Lecture 3: Informed Search

CSSE 5600/6600: Artificial Intelligence

Instructor: Bo Liu

[Based on slides from Andrew Moore http://www.cs.cmu.edu/~awm/tutorials]

Main messages

A*. Always be optimistic.

Uninformed vs. informed search

- Uninformed search (BFS, uniform-cost, DFS, ID etc.)
 - Knows the actual path cost g(s) from start to a node s in the fringe, but that's it.

Informed search

- also has a heuristic h(s) of the cost from s to goal. ('h'= heuristic, non-negative)
- Can be much faster than uninformed search.

Recall: Uniform-cost search

- Uniform-cost search: uninformed search when edge costs are not the same.
- Complete (will find a goal). Optimal (will find the least-cost goal).
- Always expand the node with the least g(s)
 - Use a priority queue:
 - Push in states with their first-half-cost g(s)
 - Pop out the state with the least g(s) first.
- Now we have an estimate of the second-half-cost h(s), how to use it?

First attempt: Best-first greedy search

- Idea 1: use h(s) instead of g(s)
- Always expand the node with the least h(s)
 - Use a priority queue:
 - Push in states with their second-half-cost h(s)
 - Pop out the state with the least h(s) first.
- Known as "best first greedy" search
- How's this idea?

Best-first greedy search looking stupid

- It will follow the path $A \rightarrow C \rightarrow G$ (why?)
- Obviously not optimal

Second attempt: A search

- Idea 2: use g(s)+h(s)
- Always expand the node with the least g(s)+h(s)
 - Use a priority queue:
 - Push in states with their first-half-cost g(s)+h(s)
 - Pop out the state with the least q(s)+h(s) first.
- Known as "A" search
- How's this idea?

Works for this example

A search still not quite right

A search is not optimal.

Third attempt: A* search

- Same as A search, but the heuristic nonnegative function h() has to satisfy $h(s) \le h^*(s)$, where $h^*(s)$ is the true cost from node s to the goal.
- Such heuristic function h() is called admissible.
 - An admissible heuristic never over-estimates

It is always optimistic

• A search with admissible h() is called A^* search.

8-puzzle example

Example State	1		5
	2	6	3
	7	4	8

- Which of the following are admissible heuristics?
 - h(n)=number of tiles in wrong position
 - -h(n)=0
 - •h(n)=1
 - •h(n)=sum of Manhattan distance between each tile and its goal location

8-puzzle example

- Which of the following are admissible heuristics?
 - h(n)=number of tiles in wrong position YES
 - •h(n)=0 YES, uninformed uniform cost search
 - •h(n)=1 NO, goal state
 - •h(n)=sum of Manhattan distance between each tile and its goal location YES

 In general, which of the following are admissible heuristics? h*(n) is the true optimal cost from n to goal.

$$h(n)=max(2,h^*(n))$$

$$\bullet h(n) = min(2, h^*(n))$$

$$h(n)=h(n)-2$$

 In general, which of the following are admissible heuristics? h*(n) is the true optimal cost from n to goal.

•h(n)=
$$\max(2,h*(n))$$
 NO

•h(n)=
$$sqrt(h*(n))$$
 NO if $h*(n)<1$

Heuristics for Admissible heuristics

How to construct heuristic functions?

Example State	1		5
	2	6	3
	7	4	8

- Often by relaxing the constraints
 - h(n)=number of tiles in wrong position
 Allow tiles to fly to their destination in one step
 - •h(n)=sum of Manhattan distance between each tile and its goal location

Allow tiles to move on top of other tiles

"my heuristic is better than yours"

- A heuristic function h2 dominates h1 if for all s h1(s) ≤ h2(s) ≤ h*(s)
- We prefer heuristic functions as close to h* as possible, but not over h*.

But

- Good heuristic function might need complex computation
- Time may be better spent, if we use a faster, simpler heuristic function and expand more nodes

Q1: When should A* stop?

• Idea: as soon as it generates the goal state?

- h() is admissible
- The goal G will be generated as path $A \rightarrow B \rightarrow G$, with cost 1000.

Q1: The correct A* stop rule

 A* should terminate only when a goal is popped from the priority queue

- If you have exceedingly good memory, you'll remember this is the same rule for uniform cost search on cyclic graphs.
- Indeed A* with h()≡0 is exactly uniform cost search!

Q2: A* revisiting expanded states

 One more complication: A* can revisit an expanded state, and discover a shorter path

Can you find the state in question?

Q2: A* revisiting expanded states

 One more complication: A* can revisit an expanded state, and discover a shorter path

Can you find the state in question?

Q3: What if A* revisits a state in the PQ?

- We've seen this before, with uniform cost search
- 'promote' D in the queue with the smaller cost

The A* algorithm

- 1. Put the start node S on the priority queue, called OPEN
- 2. If OPEN is empty, exit with failure
- 3. Remove from OPEN and place on CLOSED a node n for which f(n) is minimum
- 4. If n is a goal node, exit (trace back pointers from n to S)
- 5. Expand n, generating all its successors and attach to them pointers back to n. For each successor n' of n
 - 1. If n' is not already on OPEN or CLOSED estimate h(n'),g(n')=g(n)+c(n,n'), f(n')=g(n')+h(n'), and place it on OPEN.
 - 2. If n' is already on OPEN or CLOSED, then check if g(n') is lower for the new version of n'. If so, then:
 - 1. Redirect pointers backward from n' along path yielding lower g(n').
 - 2. Put n' on OPEN.
 - 3. If g(n') is not lower for the new version, do nothing.
- 6. Goto 2.

A*: the dark side

- A* can use lots of memory.
 O(number of states)
- For large problems A* will run out of memory
- We'll look at two alternatives:
 - IDA*
 - Beam search

IDA*: iterative deepening A*

- Memory bounded search. Assume integer costs
 - Do path checking DFS, do not expand any node with f(n)>0. Stop if we find a goal.
 - Do path checking DFS, do not expand any node with f(n)>1. Stop if we find a goal.
 - Do path checking DFS, do not expand any node with f(n)>2. Stop if we find a goal.
 - Do path checking DFS, do not expand any node with f(n)>3. Stop if we find a goal.
 - ... repeat this, increase threshold by 1 each time until we find a goal.
- This is complete, optimal, but more costly than A* in general.

Beam search

- Very general technique, not just for A*
- The priority queue has a fixed size k. Only the top k nodes are kept. Others are discarded.
- Neither complete nor optimal, nor can maintain an 'expanded' node list, but memory efficient.
- Variation: The priority queue only keeps nodes that are at most ϵ worse than the best node in the queue. ϵ is the beam width.
- Beam search used successfully in speech recognition.

Example

(All edges are directed, pointing downwards)

Example

OPEN	CLOSED
S(0+8)	-
A(1+8) B(5+4) C(8+3)	S(0+8)
B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0)	S(0+8) A(1+8)
C(8+3) D(4+inf) E(8+inf) G(10+0) G(9+0)	S(0+8) A(1+8) B(5+4)
C(8+3) D(4+inf) E(8+inf) G(10+0)	S(0+8) A(1+8) B(5+4) G(9+0)

Backtrack: $G \Rightarrow B \Rightarrow S$.

Summary on h(s):

	Optimal?	Speed	Remarks
h()=0	Υ	 The smaller h(), the slower the algorithm, the more nodes to search 	A* reduces to Uniform-cost search
0<=h() <h*()< td=""><td>Υ</td><td></td></h*()<>	Υ		
h()==h*()	Y		We are golden
h()>h*()	N	Scaron	
g()=0	N		A* reduces to BFS (Best-First Search)

Take-home:

- Know why best-first greedy search is bad.
- Thoroughly understand A*.
- Trace simple examples of A* execution.
- Understand admissible heuristics.
- Know the relation between A*, Uniform-cost search, BFS search.
- Variants of A*
- Think: Can you prove A* is optimal?

Special Notice

- HW1 is released.
- Due on 09/20.
- Have fun!