Observation of Fine Time Structures in the Cosmic Proton and Helium Fluxes with the Alpha Magnetic Spectrometer on the International Space Station - SUPPLEMENTAL MATERIAL -

(AMS Collaboration)

 $\text{Helium Flux} \left[\text{m}^2 \, \text{sr}^1 \, \text{s}^{\text{-}1} \, \text{GV}^{\text{-}1}\right]$ May - 2011 May - 2012 May - 2013 May - 2014 May - 2015 May - 2016 May - 2017 4 5 6 7 8 910 Rigidity [GV] 20 40 50 60

FIG. SM 1. The three-dimensional detailed behavior of the AMS (a) proton and (b) helium fluxes as functions of time and rigidity from 1 to 60 GV and 1.9 to 60 GV, respectively. The color code indicates the flux intensity in units of $[m^2 \cdot sr \cdot s \cdot GV]^{-1}$.

FIG. SM 2. The relative variations of the AMS proton integral flux as a function of time together with the relative variation of the rate reported by the Oulu, Finland neutron monitor [37]. In order to compare the neutron monitor measurement with the AMS data, the AMS proton flux has been integrated above the given minimum rigidity. The AMS error bars are the quadratic sum of the statistical and time dependent systematic errors. Both the AMS integral proton flux and the neutron monitor rate are normalized to their average values from May 2011 to May 2017. The relative time dependent variation for this neutron monitor matches the AMS proton flux only when the flux is integrated over rigidities greater than 6.47 GV.

TABLE SM I: Bartels Rotation 2426 (May 15, 2011 – June 10, 2011). Days from May 15 to May 19, 2011 are not included because AMS data taking started on May 20, 2011. The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot sr \cdot s \cdot GV]^{-1}$ including errors due to statistics ($\sigma_{stat.}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity $\Phi_p = \sigma_{\text{stat.}} \ \sigma_{\text{time}} \ \sigma_{\text{syst.}}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time}}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (9.531 \ 0.083 \ 0.206 \ 0.454) \times 10^{-1}$			_
$1.16 - 1.33 (9.180 \ 0.048 \ 0.144 \ 0.344) \times 10^{-1}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.33 - 1.51 (8.543 \ 0.039 \ 0.101 \ 0.257) \times 10^{-1}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.51 - 1.71 (7.924 \ 0.027 \ 0.075 \ 0.214) \times 10^{-1}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.71 - 1.92 (7.044 \ 0.020 \ 0.057 \ 0.171) \times 10^{-1}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.92 - 2.15 (6.179 \ 0.017 \ 0.044 \ 0.136) \times 10^{-6} (6.179 \ 0.017 \ 0.044 \ 0.136) \times 10^{-6} (6.179 \ 0.017 \ 0.044 \ 0.136) \times 10^{-6} (6.179 \ 0.017 \ 0.044 \ 0.136) \times 10^{-6} (6.179 \ 0.017 \ 0.044 \ 0.136) \times 10^{-6} (6.179 \ 0.017 \ 0.044 \ 0.136) \times 10^{-6} (6.179 \ 0.017 \ 0.044 \ 0.136) \times 10^{-6} (6.179 \ 0.017 \ 0.044 \ 0.136) \times 10^{-6} (6.179 \ 0.017 \ 0.044 \ 0.136) \times 10^{-6} (6.179 \ 0.017 \ 0.044 \ 0.136) \times 10^{-6} (6.179 \ 0.017 \ 0.044 \ 0.136) \times 10^{-6} (6.179 \ 0.017 \ 0.044 \ 0.136) \times 10^{-6} (6.179 \ 0.017 \ 0.044 \ 0.136) \times 10^{-6} (6.179 \ 0.044 \ 0$	2 $(7.235 \ 0.064 \ 0.093 \ 0.172) \times 10^{-1}$	$8.539 \ 0.078 \ 0.125$	0.266
$2.15 - 2.40 (5.329 \ 0.014 \ 0.034 \ 0.109) \times 10^{-6}$	2 $(6.668 \ 0.054 \ 0.072 \ 0.138) \times 10^{-2}$	$7.992 \ 0.068 \ 0.100$	0.221
$2.40 - 2.67 (4.548 \ 0.011 \ 0.027 \ 0.087) \times 10^{-6} $	2 $(5.978 \ 0.045 \ 0.059 \ 0.113) \times 10^{-3}$	$7.608 \ 0.060 \ 0.087$	0.194
$2.67 - 2.97 (3.846 \ 0.009 \ 0.022 \ 0.068) \times 10^{-6}$	2 $(5.317 \ 0.038 \ 0.051 \ 0.095) \times 10^{-2}$	$7.234 \ 0.054 \ 0.080$	0.174
$2.97 - 3.29 (3.231 \ 0.008 \ 0.018 \ 0.055) \times 10^{-6} $	2 $(4.608 \ 0.031 \ 0.041 \ 0.079) \times 10^{-1}$	$7.012 \ 0.050 \ 0.073$	0.161
$3.29 - 3.64 (2.700 \ 0.006 \ 0.015 \ 0.044) \times 10^{-6}$	$(3.942\ 0.026\ 0.032\ 0.066) \times 10^{-2}$	$6.850 \ 0.048 \ 0.068$	0.153
$3.64 - 4.02 (2.238 \ 0.005 \ 0.013 \ 0.036) \times 10^{-6}$	$(3.349 \ 0.022 \ 0.025 \ 0.055) \times 10^{-2}$	$6.683 \ 0.046 \ 0.063$	0.145
$4.02 - 4.43 (1.850 \ 0.004 \ 0.011 \ 0.029) \times 10^{-1}$	$(2.820 \ 0.018 \ 0.020 \ 0.045) \times 10^{-2}$	$6.561 \ 0.044 \ 0.060$	0.139
$4.43 - 4.88 (1.512 \ 0.003 \ 0.008 \ 0.024) \times 10^{-6} (1.512 \ 0.003 \ 0.008 \ 0.004) \times 10^{-6} (1.512 \ 0.008 \ 0.008 \ 0.004) \times 10^{-6} (1.512 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (1.512 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (1.512 \ 0.008) \times 10^{-6} (1$	2 (2.371 0.014 0.016 0.038)×10	$\begin{vmatrix} 6.377 & 0.041 & 0.057 \end{vmatrix}$	0.133
$4.88 - 5.37 (1.230 \ 0.003 \ 0.007 \ 0.018) \times 10^{-6}$	2 $(1.972 \ 0.012 \ 0.013 \ 0.031) \times 10^{-2}$	$ \begin{vmatrix} 6.238 & 0.039 & 0.053 \end{vmatrix} $	0.127
$5.37 - 5.90 (9.986 \ 0.022 \ 0.050 \ 0.145) \times 10$	$1 (1.603 \ 0.010 \ 0.010 \ 0.025) \times 10^{-1} $	$ \begin{vmatrix} 6.230 & 0.040 & 0.050 \end{vmatrix} $	0.124
$5.90 - 6.47 (8.062 \ 0.018 \ 0.039 \ 0.115) \times 10$	$1 (1.328 \ 0.008 \ 0.008 \ 0.020) \times 10^{-1} $	$\begin{vmatrix} 6.072 & 0.039 & 0.047 \end{vmatrix}$	0.119
$6.47 - 7.09 (6.539 \ 0.015 \ 0.030 \ 0.093) \times 10$,	$6.010 \ 0.038 \ 0.047$	0.117
$7.09 - 7.76 (5.287 \ 0.012 \ 0.024 \ 0.075) \times 10$	$1 (8.919 \ 0.053 \ 0.056 \ 0.137) \times 10^{6} $	$5.928 \ 0.037 \ 0.046$	0.114
$7.76 - 8.48 (4.268 \ 0.010 \ 0.019 \ 0.060) \times 10$	$1 (7.252 \ 0.043 \ 0.047 \ 0.111) \times 10^{6} $	$5.886 \ 0.038 \ 0.046$	0.112
$8.48 - 9.26 (3.425 \ 0.008 \ 0.016 \ 0.048) \times 10$	$1 (5.871 \ 0.036 \ 0.039 \ 0.090) \times 10^{6} $	$5.833 \ 0.039 \ 0.047$	0.111
$9.26 - 10.1 (2.744 \ 0.007 \ 0.013 \ 0.038) \times 10$	$1 (4.782 \ 0.031 \ 0.033 \ 0.074) \times 10^{6} $	$5.738 \ 0.040 \ 0.048$	0.110
$10.1 - 11.0 (2.217 \ 0.006 \ 0.011 \ 0.031) \times 10$	$1 (3.919 \ 0.026 \ 0.028 \ 0.061) \times 10^{6} $	$5.658 \ 0.041 \ 0.049$	0.108
$11.0 - 12.0 (1.771 \ 0.005 \ 0.009 \ 0.025) \times 10$	$1 (3.125 \ 0.022 \ 0.024 \ 0.049) \times 10^{6} $	$5.668 \ 0.043 \ 0.051$	0.109
$12.0 - 13.0 (1.422 \ 0.004 \ 0.007 \ 0.020) \times 10$			0.106
$13.0 - 14.1 (1.153 \ 0.004 \ 0.006 \ 0.017) \times 10$,		0.108
$14.1 - 15.3 (9.250 \ 0.029 \ 0.050 \ 0.133) \times 10^{-6} (9.250 \ 0.029 \ 0.050 \ 0.133) \times 10^{-6} (9.250 \ 0.029 \ 0.050 \ 0.133) \times 10^{-6} (9.250 \ 0.029 \ 0.050 \ 0.133) \times 10^{-6} (9.250 \ 0.029 \ 0.050 \ 0.133) \times 10^{-6} (9.250 \ 0.029 \ 0.050 \ 0.133) \times 10^{-6} (9.250 \ 0.029 \ 0.050 \ 0.133) \times 10^{-6} (9.250 \ 0.029 \ 0.050 \ 0.133) \times 10^{-6} (9.250 \ 0.029 \ 0.050 \ 0.133) \times 10^{-6} (9.250 \ 0.029 \ 0.050 \ 0.133) \times 10^{-6} (9.250 \ 0.029 \ 0.050 \ 0.133) \times 10^{-6} (9.250 \ 0.029 \ 0.050 \ 0.133) \times 10^{-6} (9.250 \ 0.029 \ 0.050 \ 0.133) \times 10^{-6} (9.250 \ 0.029 \ 0.050 \ 0.133) \times 10^{-6} (9.250 \ 0.029 \ 0.050 \ 0.133) \times 10^{-6} (9.250 \ 0.029 \ 0.050 \ 0.133) \times 10^{-6} (9.250 \ 0.029 \ 0.050 \ 0.133) \times 10^{-6} (9.250 \ 0.029 \ 0.050 \ 0.133) \times 10^{-6} (9.250 \ 0.029 \ 0.050 \ 0.029 \ 0.050 \ 0.029 \ 0.050 \ 0.029 (9.250 \ 0.029 \ 0.029 \ 0.029 \ 0.029 \ 0.029 \ 0.029 (9.250 \ 0.029 \ 0.029 \ 0.029 \ 0.029 \ 0.029 \ 0.029 \ 0.029 \ 0.029 (9.250 \ 0.029 \ 0.$	$0 (1.699 \ 0.014 \ 0.015 \ 0.027) \times 10^{6} $	5.446 0.047 0.055	0.108

TABLE SM I: Bartels Rotation 2426 (May 15, 2011 – June 10, 2011). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$p/\text{He }\sigma_{ ext{stat.}}$ $\sigma_{ ext{time }}$ $\sigma_{ ext{syst.}}$
$15.3 - 16.6 (7.427 \ 0.024 \ 0.041 \ 0.108) \times 10$	$0 (1.402 \ 0.012 \ 0.013 \ 0.023) \times 10^{0} $	5.299 0.047 0.056 0.107
$16.6 - 18.0 (5.974 \ 0.020 \ 0.034 \ 0.088) \times 10$	$0 (1.122 \ 0.010 \ 0.011 \ 0.019) \times 10^{0}$	5.325 0.049 0.059 0.109
$18.0 - 19.5 (4.834 \ 0.017 \ 0.029 \ 0.073) \times 10$	$0 (9.265 \ 0.081 \ 0.093 \ 0.157) \times 10^{-1} $	$\begin{bmatrix} -1 \\ 5.218 & 0.049 & 0.061 & 0.108 \end{bmatrix}$
$19.5 - 21.1 (3.871 \ 0.014 \ 0.024 \ 0.059) \times 10$	$0 \mid (7.485 \ 0.067 \ 0.079 \ 0.129) \times 10^{-1}$	$\begin{bmatrix} -1 \\ 5.172 \\ 0.050 \\ 0.063 \\ 0.108 \end{bmatrix}$
$21.1 - 22.8 (3.127 \ 0.011 \ 0.020 \ 0.048) \times 10$	$0 (6.137 \ 0.056 \ 0.066 \ 0.107) \times 10^{-1}$	$\begin{bmatrix} -1 \\ 5.095 \\ 0.050 \\ 0.063 \\ 0.108 \end{bmatrix}$
$22.8 - 24.7 (2.522 \ 0.009 \ 0.016 \ 0.039) \times 10$	$0 (4.999 \ 0.046 \ 0.055 \ 0.088) \times 10^{-1}$	$\begin{bmatrix} 5.045 & 0.050 & 0.064 & 0.107 \end{bmatrix}$
$24.7 - 26.7 (2.025 \ 0.008 \ 0.014 \ 0.032) \times 10$	$0 (4.071 \ 0.039 \ 0.046 \ 0.072) \times 10^{-1}$	$-1 \mid 4.975 \mid 0.052 \mid 0.065 \mid 0.107 \mid$
$26.7 - 28.8 (1.643 \ 0.007 \ 0.011 \ 0.026) \times 10$	$0 (3.324 \ 0.034 \ 0.038 \ 0.059) \times 10^{-1} $	$\begin{bmatrix} -1 \\ 4.944 & 0.054 & 0.067 & 0.107 \end{bmatrix}$
$28.8 - 31.1 (1.327 \ 0.006 \ 0.009 \ 0.021) \times 10$	$0 (2.712 \ 0.029 \ 0.032 \ 0.049) \times 10^{-1}$	-1 $4.893 \ 0.056 \ 0.068 \ 0.108$
$31.1 - 33.5 (1.069 \ 0.005 \ 0.008 \ 0.017) \times 10$	$0 (2.174 \ 0.025 \ 0.027 \ 0.040) \times 10^{-1}$	-1 4.915 0.062 0.070 0.109
$33.5 - 36.1 (8.709 \ 0.043 \ 0.065 \ 0.139) \times 10$	$^{-1}$ (1.832 0.022 0.023 0.035)×10 ⁻¹	$-1 \mid 4.755 \mid 0.062 \mid 0.070 \mid 0.107 \mid$
$36.1 - 38.9 (7.091 \ 0.038 \ 0.055 \ 0.114) \times 10$	$^{-1}$ (1.493 0.019 0.019 0.029)×10	$-1 \mid 4.748 \mid 0.066 \mid 0.071 \mid 0.109 \mid$
$38.9 - 41.9 (5.775 \ 0.033 \ 0.046 \ 0.094) \times 10$	$^{-1}$ (1.201 0.017 0.016 0.023)×10 ⁻¹	$\begin{bmatrix} -1 \\ 4.809 \\ 0.072 \\ 0.074 \\ 0.112 \end{bmatrix}$
$41.9 - 45.1 (4.645 \ 0.028 \ 0.038 \ 0.076) \times 10$	$^{-1}$ (9.706 0.145 0.132 0.189)×10	$-2 \mid 4.786 \mid 0.077 \mid 0.076 \mid 0.112 \mid$
$45.1 - 48.5$ $(3.844 \ 0.025 \ 0.032 \ 0.064) \times 10$	$^{-1}$ (8.187 0.128 0.114 0.162)×10	$-2 \mid 4.696 \mid 0.080 \mid 0.076 \mid 0.112 \mid$
$48.5 - 52.2 (3.125 \ 0.022 \ 0.027 \ 0.053) \times 10$	$^{-1}$ (6.562 0.110 0.094 0.132)×10	$-2 \mid 4.762 \mid 0.086 \mid 0.079 \mid 0.115$
52.2 - 56.1 (2.533 0.019 0.022 0.044)×10	$^{-1}$ (5.325 0.096 0.078 0.108)×10	$-2 \mid 4.756 \mid 0.093 \mid 0.081 \mid 0.116$
56.1 - 60.3 (2.110 0.017 0.019 0.037)×10	$^{-1}$ (4.296 0.083 0.064 0.088)×10	$-2 \mid 4.910 \mid 0.102 \mid 0.086 \mid 0.121$

TABLE SM II: Bartels Rotation 2427 (June 11, 2011 – July 7, 2011). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[\text{m}^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time}$	$\sigma_{ m syst.}$
1.00 - 1.16 (8.981 0.048 0.141 0.406)×10	2		_
$1.16 - 1.33 (8.547 \ 0.028 \ 0.097 \ 0.307) \times 10^{-1}$	2		_
$1.33 - 1.51 (8.042\ 0.024\ 0.070\ 0.233) \times 10^{-1}$	2		_
$1.51 - 1.71 (7.392\ 0.017\ 0.053\ 0.194) \times 10^{-1}$	2		_
$1.71 - 1.92 (6.659 \ 0.014 \ 0.042 \ 0.158) \times 10^{-1}$	2		_
$1.92 - 2.15 (5.835\ 0.012\ 0.033\ 0.126) \times 10^{-1}$	$(6.974 \ 0.045 \ 0.069 \ 0.156) \times 10^{-2}$	0^{1} 8.366 0.057 0.096	0.249
$2.15 - 2.40 (5.052\ 0.010\ 0.027\ 0.102) \times 10^{-6}$		0^1 7.907 0.050 0.078	0.210
$2.40 - 2.67 (4.320\ 0.008\ 0.022\ 0.082) \times 10^{-2}$	$(5.765 \ 0.032 \ 0.045 \ 0.103) \times 10^{-2}$	0^1 7.494 0.044 0.069	0.184
$2.67 - 2.97 (3.669\ 0.007\ 0.018\ 0.065) \times 10^{-2}$	$(5.202 \ 0.027 \ 0.039 \ 0.088) \times 10^{-2}$	0^{1} 7.053 0.039 0.064	0.163
$2.97 - 3.29 (3.100\ 0.006\ 0.015\ 0.052) \times 10^{-6}$	$(4.465 \ 0.023 \ 0.031 \ 0.073) \times 10^{-2}$	0^{1} 6.942 0.037 0.059	0.154
$3.29 - 3.64 (2.596\ 0.005\ 0.013\ 0.042) \times 10^{-6}$	$(3.860 \ 0.019 \ 0.025 \ 0.062) \times 10^{-2}$	0^{1} 6.724 0.035 0.055	0.145
$3.64 - 4.02 (2.157 \ 0.004 \ 0.011 \ 0.035) \times 10^{-1}$	$(3.268 \ 0.016 \ 0.020 \ 0.051) \times 10^{-2}$	0^{1} 6.601 0.034 0.052	0.139
$4.02 - 4.43 (1.786 \ 0.003 \ 0.009 \ 0.028) \times 10^{-1}$	$(2.749 \ 0.013 \ 0.016 \ 0.043) \times 10^{-2}$	0^{1} 6.496 0.033 0.049	0.133
$4.43 - 4.88 (1.473 \ 0.002 \ 0.007 \ 0.023) \times 10^{-1}$	$(2.293 \ 0.010 \ 0.012 \ 0.035) \times 10^{-2}$	0^{1} 6.424 0.031 0.047	0.130
$4.88 - 5.37 (1.201\ 0.002\ 0.006\ 0.017) \times 10^{-6}$	$(1.904 \ 0.009 \ 0.010 \ 0.029) \times 10^{-2}$	0^{1} 6.307 0.030 0.044	0.125
$5.37 - 5.90 (9.757 \ 0.017 \ 0.043 \ 0.140) \times 10$	$1 (1.580 \ 0.007 \ 0.008 \ 0.024) \times 10^{-1}$	0^1 6.175 0.030 0.041	0.120
$5.90 - 6.47 (7.934\ 0.014\ 0.034\ 0.112) \times 10$	$1 (1.314 \ 0.006 \ 0.006 \ 0.019) \times 10^{-1}$	0^{1} 6.039 0.029 0.039	0.115
$6.47 - 7.09 (6.429 \ 0.011 \ 0.027 \ 0.090) \times 10$	$(1.077 \ 0.005 \ 0.005 \ 0.016) \times 10^{-1}$	0^1 5.970 0.028 0.038	0.113
7.09 - 7.76 (5.221 0.009 0.021 0.073)×10	$(8.731 \ 0.039 \ 0.042 \ 0.129) \times 10^{-1}$	0^0 5.979 0.029 0.038	0.112
$7.76 - 8.48 (4.206 \ 0.007 \ 0.017 \ 0.059) \times 10$	$(7.191\ 0.033\ 0.035\ 0.106) \times 10$	0^0 5.849 0.029 0.037	0.108
8.48 - 9.26 (3.380 0.006 0.014 0.047)×10	$(5.846 \ 0.028 \ 0.029 \ 0.086) \times 10^{-1}$	0^0 5.782 0.029 0.038	0.107
$9.26 - 10.1 (2.722 \ 0.005 \ 0.011 \ 0.037) \times 10$	$(4.803 \ 0.024 \ 0.025 \ 0.071) \times 10^{-1}$	0^0 5.667 0.030 0.038	0.105
$10.1 - 11.0 (2.190\ 0.004\ 0.010\ 0.030) \times 10$		0^0 5.631 0.031 0.039	0.104
$11.0 - 12.0 (1.756 \ 0.004 \ 0.008 \ 0.024) \times 10$			0.102
$12.0 - 13.0 (1.420\ 0.003\ 0.007\ 0.020) \times 10$		0^0 5.554 0.035 0.041	0.103
$13.0 - 14.1 (1.151 \ 0.003 \ 0.006 \ 0.016) \times 10$	$(2.106 \ 0.013 \ 0.013 \ 0.031) \times 10^{-1}$	0^0 5.463 0.035 0.042	0.102
$14.1 - 15.3 (9.255 \ 0.023 \ 0.046 \ 0.132) \times 10^{-6}$	*		0.101
$15.3 - 16.6 (7.474 \ 0.019 \ 0.038 \ 0.108) \times 10^{-1}$	$0 (1.383 \ 0.009 \ 0.009 \ 0.021) \times 10^{-1}$	0^0 5.404 0.037 0.045	0.103

TABLE SM II: Bartels Rotation 2427 (June 11, 2011 – July 7, 2011). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time }} \sigma_{\text{syst.}}$
$16.6 - 18.0 (5.995 \ 0.016 \ 0.032 \ 0.088) \times 10^{-1}$	$0 (1.127 \ 0.007 \ 0.008 \ 0.018) \times 10^{-6} $	5.320 0.038 0.046 0.102
$18.0 - 19.5 (4.817 \ 0.013 \ 0.026 \ 0.072) \times 10^{-6} (4.817 \ 0.013 \ 0.026 \ 0.026) \times 10^{-6} (4.817 \ 0.013 \ 0.026) \times 10^{-6} (4.817 \ 0.013$	$(9.281 \ 0.061 \ 0.068 \ 0.144) \times 10^{-6}$	-1 5.190 0.037 0.047 0.100
$19.5 - 21.1 (3.898 \ 0.011 \ 0.022 \ 0.059) \times 10^{-1} (3.898 \ 0.011 \ 0.022) \times 10^{-1} (3.898 \ 0.011$	$(7.499 \ 0.051 \ 0.057 \ 0.118) \times 10^{-6}$	-1 5.198 0.038 0.049 0.101
$21.1 - 22.8 (3.138 \ 0.009 \ 0.018 \ 0.048) \times 10^{-6} (3.138 \ 0.009 \ 0.018 \ 0.0048) \times 10^{-6} (3.138 \ 0.009 \ 0.018 \ 0.0048) \times 10^{-6} (3.138 \ 0.009 \ 0.018 \ 0.0048) \times 10^{-6} (3.138 \ 0.009 \ 0.018 \ 0.0048) \times 10^{-6} (3.138 \ 0.009 \ 0.018 \ 0.0048) \times 10^{-6} (3.138 \ 0.009 \ 0.018 \ 0.0048) \times 10^{-6} (3.138 \ 0.009 \ 0.018 \ 0.0048) \times 10^{-6} (3.138 \ 0.009 \ 0.018 \ 0.0048) \times 10^{-6} (3.138 \ 0.009 \ 0.018 \ 0.0048) \times 10^{-6} (3.138 \ 0.009 \ 0.018 \ 0.0048) \times 10^{-6} (3.138 \ 0.009 \ 0.018 \ 0.0048) \times 10^{-6} (3.138 \ 0.009 \ 0.018 \ 0.0048) \times 10^{-6} (3.138 \ 0.009 \ 0.018 \ 0.0048) \times 10^{-6} (3.138 \ 0.009 \ 0.018 \ 0.0048) \times 10^{-6} (3.138 \ 0.009 \ 0.018 \ 0.0048) \times 10^{-6} (3.138 \ 0.009 \ 0.018 \ 0.0048) \times 10^{-6} (3.138 \ 0.009 \ 0.018 \ 0.0048) \times 10^{-6} (3.138 \ 0.009 \ 0.018 \ 0.0048) \times 10^{-6} (3.138 \ 0.009 \ 0.0048) \times 10$	$(6.061 \ 0.043 \ 0.048 \ 0.096) \times 10^{-6}$	-1 5.178 0.039 0.051 0.102
$22.8 - 24.7 (2.525 \ 0.007 \ 0.015 \ 0.039) \times 10^{-6}$	$(4.969 \ 0.035 \ 0.040 \ 0.079) \times 10^{-6}$	$ 5.082 \ 0.039 \ 0.051 \ 0.101 $
$24.7 - 26.7 (2.037 \ 0.006 \ 0.013 \ 0.032) \times 10^{-6} (2.037 \ 0.006 \ 0.013 \ 0.008) \times 10^{-6} (2.037 \ 0.006 \ 0.013 \ 0.008) \times 10^{-6} (2.037 \ 0.006 \ 0.013 \ 0.008) \times 10^{-6} (2.037 \ 0.006 \ 0.013 \ 0.008) \times 10^{-6} (2.037 \ 0.006 \ 0.013 \ 0.008) \times 10^{-6} (2.037 \ 0.006 \ 0.013 \ 0.008) \times 10^{-6} (2.037 \ 0.008$	$(3.991 \ 0.030 \ 0.034 \ 0.064) \times 10^{-6}$	-1 5.103 0.042 0.054 0.102
$26.7 - 28.8 (1.651 \ 0.005 \ 0.011 \ 0.026) \times 10^{-6} (1.651 \ 0.005 \ 0.011 \ 0.006) \times 10^{-6} (1.651 \ 0.005 \ 0.011 \ 0.006) \times 10^{-6} (1.651 \ 0.005 \ 0.011 \ 0.006) \times 10^{-6} (1.651 \ 0.005 \ 0.011 \ 0.006) \times 10^{-6} (1.651 \ 0.005 \ 0.011 \ 0.006) \times 10^{-6} (1.651 \ 0.005 \ 0.011 \ 0.006) \times 10^{-6} (1.651 \ 0.005 \ 0.011 \ 0.006) \times 10^{-6} (1.651 \ 0.005 \ 0.011 \ 0.006) \times 10^{-6} (1.651 \ 0.005 \ 0.011 \ 0.006) \times 10^{-6} (1.651 \ 0.005 \ 0.011 \ 0.006) \times 10^{-6} (1.651 \ 0.005 \ 0.011 \ 0.006) \times 10^{-6} (1.651 \ 0.005 \ 0.011 \ 0.006) \times 10^{-6} (1.651 \ 0.005 \ 0.011 \ 0.006) \times 10^{-6} (1.651 \ 0.005 \ 0.011 \ 0.006) \times 10^{-6} (1.651 \ 0.005 \ 0.011 \ 0.006) \times 10^{-6} (1.651 \ 0.005 \ 0.011 \ 0.006) \times 10^{-6} (1.651 \ 0.005 \ 0.011 \ 0.006) \times 10^{-6} (1.651 \ 0.005 \ 0.001) \times 10^{-6} (1.651 \ 0.005 \ 0.005) \times 10^{-6} (1.651 \ 0.005 \ 0.005) \times 10^{-6} (1.651 \ 0.005) \times 10^{-6} (1.651 \ 0.005) \times 10^{-6} (1.651 \ 0.005) \times 10^{-6} (1$	$(3.319 \ 0.026 \ 0.029 \ 0.054) \times 10^{-6}$	-1 4.974 0.043 0.054 0.100
$28.8 - 31.1 (1.333 \ 0.005 \ 0.009 \ 0.021) \times 10^{-1}$	$(2.676 \ 0.022 \ 0.024 \ 0.044) \times 10^{-6}$	-1 $ 4.982 0.045 0.056 0.102 $
$31.1 - 33.5 (1.071 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.071 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.071 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.071 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.071 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.071 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.071 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.071 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.071 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.071 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.071 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.071 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.071 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.071 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.071 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.071 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.071 \ 0.004 \ 0.007 \ 0.007) \times 10^{-1} (1.071 \ 0.004 \ 0.007$	$(2.227 \ 0.020 \ 0.021 \ 0.037) \times 10^{-6}$	$ ^{-1} 4.809 \ 0.047 \ 0.056 \ 0.099$
$33.5 - 36.1 (8.782 \ 0.035 \ 0.061 \ 0.138) \times 10$	$^{-1} (1.795 \ 0.017 \ 0.018 \ 0.031) \times 10^{-1} $	$ -1 4.893 \ 0.051 \ 0.059 \ 0.102$
$36.1 - 38.9 (7.121 \ 0.030 \ 0.051 \ 0.113) \times 10$	$^{-1} (1.471 \ 0.015 \ 0.015 \ 0.026) \times 10^{-1} $	$ ^{-1} 4.842 0.053 0.060 0.103 $
$38.9 - 41.9 (5.796 \ 0.026 \ 0.043 \ 0.092) \times 10$	$^{-1} (1.194 \ 0.013 \ 0.012 \ 0.020) \times 10^{-1} $	-1 4.855 0.057 0.062 0.104
$41.9 - 45.1 (4.723 \ 0.023 \ 0.036 \ 0.076) \times 10$	$^{-1} (9.844 \ 0.114 \ 0.106 \ 0.174) \times 10^{-1} $	-2 4.798 0.060 0.063 0.104
$45.1 - 48.5 (3.896 \ 0.020 \ 0.030 \ 0.064) \times 10$	$^{-1} (7.980 \ 0.099 \ 0.089 \ 0.143) \times 10^{-1} $	$ -2 4.882 \ 0.066 \ 0.066 \ 0.108$
$48.5 - 52.2 (3.143 \ 0.017 \ 0.025 \ 0.052) \times 10$	$^{-1} (6.555 \ 0.086 \ 0.075 \ 0.119)\times 10^{-1} $	-2 4.795 0.068 0.067 0.107
$52.2 - 56.1 (2.561 \ 0.015 \ 0.021 \ 0.044) \times 10$	$^{-1} (5.365\ 0.075\ 0.063\ 0.098)\times 10^{-1} $	$ -2 4.774 \ 0.073 \ 0.068 \ 0.107$
$56.1 - 60.3 (2.109 \ 0.013 \ 0.017 \ 0.036) \times 10$	$^{-1}$ (4.470 0.066 0.054 0.083)×10	-2 4.717 0.076 0.069 0.107

TABLE SM III: Bartels Rotation 2428 (July 8, 2011 – August 3, 2011). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s}\cdot{\rm GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$		$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time}}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (8.940 \ 0.052 \ 0.149 \ 0.407) \times 10^{2}$			_
$1.16 - 1.33 (8.779 \ 0.031 \ 0.106 \ 0.317) \times 10^{2}$			_
$1.33 - 1.51 (8.279 \ 0.026 \ 0.076 \ 0.241) \times 10^{2}$?		_
$1.51 - 1.71 (7.595 \ 0.018 \ 0.057 \ 0.200) \times 10^{2}$	2		_
$1.71 - 1.92 (6.678 \ 0.014 \ 0.043 \ 0.159) \times 10^{2}$	2		_
$1.92 - 2.15 (5.925 \ 0.011 \ 0.034 \ 0.128) \times 10^{2}$	$(7.081 \ 0.044 \ 0.076 \ 0.161) \times 10^{-1}$	8.367 0.055 0.102	0.251
$2.15 - 2.40 (5.164 \ 0.010 \ 0.027 \ 0.104) \times 10^{2}$	$(6.602\ 0.038\ 0.060\ 0.131)\times10^{-1}$	7.822 0.047 0.083	0.210
$2.40 - 2.67 (4.440 \ 0.008 \ 0.022 \ 0.084) \times 10^{2}$	$(5.953 \ 0.032 \ 0.053 \ 0.109) \times 10^{-3}$	7.459 0.042 0.076	0.186
$2.67 - 2.97 (3.765 \ 0.007 \ 0.018 \ 0.066) \times 10^{2}$	$(5.242\ 0.026\ 0.047\ 0.092)\times10^{-3}$	7.184 0.038 0.073	0.170
$2.97 - 3.29 (3.180 \ 0.005 \ 0.015 \ 0.053) \times 10^{2}$	$(4.607 \ 0.022 \ 0.035 \ 0.076) \times 10^{-6}$	6.902 0.035 0.062	0.154
$3.29 - 3.64 (2.656 \ 0.004 \ 0.013 \ 0.043) \times 10^{2}$	$(3.952\ 0.018\ 0.025\ 0.063) \times 10^{-3}$	6.722 0.033 0.055	0.145
$3.64 - 4.02 (2.215 \ 0.004 \ 0.011 \ 0.035) \times 10^{2}$	$(3.357 \ 0.015 \ 0.020 \ 0.053) \times 10^{-3}$	6.597 0.032 0.051	0.139
$4.02 - 4.43 (1.839 \ 0.003 \ 0.009 \ 0.029) \times 10^{2}$	$(2.814 \ 0.013 \ 0.016 \ 0.044) \times 10^{-2}$	6.536 0.031 0.050	0.134
$4.43 - 4.88 (1.505 \ 0.002 \ 0.007 \ 0.023) \times 10^{2}$	$(2.358 \ 0.010 \ 0.013 \ 0.036) \times 10^{-3}$	6.382 0.029 0.048	0.129
$4.88 - 5.37 (1.225 \ 0.002 \ 0.006 \ 0.018) \times 10^{2}$	$(1.962\ 0.008\ 0.011\ 0.030) \times 10^{-2}$	6.246 0.028 0.045	0.125
$5.37 - 5.90 (9.967 \ 0.016 \ 0.044 \ 0.143) \times 10^{1}$	$(1.612\ 0.007\ 0.009\ 0.024)\times 10$	6.181 0.028 0.043	0.121
$5.90 - 6.47 (8.106 \ 0.013 \ 0.034 \ 0.115) \times 10^{1}$		6.112 0.028 0.042	0.117
$6.47 - 7.09 (6.550 \ 0.011 \ 0.027 \ 0.092) \times 10^{1}$	$(1.090\ 0.005\ 0.006\ 0.016) \times 10$	6.012 0.027 0.040	0.114
$7.09 - 7.76 (5.291 \ 0.009 \ 0.022 \ 0.074) \times 10^{1}$	$(8.897 \ 0.037 \ 0.046 \ 0.133) \times 10^{0}$	$5.947 \ 0.027 \ 0.039$	0.111
$7.76 - 8.48 (4.280\ 0.007\ 0.017\ 0.060) \times 10^{1}$	$(7.251\ 0.031\ 0.038\ 0.107)\times10^{0}$	$5.903 \ 0.027 \ 0.039$	0.110
$8.48 - 9.26 (3.448 \ 0.006 \ 0.014 \ 0.048) \times 10^{1}$	$(5.918 \ 0.026 \ 0.031 \ 0.088) \times 10^{0}$	$5.827 \ 0.027 \ 0.039$	0.108
$9.26 - 10.1 (2.769 \ 0.005 \ 0.012 \ 0.038) \times 10^{1}$	$(4.795 \ 0.022 \ 0.026 \ 0.071) \times 10^{0}$	5.774 0.028 0.040	0.107
$10.1 - 11.0 (2.222 \ 0.004 \ 0.010 \ 0.030) \times 10^{1}$	$(3.932\ 0.019\ 0.022\ 0.058)\times10^{6}$	5.651 0.029 0.040	0.104
$11.0 - 12.0 (1.785 \ 0.003 \ 0.008 \ 0.025) \times 10^{1}$,	$5.610 \ 0.030 \ 0.041$	0.104
$12.0 - 13.0 (1.426 \ 0.003 \ 0.007 \ 0.020) \times 10^{1}$,		0.103
$13.0 - 14.1 (1.158 \ 0.003 \ 0.005 \ 0.016) \times 10^{1}$			0.104
$14.1 - 15.3 (9.328 \ 0.021 \ 0.046 \ 0.133) \times 10^{0}$,		0.104
$15.3 - 16.6 (7.519 \ 0.018 \ 0.038 \ 0.108) \times 10^{0}$,		0.102
m 11 1	*	ı	

TABLE SM III: Bartels Rotation 2428 (July 8, 2011 – August 3, 2011). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time }} \sigma_{\text{syst.}}$
$16.6 - 18.0 (6.049 \ 0.015 \ 0.032 \ 0.088) \times 10^{-1}$	$0 (1.142 \ 0.007 \ 0.008 \ 0.018) \times 10^{-6} $	0^0 $5.297 \ 0.035 \ 0.048 \ 0.103$
$18.0 - 19.5 (4.836 \ 0.012 \ 0.026 \ 0.072) \times 10^{-6} (4.836 \ 0.012 \ 0.026 \ 0.026) \times 10^{-6} (4.836 \ 0.012 \ 0.026 \ 0.026) \times 10^{-6} (4.836 \ 0.026) \times 10^{-6} (4.836$	$0 \mid (9.289 \ 0.058 \ 0.072 \ 0.146) \times 10^{-6}$	0^{-1} 5.206 0.035 0.049 0.101
$19.5 - 21.1 (3.924 \ 0.010 \ 0.022 \ 0.059) \times 10^{-1} $	$0 \mid (7.586 \ 0.049 \ 0.061 \ 0.120) \times 10^{-6}$	$0^{-1} 5.172 0.036 0.051 0.101$
$21.1 - 22.8 (3.160 \ 0.008 \ 0.018 \ 0.048) \times 10^{-6} (3.160 \ 0.008 \ 0.018 \ 0.008) \times 10^{-6} (3.160 \ 0.008 \ 0.018 \ 0.008) \times 10^{-6} (3.160 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (3.160 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (3.160 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (3.160 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (3.160 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (3.160 \ 0.008) \times 10^{-6} $	$0 (6.159 \ 0.041 \ 0.050 \ 0.098) \times 10^{-6} $	0^{-1} 5.131 0.037 0.051 0.101
$22.8 - 24.7 (2.538 \ 0.007 \ 0.015 \ 0.039) \times 10^{-6} (2.538 \ 0.007 \ 0.015 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.015 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.015 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.015 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.015 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.015 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.015 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.015 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.015 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.015 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.015 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.015 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.015 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.015 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.015 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.015 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.008) \times 10^{-6} (2.538 \ 0.008$	$0 (4.994 \ 0.033 \ 0.041 \ 0.080) \times 10^{-6} $	$0^{-1} 5.083 \ 0.037 \ 0.052 \ 0.101$
$24.7 - 26.7 (2.035 \ 0.006 \ 0.013 \ 0.032) \times 10^{-6} (2.035 \ 0.006 \ 0.013 \ 0.008) \times 10^{-6} (2.035 \ 0.006 \ 0.013 \ 0.008) \times 10^{-6} (2.035 \ 0.006 \ 0.013 \ 0.008) \times 10^{-6} (2.035 \ 0.006 \ 0.013 \ 0.008) \times 10^{-6} (2.035 \ 0.006 \ 0.013 \ 0.008) \times 10^{-6} (2.035 \ 0.006 \ 0.013 \ 0.008) \times 10^{-6} (2.035 \ 0.008$	$0 (4.026 \ 0.028 \ 0.034 \ 0.064) \times 10^{-6} $	$0^{-1} 5.055 0.039 0.053 0.101$
$26.7 - 28.8 (1.644 \ 0.005 \ 0.011 \ 0.025) \times 10^{-6} (1.644 \ 0.005 \ 0.011) \times 10^{-6} (1.644 \ 0.005$	$0 (3.314 \ 0.025 \ 0.028 \ 0.053) \times 10^{-6} $	$0^{-1} 4.962 \ 0.040 \ 0.053 \ 0.099$
$28.8 - 31.1 (1.330 \ 0.004 \ 0.009 \ 0.021) \times 10^{-6} (1.330 \ 0.004 \ 0.009 \ 0.0021) \times 10^{-6} (1.330 \ 0.004 \ 0.004 \ 0.004) \times 10^{-6} (1.330 \ 0.004 \ 0.004) \times 10^{-6} (1.330 \ 0.004 \$	$0 (2.714 \ 0.021 \ 0.024 \ 0.044) \times 10^{-6} $	$0^{-1} 4.902 \ 0.041 \ 0.053 \ 0.099$
$31.1 - 33.5 (1.072 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.072 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.072 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.072 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.072 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.072 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.072 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.072 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.072 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.072 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.072 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.072 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.072 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.072 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1} (1.072 \ 0.004 \ 0.007 \ 0.007) \times 10^{-1} (1.072 \ 0.004 \ 0.007 \ 0.007) \times 10^{-1} (1.072 \ 0.004 \ 0.007) \times 10^{$	$(2.180 \ 0.018 \ 0.020 \ 0.036) \times 10^{-6}$	0^{-1} 4.915 0.045 0.055 0.100
$33.5 - 36.1 (8.760 \ 0.032 \ 0.060 \ 0.138) \times 10$	$^{-1}$ (1.778 0.016 0.016 0.030)×10	0^{-1} 4.927 0.048 0.057 0.102
$36.1 - 38.9 (7.061 \ 0.028 \ 0.050 \ 0.112) \times 10$	$^{-1}$ (1.476 0.014 0.014 0.025)×10	0^{-1} 4.785 0.049 0.057 0.100
$38.9 - 41.9 (5.763 \ 0.024 \ 0.042 \ 0.092) \times 10$	$^{-1}$ (1.214 0.012 0.012 0.020)×10	0^{-1} 4.748 0.052 0.059 0.101
$41.9 - 45.1 (4.680 \ 0.021 \ 0.035 \ 0.075) \times 10$	$^{-1} (9.648 \ 0.105 \ 0.100 \ 0.168) \times 10^{-1} $	$0^{-2} 4.851 \ 0.057 \ 0.062 \ 0.104$
$45.1 - 48.5 (3.822 \ 0.018 \ 0.029 \ 0.062) \times 10$	$^{-1}$ (8.009 0.092 0.087 0.142)×10	0^{-2} 4.773 0.060 0.063 0.104
$48.5 - 52.2 (3.133 \ 0.016 \ 0.024 \ 0.052) \times 10$	$^{-1}$ (6.608 0.080 0.075 0.119)×10	$0^{-2} 4.741 \ 0.062 \ 0.065 \ 0.105$
$52.2 - 56.1 (2.550 \ 0.014 \ 0.020 \ 0.043) \times 10$	$^{-1} (5.436 \ 0.071 \ 0.064 \ 0.100) \times 10^{-1} $	$0^{-2} 4.691 \ 0.066 \ 0.067 \ 0.105$
$56.1 - 60.3 (2.094 \ 0.012 \ 0.017 \ 0.036) \times 10$	$-1 (4.560 \ 0.062 \ 0.056 \ 0.085) \times 10^{-1} $	$0^{-2} 4.593 \ 0.068 \ 0.068 \ 0.105$

TABLE SM IV: Bartels Rotation 2429 (August 4, 2011 – August 30, 2011). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s}\cdot{\rm GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{\rm He}$ $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$ $p/{\rm He}$ $\sigma_{\rm stat.}$ $\sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (8.726 \ 0.042 \ 0.128 \ 0.392) \times 10$		_
$1.16 - 1.33 (8.518 \ 0.025 \ 0.091 \ 0.304) \times 10$		_
$1.33 - 1.51 (8.062 \ 0.021 \ 0.066 \ 0.232) \times 10$		_
$1.51 - 1.71 (7.437 \ 0.015 \ 0.051 \ 0.194) \times 10$		_
$1.71 - 1.92 (6.712\ 0.013\ 0.040\ 0.159) \times 10$		_
$1.92 - 2.15 (5.906 \ 0.011 \ 0.032 \ 0.127) \times 10$	$(7.082\ 0.041\ 0.055\ 0.152) \times 10^{1}\ 8.340\ 0.051\ 0.079$	0.242
2.15 - 2.40 (5.133 0.009 0.026 0.103)×10	$(6.552\ 0.035\ 0.043\ 0.123) \times 10^{1}$ $7.834\ 0.044\ 0.065$	0.204
$2.40 - 2.67 (4.423 \ 0.007 \ 0.021 \ 0.084) \times 10$	$(5.929\ 0.029\ 0.036\ 0.102) \times 10^{1}$ $7.460\ 0.039\ 0.058$	0.179
$2.67 - 2.97 (3.756 \ 0.006 \ 0.018 \ 0.066) \times 10$	$(5.265\ 0.025\ 0.031\ 0.086) \times 10^{1}$ $7.135\ 0.035\ 0.054$	0.161
$2.97 - 3.29 (3.172\ 0.005\ 0.015\ 0.053) \times 10$	$(4.586\ 0.020\ 0.025\ 0.072) \times 10^{1}$ $6.916\ 0.033\ 0.050$	0.150
$3.29 - 3.64 (2.667 \ 0.004 \ 0.013 \ 0.043) \times 10$	$(3.956\ 0.017\ 0.020\ 0.061) \times 10^{1}$ $6.742\ 0.031\ 0.047$	0.143
$3.64 - 4.02 (2.223\ 0.003\ 0.011\ 0.035) \times 10$	$(3.333\ 0.014\ 0.016\ 0.051) \times 10^{1}$ $6.671\ 0.030\ 0.045$	0.138
$4.02 - 4.43 (1.839 \ 0.003 \ 0.009 \ 0.028) \times 10$	$(2.813\ 0.012\ 0.013\ 0.042) \times 10^{1}$ $(6.535\ 0.029\ 0.043)$	0.132
$4.43 - 4.88 (1.511 \ 0.002 \ 0.007 \ 0.023) \times 10$	$(2.362\ 0.009\ 0.010\ 0.035) \times 10^{1}$ $(6.398\ 0.027\ 0.041)$	0.127
$4.88 - 5.37 (1.229 \ 0.002 \ 0.006 \ 0.018) \times 10$	$(1.963\ 0.008\ 0.008\ 0.029) \times 10^{1}$ $(6.260\ 0.026\ 0.038)$	0.122
5.37 - 5.90 (9.987 0.015 0.043 0.143)×10	$(1.616\ 0.006\ 0.006\ 0.024) \times 10^{1}$ 6.181\ 0.026\ 0.036	0.118
$5.90 - 6.47 (8.113\ 0.012\ 0.033\ 0.114) \times 10$	$(1.330\ 0.005\ 0.005\ 0.019) \times 10^{1}$ $6.098\ 0.025\ 0.034$	0.114
$6.47 - 7.09 (6.557 \ 0.010 \ 0.026 \ 0.092) \times 10$	$(1.097\ 0.004\ 0.004\ 0.016) \times 10^{1}$ 5.977 0.025 0.033	0.111
7.09 - 7.76 (5.341 0.008 0.021 0.074)×10	$(8.893\ 0.035\ 0.034\ 0.129) \times 10^{0}$ $6.005\ 0.025\ 0.033$	0.111
$7.76 - 8.48 (4.290 \ 0.007 \ 0.017 \ 0.060) \times 10$	$(7.321\ 0.029\ 0.029\ 0.105) \times 10^{0}$ 5.860 0.025 0.033	0.107
8.48 - 9.26 (3.455 0.005 0.014 0.048)×10	$(5.887 \ 0.024 \ 0.024 \ 0.085) \times 10^{0}$ $5.869 \ 0.026 \ 0.034$	0.107
$9.26-10.1 (2.775 0.005 0.011 0.038){ imes}10$	$(4.834\ 0.021\ 0.021\ 0.070) \times 10^{0}$ 5.740\ 0.026\ 0.034	0.104
$10.1 - 11.0 (2.227 \ 0.004 \ 0.009 \ 0.030) \times 10$	$(3.936\ 0.018\ 0.017\ 0.057) \times 10^{0}$ 5.658 0.027 0.034	0.102
$11.0 - 12.0 (1.787 \ 0.003 \ 0.008 \ 0.025) \times 10$	$(3.208\ 0.015\ 0.015\ 0.047) \times 10^{0}$ 5.571\ 0.028\ 0.035	0.101
$12.0 - 13.0 (1.435 \ 0.003 \ 0.006 \ 0.020) \times 10$	$(2.583\ 0.013\ 0.012\ 0.038) \times 10^{0}$ $5.554\ 0.030\ 0.036$	0.102
$13.0 - 14.1 (1.165 \ 0.002 \ 0.005 \ 0.017) \times 10$	$(2.116\ 0.011\ 0.011\ 0.031) \times 10^{0}$ 5.503 0.031 0.037	0.101
$14.1 - 15.3 (9.381 \ 0.020 \ 0.045 \ 0.133) \times 10$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.099
15.3 - 16.6 (7.503 0.016 0.037 0.108)×10	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.100

TABLE SM IV: Bartels Rotation 2429 (August 4, 2011 – August 30, 2011). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time }} \sigma_{\text{syst.}}$
$16.6 - 18.0 (6.040 \ 0.014 \ 0.031 \ 0.088) \times 10$	$0 (1.154 \ 0.007 \ 0.007 \ 0.017) \times 1$	0^0 5.233 0.032 0.040 0.098
$18.0 - 19.5 (4.864 \ 0.011 \ 0.026 \ 0.072) \times 10$	$0 (9.352 \ 0.054 \ 0.057 \ 0.140) \times 1$	$0^{-1} 5.201 \ 0.032 \ 0.042 \ 0.098$
$19.5 - 21.1 (3.907 \ 0.009 \ 0.021 \ 0.059) \times 10$	$0 (7.556 \ 0.045 \ 0.048 \ 0.114) \times 1$	$0^{-1} 5.171 \ 0.033 \ 0.043 \ 0.098$
$21.1 - 22.8 (3.141 \ 0.008 \ 0.018 \ 0.048) \times 10$	$0 (6.159 \ 0.038 \ 0.040 \ 0.094) \times 1$	$0^{-1} 5.100 0.034 0.044 0.097$
$22.8 - 24.7 (2.543 \ 0.006 \ 0.015 \ 0.039) \times 10$	$0 (5.071 \ 0.031 \ 0.034 \ 0.077) \times 1$	$0^{-1} 5.015 \ 0.033 \ 0.044 \ 0.096$
$24.7 - 26.7 (2.040 \ 0.005 \ 0.012 \ 0.032) \times 10$	$0 (4.045 \ 0.027 \ 0.028 \ 0.062) \times 1$	$0^{-1} 5.044 0.036 0.046 0.097$
$26.7 - 28.8 (1.647 \ 0.005 \ 0.010 \ 0.025) \times 10$	$0 (3.333 \ 0.023 \ 0.024 \ 0.051) \times 1$	$0^{-1} 4.942 \ 0.037 \ 0.047 \ 0.096$
$28.8 - 31.1 (1.330 \ 0.004 \ 0.008 \ 0.021) \times 10$	$0 (2.719 \ 0.020 \ 0.020 \ 0.042) \times 1$	$0^{-1} 4.893 \ 0.039 \ 0.047 \ 0.096$
$31.1 - 33.5 (1.078 \ 0.003 \ 0.007 \ 0.017) \times 10$	$0 (2.223 \ 0.018 \ 0.017 \ 0.035) \times 1$	0^{-1} 4.851 0.041 0.048 0.096
$33.5 - 36.1 (8.756 \ 0.030 \ 0.058 \ 0.137) \times 10$	$^{-1}$ (1.836 0.015 0.014 0.030)×1	$0^{-1} 4.769 \ 0.043 \ 0.049 \ 0.095$
$36.1 - 38.9 (7.093 \ 0.026 \ 0.048 \ 0.111) \times 10$	$^{-1}$ (1.497 0.013 0.012 0.024)×1	0^{-1} 4.738 0.045 0.050 0.096
$38.9 - 41.9 (5.782 \ 0.023 \ 0.040 \ 0.091) \times 10$	$^{-1} (1.220 \ 0.012 \ 0.010 \ 0.019) \times 1$	$0^{-1} 4.739 \ 0.048 \ 0.051 \ 0.097$
$41.9 - 45.1 (4.735 \ 0.020 \ 0.034 \ 0.075) \times 10$	$^{-1}$ (9.903 0.100 0.085 0.162)×1	0^{-2} 4.781 0.052 0.053 0.098
$45.1 - 48.5 (3.873 \ 0.017 \ 0.028 \ 0.062) \times 10$	$^{-1} (7.958 \ 0.087 \ 0.070 \ 0.132) \times 1$	$0^{-2} 4.867 \ 0.057 \ 0.056 \ 0.101$
$48.5 - 52.2 (3.123 \ 0.015 \ 0.023 \ 0.051) \times 10$	$^{-1}$ (6.688 0.076 0.061 0.112)×1	$0^{-2} 4.670 \ 0.058 \ 0.055 \ 0.098$
$52.2 - 56.1 (2.553 \ 0.013 \ 0.020 \ 0.043) \times 10$	$^{-1} (5.468\ 0.067\ 0.051\ 0.092)\times 1$	$0^{-2} 4.668 \ 0.062 \ 0.056 \ 0.098$
$56.1 - 60.3 (2.088 \ 0.012 \ 0.016 \ 0.035) \times 10$	$^{-1}$ (4.437 0.058 0.042 0.075)×1	$0^{-2} 4.705 \ 0.066 \ 0.058 \ 0.100$

TABLE SM V: Bartels Rotation 2430 (August 31, 2011 – September 26, 2011). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s}\cdot{\rm GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (8.827 \ 0.044 \ 0.117 \ 0.392) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.16 - 1.33 (8.625 \ 0.025 \ 0.084 \ 0.305) \times 10$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		_
$1.33 - 1.51 (8.132 \ 0.021 \ 0.061 \ 0.233) \times 10$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		_
$1.51 - 1.71 (7.503 \ 0.015 \ 0.047 \ 0.195) \times 10$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		_
$1.71 - 1.92 (6.770\ 0.013\ 0.037\ 0.159) \times 10$	2		_
$1.92 - 2.15 (5.974 \ 0.011 \ 0.029 \ 0.128) \times 10$	$(7.120 \ 0.041 \ 0.054 \ 0.152) \times 10^{-2}$	$8.390 \ 0.051 \ 0.076$	0.243
2.15 - 2.40 (5.181 0.009 0.024 0.103)×10	$(6.580 \ 0.035 \ 0.044 \ 0.124) \times 10^{-2}$	$7.874 \ 0.044 \ 0.064$	0.205
$2.40 - 2.67 (4.448\ 0.007\ 0.019\ 0.084) \times 10$	$(6.042\ 0.029\ 0.037\ 0.104)\times10^{-2}$	$7.361 \ 0.038 \ 0.056$	0.176
$2.67 - 2.97 (3.811\ 0.006\ 0.016\ 0.066) \times 10$	$(5.302 \ 0.024 \ 0.031 \ 0.086) \times 10^{-2}$	$7.188 \ 0.035 \ 0.053$	0.162
$2.97 - 3.29 (3.204 \ 0.005 \ 0.014 \ 0.053) \times 10$	$(4.623 \ 0.020 \ 0.025 \ 0.073) \times 10^{-2}$	0^1 6.931 0.032 0.048	0.150
$3.29 - 3.64 (2.689\ 0.004\ 0.012\ 0.043) \times 10$	$(3.969 \ 0.017 \ 0.020 \ 0.062) \times 10^{-2}$	0^1 6.776 0.031 0.045	0.143
$3.64 - 4.02 (2.238\ 0.003\ 0.010\ 0.035) \times 10$	$(3.375 \ 0.014 \ 0.016 \ 0.051) \times 10^{-2}$	0^1 $6.631 \ 0.030 \ 0.043$	0.137
$4.02 - 4.43 (1.846 \ 0.003 \ 0.008 \ 0.028) \times 10$	$(2.849 \ 0.012 \ 0.013 \ 0.043) \times 10^{-2}$	0^1 6.478 0.028 0.041	0.130
$4.43 - 4.88 (1.517 \ 0.002 \ 0.007 \ 0.023) \times 10$	$(2.363 \ 0.009 \ 0.010 \ 0.035) \times 10^{-2}$	$6.421 \ 0.027 \ 0.040$	0.127
$4.88 - 5.37 (1.241 \ 0.002 \ 0.005 \ 0.018) \times 10$	$(1.952 \ 0.008 \ 0.008 \ 0.029) \times 10^{-2}$	0^1 6.355 0.026 0.037	0.124
5.37 - 5.90 (1.006 0.001 0.004 0.014)×10	$(1.625 \ 0.006 \ 0.006 \ 0.024) \times 10^{-2}$	$6.190 \ 0.025 \ 0.035$	0.118
$5.90 - 6.47 (8.139\ 0.012\ 0.031\ 0.114) \times 10$	$(1.329 \ 0.005 \ 0.005 \ 0.019) \times 10^{-1}$	0^1 6.123 0.025 0.033	0.115
$6.47 - 7.09 (6.598 \ 0.010 \ 0.024 \ 0.092) \times 10$	`	0^1 6.055 0.025 0.033	0.113
7.09 - 7.76 (5.339 0.008 0.020 0.074)×10			0.111
$7.76 - 8.48 (4.300\ 0.007\ 0.016\ 0.059) \times 10$	$(7.246\ 0.028\ 0.030\ 0.105) \times 10^{-1}$	$5.934 \ 0.025 \ 0.033$	0.108
8.48 - 9.26 (3.464 0.005 0.013 0.047)×10	$(5.931 \ 0.024 \ 0.025 \ 0.086) \times 10^{-1}$	0 5.841 0.025 0.033	0.106
$9.26 - 10.1 (2.779 \ 0.005 \ 0.010 \ 0.038) \times 10$	$(4.817 \ 0.020 \ 0.021 \ 0.070) \times 10^{-1}$	0^0 5.769 0.026 0.034	0.105
$10.1 - 11.0 (2.238 \ 0.004 \ 0.009 \ 0.030) \times 10$	$(3.953 \ 0.017 \ 0.018 \ 0.057) \times 10^{-1}$	0^0 5.662 0.027 0.034	0.102
$11.0 - 12.0 (1.790\ 0.003\ 0.007\ 0.024) \times 10$	$(3.153 \ 0.014 \ 0.015 \ 0.046) \times 10^{-1}$	0^0 5.678 0.028 0.035	0.103
$12.0 - 13.0 (1.445 \ 0.003 \ 0.006 \ 0.020) \times 10$,		0.102
$13.0 - 14.1 (1.166 \ 0.002 \ 0.005 \ 0.016) \times 10$			0.102
$14.1 - 15.3 (9.407\ 0.020\ 0.042\ 0.133) \times 10$,		0.100
$15.3 - 16.6 (7.587 \ 0.016 \ 0.035 \ 0.108) \times 10$,	I	0.101

TABLE SM V: Bartels Rotation 2430 (August 31, 2011 – September 26, 2011). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ $\sigma_{\text{time }}$ $\sigma_{\text{syst.}}$
$16.6 - 18.0 (6.061 \ 0.014 \ 0.029 \ 0.087) \times 10$	$0 (1.147 \ 0.006 \ 0.007 \ 0.018) \times 10^{-6} $	$\begin{bmatrix} 5.285 & 0.032 & 0.041 & 0.099 \end{bmatrix}$
$18.0 - 19.5 (4.888 \ 0.011 \ 0.024 \ 0.072) \times 10$	$0 (9.279 \ 0.053 \ 0.060 \ 0.140) \times 10^{-6} $	-1 5.267 0.032 0.043 0.099
$19.5 - 21.1 (3.927 \ 0.009 \ 0.020 \ 0.058) \times 10$	$0 \mid (7.503 \ 0.044 \ 0.051 \ 0.114) \times 10^{-6}$	-1 5.235 0.033 0.044 0.099
$21.1 - 22.8 (3.169 \ 0.008 \ 0.017 \ 0.048) \times 10$	$0 (6.132 \ 0.037 \ 0.042 \ 0.094) \times 10^{-6} $	-1 5.167 0.034 0.045 0.099
$22.8 - 24.7 (2.556 \ 0.006 \ 0.014 \ 0.038) \times 10$	$0 \mid (5.009 \ 0.030 \ 0.035 \ 0.077) \times 10^{-6}$	-1 5.103 0.033 0.045 0.098
$24.7 - 26.7 (2.042 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 (4.079 \ 0.026 \ 0.029 \ 0.063) \times 10^{-6} $	-1 5.005 0.035 0.045 0.097
$26.7 - 28.8 (1.658 \ 0.005 \ 0.010 \ 0.025) \times 10$	$0 (3.313 \ 0.023 \ 0.025 \ 0.051) \times 10^{-6} $	$ 5.005 \ 0.037 \ 0.047 \ 0.097 $
$28.8 - 31.1 (1.334 \ 0.004 \ 0.008 \ 0.021) \times 10$	$0 (2.696 \ 0.019 \ 0.020 \ 0.042) \times 10^{-6} $	-1 4.949 0.038 0.047 0.097
$31.1 - 33.5 (1.084 \ 0.003 \ 0.006 \ 0.017) \times 10$	$0 (2.194 \ 0.017 \ 0.017 \ 0.035) \times 10^{-6} $	$ ^{-1} 4.941 0.042 0.049 0.097$
$33.5 - 36.1 (8.768 \ 0.030 \ 0.054 \ 0.135) \times 10$	$^{-1}$ (1.791 0.015 0.014 0.029)×10	-1 4.896 0.044 0.050 0.097
$36.1 - 38.9 (7.075 \ 0.026 \ 0.045 \ 0.110) \times 10$	$^{-1}$ (1.456 0.013 0.012 0.024)×10	-1 4.859 0.046 0.050 0.098
$38.9 - 41.9 (5.784 \ 0.022 \ 0.037 \ 0.090) \times 10$	$^{-1}$ (1.199 0.011 0.010 0.019)×10	-1 4.824 0.049 0.051 0.098
$41.9 - 45.1 (4.751 \ 0.020 \ 0.031 \ 0.075) \times 10$	$^{-1}$ (9.850 0.098 0.086 0.162)×10	$ ^{-2} 4.823 \ 0.052 \ 0.053 \ 0.099$
$45.1 - 48.5 (3.818 \ 0.017 \ 0.026 \ 0.061) \times 10$	$^{-1}$ (8.061 0.086 0.072 0.134)×10	$-2 \mid 4.737 \mid 0.055 \mid 0.053 \mid 0.098$
$48.5 - 52.2 (3.117 \ 0.015 \ 0.022 \ 0.050) \times 10$	$^{-1}$ (6.570 0.074 0.060 0.110)×10	$-2 \mid 4.744 \mid 0.058 \mid 0.054 \mid 0.099 \mid$
$52.2 - 56.1 (2.566 \ 0.013 \ 0.018 \ 0.042) \times 10$	$^{-1} (5.393 \ 0.065 \ 0.051 \ 0.091) \times 10^{-1} $	$-2 \mid 4.759 \mid 0.062 \mid 0.056 \mid 0.100 \mid$
$56.1 - 60.3 (2.082 \ 0.011 \ 0.015 \ 0.035) \times 10$	-1 (4.448 0.057 0.043 0.076)×10	-2 4.679 0.065 0.056 0.099

TABLE SM VI: Bartels Rotation 2431 (September 27, 2011 – October 23, 2011). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time}$	$\sigma_{ m syst.}$
1.00 - 1.16 (7.898 0.046 0.117 0.355)×10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$1.16 - 1.33 (7.653 \ 0.025 \ 0.082 \ 0.273) \times 10$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		
$1.33 - 1.51 (7.343 \ 0.020 \ 0.060 \ 0.211) \times 10$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		
$1.51 - 1.71 (6.849 \ 0.014 \ 0.046 \ 0.179) \times 10$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		
$1.71 - 1.92 (6.197 \ 0.012 \ 0.036 \ 0.146) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$1.92 - 2.15 (5.500 \ 0.010 \ 0.029 \ 0.119) \times 10$	$(6.490 \ 0.038 \ 0.054 \ 0.140) \times 10^{-2}$	0^1 8.475 0.052 0.083 0.247	
$2.15 - 2.40 (4.816 \ 0.008 \ 0.023 \ 0.096) \times 10$	$(6.094 \ 0.033 \ 0.043 \ 0.116) \times 10^{-2}$	0^1 7.903 0.045 0.068 0.207	
$2.40 - 2.67 (4.170 \ 0.007 \ 0.019 \ 0.079) \times 10$	$(5.550 \ 0.028 \ 0.036 \ 0.096) \times 10^{-2}$	0^1 7.514 0.040 0.060 0.181	
$2.67 - 2.97 (3.567 \ 0.006 \ 0.016 \ 0.062) \times 10$	$(4.961 \ 0.023 \ 0.031 \ 0.082) \times 10^{-2}$	0^1 7.190 0.036 0.056 0.163	
$2.97 - 3.29 (3.025 \ 0.005 \ 0.014 \ 0.051) \times 10$	$(4.356 \ 0.019 \ 0.026 \ 0.069) \times 10^{-2}$	0^1 6.945 0.033 0.051 0.151	
$3.29 - 3.64 (2.549 \ 0.004 \ 0.012 \ 0.041) \times 10$	$(3.782 \ 0.016 \ 0.020 \ 0.059) \times 10^{-2}$	0^{1} 6.740 0.031 0.048 0.143	
$3.64 - 4.02 (2.131 \ 0.003 \ 0.010 \ 0.034) \times 10$	$(3.193 \ 0.014 \ 0.016 \ 0.049) \times 10^{-2}$	0^{1} 6.672 0.030 0.046 0.138	
$4.02 - 4.43 (1.773 \ 0.003 \ 0.008 \ 0.027) \times 10$	$(2.724 \ 0.011 \ 0.013 \ 0.041) \times 10^{-2}$	0^{1} 6.509 0.029 0.043 0.131	
$4.43 - 4.88 (1.461 \ 0.002 \ 0.007 \ 0.022) \times 10$	$(2.276 \ 0.009 \ 0.010 \ 0.034) \times 10^{-2}$	0^1 6.419 0.027 0.041 0.128	
$4.88 - 5.37 (1.190 \ 0.002 \ 0.005 \ 0.017) \times 10$	$(1.888 \ 0.007 \ 0.008 \ 0.028) \times 10^{-2}$	0^{1} 6.304 0.026 0.039 0.123	
$5.37 - 5.90 (9.704 \ 0.014 \ 0.040 \ 0.138) \times 10$	$1 (1.564 \ 0.006 \ 0.006 \ 0.023) \times 10^{-1}$	0^{1} 6.205 0.026 0.036 0.119	
$5.90 - 6.47 (7.890 \ 0.012 \ 0.031 \ 0.111) \times 10$	$1 (1.286 \ 0.005 \ 0.005 \ 0.019) \times 10^{-1}$	0^1 6.134 0.026 0.035 0.115	
$6.47 - 7.09 (6.381 \ 0.009 \ 0.024 \ 0.089) \times 10$	$1 (1.058 \ 0.004 \ 0.004 \ 0.015) \times 10^{-1}$	0^1 6.033 0.025 0.034 0.112	
$7.09 - 7.76 (5.192 \ 0.008 \ 0.020 \ 0.072) \times 10$	$\left(8.734\ 0.034\ 0.036\ 0.127\right)\times10^{-1}$	0^0 5.944 0.025 0.033 0.109	
$7.76 - 8.48 (4.187 \ 0.006 \ 0.016 \ 0.058) \times 10$	$1 (7.092 \ 0.028 \ 0.030 \ 0.102) \times 10^{-1}$	0^0 5.904 0.025 0.033 0.108	
$8.48 - 9.26 (3.376 \ 0.005 \ 0.013 \ 0.046) \times 10$	$1 (5.778 \ 0.024 \ 0.025 \ 0.084) \times 10^{-1} $	0^0 5.842 0.026 0.034 0.106	
$9.26 - 10.1 (2.720 \ 0.004 \ 0.011 \ 0.037) \times 10$	$(4.737 \ 0.020 \ 0.021 \ 0.069) \times 10^{-1}$	0^0 5.743 0.026 0.034 0.104	
$10.1 - 11.0 (2.189 \ 0.004 \ 0.009 \ 0.030) \times 10$	$(3.852 \ 0.017 \ 0.018 \ 0.056) \times 10^{-1}$	0^0 5.683 0.027 0.035 0.103	
$11.0 - 12.0 (1.766 \ 0.003 \ 0.007 \ 0.024) \times 10$	$(3.162 \ 0.014 \ 0.015 \ 0.046) \times 10^{-1}$	0^0 5.583 0.027 0.035 0.101	
$12.0 - 13.0 \ (1.416 \ 0.003 \ 0.006 \ 0.019) \times 10$	$1 (2.550 \ 0.013 \ 0.013 \ 0.037) \times 10^{-1}$	0^0 5.552 0.030 0.036 0.102	
$13.0 - 14.1 (1.156 \ 0.002 \ 0.005 \ 0.016) \times 10$	$1 (2.101 \ 0.011 \ 0.011 \ 0.031) \times 10^{-1}$	0^0 5.501 0.030 0.038 0.101	
$14.1 - 15.3 (9.203\ 0.019\ 0.042\ 0.130) \times 10$	$0 (1.696 \ 0.009 \ 0.009 \ 0.025) \times 10^{-6} $	0^0 5.428 0.031 0.039 0.100	
$15.3 - 16.6 (7.436 \ 0.016 \ 0.035 \ 0.106) \times 10$	$0 \mid (1.378 \ 0.008 \ 0.008 \ 0.021) \times 10^{-6}$	0^0 5.395 0.032 0.040 0.100	
m 11			

.

TABLE SM VI: Bartels Rotation 2431 (September 27, 2011 – October 23, 2011). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ $\sigma_{\text{time }}\sigma_{\text{syst.}}$
$16.6 - 18.0 (5.993 \ 0.013 \ 0.029 \ 0.087) \times 10$	$0 (1.129 \ 0.006 \ 0.007 \ 0.017) \times 10^{-6} $	0^0 $5.307 0.032 0.041 0.100$
$18.0 - 19.5 (4.836 \ 0.011 \ 0.024 \ 0.071) \times 10$	$0 (9.238 \ 0.053 \ 0.059 \ 0.139) \times 10^{-6} $	0^{-1} 5.234 0.032 0.043 0.099
$19.5 - 21.1 (3.875 \ 0.009 \ 0.020 \ 0.058) \times 10$	$0 \mid (7.455 \ 0.044 \ 0.050 \ 0.113) \times 10^{-6}$	$0^{-1} 5.198 0.033 0.044 0.098$
$21.1 - 22.8 (3.129 \ 0.008 \ 0.017 \ 0.047) \times 10$	$0 (6.154 \ 0.037 \ 0.042 \ 0.094) \times 10^{-6} $	$0^{-1} 5.085 0.033 0.044 0.097$
$22.8 - 24.7 (2.518 \ 0.006 \ 0.014 \ 0.038) \times 10$	$0 (4.992 \ 0.031 \ 0.035 \ 0.077) \times 10^{-6} $	$0^{-1} 5.044 0.033 0.045 0.097$
$24.7 - 26.7 (2.026 \ 0.005 \ 0.012 \ 0.031) \times 10$	$0 (4.101 \ 0.026 \ 0.030 \ 0.063) \times 10^{-6} $	0^{-1} 4.941 0.034 0.045 0.096
$26.7 - 28.8 (1.639 \ 0.005 \ 0.010 \ 0.025) \times 10$	$0 (3.317 \ 0.023 \ 0.025 \ 0.051) \times 10^{-6} $	0^{-1} 4.943 0.037 0.047 0.096
$28.8 - 31.1 (1.322 \ 0.004 \ 0.008 \ 0.020) \times 10$	$0 (2.709 \ 0.019 \ 0.021 \ 0.043) \times 10^{-6} $	0^{-1} 4.879 0.038 0.047 0.096
$31.1 - 33.5 (1.074 \ 0.003 \ 0.007 \ 0.017) \times 10$	$0 (2.198 \ 0.017 \ 0.017 \ 0.035) \times 10^{-6} $	$0^{-1} 4.887 \ 0.041 \ 0.049 \ 0.097$
$33.5 - 36.1 (8.709 \ 0.030 \ 0.055 \ 0.135) \times 10$	$^{-1}$ (1.810 0.015 0.015 0.030)×10	0^{-1} 4.811 0.043 0.050 0.096
$36.1 - 38.9 (7.053 \ 0.026 \ 0.046 \ 0.110) \times 10$	$^{-1}$ (1.457 0.013 0.012 0.024)×10	0^{-1} 4.840 0.046 0.051 0.098
$38.9 - 41.9 (5.744 \ 0.022 \ 0.038 \ 0.090) \times 10$	$^{-1}$ (1.212 0.011 0.010 0.019)×10	0^{-1} 4.739 0.048 0.052 0.097
$41.9 - 45.1 (4.700 \ 0.020 \ 0.032 \ 0.074) \times 10$	$^{-1}$ (1.001 0.010 0.009 0.017)×10	$0^{-1} 4.696 \ 0.050 \ 0.053 \ 0.097$
$45.1 - 48.5 (3.825 \ 0.017 \ 0.027 \ 0.061) \times 10$	$^{-1}$ (8.038 0.086 0.073 0.134)×10	0^{-2} 4.758 0.055 0.055 0.099
$48.5 - 52.2 (3.125 \ 0.015 \ 0.022 \ 0.051) \times 10$	$^{-1}$ (6.621 0.074 0.062 0.112)×10	$0^{-2} 4.721 0.057 0.055 0.099$
$52.2 - 56.1 (2.545 \ 0.013 \ 0.019 \ 0.042) \times 10$	$^{-1}$ (5.312 0.064 0.051 0.090)×10	$0^{-2} 4.791 \ 0.063 \ 0.058 \ 0.101$
$56.1 - 60.3 (2.082 \ 0.011 \ 0.015 \ 0.035) \times 10^{-1}$	$-1 (4.492 \ 0.057 \ 0.044 \ 0.077) \times 10^{-1} $	$0^{-2} 4.634 0.064 0.057 0.099$

TABLE SM VII: Bartels Rotation 2432 (October 24, 2011 – November 19, 2011). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[\text{m}^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ σ_{time}	$\sigma_{ m syst}$
$1.00 - 1.16 (8.450 \ 0.046 \ 0.124 \ 0.379) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.16 - 1.33 (8.328 \ 0.025 \ 0.089 \ 0.297) \times 10$	2 $^{-}$ $^{-}$ $^{-}$		_
$1.33 - 1.51 (7.942 \ 0.021 \ 0.065 \ 0.229) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.51 - 1.71 (7.365 \ 0.015 \ 0.049 \ 0.192) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.71 - 1.92 (6.629 \ 0.013 \ 0.039 \ 0.156) \times 10$	2		_
$1.92 - 2.15 (5.878 \ 0.010 \ 0.031 \ 0.127) \times 10$	$(7.023\ 0.040\ 0.058\ 0.152)\times 10$	$\begin{bmatrix} 1 & 8.369 & 0.050 & 0.082 & 0.082 \end{bmatrix}$.244
2.15 - 2.40 (5.121 0.009 0.025 0.102)×10	$(6.512 \ 0.034 \ 0.047 \ 0.124) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.206
$2.40 - 2.67 (4.386 \ 0.007 \ 0.020 \ 0.083) \times 10$	$(5.851 \ 0.029 \ 0.039 \ 0.102) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.181
$2.67 - 2.97 (3.737 \ 0.006 \ 0.017 \ 0.065) \times 10$	2 (5.196 0.024 0.033 0.086)×10	$7.192 \ 0.035 \ 0.057 \ 0.035 $.164
$2.97 - 3.29 (3.165 \ 0.005 \ 0.014 \ 0.053) \times 10$	$(4.557 \ 0.020 \ 0.027 \ 0.072) \times 10$	$\begin{bmatrix} 1 & 6.946 & 0.032 & 0.052 & 0.052 \end{bmatrix}$.152
$3.29 - 3.64 (2.652\ 0.004\ 0.012\ 0.043) \times 10$	$(3.920\ 0.017\ 0.022\ 0.062)\times 10$	$\begin{bmatrix} 1 & 6.765 & 0.031 & 0.049 & 0. \end{bmatrix}$.144
$3.64 - 4.02 (2.209\ 0.003\ 0.010\ 0.035) \times 10$	$(3.345 \ 0.014 \ 0.017 \ 0.051) \times 10$	$\begin{bmatrix} 1 & 6.604 & 0.029 & 0.046 & 0.029 \end{bmatrix}$.137
$4.02 - 4.43 (1.827 \ 0.003 \ 0.009 \ 0.028) \times 10$	$(2.781 \ 0.011 \ 0.014 \ 0.042) \times 10$	$\begin{bmatrix} 1 & 6.570 & 0.029 & 0.045 & 0. \end{bmatrix}$.133
$4.43 - 4.88 (1.500\ 0.002\ 0.007\ 0.023) \times 10$	$(2.347 \ 0.009 \ 0.011 \ 0.035) \times 10$	$\begin{bmatrix} 1 & 6.389 & 0.027 & 0.042 & 0.042 \end{bmatrix}$.127
$4.88 - 5.37 (1.224 \ 0.002 \ 0.005 \ 0.018) \times 10$	$(1.933\ 0.007\ 0.009\ 0.029) \times 10$	$\begin{bmatrix} 1 & 6.330 & 0.026 & 0.040 & 0.040 \end{bmatrix}$.124
$5.37 - 5.90 (9.947 \ 0.015 \ 0.041 \ 0.142) \times 10$	$(1.598 \ 0.006 \ 0.007 \ 0.024) \times 10$	$\begin{bmatrix} 1 & 6.224 & 0.026 & 0.037 & 0.037 \end{bmatrix}$.119
$5.90 - 6.47 (8.071\ 0.012\ 0.032\ 0.114) \times 10$	$(1.322\ 0.005\ 0.006\ 0.019) \times 10$	$\begin{bmatrix} 1 & 6.104 & 0.025 & 0.036 & 0.036 \end{bmatrix}$.115
$6.47 - 7.09 (6.540 \ 0.010 \ 0.025 \ 0.091) \times 10$.112
7.09 - 7.76 (5.294 0.008 0.020 0.073)×10			.111
$7.76 - 8.48 (4.269 \ 0.006 \ 0.016 \ 0.059) \times 10$,		.109
8.48 - 9.26 (3.431 0.005 0.013 0.047)×10	$(5.907 \ 0.024 \ 0.028 \ 0.086) \times 10$	$0 \mid 5.808 \mid 0.025 \mid 0.035 \mid $.106
$9.26 - 10.1 (2.760 \ 0.005 \ 0.011 \ 0.038) \times 10$	$(4.793 \ 0.020 \ 0.023 \ 0.070) \times 10$	$0 5.757 \ 0.026 \ 0.036 \ 0.$.105
$10.1 - 11.0 (2.211\ 0.004\ 0.009\ 0.030) \times 10$,		.104
$11.0 - 12.0 (1.774 \ 0.003 \ 0.007 \ 0.024) \times 10$,		.102
$12.0 - 13.0 (1.426 \ 0.003 \ 0.006 \ 0.020) \times 10$,		.102
$13.0 - 14.1 (1.155 \ 0.002 \ 0.005 \ 0.016) \times 10$.103
$14.1 - 15.3 (9.338\ 0.020\ 0.043\ 0.132) \times 10$,		
$15.3 - 16.6 (7.476\ 0.016\ 0.036\ 0.107) \times 10$,		
	/		_

TABLE SM VII: Bartels Rotation 2432 (October 24, 2011 – November 19, 2011). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \ \sigma_{\text{time}} \ \sigma_{\text{syst.}}$
$16.6 - 18.0 (6.015 \ 0.014 \ 0.030 \ 0.087) \times 10$	$0 (1.121 \ 0.006 \ 0.008 \ 0.017) \times$	10^0 5.368 0.033 0.045 0.102
$18.0 - 19.5 (4.833 \ 0.011 \ 0.025 \ 0.071) \times 10$	0 (9.310 0.054 0.067 0.144)×	10^{-1} 5.191 0.032 0.046 0.100
$19.5 - 21.1 (3.863 \ 0.009 \ 0.020 \ 0.058) \times 10$	0 $(7.481 \ 0.045 \ 0.056 \ 0.117) \times$	10^{-1} 5.163 0.033 0.047 0.099
$21.1 - 22.8 (3.133 \ 0.008 \ 0.017 \ 0.047) \times 10$	0 (6.153 0.037 0.047 0.097)×	$10^{-1} 5.092 \ 0.033 \ 0.048 \ 0.099$
$22.8 - 24.7 (2.521 \ 0.006 \ 0.014 \ 0.038) \times 10$	0 $(4.974 \ 0.031 \ 0.039 \ 0.078) \times$	10^{-1} 5.069 0.034 0.048 0.099
$24.7 - 26.7 (2.025 \ 0.005 \ 0.012 \ 0.031) \times 10$	0 $(4.079 \ 0.026 \ 0.032 \ 0.064) \times$	$10^{-1} 4.963 \ 0.035 \ 0.049 \ 0.097$
$26.7 - 28.8 (1.639 \ 0.005 \ 0.010 \ 0.025) \times 10$	0 $(3.305 \ 0.023 \ 0.027 \ 0.052) \times$	$10^{-1} 4.959 \ 0.037 \ 0.050 \ 0.098$
$28.8 - 31.1 (1.330 \ 0.004 \ 0.008 \ 0.021) \times 10$	0 (2.677 0.019 0.022 0.043)×	$10^{-1} 4.968 \ 0.039 \ 0.051 \ 0.099$
$31.1 - 33.5 (1.070 \ 0.003 \ 0.007 \ 0.017) \times 10$	0 (2.208 0.017 0.019 0.036)×	$10^{-1} 4.845 \ 0.041 \ 0.051 \ 0.097$
$33.5 - 36.1 (8.710 \ 0.030 \ 0.056 \ 0.135) \times 10$	$^{-1}$ (1.819 0.015 0.016 0.030)×	$10^{-1} 4.789 \ 0.043 \ 0.052 \ 0.097$
$36.1 - 38.9 (7.049 \ 0.026 \ 0.047 \ 0.110) \times 10$	$^{-1}$ (1.456 0.013 0.013 0.024)×	10^{-1} 4.840 0.047 0.053 0.099
$38.9 - 41.9 (5.755 \ 0.022 \ 0.039 \ 0.090) \times 10$	$^{-1}$ (1.190 0.011 0.011 0.019)×	$10^{-1} 4.836 \ 0.050 \ 0.054 \ 0.100$
$41.9 - 45.1 (4.675 \ 0.020 \ 0.033 \ 0.074) \times 10$	$^{-1}$ (9.823 0.099 0.090 0.164)×	$10^{-2} 4.760 \ 0.052 \ 0.055 \ 0.099$
$45.1 - 48.5 (3.812 \ 0.017 \ 0.027 \ 0.061) \times 10$	$^{-1}$ (8.085 0.087 0.076 0.136)×	$10^{-2} 4.714 \ 0.055 \ 0.055 \ 0.099$
$48.5 - 52.2 (3.101 \ 0.015 \ 0.023 \ 0.051) \times 10$	$^{-1}$ (6.532 0.074 0.062 0.111)×	$10^{-2} 4.748 \ 0.059 \ 0.057 \ 0.100$
$52.2 - 56.1 (2.531 \ 0.013 \ 0.019 \ 0.042) \times 10$	$^{-1}$ (5.495 0.066 0.053 0.094)×	$10^{-2} 4.605 \ 0.060 \ 0.056 \ 0.098$
$56.1 - 60.3 (2.085 \ 0.011 \ 0.016 \ 0.035) \times 10^{-1}$	$^{-1}$ $(4.377 \ 0.057 \ 0.043 \ 0.075) ×$	$10^{-2} 4.764 \ 0.067 \ 0.059 \ 0.102$

TABLE SM VIII: Bartels Rotation 2433 (November 20, 2011 – December 16, 2011). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p	$\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m s}$	syst.	Φ_{He} σ_{s}	$\sigma_{ m tat.}$	$_{ m ime}$ $\sigma_{ m s}$	syst.	p/He	$\sigma_{ m s}$	tat. $\sigma_{\rm t}$	ime		$\sigma_{ m syst.}$
1.00 - 1.16 (8.	.790 0.039 0.122	$0.392) \times 10^2$	_	_	_	_		_	_	_	_	
1.16 - 1.33 (8.	.637 0.025 0.088	$0.307) \times 10^2$	_	_	_	_		_	_	_	_	
1.33 - 1.51 (8.1)	.193 0.021 0.064	$0.235) \times 10^2$	_	_	_	_		_	_	_	_	
1.51 - 1.71 (7.	.663 0.015 0.050	$0.200) \times 10^2$	_	_	_	_		_	_	_	_	
1.71 - 1.92 (6.6)	.921 0.013 0.040	$0.163) \times 10^2$	_	_	_	_		_	_	_	_	
1.92 - 2.15 (6.	.127 0.011 0.032	$0.132) \times 10^2$	(7.259)	0.042	0.060	$0.157) \times 10^{-1}$	8	441	0.051	0.082	0.246	
2.15 - 2.40 (5.	.316 0.009 0.026	$0.106) \times 10^2$	(6.821)	0.036	0.049	$0.130) \times 10$	$)^{1} 7.$	794	0.043	0.068	0.204	
2.40 - 2.67 (4.	.589 0.008 0.021	$0.087) \times 10^2$	(6.163)	0.030	0.041	$0.107) \times 10^{-1}$	$)^{1} 7.$	447	0.038	0.061	0.180	
2.67 - 2.97 (3.	.904 0.006 0.018	$0.068) \times 10^2$	(5.437)	0.025	0.035	$0.090) \times 10^{-1}$	$)^{1}$ 7.	181	0.035	0.057	0.163	
2.97 - 3.29 (3.	.301 0.005 0.015	$0.055) \times 10^2$	(4.795)	0.021	0.029	$0.076) \times 10^{-1}$	6	885	0.032	0.052	0.150	
3.29 - 3.64 (2.	.760 0.004 0.013	$0.045) \times 10^2$	(4.087)	0.017	0.023	$0.064) \times 10^{-1}$	$)^{1}$ 6.	754	0.031	0.049	0.143	
3.64 - 4.02 (2.	.291 0.004 0.011	$0.036) \times 10^2$	(3.468)	0.015	0.018	$0.053) \times 10^{-1}$	6	608	0.030	0.046	0.137	
4.02 - 4.43 (1.	.889 0.003 0.009	$0.029) \times 10^2$	(2.918)	0.012	0.014	$0.044) \times 10^{-1}$	$)^{1}$ 6.	473	0.028	0.044	0.131	
4.43 - 4.88 (1.	.548 0.002 0.007	$0.024) \times 10^2$	(2.437)	0.009	0.012	$0.037) \times 10^{-1}$	6	353	0.026	0.042	0.127	
4.88 - 5.37 (1.	.262 0.002 0.006	$0.018) \times 10^2$	(2.009)	0.008	0.009	$0.030) \times 10^{-1}$	$)^{1}$ 6.	284	0.026	0.040	0.123	
5.37 - 5.90 (1.	.025 0.002 0.004	$0.015) \times 10^2$	(1.659)	0.006	0.007	$0.025) \times 10^{-1}$	$)^{1}$ 6.	181	0.026	0.037	0.119	
5.90 - 6.47 (8.	.285 0.012 0.033	$0.117) \times 10^{1}$	(1.356)	0.005	0.006	$0.020) \times 10^{-10}$	6	108	0.025	0.036	0.115	
6.47 - 7.09 (6.	.712 0.010 0.026	$0.094) \times 10^{1}$	(1.106)	0.004	0.005	$0.016) \times 10^{-1}$	$)^{1}$ 6.	070	0.025	0.036	0.114	
7.09 - 7.76 (5.	.382 0.008 0.021	$0.075) \times 10^{1}$	(9.105)	0.035	0.040	$0.133) \times 10^{-1}$	5	910	0.025	0.035	0.109	
7.76 - 8.48 (4.	.355 0.007 0.017	$0.060) \times 10^{1}$	(7.379)	0.029	0.034	$0.107) \times 10^{-1}$	5	902	0.025	0.035	0.109	
8.48 - 9.26 (3.	.512 0.006 0.014	$0.048) \times 10^{1}$	(6.037)	0.025	0.028	$0.088) \times 10^{-1}$	5	818	0.026	0.036	0.107	
9.26 - 10.1 (2.	.812 0.005 0.011	$0.038) \times 10^{1}$	(4.884	0.021	0.024	$0.072) \times 10^{-1}$	5	758	0.026	0.037	0.106	
10.1 - 11.0 (2.	.251 0.004 0.009	$0.031) \times 10^{1}$	(3.967)	0.018	0.020	$0.058) \times 10^{-1}$	5	673	0.027	0.037	0.104	
11.0 - 12.0 (1.	.808 0.003 0.008	$0.025) \times 10^{1}$	(3.209)	0.015	0.017	$0.048) \times 10^{-1}$	5	633	0.028	0.039	0.103	
12.0 - 13.0 (1.	.451 0.003 0.006	$0.020) \times 10^{1}$	(2.622)	0.013	0.015	$0.039) \times 10^{-1}$	5	534	0.030	0.039	0.102	
13.0 - 14.1 (1.	.172 0.002 0.005	$0.017) \times 10^{1}$	(2.138)	0.011	0.013	$0.032) \times 10^{-1}$	0^0 5.	483	0.031	0.041	0.102	
14.1 - 15.3 (9.1)	.458 0.020 0.044	$0.134)\times10^{0}$	(1.733)	0.009	0.011	$0.026) \times 10^{-1}$	0^0 5.	459	0.032	0.043	0.102	
15.3 - 16.6 (7.	.594 0.017 0.037	$0.109) \times 10^{0}$	(1.414	0.008	0.009	$0.022) \times 10^{-1}$	0^0 5.	372	0.032	0.044	0.102	
	,		•									

.

TABLE SM VIII: Bartels Rotation 2433 (November 20, 2011 – December 16, 2011). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time}} \sigma_{\text{syst.}}$
$16.6 - 18.0 (6.094 \ 0.014 \ 0.031 \ 0.089) \times 10$	$0 (1.148 \ 0.007 \ 0.008 \ 0.018) \times$	$< 10^0$ 5.309 0.033 0.045 0.101
$18.0 - 19.5 (4.914 \ 0.011 \ 0.025 \ 0.073) \times 10$	$0 (9.338 \ 0.054 \ 0.068 \ 0.145) \times $	$\langle 10^{-1} 5.262 \ 0.033 \ 0.047 \ 0.101$
$19.5 - 21.1 (3.956 \ 0.009 \ 0.021 \ 0.059) \times 10$	$0 \mid (7.503 \ 0.045 \ 0.057 \ 0.117) \times $	$\langle 10^{-1} 5.273 \ 0.034 \ 0.049 \ 0.102$
$21.1 - 22.8 (3.192 \ 0.008 \ 0.018 \ 0.048) \times 10$	$0 (6.207 \ 0.038 \ 0.048 \ 0.098) \times$	$\langle 10^{-1} 5.143 \ 0.034 \ 0.049 \ 0.100$
$22.8 - 24.7 (2.556 \ 0.006 \ 0.015 \ 0.039) \times 10$	$0 (5.091 \ 0.032 \ 0.040 \ 0.081) \times$	$\langle 10^{-1} 5.019 \ 0.034 \ 0.049 \ 0.099$
$24.7 - 26.7 (2.045 \ 0.005 \ 0.012 \ 0.032) \times 10$	$0 (4.101 \ 0.027 \ 0.033 \ 0.065) \times$	$\langle 10^{-1} 4.988 \ 0.035 \ 0.050 \ 0.098$
$26.7 - 28.8 (1.656 \ 0.005 \ 0.010 \ 0.025) \times 10$	$0 (3.355 \ 0.024 \ 0.028 \ 0.054) \times $	$\langle 10^{-1} 4.936 \ 0.037 \ 0.051 \ 0.098$
$28.8 - 31.1 (1.336 \ 0.004 \ 0.008 \ 0.021) \times 10$	$0 (2.728 \ 0.020 \ 0.023 \ 0.044) \times $	$\langle 10^{-1} 4.898 \ 0.039 \ 0.051 \ 0.098$
$31.1 - 33.5 (1.077 \ 0.004 \ 0.007 \ 0.017) \times 10$	$0 (2.225 \ 0.018 \ 0.019 \ 0.036) \times $	$\langle 10^{-1} 4.842 \ 0.042 \ 0.052 \ 0.098$
$33.5 - 36.1 (8.762 \ 0.031 \ 0.057 \ 0.137) \times 10$	$^{-1}$ (1.789 0.015 0.016 0.030)×	$\langle 10^{-1} 4.897 \ 0.045 \ 0.054 \ 0.100$
$36.1 - 38.9 (7.147 \ 0.027 \ 0.048 \ 0.112) \times 10$	$^{-1}$ (1.487 0.013 0.014 0.025)×	$\langle 10^{-1} 4.808 \ 0.047 \ 0.054 \ 0.099$
$38.9 - 41.9 (5.801 \ 0.023 \ 0.040 \ 0.091) \times 10$	$^{-1}$ (1.205 0.012 0.011 0.020)×	$\langle 10^{-1} 4.813 \ 0.050 \ 0.056 \ 0.100$
$41.9 - 45.1 (4.710 \ 0.020 \ 0.033 \ 0.075) \times 10$	$^{-1} (9.792\ 0.101\ 0.094\ 0.166) \times$	$\langle 10^{-2} 4.810 \ 0.054 \ 0.057 \ 0.101$
$45.1 - 48.5$ $(3.824 \ 0.018 \ 0.028 \ 0.062) \times 10$	$^{-1}$ (8.127 0.089 0.080 0.139)×	$\langle 10^{-2} 4.705 \ 0.056 \ 0.057 \ 0.100$
$48.5 - 52.2 (3.120\ 0.015\ 0.023\ 0.051) \times 10$	$^{-1}$ (6.618 0.077 0.067 0.114)×	$\langle 10^{-2} 4.714 \ 0.059 \ 0.059 \ 0.101$
52.2 - 56.1 (2.556 0.013 0.019 0.043)×10	$^{-1} (5.384\ 0.067\ 0.055\ 0.094) \times$	$\langle 10^{-2} 4.749 \ 0.064 \ 0.061 \ 0.102$
$56.1 - 60.3 (2.075 \ 0.012 \ 0.016 \ 0.035) \times 10$	$^{-1} (4.502\ 0.059\ 0.047\ 0.079) \times$	$\langle 10^{-2} 4.609 \ 0.065 \ 0.060 \ 0.100$

TABLE SM IX: Bartels Rotation 2434 (December 17, 2011 – January 12, 2012). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s}\cdot{\rm GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$ p/He $\sigma_{\mathrm{stat.}}$ σ_{time}	$\sigma_{ m syst.}$
$1.00 - 1.16 (8.982\ 0.042\ 0.119\ 0.399) \times 10^{-1}$		
$1.16 - 1.33 (8.826 \ 0.025 \ 0.085 \ 0.312) \times 10^{-1}$	$0^2 \mid$	
$1.33 - 1.51 (8.357 \ 0.021 \ 0.062 \ 0.239) \times 10^{-1}$	$0^2 \mid$	
$1.51 - 1.71 (7.797 \ 0.015 \ 0.048 \ 0.202) \times 10^{-1}$	$0^2 \mid $	
$1.71 - 1.92 (7.007 \ 0.013 \ 0.038 \ 0.165) \times 10^{-1}$	$0^2 \mid $	
$1.92 - 2.15 (6.166 \ 0.011 \ 0.030 \ 0.132) \times 10^{-1}$	$0^{2} (7.459 \ 0.042 \ 0.054 \ 0.159) \times 10^{1} 8.266 \ 0.048 \ 0.072 \ 0.23$	8
$2.15 - 2.40 (5.355 \ 0.009 \ 0.024 \ 0.107) \times 10^{-2}$	$0^{2} \left[(6.951 \ 0.036 \ 0.044 \ 0.130) \times 10^{1} \right] \left[7.704 \ 0.041 \ 0.060 \ 0.19 \right]$	9
$2.40 - 2.67 (4.608 \ 0.007 \ 0.020 \ 0.087) \times 10^{-1}$	$0^{2} \left[(6.189\ 0.030\ 0.037\ 0.106) \times 10^{1} \right] 7.445\ 0.037\ 0.055\ 0.17$	8
$2.67 - 2.97 (3.913\ 0.006\ 0.017\ 0.068) \times 10^{-1}$	$0^{2} \left[(5.548 \ 0.025 \ 0.032 \ 0.090) \times 10^{1} \right] \left[7.052 \ 0.034 \ 0.050 \ 0.15 \right]$	9
$2.97 - 3.29 (3.297 \ 0.005 \ 0.014 \ 0.055) \times 10^{-2}$	$0^2 \mid (4.833 \ 0.021 \ 0.026 \ 0.076) \times 10^1 \mid 6.821 \ 0.031 \ 0.046 \ 0.14$	7
$3.29 - 3.64 (2.766 \ 0.004 \ 0.012 \ 0.044) \times 10^{-2}$	$0^{2} \left[(4.080\ 0.017\ 0.020\ 0.063) \times 10^{1} \right] \left[6.780\ 0.030\ 0.044\ 0.14 \right]$	2
$3.64 - 4.02 (2.290\ 0.003\ 0.010\ 0.036) \times 10^{-2}$	$0^2 \left[(3.500 \ 0.014 \ 0.016 \ 0.053) \times 10^1 \right] \left[6.544 \ 0.029 \ 0.042 \ 0.13 \right]$	4
$4.02 - 4.43 (1.894 \ 0.003 \ 0.008 \ 0.029) \times 10^{-1}$	$0^{2} \left[(2.917 \ 0.012 \ 0.013 \ 0.044) \times 10^{1} \right] \left[6.492 \ 0.028 \ 0.041 \ 0.13 \right]$	0
$4.43 - 4.88 (1.551 \ 0.002 \ 0.007 \ 0.023) \times 10^{-1}$	$0^2 \left[(2.432\ 0.009\ 0.010\ 0.036) \times 10^1 \right] \left[6.380\ 0.026\ 0.039\ 0.12 \right]$	6
$4.88 - 5.37 (1.265 \ 0.002 \ 0.005 \ 0.018) \times 10^{-2}$	$0^{2} \left[(2.003 \ 0.008 \ 0.008 \ 0.029) \times 10^{1} \right] \left[6.314 \ 0.026 \ 0.036 \ 0.12 \right]$	3
$5.37 - 5.90 (1.025 \ 0.001 \ 0.004 \ 0.015) \times 10^{-1}$	$0^2 \left[(1.667\ 0.006\ 0.006\ 0.024) \times 10^1 \right] \left[6.148\ 0.025\ 0.034\ 0.11 \right]$	7
$5.90 - 6.47 (8.302\ 0.012\ 0.031\ 0.116) \times 10^{-1}$	$0^1 \mid (1.366 \ 0.005 \ 0.005 \ 0.020) \times 10^1 \mid (6.078 \ 0.025 \ 0.032 \ 0.11)$	4
$6.47 - 7.09 (6.721 \ 0.010 \ 0.025 \ 0.094) \times 10^{-1}$		2
$7.09 - 7.76 (5.412 \ 0.008 \ 0.020 \ 0.075) \times 10^{-1}$		9
$7.76 - 8.48 (4.384 \ 0.007 \ 0.016 \ 0.061) \times 10^{-1}$	· · · · · · · · · · · · · · · · · · ·	7
$8.48 - 9.26 (3.505 \ 0.006 \ 0.013 \ 0.048) \times 10^{-1}$	$0^{1} \left (6.075 \ 0.025 \ 0.025 \ 0.088) \times 10^{0} \right 5.769 \ 0.025 \ 0.032 \ 0.10$	5
$9.26 - 10.1 (2.822 \ 0.005 \ 0.011 \ 0.038) \times 10^{-1}$,	4
$10.1 - 11.0 (2.262 \ 0.004 \ 0.009 \ 0.031) \times 10^{-1}$		2
$11.0 - 12.0 (1.811 \ 0.003 \ 0.007 \ 0.025) \times 10^{-1}$		1
$12.0 - 13.0 (1.453\ 0.003\ 0.006\ 0.020) \times 10^{-1}$	· · · · · · · · · · · · · · · · · · ·	1
$13.0 - 14.1 (1.179 \ 0.002 \ 0.005 \ 0.017) \times 10^{-1}$		2
$14.1 - 15.3 (9.463\ 0.020\ 0.042\ 0.133) \times 10^{-1}$		0
$15.3 - 16.6 (7.595 \ 0.017 \ 0.035 \ 0.108) \times 10^{-1}$	$0^0 \mid (1.420 \ 0.008 \ 0.008 \ 0.021) \times 10^0 \mid 5.349 \ 0.032 \ 0.039 \ 0.09$	9

TABLE SM IX: Bartels Rotation 2434 (December 17, 2011 – January 12, 2012). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ $\sigma_{\text{time }}\sigma_{\text{syst.}}$
$16.6 - 18.0 (6.126 \ 0.014 \ 0.029 \ 0.088) \times 10$	$0 (1.160 \ 0.007 \ 0.007 \ 0.018) \times 10^{-6} $	$\begin{bmatrix} 5.280 & 0.032 & 0.041 & 0.099 \end{bmatrix}$
$18.0 - 19.5 (4.904 \ 0.011 \ 0.024 \ 0.072) \times 10$	$0 \mid (9.390 \ 0.054 \ 0.059 \ 0.142) \times 10^{-6}$	-1 5.222 0.032 0.042 0.098
$19.5 - 21.1 (3.948 \ 0.009 \ 0.020 \ 0.059) \times 10$	$0 \mid (7.598 \ 0.045 \ 0.051 \ 0.116) \times 10^{-6}$	$^{-1}$ $ 5.196 \ 0.033 \ 0.043 \ 0.098$
$21.1 - 22.8 (3.187 \ 0.008 \ 0.017 \ 0.048) \times 10$	$0 \mid (6.146 \ 0.038 \ 0.042 \ 0.094) \times 10^{-6}$	$^{-1}$ 5.185 0.034 0.045 0.099
$22.8 - 24.7 (2.554 \ 0.006 \ 0.014 \ 0.038) \times 10$,	$^{-1}$ $ 5.026 \ 0.033 \ 0.045 \ 0.097$
$24.7 - 26.7 (2.046 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 \mid (4.093 \ 0.027 \ 0.030 \ 0.063) \times 10^{-6}$	$^{-1}$ $ 5.000 \ 0.035 \ 0.046 \ 0.097 $
$26.7 - 28.8 (1.657 \ 0.005 \ 0.010 \ 0.025) \times 10$	$0 (3.358 \ 0.023 \ 0.025 \ 0.052) \times 10^{-6} $	$^{-1}$ 4.934 0.037 0.047 0.096
$28.8 - 31.1 (1.341 \ 0.004 \ 0.008 \ 0.021) \times 10$	$0 \mid (2.709 \ 0.020 \ 0.021 \ 0.043) \times 10^{-6}$	$^{-1}$ 4.948 0.039 0.048 0.097
$31.1 - 33.5 (1.084 \ 0.004 \ 0.007 \ 0.017) \times 10$	$0 (2.246 \ 0.018 \ 0.018 \ 0.036) \times 10^{-6} $	$^{-1}$ 4.825 0.041 0.049 0.096
$33.5 - 36.1 (8.791 \ 0.031 \ 0.055 \ 0.136) \times 10$	$^{-1} (1.780 \ 0.015 \ 0.015 \ 0.029) \times 10^{-1} $	$^{-1}$ 4.940 0.045 0.052 0.099
$36.1 - 38.9 (7.159 \ 0.027 \ 0.046 \ 0.111) \times 10$	$^{-1}$ (1.466 0.013 0.013 0.024)×10	$^{-1}$ 4.885 0.048 0.053 0.099
$38.9 - 41.9 (5.782 \ 0.023 \ 0.038 \ 0.090) \times 10$	$^{-1} (1.227\ 0.012\ 0.011\ 0.020)\times 10^{-1} $	$^{-1}$ 4.713 0.048 0.053 0.097
$41.9 - 45.1 (4.735 \ 0.020 \ 0.032 \ 0.075) \times 10$	$^{-1} (9.975 \ 0.101 \ 0.093 \ 0.167)\times 10$	-2 4.747 0.052 0.055 0.098
$45.1 - 48.5 (3.873 \ 0.018 \ 0.027 \ 0.062) \times 10$	$^{-1} (8.152\ 0.089\ 0.078\ 0.139)\times 10^{-1} $	$-2 \mid 4.752 \mid 0.056 \mid 0.056 \mid 0.100 \mid$
$48.5 - 52.2 (3.131 \ 0.015 \ 0.022 \ 0.051) \times 10$	$^{-1} (6.675 \ 0.077 \ 0.066 \ 0.115)\times 10$	$^{-2}$ 4.691 0.058 0.057 0.100
$52.2 - 56.1 (2.579 \ 0.013 \ 0.019 \ 0.043) \times 10$	$^{-1} (5.367\ 0.067\ 0.055\ 0.093)\times 10^{-1} $	$^{-2}$ 4.805 0.065 0.060 0.103
$56.1 - 60.3 (2.078 \ 0.012 \ 0.015 \ 0.035) \times 10$	$^{-1}$ $(4.527 \ 0.059 \ 0.047 \ 0.079) \times 10^{-1}$	-2 4.591 0.065 0.059 0.099

TABLE SM X: Bartels Rotation 2435 (January 13, 2012 – February 8, 2012). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$ η	$ ho/{ m He}~\sigma_{ m stat.}~\sigma_{ m time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (8.648 \ 0.044 \ 0.119 \ 0.385) \times 10^{-2}$			_
$1.16 - 1.33 (8.449 \ 0.026 \ 0.084 \ 0.300) \times 10^{-6}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		
$1.33 - 1.51 (8.036 \ 0.022 \ 0.061 \ 0.230) \times 10^{-6}$	2		_
$1.51 - 1.71 (7.422 \ 0.016 \ 0.046 \ 0.193) \times 10^{-6} (7.422 \ 0.046 \ 0.193$	2		_
$1.71 - 1.92 (6.674 \ 0.013 \ 0.036 \ 0.157) \times 10^{-6} (6.674 \ 0.036 \ 0.036 \ 0.157) \times 10^{-6} (6.674 \ 0.036 \ 0.036 \ 0.036 \ 0.036) \times 10^{-6} (6.674 \ 0.036 \ 0.036 \ 0.036) \times 10^{-6} (6.674 \ 0.036 \ 0.036 \ 0.036) \times 10^{-6} (6.674 \ 0.036 \ 0.036 \ 0.036) \times 10^{-6} (6.674 \ 0.036) \times 10^{-6} (6$	2		-
$1.92 - 2.15 (5.910 \ 0.011 \ 0.029 \ 0.127) \times 10^{-6} $	$(7.182 \ 0.042 \ 0.061 \ 0.156) \times 10^{1}$	8.228 0.050 0.080	0.240
$2.15 - 2.40 (5.134 \ 0.009 \ 0.023 \ 0.102) \times 10^{-6}$	$(6.636 \ 0.036 \ 0.049 \ 0.127) \times 10^{1}$	7.737 0.044 0.067	0.202
$2.40 - 2.67 (4.414 \ 0.007 \ 0.019 \ 0.083) \times 10^{-6} $	$(5.955 \ 0.030 \ 0.041 \ 0.104) \times 10^{1}$	7.412 0.039 0.060	0.179
$2.67 - 2.97 (3.764 \ 0.006 \ 0.016 \ 0.066) \times 10^{-2}$	2 (5.301 0.025 0.035 0.088)×10 ¹	7.100 0.035 0.055	0.161
$2.97 - 3.29 (3.170\ 0.005\ 0.013\ 0.053) \times 10^{-2}$	$(4.612 \ 0.021 \ 0.028 \ 0.074) \times 10^{1}$	6.874 0.033 0.051	0.150
$3.29 - 3.64 (2.664 \ 0.004 \ 0.011 \ 0.043) \times 10^{-6}$	$(3.973 \ 0.017 \ 0.022 \ 0.062) \times 10^{1}$	6.706 0.031 0.047	0.142
$3.64 - 4.02 (2.215 \ 0.003 \ 0.010 \ 0.035) \times 10^{-6}$	$(3.366\ 0.014\ 0.018\ 0.052)\times10^{1}$	6.581 0.030 0.045	0.136
$4.02 - 4.43 (1.832\ 0.003\ 0.008\ 0.028) \times 10^{-6}$	$(2.830 \ 0.012 \ 0.014 \ 0.043) \times 10^{1}$	6.472 0.029 0.043	0.131
$4.43 - 4.88 (1.502 \ 0.002 \ 0.006 \ 0.023) \times 10^{-6}$		6.390 0.027 0.041	0.127
$4.88 - 5.37 (1.226 \ 0.002 \ 0.005 \ 0.018) \times 10^{-6}$	$(1.961 \ 0.008 \ 0.009 \ 0.029) \times 10^{1}$	6.250 0.026 0.038	0.122
$5.37 - 5.90 (9.977 \ 0.015 \ 0.039 \ 0.142) \times 10^{-1}$	$1 (1.616 \ 0.006 \ 0.007 \ 0.024) \times 10^{1}$	6.175 0.026 0.036	0.118
$5.90 - 6.47 (8.077 \ 0.012 \ 0.030 \ 0.113) \times 10^{-1}$	$1 (1.323 \ 0.005 \ 0.006 \ 0.019) \times 10^{1}$	6.105 0.026 0.035	0.115
$6.47 - 7.09 (6.541 \ 0.010 \ 0.024 \ 0.091) \times 10^{-6}$	$1 (1.086 \ 0.004 \ 0.005 \ 0.016) \times 10^{1}$	6.021 0.025 0.034	0.112
7.09 - 7.76 (5.288 0.008 0.019 0.073)×10	$(8.923 \ 0.035 \ 0.039 \ 0.131) \times 10^{0}$	5.927 0.025 0.033	0.109
$7.76 - 8.48 (4.268\ 0.007\ 0.015\ 0.059) \times 10^{-1}$	$(7.267 \ 0.029 \ 0.033 \ 0.106) \times 10^{0}$	5.873 0.025 0.034	0.108
8.48 - 9.26 (3.423 0.005 0.013 0.047)×10	$1 (5.928 \ 0.024 \ 0.027 \ 0.087) \times 10^{0}$	5.774 0.025 0.034	0.105
$9.26-10.1 (2.753 0.005 0.010 0.037) \! imes \! 10^{-1}$	$(4.834 \ 0.021 \ 0.023 \ 0.071) \times 10^{0}$	5.694 0.026 0.035	0.104
$10.1 - 11.0 (2.213 \ 0.004 \ 0.008 \ 0.030) \times 10^{-1}$	$(3.918 \ 0.018 \ 0.020 \ 0.057) \times 10^{0}$	5.649 0.027 0.036	0.103
$11.0 - 12.0 (1.782\ 0.003\ 0.007\ 0.024) \times 10^{-1}$	$(3.156 \ 0.015 \ 0.017 \ 0.047) \times 10^{0}$	5.648 0.028 0.037	0.103
$12.0 - 13.0 (1.433\ 0.003\ 0.006\ 0.020) \times 10^{-1}$	$(2.596 \ 0.013 \ 0.014 \ 0.039) \times 10^{0}$	5.520 0.030 0.038	0.102
$13.0 - 14.1 (1.158 \ 0.002 \ 0.005 \ 0.016) \times 10^{-1}$	$(2.131 \ 0.011 \ 0.012 \ 0.032) \times 10^{0}$	5.435 0.030 0.039	0.101
$14.1 - 15.3 (9.339\ 0.020\ 0.040\ 0.131) \times 10^{-6}$		5.422 0.031 0.040	0.101
$15.3 - 16.6 (7.512 \ 0.017 \ 0.034 \ 0.107) \times 10^{-1}$		5.338 0.032 0.041	0.100
Table continued	, ,		

TABLE SM X: Bartels Rotation 2435 (January 13, 2012 – February 8, 2012). (Continued).

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$ η	$\rho/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time} \ \sigma_{\rm syst.}$
$16.6 - 18.0 (6.005 \ 0.014 \ 0.028 \ 0.086) \times 10$	$0 (1.131 \ 0.006 \ 0.008 \ 0.018) \times 10^{0}$	5.308 0.033 0.043 0.101
$18.0 - 19.5 (4.852 \ 0.011 \ 0.023 \ 0.071) \times 10$	$0 (9.212 \ 0.054 \ 0.065 \ 0.142) \times 10^{-1}$	1 5.267 0.033 0.045 0.100
$19.5 - 21.1 (3.903 \ 0.009 \ 0.019 \ 0.058) \times 10$	0 (7.440 0.045 0.055 0.116)×10 $^{-}$	1 $ 5.246 \ 0.034 \ 0.046 \ 0.100$
$21.1 - 22.8 (3.159 \ 0.008 \ 0.016 \ 0.047) \times 10$	0 (6.089 0.038 0.046 0.095)×10 $^{-}$	1 $5.188 \ 0.034 \ 0.047 \ 0.100$
$22.8 - 24.7 (2.542 \ 0.006 \ 0.013 \ 0.038) \times 10$	$0 (5.021 \ 0.031 \ 0.038 \ 0.079) \times 10^{-1}$	$^{1} 5.062 0.034 0.047 0.098$
$24.7 - 26.7 (2.037 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 (4.063 \ 0.027 \ 0.032 \ 0.064) \times 10^{-1}$	1 $ 5.013 \ 0.036 \ 0.048 \ 0.098 $
$26.7 - 28.8 (1.646 \ 0.005 \ 0.009 \ 0.025) \times 10$	0 (3.318 0.023 0.027 0.053)×10 $^{-}$	1 4.961 0.038 0.049 0.097
$28.8 - 31.1 (1.340 \ 0.004 \ 0.008 \ 0.021) \times 10$	$0 (2.696 \ 0.020 \ 0.022 \ 0.043) \times 10^{-1}$	1 $ 4.969 \ 0.040 \ 0.050 \ 0.098$
$31.1 - 33.5 (1.072 \ 0.004 \ 0.006 \ 0.017) \times 10$	0 (2.229 0.018 0.019 0.036)×10 $^{-}$	1 4.811 0.041 0.050 0.096
$33.5 - 36.1 (8.732 \ 0.030 \ 0.053 \ 0.134) \times 10$	$^{-1}$ (1.792 0.015 0.016 0.030)×10 $^{-1}$	1 $ 4.872 \ 0.045 \ 0.052 \ 0.098$
$36.1 - 38.9 (7.115 \ 0.026 \ 0.044 \ 0.110) \times 10$	$^{-1}$ (1.454 0.013 0.013 0.024)×10 $^{-1}$	1 4.894 0.048 0.053 0.100
$38.9 - 41.9 (5.744 \ 0.023 \ 0.037 \ 0.089) \times 10$	$^{-1}$ (1.195 0.011 0.011 0.019)×10 $^{-1}$	1 $ 4.805 \ 0.050 \ 0.054 \ 0.099$
$41.9 - 45.1 (4.664 \ 0.020 \ 0.030 \ 0.073) \times 10$	$^{-1}$ (9.767 0.100 0.092 0.164)×10 $^{-1}$	2 4.775 0.053 0.055 0.099
$45.1 - 48.5$ $(3.822 \ 0.018 \ 0.026 \ 0.061) \times 10$	$^{-1}$ (7.958 0.087 0.077 0.135)×10 $^{-1}$	2 4.802 0.057 0.056 0.101
$48.5 - 52.2 (3.131 \ 0.015 \ 0.021 \ 0.051) \times 10$	$^{-1}$ (6.605 0.076 0.065 0.113)×10 $^{-1}$	2 4.741 0.059 0.057 0.100
52.2 - 56.1 (2.549 0.013 0.018 0.042)×10	$^{-1}$ (5.438 0.067 0.055 0.094)×10 $^{-1}$	2 4.687 0.063 0.058 0.099
$56.1 - 60.3 (2.084 \ 0.012 \ 0.015 \ 0.035) \times 10^{-1}$	$^{-1}$ (4.377 0.058 0.045 0.076)×10 $^{-1}$	$2 \mid 4.761 \mid 0.068 \mid 0.060 \mid 0.102$

TABLE SM XI: Bartels Rotation 2436 (February 9, 2012 – March 6, 2012). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (8.394 \ 0.040 \ 0.111 \ 0.373) \times 10$	2		_
$1.16 - 1.33 (8.217 \ 0.024 \ 0.079 \ 0.291) \times 10$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		_
$1.33 - 1.51 (7.813 \ 0.021 \ 0.058 \ 0.223) \times 10$	2		_
$1.51 - 1.71 (7.263 \ 0.015 \ 0.045 \ 0.188) \times 10$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		_
$1.71 - 1.92 (6.525 \ 0.013 \ 0.035 \ 0.153) \times 10$	2		_
$1.92 - 2.15 (5.791 \ 0.010 \ 0.028 \ 0.124) \times 10$	$\begin{bmatrix} (6.927 \ 0.040 \ 0.063 \ 0.152) \times 10^{1} \end{bmatrix}$	8.361 0.051 0.086	0.245
2.15 - 2.40 (5.034 0.009 0.023 0.100)×10	$(6.447 \ 0.035 \ 0.050 \ 0.125) \times 10^{1}$	7.808 0.044 0.070	0.205
$2.40 - 2.67 (4.353 \ 0.007 \ 0.019 \ 0.082) \times 10$	$[(5.847 \ 0.029 \ 0.045 \ 0.104) \times 10^{1}]$	7.444 0.039 0.066	0.182
$2.67 - 2.97 (3.705 \ 0.006 \ 0.016 \ 0.065) \times 10$	$(5.151 \ 0.024 \ 0.039 \ 0.088) \times 10^{1}$	7.192 0.036 0.062	0.166
$2.97 - 3.29 (3.117 \ 0.005 \ 0.013 \ 0.052) \times 10$	$(4.485 \ 0.020 \ 0.029 \ 0.072) \times 10^{1}$	6.950 0.033 0.053	0.152
$3.29 - 3.64 (2.622 \ 0.004 \ 0.011 \ 0.042) \times 10$	$(3.883 \ 0.017 \ 0.021 \ 0.061) \times 10^{1}$	6.752 0.031 0.047	0.143
$3.64 - 4.02 (2.189\ 0.003\ 0.010\ 0.035) \times 10$	$(3.321 \ 0.014 \ 0.017 \ 0.051) \times 10^{1}$	6.591 0.030 0.045	0.136
$4.02 - 4.43 (1.806 \ 0.003 \ 0.008 \ 0.028) \times 10$		6.453 0.028 0.043	0.130
$4.43 - 4.88 (1.484 \ 0.002 \ 0.006 \ 0.022) \times 10$	$(2.333 \ 0.009 \ 0.012 \ 0.035) \times 10^{1}$	6.362 0.027 0.042	0.127
$4.88 - 5.37 (1.212 \ 0.002 \ 0.005 \ 0.017) \times 10$	$(1.932 \ 0.008 \ 0.009 \ 0.029) \times 10^{1}$	6.274 0.026 0.040	0.123
5.37 - 5.90 (9.859 0.015 0.038 0.140)×10	$1 (1.588 \ 0.006 \ 0.007 \ 0.024) \times 10^{1} $	6.206 0.026 0.038	0.119
$5.90 - 6.47 (7.983 \ 0.012 \ 0.030 \ 0.112) \times 10$	$1 (1.316 \ 0.005 \ 0.006 \ 0.019) \times 10^{1} $	6.065 0.025 0.036	0.115
$6.47 - 7.09 (6.493 \ 0.010 \ 0.024 \ 0.090) \times 10$	$1 (1.075 \ 0.004 \ 0.005 \ 0.016) \times 10^{1} $	6.040 0.025 0.036	0.113
7.09 - 7.76 (5.239 0.008 0.019 0.072)×10	$\left(8.714\ 0.034\ 0.040\ 0.128\right) \times 10^{6}$	$6.012 \ 0.025 \ 0.035$	0.111
$7.76 - 8.48 (4.239\ 0.007\ 0.015\ 0.059) \times 10$	$(7.206\ 0.029\ 0.033\ 0.105) \times 10^{0}$	5.883 0.025 0.034	0.108
8.48 - 9.26 (3.411 0.005 0.013 0.047)×10	$(5.892 \ 0.024 \ 0.028 \ 0.086) \times 10^{0}$	5.790 0.025 0.035	0.106
$9.26 - 10.1 (2.755 \ 0.005 \ 0.010 \ 0.037) \times 10$	$(4.784 \ 0.020 \ 0.023 \ 0.070) \times 10^{0}$	5.757 0.026 0.035	0.105
$10.1 - 11.0 (2.205 \ 0.004 \ 0.008 \ 0.030) \times 10$	$(3.874 \ 0.017 \ 0.020 \ 0.057) \times 10^{0}$	5.691 0.028 0.036	0.104
$11.0 - 12.0 (1.770 \ 0.003 \ 0.007 \ 0.024) \times 10$	$(3.166 \ 0.015 \ 0.017 \ 0.047) \times 10^{0}$	$5.590 \ 0.028 \ 0.037$	0.102
$12.0 - 13.0 (1.424 \ 0.003 \ 0.006 \ 0.019) \times 10$	$(2.557 \ 0.013 \ 0.014 \ 0.038) \times 10^{0}$	$5.570 \ 0.030 \ 0.038$	0.103
$13.0 - 14.1 (1.154 \ 0.002 \ 0.005 \ 0.016) \times 10$	$(2.109 \ 0.011 \ 0.012 \ 0.031) \times 10^{0}$	5.469 0.031 0.040	0.102
$14.1 - 15.3 (9.336\ 0.020\ 0.041\ 0.131) \times 10$	$(1.719 \ 0.009 \ 0.011 \ 0.025) \times 10^{0}$	5.432 0.031 0.041	0.101
$15.3 - 16.6 (7.505 \ 0.016 \ 0.034 \ 0.107) \times 10$	$(1.395 \ 0.008 \ 0.009 \ 0.021) \times 10^{0}$	5.378 0.032 0.042	0.101
T 11 1' 1	<u> </u>		

TABLE SM XI: Bartels Rotation 2436 (February 9, 2012 – March 6, 2012). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ $\sigma_{\text{time }}\sigma_{\text{syst.}}$
$16.6 - 18.0 (6.040 \ 0.014 \ 0.028 \ 0.087) \times 10$	$0 \mid (1.137 \ 0.006 \ 0.008 \ 0.018) \times 10^{-1}$	$0 5.312 \ 0.033 \ 0.044 \ 0.101$
$18.0 - 19.5 (4.853 \ 0.011 \ 0.023 \ 0.071) \times 10$	$0 \mid (9.273 \ 0.054 \ 0.066 \ 0.143) \times 10^{-6}$	$^{-1}$ $ 5.234 \ 0.033 \ 0.045 \ 0.100$
$19.5 - 21.1 (3.891 \ 0.009 \ 0.019 \ 0.058) \times 10$	$0 \mid (7.622 \ 0.045 \ 0.056 \ 0.118) \times 10^{-6}$	$^{-1}$ $ 5.105 \ 0.033 \ 0.045 \ 0.098$
$21.1 - 22.8 (3.152 \ 0.008 \ 0.016 \ 0.047) \times 10$	$0 \mid (6.169 \ 0.038 \ 0.046 \ 0.096) \times 10^{-6}$	$^{-1}$ $ 5.109 \ 0.034 \ 0.046 \ 0.099$
$22.8 - 24.7 (2.519 \ 0.006 \ 0.013 \ 0.038) \times 10$	$0 \mid (5.004 \ 0.031 \ 0.038 \ 0.078) \times 10^{-1}$	$^{-1}$ $ 5.033 \ 0.034 \ 0.046 \ 0.098$
$24.7 - 26.7 (2.044 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 \mid (4.089 \ 0.027 \ 0.031 \ 0.064) \times 10^{-6}$	-1 4.998 0.035 0.047 0.097
$26.7 - 28.8 (1.649 \ 0.005 \ 0.009 \ 0.025) \times 10$	$0 (3.307 \ 0.023 \ 0.026 \ 0.052) \times 10^{-6} $	$^{-1}$ 4.987 0.038 0.048 0.097
$28.8 - 31.1 (1.331 \ 0.004 \ 0.008 \ 0.020) \times 10$	$0 \mid (2.747 \ 0.020 \ 0.022 \ 0.044) \times 10^{-6}$	$^{-1}$ 4.844 0.038 0.048 0.096
$31.1 - 33.5 (1.075 \ 0.003 \ 0.006 \ 0.017) \times 10$	$0 (2.217 \ 0.018 \ 0.018 \ 0.036) \times 10^{-6} $	$^{-1}$ 4.851 0.042 0.049 0.096
$33.5 - 36.1 (8.728 \ 0.030 \ 0.053 \ 0.134) \times 10$	$^{-1} (1.824 \ 0.015 \ 0.016 \ 0.030) \times 10^{-1} $	$^{-1}$ 4.784 0.043 0.050 0.096
$36.1 - 38.9 (7.092 \ 0.026 \ 0.044 \ 0.110) \times 10$	$^{-1}$ (1.472 0.013 0.013 0.025)×10	$^{-1}$ 4.817 0.047 0.052 0.098
$38.9 - 41.9 (5.761 \ 0.023 \ 0.037 \ 0.089) \times 10$	$^{-1} (1.207\ 0.011\ 0.011\ 0.020)\times 10$	$^{-1}$ 4.771 0.049 0.053 0.098
$41.9 - 45.1 (4.710 \ 0.020 \ 0.031 \ 0.074) \times 10$	$^{-1} (1.005 \ 0.010 \ 0.010 \ 0.017) \times 10^{-1} $	-1 4.685 0.051 0.054 0.097
$45.1 - 48.5 (3.832 \ 0.017 \ 0.026 \ 0.061) \times 10$	$^{-1} (8.190\ 0.088\ 0.081\ 0.141)\times 10$	-2 4.679 0.055 0.056 0.099
$48.5 - 52.2 (3.136 \ 0.015 \ 0.022 \ 0.051) \times 10$	$^{-1} (6.682\ 0.076\ 0.069\ 0.116)\times 10$	$^{-2}$ 4.693 0.058 0.058 0.100
$52.2 - 56.1 (2.550 \ 0.013 \ 0.018 \ 0.042) \times 10$	$^{-1} (5.422 \ 0.067 \ 0.058 \ 0.096) \times 10^{-1} $	$^{-2}$ 4.703 0.063 0.060 0.101
$56.1 - 60.3 (2.078 \ 0.012 \ 0.015 \ 0.035) \times 10$	$^{-1}$ (4.448 0.058 0.050 0.080)×10	-2 4.672 0.066 0.062 0.102

TABLE SM XII: Bartels Rotation 2437 (March 7, 2012 – April 2, 2012). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s}\cdot{\rm GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (6.666 \ 0.037 \ 0.108 \ 0.302) \times 10^{2}$	2		_
$1.16 - 1.33 (6.618 \ 0.023 \ 0.078 \ 0.238) \times 10^{2}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		_
$1.33 - 1.51 (6.383 \ 0.020 \ 0.058 \ 0.185) \times 10^{2}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		_
$1.51 - 1.71 (5.906 \ 0.014 \ 0.044 \ 0.155) \times 10^{2}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		_
$1.71 - 1.92 (5.412 \ 0.012 \ 0.035 \ 0.129) \times 10^{2}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		_
$1.92 - 2.15 (4.836 \ 0.010 \ 0.028 \ 0.105) \times 10^{2}$	$(5.718 \ 0.038 \ 0.056 \ 0.128) \times 10^{-6}$	$8.458 \ 0.059 \ 0.097$	0.251
$2.15 - 2.40 (4.235 \ 0.008 \ 0.023 \ 0.085) \times 10^{2}$	$(5.373 \ 0.033 \ 0.045 \ 0.105) \times 10^{-3}$	$7.882 \ 0.051 \ 0.078$	0.210
$2.40 - 2.67 (3.700 \ 0.007 \ 0.019 \ 0.070) \times 10^{2}$	$(4.971 \ 0.028 \ 0.038 \ 0.088) \times 10^{-6}$	$7.443 \ 0.044 \ 0.068$	0.182
$2.67 - 2.97 (3.177 \ 0.006 \ 0.016 \ 0.056) \times 10^{2}$	$(4.490\ 0.023\ 0.033\ 0.076) \times 10^{-6}$	$7.076 \ 0.039 \ 0.063$	0.163
$2.97 - 3.29 (2.719 \ 0.005 \ 0.013 \ 0.046) \times 10^{2}$	$(3.917 \ 0.019 \ 0.027 \ 0.064) \times 10^{-6}$	$6.942\ 0.036\ 0.058$	0.154
$3.29 - 3.64 (2.307 \ 0.004 \ 0.011 \ 0.037) \times 10^{2}$	$(3.400\ 0.016\ 0.021\ 0.054) \times 10^{-6}$	$6.784 \ 0.034 \ 0.054$	0.146
$3.64 - 4.02 (1.938 \ 0.003 \ 0.010 \ 0.031) \times 10^{2}$	$(2.942\ 0.014\ 0.017\ 0.046)\times10^{-2}$	$\begin{bmatrix} 6.589 & 0.032 & 0.051 \end{bmatrix}$	0.138
$4.02 - 4.43 (1.621 \ 0.003 \ 0.008 \ 0.025) \times 10^{2}$	$(2.514 \ 0.011 \ 0.014 \ 0.039) \times 10^{-1}$	$6.448 \ 0.030 \ 0.048$	0.132
$4.43 - 4.88 (1.347 \ 0.002 \ 0.007 \ 0.021) \times 10^{2}$	$(2.111 \ 0.009 \ 0.011 \ 0.032) \times 10^{-1}$	$\begin{bmatrix} 6.377 & 0.029 & 0.046 \end{bmatrix}$	0.129
$4.88 - 5.37 (1.109 \ 0.002 \ 0.005 \ 0.016) \times 10^{2}$	$(1.784 \ 0.007 \ 0.009 \ 0.027) \times 10^{-1}$	$6.216 \ 0.027 \ 0.042$	0.123
$5.37 - 5.90 (9.059 \ 0.014 \ 0.040 \ 0.130) \times 10^{-3}$	$(1.468 \ 0.006 \ 0.007 \ 0.022) \times 10^{-1}$	$6.172 \ 0.027 \ 0.040$	0.119
$5.90 - 6.47 (7.399 \ 0.012 \ 0.031 \ 0.105) \times 10^{-3}$	$(1.223 \ 0.005 \ 0.006 \ 0.018) \times 10^{-1}$	$6.049 \ 0.026 \ 0.038$	0.115
$6.47 - 7.09 (6.046 \ 0.009 \ 0.025 \ 0.085) \times 10^{-3}$	$(1.008 \ 0.004 \ 0.005 \ 0.015) \times 10^{-1}$	$\begin{bmatrix} 6.000 & 0.026 & 0.037 \end{bmatrix}$	0.113
$7.09 - 7.76 (4.912 \ 0.008 \ 0.020 \ 0.068) \times 10^{-3}$	$(8.351 \ 0.034 \ 0.038 \ 0.123) \times 10^{6}$	$5.882 \ 0.025 \ 0.036$	0.109
$7.76 - 8.48 (3.992 \ 0.006 \ 0.016 \ 0.056) \times 10^{-1}$	$(6.805 \ 0.028 \ 0.032 \ 0.099) \times 10^{6}$	$5.867 \ 0.026 \ 0.036$	0.108
$8.48 - 9.26 (3.238 \ 0.005 \ 0.013 \ 0.045) \times 10^{-3}$	$(5.581 \ 0.024 \ 0.027 \ 0.082) \times 10^{6}$	$5.801 \ 0.026 \ 0.037$	0.107
$9.26 - 10.1 (2.613 \ 0.004 \ 0.011 \ 0.036) \times 10^{-1}$	$(4.601 \ 0.020 \ 0.023 \ 0.068) \times 10^{6}$	$5.679 \ 0.027 \ 0.037$	0.104
$10.1 - 11.0 (2.119 \ 0.004 \ 0.009 \ 0.029) \times 10^{-1}$	$(3.759 \ 0.017 \ 0.020 \ 0.055) \times 10^{6}$	$5.637 \ 0.028 \ 0.038$	0.103
$11.0 - 12.0 (1.708 \ 0.003 \ 0.007 \ 0.023) \times 10^{-3}$	$(3.044 \ 0.014 \ 0.017 \ 0.045) \times 10^{6}$	$5.610 \ 0.029 \ 0.039$	0.103
$12.0 - 13.0 (1.375 \ 0.003 \ 0.006 \ 0.019) \times 10^{-1}$	$(2.496 \ 0.013 \ 0.014 \ 0.037) \times 10^{6}$	$5.507 \ 0.030 \ 0.040$	0.102
$13.0 - 14.1 (1.118 \ 0.002 \ 0.005 \ 0.016) \times 10^{-1}$	$(2.033 \ 0.011 \ 0.012 \ 0.030) \times 10^{6}$	$5.502 \ 0.031 \ 0.041$	0.103
$14.1 - 15.3 (9.047 \ 0.019 \ 0.044 \ 0.129) \times 10^{0}$	$(1.659 \ 0.009 \ 0.010 \ 0.024) \times 10^{6}$	$5.454 \ 0.032 \ 0.043$	0.102
$15.3 - 16.6 (7.279 \ 0.016 \ 0.036 \ 0.105) \times 10^{6}$	$(1.368 \ 0.008 \ 0.009 \ 0.021) \times 10^{6}$	$5.322 \ 0.032 \ 0.044$	0.101

TABLE SM XII: Bartels Rotation 2437 (March 7, 2012 – April 2, 2012). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time }} \sigma_{\text{syst.}}$
$16.6 - 18.0 (5.858 \ 0.013 \ 0.030 \ 0.085) \times 10$	$0 (1.110 \ 0.006 \ 0.008 \ 0.017) \times 10^{-6} $	$\begin{bmatrix} 5.279 & 0.033 & 0.045 & 0.101 \end{bmatrix}$
$18.0 - 19.5 (4.724 \ 0.011 \ 0.025 \ 0.070) \times 10$	$0 \mid (9.050 \ 0.053 \ 0.065 \ 0.140) \times 10^{-6}$	-1 5.220 0.033 0.047 0.100
$19.5 - 21.1 (3.819 \ 0.009 \ 0.021 \ 0.057) \times 10$	$(7.301 \ 0.044 \ 0.055 \ 0.114) \times 10^{-6}$	-1 5.231 0.034 0.049 0.101
$21.1 - 22.8 (3.098 \ 0.008 \ 0.018 \ 0.047) \times 10$	$0 \mid (6.025 \ 0.037 \ 0.047 \ 0.095) \times 10^{-6}$	-1 5.142 0.034 0.050 0.101
$22.8 - 24.7 (2.494 \ 0.006 \ 0.015 \ 0.038) \times 10$	$0 \mid (4.907 \ 0.031 \ 0.039 \ 0.078) \times 10^{-1}$	$ 5.082 \ 0.034 \ 0.050 \ 0.100 $
$24.7 - 26.7 (2.006 \ 0.005 \ 0.012 \ 0.031) \times 10$	$0 \mid (4.000 \ 0.026 \ 0.033 \ 0.064) \times 10^{-6}$	-1 5.014 0.036 0.051 0.100
$26.7 - 28.8 (1.623 \ 0.005 \ 0.010 \ 0.025) \times 10$	$(3.305 \ 0.023 \ 0.028 \ 0.053) \times 10^{-6}$	-1 4.909 0.037 0.052 0.098
$28.8 - 31.1 (1.314 \ 0.004 \ 0.008 \ 0.021) \times 10$	$(2.664 \ 0.020 \ 0.023 \ 0.043) \times 10^{-6}$	-1 4.931 0.039 0.053 0.100
$31.1 - 33.5 (1.067 \ 0.003 \ 0.007 \ 0.017) \times 10$	$(2.193 \ 0.017 \ 0.020 \ 0.036) \times 10^{-6}$	$ ^{-1} 4.863 0.042 0.054 0.099 $
$33.5 - 36.1 (8.669 \ 0.030 \ 0.059 \ 0.136) \times 10$	$^{-1} (1.792 \ 0.015 \ 0.017 \ 0.030) \times 10^{-1} $	-1 4.839 0.044 0.056 0.100
$36.1 - 38.9 (7.081 \ 0.026 \ 0.049 \ 0.112) \times 10$	$^{-1}$ (1.491 0.013 0.014 0.026)×10	$ ^{-1} 4.750 0.046 0.056 0.099 $
$38.9 - 41.9 (5.732 \ 0.023 \ 0.041 \ 0.091) \times 10$	$^{-1} (1.199 \ 0.011 \ 0.012 \ 0.020) \times 10^{-1} $	-1 4.779 0.049 0.059 0.101
$41.9 - 45.1 (4.710 \ 0.020 \ 0.034 \ 0.075) \times 10$	$^{-1} (9.671\ 0.099\ 0.100\ 0.168)\times 10$	$ ^{-2} 4.870 0.054 0.062 0.104 $
$45.1 - 48.5 (3.813 \ 0.017 \ 0.029 \ 0.062) \times 10$	$^{-1} (8.140\ 0.088\ 0.086\ 0.143)\times 10^{-1} $	-2 4.684 0.055 0.061 0.102
$48.5 - 52.2 (3.117 \ 0.015 \ 0.024 \ 0.051) \times 10$	$^{-1} (6.504\ 0.075\ 0.071\ 0.115)\times 10$	-2 4.792 0.060 0.064 0.105
$52.2 - 56.1 (2.554 \ 0.013 \ 0.020 \ 0.043) \times 10$	$^{-1} (5.348 \ 0.066 \ 0.060 \ 0.096) \times 10^{-1} $	$ -2 4.776 \ 0.064 \ 0.065 \ 0.105$
$56.1 - 60.3 (2.089 \ 0.012 \ 0.017 \ 0.036) \times 10$	-1 (4.481 0.058 0.051 0.081)×10	$ -2 4.661 \ 0.066 \ 0.065 \ 0.104$

TABLE SM XIII: Bartels Rotation 2438 (April 3, 2012 – April 29, 2012). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$\rho/{\rm He}~\sigma_{\rm stat.}~\sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (7.456 \ 0.037 \ 0.103 \ 0.332) \times 10^{2}$	2		_
$1.16 - 1.33 (7.391 \ 0.023 \ 0.074 \ 0.262) \times 10^{5}$	2 $ -$		_
$1.33 - 1.51 (7.150 \ 0.020 \ 0.055 \ 0.205) \times 10^{2}$	2 \mid $^{-}$ $^{-}$ $^{-}$		_
$1.51 - 1.71 (6.731\ 0.014\ 0.043\ 0.175) \times 10^{-6}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		_
$1.71 - 1.92 (6.123\ 0.012\ 0.034\ 0.144) \times 10^{6}$	2		_
$1.92 - 2.15 (5.487\ 0.010\ 0.028\ 0.118) \times 10^{6}$	$(6.545 \ 0.039 \ 0.051 \ 0.141) \times 10^{1}$	8.383 0.052 0.078	0.243
$2.15 - 2.40 (4.831\ 0.009\ 0.023\ 0.097) \times 10^{3}$		7.899 0.045 0.065	0.206
$2.40 - 2.67 (4.200\ 0.007\ 0.019\ 0.079) \times 10^{5}$	$(5.622\ 0.028\ 0.035\ 0.097)\times10^{1}$	7.471 0.040 0.057	0.179
$2.67 - 2.97 (3.603\ 0.006\ 0.016\ 0.063) \times 10^{2}$,	7.178 0.036 0.053	0.162
$2.97 - 3.29 (3.067 \ 0.005 \ 0.013 \ 0.051) \times 10^{2}$		6.950 0.033 0.049	0.151
$3.29 - 3.64 (2.583 \ 0.004 \ 0.012 \ 0.042) \times 10^{2} $,	6.664 0.031 0.045	0.141
$3.64 - 4.02 (2.166 \ 0.003 \ 0.010 \ 0.034) \times 10^{2}$,	6.567 0.030 0.043	0.135
$4.02 - 4.43 (1.799 \ 0.003 \ 0.008 \ 0.028) \times 10^{-6}$,	6.532 0.029 0.042	0.131
$4.43 - 4.88 (1.487 \ 0.002 \ 0.007 \ 0.023) \times 10^{2}$,	6.362 0.027 0.040	
$4.88 - 5.37 (1.217 \ 0.002 \ 0.005 \ 0.018) \times 10^{-6}$,	6.281 0.026 0.037	
$5.37 - 5.90 (9.868 \ 0.015 \ 0.040 \ 0.141) \times 10^{-1}$	`	6.167 0.026 0.035	0.118
$5.90 - 6.47 (8.033 \ 0.012 \ 0.031 \ 0.113) \times 10^{-1}$		6.093 0.025 0.033	0.114
$6.47 - 7.09 \left (6.532\ 0.010\ 0.025\ 0.091) \times 10^{-1} \right $		5.968 0.024 0.032	
$7.09 - 7.76 (5.290 \ 0.008 \ 0.020 \ 0.073) \times 10^{-1}$	1 *		
$7.76 - 8.48 (4.268 \ 0.007 \ 0.016 \ 0.059) \times 10^{-1}$	` '		
$8.48 - 9.26 (3.434 \ 0.005 \ 0.013 \ 0.047) \times 10^{-1}$,		
$9.26 - 10.1 \ (2.772 \ 0.005 \ 0.011 \ 0.038) \times 10^{-1}$,		
$10.1 - 11.0 (2.227 \ 0.004 \ 0.009 \ 0.030) \times 10^{-1}$			
$11.0 - 12.0 (1.784 \ 0.003 \ 0.007 \ 0.024) \times 10^{-1}$			
$12.0 - 13.0 \ (1.438 \ 0.003 \ 0.006 \ 0.020) \times 10^{-1}$,		
$13.0 - 14.1 (1.160 \ 0.002 \ 0.005 \ 0.016) \times 10^{-1}$		1	
$14.1 - 15.3 (9.359 \ 0.020 \ 0.042 \ 0.132) \times 10^{0}$,		
15.3 - 16.6 (7.561 0.017 0.035 0.108)×10	,		
=======================================	(=:55, 5:555 5:555 5:521)//10		

TABLE SM XIII: Bartels Rotation 2438 (April 3, 2012 – April 29, 2012). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ $\sigma_{\text{time }}\sigma_{\text{syst.}}$
$16.6 - 18.0 (6.032 \ 0.014 \ 0.029 \ 0.087) \times 10$	$0 (1.137 \ 0.006 \ 0.007 \ 0.017) \times 10^{-1} $	0^0 5.305 0.032 0.041 0.099
$18.0 - 19.5 (4.857 \ 0.011 \ 0.024 \ 0.071) \times 10$	$0 (9.280 \ 0.053 \ 0.058 \ 0.140) \times 10^{-6} $	$0^{-1} 5.234 0.032 0.042 0.098$
$19.5 - 21.1 (3.910 \ 0.009 \ 0.020 \ 0.058) \times 10$	$0 \mid (7.496 \ 0.044 \ 0.049 \ 0.114) \times 10^{-6}$	$0^{-1} 5.217 0.033 0.043 0.098$
$21.1 - 22.8 (3.174 \ 0.008 \ 0.017 \ 0.048) \times 10$	$0 (6.128 \ 0.037 \ 0.041 \ 0.094) \times 10^{-6} $	$0^{-1} 5.179 0.034 0.044 0.099$
$22.8 - 24.7 (2.541 \ 0.006 \ 0.014 \ 0.038) \times 10$	$0 (4.975 \ 0.031 \ 0.034 \ 0.076) \times 10^{-6} $	$0^{-1} 5.107 0.034 0.045 0.098$
$24.7 - 26.7 (2.041 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 (4.099 \ 0.027 \ 0.029 \ 0.063) \times 10^{-6} $	$0^{-1} 4.979 \ 0.035 \ 0.045 \ 0.096$
$26.7 - 28.8 (1.644 \ 0.005 \ 0.010 \ 0.025) \times 10$	$0 (3.306 \ 0.023 \ 0.024 \ 0.051) \times 10^{-6} $	$0^{-1} 4.971 \ 0.038 \ 0.046 \ 0.096$
$28.8 - 31.1 (1.334 \ 0.004 \ 0.008 \ 0.021) \times 10$	$0 (2.677 \ 0.020 \ 0.020 \ 0.042) \times 10^{-6} $	$0^{-1} 4.983 \ 0.040 \ 0.048 \ 0.098$
$31.1 - 33.5 (1.078 \ 0.004 \ 0.007 \ 0.017) \times 10$	$0 (2.214 \ 0.018 \ 0.017 \ 0.035) \times 10^{-6} $	0^{-1} 4.871 0.042 0.048 0.096
$33.5 - 36.1 (8.744 \ 0.030 \ 0.055 \ 0.135) \times 10$	$^{-1}$ (1.821 0.015 0.015 0.030)×10	$0^{-1} 4.803 \ 0.044 \ 0.049 \ 0.096$
$36.1 - 38.9 (7.135 \ 0.026 \ 0.046 \ 0.111) \times 10$	$^{-1}$ (1.469 0.013 0.012 0.024)×10	$0^{-1} 4.856 \ 0.047 \ 0.051 \ 0.098$
$38.9 - 41.9 (5.788 \ 0.023 \ 0.038 \ 0.090) \times 10$	$^{-1}$ (1.211 0.012 0.010 0.019)×10	$0^{-1} 4.778 0.049 0.051 0.097$
$41.9 - 45.1 (4.690 \ 0.020 \ 0.032 \ 0.074) \times 10$	$^{-1} (9.783\ 0.100\ 0.085\ 0.161)\times 10^{-1} $	$0^{-2} 4.794 \ 0.053 \ 0.053 \ 0.098$
$45.1 - 48.5 (3.845 \ 0.018 \ 0.027 \ 0.061) \times 10$	$^{-1} (8.170\ 0.088\ 0.073\ 0.136)\times 10^{-1} $	$0^{-2} 4.706 \ 0.055 \ 0.053 \ 0.098$
$48.5 - 52.2 (3.124 \ 0.015 \ 0.022 \ 0.051) \times 10$	$^{-1}$ (6.619 0.076 0.061 0.111)×10	$0^{-2} 4.720 \ 0.059 \ 0.055 \ 0.099$
$52.2 - 56.1 (2.552 \ 0.013 \ 0.019 \ 0.042) \times 10$	$^{-1}$ (5.415 0.067 0.051 0.092)×10	$0^{-2} 4.713 \ 0.063 \ 0.056 \ 0.099$
$56.1 - 60.3 (2.092 \ 0.012 \ 0.015 \ 0.035) \times 10$	$-1 (4.421 \ 0.058 \ 0.042 \ 0.075) \times 10^{-1} $	$0^{-2} 4.732 \ 0.067 \ 0.057 \ 0.100$

TABLE SM XIV: Bartels Rotation 2439 (April 30, 2012 – May 26, 2012). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$ ho/{ m He}~\sigma_{ m stat.}~\sigma_{ m time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (7.919 \ 0.040 \ 0.115 \ 0.355) \times 10^{2}$	2 – – – –		_
$1.16 - 1.33 (7.772 \ 0.024 \ 0.082 \ 0.277) \times 10^{5}$	2 \mid $^{-}$ $^{-}$ $^{-}$		_
$1.33 - 1.51 (7.493\ 0.021\ 0.061\ 0.216) \times 10^{-6}$	$P \mid P \mid$		_
$1.51 - 1.71 (7.013\ 0.015\ 0.047\ 0.183) \times 10^{2}$	2		_
$1.71 - 1.92 (6.388 \ 0.013 \ 0.037 \ 0.151) \times 10^{-6}$			_
$1.92 - 2.15 (5.711\ 0.011\ 0.030\ 0.123) \times 10^{6}$	$(6.720\ 0.040\ 0.057\ 0.146)\times10^{1}$	8.498 0.053 0.085	0.248
$2.15 - 2.40 (5.001\ 0.009\ 0.024\ 0.100) \times 10^{2}$,	7.841 0.045 0.069	0.206
$2.40 - 2.67 (4.325 \ 0.007 \ 0.020 \ 0.082) \times 10^{-6}$	$(5.772\ 0.029\ 0.039\ 0.101)\times10^{1}$	7.493 0.040 0.062	0.181
$2.67 - 2.97 (3.705 \ 0.006 \ 0.017 \ 0.065) \times 10^{-6}$,	7.202 0.036 0.057	0.164
$2.97 - 3.29 (3.139\ 0.005\ 0.014\ 0.052) \times 10^{2}$,	6.946 0.033 0.052	0.152
$3.29 - 3.64 (2.645 \ 0.004 \ 0.012 \ 0.043) \times 10^{2} $,	6.745 0.031 0.049	0.143
$3.64 - 4.02 (2.213 \ 0.003 \ 0.010 \ 0.035) \times 10^{2}$,	6.598 0.030 0.046	0.137
$4.02 - 4.43 (1.836 \ 0.003 \ 0.009 \ 0.028) \times 10^{3}$,	6.484 0.028 0.044	0.131
$4.43 - 4.88 (1.511 \ 0.002 \ 0.007 \ 0.023) \times 10^{2}$		6.418 0.027 0.042	
$4.88 - 5.37 (1.239 \ 0.002 \ 0.005 \ 0.018) \times 10^{-6}$,	6.336 0.026 0.040	
$5.37 - 5.90 (1.001\ 0.001\ 0.004\ 0.014) \times 10^{2}$,	6.220 0.026 0.037	
$5.90 - 6.47 (8.156 \ 0.012 \ 0.032 \ 0.115) \times 10^{-1}$		6.117 0.025 0.036	0.115
$6.47 - 7.09 \left (6.605 \ 0.010 \ 0.025 \ 0.092) \times 10^{-1} \right $,	6.023 0.025 0.035	
$7.09 - 7.76 (5.323 \ 0.008 \ 0.020 \ 0.074) \times 10^{-1}$,	5.918 0.024 0.034	
$7.76 - 8.48 (4.301\ 0.007\ 0.016\ 0.060) \times 10^{-1}$,	5.853 0.025 0.035	
$8.48 - 9.26 (3.460 \ 0.005 \ 0.013 \ 0.048) \times 10^{-1}$,	5.828 0.026 0.036	
$9.26 - 10.1 \ (2.778 \ 0.005 \ 0.011 \ 0.038) \times 10^{-1}$,	5.702 0.026 0.036	
$10.1 - 11.0 (2.236 \ 0.004 \ 0.009 \ 0.030) \times 10^{-1}$,	5.664 0.027 0.037	
$11.0 - 12.0 (1.791 \ 0.003 \ 0.007 \ 0.024) \times 10^{-1}$,	5.580 0.028 0.038	
$12.0 - 13.0 \ (1.443 \ 0.003 \ 0.006 \ 0.020) \times 10^{-1}$,	5.559 0.030 0.039	
$13.0 - 14.1 (1.164 \ 0.002 \ 0.005 \ 0.016) \times 10^{-1}$		5.470 0.030 0.040	
$14.1 - 15.3 = (9.381 \ 0.020 \ 0.043 \ 0.133) \times 10^{0}$,	5.398 0.031 0.042	
15.3 - 16.6 (7.524 0.016 0.036 0.107)×10	,	5.334 0.032 0.043	
	(1	

TABLE SM XIV: Bartels Rotation 2439 (April 30, 2012 – May 26, 2012). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ $\sigma_{\text{time }}\sigma_{\text{syst.}}$
$16.6 - 18.0 (6.028 \ 0.014 \ 0.029 \ 0.087) \times 10$	$0 (1.133 \ 0.006 \ 0.008 \ 0.018) \times 10^{-6} $	5.318 0.033 0.045 0.101
$18.0 - 19.5 (4.832 \ 0.011 \ 0.024 \ 0.071) \times 10$	$0 (9.134 \ 0.053 \ 0.066 \ 0.141) \times 10^{-6} $	$^{-1}$ 5.290 0.033 0.047 0.101
$19.5 - 21.1 (3.909 \ 0.009 \ 0.020 \ 0.058) \times 10$	$0 \mid (7.579 \ 0.045 \ 0.057 \ 0.119) \times 10^{-6}$	$^{-1}$ $ 5.158 \ 0.033 \ 0.047 \ 0.099$
$21.1 - 22.8 (3.163 \ 0.008 \ 0.017 \ 0.048) \times 10$	$0 (6.168 \ 0.038 \ 0.048 \ 0.097) \times 10^{-6} $	$^{-1}$ $ 5.128 \ 0.034 \ 0.048 \ 0.100$
$22.8 - 24.7 (2.547 \ 0.006 \ 0.014 \ 0.039) \times 10$	$0 (5.053 \ 0.031 \ 0.040 \ 0.080) \times 10^{-6} $	$^{-1}$ $ 5.041 \ 0.033 \ 0.049 \ 0.099 $
$24.7 - 26.7 (2.030 \ 0.005 \ 0.012 \ 0.031) \times 10$	$0 (4.071 \ 0.027 \ 0.033 \ 0.065) \times 10^{-6} $	$^{-1}$ 4.988 0.035 0.049 0.098
$26.7 - 28.8 (1.644 \ 0.005 \ 0.010 \ 0.025) \times 10$	$0 (3.290 \ 0.023 \ 0.027 \ 0.052) \times 10^{-6} $	$^{-1}$ 4.995 0.038 0.051 0.099
$28.8 - 31.1 (1.333 \ 0.004 \ 0.008 \ 0.021) \times 10$	$0 (2.700 \ 0.020 \ 0.023 \ 0.044) \times 10^{-6} $	$^{-1}$ 4.938 0.039 0.051 0.099
$31.1 - 33.5 (1.078 \ 0.004 \ 0.007 \ 0.017) \times 10$	$0 (2.211 \ 0.018 \ 0.019 \ 0.036) \times 10^{-6} $	$^{-1}$ 4.878 0.042 0.052 0.098
$33.5 - 36.1 (8.759 \ 0.030 \ 0.056 \ 0.136) \times 10$	$^{-1}$ (1.769 0.015 0.016 0.030)×10	-1 4.952 0.045 0.054 0.101
$36.1 - 38.9 (7.134 \ 0.026 \ 0.047 \ 0.111) \times 10$	$^{-1}$ (1.500 0.013 0.014 0.025)×10	$^{-1}$ 4.757 0.046 0.053 0.098
$38.9 - 41.9 (5.789 \ 0.023 \ 0.039 \ 0.091) \times 10$	$^{-1}$ (1.190 0.011 0.011 0.020)×10	-1 4.866 0.051 0.056 0.101
$41.9 - 45.1 (4.690 \ 0.020 \ 0.032 \ 0.074) \times 10$	$^{-1}$ (9.783 0.100 0.094 0.166)×10	-2 4.794 0.053 0.057 0.100
$45.1 - 48.5 (3.807 \ 0.017 \ 0.027 \ 0.061) \times 10$	$^{-1} (7.934\ 0.087\ 0.078\ 0.136)\times 10^{-1} $	$-2 \mid 4.798 \mid 0.057 \mid 0.058 \mid 0.102 \mid$
$48.5 - 52.2 (3.123 \ 0.015 \ 0.023 \ 0.051) \times 10$	$^{-1}$ (6.527 0.076 0.065 0.113)×10	-2 4.784 0.060 0.059 0.102
$52.2 - 56.1 (2.542 \ 0.013 \ 0.019 \ 0.042) \times 10$	$^{-1} (5.385 \ 0.067 \ 0.055 \ 0.094) \times 10^{-1} $	$^{-2}$ 4.720 0.063 0.060 0.101
$56.1 - 60.3 (2.075 \ 0.012 \ 0.016 \ 0.035) \times 10$	$^{-1}$ (4.536 0.059 0.047 0.080)×10	$-2 \mid 4.573 \mid 0.064 \mid 0.059 \mid 0.099 \mid$

TABLE SM XV: Bartels Rotation 2440 (May 27, 2012 – June 22, 2012). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s}\cdot{\rm GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity $\Phi_p = \sigma_{\text{stat.}} \ \sigma_{\text{time}} \ \sigma_{\text{syst.}}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$p/\mathrm{He} \ \sigma_{\mathrm{stat.}} \ \sigma_{\mathrm{time}}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (7.404 \ 0.035 \ 0.101 \ 0.330) \times 10^{-1} (7.404 \ 0.035 \ 0.101 \ 0.101) \times 10^{-1} (7.404 \ 0.035 \ 0.101 \ 0.101) \times 10^{-1} (7.404$	2 – – – –		_
$1.16 - 1.33 (7.265 \ 0.023 \ 0.073 \ 0.258) \times 10^{-6}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.33 - 1.51 (6.965 \ 0.020 \ 0.054 \ 0.200) \times 10^{-6}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.51 - 1.71 (6.544 \ 0.014 \ 0.043 \ 0.170) \times 10^{-6}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.71 - 1.92 (5.945 \ 0.012 \ 0.034 \ 0.140) \times 10^{-6}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		_
$1.92 - 2.15 (5.315 \ 0.010 \ 0.027 \ 0.114) \times 10^{-6}$	$(6.335 \ 0.039 \ 0.059 \ 0.140) \times 10$	$\begin{bmatrix} 1 & 8.390 & 0.053 & 0.089 \end{bmatrix}$	0.247
$2.15 - 2.40 (4.680 \ 0.008 \ 0.023 \ 0.094) \times 10^{-6}$	$(5.945 \ 0.033 \ 0.047 \ 0.115) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.208
$2.40 - 2.67 (4.070 \ 0.007 \ 0.019 \ 0.077) \times 10^{-6}$	$(5.442\ 0.028\ 0.040\ 0.096)\times 10$	$1 7.479 \ 0.040 \ 0.064 $	0.182
$2.67 - 2.97 (3.511 \ 0.006 \ 0.016 \ 0.061) \times 10^{-6}$	$(4.856 \ 0.023 \ 0.034 \ 0.081) \times 10$	$1 7.230 \ 0.037 \ 0.060 $	0.166
$2.97 - 3.29 (2.977 \ 0.005 \ 0.013 \ 0.050) \times 10^{-6}$	$(4.274 \ 0.020 \ 0.028 \ 0.069) \times 10$	$\begin{bmatrix} 1 & 6.965 & 0.034 & 0.055 \end{bmatrix}$	0.153
$3.29 - 3.64 (2.518 \ 0.004 \ 0.011 \ 0.041) \times 10^{-6}$	$(3.751 \ 0.017 \ 0.022 \ 0.060) \times 10$	$\begin{bmatrix} 1 & 6.712 & 0.031 & 0.050 \end{bmatrix}$	0.143
$3.64 - 4.02 (2.110 \ 0.003 \ 0.010 \ 0.033) \times 10^{-6}$	$(3.200\ 0.014\ 0.018\ 0.050)\times 10$	$\begin{bmatrix} 1 & 6.595 & 0.030 & 0.048 \end{bmatrix}$	0.137
$4.02 - 4.43 (1.757 \ 0.003 \ 0.008 \ 0.027) \times 10^{-6}$	$(2.707 \ 0.011 \ 0.014 \ 0.041) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.132
$4.43 - 4.88 (1.450 \ 0.002 \ 0.007 \ 0.022) \times 10^{-6}$	$(2.262\ 0.009\ 0.012\ 0.034)\times 10$	$\begin{bmatrix} 1 & 6.410 & 0.027 & 0.044 \end{bmatrix}$	0.128
$4.88 - 5.37 (1.188 \ 0.002 \ 0.005 \ 0.017) \times 10^{-6}$	$(1.873 \ 0.007 \ 0.009 \ 0.028) \times 10$	$\begin{bmatrix} 1 & 6.343 & 0.027 & 0.041 \end{bmatrix}$	0.125
$5.37 - 5.90 (9.686 \ 0.015 \ 0.039 \ 0.138) \times 10^{-1}$	$(1.568 \ 0.006 \ 0.007 \ 0.023) \times 10$	$\begin{bmatrix} 1 & 6.178 & 0.026 & 0.038 \end{bmatrix}$	0.119
$5.90 - 6.47 (7.894 \ 0.012 \ 0.031 \ 0.111) \times 10^{-1}$	$(1.295 \ 0.005 \ 0.006 \ 0.019) \times 10$	$\begin{bmatrix} 1 & 6.096 & 0.026 & 0.037 \end{bmatrix}$	0.115
$6.47 - 7.09 (6.405 \ 0.010 \ 0.024 \ 0.089) \times 10^{-1}$	$(1.063 \ 0.004 \ 0.005 \ 0.016) \times 10$	$\begin{bmatrix} 1 & 6.024 & 0.025 & 0.036 \end{bmatrix}$	0.113
$7.09 - 7.76 (5.188 \ 0.008 \ 0.020 \ 0.072) \times 10^{-1}$	$(8.744 \ 0.034 \ 0.040 \ 0.129) \times 10$	$0 \mid 5.933 \mid 0.025 \mid 0.035 \mid$	0.110
$7.76 - 8.48 (4.199 \ 0.006 \ 0.016 \ 0.058) \times 10^{-1}$	$(7.133\ 0.029\ 0.034\ 0.104) \times 10$	$0 \mid 5.888 \mid 0.025 \mid 0.036 \mid$	0.109
$8.48 - 9.26 (3.386 \ 0.005 \ 0.013 \ 0.047) \times 10^{-1}$	$(5.834 \ 0.024 \ 0.029 \ 0.086) \times 10$	$0 \mid 5.803 \mid 0.026 \mid 0.036 \mid$	0.107
$9.26 - 10.1 (2.726 \ 0.005 \ 0.011 \ 0.037) \times 10^{-1}$	$(4.770\ 0.021\ 0.024\ 0.070) \times 10$	$0 5.715 \ 0.026 \ 0.037 $	0.105
$10.1 - 11.0 (2.191 \ 0.004 \ 0.009 \ 0.030) \times 10^{-1}$	$(3.861 \ 0.018 \ 0.020 \ 0.057) \times 10$	$0 \mid 5.675 \mid 0.028 \mid 0.038 \mid$	0.104
$11.0 - 12.0 (1.760 \ 0.003 \ 0.007 \ 0.024) \times 10^{-1}$	$(3.156 \ 0.015 \ 0.017 \ 0.047) \times 10$	$0 \mid 5.577 \mid 0.028 \mid 0.038 \mid$	0.102
$12.0 - 13.0 (1.419 \ 0.003 \ 0.006 \ 0.019) \times 10^{-1}$	$(2.563 \ 0.013 \ 0.015 \ 0.038) \times 10$	$0 \mid 5.537 \mid 0.030 \mid 0.040 \mid$	0.103
$13.0 - 14.1 (1.150 \ 0.002 \ 0.005 \ 0.016) \times 10^{-1}$	$(2.096 \ 0.011 \ 0.013 \ 0.031) \times 10$	$0 \mid 5.486 \mid 0.031 \mid 0.041 \mid$	0.102
$14.1 - 15.3 (9.273 \ 0.020 \ 0.042 \ 0.131) \times 10^{0}$	$(1.705 \ 0.009 \ 0.011 \ 0.025) \times 10$	$0 \mid 5.438 \mid 0.032 \mid 0.042 \mid$	0.102
$15.3 - 16.6 (7.460 \ 0.016 \ 0.035 \ 0.106) \times 10^{0}$	$(1.389 \ 0.008 \ 0.009 \ 0.021) \times 10$	$0 \mid 5.369 \mid 0.032 \mid 0.044 \mid$	0.102
T 11 1: 1		1	_

TABLE SM XV: Bartels Rotation 2440 (May 27, 2012 – June 22, 2012). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time} \ \sigma_{\rm syst.}$
$16.6 - 18.0 (6.000 \ 0.014 \ 0.029 \ 0.087) \times 10$	$0 \mid (1.127 \ 0.006 \ 0.008 \ 0.018) \times 10$	$0 5.323 \ 0.033 \ 0.046 \ 0.102$
$18.0 - 19.5 (4.822 \ 0.011 \ 0.024 \ 0.071) \times 10$	$0 \mid (9.267 \ 0.054 \ 0.068 \ 0.144) \times 10$	$^{-1}$ $ 5.203 \ 0.032 \ 0.046 \ 0.100 $
$19.5 - 21.1 (3.882 \ 0.009 \ 0.020 \ 0.058) \times 10$	$0 \mid (7.488 \ 0.045 \ 0.058 \ 0.118) \times 10$	$^{-1}$ 5.184 0.033 0.048 0.100
$21.1 - 22.8 (3.134 \ 0.008 \ 0.017 \ 0.047) \times 10$	$0 (6.119 \ 0.038 \ 0.048 \ 0.097) \times 10$	$^{-1}$ $ 5.122 \ 0.034 \ 0.049 \ 0.100 $
$22.8 - 24.7 (2.519 \ 0.006 \ 0.014 \ 0.038) \times 10$	$0 \mid (4.993 \ 0.031 \ 0.040 \ 0.079) \times 10$	$^{-1}$ 5.044 0.034 0.049 0.099
$24.7 - 26.7 (2.030 \ 0.005 \ 0.012 \ 0.031) \times 10$	$0 (4.067 \ 0.027 \ 0.034 \ 0.065) \times 10$	$^{-1}$ 4.991 0.036 0.050 0.099
$26.7 - 28.8 (1.640 \ 0.005 \ 0.010 \ 0.025) \times 10$	$0 (3.312 \ 0.023 \ 0.028 \ 0.053) \times 10$	$^{-1}$ 4.950 0.038 0.052 0.099
$28.8 - 31.1 (1.322 \ 0.004 \ 0.008 \ 0.020) \times 10$	$0 (2.695 \ 0.020 \ 0.024 \ 0.044) \times 10$	$^{-1}$ 4.906 0.039 0.052 0.099
$31.1 - 33.5 (1.076 \ 0.004 \ 0.007 \ 0.017) \times 10$	$0 \mid (2.234 \ 0.018 \ 0.020 \ 0.037) \times 10$	$^{-1}$ 4.820 0.041 0.053 0.098
$33.5 - 36.1 (8.695 \ 0.030 \ 0.056 \ 0.135) \times 10$	$^{-1} (1.789\ 0.015\ 0.017\ 0.030)\times 10$	$^{-1}$ 4.860 0.045 0.055 0.100
$36.1 - 38.9 (7.132 \ 0.026 \ 0.047 \ 0.111) \times 10$	$^{-1} (1.503\ 0.013\ 0.014\ 0.026)\times 10$	$^{-1}$ 4.746 0.046 0.055 0.099
$38.9 - 41.9 (5.787 \ 0.023 \ 0.039 \ 0.091) \times 10$	$^{-1} (1.226 \ 0.012 \ 0.012 \ 0.021) \times 10$	$^{-1}$ 4.720 0.049 0.057 0.099
$41.9 - 45.1 (4.694 \ 0.020 \ 0.032 \ 0.074) \times 10$	$^{-1} (9.774\ 0.101\ 0.100\ 0.169)\times 10$	$^{-2}$ 4.802 0.054 0.059 0.102
$45.1 - 48.5 (3.830 \ 0.018 \ 0.027 \ 0.061) \times 10$	$^{-1} (8.174\ 0.089\ 0.086\ 0.143)\times 10$	$^{-2}$ 4.686 0.055 0.059 0.101
$48.5 - 52.2 (3.121 \ 0.015 \ 0.023 \ 0.051) \times 10$	$^{-1} (6.553\ 0.076\ 0.071\ 0.116)\times 10$	$^{-2}$ 4.762 0.060 0.062 0.103
$52.2 - 56.1 (2.541 \ 0.013 \ 0.019 \ 0.042) \times 10$	$^{-1} (5.554\ 0.068\ 0.061\ 0.099)\times 10$	$^{-2}$ 4.574 0.061 0.061 0.100
$56.1 - 60.3 (2.096 \ 0.012 \ 0.016 \ 0.035) \times 10$	$^{-1}$ (4.476 0.059 0.050 0.081)×10	$^{-2}$ 4.683 0.067 0.063 0.103

TABLE SM XVI: Bartels Rotation 2441 (June 23, 2012 – July 19, 2012). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s}\cdot{\rm GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{\rm He}$ $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$ $p/{\rm He}$	e $\sigma_{\rm stat.}$ $\sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (6.951\ 0.034\ 0.096\ 0.310) \times 10^{-1}$			
$1.16 - 1.33 (6.977 \ 0.022 \ 0.070 \ 0.248) \times 10^{-6}$			_
$1.33 - 1.51 (6.725 \ 0.019 \ 0.052 \ 0.193) \times 10^{-6}$			_
$1.51 - 1.71 (6.341\ 0.014\ 0.040\ 0.165) \times 10^{-6}$			_
$1.71 - 1.92 (5.778 \ 0.012 \ 0.032 \ 0.136) \times 10^{-6}$			_
$1.92 - 2.15 (5.193 \ 0.010 \ 0.026 \ 0.112) \times 10^{-6} (5.193 \ 0.010 \ 0.026 \ 0.012) \times 10^{-6} (5.193$	$(6.104\ 0.038\ 0.058\ 0.135)\times10^{1}$ 8	.508 0.055 0.091	0.251
$2.15 - 2.40$ $(4.543 \ 0.008 \ 0.021 \ 0.091) \times 10^{-2}$	$(5.834\ 0.033\ 0.047\ 0.113)\times10^{1}$.787 0.046 0.072	0.205
$2.40 - 2.67 (3.955 \ 0.007 \ 0.017 \ 0.075) \times 10^{-2}$	$(5.286\ 0.027\ 0.039\ 0.093)\times10^{1}$ 7	.482 0.041 0.064	0.182
$2.67 - 2.97 (3.397\ 0.006\ 0.015\ 0.059) \times 10^{-2}$	$(4.785 \ 0.023 \ 0.034 \ 0.080) \times 10^{1}$ 7	.100 0.036 0.059	0.163
$2.97 - 3.29 (2.911\ 0.005\ 0.012\ 0.048) \times 10^{-6}$	$(4.172\ 0.019\ 0.028\ 0.067)\times10^{1}$ 6	.977 0.034 0.055	0.153
$3.29 - 3.64 (2.456 \ 0.004 \ 0.011 \ 0.039) \times 10^{-6} $	$(3.630\ 0.016\ 0.022\ 0.058) \times 10^{1}$ 6	.767 0.032 0.050	0.144
$3.64-4.02 \left (2.055 \ 0.003 \ 0.009 \ 0.033) imes 10^{-6} ight $	$(3.147 \ 0.014 \ 0.018 \ 0.049) \times 10^{1} \ 6$.532 0.030 0.047	0.136
$4.02 - 4.43 (1.712 \ 0.003 \ 0.008 \ 0.026) \times 10^{-6}$	$(2.624\ 0.011\ 0.014\ 0.040) \times 10^{1}$ 6	.523 0.029 0.045	0.132
$4.43 - 4.88 (1.419 \ 0.002 \ 0.006 \ 0.021) \times 10^{-6}$	$(2.220\ 0.009\ 0.011\ 0.034)\times10^{1}$ 6	.394 0.027 0.043	0.128
$4.88 - 5.37 (1.164 \ 0.002 \ 0.005 \ 0.017) \times 10^{-6}$	$(1.848 \ 0.007 \ 0.009 \ 0.028) \times 10^{1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$.295 0.027 0.040	0.124
$5.37 - 5.90$ $(9.490 \ 0.014 \ 0.037 \ 0.135) \times 10^{-2}$	$(1.543\ 0.006\ 0.007\ 0.023) \times 10^{1}$ 6	.149 0.026 0.037	0.118
$5.90 - 6.47 (7.739 \ 0.012 \ 0.029 \ 0.108) \times 10^{-6}$	$(1.265 \ 0.005 \ 0.006 \ 0.019) \times 10^{1} \ 6.$.117 0.026 0.036	0.115
$6.47 - 7.09 (6.285 \ 0.009 \ 0.023 \ 0.088) \times 10^{-6}$	$(1.041 \ 0.004 \ 0.005 \ 0.015) \times 10^{1} \ 6.$.038 0.025 0.036	0.113
$7.09 - 7.76$ $(5.091 \ 0.008 \ 0.018 \ 0.070) \times 10^{-1}$	$(8.537 \ 0.034 \ 0.040 \ 0.126) \times 10^{0}$ 5.	.964 0.025 0.035	0.110
$7.76 - 8.48 (4.135 \ 0.006 \ 0.015 \ 0.057) \times 10^{-1}$	$(7.036 \ 0.028 \ 0.034 \ 0.103) \times 10^0 \ 5.$.877 0.025 0.035	0.108
8.48 - 9.26 (3.341 0.005 0.012 0.046)×10	$(5.761 \ 0.024 \ 0.029 \ 0.085) \times 10^0$ 5.	.800 0.026 0.036	0.106
$9.26 - 10.1 (2.687 \ 0.005 \ 0.010 \ 0.036) \times 10^{-1}$	$(4.714 \ 0.020 \ 0.025 \ 0.070) \times 10^{0}$ 5.	.701 0.026 0.036	0.105
$10.1 - 11.0 (2.160 \ 0.004 \ 0.008 \ 0.029) \times 10^{-1}$	$(3.837 \ 0.017 \ 0.021 \ 0.057) \times 10^0$ 5.	.628 0.027 0.037	0.103
$11.0 - 12.0 (1.741 \ 0.003 \ 0.007 \ 0.024) \times 10^{-1}$	$(3.090\ 0.014\ 0.018\ 0.046) \times 10^{0}$ 5.	.635 0.028 0.039	0.103
$12.0 - 13.0 (1.397 \ 0.003 \ 0.006 \ 0.019) \times 10^{-1}$	$(2.527 \ 0.013 \ 0.015 \ 0.038) \times 10^0$ 5.	.529 0.030 0.040	0.102
$13.0 - 14.1 (1.134 \ 0.002 \ 0.005 \ 0.016) \times 10^{-1}$	$(2.057 \ 0.011 \ 0.013 \ 0.031) \times 10^{0}$ 5.	.511 0.031 0.041	0.103
$14.1 - 15.3 (9.143 \ 0.019 \ 0.040 \ 0.129) \times 10^{-6} $	$(1.690\ 0.009\ 0.011\ 0.025) \times 10^0$ 5.	.409 0.031 0.042	0.101
15.3 - 16.6 (7.381 0.016 0.033 0.105)×10	$(1.374 \ 0.008 \ 0.009 \ 0.021) \times 10^0 \ 5$.372 0.032 0.044	0.102

TABLE SM XVI: Bartels Rotation 2441 (June 23, 2012 – July 19, 2012). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time }} \sigma_{\text{syst.}}$
$16.6 - 18.0 (5.946 \ 0.013 \ 0.028 \ 0.086) \times 10$	$0 \mid (1.124 \ 0.006 \ 0.008 \ 0.018) \times 10^{-1}$	0^0 5.291 0.032 0.045 0.101
$18.0 - 19.5 (4.783 \ 0.011 \ 0.023 \ 0.070) \times 10$	$0 \mid (9.226 \ 0.053 \ 0.070 \ 0.144) \times 10^{-6}$	$0^{-1} 5.185 \ 0.032 \ 0.046 \ 0.100$
$19.5 - 21.1 (3.846 \ 0.009 \ 0.019 \ 0.057) \times 10$	$0 \mid (7.436 \ 0.044 \ 0.059 \ 0.118) \times 10^{-6}$	$0^{-1} 5.173 0.033 0.048 0.100$
$21.1 - 22.8 (3.116 \ 0.008 \ 0.016 \ 0.047) \times 10$	$0 \mid (6.074 \ 0.037 \ 0.049 \ 0.097) \times 10^{-6}$	$0^{-1} 5.130 0.034 0.049 0.100$
$22.8 - 24.7 (2.504 \ 0.006 \ 0.013 \ 0.038) \times 10$	$0 (4.962 \ 0.031 \ 0.041 \ 0.080) \times 10^{-6} $	$0^{-1} 5.045 0.034 0.050 0.099$
$24.7 - 26.7 (2.018 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 (4.032 \ 0.027 \ 0.034 \ 0.065) \times 10^{-6} $	$0^{-1} 5.006 \ 0.036 \ 0.051 \ 0.099$
$26.7 - 28.8 (1.627 \ 0.005 \ 0.009 \ 0.025) \times 10$	$0 (3.361 \ 0.023 \ 0.029 \ 0.054) \times 10^{-6} $	0^{-1} 4.841 0.036 0.050 0.096
$28.8 - 31.1 (1.323 \ 0.004 \ 0.008 \ 0.020) \times 10$	$0 (2.716 \ 0.020 \ 0.024 \ 0.045) \times 10^{-6} $	$0^{-1} 4.872 \ 0.039 \ 0.052 \ 0.098$
$31.1 - 33.5 (1.076 \ 0.004 \ 0.006 \ 0.017) \times 10$	$0 (2.191 \ 0.018 \ 0.020 \ 0.036) \times 10^{-6} $	$0^{-1} 4.908 \ 0.043 \ 0.054 \ 0.100$
$33.5 - 36.1 (8.708 \ 0.030 \ 0.053 \ 0.134) \times 10$	$^{-1}$ (1.822 0.015 0.017 0.031)×10	$0^{-1} 4.780 \ 0.044 \ 0.054 \ 0.098$
$36.1 - 38.9 (7.088 \ 0.026 \ 0.044 \ 0.110) \times 10$	$^{-1}$ (1.490 0.013 0.015 0.026)×10	$0^{-1} 4.758 \ 0.046 \ 0.055 \ 0.099$
$38.9 - 41.9 (5.728 \ 0.023 \ 0.037 \ 0.089) \times 10$	$^{-1}$ (1.207 0.012 0.012 0.020)×10	$0^{-1} 4.747 \ 0.049 \ 0.057 \ 0.100$
$41.9 - 45.1 (4.653 \ 0.020 \ 0.031 \ 0.073) \times 10$	$^{-1} (9.956\ 0.102\ 0.104\ 0.173)\times 10$	$0^{-2} 4.674 \ 0.052 \ 0.058 \ 0.099$
$45.1 - 48.5 (3.800 \ 0.017 \ 0.026 \ 0.060) \times 10$	$^{-1} (8.082\ 0.089\ 0.086\ 0.142)\times 10^{-1} $	$0^{-2} 4.701 \ 0.056 \ 0.059 \ 0.101$
$48.5 - 52.2 (3.140 \ 0.015 \ 0.022 \ 0.051) \times 10$	$^{-1}$ (6.568 0.076 0.072 0.117)×10	$0^{-2} 4.780 \ 0.060 \ 0.062 \ 0.104$
$52.2 - 56.1 (2.528 \ 0.013 \ 0.018 \ 0.042) \times 10$	$^{-1} (5.410\ 0.067\ 0.061\ 0.097)\times 10^{-1} $	$0^{-2} 4.673 \ 0.063 \ 0.062 \ 0.102$
$56.1 - 60.3 (2.097 \ 0.012 \ 0.015 \ 0.035) \times 10$	-1 (4.463 0.059 0.051 0.081)×10	$0^{-2} 4.699 \ 0.067 \ 0.064 \ 0.104$

TABLE SM XVII: Bartels Rotation 2442 (July 20, 2012 – August 15, 2012). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$ $p_{ m syst.}$	/He $\sigma_{\rm stat.}$ $\sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (6.007 \ 0.028 \ 0.081 \ 0.267) \times 10$	2		_
$1.16 - 1.33 (5.950 \ 0.020 \ 0.059 \ 0.211) \times 10$	2		_
$1.33 - 1.51 (5.763 \ 0.017 \ 0.044 \ 0.165) \times 10$	2 $ -$		_
$1.51 - 1.71 (5.401 \ 0.012 \ 0.034 \ 0.140) \times 10$	2 $_{-}$ $_{-}$ $_{-}$ $_{-}$		_
$1.71 - 1.92 (4.934 \ 0.011 \ 0.027 \ 0.116) \times 10$	2		_
$1.92 - 2.15 (4.446 \ 0.009 \ 0.022 \ 0.096) \times 10$	$(5.217 \ 0.034 \ 0.047 \ 0.115) \times 10^{1}$	8.522 0.058 0.088	0.250
$2.15 - 2.40 (3.956\ 0.007\ 0.018\ 0.079) \times 10$	$(4.990 \ 0.029 \ 0.038 \ 0.096) \times 10^{1}$	7.929 0.049 0.071	0.208
$2.40 - 2.67 (3.473\ 0.006\ 0.015\ 0.065) \times 10$	$(4.614 \ 0.025 \ 0.033 \ 0.081) \times 10^{1}$	7.528 0.043 0.063	0.182
$2.67 - 2.97 (3.011\ 0.005\ 0.013\ 0.053) \times 10$	$(4.181 \ 0.021 \ 0.029 \ 0.070) \times 10^{1}$	7.201 0.039 0.058	0.164
$2.97 - 3.29 (2.593 \ 0.004 \ 0.011 \ 0.043) \times 10$	$(3.760 \ 0.018 \ 0.024 \ 0.060) \times 10^{1}$	6.897 0.035 0.053	0.151
$3.29 - 3.64 (2.213\ 0.004\ 0.010\ 0.036) \times 10$	$(3.312 \ 0.015 \ 0.019 \ 0.052) \times 10^{1}$	6.681 0.033 0.048	0.142
$3.64 - 4.02 (1.868 \ 0.003 \ 0.008 \ 0.030) \times 10$	$(2.806 \ 0.013 \ 0.015 \ 0.043) \times 10^{1}$	6.656 0.032 0.047	0.138
$4.02 - 4.43 (1.576 \ 0.003 \ 0.007 \ 0.024) \times 10$	$(2.417 \ 0.010 \ 0.013 \ 0.037) \times 10^{1}$	6.519 0.030 0.044	0.132
$4.43 - 4.88 (1.309 \ 0.002 \ 0.006 \ 0.020) \times 10$	$(2.047 \ 0.008 \ 0.010 \ 0.031) \times 10^{1}$	6.392 0.028 0.042	0.128
$4.88 - 5.37 (1.081 \ 0.002 \ 0.004 \ 0.016) \times 10$	$(1.732\ 0.007\ 0.008\ 0.026) \times 10^{1}$	6.239 0.027 0.039	0.122
$5.37 - 5.90 (8.914 \ 0.014 \ 0.035 \ 0.127) \times 10$	$(1.440\ 0.006\ 0.006\ 0.021)\times10^{1}$	6.190 0.027 0.037	0.119
$5.90 - 6.47 (7.304 \ 0.011 \ 0.027 \ 0.102) \times 10$		6.078 0.026 0.035	0.114
$6.47 - 7.09 (5.972 \ 0.009 \ 0.022 \ 0.083) \times 10$	$(9.955 \ 0.040 \ 0.044 \ 0.146) \times 10^{0}$	5.999 0.026 0.035	0.112
$7.09 - 7.76 (4.873\ 0.007\ 0.018\ 0.067) \times 10$	$(8.277 \ 0.033 \ 0.037 \ 0.121) \times 10^{0}$	5.888 0.025 0.034	0.109
$7.76 - 8.48 (3.969 \ 0.006 \ 0.014 \ 0.055) \times 10$	$(6.801 \ 0.028 \ 0.031 \ 0.099) \times 10^{0}$	5.836 0.025 0.034	0.107
$8.48 - 9.26 (3.227 \ 0.005 \ 0.012 \ 0.044) \times 10$	$(5.576 \ 0.023 \ 0.026 \ 0.082) \times 10^{0}$	5.787 0.026 0.035	0.106
$9.26 - 10.1 (2.603 \ 0.004 \ 0.010 \ 0.035) \times 10$	$(4.574 \ 0.020 \ 0.023 \ 0.067) \times 10^{0}$	5.691 0.027 0.035	0.104
$10.1 - 11.0 (2.111 \ 0.004 \ 0.008 \ 0.029) \times 10$	$(3.724 \ 0.017 \ 0.019 \ 0.055) \times 10^{0}$	5.670 0.028 0.036	0.103
$11.0 - 12.0 (1.699 \ 0.003 \ 0.007 \ 0.023) \times 10$,	5.583 0.028 0.037	0.102
$12.0 - 13.0 (1.375 \ 0.003 \ 0.006 \ 0.019) \times 10$,	5.472 0.030 0.038	0.101
$13.0 - 14.1 (1.114 \ 0.002 \ 0.005 \ 0.016) \times 10$		5.472 0.031 0.039	0.101
$14.1 - 15.3 (9.029 \ 0.019 \ 0.039 \ 0.127) \times 10$,	5.384 0.031 0.040	0.100
$15.3 - 16.6 (7.286 \ 0.016 \ 0.033 \ 0.104) \times 10$,	5.328 0.032 0.042	0.100
T 11 (* 1	,	. 1	

TABLE SM XVII: Bartels Rotation 2442 (July 20, 2012 – August 15, 2012). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time} \ \sigma_{\rm syst.}$
$16.6 - 18.0 (5.881 \ 0.013 \ 0.027 \ 0.085) \times 10$	$0 (1.116 \ 0.006 \ 0.008 \ 0.017) \times 10^{-6} $	$\begin{bmatrix} 5.269 & 0.032 & 0.043 & 0.100 \end{bmatrix}$
$18.0 - 19.5 (4.730 \ 0.011 \ 0.023 \ 0.069) \times 10$	$0 (9.034 \ 0.052 \ 0.065 \ 0.140) \times 10^{-6} $	$^{-1}$ 5.235 0.033 0.045 0.100
$19.5 - 21.1 (3.834 \ 0.009 \ 0.019 \ 0.057) \times 10$	$0 (7.346 \ 0.044 \ 0.055 \ 0.115) \times 10^{-6} $	$^{-1}$ 5.218 0.034 0.047 0.100
$21.1 - 22.8 (3.094 \ 0.008 \ 0.016 \ 0.046) \times 10$	$0 (6.113 \ 0.037 \ 0.047 \ 0.096) \times 10^{-6} $	$^{-1}$ 5.061 0.033 0.047 0.098
$22.8 - 24.7 (2.490 \ 0.006 \ 0.013 \ 0.037) \times 10$	$0 (4.893 \ 0.031 \ 0.039 \ 0.077) \times 10^{-6} $	$^{-1}$ $ 5.090 \ 0.034 \ 0.048 \ 0.099 $
$24.7 - 26.7 (2.009 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 (4.023 \ 0.027 \ 0.033 \ 0.064) \times 10^{-6} $	$^{-1}$ 4.993 0.036 0.049 0.098
$26.7 - 28.8 (1.619 \ 0.005 \ 0.009 \ 0.025) \times 10$	$0 (3.264 \ 0.023 \ 0.027 \ 0.052) \times 10^{-6} $	$^{-1}$ 4.960 0.038 0.050 0.098
$28.8 - 31.1 (1.302 \ 0.004 \ 0.007 \ 0.020) \times 10$	$0 (2.687 \ 0.020 \ 0.023 \ 0.044) \times 10^{-6} $	$^{-1}$ 4.844 0.039 0.050 0.097
$31.1 - 33.5 (1.065 \ 0.003 \ 0.006 \ 0.017) \times 10$	$0 (2.168 \ 0.017 \ 0.019 \ 0.036) \times 10^{-6} $	$^{-1}$ 4.911 0.043 0.053 0.099
$33.5 - 36.1 (8.692 \ 0.030 \ 0.053 \ 0.134) \times 10$	$^{-1}$ (1.813 0.015 0.017 0.031)×10	$^{-1}$ 4.794 0.044 0.053 0.098
$36.1 - 38.9 (7.020 \ 0.026 \ 0.043 \ 0.108) \times 10$	$^{-1}$ (1.484 0.013 0.014 0.025)×10	$^{-1}$ 4.731 0.046 0.054 0.098
$38.9 - 41.9 (5.769 \ 0.023 \ 0.037 \ 0.089) \times 10$	$^{-1}$ (1.197 0.012 0.012 0.020)×10	$^{-1}$ 4.819 0.050 0.057 0.101
$41.9 - 45.1 (4.680 \ 0.020 \ 0.030 \ 0.073) \times 10$	$^{-1}$ (1.009 0.010 0.010 0.017)×10	$^{-1}$ 4.638 0.051 0.056 0.098
$45.1 - 48.5 (3.814 \ 0.017 \ 0.025 \ 0.060) \times 10$	$^{-1}$ (8.180 0.089 0.086 0.143)×10	$-2 \mid 4.662 \mid 0.055 \mid 0.058 \mid 0.100 \mid$
$48.5 - 52.2 (3.135 \ 0.015 \ 0.021 \ 0.051) \times 10$	$^{-1}$ (6.578 0.076 0.071 0.116)×10	-2 4.766 0.060 0.061 0.103
$52.2 - 56.1 (2.571 \ 0.013 \ 0.018 \ 0.042) \times 10$	$^{-1}$ (5.356 0.067 0.059 0.096)×10	$^{-2}$ 4.799 0.065 0.063 0.104
$56.1 - 60.3 (2.077 \ 0.012 \ 0.015 \ 0.035) \times 10$	$^{-1}$ (4.607 0.059 0.052 0.083)×10	$-2 \mid 4.508 \mid 0.063 \mid 0.060 \mid 0.099 \mid$

TABLE SM XVIII: Bartels Rotation 2443 (August 16, 2012 – September 11, 2012). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot sr \cdot s \cdot GV]^{-1}$ including errors due to statistics $(\sigma_{\text{stat.}})$, time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (5.662 \ 0.027 \ 0.082 \ 0.254) \times 10^{2}$			
$1.16 - 1.33 (5.673 \ 0.019 \ 0.060 \ 0.202) \times 10^{2}$			
$1.33 - 1.51 (5.545 \ 0.016 \ 0.045 \ 0.160) \times 10^{2}$			
$1.51 - 1.71 (5.313\ 0.012\ 0.036\ 0.139) \times 10^{2}$			
$1.71 - 1.92 (4.909 \ 0.010 \ 0.029 \ 0.116) \times 10^{2}$			
$1.92 - 2.15 (4.487 \ 0.009 \ 0.024 \ 0.097) \times 10^{2}$	$(5.247 \ 0.033 \ 0.045 \ 0.114) \times 1$	10^1 8.551 0.057 0.087 0.250	
$2.15 - 2.40 (4.009 \ 0.007 \ 0.020 \ 0.080) \times 10^{2}$	$(5.021\ 0.029\ 0.038\ 0.096)\times 1$	10^1 7.985 0.049 0.072 0.210	
$2.40 - 2.67 (3.535 \ 0.006 \ 0.016 \ 0.067) \times 10^{2}$	$(4.681 \ 0.025 \ 0.033 \ 0.082) \times 1$	10^1 7.550 0.042 0.063 0.183	
$2.67 - 2.97 (3.080\ 0.005\ 0.014\ 0.054) \times 10^{2}$	$(4.303 \ 0.021 \ 0.029 \ 0.071) \times 1$	10^1 7.158 0.037 0.058 0.163	
$2.97 - 3.29 (2.664 \ 0.004 \ 0.012 \ 0.045) \times 10^{2}$	$(3.847 \ 0.018 \ 0.024 \ 0.062) \times 1$	10^1 6.925 0.034 0.053 0.151	
$3.29 - 3.64 (2.273 \ 0.004 \ 0.010 \ 0.037) \times 10^{2}$	$(3.364\ 0.015\ 0.019\ 0.053)\times 1$	10^1 6.756 0.032 0.049 0.144	
$3.64 - 4.02 (1.930\ 0.003\ 0.009\ 0.031) \times 10^{2}$	$(2.926\ 0.013\ 0.016\ 0.045)\times 1$	10^1 6.597 0.031 0.047 0.137	
$4.02 - 4.43 (1.625 \ 0.003 \ 0.008 \ 0.025) \times 10^{2}$	$(2.484\ 0.010\ 0.013\ 0.038)\times 1$	10^1 6.541 0.029 0.045 0.132	
$4.43 - 4.88 (1.359 \ 0.002 \ 0.006 \ 0.021) \times 10^{2}$	$(2.130\ 0.009\ 0.010\ 0.032)\times 1$	10^1 6.377 0.027 0.043 0.127	
$4.88 - 5.37 (1.122 \ 0.002 \ 0.005 \ 0.016) \times 10^{2}$	$(1.779 \ 0.007 \ 0.008 \ 0.026) \times 10^{-1}$	10^1 6.305 0.027 0.040 0.124	
$5.37 - 5.90 (9.214 \ 0.014 \ 0.038 \ 0.132) \times 10^{1}$	$(1.491\ 0.006\ 0.007\ 0.022) \times 1$	10^1 6.182 0.026 0.037 0.119	
$5.90 - 6.47 (7.556 \ 0.011 \ 0.030 \ 0.106) \times 10^{1}$	$(1.245\ 0.005\ 0.005\ 0.018) \times 1$	10^1 6.071 0.025 0.036 0.115	
$6.47 - 7.09 (6.177 \ 0.009 \ 0.024 \ 0.086) \times 10^{1}$	$(1.028 \ 0.004 \ 0.005 \ 0.015) \times 10^{-1}$	10^1 $6.007 \ 0.025 \ 0.035 \ 0.112$	
$7.09 - 7.76 (5.035 \ 0.008 \ 0.019 \ 0.070) \times 10^{1}$	$(8.500\ 0.033\ 0.038\ 0.125) \times 10^{-1}$	10^0 5.924 0.025 0.035 0.110	
$7.76 - 8.48 (4.088 0.006 0.015 0.057) \times 10^{1}$	$(7.006\ 0.028\ 0.032\ 0.102) \times 1$	10^0 5.835 0.025 0.035 0.107	
$8.48 - 9.26 (3.312 \ 0.005 \ 0.013 \ 0.046) \times 10^{1}$	$(5.741 \ 0.024 \ 0.028 \ 0.084) \times 1$	10^0 5.769 0.025 0.036 0.106	
$9.26 - 10.1 (2.681 \ 0.004 \ 0.010 \ 0.036) \times 10^{1}$	$(4.712\ 0.020\ 0.024\ 0.069) \times 1$	10^0 5.690 0.026 0.036 0.104	
$10.1 - 11.0 (2.165 \ 0.004 \ 0.009 \ 0.029) \times 10^{1}$	$(3.838 \ 0.017 \ 0.020 \ 0.056) \times 1$	10^0 5.641 0.027 0.037 0.103	
$11.0 - 12.0 (1.738 \ 0.003 \ 0.007 \ 0.024) \times 10^{1}$	$(3.138 \ 0.015 \ 0.017 \ 0.047) \times 1$	10^0 5.538 0.028 0.038 0.102	
$12.0 - 13.0 (1.404 \ 0.003 \ 0.006 \ 0.019) \times 10^{1}$	$(2.559 \ 0.013 \ 0.015 \ 0.038) \times 1$	10^0 $5.488 0.030 0.039 0.102$	
$13.0 - 14.1 (1.139 \ 0.002 \ 0.005 \ 0.016) \times 10^{1}$	$(2.095 \ 0.011 \ 0.013 \ 0.031) \times 1$	10^0 5.435 0.030 0.041 0.101	
$14.1 - 15.3 (9.221 \ 0.019 \ 0.042 \ 0.130) \times 10^{0}$	$(1.719 \ 0.009 \ 0.011 \ 0.026) \times 1$	10^0 5.365 0.031 0.042 0.101	
$15.3 - 16.6 (7.437 \ 0.016 \ 0.035 \ 0.106) \times 10^{0}$	$(1.394\ 0.008\ 0.009\ 0.021)\times 1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

TABLE SM XVIII: Bartels Rotation 2443 (August 16, 2012 – September 11, 2012). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time}} \sigma_{\text{syst.}}$
$16.6 - 18.0 (5.965 \ 0.013 \ 0.029 \ 0.086) \times 10$	$0 (1.140 \ 0.006 \ 0.008 \ 0.018) \times 10^{6} $	$\begin{bmatrix} 5.231 & 0.032 & 0.045 & 0.100 \end{bmatrix}$
$18.0 - 19.5 (4.818 \ 0.011 \ 0.024 \ 0.071) \times 10$	$0 (9.183 \ 0.053 \ 0.068 \ 0.143) \times 10^{-6} $	$^{-1}$ 5.247 0.033 0.047 0.101
$19.5 - 21.1 (3.875 \ 0.009 \ 0.020 \ 0.058) \times 10$	$0 \mid (7.565 \ 0.045 \ 0.059 \ 0.119) \times 10^{-6}$	$^{-1}$ $ 5.123 \ 0.032 \ 0.048 \ 0.099$
$21.1 - 22.8 (3.125 \ 0.008 \ 0.017 \ 0.047) \times 10$	$0 (6.185 \ 0.037 \ 0.049 \ 0.098) \times 10^{-6} $	$^{-1}$ $ 5.053 \ 0.033 \ 0.048 \ 0.099$
$22.8 - 24.7 (2.518 \ 0.006 \ 0.014 \ 0.038) \times 10$	$0 (4.978 \ 0.031 \ 0.040 \ 0.079) \times 10^{-6} $	$^{-1}$ $ 5.059 \ 0.034 \ 0.049 \ 0.099$
$24.7 - 26.7 (2.032 \ 0.005 \ 0.012 \ 0.031) \times 10$	$0 (4.093 \ 0.027 \ 0.034 \ 0.065) \times 10^{-6} $	$^{-1}$ $ 4.965 \ 0.035 \ 0.050 \ 0.098$
$26.7 - 28.8 (1.642 \ 0.005 \ 0.010 \ 0.025) \times 10$	$0 (3.384 \ 0.024 \ 0.029 \ 0.054) \times 10^{-6} $	$^{-1}$ $ 4.853 \ 0.036 \ 0.050 \ 0.096$
$28.8 - 31.1 (1.319 \ 0.004 \ 0.008 \ 0.020) \times 10$	$0 (2.715 \ 0.020 \ 0.023 \ 0.044) \times 10^{-6} $	$-1 \mid 4.859 \ 0.039 \ 0.051 \ 0.097$
$31.1 - 33.5 (1.073 \ 0.003 \ 0.007 \ 0.017) \times 10$	$0 (2.211 \ 0.018 \ 0.020 \ 0.036) \times 10^{-6} $	$^{-1}$ $ 4.854 \ 0.042 \ 0.052 \ 0.098$
$33.5 - 36.1 (8.716 \ 0.030 \ 0.056 \ 0.135) \times 10$	$^{-1} (1.821\ 0.015\ 0.016\ 0.031)\times 10^{-1} $	$^{-1}$ 4.786 0.044 0.053 0.098
$36.1 - 38.9 (7.116 \ 0.026 \ 0.047 \ 0.111) \times 10$	$^{-1}$ (1.480 0.013 0.014 0.025)×10	$^{-1}$ $ 4.807 \ 0.047 \ 0.054 \ 0.099$
$38.9 - 41.9 (5.778 \ 0.023 \ 0.039 \ 0.091) \times 10$	$^{-1}$ $ (1.225 \ 0.012 \ 0.012 \ 0.020) \times 10^{-1} $	$^{-1}$ 4.716 0.049 0.055 0.098
$41.9 - 45.1 (4.709 \ 0.020 \ 0.032 \ 0.074) \times 10$	$^{-1} (9.923\ 0.101\ 0.096\ 0.169)\times 10^{-1} $	$-2 \mid 4.745 \mid 0.053 \mid 0.057 \mid 0.099 \mid$
$45.1 - 48.5$ $(3.826 \ 0.017 \ 0.027 \ 0.061) \times 10$	$^{-1} (8.230\ 0.089\ 0.082\ 0.141)\times 10^{-1} $	$-2 \mid 4.649 \mid 0.055 \mid 0.057 \mid 0.099$
$48.5 - 52.2 (3.118 \ 0.015 \ 0.023 \ 0.051) \times 10$	$^{-1}$ (6.683 0.077 0.068 0.116)×10	$-2 \mid 4.666 \mid 0.058 \mid 0.058 \mid 0.100 \mid$
52.2 - 56.1 (2.544 0.013 0.019 0.043)×10	$^{-1} (5.639\ 0.069\ 0.058\ 0.099)\times 10^{-1} $	-2 4.511 0.060 0.057 0.097
$56.1 - 60.3 (2.103 \ 0.012 \ 0.016 \ 0.036) \times 10$	-1 (4.419 0.058 0.047 0.078)×10	$\begin{vmatrix} -2 \end{vmatrix} 4.759 \ 0.068 \ 0.062 \ 0.103$

TABLE SM XIX: Bartels Rotation 2444 (September 12, 2012 – October 8, 2012). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr\cdot s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\mathrm{He} \ \sigma_{\mathrm{stat.}} \ \sigma_{\mathrm{time}}$	$\sigma_{ m syst}$
$1.00 - 1.16 (5.955 \ 0.032 \ 0.087 \ 0.267) \times 10$	2		-
$1.16 - 1.33 (6.003 \ 0.020 \ 0.064 \ 0.214) \times 10$	2		-
$1.33 - 1.51 (5.888 \ 0.017 \ 0.048 \ 0.169) \times 10$	2		=
$1.51 - 1.71 (5.626 \ 0.013 \ 0.037 \ 0.147) \times 10$	2		-
$1.71 - 1.92 (5.223 \ 0.011 \ 0.030 \ 0.123) \times 10$	2 $ -$		-
$1.92 - 2.15 (4.746 \ 0.009 \ 0.024 \ 0.103) \times 10$	$(5.580 \ 0.035 \ 0.049 \ 0.122) \times 10$	$\begin{bmatrix} 1 & 8.506 & 0.055 & 0.087 & 0.2 \end{bmatrix}$	49
$2.15 - 2.40 (4.245 \ 0.008 \ 0.020 \ 0.086) \times 10$	$(5.375 \ 0.030 \ 0.041 \ 0.103) \times 10$	$1 7.899 \ 0.047 \ 0.070 \ 0.2$	07
$2.40 - 2.67 (3.730\ 0.006\ 0.017\ 0.071) \times 10$	$(4.989 \ 0.026 \ 0.035 \ 0.087) \times 10$	$1 7.478 \ 0.041 \ 0.062 \ 0.1$.81
$2.67 - 2.97 (3.248 \ 0.005 \ 0.014 \ 0.057) \times 10$	$(4.511 \ 0.022 \ 0.030 \ 0.075) \times 10^{-2}$	$1 7.200 \ 0.037 \ 0.058 \ 0.1$	64
$2.97 - 3.29 (2.803 \ 0.005 \ 0.012 \ 0.047) \times 10$	$(4.005 \ 0.018 \ 0.025 \ 0.064) \times 10$	$1 7.000 \ 0.034 \ 0.053 \ 0.1$	53
$3.29 - 3.64 (2.402\ 0.004\ 0.011\ 0.039) \times 10$	$(3.541 \ 0.016 \ 0.020 \ 0.056) \times 10$	$\begin{bmatrix} 1 & 6.783 & 0.032 & 0.049 & 0.1 \end{bmatrix}$	44
$3.64 - 4.02 (2.025 \ 0.003 \ 0.009 \ 0.032) \times 10$	$(3.080 \ 0.013 \ 0.016 \ 0.048) \times 10^{-2}$	$\begin{bmatrix} 1 & 6.573 & 0.030 & 0.046 & 0.1 \end{bmatrix}$	36
$4.02 - 4.43 (1.701\ 0.003\ 0.008\ 0.026) \times 10$	$(2.605 \ 0.011 \ 0.013 \ 0.040) \times 10$	$\begin{bmatrix} 1 & 6.528 & 0.029 & 0.044 & 0.1 \end{bmatrix}$	32
$4.43 - 4.88 (1.414 \ 0.002 \ 0.006 \ 0.021) \times 10$	$(2.209 \ 0.009 \ 0.011 \ 0.033) \times 10$	$\begin{bmatrix} 1 & 6.400 & 0.027 & 0.042 & 0.1 \end{bmatrix}$	28
$4.88 - 5.37 (1.162 \ 0.002 \ 0.005 \ 0.017) \times 10$	$(1.848 \ 0.007 \ 0.009 \ 0.027) \times 10^{-2}$	$\begin{bmatrix} 1 & 6.289 & 0.026 & 0.039 & 0.1 \end{bmatrix}$	23
$5.37 - 5.90 (9.533\ 0.014\ 0.038\ 0.136) \times 10$	$0^1 (1.538 \ 0.006 \ 0.007 \ 0.023) \times 10^{-1}$	$\begin{bmatrix} 1 & 6.199 & 0.026 & 0.037 & 0.1 \end{bmatrix}$	19
$5.90 - 6.47 (7.804 \ 0.012 \ 0.030 \ 0.110) \times 10$	$(1.280 \ 0.005 \ 0.006 \ 0.019) \times 10$	$\begin{bmatrix} 1 & 6.099 & 0.025 & 0.036 & 0.1 \end{bmatrix}$	15
$6.47 - 7.09 (6.362\ 0.009\ 0.024\ 0.089) \times 10$,	$\begin{bmatrix} 1 & 6.022 & 0.025 & 0.035 & 0.1 \end{bmatrix}$	13
$7.09 - 7.76 (5.184 \ 0.008 \ 0.019 \ 0.072) \times 10$		$0 \mid 5.945 \mid 0.025 \mid 0.035 \mid 0.1$	10
$7.76 - 8.48 (4.187 \ 0.006 \ 0.015 \ 0.058) \times 10$,		.08
$8.48 - 9.26 (3.377 \ 0.005 \ 0.013 \ 0.046) \times 10$	1 1	$0 \mid 5.825 \mid 0.026 \mid 0.035 \mid 0.1$.07
$9.26 - 10.1 (2.720\ 0.005\ 0.010\ 0.037) \times 10$,		04
$10.1 - 11.0 (2.197 \ 0.004 \ 0.009 \ 0.030) \times 10$,	1	.02
$11.0 - 12.0 (1.763 \ 0.003 \ 0.007 \ 0.024) \times 10$,	1	.02
$12.0 - 13.0 (1.422 \ 0.003 \ 0.006 \ 0.020) \times 10$,		.03
$13.0 - 14.1 (1.150 \ 0.002 \ 0.005 \ 0.016) \times 10$,		.01
$14.1 - 15.3 (9.296 \ 0.020 \ 0.041 \ 0.132) \times 10$,		
$15.3 - 16.6 (7.471\ 0.016\ 0.034\ 0.107) \times 10$,		
	/		

TABLE SM XIX: Bartels Rotation 2444 (September 12, 2012 – October 8, 2012). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ $\sigma_{\text{time }}\sigma_{\text{syst.}}$
$16.6 - 18.0 (6.027 \ 0.013 \ 0.028 \ 0.087) \times 10$	$0 (1.142 \ 0.006 \ 0.008 \ 0.018) \times$	$5.279 \ 0.032 \ 0.045 \ 0.101$
$18.0 - 19.5 (4.832 \ 0.011 \ 0.024 \ 0.071) \times 10$	$0 (9.332 \ 0.054 \ 0.069 \ 0.145) \times$	10^{-1} 5.178 0.032 0.046 0.099
$19.5 - 21.1 (3.877 \ 0.009 \ 0.020 \ 0.058) \times 10$	0 $(7.441 \ 0.044 \ 0.057 \ 0.117) \times$	10^{-1} 5.210 0.033 0.048 0.100
$21.1 - 22.8 (3.134 \ 0.008 \ 0.016 \ 0.047) \times 10$	0 (6.110 0.037 0.048 0.097)×	10^{-1} 5.130 0.034 0.048 0.100
$22.8 - 24.7 (2.517 \ 0.006 \ 0.013 \ 0.038) \times 10$	0 $(4.978 \ 0.031 \ 0.040 \ 0.079) \times$	10^{-1} 5.056 0.034 0.049 0.099
$24.7 - 26.7 (2.029 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 (4.033 \ 0.027 \ 0.033 \ 0.064) \times$	10^{-1} 5.032 0.036 0.050 0.099
$26.7 - 28.8 (1.640 \ 0.005 \ 0.009 \ 0.025) \times 10$	$0 (3.345 \ 0.023 \ 0.028 \ 0.053) \times$	$(10^{-1} 4.902 \ 0.037 \ 0.050 \ 0.097)$
$28.8 - 31.1 (1.320 \ 0.004 \ 0.008 \ 0.020) \times 10$	$0 (2.715 \ 0.020 \ 0.023 \ 0.044) \times$	$(10^{-1})4.863 \ 0.038 \ 0.050 \ 0.097$
$31.1 - 33.5 (1.072 \ 0.003 \ 0.006 \ 0.017) \times 10$	$0 (2.221 \ 0.018 \ 0.019 \ 0.036) \times$	10^{-1} 4.828 0.041 0.051 0.097
$33.5 - 36.1 (8.735 \ 0.030 \ 0.054 \ 0.135) \times 10$	$^{-1}$ (1.848 0.015 0.017 0.031)×	$(10^{-1} 4.728 \ 0.043 \ 0.052 \ 0.096)$
$36.1 - 38.9 (7.118 \ 0.026 \ 0.045 \ 0.111) \times 10$	$^{-1}$ (1.477 0.013 0.014 0.025)×	10^{-1} 4.818 0.047 0.054 0.099
$38.9 - 41.9 (5.787 \ 0.023 \ 0.038 \ 0.090) \times 10$	$^{-1}$ (1.213 0.012 0.011 0.020)×	$(10^{-1} 4.770 \ 0.049 \ 0.055 \ 0.099)$
$41.9 - 45.1 (4.672 \ 0.020 \ 0.031 \ 0.074) \times 10$	$^{-1}$ (9.873 0.100 0.095 0.168)×	$(10^{-2} 4.732 \ 0.052 \ 0.056 \ 0.099)$
$45.1 - 48.5 (3.822 \ 0.017 \ 0.026 \ 0.061) \times 10$	$^{-1}$ (8.138 0.088 0.080 0.139)×	$(10^{-2} 4.697 \ 0.055 \ 0.056 \ 0.099)$
$48.5 - 52.2 (3.125 \ 0.015 \ 0.022 \ 0.051) \times 10$	$^{-1}$ (6.514 0.075 0.066 0.112)×	$(10^{-2})4.798 \ 0.060 \ 0.059 \ 0.102$
$52.2 - 56.1 (2.569 \ 0.013 \ 0.018 \ 0.043) \times 10$	$^{-1}$ (5.504 0.067 0.057 0.096)×	$(10^{-2} 4.667\ 0.062\ 0.058\ 0.100)$
$56.1 - 60.3 (2.103 \ 0.012 \ 0.015 \ 0.035) \times 10^{-1}$	$^{-1}$ (4.478 0.058 0.047 0.079)×	$10^{-2} 4.696 \ 0.066 \ 0.060 \ 0.101$

TABLE SM XX: Bartels Rotation 2445 (October 9, 2012 – November 4, 2012). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$		$ ho_{ m He}$ $\sigma_{ m stat.}$	$\sigma_{ m ti}$	$_{ m me}$ $\sigma_{ m s}$	yst.	p/1	He $\sigma_{ m st}$	tat. $\sigma_{ m t}$	ime		$\sigma_{\rm syst.}$
$1.00 - 1.16 (5.537 \ 0.032 \ 0.085 \ 0.250) \times 10^{-6} (5.537 \ 0.032 \ 0.085 \ 0.250) \times 10^{-6} (5.537 \ 0.032 \ 0.085 \ 0.250) \times 10^{-6} (5.537 \ 0.032 \ 0.085 \ 0.250) \times 10^{-6} (5.537 \ 0.032 \ 0.085 \ 0.250) \times 10^{-6} (5.537 \ 0.032 \ 0.085 \ 0.250) \times 10^{-6} (5.537 \ 0.032 \ 0.085 \ 0.250) \times 10^{-6} (5.537 \ 0.032 \ 0.085 \ 0.250) \times 10^{-6} (5.537 \ 0.032 \ 0.085 \ 0.250) \times 10^{-6} (5.537 \ 0.032 \ 0.085 \ 0.250) \times 10^{-6} (5.537 \ 0.085) \times 10^{-6} (5.537$		_	_	_	_		_	_	_	_	
$1.16 - 1.33 (5.604 \ 0.020 \ 0.062 \ 0.201) \times 10^{-6}$		_	_	_	_		_	_	_	_	
$1.33 - 1.51 (5.571 \ 0.017 \ 0.048 \ 0.161) \times 10^{-1} (5.571 \ 0.017 \ 0.048 \ 0.018) \times 10^{-1} (5.571 \ 0.018 \ 0.018) \times 10^{-1} (5.571 \ 0.018) \times 10^{-1} (5.571$	2	_	_	_	_		_	_	_	_	
$1.51 - 1.71 (5.292 \ 0.013 \ 0.037 \ 0.138) \times 10^{-1}$	2	_	_	_	_		_	_	_	_	
$1.71 - 1.92 (4.933 \ 0.011 \ 0.030 \ 0.117) \times 10^{-6}$	2	_	_	_	_		_	_	_	_	
$1.92 - 2.15 (4.516 \ 0.009 \ 0.024 \ 0.098) \times 10^{-6} $	2	(5.375 0.	036	0.053	$0.120) \times 10$	1	8.403	0.059	0.094	0.249	
$2.15 - 2.40 (4.044 \ 0.008 \ 0.020 \ 0.081) \times 10^{-6}$	2	(5.175 0.	031	0.044	$0.101) \times 10$	1	7.816	0.050	0.077	0.208	
$2.40 - 2.67 (3.582 \ 0.007 \ 0.017 \ 0.068) \times 10^{-6}$	2	(4.754 0.	026	0.037	$0.085) \times 10$	1	7.534	0.044	0.068	0.184	
$2.67 - 2.97 (3.139 \ 0.006 \ 0.014 \ 0.055) \times 10^{-6}$	2	(4.332 0.	022	0.032	$0.073) \times 10$	1	7.246	0.040	0.063	0.167	
$2.97 - 3.29 (2.709 \ 0.005 \ 0.012 \ 0.045) \times 10^{-6}$	2	(3.914 0.	019	0.027	$0.064) \times 10$	1	6.922	0.035	0.057	0.153	
$3.29 - 3.64 (2.323 \ 0.004 \ 0.011 \ 0.037) \times 10^{-6} (2.323 \ 0.004 \ 0.004 \ 0.004 \ 0.004) \times 10^{-6} (2.323 \ 0.004 \ 0.004 \ 0.004) \times 10^{-6} (2.323 \ 0.004) \times 10^{-6} (2.323 \ 0.004) \times 10^{-6} (2.323 \ 0$	2	(3.456 0.	016	0.022	$0.055) \times 10$	1	6.722	0.033	0.052	0.144	
$3.64 - 4.02 (1.965 \ 0.003 \ 0.009 \ 0.031) \times 10^{-6}$	2	(2.947 0.	013	0.017	$0.046) \times 10$	1	6.667	0.032	0.050	0.139	
$4.02 - 4.43 (1.654 \ 0.003 \ 0.008 \ 0.026) \times 10^{-6}$	2	(2.534 0.	011	0.014	$0.039) \times 10$	1	6.527	0.030	0.048	0.133	
$4.43 - 4.88 (1.381 \ 0.002 \ 0.006 \ 0.021) \times 10^{-6} $	2	(2.156 0.	009	0.012	$0.033) \times 10$	1	6.404	0.028	0.045	0.129	
$4.88 - 5.37 (1.139 \ 0.002 \ 0.005 \ 0.016) \times 10^{-6}$	2	(1.806 0.	007	0.009	$0.027) \times 10$	1	6.307	0.028	0.042	0.124	
$5.37 - 5.90 (9.330 \ 0.014 \ 0.038 \ 0.133) \times 10^{-1}$	1	$(1.521 \ 0.$	006	0.007	$0.023) \times 10$	1	6.135	0.027	0.039	0.118	
$5.90 - 6.47 (7.675 \ 0.012 \ 0.030 \ 0.108) \times 10^{-1}$	1	$(1.251 \ 0.$	005	0.006	$0.018) \times 10$	1	6.135	0.027	0.038	0.116	
$6.47 - 7.09 (6.259 \ 0.010 \ 0.024 \ 0.087) \times 10^{-1}$	1	(1.045 0.	004	0.005	$0.015) \times 10$	1	5.987	0.026	0.037	0.113	
$7.09 - 7.76 (5.073 \ 0.008 \ 0.019 \ 0.070) \times 10^{-1}$	1	(8.603 0.	035	0.042	$0.127) \times 10$	0	5.897	0.025	0.036	0.110	
$7.76 - 8.48 (4.128 \ 0.007 \ 0.015 \ 0.057) \times 10^{-1}$	1	$(7.071 \ 0.$	029	0.036	$0.104) \times 10$	0	5.837	0.026	0.037	0.108	
$8.48 - 9.26 (3.342 \ 0.005 \ 0.013 \ 0.046) \times 10^{-1}$	1	$(5.820 \ 0.$	025	0.031	$0.086) \times 10$	0	5.742	0.026	0.037	0.106	
$9.26 - 10.1 (2.703 \ 0.005 \ 0.010 \ 0.037) \times 10^{-1}$	1	$(4.719 \ 0.$	021	0.026	$0.070) \times 10$	0	5.728	0.027	0.038	0.106	
$10.1 - 11.0 (2.183 \ 0.004 \ 0.009 \ 0.030) \times 10^{-1}$	1	$(3.828 \ 0.$	018	0.022	$0.057) \times 10$	0	5.702	0.028	0.040	0.105	
$11.0 - 12.0 (1.748 \ 0.003 \ 0.007 \ 0.024) \times 10^{-1}$		$(3.110 \ 0.$	015	0.019	$0.047) \times 10$	0	5.621	0.029	0.041	0.104	
$12.0 - 13.0 (1.410 \ 0.003 \ 0.006 \ 0.019) \times 10^{-1}$	1	$(2.561 \ 0.$	013	0.016	$0.039) \times 10$	0	5.505	0.031	0.042	0.103	
$13.0 - 14.1 (1.142 \ 0.002 \ 0.005 \ 0.016) \times 10^{-1}$	1	,			$0.032) \times 10$		5.457	0.031	0.043	0.103	
$14.1 - 15.3 (9.211 \ 0.020 \ 0.042 \ 0.130) \times 10^{-6}$,			$0.026) \times 10$		5.414	0.032	0.045	0.102	
$15.3 - 16.6 (7.443 \ 0.017 \ 0.035 \ 0.106) \times 10^{-6}$	0	(1.402 0.	800	0.010	$0.022) \times 10$	0	5.308	0.032	0.046	0.102	
77.11 vi 1		1			·						

TABLE SM XX: Bartels Rotation 2445 (October 9, 2012 – November 4, 2012). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ $\sigma_{\text{time }}\sigma_{\text{syst.}}$
$16.6 - 18.0 (5.998 \ 0.014 \ 0.029 \ 0.087) \times 10$	$0 (1.123 \ 0.007 \ 0.009 \ 0.018) \times 10^{-6} $	5.343 0.034 0.049 0.103
$18.0 - 19.5 (4.807 \ 0.011 \ 0.024 \ 0.071) \times 10$	$0 (9.334 \ 0.055 \ 0.076 \ 0.149) \times 10^{-6} $	-1 5.150 0.033 0.049 0.100
$19.5 - 21.1 (3.858 \ 0.009 \ 0.020 \ 0.058) \times 10$	$0 \mid (7.549 \ 0.046 \ 0.064 \ 0.122) \times 10^{-6}$	$^{-1}$ 5.111 0.034 0.051 0.100
$21.1 - 22.8 (3.131 \ 0.008 \ 0.017 \ 0.047) \times 10$	$0 (6.136 \ 0.039 \ 0.053 \ 0.100) \times 10^{-6} $	$^{-1}$ $ 5.102 \ 0.035 \ 0.052 \ 0.101$
$22.8 - 24.7 (2.523 \ 0.006 \ 0.014 \ 0.038) \times 10$	$0 (4.945 \ 0.032 \ 0.044 \ 0.081) \times 10^{-6} $	$^{-1}$ $ 5.102 \ 0.035 \ 0.053 \ 0.102 $
$24.7 - 26.7 (2.017 \ 0.006 \ 0.011 \ 0.031) \times 10$	$0 (4.040 \ 0.027 \ 0.036 \ 0.066) \times 10^{-6} $	$^{-1}$ 4.994 0.037 0.053 0.100
$26.7 - 28.8 (1.642 \ 0.005 \ 0.010 \ 0.025) \times 10$	$0 (3.292 \ 0.024 \ 0.030 \ 0.054) \times 10^{-6} $	$^{-1}$ 4.988 0.039 0.055 0.101
$28.8 - 31.1 (1.321 \ 0.004 \ 0.008 \ 0.020) \times 10$	$0 (2.701 \ 0.020 \ 0.026 \ 0.045) \times 10^{-6} $	$^{-1}$ 4.891 0.040 0.055 0.100
$31.1 - 33.5 (1.072 \ 0.004 \ 0.007 \ 0.017) \times 10$	$0 (2.175 \ 0.018 \ 0.021 \ 0.037) \times 10^{-6} $	$^{-1}$ 4.926 0.044 0.057 0.101
$33.5 - 36.1 (8.692 \ 0.031 \ 0.055 \ 0.135) \times 10$	$^{-1}$ (1.803 0.016 0.018 0.031)×10	$^{-1}$ 4.820 0.045 0.057 0.100
$36.1 - 38.9 (7.101 \ 0.027 \ 0.046 \ 0.110) \times 10$	$^{-1}$ (1.467 0.014 0.015 0.026)×10	$^{-1}$ 4.840 0.048 0.059 0.102
$38.9 - 41.9 (5.754 \ 0.023 \ 0.038 \ 0.090) \times 10$	$^{-1}$ (1.218 0.012 0.013 0.021)×10	-1 4.724 0.050 0.059 0.101
$41.9 - 45.1 (4.707 \ 0.021 \ 0.032 \ 0.074) \times 10$,	
$45.1 - 48.5 (3.827 \ 0.018 \ 0.027 \ 0.061) \times 10$	$^{-1} (8.055\ 0.090\ 0.089\ 0.144)\times 10^{-1} $	$-2 \mid 4.752 \mid 0.058 \mid 0.062 \mid 0.103 \mid$
$48.5 - 52.2 (3.113 \ 0.016 \ 0.022 \ 0.051) \times 10$	$^{-1}$ (6.519 0.078 0.074 0.117)×10	$^{-2}$ 4.774 0.062 0.064 0.105
$52.2 - 56.1 (2.550 \ 0.014 \ 0.019 \ 0.042) \times 10$	$^{-1}$ (5.380 0.069 0.062 0.098)×10	$^{-2}$ 4.740 0.065 0.065 0.104
$56.1 - 60.3 (2.057 \ 0.012 \ 0.015 \ 0.035) \times 10$	-1 (4.396 0.059 0.052 0.081)×10	-2 $ 4.678 0.069 0.065 0.104 $

TABLE SM XXI: Bartels Rotation 2446 (November 5, 2012 – December 1, 2012). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr\cdot s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He}~\sigma_{\rm stat.}~\sigma_{\rm time}$	$\sigma_{ m syst}$
$1.00 - 1.16 (5.585 \ 0.030 \ 0.084 \ 0.251) \times 10^{-6} $	2 $ -$		
$1.16 - 1.33 (5.673 \ 0.019 \ 0.062 \ 0.203) \times 10^{-6}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$1.33 - 1.51 (5.592 \ 0.017 \ 0.047 \ 0.161) \times 10^{-6}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$1.51 - 1.71 (5.393 \ 0.012 \ 0.038 \ 0.141) \times 10^{-6}$	2 \mid $^{-}$ $^{-}$ $^{-}$		
$1.71-1.92 (5.037 \ 0.011 \ 0.031 \ 0.119) imes 10^{-6}$	\mathcal{D}		
$1.92 - 2.15 (4.601 \ 0.009 \ 0.025 \ 0.099) \times 10^{-6}$	$(5.552 \ 0.035 \ 0.051 \ 0.122) \times 1$	0^1 8.287 0.055 0.089 0.244	
$2.15 - 2.40 (4.119 \ 0.008 \ 0.021 \ 0.083) \times 10^{-6}$	$(5.194 \ 0.030 \ 0.040 \ 0.100) \times 1$	0^1 7.929 0.048 0.073 0.209	
$2.40 - 2.67 (3.656 \ 0.006 \ 0.017 \ 0.069) \times 10^{-6}$	$(4.870 \ 0.026 \ 0.035 \ 0.086) \times 1$	0^1 7.508 0.042 0.064 0.182	
$2.67 - 2.97 (3.192 \ 0.005 \ 0.015 \ 0.056) \times 10^{-6}$	$(4.433 \ 0.022 \ 0.030 \ 0.074) \times 1$	0^1 7.202 0.038 0.060 0.165	
$2.97 - 3.29 (2.751 \ 0.005 \ 0.013 \ 0.046) \times 10^{-6}$	$(3.977 \ 0.019 \ 0.025 \ 0.064) \times 1$	0^1 6.917 0.034 0.054 0.152	
$3.29 - 3.64 (2.353\ 0.004\ 0.011\ 0.038) \times 10^{-6}$	$(3.494 \ 0.016 \ 0.020 \ 0.055) \times 1$	0^1 6.735 0.032 0.051 0.144	
$3.64 - 4.02 (1.991 \ 0.003 \ 0.010 \ 0.032) \times 10^{-6}$	$(3.014 \ 0.013 \ 0.016 \ 0.047) \times 1$	0^1 6.607 0.031 0.048 0.138	
$4.02 - 4.43 (1.671 \ 0.003 \ 0.008 \ 0.026) \times 10^{-6}$	$(2.567 \ 0.011 \ 0.013 \ 0.039) \times 1$	0^1 6.512 0.029 0.046 0.132	
$4.43 - 4.88 (1.393 \ 0.002 \ 0.007 \ 0.021) \times 10^{-6}$	$(2.197 \ 0.009 \ 0.011 \ 0.033) \times 1$	0^1 6.342 0.027 0.043 0.127	
$4.88 - 5.37 (1.148 \ 0.002 \ 0.005 \ 0.017) \times 10^{-6}$	$(1.829 \ 0.007 \ 0.008 \ 0.027) \times 1$	0^1 6.281 0.027 0.041 0.123	
$5.37 - 5.90 (9.442 \ 0.014 \ 0.040 \ 0.135) \times 10^{-6}$	$(1.525 \ 0.006 \ 0.007 \ 0.023) \times 1$	0^1 6.194 0.026 0.038 0.119	
$5.90 - 6.47 (7.707 \ 0.012 \ 0.031 \ 0.109) \times 10^{-1}$	$(1.266\ 0.005\ 0.006\ 0.018) \times 1$	0^1 6.088 0.026 0.036 0.115	
$6.47 - 7.09 (6.288 \ 0.009 \ 0.025 \ 0.088) \times 10^{-1}$	$(1.048 \ 0.004 \ 0.005 \ 0.015) \times 1$	0^1 6.000 0.025 0.035 0.112	
$7.09 - 7.76 (5.116 \ 0.008 \ 0.020 \ 0.071) \times 10^{-1}$	$(8.672\ 0.034\ 0.038\ 0.127) \times 1$	0^0 5.900 0.025 0.035 0.109	
$7.76 - 8.48 (4.150 \ 0.006 \ 0.016 \ 0.058) \times 10^{-6}$	$(7.076 \ 0.028 \ 0.032 \ 0.103) \times 1$	0^0 5.865 0.025 0.035 0.108	
$8.48 - 9.26 (3.358 \ 0.005 \ 0.013 \ 0.046) \times 10^{-1}$	$(5.806 \ 0.024 \ 0.027 \ 0.085) \times 1$	0^0 5.785 0.026 0.035 0.106	
$9.26 - 10.1 (2.709 \ 0.005 \ 0.011 \ 0.037) \times 10^{-1}$	$(4.733 \ 0.020 \ 0.023 \ 0.069) \times 1$	0^0 5.724 0.026 0.036 0.105	
$10.1 - 11.0 (2.184 \ 0.004 \ 0.009 \ 0.030) \times 10^{-1}$	$(3.864 \ 0.017 \ 0.019 \ 0.056) \times 1$	0^0 5.652 0.027 0.037 0.103	
$11.0 - 12.0 (1.750 \ 0.003 \ 0.007 \ 0.024) \times 10^{-1}$	$(3.109 \ 0.015 \ 0.016 \ 0.046) \times 1$	0^0 5.629 0.028 0.038 0.103	
$12.0 - 13.0 (1.413 \ 0.003 \ 0.006 \ 0.019) \times 10^{-1}$	$(2.562\ 0.013\ 0.014\ 0.038) \times 1$	0^0 5.516 0.030 0.038 0.102	
$13.0 - 14.1 (1.146 \ 0.002 \ 0.005 \ 0.016) \times 10^{-1}$	$(2.118 \ 0.011 \ 0.012 \ 0.031) \times 1$	0^0 5.413 0.030 0.039 0.101	
$14.1 - 15.3 (9.223 \ 0.020 \ 0.044 \ 0.131) \times 10^{0}$	$(1.714 \ 0.009 \ 0.010 \ 0.025) \times 1$	0^0 5.382 0.031 0.041 0.100	
15.3 - 16.6 (7.458 0.016 0.036 0.107)×10	$(1.387 \ 0.008 \ 0.009 \ 0.021) \times 1$	0^0 5.378 0.032 0.043 0.101	

TABLE SM XXI: Bartels Rotation 2446 (November 5, 2012 – December 1, 2012). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\mathrm{He} \ \sigma_{\mathrm{stat.}} \ \sigma_{\mathrm{time}} \ \sigma_{\mathrm{syst.}}$
$16.6 - 18.0 (5.984 \ 0.014 \ 0.030 \ 0.087) \times 10$	$0 (1.140 \ 0.006 \ 0.008 \ 0.018) \times 10$	0 5.249 0.032 0.044 0.100
$18.0 - 19.5 (4.817 \ 0.011 \ 0.025 \ 0.071) \times 10$	$0 \mid (9.223 \ 0.054 \ 0.064 \ 0.142) \times 10$	$^{-1}$ 5.223 0.033 0.045 0.100
$19.5 - 21.1 (3.882 \ 0.009 \ 0.021 \ 0.058) \times 10$	$0 \mid (7.535 \ 0.045 \ 0.055 \ 0.117) \times 10$	$^{-1}$ $ 5.152 \ 0.033 \ 0.046 \ 0.099 $
$21.1 - 22.8 (3.144 \ 0.008 \ 0.017 \ 0.048) \times 10$	$0 (6.080 \ 0.038 \ 0.045 \ 0.095) \times 10$	$^{-1}$ 5.171 0.034 0.048 0.100
$22.8 - 24.7 (2.516 \ 0.006 \ 0.014 \ 0.038) \times 10$	$0 (5.011 \ 0.031 \ 0.038 \ 0.078) \times 10$	$^{-1}$ $ 5.022 \ 0.034 \ 0.047 \ 0.098 $
$24.7 - 26.7 (2.027 \ 0.005 \ 0.012 \ 0.031) \times 10$	$0 (4.059 \ 0.027 \ 0.031 \ 0.064) \times 10$	$^{-1}$ 4.994 0.036 0.048 0.098
$26.7 - 28.8 (1.645 \ 0.005 \ 0.010 \ 0.025) \times 10$	$0 (3.351 \ 0.023 \ 0.026 \ 0.053) \times 10$	$^{-1}$ 4.908 0.037 0.049 0.097
$28.8 - 31.1 (1.329 \ 0.004 \ 0.008 \ 0.021) \times 10$	$0 (2.692 \ 0.020 \ 0.022 \ 0.043) \times 10$	$^{-1}$ 4.939 0.040 0.050 0.098
$31.1 - 33.5 (1.081 \ 0.004 \ 0.007 \ 0.017) \times 10$	$0 (2.229 \ 0.018 \ 0.018 \ 0.036) \times 10$	$^{-1}$ 4.850 0.042 0.051 0.097
$33.5 - 36.1 (8.726 \ 0.030 \ 0.057 \ 0.136) \times 10$	$^{-1} (1.845\ 0.016\ 0.016\ 0.030)\times 10$	$^{-1}$ 4.730 0.043 0.051 0.096
$36.1 - 38.9 (7.080 \ 0.026 \ 0.048 \ 0.111) \times 10$	$^{-1} (1.518 \ 0.014 \ 0.013 \ 0.025) \times 10$	$^{-1}$ 4.663 0.045 0.051 0.095
$38.9 - 41.9 (5.774 \ 0.023 \ 0.040 \ 0.091) \times 10$	$^{-1} (1.210\ 0.012\ 0.011\ 0.020)\times 10$	$^{-1}$ 4.773 0.050 0.054 0.099
$41.9 - 45.1 (4.719 \ 0.020 \ 0.033 \ 0.075) \times 10$	$^{-1} (9.988 \ 0.102 \ 0.091 \ 0.167) \times 10$	$^{-2}$ 4.725 0.052 0.055 0.098
$45.1 - 48.5 (3.811 \ 0.017 \ 0.028 \ 0.061) \times 10$	$^{-1} (8.152\ 0.089\ 0.076\ 0.137)\times 10$	$^{-2}$ $ 4.675 \ 0.055 \ 0.055 \ 0.098$
$48.5 - 52.2 (3.138 \ 0.015 \ 0.023 \ 0.052) \times 10$	$^{-1}$ (6.468 0.076 0.062 0.110)×10	$^{-2}$ 4.851 0.062 0.059 0.103
$52.2 - 56.1 (2.564 \ 0.013 \ 0.020 \ 0.043) \times 10$	$^{-1} (5.442\ 0.068\ 0.053\ 0.093)\times 10$	$^{-2}$ 4.712 0.063 0.058 0.100
$56.1 - 60.3 (2.099 \ 0.012 \ 0.016 \ 0.036) \times 10$	$^{-1}$ (4.461 0.059 0.044 0.077)×10	$-2 \mid 4.704 \mid 0.067 \mid 0.059 \mid 0.101 \mid$

TABLE SM XXII: Bartels Rotation 2447 (December 2, 2012 – December 28, 2012). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot sr \cdot s \cdot GV]^{-1}$ including errors due to statistics $(\sigma_{stat.})$, time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ	$ au_{ ext{time}} \sigma_{ ext{time}}$	svst.	p/	He $\sigma_{\rm s}$	$tat. \sigma_t$	ime		$\sigma_{ m syst.}$
$1.00 - 1.16 (5.549 \ 0.028 \ 0.080 \ 0.249) \times 10^{2}$		_	_	12.7	_	_	_	_	
$1.16 - 1.33 (5.715 \ 0.019 \ 0.061 \ 0.204) \times 10^{2}$		_	_		_	_	_	_	
$1.33 - 1.51 (5.686 \ 0.017 \ 0.047 \ 0.164) \times 10^{2}$		_	_		_	_	_	_	
$1.51 - 1.71 (5.511 \ 0.012 \ 0.038 \ 0.144) \times 10^{2}$		_	_		_	_	_	_	
$1.71 - 1.92 (5.169 \ 0.011 \ 0.031 \ 0.122) \times 10^2$		_	_		_	_	_	_	
$1.92 - 2.15 (4.726 \ 0.009 \ 0.026 \ 0.102) \times 10^2$	(5.618 0.034	4 0.059	$0.127) \times$	10^{1}	8.412	0.054	0.100	0.252	
$2.15 - 2.40 (4.239\ 0.008\ 0.022\ 0.085) \times 10^{2}$	$(5.311 \ 0.030$,				0.084		
$2.40 - 2.67 (3.759 \ 0.006 \ 0.018 \ 0.071) \times 10^{2}$	(4.983 0.026						0.076		
$2.67 - 2.97 (3.275 \ 0.005 \ 0.015 \ 0.058) \times 10^{2}$	(4.536 0.022		,				0.071		
$2.97 - 3.29 (2.830 \ 0.005 \ 0.013 \ 0.047) \times 10^{2}$	(4.066 0.018		,				0.061		
$3.29 - 3.64 (2.413\ 0.004\ 0.012\ 0.039) \times 10^{2}$	(3.562 0.016		,		6.774	0.031	0.055	0.146	
$3.64 - 4.02 (2.044 \ 0.003 \ 0.010 \ 0.033) \times 10^{2}$	(3.088 0.013		/				0.052		
$4.02 - 4.43 (1.712 \ 0.003 \ 0.008 \ 0.027) \times 10^{2}$	(2.640 0.013		,		6.486	0.028	0.050	0.133	
$4.43 - 4.88 (1.423 \ 0.002 \ 0.007 \ 0.022) \times 10^2$	$(2.221 \ 0.009)$,		6.407	0.027	0.048	0.130	
$4.88 - 5.37 (1.173 \ 0.002 \ 0.005 \ 0.017) \times 10^{2}$	(1.869 0.00)	7 0.010	$0.028) \times 10^{-1}$	10^{1}	6.276	0.026	0.045	0.125	
$5.37 - 5.90 (9.593 \ 0.014 \ 0.041 \ 0.137) \times 10^{1}$	(1.550 0.000	6 0.008	$0.024) \times 10^{-1}$	10^{1}	6.189	0.026	0.043	0.121	
$5.90 - 6.47 (7.868 \ 0.012 \ 0.032 \ 0.111) \times 10^{1}$	(1.292 0.005	5 0.007	$(0.019) \times ($	10^{1}	6.090	0.025	0.041	0.117	
$6.47 - 7.09 (6.399 \ 0.009 \ 0.026 \ 0.090) \times 10^{1}$	(1.065 0.004	4 0.006	$0.016) \times 10^{-1}$	10^{1}	6.009	0.025	0.040	0.114	
$7.09 - 7.76 (5.186 \ 0.008 \ 0.021 \ 0.072) \times 10^{1}$	(8.759 0.034	4 0.047	$(0.131) \times$	10^{0}	5.921	0.024	0.040	0.111	
$7.76 - 8.48 (4.210\ 0.006\ 0.017\ 0.059) \times 10^{1}$	(7.168 0.028	8 0.039	$0.107) \times$	10^{0}	5.873	0.025	0.040	0.110	
$8.48 - 9.26 (3.400 \ 0.005 \ 0.014 \ 0.047) \times 10^{1}$	(5.817 0.024	4 0.033	$0.087) \times$	10^{0}	5.845	0.026	0.041	0.109	
$9.26 - 10.1 (2.735 \ 0.005 \ 0.011 \ 0.037) \times 10^{1}$	(4.796 0.020	0.028	$0.072) \times$	10^{0}	5.702	0.026	0.041	0.106	
$10.1 - 11.0 (2.213 \ 0.004 \ 0.009 \ 0.030) \times 10^{1}$	(3.892 0.01)	7 0.024	$0.059) \times$	10^{0}	5.688	0.027	0.042	0.106	
$11.0 - 12.0 (1.773 \ 0.003 \ 0.008 \ 0.024) \times 10^{1}$	(3.162 0.018	5 0.020	$0.048) \times$	10^{0}	5.608	0.028	0.044	0.105	
$12.0 - 13.0 (1.427 \ 0.003 \ 0.006 \ 0.020) \times 10^{1}$	$(2.584 \ 0.013)$	3 0.018	$0.040) \times$	10^{0}	5.522	0.030	0.045	0.104	
$13.0 - 14.1 (1.156 \ 0.002 \ 0.005 \ 0.016) \times 10^{1}$	$(2.090 \ 0.01)$	0.015	$0.032) \times$	10^{0}	5.529	0.031	0.047	0.106	
$14.1 - 15.3 (9.315 \ 0.020 \ 0.045 \ 0.133) \times 10^{0}$	(1.732 0.009	0.013	$0.027) \times$	10^{0}	5.379	0.031	0.048	0.103	
$15.3 - 16.6 (7.466 \ 0.016 \ 0.037 \ 0.107) \times 10^{0}$	(1.398 0.008	8 0.011	$0.022) \times$	10^{0}	5.342	0.032	0.050	0.104	

TABLE SM XXII: Bartels Rotation 2447 (December 2, 2012 – December 28, 2012). (Continued).

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$\rho/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time} \ \sigma_{\rm syst.}$
$16.6 - 18.0 (6.010 \ 0.013 \ 0.031 \ 0.088) \times 10^{-1}$	$0 (1.139 \ 0.006 \ 0.009 \ 0.019) \times 10^{0}$	5.276 0.032 0.052 0.104
$18.0 - 19.5 (4.837 \ 0.011 \ 0.026 \ 0.072) \times 10^{-1} (4.837 \ 0.011 \ 0.011 \ 0.011) \times 10^{-1} (4.837 \ 0.011 \ 0.011) \times 10^{-1} (4.837 \ 0.011 \ 0.011) \times 10^{-1} (4.837 \ 0.011) \times 10^{-1} (4.837 \ 0.011) \times 10^{-1} (4.837 \ 0$	$(9.240 \ 0.053 \ 0.080 \ 0.150) \times 10^{-1}$	$\begin{bmatrix} 1 \\ 5.234 \\ 0.032 \\ 0.053 \\ 0.104 \end{bmatrix}$
$19.5 - 21.1 (3.898 \ 0.009 \ 0.021 \ 0.059) \times 10^{-1}$	0^{0} $(7.578 \ 0.045 \ 0.069 \ 0.124) \times 10^{-1}$	$\begin{bmatrix} 5.145 & 0.033 & 0.054 & 0.103 \end{bmatrix}$
$21.1 - 22.8 (3.143 \ 0.008 \ 0.018 \ 0.048) \times 10^{-1}$	0^{0} (6.089 0.037 0.056 0.101)×10 ⁻¹	$\begin{bmatrix} 5.161 & 0.034 & 0.056 & 0.104 \end{bmatrix}$
$22.8 - 24.7 (2.533 \ 0.006 \ 0.015 \ 0.039) \times 10^{-1}$	0^{0} $(4.929 \ 0.031 \ 0.046 \ 0.082) \times 10^{-1}$	$\begin{bmatrix} 1 \\ 5.138 \\ 0.034 \\ 0.056 \\ 0.104 \end{bmatrix}$
$24.7 - 26.7 (2.042 \ 0.005 \ 0.012 \ 0.032) \times 10^{-1}$	0^{0} $(4.042 \ 0.027 \ 0.038 \ 0.067) \times 10^{-1}$	$\begin{bmatrix} 1 \\ 5.052 \\ 0.036 \\ 0.057 \\ 0.103 \end{bmatrix}$
$26.7 - 28.8 (1.638 \ 0.005 \ 0.010 \ 0.025) \times 10^{-1}$	0^{0} (3.316 0.023 0.032 0.055)×10 ⁻¹	$\begin{bmatrix} 4.940 & 0.037 & 0.057 & 0.101 \end{bmatrix}$
$28.8 - 31.1 (1.328 \ 0.004 \ 0.008 \ 0.021) \times 10^{-1}$	$(2.678 \ 0.020 \ 0.026 \ 0.045) \times 10^{-1}$	$\begin{bmatrix} 4.959 & 0.040 & 0.058 & 0.103 \end{bmatrix}$
$31.1 - 33.5 (1.072 \ 0.003 \ 0.007 \ 0.017) \times 10^{-1}$	0^{0} (2.203 0.018 0.022 0.038)× 10^{-}	$\begin{vmatrix} 4.865 & 0.042 & 0.059 & 0.102 \end{vmatrix}$
$33.5 - 36.1 (8.738 \ 0.030 \ 0.059 \ 0.137) \times 10^{-1}$	0^{-1} (1.811 0.015 0.019 0.032)×10 ⁻¹	$\begin{bmatrix} 4.824 & 0.044 & 0.060 & 0.102 \end{bmatrix}$
$36.1 - 38.9 (7.081 \ 0.026 \ 0.049 \ 0.112) \times 10^{-1}$	0^{-1} (1.476 0.013 0.016 0.026)×10 ⁻¹	$\begin{bmatrix} 4.797 & 0.047 & 0.061 & 0.103 \end{bmatrix}$
$38.9 - 41.9 (5.762 \ 0.023 \ 0.041 \ 0.091) \times 10^{-1}$	0^{-1} (1.201 0.012 0.013 0.021)×10 ⁻¹	$4.799 \ 0.050 \ 0.063 \ 0.104$
$41.9 - 45.1 (4.705 \ 0.020 \ 0.034 \ 0.075) \times 10^{-1}$	$0^{-1} (9.993 \ 0.101 \ 0.115 \ 0.181) \times 10^{-1} $	$ 4.708 \ 0.052 \ 0.064 \ 0.103$
$45.1 - 48.5$ $(3.839 \ 0.017 \ 0.029 \ 0.062) \times 10$	$0^{-1} (8.082 \ 0.088 \ 0.096 \ 0.148) \times 10^{-1} $	$\begin{vmatrix} 4.750 & 0.056 & 0.067 & 0.106 \end{vmatrix}$
$48.5 - 52.2 (3.143 \ 0.015 \ 0.024 \ 0.052) \times 10^{-1} (3.143 \ 0.015 \ 0.024) \times 10^{-1} (3$	$0^{-1} (6.473 \ 0.075 \ 0.080 \ 0.121) \times 10^{-1} $	$ 4.856 \ 0.061 \ 0.070 \ 0.110 $
$52.2 - 56.1 (2.526 \ 0.013 \ 0.020 \ 0.043) \times 10^{-1} (2.526 \ 0.013 \ 0.020) \times 10^{-1} (2.526 \ 0.013 \ 0.020) \times 10^{-1} (2.526 \ 0.020) \times 10^{-1} $	0^{-1} (5.393 0.067 0.069 0.102)×10 ⁻¹	$^{-2}$ $ 4.685 \ 0.063 \ 0.070 \ 0.107$
$56.1 - 60.3 (2.069 \ 0.012 \ 0.017 \ 0.035) \times 10^{-1}$	0^{-1} (4.471 0.058 0.059 0.086)×10 ⁻¹	$ 4.628 \ 0.066 \ 0.071 \ 0.107$

TABLE SM XXIII: Bartels Rotation 2448 (December 29, 2012 – January 24, 2013). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr\cdot s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$	$\sigma_{ m time} \ \sigma_{ m s}$	syst.	$p/{\rm He} \ \sigma_{\rm s}$	$tat. \sigma_t$	ime		$\sigma_{ m syst.}$
$1.00 - 1.16 (5.899 \ 0.031 \ 0.088 \ 0.265) \times 10^{-1}$		_		_	_	_	<u> </u>	
$1.16 - 1.33 (6.074\ 0.020\ 0.066\ 0.217) \times 10^{-6}$	2 – –	_	_	_	_	_	_	
$1.33 - 1.51 (6.058 \ 0.018 \ 0.050 \ 0.175) \times 10^{-1}$	2 – –	_	_	-	_	_	_	
$1.51 - 1.71 (5.837 \ 0.013 \ 0.039 \ 0.152) \times 10^{-1}$	2	_	_	_	_	_	_	
$1.71 - 1.92 (5.447 \ 0.011 \ 0.032 \ 0.129) \times 10^{-1}$	2	_	_	_	_	_	_	
$1.92 - 2.15 (4.981 \ 0.009 \ 0.026 \ 0.107) \times 10^{-1}$	$(5.915 \ 0.03)$	86 0.058	$0.132) \times 10^{-1}$	8.421	0.054	0.093	0.249	
$2.15 - 2.40 (4.443\ 0.008\ 0.022\ 0.089) \times 10^{-2}$	$(5.628 \ 0.03)$	31 0.047	$0.110) \times 10^{-1}$	7.894	0.046	0.076	0.209	
$2.40 - 2.67 (3.900\ 0.007\ 0.018\ 0.074) \times 10^{-2}$	$(5.214 \ 0.02)$	27 0.040	$0.093) \times 10^{-1}$	7.480	0.040	0.067	0.183	
$2.67 - 2.97 (3.409\ 0.006\ 0.015\ 0.060) \times 10^{-2}$	$(4.716 \ 0.02)$	23 0.035	$0.080) \times 10^{-1}$	7.229	0.037	0.063	0.166	
$2.97 - 3.29 (2.936 \ 0.005 \ 0.013 \ 0.049) \times 10^{-1}$			$0.069) \times 10^{-1}$		0.033	0.057	0.153	
$3.29 - 3.64 (2.492\ 0.004\ 0.011\ 0.040) \times 10^{-6}$	$(3.702 \ 0.01)$	6 0.023	$0.059) \times 10^{\circ}$	6.731	0.031	0.052	0.144	
$3.64 - 4.02 (2.110 \ 0.003 \ 0.010 \ 0.034) \times 10^{-2}$			$0.049) \times 10^{-1}$		0.030	0.050	0.139	
$4.02 - 4.43 (1.763 \ 0.003 \ 0.008 \ 0.027) \times 10^{-1}$	$(2.693 \ 0.01)$	1 0.015	$0.042) \times 10^{-1}$	6.547	0.029	0.047	0.133	
$4.43 - 4.88 (1.466 \ 0.002 \ 0.007 \ 0.022) \times 10^{-1}$			$0.035) \times 10^{-1}$	l l	0.027	0.045	0.129	
$4.88 - 5.37 (1.201 \ 0.002 \ 0.005 \ 0.017) \times 10^{-1}$	$(1.913 \ 0.00)$	7 0.010	$0.029) \times 10^{-1}$	6.278	0.026	0.042	0.124	
$5.37 - 5.90 (9.809\ 0.014\ 0.040\ 0.140) \times 10$	$(1.594 \ 0.00)$	0.008	$0.024) \times 10^{-1}$	6.155	0.025	0.039	0.119	
$5.90 - 6.47 (8.019 \ 0.012 \ 0.031 \ 0.113) \times 10$	$(1.309 \ 0.00)$	5 0.006	$0.019) \times 10^{-1}$	6.126	0.025	0.038	0.116	
$6.47 - 7.09 (6.517 \ 0.010 \ 0.025 \ 0.091) \times 10$,		$0.016) \times 10^{\circ}$		0.025	0.037	0.113	
$7.09 - 7.76 (5.273\ 0.008\ 0.020\ 0.073) \times 10$	$(8.896 \ 0.03)$	34 0.043	$0.132) \times 10^{6}$	5.928	0.024	0.036	0.110	
$7.76 - 8.48 (4.270\ 0.006\ 0.016\ 0.059) \times 10$	$(7.297 \ 0.02)$	29 0.037	$0.107) \times 10^{6}$	5.851	0.025	0.037	0.108	
$8.48 - 9.26 (3.442 \ 0.005 \ 0.013 \ 0.047) \times 10$	$(5.972 \ 0.02)$	24 0.031	$0.088) \times 10^{6}$	5.764	0.025	0.037	0.106	
$9.26 - 10.1 (2.782 \ 0.005 \ 0.011 \ 0.038) \times 10$	$(4.828 \ 0.02)$	21 0.026	$0.072) \times 10^{6}$	5.762	0.026	0.038	0.106	
$10.1 - 11.0 (2.236 \ 0.004 \ 0.009 \ 0.030) \times 10$	`	8 0.022	$0.059) \times 10^{6}$	5.651	0.027	0.039	0.104	
$11.0 - 12.0 (1.785 \ 0.003 \ 0.007 \ 0.024) \times 10$	``	5 0.019	$0.048) \times 10^{6}$	5.589	0.028	0.040	0.103	
$12.0 - 13.0 (1.441 \ 0.003 \ 0.006 \ 0.020) \times 10$	$(2.625 \ 0.01)$	3 0.016	$0.040) \times 10^{6}$	5.489	0.029	0.041	0.102	
$13.0 - 14.1 (1.163 \ 0.002 \ 0.005 \ 0.016) \times 10$			$0.032) \times 10^{6}$		0.030	0.043	0.102	
$14.1 - 15.3 (9.412\ 0.020\ 0.043\ 0.133) \times 10^{-1}$	``	9 0.012	$0.026) \times 10^{6}$	5.468	0.031	0.045	0.103	
15.3 - 16.6 (7.523 0.016 0.035 0.107)×10		0.010	$0.022) \times 10^{\circ}$	5.380	0.032	0.046	0.103	

TABLE SM XXIII: Bartels Rotation 2448 (December 29, 2012 – January 24, 2013). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time}} \sigma_{\text{syst.}}$
$16.6 - 18.0 (6.064 \ 0.014 \ 0.029 \ 0.088) \times 10$	$0 (1.156 \ 0.007 \ 0.009 \ 0.018) \times 10^{-1}$	0^0 5.244 0.032 0.047 0.101
$18.0 - 19.5 (4.856 \ 0.011 \ 0.024 \ 0.072) \times 10$	$0 (9.373 \ 0.054 \ 0.075 \ 0.149) \times 10^{-6} $	$0^{-1} 5.181 0.032 0.049 0.101$
$19.5 - 21.1 (3.919 \ 0.009 \ 0.020 \ 0.059) \times 10$	$0 (7.551 \ 0.045 \ 0.064 \ 0.121) \times 10^{-6} $	$0^{-1} 5.189 0.033 0.051 0.102$
$21.1 - 22.8 (3.167 \ 0.008 \ 0.017 \ 0.048) \times 10$	$0 (6.198 \ 0.038 \ 0.053 \ 0.100) \times 10^{-6} $	$0^{-1} 5.110 0.034 0.052 0.101$
$22.8 - 24.7 (2.530 \ 0.006 \ 0.014 \ 0.038) \times 10$	$0 (5.036 \ 0.031 \ 0.044 \ 0.082) \times 10^{-6} $	$0^{-1} 5.025 0.034 0.052 0.100$
$24.7 - 26.7 (2.042 \ 0.005 \ 0.012 \ 0.031) \times 10$	$0 (4.110 \ 0.027 \ 0.037 \ 0.067) \times 10^{-6} $	$0^{-1} 4.967 \ 0.035 \ 0.053 \ 0.100$
$26.7 - 28.8 (1.649 \ 0.005 \ 0.010 \ 0.025) \times 10$	$0 (3.367 \ 0.023 \ 0.031 \ 0.055) \times 10^{-6} $	$0^{-1} 4.897 \ 0.037 \ 0.054 \ 0.099$
$28.8 - 31.1 (1.335 \ 0.004 \ 0.008 \ 0.021) \times 10$	$0 (2.742 \ 0.020 \ 0.026 \ 0.046) \times 10^{-6} $	$0^{-1} 4.869 \ 0.038 \ 0.055 \ 0.100$
$31.1 - 33.5 (1.080 \ 0.004 \ 0.007 \ 0.017) \times 10$	$0 (2.192 \ 0.018 \ 0.021 \ 0.037) \times 10^{-6} $	$0^{-1} 4.927 \ 0.043 \ 0.057 \ 0.102$
$33.5 - 36.1 (8.773 \ 0.030 \ 0.055 \ 0.136) \times 10$	$^{-1}$ (1.803 0.015 0.018 0.031)×1	$0^{-1} 4.866 \ 0.044 \ 0.058 \ 0.101$
$36.1 - 38.9 (7.078 \ 0.026 \ 0.046 \ 0.110) \times 10$	$^{-1}$ (1.492 0.013 0.015 0.026)×1	$0^{-1} 4.744 \ 0.046 \ 0.058 \ 0.100$
$38.9 - 41.9 (5.754 \ 0.023 \ 0.038 \ 0.090) \times 10$	$^{-1}$ (1.190 0.011 0.013 0.020)×1	$0^{-1} 4.834 \ 0.050 \ 0.061 \ 0.103$
$41.9 - 45.1 (4.676 \ 0.020 \ 0.032 \ 0.074) \times 10$	$^{-1}$ (9.890 0.101 0.108 0.175)×1	$0^{-2} 4.729 \ 0.052 \ 0.061 \ 0.102$
$45.1 - 48.5$ $(3.826 \ 0.017 \ 0.027 \ 0.061) \times 10$	$^{-1}$ (8.118 0.088 0.091 0.146)×1	$0^{-2} 4.713 \ 0.056 \ 0.062 \ 0.103$
$48.5 - 52.2 (3.121 \ 0.015 \ 0.022 \ 0.051) \times 10$	$^{-1}$ (6.626 0.076 0.076 0.120)×1	$0^{-2} 4.711 \ 0.059 \ 0.064 \ 0.104$
52.2 - 56.1 (2.548 0.013 0.019 0.042)×10	$^{-1} (5.397\ 0.067\ 0.063\ 0.099)\times 10^{-1} $	$0^{-2} 4.721 \ 0.063 \ 0.065 \ 0.104$
$56.1 - 60.3 (2.080 \ 0.012 \ 0.015 \ 0.035) \times 10$	-1 (4.423 0.058 0.053 0.082)×1	$0^{-2} 4.703 \ 0.067 \ 0.066 \ 0.105$

TABLE SM XXIV: Bartels Rotation 2449 (January 25, 2013 – February 20, 2013). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr\cdot s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (6.245 \ 0.034 \ 0.092 \ 0.280) \times 10$			
$1.16 - 1.33 (6.324 \ 0.021 \ 0.067 \ 0.226) \times 10$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		
$1.33 - 1.51 (6.289 \ 0.018 \ 0.051 \ 0.181) \times 10$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		
$1.51 - 1.71 (6.009 \ 0.013 \ 0.040 \ 0.157) \times 10$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		
$1.71 - 1.92 (5.599 \ 0.011 \ 0.032 \ 0.132) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$1.92 - 2.15 (5.099 \ 0.009 \ 0.026 \ 0.110) \times 10$	$(6.088 \ 0.037 \ 0.053 \ 0.133) \times 10^{1}$	8.376 0.053 0.084 0.245	
$2.15 - 2.40 (4.559 \ 0.008 \ 0.021 \ 0.091) \times 10$	$[(5.809 \ 0.032 \ 0.044 \ 0.112) \times 10^{1}]$	7.849 0.045 0.070 0.206	
$2.40 - 2.67 (4.009 \ 0.007 \ 0.018 \ 0.076) \times 10$	$[(5.426 \ 0.027 \ 0.038 \ 0.095) \times 10^{1}]$	7.388 0.039 0.061 0.179	
$2.67 - 2.97 (3.483 \ 0.006 \ 0.015 \ 0.061) \times 10$	$(4.832 \ 0.023 \ 0.032 \ 0.080) \times 10^{1}$	7.207 0.036 0.057 0.164	
$2.97 - 3.29 (2.985 \ 0.005 \ 0.013 \ 0.050) \times 10$	$(4.329 \ 0.019 \ 0.027 \ 0.069) \times 10^{1}$	6.895 0.033 0.052 0.151	
$3.29 - 3.64 (2.536 \ 0.004 \ 0.011 \ 0.041) \times 10$	$(3.767 \ 0.016 \ 0.022 \ 0.059) \times 10^{1}$	6.732 0.031 0.049 0.143	
$3.64 - 4.02 (2.139 \ 0.003 \ 0.010 \ 0.034) \times 10$	$(3.230\ 0.014\ 0.017\ 0.050)\times10^{1}$	6.622 0.030 0.046 0.137	
$4.02 - 4.43 (1.789 \ 0.003 \ 0.008 \ 0.028) \times 10$	$(2.753 \ 0.011 \ 0.014 \ 0.042) \times 10^{1}$	6.498 0.028 0.044 0.131	
$4.43 - 4.88 (1.479 \ 0.002 \ 0.007 \ 0.022) \times 10$	$(2.308 \ 0.009 \ 0.011 \ 0.035) \times 10^{1}$	6.406 0.027 0.043 0.128	
$4.88 - 5.37 (1.212 \ 0.002 \ 0.005 \ 0.017) \times 10$	$[(1.920\ 0.007\ 0.009\ 0.029)\times10^{1}]$	6.314 0.026 0.040 0.124	
$5.37 - 5.90 (9.915 \ 0.014 \ 0.039 \ 0.141) \times 10$	$1 (1.606 \ 0.006 \ 0.007 \ 0.024) \times 10^{1} $	6.174 0.025 0.037 0.118	
$5.90 - 6.47 (8.058 \ 0.012 \ 0.031 \ 0.113) \times 10$	$1 (1.322 \ 0.005 \ 0.006 \ 0.019) \times 10^{1} $	6.094 0.025 0.036 0.115	
$6.47 - 7.09 (6.543 \ 0.010 \ 0.024 \ 0.091) \times 10$	$1 (1.084 \ 0.004 \ 0.005 \ 0.016) \times 10^{1} $	6.035 0.025 0.036 0.113	
$7.09 - 7.76 (5.284 \ 0.008 \ 0.019 \ 0.073) \times 10$	$[(8.912\ 0.034\ 0.041\ 0.131)\times10^{0}]$	5.929 0.024 0.035 0.110	
$7.76 - 8.48 (4.279 \ 0.007 \ 0.016 \ 0.059) \times 10$	$(7.256 \ 0.029 \ 0.035 \ 0.106) \times 10^{0}$	5.898 0.025 0.036 0.109	
$8.48 - 9.26 (3.450 \ 0.005 \ 0.013 \ 0.047) \times 10$	$(5.940\ 0.024\ 0.030\ 0.088) \times 10^{0}$	5.809 0.025 0.036 0.107	
$9.26 - 10.1 (2.772 \ 0.005 \ 0.010 \ 0.038) \times 10$	$(4.841 \ 0.021 \ 0.025 \ 0.072) \times 10^{0}$	5.727 0.026 0.037 0.105	
$10.1 - 11.0 (2.222 \ 0.004 \ 0.009 \ 0.030) \times 10$	$(3.947 \ 0.018 \ 0.022 \ 0.058) \times 10^{0}$	5.631 0.027 0.038 0.103	
$11.0 - 12.0 (1.780 \ 0.003 \ 0.007 \ 0.024) \times 10$	$(3.203 \ 0.015 \ 0.018 \ 0.048) \times 10^{0}$	5.557 0.028 0.039 0.102	
$12.0 - 13.0 (1.442 \ 0.003 \ 0.006 \ 0.020) \times 10$	$(2.619 \ 0.013 \ 0.016 \ 0.039) \times 10^{0}$	5.506 0.030 0.040 0.102	
$13.0 - 14.1 (1.163 \ 0.002 \ 0.005 \ 0.016) \times 10$	$(2.117 \ 0.011 \ 0.013 \ 0.032) \times 10^{0}$	5.493 0.031 0.042 0.103	
$14.1 - 15.3 (9.348 \ 0.020 \ 0.041 \ 0.132) \times 10$	$0 \ (1.722 \ 0.009 \ 0.011 \ 0.026) \times 10^{0}$	5.428 0.031 0.043 0.102	
$15.3 - 16.6 (7.515 \ 0.016 \ 0.034 \ 0.107) \times 10$	$0 (1.400 \ 0.008 \ 0.010 \ 0.022) \times 10^{0}$	5.368 0.032 0.045 0.102	

TABLE SM XXIV: Bartels Rotation 2449 (January 25, 2013 – February 20, 2013). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time} \ \sigma_{\rm syst.}$
$16.6 - 18.0 (6.024 \ 0.014 \ 0.028 \ 0.087) \times 10$	$0 (1.139 \ 0.006 \ 0.008 \ 0.018) \times 10^{-6} $	0 5.291 0.032 0.046 0.102
$18.0 - 19.5 (4.848 \ 0.011 \ 0.024 \ 0.071) \times 10$	$0 \mid (9.280 \ 0.054 \ 0.072 \ 0.146) \times 10^{-6}$	$0^{-1} 5.224 0.033 0.048 0.101$
$19.5 - 21.1 (3.890 \ 0.009 \ 0.020 \ 0.058) \times 10$	$0 \mid (7.550 \ 0.045 \ 0.061 \ 0.120) \times 10^{-6}$	$0^{-1} 5.152 0.033 0.049 0.100$
$21.1 - 22.8 (3.152 \ 0.008 \ 0.016 \ 0.047) \times 10$	$0 (6.139 \ 0.038 \ 0.051 \ 0.098) \times 10^{-6} $	$0^{-1} 5.134 0.034 0.050 0.101$
$22.8 - 24.7 (2.533\ 0.006\ 0.014\ 0.038) \times 10$	$0 (5.003 \ 0.031 \ 0.042 \ 0.081) \times 10^{-6} $	$0^{-1} 5.064 0.034 0.051 0.100$
$24.7 - 26.7 (2.038 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 (4.043 \ 0.027 \ 0.035 \ 0.065) \times 10^{-6} $	0^{-1} 5.041 0.036 0.052 0.100
$26.7 - 28.8 (1.650 \ 0.005 \ 0.009 \ 0.025) \times 10$	$0 (3.316 \ 0.023 \ 0.029 \ 0.054) \times 10^{-6} $	$0^{-1} 4.977 \ 0.038 \ 0.052 \ 0.099$
$28.8 - 31.1 (1.338 \ 0.004 \ 0.008 \ 0.021) \times 10$	$0 (2.671 \ 0.020 \ 0.024 \ 0.044) \times 10^{-6} $	0^{-1} 5.010 0.040 0.054 0.101
$31.1 - 33.5 (1.077 \ 0.004 \ 0.006 \ 0.017) \times 10$	$0 (2.240 \ 0.018 \ 0.021 \ 0.037) \times 10^{-6} $	0^{-1} 4.810 0.041 0.053 0.098
$33.5 - 36.1 (8.783 \ 0.030 \ 0.054 \ 0.136) \times 10$	$^{-1} (1.825\ 0.015\ 0.017\ 0.031)\times 10^{-1} $	0^{-1} 4.813 0.044 0.055 0.099
$36.1 - 38.9 (7.095 \ 0.026 \ 0.045 \ 0.110) \times 10$	$^{-1}$ (1.481 0.013 0.014 0.025)×10	$0^{-1} 4.789 \ 0.047 \ 0.056 \ 0.100$
$38.9 - 41.9 (5.784 \ 0.023 \ 0.038 \ 0.090) \times 10$	$^{-1} (1.198 \ 0.012 \ 0.012 \ 0.020) \times 10^{-1} $	0^{-1} 4.826 0.050 0.058 0.101
$41.9 - 45.1 (4.727 \ 0.020 \ 0.032 \ 0.074) \times 10$	$^{-1} (9.643\ 0.100\ 0.099\ 0.167)\times 10$	$0^{-2} 4.902 \ 0.055 \ 0.060 \ 0.104$
$45.1 - 48.5 (3.824 \ 0.017 \ 0.026 \ 0.061) \times 10$	$^{-1} (8.090\ 0.088\ 0.085\ 0.142)\times 10^{-1} $	$0^{-2} 4.727 \ 0.056 \ 0.059 \ 0.101$
$48.5 - 52.2 (3.114 \ 0.015 \ 0.022 \ 0.051) \times 10$	$^{-1} (6.730\ 0.077\ 0.072\ 0.119)\times 10$	$0^{-2} 4.627 \ 0.057 \ 0.059 \ 0.100$
$52.2 - 56.1 (2.541 \ 0.013 \ 0.018 \ 0.042) \times 10$	$^{-1} (5.391\ 0.067\ 0.059\ 0.096)\times 10^{-1} $	$0^{-2} 4.713 \ 0.063 \ 0.062 \ 0.102$
$56.1 - 60.3 (2.071 \ 0.012 \ 0.015 \ 0.035) \times 10^{-1}$	-1 (4.523 0.059 0.051 0.081)×10	$0^{-2} 4.578 \ 0.065 \ 0.061 \ 0.100$

TABLE SM XXV: Bartels Rotation 2450 (February 21, 2013 – March 19, 2013). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time}$	$\sigma_{ m syst.}$
1.00 - 1.16 (6.273 0.032 0.094 0.282)×10	2		
$1.16 - 1.33 (6.384 \ 0.021 \ 0.069 \ 0.228) \times 10$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		
$1.33 - 1.51 (6.325 \ 0.018 \ 0.053 \ 0.183) \times 10$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		
$1.51 - 1.71 (6.039 \ 0.013 \ 0.042 \ 0.158) \times 10$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		
$1.71 - 1.92 (5.606 \ 0.011 \ 0.034 \ 0.133) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$1.92 - 2.15 (5.085 \ 0.010 \ 0.028 \ 0.110) \times 10$	$(5.993 \ 0.037 \ 0.060 \ 0.134)$	$\times 10^1$ 8.484 0.054 0.097 0.252	
$2.15 - 2.40 (4.504 \ 0.008 \ 0.023 \ 0.090) \times 10$	$(5.786 \ 0.032 \ 0.049 \ 0.114)$	$\times 10^1$ 7.784 0.045 0.077 0.207	
$2.40 - 2.67 (3.964 \ 0.007 \ 0.019 \ 0.075) \times 10$	$(5.326 \ 0.027 \ 0.042 \ 0.095)$	$\times 10^1$ 7.441 0.040 0.069 0.183	
$2.67 - 2.97 (3.433 \ 0.006 \ 0.016 \ 0.060) \times 10$	$(4.839 \ 0.023 \ 0.037 \ 0.082)$	$\times 10^1$ 7.094 0.036 0.063 0.164	
$2.97 - 3.29 (2.935 \ 0.005 \ 0.013 \ 0.049) \times 10$	$(4.232 \ 0.019 \ 0.030 \ 0.069)$	$\times 10^1$ 6.935 0.033 0.058 0.154	
$3.29 - 3.64 (2.505 \ 0.004 \ 0.012 \ 0.040) \times 10$	$(3.697 \ 0.016 \ 0.024 \ 0.059)$	$\times 10^{1}$ 6.776 0.031 0.054 0.146	
$3.64 - 4.02 (2.100\ 0.003\ 0.010\ 0.033) \times 10$	$(3.167 \ 0.014 \ 0.019 \ 0.050)$	$\times 10^1$ 6.631 0.030 0.051 0.139	
$4.02 - 4.43 (1.746 \ 0.003 \ 0.008 \ 0.027) \times 10$	$(2.697 \ 0.011 \ 0.015 \ 0.042)$	$\times 10^1$ 6.473 0.029 0.048 0.132	
$4.43 - 4.88 (1.446 \ 0.002 \ 0.007 \ 0.022) \times 10$	$(2.262 \ 0.009 \ 0.012 \ 0.035)$	$\times 10^1$ 6.393 0.027 0.046 0.129	
$4.88 - 5.37 (1.184 \ 0.002 \ 0.005 \ 0.017) \times 10$	$(1.904 \ 0.007 \ 0.010 \ 0.029)$	$\times 10^1$ 6.219 0.026 0.043 0.123	
5.37 - 5.90 (9.711 0.014 0.041 0.139)×10	$1 (1.570 \ 0.006 \ 0.008 \ 0.024)$	$\times 10^1$ 6.185 0.026 0.040 0.120	
$5.90 - 6.47 (7.885 \ 0.012 \ 0.032 \ 0.111) \times 10$	$1 (1.294 \ 0.005 \ 0.006 \ 0.019)$	$\times 10^1$ 6.093 0.025 0.039 0.116	
$6.47 - 7.09 (6.426 \ 0.009 \ 0.025 \ 0.090) \times 10$	$1 (1.074 \ 0.004 \ 0.005 \ 0.016)$	$\times 10^1$ 5.986 0.025 0.038 0.113	
7.09 - 7.76 (5.210 0.008 0.020 0.072)×10	$1 (8.734 \ 0.034 \ 0.044 \ 0.130)$	$\times 10^0$ 5.966 0.025 0.038 0.111	
$7.76 - 8.48 (4.210 \ 0.006 \ 0.016 \ 0.058) \times 10$	$1 (7.148 \ 0.028 \ 0.037 \ 0.106)$	$\times 10^0$ 5.890 0.025 0.038 0.109	
8.48 - 9.26 (3.390 0.005 0.013 0.047)×10	$1 (5.835 \ 0.024 \ 0.031 \ 0.087) $	$\times 10^0$ 5.809 0.026 0.039 0.107	
$9.26-10.1 (2.733 0.005 0.011 0.037) \! imes \! 10$	$1 (4.786 \ 0.020 \ 0.027 \ 0.071)$	$\times 10^0$ 5.712 0.026 0.039 0.106	
$10.1 - 11.0 (2.197 \ 0.004 \ 0.009 \ 0.030) \times 10$	$1 (3.888 \ 0.017 \ 0.022 \ 0.058)$	$\times 10^0$ 5.650 0.027 0.040 0.104	
$11.0 - 12.0 (1.762 \ 0.003 \ 0.007 \ 0.024) \times 10$	$1 (3.172 \ 0.015 \ 0.019 \ 0.048)$	$\times 10^0$ 5.553 0.028 0.041 0.103	
$12.0 - 13.0 (1.423 \ 0.003 \ 0.006 \ 0.020) \times 10$	$1 (2.568 \ 0.013 \ 0.016 \ 0.039)$	$\times 10^0$ 5.541 0.030 0.043 0.104	
$13.0 - 14.1 (1.150 \ 0.002 \ 0.005 \ 0.016) \times 10$	$(2.109 \ 0.011 \ 0.014 \ 0.032)$	$\times 10^0$ 5.452 0.030 0.044 0.103	
$14.1 - 15.3 (9.284 \ 0.020 \ 0.044 \ 0.132) \times 10$	$0 (1.707 \ 0.009 \ 0.012 \ 0.026)$	$\times 10^0$ 5.439 0.031 0.046 0.103	
$15.3 - 16.6 (7.432 \ 0.016 \ 0.036 \ 0.107) \times 10$	$0 (1.398 \ 0.008 \ 0.010 \ 0.022)$	$\times 10^0$ 5.318 0.032 0.047 0.102	

TABLE SM XXV: Bartels Rotation 2450 (February 21, 2013 – March 19, 2013). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time }} \sigma_{\text{syst.}}$
$16.6 - 18.0 (5.990 \ 0.013 \ 0.030 \ 0.087) \times 10^{-1}$	$(1.130 \ 0.006 \ 0.009 \ 0.018) \times 10^{-6}$	0 5.301 0.032 0.049 0.103
$18.0 - 19.5 (4.836 \ 0.011 \ 0.025 \ 0.072) \times 10^{-1} (4.836 \ 0.011 \ 0.025 \ 0.025) \times 10^{-1} (4.836 \ 0.011 \ 0.025) \times 10^{-1} (4.836 \ 0.011$	$0 \mid (9.289 \ 0.054 \ 0.075 \ 0.148) \times 10^{-6}$	-1 5.206 0.032 0.050 0.102
$19.5 - 21.1 (3.880 \ 0.009 \ 0.021 \ 0.058) \times 10^{-1} (3.880 \ 0.009 \ 0.021 \ 0.058) \times 10^{-1} (3.880 \ 0.009 \ 0.021 \ 0.058) \times 10^{-1} (3.880 \ 0.009 \ 0.009 \ 0.001 \ 0.008) \times 10^{-1} (3.880 \ 0.009 \ 0.009 \ 0.001 \ 0.008) \times 10^{-1} (3.880 \ 0.009 \ 0.001 \ 0.008) \times 10^{-1} (3.880 \ 0.009 \ 0.001 \ 0.008) \times 10^{-1} (3.880 \ 0.009 \ 0.001 \ 0.008) \times 10^{-1} (3.880 \ 0.009 \ 0.001 \ 0.008) \times 10^{-1} (3.880 \ 0.009 \ 0.001 \ 0.008) \times 10^{-1} (3.880 \ 0.009 \ 0.001 \ 0.008) \times 10^{-1} (3.880 \ 0.009 \ 0.008) \times 10^{-1} (3.880 \ 0.008) \times 10^{$	$(7.570 \ 0.045 \ 0.064 \ 0.122) \times 10^{-6}$	$ 5.126 \ 0.033 \ 0.051 \ 0.101 $
$21.1 - 22.8 (3.144 \ 0.008 \ 0.018 \ 0.048) \times 10^{-6} (3.144 \ 0.008 \ 0.018 \ 0.008) \times 10^{-6} (3.144 \ 0.008 \ 0.018 \ 0.008) \times 10^{-6} (3.144 \ 0.008 \ 0.018 \ 0.008) \times 10^{-6} (3.144 \ 0.008 \ 0.018 \ 0.008) \times 10^{-6} (3.144 \ 0.008 \ 0.018 \ 0.008) \times 10^{-6} (3.144 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (3.144 \ 0.008) \times $	$0 \mid (6.129 \ 0.037 \ 0.053 \ 0.100) \times 10^{-6}$	-1 5.130 0.034 0.053 0.102
$22.8 - 24.7 (2.533 \ 0.006 \ 0.014 \ 0.038) \times 10^{-6} (2.533 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.008) \times 10^{-6} (2.533 \ 0.008$	$0 \mid (4.988 \ 0.031 \ 0.044 \ 0.081) \times 10^{-1}$	5.078 0.034 0.054 0.102
$24.7 - 26.7 (2.027 \ 0.005 \ 0.012 \ 0.031) \times 10^{-6} (2.027 \ 0.005 \ 0.012 \ 0.005) \times 10^{-6} (2.027 \ 0.005 \ 0.012 \ 0.005) \times 10^{-6} (2.027 \ 0.005 \ 0.005 \ 0.005) \times 10^{-6} (2.027 \ 0.005 \ 0.005 \ 0.005) \times 10^{-6} (2.027 \ 0.005 \ 0.005 \ 0.005) \times 10^{-6} (2.027 \ 0.005 \ 0.005 \ 0.005) \times 10^{-6} (2.027 \ 0.005 \ 0.005 \ 0.005) \times 10^{-6} (2.027 \ 0.005) \times 10^{-6} (2.027$	$(4.046 \ 0.027 \ 0.037 \ 0.066) \times 10^{-6}$	-1 5.010 0.035 0.054 0.101
$26.7 - 28.8 (1.630 \ 0.005 \ 0.010 \ 0.025) \times 10^{-6} (1.630 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.630 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.630 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.630 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.630 \ 0.005 \ 0.005 \ 0.005) \times 10^{-6} (1.630 \ 0.005 \ 0.005 \ 0.005) \times 10^{-6} (1.630 \ 0.005) \times 10^{-6} (1$	$(3.292 \ 0.023 \ 0.031 \ 0.054) \times 10^{-6}$	-1 4.952 0.037 0.055 0.101
$28.8 - 31.1 (1.328 \ 0.004 \ 0.008 \ 0.021) \times 10^{-1}$	$(2.708 \ 0.020 \ 0.026 \ 0.045) \times 10^{-6}$	-1 4.905 0.039 0.056 0.101
$31.1 - 33.5 (1.077 \ 0.003 \ 0.007 \ 0.017) \times 10^{-1} (1.077 \ 0.003 \ 0.007 \ 0.017) \times 10^{-1} (1.077 \ 0.003 \ 0.007 \ 0.007 \ 0.017) \times 10^{-1} (1.077 \ 0.003 \ 0.007 \ 0.007 \ 0.007 \ 0.007) \times 10^{-1} (1.077 \ 0.003 \ 0.007 \ 0.007 \ 0.007) \times 10^{-1} (1.077 \ 0.003 \ 0.007 \ 0.007 \ 0.007) \times 10^{-1} (1.077 \ 0.003 \ 0.007 \ 0.007) \times 10^{-1} (1.077 \ 0.003 \ 0.007 \ 0.007) \times 10^{-1} (1.077 \ 0.003 \ 0.007 \ 0.007) \times 10^{-1} (1.077 \ 0.003 \ 0.007 \ 0.007) \times 10^{-1} (1.077 \ 0.003 \ 0.007 \ 0.007) \times 10^{-1} (1.077 \ 0.003 \ 0.007 \ 0.007) \times 10^{-1} (1.077 \ 0.003 \ 0.007 \ 0.007) \times 10^{-1} (1.077 \ 0.003 \ 0.007 \ 0.007) \times 10^{-1} (1.077 \ 0.003 \ 0.007 \ 0.007) \times 10^{-1} (1.077 \ 0.003 \ 0.007 \ 0.007) \times 10^{-1} (1.077 \ 0.003 \ 0.007) \times $	$(2.199 \ 0.018 \ 0.022 \ 0.037) \times 10^{-6}$	$ ^{-1} 4.897 0.042 0.058 0.101 $
$33.5 - 36.1 (8.738 \ 0.030 \ 0.058 \ 0.136) \times 10$	$^{-1} (1.815 \ 0.015 \ 0.018 \ 0.032) \times 10^{-1} $	-1 4.813 0.044 0.058 0.101
$36.1 - 38.9 (7.080 \ 0.026 \ 0.048 \ 0.111) \times 10$	$^{-1} (1.474 \ 0.013 \ 0.015 \ 0.026) \times 10^{-1} $	$ ^{-1} 4.802 0.047 0.060 0.102 $
$38.9 - 41.9 (5.778 \ 0.023 \ 0.040 \ 0.091) \times 10$	$^{-1} (1.193 \ 0.011 \ 0.013 \ 0.021) \times 10^{-1} $	-1 4.844 0.050 0.062 0.104
$41.9 - 45.1 (4.714 \ 0.020 \ 0.034 \ 0.075) \times 10$	$^{-1} (9.992 \ 0.101 \ 0.110 \ 0.178) \times 10^{-1} $	-2 4.718 0.052 0.062 0.102
$45.1 - 48.5 (3.836 \ 0.017 \ 0.028 \ 0.062) \times 10$	$^{-1} (8.018\ 0.088\ 0.090\ 0.144)\times 10^{-1} $	-2 4.785 0.057 0.064 0.105
$48.5 - 52.2 (3.124 \ 0.015 \ 0.023 \ 0.051) \times 10$	$^{-1} (6.544 \ 0.076 \ 0.075 \ 0.119) \times 10^{-1} $	-2 4.773 0.060 0.066 0.106
$52.2 - 56.1 (2.547 \ 0.013 \ 0.020 \ 0.043) \times 10$	$^{-1} (5.437 \ 0.067 \ 0.064 \ 0.100) \times 10^{-1} $	$ -2 4.685 \ 0.063 \ 0.066 \ 0.104$
$56.1 - 60.3 (2.080 \ 0.012 \ 0.016 \ 0.035) \times 10$	-1 (4.487 0.058 0.054 0.083)×10	$ -2 4.636 \ 0.066 \ 0.067 \ 0.105$

TABLE SM XXVI: Bartels Rotation 2451 (March 20, 2013 – April 15, 2013). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s}\cdot{\rm GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (5.836 \ 0.031 \ 0.085 \ 0.262) \times 10^{2}$	2		_
$1.16 - 1.33 (5.957 \ 0.020 \ 0.063 \ 0.213) \times 10^{2}$	2		_
$1.33 - 1.51 (5.881 \ 0.018 \ 0.048 \ 0.169) \times 10^{2}$	2		_
$1.51 - 1.71 (5.646 \ 0.013 \ 0.038 \ 0.147) \times 10^{2}$	2		_
$1.71 - 1.92 (5.255 \ 0.011 \ 0.031 \ 0.124) \times 10^{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.92 - 2.15 (4.789 \ 0.009 \ 0.025 \ 0.103) \times 10^{2}$	$(5.709 \ 0.036 \ 0.051 \ 0.125) \times 10^{-2}$	$8.389 \ 0.055 \ 0.086$	0.246
$2.15 - 2.40 (4.270\ 0.008\ 0.021\ 0.085) \times 10^{2}$		$7.823 \ 0.047 \ 0.071$	0.206
$2.40 - 2.67 (3.761 \ 0.007 \ 0.017 \ 0.071) \times 10^{5}$		$7.491 \ 0.041 \ 0.063$	0.182
$2.67 - 2.97 (3.278 \ 0.006 \ 0.014 \ 0.057) \times 10^{5}$	/		0.163
$2.97 - 3.29 (2.813 \ 0.005 \ 0.012 \ 0.047) \times 10^{5}$,	$\begin{vmatrix} 1 & 6.829 & 0.033 & 0.052 \end{vmatrix}$	0.149
$3.29 - 3.64 (2.399 \ 0.004 \ 0.011 \ 0.039) \times 10^{2}$	/		0.144
$3.64 - 4.02 (2.027 \ 0.003 \ 0.009 \ 0.032) \times 10^{2}$,		0.137
$4.02 - 4.43 (1.693 \ 0.003 \ 0.008 \ 0.026) \times 10^{2}$,	1	
$4.43 - 4.88 (1.405 \ 0.002 \ 0.006 \ 0.021) \times 10^{2}$,		0.128
$4.88 - 5.37 (1.161 \ 0.002 \ 0.005 \ 0.017) \times 10^{2}$,		0.123
$5.37 - 5.90 (9.512\ 0.014\ 0.038\ 0.135) \times 10^{-1}$,		0.119
$5.90 - 6.47 (7.767 \ 0.012 \ 0.030 \ 0.109) \times 10^{-1}$,		0.114
$6.47 - 7.09 \left (6.317 \ 0.009 \ 0.024 \ 0.088) \times 10^{-1} \right $,		0.111
$7.09 - 7.76 (5.129 \ 0.008 \ 0.019 \ 0.071) \times 10^{-1}$,		
$7.76 - 8.48 (4.160 \ 0.006 \ 0.015 \ 0.058) \times 10^{-1}$,	I	
$8.48 - 9.26 (3.360\ 0.005\ 0.013\ 0.046) \times 10^{-1}$,		
$9.26 - 10.1 (2.709 \ 0.005 \ 0.010 \ 0.037) \times 10^{-1}$,		
$10.1 - 11.0 (2.178 \ 0.004 \ 0.009 \ 0.030) \times 10^{-1}$			
$11.0 - 12.0 (1.746 \ 0.003 \ 0.007 \ 0.024) \times 10^{-1}$,	1	
$12.0 - 13.0 (1.409 \ 0.003 \ 0.006 \ 0.019) \times 10^{-3}$,		
$13.0 - 14.1 \ (1.139 \ 0.002 \ 0.005 \ 0.016) \times 10^{-1}$,		
$14.1 - 15.3 (9.238 \ 0.020 \ 0.041 \ 0.130) \times 10^{0}$	· ·	l .	
$15.3 - 16.6 (7.429 \ 0.016 \ 0.034 \ 0.106) \times 10^{-6}$		l .	
	(== 0.000 0.0=0 0.0=0)//10		

TABLE SM XXVI: Bartels Rotation 2451 (March 20, 2013 – April 15, 2013). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time} \ \sigma_{\rm syst.}$
$16.6 - 18.0 (5.948 \ 0.013 \ 0.028 \ 0.086) \times 10^{-1}$	$0 (1.123 \ 0.006 \ 0.008 \ 0.018) \times 10^{0} $	5.296 0.033 0.045 0.101
$18.0 - 19.5 (4.802 \ 0.011 \ 0.024 \ 0.071) \times 10^{-1} (4.802 \ 0.011 \ 0.024 \ 0.024) \times 10^{-1} (4.802 \ 0.011 \ 0.024) \times 10^{-1} (4.802 \ 0.011 \ 0.024) \times 10^{-1} (4.802 \ 0.011 \ 0.024$	$0 (9.265 \ 0.054 \ 0.070 \ 0.145) \times 10^{-6} $	$\begin{bmatrix} -1 \\ 5.183 & 0.032 & 0.047 & 0.100 \end{bmatrix}$
$19.5 - 21.1 (3.852 \ 0.009 \ 0.020 \ 0.057) \times 10^{-1}$	$0 \mid (7.395 \ 0.044 \ 0.058 \ 0.117) \times 10^{-1}$	$\begin{bmatrix} -1 \\ 5.210 \\ 0.034 \\ 0.049 \\ 0.101 \end{bmatrix}$
$21.1 - 22.8 (3.127 \ 0.008 \ 0.016 \ 0.047) \times 10^{-6} (3.127 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (3.127 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (3.127 \ 0.008) \times 10^{-6} (3.127$	$0 (6.164 \ 0.038 \ 0.049 \ 0.098) \times 10^{-6} $	$\begin{bmatrix} -1 \\ 5.074 \\ 0.033 \\ 0.049 \\ 0.099 \end{bmatrix}$
$22.8 - 24.7 (2.516 \ 0.006 \ 0.014 \ 0.038) \times 10^{-6} (2.516 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.516 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.516 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.516 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.516 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.516 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.516 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.516 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.516 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.516 \ 0.008) \times 10^{$	$0 (4.997 \ 0.031 \ 0.041 \ 0.080) \times 10^{-6} $	$\begin{bmatrix} 5.036 & 0.034 & 0.049 & 0.099 \end{bmatrix}$
$24.7 - 26.7 (2.023 \ 0.005 \ 0.011 \ 0.031) \times 10^{-6}$	$0 (4.082 \ 0.027 \ 0.034 \ 0.065) \times 10^{-6} $	$^{-1}$ $ 4.955 \ 0.035 \ 0.050 \ 0.098$
$26.7 - 28.8 (1.629 \ 0.005 \ 0.009 \ 0.025) \times 10^{-6} (1.629 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.629 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.629 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.629 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.629 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.629 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.629 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.629 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.629 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.629 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.629 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.629 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.629 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.629 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.629 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.629 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.629 \ 0.005) \times 10^{$	$0 (3.303 \ 0.023 \ 0.028 \ 0.053) \times 10^{-6} $	$^{-1}$ $ 4.932 \ 0.037 \ 0.051 \ 0.098$
$28.8 - 31.1 (1.321 \ 0.004 \ 0.008 \ 0.020) \times 10^{-1}$	$0 (2.699 \ 0.020 \ 0.023 \ 0.044) \times 10^{-6} $	$\begin{bmatrix} 4.896 & 0.039 & 0.051 & 0.098 \end{bmatrix}$
$31.1 - 33.5 (1.069 \ 0.003 \ 0.006 \ 0.017) \times 10^{-1}$	$0 (2.195 \ 0.018 \ 0.020 \ 0.036) \times 10^{-6} $	$\begin{bmatrix} 4.871 & 0.042 & 0.053 & 0.098 \end{bmatrix}$
$33.5 - 36.1 (8.720 \ 0.030 \ 0.054 \ 0.135) \times 10$	$^{-1} (1.793\ 0.015\ 0.016\ 0.030)\times 10^{-1} $	-1 4.863 0.045 0.054 0.099
$36.1 - 38.9 (7.061 \ 0.026 \ 0.045 \ 0.110) \times 10$	$^{-1}$ (1.469 0.013 0.014 0.025)×10	$\begin{bmatrix} -1 \end{bmatrix} 4.808 \ 0.047 \ 0.054 \ 0.099$
$38.9 - 41.9 (5.775 \ 0.023 \ 0.038 \ 0.090) \times 10$	$^{-1}$ (1.187 0.012 0.011 0.020)×10	$-1 \mid 4.863 \ 0.051 \ 0.057 \ 0.101$
$41.9 - 45.1 (4.682 \ 0.020 \ 0.031 \ 0.074) \times 10$	$^{-1} (9.919\ 0.102\ 0.098\ 0.169)\times 10^{-1} $	$-2 \mid 4.720 \mid 0.052 \mid 0.056 \mid 0.099 \mid$
$45.1 - 48.5$ $(3.805 \ 0.017 \ 0.026 \ 0.061) \times 10$	$^{-1} (8.220\ 0.089\ 0.083\ 0.142)\times 10^{-1} $	$-2 \mid 4.629 \mid 0.055 \mid 0.056 \mid 0.098 \mid$
$48.5 - 52.2 (3.106 \ 0.015 \ 0.022 \ 0.050) \times 10$	$^{-1}$ (6.536 0.076 0.067 0.114)×10	$-2 \mid 4.752 \mid 0.060 \mid 0.059 \mid 0.102$
52.2 - 56.1 (2.545 0.013 0.018 0.042)×10	$^{-1} (5.524\ 0.068\ 0.058\ 0.097)\times 10^{-1} $	$-2 \mid 4.608 \mid 0.062 \mid 0.059 \mid 0.099 \mid$
$56.1 - 60.3 (2.071 \ 0.012 \ 0.015 \ 0.035) \times 10$	$^{-1}$ (4.432 0.058 0.048 0.078)×10	$-2 \mid 4.673 \mid 0.067 \mid 0.061 \mid 0.101 \mid$

TABLE SM XXVII: Bartels Rotation 2452 (April 16, 2013 – May 12, 2013). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time}	$\sigma_{ m syst.}$	$p/{\rm He} \sigma_{ m stat.} \sigma_{ m t}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (5.765 \ 0.031 \ 0.082 \ 0.258) \times 10$	2 – – –	- –		
$1.16 - 1.33 (5.965 \ 0.020 \ 0.061 \ 0.212) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_		
$1.33 - 1.51 (5.859 \ 0.017 \ 0.046 \ 0.168) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$1.51 - 1.71 (5.659 \ 0.013 \ 0.037 \ 0.147) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_		
$1.71 - 1.92 (5.253 \ 0.011 \ 0.030 \ 0.124) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_		
$1.92 - 2.15 (4.796 \ 0.009 \ 0.024 \ 0.103) \times 10$	$(5.686 \ 0.035 \ 0.0$	$53\ 0.125) \times 10^{1}$	8.435 0.055	$0.089 \ 0.248$
$2.15 - 2.40 (4.269 \ 0.008 \ 0.020 \ 0.085) \times 10$	$(5.377 \ 0.030 \ 0.0$	$43\ 0.104) \times 10^{1}$	7.939 0.047	$0.074\ 0.210$
$2.40 - 2.67 (3.752 \ 0.007 \ 0.017 \ 0.071) \times 10$	$(4.992 \ 0.026 \ 0.0$	$37\ 0.088) \times 10^{1}$	7.516 0.041	$0.065 \ 0.183$
$2.67 - 2.97 (3.262 \ 0.005 \ 0.014 \ 0.057) \times 10$	$(4.535 \ 0.022 \ 0.0$	$32\ 0.076) \times 10^{1}$	7.194 0.037	0.060 0.165
$2.97 - 3.29 (2.810 \ 0.005 \ 0.012 \ 0.047) \times 10$	$(4.025 \ 0.018 \ 0.0$	$27 \ 0.065) \times 10^{1}$	6.981 0.034	$0.055 \ 0.153$
$3.29 - 3.64 (2.388 \ 0.004 \ 0.011 \ 0.038) \times 10$	$(3.516 \ 0.016 \ 0.0$	$21 \ 0.056) \times 10^{1}$	6.791 0.032	$2\ 0.051\ 0.145$
$3.64 - 4.02 (2.019 \ 0.003 \ 0.009 \ 0.032) \times 10$	$(3.048 \ 0.013 \ 0.0$	$17\ 0.047) \times 10^{1}$	6.624 0.031	0.048 0.138
$4.02 - 4.43 (1.689 \ 0.003 \ 0.008 \ 0.026) \times 10$	$(2.599 \ 0.011 \ 0.0$	$14\ 0.040) \times 10^{1}$	$6.499 \ 0.029$	$0.046 \ 0.132$
$4.43 - 4.88 (1.402 \ 0.002 \ 0.006 \ 0.021) \times 10$		$11 \ 0.033) \times 10^{1}$	$6.425 \ 0.027$	0.044 0.129
$4.88 - 5.37 (1.160 \ 0.002 \ 0.005 \ 0.017) \times 10$	$(1.839 \ 0.007 \ 0.0$	$09\ 0.028) \times 10^{1}$	$6.306 \ 0.026$	$6\ 0.041\ 0.124$
$5.37 - 5.90 (9.460 \ 0.014 \ 0.037 \ 0.135) \times 10$	$(1.527 \ 0.006 \ 0.0$	$07 \ 0.023) \times 10^{1}$	6.194 0.026	$6\ 0.038\ 0.119$
$5.90 - 6.47 (7.733 \ 0.012 \ 0.029 \ 0.108) \times 10$	$(1.272 \ 0.005 \ 0.0$	$06 \ 0.019) \times 10^{1}$	$6.080 \ 0.025$	$0.037 \ 0.115$
$6.47 - 7.09 (6.287 \ 0.009 \ 0.023 \ 0.088) \times 10$	$(1.041 \ 0.004 \ 0.0$	$05 \ 0.015) \times 10^{1}$	$6.041 \ 0.025$	$0.037 \ 0.113$
$7.09 - 7.76 (5.081 \ 0.008 \ 0.019 \ 0.070) \times 10$,	,		$0.036 \ 0.110$
$7.76 - 8.48 (4.140 \ 0.006 \ 0.015 \ 0.057) \times 10$	`	,		$6\ 0.037\ 0.109$
$8.48 - 9.26 (3.338 \ 0.005 \ 0.012 \ 0.046) \times 10$	`	,	1	$6\ 0.037\ 0.106$
$9.26 - 10.1 (2.693 \ 0.004 \ 0.010 \ 0.036) \times 10$	`	,		$6\ 0.038\ 0.106$
$10.1 - 11.0 (2.169 \ 0.004 \ 0.008 \ 0.029) \times 10$	`	,		$0.039 \ 0.103$
$11.0 - 12.0 (1.743 \ 0.003 \ 0.007 \ 0.024) \times 10$,	,	1	$3\ 0.041\ 0.104$
$12.0 - 13.0 (1.410 \ 0.003 \ 0.006 \ 0.019) \times 10$	`	,		0.042 0.104
$13.0 - 14.1 (1.137 \ 0.002 \ 0.005 \ 0.016) \times 10$	*	,		0.044 0.104
$14.1 - 15.3 (9.192 \ 0.019 \ 0.041 \ 0.130) \times 10$	`	,		0.045 0.103
$15.3 - 16.6 (7.403 \ 0.016 \ 0.034 \ 0.105) \times 10$	$(1.381 \ 0.008 \ 0.0)$	$10\ 0.022)\times10^{0}$	$ 5.361 \ 0.032 $	2 0.047 0.103

TABLE SM XXVII: Bartels Rotation 2452 (April 16, 2013 – May 12, 2013). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ $\sigma_{\text{time }}\sigma_{\text{syst.}}$
$16.6 - 18.0 (5.945 \ 0.013 \ 0.028 \ 0.086) \times 10$	$0 (1.129 \ 0.006 \ 0.009 \ 0.018) \times 10^{-1} $	0^0 $5.267 \ 0.032 \ 0.048 \ 0.102$
$18.0 - 19.5 (4.808 \ 0.011 \ 0.023 \ 0.071) \times 10$	$0 (9.156 \ 0.053 \ 0.076 \ 0.146) \times 10^{-6} $	$0^{-1} 5.251 0.033 0.050 0.103$
$19.5 - 21.1 (3.851 \ 0.009 \ 0.019 \ 0.057) \times 10$	$0 \mid (7.468 \ 0.044 \ 0.064 \ 0.121) \times 10^{-6}$	$0^{-1} 5.157 0.033 0.051 0.101$
$21.1 - 22.8 (3.113 \ 0.008 \ 0.016 \ 0.047) \times 10$	$0 (6.079 \ 0.037 \ 0.053 \ 0.099) \times 10^{-6} $	$0^{-1} 5.121 0.034 0.052 0.102$
$22.8 - 24.7 (2.522 \ 0.006 \ 0.013 \ 0.038) \times 10$	$0 (4.977 \ 0.031 \ 0.044 \ 0.081) \times 10^{-6} $	$0^{-1} 5.068 0.034 0.053 0.101$
$24.7 - 26.7 (2.012 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 (4.039 \ 0.026 \ 0.036 \ 0.066) \times 10^{-6} $	$0^{-1} 4.981 \ 0.035 \ 0.053 \ 0.100$
$26.7 - 28.8 (1.631 \ 0.005 \ 0.009 \ 0.025) \times 10$	$0 (3.324 \ 0.023 \ 0.031 \ 0.055) \times 10^{-6} $	$0^{-1} 4.907 \ 0.037 \ 0.053 \ 0.099$
$28.8 - 31.1 (1.328 \ 0.004 \ 0.008 \ 0.020) \times 10$	$0 (2.680 \ 0.020 \ 0.025 \ 0.045) \times 10^{-6} $	$0^{-1} 4.954 \ 0.039 \ 0.055 \ 0.101$
$31.1 - 33.5 (1.069 \ 0.003 \ 0.006 \ 0.017) \times 10$	$0 (2.198 \ 0.017 \ 0.021 \ 0.037) \times 10^{-6} $	$0^{-1} 4.863 \ 0.042 \ 0.055 \ 0.100$
$33.5 - 36.1 (8.695 \ 0.030 \ 0.054 \ 0.134) \times 10$	$^{-1} (1.791\ 0.015\ 0.018\ 0.031)\times 10^{-1} $	$0^{-1} 4.854 \ 0.044 \ 0.056 \ 0.100$
$36.1 - 38.9 (7.060 \ 0.026 \ 0.045 \ 0.109) \times 10$	$^{-1}$ (1.489 0.013 0.015 0.026)×10	$0^{-1} 4.740 0.046 0.056 0.099$
$38.9 - 41.9 (5.736 \ 0.023 \ 0.037 \ 0.089) \times 10$	$^{-1}$ (1.198 0.011 0.012 0.020)×10	$0^{-1} 4.788 0.050 0.058 0.101$
$41.9 - 45.1 (4.693 \ 0.020 \ 0.031 \ 0.074) \times 10$	$^{-1} (9.865 \ 0.101 \ 0.103 \ 0.172) \times 10^{-1} $	$0^{-2} 4.757 \ 0.053 \ 0.059 \ 0.101$
$45.1 - 48.5 (3.817 \ 0.017 \ 0.026 \ 0.061) \times 10$	$^{-1}$ (8.324 0.089 0.089 0.147)×10	$0^{-2} 4.586 \ 0.053 \ 0.058 \ 0.099$
$48.5 - 52.2 (3.129 \ 0.015 \ 0.022 \ 0.051) \times 10$	$^{-1}$ (6.649 0.076 0.073 0.118)×10	$0^{-2} 4.706 \ 0.059 \ 0.061 \ 0.102$
$52.2 - 56.1 (2.539 \ 0.013 \ 0.018 \ 0.042) \times 10$	$^{-1} (5.506 \ 0.067 \ 0.061 \ 0.099) \times 10^{-1} $	$0^{-2} 4.612 \ 0.061 \ 0.061 \ 0.100$
$56.1 - 60.3 (2.077 \ 0.011 \ 0.015 \ 0.035) \times 10$	$-1 (4.549 \ 0.059 \ 0.051 \ 0.082) \times 10^{-1} $	$0^{-2} 4.565 \ 0.064 \ 0.061 \ 0.100$

TABLE SM XXVIII: Bartels Rotation 2453 (May 13, 2013 – June 8, 2013). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s}\cdot{\rm GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$ p	$\rho/{\rm He}~\sigma_{\rm stat.}~\sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (4.936 \ 0.028 \ 0.083 \ 0.225) \times 1$	0^2		_
$1.16 - 1.33 (4.968 \ 0.019 \ 0.060 \ 0.180) \times 1$	$0^2 - - - -$		_
$1.33 - 1.51 (4.878 \ 0.016 \ 0.045 \ 0.142) \times 1$	0^2		_
$1.51 - 1.71 (4.713 \ 0.012 \ 0.036 \ 0.124) \times 1$	0^2		_
$1.71 - 1.92 (4.421 \ 0.010 \ 0.029 \ 0.105) \times 1$	0^2		_
$1.92 - 2.15 (4.027 \ 0.009 \ 0.023 \ 0.087) \times 1$	$0^2 (4.703 \ 0.033 \ 0.044 \ 0.104) \times 10^1$	8.561 0.062 0.095	0.253
$2.15 - 2.40 (3.604 \ 0.007 \ 0.019 \ 0.073) \times 1$	$0^2 (4.473 \ 0.028 \ 0.036 \ 0.087) \times 10^1$	8.056 0.053 0.078	0.214
$2.40 - 2.67 (3.207 \ 0.006 \ 0.016 \ 0.061) \times 1$	$0^2 (4.255 \ 0.024 \ 0.031 \ 0.075) \times 10^1$	7.537 0.045 0.067	0.184
$2.67 - 2.97 (2.813\ 0.005\ 0.014\ 0.050) \times 1$	$0^2 (3.923 \ 0.021 \ 0.028 \ 0.066) \times 10^1$	7.170 0.040 0.061	0.165
$2.97 - 3.29 (2.449\ 0.004\ 0.012\ 0.041) \times 1$	$0^2 (3.500 \ 0.017 \ 0.023 \ 0.056) \times 10^1$	6.999 0.037 0.057	0.154
$3.29 - 3.64 (2.107 \ 0.004 \ 0.010 \ 0.034) \times 1$	$0^2 (3.079 \ 0.015 \ 0.018 \ 0.049) \times 10^1$	6.843 0.035 0.053	0.147
$3.64 - 4.02 (1.789 \ 0.003 \ 0.009 \ 0.029) \times 1$	$0^2 (2.672 \ 0.012 \ 0.015 \ 0.042) \times 10^1$	6.697 0.033 0.050	0.140
$4.02 - 4.43 (1.511 \ 0.002 \ 0.008 \ 0.023) \times 1$	$0^2 (2.318 \ 0.010 \ 0.012 \ 0.036) \times 10^1$	6.518 0.031 0.048	0.133
$4.43 - 4.88 (1.263 \ 0.002 \ 0.006 \ 0.019) \times 1$	$0^2 (1.965 \ 0.008 \ 0.010 \ 0.030) \times 10^1$	6.426 0.029 0.045	0.129
$4.88 - 5.37 (1.049 \ 0.002 \ 0.005 \ 0.015) \times 1$	$0^2 (1.661 \ 0.007 \ 0.008 \ 0.025) \times 10^1$	6.315 0.028 0.042	0.125
$5.37 - 5.90 (8.648\ 0.014\ 0.038\ 0.124) \times 1$	$0^1 (1.396 \ 0.006 \ 0.006 \ 0.021) \times 10^1$	6.193 0.027 0.039	0.119
$5.90 - 6.47 (7.137 \ 0.011 \ 0.030 \ 0.101) \times 1$	$0^1 (1.164 \ 0.005 \ 0.005 \ 0.017) \times 10^1$	6.129 0.027 0.038	0.116
$6.47 - 7.09 (5.835 \ 0.009 \ 0.024 \ 0.082) \times 1$	$0^1 (9.679 \ 0.039 \ 0.044 \ 0.142) \times 10^0$	6.029 0.026 0.037	0.113
$7.09 - 7.76 (4.775 \ 0.007 \ 0.019 \ 0.067) \times 1$	$0^1 (7.989 \ 0.032 \ 0.036 \ 0.117) \times 10^0$	5.977 0.026 0.036	0.111
$7.76 - 8.48 (3.906 \ 0.006 \ 0.016 \ 0.054) \times 1$	$0^1 (6.581 \ 0.027 \ 0.031 \ 0.096) \times 10^0$	5.935 0.026 0.037	0.110
$8.48 - 9.26 (3.178 \ 0.005 \ 0.013 \ 0.044) \times 1$	$0^1 (5.452 \ 0.023 \ 0.026 \ 0.080) \times 10^0$	5.829 0.027 0.037	0.107
$9.26 - 10.1 (2.576 \ 0.004 \ 0.011 \ 0.035) \times 1$	$0^1 (4.529 \ 0.020 \ 0.023 \ 0.067) \times 10^0$	5.687 0.027 0.037	0.105
$10.1 - 11.0 (2.088 \ 0.004 \ 0.009 \ 0.029) \times 1$	$0^1 (3.704 \ 0.017 \ 0.019 \ 0.054) \times 10^0$	5.636 0.028 0.038	0.103
$11.0 - 12.0 (1.680 \ 0.003 \ 0.007 \ 0.023) \times 1$	$0^1 (2.989 \ 0.014 \ 0.016 \ 0.044) \times 10^0$	5.620 0.029 0.039	0.103
$12.0 - 13.0 (1.366 \ 0.003 \ 0.006 \ 0.019) \times 1$	$0^1 (2.462 \ 0.013 \ 0.014 \ 0.037) \times 10^0$	5.548 0.031 0.040	0.103
$13.0 - 14.1 (1.109 \ 0.002 \ 0.005 \ 0.016) \times 1$	$0^1 (2.033 \ 0.011 \ 0.012 \ 0.030) \times 10^0$	5.453 0.031 0.041	0.102
$14.1 - 15.3 (8.965 \ 0.019 \ 0.043 \ 0.128) \times 1$	$0^0 (1.649 \ 0.009 \ 0.010 \ 0.024) \times 10^0$	5.438 0.032 0.043	0.102
$15.3 - 16.6 (7.282 \ 0.016 \ 0.036 \ 0.105) \times 1$	$0^0 \ (1.356\ 0.008\ 0.009\ 0.021) \times 10^0$	5.370 0.032 0.045	0.102
TI 11 1: 1	<u> </u>		

TABLE SM XXVIII: Bartels Rotation 2453 (May 13, 2013 – June 8, 2013). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time} \ \sigma_{\rm syst.}$
$16.6 - 18.0 (5.844 \ 0.013 \ 0.030 \ 0.085) \times 10$	$0 (1.102 \ 0.006 \ 0.008 \ 0.017) \times 10^{-6} $	0 5.303 0.033 0.046 0.102
$18.0 - 19.5 (4.729 \ 0.011 \ 0.025 \ 0.070) \times 10$	$0 \mid (9.030 \ 0.053 \ 0.067 \ 0.140) \times 10^{-6}$	0^{-1} 5.237 0.033 0.048 0.101
$19.5 - 21.1 (3.821 \ 0.009 \ 0.021 \ 0.057) \times 10$	$0 \mid (7.278 \ 0.044 \ 0.056 \ 0.114) \times 10^{-6} \mid (7.278 \ 0.044 \ 0.056 \ 0.044 \ 0.056 \ 0.044 \ 0.056 \ 0.044 \ 0.0$	$0^{-1} 5.249 0.034 0.050 0.102$
$21.1 - 22.8 (3.099 \ 0.008 \ 0.018 \ 0.047) \times 10$	$0 \mid (6.071 \ 0.037 \ 0.048 \ 0.096) \times 10^{-1}$	$0^{-1} 5.105 0.034 0.050 0.100$
$22.8 - 24.7 (2.502 \ 0.006 \ 0.015 \ 0.038) \times 10$	$0 (4.866 \ 0.030 \ 0.039 \ 0.077) \times 10^{-6} $	$0^{-1} 5.141 0.035 0.051 0.101$
$24.7 - 26.7 (2.012 \ 0.005 \ 0.012 \ 0.031) \times 10$	$0 (4.002 \ 0.026 \ 0.033 \ 0.064) \times 10^{-6} $	$0^{-1} 5.027 0.036 0.051 0.100$
$26.7 - 28.8 (1.621 \ 0.005 \ 0.010 \ 0.025) \times 10$	$0 (3.264 \ 0.023 \ 0.028 \ 0.052) \times 10^{-6} $	$0^{-1} 4.967 \ 0.038 \ 0.052 \ 0.099$
$28.8 - 31.1 (1.321 \ 0.004 \ 0.008 \ 0.021) \times 10$	$0 (2.677 \ 0.020 \ 0.023 \ 0.044) \times 10^{-6} $	$0^{-1} 4.935 \ 0.039 \ 0.053 \ 0.100$
$31.1 - 33.5 (1.069 \ 0.003 \ 0.007 \ 0.017) \times 10$	$0 (2.201 \ 0.018 \ 0.020 \ 0.036) \times 10^{-6} $	$0^{-1} 4.855 \ 0.042 \ 0.054 \ 0.099$
$33.5 - 36.1 (8.717 \ 0.030 \ 0.059 \ 0.136) \times 10$	$^{-1} (1.800\ 0.015\ 0.016\ 0.030)\times 10$	$0^{-1} 4.844 \ 0.044 \ 0.055 \ 0.099$
$36.1 - 38.9 (7.074 \ 0.026 \ 0.049 \ 0.111) \times 10$	$^{-1} (1.457\ 0.013\ 0.014\ 0.025)\times 10$	$0^{-1} 4.855 \ 0.047 \ 0.056 \ 0.101$
$38.9 - 41.9 (5.733 \ 0.023 \ 0.040 \ 0.091) \times 10$	$^{-1}$ (1.194 0.011 0.011 0.020)×10	$0^{-1} 4.800 \ 0.050 \ 0.057 \ 0.101$
$41.9 - 45.1 (4.696 \ 0.020 \ 0.034 \ 0.075) \times 10$	$^{-1} (9.832\ 0.100\ 0.097\ 0.168)\times 10$	$0^{-2} 4.776 \ 0.053 \ 0.058 \ 0.101$
$45.1 - 48.5 (3.823 \ 0.017 \ 0.028 \ 0.062) \times 10$	$^{-1} (8.124\ 0.088\ 0.082\ 0.140)\times 10$	$ -2 4.706 \ 0.055 \ 0.059 \ 0.101$
$48.5 - 52.2 (3.131 \ 0.015 \ 0.024 \ 0.052) \times 10$	$^{-1} (6.488\ 0.075\ 0.067\ 0.113)\times 10$	$ -2 4.826 \ 0.061 \ 0.062 \ 0.104$
$52.2 - 56.1 (2.526 \ 0.013 \ 0.020 \ 0.043) \times 10$	$^{-1} (5.408 \ 0.067 \ 0.057 \ 0.095) \times 10^{-1} $	$ -2 4.670 \ 0.063 \ 0.061 \ 0.101$
$56.1 - 60.3 (2.072 \ 0.012 \ 0.016 \ 0.035) \times 10$	-1 (4.288 0.057 0.046 0.076)×10	$ -2 4.832 \ 0.070 \ 0.065 \ 0.106$

TABLE SM XXIX: Bartels Rotation 2454 (June 9, 2013 – July 5, 2013). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s}\cdot{\rm GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ σ_{time}	$\sigma_{ m syst.}$
$1.00 - 1.16 (4.599 \ 0.025 \ 0.068 \ 0.207) \times 10^{-1}$	2		_
$1.16 - 1.33 (4.751 \ 0.017 \ 0.051 \ 0.170) \times 10^{-6}$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		_
$1.33 - 1.51 (4.759 \ 0.015 \ 0.040 \ 0.137) \times 10^{-6}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.51 - 1.71 (4.595 \ 0.011 \ 0.032 \ 0.120) \times 10^{-6}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		_
$1.71 - 1.92 (4.342 \ 0.010 \ 0.026 \ 0.103) \times 10^{-6}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.92 - 2.15 (3.994 \ 0.008 \ 0.022 \ 0.086) \times 10^{-6} $	$(4.725 \ 0.032 \ 0.043 \ 0.104) \times 10^{-6}$	$8.454 \ 0.059 \ 0.090$	0.249
$2.15 - 2.40 (3.620 \ 0.007 \ 0.018 \ 0.073) \times 10^{-6}$	$(4.556 \ 0.028 \ 0.035 \ 0.088) \times 10^{-6}$	$7.945 \ 0.050 \ 0.073$	0.209
$2.40 - 2.67 (3.234 \ 0.006 \ 0.015 \ 0.061) \times 10^{-2}$	$(4.262 \ 0.024 \ 0.030 \ 0.075) \times 10^{-2}$	$7.589 \ 0.044 \ 0.064$	0.184
$2.67 - 2.97 (2.861 \ 0.005 \ 0.013 \ 0.050) \times 10^{-6}$	$(3.951 \ 0.020 \ 0.027 \ 0.066) \times 10^{-2}$	$7.242 \ 0.039 \ 0.059$	0.165
$2.97 - 3.29 (2.488 \ 0.004 \ 0.011 \ 0.042) \times 10^{-6}$	$(3.575 \ 0.017 \ 0.022 \ 0.057) \times 10^{-2}$	$6.959 \ 0.035 \ 0.053$	0.152
$3.29 - 3.64 (2.151 \ 0.004 \ 0.010 \ 0.035) \times 10^{-6}$	$(3.196 \ 0.015 \ 0.018 \ 0.050) \times 10^{-2}$	$6.732 \ 0.033 \ 0.049$	0.143
$3.64 - 4.02 (1.833 \ 0.003 \ 0.009 \ 0.029) \times 10^{-6}$	$(2.765 \ 0.012 \ 0.015 \ 0.043) \times 10^{-2}$	$\begin{vmatrix} 6.629 & 0.032 & 0.047 \end{vmatrix}$	0.138
$4.02 - 4.43 (1.552 \ 0.002 \ 0.007 \ 0.024) \times 10^{-6}$	$(2.382 \ 0.010 \ 0.012 \ 0.036) \times 10^{-2}$	$6.517 \ 0.030 \ 0.045$	0.132
$4.43 - 4.88 (1.305 \ 0.002 \ 0.006 \ 0.020) \times 10^{-6}$	$(2.044 \ 0.008 \ 0.010 \ 0.031) \times 10^{-2}$	$\begin{vmatrix} 6.386 & 0.028 & 0.042 \end{vmatrix}$	0.127
$4.88 - 5.37 (1.081 \ 0.002 \ 0.005 \ 0.016) \times 10^{-6}$	$(1.721 \ 0.007 \ 0.008 \ 0.026) \times 10^{-6}$	$6.282 \ 0.027 \ 0.039$	0.123
$5.37 - 5.90 (8.921 \ 0.013 \ 0.036 \ 0.127) \times 10^{-1}$	$1 (1.446 \ 0.006 \ 0.006 \ 0.021) \times 10^{-1} $	$6.170 \ 0.026 \ 0.037$	0.118
$5.90 - 6.47 (7.347 \ 0.011 \ 0.029 \ 0.103) \times 10^{-6}$	$1 (1.199 \ 0.005 \ 0.005 \ 0.017) \times 10^{-1} $	$6.130 \ 0.026 \ 0.035$	0.115
$6.47 - 7.09 (6.034 \ 0.009 \ 0.023 \ 0.084) \times 10^{-1}$	$1 (1.008 \ 0.004 \ 0.004 \ 0.015) \times 10^{-1} $	$\begin{bmatrix} 5.985 & 0.025 & 0.034 \end{bmatrix}$	0.112
$7.09 - 7.76 (4.909 \ 0.007 \ 0.018 \ 0.068) \times 10^{-1}$	$1 (8.276 \ 0.033 \ 0.035 \ 0.121) \times 10^{6} $	$5.931 \ 0.025 \ 0.034$	0.109
$7.76 - 8.48 (4.005 \ 0.006 \ 0.015 \ 0.055) \times 10^{-1}$	$(6.835 \ 0.027 \ 0.030 \ 0.099) \times 10^{6}$	$5.860 \ 0.025 \ 0.034$	0.107
$8.48 - 9.26 (3.251 \ 0.005 \ 0.012 \ 0.045) \times 10^{-1}$	$1 (5.626 \ 0.023 \ 0.025 \ 0.082) \times 10^{6} $	$5.779 \ 0.026 \ 0.034$	0.105
$9.26 - 10.1 (2.632 \ 0.004 \ 0.010 \ 0.036) \times 10^{-1}$	$1 (4.609 \ 0.020 \ 0.021 \ 0.067) \times 10^{6} $	$5.710 \ 0.026 \ 0.034$	0.104
$10.1 - 11.0 (2.134 \ 0.004 \ 0.008 \ 0.029) \times 10^{-1}$	$(3.766 \ 0.017 \ 0.018 \ 0.055) \times 10^{6}$	$5.667 \ 0.028 \ 0.035$	0.103
$11.0 - 12.0 (1.714 \ 0.003 \ 0.007 \ 0.023) \times 10^{-1}$	$1 (3.080 \ 0.014 \ 0.015 \ 0.045) \times 10^{6} $	$5.566 \ 0.028 \ 0.036$	0.101
$12.0 - 13.0 (1.384 \ 0.003 \ 0.006 \ 0.019) \times 10^{-1}$	$1 (2.523 \ 0.013 \ 0.013 \ 0.037) \times 10^{6} $	$5.485 \ 0.030 \ 0.037$	0.101
$13.0 - 14.1 (1.125 \ 0.002 \ 0.005 \ 0.016) \times 10^{-1}$	$1 (2.060 \ 0.011 \ 0.011 \ 0.030) \times 10^{6} $	$5.458 \ 0.030 \ 0.038$	0.101
$14.1 - 15.3 (9.121 \ 0.019 \ 0.041 \ 0.129) \times 10^{-1}$	$0 (1.698 \ 0.009 \ 0.010 \ 0.025) \times 10^{6} $	$5.373 \ 0.031 \ 0.039$	0.099
15.3 - 16.6 (7.344 0.016 0.034 0.105)×10	$0 (1.379 \ 0.008 \ 0.008 \ 0.021) \times 10^{6} $	$5.327 \ 0.032 \ 0.040$	0.100

TABLE SM XXIX: Bartels Rotation 2454 (June 9, 2013 – July 5, 2013). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ $\sigma_{\text{time }}\sigma_{\text{syst.}}$
$16.6 - 18.0 (5.906 \ 0.013 \ 0.028 \ 0.085) \times 10$	$0 (1.122 \ 0.006 \ 0.007 \ 0.017) \times 10$	$\begin{bmatrix} 5.264 & 0.032 & 0.042 & 0.099 \end{bmatrix}$
$18.0 - 19.5 (4.772 \ 0.011 \ 0.024 \ 0.070) \times 10$	$0 (9.303 \ 0.053 \ 0.062 \ 0.142) \times 10$	$^{-1}$ $ 5.130 \ 0.032 \ 0.043 \ 0.097$
$19.5 - 21.1 (3.838 \ 0.009 \ 0.020 \ 0.057) \times 10$	$0 \mid (7.504 \ 0.044 \ 0.052 \ 0.115) \times 10$	$^{-1}$ $ 5.114 \ 0.032 \ 0.044 \ 0.097$
$21.1 - 22.8 (3.124 \ 0.008 \ 0.017 \ 0.047) \times 10$	$0 (6.123 \ 0.037 \ 0.044 \ 0.095) \times 10$	$^{-1}$ $ 5.103 \ 0.033 \ 0.045 \ 0.098 $
$22.8 - 24.7 (2.503 \ 0.006 \ 0.014 \ 0.038) \times 10$	$0 (4.979 \ 0.031 \ 0.036 \ 0.077) \times 10$	$^{-1}$ $ 5.028 \ 0.033 \ 0.046 \ 0.097$
$24.7 - 26.7 (2.010 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 (4.091 \ 0.027 \ 0.031 \ 0.064) \times 10$	$^{-1}$ 4.912 0.034 0.046 0.095
$26.7 - 28.8 (1.633 \ 0.005 \ 0.010 \ 0.025) \times 10$	$0 (3.272 \ 0.023 \ 0.025 \ 0.051) \times 10$	$^{-1}$ 4.992 0.038 0.048 0.097
$28.8 - 31.1 (1.315 \ 0.004 \ 0.008 \ 0.020) \times 10$	$0 (2.746 \ 0.020 \ 0.022 \ 0.044) \times 10$	-1 4.789 0.038 0.047 0.095
$31.1 - 33.5 (1.070 \ 0.003 \ 0.007 \ 0.017) \times 10$	$0 (2.233 \ 0.018 \ 0.018 \ 0.036) \times 10$	$^{-1}$ 4.795 0.041 0.049 0.095
$33.5 - 36.1 (8.680 \ 0.030 \ 0.054 \ 0.134) \times 10$	$^{-1}$ (1.812 0.015 0.015 0.030)×10	$^{-1}$ 4.791 0.043 0.050 0.096
$36.1 - 38.9 (7.047 \ 0.026 \ 0.045 \ 0.109) \times 10$	$^{-1}$ (1.480 0.013 0.013 0.025)×10	$^{-1}$ 4.762 0.046 0.051 0.097
$38.9 - 41.9 (5.738 \ 0.023 \ 0.038 \ 0.090) \times 10$	$^{-1}$ (1.194 0.011 0.011 0.019)×10	$^{-1}$ 4.806 0.050 0.053 0.099
$41.9 - 45.1 (4.706 \ 0.020 \ 0.032 \ 0.074) \times 10$	$^{-1}$ (9.870 0.101 0.090 0.165)×10	-2 4.769 0.053 0.054 0.099
$45.1 - 48.5 (3.824 \ 0.017 \ 0.026 \ 0.061) \times 10$	$^{-1} (8.142\ 0.088\ 0.077\ 0.137)\times 10$	$-2 \mid 4.697 \mid 0.055 \mid 0.055 \mid 0.098 \mid$
$48.5 - 52.2 (3.120 \ 0.015 \ 0.022 \ 0.051) \times 10$	$^{-1}$ (6.659 0.076 0.064 0.113)×10	-2 4.685 0.058 0.056 0.099
$52.2 - 56.1 (2.537 \ 0.013 \ 0.018 \ 0.042) \times 10$	$^{-1}$ (5.340 0.066 0.053 0.092)×10	$^{-2}$ 4.750 0.064 0.058 0.101
$56.1 - 60.3 (2.084 \ 0.011 \ 0.015 \ 0.035) \times 10$	-1 (4.526 0.059 0.046 0.078)×10	-2 $ 4.604 0.065 0.058 0.099$

TABLE SM XXX: Bartels Rotation 2455 (July 6, 2013 – August 1, 2013). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (4.573 \ 0.025 \ 0.067 \ 0.205) \times 10$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		_
$1.16 - 1.33 (4.686 \ 0.017 \ 0.050 \ 0.167) \times 10$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		_
$1.33 - 1.51 (4.738 \ 0.015 \ 0.038 \ 0.136) \times 10$	2		_
$1.51 - 1.71 (4.609 \ 0.011 \ 0.031 \ 0.120) \times 10$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		_
$1.71 - 1.92 (4.364 \ 0.010 \ 0.025 \ 0.103) \times 10$	2		_
$1.92 - 2.15 (4.044\ 0.008\ 0.021\ 0.087) \times 10$	$(4.785 \ 0.032 \ 0.044 \ 0.105) \times 10^{-3}$	8.451 0.059 0.088	0.248
$2.15 - 2.40$ $(3.662 \ 0.007 \ 0.017 \ 0.073) \times 10$	$(4.554 \ 0.028 \ 0.035 \ 0.088) \times 10^{-2}$	8.040 0.052 0.072	0.211
$2.40 - 2.67 (3.274 \ 0.006 \ 0.014 \ 0.062) \times 10$	$(4.402 \ 0.024 \ 0.031 \ 0.077) \times 10^{-2}$	7.439 0.043 0.061	0.180
$2.67 - 2.97 (2.899 \ 0.005 \ 0.012 \ 0.051) \times 10$	$(4.028 \ 0.021 \ 0.027 \ 0.067) \times 10^{-2}$	7.198 0.039 0.057	0.164
$2.97 - 3.29 (2.520 \ 0.004 \ 0.011 \ 0.042) \times 10$	$(3.615 \ 0.017 \ 0.022 \ 0.058) \times 10^{-2}$	6.972 0.036 0.052	0.152
$3.29 - 3.64 (2.177 \ 0.004 \ 0.009 \ 0.035) \times 10$	$(3.208 \ 0.015 \ 0.018 \ 0.051) \times 10^{-2}$	6.786 0.033 0.048	0.144
$3.64 - 4.02 (1.859 \ 0.003 \ 0.008 \ 0.029) \times 10$	$(2.792\ 0.013\ 0.015\ 0.043)\times10^{-2}$	6.660 0.032 0.046	0.138
$4.02 - 4.43 (1.578 \ 0.002 \ 0.007 \ 0.024) \times 10$	$(2.422\ 0.010\ 0.012\ 0.037)\times10^{-2}$	6.514 0.030 0.043	0.131
$4.43 - 4.88 (1.323 \ 0.002 \ 0.006 \ 0.020) \times 10$	$(2.063 \ 0.008 \ 0.010 \ 0.031) \times 10^{-2}$	6.413 0.028 0.041	0.128
$4.88 - 5.37 (1.100 \ 0.002 \ 0.004 \ 0.016) \times 10$	$(1.747 \ 0.007 \ 0.008 \ 0.026) \times 10^{-2}$	6.297 0.027 0.038	0.123
5.37 - 5.90 (9.067 0.014 0.035 0.129)×10	$1 (1.467 \ 0.006 \ 0.006 \ 0.022) \times 10^{-1}$	6.179 0.026 0.036	0.118
$5.90 - 6.47 (7.439 \ 0.011 \ 0.027 \ 0.104) \times 10$		6.086 0.026 0.034	0.114
$6.47 - 7.09 (6.117 \ 0.009 \ 0.022 \ 0.085) \times 10$	$(1.015 \ 0.004 \ 0.004 \ 0.015) \times 10^{-1}$	6.029 0.025 0.034	0.112
$7.09 - 7.76 (4.977\ 0.008\ 0.018\ 0.069) \times 10$	$(8.406 \ 0.033 \ 0.036 \ 0.123) \times 10^{0}$	$5.920 \ 0.025 \ 0.033$	0.109
$7.76 - 8.48 (4.045 \ 0.006 \ 0.014 \ 0.056) \times 10$	$(6.931 \ 0.028 \ 0.031 \ 0.101) \times 10^{0}$	5.837 0.025 0.033	0.107
$8.48 - 9.26 (3.292\ 0.005\ 0.012\ 0.045) \times 10$		5.819 0.026 0.034	0.106
$9.26 - 10.1 (2.662 \ 0.004 \ 0.010 \ 0.036) \times 10$	$(4.652 \ 0.020 \ 0.022 \ 0.068) \times 10^{0}$	5.722 0.026 0.034	0.104
$10.1 - 11.0 (2.143 \ 0.004 \ 0.008 \ 0.029) \times 10$	$(3.802 \ 0.017 \ 0.019 \ 0.056) \times 10^{0}$	5.636 0.027 0.035	0.102
$11.0 - 12.0 (1.731 \ 0.003 \ 0.007 \ 0.024) \times 10$	$(3.110 \ 0.014 \ 0.016 \ 0.046) \times 10^{0}$	5.566 0.028 0.036	0.101
$12.0 - 13.0 (1.398 \ 0.003 \ 0.006 \ 0.019) \times 10$		$5.521 \ 0.030 \ 0.037$	0.101
$13.0 - 14.1 (1.133 \ 0.002 \ 0.005 \ 0.016) \times 10$			0.101
$14.1 - 15.3 (9.132\ 0.019\ 0.039\ 0.128) \times 10$		5.382 0.031 0.040	0.100
$15.3 - 16.6 (7.369 \ 0.016 \ 0.032 \ 0.105) \times 10$,		0.100
T 11 1: 1			

TABLE SM XXX: Bartels Rotation 2455 (July 6, 2013 – August 1, 2013). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time }} \sigma_{\text{syst.}}$
$16.6 - 18.0 (5.897 \ 0.013 \ 0.027 \ 0.085) \times 10$	$0 (1.129 \ 0.006 \ 0.008 \ 0.017) \times 10^{-6} $	$\begin{bmatrix} 5.221 & 0.032 & 0.042 & 0.099 \end{bmatrix}$
$18.0 - 19.5 (4.758 \ 0.011 \ 0.022 \ 0.070) \times 10$	$0 (9.192 \ 0.053 \ 0.064 \ 0.141) \times 10$	-1 5.176 0.032 0.044 0.098
$19.5 - 21.1 (3.845 \ 0.009 \ 0.018 \ 0.057) \times 10$	$0 \mid (7.414 \ 0.044 \ 0.054 \ 0.115) \times 10$	-1 5.186 0.033 0.046 0.099
$21.1 - 22.8 (3.118 \ 0.008 \ 0.016 \ 0.047) \times 10$	$0 (6.082 \ 0.037 \ 0.045 \ 0.095) \times 10$	-1 5.127 0.034 0.046 0.099
$22.8 - 24.7 (2.501 \ 0.006 \ 0.013 \ 0.037) \times 10$	$0 (4.959 \ 0.031 \ 0.038 \ 0.078) \times 10$	-1 5.042 0.034 0.046 0.098
$24.7 - 26.7 (2.011 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 (4.059 \ 0.027 \ 0.032 \ 0.064) \times 10$	-1 4.955 0.035 0.047 0.096
$26.7 - 28.8 (1.628 \ 0.005 \ 0.009 \ 0.025) \times 10$	$0 (3.276 \ 0.023 \ 0.026 \ 0.052) \times 10$	-1 4.971 0.038 0.048 0.097
$28.8 - 31.1 (1.312 \ 0.004 \ 0.007 \ 0.020) \times 10$	$0 (2.677 \ 0.020 \ 0.022 \ 0.043) \times 10$	-1 4.900 0.039 0.049 0.097
$31.1 - 33.5 (1.069 \ 0.003 \ 0.006 \ 0.017) \times 10$	$0 (2.183 \ 0.017 \ 0.018 \ 0.035) \times 10^{-6} $	-1 4.895 0.042 0.050 0.097
$33.5 - 36.1 (8.705 \ 0.030 \ 0.051 \ 0.133) \times 10$	$^{-1}$ (1.799 0.015 0.016 0.030)×10	-1 4.839 0.044 0.051 0.097
$36.1 - 38.9 (7.055 \ 0.026 \ 0.043 \ 0.109) \times 10$	$^{-1}$ (1.489 0.013 0.013 0.025)×10	-1 4.738 0.046 0.051 0.096
$38.9 - 41.9 (5.744 \ 0.023 \ 0.036 \ 0.089) \times 10$	$^{-1}$ (1.204 0.012 0.011 0.020)×10	-1 4.772 0.049 0.053 0.098
$41.9 - 45.1 (4.689 \ 0.020 \ 0.030 \ 0.073) \times 10$	$^{-1} (9.949\ 0.101\ 0.093\ 0.167)\times 10$	-2 4.713 0.052 0.053 0.097
$45.1 - 48.5 (3.809 \ 0.017 \ 0.025 \ 0.060) \times 10$	$^{-1} (8.001\ 0.088\ 0.077\ 0.136)\times 10$	$-2 4.760 \ 0.056 \ 0.055 \ 0.099$
$48.5 - 52.2 (3.101 \ 0.015 \ 0.021 \ 0.050) \times 10$	$^{-1}$ (6.554 0.076 0.064 0.112)×10	-2 4.730 0.059 0.056 0.099
$52.2 - 56.1 (2.536 \ 0.013 \ 0.017 \ 0.042) \times 10$	$^{-1}$ (5.463 0.067 0.055 0.094)×10	$-2 \mid 4.642 \mid 0.062 \mid 0.056 \mid 0.098$
$56.1 - 60.3 (2.071 \ 0.011 \ 0.014 \ 0.034) \times 10$	-1 (4.515 0.059 0.046 0.079)×10	$-2 4.586 \ 0.065 \ 0.057 \ 0.098$

TABLE SM XXXI: Bartels Rotation 2456 (August 2, 2013 – August 28, 2013). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ σ_{time}	$\sigma_{ m syst.}$
$1.00 - 1.16$ $(4.510 \ 0.024 \ 0.067 \ 0.203) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.16 - 1.33 (4.694 \ 0.017 \ 0.051 \ 0.168) \times 10$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		_
$1.33 - 1.51 (4.690 \ 0.015 \ 0.039 \ 0.135) \times 10$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		_
$1.51 - 1.71 (4.593 \ 0.011 \ 0.031 \ 0.120) \times 10$	2		_
$1.71 - 1.92 (4.355 \ 0.010 \ 0.025 \ 0.103) \times 10$	2		_
$1.92 - 2.15 (4.063\ 0.008\ 0.021\ 0.088) \times 10$	$(4.744 \ 0.031 \ 0.049 \ 0.107) \times 10^{-2}$	$8.566 \ 0.059 \ 0.098$	0.255
2.15 - 2.40 (3.682 0.007 0.018 0.074)×10	$(4.610 \ 0.027 \ 0.040 \ 0.091) \times 10^{-2}$	$7.987 \ 0.050 \ 0.080$	0.213
$2.40 - 2.67 (3.305 \ 0.006 \ 0.015 \ 0.063) \times 10$	$(4.342 \ 0.024 \ 0.035 \ 0.078) \times 10^{-2}$	0^1 7.612 0.043 0.070	0.187
$2.67 - 2.97 (2.914 \ 0.005 \ 0.013 \ 0.051) \times 10$	$(4.027 \ 0.020 \ 0.031 \ 0.069) \times 10^{-2}$	0^1 7.235 0.038 0.064	0.167
$2.97 - 3.29 (2.542\ 0.004\ 0.011\ 0.042) \times 10$	$(3.628 \ 0.017 \ 0.026 \ 0.059) \times 10^{-2}$	0^1 7.006 0.035 0.058	0.155
$3.29 - 3.64 (2.197\ 0.004\ 0.010\ 0.035) \times 10$	$(3.235 \ 0.015 \ 0.021 \ 0.052) \times 10^{-2}$	0^1 6.793 0.033 0.054	0.146
$3.64 - 4.02 (1.876 \ 0.003 \ 0.009 \ 0.030) \times 10$		0^1 $6.612 \ 0.031 \ 0.050$	0.139
$4.02 - 4.43 (1.590\ 0.002\ 0.007\ 0.025) \times 10$	$(2.422\ 0.010\ 0.014\ 0.038)\times 10^{-2}$	0^1 6.565 0.030 0.048	0.134
$4.43 - 4.88 (1.334 \ 0.002 \ 0.006 \ 0.020) \times 10$,		0.129
$4.88 - 5.37 (1.108 \ 0.002 \ 0.005 \ 0.016) \times 10$	$(1.769 \ 0.007 \ 0.009 \ 0.027) \times 10^{-2}$	0^1 6.263 0.026 0.042	0.124
$5.37 - 5.90 (9.116\ 0.014\ 0.036\ 0.130) \times 10$,		0.119
$5.90 - 6.47 (7.505 \ 0.011 \ 0.029 \ 0.105) \times 10$	$(1.239 \ 0.005 \ 0.006 \ 0.018) \times 10^{-1}$	0^{1} 6.058 0.025 0.038	0.115
$6.47 - 7.09 (6.140 \ 0.009 \ 0.023 \ 0.086) \times 10$,		0.114
$7.09 - 7.76 (5.012\ 0.007\ 0.018\ 0.069) \times 10$		0^0 5.895 0.025 0.037	0.110
$7.76 - 8.48 (4.081 \ 0.006 \ 0.015 \ 0.056) \times 10$	`		0.108
8.48 - 9.26 (3.312 0.005 0.012 0.045)×10			0.107
$9.26 - 10.1 (2.673 \ 0.004 \ 0.010 \ 0.036) \times 10$,		0.105
$10.1 - 11.0 (2.159 \ 0.004 \ 0.008 \ 0.029) \times 10$,		0.104
$11.0 - 12.0 (1.742 \ 0.003 \ 0.007 \ 0.024) \times 10$,		0.103
$12.0 - 13.0 (1.410 \ 0.003 \ 0.006 \ 0.019) \times 10$,		0.102
$13.0 - 14.1 (1.144 \ 0.002 \ 0.005 \ 0.016) \times 10$			0.103
$14.1 - 15.3 (9.189 \ 0.019 \ 0.041 \ 0.130) \times 10$,		
$15.3 - 16.6 (7.446 \ 0.016 \ 0.034 \ 0.106) \times 10$,		
	/		

TABLE SM XXXI: Bartels Rotation 2456 (August 2, 2013 – August 28, 2013). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \ \sigma_{\text{time }} \ \sigma_{\text{syst.}}$
$16.6 - 18.0 (5.987 \ 0.013 \ 0.028 \ 0.087) \times 10$	$0 (1.143 \ 0.006 \ 0.009 \ 0.018) \times$	$< 10^0 $ $ 5.236 \ 0.032 \ 0.049 \ 0.102 $
$18.0 - 19.5 (4.833 \ 0.011 \ 0.024 \ 0.071) \times 10$	0 $(9.319 \ 0.053 \ 0.079 \ 0.150) \times$	$\langle 10^{-1} 5.186 \ 0.032 \ 0.051 \ 0.102$
$19.5 - 21.1 (3.900 \ 0.009 \ 0.020 \ 0.058) \times 10$	0 $(7.592 \ 0.045 \ 0.067 \ 0.124) \times$	$\langle 10^{-1} 5.136 \ 0.032 \ 0.052 \ 0.102$
$21.1 - 22.8 (3.122 \ 0.008 \ 0.016 \ 0.047) \times 10$	0 $(6.124 \ 0.037 \ 0.055 \ 0.101) \times$	$\langle 10^{-1} 5.098 \ 0.033 \ 0.053 \ 0.102$
$22.8 - 24.7 (2.527 \ 0.006 \ 0.013 \ 0.038) \times 10$	0 $(5.056 \ 0.031 \ 0.046 \ 0.083) \times$	$\langle 10^{-1} 4.997 \ 0.033 \ 0.053 \ 0.100 \rangle$
$24.7 - 26.7 (2.035 \ 0.005 \ 0.011 \ 0.031) \times 10$	0 $(4.095 \ 0.027 \ 0.038 \ 0.068) \times$	$\langle 10^{-1} 4.969 \ 0.035 \ 0.054 \ 0.100$
$26.7 - 28.8 (1.632 \ 0.005 \ 0.009 \ 0.025) \times 10$	0 $(3.355 \ 0.023 \ 0.032 \ 0.056) \times$	$\langle 10^{-1} 4.865 \ 0.037 \ 0.054 \ 0.099$
$28.8 - 31.1 (1.327 \ 0.004 \ 0.008 \ 0.020) \times 10$	0 $(2.737 \ 0.020 \ 0.027 \ 0.046) \times$	$(10^{-1} 4.848 \ 0.038 \ 0.055 \ 0.099)$
$31.1 - 33.5 (1.073 \ 0.003 \ 0.006 \ 0.017) \times 10$	0 (2.251 0.018 0.022 0.038)×	$\langle 10^{-1} 4.767 \ 0.041 \ 0.055 \ 0.098$
$33.5 - 36.1 (8.694 \ 0.030 \ 0.053 \ 0.134) \times 10$	$^{-1}$ (1.809 0.015 0.018 0.032)×	$\langle 10^{-1} 4.805 \ 0.044 \ 0.057 \ 0.100 \rangle$
$36.1 - 38.9 (7.083 \ 0.026 \ 0.045 \ 0.110) \times 10$	$^{-1}$ (1.484 0.013 0.015 0.026)×	$\langle 10^{-1} 4.773 \ 0.046 \ 0.058 \ 0.101$
$38.9 - 41.9 (5.721 \ 0.023 \ 0.037 \ 0.089) \times 10$	$^{-1}$ (1.229 0.012 0.013 0.021)×	$\langle 10^{-1} 4.656 \ 0.048 \ 0.058 \ 0.099$
$41.9 - 45.1 (4.699 \ 0.020 \ 0.031 \ 0.074) \times 10$	$^{-1}$ (1.000 0.010 0.011 0.018)×	$\langle 10^{-1} 4.699 \ 0.052 \ 0.060 \ 0.101$
$45.1 - 48.5 (3.821 \ 0.017 \ 0.026 \ 0.061) \times 10$	$^{-1}$ (8.197 0.089 0.091 0.146)×	$\langle 10^{-2} 4.662 \ 0.055 \ 0.060 \ 0.101$
$48.5 - 52.2 (3.130 \ 0.015 \ 0.022 \ 0.051) \times 10$	$^{-1}$ (6.746 0.077 0.076 0.122)×	$(10^{-2} 4.640 \ 0.058 \ 0.061 \ 0.101)$
$52.2 - 56.1 (2.556 \ 0.013 \ 0.018 \ 0.042) \times 10$	$^{-1}$ (5.631 0.069 0.065 0.103)×	$(10^{-2} 4.538 \ 0.060 \ 0.061 \ 0.100)$
$56.1 - 60.3 (2.097 \ 0.012 \ 0.015 \ 0.035) \times 10^{-1}$	$^{-1}$ (4.340 0.058 0.051 0.080)×	$(10^{-2} 4.831 \ 0.070 \ 0.066 \ 0.107)$

TABLE SM XXXII: Bartels Rotation 2457 (August 29, 2013 – September 24, 2013). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p	$\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m s}$	syst.	Φ_{He} σ_{s}	tat. $\sigma_{ m ti}$	$_{ m ime}$ $\sigma_{ m s}$	syst.	p/	He $\sigma_{\rm s}$	tat. $\sigma_{ m t}$	ime		$\sigma_{ m syst.}$
1.00 - 1.16 (4.	125 0.025 0.066	$0.187) \times 10^2$	_	_	_	_		_	_	_	_	
1.16 - 1.33 (4.	376 0.017 0.051	$0.158) \times 10^2$	_	_	_	_		_	_	_	_	
1.33 - 1.51 (4.	386 0.015 0.039	$0.127) \times 10^2$	_	_	_	_		_	_	_	_	
1.51 - 1.71 (4.	345 0.011 0.032	$0.114) \times 10^2$	_	_	_	_		_	_	_	_	
1.71 - 1.92 (4.	124 0.010 0.026	$0.098) \times 10^2$	_	_	_	_		_	_	_	_	
1.92 - 2.15 (3.	861 0.008 0.021	$0.084) \times 10^2$	(4.534)	0.032	0.042	$0.100) \times 1$	0^{1}	8.516	0.063	0.093	0.251	
2.15 - 2.40 (3.	543 0.007 0.018	$0.071) \times 10^2$	(4.435)	0.028	0.035	$0.086) \times 1$	0^{1}	7.990	0.053	0.075	0.211	
2.40 - 2.67 (3.	194 0.006 0.015	$0.061) \times 10^2$	(4.205)	0.024	0.030	$0.074) \times 1$	0^{1}	7.596	0.046	0.066	0.185	
2.67 - 2.97 (2.	827 0.005 0.013	$0.050) \times 10^2$	(3.884)	0.021	0.027	$0.065) \times 1$	0^{1}	7.279	0.041	0.061	0.167	
2.97 - 3.29 (2.	487 0.004 0.011	$0.042)\times10^{2}$	(3.538)	0.018	0.023	$0.057) \times 1$	0^{1}	7.030	0.037	0.055	0.154	
3.29 - 3.64 (2.	157 0.004 0.010	$0.035) \times 10^2$	(3.151)	0.015	0.019	$0.050) \times 1$	0^{1}	6.847	0.035	0.051	0.146	
3.64 - 4.02 (1.	847 0.003 0.009	$0.029) \times 10^2$	(2.784)	0.013	0.015	$0.043) \times 1$	0^{1}	6.634	0.033	0.048	0.138	
4.02 - 4.43 (1.	571 0.003 0.007	$0.024) \times 10^2$	(2.400)	0.011	0.012	$0.037) \times 1$	0^{1}	6.547	0.031	0.046	0.133	
4.43 - 4.88 (1.	323 0.002 0.006	$0.020)\times10^{2}$	(2.058)	0.009	0.010	$0.031) \times 1$	0^{1}	6.432	0.029	0.044	0.129	
4.88 - 5.37 (1.	104 0.002 0.005	$0.016) \times 10^2$	(1.753)	0.007	0.008	$0.026) \times 1$	0^{1}	6.294	0.028	0.040	0.124	
5.37 - 5.90 (9.	116 0.014 0.037	$0.130) \times 10^{1}$	(1.473)	0.006	0.007	$0.022) \times 1$	0^{1}	6.187	0.027	0.038	0.119	
5.90 - 6.47 (7.	515 0.012 0.030	$0.106) \times 10^{1}$	(1.242)	0.005	0.005	$0.018) \times 1$	0^{1}	6.049	0.026	0.036	0.114	
6.47 - 7.09 (6.	173 0.009 0.024	$0.086) \times 10^{1}$	(1.019)	0.004	0.005	$0.015) \times 1$	0^{1}	6.060	0.026	0.036	0.113	
7.09 - 7.76 (5.	043 0.008 0.019	$0.070) \times 10^{1}$	(8.380	0.034	0.037	$0.123) \times 1$	0^{0}	6.018	0.026	0.035	0.111	
7.76 - 8.48 (4.	098 0.006 0.015	$0.057) \times 10^{1}$	(7.027)	0.029	0.032	$0.102) \times 1$	0^{0}	5.831	0.026	0.035	0.107	
8.48 - 9.26 (3.	328 0.005 0.013	$0.046) \times 10^{1}$	(5.709)	0.024	0.027	$0.084) \times 1$	0^{0}	5.829	0.026	0.035	0.107	
9.26 - 10.1 (2.	701 0.005 0.010	$0.037) \times 10^{1}$	(4.731)	0.021	0.023	$0.070) \times 1$	0^{0}	5.710	0.027	0.036	0.105	
10.1 - 11.0 (2.	185 0.004 0.009	$0.030) \times 10^{1}$	(3.844)	0.018	0.020	$0.056) \times 1$	0^{0}	5.683	0.028	0.037	0.104	
11.0 - 12.0 (1.	757 0.003 0.007	$0.024) \times 10^{1}$	(3.127)	0.015	0.017	$0.046) \times 1$	0^{0}	5.620	0.029	0.038	0.103	
12.0 - 13.0 (1.	413 0.003 0.006	$0.019) \times 10^{1}$	(2.559)	0.013	0.014	$0.038) \times 1$	0^{0}	5.520	0.031	0.039	0.102	
13.0 - 14.1 (1.	146 0.002 0.005	$0.016) \times 10^{1}$	(2.105)	0.011	0.012	$0.031) \times 1$	0^{0}	5.442	0.031	0.040	0.101	
14.1 - 15.3 (9.	268 0.020 0.042	$0.131)\times10^{0}$	(1.719)	0.009	0.011	$0.025) \times 1$	0^{0}	5.392	0.032	0.041	0.101	
15.3 - 16.6 (7.	456 0.017 0.035	$0.107) \times 10^{0}$	(1.387)	0.008	0.009	$0.021) \times 1$	0^{0}	5.376	0.033	0.043	0.101	
m 11	•		•					•				

.

TABLE SM XXXII: Bartels Rotation 2457 (August 29, 2013 – September 24, 2013). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$
$16.6 - 18.0 (6.014 \ 0.014 \ 0.029 \ 0.087) \times 10$	$0 (1.139 \ 0.007 \ 0.008 \ 0.018) \times 10^{0}$	$5.280 \ 0.033 \ 0.044 \ 0.101$
$18.0 - 19.5 (4.852 \ 0.011 \ 0.024 \ 0.071) \times 10$	$0 (9.244 \ 0.055 \ 0.067 \ 0.143) \times 10^{-6} $	$^{-1}$ $5.249 \ 0.033 \ 0.046 \ 0.101$
$19.5 - 21.1 (3.904 \ 0.009 \ 0.020 \ 0.058) \times 10$	$0 \mid (7.441 \ 0.045 \ 0.057 \ 0.116) \times 10^{-6}$	$^{-1}$ $ 5.247 \ 0.034 \ 0.048 \ 0.101$
$21.1 - 22.8 (3.143 \ 0.008 \ 0.017 \ 0.047) \times 10$	$0 (6.125 \ 0.038 \ 0.047 \ 0.097) \times 10^{-6} $	$^{-1}$ $5.132 \ 0.034 \ 0.048 \ 0.100$
$22.8 - 24.7 (2.534 \ 0.006 \ 0.014 \ 0.038) \times 10$	$0 (4.999 \ 0.032 \ 0.040 \ 0.079) \times 10^{-3}$	$^{-1}$ 5.069 0.035 0.049 0.099
$24.7 - 26.7 (2.042 \ 0.006 \ 0.012 \ 0.031) \times 10$	$0 (4.060 \ 0.027 \ 0.033 \ 0.064) \times 10^{-6} $	$^{-1}$ $ 5.029 \ 0.036 \ 0.050 \ 0.099$
$26.7 - 28.8 (1.651 \ 0.005 \ 0.010 \ 0.025) \times 10$	$0 (3.319 \ 0.024 \ 0.028 \ 0.053) \times 10^{-6} $	$^{-1}$ $ 4.976 \ 0.038 \ 0.051 \ 0.098$
$28.8 - 31.1 (1.337 \ 0.004 \ 0.008 \ 0.021) \times 10$	$0 (2.698 \ 0.020 \ 0.023 \ 0.044) \times 10^{-6} $	$^{-1}$ $ 4.955 \ 0.040 \ 0.052 \ 0.099 $
$31.1 - 33.5 (1.077 \ 0.004 \ 0.007 \ 0.017) \times 10$	$0 (2.234 \ 0.018 \ 0.020 \ 0.037) \times 10^{-6} $	$^{-1}$ 4.821 0.042 0.052 0.097
$33.5 - 36.1 (8.763 \ 0.031 \ 0.055 \ 0.136) \times 10$	$^{-1}$ (1.816 0.016 0.016 0.030)×10	$^{-1}$ $ 4.826 \ 0.045 \ 0.053 \ 0.098$
$36.1 - 38.9 (7.115 \ 0.027 \ 0.046 \ 0.111) \times 10$	$^{-1}$ (1.478 0.014 0.014 0.025)×10	$^{-1}$ 4.815 0.048 0.054 0.099
$38.9 - 41.9 (5.775 \ 0.023 \ 0.038 \ 0.090) \times 10$	$^{-1}$ (1.216 0.012 0.012 0.020)×10	$^{-1}$ 4.751 0.050 0.055 0.099
$41.9 - 45.1 (4.721 \ 0.020 \ 0.032 \ 0.074) \times 10$	$^{-1}$ (9.918 0.104 0.097 0.169)×10	$^{-2}$ 4.760 0.054 0.057 0.100
$45.1 - 48.5 (3.821 \ 0.018 \ 0.027 \ 0.061) \times 10$	$^{-1}$ (8.317 0.092 0.083 0.143)×10	$-2 \mid 4.594 \mid 0.055 \mid 0.056 \mid 0.098 \mid$
$48.5 - 52.2 (3.158 \ 0.015 \ 0.022 \ 0.051) \times 10$	$^{-1}$ (6.599 0.078 0.068 0.115)×10	$^{-2}$ 4.786 0.061 0.060 0.102
$52.2 - 56.1 (2.553 \ 0.014 \ 0.019 \ 0.043) \times 10$	$^{-1}$ (5.395 0.068 0.057 0.095)×10	$-2 \mid 4.731 \mid 0.065 \mid 0.060 \mid 0.102$
$56.1 - 60.3 (2.091 \ 0.012 \ 0.016 \ 0.035) \times 10$	$^{-1}$ (4.400 0.059 0.047 0.078)×10	$-2 \mid 4.752 \mid 0.070 \mid 0.062 \mid 0.103 \mid$

TABLE SM XXXIII: Bartels Rotation 2458 (September 25, 2013 – October 21, 2013). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr\cdot s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ $\sigma_{\mathrm{stat.}}$	$_{ m time}$ $\sigma_{ m sy}$	yst. p	/He $\sigma_{\rm st}$	$t_{ m at.}$ $\sigma_{ m ti}$	me		$\sigma_{ m syst.}$
$1.00 - 1.16 (4.227 \ 0.025 \ 0.066 \ 0.191) \times 10^{2}$		_	_	_	_	-	_	
$1.16 - 1.33 (4.394 \ 0.017 \ 0.050 \ 0.158) \times 10^{2}$		_	_	_	_	_	_	
$1.33 - 1.51 (4.483 \ 0.015 \ 0.039 \ 0.130) \times 10^2$		_	_	_	_	_	_	
$1.51 - 1.71 (4.451 \ 0.011 \ 0.032 \ 0.117) \times 10^2$		_	_	_		-	_	
$1.71 - 1.92 (4.262 \ 0.010 \ 0.026 \ 0.101) \times 10^2$		_	_	_		-	_	
$1.92 - 2.15 (3.978 \ 0.008 \ 0.022 \ 0.086) \times 10^{2}$	(4.648 0.032	0.043	$0.103) \times 10^{1}$	8.559	0.061	0.093	0.252	
$2.15 - 2.40 (3.654 \ 0.007 \ 0.018 \ 0.074) \times 10^{2}$	$(4.570 \ 0.028$	8 0.036	$0.088) \times 10^{1}$	7.995	0.051	0.074	0.211	
$2.40 - 2.67 (3.311 \ 0.006 \ 0.015 \ 0.063) \times 10^{2}$	$(4.362 \ 0.024)$	0.031	$0.077) \times 10^{1}$	7.590	0.044	0.064	0.184	
$2.67 - 2.97 (2.945 \ 0.005 \ 0.013 \ 0.052) \times 10^{2}$	(4.079 0.021	0.028	$0.068) \times 10^{1}$	7.221	0.039	0.059	0.165	
$2.97 - 3.29 (2.581 \ 0.004 \ 0.011 \ 0.043) \times 10^{2}$	$(3.751 \ 0.018$	0.024	$0.060) \times 10^{1}$	6.881	0.035	0.053	0.151	
$3.29 - 3.64 (2.241 \ 0.004 \ 0.010 \ 0.036) \times 10^{2}$	$(3.310 \ 0.015)$	0.019	$0.052) \times 10^{1}$	6.768	0.033	0.050	0.144	
$3.64 - 4.02 (1.916 \ 0.003 \ 0.009 \ 0.030) \times 10^{2}$	$(2.886 \ 0.013$	0.015	$0.045) \times 10^{1}$	6.638	0.032	0.047	0.138	
$4.02 - 4.43 (1.633 \ 0.003 \ 0.007 \ 0.025) \times 10^{2}$	$(2.484 \ 0.011$	0.013	$0.038) \times 10^{1}$	6.573	0.030	0.045	0.133	
$4.43 - 4.88 (1.375 \ 0.002 \ 0.006 \ 0.021) \times 10^{2}$	$(2.142 \ 0.009)$	0.010	$0.032) \times 10^{1}$	6.419	0.028	0.043	0.128	
$4.88 - 5.37 (1.141 \ 0.002 \ 0.005 \ 0.016) \times 10^{2}$	$(1.806 \ 0.007)$,	6.319	0.027	0.040	0.124	
$5.37 - 5.90 (9.413 \ 0.014 \ 0.038 \ 0.134) \times 10^{1}$	(1.524 0.006		,	6.177	0.026	0.037	0.118	
$5.90 - 6.47 (7.748 \ 0.012 \ 0.030 \ 0.109) \times 10^{1}$	$(1.265 \ 0.005)$,	6.124	0.026	0.035	0.115	
$6.47 - 7.09 (6.345 \ 0.009 \ 0.024 \ 0.089) \times 10^{1}$	(1.060 0.004		,	5.985	0.025	0.034	0.112	
$7.09 - 7.76 (5.173 \ 0.008 \ 0.019 \ 0.072) \times 10^{1}$	(8.729 0.034		,	5.926	0.025	0.034	0.109	
$7.76 - 8.48 (4.204 \ 0.006 \ 0.016 \ 0.058) \times 10^{1}$	$(7.167 \ 0.029)$		/	5.866	0.025	0.034	0.108	
$8.48 - 9.26 (3.405 \ 0.005 \ 0.013 \ 0.047) \times 10^{1}$	$(5.864 \ 0.024)$,	5.807	0.026	0.034	0.106	
$9.26 - 10.1 (2.751 \ 0.005 \ 0.011 \ 0.037) \times 10^{1}$	$(4.797 \ 0.021$	0.023	$0.070) \times 10^0$	5.734	0.027	0.035	0.105	
$10.1 - 11.0 (2.219 \ 0.004 \ 0.009 \ 0.030) \times 10^{1}$	$(3.953 \ 0.018)$,	5.614	0.027	0.035	0.102	
$11.0 - 12.0 (1.781 \ 0.003 \ 0.007 \ 0.024) \times 10^{1}$	$(3.173 \ 0.015)$,	5.614	0.028	0.037	0.102	
$12.0 - 13.0 (1.434 \ 0.003 \ 0.006 \ 0.020) \times 10^{1}$	$(2.611 \ 0.013$,		0.030		0.101	
$13.0 - 14.1 (1.163 \ 0.002 \ 0.005 \ 0.016) \times 10^{1}$	$(2.121 \ 0.011$,	5.485	0.031	0.039	0.102	
$14.1 - 15.3 (9.376 \ 0.020 \ 0.042 \ 0.133) \times 10^{0}$	$(1.727 \ 0.009)$				0.031		0.101	
$15.3 - 16.6 (7.538 \ 0.017 \ 0.035 \ 0.108) \times 10^{0}$	(1.403 0.008	3 0.009	$0.021) \times 10^{0}$	5.373	0.032	0.042	0.101	

TABLE SM XXXIII: Bartels Rotation 2458 (September 25, 2013 – October 21, 2013). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time}} \sigma_{\text{syst.}}$
$16.6 - 18.0 (6.045 \ 0.014 \ 0.029 \ 0.087) \times 10$	$0 (1.145 \ 0.007 \ 0.008 \ 0.018) \times 10^{-1}$	0^0 5.278 0.032 0.043 0.100
$18.0 - 19.5 (4.885 \ 0.011 \ 0.024 \ 0.072) \times 10$	$0 (9.311 \ 0.054 \ 0.064 \ 0.143) \times 10^{-6}$	$0^{-1} 5.246 0.033 0.044 0.100$
$19.5 - 21.1 (3.932 \ 0.009 \ 0.020 \ 0.059) \times 10$	$0 (7.593 \ 0.045 \ 0.055 \ 0.117) \times 10^{-6}$	$0^{-1} 5.178 0.033 0.046 0.099$
$21.1 - 22.8 (3.162 \ 0.008 \ 0.017 \ 0.048) \times 10$	$0 (6.181 \ 0.038 \ 0.046 \ 0.096) \times 10^{-6}$	$0^{-1} 5.115 0.034 0.046 0.099$
$22.8 - 24.7 (2.554 \ 0.006 \ 0.014 \ 0.039) \times 10$	$0 (5.000 \ 0.031 \ 0.038 \ 0.078) \times 10^{-6}$	$0^{-1} 5.108 0.034 0.047 0.099$
$24.7 - 26.7 (2.045 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 (4.030 \ 0.027 \ 0.031 \ 0.063) \times 10^{-6}$	$0^{-1} 5.076 \ 0.036 \ 0.048 \ 0.099$
$26.7 - 28.8 (1.654 \ 0.005 \ 0.010 \ 0.025) \times 10$	$0 (3.319 \ 0.023 \ 0.026 \ 0.052) \times 10^{-6}$	$0^{-1} \begin{vmatrix} 4.985 & 0.038 & 0.049 & 0.098 \end{vmatrix}$
$28.8 - 31.1 (1.337 \ 0.004 \ 0.008 \ 0.021) \times 10$	$0 (2.686 \ 0.020 \ 0.022 \ 0.043) \times 10^{-6}$	$0^{-1} \begin{vmatrix} 4.976 & 0.040 & 0.050 & 0.099 \end{vmatrix}$
$31.1 - 33.5 (1.082 \ 0.004 \ 0.007 \ 0.017) \times 10$	$0 (2.219 \ 0.018 \ 0.019 \ 0.036) \times 10^{-1}$	$0^{-1} \begin{vmatrix} 4.876 & 0.042 & 0.051 & 0.097 \end{vmatrix}$
$33.5 - 36.1 (8.749 \ 0.031 \ 0.055 \ 0.135) \times 10$	$^{-1}$ (1.820 0.015 0.016 0.030)×1	$0^{-1} \begin{vmatrix} 4.808 & 0.044 & 0.051 & 0.097 \end{vmatrix}$
$36.1 - 38.9 (7.132 \ 0.027 \ 0.046 \ 0.111) \times 10$	$^{-1}$ (1.457 0.013 0.013 0.024)×1	$0^{-1} \begin{vmatrix} 4.895 & 0.048 & 0.053 & 0.100 \end{vmatrix}$
$38.9 - 41.9 (5.757 \ 0.023 \ 0.038 \ 0.090) \times 10$	$^{-1}$ (1.206 0.012 0.011 0.020)×1	$0^{-1} \begin{vmatrix} 4.775 & 0.050 & 0.054 & 0.098 \end{vmatrix}$
$41.9 - 45.1 (4.722 \ 0.020 \ 0.032 \ 0.074) \times 10$	$^{-1}$ (9.833 0.101 0.092 0.165)×1	$0^{-2} 4.802 \ 0.054 \ 0.055 \ 0.100$
$45.1 - 48.5 (3.874 \ 0.018 \ 0.027 \ 0.062) \times 10$	$^{-1}$ (7.970 0.088 0.076 0.135)×1	$0^{-2} 4.861 \ 0.058 \ 0.057 \ 0.102$
$48.5 - 52.2 (3.094 \ 0.015 \ 0.022 \ 0.050) \times 10$	$^{-1}$ (6.459 0.076 0.063 0.111)×1	$0^{-2} 4.790 \ 0.061 \ 0.058 \ 0.101$
$52.2 - 56.1 (2.532 \ 0.013 \ 0.018 \ 0.042) \times 10$	$^{-1}$ (5.348 0.067 0.054 0.093)×1	$0^{-2} 4.734 \ 0.064 \ 0.059 \ 0.101$
$56.1 - 60.3 (2.088 \ 0.012 \ 0.015 \ 0.035) \times 10$	$^{-1}$ (4.455 0.059 0.046 0.078)×1	$0^{-2} 4.688 \ 0.067 \ 0.059 \ 0.101$

TABLE SM XXXIV: Bartels Rotation 2459 (October 22, 2013 – November 17, 2013). Days from October 22 to October 24, 2013 are not included because AMS was performing detector studies in that interval. The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot sr \cdot s \cdot GV]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m sta}$	$_{ m at.}$ $\sigma_{ m tim}$	$\sigma_{ m s}$	yst.	$p/\text{He }\sigma$	stat. $\sigma_{\rm t}$	ime		$\sigma_{ m syst.}$
$1.00 - 1.16 (4.149\ 0.027\ 0.072\ 0.190) \times 10$	-	_	_	_		_	_	_	
$1.16 - 1.33 (4.362 \ 0.018 \ 0.054 \ 0.158) \times 10^{-6}$	-	_	_	_	_	_	_	_	
$1.33 - 1.51 (4.431 \ 0.016 \ 0.042 \ 0.129) \times 10^{-1}$? _	_	_	_	_	_	_	_	
$1.51 - 1.71 (4.407 \ 0.012 \ 0.034 \ 0.116) \times 10^{-1}$	2 _	_	_	_	-	_	_	_	
$1.71 - 1.92 (4.247 \ 0.010 \ 0.028 \ 0.101) \times 10^{-6}$	2 _	_	_	_		_	_	_	
$1.92 - 2.15 (3.980 \ 0.009 \ 0.023 \ 0.087) \times 10^{-1}$	(4.679)	0.034 (0.046	$0.104) \times 10$	8.507	0.064	0.097	0.253	
$2.15 - 2.40 (3.669 \ 0.008 \ 0.020 \ 0.074) \times 10^{-6}$	(4.648)	0.030 (0.039	$0.091) \times 10$	1 7.894	0.054	0.078	0.210	
$2.40 - 2.67 (3.305 \ 0.007 \ 0.016 \ 0.063) \times 10^{-1}$	(4.352)	0.026 (0.033	$0.077) \times 10$	$\begin{vmatrix} 1 & 7.595 \end{vmatrix}$	0.048	0.069	0.186	
$2.67 - 2.97 (2.947 \ 0.006 \ 0.014 \ 0.052) \times 10^{-6}$	(4.071)	0.022 (0.030	$0.069) \times 10$	1 7.238	0.042	0.063	0.167	
$2.97 - 3.29 (2.591 \ 0.005 \ 0.012 \ 0.043) \times 10^{-6}$	(3.696)	0.019 (0.025	$0.060) \times 10$	1 7.009	0.038	0.058	0.155	
$3.29 - 3.64 (2.243 \ 0.004 \ 0.011 \ 0.036) \times 10^{-6}$	(3.302)	0.016 (0.020	$0.053) \times 10$	$\begin{vmatrix} 1 & 6.792 \end{vmatrix}$	0.035	0.053	0.146	
$3.64 - 4.02 (1.921 \ 0.003 \ 0.009 \ 0.031) \times 10^{-6}$	(2.888)	0.014	0.017	$0.045) \times 10$	$\begin{vmatrix} 1 & 6.652 \end{vmatrix}$	0.034	0.050	0.139	
$4.02 - 4.43 (1.634 \ 0.003 \ 0.008 \ 0.025) \times 10^{-6}$	(2.480)	0.011 (0.014	$0.038) \times 10$	6.588	0.032	0.048	0.134	
$4.43 - 4.88 (1.364 \ 0.002 \ 0.007 \ 0.021) \times 10^{-1}$	(2.128)	0.009 (0.011	$0.032) \times 10$	$\begin{vmatrix} 1 & 6.413 \end{vmatrix}$	0.030	0.045	0.129	
$4.88 - 5.37 (1.134 \ 0.002 \ 0.005 \ 0.016) \times 10^{-6}$	(1.797)	0.008	0.009	$0.027) \times 10$	6.310	0.029	0.042	0.125	
$5.37 - 5.90 (9.375 \ 0.015 \ 0.040 \ 0.134) \times 10$	(1.524)	0.006 (0.007	$0.023) \times 10$	6.153	0.028	0.039	0.119	
$5.90 - 6.47 (7.708 \ 0.012 \ 0.032 \ 0.109) \times 10$	(1.253)	0.005 (0.006	$0.018) \times 10$	6.151	0.028	0.038	0.117	
$6.47 - 7.09 (6.290 \ 0.010 \ 0.025 \ 0.088) \times 10$	(1.044)	0.004 (0.005	$0.015) \times 10$	6.028	0.027	0.037	0.113	
$7.09 - 7.76 (5.125 \ 0.008 \ 0.020 \ 0.071) \times 10$	(8.557)	0.036 (0.039	$0.126) \times 10$	0 5.989	0.027	0.036	0.111	
$7.76 - 8.48 (4.171 \ 0.007 \ 0.016 \ 0.058) \times 10$	(7.120 (0.030 (0.034	$0.104) \times 10$	0 5.858	0.027	0.036	0.108	
$8.48 - 9.26 (3.378 \ 0.006 \ 0.014 \ 0.047) \times 10$	(5.839)	0.026 (0.028	$0.086) \times 10$	0 5.785	0.027	0.036	0.106	
$9.26 - 10.1 (2.725 \ 0.005 \ 0.011 \ 0.037) \times 10$	(4.787)	0.022 (0.024	$0.071) \times 10$	0 5.693	0.028	0.037	0.105	
$10.1 - 11.0 (2.197 \ 0.004 \ 0.009 \ 0.030) \times 10$	(3.879)	0.019 (0.020	$0.057) \times 10$	0 5.665	0.029	0.038	0.104	
$11.0 - 12.0 (1.768 \ 0.003 \ 0.008 \ 0.024) \times 10$	(3.161 (0.016	0.017	$0.047) \times 10$	0 5.594	0.030	0.039	0.103	
$12.0 - 13.0 (1.429 \ 0.003 \ 0.006 \ 0.020) \times 10$	(2.568)	0.014	0.015	$0.038) \times 10$	0 5.564	0.032	0.040	0.103	
$13.0 - 14.1 (1.157 \ 0.003 \ 0.005 \ 0.016) \times 10$	(2.111)	0.012 (0.013	$0.032) \times 10$	0 5.478	0.033	0.042	0.102	

TABLE SM XXXIV: Bartels Rotation 2459 (October 22, 2013 – November 17, 2013). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$ $p_{ m e}$	He $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$
$14.1 - 15.3 (9.351 \ 0.021 \ 0.044 \ 0.133) \times 10^{0}$	$(1.722 \ 0.010 \ 0.011 \ 0.026) \times 10^{0}$	5.430 0.034 0.043 0.102
$15.3 - 16.6 (7.506 \ 0.018 \ 0.037 \ 0.108) \times 10^{6}$	$(1.393 \ 0.008 \ 0.009 \ 0.021) \times 10^{0}$	5.388 0.035 0.045 0.102
$16.6 - 18.0 (6.026 \ 0.015 \ 0.031 \ 0.088) \times 10^{6}$	$(1.132\ 0.007\ 0.008\ 0.018) \times 10^0$	5.323 0.035 0.046 0.102
$18.0 - 19.5 (4.848 \ 0.012 \ 0.025 \ 0.072) \times 10^{6}$	$(9.287 \ 0.058 \ 0.069 \ 0.145) \times 10^{-1}$	5.220 0.035 0.047 0.101
$19.5 - 21.1 (3.922 \ 0.010 \ 0.021 \ 0.059) \times 10^{0}$	$(7.589 \ 0.048 \ 0.059 \ 0.119) \times 10^{-1}$	5.169 0.035 0.049 0.100
$21.1 - 22.8 (3.171 \ 0.008 \ 0.018 \ 0.048) \times 10^{6}$	$(6.142\ 0.040\ 0.048\ 0.097)\times10^{-1}$	5.163 0.037 0.050 0.101
$22.8 - 24.7 (2.546 \ 0.007 \ 0.015 \ 0.039) \times 10^{6}$	$(4.952 \ 0.033 \ 0.040 \ 0.079) \times 10^{-1}$	5.142 0.037 0.051 0.101
$24.7 - 26.7 (2.044 \ 0.006 \ 0.012 \ 0.032) \times 10^{6}$	$(4.086 \ 0.029 \ 0.033 \ 0.065) \times 10^{-1}$	5.003 0.038 0.051 0.099
$26.7 - 28.8 (1.657 \ 0.005 \ 0.010 \ 0.026) \times 10^{6}$	$(3.315 \ 0.025 \ 0.028 \ 0.053) \times 10^{-1}$	5.000 0.041 0.052 0.100
$28.8 - 31.1 (1.324 \ 0.004 \ 0.008 \ 0.021) \times 10^{0}$	$(2.722\ 0.022\ 0.023\ 0.044)\times10^{-1}$	4.864 0.042 0.052 0.098
$31.1 - 33.5 (1.075 \ 0.004 \ 0.007 \ 0.017) \times 10^{6}$	$(2.226 \ 0.019 \ 0.020 \ 0.036) \times 10^{-1}$	4.830 0.045 0.053 0.098
$33.5 - 36.1 (8.785 \ 0.033 \ 0.059 \ 0.137) \times 10^{-6} (8.785$	$^{-1} (1.835 \ 0.017 \ 0.017 \ 0.031) \times 10^{-1} $	4.787 0.047 0.054 0.098
$36.1 - 38.9 (7.126 \ 0.028 \ 0.049 \ 0.112) \times 10^{-6} (7.126 \ 0.028 \ 0.049 \ 0.112) \times 10^{-6} (7.126 \ 0.028 \ 0.049 \ 0.112) \times 10^{-6} (7.126 \ 0.028 \ 0.049 \ 0.112) \times 10^{-6} (7.126 \ 0.028 \ 0.049 \ 0.112) \times 10^{-6} (7.126 \ 0.028 \ 0.049 \ 0.112) \times 10^{-6} (7.126 \ 0.028 \ 0.049 \ 0.112) \times 10^{-6} (7.126 \ 0.028 \ 0.049 \ 0.112) \times 10^{-6} (7.126 \ 0.028 \ 0.049 \ 0.112) \times 10^{-6} (7.126 \ 0.028 \ 0.049 \ 0.112) \times 10^{-6} (7.126 \ 0.028 \ 0.049 \ 0.112) \times 10^{-6} (7.126 \ 0.028 \ 0.049 \ 0.112) \times 10^{-6} (7.126 \ 0.028 \ 0.049 \ 0.112) \times 10^{-6} (7.126 \ 0.028 \ 0.049 \ 0.112) \times 10^{-6} (7.126 \ 0.028 \ 0.049 \ 0.112) \times 10^{-6} (7.126 \ 0.028 \ 0.049 \ 0.112) \times 10^{-6} (7.126 \ 0.028 \ 0.049 \ 0.112) \times 10^{-6} (7.126 \ 0.028 \ 0.049 \ 0.112) \times 10^{-6} (7.126 \ 0.028 \ 0.049 \ 0.112) \times 10^{-6} (7.126 \ 0.028 \ 0.049 \ 0.049 \ 0.049 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.028 \ 0.049 \ 0.049 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.028 \ 0.049 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.028 \ 0.049 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.028 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.028 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.028 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.028 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.028 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.028 \ 0.049 \ 0.049 (7.126 \ 0.028 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.028 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.028 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.028 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.049 \ 0.049 \ 0.049 (7.126 \ 0.$	$^{-1}$ (1.470 0.014 0.013 0.025)×10 ⁻¹	4.847 0.051 0.056 0.100
$38.9 - 41.9 (5.826 \ 0.025 \ 0.041 \ 0.092) \times 10^{-6} (5.826 \ 0.092) \times 10^{-6} (5.826$	$^{-1}$ (1.211 0.012 0.011 0.020)×10 ⁻¹	4.812 0.054 0.057 0.101
$41.9 - 45.1 (4.730 \ 0.022 \ 0.034 \ 0.076) \times 10^{-6} (4.730 \ 0.022 \ 0.034 \ 0.034) \times 10^{-6} (4.730 \ 0.022 \ 0.034 \ 0.034) \times 10^{-6} (4.730 \ 0.022 \ 0.034 \ 0.034) \times 10^{-6} (4.730 \ 0.022 \ 0.034 \ 0.034) \times 10^{-6} (4.730 \ 0.034) \times 10^{-6} (4$	$^{-1}$ $ (9.865 \ 0.109 \ 0.095 \ 0.167) \times 10^{-2} $	4.795 0.057 0.058 0.101
$45.1 - 48.5 (3.820 \ 0.019 \ 0.028 \ 0.062) \times 10^{-6} $	$^{-1}$ $ (8.042 \ 0.095 \ 0.079 \ 0.138) \times 10^{-2} $	4.750 0.061 0.059 0.101
$48.5 - 52.2 (3.102 \ 0.016 \ 0.024 \ 0.051) \times 10^{-6} (3.102 \ 0.016 \ 0.024 \ 0.024) \times 10^{-6} (3.102 \ 0.016 \ 0.024) \times 10^{$	$^{-1}$ (6.614 0.082 0.066 0.114)×10 ⁻²	4.690 0.063 0.059 0.101
$52.2 - 56.1 (2.562 \ 0.014 \ 0.020 \ 0.043) \times 10^{-6} (2.562 \ 0.014 \ 0.020) \times 10^{-6} (2$	$^{-1}$ $ (5.395 \ 0.072 \ 0.055 \ 0.094) \times 10^{-2}$	4.749 0.069 0.061 0.102
$56.1 - 60.3 (2.107 \ 0.013 \ 0.017 \ 0.036) \times 10^{-1}$	$^{-1}$ (4.330 0.062 0.045 0.076)×10 ⁻²	4.866 0.076 0.064 0.106

TABLE SM XXXV: Bartels Rotation 2460 (November 18, 2013 – December 14, 2013). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr\cdot s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	Φ_{He} σ_{stat}	$\sigma_{\rm time}$	syst.	$p/\mathrm{He} \ \sigma_{s}$	stat. $\sigma_{\rm time}$		$\sigma_{ m syst.}$
$1.00 - 1.16 (3.950 \ 0.024 \ 0.065 \ 0.180) \times 10^{-1}$	2		_	_		_	
$1.16 - 1.33 (4.199 \ 0.016 \ 0.050 \ 0.152) \times 10^{-1}$	2			_		_	
$1.33 - 1.51 (4.338 \ 0.014 \ 0.040 \ 0.126) \times 10^{-1}$	2		_	_		_	
$1.51 - 1.71 (4.322 \ 0.011 \ 0.032 \ 0.114) \times 10^{-1}$	2			_		_	
$1.71 - 1.92 (4.150 \ 0.009 \ 0.027 \ 0.099) \times 10^{-1}$	2					_	
$1.92 - 2.15 (3.911 \ 0.008 \ 0.022 \ 0.085) \times 10^{-1}$	(4.658 0.	.031 0.048	$0.105) \times 10^{-2}$	8.396	0.059 0.099	0.251	
$2.15 - 2.40 (3.588 \ 0.007 \ 0.019 \ 0.072) \times 10^{-1}$	2 (4.571 0.	.028 0.041	$0.091) \times 10^{-2}$	7.850	0.050 0.08	0.210	
$2.40 - 2.67 (3.255 \ 0.006 \ 0.016 \ 0.062) \times 10^{-1}$	2 (4.306 0.	.024 0.035	$0.078) \times 10^{-1}$	7.559	0.044 0.072	0.186	
$2.67 - 2.97 (2.900 \ 0.005 \ 0.014 \ 0.051) \times 10^{-1}$	(4.032 0.	.021 0.032	$0.069) \times 10$	7.191	0.039 0.060	0.167	
$2.97 - 3.29 (2.547 \ 0.004 \ 0.012 \ 0.043) \times 10^{-1}$	$(3.689 \ 0.$.018 0.027	$0.061) \times 10$	6.905	0.035 0.060	0.153	
$3.29 - 3.64 (2.205 \ 0.004 \ 0.010 \ 0.036) \times 10^{-1}$	2 (3.268 0.	.015 0.022	$0.053) \times 10$	6.747	0.033 0.05	0.146	
$3.64 - 4.02 (1.894 \ 0.003 \ 0.009 \ 0.030) \times 10^{-1}$	(2.836 0.	.013 0.018	$0.045) \times 10$	6.678	8 0.032 0.053	3 0.141	
$4.02 - 4.43 (1.607 \ 0.003 \ 0.008 \ 0.025) \times 10^{-1}$	$(2.470 \ 0.$.010 0.015	$0.038) \times 10$	6.505	0.029 0.050	0.133	
$4.43 - 4.88 (1.349 \ 0.002 \ 0.006 \ 0.021) \times 10^{-1}$	2 (2.090 0.	.008 0.012	$0.032) \times 10$	6.454	0.028 0.04	7 0.130	
$4.88 - 5.37 (1.123 \ 0.002 \ 0.005 \ 0.016) \times 10^{-1}$	(1.769 0.	.007 0.009	$0.027) \times 10$	6.345	0.027 0.04	0.126	
$5.37 - 5.90 (9.260 \ 0.014 \ 0.039 \ 0.133) \times 10^{-1}$	1 (1.494 0.	.006 0.008	$0.023) \times 10$	6.198	0.026 0.04	0.120	
$5.90 - 6.47 (7.604 \ 0.011 \ 0.031 \ 0.107) \times 10^{-1}$	1 (1.249 0.	.005 0.006	$0.018) \times 10$	6.090	0.026 0.039	0.116	
$6.47 - 7.09 (6.248 \ 0.009 \ 0.025 \ 0.088) \times 10^{-1}$	(1.040 0.	.004 0.005	$0.015) \times 10$	6.011	0.025 0.039	0.114	
$7.09 - 7.76 (5.094 \ 0.008 \ 0.020 \ 0.071) \times 10^{-1}$	1 (8.621 0.	.034 0.044	$0.128) \times 10^{6}$	5.910	0.025 0.038	3 0.110	
$7.76 - 8.48 (4.130 \ 0.006 \ 0.016 \ 0.057) \times 10^{-10} (4.130 \ 0.006 \ 0.016 \ 0.057) \times 10^{-10} (4.130 \ 0.006 \ 0.016 \ 0.057) \times 10^{-10} (4.130 \ 0.006 \ 0.016 \ 0.057) \times 10^{-10} (4.130 \ 0.006 \ 0.016 \ 0.057) \times 10^{-10} (4.130 \ 0.006 \ 0.016 \ 0.057) \times 10^{-10} (4.130 \ 0.006 \ 0.016 \ 0.057) \times 10^{-10} (4.130 \ 0.006 \ 0.016 \ 0.057) \times 10^{-10} (4.130 \ 0.006 \ 0.016 \ 0.057) \times 10^{-10} (4.130 \ 0.006 \ 0.016 \ 0.057) \times 10^{-10} (4.130 \ 0.006 \ 0.016 \ 0.057) \times 10^{-10} (4.130 \ 0.006 \ 0.016 \ 0.057) \times 10^{-10} (4.130 \ 0.006 \ 0.016 \ 0.057) \times 10^{-10} (4.130 \ 0.006 \ 0.016 \ 0.057) \times 10^{-10} (4.130 \ 0.006 \ 0.016 \ 0.057) \times 10^{-10} (4.130 \ 0.006 \ 0.016 \ 0.057) \times 10^{-10} (4.130 \ 0.006 \ 0.016 \ 0.057) \times 10^{-10} (4.130 \ 0.006 \ 0.016 \ 0.057) \times 10^{-10} (4.130 \ 0.006 \ 0.016 \ 0.057) \times 10^{-10} (4.130 \ 0.006 \ 0.006 \ 0.006) \times 10^{-10} (4.130 \ 0.006 \ 0.006 \ 0.006) \times 10^{-10} (4.130 \ 0.006) \times$	1 (7.049 0.	.028 0.037	$0.104) \times 10^{6}$	5.859	0.025 0.038	0.109	
$8.48 - 9.26 (3.349 \ 0.005 \ 0.013 \ 0.046) \times 10^{-1}$	1 (5.803 0.	.024 0.031	$0.086) \times 10^{6}$	5.771	0.025 0.039	0.107	
$9.26 - 10.1 (2.711 \ 0.004 \ 0.011 \ 0.037) \times 10^{-1}$	1 (4.724 0.	.020 0.027	$0.071) \times 10^{6}$	5.738	0.026 0.040	0.106	
$10.1 - 11.0 (2.190 \ 0.004 \ 0.009 \ 0.030) \times 10^{-1}$	1 (3.879 0.	.017 0.023	$0.058) \times 10^{6}$	5.645	0.027 0.042	0.105	
$11.0 - 12.0 (1.751 \ 0.003 \ 0.007 \ 0.024) \times 10^{-1}$	$(3.153 \ 0.$.015 0.020	$0.048)\times10^{6}$	5.555	0.028 0.049	0.103	
$12.0 - 13.0 (1.417 \ 0.003 \ 0.006 \ 0.020) \times 10^{-1}$	1 (2.552 0.	.013 0.017	$0.039) \times 10^{6}$	5.551	0.030 0.044	0.104	
$13.0 - 14.1 (1.153 \ 0.002 \ 0.005 \ 0.016) \times 10^{-1}$	$(2.103 \ 0.$.011 0.014	$0.032) \times 10^{6}$	5.483	0.031 0.04	0.104	
$14.1 - 15.3 (9.280\ 0.019\ 0.044\ 0.132) \times 10^{-1}$	0 (1.713 0.	.009 0.012	$0.026) \times 10^{6}$	5.417	0.031 0.04	7 0.103	
15.3 - 16.6 (7.436 0.016 0.036 0.107)×10	0 (1.398 0.	.008 0.011	$0.022) \times 10^{6}$	5.318	3 0.032 0.048	0.103	

TABLE SM XXXV: Bartels Rotation 2460 (November 18, 2013 – December 14, 2013). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time} \ \sigma_{\rm syst.}$
$16.6 - 18.0 (6.008 \ 0.013 \ 0.030 \ 0.087) \times 10^{-6}$	$(1.142 \ 0.006 \ 0.009 \ 0.018) \times$	10^0 5.260 0.032 0.050 0.103
$18.0 - 19.5 (4.828 \ 0.011 \ 0.025 \ 0.072) \times 10^{6}$	$(9.212\ 0.053\ 0.078\ 0.148) \times$	$10^{-1} 5.241 \ 0.033 \ 0.052 \ 0.103$
$19.5 - 21.1 (3.890 \ 0.009 \ 0.021 \ 0.058) \times 10^{6}$	$(7.577 \ 0.045 \ 0.067 \ 0.123) \times$	$10^{-1} 5.134 \ 0.033 \ 0.053 \ 0.102$
$21.1 - 22.8 (3.146 \ 0.008 \ 0.018 \ 0.048) \times 10^{6}$	$(6.122 \ 0.038 \ 0.055 \ 0.100) \times$	$10^{-1} 5.139 \ 0.034 \ 0.054 \ 0.103$
$22.8 - 24.7 (2.527 \ 0.006 \ 0.014 \ 0.038) \times 10^{-6} (2.527 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.527 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.527 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.527 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.527 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.527 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.527 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.527 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.527 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.527 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.527 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.527 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.527 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.527 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.527 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.527 \ 0$	$(5.048 \ 0.031 \ 0.046 \ 0.083) \times$	$10^{-1} 5.007 \ 0.033 \ 0.054 \ 0.101$
$24.7 - 26.7 (2.026 \ 0.005 \ 0.012 \ 0.031) \times 10^{6}$	$(4.069 \ 0.027 \ 0.037 \ 0.067) \times$	$10^{-1} 4.980 \ 0.035 \ 0.054 \ 0.101$
$26.7 - 28.8 (1.647 \ 0.005 \ 0.010 \ 0.025) \times 10^{6}$	$(3.338 \ 0.023 \ 0.031 \ 0.055) \times$	$10^{-1} 4.934 \ 0.037 \ 0.055 \ 0.100$
$28.8 - 31.1 (1.330 \ 0.004 \ 0.008 \ 0.021) \times 10^{6}$	$(2.694 \ 0.020 \ 0.026 \ 0.045) \times$	$10^{-1} 4.938 \ 0.040 \ 0.056 \ 0.101$
$31.1 - 33.5 (1.076 \ 0.003 \ 0.007 \ 0.017) \times 10^{6}$	$(2.195 \ 0.018 \ 0.021 \ 0.037) \times$	$10^{-1} 4.905 \ 0.043 \ 0.057 \ 0.101$
$33.5 - 36.1 (8.766 \ 0.030 \ 0.058 \ 0.137) \times 10^{-6} (8.766 \ 0.030 \ 0.058$	$^{-1}$ (1.820 0.015 0.018 0.031)×	$10^{-1} 4.817 \ 0.044 \ 0.057 \ 0.100$
$36.1 - 38.9 (7.064 \ 0.026 \ 0.048 \ 0.111) \times 10^{-6} (7.064 \ 0.026 \ 0.048 \ 0.111) \times 10^{-6} (7.064 \ 0.026 \ 0.048 \ 0.111) \times 10^{-6} (7.064 \ 0.026 \ 0.048 \ 0.111) \times 10^{-6} (7.064 \ 0.026 \ 0.048 \ 0.111) \times 10^{-6} (7.064 \ 0.026 \ 0.048 \ 0.111) \times 10^{-6} (7.064 \ 0.026 \ 0.048 \ 0.111) \times 10^{-6} (7.064 \ 0.026 \ 0.048 \ 0.111) \times 10^{-6} (7.064 \ 0.026 \ 0.048 \ 0.111) \times 10^{-6} (7.064 \ 0.026 \ 0.048 \ 0.111) \times 10^{-6} (7.064 \ 0.026 \ 0.048 \ 0.111) \times 10^{-6} (7.064 \ 0.026 \ 0.048 \ 0.111) \times 10^{-6} (7.064 \ 0.026 \ 0.048 \ 0.111) \times 10^{-6} (7.064 \ 0.026 \ 0.048 \ 0.111) \times 10^{-6} (7.064 \ 0.026 \ 0.048 \ 0.111) \times 10^{-6} (7.064 \ 0.026 \ 0.048 \ 0.111) \times 10^{-6} (7.064 \ 0.026 \ 0.048 \ 0.111) \times 10^{-6} (7.064 \ 0.026 \ 0.048 \ 0.111) \times 10^{-6} (7.064 \ 0.026 \ 0.048 \ 0.111) \times 10^{-6} (7.064 \ 0.026 \ 0.048 \ 0$	$^{-1}$ (1.472 0.013 0.015 0.026)×	$10^{-1} 4.798 \ 0.047 \ 0.058 \ 0.101$
$38.9 - 41.9 (5.751 \ 0.023 \ 0.040 \ 0.091) \times 10^{-6} (5.751$	$^{-1}$ (1.210 0.012 0.012 0.021)×	$10^{-1} 4.753 \ 0.050 \ 0.059 \ 0.101$
$41.9 - 45.1 (4.697 \ 0.020 \ 0.034 \ 0.075) \times 10^{-1}$	$^{-1}$ (9.949 0.102 0.104 0.174)×	$10^{-2} 4.721 \ 0.052 \ 0.060 \ 0.101$
$45.1 - 48.5$ $(3.777 \ 0.017 \ 0.028 \ 0.061) \times 10^{-6}$	$^{-1} (8.182\ 0.090\ 0.087\ 0.144)\times$	$10^{-2} 4.616 \ 0.055 \ 0.060 \ 0.100$
$48.5 - 52.2 (3.129 \ 0.015 \ 0.024 \ 0.052) \times 10^{-6} (3.129 \ 0.015 \ 0.024) \times 10^{-6} (3.129 \ 0.024$	$^{-1}$ (6.598 0.077 0.072 0.117)×	$10^{-2} 4.742 \ 0.060 \ 0.063 \ 0.104$
52.2 - 56.1 (2.581 0.013 0.020 0.044)×10	$^{-1} (5.425\ 0.068\ 0.060\ 0.097)\times$	$10^{-2} 4.758 \ 0.064 \ 0.064 \ 0.104$
$56.1 - 60.3 (2.082 \ 0.012 \ 0.016 \ 0.036) \times 10^{-1}$	$^{-1}$ (4.390 0.058 0.049 0.079)×	$10^{-2} 4.744 \ 0.068 \ 0.065 \ 0.105$

TABLE SM XXXVI: Bartels Rotation 2461 (December 15, 2013 – January 10, 2014). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	$\Phi_{ m He}$ $\sigma_{ m sta}$	at. σ_{time}	$\sigma_{ m syst.}$	$p_{/}$	He $\sigma_{\rm s}$	$tat. \sigma_t$	ime		$\sigma_{ m syst.}$
1.00 - 1.16 (3.860 0.025 0.066 0.176)×10	2		_		_	_	-	_	
$1.16 - 1.33 (4.109 \ 0.016 \ 0.051 \ 0.149) \times 10^{-1}$	2		_		_	_	_	_	
$1.33 - 1.51 (4.247 \ 0.014 \ 0.040 \ 0.124) \times 10^{-1} (4.247 \ 0.014 \ 0.040 \ 0.040) \times 10^{-1} (4.247$	2		_		_	_	_	_	
$1.51 - 1.71 (4.253 \ 0.011 \ 0.032 \ 0.112) \times 10^{-1}$	2		_		_	_	_	_	
$1.71 - 1.92 (4.102 \ 0.009 \ 0.026 \ 0.098) \times 10^{-1}$	2 _		_		_	_	_	_	
$1.92 - 2.15 (3.869 \ 0.008 \ 0.022 \ 0.084) \times 10^{-1}$	2 (4.527)	0.031 0.05	53 0.105)	$\times 10^1$	8.546	0.061	0.111	0.260	
$2.15 - 2.40$ $(3.565 \ 0.007 \ 0.019 \ 0.072) \times 10^{-2}$	2 (4.528)	0.027 0.04	45 0.092)	$\times 10^1$	7.872	0.050	0.089	0.214	
$2.40 - 2.67 (3.230 \ 0.006 \ 0.016 \ 0.062) \times 10^{-1}$	2 (4.267)	0.024 0.03	39 0.079)	$\times 10^1$	7.571	0.044	0.078	0.189	
$2.67 - 2.97 (2.888 \ 0.005 \ 0.013 \ 0.051) \times 10^{-1}$	2 (3.975)	0.020 0.03	35 0.070)	$\times 10^1$	7.266	0.039	0.072	0.171	
$2.97 - 3.29 (2.538 \ 0.004 \ 0.012 \ 0.043) \times 10^{-1}$	2 (3.633)	0.017 0.02	29 0.061)	$\times 10^1$	6.987	0.035	0.065	0.157	
$3.29 - 3.64 (2.208 \ 0.004 \ 0.010 \ 0.036) \times 10^{-10}$	2 (3.230)	0.015 0.02	24 0.053)	$\times 10^1$	6.835	0.033	0.060	0.149	
$3.64 - 4.02 (1.887 \ 0.003 \ 0.009 \ 0.030) \times 10^{-2}$	(2.828)	0.013 0.02	20 0.045)	$\times 10^1$	6.671	0.032	0.056	0.142	
$4.02 - 4.43 (1.607 \ 0.002 \ 0.008 \ 0.025) \times 10^{-1}$	(2.436)	0.010 0.03	16 0.039)	$\times 10^1$	6.594	0.030	0.053	0.137	
$4.43 - 4.88 (1.354 \ 0.002 \ 0.006 \ 0.021) \times 10^{-1}$	2 (2.077)	0.008 0.03	13 0.032)	$\times 10^1$	6.520	0.028	0.051	0.133	
$4.88 - 5.37 (1.121 \ 0.002 \ 0.005 \ 0.016) \times 10^{-1}$	2 (1.784)	0.007 0.03	11 0.027)	$\times 10^1$	6.282	0.027	0.047	0.126	
$5.37 - 5.90$ $(9.243 \ 0.014 \ 0.039 \ 0.132) \times 10^{-2}$	(1.491)	0.006 0.00	08 0.023)	$\times 10^1$	6.200	0.026	0.044	0.121	
$5.90 - 6.47 (7.593 \ 0.011 \ 0.031 \ 0.107) \times 10^{-1}$	1 (1.246)	0.005 0.00	07 0.019)	$\times 10^1$	6.093	0.026	0.042	0.117	
$6.47 - 7.09 (6.222 \ 0.009 \ 0.024 \ 0.087) \times 10^{-1}$	1 (1.023)	0.004 0.00	06 0.015)	$\times 10^1$	6.085	0.025	0.042	0.116	
$7.09 - 7.76 (5.065 \ 0.008 \ 0.020 \ 0.070) \times 10^{-10}$	(8.494)	0.033 0.04	48 0.128)	$\times 10^0$	5.962	0.025	0.041	0.112	
$7.76 - 8.48 (4.121 0.006 0.016 0.057) \times 10^{-6}$	1 (7.008)	0.028 0.04	41 0.105)	$\times 10^{0}$	5.880	0.025	0.041	0.110	
$8.48 - 9.26$ $(3.335 \ 0.005 \ 0.013 \ 0.046) \times 10^{-1}$	1 (5.800)	0.024 0.03	35 0.088)	$\times 10^0$	5.750	0.025	0.041	0.108	
$9.26 - 10.1 (2.699 \ 0.004 \ 0.011 \ 0.037) \times 10^{-1}$	(4.717)	0.020 0.02	29 0.072)	$\times 10^{0}$	5.722	0.026	0.042	0.107	
$10.1 - 11.0 (2.171 \ 0.004 \ 0.009 \ 0.030) \times 10^{-1}$	(3.848)	0.017 0.02	25 0.059)	$\times 10^0$	5.643	0.027	0.043	0.106	
$11.0 - 12.0 (1.756 \ 0.003 \ 0.007 \ 0.024) \times 10^{-1}$	(3.151)	0.015 0.02	22 0.049)	$\times 10^{0}$	5.573	0.028	0.045	0.105	
$12.0 - 13.0 (1.413 \ 0.003 \ 0.006 \ 0.019) \times 10^{-1}$	(2.562)	0.013 0.03	18 0.040)	$\times 10^0$	5.514	0.030	0.046	0.105	
$13.0 - 14.1 (1.144 \ 0.002 \ 0.005 \ 0.016) \times 10^{-1}$	(2.086)	0.011 0.0	16 0.033)	$\times 10^{0}$	5.482	0.031	0.048	0.105	
$14.1 - 15.3 (9.244 \ 0.019 \ 0.043 \ 0.131) \times 10^{-1}$	0 (1.700)	0.009 0.03	13 0.026)	$\times 10^0$	5.438	0.031	0.050	0.105	
15.3 - 16.6 (7.431 0.016 0.036 0.107)×10	0 (1.395)	0.008 0.0	12 0.022)	$\times 10^{0}$	5.326	0.032	0.051	0.104	

TABLE SM XXXVI: Bartels Rotation 2461 (December 15, 2013 – January 10, 2014). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time}} \sigma_{\text{syst.}}$
$16.6 - 18.0 (5.995 \ 0.013 \ 0.030 \ 0.087) \times 10$	$0 \ (1.134 \ 0.006 \ 0.010 \ 0.019) \times 10^{-1}$	$\begin{bmatrix} 10^0 & 5.288 & 0.032 & 0.053 & 0.105 \end{bmatrix}$
$18.0 - 19.5 (4.809 \ 0.011 \ 0.025 \ 0.071) \times 10$	$ (9.229 \ 0.054 \ 0.085 \ 0.153) \times 1$	10^{-1} 5.211 0.033 0.055 0.104
$19.5 - 21.1 (3.897 \ 0.009 \ 0.021 \ 0.058) \times 10$	$0 \mid (7.518 \ 0.045 \ 0.073 \ 0.126) \times 1$	10^{-1} $5.183 \ 0.033 \ 0.057 \ 0.105$
$21.1 - 22.8 (3.127 \ 0.008 \ 0.017 \ 0.047) \times 10$	$ (6.161 \ 0.038 \ 0.060 \ 0.104) \times 1 $	$10^{-1} 5.075 \ 0.033 \ 0.057 \ 0.104$
$22.8 - 24.7 (2.508 \ 0.006 \ 0.014 \ 0.038) \times 10$	$0 \mid (5.009 \ 0.031 \ 0.050 \ 0.085) \times 1$	10^{-1} 5.006 0.033 0.057 0.103
$24.7 - 26.7 (2.019 \ 0.005 \ 0.012 \ 0.031) \times 10$	$ (4.029 \ 0.027 \ 0.041 \ 0.068) \times 1$	10^{-1} $5.012 \ 0.036 \ 0.058 \ 0.103$
$26.7 - 28.8 (1.635 \ 0.005 \ 0.010 \ 0.025) \times 10$	$ (3.308 \ 0.023 \ 0.034 \ 0.056) \times 1$	$10^{-1} 4.942 \ 0.037 \ 0.059 \ 0.102$
$28.8 - 31.1 (1.327 \ 0.004 \ 0.008 \ 0.021) \times 10$	$ (2.651 \ 0.020 \ 0.028 \ 0.046) \times 1 $	10^{-1} $5.007 \ 0.040 \ 0.060 \ 0.105$
$31.1 - 33.5 (1.070 \ 0.003 \ 0.007 \ 0.017) \times 10$	$0 \mid (2.209 \ 0.018 \ 0.023 \ 0.039) \times 1$	$10^{-1} 4.844 \ 0.042 \ 0.060 \ 0.102$
$33.5 - 36.1 (8.651 \ 0.030 \ 0.056 \ 0.134) \times 10$	$0^{-1} (1.802 \ 0.015 \ 0.020 \ 0.032) \times 10^{-1} $	10^{-1} 4.801 0.044 0.061 0.102
$36.1 - 38.9 (7.029 \ 0.026 \ 0.046 \ 0.110) \times 10$	$0^{-1} (1.484 \ 0.013 \ 0.016 \ 0.027) \times 10^{-1} $	10^{-1} 4.737 0.046 0.061 0.102
$38.9 - 41.9 (5.752 \ 0.022 \ 0.039 \ 0.090) \times 10$	$0^{-1} (1.198 \ 0.012 \ 0.013 \ 0.021) \times 10^{-1} $	10^{-1} 4.801 0.050 0.063 0.104
$41.9 - 45.1 (4.676 \ 0.020 \ 0.032 \ 0.074) \times 10$	$0^{-1} (9.871 \ 0.101 \ 0.113 \ 0.178) \times 10^{-1} $	$10^{-2} 4.737 \ 0.052 \ 0.063 \ 0.103$
$45.1 - 48.5$ $(3.786 \ 0.017 \ 0.027 \ 0.061) \times 10$	$0^{-1} (8.077 \ 0.088 \ 0.094 \ 0.147) \times 10^{-1} $	$10^{-2} 4.688 \ 0.056 \ 0.064 \ 0.104$
$48.5 - 52.2 (3.121 \ 0.015 \ 0.023 \ 0.051) \times 10$	$0^{-1} (6.527 \ 0.076 \ 0.078 \ 0.120) \times 10^{-1} $	10^{-2} 4.782 0.060 0.066 0.106
52.2 - 56.1 (2.551 0.013 0.019 0.043)×10	$0^{-1} (5.431 \ 0.067 \ 0.066 \ 0.101) \times 1$	$10^{-2} 4.697 \ 0.063 \ 0.067 \ 0.105$
$56.1 - 60.3 (2.062 \ 0.011 \ 0.016 \ 0.035) \times 10^{-1}$	$0^{-1} (4.497 \ 0.059 \ 0.055 \ 0.084) \times 10^{-1} $	$10^{-2} 4.586 \ 0.065 \ 0.066 \ 0.104$

TABLE SM XXXVII: Bartels Rotation 2462 (January 11, 2014 – February 6, 2014). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot sr \cdot s \cdot GV]^{-1}$ including errors due to statistics $(\sigma_{stat.})$, time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\rho_{ m He} = \sigma_{ m stat.} = \sigma_{ m t}$	$\sigma_{ m sime}$	yst.	σ /He σ s	$tat. \sigma_{ti}$	ime		$\sigma_{ m syst.}$
$\frac{1.00 - 1.16 \left (3.854 \ 0.025 \ 0.072 \ 0.178) \times 10^{2} \right }{1.00 - 1.16 \left (3.854 \ 0.025 \ 0.072 \ 0.178) \times 10^{2} \right }$		_	_	_	_	_	_	-
$1.16 - 1.33 (4.153 \ 0.017 \ 0.056 \ 0.152) \times 10^{2}$		_	_	_	_	_	_	
$1.33 - 1.51 (4.334 \ 0.015 \ 0.044 \ 0.127) \times 10^{2}$		_	_	_	_	_	_	
$1.51 - 1.71 (4.332\ 0.011\ 0.035\ 0.115) \times 10^{2}$		_	_	_	_	_	_	
$1.71 - 1.92 (4.197 \ 0.010 \ 0.029 \ 0.100) \times 10^{2}$		_	_	_	_	_	_	
$1.92 - 2.15 (3.951\ 0.008\ 0.024\ 0.086) \times 10^{2}$	$(4.680 \ 0.031$	0.042	$0.103) \times 10^{1}$	8.443	0.059	0.091	0.249	
$2.15 - 2.40$ $(3.634 \ 0.007 \ 0.020 \ 0.074) \times 10^2$	$(4.563 \ 0.028$	0.035	$0.088) \times 10^{1}$	7.966	0.051	0.075	0.210	
$2.40 - 2.67 (3.290 \ 0.006 \ 0.016 \ 0.063) \times 10^{2}$	$(4.326\ 0.024$	0.030	$0.076) \times 10^{1}$	7.604	0.044	0.065	0.185	
$2.67 - 2.97 (2.922 \ 0.005 \ 0.014 \ 0.052) \times 10^{2}$	$(4.019 \ 0.021$	0.027	$0.067) \times 10^{1}$	7.270	0.039	0.060	0.166	
$2.97 - 3.29 (2.580 \ 0.004 \ 0.012 \ 0.043) \times 10^{2}$	$(3.679 \ 0.018$	0.023	$0.059) \times 10^{1}$	7.013	0.035	0.055	0.154	
$3.29 - 3.64 (2.230 \ 0.004 \ 0.011 \ 0.036) \times 10^{2}$	$(3.262 \ 0.015$	0.019	$0.052) \times 10^{1}$	6.837	0.033	0.051	0.146	
$3.64 - 4.02 (1.910 \ 0.003 \ 0.009 \ 0.031) \times 10^{2}$	$(2.829\ 0.013$	0.015	$0.044) \times 10^{1}$	6.753	0.032	0.049	0.141	
$4.02 - 4.43 (1.611 \ 0.003 \ 0.008 \ 0.025) \times 10^{2}$	$(2.430 \ 0.010$	0.012	$0.037){\times}10^{1}$	6.628	0.030	0.047	0.135	
$4.43 - 4.88 (1.354 \ 0.002 \ 0.007 \ 0.021) \times 10^{2}$	$(2.077 \ 0.008$	0.010	$0.031) \times 10^{1}$	6.519	0.028	0.045	0.131	
$4.88 - 5.37 (1.125 \ 0.002 \ 0.005 \ 0.016) \times 10^{2}$	$(1.766\ 0.007$	0.008	$0.026){\times}10^{1}$	6.368	0.027	0.042	0.125	
$5.37 - 5.90 (9.263 \ 0.014 \ 0.040 \ 0.133) \times 10^{1}$	$(1.488 \ 0.006$	0.007	$0.022) \times 10^{1}$	6.227	0.026	0.039	0.120	
$5.90 - 6.47 (7.600 \ 0.011 \ 0.032 \ 0.107) \times 10^{1}$	$(1.247 \ 0.005$	0.006	$0.018) \times 10^{1}$	6.094	0.026	0.037	0.115	
$6.47 - 7.09 (6.221 \ 0.009 \ 0.025 \ 0.087) \times 10^{1}$	$(1.034 \ 0.004$	0.005	$0.015) \times 10^{1}$	6.014	0.025	0.036	0.113	
$7.09 - 7.76 (5.061 \ 0.008 \ 0.020 \ 0.071) \times 10^{1}$	$(8.564\ 0.033$	0.038	$0.126) \times 10^{0}$	5.910	0.025	0.035	0.110	
$7.76 - 8.48 (4.116 \ 0.006 \ 0.016 \ 0.057) \times 10^{1}$	$(7.042\ 0.028$	0.033	$0.103) \times 10^{0}$	5.844	0.025	0.036	0.108	
$8.48 - 9.26 (3.341 \ 0.005 \ 0.013 \ 0.046) \times 10^{1}$	$(5.755 \ 0.024$	0.028	$0.084) \times 10^{0}$	5.805	0.026	0.036	0.107	
$9.26 - 10.1 (2.693 \ 0.004 \ 0.011 \ 0.037) \times 10^{1}$	$(4.695 \ 0.020$	0.024	$0.069) \times 10^{0}$	5.736	0.027	0.037	0.105	
$10.1 - 11.0 (2.173 \ 0.004 \ 0.009 \ 0.030) \times 10^{1}$	$(3.836 \ 0.017$	0.020	$0.056) \times 10^{0}$	5.666	0.028	0.038	0.104	
$11.0 - 12.0 (1.743 \ 0.003 \ 0.007 \ 0.024) \times 10^{1}$	$(3.134\ 0.015$	0.017	$0.047) \times 10^{0}$	5.561	0.028	0.039	0.102	
$12.0 - 13.0 (1.405 \ 0.003 \ 0.006 \ 0.019) \times 10^{1}$	$(2.558 \ 0.013$	0.015	$0.038) \times 10^{0}$	5.491	0.030	0.040	0.102	
$13.0 - 14.1 (1.143 \ 0.002 \ 0.005 \ 0.016) \times 10^{1}$	$(2.076\ 0.011$,	5.504	0.031	0.042	0.103	
$14.1 - 15.3 (9.179 \ 0.019 \ 0.044 \ 0.131) \times 10^{0}$	$(1.719 \ 0.009$,	5.339	0.031	0.042	0.100	
$15.3 - 16.6 (7.389 \ 0.016 \ 0.036 \ 0.106) \times 10^{0}$	$(1.399 \ 0.008$	0.009	$0.021) \times 10^{0}$	5.281	0.031	0.044	0.100	

TABLE SM XXXVII: Bartels Rotation 2462 (January 11, 2014 – February 6, 2014). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time}} \sigma_{\text{syst.}}$
16.6 - 18.0 (5.946 0.013 0.030 0.087)×10	$0 (1.138 \ 0.006 \ 0.008 \ 0.018) \times 10^{-6}$	$5.227 \ 0.032 \ 0.045 \ 0.100$
$18.0 - 19.5 (4.783 \ 0.011 \ 0.025 \ 0.071) \times 10$	$0 (9.211 \ 0.054 \ 0.068 \ 0.143) \times 10^{-6} $	$^{-1}$ $5.193 \ 0.032 \ 0.047 \ 0.100$
$19.5 - 21.1 (3.844 \ 0.009 \ 0.021 \ 0.058) \times 10$	$0 (7.544 \ 0.045 \ 0.058 \ 0.119) \times 10^{-6}$	$^{-1}$ $ 5.096 \ 0.033 \ 0.048 \ 0.099$
$21.1 - 22.8 (3.117 \ 0.008 \ 0.018 \ 0.047) \times 10$	$0 (6.199 \ 0.038 \ 0.049 \ 0.098) \times 10^{-6}$	$^{-1}$ $ 5.029 \ 0.033 \ 0.049 \ 0.099$
$22.8 - 24.7 (2.499 \ 0.006 \ 0.014 \ 0.038) \times 10$	$0 (5.020 \ 0.031 \ 0.040 \ 0.080) \times 10^{-6} $	$^{-1}$ 4.977 0.033 0.049 0.098
$24.7 - 26.7 (2.008 \ 0.005 \ 0.012 \ 0.031) \times 10$	$0 (4.042 \ 0.027 \ 0.033 \ 0.064) \times 10^{-6}$	$^{-1}$ $ 4.968 \ 0.035 \ 0.050 \ 0.098$
$26.7 - 28.8 (1.632 \ 0.005 \ 0.010 \ 0.025) \times 10$	$0 (3.328 \ 0.023 \ 0.028 \ 0.053) \times 10^{-6} $	$^{-1}$ 4.903 0.037 0.051 0.098
$28.8 - 31.1 (1.316 \ 0.004 \ 0.008 \ 0.021) \times 10$	$0 (2.686 \ 0.020 \ 0.023 \ 0.043) \times 10^{-6}$	$^{-1}$ 4.900 0.039 0.052 0.098
$31.1 - 33.5 (1.062 \ 0.003 \ 0.007 \ 0.017) \times 10$	$0 (2.211 \ 0.018 \ 0.019 \ 0.036) \times 10^{-6}$	$^{-1}$ 4.803 0.041 0.052 0.097
$33.5 - 36.1 (8.701 \ 0.030 \ 0.058 \ 0.136) \times 10$	$^{-1}$ (1.814 0.015 0.016 0.030)×10	$^{-1}$ 4.797 0.044 0.053 0.098
$36.1 - 38.9 (7.043 \ 0.026 \ 0.048 \ 0.111) \times 10$	$^{-1}$ (1.465 0.013 0.013 0.025)×10	$^{-1}$ 4.808 0.047 0.055 0.099
$38.9 - 41.9 (5.710 \ 0.022 \ 0.040 \ 0.090) \times 10$	$^{-1}$ (1.182 0.011 0.011 0.019)×10	$^{-1}$ $ 4.830 \ 0.051 \ 0.056 \ 0.101$
$41.9 - 45.1 (4.657 \ 0.020 \ 0.034 \ 0.074) \times 10$	$^{-1}$ (9.848 0.101 0.094 0.166)×10	$-2 \mid 4.729 \mid 0.053 \mid 0.056 \mid 0.099 \mid$
$45.1 - 48.5 (3.824 \ 0.017 \ 0.028 \ 0.062) \times 10$	$^{-1}$ (8.149 0.089 0.079 0.139)×10	$-2 \mid 4.692 \mid 0.055 \mid 0.057 \mid 0.100 \mid$
$48.5 - 52.2 (3.109 \ 0.015 \ 0.024 \ 0.051) \times 10$	$^{-1}$ (6.571 0.076 0.065 0.113)×10	$-2 \mid 4.731 \mid 0.059 \mid 0.059 \mid 0.101 \mid$
$52.2 - 56.1 (2.534 \ 0.013 \ 0.020 \ 0.043) \times 10$	$^{-1}$ (5.497 0.068 0.055 0.095)×10	$-2 \mid 4.610 \mid 0.062 \mid 0.059 \mid 0.099 \mid$
$56.1 - 60.3 (2.080 \ 0.011 \ 0.017 \ 0.036) \times 10$	$^{-1}$ (4.488 0.059 0.046 0.078)×10	$-2 \mid 4.635 \mid 0.066 \mid 0.060 \mid 0.101 \mid$

TABLE SM XXXVIII: Bartels Rotation 2463 (February 7, 2014 – March 5, 2014). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s}\cdot{\rm GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time}	$\sigma_{ m syst.}$	$p/{\rm He} \ \sigma_{\rm stat.}$	$\sigma_{\rm time}$		$\sigma_{ m syst}$
$1.00 - 1.16 (3.911 \ 0.024 \ 0.068 \ 0.179) \times 10^{-1}$			_		_	
$1.16 - 1.33 (4.021 \ 0.016 \ 0.050 \ 0.146) \times 10^{-6}$		_	_		_	
$1.33 - 1.51 (4.064 \ 0.014 \ 0.039 \ 0.119) \times 10^{-6}$		_	_		_	
$1.51 - 1.71 (4.045 \ 0.010 \ 0.031 \ 0.107) \times 10^{-6}$		_	_		_	
$1.71 - 1.92 (3.882 \ 0.009 \ 0.026 \ 0.093) \times 10^{-6}$		_	_		_	
$1.92 - 2.15 (3.642 \ 0.008 \ 0.021 \ 0.079) \times 10^{-6} $	$(4.326 \ 0.030 \ 0.0$	$51 \ 0.100) \times 10^{1}$	8.419 0.	061 0.110	0.256	
$2.15 - 2.40 (3.353 \ 0.007 \ 0.018 \ 0.068) \times 10^{-6}$	$(4.198 \ 0.026 \ 0.0$	$42\ 0.085)\times10^{1}$	7.985 0.	$052 \ 0.090$	0.217	
$2.40 - 2.67 (3.029 \ 0.006 \ 0.015 \ 0.058) \times 10^{-6}$	$(4.014 \ 0.023 \ 0.0$	$38 \ 0.075) \times 10^{1}$	7.545 0.	045 0.081	0.190	
$2.67 - 2.97 (2.700 \ 0.005 \ 0.013 \ 0.048) \times 10^{-6}$	$(3.746 \ 0.020 \ 0.0$	$35 \ 0.067) \times 10^{1}$	7.207 0.	040 0.075	0.171	
$2.97 - 3.29 (2.374 \ 0.004 \ 0.011 \ 0.040) \times 10^{-6}$	$(3.396 \ 0.017 \ 0.0$	$27 \ 0.057) \times 10^{1}$	$6.990 \ 0.$	036 0.065	0.157	
$3.29 - 3.64 (2.062 \ 0.003 \ 0.010 \ 0.033) \times 10^{-6}$	$(3.012 \ 0.014 \ 0.0$	$21 \ 0.049) \times 10^{1}$	$6.848 \ 0.$	034 0.058	0.148	
$3.64 - 4.02 (1.770 \ 0.003 \ 0.009 \ 0.028) \times 10^{-6}$	$(2.630 \ 0.012 \ 0.0$	$17 \ 0.042) \times 10^{1}$	$6.728 \ 0.$	033 0.054	0.142	
$4.02 - 4.43 (1.503 \ 0.002 \ 0.007 \ 0.023) \times 10^{-6}$	$(2.291 \ 0.010 \ 0.0$	$14 \ 0.036) \times 10^{1}$	$6.561 \ 0.$	030 0.051	0.135	
$4.43 - 4.88 (1.263 \ 0.002 \ 0.006 \ 0.019) \times 10^{-6}$	$(1.964 \ 0.008 \ 0.0$	$12 \ 0.030) \times 10^{1}$	$6.432 \ 0.$	028 0.049	0.131	
$4.88 - 5.37 (1.054 \ 0.002 \ 0.005 \ 0.015) \times 10^{-6}$	$(1.672 \ 0.007 \ 0.0$	$10\ 0.025) \times 10^{1}$	$6.302 \ 0.$	027 0.047	0.126	
$5.37 - 5.90 (8.742 \ 0.013 \ 0.038 \ 0.125) \times 10^{-1}$	$(1.403 \ 0.006 \ 0.0$	$08 \ 0.021) \times 10^{1}$	$6.233 \ 0.$	027 0.044	0.122	
$5.90 - 6.47 (7.180 \ 0.011 \ 0.030 \ 0.102) \times 10^{-6}$	$(1.174 \ 0.005 \ 0.0$	$06 \ 0.018) \times 10^{1}$	$6.119 \ 0.$	026 0.042	0.117	
$6.47 - 7.09 (5.899 \ 0.009 \ 0.024 \ 0.083) \times 10^{-1}$	(9.812 0.039 0.0	$54\ 0.147) \times 10^{0}$	$6.013 \ 0.$	026 0.041	0.114	
$7.09 - 7.76 (4.831 \ 0.007 \ 0.019 \ 0.067) \times 10^{-1}$	(8.186 0.033 0.0	$44\ 0.123) \times 10^{0}$	$5.902 \ 0.$	$025 \ 0.040$	0.111	
$7.76 - 8.48 (3.932 \ 0.006 \ 0.016 \ 0.055) \times 10^{-6} (3.932 \ 0.006 \ 0.016 \ 0.055) \times 10^{-6} (3.932 \ 0.006 \ 0.016 \ 0.055) \times 10^{-6} (3.932 \ 0.006 \ 0.016 \ 0.055) \times 10^{-6} (3.932 \ 0.006 \ 0.016 \ 0.055) \times 10^{-6} (3.932 \ 0.006 \ 0.016 \ 0.055) \times 10^{-6} (3.932 \ 0.006 \ 0.016 \ 0.055) \times 10^{-6} (3.932 \ 0.006 \ 0.016 \ 0.055) \times 10^{-6} (3.932 \ 0.006 \ 0.016 \ 0.055) \times 10^{-6} (3.932 \ 0.006 \ 0.016 \ 0.055) \times 10^{-6} (3.932 \ 0.006 \ 0.016 \ 0.055) \times 10^{-6} (3.932 \ 0.006 \ 0.016 \ 0.055) \times 10^{-6} (3.932 \ 0.006 \ 0.016 \ 0.055) \times 10^{-6} (3.932 \ 0.006 \ 0.016 \ 0.055) \times 10^{-6} (3.932 \ 0.006 \ 0.016 \ 0.055) \times 10^{-6} (3.932 \ 0.006 \ 0.016 \ 0.055) \times 10^{-6} (3.932 \ 0.006 \ 0.016 \ 0.055) \times 10^{-6} (3.932 \ 0.006 \ 0.016 \ 0.005) \times 10^{-6} (3.932 \ 0.006 \ 0.006) \times 10^{-6} (3.932 \ 0.006) \times 10^{$	$(6.759 \ 0.027 \ 0.0$	$37\ 0.101) \times 10^{0}$	$5.817 \ 0.$	$025 \ 0.039$	0.109	
$8.48 - 9.26 (3.197 \ 0.005 \ 0.013 \ 0.044) \times 10^{-1}$	$(5.567 \ 0.023 \ 0.0$	$31\ 0.083) \times 10^{0}$	5.742~0.	026 0.040	0.107	
$9.26 - 10.1 (2.600 \ 0.004 \ 0.011 \ 0.036) \times 10^{-1}$	$(4.563 \ 0.020 \ 0.0$	$26\ 0.068) \times 10^{0}$	$5.698 \ 0.$	027 0.040	0.106	
$10.1 - 11.0 (2.105 \ 0.004 \ 0.009 \ 0.029) \times 10^{-1}$	$(3.726 \ 0.017 \ 0.0$	$22\ 0.056) \times 10^{0}$	$5.648 \ 0.$	028 0.042	0.105	
$11.0 - 12.0 (1.701 \ 0.003 \ 0.007 \ 0.023) \times 10^{-1}$	$(3.049 \ 0.014 \ 0.0$	$19\ 0.046) \times 10^{0}$	$5.579 \ 0.$	028 0.043	0.104	
$12.0 - 13.0 (1.371 \ 0.003 \ 0.006 \ 0.019) \times 10^{-1}$	$(2.500 \ 0.013 \ 0.0$	$17\ 0.038) \times 10^{0}$	5.487~0.	030 0.044	0.104	
$13.0 - 14.1 (1.115 \ 0.002 \ 0.005 \ 0.016) \times 10^{-1}$	$(2.049 \ 0.011 \ 0.0$	$14\ 0.031) \times 10^{0}$	$5.441 \ 0.$	031 0.046	0.104	
$14.1 - 15.3 (9.014 \ 0.019 \ 0.043 \ 0.128) \times 10^{-6}$	(1.688 0.009 0.0	$12\ 0.026) \times 10^{0}$	$5.341 \ 0.$	031 0.047	0.102	
15.3 - 16.6 (7.268 0.016 0.036 0.105)×10	$(1.359 \ 0.008 \ 0.0$	$11\ 0.021) \times 10^{0}$	5.347~0.	032 0.049	0.104	

TABLE SM XXXVIII: Bartels Rotation 2463 (February 7, 2014 – March 5, 2014). (Continued).

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$ η	$\rho/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time} \ \sigma_{\rm syst.}$
$16.6 - 18.0 (5.884 \ 0.013 \ 0.030 \ 0.086) \times 10$	$0 (1.121 \ 0.006 \ 0.009 \ 0.018) \times 10^{0}$	5.249 0.032 0.050 0.103
$18.0 - 19.5 (4.731 \ 0.011 \ 0.025 \ 0.070) \times 10$	$0 (9.126 \ 0.053 \ 0.078 \ 0.147) \times 10^{-1} $	1 $ 5.184 \ 0.033 \ 0.052 \ 0.102 $
$19.5 - 21.1 (3.828 \ 0.009 \ 0.021 \ 0.058) \times 10$	0 (7.421 0.044 0.065 0.121)×10 $^{-}$	$^{1} 5.158 0.033 0.053 0.102$
$21.1 - 22.8 (3.092 \ 0.008 \ 0.017 \ 0.047) \times 10$	0 (6.038 0.037 0.054 0.099)×10 $^{-}$	1 $5.121 \ 0.034 \ 0.054 \ 0.103$
$22.8 - 24.7 (2.483 \ 0.006 \ 0.014 \ 0.038) \times 10$	0 (5.010 0.031 0.045 0.082)×10 $^{-}$	1 4.956 0.033 0.053 0.100
$24.7 - 26.7 (1.995 \ 0.005 \ 0.012 \ 0.031) \times 10$	$0 (4.055 \ 0.027 \ 0.037 \ 0.067) \times 10^{-1}$	1 4.920 0.035 0.054 0.099
$26.7 - 28.8 (1.618 \ 0.005 \ 0.010 \ 0.025) \times 10$	0 (3.322 0.023 0.031 0.055)×10 $^{-}$	1 4.870 0.037 0.054 0.099
$28.8 - 31.1 (1.309 \ 0.004 \ 0.008 \ 0.020) \times 10$	$0 (2.719 \ 0.020 \ 0.025 \ 0.045) \times 10^{-1}$	1 4.813 0.038 0.054 0.099
$31.1 - 33.5 (1.064 \ 0.003 \ 0.007 \ 0.017) \times 10$	0 (2.242 0.018 0.021 0.038)×10 $^{-}$	1 4.748 0.041 0.055 0.098
$33.5 - 36.1 (8.664 \ 0.030 \ 0.058 \ 0.135) \times 10$	$^{-1}$ (1.792 0.015 0.018 0.031)×10 $^{-1}$	1 $ 4.835 \ 0.044 \ 0.057 \ 0.101$
$36.1 - 38.9 (7.067 \ 0.026 \ 0.048 \ 0.111) \times 10$	$^{-1}$ (1.484 0.013 0.015 0.026)×10 $^{-1}$	1 4.762 0.046 0.058 0.100
$38.9 - 41.9 (5.708 \ 0.022 \ 0.040 \ 0.090) \times 10$	$^{-1}$ (1.196 0.012 0.012 0.020)×10 $^{-1}$	1 4.773 0.050 0.060 0.102
$41.9 - 45.1 (4.617 \ 0.020 \ 0.033 \ 0.074) \times 10$	$^{-1}$ (9.733 0.101 0.104 0.171)×10 ⁻¹	2 4.744 0.053 0.061 0.102
$45.1 - 48.5 (3.775 \ 0.017 \ 0.028 \ 0.061) \times 10$	$^{-1}$ (8.087 0.089 0.089 0.144)×10 $^{-1}$	2 4.668 0.056 0.062 0.102
$48.5 - 52.2 (3.108 \ 0.015 \ 0.023 \ 0.051) \times 10$	$^{-1}$ (6.631 0.077 0.076 0.120)×10 $^{-1}$	2 4.688 0.059 0.064 0.104
52.2 - 56.1 (2.533 0.013 0.019 0.043)×10	$^{-1}$ (5.421 0.067 0.064 0.100)×10 $^{-1}$	2 4.672 0.063 0.066 0.104
$56.1 - 60.3 (2.070 \ 0.011 \ 0.016 \ 0.035) \times 10$	$^{-1}$ (4.461 0.059 0.055 0.083)×10 $^{-1}$	$\frac{2}{4.641}$ 0.066 0.067 0.105

TABLE SM XXXIX: Bartels Rotation 2464 (March 6, 2014 – April 1, 2014). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$\sigma/{\rm He} \sigma_{ m stat.} \sigma_{ m time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (3.697 \ 0.026 \ 0.063 \ 0.169) \times 10$	2		_
$1.16 - 1.33 (3.931 \ 0.016 \ 0.048 \ 0.142) \times 10$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		_
$1.33 - 1.51 (4.096 \ 0.014 \ 0.037 \ 0.119) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.51 - 1.71 (4.117 \ 0.011 \ 0.030 \ 0.108) \times 10$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		_
$1.71 - 1.92 (3.977 \ 0.009 \ 0.024 \ 0.094) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.92 - 2.15 (3.765 \ 0.008 \ 0.020 \ 0.081) \times 10$	$(4.412\ 0.031\ 0.049\ 0.101)\times10^{1}$	8.534 0.062 0.106	0.257
$2.15 - 2.40 (3.470 \ 0.007 \ 0.017 \ 0.070) \times 10$	$(4.364 \ 0.027 \ 0.041 \ 0.088) \times 10^{1}$	7.951 0.052 0.085	0.214
$2.40 - 2.67 (3.141 \ 0.006 \ 0.014 \ 0.060) \times 10$	$(4.133 \ 0.023 \ 0.038 \ 0.076) \times 10^{1}$	7.599 0.045 0.077	0.189
$2.67 - 2.97 (2.794 \ 0.005 \ 0.012 \ 0.049) \times 10$	$(3.824 \ 0.020 \ 0.034 \ 0.067) \times 10^{1}$	7.307 0.041 0.072	0.172
$2.97 - 3.29 (2.465 \ 0.004 \ 0.011 \ 0.041) \times 10$,	I	0.156
$3.29 - 3.64 (2.135 \ 0.004 \ 0.009 \ 0.034) \times 10$	$(3.142 \ 0.015 \ 0.021 \ 0.051) \times 10^{1}$	6.794 0.034 0.054	0.146
$3.64 - 4.02 (1.832 \ 0.003 \ 0.008 \ 0.029) \times 10$,	6.717 0.033 0.051	0.141
$4.02 - 4.43 (1.560 \ 0.002 \ 0.007 \ 0.024) \times 10$	· ·	6.569 0.030 0.048	0.134
$4.43 - 4.88 (1.315 \ 0.002 \ 0.006 \ 0.020) \times 10$			0.130
$4.88 - 5.37 (1.092 \ 0.002 \ 0.005 \ 0.016) \times 10$	$[(1.719 \ 0.007 \ 0.010 \ 0.026) \times 10^{1}]$	6.355 0.027 0.044	0.126
$5.37 - 5.90 (9.042 \ 0.014 \ 0.035 \ 0.129) \times 10$,		0.121
$5.90 - 6.47 (7.444 \ 0.011 \ 0.028 \ 0.104) \times 10$,		0.116
$6.47 - 7.09 (6.101 \ 0.009 \ 0.022 \ 0.085) \times 10$,		0.114
$7.09 - 7.76 (4.992 \ 0.007 \ 0.018 \ 0.069) \times 10$	· ·		0.112
$7.76 - 8.48 (4.066 \ 0.006 \ 0.015 \ 0.056) \times 10$,		0.109
$8.48 - 9.26 (3.304 \ 0.005 \ 0.012 \ 0.045) \times 10$,		
$9.26 - 10.1 (2.665 \ 0.004 \ 0.010 \ 0.036) \times 10$,		
$10.1 - 11.0 (2.165 \ 0.004 \ 0.008 \ 0.029) \times 10$	/		
$11.0 - 12.0 (1.735 \ 0.003 \ 0.007 \ 0.024) \times 10$,		
$12.0 - 13.0 (1.400 \ 0.003 \ 0.006 \ 0.019) \times 10$	/		
$13.0 - 14.1 (1.141 \ 0.002 \ 0.005 \ 0.016) \times 10$,	I	
$14.1 - 15.3 (9.191 \ 0.019 \ 0.040 \ 0.129) \times 10$,	l .	
$15.3 - 16.6 (7.434 \ 0.016 \ 0.033 \ 0.106) \times 10$	$0 (1.373 \ 0.008 \ 0.010 \ 0.022) \times 10^{0}$	5.414 0.032 0.047	0.104

TABLE SM XXXIX: Bartels Rotation 2464 (March 6, 2014 – April 1, 2014). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{ ext{stat.}}$ $\sigma_{ ext{time}}$ $\sigma_{ ext{syst.}}$
$16.6 - 18.0 (5.950 \ 0.013 \ 0.027 \ 0.086) \times 10^{-1}$	$0 (1.130 \ 0.006 \ 0.009 \ 0.018)\rangle$	$\times 10^0$ 5.263 0.032 0.048 0.102
$18.0 - 19.5 (4.799 \ 0.011 \ 0.023 \ 0.070) \times 10^{-1} (4.799 \ 0.011 \ 0.011 \ 0.011) \times 10^{-1} (4.799 \ 0$	$0 \mid (9.113 \ 0.053 \ 0.076 \ 0.146) >$	$\times 10^{-1}$ 5.266 0.033 0.050 0.103
$19.5 - 21.1 (3.866 \ 0.009 \ 0.019 \ 0.057) \times 10^{-1}$	$0 (7.428 \ 0.044 \ 0.064 \ 0.120) >$	$\times 10^{-1} 5.205 \ 0.033 \ 0.052 \ 0.102$
$21.1 - 22.8 (3.129 \ 0.008 \ 0.016 \ 0.047) \times 10^{-6} (3.129 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (3.129 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (3.129 \ 0.008) \times 10^{-6} (3.129$	$0 (6.102 \ 0.037 \ 0.053 \ 0.099) >$	$\times 10^{-1} 5.128 \ 0.034 \ 0.052 \ 0.102$
$22.8 - 24.7 (2.530 \ 0.006 \ 0.013 \ 0.038) \times 10^{-6}$	$0 (4.900 \ 0.031 \ 0.043 \ 0.080) >$	$\times 10^{-1} 5.163 \ 0.035 \ 0.053 \ 0.103$
$24.7 - 26.7 (2.023 \ 0.005 \ 0.011 \ 0.031) \times 10^{-6}$	$0 (4.012 \ 0.027 \ 0.036 \ 0.066) >$	$\times 10^{-1} 5.042 \ 0.036 \ 0.053 \ 0.101$
$26.7 - 28.8 (1.627 \ 0.005 \ 0.009 \ 0.025) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005) \times 10^{$	$0 (3.257 \ 0.023 \ 0.030 \ 0.054) \rangle$	$\times 10^{-1} 4.997 \ 0.038 \ 0.054 \ 0.100$
$28.8 - 31.1 (1.319 \ 0.004 \ 0.007 \ 0.020) \times 10^{-1} (1.319 \ 0.004 \ 0.007 \ 0.000) \times 10^{-1} (1.319 \ 0.004 \ 0.000) \times 10^{-1} (1.319 \ 0$	$0 (2.685 \ 0.020 \ 0.025 \ 0.045)\rangle$	$\times 10^{-1} 4.914 \ 0.039 \ 0.054 \ 0.100$
$31.1 - 33.5 (1.073 \ 0.003 \ 0.006 \ 0.017) \times 10^{-1}$	$0 (2.210 \ 0.018 \ 0.021 \ 0.037)\rangle$	$\times 10^{-1} 4.857 \ 0.042 \ 0.054 \ 0.099$
$33.5 - 36.1 (8.717 \ 0.030 \ 0.052 \ 0.134) \times 10$	$^{-1}$ (1.793 0.015 0.018 0.031)>	$\times 10^{-1} 4.861 \ 0.044 \ 0.056 \ 0.100$
$36.1 - 38.9 (7.051 \ 0.026 \ 0.043 \ 0.109) \times 10$	$^{-1}$ (1.470 0.013 0.015 0.026)>	$\times 10^{-1} 4.795 \ 0.047 \ 0.057 \ 0.100$
$38.9 - 41.9 (5.746 \ 0.022 \ 0.036 \ 0.089) \times 10$	$^{-1}$ (1.187 0.011 0.012 0.020)>	$\times 10^{-1} 4.841 \ 0.050 \ 0.059 \ 0.102$
$41.9 - 45.1 (4.703 \ 0.020 \ 0.030 \ 0.073) \times 10$	$^{-1}$ (9.815 0.100 0.106 0.173)>	$\times 10^{-2} 4.792 \ 0.053 \ 0.060 \ 0.102$
$45.1 - 48.5 (3.803 \ 0.017 \ 0.025 \ 0.060) \times 10$	$^{-1}$ (8.094 0.088 0.091 0.145)>	$\times 10^{-2} 4.698 \ 0.055 \ 0.061 \ 0.102$
$48.5 - 52.2 (3.118 \ 0.015 \ 0.021 \ 0.050) \times 10$	$^{-1}$ (6.558 0.076 0.076 0.119)>	$\times 10^{-2} 4.755 \ 0.060 \ 0.064 \ 0.104$
$52.2 - 56.1 (2.510 \ 0.013 \ 0.017 \ 0.041) \times 10$	$^{-1}$ (5.372 0.067 0.065 0.099)>	$\times 10^{-2} 4.673 \ 0.063 \ 0.065 \ 0.104$
$56.1 - 60.3 (2.076 \ 0.011 \ 0.014 \ 0.035) \times 10$	$^{-1}$ (4.410 0.058 0.055 0.083)>	$\times 10^{-2} 4.708 \ 0.067 \ 0.067 \ 0.106$

TABLE SM XL: Bartels Rotation 2465 (April 2, 2014 – April 28, 2014). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s}\cdot{\rm GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$p/\mathrm{He} \ \sigma_{\mathrm{stat.}} \ \sigma_{\mathrm{time}}$	$\sigma_{ m syst.}$
1.00 - 1.16 (3.813 0.025 0.055 0.171)×10	2		_
$1.16 - 1.33 (4.081 \ 0.017 \ 0.042 \ 0.145) \times 10$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		_
$1.33 - 1.51 (4.233 \ 0.014 \ 0.033 \ 0.122) \times 10$	2		_
$1.51 - 1.71 (4.222\ 0.011\ 0.027\ 0.110) \times 10$	2		_
$1.71 - 1.92 (4.073 \ 0.009 \ 0.022 \ 0.096) \times 10$	2		_
1.92 - 2.15 (3.825 0.008 0.019 0.082)×10	$(4.552 \ 0.031 \ 0.059 \ 0.108) \times 10^{1}$	8.402 0.059 0.116	0.258
2.15 - 2.40 (3.521 0.007 0.016 0.070)×10	$(4.401 \ 0.027 \ 0.048 \ 0.091) \times 10^{1}$	7.999 0.051 0.094	0.219
$2.40 - 2.67 (3.179\ 0.006\ 0.013\ 0.060) \times 10$	$(4.219 \ 0.023 \ 0.044 \ 0.081) \times 10^{1}$	7.535 0.044 0.085	0.191
2.67 - 2.97 (2.830 0.005 0.011 0.049)×10	$(3.923 \ 0.020 \ 0.040 \ 0.072) \times 10^{1}$	7.213 0.039 0.079	0.173
2.97 - 3.29 (2.485 0.004 0.010 0.041)×10	$(3.558 \ 0.017 \ 0.031 \ 0.061) \times 10^{1}$	6.983 0.036 0.067	0.158
$3.29 - 3.64 (2.158\ 0.004\ 0.009\ 0.034) \times 10$	$(3.185 \ 0.015 \ 0.024 \ 0.053) \times 10^{1}$	6.775 0.033 0.058	0.147
$3.64 - 4.02 (1.843 \ 0.003 \ 0.008 \ 0.029) \times 10$		6.693 0.032 0.054	0.141
$4.02 - 4.43 (1.569 \ 0.002 \ 0.006 \ 0.024) \times 10$	$(2.389 \ 0.010 \ 0.016 \ 0.038) \times 10^{1}$	6.567 0.030 0.051	0.135
$4.43 - 4.88 (1.314 \ 0.002 \ 0.005 \ 0.020) \times 10$		6.414 0.028 0.049	0.130
$4.88 - 5.37 (1.096 \ 0.002 \ 0.004 \ 0.016) \times 10$	$(1.729 \ 0.007 \ 0.011 \ 0.027) \times 10^{1}$	6.339 0.027 0.047	0.127
5.37 - 5.90 (9.045 0.014 0.033 0.128)×10	$1 (1.441 \ 0.006 \ 0.009 \ 0.022) \times 10^{1}$	6.276 0.027 0.045	0.123
$5.90 - 6.47 (7.456\ 0.011\ 0.026\ 0.104) \times 10$	$1 (1.225 \ 0.005 \ 0.007 \ 0.019) \times 10^{1}$	6.089 0.026 0.043	0.117
$6.47 - 7.09 (6.095 \ 0.009 \ 0.021 \ 0.085) \times 10$	$(1.015 \ 0.004 \ 0.006 \ 0.015) \times 10^{1}$	6.005 0.025 0.042	0.115
$7.09 - 7.76 (4.983\ 0.007\ 0.017\ 0.069) \times 10$		5.983 0.025 0.041	0.113
$7.76 - 8.48 (4.040\ 0.006\ 0.013\ 0.056) \times 10$	$(6.894 \ 0.028 \ 0.042 \ 0.104) \times 10^{0}$	5.860 0.025 0.041	0.110
8.48 - 9.26 (3.285 0.005 0.011 0.045)×10		5.776 0.026 0.041	0.108
$9.26 - 10.1 (2.658\ 0.004\ 0.009\ 0.036) \times 10$	$(4.644 \ 0.020 \ 0.030 \ 0.071) \times 10^{0}$	$5.724 \ 0.027 \ 0.042$	0.107
$10.1 - 11.0 (2.150\ 0.004\ 0.008\ 0.029) \times 10$	$(3.799 \ 0.017 \ 0.025 \ 0.058) \times 10^{0}$	5.660 0.028 0.043	0.106
$11.0 - 12.0 (1.730\ 0.003\ 0.006\ 0.023) \times 10$	$(3.097 \ 0.015 \ 0.022 \ 0.048) \times 10^{0}$	5.585 0.028 0.044	0.105
$12.0 - 13.0 (1.400\ 0.003\ 0.005\ 0.019) \times 10$			0.105
$13.0 - 14.1 (1.133\ 0.002\ 0.004\ 0.016) \times 10$	$(2.061 \ 0.011 \ 0.016 \ 0.032) \times 10^{0}$	5.496 0.031 0.048	0.105
$14.1 - 15.3 (9.152\ 0.019\ 0.037\ 0.128) \times 10$			0.104
$15.3 - 16.6 (7.350 \ 0.016 \ 0.030 \ 0.104) \times 10$,		0.103
	1 .		

TABLE SM XL: Bartels Rotation 2465 (April 2, 2014 – April 28, 2014). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \ \sigma_{\text{time }} \ \sigma_{\text{syst.}}$
$16.6 - 18.0 (5.945 \ 0.013 \ 0.025 \ 0.085) \times 10$	$0 (1.129 \ 0.006 \ 0.010 \ 0.019) \times 10^{-6} $	$\begin{bmatrix} 5.265 & 0.032 & 0.052 & 0.104 \end{bmatrix}$
$18.0 - 19.5 (4.764 \ 0.011 \ 0.021 \ 0.069) \times 10$	$0 \mid (9.204 \ 0.053 \ 0.087 \ 0.153) \times 10^{-6}$	-1 5.176 0.032 0.054 0.103
$19.5 - 21.1 (3.858 \ 0.009 \ 0.017 \ 0.057) \times 10$	$0 \mid (7.536 \ 0.045 \ 0.074 \ 0.127) \times 10^{-6}$	$^{-1}$ 5.119 0.033 0.055 0.103
$21.1 - 22.8 (3.106 \ 0.008 \ 0.015 \ 0.046) \times 10$	$0 \mid (5.981 \ 0.037 \ 0.059 \ 0.101) \times 10^{-6}$	-1 5.193 0.035 0.057 0.105
$22.8 - 24.7 (2.508 \ 0.006 \ 0.012 \ 0.037) \times 10$	$0 \mid (4.959 \ 0.031 \ 0.049 \ 0.084) \times 10^{-1}$	$^{-1}$ $ 5.059 \ 0.034 \ 0.056 \ 0.103$
$24.7 - 26.7 (2.016 \ 0.005 \ 0.010 \ 0.031) \times 10$	$0 \mid (4.055 \ 0.027 \ 0.041 \ 0.069) \times 10^{-1}$	-1 4.973 0.035 0.056 0.101
$26.7 - 28.8 (1.631 \ 0.005 \ 0.008 \ 0.024) \times 10$	$0 (3.336 \ 0.023 \ 0.034 \ 0.057) \times 10^{-6} $	$^{-1}$ 4.887 0.037 0.056 0.100
$28.8 - 31.1 (1.315 \ 0.004 \ 0.007 \ 0.020) \times 10$	$0 \mid (2.721 \ 0.020 \ 0.028 \ 0.047) \times 10^{-1}$	$^{-1}$ 4.831 0.038 0.056 0.100
$31.1 - 33.5 (1.072 \ 0.003 \ 0.006 \ 0.017) \times 10$	$0 (2.209 \ 0.018 \ 0.023 \ 0.038) \times 10^{-6} $	$^{-1}$ 4.854 0.042 0.057 0.101
$33.5 - 36.1 (8.679 \ 0.030 \ 0.048 \ 0.132) \times 10$	$^{-1} (1.836\ 0.015\ 0.020\ 0.033)\times 10^{-1} $	$^{-1}$ 4.728 0.043 0.057 0.099
$36.1 - 38.9 (7.046 \ 0.026 \ 0.040 \ 0.107) \times 10$	$^{-1}$ (1.486 0.013 0.016 0.027)×10	$^{-1}$ 4.742 0.046 0.059 0.101
$38.9 - 41.9 (5.778 \ 0.023 \ 0.034 \ 0.089) \times 10$	$^{-1} (1.186\ 0.012\ 0.013\ 0.021)\times 10^{-1} $	$^{-1}$ 4.871 0.051 0.062 0.105
$41.9 - 45.1 (4.675 \ 0.020 \ 0.028 \ 0.072) \times 10$	$^{-1} (9.698 \ 0.101 \ 0.113 \ 0.176) \times 10$	$ -2 4.820 \ 0.054 \ 0.063 \ 0.104 $
$45.1 - 48.5 (3.816 \ 0.017 \ 0.023 \ 0.060) \times 10$	$^{-1} (8.125\ 0.089\ 0.098\ 0.150)\times 10^{-1} $	$-2 \mid 4.696 \mid 0.056 \mid 0.063 \mid 0.103 \mid$
$48.5 - 52.2 (3.071 \ 0.015 \ 0.019 \ 0.049) \times 10$	$^{-1} (6.636\ 0.077\ 0.083\ 0.125)\times 10$	-2 4.628 0.058 0.065 0.103
$52.2 - 56.1 (2.537 \ 0.013 \ 0.016 \ 0.041) \times 10$	$^{-1} (5.377\ 0.067\ 0.070\ 0.103)\times 10$	$^{-2}$ 4.718 0.064 0.068 0.106
$56.1 - 60.3 (2.059 \ 0.011 \ 0.013 \ 0.034) \times 10$	$^{-1}$ (4.558 0.059 0.061 0.089)×10	-2 4.517 0.064 0.067 0.103

TABLE SM XLI: Bartels Rotation 2466 (April 29, 2014 – May 25, 2014). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\mathrm{He} \ \sigma_{\mathrm{stat.}} \ \sigma_{\mathrm{time}}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (4.166 \ 0.024 \ 0.067 \ 0.189) \times 10^{-6} (4.166 \ 0.024 \ 0.067 \ 0.189) \times 10^{-6} (4.166 \ 0.024 \ 0.067 \ 0.189) \times 10^{-6} (4.166 \ 0.024 \ 0.067 \ 0.189) \times 10^{-6} (4.166 \ 0.024 \ 0.067 \ 0.189) \times 10^{-6} (4.166 \ 0.024 \ 0.067 \ 0.189) \times 10^{-6} (4.166 \ 0.024 \ 0.067 \ 0.189) \times 10^{-6} (4.166 \ 0.024 \ 0.067 \ 0.189) \times 10^{-6} (4.166 \ 0.024 \ 0.067 \ 0.189) \times 10^{-6} (4.166 \ 0.024 \ 0.067 \ 0.189) \times 10^{-6} (4.166 \ 0.024 \ 0.067 \ 0.189) \times 10^{-6} (4.166 \ 0.024 \ 0.067 \ 0.189) \times 10^{-6} (4.166 \ 0.024 \ 0.067 \ 0.189) \times 10^{-6} (4.166 \ 0.024 \ 0.067 \ 0.189) \times 10^{-6} (4.166 \ 0.024 \ 0.067 \ 0.189) \times 10^{-6} (4.166 \ 0.024 \ 0.067 \ 0.189) \times 10^{-6} (4.166 \ 0.024 \ 0.067 \ 0.189) \times 10^{-6} (4.166 \ 0.024 \ 0.067 \ 0.189) \times 10^{-6} (4.166 \ 0.024 \ 0.067 \ 0.189) \times 10^{-6} (4.166 \ 0.024 \ 0.067 \ 0.089) \times 10^{-6} (4.166 \ 0.024 \ 0.089) \times 10^{-6} (4.166 \ 0.089) \times 10^{-6} $	2		_
$1.16 - 1.33 (4.401 \ 0.017 \ 0.051 \ 0.158) \times 10^{-6}$	$P \mid$		_
$1.33 - 1.51 (4.566 \ 0.015 \ 0.040 \ 0.132) \times 10^{-6}$	$P \mid P \mid$		_
$1.51 - 1.71 (4.535 \ 0.011 \ 0.032 \ 0.119) \times 10^{-6}$	2		_
$1.71 - 1.92 (4.367 \ 0.010 \ 0.027 \ 0.103) \times 10^{-6}$	2		_
$1.92 - 2.15 (4.105 \ 0.008 \ 0.022 \ 0.089) \times 10^{-6}$	$(4.823 \ 0.032 \ 0.056 \ 0.111) \times 10$	8.511 0.060 0.108	0.257
$2.15 - 2.40 (3.750\ 0.007\ 0.018\ 0.075) \times 10^{-6}$		$7.887 \ 0.050 \ 0.086$	0.213
$2.40 - 2.67 (3.391\ 0.006\ 0.016\ 0.064) \times 10^{-6}$	$(4.500\ 0.025\ 0.042\ 0.084)\times 10$	$\begin{vmatrix} 7.535 & 0.044 & 0.079 \end{vmatrix}$	0.189
$2.67 - 2.97 (3.016 \ 0.005 \ 0.013 \ 0.053) \times 10^{-2}$,		0.173
$2.97 - 3.29 (2.628 \ 0.004 \ 0.011 \ 0.044) \times 10^{-2}$	` '		0.155
$3.29 - 3.64 (2.271 \ 0.004 \ 0.010 \ 0.037) \times 10^{-6} (2.271 \ 0.004 \ 0.004 \ 0.004) \times 10^{-6} (2.271 \ 0.004 \ 0.004 \ 0.004) \times 10^{-6} (2.271 \ 0$,		0.146
$3.64 - 4.02 (1.939 \ 0.003 \ 0.009 \ 0.031) \times 10^{-6}$	· · · · · · · · · · · · · · · · · · ·		0.140
$4.02 - 4.43 (1.642 \ 0.003 \ 0.007 \ 0.025) \times 10^{-6} (1.642 \ 0.003 \ 0.007 \ 0.0025) \times 10^{-6} (1.642$,		0.134
$4.43 - 4.88 (1.378 \ 0.002 \ 0.006 \ 0.021) \times 10^{-6} (1.378 \ 0.002 \ 0.006 \ 0.0021) \times 10^{-6} (1.378 \ 0.002 \ 0.002) \times 10^{-6} (1.378 \ 0.002 \ 0.002) \times 10^{-6} (1.378 \ 0.$	· · · · · · · · · · · · · · · · · · ·		
$4.88 - 5.37 (1.140 \ 0.002 \ 0.005 \ 0.016) \times 10^{-2}$,		
$5.37 - 5.90 (9.391\ 0.014\ 0.038\ 0.134) \times 10^{-1}$,		0.121
$5.90 - 6.47 (7.721 \ 0.011 \ 0.030 \ 0.108) \times 10^{-1}$			0.116
$6.47 - 7.09 (6.300 \ 0.009 \ 0.024 \ 0.088) \times 10^{-1}$,		
$7.09 - 7.76 (5.128 \ 0.008 \ 0.019 \ 0.071) \times 10^{-1}$			
$7.76 - 8.48 (4.154 \ 0.006 \ 0.015 \ 0.057) \times 10^{-1}$,		
$8.48 - 9.26 (3.370 \ 0.005 \ 0.013 \ 0.046) \times 10^{-1}$,		
$9.26 - 10.1 (2.726 \ 0.005 \ 0.010 \ 0.037) \times 10^{-1}$,		
$10.1 - 11.0 (2.192\ 0.004\ 0.009\ 0.030) \times 10^{-1}$	· ·		
$11.0 - 12.0 \ (1.762 \ 0.003 \ 0.007 \ 0.024) \times 10^{-1}$,		
$12.0 - 13.0 \ (1.416 \ 0.003 \ 0.006 \ 0.019) \times 10^{-1}$	· ·		
$13.0 - 14.1 (1.149 \ 0.002 \ 0.005 \ 0.016) \times 10^{-1}$	· ·		
$14.1 - 15.3 (9.275 \ 0.019 \ 0.041 \ 0.131) \times 10^{1}$	· ·		
$15.3 - 16.6 (7.451 \ 0.016 \ 0.034 \ 0.106) \times 10^{10}$,		
=======================================	(======================================	15:310 0:002 3:011	

TABLE SM XLI: Bartels Rotation 2466 (April 29, 2014 – May 25, 2014). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time }} \sigma_{\text{syst.}}$
$16.6 - 18.0 (5.990 \ 0.013 \ 0.028 \ 0.087) \times 10$	$(1.126 \ 0.006 \ 0.009 \ 0.018) \times 10^{-6}$	$\begin{bmatrix} 5.321 & 0.033 & 0.049 & 0.104 \end{bmatrix}$
$18.0 - 19.5 (4.823 \ 0.011 \ 0.024 \ 0.071) \times 10$	$0 \mid (9.342 \ 0.054 \ 0.078 \ 0.150) \times 10^{-6}$	-1 5.162 0.032 0.050 0.101
$19.5 - 21.1 (3.871 \ 0.009 \ 0.019 \ 0.058) \times 10$	$(7.527 \ 0.045 \ 0.065 \ 0.122) \times 10^{-6}$	$ 5.144 \ 0.033 \ 0.051 \ 0.101 $
$21.1 - 22.8 (3.121 \ 0.008 \ 0.016 \ 0.047) \times 10$	$0 \mid (6.197 \ 0.038 \ 0.054 \ 0.101) \times 10^{-6}$	-1 5.036 0.033 0.051 0.100
$22.8 - 24.7 (2.515 \ 0.006 \ 0.013 \ 0.038) \times 10$	$0 \mid (5.014 \ 0.031 \ 0.044 \ 0.082) \times 10^{-6}$	-1 5.015 0.034 0.052 0.100
$24.7 - 26.7 (2.022 \ 0.005 \ 0.011 \ 0.031) \times 10$	$(4.087 \ 0.027 \ 0.037 \ 0.067) \times 10^{-6}$	-1 4.947 0.035 0.052 0.099
$26.7 - 28.8 (1.640 \ 0.005 \ 0.009 \ 0.025) \times 10$	$(3.320 \ 0.024 \ 0.030 \ 0.054) \times 10^{-6}$	-1 4.940 0.038 0.053 0.099
$28.8 - 31.1 (1.321 \ 0.004 \ 0.008 \ 0.020) \times 10$	$0 \mid (2.708 \ 0.020 \ 0.025 \ 0.045) \times 10^{-6}$	-1 4.880 0.039 0.053 0.099
$31.1 - 33.5 (1.071 \ 0.003 \ 0.006 \ 0.017) \times 10$	$(2.213 \ 0.018 \ 0.021 \ 0.037) \times 10^{-6}$	$ ^{-1} 4.840 0.042 0.054 0.099$
$33.5 - 36.1 (8.698 \ 0.030 \ 0.053 \ 0.134) \times 10$	$^{-1} (1.835 \ 0.016 \ 0.018 \ 0.031) \times 10^{-1} $	-1 4.740 0.043 0.055 0.098
$36.1 - 38.9 (7.059 \ 0.026 \ 0.044 \ 0.109) \times 10$	$^{-1} (1.510 \ 0.014 \ 0.015 \ 0.026) \times 10^{-1} $	$ ^{-1} 4.674 0.045 0.055 0.098 $
$38.9 - 41.9 (5.766 \ 0.023 \ 0.037 \ 0.090) \times 10$	$^{-1} (1.214 \ 0.012 \ 0.013 \ 0.021) \times 10^{-1} $	$ -1 4.752 \ 0.050 \ 0.058 \ 0.101$
$41.9 - 45.1 (4.664 \ 0.020 \ 0.031 \ 0.073) \times 10$	$^{-1} (9.946 \ 0.103 \ 0.107 \ 0.175) \times 10^{-1} $	$ ^{-2} 4.690 \ 0.052 \ 0.059 \ 0.100$
$45.1 - 48.5 (3.819 \ 0.017 \ 0.026 \ 0.061) \times 10$	$^{-1} (8.044 \ 0.089 \ 0.090 \ 0.144) \times 10^{-1} $	-2 4.748 0.057 0.062 0.103
$48.5 - 52.2 (3.107 \ 0.015 \ 0.021 \ 0.050) \times 10$	$^{-1} (6.628 \ 0.077 \ 0.077 \ 0.121) \times 10^{-1} $	-2 4.687 0.059 0.063 0.103
$52.2 - 56.1 (2.529 \ 0.013 \ 0.018 \ 0.042) \times 10$	$^{-1} (5.411\ 0.068\ 0.065\ 0.100)\times 10$	$ -2 4.674 \ 0.063 \ 0.065 \ 0.104$
$56.1 - 60.3 (2.059 \ 0.011 \ 0.015 \ 0.034) \times 10$	-1 (4.456 0.059 0.056 0.084)×10	$ -2 4.620 \ 0.066 \ 0.067 \ 0.105$

TABLE SM XLII: Bartels Rotation 2467 (May 26, 2014 – June 21, 2014). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (4.071\ 0.025\ 0.063\ 0.184) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.16 - 1.33 (4.395 \ 0.016 \ 0.049 \ 0.158) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.33 - 1.51 (4.522 \ 0.015 \ 0.039 \ 0.131) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.51 - 1.71 (4.487 \ 0.011 \ 0.031 \ 0.117) \times 10$	2		_
$1.71 - 1.92 (4.329\ 0.010\ 0.026\ 0.102) \times 10$	2		_
$1.92 - 2.15 (4.029 \ 0.008 \ 0.021 \ 0.087) \times 10$	$(4.801 \ 0.032 \ 0.043 \ 0.105) \times 10^{-6}$	8.391 0.058 0.087	0.246
$2.15 - 2.40$ $(3.686 \ 0.007 \ 0.018 \ 0.074) \times 10$	$(4.634 \ 0.028 \ 0.036 \ 0.089) \times 10^{-2}$	7.954 0.050 0.073	0.210
$2.40 - 2.67 (3.315 \ 0.006 \ 0.015 \ 0.063) \times 10$	$(4.392 \ 0.024 \ 0.032 \ 0.077) \times 10^{-6}$	7.548 0.043 0.064	0.183
$2.67 - 2.97 (2.938 \ 0.005 \ 0.013 \ 0.051) \times 10$	$(4.044\ 0.021\ 0.028\ 0.067)\times10^{-2}$	7.265 0.039 0.059	0.166
$2.97 - 3.29 (2.575 \ 0.004 \ 0.011 \ 0.043) \times 10$	$(3.658 \ 0.017 \ 0.023 \ 0.059) \times 10^{-6}$	7.039 0.035 0.054	0.154
$3.29 - 3.64 (2.219 \ 0.004 \ 0.010 \ 0.036) \times 10$	$(3.253 \ 0.015 \ 0.019 \ 0.051) \times 10^{-2}$	6.820 0.033 0.050	0.145
$3.64 - 4.02 (1.894 \ 0.003 \ 0.009 \ 0.030) \times 10$	$(2.822 \ 0.013 \ 0.015 \ 0.044) \times 10^{-2}$	6.713 0.032 0.047	0.139
$4.02 - 4.43 (1.611\ 0.002\ 0.007\ 0.025) \times 10$	$(2.443 \ 0.010 \ 0.013 \ 0.037) \times 10^{-2}$	6.594 0.030 0.045	0.134
$4.43 - 4.88 (1.350 \ 0.002 \ 0.006 \ 0.020) \times 10$	$(2.084 \ 0.008 \ 0.010 \ 0.031) \times 10^{-2}$	6.477 0.028 0.043	0.129
$4.88 - 5.37 (1.116 \ 0.002 \ 0.005 \ 0.016) \times 10$	$(1.765 \ 0.007 \ 0.008 \ 0.026) \times 10^{-2}$	6.325 0.027 0.040	0.124
5.37 - 5.90 (9.172 0.014 0.036 0.131)×10	$1 (1.477 \ 0.006 \ 0.007 \ 0.022) \times 10^{-1}$	6.210 0.026 0.038	0.119
$5.90 - 6.47 (7.562 \ 0.011 \ 0.029 \ 0.106) \times 10$	$1 (1.244 \ 0.005 \ 0.006 \ 0.018) \times 10^{-1}$	6.080 0.026 0.036	0.115
$6.47 - 7.09 (6.177 \ 0.009 \ 0.023 \ 0.086) \times 10$	$1 (1.028 \ 0.004 \ 0.005 \ 0.015) \times 10^{-1}$	6.011 0.025 0.036	0.113
$7.09 - 7.76 (5.032 \ 0.008 \ 0.018 \ 0.070) \times 10$	$1 (8.463 \ 0.033 \ 0.040 \ 0.125) \times 10^{0}$	5.945 0.025 0.035	0.110
$7.76 - 8.48 (4.089 0.006 0.015 0.057) \times 10$	$(6.927 \ 0.028 \ 0.034 \ 0.102) \times 10^{0}$	5.903 0.025 0.036	0.109
8.48 - 9.26 (3.306 0.005 0.012 0.045)×10	$1 (5.716 \ 0.024 \ 0.029 \ 0.084) \times 10^{0} $	5.785 0.026 0.036	0.106
$9.26-10.1 (2.669 0.004 0.010 0.036) \! imes \! 10$	$1 (4.695 \ 0.020 \ 0.025 \ 0.070) \times 10^{0} $	$5.685 \ 0.026 \ 0.037$	0.105
$10.1 - 11.0 (2.155 \ 0.004 \ 0.008 \ 0.029) \times 10$	$1 (3.843 \ 0.017 \ 0.021 \ 0.057) \times 10^{0} $	$5.609 \ 0.027 \ 0.038$	0.103
$11.0 - 12.0 (1.734 \ 0.003 \ 0.007 \ 0.024) \times 10$	$1 (3.130 \ 0.015 \ 0.018 \ 0.047) \times 10^{0}$	$5.539 \ 0.028 \ 0.039$	0.102
$12.0 - 13.0 (1.402 \ 0.003 \ 0.006 \ 0.019) \times 10$	$(2.541 \ 0.013 \ 0.016 \ 0.038) \times 10^{0}$	5.516 0.030 0.041	0.103
$13.0 - 14.1 (1.137 \ 0.002 \ 0.005 \ 0.016) \times 10$	$(2.106 \ 0.011 \ 0.014 \ 0.032) \times 10^{0}$	5.396 0.030 0.042	0.101
$14.1 - 15.3 (9.171 \ 0.019 \ 0.040 \ 0.129) \times 10$	$0 (1.716 \ 0.009 \ 0.012 \ 0.026) \times 10^{6} $	5.345 0.031 0.043	0.101
$15.3 - 16.6 (7.390 \ 0.016 \ 0.033 \ 0.105) \times 10$	$0 (1.381 \ 0.008 \ 0.010 \ 0.021) \times 10^{0} $	$5.351 \ 0.032 \ 0.046$	0.102
TT 11 1 1 1	·	·	

TABLE SM XLII: Bartels Rotation 2467 (May 26, 2014 – June 21, 2014). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time }} \sigma_{\text{syst.}}$
$16.6 - 18.0 (5.946 \ 0.013 \ 0.028 \ 0.086) \times 10$	$0 (1.129 \ 0.006 \ 0.009 \ 0.018) \times 10^{-6} $	0 5.267 0.032 0.047 0.102
$18.0 - 19.5 (4.770 \ 0.011 \ 0.023 \ 0.070) \times 10$	$0 \mid (9.234 \ 0.054 \ 0.074 \ 0.147) \times 10^{-6}$	0^{-1} 5.166 0.032 0.048 0.100
$19.5 - 21.1 (3.840 \ 0.009 \ 0.019 \ 0.057) \times 10$	$(7.444 \ 0.045 \ 0.063 \ 0.120) \times 10^{-6}$	$0^{-1} 5.159 \ 0.033 \ 0.050 \ 0.101$
$21.1 - 22.8 (3.101 \ 0.008 \ 0.016 \ 0.047) \times 10$	$(6.185 \ 0.038 \ 0.053 \ 0.100) \times 10^{-6}$	0^{-1} 5.013 0.033 0.050 0.099
$22.8 - 24.7 (2.507 \ 0.006 \ 0.013 \ 0.038) \times 10$	$0 \mid (4.937 \ 0.031 \ 0.043 \ 0.080) \times 10^{-1}$	$0^{-1} 5.078 0.034 0.052 0.101$
$24.7 - 26.7 (2.005 \ 0.005 \ 0.011 \ 0.031) \times 10$	$(4.052 \ 0.027 \ 0.036 \ 0.066) \times 10^{-6}$	$0^{-1} 4.947 \ 0.035 \ 0.051 \ 0.099$
$26.7 - 28.8 (1.633 \ 0.005 \ 0.009 \ 0.025) \times 10$	$(3.314 \ 0.023 \ 0.030 \ 0.054) \times 10^{-6}$	$0^{-1} 4.926 \ 0.037 \ 0.053 \ 0.099$
$28.8 - 31.1 (1.315 \ 0.004 \ 0.008 \ 0.020) \times 10$	$(2.705 \ 0.020 \ 0.025 \ 0.045) \times 10^{-6}$	0^{-1} 4.862 0.039 0.053 0.098
$31.1 - 33.5 (1.067 \ 0.003 \ 0.006 \ 0.017) \times 10$	$(2.198 \ 0.018 \ 0.021 \ 0.037) \times 10^{-1}$	0^{-1} 4.854 0.042 0.054 0.099
$33.5 - 36.1 (8.676 \ 0.030 \ 0.053 \ 0.134) \times 10$	$^{-1} (1.806 \ 0.015 \ 0.017 \ 0.031) \times 10^{-1} $	0^{-1} 4.804 0.044 0.055 0.099
$36.1 - 38.9 (7.028 \ 0.026 \ 0.044 \ 0.109) \times 10$	$^{-1}$ (1.460 0.013 0.014 0.025)×10	0^{-1} 4.812 0.047 0.056 0.100
$38.9 - 41.9 (5.726 \ 0.022 \ 0.037 \ 0.089) \times 10$	$^{-1} (1.216 \ 0.012 \ 0.012 \ 0.021) \times 10^{-1} $	0^{-1} 4.707 0.049 0.056 0.099
$41.9 - 45.1 (4.662 \ 0.020 \ 0.031 \ 0.073) \times 10$	$^{-1} (9.717\ 0.101\ 0.101\ 0.169)\times 10$	$0^{-2} 4.797 \ 0.054 \ 0.059 \ 0.101$
$45.1 - 48.5 (3.794 \ 0.017 \ 0.025 \ 0.060) \times 10$	$^{-1}$ $ (8.121 \ 0.089 \ 0.086 \ 0.142) \times 10^{-1}$	$0^{-2} 4.672 \ 0.055 \ 0.058 \ 0.100$
$48.5 - 52.2 (3.097 \ 0.015 \ 0.021 \ 0.050) \times 10$	$^{-1} (6.621\ 0.077\ 0.071\ 0.117)\times 10$	$0^{-2} 4.677 \ 0.059 \ 0.060 \ 0.101$
$52.2 - 56.1 (2.536 \ 0.013 \ 0.018 \ 0.042) \times 10$	$^{-1} (5.397 \ 0.067 \ 0.059 \ 0.096) \times 10^{-1} $	$0^{-2} 4.700 \ 0.063 \ 0.061 \ 0.102$
$56.1 - 60.3 (2.060 \ 0.011 \ 0.015 \ 0.034) \times 10$	-1 (4.421 0.058 0.050 0.080)×10	$0^{-2} 4.659 \ 0.067 \ 0.062 \ 0.102$

TABLE SM XLIII: Bartels Rotation 2468 (June 22, 2014 – July 18, 2014). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\mathrm{He} \ \sigma_{\mathrm{stat.}} \ \sigma_{\mathrm{time}}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (3.952 \ 0.024 \ 0.060 \ 0.178) \times 10^{-1}$	2		_
$1.16 - 1.33 (4.239 \ 0.016 \ 0.047 \ 0.152) \times 10^{-1}$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		_
$1.33 - 1.51 (4.363 \ 0.014 \ 0.037 \ 0.126) \times 10^{-1}$	2		_
$1.51 - 1.71 (4.332 \ 0.011 \ 0.030 \ 0.113) \times 10^{-1} $	2		_
$1.71 - 1.92 (4.168 \ 0.010 \ 0.025 \ 0.099) \times 10^{-6}$	2		_
$1.92 - 2.15 (3.888 \ 0.008 \ 0.020 \ 0.084) \times 10^{-1}$	$(4.616 \ 0.031 \ 0.051 \ 0.106) \times 10$	$\begin{bmatrix} 1 & 8.423 & 0.060 & 0.103 \end{bmatrix}$	0.253
$2.15 - 2.40 (3.547 \ 0.007 \ 0.017 \ 0.071) \times 10^{-6}$	$(4.468 \ 0.027 \ 0.041 \ 0.089) \times 10$	$1 7.938 \ 0.051 \ 0.083 $	0.213
$2.40 - 2.67 (3.210\ 0.006\ 0.014\ 0.061) \times 10^{-6}$	$(4.226 \ 0.024 \ 0.036 \ 0.077) \times 10$	$1 7.596 \ 0.045 \ 0.073 $	0.188
$2.67 - 2.97 (2.863 \ 0.005 \ 0.012 \ 0.050) \times 10^{-6}$	$(3.909 \ 0.020 \ 0.033 \ 0.068) \times 10$	$1 7.324 \ 0.040 \ 0.069 $	0.171
$2.97 - 3.29 (2.497 \ 0.004 \ 0.011 \ 0.042) \times 10^{-1}$	$(3.565 \ 0.017 \ 0.027 \ 0.059) \times 10$	$1 7.006 \ 0.036 \ 0.061 $	0.156
$3.29 - 3.64 (2.165 \ 0.004 \ 0.009 \ 0.035) \times 10^{-6}$	$(3.185 \ 0.015 \ 0.021 \ 0.052) \times 10$	$\begin{bmatrix} 1 & 6.797 & 0.033 & 0.054 \end{bmatrix}$	0.146
$3.64 - 4.02 (1.854 \ 0.003 \ 0.008 \ 0.029) \times 10^{-6}$	$(2.764 \ 0.012 \ 0.017 \ 0.044) \times 10$	$\begin{bmatrix} 1 & 6.707 & 0.032 & 0.051 \end{bmatrix}$	0.140
$4.02 - 4.43 (1.569 \ 0.002 \ 0.007 \ 0.024) \times 10^{-6}$	$(2.405 \ 0.010 \ 0.014 \ 0.037) \times 10$	$\begin{bmatrix} 1 & 6.523 & 0.030 & 0.047 \end{bmatrix}$	0.133
$4.43 - 4.88 (1.317 \ 0.002 \ 0.006 \ 0.020) \times 10^{-6}$	$(2.043 \ 0.008 \ 0.011 \ 0.031) \times 10$	$\begin{bmatrix} 1 & 6.449 & 0.028 & 0.045 \end{bmatrix}$	0.130
$4.88 - 5.37 (1.095 \ 0.002 \ 0.005 \ 0.016) \times 10^{-6}$	$(1.722\ 0.007\ 0.009\ 0.026)\times 10$	$\begin{bmatrix} 1 & 6.358 & 0.027 & 0.043 \end{bmatrix}$	0.126
$5.37 - 5.90 (9.036 \ 0.014 \ 0.035 \ 0.128) \times 10$	$(1.454 \ 0.006 \ 0.007 \ 0.022) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.120
$5.90 - 6.47 (7.452 \ 0.011 \ 0.028 \ 0.104) \times 10$	$(1.223\ 0.005\ 0.006\ 0.018)\times 10$	$\begin{bmatrix} 1 & 6.095 & 0.026 & 0.039 \end{bmatrix}$	0.116
$6.47 - 7.09 (6.112 \ 0.009 \ 0.022 \ 0.085) \times 10$	$(1.008 \ 0.004 \ 0.005 \ 0.015) \times 10$	$\begin{bmatrix} 1 & 6.063 & 0.026 & 0.039 \end{bmatrix}$	0.114
$7.09 - 7.76 (4.963 \ 0.007 \ 0.018 \ 0.069) \times 10$	$(8.394 \ 0.033 \ 0.044 \ 0.125) \times 10$	$0 \mid 5.913 \mid 0.025 \mid 0.038 \mid$	0.111
$7.76 - 8.48 (4.052\ 0.006\ 0.015\ 0.056) \times 10$	$(6.971 \ 0.028 \ 0.038 \ 0.104) \times 10$	0 5.813 0.025 0.038	0.108
$8.48 - 9.26 (3.285 \ 0.005 \ 0.012 \ 0.045) \times 10$	$(5.711 \ 0.024 \ 0.032 \ 0.086) \times 10$	$0 5.752 \ 0.026 \ 0.039 $	0.107
$9.26-10.1 (2.657 0.004 0.010 0.036)\! imes\! 10$	$(4.674 \ 0.020 \ 0.028 \ 0.070) \times 10$	0 5.684 0.026 0.040	0.105
$10.1 - 11.0 (2.144 \ 0.004 \ 0.008 \ 0.029) \times 10$	$(3.796 \ 0.017 \ 0.023 \ 0.057) \times 10$	0 5.649 0.028 0.041	0.105
$11.0 - 12.0 (1.724 \ 0.003 \ 0.007 \ 0.023) \times 10$	$(3.115 \ 0.015 \ 0.020 \ 0.047) \times 10$	$0 \mid 5.536 \mid 0.028 \mid 0.041 \mid$	0.103
$12.0 - 13.0 (1.394 \ 0.003 \ 0.006 \ 0.019) \times 10$		0 5.476 0.030 0.043	0.103
$13.0 - 14.1 (1.133 \ 0.002 \ 0.005 \ 0.016) \times 10$	$(2.090\ 0.011\ 0.015\ 0.032) \times 10$	0 5.422 0.030 0.044	0.103
$14.1 - 15.3 (9.131 \ 0.019 \ 0.039 \ 0.129) \times 10^{-6}$	$(1.693 \ 0.009 \ 0.012 \ 0.026) \times 10$	$0 5.392 \ 0.031 \ 0.046$	0.102
$15.3 - 16.6 (7.383 \ 0.016 \ 0.033 \ 0.105) \times 10^{-1}$	$(1.389 \ 0.008 \ 0.011 \ 0.022) \times 10$	0 5.314 0.032 0.047	0.102
TI 11 1: 1			

TABLE SM XLIII: Bartels Rotation 2468 (June 22, 2014 – July 18, 2014). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time} \ \sigma_{\rm syst.}$
$16.6 - 18.0 (5.959 \ 0.013 \ 0.027 \ 0.086) \times 10$	$0 (1.125 \ 0.006 \ 0.009 \ 0.018) \times 10^{-6} $	0 5.298 0.032 0.049 0.103
$18.0 - 19.5 (4.774 \ 0.011 \ 0.023 \ 0.070) \times 10$	$0 (9.262 \ 0.054 \ 0.078 \ 0.149) \times 10^{-6} $	0^{-1} 5.155 0.032 0.050 0.101
$19.5 - 21.1 (3.854 \ 0.009 \ 0.019 \ 0.057) \times 10$	$0 \mid (7.474 \ 0.045 \ 0.066 \ 0.122) \times 10^{-6}$	0^{-1} 5.156 0.033 0.052 0.102
$21.1 - 22.8 (3.109 \ 0.008 \ 0.016 \ 0.047) \times 10$	$0 (6.093 \ 0.037 \ 0.054 \ 0.100) \times 10^{-6} $	$0^{-1} 5.103 0.034 0.052 0.102$
$22.8 - 24.7 (2.507 \ 0.006 \ 0.013 \ 0.038) \times 10$	$0 (4.979 \ 0.031 \ 0.045 \ 0.082) \times 10^{-6} $	$0^{-1} 5.035 \ 0.034 \ 0.053 \ 0.101$
$24.7 - 26.7 (2.013 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 (4.030 \ 0.027 \ 0.037 \ 0.066) \times 10^{-6} $	$0^{-1} 4.994 \ 0.036 \ 0.053 \ 0.100$
$26.7 - 28.8 (1.627 \ 0.005 \ 0.009 \ 0.025) \times 10$	$0 (3.263 \ 0.023 \ 0.031 \ 0.054) \times 10^{-6} $	$0^{-1} 4.987 \ 0.038 \ 0.055 \ 0.101$
$28.8 - 31.1 (1.314 \ 0.004 \ 0.007 \ 0.020) \times 10$	$0 (2.708 \ 0.020 \ 0.026 \ 0.046) \times 10^{-6} $	$0^{-1} 4.854 \ 0.039 \ 0.054 \ 0.099$
$31.1 - 33.5 (1.073 \ 0.003 \ 0.006 \ 0.017) \times 10$	$0 (2.175 \ 0.018 \ 0.022 \ 0.037) \times 10^{-6} $	$0^{-1} 4.934 \ 0.043 \ 0.057 \ 0.101$
$33.5 - 36.1 (8.660 \ 0.030 \ 0.052 \ 0.133) \times 10$	$^{-1}$ (1.796 0.015 0.018 0.031)×10	$0^{-1} 4.822 \ 0.044 \ 0.057 \ 0.100$
$36.1 - 38.9 (7.072 \ 0.026 \ 0.043 \ 0.109) \times 10$	$^{-1}$ (1.461 0.013 0.015 0.026)×10	0^{-1} 4.840 0.047 0.058 0.102
$38.9 - 41.9 (5.691 \ 0.022 \ 0.036 \ 0.088) \times 10$	$^{-1}$ (1.199 0.012 0.013 0.021)×10	$0^{-1} 4.746 0.049 0.059 0.101$
$41.9 - 45.1 (4.656 \ 0.020 \ 0.030 \ 0.073) \times 10$	$^{-1}$ (9.802 0.101 0.108 0.174)×10	$0^{-2} 4.751 \ 0.053 \ 0.061 \ 0.102$
$45.1 - 48.5 (3.813 \ 0.017 \ 0.025 \ 0.060) \times 10$	$^{-1}$ (7.961 0.088 0.090 0.143)×10	$0^{-2} 4.789 \ 0.057 \ 0.063 \ 0.104$
$48.5 - 52.2 (3.127 \ 0.015 \ 0.021 \ 0.050) \times 10$	$^{-1}$ (6.544 0.076 0.076 0.119)×10	$0^{-2} 4.778 0.060 0.064 0.105$
$52.2 - 56.1 (2.554 \ 0.013 \ 0.018 \ 0.042) \times 10$	$^{-1} (5.371\ 0.067\ 0.064\ 0.099)\times 10^{-1} $	$0^{-2} 4.756 \ 0.064 \ 0.065 \ 0.105$
$56.1 - 60.3 (2.074 \ 0.011 \ 0.015 \ 0.035) \times 10$	$-1 (4.369 \ 0.058 \ 0.053 \ 0.081) \times 10^{-1} $	$0^{-2} 4.746 \ 0.068 \ 0.067 \ 0.106$

TABLE SM XLIV: Bartels Rotation 2469 (July 19, 2014 – August 14, 2014). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time}}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (4.365 \ 0.027 \ 0.066 \ 0.196) \times 10^{-1}$	2		_
$1.16 - 1.33 (4.636 \ 0.018 \ 0.051 \ 0.166) \times 10^{-1}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.33 - 1.51 (4.792 \ 0.016 \ 0.040 \ 0.138) \times 10^{-1} (4.792 \ 0.016 \ 0.040 \ 0.040 \ 0.040 \ 0.040 \ 0.040 \ 0.040 (4.792 \ 0.040 \ 0.040 \ 0.040 \ 0.040 \ 0.040 \ 0.040 (4.792 \ 0.040 \ 0.0$	2		_
$1.51 - 1.71 (4.706 \ 0.011 \ 0.032 \ 0.123) \times 10^{-1}$	2		_
$1.71 - 1.92 (4.525 \ 0.010 \ 0.026 \ 0.107) \times 10^{-1}$	2		_
$1.92 - 2.15 (4.232\ 0.009\ 0.022\ 0.091) \times 10^{-1}$	2 (5.033 0.033 0.060 0.117)×10	$8.409 \ 0.057 \ 0.109$	0.255
$2.15 - 2.40 (3.858 \ 0.007 \ 0.018 \ 0.077) \times 10^{-2}$	$(4.904 \ 0.029 \ 0.050 \ 0.100) \times 10$	$1 7.867 \ 0.049 \ 0.088$	0.213
$2.40 - 2.67 (3.458 \ 0.006 \ 0.015 \ 0.065) \times 10^{-2}$	$(4.638 \ 0.025 \ 0.043 \ 0.086) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.186
$2.67 - 2.97 (3.057 \ 0.005 \ 0.013 \ 0.053) \times 10^{-10}$	$(4.252 \ 0.021 \ 0.038 \ 0.075) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.169
$2.97 - 3.29 (2.671 \ 0.004 \ 0.011 \ 0.044) \times 10^{-1}$	$(3.832\ 0.018\ 0.032\ 0.065)\times10$	$\begin{bmatrix} 1 & 6.970 & 0.035 & 0.065 \end{bmatrix}$	0.157
$3.29 - 3.64 (2.303 \ 0.004 \ 0.010 \ 0.037) \times 10^{-10}$	$(3.388 \ 0.015 \ 0.026 \ 0.056) \times 10$	$\begin{bmatrix} 1 & 6.797 & 0.033 & 0.059 \end{bmatrix}$	0.148
$3.64 - 4.02 (1.962 \ 0.003 \ 0.009 \ 0.031) \times 10^{-1}$	$(2.932\ 0.013\ 0.021\ 0.047)\times 10$	$\begin{bmatrix} 1 & 6.692 & 0.031 & 0.056 \end{bmatrix}$	0.142
$4.02 - 4.43 (1.654 \ 0.003 \ 0.007 \ 0.025) \times 10^{-1}$	$(2.555 \ 0.011 \ 0.017 \ 0.041) \times 10$	$\begin{bmatrix} 1 & 6.472 & 0.029 & 0.052 \end{bmatrix}$	0.134
$4.43 - 4.88 (1.388 \ 0.002 \ 0.006 \ 0.021) \times 10^{-1}$	$(2.153 \ 0.009 \ 0.014 \ 0.034) \times 10$	$\begin{bmatrix} 1 & 6.447 & 0.028 & 0.050 \end{bmatrix}$	0.131
$4.88 - 5.37 (1.148 \ 0.002 \ 0.005 \ 0.017) \times 10^{-1}$	$(1.810 \ 0.007 \ 0.011 \ 0.028) \times 10^{-2}$	$\begin{bmatrix} 6.344 & 0.027 & 0.047 \end{bmatrix}$	0.127
$5.37 - 5.90 (9.441 \ 0.014 \ 0.036 \ 0.134) \times 10^{-1}$	$1 (1.512 \ 0.006 \ 0.009 \ 0.023) \times 10$	$\begin{bmatrix} 1 & 6.244 & 0.026 & 0.044 \end{bmatrix}$	0.122
$5.90 - 6.47 (7.731 \ 0.011 \ 0.029 \ 0.108) \times 10^{-1}$	$1 (1.267 \ 0.005 \ 0.007 \ 0.019) \times 10$	$\begin{bmatrix} 1 & 6.101 & 0.026 & 0.042 \end{bmatrix}$	0.117
$6.47 - 7.09 (6.319 \ 0.009 \ 0.023 \ 0.088) \times 10^{-1}$	$1 (1.043 \ 0.004 \ 0.006 \ 0.016) \times 10$	$\begin{bmatrix} 6.061 & 0.025 & 0.041 \end{bmatrix}$	0.115
$7.09 - 7.76 (5.139 \ 0.008 \ 0.018 \ 0.071) \times 10^{-1}$	$1 (8.701 \ 0.034 \ 0.051 \ 0.132) \times 10$	$0 \mid 5.906 \mid 0.025 \mid 0.040$	0.111
$7.76 - 8.48 (4.168 0.006 0.015 0.058) \times 10^{-1}$	$1 (7.148 \ 0.028 \ 0.043 \ 0.108) \times 10$	$0 \mid 5.831 \mid 0.025 \mid 0.041$	0.109
$8.48 - 9.26 (3.374 \ 0.005 \ 0.012 \ 0.046) \times 10^{-1}$	$1 (5.817 \ 0.024 \ 0.036 \ 0.088) \times 10$	$0 \mid 5.801 \mid 0.026 \mid 0.042$	0.109
$9.26 - 10.1 (2.731 \ 0.005 \ 0.010 \ 0.037) \times 10^{-1}$	$(4.765 \ 0.021 \ 0.031 \ 0.073) \times 10$	$0 \mid 5.730 \mid 0.026 \mid 0.043$	0.107
$10.1 - 11.0 (2.196 \ 0.004 \ 0.008 \ 0.030) \times 10^{-1}$	$1 (3.879 \ 0.018 \ 0.026 \ 0.059) \times 10$	$0 \mid 5.663 \mid 0.027 \mid 0.044$	0.106
$11.0 - 12.0 (1.763 \ 0.003 \ 0.007 \ 0.024) \times 10^{-1}$	$(3.158 \ 0.015 \ 0.023 \ 0.049) \times 10$	$0 \mid 5.584 \mid 0.028 \mid 0.045$	0.105
$12.0 - 13.0 (1.422 0.003 0.006 0.019) \times 10^{-1}$	$(2.576 \ 0.013 \ 0.019 \ 0.041) \times 10$	$0 \mid 5.523 \mid 0.030 \mid 0.047$	0.105
$13.0 - 14.1 (1.150 \ 0.002 \ 0.005 \ 0.016) \times 10^{-1}$	$(2.114 \ 0.011 \ 0.017 \ 0.033) \times 10$	$0 \mid 5.437 \mid 0.030 \mid 0.049$	0.105
$14.1 - 15.3 (9.262 \ 0.019 \ 0.040 \ 0.131) \times 10^{-1}$	$0 (1.713 \ 0.009 \ 0.014 \ 0.027) \times 10$	$0 \mid 5.406 \mid 0.031 \mid 0.051$	0.105
$15.3 - 16.6 (7.438 \ 0.016 \ 0.033 \ 0.106) \times 10^{-1}$	$0 (1.415 \ 0.008 \ 0.012 \ 0.023) \times 10$	$0 \mid 5.256 \mid 0.031 \mid 0.052$	0.103
TI 11 1: 1			

TABLE SM XLIV: Bartels Rotation 2469 (July 19, 2014 – August 14, 2014). (Continued).

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ $\sigma_{\text{time }}\sigma_{\text{syst.}}$
$16.6 - 18.0 (5.969 \ 0.013 \ 0.027 \ 0.086) \times 10$	0 (1.138 0.006 0.011 0.019)×	10^0 5.244 0.032 0.054 0.105
$18.0 - 19.5 (4.801 \ 0.011 \ 0.023 \ 0.070) \times 10$	$0 (9.155 \ 0.053 \ 0.089 \ 0.154) \times$	$10^{-1} 5.244 0.033 0.057 0.106$
$19.5 - 21.1 (3.855 \ 0.009 \ 0.019 \ 0.057) \times 10$	0 $(7.432 \ 0.045 \ 0.076 \ 0.127) \times$	10^{-1} 5.186 0.033 0.058 0.106
$21.1 - 22.8 (3.123 \ 0.008 \ 0.016 \ 0.047) \times 10$	0 (6.116 0.038 0.063 0.105)×	$10^{-1} 5.107 0.034 0.059 0.105$
$22.8 - 24.7 (2.513 \ 0.006 \ 0.013 \ 0.038) \times 10$	0 (5.013 0.031 0.052 0.086)×	$10^{-1} 5.013 0.034 0.058 0.104$
$24.7 - 26.7 (2.014 \ 0.005 \ 0.011 \ 0.031) \times 10$	0 $(4.049 \ 0.027 \ 0.043 \ 0.070) \times$	$10^{-1} 4.973 \ 0.036 \ 0.059 \ 0.103$
$26.7 - 28.8 (1.623 \ 0.005 \ 0.009 \ 0.025) \times 10$	0 $(3.297 \ 0.023 \ 0.036 \ 0.057) \times$	$10^{-1} 4.923 \ 0.038 \ 0.060 \ 0.103$
$28.8 - 31.1 (1.312 \ 0.004 \ 0.007 \ 0.020) \times 10$	0 (2.695 0.020 0.030 0.047)×	$10^{-1} 4.868 \ 0.039 \ 0.060 \ 0.103$
$31.1 - 33.5 (1.067 \ 0.003 \ 0.006 \ 0.017) \times 10$	0 (2.181 0.018 0.024 0.039)×	$10^{-1} 4.892 \ 0.043 \ 0.062 \ 0.104$
$33.5 - 36.1 (8.650 \ 0.030 \ 0.052 \ 0.133) \times 10$	$^{-1}$ (1.805 0.015 0.021 0.033)×	$10^{-1} 4.793 \ 0.044 \ 0.062 \ 0.103$
$36.1 - 38.9 (7.005 \ 0.026 \ 0.043 \ 0.108) \times 10$	$^{-1}$ (1.464 0.013 0.017 0.027)×	$10^{-1} 4.784 \ 0.047 \ 0.063 \ 0.104$
$38.9 - 41.9 (5.719 \ 0.023 \ 0.036 \ 0.089) \times 10$	$^{-1}$ (1.221 0.012 0.014 0.022)×	$10^{-1} 4.684 \ 0.049 \ 0.063 \ 0.102$
$41.9 - 45.1 (4.638 \ 0.020 \ 0.030 \ 0.073) \times 10$	$^{-1}$ (9.853 0.102 0.119 0.182)×	$10^{-2} 4.707 \ 0.053 \ 0.064 \ 0.104$
$45.1 - 48.5 (3.761 \ 0.017 \ 0.025 \ 0.060) \times 10$	$^{-1}$ (8.154 0.089 0.100 0.152)×	$10^{-2} 4.612 \ 0.055 \ 0.064 \ 0.103$
$48.5 - 52.2 (3.072 \ 0.015 \ 0.021 \ 0.050) \times 10$	$^{-1}$ (6.591 0.077 0.082 0.124)×	$10^{-2} 4.661 \ 0.059 \ 0.066 \ 0.105$
$52.2 - 56.1 (2.514 \ 0.013 \ 0.017 \ 0.042) \times 10$	$^{-1}$ (5.438 0.068 0.069 0.103)×	$10^{-2} 4.624 \ 0.062 \ 0.067 \ 0.104$
56.1 - 60.3 (2.062 0.011 0.014 0.034)×10	$^{-1}$ (4.451 0.059 0.057 0.085)×	$10^{-2} 4.632 \ 0.066 \ 0.068 \ 0.106$

TABLE SM XLV: Bartels Rotation 2470 (August 15, 2014 – September 10, 2014). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr\cdot s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He}~\sigma_{\rm stat.}~\sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (5.328 \ 0.028 \ 0.074 \ 0.238) \times 10^{2}$			
$1.16 - 1.33 (5.393 \ 0.019 \ 0.055 \ 0.192) \times 10^{2}$			
$1.33 - 1.51 (5.307 \ 0.016 \ 0.041 \ 0.152) \times 10^{2}$			
$1.51 - 1.71 (5.169 \ 0.012 \ 0.033 \ 0.134) \times 10^{2}$			
$1.71 - 1.92 (4.895 \ 0.011 \ 0.027 \ 0.115) \times 10^{2}$			
$1.92 - 2.15 (4.529\ 0.009\ 0.023\ 0.097) \times 10^{2}$	$(5.392\ 0.034\ 0.055\ 0.121)\times 1$	$\begin{bmatrix} 10^1 & 8.399 & 0.056 & 0.095 & 0.249 \end{bmatrix}$	
$2.15 - 2.40 (4.092\ 0.008\ 0.019\ 0.082) \times 10^{2}$		10^1 7.779 0.047 0.077 0.207	
$2.40 - 2.67 (3.651\ 0.006\ 0.016\ 0.069) \times 10^{2}$			
$2.67 - 2.97 (3.209\ 0.005\ 0.014\ 0.056) \times 10^{2}$	$(4.471\ 0.022\ 0.037\ 0.077)\times 1$	10^1 7.177 0.037 0.067 0.167	
$2.97 - 3.29 (2.769 \ 0.004 \ 0.012 \ 0.046) \times 10^{2}$		10^1 6.855 0.033 0.057 0.151	
$3.29 - 3.64 (2.378\ 0.004\ 0.010\ 0.038) \times 10^{2}$	$(3.493\ 0.016\ 0.022\ 0.056) \times 1$	$\begin{bmatrix} 10^1 & 6.808 & 0.032 & 0.052 & 0.145 \end{bmatrix}$	
$3.64 - 4.02 (2.017 \ 0.003 \ 0.009 \ 0.032) \times 10^{2}$	$(3.051\ 0.013\ 0.018\ 0.048)\times 1$	$\begin{bmatrix} 10^1 & 6.613 & 0.031 & 0.048 & 0.138 \end{bmatrix}$	
$4.02 - 4.43 (1.699\ 0.003\ 0.007\ 0.026) \times 10^{2}$	$(2.592\ 0.011\ 0.015\ 0.040)\times 1$	$\begin{bmatrix} 10^1 & 6.557 & 0.029 & 0.046 & 0.133 \end{bmatrix}$	
$4.43 - 4.88 (1.415 \ 0.002 \ 0.006 \ 0.021) \times 10^{2}$	$(2.198 \ 0.009 \ 0.012 \ 0.034) \times 1$	$\begin{bmatrix} 10^1 & 6.438 & 0.027 & 0.045 & 0.129 \end{bmatrix}$	
$4.88 - 5.37 (1.166 \ 0.002 \ 0.005 \ 0.017) \times 10^{2}$	$(1.867 \ 0.007 \ 0.010 \ 0.028) \times 1$	$\begin{bmatrix} 10^1 & 6.246 & 0.026 & 0.042 & 0.123 \end{bmatrix}$	
$5.37 - 5.90 (9.565 \ 0.014 \ 0.037 \ 0.136) \times 10^{1}$	$(1.538 \ 0.006 \ 0.008 \ 0.023) \times 1$	$\begin{bmatrix} 10^1 & 6.219 & 0.026 & 0.040 & 0.120 \end{bmatrix}$	
$5.90 - 6.47 (7.816\ 0.011\ 0.029\ 0.109) \times 10^{1}$		$\begin{bmatrix} 10^1 & 6.111 & 0.025 & 0.039 & 0.116 \end{bmatrix}$	
$6.47 - 7.09 (6.369 \ 0.009 \ 0.023 \ 0.089) \times 10^{1}$	$(1.061\ 0.004\ 0.005\ 0.016) \times 1$	$\begin{bmatrix} 10^1 & 6.003 & 0.025 & 0.038 & 0.113 \end{bmatrix}$	
$7.09 - 7.76 (5.170\ 0.008\ 0.018\ 0.071) \times 10^{1}$	$(8.757 \ 0.034 \ 0.045 \ 0.130) \times 1$	$\begin{bmatrix} 10^0 & 5.904 & 0.025 & 0.037 & 0.110 \end{bmatrix}$	
$7.76 - 8.48 (4.180\ 0.006\ 0.015\ 0.058) \times 10^{1}$	$(7.121\ 0.028\ 0.037\ 0.105) \times 1$	10^0 5.870 0.025 0.037 0.109	
$8.48 - 9.26 (3.379 \ 0.005 \ 0.012 \ 0.046) \times 10^{1}$	$(5.830\ 0.024\ 0.031\ 0.087)\times 1$	10^0 5.797 0.026 0.038 0.107	
$9.26 - 10.1 (2.719 \ 0.005 \ 0.010 \ 0.037) \times 10^{1}$	$(4.784 \ 0.021 \ 0.027 \ 0.071) \times 1$	$\begin{bmatrix} 10^0 & 5.683 & 0.026 & 0.038 & 0.105 \end{bmatrix}$	
$10.1 - 11.0 (2.191\ 0.004\ 0.008\ 0.030) \times 10^{1}$	$(3.872\ 0.018\ 0.023\ 0.058) \times 1$	$\begin{bmatrix} 10^0 & 5.659 & 0.027 & 0.039 & 0.104 \end{bmatrix}$	
$11.0 - 12.0 (1.751\ 0.003\ 0.007\ 0.024) \times 10^{1}$			
$12.0 - 13.0 (1.415 \ 0.003 \ 0.006 \ 0.019) \times 10^{1}$	$(2.553 \ 0.013 \ 0.016 \ 0.039) \times 1$	$\begin{bmatrix} 10^0 & 5.543 & 0.030 & 0.042 & 0.104 \end{bmatrix}$	
$13.0 - 14.1 (1.141 \ 0.002 \ 0.005 \ 0.016) \times 10^{1}$	· ·		
$14.1 - 15.3 (9.180\ 0.019\ 0.039\ 0.129) \times 10^{0}$,		
$15.3 - 16.6 (7.393\ 0.016\ 0.033\ 0.105) \times 10^{0}$,		

т.

TABLE SM XLV: Bartels Rotation 2470 (August 15, 2014 – September 10, 2014). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ $\sigma_{\text{time }}\sigma_{\text{syst.}}$
$16.6 - 18.0 (5.967 \ 0.013 \ 0.027 \ 0.086) \times 10$	$0 (1.121 \ 0.006 \ 0.009 \ 0.018)$	$\times 10^0$ 5.321 0.033 0.048 0.103
$18.0 - 19.5 (4.772 \ 0.011 \ 0.022 \ 0.070) \times 10$	$0 (9.206 \ 0.054 \ 0.076 \ 0.147)$	$\times 10^{-1} 5.183 \ 0.032 \ 0.049 \ 0.101$
$19.5 - 21.1 (3.870 \ 0.009 \ 0.019 \ 0.057) \times 10$	$0 (7.481 \ 0.045 \ 0.064 \ 0.121)$	$\times 10^{-1} 5.173 \ 0.033 \ 0.051 \ 0.101$
$21.1 - 22.8 (3.103 \ 0.008 \ 0.016 \ 0.046) \times 10$	$0 (6.128 \ 0.038 \ 0.053 \ 0.099)$	$\times 10^{-1} 5.063 \ 0.033 \ 0.051 \ 0.100$
$22.8 - 24.7 (2.505 \ 0.006 \ 0.013 \ 0.038) \times 10$	$0 (4.895 \ 0.031 \ 0.043 \ 0.080)$	$\times 10^{-1} 5.118 \ 0.035 \ 0.052 \ 0.102$
$24.7 - 26.7 (2.010 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 (4.014 \ 0.027 \ 0.036 \ 0.065)$	$\times 10^{-1} 5.009 \ 0.036 \ 0.052 \ 0.100$
$26.7 - 28.8 (1.618 \ 0.005 \ 0.009 \ 0.025) \times 10$	$0 (3.303 \ 0.023 \ 0.030 \ 0.054)$	$\times 10^{-1} 4.899 \ 0.037 \ 0.052 \ 0.098$
$28.8 - 31.1 (1.314 \ 0.004 \ 0.007 \ 0.020) \times 10$	$0 (2.705 \ 0.020 \ 0.025 \ 0.045)$	$\times 10^{-1} 4.857 \ 0.039 \ 0.052 \ 0.098$
$31.1 - 33.5 (1.060 \ 0.003 \ 0.006 \ 0.016) \times 10$	$0 (2.200 \ 0.018 \ 0.021 \ 0.037)$	$\times 10^{-1} 4.817 \ 0.042 \ 0.053 \ 0.098$
$33.5 - 36.1 (8.636 \ 0.030 \ 0.051 \ 0.132) \times 10$	$^{-1}$ (1.795 0.015 0.017 0.031)	$\times 10^{-1} 4.810 \ 0.044 \ 0.054 \ 0.099$
$36.1 - 38.9 (7.039 \ 0.026 \ 0.043 \ 0.108) \times 10$	$^{-1}$ (1.465 0.013 0.014 0.025)	$\times 10^{-1} 4.804 \ 0.047 \ 0.055 \ 0.100$
$38.9 - 41.9 (5.687 \ 0.022 \ 0.036 \ 0.088) \times 10$	$^{-1}$ (1.180 0.012 0.012 0.020)	$\times 10^{-1} 4.820 \ 0.051 \ 0.057 \ 0.101$
$41.9 - 45.1 (4.656 \ 0.020 \ 0.030 \ 0.073) \times 10$	$^{-1}$ (9.971 0.102 0.104 0.174):	$\times 10^{-2} 4.670 \ 0.052 \ 0.057 \ 0.099$
$45.1 - 48.5 (3.813 \ 0.017 \ 0.025 \ 0.060) \times 10$	$^{-1}$ (8.161 0.090 0.088 0.144):	$\times 10^{-2} 4.672 \ 0.055 \ 0.059 \ 0.100$
$48.5 - 52.2 (3.094 \ 0.015 \ 0.021 \ 0.050) \times 10$	$^{-1}$ (6.565 0.077 0.073 0.118):	$\times 10^{-2} 4.713 \ 0.060 \ 0.061 \ 0.102$
$52.2 - 56.1 (2.521 \ 0.013 \ 0.017 \ 0.042) \times 10$	$^{-1}$ (5.352 0.067 0.062 0.097)	$\times 10^{-2} 4.711 \ 0.064 \ 0.063 \ 0.103$
$56.1 - 60.3 (2.082 \ 0.011 \ 0.015 \ 0.035) \times 10^{-1}$	$^{-1}$ (4.336 0.058 0.052 0.080)	$\times 10^{-2} 4.801 \ 0.070 \ 0.066 \ 0.107$

TABLE SM XLVI: Bartels Rotation 2471 (September 11, 2014 – October 7, 2014). Days from September 30 to October 7, 2014 are not included because AMS was performing detector studies in that interval. The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot sr \cdot s \cdot GV]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity $\Phi_p = \sigma_{\text{stat.}} \ \sigma_{\text{time}} \ \sigma_{\text{syst.}}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He}~\sigma_{\rm stat.}~\sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (4.987 \ 0.034 \ 0.084 \ 0.228) \times 10$			
$1.16 - 1.33 (5.130 \ 0.022 \ 0.062 \ 0.186) \times 10$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		
$1.33 - 1.51 (5.249 \ 0.020 \ 0.048 \ 0.153) \times 10$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		
$1.51 - 1.71 (5.139 \ 0.014 \ 0.038 \ 0.135) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$1.71 - 1.92 (4.865 \ 0.013 \ 0.031 \ 0.116) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$1.92 - 2.15 (4.513 \ 0.011 \ 0.025 \ 0.098) \times 10$	$(5.341 \ 0.041 \ 0.071 \ 0.128) \times 10^{-2}$	0^1 8.449 0.068 0.122 0.262	
$2.15 - 2.40 (4.086 \ 0.009 \ 0.021 \ 0.082) \times 10$	$(5.219 \ 0.036 \ 0.060 \ 0.110) \times 10^{-2}$	0^1 7.830 0.057 0.098 0.217	
$2.40 - 2.67 (3.625 \ 0.008 \ 0.017 \ 0.069) \times 10$,	$0^1 7.452 0.050 0.086 0.190$	
$2.67 - 2.97 (3.175 \ 0.006 \ 0.015 \ 0.056) \times 10$	$(4.406 \ 0.026 \ 0.044 \ 0.080) \times 10^{-2}$	$0^1 7.207 \ 0.045 \ 0.080 \ 0.173$	
$2.97 - 3.29 (2.746 \ 0.005 \ 0.012 \ 0.046) \times 10$	$(3.920 \ 0.022 \ 0.037 \ 0.068) \times 10^{-2}$	0^1 7.004 0.042 0.073 0.161	
$3.29 - 3.64 (2.357 \ 0.005 \ 0.011 \ 0.038) \times 10$	$(3.504 \ 0.019 \ 0.030 \ 0.060) \times 10^{-2}$	$0^1 6.727 \ 0.038 \ 0.066 \ 0.150$	
$3.64 - 4.02 (1.997 \ 0.004 \ 0.009 \ 0.032) \times 10$	$(2.990 \ 0.016 \ 0.024 \ 0.050) \times 10^{-2}$	$0^1 6.680 \ 0.038 \ 0.062 \ 0.145$	
$4.02 - 4.43 (1.673 \ 0.003 \ 0.008 \ 0.026) \times 10$,		
$4.43 - 4.88 (1.391 \ 0.002 \ 0.006 \ 0.021) \times 10$	$(2.166 \ 0.010 \ 0.016 \ 0.035) \times 10^{-2}$	$0^1 6.424 \ 0.033 \ 0.056 \ 0.133$	
$4.88 - 5.37 (1.142 \ 0.002 \ 0.005 \ 0.017) \times 10$	$(1.820 \ 0.009 \ 0.013 \ 0.029) \times 10^{-2}$	$0^1 6.277 \ 0.032 \ 0.052 \ 0.128$	
$5.37 - 5.90 (9.423 \ 0.017 \ 0.039 \ 0.135) \times 10$,		
$5.90 - 6.47 (7.655 \ 0.014 \ 0.030 \ 0.108) \times 10$	$(1.261 \ 0.006 \ 0.009 \ 0.019) \times 10^{-1}$	$0^1 6.073 \ 0.031 \ 0.048 \ 0.119$	
$6.47 - 7.09 (6.221 \ 0.011 \ 0.024 \ 0.087) \times 10$,		
$7.09 - 7.76 (5.043 \ 0.009 \ 0.019 \ 0.070) \times 10$,		
$7.76 - 8.48 (4.088 \ 0.008 \ 0.015 \ 0.057) \times 10$,		
$8.48 - 9.26 (3.294 \ 0.006 \ 0.013 \ 0.045) \times 10$,		
$9.26 - 10.1 (2.653 \ 0.005 \ 0.010 \ 0.036) \times 10$			
$10.1 - 11.0 (2.152 \ 0.005 \ 0.009 \ 0.029) \times 10$,		
$11.0 - 12.0 (1.725 \ 0.004 \ 0.007 \ 0.024) \times 10$,		
$12.0 - 13.0 (1.381 \ 0.003 \ 0.006 \ 0.019) \times 10$,		
$13.0 - 14.1 (1.125 \ 0.003 \ 0.005 \ 0.016) \times 10$	$1 (2.086 \ 0.013 \ 0.020 \ 0.035) \times 10^{-1} $	0^0 5.394 0.037 0.057 0.108	

TABLE SM XLVI: Bartels Rotation 2471 (September 11, 2014 – October 7, 2014). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$p/\text{He } \sigma_{\text{stat.}} \ \sigma_{\text{time }} \ \sigma_{\text{syst.}}$
$14.1 - 15.3 (9.043 \ 0.023 \ 0.041 \ 0.128) \times 10$	$0 (1.691 \ 0.011 \ 0.017 \ 0.028) \times 10^{0}$	5.348 0.038 0.059 0.109
$15.3 - 16.6 (7.267 \ 0.019 \ 0.034 \ 0.104) \times 10$	$0 (1.369 \ 0.009 \ 0.015 \ 0.024) \times 10^{0} $	5.308 0.039 0.062 0.110
$16.6 - 18.0 (5.861 \ 0.016 \ 0.029 \ 0.085) \times 10$	$0 (1.100 \ 0.008 \ 0.012 \ 0.020) \times 10^{0} $	5.327 0.040 0.065 0.112
$18.0 - 19.5 (4.717 \ 0.013 \ 0.024 \ 0.070) \times 10$	$0 \mid (9.073 \ 0.065 \ 0.107 \ 0.164) \times 10^{-1}$	$\begin{bmatrix} -1 \\ 5.199 \\ 0.040 \\ 0.067 \\ 0.111 \end{bmatrix}$
$19.5 - 21.1 (3.788 \ 0.011 \ 0.020 \ 0.057) \times 10$	$0 \mid (7.454 \ 0.054 \ 0.092 \ 0.137) \times 10^{-1}$	$\begin{bmatrix} -1 \\ 5.082 & 0.040 & 0.068 & 0.110 \end{bmatrix}$
$21.1 - 22.8 (3.072 \ 0.009 \ 0.017 \ 0.046) \times 10$	$0 (6.032 \ 0.045 \ 0.075 \ 0.112) \times 10^{-6} $	$\begin{bmatrix} 5.092 & 0.041 & 0.069 & 0.111 \end{bmatrix}$
$22.8 - 24.7 (2.487 \ 0.007 \ 0.014 \ 0.038) \times 10$	$0 (4.882 \ 0.037 \ 0.061 \ 0.091) \times 10^{-1} $	$\begin{bmatrix} -1 \\ 5.095 \\ 0.042 \\ 0.070 \\ 0.112 \end{bmatrix}$
$24.7 - 26.7 (2.000 \ 0.006 \ 0.012 \ 0.031) \times 10$	$0 (4.053 \ 0.033 \ 0.051 \ 0.076) \times 10^{-6} $	$\begin{bmatrix} 4.934 & 0.043 & 0.069 & 0.109 \end{bmatrix}$
$26.7 - 28.8 (1.599 \ 0.006 \ 0.010 \ 0.025) \times 10$	$0 (3.295 \ 0.028 \ 0.042 \ 0.062) \times 10^{-1} $	$-1 \mid 4.852 \mid 0.045 \mid 0.069 \mid 0.107 \mid$
$28.8 - 31.1 (1.299 \ 0.005 \ 0.008 \ 0.020) \times 10$	$0 (2.649 \ 0.024 \ 0.034 \ 0.050) \times 10^{-6} $	$\begin{bmatrix} 4.905 & 0.048 & 0.070 & 0.110 \end{bmatrix}$
$31.1 - 33.5 (1.056 \ 0.004 \ 0.007 \ 0.017) \times 10$	$0 (2.167 \ 0.021 \ 0.029 \ 0.041) \times 10^{-1} $	$-1 \mid 4.873 \mid 0.052 \mid 0.071 \mid 0.109 \mid$
$33.5 - 36.1 (8.555 \ 0.036 \ 0.056 \ 0.133) \times 10$	$^{-1}$ (1.813 0.019 0.024 0.035)×10 ⁻¹	$^{-1}$ $ 4.720 \ 0.052 \ 0.070 \ 0.107$
$36.1 - 38.9 (7.005 \ 0.031 \ 0.047 \ 0.110) \times 10$	$^{-1}$ (1.447 0.016 0.020 0.028)×10 ⁻¹	$-1 \mid 4.841 \mid 0.058 \mid 0.073 \mid 0.111 \mid$
$38.9 - 41.9 (5.686 \ 0.027 \ 0.039 \ 0.090) \times 10$	$^{-1}$ (1.199 0.014 0.016 0.023)×10 $^{-1}$	-1 4.742 0.060 0.073 0.110
$41.9 - 45.1 (4.676 \ 0.024 \ 0.033 \ 0.074) \times 10$	$^{-1} (9.950\ 0.124\ 0.139\ 0.196)\times 10^{-1} $	$\begin{bmatrix} -2 \end{bmatrix} 4.699 \ 0.063 \ 0.073 \ 0.109$
$45.1 - 48.5 (3.746 \ 0.021 \ 0.027 \ 0.060) \times 10$	$^{-1} (8.069\ 0.108\ 0.114\ 0.160)\times 10^{-1} $	$-2 \mid 4.642 \mid 0.067 \mid 0.074 \mid 0.109 \mid$
$48.5 - 52.2 (3.069 \ 0.018 \ 0.023 \ 0.050) \times 10$	$^{-1}$ (6.308 0.091 0.090 0.126)×10	$\begin{vmatrix} 4.865 & 0.076 & 0.079 & 0.115 \end{vmatrix}$
52.2 - 56.1 (2.539 0.016 0.020 0.043)×10	$^{-1} (5.383\ 0.081\ 0.078\ 0.109)\times 10^{-1} $	$-2 \mid 4.716 \mid 0.077 \mid 0.077 \mid 0.112$
56.1 - 60.3 (2.046 0.014 0.016 0.035)×10	-1 $(4.428 \ 0.071 \ 0.065 \ 0.090) \times 10^{-1}$	$-2 \mid 4.619 \mid 0.080 \mid 0.077 \mid 0.111 \mid$

TABLE SM XLVII: Bartels Rotation 2474 (December 1, 2014 – December 27, 2014). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} σ_{s}	$tat. \sigma_{ti}$	$_{ m me}$ $\sigma_{ m s}$	syst.	p/	He $\sigma_{\rm s}$	$tat. \sigma_t$	ime		$\sigma_{ m syst.}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1.00 - 1.16 (5.418 \ 0.028 \ 0.074 \ 0.241) \times 10$		_	_	_	•	_	_	_	_	
$\begin{array}{c} 1.51 - 1.71 \\ 1.51 - 1.71 \\ 1.92 \\ 1.92 - 2.15 \\ 2.15 - 2.40 \\ 1.027 - 0.07 \\ 0.019 \\ 0.007 \\ 0.019 \\ 0.007 \\ 0.019 \\ 0.007 \\ 0.019 \\ 0.007 \\ 0.019 \\ 0.007 \\ 0.019 \\ 0.007 \\ 0.019 \\ 0.007 \\ 0.019 \\ 0.007 \\ 0.019 \\ 0.007 \\ 0.019 \\ 0.007 \\ 0.019 \\ 0.019 \\ 0.007 \\ 0.019 \\ 0$	$1.16 - 1.33 (5.584 \ 0.019 \ 0.055 \ 0.198) \times 10$	2	_	_	_		_	_	_	_	
$\begin{array}{c} 1.71-1.92\\ 1.92-2.15\\ 1.92-2.15\\ 2.15-2.40\\ 1.027-2.07\\ 2.07-2.07\\ 2.097-3.29\\ 1.092-2.097\\ 2.097-3.29\\ 1.092-2.097\\ 2.097-3.29\\ 1.092-2.097\\$	$1.33 - 1.51 (5.542 \ 0.017 \ 0.042 \ 0.159) \times 10$	$\begin{array}{c c} 2 & - \end{array}$	_	_	_		_	_	_	_	
$\begin{array}{c} 1.92 - 2.15 \\ 2.15 - 2.40 \\ 2.40 - 2.67 \\ 2.67 - 2.97 \\ 3.074 \ 0.005 \ 0.013 \ 0.054) \times 10^2 \\ 2.97 - 3.29 \ (2.646 \ 0.004 \ 0.011 \ 0.044) \times 10^2 \\ 3.64 - 4.02 \ (1.897 \ 0.003 \ 0.008 \ 0.030) \times 10^2 \\ 4.43 - 4.88 \ (1.325 \ 0.002 \ 0.006 \ 0.020) \times 10^2 \\ 4.88 - 5.37 \ (1.088 \ 0.002 \ 0.004 \ 0.016) \times 10^2 \\ 5.37 - 5.90 \ (8.931 \ 0.014 \ 0.034 \ 0.127) \times 10^1 \\ 6.47 - 7.09 \ (5.952 \ 0.009 \ 0.022 \ 0.083) \times 10^1 \\ 7.76 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.76 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.76 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.76 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.76 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.76 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.76 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.76 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.76 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.76 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.76 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.76 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.76 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.76 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.76 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.76 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.76 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.76 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.77 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.77 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.77 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.77 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.77 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.77 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.77 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.77 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.77 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.77 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 7.77 - 8.49 \ (3.934 \ 0.006 \ 0.014 \ 0.005 \ 0.015 \ 0.005 \ 0.005 \ 0.$	$1.51 - 1.71 (5.303\ 0.012\ 0.034\ 0.138) \times 10$	$\begin{array}{c c}2&&-\end{array}$	_	_	_		_	_	_	_	
$\begin{array}{c} 2.15-2.40 \\ 2.40-2.67 \\ 2.40-2.67 \\ 3.534\ 0.006\ 0.015\ 0.067)\times 10^2 \\ 2.67-2.97 \\ 3.29-3.64 \\ 3.64-4.02 \\ 4.02-4.43 \\ 4.0300000000000000000000000000000000000$	$1.71 - 1.92 (4.964 \ 0.010 \ 0.027 \ 0.117) \times 10$	2	_	_	_		_	_	_	_	
$\begin{array}{c} 2.15-2.40 \\ 2.40-2.67 \\ 2.40-2.67 \\ 3.534\ 0.006\ 0.015\ 0.067)\times 10^2 \\ 2.67-2.97 \\ 3.29-3.64 \\ 3.64-4.02 \\ 4.02-4.43 \\ 4.0300000000000000000000000000000000000$	$1.92 - 2.15 (4.514 \ 0.009 \ 0.022 \ 0.097) \times 10$	2 (5.372)	0.034	0.058	$0.122) \times 1$	10^{1}	8.402	0.056	0.099	0.251	
$\begin{array}{c} 2.40-2.67 \\ 2.67-2.97 \\ 3.074\ 0.005\ 0.013\ 0.054) \times 10^2 \\ 2.97-3.29 \\ 3.64\ 0.026\ 0.004\ 0.011\ 0.044) \times 10^2 \\ 3.29-3.64 \\ 4.02-4.43 \\ 4.02-4.43 \\ 4.0303\ 0.003\ 0.007\ 0.024) \times 10^2 \\ 4.02-4.43 \\ 4.0303\ 0.003\ 0.007\ 0.024) \times 10^2 \\ 4.02-4.43 \\ 4.0303\ 0.003\ 0.007\ 0.024) \times 10^2 \\ 4.02-4.43 \\ 4.0303\ 0.003\ 0.007\ 0.024) \times 10^2 \\ 4.02-4.43 \\ 4.0303\ 0.003\ 0.007\ 0.024) \times 10^2 \\ 4.02-4.43 \\ 4.0303\ 0.003\ 0.007\ 0.024) \times 10^2 \\ 4.03-4.88 \\ 4.035\ 0.002\ 0.006\ 0.020) \times 10^2 \\ 4.043-4.88 \\ 4.035\ 0.003\ 0.007\ 0.024) \times 10^2 \\ 5.37-5.90 \\ 6.497\ 0.003\ 0.004\ 0.016) \times 10^2 \\ 5.90-6.47 \\ 7.314\ 0.011\ 0.027\ 0.102) \times 10^1 \\ 6.47-7.09 \\ 5.952\ 0.009\ 0.022\ 0.083) \times 10^1 \\ 7.09-7.76 \\ 4.834\ 0.007\ 0.017\ 0.067) \times 10^1 \\ 8.48-9.26 \\ 3.171\ 0.005\ 0.012\ 0.043) \times 10^1 \\ 9.26-10.1 \\ 2.2565\ 0.004\ 0.009\ 0.035) \times 10^1 \\ 10.1-11.0 \\ 2.066\ 0.004\ 0.008\ 0.023) \times 10^1 \\ 10.1-12.0 \\ 10.666\ 0.003\ 0.006\ 0.023) \times 10^1 \\ 11.0-12.0 \\ 10.666\ 0.003\ 0.006\ 0.023) \times 10^1 \\ 12.0-13.0 \\ 11.352\ 0.003\ 0.005\ 0.015) \times 10^1 \\ 12.0-13.0 \\ 11.094\ 0.002\ 0.005\ 0.015) \times 10^1 \\ 11.094\ 0.002\ 0.005\ 0.015) \times 10^1 \\ 11.094\ 0.002\ 0.005\ 0.015) \times 10^1 \\ 11.098\ 0.001\ 0.015\ 0.033\ 0.087) \times 10^1 \\ 12.0025\ 0.043\ 0.087) \times 10^1 \\ 12.0033\ 0.008\ 0.029\ 0.063) \times 10^1 \\ 12.0033\ 0.008\ 0.003\ 0.008\ 0.023) \times 10^1 \\ 12.0033\ 0.008\ 0.003\ 0.006\ 0.0023) \times 10^1 \\ 12.0033\ 0.008\ 0.002\ 0.006\ 0.0023) \times 10^1 \\ 12.0033\ 0.008\ 0.002\ 0.006\ 0.004\ 0.008\ 0.022) \times 10^1 \\ 12.0033\ 0.008\ 0.0009\ 0.002\ 0.008\ 0.002) \times 10^2 \\ 12.0033\ 0.008\ 0.009\ 0.002\ 0.008\ 0.002) \times 10^2 \\ 12.0033\ 0.008\ 0.002\ 0.009\ 0.008\ 0.002) \times 10^2 \\ 12.0033\ 0.008\ 0.009\ 0.002\ 0.009\ 0.0$,	0.030	0.048	$0.103) \times 1$	10^{1}	7.855	0.048	0.082	0.211	
$\begin{array}{c} 2.67 - 2.97 \\ 2.97 - 3.29 \\ 2.646 \ 0.004 \ 0.011 \ 0.044) \times 10^2 \\ 3.29 - 3.64 \\ 2.253 \ 0.004 \ 0.010 \ 0.036) \times 10^2 \\ 3.64 - 4.02 \\ 4.02 \ (1.897 \ 0.003 \ 0.008 \ 0.030) \times 10^2 \\ 4.02 - 4.43 \\ 4.43 - 4.88 \\ 4.325 \ 0.002 \ 0.006 \ 0.020) \times 10^2 \\ 4.88 - 5.37 \\ 5.90 \ - 6.47 \\ 7.314 \ 0.011 \ 0.027 \ 0.102) \times 10^1 \\ 6.47 - 7.09 \\ 7.76 - 8.48 \\ 8.48 - 9.26 \\ 3.171 \ 0.005 \ 0.012 \ 0.004 \ 0.012 \ 0.004 \ 0.014 \ 0.034) \times 10^1 \\ 7.184 \ 0.003 \ 0.070 \ 0.169 \\ 9.26 - 10.1 \\ 10.2565 \ 0.004 \ 0.008 \ 0.023) \times 10^1 \\ 10.25 \ 1.000 \ 0.0000 \ 0.023) \times 10^1 \\ 10.20 \ 1.000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.00000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.00000 \ 0.0000 \ 0.0000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000000$			0.025	0.043	$0.087) \times 1$	10^{1}	7.515	0.042	0.076	0.187	
$\begin{array}{c} 2.97 - 3.29 \\ 3.29 - 3.64 \\ (2.253\ 0.004\ 0.011\ 0.044) \times 10^2 \\ 3.64 - 4.02 \\ (1.897\ 0.003\ 0.008\ 0.30) \times 10^2 \\ 4.02 - 4.43 \\ (1.593\ 0.003\ 0.007\ 0.024) \times 10^2 \\ 4.88 - 5.37 \\ (1.088\ 0.002\ 0.006\ 0.020) \times 10^2 \\ 5.37 - 5.90 \\ 6.47 \\ 7.09 - 7.76 \\ 4.88 + 0.013\ 0.014\ 0.027\ 0.102) \times 10^1 \\ 6.47 - 7.09 \\ 6.595 \\ 0.009\ 0.022\ 0.0083) \times 10^1 \\ 7.76 - 8.48 \\ 8.0934\ 0.006\ 0.014\ 0.054) \times 10^1 \\ 8.48 - 9.26 \\ 10.11 \\ 10.12 \\ 10.1$,	`			,		7.184	0.038	0.070	0.169	
$\begin{array}{c} 3.29 - 3.64 \\ 3.64 - 4.02 \\ 3.64 - 4.02 \\ 4.02 - 4.43 \\ 4.3 - 4.88 \\ 4.3 - 4.88 \\ 4.3 - 4.88 \\ 4.88 - 5.37 \\ 5.90 - 6.47 \\ 7.09 - 7.76 \\ 8.48 - 9.26 \\ 10.11 \\ 10.0 - 12.0 \\ 10.15 \\ 11.0 - 12.0 \\ 10.15 \\ 13.0 - 14.1 \\ \end{array} \begin{array}{c} (2.253\ 0.004\ 0.010\ 0.036) \times 10^2 \\ (1.897\ 0.003\ 0.008\ 0.030) \times 10^2 \\ (2.849\ 0.013\ 0.018\ 0.045) \times 10^1 \\ (2.430\ 0.010\ 0.015\ 0.038) \times 10^1 \\ (1.427\ 0.006\ 0.008\ 0.022) \times 10^1 \\ (1.427\ 0.006\ 0.008\ 0.022) \times 10^1 \\ (1.827\ 0.007\ 0.018) \times 10^1 \\ (2.881\ 0.040\ 0.055\ 0.148) \times 10^0 \\ (2.844\ 0.033\ 0.045\ 0.123) \times 10^0 \\ (2.844\ 0.033\ 0.045\ 0.123) \times 10^0 \\ (2.4476\ 0.020\ 0.045) \times 10^0 \\ (2.4476\ 0.020\ 0.046) \times 10^0 \\ (2.4476\ 0$,	`			/						
$\begin{array}{c} 3.64 - 4.02 \\ 4.02 - 4.43 \\ 4.02 - 4.43 \\ (1.593\ 0.003\ 0.007\ 0.024) \times 10^2 \\ 4.84 - 4.88 \\ (1.325\ 0.002\ 0.006\ 0.020) \times 10^2 \\ 4.88 - 5.37 \\ (1.088\ 0.002\ 0.004\ 0.016) \times 10^2 \\ 5.37 - 5.90 \\ (8.931\ 0.014\ 0.034\ 0.127) \times 10^1 \\ 6.47 - 7.09 \\ (7.314\ 0.011\ 0.027\ 0.102) \times 10^1 \\ 7.09 - 7.76 \\ (4.834\ 0.007\ 0.017\ 0.067) \times 10^1 \\ 7.76 - 8.48 \\ 8.48 - 9.26 \\ (3.171\ 0.005\ 0.012\ 0.043) \times 10^1 \\ 9.26 - 10.1 \\ 10.1 - 11.0 \\ (2.066\ 0.004\ 0.008\ 0.028) \times 10^1 \\ 11.0 - 12.0 \\ (1.352\ 0.003\ 0.005\ 0.018) \times 10^1 \\ 12.0 - 13.0 \\ 13.0 - 14.1 \\ (1.094\ 0.002\ 0.005\ 0.015) \times 10^1 \\ 13.0 - 14.1 \\ (1.094\ 0.002\ 0.005\ 0.015) \times 10^1 \\ \end{array}$,						
$\begin{array}{c} 4.02 - 4.43 \\ 4.43 - 4.88 \\ 4.325 \ 0.002 \ 0.006 \ 0.020) \times 10^2 \\ 4.88 - 5.37 \\ 5.90 \ (8.931 \ 0.014 \ 0.034 \ 0.127) \times 10^1 \\ 6.47 - 7.09 \ (5.952 \ 0.009 \ 0.022 \ 0.083) \times 10^1 \\ 7.76 - 8.48 \ (3.934 \ 0.006 \ 0.014 \ 0.054) \times 10^1 \\ 8.48 - 9.26 \ (3.171 \ 0.005 \ 0.012 \ 0.043) \times 10^1 \\ 9.26 - 10.1 \ (2.565 \ 0.004 \ 0.008 \ 0.023) \times 10^1 \\ 10.1 - 11.0 \ (2.066 \ 0.003 \ 0.006 \ 0.023) \times 10^1 \\ 10.1 - 12.0 \ (1.666 \ 0.003 \ 0.005 \ 0.018) \times 10^1 \\ 12.0 - 13.0 \ (1.352 \ 0.003 \ 0.005 \ 0.015) \times 10^1 \\ 13.0 - 14.1 \ (1.094 \ 0.002 \ 0.005 \ 0.015) \times 10^1 \\ \end{array} \begin{array}{c} (2.430 \ 0.010 \ 0.015 \ 0.038) \times 10^1 \\ (2.430 \ 0.010 \ 0.015 \ 0.038) \times 10^1 \\ (2.430 \ 0.010 \ 0.015 \ 0.038) \times 10^1 \\ (2.430 \ 0.010 \ 0.015 \ 0.038) \times 10^1 \\ (2.430 \ 0.010 \ 0.015 \ 0.038) \times 10^1 \\ (2.430 \ 0.010 \ 0.015 \ 0.038) \times 10^1 \\ (2.430 \ 0.010 \ 0.015 \ 0.038) \times 10^1 \\ (2.430 \ 0.010 \ 0.015 \ 0.038) \times 10^1 \\ (2.430 \ 0.010 \ 0.015 \ 0.038) \times 10^1 \\ (2.430 \ 0.010 \ 0.015 \ 0.038) \times 10^1 \\ (2.430 \ 0.010 \ 0.015 \ 0.038) \times 10^1 \\ (2.430 \ 0.010 \ 0.015 \ 0.038) \times 10^1 \\ (2.430 \ 0.010 \ 0.015 \ 0.032) \times 10^1 \\ (2.430 \ 0.010 \ 0.015 \ 0.032) \times 10^1 \\ (2.430 \ 0.010 \ 0.015 \ 0.038) \times 10^1 \\ (2.430 \ 0.010 \ 0.015 \ 0.032) \times 10^1 \\ (2.430 \ 0.010 \ 0.015 \ 0.032) \times 10^1 \\ (2.430 \ 0.010 \ 0.015 \ 0.032) \times 10^1 \\ (2.430 \ 0.010 \ 0.015 \ 0.002) \times 10^1 \\ (1.427 \ 0.006 \ 0.008 \ 0.022) \times 10^1 \\ (1.427 \ 0.006 \ 0.008 \ 0.022) \times 10^1 \\ (1.880 \ 0.005 \ 0.007 \ 0.018) \times 10^1 \\ (1.881 \ 0.005 \ 0.007 \ 0.018) \times 10^1 \\ (1.881 \ 0.005 \ 0.007 \ 0.018) \times 10^1 \\ (1.881 \ 0.005 \ 0.007 \ 0.018) \times 10^1 \\ (1.881 \ 0.005 \ 0.007 \ 0.018) \times 10^1 \\ (1.881 \ 0.005 \ 0.007 \ 0.018) \times 10^1 \\ (1.881 \ 0.005 \ 0.007 \ 0.018) \times 10^1 \\ (1.881 \ 0.005 \ 0.007 \ 0.018) \times 10^1 \\ (1.881 \ 0.005 \ 0.007 \ 0.018) \times 10^1 \\ (1.881 \ 0.005 \ 0.007 \ 0.018) \times 10^1 \\ (1.881 \ 0.005 \ 0.007 \ 0.018) \times 10^1 \\ (1.816 \ 0.005 \ 0.007 \ 0.018) \times 10^1 \\ (1.816 \ 0.007 \ 0.008) \times 10^1 \\ (1.816 \ 0.007 \ 0.008) \times 10^1 \\ (1.816 \ 0.007 \ 0.008) \times 10^1 \\ (1.816 \ 0$,										
$\begin{array}{c} 4.43 - 4.88 \\ 4.88 - 5.37 \\ 5.37 - 5.90 \\ 6.47 - 7.09 \\ 7.76 - 8.48 \\ 8.48 - 9.26 \\ 9.26 - 10.1 \\ 10.1 - 11.0 \\ 12.0 - 13.0 \\ 13.0 - 14.1 \\ \end{array} \begin{array}{c} (1.325\ 0.002\ 0.006\ 0.020) \times 10^2 \\ (1.088\ 0.002\ 0.006\ 0.020) \times 10^2 \\ (1.088\ 0.002\ 0.006\ 0.020) \times 10^2 \\ (1.088\ 0.002\ 0.004\ 0.016) \times 10^2 \\ (1.088\ 0.002\ 0.004\ 0.016) \times 10^2 \\ (1.180\ 0.005\ 0.007\ 0.018) \times 10^1 \\ (1.180\ 0.005\ 0.007\ 0.018) \times 10^1 \\ (9.881\ 0.040\ 0.055\ 0.148) \times 10^0 \\ (8.154\ 0.033\ 0.045\ 0.123) \times 10^0 \\ (8.154\ 0.033\ 0.045\ 0.123) \times 10^0 \\ (5.464\ 0.023\ 0.032\ 0.082) \times 10^0 \\ (3.661\ 0.017\ 0.023\ 0.055) \times 10^0 \\ (3.661\ 0.017\ 0.023\ 0.055) \times 10^0 \\ (2.996\ 0.014\ 0.020\ 0.046) \times 10^0 \\ (2.419\ 0.013\ 0.015\ 0.031) \times 10^0 \\ (1.981\ 0.011\ 0.015\ 0.031) \times$,			,						
$\begin{array}{c} 4.88 - 5.37 \\ 5.37 - 5.90 \\ 6.47 - 7.09 \\ 7.76 - 8.48 \\ 8.926 \\ 9.26 - 10.1 \\ 10.1 - 11.0 \\ 12.0 - 13.0 \\ 13.0 - 14.1 \\ \end{array} \begin{array}{c} (1.088\ 0.002\ 0.004\ 0.016) \times 10^2 \\ (1.088\ 0.002\ 0.004\ 0.016) \times 10^2 \\ (1.722\ 0.007\ 0.010\ 0.026) \times 10^1 \\ (1.427\ 0.006\ 0.008\ 0.022) \times 10^1 \\ (1.427\ 0.006\ 0.008\ 0.022) \times 10^1 \\ (1.180\ 0.005\ 0.007\ 0.018) \times 10^1 \\ (9.881\ 0.040\ 0.055\ 0.148) \times 10^0 \\ (8.154\ 0.033\ 0.045\ 0.123) \times 10^0 \\ (8.154\ 0.033\ 0.045\ 0.123) \times 10^0 \\ (5.464\ 0.023\ 0.032\ 0.082) \times 10^0 \\ (4.476\ 0.020\ 0.027\ 0.068) \times 10^0 \\ (2.996\ 0.014\ 0.020\ 0.046) \times 10^0 \\ (2.996\ 0.014\ 0.025\ 0.031) \times 10^0 \\ (2.419\ 0.013\ 0.017\ 0.037) \times 10^0 \\ (1.981\ 0.011\ 0.015\ 0.031) \times 10^0 \\ (1.981\ 0.01$,				/						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	`			,						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					/						
$\begin{array}{l} 6.47-7.09 \\ 7.09-7.76 \\ 8.48 \\ 9.26 \\ -10.1 \\ 10.1-11.0 \\ 12.0-13.0 \\ 13.0-14.1 \\ \end{array} \begin{array}{l} (5.952\ 0.009\ 0.022\ 0.083)\times 10^1 \\ (4.834\ 0.007\ 0.017\ 0.067)\times 10^1 \\ (4.834\ 0.006\ 0.014\ 0.054)\times 10^1 \\ (3.934\ 0.006\ 0.014\ 0.054)\times 10^1 \\ (3.934\ 0.006\ 0.014\ 0.054)\times 10^1 \\ (3.934\ 0.006\ 0.012\ 0.043)\times 10^1 \\ (4.476\ 0.020\ 0.027\ 0.068)\times 10^0 \\ (4.476\ 0.020\ 0.046)\times 10^0 \\ (2.996\ 0.014\ 0.020\ 0.046)\times 10^0 \\ (2.419\ 0.013\ 0.017\ 0.037)\times 10^0 \\ (1.981\ 0.011\ 0.015\ 0.031)\times 10^0 \\ (1.981\ 0.011\ 0.015\ 0.031)\times 10^0 \\ (5.524\ 0.032\ 0.047\ 0.105 \\ \end{array}$,	`			,						
$\begin{array}{llllllllllllllllllllllllllllllllllll$,				,						
$\begin{array}{llllllllllllllllllllllllllllllllllll$,	`			/						
$\begin{array}{c} 8.48 - 9.26 \\ 9.26 - 10.1 \\ 10.1 - 11.0 \\ 11.0 - 12.0 \\ 12.0 - 13.0 \\ 13.0 - 14.1 \\ \end{array} \begin{array}{c} (3.171\ 0.005\ 0.012\ 0.043) \times 10^1 \\ (2.565\ 0.004\ 0.009\ 0.035) \times 10^1 \\ (2.565\ 0.004\ 0.009\ 0.035) \times 10^1 \\ (2.666\ 0.003\ 0.006\ 0.023) \times 10^1 \\ (1.352\ 0.003\ 0.005\ 0.018) \times 10^1 \\ (1.094\ 0.002\ 0.005\ 0.015) \times 10^1 \\ \end{array} \begin{array}{c} (5.464\ 0.023\ 0.032\ 0.082) \times 10^0 \\ (4.476\ 0.020\ 0.027\ 0.068) \times 10^0 \\ (3.661\ 0.017\ 0.023\ 0.055) \times 10^0 \\ (2.996\ 0.014\ 0.020\ 0.046) \times 10^0 \\ (2.419\ 0.013\ 0.017\ 0.037) \times 10^0 \\ (1.981\ 0.011\ 0.015\ 0.031) \times 10^0 \\ \end{array} \begin{array}{c} 5.803\ 0.026\ 0.040\ 0.108 \\ 5.730\ 0.027\ 0.041\ 0.107 \\ 5.642\ 0.028\ 0.042\ 0.105 \\ 5.560\ 0.029\ 0.043\ 0.104 \\ 5.591\ 0.031\ 0.045\ 0.106 \\ 5.524\ 0.032\ 0.047\ 0.105 \end{array}$,	,			,						
$\begin{array}{llllllllllllllllllllllllllllllllllll$	/	`			,						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	`			,						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	/				/						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	`			,						
$13.0 - 14.1 \begin{vmatrix} (1.094\ 0.002\ 0.005\ 0.015) \times 10^{1} \end{vmatrix} \begin{vmatrix} (1.981\ 0.011\ 0.015\ 0.031) \times 10^{0} \end{vmatrix} \begin{vmatrix} 5.524\ 0.032\ 0.047\ 0.105 \end{vmatrix}$,	`			,						
	,	,			,						
1112 1015 (0.001 0.000 0.111)/110 (1.001 0.000 0.010 0.000 0.001	,	`			,						
$15.3 - 16.6 (7.139\ 0.016\ 0.031\ 0.101) \times 10^0 (1.327\ 0.008\ 0.011\ 0.021) \times 10^0 5.378\ 0.033\ 0.050\ 0.104$,	,			,						

TABLE SM XLVII: Bartels Rotation 2474 (December 1, 2014 – December 27, 2014). (Continued).

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time}} \sigma_{\text{syst.}}$
$16.6 - 18.0 (5.729 \ 0.013 \ 0.026 \ 0.082) \times 10$	$0 (1.085 \ 0.006 \ 0.009 \ 0.018) \times 10^{6}$	$5.282 \ 0.033 \ 0.051 \ 0.104$
$18.0 - 19.5 (4.621 \ 0.011 \ 0.022 \ 0.068) \times 10$	$(8.783 \ 0.052 \ 0.079 \ 0.144) \times 10^{-6}$	$^{-1}$ 5.262 0.034 0.053 0.104
$19.5 - 21.1 (3.729 \ 0.009 \ 0.018 \ 0.055) \times 10$	$(7.195 \ 0.044 \ 0.067 \ 0.119) \times 10^{-6}$	$^{-1}$ $ 5.182 \ 0.034 \ 0.054 \ 0.103 $
$21.1 - 22.8 (3.039 \ 0.007 \ 0.015 \ 0.045) \times 10$	$(5.919 \ 0.037 \ 0.056 \ 0.098) \times 10^{-6}$	$^{-1}$ $5.133 \ 0.035 \ 0.055 \ 0.103$
$22.8 - 24.7 (2.424 \ 0.006 \ 0.013 \ 0.036) \times 10$	$(4.831 \ 0.031 \ 0.046 \ 0.080) \times 10^{-6}$	$^{-1}$ 5.018 0.034 0.054 0.101
$24.7 - 26.7 (1.964 \ 0.005 \ 0.011 \ 0.030) \times 10$	$(3.937 \ 0.026 \ 0.038 \ 0.066) \times 10^{-6}$	$-1 \mid 4.987 \ 0.036 \ 0.055 \ 0.101$
$26.7 - 28.8 (1.583 \ 0.005 \ 0.009 \ 0.024) \times 10$	$(3.212 \ 0.023 \ 0.031 \ 0.054) \times 10^{-6}$	$^{-1}$ 4.928 0.038 0.055 0.100
$28.8 - 31.1 (1.286 \ 0.004 \ 0.007 \ 0.020) \times 10$	$(2.650 \ 0.020 \ 0.026 \ 0.045) \times 10^{-6}$	$^{-1}$ $ 4.854 \ 0.039 \ 0.055 \ 0.100$
$31.1 - 33.5 (1.040 \ 0.003 \ 0.006 \ 0.016) \times 10$	$(2.139 \ 0.017 \ 0.021 \ 0.037) \times 10^{-6}$	$^{-1}$ 4.861 0.043 0.056 0.100
$33.5 - 36.1 (8.439 \ 0.030 \ 0.050 \ 0.130) \times 10$	$ (1.740 \ 0.015 \ 0.018 \ 0.030) \times 10^{-1} $	$^{-1}$ 4.849 0.045 0.058 0.101
$36.1 - 38.9 (6.915 \ 0.026 \ 0.042 \ 0.107) \times 10$	$ ^{-1} (1.416 \ 0.013 \ 0.015 \ 0.025) \times 10^{-1} $	$^{-1}$ 4.883 0.049 0.059 0.103
$38.9 - 41.9 (5.628 \ 0.022 \ 0.035 \ 0.087) \times 10$	$ ^{-1} (1.165 \ 0.011 \ 0.012 \ 0.020) \times 10^{-1} $	$^{-1}$ 4.832 0.051 0.060 0.103
$41.9 - 45.1 (4.614 \ 0.020 \ 0.030 \ 0.072) \times 10$	$ (9.563 \ 0.100 \ 0.106 \ 0.170) \times 10^{-1} $	$-2 \mid 4.825 \ 0.054 \ 0.062 \ 0.104$
$45.1 - 48.5 (3.737 \ 0.017 \ 0.025 \ 0.059) \times 10$	$ (7.943 \ 0.088 \ 0.090 \ 0.143) \times 10^{-1} $	$-2 \mid 4.705 \ 0.056 \ 0.062 \ 0.103$
$48.5 - 52.2 (3.053 \ 0.015 \ 0.020 \ 0.049) \times 10$	$ ^{-1} (6.388 \ 0.075 \ 0.075 \ 0.117) \times 10^{-1} $	$-2 \mid 4.780 \ 0.061 \ 0.065 \ 0.105$
$52.2 - 56.1 (2.488 \ 0.013 \ 0.017 \ 0.041) \times 10$	$ (5.439 \ 0.068 \ 0.066 \ 0.101) \times 10^{-1} $	$-2 \mid 4.575 \mid 0.062 \mid 0.064 \mid 0.102 \mid$
$56.1 - 60.3 (2.038 \ 0.011 \ 0.014 \ 0.034) \times 10$	$ (4.376 \ 0.058 \ 0.055 \ 0.082) \times 10^{-1} $	$-2 \mid 4.657 \mid 0.067 \mid 0.067 \mid 0.105 \mid$

TABLE SM XLVIII: Bartels Rotation 2475 (December 28, 2014 – January 23, 2015). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m stat}$	$\sigma_{ m time}$ $\sigma_{ m s}$	syst.	$ ho/{\rm He} \ \sigma_{\rm s}$	tat. $\sigma_{\rm t}$	ime		$\sigma_{ m syst.}$
$1.00 - 1.16 (5.304 \ 0.028 \ 0.068 \ 0.235) \times 10^{-1}$	-		_	_	_	_	_	
$1.16 - 1.33 (5.478 \ 0.019 \ 0.051 \ 0.193) \times 10^{-6}$	2 _		_	_	_	_	_	
$1.33 - 1.51 (5.402\ 0.016\ 0.039\ 0.154) \times 10^{-6}$	2 _		_	_	_	_	_	
$1.51 - 1.71 (5.177 \ 0.012 \ 0.031 \ 0.134) \times 10^{-6}$	-		_	_	_	_	_	
$1.71 - 1.92 (4.841 \ 0.011 \ 0.025 \ 0.114) \times 10^{-1}$	2 _		_	_	_	_	_	
$1.92 - 2.15 (4.408 \ 0.009 \ 0.021 \ 0.095) \times 10^{-1}$.034 0.056	$0.120) \times 10^{1}$	8.309	0.056	0.096	0.248	
$2.15 - 2.40 (3.968 \ 0.008 \ 0.017 \ 0.079) \times 10^{-6}$.030 0.047	$0.101) \times 10^{1}$	7.847	0.049	0.080	0.210	
$2.40 - 2.67 (3.504 \ 0.006 \ 0.014 \ 0.066) \times 10^{-6}$	(4.653 0)	.025 0.040	$0.085) \times 10^{1}$	7.531	0.043	0.072	0.186	
$2.67 - 2.97 (3.051 \ 0.005 \ 0.012 \ 0.053) \times 10^{-6}$,	.021 0.035	$0.073) \times 10^{1}$	7.213	0.039	0.066	0.167	
$2.97 - 3.29 (2.643 \ 0.004 \ 0.010 \ 0.044) \times 10^{-6}$.018 0.029	$0.063) \times 10^{1}$	6.975	0.035	0.060	0.155	
$3.29 - 3.64 (2.245 \ 0.004 \ 0.009 \ 0.036) \times 10^{-6}$	(3.325 0)	.015 0.023	$0.054) \times 10^{1}$	6.752	0.033	0.055	0.145	
$3.64 - 4.02 (1.911 \ 0.003 \ 0.008 \ 0.030) \times 10^{-6}$			$0.046) \times 10^{1}$	1	0.032	0.052	0.140	
$4.02 - 4.43 (1.603 \ 0.003 \ 0.007 \ 0.024) \times 10^{-6}$	(2.456 0)	.011 0.015	$0.039) \times 10^{1}$	6.526	0.030	0.049	0.134	
$4.43 - 4.88 (1.337 \ 0.002 \ 0.005 \ 0.020) \times 10^{-6}$	$(2.061\ 0)$.008 0.012	$0.032) \times 10^{1}$	6.484	0.028	0.047	0.131	
$4.88 - 5.37 (1.104 \ 0.002 \ 0.004 \ 0.016) \times 10^{-6}$	(1.742 0)	.007 0.010	$0.027) \times 10^{1}$	6.335	0.027	0.044	0.126	
$5.37 - 5.90 (9.070\ 0.014\ 0.033\ 0.128) \times 10^{-6}$.006 0.008	$0.022) \times 10^{1}$	6.206	0.027	0.041	0.120	
$5.90 - 6.47 (7.420\ 0.011\ 0.026\ 0.103) \times 10^{-6}$	(1.213 0)	.005 0.007	$0.018) \times 10^{1}$	6.116	0.026	0.040	0.117	
$6.47 - 7.09 (6.061 \ 0.009 \ 0.021 \ 0.084) \times 10^{-6}$	(1.012 0)	.004 0.006	$0.015) \times 10^{1}$	5.990	0.025	0.039	0.113	
$7.09 - 7.76 (4.933\ 0.007\ 0.017\ 0.068) \times 10^{-1}$	$(8.308 \ 0)$.033 0.047	$0.125) \times 10^{0}$	5.938	0.025	0.039	0.111	
$7.76 - 8.48 (3.992 \ 0.006 \ 0.013 \ 0.055) \times 10^{-1}$			$0.103) \times 10^{0}$		0.025	0.039	0.108	
$8.48 - 9.26 (3.239 \ 0.005 \ 0.011 \ 0.044) \times 10^{-1}$	(5.585 0)	.023 0.034	$0.085) \times 10^{0}$	5.799	0.026	0.040	0.108	
$9.26 - 10.1 (2.618 \ 0.004 \ 0.009 \ 0.035) \times 10^{-1}$	(4.560 0)	.020 0.029	$0.069) \times 10^{0}$	5.740	0.027	0.041	0.107	
$10.1 - 11.0 (2.108 \ 0.004 \ 0.008 \ 0.028) \times 10^{-1}$	(3.737 0)	.017 0.025	$0.057) \times 10^{0}$	5.640	0.028	0.042	0.105	
$11.0 - 12.0 (1.695 \ 0.003 \ 0.006 \ 0.023) \times 10^{-1}$	$(3.070 \ 0)$.015 0.021	$0.048)\times10^{0}$	5.522	0.028	0.043	0.103	
$12.0 - 13.0 (1.366 \ 0.003 \ 0.005 \ 0.019) \times 10^{-1}$	(2.495 0)	.013 0.018	$0.039) \times 10^{0}$	5.474	0.030	0.045	0.104	
$13.0 - 14.1 \ (1.109\ 0.002\ 0.004\ 0.016) \times 10^{-1}$	$(2.030 \ 0)$.011 0.016	$0.032) \times 10^{0}$	5.464	0.031	0.047	0.105	
$14.1 - 15.3 (8.923 \ 0.019 \ 0.036 \ 0.125) \times 10^{0}$,		$0.026) \times 10^{0}$	1	0.031	0.048	0.103	
$15.3 - 16.6 (7.194 \ 0.016 \ 0.030 \ 0.102) \times 10^{-6} (7.194 \ 0.016 \ 0.030 \ 0.030) \times 10^{-6} (7.194 \ 0.0100) \times 10^{-6} (7.194 \ 0.0100) \times 10$			$0.022) \times 10^{0}$		0.032	0.050	0.103	

TABLE SM XLVIII: Bartels Rotation 2475 (December 28, 2014 – January 23, 2015). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$
$16.6 - 18.0 (5.792 \ 0.013 \ 0.025 \ 0.083) \times 10$	$0 (1.090 \ 0.006 \ 0.010 \ 0.018) \times 1$	0^0 5.314 0.033 0.053 0.105
$18.0 - 19.5 (4.659 \ 0.011 \ 0.021 \ 0.068) \times 10$	$0 (8.908 \ 0.053 \ 0.084 \ 0.148) \times 1$	$0^{-1} 5.231 \ 0.033 \ 0.054 \ 0.104$
$19.5 - 21.1 (3.771 \ 0.009 \ 0.017 \ 0.056) \times 10$	$0 (7.341 \ 0.044 \ 0.072 \ 0.124) \times 1$	$0^{-1} 5.137 \ 0.033 \ 0.056 \ 0.103$
$21.1 - 22.8 (3.028 \ 0.007 \ 0.014 \ 0.045) \times 10$	$0 (5.967 \ 0.037 \ 0.059 \ 0.101) \times 1$	$0^{-1} 5.074 0.034 0.056 0.103$
$22.8 - 24.7 (2.449 \ 0.006 \ 0.012 \ 0.036) \times 10$	$0 (4.845 \ 0.031 \ 0.049 \ 0.082) \times 1$	$0^{-1} 5.055 \ 0.034 \ 0.057 \ 0.103$
$24.7 - 26.7 (1.969 \ 0.005 \ 0.010 \ 0.030) \times 10$	$0 (3.959 \ 0.027 \ 0.040 \ 0.068) \times 1$	$0^{-1} 4.974 \ 0.036 \ 0.057 \ 0.102$
$26.7 - 28.8 (1.597 \ 0.005 \ 0.008 \ 0.024) \times 10$	$0 (3.192 \ 0.023 \ 0.033 \ 0.055) \times 1$	$0^{-1} 5.002 \ 0.039 \ 0.058 \ 0.103$
$28.8 - 31.1 (1.284 \ 0.004 \ 0.007 \ 0.020) \times 10$	$0 (2.592 \ 0.020 \ 0.027 \ 0.045) \times 1$	$0^{-1} 4.955 \ 0.040 \ 0.059 \ 0.103$
$31.1 - 33.5 (1.048 \ 0.003 \ 0.006 \ 0.016) \times 10$	$0 (2.134 \ 0.017 \ 0.023 \ 0.037) \times 1$	$0^{-1} 4.910 \ 0.043 \ 0.059 \ 0.103$
$33.5 - 36.1 (8.480 \ 0.029 \ 0.047 \ 0.129) \times 10$	$^{-1}$ (1.779 0.015 0.020 0.032)×1	$0^{-1} 4.766 \ 0.044 \ 0.059 \ 0.101$
$36.1 - 38.9 (6.898 \ 0.026 \ 0.039 \ 0.105) \times 10$	$^{-1}$ (1.441 0.013 0.016 0.026)×1	$0^{-1} 4.786 \ 0.047 \ 0.060 \ 0.102$
$38.9 - 41.9 (5.619 \ 0.022 \ 0.033 \ 0.086) \times 10$	$^{-1}$ (1.169 0.011 0.013 0.021)×1	$0^{-1} 4.805 \ 0.051 \ 0.062 \ 0.103$
$41.9 - 45.1 (4.612 \ 0.020 \ 0.028 \ 0.071) \times 10$	$^{-1}$ (9.567 0.100 0.112 0.174)×1	$0^{-2} 4.821 \ 0.054 \ 0.063 \ 0.104$
$45.1 - 48.5$ $(3.720 \ 0.017 \ 0.023 \ 0.058) \times 10$	$^{-1}$ (7.799 0.087 0.093 0.143)×1	$0^{-2} 4.770 \ 0.057 \ 0.064 \ 0.105$
$48.5 - 52.2 (3.076 \ 0.015 \ 0.019 \ 0.049) \times 10$	$^{-1}$ (6.377 0.075 0.077 0.118)×1	$0^{-2} 4.824 \ 0.061 \ 0.066 \ 0.106$
52.2 - 56.1 (2.500 0.013 0.016 0.041)×10	$^{-1}$ (5.297 0.066 0.065 0.099)×1	$0^{-2} 4.720 \ 0.064 \ 0.065 \ 0.105$
$56.1 - 60.3 (2.046 \ 0.011 \ 0.013 \ 0.034) \times 10$	$^{-1}$ (4.379 0.058 0.055 0.082)×1	$0^{-2} 4.671 \ 0.067 \ 0.066 \ 0.104$

TABLE SM XLIX: Bartels Rotation 2476 (January 24, 2015 – February 19, 2015). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ	$ au_{ m time}$ $\sigma_{ m syst.}$	$p/{\rm He}$	$\sigma_{\mathrm{stat.}}$ σ_{1}	time		$\sigma_{ m syst.}$
$1.00 - 1.16 (5.335 \ 0.028 \ 0.076 \ 0.239) \times 10$				_	_	_	
$1.16 - 1.33 (5.442 \ 0.018 \ 0.056 \ 0.194) \times 10$			_	_	_	_	
$1.33 - 1.51 (5.394 \ 0.016 \ 0.042 \ 0.155) \times 10$			_	_	_	_	
$1.51 - 1.71 (5.195 \ 0.012 \ 0.033 \ 0.135) \times 10$			_	_	_	_	
$1.71 - 1.92 (4.863 \ 0.010 \ 0.027 \ 0.114) \times 10$	2		_	_	_	_	
$1.92 - 2.15 (4.428 \ 0.009 \ 0.022 \ 0.095) \times 10$	$(5.223 \ 0.03)$	4 0.060 0.121	$\times 10^1$ 8.4	77 0.057	0.106	0.256	
$2.15 - 2.40 (3.958 \ 0.007 \ 0.018 \ 0.079) \times 10$	$(5.054 \ 0.02)$	9 0.051 0.103	$\times 10^1$ 7.8	30 0.048	0.087	0.212	
$2.40 - 2.67 (3.514 \ 0.006 \ 0.015 \ 0.066) \times 10$	$(4.700 \ 0.02)$	5 0.046 0.088	$\times 10^1$ 7.4	77 0.042	0.079	0.188	
$2.67 - 2.97 (3.064 \ 0.005 \ 0.013 \ 0.053) \times 10$	$(4.253 \ 0.02)$	1 0.040 0.076	$\times 10^1$ 7.2	03 0.038	0.074	0.171	
$2.97 - 3.29 (2.641 \ 0.004 \ 0.011 \ 0.044) \times 10$	$(3.799 \ 0.01)$	8 0.031 0.064	$\times 10^1$ 6.9	53 0.035	0.064	0.156	
$3.29 - 3.64 (2.264 \ 0.004 \ 0.010 \ 0.036) \times 10$	$(3.328 \ 0.01)$	$5\ 0.024\ 0.055$	$\times 10^{1}$ 6.8	03 0.033	0.058	0.148	
$3.64 - 4.02 (1.920 \ 0.003 \ 0.008 \ 0.030) \times 10$	$(2.861 \ 0.01)$	3 0.019 0.046	$\times 10^{1}$ 6.7	12 0.032	0.054	0.142	
$4.02 - 4.43 (1.610 \ 0.003 \ 0.007 \ 0.025) \times 10$	$(2.464 \ 0.01)$	0 0.016 0.039	$\times 10^{1}$ 6.5	34 0.030	0.051	0.135	
$4.43 - 4.88 (1.338 \ 0.002 \ 0.006 \ 0.020) \times 10$	$(2.078 \ 0.00)$	8 0.013 0.032	$\times 10^1$ 6.4	37 0.028	0.049	0.131	
$4.88 - 5.37 (1.105 \ 0.002 \ 0.005 \ 0.016) \times 10$	$(1.733 \ 0.00)$	7 0.011 0.027	$\times 10^1$ 6.3	78 0.027	0.047	0.128	
$5.37 - 5.90 (9.087 \ 0.014 \ 0.035 \ 0.129) \times 10$	$(1.457 \ 0.00)$	6 0.009 0.022	$\times 10^1$ 6.2	39 0.027	0.045	0.122	
$5.90 - 6.47 (7.427 \ 0.011 \ 0.028 \ 0.104) \times 10$	$(1.213 \ 0.00)$	5 0.007 0.018	$\times 10^1$ 6.1	24 0.026	0.043	0.118	
$6.47 - 7.09 (6.066 \ 0.009 \ 0.022 \ 0.084) \times 10$	1 (1.004 0.00)	4 0.006 0.015	$\times 10^{1}$ 6.0	44 0.026	0.042	0.115	
$7.09 - 7.76 (4.926 \ 0.007 \ 0.018 \ 0.068) \times 10$	$(8.268 \ 0.03)$	3 0.050 0.126	$\times 10^0$ 5.9	58 0.025	0.042	0.113	
$7.76 - 8.48 (3.999 \ 0.006 \ 0.014 \ 0.055) \times 10$	$(6.828 \ 0.02)$	8 0.042 0.103	$\times 10^0$ 5.8	57 0.025	0.041	0.110	
$8.48 - 9.26 (3.235 \ 0.005 \ 0.012 \ 0.044) \times 10$	$(5.574 \ 0.02)$	$3\ 0.035\ 0.085$	$\times 10^0$ 5.8	03 0.026	0.042	0.109	
$9.26 - 10.1 (2.611 \ 0.004 \ 0.010 \ 0.035) \times 10$	$(4.587 \ 0.02)$	0 0.030 0.070	$\times 10^0$ 5.6	91 0.027	0.043	0.107	
$10.1 - 11.0 (2.106 \ 0.004 \ 0.008 \ 0.028) \times 10$	$(3.707 \ 0.01)$	7 0.025 0.057	$\times 10^0$ 5.6	81 0.028	0.045	0.107	
$11.0 - 12.0 (1.696 \ 0.003 \ 0.007 \ 0.023) \times 10$	$(3.030 \ 0.01)$	4 0.022 0.047	$\times 10^0$ 5.5	96 0.028	0.046	0.106	
$12.0 - 13.0 (1.371 \ 0.003 \ 0.005 \ 0.019) \times 10$	$(2.453 \ 0.01)$	3 0.019 0.039	$\times 10^0$ 5.5	88 0.031	0.048	0.107	
$13.0 - 14.1 (1.113 \ 0.002 \ 0.005 \ 0.016) \times 10$	$(2.036 \ 0.01)$	1 0.016 0.032	$\times 10^0$ 5.4	64 0.031	0.049	0.106	
$14.1 - 15.3 (8.994 \ 0.019 \ 0.039 \ 0.127) \times 10$	$0 (1.650 \ 0.00)$	9 0.014 0.026	$\times 10^0$ 5.4	51 0.032	0.052	0.106	
$15.3 - 16.6 (7.197 \ 0.016 \ 0.032 \ 0.102) \times 10$	$0 (1.360 \ 0.00)$	8 0.012 0.022	$\times 10^0$ 5.2	93 0.032	0.052	0.104	

TABLE SM XLIX: Bartels Rotation 2476 (January 24, 2015 – February 19, 2015). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \ \sigma_{\text{time }} \ \sigma_{\text{syst.}}$
$16.6 - 18.0 (5.813 \ 0.013 \ 0.027 \ 0.084) \times 10$	$0 (1.096 \ 0.006 \ 0.010 \ 0.018) \times 10^{-1}$	$5.306 \ 0.033 \ 0.055 \ 0.106$
$18.0 - 19.5 (4.673 \ 0.011 \ 0.022 \ 0.068) \times 10$	$0 (8.920 \ 0.053 \ 0.087 \ 0.150) \times 10^{-1}$	10^{-1} 5.240 0.033 0.057 0.106
$19.5 - 21.1 (3.782 \ 0.009 \ 0.018 \ 0.056) \times 10$	$0 (7.372 \ 0.044 \ 0.075 \ 0.126) \times 10^{-1}$	10^{-1} 5.131 0.033 0.058 0.104
$21.1 - 22.8 (3.056 \ 0.007 \ 0.015 \ 0.046) \times 10$	$0 (5.976 \ 0.037 \ 0.061 \ 0.102) \times 10^{-1}$	10^{-1} 5.115 0.034 0.058 0.105
$22.8 - 24.7 (2.463 \ 0.006 \ 0.013 \ 0.037) \times 10$	$0 (4.800 \ 0.030 \ 0.049 \ 0.082) \times 10^{-1}$	10^{-1} 5.131 0.035 0.059 0.106
$24.7 - 26.7 (1.976 \ 0.005 \ 0.011 \ 0.030) \times 10$	$0 (3.971 \ 0.027 \ 0.041 \ 0.068) \times 1$	$10^{-1} 4.977 \ 0.036 \ 0.058 \ 0.103$
$26.7 - 28.8 (1.609 \ 0.005 \ 0.009 \ 0.024) \times 10$	$0 (3.252 \ 0.023 \ 0.034 \ 0.056) \times 10^{-1}$	$10^{-1} 4.946 \ 0.038 \ 0.059 \ 0.102$
$28.8 - 31.1 (1.297 \ 0.004 \ 0.007 \ 0.020) \times 10$	$0 (2.674 \ 0.020 \ 0.028 \ 0.046) \times 10^{-1}$	$10^{-1} 4.850 \ 0.039 \ 0.058 \ 0.101$
$31.1 - 33.5 (1.052 \ 0.003 \ 0.006 \ 0.016) \times 10$	$0 (2.176 \ 0.018 \ 0.023 \ 0.038) \times 10^{-1}$	$10^{-1} 4.835 \ 0.042 \ 0.059 \ 0.101$
$33.5 - 36.1 (8.582 \ 0.030 \ 0.051 \ 0.132) \times 10$	$^{-1}$ (1.748 0.015 0.019 0.031)×1	10^{-1} 4.910 0.046 0.061 0.104
$36.1 - 38.9 (6.971 \ 0.026 \ 0.043 \ 0.107) \times 10$	$^{-1}$ (1.448 0.013 0.016 0.026)×1	10^{-1} 4.815 0.047 0.061 0.103
$38.9 - 41.9 (5.615 \ 0.022 \ 0.035 \ 0.087) \times 10$	$^{-1}$ (1.175 0.011 0.013 0.021)×1	$10^{-1} 4.777 \ 0.050 \ 0.062 \ 0.103$
$41.9 - 45.1 (4.573 \ 0.019 \ 0.029 \ 0.071) \times 10$	$^{-1}$ (9.701 0.100 0.112 0.176)×1	10^{-2} 4.714 0.053 0.062 0.103
$45.1 - 48.5 (3.749 \ 0.017 \ 0.025 \ 0.059) \times 10$	$^{-1}$ (8.048 0.088 0.096 0.148)×1	$10^{-2} 4.658 \ 0.055 \ 0.063 \ 0.103$
$48.5 - 52.2 (3.090 \ 0.015 \ 0.021 \ 0.050) \times 10$	$^{-1}$ (6.386 0.075 0.078 0.119)×1	$10^{-2} 4.838 \ 0.062 \ 0.067 \ 0.108$
$52.2 - 56.1 (2.516 \ 0.013 \ 0.017 \ 0.041) \times 10$	$^{-1}$ (5.402 0.067 0.068 0.102)×1	$10^{-2} 4.657 \ 0.063 \ 0.067 \ 0.105$
$56.1 - 60.3 (2.072 \ 0.011 \ 0.014 \ 0.035) \times 10$	$-1 (4.378 \ 0.058 \ 0.056 \ 0.084) \times 1$	$10^{-2} 4.733 \ 0.068 \ 0.069 \ 0.108$

TABLE SM L: Bartels Rotation 2477 (February 20, 2015 – March 18, 2015). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ σ_{time}	$\sigma_{ m syst.}$
$1.00 - 1.16 (4.992\ 0.030\ 0.072\ 0.223) \times 10^{-1}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.16 - 1.33 (5.108 \ 0.018 \ 0.053 \ 0.182) \times 10^{-1}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.33 - 1.51 (5.065 \ 0.016 \ 0.040 \ 0.146) \times 10^{-1}$	2		_
$1.51 - 1.71 (4.898 \ 0.012 \ 0.032 \ 0.128) \times 10^{-1}$	2		_
$1.71 - 1.92 (4.596 \ 0.010 \ 0.026 \ 0.108) \times 10^{-1}$	2		_
$1.92 - 2.15 (4.204 \ 0.009 \ 0.021 \ 0.090) \times 10^{-1}$	$(5.023 \ 0.033 \ 0.052 \ 0.113) \times 10^{-2}$	$8.370 \ 0.058 \ 0.096$	0.249
$2.15 - 2.40 (3.792 0.007 0.017 0.076) \times 10^{-1}$	$(4.802 \ 0.029 \ 0.043 \ 0.095) \times 10^{-2}$	$7.897 \ 0.050 \ 0.079$	0.210
$2.40 - 2.67 (3.373\ 0.006\ 0.014\ 0.064) \times 10^{-2}$	$(4.473 \ 0.025 \ 0.037 \ 0.080) \times 10^{-2}$	$7.540 \ 0.044 \ 0.070$	0.185
$2.67 - 2.97 (2.944 \ 0.005 \ 0.012 \ 0.051) \times 10^{-2}$	$(4.103 \ 0.021 \ 0.032 \ 0.070) \times 10^{-2}$	$7.175 \ 0.039 \ 0.064$	0.166
$2.97 - 3.29 (2.561 \ 0.004 \ 0.010 \ 0.043) \times 10^{-1}$	$(3.649 \ 0.018 \ 0.026 \ 0.060) \times 10^{-2}$	$7.019 \ 0.036 \ 0.058$	0.155
$3.29 - 3.64 (2.192 \ 0.004 \ 0.009 \ 0.035) \times 10^{-1}$	$(3.231 \ 0.015 \ 0.022 \ 0.052) \times 10^{-2}$	$\begin{bmatrix} 6.785 & 0.034 & 0.054 \end{bmatrix}$	0.146
$3.64 - 4.02 (1.861 \ 0.003 \ 0.008 \ 0.029) \times 10^{-1}$	$(2.795 \ 0.013 \ 0.017 \ 0.044) \times 10^{-2}$	$\begin{bmatrix} 6.659 & 0.032 & 0.050 \end{bmatrix}$	0.139
$4.02 - 4.43 (1.568 \ 0.003 \ 0.007 \ 0.024) \times 10^{-1}$	$(2.379 \ 0.010 \ 0.014 \ 0.037) \times 10^{-2}$	$\begin{bmatrix} 6.592 & 0.031 & 0.048 \end{bmatrix}$	0.134
$4.43 - 4.88 (1.309 \ 0.002 \ 0.005 \ 0.020) \times 10^{-1}$		$\begin{bmatrix} 6.441 & 0.028 & 0.045 \end{bmatrix}$	0.129
$4.88 - 5.37 (1.083 \ 0.002 \ 0.004 \ 0.016) \times 10^{-1}$	$(1.706 \ 0.007 \ 0.009 \ 0.026) \times 10^{-2}$	$\begin{vmatrix} 6.346 & 0.028 & 0.042 \end{vmatrix}$	0.125
$5.37 - 5.90 (8.908 \ 0.014 \ 0.033 \ 0.126) \times 10^{-1}$	$1 (1.423 \ 0.006 \ 0.007 \ 0.021) \times 10^{-1}$	$6.258 \ 0.027 \ 0.040$	0.121
$5.90 - 6.47 (7.279 \ 0.011 \ 0.026 \ 0.102) \times 10^{-2}$	$1 (1.193 \ 0.005 \ 0.006 \ 0.018) \times 10^{-1}$	$\begin{bmatrix} 6.099 & 0.026 & 0.038 \end{bmatrix}$	0.116
$6.47 - 7.09 (5.960 \ 0.009 \ 0.021 \ 0.083) \times 10^{-1}$	$(9.911 \ 0.040 \ 0.051 \ 0.147) \times 10^{6}$	$6.013 \ 0.026 \ 0.038$	0.113
$7.09 - 7.76 (4.846 0.007 0.017 0.067) \times 10^{-1}$	$1 (8.161 \ 0.033 \ 0.042 \ 0.122) \times 10^{6}$	$5.938 \ 0.026 \ 0.037$	0.111
$7.76 - 8.48 (3.942 \ 0.006 \ 0.014 \ 0.054) \times 10^{-1}$	$(6.754 \ 0.028 \ 0.036 \ 0.100) \times 10^{-6}$	$5.836 \ 0.026 \ 0.037$	0.108
$8.48 - 9.26 (3.200\ 0.005\ 0.011\ 0.044) \times 10^{-1}$	$1 (5.510 \ 0.023 \ 0.030 \ 0.082) \times 10^{6}$	$5.808 \ 0.026 \ 0.038$	0.107
$9.26-10.1 (2.593 0.004 0.009 0.035) \! imes \! 10$	$(4.534 \ 0.020 \ 0.026 \ 0.068) \times 10^{6}$	$5.719 \ 0.027 \ 0.039$	0.106
$10.1 - 11.0 (2.088 0.004 0.008 0.028) \times 10^{-1}$	$(3.711 \ 0.017 \ 0.022 \ 0.056) \times 10^{6}$	$5.625 \ 0.028 \ 0.040$	0.104
$11.0 - 12.0 (1.679 \ 0.003 \ 0.006 \ 0.023) \times 10^{-1}$	· ·		0.102
$12.0 - 13.0 (1.364 0.003 0.005 0.019) \times 10^{-1}$	$(2.480\ 0.013\ 0.016\ 0.038)\times10^{6}$	$5.500 \ 0.030 \ 0.042$	0.103
$13.0 - 14.1 (1.106 \ 0.002 \ 0.004 \ 0.016) \times 10^{-1}$	$(2.011 \ 0.011 \ 0.014 \ 0.031) \times 10^{0}$	$5.500 \ 0.032 \ 0.044$	0.104
$14.1 - 15.3 (8.896 \ 0.019 \ 0.037 \ 0.125) \times 10^{-1}$	$0 (1.649 \ 0.009 \ 0.012 \ 0.025) \times 10^{6}$	$5.395 \ 0.032 \ 0.045$	0.102
$15.3 - 16.6 (7.213 \ 0.016 \ 0.031 \ 0.102) \times 10^{-2}$	$0 (1.353 \ 0.008 \ 0.010 \ 0.021) \times 10^{0}$	$5.332 \ 0.032 \ 0.047$	0.102
T 11 1: 1			

TABLE SM L: Bartels Rotation 2477 (February 20, 2015 – March 18, 2015). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ $\sigma_{\text{time }}\sigma_{\text{syst.}}$
$16.6 - 18.0 (5.784 \ 0.013 \ 0.025 \ 0.083) \times 10$	$0 (1.092 \ 0.006 \ 0.009 \ 0.018) \times$	10^0 5.295 0.033 0.049 0.103
$18.0 - 19.5 (4.677 \ 0.011 \ 0.021 \ 0.068) \times 10$	$0 (8.948 \ 0.053 \ 0.076 \ 0.144) \times$	10^{-1} 5.227 0.033 0.050 0.102
$19.5 - 21.1 (3.774 \ 0.009 \ 0.018 \ 0.056) \times 10$	0 (7.323 0.045 0.065 0.119)×	10^{-1} 5.154 0.034 0.051 0.101
$21.1 - 22.8 (3.066 \ 0.008 \ 0.015 \ 0.046) \times 10$	$0 (5.967 \ 0.037 \ 0.053 \ 0.098) \times$	10^{-1} 5.139 0.035 0.052 0.102
$22.8 - 24.7 (2.466 \ 0.006 \ 0.012 \ 0.037) \times 10$	0 (4.891 0.031 0.044 0.080)×	10^{-1} 5.043 0.034 0.052 0.101
$24.7 - 26.7 (1.973 \ 0.005 \ 0.010 \ 0.030) \times 10$	$0 (3.945 \ 0.027 \ 0.036 \ 0.065) \times$	10^{-1} 5.003 0.036 0.053 0.100
$26.7 - 28.8 (1.613 \ 0.005 \ 0.009 \ 0.024) \times 10$	$0 (3.198 \ 0.023 \ 0.030 \ 0.053) \times$	10^{-1} 5.044 0.039 0.054 0.101
$28.8 - 31.1 (1.296 \ 0.004 \ 0.007 \ 0.020) \times 10$	$0 (2.645 \ 0.020 \ 0.025 \ 0.044) \times$	$(10^{-1} 4.899 \ 0.040 \ 0.054 \ 0.099)$
$31.1 - 33.5 (1.056 \ 0.003 \ 0.006 \ 0.016) \times 10$	$0 (2.165 \ 0.018 \ 0.021 \ 0.037) \times$	10^{-1} 4.880 0.043 0.055 0.100
$33.5 - 36.1 (8.584 \ 0.030 \ 0.049 \ 0.131) \times 10$	$^{-1}$ (1.797 0.015 0.018 0.031)×	$(10^{-1} 4.777 \ 0.044 \ 0.055 \ 0.098)$
$36.1 - 38.9 (6.963 \ 0.026 \ 0.041 \ 0.107) \times 10$	$^{-1}$ (1.451 0.013 0.015 0.025)×	10^{-1} 4.798 0.047 0.056 0.100
$38.9 - 41.9 (5.657 \ 0.022 \ 0.034 \ 0.087) \times 10$	$^{-1}$ (1.191 0.012 0.012 0.020)×	$(10^{-1})4.751 \ 0.050 \ 0.056 \ 0.100$
$41.9 - 45.1 (4.615 \ 0.020 \ 0.028 \ 0.072) \times 10$	$^{-1}$ (9.582 0.100 0.100 0.167)×	$(10^{-2})4.817 \ 0.054 \ 0.058 \ 0.102$
$45.1 - 48.5 (3.773 \ 0.017 \ 0.024 \ 0.059) \times 10$	$^{-1}$ (7.891 0.088 0.084 0.139)×	10^{-2} 4.781 0.058 0.059 0.102
$48.5 - 52.2 (3.100 \ 0.015 \ 0.020 \ 0.050) \times 10$	$^{-1}$ (6.491 0.076 0.070 0.115)×	$10^{-2} 4.776 \ 0.061 \ 0.060 \ 0.102$
$52.2 - 56.1 (2.526 \ 0.013 \ 0.017 \ 0.041) \times 10$	$^{-1}$ (5.412 0.067 0.059 0.097)×	$10^{-2} 4.668 \ 0.063 \ 0.060 \ 0.101$
$56.1 - 60.3 (2.071 \ 0.011 \ 0.014 \ 0.034) \times 10$	$^{-1}$ (4.458 0.059 0.050 0.080)×	$10^{-2} 4.645 \ 0.066 \ 0.060 \ 0.101$

TABLE SM LI: Bartels Rotation 2478 (March 19, 2015 – April 14, 2015). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$\rho/{\rm He}~\sigma_{\rm stat.}~\sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (4.487 \ 0.028 \ 0.064 \ 0.201) \times 10^{2} $	2		_
$1.16 - 1.33 (4.600 \ 0.017 \ 0.048 \ 0.164) \times 10^{5}$	2 $ -$		_
$1.33 - 1.51 (4.566 \ 0.015 \ 0.036 \ 0.131) \times 10^{2}$	2 \mid $^{-}$ $^{-}$ $^{-}$		_
$1.51 - 1.71 (4.450\ 0.011\ 0.029\ 0.116) \times 10^{-6}$	2 $ -$		_
$1.71 - 1.92 (4.201\ 0.010\ 0.023\ 0.099) \times 10^{2}$	2		_
$1.92 - 2.15 (3.868\ 0.008\ 0.019\ 0.083) \times 10^{6}$	$(4.644 \ 0.032 \ 0.050 \ 0.105) \times 10^{1}$	8.330 0.060 0.098	0.249
2.15 - 2.40 (3.485 0.007 0.016 0.070)×10 ³		7.904 0.052 0.080	0.211
$2.40 - 2.67 (3.109\ 0.006\ 0.013\ 0.059) \times 10^{3}$	$(4.171\ 0.024\ 0.037\ 0.076)\times10^{1}$	7.454 0.045 0.073	0.185
$2.67 - 2.97 (2.738 \ 0.005 \ 0.011 \ 0.048) \times 10^{2}$,	7.169 0.041 0.069	0.168
$2.97 - 3.29 (2.391\ 0.004\ 0.010\ 0.040) \times 10^{2}$		6.995 0.037 0.059	0.155
$3.29 - 3.64 (2.060 \ 0.004 \ 0.008 \ 0.033) \times 10^{2}$,	6.756 0.035 0.051	0.144
$3.64 - 4.02 (1.760 \ 0.003 \ 0.007 \ 0.028) \times 10^{2}$,	6.641 0.033 0.048	0.138
$4.02 - 4.43 (1.487 \ 0.002 \ 0.006 \ 0.023) \times 10^{-6}$,	6.537 0.031 0.046	0.133
$4.43 - 4.88 (1.250 \ 0.002 \ 0.005 \ 0.019) \times 10^{2}$	1 '	6.435 0.029 0.044	
$4.88 - 5.37 (1.037 \ 0.002 \ 0.004 \ 0.015) \times 10^{-6} (1.037 \ 0.002 \ 0.004 \ 0.015) \times 10^{-6} (1.037 \ 0.002 \ 0.004 \ 0.015) \times 10^{-6} (1.037 \ 0.002 \ 0.004 \ 0.0015) \times 10^{-6} (1.037 \ 0.004 \ 0.004 \ 0.0015) \times 10^{-6} (1.037 \ 0.004 \ 0.004 \ 0.004) \times 10^{-6} (1.037 \ 0.004 \ 0.004 \ 0.004) \times 10^{-6} (1.037 \ 0.004) \times 10^{-6} $,	6.254 0.028 0.042	
$5.37 - 5.90 (8.559 \ 0.013 \ 0.031 \ 0.121) \times 10^{-1}$,	6.175 0.027 0.039	
$5.90 - 6.47 (7.068 \ 0.011 \ 0.025 \ 0.099) \times 10^{-1}$		6.084 0.027 0.038	0.115
$6.47 - 7.09 \left(5.798 \ 0.009 \ 0.020 \ 0.080 \right) \times 10^{-1}$,		
$7.09 - 7.76 (4.750 \ 0.007 \ 0.016 \ 0.065) \times 10^{-1}$	1 *		
$7.76 - 8.48 (3.865 \ 0.006 \ 0.013 \ 0.053) \times 10^{-1}$,		
$8.48 - 9.26 (3.144 \ 0.005 \ 0.011 \ 0.043) \times 10^{-1}$,		
$9.26 - 10.1 (2.550 \ 0.004 \ 0.009 \ 0.034) \times 10^{-1}$,		
$10.1 - 11.0 \ (2.067 \ 0.004 \ 0.007 \ 0.028) \times 10^{-1}$			
$11.0 - 12.0 (1.663 \ 0.003 \ 0.006 \ 0.022) \times 10^{-1}$	1 *		
$12.0 - 13.0 (1.348 \ 0.003 \ 0.005 \ 0.018) \times 10^{-1}$,		
$13.0 - 14.1 (1.096 \ 0.002 \ 0.004 \ 0.015) \times 10^{-1}$		1	
$14.1 - 15.3 \times 10^{-10.000} \times 10^{-10.0000} \times 10^{-10.00000$,		
$15.3 - 16.6 (7.177 \ 0.016 \ 0.030 \ 0.101) \times 10^{-1}$,		
13.3 13.0 (1.111 0.010 0.000 0.101) × 10	(1.555 5.665 5.616 5.621)	3.310 0.002 0.011	

TABLE SM LI: Bartels Rotation 2478 (March 19, 2015 – April 14, 2015). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ $\sigma_{\text{time }}\sigma_{\text{syst.}}$
$16.6 - 18.0 (5.755 \ 0.013 \ 0.025 \ 0.082) \times 10^{-1}$	$0 (1.089 \ 0.006 \ 0.008 \ 0.017) >$	$< 10^0$ 5.286 0.033 0.046 0.101
$18.0 - 19.5 (4.637 \ 0.011 \ 0.021 \ 0.067) \times 10^{-1} (4.637 \ 0.011 \ 0.011 \ 0.011 \ 0.011) \times 10^{-1} (4.637 \ 0.011 \ 0.011 \ 0.011) \times 10^{-1} (4.637 \ 0.011 \ 0.011 \ 0.011) \times 10^{-1} (4.637 \ 0.011) \times 10^{-1} (4.637$	$0 (8.994 \ 0.053 \ 0.071 \ 0.142) \times$	$\langle 10^{-1} 5.156 \ 0.033 \ 0.046 \ 0.099$
$19.5 - 21.1 (3.755 \ 0.009 \ 0.017 \ 0.055) \times 10$	$0 (7.344 \ 0.045 \ 0.060 \ 0.117) >$	$\langle 10^{-1} 5.112 \ 0.033 \ 0.048 \ 0.099$
$21.1 - 22.8 (3.037 \ 0.008 \ 0.014 \ 0.045) \times 10^{-1}$	$0 (5.917 \ 0.037 \ 0.049 \ 0.095) \rangle$	$\langle 10^{-1} 5.133 \ 0.035 \ 0.049 \ 0.100$
$22.8 - 24.7 (2.447 \ 0.006 \ 0.012 \ 0.036) \times 10^{-1}$	$0 (4.907 \ 0.031 \ 0.041 \ 0.079) >$	$\langle 10^{-1} 4.987 \ 0.034 \ 0.048 \ 0.098$
$24.7 - 26.7 (1.973 \ 0.005 \ 0.010 \ 0.030) \times 10^{-1}$	$0 (4.004 \ 0.027 \ 0.034 \ 0.064) \times$	$\langle 10^{-1} 4.927 \ 0.035 \ 0.049 \ 0.097$
$26.7 - 28.8 (1.594 \ 0.005 \ 0.008 \ 0.024) \times 10^{-1}$	$0 (3.280 \ 0.023 \ 0.028 \ 0.053) >$	$\langle 10^{-1} 4.858 \ 0.037 \ 0.049 \ 0.096$
$28.8 - 31.1 (1.292 \ 0.004 \ 0.007 \ 0.020) \times 10^{-1} (1.292 \ 0.004 \ 0.007 \ 0.020) \times 10^{-1} (1.292 \ 0.004 \ 0.007 \ 0.007 \ 0.000) \times 10^{-1} (1.292 \ 0.004 \ 0.007 \ 0.007 \ 0.000) \times 10^{-1} (1.292 \ 0.004 \ 0.007 \ 0.000) \times 10^{-1} (1.292 \ 0.004 \ 0.007 \ 0.000) \times 10^{-1} (1.292 \ 0.004 \ 0.007 \ 0.000) \times 10^{-1} (1.292 \ 0.004 \ 0.007 \ 0.000) \times 10^{-1} (1.292 \ 0.004 \ 0.007 \ 0.000) \times 10^{-1} (1.292 \ 0.004 \ 0.007 \ 0.000) \times 10^{-1} (1.292 \ 0.004 \ 0.007 \ 0.000) \times 10^{-1} (1.292 \ 0.004 \ 0.007 \ 0.000) \times 10^{-1} (1.292 \ 0.004 \ 0.007 \ 0.000) \times 10^{-1} (1.292 \ 0.004 \ 0.007 \ 0.000) \times 10^{-1} (1.292 \ 0.004 \ 0.007 \ 0.000) \times 10^{-1} (1.292 \ 0.004 \ 0.007 \ 0.000) \times 10^{-1} (1.292 \ 0.004 \ 0.007 \ 0.000) \times 10^{-1} (1.292 \ 0.004 \ 0.007 \ 0.000) \times 10^{-1} (1.292 \ 0.004 \ 0.007 \ 0.000) \times 10^{-1} (1.292 \ 0.004 \ 0.007 \ 0.000) \times 10^{-1} (1.292 \ 0.004 \ 0.007 \ 0.000) \times 10^{-1} (1.292 \ 0.004 \ 0.007 \ 0.000) \times 10^{-1} (1.292 \ 0.004 \ 0.000) \times 10^{-1} (1$	$0 (2.632 \ 0.020 \ 0.023 \ 0.043) \rangle$	$\langle 10^{-1} 4.908 \ 0.040 \ 0.050 \ 0.098$
$31.1 - 33.5 (1.050 \ 0.003 \ 0.006 \ 0.016) \times 10$	$0 (2.171 \ 0.018 \ 0.019 \ 0.036) \rangle$	$\langle 10^{-1} 4.836 \ 0.042 \ 0.051 \ 0.097$
$33.5 - 36.1 (8.516 \ 0.030 \ 0.048 \ 0.129) \times 10^{-1}$	$^{-1}$ (1.789 0.015 0.017 0.030)>	$\langle 10^{-1} 4.760 \ 0.044 \ 0.051 \ 0.096$
$36.1 - 38.9 (6.881 \ 0.026 \ 0.039 \ 0.105) \times 10$	$^{-1}$ (1.458 0.013 0.014 0.025)>	$\langle 10^{-1} 4.721 \ 0.046 \ 0.052 \ 0.097$
$38.9 - 41.9 (5.605 \ 0.022 \ 0.033 \ 0.086) \times 10^{-1}$	$^{-1}$ (1.198 0.012 0.012 0.020)>	$\langle 10^{-1} 4.677 \ 0.049 \ 0.053 \ 0.097$
$41.9 - 45.1 (4.637 \ 0.020 \ 0.028 \ 0.072) \times 10^{-1}$	$^{-1}$ (9.829 0.101 0.100 0.170)>	$\langle 10^{-2} 4.717 \ 0.053 \ 0.056 \ 0.099$
$45.1 - 48.5 (3.761 \ 0.017 \ 0.023 \ 0.059) \times 10^{-1}$	$^{-1}$ (8.062 0.089 0.085 0.141)>	$\langle 10^{-2} 4.666 \ 0.056 \ 0.057 \ 0.099$
$48.5 - 52.2 (3.063 \ 0.015 \ 0.019 \ 0.049) \times 10^{-1} (3.063 \ 0.015 \ 0.019 \ 0.049) \times 10^{-1} (3.063 \ 0.015 \ 0.019 \ 0.049) \times 10^{-1} (3.063 \ 0.015 \ 0.015 \ 0.019 \ 0.049) \times 10^{-1} (3.063 \ 0.015 \ 0.015 \ 0.019 \ 0.049) \times 10^{-1} (3.063 \ 0.015 \ 0.015 \ 0.019 \ 0.049) \times 10^{-1} (3.063 \ 0.015 \ 0.015 \ 0.019 \ 0.049) \times 10^{-1} (3.063 \ 0.015 \ 0.015 \ 0.019 \ 0.049) \times 10^{-1} (3.063 \ 0.015 \ 0.015 \ 0.019 \ 0.049) \times 10^{-1} (3.063 \ 0.015 \ 0.015 \ 0.019 \ 0.049) \times 10^{-1} (3.063 \ 0.015 \ 0.015 \ 0.019 \ 0.049) \times 10^{-1} (3.063 \ 0.015 \ 0.015 \ 0.019 \ 0.049) \times 10^{-1} (3.063 \ 0.015 \ 0.015 \ 0.019 \ 0.049) \times 10^{-1} (3.063 \ 0.015 \ 0.015 \ 0.019 \ 0.049) \times 10^{-1} (3.063 \ 0.015 \ 0.015 \ 0.019 \ 0.049) \times 10^{-1} (3.063 \ 0.015 \ 0.015 \ 0.019 \ 0.019) \times 10^{-1} (3.063 \ 0.015 \ 0.015 \ 0.019 \ 0.019) \times 10^{-1} (3.063 \ 0.015 \ 0.015 \ 0.019) \times 10^{-1} (3.063 \ 0.015 \ 0.015 \ 0.019) \times 10^{-1} (3.063 \ 0.015 \ 0.015 \ 0.019) \times 10^{-1} (3.063 \ 0.015 \ 0.019) \times 10^{-1} (3.063 \ 0.015 \ 0.015 \ 0.019) \times 10^{-1} (3.063 \ 0.015 \ 0.015 \ 0.019) \times 10^{-1} (3.063 \ 0.015 \ 0.015 \ 0.015) \times 10^{-1} (3.063 \ 0.015 \ 0.015 \ 0.015) \times 10^{-1} (3.063 \ 0.015 \ 0.015 \ 0.015) \times 10^{-1} (3.063 \ 0.015) \times 10^{$	$^{-1}$ (6.660 0.077 0.072 0.118)>	$\langle 10^{-2} 4.599 \ 0.058 \ 0.058 \ 0.099$
$52.2 - 56.1 (2.515 \ 0.013 \ 0.016 \ 0.041) \times 10^{-1}$	$^{-1}$ (5.380 0.067 0.061 0.097)>	$\langle 10^{-2} 4.674 \ 0.063 \ 0.061 \ 0.101$
$56.1 - 60.3 (2.059 \ 0.011 \ 0.014 \ 0.034) \times 10^{-1}$	$^{-1}$ (4.412 0.059 0.052 0.081)×	$\langle 10^{-2} 4.666 \ 0.067 \ 0.063 \ 0.103$

TABLE SM LII: Bartels Rotation 2479 (April 15, 2015 – May 11, 2015). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[\text{m}^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$		$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time}}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (4.417 \ 0.025 \ 0.079 \ 0.203) \times 10^{2} $			_
$1.16 - 1.33 (4.544 \ 0.017 \ 0.058 \ 0.165) \times 10^{2}$			-
$1.33 - 1.51 (4.610 \ 0.015 \ 0.045 \ 0.135) \times 10^{2}$	2		_
$1.51 - 1.71 (4.485 \ 0.011 \ 0.036 \ 0.119) \times 10^{-6}$	$\mathbf{P} - - -$		_
$1.71 - 1.92 (4.253 \ 0.010 \ 0.029 \ 0.102) \times 10^{2} $	2		_
$1.92 - 2.15 (3.967 \ 0.008 \ 0.024 \ 0.086) \times 10^{2} $	$(4.750 \ 0.032 \ 0.057 \ 0.111) \times 10$	8.353 0.059 0.112	0.255
$2.15 - 2.40 (3.594 \ 0.007 \ 0.020 \ 0.073) \times 10^{2}$	$(4.543 \ 0.028 \ 0.047 \ 0.093) \times 10$	7.911 0.051 0.092	0.216
$2.40 - 2.67 (3.231 \ 0.006 \ 0.017 \ 0.062) \times 10^{2}$	$(4.272\ 0.024\ 0.042\ 0.081)\times 10$	7.564 0.045 0.084	0.192
$2.67 - 2.97 (2.849 \ 0.005 \ 0.014 \ 0.050) \times 10^{2}$	$(3.943 \ 0.021 \ 0.038 \ 0.071) \times 10$	$7.224 \ 0.040 \ 0.078$	0.173
$2.97 - 3.29 (2.481 \ 0.004 \ 0.012 \ 0.042) \times 10^{2}$	$(3.602\ 0.017\ 0.030\ 0.061)\times 10$	$\begin{bmatrix} 6.887 & 0.035 & 0.066 \end{bmatrix}$	0.156
$3.29 - 3.64 (2.148 \ 0.004 \ 0.011 \ 0.035) \times 10^{2}$	$(3.144 \ 0.015 \ 0.023 \ 0.051) \times 10$	$6.834 \ 0.034 \ 0.060$	0.149
$3.64 - 4.02 (1.834 \ 0.003 \ 0.009 \ 0.029) \times 10^{2}$	$(2.742\ 0.012\ 0.018\ 0.044)\times 10$	6.691 0.032 0.056	0.142
$4.02 - 4.43 (1.555 \ 0.002 \ 0.008 \ 0.024) \times 10^{2}$	$(2.356\ 0.010\ 0.015\ 0.037)\times 10$	$6.599 \ 0.031 \ 0.054$	0.137
$4.43 - 4.88 (1.302 \ 0.002 \ 0.006 \ 0.020) \times 10^{2}$	$(2.015 \ 0.008 \ 0.013 \ 0.031) \times 10$	$6.461 \ 0.028 \ 0.052$	0.132
$4.88 - 5.37 (1.082 \ 0.002 \ 0.005 \ 0.016) \times 10^{2}$	$(1.699 \ 0.007 \ 0.010 \ 0.026) \times 10$	$\begin{bmatrix} 6.369 & 0.028 & 0.049 \end{bmatrix}$	0.128
$5.37 - 5.90 (8.921 \ 0.013 \ 0.040 \ 0.128) \times 10^{-3}$	$(1.436\ 0.006\ 0.008\ 0.022) \times 10$	$6.212\ 0.027\ 0.046$	0.122
$5.90 - 6.47 (7.291 \ 0.011 \ 0.031 \ 0.103) \times 10^{-6}$	$(1.196\ 0.005\ 0.007\ 0.018) \times 10$	$\begin{bmatrix} 6.096 & 0.026 & 0.044 \end{bmatrix}$	0.118
$6.47 - 7.09 (5.995 \ 0.009 \ 0.025 \ 0.084) \times 10^{-3}$	$(9.949 \ 0.040 \ 0.057 \ 0.150) \times 10^{-1}$	$6.026 \ 0.026 \ 0.043$	0.115
$7.09 - 7.76 (4.893 \ 0.007 \ 0.020 \ 0.068) \times 10^{-1}$	$(8.253\ 0.033\ 0.047\ 0.125) \times 10^{-6}$	$5.929 \ 0.025 \ 0.042$	0.112
$7.76 - 8.48 (3.987 \ 0.006 \ 0.016 \ 0.056) \times 10^{-1}$	$(6.780\ 0.028\ 0.039\ 0.102)\times10^{-6}$	5.881 0.026 0.042	0.111
$8.48 - 9.26 (3.229 \ 0.005 \ 0.013 \ 0.045) \times 10^{-3}$	$(5.600\ 0.023\ 0.033\ 0.085) \times 10^{-6}$	5.765 0.026 0.042	0.108
$9.26 - 10.1 (2.616 \ 0.004 \ 0.011 \ 0.036) \times 10^{-1}$	$(4.569 \ 0.020 \ 0.028 \ 0.069) \times 10^{-6}$	5.726 0.027 0.043	0.107
$10.1 - 11.0 (2.115 \ 0.004 \ 0.009 \ 0.029) \times 10^{-1}$	$(3.758 \ 0.017 \ 0.024 \ 0.057) \times 10^{-1}$	5.629 0.028 0.044	0.105
$11.0 - 12.0 (1.701 \ 0.003 \ 0.008 \ 0.023) \times 10^{-1}$		5.600 0.028 0.045	0.105
$12.0 - 13.0 (1.371 \ 0.003 \ 0.006 \ 0.019) \times 10^{-1}$	$(2.493\ 0.013\ 0.018\ 0.039) \times 10^{-1}$	5.498 0.030 0.046	0.105
$13.0 - 14.1 (1.113 \ 0.002 \ 0.005 \ 0.016) \times 10^{-1}$	· ·		0.105
$14.1 - 15.3 (9.024 \ 0.019 \ 0.044 \ 0.129) \times 10^{0}$	$(1.655 \ 0.009 \ 0.013 \ 0.026) \times 10^{-6}$	5.453 0.032 0.051	0.106
$15.3 - 16.6 (7.280 \ 0.016 \ 0.037 \ 0.105) \times 10^{0}$	$(1.353\ 0.008\ 0.011\ 0.022) \times 10^{-6}$	$5.382 \ 0.032 \ 0.052$	0.106
T 11 1		· ·	

TABLE SM LII: Bartels Rotation 2479 (April 15, 2015 – May 11, 2015). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He}~\sigma_{\rm stat.}~\sigma_{\rm time}~\sigma_{\rm syst.}$
$16.6 - 18.0 (5.848 \ 0.013 \ 0.031 \ 0.086) \times 10^{-1}$	$0 (1.107 \ 0.006 \ 0.010 \ 0.018) \times 10$	$\begin{bmatrix} 5.282 & 0.033 & 0.054 & 0.105 \end{bmatrix}$
$18.0 - 19.5 (4.732 \ 0.011 \ 0.026 \ 0.070) \times 10^{-1} (4.732 \ 0.011 \ 0.011 \ 0.010) \times 10^{-1} (4.732 \ 0.011 \ 0.011) \times 10^{-1} (4.732 \ 0.011$	$0 \mid (9.119 \ 0.053 \ 0.083 \ 0.150) \times 10$	$^{-1}$ $ 5.190 \ 0.033 \ 0.055 \ 0.104$
$19.5 - 21.1 (3.808 \ 0.009 \ 0.021 \ 0.058) \times 10^{-1}$	$0 \mid (7.382 \ 0.044 \ 0.069 \ 0.123) \times 10^{-1}$	$^{-1}$ $ 5.159 \ 0.033 \ 0.056 \ 0.104$
$21.1 - 22.8 (3.070 \ 0.007 \ 0.018 \ 0.047) \times 10^{-6} (3.070 \ 0.007 \ 0.018 \ 0.047) \times 10^{-6} (3.070 \ 0.007 \ 0.018 \ 0.047) \times 10^{-6} (3.070 \ 0.007 \ 0.018 \ 0.047) \times 10^{-6} (3.070 \ 0.007 \ 0.018 \ 0.047) \times 10^{-6} (3.070 \ 0.007 \ 0.018 \ 0.047) \times 10^{-6} (3.070 \ 0.007 \ 0.018 \ 0.047) \times 10^{-6} (3.070 \ 0.007 \ 0.018 \ 0.047) \times 10^{-6} (3.070 \ 0.007 \ 0.018 \ 0.047) \times 10^{-6} (3.070 \ 0.007 \ 0.018 \ 0.047) \times 10^{-6} (3.070 \ 0.007 \ 0.018 \ 0.047) \times 10^{-6} (3.070 \ 0.007 \ 0.018 \ 0.047) \times 10^{-6} (3.070 \ 0.007 \ 0.018 \ 0.047) \times 10^{-6} (3.070 \ 0.007 \ 0.018 \ 0.047) \times 10^{-6} (3.070 \ 0.007 \ 0.018 \ 0.047) \times 10^{-6} (3.070 \ 0.007 \ 0.018 \ 0.047) \times 10^{-6} (3.070 \ 0.007 \ 0.018 \ 0.047) \times 10^{-6} (3.070 \ 0.007 \ 0.018 \ 0.047) \times 10^{-6} (3.070 \ 0.007 \ 0.018 \ 0.047) \times 10^{-6} (3.070 \ 0.007 \ 0.007 \ 0.007) \times 10^{-6} (3.070 \ 0.007 \ 0.007 \ 0.007) \times 10^{-6} (3.070 \ 0$	$0 (6.057 \ 0.037 \ 0.058 \ 0.101) \times 10$	$^{-1}$ $ 5.069 \ 0.034 \ 0.056 \ 0.103$
$22.8 - 24.7 (2.476 \ 0.006 \ 0.015 \ 0.038) \times 10^{-6} (2.476 \ 0.006 \ 0.015 \ 0.008) \times 10^{-6} (2.476 \ 0.006 \ 0.015 \ 0.008) \times 10^{-6} (2.476 \ 0.006 \ 0.008) \times 10^{-6} (2.476 \ 0.008$	$0 (4.908 \ 0.031 \ 0.047 \ 0.082) \times 10$	$^{-1}$ $ 5.046 \ 0.034 \ 0.057 \ 0.103 $
$24.7 - 26.7 (1.986 \ 0.005 \ 0.012 \ 0.031) \times 10^{-6} (1.986 \ 0.005 \ 0.012 \ 0.005) \times 10^{-6} (1.986 \ 0.005 \ 0.012 \ 0.005) \times 10^{-6} (1.986 \ 0.005 \ 0.005 \ 0.005) \times 10^{-6} (1.986 \ 0.005 \ 0.005 \ 0.005) \times 10^{-6} (1.986 \ 0.005 \ 0.005 \ 0.005) \times 10^{-6} (1.986 \ 0.005 \ 0.005 \ 0.005) \times 10^{-6} (1.986 \ 0.005 \ 0.005 \ 0.005) \times 10^{-6} (1.986 \ 0.005) \times 10^{-6} (1.986$	$0 \mid (4.000 \ 0.027 \ 0.039 \ 0.067) \times 10$	$^{-1}$ 4.966 0.036 0.057 0.102
$26.7 - 28.8 (1.617 \ 0.005 \ 0.010 \ 0.025) \times 10^{-6} (1.617 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.617 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.617 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.617 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.617 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.617 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.617 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.617 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.617 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.617 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.617 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.617 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.617 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.617 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.617 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.617 \ 0.005 \ 0.005) \times 10^{-6} (1.617 \ 0.005) \times 10^{-6} (1$	$0 (3.260 \ 0.023 \ 0.032 \ 0.055) \times 10$	$^{-1}$ 4.959 0.038 0.059 0.103
$28.8 - 31.1 (1.301 \ 0.004 \ 0.008 \ 0.020) \times 10^{-1} (1.301 \ 0.004 \ 0.008 \ 0.000) \times 10^{-1} (1.301 \ 0.008 \ 0.000) \times $	$0 (2.665 \ 0.020 \ 0.027 \ 0.046) \times 10$	-1 4.882 0.039 0.059 0.102
$31.1 - 33.5 (1.056 \ 0.003 \ 0.007 \ 0.017) \times 10^{-1}$	$0 (2.157 \ 0.018 \ 0.022 \ 0.037) \times 10$	$^{-1}$ 4.898 0.043 0.060 0.103
$33.5 - 36.1 (8.590 \ 0.030 \ 0.059 \ 0.135) \times 10$	$^{-1} (1.822\ 0.015\ 0.019\ 0.032)\times 10$	$^{-1}$ 4.714 0.043 0.060 0.100
$36.1 - 38.9 (6.984 \ 0.026 \ 0.049 \ 0.110) \times 10$	$^{-1}$ (1.460 0.013 0.016 0.026)×10	$^{-1}$ 4.783 0.047 0.062 0.103
$38.9 - 41.9 (5.654 \ 0.022 \ 0.041 \ 0.090) \times 10$	$^{-1} (1.177\ 0.011\ 0.013\ 0.021)\times 10$	$^{-1}$ 4.804 0.051 0.064 0.105
$41.9 - 45.1 (4.634 \ 0.020 \ 0.034 \ 0.074) \times 10$	$^{-1} (9.724 \ 0.101 \ 0.113 \ 0.177) \times 10$	-2 4.766 0.053 0.066 0.105
$45.1 - 48.5 (3.798 \ 0.017 \ 0.029 \ 0.062) \times 10$	$^{-1} (7.977\ 0.088\ 0.096\ 0.147)\times 10$	-2 4.761 0.057 0.068 0.107
$48.5 - 52.2 (3.100 \ 0.015 \ 0.024 \ 0.051) \times 10$	$^{-1} (6.595\ 0.077\ 0.082\ 0.124)\times 10$	-2 4.700 0.059 0.069 0.107
$52.2 - 56.1 (2.532 \ 0.013 \ 0.020 \ 0.043) \times 10$	$^{-1} (5.441\ 0.068\ 0.070\ 0.104)\times 10$	$^{-2}$ $ 4.653 \ 0.063 \ 0.070 \ 0.107$
$56.1 - 60.3 (2.047 \ 0.011 \ 0.016 \ 0.035) \times 10$	$^{-1}$ (4.419 0.058 0.059 0.086)×10	-2 4.633 0.066 0.072 0.108

TABLE SM LIII: Bartels Rotation 2480 (May 12, 2015 – June 7, 2015). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s}\cdot{\rm GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$ ho/{ m He}~\sigma_{ m stat.}~\sigma_{ m time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (4.878 \ 0.026 \ 0.066 \ 0.217) \times 10$	$\begin{bmatrix} 2 & & - & & - & & - & & - \end{bmatrix}$		_
$1.16 - 1.33 (5.102 \ 0.018 \ 0.050 \ 0.181) \times 10$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		_
$1.33 - 1.51 (5.195 \ 0.016 \ 0.039 \ 0.149) \times 10$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		_
$1.51 - 1.71 (5.038 \ 0.012 \ 0.031 \ 0.131) \times 10$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		_
$1.71 - 1.92 (4.821 \ 0.010 \ 0.026 \ 0.113) \times 10$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		_
$1.92 - 2.15 (4.450 \ 0.009 \ 0.022 \ 0.096) \times 10$	$(5.301 \ 0.034 \ 0.060 \ 0.122) \times 10^{1}$	8.395 0.057 0.103 (0.252
$2.15 - 2.40 (4.027 \ 0.008 \ 0.018 \ 0.081) \times 10$	$(5.088 \ 0.030 \ 0.050 \ 0.103) \times 10^{1}$	7.915 0.049 0.085 (0.213
$2.40 - 2.67 (3.586 \ 0.006 \ 0.015 \ 0.068) \times 10$	$(4.784 \ 0.026 \ 0.045 \ 0.089) \times 10^{1}$	7.495 0.042 0.077 (0.187
$2.67 - 2.97 (3.146 \ 0.005 \ 0.013 \ 0.055) \times 10$	$(4.408 \ 0.022 \ 0.040 \ 0.078) \times 10^{1}$	7.137 0.037 0.071 (0.168
$2.97 - 3.29 (2.723 \ 0.004 \ 0.011 \ 0.045) \times 10$	$(3.906 \ 0.018 \ 0.031 \ 0.065) \times 10^{1}$	6.971 0.035 0.062 (0.156
$3.29 - 3.64 (2.334 \ 0.004 \ 0.010 \ 0.037) \times 10$	$(3.453 \ 0.016 \ 0.024 \ 0.056) \times 10^{1}$	6.759 0.032 0.055 (0.146
$3.64 - 4.02 (1.991 \ 0.003 \ 0.008 \ 0.031) \times 10$		6.682 0.031 0.052 (0.140
$4.02 - 4.43 (1.668 \ 0.003 \ 0.007 \ 0.026) \times 10$	$(2.555 \ 0.011 \ 0.016 \ 0.040) \times 10^{1}$	6.528 0.029 0.049 (0.134
$4.43 - 4.88 (1.393 \ 0.002 \ 0.006 \ 0.021) \times 10$	$(2.163 \ 0.009 \ 0.013 \ 0.034) \times 10^{1}$	6.437 0.027 0.047 (0.130
$4.88 - 5.37 (1.147 \ 0.002 \ 0.005 \ 0.016) \times 10$	$(1.811 \ 0.007 \ 0.011 \ 0.028) \times 10^{1}$	6.337 0.027 0.045 (0.126
$5.37 - 5.90 (9.414\ 0.014\ 0.035\ 0.133) \times 10$	$(1.504 \ 0.006 \ 0.009 \ 0.023) \times 10^{1}$	6.258 0.026 0.043 (0.122
$5.90 - 6.47 (7.680\ 0.011\ 0.027\ 0.107) \times 10$	$1 (1.264 \ 0.005 \ 0.007 \ 0.019) \times 10^{1}$	6.075 0.025 0.041 (0.116
$6.47 - 7.09 (6.265 \ 0.009 \ 0.022 \ 0.087) \times 10$,	6.018 0.025 0.040 (0.114
$7.09 - 7.76 (5.097 \ 0.008 \ 0.018 \ 0.070) \times 10$		5.994 0.025 0.040 (0.113
$7.76 - 8.48 (4.123 \ 0.006 \ 0.014 \ 0.057) \times 10$	$(7.042\ 0.028\ 0.041\ 0.106) \times 10^{0}$	5.855 0.025 0.040 (0.109
$8.48 - 9.26 (3.328 \ 0.005 \ 0.012 \ 0.046) \times 10$	$(5.754 \ 0.024 \ 0.035 \ 0.087) \times 10^{0}$	5.784 0.026 0.040 (0.108
$9.26 - 10.1 (2.686 \ 0.004 \ 0.010 \ 0.036) \times 10$	`	5.736 0.027 0.041 (0.107
$10.1 - 11.0 (2.168 \ 0.004 \ 0.008 \ 0.029) \times 10$		5.666 0.028 0.043 (0.106
$11.0 - 12.0 (1.742 \ 0.003 \ 0.006 \ 0.024) \times 10$,	5.565 0.028 0.044 (0.104
$12.0 - 13.0 (1.402 \ 0.003 \ 0.005 \ 0.019) \times 10$		5.512 0.030 0.045 (0.104
$13.0 - 14.1 (1.133 \ 0.002 \ 0.005 \ 0.016) \times 10$		5.461 0.031 0.047 (0.105
$14.1 - 15.3 (9.115 \ 0.019 \ 0.038 \ 0.128) \times 10$,	5.428 0.032 0.049 (
$15.3 - 16.6 (7.383 \ 0.016 \ 0.031 \ 0.105) \times 10$,	5.363 0.032 0.051 (

TABLE SM LIII: Bartels Rotation 2480 (May 12, 2015 – June 7, 2015). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ $\sigma_{\text{time }}\sigma_{\text{syst.}}$
$16.6 - 18.0 (5.884 \ 0.013 \ 0.026 \ 0.085) \times 10$	$0 (1.112 \ 0.006 \ 0.010 \ 0.018) \times 1$	10^0 5.293 0.033 0.052 0.105
$18.0 - 19.5 (4.748 \ 0.011 \ 0.022 \ 0.069) \times 10$	$0 (9.141 \ 0.053 \ 0.085 \ 0.151) \times 1$	$10^{-1} 5.194 \ 0.032 \ 0.054 \ 0.103$
$19.5 - 21.1 (3.826 \ 0.009 \ 0.018 \ 0.057) \times 10$	$0 \mid (7.441 \ 0.044 \ 0.072 \ 0.124) \times 1$	$10^{-1} 5.142 \ 0.033 \ 0.055 \ 0.103$
$21.1 - 22.8 (3.094 \ 0.008 \ 0.015 \ 0.046) \times 10$	$0 (6.079 \ 0.037 \ 0.059 \ 0.102) \times 10^{-1}$	$10^{-1} 5.089 \ 0.034 \ 0.055 \ 0.103$
$22.8 - 24.7 (2.485 \ 0.006 \ 0.012 \ 0.037) \times 10$	$0 (4.965 \ 0.031 \ 0.049 \ 0.084) \times 10^{-1}$	$10^{-1} 5.005 \ 0.034 \ 0.055 \ 0.102$
$24.7 - 26.7 (1.988 \ 0.005 \ 0.010 \ 0.030) \times 10$	$0 (4.039 \ 0.027 \ 0.040 \ 0.068) \times 10^{-1}$	$10^{-1} 4.922 \ 0.035 \ 0.055 \ 0.100$
$26.7 - 28.8 (1.622 \ 0.005 \ 0.009 \ 0.024) \times 10$	$0 (3.301 \ 0.023 \ 0.033 \ 0.056) \times 10^{-1}$	$10^{-1} 4.914 \ 0.037 \ 0.056 \ 0.100$
$28.8 - 31.1 (1.307 \ 0.004 \ 0.007 \ 0.020) \times 10$	$0 (2.683 \ 0.020 \ 0.027 \ 0.046) \times 10^{-1}$	$10^{-1} 4.870 \ 0.039 \ 0.056 \ 0.100$
$31.1 - 33.5 (1.062 \ 0.003 \ 0.006 \ 0.016) \times 10$	$0 (2.231 \ 0.018 \ 0.023 \ 0.039) \times 1$	$10^{-1} 4.761 \ 0.041 \ 0.056 \ 0.099$
$33.5 - 36.1 (8.603\ 0.030\ 0.049\ 0.131) \times 10$	$^{-1}$ (1.791 0.015 0.019 0.032)×1	$10^{-1} 4.804 \ 0.044 \ 0.058 \ 0.101$
$36.1 - 38.9 (6.999 \ 0.026 \ 0.041 \ 0.107) \times 10$	$^{-1}$ (1.453 0.013 0.016 0.026)×1	$10^{-1} 4.818 \ 0.047 \ 0.059 \ 0.102$
$38.9 - 41.9 (5.687 \ 0.022 \ 0.034 \ 0.088) \times 10$	$^{-1}$ (1.202 0.012 0.013 0.021)×1	$10^{-1} 4.733 \ 0.049 \ 0.060 \ 0.101$
$41.9 - 45.1 (4.591 \ 0.019 \ 0.028 \ 0.071) \times 10$	$^{-1}$ (9.729 0.101 0.112 0.176)×1	$10^{-2} 4.719 \ 0.053 \ 0.062 \ 0.102$
$45.1 - 48.5 (3.757 \ 0.017 \ 0.024 \ 0.059) \times 10$	$^{-1}$ (8.018 0.088 0.095 0.147)×1	$10^{-2} 4.686 \ 0.056 \ 0.063 \ 0.103$
$48.5 - 52.2 (3.069 \ 0.015 \ 0.020 \ 0.049) \times 10$	$^{-1}$ (6.505 0.076 0.079 0.121)×1	$10^{-2} 4.718 \ 0.060 \ 0.065 \ 0.105$
$52.2 - 56.1 (2.528 \ 0.013 \ 0.017 \ 0.041) \times 10$	$^{-1} (5.355 \ 0.067 \ 0.067 \ 0.101) \times 1$	$10^{-2} 4.721 \ 0.064 \ 0.067 \ 0.106$
$56.1 - 60.3 (2.065 \ 0.011 \ 0.014 \ 0.034) \times 10$	$^{-1}$ $(4.465 \ 0.059 \ 0.058 \ 0.086) \times 1$	$10^{-2} 4.625 \ 0.066 \ 0.068 \ 0.105$

TABLE SM LIV: Bartels Rotation 2481 (June 8, 2015 – July 4, 2015). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s}\cdot{\rm GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time}}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (5.125 \ 0.026 \ 0.067 \ 0.227) \times 10^{-1}$			_
$1.16 - 1.33 (5.366 \ 0.018 \ 0.051 \ 0.190) \times 10^{-6}$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		_
$1.33 - 1.51 (5.332 \ 0.016 \ 0.039 \ 0.152) \times 10^{-6}$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		_
$1.51 - 1.71 (5.170 \ 0.012 \ 0.032 \ 0.134) \times 10^{-6}$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		_
$1.71 - 1.92 (4.863 \ 0.010 \ 0.026 \ 0.114) \times 10^{-6}$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		_
$1.92 - 2.15 (4.456 \ 0.009 \ 0.021 \ 0.096) \times 10^{-6} $	$[(5.318 \ 0.034 \ 0.055 \ 0.120) \times 10^{1}]$	8.378 0.056 0.096	0.249
$2.15 - 2.40 (4.009 \ 0.007 \ 0.018 \ 0.080) \times 10^{-6}$	$[(5.098 \ 0.030 \ 0.045 \ 0.101) \times 10^{1}]$	7.864 0.048 0.078	0.209
$2.40 - 2.67 (3.563 \ 0.006 \ 0.015 \ 0.067) \times 10^{-2}$	$[(4.776 \ 0.025 \ 0.042 \ 0.087) \times 10^{1}]$	7.461 0.042 0.072	0.184
$2.67 - 2.97 (3.107 \ 0.005 \ 0.012 \ 0.054) \times 10^{-6}$	$[(4.347 \ 0.022 \ 0.037 \ 0.076) \times 10^{1}]$	7.148 0.038 0.067	0.167
$2.97 - 3.29 (2.688 \ 0.004 \ 0.011 \ 0.045) \times 10^{-6}$	$(3.839 \ 0.018 \ 0.028 \ 0.063) \times 10^{1}$	7.002 0.035 0.058	0.155
$3.29 - 3.64 (2.302 \ 0.004 \ 0.009 \ 0.037) \times 10^{-6}$	$(3.365 \ 0.015 \ 0.021 \ 0.054) \times 10^{1}$	6.842 0.033 0.051	0.146
$3.64 - 4.02 (1.936 \ 0.003 \ 0.008 \ 0.030) \times 10^{-6}$	$(2.928 \ 0.013 \ 0.017 \ 0.046) \times 10^{1}$	6.614 0.031 0.047	0.138
$4.02 - 4.43 (1.636 \ 0.003 \ 0.007 \ 0.025) \times 10^{-6}$	$(2.489 \ 0.011 \ 0.014 \ 0.038) \times 10^{1}$	6.575 0.030 0.046	0.133
$4.43 - 4.88 (1.358 \ 0.002 \ 0.005 \ 0.020) \times 10^{-6}$	$(2.104 \ 0.009 \ 0.012 \ 0.032) \times 10^{1}$	6.453 0.028 0.045	0.129
$4.88 - 5.37 (1.118 \ 0.002 \ 0.004 \ 0.016) \times 10^{-6}$	$[(1.765 \ 0.007 \ 0.010 \ 0.027) \times 10^{1}]$	6.336 0.027 0.042	0.125
$5.37 - 5.90 (9.172 \ 0.014 \ 0.033 \ 0.130) \times 10^{-6}$	$1 (1.480 \ 0.006 \ 0.008 \ 0.022) \times 10^{1} $	6.198 0.027 0.040	0.120
$5.90 - 6.47 (7.478 \ 0.011 \ 0.026 \ 0.104) \times 10^{-6} (7.478 \ 0.011 \ 0.026 \ 0.026) \times 10^{-6} (7.478$	$1 (1.223 \ 0.005 \ 0.006 \ 0.018) \times 10^{1} $	6.112 0.026 0.039	0.116
$6.47 - 7.09 (6.105 \ 0.009 \ 0.021 \ 0.085) \times 10^{-1}$	$1 (1.011 \ 0.004 \ 0.005 \ 0.015) \times 10^{1} $	6.036 0.026 0.038	0.114
$7.09 - 7.76 (4.940 \ 0.007 \ 0.017 \ 0.068) \times 10^{-1}$	$(8.298 \ 0.033 \ 0.044 \ 0.124) \times 10^{0}$	$5.953 \ 0.025 \ 0.037$	0.111
$7.76 - 8.48 (4.009 \ 0.006 \ 0.013 \ 0.055) \times 10^{-1}$	$(6.893 \ 0.028 \ 0.037 \ 0.102) \times 10^{0}$	5.815 0.025 0.037	0.108
$8.48 - 9.26 (3.251 \ 0.005 \ 0.011 \ 0.044) \times 10^{-1}$	$(5.623 \ 0.024 \ 0.031 \ 0.084) \times 10^{0}$	5.781 0.026 0.038	0.107
$9.26 - 10.1 (2.619 \ 0.004 \ 0.009 \ 0.035) \times 10^{-1}$	$(4.584 \ 0.020 \ 0.026 \ 0.069) \times 10^{0}$	5.713 0.027 0.038	0.105
$10.1 - 11.0 (2.110 \ 0.004 \ 0.008 \ 0.028) \times 10^{-1}$	$(3.732 \ 0.017 \ 0.022 \ 0.056) \times 10^{0}$	$5.653 \ 0.028 \ 0.039$	0.104
$11.0 - 12.0 (1.695 \ 0.003 \ 0.006 \ 0.023) \times 10^{-1}$	$(3.044 \ 0.014 \ 0.019 \ 0.046) \times 10^{0}$	5.569 0.028 0.040	0.103
$12.0 - 13.0 (1.364 \ 0.003 \ 0.005 \ 0.019) \times 10^{-1}$	$(2.470 \ 0.013 \ 0.016 \ 0.038) \times 10^{0}$	$5.523 \ 0.031 \ 0.042$	0.103
$13.0 - 14.1 (1.108 \ 0.002 \ 0.004 \ 0.016) \times 10^{-1}$	$(2.018 \ 0.011 \ 0.014 \ 0.031) \times 10^{0}$	5.490 0.031 0.044	0.103
$14.1 - 15.3 (8.965 \ 0.019 \ 0.036 \ 0.126) \times 10^{-6}$,	$5.377 \ 0.032 \ 0.045$	0.102
15.3 - 16.6 (7.168 0.016 0.030 0.101)×10	$(1.345 \ 0.008 \ 0.010 \ 0.021) \times 10^{0}$	5.330 0.032 0.046	0.102

TABLE SM LIV: Bartels Rotation 2481 (June 8, 2015 – July 4, 2015). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time} \ \sigma_{\rm syst.}$
$16.6 - 18.0 (5.806 \ 0.013 \ 0.025 \ 0.083) \times 10$	$0 (1.115 \ 0.006 \ 0.009 \ 0.018) \times 10$	$\begin{bmatrix} 5.209 & 0.032 & 0.047 & 0.101 \end{bmatrix}$
$18.0 - 19.5 (4.674 \ 0.011 \ 0.021 \ 0.068) \times 10$	$0 (8.876 \ 0.052 \ 0.074 \ 0.142) \times 10$	$^{-1}$ 5.266 0.033 0.050 0.103
$19.5 - 21.1 (3.780 \ 0.009 \ 0.017 \ 0.056) \times 10$	$0 \mid (7.245 \ 0.044 \ 0.063 \ 0.117) \times 10$	$^{-1}$ 5.217 0.034 0.051 0.102
$21.1 - 22.8 (3.043 \ 0.007 \ 0.015 \ 0.045) \times 10$	$0 (6.011 \ 0.037 \ 0.053 \ 0.098) \times 10$	$^{-1}$ $ 5.063 \ 0.034 \ 0.050 \ 0.100$
$22.8 - 24.7 (2.466 \ 0.006 \ 0.012 \ 0.037) \times 10$	$0 (4.914 \ 0.031 \ 0.043 \ 0.080) \times 10$	$^{-1}$ $ 5.019 \ 0.034 \ 0.051 \ 0.099$
$24.7 - 26.7 (1.979 \ 0.005 \ 0.010 \ 0.030) \times 10$	$0 (3.998 \ 0.027 \ 0.036 \ 0.065) \times 10$	$^{-1}$ 4.949 0.036 0.051 0.098
$26.7 - 28.8 (1.599 \ 0.005 \ 0.008 \ 0.024) \times 10$	$0 (3.274 \ 0.023 \ 0.030 \ 0.054) \times 10$	$^{-1}$ 4.884 0.037 0.051 0.098
$28.8 - 31.1 (1.296 \ 0.004 \ 0.007 \ 0.020) \times 10$	$0 (2.671 \ 0.020 \ 0.025 \ 0.044) \times 10$	$^{-1}$ 4.853 0.039 0.052 0.098
$31.1 - 33.5 (1.054 \ 0.003 \ 0.006 \ 0.016) \times 10$	$0 (2.198 \ 0.018 \ 0.021 \ 0.037) \times 10^{-1} $	$^{-1}$ 4.796 0.042 0.052 0.097
$33.5 - 36.1 (8.561 \ 0.030 \ 0.048 \ 0.130) \times 10$	$^{-1} (1.797 \ 0.015 \ 0.017 \ 0.031) \times 10$	$^{-1}$ 4.763 0.044 0.054 0.097
$36.1 - 38.9 (6.941 \ 0.026 \ 0.040 \ 0.106) \times 10$	$^{-1}$ (1.464 0.013 0.015 0.025)×10	$^{-1}$ 4.740 0.047 0.055 0.098
$38.9 - 41.9 (5.668 \ 0.022 \ 0.034 \ 0.087) \times 10$	$^{-1}$ (1.207 0.012 0.012 0.020)×10	$^{-1}$ 4.697 0.049 0.056 0.099
$41.9 - 45.1 (4.595 \ 0.020 \ 0.028 \ 0.071) \times 10$	$^{-1}$ (9.608 0.101 0.102 0.169)×10	-2 4.782 0.054 0.059 0.101
$45.1 - 48.5 (3.786 \ 0.017 \ 0.023 \ 0.059) \times 10$	$^{-1} (7.825\ 0.088\ 0.086\ 0.140)\times 10$	-2 4.838 0.059 0.061 0.104
$48.5 - 52.2 (3.071 \ 0.015 \ 0.019 \ 0.049) \times 10$	$^{-1}$ (6.606 0.077 0.076 0.120)×10	-2 4.648 0.059 0.061 0.101
$52.2 - 56.1 (2.525 \ 0.013 \ 0.016 \ 0.041) \times 10$	$^{-1}$ (5.462 0.068 0.065 0.101)×10	$^{-2}$ 4.623 0.063 0.063 0.101
$56.1 - 60.3 (2.077 \ 0.011 \ 0.014 \ 0.034) \times 10$	$^{-1}$ (4.438 0.059 0.054 0.083)×10	-2 $ 4.680 0.067 0.065 0.104$

TABLE SM LV: Bartels Rotation 2482 (July 5, 2015 – July 31, 2015). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[\text{m}^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$\rho/{\rm He}~\sigma_{\rm stat.}~\sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (5.650 \ 0.029 \ 0.086 \ 0.255) \times 10^{-6} $			_
$1.16 - 1.33 (5.791 \ 0.020 \ 0.064 \ 0.207) \times 10^{-1}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.33 - 1.51 (5.759 \ 0.017 \ 0.049 \ 0.166) \times 10^{-1}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.51 - 1.71 (5.557 \ 0.013 \ 0.038 \ 0.145) \times 10^{-6}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.71 - 1.92 (5.200 \ 0.011 \ 0.031 \ 0.123) \times 10^{-1}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.92 - 2.15 (4.740 \ 0.009 \ 0.025 \ 0.102) \times 10^{-6} $	$[(5.723 \ 0.036 \ 0.059 \ 0.129) \times 10^{1}]$	8.282 0.055 0.096	0.247
$2.15 - 2.40 (4.249 \ 0.008 \ 0.021 \ 0.085) \times 10^{-6}$	$[(5.498 \ 0.031 \ 0.050 \ 0.110) \times 10^{1}]$	7.729 0.046 0.081	0.207
$2.40 - 2.67 (3.752\ 0.007\ 0.017\ 0.071) \times 10^{-6}$	$(5.059 \ 0.027 \ 0.043 \ 0.092) \times 10^{1}$	7.416 0.041 0.072	0.183
$2.67 - 2.97 (3.257 \ 0.006 \ 0.015 \ 0.057) \times 10^{-6}$	$(4.522 \ 0.022 \ 0.037 \ 0.078) \times 10^{1}$	7.203 0.038 0.067	0.168
$2.97 - 3.29 (2.809 \ 0.005 \ 0.013 \ 0.047) \times 10^{-1}$	$(4.038 \ 0.019 \ 0.030 \ 0.067) \times 10^{1}$	6.957 0.034 0.061	0.155
$3.29 - 3.64 (2.400 \ 0.004 \ 0.011 \ 0.039) \times 10^{-1}$	$(3.533 \ 0.016 \ 0.025 \ 0.058) \times 10^{1}$	6.793 0.033 0.057	0.147
$3.64 - 4.02 (2.025 \ 0.003 \ 0.010 \ 0.032) \times 10^{-1}$	$(3.045 \ 0.013 \ 0.020 \ 0.048) \times 10^{1}$	6.651 0.031 0.054	0.141
$4.02 - 4.43 (1.702 \ 0.003 \ 0.008 \ 0.026) \times 10^{-1}$	$(2.594 \ 0.011 \ 0.016 \ 0.041) \times 10^{1}$	6.564 0.030 0.051	0.135
$4.43 - 4.88 (1.414 \ 0.002 \ 0.007 \ 0.022) \times 10^{-1}$	$(2.204 \ 0.009 \ 0.013 \ 0.034) \times 10^{1}$	6.415 0.028 0.049	0.130
$4.88 - 5.37 (1.161 \ 0.002 \ 0.005 \ 0.017) \times 10^{-1}$	$(1.833 \ 0.007 \ 0.011 \ 0.028) \times 10^{1}$	6.331 0.027 0.046	0.126
$5.37 - 5.90 (9.466 \ 0.014 \ 0.039 \ 0.135) \times 10$	$(1.532\ 0.006\ 0.009\ 0.023)\times10^{1}$	6.179 0.026 0.043	0.120
$5.90 - 6.47 (7.730\ 0.012\ 0.031\ 0.109) \times 10$	$(1.263 \ 0.005 \ 0.007 \ 0.019) \times 10^{1}$	6.122 0.026 0.042	0.117
$6.47 - 7.09 (6.289 \ 0.009 \ 0.024 \ 0.088) \times 10$,	5.983 0.025 0.041	0.114
$7.09 - 7.76 (5.098 \ 0.008 \ 0.019 \ 0.071) \times 10$		5.912 0.025 0.041	0.111
$7.76 - 8.48 (4.134 \ 0.006 \ 0.016 \ 0.057) \times 10$,	5.887 0.025 0.041	0.111
$8.48 - 9.26 (3.330\ 0.005\ 0.013\ 0.046) \times 10$		5.782 0.026 0.042	0.108
$9.26 - 10.1 (2.687 \ 0.004 \ 0.011 \ 0.037) \times 10$,	5.711 0.027 0.043	0.107
10.1 - 11.0 (2.151 0.004 0.009 0.029)×10	· ·	5.606 0.027 0.044	0.105
$11.0 - 12.0 (1.736 \ 0.003 \ 0.007 \ 0.024) \times 10$,	5.597 0.028 0.046	0.106
$12.0 - 13.0 (1.396 \ 0.003 \ 0.006 \ 0.019) \times 10$,	5.479 0.030 0.047	0.105
$13.0 - 14.1 (1.131 \ 0.002 \ 0.005 \ 0.016) \times 10$,	5.420 0.031 0.049	0.105
$14.1 - 15.3 (9.114 \ 0.019 \ 0.042 \ 0.129) \times 10^{-1}$,	5.325 0.031 0.051	
$15.3 - 16.6 (7.348 \ 0.016 \ 0.035 \ 0.105) \times 10^{-1}$,	5.348 0.032 0.053	
	,		

TABLE SM LV: Bartels Rotation 2482 (July 5, 2015 – July 31, 2015). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time }} \sigma_{\text{syst.}}$
$16.6 - 18.0 (5.906 \ 0.013 \ 0.029 \ 0.086) \times 10$	$0 (1.117 \ 0.006 \ 0.010 \ 0.019) \times 10^{-6} $	0^0 5.289 0.033 0.055 0.106
$18.0 - 19.5 (4.729 \ 0.011 \ 0.024 \ 0.070) \times 10$	$0 (9.132 \ 0.053 \ 0.089 \ 0.153) \times 10^{-6} $	$0^{-1} 5.179 0.033 0.057 0.105$
$19.5 - 21.1 (3.822 \ 0.009 \ 0.020 \ 0.057) \times 10$	$0 \mid (7.517 \ 0.045 \ 0.076 \ 0.128) \times 10^{-6}$	$0^{-1} 5.085 0.033 0.058 0.104$
$21.1 - 22.8 (3.080 \ 0.008 \ 0.017 \ 0.046) \times 10$	$0 (6.067 \ 0.038 \ 0.062 \ 0.104) \times 10^{-6} $	0^{-1} 5.076 0.034 0.059 0.105
$22.8 - 24.7 (2.490 \ 0.006 \ 0.014 \ 0.038) \times 10$	$0 (4.930 \ 0.031 \ 0.051 \ 0.085) \times 10^{-6}$	$0^{-1} 5.049 0.034 0.059 0.105$
$24.7 - 26.7 (2.003 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 (3.997 \ 0.027 \ 0.042 \ 0.069) \times 10^{-6} $	0^{-1} 5.012 0.036 0.060 0.104
$26.7 - 28.8 (1.612 \ 0.005 \ 0.010 \ 0.025) \times 10$	$0 (3.273 \ 0.023 \ 0.035 \ 0.057) \times 10^{-6} $	$0^{-1} 4.925 \ 0.038 \ 0.060 \ 0.103$
$28.8 - 31.1 (1.310 \ 0.004 \ 0.008 \ 0.020) \times 10$	$0 (2.676 \ 0.020 \ 0.029 \ 0.047) \times 10^{-6} $	0^{-1} 4.894 0.039 0.061 0.103
$31.1 - 33.5 (1.057 \ 0.003 \ 0.007 \ 0.017) \times 10$	$0 (2.144 \ 0.017 \ 0.024 \ 0.038) \times 10^{-6} $	0^{-1} 4.931 0.043 0.062 0.105
$33.5 - 36.1 (8.619 \ 0.030 \ 0.055 \ 0.134) \times 10$	$^{-1}$ (1.771 0.015 0.020 0.032)×10	0^{-1} 4.867 0.045 0.063 0.104
$36.1 - 38.9 (7.045 \ 0.026 \ 0.046 \ 0.110) \times 10$	$^{-1}$ (1.464 0.013 0.017 0.027)×10	0^{-1} 4.813 0.047 0.063 0.104
$38.9 - 41.9 (5.687 \ 0.023 \ 0.038 \ 0.089) \times 10$	$^{-1}$ (1.191 0.012 0.014 0.021)×10	0^{-1} 4.773 0.050 0.064 0.104
$41.9 - 45.1 (4.618 \ 0.020 \ 0.032 \ 0.073) \times 10$	$^{-1}$ (9.736 0.101 0.114 0.178)×10	$0^{-2} 4.743 \ 0.053 \ 0.065 \ 0.104$
$45.1 - 48.5 (3.762 \ 0.017 \ 0.026 \ 0.060) \times 10$	$^{-1}$ (8.017 0.089 0.096 0.148)×10	$0^{-2} 4.693 \ 0.056 \ 0.065 \ 0.104$
$48.5 - 52.2 (3.112 \ 0.015 \ 0.022 \ 0.051) \times 10$	$^{-1}$ (6.509 0.076 0.079 0.121)×10	0^{-2} 4.781 0.061 0.067 0.107
$52.2 - 56.1 (2.545 \ 0.013 \ 0.019 \ 0.042) \times 10$	$^{-1}$ (5.417 0.068 0.067 0.101)×10	0^{-2} 4.699 0.064 0.067 0.106
$56.1 - 60.3 (2.083 \ 0.011 \ 0.016 \ 0.035) \times 10^{-1}$	$-1 (4.425 \ 0.059 \ 0.055 \ 0.083) \times 10^{-1} $	$0^{-2} 4.708 \ 0.068 \ 0.069 \ 0.107$

TABLE SM LVI: Bartels Rotation 2483 (August 1, 2015 – August 27, 2015). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m tim}$	$\sigma_{ m syst.}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm t}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (5.853 \ 0.030 \ 0.080 \ 0.261) \times 10$	2 – –			
$1.16 - 1.33 (6.042 \ 0.020 \ 0.060 \ 0.214) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$1.33 - 1.51 (6.006 \ 0.018 \ 0.046 \ 0.172) \times 10$	2 – –			
$1.51 - 1.71 (5.775 \ 0.013 \ 0.037 \ 0.150) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$1.71 - 1.92 (5.387 \ 0.011 \ 0.030 \ 0.127) \times 10$	2 – –			
$1.92 - 2.15 (4.887 \ 0.010 \ 0.024 \ 0.105) \times 10$	$[0.884 \ 0.037 \ 0]$	$.063 \ 0.133) \times 10^{-1}$	$8.306 \ 0.055$	0.098 0.248
$2.15 - 2.40 (4.380 \ 0.008 \ 0.020 \ 0.088) \times 10$	$(5.558 \ 0.032 \ 0)$	$.052 \ 0.111) \times 10^{-1}$	$7.880 \ 0.047$	$0.082 \ 0.211$
$2.40 - 2.67 (3.862 \ 0.007 \ 0.017 \ 0.073) \times 10$	$(5.182 \ 0.027 \ 0)$	$.047 \ 0.095) \times 10^{-1}$	$7.454 \ 0.041$	0.074 0.185
$2.67 - 2.97 (3.366 \ 0.006 \ 0.014 \ 0.059) \times 10$	`	$.041 \ 0.083) \times 10^{-1}$		0.069 0.167
$2.97 - 3.29 (2.899 \ 0.005 \ 0.012 \ 0.048) \times 10$	$(4.175 \ 0.019 \ 0)$	$.032 \ 0.069) \times 10^{-1}$	$6.944 \ 0.034$	$0.060 \ 0.154$
$3.29 - 3.64 (2.467 \ 0.004 \ 0.011 \ 0.040) \times 10$	*	$.024 \ 0.059) \times 10^{-1}$	$6.772 \ 0.032$	$0.054 \ 0.146$
$3.64 - 4.02 (2.078 \ 0.003 \ 0.009 \ 0.033) \times 10$	1 '	$.020 \ 0.049) \times 10^{-1}$		0.051 0.140
$4.02 - 4.43 (1.734 \ 0.003 \ 0.008 \ 0.027) \times 10$	`	$.016 \ 0.041) \times 10^{-1}$		0.049 0.134
$4.43 - 4.88 (1.437 \ 0.002 \ 0.006 \ 0.022) \times 10$		$.013 \ 0.035) \times 10^{-1}$		0.047 0.129
$4.88 - 5.37 (1.180 \ 0.002 \ 0.005 \ 0.017) \times 10$		$.011 \ 0.029) \times 10^{-1}$		$0.045 \ 0.125$
$5.37 - 5.90 (9.615 \ 0.014 \ 0.037 \ 0.137) \times 10$	`	$.009 \ 0.024) \times 10^{-1}$		$0.042 \ 0.121$
$5.90 - 6.47 (7.835 \ 0.012 \ 0.029 \ 0.110) \times 10$	*	$.007 \ 0.019) \times 10^{-1}$		0.041 0.116
$6.47 - 7.09 (6.350 \ 0.009 \ 0.023 \ 0.088) \times 10$	*	$.006 \ 0.016) \times 10^{-1}$	1	$0.040 \ 0.114$
$7.09 - 7.76 (5.145 \ 0.008 \ 0.018 \ 0.071) \times 10$		$.049 \ 0.130) \times 10^{6}$		$0.040 \ 0.112$
$7.76 - 8.48 (4.147 \ 0.006 \ 0.015 \ 0.057) \times 10$	`	$.041 \ 0.106) \times 10^{6}$		$0.040 \ 0.110$
$8.48 - 9.26 (3.341 \ 0.005 \ 0.012 \ 0.046) \times 10$	`	$0.035 \ 0.087) \times 10^{6}$		0.041 0.108
$9.26 - 10.1 (2.683 \ 0.005 \ 0.010 \ 0.036) \times 10$	`	$.030 \ 0.072) \times 10^{6}$		0.042 0.106
$10.1 - 11.0 (2.160 \ 0.004 \ 0.008 \ 0.029) \times 10$	`	$.026 \ 0.059) \times 10^{6}$		$0.043 \ 0.105$
$11.0 - 12.0 (1.729 \ 0.003 \ 0.007 \ 0.023) \times 10$	`	$.022 \ 0.048) \times 10^{0}$		0.044 0.104
$12.0 - 13.0 (1.386 \ 0.003 \ 0.005 \ 0.019) \times 10$	`	$.019 \ 0.040) \times 10^{6}$		0.046 0.104
$13.0 - 14.1 (1.128 \ 0.002 \ 0.005 \ 0.016) \times 10$,	$.016 \ 0.033) \times 10^{6}$	1	0.048 0.104
$14.1 - 15.3 (9.106 \ 0.019 \ 0.039 \ 0.128) \times 10$	`	$.014 \ 0.026) \times 10^{6}$		$0.050 \ 0.105$
15.3 - 16.6 (7.295 0.016 0.032 0.104)×10	$(1.382 \ 0.008 \ 0)$	$0.012 \ 0.022) \times 10^{6}$	$ 5.278 \ 0.032 $	0.051 0.103

TABLE SM LVI: Bartels Rotation 2483 (August 1, 2015 – August 27, 2015). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time }} \sigma_{\text{syst.}}$
$16.6 - 18.0 (5.861 \ 0.013 \ 0.027 \ 0.084) \times 10$	$0 (1.137 \ 0.007 \ 0.010 \ 0.019) \times 10^{-1} $	$\begin{bmatrix} 5.156 & 0.032 & 0.052 & 0.102 \end{bmatrix}$
$18.0 - 19.5 (4.713 \ 0.011 \ 0.022 \ 0.069) \times 10$	$0 \mid (9.104 \ 0.054 \ 0.086 \ 0.151) \times 10^{-1}$	-1 5.177 0.033 0.055 0.104
$19.5 - 21.1 (3.789 \ 0.009 \ 0.018 \ 0.056) \times 10$	$(7.349 \ 0.045 \ 0.072 \ 0.124) \times 10^{-6}$	$ 5.155 \ 0.034 \ 0.057 \ 0.104 $
$21.1 - 22.8 (3.074 \ 0.008 \ 0.015 \ 0.046) \times 10$	$0 \mid (6.085 \ 0.038 \ 0.061 \ 0.103) \times 10^{-6}$	-1 5.051 0.034 0.056 0.103
$22.8 - 24.7 (2.466 \ 0.006 \ 0.013 \ 0.037) \times 10$	$0 \mid (4.911 \ 0.031 \ 0.050 \ 0.084) \times 10^{-1}$	-1 5.021 0.034 0.057 0.103
$24.7 - 26.7 (1.981 \ 0.005 \ 0.011 \ 0.030) \times 10$	$0 \mid (4.010 \ 0.027 \ 0.041 \ 0.068) \times 10^{-1}$	-1 $ 4.940 0.036 0.057 0.102$
$26.7 - 28.8 (1.607 \ 0.005 \ 0.009 \ 0.024) \times 10$	$(3.237 \ 0.023 \ 0.034 \ 0.056) \times 10^{-6}$	-1 4.964 0.038 0.059 0.103
$28.8 - 31.1 (1.299 \ 0.004 \ 0.007 \ 0.020) \times 10$	$0 \mid (2.677 \ 0.020 \ 0.028 \ 0.047) \times 10^{-1}$	-1 4.851 0.039 0.058 0.101
$31.1 - 33.5 (1.052 \ 0.003 \ 0.006 \ 0.016) \times 10$	$(2.138 \ 0.018 \ 0.023 \ 0.038) \times 10^{-1}$	$ ^{-1} 4.922 \ 0.044 \ 0.061 \ 0.104$
$33.5 - 36.1 (8.562 \ 0.030 \ 0.051 \ 0.131) \times 10$	$^{-1} (1.786 \ 0.015 \ 0.020 \ 0.032) \times 10^{-1} $	-1 4.794 0.045 0.061 0.102
$36.1 - 38.9 (6.957 \ 0.026 \ 0.042 \ 0.107) \times 10$	$^{-1} (1.453 \ 0.013 \ 0.017 \ 0.026) \times 10^{-1} $	-1 4.787 0.048 0.062 0.103
$38.9 - 41.9 (5.618 \ 0.022 \ 0.035 \ 0.087) \times 10$	$^{-1} (1.208 \ 0.012 \ 0.014 \ 0.022) \times 10^{-1} $	-1 4.650 0.049 0.062 0.101
$41.9 - 45.1 (4.603 \ 0.020 \ 0.029 \ 0.072) \times 10$	$^{-1} (9.686 \ 0.102 \ 0.118 \ 0.179) \times 10^{-1} $	$ ^{-2} 4.753 \ 0.054 \ 0.065 \ 0.105$
$45.1 - 48.5 (3.757 \ 0.017 \ 0.024 \ 0.059) \times 10$	$^{-1} (8.235\ 0.091\ 0.103\ 0.155)\times 10$	$ ^{-2} 4.562 \ 0.054 \ 0.064 \ 0.102$
$48.5 - 52.2 (3.058 \ 0.015 \ 0.020 \ 0.049) \times 10$	$^{-1} (6.538 \ 0.077 \ 0.084 \ 0.125) \times 10^{-1} $	$ ^{-2} 4.676 0.060 0.068 0.106 $
$52.2 - 56.1 (2.519 \ 0.013 \ 0.017 \ 0.041) \times 10$	$^{-1} (5.242 \ 0.067 \ 0.070 \ 0.102) \times 10^{-1} $	$ -2 4.806 \ 0.066 \ 0.072 \ 0.110$
$56.1 - 60.3 (2.043 \ 0.011 \ 0.014 \ 0.034) \times 10$	$^{-1}$ (4.287 0.058 0.059 0.084)×10	$ -2 4.765 \ 0.070 \ 0.073 \ 0.111$

TABLE SM LVII: Bartels Rotation 2484 (August 28, 2015 – September 23, 2015). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr\cdot s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m s}$	$tat. \sigma_{ti}$	$\sigma_{ m s}$	syst.	p/	He $\sigma_{\rm s}$	$tat. \sigma_t$	ime		$\sigma_{ m syst.}$
$1.00 - 1.16 (5.954 \ 0.029 \ 0.085 \ 0.266) \times 10^{-1}$		_	_	_		_	_	_	_	
$1.16 - 1.33 (6.147 \ 0.021 \ 0.064 \ 0.219) \times 10^{-1}$	2 _	_	_	_		_	_	_	_	
$1.33 - 1.51 (6.122 \ 0.018 \ 0.050 \ 0.176) \times 10^{-1}$	2 _	_	_	_		_	_	_	_	
$1.51 - 1.71 (5.837 \ 0.014 \ 0.039 \ 0.152) \times 10^{-1}$	2 _	_	_	_		_	_	_	_	
$1.71 - 1.92 (5.420\ 0.012\ 0.032\ 0.128) \times 10^{-1}$	2 _	_	_	_		_	_	_	_	
$1.92 - 2.15 (4.931 \ 0.010 \ 0.026 \ 0.106) \times 10^{-1}$	(5.897)	0.038	0.056	0.131)	$\times 10^{1}$	8.362	0.057	0.090	0.247	
$2.15 - 2.40 (4.406 \ 0.008 \ 0.021 \ 0.088) \times 10^{-2}$	(5.617)	0.033	0.046	0.110	$\times 10^{1}$	7.842	0.048	0.075	0.208	
$2.40 - 2.67 (3.867 \ 0.007 \ 0.018 \ 0.073) \times 10^{-2}$	$(5.214)^2$	0.028	0.040	0.093	$\times 10^{1}$	7.417	0.042	0.066	0.181	
$2.67 - 2.97 (3.361 \ 0.006 \ 0.015 \ 0.059) \times 10^{-1}$	(4.703)	0.024	0.034	0.079	$\times 10^{1}$	7.146	0.038	0.061	0.164	
$2.97 - 3.29 (2.885 \ 0.005 \ 0.013 \ 0.048) \times 10^{-1}$	(4.175)	0.020	0.028	0.068	$\times 10^{1}$	6.912	0.035	0.056	0.152	
$3.29 - 3.64 (2.457 \ 0.004 \ 0.011 \ 0.040) \times 10^{-1}$	(3.639)	0.017	0.023	0.058	$\times 10^{1}$	6.750	0.033	0.052	0.144	
$3.64 - 4.02 (2.070 \ 0.003 \ 0.009 \ 0.033) \times 10^{-2}$	(3.098)	0.014	0.018	0.049	$\times 10^{1}$	6.681	0.032	0.050	0.140	
$4.02 - 4.43 (1.723 \ 0.003 \ 0.008 \ 0.027) \times 10^{-1}$	(2.646)	0.011	0.015	0.041	$\times 10^{1}$	6.512	0.030	0.047	0.133	
$4.43 - 4.88 (1.427 \ 0.002 \ 0.006 \ 0.022) \times 10^{-1}$	$(2.214)^2$	0.009	0.012	0.034)	$\times 10^{1}$	6.448	0.028	0.045	0.129	
$4.88 - 5.37 (1.169 \ 0.002 \ 0.005 \ 0.017) \times 10^{-1}$	(1.855)	0.007	0.009	0.028	$\times 10^{1}$	6.302	0.027	0.042	0.124	
$5.37 - 5.90 (9.528 \ 0.014 \ 0.038 \ 0.136) \times 10^{-1}$	(1.544)	0.006	0.008	0.023	$\times 10^{1}$	6.170	0.026	0.039	0.119	
$5.90 - 6.47 (7.761 \ 0.012 \ 0.030 \ 0.109) \times 10^{-1}$	(1.265)	0.005	0.006	0.019	$\times 10^{1}$	6.133	0.026	0.038	0.116	
$6.47 - 7.09 (6.287 \ 0.009 \ 0.024 \ 0.088) \times 10^{-1}$	$(1.044)^{1}$	0.004	0.005	0.015	$\times 10^{1}$	6.022	0.026	0.038	0.113	
$7.09 - 7.76 (5.095 \ 0.008 \ 0.019 \ 0.071) \times 10^{-1}$	(8.523)	0.034	0.043	0.127	$\times 10^{0}$	5.978	0.026	0.037	0.111	
$7.76 - 8.48 (4.103\ 0.006\ 0.015\ 0.057) \times 10^{-1}$		0.029	0.037	0.105	$\times 10^{0}$	5.789	0.025	0.037	0.107	
$8.48 - 9.26 (3.312 \ 0.005 \ 0.013 \ 0.045) \times 10^{-1}$	(5.707)	0.024	0.031	0.085)	$\times 10^{0}$	5.804	0.026	0.038	0.107	
$9.26 - 10.1 (2.672 \ 0.005 \ 0.010 \ 0.036) \times 10^{-1}$	(4.628)	0.021	0.026	0.069	$\times 10^{0}$	5.775	0.027	0.039	0.107	
$10.1 - 11.0 (2.149 \ 0.004 \ 0.009 \ 0.029) \times 10^{-1}$	(3.826)	0.018	0.023	0.057	$\times 10^{0}$	5.617	0.028	0.040	0.104	
$11.0 - 12.0 (1.724 \ 0.003 \ 0.007 \ 0.024) \times 10^{-1}$	(3.093)	0.015	0.019	0.047	$\times 10^{0}$	5.574	0.029	0.041	0.103	
$12.0 - 13.0 (1.390\ 0.003\ 0.006\ 0.019) \times 10^{-1}$	(2.521)	0.013	0.016	0.039	$\times 10^{0}$	5.514	0.031	0.043	0.103	
$13.0 - 14.1 (1.123 \ 0.002 \ 0.005 \ 0.016) \times 10^{-1}$,	0.011	0.014	0.031	$\times 10^{0}$	5.466	0.031	0.044	0.103	
$14.1 - 15.3 (9.040 \ 0.019 \ 0.040 \ 0.128) \times 10^{-1}$	0 (1.684)	0.009	0.012	0.026	$\times 10^{0}$	5.367	0.032	0.045	0.102	
$15.3 - 16.6 (7.276 \ 0.016 \ 0.034 \ 0.104) \times 10^{-1}$	0 (1.364)	0.008	0.010	0.021)	$\times 10^{0}$	5.333	0.032	0.047	0.103	

TABLE SM LVII: Bartels Rotation 2484 (August 28, 2015 – September 23, 2015). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\mathrm{He} \ \sigma_{\mathrm{stat.}} \ \sigma_{\mathrm{time}} \ \sigma_{\mathrm{syst.}}$
$16.6 - 18.0 (5.859 \ 0.013 \ 0.028 \ 0.085) \times 10$	$0 (1.102 \ 0.006 \ 0.009 \ 0.018) \times 10$	0 5.318 0.033 0.049 0.103
$18.0 - 19.5 (4.725 \ 0.011 \ 0.023 \ 0.069) \times 10$	$0 \mid (9.012 \ 0.053 \ 0.076 \ 0.145) \times 10$	$^{-1}$ 5.242 0.033 0.051 0.103
$19.5 - 21.1 (3.806 \ 0.009 \ 0.019 \ 0.057) \times 10$	$(7.504 \ 0.045 \ 0.066 \ 0.122) \times 10$	$^{-1}$ 5.072 0.033 0.051 0.100
$21.1 - 22.8 (3.067 \ 0.008 \ 0.016 \ 0.046) \times 10$	$0 \mid (6.045 \ 0.038 \ 0.054 \ 0.099) \times 10$	$^{-1}$ 5.073 0.034 0.052 0.101
$22.8 - 24.7 (2.471 \ 0.006 \ 0.013 \ 0.037) \times 10$	$0 \mid (4.917 \ 0.031 \ 0.044 \ 0.081) \times 10$	$^{-1}$ 5.024 0.034 0.053 0.101
$24.7 - 26.7 (1.980 \ 0.005 \ 0.011 \ 0.030) \times 10$	$0 (3.957 \ 0.027 \ 0.036 \ 0.065) \times 10$	$^{-1}$ 5.003 0.036 0.054 0.101
$26.7 - 28.8 (1.605 \ 0.005 \ 0.009 \ 0.024) \times 10$	$(3.212\ 0.023\ 0.030\ 0.053) \times 10$	$^{-1}$ 4.996 0.039 0.055 0.101
$28.8 - 31.1 (1.296 \ 0.004 \ 0.008 \ 0.020) \times 10$	$(2.660 \ 0.020 \ 0.025 \ 0.044) \times 10$	$^{-1}$ 4.874 0.040 0.054 0.099
$31.1 - 33.5 (1.049 \ 0.003 \ 0.006 \ 0.016) \times 10$	$(2.162\ 0.018\ 0.021\ 0.036) \times 10$	$^{-1}$ 4.852 0.043 0.055 0.099
$33.5 - 36.1 (8.571 \ 0.030 \ 0.053 \ 0.132) \times 10$	$^{-1} (1.773\ 0.015\ 0.017\ 0.031)\times 10$	$^{-1}$ 4.834 0.045 0.056 0.100
$36.1 - 38.9 (6.958 \ 0.026 \ 0.044 \ 0.108) \times 10$	$^{-1} (1.484 \ 0.014 \ 0.015 \ 0.026) \times 10$	$^{-1}$ 4.687 0.046 0.056 0.098
$38.9 - 41.9 (5.686 \ 0.023 \ 0.037 \ 0.089) \times 10$	$^{-1} (1.187\ 0.012\ 0.012\ 0.020)\times 10$	$^{-1}$ 4.789 0.051 0.058 0.101
$41.9 - 45.1 (4.624 \ 0.020 \ 0.031 \ 0.073) \times 10$	$^{-1} (9.754\ 0.102\ 0.101\ 0.170)\times 10$	$^{-2}$ 4.741 0.054 0.059 0.101
$45.1 - 48.5 (3.752 \ 0.017 \ 0.026 \ 0.060) \times 10$	$^{-1} (8.050\ 0.090\ 0.085\ 0.141)\times 10$	$^{-2}$ 4.661 0.056 0.059 0.100
$48.5 - 52.2 (3.057 \ 0.015 \ 0.022 \ 0.050) \times 10$	$^{-1} (6.490 \ 0.077 \ 0.070 \ 0.115) \times 10$	$^{-2}$ 4.710 0.060 0.061 0.102
$52.2 - 56.1 (2.523 \ 0.013 \ 0.018 \ 0.042) \times 10$	$^{-1} (5.395\ 0.068\ 0.059\ 0.096)\times 10$	$^{-2}$ 4.677 0.064 0.061 0.102
$56.1 - 60.3 (2.045 \ 0.011 \ 0.015 \ 0.034) \times 10$	$^{-1}$ (4.413 0.059 0.049 0.079)×10	$-2 \mid 4.634 \mid 0.067 \mid 0.062 \mid 0.102 \mid$

TABLE SM LVIII: Bartels Rotation 2485 (September 24, 2015 – October 20, 2015). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s}\cdot{\rm GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m sys}$	st. p/H	$\overline{\text{He } \sigma_{ ext{stat.}} \ \sigma_{ ext{ti}}}$	me	$\sigma_{ m syst.}$
$1.00 - 1.16 (6.186 \ 0.032 \ 0.089 \ 0.277) \times 10^{-1}$		_			
$1.16 - 1.33 (6.313 \ 0.021 \ 0.066 \ 0.225) \times 10$		_			
$1.33 - 1.51 (6.223 \ 0.018 \ 0.050 \ 0.179) \times 10^{-1}$		_			
$1.51 - 1.71 (6.000 \ 0.014 \ 0.039 \ 0.156) \times 10$		_			
$1.71 - 1.92 (5.578 \ 0.012 \ 0.032 \ 0.131) \times 10$		_			
$1.92 - 2.15 (5.042 \ 0.010 \ 0.026 \ 0.109) \times 10$	$(6.083 \ 0.038 \ 0.068 \ 0$	$(.139) \times 10^1$	8.289 0.055	0.102 0.249	
$2.15 - 2.40 (4.493\ 0.008\ 0.021\ 0.090) \times 10^{-1}$	$(5.798 \ 0.033 \ 0.056 \ 0$	$.117) \times 10^1$	7.749 0.046	0.083 0.209	
$2.40 - 2.67 (3.944 \ 0.007 \ 0.017 \ 0.074) \times 10^{-1}$	(5.357 0.028 0.050 0	$(.100) \times 10^1$	7.363 0.040	0.076 0.184	
$2.67 - 2.97 (3.407 \ 0.006 \ 0.015 \ 0.060) \times 10$	(4.784 0.023 0.044 0	$.085) \times 10^{1}$	7.122 0.037	0.072 0.168	
$2.97 - 3.29 (2.927 \ 0.005 \ 0.012 \ 0.049) \times 10^{-1}$	(4.252 0.020 0.033 0	$0.071)\times10^{1}$	6.885 0.034	0.062 0.154	
$3.29 - 3.64 (2.479 \ 0.004 \ 0.011 \ 0.040) \times 10^{-1}$	$(3.679 \ 0.016 \ 0.025 \ 0$	$(.060) \times 10^{1}$	6.739 0.032	$0.055 \ 0.145$	
$3.64 - 4.02 (2.081 \ 0.003 \ 0.009 \ 0.033) \times 10^{-2}$	(3.131 0.014 0.020 0	$(.050) \times 10^1$	6.649 0.031	0.052 0.140	
$4.02 - 4.43 (1.736 \ 0.003 \ 0.008 \ 0.027) \times 10^{-1}$	$(2.675 \ 0.011 \ 0.017 \ 0$	$(.042) \times 10^1$	6.489 0.029	0.049 0.133	
$4.43 - 4.88 (1.438 \ 0.002 \ 0.006 \ 0.022) \times 10^{-1}$	$(2.234\ 0.009\ 0.014\ 0$	$(.035) \times 10^1$	6.435 0.028	0.048 0.130	
$4.88 - 5.37 (1.174 \ 0.002 \ 0.005 \ 0.017) \times 10^{-1}$	(1.868 0.007 0.011 0	$(.029) \times 10^1$	6.288 0.027	0.046 0.125	
$5.37 - 5.90 (9.560 \ 0.014 \ 0.037 \ 0.136) \times 10$	$(1.542 \ 0.006 \ 0.009 \ 0$	$0.024) \times 10^{1}$	6.199 0.026	0.043 0.121	
$5.90 - 6.47 (7.773\ 0.012\ 0.029\ 0.109) \times 10$	$(1.277 \ 0.005 \ 0.007 \ 0$	$.019) \times 10^{1}$	6.087 0.026	0.042 0.117	
$6.47 - 7.09 (6.299 \ 0.009 \ 0.023 \ 0.088) \times 10^{-1}$	$(1.050 \ 0.004 \ 0.006 \ 0$		5.998 0.025	0.041 0.114	
$7.09 - 7.76 (5.100 \ 0.008 \ 0.018 \ 0.071) \times 10$	(8.574 0.034 0.049 0	$.130) \times 10^0$	5.948 0.025	0.040 0.112	
$7.76 - 8.48 (4.111 \ 0.006 \ 0.015 \ 0.057) \times 10$	(7.038 0.029 0.041 0		5.841 0.025	0.040 0.109	
$8.48 - 9.26 (3.325 \ 0.005 \ 0.012 \ 0.046) \times 10$	$(5.771 \ 0.024 \ 0.035 \ 0$	$.087) \times 10^0$	5.761 0.026	0.041 0.108	
$9.26 - 10.1 (2.682 \ 0.005 \ 0.010 \ 0.036) \times 10$	$(4.700 \ 0.021 \ 0.029 \ 0$	$.071) \times 10^0$	5.707 0.027	0.042 0.107	
$10.1 - 11.0 (2.150 \ 0.004 \ 0.008 \ 0.029) \times 10^{-1}$	(3.801 0.018 0.025 0	$0.058) \times 10^0$	5.658 0.028	0.043 0.106	
$11.0 - 12.0 (1.723 \ 0.003 \ 0.007 \ 0.023) \times 10^{-1}$	$(3.074 \ 0.015 \ 0.021 \ 0$	$0.047) \times 10^0$	5.606 0.029	0.044 0.105	
$12.0 - 13.0 (1.384 \ 0.003 \ 0.006 \ 0.019) \times 10$	$(2.547 \ 0.013 \ 0.018 \ 0$	$.040) \times 10^0$	5.434 0.030	0.045 0.103	
$13.0 - 14.1 (1.127 \ 0.002 \ 0.005 \ 0.016) \times 10$	$(2.071 \ 0.011 \ 0.016 \ 0$	$(.032) \times 10^0$	5.440 0.031	0.047 0.104	
$14.1 - 15.3 (9.050 \ 0.019 \ 0.039 \ 0.128) \times 10^{-1}$	(1.690 0.009 0.013 0	$.026) \times 10^0$	5.355 0.032	0.048 0.103	
$15.3 - 16.6 (7.281 \ 0.016 \ 0.033 \ 0.104) \times 10^{-1}$	(1.386 0.008 0.012 0	$.022) \times 10^0$	5.254 0.032	0.050 0.102	

TABLE SM LVIII: Bartels Rotation 2485 (September 24, 2015 – October 20, 2015). (Continued).

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$
16.6 - 18.0 (5.840 0.013 0.027 0.084)×10	$0 (1.110 \ 0.006 \ 0.010 \ 0.018) \times 10^{6}$	5.261 0.033 0.052 0.104
$18.0 - 19.5 (4.713 \ 0.011 \ 0.023 \ 0.069) \times 10$	$0 (9.019 \ 0.054 \ 0.082 \ 0.148) \times 10^{-6} $	$\begin{bmatrix} -1 \\ 5.226 \\ 0.033 \\ 0.054 \\ 0.104 \end{bmatrix}$
$19.5 - 21.1 (3.801 \ 0.009 \ 0.019 \ 0.057) \times 10$	$0 (7.378 \ 0.045 \ 0.070 \ 0.123) \times 10^{-6} $	$\begin{bmatrix} -1 \\ 5.152 \\ 0.034 \\ 0.055 \\ 0.103 \end{bmatrix}$
$21.1 - 22.8 (3.062 \ 0.008 \ 0.016 \ 0.046) \times 10$	$0 (6.082 \ 0.038 \ 0.058 \ 0.102) \times 10^{-6}$	$\begin{bmatrix} -1 \\ 5.035 \\ 0.034 \\ 0.055 \\ 0.102 \end{bmatrix}$
$22.8 - 24.7 (2.476 \ 0.006 \ 0.013 \ 0.037) \times 10$	0 (4.859 0.031 0.047 0.082)×10	$\begin{bmatrix} -1 \\ 5.096 & 0.035 & 0.056 & 0.104 \end{bmatrix}$
$24.7 - 26.7 (1.986 \ 0.005 \ 0.011 \ 0.030) \times 10$	$0 (3.965 \ 0.027 \ 0.039 \ 0.067) \times 10^{-6} $	$\begin{bmatrix} -1 \\ 5.008 & 0.036 & 0.057 & 0.102 \end{bmatrix}$
$26.7 - 28.8 (1.608 \ 0.005 \ 0.009 \ 0.024) \times 10$	$0 (3.277 \ 0.023 \ 0.033 \ 0.056) \times 10^{-6} $	$\begin{bmatrix} -1 \\ 4.907 & 0.038 & 0.057 & 0.101 \end{bmatrix}$
$28.8 - 31.1 (1.296 \ 0.004 \ 0.007 \ 0.020) \times 10^{-1}$	$0 (2.659 \ 0.020 \ 0.027 \ 0.046) \times 10^{-6}$	-1 4.874 0.040 0.057 0.101
$31.1 - 33.5 (1.055 \ 0.003 \ 0.006 \ 0.016) \times 10$	$0 (2.188 \ 0.018 \ 0.023 \ 0.038) \times 10^{-6}$	-1 4.821 0.042 0.058 0.101
$33.5 - 36.1 (8.582 \ 0.030 \ 0.052 \ 0.132) \times 10$	$^{-1}$ (1.757 0.015 0.019 0.031)×10	-1 4.885 0.046 0.061 0.103
$36.1 - 38.9 (6.956 \ 0.026 \ 0.043 \ 0.107) \times 10$	$^{-1}$ (1.457 0.013 0.016 0.026)×10	-1 4.774 0.047 0.061 0.102
$38.9 - 41.9 (5.676 \ 0.023 \ 0.036 \ 0.088) \times 10$	$^{-1}$ (1.201 0.012 0.014 0.021)×10	$^{-1}$ 4.726 0.050 0.062 0.103
$41.9 - 45.1 (4.583 \ 0.020 \ 0.030 \ 0.072) \times 10$	$ (9.749 \ 0.102 \ 0.117 \ 0.179) \times 10^{-1} $	$-2 \mid 4.700 \mid 0.053 \mid 0.064 \mid 0.103 \mid$
$45.1 - 48.5 (3.763 \ 0.017 \ 0.025 \ 0.060) \times 10$	$^{-1}$ (8.025 0.089 0.100 0.150)×10	$-2 \mid 4.689 \mid 0.056 \mid 0.066 \mid 0.105 \mid$
$48.5 - 52.2 (3.077 \ 0.015 \ 0.021 \ 0.050) \times 10$	$^{-1}$ (6.601 0.077 0.085 0.126)×10	$-2 \mid 4.661 \mid 0.059 \mid 0.068 \mid 0.106 \mid$
$52.2 - 56.1 (2.513 \ 0.013 \ 0.018 \ 0.042) \times 10$	$^{-1}$ (5.420 0.068 0.072 0.105)×10	$^{-2}$ $ 4.637 \ 0.063 \ 0.070 \ 0.106$
$56.1 - 60.3 (2.023 \ 0.011 \ 0.014 \ 0.034) \times 10$	$^{-1}$ (4.430 0.059 0.061 0.088)×10	$-2 \mid 4.565 \mid 0.066 \mid 0.071 \mid 0.107 \mid$

TABLE SM LIX: Bartels Rotation 2486 (October 21, 2015 – November 16, 2015). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[\text{m}^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (6.466 \ 0.033 \ 0.097 \ 0.291) \times 10^{-2}$	2		
$1.16 - 1.33 (6.539 \ 0.021 \ 0.071 \ 0.234) \times 10^{5}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$1.33 - 1.51 (6.407 \ 0.018 \ 0.053 \ 0.185) \times 10^{2}$	2		
$1.51 - 1.71 (6.122 \ 0.014 \ 0.041 \ 0.160) \times 10^{2}$	2		
$1.71 - 1.92 (5.680 \ 0.012 \ 0.033 \ 0.134) \times 10^{2}$	2		
$1.92 - 2.15 (5.123 \ 0.010 \ 0.027 \ 0.110) \times 10^{2} $	$(6.249 \ 0.038 \ 0.061 \ 0.139) \times 10$	$\begin{bmatrix} 8.198 & 0.053 & 0.091 & 0.243 \end{bmatrix}$	ı
$2.15 - 2.40 (4.547 \ 0.008 \ 0.022 \ 0.091) \times 10^{2}$	$(5.826 \ 0.033 \ 0.049 \ 0.114) \times 10$	$7.805 \ 0.046 \ 0.075 \ 0.207$	
$2.40 - 2.67 (3.980 \ 0.007 \ 0.018 \ 0.075) \times 10^{-2}$	$(5.326\ 0.028\ 0.044\ 0.096)\times 10$	$7.474 \ 0.041 \ 0.070 \ 0.184$:
$2.67 - 2.97 (3.446 \ 0.006 \ 0.015 \ 0.060) \times 10^{2}$	$(4.835 \ 0.023 \ 0.039 \ 0.083) \times 10$	$7.128 \ 0.037 \ 0.066 \ 0.166$	ı
$2.97 - 3.29 (2.939 \ 0.005 \ 0.013 \ 0.049) \times 10^{2}$	$(4.250 \ 0.019 \ 0.029 \ 0.069) \times 10$	$\begin{bmatrix} 6.916 & 0.034 & 0.056 & 0.152 \end{bmatrix}$	
$3.29 - 3.64 (2.489 \ 0.004 \ 0.011 \ 0.040) \times 10^{2}$	$(3.685 \ 0.016 \ 0.022 \ 0.058) \times 10$	$\begin{bmatrix} 6.753 & 0.032 & 0.050 & 0.144 \end{bmatrix}$:
$3.64 - 4.02 (2.078 \ 0.003 \ 0.010 \ 0.033) \times 10^{2}$	$(3.146 \ 0.014 \ 0.017 \ 0.049) \times 10$	$\begin{bmatrix} 6.603 & 0.031 & 0.047 & 0.137 \end{bmatrix}$	
$4.02 - 4.43 (1.730 \ 0.003 \ 0.008 \ 0.027) \times 10^{2}$	$(2.651 \ 0.011 \ 0.014 \ 0.041) \times 10$	$6.524 \ 0.029 \ 0.046 \ 0.132$	i
$4.43 - 4.88 (1.430 \ 0.002 \ 0.006 \ 0.022) \times 10^{2}$	$(2.228 \ 0.009 \ 0.012 \ 0.034) \times 10$	$\begin{bmatrix} 6.419 & 0.027 & 0.044 & 0.129 \end{bmatrix}$	ı
$4.88 - 5.37 (1.171 \ 0.002 \ 0.005 \ 0.017) \times 10^{5}$	$(1.856 \ 0.007 \ 0.010 \ 0.028) \times 10^{-2}$	$\begin{bmatrix} 6.311 & 0.027 & 0.042 & 0.125 \end{bmatrix}$	1
$5.37 - 5.90 (9.543 \ 0.014 \ 0.038 \ 0.136) \times 10^{-3}$	$(1.542 \ 0.006 \ 0.008 \ 0.023) \times 10$	$\begin{bmatrix} 6.189 & 0.026 & 0.040 & 0.120 \end{bmatrix}$	ı
$5.90 - 6.47 (7.751 \ 0.012 \ 0.030 \ 0.109) \times 10^{-1}$	$(1.260 \ 0.005 \ 0.006 \ 0.019) \times 10$	$\begin{bmatrix} 6.152 & 0.026 & 0.038 & 0.117 \end{bmatrix}$	·
$6.47 - 7.09 (6.280 \ 0.009 \ 0.024 \ 0.088) \times 10^{-3}$	$(1.045 \ 0.004 \ 0.005 \ 0.015) \times 10$	$\begin{bmatrix} 6.009 & 0.025 & 0.037 & 0.113 \end{bmatrix}$	1
$7.09 - 7.76 (5.085 \ 0.008 \ 0.019 \ 0.070) \times 10^{-6} $	$(8.609 \ 0.034 \ 0.042 \ 0.127) \times 10$	$\begin{bmatrix} 5.906 & 0.025 & 0.036 & 0.110 \end{bmatrix}$	ı
$7.76 - 8.48 (4.120 \ 0.006 \ 0.015 \ 0.057) \times 10^{-6} (4.120 \ 0.006 \ 0.005 \ 0.005) \times 10^{-6} (4.120 \ 0.006 \ 0.005) \times 10^{-6} (4.120 \ 0.005) \times $	$(7.074 \ 0.029 \ 0.035 \ 0.104) \times 10$	$\begin{bmatrix} 5.824 & 0.025 & 0.036 & 0.108 \end{bmatrix}$	1
$8.48 - 9.26 (3.315 \ 0.005 \ 0.013 \ 0.045) \times 10^{-3}$	$(5.757 \ 0.024 \ 0.029 \ 0.085) \times 10$	$\begin{bmatrix} 5.757 & 0.026 & 0.036 & 0.106 \end{bmatrix}$	ı
$9.26 - 10.1 (2.672 \ 0.004 \ 0.010 \ 0.036) \times 10^{-1}$	$(4.685 \ 0.020 \ 0.024 \ 0.069) \times 10$	$\begin{bmatrix} 5.703 & 0.027 & 0.037 & 0.105 \end{bmatrix}$	
$10.1 - 11.0 (2.148 \ 0.004 \ 0.009 \ 0.029) \times 10^{-1}$	$(3.797 \ 0.017 \ 0.021 \ 0.056) \times 10$	$\begin{bmatrix} 5.656 & 0.028 & 0.038 & 0.104 \end{bmatrix}$:
$11.0 - 12.0 (1.729 \ 0.003 \ 0.007 \ 0.024) \times 10^{-1}$	$(3.094 \ 0.015 \ 0.018 \ 0.046) \times 10$	$\begin{bmatrix} 5.589 & 0.028 & 0.039 & 0.103 \end{bmatrix}$	1
$12.0 - 13.0 (1.390 \ 0.003 \ 0.006 \ 0.019) \times 10^{-1}$	$(2.554 \ 0.013 \ 0.015 \ 0.038) \times 10$	$\begin{bmatrix} 5.442 & 0.030 & 0.039 & 0.101 \end{bmatrix}$	
$13.0 - 14.1 (1.128 \ 0.002 \ 0.005 \ 0.016) \times 10^{-1}$	$(2.055 \ 0.011 \ 0.013 \ 0.031) \times 10$	$\begin{bmatrix} 5.489 & 0.031 & 0.042 & 0.103 \end{bmatrix}$	
$14.1 - 15.3 (9.077 \ 0.019 \ 0.041 \ 0.128) \times 10^{0}$	$(1.684 \ 0.009 \ 0.011 \ 0.025) \times 10$	$\begin{bmatrix} 5.390 & 0.032 & 0.043 & 0.101 \end{bmatrix}$	
15.3 - 16.6 (7.312 0.016 0.034 0.104)×106	$(1.366 \ 0.008 \ 0.009 \ 0.021) \times 10$	$\begin{bmatrix} 5.354 & 0.033 & 0.044 & 0.102 \end{bmatrix}$	1

TABLE SM LIX: Bartels Rotation 2486 (October 21, 2015 – November 16, 2015). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ $\sigma_{\text{time }}\sigma_{\text{syst.}}$
$16.6 - 18.0 (5.865 \ 0.013 \ 0.028 \ 0.085) \times 10$	$0 (1.106 \ 0.006 \ 0.008 \ 0.017) \times 1$	0^0 5.303 0.033 0.046 0.102
$18.0 - 19.5 (4.729 \ 0.011 \ 0.023 \ 0.070) \times 10$	$0 (9.046 \ 0.054 \ 0.068 \ 0.141) \times 1$	$0^{-1} 5.228 \ 0.033 \ 0.047 \ 0.101$
$19.5 - 21.1 (3.798 \ 0.009 \ 0.019 \ 0.057) \times 10$	$0 (7.414 \ 0.045 \ 0.058 \ 0.117) \times 1$	$0^{-1} 5.123 \ 0.033 \ 0.048 \ 0.099$
$21.1 - 22.8 (3.094 \ 0.008 \ 0.016 \ 0.046) \times 10$	$0 (6.025 \ 0.038 \ 0.048 \ 0.095) \times 1$	$0^{-1} 5.135 \ 0.034 \ 0.049 \ 0.100$
$22.8 - 24.7 (2.477 \ 0.006 \ 0.013 \ 0.037) \times 10$	$0 (4.915 \ 0.031 \ 0.039 \ 0.078) \times 1$	$0^{-1} 5.041 0.034 0.049 0.099$
$24.7 - 26.7 (1.991 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 (3.984 \ 0.027 \ 0.032 \ 0.063) \times 1$	$0^{-1} 4.997 \ 0.036 \ 0.049 \ 0.098$
$26.7 - 28.8 (1.607 \ 0.005 \ 0.009 \ 0.024) \times 10$	$0 (3.236 \ 0.023 \ 0.027 \ 0.052) \times 1$	$0^{-1} 4.967 \ 0.038 \ 0.050 \ 0.098$
$28.8 - 31.1 (1.306 \ 0.004 \ 0.008 \ 0.020) \times 10$,	
$31.1 - 33.5 (1.053 \ 0.003 \ 0.006 \ 0.017) \times 10$	$0 (2.164 \ 0.018 \ 0.019 \ 0.035) \times 1$	$0^{-1} 4.865 \ 0.043 \ 0.052 \ 0.098$
$33.5 - 36.1 (8.616 \ 0.030 \ 0.054 \ 0.133) \times 10$	$^{-1}$ (1.810 0.015 0.016 0.030)×1	$0^{-1} 4.762 \ 0.044 \ 0.052 \ 0.097$
$36.1 - 38.9 (6.988 \ 0.026 \ 0.045 \ 0.109) \times 10$	$^{-1}$ (1.453 0.013 0.013 0.025)×1	0^{-1} 4.808 0.048 0.054 0.099
$38.9 - 41.9 (5.681 \ 0.023 \ 0.037 \ 0.089) \times 10$	$^{-1}$ (1.181 0.012 0.011 0.020)×1	$0^{-1} 4.812 \ 0.051 \ 0.056 \ 0.100$
$41.9 - 45.1 (4.623 \ 0.020 \ 0.031 \ 0.073) \times 10$	$^{-1}$ (9.672 0.101 0.097 0.166)×1	$0^{-2} 4.780 \ 0.054 \ 0.058 \ 0.101$
$45.1 - 48.5 (3.753 \ 0.017 \ 0.026 \ 0.060) \times 10$	$^{-1}$ (8.033 0.089 0.084 0.140)×1	$0^{-2} 4.672 \ 0.056 \ 0.058 \ 0.100$
$48.5 - 52.2 (3.078 \ 0.015 \ 0.022 \ 0.050) \times 10$	$^{-1}$ (6.494 0.077 0.070 0.115)×1	0^{-2} 4.739 0.060 0.061 0.103
$52.2 - 56.1 (2.520 \ 0.013 \ 0.018 \ 0.042) \times 10$	$^{-1} (5.317\ 0.067\ 0.060\ 0.096)\times 1$	$0^{-2} 4.740 \ 0.065 \ 0.064 \ 0.104$
$56.1 - 60.3 (2.074 \ 0.011 \ 0.015 \ 0.035) \times 10$	$^{-1}$ (4.430 0.059 0.052 0.081)×1	$0^{-2} 4.682 \ 0.067 \ 0.065 \ 0.104$

TABLE SM LX: Bartels Rotation 2487 (November 17, 2015 – December 13, 2015). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity $\Phi_p = \sigma_{\text{stat.}} \sigma_{\text{time}} \sigma_{\text{syst.}}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$p/{\rm He}~\sigma_{\rm stat.}~\sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (7.097 \ 0.034 \ 0.091 \ 0.314) \times 10^{-1}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$1.16 - 1.33 (7.169 \ 0.022 \ 0.067 \ 0.253) \times 10^{-1}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		
$1.33 - 1.51 (7.049 \ 0.019 \ 0.051 \ 0.201) \times 10^{-1}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		
$1.51 - 1.71 (6.647 \ 0.014 \ 0.040 \ 0.172) \times 10^{-1}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		
$1.71 - 1.92 (6.121 \ 0.012 \ 0.032 \ 0.144) \times 10^{-1}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$1.92 - 2.15 (5.500 \ 0.010 \ 0.026 \ 0.118) \times 10$	$(6.716 \ 0.039 \ 0.076 \ 0.154) \times 10^{-2}$	0^1 8.190 0.050 0.100 0.246	
$2.15 - 2.40 (4.830 \ 0.008 \ 0.021 \ 0.096) \times 10^{-1}$	$(6.202 \ 0.033 \ 0.062 \ 0.126) \times 10^{-2}$	0^1 7.787 0.044 0.084 0.210	
$2.40 - 2.67 (4.211 \ 0.007 \ 0.017 \ 0.079) \times 10^{-1}$	$(5.679 \ 0.028 \ 0.055 \ 0.106) \times 10^{-2}$	0^1 7.414 0.039 0.078 0.186	
$2.67 - 2.97 (3.620 \ 0.006 \ 0.015 \ 0.063) \times 10^{-1}$	$(5.051 \ 0.024 \ 0.048 \ 0.090) \times 10^{-2}$	0^1 7.167 0.035 0.073 0.170	
$2.97 - 3.29 (3.071 \ 0.005 \ 0.012 \ 0.051) \times 10$	$(4.442\ 0.020\ 0.036\ 0.075)\times 10^{-2}$	$0^1 6.913 \ 0.032 \ 0.063 \ 0.155$	
$3.29 - 3.64 (2.592 \ 0.004 \ 0.011 \ 0.041) \times 10^{-1}$	$(3.822 \ 0.016 \ 0.027 \ 0.063) \times 10^{-2}$	0^1 6.781 0.031 0.056 0.147	
$3.64 - 4.02 (2.163 \ 0.003 \ 0.009 \ 0.034) \times 10^{-1}$	$(3.229 \ 0.014 \ 0.022 \ 0.052) \times 10^{-2}$	$0^1 6.698 0.030 0.053 0.141$	
$4.02 - 4.43 (1.791 \ 0.003 \ 0.007 \ 0.027) \times 10$		0^1 6.539 0.029 0.051 0.134	
$4.43 - 4.88 (1.474 \ 0.002 \ 0.006 \ 0.022) \times 10$	$(2.291\ 0.009\ 0.015\ 0.036)\times 10^{-2}$	$0^1 6.431 0.027 0.049 0.131$	
$4.88 - 5.37 (1.202 \ 0.002 \ 0.005 \ 0.017) \times 10$	$(1.905 \ 0.007 \ 0.012 \ 0.029) \times 10^{-2}$	0^1 6.310 0.026 0.047 0.126	
$5.37 - 5.90 (9.788 \ 0.014 \ 0.036 \ 0.139) \times 10^{-1}$	$1 (1.581 \ 0.006 \ 0.010 \ 0.024) \times 10^{-1}$	0^1 6.190 0.026 0.044 0.121	
$5.90 - 6.47 (7.944 \ 0.012 \ 0.028 \ 0.111) \times 10^{-1}$		$0^1 6.164 \ 0.026 \ 0.043 \ 0.119 $	
$6.47 - 7.09 (6.438 \ 0.009 \ 0.022 \ 0.089) \times 10$	$1 (1.058 \ 0.004 \ 0.007 \ 0.016) \times 10^{-1}$	$0^1 6.084 \ 0.025 \ 0.043 \ 0.116$	
$7.09 - 7.76 (5.196 \ 0.008 \ 0.018 \ 0.072) \times 10$	$\left(8.718\ 0.034\ 0.054\ 0.133\right)\times 10^{-1}$	0^0 5.960 0.025 0.042 0.113	
$7.76 - 8.48 (4.176 \ 0.006 \ 0.014 \ 0.057) \times 10^{-1}$	$1 (7.152 \ 0.029 \ 0.045 \ 0.109) \times 10^{-1}$	0^0 5.839 0.025 0.042 0.110	
$8.48 - 9.26 (3.382 \ 0.005 \ 0.012 \ 0.046) \times 10$	$1 (5.831 \ 0.024 \ 0.038 \ 0.089) \times 10^{-1}$	0^0 5.799 0.026 0.043 0.109	
$9.26 - 10.1 (2.712 \ 0.005 \ 0.010 \ 0.037) \times 10^{-1}$	$(4.741 \ 0.021 \ 0.032 \ 0.073) \times 10^{-1}$	0^0 5.721 0.027 0.044 0.108	
$10.1 - 11.0 (2.174 \ 0.004 \ 0.008 \ 0.029) \times 10^{-1}$	$(3.805 \ 0.017 \ 0.027 \ 0.059) \times 10^{-1}$	0^0 5.713 0.028 0.046 0.108	
$11.0 - 12.0 (1.738 \ 0.003 \ 0.006 \ 0.024) \times 10$	$(3.111 \ 0.015 \ 0.023 \ 0.049) \times 10^{-1}$	0^0 5.588 0.028 0.047 0.106	
$12.0 - 13.0 (1.400\ 0.003\ 0.005\ 0.019) \times 10^{-1}$	$(2.521 \ 0.013 \ 0.020 \ 0.040) \times 10^{-1}$	0^0 5.554 0.031 0.049 0.107	
$13.0 - 14.1 (1.131 \ 0.002 \ 0.005 \ 0.016) \times 10$	1 7	0^0 5.426 0.031 0.050 0.105	
$14.1 - 15.3 (9.155 \ 0.019 \ 0.038 \ 0.128) \times 10$	$0 (1.691 \ 0.009 \ 0.015 \ 0.027) \times 10^{-1}$	0^0 5.414 0.032 0.052 0.106	
$15.3 - 16.6 (7.325 \ 0.016 \ 0.031 \ 0.104) \times 10$		0^0 5.264 0.032 0.053 0.104	
	<u> </u>		

т.

TABLE SM LX: Bartels Rotation 2487 (November 17, 2015 – December 13, 2015). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ $\sigma_{\text{time }}\sigma_{\text{syst.}}$
$16.6 - 18.0 (5.908 \ 0.013 \ 0.026 \ 0.085) \times 10$	$0 (1.124 \ 0.006 \ 0.011 \ 0.019) \times 10$	$0 5.257 \ 0.033 \ 0.056 \ 0.106$
$18.0 - 19.5 (4.727 \ 0.011 \ 0.021 \ 0.069) \times 10$	$0 (9.087 \ 0.054 \ 0.092 \ 0.155) \times 10$	$^{-1}$ $ 5.203 \ 0.033 \ 0.058 \ 0.106 $
$19.5 - 21.1 (3.797 \ 0.009 \ 0.018 \ 0.056) \times 10$	$0 (7.385 \ 0.045 \ 0.077 \ 0.127) \times 10$	$^{-1}$ 5.141 0.033 0.059 0.105
$21.1 - 22.8 (3.077 \ 0.008 \ 0.015 \ 0.046) \times 10$	$0 (6.021 \ 0.038 \ 0.064 \ 0.104) \times 10$	$^{-1}$ 5.110 0.034 0.060 0.106
$22.8 - 24.7 (2.476 \ 0.006 \ 0.012 \ 0.037) \times 10$	$0 (4.941 \ 0.031 \ 0.053 \ 0.086) \times 10$	$^{-1}$ 5.011 0.034 0.059 0.104
$24.7 - 26.7 (1.999 \ 0.005 \ 0.010 \ 0.030) \times 10$	$0 (3.955 \ 0.027 \ 0.043 \ 0.069) \times 10$	$^{-1}$ $ 5.054 \ 0.037 \ 0.061 \ 0.105 $
$26.7 - 28.8 (1.606 \ 0.005 \ 0.009 \ 0.024) \times 10$	$0 (3.251 \ 0.023 \ 0.036 \ 0.057) \times 10$	$^{-1}$ 4.940 0.038 0.061 0.103
$28.8 - 31.1 (1.302 \ 0.004 \ 0.007 \ 0.020) \times 10$	$0 (2.655 \ 0.020 \ 0.030 \ 0.047) \times 10$	$^{-1}$ 4.903 0.040 0.061 0.104
$31.1 - 33.5 (1.055 \ 0.003 \ 0.006 \ 0.016) \times 10$	$0 (2.134 \ 0.017 \ 0.024 \ 0.038) \times 10^{-6} $	$^{-1}$ 4.945 0.044 0.063 0.105
$33.5 - 36.1 (8.603\ 0.030\ 0.049\ 0.131) \times 10$	$^{-1}$ (1.791 0.015 0.021 0.033)×10	$^{-1}$ 4.802 0.044 0.063 0.103
$36.1 - 38.9 (6.960 \ 0.026 \ 0.041 \ 0.107) \times 10$	$^{-1}$ (1.437 0.013 0.017 0.027)×10	$^{-1}$ 4.844 0.048 0.065 0.106
$38.9 - 41.9 (5.656 \ 0.022 \ 0.034 \ 0.087) \times 10$	$^{-1}$ (1.182 0.012 0.015 0.022)×10	$^{-1}$ 4.787 0.050 0.066 0.106
$41.9 - 45.1 (4.602 \ 0.020 \ 0.028 \ 0.071) \times 10$	$^{-1}$ (9.819 0.102 0.125 0.186)×10	$^{-2}$ 4.687 0.052 0.066 0.105
$45.1 - 48.5 (3.780 \ 0.017 \ 0.024 \ 0.059) \times 10$	$^{-1} (8.101\ 0.089\ 0.106\ 0.156)\times 10$	$^{-2}$ 4.666 0.056 0.068 0.106
$48.5 - 52.2 (3.056 \ 0.015 \ 0.020 \ 0.049) \times 10$	$^{-1}$ (6.337 0.075 0.086 0.124)×10	$^{-2}$ 4.823 0.062 0.072 0.111
$52.2 - 56.1 (2.526 \ 0.013 \ 0.017 \ 0.041) \times 10$	$^{-1} (5.293\ 0.067\ 0.074\ 0.105)\times 10$	$^{-2}$ 4.773 0.065 0.074 0.111
$56.1 - 60.3 (2.056 \ 0.011 \ 0.014 \ 0.034) \times 10$	$^{-1}$ (4.332 0.058 0.063 0.087)×10	$-2 \mid 4.746 \mid 0.069 \mid 0.076 \mid 0.112$

TABLE SM LXI: Bartels Rotation 2488 (December 14, 2015 – January 9, 2016). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s}\cdot{\rm GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$p/{\rm He}~\sigma_{\rm stat.}~\sigma_{\rm time}$	$\sigma_{ m syst.}$
1.00 - 1.16 (7.642 0.038 0.103 0.340)×10	2		_
$1.16 - 1.33 (7.691 \ 0.023 \ 0.076 \ 0.273) \times 10$	2 $ -$		_
$1.33 - 1.51 (7.435 \ 0.020 \ 0.056 \ 0.213) \times 10$	2 $ -$		_
$1.51 - 1.71 (6.964 \ 0.015 \ 0.043 \ 0.181) \times 10$	2 $ -$		_
$1.71 - 1.92 (6.364 \ 0.012 \ 0.035 \ 0.150) \times 10$	2		_
$1.92 - 2.15 (5.684 \ 0.010 \ 0.028 \ 0.122) \times 10$	$(6.937 \ 0.041 \ 0.071 \ 0.156) \times 10^{1}$	8.193 0.050 0.093 0	.243
$2.15 - 2.40 (4.982\ 0.009\ 0.023\ 0.099) \times 10$	$(6.524 \ 0.035 \ 0.059 \ 0.129) \times 10^{1}$	7.636 0.043 0.077 0	.204
$2.40 - 2.67 (4.327 \ 0.007 \ 0.019 \ 0.081) \times 10$	$(5.837 \ 0.029 \ 0.049 \ 0.106) \times 10^{1}$	7.412 0.039 0.070 0	.182
$2.67 - 2.97 (3.700\ 0.006\ 0.016\ 0.065) \times 10$	$(5.183 \ 0.024 \ 0.042 \ 0.089) \times 10^{1}$	7.140 0.036 0.065 0	.165
$2.97 - 3.29 (3.139\ 0.005\ 0.013\ 0.052) \times 10$	$(4.573 \ 0.020 \ 0.034 \ 0.076) \times 10^{1}$	6.864 0.032 0.059 0	.152
$3.29 - 3.64 (2.637 \ 0.004 \ 0.011 \ 0.042) \times 10$	$(3.928 \ 0.017 \ 0.027 \ 0.064) \times 10^{1}$	6.715 0.031 0.055 0	.145
$3.64 - 4.02 (2.204 \ 0.003 \ 0.010 \ 0.035) \times 10$	$(3.340 \ 0.014 \ 0.022 \ 0.053) \times 10^{1}$	6.600 0.030 0.052 0	.139
$4.02 - 4.43 (1.825 \ 0.003 \ 0.008 \ 0.028) \times 10$	$(2.787 \ 0.012 \ 0.017 \ 0.044) \times 10^{1}$	6.548 0.029 0.050 0	.134
$4.43 - 4.88 (1.500\ 0.002\ 0.006\ 0.023) \times 10$	$(2.333 \ 0.009 \ 0.014 \ 0.036) \times 10^{1}$	6.430 0.027 0.048 0	.130
$4.88 - 5.37 (1.218 \ 0.002 \ 0.005 \ 0.018) \times 10$	$(1.927 \ 0.008 \ 0.011 \ 0.029) \times 10^{1}$	6.319 0.026 0.045 0	.126
$5.37 - 5.90 (9.894 \ 0.015 \ 0.038 \ 0.141) \times 10$	$(1.590 \ 0.006 \ 0.009 \ 0.024) \times 10^{1}$	6.221 0.026 0.042 0	.121
$5.90 - 6.47 (8.026 \ 0.012 \ 0.030 \ 0.112) \times 10$		6.095 0.026 0.041 0	.117
$6.47 - 7.09 (6.486 \ 0.010 \ 0.024 \ 0.090) \times 10$,	1	.115
$7.09 - 7.76 (5.240\ 0.008\ 0.019\ 0.072) \times 10$		$5.960 \ 0.025 \ 0.041 \ 0$.112
$7.76 - 8.48 (4.218 \ 0.006 \ 0.015 \ 0.058) \times 10$	$(7.149\ 0.029\ 0.043\ 0.108) \times 10^{0}$	$5.900 \ 0.025 \ 0.041 \ 0$.111
8.48 - 9.26 (3.384 0.005 0.012 0.046)×10		$5.789 \ 0.026 \ 0.042 \ 0$.108
$9.26 - 10.1 (2.714 \ 0.005 \ 0.010 \ 0.037) \times 10$	$(4.736 \ 0.021 \ 0.031 \ 0.073) \times 10^{0}$	$5.731 \ 0.027 \ 0.043 \ 0$.108
$10.1 - 11.0 (2.178 \ 0.004 \ 0.008 \ 0.029) \times 10$,		.107
$11.0 - 12.0 (1.747 \ 0.003 \ 0.007 \ 0.024) \times 10$,		.106
$12.0 - 13.0 (1.403\ 0.003\ 0.006\ 0.019) \times 10$,		.105
$13.0 - 14.1 (1.140 \ 0.002 \ 0.005 \ 0.016) \times 10$,		.106
$14.1 - 15.3 (9.113\ 0.020\ 0.040\ 0.128) \times 10$,		
$15.3 - 16.6 (7.326 \ 0.016 \ 0.033 \ 0.104) \times 10$,		
	,		_

TABLE SM LXI: Bartels Rotation 2488 (December 14, 2015 – January 9, 2016). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time} \ \sigma_{\rm syst.}$
$16.6 - 18.0 (5.873 \ 0.013 \ 0.027 \ 0.085) \times 10$	$0 (1.109 \ 0.006 \ 0.010 \ 0.019) \times 10^{-1} $	$0 5.294 \ 0.033 \ 0.055 \ 0.106$
$18.0 - 19.5 (4.740 \ 0.011 \ 0.023 \ 0.069) \times 10$	$0 \mid (8.976 \ 0.054 \ 0.088 \ 0.151) \times 10^{-6}$	$^{-1}$ $ 5.280 \ 0.034 \ 0.057 \ 0.107$
$19.5 - 21.1 (3.817 \ 0.009 \ 0.019 \ 0.057) \times 10$	$0 \mid (7.426 \ 0.045 \ 0.076 \ 0.127) \times 10^{-6}$	$^{-1}$ $ 5.140 \ 0.034 \ 0.058 \ 0.105$
$21.1 - 22.8 (3.082 \ 0.008 \ 0.016 \ 0.046) \times 10$	$0 (5.973 \ 0.038 \ 0.061 \ 0.103) \times 10^{-6} $	$^{-1}$ $ 5.161 \ 0.035 \ 0.059 \ 0.106$
$22.8 - 24.7 (2.483 \ 0.006 \ 0.013 \ 0.037) \times 10$	$0 \mid (4.909 \ 0.031 \ 0.051 \ 0.085) \times 10^{-6}$	$^{-1}$ $ 5.059 \ 0.034 \ 0.059 \ 0.105$
$24.7 - 26.7 (1.995 \ 0.005 \ 0.011 \ 0.030) \times 10$	$0 (3.983 \ 0.027 \ 0.042 \ 0.069) \times 10^{-6} $	$^{-1}$ $ 5.008 \ 0.036 \ 0.059 \ 0.104$
$26.7 - 28.8 (1.611 \ 0.005 \ 0.009 \ 0.024) \times 10$	$0 \mid (3.266 \ 0.023 \ 0.035 \ 0.057) \times 10^{-6}$	$^{-1}$ 4.931 0.038 0.060 0.103
$28.8 - 31.1 (1.303 \ 0.004 \ 0.007 \ 0.020) \times 10$	$0 (2.687 \ 0.020 \ 0.029 \ 0.047) \times 10^{-6} $	$^{-1}$ 4.850 0.039 0.060 0.102
$31.1 - 33.5 (1.060 \ 0.003 \ 0.006 \ 0.017) \times 10$	$0 (2.181 \ 0.018 \ 0.024 \ 0.039) \times 10^{-6} $	$^{-1}$ 4.861 0.043 0.061 0.103
$33.5 - 36.1 (8.559 \ 0.030 \ 0.052 \ 0.132) \times 10$	$^{-1} (1.756 \ 0.015 \ 0.020 \ 0.032) \times 10^{-1} $	$^{-1}$ 4.873 0.046 0.062 0.104
$36.1 - 38.9 (6.966 \ 0.026 \ 0.043 \ 0.108) \times 10$	$^{-1} (1.454\ 0.013\ 0.017\ 0.026)\times 10$	$^{-1}$ 4.790 0.047 0.062 0.103
$38.9 - 41.9 (5.682 \ 0.023 \ 0.036 \ 0.088) \times 10$	$^{-1} (1.193\ 0.012\ 0.014\ 0.021)\times 10$	$^{-1}$ 4.763 0.050 0.063 0.104
$41.9 - 45.1 (4.603 \ 0.020 \ 0.030 \ 0.072) \times 10$	$^{-1} (9.695 \ 0.101 \ 0.115 \ 0.178) \times 10^{-1} $	-2 4.748 0.054 0.064 0.104
$45.1 - 48.5 (3.770 \ 0.017 \ 0.025 \ 0.060) \times 10$	$^{-1} (8.161\ 0.090\ 0.099\ 0.151)\times 10^{-1} $	-2 4.619 0.055 0.064 0.103
$48.5 - 52.2 (3.069 \ 0.015 \ 0.021 \ 0.050) \times 10$	$^{-1} (6.650 \ 0.078 \ 0.082 \ 0.124) \times 10^{-1} $	$^{-2}$ 4.614 0.058 0.065 0.103
$52.2 - 56.1 (2.513 \ 0.013 \ 0.018 \ 0.041) \times 10$	$^{-1} (5.334\ 0.067\ 0.066\ 0.100)\times 10$	$^{-2}$ 4.711 0.064 0.067 0.106
$56.1 - 60.3 (2.065 \ 0.011 \ 0.015 \ 0.034) \times 10$	$^{-1}$ (4.356 0.058 0.055 0.082)×10	$-2 \mid 4.741 \mid 0.069 \mid 0.069 \mid 0.107$

TABLE SM LXII: Bartels Rotation 2489 (January 10, 2016 – February 5, 2016). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s}\cdot{\rm GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p	$\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	Φ_{He}	$\sigma_{ m stat.}$ $\sigma_{ m t}$	$\sigma_{\rm sime}$	syst.	$p/{\rm He} \ \sigma_{\rm s}$	tat. $\sigma_{\rm t}$	ime		$\sigma_{\rm syst.}$
1.00 - 1.16 (8.29	$92\ 0.038\ 0.112\ 0.369) \times 10^{-1}$	0^2 –		_	_	_	_	_	_	
1.16 - 1.33 (8.23)	21 0.024 0.081 0.291)×1	O^2 –		_	_	-	_	_	_	
1.33 - 1.51 (7.93)	$22\ 0.021\ 0.060\ 0.227) \times 10^{-1}$	$)^{2}$ -		_	_	-	_	_	_	
1.51 - 1.71 (7.39)	96 0.015 0.046 0.192)×1	0^2 –	- –	_	_	_	_	_	_	
1.71 - 1.92 (6.74)	$45 \ 0.013 \ 0.036 \ 0.159) \times 10^{-1}$	$)^{2}$ -	- –	_	_	-	_	_	_	
1.92 - 2.15 (6.00)	$09\ 0.011\ 0.029\ 0.129) \times 10^{-1}$	0^2 (7.3)	390 0.042	0.090	$0.173) \times 10$	0^1 8.132	0.048	0.107	0.247	
2.15 - 2.40 (5.23)	$51\ 0.009\ 0.024\ 0.105) \times 10^{-1}$	0^2 (6.8)	397 0.036	0.074	$0.143) \times 10$	0^1 7.613	0.042	0.089	0.208	
2.40 - 2.67 (4.54)	43 0.007 0.020 0.086)×1	0^2 (6.1)	97 0.030	0.065	$0.119) \times 10$	0^1 7.331	0.037	0.083	0.186	
2.67 - 2.97 (3.88)	86 0.006 0.017 0.068)×1	0^2 (5.5)	509 0.025	0.056	$0.101) \times 10$	0^1 7.054	0.034	0.078	0.169	
2.97 - 3.29 (3.28)	87 0.005 0.014 0.055)×1	0^2 (4.7)	75 0.021	0.042	$0.082) \times 10$	6.885	0.032	0.068	0.156	
3.29 - 3.64 (2.78)	52 0.004 0.012 0.044)×1	$)^{2}$ (4.0	069 0.017	0.032	$0.068) \times 10$	6.764	0.031	0.061	0.148	
	86 0.003 0.010 0.036)×1		163 0.014	0.026	$0.056) \times 10$	6.601	0.029	0.057	0.141	
4.02 - 4.43 (1.89)	97 0.003 0.008 0.029)×1	$)^{2}$ (2.8)	890 0.012	0.021	$0.046) \times 10$	6.563	0.028	0.055	0.137	
	$52\ 0.002\ 0.007\ 0.023) \times 10^{-1}$		116 0.009	0.017	$0.038) \times 10$	6.423	0.026	0.053	0.132	
4.88 - 5.37 (1.20	64 0.002 0.005 0.018)×1	$)^{2}$ (2.0	0.008	0.014	$0.031) \times 10$	6.306	0.026	0.051	0.128	
,	$22\ 0.001\ 0.004\ 0.015) \times 10^{-1}$,			$0.026) \times 10$		0.026	0.049	0.123	
1 '	40 0.012 0.031 0.115)×1	1 .	351 0.005	0.009	$0.021) \times 10$	6.099	0.025	0.047	0.119	
·	$65\ 0.010\ 0.024\ 0.093) \times 10^{-1}$	`			$0.017) \times 10$		0.025	0.046	0.116	
,	$63\ 0.008\ 0.019\ 0.074) \times 10^{-1}$	`			$0.140) \times 10$	l l	0.025	0.046	0.115	
`	$22\ 0.007\ 0.016\ 0.060) \times 10^{-1}$	`			$0.114) \times 10$		0.025	0.047	0.113	
,	$64\ 0.005\ 0.013\ 0.047)\times 10^{-1}$	`			$0.094) \times 10$	l l	0.025	0.047	0.111	
`	$71\ 0.005\ 0.010\ 0.037) \times 10^{-1}$	`			$0.077) \times 10$		0.026	0.048	0.109	
`	$29\ 0.004\ 0.009\ 0.030) \times 10^{-1}$	`			$0.063) \times 10$		0.027	0.050	0.108	
`	$75\ 0.003\ 0.007\ 0.024) \times 10^{-1}$	`			$0.052) \times 10$			0.051		
`	$23\ 0.003\ 0.006\ 0.019) \times 10^{-1}$,			$0.042) \times 10$			0.054		
`	$53\ 0.002\ 0.005\ 0.016) \times 10^{-1}$	`			$0.035) \times 10$			0.055		
,	62 0.020 0.041 0.130)×1	`			$0.028) \times 10^{-1}$	l l		0.057		
`	$48\ 0.016\ 0.034\ 0.106) \times 10^{-1}$	`			$0.024) \times 10^{-10}$			0.060		
T 11 1: 1	· · · · · · · · · · · · · · · · · · ·	(, ==					

TABLE SM LXII: Bartels Rotation 2489 (January 10, 2016 – February 5, 2016). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\mathrm{He} \ \sigma_{\mathrm{stat.}} \ \sigma_{\mathrm{time}} \ \sigma_{\mathrm{syst.}}$
$16.6 - 18.0 (5.974 \ 0.014 \ 0.028 \ 0.086) \times 10$	$0 (1.118 \ 0.006 \ 0.012 \ 0.020) \times 10$	5.342 0.033 0.062 0.110
$18.0 - 19.5 (4.805 \ 0.011 \ 0.023 \ 0.070) \times 10$	$0 \mid (9.254 \ 0.054 \ 0.103 \ 0.163) \times 10$	$^{-1}$ 5.192 0.033 0.063 0.109
$19.5 - 21.1 (3.871 \ 0.009 \ 0.019 \ 0.058) \times 10$	$0 \mid (7.449 \ 0.045 \ 0.086 \ 0.133) \times 10$	-1 5.197 0.034 0.065 0.110
$21.1 - 22.8 (3.117 \ 0.008 \ 0.016 \ 0.047) \times 10$	$0 (6.056 \ 0.038 \ 0.070 \ 0.109) \times 10$	$^{-1}$ 5.146 0.034 0.065 0.109
$22.8 - 24.7 (2.502 \ 0.006 \ 0.013 \ 0.038) \times 10$	$0 (4.955 \ 0.031 \ 0.058 \ 0.089) \times 10$	$^{-1}$ 5.049 0.034 0.065 0.108
$24.7 - 26.7 (2.021 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 (4.009 \ 0.027 \ 0.047 \ 0.072) \times 10$	$^{-1}$ 5.041 0.036 0.066 0.108
$26.7 - 28.8 (1.635 \ 0.005 \ 0.009 \ 0.025) \times 10$	$0 (3.274 \ 0.023 \ 0.039 \ 0.059) \times 10$	$^{-1}$ 4.994 0.038 0.066 0.107
$28.8 - 31.1 (1.314 \ 0.004 \ 0.008 \ 0.020) \times 10$	$0 (2.698 \ 0.020 \ 0.032 \ 0.049) \times 10$	$^{-1}$ 4.870 0.039 0.065 0.106
$31.1 - 33.5 (1.067 \ 0.003 \ 0.006 \ 0.017) \times 10$	$0 (2.173 \ 0.018 \ 0.027 \ 0.040) \times 10$	-1 4.911 0.043 0.067 0.107
$33.5 - 36.1 (8.648 \ 0.030 \ 0.053 \ 0.133) \times 10$	$^{-1} (1.806\ 0.015\ 0.022\ 0.034)\times 10$	-1 4.788 0.044 0.066 0.105
$36.1 - 38.9 (7.016 \ 0.026 \ 0.044 \ 0.109) \times 10$	$^{-1} (1.451\ 0.013\ 0.018\ 0.028)\times 10$	$^{-1}$ 4.836 0.048 0.068 0.108
$38.9 - 41.9 (5.688 \ 0.023 \ 0.037 \ 0.088) \times 10$	$^{-1} (1.209\ 0.012\ 0.016\ 0.023)\times 10$	-1 4.705 0.049 0.068 0.106
$41.9 - 45.1 (4.664 \ 0.020 \ 0.031 \ 0.073) \times 10$	$^{-1} (9.731\ 0.101\ 0.129\ 0.188)\times 10$	$^{-2}$ 4.792 0.054 0.071 0.109
$45.1 - 48.5 (3.757 \ 0.017 \ 0.025 \ 0.060) \times 10$	$^{-1} (7.909\ 0.088\ 0.108\ 0.155)\times 10$	$^{-2}$ 4.750 0.057 0.072 0.110
$48.5 - 52.2 (3.120 \ 0.015 \ 0.022 \ 0.050) \times 10$	$^{-1}$ (6.484 0.076 0.091 0.129)×10	$^{-2}$ 4.812 0.061 0.075 0.112
$52.2 - 56.1 (2.540 \ 0.013 \ 0.018 \ 0.042) \times 10$	$^{-1} (5.320\ 0.067\ 0.077\ 0.107)\times 10$	$^{-2}$ 4.773 0.065 0.077 0.113
$56.1 - 60.3 (2.078 \ 0.011 \ 0.015 \ 0.035) \times 10$	$^{-1}$ (4.388 0.058 0.065 0.090)×10	-2 4.735 0.068 0.078 0.114

TABLE SM LXIII: Bartels Rotation 2490 (February 6, 2016 – March 3, 2016). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s}\cdot{\rm GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p	$\sigma_{ m stat.}$ $\sigma_{ m ti}$	$_{ m me}$ $\sigma_{ m syst.}$	Φ_{H}	$_{ m He}$ $\sigma_{ m st}$	at. $\sigma_{\rm ti}$	$_{ m me}$ $\sigma_{ m s}$	yst.	$p/H\epsilon$	$\sigma_{ m s}$	$tat. \sigma_t$	ime		$\sigma_{ m syst.}$
1.00 - 1.16 (8	8.662 0.040	$0.115 \ 0.385) \times 10^{-1}$		_	_	_	_		_	_	_	_	
1.16 - 1.33 (8)	8.514 0.025	$0.082 \ 0.301) \times 10^{-1}$	2	_	_	_			_	-	_	_	
1.33 - 1.51 (8.164 0.021	$0.060 \ 0.233) \times 10^{-1}$	2	_	_	_	_		_	_	_	_	
1.51 - 1.71 (7.651 0.016	$0.047 \ 0.198) \times 10^{-1}$	2	_	_	_	_		_	_	_	_	
1.71 - 1.92	6.926 0.013	$0.037 \ 0.163) \times 10$	2	_	_	_	_		_	_	_	_	
1.92 - 2.15 (6.173 0.011	$0.030 \ 0.132) \times 10^{-1}$	$ ^2$	(7.539)	0.043	0.069	$0.166) \times 10$	8	188	0.049	0.085	0.240	
2.15 - 2.40 (5.387 0.009	$0.024 \ 0.107) \times 10^{-1}$	$ ^2$	(7.007)	0.036	0.056	$0.136) \times 10$	7	688	0.042	0.070	0.202	
2.40 - 2.67	4.656 0.008	$0.020 \ 0.088) \times 10^{-1}$	$ ^2$	(6.362)	0.031	0.050	$0.114) \times 10$	7	319	0.037	0.065	0.179	
2.67 - 2.97	3.981 0.006	$0.017 \ 0.069) \times 10^{-1}$	$ ^2$	(5.569)	0.025	0.043	$0.095) \times 10$	7	148	0.034	0.062	0.165	
2.97 - 3.29 (3	3.360 0.005	$0.014 \ 0.056) \times 10$	$ ^2$	(4.893)	0.021	0.032	$0.079) \times 10$	6	867	0.031	0.053	0.150	
3.29 - 3.64 (2)	2.809 0.004	$0.012\ 0.045)\times 10$	$ ^2$	(4.190)	0.018	0.024	$0.066) \times 10$	6	703	0.030	0.048	0.142	
3.64 - 4.02	2.327 0.004	$0.010 \ 0.037) \times 10^{-1}$	$ ^2$	(3.520)	0.015	0.019	$0.054) \times 10$	6	611	0.029	0.045	0.137	
4.02 - 4.43 (1.928 0.003	$0.008 \ 0.030) \times 10^{-1}$	$ ^2$	(2.949)	0.012	0.015	$0.045) \times 10$	6	538	0.028	0.044	0.132	
4.43 - 4.88 (1.578 0.002	$0.007 \ 0.024) \times 10$	$ ^2$	(2.458)	0.009	0.013	$0.037) \times 10$	6	422	0.026	0.043	0.128	
4.88 - 5.37 (1.280 0.002	$0.005 \ 0.018) \times 10^{-1}$	$ ^2$	(2.022)	0.008	0.010	$0.030) \times 10$	6	330	0.026	0.041	0.125	
5.37 - 5.90 (1.036 0.001	$0.004 \ 0.015) \times 10^{-1}$	$ ^2$	(1.670)	0.006	0.008	$0.025) \times 10$	6	201	0.025	0.039	0.120	
5.90 - 6.47 (8)	8.370 0.012	$0.031 \ 0.117) \times 10$	1	(1.367)	0.005	0.007	$0.020) \times 10$	6	124	0.025	0.038	0.116	
6.47 - 7.09 (6.727 0.010	$0.024 \ 0.094) \times 10$	1	(1.123)	0.004	0.006	$0.017) \times 10$	5	988	0.025	0.037	0.113	
7.09 - 7.76 (5.418 0.008	$0.019 \ 0.075) \times 10$	1 ((9.190)	0.035	0.046	$0.136) \times 10$	5	895	0.024	0.036	0.110	
7.76 - 8.48 (4)	4.348 0.007	$0.015 \ 0.060) \times 10^{-1}$	1	(7.443)	0.029	0.038	$0.110) \times 10$	5	842	0.025	0.036	0.108	
8.48 - 9.26 (3)	3.483 0.005	$0.013 \ 0.048) \times 10^{-1}$	1	(6.041)	0.025	0.032	$0.090) \times 10$	5	766	0.025	0.037	0.106	
9.26 - 10.1 (2)	2.786 0.005	$0.010 \ 0.038) \times 10^{-1}$	1	(4.888)	0.021	0.027	$0.073) \times 10$	5	700	0.026	0.038	0.105	
10.1 - 11.0 (2)	2.239 0.004	$0.009 \ 0.030) \times 10^{-1}$	1	(3.966)	0.018	0.023	$0.059) \times 10$	5	646	0.027	0.039	0.104	
11.0 - 12.0 (1.788 0.003	$0.007 \ 0.024) \times 10$	1	(3.200)	0.015	0.019	$0.048) \times 10$	5	587	0.028	0.040	0.103	
12.0 - 13.0 (1.430 0.003	$0.006 \ 0.019) \times 10^{-1}$	1	(2.609)	0.013	0.016	$0.040) \times 10$	5	480	0.030	0.041	0.102	
13.0 - 14.1 (1.156 0.002	$0.005 \ 0.016) \times 10$	1	(2.133)	0.011	0.014	$0.032) \times 10$	5	422	0.031	0.042	0.102	
14.1 - 15.3	9.302 0.020	$0.040 \ 0.131) \times 10^{-1}$	$ 0\rangle$	(1.721)	0.009	0.012	$0.026) \times 10$	5	404	0.032	0.044	0.102	
15.3 - 16.6 (7.484 0.016	$0.033 \ 0.106) \times 10$	0 ((1.403)	0.008	0.010	$0.022) \times 10$	5.	333	0.032	0.046	0.102	

TABLE SM LXIII: Bartels Rotation 2490 (February 6, 2016 – March 3, 2016). (Continued).

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \ \sigma_{\text{time}} \ \sigma_{\text{syst.}}$
$16.6 - 18.0 (5.986 \ 0.014 \ 0.027 \ 0.086) \times 10$	$0 (1.136 \ 0.007 \ 0.009 \ 0.018) \times 10^{-6} $	0^0 5.268 0.033 0.047 0.102
$18.0 - 19.5 (4.795 \ 0.011 \ 0.023 \ 0.070) \times 10$	$0 \mid (9.255 \ 0.054 \ 0.074 \ 0.147) \times 10^{-6}$	0^{-1} 5.181 0.033 0.048 0.100
$19.5 - 21.1 (3.861 \ 0.009 \ 0.019 \ 0.057) \times 10$	$0 \mid (7.538 \ 0.045 \ 0.063 \ 0.121) \times 10^{-6}$	$0^{-1} 5.123 \ 0.033 \ 0.049 \ 0.100$
$21.1 - 22.8 (3.124 \ 0.008 \ 0.016 \ 0.047) \times 10$	$0 (6.088 \ 0.038 \ 0.051 \ 0.098) \times 10^{-6} $	$0^{-1} 5.131 0.034 0.050 0.101$
$22.8 - 24.7 (2.504 \ 0.006 \ 0.013 \ 0.038) \times 10$	$0 \mid (4.945 \ 0.031 \ 0.042 \ 0.080) \times 10^{-6}$	$0^{-1} 5.062 \ 0.034 \ 0.050 \ 0.100$
$24.7 - 26.7 (2.011 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 (4.075 \ 0.027 \ 0.035 \ 0.066) \times 10^{-6} $	$0^{-1} 4.935 \ 0.035 \ 0.050 \ 0.098$
$26.7 - 28.8 (1.615 \ 0.005 \ 0.009 \ 0.024) \times 10$	$0 (3.308 \ 0.024 \ 0.029 \ 0.054) \times 10^{-6} $	$0^{-1} 4.882 \ 0.037 \ 0.051 \ 0.097$
$28.8 - 31.1 (1.316 \ 0.004 \ 0.007 \ 0.020) \times 10$	$0 \mid (2.636 \ 0.020 \ 0.024 \ 0.043) \times 10^{-6}$	$0^{-1} 4.994 \ 0.041 \ 0.053 \ 0.100$
$31.1 - 33.5 (1.055 \ 0.003 \ 0.006 \ 0.016) \times 10$	$0 (2.238 \ 0.018 \ 0.021 \ 0.037) \times 10^{-6} $	$0^{-1} 4.713 \ 0.041 \ 0.051 \ 0.095$
$33.5 - 36.1 (8.648 \ 0.030 \ 0.052 \ 0.133) \times 10$	$^{-1} (1.803\ 0.015\ 0.017\ 0.031)\times 10^{-1} $	$0^{-1} 4.795 \ 0.044 \ 0.054 \ 0.098$
$36.1 - 38.9 (6.978 \ 0.026 \ 0.043 \ 0.107) \times 10$	$^{-1}$ (1.457 0.013 0.014 0.025)×10	$0^{-1} 4.789 \ 0.047 \ 0.055 \ 0.099$
$38.9 - 41.9 (5.727 \ 0.023 \ 0.036 \ 0.089) \times 10$	$^{-1}$ $ (1.200\ 0.012\ 0.012\ 0.020) \times 10^{-1} $	$0^{-1} 4.774 \ 0.050 \ 0.057 \ 0.100$
$41.9 - 45.1 (4.628 \ 0.020 \ 0.030 \ 0.072) \times 10$	$^{-1} (9.518\ 0.101\ 0.099\ 0.166)\times 10$	$0^{-2} 4.863 \ 0.055 \ 0.059 \ 0.103$
$45.1 - 48.5 (3.828 \ 0.017 \ 0.025 \ 0.060) \times 10$	$^{-1} (7.976\ 0.089\ 0.086\ 0.141)\times 10^{-1} $	$0^{-2} 4.799 \ 0.058 \ 0.061 \ 0.103$
$48.5 - 52.2 (3.087 \ 0.015 \ 0.021 \ 0.050) \times 10$	$^{-1} (6.547 \ 0.077 \ 0.073 \ 0.118)\times 10^{-1} $	$0^{-2} 4.715 \ 0.060 \ 0.062 \ 0.102$
$52.2 - 56.1 (2.511 \ 0.013 \ 0.017 \ 0.041) \times 10$	$^{-1} (5.417\ 0.068\ 0.063\ 0.099)\times 10^{-1} $	$0^{-2} 4.636 \ 0.063 \ 0.063 \ 0.102$
$56.1 - 60.3 (2.064 \ 0.011 \ 0.014 \ 0.034) \times 10$	$^{-1}$ $(4.319 \ 0.058 \ 0.052 \ 0.080) \times 10^{-1}$	$0^{-2} 4.779 0.070 0.066 0.106$

TABLE SM LXIV: Bartels Rotation 2491 (March 4, 2016 – March 30, 2016). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ σ_{time}	$\sigma_{ m syst.}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1.00 - 1.16 (8.852 \ 0.043 \ 0.133 \ 0.398) \times 10^{2}$	2		_
$\begin{array}{c} 1.51-1.71 \\ 1.77-1.92 \\ 1.77-1.92 \\ 1.79-2.15 \\ 1.6.259 \\ 0.011 \\ 0.034 \\ 0.15) \\ 0.059 \\ 0.011 \\ 0.034 \\ 0.15) \\ 0.059 \\ 0.013 \\ 0.042 \\ 0.167) \\ 0.167) \\ 0.059 \\ 0.013 \\ 0.042 \\ 0.016) \\ 0.053 \\ 0.024 \\ 0.024 \\ 0.$	$1.16 - 1.33 (8.700\ 0.026\ 0.095\ 0.311) \times 10^{2}$	2		_
$\begin{array}{c} 1.71-1.92\\ 1.92-2.15\\ (6.259\ 0.011\ 0.034\ 0.135)\times 10^2\\ 2.15-2.40\\ (5.453\ 0.009\ 0.027\ 0.109)\times 10^2\\ 2.40-2.67\\ (4.071\ 0.008\ 0.022\ 0.089)\times 10^2\\ 2.97-3.29\\ (3.375\ 0.005\ 0.016\ 0.057)\times 10^2\\ 3.29-3.64\\ (4.02\ 4.31\ 0.003\ 0.004\ 0.011\ 0.0037)\times 10^2\\ 4.02-4.43\\ (1.933\ 0.003\ 0.009\ 0.030)\times 10^2\\ 4.88-5.37\\ (1.281\ 0.002\ 0.008\ 0.024)\times 10^2\\ 5.37-5.90\\ (1.037\ 0.002\ 0.004\ 0.015)\times 10^2\\ 5.90-6.47\\ (8.361\ 0.012\ 0.034\ 0.118)\times 10^1\\ 6.47-7.09\\ (6.711\ 0.010\ 0.027\ 0.094)\times 10^1\\ 7.09-7.76\\ (5.402\ 0.008\ 0.021\ 0.075)\times 10^1\\ 7.09-7.76\\ (5.402\ 0.008\ 0.021\ 0.008)\times 10^1\\ 1.01-11.0\\ (2.230\ 0.004\ 0.009\ 0.030)\times 10^1\\ 1.01-11.0\\ (2.230\ 0.004\ 0.009\ 0.030)\times 10^1\\ 11.0-12.0\\ (1.179\ 0.003\ 0.008\ 0.024)\times 10^1\\ 11.0-12.0\\ (1.179\ 0.003\ 0.008\ 0.024)\times 10^1\\ 11.0-12.0\\ (1.130\ 0.002\ 0.008\ 0.024)\times 10^1\\ 11.1-15.3\\ (9.271\ 0.020\ 0.045\ 0.132)\times 10^0\\ (1.173\ 0.009\ 0.015\ 0.027)\times 10^0\\ (2.2624\ 0.013\ 0.021\ 0.009)\times 10^0\\ (2.2624\ 0.013\ 0.021\ 0.027)\times 10^0\\ (2.2620\ 0.015\ 0.027)\times 10^0\\ (2.26$	$1.33 - 1.51 (8.395 \ 0.022 \ 0.070 \ 0.242) \times 10^{2}$	2		_
$\begin{array}{c} 1.92 - 2.15 & (6.259\ 0.011\ 0.034\ 0.135) \times 10^2 \\ 2.15 - 2.40 & (5.453\ 0.009\ 0.027\ 0.109) \times 10^2 \\ 2.40 - 2.67 & (4.701\ 0.008\ 0.022\ 0.089) \times 10^2 \\ 2.67 - 2.97 & (4.015\ 0.006\ 0.019\ 0.070) \times 10^2 \\ 2.97 - 3.29 & (3.375\ 0.005\ 0.016\ 0.057) \times 10^2 \\ 3.29 - 3.64 & (2.828\ 0.004\ 0.014\ 0.046) \times 10^2 \\ 4.02 - 4.43 & (1.933\ 0.003\ 0.009\ 0.030) \times 10^2 \\ 4.43 - 4.88 & (1.581\ 0.002\ 0.008\ 0.024) \times 10^2 \\ 5.37 - 5.90 & (1.037\ 0.002\ 0.004\ 0.015) \times 10^2 \\ 5.99 - 6.47 & (8.361\ 0.012\ 0.034\ 0.015) \times 10^2 \\ 5.99 - 7.76 & (5.402\ 0.008\ 0.021\ 0.075) \times 10^1 \\ 7.09 - 7.76 & (5.402\ 0.008\ 0.021\ 0.005) \times 10^1 \\ 7.09 - 7.76 & (5.402\ 0.008\ 0.021\ 0.005) \times 10^1 \\ 7.09 - 7.76 & (5.402\ 0.008\ 0.021\ 0.005) \times 10^1 \\ 7.09 - 7.76 & (5.402\ 0.008\ 0.021\ 0.005) \times 10^1 \\ 7.09 - 7.76 & (5.402\ 0.008\ 0.021\ 0.005) \times 10^1 \\ 7.09 - 7.76 & (5.402\ 0.008\ 0.021\ 0.005) \times 10^1 \\ 7.09 - 7.76 & (5.402\ 0.008\ 0.001\ 0.005) \times 10^1 \\ 7.09 - 7.76 & (5.402\ 0.008\ 0.001\ 0.005) \times 10^1 \\ 7.09 - 7.76 & (5.402\ 0.008\ 0.001\ 0.005) \times 10^1 \\ 7.09 - 7.76$	$1.51 - 1.71 (7.761 \ 0.016 \ 0.053 \ 0.203) \times 10^{2}$	2		_
$\begin{array}{c} 1.92 - 2.15 & (6.259\ 0.011\ 0.034\ 0.135) \times 10^2 \\ 2.15 - 2.40 & (5.453\ 0.009\ 0.027\ 0.109) \times 10^2 \\ 2.40 - 2.67 & (4.701\ 0.008\ 0.022\ 0.089) \times 10^2 \\ 2.67 - 2.97 & (4.015\ 0.006\ 0.019\ 0.070) \times 10^2 \\ 2.97 - 3.29 & (3.375\ 0.005\ 0.016\ 0.057) \times 10^2 \\ 3.29 - 3.64 & (2.828\ 0.004\ 0.014\ 0.046) \times 10^2 \\ 4.02 - 4.43 & (1.933\ 0.003\ 0.009\ 0.030) \times 10^2 \\ 4.43 - 4.88 & (1.581\ 0.002\ 0.008\ 0.024) \times 10^2 \\ 5.37 - 5.90 & (1.037\ 0.002\ 0.004\ 0.015) \times 10^2 \\ 5.99 - 6.47 & (8.361\ 0.012\ 0.034\ 0.015) \times 10^2 \\ 5.99 - 7.76 & (5.402\ 0.008\ 0.021\ 0.075) \times 10^1 \\ 7.09 - 7.76 & (5.402\ 0.008\ 0.021\ 0.005) \times 10^1 \\ 7.09 - 7.76 & (5.402\ 0.008\ 0.021\ 0.005) \times 10^1 \\ 7.09 - 7.76 & (5.402\ 0.008\ 0.021\ 0.005) \times 10^1 \\ 7.09 - 7.76 & (5.402\ 0.008\ 0.021\ 0.005) \times 10^1 \\ 7.09 - 7.76 & (5.402\ 0.008\ 0.021\ 0.005) \times 10^1 \\ 7.09 - 7.76 & (5.402\ 0.008\ 0.021\ 0.005) \times 10^1 \\ 7.09 - 7.76 & (5.402\ 0.008\ 0.001\ 0.005) \times 10^1 \\ 7.09 - 7.76 & (5.402\ 0.008\ 0.001\ 0.005) \times 10^1 \\ 7.09 - 7.76 & (5.402\ 0.008\ 0.001\ 0.005) \times 10^1 \\ 7.09 - 7.76$	$1.71 - 1.92 (7.059 \ 0.013 \ 0.042 \ 0.167) \times 10^{2}$	$\begin{bmatrix} 2 & & - & & - & & - \end{bmatrix}$		_
$\begin{array}{c} 2.40-2.67 \\ 2.67-2.97 \\ (4.015\ 0.006\ 0.019\ 0.070)\times 10^2 \\ 2.97-3.29 \\ (3.375\ 0.005\ 0.016\ 0.057)\times 10^2 \\ 3.29-3.64 \\ (2.828\ 0.004\ 0.014\ 0.046)\times 10^2 \\ 4.02-4.43 \\ 4.02-4.43 \\ 4.88-5.37 \\ (1.281\ 0.002\ 0.006\ 0.019)\times 10^2 \\ 4.88-5.37 \\ (1.281\ 0.002\ 0.006\ 0.019)\times 10^2 \\ 5.37-5.90 \\ (1.037\ 0.002\ 0.004\ 0.015)\times 10^2 \\ 5.90-6.47 \\ (8.361\ 0.012\ 0.034\ 0.018)\times 10^1 \\ 6.47-7.09 \\ (6.711\ 0.010\ 0.027\ 0.094)\times 10^1 \\ 7.09-7.76 \\ (5.402\ 0.008\ 0.021\ 0.075)\times 10^1 \\ 7.6-8.48 \\ (4.341\ 0.007\ 0.017\ 0.060)\times 10^1 \\ 8.48-9.26 \\ (3.478\ 0.006\ 0.014\ 0.048)\times 10^1 \\ 9.26-10.1 \\ (2.230\ 0.004\ 0.009\ 0.030)\times 10^1 \\ 10.1-11.0 \\ (2.230\ 0.004\ 0.009\ 0.030)\times 10^1 \\ 11.0-12.0 \\ (1.779\ 0.003\ 0.008\ 0.024)\times 10^1 \\ 12.0-13.0 \\ (1.432\ 0.003\ 0.006\ 0.020)\times 10^1 \\ 13.0-14.1 \\ (1.153\ 0.002\ 0.004\ 0.045\ 0.132)\times 10^0 \\ 14.1-15.3 \\ (9.271\ 0.020\ 0.045\ 0.132)\times 10^0 \\ \end{array} \begin{array}{c} (6.428\ 0.031\ 0.063\ 0.121)\times 10^1 \\ (5.656\ 0.026\ 0.054\ 0.101)\times 10^1 \\ (4.914\ 0.021\ 0.040\ 0.083)\times 10^1 \\ (4.914\ 0.021\ 0.040\ 0.083)\times 10^1 \\ (4.168\ 0.018\ 0.030\ 0.068)\times 10^1 \\ (4.168\ 0.018\ 0.030\ 0.068)\times 10^1 \\ (4.914\ 0.021\ 0.040\ 0.083)\times 10^1 \\ (4.168\ 0.018\ 0.030\ 0.068)\times 10^1 \\ (4.168\ 0.018\ 0.030\ 0.068)\times 10^1 \\ (2.965\ 0.012\ 0.019\ 0.047)\times 10^1 \\ (2.966\ 0.010\ 0.039)\times 10^1 \\ (2.965\ 0.012\ 0.019\ 0.047)\times 10^1 \\ (2.966\ 0.039\ 0.019)\times 10^1 \\ (2.966\ 0.019\ 0.039)\times 10^1 \\ (2.966\ 0.019\ 0.004)\times 10^1 \\ (2.966\ 0.019\ 0.004)\times 10^1 \\ (3.737\ 0.005\ 0.009\ 0.021)\times 10^1 \\ (3.737\ 0.005\ 0.009\ 0.021)\times 10^1 \\ (3.737\ 0.005\ 0.009\ 0.021)\times 10^1 \\ (3.99\ 0$			$\begin{vmatrix} 1 & 8.104 & 0.048 & 0.102 \end{vmatrix}$	0.245
$\begin{array}{c} 2.40-2.67 \\ 2.67-2.97 \\ (4.015\ 0.006\ 0.019\ 0.070)\times 10^2 \\ 2.97-3.29 \\ (3.375\ 0.005\ 0.016\ 0.057)\times 10^2 \\ 3.29-3.64 \\ (2.828\ 0.004\ 0.014\ 0.046)\times 10^2 \\ 4.02-4.43 \\ 4.02-4.43 \\ 4.88-5.37 \\ (1.281\ 0.002\ 0.006\ 0.019)\times 10^2 \\ 4.88-5.37 \\ (1.281\ 0.002\ 0.006\ 0.019)\times 10^2 \\ 5.37-5.90 \\ (1.037\ 0.002\ 0.004\ 0.015)\times 10^2 \\ 5.90-6.47 \\ (8.361\ 0.012\ 0.034\ 0.018)\times 10^1 \\ 6.47-7.09 \\ (6.711\ 0.010\ 0.027\ 0.094)\times 10^1 \\ 7.09-7.76 \\ (5.402\ 0.008\ 0.021\ 0.075)\times 10^1 \\ 7.6-8.48 \\ (4.341\ 0.007\ 0.017\ 0.060)\times 10^1 \\ 8.48-9.26 \\ (3.478\ 0.006\ 0.014\ 0.048)\times 10^1 \\ 9.26-10.1 \\ (2.230\ 0.004\ 0.009\ 0.030)\times 10^1 \\ 10.1-11.0 \\ (2.230\ 0.004\ 0.009\ 0.030)\times 10^1 \\ 11.0-12.0 \\ (1.779\ 0.003\ 0.008\ 0.024)\times 10^1 \\ 12.0-13.0 \\ (1.432\ 0.003\ 0.006\ 0.020)\times 10^1 \\ 13.0-14.1 \\ (1.153\ 0.002\ 0.004\ 0.045\ 0.132)\times 10^0 \\ 14.1-15.3 \\ (9.271\ 0.020\ 0.045\ 0.132)\times 10^0 \\ \end{array} \begin{array}{c} (6.428\ 0.031\ 0.063\ 0.121)\times 10^1 \\ (5.656\ 0.026\ 0.054\ 0.101)\times 10^1 \\ (4.914\ 0.021\ 0.040\ 0.083)\times 10^1 \\ (4.914\ 0.021\ 0.040\ 0.083)\times 10^1 \\ (4.168\ 0.018\ 0.030\ 0.068)\times 10^1 \\ (4.168\ 0.018\ 0.030\ 0.068)\times 10^1 \\ (4.914\ 0.021\ 0.040\ 0.083)\times 10^1 \\ (4.168\ 0.018\ 0.030\ 0.068)\times 10^1 \\ (4.168\ 0.018\ 0.030\ 0.068)\times 10^1 \\ (2.965\ 0.012\ 0.019\ 0.047)\times 10^1 \\ (2.966\ 0.010\ 0.039)\times 10^1 \\ (2.965\ 0.012\ 0.019\ 0.047)\times 10^1 \\ (2.966\ 0.039\ 0.019)\times 10^1 \\ (2.966\ 0.019\ 0.039)\times 10^1 \\ (2.966\ 0.019\ 0.004)\times 10^1 \\ (2.966\ 0.019\ 0.004)\times 10^1 \\ (3.737\ 0.005\ 0.009\ 0.021)\times 10^1 \\ (3.737\ 0.005\ 0.009\ 0.021)\times 10^1 \\ (3.737\ 0.005\ 0.009\ 0.021)\times 10^1 \\ (3.99\ 0$	$2.15 - 2.40 (5.453\ 0.009\ 0.027\ 0.109) \times 10^{2}$	$(7.086 \ 0.037 \ 0.070 \ 0.144) \times 10$	$1 7.695 \ 0.042 \ 0.086 $	0.208
$\begin{array}{c} 2.97 - 3.29 \\ 3.29 - 3.64 \\ (2.828\ 0.004\ 0.014\ 0.046) \times 10^2 \\ 3.64 - 4.02 \\ (2.345\ 0.004\ 0.011\ 0.037) \times 10^2 \\ 4.02 - 4.43 \\ (1.933\ 0.003\ 0.009\ 0.030) \times 10^2 \\ 4.43 - 4.88 \\ (1.581\ 0.002\ 0.008\ 0.024) \times 10^2 \\ 5.37 - 5.90 \\ (1.037\ 0.002\ 0.004\ 0.015) \times 10^2 \\ 5.90 - 6.47 \\ (8.361\ 0.012\ 0.034\ 0.018) \times 10^1 \\ 6.47 - 7.09 \\ (6.711\ 0.010\ 0.027\ 0.094) \times 10^1 \\ 7.09 - 7.76 \\ (5.402\ 0.008\ 0.021\ 0.075) \times 10^1 \\ 7.09 - 7.76 \\ (5.402\ 0.008\ 0.014\ 0.048) \times 10^1 \\ 7.09 - 10.1 \\ 7.0$			$\begin{vmatrix} 1 & 7.314 & 0.037 & 0.079 \end{vmatrix}$	0.184
$\begin{array}{c} 2.97 - 3.29 \\ 3.29 - 3.64 \\ (2.828\ 0.004\ 0.014\ 0.046) \times 10^2 \\ 3.64 - 4.02 \\ (2.345\ 0.004\ 0.011\ 0.037) \times 10^2 \\ 4.02 - 4.43 \\ (1.933\ 0.003\ 0.009\ 0.030) \times 10^2 \\ 4.43 - 4.88 \\ (1.581\ 0.002\ 0.008\ 0.024) \times 10^2 \\ 5.37 - 5.90 \\ (1.037\ 0.002\ 0.004\ 0.015) \times 10^2 \\ 5.90 - 6.47 \\ (8.361\ 0.012\ 0.034\ 0.018) \times 10^1 \\ 6.47 - 7.09 \\ (6.711\ 0.010\ 0.027\ 0.094) \times 10^1 \\ 7.09 - 7.76 \\ (5.402\ 0.008\ 0.021\ 0.075) \times 10^1 \\ 7.09 - 7.76 \\ (5.402\ 0.008\ 0.014\ 0.048) \times 10^1 \\ 7.09 - 10.1 \\ 7.0$	$2.67 - 2.97 (4.015 \ 0.006 \ 0.019 \ 0.070) \times 10^{2}$	$(5.656 \ 0.026 \ 0.054 \ 0.101) \times 10$	$1 7.099 \ 0.034 \ 0.076 $	0.169
$\begin{array}{c} 3.29 - 3.64 & (2.828\ 0.004\ 0.014\ 0.046) \times 10^2\\ 3.64 - 4.02 & (2.345\ 0.004\ 0.011\ 0.037) \times 10^2\\ 4.02 - 4.43 & (1.933\ 0.003\ 0.009\ 0.030) \times 10^2\\ 4.43 - 4.88 & (1.581\ 0.002\ 0.008\ 0.024) \times 10^2\\ 4.88 - 5.37 & (1.281\ 0.002\ 0.006\ 0.019) \times 10^2\\ 5.37 - 5.90 & (1.037\ 0.002\ 0.004\ 0.015) \times 10^2\\ 6.47 - 7.09 & (6.711\ 0.010\ 0.027\ 0.094) \times 10^1\\ 7.09 - 7.76 & (5.402\ 0.008\ 0.021\ 0.075) \times 10^1\\ 7.67 - 8.48 & (4.341\ 0.007\ 0.017\ 0.060) \times 10^1\\ 8.48 - 9.26 & (3.478\ 0.006\ 0.014\ 0.048) \times 10^1\\ 9.26 - 10.1 & (2.230\ 0.004\ 0.009\ 0.030) \times 10^1\\ 10.1 - 11.0 & (2.230\ 0.004\ 0.009\ 0.030) \times 10^1\\ 10.1 - 11.0 & (2.230\ 0.004\ 0.009\ 0.030) \times 10^1\\ 10.1 - 11.0 & (2.230\ 0.004\ 0.009\ 0.030) \times 10^1\\ 12.0 - 13.0 & (1.432\ 0.003\ 0.006\ 0.020) \times 10^1\\ 13.0 - 14.1 & (1.153\ 0.002\ 0.004\ 0.013) \times 10^0\\ 14.1 - 15.3 & (9.271\ 0.020\ 0.045\ 0.132) \times 10^0\\ \end{array} \begin{array}{c} (4.168\ 0.018\ 0.030\ 0.030\ 0.030\ 0.068) \times 10^1\\ (3.541\ 0.018\ 0.030\ 0.030\ 0.068) \times 10^1\\ (2.965\ 0.012\ 0.019\ 0.047) \times 10^1\\ (2.031\ 0.008\ 0.013\ 0.031) \times 10^1\\ (1.668\ 0.006\ 0.010\ 0.026) \times 10^1\\ (1.123\ 0.008\ 0.013\ 0.031) \times 10^1\\ (1.123\ 0.004\ 0.007\ 0.017) \times 10^1\\ (1.123\ 0.004\ 0.007\ 0.017) \times 10^1\\ (1.123\ 0.004\ 0.007\ 0.017) \times 10^1\\ (2.965\ 0.010\ 0.016\ 0.039) \times 10^1\\ (2.965\ 0.010\ 0.016\ 0.039) \times 10^1\\ (3.195\ 0.015\ 0.024\ 0.050) \times 10^0\\ (3.195\ 0.015\ 0.024\ 0.050) \times 10^0\\ (3.195\ 0.015\ 0.024\ 0.050) \times 10^0\\ (2.126\ 0.011\ 0.018\ 0.034) \times 10^0\\ (2.126\ 0.011\ 0.018\ 0.034) \times 10^0\\ (3.195\ 0.015\ 0.027) \times 10^0\\ (3.195\ 0.015\ 0$, in the second of the second	· ·	$\begin{bmatrix} 1 & 6.868 & 0.032 & 0.065 \end{bmatrix}$	0.155
$\begin{array}{c} 3.64 - 4.02 \\ 4.02 - 4.43 \\ 4.02 - 4.43 \\ 4.31 - 4.88 \\ 4.32 - 4.88 \\ 4.32 - 4.88 \\ 4.33 - 4.88 \\ 1.581 0.002 0.008 0.024) \times 10^2 \\ 5.37 - 5.90 \\ 6.47 - 7.09 \\ 7.76 - 8.48 \\ 4.341 0.007 0.017 0.000) \times 10^2 \\ 7.76 - 8.48 \\ 10.1 - 11.0 \\ 12.0 - 13.0 \\ 14.1 - 15.3 \\ 9.271 0.020 0.044 0.013 0.037) \times 10^2 \\ 1.037 0.002 0.004 0.0110 0.037) \times 10^2 \\ 1.037 0.002 0.004 0.0120 0.004 0.015) \times 10^2 \\ 1.037 0.002 0.004 0.015) \times 10^2 \\ 1.038 0.002 0.004 0.015) \times 10^2 \\ 1.037 0.002 0.004 0.015) \times 10^2 \\ 1.037 0.002 0.004 0.015) \times 10^2 \\ 1.037 0.005 0.009 0.015 0.009 0.021) \times 10^1 \\ 1.037 0.005 0.009 0.021) \times 10^1 \\ 1.037 0.005 0.009 0.021) \times 10^1 \\ 1.038 0.004 0.007 0.017) \times 10^1 \\ 1.039 0.004 0.007 0.017 0.060) \times 10^1 \\ 1.039 0.004 0.009 0.030) \times 10^1 \\ 1.039 0.004 0.009 0.004 0.009 0.005 0.009 0.0$,	,	$\begin{bmatrix} 1 & 6.785 & 0.031 & 0.059 \end{bmatrix}$	0.148
$\begin{array}{c} 4.02 - 4.43 \\ 4.43 - 4.88 \\ 4.43 - 4.88 \\ (1.581\ 0.002\ 0.008\ 0.024) \times 10^2 \\ 4.88 - 5.37 \\ (1.281\ 0.002\ 0.006\ 0.019) \times 10^2 \\ 5.37 - 5.90 \\ (1.037\ 0.002\ 0.004\ 0.015) \times 10^2 \\ 5.90 - 6.47 \\ (8.361\ 0.012\ 0.034\ 0.118) \times 10^1 \\ 7.09 - 7.76 \\ (5.402\ 0.008\ 0.021\ 0.075) \times 10^1 \\ 7.76 - 8.48 \\ 4.84 - 9.26 \\ 10.11\ 0.110\ 0.275\ 0.017\ 0.005\ 0.011\ 0.038) \times 10^1 \\ 9.26 - 10.1 \\ 10.120\ (1.779\ 0.003\ 0.008\ 0.024) \times 10^1 \\ 10.1 - 11.0 \\ 12.0 - 13.0 \\ 13.0 - 14.1 \\ 1.153\ 0.002\ 0.005\ 0.005\ 0.005\ 0.005\ 0.005\ 0.015\ 0.025\ 0.015\ 0.025\ 0.012\ 0.012\ 0.019\ 0.021\ 0.015\ 0.015\ 0.025\ 0.025\ 0.010\ 0.026) \times 10^1 \\ (2.467\ 0.010\ 0.016\ 0.039) \times 10^1 \\ (2.031\ 0.008\ 0.013\ 0.031) \times 10^1 \\ (1.123\ 0.006\ 0.010\ 0.026) \times 10^1 \\ (1.123\ 0.004\ 0.007\ 0.017) \times 10^1 \\ (9.060\ 0.035\ 0.057\ 0.139) \times 10^0 \\ (9.060\ 0.035\ 0.057\ 0.139) \times 10^0 \\ (9.060\ 0.035\ 0.057\ 0.139) \times 10^0 \\ (4.909\ 0.021\ 0.034\ 0.076) \times 10^0 \\ (4.909\ 0.021\ 0.034\ 0.076) \times 10^0 \\ (4.909\ 0.018\ 0.029\ 0.062) \times 10^0 \\ (3.195\ 0.015\ 0.024\ 0.050) \times 10^0 \\ (2.126\ 0.011\ 0.018\ 0.034) \times 10^0 \\ (2.126\ 0.011\ 0.018\ 0.034) \times 10^0 \\ (5.412\ 0.032\ 0.054\ 0.107 \\ 5.412\ 0.032\ 0.054\ 0.107 \\ $	` '	,		0.141
$\begin{array}{llllllllllllllllllllllllllllllllllll$,	· ·	1	
$\begin{array}{c} 4.88 - 5.37 \\ 5.37 - 5.90 \\ 5.37 - 5.90 \\ 6.47 \\ 6.217 \\ 6.227 \\ 6.223 \\ 6.025 \\ 6.045 \\ 6.217 \\ 6.223 \\ 6.025 \\ 6.045 \\ 6.217 \\ 6.223 \\ 6.047 \\ 6.217 \\ 6.225 \\ 6.227 $	$4.43 - 4.88 (1.581 \ 0.002 \ 0.008 \ 0.024) \times 10^{2}$	`		0.131
$\begin{array}{llllllllllllllllllllllllllllllllllll$,	,	I	0.127
$\begin{array}{c} 5.90-6.47 \\ 6.47-7.09 \\ 7.76-8.48 \\ 8.48-9.26 \\ 10.1-11.0 \\ 12.0-13.0 \\ 13.0-14.1 \\ 1(1.153\ 0.002\ 0.005\ 0.004) \\ 2.9271\ 0.020\ 0.045\ 0.018) \times 10^1 \\ 13.0-14.1 \\ 10.1-15.3 \\ 19.271\ 0.020\ 0.045\ 0.018) \times 10^1 \\ 14.1-15.3 \\ \end{array} \begin{array}{c} (8.361\ 0.012\ 0.034\ 0.118) \times 10^1 \\ (8.361\ 0.012\ 0.034\ 0.118) \times 10^1 \\ (1.1370\ 0.005\ 0.009\ 0.021) \times 10^1 \\ (1.123\ 0.004\ 0.007\ 0.017) \times 10^1 \\ (1.123\ 0.004\ 0.007\ 0.017) \times 10^1 \\ (1.123\ 0.004\ 0.007\ 0.017) \times 10^1 \\ (9.060\ 0.035\ 0.057\ 0.139) \times 10^0 \\ (9.060\ 0.035\ 0.057\ 0.139) \times 10^0 \\ (7.389\ 0.030\ 0.047\ 0.113) \times 10^0 \\ (6.102\ 0.025\ 0.045\ 0.118 \\ 5.976\ 0.025\ 0.044\ 0.115 \\ 5.962\ 0.025\ 0.044\ 0.114 \\ 5.874\ 0.025\ 0.044\ 0.111 \\ 5.874\ 0.025\ 0.044\ 0.111 \\ 5.876\ 0.026\ 0.045\ 0.109 \\ 5.675\ 0.026\ 0.045\ 0.109 \\ 5.675\ 0.026\ 0.045\ 0.108 \\ 6.102\ 0.025\ 0.045\ 0.118 \\ 6.102\ 0.025\ 0.045\ 0.0118 \\ 6.102\ 0.025\ 0.045\ 0.0118 \\ 6.102\ 0.025\ 0.025\ 0.044\ 0.111 \\ 6$	` '	*	I	0.123
$\begin{array}{llllllllllllllllllllllllllllllllllll$,	,		0.118
$\begin{array}{llllllllllllllllllllllllllllllllllll$,	,		0.115
$\begin{array}{llllllllllllllllllllllllllllllllllll$,	,		0.114
$\begin{array}{llllllllllllllllllllllllllllllllllll$	· · · · · · · · · · · · · · · · · · ·	· ·	$5.874 \ 0.025 \ 0.044$	0.111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	` '		0.109
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$9.26 - 10.1 (2.785 \ 0.005 \ 0.011 \ 0.038) \times 10^{1}$	$(4.909 \ 0.021 \ 0.034 \ 0.076) \times 10^{-6}$	$5.675 \ 0.026 \ 0.045$	0.108
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.106
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		· ·	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	,		0.106
$14.1 - 15.3 \begin{vmatrix} (9.271\ 0.020\ 0.045\ 0.132) \times 10^0 \end{vmatrix} (1.713\ 0.009\ 0.015\ 0.027) \times 10^0 \begin{vmatrix} 5.412\ 0.032\ 0.054\ 0.107 \end{vmatrix}$	/	,		0.106
			I	
	,		I	

TABLE SM LXIV: Bartels Rotation 2491 (March 4, 2016 – March 30, 2016). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\mathrm{He}~\sigma_{\mathrm{stat.}}~\sigma_{\mathrm{time}}~\sigma_{\mathrm{syst.}}$
$16.6 - 18.0 (5.965 \ 0.014 \ 0.031 \ 0.087) \times 10^{-1}$	$0 \mid (1.139 \ 0.007 \ 0.011 \ 0.019) \times 10$	$0 5.235 \ 0.033 \ 0.057 \ 0.106$
$18.0 - 19.5 (4.781 \ 0.011 \ 0.025 \ 0.071) \times 10^{-1}$	$0 \mid (9.308 \ 0.055 \ 0.094 \ 0.158) \times 10$	$^{-1}$ 5.136 0.033 0.058 0.105
$19.5 - 21.1 (3.853 \ 0.009 \ 0.021 \ 0.058) \times 10^{-1}$	$(7.491 \ 0.046 \ 0.078 \ 0.129) \times 10^{-1}$	$^{-1}$ $ 5.144 \ 0.034 \ 0.061 \ 0.106$
$21.1 - 22.8 (3.103 \ 0.008 \ 0.018 \ 0.047) \times 10^{-6} (3.103 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (3.103 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (3.103 \ 0.008) \times 10^{-6} (3.103$	$(6.094 \ 0.038 \ 0.064 \ 0.105) \times 10$	$^{-1}$ 5.091 0.034 0.061 0.106
$22.8 - 24.7 (2.498 \ 0.006 \ 0.015 \ 0.038) \times 10^{-6} (2.498 \ 0.006 \ 0.015 \ 0.008) \times 10^{-6} (2.498 \ 0.006 \ 0.015 \ 0.008) \times 10^{-6} (2.498 \ 0.006 \ 0.015 \ 0.008) \times 10^{-6} (2.498 \ 0.006 \ 0.015 \ 0.008) \times 10^{-6} (2.498 \ 0.006 \ 0.008) \times 10^{-6} (2.498 \ 0.006 \ 0.008) \times 10^{-6} (2.498 \ 0.008) \times 10^{-6} (2$	$0 (4.968 \ 0.032 \ 0.053 \ 0.086) \times 10$	$^{-1}$ $ 5.029 \ 0.034 \ 0.061 \ 0.105 $
$24.7 - 26.7 (2.001 \ 0.005 \ 0.012 \ 0.031) \times 10^{-6}$	$0 (4.010 \ 0.027 \ 0.043 \ 0.070) \times 10$	$^{-1}$ 4.991 0.036 0.061 0.105
$26.7 - 28.8 (1.615 \ 0.005 \ 0.010 \ 0.025) \times 10^{-6} (1.615 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.615 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.615 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.615 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.615 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.615 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.615 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.615 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.615 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.615 \ 0.005 \ 0.010 \ 0.005) \times 10^{-6} (1.615 \ 0.005 \ 0.005) \times 10^{-6} (1.615 \ 0.005 \ 0.005) \times 10^{-6} (1.615 \ 0.005) \times $	$(3.337 \ 0.024 \ 0.036 \ 0.058) \times 10$	$^{-1}$ 4.841 0.037 0.061 0.102
$28.8 - 31.1 (1.312 \ 0.004 \ 0.008 \ 0.020) \times 10^{-1} (1.312 \ 0.004 \ 0.008 \ 0.000) \times 10^{-1} (1.312 \ 0.008 \ 0.000) \times $	$(2.709 \ 0.020 \ 0.030 \ 0.048) \times 10^{-1}$	$^{-1}$ 4.844 0.039 0.062 0.103
$31.1 - 33.5 (1.059 \ 0.003 \ 0.007 \ 0.017) \times 10^{-1}$	$(2.203 \ 0.018 \ 0.025 \ 0.039) \times 10^{-1}$	$^{-1}$ 4.808 0.042 0.063 0.103
$33.5 - 36.1 (8.679 \ 0.030 \ 0.058 \ 0.136) \times 10$	$^{-1} (1.779 \ 0.015 \ 0.020 \ 0.032) \times 10$	$^{-1}$ 4.879 0.046 0.065 0.106
$36.1 - 38.9 (7.023 \ 0.026 \ 0.048 \ 0.111) \times 10$	$^{-1} (1.496 \ 0.014 \ 0.018 \ 0.028) \times 10$	$^{-1}$ 4.694 0.046 0.064 0.103
$38.9 - 41.9 (5.726 \ 0.023 \ 0.040 \ 0.091) \times 10$	$^{-1} (1.201 \ 0.012 \ 0.015 \ 0.022) \times 10$	$^{-1}$ 4.769 0.050 0.067 0.106
$41.9 - 45.1 (4.657 \ 0.020 \ 0.034 \ 0.074) \times 10$	$^{-1} (9.819 \ 0.103 \ 0.123 \ 0.184) \times 10$	$-2 \mid 4.743 \mid 0.054 \mid 0.069 \mid 0.107 \mid$
$45.1 - 48.5 (3.807 \ 0.017 \ 0.028 \ 0.062) \times 10$	$^{-1} (8.152\ 0.091\ 0.106\ 0.156)\times 10$	$^{-2}$ $ 4.670 \ 0.056 \ 0.070 \ 0.107$
$48.5 - 52.2 (3.059 \ 0.015 \ 0.023 \ 0.050) \times 10$	$^{-1} (6.633 \ 0.078 \ 0.089 \ 0.129) \times 10$	$^{-2}$ 4.612 0.059 0.071 0.107
$52.2 - 56.1 (2.523 \ 0.013 \ 0.020 \ 0.043) \times 10$	$^{-1} (5.343 \ 0.068 \ 0.074 \ 0.106) \times 10$	$^{-2}$ 4.721 0.065 0.075 0.111
$56.1 - 60.3 (2.054 \ 0.011 \ 0.016 \ 0.035) \times 10$	$^{-1}$ (4.405 0.059 0.063 0.089)×10	$-2 \mid 4.663 \mid 0.068 \mid 0.076 \mid 0.111 \mid$

TABLE SM LXV: Bartels Rotation 2492 (March 31, 2016 – April 26, 2016). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$ $p_{/}$	He $\sigma_{\rm stat.}$ $\sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (8.902 \ 0.039 \ 0.106 \ 0.392) \times 10^{-1}$	2		_
$1.16 - 1.33 (8.731 \ 0.025 \ 0.076 \ 0.307) \times 10^{-1}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.33 - 1.51 (8.427 \ 0.022 \ 0.057 \ 0.240) \times 10^{-1}$	2		_
$1.51 - 1.71 (7.815 \ 0.016 \ 0.044 \ 0.202) \times 10^{-1}$	2		_
$1.71 - 1.92 (7.098 \ 0.013 \ 0.035 \ 0.166) \times 10^{-1}$	2		_
$1.92 - 2.15 (6.301 \ 0.011 \ 0.028 \ 0.135) \times 10^{-6} $	$(7.636 \ 0.043 \ 0.067 \ 0.167) \times 10^{1}$	8.252 0.049 0.082	0.241
$2.15 - 2.40 (5.481 \ 0.009 \ 0.023 \ 0.109) \times 10^{-1}$	$(7.100 \ 0.037 \ 0.054 \ 0.137) \times 10^{1}$	7.719 0.042 0.067	0.202
$2.40 - 2.67 (4.726 \ 0.008 \ 0.019 \ 0.089) \times 10^{-1}$	$(6.386 \ 0.031 \ 0.046 \ 0.112) \times 10^{1}$	7.400 0.037 0.061	0.179
$2.67 - 2.97 (4.021\ 0.006\ 0.016\ 0.070) \times 10^{-6}$	$(5.656 \ 0.026 \ 0.039 \ 0.094) \times 10^{1}$	7.109 0.034 0.057	0.162
$2.97 - 3.29 (3.389 \ 0.005 \ 0.013 \ 0.056) \times 10^{-1}$	$(4.908 \ 0.021 \ 0.032 \ 0.079) \times 10^{1}$	6.904 0.031 0.052	0.151
$3.29 - 3.64 (2.828 \ 0.004 \ 0.011 \ 0.045) \times 10^{-1}$	$(4.168 \ 0.018 \ 0.025 \ 0.066) \times 10^{1}$	6.785 0.030 0.049	0.144
$3.64 - 4.02 (2.344 \ 0.004 \ 0.010 \ 0.037) \times 10^{-6}$	$(3.545 \ 0.015 \ 0.020 \ 0.055) \times 10^{1}$	6.613 0.029 0.046	0.137
$4.02 - 4.43 (1.935 \ 0.003 \ 0.008 \ 0.030) \times 10^{-1}$	$(2.960 \ 0.012 \ 0.016 \ 0.045) \times 10^{1}$	6.539 0.028 0.044	0.132
$4.43 - 4.88 (1.579 \ 0.002 \ 0.006 \ 0.024) \times 10^{-1}$	$(2.452\ 0.009\ 0.013\ 0.037)\times10^{1}$	6.440 0.026 0.042	0.128
$4.88 - 5.37 (1.283 \ 0.002 \ 0.005 \ 0.018) \times 10^{-1}$	$(2.037 \ 0.008 \ 0.010 \ 0.031) \times 10^{1}$	6.299 0.026 0.040	0.124
$5.37 - 5.90 (1.033\ 0.001\ 0.004\ 0.015) \times 10^{-6}$	$(1.669 \ 0.006 \ 0.008 \ 0.025) \times 10^{1}$	6.192 0.025 0.038	0.119
$5.90 - 6.47 (8.344 \ 0.012 \ 0.029 \ 0.116) \times 10$	$(1.368 \ 0.005 \ 0.007 \ 0.020) \times 10^{1}$	6.099 0.025 0.037	0.115
$6.47 - 7.09 (6.726 \ 0.010 \ 0.023 \ 0.093) \times 10$	$(1.118 \ 0.004 \ 0.006 \ 0.017) \times 10^{1}$	6.015 0.025 0.036	0.113
$7.09 - 7.76 (5.411 \ 0.008 \ 0.018 \ 0.074) \times 10$	$(9.077 \ 0.035 \ 0.046 \ 0.135) \times 10^{0}$	5.962 0.025 0.036	0.111
$7.76 - 8.48 (4.338 \ 0.007 \ 0.015 \ 0.060) \times 10$	$(7.393 \ 0.029 \ 0.039 \ 0.110) \times 10^{0}$	5.869 0.025 0.037	0.109
$8.48 - 9.26 (3.475 \ 0.005 \ 0.012 \ 0.047) \times 10$	$(6.008 \ 0.025 \ 0.033 \ 0.090) \times 10^{0}$	5.784 0.026 0.038	0.107
$9.26 - 10.1 (2.777 \ 0.005 \ 0.010 \ 0.037) \times 10$	$(4.849 \ 0.021 \ 0.028 \ 0.073) \times 10^{0}$	5.726 0.027 0.039	0.106
$10.1 - 11.0 (2.225 \ 0.004 \ 0.008 \ 0.030) \times 10$	$(3.933 \ 0.018 \ 0.024 \ 0.059) \times 10^{0}$	5.658 0.028 0.040	0.104
$11.0 - 12.0 (1.773 \ 0.003 \ 0.006 \ 0.024) \times 10$	$(3.201 \ 0.015 \ 0.020 \ 0.049) \times 10^{0}$	5.539 0.028 0.041	0.103
$12.0 - 13.0 (1.423 \ 0.003 \ 0.005 \ 0.019) \times 10$		5.505 0.030 0.042	0.103
$13.0 - 14.1 (1.147 \ 0.002 \ 0.005 \ 0.016) \times 10$	$(2.129 \ 0.011 \ 0.015 \ 0.033) \times 10^{0}$	5.388 0.030 0.043	0.102
$14.1 - 15.3 (9.225 \ 0.020 \ 0.038 \ 0.129) \times 10^{-6}$,	5.370 0.032 0.045	0.102
$15.3 - 16.6 (7.402 \ 0.016 \ 0.031 \ 0.105) \times 10^{-1}$,	5.314 0.032 0.047	0.102
T 11 ()	/		

TABLE SM LXV: Bartels Rotation 2492 (March 31, 2016 – April 26, 2016). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ $\sigma_{\text{time }}\sigma_{\text{syst.}}$
$16.6 - 18.0 (5.935 \ 0.013 \ 0.026 \ 0.085) \times 10$	$0 (1.120 \ 0.007 \ 0.009 \ 0.018) \times 10^{-6} $	5.299 0.033 0.049 0.103
$18.0 - 19.5 (4.755 \ 0.011 \ 0.021 \ 0.069) \times 10$	$0 (9.156 \ 0.054 \ 0.078 \ 0.148) \times 10^{-6} $	$^{-1}$ $ 5.193 \ 0.033 \ 0.050 \ 0.102 $
$19.5 - 21.1 (3.837 \ 0.009 \ 0.018 \ 0.057) \times 10$	$0 \mid (7.453 \ 0.045 \ 0.066 \ 0.122) \times 10^{-6}$	$^{-1}$ $ 5.149 \ 0.034 \ 0.052 \ 0.101$
$21.1 - 22.8 (3.103 \ 0.008 \ 0.015 \ 0.046) \times 10$	$0 (6.106 \ 0.038 \ 0.055 \ 0.100) \times 10^{-6} $	$^{-1}$ $ 5.082 \ 0.034 \ 0.052 \ 0.101$
$22.8 - 24.7 (2.498 \ 0.006 \ 0.012 \ 0.037) \times 10$	$0 (4.919 \ 0.031 \ 0.045 \ 0.081) \times 10^{-6} $	$^{-1}$ $ 5.079 \ 0.035 \ 0.053 \ 0.102$
$24.7 - 26.7 (2.002 \ 0.005 \ 0.010 \ 0.030) \times 10$	$0 (4.040 \ 0.027 \ 0.038 \ 0.067) \times 10^{-6} $	$^{-1}$ 4.956 0.036 0.053 0.100
$26.7 - 28.8 (1.613 \ 0.005 \ 0.009 \ 0.024) \times 10$	$0 (3.277 \ 0.024 \ 0.032 \ 0.055) \times 10^{-6} $	$^{-1}$ 4.924 0.038 0.054 0.100
$28.8 - 31.1 (1.303 \ 0.004 \ 0.007 \ 0.020) \times 10$	$0 (2.689 \ 0.020 \ 0.027 \ 0.046) \times 10^{-6} $	$^{-1}$ 4.845 0.039 0.054 0.099
$31.1 - 33.5 (1.058 \ 0.003 \ 0.006 \ 0.016) \times 10$	$0 (2.173 \ 0.018 \ 0.022 \ 0.037) \times 10^{-6} $	$^{-1}$ 4.870 0.043 0.056 0.100
$33.5 - 36.1 (8.622 \ 0.030 \ 0.049 \ 0.131) \times 10$	$^{-1}$ (1.801 0.016 0.019 0.032)×10	$^{-1}$ 4.787 0.045 0.057 0.100
$36.1 - 38.9 (7.000 \ 0.026 \ 0.041 \ 0.107) \times 10$	$^{-1}$ (1.466 0.013 0.016 0.026)×10	-1 4.775 0.047 0.058 0.101
$38.9 - 41.9 (5.729 \ 0.023 \ 0.034 \ 0.088) \times 10$,	
$41.9 - 45.1 (4.641 \ 0.020 \ 0.028 \ 0.072) \times 10$	$^{-1} (9.824 \ 0.102 \ 0.110 \ 0.176) \times 10^{-1} $	$^{-2}$ 4.724 0.053 0.060 0.101
$45.1 - 48.5 (3.811 \ 0.017 \ 0.024 \ 0.060) \times 10$	$^{-1}$ (8.014 0.090 0.091 0.145)×10	$-2 \mid 4.755 \mid 0.057 \mid 0.062 \mid 0.103 \mid$
$48.5 - 52.2 (3.101 \ 0.015 \ 0.020 \ 0.050) \times 10$	$^{-1}$ (6.473 0.077 0.075 0.118)×10	$^{-2}$ 4.791 0.061 0.064 0.105
$52.2 - 56.1 (2.527 \ 0.013 \ 0.017 \ 0.041) \times 10$	$^{-1}$ (5.387 0.068 0.064 0.099)×10	$^{-2}$ 4.691 0.064 0.064 0.103
$56.1 - 60.3 (2.053 \ 0.011 \ 0.014 \ 0.034) \times 10^{-1}$	-1 (4.398 0.059 0.053 0.082)×10	-2 $ 4.668 0.068 0.065 0.104$

TABLE SM LXVI: Bartels Rotation 2493 (April 27, 2016 – May 23, 2016). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{\rm He}$ $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$ $p/{\rm He}$ σ	$\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst}$	t.
$1.00 - 1.16 (9.199 \ 0.039 \ 0.121 \ 0.408) \times 10^{-1}$	2 – – – – – –		
$1.16 - 1.33 (9.108 \ 0.026 \ 0.087 \ 0.322) \times 10^{-6}$?		
$1.33 - 1.51 (8.635 \ 0.023 \ 0.064 \ 0.247) \times 10^{-1}$			
$1.51 - 1.71 (8.001 \ 0.017 \ 0.049 \ 0.208) \times 10^{-1}$			
$1.71 - 1.92 (7.255 \ 0.014 \ 0.039 \ 0.170) \times 10^{-6}$?		
$1.92 - 2.15 (6.410 \ 0.012 \ 0.031 \ 0.138) \times 10^{-6} $	$(7.896\ 0.046\ 0.089\ 0.181)\times10^{1}\ 8.11'$	7 0.049 0.099 0.244	
$2.15 - 2.40 (5.585 \ 0.010 \ 0.025 \ 0.111) \times 10^{-1}$	$(7.241\ 0.038\ 0.072\ 0.147)\times10^{1}$ 7.713	3 0.043 0.084 0.208	
$2.40 - 2.67 (4.793 \ 0.008 \ 0.020 \ 0.090) \times 10^{-1}$	$(6.539 \ 0.032 \ 0.063 \ 0.123) \times 10^{1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.038 0.077 0.184	
$2.67 - 2.97 (4.076 \ 0.007 \ 0.017 \ 0.071) \times 10^{-1}$	$(5.710\ 0.027\ 0.053\ 0.102) \times 10^{1}$ 7.13'	7 0.035 0.073 0.169	
$2.97 - 3.29 (3.424 \ 0.005 \ 0.014 \ 0.057) \times 10^{-1}$	$(5.008\ 0.022\ 0.041\ 0.084)\times10^{1}$ (6.838)	8 0.032 0.063 0.153	
$3.29 - 3.64 (2.864 \ 0.004 \ 0.012 \ 0.046) \times 10^{-1}$	$(4.264 \ 0.018 \ 0.031 \ 0.070) \times 10^{1} \ 6.71'$	7 0.031 0.057 0.146	
$3.64 - 4.02 (2.366 \ 0.004 \ 0.010 \ 0.037) \times 10^{-1}$	$(3.587 \ 0.015 \ 0.025 \ 0.058) \times 10^{1} \ 6.590$	6 0.030 0.054 0.139	
$4.02 - 4.43 (1.948 \ 0.003 \ 0.008 \ 0.030) \times 10^{-1}$	$(2.986\ 0.012\ 0.020\ 0.047)\times10^{1}$ 6.529	$5\ 0.028\ 0.052\ 0.135$	
$4.43 - 4.88 (1.587 \ 0.002 \ 0.007 \ 0.024) \times 10^{-1}$	$(2.478\ 0.010\ 0.016\ 0.039)\times10^{1}$ (6.400)	6 0.027 0.050 0.131	
$4.88 - 5.37 (1.291 \ 0.002 \ 0.005 \ 0.019) \times 10^{-1}$	$(2.035 \ 0.008 \ 0.013 \ 0.032) \times 10^{1} \ 6.343$	$2\ 0.026\ 0.048\ 0.127$	
$5.37 - 5.90 (1.040\ 0.002\ 0.004\ 0.015) \times 10^{-6}$	$(1.681\ 0.007\ 0.011\ 0.026)\times10^{1}$ (6.186)	$6\ 0.026\ 0.045\ 0.122$	
$5.90 - 6.47 (8.391 \ 0.012 \ 0.031 \ 0.117) \times 10$		5 0.025 0.044 0.118	
$6.47 - 7.09 (6.749 \ 0.010 \ 0.024 \ 0.094) \times 10$,	1 0.025 0.044 0.116	
$7.09 - 7.76 (5.413\ 0.008\ 0.019\ 0.075) \times 10$	$(9.121\ 0.036\ 0.058\ 0.140)\times10^{0}$ 5.93	5 0.025 0.043 0.113	
$7.76 - 8.48 (4.340 \ 0.007 \ 0.015 \ 0.060) \times 10$	$(7.420\ 0.030\ 0.049\ 0.114)\times10^{0}$ 5.849	0.025 0.044 0.111	
$8.48 - 9.26 (3.493\ 0.006\ 0.013\ 0.048) \times 10$	$(6.000\ 0.025\ 0.041\ 0.093)\times10^{0}$ 5.823	2 0.026 0.045 0.110	
$9.26 - 10.1 (2.782 \ 0.005 \ 0.010 \ 0.038) \times 10$	$(4.914\ 0.021\ 0.035\ 0.077)\times10^{0}$ 5.663	2 0.026 0.045 0.107	
$10.1 - 11.0 (2.234 \ 0.004 \ 0.008 \ 0.030) \times 10$	$(3.960\ 0.018\ 0.030\ 0.062)\times10^{0}$ 5.64	1 0.028 0.047 0.107	
$11.0 - 12.0 (1.783 \ 0.003 \ 0.007 \ 0.024) \times 10$,	0.028 0.049 0.107	
$12.0 - 13.0 (1.428 \ 0.003 \ 0.006 \ 0.019) \times 10$,	6 0.030 0.051 0.107	
$13.0 - 14.1 (1.157 \ 0.002 \ 0.005 \ 0.016) \times 10$		2 0.031 0.053 0.108	
$14.1 - 15.3 (9.254 \ 0.020 \ 0.040 \ 0.130) \times 10^{-6}$,	1 0.032 0.055 0.107	
$15.3 - 16.6 (7.426 \ 0.016 \ 0.033 \ 0.105) \times 10^{-1}$,	8 0.032 0.056 0.107	
T 11 ()	,		

TABLE SM LXVI: Bartels Rotation 2493 (April 27, 2016 – May 23, 2016). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ $\sigma_{\text{time }}\sigma_{\text{syst.}}$
$16.6 - 18.0 (5.982 \ 0.014 \ 0.027 \ 0.086) \times 10$	$0 (1.131 \ 0.007 \ 0.012 \ 0.020) \times 10$	$\begin{bmatrix} 5.290 & 0.033 & 0.059 & 0.108 \end{bmatrix}$
$18.0 - 19.5 (4.785 \ 0.011 \ 0.023 \ 0.070) \times 10$	$0 \mid (9.284 \ 0.055 \ 0.099 \ 0.161) \times 10$	-1 5.155 0.033 0.060 0.106
$19.5 - 21.1 (3.877 \ 0.009 \ 0.019 \ 0.058) \times 10$	$0 \mid (7.503 \ 0.045 \ 0.083 \ 0.132) \times 10^{-1}$	$^{-1}$ $ 5.168 \ 0.034 \ 0.062 \ 0.108$
$21.1 - 22.8 (3.112 \ 0.008 \ 0.016 \ 0.047) \times 10$	$0 \mid (6.051 \ 0.038 \ 0.067 \ 0.107) \times 10^{-1}$	-1 5.144 0.035 0.063 0.108
$22.8 - 24.7 (2.511 \ 0.006 \ 0.013 \ 0.038) \times 10$	$0 \mid (4.978 \ 0.031 \ 0.056 \ 0.088) \times 10$	$^{-1}$ $ 5.044 \ 0.034 \ 0.062 \ 0.106$
$24.7 - 26.7 (2.013 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 \mid (4.012 \ 0.027 \ 0.045 \ 0.071) \times 10$	$^{-1}$ $ 5.018 \ 0.036 \ 0.063 \ 0.106$
$26.7 - 28.8 (1.627 \ 0.005 \ 0.009 \ 0.025) \times 10$	$0 (3.284 \ 0.024 \ 0.038 \ 0.058) \times 10^{-6} $	$^{-1}$ 4.956 0.038 0.063 0.105
$28.8 - 31.1 (1.315 \ 0.004 \ 0.007 \ 0.020) \times 10$	$0 \mid (2.697 \ 0.020 \ 0.031 \ 0.049) \times 10$	-1 4.875 0.039 0.063 0.104
$31.1 - 33.5 (1.072 \ 0.003 \ 0.006 \ 0.017) \times 10$	$(2.198 \ 0.018 \ 0.026 \ 0.040) \times 10^{-1}$	$^{-1}$ 4.879 0.043 0.064 0.105
$33.5 - 36.1 (8.717 \ 0.030 \ 0.052 \ 0.134) \times 10$	$^{-1} (1.786\ 0.015\ 0.021\ 0.033)\times 10$	$^{-1}$ 4.880 0.046 0.065 0.106
$36.1 - 38.9 (7.055 \ 0.026 \ 0.043 \ 0.109) \times 10$	$^{-1} (1.477 \ 0.014 \ 0.018 \ 0.028) \times 10^{-1} $	$^{-1}$ 4.778 0.047 0.065 0.105
$38.9 - 41.9 (5.740 \ 0.023 \ 0.036 \ 0.089) \times 10$	$^{-1} (1.203 \ 0.012 \ 0.015 \ 0.022) \times 10$	$^{-1}$ 4.770 0.050 0.066 0.106
$41.9 - 45.1 (4.660 \ 0.020 \ 0.030 \ 0.073) \times 10$,	
$45.1 - 48.5 (3.794 \ 0.017 \ 0.025 \ 0.060) \times 10$	$^{-1} (7.978\ 0.089\ 0.104\ 0.153)\times 10$	$-2 \mid 4.756 \mid 0.058 \mid 0.070 \mid 0.108 \mid$
$48.5 - 52.2 (3.083 \ 0.015 \ 0.021 \ 0.050) \times 10$	$^{-1} (6.728\ 0.078\ 0.090\ 0.131)\times 10$	$^{-2}$ 4.582 0.058 0.069 0.105
$52.2 - 56.1 (2.536 \ 0.013 \ 0.018 \ 0.042) \times 10$	$^{-1} (5.275 \ 0.067 \ 0.073 \ 0.104) \times 10$	$^{-2}$ 4.807 0.066 0.074 0.111
$56.1 - 60.3 (2.055 \ 0.011 \ 0.014 \ 0.034) \times 10$	$^{-1}$ (4.444 0.059 0.063 0.089)×10	$-2 \mid 4.625 \mid 0.067 \mid 0.073 \mid 0.109 \mid$

TABLE SM LXVII: Bartels Rotation 2494 (May 24, 2016 – June 19, 2016). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	ρ_{He} $\sigma_{\mathrm{stat.}}$ σ_{e}	$t_{\rm time}$ $\sigma_{\rm syst.}$	p/	He $\sigma_{\rm st}$	$tat. \sigma_t$	ime	$\sigma_{ m syst.}$
1.00 - 1.16 (9.728 0.042 0.112 0.427)×10			-	_	_	_	_
$1.16 - 1.33 (9.530 \ 0.027 \ 0.080 \ 0.334) \times 10^{-6}$			-	_	_	_	_
$1.33 - 1.51 (9.122 \ 0.023 \ 0.059 \ 0.259) \times 10^{-6}$			-	_	_	_	_
$1.51 - 1.71 (8.358 \ 0.016 \ 0.045 \ 0.216) \times 10^{-6}$			-	_	_	_	_
$1.71 - 1.92 (7.591 \ 0.014 \ 0.036 \ 0.177) \times 10^{-6}$			-	_	_	_	_
$1.92 - 2.15 (6.683 \ 0.011 \ 0.029 \ 0.143) \times 10^{-6} $	(8.279 0.045	6 0.079 0.18	$84) \times 10^{1}$	8.072	0.046	0.085	0.237
$2.15 - 2.40 (5.792 \ 0.009 \ 0.024 \ 0.115) \times 10^{-6}$	$(7.522 \ 0.038$	3 0.064 0.14	$47) \times 10^{1}$	7.701	0.041	0.072	0.204
$2.40 - 2.67 (4.944 \ 0.008 \ 0.019 \ 0.093) \times 10^{-6} $	$(6.790 \ 0.032$	2 0.056 0.12	$(22) \times 10^{1}$	7.281	0.036	0.067	0.178
$2.67 - 2.97 (4.196\ 0.006\ 0.016\ 0.073) \times 10^{-2}$	(5.942 0.026	0.048 0.10	$(02) \times 10^{1}$	7.061	0.033	0.063	0.163
$2.97 - 3.29 (3.530\ 0.005\ 0.013\ 0.058) \times 10^{-6}$	$(5.082 \ 0.022$	2 0.036 0.08	$83) \times 10^{1}$	6.946	0.031	0.055	0.153
$3.29 - 3.64 (2.939 \ 0.004 \ 0.011 \ 0.047) \times 10^{-6} $	(4.333 0.018	3 0.027 0.06	$69) \times 10^{1}$	6.783	0.030	0.050	0.144
$3.64 - 4.02 (2.422 \ 0.004 \ 0.010 \ 0.038) \times 10^{-2}$	(3.646 0.015	0.021 0.05	$57) \times 10^{1}$	6.643	0.029	0.047	0.138
$4.02 - 4.43 (1.988\ 0.003\ 0.008\ 0.030) \times 10^{-6}$	$(3.040 \ 0.012$	2 0.017 0.04	$47) \times 10^{1}$	6.542	0.028	0.045	0.133
$4.43 - 4.88 (1.620\ 0.002\ 0.006\ 0.024) \times 10^{-6}$	(2.513 0.010	0.014 0.03	$38) \times 10^{1}$	6.444	0.026	0.044	0.129
$4.88 - 5.37 (1.312\ 0.002\ 0.005\ 0.019) \times 10^{-6}$	(2.064 0.008	3 0.011 0.03	$31) \times 10^{1}$	6.354	0.026	0.042	0.125
5.37 - 5.90 (1.055 0.002 0.004 0.015)×10	$(1.707 \ 0.007$	0.009 0.02	$26) \times 10^{1}$	6.181	0.025	0.040	0.120
$5.90 - 6.47 (8.528\ 0.012\ 0.029\ 0.119) \times 10^{-6}$	$(1.390 \ 0.005)$	0.008 0.02	$21) \times 10^{1}$	6.136	0.025	0.039	0.117
$6.47 - 7.09 (6.824 \ 0.010 \ 0.022 \ 0.094) \times 10^{-1}$	(1.130 0.004	0.006 0.03	$17) \times 10^1$	6.039	0.025	0.039	0.114
7.09 - 7.76 (5.498 0.008 0.018 0.076)×10	(9.240 0.036	6 0.051 0.13	$39) \times 10^0$	5.951	0.025	0.038	0.111
$7.76 - 8.48 (4.394 \ 0.007 \ 0.014 \ 0.060) \times 10^{-1}$	(7.465 0.030	0.042 0.13	$12) \times 10^{0}$	5.886	0.025	0.038	0.110
8.48 - 9.26 (3.521 0.006 0.012 0.048)×10	(6.070 0.025	6 0.036 0.09	$91) \times 10^{0}$	5.801	0.026	0.039	0.108
$9.26 - 10.1 (2.821 \ 0.005 \ 0.009 \ 0.038) \times 10^{-1}$	(4.911 0.021	0.030 0.07	$74) \times 10^0$	5.744	0.027	0.040	0.107
$10.1 - 11.0 (2.250\ 0.004\ 0.008\ 0.030) \times 10^{-1}$	(3.956 0.018	3 0.025 0.06	$60) \times 10^0$	5.687	0.028	0.042	0.106
$11.0 - 12.0 (1.797 \ 0.003 \ 0.006 \ 0.024) \times 10^{-1}$	$(3.221 \ 0.015)$	6 0.022 0.05	$50) \times 10^0$	5.580	0.028	0.043	0.104
$12.0 - 13.0 (1.437\ 0.003\ 0.005\ 0.019) \times 10^{-1}$	$(2.572 \ 0.013$	3 0.018 0.04	$40) \times 10^0$	5.588	0.031	0.045	0.105
$13.0 - 14.1 (1.161 \ 0.002 \ 0.004 \ 0.016) \times 10^{-1}$	(2.123 0.011	0.016 0.03	$(33) \times 10^0$	5.467	0.031	0.046	0.104
$14.1 - 15.3 (9.335 \ 0.020 \ 0.037 \ 0.130) \times 10^{-1}$	(1.735 0.009			5.381	0.031	0.048	0.103
$15.3 - 16.6 (7.470\ 0.016\ 0.030\ 0.105) \times 10^{-6}$	(1.409 0.008			5.302	0.032	0.049	0.103

TABLE SM LXVII: Bartels Rotation 2494 (May 24, 2016 – June 19, 2016). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time }} \sigma_{\text{syst.}}$
$16.6 - 18.0 (6.015 \ 0.014 \ 0.025 \ 0.086) \times 10$	$0 (1.141 \ 0.007 \ 0.010 \ 0.019) \times 10^{-1} $	0 5.273 0.033 0.051 0.104
$18.0 - 19.5 (4.825 \ 0.011 \ 0.021 \ 0.070) \times 10$	$(9.280 \ 0.055 \ 0.085 \ 0.153) \times 10^{-6}$	0^{-1} $5.199 \ 0.033 \ 0.053 \ 0.103$
$19.5 - 21.1 (3.875 \ 0.009 \ 0.017 \ 0.057) \times 10$	$(7.451 \ 0.045 \ 0.071 \ 0.124) \times 10^{-6}$	0^{-1} 5.200 0.034 0.054 0.104
$21.1 - 22.8 (3.126 \ 0.008 \ 0.015 \ 0.046) \times 10$	$(6.126 \ 0.038 \ 0.059 \ 0.102) \times 10^{-6}$	0^{-1} 5.103 0.034 0.054 0.103
$22.8 - 24.7 (2.505 \ 0.006 \ 0.012 \ 0.037) \times 10$	$(4.961 \ 0.031 \ 0.048 \ 0.083) \times 10^{-6}$	$0^{-1} 5.050 \ 0.034 \ 0.054 \ 0.102$
$24.7 - 26.7 (2.013 \ 0.005 \ 0.010 \ 0.030) \times 10$	$0 \mid (4.097 \ 0.027 \ 0.040 \ 0.069) \times 10^{-1}$	0^{-1} 4.913 0.035 0.054 0.099
$26.7 - 28.8 (1.636 \ 0.005 \ 0.008 \ 0.025) \times 10$	$(3.269 \ 0.024 \ 0.032 \ 0.055) \times 10^{-6}$	0^{-1} 5.004 0.039 0.056 0.102
$28.8 - 31.1 (1.314 \ 0.004 \ 0.007 \ 0.020) \times 10$	$(2.695 \ 0.020 \ 0.027 \ 0.046) \times 10^{-6}$	0^{-1} 4.876 0.040 0.055 0.100
$31.1 - 33.5 (1.065 \ 0.003 \ 0.006 \ 0.016) \times 10$	$(2.200 \ 0.018 \ 0.023 \ 0.038) \times 10^{-6}$	0^{-1} 4.841 0.042 0.056 0.100
$33.5 - 36.1 (8.617 \ 0.030 \ 0.047 \ 0.131) \times 10$	$^{-1} (1.794 \ 0.016 \ 0.019 \ 0.032) \times 10^{-1} $	0^{-1} 4.804 0.045 0.057 0.100
$36.1 - 38.9 (6.977 \ 0.026 \ 0.039 \ 0.106) \times 10$	$^{-1} (1.447 \ 0.013 \ 0.016 \ 0.026) \times 10^{-1} $	0^{-1} 4.821 0.048 0.058 0.102
$38.9 - 41.9 (5.732 \ 0.023 \ 0.033 \ 0.088) \times 10$	$^{-1} (1.208 \ 0.012 \ 0.013 \ 0.021) \times 10^{-1} $	$0^{-1} 4.744 0.050 0.059 0.101$
$41.9 - 45.1 (4.640 \ 0.020 \ 0.028 \ 0.071) \times 10$	$^{-1} (9.979 \ 0.104 \ 0.113 \ 0.180) \times 10^{-1} $	$0^{-2} 4.650 \ 0.052 \ 0.060 \ 0.100$
$45.1 - 48.5 (3.819 \ 0.017 \ 0.023 \ 0.060) \times 10$	$^{-1} (7.849 \ 0.089 \ 0.092 \ 0.143) \times 10^{-1} $	$0^{-2} 4.865 \ 0.059 \ 0.064 \ 0.106$
$48.5 - 52.2 (3.096 \ 0.015 \ 0.019 \ 0.049) \times 10$	$^{-1}$ $(6.613 \ 0.078 \ 0.080 \ 0.122) \times 10^{-1}$	$0^{-2} 4.682 \ 0.060 \ 0.063 \ 0.103$
$52.2 - 56.1 (2.528 \ 0.013 \ 0.016 \ 0.041) \times 10$	$^{-1} (5.428 \ 0.069 \ 0.068 \ 0.102) \times 10^{-1} $	$0^{-2} 4.657 \ 0.064 \ 0.065 \ 0.104$
$56.1 - 60.3 (2.056 \ 0.011 \ 0.013 \ 0.034) \times 10$	$^{-1}$ $ (4.576 \ 0.060 \ 0.059 \ 0.087) \times 10^{-1} $	$0^{-2} 4.492 \ 0.064 \ 0.064 \ 0.101$

TABLE SM LXVIII: Bartels Rotation 2495 (June 20, 2016 – July 16, 2016). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$ $p/$	He $\sigma_{\rm stat.}$ $\sigma_{\rm time}$	$\sigma_{ m syst.}$
1.00 - 1.16 (9.696 0.040 0.118 0.428)×10	2		_
$1.16 - 1.33 (9.445 \ 0.027 \ 0.085 \ 0.333) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.33 - 1.51 (9.020 \ 0.023 \ 0.063 \ 0.257) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.51 - 1.71 (8.336 \ 0.016 \ 0.048 \ 0.216) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_
$1.71 - 1.92 (7.509 \ 0.014 \ 0.038 \ 0.176) \times 10$	2		_
$1.92 - 2.15 (6.622 \ 0.011 \ 0.031 \ 0.142) \times 10$	$(8.129 \ 0.045 \ 0.075 \ 0.179) \times 10^{1}$	8.146 0.047 0.084	0.239
2.15 - 2.40 (5.729 0.009 0.025 0.114)×10	$(7.502 \ 0.038 \ 0.061 \ 0.146) \times 10^{1}$	7.637 0.041 0.071	0.201
$2.40 - 2.67 (4.904 \ 0.008 \ 0.020 \ 0.092) \times 10$	$(6.643 \ 0.032 \ 0.051 \ 0.118) \times 10^{1}$	7.382 0.037 0.064	0.180
$2.67 - 2.97 (4.146 \ 0.006 \ 0.017 \ 0.072) \times 10$	2 (5.834 0.026 0.043 0.098)×10 ¹	7.107 0.034 0.059	0.163
$2.97 - 3.29 (3.479\ 0.005\ 0.014\ 0.058) \times 10$	2 $(5.054 \ 0.022 \ 0.034 \ 0.082) \times 10^{1}$	6.884 0.031 0.054	0.151
$3.29 - 3.64 (2.894 \ 0.004 \ 0.012 \ 0.046) \times 10$	$(4.265 \ 0.018 \ 0.027 \ 0.068) \times 10^{1}$	6.786 0.030 0.051	0.145
$3.64 - 4.02 (2.389 \ 0.004 \ 0.010 \ 0.038) \times 10$	$(3.602 \ 0.015 \ 0.021 \ 0.056) \times 10^{1}$	6.632 0.029 0.048	0.138
$4.02 - 4.43 (1.963 \ 0.003 \ 0.008 \ 0.030) \times 10$	$(2.993 \ 0.012 \ 0.017 \ 0.046) \times 10^{1}$	6.557 0.028 0.046	0.133
$4.43 - 4.88 (1.602 \ 0.002 \ 0.007 \ 0.024) \times 10$	$(2.483 \ 0.010 \ 0.014 \ 0.038) \times 10^{1}$	6.451 0.026 0.044	0.129
$4.88 - 5.37 (1.300\ 0.002\ 0.005\ 0.019) \times 10$	$(2.054 \ 0.008 \ 0.011 \ 0.031) \times 10^{1}$	6.327 0.026 0.042	0.125
5.37 - 5.90 (1.049 0.002 0.004 0.015)×10	$(1.687 \ 0.006 \ 0.009 \ 0.025) \times 10^{1}$	6.215 0.025 0.040	0.120
$5.90 - 6.47 (8.432\ 0.012\ 0.030\ 0.118) \times 10$	$1 (1.377 \ 0.005 \ 0.007 \ 0.020) \times 10^{1}$	6.122 0.025 0.039	0.116
$6.47 - 7.09 (6.793 \ 0.010 \ 0.024 \ 0.094) \times 10$	$1 (1.120 \ 0.004 \ 0.006 \ 0.017) \times 10^{1}$	6.067 0.025 0.039	0.115
7.09 - 7.76 (5.448 0.008 0.019 0.075)×10	$(9.173 \ 0.035 \ 0.050 \ 0.138) \times 10^{0}$	5.940 0.025 0.038	0.111
$7.76 - 8.48 (4.370 \ 0.007 \ 0.015 \ 0.060) \times 10$	$1 (7.471 \ 0.030 \ 0.042 \ 0.112) \times 10^{0}$	5.849 0.025 0.039	0.109
8.48 - 9.26 (3.511 0.006 0.012 0.048)×10	$(6.050 \ 0.025 \ 0.036 \ 0.091) \times 10^{0}$	5.804 0.026 0.040	0.108
$9.26-10.1 (2.803 0.005 0.010 0.038){ imes}10$	$1 (4.917 \ 0.021 \ 0.030 \ 0.075) \times 10^{0}$	5.701 0.026 0.041	0.106
$10.1 - 11.0 (2.236 \ 0.004 \ 0.008 \ 0.030) \times 10$	$1 (3.950 \ 0.018 \ 0.026 \ 0.060) \times 10^{0}$	5.660 0.028 0.042	0.105
$11.0 - 12.0 (1.790 \ 0.003 \ 0.007 \ 0.024) \times 10$	$1 (3.199 \ 0.015 \ 0.022 \ 0.049) \times 10^{0}$	5.594 0.028 0.044	0.105
$12.0 - 13.0 (1.441\ 0.003\ 0.006\ 0.020) \times 10$	$1 (2.604 \ 0.013 \ 0.019 \ 0.041) \times 10^{0}$	5.534 0.030 0.045	0.105
$13.0 - 14.1 (1.159 \ 0.002 \ 0.005 \ 0.016) \times 10$	$(2.127 \ 0.011 \ 0.016 \ 0.033) \times 10^{0}$	5.449 0.031 0.047	0.104
$14.1 - 15.3 (9.278 \ 0.020 \ 0.039 \ 0.130) \times 10$	$0 (1.711 \ 0.009 \ 0.014 \ 0.027) \times 10^{0}$	5.422 0.032 0.049	0.104
$15.3 - 16.6 (7.445 \ 0.016 \ 0.032 \ 0.105) \times 10$	$0 (1.399 \ 0.008 \ 0.012 \ 0.023) \times 10^{0}$	5.322 0.032 0.050	0.104

TABLE SM LXVIII: Bartels Rotation 2495 (June 20, 2016 – July 16, 2016). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$p/\text{He }\sigma_{\text{stat.}}$ $\sigma_{\text{time }}\sigma_{\text{syst.}}$
$16.6 - 18.0 (5.972 \ 0.013 \ 0.027 \ 0.086) \times 10$	$0 (1.138 \ 0.007 \ 0.010 \ 0.019) \times 10^{-1} $	0^0 5.247 0.032 0.052 0.104
$18.0 - 19.5 (4.804 \ 0.011 \ 0.022 \ 0.070) \times 10$	$0 \mid (9.203 \ 0.054 \ 0.085 \ 0.152) \times 10^{-6}$	$0^{-1} 5.220 \ 0.033 \ 0.054 \ 0.104$
$19.5 - 21.1 (3.860 \ 0.009 \ 0.018 \ 0.057) \times 10$	$0 \mid (7.516 \ 0.045 \ 0.072 \ 0.126) \times 10^{-6}$	$0^{-1} 5.136 0.033 0.055 0.103$
$21.1 - 22.8 (3.113 \ 0.008 \ 0.015 \ 0.046) \times 10$	$0 (6.091 \ 0.038 \ 0.059 \ 0.102) \times 10^{-6} $	$0^{-1} 5.111 0.034 0.056 0.103$
$22.8 - 24.7 (2.497 \ 0.006 \ 0.013 \ 0.037) \times 10$	$0 \mid (4.960 \ 0.031 \ 0.048 \ 0.084) \times 10^{-1}$	$0^{-1} 5.034 0.034 0.055 0.102$
$24.7 - 26.7 (2.009 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 (4.033 \ 0.027 \ 0.040 \ 0.068) \times 10^{-6} $	$0^{-1} 4.982 \ 0.036 \ 0.056 \ 0.102$
$26.7 - 28.8 (1.617 \ 0.005 \ 0.009 \ 0.024) \times 10$	$0 (3.254 \ 0.023 \ 0.033 \ 0.055) \times 10^{-6} $	$0^{-1} 4.968 \ 0.039 \ 0.057 \ 0.102$
$28.8 - 31.1 (1.317 \ 0.004 \ 0.007 \ 0.020) \times 10$	$0 (2.743 \ 0.020 \ 0.028 \ 0.047) \times 10^{-6} $	$0^{-1} 4.800 \ 0.039 \ 0.055 \ 0.099$
$31.1 - 33.5 (1.060 \ 0.003 \ 0.006 \ 0.016) \times 10$,	
$33.5 - 36.1 (8.613 \ 0.030 \ 0.051 \ 0.132) \times 10$	$^{-1}$ (1.809 0.016 0.019 0.032)×10	$0^{-1} 4.762 \ 0.044 \ 0.057 \ 0.099$
$36.1 - 38.9 (7.050 \ 0.026 \ 0.042 \ 0.108) \times 10$	$^{-1}$ (1.454 0.013 0.015 0.026)×10	$0^{-1} 4.849 \ 0.048 \ 0.059 \ 0.102$
$38.9 - 41.9 (5.706 \ 0.023 \ 0.035 \ 0.088) \times 10$	$^{-1}$ (1.193 0.012 0.013 0.021)×10	$0^{-1} 4.783 \ 0.051 \ 0.059 \ 0.102$
$41.9 - 45.1 (4.639 \ 0.020 \ 0.029 \ 0.072) \times 10$	$^{-1} (9.842 \ 0.103 \ 0.107 \ 0.174) \times 10^{-1} $	$0^{-2} 4.714 0.053 0.059 0.101$
$45.1 - 48.5 (3.777 \ 0.017 \ 0.025 \ 0.060) \times 10$	$^{-1} (8.107\ 0.090\ 0.089\ 0.144)\times 10$	$0^{-2} 4.659 \ 0.056 \ 0.059 \ 0.101$
$48.5 - 52.2 (3.125 \ 0.015 \ 0.021 \ 0.050) \times 10$	$^{-1}$ $(6.565 \ 0.078 \ 0.073 \ 0.118) \times 10^{-1}$	$0^{-2} 4.760 \ 0.061 \ 0.062 \ 0.103$
$52.2 - 56.1 (2.541 \ 0.013 \ 0.017 \ 0.042) \times 10$	$^{-1}$ (5.382 0.068 0.061 0.097)×10	$0^{-2} 4.721 \ 0.065 \ 0.062 \ 0.103$
$56.1 - 60.3 (2.047 \ 0.011 \ 0.014 \ 0.034) \times 10$	$-1 (4.516 \ 0.060 \ 0.052 \ 0.082) \times 10^{-1} $	$0^{-2} 4.533 \ 0.065 \ 0.061 \ 0.099$

TABLE SM LXIX: Bartels Rotation 2496 (July 17, 2016 – August 12, 2016). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$ Φ_{He} $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$ p/He $\sigma_{\text{stat.}}$ σ_{time}	$\sigma_{ m syst.}$
$1.00 - 1.16$ $(9.648 \ 0.040 \ 0.128 \ 0.429) \times 10^2$ $ -$	_
$1.16-1.33 (9.524 0.027 0.092 0.337) imes 10^2 - - - - $	_
$1.33 - 1.51 (9.025 \ 0.023 \ 0.067 \ 0.258) \times 10^2 $	_
$1.51 - 1.71 (8.362 0.016 0.052 0.217) \times 10^2 - - - - - - - - - $	_
$1.71 - 1.92 (7.535 \ 0.014 \ 0.041 \ 0.177) \times 10^2 $	_
$1.92 - 2.15 (6.615 \ 0.011 \ 0.032 \ 0.142) \times 10^{2} (8.153 \ 0.045 \ 0.078 \ 0.181) \times 10^{1} 8.113 \ 0.047 \ 0.087 \ 0.281 0.087 \ $	239
$2.15 - 2.40 (5.755 \ 0.009 \ 0.026 \ 0.115) \times 10^2 (7.507 \ 0.038 \ 0.063 \ 0.147) \times 10^1 7.667 \ 0.041 \ 0.073 \ 0.20 (7.507 \ 0.038 \ 0.063 \ 0.147) \times 10^1 (7.667 \ 0.041 \ 0.073 \ 0.20 \ 0.041 \ 0.073 \ 0.20 (7.507 \ 0.038 \ 0.063 \ 0.147) \times 10^1 (7.667 \ 0.041 \ 0.073 \ 0.20 \ 0.041 \ 0.073 \ 0.20 (7.507 \ 0.038 \ 0.063 \ 0.147) \times 10^1 (7.667 \ 0.041 \ 0.073 \ 0.20 \ 0.041 \ 0.073 \ 0.041 \ 0.073 \ 0.041 \ 0.073 \ 0.041 \ 0.073 \ 0.041 \ 0.073 \ 0.041 \ 0.073 \ 0.041 \ 0.073 \ 0.041 \ 0$	203
$2.40 - 2.67 (4.925 \ 0.008 \ 0.021 \ 0.093) \times 10^2 (6.689 \ 0.032 \ 0.055 \ 0.121) \times 10^1 7.363 \ 0.037 \ 0.069 \ 0.121 (6.689 \ 0.032 \ 0.055 \ 0.121) \times 10^1 7.363 \ 0.037 \ 0.069 \ 0.121 (6.689 \ 0.032 \ 0.055 \ 0.121) \times 10^1 7.363 \ 0.037 \ 0.069 \ 0.121 (6.689 \ 0.032 \ 0.055 \ 0.121) \times 10^1 7.363 \ 0.037 \ 0.069 \ 0.121 (6.689 \ 0.032 \ 0.055 \ 0.121) \times 10^1 (6.689 \ 0.032 \ 0.055 \ 0.055 \ 0.121) \times 10^1 (6.689 \$	181
$2.67 - 2.97 (4.179 \ 0.006 \ 0.018 \ 0.073) \times 10^{2} (5.854 \ 0.026 \ 0.047 \ 0.101) \times 10^{1} 7.139 \ 0.034 \ 0.065 \ 0.101 (4.179 \ 0.006 \ 0.018 \ 0.073) \times 10^{2} (4.179 \ 0.006 \ 0.047 \ 0.006) \times 10^{1} (4.179 \ 0.006 \ 0.018 \ 0.073) \times 10^{2} (4.179 \ 0.006 \ 0.047 \ 0.007) \times 10^{1} (4.179 \ 0.006 \ 0.018 \ 0.073) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.073) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.073) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.073) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.073) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.073) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.073) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.073) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.073) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.073) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.073) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.073) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.073) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.073) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.073) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.073) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.073) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.073) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.007) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.007) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.007) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.007) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.007) \times 10^{2} (4.179 \ 0.006 \ 0.018 \ 0.007) \times 10^{2} (4.179 \ 0.006 \ 0.008 \ 0.008) \times 10^{2} (4.179 \ 0.006 \ 0.008 \ 0.008) \times 10^{2} (4.179 \ 0.008 \ 0.008) \times 10^{2} (4.179 \ 0.008 \ 0.008) \times 10^{2} (4.179 \ 0.0$	166
$2.97 - 3.29 (3.494\ 0.005\ 0.015\ 0.058) \times 10^{2} (5.044\ 0.022\ 0.035\ 0.082) \times 10^{1} (6.927\ 0.031\ 0.056\ 0.15) $	153
$3.29 - 3.64 (2.902 \ 0.004 \ 0.013 \ 0.047) \times 10^{2} (4.297 \ 0.018 \ 0.026 \ 0.068) \times 10^{1} (6.754 \ 0.030 \ 0.050 \ 0.18) (4.297 \ 0.018 \ 0.026 \ 0.068) \times 10^{1} (4.297 \ 0.018 \ 0.026 \ 0.026) \times 10^{1} (4.297 \ 0.018 \ 0.$	144
$3.64 - 4.02 (2.402 \ 0.004 \ 0.011 \ 0.038) \times 10^{2} (3.614 \ 0.015 \ 0.021 \ 0.056) \times 10^{1} (6.647 \ 0.029 \ 0.048 \ 0.11 \ 0.018 \ $	138
$4.02 - 4.43 (1.973 \ 0.003 \ 0.009 \ 0.030) \times 10^{2} (2.999 \ 0.012 \ 0.017 \ 0.046) \times 10^{1} (6.579 \ 0.028 \ 0.047 \ 0.13) (6.579 \ 0.047 \ 0.13) (6.57$	134
$4.43 - 4.88 (1.610\ 0.002\ 0.007\ 0.024) \times 10^2 (2.501\ 0.010\ 0.014\ 0.038) \times 10^1 (6.438\ 0.026\ 0.045\ 0.18) (0.501\ 0.010\ 0.014\ 0.038) \times 10^1 (0.501\ 0.010\ 0.014\ 0.038) \times 10^1 (0.501\ 0.010\ 0.014\ 0.038) \times 10^1 (0.501\ 0.014\ 0.014) \times 10^1 (0.501\ 0.014\ 0.014) \times 10^1 (0.501\ 0.014\ 0.014) \times 10^1 (0.501\ 0.014) $	129
$4.88 - 5.37 (1.302 \ 0.002 \ 0.005 \ 0.019) \times 10^{2} (2.059 \ 0.008 \ 0.011 \ 0.031) \times 10^{1} (6.322 \ 0.026 \ 0.043 \ 0.11) (0.031) \times 10^{1} (0.031) \times 1$	125
$5.37 - 5.90 (1.051\ 0.002\ 0.004\ 0.015) \times 10^2 (1.685\ 0.006\ 0.009\ 0.026) \times 10^1 (6.235\ 0.026\ 0.041\ 0.15) (1.685\ 0.006\ 0.009\ 0.026) (1.051\ 0.002\ 0.004\ 0.015) (1.051\ 0.002\ 0.004\ 0.015) (1.051\ 0.002\ 0.004\ 0.015) (1.051\ 0.002\ 0.004\ 0.015) (1.051\ 0.002\ 0.004\ 0.015) (1.051\ 0.002\ 0.004\ 0.015) (1.051\ 0.002\ 0.004\ 0.015) (1.051\ 0.002\ 0.004\ 0.015) (1.051\ 0.002\ 0.004\ 0.015) (1.051\ 0.002\ 0.004\ 0.015) (1.051\ 0.002\ 0.004\ 0.015) (1.051\ 0.002\ 0.004\ 0.015) (1.051\ 0.002\ 0.004\ 0.015) (1.051\ 0.002\ 0.004\ 0.015) (1.051\ 0.002\ 0.004\ 0.015) (1.051\ 0.002\ 0.004\ 0.015) (1.051\ 0.002\ 0.004\ 0.005) (1.051\ 0.002\ 0.004) (1.051\ 0.002\ 0.004) (1.051\ 0.002\ 0.004) (1.051\ 0.002\ 0.004) (1.051\ 0.002\ 0.004) (1.051\ 0.002\ 0.004) (1.051\ 0.002\ 0.004) (1.051\ 0.002\ 0.004) (1.051\ 0.002\ 0.004) (1.051\ 0.002\ 0.004) (1.051\ 0.002\ 0.004) (1.051\ 0.002\ 0.004) (1.051\ 0.002\ 0.004) (1.051\ 0.002\ 0.004) (1.051\ 0.004) (1.051\ 0.002\ 0.004) (1.051\ 0.002\ 0.004) (1.0$	121
$5.90 - 6.47 (8.463 \ 0.012 \ 0.032 \ 0.119) \times 10^{1} (1.379 \ 0.005 \ 0.007 \ 0.020) \times 10^{1} (6.138 \ 0.025 \ 0.040 \ 0.119) \times 10^{1} (1.379 \ 0.005 \ 0.007 \ 0.020) \times 10^{1} (1.380 \ 0.025 \ 0.040 \ 0.119) \times 10^{1} (1.380 \ $	117
$6.47 - 7.09 (6.818 \ 0.010 \ 0.025 \ 0.095) \times 10^{1} (1.122 \ 0.004 \ 0.006 \ 0.017) \times 10^{1} (6.078 \ 0.025 \ 0.039 \ 0.18) (1.122 \ 0.004 \ 0.006 \ 0.017) \times 10^{1} (1.021 \ 0.004 \ 0.006 \ 0.007) \times 10^{1} (1.021 \ 0.004 \ 0.$	115
$7.09 - 7.76 (5.468 \ 0.008 \ 0.020 \ 0.076) \times 10^{1} (9.125 \ 0.035 \ 0.049 \ 0.137) \times 10^{0} 5.992 \ 0.025 \ 0.039 \ 0.137 (0.125 \ 0.035 \ 0.049 \ 0.137) \times 10^{0} (0.125 \ 0.035 \ 0.049 \ 0.049) \times 10^{0} (0.125 \ 0.035 \ 0.049 \ 0.049) \times 10^{0} (0.125 \ 0.049) \times 10^{0} (0.125$	112
$7.76 - 8.48 (4.383\ 0.007\ 0.016\ 0.061) \times 10^{1} (7.482\ 0.030\ 0.041\ 0.111) \times 10^{0} 5.858\ 0.025\ 0.038\ 0.110 (0.061) \times 10^{1} (0$	109
$8.48 - 9.26 (3.503\ 0.006\ 0.013\ 0.048) \times 10^{1} (6.040\ 0.025\ 0.034\ 0.090) \times 10^{0} 5.799\ 0.026\ 0.039\ 0.13 (6.040\ 0.025\ 0.034\ 0.090) \times 10^{0} (6.040\ 0.090) \times 10^$	108
$9.26 - 10.1 (2.802 \ 0.005 \ 0.011 \ 0.038) \times 10^{1} (4.935 \ 0.021 \ 0.029 \ 0.074) \times 10^{0} 5.679 \ 0.026 \ 0.040 \ 0.18 (4.935 \ 0.021 \ 0.029 \ 0.074) \times 10^{0} (4.935 \ 0.021 \ 0.029 \ 0.029 \ 0.029) \times 10^{0} (4.935 \ 0.021 \ 0.029 \ 0.029) \times 10^{0} (4.935 \ 0.021 \ 0.029 \ 0.029) \times 10^{0} (4.935 \ 0.021 \ 0.029 \ 0.029) \times 10^{0} (4.935 \ 0.021 \ 0.029) \times 10^{0} ($	105
$10.1 - 11.0 (2.245 \ 0.004 \ 0.009 \ 0.030) \times 10^{1} (3.976 \ 0.018 \ 0.024 \ 0.060) \times 10^{0} 5.646 \ 0.027 \ 0.041 \ 0.10 (0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 (0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 \ 0.001 (0.001 \ 0.001 $	105
$11.0 - 12.0 (1.792\ 0.003\ 0.007\ 0.024) \times 10^{1} (3.202\ 0.015\ 0.021\ 0.049) \times 10^{0} 5.598\ 0.028\ 0.043\ 0.180 (0.049) \times 10^{0} (0$	104
$12.0 - 13.0$ $(1.436\ 0.003\ 0.006\ 0.020) \times 10^{1}$ $(2.592\ 0.013\ 0.018\ 0.040) \times 10^{0}$ $[5.541\ 0.030\ 0.044\ 0.18]$	104
$13.0 - 14.1 (1.162\ 0.002\ 0.005\ 0.016) \times 10^{1} (2.110\ 0.011\ 0.015\ 0.033) \times 10^{0} 5.508\ 0.031\ 0.046\ 0.11 (2.110\ 0.011\ 0.015\ 0.033) \times 10^{0} (2.110\ 0.0$	105
$14.1 - 15.3 (9.345 \ 0.020 \ 0.041 \ 0.132) \times 10^{0} (1.716 \ 0.009 \ 0.013 \ 0.026) \times 10^{0} 5.448 \ 0.032 \ 0.047 \ 0.132) \times 10^{0} (1.716 \ 0.009 \ 0.013 \ 0.026) \times 10^{0} (1.48 \ 0.032 \ 0.047 \ 0.132) \times 10^{0} (1.716 \ 0.009 \ 0.013 \ 0.026) \times 10^{0} (1.716 \ 0.$	
$15.3 - 16.6 (7.455 \ 0.016 \ 0.034 \ 0.106) \times 10^{0} (1.398 \ 0.008 \ 0.011 \ 0.022) \times 10^{0} 5.333 \ 0.032 \ 0.049 \ 0.106 (1.398 \ 0.008 \ 0.011 \ 0.022) \times 10^{0} 5.333 \ 0.032 \ 0.049 \ 0.106 (1.398 \ 0.008 \ 0.011 \ 0.022) \times 10^{0} 6.333 \ 0.032 \ 0.049 \ 0.106 (1.398 \ 0.008 \ 0.011 \ 0.022) \times 10^{0} 6.333 \ 0.032 \ 0.049 \ 0.106 (1.398 \ 0.008 \ 0.011 \ 0.022) \times 10^{0} 6.333 \ 0.032 \ 0.049 \ 0.106 (1.398 \ 0.008 \ 0.011 \ 0.022) \times 10^{0} 6.333 \ 0.032 \ 0.049 \ 0.106 (1.398 \ 0.008 \ 0.011 \ 0.022) \times 10^{0} 6.333 \ 0.032 \ 0.049 \ 0.106 (1.398 \ 0.008 \ 0.011 \ 0.022) \times 10^{0} 6.333 \ 0.032 \ 0.049 \ 0.106 (1.398 \ 0.008 \ 0.011 \ 0.022) \times 10^{0} 6.333 \ 0.032 \ 0.049 \ 0.106 (1.398 \ 0.008 \ 0.011 \ 0.022) \times 10^{0} 6.333 \ 0.032 \ 0.049 \ 0.106 (1.398 \ 0.008 \ 0.011 \ 0.022) \times 10^{0} 6.333 \ 0.032 \ 0.049 \ 0.106 (1.398 \ 0.008 \ 0.011 \ 0.022) \times 10^{0} 6.333 \ 0.032 \ 0.049 \ 0.106 (1.398 \ 0.008 \ 0.011 \ 0.022) \times 10^{0} 6.333 \ 0.032 \ 0.049 \ 0.106 (1.398 \ 0.008 \ 0.011 \ 0.022) \times 10^{0} 6.333 \ 0.032 \ 0.049 \ 0.106 (1.398 \ 0.008 \ 0.011 \ 0.022) \times 10^{0} 6.333 \ 0.032 \ 0.049 \ 0.106 (1.398 \ 0.008 \ 0.011 \ 0.022) \times 10^{0} 6.333 \ 0.032 \ 0.049 \ 0.106 (1.398 \ 0.008 \ 0.011 \ 0.022) \times 10^{0} 6.333 \ 0.032 \ 0.049 \ 0.106 (1.398 \ 0.008 \ 0.011 \ 0.022) \times 10^{0} 6.333 \ 0.032 \ 0.049 (1.398 \ 0.008 \ 0.008 \ 0.008 \ 0.008 (1.398 \ 0.008 \ 0.008 \ 0.008 (1.398 \ 0.008 \ 0.008 \ 0.008 (1.398 \ 0.008 \ 0.008 \ 0.008 (1.398 \ 0.008 \ 0.008 \ 0.008 (1.398 \ 0.008 \ 0.008 \ 0.008 (1.398 \ 0.008 \ 0.008 \ 0.008 (1.398 \ 0.008 \ 0.008 \ 0.008 (1.398 \ 0.008 \ 0.008 \ 0.008 (1.398 \ 0.008 \ 0.008 \ 0.008 (1.398 \ 0.008 \ 0.008 \ 0.008 (1.398 \ 0.008 \ 0.008 \ 0.008 (1.398 \ 0.008 \ 0.008 \ 0.008 (1.398 \ 0.008 \ 0.008 \ 0.008 (1.398 \ 0.008 \ 0.008 \ 0.008 (1.398 \ 0.008 \ 0.008 \ 0.008 (1.398 \ 0.008 \ 0.008 \ 0.008 (1.398 \ 0.008 \ 0.008 \ 0.008 (1.398 \ 0.008 \ 0.008 \ 0.008 (1.398 \ 0$	103

TABLE SM LXIX: Bartels Rotation 2496 (July 17, 2016 – August 12, 2016). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He}~\sigma_{\rm stat.}~\sigma_{\rm time}~\sigma_{\rm syst.}$
$16.6 - 18.0 (5.975 \ 0.013 \ 0.028 \ 0.086) \times 10^{-1}$	$0 (1.129 \ 0.007 \ 0.009 \ 0.018) \times 10$	$0 5.295 \ 0.033 \ 0.050 \ 0.104$
$18.0 - 19.5 (4.829 \ 0.011 \ 0.024 \ 0.071) \times 10^{-6} (4.829 \ 0.011 \ 0.024 \ 0.024) \times 10^{-6} (4.829 \ 0.011 \ 0.024) \times 10^{-6} (4.829 \ 0.011 \ 0.024) \times 10^{-6} (4.829 \ 0.024) \times 10^{-6} (4.829 \ 0.024) \times 10^{-6} (4.829 \ 0$	$0 (9.326 \ 0.055 \ 0.081 \ 0.151) \times 10$	$^{-1}$ $ 5.178 \ 0.033 \ 0.051 \ 0.102 $
$19.5 - 21.1 (3.861 \ 0.009 \ 0.020 \ 0.058) \times 10^{-1} $	$0 \mid (7.498 \ 0.045 \ 0.067 \ 0.123) \times 10$	$^{-1}$ $ 5.149 \ 0.033 \ 0.053 \ 0.102 $
$21.1 - 22.8 (3.121 \ 0.008 \ 0.016 \ 0.047) \times 10^{-6} (3.121 \ 0.008 \ 0.008 \ 0.047) \times 10^{-6} (3.121 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (3.121 \ 0.008) \times 10^{-6} $	$0 (6.110 \ 0.038 \ 0.055 \ 0.101) \times 10$	$^{-1}$ $ 5.108 \ 0.034 \ 0.054 \ 0.102 $
$22.8 - 24.7 (2.521 \ 0.006 \ 0.014 \ 0.038) \times 10^{-6} (2.521 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.521 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.521 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.521 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.521 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.521 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.521 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.521 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.521 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.521 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.521 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.521 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.521 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.521 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.521 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.521 \ 0.006 \ 0.014 \ 0.008) \times 10^{-6} (2.521 \ 0.008) \times 10^{$	$0 (4.985 \ 0.031 \ 0.046 \ 0.082) \times 10$	$^{-1}$ $ 5.057 \ 0.034 \ 0.054 \ 0.102 $
$24.7 - 26.7 (2.003 \ 0.005 \ 0.011 \ 0.031) \times 10^{-6}$	$0 (4.016 \ 0.027 \ 0.038 \ 0.066) \times 10$	$^{-1}$ 4.986 0.036 0.054 0.101
$26.7 - 28.8 (1.627 \ 0.005 \ 0.009 \ 0.025) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.627 \ 0.005) \times 10^{$	$0 (3.276 \ 0.024 \ 0.031 \ 0.054) \times 10$	$^{-1}$ 4.964 0.038 0.055 0.101
$28.8 - 31.1 (1.310 \ 0.004 \ 0.008 \ 0.020) \times 10^{-1} (1.310 \ 0.004 \ 0.008 \ 0.000) \times 10^{-1} (1.310 \ 0.008 \ 0.000) \times 10^{-1} $	$0 (2.709 \ 0.020 \ 0.026 \ 0.046) \times 10$	$^{-1}$ 4.837 0.039 0.055 0.099
$31.1 - 33.5 (1.068 \ 0.003 \ 0.006 \ 0.017) \times 10^{-1}$	$0 (2.201 \ 0.018 \ 0.022 \ 0.037) \times 10$	$^{-1}$ 4.851 0.042 0.056 0.100
$33.5 - 36.1 (8.620 \ 0.030 \ 0.054 \ 0.133) \times 10$	$^{-1} (1.799\ 0.016\ 0.018\ 0.031)\times 10$	$^{-1}$ 4.790 0.045 0.057 0.100
$36.1 - 38.9 (7.022 \ 0.026 \ 0.045 \ 0.109) \times 10$	$^{-1}$ (1.467 0.013 0.015 0.026)×10	$^{-1}$ 4.786 0.047 0.059 0.101
$38.9 - 41.9 (5.717 \ 0.023 \ 0.037 \ 0.089) \times 10$	$^{-1} (1.199\ 0.012\ 0.013\ 0.021)\times 10$	$^{-1}$ 4.766 0.050 0.060 0.102
$41.9 - 45.1 (4.620 \ 0.020 \ 0.031 \ 0.073) \times 10$	$^{-1} (9.885 \ 0.103 \ 0.111 \ 0.177) \times 10$	$^{-2}$ 4.674 0.053 0.061 0.101
$45.1 - 48.5 (3.777 \ 0.017 \ 0.026 \ 0.060) \times 10$	$^{-1} (7.956\ 0.089\ 0.093\ 0.145)\times 10$	$^{-2}$ 4.747 0.058 0.064 0.105
$48.5 - 52.2 (3.104 \ 0.015 \ 0.022 \ 0.050) \times 10$,	
$52.2 - 56.1 (2.524 \ 0.013 \ 0.018 \ 0.042) \times 10$	$^{-1} (5.391\ 0.068\ 0.067\ 0.102)\times 10$	$^{-2}$ 4.682 0.064 0.067 0.105
$56.1 - 60.3 (2.074 \ 0.012 \ 0.015 \ 0.035) \times 10$	$^{-1}$ (4.396 0.059 0.057 0.084)×10	$-2 \mid 4.718 \mid 0.069 \mid 0.070 \mid 0.108 \mid$

TABLE SM LXX: Bartels Rotation 2497 (August 13, 2016 – September 8, 2016). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[\text{m}^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity $\Phi_p = \sigma_{\text{stat.}} \sigma_{\text{time}} = \sigma_{\text{syst.}}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$ p/He $\sigma_{\mathrm{stat.}}$ σ_{time}	$\sigma_{ m syst}$
$1.00 - 1.16 (9.970 \ 0.043 \ 0.110 \ 0.437) \times 10^{-1}$		
$1.16 - 1.33 (9.762 \ 0.028 \ 0.079 \ 0.342) \times 10^{-1}$	$0^2 \mid$	-
$1.33 - 1.51 (9.302 \ 0.024 \ 0.058 \ 0.263) \times 10^{-1}$	$0^2 \mid$	-
$1.51 - 1.71 (8.613\ 0.017\ 0.045\ 0.222) \times 10^{-1}$	$0^2 \mid$	-
$1.71 - 1.92 (7.739 \ 0.015 \ 0.036 \ 0.181) \times 10^{-1}$	$0^2 \mid$	-
$1.92 - 2.15 (6.820 \ 0.012 \ 0.029 \ 0.145) \times 10^{-1}$	$0^{2} (8.402 \ 0.047 \ 0.081 \ 0.187) \times 10^{1} 8.117 \ 0.048 \ 0.086 \ 0.269 \times 10^{10} (8.402 \ 0.047 \ 0.081 \ 0.187) \times 10^{10} (8.402 \ 0.048 \ 0.086 \ 0.269 \times 10^{10}) \times 10^{10} (8.402 \ 0.048 \ 0.088 \ 0.269 \times 10^{10}) \times 10^{10} (8.402 \ 0.048 \ 0.088 \ 0.269 \times 10^{10}) \times 10^{10} (8.402 \ 0.048 \ 0.088 \ 0.269 \times 10^{10}) \times 10^{10} (8.402 \ 0.048 \ 0.088 \ 0.269 \times 10^{10}) \times 10^{10} (8.402 \ 0.048 \ 0.088 \ 0.269 \times 10^{10}) \times 10^{10} (8.402 \ 0.048 \ 0.088 \ 0.269 \times 10^{10}) \times 10^{10} (8.402 \ 0.048 \ $	39
$2.15 - 2.40 (5.890\ 0.010\ 0.023\ 0.117) \times 10^{-6}$	$0^{2} (7.712 \ 0.040 \ 0.066 \ 0.151) \times 10^{1} 7.637 \ 0.041 \ 0.072 \ 0.20$	02
$2.40 - 2.67 (5.027 \ 0.008 \ 0.019 \ 0.094) \times 10^{-1}$	$0^{2} \left[(6.820\ 0.033\ 0.057\ 0.123) \times 10^{1} \right] \left[7.371\ 0.037\ 0.067\ 0.123 \right]$	81
$2.67 - 2.97 (4.248 \ 0.007 \ 0.016 \ 0.074) \times 10^{-1}$	$0^{2} \mid (6.055 \ 0.027 \ 0.049 \ 0.104) \times 10^{1} \mid 7.016 \ 0.034 \ 0.063 \ 0.104)$	62
$2.97 - 3.29 (3.555 \ 0.005 \ 0.013 \ 0.059) \times 10^{-1}$	0^{2} $(5.174 \ 0.022 \ 0.036 \ 0.084) \times 10^{1}$ $6.871 \ 0.031 \ 0.054 \ 0.16$	51
$3.29 - 3.64 (2.953 \ 0.004 \ 0.011 \ 0.047) \times 10^{-10}$	$0^2 \mid (4.383 \ 0.019 \ 0.027 \ 0.070) \times 10^1 \mid 6.738 \ 0.030 \ 0.049 \ 0.100 \mid 0.040 \mid 0.100 \mid 0.100$	43
$3.64 - 4.02 (2.431 \ 0.004 \ 0.009 \ 0.038) \times 10^{-1}$	$0^2 \mid (3.683 \ 0.015 \ 0.021 \ 0.058) \times 10^1 \mid 6.601 \ 0.029 \ 0.046 \ 0.169 \mid 0.021 \ 0.021 \mid 0.021$	37
$4.02 - 4.43 (1.997 \ 0.003 \ 0.008 \ 0.030) \times 10^{-1}$		32
$4.43 - 4.88 (1.628 \ 0.002 \ 0.006 \ 0.024) \times 10^{-1}$	$0^2 \mid (2.542 \ 0.010 \ 0.014 \ 0.039) \times 10^1 \mid 6.406 \ 0.026 \ 0.044 \ 0.11 \mid 0.039 \mid 0.014 $	28
$4.88 - 5.37 (1.315 \ 0.002 \ 0.005 \ 0.019) \times 10^{-1}$	$0^{2} (2.076 \ 0.008 \ 0.012 \ 0.031) \times 10^{1} (6.334 \ 0.026 \ 0.042 \ 0.11) \times 10^{1} (6.334 \ 0.026 \ 0.042 \ 0.11) \times 10^{1} (6.334 \ 0.026 \ 0.042 \ 0.11) \times 10^{1} (6.334 \ 0.026 \ 0.042 \ 0.11) \times 10^{1} (6.334 \ 0.026 \ 0.042 \ 0.11) \times 10^{1} (6.334 \ 0.026 \ 0.042 \ 0.11) \times 10^{1} (6.334 \ 0.026 \ 0.042 \ 0.11) \times 10^{1} (6.334 \ 0.026 \ 0.042 \ 0.11) \times 10^{1} (6.334 \ 0.026 \ 0.042 \ 0.11) \times 10^{1} (6.334 \ 0.026 \ 0.042 \ 0.11) \times 10^{1} (6.334 \ 0.026 \ 0.042 \ 0.11) \times 10^{1} (6.334 \ 0.026 \ 0.042 \ 0.11) \times 10^{1} (6.334 \ 0.026 \ 0.042 \ 0.11) \times 10^{1} (6.334 \ 0.026 \ 0.042 \ 0.11) \times 10^{1} (6.334 \ 0.026 \ 0.042 \ 0.11) \times 10^{1} (6.334 \ 0.026 \ 0.042 \ 0.11) \times 10^{1} (6.334 \ 0.026 \ 0.042 \ 0.11) \times 10^{1} (6.334 \ 0.026 \ 0.042 \ 0.11) \times 10^{1} (6.334 \ 0.026 \ 0.042 \ 0.11) \times 10^{1} (6.334 \ 0.026 \ 0.042 \ 0.$	25
$5.37 - 5.90 (1.062 0.002 0.004 0.015) \! imes \! 10^{-1} (1.062 0.002 0.004 0.015) \! \times \! 10^{-1} (1.062 0.002 0.004 0.004) \! (1.062 0.002 0.004 0.004) \! (1.062 0.002 0.004 0.004) \! (1.062 0.002 0.004 0.004) \! (1.062 0.004 0.004) \! (1.062 0.004 0.004) \! (1.062 0.004 0.004) \! (1.062 0.004 0.004) \! (1.062 0.004 0.004) \! (1.062 0.004 0.004) \! (1.062 0.004 0.004) \! (1.062 0.004 0.004) \! (1.062 0.004 0.004) \! (1.062 0.004 0.004) \! (1.062 0.004 0.004) \! (1.062 0.004 0.004) \! (1.062 0.00$	$0^2 \mid (1.697 \ 0.007 \ 0.009 \ 0.026) \times 10^1 \mid 6.257 \ 0.026 \ 0.040 \ 0.11 \mid 0.009 \mid 0.009 \mid 0.026 \mid 0.040 \mid 0.11 \mid 0.009 \mid$	21
$5.90 - 6.47 (8.517 \ 0.012 \ 0.028 \ 0.118) \times 10^{-1}$	$0^1 \mid (1.403 \ 0.005 \ 0.008 \ 0.021) \times 10^1 \mid 6.069 \ 0.025 \ 0.039 \ 0.1$	15
$6.47 - 7.09 (6.845 \ 0.010 \ 0.022 \ 0.095) \times 10^{-1}$	$0^1 \mid (1.142 \ 0.004 \ 0.006 \ 0.017) \times 10^1 \mid 5.993 \ 0.025 \ 0.038 \ 0.1$	13
$7.09 - 7.76 (5.515 \ 0.008 \ 0.017 \ 0.076) \times 10^{-1}$	$0^1 \mid (9.342 \ 0.036 \ 0.052 \ 0.141) \times 10^0 \mid 5.903 \ 0.025 \ 0.038 \ 0.1$	10
$7.76 - 8.48 (4.414 0.007 0.014 0.060) \times 10^{-1}$	$0^{1} \mid (7.563 \ 0.030 \ 0.043 \ 0.113) \times 10^{0} \mid 5.836 \ 0.025 \ 0.038 \ 0.100 \mid 0.043 \ 0.000 \mid 0.043 \mid 0.000 \mid 0$	09
$8.48 - 9.26 (3.524 \ 0.006 \ 0.011 \ 0.048) \times 10^{-1}$	$0^{1} \mid (6.123 \ 0.025 \ 0.036 \ 0.092) \times 10^{0} \mid 5.756 \ 0.026 \ 0.039 \ 0.10 \mid 0.000 \mid 0.$	07
$9.26-10.1 (2.819 0.005 0.009 0.038)\! imes\! 10$	$0^{1} \mid (4.957 \ 0.022 \ 0.031 \ 0.075) \times 10^{0} \mid 5.687 \ 0.027 \ 0.040 \ 0.10 \mid 0.075 \mid 0.027 \mid 0.040 \mid 0.10 \mid 0.075 \mid 0.040 \mid 0$	06
$10.1 - 11.0 (2.253 \ 0.004 \ 0.008 \ 0.030) \times 10^{-1}$	$0^{1} \mid (4.024 \ 0.018 \ 0.026 \ 0.061) \times 10^{0} \mid 5.598 \ 0.028 \ 0.041 \ 0.10^{0} \mid 6.598 \ 0.041 \ 0.10^{0} \ 0.$	04
$11.0 - 12.0 (1.800 \ 0.003 \ 0.006 \ 0.024) \times 10^{-1}$	$0^{1} \mid (3.240 \ 0.015 \ 0.022 \ 0.050) \times 10^{0} \mid 5.556 \ 0.028 \ 0.043 \ 0.10^{0} \mid 0.021 \ 0.021 $	04
$12.0 - 13.0 (1.445 0.003 0.005 0.020) \times 10^{-1} (1.445 0.003 0.005 0.020) \times 10^{-1} (1.445 0.003 0.005 0.005 0.000) \times 10^{-1} (1.445 0.003 0.005 0.000) \times 10^{-1} (1.445 0.000) \times 10^{$	$0^{1} \mid (2.634 \ 0.014 \ 0.019 \ 0.041) \times 10^{0} \mid 5.487 \ 0.030 \ 0.044 \ 0.19 \mid 0.041 \mid 0.$	04
$13.0 - 14.1 (1.163 \ 0.002 \ 0.004 \ 0.016) \times 10^{-1}$	0^{1} $(2.128 \ 0.011 \ 0.016 \ 0.033) \times 10^{0}$ $5.467 \ 0.031 \ 0.046 \ 0.10$	04
$14.1 - 15.3 (9.314 \ 0.020 \ 0.036 \ 0.130) \times 10^{-1}$	$0^0 \mid (1.744 \ 0.010 \ 0.014 \ 0.027) \times 10^0 \mid 5.341 \ 0.032 \ 0.047 \ 0.10 \mid 0.014 \ 0.014 \mid 0.027 \mid 0.014 $	02
$15.3 - 16.6 (7.498 \ 0.017 \ 0.029 \ 0.105) \times 10^{-1}$	0^0 (1.432 0.008 0.012 0.023)× 10^0 5.237 0.032 0.048 0.10	02

TABLE SM LXX: Bartels Rotation 2497 (August 13, 2016 – September 8, 2016). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\rho_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$\rho/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time} \ \sigma_{\rm syst.}$
$16.6 - 18.0 (6.031 \ 0.014 \ 0.025 \ 0.086) \times 10^{0}$	$(1.141 \ 0.007 \ 0.010 \ 0.019) \times 10^{0}$	5.286 0.033 0.051 0.104
$18.0 - 19.5 (4.812 \ 0.011 \ 0.020 \ 0.070) \times 10^{0}$	$(9.400\ 0.056\ 0.086\ 0.155)\times10^{-}$	1 $ 5.119 \ 0.033 \ 0.052 \ 0.101 $
$19.5 - 21.1 (3.873 \ 0.009 \ 0.017 \ 0.057) \times 10^{0}$	$(7.644 \ 0.047 \ 0.073 \ 0.128) \times 10^{-1}$	$^{1} 5.066 0.033 0.053 0.101$
$21.1 - 22.8 (3.132 \ 0.008 \ 0.014 \ 0.046) \times 10^{0}$	$(6.176 \ 0.039 \ 0.060 \ 0.104) \times 10^{-1}$	$^{1} 5.071 \ 0.034 \ 0.054 \ 0.102$
$22.8 - 24.7 (2.516 \ 0.006 \ 0.012 \ 0.037) \times 10^{0}$	$(5.029\ 0.032\ 0.049\ 0.085)\times10^{-}$	$^{1} 5.002\ 0.034\ 0.054\ 0.101$
$24.7 - 26.7 (2.017 \ 0.005 \ 0.010 \ 0.030) \times 10^{0}$	$(4.065 \ 0.028 \ 0.040 \ 0.068) \times 10^{-1}$	1 4.963 0.036 0.054 0.100
$26.7 - 28.8 (1.630 \ 0.005 \ 0.008 \ 0.024) \times 10^{0}$	$(3.308 \ 0.024 \ 0.033 \ 0.056) \times 10^{-1}$	1 4.928 0.038 0.055 0.100
$28.8 - 31.1 (1.319 \ 0.004 \ 0.007 \ 0.020) \times 10^{0}$	$(2.743\ 0.021\ 0.028\ 0.047)\times10^{-1}$	1 4.810 0.039 0.054 0.099
$31.1 - 33.5 (1.067 \ 0.004 \ 0.005 \ 0.016) \times 10^{0}$	$(2.222\ 0.018\ 0.023\ 0.038)\times10^{-1}$	1 4.801 0.043 0.056 0.099
$33.5 - 36.1 (8.679 \ 0.030 \ 0.046 \ 0.131) \times 10^{-1}$	$(1.825 \ 0.016 \ 0.019 \ 0.032) \times 10^{-1}$	1 4.755 0.045 0.056 0.099
$36.1 - 38.9 (7.070 \ 0.026 \ 0.038 \ 0.107) \times 10^{-1}$	$(1.501\ 0.014\ 0.016\ 0.027)\times10^{-}$	1 4.709 0.047 0.057 0.099
$38.9 - 41.9 (5.719 \ 0.023 \ 0.032 \ 0.087) \times 10^{-1}$	$(1.224 \ 0.012 \ 0.014 \ 0.021) \times 10^{-1}$	1 4.673 0.050 0.058 0.100
$41.9 - 45.1 (4.648 \ 0.020 \ 0.026 \ 0.071) \times 10^{-1}$	$(9.862\ 0.104\ 0.113\ 0.178)\times10^{-1}$	2 4.713 0.054 0.060 0.101
$45.1 - 48.5 (3.811 \ 0.018 \ 0.022 \ 0.059) \times 10^{-1}$	$(8.151 \ 0.092 \ 0.097 \ 0.150) \times 10^{-1}$	2 4.676 0.057 0.062 0.102
$48.5 - 52.2 (3.091 \ 0.015 \ 0.018 \ 0.049) \times 10^{-1}$	$(6.464\ 0.078\ 0.079\ 0.120)\times10^{-1}$	2 4.782 0.062 0.065 0.105
$52.2 - 56.1$ (2.531 0.013 0.015 0.041)× 10^{-1}	$(5.441\ 0.070\ 0.069\ 0.103)\times10^{-}$	$2 4.653 \ 0.064 \ 0.065 \ 0.104$
$56.1 - 60.3 (2.061 \ 0.012 \ 0.013 \ 0.034) \times 10^{-1}$	$(4.463\ 0.060\ 0.058\ 0.086) \times 10^{-1}$	$2 4.619 \ 0.068 \ 0.067 \ 0.104 $

TABLE SM LXXI: Bartels Rotation 2498 (September 9, 2016 – October 5, 2016). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr\cdot s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity $\Phi_p = \sigma_{\text{stat.}} \sigma_{\text{time}} = \sigma_{\text{syst.}}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He}~\sigma_{\rm stat.}~\sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (1.052 \ 0.005 \ 0.014 \ 0.047) \times 10^{-1}$	$)^3$		
$1.16 - 1.33 (1.026 \ 0.003 \ 0.010 \ 0.036) \times 10^{-1}$	0^3		
$1.33 - 1.51 (9.700 \ 0.024 \ 0.073 \ 0.278) \times 10^{-1}$	$)^2$		
$1.51 - 1.71 (8.910\ 0.018\ 0.055\ 0.231) \times 10^{-1}$	$)^2 \mid$		
$1.71 - 1.92 (7.997 \ 0.015 \ 0.043 \ 0.188) \times 10^{-1}$	$0^2 \mid$		
$1.92 - 2.15 (6.989 \ 0.012 \ 0.034 \ 0.150) \times 10^{-1} (6.989 \ 0.012 \ 0.034 \ 0.150) \times 10^{-1} (6.989 \ 0.012 \ 0.034 \ 0.150) \times 10^{-1} (6.989 \ 0.012 \ 0.034 \ 0.150) \times 10^{-1} (6.989 \ 0.012 \ 0.034 \ 0.150) \times 10^{-1} (6.989 \ 0.012 \ 0.034 \ 0.150) \times 10^{-1} (6.989 \ 0.012 \ 0.034 \ 0.150) \times 10^{-1} (6.989 \ 0.012 \ 0.034 \ 0.150) \times 10^{-1} (6.989 \ 0.012 \ 0.034 \ 0.150) \times 10^{-1} (6.989 \ 0.012 \ 0.034 \ 0.150) \times 10^{-1} (6.989 \ 0.012 \ 0.034 \ 0.150) \times 10^{-1} (6.989 \ 0.012 \ 0.034 \ 0.150) \times 10^{-1} (6.989 \ 0.012 \ 0.034 \ 0.150) \times 10^{-1} (6.989 \ 0.012 \ 0.034 \ 0.150) \times 10^{-1} (6.989 \ 0.012 \ 0.034 \ 0.150) \times 10^{-1} (6.989 \ 0.012 \ 0.034 \ 0.150) \times 10^{-1} (6.989 \ 0.012 \ 0.034 \ 0.150) \times 10^{-1} (6.989 \ 0.012 \ 0.034 \ 0.150) \times 10^{-1} (6.989 \ 0.012 \ 0.034 \ 0.034 \ 0.034) \times 10^{-1} (6.989 \ 0.012 \ 0.034 \ 0.034) \times 10^{-1} (6.989 \ 0.012 \ 0.034 \ 0.034) \times 10^{-1} (6.989 \ 0.012 \ 0.034 \ 0.034) \times 10^{-1} (6.989 \ 0.0012 \ 0.034 \ 0.034) \times 10^{-1} (6.989 \ 0.0012 \ 0.034 \ 0.034) \times 10^{-1} (6.989 \ 0.0012 \ 0.034 \ 0.034) \times 10^{-1} (6.989 \ 0.0012 \ 0.034 \ 0.034) \times 10^{-1} (6.989 \ 0.0012 \ 0.034 \ 0.034) \times 10^{-1} (6.989 \ 0.0012 \ 0.034 \ 0.034) \times 10^{-1} (6.989 \ 0.0012 \ 0.034 \ 0.034) \times 10^{-1} (6.989 \ 0.0012 \ 0.034) \times 10^{-1} (6.989 \ 0.0012 \ 0.034) \times 10^{-1} (6.989 \ 0.0012 \ 0.0012) \times 10^{-1} (6.989 \ 0.0012) \times$	$0^2 \mid (8.705 \ 0.049 \ 0.088 \ 0.195) \times 10^2$	0^1 8.029 0.047 0.090 0.238	
$2.15 - 2.40 (6.023 0.010 0.027 0.120) \times 10^{-1}$	$0^2 \mid (7.940 \ 0.041 \ 0.071 \ 0.157) \times 10^{-1}$	0^1 7.586 0.041 0.076 0.202	
$2.40 - 2.67 (5.132 \ 0.008 \ 0.022 \ 0.097) \times 10^{-1} (5.132 \ 0.008 \ 0.008 \ 0.008) \times 10^{-1} (5.132 \ 0.008 \ 0.008 \ 0.008) \times 10^{-1} (5.132 \ 0.008 \ 0.008 \ 0.008) \times 10^{-1} (5.132 \ 0.008 \ 0.008 \ 0.008) \times 10^{-1} (5.132 \ 0.008 \ 0.008 \ 0.008) \times 10^{-1} (5.132 \ 0.008 \ 0.008 \ 0.008) \times 10^{-1} (5.132 \ 0.008 \ 0.008 \ 0.008) \times 10^{-1} (5.132 \ 0.008) \times $	$0^2 \mid (7.020 \ 0.033 \ 0.061 \ 0.128) \times 10^{-1}$	0^1 7.311 0.037 0.071 0.181	
$2.67 - 2.97 (4.332 \ 0.007 \ 0.018 \ 0.075) \times 10^{-1}$	$0^2 \mid (6.085 \ 0.028 \ 0.051 \ 0.106) \times 10^2$	0^1 7.119 0.034 0.067 0.166	
$2.97 - 3.29 (3.629 \ 0.006 \ 0.015 \ 0.060) \times 10^{-1}$	$0^2 \mid (5.237 \ 0.023 \ 0.039 \ 0.086) \times 10^{-1}$	0^1 6.929 0.032 0.059 0.154	
$3.29 - 3.64 (3.002 \ 0.005 \ 0.013 \ 0.048) \times 10^{-1}$	$0^2 \mid (4.450 \ 0.019 \ 0.029 \ 0.072) \times 10^2 \mid (4.450 \ 0.019 \ 0.029 \ 0.072) \times 10^2 \mid (4.450 \ 0.019 \ 0.029 \ 0.072) \times 10^2 \mid (4.450 \ 0.019 \ 0.019 \ 0.029 \ 0.072) \times 10^2 \mid (4.450 \ 0.019 \ 0.019 \ 0.029 \ 0.072) \times 10^2 \mid (4.450 \ 0.019 \ 0.019 \ 0.029 \ 0.072) \times 10^2 \mid (4.450 \ 0.019 \$	0^1 6.747 0.030 0.053 0.145	
$3.64 - 4.02 (2.469 \ 0.004 \ 0.011 \ 0.039) \times 10^{-1}$	$0^2 \mid (3.733 \ 0.016 \ 0.023 \ 0.059) \times 10^{-1}$	0^1 6.614 0.029 0.051 0.139	
$4.02 - 4.43 (2.023 \ 0.003 \ 0.009 \ 0.031) \times 10^{-1}$	$0^2 \mid (3.097 \ 0.013 \ 0.019 \ 0.048) \times 10^{-1}$	0^1 6.532 0.028 0.049 0.134	
$4.43 - 4.88 (1.647 \ 0.002 \ 0.007 \ 0.025) \times 10^{-1}$	$0^2 \mid (2.550 \ 0.010 \ 0.015 \ 0.039) \times 10^{-2}$	$0^1 6.458 0.027 0.048 0.131$	
$4.88 - 5.37 (1.327 \ 0.002 \ 0.005 \ 0.019) \times 10^{-1}$	$0^2 \mid (2.091 \ 0.008 \ 0.012 \ 0.032) \times 10^2$	0^1 6.348 0.026 0.045 0.126	
$5.37 - 5.90 (1.070 \ 0.002 \ 0.004 \ 0.015) \times 10^{-1}$	$0^2 \mid (1.714 \ 0.007 \ 0.010 \ 0.026) \times 10^{-1}$	0^1 6.242 0.026 0.043 0.122	
$5.90 - 6.47 (8.544 \ 0.012 \ 0.032 \ 0.120) \times 10^{-1}$	$0^1 \mid (1.403 \ 0.005 \ 0.008 \ 0.021) \times 10^{-1}$	0^1 6.091 0.025 0.042 0.117	
$6.47 - 7.09 (6.872 \ 0.010 \ 0.025 \ 0.096) \times 10^{-1}$	$0^1 \mid (1.140 \ 0.004 \ 0.007 \ 0.017) \times 10^{-1}$	$0^1 6.028 \ 0.025 \ 0.042 \ 0.115$	
$7.09 - 7.76 (5.525 \ 0.008 \ 0.020 \ 0.076) \times 10^{-1} (5.525 \ 0.008 \ 0.020 \ 0.076) \times 10^{-1} (5.525 \ 0.008 \ 0.020 \ 0.076) \times 10^{-1} (5.525 \ 0.008 \ 0.008 \ 0.020 \ 0.076) \times 10^{-1} (5.525 \ 0.008 \ 0.008 \ 0.020 \ 0.076) \times 10^{-1} (5.525 \ 0.008 \ 0.008 \ 0.020 \ 0.076) \times 10^{-1} (5.525 \ 0.008 \ 0.008 \ 0.020 \ 0.076) \times 10^{-1} (5.525 \ 0.008 \ 0.008 \ 0.020 \ 0.076) \times 10^{-1} (5.525 \ 0.008 \ 0.008 \ 0.020 \ 0.076) \times 10^{-1} (5.525 \ 0.008 \ 0.008 \ 0.008 \ 0.008) \times 10^{-1} (5.525 \ 0.008 \ 0.008 \ 0.008) \times 10^{-1} (5.525 \ 0.008 \ 0.008 \ 0.008) \times 10^{-1} (5.525 \ 0.008) \times 10^{-1} $	$0^1 \mid (9.291 \ 0.036 \ 0.055 \ 0.141) \times 10^{-1}$	0^0 5.947 0.025 0.041 0.112	
$7.76 - 8.48 (4.422 \ 0.007 \ 0.016 \ 0.061) \times 10^{-1} (4.422 \ 0.007 \ 0.016 \ 0.0061) \times 10^{-1} (4.422 \ 0.007 \ 0.016 \ 0.0061) \times 10^{-1} (4.422 \ 0.007 \ 0.016 \ 0.0061) \times 10^{-1} (4.422 \ 0.007 \ 0.016 \ 0.0061) \times 10^{-1} (4.422 \ 0.007 \ 0.016 \ 0.0061) \times 10^{-1} (4.422 \ 0.007 \ 0.016 \ 0.0061) \times 10^{-1} (4.422 \ 0.007 \ 0.016 \ 0.0061) \times 10^{-1} (4.422 \ 0.007 \ 0.016 \ 0.0061) \times 10^{-1} (4.422 \ 0.007 \ 0.016 \ 0.0061) \times 10^{-1} (4.422 \ 0.007 \ 0.007) \times 10^{-1} (4.422 \ 0.007 \ 0.007) \times 10^{-1} (4.422 \ 0.007 \ 0.007) \times 10^{-1} (4.422 \ 0.007) \times 10^{-1} (4.422 \ 0.007) \times 10^{-1} (4.422 \ 0.$	$0^1 \mid (7.519 \ 0.030 \ 0.046 \ 0.114) \times 10^{-1}$	0^0 5.882 0.025 0.042 0.111	
$8.48 - 9.26 (3.545 \ 0.006 \ 0.013 \ 0.049) \times 10^{-1}$	$0^{1} \mid (6.136 \ 0.025 \ 0.039 \ 0.094) \times 10^{1}$	0^0 5.778 0.026 0.043 0.109	
$9.26 - 10.1 (2.830 \ 0.005 \ 0.010 \ 0.038) \times 10^{-1}$	$0^1 (4.959 \ 0.021 \ 0.033 \ 0.076) \times 10^{-1} $	0^0 5.707 0.026 0.044 0.107	
$10.1 - 11.0 (2.257 \ 0.004 \ 0.009 \ 0.031) \times 10^{-1}$	$0^1 \mid (3.955 \ 0.018 \ 0.028 \ 0.061) \times 10^{-1}$	0^0 5.708 0.028 0.046 0.108	
$11.0 - 12.0 (1.800 \ 0.003 \ 0.007 \ 0.024) \times 10^{-1}$	$0^1 \mid (3.235 \ 0.015 \ 0.024 \ 0.051) \times 10^{-1}$	0^0 5.564 0.028 0.047 0.105	
$12.0 - 13.0 (1.447 \ 0.003 \ 0.006 \ 0.020) \times 10^{-1}$	$0^1 \mid (2.617 \ 0.013 \ 0.020 \ 0.042) \times 10^{-1}$	0^0 5.529 0.030 0.049 0.106	
$13.0 - 14.1 (1.165 \ 0.002 \ 0.005 \ 0.016) \times 10^{-1}$	$0^1 \mid (2.127 \ 0.011 \ 0.018 \ 0.034) \times 10^{-1}$	0^0 5.478 0.031 0.051 0.106	
$14.1 - 15.3 (9.338 \ 0.020 \ 0.041 \ 0.131) \times 10^{-1}$	$0^0 \mid (1.727 \ 0.010 \ 0.015 \ 0.028) \times 10^{-1}$	0^0 5.407 0.032 0.052 0.106	
15.3 - 16.6 (7.509 0.017 0.034 0.107)×10	$0^0 \mid (1.411 \ 0.008 \ 0.013 \ 0.023) \times 10^{-1}$	0^0 5.322 0.032 0.054 0.106	

TABLE SM LXXI: Bartels Rotation 2498 (September 9, 2016 – October 5, 2016). (Continued).

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He }\sigma_{\text{stat.}}$ $\sigma_{\text{time }}$ $\sigma_{\text{syst.}}$
$16.6 - 18.0 (6.019 \ 0.014 \ 0.028 \ 0.087) \times 10$	$0 (1.147 \ 0.007 \ 0.011 \ 0.019) \times 10^{0}$	5.248 0.033 0.056 0.106
$18.0 - 19.5 (4.819 \ 0.011 \ 0.023 \ 0.071) \times 10$	$0 (9.171 \ 0.055 \ 0.092 \ 0.155) \times 10^{-6} $	$\begin{bmatrix} -1 \\ 5.254 \\ 0.034 \\ 0.058 \\ 0.107 \end{bmatrix}$
$19.5 - 21.1 (3.895 \ 0.009 \ 0.019 \ 0.058) \times 10$	$0 (7.658 \ 0.046 \ 0.080 \ 0.132) \times 10^{-6} $	$\begin{bmatrix} -1 \\ 5.086 \\ 0.033 \\ 0.059 \\ 0.104 \end{bmatrix}$
$21.1 - 22.8 (3.132 \ 0.008 \ 0.016 \ 0.047) \times 10$	$0 (6.134 \ 0.039 \ 0.064 \ 0.106) \times 10^{-6}$	$\begin{bmatrix} -1 \\ 5.106 \\ 0.035 \\ 0.059 \\ 0.105 \end{bmatrix}$
$22.8 - 24.7 (2.518 \ 0.006 \ 0.013 \ 0.038) \times 10$	$0 (5.028 \ 0.032 \ 0.053 \ 0.087) \times 10^{-6} $	$\begin{bmatrix} -1 \\ 5.008 & 0.034 & 0.059 & 0.104 \end{bmatrix}$
$24.7 - 26.7 (2.017 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 (4.101 \ 0.027 \ 0.044 \ 0.071) \times 10^{-6}$	$^{-1}$ $ 4.918 \ 0.035 \ 0.059 \ 0.102$
$26.7 - 28.8 (1.625 \ 0.005 \ 0.009 \ 0.025) \times 10$	$0 (3.263 \ 0.024 \ 0.035 \ 0.057) \times 10^{-6} $	$\begin{bmatrix} 1 \\ 4.980 \\ 0.039 \\ 0.060 \\ 0.104 \end{bmatrix}$
$28.8 - 31.1 (1.320 \ 0.004 \ 0.008 \ 0.020) \times 10$	$0 (2.703 \ 0.020 \ 0.029 \ 0.047) \times 10^{-6}$	-1 4.885 0.040 0.060 0.103
$31.1 - 33.5 (1.070 \ 0.003 \ 0.006 \ 0.017) \times 10$	$0 (2.209 \ 0.018 \ 0.024 \ 0.039) \times 10^{-6}$	$\begin{bmatrix} 1 \\ 4.842 \\ 0.042 \\ 0.060 \\ 0.102 \end{bmatrix}$
$33.5 - 36.1 (8.643 \ 0.030 \ 0.052 \ 0.133) \times 10$	$^{-1}$ (1.820 0.016 0.020 0.033)×10	$-1 \mid 4.749 \mid 0.044 \mid 0.060 \mid 0.101 \mid$
$36.1 - 38.9 (7.091 \ 0.026 \ 0.044 \ 0.110) \times 10$	$^{-1}$ (1.461 0.013 0.017 0.026)×10	-1 4.855 0.048 0.063 0.105
$38.9 - 41.9 (5.732 \ 0.023 \ 0.037 \ 0.089) \times 10$	$^{-1}$ (1.223 0.012 0.014 0.022)×10	-1 4.688 0.049 0.062 0.102
$41.9 - 45.1 (4.633 \ 0.020 \ 0.030 \ 0.072) \times 10$	$^{-1}$ (9.889 0.103 0.118 0.181)×10	$-2 \mid 4.684 \mid 0.053 \mid 0.064 \mid 0.103 \mid$
$45.1 - 48.5 (3.786 \ 0.017 \ 0.025 \ 0.060) \times 10$	$^{-1}$ (8.155 0.091 0.099 0.151)×10	$-2 \mid 4.642 \mid 0.056 \mid 0.064 \mid 0.103 \mid$
$48.5 - 52.2 (3.070\ 0.015\ 0.021\ 0.050) \times 10$	$^{-1}$ (6.745 0.079 0.084 0.127)×10	$-2 \mid 4.552 \mid 0.058 \mid 0.065 \mid 0.102 \mid$
52.2 - 56.1 (2.519 0.013 0.018 0.042)×10	$^{-1}$ (5.422 0.069 0.069 0.103)×10	$-2 \mid 4.646 \mid 0.064 \mid 0.068 \mid 0.105 \mid$
$56.1 - 60.3 (2.078 \ 0.012 \ 0.015 \ 0.035) \times 10$	-1 (4.418 0.059 0.058 0.085)×10	$-2 \mid 4.704 \mid 0.068 \mid 0.070 \mid 0.108 \mid$

TABLE SM LXXII: Bartels Rotation 2499 (October 6, 2016 – November 1, 2016). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr\cdot s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m st}$	$tat. \sigma_{ti}$	$\sigma_{ m s}$	syst.	p/	He $\sigma_{\rm s}$	$tat. \sigma_t$	ime		$\sigma_{ m syst.}$
$1.00 - 1.16 (1.131 \ 0.005 \ 0.015 \ 0.050) \times 10$		_	_	_		_	_	_	_	
$1.16 - 1.33 (1.090 \ 0.003 \ 0.011 \ 0.039) \times 10$	3	_	_	_		_	_	_	_	
$1.33 - 1.51 (1.024 \ 0.003 \ 0.008 \ 0.029) \times 10$	3	_	_	_		_	_	_	_	
$1.51 - 1.71 (9.346 \ 0.019 \ 0.059 \ 0.243) \times 10$	$\begin{array}{c c}2&&-\end{array}$	_	_	_		_	_	_	_	
$1.71 - 1.92 (8.340\ 0.016\ 0.046\ 0.196) \times 10$	$\begin{array}{c c}2&&-\end{array}$	_	_	_		_	_	_	_	
$1.92 - 2.15 (7.251 \ 0.013 \ 0.036 \ 0.156) \times 10$	(8.967)	0.051	0.093	0.202)	$\times 10^{1}$	8.087	0.049	0.093	0.241	
$2.15 - 2.40 (6.225 \ 0.011 \ 0.029 \ 0.124) \times 10$		0.043	0.075	0.163	$\times 10^{1}$	7.582	0.042	0.078	0.203	
$2.40 - 2.67 (5.298 \ 0.009 \ 0.023 \ 0.100) \times 10$	(7.313)	0.035	0.065	0.134	$\times 10^{1}$	7.244	0.037	0.072	0.180	
$2.67 - 2.97 (4.434 \ 0.007 \ 0.019 \ 0.077) \times 10$	(6.243)	0.029	0.054	0.109	$\times 10^{1}$	7.102	0.035	0.069	0.166	
$2.97 - 3.29 (3.699 \ 0.006 \ 0.016 \ 0.062) \times 10$,		6.907	0.032	0.060	0.154	
$3.29 - 3.64 (3.051 \ 0.005 \ 0.013 \ 0.049) \times 10$	(4.545)	0.019	0.030	0.073	$\times 10^{1}$	6.713	0.030	0.053	0.144	
$3.64 - 4.02 (2.501 \ 0.004 \ 0.011 \ 0.040) \times 10$,		6.654	0.030	0.051	0.140	
$4.02 - 4.43 (2.047 \ 0.003 \ 0.009 \ 0.031) \times 10$	(3.151)	0.013	0.019	0.049	$\times 10^{1}$	6.497	0.028	0.049	0.133	
$4.43 - 4.88 (1.667 \ 0.002 \ 0.007 \ 0.025) \times 10$	(2.590)	0.010	0.016	0.040	$\times 10^{1}$	6.438	0.027	0.048	0.130	
$4.88 - 5.37 (1.344 \ 0.002 \ 0.006 \ 0.019) \times 10$	(2.129)	0.008	0.013	0.033	$\times 10^{1}$	6.315	0.026	0.046	0.126	
$5.37 - 5.90 (1.080 \ 0.002 \ 0.004 \ 0.015) \times 10$. '	0.007	0.010	0.026	$\times 10^{1}$	6.281	0.026	0.044	0.123	
$5.90 - 6.47 (8.648\ 0.013\ 0.033\ 0.121) \times 10$	1 (1.408)	0.005	0.008	0.021	$\times 10^{1}$	6.140	0.026	0.042	0.118	
$6.47 - 7.09 (6.943 \ 0.010 \ 0.026 \ 0.097) \times 10$	(1.147)	0.004	0.007	0.017	$\times 10^{1}$	6.054	0.025	0.042	0.115	
$7.09 - 7.76 (5.569 \ 0.008 \ 0.020 \ 0.077) \times 10$	(9.289)	0.036	0.054	0.141	$\times 10^{0}$	5.995	0.025	0.041	0.113	
$7.76 - 8.48 (4.468 \ 0.007 \ 0.016 \ 0.062) \times 10$,	0.030	0.046	0.115	$\times 10^{0}$	5.868	0.025	0.041	0.110	
$8.48 - 9.26 (3.565 \ 0.006 \ 0.013 \ 0.049) \times 10$	(6.182)	0.026	0.038	0.094	$\times 10^{0}$	5.767	0.026	0.042	0.108	
$9.26 - 10.1 (2.847 \ 0.005 \ 0.011 \ 0.039) \times 10$		0.022	0.032	0.076	$\times 10^{0}$	5.717	0.027	0.043	0.107	
$10.1 - 11.0 (2.275 \ 0.004 \ 0.009 \ 0.031) \times 10$		0.018	0.027	0.062	$\times 10^{0}$	5.644	0.028	0.044	0.106	
$11.0 - 12.0 (1.807 \ 0.003 \ 0.007 \ 0.025) \times 10$	`	0.015	0.023	0.051	$\times 10^{0}$	5.547	0.028	0.045	0.105	
$12.0 - 13.0 (1.452\ 0.003\ 0.006\ 0.020) \times 10$	`			,		5.484	0.030	0.047	0.105	
$13.0 - 14.1 (1.170 \ 0.002 \ 0.005 \ 0.016) \times 10$	`			0.034				0.049		
$14.1 - 15.3 (9.401\ 0.020\ 0.042\ 0.133) \times 10$	`			,				0.051		
15.3 - 16.6 (7.517 0.017 0.034 0.107)×10	`			0.023		5.328	0.033	0.052	0.105	

TABLE SM LXXII: Bartels Rotation 2499 (October 6, 2016 – November 1, 2016). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time }} \sigma_{\text{syst.}}$
$16.6 - 18.0 (6.024 \ 0.014 \ 0.029 \ 0.087) \times 10$	$0 (1.148 \ 0.007 \ 0.010 \ 0.019) \times 10^{-1} $	0 5.249 0.033 0.054 0.105
$18.0 - 19.5 (4.847 \ 0.011 \ 0.024 \ 0.071) \times 10$	$0 (9.258 \ 0.055 \ 0.088 \ 0.155) \times 10^{-6} $	0^{-1} 5.236 0.034 0.056 0.105
$19.5 - 21.1 (3.887 \ 0.009 \ 0.020 \ 0.058) \times 10$	$0 \mid (7.553 \ 0.046 \ 0.075 \ 0.128) \times 10^{-6}$	0^{-1} 5.146 0.034 0.057 0.104
$21.1 - 22.8 (3.139 \ 0.008 \ 0.016 \ 0.047) \times 10$	$0 (6.146 \ 0.039 \ 0.062 \ 0.105) \times 10^{-6} $	0^{-1} $5.107 \ 0.035 \ 0.058 \ 0.105$
$22.8 - 24.7 (2.522 \ 0.006 \ 0.014 \ 0.038) \times 10$	$0 \mid (5.059 \ 0.032 \ 0.051 \ 0.086) \times 10^{-6}$	$0^{-1} 4.985 \ 0.034 \ 0.057 \ 0.103$
$24.7 - 26.7 (2.038 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 \mid (4.037 \ 0.027 \ 0.042 \ 0.069) \times 10^{-1}$	0^{-1} 5.049 0.037 0.059 0.104
$26.7 - 28.8 (1.632 \ 0.005 \ 0.009 \ 0.025) \times 10$	$0 (3.301 \ 0.024 \ 0.035 \ 0.057) \times 10^{-6} $	$0^{-1} 4.944 \ 0.038 \ 0.059 \ 0.103$
$28.8 - 31.1 (1.321 \ 0.004 \ 0.008 \ 0.020) \times 10$	$0 (2.676 \ 0.020 \ 0.028 \ 0.047) \times 10^{-6} $	$0^{-1} 4.939 \ 0.040 \ 0.060 \ 0.104$
$31.1 - 33.5 (1.070 \ 0.004 \ 0.006 \ 0.017) \times 10$	$0 (2.209 \ 0.018 \ 0.024 \ 0.039) \times 10^{-6} $	0^{-1} 4.844 0.043 0.060 0.102
$33.5 - 36.1 (8.711 \ 0.030 \ 0.054 \ 0.134) \times 10$	$^{-1}$ (1.799 0.016 0.020 0.032)×10	0^{-1} 4.843 0.045 0.062 0.103
$36.1 - 38.9 (7.074 \ 0.026 \ 0.045 \ 0.110) \times 10$	$^{-1}$ (1.486 0.014 0.017 0.027)×10	0^{-1} 4.760 0.047 0.062 0.103
$38.9 - 41.9 (5.739 \ 0.023 \ 0.037 \ 0.089) \times 10$	$^{-1}$ (1.195 0.012 0.014 0.021)×10	0^{-1} 4.803 0.051 0.064 0.105
$41.9 - 45.1 (4.657 \ 0.020 \ 0.031 \ 0.073) \times 10$	$^{-1} (9.990 \ 0.104 \ 0.121 \ 0.185) \times 10^{-1} $	$0^{-2} 4.662 \ 0.053 \ 0.064 \ 0.103$
$45.1 - 48.5 (3.830 \ 0.018 \ 0.026 \ 0.061) \times 10$	$^{-1}$ (8.119 0.091 0.102 0.153)×10	$0^{-2} 4.717 \ 0.057 \ 0.067 \ 0.106$
$48.5 - 52.2 (3.085 \ 0.015 \ 0.021 \ 0.050) \times 10$	$^{-1}$ (6.614 0.078 0.086 0.126)×10	$0^{-2} 4.664 \ 0.060 \ 0.068 \ 0.106$
$52.2 - 56.1 (2.532 \ 0.013 \ 0.018 \ 0.042) \times 10$	$^{-1} (5.374 \ 0.069 \ 0.072 \ 0.104) \times 10^{-1} $	$0^{-2} 4.711 \ 0.065 \ 0.071 \ 0.108$
$56.1 - 60.3 (2.077 \ 0.012 \ 0.015 \ 0.035) \times 10$	$^{-1}$ (4.367 0.059 0.060 0.086)×10	$0^{-2} 4.757 \ 0.070 \ 0.074 \ 0.111$

TABLE SM LXXIII: Bartels Rotation 2500 (November 2, 2016 – November 28, 2016). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr\cdot s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ σ	stat. $\sigma_{\rm t}$	$_{ m ime}$ $\sigma_{ m s}$	syst.	p/1	He $\sigma_{\rm s}$	$tat. \sigma_t$	ime		$\sigma_{ m syst.}$
$1.00 - 1.16 (1.186 \ 0.005 \ 0.014 \ 0.052) \times 10^{-1}$	3	_	_	_		_	_	_	_	
$1.16 - 1.33 (1.144 \ 0.003 \ 0.010 \ 0.040) \times 10$	$\begin{array}{c c} 3 & - \end{array}$	_	_	_		_	_		_	
$1.33 - 1.51 (1.075 \ 0.003 \ 0.007 \ 0.030) \times 10^{-1}$	3	_	_	_		_	_	_	_	
$1.51 - 1.71 (9.769 \ 0.019 \ 0.053 \ 0.252) \times 10$	$\begin{array}{c c}2&&-\end{array}$	_	_	_		_	_		_	
$1.71 - 1.92 (8.641 \ 0.016 \ 0.042 \ 0.202) \times 10^{-1}$	$\begin{array}{c c} 2 & - \end{array}$	_	_	_		_	_	_	_	
$1.92 - 2.15 (7.518 \ 0.013 \ 0.033 \ 0.161) \times 10^{-1}$	2 (9.415)	0.051	0.086	$0.207) \times 1$	0^1	7.985	0.045	0.081	0.234	
$2.15 - 2.40 (6.428 \ 0.010 \ 0.027 \ 0.128) \times 10^{-1}$	(8.480)	0.042	0.069	$0.165) \times 1$	0^1	7.580	0.040	0.069	0.200	
$2.40 - 2.67 (5.442 \ 0.009 \ 0.021 \ 0.102) \times 10^{-1}$	2 (7.459	0.035	0.057	$0.133) \times 1$	0^1	7.296	0.036	0.063	0.177	
$2.67 - 2.97 (4.540 \ 0.007 \ 0.018 \ 0.079) \times 10^{-1}$	(6.428)	0.028	0.047	$0.108) \times 1$	0^1	7.063	0.033	0.059	0.162	
$2.97 - 3.29 (3.772 \ 0.006 \ 0.015 \ 0.062) \times 10$	2 (5.445)	0.023	0.037	$0.088) \times 1$	0^1	6.928	0.031	0.054	0.152	
$3.29 - 3.64 (3.120 \ 0.005 \ 0.012 \ 0.050) \times 10$	2 (4.617)	0.019	0.029	$0.074) \times 1$	0^1	6.759	0.030	0.050	0.144	
$3.64 - 4.02 (2.552 \ 0.004 \ 0.010 \ 0.040) \times 10^{-1}$	(3.855)	0.016	0.023	$0.060) \times 1$	0^1	6.619	0.029	0.048	0.138	
$4.02 - 4.43 (2.081 \ 0.003 \ 0.008 \ 0.032) \times 10^{-1}$	(3.176)	0.013	0.018	$0.049) \times 1$	0^1	6.552	0.028	0.046	0.133	
$4.43 - 4.88 (1.688 \ 0.002 \ 0.007 \ 0.025) \times 10^{-1}$	(2.613)	0.010	0.015	$0.040) \times 1$	0^1	6.461	0.026	0.045	0.130	
$4.88 - 5.37 (1.362 \ 0.002 \ 0.005 \ 0.019) \times 10$	(2.138)	0.008	0.012	$0.032) \times 1$	0^1	6.369	0.026	0.042	0.126	
$5.37 - 5.90 (1.090 \ 0.002 \ 0.004 \ 0.015) \times 10$	2 (1.747)	0.007	0.009	$0.026) \times 1$	0^1	6.236	0.025	0.040	0.120	
$5.90 - 6.47 (8.751 \ 0.013 \ 0.030 \ 0.122) \times 10$	(1.429)	0.005	0.008	$0.021) \times 1$	0^1	6.126	0.025	0.039	0.116	
$6.47 - 7.09 (7.010 \ 0.010 \ 0.024 \ 0.097) \times 10^{-1}$	1 (1.153)	0.004	0.006	$0.017) \times 1$	0^1	6.082	0.025	0.039	0.115	
$7.09 - 7.76 (5.597 \ 0.008 \ 0.019 \ 0.077) \times 10$	(9.426)	0.036	0.052	$0.142) \times 1$	0_0	5.938	0.024	0.038	0.111	
$7.76 - 8.48 (4.489 \ 0.007 \ 0.015 \ 0.062) \times 10$	(7.655)	0.030	0.044	$0.115) \times 1$	0_0	5.864	0.025	0.039	0.109	
$8.48 - 9.26 (3.583 \ 0.006 \ 0.012 \ 0.049) \times 10^{-1}$	(6.144)	0.025	0.037	$0.093) \times 1$	0_0	5.832	0.026	0.040	0.109	
$9.26 - 10.1 (2.865 \ 0.005 \ 0.010 \ 0.039) \times 10^{-1}$	1 (5.021)	0.022	0.032	$0.076) \times 1$	0_0	5.707	0.026	0.041	0.106	
$10.1 - 11.0 (2.284 \ 0.004 \ 0.008 \ 0.031) \times 10$	(4.058)	0.018	0.027	$0.062) \times 1$	0_0	5.629	0.027	0.042	0.105	
$11.0 - 12.0 (1.821 \ 0.003 \ 0.007 \ 0.025) \times 10$	(3.264)	0.015	0.023	$0.051) \times 1$	0_0	5.580	0.028	0.044	0.104	
$12.0 - 13.0 (1.457 \ 0.003 \ 0.005 \ 0.020) \times 10^{-1}$	(2.627)	0.013	0.019	$0.041) \times 1$	0_0	5.547	0.031	0.046	0.105	
$13.0 - 14.1 (1.180 \ 0.002 \ 0.005 \ 0.016) \times 10$	(2.145)	0.011	0.016	$0.034) \times 1$	0_0	5.498	0.031	0.047	0.105	
$14.1 - 15.3 (9.438 \ 0.020 \ 0.038 \ 0.132) \times 10^{-1}$	0 (1.755)	0.010	0.014	$0.027) \times 1$	0_0	5.377	0.031	0.048	0.104	
$15.3 - 16.6 (7.568 \ 0.017 \ 0.032 \ 0.107) \times 10^{-1}$	0 (1.421)	0.008	0.012	$0.023) \times 1$	0^0	5.325	0.032	0.050	0.104	

TABLE SM LXXIII: Bartels Rotation 2500 (November 2, 2016 – November 28, 2016). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$p/\text{He }\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$
$16.6 - 18.0 (6.047 \ 0.014 \ 0.026 \ 0.086) \times 10$	$0 (1.153 \ 0.007 \ 0.010 \ 0.019) \times 10^{-1}$	0^0 5.244 0.032 0.052 0.104
$18.0 - 19.5 (4.842 \ 0.011 \ 0.022 \ 0.070) \times 10$	$0 (9.267 \ 0.055 \ 0.087 \ 0.154) \times 10^{-6} $	$0^{-1} 5.225 \ 0.033 \ 0.054 \ 0.104$
$19.5 - 21.1 (3.900 \ 0.009 \ 0.018 \ 0.057) \times 10$	$0 (7.597 \ 0.046 \ 0.075 \ 0.128) \times 10^{-6} $	$0^{-1} 5.133 0.033 0.056 0.103$
$21.1 - 22.8 (3.151 \ 0.008 \ 0.015 \ 0.047) \times 10$	0 (6.269 0.039 0.062 0.106)×10	$0^{-1} 5.026 0.033 0.056 0.102$
$22.8 - 24.7 (2.527 \ 0.006 \ 0.012 \ 0.038) \times 10$	$0 (5.054 \ 0.032 \ 0.051 \ 0.086) \times 10^{-6} $	$0^{-1} 4.999 \ 0.034 \ 0.056 \ 0.102$
$24.7 - 26.7 (2.024 \ 0.005 \ 0.010 \ 0.031) \times 10$	$0 (4.101 \ 0.027 \ 0.042 \ 0.070) \times 10^{-6}$	$0^{-1} 4.935 \ 0.036 \ 0.057 \ 0.101$
$26.7 - 28.8 (1.639 \ 0.005 \ 0.009 \ 0.025) \times 10$	$0 (3.316 \ 0.024 \ 0.035 \ 0.057) \times 10^{-6} $	$0^{-1} 4.942 \ 0.038 \ 0.058 \ 0.102$
$28.8 - 31.1 (1.317 \ 0.004 \ 0.007 \ 0.020) \times 10$	$0 (2.674 \ 0.020 \ 0.029 \ 0.047) \times 10^{-6} $	$0^{-1} \begin{vmatrix} 4.923 & 0.040 & 0.059 & 0.103 \end{vmatrix}$
$31.1 - 33.5 (1.072 \ 0.004 \ 0.006 \ 0.017) \times 10$	$(2.200\ 0.018\ 0.024\ 0.039) \times 10^{-6}$	$0^{-1} \begin{vmatrix} 4.874 & 0.043 & 0.060 & 0.103 \end{vmatrix}$
$33.5 - 36.1 (8.723 \ 0.030 \ 0.049 \ 0.133) \times 10$	$^{-1}$ (1.852 0.016 0.021 0.034)×10	$0^{-1} 4.710 \ 0.044 \ 0.060 \ 0.100$
$36.1 - 38.9 (7.091 \ 0.026 \ 0.041 \ 0.108) \times 10$	$^{-1}$ (1.475 0.014 0.017 0.027)×10	$0^{-1} \begin{vmatrix} 4.808 & 0.048 & 0.062 & 0.104 \end{vmatrix}$
$38.9 - 41.9 (5.713 \ 0.023 \ 0.034 \ 0.088) \times 10$	$^{-1}$ (1.228 0.012 0.015 0.022)×10	$0^{-1} \begin{vmatrix} 4.654 & 0.049 & 0.062 & 0.101 \end{vmatrix}$
$41.9 - 45.1 (4.644 \ 0.020 \ 0.028 \ 0.072) \times 10$	$^{-1}$ (9.833 0.103 0.119 0.182)×10	$0^{-2} \begin{vmatrix} 4.723 & 0.054 & 0.064 & 0.104 \end{vmatrix}$
$45.1 - 48.5 (3.800 \ 0.017 \ 0.023 \ 0.059) \times 10$	$^{-1}$ (7.920 0.090 0.098 0.148)×10	$0^{-2} 4.798 \ 0.059 \ 0.066 \ 0.107$
$48.5 - 52.2 (3.091 \ 0.015 \ 0.019 \ 0.049) \times 10$	$^{-1}$ (6.489 0.077 0.082 0.123)×10	$0^{-2} 4.763 \ 0.061 \ 0.067 \ 0.107$
$52.2 - 56.1 (2.541 \ 0.013 \ 0.016 \ 0.041) \times 10$	$^{-1}$ (5.407 0.069 0.070 0.103)×10	$0^{-2} 4.699 \ 0.065 \ 0.068 \ 0.106$
$56.1 - 60.3 (2.079 \ 0.012 \ 0.014 \ 0.034) \times 10$	$^{-1}$ (4.374 0.059 0.058 0.084)×10	0^{-2} 4.753 0.070 0.070 0.108

TABLE SM LXXIV: Bartels Rotation 2501 (November 29, 2016 – December 25, 2016). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[\text{m}^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (1.233 \ 0.005 \ 0.015 \ 0.054) \times 10^{-1}$	$)^3$		_
$1.16 - 1.33 (1.180 \ 0.003 \ 0.011 \ 0.042) \times 10^{-1}$	$)^3$		_
$1.33 - 1.51 (1.103 \ 0.003 \ 0.008 \ 0.031) \times 10^{-1}$	$)^3$		_
$1.51 - 1.71 (9.950 \ 0.019 \ 0.058 \ 0.257) \times 10^{-1}$	$)^{2}$		_
$1.71 - 1.92 (8.779 \ 0.015 \ 0.045 \ 0.206) \times 10^{-1}$	$)^{2}$		_
$1.92 - 2.15 (7.610 \ 0.013 \ 0.036 \ 0.163) \times 10^{-1}$	$0^2 \mid (9.526 \ 0.050 \ 0.082 \ 0.207) \times 10^{-1}$	1 7.988 0.044 0.078	0.233
$2.15 - 2.40 (6.490 \ 0.010 \ 0.029 \ 0.129) \times 10^{-1}$	$(8.558 \ 0.042 \ 0.065 \ 0.165) \times 10$	$1 7.584 \ 0.039 \ 0.066$	0.199
$2.40 - 2.67 (5.481 \ 0.008 \ 0.023 \ 0.103) \times 10^{-1}$	$(7.534 \ 0.034 \ 0.053 \ 0.132) \times 10$	$1 7.275 \ 0.035 \ 0.060 $	0.176
$2.67 - 2.97 (4.586 \ 0.007 \ 0.019 \ 0.080) \times 10^{-1}$	$0^{2} (6.509 \ 0.028 \ 0.044 \ 0.108) \times 10^{2}$	$1 7.045 \ 0.033 \ 0.056 $	0.160
$2.97 - 3.29 (3.791 \ 0.006 \ 0.016 \ 0.063) \times 10^{-1}$	$0^2 (5.549 \ 0.023 \ 0.035 \ 0.089) \times 10^{-2}$	$1 6.832 \ 0.030 \ 0.052$	0.149
$3.29 - 3.64 (3.135 \ 0.005 \ 0.013 \ 0.050) \times 10^{-1}$	$0^2 (4.688 \ 0.019 \ 0.028 \ 0.074) \times 10^{-1}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.142
$3.64 - 4.02 (2.560 \ 0.004 \ 0.011 \ 0.040) \times 10^{-1}$	$(3.876 \ 0.016 \ 0.021 \ 0.060) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.137
$4.02 - 4.43 (2.093 \ 0.003 \ 0.009 \ 0.032) \times 10^{-1}$	$(3.204 \ 0.013 \ 0.017 \ 0.049) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.132
$4.43 - 4.88 (1.693 \ 0.002 \ 0.007 \ 0.026) \times 10^{-1}$	$(2.636 \ 0.010 \ 0.014 \ 0.040) \times 10^{-2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.128
$4.88 - 5.37 (1.365 \ 0.002 \ 0.006 \ 0.020) \times 10^{-1}$	$(2.161 \ 0.008 \ 0.011 \ 0.032) \times 10^{-2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.124
$5.37 - 5.90 (1.093 \ 0.002 \ 0.004 \ 0.016) \times 10^{-1}$	$(1.756 \ 0.007 \ 0.009 \ 0.026) \times 10^{-2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.120
$5.90 - 6.47 (8.779 \ 0.013 \ 0.032 \ 0.123) \times 10^{-1}$	$0^1 (1.420 \ 0.005 \ 0.007 \ 0.021) \times 10^{-1} $	$1 6.182 \ 0.025 \ 0.038 $	0.117
$6.47 - 7.09 (7.061 \ 0.010 \ 0.025 \ 0.098) \times 10^{-1}$	$0^1 (1.163 \ 0.004 \ 0.006 \ 0.017) \times 10^{-1}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.114
$7.09 - 7.76 (5.629 \ 0.008 \ 0.020 \ 0.078) \times 10^{-1}$	$0^1 (9.511 \ 0.036 \ 0.048 \ 0.141) \times 10^{-1} $	0 5.918 0.024 0.037	0.110
$7.76 - 8.48 (4.501 \ 0.007 \ 0.016 \ 0.062) \times 10^{-1}$	$(7.689 \ 0.030 \ 0.041 \ 0.114) \times 10$	$0 5.854 \ 0.025 \ 0.037$	0.109
$8.48 - 9.26 (3.597 \ 0.006 \ 0.013 \ 0.049) \times 10^{-1}$	$0^{1} (6.224 \ 0.025 \ 0.034 \ 0.093) \times 10^{1}$	0 5.779 0.025 0.038	0.107
$9.26 - 10.1 (2.878 \ 0.005 \ 0.011 \ 0.039) \times 10^{-1}$	$0^1 (5.001 \ 0.022 \ 0.029 \ 0.075) \times 10^{-1} $	0 5.754 0.027 0.040	0.107
$10.1 - 11.0 (2.298 \ 0.004 \ 0.009 \ 0.031) \times 10^{-1}$	$0^1 (4.065 \ 0.018 \ 0.025 \ 0.061) \times 10^{-1}$	0 5.653 0.027 0.041	0.105
$11.0 - 12.0 (1.833 \ 0.003 \ 0.007 \ 0.025) \times 10^{-1}$	$0^1 (3.271 \ 0.015 \ 0.021 \ 0.050) \times 10^{-1}$	$0 \mid 5.605 \mid 0.028 \mid 0.042$	0.104
$12.0 - 13.0 (1.465 \ 0.003 \ 0.006 \ 0.020) \times 10^{-1}$	$(2.630 \ 0.013 \ 0.018 \ 0.040) \times 10$	0 5.568 0.031 0.044	0.105
$13.0 - 14.1 (1.179 \ 0.002 \ 0.005 \ 0.017) \times 10^{-1}$	$(2.163 \ 0.011 \ 0.015 \ 0.033) \times 10^{-1}$	$0 \mid 5.451 \mid 0.031 \mid 0.045$	0.103
$14.1 - 15.3 (9.480 \ 0.020 \ 0.041 \ 0.133) \times 10^{-1}$	$0^0 (1.757 \ 0.010 \ 0.013 \ 0.027) \times 10^{-1}$	$0 \mid 5.395 \mid 0.032 \mid 0.046$	0.103
$15.3 - 16.6 (7.570 \ 0.017 \ 0.034 \ 0.107) \times 10^{-1}$			0.102

TABLE SM LXXIV: Bartels Rotation 2501 (November 29, 2016 – December 25, 2016). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \ \sigma_{\text{time}} \ \sigma_{\text{syst.}}$
$16.6 - 18.0 (6.084 \ 0.014 \ 0.028 \ 0.087) \times 10^{-1}$	$0 (1.143 \ 0.007 \ 0.009 \ 0.019) \times 1$	0^0 5.322 0.033 0.050 0.104
$18.0 - 19.5 (4.850 \ 0.011 \ 0.023 \ 0.071) \times 10^{-1} (4.850 \ 0.011 \ 0.011) \times 10^{-1} (4.850 \ 0.011) \times 10^{-1} (4.850 \ 0.011) \times 10^{-1} (4$	$0 (9.449 \ 0.055 \ 0.082 \ 0.153) \times 1$	$0^{-1} 5.133 \ 0.032 \ 0.051 \ 0.101$
$19.5 - 21.1 (3.900 \ 0.009 \ 0.019 \ 0.058) \times 10^{-6}$	$0 \mid (7.564 \ 0.046 \ 0.068 \ 0.124) \times 1$	$0^{-1} 5.156 0.034 0.053 0.102$
$21.1 - 22.8 (3.148 \ 0.008 \ 0.016 \ 0.047) \times 10^{-6} (3.148 \ 0.008 \ 0$	$0 (6.200 \ 0.039 \ 0.057 \ 0.102) \times 1$	$0^{-1} 5.077 \ 0.034 \ 0.053 \ 0.102$
$22.8 - 24.7 (2.533 \ 0.006 \ 0.013 \ 0.038) \times 10^{-6} (2.533 \ 0.006 \ 0.013 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.013 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.013 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.013 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.013 \ 0.008) \times 10^{-6} (2.533 \ 0.006 \ 0.013 \ 0.008) \times 10^{-6} (2.533 \ 0.008$	$0 (5.155 \ 0.032 \ 0.048 \ 0.085) \times 1$	$0^{-1} 4.914 \ 0.033 \ 0.052 \ 0.099$
$24.7 - 26.7 (2.031 \ 0.005 \ 0.011 \ 0.031) \times 10^{-6} (2.031 \ 0.005 \ 0.011 \ 0.005) \times 10^{-6} (2.031 \ 0.005 \ 0.011 \ 0.005) \times 10^{-6} (2.031 \ 0.005 \ 0.011 \ 0.005) \times 10^{-6} (2.031 \ 0.005 \ 0.011 \ 0.005) \times 10^{-6} (2.031 \ 0.005 \ 0.011 \ 0.005) \times 10^{-6} (2.031 \ 0.005 \ 0.011 \ 0.005) \times 10^{-6} (2.031 \ 0.005 \ 0.011 \ 0.005) \times 10^{-6} (2.031 \ 0.005 \ 0.011 \ 0.005) \times 10^{-6} (2.031 \ 0.005 \ 0.011 \ 0.005) \times 10^{-6} (2.031 \ 0.005 \ 0.011 \ 0.005) \times 10^{-6} (2.031 \ 0.005 \ 0.011 \ 0.005) \times 10^{-6} (2.031 \ 0.005 \ 0.011 \ 0.005) \times 10^{-6} (2.031 \ 0.005 \ 0.011 \ 0.005) \times 10^{-6} (2.031 \ 0.005 \ 0.011 \ 0.005) \times 10^{-6} (2.031 \ 0.005 \ 0.011 \ 0.005) \times 10^{-6} (2.031 \ 0.005 \ 0.011 \ 0.005) \times 10^{-6} (2.031 \ 0.005) \times 10^{$	$0 (4.052 \ 0.027 \ 0.038 \ 0.067) \times 1$	$0^{-1} 5.011 0.036 0.054 0.101$
$26.7-28.8 (1.639 0.005 0.009 0.025) \! imes \! 10^{\circ}$	$0 (3.334 \ 0.024 \ 0.032 \ 0.055) \times 1$	0^{-1} 4.915 0.038 0.054 0.100
$28.8 - 31.1 (1.322 \ 0.004 \ 0.008 \ 0.020) \times 10^{-6} (1.322 \ 0.004 \ 0.008 \ 0.000) \times 10^{-6} (1.322 \ 0.008 \ 0.008 \ 0.000) \times 10^{-6} (1.322 \ 0.008 \ 0.008 \ 0.000) \times 10^{-6} (1.322 \ 0.008 \ 0.008 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (1.322 \ 0.008 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (1.322 \ 0.008 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (1.322 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (1.322 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (1.322 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (1.322 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (1.322 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (1.322 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (1.322 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (1.322 \ 0.008 \ 0.008 \ 0.008) \times 10^{-6} (1.322 $	$(2.686 \ 0.020 \ 0.026 \ 0.045) \times 1$	0^{-1} 4.921 0.040 0.055 0.101
$31.1 - 33.5 (1.066 \ 0.003 \ 0.006 \ 0.017) \times 10^{-1}$	$0 (2.204 \ 0.018 \ 0.022 \ 0.037) \times 1$	$0^{-1} \begin{vmatrix} 4.834 & 0.043 & 0.055 & 0.099 \end{vmatrix}$
$33.5 - 36.1 (8.694\ 0.030\ 0.052\ 0.133) \times 10$	$^{-1}$ (1.768 0.016 0.018 0.031)×1	0^{-1} 4.918 0.046 0.058 0.102
$36.1 - 38.9 (7.050 \ 0.026 \ 0.043 \ 0.109) \times 10$	$^{-1}$ (1.498 0.014 0.015 0.026)×1	0^{-1} 4.706 0.047 0.056 0.099
$38.9 - 41.9 (5.718 \ 0.023 \ 0.036 \ 0.089) \times 10$	$^{-1}$ (1.192 0.012 0.012 0.020)×1	0^{-1} 4.798 0.051 0.058 0.101
$41.9 - 45.1 (4.664 \ 0.020 \ 0.030 \ 0.073) \times 10$	$^{-1}$ (9.979 0.104 0.106 0.175)×1	$0^{-2} \begin{vmatrix} 4.674 & 0.053 & 0.058 & 0.099 \end{vmatrix}$
$45.1 - 48.5 (3.822 \ 0.018 \ 0.025 \ 0.060) \times 10$	$^{-1} (8.079\ 0.091\ 0.087\ 0.143)\times 1$	$0^{-2} 4.731 \ 0.057 \ 0.060 \ 0.102$
$48.5 - 52.2 (3.107 \ 0.015 \ 0.021 \ 0.050) \times 10$	$^{-1} (6.684 \ 0.079 \ 0.073 \ 0.119) \times 1$	$0^{-2} 4.648 \ 0.059 \ 0.060 \ 0.100$
52.2 - 56.1 (2.540 0.013 0.018 0.042)×10	$^{-1}$ (5.370 0.069 0.060 0.096)×1	$0^{-2} 4.729 \ 0.065 \ 0.062 \ 0.103$
$56.1 - 60.3 (2.074 \ 0.012 \ 0.015 \ 0.034) \times 10$	$^{-1}$ (4.361 0.059 0.049 0.079)×1	$0^{-2} 4.756 \ 0.070 \ 0.063 \ 0.104$

TABLE SM LXXV: Bartels Rotation 2502 (December 26, 2016 – January 21, 2017). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/{\rm He}~\sigma_{\rm stat.}~\sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16$ $(1.265 \ 0.005 \ 0.016 \ 0.056) \times 10$	3		
$1.16 - 1.33 (1.198 \ 0.003 \ 0.011 \ 0.042) \times 10$	3		
$1.33 - 1.51 (1.122 \ 0.003 \ 0.008 \ 0.032) \times 10$	3		
$1.51 - 1.71 (1.012 \ 0.002 \ 0.006 \ 0.026) \times 10$	3 – – – –		
$1.71 - 1.92 (8.914 \ 0.016 \ 0.047 \ 0.209) \times 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$1.92 - 2.15 (7.695 \ 0.013 \ 0.038 \ 0.165) \times 10$	$(9.549 \ 0.051 \ 0.087 \ 0.21)$	$(0) \times 10^1$ 8.058 0.045 0.083 0.236	j
$2.15 - 2.40$ $(6.573 \ 0.011 \ 0.030 \ 0.131) \times 10$	$(8.670 \ 0.043 \ 0.070 \ 0.166)$	$8) \times 10^1$ 7.582 0.039 0.070 0.200)
$2.40 - 2.67 (5.525 \ 0.009 \ 0.024 \ 0.104) \times 10$	2 (7.611 0.035 0.061 0.13	$6) \times 10^{1}$ 7.260 0.035 0.066 0.178	3
$2.67 - 2.97 (4.609 \ 0.007 \ 0.020 \ 0.080) \times 10$	$(6.560 \ 0.029 \ 0.051 \ 0.11)$	$(2) \times 10^1$ 7.025 0.033 0.063 0.162	2
$2.97 - 3.29 (3.822\ 0.006\ 0.017\ 0.064) \times 10$		$1) \times 10^{1}$ 6.810 0.030 0.054 0.150)
$3.29 - 3.64 (3.150\ 0.005\ 0.014\ 0.051) \times 10$	2 (4.659 0.019 0.027 0.07	$(4) \times 10^1$ 6.761 0.030 0.050 0.144	ŀ
$3.64 - 4.02 (2.577 \ 0.004 \ 0.012 \ 0.041) \times 10$	$(3.925 \ 0.016 \ 0.022 \ 0.06)$	$1) \times 10^{1}$ 6.564 0.029 0.047 0.136	j
$4.02 - 4.43 (2.102\ 0.003\ 0.009\ 0.032) \times 10$	$(3.218 \ 0.013 \ 0.017 \ 0.049)$	$9) \times 10^{1}$ 6.533 0.028 0.046 0.133	3
$4.43 - 4.88 (1.702 \ 0.002 \ 0.008 \ 0.026) \times 10$	$(2.641 \ 0.010 \ 0.014 \ 0.04)$	$0) \times 10^{1}$ 6.442 0.026 0.045 0.129)
$4.88 - 5.37 (1.372 \ 0.002 \ 0.006 \ 0.020) \times 10$	$(2.175 \ 0.008 \ 0.012 \ 0.03)$	$(3) \times 10^1$ 6.309 0.026 0.043 0.128	<u>,</u>
5.37 - 5.90 (1.101 0.002 0.004 0.016)×10	$(1.773 \ 0.007 \ 0.009 \ 0.02)$	$7) \times 10^{1}$ 6.212 0.025 0.041 0.120)
$5.90 - 6.47 (8.835 \ 0.013 \ 0.034 \ 0.124) \times 10$	$1 (1.439 \ 0.006 \ 0.007 \ 0.02$	$(1) \times 10^1$ 6.139 0.025 0.040 0.117	7
$6.47 - 7.09 (7.063 \ 0.010 \ 0.027 \ 0.099) \times 10$	$1 (1.180 \ 0.004 \ 0.006 \ 0.018)$	$8) \times 10^{1}$ 5.988 0.024 0.039 0.113	}
$7.09 - 7.76 (5.671 \ 0.008 \ 0.021 \ 0.079) \times 10$	$1 (9.475 \ 0.037 \ 0.050 \ 0.14) $	$(2) \times 10^0$ 5.985 0.025 0.039 0.112	2
$7.76 - 8.48 (4.517 \ 0.007 \ 0.017 \ 0.062) \times 10$	$1 (7.705 \ 0.031 \ 0.041 \ 0.11)$	$4) \times 10^0$ 5.862 0.025 0.038 0.109)
$8.48 - 9.26 (3.612 \ 0.006 \ 0.014 \ 0.050) \times 10$	$1 (6.254 \ 0.026 \ 0.035 \ 0.096) $	$3) \times 10^0$ 5.775 0.025 0.039 0.107	7
$9.26 - 10.1 (2.880 \ 0.005 \ 0.011 \ 0.039) \times 10$	$1 (5.051 \ 0.022 \ 0.029 \ 0.07)$	$(6) \times 10^0$ 5.703 0.026 0.040 0.100	j
$10.1 - 11.0 (2.306 \ 0.004 \ 0.009 \ 0.031) \times 10$	$1 (4.082 \ 0.019 \ 0.025 \ 0.06)$	$1) \times 10^0$ 5.648 0.028 0.041 0.108	, j
$11.0 - 12.0 (1.830 \ 0.003 \ 0.007 \ 0.025) \times 10$	$1 (3.272 \ 0.015 \ 0.021 \ 0.050)$	$0) \times 10^{0}$ 5.593 0.028 0.042 0.104	<u> </u>
$12.0 - 13.0 (1.463 \ 0.003 \ 0.006 \ 0.020) \times 10$	$1 (2.669 \ 0.014 \ 0.018 \ 0.04)$	$1) \times 10^0$ 5.481 0.030 0.043 0.103	}
$13.0 - 14.1 (1.182 \ 0.002 \ 0.005 \ 0.017) \times 10$	$1 (2.173 \ 0.011 \ 0.015 \ 0.03)$	$3) \times 10^0$ 5.440 0.031 0.045 0.103	3
$14.1 - 15.3 (9.503\ 0.020\ 0.043\ 0.134) \times 10$	$0 (1.752 \ 0.010 \ 0.013 \ 0.02)$	$7) \times 10^0$ 5.424 0.032 0.047 0.104	Į.
$15.3 - 16.6 (7.605 \ 0.017 \ 0.036 \ 0.109) \times 10$	$0 (1.431 \ 0.008 \ 0.011 \ 0.02)$	$3) \times 10^0$ 5.316 0.032 0.048 0.103	3
T 11 1: 1		<u> </u>	

TABLE SM LXXV: Bartels Rotation 2502 (December 26, 2016 – January 21, 2017). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time}} \sigma_{\text{syst.}}$
$16.6 - 18.0 (6.110 \ 0.014 \ 0.030 \ 0.088) \times 10$	$0 (1.154 \ 0.007 \ 0.009 \ 0.019) \times 10^{6} $	$5.295 \ 0.033 \ 0.050 \ 0.104$
$18.0 - 19.5 (4.866 \ 0.011 \ 0.025 \ 0.072) \times 10$	$0 (9.400 \ 0.055 \ 0.080 \ 0.151) \times 10^{-6} $	$^{-1}$ 5.177 0.033 0.051 0.102
$19.5 - 21.1 (3.924 \ 0.009 \ 0.020 \ 0.059) \times 10$	$0 \mid (7.643 \ 0.046 \ 0.067 \ 0.124) \times 10^{-6}$	$^{-1}$ $ 5.134 \ 0.033 \ 0.052 \ 0.102$
$21.1 - 22.8 (3.152 \ 0.008 \ 0.017 \ 0.047) \times 10$	$0 (6.286 \ 0.039 \ 0.056 \ 0.103) \times 10^{-6} $	$^{-1}$ $ 5.013 \ 0.033 \ 0.052 \ 0.100$
$22.8 - 24.7 (2.540 \ 0.006 \ 0.014 \ 0.038) \times 10$	$0 (5.085 \ 0.032 \ 0.046 \ 0.083) \times 10^{-6} $	$^{-1}$ 4.995 0.034 0.053 0.100
$24.7 - 26.7 (2.031 \ 0.005 \ 0.012 \ 0.031) \times 10$	$0 (4.098 \ 0.028 \ 0.037 \ 0.067) \times 10^{-6} $	$^{-1}$ $ 4.955 \ 0.036 \ 0.053 \ 0.100$
$26.7 - 28.8 (1.649 \ 0.005 \ 0.010 \ 0.025) \times 10$	$0 (3.318 \ 0.024 \ 0.031 \ 0.055) \times 10^{-6} $	$^{-1}$ 4.969 0.039 0.054 0.100
$28.8 - 31.1 (1.328 \ 0.004 \ 0.008 \ 0.021) \times 10$	$0 (2.758 \ 0.021 \ 0.026 \ 0.046) \times 10^{-6} $	$^{-1}$ 4.815 0.039 0.054 0.098
$31.1 - 33.5 (1.073 \ 0.004 \ 0.007 \ 0.017) \times 10$	$0 (2.213 \ 0.018 \ 0.021 \ 0.037) \times 10^{-6} $	$^{-1}$ 4.848 0.043 0.055 0.099
$33.5 - 36.1 (8.760 \ 0.031 \ 0.056 \ 0.136) \times 10$	$^{-1}$ (1.805 0.016 0.018 0.031)×10	$^{-1}$ 4.854 0.046 0.057 0.101
$36.1 - 38.9 (7.080 \ 0.026 \ 0.047 \ 0.110) \times 10$	$^{-1}$ (1.477 0.014 0.015 0.026)×10	$^{-1}$ 4.792 0.048 0.057 0.101
$38.9 - 41.9 (5.773 \ 0.023 \ 0.039 \ 0.091) \times 10$	$^{-1}$ (1.210 0.012 0.012 0.021)×10	$^{-1}$ 4.770 0.051 0.059 0.101
$41.9 - 45.1 (4.684 \ 0.020 \ 0.033 \ 0.074) \times 10$	$^{-1}$ (9.923 0.104 0.106 0.174)×10	$-2 \mid 4.721 \mid 0.054 \mid 0.060 \mid 0.101 \mid$
$45.1 - 48.5 (3.815 \ 0.018 \ 0.027 \ 0.061) \times 10$	$^{-1}$ (8.324 0.092 0.092 0.148)×10	$-2 \mid 4.583 \ 0.055 \ 0.060 \ 0.100$
$48.5 - 52.2 (3.129 \ 0.015 \ 0.023 \ 0.051) \times 10$	$^{-1}$ (6.623 0.079 0.076 0.120)×10	$-2 \mid 4.725 \mid 0.061 \mid 0.064 \mid 0.104 \mid$
$52.2 - 56.1 (2.540 \ 0.013 \ 0.019 \ 0.042) \times 10$	$^{-1}$ (5.385 0.069 0.064 0.099)×10	$-2 \mid 4.717 \mid 0.065 \mid 0.066 \mid 0.105 \mid$
$56.1 - 60.3 (2.079 \ 0.012 \ 0.016 \ 0.035) \times 10$	$^{-1}$ (4.461 0.060 0.055 0.083)×10	$-2 \mid 4.660 \mid 0.068 \mid 0.067 \mid 0.105 \mid$

TABLE SM LXXVI: Bartels Rotation 2503 (January 22, 2017 – February 17, 2017). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s\cdot GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$1.51 - 1.71 (1.033 \ 0.002 \ 0.006 \ 0.027) \times 10^3 $
1.71 1.09 (0.095.0.016.0.047.0.919) \(\tag{102}
$1.71 - 1.92 (9.085 \ 0.016 \ 0.047 \ 0.213) \times 10^2 $
$1.92 - 2.15 (7.843 \ 0.013 \ 0.037 \ 0.168) \times 10^{2} (9.818 \ 0.051 \ 0.098 \ 0.219) \times 10^{1} 7.988 \ 0.044 \ 0.088 \ 0.236$
$2.15 - 2.40 \left (6.653\ 0.010\ 0.030\ 0.133) \times 10^{2} \right \left (8.792\ 0.042\ 0.078\ 0.174) \times 10^{1} \right \left 7.567\ 0.038\ 0.075\ 0.201 \right $
$2.40 - 2.67 (5.594\ 0.009\ 0.024\ 0.105) \times 10^2 (7.734\ 0.035\ 0.067\ 0.141) \times 10^1 7.233\ 0.034\ 0.070\ 0.179$
$2.67 - 2.97 (4.663 \ 0.007 \ 0.020 \ 0.081) \times 10^2 (6.660 \ 0.029 \ 0.056 \ 0.116) \times 10^1 7.001 \ 0.032 \ 0.066 \ 0.163$
$2.97 - 3.29 \begin{vmatrix} (3.859\ 0.006\ 0.016\ 0.064) \times 10^2 \end{vmatrix} \begin{vmatrix} (5.598\ 0.023\ 0.041\ 0.092) \times 10^1 \end{vmatrix} \begin{vmatrix} 6.892\ 0.030\ 0.059\ 0.153$
$3.29 - 3.64 (3.182\ 0.005\ 0.014\ 0.051) \times 10^2 (4.704\ 0.019\ 0.031\ 0.076) \times 10^1 (6.764\ 0.029\ 0.053\ 0.145) (4.704\ 0.019\ 0.031\ 0.076) \times 10^1 (4.704\ 0.019\ 0.031) \times 10^1 (4.704\ 0.019$
$3.64 - 4.02 (2.594 \ 0.004 \ 0.012 \ 0.041) \times 10^2 (3.949 \ 0.016 \ 0.024 \ 0.062) \times 10^1 6.569 \ 0.028 \ 0.050 \ 0.138$
$4.02 - 4.43$ $(2.119\ 0.003\ 0.009\ 0.033) \times 10^2$ $(3.257\ 0.013\ 0.020\ 0.051) \times 10^1$ $(6.505\ 0.027\ 0.049\ 0.133)$
$4.43 - 4.88 (1.717 \ 0.002 \ 0.007 \ 0.026) \times 10^2 (2.652 \ 0.010 \ 0.016 \ 0.041) \times 10^1 (6.475 \ 0.026 \ 0.048 \ 0.131) (2.652 \ 0.010 \ 0.016 \ 0.041) \times 10^1 (2.675 \ 0.026 \ 0.048 \ 0.131) (2.675 \ 0.016 \ 0.041) \times 10^1 (2.675 \ 0.016 \ 0.041) $
$4.88 - 5.37$ $(1.376 \ 0.002 \ 0.006 \ 0.020) \times 10^2$ $(2.156 \ 0.008 \ 0.013 \ 0.033) \times 10^1$ $(6.384 \ 0.026 \ 0.046 \ 0.127)$
$5.37 - 5.90 (1.107\ 0.002\ 0.004\ 0.016) \times 10^2 (1.789\ 0.007\ 0.010\ 0.027) \times 10^1 (6.187\ 0.025\ 0.044\ 0.121) (1.789\ 0.007\ 0.010\ 0.027) (1.789\ 0.007\ 0.010\ 0.010) (1.789\ 0.007\ 0.010) (1.789\ 0.007\ 0.010) (1.789\ 0.007\ 0.010) (1.789\ 0.007\ 0.010) (1.789\ 0.007\ 0.010) (1.789\ 0.007\ 0.010) (1.789\ 0.007\ 0.010) (1.789\ 0.007\ 0.010) (1.789\ 0.007\ 0.010) (1.789\ 0.007\ 0.010) (1.789\ 0.007\ 0.010) (1.789\ 0.007\ 0.010) (1.789\ 0.007\ 0.010) $
$5.90 - 6.47$ $(8.864 \ 0.013 \ 0.033 \ 0.124) \times 10^{1}$ $(1.450 \ 0.005 \ 0.008 \ 0.022) \times 10^{1}$ $(6.111 \ 0.025 \ 0.042 \ 0.117)$
$6.47 - 7.09 \begin{vmatrix} (7.094 \ 0.010 \ 0.026 \ 0.099) \times 10^{1} \end{vmatrix} \begin{vmatrix} (1.181 \ 0.004 \ 0.007 \ 0.018) \times 10^{1} \end{vmatrix} \begin{vmatrix} 6.009 \ 0.024 \ 0.042 \ 0.115 \end{vmatrix}$
$7.09 - 7.76 (5.693\ 0.008\ 0.021\ 0.079) \times 10^{1} (9.492\ 0.036\ 0.057\ 0.144) \times 10^{0} 5.998\ 0.025\ 0.042\ 0.113$
$7.76 - 8.48 \begin{vmatrix} (4.545\ 0.007\ 0.017\ 0.063) \times 10^1 \end{vmatrix} \begin{vmatrix} (7.738\ 0.030\ 0.048\ 0.117) \times 10^0 \end{vmatrix} \begin{vmatrix} 5.874\ 0.025\ 0.042\ 0.111$
$8.48 - 9.26 \left (3.624\ 0.006\ 0.014\ 0.050) \times 10^{1} \right \left (6.277\ 0.026\ 0.040\ 0.096) \times 10^{0} \right 5.774\ 0.025\ 0.043\ 0.108$
$9.26 - 10.1 (2.893 \ 0.005 \ 0.011 \ 0.039) \times 10^{1} (5.082 \ 0.022 \ 0.034 \ 0.078) \times 10^{0} 5.693 \ 0.026 \ 0.044 \ 0.107$
$10.1 - 11.0 \begin{vmatrix} (2.311 \ 0.004 \ 0.009 \ 0.031) \times 10^1 \end{vmatrix} \begin{vmatrix} (4.133 \ 0.019 \ 0.029 \ 0.064) \times 10^0 \end{vmatrix} \begin{vmatrix} 5.593 \ 0.027 \ 0.045 \ 0.105 \end{vmatrix}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$12.0 - 13.0 \begin{vmatrix} (1.472\ 0.003\ 0.006\ 0.020) \times 10^1 \end{vmatrix} \begin{vmatrix} (2.669\ 0.014\ 0.021\ 0.042) \times 10^0 \end{vmatrix} = 5.515\ 0.030\ 0.048\ 0.106$
$13.0 - 14.1 \begin{vmatrix} (1.184\ 0.002\ 0.005\ 0.017) \times 10^{1} \\ (2.187\ 0.011\ 0.018\ 0.035) \times 10^{0} \end{vmatrix} = 5.416\ 0.030\ 0.050\ 0.105$
$14.1 - 15.3 \begin{vmatrix} (9.509 \ 0.020 \ 0.042 \ 0.134) \times 10^0 \\ (1.780 \ 0.010 \ 0.015 \ 0.028) \times 10^0 \end{vmatrix} = 5.343 \ 0.031 \ 0.052 \ 0.104$
$15.3 - 16.6 \begin{vmatrix} (7.604 \ 0.017 \ 0.035 \ 0.108) \times 10^0 \end{vmatrix} \begin{vmatrix} (1.419 \ 0.008 \ 0.013 \ 0.023) \times 10^0 \end{vmatrix} \begin{vmatrix} 5.357 \ 0.032 \ 0.054 \ 0.106 \end{vmatrix}$

TABLE SM LXXVI: Bartels Rotation 2503 (January 22, 2017 – February 17, 2017). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time}} \sigma_{\text{syst.}}$
$16.6 - 18.0 (6.072 \ 0.014 \ 0.029 \ 0.088) \times 10$	$0 (1.161 \ 0.007 \ 0.011 \ 0.020) \times 10^{-6}$	$5.231 \ 0.032 \ 0.055 \ 0.105$
$18.0 - 19.5 (4.901 \ 0.011 \ 0.024 \ 0.072) \times 10$	$0 (9.386 \ 0.055 \ 0.092 \ 0.158) \times 10^{-6}$	$^{-1}$ $ 5.222 \ 0.033 \ 0.058 \ 0.106$
$19.5 - 21.1 (3.913 \ 0.009 \ 0.020 \ 0.058) \times 10$	$0 (7.699 \ 0.046 \ 0.079 \ 0.132) \times 10^{-6}$	$^{-1}$ $ 5.083 \ 0.033 \ 0.058 \ 0.104$
$21.1 - 22.8 (3.162 \ 0.008 \ 0.017 \ 0.047) \times 10$	$0 (6.084 \ 0.038 \ 0.063 \ 0.105) \times 10^{-6}$	$\begin{bmatrix} -1 \\ 5.197 \\ 0.035 \\ 0.060 \\ 0.107 \end{bmatrix}$
$22.8 - 24.7 (2.534 \ 0.006 \ 0.014 \ 0.038) \times 10$	$0 (5.106 \ 0.032 \ 0.053 \ 0.088) \times 10^{-6}$	$^{-1}$ 4.962 0.033 0.058 0.103
$24.7 - 26.7 (2.041 \ 0.005 \ 0.011 \ 0.031) \times 10$	$0 (4.096 \ 0.027 \ 0.043 \ 0.071) \times 10^{-6}$	$^{-1}$ 4.984 0.036 0.060 0.104
$26.7 - 28.8 (1.641 \ 0.005 \ 0.010 \ 0.025) \times 10$	$0 (3.338 \ 0.024 \ 0.036 \ 0.058) \times 10^{-6} $	$^{-1}$ 4.918 0.038 0.060 0.103
$28.8 - 31.1 (1.322 \ 0.004 \ 0.008 \ 0.020) \times 10$	$0 (2.716 \ 0.020 \ 0.030 \ 0.048) \times 10^{-6} $	$^{-1}$ 4.868 0.039 0.061 0.103
$31.1 - 33.5 (1.073 \ 0.004 \ 0.007 \ 0.017) \times 10$	$0 (2.208 \ 0.018 \ 0.025 \ 0.039) \times 10^{-6}$	$^{-1}$ 4.861 0.043 0.062 0.104
$33.5 - 36.1 (8.699 \ 0.030 \ 0.055 \ 0.134) \times 10$	$^{-1}$ (1.788 0.016 0.021 0.033)×10	$^{-1}$ 4.864 0.046 0.064 0.105
$36.1 - 38.9 (7.045 \ 0.026 \ 0.045 \ 0.109) \times 10$	$^{-1}$ (1.490 0.014 0.018 0.027)×10	$^{-1}$ 4.728 0.047 0.063 0.103
$38.9 - 41.9 (5.753 \ 0.023 \ 0.038 \ 0.090) \times 10$	$^{-1}$ (1.208 0.012 0.015 0.022)×10	$^{-1}$ 4.760 0.050 0.066 0.105
$41.9 - 45.1 (4.681 \ 0.020 \ 0.032 \ 0.074) \times 10$	$^{-1}$ (9.803 0.103 0.123 0.184)×10	$-2 \mid 4.775 \mid 0.054 \mid 0.068 \mid 0.107 \mid$
$45.1 - 48.5 (3.807 \ 0.017 \ 0.026 \ 0.061) \times 10$	$^{-1}$ (8.123 0.091 0.105 0.155)×10	$-2 \mid 4.687 \mid 0.057 \mid 0.069 \mid 0.107 \mid$
$48.5 - 52.2 (3.126 \ 0.015 \ 0.022 \ 0.051) \times 10$	$^{-1}$ (6.493 0.077 0.087 0.126)×10	$-2 \mid 4.815 \mid 0.062 \mid 0.073 \mid 0.111$
$52.2 - 56.1 (2.537 \ 0.013 \ 0.018 \ 0.042) \times 10$	$^{-1}$ (5.259 0.067 0.072 0.104)×10	$-2 \mid 4.825 \mid 0.067 \mid 0.075 \mid 0.112$
$56.1 - 60.3 (2.077 \ 0.012 \ 0.015 \ 0.035) \times 10$	$^{-1}$ (4.440 0.060 0.063 0.089)×10	$-2 \mid 4.677 \mid 0.068 \mid 0.075 \mid 0.111 \mid$

TABLE SM LXXVII: Bartels Rotation 2504 (February 18, 2017 – March 16, 2017). Days from March 6 to March 8, 2017 are not included because AMS was performing detector studies in that interval. The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot sr \cdot s \cdot GV]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p	$\sigma_{ m stat.}$ $\sigma_{ m tir}$	$\sigma_{\rm syst.}$	Φ	$\sigma_{ m He}$	$tat.$ σ_{ti}	$_{ m me}$ $\sigma_{ m s}$	yst.	p/	He $\sigma_{\rm st}$	$\sigma_{\rm ti}$	ime		$\sigma_{ m syst}$
1.00 - 1.16 (1.	.334 0.005	$0.016 \ 0.059) \times$	10^{3}	_	_	_	_	•	_	_	_	_	
1.16 - 1.33 (1.	266 0.004	$0.011 \ 0.045) \times$	10^{3}	_	_	_			_	_	_	_	
1.33 - 1.51 (1.	167 0.003	$0.008 \ 0.033) \times$	10^{3}	_	_	_			_	_	_	_	
1.51 - 1.71 (1.	.048 0.002	$0.006 \ 0.027) \times$	10^{3}	_	_	_	_		_	_	_	_	
1.71 - 1.92 (9.	.167 0.018	$0.048 \ 0.215) \times$	10^{2}	_	_	_			_	_	_	_	
1.92 - 2.15 (7.	.933 0.015	$0.038 \ 0.170) \times$	10^{2}	(9.943)	0.058	0.103	$0.224) \times$	10^{1}	7.979	0.049	0.091	0.237	
2.15 - 2.40 (6.	713 0.012	$0.030 \ 0.134) \times$	10^{2}	(8.946)	0.049	0.082	$0.178) \times$	10^{1}	7.503	0.043	0.077	0.201	
2.40 - 2.67 (5.	654 0.010	$0.024 \ 0.106) \times$	10^{2}	(7.849)	0.040	0.071	$0.145) \times$	10^{1}	7.204	0.039	0.072	0.179	
2.67 - 2.97 (4.	.685 0.008	$0.020 \ 0.082) \times$	10^{2}	(6.691)	0.032	0.059	$0.118) \times$	10^{1}	7.001	0.036	0.068	0.164	
2.97 - 3.29 (3.	.880 0.006	$0.016 \ 0.065) \times$	10^{2}	(5.678)	0.026	0.043	$0.094) \times$	10^{1}	6.832	0.033	0.059	0.152	
3.29 - 3.64 (3.	194 0.005	$0.014 \ 0.051) \times$	10^{2}	(4.765)	0.022	0.032	$0.077) \times$	10^{1}	6.702	0.032	0.054	0.144	
3.64 - 4.02 (2.	.607 0.004	$0.011 \ 0.041) \times$	10^{2}	(3.986)	0.018	0.025	$0.063) \times$	10^{1}	6.541	0.031	0.050	0.137	
4.02 - 4.43 (2.	.118 0.003	$0.009 \ 0.033) \times$	10^{2}	(3.270	0.014	0.020	$0.051) \times$	10^{1}	6.477	0.030	0.049	0.133	
4.43 - 4.88 (1.		,		`			$0.041) \times$		6.446	0.029	0.048	0.131	
4.88 - 5.37 (1.		,		`			$0.034) \times$		6.271	0.028	0.045	0.125	
5.37 - 5.90 (1.		,		`			$0.027) \times$				0.044		
5.90 - 6.47 (8.		,		`			$0.022) \times$		6.082	0.027	0.042	0.117	
6.47 - 7.09 (7.		,					$0.018) \times$		6.018	0.027	0.042	0.115	
7.09 - 7.76 (5.		,		`			$0.144) \times$		6.010	0.027	0.042	0.114	
7.76 - 8.48 (4.		,		`			$0.118) \times$		5.832	0.027	0.041	0.110	
8.48 - 9.26 (3.	.634 0.006	$0.013 \ 0.050) \times$	10^{1}	`			$0.096) \times$		5.753	0.027	0.042	0.108	
9.26 - 10.1 (2.		,		`			$0.079) \times$		5.667	0.028	0.043	0.107	
10.1 - 11.0 (2.		,		`			$0.063) \times$		5.648	0.030	0.045	0.106	
11.0 - 12.0 (1.		,		`			$0.052) \times$		5.493	0.030	0.046	0.104	
12.0 - 13.0 (1.		,		`			$0.042) \times$		5.544	0.033	0.048	0.106	
13.0 - 14.1 (1.		,		`			$0.035) \times$				0.050		
14.1 - 15.3 (9.	514 0.022	$0.041 \ 0.134) \times$	10^{0}	(1.765)	0.010	0.015	$0.028) \times$	10^{0}	5.391	0.034	0.052	0.105	

TABLE SM LXXVII: Bartels Rotation 2504 (February 18, 2017 – March 16, 2017). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$p/\text{He } \sigma_{\text{stat.}} \sigma_{\text{time }} \sigma_{\text{syst.}}$
$15.3 - 16.6 (7.625 \ 0.018 \ 0.034 \ 0.108) \times 10^{-1}$	$0 (1.423 \ 0.009 \ 0.013 \ 0.023) \times 10^{0}$	$5.360 \ 0.035 \ 0.054 \ 0.106$
$16.6 - 18.0 (6.124 \ 0.015 \ 0.028 \ 0.088) \times 10^{-6}$	$0 (1.153 \ 0.007 \ 0.011 \ 0.019) \times 10^{0} $	$5.312\ 0.036\ 0.056\ 0.106$
$18.0 - 19.5 (4.876 \ 0.012 \ 0.023 \ 0.071) \times 10^{-1}$	$0 (9.420 \ 0.060 \ 0.092 \ 0.159) \times 10^{-6} $	$^{-1}$ $ 5.176 \ 0.035 \ 0.056 \ 0.105$
$19.5 - 21.1 (3.929 \ 0.010 \ 0.019 \ 0.058) \times 10^{-6}$	$0 \mid (7.660 \ 0.050 \ 0.078 \ 0.131) \times 10^{-1}$	$^{-1}$ 5.130 0.036 0.058 0.104
$21.1 - 22.8 (3.157 \ 0.008 \ 0.016 \ 0.047) \times 10^{-1} $	$0 (6.135 \ 0.042 \ 0.063 \ 0.105) \times 10^{-6} $	$^{-1}$ $ 5.146 \ 0.038 \ 0.059 \ 0.106$
$22.8 - 24.7 (2.538 \ 0.007 \ 0.013 \ 0.038) \times 10^{-6} (2.538 \ 0.007 \ 0.013 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.013 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.013 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.013 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.013 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.013 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.013 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.013 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.013 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.013 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.013 \ 0.008) \times 10^{-6} (2.538 \ 0.007 \ 0.013 \ 0.008) \times 10^{-6} (2.538 \ 0.008) \times 10^{-6} (2$	$0 (4.999 \ 0.034 \ 0.052 \ 0.086) \times 10^{-6} $	$\begin{bmatrix} -1 \\ 5.077 \\ 0.038 \\ 0.059 \\ 0.105 \end{bmatrix}$
$24.7 - 26.7 (2.030 \ 0.006 \ 0.011 \ 0.031) \times 10^{-6}$	$0 (4.081 \ 0.030 \ 0.043 \ 0.070) \times 10^{-6} $	$-1 4.973 \ 0.039 \ 0.059 \ 0.103$
$26.7 - 28.8 (1.636 \ 0.005 \ 0.009 \ 0.025) \times 10^{-6} (1.636 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.636 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.636 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.636 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.636 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.636 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.636 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.636 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.636 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.636 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.636 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.636 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.636 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.636 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.636 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.636 \ 0.005 \ 0.009 \ 0.005) \times 10^{-6} (1.636 \ 0.005) \times 10^{$	$0 (3.325 \ 0.026 \ 0.035 \ 0.057) \times 10^{-6} $	$^{-1}$ $ 4.920 \ 0.041 \ 0.059 \ 0.102 $
$28.8 - 31.1 (1.312 \ 0.004 \ 0.008 \ 0.020) \times 10^{-1}$	$0 (2.720 \ 0.022 \ 0.029 \ 0.047) \times 10^{-6} $	-1 4.824 0.043 0.059 0.101
$31.1 - 33.5 (1.068 \ 0.004 \ 0.006 \ 0.017) \times 10^{-1} (1.068 \ 0.004 \ 0.006 \ 0.007) \times 10^{-1} (1.068 \ 0.004 \ 0.004 \ 0.007) \times 10^{-1} (1.068 \ 0.004 \ 0.004 \ 0.007) \times 10^{-1} (1.068 \ 0.004 \ 0.004 \ 0.004) \times 10^{-1} (1.068 \ 0.004 \ 0.004 \ 0.004) \times 10^{-1} (1.068 \ 0.004) \times 10^{-1} (1.068 \ 0.004) \times 10^{-1} (1.068 \ 0.004) \times 10^{$	$0 (2.228 \ 0.020 \ 0.024 \ 0.039) \times 10^{-6} $	$^{-1}$ 4.796 0.046 0.060 0.101
$33.5 - 36.1 (8.675 \ 0.033 \ 0.053 \ 0.133) \times 10$	$^{-1}$ (1.811 0.017 0.020 0.033)×10	$^{-1}$ 4.790 0.049 0.061 0.102
$36.1 - 38.9 (7.075 \ 0.029 \ 0.044 \ 0.109) \times 10$	$^{-1}$ (1.487 0.015 0.017 0.027)×10	$^{-1}$ 4.759 0.051 0.062 0.103
$38.9 - 41.9 (5.726 \ 0.025 \ 0.036 \ 0.089) \times 10$	$^{-1}$ (1.204 0.013 0.014 0.022)×10	$^{-1}$ $ 4.757 \ 0.055 \ 0.063 \ 0.104$
$41.9 - 45.1 (4.681 \ 0.022 \ 0.031 \ 0.073) \times 10$	$^{-1} (9.790 \ 0.112 \ 0.118 \ 0.181) \times 10^{-1} $	$-2 \mid 4.781 \mid 0.059 \mid 0.065 \mid 0.105 \mid$
$45.1 - 48.5$ $(3.797 \ 0.019 \ 0.025 \ 0.060) \times 10$	$^{-1}$ (8.128 0.099 0.101 0.152)×10	$-2 \mid 4.672 \mid 0.061 \mid 0.066 \mid 0.105 \mid$
$48.5 - 52.2 (3.107 \ 0.016 \ 0.021 \ 0.050) \times 10$	$^{-1}$ (6.651 0.085 0.085 0.126)×10	$-2 \mid 4.672 \mid 0.065 \mid 0.068 \mid 0.106 \mid$
52.2 - 56.1 (2.532 0.014 0.018 0.042)×10	$^{-1}$ (5.409 0.075 0.071 0.105)×10	$^{-2}$ $ 4.682 \ 0.070 \ 0.070 \ 0.107$
$56.1 - 60.3 (2.057 \ 0.013 \ 0.015 \ 0.034) \times 10$	$^{-1}$ (4.558 0.066 0.062 0.089)×10	$-2 \mid 4.513 \mid 0.071 \mid 0.069 \mid 0.105 \mid$

TABLE SM LXXVIII: Bartels Rotation 2505 (March 17, 2017 – April 12, 2017). The proton flux Φ_p , helium flux Φ_{He} , and $p/{\rm He}$ flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[{\rm m}^2\cdot{\rm sr}\cdot{\rm s}\cdot{\rm GV}]^{-1}$ including errors due to statistics ($\sigma_{\rm stat.}$), time dependent systematic errors ($\sigma_{\rm time}$) and the total systematic error ($\sigma_{\rm syst.}$). Contributions to the time dependent systematic errors are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors for the ratio are the sum in quadrature of the relative time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rigidity Φ_p $\sigma_{\text{stat.}}$ σ_{time} $\sigma_{\text{syst.}}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$p/\text{He }\sigma_{\text{stat.}}$ σ_{time}	$\sigma_{ m syst.}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1.00 - 1.16 (1.339 \ 0.006 \ 0.015 \ 0.059) \times 10^{3}$	3 – – – –		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1.16 - 1.33 (1.266 \ 0.003 \ 0.010 \ 0.044) \times 10^{3}$	3		
$\begin{array}{c} 1.71-1.92\\ 1.92-2.15\\ 1.92-2.15\\ 1.7838\ 0.014\ 0.034\ 0.167)\times 10^2\\ 2.15-2.40\\ 1.6636\ 0.011\ 0.027\ 0.132)\times 10^2\\ 2.40-2.67\\ 1.588\ 0.009\ 0.022\ 0.105)\times 10^2\\ 2.40-2.67\\ 1.597-3.29\\ 1.64649\ 0.007\ 0.018\ 0.081)\times 10^2\\ 2.97-3.29\\ 1.642000000000000000000000000000000000000$	$1.33 - 1.51 (1.170 \ 0.003 \ 0.007 \ 0.033) \times 10^{3}$	3		
$\begin{array}{c} 1.92 - 2.15 \\ (7.838\ 0.014\ 0.034\ 0.167) \times 10^2 \\ 2.15 - 2.40 \\ (6.636\ 0.011\ 0.027\ 0.132) \times 10^2 \\ 2.40 - 2.67 \\ (5.588\ 0.009\ 0.022\ 0.105) \times 10^2 \\ 2.67 - 2.97 \\ (4.649\ 0.007\ 0.018\ 0.081) \times 10^2 \\ 3.29 - 3.64 \\ 3.162\ 0.005\ 0.012\ 0.050) \times 10^2 \\ 4.02 - 4.43 \\ 4.02 - 4.43 \\ 4.88 - 5.37 \\ 4.37 - 5.90 \\ 6.47 - 7.09 \\ 7.049\ 0.010\ 0.0240 \\ 0.007\ 0.018\ 0.012) \times 10^2 \\ 4.88 - 9.26 \\ (3.619\ 0.006\ 0.012\ 0.004) \times 10^1 \\ 0.006\ 0.012\ 0.005) \times 10^2 \\ 0.006\ 0.003\ 0.008\ 0.0024\ 0.050\ 0.0097) \times 10^1 \\ 0.006\ 0.003\ 0.008\ 0.0097) \times 10^$	$1.51 - 1.71 (1.042 \ 0.002 \ 0.006 \ 0.027) \times 10^{3}$	3		
$\begin{array}{c} 2.15 - 2.40 \\ 2.40 - 2.67 \\ 2.67 - 2.97 \\ 3.29 - 3.64 \\ 3.162 \ 0.005 \ 0.012 \ 0.050) \times 10^2 \\ 3.29 - 3.64 \\ 3.64 - 4.02 \\ 3.64 - 4.02 \\ 3.64 - 4.02 \\ 3.64 - 4.02 \\ 3.64 - 4.02 \\ 3.65 - 2.97 \\ 3.29 - 3.64 \\ 3.64 - 4.02 \\ 3.65 - 0.012 \ 0.050) \times 10^2 \\ 3.64 - 3.02 - 0.010 \ 0.041) \times 10^2 \\ 3.05 - 0.016 \ 0.030 \ 0.064) \times 10^1 \\ 3.29 - 3.64 \\ 3.64 - 4.02 \\ 3.096 \ 0.003 \ 0.008 \ 0.032) \times 10^2 \\ 3.29 - 3.64 \\ 3.62 - 0.02 \ 0.003 \ 0.008 \ 0.032) \times 10^2 \\ 3.29 - 3.64 \\ 3.62 - 0.02 \ 0.005 \ 0.012 \ 0.050) \times 10^2 \\ 3.64 - 4.02 \\ 3.64 - 4.02 \\ 3.65 - 0.025 \ 0.004 \ 0.010 \ 0.041) \times 10^2 \\ 3.29 - 0.010 \ 0.024 \ 0.0097 \ 0.026) \times 10^2 \\ 3.29 - 0.010 \ 0.024 \ 0.0097 \ 0.0097 \ 0.0097 \ 0.0097) \times 10^1 \\ 3.29 - 0.008 \ 0.013 \ 0.006 \ 0.010 \ 0.019 \ 0.043) \times 10^1 \\ 3.29 - 0.008 \ 0.015 \ 0.004) \times 10^1 \\ 3.20$	$1.71 - 1.92 (9.150 \ 0.017 \ 0.044 \ 0.214) \times 10^{2}$	2		
$\begin{array}{c} 2.40-2.67 \\ (5.588\ 0.009\ 0.022\ 0.105)\times 10^2 \\ 2.67-2.97 \\ (4.649\ 0.007\ 0.018\ 0.081)\times 10^2 \\ 2.97-3.29 \\ (3.852\ 0.006\ 0.015\ 0.064)\times 10^2 \\ 3.29-3.64 \\ (3.162\ 0.005\ 0.012\ 0.050)\times 10^2 \\ 4.02-4.43 \\ (2.096\ 0.003\ 0.008\ 0.032)\times 10^2 \\ 4.43-4.88 \\ (1.704\ 0.002\ 0.007\ 0.026)\times 10^2 \\ 5.37-5.90 \\ (1.097\ 0.002\ 0.004\ 0.015)\times 10^2 \\ 5.90-6.47 \\ 7.09-7.76 \\ (5.664\ 0.008\ 0.013\ 0.024\ 0.098)\times 10^1 \\ 6.47-7.09 \\ 7.76-8.48 \\ (4.524\ 0.007\ 0.015\ 0.062)\times 10^1 \\ 7.76-8.48 \\ 4.89-9.26 \\ (3.619\ 0.006\ 0.012\ 0.049)\times 10^1 \\ (3.905\ 0.016\ 0.030\ 0.064)\times 10^1 \\ (3.905\ 0.016\ 0.030\ 0.064)\times 10^1 \\ (3.905\ 0.016\ 0.030\ 0.064)\times 10^1 \\ (3.236\ 0.013\ 0.024\ 0.052)\times 10^1 \\ (2.159\ 0.008\ 0.015\ 0.034)\times 10^1 \\ (2.159\ 0.008\ 0.015\ 0.034)\times 10^1 \\ (3.905\ 0.016\ 0.030\ 0.064)\times 10^1 \\ (3.236\ 0.013\ 0.024\ 0.052)\times 10^1 \\ (2.159\ 0.008\ 0.015\ 0.034)\times 10^1 \\ (3.905\ 0.016\ 0.030\ 0.064)\times 10^1 \\ (3.216\ 0.009\ 0.024\ 0.028)\times 10^1 \\ (3.905\ 0.016\ 0.030\ 0.064)\times 10^1 \\ (3.905\ 0.016\ 0.030\ 0.06$	$1.92 - 2.15 (7.838 \ 0.014 \ 0.034 \ 0.167) \times 10^{2}$	$(9.881 \ 0.054 \ 0.120 \ 0.231) \times 10^{-6}$	$7.932 \ 0.046 \ 0.102 \ 0.24$	10
$\begin{array}{c} 2.67 - 2.97 \\ (4.649\ 0.007\ 0.018\ 0.081) \times 10^2 \\ 2.97 - 3.29 \\ (3.852\ 0.006\ 0.015\ 0.064) \times 10^2 \\ 3.29 - 3.64 \\ (3.162\ 0.005\ 0.012\ 0.050) \times 10^2 \\ 4.02 - 4.43 \\ 4.02 - 4.43 \\ 4.88 - 5.37 \\ (1.372\ 0.002\ 0.005\ 0.020) \times 10^2 \\ 4.88 - 5.37 \\ (1.372\ 0.002\ 0.005\ 0.020) \times 10^2 \\ 5.90 - 6.47 \\ (8.793\ 0.013\ 0.030\ 0.012) \times 10^1 \\ 6.47 - 7.09 \\ 7.76 - 8.48 \\ (4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.76 - 8.48 \\ 4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.76 - 8.48 \\ 4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.76 - 8.48 \\ (4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.76 - 8.48 \\ (4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.76 - 8.48 \\ (4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.76 - 8.48 \\ (4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.76 - 8.48 \\ (4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.76 - 8.48 \\ (4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.76 - 8.48 \\ (4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.76 - 8.48 \\ (4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.76 - 8.48 \\ (4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.711\ 0.031\ 0.057\ 0.121) \times 10^0 \\ 7.711\ 0.031\ 0.057\ 0.121) \times 10^0 \\ 7.721\ 0.035\ 0.066) \times 10^0 \\ 7.722\ 0.027\ 0.050\ 0.110 \\ 7.722\ 0.027\ 0.050\ 0.110 \\ 7.722\ 0.027\ 0.050\ 0.010 \\ 7.722\ 0.028\ 0.054\ 0.109 \\ 7.722\ 0.027\ 0.050\ 0.010 \\ 7.722\ 0.027\ 0.050\ 0.010 \\ 7.722\ 0.027\ 0.050\ 0.010 \\ 7.722\ 0.027\ 0.050\ 0.010 \\ 7.722\ 0.028\ 0.054\ 0.109 \\ 7.722\ 0.028\ 0.054\ 0.109 \\ 7.722\ 0.028\ 0.054\ 0.109 \\ 7.723\ 0.010\ 0.029\ 0.054) \times 1$	$2.15 - 2.40 (6.636 \ 0.011 \ 0.027 \ 0.132) \times 10^{2}$	$(8.952\ 0.045\ 0.097\ 0.186) \times 10^{-2}$	$7.413 \ 0.039 \ 0.086 \ 0.20$)2
$\begin{array}{c} 2.67 - 2.97 \\ (4.649\ 0.007\ 0.018\ 0.081) \times 10^2 \\ 2.97 - 3.29 \\ (3.852\ 0.006\ 0.015\ 0.064) \times 10^2 \\ 3.29 - 3.64 \\ (3.162\ 0.005\ 0.012\ 0.050) \times 10^2 \\ 4.02 - 4.43 \\ 4.02 - 4.43 \\ 4.88 - 5.37 \\ (1.372\ 0.002\ 0.005\ 0.020) \times 10^2 \\ 4.88 - 5.37 \\ (1.372\ 0.002\ 0.005\ 0.020) \times 10^2 \\ 5.90 - 6.47 \\ (8.793\ 0.013\ 0.030\ 0.012) \times 10^1 \\ 6.47 - 7.09 \\ 7.76 - 8.48 \\ (4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.76 - 8.48 \\ 4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.76 - 8.48 \\ 4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.76 - 8.48 \\ (4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.76 - 8.48 \\ (4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.76 - 8.48 \\ (4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.76 - 8.48 \\ (4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.76 - 8.48 \\ (4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.76 - 8.48 \\ (4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.76 - 8.48 \\ (4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.76 - 8.48 \\ (4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.76 - 8.48 \\ (4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ 7.711\ 0.031\ 0.057\ 0.121) \times 10^0 \\ 7.711\ 0.031\ 0.057\ 0.121) \times 10^0 \\ 7.721\ 0.035\ 0.066) \times 10^0 \\ 7.722\ 0.027\ 0.050\ 0.110 \\ 7.722\ 0.027\ 0.050\ 0.110 \\ 7.722\ 0.027\ 0.050\ 0.010 \\ 7.722\ 0.028\ 0.054\ 0.109 \\ 7.722\ 0.027\ 0.050\ 0.010 \\ 7.722\ 0.027\ 0.050\ 0.010 \\ 7.722\ 0.027\ 0.050\ 0.010 \\ 7.722\ 0.027\ 0.050\ 0.010 \\ 7.722\ 0.028\ 0.054\ 0.109 \\ 7.722\ 0.028\ 0.054\ 0.109 \\ 7.722\ 0.028\ 0.054\ 0.109 \\ 7.723\ 0.010\ 0.029\ 0.054) \times 1$	$2.40 - 2.67 (5.588 \ 0.009 \ 0.022 \ 0.105) \times 10^{2}$	$(7.832\ 0.037\ 0.082\ 0.150) \times 10^{-2}$	$7.135 \ 0.035 \ 0.080 \ 0.18$	31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2.67 - 2.97 (4.649\ 0.007\ 0.018\ 0.081) \times 10^{2}$	· ·		37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2.97 - 3.29 (3.852\ 0.006\ 0.015\ 0.064) \times 10^{2}$	$(5.630 \ 0.024 \ 0.050 \ 0.097) \times 10^{-2}$	$\begin{bmatrix} 6.842 & 0.031 & 0.067 & 0.15 \end{bmatrix}$	55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		· ·	$\begin{bmatrix} 6.709 & 0.030 & 0.060 & 0.14 \end{bmatrix}$	17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3.64 - 4.02 (2.587 \ 0.004 \ 0.010 \ 0.041) \times 10^{2}$	$(3.905 \ 0.016 \ 0.030 \ 0.064) \times 10^{-2}$	$\begin{bmatrix} 6.626 & 0.029 & 0.057 & 0.14 \end{bmatrix}$	1 1
$\begin{array}{llllllllllllllllllllllllllllllllllll$				35
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$4.43 - 4.88 (1.704 \ 0.002 \ 0.007 \ 0.026) \times 10^{2}$	$(2.666\ 0.010\ 0.019\ 0.043)\times10^{-2}$	$\begin{bmatrix} 6.389 & 0.026 & 0.053 & 0.13 \end{bmatrix}$	31
$\begin{array}{llllllllllllllllllllllllllllllllllll$			$\begin{bmatrix} 6.355 & 0.026 & 0.051 & 0.12 \end{bmatrix}$	29
$\begin{array}{l} 6.47-7.09 \\ 7.09-7.76 \\ 7.76-8.48 \\ 8.48-9.26 \\ 9.26-10.1 \\ 10.1-11.0 \\ 10.1-12.0 \\ \end{array} \begin{array}{l} (7.049\ 0.010\ 0.024\ 0.098)\times 10^1 \\ (5.644\ 0.008\ 0.019\ 0.078)\times 10^1 \\ (2.301\ 0.004\ 0.008\ 0.031)\times 10^1 \\ (2.301\ 0.004\ 0.008\ 0.031)\times 10^1 \\ (1.173\ 0.005\ 0.008\ 0.018)\times 10^1 \\ (9.502\ 0.037\ 0.068\ 0.149)\times 10^0 \\ (6.252\ 0.026\ 0.048\ 0.099)\times 10^0 \\ (6.252\ 0.026\ 0.048\ 0.099)\times 10^0 \\ (5.046\ 0.022\ 0.041\ 0.081)\times 10^0 \\ (4.107\ 0.019\ 0.035\ 0.066)\times 10^0 \\ (3.297\ 0.016\ 0.029\ 0.054)\times 10^0 \\ (3.297\ 0.016\ 0.029\ 0.054)\times 10^0 \\ (3.297\ 0.016\ 0.029\ 0.054)\times 10^0 \\ (5.577\ 0.028\ 0.054\ 0.117 \\ 5.960\ 0.025\ 0.047\ 0.117 \\ 5.960\ 0.025\ 0.047\ 0.115 \\ 5.867\ 0.025\ 0.048\ 0.113 \\ 5.788\ 0.026\ 0.049\ 0.111 \\ 5.722\ 0.027\ 0.050\ 0.110 \\ 5.604\ 0.027\ 0.051\ 0.109 \\ 5.577\ 0.028\ 0.054\ 0.109 \\ \end{array}$,	· · · · · · · · · · · · · · · · · · ·		23
$\begin{array}{l} 6.47-7.09 \\ 7.09-7.76 \\ 7.76-8.48 \\ 8.48-9.26 \\ 9.26-10.1 \\ 10.1-11.0 \\ 10.1-12.0 \\ \end{array} \begin{array}{l} (7.049\ 0.010\ 0.024\ 0.098)\times 10^1 \\ (5.644\ 0.008\ 0.019\ 0.078)\times 10^1 \\ (2.301\ 0.004\ 0.008\ 0.031)\times 10^1 \\ (2.301\ 0.004\ 0.008\ 0.031)\times 10^1 \\ (1.173\ 0.005\ 0.008\ 0.018)\times 10^1 \\ (9.502\ 0.037\ 0.068\ 0.149)\times 10^0 \\ (6.252\ 0.026\ 0.048\ 0.099)\times 10^0 \\ (6.252\ 0.026\ 0.048\ 0.099)\times 10^0 \\ (5.046\ 0.022\ 0.041\ 0.081)\times 10^0 \\ (4.107\ 0.019\ 0.035\ 0.066)\times 10^0 \\ (3.297\ 0.016\ 0.029\ 0.054)\times 10^0 \\ (3.297\ 0.016\ 0.029\ 0.054)\times 10^0 \\ (3.297\ 0.016\ 0.029\ 0.054)\times 10^0 \\ (5.577\ 0.028\ 0.054\ 0.117 \\ 5.960\ 0.025\ 0.047\ 0.117 \\ 5.960\ 0.025\ 0.047\ 0.115 \\ 5.867\ 0.025\ 0.048\ 0.113 \\ 5.788\ 0.026\ 0.049\ 0.111 \\ 5.722\ 0.027\ 0.050\ 0.110 \\ 5.604\ 0.027\ 0.051\ 0.109 \\ 5.577\ 0.028\ 0.054\ 0.109 \\ \end{array}$	$5.90 - 6.47 (8.793 \ 0.013 \ 0.030 \ 0.122) \times 10^{1}$	$(1.443 \ 0.006 \ 0.010 \ 0.022) \times 10^{-1}$	$\begin{bmatrix} 6.095 & 0.025 & 0.047 & 0.11 \end{bmatrix}$	19
$\begin{array}{llllllllllllllllllllllllllllllllllll$,	,		17
$\begin{array}{l} 7.76 - 8.48 \\ 8.48 - 9.26 \\ -10.1 \\ 10.1 - 11.0 \\ 11.0 - 12.0 \\ \end{array} \begin{array}{l} (4.524\ 0.007\ 0.015\ 0.062) \times 10^1 \\ (2.887\ 0.005\ 0.010\ 0.039) \times 10^1 \\ (2.887\ 0.005\ 0.010\ 0.039) \times 10^1 \\ (2.301\ 0.004\ 0.008\ 0.031) \times 10^1 \\ (1.839\ 0.003\ 0.007\ 0.025) \times 10^1 \\ \end{array} \begin{array}{l} (7.711\ 0.031\ 0.057\ 0.121) \times 10^0 \\ (6.252\ 0.026\ 0.048\ 0.099) \times 10^0 \\ (5.046\ 0.022\ 0.041\ 0.081) \times 10^0 \\ (4.107\ 0.019\ 0.035\ 0.066) \times 10^0 \\ (3.297\ 0.016\ 0.029\ 0.054) \times 10^0 \\ \end{array} \begin{array}{l} 5.867\ 0.025\ 0.048\ 0.113 \\ 5.722\ 0.027\ 0.050\ 0.110 \\ 5.604\ 0.027\ 0.051\ 0.109 \\ 5.577\ 0.028\ 0.054\ 0.109 \\ \end{array}$,			15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	$\begin{bmatrix} 5.867 & 0.025 & 0.048 & 0.11 \end{bmatrix}$	13
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	,		11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$9.26 - 10.1 (2.887 \ 0.005 \ 0.010 \ 0.039) \times 10^{1}$	$(5.046 \ 0.022 \ 0.041 \ 0.081) \times 10^{-6}$	$\begin{bmatrix} 5.722 & 0.027 & 0.050 & 0.11 \end{bmatrix}$	10
$11.0 - 12.0 \begin{vmatrix} (1.839 \ 0.003 \ 0.007 \ 0.025) \times 10^{1} \end{vmatrix} \begin{vmatrix} (3.297 \ 0.016 \ 0.029 \ 0.054) \times 10^{0} \end{vmatrix} \begin{vmatrix} 5.577 \ 0.028 \ 0.054 \ 0.109 \end{vmatrix}$	/	,)9
		,		
$12.0 - 13.0 (1.470\ 0.003\ 0.005\ 0.020) \times 10^{1} (2.672\ 0.014\ 0.025\ 0.045) \times 10^{0} 5.502\ 0.030\ 0.056\ 0.109$,)9
$13.0 - 14.1$ $(1.181 \ 0.002 \ 0.005 \ 0.016) \times 10^{1}$ $(2.182 \ 0.012 \ 0.022 \ 0.037) \times 10^{0}$ $(5.411 \ 0.031 \ 0.058 \ 0.109)$	/	,		
$14.1 - 15.3 (9.491 \ 0.020 \ 0.038 \ 0.132) \times 10^0 (1.738 \ 0.010 \ 0.018 \ 0.030) \times 10^0 5.461 \ 0.032 \ 0.061 \ 0.111$				
$15.3 - 16.6 (7.579 \ 0.017 \ 0.031 \ 0.107) \times 10^{0} (1.417 \ 0.008 \ 0.016 \ 0.025) \times 10^{0} 5.349 \ 0.033 \ 0.063 \ 0.111$,	· ·		

TABLE SM LXXVIII: Bartels Rotation 2505 (March 17, 2017 – April 12, 2017). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$\rho/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time} \ \sigma_{\rm syst.}$
$16.6 - 18.0 (6.088 \ 0.014 \ 0.026 \ 0.087) \times 10$	$0 (1.144 \ 0.007 \ 0.013 \ 0.021) \times 10^{0}$	5.320 0.033 0.065 0.112
$18.0 - 19.5 (4.887 \ 0.011 \ 0.022 \ 0.071) \times 10$	$0 (9.291 \ 0.055 \ 0.112 \ 0.169) \times 10^{-1}$	$\begin{bmatrix} 5.260 & 0.034 & 0.068 & 0.112 \end{bmatrix}$
$19.5 - 21.1 (3.933 \ 0.009 \ 0.018 \ 0.058) \times 10$	$0 (7.565 \ 0.046 \ 0.095 \ 0.140) \times 10^{-1}$	$\begin{bmatrix} -1 \\ 5.199 \\ 0.034 \\ 0.069 \\ 0.112 \end{bmatrix}$
$21.1 - 22.8 (3.150 \ 0.008 \ 0.015 \ 0.047) \times 10$	$0 (6.208 \ 0.039 \ 0.078 \ 0.116) \times 10^{-1}$	$\begin{bmatrix} 5.074 & 0.034 & 0.068 & 0.110 \end{bmatrix}$
$22.8 - 24.7 (2.536 \ 0.006 \ 0.012 \ 0.038) \times 10$	$0 (5.010 \ 0.032 \ 0.064 \ 0.094) \times 10^{-1} $	$\begin{bmatrix} 5.061 & 0.035 & 0.069 & 0.110 \end{bmatrix}$
$24.7 - 26.7 (2.034 \ 0.005 \ 0.010 \ 0.031) \times 10$	$0 (4.056 \ 0.027 \ 0.052 \ 0.076) \times 10^{-1}$	$\begin{bmatrix} -1 \\ 5.015 \\ 0.037 \\ 0.069 \\ 0.110 \end{bmatrix}$
$26.7 - 28.8 (1.644 \ 0.005 \ 0.009 \ 0.025) \times 10$	$0 (3.247 \ 0.024 \ 0.042 \ 0.061) \times 10^{-1}$	$\begin{bmatrix} -1 \\ 5.065 \\ 0.040 \\ 0.071 \\ 0.111 \end{bmatrix}$
$28.8 - 31.1 (1.327 \ 0.004 \ 0.007 \ 0.020) \times 10$	$0 (2.694 \ 0.020 \ 0.035 \ 0.051) \times 10^{-1}$	$\begin{bmatrix} 4.925 & 0.040 & 0.069 & 0.109 \end{bmatrix}$
$31.1 - 33.5 (1.074 \ 0.004 \ 0.006 \ 0.017) \times 10$	$0 (2.219 \ 0.018 \ 0.029 \ 0.043) \times 10^{-1}$	$\begin{bmatrix} 1 \\ 4.839 \\ 0.043 \\ 0.069 \\ 0.108 \end{bmatrix}$
$33.5 - 36.1 (8.708 \ 0.031 \ 0.048 \ 0.132) \times 10$	$^{-1}$ (1.801 0.016 0.024 0.035)×10 $^{-1}$	$\begin{bmatrix} 4.836 & 0.045 & 0.071 & 0.109 \end{bmatrix}$
$36.1 - 38.9 (7.064 \ 0.026 \ 0.040 \ 0.108) \times 10$	$^{-1}$ (1.470 0.014 0.020 0.029)×10 $^{-1}$	$\begin{bmatrix} 1 \\ 4.804 \\ 0.048 \\ 0.071 \\ 0.109 \end{bmatrix}$
$38.9 - 41.9 (5.742 \ 0.023 \ 0.034 \ 0.088) \times 10$	$^{-1}$ (1.198 0.012 0.017 0.023)×10 ⁻¹	$\begin{bmatrix} -1 \\ 4.795 & 0.051 & 0.073 & 0.110 \end{bmatrix}$
$41.9 - 45.1 (4.670 \ 0.020 \ 0.028 \ 0.072) \times 10$	$^{-1}$ (9.846 0.104 0.141 0.197)×10 $^{-1}$	$-2 \mid 4.743 \mid 0.054 \mid 0.074 \mid 0.110 \mid$
$45.1 - 48.5$ $(3.806 \ 0.018 \ 0.023 \ 0.059) \times 10$	$^{-1}$ (7.917 0.090 0.116 0.160)×10 $^{-1}$	$-2 \mid 4.807 \mid 0.059 \mid 0.076 \mid 0.113 \mid$
$48.5 - 52.2 (3.114 \ 0.015 \ 0.019 \ 0.049) \times 10$	$^{-1}$ (6.554 0.078 0.098 0.135)×10 ⁻¹	$-2 \mid 4.752 \mid 0.061 \mid 0.077 \mid 0.113 \mid$
52.2 - 56.1 (2.540 0.013 0.016 0.041)×10	$^{-1}$ (5.380 0.069 0.083 0.112)×10 ⁻¹	$-2 \mid 4.720 \mid 0.065 \mid 0.078 \mid 0.113 \mid$
$56.1 - 60.3 (2.079 \ 0.012 \ 0.013 \ 0.034) \times 10$	$^{-1}$ (4.498 0.060 0.071 0.095)×10 $^{-1}$	$-2 \mid 4.622 \mid 0.067 \mid 0.079 \mid 0.112 \mid$

TABLE SM LXXIX: Bartels Rotation 2506 (April 13, 2017 – May 9, 2017). The proton flux Φ_p , helium flux Φ_{He} , and p/He flux ratio as a function of rigidity (in units of GV) at the top of AMS in units of $[m^2 \cdot \text{sr} \cdot \text{s} \cdot \text{GV}]^{-1}$ including errors due to statistics ($\sigma_{\text{stat.}}$), time dependent systematic errors (σ_{time}) and the total systematic error ($\sigma_{\text{syst.}}$). Contributions to the time dependent systematic error are from: the trigger and the reconstruction efficiency. Contributions to the total systematic error are from: the acceptance, the background contamination, the geomagnetic cutoff factor, the event selection, the unfolding, the rigidity resolution function, the absolute rigidity scale, and the time dependent systematic errors. The statistical errors for the ratio are the sum in quadrature of the relative statistical errors of the fluxes multiplied by the ratio. The time dependent systematic errors of the fluxes multiplied by the ratio. The systematic errors from the acceptance for the ratio are added in quadrature. The correlations in the systematic errors from the unfolding and the absolute rigidity scale between the fluxes have been accounted for in calculating the corresponding systematic errors of the ratio. The contributions of the individual sources to the systematic error are added in quadrature to arrive at the total systematic uncertainty on the ratio.

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	$\Phi_{ m He}$ $\sigma_{ m stat.}$ $\sigma_{ m time}$ $\sigma_{ m syst.}$	$p/{\rm He} \ \sigma_{\rm stat.} \ \sigma_{\rm time}$	$\sigma_{ m syst.}$
$1.00 - 1.16 (1.337 \ 0.006 \ 0.019 \ 0.060) \times 10$	3		_
$1.16 - 1.33 (1.259 \ 0.003 \ 0.013 \ 0.045) \times 10$	3		_
$1.33 - 1.51 (1.160 \ 0.003 \ 0.009 \ 0.033) \times 10$	3		_
$1.51 - 1.71 (1.043 \ 0.002 \ 0.007 \ 0.027) \times 10$	3		_
$1.71 - 1.92 (9.102\ 0.017\ 0.052\ 0.215) \times 10$	2		_
$1.92 - 2.15 (7.823 \ 0.014 \ 0.041 \ 0.168) \times 10$	$(9.785 \ 0.054 \ 0.092 \ 0.216) \times 10^{1}$	7.995 0.046 0.086	0.236
$2.15 - 2.40 (6.603 0.011 0.032 0.132) \times 10$	$(8.785 \ 0.045 \ 0.074 \ 0.172) \times 10^{1}$	7.516 0.040 0.073	0.199
$2.40 - 2.67 (5.521 \ 0.009 \ 0.026 \ 0.104) \times 10$	$(7.689 \ 0.036 \ 0.063 \ 0.139) \times 10^{1}$	7.180 0.036 0.068	0.177
$2.67 - 2.97 (4.620\ 0.007\ 0.021\ 0.081) \times 10$	$(6.605 \ 0.030 \ 0.053 \ 0.113) \times 10^{1}$	6.995 0.033 0.064	0.162
$2.97 - 3.29 (3.793\ 0.006\ 0.017\ 0.063) \times 10$	$(5.550 \ 0.024 \ 0.039 \ 0.090) \times 10^{1}$	6.834 0.031 0.057	0.151
$3.29 - 3.64 (3.122\ 0.005\ 0.015\ 0.050) \times 10$	$(4.656 \ 0.020 \ 0.029 \ 0.074) \times 10^{1}$	6.705 0.030 0.052	0.144
$3.64 - 4.02 (2.555 \ 0.004 \ 0.012 \ 0.041) \times 10$	$(3.889 \ 0.016 \ 0.023 \ 0.061) \times 10^{1}$	6.570 0.029 0.050	0.138
$4.02 - 4.43 (2.076 \ 0.003 \ 0.010 \ 0.032) \times 10$	$(3.206\ 0.013\ 0.018\ 0.050)\times10^{1}$	6.476 0.028 0.048	0.132
$4.43 - 4.88 (1.684 \ 0.002 \ 0.008 \ 0.026) \times 10$	$(2.635 \ 0.010 \ 0.015 \ 0.040) \times 10^{1}$	6.389 0.026 0.047	0.129
$4.88 - 5.37 (1.356 \ 0.002 \ 0.006 \ 0.020) \times 10$	$(2.153 \ 0.008 \ 0.012 \ 0.033) \times 10^{1}$	6.296 0.026 0.045	0.125
5.37 - 5.90 (1.083 0.002 0.005 0.015)×10	$(1.759 \ 0.007 \ 0.010 \ 0.027) \times 10^{1}$	6.157 0.026 0.042	0.120
$5.90 - 6.47 (8.697 \ 0.013 \ 0.035 \ 0.123) \times 10$		6.078 0.025 0.041	0.116
$6.47 - 7.09 (6.997 \ 0.010 \ 0.028 \ 0.098) \times 10$	$(1.166 \ 0.005 \ 0.006 \ 0.017) \times 10^{1}$	6.001 0.025 0.041	0.114
$7.09 - 7.76 (5.596 \ 0.008 \ 0.022 \ 0.078) \times 10$	$(9.436 \ 0.037 \ 0.052 \ 0.142) \times 10^{0}$	5.930 0.025 0.040	0.112
$7.76 - 8.48 (4.478 \ 0.007 \ 0.017 \ 0.062) \times 10$	$(7.671 \ 0.031 \ 0.044 \ 0.115) \times 10^{0}$	5.838 0.025 0.040	0.109
$8.48 - 9.26 (3.582 \ 0.006 \ 0.014 \ 0.049) \times 10$	$(6.208 \ 0.026 \ 0.037 \ 0.094) \times 10^{0}$	5.770 0.026 0.041	0.108
$9.26 - 10.1 (2.856 \ 0.005 \ 0.012 \ 0.039) \times 10$	$(5.044 \ 0.022 \ 0.031 \ 0.076) \times 10^{0}$	5.663 0.026 0.042	0.106
$10.1 - 11.0 (2.284 \ 0.004 \ 0.010 \ 0.031) \times 10$	$(4.065 \ 0.019 \ 0.026 \ 0.062) \times 10^{0}$	5.618 0.028 0.043	0.105
$11.0 - 12.0 (1.818 \ 0.003 \ 0.008 \ 0.025) \times 10$	$(3.259 \ 0.016 \ 0.022 \ 0.050) \times 10^{0}$	5.579 0.029 0.045	0.105
$12.0 - 13.0 (1.456 \ 0.003 \ 0.006 \ 0.020) \times 10$	$(2.649 \ 0.014 \ 0.019 \ 0.041) \times 10^{0}$	5.496 0.031 0.046	0.105
$13.0 - 14.1 (1.175 \ 0.002 \ 0.005 \ 0.017) \times 10$	$(2.177 \ 0.012 \ 0.016 \ 0.034) \times 10^{0}$	5.397 0.031 0.048	0.104
$14.1 - 15.3 (9.429\ 0.020\ 0.045\ 0.134) \times 10$,	5.388 0.032 0.050	0.104
$15.3 - 16.6 (7.561 \ 0.017 \ 0.037 \ 0.108) \times 10$,		0.104
T 11 1: 1			

TABLE SM LXXIX: Bartels Rotation 2506 (April 13, 2017 – May 9, 2017). (Continued).

Rigidity Φ_p $\sigma_{\rm stat.}$ $\sigma_{\rm time}$ $\sigma_{\rm syst.}$	Φ_{He} $\sigma_{\mathrm{stat.}}$ σ_{time} $\sigma_{\mathrm{syst.}}$	$p/\text{He } \sigma_{\text{stat.}} \ \sigma_{\text{time }} \ \sigma_{\text{syst.}}$
$16.6 - 18.0 (6.058 \ 0.014 \ 0.031 \ 0.088) \times 10$	$0 (1.160 \ 0.007 \ 0.010 \ 0.019)\rangle$	$\times 10^0$ 5.222 0.033 0.053 0.104
$18.0 - 19.5 (4.884 \ 0.011 \ 0.026 \ 0.072) \times 10$	$0 (9.278 \ 0.056 \ 0.085 \ 0.153)\rangle$	$\times 10^{-1} 5.264 \ 0.034 \ 0.056 \ 0.105$
$19.5 - 21.1 (3.905 \ 0.009 \ 0.021 \ 0.059) \times 10$	$0 \mid (7.691 \ 0.047 \ 0.073 \ 0.128) >$	$\times 10^{-1} 5.077 \ 0.033 \ 0.056 \ 0.102$
$21.1 - 22.8 (3.147 \ 0.008 \ 0.018 \ 0.048) \times 10$	$0 (6.151 \ 0.039 \ 0.059 \ 0.103) \rangle$	$\times 10^{-1} 5.117 \ 0.035 \ 0.057 \ 0.104$
$22.8 - 24.7 (2.524 \ 0.006 \ 0.015 \ 0.038) \times 10$	$0 (5.004 \ 0.032 \ 0.049 \ 0.084) \rangle$	$\times 10^{-1} 5.044 \ 0.035 \ 0.057 \ 0.103$
$24.7 - 26.7 (2.029 \ 0.005 \ 0.012 \ 0.031) \times 10$	$0 (4.064 \ 0.028 \ 0.040 \ 0.068) \rangle$	$\times 10^{-1} 4.993 \ 0.036 \ 0.057 \ 0.103$
$26.7 - 28.8 (1.645 \ 0.005 \ 0.010 \ 0.025) \times 10$	$0 (3.311 \ 0.024 \ 0.033 \ 0.056)\rangle$	$\times 10^{-1} 4.968 \ 0.039 \ 0.058 \ 0.103$
$28.8 - 31.1 (1.322 \ 0.004 \ 0.008 \ 0.021) \times 10$	$0 (2.710 \ 0.021 \ 0.027 \ 0.046)\rangle$	$\times 10^{-1} 4.879 \ 0.040 \ 0.058 \ 0.102$
$31.1 - 33.5 (1.074 \ 0.004 \ 0.007 \ 0.017) \times 10$	$0 (2.207 \ 0.018 \ 0.023 \ 0.038)\rangle$	$\times 10^{-1} 4.867 \ 0.043 \ 0.059 \ 0.102$
$33.5 - 36.1 (8.782 \ 0.031 \ 0.059 \ 0.137) \times 10$	$^{-1}$ (1.824 0.016 0.019 0.032)>	$\times 10^{-1} 4.815 \ 0.045 \ 0.060 \ 0.102$
$36.1 - 38.9 (7.113 \ 0.027 \ 0.049 \ 0.112) \times 10$	$^{-1}$ (1.474 0.014 0.016 0.026)>	$\times 10^{-1} 4.827 \ 0.048 \ 0.062 \ 0.104$
$38.9 - 41.9 (5.723 \ 0.023 \ 0.040 \ 0.090) \times 10$	$^{-1}$ (1.196 0.012 0.013 0.021)>	$\times 10^{-1} 4.784 \ 0.051 \ 0.063 \ 0.104$
$41.9 - 45.1 (4.668 \ 0.020 \ 0.034 \ 0.074) \times 10$	$^{-1}$ (9.969 0.104 0.114 0.180)>	$\times 10^{-2} 4.683 \ 0.053 \ 0.063 \ 0.103$
$45.1 - 48.5 (3.813 \ 0.018 \ 0.028 \ 0.061) \times 10$	$^{-1}$ (8.121 0.091 0.095 0.148)>	$\times 10^{-2} 4.695 \ 0.057 \ 0.065 \ 0.104$
$48.5 - 52.2 (3.120 \ 0.015 \ 0.023 \ 0.051) \times 10$	$^{-1}$ (6.450 0.078 0.078 0.120)>	$\times 10^{-2} 4.837 \ 0.063 \ 0.069 \ 0.109$
$52.2 - 56.1 (2.542 \ 0.013 \ 0.020 \ 0.043) \times 10$	$^{-1}$ (5.300 0.068 0.066 0.100)>	$\times 10^{-2} 4.795 \ 0.067 \ 0.070 \ 0.109$
$56.1 - 60.3 (2.097 \ 0.012 \ 0.016 \ 0.036) \times 10^{-1}$	$^{-1} (4.454 \ 0.060 \ 0.057 \ 0.085) \rangle$	$\times 10^{-2} 4.707 \ 0.069 \ 0.071 \ 0.108$