Finger Photo Quality Assessment

6310501933 Wiwitthawin Charoenngam

Agenda

Problem

Data

Problem Solving

Result

Analysis

Summary

Problem

How to classify Good Quality Fingerprint Image from Bad Quality?

-> Quality Assessment is crucial for Fingerprint Recognition System for it is to rejected low-quality image that provide unwanted data resulting in less processing time of the overall system.

Data

2 Classes: Good quality and Bad quality

Database: 126 images in ISPFDv1 with

labelled quality

ISPFD = IIITD Smartphone Finger Photo Database

Preprocessing

Preprocessing

Linear Normalization: $X_{norm} = \frac{X - Xmin}{Xmax - Xmiin}$

CLAHE:

```
# CLAHE

clip_limit = 4
grid_shape = (6,6)

CLAHE = cv.createCLAHE(clipLimit = clip_limit, tileGridSize = grid_shape)
output_CLAHE = CLAHE.apply(mask_img)
output_CLAHE = np.uint8(output_CLAHE)
```


Feature Extraction: Global Analysis

Feature Extraction: Global Analysis

Gaussian Band Pass Filter: D0 = 80, D1 = 220

Good Quality in Frequency Domain

Bad Quality in Frequency Domain

Feature Extraction: Local Analysis

Feature Extraction: Local Analysis

Boundary Box

```
ret,thresh = cv.threshold(output_CLAHE,30,255,cv.THRESH_BINARY)
contours,_ = cv.findContours(thresh,cv.RETR_LIST,cv.CHAIN_APPROX_SIMPLE)
draw = output_CLAHE.copy(); i = 0; box_list = []; ROI_b = []; j=0;
 for cntl in contours:
    area = cv.contourArea(cnt1)
    area norm = area / (output CLAHE.shape[0] * output CLAHE.shape[1])
    (cx, cy), (w, h), angle = cv.minAreaRect(cntl)
    x0,y0,w0,h0 = cv.boundingRect(cnt1)
    if (area norm > 0.05):
        rect = cv.minAreaRect(cntl)
        box = cv.boxPoints(rect)
        box = np.int0(box)
        cv.drawContours(draw,[box],0,(255,255,0),12)
        x,y,w,h = cv.boundingRect(cnt1)
box_list.append(box); i =
                                    i = i+1;
        roi data = [y, y+h, x, x+w]
        ROI b.append(roi data)
output_CLAHE_ = output_CLAHE.copy()
output CLAHE crop = output CLAHE [ROI b[j][0]:ROI b[j][1], ROI b[j][2]:ROI b[j][3]]
```


Feature Extraction: Local Analysis

Short-time Fourier Transform

Feature Extraction: Local Analysis

Bad Quality in STFT

Good Quality in STFT

Feature Extraction: Local Analysis

32 x 32 Magnitude Matrix

Sum of Magnitude in X-axis

Classification

6 features: (Variance, Mean, RMS) of Global and Local Analysis

Standard Scaler

70-30 Train-Test Split

KNN(5), SVM, Decision Tree, ANN

Classification

```
scaler = StandardScaler()
#X = [X[0:3] \text{ for } X \text{ in } X]
X = scaler.fit_transform(X)
#X norm = normalize(X, norm='l2')
X train, X test, y train, y true = train test split(X , y , test size = 0.3, random state=99)
# KNN
KNN = KNeighborsClassifier(n neighbors=5)
KNN.fit(X train, y train)
y test = KNN.predict(X test)
# SVM
SVM = make pipeline(StandardScaler(), SVC(gamma='auto'))
SVM.fit(X train, y train)
y test = SVM.predict(X test)
# Decision Tree
DT = tree.DecisionTreeClassifier()
DT = DT.fit(X train, y train)
y_test = DT.predict(X_test)
# Neural Network
NN = MLPClassifier(solver='lbfgs', alpha=le-5, hidden layer sizes=(5, 2), random state=1)
NN.fit(X train, y train)
y_test = NN.predict(X_test)
```

Result

All Features: Variance, Mean, RMS of Global Analysis and Local Analysis

	KNN	SVM	DT	ANN
Acc	0.71	0.68	0.66	0.79
Error	0.29	0.32	0.34	0.21
Precision	0.67	0.64	0.58	<mark>0.75</mark>
Recall	0.63	0.56	0.69	0.75

Result

Global Analysis Features: Variance, Mean, RMS

	KNN	SVM	DT	ANN
Acc	0.55	0.71	0.68	0.66
Error	0.45	0.29	0.32	0.34
Precision	0.45	<mark>0.86</mark>	0.62	0.80
Recall	0.31	0.37	0.62	0.25

Result

Local Analysis Features: Variance, Mean, RMS

	KNN	SVM	DT	ANN
Acc	0.50	<mark>0.55</mark>	0.53	0.53
Error	0.50	0.45	0.47	0.47
Precision	0.33	0.40	<mark>0.42</mark>	0.40
Recall	0.19	0.12	0.31	0.25

Analysis

J3 Score of Features

	1	2	3	4	5	6
1		2.46	2.21	2.16	2.17	2.16
2	2.46		2.29	2.01	2.00	2.00
3	2.21	2.29		2.12	2.13	2.12
4	2.16	2.01	2.12		2.01	2.01
5	2.17	2.00	2.13	2.01		2.01
6	2.16	2.00	2.12	2.01	2.01	
All Feature	<mark>6.64</mark>					

- All Features has the best J3 Score
- All Features Classification has 0.79% Accuracy, 0.75% precision and recall
- ANN is the best in All Features for Accuracy, Precision and Recall
- All Feature work the best which is the same for class separability.

Summary

For Quality Fingerprint Assessment, Global and Local Analysis is used for finding features; Variance, Mean, and RMS of Both Analysis resulting in all features have the best accuracy, precision and recall for classification which is in the same way as class separability.

Fourier Transform and Short-time Fourier Transform is adopted for analysis in this project for finding features for classification

Improvement

• In Local Analysis:

- 1. Ban DC Magnitude of each Block
- 2. Apply Gaussian Bandpass Filter
- 3. Find PCA of each block
- 4. Affine Transform Matrix using PCA
- 5. Use Phase for detecting Peaking
- 6. More assuring criteria for boundary of fingerprint

Thank you

Wiwitthawin Charoenngam

Wiwitthawin.c@ku.th

6310501933 Kasetsart University

