

DIVIDED DIFFERENCE
TABLES AND DIVIDED
DIFFERENCE
POLYNOMIALS

Suppose that $P_n(x)$ is the *n*th Lagrange polynomial that agrees with the function f at the distinct numbers x_0, x_1, \ldots, x_n . Although this polynomial is unique, there are alternate algebraic representations that are useful in certain situations. The divided differences of f with respect to x_0, x_1, \ldots, x_n are used to express $P_n(x)$ in the form

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) + \dots + a_{n-1}(x - x_{n-1}), \quad (3.5)$$

5

5

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) + \dots + a_{n-1}(x - x_{n-1}),$$

$$a_0 = P_n(x_0) = f(x_0).$$

$$f(x_0) + a_1(x_1 - x_0) = P_n(x_1) = f(x_1);$$
$$a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}.$$

 $f[x_i] = f(x_i).$

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}.$$

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}.$$

 $P_n(x) = f_0^{(0)} + f_0^{(1)}(x - x_0) + f_0^{(2)}(x - x_0)(x - x_1) + f_0^{(3)}(x - x_0)(x - x_1)(x - x_2) + \dots$

ľ

$$P_{n}(x) = f_{0}^{(0)} + f_{0}^{(1)}(x - x_{0}) + f_{0}^{(2)}(x - x_{0})(x - x_{1}) + f_{0}^{(3)}(x - x_{0})(x - x_{1})(x - x_{2}) + \dots$$

$$P_{1}(x) = f_{0}^{(0)} + f_{0}^{(1)}(x - x_{0})$$

$$P_{2}(x) = f_{0}^{(0)} + f_{0}^{(1)}(x - x_{0}) + f_{0}^{(2)}(x - x_{0})(x - x_{1})$$

$$P_{3}(x) = f_{0}^{(0)} + f_{0}^{(1)}(x - x_{0}) + f_{0}^{(2)}(x - x_{0})(x - x_{1}) + f_{0}^{(3)}(x - x_{0})(x - x_{1})(x - x_{2})$$

$$P_{2}(x) = P_{1}(x) + f_{0}^{(2)}(x - x_{0})(x - x_{1})$$

$$P_{3}(x) = P_{2}(x) + f_{0}^{(3)}(x - x_{0})(x - x_{1})(x - x_{2})$$

$$P_{4}(x) = P_{3}(x) + f_{0}^{(4)}(x - x_{0})(x - x_{1})(x - x_{2})(x - x_{3})$$

$$P_{5}(x) = P_{4}(x) + f_{0}^{(5)}(x - x_{0})(x - x_{1})(x - x_{2})(x - x_{3})(x - x_{4})$$

DIVIDED DIFFERENCE TABLES AND DIVIDED
DIFFERENCE POLYNOMIALS

A divided difference is defined as the ratio of the difference in the function values at two points divided by the difference in the values of the corresponding independent variable.

Thus, the first divided difference at point i is defined as

$$f[x_i, x_{i+1}] = \frac{f_{i+1} - f_i}{x_{i+1} - x_i} \qquad f[x_i] = f_i.$$

The second divided difference is defined as

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}$$

Similar expressions can be obtained for divided differences of any order.

x	f(x)	First divided differences	Second divided differences	Third divided differences
x_0	$f[x_0]$	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$		
x_1	$f[x_1]$	$f[x_0, x_1] = x_1 - x_0$ $f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$	$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$
x_2	$f[x_2]$	$f[x_1, x_2] = \frac{1}{x_2 - x_1}$ $f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$	$f[x_0, x_1, x_2, x_3] = \frac{1}{x_3 - x_0}$ $f[x_1, x_2, x_3, x_4] = \frac{f[x_2, x_3, x_4] - f[x_1, x_2, x_3, x_4]}{x_1 - x_1}$
x_3	$f[x_3]$	$f[x_2, x_3] = \frac{1}{x_3 - x_2}$ $f[x_3, x_4] = \frac{f[x_4] - f[x_3]}{x_4 - x_3}$	$f[x_2, x_3, x_4] = \frac{f[x_3, x_4] - f[x_2, x_3]}{x_4 - x_2}$	$f[x_1, x_2, x_3, x_4] = \frac{1}{x_4 - x_1}$ $f[x_2, x_3, x_4, x_5] = \frac{f[x_3, x_4, x_5] - f[x_2, x_3, x_4]}{x_5 - x_5}$
<i>x</i> ₄	$f[x_4]$	$f[x_4, x_5] = \frac{f[x_5] - f[x_4]}{x_6 - x_4}$	$f[x_3, x_4, x_5] = \frac{f[x_4, x_5] - f[x_3, x_4]}{x_5 - x_3}$	$\int [A_2, A_3, A_4, A_5] = \frac{1}{x_5 - x_2}$
<i>X</i> ₅	$f[x_5]$	$f[x_4, x_5] = \frac{1}{x_5 - x_4}$		

Divided Difference Tables	Consider a table of data:
$f[x_i] = f_i.$	
$f[x_0, x_1] = \frac{(f_1 - f_0)}{(x_1 - x_0)}$ $f[x_1, x_2] = \frac{(f_2 - f_0)}{(x_2 - f_0)}$	$-f_1$ $x_i f_i$
$(x_1 - x_0)$ $(x_1 - x_0)$ $(x_2 - x_0)$	×0 J0
$(f_{i+1} - f_i) (f_i - f_{i+1}) c_i$	$\begin{bmatrix} x_1 & f_1 \\ x_2 & f_2 \end{bmatrix}$
$f[x_i, x_{i+1}] = \frac{(f_{i+1} - f_i)}{(x_{i+1} - x_i)} = \frac{(f_i - f_{i+1})}{(x_i - x_{i+1})} = f[x_{i+1} - f_i]$	$\begin{bmatrix} x_1 \\ x_3 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} y_2 \\ f_3 \end{bmatrix}$
$f_i^{(1)} = f[x_i, x_{i+1}]$	
$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{(x_2 - x_0)}$	$f_i^{(2)} = f[x_i, x_{i+1}, x_{i+2}]$
$f[x_0, x_1, \dots, x_n] = \frac{f[x_1, x_2, \dots, x_n] - (x_n)}{(x_n)}$	$\frac{y_1}{-x_0}$
$f_i^{(n)} = f[x_i, x_{i+1}, \dots, x_{i+n}]$	

	$\begin{array}{c cc} x_i & f_i \\ \hline x_0 & f_0 \\ x_1 & f_1 \\ x_2 & f_2 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Divided Difference Tables $f_i^{(n)} = f[x_i, x_{i+1}, \dots, x_{i+n}]$ $= \frac{f[x_1, x_2, \dots, x_n] - f[x_0, x_1, \dots, x_{n-1}]}{(x_n - x_0)}$	1]
	$x_3 \mid f_3$ x_i	$f_i^{(0)} \qquad f_i^{(1)}$	$f_i^{(2)}$ $f_i^{(3)}$	x f(x) 3.20 0.312500 3.30 0.303030 3.35 0.298507
	3.20 3.30 3.35	$ \begin{array}{c c} 0.312500 & -0.094700 \\ 0.303030 & -0.090460 \\ 0.298507 & -0.087780 \\ \end{array} $	$ \begin{array}{ccc} 0.028267 & -0.007335 \\ 0.026800 & -0.009335 \end{array} $	0.294118 0.50 0.285714 0.60 0.277778 0.65 0.273973
	3.40 3.50 3.60 3.65	$ \begin{vmatrix} 0.294118 \\ 0.285714 \\ -0.079360 \\ 0.277778 \\ 0.273973 \end{vmatrix} -0.076100 \\ -0.074060 $	=0.006132	0.270270
11	3.70	0.270270		

		X	f(x)
Consi	der the divided difference table presented.	3.35	0.298507
Let's	interpolate for $f(3.44)$ using the divided	3.40	0.294118
	ence polynomial,	3.50 3.60	0.285714
	$+(x-x_0)(x-x_1)\cdots(x-x_{n-1})f_i^{(n)}$		
	$+ (x - x_0)(x - x_1) \cdots (x - x_{n-1}) f_i^{(n)}$ Using $x0=3.35$ as the base point. The ex	act sol	ution is

	3.35 3.40 3.50 3.60	$f_i^{(0)}$ 0.298507 0.294118 0.285714 0.277778			
13					

	$\overline{x_i}$	$f_i^{(0)}$	$f_i^{(1)}$			
	3.35 3.40 3.50 3.60	0.298507 0.294118 0.285714 0.277778	-0.087780 -0.084040 -0.079360			
14						

	x_i	$f_i^{(0)}$	$f_i^{(1)}$	$f_i^{(2)}$	7	
	3.35 3.40 3.50 3.60	0.298507 0.294118 0.285714 0.277778	-0.087780 -0.084040 -0.079360	0.024933 0.023400		
15						

	$\overline{x_i}$	$f_i^{(0)}$	$f_i^{(1)}$	$f_i^{(2)}$	$f_i^{(3)}$
	3.40 3.50	0.298507 0.294118 0.285714 0.277778	-0.087780 -0.084040 -0.079360	0.024933 0.023400	-0.006132
	,,,,	• •	$-x_0)f_i^{(1)} + (x - x_0)f_i^{(1)} + (x - x_1)\cdots(x$	0, 1, 1, 0	$f_i^{(2)} + \cdots$
	$P_n(3.44) =$	-	$(44) - x_0)f_0^{(1)} +$		
		+ (3.44)-	$-x_0)(3.44-x_1)$	$(3.44 - x_2)f_0$)
	Substituting th	e values o	$f x_0$ to x_2 and	$f_0^{(0)}$ to $f_0^{(3)}$ in	to Eq.
	gives $P_n(3.4)$	(44) = 0.29	98507 + (3.44)	-3.35)(-0.0	87780)
		+ (3	.44 - 3.35)(3.	44 - 3.4)(0.0	024933)
16		+ (3	.44 - 3.35)(3.	44 - 3.4)(3.4)	(4-3.5)(-0.006132)

$$P_n(3.44) = 0.298507 + (3.44 - 3.35)(-0.087780) \\ + (3.44 - 3.35)(3.44 - 3.4)(0.024933) \\ + (3.44 - 3.35)(3.44 - 3.4)(3.44 - 3.5)(-0.006132)$$
 Evaluating Equation term by term gives
$$P_n(3.44) = 0.298507 - 0.007900 + 0.000089 + 0.000001$$
 Summing the terms yields the following results and errors:
$$P(3.44) = 0.290607 \quad \text{linear interpolation} \qquad \text{Error}(3.44) = -0.000091 \\ = 0.290696 \quad \text{quadratic interpolation} \qquad = -0.000002 \\ = 0.290697 \quad \text{cubic interpolation} \qquad = -0.000001$$

Newton Divided-Difference Polynomials: Example Construct the divided differences table and use Newton interpolating polynomials to interpolate at x = 1. $y = 2x^3 - 10$ \boldsymbol{x} 0 -10 1.5 -3.252 6 4 118 5 240 6 422 18

18

en	vton l	Divided	-Differ	ence Po	lynomial	s: Exam	ple
	$\frac{x_i}{0}$	f:(0) (-10)	$f_i^{(1)}$	$f_i^{(2)}$	$f_i^{(3)}$	$f_i^{(4)}$	$f_i^{(5)}$
	1.5	-3.25	4.5	7			
	<u></u>	6	18.5	15	2	0	
			56		2		0
	4	118	122	22	2	0	
	5	240	102	30			
	6	422	182				

4.5 -3.25 18.5 6 15 2 0
6 15 0
118 22 0
122 2 240 30
422
(x) = -10 + 4.5(x-0) $(1) = -5.5$

ew	/ton	Divid	led-Di	ffere	nce Po	lynomi	als: Example	
7	x_i	$f_i^{(0)}$	$f_i^{(1)}$	$f_i^{(2)}$	$f_i^{(3)}$	$f_i^{(4)}$	$f_i^{(5)}$	
	0	(-10)	(4.5)					
	1.5	-3.25	4.5)	7				
- 1			18.5		(2)			
	2	6		15		0		
	4	118	56	22	2	0	0	
	4	110	122	ZZ	2	0		
	5	240		30				
			182					
-	6	422						
	$P_2(z)$	(x) = -10	0 + 4.5	(x-0) -	+ 7(x-0)	(x-1)	5)	
	D (1	$\dot{)} - 0$, \		
	2 (J — — 9						

1.5 -3.25	$\begin{array}{ccc} f_i^{(0)} \\ \hline 0 & -10 \end{array}$	$f_i^{(1)}$	$f_i^{(2)}$	$f_i^{(3)}$	$f_i^{(4)}$	$f_i^{(5)}$
2 6 15 0 56 2 0 4 118 22 0	.5 -3.25		7			
4 118 22 0	. 6		15		0	
	118	122	22	2	0	U)
5 240 30	240		30	2		
6 422	422	182				

Newton Divided-Difference Polynomials: Example								
	$\frac{x_i}{0}$	f;(0) (-10)	$f_i^{(1)}$	$f_i^{(2)}$	$f_i^{(3)}$	$f_i^{(4)}$	$f_i^{(5)}$	
	1.5	-3.25	18.5	7	(2)			
	2	6	56	15	2	0	0	
	4	118	122	22	2	0		
	5	240	182	30				
	6	422	102					
		′	`		` ' '	` /	+ 2(x-0)(x-1.5)(,
23	$P_5(z)$	x)=-10	+ 4.5(x)	(x-0) +	7(x-0)(x-1.5)	+ 2(x-0)(x-1.5)(x-1.5)	(x-2)

- The data points do not have to be in any specific order to apply the divided difference concept.
- However, just as for the direct fit polynomial, the Lagrange polynomial, more accurate results are obtained if the data are arranged in order of closeness to the interpolated point.
- This method works for both equally spaced data and unequally spaced data.

- A major advantage of the Newton forwarddifference polynomial, in addition to its simplicity, is that each higher-degree polynomial is obtained from the previous lower degree polynomial by adding the next term.
- The work already performed for the lowerdegree polynomial does not have to be repeated.
- his feature is not for the direct fit polynomial and the Lagrange polynomial, where all of the work must be repeated each time the degree of the polynomial is changed.

27

DIFFERENCE TABLES AND DIFFERENCE POLYNOMIALS

- Fitting approximating polynomials to tabular data is simpler when the values of the independent variable are equally spaced.
- Implementation of polynomial fitting for equally spaced data is best accomplished in terms of differences.

Table 4.6.		Table of Differences					
x	f(x)						
$\overline{x_0}$	f_0	(((()))					
x_1	f_1	(f_1-f_0)	$(f_2 - 2f_1 + f_0)$	(6 26 26 6)			
x_0 x_1 x_2	f_2	$(f_1 - f_0) (f_2 - f_1) (f_3 - f_2)$	$(f_3 - 2f_2 + f_1)$	$(f_3 - 3f_2 + 3f_1 - f_0)$			
x_3	f_3	(f_3-f_2)					

https://alimirlou.github.io/NewtonPolynomial/ https://www.dcode.fr/newton-interpolating-polynomial https://planetcalc.com/9023/ https://freemagee.github.io/number-difference-table/ https://alteredqualia.com/visualization/hn/sequence/# https://www.easycalculation.com/algebra/newtons-forward-difference.php https://www.desmos.com/calculator

29

