Boosting

Algorithms

AdaBoost.M1

1. Инициализируются веса:

$$w_i = \frac{1}{N}, i = 1, 2, ..., N$$

- 2. С m=1 по M:
 - а) Обучается модель $G_m(x)$, используя веса из шага 1

AdaBoost.M1

b) Вычисляется ошибка:

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x))}{\sum_{i=1}^{N} w_i}$$

с) Вычисляется:

$$a_m = log((1 - err_m)/err_m)$$

AdaBoost.M1

b) Присваивается новый вес:

$$w_i \leftarrow w_i \cdot exp[a_m \cdot I(y_i \neq G_m(x))], i = 1, 2, ..., N$$
3.

$$H(x) = sign\left(\sum_{m=1}^{M} a_m G_m(x)\right)$$

Gradient Boosting

- функция потерь, которую нужно оптимизировать
- слабая модель для предсказаний
- аддитивная модель для добавления слабых моделей и минимизации функции потерь

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m=1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}.$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

- (d) Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

Регуляризация

- Shrinkage
- Стохастический градиентный бустинг
- Параметры деревьев

XGBoost

- Системные фичи:
 - Параллелизация
 - Распределенные вычисления (Hadoop, Spark)
 - Оптимизация кеша
- Поддерживает модели:
 - Градиентный бустинг
 - Стохастический градиентный бустинг