D^3 AS A 2-MCFL

Orestis Melkonian, Konstantinos Kogkalidis

August 8, 2018

Utrecht University

Introduction/Definition

2-MCFG

Generalization of the CFG over tuples of strings

INTRODUCTION / DEFINITION

2-MCFG

Generalization of the CFG over tuples of strings

N-DIMENSIONAL DYCK LANGUAGE D^N

Defined over an ordered alphabet of *N* symbols:

$$\{\alpha_1 < \dots < \alpha_N\}$$
 s.t. words satisfy two conditions:

- 1. Equal number of occurrences of all alphabet symbols
- 2. Any prefix of a word must contain at least as many α_i as $\alpha_{i+1} \quad \forall i \leq N-1$

DYCK WORDS

- abc
- · aabbcc
- abcabcabacbc

DYCK WORDS

- abc
- · aabbcc
- abcabcabacbc

NON-DYCK WORDS

aabb

DYCK WORDS

- abc
- · aabbcc
- abcabcabacbc

NON-DYCK WORDS

- aabb
- aabbbcc

DYCK WORDS

- abc
- · aabbcc
- abcabcabacbc

NON-DYCK WORDS

- aabb
- aabbbcc
- abcacb

DYCK WORDS

- abc
- aabbcc
- abcabcabacbc

NON-DYCK WORDS

- aabb
- aabbbcc
- abcacb

ababacbcabcc

DYCK WORDS

- abc
- aabbcc
- abcabcabacbc

NON-DYCK WORDS

- aabb
- aabbbcc
- abcacb

DYCK WORDS

- abc
- · aabbcc
- abcabcabacbc

NON-DYCK WORDS

- aabb
- aabbbcc
- abcacb

DYCK WORDS

- abc
- aabbcc
- abcabcabacbc

NON-DYCK WORDS

- aabb
- aabbbcc
- abcacb

D³ - Some examples

DYCK WORDS

- abc
- aabbcc
- abcabcabacbc

NON-DYCK WORDS

- aabb
- aabbbcc
- abcacb

MOTIVATION

NATURAL LANGUAGES

Free word order respecting linear order constraints

MOTIVATION

NATURAL LANGUAGES

Free word order respecting linear order constraints

PROGRAMMING LANGUAGES

Static Analysis of non-standard control flows (e.g. yield)

G₀: Grammar of triple insertions

$$S(xy) \leftarrow W(x, y). \tag{1}$$

$$W(\epsilon, xyabc) \leftarrow W(x, y). \tag{2}$$

$$W(\epsilon, xaybc) \leftarrow W(x, y). \tag{3}$$

$$...$$

$$W(abxcy, \epsilon) \leftarrow W(x, y). \tag{60}$$

$$W(abcxy, \epsilon) \leftarrow W(x, y). \tag{61}$$

$$W(\epsilon, abc). \tag{62}$$

$$W(a, bc). \tag{63}$$

$$W(ab, c). \tag{64}$$

$$W(abc, \epsilon). \tag{65}$$

G₀: GRAMMAR OF TRIPLE INSERTIONS

Straddling counter-example

META-GRAMMARS: INTRODUCTION

NOTATION

 $\mathcal{O}_{\textit{m}} \llbracket \text{conclusion} \leftarrow \text{premises} \mid \text{partial orders} \rrbracket.$

META-GRAMMARS: INTRODUCTION

NOTATION

 \mathcal{O}_m [conclusion \leftarrow premises | partial orders]].

META-GRAMMAR G₁

$$\mathcal{O}_{2}[W \leftarrow \epsilon \mid \{a < b < c\}]].$$

$$\mathcal{O}_{2}[W \leftarrow W_{xy} \mid \{x < y, \ a < b < c\}]].$$
TRIPLE
INSERTION

META-GRAMMARS: INTRODUCTION

NOTATION

 \mathcal{O}_m [conclusion \leftarrow premises | partial orders]].

META-GRAMMAR G₁

$$\mathcal{O}_{2}[W \leftarrow \epsilon \mid \{a < b < c\}]].$$

$$\mathcal{O}_{2}[W \leftarrow W_{xy} \mid \{x < y, \ a < b < c\}]].$$
TRIPLE
INSERTION
$$+$$

$$\mathcal{O}_{2}[W \leftarrow W_{xy}, W_{zw} \mid \{x < y, \ z < w\}]].$$
WORDS

G₂: Adding states

$$\begin{array}{l} \mathcal{O}_{2} \llbracket \mathsf{A}^{+} \leftarrow \epsilon \mid \{a\} \rrbracket. \\ \mathcal{O}_{2} \llbracket \mathsf{B}^{+} \leftarrow \epsilon \mid \{b\} \rrbracket. \\ \mathcal{O}_{2} \llbracket \mathsf{C}^{+} \leftarrow \epsilon \mid \{c\} \rrbracket. \end{array} \right\} \text{BASE CASES}$$

$$\mathcal{O}_{2} [\![C^{-} \leftarrow A^{+}, B^{+} \mid \{x < y < z < w\}]\!] .$$

$$\mathcal{O}_{2} [\![B^{-} \leftarrow A^{+}, C^{+} \mid \{x < y < z < w\}]\!] .$$

$$\mathcal{O}_{2} [\![A^{-} \leftarrow B^{+}, C^{+} \mid \{x < y < z < w\}]\!] .$$

$$\mathcal{O}_{2} [\![A^{+} \leftarrow C^{-}, B^{-} \mid \{x < y < z < w\}]\!] .$$

$$\mathcal{O}_{2} [\![B^{+} \leftarrow C^{-}, A^{-} \mid \{x < y < z < w\}]\!] .$$

$$\mathcal{O}_{2} [\![C^{+} \leftarrow B^{-}, A^{-} \mid \{x < y < z < w\}]\!] .$$

$$\forall \ \mathsf{K} \in \mathcal{S} \setminus \mathsf{W} : \mathcal{O}_{2} [\![\mathsf{K} \leftarrow \mathsf{K}_{xy}, \mathsf{W}_{zw} \mid \{x < y, \ z < w\}]\!] .$$

G₃: G₂ + Universal triple insertion

$$\begin{split} G_3 = G_2 + \forall \ K \in \mathcal{S} \setminus W: \\ \mathcal{O}_2 \llbracket K \leftarrow K_{xy} \mid \{x < y, \ a < b < c\} \rrbracket. \end{split}$$

REFINING STATES

EXAMPLE

REFINING STATES

EXAMPLE

WHY?

NEW ORDERS IN INTERACTIONS

$$C^-(xz, wy) \leftarrow A^+_{left}(x, y), B^+(z, w).$$

REFINING STATES: INTERACTIONS

G₄: AUTOMATIC RULE INFERENCE

State descriptors ${\cal D}$

$W\mapsto (\epsilon,\epsilon)$	$A_r^- \mapsto (\epsilon, bc)$
$A_l^+ \mapsto (a, \epsilon)$	$A_{lr}^- \mapsto (b,c)$
$A_r^+ \mapsto (\epsilon, a)$	$B_l^- \mapsto (\mathit{ac}, \epsilon)$
$B^+_l \mapsto (b,\epsilon)$	$B^r\mapsto (\epsilon,ac)$
$B^+_r \mapsto (\epsilon,b)$	$B^{lr}\mapsto (a,c)$
$C_l^+ \mapsto (c, \epsilon)$	$C^l \mapsto (ab, \epsilon)$
$C_r^+ \mapsto (\epsilon, c)$	$C^r \mapsto (\epsilon, ab)$
$A_l^- \mapsto (bc, \epsilon)$	$C^{lr}\mapsto (a,b)$

AUTOMATIC RULE INFERENCE: EXAMPLE

CASE OF
$$A_{lr}^-(x_b, y_c) + B_{lr}^-(z_a, w_c)$$

PERMUTATION

.

(zxw, y)

:

(xzw, y)

:

AUTOMATIC RULE INFERENCE: EXAMPLE

CASE OF
$$A_{lr}^-(x_b, y_c) + B_{lr}^-(z_a, w_c)$$

$$\begin{array}{cccc} \underline{\mathsf{PERMUTATION}} & \underline{\mathsf{DESCRIPTOR}} \\ \vdots & & \vdots \\ (\mathit{zxw}, \ \mathit{y}) & & \longrightarrow & (\mathit{abc}, \ \mathit{c}) \\ \vdots & & \vdots \\ (\mathit{xzw}, \ \mathit{y}) & & \longrightarrow & (\mathit{bac}, \ \mathit{c}) \\ \vdots & & \vdots & & \vdots \\ \end{array}$$

AUTOMATIC RULE INFERENCE: EXAMPLE

CASE OF
$$A_{lr}^-(x_b, y_c) + B_{lr}^-(z_a, w_c)$$

RESULTS

COMPUTATION TIME (in log(sec))

1	2
3	4
5	6

•	1
2	3
4	5

1	2
3	4
5	6

1	•
2	3
4	5

1	2
3	4
5	6

1	3
2	
4	5

1	2
3	4
5	6

1	3
2	5
4	•

1	2
3	4
5	6

1	3
2	5
4	6

CORRESPONDENCES: SPIDER WEBS

GROWTH RULES

