Finite Element Stokes and Navier-Stokes Flow Using GMSH and Ferrite.jl

Geometry Definition and Mesh Generation

Problem Description

- Rectangle: built-in Ferrite using either triangles or quads
 - Tank with nozzle 2D: GMSH
- Wedge and lining: in progress

Naive Mesh Generation of 2D Geometry of Tank and Nozzle

Stokes Flow

Problem description steady state - only diffusion (no convection)- linear problem

Stokes In Flow into Rectangular Channel With Open End

Stokes In Flow into Rectangular Vessel With Closed End

Stokes Out Flow from Rectangular Vessel With Closed End

Remarks

Scaling the viscosity leaves velocity unaffected but scales the pressure with the same factor. Larger viscosity values yields smaller peak pressure values values. Hand coded post processing on a rectangular geometry works well to show this;

Transport of a Passive Scalar in Post-Processing Stage of the Flow

Stokes Flow on 2D Geometry of Tank and Nozzle

Navier-Stokes Flow

Problem Description

- Transient problem time stepping until reaching steady state Jacobian available
- Time step controlled adaptively and influenced by factors such as mesh width, inlet velocity and viscosity;

Navier-Stokes Flow in Open Channel

Navier-Stokes In Flow into Rectangular Vessel With Closed End

Navier-Stokes Out Flow into Rectangular Vessel With Closed End

