FONCTIONS d'ORDRE SUPERIEUR

ENSIIE - 1ère année - IAP1

C. Dubois

Une fonction est une valeur comme les autres :

- elle peut être argument ou résultat d'une autre fonction
- elle peut être la composante d'une autre donnée

```
Exemple : liste de fonctions
let vals = [succ ; pred; (function x -> x/2)];;
vals : (int -> int) list = [<fun>; <fun>; <fun>]

(dernier vals) 138;;
- : int = 69
```

• elle peut être utilisée comme structure de données : représentation d'une table par une fonction par exemple

On appelle fonction d'ordre supérieur ou fonctionnelle une fonction qui admet en argument au moins une fonction.

1. Fonction comme argument et/ou résultat d'une autre fonction

Utilisations fréquentes : en calcul numérique, pour paramétrer une fonction de tri ...

Exemple 1 : Calcul de la pente d'une fonction en 0

Soit f une fonction à valeurs réelles dérivable en 0, calculons f'(0), la valeur de la pente de f en 0. On approxime f'(0) par $\frac{f(h)-f(0)}{h}$ avec h petit, égal à 0.001 par exemple.

```
let pente_en_0 f = let h = 0.001 in (f(h)-.f(0.))/.h;;
pente_en_0 : (float -> float) -> float = <fun>
```

```
Exemple 2 (généralisation) : dérivée de toute fonction
Soit f une fonction dérivable. On approxime la fonction f' dérivée de f
par la fonction qui à tout x associe \frac{f(x+h)-f(x)}{h} avec h petit
let dérivée f = let h = 0.001 in
                 function x \rightarrow (f(x+.h)-.f(x))/.h:
dérivée : (float -> float) -> float -> float = <fun>
           (float -> float) -> (float -> float)
let square' = dérivée (function x -> x*.x);;
 square' : float -> float = <fun>
square' 1.;;
-: float = 2.001
(dérivée cos) 0.0;;
-: float = -0.000499999958326
```

Exemple 3 : composition de fonctions

Exemple 4 : paramétrer un algorithme par un ordre

Retour sur l'insertion d'un élément dans une liste triée dans l'ordre croissant

```
#let rec insérer (e, liste) =
 match liste with
  | [] -> [e]
  | x::1 -> if e < x then e::liste else x::(insérer (e, l));;
val insérer : 'a * 'a list -> 'a list = <fun>
# insérer (1, [2;3;4]);;
-: int list = [1; 2; 3; 4]
# insérer ("eet", ["abc"; "def"; "klm"]);;
- : string list = ["abc"; "def"; "eet"; "klm"]
# insérer (true, [false; false]);;
- : bool list = [false; false; true]
# insérer ((3,1), [(1,2);(2,3); (2,4); (3,2)]);;
-: (int * int) list = [(1, 2); (2, 3); (2, 4); (3, 1); (3, 2)]
```

```
\rightarrow 2 fonctions d'insertion polymorphes car < est polymorphe.
int, float, string, char: OK pas de problème
bool: false < true
pour les couples : ordre lexicographique
pour le reste ??????
#type t = A of int | B of float;; #type t = B of float | A of int;;
                                       # (A 1) < (A 1);;
\# (A 1) < (A 1);;
- : bool = false
                                       - : bool = false
\# (A 1) < (A 3);;
                                       \# (A 1) < (A 3);;
- : bool = true
                                       - : bool = true
\# (B 3.0) < (B 2.99);;
                                       \# (B 3.0) < (B 2.99);;
- : bool = false
                                       - : bool = false
\# (A 1) < (B 1.3);;
                                       \# (A 1) < (B 1.3);;
- : bool = true
                                       - : bool = false
                      PRUDENCE!
Attention: ne pas utiliser les fonctions <, > et \le et \ge avec n'importe
quel type.
```

⇒ Introduire la fonction de comparaison en tant que paramètre de la fonction d'insertion: let rec insérer_gen (priorité, e, liste) = match liste with | [] -> [e] | x::1 -> if priorité (x, e) then x::(insérer_gen (priorité, e, 1)) else e::liste;; let insérer (e, l) = insérer_gen (inf_int, e, l);; let insérer_ordre_décroissant (e, l) = insérer_gen (sup_int, e, l);; let insérer_tarot (c, main) = insérer_gen (plus_forte, c, main);; De la même façon on peut paramétrer des tris

2. Fonction currifiée

Comment définir une fonction qui accepte plusieurs données en entrée (à plusieurs arguments avec un abus de langage)?

 \Rightarrow en utilisant un n-uplet d'arguments

```
let diff (x,y) = if x < y then x-y else y-x;;
diff : int * int -> int = <fun>
```

fonction d'un seul argument (un couple d'entiers)

```
⇒ en définissant une fonction currifiée
let diff x y = if x > y then x-y else y-x;
diff : int -> int -> int = <fun>
let diff = function x ->
                  (function y \rightarrow if x > y then x-y else y-x);;
let diff x = function y \rightarrow if x > y then x-y else y-x;;
       int -> (int -> int)
 fonction d'un seul argument entier (x) qui calcule une fonction
       des entiers vers les entiers
let diff5 = diff 5;;
                                     diff5 : int -> int = <fun>
diff5 8;;
                                      -: int = 3
(diff 5) 8;;
                                      -: int = 3
diff 5 8;;
                                      -: int = 3
```

A apprendre par coeur :-)

Une fonction f à deux arguments est aussi une fonction à un argument, dont le résultat est une fonction

On peut utiliser f avec un seul argument, le résultat sera une fonction.

• Le type $t_1 \to t_2 \to t_3 \to t_4$ est syntaxiquement équivalent à $t_1 \to (t_2 \to (t_3 \to t_4))$

Exemple: $(int \rightarrow int) \rightarrow int \rightarrow int$ équivalent à $(int \rightarrow int) \rightarrow (int \rightarrow int)$

Attention : les parenthèses autour du type du 1er argument ne peuvent être enlevées (c'est une fonction)

- $e_1 \ e_2 \ e_3 \dots e_n$ syntaxiquement équivalent à $(...(e_1(e_2))e_3)\dots)e_n$
- Si e a le type $t_1 \to t_2 \dots \to t_n \to t_{n+1}$ alors e $e_1 \dots e_i$ a le type $t_{i+1} \dots \to t_n \to t_{n+1}$ si $i \leq n$

On parle d'application partielle si i < n

```
Une fonctionnelle qui permet de currifier une fonction :
let curry f = function x \rightarrow function y \rightarrow f(x,y);
curry : ('a * 'b -> 'c) -> 'a -> 'b -> 'c = <fun>
curry : ('a * 'b -> 'c) -> ('a -> 'b -> 'c) = <fun>
ou encore let curry f x y = f(x,y);;
min ;;
- : 'a * 'a -> 'a = < fun>
curry min 2 4;;
-: int = 2
let min_0 = curry min 0 in min_0 (-4);
-: int = -4
ici min_0 : int -> int
```

```
Retour sur l'insertion dans une liste triée : fonction currifiée
let rec insérer_gen priorité e liste =
  match liste with
  | [] -> [e]
  | x::1 -> if priorité x e then x::(insérer_gen priorité e 1)
             else e::liste;;
val : insérer_gen : ('a -> 'a -> bool) -> 'a -> 'a list = <fun>
let insérer e l = insérer_gen (<) e l;;</pre>
let insérer_ordre_décroissant e l = insérer_gen (>) e l;;
let insérer_date d li = insérer_gen chrono d li;;
(* chrono : date -> date -> bool *)
(<): int -> int -> bool: fonction correspondant à l'opérateur + C'est
la fonction définie par function x \rightarrow function y \rightarrow x < y
```

3. Quelques fonctionelles classiques sur les listes

⇒ Appliquer un même traitement sur chaque élément d'une liste Soit f une fonction et l une liste $[a_1; a_2...; a_n]$ On veut calculer $[(f a_1); (f a_2)...; (f a_n)]$ let rec map f li = match li with [] -> [] $| x::1 \rightarrow (f x)::(map f 1);;$ map : ('a -> 'b) -> 'a list -> 'b list Par exemple pour élever au carré tous les éléments d'une liste 1 : map (function $x \rightarrow x*x$) 1 La fonctionnelle map existe en Ocaml dans le module List de la librairie standard: # List.map;;

- : ('a -> 'b) -> 'a list -> 'b list = <fun>

```
⇒ Sélectionner les éléments d'une liste qui vérifient un certain critère
Soit p un prédicat (une fonction à résultat booléen) et l une liste
[a_1; a_2...; a_n]
On veut calculer [x|x \in l \land p(x) = true]
let rec filter p li = match li with
  [] -> []
| x::1 -> if (p x) then x::(filter p 1) else (filter p 1);;
filter: ('a -> bool) -> 'a list -> 'a list
Exemples:
- une fonction qui extrait les entiers pairs d'une liste
let termes_pairs l = filter (function x -> (x mod 2 = 0)) 1
ou encore let termes_pairs = filter (function x \rightarrow (x \mod 2 = 0))
```

```
- La liste des bouts d'une main de tarot
let bouts = filter
                (function c -> match c with Excuse -> true
                                           | Atout n -> n=1 || n=21
                                           | _ -> false);;
val bouts : carte list → carte list
- La sous-liste des étudiants de 1A nés avant 1988 (promotion1A)
let extrait =
   filter (function e -> e.date_de_naissance.année<1988) promotion1A
val extrait : etudiant list = ....
La fonctionnelle filter existe en Ocaml: List.filter
```

Extension : séparer une liste en 2 sous-listes suivant un critère (fonction partition voir TD)

Application: tri quicksort dont l'idée est:

- choisir un élément dans la liste à trier : pivot
- partitionner la liste par comparaison avec le pivot
- trier les 2 sous-listes obtenues obtenues (appel récursif)
- concaténer les sous-listes obtenues en plaçant le pivot entre les 2

⇒ Combiner les éléments d'une liste entre eux à l'aide d'une opération binaire

```
| a::r -> a + (somme r)::
somme [a_1; a_2; ...; a_{n-1}; a_n] = + a_1 (+ a_2 (... (+ a_{n-1} (+ a_n 0))...))
let rec produit l = match l with [] -> 1
                          | a::r -> a * (produit r);;
produit [a_1; a_2; ...; a_{n-1}; a_n] = * a_1 (* a_2 (... (* a_{n-1} (* a_n 1))...))
let rec concat l = match l with [] -> ""
                          | a::r -> a ^ (concat r)::
concat \ [a_1; a_2; ...; a_{n-1}; a_n] = \hat{a}_1 \ (\hat{a}_2 \ (...(\hat{a}_{n-1} \ (\hat{a}_n \ "")) \ ...))
```

```
Généralisation : soit f une fonction à 2 arguments, e une valeur
quelconque et l une liste [a_1; a_2...; a_{n-1}; a_n]
On veut calculer f a_1 (f a_2 (...(f a_{n-1} (f a_n e))...))
let rec fold_right f l e = match l with
  [] -> e
| a::r -> f a (fold_right f r e);;
fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b
Exemple : calculer la somme des éléments d'une liste
let somme l = fold_right (+) l 0
de type int list -> int
```

```
Graphiquement:
On part de a_1::(a_2::(\dots(a_{n-1}::(a_n::[]))\dots))
On veut calculer f a_1 (f a_2 (...(f a_{n-1} (f a_n e))...))
                                                            f
  a1 ::
                                                        a1
    a2 ::
                         fold_right f l e
                                                          a2
                                                                     f
           an
                                                                   an
```

f prend son premier argument dans la liste

```
Devinette:
let ??? 11 12 = fold_right (function x \rightarrow function y \rightarrow x::y) 11
12
  a1 ::
                                                    a1 ::
    a2 ::
                     ??? 11 12
                                                       a2
                                                                   12
                                                                an
          an
      11
```

```
Et si on inversait les calculs ...
On veut calculer f(\ldots(f(f e a_1) a_2) \ldots a_{n-1})a_n)
f prend son deuxième argument dans la liste, son premier argument est
le calcul déjà effectué
#let rec fold_left f e l = match l with
      Π -> e
    | a::r -> fold_left f (f e a) r;;
fold left: ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
#let et l = fold_left (&&) true l ;;
val et : bool list -> bool = <fun>
ou let et = fold_left (&&) true ;;
#et [true; true;false];;
- : bool = false
```

```
fold_left f e l = fold_right (function x -> function y -> (f y x)) l e fold_right f l e = fold_left (function x -> function y -> (f y x)) e l fold_left f e l = fold_right f l e si f est associative et e élément neutre pour f démonstration par induction structurelle sur l de la propriété \forall l \forall x. f x (fold\_left f e l) = fold\_left f x l
```

 \Rightarrow Selon l'opération f que l'on utilise, choisir fold_right ou fold_left.

Pour retenir : fold_left : l'élément de base est à gauche de la liste fold_right : l'élément de base est à droite de la liste

Les fonctions existent dans le module List de la bibliothèque standard.

Reprenons l'exemple du système arborescent de fichiers Un fichier est :

- soit un fichier texte
- soit un répertoire contenant des fichiers

4. Quelques fonctionelles pour itérer

itérer = répéter un certain nombre de fois l'application d'une fonction

⇒ Itération bornée

Appliquer n fois la fonction f à la valeur a ou calculer le n-ième terme de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=a,\ u_{n+1}=f(u_n)$

```
let rec iter n f a =
  if n = 0 then a else f (iter (n-1) f a);;
val iter : int -> ('a -> 'a) -> 'a -> 'a = <fun>
```

Appliquer n fois la fonction f à la valeur a c'est aussi appliquer n-1 fois la fonction f à la valeur f(a)

```
let rec iter n f a = r\'{e}cursivit\'{e} terminale if n = 0 then a else iter (n-1) f (f a);
```

let puissance p n = iter n (function x \rightarrow p*x) 1;;

```
let fib n = fst (iter n (function (x,y) \rightarrow (x+y,x)) (1,0));;
fib 5 = fst (iter 5 (function (x,y) \rightarrow (x+y,x)) (1,0))
      = fst (iter 4 (function (x,y) \rightarrow (x+y,x)) (1,1))
      = fst (iter 3 (function (x,y) \rightarrow (x+y,x)) (2,1))
      = fst (iter 2 (function (x,y) \rightarrow (x+y,x)) (3,2))
      = fst (iter 1 (function (x,y) \rightarrow (x+y,x)) (5,3))
      = fst (iter 0 (function (x,y) \rightarrow (x+y,x)) (8,5))
      = fst (8,5) = 8
Même algorithme que la version récursive terminale vue en TD:
let rec fibacc (n,c,p)= if n=1 then c else fibacc(n-1,p+c,c);;
let fib n = if n=0 then 1 else fibacc(n,1,1);;
fib 5 = fibacc(5,1,1)
      = fibacc(4,2,1)
      = fibacc(3,3,2)
      = fibacc(2,5,3)
      = fibacc(1,8,5) = 8
```

⇒ Itération non bornée

Le nombre d'applications de f dépend d'une condition (prédicat) Le dernier terme calculé de la suite $(u_n)_{n\in\mathbb{N}}$ est le premier terme à vérifier la condition

```
Exemple 1 : la plus petite puissance de p supérieure à x
# let ppp p x =
  loop (function y \rightarrow y > x) (function y \rightarrow p*y) 1;;
val ppp : int -> int -> int = <fun>
# ppp 2 10;;
-: int = 16
# ppp 5 100;;
-: int = 125
l'exposant maintenant nous intéresse
# let ppe p x =
snd (loop (function (y,z) \rightarrow y > x) (function (y,z) \rightarrow (y*p,z+1)) (1,0));;
val ppe : int -> int -> int = <fun>
# ppe 2 10;;
-: int = 4
# ppe 5 100;;
-: int = 3
```

Exemple 2 : calcul du zéro d'une fonction f sur [a, b] à ϵ près. (hypothèses : f(a) et f(b) sont de signes différents et f est monotone) Méthode dichotomique : on divise l'intervalle en 2, on itère le processus sur le demi-intervalle qui contient le zéro (bornes de signes opposés) 2 implantations différentes: - définition récursive let rec zero f a b eps = if abs_float(b -. a) < eps then (a,b) else let m = (a +. b) /. 2. inif f(a) *. f(m) < 0. then zero f a m eps else zero f m b eps;; zero (function x -> x*.x -. 2.) 1.0 2.0 (1e-10);; : float * float = (1.41421356232604012, 1.41421356238424778) un encadrement de $\sqrt{2}$