PHƯƠNG PHÁP QUY ĐỔI TRIỆT HẠ "TAM GIÁC CỰC TRỊ" CỦA HÀM $y = x^4 + bx^2 + c$

VÕ TRONG TRÍ

Quy đổi mọi hàm số bậc 4 về dạng: $y=x^4-2a^2x^2, a>0$ (quăng hệ số tự do), khi đó " tam giác cực trị" ABC có tọa độ $A\left(0;0\right), B\left(-a;-a^2\right), C\left(a;-a^2\right)$, cạnh đáy BC và đường cao AH tính theo công thức $BC=2x_c=2a, AH=\left|y_A-y_C\right|=a^4$

Ví dụ 1: Tìm m để đồ thị hàm số $y = x^4 - 4(m-1)x^2 + m^4 + m + 2$ có tam giác cực trị là tam giác đều.

Giải: Quy đổi hàm số trên về hàm số $y = x^4 - 2a^2x^2$, a > 0, với $4(m-1) = 2a^2 \Rightarrow m = 1 + \frac{a^2}{2}$

Tam giác cực trị đều khi và chỉ khi : $AH=\frac{\sqrt{3}}{2}BC \Leftrightarrow a^4=\sqrt{3}a \Leftrightarrow a^2=\sqrt[3]{3}$. Vậy đáp số bài toán là: $m=1+\frac{\sqrt[3]{3}}{2}$.

<u>Ví dụ 2:</u> Tìm m để đồ thị hàm số $y = x^4 - 2mx + m + 3$ có " tam giác cực trị" là tam giác vuông ? Giải: Quy đổi hàm số trên về dạng $y = x^4 - 2a^2x^2$, a > 0 với $m = a^2$

Tam giác cực trị vuông khi và chỉ khi $AH = \frac{BC}{2} \Leftrightarrow a^4 = a \Leftrightarrow a = 1$. Vậy đáp số : m=1.

Ví dụ 3: Tìm m để tam giác cực trị của đồ thị hàm số $y = x^4 - 2mx^2 + m^4 + m + 10$ có bán kính đường tròn ngoại tiếp bằng 1.

Giải: Quy đổi hàm số đã cho về dạng $y=x^4-2a^2x^2, a>0$, với $m=a^2$. Tam giác ABC có A(0;0)

suy ra tâm I(0;-1),
$$C(a;-a^4)$$
. Ta có IC=1 nên $a^2+\left(1-a^4\right)^2=1 \Leftrightarrow \begin{bmatrix} a^2=1 \\ a^2=\frac{-1+\sqrt{5}}{2} \end{bmatrix}$. Vậy đáp số là

$$m = 1$$

$$m = \frac{-1 + \sqrt{5}}{2}$$

Ví dụ 4: Tìm m để tam giác cực trị của đồ thị hàm số $y = x^4 + 2mx^2 + m^2 + m$ có một góc bằng 120^0 .

Giải: Quy đổi hs đã cho về dạng $y=x^4-2a^2x^2$ với $m=-a^2$. Do tam giác ABC có A=120°, nên góc $B=30^{\circ} \Rightarrow \tan B = \frac{2AH}{BC} \Rightarrow \frac{\sqrt{3}}{3} = \frac{a^4}{a} = a^3 \Rightarrow a^2 = \frac{1}{\sqrt[3]{3}}$. Vậy đáp số: $m=-\frac{1}{\sqrt[3]{3}}$.