VISUALIZING AND PREDICTING HEART DISEASES WITH AN INTERACTIVE DASHBOARD

TEAM ID: PNT2022TMID04327

LITERATURE SURVEY

S.NO	PAPER	AUTHOR	YEAR	METHOD AND ALGORITHM	ACCURACY
1.	Heart Disease Prediction System Using Machine Learning	Ranjit Shrestha and Jyotir Moy Chatterjee	2019	Here process is done through the ML Process in order to build a model. After that, the model will deploy into web application by implanting Python Flask server-side libraries through the Waterfall Model. The proposed system used by Doctors that can access the system in order to decide whether the patient having HD or not. This system provides the level of HD presence such as no HD, having HD, and most likely having HD.	88%
2.	Early Detection of Cardiovascular Disease using Machine learning Techniques an Experimental Study	Najmu Nissa, Sanjay Jamwal, Shahid Mohammad	2020	The objective of this paper is, to compare different machine learning algorithms using different tools and techniques and their results in terms of accuracy. It also highlights the future scope of a prediction model in healthcare using Data mining and vast analysis of machine learning algorithm. The experiment was carried in	97.29%

S.NO	PAPER	AUTHOR	YEAR	METHOD AND ALGORITHM	ACCURACY
				WEKA on Cleave Land UCI dataset and during training the data undergoes the following: preprocessing classification, regression, clustering, association and visualization.	
3.	Early Prediction of Coronary Artery Disease (CAD) by Machine Learning Method - A Comparative Study	Dr. Joy Iong Zong Chen, P. Hengjinda	2021	The noisy type database is used in this article for better clarity about identifying the classifier. This research article provides the recent adaptive imagebased classification techniques and it comparing existing classification methods to predict CAD earlier for a higher accurate value.	87.2%
4.	A decision support system for heart disease prediction based upon machine learning.	Pooja Rani, Rajneesh Kumar, Nada M. O. Sid Ahmed & Anurag Jain	2021	For pre-processing of data, SMOTE (Synthetic Minority Oversampling Technique) and standard scalar methods have been used. In the last step of the development of the proposed hybrid system vector machine, naive bayes, logistic regression, random forest, and adaboost classifiers are used. It has been found that the system has given the most accurate results with random forest classifier. It was tested on the Cleveland heart disease dataset available at UCI (University of California, Irvine).	86.6%

S.NO	PAPER	AUTHOR	YEAR	METHOD AND ALGORITHM	ACCURACY
5.	Cardiac Disease Prediction using Supervised Machine Learning Techniques.	Chiradeep Gupta, Athina Saha, N V Subba Reddy, U Dinesh Acharya	2022	They have used various supervised machine-learning techniques like K-Nearest Neighbor, Decision Tree, Logistic Regression, Naïve Bayes, and Support Vector Machine (SVM) model are used for predicting cardiac disease using a dataset that was collected from the repository of the University of California, Irvine (UCI). The results depict that Logistic Regression was better than all other supervised classifiers in terms of the performance metrics.	92.30%