) X= {(x:,y:)...(xn,y)} X; ER y; E {0, B} 0 t R 0 (0) = 1 tea L(y/x;m) = y/log(o-(~x;))+ (1-y;) log(o-(~x;)) make any to or the same to simplify things X DEDEN EDX 5 (a) = 1+ea $= \frac{e^{-\alpha} + (1 - 1)}{e^{-\alpha} + 1} = \frac{e^{-\alpha} + 1}{e^{-\alpha} + 1} = \frac{1}{e^{-\alpha} + 1}$ · (0-(-0) = 00000 let a=wTX; L(3:1x:1,1)=2:100(0(0))+(1-2:)100(001-0(0)) 2 - D5 ga, Dn Oriving r(2:1x:n) = 2:100(5)+(1-2:)100(1-5)

L(9:1xi,w) = 9:10g(Z) + (1-9:) log(1-2:)

(3) Find
$$\frac{\partial L}{\partial z_i}$$
 $\frac{\partial L}{\partial z_i} = \frac{\partial i}{\partial z_i} + \frac{(1-y_i)}{(1-z_i)}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial i}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z_i} + \frac{\partial L}{\partial z_i}$
 $\frac{\partial$

 $a_i = wX_i$

(5) First Da; = X; (power rule/constant dossor)

(6) Put in together (Tayl)
01(0:1xim)=0102: dai
02:00:00

= \(\frac{2}{2}; \lambda = \lambda (1-2) \cdot \times \)

DN = (2: -5:) ·x:

=(V;- o(wTx;)). X;

Du? = (2:-2(~,×:)) X:?

 $\frac{\partial}{\partial w}(|w_{1}(w_{1}x_{1}+b)) = -y_{1}x_{1}$ $\frac{\partial}{\partial w}(|w_{2}(w_{1}x_{1}+b)) = -y_{1}x_{1}$ f(w) = 511 m/2 + (\frac{2}{5} mox(0, 1-9; (\nt x; tb)) $\frac{\partial^{2}}{\partial w} = w + (.\frac{2}{[i-y,(w^{T}x;tb)^{70}].-y;x;})$ TEIL O IF X forlige

Where [X] = { 1 ; F X true $\frac{\partial f(n)}{\partial v_{i}} = w_{i} + c \underbrace{\sum_{i=1}^{n} (v_{i} \times v_{i})}_{i=1} = w_{i} + c \underbrace{\sum_$

CSCI 5525 HW2

Daniel Chang

February 2023

2: Logistic Regression

Error rate for Logistic Regression												
η	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.00000	0.50000	0.54375	0.53125	0.51875	0.48750	0.50000	0.63125	0.58750	0.55000	0.47500	0.53250	0.04565
0.00001	0.15000	0.21250	0.14375	0.21250	0.15625	0.15000	0.20000	0.19375	0.13125	0.11250	0.16625	0.03380
0.00010	0.01250	0.00625	0.00625	0.03750	0.01250	0.00625	0.03750	0.01875	0.01875	0.01250	0.01688	0.01120
0.00100	0.01250	0.00625	0.00000	0.03125	0.01875	0.00625	0.03750	0.01875	0.01250	0.00625	0.01500	0.01125
0.01000	0.01250	0.00625	0.00000	0.02500	0.01250	0.00625	0.03125	0.01250	0.00625	0.00625	0.01188	0.00904

Best $\eta = 0.01$.

Logistic Regression test error rate: 0.005

4: SVM

Error rate for SVM												
η , c	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
(1e-05, 0.01)	0.01250	0.00625	0.00000	0.03125	0.01875	0.00625	0.03125	0.01875	0.01250	0.00625	0.01438	0.01010
(1e-05, 0.1)	0.01250	0.00625	0.00000	0.02500	0.01875	0.00625	0.03125	0.01250	0.00625	0.00625	0.01250	0.00927
(1e-05, 1)	0.00625	0.00625	0.00000	0.02500	0.01875	0.00625	0.03125	0.01250	0.01250	0.01250	0.01313	0.00904
(1e-05, 10)	0.00625	0.00625	0.00000	0.02500	0.01875	0.00625	0.03125	0.00625	0.01250	0.01250	0.01250	0.00927
(1e-05, 100)	0.01250	0.00625	0.00000	0.02500	0.01875	0.00625	0.03125	0.00625	0.01250	0.00625	0.01250	0.00927
(0.0001, 0.01)	0.01250	0.00625	0.00000	0.02500	0.01250	0.00625	0.03125	0.01250	0.00625	0.00625	0.01188	0.00904
(0.0001, 0.1)	0.00625	0.00625	0.00000	0.02500	0.01250	0.00000	0.03125	0.01250	0.00625	0.00625	0.01063	0.00970
(0.0001, 1)	0.00625	0.00625	0.00000	0.02500	0.01875	0.00625	0.03125	0.01250	0.01250	0.01250	0.01313	0.00904
(0.0001, 10)	0.01250	0.00625	0.00000	0.02500	0.01875	0.00625	0.03125	0.00625	0.01250	0.01250	0.01313	0.00904
(0.0001, 100)	0.00625	0.00625	0.00000	0.02500	0.01250	0.00625	0.03125	0.00625	0.31250	0.01250	0.04188	0.09066
(0.001, 0.01)	0.01250	0.00625	0.00000	0.02500	0.01250	0.00625	0.03125	0.01250	0.00625	0.00625	0.01188	0.00904
(0.001, 0.1)	0.00625	0.00625	0.00000	0.02500	0.01250	0.00000	0.03125	0.01250	0.00625	0.00625	0.01063	0.00970
(0.001, 1)	0.00625	0.00625	0.00000	0.02500	0.01875	0.00625	0.03125	0.01875	0.01250	0.00625	0.01313	0.00946
(0.001, 10)	0.00625	0.00625	0.00000	0.03125	0.01875	0.00625	0.03125	0.01250	0.08750	0.36250	0.05625	0.10488
(0.001, 100)	0.01250	0.00625	0.00000	0.02500	0.01875	0.00625	0.03125	0.01250	0.02500	0.04375	0.01813	0.01264

Best η and c: 0.0001, 0.1 Test error rate: 0.0075