Untitled

Grant Adams

January 3, 2019

Equations

Table 1. Population dynamics equations for species i and age j in each simulation year y. BT indicates the AFSC bottom trawl survey and EIT represents the echo-integrated acoustic- trawl survey. For all parameter definititions see Table 3.

Definition	Equation	
Recruitment	$N_{i1,y} = R_{i,y} = R_{0,i}e^{\tau_{i,y}}$	T1.1
Initial abundance	$N_{ij,1} = \begin{cases} R_{0,i}e^{(-jM1_{ij})}N_{0,ij} \\ R_{0,i}e^{(-jM1_{ij})}N_{0,i,A_i}/(1 - e^{(-jM1_{i,A_i})}) \end{cases}$	T1.2
	$ (R_{0,i}e^{(-jM_{1ij})}N_{0,i,A_i}/(1-e^{(-jM_{1i,A_i})}) $	
Numbers at age	$N_{i,j+1,y+1} = N_{ij,y}e^{-Z_{ij,y}}$	T1.3
	$N_{i,A_i,y+1} = N_{i,A_i-1,y}e^{-Z_{i,A_i-1,y}} + N_{i,A_i,y}e^{-Z_{i,A_i,y}}$	
Catch	$C_{ij,y} = \frac{F_i j, y}{Z_{ij,y}} (1 - e^{-Z_{ij,y}}) N_{ij,y}$	T1.4
Total yield (kg)	$V = \sum_{i=1}^{A_i} F_{ij}, y$	T1.5
	$Y_{i,y} = \sum_{j}^{A_i} \frac{F_{ij}, y}{Z_{ij,y}} (1 - e^{-Z_{ij,y}}) N_{ij,y} W_{ij,y}$	
Biomass at age (kg)	$B_{ij,y} = N_{ij,y} W_{ij,y}$	T1.6
Spawning biomass at age (kg)	$SSB_{ij,y} = B_{ij,y}\rho_{ij}$	T1.7
Total mortality at age	$Z_{ij,y} = M1_{ij} + M2_{ij,y} + F_{ij,y}$	T1.8
Fishing mortality at age	$F_{ij,y} = F_{0,i}e^{\epsilon_{i,y}s_{ij}^f}$	T1.9
Weight at age (kg)	$W_{ij,y} = W_{\infty,iy} \left(1 - e^{\left(-K_i(1 - d_{i,y})(j - t_{0,i}) \right)} \right)^{\frac{1}{1 - d_{i,y}}}$	T1.10a
	$d_{i,y} = e^{(\alpha_{d,i,y} + \alpha_{d,i} + \beta_{d,i} T_y)}$	T1.10b
	$W_{\infty,iy} = \left(\frac{H_i}{K_i}\right)^{1/(1-d_{i,y})}$	T1.10c
BT survey biomass (kg)	A_i	T1.11
	$\beta_{i,y} = \sum_{j} (N_{ij,y} e^{-0.5Z_{ij,y}} W_{ij,y} S_{ij}^{s})$	
Fishing mortality at age Weight at age (kg)	$F_{ij,y} = F_{0,i} e^{\epsilon_{i,y} s_{ij}^f}$ $W_{ij,y} = W_{\infty,iy} \left(1 - e^{\left(-K_i (1 - d_{i,y})(j - t_{0,i}) \right)} \right)^{\frac{1}{1 - d_{i,y}}}$ $d_{i,y} = e^{\left(\alpha_{d,i,y} + \alpha_{0,d,i} + \beta_{d,i} T_y \right)}$	T1.9 T1.10a T1.10b T1.10c

EIT survey biomass (kg)
$$\hat{\beta}_{y}^{eit} = \sum_{j}^{A_{1}} \left(N_{1j,y} e^{-0.5Z_{1j,y}} W_{1j,y} S_{1j}^{eit} q_{1}^{eit} \right)$$
 Fishery age composition
$$\hat{O}_{ij,y}^{f} = \frac{C_{ij,y}}{\sum_{j} C_{ij,y}}$$
 T1.13 BT survey age composition
$$\hat{O}_{ij,y}^{eit} = \frac{N_{ij,y} e^{-0.5Z_{ij,y}} s_{ij}^{s}}{\sum_{j} \left(N_{ij,y} e^{-0.5Z_{ij,y}} s_{ij}^{eit} q_{1}^{eit} \right)}$$
 T1.14
$$\hat{O}_{1j,y}^{eit} = \frac{N_{1j,y} e^{-0.5Z_{1j,y}} s_{1j}^{eit} q_{1}^{eit}}{\sum_{j} \left(N_{1j,y} e^{-0.5Z_{1j,y}} s_{1j}^{eit} q_{1}^{eit} \right)}$$
 T1.15 BT selectivity
$$s_{ij}^{s} = \frac{1}{1 + e^{\left(-b_{i}^{s} *_{i} - a_{i}^{s}\right)}}$$
 T1.16
$$\hat{S}_{ij}^{f} = \begin{cases} e^{n_{i}j} \ j \leq A_{\eta,i} \\ e^{n_{i,A_{\eta,i}}} \ j > A_{\eta,i} \end{cases}$$
 T1.17
$$\hat{S}_{ij}^{f} = \begin{cases} e^{-jM_{fem}} \\ e^{-jM_{fem}} + e^{jM_{male}} \end{cases}$$
 T1.18 Proportion of mature females
$$\rho_{ij} = \omega_{ij}\phi_{ij}$$
 T1.19 Weight at age (kg)
$$W_{ij,y} = W_{ij,y}^{fem} \omega_{ij} + \left(1 - \omega_{ij}\right) W_{ij,y}^{male}$$
 T1.21 Residual natural mortality
$$M_{1ij} = M_{ii}^{fem} \omega_{ij} + \left(1 - \omega_{ij}\right) M_{ii}^{male}$$
 T1.21

Table 2. Predation mortality equations for predators p of age a, and prey i of age j

Definition	Equation	
Predation mortality	$M2_{ij,y}$	T2.1
	$= \sum_{pa} \left(\frac{N_{pa,y} \delta_{pa,y} S_{paij}}{\sum_{ij} \left(S_{paij} B_{ij,y} \right) + B_p^{other} \left(1 - \sum_{ij} \left(S_{paij} \right) \right)} \right)$	
Predator-prey suitability	$\hat{S}_{paij} = \frac{1}{n_y} \sum_{y} \left(\frac{\frac{\overline{U}_{paij}}{B_{ij,y}}}{\sum_{ij} \left(\frac{\overline{U}_{paij}}{B_{ij,y}} \right) + \frac{1 + \sum_{ij} \overline{U}_{paij}}{B_p^{other}} \right)$	T2.2
Mean gravimetric diet proportion	$\overline{U}_{paij} = \frac{\sum_{y} U_{paij,y}}{n_{y}}$	T2.3
Individual specific ration $(kg \ kg^{-1} \ yr^{-1})$	$\delta_{pa,y} = \varphi_p \alpha_\delta W_{pa,y}^{(1+\beta_\delta)} f(T_y)_p$	T2.4
Temperature scaling algorithim	$f(T_y)_p = V^X e^{(X(1-V))}$	T2.5
	$V = \left(T_p^{cm} - T_y\right) / \left(T_p^{cm} - T_p^{co}\right)$	T2.5a

...
$$X = (Z^{2}(1 + (1 + 40/Y)^{0.5})^{2})/400$$
 T2.5b
... $Z = ln(Q_{p}^{c})(T_{p}^{cm} - T_{p}^{co})$ T2.5c
... $Y = ln(Q_{p}^{c})(T_{p}^{cm} - T_{p}^{co} + 2)$ T2.5d

Table 3. Parameter definitions.

Parameter	Definition	Туре	Model Object
Year	У	M	i
Predator	p	M	
Predator age (years)	a	M	
Prey	i	M	k
Prey age (years)	j	M	
Number of prey species	n_i	I	nspp
Number of predator species	n_p	I	
Number of prey ages	A_i	I	nages
Number of predator ages	A_p	I	
Number of simulation years	n_y	I	nyrs
Start year	${\mathcal Y}_0$	I	styr
Annual relative foraging rate $(d \ yr^{-1})$	$\boldsymbol{\hat{\varphi}}_p$	I	
Intercept of the allometic maximum consumption function $(g g^{-1} yr^{-1})$	$lpha_\delta$	I	aLW
Allometric slope of maximum consumption	eta_δ	I	bLW
Consumption maximum physiological temperature (°C)	T_p^{cm}	I	Tcm
Consumption optimum physiological temperature (°C)	T_p^{co}	I	Tco
Max consumption parameter	Q_p^c	I	Qc
Mean recruitment	$R_{0,i}$	E	
Annual recruitment deviation	$ au_{i,y}$	E	rec_dev
Initial abundance	$N_{0,ij}$	E	
Mean fishing mortality	$F_{0,i}$	E	
Anuual fishing mortality deviation	$\epsilon_{i,y}$	E	
Fishery age selectivity coefficient	η_{ij}	E	
Survey age selectivity slope	b_i^s	E	
Survey age selectivity limit	a_i^s	E	
VBGF allometric slope of consumption	$d_{i,y}$	P	d

VBGF max asymptotic weight (kg)	$W_{\infty,iy}$	P	Winf
Proportion of mature females at age	$ ho_{ij}$	P	
Residual natural mortality	$M1_{ij}$	F	M1_base
Intercept for VBGF d parameter	$\alpha 0_{d,i}$	F	
Annual intercept for VBGF d parameter	$\alpha_{d,i,y}$	F	log_mean_d
Temperature covariate for VBGF \emph{d} parameter	$eta_{d,i}$	F	Tcoef
VBGF energy loss constant $(kg \ kg^{-1} \ yr^{-1})$	K_i	F	logK
VBGF assimilation constant $(kg \ kg^{-1} \ yr^{-1})$	H_i	F	logH
VBGF age when $W_{ij,y} = 0$ (years)	$t_{0,i}$	F	t0
EIT survey selectivity	\mathcal{S}^{eit}_{1j}	F	
Female natural mortality	M_i^{fem}	F	
Male natural mortality	M_i^{male}	F	
Female proportion of population	ω_{ij}	F	
Age-specific maturity proportions	$arphi_{ij}$	F	pmature
Observed total yield (kg)	$C_{i,y}^*$	D	tc_biom_obs
Observed fishery age comp.	$O_{ij,y}^f$	D	fsh_age_obs
Observed BT age comp.	$O_{ij,y}^s$	D	srv_age_obs
Observed EIT age comp.	$O_{ij,y}^{eit}$	D	obs_eit_age
Observed BT survey biomass (kg)	$eta_{i,y}^s$	D	srv_bio
Observed EIT survey biomass (kg)	eta_y^{eit}	D	obs_eit
Bottom temperature (°C)	$T_{\mathcal{Y}}$	D	TempC
Gravimetric proportion of prey in predator stomach	$U_{paij,y}$	D	
Biomass of other prey (kg)	B_p^{other}	D	other_food
Not in table 3			
Annual survey biomass error	$CV_{s,i,y}$	F	srv_Mean_CV
Number of years with total observed catch	$n_{Y,i}$	M	nyrs_tc_biom_obs
Years with total observed catch	$y_{Y,i}$	I	yrs_tc_biom_obs
Number of years in the fishery sp_age composition data	$n_{y,i}$	E	nyrs_fsh_comp
Number of estimation years	$n_{y,est}$	I	nyrs_est
End year	y_{n_y}	I	endyr
Number of years in the fishery age composition data	$n_{y_{Of},i}$	I	nyrs_fsh_comp

Years in the fishery age composition data	$\mathcal{Y}_{O^f,i}$	I	yrs_fsh_comp
Method of calculating fishery age		I	fsh_age_type
Number of fishery age bins	$n_{f,bin}$	I	fsh_age_bins
Number of years with weight-at-age data	$n_{y,W,i}$	I	nyrs_wt_at_age
Years with weight-at-age data	$y_{w,i}$	I	yrs_wt_at_age
Weight-at-age data	W_i	D	wt
Number of years in the BT survey data	$n_{y_{\beta^s,i}}$	I	nyrs_srv_biom
Years in the BT survey data	$\mathcal{Y}_{oldsymbol{eta}^{oldsymbol{s}},i}$	I	yrs_srv_biom
BT survey standard error	$\sigma_{s,i}$	F	srv_biom_se
Number of years in the BT survey age or length composition data	$n_{y_{O^S},i}$	I	nyrs_srv_age
Years in the BT survey age composition data	$y_{o^s,i}$	I	yrs_srv_age
Method of calculating BT survey age type (age or length)		I	srv_age_type
Number of BT survey age bins	$n_{s,bin,i}$	I	srv_age_bins
Sample size for BT survey age composition multinomial	$n_{O^{S},i}$	I	srv_age_n
Observed survey BT size compositions	O_{ij}^s	I	srv_age_sizes
Age transition matrix		I	age_trans_matrix
Number of years in the EIT survey data	$n_{{\mathcal{Y}}_{eta}^{eit}}$	I	n_eit
Years in the BT survey data	${\mathcal Y}_{oldsymbol{eta}^{eit}}$	I	yrs_eit
Sample size for EIT survey age composition multinomial	$n_{O}^{}$ eit	I	eit_age_n
Number of years in the EIT selectivtiy data	$n_{{m y}_{{m S}^{eit}}}$	I	nyrs_eit_sel
Years in the BT selectivity data	${\mathcal Y}_{\mathcal S^{eit}}$	I	yrs_eit_sel
Sample size for EIT survey age composition multinomial	$n_{O^{eit}}$	I	eit_sel
Sex specific mortality and weight-at-age: 1 for combined, 2: for seperate		I	mf_type
Proportion	$n_{O^{eit}}$	I	propMorF
Observed catch-at-age	$C_{ij,y}$	I	obs_catch
Estimated catch-at-age	$\hat{C}_{ij,y}$	E	obs_catch_hat
Observed total catch	$C_{i,y}$	D	tc_obs
Estimated total catch	$\hat{C}_{i,y}$	D	tc_hat

Estimated total yield	$B_{ij,y}$	E	tc_obs
	$= N_{ij,y}W_{ij,y}$		
Observed fishery age composition	$O^f_{ij,\mathcal{Y}}$	I	fsh_age_obs
Estimated fishery age composition	$\hat{O}_{ii,\nu}^f$	E	fsh_age_hat

Table 4. Components of the likelihood function for each species i of age j in year y.

Description	Equation	Data source	
Data components			
BT survey biomass	$\sum_{i}\sum_{y}\frac{\left[ln(\beta_{i,y}^{s})-ln\left(\hat{\boldsymbol{\beta}}_{i,y}^{s}\right)\right]^{2}}{2\sigma_{s,i}^{2}}$	NMFS annual EBS BT survey	T4.1
BT survey age composition	$-\sum_{i}^{s} n_{i} \sum_{y} \sum_{j} \left(O_{ij,y}^{s} + v\right) \ln \left(\hat{O}_{ij,y}^{s} + v\right)$	NMFS annual EBS BT survey	T4.2
EIT survey biomass	$\sum_{i} \sum_{y} \frac{\left[ln(\beta_{y}^{eit}) - ln\left(\hat{\beta}_{y}^{eit}\right) \right]^{2}}{2\sigma_{eit}^{2}}, \ \sigma_{eit} = 0.2$	Pollock acoustic trawl survey	T4.3
EIT survey age composition	$-n\sum_{y}\sum_{j}\left(O_{1j,y}^{eit}+v\right)\ln\left(\mathring{O}_{1j,y}^{eit}+v\right)$	Pollock acoustic trawl survey	T4.4
Total catch	$\sum_{i} \sum_{\mathcal{V}} \frac{\left[ln(C_{i,\mathcal{Y}}^*) - ln\left(\hat{C}_{i,\mathcal{Y}}^*\right)\right]^2}{2\sigma_{\mathcal{C}}^2}, \ \sigma_{\mathcal{C}} = 0.05$	Fishery observer data	T4.5
Fishery age composition	$-\sum_{i}^{J} n_{i} \sum_{y} \sum_{j} \left(O_{ij,y}^{f} + v\right) \ln \left(\hat{O}_{ij,y}^{f} + v\right)$	Fishery observer data	T4.6
Penalties			
Fishery selectivity	$\sum_{i} \sum_{j}^{A_{i}-1} \chi \left[ln \left(\frac{\eta_{ij}^{f}}{\eta_{ij+1}^{f}} \right) - ln \left(\frac{\eta_{ij+1}^{f}}{\eta_{ij+2}^{f}} \right) \right]^{2}, \chi$		T4.7
	$= \begin{cases} 20, & if \eta_{ij}^f > \eta_{ij+1}^f \\ 0, & if \eta_{ii}^f \le \eta_{ij+1}^f \end{cases}$		
Priors	(' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		
	$\sum_i \sum_i (au_{i,y})^2$		T4.8
	$\sum_{i}\sum_{j}\left(au_{i,y} ight)^{2} \ \sum_{i}\sum_{j}\left(N_{0,ij} ight)^{2}$		T4.9

$$\sum_{i} \sum_{j} (\varepsilon_{i,y})^{2}$$

$$v = 0.001$$

References

Holsman, K.K., Ianelli, J., Aydin, K., Punt, A.E., Moffitt, E.A., 2015. A comparison of fisheries biological reference points estimated from temperature-specific multi-species and single-species climate-enhanced stock assessment models. Deep-Sea Research Part II: Topical Studies in Oceanography 134, 360–378. https://doi.org/10.1016/j.dsr2.2015.08.001

Kristensen, K., Nielsen, A., Berg, C.W., Skaug, H., Bell, B., 2015. TMB: Automatic Differentiation and Laplace Approximation. arXiv 70, 1–21. https://doi.org/10.18637/jss.v070.i05