Divná geometrie

1 Projektivní geometrie

1.1 Axiomy

- každé 2 body zadávají právě 1 přímku
- každé 2 přímky se protínají
- existují 3 body neležíí na jedné přímce

Z tohoto plyne:

- každý bod má stejně přímek
- každá přímka má stejně bodů
- je stejně přímek jako bodů $n^2 + n + 1$ (0)

2 Afinní rovina

2.1 Axiomy

stejné jako Projektivní geometrie, ale ne každé 2 přímky se musí potkat - existují "rovnoběžky" (právě jedna)

Takže:

- $\bullet\,$ každá přímka má stejný počet bodů n
- $\bullet\,$ každým bodem prochází stejně přímek n+1
- celkem n^2 bodů, $n^2 + n$ přímek

2.2 Příklady

VLOŽTE OBRÁZKY AFFINNÍCH ROVIN PRO N=1, 2, 3, 4

 \bullet vždycky můžeme přímky afinní roviny rozdělit do n kategorií rovnoběžnosti - že vždycky přímky z jedné kategorie jsou navzájem rovnoběžné (ekvivalentní relace)

3 Latinské čtverce

3.1 Motivační úkol od Eulera

 Postavte do čtverce 36 důstojníků z 6 pluků o 6 hodnostech tak, aby v každém řádku i sloupci nebyl dvakrát stejný pluk ani hodnost.

VLOŽTE OBRÁZEK AAAA

• nejde to lol

3.2 Definice

 \bullet Je to n*n čtverec, který musíme zaplnit prvky z n kategorií tak, aby v žádném řádku ani sloupci nebyly dva prvky ze stejné kategorie.

3.3 Počet možností

- Kolik je možností utvořit latinský čtverec pro dané n? Je jich $n!*(n-1)!*(n-2)!*\dots*1!$
- můžeme to spočítat pomocí perfektních párování bipartitních grafů

AAAAAA VYSVĚTLI TO MAGORE A OBRÁZEK NEJLÉPE

3.4 Vraťme se

- $\bullet\,$ Euleroův úkol můžeme vyřešit tak, že zkombinujeme 2 latinské čtverce
- což má nějakou souvislost s afinní rovinou