Problem G Power et al.

Input: Standard Input **Output:** Standard Output

Finding the exponent of any number can be very troublesome as it grows exponentially \odot . But in this problem you will have to do a very simple task. Given two non-negative numbers \mathbf{m} and \mathbf{n} , you will have to find the last digit of $\mathbf{m}^{\mathbf{n}}$ in decimal number system.

Input

The input file contains less than 100000 lines. Each line contains two integers m and n (Less than 10^{101}). Input is terminated by a line containing two zeroes. This line should not be processed.

Output

For each set of input you must produce one line of output which contains a single digit. This digit is the last digit of \mathbf{m}^n .

Sample Input

Output for Sample Input

2 2	4
2 5	2
0 0	

Problemsetter: Shahriar Manzoor