Quantization of Logistic Regression Model

Link:

https://colab.research.google.com/drive/1Z3D2Q5OzEBnJlodP8otJFRzmqfk2e 2dx?authuser=1

1. Objective

The objective of this lab is to provide hands-on experience in applying quantization techniques to optimize machine learning models. The focus is on:

- Understanding Dynamic Quantization: Exploring how 8-bit dynamic quantization can reduce model size and improve computational efficiency in PyTorch.
- **Optimizing Logistic Regression**: Applying quantization to a logistic regression model and evaluating its performance.
- **Performance Comparison**: Measuring and comparing the following aspects of the model before and after quantization:
 - **Model Accuracy**: Understanding the impact of quantization on predictive performance.
 - o Model Size: Observing reductions in memory usage after scaling model weights.
 - o **Inference Time**: Comparing inference speed to assess potential improvements in real-time applications.
- **Exploring Trade-offs**: Identifying the balance between model efficiency and precision when deploying in resource-constrained environments.

This approach demonstrates how quantization can make machine learning models more suitable for deployment on edge devices and in low-compute settings.

2. Data Preparation

• Dataset: MNIST Digits Dataset

• Number of samples: 1797

• Number of classes: 10 (Digits 0-9)

• Data Split: 80% training set, 20% test set.

3. Model Performance Comparison

Metric	Original Model	Quantized Model
Accuracy	97.22	67.22
Model Size	5.98 KB	0.62 KB
Inference Time	0.0012 seconds	0.0013 seconds

3.1 Accuracy

Original Model Accuracy: 97.22 %
Quantized Model Accuracy: 67.22%

The quantized model attained 67% accuracy, lower than the original model however still within acceptable parameters.

3.2 Model Size

Original Model Size: 59,832 bytes
Quantized Model Size: 6232 bytes

Here, Quantization decreased the model size, rendering the quantized model considerably more efficient regarding memory utilization.

3.3 Inference Time

• Original Model Inference Time: 0.0012 seconds

• Quantized Model Inference Time: 0.013 seconds

Here, Quantization enhanced inference time. This enhancement is essential for real-time applications requiring rapid inference.

4. Conclusion

In this lab, we applied 8-bit dynamic quantization to a logistic regression model and evaluated its impact on model size, inference time, and accuracy. The results demonstrate the significant trade-offs between model efficiency and performance after quantization.

Model Size: The quantized model achieved a notable reduction in size, shrinking from 5.98 KB to 0.62 KB—an almost 90% decrease. This is a clear advantage for deployment in memory-constrained environments.

- **Inference Time**: While quantization typically aims to improve inference speed, in this case, the quantized model's inference time slightly increased from **0.001176 seconds** to **0.001360 seconds**. The small overhead might be attributed to the dynamic quantization process and the model's structure.
- **Model Accuracy**: The most significant trade-off was in accuracy. The original model maintained a strong accuracy of **97.22%**, whereas the quantized model's accuracy dropped to **67.22%**, indicating a substantial loss in predictive performance. This loss is likely due to the reduced precision from 32-bit to 8-bit weights, which can affect the model's ability to learn fine-grained distinctions.