Problem B. Assembly via Minimums

Time limit 2000 ms **Mem limit** 262144 kB

Sasha has an array a of n integers. He got bored and for all i, j (i < j), he wrote down the minimum value of a_i and a_j . He obtained a new array b of size $\frac{n \cdot (n-1)}{2}$.

For example, if
$$a=[2,3,5,1]$$
, he would write [$\min(2,3), \min(2,5), \min(2,1), \min(3,5), \min(3,1), \min(5,1)] = [2,2,1,3,1,1].$

Then, he randomly **shuffled** all the elements of the array b.

Unfortunately, he forgot the array a, and your task is to restore any possible array a from which the array b could have been obtained.

The elements of array a should be in the range $[-10^9, 10^9]$.

Input

The first line contains a single integer t (1 $\leq t \leq$ 200) — the number of test cases.

The first line of each test case contains a single integer n ($2 \le n \le 10^3$) — the length of array a.

The second line of each test case contains
$$\frac{n\cdot (n-1)}{2}$$
 integers $b_1,b_2,\dots,b_{\frac{n\cdot (n-1)}{2}}$ ($-10^9\leq b_i\leq 10^9$) — the elements of array b .

It is guaranteed that the sum of n over all tests does not exceed 10^3 and for each array b in the test, there exists an original array.

Output

For each test case, output any possible array a of length n.

Sample 1

Output
1 3 3 10 10 7 5 3 12 2 2 2 2 2 9 -2 0 3 5
L (7 2

Note

In the first sample, Sasha chose the array [1,3,3], then the array b will look like $[\min(a_1,a_2)=1,\min(a_1,a_3)=1,\min(a_2,a_3)=3]$, after shuffling its elements, the array can look like [1,3,1].

In the second sample, there is only one pair, so the array [10,10] is suitable. Another suitable array could be [15,10].