Does Knowledge Distillation Really Work?

Докладчик: Ольга Агапова Рецензент: Дарья Барановская Практик-исследователь: Артем Алекберов Хакер: Артем Цыганов

Проблема: большие модели не влезают в маленькие носители (например, в мобильное приложение),

Проблема: большие модели не влезают в маленькие носители (например, в мобильное приложение),

а еще дата-саентисты гораздо чаще занимаются улучшением маленьких моделей, и из-за этого их работа не обобщается на большие (так сообщает автор изначальной статьи про К.D., а полезный видосик про это будет по ссылке в конце презентации)

Идея: возьмем легковесную модель,

и научим ее имитировать поведение большой вычислительно сложной модели

Идея: возьмем легковесную модель, (ученик)

и научим ее имитировать поведение большой вычислительно сложной модели (учитель)

Как обучается ученик:

*подробные формулы на стр.3 статьи, ссылка в конце презентации

$$\mathcal{L}_s := \alpha \mathcal{L}_{\text{NLL}} + (1 - \alpha) \mathcal{L}_{\text{KD}}$$

Как обучается ученик:

*подробные формулы на стр.3 статьи, ссылка в конце презентации

$$\mathcal{L}_s := \alpha \mathcal{L}_{\text{NLL}} + (1 - \alpha) \mathcal{L}_{\text{KD}}$$

лосс, который поощряет ученика копировать учителя

Как обучается ученик:

*подробные формулы на стр.3 статьи, ссылка в конце презентации

$$\mathcal{L}_s := \alpha \mathcal{L}_{\text{NLL}} + (1 - \alpha) \mathcal{L}_{\text{KD}}$$

с точностью до константы – KLдивергенция между эмпирическим распределением данных и распределением предсказаний ученика

лосс, который поощряет ученика копировать учителя

Какие метрики?

Для оценки имитирования учеником поведения учителя (*fidelity*):

среднее совпадение между ответами учителя и ученика по самому частому лейблу

Average Top-1 Agreement :=
$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{ rgmax \, \sigma_j(\mathbf{z}_{t,i}) = rgmax \, \sigma_j(\mathbf{z}_{s,i}) \},$$

Average Predictive KL :=
$$\frac{1}{n} \sum_{i=1}^{n} \text{KL} \left(\hat{p}_t(\mathbf{y}|\mathbf{x}_i) \mid\mid \hat{p}_s(\mathbf{y}|\mathbf{x}_i) \right)$$
,

Какие метрики?

Для оценки имитирования учеником поведения учителя (fidelity):

среднее совпадение между ответами учителя и ученика по самому частому лейблу

Average Top-1 Agreement :=
$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{ rgmax \, \sigma_j(\mathbf{z}_{t,i}) = rgmax \, \sigma_j(\mathbf{z}_{s,i}) \},$$

Average Predictive KL :=
$$\frac{1}{n} \sum_{i=1}^{n} \text{KL} \left(\hat{p}_t(\mathbf{y}|\mathbf{x}_i) \mid\mid \hat{p}_s(\mathbf{y}|\mathbf{x}_i) \right)$$
,

средняя KL-дивергенция между распределениями ответов учителя и ученика

Какие метрики?

Для оценки качества предсказаний ученика на незнакомых данных (generalization):

- top-1 accuracy (кажется, тут речь идет тоже о top-1 лейбле)
- expected calibration error (ECE)
- negative log-likelihood (NLL) (та самая штука, которая похожа на КL-расстояние с точностью до константы)

Что утверждают авторы нашей статьи?

KD работает, но:

Что утверждают авторы нашей статьи?

KD работает, но:

- разница между распределениями предсказаний учителя и ученика может быть больше, чем хотелось бы
- даже когда capacity позволяет ученику целиком повторять учителя, их результаты все равно различаются

Что нам обещают в статье?

- показать, какие проблемы с оптимизацией не позволяют ученику в точности обучиться копировать учителя
- показать, какие нюансы в данных влияют на качество этого "мэтча"

• показать, почему точное "натаскивание" на учителя не обязательно дает хорошую генерализацию

1. Knowledge Distillation не очень хорошо сохраняет Knowledge

Knowledge Distillation не очень хорошо сохраняет Knowledge

1. Knowledge Distillation не очень хорошо сохраняет Knowledge

Учитель – LeNet-5

Ученик – тоже LeNet-5

Top-1 Agreement – 99%,

accuracy у учителя и ученика тоже почти одинаковая.

To есть и с fidelity, и с generalization все хорошо.

Knowledge Distillation не очень хорошо сохраняет Knowledge

1. Knowledge Distillation не очень хорошо сохраняет Knowledge

Учитель – ResNet-56

Ученик – тоже

Fidelity растет с увеличением кол-ва данных, но test ассигасу падает

Что выяснили к этому моменту?

- при self-distillation (это когда ученик и учитель одинаковой архитектуры) ученик может превзойти учителя в плане ассигасу, но только пожертвовав fidelity
- точно копирующий поведение учителя ученик его не превзойдет (логично)

Зачем вообще заботиться о fidelity, если ассuracy и так нормальный?

• интерпретируемость

утверждается, что если большую black-box модель утрамбовать в маленькую, то это поможет человеку понять закономерности, которые установила внутри black-box большая модель

Зачем вообще заботиться о fidelity, если ассuracy и так нормальный?

• интерпретируемость

утверждается, что если большую black-box модель утрамбовать в маленькую, то это поможет человеку понять закономерности, которые установила внутри black-box большая модель

лучшая репрезентация "знания"

авторы провели эксперимент, который показал, что у больших учителей (например ансамблей) и маленьких учеников часто получается большой дар в генерализации при оптимизации именно fidelity.

Почему бывает низкий fidelity?

- вместимость ученика
- архитектура сетей
- сложность и размерность данных
- data domain (вроде происхождение данных)
- идентифицируемость
- оптимизация

Почему бывает низкий fidelity?

- вместимость ученика
- архитектура сетей
- сложность и размерность данных
- data domain (вроде происхождение данных)
- идентифицируемость
- оптимизация

Нужно ли использовать больше данных (пар типа "вход-ответ учителя")?
провели эксперимент: стали использовать больше разных аугментаций, выяснили, что аугментации, оптимальные для fidelity и для ассигасу – разные;

Нужно ли использовать больше данных (пар типа "вход-ответ учителя")?
провели эксперимент: стали использовать больше разных аугментаций, выяснили, что аугментации, оптимальные для fidelity и для ассuracy –

разные;

и что разнообразие аугментаций к заметным улучшениям не ведет (agreement не выше 86%)

Data Recycling Hypothesis

гипотеза: использование для дистилляции тех же данных, на которых учили учителя, рискованно.

эксперимент: разбили train data пополам, на **D-0** и **D-1**.

Data Recycling Hypothesis

гипотеза: использование для дистилляции тех же данных, на которых учили учителя, рискованно.

эксперимент: разбили train data пополам, на **D-0** и **D-1**. На **D-0** обучили учителя, а потом сравнили трех учеников:

- обученного на **D-0**
- обученного на **D-1**
- обученного на D-0 и D-1

- Data Recycling Hypothesis
- результат эксперимента: гипотеза, что у ученика на D-1 будет выше fidelity, чем у ученика на D-0, подтверждается, но accuracy у него не выше
- ученик на обеих половинах сочетает в себе лучшие качества остальных, но это не дает большого прироста все равно (agreement 85%)

- Попробовали менять оптимизатор (SGD на Adam), fidelity только упал
- Больше эпох помогает, но не сильно (как всегда)

- Попробовали менять оптимизатор (SGD на Adam), fidelity только упал
- Больше эпох помогает, но не сильно (как всегда)
- "У нас не получилось дистиллировать ResNet-20 на CIFAR-100, но есть ли другая постановка задачи, в которой получится высокий fidelity?"

Идея: инициализировать веса ученика по-другому — либо весами учителя, либо рандомно, либо взвешенной суммой

Идея: инициализировать веса ученика по-другому — либо весами учителя, либо рандомно, либо взвешенной суммой

Результат: если ученик инициализирован далеко от учителя (коэф. < 0.25), то он с ним **не соглашается** (это довольно хороший ученик).

Результат: если ученик инициализирован далеко от учителя (коэф. < 0.25), то он с ним **не соглашается** (это довольно хороший ученик).

Но при коэф. > 0.375, картина меняется и fidelity растет.

Оптимальная инициализация – с коэффициентом в районе 0.375

Выводы

Есть обмен между качеством дистилляции и сложностью оптимизации, и оптимизировать в этом процессе сложно

Хорошая fidelity не значит хорошая generalization

Рецензент

Положительные качества:

- Статья очень аккуратно написана, и ее легко читать. Вводящиеся термины подчеркнуты курсивом, есть обобщающие абзацы в конце разделов.
- Авторы проводят эксперименты по несколько раз для большей точности и предоставляют нам информацию об этом на графиках
- Экспериментов много и они интересные. (Например, статья также затрагивает вопрос инициализации весов ученика и аугментации данных)
- Структурированный код экспериментов на github

Отрицательные качества:

- Некоторые моменты в статье опущены (например, указаны формулы для измерения метрик fidelity, но формулы ЕСЕ придется гуглить)
- Эксперименты на Cifar и Mnist
- Несмотря на аккуратные выводы, авторами не дано каких-то конкретных рекомендаций по дистилляции нейросетей

Оценки рецензентов: 6, 7, 7, 7, 5

Уверенность рецензентов: 4, 4, 3, 4, 3

Моя оценка: 7

Уверенность: 4

Практик-исследователь

Хакер

Полезные ссылки

Сама статья: вот

Приятное видео про KD на 12 минут: вот