Pulse Class Documentation

Quantum Simulation Toolkit

April 11, 2025

1 Overview

The Pulse class models time-dependent laser parameters for quantum simulations:

- $\Omega(t)$: Rabi frequency (MHz)
- $\phi(t)$: Phase (radians)
- $\delta(t)$: Detuning (MHz)

2 Class Features

- Independent configuration of Ω , ϕ , and δ
- Pre-built waveform shapes: constant, gaussian, linear
- Custom mathematical functions support
- Integrated visualization

3 Initialization

```
pulse = Pulse() # No required arguments
```

4 Configuration Methods

Configure parameters independently using:

```
pulse.set_omega(shape: str, **kwargs)
pulse.set_phi(shape: str, **kwargs)
pulse.set_delta(shape: str, **kwargs)
```

4.1 Supported Waveform Types

Shape	Parameters	Description
constant	value: float	Fixed value
gaussian	amp, t0, sigma: float	Gaussian pulse
linear	slope, intercept: float	Linear ramp
custom	func: Callable	User-defined function

5 Visualization

Plot parameters over time:

```
pulse.plot(t_range=(0, 5), num_points=200)
```


Figure 1: Sample pulse visualization showing Gaussian $\Omega(t)$, linear $\phi(t)$, and constant $\delta(t)$

6 Example Usage

6.1 Basic Configuration

```
\begin{array}{lll} pulse &=& Pulse() \\ pulse.set\_omega('gaussian', amp=10.0, t0=2.5, sigma=0.5) \\ pulse.set\_phi('linear', slope=np.pi/2, intercept=0.0) \\ pulse.set\_delta('constant', value=1.0) \end{array}
```

6.2 Custom Waveform

```
\# Custom \ delta(t) = sin(2 *0.5*t)
pulse.set_delta('custom',
func=lambda t, p: np.sin(2*np.pi*0.5*t))
```

Notes

- Time units: microseconds (μ s)
- \bullet Frequency units: MHz for Ω and δ
- Phase values not automatically wrapped to 2π
- Custom functions must accept (t, params) arguments