Real-time qPCR assay for the confirmation of *F. virguliforme*

DNA extraction from fresh soybean root samples:

- 1. Wash collected root samples under tap water to remove attached soil
- 2. Taproots and lateral roots with obvious lesions or discoloration are preferred for DNA extraction. Cut roots samples into small pieces (less than 1 cm each)
- 3. Grind root tissue in a purple screw-cap tube (MPBio, Cat: #5076-200, Cat: 5064-002) with one 6-mm diameter glass bead, five 2-mm diameter glass beads, and 400 μL AP1 lysis buffer (Qiagen DNeasy Plant mini Kit, cat. #69104) for 40 s at speed 6 in a FastPrep bead-beater machine.
- 4. Incubate the tube at 68°C for 10 min, vortex the tube two to three times during incubation
- 5. Follow the manufacturer's instructions, except:
 - a. Elute DNA with 100 uL TE buffer
- 6. The eluted DNA can be used for downstream PCR work directly or store at -20°C.

DNA extraction from dried whole soybean root samples:

- 1. Dry roots at 50°C for 48h in a convection oven
- Grind two or more roots in a Wiley mill with a 2mm sieve
 Weigh 100 mg of root tissue for DNA extraction with FASTDNA SPIN kit (MPBIO, Catalog
 number: 116540600), following manufacturer's instruction, except:
 - a. Lysis buffer CLS-Y is recommended for root tissue lysis
 - b. Elute DNA with 100 μL DES buffer
- 3. Dilute DNA 10-fold with sterilize molecular grade H₂O

Important Notes:

We strongly recommend at least duplicate DNA extractions be performed for diagnoses of soybean root samples due to the spatial heterogeneity of *F. virguliforme* colonization in soybean roots.

DNA extraction from pure cultures:

- 1. Inoculate seven to eight plugs of mycelia or macro conidia from a *Fusarium* colony grown on potato dextrose agar (PDA) into a 150-mL Erlenmeyer flask containing 50 mL potato dextrose broth (PDB); incubate the still liquid culture at room temperature for 7-10 d.
- 2. Collect mycelia with a vacuum pump on a Buchner funnel covered with miracloth (Calbiochem), transfer the mycelia into an eppendorf tube, cover the opening of the tube with a small piece of miracloth and secured with a rubber band.
- 3. Freeze the mycelia at -20°C overnight and lyophilize the mycelia for 24 h
- 4. Weigh 50 mg of lyophilized mycelia (fill close to the 100 μL line of a 1.5-mL eppendorf tube), grind lyophilized mycelia with a metal spatula. Extract DNA following the Qiagen Plant DNeasy Mini kit instructions

Real-time qPCR Protocol

- 1. Preparations before running qPCR assay (Wang et al., 2015)
 - Reagents and materials
 - i. TaqMan Universal PCR Master Mix Cat #: 4304437 (Life Technologies, Carlsbad, CA)
 - ii. All Primers (Sigma-Aldrich) (Table 1)
 - iii. Dual labeled MGB Probe-3 (Life Technologies, Carlsbad, CA)
 - iv. HHIC probe (IDT, Coralville, IA) and plasmid*
 - v. Bovine serum albumin (BSA) 100X (NEB, Ipswich, MA)
 - vi. Distilled water Cat #: 10977-015 (Gibco, Grand Island, NY)
 - Serially diluted F. virguliforme genomic DNA for standard curve
 - i. Recommended 8 dilution levels: $5 \text{ ng/}\mu\text{L} \sim 0.5 \text{ fg/}\mu\text{L}$ with 1:10 dilution factor
 - Ref to Haudenshield and Hartman (2011) for internal control (IC) plasmid preparation
 - An IC included in the qPCR assay is to increase negative call veracity in routine diagnostics
 - Measuring the concentration of DNA samples
 - i. either using NanoDrop spectrophotometer
 - ii. or fluorophotometer (using Quant-iT dsDNA HS kit)
 - Dilute primer and probes to the stock concentration as Table 2
 - Dilute linearized HHIC DNA into stock concentration as Table 2
 - Dilute root or soil total DNA as needed, recommended dilution levels
 - i. Soil total DNA: 1:10 and 1:100
 - ii. Plant root total DNA: 1:1 and 1:10

Table 1 Primers and probes sequences

Names	Sequences (5'-3')	Length(nt)	Target
F6-3	GTAAGTGAGATTTAGTCTAGGGTAGGTGAC	30	
R6	GGGACCACCTACCCTACACCTACT	24	F. virguliforme
FvPrb-3	6FAM-TTTGGTCTAGGGTAGGCCG-MGBNFQ	19	
IC-F	CTAGGACGAGAACTCCCACAT	21	
IC-R	CAATCAGCGGGTGTTTCA	18	HHIC
IC-prb	5HEX-TCGGTGTTGATGTTTGCCATGGT-3IABkFQ	23	

2. Reagents and materials used in the following assay

Thaw the following PCR reagents on ice:

- Primers (F6-3, R6, IC-F, and IC-R)
- Probes (Probe-3 and IC-Prb)
- Linearized IC plasmid
- Serially diluted F. virguliforme genomic DNA
- BSA (100X)
- DNA samples for testing

Briefly vortex reagents to homogenize thoroughly

3. PCR master mix preparation

Make a PCR master mix allowing for 5% more than needed in a 2-mL centrifuge tube based on the contents composition of **Table 2** below:

Table 2. Real-time qPCR reaction recipe

Reagent	Work Conc.	Final conc.	1X (μl)	_X (μl)
2X Buffer	2X	1X	10	
F6-3 Primer	20 μΜ	500nM	0.5	
R6 Primer	20 μΜ	500nM	0.5	
Prb3 Probe	10 μΜ	250nM	0.5	
IC F primer	20 μΜ	600nM	0.6	
IC R primer	20 μΜ	200nM	0.2	
IC probe	10 μΜ	200nM	0.4	
IC DNA	3k copies/µl	600 copies	0.2	
BSA	20 mg/μ1	200ng/μl	0.2	
H ₂ O	N/A		4.9	
DNA	N/A		2	

Note: In the first few runs of this assay, we highly recommend you to include an eight-point standard curve of *F. virguliforme* genomic DNA with two replicates to setup a baseline for the detection sensitivity and assay efficiency for your real time PCR platform.

4. Vortex the master mix, and spin down with a mini centrifuge

StepOne Plus Real-time PCR System

- 5. Aliquot 18 μ L of the master mix into PCR tubes / 96-well plate, and add 2 μ L of each sample DNA into the corresponding tubes/wells
- 6. qPCR run on StepOne Plus Real-time PCR system

Table 3. Real-time PCR cycling conditions

Step	Temperature	Time	Stage
Incubation	50°C	2 min	Holding
Denaturing	95°C	10 min	
Denaturing	95°C	15 s	Repeat 40 cycles
Annealing / extension	60°C	1 min	

7. Define targets

- F. virguliforme assay Reporter: FAM Quencher: NFG-MGB
- HHIC exogenous control Reporter: JOE Quencher: None
- **Note:** HHIC probe was labeled with HEX reporter, which shares the same excitation and emission wavelength as JOE reporter. Therefore, they are interchangeable in this case.

8. Data collection

- Check the QC Summary
- Check standard curve to calculate the PCR efficiency (normal range: $85 \sim 110\%$)

- An easy way to calculate PCR efficiency: **PCR efficiency** = -3.32/slope, where slope is the linear regression between Ct values and corresponding log10 transformed DNA quantity.
- Check exogenous control IC amplification, Ct value < 24 is expected for all samples except for the tubes/wells with the serially diluted *F. virguliforme* genomic DNA.
- Adjust the threshold line to 0.1 for F. virguliforme assay, reanalyze the data
- Export the results to .CSV file for further analysis
- Save the raw data file (extension: .eds) to your USB driver

9. Data analysis

- Organize the data with Open Office
- Statistical analysis using SAS, R or others

Cepheid Smart Cycler System

- 5. Aliquot 18 μL of the master mix into Cepheid PCR tubes, and add 2 μL of each sample DNA into the corresponding tubes/wells
- 6. Spin the tubes in the Cepheid micro centrifuge.
- 7. Load tubes in the Cepheid block, pushing firmly to insure they are seated in the block.
- 8. Set up the reaction using the following cycling conditions

Step	Temperature	Time	Stage	
Incubation	50°C	2 min	Holding	
Denaturing	95℃	10 min		
Denaturing	95℃	15 s	Repeat 40 cycles	
Annealing / extension	60°C	1 min		

9. Select dye set FTTC25 when setting up your run.

References:

Haudenshield JS, Hartman GL (2011) Exogenous controls increase negative call veracity in multiplexed, quantitative PCR assays for *Phakopsora pachyrhizi*. Plant Disease **95:** 343-352

Wang J, Jacobs JL, Byrne JM, Chilvers MI (2015) Improved diagnoses and quantification of *Fusarium virguliforme*, causal agent of soybean sudden death syndrome. Phytopathology **105:** 378-387