- Find the equation of the normal to the curve $y = x + 1 + \frac{4}{x^2}$ at the point (1,6).
- The diagram shows two straight lines PQ and QR perpendicular to each other. Points Q and R lie on the y-axis and x-axis respectively. Given that the equation of the line QR is 4x + 3y - 12 = 0.

If PQ is extrapolated to intersect the x-axis at point M such that PQ = QM, find the coordinates of point P. [5]

- **3 (i)** Find the first four terms of the binomial expansion of $(3-2x)^5$ in ascending powers of x. [3]
 - (ii) Hence find the coefficient of x^3 in the expansion of $\left(1 + \frac{1}{2}x\right)^2 (3 2x)^5$. [3]
- Daniel bought an apartment at RMx. The value of the apartment appreciates 7% annually. It is given that the value of the apartment after 2 years is RM110, 000. Find
 - (i) the value of x, [2]
 - (ii) the estimated value of the apartment 8 years after his purchase, [2]
 - (iii) the minimum number of years for the value of the apartment to be double. [3]

By cutting away *x* cm from each corner of a rectangular piece of cardboard and folding up the resulting flaps, we can turn the cardboard into an open box. If the cardboard is 16 cm long and 10 cm wide.

- (i) Show that the volume, $V \text{ cm}^3$, of the box is given by $V = 160x 52x^2 + 4x^3$. [2]
- (ii) Find the dimensions of the box that will yield the maximum volume. [5]

6

The diagram shows two congruent triangles ABE and CBD, where ABC is a straight line. In triangle BCD, BD is 8 cm, CD is 11 cm and angle CBD is 65°. The points E and D are joined by an arc of a circle with centre B and radius 8 cm.

- (i) Find angle BCD.
- (ii) Show that angle *EBD* is 0.873 radians, correct to 3 significant figures. [2]
- (iii) Hence find the area of the shaded segment, bounded by the chord *ED* and the arc *ED*, giving your answer correct to 3 significant figures. [3]
- 7 The diagram shows the curve with equation $y = 2\sqrt{x-1}$, the line x = 5, and the x-axis.

(i) Find the exact area of the region R.

(ii) Find the exact volume of the solid formed when the region *R* is rotated through 360° about the y-axis. [3]

8 (a) Sketch the graph $y = 3 - \sin 2x$ for $0 \le x \le 180^{\circ}$ [3]

(b) (i) Show that
$$\frac{\sin^2 x - \cos^2 x}{1 - \sin^2 x} = \tan^2 x - 1$$
. [2]

(ii) Hence solve the equation
$$\frac{\sin^2 x - \cos^2 x}{1 - \sin^2 x} = 5 - \tan x \text{ for } -\pi \le x \le \pi.$$
 [5]

9 The functions f and g are defined with their respective domains by

$$f(x) = 2 - x^4$$
 for all real values of x

$$g(x) = \frac{1}{x - 4}$$

for all real values of x, $x \neq 4$

(i) State the range of f. [1]

(ii) Explain why f does not have an inverse. [1]

(iii) Solve the equation
$$fg(x) = -14$$
. [3]

Below is the graph of y = g(x).

(iv) Find the inverse of g(x). State the domain and range of g^{-1} . [5]

In the diagram, O is the centre of the square base ABCD of a right pyramid, vertex V. Unit vectors \mathbf{i} , \mathbf{j} , \mathbf{k} are parallel to AB, AD and OV respectively. The length of AB is 4 units, and the length of OV is 2h units. M, P and Q are the mid-point of VC, AB, and BC respectively. The point O is taken as the origin for the position vectors.

- (i) Express the vectors \overrightarrow{MV} and \overrightarrow{MP} in terms of h.
- (ii) Given that $\overrightarrow{OX} = \frac{1}{2} \mathbf{i} \frac{1}{2} \mathbf{j} + h \mathbf{k}$, and is perpendicular to \overrightarrow{VB} , find the value of h.
- (iii) Use the value of h in part (ii) to calculate the angle VMP. [4]