University of Toronto

Faculty of Arts and Sciences

Sample Final Exam, April-May 2014

MAT 337 H1

Intro Real Analysis

Instructor: Regina Rotman

Duration - 3 hours

No aids allowed

Total marks for this paper is 400

Please write your name in the space provided as well as on the Blue Book

Last Name:

Given Name:

FOR MARKER ONLY		
Question	Mark	•
1		
2		
 3		
4	,	
 5		
 6		
 TOTAL		

Page 1 of 2 _____

[90] Problem 1.
Is there
[10] (a) a function that is uniformly continuous on the interval $[0,1]$, but is not Lipschitz there,
$-$ [10] (b) a function that is Lipschitz on the interval $[0,\infty)$, but is not uniformly continuous there, \vdash $-$
[10] (c) a differentiable function whose derivative is bounded on the interval [0,1], but the function
is not Lipschitz on [0,1],
[10] (d) a function that is continuous on $[0,1]$, but does not attain its minimum value on $[0,1]$,
[10] (e) a function that is continuous on \mathbb{R} , but is nowhere differentiable. \top $f(X) = \sum_{n=1}^{\infty} \frac{110^n}{10^n}$
[10] (f) a function f that is defined on $[0,1]$, not continuous at any point of $[0,1]$, but f^2 is
continuous at every point of [0,1],
-[10] (g) a function that is defined on $[0,1]$ and is continuous only at the irrational numbers of
[10] (h) a nonconstant continuous function $f: \mathbb{R} \to \mathbb{R}$, that has only irrational numbers in its
[10] (h) a nonconstant continuous function $f: \mathbb{R} \longrightarrow \mathbb{R}$, that has only irrational numbers in its range,
[10] (i) a continuous function $f: \mathbb{R} \longrightarrow \mathbb{R}^n$ such that $\lim_{n \to \infty} f(\frac{1}{n}) \neq f(0)$,
You may explain your answers either by stating the relevant theorem or by giving an example,
when it exists, but you do not have to do it to get a full credit for a correct answer.
[70] Problem 2.
(c + 1) + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
[35] (a) A normed vector space V is strictly convex if $ u = v = v = 1$ for vectors u, v
implies that $u = v$. Show that an inner product space is always strictly convex.
[35] (b) Let K be a compact subset of \mathbb{R}^n . Let $C(K)$ denote the vector space of all continuous functions on K . For $f \in C(K)$, denote $ f _{\infty} = \sup_{x \in K} f(x) $. Show that this is a norm
C(K).
leaster space is closed and bounded.
[70] Problem 3. Prove that a compact subset of a normed vector space is closed and bounded.
[70] Problem 4. Prove that an inner product space V satisfies the triangle inequality
[70] Problem 4. Prove that an inner product space
[70] Problem 4. Prove that an inner product $ x + y \le x + y $ for all $x, y \in V$.
[50] Problem 5. Prove that the series $f(x) = \sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)}$ converges uniformly on \mathbb{R} .
Prove that the series $f(w) = n = 1 n(1+nw)$
[50] Problem 6. Find the Fourier series for $\sin^3\theta$ on $[-\pi,\pi]$.
Find the Fourier series for $\sin^3 \theta$ on $[-\pi, \pi]$.
Page 2 of 2
1 age 2 of the

Sample. Final Problem 1. (a). True · f(x)=Jx. uniformly continuous but not Lipschtz.

(b). False. Lipschtz => unif. cont.

(c). False. |fa>-fa|= |fa|x-y| If'col=M => If(x)-f(y)| =M|x-y| ⇒ Lipschitz (cb. False [D,1] is compact, closed & bdd $\Rightarrow EVT$ (e). True $f\infty = \sum_{n=1}^{\infty} \frac{1}{10^n} \times 10^n$ of True, $f(x) = \begin{cases} 1 & x \neq Q \\ 0 & x \in Q \end{cases}$ (9). True. $f(x) = \begin{cases} 0 & x \neq 0 \\ \frac{1}{4}, & x = \frac{1}{4}, & \text{if } x \text{ is rational.} \end{cases} \frac{lcd(p-g)=1}{}$ th. OFalse. consider, x, y are irrational #,

By IVT, IXo f(x)= &.

By IVT, IXo f(x)= &. (i). False. + >0 as is so f cont. at 0. 45-70, 7 1-0xp 3> (0) - +27 E,0534 Yr=1V Itiler whereas n=N => 42 3N s.t. | f(h)-f(0) | < E whenever N>N 垂Phoblem 2: (a). inner product space 0 < u, u > = 0 iff u = 0& < x,y>=<y.x> 3 < d9+ by, Z>= A<x,Z>+B<y,Z> -if ||u|| = ||u+v|| = ||v|| = ||v|we have <u,u>=1, <v,v>=1, <\frac{1+v}{2}, \frac{1+v}{2}>=1 = < u = u > + < u, v > + = < v, v > = 2 =><u,u>+2<u,v>+<v,v>=4_ <u.v>=/ but <u, v> < ||u|| ||v|| =>u, v are colinear WLDG, sps u=vt <tv, tv>= +2<tv, v>+ < v, v>=4 +2<v,v>+2t<v,v>+<v,v>=4 __(f3+2++1)<v,v>=4 $(t+1)^{2} \cdot 1 = 4$ ++1=±2 t=1 or -3 However < u, u> = < v, v> => <tv, tv>=<v,v> t2</, >> =< </, <> 20 F=1 => t=1 => U=V => inner product space is always strictly comex.

(b). If floo = Sup _{xek} foxol
E positive definiteness. Sup $ f(x) = 0 \Rightarrow f(x) = 0$ for $\forall x \in \mathbb{R}$ $f(x) = 0 \Rightarrow \sup f(x) = 0 = f(x) = 0 = f(x) $ Annormalis
b) who parate
$ \alpha f _{\infty} = \sup_{x \to \infty} \alpha f(x) = \sup_{x \to \infty} \alpha f _{\infty}$ 3) Triangle inequality. $ f+g _{\infty} = \sup_{x \to \infty} f+g \le \sup_{x \to \infty} f + g \le \sup_{x \to \infty} f(x) + \sup_{x \to \infty} g(x) $
Problem 3.
Show closed: Compact: It see we have a convergent sesubsequence that converges to a
So for all seg (Vn) in (V, V.11), sps. Un > V. So all subseg Vni > V
V is compact, the VEV => all limits in V => closed.
consider (Vn), an unbounded seg, s.t. II Vn II > n for all the clearly (Vn) does not converge, so any subseq (Vn;) must
clearly (Vn) does not converge, so any subseq (Uni) most has Vni > on; => subseq does not converge either => not compact, contradiction
s bdd
Problem 4.
$ x+y ^{2} = \langle x+y, x+y \rangle = \langle x, x \rangle + 2 \langle x, y \rangle + \langle y, y \rangle$ $= xy ^{2} + 2 \langle x, y \rangle + y ^{2}$ $\leq x ^{2} + 1 y ^{2} + 2 x y (Couchy - Schnarz)$
- (Mily) 2

. . , .

Problem 5:
$$f(x) = \sum_{n=1}^{\infty} \frac{x}{n(Hnx^2)} + \frac{x^2 n^2 x}{n^2 (Hnx^2)^2} = \frac{n(I-nx^2)}{n^2 (Hnx^2)^2}$$

when $x = \sqrt{1}$, an ordinary max.

$$f(\sqrt{n}) = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n(Hnx^2)} = \sum_{n=1}^{\infty} \frac{1}{n(Hnx^2)^2}$$

Sup $|\frac{x}{n(Hnx^2)}| = \frac{1}{2n^{\frac{1}{2}}} \leq \frac{1}{n^{\frac{1}{2}}}$ for sure.

$$|\frac{x}{n(Hnx^2)}| = \frac{1}{2n^{\frac{1}{2}}} \leq \frac{1}{n^{\frac{1}{2}}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1$$

if n=3, n=1 --- $f=-4\sin\theta$ - $\frac{7}{4}\sin\theta$

```
MAT337 Final Review,
Covered mederials:
   CA2 \$2.3-\$2.8
 -Ch3, Ch4, Ch5
    CA7, all, except proofs in §7.7.
CA8, CA9: §9.1. §9.2
Suggested problems
Page 15.
$2.3 D.
 For the following sets, find the sup & inf. which have a max or min?
  (a). A = \{\alpha + \alpha^{-1} : \alpha \in \emptyset, \alpha > 0\} (a). \inf A = 2, \min A = 2
  (b). 8= {a+(2a) 1: a∈Q, 0.1≤a≤5} (b). 1+ ±(-1). 1=1- 2a²
  (c) C= 1xe-x: x = R?
                                                                     0.1+(0.2) = 0.1+5=5.1
                                                                       S+ 10-1= 5.1
                                                                   min B= 15, max B=5.1
                                                                    infB=12, # supB=5.1
    (c). e^{-x} + x \cdot (-e^{-x}) = e^{-x} - xe^{-x}
           e-x(1-x)=0
            e-x +0, so x=1,
            so max = mox C = sup C = \frac{1}{C} when \alpha = 1.
Page 18.
82.4 A, F, G
A) compute the limit, using E=10^{-6}. find an integer N that satisfies the
 limit definition.
  can \lim_{n\to\infty} \frac{\sin n^2}{\sqrt{n}}, for n \ge N, \lim_{n\to\infty} \frac{\sin n^2}{\sqrt{n}} - L < \varepsilon = 10^{-6}
              Chose N = 100000000000^{10}, \int \frac{\sin 10^{200}}{10^{100}} - L | < 10^{-6} max C = \left| \frac{2}{10^{100}} \right| < 10^{-6}
So \lim \frac{\sin n^2}{10^{100}} = 0.
```


	M=		t lim and exists bu	
-			· ————————————————————————————————————	

(Sr. Sps	liman=L, L to.	Prove 3 N s.t.	an≠o ∀n≥N.	
	IN VAN, VCO \$		- <u>-</u>	
	when &			- 11-0-
_ Proof:	lim a=L			···
	¥2>0, 3N S.7. La	n-L/< E. Whene	uer n≥N	
	for e= 12, 21	V, s.t. 10n-L	1<2	
	Since L 70	三 < an < 3-	$\forall n \geq N_1$	
		= = >0, L>0.	1>0, so an≠0	
	•			
Page 19			L'Haritel	
\$2.5	BEI	10	n (+) n (sec n (-)) n	۲
B. Comp	the limits. $\lim_{n \to \infty} \frac{\tan n}{n \sin^2 n} = \frac{1}{n} \frac{\tan n}{n}$	AT	22 > -20052 (Sin	27/-120

Min Sing 1

 $\frac{1}{1}$ $\lim_{n\to\infty} \frac{\log(2+3^n)}{2n}$ Hint: log(2+3")=log3"+ log2+3" $= \lim_{n \to \infty} \left(\frac{\log 3}{2n} + \frac{\log \frac{2+3}{3}}{2n} \right)$ lim_nbg3 $\lim_{n \to \infty} () = \frac{\log 3}{2}$ (I.) Sps. lim an = L. Show lim a. +...+an = L $n \rightarrow \infty$, $a_1 + \cdots + a_n = n \perp$ So lim () = 1 Page 22 ACFIJ §2.6. A. say liman = + 00 if + REIR, IN s.t. an>R, yn>N. Show that a divergent monotone increasing seg converges to too in this case. Can an divergent VRER, Jan R mand monotone) -> R<an<an+1<... 2>MAN , COM CAMER 78-10, AN>0, an-LISE, and +E, R-100 +E. By Monotone comergence Than for Lequence as I. if bdd above, correspe to some Letco. But we are given to is diregent, so an cannot be bounded above, i.e. an has no uppor bound. i.e. there is no the M >0 s.t. (an) is bld above by M. SO VM>0, INEN; ON>M. Since we are given (an) is 1, n>N=> An >av>M. This holds for M'< M 600.

50 YM > O INEN: n > N -> an > M.

hence $a_n \rightarrow +\infty.$

J. Show (an) n=1 correspos to LeIR iff lim sup an = liminfan= L.
P26. 82.7 A. Show $(a_n) = \frac{n \cos^n(n)}{\sqrt{n^2 + 2n}} $ has a convergent subsequence.
$\lim_{n\to\infty}\frac{n}{\sqrt{n^2+2n}}=1. \text{ \mathbb{Z} cos^2(n)\in[-1,1] for net \mathbb{R}}$
So (an) is bounded By Bolzano-Weierstrass, every bold seq. has convergent Subsequence.
In a neat procedure: limsupar= lim infar= L. iff in(ar) -> L n>000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
=> ISUP-LI <e Simlarly for inf.</e
Dif limisupan = liminfan = L
$\frac{\forall \mathcal{E}=0 \mid \text{Supan-L} \mid <\mathcal{E}, \ n \geq N,}{\mid \text{in } fan-L \mid <\mathcal{E}, \ n \geq N_2}$
$N = \max \{N_1, N_2\}$ $\Rightarrow 1 - \epsilon < \inf a_n < \sup a_n < L + \epsilon$
However, $n \ge N$ $infan \le a_n \le supan$
$\Rightarrow -\xi = -\xi = -\xi $ $\Rightarrow -\xi = -\xi $

tage 31 \$29. Let (an) be a sequence such that line n=1 | an-anxi | < >>. Show (an) is Carchy. 105-02+102-02+1-+ + 100-00+1+ + -+ 10N-00+1 Loshow. (For 42-0, ∃Ms+. | ana-anti | < & whenver the n+>.M $\lim_{N\to\infty} \frac{N|a_n - a_{n+1}| = L}{\forall \epsilon > 0, \exists N, \sum_{k=m} |a_k - a_{k+1}| < \epsilon \quad \text{whenever } m, n \ge N}$ |am-an|=|am-am+1+am+1-am+2+···+an-1-an| ≤ > |am-an| < € Canchy ! Page 38.

83,1 ABC.

Sum the series = n(n+D) (Muse telescope sum" = = (1-3+2-4+3-5+--) = も(けもう

B (Sum the series Zn=1 n(n+1xn+3xn+4) $= \sum_{n(n+1)} \frac{1}{(n+1)(n+4)}$ why this is = 2 (7-14) 2 (1+3-14) =(1-2+2-5+3-6+--)(4-5+3-6+...) Eght Correct solution S know that $\frac{1}{n-n+1} + \frac{2}{n+3} - \frac{1}{n+4} = \frac{12}{n (n+0)(n+3)(n+4)}$ = 12/1-21-1 = 12 (= 3 = 5 = 3 = 5 = 6 (3) 2/3/----= 12 (1++++++-1-=) $=\frac{1}{12}(\frac{3}{4}+\frac{1}{3}-\frac{2}{3})$ $= \frac{1}{12} \left(\frac{9}{12} - \frac{4}{12} \right)$ $= \frac{5}{144}$

	(d). Z ~ Jn+1 - Jn
	∑n=1()=√2-√1+√3-√2+√4-√5+··- ≠n√1+1-1 div.
	P). $\sum_{n=1}^{\infty} e^{-n^2}$ n-th most test
	$l=\limsup_{n\to\infty}\sqrt[n]{e^{-n^2}}=\limsup_{n\to\infty}e^{-n}<1$
	(f) \(\sin \) sin (\(\text{AT} \) diverge since \(\text{+> 0} \).
(1)	$\sum_{n=2}^{\infty} \sqrt{n+1} - \sqrt{n} = \lim_{n \to \infty} \sqrt{n+1} - \frac{1}{n}$
	$\frac{1}{2}(n+1)^{-\frac{1}{2}}$
	$(g). \leq_{n=1}^{\infty} (1)^n \sin(\frac{1}{n})$
	sint < th, so converge
	f_{n} , $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3+4}}$ converge.
	(i) \(\sum_{n=1}^{\infty} \left(\sqrt{n} - 1 \right) \) \(\left(\sqrt{n} - 1 \right) \)
-	Jum sup Jn -1 = 0
	(J). lim sup (nt -) < 1 correge
	$(k) \sum_{n=\sqrt{n}}^{\infty} \frac{(-1)^n}{\log n}$ converge.
	νι. · · · · · · · · · · · · · · · · · · ·
	(m). $\sum_{n=2}^{\infty} \frac{1}{(\log n)^n}$ de $\int_{-\infty}^{\infty} \cos 2$

(m). $\sum_{n=1}^{n=1} \frac{n!}{n!}$ $\frac{\frac{n_1}{(\nu+1)_{(\nu+1)}}}{\frac{(\nu+1)_{(\nu+1)}}{(\nu+1)_{(\nu+1)}}} = \frac{(\nu+1)_{(\nu+1)}}{\frac{(\nu+1)_{(\nu+1)}}{(\nu+1)_{(\nu+1)}}} = \frac{(\nu+1)_{(\nu+1)}}{\nu} = \frac{(\nu+1)_{(\nu+1)}}{\nu$ (0). $\sum_{n=1}^{\infty} \frac{(+)^n \operatorname{arctan}(n)}{n}$ conv. comorge $\frac{(+)^n}{\sqrt{n}+(-)^n}$ $\frac{(+)^n}{\sqrt{n}-1}$ $\frac{(+)^n}{\sqrt{n}-1}$ (9). \(\sigma_{n=1}^{\infty} \tag{(-1)^n(e^{\frac{1}{n}}-1)}\) correge (b). $\sum_{n=1}^{\infty} (-1)^n \frac{n^n}{(n+1)!}$ radio test + alternative series test $\frac{(n+1)^{1/2}}{(n+2)!} \cdot \frac{(n+1)!}{(n+2)!} = \frac{(n+1)^{1/2}}{(n+2)!} \cdot \frac{1}{n+2}$ $= (H \frac{1}{h})^{n}, \frac{1}{n+2} \longrightarrow 0$ (S). $\sum_{n=1}^{\infty} \frac{1}{|h|^2}$ Converge $\frac{1}{(h+1)^2} \cdot (h^2+1) = \frac{n^2+1}{n^2+2n+2} = \frac{1}{2} < 1$ converge (#) 2 n=1 log(en+en) en > en for n > 1, In(en+en) > (+n(en+en) = In(2en) = h2+n Since comparison text. since (on(enten) < logicenten) = logicenten) * Ent harmonic series diverge !!!!

	(u). $\sum_{n=1}^{\infty} \frac{\sin(\frac{\pi n}{3})}{n}$ converge
	$0 > \infty \frac{n'^{\circ}}{10}$ $0 + \frac{n}{10} = \frac{1}{10} = \frac{1}{$
	10 m
	(w) $\sum_{n=2}^{\infty} (\log n)^n$ $l=\limsup_{n\to\infty} \sqrt{(\log n)^n} = \frac{1}{\log n}$ converge,
	n->
(X	De. Zn=2 inlegal Test: Test Tests Test Tests Tes
	$\int_{2}^{\infty} \frac{1}{x \ln x} = \int_{2}^{\infty} \frac{1}{\ln x} d(\ln x)$
	$ age 47 = n(mx) ^{2} \Rightarrow direrge$
	B. Decide which of the following series converge absolutely, conditionally_
	cliverge since since a small one (n+) diverge
	but by attornationy series test, an decreasing lim an = 0. (b). 500 (1)
	(b). $\sum_{n=1}^{\infty} \frac{(+1)^n}{(+1)^n}$ Whole Hence conditionally converge.
	(2+(-1)") n < 3n diverge but but but (-1)" -
-	$\frac{1}{1} = \frac{1}{3\eta}$ $\frac{1}{2} + (+1)^n \eta = \frac{1}{3\eta}$ $\frac{1}{3\eta} = \frac{1}{3\eta}$
	So (kniege)
	So conv. conditionally.

	(b) Show that (Px), x-Px)=0. Px X-Px> not like this but also easy to show.
	= < x > >
	CO. Hence show that $ x ^2 = P_X ^2 + X - P_X ^2$
	LHS = < x, x> - 2P2, Px> + < 7 - Px, x - Px>
	$= a_1^2 V_1 + \cdots + a_K^2 V_K$
	RHS= <px, rx="">+ <x-px, x-px=""></x-px,></px,>
	=<×xx>+ == 0
	As=RHS
	cob. If 7 belongs to M, show that 11x-y11=11y-Px11+11x-Px11
	[4]S= <x-y, x-y=""></x-y,>
	RHS= <y-px>+<x-px>X-Px></x-px></y-px>
	= <y-x, y-x="">+0</y-x,>
	LHS=RHS
	ces. Hence show that Px is the docest pt in M to x2
	$ y-x = y-x ^2 + x-Px ^2 > x-Px ^2$
•	equality when y=Px
	*

	Page 55.
	\$4.2 FH
	F. Let Vo=(Xo, yo) with 0 <x0<yo. \forall="" det="" n="" uh+1="(Xn+1," xn+xn)="" yn+1)="(Xnyn,">0 when some by induction that 0< Xn < Xn+1 < yn+1 < yn.</x0<yo.>
	a) Show by induction that $0<\chi_n<\chi_{n+1}<\chi_{n+1}<\chi_n$.
	$V_0 = (X_0, Y_0)$ $V_1 = (\sqrt{X_0 Y_0}, \frac{X_0 + Y_0}{2})$
	$V_1 = (\sqrt{x_0} y_0)$
,	1/20 > 1/20
	b/c xoxo = xo xo xo xo +yo < yo +yo
	11 × × × × × × × × × × × × × × × × × ×
	4x0x0 < x0+2x0y0+y.2
	(X-/6) ² >0
	induction is trivial.
7	1 / 1
	(b) estimate $y_{n+1} - y_{n+1}$ in terms of $y_n - y_n$ $y_{n+1} - y_{n+1} = \frac{y_n + y_n}{2} - \sqrt{y_n + y_n}$
	(c). Thereby show Ic sit. lim Vi=(c, c). c is known as the arithmetic-geometric mean of x. & y
	(Xn) monotone I
	(v)
	both bold
	=> Xn→L
	$y_n \rightarrow M$
	$ \begin{array}{c} y_{n} \rightarrow M \\ however $
	So L=M.

H. Let
$$T = \begin{bmatrix} \frac{5}{4} \frac{4}{7} - \frac{1}{4} \end{bmatrix}$$
 Set $x_n = T^n(Lo)$ for $n \ge 1$.

(a) Prove (x_n) converges & find limit y .

(b) $(\frac{1}{4} - \frac{1}{4})$ $(\frac$

100 - 01/25.

	Page 60.
	Find the dosume of the following sets:
	(b). \((x,y) \in R^2: xy < 1 \) \\ for \(x < 0 \), \(xy < 1 \) \\ \(y < \f \) \\ \(y < \f \)
:	
	Cosine $\Rightarrow (cx,y) \in \mathbb{R}^2 : \Im y \leq 1$
	$(C) \left\{ \left(\chi, \operatorname{sin}(\frac{1}{\lambda}) \right) : \chi > 0 \right\}$
	$(\phi, \{(x,y) \in \emptyset^2 : x^2 + y^2 < 1\})$
B	Let (an) be a sequence in Rk with lima = a Show that {an. 17] U {a} is a closure.
	By construction, suppose. A= (an:n≥1) U(a)
	Sqs = \(\frac{1}{2} \) is a limit of A but \(\frac{1}{2} \) A. = \(\frac{1}{2} \) seq. (\(\frac{1}{2}\) - \(\frac{1}{2}\), (\(\frac{1}{2}\)) - \(\frac{1}{2}\), (\(\frac{1}\)) - \(\frac{1}{2}\), (\(\frac{1}\)) - \(\frac{1}\), (\(\fra
	(1) by E (an inst) if by > 7 & A, YME, >0, 31V, s.t. by -x < E, whenever
	$a_{n_k} \Rightarrow n_k \ge N a_{n_k} - \overline{x} < \epsilon$

	$\Rightarrow \alpha_{n_k} \rightarrow \vec{x} \notin A$
	→a cA
· · · · · · · · · · · · · · · · · · ·	$(b_0) = \frac{1}{4} \frac{1}$
	$(b_0) = (a_{n_1}, a_{n_2}, -, a_{n_2}, -$
	$\Rightarrow a_{n_k} - a \times < \xi \forall \xi > 0, n_k > N$
	however, can show by >a
N.	A point \overrightarrow{x} is a cluster point of a subset A of \mathbb{R}^n if \exists seq. $(\overrightarrow{an}_{n=1})$ with $\overrightarrow{an} \in A\setminus\{\overrightarrow{x}\}$ s.t. $\overrightarrow{x}=\lim_{n\to\infty} \overrightarrow{an}$. Thus every cluster point is a limit jot but not conversely,
	but not comersely,
	a). Show if it is a limit pt of A. Hen either it is a cluster pt of
	6). Hence show that a set is closed if it contains all of its cluster pts. c). Find all cluster pts of 6000
	(LV)/Z
	a) $\lim_{n \to \infty} \Omega_n = \overline{\chi}$ (iii) $Co_n D_n$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	7€ € ♦ ✓
· · · · · · · · · · · · · · · · · · ·	
	or Z € A => cluster point
	b). closed means it contains all limit pts.
	limit pts so particularly, it's correct.
	0. o.(i). A R\Q (ii). Ø (iii). (o). V(1)
	(ii) (0))(1)

Page 66.	
Page 66. I. 8 4,4,	<u></u>
Let $A & B$ be disjoint closed subsets of R^n . Define $d(A,B) = \inf \{ \ \vec{a} - \vec{b}\ : \vec{a} \in A, \vec{b} \in B \}$. (a). If $A = [\vec{a}]$ is a singleton show $d(A,B) > 0$.	
$d(A,B) = \inf \{ \ \vec{a} - \vec{b} \ : \vec{a} \in A, \vec{b} \in B' \}$	
(a). If A = [a] is a sing on side a(N,B) >0.	
(b). If A is compact, show d(A,B)>0. (c). Flad & e.g. of 2 disjoint closed cets in R ² with d	(A,B)=0
(a). A is singleton, if 313 std(A,B)=0	
(a). A is singleton, if 38 std(A,B)=0 => inf [a-b : a=A, b=B]=0	
Σ ₁ †.	
S=1, =4eB st 11a-511<	
€2= 1, =b2∈B s+. a-b2 < 2	
i i	
En=h, =bn eBst. Ma-bn/k +	
so Condis a seg in B s.t. bn -a	
a E A, A, B disjoint	
$\Rightarrow a \notin B \Rightarrow B \text{ not closed} (= x = by \text{ def})$ (b). A compact, $\exists B \text{ st. } d(A, B) = 0$	
ie. int=0	
¥ €>0, ∃a seq. (dn) s.t. dr >0.	
YE>O, ∃a seq. (dn) s.t. dn→o. Cln= an-bn :an∈A, bn∈B	
Λ ()	
$-(c) A = \{o\}$	
B=(\(\hat{\pi}: \pi ≥ 1\)	

X	
•	(=7) U is open.
	Sps $f(x) \in X \setminus U \in X_n \to X$ ($\lim_{n \to \infty} f(x_n, x) = 0$) but $x \in U$
	Dia x ∈ U ⇒∃r>0 s.t. Brx> ⊆ U
	$\Rightarrow \rho(x_n, x) \geq r$
	(=> Sps Unot open
	3 xeu st. 3r
Contra	Jacusta Ir Joshine) Brox & U
	→ r=ε _n = +
	B _ħ (x) ∩ U c ≠ Ø
	$x_i \in (B_i(x) \cap U_i)$
	$\Rightarrow \rho(x_1, x) = 1$
	\$\(\gamma_1, \pi\)<\frac{1}{5}
	00× 0.1
	>(x₁, x)< +
	$\Rightarrow \lim_{n \to \infty} \varphi(x_n, x) = 0$
	$\Rightarrow (x_n) \rightarrow x \in U$
	=> U ^c not closed
	E. Giren a metric space (X,p), dot a new metric on X by o-(x,y)=min/p(x,y),
	(a) Show of is a metric on X. Observe X has finite diameter in the or metric.
	Dositive definitioness:
	$x=y \Rightarrow \rho(x,y)=0 \Rightarrow \sigma(x,y)=0$
	J(xy)=0=>p(x,y)=0=>x=A
	Symmetry:
	$\sigma(x,y) = \min \{ \mathcal{O}(x,y), 1 \} = \min \{ \mathcal{O}(y,x), 1 \} = \overline{\mathcal{O}(y,x)}$
	5 triangle inequality.
	w.t.s_ σ(x,z) + σ(σ z,y) > σ(1 x,y)
	$\min(p(x,z),1] + \min\{p(z,y),1\} \ge \min\{p(x,y),1\}$
	pik p(x,8)+y(z,y) > p(x,y) /
	X The state of the
	ENS + SP(XM)
	1+1>\ \

Show $\lim_{n\to\infty} x_n = x$ in (x, y) iff $\lim_{n\to\infty} x_n = x$ in (x, y) .	
$=> \dim_{n \to \infty} x_n = x \text{ in } (x, p)$	
$\forall \xi > 0, \exists N \Rightarrow s.t.$ $\varphi(x_n, x) < \xi \text{ where } n \ge N$	
$ \mathcal{D} \Rightarrow \forall \xi < \min_{\substack{m \in \mathcal{C}(X_n, X) \\ \text{or}(X_n, X) = \{\varphi(X_n, X), 1\} = \varphi(X_n, X) < \xi}} $	
$97. \ \sigma(x_n, x) < \varepsilon \text{ whenever } n \ge N.$ $98.t \ \forall \le > 1$ $\sigma(x_n, x) = \min\{\varphi(x_n, x), 1\} = 1 < \varepsilon$	
=7 Y E70, 3 N S.T. O (Mn, X) < C whenever n > N.	
VE70. $\exists N \text{ st. } \delta(x_n, x) < \varepsilon \text{ Monerer } R \ge N$ clearly $\delta(x_n, x) \le 1$ by definition	
$\frac{\partial C(x_m, x) = \min \{ \rho(x_y), 1 \} < \epsilon}{\text{So if } \epsilon < 1}$	
if C>1	

	P183 BCFJ
	89.2 B. Show that if Y is a subset of a complete metric space X, then Y is compact iff it's closed & totally bdd.
	X complete: every converges to a pt in X.
	Y compared: every open cover of X has a finite subcover.
	=>. Yis compact <=> Yis complete & totally bdd (by B-L thm) Show absed.
	Sps $(X_n) \in Y$, $X_n \rightarrow X \notin Y$ (X_n) cornerges $\Rightarrow (X_n)$ is Cauchy by def of compoleteness $X \in Y$
	XEY So Thankey so it's absed (Y is absed)
	\(\) \(\
	⇒ complete.
	C. Show a closed subset of a compact metric space is compact. A S X
	\times compact, A closed. $\forall (x_n) \in A$, $(x_n) \in X$ as well
	$X \text{ compact.} \Rightarrow \exists \text{ subsequence } (X_{n_k}) \in A$ $\Rightarrow A \text{ sequentially compact.}$
	F. Prove Centor's Intersection Thm: A decreasing sequence of nonempty compact subsets A, JAz > of a metric space (X, q) has nonempty intersedi
	Prof. pick $a_i \in A_i$ $\forall A_i \text{ compact} \Rightarrow \text{ sequent dly compact}$ consider (a_i) have a_i convergent subsequence (a_{ik}) s.t.
	aix >a EA i
į	7

Page 72 Let $f(x) = \frac{x}{\sin x}$ for $0 < |x| < \frac{\pi}{2}$ and f(0) = 1. Show that f is continuous at 0. Find an r > 0 such that $|f(x) - 1| < 10^{+}$ for all |x| < r. Hind: tise inequalities in e.g. 2.4.7. Sol: $f(x) = \int \frac{x}{\sin x}$, $0 < |x| < \frac{\pi}{2}$ $\chi = 0$ 4 5>0,35 s.t. 1 f(x)-f(0) 1/< E whenever 1/x-01/< & w.t.s $1 \frac{x}{\sin x} - 1 \frac{x}{1} < \varepsilon$ whenever $1x < \delta$ IN KNOW SINX<X<= SINX = SINX => Cosx < sinx < 1 \Rightarrow $|<\frac{x}{\sin x}<\frac{1}{\cos x}$ as $x\to 0$ => lim == 1 i.e. 450 35 st. 15/2 -11/2 Wender 12/25 D. Prove that f is cont. at (0, ye) where f is defined on R' by $f(xy) = \begin{cases} (1+xy)^{\frac{1}{x}} & \text{if } x\neq 0 \\ e^{y} & \text{if } x=0 \end{cases}$ THE BE, CKSY .2. THU 1-71+xxx x - (ex) < E. Nem tra (1+x) x -> e when x >> 0 50 (+ +y) + >e4 as >>0 so eyo->ey as yo->y take r = ln(8. e + +1) tren 14-40 < ln(E. e +1)

	G. Sps f: R" > R is continuous, if there are FER" and CEIR such that for CC, then prove that I r>0 s.t. ty EBr(x), f(y) < C
	Sps Yr>0, 3y \(\mathreal{B}_{\tau}(\pi)\) st. \(\frac{f(y)\) \(\mathreal{B}_{\tau}}{\tau}\) > C.
	f continuous at χ , $\forall \xi>0, \exists r>0 st. f(y)-f(x) < \xi$ whenever $ y-x \not \in \xi=C-f(x)$
	$ et \neq \varepsilon = C - f(x)$ $+ hen f(y) - f(x) < C - f(x)$ $= f(y) < C$
	J. Show that if: f:[a,b] > IR is a differentiable function such that If(x) = M on [a,b], then f is Lipschitz, Hint: MVT.
	If $(\infty) \in \mathbb{N}$ on $[\alpha, b]$, then f is Lipschitz, Hint: (MV) . $MV7: \exists c \in [\alpha, b] \text{ s.t. } f'(c) = f(b) - f(a) \leq M$
	So $ f(b)-f(a) \leq M \ b-a\ $ so f is Lipschitz
	L. (0) Show that a finear map $A: \mathbb{R} \to \mathbb{R}^m$ with a dematrix $[a_{ij}]$ can be written as $A = \sum_{i=1}^{M} \sum_{j=1}^{n} a_{ij} \leq_{i} T_{ij}$
· · · · · · · · · · · · · · · · · · ·	(9). $\pi_j(x_i, \dots, x_n) = x_j - \dots$ the jth wordinate $\xi_i(t) = t \vec{e}_i$ sending IR onto ith Gordinate axis. $\xi_i \pi_j x = x_j e_i$
	$= (0,0,,\chi_{j-1},0)$ $= \sum_{i} \overline{x_{i}}(x) - \sum_{i} \overline{x_{i}}(y) = \ (0,0,,\chi_{j-1},,0)\ $ $\ (x-y)\ = \ (x_{i}-y_{i}, x_{i-1},,x_{n-1},,x_{n-1})\ $
	dearly $ \mathcal{E}_i \mathcal{T}_j(x) - \mathcal{E}_i \mathcal{T}_j(y) \leq x-y $ take equality iff $x_i = y_i$ ($\forall i \neq j$)

(b. S)	how that $\Sigma_i \pi_j$ is Lipschitz with constant I . $Q_{ij} \Sigma_i \pi_j (x) = A(x)$
<u></u>	aij εiπj(x)-aij εiπj(y) = A(x)-A(y) ≤ aij x-y so Lipschitz.
(c) (-	tence deduce that A is Lipschitzwith constant $\sum_{j=1}^{m} \alpha_{ij} $.
F	Page 76
{	H. Define f on IR by f(x) = x / \(\alpha(x)\). Show f is continuous at OR it's only continuous point.
0	the $\chi_{Q}(x) = \begin{cases} 1 & \text{if } x \in Q \\ 0 & \text{if } x \notin Q \end{cases}$
	$V \in \mathbb{R}^{20}$, $\exists r \in \mathbb{R}^{20}$. If $(x) - f(0) < \varepsilon$ whenever $x - 0 < r$. $f(0) = 0$ $\chi \in Q f(x) = x$
•	$740 f(x)=0$ So take $\xi=\Gamma$ if $ f(x)-0 <\xi$ for some sure $\sqrt{}$
<u> </u>	\Rightarrow f(x) continuous at x=0. I show it not continuous at any other point.
	Sps it continuous at x=a. 420. Then 30. 51 700, VE>0. 31>0. (x)
	i, suppose a EQ. Hen f(a)=a. If(x)-all <e-limener 1x-al<r<="" td=""></e-limener>

.

Spe feete = 570 st. 4r>0. If co-fco/1>2 whenever = 1x-a/<r if a e Q f(a)=a & st. \r ||f(x)-f(a)|> \rangle || = ||x-a|<r, \rangle >0, Br(a) contains imotional number and f(x) is thus O. if x & Q. so if pick &=a? we have Yr>o, Fx&Q st. |f(x)-f(a) |=a = if a & Q fla=0, plak 870 s.t. HON Y TOO, 376Br(a) s.t. $|f(x)-f(\alpha)| \ge 2$, $|f(\alpha)-o| \ge 2$. if 2=a, yr, = 1x-a<r, (a-r<x < a+n) tan always pick some rational # % between a & a+r. => f(x0) = 20>a s.t. 10-0 => E=a P87 35,5 A. Show that gen = 172 is uniformly continuous on [0,+00). Hint Show that Ja-b > Va-Vo & Ja+b = Ja+Jb. Uniformly continuous: A fundion f SCR">R" & U.C. if YE>0, 7500. s.t. 1/fcx>-fca>1/< E whenever 1x-a/< &, x,a∈S. [Here & does not depend on a]. (noof (a-b) = a-b (va = v5) = a - 2 va 5 + 6 (a-5)-(a-21ab+b)=-b+21ab-b=2(b)(1a-1b) 48-0, 3 & st. |fa)-fy> < & whenever |x-y| < 5 11x-17/< & whenever 1x-4/<5 1x-41=1x+1411x-141 know that |√x-14| ≤ |√x-4| ≤ |√x+44| 8 > 1x-11=1x+1411/x-141 >1/2+1/1/2-1/1/ > 12/1/3 => 1/x-Jy12 < |x-y| < 5 So be pick & 5= 22, if 1xyx & , then Wx-Jy/< E.

	Show that $f(x)=x^p$ is not uniformly condimions on R if $p>1$. $\Rightarrow \exists 2>0 \not\equiv \forall r>0 \mid f(x)-f(y) \geq 2$ for some $x,y\in S \not\in x-y <\Gamma$. $ f(x)-f(y) = x^p-y^p $
?	1f(x)-f(y) = 1x'-y'
Н.	Sps that f is cont. on (a, c) & $a < b < c$. Show if f is uniformly continuous on both $(a, b]$ & $[b, c)$ then f is uniformly continuous on (a, c) . Proof: giren $9 > 0$, $\exists \delta = \delta, \dagger \delta_2$
	$ f(x)-f(y) \leq f(x)-f(b) + f(b)-f(y) \leq \frac{1}{2}+\frac{1}{2}=\epsilon$ whenever $ x-y \leq x -b+b-y \leq x-b + b-y =\delta, +\delta = \delta$
I.	f(x) be continues on (0,1]. Show that f is unif. continuous iff him f(x) exists.
	$\not\in$ if $\lim_{x\to 0} f(x) = L$, $\forall x>0, \exists x \in \mathbb{N}$. If $(x) - L \neq \frac{x}{2}$ whomover $0 < x < x < x < x < x < x < x < x < x < $
	① [r, 1]: compact interval => uniformly continuous on [r, 1] ② (o, r)
	lim f(x)=L=> Y2>0,3rst. f(x)-L/<\frac{\x}{2}, \text{Vocx <r.}< th=""></r.}<>
	So, for $\forall \xi > 0$, we have $ f(x) - f(y) < f(x) - L + L - f(y) $ $\leq f(x) - L + L - f(y) $
	< \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

this is guranteed that when oexer & oeyer.
YERO, 75-21 >0 s.t. |f(x)-f(y)| < E whenever 17-y1<8=21. => f is unif-cont. on (0,1]. =>" f: unif cont. on co,1] VE>0, = 6>0 s.t. |fco-fcy>|< & whenever 1x-4/co & xy e (0,1] => 4 5 >0, 3 8 S.t. f(x) = BE (f(y)) Y XEBE(4) M(0,1] consider yk = + ->0 SO 4×6B-(+) N(0,1]. we have f(x) = Be(f(y)) => f(B,4) \((0,1]) \(B_{\epsilon}(f(y_{\epsilon})) P89 \$5,6 Show = x6 (0, 1/2) s.t. casx = x & it's the only solution let f= cosx-x f(0)=1>0 + 商= - 至 <0 50=0) ≠ CE(0, ₹10)=0 f'(D=-Sinx-1x0 monotone decreasing. so only 1 solution. (b)

B.	How many solutions are there to tanx=x in [0,11]?
.:	Tof tomx is I., so there are 3~4 poriod in [0,1].
	$\frac{1}{2} \sin i \circ x = 0$
	$\frac{1 \text{ so in in } \frac{3}{2}\pi, 2\pi}{1 \text{ som in } \frac{5}{2}\pi, 3\pi}$
	1 soln in = 7, 11]
) Show 25inx+36sx=x has 8 solutions.
	$f = 2\sin x + 3\cos x - \alpha = 0$
. –	$-\sqrt{3} \leq 2\sin \alpha + 3\cos \alpha \leq \sqrt{13}$
	80 find solutions on I-JI3, JI3] since X=2sinX+SusX E[-JIS, JIS]
	J=20089 - 35mg-1=0 then should we use
	2654=35in7=1 calculator?
	$\frac{2\cos\chi = 1+3\sin\chi}{\cos^2 x}$
	$\frac{1+3a-2\sqrt{1-a^2}}{1+3a-2\sqrt{1-a^2}}$
	1+6a+9a=4-4a X15
	13a2+6a-3=0 126
	$a = \frac{-6 1 \sqrt{36 + 12 \times 13}}{3}$
	20
	Page 90
	Verity that the transla for the Conton function in terms of
	Are ternany expansion yields the same answer In both
	Verify that the formula for the contor function in terms of ternary expansion yields the same answer for both expansions of a point x when 2 expansions exist.

H. For $x \in [0,1]$, express it as a decimal $x = x_0$, x_1 , x_2 , x_3 .

Use a finite decimal expansion without very repeating 9's when there is a choice. Then define a function f by $f(x) = x_0$. $Ox_1Ox_2Ox_3$.

(a). Show f is strictly increasing.

YX, y cto, 1] \$ say x x y

 $\chi = \sum_{i=1}^{\infty} \chi_{i} \cdot 10^{-i}$ $\int (\chi) = \sum_{i=1}^{\infty} \chi_{i} \cdot 100^{-i}$

	P117
	§ 7,
,	C. For f in C'[a,b], define p(f)=11fillow. Show that p is nonnegative, homogeneous and satisfies the triangle ineq. Why is it not a norm?
	Proof: $\varphi(f) = \ f'\ _{\infty} = \sup f'(x) $
*if f	Since $ f'(x) \ge 0$ so sup $ f'(x) \ge 0$ 1, $p(f)=0$ so $p(f) \ge 0$. (nonnegative) but NOT POSITIVE DOFINITE
50	$\frac{1}{\sqrt{ af }} \varphi(\alpha f) = af' _{\infty} = \sup_{x \to \infty} \alpha f'(x) = \alpha f' _{\infty}$
	(homizeneous)
	$\varphi(f+g) = \ f'+g'\ _{\infty} = \sup f'(x)+g'(x) $
	\leq sup $ f'(x) + f'(x) $
	= sup f(x) +sup q(xo)
	$\leq \sup f'(x) + g'(x) $ $\leq \sup f'(x) + \sup g'(x) $ (triangle inequality)
	So not a norm!
	D.) If (V, 11. 11) is a normed vector space. Show x11-11y11 = 1/x-y1
	(x - y) ² = x - ² x -
	121 = 11-41 = 11-41 = 12
	$ x \le x-y + x + x + x + y $
	⇒ 11×11-11×11 < 11×-41
	$y = y - x + x \qquad = $
	$= y \le y-x + x $ Since i.e. $ x-y > y-1 x = x-y > $

F. Let K be a compact subset of IR", and let ((K,R") denote the vector space of all continuous functions from K auto into RM. Show. that for f in CCK, IR") the quantity II flow= super II flow |2 is finite & 1.11 is a norm on $C(K, \mathbb{R}^m)$ may be not an Euclidean!

Proof: $\|f\|_{\infty} = \sup \|f(x)\|_2 = \sup (\sum_{i=1}^n |x_i|^2)^{\frac{1}{2}} = \sup (\int_a^b f(x)^2 dx)^{\frac{1}{2}}$ Kis closed & lodd so = x = K has max, so Ilfool finite when x is the maximum of K. Then sup is exists.

norm? Show norm (3 parts!)

_	PII9
	§7.2
	B. Show that every convergent seq. in a normed space is a Cauchy sequence.
	(auchy sequence.
V	$Pf: (\chi_n)_{n=1}^{\infty}$, so $\lim_{n\to\infty} \chi_n = L$.
	$\forall \in \mathbb{R}$, $\exists \mathbb{N}$ st. $ x_n - \mathbb{L} < \frac{\varepsilon}{2}$ whenever $n \ge N$
	similarly $\forall \varepsilon > 0, \exists N' \text{ s.t. } x_m - L < \frac{2}{2} \text{ whenever } m \geq N'$
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	Let $N'' = mcx(N, N')$
	Then $\forall \xi z 0$, $\exists N'' = max(N,N')$ $5. t \xi / t x_n - L + x_m - U > x_n - x_n Whenever n, m \ge N.$
	Caushy.
	D. Show if A is an arbitrary subset of a normed vector Vapor and deR then xix U is an open subset, then A+U= a+u: a ∈ A, u ∈ U] is upen.
	and delle then x is an open Subset,
	₩ U is open: YueU. Ir st. Bracu 0
	wts. At U is open YaEA, UEU, IT s.t. Br(a+u)CU
<u>, ,</u>	
	D => ## for \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	D=> for 4xeU
	1/x-(a+u)1/ <r< th=""></r<>
· · · · · · · · · · · · · · · · · · ·	

	(c). Conclude that the unit ball of C[-1, 1] is not compact white hall is If: [f 00=1] clearly for EC[-1,1] by b), we know If a crost subseq. So not compact
	(d). Show the unit ball of C[+,1] is closed & bold & complete, - If II fI = & fE([+,1]) - clearly bdd - since II f I = & fE C[+,1] show closed (fn) > f
• T	$ f(x)-f(w) _{\infty} = f(x)-f_n(x)+f_n(x)-f_n(a)+f_n(a)-f(a) _{\infty} = \frac{\epsilon}{3}, x-a <\delta $ $ = -\infty \text{ or } . \text{ sps } f > => f \text{ not in the unit ball.} $
J,	Prove that the tollowing are equivalent for a normed redor apace
	B). Every decreasing seq of closed balls with radii 1, >>> has
	•

	$\begin{array}{lll} \text{(1)=>(2)} \\ \text{Br}(Q_1) \Rightarrow \text{Br}(Q_2) \Rightarrow \cdots \Rightarrow \text{Br}_n(Q_n) \Rightarrow \cdots \text{Br}_n(Q_n) \neq \emptyset \\ \text{Claim} \cdot \text{(au)}_{-n}^{\infty} \text{ is Cauchy given $\epsilon>0$, we pick the largest Γ_k s.t.} \\ \text{Tr}_k < \epsilon \text{ and the corresponding center α_k.} \end{array}$
	$t_k < \epsilon$ and the corresponding center a_k .
	=> Brk(ax) = BE(ax) decreasing seg. => Yn > K. Brn(an) \(\text{Br}_{R}(ax) \) \(\text{Br}_{R}(ax) \)
	$\Rightarrow \ a_n - a_k\ \leq \Gamma_k \leq \varepsilon$
	Then for $\forall n, n > k$, $\leq r_k$ which $\leq r_k$ and $\leq r$
	$ a_n - a_n \le a_n - a_k \le r < \varepsilon$ $= \text{Starting from an, subseq. still cug to a}$ $= \text{Contained in closed ball}$
	Normed vector space is complete. $\Rightarrow (a_n)_{n=1}^{\infty} \Rightarrow a \in V$ $\Rightarrow a \in Brn(a_n)$ for $\forall n$ since the balls are closed
	(2) => (3) true since 3) is a "specific" condition of 2)
	$\frac{3=21)}{$
	Show (Xn): Country has a limit
-	Sufficies to show a subseq. converge to 5th, in #1/
	Sufficient to show a subseq. converge to 5th, in $\#.V$ can find something subseq. S.t. $\ y_k - y_{k+1}\ < 2^{-k}$ Clet $y_k = X_{n_k}$ where $d(X_m, X_n) < 2^{-k} \forall m, n > n_k$
	Gorider B, (y), Bz1(y2) Bz-k11 (/2)
	check decreasing if ZEB-(KHD-1/YKH).
	=> ZEB; +1(yk). WE know NB++1(yk) + 1/2 +

	P123-P124
	\§7.3
	A. Let V be a finite-dim vector space with 2 norms 11.11 & 11.11. Show that
	there are constants 0<9 <a all="" s.t.="" th="" vill="All" vill<="">
	By linear algebra, know & finite dim v-space has a basts
	V_1, \cdots, V_n is basis in $(V, 111, 111)$
	> + vectors in (V, 111. (11) is a linear combination of basis lectors
	→ 7 E V
	$\nabla = \alpha_1 \vec{v_1} + \cdots + \alpha_n \vec{v_n}$
	$\ \vec{v}\ = \ a_1\vec{v}_1 + \cdots + a_n\vec{v}_n\ $
	= 30 <c<c <="" c a 2="" c a 2<="" s.t.="" td="" v =""></c<c>
	still can pick o <d<d< td=""></d<d<>
	S.t. d/101/2 < 11√1/5 D/101/2
	So The state of th
	$ \nabla \leq c $
	C a ₂ ≤
	D 11 a 1/2. D
	
	$\int_{D} u = \sum_{\alpha=0}^{\infty} \frac{1}{ \alpha }$
	R) Lot The inventible linear map from Got 722
	B) Let The invertible linear map from Gor. 7.3.2 (a) Use Lipschitz property of T&T-1 to show T(Br(91) contains a bull about Tx in V, and that T-1(Br(Tx)) contains a ball about x in R?
	about Tx in V and text T (R. (Tx)) (rodains a ball about x in R?
	(b). Hence show directly that U is open iff T(U) is open.
	- 13 april 1 (ECI) 13 april 1

.

	C. Prot of Cor 7.3.3.
	C. Proof of Cor 7.3.3. Assumed performed rector space is compact it it's obsect & 6dd.
	obsed & 6dd.
	⇒ ¥ seg has a compent subseq. which converge to a pt in V
	SPS not.
	$(V_n) \longrightarrow V \notin V$
	So & subseq of (Vn) >v &v side violates compactness.
	compactness => bdd.
-	Sps not, I an untild seg, s.t. 1011>1
	Sps not, I an unladd seg, s.t. 1 Vn 11> n. => subseq. (Vnx) s.t. 11 Vnx 11 > nx which does not converge
	F. Show Y each integer or and each function t in ([a,b],] . I conhumial
	of degree at not not that is closest to f in the man norm on
	E. Show & each integer n and each function f in C[a,b], I a polynomial of degree at most n & that is closest to f in the max norm on C[a,b].
	\$600 m
	Netabj (x)
	Ilf-oll=1f1 = inf llf-g11: giste degree ≤n)
	If I = max If I
	f is no cont. on the compact
	FUT => max 11 fil = M exists
	For all g s.t. g-f ≤ M, g ≤ g-f + f ≤ 2M ⇒ inf g-f : ∀g = f g-f : ∀g ∈ k
	=> inf 111g-f11: \dg]= 1"f 11g-f11: \dg \ex\]
	define fox)=1/x-f1 where x ex,
	11f(x)-f(y)=11x-f(1-1)y-f(1)= 1x-y =>Lipshitz=>(ont.
	kishad.
	K15 bad. ∀gn > g, gn ∈ k, llg ≤ 11 gn-g 11 + llg 1 ≤ ε +2M, ∀ε => 11g11 ≤ 2M
	1 y y - y , J"
	>K Compact-

P127 A. Let A=[312] Show form <...>A is positive definite. <any>= <Axy> = > \(\text{Say} \text{xiy} \) $\forall \vec{x} \in \mathbb{R}^3, \ \vec{\chi} = (x_1, \chi_2, \chi_3)$ $\langle x, x \rangle_{A} = 3x_{1}^{2} + 1x_{1}x_{2} + 2x_{1}x_{3} + 1x_{2}x_{1} + 2x_{2}^{2} + 1x_{2}x_{3}$ +2x3x1+x3x2+ 2 4x32 $=3\times_{1}^{2}+2\times_{2}^{2}+4\times_{3}^{2}+2\times_{3}\times_{2}+2\times_{3}\times_{3}+4\times_{1}\times_{3}$ $=()^{2}+()^{2}+()^{2}>0$ --- positive definite. C. Minimize the quantity $||x||^2 - 2t < x, y > + t^2 ||y||^2$ over $t \in \mathbb{R}$. ||x||= <x.x> = < x, x> - <2+x, y> +< ty, by> f(t) = +1/4/2-2+(x,4>+1/x)1 $f'(t) = 2t \|y\|^2 - 2 < x = 0$ $t = \frac{< x < y >}{\|y\|^2}$ -f"(t)=2||y||²>0 big A=0.

F. Let was be a strictly positive cont. tunction on [a, b] Define a
F. Let was be a strictly positive cost tunction on [a, b] Define a form on C[a, b] by <f. g="">w = [b] f(x)g(x)w(x) dx for</f.>
f, g e C[a,b]. Show that it's an inner product.
2 <f.g>= strictly D</f.g>
$\langle g, f \rangle_{w} = \int_{a}^{b} g \cdot f \cdot w \cdot dx = \int_{a}^{b} f g v dx$
Symmetry
2 bibinear is also trivial
positive definitioness
<pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>
$= \int_{a}^{b} h dx (h \ge 0)$
so <f, t="">w≥0</f,>
$-if < f \cdot f > \omega = 0$
 DMY 17 0.
 Page 135-13b
 (b). use trig identities to verify.
<u></u>

$$(20)$$
 (0)

where
$$A_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt$$

$$A_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cosh t dt$$
, $B_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sinh t dt$ for $n > 1$.

$$\cos^3\theta = \frac{e^{3i\theta} + e^{-3i\theta} + 3e^{i\theta} + 3e^{-i\theta}}{2}$$

$$=\frac{1}{4}\left(\frac{e^{ji\theta}+e^{-3i\theta}}{2}+\frac{3(e^{i\theta}+e^{-i\theta})}{2}\right)$$

$$= \frac{1}{4} \cos \frac{30}{30} + \frac{2}{7} \cos \theta$$

$$A_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[\frac{1}{4} \cos 3\theta + \frac{1}{4} \cos \theta \right] d\theta$$

$$=\frac{1}{2\pi}\left[\left(\frac{1}{12}\sin 3\theta + \frac{3}{4}\sin \theta\right)\right]^{\frac{1}{4}}$$

$$\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} \quad \text{And} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\cos 3\theta + \frac{3}{4}\cos\theta) \cdot (\frac{e^{in\theta} + e^{-in\theta}}{2}) d\theta$$

$$=\frac{1}{16}\int_{-\pi}^{\pi}\frac{(e^{3i\theta}+e^{-3i\theta})}{8}+\frac{3(e^{i\theta}+e^{-i\theta})}{8}\frac{e^{in\theta}+e^{-in\theta}}{2}d\theta$$

$$=\frac{1}{16}\int_{-\pi}^{\pi}\frac{(e^{3i\theta}+e^{-3i\theta})}{16}+\frac{3(e^{i\theta}+e^{-i\theta})}{16}+\frac{3e^{(4+n)i\theta}}{16}+3e^{-(4+n)i\theta}d\theta$$

$$= \frac{1}{\pi} \left(\frac{\pi}{16} + \frac{e^{(3+n)i\theta} + e^{(3+n)i\theta}}{16} + \frac{3e^{(4+n)i\theta} + 3e^{-(1+n)i\theta}}{16} \right) d$$

$$=\frac{1}{\pi}\int_{-\pi}^{\pi}\frac{1}{8}\cos(3+\pi)\theta+\frac{3}{8}\cos(1+\pi)\theta d\theta$$

$$= \frac{1}{\pi} \frac{1}{8(3+1)} \sin (3+1)\theta + \frac{3}{8(n+1)} \sin (2+n)\theta / \pi$$

$$B_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{e^{3i\theta} + e^{-3i\theta}}{8} + \frac{3e^{i\theta} + 3e^{-i\theta}}{8} \cdot \frac{e^{mi\theta} - e^{-mi\theta}}{2i} d\theta$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{e^{(n+)i\theta} + e^{-3i\theta} + e^{-3i\theta}}{16i} + \frac{3e^{(n+)i\theta} - 3e^{-(n+)i\theta}}{16i} d\theta$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \left(\frac{1}{8} \sin(3+n)\theta + \frac{3}{8} \sin(n+)\theta \right) d\theta$$

$$= \frac{1}{\pi} \left(\frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta \right) - \pi$$

$$= \int_{-\pi}^{\pi} e^{-(n+)i\theta} d\theta$$

$$= \frac{1}{\pi} \left(\frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta \right) - \pi$$

$$= \int_{-\pi}^{\pi} e^{-(n+)i\theta} d\theta$$

$$= \frac{1}{\pi} \left(\frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta \right) - \pi$$

$$= \int_{-\pi}^{\pi} e^{-(n+)i\theta} d\theta$$

$$= \frac{1}{\pi} \left(\frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta \right) - \pi$$

$$= \int_{-\pi}^{\pi} e^{-(n+)i\theta} d\theta$$

$$= \frac{1}{\pi} \left(\frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta \right) - \pi$$

$$= \int_{-\pi}^{\pi} e^{-(n+)i\theta} d\theta$$

$$= \frac{1}{\pi} \left(\frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta \right) - \pi$$

$$= \int_{-\pi}^{\pi} e^{-(n+)i\theta} d\theta$$

$$= \frac{1}{\pi} \left(\frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta \right) - \pi$$

$$= \int_{-\pi}^{\pi} e^{-(n+)i\theta} d\theta$$

$$= \frac{1}{\pi} \left(\frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta \right) - \pi$$

$$= \int_{-\pi}^{\pi} e^{-(n+)i\theta} d\theta$$

$$= \frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta \right) - \pi$$

$$= \int_{-\pi}^{\pi} e^{-(n+)i\theta} d\theta$$

$$= \frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta$$

$$= \frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta$$

$$= \frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta$$

$$= \frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta$$

$$= \frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta$$

$$= \frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta$$

$$= \frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta$$

$$= \frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta$$

$$= \frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta$$

$$= \frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta$$

$$= \frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta$$

$$= \frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta$$

$$= \frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta$$

$$= \frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta$$

$$= \frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta$$

$$= \frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}} \cos(3+n)\theta$$

$$= \frac{1}{80 \text{ m}} \cos(3+n)\theta + \frac{3}{80 \text{ m}}$$

	E. Find the fourier series
	$\frac{4}{4} + \sum A_n (\cos n\theta + \beta n \sin n\theta)$ $\frac{1}{4} = \frac{1}{4} \left[\frac{\pi}{\pi} \left[\frac{\sin \theta}{\pi} \right] + \frac{\pi}{\pi} \left[\frac{1}{\pi} \left[\frac{\sin \theta}{\pi} \right] + \frac{1}{\pi} \left[\frac{\sin \theta}{\pi} \right] + \frac{1}{\pi} \left[\frac{\sin \theta}{\pi} \right] + \frac{1}{\pi} \left[\frac{\sin \theta}{\pi} \left[\frac{\sin \theta}{\pi} \right] + \frac{1}{\pi} \left[\frac{\sin \theta}{\pi} \right] + \frac{1}{\pi$
see next page	$A_0 = \frac{1}{2\pi} \left(\frac{\pi}{\pi} \left(\frac{\sin \theta}{d\theta} \right) \right) = \frac{1}{\pi} \left(-\frac{\cos \theta}{\sigma} \right) = \frac{\pi}{\pi} \left(-\frac{\cos \theta}{\sigma} \right) $
	And why always 0?
	(b). f(a)= 0.
	H. $f(\theta) = \begin{cases} 1 - \theta & \forall \theta \leq 1 \\ 0 & \forall \theta \leq 1 \end{cases}$
	$y(b) = \begin{cases} 1 & 1 \leq 0 \leq 0 \\ 0 < 0 \leq 1 \end{cases}$
	I show if $f \in C[-\pi,\pi]$ is an odd function, then Fourier series of f involves only of the form sink θ .
	$I = \int_{-\alpha}^{\alpha} f(x) dx = \int_{-\alpha}^{\alpha} f(x) dx + \int_{0}^{\alpha} f(x) dx$

J.
$$f \in C[-\pi,\pi]$$
,
$$f_{e}(\theta) = \frac{1}{2}(f(\theta)) + f(-\theta)$$

$$f_{o}(\theta) = \frac{1}{2}(f(\theta)) - f(-\theta)$$

$$= compute fe & fo in terms of series of f.$$

Note $f(\pi) = \frac{1}{2}(f(\pi)) + f(-\pi) + \frac{1}{2}(f(\pi) - f(-\pi)) = f(\pi) = fe + fo$

$$Ao = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\pi) dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\pi) dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} (fe dx)$$

$$A_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} (fe + fo) cosnx dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} (fe + fo) ginardx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f s sin nx dx$$

even function.

$$A_0 = \frac{1}{2} \int_{-1}^{1} (1 - |\theta|) d\theta = \int_{0}^{1} |1 - \theta| d\theta = \theta - \frac{1}{2} \theta^{2} \Big|_{0}^{1} = \frac{1}{2}$$

$$A_n = 1 \cdot \int_{-1}^{1} \frac{C - |\theta|}{c} \cos \theta d\theta = 2 \int_{0}^{1} \frac{\cos n\theta - \theta \sin n\theta}{c} d\theta$$

$$= 2 \frac{\sin n\theta}{\Omega} \Big|_{0}^{1} - 2 \int \theta \cos n\theta \, d\theta$$

$$= 2 \frac{\sin n\theta}{\Omega} - 2 \int \frac{\theta}{\Omega} \, d \left(\sin n\theta \right)$$

$$=\frac{2}{n^2}(1-(csn))$$

$$g(\theta) = \begin{cases} 1 & 1 \leq \theta \leq 0 \\ 0 & 0 \leq 1 \end{cases}$$

Bn=
$$\int_0^1 (-1) \sin n\theta d\theta + \int_{-1}^0 (+1) \sin n\theta d\theta$$

$$=-2\int_0^{\pi} \sin n\theta d\theta$$

$$=\frac{2}{\eta}\cos \theta$$

Pa	ige 141.	
	ヾ ヘ ˙¬	
	B. $\vec{x} = (x_n)_{n=1}^{\infty}$, $\vec{y} = (y_n)_{n=1}^{\infty}$ be elements of \vec{l} . [a) Show $\sum_{n=1}^{N} x_n y_n \leq \vec{x} \vec{y} $	
	The same of the sa	
	$ X_n y_n = \langle x, y \rangle X = \langle x, y \rangle$	
	$ X_{n}Y_{n} = \langle X, Y \rangle \qquad X = \left(\frac{2}{2} \frac{1}{\sqrt{n}}\right)^{\frac{1}{2}}$ $\leq X Y + \left(\frac{2}{2} \frac{1}{\sqrt{n}}\right)^{\frac{1}{2}}$	
	1 x1:11 = (2x1-2yn) > 2 (2x)	
	2 = 1 x y 1 = 1 x y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1	
	(b). Show Exnyn comerges absolutely.	
	1 xm = 1 x 1 = (2 xn²) 2 is finite	
	- And for the	
	- similarly for party	
	So lim to you	
		_

P146, § 8,1
P146. § 8.1 B. $f_n(x) = n \times (1-x^2)^n$ on $[0,1]$. for $n \ge 1$. find $\lim_{n \to \infty} f_n(x)$. Ls it cornergence uniform? $x=0$, $f_n(x)=0$; $x=1$, $f_n(x)=0$.
 Le it cornergence uniform?
 $\frac{f_{(x)}-f_{(x)}}{f_{(x)}}=f_{(x)}$ $\lim_{n\to\infty}f_{(x)}=f_{(x)}$ $\lim_{n\to\infty}f_{(x)}=f_{(x)}$ $\lim_{n\to\infty}f_{(x)}=f_{(x)}$ $\lim_{n\to\infty}f_{(x)}=f_{(x)}$ $\lim_{n\to\infty}f_{(x)}=f_{(x)}$ $\lim_{n\to\infty}f_{(x)}=f_{(x)}$
 Recall: $\lim_{n\to\infty} (1-\frac{h}{n})^n = e^{-h}$ so $\lim_{n\to\infty} (1-\frac{h}{n})^n = e^{-h}$
 let (-x)
 can do per nt" (octa)
$\lim_{n\to\infty}\frac{n}{t^{-n}}=(-\log t)\cdot t^n$
 + 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 to to (x) = 1 00 K. So to (x) >0 es ~>0, positir umis
 1 1=0, 11-1 1 ~= 5up(nx∪-1)
 1 (() - file 5 14 17> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
 $= \frac{1}{2} e^{-\frac{1}{2}}$
$\lim_{n\to\infty} f_n(x) = 0$, yes. So not unit. Giv.
 1 to the local dimit
 In - Ulm - Vin - Vin 2
 $\frac{1}{(1+nx^2)^2} = \frac{1}{(1+nx^2)^2} = \frac{1}{(1+nx^2)^2}$
 when $\chi = \sqrt{h}$, $f_n(x) = \frac{1}{(1+nx^2)^2} = \frac{1-nx^2}{(1+nx^2)^2}$ $f_n(x) = \frac{1}{(1+nx^2)^2} = \frac{1-nx^2}{(1+nx^2)^2}$
H. Sps fn: [0.1] - IR is a seb. of c' functions. unit
that = conv. to intuise to f.
 If there an M s.t. Il flood M Vn,
 H. Sps fn: [0,1] - IR is a seb. of c' functions. units that = conv. to intuise to f. If there an M s.t. If the M Vn, prove (fn) conv. unif.
M≥ coll 1.4.2 ME
$f'_n \leq \sup f_n' \leq M$