Выполнил студент НИУ ВШЭ МИЭМ 3 курса образовательной программы Прикладаная математика - Серебров Борис Алексеевич

Отчет по проекту: №725 Предсказание пола пользователей соцсетей

Цель: Обучить модель машинного обучения для предсказания пола пользователей соц. сетей по определенным признакам.

Задачи:

- 1. Изучение данных, выделение целевой переменной и основных признаков.
- 2. Предобработка данных, сочетание всех представленных данных в месте и преобразование их для дальнейшего обучения модели..
- 3. Изучение зависимостей и разделение данных на более явные и лучше интерпретируемые.
- 4. Обучение модели.
- 5. Проверка результатов обучения.
- 6. Предсказание пола для данного списка пользователей.

Реализация:

- 1. **Изучение исходных данных.** Были исследованы следующие файлы с исходной информацией:
 - Наборы train.csv и train labels.csv, содержащие данные для обучения
 - Файлы test.csv и test_users.csv с тестовыми данными
 - Дополнительные данные: referer_vectors.csv (векторные представления URL) и geo_info.csv (географические параметры)
 - Установлены взаимосвязи между таблицами через ключевые поля: user_id, referer и geo id
- 2. Генерация признаков. Выполнено преобразование исходных данных в признаки:
 - Временные характеристики: день месяца, часть суток
 - Анализ URL: выделение домена, пути
 - Paзбор user-agent: определение браузера, OC.
 - Геоданные: идентификаторы страны, региона, временная зона
 - Векторные компоненты component0 component9 из referer vectors
- 3. **Формирование наборов данных.** Создан объединенный датасет с меткой тестовых записей (test).
 - Получен df_comb с уникальными записями пользователей. Обучающая выборка X train сформирована объединением с train labels.
- 4. **Построение и обучение модели.** Для решения задачи классификации использован алгоритм градиентного бустинга по решающим деревьям CatBoostClassifier. Основные гиперпараметры модели:
 - **a.** iterations=2000 количество деревьев в ансамбле;
 - b. learning rate=0.03 скорость обучения.

- с. depth=10 максимальная глубина деревьев;
- d. eval metric='Accuracy' метрика качества для мониторинга во время обучения;
- e. random_seed=81 фиксированное зерно генератора случайных чисел;
- f. verbose=80 вывод прогресса каждые 80 итераций. Модель была обучена на тренировочной выборке (X train, y train).
- 5. **Предсказание и оценка качества.** Предсказание выполнено на тестовой выборке (test). Качество работы модели оценивалось с использованием следующих метрик:
 - а. Ассигасу доля верных предсказаний;
 - b. AUC площадь под ROC-кривой;
 - c. classification_report подробный отчёт с precision, recall и F1-score для каждого класса.
- **6. Итоговый результат.** Обучена модель машинного обучения и сохранена в файл mdl_catboost.joblib; Сохранены результаты предсказания в файл submission.csv; Весь код предобработки и обучения в файле jupiter Notebook main.ipynb.