

Basics of Neural Network Programming

Logistic Regression Gradient descent

deeplearning.ai

Logistic regression recap

$$\Rightarrow z = w^{T}x + b$$

$$\Rightarrow \hat{y} = a = \sigma(z)$$

$$\Rightarrow \mathcal{L}(a, y) = -(y \log(a) + (1 - y) \log(1 - a))$$

Logistic regression derivatives

deeplearning.ai

Basics of Neural Network Programming

Gradient descent on m examples

Logistic regression on m examples

$$\frac{J(\omega,b)}{S(\omega)} = \frac{1}{m} \sum_{i=1}^{m} f(\alpha^{(i)}, y^{(i)}) \\
S(\alpha^{(i)}, y^{(i)}) = G(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m}$$

Logistic regression on m examples

$$J=0$$
; $d\omega_{i}=0$; $d\omega_{2}=0$; $db=0$
 $Z^{(i)}=\omega^{T}\chi^{(i)}+b$
 $a^{(i)}=\varepsilon(z^{(i)})$
 $J+=-[y^{(i)}(\log a^{(i)}+(1-y^{(i)})\log(1-a^{(i)})]$
 $dz^{(i)}=a^{(i)}-y^{(i)}$
 $dz^{(i)}=a^{(i)}-y^{(i)}$
 $d\omega_{1}+z^{(i)}+z^{(i)}+z^{(i)}$
 $d\omega_{2}+z^{(i)}+z^{(i)}+z^{(i)}+z^{(i)}$
 $d\omega_{2}+z^{(i)}$

$$d\omega_1 = \frac{\partial J}{\partial w_1}$$
 $\omega_1 := w_1 - d dw_1$
 $\omega_2 := \omega_2 - \alpha dw_2$
 $b := b - d db$

Vectorization