Travaux dirigés : codage des entiers naturels et relatifs

Année universitaire 2021–2022

1 Puissances de 2

- 1. Donner la valeur de 2^i pour $i \in [-4, 16]$.
- 2. Donner l'ordre de grandeur de 2^i pour $i \in \{10, 20, 30, 32, 64, 128\}$.

2 Notation positionnelle en base 2, 10 et 16

1. Compléter le tableau ci-dessous (note : en base 2, ajouter si nécessaire des 0 non significatifs à gauche pour toujours avoir 8 bits).

Base 2	Base 10	Base 16
0000 0010		
	10	
		10
0101 1010		
	42	
	100	
0111 1111		
		23
		AB
		FF

- 2. Donner le codage en base 16 du nombre en base 2 : $1101\,0010\,1111\,0011\,1010\,0111\,1100\,0010$
- 3. Donner le codage en base 2 du nombre en base 16 : DEADBEEF

3 Arithmétique binaire sur 8 bits

On se place en base 2. Faire les calculs ci-dessous. Pour chaque calcul, indiquer la valeur de la retenue sortante.

- 1. 01000011 + 01111001
- 2. 10101010 + 10010010
- 3. 00010100×00001100

4 Décodage et encodage en complément à 2

- 1. Les nombres ci-dessous sont codés en complément à 2 sur 8 bits. Pour chacun, donner sa valeur en base 10.
 - (a) 0000 0000
 - (b) 01101001
 - (c) 1000 0000
 - (d) 1001 1010
 - (e) 1111 1111
- 2. Les nombres ci-dessous sont en base 10. Pour chacun, donner son codage en complément à 2 sur 8 bits.
 - (a) 1
 - (b) -1
 - (c) -42
 - (d) -103
- 3. Les nombres ci-dessous sont en base 10. Pour chacun, donner son codage en complément à 2 sur 32 bits.
 - (a) 17
 - (b) -103

5 Bornes minimale et maximale

- 1. Donner la valeur en base 10 du plus grand et du plus petit nombre que l'on peut écrire en notation positionnelle en base à 2 sur 8 bits, 16 bits, 32 bits et 64 bits.
- 2. Même question mais en considérant un codage en complément à 2.

6 Arithmétique en complément à 2 : calcul de l'opposé

1. Compléter le tableau ci-dessous.

x	x_{c2}	$(-x)_{c2}$
17		
42		
100		

- 2. Vérifier que $x_{c2} + (-x)_{c2} = 0_{c2}$
- 3. Que vaut $x_{c2} + \overline{x_{c2}}$? En déduire une technique simple pour calculer l'opposé d'un nombre dans le codage en complément à 2.
- 4. On se place dans le cadre des nombres en complément à 2 sur 8 bits. Calculer l'opposé de -128.

7 Arithmétique en complément à 2 : status

On considère une unité arithmétique et logique 32 bits qui renseigne à chaque calcul 4 bits de status :

- N (négatif): interprété en complément à 2, le résultat est négatif;
- -Z (zéro) : le résultat est nul;
- -C(carry): valeur de la retenue sortante;
- V (oVerflow) : interprété en complément à 2, le résultat du calcul a « débordé »
- 1. Expliquer comment calculer N, Z, et V à partir des entrées et sorties de l'additionneur.
- 2. Compléter le tableau ci-dessous (les opérandes sont données en base 16, le résultat est également à donner en base 16).

Opération	Résultat	N	Z	C	V
70000000 + 70000000					
90000000 + 90000000					
80000000 + 80000000					
00001234 - 00001000					
00000004 - 00000005					
C3314150 - 96694242					