Predicting planes in Microsoft Flight Simulator

Oliver Bollverk, Richard Nõmm, Ludvig Leis, Jon Hendrik Aruväli

Github: https://github.com/o-bollverk/msf

The goal and the problem

- * Combining data from MSF and jetphotos.com
- Goal: to classify plane types
- * A way to simulate plane type classification in the real world as MSF graphics are very realistic (air traffic control)

Process graph

Methods/models comparison (balanced subset)

Model	Augmentation	Top test accuracy (with 15 epochs, balanced data) 3.5k images (80/20 ratio)
Resnet50	-	80%
Resnet34	-	76%
Resnet18	-	69%
Resnet18	Background elimination	69%
Resnet18	Mean filtering	69%
Resnet18	Dense image wrap	59%
Resnet18	Random hsv (color change)	70%
Resnet18	Rotation	68%
Custom CNN*	Image resize 64x64	66%
Custom CNN*	Image resize 64x64, mean filtering, wrap transform	65%

^{*} Custom CNN used more epochs (128).

Results on unbalanced set

Resnet18 test with unbalanced data (5 epochs) - 29k images (80/20 ratio) - 94% accuracy on test set. Resnet34 test with unbalanced data (5 epochs) - 29k images (80/20 ratio) - 96% accuracy on test set. Custom CNN (Image resize 64x64) with unbalanced data - 29k images (80/20 ratio) - 80% accuracy on test set.

Image augmentation techniques

Expectations vs results

Expectations:

- * 90+ percent accuracy
- Image augmentation will improve accuracy
- * Background elimination will increase accuracy 5%
- * Custom CNN accuracy 80%-90%

Results:

- * Some augmentations decreased accuracy (wrap, grayscaling)
- * Mean transform, background elimination and random hsv didn't change accuracy
- * Higher resnets performed better
- * Difference in accuracy on models trained on entire unbalanced dataset vs balanced subset was 70% to 94% (resnet18)
- Custom CNN performed worse than resnet18 on subsets (best ca 80% accuracy)

Lessons learned

- Competing with Resnet is difficult with custom CNNs
- Image augmentation technique selection is complicated and some methods may easily decrease accuracy (edge fading, grayscaling)
- Test and training set should be from the same distributions
- Online data collection challenges
- * FastAI library is not to be recommended for building custom CNNs
- * Image resize can be crucial to model efficiency
- * Performance issues with Fastai (correct tensorflow versions, GPU drivers, etc)
- Personal PC > Google Colab

Thank you!