TJ-FPGA-02

可编程通信系统教学实验箱

产品介绍

浙江工业大学通信与信息系统研究所 杭州天箭信息技术开发有限公司

一、简介

可编程通信系统教学实验箱涉及的知识点全面,能将硬件描述语言和通信原理内容相结合,在本实验箱上实现"硬件软化,软件硬化"是该教学实验系统的特色。学生通过实验将掌握数字通信系统设计的综合知识,对调制器、解调器、编解码器、滤波器等具体构成有较深刻的理解,并能写出相应的硬件描述语言程序。

二、 适用范围

可编程通信系统教学实验箱主要为高等院校通信工程类、电子信息类等相关专业高年级学生的《通信专业课程设计》、《通信专业大型实验》、《毕业设计》、《电子设计竞赛》以及研究生的《数字通信实验》而设计,也可供相关专业的专科毕业班学生使用。

三、 教学目的

实验由一系列综合设计项目组成,目的使学生获得动手经验,学会运用各方面综合知识,设计并实现一个通信系统。通过该实践环节还将培养学生以下方面的能力:

- 1、开拓和获取新知识的能力;
- 2、独立解决问题的能力;
- 3、与他人合作共事、组织协同工作的能力;
- 4、利用所学知识分析、解决问题的能力。

四、 实验箱构成

实验箱主要由以下部分构成, 见图1:

图1 可编程通信系统教学实验箱构成

每个部分实现的功能如下:

- 1、电源管理:给芯片及各个部分提供+5V、+12V和-12V电源:
- 2、模数转换 A/D 输入: 实现模拟数字转换功能,将模拟信号采集后变成数字信号输出,为 AD 司的 AD9280:
- 3、FPGA主芯片: 为ALTREA EP2C8T144C8N, 实现数字通信系统的各种功能;
- 4、配置下载电路: 用来配置 FPGA 芯片数据,可反复配置,在线可编程;
- 5、D/A模块:实现数字模拟转换功能,将数字信号转换成模拟信号,为TLC5062;
- 6、LED指示灯:用来验证芯片内的测试点,用灯的亮和暗简单地判断测试点的电平是否正确,由8个发光二极管组成:
- 7、拨码开关: 用来设定"0"电平或"1"电平, 共16个设置开关;
- 8、键盘输入:用作系统复位操作,共4个按键;
- 9、 点阵式LCD显示: 可以显示文字, 使用LCD1602
- 10、段码式 LCD 显示: 可以显示 6 个 8, 使用 16 脚 ED 型段码 LCD
- 11、8 段数码管:可显示时钟,使用 LG4041FH
- 12、蜂鸣器:可以发出简单声音,使用 5V 蜂鸣器
- 11、可编程输入输出引脚:将FPGA的输入输出引脚尽可能多的引到板的边缘,供使用者灵活编程配置,此部分为芯片的外部扩展。

五、 实验箱配置

- 1、实验板一块:
- 2、usb-blaster下载器一个
- 2、下载线2条;
- 3、导线4条;
- 4、教学资料光盘一张。

六、 实验用硬件平台

如图2,为实验用硬件平台,接上+12V和-12V电源后,POWER红色指示灯亮,表明供电正常,可开始实验。

图2 可编程通信系统教学实验箱

FPGA管脚分配说明: 系统时钟CLK

> CLK 17

发光二级管管脚分配:

D1	D2	D3	D4	D5	D6	D7	D8
143	141	139	137	136	135	134	133

数码管管脚分配:

DS0	DS1	DS2	DS3	DS4	DS5	DS6	DS7	D0	D1	D2	D3
143	141	139	137	136	135	134	133	122	125	126	129

段码LCD管脚分配:

	ED0	ED1	ED2	ED3	ED4	ED5	ED6	ED7	ED8	ED9	ED10	ED11
	122	121	120	119	118	115	114	113	112	104	103	101
	COMO	COM1	COM2	COM	3							
Ī	132	129	126	125								

点阵LCD管脚分配:

DB0	DB1	DB2	DB3	DB4	DB5	DB6	DB7	RW	RS	EN
101	103	104	112	113	114	115	118	120	121	132

AD管脚分配:

AD0	AD1	AD2	AD3	AD4	AD5	AD6	AD7	CLKAD
31	30	28	25	24	9	8	7	144

DA管脚分配:

DAO	DA1	DA2	DA3	DA4	DA5	DA6	DA7
87	92	93	94	96	97	99	100

拨码开关管脚分配:

КО	K1	K2	К3	K4	K5	К6	K7
32	41	42	43	44	45	47	48

К8	К9	K10	K11	K12	K13	K14	K15
51	52	53	55	57	58	59	60

键盘输入管脚分配:

K16	K17	K18	K19
72	74	79	86

可编程输入输出引脚分配:

Т0	T1	T2	Т3	T4	T5	Т6	T7
63	64	65	67	69	70	71	73

CONO	CON1	CON2	CON3	CON4	CON5	CON6	CON7
101	103	104	112	113	114	115	118

CON8	CON9	CON10	CON11	CON12	CON13	CON14	CON15
119	120	121	122	125	126	129	132

另外实验箱上还有AD输入脚INPUT和DA输出引脚OUTPUT, 若干接地脚GND。

七、软件平台

以ALTERA公司的Quartus II作为软件开发平台,设计语言可以选AHDL、VHDL或Verilog HDL语言,推荐使用Verilog HDL语言。

八、 简单的调试程序

1、 键盘输入操作实验

通信系统大型实验板上有4个按键,分别为K1、K2、K3、K4,相对应的管脚为PIN72、PIN74、PIN79、PIN86,按下按键key观测被控制的输出端口(定义为tpin)变化,用示波器观察将有电平跳变。

2、拨码开关操作实验

通信系统大型实验板上有2组拨码开关,分别为S1、S2,相对应的管脚为32,41,42,43,44,45,47,48,51,52,53,55,57,58,59,60,拨S1或S2的0N或0FF,用市波器观测被控制的输出端口(定义为pal1和pal2)变化,对应0N输出端口为高电平,对应0FF输出端口为低电平。

3、A/D测试实验

A/D模拟数字转换模块采用的是AD9280芯片,该芯片为贴片20脚封装,管脚定义具体可以参考AD9280数据手册。通信系统大型实验板上的AD9280没有外围芯片,有一个INPUT输入接口,输出8位数据线直接与FPGA相连。实验时,用信号发生器产生一个低频正弦波,将此低频正弦波输入到实验板上的INPUT,将FPGA的dout管脚定义到发光管的管脚上,则可观察到发光二极管作规律性变化。

4、D/A测试实验

D/A 数字模拟转换模块采用的是 TLC5602 芯片,该芯片为贴片 20 脚封装,最高转换速率为 30MHz。在实验板中,D/A 模块输入直接与 FPGA 相连,输出接口为 OUTPUT, TLC5602 芯片为电压输出,幅度为 4-5V,后面跟两级运算放大器将 4-5V 电压转换成 0-5V 电压输出,运放采用 NE5532 和 AD8066 芯片。实验时,编写一个正弦波映射表,并下载到 FPGA 芯片中,然后用示波器观察 OUTPUT 接口,可观察到清晰稳定的正弦波,其频率可以在 1MHz 范围内任意设定。

九、 应用系统设计实验

1、 HDB3 编解码系统大型实验

包括分频器设计、M 序列设计、映射表设计、编码电路设计、D/A 转换设计、A/D 采样设计、位同步设计、解码电路设计、编解码系统总体电路设计

在仿真波形正确后,通过 Quartus II 软件的下载功能将电路模块下载到通信系统大型实验板上,通过示波器观察经 D/A 转换后的编码输出和经 A/D 采样处理后的数字波形输出,验证 HDB3 编解码电路设计的正确性。

2、 2FSK 调制解调系统大型实验

包括分频器设计、M 序列信号设计、数据选择器设计、载波表设计、调制模块设计、D/A 转换

设计、A/D 采样设计、带通滤波器设计、位同步设计、整流电路设计、抽样判决电路设计、调制解调系统总体电路设计

在仿真波形正确后,通过 Quartus II 软件的下载功能将电路模块下载到通信系统大型实验板上,通过示波器观察经 D/A 转换后的编码输出和经 A/D 采样处理后的数字波形输出,验证 2FSK 调制解调电路设计的正确性。

3、2DPSK 调制解调系统大型实验

包括分频器设计、M序列信号设计、码变换设计、ROM表设计、调制模块设计、D/A转换设计、A/D采样设计、延时模块设计、位同步设计、乘法器电路设计、低通滤波器设计、抽样判决电路设计、调制解调系统总体电路设计

在仿真波形正确后,通过 Quartus II 软件的下载功能将电路模块下载到通信系统大型实验板上,通过示波器观察经 D/A 转换后的编码输出和经 A/D 采样处理后的数字波形输出,验证 2DPSK 调制解调电路设计的正确性。

4、QPSK 调制解调系统大型实验

包括 M 序列信号设计、数据分离器设计、差分编码器设计、数据选择器设计、数字载波设计、调制模块设计、D/A 转换设计、时钟信号产生设计、多位乘法器电路设计、多位加减法电路设计、判决器设计、数控器设计、A/D 采样设计、位同步设计、乘法器电路设计、低通滤波器设计、抽样判决电路设计、差分译码电路设计、调制解调系统总体电路设计

在仿真波形正确后,通过 Quartus II 软件的下载功能将电路模块下载到通信系统大型实验板上,通过示波器观察经 D/A 转换后的编码输出和经 A/D 采样处理后的数字波形输出,验证 QPSK 调制解调电路设计的正确性。

5、16QAM 调制解调系统大型实验

包括 M 序列信号设计、数据编码器设计、数字载波设计、控制器设计、调制模块设计、D/A 转换设计、A/D 采样设计、2DASK 解调器设计、8DPSK 解调器设计、位同步设计、并串转换电路设计、调制解调系统总体电路设计

在仿真波形正确后,通过 Quartus II 软件的下载功能将电路模块下载到通信系统大型实验板上,通过示波器观察经 D/A 转换后的编码输出和经 A/D 采样处理后的数字波形输出,验证 16QAM 调制解调电路设计的正确性。

十、 所需实验设备

整个通信系统大型实验板要进行完整的实验,必须配备的实验仪器有:

- 1、稳压电源一台;
- 2、万用表一只:
- 3、微机一台;
- 4、示波器一台;
- 5、低频信号源一台(可选)。

如果要作系统性能的评价还可配上误码测试仪、逻辑分析仪等设备。

十一、 实验注意事项

- 1、严禁带电插拔下载线;
- 2、使用前请确认输入电压和极性;
- 3、不要用手触摸 FPGA 器件,避免静电击穿器件;
- 4、不要触碰散热片,小心烫伤。