Computing i^*

• The argument shows that the central server receives i^*

Can send all $O(s^{p-1} \cdot \log^3 n)$ coordinates to all servers and ask for $x_i(j)$

• Requires a total of $O(s^p \cdot \log^3 n)$ communication

• Coordinator needs to find a small set S such that $i^* \in S$

. We show such S with $|S| \leq \text{polylog}(n)$ can be computed by computing approximations to $\mathbf{e}_i^{-1}x_i^p$ for all i by using the sampled coordinates and their values at the sampled servers

ullet Critically uses the properties that individual contribution of i^* is quite large and that ${f e}_{i^*}^{-1}x_{i^*}^p$ is significant fraction of $\sum_{i} \mathbf{e}_{i}^{-1} x_{i}^{k}$

• Ask the servers for $x_i(j)$ for only $i \in S$ -- $O(s \cdot polylog(n))$ communication

Computing i^*

- The argument shows that the central server receives i^*
- Can send all $O(s^{p-1} \cdot \log^3 n)$ coordinates to all servers and ask for $x_i(j)$
 - Requires a total of $O(s^p \cdot \log^3 n)$ communication
 - Coordinator needs to find a small set S such that $i^* \in S$
 - We show such S with $|S| \le \text{polylog}(n)$ can be computed by computing approximations to $\mathbf{e}_i^{-1} x_i^p$ for all i by using the sampled coordinates and their values at the sampled servers
 - Critically uses the properties that individual contribution of i^* is quite large and that $\mathbf{e}_{i^*}^{-1}x_{i^*}^p$ is significant fraction of $\sum_i \mathbf{e}_i^{-1}x_i^k$
 - Ask the servers for $x_i(j)$ for only $i \in S$ -- $O(s \cdot \text{polylog}(n))$ communication

Extending to general functions f