

Hľadanie hrán

Typy hrán

skutočné hrany šum

Typy hrán

Hľadanie hrán

skúmame body v okolí (pomocou derivácie)

Ak sa intenzity príliš nelíšia - pravdepodobne tam nie je hrana

Ak sa líšia - bod môže patriť hrane

Metódy hľadania hrán

```
konvolučné masky
diskrétna aproximácia diferenciálnych operátorov
(miera zmeny intenzity)
Informácia o:
```

- existencia ✓
- orientácia ?

Diferencovanie 2D

$$\frac{\partial f \, \mathbf{A}, y}{\partial x} \approx \frac{f \, \mathbf{A}_{n+1}, y_m - f \, \mathbf{A}_n, y_m}{\Delta x}$$

$$\frac{\partial f \, \mathbf{A}, y}{\partial y} \approx \frac{f \, \mathbf{A}_n, y_{m+1} - f \, \mathbf{A}_n, y_m}{\partial y}$$

$$\begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\frac{\partial I(x,y)}{\partial x} = \frac{I(x+1,y) - I(x-1,y)}{2}$$
$$\frac{\partial I(x,y)}{\partial y} = \frac{I(x,y+1) - I(x,y-1)}{2}$$

$$\frac{\partial I}{\partial x} = I * 1 \begin{vmatrix} 0 & -1 \end{vmatrix}$$

$$\frac{\partial I}{\partial y} = I * \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$$

Diferencovanie

$$I_x = I * 1 - 1$$

Ktorý obrázok je I_x?

$$I_y = I * \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Diferencovanie a šum

Vyhladenie

prah 20

prah 50

originál

Gaussovské vyhladenie

Následky šumu

Vyhladenie

h

$$h \star f$$

$$\frac{\partial}{\partial x}(h\star f)$$

Gradient

Gradient:
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

Smer – najväčšia zmena intenzity

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

Smer gradientu:
$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

Veľkosť gradientu:
$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

$$\|\nabla f\| \approx |G_x| + |G_y|$$

Gradient / hrany

Sila (dôležitosť) hrany = veľkosť gradientu Smer hrany = smer gradientu – 90

Gradient

Roberts

Najjednoduchšie masky

-1	0
0	1

Len body hrán
Nie orientácia
Vhodné pre binárne obrazy
Nevýhody:

0	-1
1	0

Veľká citlivosť na šum Nepresná lokalizácia Málo bodov na aproximáciu gradientu

Hľadá horizontálne a vertikálne hrany Konvolučné masky:

$$y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \qquad x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

 $\frac{d}{dx}I$

 $\frac{d}{dy}I$

$$E = \sqrt{\left(\frac{d}{dx}I\right)^2 + \left(\frac{d}{dy}I\right)^2}$$

 $E \ge Threshold = 100$

Prewitt

Podobne ako Sobel Masky:

$$y = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

Prewitt

 $\frac{d}{dx}I$

Prewitt

$$E = \sqrt{\left(\frac{d}{dx}I\right)^2 + \left(\frac{d}{dy}I\right)^2}$$

Druhá derivácia

Laplacián

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\frac{\partial^2 f}{\partial x^2} = f(i, j+1) - 2f(i, j) + f(i, j-1)$$

$$\frac{\partial^2 f}{\partial y^2} = f(i+1,j) - 2f(i,j) + f(i-1,j)$$

Konvolúcia [1, -2, 1]

Laplacián

7 1		
		\ / '
\mathbf{v}	nod	ν.
- J -		y -

Veľmi citlivý na šum Produkuje dvojité hrany Neurčuje smer hrany

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

Laplacián

Laplacián Gaussiánu

Marr – Hildreth operátor, LoG operátor

Vyhladenie pomocou 2D Gaussiánu

$$S = G_{\sigma} \otimes I$$

Následná aplikácia Laplaciánu

$$G_{\sigma} = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$\nabla^2 S = \frac{\partial^2}{\partial x^2} S + \frac{\partial^2}{\partial y^2} S$$

Laplacián Gaussiánu

$$E = (I * G) * L = I * (G * L)$$

$$\nabla^2 S = \nabla^2 \mathbf{G}_{\sigma} * I = \nabla^2 \mathbf{G}_{\sigma} * I$$

Gaussian

Laplacian of Gaussian

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

a b c d

FIGURE 10.14

Laplacian of a Gaussian (LoG).

- (a) 3-D plot. (b) Image (black is negative, gray is the zero plane, and white is positive).
- (c) Cross section showing zero crossings.
- (d) 5×5 mask approximation to the shape of (a).

- Good detection maximalizovať signal-tonoise pomer
- Good localization detekovaný bod hrany by mal byť čo najbližšie ku stredu skutočnej hrany
- 3. Only one response to a single edge

- 1) Vyhladenie Gaussiánom
- 2) Gradientný operátor Veľkosť gradientu Smer gradientu
- 3) Výber maxím v danom smere
- 4) Prahovanie dvoma prahmi

Original

Vyhladenie Gaussiánom $S = G_{\sigma} * I$

$$G_{\sigma} = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Gradientný operátor (Sobel)

$$\nabla S = \begin{bmatrix} \frac{\partial}{\partial x} S & \frac{\partial}{\partial y} S \end{bmatrix}^T = A_x S_y T$$

Veľkosť gradientu $|\nabla S| = \sqrt{S_x^2 + S_y^2}$

$$\left|\nabla S\right| = \sqrt{S_x^2 + S_y^2}$$

Smer gradientu

$$\theta = \tan^{-1} \frac{S_y}{S_x}$$

$$\nabla S = \nabla \mathbf{G}_{\sigma} * I = \nabla G_{\sigma} * I$$

$$\nabla G_{\sigma} = \begin{bmatrix} \frac{\partial G_{\sigma}}{\partial x} & \frac{\partial G_{\sigma}}{\partial y} \end{bmatrix}^{T}$$

$$\nabla S = \left[\frac{\partial G_{\sigma}}{\partial x} * I \quad \frac{\partial G_{\sigma}}{\partial y} * I \right]^{T}$$

$$M = |\nabla S|$$

$$\Theta$$

Non-maximum suppression

Check if pixel is local maximum along gradient direction

requires checking interpolated pixels p and r

Canny

Gauss 5x5, T1=255, T2=1

Gauss 5x5, T1=255, T2=220

Gauss 5x5, T1=128, T2=1

Gauss 9x9, T1=128, T2=1

Kirsch - kompas operátor

Rotujúca maska

Smery: 0, 45, 90, 135, ...

Sila hrany – maximum cez jednotlivé masky Smer hrany – maska dávajúca maximum

$$\begin{bmatrix} -3 & -3 & 5 \\ -3 & 0 & 5 \\ -3 & -3 & 5 \end{bmatrix}$$

$$\begin{bmatrix} -3 & -3 & 5 \\ -3 & 0 & 5 \\ -3 & -3 & 5 \end{bmatrix} \begin{bmatrix} -3 & 5 & 5 \\ -3 & 0 & 5 \\ -3 & -3 & -3 \end{bmatrix} \begin{bmatrix} 5 & 5 & 5 \\ -3 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix} \begin{bmatrix} 5 & 5 & -3 \\ 5 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 5 & 5 \\ -3 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 5 & -3 \\ 5 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix}$$

Robinson

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & 1 \\ -1 & -1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & -1 \\ 1 & -1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & -1 \\ 1 & -2 & -1 \\ 1 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & -1 \\ 1 & -2 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$

Gradient direction

Robinson Kirsch Prewitt Sobel

$$\begin{bmatrix}
5 & -3 & -3 \\
5 & 0 & -3 \\
5 & -3 & -3
\end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} \begin{bmatrix} -3 & -3 & -3 \\ 5 & 0 & -3 \\ 5 & 5 & -3 \end{bmatrix}$$

$$\left[\begin{array}{cccc}
0 & -1 & -1 \\
1 & 0 & -1 \\
1 & 1 & 0
\end{array}\right]$$

$$\begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -3 & -3 & -3 \\ -3 & 0 & -3 \\ 5 & 5 & 5 \end{bmatrix}$$

$$\begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -3 & -3 & -3 \\ -3 & 0 & 5 \\ -3 & 5 & 5 \end{bmatrix}$$

$$\begin{bmatrix} -1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} -3 & -3 & 5 \\ -3 & 0 & 5 \\ -3 & -3 & 5 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ -1 & -2 & 1 \\ -1 & -1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 5 & 5 \\ -3 & 0 & 5 \\ -3 & -3 & -3 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 5 & 5 \\ -3 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 5 & -3 \\ 5 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix}$$

$$\left[\begin{array}{ccccc}
2 & 1 & 0 \\
1 & 0 & -1 \\
0 & -1 & -2
\end{array}\right]$$

Farebné obrazy

Previesť na šedotónový a použiť niektorý z predchádzajúcich metód

Problém ak je hrana medzi dvomi farbami s rovnakým jasom

Vo farebnom obraze vieme určiť 90% hrán z <u>šedotónového obrazu</u>

Zvyšných 10% hrán z farebného obrazu

Farebné obrazy

Sekvenčný prístup: Jednotlivé kanály samostatne

$$G(x,y) = \sqrt{G_{red}^2 + G_{green}^2 + G_{blue}^2}$$

Metódy

output fusion methods

Grad R Edges_R Image Green Grad_G Edges_G Edge Map Blue Grad_B Edges_B Output Decomposition Gradient Edge Detection Fusion

Red

 multi-dimensional gradient methods

vector methods

Vektorový prístup

$$u = (R'_x, G'_x, B'_x)$$

 $v = (R'_y, G'_y, B'_y)$

$$u = \frac{\partial R}{\partial x}r + \frac{\partial G}{\partial x}g + \frac{\partial R}{\partial x}b$$
$$v = \frac{\partial R}{\partial y}r + \frac{\partial G}{\partial y}g + \frac{\partial R}{\partial y}b$$

$$g_{xx} = u \cdot u = u^{T} u = \left| \frac{\partial R}{\partial x} \right|^{2} + \left| \frac{\partial G}{\partial x} \right|^{2} + \left| \frac{\partial B}{\partial x} \right|^{2}$$

$$g_{yy} = v \cdot v = v^{T} v = \left| \frac{\partial R}{\partial y} \right|^{2} + \left| \frac{\partial G}{\partial y} \right|^{2} + \left| \frac{\partial B}{\partial y} \right|^{2}$$

$$g_{xy} = u \cdot v = u^{T} v = \frac{\partial R}{\partial x} \frac{\partial R}{\partial y} + \frac{\partial G}{\partial x} \frac{\partial G}{\partial y} + \frac{\partial B}{\partial x} \frac{\partial B}{\partial y}$$

smer
$$\theta = \frac{1}{2} \tan^{-1} \left[\frac{2g_{xy}}{(g_{xx} - g_{yy})} \right]$$

Veľkosť
$$F(\theta) = \sqrt{\frac{1}{2} [(g_{xx} + g_{yy}) - (g_{xx} - g_{yy}) \cos(2\theta) + 2g_{xy} \sin(2\theta)]}$$

Vector order statistics

- Používa sa R-ordering
- Okno W veľkosti n pixelov
- Vector range (VR) edge detector najjednoduchší VR=D(x⁽ⁿ⁾, x⁽¹⁾)
 x⁽¹⁾ median , x⁽ⁿ⁾ outlier
 - **x**⁽¹⁾ median , **x**⁽ⁿ⁾ outlier citlivý na šum
- Vector dispersion edge detectors (VDED)

$$VDED = \left\| \sum_{i=1}^{n} \alpha_i \mathbf{X}^{(i)} \right\|$$
 a_i váhy

VR špeciálny prípad VDED kde a₍₁₎=-1 a a_(n)=1, a_(i)=0 i=2,...n-1

Fig. 4. Test image 'Lena'

Fig. 5. Test image 'Lena' distorted with the Gaussian and impulsive noises

Fig. 6. VR detector: edges of the noised image 'Lena'

Fig. 7. VDED detector: edges of the noised image 'Lena'

Minimum vector range

Uvažujeme k rozdielov – odstránime citlivosť na šum (impulsive, exponential noise)

$$MVR = \min_{j} \left\{ \left\| \mathbf{X}^{(n-j+1)} - \mathbf{X}^{(1)} \right\| \right\},$$

$$j = 1, 2, \dots, k, \ k < n$$

Minimum vector dispersion – odstráni citlivosť aj na Gaussov šum

$$MVD = \min_{j} \left\{ \left\| \mathbf{X}^{(n-j+1)} - \sum_{i=1}^{l} \frac{\mathbf{X}^{(i)}}{l} \right\| \right\},$$
$$j = 1, 2, \dots, k, \ k, l < n$$

Používa α-trimmed mean

Fig. 4. Response of MVD to noise contaminated edge, (a) Initial edge, (b) Response of MVD to (a), (c) edge (a) corrupted with gaussian noise, (d) response of MVD to (c), (e) edge (a) corrupted with double-exponential noise, (f) response of MVD to (e).

Nearest neighbour vector range

$$\mathsf{NNVR} = D\left[x^{(n)}, \sum_{i=1}^{n} w_i x^{(i)}\right]$$

$$w_i \ge 0$$

$$\sum_{i=1}^n w_i = 1$$

$$w_i \ge 0$$
 $\sum_{i=1}^n w_i = 1$ $w_i = \frac{d^{(n)} - d^{(i)}}{n \cdot d^{(n)} - \sum_{j=1}^n d^{(j)}}$

$$d_i = \sum_{j=1}^n D(x_i, x_j), i = 1, 2, ..., n$$

Nemôže byť použité na homogénne oblasti

Kombináciou MVD a NNVR

$$\mathsf{NNMVD} = \min_{j} \left\{ D \left[x^{(n-j+1)} \left| -\sum_{i=1}^{n} w_{i} x^{(i)} \right] \right\}$$

Fig. 8. NNVR detector: edges of the noised image 'Lena'

Fig. 9. MVD detector: edges of the noised image 'Lena'

Fig. 10. NNMVD detector: edges of the noised image 'Lena'

Difference vector operators

Každý pixel reprezentovaný ako vektor v RGB

Vypočítame gradient v 4 smeroch

$$\begin{split} |\nabla f|_{0^{\circ}} &= \|Y_{0^{\circ}} - X_{0^{\circ}}\| \\ |\nabla f|_{90^{\circ}} &= \|Y_{90^{\circ}} - X_{90^{\circ}}\| \\ |\nabla f|_{45^{\circ}} &= \|Y_{45^{\circ}} - X_{45^{\circ}}\| \\ |\nabla f|_{135^{\circ}} &= \|Y_{135^{\circ}} - X_{135^{\circ}}\| \\ |DV &= \max(|\nabla f|_{0^{\circ}}, |\nabla f|_{45^{\circ}}, |\nabla f|_{90^{\circ}}, |\nabla f|_{135^{\circ}}) \end{split}$$

X, Y sú 3D vektorové konvolučné masky

Základná maska pre okno 3x3 $\mathbf{v}(x,y)$ – pixel, $\mathbf{v}(x_0,y_0)$ - stredný pixel

$$X_{0^{\circ}} = v(x_{-1}, y_0),$$
 $Y_{0^{\circ}} = v(x_1, y_0)$
 $X_{45^{\circ}} = v(x_{-1}, y_1),$ $Y_{45^{\circ}} = v(x_1, y_{-1})$
 $X_{90^{\circ}} = v(x_0, y_1),$ $Y_{90^{\circ}} = v(x_0, y_{-1})$
 $X_{135^{\circ}} = v(x_1, y_1),$ $Y_{135^{\circ}} = v(x_{-1}, y_{-1})$

Pred detekciou môžeme obraz filtrovať – treba použiť väčšiu masku

Ak okno **W** je veľkosti **n** x **n** (n=2k+1) vytvoríme sub-okno veľkosti $N = (n^2-1)/2$

$$\boldsymbol{X}_{d} = f\left(\boldsymbol{v}_{d,1}^{sub_{1}}, \boldsymbol{v}_{d,2}^{sub_{1}}, \dots, \boldsymbol{v}_{d,N}^{sub_{1}}\right)$$

$$Y_d = f(v_{d,1}^{sub_2}, v_{d,2}^{sub_2}, ..., v_{d,N}^{sub_2})$$

where: $d = 0^{\circ}$, 45°, 90°, 135°.

Podľa typu šumu môžeme použiť rôzne filtre

Vector median filter

$$f_{VM}(v_1, v_{2,...}, v_N) = v^{(1)}$$

Efektívny pri redukovaní impulsného šumu

Vector mean filter

$$f_{\overline{VM}}(v_1, v_{2,...,}v_N) = \frac{1}{N} \sum_{i=1}^{N} v_i$$

Efektívny pri redukovaní Gaussovho šumu

Kombináciou predchádzajúcich

α-trimmed mean filter

$$f_{\alpha-\text{trim}}(v_1, v_{2,...,}v_N) = \frac{1}{N(1-2\alpha)} \sum_{i=1}^{N(1-2\alpha)} v^{(i)}$$

where: α is within [0, 0,5) interval.

Adaptive nearest neighbour filter

$$f_{\text{adap}}(v_1, v_{2,...,}v_N) = \sum_{i=1}^N w_i v_i$$

Fig. 12. DV_mean detector: edges of the noised image 'Lena'

Fig. 13. DV_ α -trim detector: edges of the noised image 'Lena'

Fig. 14. DV_adapt detector: edges of the noised image 'Lena'

Difference vector iba v 2 smeroch

horizontalne a vertikálne

$$\mathsf{DV}_\mathit{hv} = \max(|\nabla f|_{0^{\circ}}, |\nabla f|_{90^{\circ}})$$

Ľudský vizuálny systém je viac citlivý na horizontálne a vertikálne hrany

časovo menej náročný

horizontálne a vertikálne rozdiely vo vektoroch prispievajú k detekcii diagonálnych hrán – detekované hrany sú tenšie

Fig. 16. DV_hv_{mean} detector: edges of the noised image 'Lena'

Fig. 17. DV_hv_ α -trim detector: edges of the noised image 'Lena'

Fig. 15. DV_hv detector: edges of the noised image 'Lena'

Fig. 18. DV_hv_{adapt} detector: edges of the noised image 'Lena'

Detekcia hrán pomocou zgrupovania

Figure 1: (a) edge between two color regions (b) u - the best linear combination.

Sobel edge detection on gray Mandrill image

edge detected using proposed method resulted clusters

Color Edge Detection Based on Morphology

bc, de – hrany f(x) – originálna funkcia

Erodovaný aghijf
Dilatovany akmnof
Výsledný f (x) agpgmdef

Figure 1. The sketch map of the new algorithm

$$f'(x) = \begin{cases} f_{\oplus}(x) & \text{if } f(x) \ge (f_{\oplus}(x) + f_{\otimes}(x))/2 \\ f_{\otimes}(x) & \text{if } f(x) < (f_{\oplus}(x) + f_{\otimes}(x))/2 \end{cases}$$

Color Edge Detection Based on Morphology

- Erózia a dilatácia každého pixla na každom farebnom kanále
- 2. Vypočítaj f (x) 2 krát
- 3. Vypočítaj gradient farebného obrazu
- 4. Detekcia hrán
- Odstránenie šumových hranových bodov (izolovaný bod)

Color Edge Detection Based on Morphology

Figure 2. The origin color image

Figure 3. The edge image with Sobel operator

Figure 4. The edge image with morphology preprocess