Main ideas of SVMs

- Consider example dataset described by 2 genes, gene X and gene Y
- Represent patients geometrically (by "vectors")

Main ideas of SVMs

• Find a linear decision surface ("hyperplane") that can separate patient classes <u>and</u> has the largest distance (i.e., largest "gap" or "margin") between border-line patients (i.e., "support vectors");

Main ideas of SVMs

- If such linear decision surface does not exist, the data is mapped into a much higher dimensional space ("feature space") where the separating decision surface is found;
- The feature space is constructed via very clever mathematical projection ("kernel trick").

History of SVMs and usage in the literature

- Support vector machine classifiers have a long history of development starting from the 1960's.
- The most important milestone for development of modern SVMs is the 1992 paper by Boser, Guyon, and Vapnik ("A training algorithm for optimal margin classifiers")

Necessary mathematical concepts

How to represent samples geometrically? Vectors in n-dimensional space (\mathbb{R}^n)

- Assume that a sample/patient is described by n characteristics ("features" or "variables")
- Representation: Every sample/patient is a vector in \mathbb{R}^n with tail at point with 0 coordinates and arrow-head at point with the feature values.
- **Example:** Consider a patient described by 2 features: Systolic BP = 110 and Age = 29.

This patient can be represented as a vector in \mathbb{R}^2 :

How to represent samples geometrically? Vectors in n-dimensional space (\mathbb{R}^n)

Patient id	Cholesterol (mg/dl)	Systolic BP (mmHg)	Age (years)	Tail of the vector	Arrow-head of the vector
1	150	110	35	(0,0,0)	(150, 110, 35)
2	250	120	30	(0,0,0)	(250, 120, 30)
3	140	160	65	(0,0,0)	(140, 160, 65)
4	300	180	45	(0,0,0)	(300, 180, 45)

How to represent samples geometrically? Vectors in n-dimensional space (\mathbb{R}^n)

Since we assume that the tail of each vector is at point with 0 coordinates, we will also depict vectors as points (where the arrow-head is pointing).

Purpose of vector representation

 Having represented each sample/patient as a vector allows now to geometrically represent the decision surface that separates two groups of samples/patients.

• In order to define the decision surface, we need to introduce some basic math elements...

1. Multiplication by a scalar

Consider a vector $\vec{a} = (a_1, a_2, ..., a_n)$ and a scalar c

Define: $c\vec{a} = (ca_1, ca_2, ..., ca_n)$

When you multiply a vector by a scalar, you "stretch" it in the same or opposite direction depending on whether the scalar is positive or negative.

2. Addition

Consider vectors $\vec{a} = (a_1, a_2, ..., a_n)$ and $\vec{b} = (b_1, b_2, ..., b_n)$

Define: $\vec{a} + \vec{b} = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n)$

Recall addition of forces in classical mechanics.

3. Subtraction

Consider vectors $\vec{a} = (a_1, a_2, ..., a_n)$ and $\vec{b} = (b_1, b_2, ..., b_n)$

Define:
$$\vec{a} - \vec{b} = (a_1 - b_1, a_2 - b_2, ..., a_n - b_n)$$

What vector do we need to add to \vec{b} to get \vec{a} ? I.e., similar to subtraction of real numbers.

4. Euclidian length or L2-norm

Consider a vector $\vec{a} = (a_1, a_2, ..., a_n)$

Define the L2-norm:
$$\|\vec{a}\|_2 = \sqrt{a_1^2 + a_2^2 + ... + a_n^2}$$

We often denote the L2-norm without subscript, i.e. $\|\vec{a}\|$

L2-norm is a typical way to measure length of a vector; other methods to measure length also exist.

5. Dot product

Consider vectors $\vec{a} = (a_1, a_2, ..., a_n)$ and $\vec{b} = (b_1, b_2, ..., b_n)$

Define dot product: $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + ... + a_n b_n = \sum_{i=1}^{n} a_i b_i$

The law of cosines says that $\vec{a} \cdot \vec{b} = ||\vec{a}||_2 ||\vec{b}||_2 \cos \theta$ where θ is the angle between \vec{a} and \vec{b} . Therefore, when the vectors are perpendicular $\vec{a} \cdot \vec{b} = 0$.

5. Dot product (continued)

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n = \sum_{i=1}^n a_i b_i$$

- Property: $\vec{a} \cdot \vec{a} = a_1 a_1 + a_2 a_2 + ... + a_n a_n = ||\vec{a}||_2^2$
- In the classical regression equation $y = \vec{w} \cdot \vec{x} + b$ the response variable y is just a dot product of the vector representing patient characteristics (\vec{x}) and the regression weights vector (\vec{w}) which is common across all patients plus an offset b.

Hyperplanes as decision surfaces

- A hyperplane is a linear decision surface that splits the space into two parts;
- It is obvious that a hyperplane is a binary classifier.

A hyperplane in \mathbb{R}^2 is a line

A hyperplane in \mathbb{R}^3 is a plane

Equation of a hyperplane

Consider the case of \mathbb{R}^3 :

An equation of a hyperplane is defined by a point (P_0) and a perpendicular vector to the plane (\vec{w}) at that point.

Define vectors: $\vec{x}_0 = \overrightarrow{OP}_0$ and $\vec{x} = \overrightarrow{OP}$, where *P* is an arbitrary point on a hyperplane.

A condition for *P* to be on the plane is that the vector $\vec{x} - \vec{x}_0$ is perpendicular to \vec{w} :

$$\vec{w} \cdot (\vec{x} - \vec{x}_0) = 0 \quad \text{or}$$

$$\vec{w} \cdot \vec{x} - \vec{w} \cdot \vec{x}_0 = 0 \quad \text{define } b = -\vec{w} \cdot \vec{x}_0$$

$$\vec{w} \cdot \vec{x} + b = 0$$

The above equations also hold for \mathbb{R}^n when n>3.

Equation of a hyperplane

Example

$$\vec{w} = (4,-1,6)$$

$$P_0 = (0,1,-7)$$

$$b = -\vec{w} \cdot \vec{x}_0 = -(0-1-42) = 43$$

$$\Rightarrow \vec{w} \cdot \vec{x} + 43 = 0$$

$$\Rightarrow (4,-1,6) \cdot \vec{x} + 43 = 0$$

$$\Rightarrow (4,-1,6) \cdot (x_{(1)}, x_{(2)}, x_{(3)}) + 43 = 0$$

$$\Rightarrow 4x_{(1)} - x_{(2)} + 6x_{(3)} + 43 = 0$$

What happens if the b coefficient changes? The hyperplane moves along the direction of \vec{w} . We obtain "parallel hyperplanes".

Distance between two parallel hyperplanes $\vec{w} \cdot \vec{x} + b_1 = 0$ and $\vec{w} \cdot \vec{x} + b_2 = 0$ is equal to $D = \left| b_1 - b_2 \right| / \left\| \vec{w} \right\|$.

(Derivation of the distance between two parallel hyperplanes)

$$\vec{x}_{2} = \vec{x}_{1} + t\vec{w}$$

$$D = ||t\vec{w}|| = |t|||\vec{w}||$$

$$\vec{w} \cdot \vec{x}_{2} + b_{2} = 0$$

$$\vec{w} \cdot (\vec{x}_{1} + t\vec{w}) + b_{2} = 0$$

$$\vec{w} \cdot \vec{x}_{1} + t||\vec{w}||^{2} + b_{2} = 0$$

$$(\vec{w} \cdot \vec{x}_{1} + b_{1}) - b_{1} + t||\vec{w}||^{2} + b_{2} = 0$$

$$-b_{1} + t||\vec{w}||^{2} + b_{2} = 0$$

$$t = (b_{1} - b_{2}) / ||\vec{w}||^{2}$$

$$\Rightarrow D = |t|||\vec{w}|| = |b_{1} - b_{2}| / ||\vec{w}||$$

Recap

We know...

- How to represent patients (as "vectors")
- How to define a linear decision surface ("hyperplane")

We need to know...

 How to efficiently compute the hyperplane that separates two classes with the largest "gap"?

Basics of optimization: Convex functions

- A function is called *convex* if the function lies below the straight line segment connecting two points, for any two points in the interval.
- Property: Any local minimum is a global minimum!

Support vector machines for binary classification: classical formulation

Case I: Linearly separable data; "Hard-margin" linear SVM

Given training data:

$$\vec{x}_1, \vec{x}_2, ..., \vec{x}_N \in \mathbb{R}^n$$

 $y_1, y_2, ..., y_N \in \{-1, +1\}$

- Want to find a classifier (hyperplane) to separate negative instances from the positive ones.
- An infinite number of such hyperplanes exist.
- SVMs finds the hyperplane that maximizes the gap between data points on the boundaries (so-called "support vectors").
- If the points on the boundaries are not informative (e.g., due to noise), SVMs will not do well.

Statement of linear SVM classifier

The gap is distance between parallel hyperplanes:

$$\vec{w} \cdot \vec{x} + b = -1$$
 and $\vec{w} \cdot \vec{x} + b = +1$

Or equivalently:

$$\vec{w} \cdot \vec{x} + (b+1) = 0$$

$$\vec{w} \cdot \vec{x} + (b-1) = 0$$

We know that

$$D = \left| b_1 - b_2 \right| / \left\| \vec{w} \right\|$$

Therefore:

$$D = 2/\|\vec{w}\|$$

Since we want to maximize the gap, we need to minimize $\|\vec{w}\|$

or equivalently minimize $\frac{1}{2} \|\vec{w}\|^2$

 $(\frac{1}{2}$ is convenient for taking derivative later on)

Statement of linear SVM classifier

In addition we need to impose constraints that all instances are correctly classified. In our case:

$$\vec{w} \cdot \vec{x}_i + b \le -1$$
 if $y_i = -1$
 $\vec{w} \cdot \vec{x}_i + b \ge +1$ if $y_i = +1$

Equivalently:

$$y_i(\vec{w}\cdot\vec{x}_i+b)\geq 1$$

In summary:

Want to minimize $\frac{1}{2} \|\vec{w}\|^2$ subject to $y_i(\vec{w} \cdot \vec{x}_i + b) \ge 1$ for i = 1,...,N

Then given a new instance x, the classifier is $f(\vec{x}) = sign(\vec{w} \cdot \vec{x} + b)$

SVM optimization problem: Primal formulation

Minimize
$$\underbrace{\frac{1}{2}\sum_{i=1}^n w_i^2}$$
 subject to $\underbrace{y_i(\vec{w}\cdot\vec{x_i}+b)-1\geq 0}$ for $i=1,\ldots,N$ Objective function Constraints

- This is called "primal formulation of linear SVMs".
- It is a convex quadratic programming (QP) optimization problem with n variables $(w_i, i = 1,...,n)$, where n is the number of features in the dataset.

SVM optimization problem: Dual formulation

- The previous problem can be recast in the so-called "dual form" giving rise to "dual formulation of linear SVMs".
- It is also a convex quadratic programming problem but with N variables $(\alpha_i, i = 1,...,N)$, where N is the number of samples.

$$\alpha_i \ge 0$$
 and $\sum_{i=1}^N \alpha_i y_i = 0$.

Objective function

Constraints

Then the *w*-vector is defined in terms of
$$\alpha_i$$
: $\vec{w} = \sum_{i=1}^{N} \alpha_i y_i \vec{x}_i$

And the solution becomes:
$$f(\vec{x}) = sign(\sum_{i=1}^{N} \alpha_i y_i \vec{x}_i \cdot \vec{x} + b)$$

SVM optimization problem: Benefits of using dual formulation

1) No need to access original data, need to access only dot products.

Objective function:
$$\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j \vec{x}_i \cdot \vec{x}_j$$
Solution:
$$f(\vec{x}) = sign(\sum_{i=1}^{N} \alpha_i y_i \vec{x}_i \cdot \vec{x} + b)$$

2) Number of free parameters is bounded by the number of support vectors and not by the number of variables (beneficial for high-dimensional problems).

E.g., if a microarray dataset contains 20,000 genes and 100 patients, then need to find only up to 100 parameters!

Case 2: Not linearly separable data; "Soft-margin" linear SVM

What if the data is not linearly separable? E.g., there are outliers or noisy measurements, or the data is slightly non-linear.

Want to handle this case without changing the family of decision functions.

Approach:

Assign a "slack variable" to each instance $\xi_i \ge 0$, which can be thought of distance from the separating hyperplane if an instance is misclassified and 0 otherwise.

Want to minimize $\frac{1}{2} \|\vec{w}\|^2 + C \sum_{i=1}^N \xi_i$ subject to $y_i(\vec{w} \cdot \vec{x}_i + b) \ge 1 - \xi_i$ for i = 1, ..., N Then given a new instance x, the classifier is $f(x) = sign(\vec{w} \cdot \vec{x} + b)$

Two formulations of soft-margin linear SVM

Primal formulation:

Minimize
$$\underbrace{\frac{1}{2}\sum_{i=1}^{n}w_{i}^{2}+C\sum_{i=1}^{N}\xi_{i}}_{\text{Subject to}}\text{ subject to }\underbrace{y_{i}(\vec{w}\cdot\vec{x}_{i}+b)\geq1-\xi_{i}}_{\text{Objective function}}\text{ for }i=1,\ldots,N$$

Dual formulation:

$$\begin{aligned} & \text{Minimize} \underbrace{\sum_{i=1}^{n} \alpha_i \ -\frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j \vec{x}_i \cdot \vec{x}_j}_{\text{Objective function}} \text{ subject to } \underbrace{0 \leq \alpha_i \leq C \text{ and } \sum_{i=1}^{N} \alpha_i y_i = 0}_{\text{Constraints}} \end{aligned}$$

56

Parameter C in soft-margin SVM

Minimize
$$\frac{1}{2} \|\vec{w}\|^2 + C \sum_{i=1}^{N} \xi_i$$
 subject to $y_i (\vec{w} \cdot \vec{x}_i + b) \ge 1 - \xi_i$ for $i = 1,...,N$

C = 0.15

C = 0.1

- When C is very large, the softmargin SVM is equivalent to hard-margin SVM;
- When C is very small, we admit misclassifications in the training data at the expense of having w-vector with small norm;
- C has to be selected for the distribution at hand as it will be discussed later in this tutorial.

Case 3: Not linearly separable data; Kernel trick

Data is not linearly separable in the <u>input space</u>

Data is linearly separable in the <u>feature space</u> obtained by a kernel

 $\Phi: \mathbf{R}^N \to \mathbf{H}$

Kernel trick

Original data \vec{x} (in input space)

$$f(x) = sign(\vec{w} \cdot \vec{x} + b)$$

$$f(x) = sign(\vec{w} \cdot \vec{x} + b)$$
$$\vec{w} = \sum_{i=1}^{N} \alpha_i y_i \vec{x}_i$$

Data in a higher dimensional feature space $\Phi(\vec{x})$

$$f(x) = sign(\vec{w} \cdot \Phi(\vec{x}) + b)$$

$$\vec{w} = \sum_{i=1}^{N} \alpha_i y_i \Phi(\vec{x}_i)$$

$$f(x) = sign(\sum_{i=1}^{N} \alpha_i y_i \Phi(\vec{x}_i) \cdot \Phi(\vec{x}) + b)$$

$$f(x) = sign(\sum_{i=1}^{N} \alpha_i y_i K(\vec{x}_i, \vec{x}) + b)$$

Therefore, we do not need to know Φ explicitly, we just need to define function $K(\cdot, \cdot)$: $\mathbb{R}^{N} \times \mathbb{R}^{N} \to \mathbb{R}$.

Not every function $\mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ can be a valid kernel; it has to satisfy so-called Mercer conditions. Otherwise, the underlying quadratic program may not be solvable.

Popular kernels

A kernel is a dot product in *some* feature space:

$$K(\vec{x}_i, \vec{x}_j) = \Phi(\vec{x}_i) \cdot \Phi(\vec{x}_j)$$

Examples:

$$K(\vec{x}_i, \vec{x}_j) = \vec{x}_i \cdot \vec{x}_j$$

$$K(\vec{x}_i, \vec{x}_j) = \exp(-\gamma \|\vec{x}_i - \vec{x}_j\|^2)$$

$$K(\vec{x}_i, \vec{x}_j) = \exp(-\gamma \|\vec{x}_i - \vec{x}_j\|)$$

$$K(\vec{x}_i, \vec{x}_j) = (p + \vec{x}_i \cdot \vec{x}_j)^q$$

$$K(\vec{x}_i, \vec{x}_j) = (p + \vec{x}_i \cdot \vec{x}_j)^q \exp(-\gamma \|\vec{x}_i - \vec{x}_j\|^2)$$

$$K(\vec{x}_i, \vec{x}_j) = \tanh(k\vec{x}_i \cdot \vec{x}_j - \delta)$$

Linear kernel
Gaussian kernel
Exponential kernel
Polynomial kernel
Hybrid kernel
Sigmoidal