☐ WolfnChaos / Capstone-Modeling-Earthquake-Damage

Capstone-Modeling-Earthquake-Damage

Capstone project for Flatiorn School

Overview

A magnitude 7.8 earthquake struck Nepal on April 25, 2015, toppling multi-story buildings in Kathmandu, the capital, and creating landslides and avalanches in the Himalaya Mountains. Nearly 9,000 people died and more than 22,000 suffered injuries.

The quake was followed by hundreds of aftershocks, and only 17 days later, there was another major quake, a magnitude 7.3 temblor. Thirty-nine of the nation's 75 districts with a population of 8 million people — about a third of the national population — were affected. Hundreds of thousands of people lost everything and faced extreme poverty.

More than 600,000 homes were destroyed and more than 288,000 were damaged in the 14 worst-hit districts. Hundreds of thousands of people lost everything and faced extreme poverty and homeless.

Business Problem

The Federal Democratic Republic of Nepal wants to avoid future building damages by reinforcing homes/buildings. They are wanting to know the possible damage risk level that current homes/buildings are at. So, they can better focus their resources, and protect their citizens of Nepal if and when another major earthquake occurs.

Data Understanding

The data that will be used to predict the damage risk level comes from https://www.drivendata.org/, while original data comes from https://eq2015.npc.gov.np/#/. One of the largest dataset done on the aftermath of an earthquake.

The dataset mainly consists of 260601 rows each with information on the building structure and ownership. There are 40 columns in this dataset, where the building_id column is a unique and the target. The remaining 38 features are described in the section below.

Driven Data also obfuscated random lowercase ascii characters to the categorical variables. Using the some of the original data we should be able to find out what this varilbes are and hopefully get some insight when doing the Exploratory Data Analysis (EDA).

Target

Target	Info
Grade 1	represents low damage
Grade 2	represents a medium amount of damage
Grade 3	represents almost complete destruction

Features

Feature	Info
geo_level_1_id, geo_level_2_id, geo_level_3_id (type: int):	geographic region in which building exists, from largest (level 1) to most specific sub-region (level 3). Possible values: level 1: 0-30, level 2: 0-1427, level 3: 0-12567.
count_floors_pre_eq (type: int):	number of floors in the building before the earthquake.

Feature	Info
age (type: int):	age of the building in years.
area_percentage (type: int):	normalized area of the building footprint.
height_percentage (type: int):	normalized height of the building footprint.
land_surface_condition (type: categorical):	surface condition of the land where the building was built. Possible values: n, o, t.
foundation_type (type: categorical):	type of foundation used while building. Possible values: h, i, r, u, w.
roof_type (type: categorical):	type of roof used while building. Possible values: n, q, x.
ground_floor_type (type: categorical):	type of the ground floor. Possible values: f, m, v, x, z.
other_floor_type (type: categorical):	type of constructions used in higher than the ground floors (except of roof). Possible values: j, q, s, x.
position (type: categorical):	position of the building. Possible values: j, o, s, t.
plan_configuration (type: categorical):	building plan configuration. Possible values: a, c, d, f, m, n, o, q, s, u.
has_superstructure_adobe_mud (type: binary):	flag variable that indicates if the superstructure was made of Adobe/Mud.
has_superstructure_mud_mortar_stone (type: binary):	flag variable that indicates if the superstructure was made of Mud Mortar - Stone.
has_superstructure_stone_flag (type: binary):	flag variable that indicates if the superstructure was made of Stone.
has_superstructure_cement_mortar_stone (type: binary):	flag variable that indicates if the superstructure was made of Cement Mortar - Stone.

Feature	Info
has_superstructure_mud_mortar_brick (type: binary):	flag variable that indicates if the superstructure was made of Mud Mortar - Brick.
has_superstructure_cement_mortar_brick (type: binary):	flag variable that indicates if the superstructure was made of Cement Mortar - Brick.
has_superstructure_timber (type: binary):	flag variable that indicates if the superstructure was made of Timber.
has_superstructure_bamboo (type: binary):	flag variable that indicates if the superstructure was made of Bamboo.
has_superstructure_rc_non_engineered (type: binary):	flag variable that indicates if the superstructure was made of non-engineered reinforced concrete.
has_superstructure_rc_engineered (type: binary):	flag variable that indicates if the superstructure was made of engineered reinforced concrete.
has_superstructure_other (type: binary):	flag variable that indicates if the superstructure was made of any other material.
legal_ownership_status (type: categorical):	legal ownership status of the land where building was built. Possible values: a, r, v, w.
count_families (type: int):	number of families that live in the building.
has_secondary_use (type: binary):	flag variable that indicates if the building was used for any secondary purpose.
has_secondary_use_agriculture (type: binary):	flag variable that indicates if the building was used for agricultural purposes.
has_secondary_use_hotel (type: binary):	flag variable that indicates if the building was used as a hotel.
has_secondary_use_rental (type: binary):	flag variable that indicates if the building was used for rental purposes.

Feature	Info
has_secondary_use_institution (type: binary):	flag variable that indicates if the building was used as a location of any institution.
has_secondary_use_school (type: binary):	flag variable that indicates if the building was used as a school.
has_secondary_use_industry (type: binary):	flag variable that indicates if the building was used for industrial purposes.
has_secondary_use_health_post (type: binary):	flag variable that indicates if the building was used as a health post.
has_secondary_use_gov_office (type: binary):	flag variable that indicates if the building was used fas a government office.
has_secondary_use_use_police	binary
has_secondary_use_other (type: binary):	flag variable that indicates if the building was secondarily used for other purposes.

Data Preparation

The main dataset that is being used dosen't have any missing values but some of the features are boolean but read as int64. Using a loob to change the type of this features from int64 to bool. Now all the categorical columns are represented by an obfuscated random lowercase ascii character, we can use the some of the original dataset to find out what the letters represent.

land_surface_condition

Label	Count
Flat	631675
Moderate slope	105640
Steep slope	24791
t	216757
n	35528
0	8316

Looking at the print out it looks like most of the random values in the dataset do correspond to the original dataset. Will use the values to replace the random values.

Exploratory Data Analysis (EDA)

Class Counts

Lets take a look at are target classes and see what kind of counts we have.

Looks like are classes are imbalance this may cuase an issues down the road when we start training are models.

Categorical Columns

Superstructure

Well over half of the structures are made form a mix of mud, mortar and stone, yet the one that aren't have more buildings with low damage then the once that didn't.

Roof Types

Seems like almost all roof types are made of Bamboo and Timber ranging from light to heavy roofs. They seem to have equal matching precentages acoss the three damage grades while buildings that have RCC/RB/RBC has equal amounts of low and med with no grade 3 damage.

First Simple Model (FSM)

For the FSM we will use just the numerical and boolean columns and the classifier we will use a Decision Tree Classifer.

Score Type	Model Scores
Accuracy:	0.9742082374008698
Recall:	0.9746926003984552
Precision:	0.969726887943331
F1:	0.9718795910888217
Accuracy:	0.6604503384445365
Recall:	0.6149900294776912
Precision:	0.6073121797582424

Score Type	Model Scores
F1:	0.6109604665814518

The training recall score for the FSM is 0.97 and the test is 0.61 a sure sign that the model is over fit whict tree tend to do.

Preprocessing

For the preprocessing for the vanilla models not much will be done being that the dataset was most clean, however the categorical will be one hot encoding. Being that class labels are imbalanced SMOTE will be used to handle this issues.

Vanilla Models

Now we will use the prepocessed data to train and test some vms. The models that we will be using are: KNeighborsClassifier, GaussianNB, LogisticRegression, Random Forest Classifer, and XGB Classifer.

KNeighborsClassifier

Score Type	Model Scores
Accuracy:	0.7765106165259658
Recall:	0.8258946020229
Precision:	0.7263370691321113
F1:	0.7572691464515654

Score Type	Model Scores
Accuracy:	0.6634894322420224
Recall:	0.6880816897257244
Precision:	0.611128539767606
F1:	0.633385319526554

GaussianNB

Score Type	Model Scores
Accuracy:	0.4222665643387056
Recall:	0.5238633447369136
Precision:	0.4820254810161683
F1:	0.40525117631533075
Accuracy:	0.42341637119921416
Recall:	0.5273272948650579
Precision:	0.48493843628601613
F1:	0.4088181014009207

LogisticRegression

Score Type	Model Scores
Accuracy:	0.31900741877718086
Recall:	0.4429848109015096
Precision:	0.390518064280658
F1:	0.31276640307165304
Accuracy:	0.31981090083037866
Recall:	0.44670901581043837

Score Type	Model Scores
Precision:	0.39240549793664053
F1:	0.3140840623426468

RandomForestClassifer

Score Type	Model Scores
Accuracy:	0.987347147608084
Recall:	0.9863663087424103
Precision:	0.9868241824104965
F1:	0.9865946036710954
Accuracy:	0.7112400423631257
Recall:	0.6413932752904922
Precision:	0.6824085851726417
F1:	0.6582082249518132

XGBClassifer

Score Type	Model Scores
Accuracy:	0.733251470964441
Recall:	0.6606636902763361
Precision:	0.72117487377136
F1:	0.6845419811772505
Accuracy:	0.7216312873171555
Recall:	0.6446161127629831
Precision:	0.7007266196691101
F1:	0.6667827021617386

Out of the five models that was ran, KNeighborsClassifier had both the highest train/test scores. Random Forest Classifer had the highest train score, but being that Random Forest tents to over fit easy. Will be using both of these models for hyperparameter tuning in the following GridSearch.

The best model out of the Vanilla Models 15.6% for the test data are being classified as a false negative.

GridSearchCV

The first thing that needs to be done is that pipelines and a parameter grid need to be set up for the two classifiers that are going to be hyperparameter tuned. Then the grid searches for both models just need to be ran and will use the function print_scores to check how each model performed. And check the best parameter for both as well.

KNeighorsClassifier

Best Recall Score: 0.6965513290275445

Params	Value
n_jobs:	-1
n_neighbors:	10
p:	1
weights:	uniform

Score Type	Model Scores
------------	--------------

Score Type	Model Scores
Accuracy:	0.748119723714505
Recall:	0.7940375301737518
Precision:	0.6971429279434084
F1:	0.7264383087951195
Accuracy:	0.6826295835827539
Recall:	0.7084329101607633
Precision:	0.6293136855468423
F1:	0.6529252985576525

Random Forest Classifier

Best Recall Score: 0.6340557495650673

Params	Value
bootstrap:	True
max_depth	
max_features:	auto
min_samples_leaf:	2
min_samples_split:	10
n_estimators:	1000

Score Type	Model Scores
Accuracy:	0.8251573292402149
Recall:	0.7738318805178436
Precision:	0.8247552934891266
F1:	0.7952232273315998
Accuracy:	0.7174103237095363

Score Type	Model Scores
Recall:	0.6468860046567152
Precision:	0.6914801874479407
F1:	0.66413389851544

Final Model Evaluation

With the recall test score being 70.8% the k neighors classifer is still the best model after using grid scearch to hyperparameter tune. With the first simple model being 61.5% that is an impovement of 9.3%.

Taking a look at the confusion matrix for k neighors grid search we can see that now we are only classifying 13.2% which is 3.4% that are no longer being missclassified compared to the first simple model.

Feature Importance

In order to get the feature importance from an KNeighors Classifier we will have to use permutation_importance from sklearn inspection.

Feature	Importance
roof_type	9.722495
foundation_type	9.610197
other_floor_type	1.320333

Feature	Importance
position	0.162649
land_surface_condition	0.114191
geo_level_1_id	0.076375
count_floors_pre_eq	0.061661
geo_level_2_id	0.056982
plan_configuration	0.047470
count_families	0.045260

Now that we have the feature importance from the final model we can see that roof type and founfation type are the top two most important features.