Problem 1

(a) Let
$$A = \begin{bmatrix} 1 & 2 & -3 \\ -3 & t & 9 \\ 0 & 2 & 7 \end{bmatrix}$$
 Coeff. matrix

A Singular (non-inveltible) iff $|A| = 0$

But $|A| = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 2 & 7 \end{bmatrix}$ $\frac{4}{2} + 1$ $\frac{1}{2} + \frac{9}{7} - \frac{1}{7} - \frac{1}{7}$

(b) To have infinitely many solns., A should be Singular, i.e t=-6 . We need to see what really happens in this Case .

$$\begin{bmatrix} 1 & 2 & -3 & 1 \\ -3 & t & -6 & 9 & -3 \\ 0 & 2 & 7 & -29 \end{bmatrix} \xrightarrow{R_2 + 3R_1 - 3R_2} \begin{bmatrix} 1 & 2 & -3 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 7 & -79 \end{bmatrix}$$
augmented matrix

2x2+7x3=-29 for x2=-9- = x3 From Rz 3 x-10 x3 = 1+22 - 1 x, = 1+22+10 x2 , x2 free From R.

Problem 2

(a)
$$A = \begin{bmatrix} 0 & 2 & -3 \\ -3 & 1 & q \\ 0 & 2 & 7 \end{bmatrix}$$
 $R_{3} = \frac{2}{7}$
 $R_{3} - \frac{2}{7}R_{7} - R_{3}$
 $R_{3} = \frac{2}{7}$
 $R_{3} - \frac{2}{7}$
 $R_$

(c) Yes, it is a unique LU-factorization
one way to see this is to notice the submatrices $A_1 = \begin{bmatrix} 1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix}$ Both are in Wet: ble, hence Existence of unique
are guaranteed.

Problem 3

(a) Cet
$$B = \begin{bmatrix} 1 & 0 \\ 5 & -2 \end{bmatrix}$$
 $B = -2 \neq 0$

B inwrtible

 $B' = \frac{1}{1B}\begin{bmatrix} -2 & 0 \\ -5 & 1 \end{bmatrix}$
 $C = 2 \neq 0$
 $C = \frac{1}{2}\begin{bmatrix} -2 & 4 \\ 2 & 4 \end{bmatrix}$

Now, he've $B = A = C = D = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$
 $A \neq B = D = \begin{bmatrix} 1 & 0 \\ 2 & 4 \end{bmatrix}$
 $A \neq B = D = \begin{bmatrix} 1 & 0 \\ 2 & 4 \end{bmatrix}$
 $A \neq B = D = \begin{bmatrix} 1 & 0 \\ 2 & 4 \end{bmatrix}$
 $A \neq B = D = \begin{bmatrix} 1 & 0 \\ 2 & 4 \end{bmatrix}$
 $A \neq B = \begin{bmatrix} -2 & 0 \\ -5 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix}$
 $A \neq B = \begin{bmatrix} -2 & -2 \\ -4 & -5 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix}$
 $A \neq B = \begin{bmatrix} -2 & -2 \\ -4 & -5 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$
 $A \neq B = \begin{bmatrix} -2 & -2 \\ -4 & -5 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$
 $A \neq B = \begin{bmatrix} -2 & -2 \\ -4 & -5 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$
 $A \neq B = \begin{bmatrix} -2 & -2 \\ -4 & -5 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$
 $A \neq B = \begin{bmatrix} -2 & -2 \\ -4 & -5 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$

(b)
$$B^{2}-2B-5I_{n}=0$$

 $B^{2}-2B=5I_{n}$
 $B(B-2I_{n})=5I_{n}=0$
 $B(B-2I_{n})=5I_{n}=5$
 $B(B-2I_{n})=5$
 $B(B-2I_{n})=5$
 $B(B-2I_{n})=5$
 $B(B-2I_{n})=5$
 $B-2I=5B$
 $B^{1}=\frac{1}{5}(B-2I_{n})=5$
 $B^{2}=\frac{1}{5}(B-2I_{n})=5$
 $B^{3}=\frac{1}{5}(B-2I_{n})=5$
(c) $|A|=7$, $|A|=1$
 $|A|=1$