	CURSO DE SISTEMAS DE I	NFORMAÇÃO – TCC APLICADO
	001000000000000000000000000000000000000	TOTAL
() PRÉ-PROJETO (x) PROJETO	ANO/SEMESTRE: 2021/1

PROJETO DE MONITORAMENTO DO OXIGÊNIO DISSOLVIDO E AUTOMAÇÃO DE AERADOR PARA PISCICULTURA UTILIZANDO INTERNET DAS COISAS - IOT

Guilherme Ricardo Konell Miguel Alexandre Wisintainer – Orientador

1 INTRODUCÃO

A piscicultura é uma atividade produtiva que já se faz presente há milhares de anos na humanidade. O cultivo de peixes evidencia cada vez mais uma importante fonte de abastecimento alimentar mundial, que consequentemente gera milhares de empregos e contribui para o desenvolvimento sustentável da atividade. Segundo a Associação Brasileira da Piscicultura (2020), a piscicultura gera uma receita de 8 bilhões de reais ao Produto Interno Bruto (PIB) brasileiro. Além disso, também se estima a necessidade de um aumento na demanda de proteínas animais de 20% até 2030, isso se dá pela estimativa de um incremento populacional na ordem de 2 bilhões de pessoas até 2050. Com isso, a piscicultura tem um grande potencial de expansão da sua produção (Associação Brasileira da Piscicultura, 2020).

Os dados da Associação Brasileira da Piscicultura (2020) demonstram que em 2020 a produção de peixes cultivados no Brasil foi de 802.930 toneladas, representando um crescimento de 5,93% em relação ao ano anterior (758.006 toneladas). O destaque do ano foi a Tilápia que teve um crescimento de 12,5% em relação ao ano anterior, atingindo a marca de 486.155 toneladas (432.149 no ano anterior). A Tilápia teve uma participação no cultivo de peixes do país de 60,6% em 2020, contra 57% em 2019.

Segundo Lopes (2012) Há quatro tipos de piscicultura: criação extensiva, criação semiextensiva, criação intensiva e criação superintensiva. A criação extensiva se trata de inserir os peixes em lagos ou represas que permanecem ali até a sua captura e normalmente não há fornecimento de ração. A criação semiextensiva também é praticada em lagos e represas, porém nesse caso há o fornecimento de alimento aos peixes. A criação intensiva, é a criação realizada em tanques e viveiros construídos estritamente para esta finalidade e recebe uma quantidade balanceada e adequada de ração de acordo com a fase do cultismo. Por fim, a criação superintensiva é um sistema de criação aplicado nos cultivos em tanques-rede ou gaiolas e exigem uma grande disposição de oxigênio continuadamente (LOPES, 2012).

Leira (2016) destaca que A qualidade da água é de suma importância para o sucesso da produção, na piscicultura é a principal matéria prima do processo. Condições inadequadas de qualidade da água resultam em prejuízo ao crescimento, à reprodução, saúde, sobrevivência e

Formatado: Realce

à qualidade dos peixes, comprometendo o sucesso dos sistemas de aquicultura (LEIRA, 2016). No processo da criação dos peixes, existem muitas variáveis que são necessárias serem monitoradas para se certificar da saúde deles. O elemento mais importante que deve ser monitorado é o oxigênio dissolvido, necessário para garantir a respiração dos peixes (RAUH, 2021).

Diante deste cenário, este trabalho propõe uma solução de monitoramento do oxigênio dissolvido e automação do aerador utilizado na criação intensiva, realizada em tanques e viveiros. Com isso, pretende-se auxiliar o piscicultor na tomada de decisão e possibilitar a automação e funcionamento do aerador.

1.1 OBJETIVOS

O objetivo é disponibilizar um sistema para monitoramento do oxigênio dissolvido na água e automatizar o funcionamento do aerador a fim de regular o oxigênio quando necessário.

Os objetivos específicos são: (requisitos)

- a) utilizar de um módulo sensorial para monitorar o oxigênio dissolvido da água;
- b) utilizar de um microprocessador Arduino para receber a informação do módulo sensorial e enviar à um servidor web;
- c) disponibilizar um servidor web para receber e disponibilizar as informações do Arduino;
- d) disponibilizar uma interface web para monitoramento do oxigênio dissolvido e configuração do funcionamento do aerador;
- e) controlar automaticamente o funcionamento do aerador conforme os parâmetros configurados na interface web.

2 DESCRIÇÃO DO SISTEMA ATUAL

Após a tentativa de ganhar a vida em vários ramos da agricultura, a família Wachholz conheceu a rizicultura (plantio de arroz) em 1980 e com o passar dos anos, alguns peixes foram inseridos nas quadras de plantio. Destes peixes, iniciou-se a reprodução de alevinos (filhotes de peixes) de forma não orgânica. No ano de 1996 passaram a investir na criação de alevinos, visto a alta demanda e procura por seus alevinos que até então eram simplesmente doados. Assim, abandonaram a rizicultura e finalmente se inseriram no ramo da piscicultura (WACHHOLZ, 2019).

De acordo com Rauh (2021), sócio de Wachholz (2019), a agricultura familiar tem foco total na produção de alevinos, em especial a tilápia que representa uma proporção de 95% da

sua produção. Por se tratar de uma atividade familiar e o ramo focado nos alevinos, a inserção da tecnologia no processo da produção é muito baixa, o que gera um esforço significativo para o cuidado e monitoramento da qualidade da água. Em seus tanques, as medições para o controle são realizadas de forma pontual utilizando-se de um oxímetro. O monitoramento ocorre semanalmente e são todas controladas e registradas em planilhas no papel.

Rauh (2021) também salienta que o oxigênio dissolvido é de suma importância para se realizar o controle, pois é o que mantém a saúde dos peixes em conformidade. Além de prevenir a predisposição dos peixes contraírem doenças e parasitas em níveis baixos de concentração de oxigênio, garante que se alimentem de forma adequada, mantendo a qualidade e o crescimento em ritmo constante.

Com o sistema proposto pretende-se solucionar o esforço de se realizar o controle e monitoramento de forma manual, proporcionando facilidades no controle da qualidade da água e o funcionamento de forma automática do aerador para garantir o nível controlado do oxigênio dissolvido.

3 TRABALHOS CORRELATOS

Neste capítulo serão apresentadas três soluções correlatas que têm características semelhantes ao trabalho proposto. Todas as soluções são voltadas ao monitoramento e análise da qualidade da água e de outros gerenciamentos envolvidos na piscicultura. A seção 3.1 apresenta o AK88, que foi desenvolvido para aferição da qualidade da água de forma pontual, rápida e prática (AKSO, 2021). A seção 3.2 detalha a solução de monitoramento, coleta e gerenciamento de crises desenvolvida pela Netilion (NETILION, 2021). Por fim, a seção 3.3 traz o IoFish, uma aplicação em nuvem para monitoramento da piscicultura (IOFISH, 2021).

3.1 MEDIDOR MULTIPARÂMETRO AK88

O medidor multiparâmetro AK88 tem como objetivo principal, a fácil medição dos cinco principais elementos da água: pH, condutividade, salinidade, oxigênio dissolvido e temperatura. Para isso, o medidor provê de uma sonda de medição de condutividade e salinidade, uma sonda de medição de pH e uma sonda de medição de oxigênio dissolvido. É a partir destas sondas de medições, que o aparelho capta as informações que são mostradas simultaneamente em seu visor Liquid Crystal Display (LCD) (AKSO, 2021).

Na Figura 1 Figura 1, é apresentada a visualização do dispositivo AK88.

Figura 1 - Visor LCD do medidor AK88

Fonte: Akso (2021).

No dispositivo, é possível visualizar as informações transmitidas pelas sondas. No visor, é possível verificar em tempo real os dados de pH, temperatura, oxigênio dissolvido e a condutividade, possibilitando que o usuário tenha fácil acesso à informação desejada conforme necessário. Seu uso é indicado especialmente para o campo e laboratórios, mais especificamente para a realização de análises ambientais que necessitam de um monitoramento pontual e momentâneo da qualidade da água (AKSO, 2021).

O dispositivo conta com uma memória para até 99 registros de cada um dos dados coletados (pH, temperatura, oxigênio dissolvido e condutividade). Compensação automática de temperatura para todas as medições Compensação manual de altitude e salinidade para a medição do oxigênio dissolvido. Desligamento automático após 1h de inatividade (AKSO, 2021).

3.2 NETILION SMART SYSTEM FOR AQUACULTURE

Netilion Smart System For Aquaculture é uma solução para monitoramento contínuo da qualidade da água sem a necessidade de um técnico no local para a realização da coleta de dados. Os parâmetros que a solução monitora são: Oxigênio dissolvido, temperatura, amônio e pH/nitrato (NETILION, 2021).

A Netilion (2021) também oferece um aplicativo para verificar os dados coletados pelos sensores, que pode ser acessado por qualquer dispositivo móvel. Desta forma, é possível visualizar os dados de qualquer lugar para posterior avaliação e, consequentemente, uma tomada de decisão quando necessário. Para maior confiabilidade, o aplicativo permite configurar notificações de alarmes em caso de emergência, para que o usuário seja notificado sempre que houver violação dos valores configurados.

Com esta solução, o monitoramento e análise da água tende a ser muito mais preciso oferecendo confiabilidade na informação, além de uma visão geral da condição exata da água. Com a informação armazenada, é possível criar relatórios de análise e manter mais facilmente a conformidade com órgãos fiscalizadores que poderão ter acesso à esta informação (NETILION, 2021).

3.3 IOFISH

A IoFish oferece uma solução para agilizar processos e ter maior eficiência para monitoramento inteligente da produção. Este monitoramento é realizado com o apoio da tecnologia em nuvem, que provê maior segurança sobre os dados armazenados (IOFISH, 2021).

A empresa oferece duas soluções, a pontual e a automática. A solução pontual é a realização de medições com uma sonda portátil que transfere os dados da sonda para o dispositivo móvel por bluetooth. Ao conectar o dispositivo móvel à internet, os dados armazenados das medições, são sincronizados com a nuvem do IoFish. Já a solução automática, é a solução que através de uma boia, coleta e envia automaticamente as medições da sonda para a nuvem. Esta comunicação acontece através da telemetria Global System for Mobile Communication/General Packet Radio Service (GSM/GPRS) ou via satélite, possibilitando o monitoramento de tanques em tempo real.

Há duas sondas para a coleta de dados:

- a) sonda de Oxigênio Dissolvido: Mede o oxigênio dissolvido e a temperatura. Sensor robusto que não requer membranas, apenas manutenção e calibrações mínimas. Construção de titânio que impede a corrosão em ambientes salinos;
- b) sonda Multiparamétrica: Mede vários parâmetros customizáveis: Temperatura, Pressão Barométrica, pH, ORP, Condutividade, TDS, Salinidade, Oxigênio Dissolvido, Turbidez, TSS, Nível, Amônio Cloreto, Nitrato, Clorofila, Ficocianina, Ficoeritrina e Rodamina.

O sistema também possibilita o registro da biometria coletada dos peixes que, através dessa informação, será informado uma estimativa automática da produção atual em Kg e a recomendação do arraçoamento (quantidade de ração para fornecimento aos peixes). Além disso, há um controle populacional, onde é indicado a população inicial do tanque, o registro das baixas e eventos de despesca, que também afetam a estimativa da produção atual do tanque (IOFISH, 2021).

4 PROPOSTA

Neste capítulo será apresentado o trabalho proposto e metodologias aplicadas. Propõese o desenvolvimento de um sistema de monitoramento da água em cultivos de peixes a fim de garantir uma maior qualidade na água. A seguir, será descrito a justificativa para a implementação do sistema e os principais requisitos do sistema.

4.1 JUSTIFICATIVA

O desenvolvimento da proposta visa atender os piscicultores que desejam automatizar o processo oneroso de realizar o monitoramento da qualidade da água e controlar o funcionamento do aerador. Com esta solução, pretende-se oferecer mais segurança e confiabilidade das informações sobre os tanques monitorados e garantir o controle sobre a qualidade de água com a automação do funcionamento do aerador. O Quadro 1 apresenta um comparativo entre os trabalhos correlatos, as linhas demonstrando as características e as colunas a correlação dos trabalhos relacionados.

Quadro 1 - Comparativo dos trabalhos correlatos

Trabalhos Correlatos Características	Medidor Multiparâmetro AK88 (AKSO, 2021)	Netilion Smart System for Aquaculture (NETILION, 2021)	IoFish (IOFISH, 2021)
Medição de dados da água	pH, condutividade, oxigênio dissolvido e temperatura	Oxigênio dissolvido, temperatura, amônio e pH/nitrato	Temperatura, Pressão Barométrica, pH, ORP, Condutividade, Salinidade, Oxigênio Dissolvido, Turbidez etc.
Medição automatizada e contínua	Não possui	Possui	Possui
Medição pontual e rápida	Possui	Não possui	Possui
Modularidade	Não possui	Não possui	Possível adicionar outras sondas conforme necessidade
Conectividade	Não possui	Conectividade a nuvem	Conectividade bluetooth e a nuvem
Geração de relatórios de avaliação	Não possui	Possui	Não possui
Gestão biométrica dos peixes	Não possui	Não possui	Possui
Notificações personalizadas	Não possui	Não possui	Possui

Fonte: elaborado pelo autor.

Conforme demonstra o Quadro 1, os trabalhos correlatos trazem o dispositivo AK88 (AKSO, 2021), o sistema Netilion (NETILION, 2021) e o sistema IoFish (IOFISH, 2021). Observa-se que os trabalhos têm objetivos semelhantes, mas cada um dos trabalhos tem seus pontos fortes. O dispositivo da Akso (2021) foi desenvolvido para maior facilidade e rapidez com sua medição pontual, enquanto o sistema da Netilion (2021) e da IoFish (2021)

disponibilizam funcionalidades mais robustas, como o monitoramento contínuo e com conectividades que facilitam o monitoramento. A IoFish (2021) tem uma excelente característica de modularidade de seus sensores, que oferece a possibilidade de adicionar sondas de monitoramento conforme necessário. Também é possível verificar que o IoFish (2021) é a solução mais completa em comparação a solução disponibilizada pela Akso (2021) e Netilion (2021). Apesar disso, todas as soluções atendem o quesito de monitoramento da qualidade da água, seja de forma pontual ou automatizada. Esta característica é essencial na atividade do piscicultor, que visa cada vez mais manter o seu padrão de qualidade na sua produção.

Este projeto se justifica no quesito automação, que de forma parametrizada, pode controlar o funcionamento do aerador a fim de economizar tempo e energia. Com isso, o piscicultor terá muito mais tranquilidade para exercer outras atividades, sem se preocupar com o ecossistema que garante a saúde dos peixes.

O desenvolvimento do projeto se dará por duas partes:

- a) a primeira parte sendo o módulo coletor que irá realizar a coleta dos dados da qualidade da água;
- b) na segunda parte, será implementada a plataforma de monitoramento e configuração da parametrização de funcionamento do aerador.

Para o módulo coletor, será necessário um módulo sensorial que irá coletar as informações da água, um microcontrolador Arduino, onde será inserida a programação necessária para captar e armazenar a informação. O microcontrolador também será responsável por controlar o funcionamento do aerador. A plataforma, se dará por um painel de gestão e monitoramento dos dados coletados pelo módulo coletor. Nela será possível visualizar os dados e realizar a parametrização do funcionamento do aerador.

A <u>Figura 2 - Componentes de coleta e armazenamento de dados da água</u>Figura 2 apresenta um esboço de arquitetura do sistema proposto, que é composta pelo módulo coletor à esquerda e a plataforma de monitoramento à direita:

Actains Servider

Servider

Banca do dades

Figura 2 - Componentes de coleta e armazenamento de dados da água

Fonte: elaborado pelo autor.

O desenvolvimento deste projeto tem potencial para expandir a automação e a informatização na atividade da piscicultura, oferecendo cada vez mais novas possibilidades de funções a serem desempenhadas pela tecnologia. Além disso, o sistema possivelmente pode permitir maior controle e garantia da qualidade de produção do piscicultor.

4.2 REQUISITOS PRINCIPAIS DO PROBLEMA A SER TRABALHADO

Nesta seção serão abordados os principais requisitos funcionais bem como os principais requisitos não funcionais e estarão separadas entre o módulo coletor e a plataforma de monitoramento.

O módulo coletor desta proposta deverá ter os seguintes requisitos funcionais (RF) e requisitos não funcionais (RNF):

- a) permitir o Arduino receber a configuração de periodicidade de coleta dos dados do nível de oxigênio dissolvido (RF);
- b) permitir o Arduino coletar continuadamente o nível de oxigênio dissolvido a partir de um sensor com base na periodicidade configurada (RF);
- c) permitir o Arduino enviar os dados coletados da água para um servidor web (RF);
- d) permitir o Arduino receber a configuração de funcionamento do aerador (RF);
- e) permitir o Arduino controlar o funcionamento do aerador com base na configuração recebida (RF).
- f) o módulo coletor deverá utilizar o microcontrolador Arduino Uno (RNF);
- g) o módulo coletor deverá utilizar o Analog Dissolved Oxygen Sensor da DFRobot (RNF);
- h) o módulo coletor deverá utilizar o módulo ESP-01 para comunicação entre o Arduino e o servidor web (RNF);
- i) o software do dispositivo deverá ser desenvolvido no Arduino IDE (RNF);

 j) o dispositivo ESP-01 deve utilizar o protocolo de comunicação HTTP para enviar e receber dados do servidor web (RNF).

A plataforma de monitoramento desta proposta deverá ter os seguintes requisitos funcionais (RF) e requisitos não funcionais (RNF):

- a) permitir receber os dados da água enviados pelo módulo coletor (RF);
- b) permitir visualizar os dados coletados nas formas de log e gráfico (RF);
- c) permitir cadastrar a configuração de funcionamento do aerador (RF);
- d) permitir enviar a configuração de funcionamento do aerador ao módulo coletor (RF);
- e) permitir a parametrização da periodicidade de coleta dos dados (RF);
- f) permitir enviar a parametrização de periodicidade ao módulo coletor (RF);
- g) permitir a geração de relatórios a partir de um período da coleta de dados (RF);
- h) permitir o acesso à interface por meio de login e senha (RF);
- i) permitir o cadastro de usuários da aplicação (RF).
- j) desenvolver o servidor da aplicação em NodeJs (RNF);
- k) desenvolver a interface da aplicação em NextJs (RNF);
- 1) utilizar o banco de dados *PostgreSQL* para armazenamento dos dados (RNF).

4.3 METODOLOGIA

O trabalho será desenvolvido observando as seguintes etapas: <u>algumas etapas poderiam ser mais detalhadas.</u>

- a) levantamento bibliográfico: realizar levantamento bibliográfico sobre a gestão de qualidade da água para a piscicultura e trabalhos correlatos;
- b) levantamento de requisitos: detalhar e revisar os requisitos do módulo coletor e da plataforma de monitoramento e, caso necessário, especificar novos requisitos com base no levantamento bibliográfico realizado;
- c) especificação de negócio da plataforma de monitoramento: especificar de forma formalizada as funcionalidades de todo o sistema através da diagramação de classes e atividades no padrão *Unified Modeling Language* (UML);
- d) especificação do *hardware* do módulo coletor: especificar de forma formalizada os componentes do sistema utilizando a ferramenta *Fritzing*;
- e) implementação do módulo coletor: montagem do dispositivo de coleta de dados utilizando o microcontrolador Arduino Uno e ESP-01, juntamente com o sensor de oxigênio dissolvido DFRobot;

- f) testes de hardware: execução de testes sobre o hardware implementado;
- g) implementação do servidor da aplicação: desenvolvimento do servidor em NodeJs responsável por manter os dados da aplicação;
- h) implementação da interface web: desenvolvimento da interface em NextJS responsável pela comunicação com o usuário;
- i) testes e validações: execução de testes em campo para garantir o correto funcionamento do sistema;
- j) testes de usabilidade: execução de testes com usuários do ramo da piscicultura para verificar a usabilidade do sistema.

As etapas serão realizadas nos períodos relacionados no Quadro 2.

Quadro 2 - Cronograma as etapas listadas não condizem com as listadas na metodologia

			2021							
	age		ago. set.		t. out.		nov.			
etapas / quinzenas	1	2	1	2	1	2	1	2		
Levantamento bibliográfico										
Levantamento de requisitos										
Especificação de negócio										
Implementação do módulo coletor										
Implementação do servidor da aplicação										
Implementação da interface web										
Testes e validações										

Fonte: elaborado pelo autor.

5 REVISÃO BIBLIOGRÁFICA

Este capítulo tem como objetivo explorar conceitos e fundamentos mais importantes para a realização deste trabalho. A seção 5.1 contextualiza sobre a piscicultura e por fim, a seção 5.2 aborda sobre o Protocolo de Comunicação HTTPS.

5.1 PISCICULTURA

A aquicultura é o processo de produção em cativeiro, em condições controladas, de organismos que vivem em ambiente predominantemente aquático. Na piscicultura, tem-se o objetivo, além de gerar renda, oferecer à população alimento de qualidade. O peixe é um alimento facilmente digerível, rico em proteína e de baixo valor calórico, e ainda apresenta excelente fonte de vitaminas e minerais (LOPES, 2012).

No quesito tecnologia na piscicultura, Ituassú (2019) afirma que em Mato Grosso o nível tecnológico dos pequenos produtores de peixes é baixo. Isso ocorre por desconhecerem que estas informações existem, e por não compreender a linguagem utilizada em manuais e outras publicações técnicas sobre o assunto.

O baixo uso da tecnologia na produção de peixes apresenta relação direta com a baixa quantidade e qualidade do produto (SOUSA, 2013). Sousa et al. (2017) afirmam que, além da falta de acesso à informação, há uma deficiência na transferência da tecnologia no momento da intervenção de um técnico.

Em viveiros e açudes, a água tem suas características fortemente modificadas pelas características químicas do solo. Por exemplo, em solos ácidos, a água tende a ficar mais ácida, assim como em solo que é rico em calcário, a água também é naturalmente enriquecida deste material. Além disso, estes ambientes normalmente contêm outros organismos vivos além dos peixes criados, como os plânctons (organismos microscópios), insetos e bactérias. Com o excesso de alguns destes tipos de microrganismos, a criação de peixes pode ser prejudicada no seu crescimento e saúde dos peixes, portanto, é importante que o viveiro seja devidamente controlado (SENAR, 2019).

Para a respiração dos peixes, é necessário que a água seja rica em oxigênio e pobre em gás carbônico. O ar é a principal fonte de oxigênio para a água, mas a velocidade com que a água recebe o oxigênio, é muito menor que a velocidade de consumo dos peixes. Dentro do viveiro, o organismo que mais consome oxigênio é o fitoplâncton (cerca de 60%). As bactérias e demais microrganismos consomem cerca de 20 a 30% e por fim, os peixes consomem na faixa de 5 a 10% (SENAR, 2019).

É ideal que a concentração de oxigênio dissolvido na água esteja sempre acima de 4 mg, visando um ótimo crescimento e sobrevivência. A concentração de 3 mg é considerável tolerável, e deve receber uma atenção especial para buscar uma correção. Essa condição pode ser corrigida melhorando o manejo de alimentação e/ou pelo uso de aeração artificial. É necessário que a aeração se inicie toda vez que o oxigênio estiver abaixo de 3 ml/L (SENAR, 2019).

5.2 PROTOCOLO DE COMUNICAÇÃO HTTP (NÃO É NECESSÁRIO FUNDAMENTAR HTTP – PODERIA SER ALGO ENVOLVENDO MONITORAMENTO / IOT)

Segundo Kurose (2007), o protocolo de comunicação Hyper Text Transfer Protocol (HTTP) é executado em dois programas: um cliente e outro servidor. Os dois programas se conversam entre si, por meio da troca de mensagens HTTP. Este protocolo define a estrutura dessa mensagem e o modo como o cliente e servidos as trocam.

O HTTP define como os clientes realizam a requisição aos servidores e como estes transferem a mensagem aos clientes. O HTTP utiliza o Transmission Control Protocol (TCP)

como seu protocolo de transporte subjacente. Desta forma, o cliente inicia uma conexão TCP com o servidor, uma vez estabelecida, os processos entre o cliente e o servidor acessam o TCP para envio e recebimento das mensagens. O TCP oferece ao HTTP um serviço confiável de transferência de dados, o que implica que toda mensagem de requisição HTTP emitida, tanto pelo cliente como pelo servidor, chegará intacta ao cliente/servidor. Sendo assim, o protocolo HTTP não precisa se preocupar com dados perdidos, uma vez que essa é uma tarefa responsável do TCP (KUROSE, 2007).

A mensagem de requisição HTTP consiste em: na primeira linha definimos o método da requisição, a URL e a versão do HTTP (Exemplo: GET /exemplo/requisição HTTP/1.1). O campo método pode assumir vários valores diferentes: GET, POST, HEAD, PUT e DELETE. No exemplo acima, o cliente está requisitando um objeto na URL /exemplo/requisicao e definindo a versão 1.1 do HTTP. Em seguida temos a linha que define o Host (Exemplo: Host: www.exemplo.com) que especifica o hospedeiro no qual deseja requisitar a informação. Na terceira linha, informamos a informação sobre a conexão (Exemplo: Connection: close), onde normalmente é utilizado a opção "close" para especificar que a conexão seja fechada após a resposta do servidor. Também temos a quarta linha que especificamos o cliente (Exemplo: User-Agent: Mozilla/5.0). Por fim, temos a última linha que fornece a informação da linguagem em que o cliente prefere receber a resposta (Exemplo: Accept-language: pt-BR) (KUROSE, 2007). Com isso temos formado a requisição HTTP no Quadro 3:

Quadro 3 - Requisição HTTP

GET /exemplo/requisicao HTTP/1.1 Host: www.exemplo.com Connection: close User Agent: Mozilla/5.0

User-Agent: Mozilla/5.0 Accept-language: pt-BR

Fonte: Kurose (2007).

A mensagem de resposta HTTP consiste em: na primeira linha é fornecido a informação sobre o estado da requisição (Exemplo: HTTP/1.1 200 OK), que é fornecido a versão do protocolo, código de estado e uma mensagem de estado correspondente. No exemplo, mostra que o servidor está utilizando o HTTP/1.1 e que está tudo OK. A próxima linha informa o tipo de conexão (Exemplo: Connection: close), neste exemplo, informando que a conexão será fechada após o envio da mensagem. Na terceira linha temos a informação sobre a data e hora em que a resposta HTTP foi criada e enviada pelo servidor (Exemplo: Date: Sat, 29 Mai 2021 12:00:00 GMT). Após temos a linha informando o servidor que realizou a resposta (Exemplo: Server: Apache/2.2.3 (CentOS)). Na quinta linha apresenta a última modificação do objeto que foi criado ou da sua última modificação (Exemplo: Last-Modified: Sat, 29 Mai 2021 12:00:00

GMT). Na sexta linha indica o número de bytes do objeto que está sendo enviado (Exemplo: *Content-Length: 6821*) e a última linha mostra o formato do objeto (Exemplo: *Content-Type: text/html*) (KUROSE, 2007). Com isso temos formado a resposta HTTP no Quadro 4:

Quadro 4 - Resposta HTTP

HTTP/1.1 200 OK

Connection: close

Date: Sat, 29 Mai 2021 12:00:00 GMT Server: Apache/2.2.3 (CentOS)

Last-Modified: Sat, 29 Mai 2021 12:00:00 GMT

Content-Length: 6821 Content-Type: text/html

Fonte: Kurose (2007).

REFERÊNCIAS

AKSO. **Produtos eletrônicos**. 2021. Disponível em: https://www.akso.com.br/produto/ph-do-solo/medidor_multiparametro_ph_cond_od_temp_ak88-238. Acesso em: 18 abr. 2021.

BANZI, Massimo; SHILOH, Michael. **Primeiros passos com o Arduino**. São Paulo: Novatec, 2011.

IOFISH. **Monitoramento Inteligente para Piscicultura**. 2021. Disponível em: https://io.fish/. Acesso em: 17 abr. 2021.

ITUASSU, D. R. **Transferência de tecnologia em piscicultura em Mato Grosso**. Embrapa, 2019.

KATO, Hellen Christina de Almeida et al. **Transferência de tecnologia em piscicultura de água doce**. Revista Em Extensão, v. 16, n. 2, p. 129-146, 2017.

KUROSE, James F. et al. **Redes de Computadores e a Internet: uma abordagem top-down**. Pearson Addison Wesley, 2007.

LEIRA, Matheus Hernandes et al. **Qualidade da água e seu uso em pisciculturas**. Pubvet, v. 11, p. 1-102, 2016.

LOPES, Jackeline Cristina Ost. **Técnico em Agropecuária: piscicultura**. Floriano. Edufpi. 2012.

NETILION. **Netilion Smart System for Aquaculture**. 2021. Disponível em: https://netilion.endress.com/pt/smart-systems/aquaculture. Acesso em: 18 abr. 2021.

PEIXE BR. Associação Brasileira da Piscicultura. **Anuário Peixe BR da piscicultura**. 2020. Disponível em: https://www.peixebr.com.br/anuario-2020/. Acesso em 15 abr. 2021.

RAUH, Maurício. **Processo de monitoramento e controle da qualidade da água**. Entrevistador: Guilherme Ricardo Konell. Entrevistado: Maurício Rauh. 19 abr. 2021.

SENAR, Serviço Nacional de Aprendizagem Rural. Piscicultura: manejo da água. 2019.

SOUSA, D. N. **Diagnóstico preliminar da extensão pesqueira no estado do Tocantins**. Embrapa. 2013.

SOUSA, D. N. et al. Situação dos serviços de Assistência Técnica e Extensão Pesqueira e Aquícola (ATEPA) no Estado do Tocantins. Revista Interface. 2017.

WACHHOLZ, Dagvin. **Pioneirismo e capacidade de adaptação como combustíveis para a rentabilidade**. Testo Notícias. 2019. Disponível em:

http://www.testonoticias.com.br/variedades/pioneirismo-e-capacidade-de-ada ptação-como-combustíveis-para-a-rentabilidade-1.2191694. Acesso em 18 abr. 2021.

ASSINATURAS

(Atenção: todas as folhas devem estar rubricadas)

Assinatura do(a) Aluno(a):
Assinatura do(a) Orientador(a):
Assinatura do(a) Supervisor(a):
Assinatura do(a) Coorientador(a) (se houver):
Observações do orientador em relação a itens não atendidos do pré-projeto (se houver):

FORMULÁRIO DE AVALIAÇÃO – **PROFESSOR TCC I**

Ava	liad	or(a):				
		ASPECTOS AVALIADOS ¹	atende	atende	não atende	
	1.	INTRODUÇÃO				
		O tema de pesquisa está devidamente contextualizado/delimitado?				
		O problema está claramente formulado?				
	2.	OBJETIVOS				
ASPECTOS TÉCNICOS		O objetivo principal está claramente definido e é passível de ser alcançado?				
		Os objetivos específicos são coerentes com o objetivo principal?				
	3.	DESCRIÇÃO DO SISTEMA ATUAL				
		O sistema atual está claramente descrito e embasa de modo consistente o sistema proposto?				
ros té	4.	JUSTIFICATIVA O sistema proposto está descrito de forma adequada e abrange soluções para os problemas do sistema atual?				
ËĊ		São apresentados argumentos científicos, técnicos ou metodológicos que justificam a proposta?				
SPE		São apresentadas as contribuições teóricas, práticas ou sociais que justificam a proposta?				
A	5.					
		Foram relacionadas todas as etapas necessárias para o desenvolvimento do TCC?				
		Os métodos, recursos e o cronograma estão devidamente apresentados e são compatíveis com a metodologia proposta?				
	6.	REVISÃO BIBLIOGRÁFICA (atenção para a diferença de conteúdo entre projeto e pré-projeto) Os assuntos apresentados são suficientes e têm relação com o tema do TCC?				
cos	7.	LINGUAGEM USADA (redação) O texto completo é coerente e redigido corretamente em língua portuguesa, usando linguagem formal/científica?				
Ę.		A exposição do assunto é ordenada (as ideias bem encadeadas e linguagem clara)?				
ASPECTOS METODOLÓGICOS	8.	ORGANIZAÇÃO E APRESENTAÇÃO GRÁFICA DO TEXTO				
		A organização e apresentação dos capítulos, seções, subseções e parágrafos estão de acordo com o				
		modelo estabelecido?				
	9.	ILUSTRAÇÕES (figuras, quadros, tabelas)				
		As ilustrações são legíveis e obedecem às normas da ABNT?				
	10.	REFERÊNCIAS E CITAÇÕES				
Œ		As referências obedecem às normas da ABNT?				
\SI		As citações obedecem às normas da ABNT?				
7		Todos os documentos citados foram referenciados e vice-versa, isto \acute{e} , as citações e referências são consistentes?				

(PREENCHER APENAS NO PROJETO):

lo se:	
r resposta NÃO ATENDE;	
ns dos ASPECTOS TÉCNICOS tiverem resp	oosta ATENDE PARCIALMENTE; ou
ns dos ASPECTOS METODOLÓGICOS tiv	verem resposta ATENDE PARCIALMENTE.
() APROVADO	() REPROVADO
	Data:
	ns dos ASPECTOS METODOLÓGICOS ti

 $^{^1}$ Quando o avaliador marcar algum item como atende parcialmente ou não atende, deve obrigatoriamente indicar os motivos no texto, para que o aluno saiba o porquê da avaliação.

FORMULÁRIO DE AVALIAÇÃO – PROFESSOR AVALIADOR

Ava						
			ASPECTOS AVALIADOS ¹	atende	atende	não atende
		1.	INTRODUÇÃO O tema de pesquisa está devidamente contextualizado/delimitado?	X		
			O problema está claramente formulado?	X		T
		2.	OBJETIVOS	X		T
			O objetivo principal está claramente definido e é passível de ser alcançado?			
			Os objetivos específicos são coerentes com o objetivo principal?		X	-
		3. 4.	DESCRIÇÃO DO SISTEMA ATUAL O sistema atual está claramente descrito e embasa de modo consistente o sistema proposto?	X		
		4. 5.	TRABALHOS CORRELATOS	X		+
ē		٥.	São apresentados trabalhos correlatos, bem como descritas as principais funcionalidades e os pontos fortes e fraços?			
5	Š	6.	JUSTIFICATIVA	X		
SOUND STEEDING A) IEC		O sistema proposto está descrito de forma adequada e abrange soluções para os problemas do sistema atual?			
Q.L.			Foi apresentado e discutido um quadro relacionando os trabalhos correlatos e suas principais funcionalidades com a proposta apresentada?	X		
Ě	Į.		São apresentados argumentos científicos, técnicos ou metodológicos que justificam a proposta?			
2			São apresentadas as contribuições teóricas, práticas ou sociais que justificam a proposta?	X		
		7.	REQUISITOS PRINCIPAIS DO PROBLEMA A SER TRABALHADO Os requisitos funcionais e não funcionais foram claramente descritos?	X		
		8.	METODOLOGIA	X		_
		0.	Foram relacionadas todas as etapas necessárias para o desenvolvimento do TCC?			
			Os métodos, recursos e o cronograma estão devidamente apresentados e são compatíveis com a metodologia proposta?		X	
		9.	REVISÃO BIBLIOGRÁFICA (atenção para a diferença de conteúdo entre projeto e pré-projeto) Os assuntos apresentados são suficientes e têm relação com o tema do TCC?		X	
			As referências contemplam adequadamente os assuntos abordados (são indicadas obras atualizadas e as mais importantes da área)?	<u>X</u>		
SC	METODOLÓ GICOS	10.	LINGUAGEM USADA (redação)	X		
ASPECTOS			O texto completo é coerente e redigido corretamente em língua portuguesa, usando linguagem formal/científica?			
ASP	MEI		A exposição do assunto é ordenada (as ideias estão bem encadeadas e a linguagem utilizada é clara)?		X	
0.00	rainte	a da	PARECER – PROFESSOR AVALIADOR: (PREENCHER APENAS NO PROJETO) TCC ser deverá ser revisado, isto é, necessita de complementação, se:			
•	qua pelo	lque me	er um dos itens tiver resposta NÃO ATENDE; enos 5 (cinco) tiverem resposta ATENDE PARCIALMENTE.			
PAI	REC	EF	R: (\underline{X}) APROVADO $()$ REPROVADO			
Assi	inatı	ıra:	Data:			

 $^{^1}$ Quando o avaliador marcar algum item como atende parcialmente ou não atende, deve obrigatoriamente indicar os motivos no texto, para que o aluno saiba o porquê da avaliação.