MAT 653: Statistical Simulation

Instructor: Dr. Wei Li Scribe: Liming ZHAO

Oct 5st, 2021

Random Variable Generation

Reading Parts:

1. Chapter 2 from Introducing Monte Carlo Methods with R, by Christian. P. Robert and George Casella.

2. Section 1.4.1, 1.4.2, 1.4.3, 1.4.4 from An Introduction to Statistical Computing: A Simulation-based Approach, by Jochen Voss.

Definition

A random variable U has a uniform distribution $U \sim U(0,1)$ if $P(U \in (a,b)) = b-a$ for 0 < a < b < 1.

Definition

A random variable has PDF (probability density function) f(x) if $P(X \in A) = \int_A f(x) dx$.

- PDF f(x):
- 1. $f(x) \ge 0$
- $2. \int_{\mathbb{R}} f(x) dx = 1$

The support of X is $\{x: f(x) > 0\}$ denoted by \mathcal{X} .

- CDF: the CDF of X (on \mathbb{R}) is given by $F(a) = P(X \leq a)$, for all $a \in \mathbb{R}$.
- $1. \lim_{x \to -\infty} F(a) = 0$
- $2. \lim_{x \to \infty} F(a) = 1$
- 3. F(a) is nondecreasing function.
- 4. $\lim_{h_n\to 0^+} F(a+h_n) = F(a)$. i.e., F(a) is right continuous.

Fact: Any non-negative function \tilde{f} that is integrable on its support can be used to construct a PDF by normalization.

Examples:

$$1.\tilde{f}(x) = e^{-\frac{x^2}{2}}, \, \mathcal{X} = (-\infty, \infty)$$

$$f(x) = \frac{\tilde{f}(x)}{\int_{-\infty}^{\infty} \tilde{f}(x)dx}$$
 (normalization) $= \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ where $e^{-\frac{x^2}{2}}$ is the kernel of $N(0,1)$.

$$f(x) \propto e^{-\frac{x^2}{2}}$$
.

$$\begin{split} 2.\tilde{f}(x) &= x^{\alpha-1}e^{-\beta x}, \ x > 0, \alpha, \beta > 0 \\ f(x) &= \frac{f(x)}{\int_0^\infty x^{\alpha-1}e^{-\beta x}dx} = \frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x} \ (x > 0) \sim Gamma(\alpha, \beta) \\ f(x) &\propto x^{\alpha-1}e^{-\beta x} \end{split}$$

Probability integral transform

(works only for \mathbb{R})

Suppose X has a CDF F, i.e. $F(x) = P(X \le x)$. If F is invertible and $Y = F^{-1}(U)$. $U \sim U(0,1)$.

Then $Y \sim F$.

Proof:

More generally, define the inverse of F as $F^{-1}(u)=\inf\{x\in\mathbb{R}:F(x)\geq u\}.$

Fact1: For every $0 , <math>F \circ F^{-1}(p) \ge p$. The equality holds iff (if and only if) p in the range of F.

Fact2: For every $0 and <math>x_0 \in \mathbb{R}$, $p \le F(x_0)$ iff $F^{-1}(p) \le x_0$.

Proof:

Example 2.1 from R.C.:

 $X \sim exp(1)$, the CDF of exp(1) is $F(x) = 1 - e^{-x}$.

Then $F^{-1}(u) = -log(1 - u)$.

1. Generate $u \sim U(0, 1)$.

2. Evaluate $F^{-1}(u)$, gives one sample.