Chapter 2

Sets

- order & repeated elements dont matter
- $-\mathbb{Q} = \{r | r = \frac{a}{b}; a \in \mathbb{Z}, b \in \mathbb{N}\}\$
- $-\mathbb{Z} = \{0, \pm 1, ...\}$
- $A \subseteq B \to \text{every element of } A \text{ is in } B$
- $A \subset B \to \text{every element of } A \text{ is in } B \text{ and at least } 1$ element of B is not in A
- $-A = B \rightarrow A \subseteq B \text{ and } B \subseteq A$
- Power Set: all subsets of a set $A = \{a, b\}$; $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$
- $A \cap B \to \text{elements in both } A \text{ and } B$
- $A \cup B \rightarrow$ elements from combining A with B
- $\overline{A} \to \text{all elements not in } A$

Combining Set Operations

- 1. Associative: $(A \cap B) \cap C = A \cap (B \cap C)$ $(A \cup B) \cup C = A \cup (B \cup C)$
- 2. Commutative: $A \cap B = B \cap A$ $A \cup B = B \cup A$
- 3. Complements: $(\overline{A}) = A$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- 4. Distributive: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Sequences

- order & repitition is important

Graphs

- capture relationships between objects
- set of vertices
- affiliation & conflict graphs

Axiom: self-evident statment that is asserted as true without proof

Conjecture: claim that is believed true but is not true until proven

Theorem: proven truth

The Well-Ordering Principle: Any non-empty subset of **Proving** $\forall x \in \mathcal{D} : P(x)$ using general x: \mathbb{N} has a minimum element.

Chapter 3

Truth Table:					
p	\mathbf{q}	$\neg p$	$p \lor q$	$p \wedge q$	$p \to q$
Т	Τ	F	Т	Т	Т
Т	\mathbf{F}	F	Т	F	F
F	T	Τ	Т	F	Τ
F	F	Τ	F	F	Т

Logical Connectors Manipulation

- 1. Associative: $(p \land q) \land r \equiv p \land (q \land r)$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$
- 2. Commutative: $p \wedge q \equiv q \wedge p$ $p \lor q \equiv q \lor p$
- 3. Negations: $\neg(\neg p) \equiv p$ $\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$
- 4. Distributive: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
- 5. Implication: $p \to q \equiv \neg q \to \neg p$ $p \to q \equiv \neg p \land q$

Predicates

Example 1: All cars have four wheels

Predicate: P(c) = ``car c has four wheels''

Domain: $C = \{c | c \text{ is a car }\}$

"for all c in C, the statement P(c) is true." $\forall c \in C : P(c)$

Example 2: There exists a creature with blue eyes and blonde hair

Predicate 1: G(a) = "a has blue eyes"

Predicate 2: H(a) = a has blonde hair

Domain: $A = \{a | a \text{ is a creature}\}$

"there exists a in A for which the statement G(a) and H(a) are true." $= \exists a \in A : (G(a) \land H(a))$

- \exists claims need just one case to prove it is true
- \forall claims need just one contradiction to be false

$$\neg(\forall x : P(x)) \equiv \exists x : \neg P(x)$$

$$\neg(\exists x : P(x)) \equiv \forall x : \neg P(x)$$

Chapter 4: Proofs

Direct Proof: $p \rightarrow q$

Assume p is T. Argue q must be T.

Assume $x \in \mathcal{D}$.

Determine properties x must have for $x \in \mathcal{D}$ Show P(x) is T for x, then claim must be true.

Contraposition: $p \rightarrow q$

Assume q is F. Argue p must be F.

A direct proof of the contraposition $(\neg q \rightarrow \neg p)$

Contradiction: p is T

Assume p is F.

Derive **FISHY** statement. Means p is T.

Contradiction: $p \rightarrow q$

Assume p is T & show q is F.

Assume q is F.

Derive \mathbf{FISHY} statement

Either p is F or q is T. So $p \to q$ is T.

Equivalence: $p \iff q$

Prove $p \to q$. Prove $q \to p$.

Set Proofs: (Formal Proof) Show:

 $A \subseteq B : x \in A \to x \in B$ $A \nsubseteq B : \exists x \in A : x \notin B$ $A = B : A \subseteq B \& B \subseteq A$

Chapter 5: Induction

Induction Proof: $\forall n \geq 1 : P(n)$

Base Case: Show P(1) is T.

Induction Step: Show $P(n) \to P(n+1)$ for $n \ge 1$.

Use Direct Proof or Contraposition:

Direct: Assume P(n): T. Show P(n+1): T.

Contra: Assume P(n+1): F. Show P(n): F.

 $\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$

Just plug whatever is on top (n+1) into i

Chapter 6: Strong Induction

Strong Induction: To prove $P(n) \forall n \geq 1$, use induc-

tion to prove a stronger claim:

Q(n): each of P(1), P(2), ..., P(n) are T

Leaping Induction: Prove $\forall n \geq 1 : P(n)$

Show P(1), ..., P(k) base cases are T.

Show $P(n) \to P(k)$ for $n \ge 1$

Then $\forall n \geq 1 : P(n)$