Исследование асимптотики решения задачи Коши для квазилинейного уравнения первого порядка с помощью численных схем

подготовил И. Г. Любич научный руководитель— д.ф.-м.н. профессор А. А. Шананин

Кафедра системного анализа

20 августа 2014 г.

Постановка задачи

Рассмотрим задачу Коши для квазилинейного уравнения:

$$u_t + f_{\mathsf{x}}(u) = 0, \tag{1}$$

с начальным условием:

$$u(0,x) = u_0(x).$$
 (2)

Предположение

Пусть $u_0(x)$ — функция с ограниченной вариацией такая, что: $u_0(x) = u^-$, при $x < x^-$, $u_0(x) = u^+$, при $x > x^+$, $x^- < x^+$, $u^- < u^+$. Пусть $\varphi(u) = f'(u)$ положительная, непрерывно дифференцируемая функция такая, что $\varphi'(u)$ имеет только изолированные нули.

Необходимо выяснить как ведут себя ударные волны u(t,x) с неисчезающими разрывами при $t \to +\infty$ и численно смоделировать поведение волны.

Обобщенное решение по Кружкову

Определение

Ограниченная измеримая в $\Pi_T = [0, T] \times R_x$ функция u(t, x) называется обобщенным решением задачи (1,2), если: $\forall k \in R$ и $\forall \varphi(t, x) \in C_0^\infty(\Pi_T), \varphi \geq 0$:

$$\int_{\Pi_T} [|u-k|\varphi_t + sign(u-k)(f(u)-f(k))\varphi_x] dxdt \ge 0.$$

$$\forall [a,b] \quad \lim_{t\to+0}\int_a^b |u(t,x)-u_0(x)|dx=0.$$

Определение кусочно-гладкой функции

Определение

Функция u(t,x) называется кусочно-гладкой в $\bar{\Pi}^+$, если:

- множество точек разрыва Γ точек разрыва u(t,x) можно представить в виде объединения конечного числа гладких кривых вида $x=x(t),\ t\in I,\ x(t)\in C^1(I)$, где либо $I=[a,b],\ 0\leq a< b<+\infty$, либо $I=[a,+\infty),\ a\geq 0;$ указанные кривые могут пересекаться только в своих концевых точках; множество таких кривых обозначим X;
- ② на кривых $u=x(t)\in X,\ t\in [a,b]$ (либо $t\in [a,+\infty)$) существуют пределы $u(t,x(t)\pm 0)$, являющиеся непрерывными функциями $t\in (a,b)$ (либо $t\in (a,+\infty)$);
- ullet u(t,x) ограничена в $ar\Pi^+$, $u(t,x)\in C^1(ar\Pi^+\setminus\Gamma)$.

Простой случай

Рассмотрим частный случай первоначальной задачи:

$$u^{0}(x) = \begin{cases} u^{-}, & x < 0, \\ u^{+}, & x \geqslant 0. \end{cases}, u^{-} < u^{+},$$

с невыпуклой функцией f(u), имеющей конечное число точек перегиба на отрезке $[u^-,u^+]$. Пусть F(u) – выпуклое книзу замыкание функции f(u) на отрезке $[u^-,u^+]$. График F(u) состоит из конечного числа дуг f(u) и конечного числа отрезков, касательных к f(u). Обозначим внутренние точки касания $u_2 < u_3 < \ldots < u_{m-1}, \ u_1 = u^-, \ u_m = u^+$. Пусть $h(\xi)$ для $\xi \in [F'(u^-), F'(u^+)]$ является обратной функцией к F'(p).

Решение в простом случае

Тогда решение имеет вид:

$$\widetilde{u}(t,x) = \begin{cases} u^-, & x < F'(u^-)t, \\ h(x/t), & F'(u^-)t \leqslant x < F'(u^+)t, \\ u^+, & x \geqslant F'(u^+)t. \end{cases}$$

Функция $\widetilde{u}(t,x)$ состоит из волн разряжения h(x/t), соответствующих тем отрезкам $[u_i,u_{i+1}]$, где $f(u)\equiv F(u)$, и ударных волн, соответствующих тем отрезкам $[u_i,u_{i+1}]$, где F(u) является линейной и $f(u)\neq F(u)$. Пусть $x=\widetilde{x}(t)$ – ударная волна такая, что $\widetilde{u}(t,\widetilde{x}(t)-0)\equiv u_l,\ \widetilde{u}(t,\widetilde{x}(t)+0)\equiv u_r,u_l,u_r\in\{u_1,\ldots,u_m\}$. Назовем ударную волну простой, если r=l+1, и составной, если r>l+1.

Работа Лю Тайпина

В работе Лю Тайпина изучена асимптотика обобщенного решения с начальной функцией $u_0(x)$, имеющей конечную полную вариацию на всей прямой.

Теорема

Каждой просто ударной волне $x = \widetilde{x}(t)$ решения $\widetilde{u}(t,x)$ соответствует ударная волна $x(t) = \widetilde{x}(t) + \gamma(t)$ решения u(t,x) такая, что $\gamma(t)/t \to 0$, $u(t,\widetilde{x}(t)-0) \to u_I$, $u(t,\widetilde{x}(t)+0) \to u_r$ при $t \to +\infty$, а каждой составной ударной волне $x = \widetilde{x}(t)$ соответствует от одной до r-l ударных волн $x_1(t),\ldots,x_h(t)$ таких, что $x_i(t) = \widetilde{x}(t) + \gamma_i(t), \gamma_i(t)/t \to 0$, $u(t,\widetilde{x}_i(t)-0) \to u_{l_s}, u(t,\widetilde{x}_i(t)+0) \to u_{i_{s+1}}$ при $t \to +\infty$, $u_{i_s}, u_{i_{s+1}} \in \{u_I,\ldots,u_r\}, i=1,\ldots,k$. Между ударными волнами u(t,x) стремится к соответствующим волнам разрежения из решения $\widetilde{u}(t,x)$ или к константам u_1,\ldots,u_m .

Реконструкция начальных данных. Теорема Кружкова С. Н., Петросян Н. С.

В работе Кружкова, Петросян исследовано поведение решения при $t \to +\infty$ с ограниченной и монотонно неубывающей на всей прямой начальной функцией.

$$U_0(y) = \int_0^y u_0(x) dx,$$

$$U_0^*(p) = \sup_{y \in R^1} (py - U_0(y)).$$

Пусть функция F(p) такова, что ее график совпадает с выпуклой книзу оболочкой графика f(p) на отрезке $[u^-,u^+]$. Обозначим внутренние точки касания

$$lpha_0^+ < lpha_1^- < lpha_1^+ \ldots < lpha_L^-, \, lpha_0^- = u^-, \, lpha_L^+ = u^+.$$
 Положим $x_i = rac{U_0^*(u_i^+) - U_0^*(u_i^-)}{u_i^+ - u_i^-}, \, i = 0, \ldots, L.$

Реконструкция начальных данных. Теорема Кружкова С. Н., Петросян Н. С.

$$\widetilde{u}_0 = \alpha_0^- \chi_{(-\infty,x_0)}(x) + \alpha_0^+ \chi_{(x_0,x_1)}(x) + \ldots + \alpha_L^+ \chi_{(x_L,\infty)}(x).$$

Теорема (Кружков С.Н.,Петросян Н.С.)

Пусть $x_i \neq \pm \infty$ $\forall i = 0, \dots, L$. Тогда $u(t,x) - \widetilde{u}(t,x) \to 0$ при $t \to +\infty$ равномерно по x вне сколь угодно узких полос $|x - \widetilde{x}_j(t)| \leq \delta = \text{const} > 0$. Каждой ударной волне $x = \widetilde{x}_j(t)$ такой, что $\widetilde{u}(t,\widetilde{x}_j(t)\pm 0) = u_j^\pm \in \{u_0,\dots,u_L\}$, соответствует ударная волна $x_j(t) = \sigma_j t + b_j + a_j(t)$ в u(t,x), где $a_j(t) \to 0$, $u(t,x_j(t)\pm 0) \to u_j^\pm$ при $t \to +\infty$. Все остальные ударные волны x = x(t), $t \in [t_0,+\infty)$, являются слабыми, т.е. $u(t,x(t)+0) - u(t,x(t)-0) \to 0$ при $t \to +\infty$.

Реконструкция начальных данных. Теорема Кружкова С. Н., Петросян Н. С.

Где функция $\widetilde{u}(t,x)$ определена следующим образом:

$$\widetilde{u}(t,x) = \begin{cases} u_1^-, & x < y_1 + F'(u_1^-)t, \\ u_l^+, & x \ge y_l + F'(u_l^+)t, \\ h(\frac{x-y_i}{t}), & F'(u_i^-) \le \frac{x-y_i}{t} < F'(u_i^+), & (i = 1, \dots, l) \\ u_i^+, & y_i + F'(u_i^+)t \le x < y_{i+1} + F'(u_i^+)t. \end{cases}$$

Здесь $\{y_1,\dots,y_l\}$ — совокупность всех точек разрыва функции $\widetilde{u}_0(x),y_i< y_{i+1},\ u_i^\pm=\widetilde{u}_0(y_i\pm 0).$

Теорема Петросян Н.С.

В работе Петросян анонсировано, что в предположении 1 результат предыдущей теоремы остается верным для кусочно-гладкого решения задачи (1,2) для произвольной функции f(u) и $u_0(x) \in (u^-, u^+)$ при $x \in (x^-, x^+)$.

Замечание

В теореме Петросян необязательно условие монотонности $u_0(x)$.

Замечание

Условие на кусочно-гладкость u(t,x) является достаточно сильным, так как накладывает ограничения не на начальные условия, а на само решение, про которое сложно заранее что-нибудь сказать.

Теорема Хенкина Г.М. и Шананина А.А.

Рассмотрим уравнение:

$$\frac{\partial u_{\varepsilon}}{\partial t} + \frac{\partial f(u_{\varepsilon})}{\partial x} = \varepsilon \frac{\partial u_{\varepsilon}^2}{\partial x^2},$$

которое является приближением нашего уравнения при $\varepsilon \to +0.$

Предположение

$$arphi'(lpha_I^-)
eq 0,\ I=1,\ldots,L,$$
 $arphi'(lpha_I^+)
eq 0,\ I=0,\ldots,L-1,$ $arphi(lpha_0^-)
eq c_0,\$ если $lpha_0^- < lpha_0^+,$ $arphi(lpha_L^+)
eq c_L,\$ если $lpha_L^- < lpha_L^+.$

Теорема Хенкина Г.М. и Шананина А.А.

Теорема

В данных предположениях решение $u_{\varepsilon}(x,t)$ при $\varepsilon \to +0$ имеет следующую асимптотическую структуру:

$$\|u_{\varepsilon}(\cdot,t) - \widetilde{u}(\cdot,t)\|_{L^{1}(R)} \to 0, \ t \to \infty,$$

$$\widetilde{u}(t,x) = \begin{cases} \alpha^{-}, & x < c_{0}t + d_{0}, \\ \varphi^{(-1)}(x/t), & c_{l}t + d_{l} \leqslant x < c_{l+1}t + d_{t+1}, \\ \alpha^{+}, & x \geqslant c_{L}t + d_{L}, \end{cases}$$

где с находятся из условия Ранкина-Гюгонио.

Теорема Хенкина Г.М. и Шананина А.А.

Более того $\exists t^* \geqslant 0$ такая, что параметры d_l находятся из уравнений для точек Максвелла:

$$\sum_{x=y_l^-(t)}^{c_lt+d_l(t)} (u_arepsilon(x,t)-lpha_l^-)dx + \int\limits_{x=c_lt+d_l(t)}^{y_l^+(t)} (u_arepsilon(x,t)-lpha_l^+)dx = 0,$$
 $u_arepsilon(y_l^-(t),t)=lpha_l^-, \quad u_arepsilon(y_l^+(t),t)=lpha_l^+,$ где при $t^*\geqslant t:d_l(t)=d_l(t^*).$

Описание численного метода

Будем использовать метод, описанный Роговым Б.В., который удовлетворяет предложенным требованиям.

$$u_t + f_x(u) = 0, \quad a(u) = \frac{df(u)}{du} > 0,$$

 $u(x,0) = u^0(x), \quad x \ge 0;$
 $u(0,t) = \mu(t), \quad t > 0.$

Введем равномерную сетку $\{x_j, j \geq 0\}$ на интервале $[0, \infty)$. На временном слое t=const проинтегрируем уравнение на отрезке $x_j \leq x \leq x_{j+1}$, в результате получим дифференциальное по t и разностное по x уравнение

$$(\bar{u}_{j+1})_t = -\frac{f_{j+1} - f_j}{h}, \quad f_j = f(u_j), \quad h = x_{j+1} - x_j, \quad j \geq 0.$$

Описание численного метода

Вычислим интегральное среднее от функции f(u)

$$\bar{f}(u)_{j+1} = \frac{1}{h} \int_{x_j}^{x_{j+1}} f(u) dx$$

двумя способами с точностью до $O(h^4)$. Формула Симпсона:

$$ar{f}_{j+1} = rac{1}{6}(f_{j+1} + 4f_{j+1/2} + f_j) + O(h^4),$$
 $f_{j+1/2} = f(u_{j+1/2}),$

формула Эйлера-Маклорена:

$$\bar{f}_{j+1} = \frac{1}{2}(f_{j+1} + f_j) - \frac{h}{12}(f_{x,j+1} - f_{x,j}) + O(h^4),$$

Описание численного метода

Схема

$$\begin{split} \bar{u}_{j+1} + r(f(u_{j+1}) - f(u_j)) &= \bar{u}_{j+1}^n, \quad j \ge 0, \\ \frac{1}{4}(u_{j+1} - u_j) + \\ + r\left[f(u_{j+1}) - 2f\left(\frac{3}{2}\bar{u}_{j+1} - \frac{1}{4}u_{j+1} - \frac{1}{4}u_j\right) + f(u_j)\right] &= \frac{1}{4}(u_{j+1}^n - u_j^n). \end{split}$$

есть неявная схема Эйлера, которая имеет первый порядок аппроксимации по времени и является абсолютно устойчивой. \bar{u}_{j+1} - интегральное среднее функции u(x,t) по ячейке $[x_j,x_{j+1}]$.

Замечание

Второе уравнение – разностный аналог дифференциального следствия (из первого константа при интегрировании равна 0):

$$(u_t+f_x)_x=0.$$

$$f(u) = \frac{4u - u^2}{2}, \quad u^0(x) = \begin{cases} 0.5, & x = 0, \\ 1.5, & x > 0. \end{cases} \quad \mu(t) = 0.5.$$

Рис.: Прямая линия - аналитическое решение. о - решение, полученное численно. * - точка Максвелла

Условие Ранкина-Гюгонио

Условие (Ранкина-Гюгонио)

Условие Ранкина-Гюгонио связывает скорость \dot{x} распространения ударных волн с предельными значениями на границе раздела u_+ и u_- решения u(t,x) через функцию состояния f(u):

$$\frac{dx}{dt} = \frac{[f(u)]}{[u]} = \frac{f(u_+) - f(u_-)}{u_+ - u_-}.$$

$$f(u) = -0.002u^{6} + 0.0736u^{5} - 1.0881u^{4} + 8.3222u^{3} -$$
$$-34.8058u^{2} + 75.9353u - 62.0414.$$

$$u_0(x) = \begin{cases} 2, & x < 0, \\ 2 + 0.0304 \left(-\frac{1}{3}x^3 + 4.63x^2 - 30(\cos(\pi x) + \cos(2\pi x) + \cos(4\pi x) + 90 \right), & 0 \leqslant x \leqslant 9.274, \\ 10.4, & x > 9.274. \end{cases}$$

Рис.: красная - функция состояния f(u), синяя - ее выпуклая вниз оболочка

Рис.: начальные условия.

u=7.1091		u=8.8052	
У	$7.1091y - U_0(y)$	у	$8.8052y - U_0(y)$
2.69492	5.73783	6.60813	18.3521
2.76248	5.73404	6.83987	18.2263
3.20517	6.30656	7.14946	18.5236
3.35846	6.26645	7.43178	18.3276
4.56392	7.70618	7.63571	18.3828
4.87593	7.45062	7.7449	18.371
5.11325	7.60614	8.23669	19.1854
5.80893	7.05778	8.41404	19.1455
6.17667	7.55666	8.5216	19.1551
7.87164	5.11372	8.88662	18.8201
8.12366	5.31883	9.11218	18.9563

Таблица: значения $(u_i y - U_0(y))$.

Исследование численного метода

время t	аналитическое	численное	численное
	решение	c $ au=0.01$	c $ au=0.005$
0.5	14.45215	14.4719	14.4637
1	19.8756	19.8571	19.8616
1.5	25.29905	25.3166	25.3022
2	30.7225	30.7580	30.7403
2.5	36.14595	36.1643	36.1541

Таблица: Сравнение положения точки Максвелла (быстрой волны), полученного численно при разных значениях шага au и с помощью гипотезы.

Исследование численного метода

время t	аналитическое	численное	численное
	решение	c $ au=$ 0.01	c $ au=0.005$
1	4.3572	4.3171	4.3377
1.5	5.78165	5.7408	5.7629
2	7.2061	7.1711	7.1881
2.5	8.63055	8.5978	8.6172

Таблица: Сравнение положения точки Максвелла (медленной волны), полученного численно при разных значениях шага au и с помощью теоремы.

Тем самым видно, что повышение точности уменьшает погрешность, но в обоих случаях погрешность не накапливается спустя время.

Заключение

- Была рассмотрена задача Коши для квазилинейного уравнения первого порядка в случае немонотонной начальной функции и произвольной функцией состояния.
- Построен численный метод, который аппроксимирует бегущую волну без ее явного выделения.
- С его помощью была проанализирована теорема, сформулированная в работе Петросян Н.С.

Список литературы

- Кружков С. Н., Горицкий А. Ю., Чечкин Г. А. Уравнения с частными производными первого порядка. М.: 1999.
- Liu T. P. Admissible solutions of hyperbolic conservation laws. // Memories of the Amer. Math. Soc.−1981.–V.30, №240.–P. 1-78.
- **ТЕТРИТИТЕ В 1988** ТО В 1987 ТОМ 42 № 5 с. 3–40.
- Петросян Н. С. Об асимптотике решения задачи Коши для квазилинейного уравнения первого порядка с невыпуклой функцией состояния. // УМН, 38:2(230) (1983), 213–214.

Список литературы

- Henkin G. M., Shananin A. A. Cauchy-Gelfand problem for quasilinear conservation law. // Bull. Sci. math. (2014), http://dx.doi.org/10.1016/j.bulsci.2014.01.001
- Рогов Б. В. Монотонная бикомпактная схема для квазилинейных уравнений гиперболического типа. // Доклады академии наук 2012 том 446 №5 с. 504–509.
- *Калиткин Н. Н.* Численные методы. М.: Наука, 1978. 512с.
- Холодов А. С. Численные методы решения уравнений и систем гиперболического типа. М.: Институт автоматизации проектирования РАН, Московский физики-технический институт.

Спасибо за внимание!

Рис.: t = 0.03

Рис.: t = 0.1

Рис.: t = 0.5

Рис.: t = 2.5