

División y Conquista: Presentación

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Dīvide et īmpera

Máxima política y militar

atribuida al emperador romano Julio Cesar.

Utilizado en algoritmos matemáticos

desde hace siglos (Euclides, Gauss, ...)

División y conquista

Conjunto de técnicas algorítmicas

en el que se <u>divide</u> el problema en subproblemas de igual naturaleza y menor tamaño

se los <u>conquista</u> (resuelve) en forma recursiva (hasta un caso base)

y se <u>combina</u> los resultados en una solución general

Generalmente se pueden aplicar a problemas

donde la solución por fuerza bruta ya tiene una complejidad polinómica

Analizar su complejidad requiere resolver una relación de recurrencia

Relación de recurrencia

Ecuación que define una secuencia recursiva

Cada término de la secuencia es definido como una función de términos anteriores

$$T_n = F(T_{n-1}, T_{n-2}, ...)$$

Existe uno o varios términos base o iniciales desde los cuales se calculan los siguientes.

Plantilla básica

- 1. Dividir el problema en "q" subproblemas de tamaño reducido al original.
- 2. Resolver cada subproblema por separado mediante recursión
- 3. Combinar el resultado de los subproblemas.

Ejemplo: MergeSort

Algoritmo de ordenamiento

utiliza el divide y vencerás

Propuesto por John von Neumann en 1945

(Según Knuth en "Art of computing Programming")

MERGESORT(A)

Si size A == 2 → comparar y devolver ordenado

A1 = (size A)/2 primeros elementos de A

A2 = (size A)/2 últimos elementos de A

Retornar MERGE (MERGESORT(A1), MERGESORT(A2))

MergeSort - Análisis de Complejidad (cont.)

Se debe resolver la relación de recurrencia

para poder calcular la complejidad.

3 formas básicas de resolverlas:

"Desenrollarla"

"Adivinar" y verificar: Inducción

Método del maestro

MergeSort - Análisis de Complejidad

Sea T(n) el peor caso de tiempo de ejecución

para la resolución del problema de "n" elementos.

$$F(N) = O(1) \le c \text{ (para un c > 0)}$$

Sea DIV el proceso de dividir el problema en 2 subproblemas.

Sea UNI el proceso de unir el resultado de de los 2 subproblemas

$$MERGE \rightarrow F(N) = O(N) \le c \text{ n (para un c > 0)}$$

$$T(n) \le 2*T(n/2) + DIV + UNI \text{ y } T(2) \le c$$

$$T(n) \le 2*T(n/2) + cn \quad n > 2$$

$$T(2) \le d \qquad \qquad n=2$$

Desenrollando la recurrencia

Validación del resultado

Probar en la recurrencia la validez del resultado

$$T(2) \leq c$$

$$T(n) \leq 2*T(n/2) + cn$$

$$T(n=2) = cn \log 2 n = 2c$$

$$T(2) \le d < 2c$$

$$T(n) \le 2c(n/2) \log_2(n/2) + cn$$

= $cn[(\log_2 n) - 1] + cn$
= $(cn \log_2 n) - cn + cn$
= $cn \log_2 n$.

Desenrollando - Matemáticamente

Relación de recurrencia

$$T(n) = 2T(n/2) + cn$$

$$T(2) = d$$

$$T(n/2) = 2T(n/4) + n/2$$

$$T(n/4) = 2T(n/8) + n/4$$

. . .

$$T(n) = 2[2(2{T(n/16) + n/8} + n/4) + n/2] + n$$

$$T(n)=2^{k}*1+\sum_{i=0}^{k}\frac{2^{i}*n}{2^{i}}$$

Desenrollando - Matemáticamente (cont.)

Continuemos

vemos que k= logn

$$T(n) = 2^{k} * 1 + \sum_{i=0}^{k} \frac{2^{i} * n}{2^{i}}$$

$$T(n) = 2^{\log(n)} + n * \sum_{i=0}^{\log(n)} \left(\frac{2}{2}\right)^{i}$$

$$T(n) = 2^{\log(n)} + n * \sum_{i=0}^{\log(n)} 1^{i}$$

$$T(n) = 2^{\log(n)} + n * \sum_{i=0}^{\log(n)} 1^{i}$$

$$T(n) = 2^{\log(n)} + n\log(n)$$

$$T(n)=n^{\log(2)}+n\log(n)$$
 $T(n)=O(n\log n)$

 $a^{\log_2 n} = n^{\log_2 a}$

"Adivinar" y verificar

Podemos calcular T(n) probando...

Ej:
$$T(n) = O(n), O(n^2), O(n \log n)$$

$$T(n) \le 2*T(n/2) + cn n>2$$

$$O(n)$$
: $kn \le 2^* kn/2 + cn \le (k+c)n$

$$O(n^2)$$
: $kn^2 \le 2^* kn^2/2 + cn \le kn^2 + cn$

 $O(n \log n)$: $kn \log_2 n \le 2k(n/2) \log_2 (k/2) + cn =$

$$= kn*(log_2 n - 1) + cn = kn log_2 n - kn + cn$$

$$kn \log_2 n \le kn \log_2 n + (c-k)n$$

sii c=0 X para todo c≥0 v

sii k≤c

Corolario

Cualquier función que satisfaga:

cumple con O(n log n) cuando n>1

Subdivisión en mas de 2 partes

Que pasa si en vez de dividir el problema en 2 subproblemas se hace en "q"?

Análisis de complejidad

Podemos explorar la recurrencia como:

Subdivisión en solo 1 problema

Si q=1

 $\mathsf{T}(\mathsf{n}) \leq \mathsf{q*T}(\mathsf{n}/2) + \mathsf{O}(\mathsf{n})$

El método del maestro

Presentado por Jon Bentley, Dorothea Haken y James B. Saxe

en el paper "A General Method for Solving Divide-and-Conquer Recurrences" en 1980.

Nombrado originalmente "unifying method"

Popularizado como "Master Theorem" por Cormen, Leiserson, Rivest, and Stein

Presentación realizada en Septiembre de 2020

División y conquista: Teorema maestro - Ejemplos

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Teorema maestro

Sean

 $a \ge 1$ y $b \ge 1$ constantes,

f(n) una función,

T(n) = aT(n/b) + f(n) una recurrencia con T(0)=cte

Entonces

1) Si
$$f(n) = O(n^{\log_b a - e})$$
 , $e > 0 \Rightarrow T(n) = \Theta(n^{\log_b a})$

2) Si
$$f(n) = \Theta(n^{\log_b a})$$
 $\Rightarrow T(n) = \Theta(n^{\log_b a} * \log n)$

3) Si
$$f(n) = \Omega(n^{\log_b a + e})$$
 , $e > 0 \Rightarrow T(n) = \Theta(f(n))$

$$Y af(n/b) \le cf(n), c<1 y n>>$$

$$T(n) = 9 T(n/3) + n$$

$$a = 9$$
 $b = 3$ $f(n) = n$

Probamos

Caso 2:
$$f(n) = \Theta(n^{\log_b a})$$
 $\Rightarrow T(n) = \Theta(n^{\log_b a} * \log n)$

$$n \stackrel{?}{=} \Theta(n^{\log_3 9}) \stackrel{?}{=} \Theta(n^2)$$

Caso 1:
$$f(n) = O(n^{\log_b a - e})$$
, $e > 0 \Rightarrow T(n) = O(n^{\log_b a})$
 $n = O(n^{\log_3 9 - e}) = O(n^{2 - e})$ Si $e = 1 \Rightarrow n = O(n^{2 - 1}) = O(n)$

$$\Rightarrow T(n) = \Theta(n^2)$$

$$T(n) = T(2n/3) + 1$$

$$a=1$$
 $b=3/2$ $f(n)=1$

Probamos

Caso 2:
$$f(n) = \Theta(n^{\log_b a})$$

$$1 \stackrel{?}{=} \Theta(n^{\log_{3/2} 1}) \stackrel{?}{=} \Theta(n^0)$$

$$\Rightarrow T(n) = \Theta(n^{\log_{3/2} 1} * \log n)$$

 $\Rightarrow T(n) = \Theta(n^{\log_b a} * \log n)$

$$\Rightarrow T(n) = \Theta(\log n)$$

$T(n) = 3 T(n/4) + n \log n$

$$a=3$$
 $b=4$ $f(n) = n log n$

Probamos

Caso 2:
$$f(n) = \Theta(n^{\log_b a})$$
 $\Rightarrow T(n) = \Theta(n^{\log_b a} * \log n)$

$$n\log n \stackrel{?}{=} \Theta(n^{\log_4 3}) \stackrel{?}{=} \Theta(n^{0,793})$$

Caso 1:
$$f(n) = O(n^{\log_b a - e})$$
, $e > 0 \Rightarrow T(n) = \Theta(n^{\log_b a})$

$$n \log n \stackrel{?}{=} O(n^{0.793-e}) \stackrel{?}{=} O(n^{2-e})$$

Ejemplo 3 (cont.)

$$T(n) = 3 T(n/4) + n \log n$$

$$a=3$$
 $b=4$ $f(n) = n log n$

Probamos

Caso 3:
$$f(n) = \Omega(n^{\log_b a + e})$$
, $e > 0 \Rightarrow T(n) = \Theta(f(n))$

$$n \log n \stackrel{?}{=} \Omega(n^{0.793+e})$$
 Si e= 0,1 $\rightarrow n \log n = \Omega(n^{0.893})$

$$\exists c < 1, n >> /a * f(n/b) \leq c * f(n)$$

$$3(n/4*\log(n/4)) \le c*n*\log n$$

Si c=3/4
$$\Rightarrow$$
 3/4 $n * \log(n/4) \le$ 3/4 $n * \log n$

$$\Rightarrow T(n) = \Theta(nlog n)$$

$$T(n) = 2T(n/2) + n \log n$$

$$a=2$$
 $b=2$ $f(n) = n log n$

Probamos

Caso 2:
$$f(n) = \Theta(n^{\log_b a})$$

Caso 1:
$$f(n) = O(n^{\log_b a - e})$$
, e>0

Caso 3:
$$f(n) = \Omega(n^{\log_b a + e})$$
, e>0

$$n \log n = \Theta(n)$$

$$n\log n = O(n^{1-e})$$

$$n \log n = \Omega(n^{1+e})$$

No se puede!

Presentación realizada en Abril de 2020

División y conquista: Contando inversiones

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Problema

Sean

Un conjunto de n "elementos"

Dos listas ordenadas de los "n" elementos

Queremos

Tener una medida de semejanza / diferencia entre las dos listas.

Diferencias entre las preferencias

Llamaremos

A y B a las listas de preferencias.

Utilizaremos

El orden de aparición de los elementos de A para identificar a los diferencias.

Por otro lado

Tendremos la lista de B que posiblemente esté "fuera de orden"

(Si B esta en orden, entonces representa el mismo orden de preferencia que A)

Mensurar las diferencias

Buscaremos

Poder mensurar que nos diga que tan lejos esta B de estar ordenada en forma ascendente.

Si

b_i < b_{i+1} para todo i , entonces A y B son iguales

Queremos que el valor de "diferencia" sea igual a cero

A medida

Que B esté "más mezclado" el valor de diferencia debe aumentar

Inversiones

Utilizaremos

El concepto de "inversiones" para medir cuando desordenado esta la lista B

Dos elementos b_i, b_i con i < j están invertidos

 $Sib_i > b_j$

Podemos - mediante fuerza bruta - calcular la cantidad de inversiones

Comparando cada posición con todas las siguientes → O(n²)

¿Podemos hacerlo mejor?

Podemos ver que

1 está "invertido" con 2 elementos: 2 y 4 → (2,1) (4,1)

4 está "invertido" con 1 elemento: 3 → (4,3)

En total hay 3 inversiones

1 está invertido con 4 elementos

2 está invertido con 3 elementos

3 está invertido con 2 elementos

4 está invertido con 1 elementos

En total hay 10 inversiones

Idea de la solución

Este proceso se puede realizar en O(n)

Idea de la solución (cont.)

El resultado del proceso de merge y conteo

Sera una lista ordenada

Lamentablemente no podemos suponer

Que las mitades estén ordeandas

Pero, podemos partir estas partes recursivamente para hacerlo.

La suma de todas las inversiones contadas en cada uno de los subproblemas corresponden a la cantidad total de inversiones en la lista

Pseudocódigo

```
Ordenar-Contar(L)
   Si |L|=1
       Retornar (0,L) // No hay inversiones
   Sino
       Sea A los techo(n/2) primeros elementos de L
       Sea B los piso(n/2) restantes elementos de L
       (ra,A) = Ordenar-Contar(A)
       (rb,B) = Ordenar-Contar(B)
       (r,L) = Merge-Contar(A,B)
   Retornar (r+ra+rb,L)
```


Pseudocódigo (cont.)

```
Merge-Contar(A,B)
   Sea L lista
   inv = 0
   j=0, i=0 //punteros a la lista A y B
   Repetir
       a = A[i], b = B[j]
       Si a>b
           L[i+j]=a , i++
       Sino
          L[i+j]=b , j++
           inv=+(|A|-i)
   Mientras i<|A| y j<|B|
   Desde i hasta |A|-1
       L[i+j]=A[i]
       inv+=|B|
   Desde j hasta |B|-1
       L[i+j]=B[i]
   Retornar (inv,L)
```


Complejidad

Cada problema con n elementos

Se divide en 2 subproblemas de n/2 elementos

La unión de los resultados

Se construye recorriendo unas vez los n elementos → O(n)

Podemos expresar la recurrencia como

$$T(n) = 2T(n/2) + O(n)$$

Utilizando el teorema maestro

Nos queda una complejidad temporal T(n) =O(n log n)

Presentación realizada en Septiembre de 2020

División y Conquista: Puntos más cercanos en el plano

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Problema

Sea

P un conjuntos de "n" puntos en el plano

 $d(p_1,p_2)$ la función distancia entre $p_1=(x_1,y_1), p_2=(x_2,y_2) \in P$

Queremos

Encontrar los puntos más cercanos en P

Solución por fuerza bruta

Para buscar los puntos más cercanos

Tengo que calcular las distancia entre cada punto y el resto de ellos

Quedarme con aquellos 2 de menor distancia

Teniendo n puntos

Para el primer punto calculo n-1 distancias

Para el segundo calculo n-2 distancias

. . .

Para el punto n calculo 0 distancias

Realizo en total n*(n-1)/2

Complejidad O(n²)

¿Lo puedo hacer mejor?

Simplificación: puntos cercanos en una recta

Si reducimos

el problema a solo 1 dimensión

Podemos ordenar los puntos

De mayor a menor \rightarrow 0 (n log n)

Luego por cada punto (iniciando por el menor)

Calcular la distancia al punto siguiente → O(n)

Recordar los puntos si es la distancia menor encontrara hasta el momento

¿Podemos hacer algo similar con los puntos en el plano?

(no directamente... pero utilizaremos el ordenamiento de los puntos como parte de la solución)

 p_2

Solución utilizando División y conquista

El algoritmo utilizando división y conquista fue propuesto por

Michael. I. Shamos en 1975

Lo explica en detalle en su libro de 1985

"Computational Geometry. An introduction"

Con su coautor

Preparata, Franco P

Michael I.Shamos

Preliminares

Asumiremos que

No existe $p_1=(x_1,y_1), p_2=(x_2,y_2) \in P / x_1 = x_2 \circ y_1 = y_2$

(Este requerimiento se puede eliminar modificando ligeramente el algoritmo)

Crearemos

Px: almacenando los puntos ordenados de acuerdo a la coordenada x

Py: almacenando los puntos ordenados de acuerdo a la coordenada y

Para cada punto p ∈ P

almacenaremos en que posición aparece en P_x y P_y

Ejemplo

En el ejemplo

P: p₁, p₂, p₃, p₄, p₅, p₆, p₇, p₈, p₉

 P_x : p_1 , p_3 , p_8 , p_6 , p_4 , p_2 , p_5 , p_7 , p_9

 P_y : p_5 , p_6 , p_7 , p_9 , p_1 , p_2 , p_8 , p_4 , p_3

División: Sub problemas

Llamaremos

Q al set de puntos que se encuentra en las primeras [n/2] posiciones de P_x R al set de puntos que se encuentra en las ultimas [n/2] posiciones de P_x Para R Q, calcularemos Qx y Qy R, calcularemos Rx y Ry p_{A} cada punto q ∈ Q almacenaremos en que posición aparece en Q_x y Q_v p_1 cada punto r ∈ R almacenaremos en que posición aparece en R_x y R_y (podemos hacerlo en O(n) utilizando P, P, y P,

Conquista: Sub problemas

Recursivamente

Resolveremos el problema de encontrar el par de puntos mas cercanos

Volviendo a dividir el subproblema en 2

El problema base

Corresponde a un set de 2 o 3 puntos

Combinación: Sub problemas

Hasta el momento

Dividimos cada problema en 2 subproblemas de mitad de tamaño

Realizamos la división en O(n)

Para juntar los problemas

Comparamos los pares de puntos retornados por cada subproblema $\rightarrow \delta = min(\delta_q, \delta_r)$

Nos quedamos con el de menor distancia O(1)

Lo podemos expresar con la recurrencia

$$T(n) = 2 T(n/2) + O(n)$$

... que por teorema maestro: O(nlogn)

Combinación: Sub problemas

Pero, pero... Hay un problema fundamental en nuestra solución.

La distancia mínima podría darse entre el punto q ∈ Q y el punto r ∈ R

Al combinar

Debemos tener en cuenta los puntos de ambos subproblemas

Comparar los puntos de un lado con los del otro

Quedando una recurrencia $T(n) = 2T(n/2) + O(n^2)$

Según teorema maestro quedando

Una complejidad $T(n) = O(n^2)$

Que indica que no es mejor que fuerza bruta

Debemos encontrar una forma más sencilla de combinar los subproblemas

Puntos entre los subproblemas

Llamemos

x* a la coordenada del punto Q mas a la derecha

L a la linea vertical con la ecuación x=x*

(L separa Q y R)

Vemos que

si distancia mínima esta entre un punto $q \in Q$ y un punto $r \in R$ (su distancia tiene que ser menor a δ =min(δ_q , δ_r))

No pueden estar

a más distancia de δ de la linea L

Puntos entre los subproblemas (cont.)

Nos interesa conocer aquellos puntos S ⊆ P

Que se encuentran a una distancia menor a δ de L

Podemos

obtenerlos en O(n) Recorriendo P

Llamaremos

S_v a la lista de elementos de S ordenadas por la coordenada de Y

(Que podemos construir en O(n) mediante P_y)

$$S=p_{1,} p_{4,} p_{8,} p_{9,} p_{10,} p_{25,} p_{33}$$

$$S_{y}=p_{33,} p_{1,} p_{8,} p_{9,} p_{4,} p_{25,} p_{10}$$

Puntos entre los subproblemas (cont.)

Podemos ver que

Si subdividimos el espacio entre x=L- δ y x=L+ δ

(como se indica en la figura)

En celdas

de $\delta/2 \times \delta/2$

Solo puede existir un punto P dentro de una celda

(de lo contrario la distancia mínima en Q o en R seria menor a δ)

Puntos entre los subproblemas (cont.)

Cada punto s ∈ S estará en una celda

Debemos comparar s unicamente con otros puntos de S que estén en celdas cercanas (a no mas de δ de distancia)

Recorriendo S en el orden de S_v

Podemos ver que unicamente tenemos que comparar a lo sumo con 15* puntos siguientes (o 15 celdas siguientes)

Es decir que hacemos c=15 comparaciones por punto en S en solo una pasada

En el peor escenario tenemos 15n comparaciones

Por lo tanto combinar el resultado es O(n)

* se puede demostrar que se puede reducir de 15 a 7

Pseudocódigo

```
Puntos-cercanos(P)
   Construir Px y Py // O(nlogn)
    (p0, p1) = puntos-cerc-rec(Px,Py)
puntos-cerc-rec(Px,Py)
   Si |Px|<=3
       retornar (p_0, p_1) par mas cercano comparando todos los puntos
   Sino
       Construir Qx, Qy, Rx, Rz // O(n)
       (q0, q1) = puntos-cerc-rec(Qx,Qy)
       (r0, r1) = puntos-cerc-rec(Rx,Ry)
       d = min (dist(q0,q1),dist(r0,r1))
       x' = máxima coordenada x de punto en Q
```


Pseudocódigo (cont)

```
L = \{(x,y) : x=x'\}
S = puntos de P a distancia d de L
Construir Sy // O(n)
Por cada punto s de Sy // O(n)
   computar distancia con próximos 15 puntos de Sy
   sea s, s' el par de puntos de menor distancia
Si dist(s,s') < d
  retornar (s,s')
Sino si dist(q0, q1) < dist(r0, r1)
   retornar (q0, q1)
sino
   retornar (r0, r1)
```


Presentación realizada en Septiembre de 2020

División y conquista: Multiplicación - Karatsuba

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Multiplicación de números enteros

Sean

Un problema histórico

Hace milenios la humanidad construyó algoritmos para multiplicar

Método egipcio

Método babilonio

Método japones (o chino)

Método hindú (o de celdillas)

Método "tradicional"

Sean X y Y de n bits (dígitos)

Por cada bit (dígito) lo multiplicamos por cada uno de los bits (dígitos) del otro numero

Encolumnamos los resultados y sumamos

Realizamos

Orden de n² multiplicaciones básicas

Mas un conjunto de sumas elementales

14488668

Complejidad O(n2)

Conjetura n²

Andrey Nikolaevich Kolmogorov

Sostuvo que no era posible una complejidad mejor (No era el único)

Conjetura: Afirmación que se supone cierta

pero que no ha podido ser ni probada ni refutada.

"Si existiese mejor método, ya tendría que haber sido encontrado"

El piso se rompe

Anatoly Karatsuba

estudiante de 23 años en 1960

seminario de problemas matemáticos en cibernética,

Facultad de mecánica y matemáticas de la universidad de Moscú

Le bastó una semana para refutar la conjetura n²

Paper "Multiplication of Many-Digital Numbers by Automatic Computers"

Idea

Representamos

$$X = X_1 * 2n/2 + X_0$$

$$Y = y_1 * 2n/2 + y_0$$

Operamos

$$X^*Y = (x_1 * 2^{n/2} + x_0) * (y_1 * 2^{n/2} + y_0)$$

$$X^*Y = x_1 y_1 * 2n + (x_0 y_1 + x_1 y_0) * 2n/2 + x_0 y_0$$

En vez de 1 multiplicación de n bits tenemos 4 multiplicaciones de n/2 bits

Idea (cont)

Realizamos recursivamente la multiplicación

Hasta la multiplicación de 1 a 1 bits (o dígito)

Relación de recurrencia:

$$T(n) = 4 T(n/2) + cn$$

Por teorema maestro O(n²)

... por el momento no mejore nada

El aporte de Karatsuba

Partimos de

Multiplicación de n/2 bits

Pseudocodigo

Calculamos:

$$X*Y = X_1 y_1 * 2^{n/2} +$$

$$[(x_0 + x_1) * (y_0 + y_1) - x_1 y_1 - x_0 y_0] * 2^{n/2} +$$

$$x_0 y_0$$

Son 3 multiplicaciones de n/2 bits Mas sumas elementales

Cada recursión trabaja con n/2 bits

```
Karatsuba(x,y)
      x = x_1 * 2^{n/2} + x_0
      y = y_1 * 2^{n/2} + y_0
      Calcular x_1 + x_2
      Calcular y_1 + y_0
      P = Karatsuba (x_1 + x_0, y_1 + y_0)
      x_1y_1 = Karatsuba (x_1, y_1)
      x_{0}y_{0} = Karatsuba (x_{0}, y_{0})
      Retornar x_1y_1^{2^n} + (P - x_1y_1 - x_0y_0)2^{n/2} +
                  X_0 Y_0
```


Complejidad

Relación de recurrencia

$$T(n) = 3T(n/2) + cn$$

$$T(1) = a$$

Por teorema maestro

$$O(n^{\log_2 3}) = O(n^{1,59})$$

Que es más "eficiente" que el algoritmo tradicional

Este método tiene mas sumas básicas, por lo que la ventaja se ve para n grandes

Desenrrollando la recursión

Relación de recurrencia

$$T(n) = 3T(n/2) + cn$$

$$T(1) = a$$

$$T(n/2) = 3T(n/4) + n/2$$

$$T(n/4) = 3T(n/8) + n/4$$

. .

$$T(n) = 3[3(3{T(n/16) + n/8} + n/4) + n/2] + n$$

$$T(n)=3^k*1+\sum_{i=0}^k\frac{3^i*n}{2^i}$$

Continuemos

vemos que k= logn

$$T(n)=3^{k}*1+\sum_{i=0}^{k}\frac{3^{i}*n}{2^{i}}$$

$$T(n)=3^{\log(n)}+n*\sum_{i=0}^{\log(n)}(\frac{3}{2})^{i}$$

$$T(n) = 3^{\log(n)} + \frac{n*(1-(3/2)^{\log(n)+1})}{(1-3/2)}$$

$$T(n) = 3^{\log(n)} + 2n * ((3/2)^{\log(n)+1} - 1)$$

$$T(n)=3^{\log(n)}+3n*(3/2)^{\log(n)}-2n$$

$$\sum_{i=0}^{x} r^{i} = \frac{1 - r^{(x+1)}}{1 - r}$$

Y continuamos...

$$T(n) = 3^{\log(n)} + 3n \frac{3^{\log(n)}}{2^{\log(n)}} - 2n$$

$$T(n) = 3^{\log(n)} + 3 * 3^{\log(n)} - 2n$$

$$T(n) = 4 * 3^{\log(n)} - 2n$$

$$T(n) = 4 * n^{\log 3} - 2n$$

Sin→∞

$$O(n^{\log_2 3}) = O(n^{1,59})$$

Evolución de la multiplicación

Se puede hacer mejor?

Nueva conjetura de Shönhage-Strassen (1971) → O(nlogn)

Avances en los métodos de multiplicación.

Año	M(n)	autor
-2000?	$O(n^2)$	desconocido
1960	$O(n^{\log_2 3})$	Karatsuba
1966	$O(n\log n \ e^{\sqrt{2\log_2 n}})$	Toom-Cook
1971	$O(n \log n \log \log n)$	Schönhage-Strassen
2007	$O(n\log n \ K^{\log^* n})$	Fürer
2018	$O(n\log n \ 4^{\log^* n})$	Harvey-van der Hoeven

Se ha llegado al máximo?

David Harvey y Joris van der Hoeven presentan en 2019

Paper: "Integer multiplication in time O(n log n)"

https://hal.archives-ouvertes.fr/hal-02070778/document

Se apoyan en la FFT pero la llevan a 1729 dimensiones

FFT: Fast Fourier transform

Técnica utilizada por primera vez por Schönhage y Strassen

Presentación realizada en Abril de 2020

División y conquista: puntos extremos en polígonos

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Obtención de extremos de un polígono

Sea un polígono de n vértices V=(v₀,v₁,...v_{n-1},V_n)

Solución por fuerza bruta

Por cada punto vi

Realizamos la proyección ortogonal a u

Verificamos si es mayor (o menor) al mayor (o menor) de los anteriores

Complejidad algorítmica

O(n)

Se puede hacer mejor?

Si, aunque SOLO si el polígono es CONVEXO

Polígonos convexos

Un polígono es convexo si

Es monotónico para todo L segmento (Cualquier linea perpendicular a L cortará a los sumo 2 veces al polígono)

Sus ángulos interiores miden a lo sumo 180 grados

Nomenclatura

Llamaremos:

e_i ak i-esimo segmento del vértice v_i a v_{i+1} para i=0 a n-1

ev_i al vector V_{i+1} – V_i

eV_i puede, en la proyección u,

Tener sentido positivo o negativo

"para arriba" o "para abajo"

Idea

Supongamos que

el vértice máximo se encuentra en el polígono entre los vértices Va y Vb

Podemos extresar la línea poligonal como [a,b]

 $[a,b] = \{a,a+1,...a+k=b \pmod{n}\} k>0$

Seleccionamos un vértice Vc entre a y b

Dividimos en 2 lineas poligonales [a,c] y [c,b]

El máximo estará en alguno de los 2 segmentos

Idea (cont.)

Analizamos el vector eV_a y eV_c

Idea (cont.)

Analizamos el vector eV_a y eV_c (cont.)

Solución

Iniciamos con

a=0 y b=0 (todo el polígono)

c=n/2 (el punto intermedio)

Iteramos

Si solo nos quedan 3 vértices compararlos uno a uno y obtener el máximo

Sino determinar cual de los casos aplica.

Actualizar a,b y c según corresponda

Al finalizar tenemos el punto extremo

Complejidad

En cada iteración

Reducimos a la mitad la cantidad de vértices

Se convierte en un nuevo sub problema

Realizamos operaciones O(1)

Relación de recurrencia

$$T(n) = T(n/2) + c$$

Por teorema maestro

O(logn)

Presentación realizada en Abril de 2020