MOMENT OF INERTIA

This concept is useful for structural design, mechanical design etc. For example in design of beams, columns, pipes, rotating shafts, and other elements in engineering.

What is Inertia:

An object at rest will remain at rest and an object in motion will remain in motion unless an unbalanced force acts upon it.

https://www.youtube.com/watch?v=1XSyyjcEHo0

In general, the moment of inertia of an object is its resistance to rotational acceleration.

- Mass moment of inertia
- Area moment of inertia
- Polar moment of inertia

• In simple terms, moment of inertia symbolizes strength or stiffness.

Second moment of area or moment of inertia

• The 2nd moment of area, also known as the area moment of inertia, or second area moment, is a geometrical property of an area which reflects how its points are distributed with regard to an arbitrary axis.

Moment of Inertia

Consider area A lying in the x-y plane

By definition, moments of inertia of the differential plane area dA about the x and y axes

$$dI_x = y^2 dA \quad dI_y = x^2 dA$$

For entire area, moments of inertia are given by

$$I_x = \int_A y^2 dA$$
$$I_y = \int_A x^2 dA$$

$$I_y = \int_A x^2 dA$$

Q- Determine the moment of inertia for the rectangular area with respect to (a) the centroidal x' axis, (b) centroidal y' axis.

Solution - Differential element chosen, distance y' from x' axis. Since,

$$dA = b dy'$$

$$\overline{I}_{x} = \int_{A} y'^{2} dA = \int_{-h/2}^{h/2} y'^{2} (bdy') = b \int_{-h/2}^{h/2} y'^{2} dy' = \frac{1}{12} bh^{3}$$

•Derive I_{y'} in class

YOUNG'S MODULUS OF ELASTICITY

- A measure of how stiff a material is.
- This is a constant property for any material.
- An elastic modulus (also known as modulus of elasticity) is a quantity that measures an object or substance's resistance to being deformed elastically (i.e., non-permanently) when a stress is applied to it.
- A stiffer material will have a higher elastic modulus. Most material values are available in mechanics and statics books.

Generally, the elastic modulus of an object is defined as the slope of its stress-strain or load – deflection curve in the elastic deformation region.

It can also be determined from a deflection – load graph for a beam.

Stress ∝ Strain

$$\sigma \propto \epsilon$$

$$\sigma = E \epsilon$$

$$\sigma = E \varepsilon$$

$$E = \frac{\sigma}{\varepsilon}$$

*E = Young's modulus of elasticity

Deflection in a beam

- You will be performing experiments in lab on such a beam.
- The design of beam requires
 knowledge of Statics, Moment of
 Inertia of the beam and material
 properties like Modulus of Elasticity.

• To find out Modulus of Elasticity, you need to do an experiment where you apply load and find out deflection under that load. Plot a graph between these two and viola! You have the Modulus of Elasticity.

