Verzani Problem Set

Next are considered the problems from Verzani's book on page 72.

Problem 11.1

Consider the data set homework. This measures study habits of students from private and public high schools. Make a side-by-side boxplot. Use the appropriate test to test for equality of centers.

> **library**(UsingR)

Warning: package 'UsingR' was built under R version 4.0.3

Loading required package: MASS
Loading required package: HistData
Loading required package: Hmisc
Loading required package: lattice
Loading required package: survival
Loading required package: Formula
Loading required package: ggplot2

Attaching package: 'Hmisc'

The following objects are masked from 'package:base':

format.pval, units

Attaching package: 'UsingR'

The following object is masked from 'package:survival':

cancer

> **head**(homework)

Private Public
1 21.3 15.3
2 16.8 17.4
3 8.5 12.3
4 12.6 10.7
5 15.8 16.4
6 19.3 11.3

> summary(homework)

Private Public
Min.: 8.50 Min.: 5.70
1st Qu.:15.75 1st Qu.:11.80
Median: 18.40 Median: 15.30
Mean: 17.63 Mean: 14.91
3rd Qu.:19.90 3rd Qu.:17.50
Max.: 24.60 Max.: 23.60

> boxplot(homework\$Private, homework\$Public)

First let's check for normality

> library(StatDA)

Warning: package 'StatDA' was built under R version 4.0.3

Loading required package: sgeostat

Warning: package 'sgeostat' was built under R version 4.0.3

Registered S3 method overwritten by 'geoR':

method from

plot.variogram sgeostat

> qqplot.das(homework\$Private)

> ggplot.das(homework\$Public)

Shapiro test for normality

> shapiro.test(homework\$Private)

Shapiro-Wilk normality test

data: homework\$Private W = 0.97017, p-value = 0.8606

The $p-value = 0.8606 > 0.05 = \alpha$, so we have no evidence to reject H_0 .

> shapiro.test(homework\$Public)

Shapiro-Wilk normality test

data: homework\$Public

W = 0.99275, p-value = 0.9999

The $p-value = 0.9999 > 0.05 = \alpha$, so we have no evidence to reject H_0 .

Both have normal distributions, so we can use t-test

 $H_0: \mu_{public} = \mu_{private}$

 $H_A: \mu_{public} \neq \mu_{private}$

They are independent and we don't know if the variances are equal or not. So we can assume that the variances are different.

> t.test(homework\$Private, homework\$Public)

Welch Two Sample t-test

data: homework\$Private and homework\$Public
t = 1.7134, df = 27.727, p-value = 0.09779
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.5345123 5.9878456
sample estimates:
mean of x mean of y
17.63333 14.90667

The $p-value=0.09779>0.05=\alpha$, so we have no evidence to reject H_0 .

Or we can check if the variances are equal or not

 $H_0: \sigma_{public} = \sigma_{private}$ $H_A: \sigma_{public} \neq \sigma_{private}$

> var.test(homework\$Private, homework\$Public)

F test to compare two variances

data: homework\$Private and homework\$Public

F = 0.81944, num df = 14, denom df = 14, p-value = 0.7146

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

0.275110 2.440771

sample estimates:

ratio of variances

0.8194392

The $p-value=0.7146>0.05=\alpha$, so we have no evidence to reject H_0 . So we can assume that the variances are equal.

> t.test(homework\$Private, homework\$Public, var.equal = TRUE)

Two Sample t-test

data: homework\$Private and homework\$Public
t = 1.7134, df = 28, p-value = 0.09769
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.5330654 5.9863986
sample estimates:
mean of x mean of y
17.63333 14.90667

The $p-value = 0.09769 > 0.05 = \alpha$, so we have no evidence to reject H_0 .

Problem 11.2

Consider the data set corn. Twelve plots of land are divided into two and then one half of each is planted with a new corn seed, the other with the standard. Do a two-sample t-test on the data. Do the assumptions seems to be met. Comment why the matched sample test is more appropriate, and then perform the test. Did the two agree anyways?

> head(corn)

First we need to check if the data is normally distributed.

> qqplot.das(corn\$New)

> qqplot.das(corn\$Standard)

Shapiro test for normality

> shapiro.test(corn\$New)

Shapiro-Wilk normality test

data: corn\$New

W = 0.94358, p-value = 0.5457

The $p-value=0.5457>0.05=\alpha$, so we have no evidence to reject H_0 .

> shapiro.test(corn\$Standard)

Shapiro-Wilk normality test

data: corn\$Standard

W = 0.93955, p-value = 0.4923

The $p-value = 0.4923 > 0.05 = \alpha$, so we have no evidence to reject H_0 .

Both have normal distributions, so we can use t-test

 $H_0: \mu_{new} = \mu_{standard}$

 $H_A: \mu_{new} \neq \mu_{standard}$

The data are paired as we divide the plots in two

> t.test(corn\$New, corn\$Standard, paired = TRUE)

Paired t-test

```
data: corn$New and corn$Standard
t = 3.8308, df = 11, p-value = 0.00279
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
3.297258 12.202742
sample estimates:
mean of the differences
7.75
```

The $p-value=0.4923>0.05=\alpha$, so we reject H_0 . The new and the standard seed doesn't have the same mean.

Problem 11.3

Consider the data set blood. Do a significance test for equivalent centers. Which one did you use and why? What was the p-value?

> head(blood)

Machine Expert

1	68	72
2	82	84
3	94	89

4 106 100 5 92 97

6 80 88

The data present the blood pressure of 15 males taken by machine and expert, so we have paired samples.

We need to check if the data is normally distributed.

> qqplot.das(blood\$Machine)

> qqplot.das(blood\$Expert)

Shapiro test for normality

> shapiro.test(blood\$Machine)

Shapiro-Wilk normality test

data: blood\$Machine

W = 0.96996, p-value = 0.8575

The $p-value = 0.8575 > 0.05 = \alpha$, so we have no evidence to reject H_0 .

> shapiro.test(blood\$Expert)

Shapiro-Wilk normality test

data: blood\$Expert

W = 0.94816, p-value = 0.4959

The $p-value=0.4959=0.05=\alpha$, so we have no evidence to reject H_0 .

Both have normal distributions, so we can use t-test

 $H_0: \mu_{machine} = \mu_{expert}$

 $H_A: \mu_{machine} \neq \mu_{expert}$

> t.test(blood\$Machine, blood\$Expert, paired = TRUE)

Paired t-test

data: blood\$Machine and blood\$Expert

```
t = 0.68162, df = 14, p-value = 0.5066
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-2.146615 4.146615
sample estimates:
mean of the differences
```

The $p-value = 0.5066 > 0.05 = \alpha$, so we have no evidence to reject H_0 .

Problem 11.4

Do a test of equality of medians on the cabinets data set. Why might this be more appropriate than a test for equality of the mean or is it?

> head(cabinet)

	name position est.divide	end.cg est.tax.:	savings
1	George W. Bush President	23947	5651
2	Dick Cheney Vice President	493798	116002
3	John Snow Sec. of Treasury	5500000	331594
4	Colin Powell Sec. of State	1250000	109506
5	Donald Rumsfeld Sec. of Defense	1300000	87327
6	Donald Evans Sec. of Commerce	625448	68370

> qqplot.das(cabinet\$est.dividend.cg)

> qqplot.das(cabinet\$est.tax.savings)

Shapiro test for normality

> shapiro.test(cabinet\$est.dividend.cg)

Shapiro-Wilk normality test

data: cabinet\$est.dividend.cg W = 0.46916, p-value = 2.706e-07

The $p-value = 0.0000002706 < 0.05 = \alpha$, so we reject H_0 .

> shapiro.test(cabinet\$est.tax.savings)

Shapiro-Wilk normality test

data: cabinet\$est.tax.savings W = 0.58517, p-value = 3.154e-06

The $p-value = 0.000003154 < 0.05 = \alpha$, so we reject H_0 .

Both are not normally distributed, so we can make test for equality of medians

 $H_0: Me_1 = Me_2$ $H_A: Me_1 \neq Me_2$

> wilcox.test(cabinet\$est.dividend.cg, cabinet\$est.tax.savings)

Wilcoxon rank sum exact test

data: cabinet\$est.dividend.cg and cabinet\$est.tax.savings

W = 258, p-value = 0.02333

alternative hypothesis: true location shift is not equal to 0

The $p-value = 0.02333 < 0.05 = \alpha$, so we reject H_0 .