FILIUS TP N°3: LA PASSERELLE (SORTIR DU RESEAU)

Réseaux TCP/IP

@FG

Table des matières

FILIUS TP N°3 : LA PASSERELLE (SORTIR DU RESEAU)	3
1. La passerelle (sortir du réseau)	3

FILIUS TP N°3 : LA PASSERELLE (SORTIR DU RESEAU)

Objectifs

Etre capable de :

- Expliquer ce qui est entendu par "passerelle"
- Expliquer comment un poste connaît l'adresse IP de la passerelle sur un réseau

Ces TP sont inspirés du travail de Laurent Cournil, Académie de Rouen

1. La passerelle (sortir du réseau)

INTRODUCTION

On va maintenant simuler la connexion vers l'extérieur, c'est-à-dire *Internet*. Pour accéder à un autre réseau, il faut « accéder » à un autre réseau à partir de notre réseau local; ceci se fait par une machine spéciale qui possède au minimum 2 cartes réseaux et qui permet de passer d'un réseau à un autre : le routeur.

🧩 Simulation : MANIPULATION 1

Ouvrez Filieus et sauvegardez le schéma « Gateway_V0.fls» dans votre espace personnel.

Réalisez le schéma suivant :

🔊 Remarque : 2 adresses IP : une pour chaque réseau :

Sur ce schéma, on retrouve le *LAN A* précédent en bleu et un nouveau réseau *LAN B* en rouge. Ces 2 réseaux communiquent au travers du *routeur* qui possède 2 cartes réseaux. Le routeur possède donc 2 adresses *IP* : une pour chaque réseau.

Simulation: MANIPULATION 2

Lancer la simulation et « pinguer », à partir de n'importe quel Notebook, le serveur distant à l'adresse IP 1.1.1.1.

Observer la réponse et justifier si l'échange s'est correctement déroulé ou non. la requete ne sort pas du réseau car la passerelle n'est pas configurée

🔎 Remarque : Sortir du réseau...

Si rien ne se passe, c'est que l'envoi de la commande *ping* ne *sort pas du réseau*. Les machines du *réseau A* ne savent pas comment sortir vers *l'extérieur* (l'adresse 1.1.1.1 n'étant pas dans le réseau A, c'est donc *forcément une adresse distante*). Il faut donc renseigner l'adresse de la *passerelle* (Gateway) sur *tous les postes*. . . ou laisser le *serveur DHCP* s'en charger pour nous.

Simulation: MANIPULATION 3

Configurer de nouveau le serveur *DHCP* du réseau *LAN A* en insérant *l'adresse de la passerelle ;* c'est-à-dire *l'adresse du routeur* qui appartient au réseau *LAN A*.

Simulation: MANIPULATION 4

Sur le *LAN B*, il n'y a pas de serveur *DHCP*, Il faut donc paramétrer manuellement l'adresse de *la passerelle* (*Gateway*) sur le serveur *1.1.1.1*. Comme précédemment, la passerelle pour le *LAN B* correspond à l'adresse du routeur qui appartient au réseau *LAN B*.

🐒 Simulation : MANIPULATION 5

Lancer la simulation et tester la communication avec la commande *ping*. *Que constatez-vous* ? que les paquets sortent désormais du réseau

Sauvegarder votre fichier avec le nom : « Gateway V1 OK.fls »

📡 Fondamental : Ce qu'il faut retenir : Un routeur permet de relier un réseau à un autre et ...

- Le routeur a au minimum 2 cartes réseaux donc 2 adresses IP. Chacune de ces adresses IP correspond à l passerelle d'un réseau.
- Si on ne configure pas bien l'adresse de la passerelle sur les postes du LAN, rien ne sort.

Ce qu'il faut retenir : Un routeur permet de relier un réseau à un autre et ...

- Le routeur a au minimum 2 cartes réseaux donc 2 adresses IP. Chacune de ces adresses IP correspond à la passerelle d'un réseau.

- Si on ne configure pas bien l'adresse de la passerelle sur les postes du LAN, rien ne sort.