```
In [58]: # Importing Libraries
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
In [59]:
          # Importing the Dataset
In [60]:
Out[60]:
                                     chol fbs restecg thalach exang oldpeak slope ca thal targe
                age
                    sex cp trestbps
            15
                 34
                       0
                                 118
                                      210
                                                     1
                                                          192
                                                                          0.7
                                                                                  2
                                                                                     0
                                                                                          2
            80
                 50
                       1
                          2
                                 140
                                      233
                                            0
                                                     1
                                                          163
                                                                   0
                                                                          0.6
                                                                                  1
                                                                                     1
                                                                                          3
                                      299
           211
                 67
                          0
                                 100
                                            0
                                                     0
                                                          125
                                                                   1
                                                                          0.9
                                                                                     2
                                                                                          2
                       1
                                                                                  1
            29
                 55
                       0
                                 180
                                      327
                                                     2
                                                           117
                                                                   1
                                                                                          2
                                                                          3.4
                                                                                  1
           676
                                      253
                 60
                       1
                          0
                                 130
                                            0
                                                     1
                                                          144
                                                                   1
                                                                          1.4
                                                                                  2
                                                                                     1
                                                                                          3
           708
                 60
                       0
                          2
                                 120
                                      178
                                            1
                                                     1
                                                           96
                                                                   0
                                                                          0.0
                                                                                  2
                                                                                     0
                                                                                          2
           788
                                      294
                                                          106
                                                                   0
                                                                                          2
                 62
                       0
                          0
                                 138
                                            1
                                                     1
                                                                          1.9
                                                                                  1
                                                                                     3
           493
                 55
                          0
                                      353
                                                     1
                                                          132
                                                                   1
                                                                                     1
                                                                                          3
                       1
                                 132
                                            0
                                                                          1.2
                                                                                  1
            88
                 62
                       0
                                 140
                                      268
                                                          160
                                                                   0
                                                                          3.6
                                                                                     2
                                                                                          2
           551
                 54
                       1
                          0
                                 122
                                      286
                                            0
                                                     0
                                                          116
                                                                   1
                                                                          3.2
                                                                                     2
                                                                                          2
                                                                                  1
In [61]:
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 1025 entries, 0 to 1024
          Data columns (total 14 columns):
                                             Dtype
                Column
                           Non-Null Count
           _ _ _
                            -----
                                              ----
           0
                           1025 non-null
                                              int64
                age
           1
                sex
                           1025 non-null
                                              int64
           2
                           1025 non-null
                                              int64
                ср
           3
                trestbps
                           1025 non-null
                                              int64
           4
                chol
                           1025 non-null
                                              int64
           5
                fbs
                           1025 non-null
                                              int64
           6
                restecg
                           1025 non-null
                                              int64
           7
                thalach
                           1025 non-null
                                              int64
           8
                exang
                           1025 non-null
                                              int64
           9
                oldpeak
                           1025 non-null
                                              float64
           10
                slope
                           1025 non-null
                                              int64
           11
                                              int64
                ca
                           1025 non-null
                           1025 non-null
           12
                thal
                                              int64
                           1025 non-null
                                              int64
               target
          dtypes: float64(1), int64(13)
          memory usage: 112.2 KB
```

In [62]: # Checking Duplicates in the Dataset

Out[62]: 723

In [63]: # Removing the Duplicate datapoints

In [64]:

Out[64]: (302, 14)

In [65]:

Out[65]:

	age	sex	ср	trestbps	chol	fbs	restecg	tł
count	302.00000	302.000000	302.000000	302.000000	302.000000	302.000000	302.000000	302.0
mean	54.42053	0.682119	0.963576	131.602649	246.500000	0.149007	0.526490	149.5
std	9.04797	0.466426	1.032044	17.563394	51.753489	0.356686	0.526027	22.9
min	29.00000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.0
25%	48.00000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.2
50%	55.50000	1.000000	1.000000	130.000000	240.500000	0.000000	1.000000	152.5
75%	61.00000	1.000000	2.000000	140.000000	274.750000	0.000000	1.000000	166.0
max	77.00000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.0

In [66]: # Checking the Distribution of the features

62

138

0

294

1

```
In [67]:
             # understanding the correalation between the features
             plt.figure(figsize=(15,5))
             sns.heatmap(df.corr(),annot=True,linewidths=1)
                                                                                                                   - 1.0
                                        0.28 0.21
                                  -0.052
                                                                                                                    - 0.8
                                               -0.073
                                                                                           -0.2
                                                                                                 -0.16
                                   1
                                                                        -0.39
                                                                 -0.048
                                                                       0.069
                                                                                                                    - 0.6
                                  -0.073
                                                                        0.064
                                                                              0.05
                                                                                          0.087
                                                                 -0.0053
                 chol
                                                                                                 -0.033
                                                                                                                    0.4
                            0.046
                                  0.096
                                                                 -0.0072
                                                                              0.0045
               restecg
                                         -0.12
                                                     -0.083
                                                                        -0.069
                                                                                                                    0.2
                                                                   1
                                                                        -0.38
                                  -0.39
                                        0.069
                                                           -0.069
                                                                                                                    - 0.0
                            -0.033
                                                     -0.059
                                                                                           -0.092
                                                                                                  -0.1
                slope
                                                                                                                    -0.2
                            0.11
                                   -0.2
                                        0.099
                                               0.087
                                                     0.14
                                                           -0.083
                                                                                            1
                                                                                                        -0.41
                            0.21
                                   -0.16
                                        0.063
                                                     -0.033
                                                            -0.01
                                                                               0.21
                                                                                     -0.1
                                                                                                  1
                                                                                                        -0.34
                                                                                                                     -0.4
                 thal
                            -0.28
                                        -0.15
                                               -0.081
                                                     -0.027
                                                           0.13
                                                                        -0.44
                                                                              -0.43
                                                                                           -0.41
                                                                                                 -0.34
               target
                                       trestbps
                                                          restecg thalach
                                                                             oldpeak
                                                                                                 thal
                                                                                                       target
            # Converting Target from Numarical Data to Catogorical data
In [68]:
             def convert(row):
                   if row==1:
                         return 'Heart Disease'
                   elif row==0:
In [69]:
             df['target1']=df['target'].apply(convert)
Out[69]:
                                 trestbps chol fbs restecg thalach exang oldpeak slope
                                                                                                       ca
                                                                                                            thal
                                                                                                                 target
                 age
                       sex
                             ср
              0
                   52
                          1
                               0
                                       125
                                              212
                                                      0
                                                                1
                                                                       168
                                                                                  0
                                                                                           1.0
                                                                                                     2
                                                                                                         2
                                                                                                               3
                                                                                                                       0
              1
                   53
                          1
                               0
                                       140
                                              203
                                                      1
                                                                0
                                                                       155
                                                                                                     0
                                                                                                         0
                                                                                                                       0
                                                                                  1
                                                                                           3.1
              2
                   70
                               0
                                       145
                                              174
                                                                       125
                                                                                                                       0
                          1
                                                      0
                                                                1
                                                                                  1
                                                                                           2.6
                                                                                                     0
                                                                                                         0
                                                                                                               3
              3
                   61
                               0
                                       148
                                              203
                                                      0
                                                                       161
                                                                                  0
                                                                                           0.0
                                                                                                     2
                                                                                                         1
                                                                                                                       0
```

106

1

0

1.9

3

1

2

0

```
In [70]: # Checking How many people Having Heart Dicease

plt.figure(figsize=(6,6))
    df.target1.value_counts().plot(kind='bar',color=['red','skyblue'])
    plt.ylabel('No.Of People')
    plt.xlabel('Status')
    plt.title('People Vs Heart_Disease')
```


In [71]:

Status


```
In [73]:
```

Out[73]: <Axes: xlabel='target1', ylabel='count'>


```
In [74]: Young = df[((df['age']>=20) & (df['age']<=35))]
Mid = df[((df['age']>=36) & (df['age']<=55))]
In [75]: 11=len(Young)
12=len(Mid)</pre>
```

```
In [76]: plt.pie(x=[11,12,13],autopct='%.f%%',labels=['Young','Mid','Older'],explode
    plt.title('Age Categories Distribution')
```



```
In [77]: def age(row):
    if row<=35:
        return 'Young'
    elif row>65:
        return 'Older'
    else:
In [78]:
```

```
In [79]: sns.countplot(data=df,x='target1',hue='age_cat')
    plt.title('Age Categories Vs Disease')
    plt.xlabel('Disease Status')
    plt.ylabel('No.Of People')
```


In [80]: (161)

Out[80]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	targ
12	34	0	1	118	210	0	1	192	0	0.7	2	0	2	
60	29	1	1	130	204	0	0	202	0	0.0	2	0	2	
143	34	1	3	118	182	0	0	174	0	0.0	2	0	2	
256	35	0	0	138	183	0	1	182	0	1.4	2	0	2	
281	35	1	1	122	192	0	1	174	0	0.0	2	0	2	

```
In [81]: sns.countplot(data=df,x='target1',hue='cp')
   plt.title('Cheast Pain Vs Disease')
   plt.xlabel('Disease Status')
   plt.ylabel('No.Of People')
```



```
In [82]: sns.countplot(data=df,x='age_cat',hue='cp')
    plt.title('Cheast Pain Vs Age_Categories')
    plt.xlabel('Age_Categories')
    plt.ylabel('No.Of People')
```



```
In [83]: def bp(row):
    if row<=129:
        return 'Normal'
    elif row>140:
        return 'High Risk'
    else:
        return 'Elevated'
In [84]: **Color of the color of
```

```
In [85]: plt.figure(figsize=(5,5))
    sns.countplot(data=df,x='bp',hue='target1')
    plt.title('BP Vs Disease')
    plt.xlabel('BP')
    plt.ylabel('No.Of People')
```



```
In [86]: plt.figure(figsize=(5,5))
    sns.countplot(data=df,x='bp',hue='cp')
    plt.title('Blood Pressure Vs Chest Pain')
    plt.xlabel('Blood Pressure')
    plt.ylabel('No.Of People')
```

Blood Pressure Vs Chest Pain


```
In [87]: plt.figure(figsize=(5,5))
    sns.countplot(data=df,x='bp',hue='age_cat')
    plt.title('Blood Pressure Vs Age Categories')
    plt.xlabel('Blood Pressure')
    plt.ylabel('No.Of People')
```



```
In [88]: def chol(row):
    if row<=150:
        return 'Normal'
    elif row>200:
        return 'High'
    else:
```

In [90]:

Out[90]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	0
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	0
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	0
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	0
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	0

```
In [91]: plt.figure(figsize=(5,5))
    sns.countplot(data=df,x='chol_cc',hue='age_cat')
    plt.title('Cholesterol levels Vs Age Categories')
    plt.xlabel('Cholesterol levels')
    plt.ylabel('No.Of People')
```

Cholesterol levels Vs Age Categories


```
In [92]: plt.figure(figsize=(5,5))
    sns.countplot(data=df,x='chol_cc',hue='target1')
    plt.title('Cholesterol levels Vs Disease')
    plt.xlabel('Disease Status')
    plt.ylabel('No.Of People')
```



```
In [93]: plt.figure(figsize=(5,5))
    sns.countplot(data=df,x='chol_cc',hue='sex')
    plt.title('Cholesterol levels Vs Gender')
    plt.xlabel('Cholesterol levels')
    plt.ylabel('No.Of People')
```

Cholesterol levels Vs Gender


```
In [94]: sns.lineplot(data=df,x='age',y='trestbps',hue='sex')
plt.title('Age Vs BP')
plt.xlabel('Age')
plt.ylabel('BP')
```



```
In [95]: sns.lineplot(data=df,x='age',y='chol',hue='sex')
    plt.title('Age Vs BP')
    plt.xlabel('Age')
    plt.ylabel('Cholesterol levels')
```



```
In [96]: sns.lineplot(data=df,x='age',y='oldpeak',hue='sex')
    plt.title('Age Vs Depression')
    plt.xlabel('Age')
    plt.ylabel('Depression')
```



```
In [97]: sns.barplot(data=df,x='target1',y='oldpeak',hue='sex')
    plt.title('Disease Vs Depression')
    plt.xlabel('Disease')
    plt.ylabel('Depression')
```



```
In [98]: sns.barplot(data=df,x='age_cat',y='oldpeak',hue='sex')
    plt.title('Age Vs Depression')
    plt.xlabel('Age_Categories')
    plt.ylabel('Depression')
```


In [99]:

Out[99]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	0
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	0
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	0
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	0
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	0

```
In [100]: sns.barplot(data=df,x='target1',y='slope')
    plt.title('Age Vs peak exercise ST')
    plt.xlabel('Disease')
    plt.ylabel('peak exercise ST')
```



```
In [116]: plt.figure(figsize=(5,3))
    sns.barplot(data=df,x='target1',y='exang') #exercise induced angina
    plt.title('Age Vs Exercise Induced Angina')
    plt.xlabel('Disease')
    plt.ylabel('Exercise Induced Angina')
    plt.show()
```


In [102]: "...

```
In [103]: sns.barplot(data=df,x='sex',y='exang',hue='cp')
    plt.title('Gender Vs Exercise Induced Angina')
    plt.xlabel('0=Female & 1 = Male')
    plt.ylabel('Exercise Induced Angina')
    plt.show()
```


In [104]: # males having high Excerise Angina

```
In [117]: plt.figure(figsize=(5,3))
    sns.barplot(data=df,x='sex',y='fbs',hue='age_cat')
    plt.title('Gender Vs Fasting Blood Sugar over 120')
    plt.xlabel('Disease')
    plt.ylabel('Fasting Blood Sugar Over 120')
```



```
In [107]: sns.lineplot(data=df,x='age',y='trestbps')
sns.lineplot(data=df,x='age',y='chol')
sns.lineplot(data=df,x='age',y='thalach')
plt.ylabel('Messures')
```

Out[107]: <matplotlib.legend.Legend at 0x23d23511d90>


```
In [108]: sns.barplot(data=df,x='target1',y='thalach')
    plt.title('Disease Vs Maximum Heart Rate')
    plt.xlabel('Disease')
    plt.ylabel('Maximum Heart Rate')
```



```
In [109]: sns.barplot(data=df,x='age_cat',y='ca',hue='sex')
    plt.title('Age Vs Major vessels')
    plt.xlabel('Age')
    plt.ylabel('Major Vessels')
```



```
In [110]: sns.barplot(data=df,x='target1',y='thal',hue='sex')
    plt.title('Disease Vs Thal')
    plt.xlabel('Disease')
    plt.ylabel('Thal')
```


In [111]:

In [112]:

Out[112]:

		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
-	0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	0
	1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	0
	2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	0
	3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	0
	4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	0

```
In [ ]:

In [ ]:
```

30 of 30