

Algorithms and Data Structures 2 CS 1501

Spring 2023

Sherif Khattab

ksm73@pitt.edu

Announcements

- Lab 0 is due this Friday
 - Not graded and no deliverables
- Recitations start next week
- Homework 1 will be posted this Friday on GradeScope
- Available on Canvas
 - JDB Example
 - Video on debugging using VS Code
 - Link to Draft slides and handouts repository

Recall from previous lecture

A technique for modeling runtime of algorithms

- $\sum_{all\ statements} Cost\ of\ statement* frequency\ of\ statement$
- Split the algorithm into blocks such that
 - the code statements in each block have the same frequency
- $\sum_{all\ blocks} Costof\ block * frequency\ of\ block$

```
public int sum(int[] a) {
```

```
int sum = 0;
                 How much time does
                 that statement take?
                Depends on machine used, other programs
                 running, etc.
                 Let's assume it is a
                 constant C<sub>0</sub>
```

public int sum(int[] a) {

```
int sum = 0;
        int i = 0;
         Cost = C_0
         How many times does that statement execute in one
          run of the algorithm?
         Just once!
```

public int sum(int[] a) {

```
int sum = 0;
     int i = 0;
     • Cost = C_0
      frequency = 1
```

```
public int sum(int[] a) {
    int sum = 0;
    for (int i = 0; i < n; i++) {
        sum \rightarrow m + a[i];
             Cost = C_1
           frequency = 1
```

```
public int sum(int[] a) {
     int sum = 0;
     for (int i = 0; i < n; i++) {
         sum = sum + a[i];
     return sum;
                        • Cost = C_2
                        • frequency = 1
            CS 1501 – Algorithms & Data Structures 2 – She
```

```
public int sum(int[] a) {
     int sum = 0;
     for (int i = 0; i < n; i++) {
         sum = sum + a[i];
     return sum;
                        • Cost = C_0
                        • frequency = 1
            CS 1501 – Algorithms & Data Structures 2 – She
```

```
public int sum(int[] a) {
    int sum = 0;
    for (int i = 0; i < n; i++) {
       sum = sum + a[i];
    return sum;
                     Cost = C_1
                     frequency = n
```

```
public int sum(int[] a) {
    int sum = 0;
    for (int i = 0; i < n; i++) {
       sum = sum + a[i];
    return sum;
                    Cost = C_2
                    frequency = n+1
```


What is the running time?

• $\sum_{all\ blocks}$ Costof block * frequency of block

```
• = C_0*1 + C_1*n + C_2*(n+1)
     public int sum(int[] a) {
         int sum = 0;
         for (int i = 0; i < n; i++) {
            sum = sum + a[i];
         return sum;
```

```
public int sum(int[] a, int x) {
 int sum = 0;
 if(x > 0){
    for (int i = 0; i < n; i++) {
       sum = sum + a[i];
 return sum;
```


$$for(i=n;i>1;i=i/n)$$
 $for(i)=i;(log n)$

What is the runtime of ThreeSum?

```
frequency: f_0 = 1 cost: t_0
```

```
freq: f_1 = n cost: t_1
```

```
f_4 = x (the number of triples that sum to 0 in the input array)
```

$$0 \le x \le C(n,3)$$

cost: t₄

 $\frac{n}{3}$

What is the runtime of ThreeSum?

frequency: $f_0 = 1$ cost: t_0

freq:
$$f_1 = n$$
 cost: t_1

$$f_2 = (n-1) + (n-2) + (n-3) + \dots + 1$$

$$= \frac{n-1}{2}(n-1+1) = \frac{n^2}{2} - \frac{n}{2}$$

$$cost = t_2$$

 $f_4 = x$ (the number of triples that sum to 0 in the input array) $0 \le x \le C(n, 3)$

cost: t₄

$$f_3 = C(n,3) = n_{C_3} = \frac{n!}{(n-3)!3!}$$

$$= \frac{n(n-1)(n-2)(n-3)!}{(n-3)!6} = \frac{n(n-1)(n-2)}{6} = \frac{n^3}{6} - \frac{n^2}{2} + \frac{n}{3}$$
cost: t_3

Grand total =
$$\sum_{i=0}^{4} f_i * t_i$$

$$= \frac{t_3}{6}n^3 + (\frac{t_2}{2} - \frac{t_3}{2})n^2 + (\frac{t_3}{3} - \frac{t_2}{2} + t_1)n + t_0 + t_4x$$

CS 1501 – Algorithm Implementation – Sherif Khattab

What is the runtime of ThreeSum?

$$\frac{t_3}{6}n^3 + (\frac{t_2}{2} - \frac{t_3}{2})n^2 + (\frac{t_3}{3} - \frac{t_2}{2} + t_1)n + t_0 + t_4x$$

- Remember that $0 \le x \le C(n, 3)$
- If x = 0 → best-case runtime

$$\frac{t_3}{6}n^3 + (\frac{t_2}{2} - \frac{t_3}{2})n^2 + (\frac{t_3}{3} - \frac{t_2}{2} + t_1)n + t_0$$

• If $x = C(n, 3) \rightarrow$ worst-case runtime

$$\frac{t_3}{6}n^3 + (\frac{t_2}{2} - \frac{t_3}{2})n^2 + (\frac{t_3}{3} - \frac{t_2}{2} + t_1)n + t_0 + t_4(\frac{n^3}{6} - \frac{n^2}{2} + \frac{n}{3})$$

Algorithm Analysis

- You see that this analysis can get ugly at times
- Do we really need to consider all these terms and constants?
 - The answer is No!

Enter Asymptotic Analysis

Algorithm Analysis

- Determine resource usage as a function of input size
 - e.g., *n*, in 3-sum, the length of the array size, is the input size
 - We already did that for ThreeSum
- Measure asymptotic performance
 - Performance as input size increases to infinity

Asymptotic performance

Focus on the <u>order of growth</u> of functions, not on exact values

Asymptotic performance

Order of growth captures how fast the function value increases when the input increases; in particular, for a function T(n)

- When *n* doubles, does *T(n)* essentially
 - stay constant
 - increase by a constant
 - double as well
 - quadruple (x4)
 - increase eightfold (x8)
 - ...?
- When n increases by 1, does T(n) essentially
 - double
 - increase n-fold (xn)
 - ...?

Asymptotic performance

We don't care as much about the exact value of T(n)

Common orders of growth in Algorithm Analysis

- Constant 1
- Logarithmic log n
- Linear n
- Linearithmic n log n
- Quadratic n²
- Cubic n³
- Exponential 2ⁿ
- Factorial n!

https://www.desmos.com/calculator/tgud0bb1mz

Side note

What does log_2n really mean? log_2n is the number of times n can be divided by 2 before until we reach 1 or less

Side note

Why do we use T(n) instead of f(x)?

T stands for Time, or running time
Using n signifies that the input is a positive integer

Order of growth of runtime functions

- For runtime functions, is it better to have a function with a high order of growth or a low order of growth?
 - low order of growth means when input size increases, the value of the runtime won't increase by much
 - This means a fast algorithm
 - So, we want a low order of growth function for runtime

Quick algorithm analysis

- How can we determine the order of growth of a function?
 - Ignore lower-order terms
 - Ignore multiplicative constants
- Example: polynomial functions
 - $T(n) = 5n^3 + 53n + 7$
 - Terms: $5n^3$, 53n, 7
 - $5n^3$ is of order 3, 53 n is of order 1
 - what is the order of the term 7?

$$5n^3 + 53n + 7 \rightarrow n^3$$

- Warning: this is a simplification
 - It works for most of the algorithms in this course
- In some cases, it is difficult to determine the highest-order term
- In some cases, the constant factors play a significant role
 - e.g., small or medum-size input and large constant factors

But ...

- Can we say $5n^3 + 53n + 7 = n^3$?
- No! We need a mathematical notation
- $5n^3 + 53n + 7 = O(n^3)$
 - Read as Big O of n^3
- It means the order of growth of $5n^3 + 53n + 7$ is no more than (\leq) the order of growth of n^3

Notations

- May also see:
 - $f(x) \in O(g(x))$ or
 - f(x) = O(g(x))
- used to mean that f(x) is O(g(x))
- Same for the other functions

Notations

The Big O Family

- O roughly means ≤
 - Big O
- o roughly means <
 - Little O or O-micron
- Ω roughly means ≥
 - Big Omega
- ω roughly means >
 - Little Omega
- O roughly means =
 - Theta
- Relationships are between orders of growth, not between exact values!

Asymptotic analysis approximations

- How can we determine the order of growth of a function?
 - Ignore lower-order terms
 - Ignore multiplicative constants
- Would it matter if the frequency of a statement is n or n+1?
 - No!
- Would it matter if it is n or 2n?
 - No!
- Would it matter if it is 2ⁿ or 2²ⁿ?
 - Yes! Why?

A couple useful approximations under Asymptotic Analysis

Let's go back to our ThreeSum Algorithm

We know that

$$T(n) = \frac{t_3}{6}n^3 + (\frac{t_2}{2} - \frac{t_3}{2})n^2 + (\frac{t_3}{3} - \frac{t_2}{2} + t_1)n + t_0 + t_4x$$

- What is the order of growth of T(n)?
 - $T(n) = O(n^3)$

Let's go back to our ThreeSum Algorithm

- Assuming that definition...
 - Is ThreeSum O(n⁴)?
 - What about O(n⁵)?
 - What about O(3ⁿ)??
- If all of these are true, why was O(n³) what we
 - jumped to to start?

Another mathematical notation

Tilde approximation (~)

- Same as Theta but keeps constant factors
- Two functions are Tilde of each other if they have the same order of growth and the same constant of the largest term

$$5n = \left(\frac{5}{000},000,000 n\right)$$

$$= \left(\frac{5}{000},000,000 n\right)$$

A faster algorithm for 3-sum

- What if we sorted the array first?
 - For each pair of numbers, binary search for the third one that will make a sum of zero
 - e.g., a[i] = 10, a[j] = -7, binary search for -3
 - Be careful not to use the same number twice
- What is the runtime?
 - Still have two for-loops, but we replace the third with a binary search
 - What if the input data isn't sorted?
 - What about the sorting time?

The 3-sum problem: can we do better?

- There is an $O(n^2)$ algorithm
 - Idea 1: use hashing to find the third number
 - Idea 2: for each number, find the missing pair of numbers in linear time
- There is also an O(n log n) algorithm under special cases
- Unsolved problem: Is there a general $O(n^{2-\varepsilon})$ algorithm for some $\varepsilon > 0$?