Tarea 4 Informática Teórica

Matías Peñaloza 202373037-8

2024-2

Concepto	Tiempo [min]
Revisión	60
Desarrollo	90
Informe	90

1 Enunciado

Directamente construya autómatas de pila que acepten los siguientes lenguajes, ya sea por estado final o por pila vacía. Explique sus construcciones.

1.
$$L_1 = \{a^i b^j c^k : i + j = k\}$$
 (50 puntos)

2. $L_2 = \{\omega \in \{a,b\}^* : \#_a((\omega) \neq \#_b(\omega))\}, \text{ donde } \#_a(\omega) \text{ es el número de } a \text{ en } \omega\}$

Pista: Contabilice la diferencia del número de a y b vistas, por ejemplo con A en la pila las a sobrantes y con B las b sobrantes.

(50 puntos)

3. ¿Son deterministas sus autómatas?

(20 puntos)

2 Desarrollo

2.1 PDA M_1 para L_1

Para la estructura partiremos de la idea de aceptar los caracteres en el orden $a,\,b,\,c$ y aceptar que $i,\,j$ o k podrian ser 0 en algunos casos. Resultando en el siguiente automata:

Figure 1: Automata orden a, b, c

Para la pila (con el simbolo inicial \mathbb{Z}_0) podemos insertar una X cada vez que veamos una a o una b y luego quitar las X cada vez que vemos una c, lo que nos llevara a tener \mathbb{Z}_0 para el estado final de aceptacion solamente si la cantidad de a's mas las de b's son igual a la cantidad de c's.

Por lo tanto transformamos las transiciones con a a las siguientes:

- *a*, *X*/*XX*
- $a, \mathbb{Z}_0/\mathbb{Z}_0X$

las transiciones con b a:

- b, X/XX
- $b, \mathbb{Z}_0/\mathbb{Z}_0X$

las transiciones con c a:

• $c, X/\varepsilon$

y por ultimo las transiciones con ε no deben afectar la pila:

- $\varepsilon, X/X$
- $\varepsilon, \mathbb{Z}_0/\mathbb{Z}_0$

Resultando en el siguiente automata de pila M_1 :

Figure 2: PDA M_1

2.2 PDA M_2 para L_2

Para la estructura partiremos del automata que acepta $L(a^*b^*)$ con una transicion ε :

Figure 3: Automata a^*b^*

Para la pila utilizaremos la pista y agregaremos A's para las a's sobrantes y B's para las b's sobrantes, ademas deberemos de quitar una A si encontramos una b (que compensa a la a sobrante) y viceversa. Asi entonces transformamos las transiciones con a a las siguientes:

- $a, \mathbb{Z}_0/\mathbb{Z}_0 A$
- \bullet a, A/AA
- $a, B/\varepsilon$

las transiciones con b a:

- $b, \mathbb{Z}_0/\mathbb{Z}_0B$
- b, B/BB
- $b, A/\varepsilon$

y las transiciones con ε tendran que llevarnos al estado de aceptacion unicamente si existe una A o una B (a o b sobrante) al tope de la pila, de esta manera no se aceptaran cantidades iguales de a's y b's:

- $\varepsilon, A/A$
- $\varepsilon, B/B$

Finalmente nuestro PDA M_2 resultante:

Figure 4: PDA M_2

2.3 ¿PDA's M_1 y M_2 deterministas?

Para saber si los PDA's son deterministas basta con fijarse en sus estructuras con las cuales los armamos. Para el PDA M_1 podemos ver que el automata con el cual lo construimos (ver Figura 2.1) es un NFA ya que el automata tiene que decidir entre leer un caracter o leer ε , esto mismo se aplica para la estructura con la cual armamos al PDA M_2 (ver Figura 2.2). Por lo tanto ninguno de nuestros PDA's son deterministas.