

CS 3251- Computer Networking: Multimedia Networking

Professor Patrick Traynor 12/3/13 Lecture 28

Announcements

- All assignment/project drop-boxes are now closed.
 - If you have late work, it's now too late.
- This is our last lecture with new material for the semester.
 - Interested in learning more? There's so much more to be done!
 - Next time, we'll review for the final.
 - Details available then...
- Take the CIOS survey!

Last Time

- What is a VPN?
 - What technology/protocol suite is generally used to implement them?
- How much protection does WEP offer in practice?
 - What other options should you use?
- How does a firewall work?
- Why are attacks on BGP difficult to detect?

Multimedia, Quality of Service: What is it?

Chapter 7: Goals

Principles

- classify multimedia applications
- identify network services applications need
- making the best of best effort service

Protocols and Architectures

- specific protocols for best-effort
- mechanisms for providing QoS
- architectures for QoS

Chapter 7 Outline

- 7.1 Multimedia Networking Applications
- 7.2 Streaming stored video
- 7.3 Voice-over-IP
- 7.4 Protocols for Real-Time Interactive Applications
 - RTP,RTCP,SIP
- 7.5 Network Support for Multimedia

Multimedia: Audio

- analog audio signal sampled at constant rate
 - telephone: 8,000 samples/sec
 - CD music: 44,100 samples/sec
- each sample quantized, i.e., rounded
 - e.g., 2⁸=256 possible quantized values
 - each quantized value represented by bits, e.g., 8 bits for 256 values

Multimedia: Audio

- example: 8,000 samples/sec, 256 quantized values:
 64,000 bps
- receiver converts bits back to analog signal:
 - some quality reduction
- example rates
 - CD: I.411 Mbps
 - MP3: 96, 128, 160 kbps
 - Internet telephony: 5.3 kbps and up

Multimedia: Video

- video: sequence of images displayed at constant rate
 - e.g. 24 images/sec
- digital image: array of pixels
 - each pixel represented by bits
- coding: use redundancy within and between images to decrease # bits used to encode image
 - spatial (within image)
 - temporal (from one image to next)

spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

frame i

temporal coding example:\instead of sending complete frame at i+1, send only differences from frame i

frame *i*+1

Multimedia: Video

- CBR: (constant bit rate): video encoding rate fixed
- VBR: (variable bit rate): video encoding rate changes as amount of spatial, temporal coding changes
- <u>examples</u>:
 - MPEG I (CD-ROM) I.5 Mbps
 - MPEG2 (DVD) 3-6 Mbps
 - MPEG4 (often used in Internet,< I Mbps)

of sending of sending of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

frame i

temporal coding example: instead of sending complete frame at i+1, send only differences from frame i

frame *i*+1

Multimedia Networking: Three Application Types

- streaming, stored audio, video
 - streaming: can begin playout before downloading entire file
 - stored (at server): can transmit faster than audio/video will be rendered (implies storing/buffering at client)
 - e.g., YouTube, Netflix, Hulu
- conversational voice/video over IP
 - interactive nature of human-to-human conversation limits delay tolerance
 - e.g., Skype
- streaming live audio, video
 - e.g., live sporting event (futbol)

Streaming Stored Multimedia: What is it?

Streaming stored video: challenges

- continuous playout constraint: once client playout begins, playback must match original timing
 - ... but network delays are variable (jitter), so will need client-side buffer to match playout requirements
- other challenges:
 - client interactivity: pause, fast-forward, rewind, jump through video
 - video packets may be lost, retransmitted

Delay Jitter

 Consider the end-to-end delays of two consecutive packets: difference can be more or less than 20 msec

Client-side buffering, playout

Client-side buffering, playout

- I. Initial fill of buffer until playout begins at tp
- 2. playout begins at t_p ,
- buffer fill level varies over time as fill rate x(t) varies and playout rate r is constant

Client-side buffering, playout

- playout buffering: average fill rate (x), playout rate (r):
 - \overline{x} < r: buffer eventually empties (causing freezing of video playout until buffer again fills)
 - $\bar{x} > r$: buffer will not empty, provided initial playout delay is large enough to absorb variability in x(t)
 - initial playout delay tradeoff: buffer starvation less likely with larger delay, but larger delay until user begins watching

Content distribution networks

 challenge: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users?

- option 1: single, large "mega-server"
 - single point of failure
 - point of network congestion
 - long path to distant clients
 - multiple copies of video sent over outgoing link
-quite simply: this solution doesn't scale

Content distribution networks

- challenge: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users?
- option 2: store/serve multiple copies of videos at multiple geographically distributed sites (CDN)
 - enter deep: push CDN servers deep into many access networks
 - close to users
 - used by Akamai, 1700 locations
 - bring home: smaller number (10's) of larger clusters in POPs near (but not within) access networks
 - used by Limelight

Case study: Netflix

- 30% downstream US traffic in 2011
- owns very little infrastructure, uses 3rd party services:
 - own registration, payment servers
 - Amazon (3rd party) cloud services:
 - Netflix uploads studio master to Amazon cloud
 - create multiple version of movie (different endodings) in cloud
 - upload versions from cloud to CDNs
 - Cloud hosts Netflix web pages for user browsing
 - three 3rd party CDNs host/stream Netflix content: Akamai, Limelight, Level-3

Chapter 7 Outline

- 7.1 Multimedia Networking Applications
- 7.2 Streaming stored video
- 7.3 Voice-over-IP
- 7.4 Protocols for Real-Time Interactive Applications
 - RTP,RTCP,SIP
- 7.5 Network Support for Multimedia

Voice-over-IP (VoIP)

- VolP end-end-delay requirement: needed to maintain "conversational" aspect
 - higher delays noticeable, impair interactivity
 - < 150 msec: good</p>
 - > 400 msec bad
 - includes application-level (packetization, playout), network delays
- session initialization: how does callee advertise IP address, port number, encoding algorithms?
- value-added services: call forwarding, screening, recording
- emergency services: 911

VoIP: packet loss, delay

- network loss: IP datagram lost due to network congestion (router buffer overflow)
- delay loss: IP datagram arrives too late for playout at receiver
 - delays: processing, queueing in network; end-system (sender, receiver) delays
 - typical maximum tolerable delay: 400 ms
- loss tolerance: depending on voice encoding, loss concealment, packet loss rates between 1% and 10% can be tolerated

Recovery from Packet Loss (I)

- Forward Error
 Correction (FEC): simple scheme
 - for every group of n chunks create redundant chunk by exclusive ORing n original chunks
 - send out n+1 chunks, increasing bandwidth by factor 1/n.
 - can reconstruct original n
 chunks if at most one lost
 chunk from n+1 chunks

- playout delay: enough time to receive all n+1 packets
- tradeoff:
 - increase n, less bandwidth waste
 - increase n, longer playout delay
 - increase n, higher probability that 2 or more chunks will be lost

Recovery from Packet Loss (II)

2nd FEC scheme

- "piggyback lower quality stream"
- send lower resolution audio stream as the redundant information
- for example, nominal stream PCM at 64 kbps and redundant stream GSM at 13 kbps.

- Whenever there is non-consecutive loss, the receiver can conceal the loss.
- Can also append (n-1)st and (n-2)nd low-bit rate chunk

Recovery from Packet Loss (III)

Interleaving

- chunks are broken up into smaller units
- for example, 4 5 msec units per chunk
- Packet contains small units from different chunks

- if packet is lost, still have most of every chunk
- has no redundancy overhead
- but adds to playout delay

Chapter 7 Outline

- 7.1 Multimedia Networking Applications
- 7.2 Streaming stored video
- 7.3 Voice-over-IP
- 7.4 Protocols for Real-Time Interactive Applications
 - RTP,RTCP,SIP
- 7.5 Network Support for Multimedia

Real-Time Protocol (RTP)

- RTP specifies packet structure for packets carrying audio, video data
- RFC 3550
- RTP packet provides
- payload type identification
- packet sequence numbering
- time stamping

- RTP runs in end systems
- RTP packets encapsulated in UDP segments
- interoperability: if two VoIP applications run RTP, they may be able to work together

Real-Time Control Protocol (RTCP)

- works in conjunction with RTP
- each participant in RTP session periodically sends RTCP control packets to all other participants

- each RTCP packet contains sender and/or receiver reports
 - report statistics useful to application: # packets sent, # packets lost, interarrival jitter
- feedback used to control performance
 - sender may modify its transmissions based on feedback

Session Initiation Protocol (SIP)

- SIP provides mechanisms for call setup:
 - for caller to let callee know she wants to establish a call
 - so caller, callee can agree on media type, encoding
 - to end call

- determine current IP address of callee:
 - maps mnemonic identifier to current IP address
- call management:
 - add new media streams during call
 - change encoding during call
 - invite others
 - transfer, hold calls

Chapter 7 Outline

- 7.1 Multimedia Networking Applications
- 7.2 Streaming stored video
- 7.3 Voice-over-IP
- 7.4 Protocols for Real-Time Interactive Applications
 - RTP,RTCP,SIP
- 7.5 Network Support for Multimedia

Multimedia Over Today's Internet

- TCP/UDP/IP: "best-effort service"
 - no guarantees on delay, loss

But you said multimedia apps requires

QoS and level of performance to be

effective!

Today's Internet multimedia applications use application-level techniques to mitigate (as best possible) effects of delay, loss

How should the Internet evolve to better support multimedia?

Integrated services philosophy:

- Fundamental changes in Internet so that apps can reserve end-toend bandwidth
- Requires new, complex software in hosts & routers

Laissez-faire

- no major changes
- more bandwidth when needed
- content distribution, applicationlayer multicast
 - application layer

Differentiated services philosophy:

 Fewer changes to Internet infrastructure, yet provide 1st and 2nd class service.

What's your opinion?

Summary: Internet Multimedia: Bag of Tricks

- use UDP to avoid TCP congestion control (delays) for time-sensitive traffic
- client-side adaptive playout delay: to compensate for delay
- server side matches stream bandwidth to available client-to-server path bandwidth
 - chose among pre-encoded stream rates
 - dynamic server encoding rate
- error recovery (on top of UDP)
 - FEC, interleaving, error concealment
 - retransmissions, time permitting
- CDN: bring content closer to clients

Next Time

- That's all for new material...
 - Wow... that went quickly!

- Get ready for the final!
 - Next class (conveniently) is a review!

