabos ethernet no plano de orçamento	28
Figura 26 – Crimpadora escolhida para unir as cabeças RJ45 com o cabo da bobina no plano	
orçamento	28
Figura 27 - Teclado e rato escolhido para o plano de orçamento	29
Figura 28 - Monitor escolhido para o plano de orcamento	. 29

Chave de Siglas

IP	Internet Protocol
VLAN	Virtual Local Area Network
RIP	Routing Information Protocol

Introdução

a. Contextualização

Este projeto foi desenvolvido para a disciplina de Redes de Computadores da Escola Superior de Tecnologia e Gestão do Instituto Politécnico do Porto, e tem como objetivo utilizar os conhecimentos adquiridos no decorrer das aulas teóricas e práticas para a realização de um plano de endereçamento de uma rede, e a implementação da mesma no simulador Packet Tracer.

b. Apresentação do Caso Estudo

Pretende-se com este projeto planear e desenvolver uma rede num simulador para uma empresa fictícia que dispõem de escritórios em três localizações diferentes, e com base nas necessidades atuais da empresa representadas na Figura 1, desenvolver uma rede com base nas ligações já existentes, representada na Figura 2, de modo a suportar um crescimento de 15%.

Nome da rede	Equipamentos
Sede	125
Filial 1	75
Filial 2	15

FIGURA 1 - NECESSIDADES ATUAIS DA EMPRESA FICTÍCIA

FIGURA 2 - ESQUEMA DOS EQUIPAMENTOS E LIGAÇÕES QUE JÁ EXISTEM NA EMPRESA FICTÍCIA

c. Estrutura do Relatório

Este relatório encontra-se dividido em três partes: a Introdução: Desenvolvimento e conclusão. Na Introdução é descrito o problema que nos foi proposto. No desenvolvimento é descrito todo o processo de desenvolvimento do trabalho, desde o planeamento da rede, até às configurações de cada equipamento no simulador. Na conclusão existe uma reflexão do trabalho realizado, e se este conseguiu atender às nossas expectativas iniciais sobre o mesmo

1. Planeamento

a. Número de equipamentos na rede

Rede	Equipamentos	Crescimento de 15%				
Sede	125	144				
Filial 1	75	87				
Filial 2	15	18				

FIGURA 3 - NÚMERO DE EQUIPAMENTOS QUE A REDE DEVE SUPORTAR

Rede	Necessidades	VLANS	N° VLANS	Necessidades por VLAN
Sede	144	Produção; Gestão; Informática; Vendas; Rec.Humanos	5	29
Filial 1	87	Vendas; Informática	2	44
Filial 2	18	Produção; Rec.Humanos; Vendas	3	6

FIGURA 4 - NECESSIDADES DA REDE DISTRIBUÍDAS PELAS VLANS

b. Cálculo do primeiro endereço

\21 = 11111111.11111111.11111000.00000000

172.26.202.9 = 10101100.00011010.11001010.00001001

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
1	0	1	0	1	1	0	0	0	0	0	1	1	0	1	0	1	1	0	0	1	0	1	0	0	0	0	0	1	0	0	1
1	0	1	0	1	1	0	0	0	0	0	1	1	0	1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0

Resultado: 10101100.00011010.11001000.00000000 = 172.26.200.0

A partir do cálculo realizado, conclui-se que o primeiro endereço da rede é 172.26.200.0

c. Plano de endereçamento

								End	orocco			
	1	Endereços										
Rede	VLAN	Necessidades	Bloco Mínimo	Máscara	Rede	Rede		1° IP útil		útil	Broadcast	
Filial 1	Vendas	47	2^6 = 64	/26	172.26.200.	0	172.26.200.	1	172.26.200.	62	172.26.200.	63
FIIIdi	Informática	47	2^6 = 64	/26	172.26.200.	64	172.26.200.	65	172.26.200.	126	172.26.200.	127
	Produção	32	2^5 = 32	/27	172.26.200.	128	172.26.200.	129	172.26.200.	158	172.26.200.	159
	Gestão	32	2^5 = 32	/27	172.26.200.	160	172.26.200.	161	172.26.200.	190	172.26.200.	191
Sede	Informática	32	2^5 = 32	/27	172.26.200.	192	172.26.200.	193	172.26.200.	222	172.26.200.	223
	Vendas	32	2^5 = 32	/27	172.26.200.	224	172.26.200.	225	172.26.200.	254	172.26.200.	255
	Rec.Humanos	32	2^5 = 32	/27	172.26.201.	0	172.26.201.	1	172.26.201.	30	172.26.201.	31
	Produção	9	2^4 = 16	/28	172.26.201.	32	172.26.201.	33	172.26.201.	46	172.26.201.	47
Filial 2	Vendas	9	2^4 = 16	/28	172.26.201.	48	172.26.201.	49	172.26.201.	62	172.26.201.	63
	Rec.Humanos	9	2^4 = 16	/28	172.26.201.	64	172.26.201.	65	172.26.201.	78	172.26.201.	79
RSede/R0	-	4	2^2 = 4	/30	172.26.201.	80	172.26.201.	81	172.26.201.	82	172.26.201.	83
R1/R0	-	4	2^2 = 4	/30	172.26.201.	84	172.26.201.	85	172.26.201.	86	172.26.201.	87
R2/R0	-	4	2^2 = 4	/30	172.26.201.	88	172.26.201.	89	172.26.201.	90	172.26.201.	91

FIGURA 5 - PLANO DE ENDEREÇAMENTO DA REDE

Necessidades: nº hosts + nº routers + 2 (rede + broadcast)

Bloco Mínimo: potência de Base 2 mais próxima da necessidade, por excesso

Máscara: 32 – Expoente de base 2 do bloco mínimo

2. Packet Tracer

a. Ligações

		Saída		
Equipamento	Porta	Dispositivo conectado	Cabo	Modo
	GigabitEthernet0/1	RSede	Copper Straight-Throught	Trunk
	GigaBitEthernet 0/2	Server Files	Copper Straight-Throught	Access
	FastEthernet0/1	Sede-PC1	Copper Straight-Throught	Access
SSede	FastEthernet0/2	Sede-PC2	Copper Straight-Throught	Access
	FastEthernet0/3	Sede-PC3	Copper Straight-Throught	Access
	FastEthernet0/4	Sede-PC4	Copper Straight-Throught	Access
	FastEthernet0/5	Sede-PC5	Copper Straight-Throught	Access
	GigabitEthernet0/1	R1	Copper Straight-Throught	Trunk
	FastEthernet0/1	F1-PC1	Copper Straight-Throught	Access
SF1	FastEthernet0/2	F1-PC2	Copper Straight-Throught	Access
3F1	FastEthernet0/3	F1-PC3	Copper Straight-Throught	Access
	FastEthernet0/4	F1-PC4	Copper Straight-Throught	Access
	FastEthernet0/5	F1-PC5	Copper Straight-Throught	Access
	GigabitEthernet0/1	R2	Copper Straight-Throught	Trunk
	FastEthernet0/1	F2-PC1	Copper Straight-Throught	Access
SF2	FastEthernet0/2	F2-PC2	Copper Straight-Throught	Access
3F2	FastEthernet0/3	F2-PC3	Copper Straight-Throught	Access
	FastEthernet0/4	F2-PC4	Copper Straight-Throught	Access
	FastEthernet0/5	F2-PC5	Copper Straight-Throught	Access
RSede	GigabitEthernet0/0	SSede	Copper Straight-Throught	
Koeue	Serial0/0/0	R0	Serial DCE	
R1	GigabitEthernet0/0	SF1	Copper Straight-Throught	
KI	Serial0/0/0	R0	Serial DCE	
R2	GigabitEthernet0/0	SF2	Copper Straight-Throught	
R2	Serial0/0/0	R0	Serial DCE	
	Serial0/0/0	RSede	Serial DCE	
R0	Serial0/0/1	R1	Serial DCE	
	Serial0/1/0	R2	Serial DCE	

FIGURA 6 - LIGAÇÕES DOS SWITCHES E DOS ROUTERS DA REDE

Nota: A porta usada em todos os computadores para se ligarem ao respetivo Switch é a FastEthernet0

b. VLANS

Rede	Equipamentos					
10	Produção					
11	Gestão					
12	Vendas					
13	Rec. Humanos					
14	Informática					

FIGURA 7 - VLANS CRIADAS PARA A REDE

c. IPs dos equipamentos

Equipamento	Porta	IP	SubNet Mask	Default Gateway	VLAN
Server FILES	FastEthernet0	172.26.200.221	\27 -> 255.255.255.224	172.26.200.222	14 - Informática
Sede-PC1	FastEthernet0	172.26.200.129	\27 -> 255.255.255.224	172.26.200.158	10 - Produção
Sede-PC2	FastEthernet0	172.26.200.161	\27 -> 255.255.255.224	172.26.200.190	11 - Gestão
Sede-PC3	FastEthernet0	172.26.200.125	\27 -> 255.255.255.224	172.26.200.254	12 - Vendas
Sede-PC4	FastEthernet0	172.26.201.1	\27 -> 255.255.255.224	172.26.201.30	13 - Rec.Humanos
Sede-PC5	FastEthernet0	172.26.200.193	\27 -> 255.255.255.224	172.26.200.222	14 - Informática
F1-PC1	FastEthernet0	172.26.200.65	\26 - 255.255.255.192	172.26.200.64	14 - Informática
F1-PC2	FastEthernet0	172.26.200.66	\26 - 255.255.255.192	172.26.200.64	14 - Informática
F1-PC3	FastEthernet0	172.26.200.67	\26 - 255.255.255.192	172.26.200.64	14 - Informática
F1-PC4	FastEthernet0	172.26.200.1	\26 - 255.255.255.192	172.26.200.0	12 - Vendas
F1-PC5	FastEthernet0	172.26.200.2	\26 - 255.255.255.192	172.26.200.0	12 - Vendas
F2-PC1	FastEthernet0	172.26.201.33	\28 - 255.255.255.240	172.26.201.32	10 - Produção
F2-PC2	FastEthernet0	172.26.201.34	\28 - 255.255.255.240	172.26.201.32	10 - Produção
F2-PC3	FastEthernet0	172.26.201.65	\28 - 255.255.255.240	172.26.201.64	13 - Rec.Humanos
F2-PC4	FastEthernet0	172.26.201.66	\28 - 255.255.255.240	172.26.201.64	13 - Rec.Humanos
F2-PC5	FastEthernet0	172.26.201.49	\28 - 255.255.255.240	172.26.201.48	12 - Vendas

FIGURA 8 - CONFIGURAÇÃO DOS ENDEREÇOS DOS EQUIPAMENTOS DA REDE

Equipamento	Porta	IP	SubNet Mask					
RSede	Serial0/0/0	172.26.201.81	\30 -> 255.255.255.252					
R1	Serial0/0/0	172.26.201.85	\30 -> 255.255.255.252					
R2	Serial0/0/0	172.26.201.89	\30 -> 255.255.255.252					
	Serial0/0/0	172.26.201.82	\30 -> 255.255.255.252					
R0	Serial0/0/1	172.26.201.86	\30 -> 255.255.255.252					
	Serial0/1/0	172.26.201.90	\30 -> 255.255.255.252					

FIGURA 9 – CONFIGURAÇÃO DAS LIGAÇÕES DOS ROUTERS

d. Esquema final da rede

e. Configuração dos Equipamentos

Switch - Sede

Device Name: SSede Custom Device Model: 2960 IOS15 Hostname: Switch

Port	Link	VLAN	IP Address	MAC Address
FastEthernet0/1	Up	10		0001.97B7.DC01
FastEthernet0/2	Up	11		0001.97B7.DC02
FastEthernet0/3	Up	12		0001.97B7.DC03
FastEthernet0/4	Up	13		0001.97B7.DC04
FastEthernet0/5	Up	14		0001.97B7.DC05
FastEthernet0/6	Down	1		0001.97B7.DC06
FastEthernet0/7	Down	1		0001.97B7.DC07
FastEthernet0/8	Down	1		0001.97B7.DC08
FastEthernet0/9	Down	1		0001.97B7.DC09
FastEthernet0/10	Down	1		0001.97B7.DC0A
FastEthernet0/11	Down	1		0001.97B7.DC0B
FastEthernet0/12	Down	1		0001.97B7.DC0C
FastEthernet0/13	Down	1		0001.97B7.DC0D
FastEthernet0/14	Down	1		0001.97B7.DC0E
FastEthernet0/15	Down	1		0001.97B7.DC0F
FastEthernet0/16	Down	1		0001.97B7.DC10
FastEthernet0/17	Down	1		0001.97B7.DC11
FastEthernet0/18	Down	1		0001.97B7.DC12
FastEthernet0/19	Down	1		0001.97B7.DC13
FastEthernet0/20	Down	1		0001.97B7.DC14
FastEthernet0/21	Down	1		0001.97B7.DC15
FastEthernet0/22	Down	1		0001.97B7.DC16
FastEthernet0/23	Down	1		0001.97B7.DC17
FastEthernet0/24	Down	1		0001.97B7.DC18
GigabitEthernet0/1	Up	1		0001.97B7.DC19
GigabitEthernet0/2	Up	14		0001.97B7.DC1A
Vlan1	Down	1	<not set=""></not>	0001.C798.16E4

Physical Location: Intercity > Home City > Corporate Office > Main Wiring Closet > Rack > SSede

FIGURA 10 - CONFIGURAÇÃO DO SWITCH DA SEDE

Enable Configure Terminal

Vlan 10 Name Producao Exit

Vlan 11 Name Gestao Exit

Vlan 12 Name Vendas Exit

Vlan 13 Name Rec.Humanos Exit

Vlan 14 Name Informatica Exit

interface FastEthernet0/1 switchport access vlan 10 exit

interface FastEthernet0/2 switchport access vlan 11 exit

interface FastEthernet0/3 switchport access vlan 12 exit

interface FastEthernet0/4 switchport access vlan 13 exit

interface FastEthernet0/5 switchport access vlan 14 exit

interface GigabitEthernet0/1 switchport mode trunk switchport trunk allowed vlan 2-1001 exit

interface GigabitEthernet0/2 switchport access vlan 14 exit

Switch - Filial 1

Device Name: SF1				
Custom Device Model:	2960	IOS15		
Hostname: Switch				
Port	Link	VLAN	IP Address	MAC Address
FastEthernet0/1	Up	14		000B.BE84.6801
FastEthernet0/2	Up	14		000B.BE84.6802
FastEthernet0/3	Up	14		000B.BE84.6803
FastEthernet0/4	Up	12		000B.BE84.6804
FastEthernet0/5	Up	12		000B.BE84.6805
FastEthernet0/6	Down	1		000B.BE84.6806
FastEthernet0/7	Down	1		000B.BE84.6807
FastEthernet0/8	Down	1		000B.BE84.6808
FastEthernet0/9	Down	1		000B.BE84.6809
FastEthernet0/10	Down	1		000B.BE84.680A
FastEthernet0/11	Down	1		000B.BE84.680B
FastEthernet0/12	Down	1		000B.BE84.680C
FastEthernet0/13	Down	1		000B.BE84.680D
FastEthernet0/14	Down	1		000B.BE84.680E
FastEthernet0/15	Down	1		000B.BE84.680F
FastEthernet0/16	Down	1		000B.BE84.6810
FastEthernet0/17	Down	1		000B.BE84.6811
FastEthernet0/18	Down	1		000B.BE84.6812
FastEthernet0/19	Down	1		000B.BE84.6813
FastEthernet0/20	Down	1		000B.BE84.6814
FastEthernet0/21	Down	1		000B.BE84.6815
FastEthernet0/22	Down	1		000B.BE84.6816
FastEthernet0/23	Down	1		000B.BE84.6817
FastEthernet0/24	Down	1		000B.BE84.6818
GigabitEthernet0/1	Up			000B.BE84.6819
GigabitEthernet0/2	Down	1		000B.BE84.681A
Vlan1	Down	1	<not set=""></not>	0060.70E8.4EE5
Physical Location: I	Interci	ty > Hor	me City > Corpo	orate Office > Main Wiring Closet > Rack > SF1

FIGURA 11 - CONFIGURAÇÃO DO SWITCH DA FILIAL 1

Enable Configure Terminal

Vlan 10 Name Producao Exit

Vlan 11 Name Gestao Exit

Vlan 12 Name Vendas Exit

Vlan 13 Name Rec.Humanos Exit

Vlan 14 Name Informatica Exit

interface FastEthernet0/1 switchport access vlan 14

interface FastEthernet0/2 switchport access vlan 14

interface FastEthernet0/3 switchport access vlan 14

interface FastEthernet0/4 switchport access vlan 12

interface FastEthernet0/5 switchport access vlan 12

interface GigabitEthernet0/1 switchport mode trunk switchport trunk allowed vlan 2-1001

Switch – Filial 2

Device Name: SF2

Custom Device Model: 2960 IOS15

Hostname: Switch

Port	Link	VLAN	IP Address	MAC Address
FastEthernet0/1	Up	10		0001.43D7.D101
FastEthernet0/2	Up	10		0001.43D7.D102
FastEthernet0/3	Up	13		0001.43D7.D103
FastEthernet0/4	Up	13		0001.43D7.D104
FastEthernet0/5	Up	12		0001.43D7.D105
FastEthernet0/6	Down	1		0001.43D7.D106
FastEthernet0/7	Down	1		0001.43D7.D107
FastEthernet0/8	Down	1		0001.43D7.D108
FastEthernet0/9	Down	1		0001.43D7.D109
FastEthernet0/10	Down	1		0001.43D7.D10A
FastEthernet0/11	Down	1		0001.43D7.D10B
FastEthernet0/12	Down	1		0001.43D7.D10C
FastEthernet0/13	Down	1		0001.43D7.D10D
FastEthernet0/14	Down	1		0001.43D7.D10E
FastEthernet0/15	Down	1		0001.43D7.D10F
FastEthernet0/16	Down	1		0001.43D7.D110
FastEthernet0/17	Down	1		0001.43D7.D111
FastEthernet0/18	Down	1		0001.43D7.D112
FastEthernet0/19	Down	1		0001.43D7.D113
FastEthernet0/20	Down	1		0001.43D7.D114
FastEthernet0/21	Down	1		0001.43D7.D115
FastEthernet0/22	Down	1		0001.43D7.D116
FastEthernet0/23	Down	1		0001.43D7.D117
FastEthernet0/24	Down	1		0001.43D7.D118
GigabitEthernet0/1	Up			0001.43D7.D119
GigabitEthernet0/2	Down	1		0001.43D7.D11A
Vlan1	Down	1	<not set=""></not>	0040.0B54.ACB6

Physical Location: Intercity > Home City > Corporate Office > Main Wiring Closet > Rack > SF2

FIGURA 12 - CONFIGURAÇÃO DO SWITCH DA FILIAL 2

Enable Configure Terminal

Vlan 10 Name Producao Exit

Vlan 11 Name Gestao Exit

Vlan 12 Name Vendas Exit

Vlan 13 Name Rec.Humanos Exit

Vlan 14 Name Informatica Exit

interface FastEthernet0/1 switchport access vlan 10

interface FastEthernet0/2

switchport access vlan 10

interface FastEthernet0/3 switchport access vlan 13

interface FastEthernet0/4 switchport access vlan 13

interface FastEthernet0/5 switchport access vlan 12

interface GigabitEthernet0/1 switchport mode trunk switchport trunk allowed vlan 2-1001

Router – Sede

Device Name: RSede Device Model: 2901 Hostname: Router

Port	Link	VLAN	IP Address	IPv6 Address	MAC Address
GigabitEthernet0/0	Up		<not set=""></not>	<not set=""></not>	0001.977D.6201
GigabitEthernet0/0.10	Up		172.26.200.158/27	<not set=""></not>	0001.977D.6201
GigabitEthernet0/0.11	Up		172.26.200.190/27	<not set=""></not>	0001.977D.6201
GigabitEthernet0/0.12	Up		172.26.200.254/27	<not set=""></not>	0001.977D.6201
GigabitEthernet0/0.13	Up		172.26.201.30/27	<not set=""></not>	0001.977D.6201
GigabitEthernet0/0.14	Up		172.26.200.222/27	<not set=""></not>	0001.977D.6201
GigabitEthernet0/1	Down		<not set=""></not>	<not set=""></not>	0001.977D.6202
Seria10/0/0	Up		172.26.201.81/30	<not set=""></not>	<not set=""></not>
Serial0/0/1	Down		<not set=""></not>	<not set=""></not>	<not set=""></not>
Vlan1	Down	1	<not set=""></not>	<not set=""></not>	00D0.D336.5916

Physical Location: Intercity > Home City > Corporate Office > Main Wiring Closet > Rack > RSede

FIGURA 13 - CONFIGURAÇÃO DO ROUTER DA SEDE

Enable Configure Terminal

interface GigabitEthernet0/0 no ip address duplex auto speed auto no shutdown

interface GigabitEthernet0/0.10 encapsulation dot1Q 10 ip address 172.26.200.158 255.255.255.224

interface GigabitEthernet0/0.11 encapsulation dot1Q 11 ip address 172.26.200.190 255.255.254

interface GigabitEthernet0/0.12 encapsulation dot1Q 12 ip address 172.26.200.254 255.255.255.224

interface GigabitEthernet0/0.13 encapsulation dot1Q 13 ip address 172.26.201.30 255.255.255.224

interface GigabitEthernet0/0.14 encapsulation dot1Q 14 ip address 172.26.200.222 255.255.255.224

interface GigabitEthernet0/1 no ip address duplex auto speed auto shutdown

interface Serial0/0/0 ip address 172.26.201.81 255.255.255.252 clock rate 2000000 no shutdown

interface SerialO/O/1 no ip address clock rate 2000000 shutdown

interface Vlan1 no ip address shutdown

router rip version 2 network 172.26.0.0 no auto-summary

Router - Filial 1

Device Name: R1 Device Model: 2901 Hostname: Router

IP Address IPv6 Address Link VLAN GigabitEthernet0/0 GigabitEthernet0/0.12 <not set>
172.26.200.62/26 <not set> Uр GigabitEthernet0/0.14 ďυ 172.26.200.126/26 <not set> GigabitEthernet0/1 <not set>
172.26.201.85/30 Serial0/0/0 Up <not set> Serial0/0/1 Vlan1 Down <not set> <not set>

MAC Address 00E0.B0DC.AB01 00E0.B0DC.AB01 00E0.B0DC.AB01 00E0.B0DC.AB02 <not set> <not set> 0000.0CA9.EE51

Physical Location: Intercity > Home City > Corporate Office > Main Wiring Closet > Rack > R1

FIGURA 14 - CONFIGURAÇÃO DO ROUTER DA FILIAL 1

Enable Configure Terminal

interface GigabitEthernet0/0 no ip address duplex auto speed auto no shutdown

interface GigabitEthernet0/0.12 encapsulation dot1Q 12 ip address 172.26.200.62 255.255.255.192

interface GigabitEthernet0/0.14 encapsulation dot1Q 14 ip address 172.26.200.126 255.255.255.192

interface GigabitEthernet0/1 no ip address duplex auto speed auto shutdown

interface Serial0/0/0 ip address 172.26.201.85 255.255.255.252 no shutdown

interface Serial0/0/1 no ip address clock rate 2000000 shutdown

interface Vlan1 no ip address shutdown

router rip version 2 network 172.26.0.0 no auto-summary

Router – Filial 2

Device Name: R2 Device Model: 2901 Hostname: Router					
Port	Link	VLAN	IP Address	IPv6 Address	MAC Address
GigabitEthernet0/0	Uр		<not set=""></not>	<not set=""></not>	000B.BE52.2D01
GigabitEthernet0/0.10	Uр		172.26.201.46/28	<not set=""></not>	000B.BE52.2D01
GigabitEthernet0/0.12	Up		172.26.201.62/28	<not set=""></not>	000B.BE52.2D01
GigabitEthernet0/0.13	Up		172.26.201.78/28	<not set=""></not>	000B.BE52.2D01
GigabitEthernet0/1	Down		<not set=""></not>	<not set=""></not>	000B.BE52.2D02
Seria10/0/0	Up		172.26.201.89/30	<not set=""></not>	<not set=""></not>
Serial0/0/1	Down		<not set=""></not>	<not set=""></not>	<not set=""></not>
Vlan1	Down	1	<not set=""></not>	<not set=""></not>	0007.ECD7.CA0D

FIGURA 15 - CONFIGURAÇÃO DO ROUTER DA FILIAL 2

Enable Configure Terminal

interface GigabitEthernet0/0 no ip address duplex auto speed auto no shutdown

interface GigabitEthernet0/0.10 encapsulation dot1Q 10 ip address 172.26.201.46 255.255.255.240

interface GigabitEthernet0/0.12 encapsulation dot1Q 12 ip address 172.26.201.62 255.255.255.240

interface GigabitEthernet0/0.13 encapsulation dot1Q 13 ip address 172.26.201.78 255.255.255.240

interface GigabitEthernet0/1 no ip address duplex auto speed auto shutdown

interface SerialO/O/O ip address 172.26.201.89 255.255.255.252 no shutdown

interface Serial0/0/1 no ip address clock rate 2000000 shutdown

interface Vlan1 no ip address shutdown

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

router rip version 2 network 172.26.0.0 no auto-summary

Router Central

Device Model: 2901 Hostname: Router Port Link VL	AN IP Address		
Port Link VL	N ID Address		
	AN ID Address		
	AN IF Address	IPv6 Address	MAC Address
GigabitEthernetO/O Down	<not set=""></not>	<not set=""></not>	0090.0CC6.E201
GigabitEthernet0/1 Down	<not set=""></not>	<not set=""></not>	0090.0CC6.E202
Serial0/0/0 Up	172.26.201.82/30	<not set=""></not>	<not set=""></not>
Serial0/0/1 Up	172.26.201.86/30	<not set=""></not>	<not set=""></not>
Serial0/1/0 Up	172.26.201.90/30	<not set=""></not>	<not set=""></not>
Serial0/1/1 Down	<not set=""></not>	<not set=""></not>	<not set=""></not>
Vlan1 Down 1	<not set=""></not>	<not set=""></not>	0000.0CD7.0A4B

FIGURA 16 - CONFIGURAÇÃO DO ROUTER CENTRAL

Enable Configure Terminal

interface GigabitEthernet0/0 no ip address duplex auto speed auto shutdown

interface GigabitEthernet0/1 no ip address duplex auto speed auto shutdown

interface Serial0/0/0 ip address 172.26.201.82 255.255.255.252 no shutdown

interface Serial0/0/1 ip address 172.26.201.86 255.255.255.252 clock rate 2000000 no shutdown

interface Serial0/1/0 ip address 172.26.201.90 255.255.255.252 clock rate 2000000 no shutdown

interface Serial0/1/1 no ip address clock rate 2000000 shutdown

interface Vlan1 no ip address shutdown

router rip version 2

network 172.26.0.0 no auto-summary

Rotina em caso de troca de router

Caso se troque um router, mesmo que se volte a fazer a configuração do mesmo toda outra vez, os PC's não irão conectar, pois, caso se trate de um router de uma filial, ou sede, o switch guardará o endereço MAC do router antigo, não permitindo a conexão com o novo, para resolver isto, basta ir ao respetivo switch, entrar no switch com o comando *en*, e reiniciar o mesmo com o comando *reload*

3. Testes na Rede

Para testar a conectividade de todos os equipamentos na rede, criou-se um ambiente que testa a conectividade de todos os equipamentos com o servidor FILES, o resultado pode ser visualizado na Figura 10.

Fire	Last Status	Source	Destination	Type	Color	Time(sec)	Periodic	Num
•	Successful	Sede-P	FILES	ICMP		0.000	N	0
•	Successful	Sede-P	FILES	ICMP		0.000	N	1
•	Successful	Sede-P	FILES	ICMP		0.000	N	2
•	Successful	Sede-P	FILES	ICMP		0.000	N	3
•	Successful	Sede-P	FILES	ICMP		0.000	N	4
•	Successful	F1-PC1	FILES	ICMP		0.000	N	5
•	Successful	F1-PC2	FILES	ICMP		0.000	N	6
•	Successful	F1-PC3	FILES	ICMP		0.000	N	7
•	Successful	F1-PC4	FILES	ICMP		0.000	N	8
•	Successful	F1-PC5	FILES	ICMP		0.000	N	9
•	Successful	F2-PC1	FILES	ICMP		0.000	N	10
•	Successful	F2-PC2	FILES	ICMP		0.000	N	11
•	Successful	F2-PC3	FILES	ICMP		0.000	N	12
•	Successful	F2-PC4	FILES	ICMP		0.000	N	13
•	Successful	F2-PC5	FILES	ICMP		0.000	N	14

FIGURA 17 - TESTES DE CONECTIVIDADE DE TODOS OS COMPUTADORES AO SERVIDOR

4. Plano de orçamento

Para a realização da tabela dos preços foram realizadas pesquisas para que ficasse de acordo com o que foi usado no Cisco Packet Tracer. Os sites/lojas usadas foram a Amazon.es e a Worten.

Na Amazon encontramos o Switch, Router, o Modulo, Bobina, Crimpadora e as cabeças Rj45, já na Worten encontramos o PC(desktop), monitor, teclado e rato.

Para o servidor, com a recomendação do professor da prática, procuramos um servidor que pertença à Cisco. Encontramos o Cisco UCS C480 M5 Rack Server.

Onde procuramos uma configuração de alto desempenho:Processador Intel Xeon Scalable Platinum 8280, 128 GB de memória DDR4, 8 unidades NVMe de 2,5 polegadas, 2 portas Ethernet 40GBase-QSFP+ LOM

Para o PC (desktop), com ajuda do professor que forneceu uma informação bastante importante que por norma os computadores ficaram acima de 700€, então com uma extensa pesquisa na Worten, encontramos o seguinte computador: Desktop LENOVO (i5-8400T - RAM: 8 GB - 256 GB SSD - Intel® UHD Graphics 630)

Analisamos as características técnicas e achamos que este seria o ideal, uma vez que é pequeno o bastante para uma fácil locomoção e instalação, permitindo uma maior liberdade aos funcionários de trabalharam em casa e no trabalho com o mesmo computador.

Para o resto dos equipamentos como encontramos mais facilmente no site de amazon e correspondia ao que usamos no Cisco então foram os escolhidos.

Tabela de Preços								
Equipamento	Necessidade	Site	Preço					
Switch 2960-24TT	9	Amazon.es	891,45€					
Router 2901	4	Amazon.es	447,07€					
Module HWIC-2T	5	Amazon.es	166,95€					
Server - PT(Cisco UCS C480 M5 Rack Server)	1	Amazon.es	9 000,00 €					
Pc	215	Worten	1 161,41 €					
Bobina (305m)	1	Amazon.es	111,84 €					
Cabeças RJ45	5	Amazon.es	14,12 €					
Crimpadora	1	Amazon.es	29,47€					
Rato e Teclado	215	Worten	101,99€					
Monitor	215	Worten	184,48 €					
Total:			331 152,19 €					

FIGURA 18 - PLANO DE ORÇAMENTO PARA TODA A REDE

Nota: Como são precisos 215 computadores, no entanto a rede deve suportar um crescimento de 15% (247 computadores), então vão ser precisos 9 switches, visto que cada switch tem 18 portas.

FIGURA 19 - SWITCH ESCOLHIDO NO PLANO DE ORÇAMENTO

FIGURA 20 - ROUTER ESCOLHIDO NO PLANO DE ORÇAMENTO

FIGURA 21 - MODULO ESCOLHIDO NO PLANO DE ORÇAMENTO

FIGURA 22 – SERVIDOR ESCOLHIDO NO PLANO DE ORÇAMENTO

FIGURA 23 - COMPUTADOR ESCOLHIDO NO PLANO DE ORÇAMENTO

FIGURA 24 - BOBINA DE 305 METROS ESCOLHIDA PARA O PLANO DE ORÇAMENTO

FIGURA 25 - CABEÇAS RJ45 PARA MONTAR OS CABOS ETHERNET NO PLANO DE ORÇAMENTO

2

FIGURA 26 — CRIMPADORA ESCOLHIDA PARA UNIR AS CABEÇAS RJ45 COM O CABO DA BOBINA NO PLANO DE ORÇAMENTO

FIGURA 27 - TECLADO E RATO ESCOLHIDO PARA O PLANO DE ORÇAMENTO

FIGURA 28 - MONITOR ESCOLHIDO PARA O PLANO DE ORÇAMENTO

0

5. Decisões Tomadas

Distribuição de IP's

Como para o âmbito deste trabalho não é permitida a utilização do protocolo DHCP ou semelhantes, que fazem a distribuição dos IP's automaticamente pela rede, foi necessário calcular e atribuir todos os IP's individualmente, portanto é preciso ter um cuidado especial na atribuição dos mesmos, pois a distribuição dos IP's sem nenhuma regra ou padrão pode levar a dificuldades na leitura e escalabilidade da rede.

Portanto, para este trabalho seguiu-se para a distribuição dos IP's, onde os primeiros IP's iriam para os computadores, o último IP vai para o router, e os últimos IP's disponíveis antes do router são utilizados para os servidores.

VI AN's

Uma VLAN é uma técnica que permite segmentar várias redes físicas (LAN) em uma ou várias redes lógicas independentes umas das outras, caso se queira que as VLAN's comuniquem entre si, será necessário um Switch que opera na terceira camada do modelo OSI, ou através da ligação com um router.

Cada VLAN precisa de ser identificada por um nome e um número, e para este projeto decidiu-se que cada VLAN teria o nome de um departamento, e que começariam a partir do número 10.

RIP

O RIP é um protocolo de rede que funciona sobre a camada de aplicação do modelo OSI, ele é essencial para evitar loops na rede, e ajudar os routers a escolherem as melhores rotas sobre as redes disponíveis para encaminhar o tráfego.

Para a realização deste trabalho foi optado pela utilização da versão 2 deste protocolo, pois consegue ser bastante superior que a sua primeira versão, sendo algumas dessas melhorias: a transmissão é realizada em multicast e o roteamento entre domínios é realizado sem classes e conte. Outras decisões tomadas foi a desativação da sumarização automática, para evitar futuros problemas.

Conclusão

Neste relatório foi exposto o processo de planeamento e montagem de uma rede, e concluiu-se que, por detrás de todas as aplicações que usamos existe toda uma camada a mais de complexidade, que a montagem de uma rede afinal não é algo tão fácil quanto parece, e que existe toda uma área que até este semestre era-nos desconhecida.

Ao olhar em retrospetiva, mesmo com todas as dificuldades encontradas, achamos que a realização deste projeto foi bem-sucedida, e que não só conseguimos atender aos objetivos nos forma propostos pelo enunciado, como também os objetivos que propusemos a nós mesmos.

Em suma, a realização deste projeto foi muito importante para o nosso crescimento profissional, pois permitiu-nos colocar em prática os conhecimentos que adquirimos no decorrer das aulas, e aperceber que existe toda uma área de conhecimento por detrás do funcionamento das redes que antes desconhecíamos.