import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

df=pd.read\_csv("ecommerce.txt")

df.head()

|   | _             |
|---|---------------|
| - |               |
| → | $\overline{}$ |
|   |               |

|   | Email                             | Address                                                | Avatar           | Avg.<br>Session<br>Length | Time on<br>App | Time on<br>Website | Length of<br>Membership | Yearly<br>Amount<br>Spent | <b>=</b> |
|---|-----------------------------------|--------------------------------------------------------|------------------|---------------------------|----------------|--------------------|-------------------------|---------------------------|----------|
| 0 | mstephenson@fernandez.com         | 835 Frank<br>Tunnel\nWrightmouth, MI<br>82180-9605     | Violet           | 34.497268                 | 12.655651      | 39.577668          | 4.082621                | 587.951054                |          |
| 1 | hduke@hotmail.com                 | 4547 Archer<br>Common\nDiazchester, CA<br>06566-8576   | DarkGreen        | 31.926272                 | 11.109461      | 37.268959          | 2.664034                | 392.204933                |          |
| 2 | pallen@yahoo.com                  | 24645 Valerie Unions Suite 582\nCobbborough, D         | Bisque           | 33.000915                 | 11.330278      | 37.110597          | 4.104543                | 487.547505                |          |
| 3 | riverarebecca@gmail.com           | 1414 David<br>Throughway\nPort Jason,<br>OH 22070-1220 | SaddleBrown      | 34.305557                 | 13.717514      | 36.721283          | 3.120179                | 581.852344                |          |
| 4 | mstephens@davidson-<br>herman.com | 14023 Rodriguez<br>Passage\nPort Jacobville,<br>PR 3   | MediumAquaMarine | 33.330673                 | 12.795189      | 37.536653          | 4.446308                | 599.406092                |          |

Next steps:

Generate code with df

View recommended plots

New interactive sheet

df.info()

</pre RangeIndex: 500 entries, 0 to 499 Data columns (total 8 columns):

| # | Column               | Non-Null Count | Dtype   |
|---|----------------------|----------------|---------|
|   |                      |                |         |
| 0 | Email                | 500 non-null   | object  |
| 1 | Address              | 500 non-null   | object  |
| 2 | Avatar               | 500 non-null   | object  |
| 3 | Avg. Session Length  | 500 non-null   | float64 |
| 4 | Time on App          | 500 non-null   | float64 |
| 5 | Time on Website      | 500 non-null   | float64 |
| 6 | Length of Membership | 500 non-null   | float64 |
| 7 | Yearly Amount Spent  | 500 non-null   | float64 |

dtypes: float64(5), object(3) memory usage: 31.4+ KB

## df.describe()

| <b>→</b> |       | Avg. Session Length | Time on App | Time on Website | Length of Membership | Yearly Amount Spent | Ħ   |
|----------|-------|---------------------|-------------|-----------------|----------------------|---------------------|-----|
|          | count | 500.000000          | 500.000000  | 500.000000      | 500.000000           | 500.000000          | 11. |
|          | mean  | 33.053194           | 12.052488   | 37.060445       | 3.533462             | 499.314038          |     |
|          | std   | 0.992563            | 0.994216    | 1.010489        | 0.999278             | 79.314782           |     |
|          | min   | 29.532429           | 8.508152    | 33.913847       | 0.269901             | 256.670582          |     |
|          | 25%   | 32.341822           | 11.388153   | 36.349257       | 2.930450             | 445.038277          |     |
|          | 50%   | 33.082008           | 11.983231   | 37.069367       | 3.533975             | 498.887875          |     |
|          | 75%   | 33.711985           | 12.753850   | 37.716432       | 4.126502             | 549.313828          |     |
|          | max   | 36.139662           | 15.126994   | 40.005182       | 6.922689             | 765.518462          |     |

EDA

sns.jointplot(x='Time on Website',y='Yearly Amount Spent',data=df)





sns.pairplot(df,kind='scatter',plot\_kws={'alpha':0.4})





## quick linear regression

sns.lmplot(x='Length of Membership',y='Yearly Amount Spent',data=df,scatter\_kws={'alpha':0.4})





from sklearn.model\_selection import train\_test\_split

X=df[['Avg. Session Length','Time on App','Time on Website','Length of Membership']]
y=df['Yearly Amount Spent']

X\_train,X\_test,y\_train,y\_test=train\_test\_split(X,y,test\_size=0.3,random\_state=42)

Training the model

```
from sklearn.linear model import LinearRegression
lm=LinearRegression()
lm.fit(X train,y train)
      ▼ LinearRegression ① ?
     LinearRegression()
lm.coef
array([25.72425621, 38.59713548, 0.45914788, 61.67473243])
cdf=pd.DataFrame(lm.coef ,X.columns,columns=['Coef'])
print(cdf)
\overline{\Rightarrow}
                                Coef
     Avg. Session Length 25.724256
     Time on App
                           38.597135
     Time on Website
                           0.459148
     Length of Membership 61.674732
Predictions
predictions=lm.predict(X test)
predictions
    array([403.66993069, 542.57756289, 427.06591658, 502.02460425,
            410.12143559, 569.93442508, 531.93431341, 506.29650969,
            408.71870658, 473.97737105, 441.46912726, 425.33703059,
            425.1297229 , 527.61676714, 431.45684016, 424.0769184 ,
            575.76543296, 484.89856554, 458.35936863, 481.96502182,
```

```
502.32441491, 513.63783554, 507.58877002, 646.57464283,
450.24372141, 496.27043415, 556.40457807, 554.95630839,
399.64237199, 325.84623136, 532.89783259, 478.12238702,
501.05701845, 305.97335848, 505.77244448, 483.79591969,
518.8331528 , 438.18241857, 456.71094234, 471.04609461,
494.44008972, 445.31155755, 508.78802753, 501.04594193,
488.83499673, 535.38079541, 595.20129802, 514.04714872,
280.76758312, 433.10112367, 421.70823427, 481.23640152,
584.71372272, 608.7748096, 563.98513427, 494.72804869,
394.52133407, 456.4197529 , 573.08767515, 499.6984241 ,
512.83277025, 392.12434043, 480.05057697, 481.54520299,
475.1117359 , 546.2717533 , 430.85039085 , 602.16082001 ,
422.3695128 , 493.57280186, 528.74970313, 581.49002635,
620.19139276, 512.56880298, 411.76623862, 498.47637494,
461.51337557, 446.41371051, 448.07229961, 535.44710412,
599.45225302, 619.33717662, 494.15919062, 671.99976398,
532.46469814, 438.90606319, 515.04975242, 546.7821954,
331.94282076, 510.51987447, 536.57891032, 500.19533618,
376.92345776, 573.73961388, 479.68031607, 588.61435483,
485.69922203, 456.40200844, 399.25197845, 451.5098931,
519.40693826, 434.71194217, 596.13049586, 487.91791966,
407.46691799, 524.16812757, 504.12982787, 452.11540623,
524.21791295, 457.59311643, 444.19371592, 457.80432916,
448.76590761, 438.31789012, 677.04967982, 566.09639245,
651.93616661, 381.08127926, 577.5577254, 578.35797052,
518.61431291, 538.94532336, 377.4301223, 663.30814872,
523.83158824, 456.86065622, 446.07594402, 388.55038282,
521.03242183, 431.94999241, 460.08016327, 426.31959507,
433.30417088, 634.89577554, 462.41086078, 460.71673829,
512.49535288, 703.83033889, 411.84238624, 551.54681408,
553.33669558, 409.68202123, 423.34491341, 509.66438623,
509.88865178, 543.67591782, 504.31300469, 519.18802223,
520.03155195, 535.13855037])
```

```
sns.scatterplot(x=predictions, y=y_test)
plt.xlabel('Predictions')
plt.title('Evaluattion of our LM model')
```





from sklearn.metrics import mean\_squared\_error,mean\_absolute\_error
import math

print('Mean Absolute Error : ',mean\_absolute\_error(y\_test,predictions))
print('Mean Squared Error : ',mean\_squared\_error(y\_test,predictions))
print('Root Mean Squared Error : ',math.sqrt(mean\_squared\_error(y\_test,predictions)))

Mean Absolute Error : 8.426091641432116
 Mean Squared Error : 103.91554136503333
 Root Mean Squared Error : 10.193897260863155

residuals=y\_test - predictions

sns.displot(residuals,bins=20,kde=True)

<>> <seaborn.axisgrid.FacetGrid at 0x7d28ae68c520>



import pylab
import scipy.stats as stats





