初探Diffusion model

Diffusion model

a dolphin in an astronaut suit on saturn, artstation

a propaganda poster depicting a cat dressed as french emperor napoleon holding a piece of cheese

a teddybear on a skateboard in times square

图1. DALLE2生成结果

Teddy bears swimming at the Olympics 400m Butter- A cute corgi lives in a house made out of sushi. fly event.

A cute sloth holding a small treasure chest. A bright golden glow is coming from the chest.

生成方法 - Diffusion Model

Diffusion model的发展路径

Auto-Encoding Variational Bayes

Diederik P. Kingma

Machine Learning Group Universiteit van Amsterdam dpkingma@gmail.com

Max Welling

Machine Learning Group Universiteit van Amsterdam welling.max@gmail.com

Variational Auto-Encoder 2013.12

VAE - 分布变换

- 生成样本
 - 从一个采样的隐变量Z生成目标样本X:

$$\hat{X} = g(z)$$

• 一般假设Z服从某些分布(正态分布、均匀分布)

VAE - 分布变换

- 如何让生成样本的分布符合真实样本的分布?
 - 对于一个真实样本 X_k ,假设 $p(Z|X_k)$ 符合正态分布
 - 最小化 $\hat{X}_k = g(Z)$ 与 X_k 的重构误差
 - 相当于对于每一个样本都有一个自己的专属正态分布 $p(Z|X_k)$

VAE - 分布变换

- 如何得到正态分布的参数(均值、方差)?
 - ▶ 直接用两个神经网络去拟合!

$$\mu_k = f_1(X_k), \log \sigma_k^2 = f_2(X_k)$$

VAE - 分布标准化

- 流程: $X_k \to \mu_k, \sigma_k \to Z_k \to \hat{X}_k \to D(X_k, \hat{X}_k)^2$
 - 采样 Z_k 的过程包含噪声 σ_k ,噪声太大会增加重构难度,噪声太小会让生成模型丧失随机性
 - ightharpoonup VAE让所有的 $p(Z|X_k)$ 都向标准正态分布看齐,利用KL散度来监督 f_1,f_2 :

$$\mathcal{L}_{\mu,\sigma^2} = rac{1}{2} \sum_{i=1}^d \left(\mu_{(i)}^2 + \sigma_{(i)}^2 - \log \sigma_{(i)}^2 - 1
ight)$$

VAE - 分布标准化

$$p(Z) = \sum_X p(Z|X)p(X) = \sum_X \mathcal{N}(0,I)p(X) = \mathcal{N}(0,I)\sum_X p(X) = \mathcal{N}(0,I)$$

VAE – 训练技巧

- 流程: $X_k \to \mu_k, \sigma_k \to Z_k \to \hat{X}_k \to D(X_k, \hat{X}_k)^2$
 - 问题: 采样过程不可导
 - ➤ 重参数技巧 (reparameterization trick)
 - $\mathcal{N}(\mu, \sigma^2)$ 中采样一个Z,相当于 $\mathcal{N}(0, I)$ 中采样一个 ε ,然后让 $Z = \mu + \varepsilon * \sigma$ 。
 - 可使采样过程下放到标准正态分布, 让全流程可导。

Variational Auto-Encoder 总结

- 与以往的AE不同的是,VAE的Encoder是用与计算均值和方差
- 重构的过程是希望没噪声的,而KL loss则希望有高斯噪声的

Denoising Diffusion Probabilistic Models

Jonathan Ho UC Berkeley jonathanho@berkeley.edu Ajay Jain UC Berkeley ajayj@berkeley.edu

Pieter Abbeel UC Berkeley pabbeel@cs.berkeley.edu

DDPM

Denoising Diffusion Probabilistic Models NeruIPS 2020.06

Deep Unsupervised Learning using Nonequilibrium Thermodynamics ICML 2015.03

DDPM 生成效果

Figure 1: Generated samples on CelebA-HQ 256×256 (left) and unconditional CIFAR10 (right)

DDPM 生成效果

VAE存在的问题

- 从贝叶斯观点来看,VAE同时优化条件分布 $p_{\theta}(x|z)$ 和变分后验p(z|x)
- 同时优化两个目标导致候选搜索空间极大,难以优化。

VAE存在的问题

- 怎么把变分后验的搞掉?
 - 生成器的目的是为了将标准正态分布的Z变成数据分布的X,变分后验的目的是为了将数据 X_k 映射到标准正态分布。
 - ? 有没有什么操作能够在不需要优化的情况下,将某个数据分布映射到标准正态分布?
 - 利用马尔科夫链的平稳分布性质、构造一个平稳分布为标准正态分布的马尔科夫链即可。

$$x = x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_{T-1} \rightarrow x_T = z$$

• 其中每一小步都可以近似为高斯分布

DDPM 拆楼-建楼

• 生成模型类比

拆楼: $x = x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_{T-1} \rightarrow x_T = z$

DDPM 拆楼-建楼

· VAE中的变分后验优化采用了概率论的采样给替代了

$$x = x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_{T-1} \rightarrow x_T = z$$

- 相当于我们得到了很多个pair: $\{x_{t-1}, x_t\}$, 如何构造生成器?
- > 用生成器模拟拆楼的每一步的逆过程,即建楼的每一步!

$$x_t \to x_{t-1}$$
$$x_{t-1} = \mu(x_t)$$

• 重复这一过程就能够从z一步步采样得到x

DDPM 拆楼

$$x = x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_{T-1} \rightarrow x_T = z$$

• 对于每一个 $x_{t-1} \rightarrow x_t$:

$$x_t = \alpha_t x_{t-1} + \beta_t \varepsilon_t, \qquad \varepsilon_t \sim \mathcal{N}(0, \mathbf{I})$$

 $\alpha_t, \beta_t > 0 \blacksquare \alpha_t^2 + \beta_t^2 = 1$

$$\mathbf{x}_{t} = \alpha_{t}\mathbf{x}_{t-1} + \beta_{t}\varepsilon_{t}$$

$$= \alpha_{t}(\alpha_{t-1}\mathbf{x}_{t-2} + \beta_{t-1}\varepsilon_{t-1}) + \beta_{t}\varepsilon_{t}$$

$$= \cdots$$

$$= (\alpha_{t} \cdots \alpha_{1})\mathbf{x}_{0} + (\alpha_{t} \cdots \alpha_{2})\beta_{1}\varepsilon_{1} + (\alpha_{t} \cdots \alpha_{3})\beta_{2}\varepsilon_{2} + \cdots + \alpha_{t}\beta_{t-1}\varepsilon_{t-1} + \beta_{t}\varepsilon_{t}$$
多个相互独立的正态噪声之和

DDPM 拆楼

$$\mathbf{x}_{t} = \alpha_{t}\mathbf{x}_{t-1} + \beta_{t}\varepsilon_{t}$$

$$= \alpha_{t}(\alpha_{t-1}\mathbf{x}_{t-2} + \beta_{t-1}\varepsilon_{t-1}) + \beta_{t}\varepsilon_{t}$$

$$= \cdots$$

$$= (\alpha_{t} \cdots \alpha_{1})\mathbf{x}_{0} + (\alpha_{t} \cdots \alpha_{2})\beta_{1}\varepsilon_{1} + (\alpha_{t} \cdots \alpha_{3})\beta_{2}\varepsilon_{2} + \cdots + \alpha_{t}\beta_{t-1}\varepsilon_{t-1} + \beta_{t}\varepsilon_{t}$$
多个相互独立的正态噪声之和

$$(\alpha_t \cdots \alpha_1)^2 + (\alpha_t \cdots \alpha_2)^2 \beta_1^2 + (\alpha_t \cdots \alpha_3)^2 \beta_2^2 + \cdots + \alpha_t^2 \beta_{t-1}^2 + \beta_t^2 = 1$$

$$oldsymbol{x}_t = \underbrace{(lpha_t \cdots lpha_1)}_{\begin{subarray}{c} \exists \lambda ar{lpha}_t \end{subarray}}^{oldsymbol{x}_0} oldsymbol{x}_0 + \underbrace{\sqrt{1 - (lpha_t \cdots lpha_1)^2}}_{\begin{subarray}{c} \exists \lambda ar{eta}_t \end{subarray}}^{oldsymbol{\varepsilon}} ar{ella}_t, \quad ar{oldsymbol{arepsilon}}_t \sim \mathcal{N}(oldsymbol{0}, oldsymbol{I})$$

• 学模型 $x_{t-1} = \mu(x_t)$, 目标为

$$\left|\left|x_{t-1}-\mu(x_t)\right|\right|^2$$

• 重参数技巧: 根据 $x_t = \alpha_t x_{t-1} + \beta_t \varepsilon_t$, 将 $\mu(x_t)$ 表示为 $\frac{1}{\alpha_t} (x_t - \beta_t \varepsilon_\theta(x_t, t))$

$$\|\boldsymbol{x}_{t-1} - \boldsymbol{\mu}(\boldsymbol{x}_t)\|^2 = \frac{\beta_t^2}{\alpha_t^2} \|\boldsymbol{\varepsilon}_t - \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)\|^2$$

$$\|oldsymbol{x}_{t-1} - oldsymbol{\mu}(oldsymbol{x}_t)\|^2 = rac{eta_t^2}{lpha_t^2} \|oldsymbol{arepsilon}_t - oldsymbol{\epsilon}_{oldsymbol{ heta}}(oldsymbol{x}_t, t)\|^2$$

• 推导:

• 带入
$$x_t = \alpha_t x_{t-1} + \beta_t \varepsilon_t = \bar{\alpha}_t x_0 + \alpha_t \bar{\beta}_{t-1} \bar{\varepsilon}_{t-1} + \beta_t \varepsilon_t$$
, 得
$$\|\varepsilon_t - \epsilon_{\theta}(\bar{\alpha}_t x_0 + \alpha_t \bar{\beta}_{t-1} \bar{\varepsilon}_{t-1} + \beta_t \varepsilon_t, t)\|^2$$

- 降低方差
 - 上式需要采样4个变量 x_0 , $\bar{\varepsilon}_{t-1}$, ε_t , t, 会影响优化效果
 - 经过一系列的数学技巧, 最终目标函数为

$$\left\|oldsymbol{arepsilon} - rac{ar{eta}_t}{eta_t}oldsymbol{\epsilon}oldsymbol{ heta}(ar{lpha}_toldsymbol{x}_0 + ar{eta}_toldsymbol{arepsilon},t)
ight\|^2$$

• 一系列的数学技巧: $\|\boldsymbol{x}_{t-1} - \boldsymbol{\mu}(\boldsymbol{x}_t)\|^2 = \frac{\beta_t^2}{\alpha_t^2} \|\boldsymbol{\varepsilon}_t - \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)\|^2 \quad (2)$

继续简化(2)式:

利用22页的计算展开 $x_t = \bar{\alpha}_t x_0 + \bar{\beta}_t \bar{\epsilon}_t$,但(2)中已采样了 ϵ_t ,与 $\bar{\epsilon}_t$ 不独立,将 x_t 倒退一步:

$$x_t = \alpha_t x_{t-1} + \beta_t \varepsilon_t = \bar{\alpha}_t x_0 + \alpha_t \bar{\beta}_{t-1} \bar{\varepsilon}_{t-1} + \beta_t \varepsilon_t$$

代入(2), 忽略常数项, 得:

$$\left\| \boldsymbol{\varepsilon}_{t} - \boldsymbol{\epsilon}_{\boldsymbol{\theta}} (\bar{\alpha}_{t} \boldsymbol{x}_{0} + \alpha_{t} \bar{\beta}_{t-1} \bar{\boldsymbol{\varepsilon}}_{t-1} + \beta_{t} \boldsymbol{\varepsilon}_{t}, t) \right\|^{2}$$

• 一系列的数学技巧: $\|\boldsymbol{\varepsilon}_t - \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\bar{\alpha}_t \boldsymbol{x}_0 + \alpha_t \bar{\beta}_{t-1} \bar{\boldsymbol{\varepsilon}}_{t-1} + \beta_t \boldsymbol{\varepsilon}_t, t)\|^2$ (3)

如何降低采样方差?

目的是希望将采样的两个随机变量 ε_t , $\bar{\varepsilon}_{t-1}$ 变成一个根据正态分布的叠加性,我们有以下结论:

$$\alpha_{t}\bar{\beta}_{t-1}\bar{\varepsilon}_{t-1} + \beta_{t}\varepsilon_{t}$$
等价于 $\bar{\beta}\varepsilon, \varepsilon \sim \mathcal{N}(0, \mathbf{I})$
$$\beta_{t}\bar{\varepsilon}_{t-1} - \alpha_{t}\bar{\beta}_{t-1}\varepsilon_{t}$$
等价于 $\bar{\beta}\omega, \omega \sim \mathcal{N}(0, \mathbf{I})$

证明:

先看第一个结论,两边都是正态分布,且均值为0,计算方差是否相等:

$$\left(\alpha_t \bar{\beta}_{t-1}\right)^2 + \beta_t^2 = \alpha_t^2 (1 - \bar{\alpha}_{t-1}^2) + \beta_t^2 = \alpha_t^2 - \alpha_t^2 \bar{\alpha}_{t-1}^2 + \beta_t^2 = 1 - \bar{\alpha}_t^2 = \bar{\beta}_t^2$$

意味着方差也相同,结论得证。第二个结论类似。

• 一系列的数学技巧: $\|\boldsymbol{\varepsilon}_t - \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\bar{\alpha}_t \boldsymbol{x}_0 + \alpha_t \bar{\beta}_{t-1} \bar{\boldsymbol{\varepsilon}}_{t-1} + \beta_t \boldsymbol{\varepsilon}_t, t)\|^2$ (3)

根据上一页的结论, 我们可以得到一个二元一次方程组:

$$\begin{cases} \alpha_t \bar{\beta}_{t-1} \bar{\varepsilon}_{t-1} + \beta_t \varepsilon_t = \bar{\beta} \varepsilon \\ \beta_t \bar{\varepsilon}_{t-1} - \alpha_t \bar{\beta}_{t-1} \varepsilon_t = \bar{\beta} \omega \end{cases}$$

将 ε_t 解出来,得:

$$\varepsilon_t = \frac{\beta_t \varepsilon - \alpha_t \bar{\beta}_{t-1} \omega}{\bar{\beta}_t}$$

带入式(3),由于训练过程是不断sample随机变量,所以我们将总的损失函数用期望表示:

$$E_{\varepsilon_{t},\bar{\varepsilon}_{t-1}\sim\mathcal{N}(0,I)}\left[\left|\left|\varepsilon_{t}-\varepsilon_{\theta}\left(\bar{\alpha}_{t}x_{0}+\alpha_{t}\bar{\beta}_{t-1}\bar{\varepsilon}_{t-1}+\beta_{t}\varepsilon_{t},t\right)\right|\right|^{2}\right]$$

$$=E_{\varepsilon_{t},\bar{\varepsilon}_{t-1}\sim\mathcal{N}(0,I)}\left[\left|\left|\frac{\beta_{t}\varepsilon-\alpha_{t}\bar{\beta}_{t-1}\omega}{\bar{\beta}_{t}}-\varepsilon_{\theta}\left(\bar{\alpha}_{t}x_{0}+\bar{\beta}_{t}\varepsilon_{t},t\right)\right|\right|^{2}\right]$$

• 一系列的数学技巧: $\|\boldsymbol{\varepsilon}_t - \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\bar{\alpha}_t \boldsymbol{x}_0 + \alpha_t \bar{\beta}_{t-1} \bar{\boldsymbol{\varepsilon}}_{t-1} + \beta_t \boldsymbol{\varepsilon}_t, t)\|^2$ (3)

由于 $\omega \sim \mathcal{N}(0, \mathbf{I})$, 且与 θ 模型无关, 可以展开直接算出 ω 相关项的期望, 是一些常数。所以有

$$E_{\varepsilon_{t},\bar{\varepsilon}_{t-1}\sim\mathcal{N}(0,I)}\left[\left\|\frac{\beta_{t}\varepsilon-\alpha_{t}\bar{\beta}_{t-1}\omega}{\bar{\beta}_{t}}-\varepsilon_{\theta}(\bar{\alpha}_{t}x_{0}+\bar{\beta}_{t}\varepsilon,t)\right\|^{2}\right]$$

$$= E_{\varepsilon \sim \mathcal{N}(0, I)} \left[\left| \left| \beta_t \varepsilon - \varepsilon_\theta \left(\bar{\alpha}_t x_0 + \bar{\beta}_t \varepsilon, t \right) \right| \right|^2 \right]$$

变化一下就得到了,再去除常数系数,可得最终损失函数:

$$E_{\varepsilon \sim \mathcal{N}(0,I)} \left[\left\| \varepsilon - \frac{\bar{\beta}_t}{\beta_t} \varepsilon_{\theta} (\bar{\alpha}_t x_0 + \bar{\beta}_t \varepsilon, t) \right\|^2 \right]$$

DDPM 损失函数直观理解

- 初始损失函数: $\|\boldsymbol{x}_{t-1} \boldsymbol{\mu}(\boldsymbol{x}_t)\|^2 = \frac{\beta_t^2}{\alpha_t^2} \|\boldsymbol{\varepsilon}_t \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)\|^2$ (2)
- 递推到 x_0 的损失函数: $\|\boldsymbol{\varepsilon}_t \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\bar{\alpha}_t \boldsymbol{x}_0 + \alpha_t \bar{\beta}_{t-1} \bar{\boldsymbol{\varepsilon}}_{t-1} + \beta_t \boldsymbol{\varepsilon}_t, t)\|^2$ (3)
- 简化后的损失函数: $\left\| \boldsymbol{\varepsilon} \frac{\bar{\beta}_t}{\beta_t} \boldsymbol{\epsilon} \boldsymbol{\theta} (\bar{\alpha}_t \boldsymbol{x}_0 + \bar{\beta}_t \boldsymbol{\varepsilon}, t) \right\|^2$ (4)
- 直观的理解还是需要带入"拆楼+建楼"的过程,对于拆楼的每一对 $\{x_{t-1} \to x_t\}$,我们希望用生成器 $x_{t-1} = \mu(x_t)$ 模拟逆过程 $\{x_t \to x_{t-1}\}$ 。
- 但根据 $x_t = \alpha_t x_{t-1} + \beta_t \varepsilon_t$,这里面 x_t, α_t, β_t 都是已知的, ε_t 是未知的。直接让模型重构图片也许不太容易,但让模型拟合一个服从正态分布的噪声是不是容易得多?
- 我们知道 x_t 可以理解为 x_{t-1} 添加了一小点"料"(随机噪声 ε_t),只要我们能拟合第t步采样的噪声 ε_t ,就可以根据公式还原 $\{x_t \to x_{t-1}\}$ 这一建楼过程。相当于我们期望模型拟合的是第t步加了什么"料",然后可以知道我们在第t步去噪(建楼)应该减去什么噪声。于是可以理解式(3)中重参数技巧的含义:
 - 尽管式(3)中的 ε_t 是随机采样得到的噪声,但它的含义应该是模型在拆楼的第t步中加的那个特定的"料",模型想要去拟合的恰好是第t步的噪声 ε_t 。

DDPM 损失函数直观理解

- 初始损失函数: $\|\mathbf{x}_{t-1} \boldsymbol{\mu}(\mathbf{x}_t)\|^2 = \frac{\beta_t^2}{\alpha_t^2} \|\boldsymbol{\varepsilon}_t \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\mathbf{x}_t, t)\|^2$ (3)
- 递推到 x_0 的损失函数: $\|\boldsymbol{\varepsilon}_t \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\bar{\alpha}_t \boldsymbol{x}_0 + \alpha_t \bar{\beta}_{t-1} \bar{\boldsymbol{\varepsilon}}_{t-1} + \beta_t \boldsymbol{\varepsilon}_t, t)\|^2$ (4)
- 简化后的损失函数: $\left\| \boldsymbol{\varepsilon} \frac{\bar{\beta}_t}{\beta_t} \boldsymbol{\epsilon} \boldsymbol{\theta} (\bar{\alpha}_t \boldsymbol{x}_0 + \bar{\beta}_t \boldsymbol{\varepsilon}, t) \right\|^2$ (5)
- 至于为什么可以去 sample 任意的t,因为任意一个 x_t 的表达式都可以推导为仅依赖 x_0 的形式。
- 于是每一步的训练我们只需要去采样 t, x_0, ε 即可。

DDPM 生成流程

• 从一个随机噪声 $x_T \sim \mathcal{N}(0, I)$ 出发执行T步

$$x_{t-1} = \frac{1}{\alpha_t} (x_t - \beta_t \epsilon_\theta(x_t, t))$$

Random Sampling:

$$x_{t-1} = \frac{1}{\alpha_t} (x_t - \beta_t \epsilon_{\theta}(x_t, t)) + \sigma_t z, z \sim \mathcal{N}(0, \mathbf{I})$$

• 通常 $\sigma_t = \beta_t$,使正向和反向的方差保持一致

DDPM 超参设置

- T = 1000, 生成过程是串行的, 采样速度是DDPM的一个瓶颈
- α_t : $\sqrt{1-\frac{0.02t}{T}}$ 单调递减

$$\log \bar{\alpha}_T = \sum_{t=1}^T \log \alpha_t = \frac{1}{2} \sum_{t=1}^T \log \left(1 - \frac{0.02t}{T}\right) < \frac{1}{2} \sum_{t=1}^T \left(-\frac{0.02t}{T}\right) = -0.005(T+1)$$

• $T=1000, \bar{\alpha}_t \approx e^{-5}$,符合之前所说的要求

DDPM 总结

- 优点: 训练简单
 - 从VAE中难以优化的变分后验出发,利用马尔科夫过程直接减少了一个优化维度。
 - 每一步"拆楼"的过程近似为一个高斯分布采样,让模型学习逆过程的难度大大降低。
 - 过程中仍然会遇到优化困难的点,但可以借助概率推导降低优化复杂度。
- 缺点是采样时间过长

Detection -> DiffusionDet

Q: Is there a simpler approach that does not even need the surrogate of learnable queries

A: Detect objects from random boxes

noise-to-box

Training:

gaussian noise added to gt -> noise boxes -> crop ROI features -> decoder for predict Inference:

random boxes

- 1. Dynamic boxes
- 2. Progressive refinement

Detection -> DiffusionDet

Algorithm 1 DiffusionDet Training

```
def train_loss(images, gt_boxes):
 images: [B, H, W, 3]
 qt_boxes: [B, *, 4]
 # B: batch
 # N: number of proposal boxes
 # Encode image features
 feats = image_encoder(images)
 # Pad gt boxes to N
 pb = pad_boxes(gt_boxes) # padded boxes: [B, N, 4]
 # Signal scaling
 pb = (pb * 2 - 1) * scale
 # Corrupt gt_boxes
 t = randint(0, T)
                             # time step
 eps = normal(mean=0, std=1) # noise: [B, N, 4]
 pb_crpt = sqrt( alpha_cumprod(t)) * pb +
           sgrt(1 - alpha cumprod(t)) * eps
 # Predict
 pb_pred = detection_decoder(pb_crpt, feats, t)
 # Set prediction loss
 loss = set_prediction_loss(pb_pred, gt_boxes)
 return loss
```

alpha_cumprod(t): cumulative product of $lpha_i$, i.e., $\prod_{i=1}^t lpha_i$

Algorithm 2 DiffusionDet Sampling

```
def infer(images, steps, T):
 images: [B, H, W, 3]
 # steps: number of sample steps
 # T: number of time steps
 # Encode image features
 feats = image_encoder(images)
 # noisy boxes: [B, N, 4]
 pb_t = normal(mean=0, std=1)
 # uniform sample step size
 times = reversed(linespace(-1, T, steps))
 \# [(T-1, T-2), (T-2, T-3), ..., (1, 0), (0, -1)]
 time_pairs = list(zip(times[:-1], times[1:])
 for t_now, t_next in zip(time_pairs):
  # Predict pb_0 from pb_t
  pb pred = detection decoder(pb t, feats, t now)
  # Estimate pb_t at t_next
  pb_t = ddim_step(pb_t, pb_pred, t_now, t_next)
  # Box renewal
  pb_t = box_renewal(pb_t)
 return pb_pred
```

linespace: generate evenly spaced values

Detection -> DiffusionDet

(a) **Dynamic boxes.** Both DETR and DiffusionDet are trained with 300 object queries or proposal boxes. More proposal boxes in inference bring accuracy improvement on DiffusionDet, while degenerate DETR.

(b) **Progressive refinement.** DiffusionDet is trained with 300 proposal boxes and evaluated with different numbers of proposal boxes. For all cases, the accuracy increases with refinement times.

Method	AP	AP_{50}	AP_{75}	AP_s	AP_m	AP_l		
ResNet-50 [34]								
RetinaNet [93]	38.7	58.0	41.5	23.3	42.3	50.3		
Faster R-CNN [93]	40.2	61.0	43.8	24.2	43.5	52.0		
Cascade R-CNN [93]	44.3	62.2	48.0	26.6	47.7	57.7		
DETR [10]	42.0	62.4	44.2	20.5	45.8	61.1		
Deformable DETR [102]	43.8	62.6	47.7	26.4	47.1	58.0		
Sparse R-CNN [81]	45.0	63.4	48.2	26.9	47.2	59.5		
DiffusionDet (1 step)	45.5	65.1	48.7	27.5	48.1	61.2		
DiffusionDet (4 step)	46.1	66.0	49.2	28.6	48.5	61.3		
DiffusionDet (8 step)	46.2	66.4	49.5	28.7	48.5	61.5		
ResNet-101 [34]								
RetinaNet [93]	40.4	60.2	43.2	24.0	44.3	52.2		
Faster R-CNN [93]	42.0	62.5	45.9	25.2	45.6	54.6		
Cascade R-CNN [11]	45.5	63.7	49.9	27.6	49.2	59.1		
DETR [10]	43.5	63.8	46.4	21.9	48.0	61.8		
Sparse R-CNN [81]	46.4	64.6	49.5	28.3	48.3	61.6		
DiffusionDet (1 step)	46.6	66.3	50.0	30.0	49.3	62.8		
DiffusionDet (4 step)	46.9	66.8	50.4	30.6	49.5	62.6		
DiffusionDet (8 step)	47.1	67.1	50.6	30.2	49.8	62.7		
	Swin-	Base [54]]					
Cascade R-CNN [54]	51.9	70.9	56.5	35.4	55.2	67.4		
Sparse R-CNN	52.0	72.2	57.0	35.8	55.1	68.2		
DiffusionDet (1 step)	52.3	72.7	56.3	34.8	56.0	68.5		
DiffusionDet (4 step)	52.7	73.5	56.8	36.1	56.0	68.9		
DiffusionDet (8 step)	52.8	73.6	56.8	36.1	56.2	68.8		

scale	AP	AP_{50}	AP_{75}
0.1	38.5	54.2	41.4
1.0	44.3	63.2	47.6
2.0	45.0	64.3	48.1
3.0	44.8	63.9	48.2

(a) **Signal scale**. A large scaling factor can improve detection performance.

score thresh.	AP	AP ₅₀	AP ₇₅
0.0	45.4	65.2	48.8
0.3	45.9	65.7	49.2
0.5	46.2	66.1	49.4
0.7	46.0	66.2	49.0

(d) **Box renewal** at evaluation of step 8. The threshold of 0.5 works best.

case	AP	AP_{50}	AP_{75}
Repeat	43.7	62.6	47.0
Cat Gaussian	45.0	64.3	48.1
Cat Uniform	44.7	63.7	48.3
Cat Full	44.8	63.9	47.9

(b) **GT boxes padding.** Concatenating Gaussian boxes works best.

100 42.5 42.4 41 300 43.8 45.0 44 500 44.2 45.5 45	0
500 44.2 45.5 45	.1
	.8
1000 115 150 16	.6
1000 44.5 45.9 <u>46</u>	.1

(e) Matching between N_{train} and N_{eval} . The best for each row is underlined.

Method	AP	AP_{50}	AP_{75}	AP_s	AP_m	AP_l	AP_r	AP_c	AP_f
	ResNet-50 [34]								
Faster R-CNN [†]	22.5	37.1	23.6	16.5	29.6	34.9	9.9	21.1	29.7
Cascade R-CNN†	26.3	37.8	27.8	18.4	34.4	41.9	12.3	24.9	34.1
Faster R-CNN	25.2	40.6	26.9	18.5	32.2	37.7	16.4	23.4	31.1
Cascade R-CNN	29.4	41.4	30.9	20.6	37.5	44.3	20.0	27.7	35.4
Sparse R-CNN	29.2	41.0	30.7	20.7	36.9	44.2	20.6	27.7	34.6
DiffusionDet (1 step)	30.4	42.8	31.8	20.6	38.6	47.6	23.5	28.1	36.0
DiffusionDet-(4 step)	31.8	45.0	33.2	22.5	39.9	48.3	24.8	29.3	37.6
DiffusionDet-(8 step)	31.9	45.3	33.1	22.8	40.2	48.1	24.0	29.5	38.1
		Resl	Net-101	[34]					
Faster R-CNN [†]	24.8	39.8	26.1	17.9	32.2	36.9	13.7	23.1	31.5
Cascade R-CNN†	28.6	40.1	30.1	19.8	37.1	43.8	15.3	27.3	35.9
Faster R-CNN	27.2	42.9	29.1	20.3	35.0	40.4	18.8	25.4	33.0
Cascade R-CNN	31.6	43.8	33.4	22.3	39.7	47.3	23.9	29.8	37.0
Sparse R-CNN	30.1	42.0	31.9	21.3	38.5	45.6	23.5	27.5	35.9
DiffusionDet (1 step)	31.9	44.6	33.1	21.6	40.3	49.0	23.4	30.5	37.1
DiffusionDet-(4 step)	32.9	46.5	34.3	23.3	41.1	49.9	24.2	31.3	38.6
DiffusionDet-(8 step)	33.5	47.3	34.7	23.6	41.9	49.8	24.8	32.0	39.0
Swin-Base [54]									
DiffusionDet-(1 step)	40.6	54.8	42.7	28.3	50.0	61.6	33.6	39.8	44.6
DiffusionDet-(4 step)	41.9	57.1	44.0	30.3	50.6	62.3	34.9	40.7	46.3
DiffusionDet-(8 step)	42.1	57.8	44.3	31.0	51.3	62.5	34.3	41.0	46.7

Table 2. Comparisons with different object detectors on LVIS v1.0 val set. We re-implement all detectors using federated loss [100] except for the rows in light gray (with †).

DDIM	box renewal	step 1	step 4	step 8
		45.0	43.4	43.4
✓		45.0	45.5	45.4
	✓	45.0	45.6	45.6
✓	✓	45.0	45.8	46.2

(c) Sampling strategy. Using both DDIM and box renewal works best.

# boxes	step	AP	AP_{50}	AP ₇₅	FPS
[81]	1	45.0	63.4	48.2	31.4
100	1	42.5	60.3	45.9	31.6
300	1	45.0	64.3	48.1	31.3
300	4	45.8	65.7	49.2	12.4

(f) Accuracy vs. speed. Using more boxes bring performance gain at the cost of latency.

Seg - > denoising pretrain for seg

Table 2. Comparison with the state-of-the-art on Cityscapes. The result of [32] is reproduced by [108] based on DeepLab-v3+, while the results of [29, 44, 58, 63] are based on DeepLab-v2. All of the baselines except ours make use of a ResNet-101 backbone.

full	1/4	1/8	1/30
(2,975)	(744)	(372)	(100)
-	62.3	58.8	-
65.8	61.9	59.3	-
68.16	-	63.03	54.80
-	63.63	61.35	-
-	68.33	65.82	55.71
-	72.36	69.81	60.96
74.88	73.31	68.72	56.09
75.99	75.15	72.29	62.89
80.62	76.26	72.99	63.25
	(2,975) - 65.8 68.16 - 74.88 75.99	(2,975) (744) - 62.3 65.8 61.9 68.16 63.63 - 68.33 - 72.36 74.88 73.31 75.99 75.15	(2,975) (744) (372) - 62.3 58.8 65.8 61.9 59.3 68.16 - 63.03 - 63.63 61.35 - 68.33 65.82 - 72.36 69.81 74.88 73.31 68.72 75.99 75.15 72.29

Figure 8. Effect of length of pretraining duration on downstream performance.

Seg - > ICLR 22

Few-shot segmentation

- 1. Train unsupervised diffusion model
- 2. Extract pixel-level representation of labeled
- 3. Concat reshape features
- 4. MLP for predict

DDPM 总结

- 目前主要研究方向:
 - 综述:
 - Diffusion Models: A Comprehensive Survey of Methods and Applications. https://arxiv.org/abs/2209.00796
 - 降低diffusion模型的采样步长
 - Analytic-DPM. https://arxiv.org/abs/2201.06503
 - DPM-Solver. https://arxiv.org/abs/2206.00927
 - On Fast Sampling of Diffusion Probabilistic Models. https://arxiv.org/pdf/2106.00132.pdf
 - 探索guided diffusion
 - Diffusion Models Beat GANs on Image Synthesis.
 https://proceedings.neurips.cc/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf
 - More Control for Free! Image Synthesis with Semantic Diffusion Guidance. https://arxiv.org/pdf/2112.05744
 - Classifier-Free Diffusion Guidance. https://arxiv.org/pdf/2207.12598.pdf
 - 大模型、大语料
 - GLIDE. https://arxiv.org/pdf/2112.10741.pdf
 - 用于NLP生成
 - Diffusion-LM Improves Controllable Text Generation. https://arxiv.org/abs/2205.14217