PES UNIVERSITY, BANGALORE-85

(Established under Karnataka Act. No. 16 of 2013)

ESA

UE18MA251-LINEAR ALGEBRA & ITS APPLICATIONS

Q. No.	Answer the following questions				
	Propane is a common gas used for cooking and home heating. Each molecule	6			
	of propane is comprised of 3 atoms of carbon, and 8 atoms of hydrogen				
1a	written as C3H8. When propane burns, it combines with oxygen gas O2 to				
	form carbon dioxide CO2 and water H2O. Balance the chemical equation				
	C3H8 + O2 \rightarrow CO2 + H2O that describes this process.				
	Use the Gauss – Jordan method to invert the following matrices	7			
b	$A = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix}$				
	Write down the elementary matrices E, F, G associated with the system of				
c	equations $2u + v + 3w = -1$, $4u + v + 7w = 5$, $-6u - 2v - 12w = -2$. Also	7			
	find the LU decomposition of A.				
2a	Reduce these matrices to their echelon form to find their rank. Also find a				
	special solution to each of the free variables.				
	$A = \begin{bmatrix} 1 & 2 & 2 & 4 & 6 \\ 1 & 2 & 3 & 6 & 9 \\ 0 & 0 & 1 & 2 & 3 \end{bmatrix}$				
b	For every c , find R and the special solutions to $Ax = 0$:	7			
	$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 4 \\ 1 & c & 2 \end{bmatrix}$				
С	If the column space of A is spanned by the vectors (1, 4, 2), (2, 5, 1) and (
	3, 6, 0) find all those vectors that span the left null space of A. Determine				
	whether or not the vector $\mathbf{b} = (4, -2, 2)$ is in that subspace. What are the	7			
	dimensions of C (A^T) and N (A^T)?				
3a	On the space P3 of cubic polynomials, what matrix represents $\frac{d^2}{dt^2}$? Find its	6			
	null space and column space. What do they mean in terms of polynomials?				

b	What multiple of $a = (1, 1, 1)$ is closest to $b = (2, 4, 4)$? Find also the point								
	on the line through b that is closest to a.								
С	An ice- cream vendor records the number of hours of sun shine (x) versus the								
	number of ice- creams sold in an hour (y) at his shop from Monday to Friday								
	and found the following data:								
	X	2	3	5	7	9	7		
	У	4	5	7	10	15	7		
	Find the best values of m and c that suit the equation $y = mx + c$. If there is a								
	weather forecast that says there would be 8 hours of sun shine the next day,								
	estimate the number of ice- creams that he expects to sell on that day.								
4a	Find the largest Eigen value and the corresponding Eigen vector of a matrix								
	$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$ by using the initial vector $\mathbf{x}_0 = (1, 1, 1)$.								
b	Find orthogonal vectors q_1 , q_2 , q_3 by Gram- Schmidt method from								
	a = (1, 1, 0), b = (1, 0, 1) and $c = (0, 1, 1).$								
С	Factor the matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ in to SAS ⁻¹ . Also find SAS ⁻¹ .								
5a	Let A be an $n \times d$ matrix with right singular vectors v_1, v_2, \ldots, v_r , left singular								
	vectors u_1, u_2, \ldots, u_r , and corresponding singular values $\sigma_1, \sigma_2, \ldots, \sigma_r$. Then								
	$A = \sum_{i=1}^{r} \sigma_i \tau_i$	$u_i v_{i}^T$.							
b	Test the following matrices for positive or semi definite								
	$A = \begin{bmatrix} 5 & 2 & 1 \\ 2 & 2 & 2 \\ 1 & 2 & 5 \end{bmatrix}, B = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$								
С	Find SVD for Matrix $A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & 2 \end{bmatrix}$.								