1.12 1) $(2\sqrt[3]{5})^3 = 8 \cdot 5 = 40$ $(3\sqrt[3]{4})^3 = 27 \cdot 4 = 108$ Puisque 40 < 108, on en déduit que $2\sqrt[3]{5} < 3\sqrt[3]{4}$.

> 2) $(5\sqrt[4]{6})^4 = 625 \cdot 6 = 3750$ $(6\sqrt[4]{5})^4 = 1296 \cdot 5 = 6480$ Étant donné que 3750 < 6480, on en tire que $5\sqrt[4]{6} < 6\sqrt[4]{5}$.

3) $(\sqrt[3]{4})^{12} = ((\sqrt[3]{4})^3)^4 = 4^4 = 256$ $(\sqrt[4]{3})^{12} = ((\sqrt[4]{3})^4)^3 = 3^3 = 27$ Comme 256 > 27, on conclut que $\sqrt[3]{4} > \sqrt[4]{3}$.

4) $(\sqrt{5})^6 = ((\sqrt{5})^2)^3 = 5^3 = 125$ $(\sqrt[3]{11})^6 = ((\sqrt[3]{11})^3)^2 = 11^2 = 121$ Vu que 125 > 121, on obtient $\sqrt{5} > \sqrt[3]{11}$.

5) $(\sqrt[3]{3})^{15} = ((\sqrt[3]{3})^3)^5 = 3^5 = 243$ $(\sqrt[5]{5})^{15} = ((\sqrt[5]{5})^5)^3 = 5^3 = 125$ Attendu que 243 > 125, il en résulte que $\sqrt[3]{3} > \sqrt[5]{5}$.