Intro to Raspberry Pi

ECE 196 Ravi Patel

Agenda

- Use the following <u>link</u> for RPi setup
- What if Raspberry Pi?
- "Hello World" of Circuits in RPi
- RGB LED
- DHT22 Sensor

What is Raspberry Pi?

- RPi is a "low cost, credit-card sized computer"
- Does need a power supply, keyboard, and potentially a monitor
 - Refer to the following <u>link</u> for the official documentation and specs
- It can be used to learn how to program

Raspberry Pi Pinout

"Hello World" of Circuits

LED Circuit

- Cathode $(-) \rightarrow Ground$
- Anode (+) \rightarrow One end of Resistor
- Resistor → GPIO Pin

"Hello World" of Circuits -- Python Code

import RPi.GPIO as GPIO

import time

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

GPIO.setup(17, GPIO.OUT)

GPIO.output(17, GPIO.HIGH)

time.sleep(1)

GPIO.output(17, GPIO.LOW)

Challenge 1

Modify the code so that LED blinks indefinitely every half a second.

Challenge 1: Solution

while 1:

GPIO.output(17, GPIO.HIGH)

time.sleep(0.5)

GPIO.output(17, GPIO.LOW)

time.sleep(0.5)

RGB LED

RGB LED -- Color Spectrum

Challenge 2

Write a python script that blinks through all possible spectrum of colors. Do so in the following order:

Red \rightarrow yellow \rightarrow green \rightarrow cyan \rightarrow blue \rightarrow magenta \rightarrow white

Have a 1 sec delay between each transition.

NOTE: don't forget the resistor before each of the RGB terminals

Challenge 2 -- Solution

```
import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
RED PIN = 17
GREEN PIN = 27
BLUE PIN = 22
GPIO.setup( RED_PIN, GPIO.OUT )
GPIO.setup( GREEN_PIN, GPIO.OUT )
GPIO.setup( BLUE_PIN, GPIO.OUT )
```

```
def blink(red, green, blue):
    GPIO.output( RED_PIN, red )
    GPIO.output( GREEN_PIN, green )
    GPIO.output( BLUE_PIN, blue )

    time.sleep(1)
    GPIO.output( RED_PIN, GPIO.LOW )
    GPIO.output( GREEN_PIN, GPIO.LOW )
    GPIO.output( BLUE_PIN, GPIO.LOW )
    time.sleep(1)
```

Challenge 2 -- Solution Cont.

```
blink( GPIO.HIGH, GPIO.LOW, GPIO.LOW ) ## Red blink( GPIO.HIGH, GPIO.HIGH, GPIO.LOW ) ## Yellow blink( GPIO.LOW, GPIO.HIGH, GPIO.LOW ) ## Green blink( GPIO.LOW, GPIO.HIGH, GPIO.HIGH ) ## Blue blink( GPIO.HIGH, GPIO.LOW, GPIO.HIGH ) ## Magenta blink( GPIO.HIGH, GPIO.HIGH, GPIO.HIGH) ## White
```

DHT22 Sensor

DHT22 sensor is primarily used as a humidity and temperature sensor.

DHT22 Circuit

import Adafruit_DHT

DHT_SENSOR = Adaruit_DHT.DHT22 DHT_PIN = 4

hum, temp = Adaruit_DHT.read_retry(DHT_SENSOR, DHT_PIN)

print("Humidity =", hum)
print("Temperature =", temp)

NOTE: 10K resistor was used here

Challenge 3

Modify the code to read the temperate and humidity every 10 sec.

Challenge 3 -- Solution

```
import Adafruit_DHT

DHT_SENSOR = Adaruit_DHT.DHT22
DHT_PIN = 4

while 1:
    hum, temp = Adaruit_DHT.read_retry( DHT_SENSOR, DHT_PIN )

print("Humidity =", hum)
    print("Temperature =", temp)

time.sleep(10)
```