Лабораторная работа №3 ЦЕПИ МАРКОВА И СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ

Выполнил работу: Студент группы ИА-231

Зырянов Иван

Цель лабораторной работы — изучить методы создания и анализа цепей Маркова.

Цепь Маркова — последовательность случайных событий с конечным или счётным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого.

Коэффициенты в матрице переходных вероятностей

Вариант	p ₁₁	p 12	p ₁₃	p ₁₄	p ₂₁	p ₂₂	p ₂₃	p ₂₄	p ₃₁	p ₃₂	p ₃₃	p ₃₄	p ₄₁	p 42	p43	p44
4	0	3	3	3	3	0	2	1	3	2	0	1	3	2	1	0

Характеристики системы массового обслуживания

Вариант	λ	μ	n	m
4	20	20	4	10

1-4

Шаг 1: Мы создали .m файл в MATLAB и определили в нем матрицу переходов P, которая описывает вероятности перехода между состояниями "Healthy", "Unwell", "Sick" и "Very sick".

Шаг 2: Используя функцию dtmc() и матрицу P, мы создали объект цепи Маркова MC, присвоив имена состояниям.

Шаг 3: Далее мы вывели матрицу переходов МС.Р в консоль, убедившись, что сумма элементов в каждой строке равна 1, что подтверждает свойство стохастической матрицы.

Шаг 4: Наконец, мы визуализировали граф цепи Маркова с помощью функции plot(), на котором узлы представляют состояния, ребра — возможные переходы, а подписи на ребрах отображают соответствующие вероятности.

Матрица переходов:

0.3333	0.3333	0.3333	0
0.1667	0.3333	0	0.5000
0.1667	0	0.3333	0.5000
0	0.1667	0.3333	0.5000

Суммы строк матрицы переходов:

- 1.0000
- 1.0000
- 1.0000
- 1.0000

5-6

Шаг 5: На основе нормированной матрицы переходов мы построили кумулятивную матрицу $P_{\text{сиm}}$, где каждое значение в последующем столбце являлось суммой предыдущих значений в той же строке.

Шаг 6: Используя кумулятивную матрицу P_cum и выражение, мы провели симуляцию поведения цепи Маркова на протяжении 200 итераций, определив последовательность состояний, которые посещала система.

$$z_{t+1} = \sum_{k} (r > P_{cum}(z_{t}, k)) + 1,$$

Результат: В результате симуляции мы получили последовательность из 200 чисел, каждое из которых представляет состояние, в котором находилась система на соответствующей итерации.

Состояни		_																		
Column	s I tn	rougn	21																	
1	4	2	1	4	2	1	4	3	2	3	2	1	2	1	2	4	1	2	1	2
Column	s 22 t	hrough	1 42																	
1	2	4	1	2	4	3	1	2	1	3	2	1	3	2	1	2	1	2	1	3
Column	s 43 t		n 63																	
1	2		1	4	2	1	3	1	3	4	2	3	1	3	2	3	1	3	4	1
Column	s 64 t	hrough	n 84																	
4	3	2	1	2	1	4	1	4	1	3	1	4	2	4	3	1	4	1	2	3
Column	s 85 t	hrough	105																	
2	1	4	2	3	4	2	3	1	2	4	1	3	1	4	2	3	1	2	3	1
Columns	106 tl	nrough	126																	
2	3	1	4	2	3	1	3	2	4	2	3	1	3	2	1	2	1	3	2	3
Columns	127 tl	nrough	147																	
1	3	2	1	3	2	1	3	1	4	1	2	1	2	1	3	4	3	1	4	1
Columns	148 tl	nrough	168																	
3	2	4	1	4	1	4	2	3	2	3	1	2	4	1	2	3	4	2	1	3
Columns	169 tl	nrough	189																	
1	4	1	4	2	1	2	1	3	1	3	1	3	2	1	2	3	1	4	3	2
Columns	190 tl	nrough	200																	
1	3	1	4	3	2	1	3	1	3	1										

7-8

Шаг 7: Мы построили график, используя функцию plot(), для визуализации изменения состояний цепи Маркова в течение 200 итераций симуляции, получив наглядное представление о динамике переходов между состояниями.

Шаг 8: Далее мы повторили симуляцию (шаг 6) для большего количества итераций: 1000 и 10000.

Анализ: На графиках можно заметить, что с увеличением количества итераций (от 200 до 10000) траектория состояний становится все более плотной, визуально демонстрируя свойство эргодичности цепи Маркова: с течением времени система стремится посещать все доступные состояния, а частота посещения каждого состояния стабилизируется.

Теперь у нас есть наглядное представление о поведении цепи Маркова на различных временных интервалах, что позволяет судить о ее динамике и делать выводы о долгосрочных тенденциях.

Шаг 9: Мы рассчитали оценку цепи Маркова, используя смоделированные траектории состояний для 200, 1000 и 10000 итераций. Для этого мы подсчитали частоту переходов между состояниями на основе полученных последовательностей и нормализовали эти значения, чтобы получить оцененные вероятности перехода.

Анализ: Сравнивая оцененные матрицы переходов с теоретической матрицей (из шага 3), можно заметить, что:

- Сходимость: С увеличением количества итераций (от 200 до 10000) оцененные матрицы становятся все более похожими на теоретическую. Это подтверждает, что при достаточном количестве наблюдений экспериментальные данные хорошо аппроксимируют истинные вероятности перехода.
- Влияние случайности: Оценка для 200 итераций заметно отличается от остальных, что связано с большей ролью случайности при малом объеме данных.
- Стабилизация: Оценки для 1000 и 10000 итераций выглядят более стабильными и близкими к теоретической матрице, что говорит о стабилизации оценок с увеличением объема данных.

Мы также визуализировали полученные оценки в виде графов, которые демонстрируют ту же тенденцию сходимости к теоретическому графу (из шага 4) с ростом числа наблюдений.

Этот шаг подчеркивает важность достаточного количества данных для точной оценки параметров модели, а также демонстрирует на практике свойство сходимости цепей Маркова.

Матрица переходов (200 итераций):

0	0.3438	0.3281	0.3281
0.4130	0	0.4130	0.1739
0.5400	0.2600	0	0.2000
0.4615	0.2821	0.2564	0

Суммы строк:

1

1

1

1

Матрица переходов (1000 итераций):

0	0.3795	0.3735	0.2470
0.4846	0	0.3462	0.1692
0.5187	0.3154	0	0.1660
0.4880	0.3494	0.1627	0

Суммы строк:

Матрица переходов (10000 итераций):

0.3492	0.3201	0.3308	0
0.1513	0.3475	0	0.5012
0.1547	0	0.3258	0.5196
0	0.1632	0.3316	0.5053

Суммы строк:

10-Глядя на скриншоты графов цепей Маркова из пунктов 4 и 9, можно сделать следующие выводы:

- 1. Сходимость к теоретической матрице: С увеличением числа наблюдений (200, 1000, 10000) оцененная матрица переходов, полученная в пункте 9, становится все более похожей на теоретическую матрицу из пункта 4. Это демонстрирует свойство сходимости цепей Маркова: при достаточном количестве наблюдений экспериментальные данные начинают хорошо аппроксимировать теоретические вероятности.
- 2. Влияние случайности при малом числе наблюдений:

- Граф для 200 наблюдений значительно отличается от остальных. Это связано с тем, что при малом числе наблюдений на оценку матрицы переходов сильнее влияет случайность.
- Некоторые переходы, имеющие ненулевую вероятность в теоретической матрице, могут вообще не наблюдаться в симуляции с 200 наблюдениями (например, переход из "Unwell" в "Very sick").
- о Наоборот, некоторые переходы могут встречаться чаще, чем ожидается, из-за случайных флуктуаций.

3. Стабилизация при большом числе наблюдений:

- При 1000 и 10000 наблюдениях графики становятся более стабильными и похожими друг на друга и на теоретический граф.
- о Вероятности на ребрах становятся ближе к теоретическим значениям.

Общий вывод: Чем больше количество наблюдений, тем точнее оценка цепи Маркова. При малом числе наблюдений оценка может быть неточной из-за случайных флуктуаций, но с ростом количества данных она сходится к теоретической матрице переходов, отражая истинное поведение системы.

11-

Шаг 11: Мы вернулись к симуляции цепи Маркова (шаг 6), но на этот раз использовали не теоретическую матрицу переходов, а оцененную матрицу, полученную на основе 200 наблюдений (из шага 9). Провели симуляцию на 200 итераций и построили график изменения.

Анализ:

Сравнивая график, построенный на основе оцененной матрицы (шаг 11), с графиком, построенным на основе теоретической матрицы (шаг 7, 200 наблюдений), можно заметить как сходства, так и различия.

Сходства:

- Оба графика демонстрируют частые переходы между состояниями, что характерно для данной цепи Маркова.
- В обоих случаях система не застревает надолго в одном состоянии.

Различия:

• Могут наблюдаться отличия в частоте посещения отдельных состояний. Например, на графике, построенном на основе оцененной матрицы, какое-то состояние может встречаться чаще, чем на графике, построенном на основе теоретической матрицы.

Выводы:

- Симуляция с использованием оцененной матрицы может давать несколько иные результаты по сравнению с симуляцией, основанной на теоретической матрице, особенно при небольшом количестве наблюдений, использованных для оценки.
- Это связано с тем, что оценка матрицы, полученная на основе ограниченного числа наблюдений, не идеально отражает истинные вероятности перехода.
- С ростом количества наблюдений, использованных для оценки матрицы, различия между симуляциями должны уменьшаться.

12-

_ Pokazate	1	Value				
	_					
{'lambda	'}	20				
{'mu'	}	20				
{'n'	}	4				
{ 'm'	}	10				
{ 'Ro'	}	-				
{'P0'	}	0.3618				
{'Potk'	}	1.4377e-08				
{'Q'	}	-				
{'A'	}	20				
{'kzan'	}	:				
{'Loch'	}	0.0024242				
{'Toch'	}	0.0001212				
{'Lsist'	}	1.002				
{'Tsist'	}	0.05012				

Система работоспособна (ro < n)

Интерпретация:

• **Работоспособность:** Система работоспособна, если го < n.

- **Пропускная способность:** А и Q показывают реальную производительность системы.
- Очереди: Loч и Toч характеризуют задержки в обслуживании.
- Загрузка: кзан показывает среднее количество занятых каналов.

Результаты выглядят вполне правдоподобно для СМО с заданными параметрами (λ =20, μ =20, n=4, m=10). Давайте проанализируем некоторые ключевые показатели:

- **Ro** (коэффициент загрузки) = 1: Это означает, что система загружена на 100%. В среднем, заявки поступают с той же интенсивностью, с которой обслуживаются.
- **Р0** (вероятность простоя системы) = 0.36181: Это довольно высокая вероятность простоя, учитывая 100% загрузку. Скорее всего, это связано с ограничением на размер очереди (m=10). Когда очередь заполняется, система начинает отказывать новым заявкам.
- **Potk** (вероятность отказа) = 1.4377e-08: Крайне низкая вероятность отказа подтверждает предположение о том, что система практически не отказывает заявкам из-за занятости всех каналов, а скорее из-за заполнения очереди.
- Lsist (среднее количество заявок в системе) = 1.0024: В системе находится в среднем чуть больше одной заявки.
- Loch (средняя длина очереди) = 0.0024242: В среднем очередь очень короткая, что говорит о том, что заявки обслуживаются достаточно быстро.
- Tsist (среднее время пребывания заявки в системе) = 0.050121: Заявка проводит в системе в среднем 0.05 единиц времени (скорее всего, часов, если интенсивность измеряется в заявках в час).

Полученные результаты указывают на то, что СМО работает достаточно эффективно:

- Низкая вероятность отказа.
- Небольшие очереди.
- Относительно короткое время пребывания заявки в системе.

Однако высокая вероятность простоя системы (P0) при 100% загрузке (Ro) может свидетельствовать о некотором дисбалансе. Возможно, стоит рассмотреть увеличение числа каналов обслуживания (n) или размера очереди (m) для повышения пропускной способности системы, если это допустимо с точки зрения затрат и ограничений.

Заключение:

В ходе лабораторной работы мы успешно освоили основы моделирования дискретных цепей Маркова в среде MATLAB. Мы научились создавать модели на основе матрицы переходов, визуализировать их структуру, симулировать траектории состояний и оценивать параметры модели на основе экспериментальных данных.

Дополнительные задания:

```
1-
import numpy as np

# Определение матрицы переходов

P = np.array([
    [0.2, 0.7, 0.1], # Состояние 1
    [0.1, 0.6, 0.3], # Состояние 2
```

```
[0.5, 0.3, 0.2] # Состояние 3
])

# Начальное состояние
initial_state = 0 # Индекс начального состояния (от 0)

# Количество шагов симуляции
num_steps = 10

# Симуляция цепи Маркова
current_state = initial_state
states = [current_state] # Список для хранения посещенных состояний

for _ in range(num_steps):

# Выбор следующего состояния на основе матрицы переходов
next_state = np.random.choice(len(P), p=P[current_state])

# Обновление текущего состояния и добавление в список
current_state = next_state
states.append(current_state)

# Вывод результата
print("Посещенные состояния:", states)
```

Вывод: Посещенные состояния: [0, 1, 2, 0, 1, 1, 1, 1, 0, 0, 1]

2-

Блоки:

- 1. Entity Generator (Сущность):
 - о Функция: Создает заявки (транзакции, клиенты и т.д.), которые поступают в СМО.
 - о Настройка:
 - **Interarrival time** (Время между прибытиями): задает, как часто появляются заявки (экспоненциальное, детерминированное распределение и т.д.)

2. FIFO Entity Queue (Очередь FIFO):

- о *Функция*: Хранит заявки, ожидающие обслуживания, в порядке их поступления (First-In, First-Out).
- о Настройка:

• **Queue capacity** (Емкость очереди): максимальное число заявок, которые могут одновременно находиться в очереди (бесконечная или ограниченная).

3. Entity Server (Сервер):

- о Функция: Обрабатывает (обслуживает) заявки, поступающие из очереди.
- о Настройка:
 - Service time (Время обслуживания): задает, сколько времени занимает обработка одной заявки (экспоненциальное, нормальное распределение и т.д.)

4. Entity Terminator (Терминатор):

о Функция: Удаляет заявки из модели после их обслуживания.

Приложение:

Sibsutis/3st Year/5th semester/TMO/3lab at main · kibatora/Sibsutis (github.com)