Ref of Fu's 1993 paper

October 30, 2015

The linearized drift kinetic equation is given by

$$\left(\partial_t + \mathbf{v}_d \cdot \nabla + v_{\parallel} \hat{\mathbf{b}} \cdot \nabla\right) g = i \frac{e}{M} \frac{\partial F}{\partial \epsilon} \left(\omega - \omega_{\star}\right) \frac{i}{\omega} \mathbf{v}_d \cdot \delta \mathbf{E}_{\perp} \tag{1}$$

where, $\mathbf{v}_d = \frac{\hat{\mathbf{b}}}{\Omega} \times \left(\mu \nabla B + \kappa v_{\parallel}^2 \right) \approx \frac{v_{\perp}^2/2 + v_{\parallel}^2}{\Omega} \hat{\mathbf{b}} \times \kappa$, $\mu = \frac{v_{\perp}^2}{2B}$, $\omega_{\star} = \frac{i\hat{\mathbf{b}} \times \nabla F \cdot \nabla}{\Omega \partial F/\partial \epsilon}$, $\epsilon = \frac{1}{2}v^2$, $\delta \mathbf{E}_{\perp} = i\omega \vec{\xi} \times \mathbf{B}$, $\Omega = \frac{Be}{M}$ is the particle cyclotron frequency. [Berk, Phys. Fluid B 4 1992]

The term $\mathbf{v}_d \cdot \delta \mathbf{E}_{\perp}$ can be expressed by the following form.

$$\mathbf{v}_d \cdot \delta \mathbf{E}_{\perp} = \frac{v_{\perp}^2 / 2 + v_{\parallel}^2}{\Omega} \hat{\mathbf{b}} \times \kappa \cdot \delta \mathbf{E}_{\perp} = i\omega \frac{v_{\perp}^2 / 2 + v_{\parallel}^2}{\Omega} \hat{\mathbf{b}} \times \vec{\kappa} \cdot \left(\vec{\xi} \times \mathbf{B} \right)$$
(2)

$$=-i\omega B\frac{v_{\perp}^{2}/2+v_{\parallel}^{2}}{\Omega}\vec{\kappa}\cdot\vec{\xi}=-i\omega B\frac{v_{\perp}^{2}/2+v_{\parallel}^{2}}{\Omega}\left(\nabla\theta\kappa_{\theta}+\nabla r\kappa_{r}\right)\cdot\left(\underline{\xi}_{\theta}\nabla\theta+\underline{\xi_{r}}\nabla r\right)$$

$$=-i\omega B\frac{v_{\perp}^{2}/2+v_{\parallel}^{2}}{\Omega}\left(\nabla\theta\cdot\nabla\theta\xi_{\theta}\kappa_{\theta}+\nabla r\cdot\nabla r\xi_{r}\kappa_{r}+\nabla\theta\cdot\nabla r\xi_{r}\kappa_{\theta}+\nabla r\cdot\nabla\theta\xi_{\theta}\kappa_{r}\right)$$

$$=-i\omega B\frac{\epsilon}{\Omega}\left(\frac{\Lambda}{b}+2\left(1-\frac{\Lambda}{b}\right)\right)\left(\left(g^{\theta\theta}\kappa_{\theta}+g^{r\theta}\kappa_{r}\right)\xi_{\theta}+\left(g^{rr}\kappa_{r}+g^{r\theta}\kappa_{\theta}\right)\xi_{r}\right)$$

with $g^{rr} = \nabla r \cdot \nabla r$, $g^{\theta r} = \nabla \theta \cdot \nabla r$, $g^{\theta \theta} = \nabla \theta \cdot \nabla \theta$. $\xi_r \nabla r = \xi_r \mathbf{e}_r$, $\xi_\theta \nabla \theta = \frac{1}{r} \xi_\theta \mathbf{e}_\theta$, $\kappa_\theta = -\frac{1}{R} \frac{\partial R}{\partial \theta}$, $\kappa_r \approx -\frac{1}{R} \frac{\partial R}{\partial r} - \frac{r}{q^2 R^2}$ [G. Y. Fu, PHYSICS OF PLASMAS 13 2006]. $\Lambda = \frac{\mu B_0}{\epsilon}$, $b = B_0/B \approx 1 + (r/R_0) \cos \theta$, $\epsilon = \frac{1}{2} v^2$, $\delta \mathbf{E}_{\perp}^{\star} = -i\omega \vec{\xi}^{\star} \times \mathbf{B}$. Thus, the complex conjugate term is

$$\mathbf{v}_d \cdot \delta \mathbf{E}_{\perp}^{\star} = \frac{v_{\perp}^2 / 2 + v_{\parallel}^2}{\Omega} \hat{\mathbf{b}} \times \kappa \cdot \delta \mathbf{E}_{\perp}^{\star} = -i\omega \frac{v_{\perp}^2 / 2 + v_{\parallel}^2}{\Omega} \hat{\mathbf{b}} \times \vec{\kappa} \cdot (\vec{\xi}^{\star} \times \mathbf{B})$$
(3)

$$= i\omega B \frac{v_{\perp}^2/2 + v_{\parallel}^2}{\Omega} \vec{\kappa} \cdot \vec{\xi^{\star}} = i\omega B \frac{v_{\perp}^2/2 + v_{\parallel}^2}{\Omega} \left(\nabla \theta \kappa_{\theta} + \nabla r \kappa_{r} \right) \cdot \left(\underline{\xi_{\theta}^{\star}} \nabla \theta + \underline{\xi_{r}^{\star}} \nabla r \right)$$

$$= i\omega B \frac{v_{\perp}^{2}/2 + v_{\parallel}^{2}}{\Omega} \left(\nabla \theta \cdot \nabla \theta \xi_{\theta}^{\star} \kappa_{\theta} + \nabla r \cdot \nabla r \xi_{r}^{\star} \kappa_{r} + \nabla \theta \cdot \nabla r \xi_{r}^{\star} \kappa_{\theta} + \nabla r \cdot \nabla \theta \xi_{\theta}^{\star} \kappa_{r} \right)$$

$$= i\omega B \frac{\epsilon}{\Omega} \left(\frac{\Lambda}{b} + 2\left(1 - \frac{\Lambda}{b} \right) \right) \left(\left(g^{\theta\theta} \kappa_{\theta} + g^{r\theta} \kappa_{r} \right) \xi_{\theta}^{\star} + \left(g^{rr} \kappa_{r} + g^{r\theta} \kappa_{\theta} \right) \xi_{r}^{\star} \right)$$

The linearized drift kinetic equation is rewritten as

$$\frac{d}{dt}g = i\frac{e}{M}\frac{\partial F}{\partial \epsilon} \left(\omega - \omega_{\star}\right) B\frac{\epsilon}{\Omega} \left(\frac{\Lambda}{b} + 2\left(1 - \frac{\Lambda}{b}\right)\right) \left(\left(g^{\theta\theta}\kappa_{\theta} + g^{r\theta}\kappa_{r}\right)\xi_{\theta} + \left(g^{rr}\kappa_{r} + g^{r\theta}\kappa_{\theta}\right)\xi_{r}\right)$$

$$\tag{4}$$

$$\frac{d}{dt}g = H\left(r, \theta, \phi, t\right)$$

The solution of perturbed distribution function g is obtained in the followings. At equilibrium, the projection of the orbit on the poloidal cross section is a closed curve. For either mirror-trapped or passing orbit, we define the bounce time [F. Porcelli, R. Stankiewicz, and W. Kerner, Phys. Plasmas 1 1994]

$$\tau_b = \oint d\tau = \oint \frac{d\psi}{\dot{\psi}} = \oint \frac{d\theta}{\dot{\theta}} \tag{5}$$

as the time it takes to close an equilibrium orbit on the poloidal plane. We assume that perturbations have the form

$$X^{(1)} = \hat{X}^{(1)}(r,\theta) \exp(-i\omega t + in\phi)$$
(6)

The formal solution of the nonadibatic distribution g is

$$g = \int_{-\infty}^{t} i \frac{e}{M} \frac{\partial F}{\partial \epsilon} (\omega - \omega_{\star}) B \frac{\epsilon}{\Omega} G(\tau) d\tau$$
 (7)

with

$$G = \left(\frac{\Lambda}{b} + 2\left(1 - \frac{\Lambda}{b}\right)\right) \left(\left(g^{\theta\theta}\kappa_{\theta} + g^{r\theta}\kappa_{r}\right)\xi_{\theta} + \left(g^{rr}\kappa_{r} + g^{r\theta}\kappa_{\theta}\right)\xi_{r}\right)$$

where $G\left(\tau\right)=\hat{G}\left[r\left(\tau\right),\theta\left(\tau\right)\right]\exp\left(-i\omega\tau+in\phi\left(\tau\right)\right)$ and the τ dependence is through the following equations:

$$\dot{r} = \dot{\mathbf{R}} \cdot \nabla r, \dot{\theta} = \dot{\mathbf{R}} \cdot \nabla \theta, \dot{\phi} = \dot{\mathbf{R}} \cdot \nabla \phi \tag{8}$$

Let us separate $\phi(\tau)$ into its secular and oscillating parts:

$$\phi\left(\tau\right) = \left\langle \dot{\phi} \right\rangle \tau + \widetilde{\phi}\left(\tau\right) \tag{9}$$

where the brackets indicate bounce averaging.

The quantity $\tilde{G}[r(\tau), \theta(\tau)] = \hat{G}[r(\tau), \theta(\tau)] \exp(in\tilde{\phi}(\tau))$ is a periodic function of τ , which can be expanded in Fourier series,

$$\tilde{G}(\tau) = \sum_{-\infty}^{\infty} Y_p(\Lambda, \epsilon, \bar{r}; \sigma) \exp(ip\omega_b \tau)$$
(10)

where,

$$Y_{p}(\Lambda, \epsilon, \bar{r}; \sigma) = \frac{1}{\tau_{b}} \oint d\tau \tilde{G}(\tau) \exp(-ip\omega_{b}\tau)$$
(11)

with $r\left(\tau\right)=\bar{r}+\rho_{d}\cos\theta\left(\tau\right)$, ρ_{d} represents the finite orbit width for passing particles. $\rho_{d}=\Omega_{d}/\omega_{t}$, $\Omega_{d}=\frac{\left(v_{\perp}^{2}/2+v_{\parallel}^{2}\right)}{\Omega R_{0}}$, $\omega_{t}=\frac{v_{\parallel}}{qR_{0}}$. Thus,

$$\rho_d = \frac{q}{\Omega} \sqrt{\frac{\epsilon}{2(1 - \Lambda/b)}} \left[\frac{\Lambda}{b} + 2\left(1 - \frac{\Lambda}{b}\right) \right]$$
 (12)

When \tilde{G} is expressed by $\cos k\theta$, $\sin k\theta$ instead of $\exp ik\theta$, for p=0,

$$Y_{p}(\Lambda, \epsilon, \bar{r}; \sigma) = \frac{1}{\tau_{b}} \oint d\tau \tilde{G}(\tau) \exp(-ip\omega_{b}\tau)$$
(13)

for $p \neq 0$,

$$Y_{p}(\Lambda, \epsilon, \bar{r}; \sigma) = \frac{2}{\tau_{b}} \oint d\tau \tilde{G}(\tau) \exp(-ip\omega_{b}\tau)$$
(14)

Carrying out the time integration, the solution of g is obtained

$$g = \frac{e}{M} \frac{\partial F}{\partial \epsilon} (\omega - \omega_{\star}) B \frac{\epsilon}{\Omega} \sum_{-\infty}^{\infty} Y_p (\Lambda, \epsilon, \bar{r}; \sigma) \frac{\exp \left[i \left(n \left\langle \dot{\phi} \right\rangle + p\omega_b - \omega \right) t \right]}{n \left\langle \dot{\phi} \right\rangle + p\omega_b - \omega}$$
(15)

The formula of δW_k is derived as follows.

$$\delta W_k = \int d^3 x \vec{\xi}^{\star} \cdot \nabla \cdot \delta \mathbf{P}_k = e \int d^3 x \int d^3 v \left(\frac{i}{\omega} \mathbf{v}_d \cdot \delta \mathbf{E}_{\perp} \right)^{\star} g$$

$$= e \int d^3x \int d^3v g B \frac{\epsilon}{\Omega} \left(\frac{\Lambda}{b} + 2 \left(1 - \frac{\Lambda}{b} \right) \right) \left(\left(g^{\theta\theta} \kappa_{\theta} + g^{r\theta} \kappa_{r} \right) \xi_{\theta}^{\star} + \left(g^{rr} \kappa_{r} + g^{r\theta} \kappa_{\theta} \right) \xi_{r}^{\star} \right)$$

$$= e \int d^3x \int d^3v g B \frac{\epsilon}{\Omega} G^{\star} \tag{16}$$

where $G^{\star} = \hat{G}^{\star} [r(\tau), \theta(\tau)] \exp(i\omega\tau - in\phi(\tau))$. Let $\tilde{G}^{\star} [r(\tau), \theta(\tau)] = \hat{G}^{\star} [r(\tau), \theta(\tau)] \exp(-in\tilde{\phi}(\tau))$, which is a periodic function of τ , which can be expanded in Fourier series,

$$\tilde{G}^{\star}(\tau) = \sum_{-\infty}^{\infty} Y_p^{\star}(\Lambda, \epsilon, \bar{r}; \sigma) \exp(-ip\omega_b \tau)$$
(17)

where,

$$Y_p^{\star}(\Lambda, \bar{r}; \sigma) = \frac{1}{\tau_b} \oint d\tau \tilde{G}^{\star}(\tau) \exp(ip\omega_b \tau)$$
 (18)

with $r(\tau) = \bar{r} + \rho_d \cos \theta(\tau)$.

$$\delta W_k = \frac{e^2}{M} \int d^3x \int d^3v \frac{\partial F}{\partial \epsilon} \left(\omega - \omega_{\star}\right) B^2 \frac{\epsilon^2}{\Omega^2} \sum_{-\infty}^{\infty} Y_p \left(\Lambda, \bar{r}; \sigma\right)$$

$$\cdot \frac{\exp\left[i\left(n\left\langle\dot{\phi}\right\rangle + p\omega_b - \omega\right)\tau\right]}{n\left\langle\dot{\phi}\right\rangle + p\omega_b - \omega} \sum_{-\infty}^{\infty} Y_{p'}^{\star}\left(\Lambda, \epsilon, \bar{r}; \sigma\right) \exp\left(i\omega\tau - in\left\langle\dot{\phi}\right\rangle\tau - ip'\omega_b\tau\right)$$
(19)

$$\delta W_k = \frac{e^2}{M} \int d^3x \int d^3v \frac{\partial F}{\partial \epsilon} \left(\omega - \omega_{\star}\right) B^2 \frac{\epsilon^2}{\Omega^2}$$

$$\cdot \sum_{-\infty}^{\infty} Y_p \left(\Lambda, \epsilon, \bar{r}; \sigma \right) \frac{\exp\left[ip\omega_b \tau\right]}{n \left\langle \dot{\phi} \right\rangle + p\omega_b - \omega} \sum_{-\infty}^{\infty} Y_{p'}^{\star} \left(\Lambda, \epsilon, \bar{r}; \sigma \right) \exp\left(-ip'\omega_b \tau\right) \tag{20}$$

Using $d^3v = \sqrt{2}\pi \frac{1}{b\sqrt{1-\frac{\Lambda}{k}}}d\Lambda \epsilon^{1/2}d\epsilon$, $d^3x = 2\pi J dr d\theta$, yields

$$\delta W_k = \frac{e^2}{M} \int 2\pi J dr d\theta \int \sqrt{2}\pi \frac{1}{b\sqrt{1-\frac{\Lambda}{b}}} d\Lambda \epsilon^{1/2} d\epsilon \frac{\partial F}{\partial \epsilon} \left(\omega - \omega_\star\right) B^2 \frac{\epsilon^2}{\Omega^2}$$

$$\cdot \sum_{-\infty}^{\infty} Y_p \left(\Lambda, \epsilon, \bar{r}; \sigma \right) \frac{\exp\left(ip\omega_b \tau \right)}{n \left\langle \dot{\phi} \right\rangle + p\omega_b - \omega} \sum_{-\infty}^{\infty} Y_{p'}^{\star} \left(\Lambda, \epsilon, \bar{r}; \sigma \right) \exp\left(-ip'\omega_b \tau \right) \tag{21}$$

Applying $d\tau=\frac{qR_0}{\sigma\sqrt{2\epsilon}b\sqrt{1-\frac{\Lambda}{b}}}d\theta,\ \sigma=\pm1$ for the direction of v_{\parallel} , one finally obtains

$$\delta W_k = \frac{4\pi^2}{M} \frac{e^2 B^2}{\Omega^2} \frac{1}{R_0} \int \frac{J}{q} dr \int d\Lambda \epsilon^3 d\epsilon \frac{\partial F}{\partial \epsilon} \tau_b \left(\omega - \omega_\star\right)$$

$$\cdot \sum_{-\infty}^{\infty} \frac{|Y_p|^2}{n \left\langle \dot{\phi} \right\rangle + p\omega_b - \omega} \tag{22}$$

Note that $\tilde{\phi} \cong 0$, $\left\langle \dot{\phi} \right\rangle \cong \omega_D^0 + q \omega_b, \omega_D^0 \approx 0$ for passing particles. For internal kink mode $\nabla \cdot \vec{\xi} = 0$, the forms of the perturbation are $\xi_r = \xi_0 \cos \theta$, $\xi_\theta = -\xi_0 r \sin \theta$ within the region q = 1 rational surface $r_s = 1$, and $\xi_r = \xi_0 \left(\frac{\Delta r - r + (r_s - \Delta r/2)}{\Delta r} \right) \cos \theta$, $\xi_\theta = -\xi_0 \left(\frac{\Delta r - r + (r_s - \Delta r/2)}{\Delta r} \right) r \sin \theta + \xi_0 \left(\frac{r}{\Delta r} \right) r \sin \theta$ in the inertial region $r_s - \frac{\Delta r}{2} \leq r \leq r_s + \frac{\Delta r}{2}$.

In angle-action coordinate

$$J_b = \frac{1}{2\pi} \int p_{\parallel} ds \cong p_{\parallel e} R_{\parallel} \int_{-\theta_b}^{\theta_b} \sqrt{1 - \kappa^{-1} \sin^2 \frac{\theta}{2}} \frac{d\theta}{\pi}$$
 (23)

$$J_{t} = \frac{1}{2\pi} \int p_{\parallel} ds \cong p_{\parallel e} R_{\parallel} \int_{-\pi}^{\pi} \sqrt{1 - \kappa^{-1} \sin^{2} \frac{\theta}{2}} \frac{d\theta}{\pi}$$
 (24)

The formulas of bounce/transit frequency is given by [Alain J. Brizard, PHYSICS OF PLASMAS 18 2011]

$$\omega_b = \frac{\partial H}{\partial J_b} = \left(\frac{\partial J_b}{\partial E}\right)^{-1} = \frac{\pi \omega_{\parallel}}{2K(\kappa)}, \kappa < 1$$
 (25)

$$\omega_t = \frac{\partial H}{\partial J_t} = \left(\frac{\partial J_t}{\partial E}\right)^{-1} = \frac{\pi\sqrt{\kappa}\omega_{\parallel}}{K(\kappa^{-1})}, \kappa > 1$$
 (26)

where $\omega_{\parallel}=\frac{1}{qR}\sqrt{\varepsilon\mu B_0}=\frac{\sqrt{\epsilon}}{qR}\sqrt{\varepsilon\Lambda},\ \kappa=\frac{1-\Lambda(1-\varepsilon)}{2\varepsilon\Lambda},\ \varepsilon=\frac{r}{R_0}.$ K denotes the complete elliptic integral of the first kind.

The normalized relations of the quantities are $F=\frac{n}{v_h^3}\bar{F}_0,\,v_h=\sqrt{\frac{2T_h}{M}},\,\epsilon=\frac{T_h}{M}\bar{\epsilon},\,r=a\bar{x},\,J=aR_0\bar{J},\,R=R_0\bar{R},\,\omega_t=\frac{v_h}{R_0}\bar{\omega}_t,\,\frac{1}{\tau_t}=\frac{v_h}{2\pi R_0}\bar{\omega}_t=\frac{v_h}{R_0}\frac{\bar{\omega}_t}{2\pi}=\frac{v_h}{R_0}\frac{1}{\bar{\tau}_t},\,\omega_t=\frac{v_h}{R_0}\bar{\omega}_t,\,\omega_\phi=\frac{v_h}{R_0}\bar{\omega}_\phi,\,\omega_\star=\frac{v_h}{R_0}\bar{\omega}_\phi,\,\omega_\star=\frac{v_h}{R_0}\bar{\omega}_\star$.

$$\delta W_{k} = \frac{\pi^{2}}{M} \frac{e^{2} B^{2}}{\Omega^{2}} a^{2} R_{0} n_{0} \frac{T_{h}}{M} \int \frac{\bar{J}}{q} dx \int d\Lambda \bar{\epsilon}^{3} d\bar{\epsilon} \frac{\partial \bar{F}}{\partial \bar{\epsilon}} \bar{\tau}_{b} \left(\bar{\omega} - \bar{\omega}_{\star}\right)$$

$$\cdot \sum_{-\infty}^{\infty} \frac{\left|\bar{Y}_{p}\right|^{2}}{n\left\langle\bar{\dot{\phi}}\right\rangle + p\bar{\omega}_{b} - \bar{\omega}} \tag{27}$$

For passing particles,

$$\bar{\omega}_b = \frac{\pi\sqrt{\kappa}}{K(\kappa^{-1})} \frac{\sqrt{\varepsilon\Lambda/2}}{q} \sqrt{\bar{\epsilon}}$$
 (28)

$$\omega_b t = \bar{\omega}_b \frac{v_h}{R} \int_0^\theta \frac{qR_0}{\sqrt{2(T/M)} \bar{\epsilon} b \sqrt{1 - \frac{\Lambda}{b}}} d\theta$$
 (29)

$$= \int_{0}^{\theta} \frac{\pi \sqrt{\kappa}}{K(\kappa^{-1})} \sqrt{\varepsilon \Lambda/2} \frac{1}{b\sqrt{1 - \frac{\Lambda}{b}}} d\theta$$

$$Y_{p}(\Lambda, \bar{r}; \sigma) = \frac{1}{\tau_{b}} \oint d\tau \tilde{G}(\tau) \exp(-ip\omega_{b}\tau)$$

$$= \frac{\omega_{b}}{2\pi} \oint d\tau \tilde{G}[r(\tau), \theta(\tau)] \exp(-ip\omega_{b}\tau)$$

$$= \frac{1}{2\pi} \oint d(\omega_{b}\tau) \tilde{G}[r(\tau), \theta(\tau)] \exp(-ip\omega_{b}\tau)$$
(30)

$$=\frac{1}{2\pi}\int_{0}^{2\pi}d\theta\frac{\sigma\pi\sqrt{\kappa}}{K\left(\kappa^{-1}\right)}\frac{\sqrt{\varepsilon\Lambda/2}}{b\sqrt{1-\frac{\Lambda}{b}}}\tilde{G}\left[r\left(\tau\right),\theta\left(\tau\right)\right]\exp\left(-ip\int_{0}^{\theta}d\theta'\frac{\sigma\pi\sqrt{\kappa}}{K\left(\kappa^{-1}\right)}\frac{\sqrt{\varepsilon\Lambda/2}}{b\sqrt{1-\frac{\Lambda}{b}}}\right)$$

where

$$\tilde{G}\left[r\left(\tau\right),\theta\left(\tau\right)\right] = \left(\frac{\Lambda}{b\left(r,\theta\right)} + 2\left(1 - \frac{\Lambda}{b\left(r,\theta\right)}\right)\right)$$

$$\cdot \left(\left(g^{\theta\theta} \kappa_{\theta} + g^{r\theta} \kappa_{r} \right) \hat{\xi}_{\theta} \left(\theta, \bar{r} + \rho_{d} \cos \theta \right) + \left(g^{rr} \kappa_{r} + g^{r\theta} \kappa_{\theta} \right) \hat{\xi}_{r} \left(\theta, \bar{r} + \rho_{d} \cos \theta \right) \right)$$

Note that the effect of finite orbit width is induced radially in the perturbed $\xi(r)$ for simply. Furthermore, \tilde{G} is a normalized quantity, so is Y_n ,

$$\tilde{G}\left[x\left(\tau\right),\theta\left(\tau\right)\right] = \left(\frac{\Lambda}{b\left(x,\theta\right)} + 2\left(1 - \frac{\Lambda}{b\left(x,\theta\right)}\right)\right)$$

$$\cdot \left(\left(\bar{g}^{\theta\theta} \bar{\kappa}_{\theta} + \bar{g}^{r\theta} \bar{\kappa}_{r} \right) \bar{\hat{\xi}}_{\theta} \left(\theta, \bar{x} + \frac{\rho_{d}}{a} \cos \theta \right) + \left(\bar{g}^{rr} \bar{\kappa}_{r} + \bar{g}^{r\theta} \bar{\kappa}_{\theta} \right) \bar{\hat{\xi}}_{r} \left(\theta, \bar{x} + \frac{\rho_{d}}{a} \cos \theta \right) \right)$$

where, the normalized displacements are $\bar{\hat{\xi}}_{\theta m} = \hat{\xi}_{\theta m}/a^2$, $\bar{\hat{\xi}}_{rm} = \hat{\xi}_{rm}/a$. The slowing down distribution function of fast ions is given by [M. Schneller 2013]

$$F\left(x,\bar{\epsilon},\Lambda\right) = \frac{n_0}{v_h^3} \frac{1}{\bar{\epsilon}^{3/2} + \bar{\epsilon}_c^{3/2}} Erfc\left(\frac{\bar{\epsilon} - \bar{\epsilon}_0}{\Delta \bar{\epsilon}}\right) \exp\left[-\left(\frac{x - x_0}{\Delta x}\right)^2\right] \exp\left[-\left(\frac{\Lambda - \Lambda_0}{\Delta \Lambda}\right)^2\right]$$
(31)

The normalized metric tensors are

$$\bar{g}^{rr} = 1 + 2\Delta' \cos \theta \tag{32}$$

with $\Delta' = (\varepsilon + \alpha)/4$, $\varepsilon = \frac{r}{R_0}$, $\alpha = -R_0 q^2 d\beta/dr$, $\beta = \frac{2\mu_0 P}{B^2}$ set $\alpha = 0$ if $\beta = 0$, or assume $\bar{g}^{rr} = 1$ without toroidal effect, θ independent. Specially, in low beta limit.

$$\bar{g}^{rr} = 1 + \frac{1}{2}\varepsilon\cos\theta\tag{33}$$

$$\bar{g}^{\theta\theta} = \frac{1}{x^2} \left[1 - 2\left(\varepsilon + \Delta'\right) \cos \theta \right] \tag{34}$$

assume $\bar{g}^{\theta\theta} = \frac{1}{x^2}$ without toroidal effect. Specially, in low beta limit,

$$\bar{g}^{\theta\theta} = \frac{1}{x^2} \left[1 - \frac{5}{2} \varepsilon \cos \theta \right] \tag{35}$$

$$\bar{g}^{r\theta} = -\frac{1}{r} \left[\varepsilon + (r\Delta')' \right] \sin \theta \tag{36}$$

specially,

$$\bar{g}^{r\theta} = -\frac{1}{r} \frac{3}{2} \varepsilon \sin \theta \tag{37}$$

for low beta limit. and $\bar{g}^{r\theta}=0$ without toroidal effect. The normalized curvature are in low beta limit

$$\bar{\kappa}_r = -\frac{a}{R}\cos\theta + \frac{a}{R}\frac{\varepsilon}{4} - \frac{a}{R}\frac{5}{4}\varepsilon(\cos 2\theta - 1) - \left(\frac{a}{R}\right)^2\frac{x}{q}$$
 (38)

$$\bar{\kappa}_{\theta} = \varepsilon \sin \theta + \frac{5}{4} \varepsilon^2 \sin 2\theta \tag{39}$$

with $R = R_0 + r \cos \theta - \Delta(r) + r \eta(r) (\cos 2\theta - 1) \cdot \eta(r) = (\varepsilon + \Delta')/2$. The normalized ω_{\star} is

$$\bar{\omega}_{\star} = \frac{1}{2} \frac{m \partial \bar{F} / \partial x}{\partial \bar{F} / \partial \bar{\epsilon}} \frac{1}{x} \frac{R}{a} \frac{\rho_h}{a} \tag{40}$$

where, m is poloidal mode number, $\rho_h = v_h/\Omega$, $v_h = \sqrt{2T_h/M}$, $\Omega = Be/M$. The normalized ρ_d is

$$\bar{\rho}_d = \frac{\rho_d}{a} = \frac{q}{2} \frac{\rho_h}{a} \sqrt{\frac{\bar{\epsilon}}{(1 - \Lambda/b)}} \left[\frac{\Lambda}{b} + 2\left(1 - \frac{\Lambda}{b}\right) \right]$$
(41)

The normalized ξ are

$$\bar{\xi}_r(\theta, x) = \bar{\xi}_0 \cos \theta$$

$$\bar{\xi}_{\theta}\left(\theta,x\right) = -\bar{\xi}_{0}x\sin\theta$$

within q=1 surface. In the inertial region $r_s-\frac{\Delta r}{2}\leq r\leq r_s+\frac{\Delta r}{2},$

$$\bar{\xi}_r(\theta, x) = \bar{\xi}_0 \left(\frac{\bar{\Delta}r - x + (\bar{r}_s - \bar{\Delta}r/2)}{\bar{\Delta}r} \right) \cos \theta$$

$$\bar{\xi}_\theta(\theta, x) = -\bar{\xi}_0 \left(\frac{\bar{\Delta}r - x + (\bar{r}_s - \bar{\Delta}r/2)}{\bar{\Delta}r} \right) x \sin \theta + \bar{\xi}_0 \left(\frac{x}{\bar{\Delta}r} \right) x \sin \theta$$

with $\bar{\xi}_0 = \xi_0/a$, $\bar{r}_s = r_s/a$, $\overline{\Delta r} = \Delta r/a$, x = r/a.

The normalized $\delta \bar{W}_k$ is given by

$$\delta \bar{W}_{k} = \int \frac{\bar{J}}{q} dx \int d\Lambda \bar{\epsilon}^{3} d\bar{\epsilon} \frac{\partial \bar{F}}{\partial \bar{\epsilon}} \bar{\tau}_{b} (\bar{\omega} - \bar{\omega}_{\star})$$

$$\cdot \sum_{-\infty}^{\infty} \frac{\left|\bar{Y}_{p}\right|^{2}}{n\left\langle \bar{\dot{\phi}}\right\rangle + p\bar{\omega}_{b} - \bar{\omega}},$$
(42)

where $\bar{J} = x$.

For passing particles,

$$\bar{\omega}_b = \frac{\pi\sqrt{\kappa}}{K\left(\kappa^{-1}\right)} \frac{\sqrt{\varepsilon\Lambda/2}}{q} \sqrt{\bar{\epsilon}} \tag{43}$$

where, $\kappa = \frac{1 - \Lambda(1 - \varepsilon)}{2\varepsilon\Lambda}$, $\varepsilon = \frac{r}{R_0}$. and

$$\left\langle \bar{\dot{\phi}} \right\rangle \cong q\bar{\omega}_b$$
 (44)

$$\omega_b t = \bar{\omega}_b \frac{v_h}{R} \int_0^\theta \frac{qR_0}{\sqrt{2(T/M)} \bar{\epsilon} b \sqrt{1 - \frac{\Lambda}{h}}} d\theta \tag{45}$$

$$=\int_{0}^{\theta}\frac{\pi\sqrt{\kappa}}{K\left(\kappa^{-1}\right)}\sqrt{\varepsilon\Lambda/2}\frac{1}{b\sqrt{1-\frac{\Lambda}{b}}}d\theta$$

$$Y_{p}\left(\Lambda, \bar{r}; \sigma\right) = \frac{1}{\tau_{b}} \oint d\tau \tilde{G}\left(\tau\right) \exp\left(-ip\omega_{b}\tau\right) \tag{46}$$

$$=\frac{\omega_{b}}{2\pi}\oint d\tau \tilde{G}\left[r\left(\tau\right),\theta\left(\tau\right)\right]\exp\left(-ip\omega_{b}\tau\right)$$

$$=\frac{1}{2\pi} \oint d\left(\omega_b \tau\right) \tilde{G}\left[r\left(\tau\right), \theta\left(\tau\right)\right] \exp\left(-ip\omega_b \tau\right)$$

$$=\frac{1}{2\pi}\int_{0}^{2\pi}d\theta\frac{\sigma\pi\sqrt{\kappa}}{K\left(\kappa^{-1}\right)}\frac{\sqrt{\varepsilon\Lambda/2}}{b\sqrt{1-\frac{\Lambda}{b}}}\tilde{G}\left[r\left(\tau\right),\theta\left(\tau\right)\right]\exp\left(-ip\int_{0}^{\theta}d\theta'\frac{\sigma\pi\sqrt{\kappa}}{K\left(\kappa^{-1}\right)}\frac{\sqrt{\varepsilon\Lambda/2}}{b\sqrt{1-\frac{\Lambda}{b}}}\right)$$

where

$$\tilde{G}\left[x\left(\tau\right),\theta\left(\tau\right)\right] = \left(\frac{\Lambda}{b\left(x,\theta\right)} + 2\left(1 - \frac{\Lambda}{b\left(x,\theta\right)}\right)\right)$$

$$\cdot \left(\left(\bar{g}^{\theta\theta} \bar{\kappa}_{\theta} + \bar{g}^{r\theta} \bar{\kappa}_{r} \right) \bar{\hat{\xi}}_{\theta} \left(\theta, \bar{x} + \bar{\rho}_{d} \cos \theta \right) + \left(\bar{g}^{rr} \bar{\kappa}_{r} + \bar{g}^{r\theta} \bar{\kappa}_{\theta} \right) \bar{\hat{\xi}}_{r} \left(\theta, \bar{x} + \bar{\rho}_{d} \cos \theta \right) \right)$$

where, the normalized displacements are $\bar{\hat{\xi}}_{\theta m} = \hat{\xi}_{\theta m}/a^2$, $\bar{\hat{\xi}}_{rm} = \hat{\xi}_{rm}/a$ and normalized drift orbit width is $\bar{\rho}_d = \frac{\rho_d}{a}$. The normalized slowing down distribution function of fast ions is given by[M.

Schneller 2013

$$\bar{F}\left(x,\bar{\epsilon},\Lambda\right) = \frac{1}{\bar{\epsilon}^{3/2} + \bar{\epsilon}_{c}^{3/2}} Erfc\left(\frac{\bar{\epsilon} - \bar{\epsilon}_{0}}{\Delta \bar{\epsilon}}\right) \exp\left[-\left(\frac{x - x_{0}}{\Delta x}\right)^{2}\right] \exp\left[-\left(\frac{\Lambda - \Lambda_{0}}{\Delta \Lambda}\right)^{2}\right]$$
(47)

The normalized metric tensors are

$$\bar{g}^{rr} = 1 + \frac{1}{2}\varepsilon\cos\theta\tag{48}$$

$$\bar{g}^{\theta\theta} = \frac{1}{x^2} \left[1 - \frac{5}{2} \varepsilon \cos \theta \right] \tag{49}$$

$$\bar{g}^{r\theta} = -\frac{1}{r} \frac{3}{2} \varepsilon \sin \theta \tag{50}$$

The normalized curvature are in low beta limit

$$\bar{\kappa}_r = -\frac{a}{R}\cos\theta\tag{51}$$

$$\bar{\kappa}_{\theta} = \varepsilon \sin \theta \tag{52}$$

The normalized ω_{\star} is

$$\bar{\omega}_{\star} = \frac{1}{2} \frac{m \partial \bar{F} / \partial x}{\partial \bar{F} / \partial \bar{\epsilon}} \frac{1}{x} \frac{R}{a} \frac{\rho_h}{a} \tag{53}$$

The normalized ξ are

$$\bar{\xi}_r\left(\theta, x\right) = \bar{\xi}_0 \cos \theta$$

$$\bar{\xi}_{\theta}\left(\theta,x\right) = -\bar{\xi}_{0}x\sin\theta$$

within q = 1 surface. In the inertial region $r_s - \frac{\Delta r}{2} \le r \le r_s + \frac{\Delta r}{2}$,

$$\bar{\xi}_r(\theta, x) = \bar{\xi}_0 \left(\frac{\bar{\Delta}r - x + (\bar{r}_s - \bar{\Delta}r/2)}{\bar{\Delta}r} \right) \cos \theta$$

$$\bar{\xi}_\theta(\theta, x) = -\bar{\xi}_0 \left(\frac{\bar{\Delta}r - x + (\bar{r}_s - \bar{\Delta}r/2)}{\bar{\Delta}r} \right) x \sin \theta + \bar{\xi}_0 \left(\frac{x}{\bar{\Delta}r} \right) x \sin \theta$$

with $\bar{\xi}_0 = \xi_0/a$, $\bar{r}_s = r_s/a$, $\overline{\Delta r} = \Delta r/a$, x = r/a.

The formula for δW_{MHD} , δI [Miyamoto, "Plasma Physics and Controlled Nuclear Fusion"] The energy principle is

$$\delta W_{MHD} + \delta W_k + \delta I = 0 \tag{54}$$

where

$$\delta I = \frac{\gamma^2}{2} \int \rho_m \left| \vec{\xi} \right|^2 d\vec{r} \tag{55}$$

$$\delta W_k = \frac{1}{2} \int \vec{\xi} \cdot \nabla \delta p_h d\vec{r} \tag{56}$$

 δW_{MHD} consists of the contribution δW_{MHD}^s from the singular region near the rational surface and the contribution δW_{MHD}^{ext} from the external region.

The MHD potential energy $\delta W_{MHDtor}^{ext}/2\pi R$ of toroidal plasma with circular cross-section is given by

$$\frac{\delta W_{MHDtor}^{ext}}{2\pi R} = \left(1 - \frac{1}{n^2}\right) \frac{\delta W_{MHDcycl}^{ext}}{2\pi R} + \frac{\pi B_{\theta s}^2}{2\mu_0} \left|\xi_s\right|^2 \delta \hat{W}_T \tag{57}$$

$$\delta \hat{W}_T = \pi \left(\frac{r_s}{R}\right)^2 3 \left(1 - q_0\right) \left(\frac{13}{144} - \beta_{ps}^2\right) \tag{58}$$

The term δW^s_{MHD} for the singular region is

$$\frac{\delta W_{MHD}^s}{2\pi R} = \frac{\pi}{2\mu_0} \frac{B_{\theta s}^2}{2\pi} sn\gamma \tau_{A\theta} \left| \xi_s \right|^2 \tag{59}$$

Thus, for m = 1, n = 1,

$$\begin{split} \delta W_{MHD} + \delta I &= 2\pi R \frac{B_{\theta s}^2}{2\mu_0} \left| \xi_s \right|^2 \left(\delta \hat{W}_T + \gamma \tau_{A\theta} \frac{s}{2} + \pi \gamma^2 \tau_{A\theta}^2 \right) \\ &\approx 2\pi R \frac{B_{\theta s}^2}{2\mu_0} \left| \xi_s \right|^2 \left(\delta \hat{W}_T + \frac{\gamma}{\omega_A} \right) \end{split}$$

where $\gamma = -i\omega$, $\omega_A \equiv (\tau_A s/2)^{-1}$. The dispersion relation is

$$\frac{2\pi R \frac{B_{\theta s}^2}{2\mu_0} |\xi_s|^2 \left(\delta \hat{W}_T + \frac{-i\omega}{\omega_A}\right)}{\left(\frac{\pi^2}{M} \frac{e^2 B^2}{\Omega^2} a^2 R_0 n_0 \frac{T_h}{M}\right)} + \delta \bar{W}_k = 0.$$
 (60)