

PROJET VERGIS CORPORATION-Conception Reseau

CHOIX DE SPECIFICATIONS

Groupe 2

TABLE DE MATIERES

INTRODUCTION	2
PLAN D'ADRESSAGE ET VLAns	3
1. Choix des classes d'adresses et Élaboration du plan d'adressage	3
REDONDANCE	7
- ETUDE COMPARATIVE DES PROTOCOLES	7
PROTOCOLE DE ROUTAGE DYNAMIQUE (EIGRP ET OSPF)	9
- ETUDE COMPARATIVE DES PROTOCOLES	9
PROTOCOLE DE SECURITE (PAREFEU)	1
CHOIX des equipements	2

INTRODUCTION

Après l'attaque de leur entreprise, Vergis Corporation, désire améliorer l'architecture du reseau de l'entreprise ainsi que sa sécurité. Pour ce faire, ils font appel notre équipe afin de mener à bien cette tâche.

Pour un souci de transparence et de traçabilité de notre travail, nous allons dans ce document, présenter et justifier les choix retenus pour notre architecture reseau. Ainsi, nous présenterons :

- PLAN D'ADRESSAGE & VLANs
- PROTOCOLE DE REDONDANCE CHOISI
- PROTOCOLES DE ROUTAGE
- PROTOCOLES DE SECURITE (PAREFEU)

PLAN D'ADRESSAGE ET VLANS

Pour commencer, nous avons répartir les différents services en Vlans et évaluer le nombre de machines dont nous aurions besoin afin de ressortir un plan d'adressage adéquat.

Les vlans du site principal repartis dans ce tableau :

Numero de VLANs	Noms de services	Nombre d'hôtes /services
15	Informatique -Support	6
2	Logistique	8
3	Comptabilité	4
4	Secrétariat	14
5	Recherche & développement	144
6	Direction	10
7	Ressources Humaines (RH)	4
8	Secrétariat de direction	4
9	Communication	8
10	Support Client	25
11	Informatique -Développement	10
12	Informatique -Infrastructure	4
13	Commerciaux	5
14	Administration	5

DATACENTER: 172.17.2.160/28

- Serveur FTP : **172.17.2.170**

- Serveur WEB: 172.17.2.169, Gateway: 172.17.2.162;

- Serveur DNS: 172.17.2.174;

Serveur RH: 172.17.2.167, Gateway: 172.17.2.162
Serveur Intranet: 172.13.2.170, Gateway: 172.13.2.172

- Serveur SMTP : **172.17.2.168**

1. Choix des classes d'adresses et Élaboration du plan d'adressage

De nos études, nous avons appris que les adresses de classes C avait un nombre limite de 254 hôtes par reseau, or pour le reseau du site principal nous avons un service à lui seul qui prend un ensemble de 254 hôtes, d'où effectuer un adressage avec les adresses de type C sera préjudice.

De ce fait nous avons décidé de travailler avec des adresses de classes **B** particulièrement pour leur capacite à prendre en charge **65000 hôtes /reseau**, ce qui est largement suffisant pour couvrir, non seulement l'adressage du site principal mais également, pour celui de la datacenter, site secondaire et de l'agence.

Par ailleurs, nous avons utilisé la methode VSLM (Variable Length Subnet Mask): car nous avons à faire ici, a un ensemble de sous-réseau (VLANs) et notre objectif est de limiter le gaspillage d'adresses

Bloc d'adresses : 172.18.0.0/16 ;

L'attributions des pools d'adresses se font dans le tableau ci-dessous :

- <u>SITE PRINCIPAL</u>

Numero de VLANs	Adresses de reseau	Pool d'adresses	Adresses de diffusion	Masque de sous reseau	Nombre d'hôtes
5	172.18.1.0	172.18.1.1- 172.18.1.254	172.18.1.254	255.255.255.0/24	144
10	172.18.2.0	172.18.2.1- 172.18.2.30	172.18.2.31	255.255.255.224/27	25
4	172.18.2.32	172.18.2.33- 172.18.2.46	172.18.2.47	255.255.255.240/28	14
6	172.18.2.48	172.18.2.49- 172.18.2.62	172.18.2.63	255.255.255.240/28	10
11	172.18.2.64	172.18.2.65- 172.18.2.78	172.18.2.79	255.255.255.240/28	10
2	172.18.2.80	172.18.2.81- 172.18.2.94	172.18.2.95	255.255.255.240/28	8
9	172.18.2.96	172.18.2.97- 172.18.2.110	172.18.2.111	255.255.255.240/28	8
15	172.18.2.112	172.18.2.113- 172.18.2.118	172.18.2.119	255.255.255.248/29	6
13	172.18.2.120	172.18.2.121- 172.1802.126	172.18.2.127	255.255.255.248/29	5

3	172.18.2.128	172.18.2.129- 172.18.2.134	172.18.2.135	255.255.255.248/29	4
7	172.18.2.136	172.18.2.137- 172.18.2.142	172.18.2.143	255.255.255.248/29	4
8	172.18.2.144	172.18.2.145- 172.18.2.150	172.18.2.151	255.255.255.248/29	4
12	172.18.2.152	172.18.2.153- 172.18.2.158	172.18.2.159	255.255.255.248/29	4
Administration	172.18.2.160	172.18.2.161- 172.18.2.166	172.18.2.167	255.255.255.248/29	5

L'adressage des routeurs est établi sur le reseau de caractéristiques ;

- Adresse de reseau : 172.18.3.0/16;

Masque de sous-réseau : 255.255.255.240/28 ;
Pool d'adresses : 172.18.3.1 – 172.18.3.14 ;

- Adresses de diffusion : **172.18.3.15**;

- <u>SITE SECONDAIRE</u>

Numero de VLANs	Adresses de reseau	Pool d'adresses	Adresses de diffusion	Masque de sous reseau	Nombre d'hôtes
5	172.18.3.0	172.18.3.1- 172.18.3.254	172.18.3.255	255.255.255.0/24	144
10	172.18.4.0	172.18.4.1- 172.18.4.30	172.18.4.31	255.255.255.224/27	25
4	172.18.4.32	172.18.4.33- 172.18.4.46	172.18.4.47	255.255.255.240/28	14
6	172.18.4.48	17218.4.49- 172.18.4.62	172.18.4.63	255.255.255.240/28	10
11	172.18.4.64	172.18.4.65- 172.18.4.78	172.18.4.79	255.255.255.240/28	10
2	172.18.4.80	172.18.42.81- 172.18.4.94	172.18.4.95	255.255.255.240/28	8

9	172.18.4.96	172.18.4.97- 172.18.4.110	172.18.4.111	255.255.255.240/28	8
15	172.18.4.112	172.18.4.113- 172.18.4.118	172.18.4.119	255.255.255.248/29	6
13	172.18.4.120	172.18.4.121- 172.18.4.126	172.18.4.127	255.255.255.248/29	5
3	172.18.4.128	172.18.4.129- 172.18.4.134	172.18.4.135	255.255.255.248/29	4
7	172.18.4.136	172.18.4.137- 172.18.4.142	172.218.4.143	255.255.255.248/29	4
8	172.18.4.144	172.18.4.145- 172.18.4.150	172.18.4.151	255.255.255.248/29	4
12	172.18.4.152	172.18.4.153- 172.18.4.158	172.18.4.159	255.255.255.248/29	4
Administration	172.18.4.160	172.18.4.161- 172.18.4.166	172.18.4.167	255.255.255.248/29	5

- DATACENTER

Étant donné que le datacenter est cet emplacement qui contient que des serveurs et des backups du site, nous avons alloue une plage d'adresse qui sera administrée de façon statique ;

- Adresse de reseau : 172.17.2.168

Masque de sous-réseau : 255.255.255.240/28;
Pool d'adresses : 172.17.2.161 - 172.17.2.174;

- Adresses de diffusion : 172.17.2.175;

REDONDANCE

- ETUDE COMPARATIVE DES PROTOCOLES

Base de comparaison	HSRP	VRRP	GLBP
Un routeur configure comme actif	Oui	Oui	Oui (plusieurs routeurs peuvent être déclaré comme actif)
Propriétaire Cisco	Oui	Non (open standard)	Oui
Plus deux routeurs dans un groupe	Oui	Oui	Oui
Prends en charge le suivi	Oui	Oui	Oui
Prends en charge IPv4 et IPv6	Oui	Oui mais uniquement le VRRPv3	Oui
Rapidité	Moins rapide	Rapide mais consomme la mémoire	Moins rapide mais optimal
Authenticité	Oui	Non (supporter sur cisco)	Oui
Temps par Défaut	Hello: 3 secondes Temps d'attente: 10 secondes	Hello: 1 secondes Temps d'attente: 3 secondes	Hello: 3 secondes Temps d'attente: 10 secondes
Implémentation	Facile	Facile	Modéré
IP Virtuel et MAC	Un IP virtuel et une MAC virtuel	Un IP virtuel ou IP réel du routeur et une MAC virtuel	Une IP virtuelle, plusieurs MAC virtuel
Équilibrage de charge du trafique	Non	Non	Oui

<u>Conclusion</u>: Selon le tableau de comparaison ci-dessus, nous avons choisi *le protocole GLBP* à cause de la raison suivante :

- Il permet de faire l'équilibrage de charge du trafique et donc réduira la latence du reseau lors d'une surcharge.
- Et au niveau de la rapidité il est moins rapide que le VRRP mais pas si que ça puisqu'il n'utilise pas beaucoup de mémoire et donc pourra à la longue démontrer son efficacité.

PROTOCOLE DE ROUTAGE DYNAMIQUE (EIGRP ET OSPF)

- ETUDE COMPARATIVE DES PROTOCOLES

Base de comparaison	EIGRP	OSPF	
Signifie	Protocole de passerelle intérieure amélioré	Ouvrez le chemin le plus court en premier	
Basé sur des normes	Propriété de Cisco	Norme ouverte IETF industriel standard ouvert	
Type de protocole	Hybride	État du lien	
Métriques de routage	Combinaison de bande passante, fiabilité, charge et délai.	Bande passante d'interface	
Distance administrative	90 (interne) 170 (externe)	110	
Exigences du processeur	Besoins en CPU et mémoire réduits	Nécessite un processeur et une mémoire élevés	
Algorithme	Vecteur de distance DUAL	État du lien Dijkstra	
Conception hiérarchique	Non	Oui	
Prise en charge d'IPX et d'AppleTalk	Oui	Non	
Mises à jour	Mises à jour et requêtes selon les besoins vers une adresse multicast	Inondation au besoin et périodiquement vers une adresse multicast	
Facilité de mise en œuvre	Facile mais pas de fourniture de résumé automatique	Compliqué	
Prévention des boucles	Horizon partagé et DUAL	Connaissance complète de la topologie	
Filtrage et synthèse	Possible n'importe où dans le Uniquement sur les A réseau ABR		
Vitesse de convergence	Très rapide	Rapide	

Relation voisine	Simple	Complexe

Conclusion:

Notre choix se porte sur le protocole EIGRP parce qu':

- Il est **protocole Cisco** et nous allons travailler sur **le logiciel de simulation Cisco Packet** tracer.
- Il utilise un protocole hybride c'est à dire ; vecteur à distance et état de liens.
- Le filtrage et la synthèse qui se fait n'importe où dans le réseau.
- Ce protocole ne nécessite pas assez de mémoire.

PROTOCOLE DE SECURITE (PAREFEU)

- ETUDE COMPARATIVE DES PROTOCOLES DE SECURITE PAREFEU

Ils ont été recensés dans ce tableau

	UTM/NGFW	Routeur filtrant	Pf sense
Services proposes	 NAT, VPN Filtrage d'URL, IP, Protocoles Restriction de mise a jour de routage Contrôles d'applications Pas de fichiers logs Service d'acheminement a distance 	 Filtrages IP, protocoles Restrictions de mise à jour Pas de fichiers logs 	 NAT Filtrage IP et protocoles Présence de fichiers logs VPN Open source Prévention d'intrusions Ips / Ids
Administration	- A l'aide d'une interface WEB - Configuration centralisée - Prise en main complexe	- Configuration graphique (GUI) - Procédure : longue - La syntaxe d'ACL est spécifique à chaque routeur - Prise en main moyenne - Sur console (CLI)	 A l'aide d'une interface WEB Prise en main facile
Cout	Coût élevé	Coût moyen	Open source

				Gratuit (License)
Sécurité	Type	Périmétrique	Périmétrique	Périmétrique
	Niveau	Maximale	Optimale	Optimale
Domaines d'applicat		- Multinationales - FAI - Banques	PME + domaines UTM / NFWG	PME / PMI uniquement
Implémen	tation	- Facile - Ne requiert qu'un seul équipement		Équipements (machine)

Conclusion:

Au vu de la nature de l'entreprise vergis, nous avons opté pour une sécurisation à l'aide de parefeu NGFW suivi de configurations ACL pour plus de sécurités

CHOIX DES EQUIPEMENTS

Nous avons:

• Switch de niveau 3: nous avons choisi le switch de niveau 3 au détriment du switch de niveau et routeur car en termes de cout, le switchs de niveau 3 est MOINS COUTEUX qu'un routeur. De plus, le switch de niveau 3 est plus performant que le switch de niveau 2 car il intègre les fonctions de routage assimilable à celui d'un routeur.

Un switch de niveau 2 fonctionne uniquement avec les adresses MAC et ne fait pas attention aux adresses IP ou à tout autre élément des couches supérieures. Un switch de niveau 3, ou switch multicouche, peut effectuer toutes les tâches d'un switch de niveau 2. Le switch de niveau 3 peut également effectuer un routage statique et un routage dynamique. Cela signifie qu'il dispose à la fois d'une table d'adresses MAC et d'une table de routage IP, et gère la communication intra-VLAN ainsi que le routage de paquets entre différents VLAN

Nb: toutefois, ce switch n'est utilisé que si nécessaire