Course 395: Machine Learning

• Lecturers: Maja Pantic (maja@doc.ic.ac.uk)

Stephen Muggleton (shm@doc.ic.ac.uk)

- Goal (Lectures): To present basic theoretical concepts and key algorithms that form the core of machine learning
- Goal (CBC): To enable hands-on experience with implementing machine learning algorithms using Matlab

• Material: *Machine Learning* by Tom Mitchell (1997)

Manual for completing the CBC

Syllabus on CBR

Notes on Inductive Logic Programming

• More Info: https://www.ibug.doc.ic.ac.uk/courses

Course 395: Machine Learning – Lectures

- Lecture 1-2: Concept Learning (*M. Pantic*)
- Lecture 3-4: Decision Trees & CBC Intro (M. Pantic)
- Lecture 5-6: Artificial Neural Networks (*THs*)
- Lecture 7-8: Instance Based Learning (M. Pantic)
- Lecture 9-10: Genetic Algorithms (*M. Pantic*)
- Lecture 11-12: Evaluating Hypotheses (*THs*)
- Lecture 13-14: Guest Lectures on ML Applications
- Lecture 15-16: Inductive Logic Programming (S. Muggleton)
- Lecture 17-18: Inductive Logic Programming (S. Muggleton)

Course 395: Machine Learning – Exam Material

- Lecture 1-2: Concept Learning (*Mitchell*: Ch.1, Ch.2)
- Lecture 3-4: Decision Trees & CBC Intro (*Mitchell*: Ch.3)
- Lecture 5-6: Artificial Neural Networks (*Mitchell*: Ch.4)
- Lecture 7-8: Instance Based Learning (Syllabus, *Mitchell*: Ch.8)
- Lecture 9-10: Genetic Algorithms (*Mitchell*: Ch.9)
- Lecture 11-12: Evaluating Hypotheses (*Mitchell*: Ch.5)
- Lecture 13-14: not examinable
- Lecture 15-16: Inductive Logic Programming (*Notes*)
- Lecture 17-18: Inductive Logic Programming (*Notes*)

Course 395: Machine Learning - CBC

- Lecture 1-2: Concept Learning
- Lecture 3-4: Decision Trees & CBC Intro
- Lecture 5-6: Artificial Neural Networks
- Lecture 7-8: Instance Based Learning
 - Lecture 9-10: Genetic Algorithms
- Lecture 11-12: Evaluating Hypotheses
 - Lecture 13-14: Guest Lectures on ML Applications
 - Lecture 15-16: Inductive Logic Programming
 - Lecture 17-18: Inductive Logic Programming

Course 395: Machine Learning

NOTE

CBC accounts for 33% of the final grade for the Machine Learning Exam. final grade = $0.66*exam_grade + 0.33*CBC_grade$

Course 395: Machine Learning - CBC

- Lecture 1-2: Concept Learning
- Lecture 3-4: Decision Trees & CBC Intro
- Lecture 5-6: Artificial Neural Networks
- Lecture 7-8: Instance Based Learning
 - Lecture 9-10: Genetic Algorithms
- Lecture 11-12: Evaluating Hypotheses
 - Lecture 13-14: Guest Lectures on ML Applications
 - Lecture 15-16: Inductive Logic Programming
 - Lecture 17-18: Inductive Logic Programming

Course 395: Machine Learning – Lectures

- Lecture 1-2: Concept Learning (M. Pantic)
- Lecture 3-4: Decision Trees & CBC Intro (M. Pantic)
- Lecture 5-6: Artificial Neural Networks (*THs*)
- Lecture 7-8: Instance Based Learning (M. Pantic)
- Lecture 9-10: Genetic Algorithms (*M. Pantic*)
- Lecture 11-12: Evaluating Hypotheses (*THs*)
- Lecture 13-14: Guest Lectures on ML Applications
- Lecture 15-16: Inductive Logic Programming (S. Muggleton)
- Lecture 17-18: Inductive Logic Programming (S. Muggleton)

Concept Learning – Lecture Overview

- Why machine learning?
- Well-posed learning problems
- Designing a machine learning system
- Concept learning task
- Concept learning as Search
- Find-S algorithm
- Candidate-Elimination algorithm

- Learning ↔ Intelligence
 (Def: Intelligence is the ability to learn and use concepts to solve problems.)
- Machine Learning ↔ Artificial Intelligence
 - Def: AI is the science of making machines do things that require intelligence if done by men (Minsky 1986)
 - Def: Machine Learning is an area of AI concerned with development of techniques which allow machines to learn
- Why Machine Learning? ↔ Why Artificial Intelligence?

- Learning ↔ Intelligence
 (Def: Intelligence is the ability to learn and use concepts to solve problems.)
- Machine Learning ↔ Artificial Intelligence
 - Def: AI is the science of making machines do things that require intelligence if done by men (Minsky 1986)
 - Def: Machine Learning is an area of AI concerned with development of techniques which allow machines to learn
- Why Machine Learning? ↔ Why Artificial Intelligence?
 - = To build machines exhibiting intelligent behaviour (i.e., able to reason, predict, and adapt) while helping humans work, study, and entertain themselves

- Machine Learning ↔ Artificial Intelligence
- Machine Learning ← Biology (e.g., Neural Networks, Genetic Algorithms)
- Machine Learning ← Cognitive Sciences (e.g., Case-based Reasoning)
- Machine Learning ← Statistics (e.g., Support Vector Machines)
- Machine Learning ← Probability Theory (e.g., Bayesian Networks)
- Machine Learning ← Logic (e.g., Inductive Logic Programming)
- Machine Learning ← Information Theory (e.g., used by Decision Trees)

- Human Learning ↔ Machine Learning
 - human-logic inspired problem solvers (e.g., rule-based reasoning)
 - biologically inspired problem solvers (e.g., Neural Networks)
 - supervised learning generates a function that maps inputs to desired outputs
 - unsupervised learning models a set of inputs, labelled examples are not available
 - learning by education (e.g., reinforcement learning, case-based reasoning)
- General Problem Solvers vs. Purposeful Problem Solvers
 - emulating general-purpose human-like problem solving is impractical
 - restricting the problem domain results in 'rational' problem solving
 - example of General Problem Solver: Turing Test
 - examples of Purposeful Problem Solvers: speech recognisers, face recognisers, facial expression recognisers, data mining, games, etc.
- Application domains: security, medicine, education, finances, genetics, etc.

Well-posed Learning Problems

• Def 1 (*Mitchell 1997*):

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves by experience E.

• Def 2 (*Hadamard 1902*):

A (machine learning) problem is well-posed if a solution to it exists, if that solution is unique, and if that solution depends on the data / experience but it is not sensitive to (reasonably small) changes in the data / experience.

Designing a Machine Learning System

- Target Function V represents the problem to be solved (e.g., choosing the best next move in chess, identifying people, classifying facial expressions into emotion categories)
- $V: D \to C$ where D is the input state space and C is the set of classes $V: D \to [-1, 1]$ is a general target function of a binary classifier
- Ideal Target Function is usually not known; machine learning algorithms learn an approximation of V, say V'
- Representation of function V' to be learned should
 - be as close an approximation of V as possible
 - require (reasonably) small amount of training data to be learned
- $V'(d) = w_0 + w_1 x_1 + ... + w_n x_n$ where $\langle x_1 ... x_n \rangle \equiv d \in D$ is an input state. This reduces the problem to learning (the most optimal) weights w.

Designing a Machine Learning System

- $V: D \to C$ where D is the input state and C is the set of classes $V: D \to [-1, 1]$ is a general target function of a binary classifier
- $V'(d) = w_0 + w_1 x_1 + ... + w_n x_n$ where $\langle x_1 ... x_n \rangle \equiv d \in D$ is an input state. This reduces the problem to learning (the most optimal) weights w.
- Training examples suitable for the given target function representation V' are pairs $\langle d, c \rangle$ where $c \in C$ is the desired output (classification) of the input state $d \in D$.
- Learning algorithm learns the most optimal set of weights w (so-called best hypothesis), i.e., the set of weights that best fit the training examples (d, c).
- Learning algorithm is selected based on the availability of training examples (supervised vs. unsupervised), knowledge of the final set of classes *C* (offline vs. online, i.e., eager vs. lazy), availability of a tutor (reinforcement learning).
- The learned V' is then used to solve new instances of the problem.

Concept Learning

- Concept learning
 - supervised, eager learning
 - target problem: whether something belongs to the target concept or not
 - target function: $V: D \rightarrow \{\text{true, false}\}\$
- Underlying idea: Humans acquire general concepts from specific examples (e.g., concepts: living organism, beauty, computer, well-fitting-shoes) (note: each concept can be thought of as Boolean-valued function)
- Concept learning is inferring a Boolean-valued function from training data
 - → concept learning is the prototype binary classification

Concept Learning Task – An Example

- Concept learning task:
 - target concept: Girls who Simon likes
 - target function: $c: D \rightarrow \{0, 1\}$
 - data $d \in D$: Girls, each described in terms of the following attributes
 - $a_1 = Hair$ (possible values: blond, brown, black)
 - $a_2 \equiv Body$ (possible values: thin, normal, plump)
 - $a_3 \equiv likesSimon$ (possible values: yes, no)
 - $a_4 \equiv Pose$ (possible values: arrogant, natural, goofy)
 - $a_5 \equiv Smile$ (possible values: none, pleasant, toothy)
 - $a_6 \equiv Smart$ (possible values: yes, no)
 - target f-on representation: $h \equiv c'$: $\langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle \rightarrow \{0, 1\}$
 - training examples D: positive and negative examples of target function c
- **Aim**: Find a hypothesis $h \in H$ such that $(\forall d \in D) h(d) c(d) < \varepsilon \approx 0$, where H is the set of all possible hypotheses $h \equiv \langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle$, where each $a_k, k = [1..6]$, may be '?' (\equiv any value is acceptable), '0' (\equiv no value is acceptable), or a specific value.

Concept Learning Task – Notation

- Concept learning task:
 - target concept: Girls who Simon likes
 - target function: $c: D \rightarrow \{0, 1\}$
 - data $d \in D$: Girls, each described in terms of the following attributes

 - $a_1 \equiv Hair$ (possible values: blond, brown, black) $a_2 \equiv Body$ (possible values: thin, normal, plump)
- *instances* $a_3 \equiv likesSimon$ (possible values: yes, no)
 - $a_4 \equiv Pose$ (possible values: arrogant, natural, goofy)
 - $a_5 \equiv Smile$ (possible values: none, pleasant, toothy)
 - $a_6 \equiv Smart$ (possible values: yes, no)

- error rate
- target f-on representation: $h \equiv c' : \langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle \rightarrow \{0, 1\}$
- training examples D: positive and negative examples of target function c
- **Aim**: Find a hypothesis $h \in H$ such that $(\forall d \in D) h(d) c(d) < \varepsilon > 0$, where H is the set of all possible hypotheses $h \equiv \langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle$, where each a_k , k = [1..6], may be ? (\equiv any value is acceptable), 0 (\equiv no value is acceptable), or a specific value. $h \equiv \langle ?, ?, ?, ?, ?, ?, ? \rangle$ $h \equiv \langle 0, 0, 0, 0, 0, 0, 0 \rangle$ $h \equiv \langle ?, ?, yes, ?, ?, ? \rangle$

$$h \equiv \langle ?, ?, ?, ?, ?, ? \rangle$$
 $h \equiv \langle 0, 0, 0, 0, 0, 0, 0 \rangle$ $h \equiv \langle ?, ?, yes, ?, ?, ? \rangle$

Concept Learning as Search

- Concept learning task:
 - target concept: Girls who Simon likes
 - target function: $c: D \rightarrow \{0, 1\}$
 - data $d \in D$: Girls, each described in terms of the following attributes
 - $a_1 \equiv Hair$ (possible values: blond, brown, black) $a_2 \equiv Body$ (possible values: thin, normal, plump)
- instances $a_3 \equiv likesSimon$ (possible values: yes, no) + ? $|\overline{H}| = 1 + 4 \cdot 4 \cdot 3 \cdot 4 \cdot 4 \cdot 3 = 2305$
 - $a_A = Pose$ (possible values: arrogant, natural, goofy)
 - $a_5 \equiv Smile$ (possible values: none, pleasant, toothy) ± 2
 - $a_6 \equiv Smart$ (possible values: yes, no)

- $h \equiv \langle 0, 0, 0, 0, 0, 0, 0 \rangle$ error rate
- target f-on representation: $h \equiv c'$: $\langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle \rightarrow \{0, 1\}$
- training examples D: positive and negative examples of target function c
- **Aim**: Find a hypothesis $h \in H$ such that $(\forall d \in D) h(d) c(d) \stackrel{\sim}{\iota} = 0$, where H is the set of all possible hypotheses $h \equiv \langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle$, where each a_k , k = [1..6], may be '?' (\equiv any value is acceptable), '0' (\equiv no value is acceptable), or a specific value.

concept learning \equiv searching through H

General-to-Specific Ordering

- Many concept learning algorithms utilize general-to-specific ordering of hypotheses
- General-to-Specific Ordering:
 - h1 precedes (is more general than) $h2 \Leftrightarrow (\forall d \in D) (h1(d) = 1) \leftarrow (h2(d) = 1)$ (e.g., $h1 \equiv \langle ?, ?, yes, ?, ?, ? \rangle$ and $h2 \equiv \langle ?, ?, yes, ?, ?, yes \rangle \Rightarrow h1 >_g h2$)
 - h1 and h2 are of equal generality \Leftrightarrow $(\exists d \in D) \{ [(h1(d) = 1) \rightarrow (h2(d) = 1)] \land [(h2(d) = 1) \rightarrow (h1(d) = 1)] \}$ $(e.g., h1 \equiv \langle ?, ?, yes, ?, ?, ? \text{ and } h2 \equiv \langle ?, ?, ?, ?, yes \rangle \Rightarrow h1 =_g h2)$
 - h2 succeeds (is more specific than) $h1 \Leftrightarrow (\forall d \in D) (h1(d) = 1) \leftarrow (h2(d) = 1)$ (e.g., $h1 \equiv \langle ?, ?, yes, ?, ?, ? \rangle$ and $h2 \equiv \langle ?, ?, yes, ?, ?, yes \rangle \Rightarrow h2 \geq //2 h1$)

Find-S Algorithm

- 1. Initialise $h \in H$ to the most specific hypothesis: $h \leftarrow \langle a_1, ..., a_n \rangle$, $(\forall i) \ a_i = 0$.
- 2. FOR each positive training instance $d \in D$, do:

FOR each attribute a_i , i = [1..n], in h, do:

IF a_i is satisfied by d

THEN do nothing

ELSE replace a_i in h so that the resulting $h' >_g h$, $h \leftarrow h'$.

3. Output hypothesis *h*.

Find-S Algorithm – Example

- 1. Initialise $h \in H$ to the most specific hypothesis: $h \leftarrow \langle a_1, ..., a_n \rangle$, $(\forall i) \ a_i = 0$.
- 2. FOR each positive training instance $d \in D$, do:

FOR each attribute a_i , i = [1..n], in h, do:

IF a_i is satisfied by d

THEN do nothing

ELSE replace a_i in h so that the resulting $h' >_g h$, $h \leftarrow h'$.

3. Output hypothesis *h*.

	c(d)	hair	body	likesSimon	pose	smile	smart
1	1	blond	thin	yes	arrogant	toothy	no
2	0	brown	thin	no	natural	pleasant	yes
3	1	blond	plump	yes	goofy	pleasant	no
4	0	black	thin	no	arrogant	none	no
5	0	blond	plump	no	natural	toothy	yes

$$h \leftarrow \langle 0, 0, 0, 0, 0, 0 \rangle \rightarrow h \equiv d1 \rightarrow h \leftarrow \langle \text{blond}, ?, \text{yes}, ?, ?, \text{no} \rangle$$

Find-S Algorithm

- Find-S is guaranteed to output the most specific hypothesis *h* that best fits positive training examples.
- The hypothesis h returned by Find-S will also fit negative examples as long as training examples are correct.
- However,
 - Find-S is sensitive to noise that is (almost always) present in training examples.
 - there is no guarantee that h returned by Find-S is the only h that fits the data.
 - several maximally specific hypotheses may exist that fits the data but, Find-S will output only one.
 - Why we should prefer most specific hypotheses over, e.g., most general hypotheses?

Find-S Algorithm – Example

- 1. Initialise $h \in H$ to the most specific hypothesis: $h \leftarrow \langle a_1, ..., a_n \rangle$, $(\forall i) \ a_i = 0$.
- 2. FOR each positive training instance $d \in D$, do:

FOR each attribute a_i , i = [1..n], in h, do:

IF a_i is satisfied by d

THEN do nothing

ELSE replace a_i in h so that the resulting $h' >_g h$, $h \leftarrow h'$.

3. Output hypothesis *h*.

	<i>c(d)</i>	hair	body	likesSimon	pose	smile	smart
1	1	blond	thin	yes	arrogant	toothy	no
2	0	brown	thin	no	natural	pleasant	yes
3	1	blond	plump	yes	goofy	pleasant	no
4	0	black	thin	no	arrogant	none	no
5	0	blond	plump	no	natural	toothy	yes

Find-S $\rightarrow h = \langle blond, ?, yes, ?, ?, no \rangle$ BUT $h2 = \langle blond, ?, ?, ?, ?, no \rangle$ fits D as well

Find-S Algorithm

- Find-S is guaranteed to output the most specific hypothesis *h* that best fits positive training examples.
- The hypothesis h returned by Find-S will also fit negative examples as long as training examples are correct.
- However,
 - Find-S is sensitive to noise that is (almost always) present in training examples.
 - there is no guarantee that h returned by Find-S is the only h that fits the data.
 - several maximally specific hypotheses may exist that fits the data but, Find-S will output only one.
 - Why we should prefer most specific hypotheses over, e.g., most general hypotheses?

Find-S Algorithm – Example

- 1. Initialise $h \in H$ to the most specific hypothesis: $h \leftarrow \langle a_1, ..., a_n \rangle$, $(\forall i) \ a_i = 0$.
- 2. FOR each positive training instance $d \in D$, do:

FOR each attribute a_i , i = [1..n], in h, do:

IF a_i is satisfied by d

THEN do nothing

ELSE replace a_i in h so that the resulting $h' >_g h$, $h \leftarrow h'$.

3. Output hypothesis *h*.

	<i>c(d)</i>	hair	body	likesSimon	pose	smile	smart
1	1	blond	thin	yes	arrogant	toothy	no
2	0	brown	thin	no	natural	pleasant	yes
3	1	blond	plump	yes	goofy	pleasant	no
4	0	black	thin	no	arrogant	none	no
5	0	blond	plump	no	natural	toothy	yes

Find-S $\rightarrow h1 = \langle blond, ?, ?, ?, ?, no \rangle$ YET $h2 = \langle blond, ?, yes, ?, ?, ? \rangle$ fits D as well

Find-S Algorithm

- Find-S is guaranteed to output the most specific hypothesis *h* that best fits positive training examples.
- The hypothesis h returned by Find-S will also fit negative examples as long as training examples are correct.
- However,
 - 1. Find-S is sensitive to noise that is (almost always) present in training examples.
 - 2. there is no guarantee that *h* returned by Find-S is the *only h* that fits the data.
 - 3. several maximally specific hypotheses may exist that fits the data but, Find-S will output only one.
 - 4. Why we should prefer most specific hypotheses over, e.g., most general hypotheses?

Candidate-Elimination Algorithm

- Find-S is guaranteed to output the most specific hypothesis *h* that best fits positive training examples.
- The hypothesis h returned by Find-S will also fit negative examples as long as training examples are correct.
- However,
 - 1. Find-S is sensitive to noise that is (almost always) present in training examples.
 - 2. there is no guarantee that h returned by Find-S is the *only* h that fits the data.
 - 3. several maximally specific hypotheses may exist that fits the data but, Find-S will output only one.
 - 4. Why we should prefer most specific hypotheses over, e.g., most general hypotheses?

To address the last three drawbacks of Find-S, Candidate-Elimination was proposed

Candidate-Elimination (C-E) Algorithm

- Main idea: Output a set of hypothesis $VS \subseteq H$ that fit (are consistent) with data D
- Candidate-Elimination (C-E) Algorithm is based upon:
 - general-to-specific ordering of hypotheses
 - Def: h is consistent (fits) data $D \Leftrightarrow (\forall \langle d, c(d) \rangle) h(d) = c(d)$
 - Def: version space $VS \subseteq H$ is set of all $h \in H$ that are consistent with D
- C-E algorithm defines VS in terms of two boundaries:
 - general boundary $G \subseteq VS$ is a set of all $h \in VS$ that are the most general
 - specific boundary $S \subseteq VS$ is a set of all $h \in VS$ that are the most specific

Candidate-Elimination (C-E) Algorithm

- 1. Initialise $G \in VS$ to the most general hypothesis: $h \leftarrow \langle a_1, ..., a_n \rangle$, $(\forall i) \ a_i = ?$. Initialise $S \in VS$ to the most specific hypothesis: $h \leftarrow \langle a_1, ..., a_n \rangle$, $(\forall i) \ a_i = 0$.
- 2. FOR each training instance $d \in D$, do:

IF *d* is a positive example

Remove from G all h that are not consistent with d.

FOR each hypothesis $s \in S$ that is not consistent with d, do:

- replace s with all h that are consistent with d, $h \ge_g s$, $\not k \ge_g g \in G$,
- remove from S all s being more general than other s in S.

IF *d* is a negative example

Remove from S all h that are not consistent with d.

FOR each hypothesis $g \in G$ that is not consistent with d, do:

- replace g with all h that are consistent with d, $g >_g h$, $h >_g s \in S$,
- remove from G all g being less general than other g in G.
- 3. Output hypothesis *G* and *S*.

	c(d)	hair	body	likesSimon	pose	smile	smart
1	1	blond	thin	yes	arrogant	toothy	no
2	0	brown	thin	no	natural	pleasant	yes
3	1	blond	plump	yes	goofy	pleasant	no
4	0	black	thin	no	arrogant	none	no
5	0	blond	plump	no	natural	toothy	yes

$$G_0 \leftarrow \{\langle ?, ?, ?, ?, ?, ? \rangle\}, S_0 \leftarrow \{\langle 0, 0, 0, 0, 0, 0 \rangle\}$$

	<i>c(d)</i>	hair	body	likesSimon	pose	smile	smart
1	1	blond	thin	yes	arrogant	toothy	no
2	0	brown	thin	no	natural	pleasant	yes
3	1	blond	plump	yes	goofy	pleasant	no
4	0	black	thin	no	arrogant	none	no
5	0	blond	plump	no	natural	toothy	yes

d1 is positive \rightarrow refine S

no $g \in G_0$ is inconsistent with $d1 \rightarrow G_1 \leftarrow G_0 \equiv \{\langle ?, ?, ?, ?, ?, ?, ? \rangle\}$

add to S all minimal generalizations of $s \in S_0$ such that $s \in S_1$ is consistent with d1 $S_1 \leftarrow \{\text{oblond}, \text{thin}, \text{yes}, \text{arrogant}, \text{toothy}, \text{no}\}$

	<i>c(d)</i>	hair	body	likesSimon	pose	smile	smart
1	1	blond	thin	yes	arrogant	toothy	no
2	0	brown	thin	no	natural	pleasant	yes
3	1	blond	plump	yes	goofy	pleasant	no
4	0	black	thin	no	arrogant	none	no
5	0	blond	plump	no	natural	toothy	yes

d2 is negative \rightarrow refine G

no $s \in S_l$ is inconsistent with $d2 \rightarrow S_2 \leftarrow S_l \equiv \{ \langle blond, thin, yes, arrogant, toothy, no \rangle \}$

	<i>c(d)</i>	hair	body	likesSimon	pose	smile	smart
1	1	blond	thin	yes	arrogant	toothy	no
2	0	brown	thin	no	natural	pleasant	yes
3	1	blond	plump	yes	goofy	pleasant	no
4	0	black	thin	no	arrogant	none	no
5	0	blond	plump	no	natural	toothy	yes

```
d3 is positive \rightarrow refine S
```

```
add to S all minimal generalizations of s \in S_2 such that s \in S_3 is consistent with d3 S_2 \equiv \{\text{oblond}, \text{thin}, \text{yes}, \text{arrogant}, \text{toothy}, \text{no}\} S_3 \leftarrow \{\text{oblond}, ?, \text{yes}, ?, ?, \text{no}\}
```

	<i>c(d)</i>	hair	body	likesSimon	pose	smile	smart
1	1	blond	thin	yes	arrogant	toothy	no
2	0	brown	thin	no	natural	pleasant	yes
3	1	blond	plump	yes	goofy	pleasant	no
4	0	black	thin	no	arrogant	none	no
5	0	blond	plump	no	natural	toothy	yes

```
d4 is negative \rightarrow refine G
```

```
no s \in S_3 is inconsistent with d4 \rightarrow S_4 \leftarrow S_3 \equiv \{\langle blond, ?, yes, ?, ?, no \rangle\}
```


	<i>c(d)</i>	hair	body	likesSimon	pose	smile	smart
1	1	blond	thin	yes	arrogant	toothy	no
2	0	brown	thin	no	natural	pleasant	yes
3	1	blond	plump	yes	goofy	pleasant	no
4	0	black	thin	no	arrogant	none	no
5	0	blond	plump	no	natural	toothy	yes

d5 is negative \rightarrow refine G

no $s \in S_4$ is inconsistent with $d4 \rightarrow S_5 \leftarrow S_4 \equiv \{\langle blond, ?, yes, ?, ?, no \rangle\}$

add to G all minimal specializations of $g \in G_4$ such that $g \in G_5$ is consistent with d5 $G_4 \equiv \{\langle blond, ?, ?, ?, ?, ?, ?, ?, ., \langle ?, ?, yes, ?, ?, ? \rangle\}$

$$G_5 \leftarrow \{\langle \text{blond}, ?, ?, ?, \text{no} \rangle, \langle ?, ?, \text{yes}, ?, ?, ? \rangle \}$$

	<i>c(d)</i>	hair	body	likesSimon	pose	smile	smart
1	1	blond	thin	yes	arrogant	toothy	no
2	0	brown	thin	no	natural	pleasant	yes
3	1	blond	plump	yes	goofy	pleasant	no
4	0	black	thin	no	arrogant	none	no
5	0	blond	plump	no	natural	toothy	yes

Output of C-E:

```
version space of hypotheses VS \subseteq H bound with specific boundary S \equiv \{\langle blond, ?, yes, ?, ?, no \rangle\} and general boundary G \equiv \{\langle ?, ?, yes, ?, ?, ? \rangle\}
```

Output of Find-S:

most specific hypothesis $h \equiv \langle blond, ?, yes, ?, ?, no \rangle$

	<i>c(d)</i>	hair	body	likesSimon	pose	smile	smart
1	1	blond	thin	yes	arrogant	toothy	no
2	0	brown	thin	no	natural	pleasant	yes
3	1	blond	plump	yes	goofy	pleasant	no
4	0	black	thin	no	arrogant	none	no
5	0	blond	plump	no	natural	toothy	yes

Output of C-E:

version space of hypotheses $VS \subseteq H$ bound with specific boundary $S \equiv \{\langle blond, ?, yes, ?, ?, no \rangle\}$ and general boundary $G \equiv \{\langle ?, ?, yes, ?, ?, ? \rangle\}$

$$VS \equiv \{\langle ?, ?, \text{yes}, ?, ?, ? \rangle, \langle \text{blond}, ?, \text{yes}, ?, ?, ? \rangle, \langle ?, ?, \text{yes}, ?, ?, \text{no} \rangle, \langle \text{blond}, ?, \text{yes}, ?, ?, \text{no} \rangle\}$$

Concept Learning – Lecture Overview

- Why machine learning?
- Well-posed learning problems
- Designing a machine learning system
- Concept learning task
- Concept learning as Search
- Find-S algorithm
- Candidate-Elimination algorithm

Concept Learning – Exam Questions

- Tom Mitchell's book chapter 1 and chapter 2
- Relevant exercises from chapter 1: 1.1, 1.2, 1.3, 1.5
- Relevant exercises from chapter 2: 2.1, 2.2, 2.3, 2.4, 2.5

Course 395: Machine Learning – Lectures

- Lecture 1-2: Concept Learning (*M. Pantic*)
- Lecture 3-4: Decision Trees & CBC Intro (M. Pantic)
- Lecture 5-6: Artificial Neural Networks (*THs*)
- Lecture 7-8: Instance Based Learning (M. Pantic)
- Lecture 9-10: Genetic Algorithms (*M. Pantic*)
- Lecture 11-12: Evaluating Hypotheses (*THs*)
- Lecture 13-14: Guest Lectures on ML Applications
- Lecture 15-16: Inductive Logic Programming (S. Muggleton)
- Lecture 17-18: Inductive Logic Programming (S. Muggleton)

