积分的几何意义

Table of Contents

- 1. 积分的几何意义
- 2. 导数的几何意义
 - 2.1. 求导(即求切线的斜率), 并不是求的"某一点"瞬时的变化率, 而是求的"某一点附近(即 $\Delta x \to 0$ 这段微小距离)"的变化率.
 - 2.2. dy
 - 2.3. 三种组合函数: ① $\frac{d}{dx}(\sin x + x^2)$, ② $\frac{d}{dx}(\sin x \cdot x^2)$, ③ $\frac{d}{dx}(\sin(x^2))$

1. 积分的几何意义

上图的例子中,积分函数,就是代表 x^2 的图像下面,从某个固定的左端点,到某个变动的右端点之间的面积.

积分有用,是因为很多生活中实际的问题,都能近似成"大量很小的东西加起来",而这样的问题都能转化成求某图像下的面积.所以,我们要找的,就是这个能表示面积的"积分函数".

我们先要考虑,某个函数图像,比如 x^2 ,和面积(面积函数)之间,会有着怎样的关系?即,先把x增加一点点,看看面积变了多少?我们把增加的这一小部分面积,称作 dY 或 dA (即 different in area) 面积的微小变化.

面积的微小变化,约等于上图的浅绿色长条(长方形),其高度就是函数的y值,即 $y=x^2$,宽度就是 dx ,即 $\mathrm{\Delta x}$.

即:

面积的微小变化量 $dA(\mathbb{p} dY) \approx x^2 \cdot dx =$ 曲线的函数体 $\cdot \Delta x$ 经过变形,就得到: $x^2(\mathbb{p}$ 曲线函数的y值, $\mathbb{p} f(x)) \approx \frac{dA(\mathbb{p} dy)}{dx(\mathbb{p} \Delta x)}$ $\leftarrow \mathbb{p}, \Delta x$ 趋向于无穷小时,这个长方体的值,就几乎等于y值高度本身.

2. 导数的几何意义

2.1. 求导(即求切线的斜率), 并不是求的"某一点"瞬时的变化率, 而是求的"某一点附近(即 $\Delta x \rightarrow 0$ 这段微小距离)"的变化率.

导数, 衡量的是函数(即y值) 对取值(即Δx)的微小变化, 有多敏感(y值会怎样变动). 即切线的斜率.

当运动完全被凝固在某一个时间点,变成切片时,飞矢不动,是不存在什么"瞬时变化率"的. 也不存在该点的切线公式,因为此时的 dx完全=0,而切线公式 dy/dx,分母dx是不能为0的! 所以,真正的导数(切线的斜率),依然要求一个极其微小的 Δx 存在. 只不过这个 Δx ,是个不断趋近于0的极小值而已,即 该 Δx 的极限值是0,但它永远到不了0.

即, 这个 $dt(=\Delta x)$ 永远都是一个有限小的量,非0, 但永远在接近于0. 所以dt不是一个有着确定数值的值,它是一个变量! dt is not "infinitely small".

即: 导数 $\frac{dy}{dx}$ 并不是 dx为某个具体指时的 dy 和 dx 的比值, 而是dx这段微小距离无限趋近于0时, 这个比值的极限.

当两点越来越靠近时, (即 $\Delta x \to 0$) 时, 过这两点的直线的斜率, 也就越来越变成在某一x点时的 该点切线的斜率. 这就是"导数".

所以, 求导(即求切线的斜率), 并不是求的"某一点"瞬时的变化率, 而是求的"某一点附近(即 $\Delta x \rightarrow 0$ 这段微小距离)"的变化率.

在微积分的传统中,其实你只需写一个 d,就表示了你相求 当 $dx \to 0$ 时,会发生些什么. You're gonna see what happens at approaches 0. 如: 指数函数 x^n 的导数是: $\frac{d(x^n)}{dx} = nx^{n-1}$

比如,我们对 函数 $\mathbf{s}(\mathbf{t})$ 求导,就写作 $\frac{ds}{dt}$

$$\frac{ds}{dt}(t) = \frac{s(t+dt) - s(t)}{dt}$$

但记住: 我们求的导数,本质上并不是一个分数, 而是求当 Δx 的变化量越来越小时, 这个分数(比值)的极限. 这就是"导数"和"传统切线"的精确区别了.

2.2. dy

根据上图也可以知道, 当 $dx \to 0$ 时, 那个小正方形 $(dx)^2$ 就更加是一个微小到可以忽略的变化量. 比如, 当 dx 取0.01时, dx的平方就是0.0001了, 可以被忽略不计了.

所以上图的 大正方形的面积增加量 $df=2(x\cdot dx)$,于是,就有 $\dfrac{df}{dx}=2x$,这也正是大正方形的面积公式函数 $y=x^2$ 的导数.

即: 对于 $y=x^2$ 这个函数,其 y'=2x. 也就是說,x值每增加1个单位,y值就会增加2x个单位.

比如:

- 假设这个大正方形的边长是3,即 x=3,从这里出发,其边长x每增加1个单位,面积y值就会增加2x,即6个单位(2*3=6)
- 假设边长 x=5, 从这里出发, 边长x每增加1个单位, 面积y值就增加2x, 即2*5=6个单位.

2.3. 三种组合函数:①
$$\frac{d}{dx}(\sin x + x^2)$$
,② $\frac{d}{dx}(\sin x \cdot x^2)$,③ $\frac{d}{dx}(\sin(x^2))$

有三种"组合函数"的基本方法,就是:

1. 函数相加:
$$\frac{d}{dx}(\sin x + x^2)$$

2. 函数相乘:
$$\frac{d}{dx}(\sin x \cdot x^2)$$

3. 函数嵌套(即复合函数):
$$\frac{d}{dx} (\sin(x^2))$$