Homework 6-Dec

Ben Ridenhour

2022-12-05

Data Manipulation with dplyr Practice

This homework is centered around manipulating a data set using functions from the dplyr package. You should be able to accomplish everything in the homework using some form of the following functions:

function	description	example
filter()	select rows based on some criteria	data % > % filter(age > 20 & sex == "f")
arrange()	sort rows	data %>% arrange(age, height)
select()	select columns	data %>% select(sex, weight) OR
		data %>% select(-height)
rename()	rename columns	data %>% rename(newName = oldName)
<pre>mutate()</pre>	create new columns	data $\%$ > $\%$ mutate(old = age > 40)
<pre>case_when()</pre>	recode values	data %>% mutate(ageCat = case_when(age <
		20 ~ "young", age < 40 ~ "middle", T~"old"))
<pre>group_by()</pre>	create groups for calculations	data %>% group_by(sex)
<pre>summarize()</pre>	calculate statistics on groups	data %>% group_by(sex) %>%
		summarize(meanW = mean(weight))
<pre>left_join()</pre>	merge data sets on some ID	data %>% left_join(data2, by = "id")

Data for the exercises

We will be using data sets for the following exercises. The first of these comes from the speff2trial package. To get the data do the following:

```
install.packages("speff2trial")
library(speff2trial)
trial <- ACTG175</pre>
```

If you wish to see a description of the data set use ?ACTG175. The second set of data are in the Github folder and should be downloaded when you pull the latest version; the file with the data is called "patient_demo.csv". To load the data, make sure your current working directory (use getwd() and setwd() to check or change, respectively) contains the CSV file then run:

```
demo_data <- read.csv("patient_demo.csv")</pre>
```

Once you have loaded both data sets, verify that they exist and look okay within your R global environment.

Exercises

These exercises primarily deal with the trial data until later. In each step, be sure to save the data set with the newly manipulated columns.

rename()

1. Rename the columns wtkg to weightkg and age to age_years.

mutate()

- 2. Create a column called agem that displays a patient's age in months rather than years.
- 3. The column karnof shows each patient's Karnofsky score on a scale of 0 to 100. Create a new column called karnof_b that has a scale of 0 to 1 instead.
- 4. Create a column called sparrow that has the formula of Karnofsky score/(age + weight).

arrange()

- 5. Sort the trial data in ascending values of age, weight, and sparrow, respectively. Verify that the ordering worked.
- 6. Using the desc() function, sort the trial data in order of descending weight.

case_when()

7. In one *single* call, create two columns in the data: the first creates a column named <code>gender_char</code> that shows gender as either "male" or "female" and the second column creates a discrete variable <code>over50</code> that is 0 when the patient is younger than 50 and 1 otherwise.

filter()

- 8. Create a new data set trial_men that only had data from males.
- 9. Create another data set trial_sub that only has individuals that are: female, haven't used intravenous drugs, and are over 40 years old.

select()

- 10. Drop the karnof and weight columns from the trial_men data and save the results.
- 11. Keep only the pidnum, treat, and cd820 columns from trial_sub and save the results.

left_join()

- 12. Merge the trial and demo_data data sets. Save the resulting data as trial_full.
- 13. Using the trial full data, calculate the mean number of days of exercise reported by patients.

group_by() and summarize()

- 14. Group the data by arms. Then, for each arm, calculate the mean participant age.
- Group the data by arms. For each arm, calculate the mean participant age and the median Karnofsky score.
- 16. Group the data by gender. Then, separately for male and female patients, calculate the percent who have a history of intravenous drug use. (To calculate a percent of a binary variable with 0s and 1s, just calculate the mean)
- 17. Group the data by **gender**. Then calculate the percent of male and female patients who have a history of intravenous drug use (drugs), and the mean number of days until a major negative event days
- 18. Separately for all combinations of gender and race, calculate the mean age and mean CD4 T cell count at baseline (cd40). (Hint: group by gender and race.)

Exercises

- 19. Now let's check the major differences between the treatment arms. For each arm, calculate the following:
 - Mean days until a a major negative event (days)
 - Mean CD4 T cell count at baseline.
 - Mean CD4 T cell count at 20 weeks.
 - Mean CD4 T cell count at 96 weeks.
 - Mean change in CD4 T cell count between baseline and 96 weeks
 - Number of patients (Hint: use N = n())
- 20. Repeat the previous analysis, but before you do the grouping and summary statistics, create a new variable called arms_char that shows the values of arms as characters that reflect what the values actually represent (hint: use mutate() and case_when()). For example, looking at the help file ?ACTG175, I can see that the treatment arm of 0 is "zidovudine". I might call this arm "Z". Do this all in the same chunk of code.
- 21. Repeat the previous analysis, but only include patients with a Karnofsky score equal to 100, and who did not use zidovudine in the 30 days prior to the treatment initiation (z30).
- 22. In one block of code, complete the following tasks
 - Change the name of the column weightkg to weight
 - Create a new column called drugs_char that uses strings instead of numbers to indicate drug use
 - Filter the data to only include male patients with id numbers greater than 10100
 - Group the data by drugs_char and arms
 - For each group calculate the mean age, percentage of patients that are male, and mean number of days until a major negative event