

BBS: Bulletin Board System

- A computer system running software that allows users to connect and log in to the system using a terminal program.
- Once logged in, a user can perform functions such as
 - uploading and downloading software and data;
 - reading news and bulletins;
 - and exchanging messages with other users, either through Email or in public message boards.

What Is TELNET? (2)

- Definition in RFC854
 - The purpose of the TELNET Protocol is to provide a general, bi-directional, byte oriented communications facility.
 - Its primary goal is to allow a standard method of interfacing terminal devices and terminal-oriented processes to each other.
 - It is envisioned that the protocol may also be used for terminal-terminal communication ("linking") and process-process communication (distributed computation).

11

TELNET vs. telnet

- TELNET is a protocol that provides "a general, bi-directional, eight-bit byte oriented communications facility"
- telnet is a program that supports the TELNET protocol over TCP
- Many application protocols are built upon the TELNET protocol

The History Of Telnet

- Telnet is simple
 - Total pages of RFC 854 is 15
 - HTTP (we will see later) is 176 pages
- The idea of option negotiation was a very good design feature
 - Enables telnet to evolve to meet new demands without endless new versions of basic protocol
- Currently over 100 RFCs on telnet and its options

13

Major Ideas Of TELNET

- The concept of a NVT (Network Virtual Terminal)
 - Providing a standard interface to remote systems
- The principle of negotiated options
 - Enabling Telnet to evolve to meet new demands without endless new versions of basic protocol
- A symmetric view of terminals and processes
 - Allowing an arbitrary program to become a client

14

Concept Of Remote / Virtual Terminal

Remote Terminal Access

- Early motivation for networks was remote access to interactive systems
- Dumb terminals (see figure on the next slide)
 - Keyboard and screen with primitive communication hardware
 - Local host computer establish connection to remote host
- The challenge is that terminals and host systems were not standardized
 - local terminal was not speaking the same language as the remote host

17

Network Virtual Terminal

- The approach to solve the problem of lack of a common language was to define a common language
 - Virtual terminal protocol (VTP)
- Transform local characteristics into standardized form
 - Network virtual terminal (NVT)
- Imaginary device
 - Well defined set of characteristics
- Both sides generate data and control signals in native language but translates them to NVT form
 - The sending side translates native data and control signals into NVT form before sending out
 - the receiving side gets the NVT data and signals and translates into its native form

TELNET Operations

- Connection management
 - Connection request, establish and terminate
 - Telnet uses TCP (port 23) by default
- Negotiation
 - To determine mutually agreeable set of characteristics and options
- Exchange of control information (e.g. end of line), commands and transfer of data between two correspondents
- A typical telnet session is exchange of data between terminal and host
 - Multiple rounds
 - Not only for accessing remote accounts; was also used for interactive system
 - Try "telnet bbs.byr.cn"

Related RFCs

- Basic protocol
 - RFC854: Telnet Protocol Specification
- Options
 - RFC855: Telnet Option Specifications
 - RFC856: Telnet Binary Transmission
 - RFC857: Telnet Echo Option
 - RFC858: Telnet Suppress Go Ahead Option
 - RFC859: Telnet Status Option
 - ...

26

Some Features

- TCP connection: directed toward port 23 of the server being asked to perform a service
- Data and control multiplexed over the same connection
- NVT representation of a generic terminal
- Negotiated options provides a standard language for communication of terminal control functions

TELNET Protocol

- Transmission of data
- Standard representation of control functions

Transmission Of Data (2)

- Data sent half-duplex
 - Terminal-to-process, newline signifies end of user input
 - Process-to-terminal, control signal Go Ahead(GA) is used
- Underlying TCP full duplex
 - Control signals sent any time regardless of current data direction
- Data sent as stream of 8-bit bytes
 - No other formatting
- Control signals and other non-data information sent as Telnet commands
 - Byte strings embedded in data stream
 - User control signals, commands between Telnet processes as part of protocol and option negotiation and subnegotiation

30

Control Functions (1)

- TELNET includes support for a series of control functions commonly supported by servers
- This provides a uniform mechanism for communication of (the supported) control functions
- You can imagine them as some extra virtual keys in the NVT keyboard

Control Functions (2)

- Interrupt Process (IP)
 - Suspend/interrupt/abort/terminate process
- Abort Output (AO)
 - allow a process, which is generating output, to run to completion but without sending the output to the user's terminal
- Are You There (AYT)
 - · check to see if system is still running
- Erase Character (EC)
 - delete last character sent
 - typically used to edit keyboard input
- Erase Line (EL)
 - delete all input in current line
 - typically used to edit keyboard input

Control Functions (3) – delivery

Command	Decimal Codes	Description
IAC	255	Interpret next octet as command
DONT	254	Denial of request to perform specific option
DO	253	Approval to allow specific option
WONT	252	Refusal to perform specific option
WILL	251	Agreement to perform specific option
SB	250	Start of option subnegotiation
GA	249	Go ahead
EL	248	Erase line
EC	247	Erase character
AYT	246	Are you there
AO	245	Abort output
IP	244	Interrupt process
BRK	243	Break
DMARK	242	Data mark
NOP	241	No operation
SE	240	End of subnegotiation
EOR	239	End of record

Control Functions (4) – IAC

- TELNET command structure
 - at least a two byte sequence: the IAC (Interpret as Command) escape character followed by the code for the command
- The IAC code is 255
 - If a 255 is sent as data it must be followed by another 255
- Looking for a command
 - Each receiver must look at each byte that arrives and look for an IAC
 - If IAC is found and the next byte is "IAC" a single data byte (value 255) is presented to the application/ terminal
 - If IAC is followed by any other code the TELNET layer interprets this as a command

34

Control Functions (5) – DO, DONT, WILL, WONT

- Used for options negotiation
- Examples

Sender	Receiver	Meaning
WILL →	← DO	Sender wants to active a option, and receiver agrees
WILL →	← DON'T	Sender wants to active a option, and receiver refuses
DO →	← WILL	Sender wants receiver to active a option, and receiver agrees
DO →	← WONT	Sender wants receiver to active a option, and receiver refuses

4

TELNET Options Negotiation

36

Motivations

- All NVTs support a minimal set of capabilities
- Some terminals have more capabilites than the minimal set
- The two endpoints negotiate a set of mutually acceptable options (character set, echo mode, etc)
- The set of options is not part of the TELNET protocol, so that new terminal features can be incorporated without changing the TELNET protocol

37

Option Examples

- echo modes
 - Keyboard input be echoed on the terminal side or not
- Line mode vs. character mode
 - One line or one character per transmission
- character set (EBCDIC vs. ASCII)
 - EBCDIC Extended Binary-Coded Decimal Interchange Code
 - ASCII American Standard Code for Information Interchange

38

Options Negotiation

- Each option is assigned a byte value
- The DO, DONT, WILL, and WONT commands are used to negotiate options
- Options negotiation is symmetric
- Steps must be taken to avoid option processing loops
- Subnegotiations are used when more information is needed, such as when negotiating terminal type, window size, etc

39

Example: Negotiation of Echo Option Client Server Do enable the echo option I will enable the echo option WILL ECHO I will enable the echo option

Summary (1) – usages of telnet

- Use Internet accounts you may have on remote computers
 - you need an account (login ID) and password on the remote computer to permit access
- Use free services accessible with telnet, e.g.
 - library catalogues
 - databases
 - BBS (Bulletin Board System)
 - Router/switch configuration

49

Summary (2) - Disadvantages of telnet

- Poor user interface
 - Based on dumb terminal
 - Text-only display
 - Monochrome
 - One color for text, one for background
 - Have to type command-line commands
 - Often have complex syntax
 - Not very secure, SSH made enhancement
 - TELNET does not encrypt any data sent over the connection (including passwords)

50

Other Remote Access Technologies

51

Other Remote Access Technologies

- Remote login in text-based system
 - telnet
 - SSH
 - Rlogin
- Remote desktop in windowing system
 - VNC (Virtual Network Computing)
 - RDP (Remote Desktop Protocol)

SSH (1) – brief information

- Secure Shell
- Command line terminal connection tool
- All traffic encrypted
- Both ends authenticate themselves to the other end
- Ability to carry and encrypt non-terminal traffic
- Private key kept on client, public key stored on server
- Now, it is an IETF standard
 - RFC4251, The Secure Shell (SSH) Protocol Architecture

53

SSH (2) - two enhancements of telnet

- Providing secure communications
- Providing users with the ability to perform additional, independent data transfer over the same connection that is used for remote login

54

SSH (3) – three major mechanisms

- A transport layer protocol that provides sever authentication, data confidentiality, and data integrity with perfect forward secrecy
- A user authentication protocol that authenticates the user to the server
- A connection protocol that multiplexes multiple logical communications channels over a single underlying SSH connection
 - Port forwarding, could be used as a secure tunnel

Other Ways Of Remote Access

- Except telnet, there are other ways
 - rlogin family utility
 - VNC (Virtual network computing)
 - RDP (Remote Desktop Protocol)
- Comparison with Telnet

