Multiplexers, Demultiplexers, Decoders, and Encoders

Michael Brodskiy

Professor: S. Shazli

February 13, 2023

- A demultiplexer has:
 - N control inputs
 - 1 data input
 - -2^N outputs
- A demultiplexer routes (or connects) the data input to the selected output
 - The value of the control inputs determines the output that is selected
- A demultiplexer performs the opposite function of a multiplexer
- Using an *n*-input multiplexer
 - Use an n-input multiplexer to realize a logic circuit for a function with n minterms
 - * $n=2^m$, where m=# of variables in the function
 - Each minterm of the function can be mapped to an input of the multiplexer
 - For each row in the truth table, for the function, where the output is 1, set the corresponding input of the multiplexer to 1
 - * That is, for each minterm in the minterm expansion of the function, set the corresponding input of the multiplexer to 1
 - Set the remaining inputs of the multiplexer to 0
- Using an $(\frac{n}{2})$ -input multiplexer
 - $-n=2^{m}$, where m=1 the number of variables in the function
- Group the rows of the truth table, for the function, into $\frac{n}{2}$ pairs of rows
 - Each pair of rows represents a product term of (m-1) variables
 - Each pair of rows can be mapped to a multiplexer input
- Determine the logical function of each pair of rows in terms of the m^{th} variable
 - If the m^{th} variable, for example, is x, then the possible values are x, x', 0, and 1
- Decoders
 - A decoder has
 - * N inputs
 - * 2^N outputs
 - A decoder selects one of 2^N outputs by decoding the binary value on the N inputs

- The decoder generates all of the minterms of the N input variables
 - * Exactly one output will be active for each combination of the inputs

• Encoders

- An encoder has:
 - * 2^N inputs
 - * N outputs
- An encoder outputs the binary value of the selected (or active) input
- An encoder performs the inverse operation of a decoder