Viscosity: Laminar vs. Turbulent Flow class - 18 (07.11.24)

LS2103 (Autumn 2024)

Dr. Neelanjana Sengupta Associate Professor, DBS

https://www.iiserkol.ac.in/~n.sengupta/

Diffusion Equations:

$$\langle r_N^2 \rangle = (2d) (D) (T)$$

$$6\pi\eta aD = k_BT$$

Dimensions and Units of <u>dynamic viscosity</u>

Commonly used Units: Poise

| poise =
$$19 \text{ cm}^{-1} \text{ s}^{-1}$$

= 0.1 Pa.s
| centipoise (1 cp) = $10^{-2} \times 0.1 \text{ Pa-s}$
= 10^{-3} Pa-s

Diffusion Equations:

$$\langle r_N^2 \rangle = (2d) (D) (T)$$

Eg 1. self-diffusion of pure Ethanol

- How will you approximately estimate the time to diffuse across a given length, say 5 cm?
- What does your answer indicate?

$$(tme) = 0.9 \times 10^6 \text{ see}$$

Ink droplets in corn syrup can be unmixed by reverse stirring

Viscosity, $\eta_{corn-syrup} = 5 \text{ Pa-s (at 298 K)}$

But not milk in coffee

Viscosity, $\eta_{water} = 0.0018 \text{ Pa-s} == 1.8 \text{ centipoise}$ (at Room Temperature)

What is viscosity?

SHEARING MOTION

$$\int \propto A$$
 $\propto 1$

Plate dragged with speed v_0 gives rise to resistive viscous force (f) in the opposite direction.

Note:

Drag (resistive) force felt in water will be much smaller than in corn syrup and glycerin

$$f = -(\eta)(\frac{AV_0}{d})$$
in Bulk property of the fluid

What is viscosity?

SHEARING MOTION

Laminar (organized) Flow

$$f = -(\gamma)(\frac{AV_0}{a})$$
Large

Small
$$6 \pi \eta a D = k_B T$$

What is viscosity?

SHEARING MOTION

Turbulent (chaotic) flow

Laminar or Turbulent?

SHEARING MOTION

$$\begin{bmatrix} Q \end{bmatrix} = ?$$

$$= \begin{bmatrix} MLT^{-2} \end{bmatrix}$$

$$f = -\left(\gamma\right)\left(\frac{AV_0}{d}\right)$$

Laminar -> Turbulat

Can there be a transition?

let
$$Q = \frac{\eta^2}{s_m}$$

Laminar or Turbulent?

SHEARING MOTION

$$f = -\left(\mathcal{N}\right)\left(\frac{A_{1}V_{0}}{d}\right)$$

Situation and system dependent

Can there be a transition?

Laminar:

Turbulent:

Laminar or Turbulent?

Critical force,

$$\int_{\text{critical}} = \frac{2}{S_{\text{rm}}}$$

$$f = -\left(\gamma\right)\left(\frac{A_{1}V_{0}}{a}\right)$$

Situation and system dependent

What magnitude of force is needed for turbulence in these liquids?

Fluid	Density (kg m ⁻³)	η (Pa-s)	f _{critical} (N)
Water	1000	0.0018	3.24×10-9 N
Olive oil	900	0.08	?
Corn syrup	1000	5	? V

Room temperature data

The ratio of inertial to viscous forces

Osborne Reynolds 1842-1912

(mass) x (acceleration)

depends on viscosity of fluid; velocity; and size of the body.

inertial forces dominate, flow is more turbulent ~ **High** Re:

viscous forces dominate, flow is more laminar ./ Low Re:

The ratio of inertial to viscous forces

The ratio of inertial to viscous forces

- For water,
 f_{critical} is ~10⁻⁹ Newtons!
- Water is easily 'turbulent' for macroscopic objects

Swimming is easily turbulent (for us)

>A ~2 kg load (say, your arm) at acceleration of 0.1 g involves a force of 0.2 Newtons

> A ~60 kg swimmer in water generates very large forces

The ratio of inertial to viscous forces

0.5 hm

What about unicellular organisms?

- For water,
 f_{critical} is ~10⁻⁹ Newtons!
- Water is easily 'turbulent' for macroscopic objects

- > Typical parasitic protozoa size: ~50 µm
- > Floating speed ~100 µm/second 🗸
- Surrounding flow appears laminar
- What are the consequences?

Re~10

Prob.

c) Plankton are passive organisms found in *sea water*. The largest plankton measure about 20 mm, the smallest measure about 2 micrometers, and they can cover roughly their own length per second in water.

What are the ranges of their Reynolds number ? Which forces dominate the motion of plankton in calm sea water?

Viscosity of pure water at 25 °C = 8.90×10^{-4} Pascal-seconds. Viscosity of sea water at 20 °C = 1.07×10^{-3} Pascal-seconds. Padensity of sea water at 20 °C = 1.2×10^{-3} Pascal-seconds.

 $2 = 20 \text{ mm}_3$ = $20 \times 10^{-3} \text{ m}_3$

1	smallest Planktm	layest Mankton.
Pure H20	4.5 ×10	4.5 × 10 ⁺²
Sca Water	4.5×10	4.5 ×10 ²