ON THE SIZE OF APPROXIMATELY CONVEX SETS IN NORMED SPACES

S. J. DILWORTH, RALPH HOWARD AND JAMES W. ROBERTS

ABSTRACT. Let X be a normed space. A set $A\subseteq X$ is approximately convex if $d(ta+(1-t)b,A)\leq 1$ for all $a,b\in A$ and $t\in [0,1]$. We prove that every n-dimensional normed space contains approximately convex sets A with $\mathcal{H}(A,\operatorname{Co}(A))\geq \log_2 n-1$ and $\operatorname{diam}(A)\leq C\sqrt{n}(\ln n)^2$, where \mathcal{H} denotes the Hausdorff distance. These estimates are reasonably sharp. For every D>0, we construct worst possible approximately convex sets in C(0,1) such that $\mathcal{H}(A,\operatorname{Co}(A))=\operatorname{diam}(A)=D$. Several results pertaining to the Hyers-Ulam stability theorem are also proved.

1.	Introduction	1
2.	Approximately convex functions	4
3.	Approximately convex sets	7
4.	Diameter of approximately convex sets	11
5.	Bounds in Euclidean spaces	15
6.	Lower bounds in spaces of type p	22
7.	Sets with $diam(A) = \mathcal{H}(A, Co(A))$	25
References		31

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SOUTH CAROLINA
COLUMBIA, SC 29208, U.S.A.
E-mail address:
dilworth@math.sc.edu,
howard@math.sc.edu,
roberts@math.sc.edu

Date: August 5, 1999.