

ARMCO

PICTURE

AND
FACT

FACT

This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

https://books.google.com

EGLES TON

De69.1

Am 3522

Columbia University in the City of Aew York

LIBRARY

GIVEN BY

Doan J. W. Barker

COPYRIGHT

AMERICAN ROLLING MILL CO

MIDDLETOWN, OHIO

1 9 2 1

PRESS OF
THE GIBSON & PERIN CO.
CINCINNATI, OHIO

1669.1 Am3522

LABOR IS DISCOVERED TO BE THE GRAND CONQUERER, ENRICHING AND BUILDING UP NATIONS MORE SURELY THAN THE PROUDEST BATTLES.

WM. ELLERY CHANNING

THE AMERICAN ROLLING MILL CO. General Offices MIDDLETOWN, OHIO U.S.A.

Plants

EAST WORKS	. Middletown, Ohio
CENTRAL WORKS	. Middletown, Ohio
BLAST FURNACES	Columbus, Ohio
ZANESVILLE WORKS	Zanesville, Ohio
COAL MINES	. Marting, W. Va.
ORE MINESLake	Superior District

District Offices

NEW YORK50 Church St.
CHICAGOPeoples Gas Bldg.
PHILADELPHIAWidener Bldg.
DETROITDime Bank Bldg.
PITTSBURGHOliver Bldg.
ST. LOUIS1120 Liberty Central Trust Co. Bldg.
CLEVELANDSwetland Bldg.
CINCINNATI
BUFFALONiagara Life Bldg.
NEW ORLEANS
SAN FRANCISCO10th and Bryant Sts.
TORONTO

ARGENTINE

Messrs. J. F. Macadam & Co. Balcarce 326-Buenos Aires

AUSTRALIA

Armco Iron Australian Agency 387 George St., Sydney, N. S. W.

BRAZIL

The American Rolling Mill Co. Guinle Bldg., Caixa Postale 19 Rio de Janeiro

CHINA

Lam Glines & Co, Inc. 4B Pekin Road Shanghai

CUBA

American Rolling Mill Co.-Havana

ENGLAND

Messrs. S. H. Morden & Co., Ltd. Morden House, Dartmouth St. Westminster—London S. W. I.

EGYPT
E. R. Ballis & Co., Inc.
No. 20 Tewfick Pacha
P. O. Box 1439—Alexandria

FRANCE

Messrs. S. H. Morden & Co. Maison Morden 14 Rue de la Pepiniere-Paris

FRENCH-INDO-CHINA

Messrs. Louis Ogliastro & Co. Saigon

HOLLAND

Messrs. A. N. DeLint Delft

HAWAII

Honolulu Iron Works Co. Honolulu T. H.

New York Office, Woolworth Mr. P. R. Gransaull New Bldg.

Angus & Co., Ltd. No. 3 Clive Row—Calcutta

ITALY Gaetano Meroni & Honegger—Milan

LATVIA Ernest Kehnel—Riga

MEXICO Echols, Fisk & Echols Mexico City

NEW ZEALAND Messrs. E. J. Shackelford & Co. 38 Old Customhouse St., Wellington

NORWAY Messrs. C. P. Amundsen & Co. Trondhjem

PHILIPPINE ISLANDS Atlantic Gulf & Pacific Co.

POLAND L. J. Borkowski—Warsaw

PORTO RICO

Messrs. Korber & Co., Inc. San Juan

 $\begin{array}{c} RUSSIA\\ Messrs. \ Bryner \ \& \ Co. \\ \hline -Vladivostok \end{array}$

SIAM

Messrs. The Bangkok Dock Co. Bangkok

STRAITS SETTLEMENTS Messrs. The Borneo Co., Ltd.

Singapore London Office, 28 Fenchurch St.

SWEDEN

Messrs. Forsberg & Mark Göteborg

BRITISH WEST INDIES

Port of Spain-Trinidad

Foreign Traveling Representatives:

MR. F. S. GAINES MR. I. C. SUTPHEN MR. R. A. SOLBORG MR. TAKANG KAO

Distributors of Armco Ingot Iron Roofing, Siding, etc. ~

A. Ach & Son, Dayton, Ohio

The American Iron Roofing Co., Middletown, Ohio

F. H. Lawson Co., Cincinnati, Ohio

F. O. Schoedinger, Columbus, Ohio

J. M. & L. A. Osborn Co., Cleveland, Ohio

The Bostwick-Braun Co., Toledo, Ohio

Jos. T. Ryerson & Son, Chicago, Ill.

The Republic Metalware Co., 1532 Wabash Ave, Chicago, Ill.

Merchants & Evans Co., Chicago, Ill.

Merchant & Evans Co., Philadelphia, Pa. Berger Bros. Company.

Berger Bros. Company, 229 Arch St., Philadelphia, Pa.

Demmler Bros. Co., Pittsburgh, Pa.

McClure-Johnston Co., Pittsburgh, Pa

Lamb & Ritchie, Cambridgeport, Mass.

Bruce & Cook, 190 Water St., New York, N. Y.

Trenton Tinners & Roofers Supply Co., Trenton, N. J.

Chas. C. Lewis Co., Springfield, Mass.

Larson Hardware Co., Sioux Falls, S. Dak.

Merchant & Evans Co., Kansas City, Mo.

Decatur Cornice & Rfg. Co., Albany, Ala.

California Cornice Works, Los Angeles, Cal.

Standard Metal Co., Indianapolis, Ind.

Stratton & Terstegge Co., Louisville, Ky.

Tom Snow Heating & Roofing Co. Chattanooga, Tenn. Dowman-Dozier Mfg. Co., Atlanta, Ga.

Gordon Metal Co., Richmond, Va.

James A. Coe & Co., Newark, N. J.

David Lupton's Sons Co., Philadelphia, Pa.

Merchant & Evans Co., New York, N. Y.

Republic Metalware Co., 100 Alabama St., Buffalo, N. Y.

Henry W. Wyand Waterbury, Conn.

York Corrugating Co., York, Pa.

James Ackroyd & Sons, Albany, N. Y.

Pidgeon Thomas Iron Co., Memphis, Tenn.

Chapin & Bangs Bridgeport, Conn.

E. H. Caldwell & Son, Corpus Christi, Texas

Edwards & Chamberlain Hdwe. Co., Kalamazoo, Mich.

Buhl Sons Company, Detroit, Mich.

A. M. Castle Co., Seattle, Wash.

Hammond Sheet Metal Co., St. Louis, Mo.

Brown-Wales Co., Fargo & Egmont Sts., Boston, Mass.

Zion Co-op. Merc. Inst., Salt Lake City, Utah

McClary Mfg. Co., London, Ont., Can.

Moncrief Lenoir Mfg. Co., Houston, Texas

Kahl Holt Co., Baltimore, Md.

Phillips & Buttorff Mfg. Co., Nashville, Tenn.

Orleans Steel Products Co., Inc., New Orleans, La.

Pouring a Heat

ARMCO in Jures Dictact

Including a comprehensive Sheet Metal reference

The AMERICAN ROLLING MILL CO. MIDDLETOWN, OHIO

Call of Dean J. Co trouber

Digitized by Google

HISTORICAL

STUDY of world history shows that the "Iron Age" is not of the present, or past few centuries, but that it has been known from the beginning of recorded times.

Tubal Cain was but seven generations removed from Adam, yet we read of him as "an instructor of every artificer in brass and iron"

According to records, Egypt was the first civilized nation of the world, and we learn from Herodotus that in building that great wonder of the world "The Pyramids" iron tools were used.

Early methods of producing iron and steel were crude and laborious. Improvements in methods of manufacture were made slowly. Early improvements in reduction of ore into metal were principally the Catalan Forge and Knobbling Fire, later ones, the Blast Furnace and Puddling Process.

In the "Eighteenth Century" such progress was made that a definite commercial value was attached to the industry. At this stage the process of rolling sheets was invented and used in England. The motive power was a horse and a tread mill. Previous to this time the manufacture of sheets was accomplished through hammering wrought iron bars, after heating in a smith's forge.

To modern times and ingenuity however, was left the task of developing the "Iron and Steel Industry" to the place where it is the leading industry of the world. The Inventions which brought about this condition were chifley the Crucible, Bessemer, and the Siemens-Martin or Open Hearth Processes.

According to records the first sheet rolling mill in America was built at Pittsburgh in 1818.

Since that time America has made such wonderful progress that it not only leads the world in the manufacture of iron and steel sheets, but it leads the world in the production of all forms of iron and steel.

The history of the American Rolling Mill Company is, itself, one of the romances in this great modern industrial achievement.

The original General Office building of the American Rolling Mill Company, erected 1900; is now used by the Training Department.

The new General Office building is most complete in all details pertaining to the health, comfort, and entertainment of employees. It contains a large auditorium, a cafeteria, barber shop, club and rest rooms, electric and shower baths, game room, athletic headquarters, and a physician's clinic.

Operations began in 1900 with one 30-ton Open Hearth Furnace, a 20 inch Bar Mill, four Sheet Mills, a Galvanizing Plant, and a factory for making roofing and other sheet metal products. It was the first plant in America to gather the Open Hearth, the Bar Mill, the Rolling Mills and the Galvanizing under one roof.

The company's specialty at that time was high grade steel sheets, Black and Galvanized, and this commanded a price slightly higher than the market for a standard product.

Expansion began at an early date and it was but a short time before two 50-ton furnaces were in operation and the plant began to take on successive additions.

In 1905, the plant of the Muskingum Valley Steel Co., located at Zanesville, Ohio, was purchased, consisting of 8 sheet mills and annealing equipment. This addition practically doubled the sheet capacity of Armco.

By 1906 several important specialties, for which the company was enjoying a constantly increasing demand, were being produced and others were in the course of development, foremost among which was a material to better resist the influences of corrosion. Both Bessemer and Open Hearth steel sheets had proven to be very short lived where the requirements of service were at all severe and something better was demanded.

The investigation of this important subject, and the development work which followed, resulted in the production of what is now known as "Armco" Ingot Iron, the purest iron ever made into sheets and plates on a commercial basis.

By 1910 the demand for "Armco" Ingot Iron and for all of the company's special products had so increased that it was found necessary to again enlarge its manufacturing facilities.

The result was the building of the East Side Works of the American Rolling Mill Company. This addition consisted of four 65-ton Open Hearth Furnaces, modern Blooming and Bar Mills, eight Sheet Mills and two Jobbing Mills, together with Annealing, Galvanizing, and Finishing Plants of sufficient capacity to take care of the output of the furnaces.

The advent of the United States of America into the Great World War increased the demand for tonnage in iron and steel and again it was found necessary to make further additions.

To insure a reliable supply of pigiron, The Columbus Iron & Steel Co., consisting of two blast furnaces located at Columbus, Ohio, was purchased and made a part of the Armco organization.

This was later followed by the addition of four 85-ton Open Hearth furnaces, two Sheet Mills, and one Jobbing Mill, together with a Forging Plant to produce war materials.

At the end of the war the Forge Plant was discontinued, its purpose having been accomplished, and eight sheet mills with the necessary Annealing and Finishing capacity were added to the East Works, and four sheet mills were added to the Zanesville Plant.

After twenty years of progress and uninterrupted operation, The American Rolling Mill Company enjoys an enviable reputation for "Quality" of products and "Service" to customers. The present manufacturing resources of Armco comprise the following:

Enterprises	Yearly Capacity in Tons
2 Blast Furnaces	350,000
12 Open Hearth Furnaces	120,000
Blooming and Bar Mills	
34 Sheet and 3 Jobbing Mills	300,000

OPEN PIT IRON ORE MINE

Approximately 85% of the iron ore found in America comes from the Lake Superior district. In quality it is the finest found anywhere in the United States or in the world.

THE FRANTZ IRON ORE MINE

The ore properties in which The American Rolling Mill Company is interested are located in the Mesabi Range and produce a quality of ore unsurpassed. It is here that "Armco" Ingot Iron, and all other "Armco" specialty products find their original source.

The general classifications of iron ore are: red hematite, brown hematite or limonite, magnetite, and carbonate. The amounts used in America range in the order given.

All iron ores fall under two general commercial classifications, depending upon the grade of iron to be made. These classifications being familiar to the trade as Bessemer and Non-Bessemer. The former is generally ore of such iron and phosphorus content that the resulting pig iron will not contain more than 1/10 of 1% of phosphorus. Non-Bessemer is ore which does not meet this requirement and is used in the production of basic, foundry, and malleable grades of pig iron.

LOADING ORE AT MINES

Nature has kindly deposited a great portion of ore close to the surface of the earth, thus making it easily and inexpensively accessible.

In the open pit or strip method the ore is recovered by stripping the surface or cover to the ore body. The ore is then mined by means of steam shovels and loaded into railroad cars for transit to dock or direct rail to furnaces.

LOADING ORE AT DOCKS

The ore docks extend far out into the lake, and carry four railway tracks. The ore cars are placed over openings in the dock and the ore is dumped into large ore pockets. Attached to these pockets are gravity chutes, for loading into the vessel. The ore boats, which are practically one big hull compartment, with hatches spaced in accordance with the chute centers, run alongside the docks for loading. The dock chutes are lowered over the hatches and the ore flows into the ship's hull without the assistance of bucket or crane.

ORE BOAT IN TRANSIT

In order to insure constant and prompt delivery of ore, a fleet of ore boats is owned in part by the American Rolling Mill Company. The advantage of such an arrangement can be appreciated by manufacturers who have to depend on outside companies for the transportation of raw materials. These boats are of 10,000 ton capacity and modern in every respect. The average number of round trips each season is twenty-four. They are tied up during the winter because of the ice on the Great Lakes.

UNLOADING ORE FROM THE BOATS
After docking at their destination the ore boats are unloaded by means of large electrically driven traveling cranes.
The mammoth hands of the crane descend into the hatches of the ship bringing forth 15 tons of iron ore at each grasp. Under such modern methods of handling the piles of red iron ore grow rapidly at the ore terminals.

COAL MINES

To convert the iron ore and other raw materials necessary in the manufacture of steel to the finished product, a large amount of coal is required for fuel. Twenty or more car loads of coal are consumed at the Armco plants each day. To insure an adequate and continuous supply, Armco has its own coal mines at Marting, W. Va. and also in Kentucky.

COKE

Coke is the chief fuel used to reduce the iron ore to pig iron.

At present coke is made by two methods, the Beehive method and the By-product method. The resulting products are termed respectively Beehive Coke and Retort or By-product Coke.

Beehive ovens, as shown in illustration on the preceding page, are from $10\frac{1}{2}$ to 12 feet in diameter and shaped like a Beehive. Each oven has two openings and each of these serves a two-fold purpose. The one in the side is used to regulate the draft and is the one from which the finished product is taken. The one in the top is used to charge the oven and also to permit the gases and smoke to escape.

The time consumed for burning the charge, or coking the coal, is 48 to 72 hours, depending upon the nature of the charge.

When the coking is completed, water is sprayed over the glowing charge to extinguish the fire. If this is not done at the right time, considerable loss from overburning will result.

When the coke has cooled sufficiently it is drawn from the oven with large hooks and the fire entirely extinguished after which operation it is ready for use.

Ammonium sulphate, benzol, tar, toluol, etc., are recovered from the volatile matter which is freed from the coke during the coking period in the By-product process. This is done through a maze of pipes, valves and intricate machinery.

BLAST FURNACES

The first step in the conversion of iron ore into "pig" iron—is the blast furnace.

Iron ore, limestone, and coke in measured quantities are conveyed up the inclines to the top of the furnace by means of a "skip-hoist" and charged into the furnaces through the top.

Extraordinary care is necessary in making the charge in even layers so that the ore will melt and descend in the furnace evenly and steadily. If the charge is not properly made it may cake into a dome shaped mass near the top of the furnace and as the charge near the bottom becomes molten, the upper part will weaken and fall. This results in the loss of part of the charge and frequently causes considerable damage.

As the charge melts, the molten material collects in the bottom of the furnace known, as the hearth. Here the iron and slag separate, owing to their different specific gravities. The slag, being the lighter, floats on top.

When a sufficient amount of metal has been deposited in the hearth to make a cast, the tap hole is opened and the molten iron flows through a sand trench into a ladle. From the ladle the molten iron is poured into pig casting machines.

THE BLAST FURNACE

The lower portion of the blast furnace is known as the hearth. It is in this portion of the furnace that the enormous volume of superheated air is blown, resulting in the combustion of incandescent coke. The large pipe encircling the furnace 10 ft. above the ground, is known as the "bustle" pipe from which smaller pipes (tuyeres) lead into the furnace. A 500 ton furnace will require a blast of approximately 45,000 cubic feet of air per minute at a pressure of 14 to 20 lbs.

A full charge of raw material is kept in the furnace. As fast as the stock melts and descends more material is charged.

As the gases ascend and the contents of the furnace descend, the hot gases pass through the comparatively cold materials in the furnace. This pre-heating results in higher hearth temperature and economy in coke consumption.

BLAST FURNACE HOT AIR STOVES

This picture shows the arrangement of the hot blast stoves and furnace proper. The four vertical cylinders at the right are the stoves and the largest cylindrical structure at the left is the furnace. Only one stove is used at a time in connection with the furnace. By actual weight more hot air is used in the manufacture of pig iron than iron ore. All the air used, comes from the blowing engines and passes through one of the pre-heated stoves before being sent to the furnace.

The hot air does not lose all of its heat in the furnace. After it has served its purpose it passes through the top of the furnace and then back to the idle stoves via the down-take pipe. In this way three stoves are kept warmed up when not in use.

CASTING PIG IRON

A "pig" casting machine consists of traveling molds, of the endless chain type, which move up a long incline.

The molten metal is poured into these molds from the ladle as they travel upward. Approximately twelve or fifteen feet above the pouring platform a water spray begins to play over the molds and is continued until they reach the top, by which time the metal is cool.

During the chilling process the metal shrinks from the molds and as the chain of molds makes the turn to come back, the "pigs" of iron fall into railway cars placed under the incline. From here the pig iron is transported to the open hearth stock yard.

THE OLD SAND CAST METHOD

The old sand cast method is still used to a certain extent, but abandoned in many plants for economical reasons. The iron produced by this method is not as satisfactory as the machine cast pig iron for basic open hearth practice because of the adhering sand. In the plants using the method of casting in sand the pigs have to be broken out and carried away by hand labor.

STOCK YARDS

A stock pile of pig iron is one of the familiar sights around a steel plant.

Large electric magnets are used to unload the iron from the cars to the pile and afterwards reload it into charging pans for the open hearth furnaces.

RAW MATERIALS USED IN OPEN HEARTH PROCESS

Dolomite is a highly refractory material used as a lining for the hearth, which is the part of the furnace that contains the bath of molten metal.

Limestone plays an important part as a flux in the furnace charge. It is charged first and as the charge becomes molten it rises to the surface of the bath, being of lighter specific gravity, carrying a great portion of the impurities with it. After rising to the surface it acts as a protective blanket against the oxidizing influence of the flame passing over the bath.

Iron ore is used in the bath principally to oxidize the carbon which then passes off as gas and into the slag blanket. Iron ore also carries to the slag blanket a portion of phosphorus and manganese, which action is highly desirable in producing "Armco" Input Iron.

Ferro-Manganese used in the manufacture of steel is added to the bath in the furnace and to the molten metal in the ladle. It acts as a cleanser and increases the tensile strength of the steel.

However, in producing "Armco" Ingot Iron, this practice is not followed as manganese is one of the impurities which invite corrosion. As the main endeavor of "Armco" Ingot Iron is to "resist rust" the small difference in tensile strength is sacrificed in order to gain purity.

SECURING SAMPLES OF RAW MATERIALS

Samples are taken of incoming raw materials while the cars are still in the care of the railroad companies. If the analyses of these samples are not satisfactory, the materials are promptly rejected or diverted to the manufacture of grades other than "ARMCO" Ingot Iron.

MELTING SCRAP STOCK

In the basic open hearth process the charge for a furnace consists principally of pig iron, limestone and scrap.

For the manufacture of "Armco" Ingot Iron, all of the scrap used is inspected and analyzed to assure a low content of sulphur, phosphorus, carbon, copper and other impurities.

The scrap is carefully inspected as it is loaded into the charging pans, in order that no inferior material reaches the open hearth furnaces. Good raw materials make good finished products.

TRAIN OF CHARGING PANS

The raw materials are hauled from the stock yards to the open hearth charging floor by means of a train of charging "buggies".

Each train-load consists of the raw materials in proportionate amounts necessary to complete the charging of one furnace. All materials are carefully weighed in the stock yards to insure the correct proportions.

This diagram of an Open Hearth furnace illustrates the method of fuel control.

That part of the diagram from the gas producer to the gas and air checkers is as looking down on the connection. The part showing gas and air checkers and furnace proper, is a vertical cross section.

It will be noted that the gas and air do not mix until they reach their respective ports at the top of the furnace, where combustion takes place, just before the flame passes over the charge.

The arrow direction shows gas coming from the producer and air from the inlet passing through the checkers on one side and meeting at the port in the top of the furnace at one side.

The heat units then pass over the hearth, out through the ports in opposite side of the furnace and through the opposite checkers to the stack.

The above action is reversed at regular intervals, in order to keep all checkers heated to a high degree. When action is reversed, arrow direction on sketch would be opposite to that shown.

OPEN HEARTH CHARGING FLOOR

A general view of the charging side of a battery of modern open hearth furnaces. The ones shown are from 75 to 100 tons capacity.

In the right foreground can be seen tools used in working the molten bath.

A large quantity of dolomite, used for lining the furnaces, is shown in the center foreground.

An electric charging machine may be seen charging the third furnace from the right.

Each door of these furnaces is water cooled and has a peep hole through which the progress of the heat is carefully watched. They are manipulated by means of hydraulic and electric power.

The fuel normally used in the furnace is artificial gas, which is made from coal by gas producers connected to the open hearth building.

In case of coal strikes, transportation difficulties, etc., temporarily halting shipments of gas coal at times, "Armco" furnaces are so equipped that situations of this character may be met by reverting to the use of oil as a fuel.

THE CHARGING MACHINE

The charging peel of one of the electric charging machines, carries the loaded charging pan into the open hearth furnace.

The peel is set into a groove in the end of charging pan by operator and locked. The pan is then lifted from its place, carried into the furnace and turned over, thus dumping the load.

The pan is brought out empty and set down on the buggy. Another pan is picked up and emptied into the furnace and so on until the charge has been completed.

The charging machines are mounted on parallel tracks and are able to move the trains of charging pans the full length of open hearth building unassisted.

TAKING A TEST

To insure quality of "Armco" products, tests are taken from the furnace before it is ready for tapping. These tests are taken to the laboratory and analyzed. If the analysis is unfavorable, the metal is kept in the furnace until a favorable analysis is obtained.

Additional tests are taken from the ladle and at different stages, when the metal is being teemed into the ingot molds.

"Armco" Ingot Iron must not contain in the aggregate more than .16% of the following impurities: Silicon, Sulphur, Phosphorus, Manganese, Carbon, Copper, and the gases, Oxygen, Hydrogen and Nitrogen.

Any heat containing a total amount of impurities greater than .16% is rejected by the chemical laboratory, thus insuring the buyer Ingot Iron of the highest quality.

READING THE FRACTURE

Carbon, while an extremely undesirable element in pure iron, is necessary in steel to give the metal certain physical properties.

Foremen in charge of open hearth furnaces have, through experience, learned to read carbon, approximately, by what is known as the fracture test. The melter examines a fractured testpiece to determine how the molten bath must be treated in its further progress.

The test consists of taking a small ladle full of metal from the molten bath and pouring it into a mold. This little casting is then quickly cooled and broken with a sledge hammer and by looking at the grain of the fracture an experienced man can tell the approximate carbon content.

TAKING DRILLINGS FOR ANALYSIS

The first operation in the control laboratory on test pieces submitted by the Open Hearth Department is drilling to obtain samples. It is from these drillings that determinations are made. After the analysis has been made the drillings are submitted to main laboratory or Research Department for a check on control laboratory's analysis. The illustration shows the Chemist sampling pig iron.

THE CONTROL LABORATORY

A crew of chemists is constantly on hand to run tests on "Armco" Ingot Iron. They are to be found in the control laboratory building, which is located in close proximity to the Open Hearth department.

Other divisions of the laboratory consist of balance, carbon test, gas test and raw materials rooms. A larger number of chemists are required for this work than are ordinarily employed in laboratories of a like character, because of the accuracy and the rapidity with which the determinations must be made in the control of "Armco" products.

TAP SIDE OF FURNACES

A view of the tapping side of a battery of modern open hearth furnaces, also includes a train of ingot molds lined up along the pouring platform into which the metal is "teemed" from the ladles.

Midway of each furnace at about the level of the platform may be seen a trough or "runner" leading from furnace to the ladle. The "runner" being portable for cleaning purposes, is laid in position under the "tap-hole" and temporarily cemented to the furnace with clay. It is down this "runner" that the metal flows into the ladle.

At the furnace end of the "runner" is the "tap-hole" which is plugged with dolomite and clay when the furnace is being charged.

The ladles holding from 75 to 100 tons of metal, are carried into position under the "runner" by the huge overhead cranes.

Both the ladles and runners are lined with fire brick and during the melting of the bath are kept preheated with gas flames, to prevent the accumulation of moisture and too great a reaction when the molten metal strikes their surfaces.

The pouring of metal from ladle into molds is accomplished through a "stopper-valve" on the inside of the ladle, operated from the outside like a pump handle.

Lining the Ladle with Fire Brick

Tapping a Heat

TAPPING A HEAT

The spectacular moment in the manufacture of iron and steel is when the plug is torn away from the tap hole and a white, livid stream of metal rushes from its molten bath out into the open and down the "runner" to ladle. The great flare of light and shower of sparks is a magnificent and wonderful sight.

Enough raw materials have been "charged" to take care of filling the ladle with good metal and at the same time run off the slag and impurities which, on account of their lighter specific gravities rise to the surface.

As the ladle fills to overflowing, the impurities and slag run through the trough-like channel in top of ladle, into a cone-shaped receptacle at the right of ladle, known as the slag thimble.

This thimble of slag is afterward carried away and dumped, as no commercial use for basic open hearth slag has been developed, at least on a large enough scale to use the tonnage which is produced.

TEEMING METAL INTO INGOT MOLDS

After all the metal has been drawn from the furnace a huge crane picks up the ladle and carries it over to the train of "ingot molds", where the molten metal is "teemed" into the molds.

This is accomplished by operating the "stopper-valve" which permits the metal to flow through a nozzle in the bottom of ladle.

A heat usually fills a train of 35 to 45 ingot molds. When the pouring has been completed the train is taken to the "Stripping" yard.

STRIPPER CRANE AT WORK

The "stripper cranes" reach down and fasten their mighty claws over the lugs protruding from the top of the molds, and lift the molds from the ingots.

If the ingot happens to stick in the mold this situation is met by a powerful plunger which forces the ingot out while the claws hold the mold. The ingots are taken to the Soaking Pits and the empty molds are set on another train and taken to the Cleaning yards, where they are inspected and cleaned preparatory to returning to the Open Hearth Furnaces.

INSPECTION AND CLEANING OF MOLDS

Here the ingot molds are cleaned and inspected.

They must be free from all foreign substance, thus insuring "Armco" Ingot Iron against the slightest contamination.

If the inspection shows up any cracks or flaws, they are repaired immediately by electric welding or cutting, and if beyond repair are broken up for scrap.

THE SOAKING PIT

After the molds are stripped from the ingots, the next step is to prepare the ingots for rolling into blooms, billets, slabs and sheet bars.

Although the outsides of the ingots are solid, the interior is yet in a molten state.

Therefore the Soaking Pits were devised as a means for bringing the ingots to a solid and uniform heat. The battery at "Armco" consists of 24 pits, each one of which will hold 6 ingots.

The ingots are placed in these pits and allowed to "soak" for several hours until a uniform heat is attained, after which they are taken out and carried by a large crane to the Blooming Mill.

BLOOMING MILL

The reduction of ingots into blooms, billets and slabs is a most interesting sight.

The soaking pit crane delivers the white hot ingot to an electrically controlled roller conveyor leading to the blooming mill, where it is automatically upset into a horizontal position on the roll table.

As the ingot reaches the rolling table, two large hydraulically controlled guides, one on each side, move towards the ingot and guide it to the proper entry into the rolls. The first pass through the rolls generally ends in a loud report similar to the boom of a cannon and the throwing of sparks in all directions.

This mill is of the quick reversing type and rolls the ingots both forward and backward. As soon as the ingot reaches the other side of the mill, a similar set of guides as those used in front steers the ingot on its back pass into the proper place.

At intervals during the rolling, long hydraulically controlled fingers reach up through the rolling tables and turn the hot ingots over and place them in the position desired by the operator in the "pulpit".

After a number of passes the ingot is reduced to the proper size and shape bloom, billet or slab and is released to a roll table conveyor, which takes it to the blooming mill shears.

Safety chains and screens are placed at various places to keep flying scale from injuring workmen or spectators.

THE "PULPIT"

Up above the conveyor is the "pulpit", from which the Blooming Mill is operated.

Nine men working in shifts of three, each 8 hours, are required in the pulpit and to the spectator the team work these men display in operating the control levers is marvelous.

One man operates a large set of levers to guide the ingot into the different positions necessary and to turn it over at the proper time.

Another operates levers controlling the screw or that part of the mechanism which raises and lowers the top roll, thus determining the thickness of blooms, also levers controlling the operation of conveyors.

A third man operates the mechanism controlling the speed and reversing movements of the Blooming Mill engine.

During the rolling periods these men are constantly moving levers, shifting their hands here and there. In many instances, unlooked for conditions necessitate concerted out-of-the-ordinary action. It takes instant judgment and without a word, a sort of sixth sense informs each man what the other fellow is going to do and his levers are handled accordingly.

BLOOMING MILL ENGINE

To operate a large Blooming Mill, forward and backward, quickly, and at the same time supply the tremendous power sufficient to reduce a large ingot to blooms, requires extraordinary high powered mechanism.

The Blooming Mill Engine has no fly wheel, this is due to the necessity of quick reversing. This engine developes seventeen thousand horse-power at 125 revolutions per minute.

BLOOMING MILL SHEARS

After the ingots have been reduced to blooms, the first stop of the material is at the large shears.

Two important operations take place here, the first of which, cropping or cutting off of bad ends, is given special attention in producing "Armco" Ingot Iron.

The inspector takes no chances on pipes, seams, or even the slightest of imperfections, but crops the bloom until he is absolutely sure of solid metal.

The other operation is the shearing of the bloom into proper sized billets for rolling on the bar mill.

COOLING TABLE AND BAR MILL

"Armco" Ingot Iron being practically a pure iron, is "hot short", or in other words it has a critical range of temperature in which it cannot be worked.

This temperature range is from about 1800° Fahrenheit to 1500° Fahrenheit or the color points between an orange and a dark or rose cherry.

To work the material in this range would cause it to break, but above or below these points "Armco" Ingot Iron will stand the most severe punishment.

"Armco" Ingot Iron Billets are allowed to cool through the critical range, previous to being rolled on the Bar Mills.

The billets get one pass on the Bar Mills after leaving the Blooming Mill shears, then travel up an incline conveyor to the cooling beds. When cooled through the critical range, they slide down the incline tracks and continue on their way through the Bar Mills.

BAR MILLS

Here is shown the finishing side of the Bar Mills, where the blooms and billets pass forward and backward through the rolls and finally emerge in a long thin ribbon of iron or steel, called Bars.

These bars are 8" or 12" wide and about 120 feet long. The thickness depends upon the weight per foot desired in the ultimate sheet bar.

After the last pass through the rolls, an inspector checks up the thickness with an automatic micrometer gauge and the bar passes out onto the cooling bed for final inspection before being sheared into sheet bars.

THE BAR MILL ENGINE

The power behind the bar mill rolls must drive the mill at a continuous and uniform speed. The engine used for this work is rated at 5000 horse power and runs at 80 revolutions per minute. The exhaust from this engine as well as the blooming mill engine is used to generate electric power.

BAR SLAB COOLING BEDS

While the bars are cooling, they must undergo an inspection.

All "Armco" Ingot Iron bars are rigidly examined for imperfections and when found the inspectors put a ring around them, indicating that the section so marked must be discarded.

The discards are returned to the Open Hearth Department for remelting.

THE BAR SHEARS

After sheet bars have been inspected they are cut by shears into sheet bars.

These shears are capable of shearing from 3 to 6 bars at a time, dependent upon the width and thickness of the bars.

The length of the bars is the width of the sheets ordered, plus the scrap allowance for shearing after being rolled.

The thickness and width of the bar, or "foot weight", determines the gauge, for when the bars are rolled into sheets the length specified plus shearing allowance, will give the gauge of sheet specified.

From here the sheet bars go to "sheet mills" for rolling into sheets.

THE BAR PICKLER

In the manufacture of high grade Specialty sheets which may require a rigid surface inspection, it is necessary to have the surface of the bars clean before rolling them into sheets.

Therefore; to remove all scale and other dirty conditions the sheet bars are cleansed by means of a bath in sulphuric acid.

The acid is then washed off with lime water after which the bars are ready for the sheet mill furnaces.

In manufacturing the ordinary sheet finishes, such as Black and Galvanized, the pickling of bars is not necessary.

PAIR HEATING FURNACE

The sheet bars are charged into the "pair" furnace for heating to a rolling temperature.

To get them inside the furnace, the bars are laid on a long bar with a flat end, called in mill terms a "charging peel".

The pair heater with the aid of this peel is able to stack the bars to advantage in the furnace.

The Pair Heating furnace gets its name from the fact that the bars are worked in and out of the furnace in "pairs".

ROUGHING DOWN ON SOFT MILL

When the bars have been heated to the proper temperature they are brought out of the furnace with tongs and pulled over a cast iron floor to the "roughing mill", where they are given a number of "passes" to prepare them for the finishing rolls.

When the bars have been given the proper number of passes on the "roughing mill" they are transferred to the finishing rolls.

CATCHING

In working light gauge sheets only one man is used for catching, but in working heavy sheets two men act as catchers.

The "catcher's" duty is to catch the bars or sheets as they come through the rolls and return them over the top to the "rougher" or "roller".

DOUBLING

In the majority of cases it is not possible to make finished sheets from the bars as they come from the "Pair Heating" furnace.

Therefore, to facilitate the handling and increase the tonnage, a regular working scale for different gauges has been devised.

In rolling light gauge sheets, the bars are roughed down and matched, then placed in sheet furnaces and again heated to the proper rolling temperature and given one or two passes through the rolls, after which they are "opened" and "doubled".

Heavy sheets are finished either singly or in "pairs", lighter ones are "doubled" and finished in "packs" of four, six or eight sheets to the pack.

SHEET HEATING

The "matcher", "doubler" and "sheet heater" work together in putting a "pack" that has just been doubled into the sheet furnace.

The man with long tongs is the "sheet heater" and much of the success in rolling depends upon his knowledge and skill. In fact, his importance on the mill crew is second only to the roller.

FINISHING

When the packs have been heated in the sheet furnaces to the proper temperature for working to best advantage, they are taken out of the furnace and given a final rolling.

After the packs have been rolled to proper length, plus the allowance made for uneven edges, they go to shears for trimming to size.

SHEARING AND OPENING

After the packs of sheets have been rolled, they are distributed on the floor between the rolls and shears to allow them to cool sufficiently to handle with gloves and hand pads for shearing.

The shearman sets gauges on his shears to conform with the size of sheets ordered and the packs are sheared on all four sides.

After being trimmed it is necessary to open the packs of sheets as the surfaces of the sheets have a tendency to stick together during the rolling process.

The opener bends up a corner of the pack with his tongs, which generally causes the sheets at that point to spring apart sufficient to allow the insertion of his tongs and then the sheets are separated one at a time.

COLD ROLLING

Because of the buckled and wavy condition of sheets when delivered from sheet mills, one pass on cold rolls is given each sheet to flatten it.

SHEET MILL DRIVING POWER

A large 1500 horsepower electric motor is used to drive the sheet mill train of rolls. This motor is connected to the roll train by a rope drive—working on large sheives.

Sketch of Galvanizing Department

Special Treatment of the Various Grades of Sheets

Up to this point all grades of sheets have been processed alike, but from here on it depends upon the grade to be furnished, as to what treatments are to be applied.

There are three general divisions however, which may be classified as follows: Black or O. P. C. R. & A. sheets, Galvanized sheets, Special Finish sheets.

The Annealing Department might be termed "the parting of the ways" for these three general divisions.

Black sheets get no further treatment.

Galvanized sheets are taken to Galvanizing Department and are cleansed, crated, inspected and stencilled there.

Specialty sheets are treated according to the grade desired and pass through the finishing department for patent levelling, resquaring, oiling, etc.

ANNEALING

The rough treatment to which iron and steel sheets are subjected up to this point, has so disarranged the "grain structure" and "molecular construction" that the sheets are unfit for any practical purpose.

To secure softness and ductility it is necessary to resort to annealing, which is a lengthy heat treatment under uniform temperature.

The sheets are stacked on annealing pans, and a large cover is placed over them and carefully sanded around the bottom to exclude air. This is placed in a large oven and sealed in for a long rest under a uniform heat temperature.

As the heat in these ovens must be uniform, in order to secure the best results, thermostatical instruments called pyrometers, are attached to each furnace. These pyrometers electrically record in a central office the temperature of each furnace at all times and thus insures the maintenance of uniform heat.

SHEET PICKLING

In treating surfaces of sheets for coating or for special finishes, the first operation is a thorough cleansing by the pickling process.

The sheets are placed in racks and held in place by rods and chains made of acid-resisting material. Lifted by a carrier from bath to bath, they move around like a merry-go-round. The pivot is a large piston operated up and down by steam pressure to agitate the racks of sheets in the large vats, first through an acid bath, then through two washes of water, thus removing all scale, dirt, and surface contaminations.

GALVANIZING POT

After being pickled, the sheets for galvanizing are conveyed in lifts to the galvanizing pots and stored in tanks containing hydrochloric acid. This acts as a further cleansing agent and is of material assistance in preparing the sheets for coating.

The sheets are then one by one lifted from the tank and run through a set of rolls, passing through a flux box, and then through the galvanizing pot proper, which contains molten spelter.

As the sheets pass through the molten spelter a coating is obtained, but the amount has not been controlled. Therefore as the sheets pass out of the pot, they go through a set of "exit rolls", which together with the rate of speed at which sheets are run through the pot, controls the weight of coating.

"Armco" Ingot Iron, because of its purity, does not dissolve in the molten spelter like steel. Therefore, the spelter does not become contaminated and a more protective and tightly adherent coating is obtained.

INSPECTION TABLES AND COOLING RACKS

The coated sheets leave the galvanizing pots on chain conveyors to permit air cooling to solidify the spelter coating.

The conveyors deliver the they to roller levelling machines for flattening, after which they pass on to an inspection table, where they are carefully gone over by the inspector and placed in the cooling rack.

Defective sheets are offset at the extreme right end of the rack, while the prime sheets are placed at the other end and each is taken from the wheel separately.

STENCILLING MACHINE

The "Armco" brand is put on every sheet of Ingot Iron produced in the American Rolling Mill Company's plants, unless otherwise specified by the customer.

The stencilling machine may be likened to a printing press, as the stencil pads are set according to the number of times sheet is to be stencilled and come in contact with an ink pad each time prior to making their impressions on the material when passing through.

LEGEND

The triangle with the trademark "ARMCO" and the words "Ingot Iron" indicates that the sheet is ARMCO Ingot Iron.

The numeral 24 indicates that the material is No. 24 Gauge.

8-4 records the fact that this sheet was galvanized between the hours of 8:00 A. M. and 4:00 P. M.

It was galvanized in the month (9th) of September, 8th day on No. 4 galvanizing pot. The galvanizing department records of this date and pot will show weight of galvanized coating and other galvanizing data.

8846 is the stock card number. On the stock card is recorded the "heat number" of the base material and complete data covering the manufacturing history of the sheet before galvanizing.

The "heat number" record will show the analysis of the iron.

)

STENCILED SHEET A sheet of Galvanized "Armco" Ingot Iron properly stenciled for shipment

ASSEMBLING AND SHIPPING ROOM

The assembly floor, just outside of which is the shipping platform, is a busy place. It is very rarely that mill conditions are such that an order can be made and go through the various processes all at one time. Therefore, as a rule all orders come through in many different lifts.

It is necessary to assemble these lifts properly so that the entire order may be shipped.

FINISH COLD ROLLING

In the majority of cases, the requirements of special finish sheets are smoothness and density of surface.

To secure density, the sheets are given a number of passes through cold rolls, the surfaces of which are highly polished.

All sheets for automobile bodies and fenders, metal furniture, cabinet work, locomotive jackets, stoves, etc., undergo this treatment so that a good finish on the enameled or painted surface may be secured.

ROLLER LEVELLING

Finish cold rolling produces a slightly buckled condition in sheets and it is necessary to level them.

Roller levelling machines consist of a series of small rolls, the top set staggered over the bottom set. The weaving motion produced on the sheets automatically levels them sufficient for most purposes.

STRETCHER LEVELLING

Sheets for the manufacture of metal furniture, cabinets, etc., must be "dead flat", for the slightest wave or buckle will be greatly augmented in the final finish. Therefore, stretcher levelling is necessary.

The stretcher leveling process as shown in above illustration, consists of pulling apart by hydraulic pressure two large jaws, which grip the ends of sheets. This stretching operation decreases the elasticity of the sheets.

INSPECTION OF HIGH FINISH SHEETS

An exceptionally high standard of inspection on special finished sheets is maintained by The American Rolling Mill Company.

Here is shown an inspector, minutely looking over a lift of sheets for surface defects.

All defective sheets are sold as such, but in many cases cannot be distinguished from primes by the untrained eye.

RESQUARING SHEETS

For some purposes, sheets must be exact to size and square.

It is not possible to get them in that condition by shearing the sheets as they come from the sheet mills, as pack shearing could not be made accurate, and in addition to this fact the material is generally in a buckled condition.

In addition to the above, subsequent operations would undoubtedly warp, twist and add to or reduce the size to a certain extent.

Resquaring is the last operation before shipment and is performed on shears especially built for accuracy.

OILING

The highly polished surface of high grade sheets would become scratched and marred in shipping, and if subjected to moisture would rust, unless thoroughly protected.

To provide against this, oiling machines are used, through which sheets are run and coated with a thin film of compounded protective oils.

LOADING AND CAR BRACING

The piles of high-finished sheets loaded in freight car are wrapped with heavy paper and braced.

Regardless of the careful methods used however, sheets do not always arrive at destination in the best of condition.

CRATING AND SHIPPING FOR EXPORT

Crating and shipping for Export requires special care. In the Export crating department, sheets are wrapped in heavy felt and tar paper and then packed in a patented metal crate.

The upper view shows crated material loaded in car and ready for shipment overseas.

CORRUGATING MACHINE

The old toggle-press method of corrugating sheets has been almost entirely superseded by huge corrugating rolls.

The sheets pass through these rolls from one to five at a time, according to gauge, and come out the other side a finished product.

The upper view shows corrugated sheets being punched on a gang-punch press, prior to being formed into culverts and riveted.

CULVERT MANUFACTURING

The top view shows a part of the department where nestable culverts are formed, fitted and made ready for shipment, principally into foreign fields. The object of nestable culverts is to reduce bulk in shipping.

In the left hand corner may be seen a metal crate partly filled

and showing method of packing.

The lower view shows how large full formed culverts are riveted by machinery.

A SHIPMENT OF CORRUGATED CULVERTS

This shows how corrugated full circle culverts are loaded for domestic transportation.

The smaller sizes are nested within the larger ones to conserve shipping space.

Photo No. 1—Boilers showing automatic stokers. Less than one half the battery is shown here.

Photo No. 2-Pump and compressor room.

Photo No. 3—About one half of the electrical power house and switch boards.

These three views, while not constituting the entire equipment necessary to produce all of the power to run a plant as large as the East Side Works of the American Rolling Mill Company, are typical and should convey some idea of the enormous power facilities.

Photo No. 1—One of the locomotives used for heavy duty around the plants. Photo No. 2—One of the locomotives used for the ordinary light shifting duty around the plants.

Photo No. 3-One of our own cars of the hopper type.

Genealogy of "Armco" Ingot Iron Shown in heavy lines.

Give Points of Superiority

INGOT IRON

"Armco" Ingot Iron acceptably fulfills the demand on its five points of superiority—Chemical Purity, Rust-Resistance, Enameling Properties, Welding Properties and Electrical Conductivity—each a characteristic of tremendous importance to the diversified industries of America.

CHEMICAL PURITY

All raw materials entering into the manufacture of "Armco" Ingot Iron are especially selected.

The iron ore must be of highest quality. The American Rolling Mill Company owns in part the iron mines from which the ore is taken.

In producing its own pig iron also, Armco scores another point for chemical purity by being able to reject and divert to the making of steel any pig iron which does not meet the extraordinarily high standard set for ingot iron.

Other raw materials entering into the Open Hearth furnace charge must be of an especially low sulphur, phosphorus, manganese and copper content, and every car of such materials is carefully checked by a control laboratory before it is allowed to enter the plant.

Analysis and check analysis taken at different stages in the process of manufacture, must prove the product as not less than 99.84% pure, considering as impurities the following: Silicon, Sulphur, Phosphorus, Manganese, Carbon, Copper, and the gases Oxygen, Hydrogen and Nitrogen.

Special deoxidizing agents are used to eliminate as fas as possible the gaseous content.

Any material not meeting the standard set, is rejected. Therefore, uniformity and chemical purity are practically assured to the ultimate consumer.

WELDING PROPERTY

An important phase of metal conservation is redeeming damaged or worn castings, structures of iron and steel, and the manufacturing of miscellaneous metal articles by autogenous welding.

A suitable filling material is the most important factor in making successful welds. A skilled welder can correct improper frames, readjust, reshape, or reclean the surfaces to be welded, but he cannot alter the composition of the filler.

The first essential of welding material is purity, the sulphur, phosphorus, manganese, carbon, silicon and gases, should be as low as possible.

Prior to the "World War" of 1914-1918, Swedish or Norway iron was principally used for welding. When the importation of these materials became impossible, it developed that "Armco" Ingot Iron welding rods met all requirements, not only equally as well, but in a wholly satisfactory manner.

RUST-RESISTING PROPERTY

Because of its purity and evenness "Armco" Ingot Iron resists rust. It is well known that the segregation of impurities accelerates corrosion through electrolytic action. By practically eliminating the impurities in manufacturing "Armco" Ingot Iron, rust resistance is assured.

"The Electrolytic Theory of Corrosion" holds that purity, homogeneity, denseness and uniformity are necessary to combat rapid deterioration.

"Armco" Ingot Iron is manufactured with such skill, intelligence, and accuracy in each step that all of the above requirements are met.

ELECTRICAL CONDUCTIVITY

"Armco" Ingot Iron because of its high purity, even density and degasification, is a good conductor of electricity. It holds first place among ferrous alloys and is used extensively for telephone and telegraph wire. Compared to the annealed copper standard which is taken at 100%, "Armco" Ingot Iron has a conductivity of 18%, or an electrical resistance approximately 5½ times that of copper. Mild steel has a conductivity of 12%, or an electrical resistance of from 8 to 9 times that of copper.

In the transmission of power, Ingot Iron is adapted for use as a stranded wire cable for high tension lines across long spans, such as rivers, gulches, etc., wherever it is not practical to use copper wire.

The uniformity of "Armco" Ingot Iron in analysis, density, etc., is a guarantee of its unvarying conductivity.

ENAMELING PROPERTY

As a base for vitreous enameling, "Armco" Ingot Iron is unexcelled.

The enameling compound is fused on to the base metal at high temperatures, ranging from 1400° Fahrenheit to 2000° Fahrenheit.

It is apparent that when metals with a high gas content are subjected to this high temperature, the gases will expand and cause eruptions, resulting in blisters.

The freedom of "Armco" Ingot Iron from these imprisoned gases eliminates this condition and reduces discard losses to a minimum.

Experience has proved also that Ingot Iron warps less than other materials through the cooling process after enameling.

LABORATORY VIEWS

The two top pictures are sections of the main chemical laboratory, while the lower ones are of the electrical laboratory.

RESEARCH LABORATORY

This division is responsible for "Armco" quality in all products.

This is one of the most thoroughly equipped metallurgical laboratories in the world for the control of sheet iron and steel.

Continuous research is conducted for the production of better quality and experiments have been conducted for many years with various alloys and manufacturing processes to produce a better material, if possible, than is now being manufactured.

These delicate instruments are very essential in laboratory work, because of the absolute accuracy necessary in making analyses.

The lower view is of a metallurgical microscope. This machine takes photographs that reveal the innermost secrets of iron and steel formations.

Two views in physical testing room at "Armco", where the very latest machinery for testing the various strengths and physical structures of iron and steel is available.

TEST YARDS

Two views of test yards, wherein material of every known brand is placed by the Research Department for observation under as nearly normal service conditions as it is possible to secure.

Up to date, the test yards have been in existence ten years and an unbiased record of every sheet of material tested is available in our Research Department.

INGOT SPLITTING

In order to check up efforts to control the gaseous content in ingot iron, ingots are periodically selected at random for splitting.

They are taken to this powerful cold saw and longitudinally sawed in two for determination of the inner structure.

This arrangement has proved a valuable asset in assisting The American Rolling Mill Company to better the quality of ingot iron and other products.

SPLIT INGOTS

This is a comparative illustration between a split portion of an "Armco" Ingot Iron ingot, as shown on the left, and a mild steel ingot, as shown on the right, of the photograph.

The very dense and almost solid structure of the ingot iron is very apparent, as compared to the spongy structure of the steel. This clearly indicates the superiority of pure iron over the ordinary steel product.

CORROSION OF IRON AND STEEL

RUST prevention of iron and steel is one of the greatest economic and conservation problems of today.

It has been stated that one large railroad system of the United States suffers a daily loss of more than 18 tons of steel as a result of the ravages of rust and in the Yearbook of the Bureau of Mines for 1916 it was estimated that the yearly loss of steel from deterioration, due to rust, is one million tons. This tonnage in raw or semi-finished materials, represents a value of \$60,000,000 to \$75,000,000 and as much again would hardly cover the cost of fabricating it into finished products.

The electrolytic theory of corrosion is the theory most widely accepted by scientists. This is based on simple and well understood principles. The elements necessary to generate and promote electrolysis are two electrodes of differing polarities, an electrolyte in contact with both electrodes, a metallic connection external to the electrolyte and a depolarizer to insure continuity of action.

Where metals of different polarity are immersed in a suitable electrolyte, (water for instance) and an outside metallic connection provided, an electric current is set up and the metal from which the current flows tends to dissolve. As an example illustrating this theory, assume a battery with the electrodes of dissimilar polarities to be iron and copper. The iron in this galvanic couple will be electropositive to the copper and will gradually dissolve.

If a strip of copper and a strip of iron are imbedded in moist sal ammoniac, such as is found in an ordinary dry cell, the solubility of the iron under such conditions will generate sufficient electric current to ring a doorbell.

Steel contains various impurities differing in polarity from the iron base, practically all of which, with the exception of manganese, are electronegative to iron. In the manufacture of steel when manganese is added to the molten metal, the manganese has a tendency to

segregate or accumulate in some places more than others. It is at such segregated places that rapid corrosion takes place. The electropositive manganese being in contact with the electronegative iron in the presence of moisture dissolves, leaving a pit. Other elements in steel, such as carbon and copper, are more electronegative to manganese than iron and the electrolytic action between these elements and the manganese is intensified.

In addition to the corrosion caused by a difference in potential between various elements, electrolytic action takes place if the metal contains stresses and strains. A twisted bar of metal will corrode more rapidly where twisted (which is electropositive) than portions of the same metal where no stresses have been applied. This emphasizes the importance of proper annealing in relieving rolling strains in materials.

Electrolytic action can be observed if a plate of pure iron has two holes drilled in it; one hole being filled with metallic tin, the other with metallic zinc, and the plate subjected to the action of sal ammoniac solution. It will be found that there is a considerable area surrounding the zinc where the iron shows no corrosion, while the zinc itself becomes discolored. Zinc being electropositive to iron. The iron surrounding the tin, which is electronegative, will be found to be corroded for a considerable distance from the tin, while the tin itself remains bright. This experiment shows the protecting effect of an electropositive coating—zinc on iron—and it shows where in each instance the electropositive metal is attacked.

Steel subjected to the weather presents all the factors necessary to electrolytic action. The heterogeneity of the material chemically and mechanically provides the necessary electrodes of differing polarity, the moisture of the air, either in a natural state or made more active because of condensed sulphurous or other gases, is the electrolyte and the metallic connection is made through the body of the metal. The oygyen of the air effects the necessary depolarization. Electrolytic action must proceed if all factors are present and it will cease if any one is withdrawn.

ARMCO SPIRIT" is a comprehensive vital force which finds expression in the practical application of policies builded on a platform of Christian principles, in which selfish purpose has no place.

"ARMCO SPIRIT" combines in proper proportion a spirit of fairness, a square deal always, both in theory and practice; a big broad view of every problem, cutting out all narrowness and littleness; a spirit of unselfishness, of loyalty, of courtesy to and consideration for the other fellow.

"ARMCO SPIRIT" is, in fact, simply an exemplification of the highest standard of real American citizenship."

EMPLOYMENT DEPARTMENT

When a man desires to become an employee of The American Rolling Mill Company, he must first present himself at the Employment Department. Here he learns whether the company has need of a man of his type and experience. If so, certain data regarding him are recorded, such as his name, age, address, nationality, trade, education and previous employment.

The possession of such facts covering each employee makes of the Employment Department a bureau of information covering the personnel of the organization. This information is confidential, but is available to all foremen for proper purposes.

TRAINING DEPARTMENT

Educational work is conducted by The American Rolling Mill Company, because of a belief that whatever helps men to be more intelligent and to understand their jobs better, makes them of more value to themselves and to their work.

The Training Department is organized so as to bring under one head all of the educational activities of the company.

Apprenticeship courses are conducted in Foundry, Machinist, Electrical, Blacksmith and Masonry trades.

Classes in general office training, Americanization, salesmanship, and various technical courses are also conducted by the Training Department.

HOSPITAL

This modern fire-proof building is located just outside of the entrance to the East Works and is surrounded by an area of beautiful parking.

The building is supplied with every convenience and modern hospital appliance for the care of injuries. A complete X-Ray outfit is at hand for examining and photographing injuries, when this is deemed advisable.

Light, ventilation and sanitary conditions are the very best and a competent surgeon, two assistants, and skilled nurses are constantly available, so that either sickness or injury can receive immediate and careful attention.

BANK

This bank building was constructed and equipped by The American Rolling Mill Company and located just outside the entrance to the East Works, for the purpose of affording employees a modern, up-to-date bank conveniently located, where pay checks can be cashed and checking and savings accounts opened:

The institution was incorporated as a subsidiary of the American Trust and Savings Bank of Middletown, Ohio, and is affiliated with the Federal Reserve system.

"ARMCO" ASSOCIATION

The third and fourth floors of this building are occupied by the Armco Association, which is composed of, governed by, and conducted by Armco men for the betterment of themselves and families. The association is neither a part of The American Rolling Mill Company, nor controlled or financed by the Company.

A complete gymnasium is housed by the Association and the encouragement of all sorts of athletics is a point of the policy.

The object of the Armco Association as written in the constitution is as follows: "To afford relief to any member who while in the employ of The American Rolling Mill Company, may through sickness or injury be rendered incapable of performing his duty. To enable him to avoid the necessity of appealing to his fellow workmen for aid and also to promote the general welfare of its members and to bring the workmen of the various departments into closer relationship."

ARMCO FOREIGN CLUB

The men of foreign birth have separate club advantages in the Armco Foreign Club House.

Here the members are allowed to bring their out-of-town visitors. For amusement they have billiard tables, a card room and a reading room supplied with foreign language newspapers and club stationary.

FOREIGN COLONY

The above views were secured in the foreign colony of Armco employees and are typical of the homes occupied by these employees.

The majority of homes are owned by the occupants and the general appearance of these places tends to prove the value of wholesome Americanization methods.

The American Rolling Mill Company owns large tracts of land suitable for truck gardening, and each year they have the ground prepared and turned over to all employees who wish to establish and care for vegetable gardens.

These views are typical of the general appearance of the garden plats, and in the top view the large building shown is called the "Bachelors Club", which is provided by the company as a home for young men whose family attachments are elsewhere.

Each year as the crops mature, the company finances an exhibition, held under the auspices of the State Agricultural Department, for Armco employees.

The top photograph is typical of the exterior of such an exhibit, while in the lower photograph may be seen a representative exhibit of products raised and canned.

"Armco" Ingot Iron Corrugated Sheets.

ARMCO AUTOMOBILE STEEL SHEETS AND PICKLED SPECIALTIES

In 1912 The American Rolling Mill Company entered the field of Automobile Steel Sheets. At that time the grades of sheets required were for flat curved and hand-formed work, demanding only a smooth finished, full pickled, full cold rolled and annealed stock. Sometimes "stretcher leveling" was specified.

The Automobile parts made of sheet metal at that time were not intricate in form and the manufacturers did not require as good surface as they demand today. In fact, had it been suggested in the early days of metal automobile bodies that the manufacturers of sheets would eventually be required to produce the high finished, drawing quality sheet of today, the suggestion would have been ridiculed as "impossible."

In the beginning, The American Rolling Mill Company specialized on one remarkably versitile sheet, Silver Finished Auto Deep Drawing Steel, which blazed its way preeminently into the automobile field.

Additional grades were added, until at present there is a complete range of Armco Automobile Sheets to meet the full, general, diversified requirement and wishes of the trade. Each grade has received the careful attention of specialists who follow closely the trend of the time and quite frequently anticipate the demand of the automobile manufacturers in the production of material to meet the requirements of new design.

ARMCO Automobile Steel Sheets are made from special analysis Mild Open Hearth Steel. Since we deal primarily in Specialties our facilities for the control of analysis, annealing, cold rolling, inspection, etc., enable us to suit our product to the individual requirement of each buyer. This perfection has only been made possible through years of experience in developing high-grade specialties and an organization skilled through years of practice in this type of work.

PICKLED SPECIALTIES

We are prepared to furnish the following grades of Automobile Steel and Pickled Specialty Sheets:

Hot Rolled Single Pickled and Annealed.

Hot Rolled Full Pickled and Annealed.

Hot Rolled Single Pickled Deep Drawing.

Hot Rolled Full Pickled Extra Deep Drawing.

Single Pickled, Cold Rolled and Annealed.

Single Pickled, Full Cold Rolled and Annealed.

Single Pickled, Cold Rolled Deep Drawing.

Full Pickled, Full Cold Rolled and Annealed.

Full Pickled, Full Cold Rolled Deep Drawing.

Full Pickled, Full Cold Rolled Extra Deep Drawing.

No. 2 Grade Furniture. (Single Pickled, Full Cold Rolled and Annealed.)

No. 1 Grade Furniture. (Full Pickled, Full Cold Rolled, Annealed and Deoxidized.

Automobile Grades are furnished in steel only; other grades furnished in Ingot Iron or steel.

DEOXIDIZED OR SILVER FINISH SHEETS

Our Silver Finish Sheets are deoxidized and have a very bright surface finish closely resembling a cold rolled strip steel surface.

A Silver Finish Sheet is more uniform in temper than the regular commercial Auto Body Sheet of similar grade, because in annealing air does not come in contact with the edges of the sheet forming an oxide thereon, and hardening the edges of the sheet because of this contact.

Ranges of maximum sizes by gauges on Automobile Steel Sheets within which the normal standard of surface finish can be secured.

FOR TWO COAT JAPANNED WORK

(Two Coat Dipped Enamel)

Gauge	No. 18	No. 19	No. 20	No. 21	No. 22
Width	Length	Length	Length	Length	Length
18"21"	84	84	84	84	84
22''—25"	108	108	108	96	96
26''—30''	108	108	108	96	96

FOR THREE COAT JAPANNED WORK

(Three Coat Dipped Enamel)

Gauge	No. 18	No. 19	No. 20	No. 21	No. 22
Width	Length	Length	Length	Length	Length
18"—21"	96	96	96	96	96
22''— $25''$	108	108	108	108	108
26"—30"	120	120	120	96	96

FOR THE NORMAL STANDARD OF AUTOMOBILE BODY PAINTING

Gauge	No. 18	No. 19	No. 20	No. 21	No. 22
Width	Length	Length	Length	Length	Length
18"-21"	96	96	96	96	96
22''—25''	108	108	108	108	108
26''36''	120	120	120	120	120
37''-40''	120	120	120	120	• • •
41''—42''	120	120	120		
43''—48''	120	120			

Pickled Steel Specialty Sheets as a whole are subjected to all classes of drawing operations, and in fact are also subjected to spinning operations in some cases. It is, therefore, most essential in considering specifications that we have full information relative to the article to be made, the method of stamping, drawing or spinning, the number of operations necessary to complete the article and whether or not the material is pickled and annealed between operations. It is also necessary that we know the form of dies used. This information will enable our production engineers to specify treatment which will secure the best results in working qualities of the sheet.

AUTO BODY GRADE

This grade of Automobile Sheets is carefully inspected for surface finish in No. 22 gauge and heavier to secure a surface for the standard of roughing and painting required for automobile bodies.

The flatness of the sheet is such that it can be used for flat curved work. This grade of material should not be used, however, where flatness is a special feature unless it is stretcher leveled. Auto Body grade may be used for bumping in No. 22 gauge, but in the heavier gauges it is not as satisfactory for this purpose as a deep drawing grade.

This grade is not recommended for deep drawing but it will stand a 180 degree bend with and against the grain.

AUTO BODY DEEP DRAWING GRADE

This material is of the same surface standard as Auto Body grade, but it is a softer and more workable sheet because of the extra annealing treatment it receives. It is recommended in No. 20 gauge and heavier for bumping requirements.

This grade of sheet cannot be guaranteed against stretcher strains as it is produced for normal drawing requirements.

The surface finish on this grade of stock is satisfactory for the normal standard of Automobile Body painting. The material cannot be guaranteed to be as flat as Auto Body Steel, as the principal features developed in this grade are ductility and deep drawing qualities, in combination with the Auto Body standard of surface finish.

AUTO BODY EXTRA DEEP DRAWING GRADE

This sheet is produced with an Auto Body standard of surface finish, but the temper varies widely, according to the requirements the material is especially made to serve.

Extra Deep Drawing Steel is often made to serve a normal deep drawing requirement, which is made extra hazardous, however, by the demands of the buyer to have the material minimize stretcher strain development.

Extra Deep Drawing Steel varies in temper to meet the draw which it is to serve whether a direct draw, a compression draw, flange draw or compound draw.

HOOD AND FENDER GRADE

This grade of Automobile Steel Sheets is produced in No. 22 gauge and heavier. It is stiffer than Auto Body grade, having received extra cold rolling on polished rolls.

Hood and Fender Grade is inspected more closely for surface finish than Auto Body Steel to permit adaptability for the average standard of three or more coats dipped enameling.

From a flatness standpoint this grade is adaptable for flat curved requirements such as hoods, running board aprons, flat fender tops and fender skirts.

This grade of sheet will answer for beading around wire and in No. 21 and No. 22 gauge will stand a 180 degree bend with and against the grain.

HOOD AND FENDER DEEP DRAWING GRADE

This stock is of a surface finish suitable for a normal standard of three or more coats dipped enameling plus a ductility sufficient for stamping doors and for practically all convex fenders.

HOOD AND FENDER EXTRA DEEP DRAWING GRADE

Hood and Fender Extra Deep Drawing Grade is made to draw into crown fenders with a minimum amount of stretcher strain development and when used for this purpose comes well within the normal standards for breakage. This grade is especially adaptable for the forming of crown fenders where the fender body is all one piece. This includes fender tops, fender visors and fender rims.

SPECIAL FENDER GRADE

The American Rolling Mill Company produces a special Fender Grade, Silver Finished Sheet. This is a bright highly polished grade of sheet of either a hard or deep drawing quality necessary for the manufacture of two coat dipped enameling requirements, whether for hoods, running board aprons, instrument boards or fenders. The standard for two coat dipped enameling is so severe that practically 50% of first-grade hood and fender steel will not meet it. Consequently, we do not recommend hood and fender grade for two coat work.

On a Silver Finished Sheet any defects in surface are glaringly apparent. For this reason on Special Fender Grade Silver Finished, we are enabled to insure a surface more like a mirror than on any other sheet outside of cold rolled strip steel.

Special Fender Silver Finished Steel is the only grade that we manufacture which can be recommended for nickel-plating purposes where a smooth high finish is required. Practically any grade of steel sheets can be nickel-plated irrespective of surface but the plating of a sheet does not in the slightest degree eliminate any of the surface defects on the base sheet, but rather intensifies them.

RADIATOR CASING STEEL SILVER FINISHED

This grade of sheets has surface finish equal to the normal Hood and Fender Steel and in addition possesses special drawing qualities for compression draws such as radiator casing. From the standpoint of uniformity in giving freedom from breakage and in decreasing stretcher strain development, it is superior to other sheets on the market.

The fact that sheets of this grade are deoxidized permits of a finer surface finish than normally applies on radiator casing steel, and it is of special value for the close die work on radiator casing in giving long life to the dies.

ARMCO FURNITURE STEEL SHEETS

FURNITURE GRADES

We can furnish Furniture Grades in either Ingot Iron or Steel and in gauges from No. 10 to No. 24 inclusive.

- No. 1 Grade Furniture Steel is a full pickled, full cold rolled, stretcher leveled, annealed and deoxidized sheet.
- No. 2 Grade Furniture Steel is a single pickled, full cold rolled annealed sheet (not deoxidized).

It is impossible to produce as uniformly a good surface on Furniture Steel in extreme widths or heavy gauges as can be expected in standard sizes up to 36" wide.

No. 1 Grade Furniture Steel is carefully inspected after stretcher leveling and from the standpoint of flatness should be satisfactory for all high-grade furniture and kindred requirements.

The following table gives our standard pickling and cold rolling limits:

ARMCO	FURNITURE	STEEL	SHEETS

GAUGE	$54^{\prime\prime}$	$50^{\prime\prime}$	48"	44''	$42^{\prime\prime}$	40''	36''	$32^{\prime\prime}$	30′′	$28^{\prime\prime}$	$26^{\prime\prime}$	24"
316" to No. 10			156	156	156	156	156	156	156	156	156	156
No. 11 to No. 17	144	144	144	144	144	144	144	144	144	144	144	144
No. 18 to No. 19		144	168	168	168	168	168	168	168	168	168	168
No. 20 to No. 22			144	144	144	168	168	168	168	168	168	168
No. 23 to No. 24					120	120	144	144	144	144	144	144
No. 25 to No. 26						120	144	144	144	144	144	144
No. 27							144	144	144	144	144	144
No. 28							120	120	120	120	120	120

ALLOY COATED COLD ROLLED SHEETS

Can be furnished in Ingot Iron or Steel.

This product is used chiefly in the manufacture of metal caskets, gasoline tanks for automobiles, auto trucks and tractors and water tanks for tractor radiators.

Due to the treatment and care exercised in the manufacture of Alloy Coated Sheets this material possesses excellent drawing qualities which can be varied to suit each individual requirement. Because of its composition, the alloy coating acts as a flux and causes the sheet to flow uniformly under the dies. The soft coating reduces friction and wear on the dies to a minimum.

Alloy Coated Sheets solder with extreme facility; they may be spot welded if desired, and can be copper plated or nickel plated. In nickel plating it is not necessary to flash the sheets with copper before plating. The Alloy Coating makes the sheet an ideal material to receive and hold paint.

The base sheets are given a full pickled, full cold rolled finish and properly treated in annealing processes to secure the desired drawing qualities. After this treatment they are coated with a mixture containing approximately 88% lead and 12% tin. This coating is decidedly different in composition from that used on commercial long ternes and runs approximately $\frac{1}{2}$ ounce per square foot. In terne plate terms this is the equal of approximately 13 lbs. coating based on a box of terne plate containing 112 sheets, 20'' x 28'', resquared.

Alloy Coated Sheets can be furnished in gauges No. 12 to No. 26 inclusive.

Gauge variation limits applying to all Black Sheets also apply to Alloy Coated Sheets.

SKETCH PLATES

Sketch Plates can be sheared to specifications provided dimensions are within our rolling limits.

INGOT IRON ENAMELING STOCK

Ingot Iron Enameling Stock is a pickled sheet, the surface while smooth and free from scale has been cold rolled only sufficiently to insure flatness.

Freedom from gases and impurities makes Ingot Iron Enameling stock enamel without pinholes. The material is extremely soft and hot rolling of the sheets does not produce as glazed a finish on the soft iron as it does on steel. Ingot Iron for this reason has a pronounced velvety surface which enables it to take a more uniform coat of enamel.

Enamel, when based on Ingot Iron contains fewer defects such as pinholes, lumps or non-uniformity in the thickness of the enamel. A depth of color and a beautiful finish is produced that cannot be obtained by the use of a steel base.

Ingot Iron Enameling Stock can be depended upon to produce a uniform and extremely large percentage of fine, enameled ware. Rejection percentage rarely exceeds one to two per cent, therefore less furnace capacity is required to obtain the same output as would be obtained from the use of Enameling Steel Stock.

The uniformity of Ingot Iron Enameling Stock is due to the close specification under which it is manufactured. In the Open Hearth furnace it is refined to a greater degree than steel. The extent of this refinement is shown by the fact that in the aggregate the impurities, silicon, phosphorus, sulphur, carbon, manganese, copper, oxygen, hydrogen and nitrogen, will not exceed 16/100 of 1%. The gases such as hydrogen, nitrogen, carbon monoxide and carbon dioxide are reduced to uniformly low limits. This remarkable freedom from gases and other impurities insures uniformly excellent results from Ingot Iron Enameling Stock.

Ingot Iron Enameling Stock can be produced in Extra Deep Drawing quality.

See page 218 for Table of Limits governing the manufacture of Armco Ingot Enameling Stock.

HIGH CARBON STEEL

We are prepared to furnish High Carbon Steel Sheets containing .15% carbon or over, within the following limits:

No. 18 to No. 20 gauge inclusive in sizes not exceeding 30"x120"

No. 21 to No. 23 gauge inclusive in sizes not exceeding 30"x120"

No. 24 to No. 26 gauge inclusive in sizes not exceeding 36"x 96"

No. 17 gauge and heavier, up to rolling limits.

In addition to regular grades of High Carbon Steel as required for road scrapers, shovels, putty knives, coal chutes, etc., we produce a special grade known as Section Steel for the manufacture of mowing machine knives; also special grades used in the making of automobile clutches, corn knives and saws.

CIRCLES

Any of our regular grades can be furnished in circles within these limits:

Lightest—as light as produced on the mills.

Heaviest—1/4".

Smallest—10" diameter.

Largest-60" diameter.

Heavier sheets can be cut to circles on straight shears, but edges will be irregular.

INGOT IRON BLUE ANNEALED SHEETS

Blue Annealing removes rolling strains and heats the sheets sufficiently to permit of flattening in the roller leveller.

Blue Annealed Ingot Iron is the best material to use where resistance to corrosion is a factor. Ingot Iron resists rust and in addition has the best of working qualities. It is especially adapted to the manufacture of water and oil tanks, range boilers, gas containers, electrical switch boxes, mine cars, grave vaults, etc.

Steel Blue Annealed Sheets can also be furnished under normal conditions (see page 218 for limits).

INGOT IRON GALVANIZED SHEETS

Ingot Iron Galvanized Sheets find their chief use where rust-resistance is essential. By repeated tests and experiments, it has been found that Ingot Iron dissolves much more slowly in molten zinc than does steel. This gives the sheet a pure coating of spelter which will withstand the action of the elements to a much greater degree than a coating with a higher iron content.

Ingot Iron Galvanized Sheets are used extensively in the manufacture of culverts, flumes, washing machines, refrigerators, roofing, siding and formed factory products.

Ingot Iron Galvanized Sheets can be furnished in all gauges from No. 10 to No. 28 inclusive up to 48" in width and 144" in length.

INGOT IRON POLISHED SHEETS

Ingot Iron Polished Sheets are of a bluish, green appearance, very smooth and velvety, and with a dense, firm oxide which permits extreme rough handling and bending with little danger of breaking. These sheets are full pickled, full cold rolled, resquared to size, and oiled. They can be stretcher leveled when necessary. Ingot Iron Polished Sheets are very uniform in color across the width and length of the sheet, free from buckles, and possess remarkable working qualities. These sheets are used to a great extent in the manufacture of stoves, bake pans, locomotive jackets and engine lagging. For each of these purposes the corrosion resistance of Ingot Iron and its beautiful finish makes it an ideal material.

Ingot Iron Polished Sheets can be furnished in No. 24 gauge and heavier. Best results are obtained in widths not exceeding 30". Extreme width 33".

CASTINGS

The knowledge and skill attained by the Armco organization in the making of high quality Steel Sheets together with excellent foundry and furnace facilities make possible the production of high-grade Open-Hearth Steel Castings.

We are especially well prepared to furnish the following mill type castings up to 60 tons each.

Annealing Covers
Annealing Bottoms
Pinions
Charging Pans
Anvil Blocks
Roll Housings
Spindles
Coupling Boxes
Charging Spoons
Etc.

Our castings are manufactured of clean, dense steel and are very close to specified dimensions.

Pinions, Spindles, etc., can be furnished completely machined.

Formed Products Section

THE American Rolling Mill Company maintains a factory for the manufacture of roofing, siding, conductor pipe and eaves trough, welded dredge pipe, small tanks, circles and other formed products.

The factory is operated as a "Service to Customers" Department, rather than a manufacturing industry, and is considered as a link in the chain of "QUALITY—SERVICE", which Armco gives to its customers.

CORRUGATED SHEETS

For Roofing, Siding, Ceiling, Arches, Shutters, Awnings, etc.

Ingot Iron Sheets, Galvanized and Corrugated, not only impart great strength to the building to which they are applied, but are unequaled in Rust Resisting Quality.

For roofing, we recommend sheets $27\frac{1}{2}$ " wide after corrugating which allows for $1\frac{1}{2}$ corrugations lap. The result in using this style will be greater strength and security against leakage.

For siding, ceiling, arches and awnings 26" wide after corrugating allowing a lap of one corrugation is sufficient.

We do not recommend corrugated sheets for roofing where the pitch is less than one-quarter and, unless otherwise specified, we shall figure on $27\frac{1}{2}$ " finished for roofing requirements.

To apply corrugated roofing, begin by laying from the end opposite that exposed to the general wind direction. That is if the general wind direction is toward the left end of the building start laying the roof at the right end. This will prevent the wind from having an opportunity to drive under the laps. Allow one corrugation of the first sheet to project over the gable end roof boards, and at least 3 inches projection over the eaves. Hammer the projecting corrugation down over the gable end roof boards and nail it closely. Nail through the top of every other corrugation at the Do not nail except at sides and ends of sheets. sheet should be lapped 1½ corrugations over the first and nailed at intervals of eight inches through the top of lap. In laying the second row of sheets, the ends should lap over the first row not less than three Some roofers use a light cementing compound or paint This is a good plan as it prevents wind from between end laps. driving rain in and acts as security against backing up of snow and Use care to preserve straight lines. For light gauges, such as No. 26 and No. 28 use close sheathing. For the heavier gauges sheathing may be dispensed with and purlins used.

It requires about one-half pound of nails and one-quarter pound of lead washers to properly lay one square of corrugated roofing.

When metal roofs have a conductive connection with the ground, the best possible protection against lightning is afforded.

"ARMCO" INGOT IRON

CORRUGATED SHEETS

DIFFERENT SIZES WE MANUFACTURE FOR GENERAL BUILDING PURPOSES

SPECIAL SPEC	CONTRACTOR OF THE	E4808476	DECEMBER 1	en establish	SCHOOL STATE	CONTRACTOR OF THE PER
dead to the	a della automite della	STATE STATE	March 18	22/3/4	Charles and	stranscatteria
	SHOWN HON					
PARTY NEW YORK	MATTER STATE	CHARLES AND	SEKOZSIEŻ	SELECTION STATE	NO EXPLICA	MESSAGARA)
1400mphis23	NOTE OF THE SECOND	243243243	433301	1500 1150	SHAMS AN	AND THE STATE OF T
	18/3/ESPESIGN					
The PRINCE SERVICE SER	が存在される。	Annual Property of the Control of th		All the second second second second	and the second s	ACCRECATION CONTRACTOR OF THE PROPERTY OF THE
	Mark State A	SI MEMBER	A 52 65 (24)	WATER A	Urackilla (A	A VITAL CONTRACTOR

2½" Corrugated Roofing and Siding Sheets

Regular stock sheets for siding are 26 inches wide, and can be furnished in 5, 6, 7, 8, 9 and 10 foot lengths, and from No. 28 to No. 16 gauge.

For roofing we furnish and recommend $2\frac{1}{2}$ inch corrugated $27\frac{1}{2}$ inch wide after corrugating, this allows for one and one-half corrugation lap with 24 inch covering width.

We carry this in stock galvanized in all standard even lengths, gauges 26, 24, 22 and 20. 3 inch corrugated sheets supplied in all even stock lengths, 26 inches wide. Other lengths and widths rolled to order.

One of the great advantages of corrugated roofing and siding is its ease of application to skeleton framing, thus making it a low cost, yet durable and effective construction.

We recommend that end laps on siding should be from 2-inch to 3-inch and on roofing from 3-inch to 6-inch depending on the pitch.

SHEETS 12 FEET LONG CAN BE FURNISHED AT 10 CENTS PER SQUARE ADDITIONAL, THEREBY OFTEN SAVING LAPPAGE AND LABOR.

"ARMCO" INGOT IRON

CORRUGATED SHEETS

11/4-inch Corrugated Sheet. 20 Corrugations. Both Lips Down

Regular stock sheets are 25 inches wide, cover 24 inches from center to center of outside corrugations, and can be furnished in 5, 6, 7, 8, 9, and 10 foot lengths, No. 22 gauge and lighter.

This size can be used the same as $2\frac{1}{2}$ " corrugated sheets. When used for roofing we recommend the 27 inch wide sheets, thus allowing for laps of $1\frac{1}{2}$ corrugations, and covering width of 25 inches. It is particularly adapted for interior siding, for ceiling large store-rooms and warehouses, and for exterior siding, being stiffer than $2\frac{1}{2}$ inch corrugations.

Illustrating Use of Lead Washers and where to nail Corrugated Sheets

"ARMCO" INGOT IRON PRESSED STANDING SEAM ROOFING MADE OF INGOT IRON GALVANIZED SHEETS

Standing Seam Roofing

Straight Cleat shipped ready to apply Standing Seam Roofing

Our Standing Seam Roofing, shown above, has all the qualities necessary to make a perfect roof. It is so constructed as to make a water-tight joint. It can be cheaply and easily applied, and can be fitted around angles, valleys, and openings without unnecessary waste. The nails are not driven through the roofing sheets, but through the cleats underneath the sheets. It is very strong, and can not be blown off, and its construction provides for expansion and contraction.

Regular stock sheets of No. 28 and 26 gauge are 24 inches wide, and from 5 to 10 feet in length. 24 and 22 gauge are supplied $25\frac{1}{2}$ " wide. 12 foot lengths at 10 cents per square additional.

This style of roofing can be taken off and reapplied, with simply the loss of the cleats. If this is to be done, write for suggestions.

We recommend it on buildings having two inches or more pitch to the foot.

PRESSED STANDING SEAM ROOFING SELF-CAPPING

MADE OF INGOT IRON GALVANIZED SHEETS

DIRECTIONS FOR LAYING PRESSED STANDING SEAM ROOFING

Snip and turn the end locks with the Jointer and bend upper end of the sheet up and the lower end down. Commence at the lower right hand corner, hold the sheet so the widest standing seam or lip is at the right hand side, flatten out the wide standing seam, bend it over and nail to the edge of sheathing, or if Fire Wall, turn the sheet up 4 to 6 inches, nail securely and counter flash.

Straighten the lower end lock so as to allow same to be nailed to edge of sheeting, this represents the starting sheet, applied.

Now apply cleats to the sheathing, 2 at the upper lock end and one every 12 or 14 inches on the side seam, then continue your course up to the comb of the roof, allowing the sheets to project one inch over the comb of the roof on one side and two inches on the other.

Straighten up, fold the higher over the lower and form seam with squeezing tongs. Or if Ridge Roll is to be applied, it will not be necessary to fold over end, making a Standing Seam.

Start the second course with the piece, if any, left over from the first course, allowing the flange to over lap first course Standing Seam. Press it down and turn the ends of the cleats over, then press seam together with the tongs.

It is best to start second course with a different length sheet than the first in order to break joints. This is the rule when end locking the sheets.

Some simply end lap this roofing and run cross joints parallel with each other, but this is not good practice.

PRESSED STANDING SEAM ROOFING

Standing Seam Roofing laid on a Gable Roof using Straight Cleats

Figure explains the method of laying Standing Seam Roofing on a gable roof, and the manner of forming the comb without the use of a special combing cap; also method of fastening edges at sides of roof.

A shows side of roof completed. B-Ridge or comb as it appears when completed. C—standing seam hammered down to form into comb. D—extreme end of sheet, having two inches turned up to form comb. E—upper end of sheet on opposite side turned up one inch; over this is folded one inch of the sheet on the opposite side, as in D. The folding of the end of sheet over the opposite one forms a solid ridge cap from the roofing sheets, and only requires a little careful and patient work to accomplish it. F—shows sheet formed ready to place in position on roof. H—end cleats in position at end joint of lower sheet. I—end joint formed on lower end of sheet ready to hook into upper joint of sheet H.

CORRUGATED SHEETS, SUPPLIED WITH PRESSED STANDING SEAM EDGES

Pressed Standing Seam Corrugated Roofing Laid

A—Combing Cap. B—Wood Filler. C—Roof Finished. D—Standing Seam, finished. E—Cross-Joint nailed. F—Sheet in place, cleat turned, and seam squeezed. G—Cleats in place at side of sheets. H—Sheet ready to put in place to finish course. J—Sheathing Strips.

Mode of Finishing Standing Seam when laid as Roofing

Shows Corrugated Iron supplied with Standing Seam

V-CRIMP ROOFING

MADE OF INGOT IRON GALVANIZED SHEETS

Regular V-Crimp Roofing as shipped

V-Stick used with V-Crimp Roofing

Regular stock sheets are 24 inches wide, and can be furnished in 5, 6, 7, 8, 9 and 10 foot lengths.

V-Crimp Roofing is the oldest style of iron roofing, and has been used more extensively than any other kind. There is still as large a demand for it as for patent Standing-Seam Roofing (which has a much better mechanical construction), on account of its simplicity and cheapness. Any one can apply this roofing as the tools required are simply a hammer, a pair of snips, and a jointer to turn end locks. It can be applied direct to close sheathing, or to strips placed four or five inches apart, or over old shingles, as we use Standing Seam Roofing.

Do not lap the ends of V-Crimp Sheets, but lock them together as in Standing Seam.

We can furnish 22, 24 and 26 Gauge in lengths and widths of regular stock sheets, also in 12 foot lengths, at the usual additional charge of ten cents per square.

"ARMCO" INGOT IRON THREE V-CRIMP ROOFING MADE OF INGOT IRON GALVANIZED SHEETS

V-Crimp Roofing with Three Crimps or Center Crimp This style is never shipped unless specially ordered

Regular stock sheets are 25 inches wide, and can be furnished in 5, 6, 7, 8, 9 and 10 ft. lengths. Gauges 28 to 22 in galvanized.

V-Crimp Roofing, with Center Crimp, makes a very stiff sheet, and is preferred by some, as it breaks the flat appearance of the sheets.

We recommend its use where rafters are not over 10 feet, and no ends laps are required, as it is not advisable to simply lap the ends of the sheets, and it is difficult to make two small end joints on every sheet. We do not furnish sticks for center crimp unless specially ordered.

[Cut shows where to Nail V-Crimp Roofing]

We can furnish Roofing Sheets in 12 foot lengths in Gauges listed above at an additional cost.

4-X GRADE DOUBLE CROSS-LOCK ROLL ROOFING MADE OF INGOT IRON GALVANIZED SHEETS

This style roofing is especially adapted to roofs having less than two inches pitch to the foot, and is used successfully where only one inch fall is given.

Each roll as shipped contains 50 lineal feet, 2 feet wide after the sheets are seamed together. These rolls are made up of 5 resquared sheets $26\frac{1}{2}$ " wide, 122 inches long, swedged together, being locked by a power swedger that makes a very close and neat joint.

This method of laying is very simple, and makes a perfect roof when completed. We do not rivet or countersink our caps, but allow for expansion and contraction in our metal cleat fastening.

This is a very desirable roofing where buildings have the roof pitch one way only, with a slight fall and long courses.

We can furnish Roll Roofing with either single or double cross lock.

Gauges 28 and 26.

Never give a roof less than one inch fall to the foot.

ROLL AND CAP ROOFING

MADE OF INGOT IRON GALVANIZED SHEETS

How Roll and Cap Roofing is applied

This cut illustrates the method of laying Roll and Cap Roofing on a shed roof. Cut rolls into strips to suit length of rafters, allowing one inch both at eave and comb to fasten.

(A) shows finished seam. (B) shows edge of sheets turned up to form seam, with cleats placed in position and nailed to sheathing. (C) shows sheet with edges turned up and ready to place against sheet (B). (D) shows manner of fastening sheets at eave. After sheet (C) is placed against sheet (B), the cap is dropped over single edge of each, then the long end of cleat is turned over cap, and all are squeezed up together with tongs.

"ARMCO" INGOT IRON CURVED CORRUGATED SHEETS BLACK AND GALVANIZED

Corrugated Sheet curved for Roofing

These sheets can be curved to any radius desired within bending capacity of the material.

We curve them to specifications required, and pay particular attention to exactness. We can furnish curved sheets in either $2\frac{1}{2}$ " or $1\frac{1}{4}$ " corrugations, and in lengths from 5 to 12 feet.

Corrugated Sheets curved at one end for Permanent Awning. Can also be used for shed or porch roofs. Sheets can be furnished in any stock length up to 12 feet.

CURVED CORRUGATED SHEETS

BLACK AND GALVANIZED

Corrugated Sheet curved at both ends for Ventilators, Verandas or Awnings

A section of Corrugated Iron Arch for fire-proof buildings, in which our Corrugated Curved Sheets are used

In fire-proof buildings these arches form a fine ceiling below and a foundation for the floor above. For strength, lightness, durability and fire-proof qualities, they can not be excelled.

The strength depends, of course, on gauge of iron used and also on amount of rise given. Where a very slight rise is necessary, particular attention should be given to gauge used.

We make these from plans and specifications furnished, and guarantee them to fit according to working plans.

CONDUCTOR PIPE MADE OF GALVANIZED INGOT IRON

Gauges 28 to 24

PLAIN ROUND CONDUCTOR PIPE

In the following sizes: 2", 2½", 3", 3½", 4", 5", 6"

ROUND CORRUGATED CONDUCTOR PIPE

In the following sizes: 2", 3", 4", 5", 6"

SQUARE CORRUGATED CONDUCTOR PIPE

POLYGON CONDUCTOR PIPE

In the following sizes: 2", 3", 4", 5", 6" The 2" size not made heavier than 26 gauge.

LAP JOINT EAVES TROUGH MADE OF GALVANIZED "ARMCO" INGOT IRON SHEETS

A PERFECT AND UNIFORM EAVES TROUGH

Made in ten (10) foot lengths. Gauges 28 to 24.

SIZES

3 inch	4 inch	5 inch	7 inch	9 inch
$3\frac{1}{2}$ inch	$4\frac{1}{2}$ inch	6 inch	8 inch	10 inch

3 inch to 6 inch inclusive, $1\frac{1}{2}$ inch bead.

7 inch to 10 inch, 1/8 inch bead.

Packed in cases of 250 feet.

SLIP JOINT EAVES TROUGH

MADE OF GALVANIZED "ARMCO" INGOT IRON SHEETS

GAUGES 28 AND 26

Made in 10 ft. lengths, sections without seams, right hand and left hand. The slip joints are guaranteed to go together easily, and this style is a very convenient one to hang.

Sizes are taken inside of bead.

SIZES IN TEN FOOT LENGTHS

3 inch	4 inch	5 inch	7 inch	9 inch
$3\frac{1}{2}$ inch	$4\frac{1}{2}$ inch	6 inch	8 inch	10 inch

3 inch to 6 inch inclusive, $\frac{1}{2}$ inch bead. 7 inch to 10 inch, $\frac{7}{8}$ inch bead. A crate of Trough contains 25 full length pieces, half right and half left unless otherwise ordered.

ALWAYS STATE WHETHER RIGHT OR LEFT IS WANTED, OTHER-WISE HALF RIGHT AND HALF LEFT WILL BE SHIPPED.

DOUBLE BEAD EAVES TROUGH

EITHER LAP OR SLIP JOINT, MADE FROM GALVANIZED "ARMCO" INGOT IRON SHEETS

SIZES:

28, 26, 24 Gauge in Lap Joint and 28 and 26 in Slip Joint.

3 inch
3½ inch

4 inch 4½ inch

5 inch 6 inch 7 inch 8 inch 9 inch 10 inch

3 inch to 6 inch, $\frac{1}{2}$ inch beads. 7 inch to 10 inch, $\frac{5}{8}$ " beads.

Double Bead Trough, with either Lap or Slip Joint, is always RIGHT and LEFT within itself.

A crate of this Trough consists of 25 full length pieces.

OCTAGON CONDUCTOR PIPE

MADE FROM GALVANIZED "ARMCO" INGOT IRON SHEETS

This style of Conductor Pipe is manufactured exclusively by us. Gauges 28 to 24.

The sharp Concave Corrugation makes a very handsome effect. Contraction and expansion are also well provided for in this pipe.

SIZES:

2 inch Octagon Pipe

3 inch Octagon Pipe

4 inch Octagon Pipe

5 inch Octagon Pipe

6 inch Octagon Pipe

We can furnish Elbows and Shoes to fit this Pipe perfectly.

"ARMCO" INGOT IRON GALVANIZED RIDGE ROLL PLAIN RIDGE ROLL

Gauges 28 to 20

	SIZES:	
Roll	Girt	Width of Apron
11/4 inch	7 inch	2 inch
$1\frac{1}{2}$ inch	8 inch	$2\frac{1}{4}$ inch
2 inch	10 inch	25/8 inch
$2\frac{1}{2}$ inch	12 inch	3 inch
3 inch	15 inch	4 inch
3 inch	18 inch	6 inch

Made in standard 10 feet lengths.

V-RIDGE CAP

Gauges 28 to 24

6 inch girt 7 inch girt 8 inch girt 10 inch girt 12 inch girt

ROOF GUTTERS

MADE OF 28 TO 24 GAUGE GALVANIZED INGOT IRON IN 10 FOOT LENGTHS

The nails used in fastening are not exposed. No wooden supports needed. In ordering always specify exact pitch of roof.

Style B in position

Style A

SIZES:

14 inch Girt, 5% inch Bead 20 inch Girt, 5% inch Bead 24 inch Girt, 5% inch Bead

Style B

SIZES:

15 inch Girt, 5% inch Bead 20 inch Girt, 5% inch Bead 24 inch Girt, 5% inch Bead

BOX AND O. G. GUTTERS

MADE IN 10 FOOT LENGTHS OF GALVANIZED INGOT IRON

Gauges 28 to 24

Backs of Trough same height as Bead End unless otherwise specified.

BOX GUTTER, STYLE C

SIZES:

Size	5	inches	6	inches	7	inches
Depth	31/2	inches	41/	inches	41/	inches
Girt	. 12	inches	14	inches	16	inches

BOX GUTTER STYLE D

Size	6 inches	7 inches	8	inches
Depth	4 inches	5 inches	$5\frac{3}{4}$	inches
Girt 1	5 inches 1	8 inches	20	inches

O. G. GUTTER, STYLE E

Size	6	inches	7	inches	8 inches
Depth	$4\frac{1}{2}$	inches	$5\frac{1}{2}$	inches	7 inches
Girt	15	inches	18	inches	22 inches

We can make any special style or size of O. G. Gutter to order.

BOX AND O. G. GUTTERS

Gauges 28 to 24

Backs of Trough same height as Bead End unless otherwise specified.

BOX GUTTER, STYLE F

 Size
 6 inches
 7 inches
 8 inches

 Depth
 5½ inches
 6 inches
 6 inches

 Girt
 18 inches
 20 inches
 22 inches

O. G. CUTTER, STYLE G

Size6 inches7 inches8 inchesDepth $5\frac{1}{2}$ inches $6\frac{1}{2}$ inches7 inchesGirt18 inches20 inches22 inches

O. G. GUTTER, STYLE H

O. G. GUTTER, STYLE J

WE CAN FURNISH O. G. GUTTER WITH RIVETED STAYS AND STRAPS TO HANG SO THAT NO EXTRA HANGERS ARE NEEDED, AT THE USUAL EXTRA.

FORMED PRODUCTS

"ARMCO" INGOT IRON

CORRUGATED ELBOWS AND SHOES, GALVANIZED AFTER FORMATION—Gauges 28 to 24

No. 4-90 degrees

Shoe-75 degrees

The above cuts represent 4 inch Elbows and Shoe, and show the exact number of crimps in each NUMBER of that size.

The above cuts show exact number of crimps in 3 inch Elbows. Order Elbows and Shoes by Size and Number.

"ARMCO" INGOT IRON FLAT CRIMP OCTAGON GALVANIZED ELBOWS

Elbow

Shoe

Made in four Angles

These elbows are made to match and fit Octagon Pipe perfectly, and are sold at same price as ordinary, plain round or corrugated elbows.

GALVANIZED, CORRUGATED OR PLAIN ROUND ELBOWS AND SHOES

Gauges 28 to 24

SIZES:

2 inch, Corrugated or Plain Round

3 inch, Corrugated or Plain Round

4 inch, Corrugated or Plain Round

5 inch, Corrugated or Plain Round

6 inch, Corrugated or Plain Round

SQUARE CORRUGATED GALVANIZED ELBOWS

No. 3-75 degrees

Style A, or Ordinary Curve

SIZES:

2 inch

3 inch

4 inch 5 inch

6 inch

No. 3—75 degrees

Style B, or Side Curve

By proper combination of Styles A and B, a square pipe can be made to turn the corner of a building as easily as a round pipe.

ORDER ELBOWS AND SHOES BY SIZE AND NUMBER

"ARMCO" INGOT IRON GALVANIZED POLYGON CONDUCTOR PIPE

See Illustration on Page 147

Sizes—10 foot lengths. In 2, 3, 4, 5 and 6 inches; 28, 26 and 24 gauge. The 2 inch size cannot be supplied in heavier than 26 gauge.

Its handsome design combines many distinct advantages over all other kinds.

The concave corrugated twisted form produces great strength and resistance and therefore prevents denting or disfiguring; it also checks the sudden fall of ice, thus protecting joints and seams.

Expansion and contraction are amply provided for in its construction, consequently the pipe will not burst.

To avoid ever recurring repairs to your conductor pipes, use Polygon. It is Simple, Durable, Strong and Handsome, and will outlast other makes.

POLYGON ELBOWS AND SHOES

These Elbows fit and match Polygon Pipe perfectly.

Sizes—2, 3, 4, 5 and 6 inches. In Galvanized "ARMCO" INGOT IRON.

ORNAMENTAL ELBOWS AND RECEIVERS WHEN USED IN CONNECTION WITH POLYGON PIPE, GREATLY ENHANCE THE ARCHITECTURAL BEAUTY OF HOUSES.

FORMED PRODUCTS

"ARMCO" INGOT IRON

GALVANIZED MITRES

Outside Corner Mitre

Inside Corner Mitre

These Mitres are made complete, ready for use, both inside and outside Bead, either Slip or Lap Joint, Single or Double Bead.

SIZES:

No. 28 to 24 GALVANIZED IRON

LAP	JOINT	SLIP	JOINT
3 inch	6 inch	3 inch	6 inch
$3\frac{1}{2}$ inch	7 inch	$3\frac{1}{2}$ inch	7 inch
4 inch	8 inch	4 inch	8 inch
5 inch		5 inch	

When ordering Slip Joint Mitres state whether right or left hand is wanted, and whether for "inner" or "outer" corner, otherwise half rights and half lefts, and half "inner" and half "outer" corner Mitres will be shipped.

GALVANIZED GUTTER END SECTIONS, SLIP ENDS AND TUBES

A—Shows a Section of Eave Trough, with Tube and End soldered in. 12 inch Section (A complete) furnished in Lap Joint.

B-Shows a Tube or Outlet.

C-Shows Slip Joint End-Piece. Can be used either right or left.

SIZES:

		OILLO.
2	inch	5 inch
$2\frac{1}{2}$	inch	6 inch
3	inch	7 inch
$3\frac{1}{2}$	inch	8 inch
4	inch	

Gauges 28 to 24

FORMED PRODUCTS

"ARMCO" INGOT IRON RAIN WATER CUT-OFFS

CAN BE USED IN ANY POSITION WITHOUT EXTRA PIPE

Plain Round

Corrugated Round

Corrugated Square

Made of Galvanized Ingot Iron, and put up in crates (assorted right and left hand wires) so they may be used in any position without extra pipe or elbows.

Sizes 2", 3", 4", 5" and 6".

3 and 4 inch Cut-Offs are packed in crates of 1

5 and 6 inch Cut-Offs are packed in crates of ½ dozen each.

FLANGED GALVANIZED GUTTER HEADS FOR GUTTER ENDS, SLIP ENDS, ETC. PERFECTLY FORMED AND READY FOR USE

A great convenience for manufacturers of Eaves Trough, jobbers and for tinners. SIZES

3½ inch Galvanized Heads

4 inch Galvanized Heads
4½ inch Galvanized Heads
5 inch Galvanized Heads

inch Galvanized Heads

Packed in boxes containing 250 or 500 each.

STANDARD GAUGE TABLES AND THEIR PRACTICAL USE WHEN APPLIED TO PRODUCTION UNDER STANDARD PRACTICE OF "HOT ROLLED SHEET" MANUFACTURERS

The U. S. Standard Gauge is a WEIGHT GAUGE and is based on "Wrought Iron", not cold rolled, at the theoretical weight of .2778 pounds per cubic inch or 480 pounds per cubic foot and the decimal thicknesses shown are the approximate equivalents.

Hot Rolled Steel has been determined by actual practice to weigh approximately 2% heavier than the weight shown for wrought iron in the U. S. Standard Gauge Table. Therefore, steel weight is based at .2833 pounds per cubic inch or 489.6 pounds per cubic foot.

Complete tests have proved that iron of the analysis of "ARMCO" Ingot Iron due to its dense metallic structure weighs approximately 3% heavier than Wrought Iron; therefore, the weight of hot rolled "ARMCO" Ingot Iron is .2861 pounds per cubic inch or 494.4 pounds per cubic foot.

Cold rolling makes steel or iron sheets more dense, therefore, "ARMCO" "High Finished" or "Full Cold Rolled" Steel or Ingot Iron Sheets will weigh about 1% more than Black Sheets or approximately 4% to 5% heavier than Wrought Iron as shown in the U. S. Standard Gauge Table.

When the U. S. Standard Gauge was legalized by Congress, $2\frac{1}{2}\%$ over or under weight was arbitrarily set as an allowance for variation in weight. This allowance was later modified in practice to permit a variation of $2\frac{1}{2}\%$ over or under in the per lot weight of sheets No. 17 gauge and lighter, and 5% variation over or under in the per lot weight of sheets No. 16 gauge and heavier. However, these allowances cannot be based on weights as shown in the U. S. Standard Gauge Table and applied to sheets ORDERED BY GAUGE in steel or Ingot Iron. These materials will "weigh heavy" and the "allowance for variation" should be based on their actual weight.

A variation of 1% is recognized between weighings of different scales on account of varying accuracy of scales, personal equation in weighing, etc.

TRADE CUSTOMS

The American Rolling Mill Company has not deviated from the regular practice of basing all tables of estimated weights on the U. S. Standard Gauge. All orders received will be estimated and acknowledged on this basis, however, the right is reserved to manufacture within the practical limits as set forth on page 160 and to settle all claims for allowances on the base of standard practice of Hot Rolled Sheet Manufacturers.

MILL SHEARING

Sheets No. 18 gauge and lighter shall be sheared full to size specified, width not to exceed $\frac{1}{2}$ " and length not to exceed $\frac{1}{4}$ " larger than specified.

Sheets No. 16 gauge and heavier shall be sheared full to size, width not to exceed $\frac{1}{2}$ " and length not to exceed 1" greater than specified.

DEFINITION OF TERMS USED IN IRON AND STEEL SPECIFICATIONS

Tensile Strength or Ultimate Tensile Strength:

The maximum number of pounds necessary to pull apart a test piece or specimen.

Elastic Limit or Yield Point:

The point where the applied stress begins to produce an elongation of permanent character; up to that point the metal will yield slightly but when the stress is released will return to its original length as would a rubber band. Material should not be stressed beyond this point as it becomes practically dead and unworkable.

Elongation:

The percentage of stretch or elongation from a given length. A test piece 8 inches long is universally accepted as standard for sheets or plates, except in Special Tests.

Reduction of Area:

The percentage of reduction from the original section area of test piece when it is drawn down through the action of pulling apart.

Elongation and Reduction of Area are indications of ductility or workability of the material.

Tests taken from material in the direction transverse from that in which it was rolled will show about the same percentage of elongation but less reduction in area than tests taken in the direction of rolling.

CORRUGATED SHEETS

Made in Ingot Iron Galvanized Sheets. Principal uses are Roofing, Siding, Ceiling, Arches, Shutters and Awnings. In normal times we attempt to carry a complete stock in all even gauges from No. 28 to No. 10, inclusive.

Size Corrg.	Width Flat	Width Finished	Covering Width	Position of Lips	Depth of Corrugation	Amount of Lap
	26, 27, 28, 38, 38, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30	24.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	254, 254, 254, 254, 254, 254, 254, 254,		down \$8" Scant \$8" Scant \$8" Scant \$8" Scant \$8" Scant \$8" Approx. \$12 or \$	Corrugated "Standard" 1)/2 Corrugated 2 Corrugated 2 Corrugated 3 Corrugated "Standard" 1)/2 Corrugated "Standard" 1 Corrugated "Standard" 1 Corrugated 2 Corrugated 3 Corrugated 4 Corrugated 5 Corrugated 6 Corrugated 7 Corrugated 8 Corrugated 9 Corrugated 1 Corrugated
			÷ 10 − 10 − 10 − 10 − 10 − 10 − 10 − 10	10—3" Corrugations = 36" Flat o	36" Flat or 32" after corrugating	

NUMBER OF SHEETS IN ONE SQUARE OF ROOFING

			•	
Lengths	2 in., 2½ in. and 3 in. Corrugated 27½, wide	2 in., 2½ in. and 3 in. Corrugated 26" wide	1½ in. and 5% in. Corrugated 25″ wide	2 and 3 V. C. P. S. S., etc., 24" wide
5 feet 6 feet 7 feet 1 8 feet 9 feet 10 feet 11 feet	8.27 7.27 7.27 6.23 8.24 8.36 8.39 8.39 64	9.23 6.59 6.59 7.77 7.77 8.2 8.8 8.8	0.80.0.04444 0.80.80.80 8.80.80	10. 8.33 7.114 6.25 5.55 5.4.55
				_

We recommend 271/2" wide after corrugating for roofing purposes as 11/2 corrugations lap insures greater protection against the weather than 1 corrugation.

For siding 1 corrugation lap is sufficient and represents a saving in material.

In addition to corrugated sheets we can furnish 18" crimped both lengthwise and crosswise in No. 22 gauge and lighter, limited to 40" wide crosswise and 144" lengthwise.

WEIGHT PER SQUARE. GALVANIZED ROOFING AND SIDING

BASED ON U. S. STANDARD GAUGE. FOR "ARMCO" INGOT IRON ADD 3%

elvi?	Flat	Formed					Gauge	a				
	Width	Width	87	27	56	25	24	22	20	18	16	14
114" Corrugated.	28″	25"	88	95	102	116	130	158	186	242		
2½" Corrugated	5 8′	792	2 5	91	86	111	125	151	178	232	28e	353
2½" Corrugated	30′	271/2"	85	92	66	113	126	153	180	235	583	358
2½" Corrugated.	$321_{2}''$	30,,,_	82	91	86	112	125	152	179	234	288	355
3" Corrugated	58,	792	84	91	86	112	125	152	178	232	28e	353
2V Crimp.	261/2′′	24′′	98	93	901	114	128	155	183			
3V Crimp	2714"	24′′	68	97	103	117	131	160	188			
$\mathbf{\circ}$	28,	25′′	88	95	102	116	130	158	186		_	
5V Crimp	, ₈ 2	231/2"	63	101	108	123	138					
Pressed Standing Seam	261/2"	24′′	98	93	100	114	128	155	183			
Pressed Standing Seam.	28,	251/2"	98	93	66	113	127	154	182		-	
Weather Board	78,	24′′	91	86	106	120	135					
Beaded Ceiling	261/2′′	24"	98	93	901	114	128					
Roll Roofing.	261/2/	24''	88	95	102	116	130					
Roll and Cap Roofing with Caps and Cleats	26′.	24"	93	100	108	122	137					
Plain Brick Siding			28	84	91							
Rock Face Brick Siding			28	84	91							
Rock Face Stone Siding			28	%	91							

AVERAGE WEIGHT OF VARIOUS ROOFING MATERIALS

Material	Weight per square foot—pounds
Corrugated Galvanized Sheets. Copper 16 oz. Standing Seam Without Sheathing Felt and Asphalt Glass—14" thick	2¼ 1¼ 2
Lead—about 1%, thick Mackite—11, thick with plaster	6 to 8
Neponset Roofing, felt—2 layers Shipples—6 x 18—one-third weather Shipples—6 x 18—one-third weather	2.7.7.7
Skyngints of Glass, 16 to 2 inc. frame Slate 76" thick, 3 inch double lap. Slate 48" thick double lap. Slate 48" thick double lap.	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	1/2 to 5/8 to 3/4
Tiles (plain) $10.28 \text{ x } 0.48 \text{ x } \% = 3.47$ To weather Tiles (Spanish) $14.28 \text{ x } 10.96 = 74\%$ to weather Sheathing Sheathing Sheathing The Sheathing Sheath	812
Hemlock	27/2
White Pine Yellow Pine	

U. S. STANDARD GAUGE FOR ALL UNCOATED SHEETS BASED ON THEORETICAL WEIGHT OF WROUGHT IRON AT .2778 POUNDS PER CUBIC INCH

	C. S. STANDARD GAUGE TABLE
Based on Actual Practice in Hot Rolled Sheets at .2833 per Cubic Inch	Sq. Metre 219 59 225 86 195 86 195 86 195 86 195 86 195 86 195 86 195 86 196 86
WEIGHT I Based o Practic Rolled \$.283	Sq. Foot 199 February 199 Febru
Weight Per Sq. Metre, Pounds	252 272 272 273 273 273 273 273 27
Weight Per Sq. Metre, Kilogr.	23.3.3.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
Weight Per Sq. Foot, Kilogr.	9 0072 8 505 8 505 6 2804 10 28 11 10 28 11 10 28 11 10 28 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Weight Per Sq. Foot, Pounds	20 181 185 185 185 185 185 185 185 185 185
Weight Per Sq. Foot, Ounces	88888888888888888888888888888888888888
Thickness in Millimeter Approx.	12.7 10.006 11.1006 11.1006 10.319 10
Thickness in in Decimal Parts of an Inch	2000 44688 44688 44688 44688 44688 44688 44688 44688 448
Thickness in Fractions of an Inch Approx.	2-7-7-8-8-7-7-8-8-8-8-8-8-8-8-8-8-8-8-8-
Number of Gauge	000000 000000 000000 00000 0000 0000 0000

Birmingham Gauge as Legalized by Order of the British Council, July 16, 1914, and made effective November 14, 1914.

Based on Theoretical Weight of Wrought Iron of .2778 lbs. per cubic inch recognized as Standard by U. S. Congressional Enactment.

NT.		W. C	, W. C	W. C	117. C
No.	Approx.	Wt. per Sq.	Wt. per Sq.	Wt. per Sq.	Wt. per Sq.
Gauge	Thickness, Black	Ft. Lbs., Black	Ft. Ounces, Black	Ft. Lbs., Galvanized	Ft. Ounces, Galvanized
	Diack	Біаск	Біаск	Gaivanized	Gaivanized
00000	. 5883	23.53	376.51		
0000	. 5416	21.66	346.62		
000	. 5000	20.00	320.00		
00	. 4452	17.81	284.93		
0	. 3964	15.86	253.70		
1	. 3532	14.13	226.05		
2	. 3147	12.59	201.41		
3	. 2804	11.22	179.46		
2 3 4 5	. 2500	10.00	160.00		
5	.2225	8.90	142.40		
6	. 1981	7.92	126.78		
6 7 8 9	. 1764	7.06	112.90		
8	. 1570	6.28	100.48		
	. 1398	5.59	89.47		
10	. 1250	5.00	80.00	5.156	82.50
11	. 1113	4.45	71.20	4.606	73.70
12	. 0991	3.96	63.36	4.116	65 .86
13	.0882	3.52	56.32	3.676	58 .82
14	. 0785	3.14	50.24	3.296	52.74
15	. 0699	2.79	44.64	2.946	47.14
16	. 0625	2.50	40.00	2.656	42.50
17	.0556	2.22	35.52	2.376	38.02
18	. 0495	1.98	31.68	2.136	34 .18
19	. 0440	1.76	28.16	1.916	30 .66
20	. 0392	1.56	24.96	1.716	27 . 46
21	. 0349	1.39	22.24	1.546	24.74
22	.03125	1.25	20.00	1.406	22.50
23	.02782	1.11	17.76	1.266	20.26
24	.02476	. 99	15.84	1.146	18.34
25	.02204	. 88	14.08	1.036	16.58
26	. 01961	.78	12.48	.936	14.98
27	.01745	.69	11.04	.846	13.54
$ar{28}$.015625	.62	9.92	.776	12.42
$\overline{29}$.0139	.55	8.80	.706	11.30
30	.0123	.50	8.00	.656	10.50
	. = -				

Sheets and plates heavier than 10 ga. cannot be galvanized by us but some manufacturers are in position to do so.

However, their process is that known as "Hand Dipped" and as the amount of coating obtained in this manner is uncertain the weights are not shown.

A COMPARISON OF MOST FREQUENTLY USED GAUGE TABLES, showing decimal thickness and weight per square foot of Sheet Metal. Weights are based on theoretical weight of wrought iron at .2778 lbs. per cubic inch as recognized as Standard by U. S. Congressional Enactment and theoretical weight of Hot Rolled Sheets as determined by actual practice at .2833 lbs. per cubic inch.

					l	Weight per	sq. ft. in lbs.
U.S. Standard Gauge	British Imperial or English Standard	Bir mingham Wire Gauge (B. W. G.)	Birming ham Gauge (B. G.)	Brown & Sharp's (B. & S.)	Thickness in decimal parts of an inch	Wrought Iron	Hot Rolled Sheets
0000000		-			7000	20.00	1 20 10
000000	0000000		000		. 5000	20.00	20.40
	000000			• • • • • •	. 4688 . 4640	18.75	19.125 18.93
				0000	. 4600	$18.56 \\ 18.46$	18.70
		0000			.4540	18.16	18.52
			00	• • • • • •	.4452	17.81	18.16
00000					.4375	17.50	17.85
	00000				. 4320	17.28	17.626
		000			. 4250	17.00	17.34
				000	. 4096	16.44	16.66
0000					. 4063	16.25	16.575
	0000				. 4000	16.00	16.32
			0		. 3964	15.86	16.17
•••••		00			.3800	15.20	15.50
000					. 3750	15.00	15.30
• • • • • • • •	000				.3720	14.88	15.178 14.83
			ii	00	.3648	14.64 14.13	14.65
• • • • • • • •					.3480	13.92	14.198
00					.3438	13.75	14.025
		0			3400	13.60	13.87
				0	3250	13.00	13.26
	0				3240	12.96	13.22
			2		3147	12.59	12.84
0					. 3125	12.50	12.75
	1	1			. 3000	12.00	12.24
				1	. 2893	11.61	11.76
		2			. 2840	11.36	11.59
1					.2813	11.25	11.475
• • • • • •			3		. 2804	11.22	11.44
	2				. 2760	11.04	11.261
2					. 2656	10.63	10.84
• • • • • •		3			.2600	10.40	10.61
• • • • • • •	3			2	.2576	$\frac{10.34}{10.08}$	10.48
3	i -		4		.2520	10.00	10.202
		4	-	• • • • • •	.2380	9.52	9.71
4					.2344	$9.32 \\ 9.38$	9.56
7	4				2320	9.28	9.466
• • • • • •	1			3	.2294	$9.20 \\ 9.21$	9.33
			5		.2225	8.90	9.08
		5			.2200	8.80	8.976
5					.2188	8.75	8.925
	5				. 2120	8.48	8.65
				4	. 2043	8.20	8.31
6					. 2031	8.125	8.287
		6			2030	8.12	8.282
• • • • • •			6		. 1981	7.924	8.082
· · · · · <u>·</u>	6				. 1920	7.68	7.834
7	<u> </u>		<u> </u>		. 1875	7.50	7.65

GAUGE TABLE—Continued

		1	P .		1		
	Dairiah				Th:	Weight per	sq. ft. in lbs
U. S. Standard	British Imperial or		Birmingham		Thickness in decimal		l
Gauge	English	Wire Gauge (B. W. G.)	Gauge (B. G.)	Sharp's (B. & S.)	parts of an	Wrought	Hot Rolled
	Standard	(=: 0.,	(2. 2.)	(2. a 5.)	inch	Iron	Sheets
		1			1010	- 00	
		7		5	. 1819	7.30	7.40
• • • • • •		1	7		. 1800	7.20	7.344
	7		•		. 1764 . 1760	7.056 7.04	7.19
8					. 1719	6.875	7.181 7.012
		8		• • • • • •	. 1650	6.60	6.732
				6	. 1620	6.50	6.63
	8	::::::			. 1600	6.40	6.528
			8		. 1570	6.28	6.40
9					. 1563	6.25	6.375
		9			. 1480	5.92	6.038
				7	. 1443	5.79	5.87
	9				. 1440	5.76	5.875
10					. 1406	5.625	5.737
			9		. 1398	5.592	5.703
		10			. 1350	5.40	5.508
				8	. 1285	5.16	5.263
	10		, ,		. 1280	5.12	5.22
11			10		1250	5.00	5.10
		11			.1200	4.80	4.896
	11				. 1160	4.64	4.733
				9	. 1144	4.59	4.65
12			11		. 1113	4.45	4.539
		.,			. 1094	4.375	4.462
• • • • • • •	12	12		• • • • • •	.1090 .1040	4.36 4.16	4.447 4.243
	12			10	. 1040	4.10	4.243
			12		.0991	3.96	4.039
		13			.0950	3.80	3.876
13	• • • • • • • • • • • • • • • • • • • •				.0938	3.75	3.825
	13				.0920	3.68	3.754
				11	.0907	3.64	3.69
			13		.0882	3.52	3.56
		14			.0830	3.32	3.386
				12	.0808	3.24	3.29
	14				.0800	3.20	3.264
			14		.0785	3.14	3.20
14					.0781	3.125	3.187
	15	15		13	.0720	2.89	2.93
15					.0703	2.813	2.869
			15		.0699	2.79	2.84
		16			.0650	2.60	2.652
	1.6			14	.0641	2.57	2.61
16	16	• • • • • •	16	• • • • • •	.0640	2.56	2.61
		17		• • • • • •	.0625	$\begin{array}{c} 2.50 \\ 2.32 \end{array}$	$2.55 \\ 2.366$
				15	.0571	$\begin{array}{c} 2.32 \\ 2.29 \end{array}$	2.30
17					.0563	$\frac{2.29}{2.25}$	2.295
			17		.0556	$\frac{2.23}{2.22}$	2.26
				16	.0508	2.03	2.07
18		18			.0500	2.00	2.04
			18		.0495	1.98	2.02
	18				.0480	1.92	1.958
			}	17	. 0453	1.82	1.84
		1	19		.0440	1.76	1.79
19							1.785

GAUGE TABLE-Continued

	Duisiah	İ			Thisler in		sq. ft. in lbs
U. S.	British Imperial or		Birmingham	Brown &	Thickness in decimal		i
Standard	English	Wire Gauge (B. W. G.)	Gauge (B. G.)	Sharp's	parts of an	Wrought	Hot Rolled
Gauge	Standard	(B. W. G.)	(B. G.)	(B. & S.)	inch	Iron	Sheets
					<u> </u>	<u> </u>	
		19			.0410	1.64	1.673
				18	.0403	1.62	1.64
	19				.0400	1.60	1.632
			20		.0392	1.56	1.59
20					.0375	1.50	1.53
	20				.0360	1.44	1.469
				19	. 0359	1.44	1.46
		20			.0350	1.40	1.428
			21		. 0349	1.39	1.42
21					. 0344	1.375	1.402
	21	21		20	. 0320	1.28	1.306
22			22		.0312	1.25	1.275
				21	.0285	1.14	1.16
23					.0281	1.125	1.147
	22	22			.0280	1.12	1.14
			23		.0278	1.11	1.13
				22.	. 0253	1.02	1.03
24		23			. 0250	1.	1.02
			24		. 0247	. 99	1.
	23				.0240	. 96	. 979
				23	.0226	. 906	. 918
	24	24	25		.0220	. 88	.898
25					.0219	. 875	.892
				24	.0201	. 807	.817
	25	25			.0200	. 80	.816
			26		.0196	. 78	. 795
26					.0188	. 75	. 765
	26	26			.0180	.72	.734
		۱ ۰۰۰۰۰۰ ۱		25	.0179	.718	.728
	*		27		.0174	. 69	.703
27					.0172	. 688	.701
	27		• • • • •		.0164	. 66	. 669
		27		96	.0160	. 64	.653
				26	0159	645	.648
28	28	• • • • •	28	• • • • •	.0156	. 625 . 59	. 637 . 604
	_			27	.0148	. 57	.581
29					.0142	. 563	.574
29		e			.0141	. 56	
		28	29		.0140	. 50 . 55	.571
	29	• • • • • •	1	• • • • • •	.0139	. 55 . 54	. 555
	29	29			.0130	.54	. 53
		1		28	.0130	. 507	. 514
30			• • • • • •	-	.0126	.507	.514
30	30	• • • • • •		• • • • • •	.0123	. 496	.506
	90	• • • • •	30		.0124	. 495	. 505
• • • • • •		30		• • • • •	.0123	. 48	. 49
	• • • • • • •	30		29	.0120	. 452	. 458
				30	.0100	.40	.408
• • • • • • • • • • • • • • • • • • • •			<u> </u>	- 50	. 0100	. 10	

GAUGE TOLERANCES ON ALL SHEETS EXCEPT GALVANIZED

GAUGE TOLERANCES ON ALL SHEETS EXCEPT GALVANIZED

No. 30 to 28 gauge, inclusive
No. 26 to 25 gauge, inclusive
No. 24 to 23 gauge, inclusive
No. 22 to 19 gauge, inclusive
No. 18 to 17 gauge, inclusive
No. 16 to 14 gauge, inclusive
No. 16 to 12 gauge, inclusive
No. 13 to 12 gauge, inclusive
On 1/8" and heavier, standard specifications apply, i. e., .01 minus and anything plus, according to Table of Weight.

TABULAR COMPARISON OF WIRE GAGES

(Bureau of Standards)

			· · · · · · · · · · · · · · · · · · ·					
Gage No.		ngham Gage ubs)	American Wire Gage (B. & S.)* (Mils)	Steel Wire Gage† (Mils)	Old English Wire Gage (London) (Mils)	Stubs Steel Wire Gage (Mils)	(British) Standard Wire Gage (Mils)	Gage No.
4-0	454	11.5	460	393.8	454		400	4-0
3-0	425	10.8	410	362.5	425		372	3-0
2-0	380	9.7	365	331.0	380		348	2-0
2 -0	340	8.6	325	306.5	340		324	0
ĭ	300	7.6	289	283.0	300	$\overset{\cdot}{227}$	300	i
2	284	7.2	258 258	262.5	284	219	276	9
2 3 4 5 6 7	259	6.6	229	243.7	259	$\frac{213}{212}$	252	3
1	238	6.0	204	$\frac{245.7}{225.3}$	238	207	232	4
5	220	5.6	182	207.0	220	204	212	4 5
6	203	$5.0 \\ 5.2$	162	192.0	203	201	192	6
7	180	4.6	144	177.0	180	199	176	7
8	165	4.2	128	162.0	165	197	160	8
9	148	3.76	114	148.3	148	194	144	9
10	134	3.40	102	135.0	134	191	128	10
11	120	3.05	91	120.5	120	188	116	îĭ
12	109	2.77	81	105.5	109	185	104	12
$\tilde{1}\tilde{3}$	95	2.41	72	91.5	95	182	92	13
14	83	$\frac{2.11}{2.11}$	64	80.0	83	180	80	14
15	72	1.83	57	72.0	72	178	72	15
16	65	1.65	51	62.5	65	175	64	16
17	58	1.47	45	54.0	58	172	56	17
18	49	1.24	40	$\frac{31.5}{47.5}$	49	168	48	18
19	42	1.07	36	41.0	40	164	40	19
20	35	.89	32	34.8	35	161	36	20
$\overline{21}$	32	.81	28.5	31.7	31.5	157	32	$\overline{21}$
$\overline{22}$	28	.71	25.3	28.6	29.5	155	28	$\overline{22}$
$\overline{23}$	25	64	22.6	25.8	27.0	153	$\widetilde{24}$	$\frac{22}{23}$
$\frac{24}{24}$	$\widetilde{22}$.56	20.1	23.0	25.0	151	$\frac{22}{22}$	$\frac{24}{24}$
25	20	.51	17.9	20.4	23.0	148	20	$2\overline{5}$
26	18	. 46	15.9	18.1	20.5	146	18	26
27	16	. 41	14.2	17.3	18.75	143	16.4	27
28	14	.36	12.6	16.2	16.50	139	14.8	28
29	13	. 330	11.3	15.0	15.50	134	13.6	29
30	12	. 305	10.0	14.0	13.75	127	12.4	30
31	10	. 254	8.9	13.2	12.25	120	11.6	31
32	9	.229	8.0	12.8	11.25	115	10.8	32
33	8	. 203	7.1	11.8	10.25	112	10.0	33
34	8 7	. 178	6.3	10.4	9.50	110	9.2	34
35	5	. 127	5.6	9.5	9.00	108	8.4	35
3 6	4	. 102	5.0	9.0	7.50	106	7.6	36
37			4.5	8.5	6.50	103	6.8	37
38			4.0	8.0	5.75	101	6.0	38
39			3.5	7.5	5.00	99	5.2	39
40			3.1	7.0	4.50	97	4.8	40
41]	6.6		95	4.4	41
===								

^{*}The American Wire Gage sizes have here been rounded off to about the usual limits of commercial accuracy.

[†]The Steel Wire gage is the same gage which has been known by the various names: "Washburn and Moen," "Roebling," "American Steel & Wire Co." Its abbreviation should be written "Stl. W. G.," to distinguish it from "S. W. G.", the usual abbreviation for the (British) Standard Wire Gage.

SQUARE FEET OF BLACK SHEETS CONTAINED IN A TON OF 2,000 LBS. AND 2,240 LBS.

U. S. STANDARD GAUGE

	2,000 Lbs. Feet	2,240 Lbs. Feet
0000000	. 100	. 112.
000000	. 106.6	. 119.8
00000	. 114.2	. 128.
0000	. 123.1	. 137.8
000	. 133.3	. 149.3
00	. 145.5	. 162.9
0	. 160	. 179.2
1	. 177.7	. 199.1
2	. 188.2	. 210.8
3	200	. 224
4	. 213.3	. 238.9
$5\dots\dots\dots$. 228.5	. 256.
6	. 246.2	. 275.6
7	. 266.6	. 298.6
8	. 291	. 325.8
9	. 320	. 358.4
10	. 355.5	. 398.2
11	. 400	. 448.
12		. 512.
13	. 533.3	. 597.3
14	. 640	. 716.8
15	. 711	. 796.4
16	. 800	. 896
17		. 995.5
18	. 1000	. 1120
19		. 1280
20		
21		
22		
$23.\ldots\ldots$		
24	•	. 2240
$25.\ldots\ldots$		
26		. 2986
27		
28		
29		
30	. 4000	. 4480

CONVENIENT WEIGHT TABLES FOR BLACK SHEETS AND PLATES

The tables on the following pages are based on the theoretical weight of a strip of wrought iron 1" wide. To find the weight of a sheet of a given size, multiply the number in the weight column found opposite the length of the sheet by the width of the sheet. Example: Find the weight of a Black Sheet No. 10 gauge 30" wide and 96" long.

In the table for No. 10 gauge, the weight shown opposite the length 96 is 3.747 lbs. (the weight of a strip No. 10 gauge 1" wide and 96" long). Multiply this by 30 (the width of the sheet) and the result is 112.41 lbs. The theoretical weight of a Black sheet of wrought iron No. 10 gauge 30" wide and 96" long.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES

Weight	29.152	29.290	29.429	29.568	29.707	29.846	29.984	30.123	30.262	30.401	30.540	30.678	30.817	30.956	31.095	31.234	31.372	31.511	31.650	31.789	31.928	32.066	32.205	32.344	32.483	32.622	32.760	32.899	33.038	33.177
Length	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	526	227	228	229	230	231	232	233	234	235	236	237	238	239
Weight	24.988							25.959																						
Length	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	202	206	202	208	500
Weight	20.824	20.962	21.101	21.240	21.379	21.518	21.656	21.795	21.934	22.073	22.212	22.350	22,489	22.628	22.767	22.906	23.044	23.183	23.322	23.461	23.600	23.738	23.877	24.016	24.155	24.294	24.432	24.571	24.710	24.849
Length	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179
Weight	16.660	16.798	16.937	17.076	17.215	17.354	17.492	17.631	17.770	17.909	18.048	18.186	18.325	18.464	18.603	18.742	18.880	19.019	19.158	19.297	19.436	19.574	19.713	19.852	19.991	20.130	20.268	20.407	20.546	20.685
Length	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149
Weight	12.496	12.634	12.773	12.912	13.051	13.190	13.328	13.467	13.606	13.745	13.884	13.022	14.161	14.300	14.439	14.578	14.716	14.855	14.994	15.133	15.272	15.410	15.549	15.688	15.827	15.966	16.104	16.243	16.382	16.521
Length	6	91	92	93	94	95	96	26	86	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119
Weight	8.332	8.470	8.609	8.748	8.887	9.026	9.164	9.303	9.442	9.581	9.720	9.858	6.997	10.136	10.275	10.414	10.552	10.691	10.830	10.969	11.108	11.246	11.385	11.524	11.663	11.802	11.940	12.079	12.218	12.357
Length	99	61	62	63	64	65	99	67	89	69	20	71	72	73	74	22	92	2.2	78	62	8	81	85	88	84	82	98	87	88	68
Gauge	0000000	or	1/5/	(E)	20 lbs.	per sq. ft.																								

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet by the width of the sheet.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

Weight	27.341	7.471	7.601	7.331	7.861	7.992	8.122	8.252	8.385	8.512	8.643	8.773	8.903	9.033	9.163	9.294	9.424	39.554	39.684	39.812	39.945	30.075	30.205	30.335	30.465	30.596	30.726	30.856	30.586	110
		_	_	_																		_	_			_	_	_	_	
Length	210	21	21	21	21	2	21	21	21	21	22	55	-53	55	22	55	- 53	52	22	52	ਲ —	23	23	23	23	23	8	<u>~</u>	- 23	-
Weight	23.435	23.565	23.695	23.825	23.955	24.086	24.216	24.346	24.476	24.606	24.737	24.867	24.997	25.127	25.257	25.388	25.518	25.648	25.778	25.908	26.039	26.169	26.299	26.429	26.559	26.690	26.820	26.950	27.080	
Length	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	202	208	10
Weight	19.524	19.659	19.789	19.919	20.049	20.180	20.310	20.440	20.570	20.700	20.831	20.961	21.091	21.221	21.351	21.482	21.612	21.742	21.872	22.002	22.133	22.263	22.393	22.523	22.653	22.784	22.914	23.044	23.174	
Length	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	-) :
Weight	15.623	15.753	15.883	16.013	16.143	16.274	16.404	16.534	16.664	16.794	16.925	17.055	17.185	17.315	17.445	17.576	17.706	17.836	17.966	18.096	18.327	18.357	18.487	18.617	18.747	18.878	19.008	19.138	19.268	
Length	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	. 137	138	139	140	141	142	143	144	145	146	147	148	
Weight	11.717	11.847	11.977	12.107	12.237	12.368	12.498	12.628	12.758	12.888	13.019	13.149	13.279	13.409	13.539	13.670	13.800	13.930	14.060	14.190	14.321	14.451	14.581	14.711	14.841	14.972				
Length	8	91	35	93	94	95	96	97	86	66	100	101	102	103	104	105	106	107	108	109	110	1111	112	113	114	115	116	117	118	-
Weight	7.811	7.941	8.071	8.201	8.331	8.462	8.592	8.722	8.852	8.892	9.113	9.243	9.373	9.513	9.633	9.764	9.894	10.024	10.154	10.284	10.415	10.545	10.675	10.805	10.935	11.066	11.196	11.326	11.456)
Length	09	61	62	 83 	49	65	99	67	89	69	20	71	72	73	74	75	92	77	28	62	8	81	85	83	84	85	98	87	88)
Gauge	000000	or	15/	<u>.</u> @	18.75 lbs.	er sq. ft.	•																							

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

Gauge	Length	Weight	Length	Weight								
00000	99	7.290	06	10.935	120	14.580	150	18.225	180	21.870	210	25.515
or	61	7.412	91		121	14.702	151	18.347	181	21.992	211	25.637
14"	62	7.533	92		122	14.823	152	18.468	182	22.113	212	25.758
ક	63	7.655	66		123	14.945	153	18.590	183	22, 235	213	25.880
17.50 lbs.	64	7.776	94		124	15.066	154	18.711	184	22.356	214	26.001
per sq. ft.	65	7.898	95		125	15.188	155	18.833	185	22.478	215	26.123
	99		96		126	15.309	156	18.954	186	22.599	216	26.244
	29	8.141	97		127	15.431	157	19.076	187	22.721	217	26.366
	89		86		128	15.552	158	19.197	188	22.849	218	26.487
	69		66		129	15.674	159	19.319	189	22.964	219	26.609
	20		100		130	15.795	160	19.440	190	23.085	220	26.730
	71		101		131	15.917	161	19.562	191	23.207	221	26.852
	72		102		132	16.038	162	19.683	192	23, 328	222	26.973
	73		103		133	16.160	163	19.805	193	23.450	223	27.095
	74		104		134	16.281	164	19.926	194	23.571	224	27.216
	75	9.113	105		135	16.403	165	20.048	195	23.693	225	27.338
	92	9.234	106		136	16.524	166	20.169	196	23.814	226	27.459
	22	9.356	107		137	16.646	167	20.291	197	23.936	227	27.581
	78	9.477	108		138	16.767	168	20.412	198	24.051	228	27.702
	62	9.599	109	13.244	139	16.889	169	20.534	199	24.179	229	27.824
	8	9.720	110		140	17.010	170	20.655	200	24.300	230	27.945
	81	9.842	111		141	17.132	171	20.777	201	24.422	231	28.067
	85	9.963	112		142	17.253	172	20.898	202	24.543	232	28.188
	83	10.085	113		143	17.375	173	21.020	203	24.665	233	28.310
	84	10.206	114		144	17.496	174	21.141	204	24.786	234	28.431
	85	10.328	115		145	17.618	175	21.263	205	24.908	235	28.553
	98	10.449	116		146	17.739	176	21.384	206	25.029	236	28.674
	87	10.571	117		147	17.861	177	21.506	202	25.151	237	28.796
	88	10.692	118		148	17.982	178	21.627	208	25.272	238	28.917
	ć		,		-							

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet by the width of the sheet,

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

Gauge	Length	Weight										
0000	09	6.769	06		120	13.537	150	16.921	180		210	23.689
or	61	6.881	91		121		151	17.033	181		211	23.801
13/	62	6.994	92		122		152	17.146	182		212	23.914
(E)	83	7.107	93		123		153	17.259	183		213	24.027
16.25 lbs.	64	7.220	94		124		154	17.372	184		214	24.140
per sq. ft.	65	7.333	95		125		155	17.485	185		215	24, 253
•	99	7.445	96		126		156	17.597	186		216	24.365
	29	7.558	26	10.942	127	14.326	157	17.710	187	21.094	217	24.478
	89	7.671	86		128		158	17.823	188		218	24.591
	69	7.784	66		129		159	17.936	189		219	24.704
	20	7.897	901		130		160	18.049	190		220	24.817
	71		101		131		161	18.161	191		221	24.929
	73	8.122	102		132		162	18.274	192		222	25.042
	73		103		133		163	18.387	193		223	25.155
	74		104		134		164	18.500	194		224	25.268
	75		105		135		165	18.613	195		225	25.381
	92		106		136		166	18.725	196		526	25.493
	22		107		137		167	18.838	197		227	25.606
	28		108		138		168	18.951	198		228	25.719
	26	8.912	109		139		169	19.064	199		229	25.832
	80	9.025	110		140		170	19.177	200		230	25.945
	81	9.137	111		141		171	19.289	201		231	26.057
	83	9.250	112		142		172	19.402	202		232	26.170
	83	9.363	113		143		173	19.515	203		233	26.283
	84	9.476	114		144		174	19.628	204		234	26.396
	85	9.589	115		145		175	19.741	205		235	26.509
	98	9.701	116		146		176	19.853	206		236	26.621
	87	9.814	117		147		177	19.966	202		237	26.734
	88	9.927	118		148		178	20.02	208		238	26.847
	0	010	410		•		1	000	000		000	000

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet by the width of the sheet.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

Weight	• 21.864																													
Length	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	526	227	228	556	230	231	232	233	234	235	. 982	237	238	
Weight	18.741	18.845	18.949	19.053	19.157	19.261	19.355	19.469	19.573	19.677	19.782	19.886	19.990	20.094	20.198	20:302	20.406	20.510	20.614	20.718	20.823	20.927	21.031	21.135	21.239	21.343	21.447	21.551	21.655	1
Length	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	500 200	201	202	203	204	205	506	202	208	
Weight	15.618																													
Length	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	
Weight	12.495																													
Length	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	111
Weight	9.372	9.476	9.580	9.684	9.788	9.892	966.6	10.100	10.204	10.308	10.413	10.517	10.621	10.725	10.829	10.933	11.037	11.141	11.245	11.349	11.454	11.558	11.662	11.766	11.870	11.974	12.078	12.182	12.286	111111111111111111111111111111111111111
Length	8	91	92	93	94	95	96	97	86	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	111
Weight	6.249											7.394	7.498	7.602	7.706	7.810	7.914	8.018	8.122	8.226	8.331	8.435	8.539	8.643	8.747	8.851	8.955	9.059	9.163	111
Length	8	61	62	63	64	65	99	67	89	69	2	71	72	23	74	75	92	22	282	62	8	81	82	83	84	85	8	87	88	
Gauge	000	or	,% %	@	15 lbs.	per sq. ft.																								

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

Gauge	Length	Weight	Length	Weight	Length	Weight	Length	Weight	Length	Weight	Length	Weight
8	99	5.728	06	8.590	120		150		180		210	
or	61	5.823	91	8.685	121		151		181		211	
32 //	62	5.919	92	8.781	122	11.643	152	14.505	182	17.367	212	20.229
<u>(C</u>	63	6.014	93	8.876	123		153		183		213	
13.75 lbs.	64	6.109	. 94	8.971	124		154		184		214	
per sq. ft.	65	6.205	95	6.067	125		155		185		215	
	99	6.300	96	9.162	126		156		186		216	
	29	6.396	26	9.258	127		157		187		217	
	89	6.491	86	9.353	128		158		188		218	
	69	6.586	66	9.448	129		159		189		219	
	2	6.682	100	9.544	130		160		190		220	
	71	6.777	101	9.639	131		161		191		221	
	72	6.873	102	9.735	132		162		192		222	
	73	6.968	103	9.830	133		163		193		223	
	74	7.063	104	9.925	134		164		194		224	
	75	7.159	105	10.021	135		165		195		225	
	92	7.254	106	10.116	136		166		196		226	
	2.2	7.350	107	10.212	137		167		197		227	
	28	7.445	108	10.307	138		168		198		228	
	26	7.540	109	10.402	139		169		199		229	
	8	7.636	110	10.498	140		170		. 200		230	
	81	7.731	111	10.593	141		171		201		231	
	83	7.827	112	10.689	142		172		202		232	
	83	7.922	113	10.784	143		173		203		233	
	84	8.017	114	10.879	144		174		204		234	
	82	8.113	115	10.975	145		175		205		235	
	98	8.208	116	11.070	146		176		206		236	
7	87	8.304	117	11.166	147		177		202		237	
	88	8.399	118	11.261	148		178		508		238	
	08	8 494	110	11 356	149		129		506		239	

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet by the width of the sheet.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

1
7.895
× 0.068
8.242
8.328
8.415
8.588
8.675
8.762
8.935 8.935
9.025
9.109 135
22.2
9.369
9.455
9.542
9.629
9.715
6.802
688.6
9.6.6
10.062
10.149
10.236
10.322

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

Weight	6.401	6.479	6.557	6.635	6.713	6.791	6.869	6.947	7.025	7.103	7.182	7.260	7.338	7.416	7.494	7.572	7.650	7.728	2.806	7.884	7.963	8.041	8.119	8.197	8.275	8.353	8.431	8.509	18.587	8 665
	<u> </u>											_	_	_								_		_				_	_	_
Length	210	21	215	21:	217	215	210	21.	218	216	22	55	22	22.	22	22	55	22.	55	55	ž T	23	23	23.	ž	233	23	23	238	23
Weight	14.058	14.136	14.214	14.292	14.370	14.448	14.526	14.604	14.682	14.760	14.839	14.917	14.995	15.073	15.151	15.229	15.307	15.385	15.463	15.541	15.620	15.698	15.776	15.854	15.932	16.010	16.088	16.166	16.244	16 399
Length	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	202	206	202	208	200
Weight	11.715	11.793	11.871	11.949	12.027	12.105	12.183	12.261	12.339	12.417	12.496	12.574	12.652	12.730	12.808	12.886	12.964	13.042	13.120	13.198	13.277	13.355	13.433	13.511	13.589	13.667	13.745	13.823	13.901	13 070
Length	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	170
Weight	9.372	9.450	9.528	9.606	9.684	9.762	9.840	9.918	966.6	10.074	10.153	10.231	10.309	10.387	10.465	10.543	10.621	10.699	10.777	10.855	10.934	11.012	11.090	11.168	11.246	11.324	11.402	11.480	11.558	11 636
Length	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	140
Weight	7.029	7.107	7.185	7.263	7.341	7.419	7 497	7.575	7.653	7.731	7.810	7.888	7.966	8.044	8.122	8.200	8.278	8.356	8.434	8.512	8.591	8.669	8.747	8.825	8.903	8.981	9.059	9.137	9.215	0 903
Length	8:	91	92	93	94	95	96	97	86	66	921	101	102	103	104	105	921	107	108	109	110	111	112	113	114	115	116	117	118	110
Weight	4.686	4.764	4.842	4.920	4.998	5.076	5.154	5.232	5.310	5.388	5.467	5.545	5.623	5.701	5.779	5.857	5.935	6.013	6.091	6.169	6.248	6.326	6.404	6.482	6.560	6.638	6.716	6.794	6.872	6 950
Length	99	61	62	63	64	65	99	29	89	69	20	7	75	73	74	22	92	2.2	28	26	8	8	85	88	84	85	98	87	%	08
Gauge	1	or	32 //	<u>(</u>	11.25 lbs.	per sq. ft.	-																							

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

Gauge	Length	Weight	Length	Weight	Length	Weight	Length	Weight	Length	Weight	Length	Weight
73	09	4.426	6:	6.637	120		150	11.059	180	13.270	210	15.481
or	61	4.500	91	6.711	121	8.922	151	11.133	181	13.344	211	15.555
17 /	62	4.573	92	6.784	122		152	11.206	182	13.417	212	15.628
- (3)	63	4.647	83	6.858	123		153	11.280	183	13,491	213	15.702
10.625 lbs.	64	4.721	94	6.932	124		154	11.354	184	13.565	214	15.776
per sq. ft.	65	4.794	95	7.005	125		155	11.427	185	13.638	215	15.849
	99	4.868	96	7.079	126	9.291	156	11.501	186	13.712	216	15.923
	29	4.942	97	7.153	127	9.364	157	11.575	187	13.786	217	15.997
	89	5.015	86 86	7.226	128	9.437	158	11.648	188	13.859	218	16.070
	69	5.089	66	7.300	129	9.511	159	11.722	189	13.933	219	16.144
	20	5.163	100	7.374	130	9.585	160	11.796	190	14.007	220	16.218
	71	5.237	101	7.448	131	9.659	161	11.870	191	14.081	221	16.292
	72	5.310	102	7.521	132	9.732	162	11.943	192	14.154	222	16.365
	73	5.384	103	7.595	133		163	12.017	193	14.228	223	16.439
	74	5.458	104	699.2	134	9.881	164	12.091	194	14.302	224	16.513
	75	5.531	105	7.742	135		165	12.164	195	14.375	225	16.586
•	92	5.605	106	7.816	136		166	12.238	196	14.449	526	16.660
	22	5.679	107	2.890	137		167	12.312	197	14.523	227	16.734
	28	5.752	108	7.963	138		168	12.385	198	14.596	228	16.807
	- 26	5.826	109	8.037	139		169	12.459	199	14.670	229	16.881
	<u>8</u>	5.900	110	8.111	140		170	12.533	200 200	14.744	230	16.955
	81	5.974	111	8.185	141		171	12,607	201	14.818	231	17.029
	85	6.047	112	8.258	142		172	12.680	202	14.891	232	17.102
	88	6.121	113	8.332	143		173	12.754	203	14.965	233	17.176
	84	6.195	114	8.406	144		174	12.828	204	15.039	234	17.250
	85	6.268	115	8.479	145		175	12.901	205	15.112	235	17.323
	- 98	6.342	116	8.553	146		176	12.975	206	15.186	236	17.397
	87	6.416	117	8.627	147		177	13.049	202	15.260	237	17.471
	88	6.489	118	8.700	148		178	13.122	208	15.333	238	17.544
	08	6 562	110	0 117	140		(1)	00,	000	101	000	11

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet by the width of the sheet.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

Gauge	Length	Weight	Length	Weight	Length	Weight	Length	Weight	Length	Weight	Length	Weight
က	99	4.166	06	6.248	120		150		180		210	14.576
or	61	4.235	91	6.317	121		151		181		211	14.645
,4 <u>,</u>	62	4.304	92	6.386	122		152		182		212	14.714
10 lbs.	63	4.374	93	6.456	123		153		183		213	14.784
er sq. ft.	64	4.443	94	6.525	124		154		184		214	14.853
•	65	4.513	95	6.595	125		155		185		215	14.923
	99	4.582	86	6.664	126		156		186		216	14.992
	29	4.651	26	6.733	127	8.815	157	10.897	187	12.979	217	15.061
	89	4.721	<u>8</u> 6	6.803	128		158		188		218	15.131
	69	4.790	66	6.872	129		159		189		219	15.200
	20	4.860	100	6.942	130		160		190		220	15.270
	71	4.929	101	7.011	131		161		191		221	15.339
	72	4.998	102	7.080	132		162		192		222	15.408
	73	5.068	103	7.150	133		163		193		223	15.478
	74	5.137	104	7.219	134		164		194		224	15.547
	75	5.207	105	7.289	135		165		195		225	15.617
	92	5.276	106	7.358	136		166		196		526	15.686
	22	5.345	107	7.427	137	9.509	167		197		227	15.755
	78	5.415	108	7.497	138	9.579	168		198		228	15.825
	26	5.484	100	7.566	139	9.648	169		199		229	15.894
	<u>8</u>	5.554	110	7.636	140	9.718	120		200		230	15.964
	81	5.623	111	7.705	141	9.787	171		201		231	16.033
	85	5.692	112	7.774	142	9.856	172		202		232	16.102
	88	5.762	113	7.844	143	9.926	173		203		233	16.172
	8	5.831	114	7.913	144	9.995	174		204		234	16.241
	82	5.901	115	7.983	145	10.065	175		202		235	16.311
	98	5.970	116	8.052	146	10.134	176		206		236	16.380
	87	6.039	117	8.121	147	10.203	177		202		237	16.449
	88	6.109	118	8.191	148	10.273	178		208		238	16.519
	08	6 178	110	0 000	170	10 040	110		000		000	001

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet by the width of the sheet.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

Length Weight	13.	13.	13	13	13	13	14	14.	14.	14	14	14	14	14	14	14	14	14	14	14	14	15	15	15	15	15	15	237 15.428	•
Weight																												13.475	
Length	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	202	000
Weight																												11.522	
Length	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	110
Weight	7.811	7.876	7.941	8.006	8.072	8.137	8.202	8.267	8.332	8.397	8.462	8.527	8.592	8.657	8.723	8.788	8.853	8.918	8.983	9.048	9.113	9.178	9.243	9.308	9.374	9.439	9.504	9.569	160
Length	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	140
Weight	5.858	5.923	5.988	6.053	6.119	6.184	6.249	6.314	6.379	6.444	6.509	6.574	6.639	6.704	6.770	6.835	9.000	6.965	7.030	7.095	7.160	7.225	7.290	7.355	7.421	7.486	7.551	7.616	7 601
Length	8	91	85	93	94	95	96	97	86	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	110
Weight	3.905	3.970	4.035	4.100	4.166	4.231	4.296	4.361	4.426	4.491	4.556	4.621	4.686	4.751	4.817	4.882	4.947	5.102	5.077	5.142	5.207	5.272	5.337	5.402	5.468	5.533	5.598	5.663	100
Length	8	61	62	63	2	65	99	29	89	69	20	71	72	73	74	75	92	22	28	26	8	81	83	83	84	85	98	87	00
Gauge	4	or	15 //	હ	9.375 lbs.	per sq. ft.																							

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet by the width of the sheet.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

Weight	12.750	12.810	12.871	12.932	12.993	13.053	13.114	13.175	13.235	13.296	13.357	13.417	13.478	13.539	13.600	13.660	13.721	13.782	13.842	13.903	13.964	14.024	14.085	14.146	14.207	14.267	14.328	14.389	14.449	17 510
Length	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	526	227	228	553	730 730	231	232	233	234	235	236	237	238	066
Weight					11.172					11.475		11.596	11.657	11.718	11.779	11.839	11.900	11.961	12.021	12.082	12.143	12, 203	12.264	12.325	12.386	12.446	12.507	12.568	12.628	10 600
Length	180	181	182	183	184	185	186	187	188	189	190	161	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	202	208	000
Weight	9.108	9.168	9.229	9.290	9.351	9.411	9.472	9.533	9.593	9.654	9.715	9.775	9.836	6.897	9.958	10.018	10.079	10.140	10.200	10.261	10.322	10.382	10.443	10.504	10.565	10.625	10.686	10.747	10.807	10 000
Length	150	151	152	153	154	155	156	157	158	159	160	191	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	170
Weight	7.287	7.347	7.408	7.469	7.530	7.590	7.651	7.712	7.772	7.833	7.894	7.954	8.015	8.076	8.137	8.197	8.258	8.319	8.379	8.440	8.501	8.561	8.622	8.683	8.744	8.804	8.865	8.926	8.986	071
Length	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	07.
Weight	5.466	5.526	5.587	5.648	5.709	5.769	5.830	5.891	5.951	6.012	6.073	6.133	6.194	6.255	6.316	6.376	6.437	6.498	6.558	6.619	089.9	6.740	6.801	6.862	6.923	6.983	7.044	7.105	7.165	1
Length	8	91	92	93	94	95	96	97	86	66	100	101	102	103	104	105	92	107	108	<u>6</u>	110	111	112	113	114	115	116	117	118	
Weight	3.645	3.705	3.766	3.827	3.888	3.948	4.009	4.070	4.130	4.191	4.252	4.312	4.375	4.434	4.495	4.555	4.616	4.677	4.737	4.798	4.859	4.919	4.980	5.041	5.102	5.162	5.223	5.284	5.344	101
Length	99	61	62	63	64	65	99	29	89	69	20	71	7.5	73	74	7.5	92	22	28	26	3	<u>8</u>	82	£	%	35	98	87	88	ć
Gauge	5	or	37/	<u>.</u>	8.75 lbs.	per sq. ft.	•																							

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet by the width of the sheet.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

Weight	11.844	11.901	11.957	12.014	12.070	12.126	12.183	12.239	12.296	12.352	12.408	12.465	12.521	12.578	12.634	12.690	12.747	12.803	12.860	12.916	12.972	13.029	13.085	13.142	13.198	13.254	13.311	13.367	13.424	13.480
Length	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	526	227	228	229	230	231	232	233	234	235	236	237	238	239
Weight																													11.732	
Length	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	202	208	206
Weight	8.460	8.517	8.573	8.630	8.686	8.742	8.799	8.855	8.812	8.968	9.024	9.081	9.137	9.194	9.250	9.306	9.363	9.419	9.476	9.532	9.588	9.645	9.701	9.758	9.814	9.870	9.927	9.983	10.040	10.096
Length	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	120	171	172	173	174	175	176	177	178	179
Weight	6.768	6.825	6.881	6.938	6.994	7.050	7.107	7.163	7.220	7.276	7.332	7.389	7.445	7.502	7.558	7.614	7.671	7.727	7.784	7.840	2.896	7.953	8.009	8.066	8.122	8.178	8.235	8.291	8.348	8.404
Length	120	121	122	123	124	125	126	127	128	129	130	. 131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149
Weight	5.076	5.133	5.188	5.246	5.302	5.358	5.415	5.471	5.528	5.584	5.640	5.697	5.753	5.810	5.866	5.922	5.977	6.035	6.092	6.148	6.204	6.261	6.317	6.374	6.430	6.486	6.543	6.599	6.656	6.712
Length	06	91	95	93	94	95	96	26	86	66	100	101	102	103	104	105	106	107	108	109	110	1111	112	113	114	115	116	117	118	119
Weight	3.384	3.441	3.497	3.554	3.610	3.666	3.723	3.779	3.836	3.892	3.948	4.005	4.061	4.118	4.174	4.230	4.287	4.343	4.400	4.456	4.512	4.569	4.625	4.682	4.739	4.794	4.851	4.907	4.956	5.020
Length	99	61	62	63	64	65	99	- 29	89	69	20	71	72	23	74	75	92	11	28	62	8	81	85	88	2	82	98	87	88	68
Gauge	9	or	13/	<u>@</u>	8.125 lbs.	per sq. ft.	•																							

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet by the width of the sheet.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

Gauge	Length	Weight	Length	Weight	Length	Weight	Length	Weight	Length	Weight	Length	Weight
7	09	3.124	6	4.684	120	6.244	150	7.804	180	9.364	210	
or	61	3.176	91	4.736	121	6.296	151	7.856	181	9.416	211	
3 /	62	3.228	92	4.788	122	6.348	152	7.908	182	9.468	212	
(É)	63	3.280	93	4.840	123	6.400	153		183	9.520	213	
7.5 lbs.	64	3.332	94	4.892	124	6.452	154		184	9.572	214	
per sq. ft.	65	3.384	95	4.944	125	6.504	155		185	9.624	215	
	99	3.436	96	4.996	126	6.556	156		186	9.676	216	
	29	3.488	26	5.048	127	809.9	157	8.168	187	9.728	217	11.288
	89	3.540	86	5.100	128	099.9	158		188	9.780	218	
	69	3.592	66	5.152	129	6.712	159		189	9.832	219	
	2	3.644	100	5.204	130	6.764	160		190	9.884	220	
	71	3.696	101	5.256	131	6.816	161		191	9.936	221	
	72	3.748	102	5.308	132	6.868	162		192	9.988	222	
	73	3.800	103	5.360	133	6.920	163		193	10.040	223	
	74	3.852	104	5.412	134	6.972	164		194	10.092	224	
	75	3.904	105	5.464	135	7.024	165		195	10.144	225	
	92	3.956	106	5.516	136	7.076	166		196	10.196	226	
	22	4.008	107	5.568	137	7.128	167		197	10.248	227	
	28	4.060	108	5.620	138	7.180	168		198	10.300	228	
	62	4.112	109	5.672	139	7.232	169		199	10.352	229	
	8	4.164	110	5.724	140	7.284	170		200	10.404	230	
	81	4.216	111	5.776	141	7.336	171		201	10.456	231	
	85	4.268	112	5.828	142	7.388	172		202	10.508	232	
	88	4.320	113	5.880	143	7.440	173		203	10.560	233	
	84	4.372	114	5.932	144	7.492	174		204	10.612	234	
	85	4.424	115	5.984	145	7.544	175		202	10.664	235	
	98	4.476	116	6.036	146	7.596	176		206	10.716	236	
	87	4.528	117	6.088	147	7.648	177		202	10.768	237	
	88	4.580	118	6.140	148	7.770	178	9.260	208	10.820	238	
	Ø	689 1	110	0 100	9	1	Ç,	0,00	000	010	000	

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

Weight	10.019	10.066	10.114	10.162	10.209	10.257	10.305	10.353	10.400	10.448	10.496	10.543	10.591	10.639	10.686	10.734	10.782	10.830	10.877	10.925	10.973	11.020	11.068	11, 116	11.163	11,211	11.259	11.307	11.354	11,402
Length	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	526	227	228	229	230	231	232	233	234	235	236	237	238	239
Weight	8.588	8.635	8.683	8.731	8.778	8.826	8.874	8.922	8.969	9.017	9.065	9.112	9.160	9.208	9.255	9.303	9.351	9.399	9.446	9.494	9.542	9.589	9.637	9.685	9.732	9.780	9.828	9.876	9.923	6 971
Length	180	181	182	183	184	185	186	187	881	189	190	191	192	193	194	195	196	197	198	199	200 200	201	202	203	204	205	506	202	208	506
Weight	7.157	7.204	7.252	7.300	7.347	7.395	7.443	7.491	7.538	7.586	7.634	7.681	7.729	7.777	7.824	7.872	7.920	7.968	8.015	8.063	8.111	8.158	8.206	8.254	8.301	8.349	8.397	8.445	8.492	8.540
Length	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179
Weight	5.726	5.773	5.821	5.869	5.916	5.964	6.012	090.9	6.107	6.155	6.203	6.250	6.298	6.346	6.393	6.441	6.489	6.537	6.584	6.632	089.9	6.727	6.775	6.823	6.870	6.918	996.9	7.014	7.061	7 109
Length	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149
Weight	4.295	4.342	4.390	4.438	4.485	4.533	4.581	4.629	4.676	4.724	4.772	4.819	4.867	4.915	4.962	5.010	5.058	5.106	5.153	5.201	5.249	5.296	5.344	5.392	5.439	5.487	5.535	5.583	5.630	5 678
Length	66	91	92	63	94	92	96	26	86	66	901	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119
Weight	2.864	2.911	2.959	3.007	3.054	3.102	3.150	3.198	3.245	3.293	3.341	3.388	3.436	3.484	3.531	3.579	3.627	3.675	3.722	3.770	3.818	3.865	3.913	3.961	4.008	4.056	4.104	4.152	4.199	4 247
Length	8	61	62	63	49	65	99	29	89	69	2	71	72	23	74	75	92	2.2	28	26	- 08	81	82	88	2	82	98	87	88	68
Gauge	∞	or	11,	<u>.</u> @	6.875 lbs.	per sq. ft.																								

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet by the width of the sheet.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

3.905
c
66 87
4.03
1.07
. 12
l. 16
ଞ୍ଚ
25
දූ
33
38
#
9
:
73
9
4
œ
ಣ
1.
8
8
8
2
8
8
20.
. 12
5.16

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet by the width of the sheet.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

Weight	8.193	8.232	8.271	8.310	8.349	8.388	8.427	8.466	8.505	8.544	8.583	8.622	8.661	8.700	8.739	8.778	8.817	8.856	8.895	8.934	8.973	9.012	9.051	9.090	9.129	9.168	9.207	9.246	9.285	9.324
Length	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	526	227	228	229	230	231	232	233	234	235	236	237	238	239
Weight	7.023	7.062	7.101	7.140	7.179	7.218	7.257	7.296	7.335	7.374	7.413	7.452	7.491	7.530	7.569	2.608	7.647	2.686	7.725	7.764	7.803	7.842	7.881	7.920	7.959	7.998	8.037	8.076	8.115	8.154
Length	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	202	208	500
Weight	5.853	5.892	5.931	5.970	600.9	6.048	6.087	6.126	6.165	6.214	6.243	6.282	6.321	6.360	6.399	6.438	6.477	6.516	6.555	6.594	6.633	6.672	6.711	6.750	6.789	6.828	6.867	906.9	6.945	6.984
Length	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179
Weight	4.683	4.722	4.761	4.800	4.839	4.878	4.917	4.956	4.995	5.034	5.073	5.112	5.151	5.190	5.229	5.268	5.307	5.346	5.385	5.424	5.463	5.503	5.541	5.580	5.619	5.658	5.697	5.736	5.775	5.814
Length	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149
Weight	3.513	3.552	3.591	3.630	3.669	3.708	3.747	3.786	3.825	3.864	3.903	3.942	3.981	4.020	4.059	4.098	4.137	4.176	4.215	4.254	4.293	4.332	4.371	4.410	4.449	4.488	4.527	4.566	4.605	4.644
Length	8	91	92	93	94	95	96	26	86	66	100	101	102	103	104	105	106	107	108	109	110	1111	112	113	114	115	116	117	118	119
Weight	2.343	2.382	2.421	2.460	2.499	2.538	2.577	2.616	2.655	2.694	2.733	2.772	2.819	2.850	2.889	2.928	2.967	3.007	3.045	3.084	3.123	3.162	3.201	3.240	3.279	3.318	3.357	3.396	3.435	3.474
Length	99	61	62	63	64	65	99	29	89	69	20	71	72	73	74	75	92	22	28	62	8	81	85	83	84	85	98	87	88	- 68 -
Gauge	10	or	\ 6	Ē	5.625 lbs.	per sq. ft.	•			•																				

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

Weight	7.288	7.322	7.357	7.392	7.426	7.461	7.496	7.530	7.565	7.600	7.635	7.669	7.704	7.739	7.773	7.808	7.843	7.877	7.912	7.947	7.982	8.016	8.051	8.086	8.120	8.155	8.190	8.224	8.259	000
Length	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	526	230	231	232	233	234	235	236	237	238	000
Weight	6.247	6.281	6.316	6.351	6.385	6.420	6.455	6.489	6.524	6.559	6.594	6.628	6.663	869.9	6.732	6.767	6.802	6.836	6.871	906.9	6.941	6.975	7.010	7.045	7.079	7.114	7.149	7.183	7.218	7 050
Length	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	506	207	208	000
Weight	5.206	5.240	5.275	5.310	5.344	5.379	5.414	5.448	5.483	5.518	5.553	5.587	5.622	5.657	5.691	5.726	5.761	5.795	5.830	5.865	5.900	5.934	5.969	6.004	6.038	6.073	6.108	6.142	6.177	010
Length	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	. 171	172	173	174	175	176	177	178	170
Weight	4.165	4.199	4.234	4.269	4.303	4.338	4.373	4.407	4.442	4.477	4.512	4.546	4.581	4.616	4.650	4.685	4.720	4.754	4.789	4.824	4.859	4.893	4.928	4.963	4.997	5.032	5.067	5.101	5.136	171
Length	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	140
Weight	3.124	3.158	3.193	3.228	3.262	3.297	3.332	3.366	3.401	3.436	3.471	3.505	3.540	3.575	3.609	3.644	3.679	3.713	3.748	3.783	3.818	3.852	3.887	3.922	3.956	3.991	4.026	4.060	4.095	190
Length	06	91	92	93	94	95	96	97	86	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	110
Weight	2.083	2.117	2.152	2.187	2.221	2.256	2.291	2.325	2.360	2.395	2.430	2.464	2.499	2.534	2.568	2.603	2.638	2.672	2.707	2.742	2.777	2.811					2.985			
Length	8	61	62	63	64	65	99	29	89	69	20	71	72	73	74	75	92	2.2	- 82	62	<u>8</u>	81	85	83	\$	82	98	87	88	00
Gauge	11	or	1/%/	.@	5 lbs.	per sq. ft.				•																				

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet by the width of the sheet.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

Weight	6.367	6.397	6.428	6.458	6.488	6.519	6.549	6.579	6.610	6.640	6.670	6.700	6.731	6.761	6.791	6.822	6.852	6.882	6.913	6.943	6.793	7.003	7.034	7.064	7.094	7.125	7.155	7.185	7.216	7.246
Length	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	256	227	228	556	230	231	232	233	234	235	236	237	238	239
Weight	5.458	5.488	5.519	5.549	5.579	5.610	5.640	5.670	5.701	5.731	5.761	5.791	5.822	5.852	5.882	5.913	5.943	5.973	6.004	6.034	6.064	6.094	6.125	6.155	6.185	6.216	6.246	6.276	6.307	6.337
Length	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	506
Weight	4.549	4.579	4.610	4.640	4.670	4.701	4.731	4.761	4.792	4.822	4.852	4.888	4.913	4.943															5.398	
Length	150	151	152	153	154	155	. 156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179
Weight	3.640	3.670	3.701	3.731	3.761	3.792	3.822	3.852	3.883	3.913	3.943	3.973	4.004	4.034	4.064	4.095	4.125	4.155	4.186	4.216	4.246	4.276	4.307	4.337	4.367	4.398	4.428	4.458	4.489	4 519
Length	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149
Weight						2.883																								
Length	06	91	95	93	94	95	96	97	86	66	901	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119
Weight	1.822	1.852	1.883	1.913	1.943	1.974	2.004	2.034	2.065	2.095	2.125	2.155	2.186	2.216	2.246	2.277	2.307	2.337	2.368	2.398	2.428	2.458	2.489	2.519	2.549	2.580	2.610	2.640	2.671	2.701
Length	8	61	62	63	64	65	99	67	89	69	22	71	73	73	74	75	92	22	82	- 62	8	81	85	83	84	85	98	87	88	68
Gauge	12	or	7 / 64	હ	4.375 lbs.	per sq. ft.													٠											

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet by the width of the sheet.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

Weight	5.462	5.488	5.514	5.540	5.566	5.592	5.618	5.644	5.670	5.696	5.722	5.748	5.774	5.800	5.826	5.852	5.878	5.904	5.930	5.956	5.982	6.018	6.034	090.9	980.9	6.112	6.138	6.164	6.190	6.216
Length	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
Weight	4.682	4.708	4.734	4.760	4.786	4.812	4.838	4.864	4.890	4.916	4.942	4.968	4.994	5.020	5.046	5.072	5.098	5.124	5.150	5.176	5.202	5.228	5.254	5.280	5.316	5.332	5.358	5.384	5.410	5.436
Length	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	500
Weight	3.902	3.928	3.954	3.980	4.006	4.032	4.058	4.084	4.110	4.136	4.162	4.188	4.215	4.240	4.266	4.292	4.318	4.344	4.370	4.396	4.422	4.448	4.474	4.500	4.526	4.552	4.578	4.604	4.630	4.656
Length	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179
Weight	3.122	3.148	3.174	3.200	3.226	3.252	3.278	3.304	3.330	3.356	3.382	3.408	3.434	3.460	3.486	3.512	3.538	3.564	3.590	3.616	3.642	3.668	3.694	3.720	3.746	3.772	3.798	3.824	3.850	3.876
Length	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149
Weight					2.446			2.524																					3.070	
Length	8	91	92	- 63 -	94	95	96	97	86	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119
Weight	1.562	1.558	1.614	1.640	1.666	1.692	1.718	1.744	1.770	1.796	1.822	1.848	1.874	1.900	1.926	1.952	1.978	2.004	2.030	2.056	2.082	2.108	2.134	2.160	$\frac{2.186}{2.186}$	2.212	2.238	2.264	2.290	2.316
Length	8	61	62	63	64	65	99	29	89	69	20	71	75	73	74	75	92	22	28	62	8	81	85	83	2	200	98	87	8	68
Gauge	13	or	e c	:હ	3.75 lbs.	Der sq. ft.																								

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet by the width of the sheet.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

ht Length Weight	210 4	211 4	212 4	213 4	214 4	215 4	216 4	57 217 4.708	218 .4	219 4	220 4	221 4	222 4	223 4	224 4	225 4	226 4	227 4	228 4	229 4	230 4	231 5	232 5	233 5	234 5	235 5	236 5	237 5	
Weight	3.905	3.92	3.94	3.97	3.99	4.01	4.03	4.05	4.07	4.10	4.12	4.14	4.16	4.18	4.20	4.23	4.25	4.27	4.29	4.31	4.33	4.36	4.38	4.4(4.45	4.4	4.4	4.4	
Length	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	202	206	207	000
Weight	3.254	3.276	3.298	3.319	3.341	3.363	3.385	3.406	3.428	3.450	3.471	3.493	3.515	3.536	3.558	3.580	3.602	3.623	3.645	3.667	3.688	3.710	3.732	3.753	3.775	3.797	3.819	3.840	000
Length	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	,
Weight	2.603	2.625	2.647	2.668	2.690	2.712	2.734	2.755	2.777	2.799	2.820	2.842	2.864	2.885	2.907	2.929	2.951	2.972	2.994	3.016	3.037	3.059	3.081	3.102	3.124	3.146	3.168	3.189	0.00
Length	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	•
Weight	1.952	1.974	1.996	2.017	2.039	2.016	2.083	2.104	2.126	2.148	2.169	2.191	2.213	2.234	2.256	2.278	2.300	2.321	2.343	2.365	2.386	2.408	2.430	2.451	2.473	2.495	2.517	2.538	000
Length	6.	91	95	93	94	95	96	97	86	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	•
Weight	1.301	1.323	1.345	1.366	1.388	1.410	1.432	1.453	1.475	1.497	1.518	1.540	1.562	1.583	1.605	1.627	1.649	1.670	1.692	1.714	1.735	1.757	1.779	1.800	1.822	1.844	1.866	1.887	•
Length	99	61	62	83	64	65	99	29	89	69	2	71	72	73	74	75	92	22	78	62	<u>8</u>	81	85	88	84	82	98	87	0
Gauge	14	or	64 /	٩	3.125 lbs.	per sq. ft.																							

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet by the width of the sheet.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

	ı	-																												
Weight	4.096	4.116	4.135	4.155	4.174	4.194	4.213	4.233	4.252	4.272	4.291	4.311	4.330	4.350	4.369	4.389	4.408	4.428	4.447	4.467	4.486	4.506	4.525	4.545	4.564	4.584	4.603	4.623	4.642	4.662
Length	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	526	227	228	229	230	231	232	233	234	235	236	237	238	239
Weight	3.511	3.531	3.550	3.570	3.589	3.609	3.628	3.648	3.667	3.687	3.706	3.726	3.745	3.765	3.784	3.804	3.823	3.843	3.862	3.882	3.901	3.921	3.940	3.960	3.979	3.999	4.018	4.038	4.057	4.077
Length	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	90 20 20	201	202	203	204	202	206	202	208	506
Weight								3.063																						
Length	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179
Weight								2.478			2.536	2.556	2.575	2.595	2.614	2.634	2.653	2.673	2.692	2.712	2.731	2.751	2.770	2.790	2.809	2.829	2.848	2.868	2.887	2.907
Length	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149
Weight	1.756	1.776	1.795	1.815	1.834	1.854	1.873	1.893	1.912	1.932	1.951	1.971	1.990	2.010	2.029	2.049	2.068	2.088	2.107	2.127	2.146	2.166	2.185	2.205	2.224	2.244	2.263	2.283	2.302	2.322
Length	06	91	92	66	94	95	96	97	86	66	100	101	102	103	104	105	106	107	108	109	110	1111	112	113	114	115	116	117	118	119
Weight	1.177	1.191	1.210	1.230	1.249	1.269	1.288	1.308	1.327	1.347	1.366	1.386	1.405	1.425	1.444	1.464	1.483	1.503	1.522	1.542	1.561	1.581	1.600	1.620	1.639	1.659	1.678	1.698	1.717	1,737
Length	99	61	62	63	- 64	65	99	29	89	69	20	7	72	73	74	75	92	22	28	62	8	81	82	83	84	85	98	82	88	68
Gauge	15	7 8 1	o	2.8125 lbs.	per sq. ft.																									

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet by the width of the sheet.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

Weight	3.636	3.653	3.671	3.688	3.705	3.723	3.740	3.757	3.774	3.792	3.809	3.826	3.844	3.861	3.878	3.896	3.913	3.930	3.947	3.965	3.985	3.999	4.017	4.034	4.051	4.069	4.086	4.103	4.120	4.138
Length	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	526	227	228	556	230	231	232	233	234	235	236	237	238	539
Weight	3.117	3.134	3.152	3.169	3.186	3.204	3.221	3.238	3.255	3.273	3.290	3.307	3.325	3.342	3.359	3.377	3.394	3.411	3.428	3.446	3.463	3.480	3.498	3.515	3.532	3.550	3.567	3.584	3.601	3.619
Length	180	181	182	183	184	185	186	187	188	189	190	191	192	193	164	195	196	197	198	199	200 200	201	202	203	204	205	206	202	208	500
Weight	2.598	2.615	2.633	2.650	2.667	2.685	2.702	2.719	2.736	2.754	2.771	2.788	2.806	2.823	2.840	2.858	2.875	2.892	2.909	2.927	2.944	2.961	2.979	2.996	3.013	3.031	3.048	3.065	3.082	3.100
Length	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179
Weight	2.079	2.096	2.114	2.131	2.148	2.166	2.183	2.200	2.217	2.235	2.252	2.269	2.287	2.304	2.321	2.339	2.356	2.373	2.390	2.408	2.425	2.442	2.460	2.477	2.494	2.512	2.529	2.546	2.563	2.581
Length	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	.138	139	140	141	142	143	144	145	146	147	148	149
Weight	1.560	1.577	1.595	1.612	1.629	1.647	1.664	1.681	1.698	1.716	1.733	1.750	1.768	1.785	1.802	1.820	1.837	1.854	1.871	1.889	1.906	1.923	1.941	1.958	1.975	1.993	2.010	2.027	2.044	2.062
Length	06	91	92	66	94	95	96	97	86	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119
Weight	1.041	1.058	1.076	1.093	1.110	1.128	1.145	1.162	1.179	1.197	1.214	1.231	1.249	1.266	1.283	1.301	1.318	1.335	1.352	1.370	1.387	1.404	1.422	1.439	1.456	1.474	1.491	1.508	1.525	1.543
Length	09	61	62	63	64	65	99	29	89	69	20	71	72	73	74	75	92	7.2	78	79	<u></u>	81	85	88	84	85	98	87	- 88	- 68 -
Gauge	16	or	16/	(3)	2.5 lbs.	per sq. ft.																								

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet by the width of the sheet.

CONVENIENT WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

Weight	3.277	3.292	3.308	3.324	3.339	3,355	3.370	3.386	3.402	3.417	3.433	3.448	3.464	3.480	3.495	3.511	3.526	3.542	3.558	3.573	3.589	3.604	3.620	3.636	3.651	3.667	3.682	3.698	3.714	3 790
Length	210	211	212	213	214	215	$\overline{216}$	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	530
Weight	2.809								2.934	2.949	2.965	2.980	2.996	3.012	3.027	3.043	3.058	3.074	3.090	3.105	3.121	3.136	3.152	3.168	3.183	3.199	3.214	3.230	3.246	3 261
Length	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	202	208	200
Weight	2.341	2.356	2.372	2.388	2.403	2.419	2.434	2.450	2.466	2.481	2.497	2.512	2.528	2.544	2.559	2.575	2.590	2.606	2.622	2.637	2.653	2.668	2.684	2.700	2.715	2.731	2.746	2.762	2.778	6 703
Length	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	921	177	178	170
Weight	1.873	1.888	1.904	1.920	1.935	1.951	1.966	1.982	1.998	2.013	2.029	2.044	2.060	2.076	2.091	2.107	2.122	2.138	2.154	2.169	2.185	2.200	2.216	2.232	2.247	2.263	2.278	2.294	2.310	9 395
Length	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	140
Weight	1.405	1.420	1.436	1.452	1.467	1.483	1.498	1.514	1.530	1.545	1.561	1.576	1.592	1.608	1.623	1.639	1.654	1.670	1.686	1.701	1.717	1.732	1.748	1.764	1.779	1.795	1.810	1.826	1.842	1 857
Length	66	91	92	63	94	95	96	97	86	66	108	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	110
Weight	.937	. 952	896	.984	666	1 015	1 030	1.046	1.062	1.077	1.093	1.108	1.124	1.140	1.155	1.171	1.186	1.202	1.218	1.233	1.249	1.264	1.280	1.296	1.311	1.327	1.342	1.358	1.374	1 280
Length	8	61	62	63	2	65	99	67	89	69	2	71	72	73	74	75	92	22	82	62	08	81	85	8	2	25	98	87	8	08
Gauge	17	or	180	: E	2.25 lbs.	ner so ft	ba!																_							

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet by the width of the sheet.

WEIGHT TABLE FOR BLACK SHEETS AND PLATES-Continued

WEIGH			K SHEET			ntinuea
Gauge	Length	Weight	Length	Weight	Length	Weight
18	60	. 833	90	1.249	120	1.666
or	61	. 847	91	1.263	121	1.680
1/20"	62	. 861	92	1.276	122	1.693
@	63	.874	93	1.290	123	1.707
2 lbs.	64	. 888	94	1.304	124	1.721
per sq. ft.	65	. 902	95	1.318	125	1.735
P 1	66	.916	96	1.332	126	1.749
	67	. 930	97	1.346	127	1.763
	68	. 944	98	1.360	128	1.777
	69	. 958	99	1.374	129	1.791
	70	. 972	100	1.388	130	1.805
	71	. 985	101	1.402	131	1.819
	72 .	1.000	102	1.415	132	1.832
	73	1.013	103	1.429	133	1.846
	74	1.027	104	1.443	134	1.860
	75	1.041	105	1.457	135	1.874
	76	1.055	106	1.471	136	1.888
	77	1.069	107	1.485	137	1.902
	77 78	1.083	108	1.499	138	1.916
	79	1.097	109	1.513	139	1.930
	80	1.111	110	1.527	140	1.944
	81	1.124	111	1.541	141	1.958
	82	1.137	112	1.554	142	1.971
	83	1.151	113	1.568	143	1.985
	84	1.165	114	1.582	144	2.000
	85	1.179	115	1.596	145	2.013
	86	1.193	116	1.610	146	2.275
	87	1.207	117	1.624	147	2.414
	88	1.221	118	1.638	148	2.553
	89	1.235	119	1.652	149	2.692
19	60	. 729	90	1.093	120	1.458
or	61	.741	91	1.105	121	1.470
7/160′′	62	. 753	92	1.117	122	1.482
0 1.75	63	. 765	93	1.130	123	1.494
	64 65	.777	94 95	1.142	124 125	1.506
lbs.	66	. 789	95 96	1.154 1.166	125 126	1.518 1.531
per sq. ft.	67	.802	97	1.100	126 127	1.543
	68	.826	98	1.176	128	1.555
	69	.838	99	1.190	129	1.567
	70	.850	100	1.215	130	1.579
	71	.862	101	1.227	131	1.591
	72	.874	102	1 239	132	1.603
	73	.887	103	1.239 1.251	133	1.616
	74	.899	104	1.263	124	1.628
	.75	.911	105	1.275	135	1.640
	76	. 923	106	1.288	136	1.652
	77	. 935	107	1.300	137	1.664
	78	. 947	108	1.312	138	1.676
	79	. 959	109	1.312 1.324	139	1.688
	80	.972	110	1.336	140	1.701
	81	. 984	111	1.348	141	1.713
	82	. 996	112	1.360	142	1.725
	83	1.008	113	1.373	143	1.737
	84	1.020	114	1.385	144	1.749
	85	1.032	115	1.397	145	1.761
	86	1.045	116	1.409	146	1.774
	87	1.057	117	1.421	147	1.786
	88	1.069	118	1.433	148	1.798
	89	1.081	119	1.445	149	1.810

WEIGHT TABLE FOR BLACK SHEETS AND PLATES-Continued

Gauge	Length	Weight	Length	Weight	Length	Weight
20	60	. 624	90	. 936	120	1.248
	61	. 635	91	. 947	121	1.259
or 3/80''	62	. 645	92	. 957	122	1.269
@	63	. 656	$9\overline{3}$. 968	123	1.280
1.5	64	. 666	94	. 978	124	1.290
lbs.	65	676	95	. 988	125	1.300
per sq. ft.	66	. 687	96	. 999	126	1.311
	67	. 697	97	1.009	127	1.321
	68	. 708	98	1.020	128	1.332
	69	.718	99	1.030	129	1.342
	70	.728	100	1.040	130	1.352
	71	. 739	101	1.051	131	1.363
	72	.749	102	1.061	132	1.373
	72 73	. 760	103	1.072	133	1.384
	74	. 770	104	1.082	134	1.394
	7.5	.780	105	1.092	135	1.404
	76	. 791	106	1.103	136	1.415
	77	.801	107	1.113	137	1.425
	78	.812	108	1.124	138	1.436
	79	.822	109	1.134	139	1.446
	80	832	110	1.144	140	1.456
	81	.843	iii	1.155	141	1.467
	82	.853	112	1.165	142	1.477
	83	.864	113	1.176	143	1.488
	84	.874	114	1.186	144	1.498
	85	.884	115	1.196	145	1.508
	86	.895	116	1.207	146	1.519
	87	.905	117	1 217	147	1.529
	88	.916	118	1.228	148	1.540
	89	. 926	119	1.238	149	1.550
21	60	. 572	90	. 857	120	1.142
or	61	. 582	91	867	121	1.152
11/32"	62	. 591	92	.876	122	1.161
@	63	601	93	. 886	123	1.171
1.375	64	. 610	94	. 895	124	1.180
lbs.	65	. 620	95	. 905	125	1.190
per sq. ft.	66	. 629	96	.914	126	1.199
	67	. 639	97	. 924	127	1.209
	68	. 648	98	. 933	128	1.218
	69	. 658	99	. 943	129	1.228
	70	. 667	100	. 952	130	$1.237 \\ 1.247$
	71	. 677	101	. 962	131	1.247
	72	. 686	102	. 971	132	1.256
	73	. 696	103	. 981	133	1.266
	74	. 705	104	.990	134	1.275
	75	. 715	105	1.000	135	1.285
	76	.724	106	1.009	136	1.294
	77	. 734	107	1.019	137	1.304
	78	. 743	108	1.028	138	1.313
	79	. 753	109	1.038	139	1.323
	80	. 762	110	1.047	140	1.332
	81,	. 772	111	1.057	141	1.342
1	82	. 781	112	1.066	142	1.351
1	83	. 791	113	1.076	143	1.361
1	84	. 800	114	1.085	144	1.370
	85	. 810	115	1.095	145	1.380
[86	. 819	116	1.104	146	1.389
i	87	. 829	117	1.114	147	1.399
l l						
	88 89	. 838 . 848	118 119	1.123 1.133	148 149	1.408 1.418

WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

Gauge	Length	Weight	Length	Weight	Length	Weigh
22	60	. 520	90	.778	120	1.036
or	61	. 529	91	.787	121	1.045
1/32''	62	. 537	92	.795	122	1.053
@	63	. 546	93	.804	123	1.062
1.25	64	. 555	94	.813	124	1.071
lbs.	65	. 563	95	. 821	125	1.079
er sq. ft.	66	.572	96	830	126	1.088
cr sq. rc.	67	. 580	97	.838	127	1.096
	68	.589	98	.847	128	1.103
	69	. 598	99	.856	129	1.114
	70	. 606	100	.864	130	1.122
	71	.615	101	.873	131	1.13
		.673	101	.881		1.139
	$\frac{72}{72}$				132	
	73	. 632	103	.890	133	1.148
	74	. 641	104	.899	134	1.157
	75	. 649	105	. 907	135	1.16
	76	. 658	106	.916	136	1.174
	77	. 666	107	. 924	137	1.182
	78	. 675	108	. 933	138	1.19
	79	. 684	109	. 942	139	1.200
	80	. 692	110	. 950	140	1.208
	81	.701	111	. 959	141	1.21
	82	.709	112	. 967	142	1.22
	83	.718	113	. 976	143	1.234
	84	.727	114	. 985	144	1.24
	85	.735	115	. 993	145	1.25
	86	.744	116	1.002	146	1.260
A 1	87	.752	117	1.010	147	1.268
	88	.761	118	1.019	148	1.27
	89	.770	119	1.028	149	1.286
23	60	. 468	90	.702	120	. 936
or	61	.476	91	.710	121	.94
9/320"	62	. 484	92	.718	122	.95
@	63	.492	93	.726	123	. 960
1.125	64	.499	94	.733	124	.96
lbs.	65	.507	95	.741	125	.97
	66	.515	96	.749	126	.98
per sq. ft.	67	.523	97	.757	127	.99
	68	.531	98	.765	128	. 99
					120	
	69	. 538	99	.772	129	1.00
	70	. 546	100	.780	130	1.01
	71	. 554	101	.788	131	1.02
	72	. 562	102	. 796	132	1.030
	73	. 570	103	.804	133	1.038
	74	. 577	104	.811	134	1.04
	75	. 585	105	.819	135	1.05
	76	. 592	106	.827	136	1.06
	77	. 601	107	.835	137	1.069
	78	. 609	108	.843	138	1.07
	79	.616	109	.850	139	1.08
	80	.624	110	.858	140	1.09
	81	.632	111	.866	141	1.10
	82	.640	112	.874	142	1.10
	83	.648	113	.882	142	1.10
	84	.655	114	.889	144	1.12
	85	. 663	115	.897	145	1.13
	86	.671	116	. 905	146	1.13
	87	.679	117	. 913	147	1.14
	88	. 687	118	. 921	148	1.15
	89	. 694	119	. 928	149	1.16

WEIGHT TABLE FOR BLACK SHEETS AND PLATES-Continued

Gauge	Length	Weight	Length	Weight	Length	Weight
24	60	.416	90	.623	120	.830
or	61	.423	91	. 630	121	.837
1/40"	62	.430	92	.637	122	.844
-, <u>-</u>	63	.437	93	.644	123	.851
1 lb.	64	. 444	94	.651	124	.858
per sq. ft.	65	.451	95	.658	125	.865
P	66	.458	96	.665	126	.872
	67	. 464	97	.671	127	.878
	68	. 471	98	. 678	128	.885
	69	. 478	99	. 685	129	.892
	70	. 485	100	. 692	130	.899
	71	. 492	101	. 699	131	. 906
	72	. 499	102	. 706	132	. 913
	73	. 506	103	.713	133	. 920
	74	. 513	104	.720	134	. 927
	75	. 520	105	. 727	135	. 934
	76	. 527	106	.734	136	.941
	77	. 533	107	. 740	137	. 947
	78	. 540	108	. 747	138	. 954
	79	. 547	109	. 754	139	. 961
	80 81	. 554	110	.761	140	.968
	82	. 561	111	.768	141	.975
	83	. 568 . 575	112 113	.775	142	.982
	84	.582	113	.782 .789	143 144	.989
	85	. 589	115	.796	144	.996 1.003
	86	. 596	116	.803	146	1.003
	87	.602	117	.809	147	1.016
	88	.609	118	.816	148	1.023
	89	.616	119	.823	149	1.030
25	60	. 364	90	. 544	120	.724
or	61	. 370	91	. 550	121	. 730
7/320"	62	. 376	92	. 556	122	.736
@_	63	. 382	93	. 562	123	.742
.875	64	.388	94	. 568	124	.748
lbs.	65	. 394	95	. 574	125	.754
per sq. ft.	66 67	.400	96	. 580	126	. 760
	68	. 406 . 412	97	. 586	127	. 766
	69	.412	98 99	. 592	128	.772
	70	.424	100	. 598 . 604	129 130	.778
	71	430	101	.610	130	.784 .790
	71 72	.436	102	.616	132	.796
	73	.442	103	.622	133	.802
	74	.448	104	.628	134	.808
	75	. 454	105	.634	135	.814
	76	. 460	106	. 640	136	.820
	77 78	. 46 6	107	. 646	137	.826
	78	.472	108	. 652	138	. 832
	79	. 478	109	. 658	139	. 838
	80	. 484	110	. 664	140	.844
	81	. 490	111	. 670	141	. 850
	82	.496	112	. 676	142	.856
	83	. 502	113	. 682	143	.862
	84 85	. 508	114	.688	144	.868
	85 86	.514	115	. 694	145	.874
	80 87	. 520 . 526	116	.700	146	.880
	88	.532	117 118	.706	147	.886
	89	.532	118	.712	148	.892
	Gð		119	.718	149	. 898

WEIGHT TABLE FOR BLACK SHEETS AND PLATES—Continued

Gauge	Length	Weight	Length	Weight	Length	Weigh
26	60	.312	90	. 468	120	. 62
or	61	. 317	91	. 473	121	. 629
3/160"	62	. 322	92	. 478	122	. 634
@	63	. 328	93	. 484	123	. 640
. 75	64	. 333	94	. 489	124	. 64
lbs.	65	. 338	95	. 494	125	. 650
er sq. ft.	66	. 343	96	. 499	126	. 65
	67	.348	97	. 504	127	. 660
	68	354	98	. 510	128	. 660
	69	359	99	. 515	129	.67
	70	364	100	. 520	130	670
1	71	. 369	101	. 525	131	68
1	72	.374	102	530	132	.68
1	73	.380	103	. 536	133	. 69:
1	74	.385	103	. 541	134	. 69
	75	.390	105	. 546	135	.70
	76 76				136	
	70	.395	103	. 551	100	. 707
	77	. 403	107	. 556	137	. 715
	78	406	108	. 562	138	. 713
	79	411	109	. 567	139	. 723
	80	416	110	. 572	140	. 728
	81	. 421	111	. 577	141	. 73
	82	. 426	112	. 582	142	738
	83	432	113	. 588	143	.74
1	84	437	114	. 593	144	. 749
1	85	. 442	115	. 598	145	. 75-
	86	. 447	116	. 603	146	. 759
	87	. 452	117	. 608	147	. 76-
į	88	. 458	118	.614	148	. 770
	89	. 463	119	.618	149	. 778
27 or	60 61	. 286 . 291	90 91	. 427 . 432	120 121	. 56 8
11/640"	62	.295	$\frac{91}{92}$. 436	122	
	63			. 441	123	. 577 . 582
. 6875		.300	93			
	64	.305	94	. 446	124	. 587
lbs.	65	. 309	95	. 450	125	. 591
er sq. ft.	66	.314	96	. 455	126	. 590
	67	.319	97	. 460	127	. 60
	68	. 324	98	. 465	128	. 600
	69	. 328	99	469	129	. 610
	70	. 333	100	. 474	130	. 61
	71	. 338	101	. 479	131	. 620
	72	. 342	102	. 483	132	. 624
ļ	73	. 347	103	. 488	133	. 629
i	74	. 352	104	. 493	134	. 63
	75	. 356	105	. 497	135	. 63
	76	. 361	106	. 502	136	. 643
	77	. 366	107	. 507	137	. 64
į	78	. 371	108	. 512	138	. 65
	79	. 375	109	. 516	139	. 65'
1	80	. 380	110	521	140	. 66
1	81	. 385	111	. 526	141	. 66'
	82	. 389	112	. 530	142	. 67
	83	.394	113	.535	143	67
	84	.399	114	.540	144	.68
				. 544	145	.68
	85	403				
	85	. 403	115 116			
	85 86	. 408	116	. 549	146	. 69
	85					

WEIGHT TABLE FOR BLACK SHEETS AND PLATES-Continued

Gauge	Length	Weight	Length	Weight	Length	Weight
28	60	. 260	90	.389	120	.518
or	61	. 264	91	. 393	121	. 522
1/64''	62	. 268	92	. 397	122	. 526
@	63	. 273	93	. 402	123	. 531
. 625	64	. 277	94	. 406	124	. 535
lbs.	65	. 281	95	. 410	125	. 539
per sq. ft.	66	. 286	96	. 415	126	. 544
	67	. 290	97	. 419	127	. 548
	68	. 294	98	. 423	128	. 552
	69	. 299	99	. 42 8	129	. 557
	70	. 303	100	. 432	130	. 561
	71	. 307	101	. 436	131	. 565
	72	.311	102	. 440	132	. 569
	73	.316	103	. 445	133	. 574
	74	. 320	104	. 449	134	. 578
	75 76	.324	105	. 453	135	. 582
	76 77	. 329 . 333	106	. 458	136	. 587
	78		107	. 462	137	. 591
	79	. 337 . 342	108 109	. 466 . 471	138 139	. 595 . 600
	80	.346	110	.475	140	604
	81	.350	111	. 479	141	.608
	82	.354	112	. 483	142	.612
	83	.359	113	.488	143	.617
	84	. 363	114	. 492	144	621
	85	367	115	. 496	145	625
	86	. 372	116	. 501	146	. 630
	87	. 376	117	. 505	147	. 634
	-88	. 380	118	. 509	148	. 638
	89	. 385	119	. 514	149	. 643
29	60	. 234	90	. 351	120	. 468
or	61	. 238	91	. 355	121	472
9/640"	62	. 242	92	. 359	122	. 476
@	63	246	93	. 363	123	. 480
. 5625	64	. 249	94	. 366	124	. 483
lbs.	65	. 253	95	. 370	125	. 487
per sq. ft.	66	257	96	.374	126	. 491
	67	. 261	97	.378	127	. 495
	68 69	. 265	98	.382	128	. 499
	70	269 273	99 100	.386 .390	129 130	. 503
	71	277	101	.394	131	. 507 . 511
	72	281	101	.394	131	. 511
	73	.285	102	. 402	132	. 519
	74	.288	104	. 405	134	.519
	75	292	105	. 409	135	. 526
	76	.296	106	. 413	136	. 530
	77	.300	107	.417	137	. 534
	78	. 304	108	. 421	138	. 538
	79	. 308	109	. 425	139	. 542
	80	. 312	110	. 429	140	. 546
	81	.316	111	. 433	141	. 550
	82	. 320	112	. 437	142	. 554
	83	. 324	113	441	143	. 558
	84	. 327	114	. 444	144	. 561
	85	. 331	115	. 448	145	. 565
	86	. 335	116	452	146	. 569
	87	. 339	117	. 456	147	. 573
	88	.343	118	. 460	148	. 577
	89	. 347	119	. 464	149	. 581

WEIGHT TABLE FOR BLACK SHEETS AND PLATES-Continued

Gauge	Length	Weight	Length	Weight	Length	Weight
30	60	. 208	90	. 307	120	. 406
or	61	.211	91	.310	121	. 409
1/80′′	62	. 214	92	. 313	122	. 412
@	63	.218	93	317	123	. 416
.5 lbs.	64	. 221	94	.320	124	. 419
per sq. ft.	65	. 224	95	. 323	125	. 422
• •	66	. 228	96	. 327	126	. 426
	67	. 231	97	. 330	127	. 429
	68	. 234	98	. 333	128	. 432
	69	. 238	99	. 337	129	. 436
	70	241	100	. 340	130	. 439
	71	. 244	101	. 343	131	. 442
	72	. 247	102	. 346	132	. 445
	73	. 251	103	. 350	133	. 449
	74	. 254	104	. 353	134	. 45 2
	75	. 257	105	. 356	135	. 455
	76	. 261	106	. 360	136	. 459
	77	. 264	107	. 363	137	. 462
	78	. 267	108	. 366	138	. 465
	79	. 271	109	. 370	139	. 469
	80	. 274	110	. 373	140	. 472
	81	. 277	111	. 376	141	. 475
	82	. 280	112	. 379	142	. 478
	83	. 284	113	. 383	143	. 482
	84	. 287	114	. 386	144	. 485
	85	. 290	115	. 389	145	. 488
	86	. 294	116	. 393	146	. 492
	87	. 297	117	. 396	147	. 495
	88	. 300	118	. 399	148	. 498
	89	. 304	119	. 403	149	. 502

CONVENIENT WEIGHT TABLE GALVANIZED SHEETS

This table is based on the theoretical weight of a strip of Galvanized Wrought Iron one inch wide. To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet by the width of the sheet.

EXAMPLE: Find the weight of a Galvanized Sheet No. 11 gauge, 30" x 96".

In the table for No. 11 gauge the weight shown opposite the length 96, is 3.437 lbs. (the weight of a strip of No. 11 gauge 1" wide and 96" long). Multiply this by 30 (the width of the sheet) and the result is 103.11, the estimated weight in pounds of a Galvanized Sheet, No. 11 gauge, 30" x 96".

			O A VIC						O A I I O		
		No. 10	GAUG	E		No. 11 GAUGE					
Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.
72 73 74 75 76 77 78 79 80 81 82 83	2.890 2.930 2.97 3.01 3.05 3.13 3.17 3.21 3.25 3.29 3.33	96 97 98 99 100 101 102 103 104 105 106	3.854 3.894 3.934 3.974 4.014 4.054 4.135 4.135 4.215 4.255 4.295	120 121 122 123 124 125 126 127 128 129 130	4.817 4.857 4.897 4.938 4.978 5.018 5.058 5.098 5.178 5.219 5.258	72 73 74 75 76 77 78 79 80 81 82 83	2.578 2.613 2.649 2.685 2.721 2.756 2.793 2.828 2.864 2.900 2.935 2.971	96 97 98 99 100 101 102 103 104 105 106	3.437 3.473 3.508 3.544 3.580 3.616 3.651 3.688 3.723 3.759 3.795 3.831	120 121 122 123 124 125 126 127 128 129 130	4.296 4.332 4.368 4.404 4.439 4.475 4.511 4.547 4.583 4.618 4.654 4.690
84 85 86 87 88 89 90 91 92 93 94 95	3.37 3.412 3.452 3.492 3.532 3.573 3.613 3.653 3.693 3.773 3.813	108 109 110 111 112 113 114 115 116 117 118	4.335 4.375 4.416 4.455 4.496 4.536 4.576 4.616 4.657 4.697 4.736 4.777	132 133 134 135 136 137 138 139 140 141 142 143	5.299 5.339 5.379 5.419 5.459 5.50 5.539 5.58 5.620 5.66 5.700 5.741 5.781	84 85 86 87 88 89 90 91 92 93 94 95	3.008 3.043 3.079 3.115 3.150 3.186 3.222 3.258 3.294 3.329 3.365 3.401	108 109 110 111 112 113 114 115 116 117 118 119	3.867 3.902 3.938 3.974 4.010 4.045 4.082 4.117 4.153 4.189 4.224 4.260	132 133 134 135 136 137 138 139 140 141 142 143	4.726 4.762 4.798 4.833 4.869 4.905 4.940 4.977 5.012 5.048 5.084 5.120 5.156

CONVENIENT WEIGHT TABLE, GALVANIZED SHEETS-Continued

=		No. 12	2 GAUG	E				No. 18	GAUG	E	
Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.
72	2.265	96	3.020	120	3.775	72	1.953	96	2.604	120	3.254
73	2.296	97	3.052	121	3.807	73	1.979	97	2.631	121	3.282
74	2.328	98	3.083	122	3.838	74	2.007	98	2.658	122	3.309
75 76	2.359	100	3.115	123	3.870	75	2.034	100	2.685	123	3.336
77	$2.391 \\ 2.422$	100 101	3.146 3.178	124 125	3.902 3.933	76 77	$\begin{bmatrix} 2.061 \\ 2.088 \end{bmatrix}$	100 101	$egin{array}{c} 2.712 \ 2.739 \ \end{array}$	124 125	$3.363 \\ 3.391$
78	2.454	102	3.209	126	3.964	78	2.115	101	$\frac{2.739}{2.766}$	126	$\frac{3.391}{3.417}$
79	2.485	103	3.241	127	3.995	79	2.142	103	2.793	127	3.444
80	2.517	104	3.272	128	4.027	80	2.170	104	2.820	128	3.472
81	2.548	105	3.304	129	4.058	81	2.197	105	2.848	129	3.498
82	2.579	106	3.335	130	4.090	82	2.224	106	2.875	130	3.526
83	2.612	107	3.366	131	4.121	83	2.251	107	2.902	131	3.553
84	2.643	108	3.398	132	4.153	84	2.278	108	2.929	132	3.58
85 86	$2.674 \\ 2.706$	109 110	3.429	133 134	4.184	85	$\begin{array}{c} 2.305 \\ 2.332 \end{array}$	109	2.956	133 134	$\frac{3.607}{3.634}$
87	$\frac{2.700}{2.737}$	111	3.461 3.492	135	4.216 4.247	86 87	$\frac{2.332}{2.360}$	110 111	$2.983 \\ 3.010$	135	3.661
88	2.768	112	3.524	136	4.279	88	$\frac{2.360}{2.386}$	112	3.038	136	3.688
89	2.800	113	3.555	137	4.310	89	2.414	113	3.065	137	3.716
90	2.831	114	3.587	138	4.342	90	2.441	114	3.092	138	3.743
91	2.863	115	3.618	139	4.373	91	2.468	115	3.119	139	3.770
92	2.894	116	3.650	140	4.405	92	2.495	116	3.146	140	3.797
93	2.926	117	3.681	141	4.436	93	2.522	117	3.173	141	3.824
94	2.957	118	3.712	142	4.468	94	2.549	118	3.200	142	3.851
95	2.989	119	3.744	143	4.499	95	2.576	119	3.227	143	3.879
	<u> </u>	1		144	4.531	1				144	3.906
		No. 14	GAUG	E		No. 15 GAUGE					
Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.
72	1.640	96	2.187	120	2.734	72	1.484	96	1.979	120	2.474
73	1.663	97	2.210	121	2.757	73	1.504	97	1.999	121	2.494
74	1.686	98	2.233	122	2.779	74	1.525	98	2.02	122	2.515
75	1.708	99	2.255	123	2.802	75	1.546	99	2.041	123	2.536
76	1.731	100	2.278	124	2.825	76	1.567	100	2.061	124	2.556
77	1.754	101	2.301	125	2.848	77	1.587	101	2.082	125	2.577
78 70	1.777	102	2.323	126	2.870	78	1.608	102	2.102	126	2.597
79 80	1.799 1.822	103 104	2.346 2.369	127 128	2.893	79	1.628	103	$2.123 \\ 2.144$	127 128	$2.618 \\ 2.639$
81	1.845	104	$\frac{2.309}{2.392}$	129	$2.916 \\ 2.939$	80 81	1.649	104 105	2.164	129	2.659
82	1.868	106	2.415	130	2.962	82	1.690	106	2.185	130	2.68
83	1.891	107	2.438	131	2.984	83	1.711	107	2.206	131	2.700
84	1.914	108	2.460	132	3.007	84	1.732	108	2.226	132	2.721
85	1.936	109	2.483	133	3.030	85	1.752	109	2.247	133	2.742
86	1.959	110	2.506	134	3.053	86	1.773	110	2.268	134	2.762
87	1.982	111	2.528	135	3.075	87	1.793	111	2.288	135	2.783
88	2.005	112	2.551	136	3.098	88	1.814	112	2.309	136	2.804
89	2.027	113	2.574	137	3.121	89	1.835	113	2.329	137	2.824
90 91	$2.050 \\ 2.073$	114 115	$2.597 \\ 2.62$	138 139	3.144	90 91	1.855	114 115	$2.350 \\ 2.371$	138 139	$2.845 \\ 2.865$
$\frac{91}{92}$	2.075 2.096	116	2.643	140	$\begin{vmatrix} 3.167 \\ 3.189 \end{vmatrix}$	91	1.876 1.896	116	2.371 2.391	140	$\frac{2.805}{2.886}$
93	$\frac{2.030}{2.118}$	117	2.665	141	3.109	93	1.917	117	2.412	141	2.907
94	2.110	118	2.688	142	3.235	94	1.938	118	2.432	142	2.927
95	2.164	119	2.711	143	3.258	95	1.958	119	2.453	143	2.948
		ĺ		144	3.281	1	l		l	144	2.969

CONVENIENT WEIGHT TABLE, GALVANIZED SHEETS-Continued

		No. 16	GAUG	Е			1	No. 1	7 GAUG	E	
Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.
72	1.328	96	1.770	120	2.213	72	1.203	96	1.604	120	2.004
73	1.346	97	1.789	121	2.231	73	1.219	97	1.620	121	2.021
74	1.364	98	1.807	122	2.250	74	1.236	98	1.637	122	2.038
75	1.383	99	1.826	123	2.268	75	1.253	99	1.654	123	2.055
$\frac{76}{77}$	1.401 1.420	100 101	1.844	124 125	$2.287 \\ 2.305$	76	1.269 1.286	100 101	1.670 1.687	124 125	$\begin{bmatrix} 2.071 \\ 2.088 \end{bmatrix}$
77 78	1.438	101	1.881	126	2.324	77 78	1.303	102	1.704	126	2.105
79	1.457	103	1.899	127	2.342	79	1.319	103	1.721	127	2.121
80	1.475	104	1.918	128	2.360	80	1.336	104	1.737	128	2.138
81	1.494	105	1.936	129	2.379	81	1.353	105	1.754	129	2.155
82	1.512	106	1.955	130	2.397	82	1.369	106	1.771	130	2.172
83	1.530	107	1.973	131	2.416	83	1.387	107	1.787	131	2.188
84 85	1.549	108 109	1.992 2.010	132 133	$2.434 \\ 2.453$	84 85	1.406 1.420	108 109	1.804 1.821	132 133	$2.205 \\ 2.222$
86	1.586	110	2.028	134	2.471	86	1.436	110	1.837	134	2.239
87	1.604	111	2.047	135	2.49	87	1.453	111	1.854	135	2.255
88	1.623	112	2.065	136	2.508	88	1.470	112	1.871	136	2.272
89	1.641	113	2.084	137	2.526	89	1.487	113	1.887	137	2.289
90	1.66	114	2.103	138	2.545	90	1.504	114	1.904	138	2.305
91	1.678	115	2.121	139	2.563	91	1.521	115	1.921	139	2.322
$\frac{92}{93}$	1.696	116	$2.139 \\ 2.158$	140	$2.582 \\ 2.600$	92 93	1.537	116 117	1.938	140 141	2.339 2.355
93 94	1.733	117 118	$\frac{2.138}{2.176}$	141 142	2.619	94	1.570	118	1.934	142	2.333
95	1.752	119	2.194	143	2.637	95	1.587	119	1.988	143	2.389
.,,	152]	2.101	144	2.656		1.00.	110	1.000	144	2.406
		No. 18	3 GAUG	E		No. 19 GAUGE					
Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.
72	1.078	96	1.437	120	1.796	72	. 953	96	1.270	120	1.588
73	1.092	97	1.452	121	1.811	73	.966	97	1.283	121	1.601
74	1.107	98	1.467	122	1.826	74	979	98	1.297	122	1.614
7 5	1.122	99	1.482	123	1.841	75	. 992	99	1.310	123	1.628
76	1.137	100	1.497	124	1.856	76	1.005	100	1.323	124	1.641
77 78	1.153	101	1.512	$125 \\ 126$	1.871 1.886	77	1.019 1.032	101 102	1.336	125 126	1.654 1.667
79	1.167 1.182	102 103	$\begin{array}{c} 1.527 \\ 1.542 \end{array}$	120	1.901	78 79	1.032	102	$1.35 \\ 1.363$	120	1.680
80	1.197	104	1.557	128	1.916	80	1.058	104	1.376	128	1.694
81	1.212	105	1.572	129	1.931	81	1.072	105	1.389	129	1.707
82	1.227	106	1.587	130	1.946	82	1.085	106	1.403	130	1.720
83	1.242	107	1.602	131	1.961	83	1.098	107	1.416	131	1.733
84	1.257	108	1.617	132	1.976	84	1.111	108	1.429	132	1.747
85 86	$1.272 \\ 1.287$	109	1.631	133	1.991	85	1.125	109	1.442	133	1.760
87	1.302	110 111	1.646 1.661	134 135	$\begin{bmatrix} 2.006 \\ 2.021 \end{bmatrix}$	86 87	1.138 1.151	110 111	1 . 455 1 . 469	134 135	1.773 1.786
88	1.317	112	1.676	136	2.036	88	1.164	112	1.482	136	1.800
89	1.332	113	1.691	137	2.051	89	1.178	113	1.495	137	1.813
90	1.347	114	1.706	138	2.066	90	1.191	114	1.509	138	1.826
91	1.362	115	1.721	139	2.081	91	1.204	115	1.522	139	1.839
92	1.377	116	1.736	140	2.096	92	1.217	116	1.535	140	1.853
$\begin{array}{c} 93 \\ 94 \end{array}$	1.392 1.407	117	1.751	141	2.111	93	1.230	117	1.548	141	1.866
		118	1.766	142 143	2.126	94	1.244	118	1.561	142	1.879
yn i	422	1 4				l un				4.3	
95	1.422	119	1.781	144	2.141 2.156	95	1.257	119	1.575	143 144	1.892 1.906

CONVENIENT WEIGHT TABLE, GALVANIZED SHEETS-Continued

		No. 20	GAUG	E		l		No. 21	GAUG	E	
Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.
72	.828	96	1.104	120	1.379	72	. 765	96	1.020	120	1.275
73	. 839	97	1.115	121	1.391	73	.776	97	1.031	121	1.286
74	. 851	98	1.127	122	1.403	74	.786	98	1.041	122	1.297
75	. 862	99	1.138	123	1.414	75	.797	99	1.052	123	1.307
76	. 874	100	1.149 1.161	124	1.425	76	.808	100	1.063	124	1.318
77	. 885	101	1.161	125	1.437	77	.818	101	1.073	125	1.329
78	.897	102	1.172	126	1.449	78	.829	102	1.084	126	1.339
79	.908	103	1.184	127	1.460	79	.839	103	1.095	127	1.350
80 81	. 92 . 931	104 105	1.195 1.207	128 129	1.472 1.483	80	.850	104	1.105	128 129	1.360 1.371
82	.942	106	1.218	130	1.485	81 82	.871	105 106	1.116 1.126	130	1.371
83	.954	107	1.230	131	1.495	83	.882	107	1.120	131	1.392
84	.966	108	1 242	132	1.518	84	.893	108	1 148	132	1.403
85	.977	109	1.242 1.253	133	1.529	85	.903	109	1.148 1.158	133	1.414
86	.988	110	1.265	134	1.541	86	.914	110	1.169	134	1.424
87	1.000	111	1 276	135	1.552	87	.924	111	1.179	135	1.435
88	1.011	112	1.288	136	1.563	88	. 935	112	1.190	136	1.445
88 89	1.023	112 113	1.288 1.299	137	1.575	89	. 946	113	1.190 1.201	137	1.456
90	1.035	114	1.311	138	1.586	90	. 956	114	1 212	138	1.467
91	1.046	115	1.322	139	1.598	91	. 967	115	1.222 1.233 1.243	139	1.477
92 93	1.058	116	1.334 1.345	140	1.609 1.621	92	. 978	116	1.233	140	1.488
93	1.069	117	1.345	141	1.621	93	. 988	117	1.243	141	1.499
94	1.081	118	1.356	142	1.632	94	. 999	118	1.254	142	1.509
95	1.092	119	1.368	143	1.644	95	1.009	119	1.265	143 144	1.520 1.531
_		l	l	144	1.000				l	144	1.001
144 1.656						 _					
		No. 22	GAUG	E				No. 23	GAUG	E	
Lth.	Wt.	No. 22 Lth.	GAUG Wt.	E Lth.	Wt.	Lth.	Wt.	No. 23	GAUG Wt.	E Lth.	Wt.
	Wt.	Lth.	Wt.	Lth.	Wt.		Wt.	Lth.	Wt.	Lth.	
72	.703	Lth. 96	Wt.	Lth.	Wt.	72	Wt.	Lth. 96	Wt. .854 .862	Lth.	1.067
$\phantom{00000000000000000000000000000000000$.703 .713	Lth. 96 97	.937 .947 .956	Lth. 120 121 122	Wt. 1.171 1.181 1.191	$\begin{array}{ c c c c }\hline 72\\ 73\\ \end{array}$	Wt. . 640 . 649	Lth. 96 97	Wt. .854 .862	120 121 122	1.067 1.076 1.085
72 73 74 75	.703 .713 .722 .732	Lth. 96	.937 .947 .956	Lth. 120 121 122	Wt. 1.171 1.181 1.191	72 73 74 75	Wt. .640 .649 .658	96 97 98	.854 .862 .871	120 121 122 123	1.067 1.076 1.085
72 73 74 75 76	.703 .713	96 97 98	.937 .947 .956 .966	120 121 122 123 124	Wt. 1.171 1.181 1.191	72 73 74 75 76	Wt. . 640 . 649	Lth. 96 97	.854 .862 .871	Lth. 120 121 122 123 124	1.067 1.076 1.085 1.094 1.103
72 73 74 75 76 77	Wt. .703 .713 .722 .732 .742 .751	96 97 98 99 100 101	Wt. .937 .947 .956 .966 .976 .986	Lth. 120 121 122 123 124 125	Wt. 1.171 1.181 1.191 1.201 1.210 1.220	72 73 74 75 76 77	Wt. .640 .649 .658 .667 .676	96 97 98 99 100 101	Wt. .854 .862 .871 .880 .889 .898	120 121 122 123 124 125	1.067 1.076 1.085 1.094 1.103 1.112
72 73 74 75 76 77 78	Wt. .703 .713 .722 .732 .742 .751 .761	96 97 98 99 100 101 102	Wt. .937 .947 .956 .966 .976 .986	Lth. 120 121 122 123 124 125 126	Wt. 1.171 1.181 1.191 1.201 1.210 1.220	72 73 74 75 76 77 78	Wt. .640 .649 .658 .667 .676 .684 .693	96 97 98 99 100 101 102	Wt. .854 .862 .871 .880 .889 .898	120 121 122 123 124 125 126	1.067 1.076 1.085 1.094 1.103 1.112
72 73 74 75 76 77 78 79	Wt. .703 .713 .722 .732 .742 .751 .761 .771	96 97 98 99 100 101 102 103	Wt. .937 .947 .956 .966 .976 .986 .995 1.005	Lth. 120 121 122 123 124 125 126 127	Wt. 1.171 1.181 1.191 1.201 1.210 1.220	72 73 74 75 76 77 78 79	Wt. .640 .649 .658 .667 .676 .684 .693 .703	96 97 98 99 100 101 102 103	Wt. .854 .862 .871 .880 .889 .898 .907 .916	120 121 122 123 124 125 126 127	1.067 1.076 1.085 1.094 1.103 1.112
72 73 74 75 76 77 78 79 80	Wt. .703 .713 .722 .732 .742 .751 .761 .771 .781	96 97 98 99 100 101 102 103 104	Wt. .937 .947 .956 .966 .976 .986 .986 .995 1.005	Lth. 120 121 122 123 124 125 126 127 128	Wt. 1.171 1.181 1.191 1.201 1.210 1.220 1.230 1.239 1.249	72 73 74 75 76 77 78 79 80	Wt. .640 .649 .658 .667 .676 .684 .693 .703	96 97 98 99 100 101 102 103 104	Wt. .854 .862 .871 .880 .889 .997 .916	Lth. 120 121 122 123 124 125 126 127 128	1.067 1.076 1.085 1.094 1.103 1.112 1.120 1.129
72 73 74 75 76 77 78 79 80 81	Wt. .703 .713 .722 .732 .742 .751 .761 .771 .781	96 97 98 99 100 101 102 103 104 105	Wt. .937 .947 .956 .966 .976 .986 .995 1.005 1.015 1.025	Lth. 120 121 122 123 124 125 126 127 128 129	Wt. 1.171 1.181 1.191 1.201 1.220 1.230 1.239 1.249 1.259	72 73 74 75 76 77 78 79 80 81	Wt. -640 -649 -658 -667 -676 -684 -693 -711 -720	96 97 98 99 100 101 102 103 104 105	Wt. .854 .862 .871 .880 .889 .997 .916 .925 .934	Lth. 120 121 122 123 124 125 126 127 128 129	1.067 1.076 1.085 1.094 1.103 1.112 1.120 1.129 1.138 1.147
72 73 74 75 76 77 78 79 80 81 82	Wt. .703 .713 .722 .732 .742 .751 .761 .771 .781 .791 .801	96 97 98 99 100 101 102 103 104 105 106	Wt. .937 .947 .956 .966 .976 .986 .995 1.005 1.015 1.025 1.034	Lth. 120 121 122 123 124 125 126 127 128 129 130	Wt. 1.171 1.181 1.191 1.201 1.220 1.230 1.239 1.249 1.259 1.269	72 73 74 75 76 77 78 79 80 81 82	Wt. .640 .649 .658 .667 .676 .684 .693 .703 .711 .720 .729	96 97 98 99 100 101 102 103 104 105 106	Wt. .854 .862 .871 .880 .889 .898 .907 .916 .925 .934	Lth. 120 121 122 123 124 125 126 127 128 129 130	1.067 1.076 1.085 1.094 1.103 1.112 1.120 1.129 1.138 1.147
72 73 74 75 76 77 78 79 80 81 82 83	Wt. -703 -713 -722 -732 -742 -751 -761 -771 -781 -791 -801 -810	Lth. 96 97 98 99 100 101 102 103 104 105 106	Wt. .937 .947 .956 .966 .976 .986 .995 1.005 1.015 1.025 1.034 1.044	120 121 122 123 124 125 126 127 128 129 130	Wt. 1.171 1.181 1.191 1.201 1.220 1.230 1.239 1.249 1.259 1.269 1.279	72 73 74 75 76 77 78 79 80 81 82 83	Wt. 649 658 667 676 684 693 703 711 720 729 738	Lth. 96 97 98 99 100 101 102 103 104 105 106 107	Wt. .854 .862 .871 .880 .889 .898 .907 .916 .925 .934 .942 .951	Lth. 120 121 122 123 124 125 126 127 128 129 130 131	1.067 1.076 1.085 1.094 1.103 1.112 1.120 1.129 1.138 1.147
72 73 74 75 76 77 78 79 80 81 82 83 84	Wt. .703 .713 .722 .732 .742 .751 .761 .771 .781 .791 .8010 .820	Lth. 96 97 98 99 100 101 102 103 104 105 106 107 108	Wt. .937 .947 .956 .966 .976 .985 .1.005 1.015 1.025 1.034 1.044 1.054	120 121 122 123 124 125 126 127 128 129 130 131 132	Wt. 1.171 1.181 1.191 1.201 1.220 1.230 1.239 1.249 1.259 1.269 1.279 1.288	72 73 74 75 76 77 78 79 80 81 82 83 84	Wt. 640 649 658 667 676 684 693 711 720 729 738	Lth. 96 97 98 99 100 101 102 103 104 105 106 107 108	Wt. .854 .862 .871 .880 .889 .898 .907 .916 .925 .934 .942 .951	Lth. 120 121 122 123 124 125 126 127 128 129 130 131 132	1.067 1.076 1.085 1.094 1.103 1.112 1.120 1.129 1.138 1.147 1.156 1.165
72 73 74 75 76 77 78 79 80 81 82 83 84 85	Wt. .703 .713 .722 .732 .742 .751 .761 .771 .781 .791 .801 .810 .820 .829	Lth. 96 97 98 99 100 101 102 103 104 105 106 107 108	Wt. 937 947 956 966 976 986 995 1.005 1.015 1.025 1.034 1.044 1.054	Lth. 120 121 122 123 124 125 126 127 128 129 130 131 132 133	Wt. 1.171 1.181 1.191 1.201 1.220 1.230 1.239 1.249 1.259 1.269 1.279 1.288 1.298	72 73 74 75 76 77 78 80 81 82 83 84 85	Wt. 640 649 658 667 676 684 693 711 720 729 738 747	Lth. 96 97 98 99 100 101 102 103 104 105 106 107 108 109	Wt.	Lth. 120 121 122 123 124 125 126 127 128 129 130 131 132 133	1.067 1.076 1.085 1.094 1.103 1.112 1.120 1.138 1.147 1.156 1.165 1.174 1.183
72 73 74 75 76 77 78 80 81 82 83 84 85	Wt. .703 .713 .722 .732 .742 .751 .761 .771 .801 .810 .820 .829 .839	Lth. 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	Wt. 937 947 956 966 976 986 995 1.005 1.015 1.025 1.034 1.044 1.064 1.064	Lth. 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134	Wt. 1.171 1.181 1.191 1.201 1.210 1.220 1.230 1.239 1.249 1.259 1.269 1.279 1.288 1.308 1.308	72 73 74 75 76 77 78 80 81 82 83 84 85 86	Wt. 640 649 658 667 676 684 693 703 711 720 738 747 756	Lth. 96 97 98 99 100 101 102 103 104 105 106 107 108	Wt. .854 .862 .871 .880 .889 .898 .907 .916 .925 .934 .942 .951 .960 .969 .978	Lth. 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134	1.067 1.076 1.085 1.094 1.103 1.112 1.120 1.129 1.138 1.147 1.156 1.165 1.174 1.183
72 73 74 75 76 77 78 80 81 82 83 84 85 86 87	Wt. .703 .713 .722 .732 .751 .761 .771 .781 .791 .801 .810 .820 .829 .839 .839	Lth. 96 97 98 99 100 101 102 103 104 105 106 107 108 109	Wt. 937 947 956 966 976 986 995 1.005 1.015 1.025 1.034 1.054 1.064 1.074 1.083	Lth. 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135	Wt. 1.171 1.181 1.191 1.201 1.210 1.220 1.230 1.239 1.249 1.259 1.269 1.279 1.288 1.308 1.308	72 73 74 75 76 77 78 80 81 82 83 84 85 86 87	Wt. 640 649 658 667 676 684 693 703 711 720 738 747 756 765 773	Lth. 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111	Wt. .854 .862 .871 .880 .889 .907 .916 .925 .934 .942 .951 .960 .969 .978 .987	Lth. 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136	1.067 1.076 1.085 1.094 1.103 1.112 1.120 1.129 1.138 1.147 1.156 1.165 1.174 1.183 1.192 1.200
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88	Wt. .703 .713 .722 .732 .742 .751 .761 .771 .801 .810 .820 .829 .839	Lth. 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	Wt. 937 947 956 966 976 986 995 1.005 1.015 1.025 1.034 1.044 1.054 1.064 1.074 1.083 1.093 1.103	Lth. 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137	Wt. 1.171 1.181 1.201 1.200 1.230 1.239 1.249 1.259 1.269 1.279 1.288 1.308 1.318 1.327 1.337	72 73 74 75 76 77 78 80 81 82 83 84 85 86	Wt. 640 649 658 667 676 684 693 703 711 720 738 747 756	Lth. 96 97 98 99 100 101 102 103 104 105 106 107 108	Wt. .854 .862 .871 .880 .889 .907 .916 .925 .934 .942 .951 .960 .969 .978 .987	Lth. 120 121 122 123 124 125 126 127 128 130 131 132 133 134 135 136	1.067 1.076 1.085 1.094 1.103 1.112 1.120 1.129 1.138 1.147 1.156 1.165 1.174 1.183 1.192 1.200 1.209
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89	Wt. .703 .713 .722 .732 .751 .761 .771 .801 .810 .820 .829 .849 .859 .869 .878	Lth. 96 97 98 99 100 101 102 103 104 105 106 107 108 119 111 112 113 114	Wt. 937 947 956 966 976 986 995 1.005 1.015 1.025 1.034 1.044 1.064 1.064 1.074 1.083 1.093 1.103	Lth. 120 121 122 123 124 125 126 127 128 130 131 132 133 134 135 136 137 138	Wt. 1.171 1.181 1.201 1.220 1.230 1.239 1.249 1.259 1.269 1.279 1.288 1.308 1.318 1.327 1.337 1.347	72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 90	Wt. 640 649 658 667 676 684 693 .703 .711 .720 .729 .738 .747 .756 .773 .782 .791 .800	Heat Mark 10 M	Wt. .854 .862 .871 .880 .889 .997 .916 .925 .934 .942 .951 .960 .969 .978 .987 .996 1.005	Lth. 120 121 122 123 124 125 126 127 128 130 131 132 133 134 135 136	1.067 1.076 1.085 1.094 1.103 1.112 1.120 1.129 1.138 1.147 1.156 1.165 1.174 1.183 1.192 1.200 1.209
72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90	Wt. .703 .713 .722 .732 .751 .761 .771 .781 .791 .810 .820 .829 .839 .849 .859 .869 .878	Lth. 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115	Wt. 937 947 956 966 976 986 995 1.005 1.015 1.025 1.034 1.044 1.064 1.064 1.074 1.083 1.093 1.103	Lth. 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138	Wt. 1.171 1.181 1.191 1.201 1.220 1.230 1.239 1.249 1.259 1.269 1.279 1.288 1.308 1.308 1.318 1.327 1.337	72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	Wt. 640 649 658 667 676 684 693 703 711 720 738 747 756 765 773 782 791 800 809	Lth. 96 97 98 99 100 101 102 103 104 105 106 107 108 109 111 112 113 114 115	Wt.	Lth. 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138	1.067 1.076 1.085 1.094 1.103 1.112 1.120 1.129 1.138 1.147 1.156 1.165 1.174 1.183 1.192 1.200 1.209
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 90 91	Wt. .703 .713 .722 .732 .742 .751 .761 .771 .801 .810 .820 .829 .839 .849 .859 .869 .878	Lth. 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115	Wt. 937 947 956 966 976 986 985 1.005 1.015 1.025 1.034 1.044 1.054 1.083 1.103 1.113 1.122 1.132	Lth. 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140	Wt. 1.171 1.181 1.191 1.201 1.220 1.230 1.239 1.249 1.259 1.269 1.279 1.288 1.308 1.308 1.318 1.327 1.337	72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 91	Wt. 640 658 667 676 684 693 703 711 720 729 738 747 756 765 773 782 791 800 809 818	Lth. 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115	Wt. .854 .862 .871 .880 .889 .898 .907 .916 .925 .934 .942 .951 .960 .969 .978 .996 1.005 1.014 1.023	Lth. 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140	1.067 1.076 1.085 1.094 1.103 1.112 1.120 1.129 1.138 1.147 1.165 1.165 1.174 1.183 1.192 1.200 1.209 1.218 1.227
72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 92	Wt. .703 .713 .722 .732 .742 .751 .761 .771 .801 .810 .820 .829 .839 .849 .859 .869 .878 .888 .898	Lth. 96 97 98 99 100 101 102 103 104 105 106 107 108 119 111 112 113 114 115 116 117	Wt. 937 947 956 966 976 986 995 1.005 1.015 1.025 1.034 1.044 1.054 1.064 1.074 1.083 1.103 1.113 1.122 1.132 1.142	Lth. 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141	Wt. 1.171 1.181 1.191 1.201 1.220 1.230 1.239 1.249 1.259 1.269 1.279 1.288 1.308 1.318 1.318 1.318 1.318 1.318 1.357 1.357 1.366 1.376	72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 90 91 92	Wt. 640 649 658 667 676 684 693 711 720 729 738 747 756 765 773 782 791 800 809 818 827	Lth. 96 97 98 99 100 101 102 103 104 105 106 107 108 119 111 112 113 114 115 116 117	Wt. .854 .862 .871 .880 .889 .898 .907 .916 .925 .934 .942 .951 .960 .969 .978 .996 1.005 1.014 1.023 1.031	Lth. 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141	1.067 1.076 1.085 1.094 1.103 1.112 1.120 1.138 1.147 1.156 1.165 1.165 1.174 1.183 1.192 1.200 1.209 1.218 1.227 1.236 1.245
72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 90 91 92 93 94	Wt. -703 -713 -722 -732 -751 -761 -771 -781 -801 -810 -829 -839 -849 -859 -869 -878 -888 -898 -997 -917	Lth. 96 97 98 99 100 101 102 103 104 105 106 107 118	Wt. 937 947 956 966 976 986 995 1.005 1.015 1.025 1.034 1.044 1.064 1.074 1.083 1.103 1.113 1.122 1.132 1.142	Lth. 120 121 122 123 124 125 126 127 128 130 131 132 133 134 135 136 137 138 139 140 141 142	Wt. 1.171 1.181 1.191 1.201 1.220 1.230 1.239 1.249 1.259 1.269 1.279 1.288 1.308 1.318 1.327 1.337 1.347 1.357 1.366 1.376 1.376 1.386	72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 90 91 92 93	Wt. 640 649 658 667 676 684 693 711 720 729 738 747 756 765 773 782 791 800 809 818 827	Lth. 96 97 98 99 100 101 102 103 104 105 106 107 108 119 111 112 113 114 115 116 117 118	Wt.	Lth. 120 121 122 123 124 125 126 127 128 130 131 132 133 134 135 136 137 138 139 140 141	1.067 1.076 1.085 1.094 1.103 1.112 1.120 1.129 1.138 1.147 1.156 1.165 1.174 1.183 1.192 1.200 1.209 1.218 1.227 1.236 1.245 1.254 1.263
72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 92	Wt. .703 .713 .722 .732 .742 .751 .761 .771 .801 .810 .820 .829 .839 .849 .859 .869 .878 .888 .898	Lth. 96 97 98 99 100 101 102 103 104 105 106 107 108 119 111 112 113 114 115 116 117	Wt. 937 947 956 966 976 986 995 1.005 1.015 1.025 1.034 1.044 1.054 1.064 1.074 1.083 1.103 1.113 1.122 1.132 1.142	Lth. 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141	Wt. 1.171 1.181 1.191 1.201 1.220 1.230 1.239 1.249 1.259 1.269 1.279 1.288 1.308 1.318 1.318 1.318 1.318 1.318 1.357 1.357 1.366 1.376	72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 90 91 92	Wt. 640 658 667 676 684 693 703 711 720 729 738 747 756 765 773 782 791 800 809 818	Lth. 96 97 98 99 100 101 102 103 104 105 106 107 108 119 111 112 113 114 115 116 117	Wt. .854 .862 .871 .880 .889 .898 .907 .916 .925 .934 .942 .951 .960 .969 .978 .996 1.005 1.014 1.023 1.031	Lth. 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141	1.067 1.076 1.085 1.094 1.103 1.112 1.120 1.138 1.147 1.156 1.165 1.165 1.174 1.183 1.192 1.200 1.209 1.218 1.227 1.236 1.245

CONVENIENT WEIGHT TABLE, GALVANIZED SHEETS—Continued

_											
		No. 24	GAUG	E				No. 2	GAUG	E	
Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.
72	. 578	96	.771	120	. 963	72	. 515	96	. 687	120	. 859
73	. 585	97	.778 .786	121 122	.971	73	. 522	97	. 694	121	.866
74	. 593	98	.786	122	.979	74	. 529	98	. 701	122	.873
75	. 602	99 100	.794 .802	123 124	.987 .995	75 76	. 536	99 100	.708	123 124	.880 .887
75 76 77 78 79 80 81 82 83	.610 .618	101	.810	124	1 003	77	. 544 . 551	100	.715 723	124	.894
78	. 626	102	818	126	1 011	77 78	. 558	101 102	730	126	.902
79	634	103	.826	127	1.019	79	. 565	103	.737	127	.909
80	. 642	104	.818 .826 .834	125 126 127 128	1.003 1.011 1.019 1.027	80	. 572	104	.723 .730 .737 .744 .751 .758 .766	125 126 127 128	.916
81	. 650	105	842	129	1.035 1.043	81	. 579	105	.751	129 130	. 923
82	. 658	106 107	.850	130	1.043	82	. 587	106	.758	130	.930
83 84	. 666	107	.859	131 132	1.051 1.059	83 84	. 594	107 108	.766	131 132	.937
85	$\begin{array}{c} .674 \\ .682 \end{array}$	108 109	.867 .874	132	1.059	84 85	. 601 . 608	108	.773 .780	132	. 945 . 952
86	.690	110	.883	134	1.075	86	.615	110	.787	134	. 952
86 87	. 698	111	.891	134 135	1.083	87	. 622	110 111	.794	135	. 966
88	.706	112 113	. 899	136	1.091 1.099	88	. 630	112	.802	136	.973
88 89	.714	113	907	137	1.099	89	.637	113	200	137 138	. 980
90 91	.722 .730	114	.915 .923 .931	138 139 140	1.107	90	. 644	114 115 116	.816	138	.987 .995 1.002
91	.730	115	.923	139	1.115 1.123	91	.651	115	.823	139 140	. 995
92 93	.738	116	.931	140	1.123	92 93	. 658 . 665	116	.830	140	1.002 1.009
94	.746 .754	117 118	.939	141 142	1.131	93	. 673	117 118	.816 .823 .830 .837 .844 .852	141 142	1.009
95	.762	119	.947 .955	143	1 148	95	. 680	119	852	143	1 023
		110	. 000	144	1.148 1.156		.000	110		144	1.023 1.031
		No. 26	6 GAUG	E		No. 27 GAUGE					
Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.
72	. 453	96	. 604	120	.754	72	. 422	96	. 562	120	. 703
$72 \\ 73 \\ 74$. 459	97	610	120 121 122 123	761	73	.427	97	568	120 121 122 123	.709
74	. 465	98	.610 .616 .622	122	.767	73 74	. 433	98	.574	122	.715
75	. 471	99	. 622	123	. 773	75	. 439	99	. 580	123	.721
76	.478	100	. 629	1 124	.780	76	. 445	100	. 586	124	.726 .732
77 78 79	.484	101	.635	125 126 127	. 786	77	. 451	101	. 592	125	.732
78	.490	102	.641	126	.792	78	. 457	102	. 597	126 127	.738
80	. 497 . 503	103 104	. 648 . 654	127	.805	79 80	. 463 . 468	103 104	. 604 . 609	127	750
80 81 82 83 84	. 509	105	660	128 129 130 131 132	.811	81	.474	105	615	128 129 130 131 132	.750 .756
82	.515	106	.660 .666 .673	130	.817	82	.480	106	.621	130	.761
83	.515 .524	106 107	.673	131	.824	82 83	. 486	107	. 627	131	.761 .767 .773 .779
84	. 528	108	.679 .685 .692	132	. 830	84	. 492	108	.633 .638 .644 .650	132	. 773
85	. 534	109	. 685	133	.836	85	. 498	109	. 638	133 134 135 136	. 779
86	. 541	110	.692	134	.843	86	. 504	110	.644	134	.785
87	. 547 . 553	111 112	.698 .704	135	. 849 . 855	87 88	. 509 . 515	111 112	.050	135	.791
85 86 87 88 89 90	. 559	113	.710	133 134 135 136 137 138 139 140	.861	89	.521	113	.662	137	.803
90	. 566	114	717	138	.868	90	. 527	114	. 668	137 138 139	808
91	.572	115	.723	139	.874	91	. 533	115	.674	139	.814
91 92	. 578	116	.729	140	.880	92	. 539	116	.679	140	.814
93	. 585	117	.736	141	.887	93	. 545	117	.685	141	.826 .832
94 95	. 591	118	.736 .742 .748	142	.893	94	. 550	118	.691 .697	142	.832
95	. 597	119	.748	141 142 143 144	.899 .906	95	. 556	119	.697	143 144	.838
		<u> </u>	1	1 144	. 900	<u> </u>	<u> </u>	1	1	144	. 544

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet by the width of the sheet.

CONVENIENT WEIGHT TABLE, GALVANIZED SHEETS—Continued

No. 28 GAUGE					No. 29 GAUGE						
Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.	Lth.	Wt.
72	. 390	96	. 520	120	. 650	72	. 359	96	. 479	120	. 599
73	. 395	97	. 526	121	. 656	73	. 364	97	. 484	121	.604
74	. 401	98	. 531	122	. 661	74	. 369	98	. 489	122	.609
75	. 406	99	. 536	123	. 667	75	. 374	99	. 494	123	. 614
76	. 412	100	. 542	124	. 672	76	. 379	100	. 499	124	.619
77	. 417	101	. 547	125	. 677	77	. 384	101	. 504	125	. 624
78	. 423	102	. 553	126	. 683	78	. 389	102	. 509	126	. 629
79	. 428	103	. 558	127	. 688	79	. 394	103	. 514	127	• .634
80	. 433	104	. 564	128	. 694	80	. 399	104	. 519	128	. 639
81	. 439	105	. 569	129	. 699	81	. 404	105	. 524	129	. 644
82	. 444	106	. 574	130	. 705	82	. 409	106	. 529	130	. 649
83	. 450	107	. 580	131	.710	83	. 414	107	. 534	131	. 654
84	. 455	108	. 585	132	.715	84	. 419	108	. 539	132	. 659
85	. 461	109	. 591	133	.721	85	. 424	109	. 544	133	. 664
86	. 466	110	. 596	134	.726	86	. 429	110	. 549	134	. 669
87	. 472	111	. 602	135	.732	87	. 434	111	. 554	135	. 674
88	. 477	112	. 607	136	.737	88	. 439	112	. 559	136	.679
89	. 482	113	. 612	137	.743	89	. 444	113	. 564	137	. 684
90	. 488	114	.618	138	.748	90	. 449	114	. 569	138	. 689
91	. 493	115	623	139	. 753	91	454	115	. 574	139	. 694
92	. 498	116	629	140	.759	92	459	116	. 579	140	. 699
93	. 504	117	. 634	141	. 764	93	. 464	117	. 584	141	.704
94	. 509	118	. 639	142	.770	94	. 469	118	. 589	142	.709
95	. 515	119	. 645	143	.775	95	. 474	119	. 594	143	.714
		<u> </u>		144	.781			1		144	.719

N. T	$\Omega \Lambda$	C A	TICT
NO.	งบ	UΛ	UGE

Lth.	Wt.	Lth.	Wt.	Lth.	Wt.
72	.328	96	. 437	120	. 546
73	.332	97	. 441	121	. 551
74	. 337	98	. 446	122	. 555
75	. 341	99	. 451	123	. 560
76	. 346	100	.455	124	. 564
77	. 350	101	. 460	125	. 569
78	. 353	102	. 464	126	. 574
79	. 359	103	. 469	127	. 578
80	.364	104	. 473	128	. 583
81	. 369	105	. 478	129	. 587
82	. 373	106	. 482	130	. 592
83	. 378	107	. 487	131	. 596
84	.382	108	. 492	132	. 601
85	. 387	109	. 496	133	. 605
86	.391	110	. 501	134	. 610
87	. 396	111	. 505	135	. 615
88	. 400	112	. 510	136	. 619
89	. 405	113	. 514	137	. 624
90	. 410	114	. 519	138	. 628
91	. 414	115	. 523	139	. 633
92	. 419	116	.528	140	. 637
93	.423	117	. 533	141	. 642
94	. 428	118	. 537	142	. 646
95	.432	119	. 542	143	. 651
1				1	. 656

To find the weight of a sheet of a given size multiply the number in the weight column found opposite the length of the sheet by the width of the sheet.

SHEETS
BLACK
FOR
TABLE
BUNDLING

	Square feet per Sheet	21 82 41 10 00	4 5.16 6.33 7.50	6 7.33 8.66 9	0 1.66 3.33
-	Bundle	150 12 162 13 140 14 150 15 135 18	140 14 152 15 163 16 131 17 157 21	160 16 130 17 140 18 150 20 120 24	150 20 162 21 175 23 125 25
20 -	Weight of	15 14 15 15 13	41 11 11 12 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	91 113 124 121 121	1212
16 40 2.5	No. of Sheets	ひひ44 8	44488	400000	000000
	Sheets	50	92 75 50	533	17 33 50
	Weight of	30 335 35 45	35 37. 440. 52.	60 60 60 60 60	55.
	Weight of Bundle	135 146 157 169 169	157 128 138 148 118	135 146 157 169 135	169 122 131 141
15 42.4 2.65	No. of Sheets	44440	400000	0000000	20 20 20 20
5522 -	Sheets	75 56 37 19 63	38 94 95 06 06	75 50 50 50	25 94 63 31
	Weight of	33. 39. 50.	39. 445. 59.	45 52 56 67	56 60. 65.
125	Weight of Bundle	150 162 131 141 169	131 142 153 164 131	150 162 175 125 150	125 135 146 156
14 50 3.12	No. of Sheets	44666	000000	000000	22222
	Sheets	25825	75 04 09 69 63	00 17 33 50	50 71 92 13
	Weight of	37. 440. 56.	43. 54. 554. 65.	50. 58. 58. 75.	28.5.2.5.8
	Weight of Bundle	135 146 157 169 135	157 171 122 131 131	120 130 140 150 180	150 162 175 187
.75	No. of Sheets	00 00 00 01	000000	20000	2222
60 60	Sheets	75 50 25 50	50 25 53 75		250
	Weight of	45 48 52 56 67	52. 56. 61. 65.	65 70 75 90	75 81. 93.
55	Weight of Bundle	157 171 122 131 157	122 133 143 153 184	140 152 163 175	175
12 70 4.375	No. of Sheets	000000	20222	8888	0101
-10	Sheets	55 25 75 75 75	25 35 56 88 88	83 67 50	20 20 20 20 20 20 20 20 20 20 20 20 20 2
	Weight of	52. 56. 61. 65.	61. 66. 71. 76. 91.	70 75. 81. 87.	87. 94. 102.
	Weight of Bundle	180 130 140 150 180	140 152 163 175	160 173 187	11111
208 11	No. of Sheets	00000	8888	888	: : : :
	Sheets		83 67 50	67	33
	Weight of	65 70 75 90	70 75 81 87 105	86. 100. 120.	100 108 116 125
625	Weight of Bundle	135 146 157 169	157 171 184	180	: : : :
5.5	No. of Sheets	20000	000	0.03	1111
(oz. Ibs.	Sheets	5 75 38 25	25 31 88 44 13	ت تن ب	16352857
sq. ft. (oz.)	Weight of	67. 73. 78. 84. 101.	78. 85. 91. 98.	90 97. 105 112. 135.	112. 121. 131. 140.
vauges Vt. per sc Vt. per sc	Size of Sheet Inches	22222	$\frac{8}{4}$	96 96 96 96 96 96	24x120 26x120 28x120 30x120
		24x 28x 28x 30x 36x	24x 26x 28x 30x 36x	24x 26x 28x 30x 36x	

	per Sheet		.33	.33	. 33
	Square feet	21 21 41 21 81	14 15 16 17 17	$\frac{16}{24}$	82222
125	Weight of Bundle	148 146 142 152 142	142 153 147 157 157	144 156 147 157 162	157 146 157 141
23 18 1.12	No. of Sheets	111 10 9 9	00000	001100	F9964
-	Sheets	50 63 75 25	75 06 89 63	20	25 12 12 12
	Weight of	13. 14. 15. 20.	15.7 17.0 119.0 23.0		22422
	Weight of Bundle	150 146 140 150 157	140 152 143 153 153	140 18 152 19 140 21 150 22 150 27	150 162 146 156
25	No. of Sheets	01 08 8 2 7	021100	77992	9922
1 20 20	Sheets	25 50 75 50	50 96 25 25	67	08 17 22 22 22 22 22 22 22 22 22 22 22 22 22
	Weight of	15 17 17 22 22	17. 18. 20. 21. 26.	30 23 23 23 23 23 23 23 23 23 23 23 23 23	222 23
	Weight of Bundle	143 154 144 148	154 146 157 144 144	154 143 154 165 165	137 149 160 137
34	No. of Sheets	000000	×2-1-010	V 9 9 9 V	10 10 10 H
12.21	Sheets	50 88 25 63 75	25 85 96 88 88	83 67 50	50 20 37 37 37
	Weight of	16. 17. 19. 20. 24.	255.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5	322532	32.32
	Weight of Bundle	144 156 147 157 135	147 159 147 157 157	144 156 140 150 144	150 162 140 150
20	No. of Sheets	∞∞ <i>۲</i> - <i>۲</i> - <i>1</i> -	779919	99554	70 70 4 4 C
24 24	Sheets	50	75 50 50 50		50
	Weight of	$\frac{18}{19}$	324 22 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	28 28 38 38 38 38 38 38 38 38 38 38 38 38 38	32.35
	Weight of Bundle	147 159 147 157 157	147 159 143 153 147	140 152 163 140 168	140 152 163 131
75	No. of Sheets	rr9910	99554	10 10 to 4 4	44400
128	Sheets	75 50 50 50	554 588 588 75	533	92 83 75
	Weight of	22 24 31 31	28.0 38.0 36.0 36.0	455.28 425.28 425.28	35. 40. 45. 45.
	Weight of Bundle	144 156 140 150 144	140 152 163 140 168	160 139 149 160 144	160 130 140 150
22 2	No. of Sheets	00vv4	25244	7044460	40000
- 00	Sheets		33	33	33
	Weight of	28 30 36 36	28 32 35 42	32 34 37 48 48	044300
25	Weight of	162 146 157 135 162	157 136 147 157 142	144 156 168 135 162	135 146 157 169
36.	No. of Sheets	0 r0 r0 4 4	7044460	44466	ಣಣಣಣ
(oz.) (lbs.)	Sheets	25 50 50	55 25 25 25 25 25		250
: # t:	Weight of	27 29. 33. 40.	31. 34. 36. 39.	36 39 45 45 45	445 522 566 57
Gauge Wt. per sq.f	et nes	22222	88 4 4 8 8 4 4 8 8 4 4 8 8 4 4 8 8 4 8 8 4 8 8 8 4 8	96 96 96	24x120 26x120 28x120 30x120
D D	Size of Sheet Inches	24x 26x 28x 30x 36x	24x 26x 28x 30x 36x	24x 26x 28x 30x 36x	3x1 3x1 3x1

BUNDLING TABLE FOR BLACK SHEETS—Continued

	-1				
	Square feet per Sheet	01 to 44 10 to	4 5.16 5.33 7.50	3.33 3.66 4	2.66 3.33 3.33
	Bundle	150 12 149 13 147 14 150 15 144 18	147 14 144 15 155 16 149 17 147 21	144 16 147 17 149 18 150 20 144 24	150 20 152 21 163 22 150 25 150 30
7.0	Weight of	52454	44544	44454	155
80.	No. of Sheets	168238	21 19 19 17	18 17 16 15 12	344 100 101
	Sheets	.50	.58 .77 .50	.33	.83 .67 .50
	Weight of	99776	~~××0	∞∞005 <u>1</u>	22122
25	Meight of Bundle	148 146 150 152 152	150 145 147 148 153	144 146 147 147 148	146 144 144 155
29 9 . 5625	No. of Sheets	22 18 18 15 15	19 17 16 15 13	16 14 13 11	112 112 113 114
2	Sheets	55.88.45.E	88 19 19 18 18	22,22	88.55
	Weight of	10.2.7.6		6 0 1 2 2	12249
	Weight of Bundle	150 146 149 150 150	149 152 143 153 153	150 152 152 152 150	150 149 146 156 150
.625	No. of Sheets	20 18 17 16 13	17 16 16 14 11	15 13 13 10	81228
820	Sheets	5255 525 525 525 525 525 525 525 525 52	25 24 13 13 13	83 67 50	05 48 85 55 75 85 85 85 85 85 85 85 85 85 85 85 85 85
	Neight of	<u>⊬</u> .∞.∞.9. <u>11</u>	∞ o O O E	15.1.1.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	21.81.42.81 1.81.81
	Neight of Bundle	148 154 154 148 148	144 146 146 144 144	143 143 154 151 148	151 149 144 155 165
40.	No. of Sheets	18 16 16 17 17	15 14 13 10	112	1100
27	Sheets	24 3 E 8	8 4 8 8 4	25.53	58408
	Weight of	8.8 9.9 12.	9.01.12.14. 14.12.14.	12.22.23	13 14 17 20
	Weight of Bundle	441 146 146 841	147 148 147 144 142	144 143 154 150	150 146 140 150 157
.75	No. of Sheets	16 15 14 13	113 120 110 111 111	11 10 8	01 08 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
12 26	Sheets	25 25 50	50 38 13 75		25 50 50 50
	Weight of	0 0 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	51221	$\begin{array}{c} 212472\\ 212473\\ 21247\\ 2124\\ $	15 16 17 18 22
	Weight of Bundle	147 148 147 144 142	147 146 143 153	140 152 147 140 140	140 152 143 153 157
875	No. of Sheets	41 E E E E E E E E E E E E E E E E E E E	8 10 12	10 10 9 8	∞~~~°
52 41	Sheets	25 38 50 75 135 28	38 38 38 38	17 33 50	28488
	Weight of	5.12.15.15.15.15.15.15.15.15.15.15.15.15.15.	51.52.42.53 1.62.42.63 1.63.6	14 15. 16. 21	17. 18. 20. 21. 26.
	Weight of Bundle	143 154 150 143	154 152 147 140	144 156 149 140	140 150 150 150
24 .)16 s)1	No. of Sheets	81112	111 10 10 7	00%/9	2000
(oz)	Sheets		16 33 50	33	67
sq. ft.	Weight of	21 21 13 14 18	14 15. 16. 17.	16 17. 20 24 24	82228
	es tr	22222	288888	96 96 96 96	88888
Gauge Wt. per Wt. per	Size of Sheet Inches	24x 26x 30x 36x	24x 26x 320x 330x 336x 3	24x 9 26x 9 28x 9 30x 9	24x120 26x120 28x120 30x120 36x120
&¥\$		ង់ស៊ីស៊ី ស៊ី	ស្នស្នស	ង់សសស័	***

5 656	Square feet Square feet	12. 14. 15. 18.	14. 15.16 16.33 17.50 21.	16. 17.33 18.66 20.	20. 21.63 23.36 25.30
	Weight of Bundle	159 138 149 149 159 143	149 161 174 139 167 2	170 138 149 159 2 127	159 173 186 186 133 250 150
16 42.5 2.6	No. of Sheets	7044460	44466	400000	000000
1 4	Weight of Sheet	31.87 34.53 37.19 39.84 47.81	37.19 40.27 43.38 46.48 55.78	42.50 46.03 49.57 53.12 63.75	53.12 57.53 61.97 66.41
	Weight of Bundle	142 3 154 3 166 3 134 3 160 4	166 1354 1454 1564 125	142 154 166 166 178 178	178 129 139 148 6
.5	No. of Sheets	44400	400000	00 00 00 01	000000
15 47. 2.	Weight of Sheet	35.62 38.59 41.56 44.53 53.44	41.56 45.01 48.48 51.95 62.34	47.50 51.45 55.40 59.37 71.25	59.37 64.30 69.26 74.22
	Weight of Bundle	157 171 138 148 148 177	138 149 161 172 138	157 171 184 131 131 157	131 142 153 164 164 7
. 281	No. of Sheets	44000	PD 00 00 00 00	00000000	00000
14 52. 3.	Weight of Sheet	39.37 42.66 45.94 49.22 59.06	45.94 49.74 53.58 57.42 68.91	52.50 56.86 61.23 65.62 73.75	65.62 71.07 76.55 82.03
	Weight of Bundle	141 152 164 164 176 176	164 178 191 191 137 164 164	125 135 135 136 (126 (126 (127 127 128 128 128 128 128 128 128 128 128 128	156 169 182 195 195
.906	No. of Sheets	000000	0000000	ପ୍ରପ୍ରପ୍ର	21212121
13 62.	Weight of Sheet	46.87 50.78 54.69 58.59 70.31	54.69 59.22 63.79 68.36 82.03	62.50 67.70 72.89 78.12 93.75	78.12 84.61 91.13 97.66
	Weight of Bundle	163 177 127 136 136 163	127 137 148 159 190	145 157 169 181	181
531	No. of Sheets	00000	20200	9999	2121
22.4	Weight of Sheet	54.37 58.91 63.44 67.97 81.56	63.44 68.69 74.00 79.30 95.16	72.50 78.53 84.55 90.62 108.75	90.62 98.15 105.71 113.28
	Weight of Bundle	186 134 144 155 186	144 156 168 180	165 179 192	: : : :
5	No. of Sheets	200000	20000	010101	
22.	Weight of Sheet	61.87 67.03 72.19 77.34 92.81	72.19 78.17 84.20 90.23 08.28	82.50 89.36 96.22 03.12	03.12 11.68 20.30 28.91
sq. ft. (oz.)92.5 sq. ft. (lbs.) 5.781	Weight of Bundle	139 150 162 173	162 175 189	185	
	No. of Sheets	9999	999	2 : : : :	
	Weight of Sheet	69.37 75.16 80.94 86.72 104.06	80.94 87.64 94.41 101.17 121.41	92.50 100.19 107.88 115.62 138.75	115.62 125.22 134.88 144.53
Sauge Wt. per sq Wt. per sq	Size of Sheets Inches	24x 72 26x 72 28x 72 30x 72 36x 72	24x 84 26x 84 28x 84 30x 84 36x 84	24x 96 26x 96 28x 96 30x 96 36x 96	24x120 26x120 28x120 30x120

0	
113	
=	
_	
.=	
1	
_	
\rightarrow	
0	
1	
$\overline{}$	
1	
. L	
(\mathbf{n})	
7 .	
SHEETS	
1-1	
ш.	
1-1	
ш.	
_	
10	
-	
U2	
-	
[+]	
_	
N	
1	
-	
-	
4	
>	
.]	
$\overline{}$	
- 2	
[7]	
$\overline{}$	
\sim	
-	
-	
\cup	
fr.	
$\overline{}$	
1-1	
-	
7	
$\overline{}$	
2	
_	
-	
4	
r. M.	
0	
-	
1	
7	
-	
/	
BUNDLING TABLE FOR GALVANIZED	
-	
_	
2	
_	

	Square feet per Sheet	113 12 12 12 12 12 12 12 12 12 12 12 12 12	14 15.16 16.33 17.50	16 17.33 18.66 20 24	20 21.66 23.33 30
5.281	Weight of Bundle	154 150 144 154 154 161	144 1 155 1 146 1 157 1 161 2	143 155 143 154 154 2	1542 1662 1492 1602
20.5	No. of Sheets	0100000	04400	71000	000004
	Weight of Sheet	5.37 5.66 7.94 9.22 3.06	7.94 9.42 9.92 2.42 5.91	2.20 2.20 3.91 5.62 0.75	2.03
	Weight of Bundle	152 15 146 16 158 17 148 19 152 23	158 17 149 19 161 20 148 22 148 26	157 20 146 22 157 23 141 25 169 30	141 25 164 29 141 32 160 38
22 22.5 1.406	No. of Sheets	0.0000	∞r0-1-0 to	79966	10 10 to 4 4
2221	Weight of Sheet	16.87 18.28 19.69 21.09 25.31	19.69 21.32 22.96 24.61 29.53	22.50 24.37 26.24 28.12 33.75	28.12 30.46 32.81 35.16
	Weight of Bundle	147 159 150 161 161 165 2	150 162 150 161 161 22 161	143 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2	153 166 173 153 153 153 153
.531	No. of Sheets	@ × × × · · · · ·	r-r-9913	99254	10 10 4 4 c
24.	Weight of Sheet	18.37 19.91 21.44 22.97 27.56	21.44 23.21 25.01 26.80 32.16	24.50 26.54 28.57 30.62 36.75	30.62 33.17 35.72 35.28
	Weight of Bundle	159 151 162 162 149 149 149	162 151 135 145 139	159 143 155 166 166 159	1663 1433 1553 1663
.5	No. of Sheets	∞r-r-⊕r∪	P 9 12 12 4	ô1010104	70 4 4 4 c
26.1	Weight of Sheet	19.87 21.53 23.19 24.84 29.81	23.19 25.11 27.05 28.98 34.78	26.50 28.70 30.91 33.12 39.75	33.12 35.87 38.64 41.41
	Weight of Bundle	160 149 160 143 137	160 144 156 167 160	152 165 142 152 137	152 165 133 143
19 30.5 1.906	No. of Sheets	V 9 9 C 4	ರ್ಣಚಳ	10 10 4 4 m	44000
30	Weight of Sheet	22.87 24.78 26.69 28.59 34.31	26.69 28.90 31.13 33.36 40.03	30.50 33.04 35.57 38.12 45.75	38.12 41.29 44.47 47.66
	Weight of Bundle	155 140 151 162 155	151 163 141 151 136	138 149 161 172 155	129 140 151 162
18 34.5 2.156	No. of Sheets	91212134	707448	44440	00000
18 34 2	Weight of Sheet	25.87 28.03 30.19 32.34 38.81	30.19 32.69 35.21 37.73 45.28	34.50 37.37 40.24 43.12 51.75	43.12 46.70 50.31 53.91
ft. (oz.) 38.5 ft.(lbs.) 2.406	Weight of Bundle	144 156 168 144 173	168 146 157 168 168	154 167 180 144 173	144 156 168 180
	No. of Sheets	rororo 4 4	7044450	44466	00000
	Weight of Sheet	28.87 31.28 33.69 36.09 43.31	33.69 36.48 39.29 42.11 50.53	38.50 41.70 44.90 48.12 57.75	48.12 52.12 56.14 60.16
Gauge Wt. per sq. Wt. per sq.	Size of Sheets Inches	24x 72 26x 72 28x 72 30x 72 36x 72	24x 84 26x 84 28x 84 30x 84 36x 84	24x 96 26x 96 28x 96 30x 96 36x 96	24x120 26x120 28x120 30x120

7
(i)
=
7
-=
+
H
0
()
\neg
-0
91
\vdash
(T)
7
щ
T
SHEETS
01
GALVANIZED
7-3
1
1
I
7
-
A.
>
-
-
A
rH
$\overline{}$
\propto
-
0
I
TABLE FOR
177
_
-
8
$\overline{}$
4
rh
0
7
\equiv
7
=
-
1
UNDLING

	Square feet per Sheet	81 18 18	14 15.16 16.33 17.50	16 17.33 18.66 20 24	20 21.66 23.33 25
5 6562	Weight of Bundle	150 145 147 148 148 154	147 149 150 149 149 152 2	157 148 147 144 157 2	15622 15822 14822
30 10.5	No. of Sheets	19 17 16 15 13	16 15 14 113 113	112 113 110	111069
1	Weight of Sheet	7.87 8.53 9.19 9.84 11.81	9.19 9.95 10.72 11.48 13.78	10.50 11.37 12.25 13.12 15.75	13.12 14.21 15.31 16.41
	Weight of Bundle	147 149 151 162 155 1	151 153 153 151 151 151	149 150 148 144 155 155	1441 1561 1511 1621
7187	No. of Sheets	17 16 15 15 12	15 113 112 10	13 10 10 9	010000000000000000000000000000000000000
29	Weight of Sheet	8.62 9.34 10.06 10.78	10.06 10.90 11.74 12.58 15.09	11.50 12.46 13.41 14.37 17.25	14.37 15.57 16.77 17.97
	Weight of Bundle	150 152 153 153 155 155 155 155	153 154 153 153 150 148 148	1501 1491 1461 1561 1501	156 152 146 156 156
7812	No. of Sheets	16 115 113 113	41 113 113 9	8 10 10 8	000000
12 28	Weight of Sheet	9.37 10.16 10.94 11.72 14.06	10.94 11.84 12.76 13.67 16.41	12.50 13.54 14.58 15.62 18.75	15.62 16.92 18.23 19.53
	Weight of Bundle	152 154 154 152 152 152 152	154 153 152 148 148 159	148 146 157 157 162 162	152 146 157 157 148 148
.5	No. of Sheets	122 113 110	121113	110000	0 0 0 0 L
13	Weight of Sheet	10.12 10.97 11.81 12.66 15.19	11.81 12.79 13.78 14.77 17.72	13.50 14.62 15.74 16.87 20.25	16.87 18.28 19.68 21.09
	Weight of Bundle	152 153 152 149 147	152 151 148 159 159	145 152 152 145 152	145 157 148 159
. 9062	No. of Sheets	4112110	\$ 100 s	0100000	00×10
26	Weight of Sheet	10.87 11.78 12.69 13.59 16.31	12.69 13.74 14.80 15.86 19.03	14.50 15.71 16.91 18.12 21.75	18.12 19.63 21.14 22.66
	Weight of Bundle	148 148 159 148	159 156 152 144 152	148 143 154 144 148	144 156 144 155
.5	No. of Sheets	8 21112	1100087	000000	1-1-99
25 16.	Weight of Sheet	12.37 13.41 14.44 15.47 18.56	14.44 15.63 16.84 18.05 21.66	16.50 17.87 19.24 20.62 24.75	20.62 22.34 24.06 25.78
5 406	Weight of Bundle	153 150 146 156 156	146 140 151 142 146	148 160 151 162 166	162 150 162 145
.) 18.	No. of Sheets	111 10 9 9	600010	041400	1-99101
ft. (oz. ft.(lbs.	Weight of Sheet	13.87 15.03 16.19 17.34 20.81	16.19 17.53 18.88 20.23 24.28	18.50 20.04 21.58 23.12 27.75	23.12 25.04 26.98 28.91
vauge Vt. per sq. Vt. per sq.	Size of Sheets Inches	24x 72 26x 72 28x 72 30x 72 36x 72	24x 84 26x 84 30x 84 36x 84 36x 84	24x 96 26x 96 28x 96 30x 96 36x 96	24x120 26x120 28x120 30x120

ARMCO LIMITS

Limits, Gauges and Sizes. ONE PASS COLD ROLLED AND ANNEALED "ARMCO" Ingot Iron and Steel Sheets.

	Width in Inches													
Gauge	48	44	42	40	36	32	30 -	28	26	24				
10	144	144	168	168	168	168	168	168	168	168	j			
11	144	144	168	168	168	168	168	168	168	168				
12	144	144	168	168	168	168	168	168	168	168				
13	144	144	168	168	168	168	168	168	168	168	ĺ			
14	144	144	168	168	168	168	168	168	168	168	i			
15	144	144	168	168	168	168	168	168	168	168	<u> </u>			
16	144	144	168	168	168	168	168	168	168	168	Length			
17	144	144	168	168	168	168	168	168	168	168	🗗			
18	144	144	156	168	168	168	168	168	168	168	} =:			
19	144	144	144	168	168	168	168	168	168	168	1			
20	144	144	144	168	168	168	168	168	168	168	Inches			
21	144	144	144	168	168	168	168	168	168	168	i ž			
$\overline{22}$	144	144	144	168	168	168	168	168	168	168	36			
23			120	120	144	144	144	168	168	168	İ			
24				120	144	144	144	144	144	144	Í			
$\overline{25}$				120	120	144	144	144	144	144	İ			
26		1		120	120	144	144	144	144	144	ĺ			
*27					120	120	120	120	120	120	i			
*28		1			120	120	120	120	120	120	ĺ			
*29					120	120	120	120	120	120	j			

^{*}These gauges can be furnished in Steel only.

Limits, Gauges and Sizes of GALVANIZED SHEETS in "ARMCO" Ingot Iron

					anu st	eei.								
	Width in Inches													
Gauge	48	44	42	40	36	32	30	28	26	24)			
10	144	144	144	144	144	144	144	144	144	144				
11	144	144	144	. 144	144	144	144	144	144	144	1'			
12	144	144	144	144	144	144	144	144	144	144	i			
13	144	144	144	144	144	144	144	144	144	144	i			
14	144	144	144	144	144	144	144	144	144	144	1			
15	144	144	144	144	144	144	144	144	144	144	l			
16	144	144	144	144	144	144	144	144	144	144	Length			
											n			
17	144	144	144	144	144	144	144	144	144	144	82			
18	144	144	144	144	144	144	144	144	144	144				
19	144	144	144	144	144	144	144	144	144	144	} = .			
20	144	144	144	144	144	144	144	144	144	144				
21	144	144	144	144	144	144	144	144	144	144	l ¤			
22	144	144	144	144	144	144	144	144	144	144	Inches			
$\overline{23}$			120	120	144	144	144	144	144	144	88			
$\frac{23}{24}$			120	120	144	144	144	144	144	144				
$\frac{21}{25}$			120	120	120	120	144	144	144	144				
26 26				120	120	120	144	144	144	144				
27		1		120	120	120	144	144	144	144				
28		1	l	120	120	120	144	144	144	144	J			

The above are our regular limits, but in special cases we can manufacture Black and Galvanized Sheets in accordance with sizes given below, at an extra cost dependent upon mill and market condition.

	Width in Inches	48	44	42	40	36	32	30	<u>ر ۲</u>
	12	168	168	168	168	168	168	168	ength
Gauge	$\left\{ egin{array}{c} 14 \ 16 \end{array} \right.$	$\frac{204}{204}$	240 240	$\begin{array}{ c c c }\hline 240\\ 240\end{array}$	$\frac{240}{240}$	$\begin{array}{c c} 240 \\ 240 \end{array}$	$\frac{240}{240}$	204 204	hin
Gauge	18	168	204	204	204	204	204	204	-
	20	144	156	156	156	168	168	168	nches
	$oxed{22}$	144	144	144	156	168	168	168) B

Limits, Gauges and Sizes "ARMCO" Ingot Iron BLUE ANNEALED SHEETS AND LIGHT PLATES.

				W	idth in	n Inch	es			
auge	60	58	56	54	50	48	44	42	40	36
1/2	120	123	126	132	138	150	156	168	180	192
3/8	156	164	170	176	192	198	204	224	232	240
$\frac{5}{16}$	156	168	192	204	216	240	240	240	240	240
1/4	156	168	192	204	216	240	240	240	240	240
$\frac{1}{4}$ $\frac{3}{16}$	156	168	192	204	216	240	240	240	240	240
8	156	168	192	204	216	240	240	240	240	240
9	156	168	192	204	216	240	240	240	240	240
0	156	168	192	204	216	240	240	240	240	240
1	156	168	192	204	216	240	240	240	240	240
2	156	168	192	204	216	216	216	216	216	216
3	144	144	156	168	180	192	192	192	192	192
4	156	156	156	168	180	192	192	192	192	192
5	156	156	156	168	180	180	180	180	180	180
6	156	156	156	156	168	180	180	180	180	180

Should "ARMCO" Ingot Iron plates, heavier or larger than above limits show be desired, we have conversion arrangements through which such specifications may be manufactured. We shall be pleased to have any special requirements submitted.

American Rolling Mill Co. Limits, Gauges and Sizes BLUE ANNEALED STEEL.

	Width in Inches												
Gauge	60	58	56	54	50	48	44	42	40	36			
8	156	168	192	204	216	240	240	240	240	240			
9	156	168	192	204	216	240	240	240	240	240			
10	156	168	192	204	216	240	240	240	240	240			
11	156	168	192	204	216	240	240	240	240	240			
12	156	168	192	204	216	216	216	216	216	216			
13	156	168	156	168	180	192	192	192	192	192			
14	156	168	156	168	180	192	192	192	192	192			
15	156	156	156	168	180	180	180	180	180	180			
16	156	156	156	168	180	180	180	180	180	180			

Under special conditions we will accept specification for light Steel Plates from 7 gauge to $\frac{1}{2}$ " thick providing finished weight does not exceed 600 lbs.

Limits, Gauges and Sizes "ARMCO" INGOT IRON ENAMELING SHEETS.

				W	idth i	n Inch	es			
Gauge	48	44	42	40	36	32	30	28	26	24
8	144	144	144	144	144	144	144	144	144	144
9	144	144	144	144	144	144	144	144	144	144
10	144	144	144	144	144	144	144	144	144	144
11 '	144	144	144	144	144	144	144	144	144	144
12	144	144	144	144	144	144	144	144	144	144
13	144	144	144	144	144	144	144	144	144	144
14	144	144	144	144	144	144	144	144	144	144
15	144	144	144	144	144	144	144	144	144	144
16	144	144	144	144	144	144	144	144	144	144
18	144	144	144	144	144	144	144	144	144	144
20	144	144	144	144	144	144	144	144	144	144
22	144	144	144	144	144	144	144	144	144	144
24		1			120	120	120	120	120	120
26					120	120	120	120	120	120

TEMPERATURE CONVERSION TABLE—FAHRENHEIT TO CENTIGRADE

F.	C.	F.	c.	F.	c.	F.	C.	F.	C.	F.	С.
	-17.8										
+1	-17.2	51	10.6	101	38.3	151	66.1	201	93.9	251	121.7
$\frac{2}{3}$	$ \begin{array}{r} -17.2 \\ -16.7 \\ -16.1 \end{array} $	52	11.1	102	38.9	152	66.7	202	94.4	252	122.2
3	-16.1	53	11.7	103	39.4	153	67.2	203	95.	253	122.8
4	-15.6	54	$\frac{12.2}{10.9}$	104	40.	154	67.8	204	95.6	254	123.3
5 6	-15. -14.4	55	$\frac{12.8}{13.3}$	105 106	40.6 41.1	155	$\begin{array}{c} 68.3 \\ 68.9 \end{array}$	205	96.1 96.7	255 256	123.9
7	-14.4 -13.9	56 57	13.3	100	$\frac{41.1}{41.7}$	156 157	69.4	206 207	90.7 97.2	257	124.4 125.
6	—13.9. —13.3	58	14.4	108	42.2	158	70.	208	97.8	258	125.6
8 9	$ \begin{array}{r} -13.3 \\ -12.8 \\ -12.2 \end{array} $	59	15.	100	42.8	159	70.6	209	98.3	$\frac{250}{259}$	126.1
10	-12.0	60	15.6	109 110	43.3	160	71.1	210	98.9	260	126.7
11	-11 7	61	16 1	111	43.9	161	71 7	911	99.4	261	127.2
$\overline{12}$	-11.7 -11.1 -10.6	62	16.7	112	44.4	162	$7\overline{2}.2$	212	100.	262	127.8
$\overline{13}$	-10.6	63	17.2	$\bar{1}\bar{1}\bar{3}$	45.	163	72.8	213	100.6	263	128.3
14	l —10. l	64	16.7 17.2 17.8	114	45.6	164	73.3	214	101.1	264	128.9
15	$-9.4 \\ -8.9$	65	18.3 18.9	115	46.1	165	72.2 72.8 73.3 73.9 74.4	215	101.7	265	129.4
16	- 8.9	66	18.9	116	46.7	166	74.4	216	102.2	266	130 .
17	-83	67	19.4	117	47.2	167	75.	217	102.8	267	130.6
18	-7.8	68	20. 20.6	118	47.2 47.8 48.3	168	75.6	218	103.3	268	131.1
18 19 20	$ \begin{array}{r} -7.8 \\ -7.2 \\ -6.7 \end{array} $	69	20.6	119	48.3	169	76.1	219	103.9	269	131.7
20	-6.7	70	$21.1 \\ 21.7$	120	48.9	170	76.7 77.2	220	104.4	270	132.2
21	- 6.11	71	21.7	121	49.4	171	77.2	221	105.	271	132.8
$\frac{22}{23}$	-5.6	72	$\frac{22.2}{22.8}$	122	50.	172	77.8 78.3	$\frac{222}{223}$	105.6	$\begin{array}{c} 272 \\ 273 \end{array}$	133.3
23	— 5.	73 74	$\begin{array}{c} 22.8 \\ 23.3 \end{array}$	123	50.6 51.1	173	78.3	223	106.1	273	133.9 134.4
24	$-4.4 \\ -3.9$	75	23.3 23.9	$\frac{124}{125}$	$\frac{51.1}{51.7}$	174 175	78.9 79.4	$\frac{224}{225}$	$106.7 \\ 107.2$	$\begin{array}{c} 274 \\ 275 \end{array}$	135.4
25 26	$\frac{-3.9}{-3.3}$	76	25.9 24.4	126	51.7 52.2	176	80.	226	107.2	276	135.6
$\frac{20}{27}$	- 3.3 - 2.8	77	$\frac{24.4}{25}$.	127	52.2 52.8	177	80.6	227	108.3	$\begin{array}{c} 270 \\ 277 \end{array}$	136.1
$\frac{27}{28}$	$ \begin{array}{r} -2.8 \\ -2.2 \\ -1.7 \end{array} $	78	$\frac{25.6}{25.6}$	128	$\frac{52.8}{53.3}$	178	81.1	227 228	108.9	278	136.7
29	$-\tilde{1}\tilde{7}$	79	26.1	129	53.9	179	81 7	229	109.4	279	137.2
30	- 1.1	80	$\frac{26.7}{2}$	130	54.4	180	$82.2 \\ 82.8$	230	110.	280	137.8
31	— 0.6	81	27.2	131	55 .	181	82.8	231	110 6	281	138.3
32 33	0.	82	27.8	132	55.6	182	83 3	232	111.1 111.7 112.2	282	138.9
33	+ 0.6	83	28.3	133	56 .1	183	83.9 84.4	233 234	111.7	283	139.4
34	1.1	84	28.9	134	56.7	184	84.4	234	112.2	284	140 .
35	1.7	85	29.4	135	57 .2	185	85 .	235	112.8	285	140.6
36 37	2.2	86	30.	136	57.8	186 187	85.6 86.1	236 237	113.3 113.9	286	141.1
37	2.8	87	30.6	137	58.3	187	86.1	237	113.9	287	141.7
38	3.3	88	$\frac{31.1}{21.7}$	138	58.9	188	86.7	238	114.4	288	142.2
39 40	3.9	89 90	$\begin{array}{c} 31.7 \\ 32.2 \end{array}$	139 140	59.4 60.	189 190	87.2 87.7	239 240	115. 115.6	289 290	$142.8 \\ 143.3$
40	4.4	90	20.0		60.6	191	88.3	241	110.0	$\frac{290}{291}$	143.3
$\frac{41}{42}$	5. 5.6	91 92	$\frac{32.8}{33.3}$	$\frac{141}{142}$	61.1	191	90.0 80.0	241	116.1	$\begin{array}{c} 291 \\ 292 \end{array}$	143.9
43	6.1	93	33.9	143	$61.1 \\ 61.7$	193	88.9 89.4	242 243	$\frac{116.7}{117.2}$	293	144.4 145.
44	6.7	94	34.4	144	62.2	194	90.	244	117.8	294	145.6
45	7 2	95	35.	145	62.8	195	90.6	245	118 3	295	146.1
46	$\frac{7.2}{7.8}$	96	35.6	146	63.3	196	91.1	246	118.3 118.9	296	146.7
47	8.3	97	36.1	147	63.9	197	91.71	247	119.4	297	147.2
48	8.9	98	36.7	148	64.4	198	92.2	248	120.	298	147.8
49	9.4	99	37.2	149	65 .	199	92.8	249	120.6	299	148.3
50	10.	100	37.8	150	65.6	200	93.3		121.1	300	148.9
49	9.4	99	37.2	149	65 .	199	92.8	249	120.6	299	14

TEMPERATURE CONVERSION TABLE—FAHRENHEIT TO CENTIGRADE—Continued

_		- I		-		-		_		_	
F.	C.	F.	C.	F.	C.	F.	C.	F.	C.	F.	C.
301	149.4	360	182.2	910	487.8	1460	793.3	2010	1098.9	2560	1404.4
302	150.	370	187.8	920	493.3	1470	798.9		1104.4		1410
303	150.6	380	193.3	930	498.9	1480	804.4		1110.		1415.6
304	151.1	390	198.9	940	504.4		810.		1115.6		1421.1
305	151.7	400	204.4	950	510.	1500	815.6		1121.1		1426.7
306	152.2	410	210.	960	515.6		821.1		1126.7		1432.2
307	152.8	420	215.6	970	521.1	1520	826.7		1132.2		1437.8
308	153.3	430	221.1	980	526.7	1530	832.2	2080	1137.8	2630	1443.3
309	153.9	440	226.7	990	532.2	1540	837.8	2090	1143.3	2640	1448.9
310	154.4	450	232.2	1000	537.8	1550	843.3	2100	1148.9	2650	1454.4
311	155.	460	237.8	1010	543.3	1560	848.9	2110	1154.4	2660	1460.
312	155.6	470	243.3	1020	548 .9	1570	854.4		1160.		1465.6
313	156.1	480	248.9	1030	554.4		860 .		1165.6	2680	1471.1
314	156.7	490	254.4	1040	560 .	1590	865.6		1171.1		1476.7
315	157.2	500	260 .	1050	565.6	1600	871.1		1176.7		1482.2
316	157.8	510	265.6	1060	571.1	1610	876.7		1182.2		1487.8
317	158.3	520	271.1	1070	576.7	1620	882.2 887.8		1187.8		1493.3
318	158.9	530	276.7	1080	582.2	1630	887.8		1193.3		1498.9
319	159.4	540	282.2	1090	587.8	1640	893.3		1198.9		1504.4
320	160.	550	287.8	1100	593.3	1650	898.9		1204.4		1510.
321	160.6	560	293.3	1110	598.9	1660	904.4		1210.		1515.6
322	161.1	570	298.9	1120	604.4	1670	910.		1215.6		1521.1
323	161.7	580	304.4	1130	610.	1680	915.6		1221.1		1526.7
324	162.2	590	310.	1140	615.6	1690	921.1		1226.7		1532.2
$\frac{325}{326}$	$162.8 \\ 163.3$	600	315.6	1150	$621.1 \\ 626.7$	1700 1710	$\begin{array}{c} 926.7 \\ 932.2 \end{array}$		$1232.2 \\ 1237.8$		1537.8
$\frac{320}{327}$	163.9	$\frac{610}{620}$	$\frac{321.1}{326.7}$	$\frac{1160}{1170}$	632.2	1720	937.8		1243.3		$1543.3 \\ 1548.9$
$\frac{327}{328}$	164.4	630	320.7 332.2	1180	637.8	1730	943.3		1243.3 1248.9		1554.4
$\frac{328}{329}$	165.	640	337.8	1190	643.3	1740	948.9		1240.9 1254.4	2840	1560.
330	165.6	650	343.3	1200	648.9	1750	954.4		1260.	2850	1565.6
331	166.1	660	348.9	1210	654.4	1760	960.		1265.6		1571.1
332	166.7	670	354.4	1220	660.	1770	965.6		1271.1		1576.7
333	167.2	680	360.	1230	665.6	1780	971.1		1276.7	2880	1582.2
334	167.8	690	365.6		671.1	1790	976.7		1282.2		1587.8
335	168.3	700	371.1	1250	676.7	1800	982.2		1287.8		1593.3
336	168.9	710	367.7	1260	682.2	1810	987.8		1293.3		1598.9
337	169.4	720	382.2	1270	687.8	1820	993.3	2370	1298.9	2920	1604.4
338	170.	730	387.8	1280	693.3	1830	998.9	2380	1304.4	2930	1610.
339	170.6	740	393.3	1290	698.9	1840	1004.4	2390	1310.	2940	1615.6
340	171.1	750	398.9	1300	704.4	1850	1010.	2400	1315.6	2950	1621.1
341	171.7	760	404.4	1310	710.	1860	1015.6	2410	1321.1	2960	1626.7
342	172.2	770	410.	1320	715.6		1021.1		1326.7		1632.2
343	172.8	780	415.6	1330	721.1		1026.7		1332.2		1637.8
344	173.3	790	421.1	1340	726.7		1032.2		1337.8		1643.3
345	173.9	800	426.7	1350	732.2		1037.8		1343.3		1648.9
346	174.4	810	432.2	1360	737.8		1043.3		1348.9		1654.4
347	175.	820	437.8	1370	743.3		1048.9		1354.4		1660.
348	175.6	830	443.3	1380	748.9		1054.4		1360.		1665.6
349	176.1	840	448.9	1390	754.4		1060.		1365.6		1671.1
350	176.7	850	454.4	1400	760.0		1065.6		1371.1		1676.7
351	177.2	860	460.	1410	765.6		1071.1		1376.7		1682.2
352	177.8	870	465.6	1420	771.1		1076.7		1382.2		1687.8
353	178.3	880	471.1	1430	776.7		1082.2		1387.8		1693.3
354	178.9	890	476.7	1440	782.2		1087.8		1393.3		1698.9
355	179.4	900	482.2	1450	787.8	2000	1093.3	2000	1398.9	9100	1704.4
							1		H		<u></u>

TEMPERATURE CONVERSION TABLE—FAHRENHEIT TO CENTIGRADE—Concluded

F.	C.	F.	C.	F.	C.	F.	C.	F.	C.	F.	C.
3110 3120 3130 3140 3150 3160 3170	1715.6 1721.1 1726.7 1732.2 1737.8	3190 3200 3210 3220 3230	1760. 1765.6 1771.1 1776.7	3260 3270 3280 3290 3300	1787.8 1793.3 1798.9 1804.4 1810. 1815.6 1821.1	3330 3340 3350 3360 3370	1832.2 1837.8 1843.3 1848.9 1854.4	3390 3400 3410 3420 3430	1871.1 1876.7 1882.2 1887.8	3460 3470 3480 3490	1904.4 1910. 1915.6 1921.1

 $\begin{array}{cccc} \textbf{TEMPERATURE} & \textbf{CONVERSION} & \textbf{TABLE--CENTIGRADE} & \textbf{TO} \\ & & \textbf{FAHRENHEIT} \end{array}$

c.	F.	C.	F.	C.	F.	C.	F.	c.	F.	C.	F.
0	+32.						1				
+1	33.8	41	105.8	81	177.8	121	249.8	161	321.8	201	393.8
2	35.6	42	107.6	82	179.6	122	251.6	162	323.6	202	395.6
2 3 4 5 6 7	37.4	43	109.4	83	181.4	123	253.4	163	325.4	203	397.4
4	39.2	44	111.2	84	183.2	124	255.2	164	327.2	204	399.2
5	41.	45	113.	85	185.	125	257 .	165	329 .	205	4 01.
6	42.8	46	114.8	86	186.8	126	258.8	166	330.8	206	402.8
7	44.6	47	116.6	87	188.6 190.4	127	260.6	167	332.6	207	404.6
8 9	46.4	48	118.4	88	190.4	128	262.4	168	334.4	208	406.4
	48.2	49	120.2	89	192.2	129	264.2	169	336.2	209	408.2
10	50 .	50	122.	90	194.	130	266.	170	338 .	210	410.
11	51.8	51	123.8	91	195.8	131	267.8	171	339.8	211	411.8
12	53.6	52	125.6	92	197.6	132	269.6	172	341.6	212	413.6
13	55.4	53	127.4	93	199.4	133	271.4	173	343.4	213	415.4
14	57.2	54	129.2	94	201.2	134	273.2	174	345.2	214	417.2
15	5 9 .	55	131.	95	204.	135	275 .	175	347.	215	419.
16	60.8	56	132.8	96	205.8	136	276.8	176	348.8	216	420.8
17	62.6	57	134.6	97	207.6	137	278.6	177	350.6	217	422.6
18	64.4	58	136.4	98	209.4	138	280.4	178	352.4	218	424.4
19	66.2	59	138.2	99	210.2	139	282.2	179	354.2	219	426.2
20	68.	60	140.	100	212.	140	284.	180	356.	220	428.
21	69.8	61	141.8	101	213.8	141	285.8	181	357.8	221	429.8
22	71.6	62	143.6	102	215.6	142	287.6	182	359.6	222	431.6
23	73.4	63	145.4	103	217.4	143	289.4	183	361.4	223	433.4
24	75.2	64	147.2	104	219.2	144	291.2	184	363.2	224	435.2
25	77 .	65	149.	105	221.	145	293.	185	365.	225	437.
26	78.8	66	150.8	106	222.8	146	294.8	186	366.8	226	438.8
27	80.6	67	152.6	107	224.6	147	296.6	187	368.6	227	440.6
28	82.4	68	154.4	108	226.4	148	298.4	188	370.4	228	442.4 444.2
29	84.2 86.	69	156.2	109	228.2	149	$\frac{300.2}{302}$	189	372.2	$\frac{229}{230}$	444.2 446.
30		70	158.	110	230.	150		190	374.	231	447.8
$\begin{array}{c} 31 \\ 32 \end{array}$	87.8	$\begin{array}{c} 71 \\ 72 \end{array}$	159.8	111	231.8	151	303.8	191	375.8	$\begin{array}{c} 231 \\ 232 \end{array}$	447.8
92	89.6		161.6	112	233.6	152	305.6	192 193	377.6	$\frac{232}{233}$	451.4
$\begin{array}{c} 33 \\ 34 \end{array}$	91.4	73 74	163.4	113	235.4	153	307.4	193	$379.4 \\ 381.2$	234	453.2
$\begin{array}{c} 34 \\ 35 \end{array}$	$ \begin{array}{c} 93.2 \\ 95. \end{array} $	75	165.2 167.	114 115	$237.2 \\ 239.$	154 155	$\frac{309.2}{311}$	194	383.	$\begin{array}{c} 234 \\ 235 \end{array}$	455.2 455.
20	95. 96.8	76	168.8	116	239. 240.8	156	$\frac{311}{312.8}$	196	384.8	$\begin{array}{c} 235 \\ 236 \end{array}$	456.8
36 37	90.8 98.6	77	108.8	117	$240.8 \\ 242.6$	157	$312.8 \\ 314.6$	190	386.6	$\begin{array}{c} 230 \\ 237 \end{array}$	458.6
38	100.4	78	$170.0 \\ 172.4$	118	244.4	158	316.4	197	388.4	238	460.4
39	$100.4 \\ 102.2$	79	$172.4 \\ 174.2$	119	$244.4 \\ 246.2$	159	318.2	199	390.2	$\begin{array}{c} 230 \\ 239 \end{array}$	462.2
40		80	176.	120	248.	160	320.	200	392.	$\frac{239}{240}$	464.
40	104.	OU:	110.	120	410.	100;	020. I	200,	004.	210	101.

TEMPERATURE CONVERSION TABLE—CENTIGRADE TO FAHRENHEIT—Continued

c.	F.	c.	F.	c.	F.	c.	F.	C.	F.	C.	F.
241	465.8	277	530.6	520	968.	880	1616.	1240	2264.	1600	2912.
$\overline{242}$	467.6	278	532.4	530	986.		1634		2282		2930
243	469.4	279	534.2	540	1004.		1652.		2300		2948
244	471.2	280	536.	550	1022.		1670.		2318.		2966.
245	473.	281	537.8	560	1040.		1688		2336.		2984
246	474.8	282	539.6	570	1058.		1706.		2354		3002
247	476.6	283	541.4	580	1076.		1724.		2372		3020.
248	478.4	284	543.2	590	1094		1742.		2390		3038.
249	480.2	285	545.	600	1112		1760.		2408.		3056.
250	482.	286	546 .8	610	1130.		1778.		2426.		3074.
251	483.8	287	548.6	620	1148.		1796.		2444.	1700	3092.
252	485.6	288	550.4	630	1166.		1814.		2462 .		3110.
253	487.4	289	552.2	640	1184.	1000	1832.	1360	2480 .	1720	3128.
254	489.2	290	554 .	650	1202.	1010	1850.	1370	2498.	1730	3146
255	491.	300	572 .	660	1220 .	1020	1868.	1380	2516.	1740	3164
256	492.8	310	590 .	670	1238.		1886.	1390	2534 .	1750	3182.
257	494.6	320	608.	680	1256 .	1040	1904.	1400	2552.		3200.
258	496.4	330	626 .	690	1274.	1050	1922 .	1410	2570 .	1770	3218 .
259	498.2	340	644 .	700	1292 .	1060	1940 .	1420	2588 .		3236 .
260	500 .	350	662.	710	1310.	1070	1958.	1430	2606 .	1790	3254.
261	501.8	360	680 .	720	1328.	1080	1976.	1440	2624 .		3272.
262	503.6	370	698 .	730	1346 .	1090	1994.	1450	2642.		3290 .
263	505.4	380	716.	740	1364.	1100	2012.		2660		3308.
264	507.2	390	734 .	750	1382.	1110	2030 .	1470	2678 .		3326 .
265	509 .	400	752 .	760	1400 .	1120	2048.	1480	2696 .		3344.
266	510 .8	410	770 .	770	1418.		2066 .		2714 .		3362 .
267	512.6	420	788 .	780	1436 .		2084 .		2732 .		3380.
268	514.4	430	806 .	790	1454.		2102 .		2750 .		3398 .
269	516.2	440	824.	800	1472.		2120.		2768 .		3416.
270	518 .	450	842.	810	1490.		2138 .		2786 .		3434.
271	519.8	460	860 .	820	1508 .		2156.		2804 .		3452 .
272	521 . 6	470	878.	830	1526 .		2174.		2822 .		3470 .
273	523.4	480	896.	840	1544.		2192.		2840 .		3488 .
274	525.2	490	914.	850	1562 .		2210 .		2858 .		3506.
275	527.	500	932.	860	1580.		2228.		2876 .		3524 .
276	528 .8	510	950 .	870	1598 .	1230	2246 .	1590	2894 .	1950	3542 .
			Į.			1	<u> </u>				

HIGH TEMPERATURE JUDGED BY COLOR (KENT)

The temperature of a body can be approximately judged by its color. The following table gives temper and heat colors of steel.

Temper Colors	Degrees Centigrade	Degrees Fahrenheit
Very pale yellow	221.1	430
Light yellow	226.7	440
Pale straw-yellow	232.2	450
Straw-yellow	237.8	460
Deep straw-yellow	243.3	470
Dark yellow	248.9	480
Yellow-brown	254.4	490
Brown-yellow	260.	500
Spotted red-brown	265.6	510
	$203.0 \\ 271.1$	520
Brown-purple	276.7	530
Light purple	282.2	540
Full purple	287.8	
Dark purple		550
Full Blue	293.3	560
Dark blue	289.9	570
Very dark blue	315.6	600
Heat Colors	400	
Red, visible in the dark	400	752
Ked. twillent	474	885
Red, " " daylight	525	975
Red, sunlight	581	1077
Dark red	700	1292
Dull cherry-red	800	1472
Cherry-red	900	1652
Bright cherry-red:	1000	1832
Orange-red	1100	2012
Orange-yellow	1200	2192
Yellow-white	1300	2372
White welding heat	1400	2552
Brilliant white	1500	2732
Dazzling white (bluish white)	1600	2912

CIRCUMFERENCE OF CIRCLES

Inches	In.	001188878888888888888888888888888888888
=	F.	20 112 115 115 118 128 131 140 140 150 150 150
Inches	In.	1000 9000000000000000000000000000000000
101	Ft.	22 112 128 127 128 127 128 129 148 148 148 158 158 158 158 158 158 158 158 158 15
9 Inches	In.	400001 040000 0400 47888 848484884 848
9 11	Ft.	22 111 118 118 118 22 22 440 440 52
8 Inches	In.	10400011040001 04 %%47%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8	Ft.	22 111 177 177 177 177 178 178 178 178 178
7 Inches	In.	011240811119408011 %% %%% 74464% %%%
7 14	Ft.	11118841 11118883 1300 141188 1413 1413 1413 1413 1413 1413 14
6 Inches	In.	0x0111240x0111240x0 7x777874787478747474747
6 Iı	Ft.	147 10 10 10 10 10 10 10 10 10 10 10 10 10
5 Inches	In.	800 120cr 80 -8000 8777777 878 :827777
5 Iı	Ft.	147-0110 0110 0200 0200 0300 0300 044-050 044-
Inches	In,	020:01-00 02:01-00 02:0-00 02:
4 1	Ft.	1477 118 119 119 128 128 128 128 128 128 128 128 128 128
3 Inches	In.	91 94 ct 91 94 ct 90 2 4 ct 2 4 ct 4 ct 60 2 4 2 4 2 4 4 4 2 2 2 4 4 4 4 4 4 4 4 4
3 11	Ft.	35 22 22 22 22 23 23 35 444 444 51
2 Inches	In.	089111040F911 0440F9
2 1	Ft.	335 105 105 105 105 105 105 105 105 105 10
l Inch	In.	2408011-8408011-840
-	Ft.	82522222222222222222222222222222222222
0 Inch	In.	120000111200001120 %% %4446444 %% %448
0	Ft.	3. 2. 2. 2. 2. 2. 2. 2. 2. 2. 3. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
Diam.	Ft.	- 22 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

AREAS OF CIRCLES IN SQUARE FEET (DIAMETERS IN INCHES)

Dia. In.	Area Sq. Ft.	Dia. In.	Area Sq. Ft.	Dia. In.	Area Sq. Ft.	Dia. In.	Area Sq. Ft.	Dia. In.	Area Sq. Ft.
1 1/4 1/2 3/4 2	.0055 .0085 .0123 .0168	5 6 1/4 1/2 3/4	. 1803 . 1963 . 2130 . 2305	10 1/2 3/4 11 1/4	.6013 .6303 .6600 .6903	18 19 19 20	1.867 1.969 2.074 2.182 2.292	31 32 33 34 35 36	5.241 5.585 5.940 6.305 6.681 7.069
3/4 3/4	.0218 .0276 .0341 .0413 .0491 .0576	7 1/4 1/2 3/4 8	.2485 .2673 .2868 .3068 .3275 .3490	$ \begin{array}{c c} & 14 \\ & 1/2 \\ & 3/4 \\ & 12 \\ & 1/2 \\ & 13 \\ & 1/2 \end{array} $.7213 .7530 .7854 .8523 .9218	$\begin{bmatrix} 21 \\ 21 \\ 1/2 \\ 22 \\ 1/2 \\ 23 \end{bmatrix}$	2.292 2.405 2.521 2.640 2.761 2.885	36 37 38 39 40 41	7.468 7.876 8.296 8.728 9.168
1/4 1/2 3/4 4 1/4 1/2 3/4 5	.0668 .0767 0883	1/4 1/2 3/4 9	.3713 .3940 .4175 .4418 .4668	$ \begin{array}{c c} 14 & \\ & \frac{1}{2} \\ 15 & \\ & 16 & \\ \end{array} $	1.069 1.147 1.227 1.310 1.396	$ \begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & 25 \\ & 26 \end{array} $	3.012 3.142 3.275 3.409 3.687	42 43 44 45 46	9.620 10.084 10.560 11.044 11.540
5 1/4 1/2	.1231 .1364 .1503 .1650	$\begin{array}{ c c } & & & 1/4 \\ & & 1/2 \\ & & 3/4 \\ & & 10 \\ & & 1/4 \end{array}$.4923 .5185 .5455 .5730	17 1/2 18 18	1.485 1.576 1.670 1.767	27 28 29 30	3.976 4.276 4.587 4.909	47 48 49 50	12.048 12.566 13.095 13.636

WEIGHT OF METALS IN LBS. PER SQUARE FOOT

Thickness	Iron	Cast Iron	Steel	Copper	Tin	Zinc	Brass	Gun Metal	Lead	Aluminum (Cast)	Antimony
$\begin{array}{c c} \frac{1}{4} & 1 \\ \frac{5}{16} & 1 \\ \frac{3}{8} & 1 \end{array}$	5 0 5	2.34 4.69 7.03 9.38 11.7 14.1 16.4 18.7 23.4 28.2 32.8 37.4	2.55 5.1 7.65 10.2 12.8 15.3 17.9 20.4 25.6 30.6 35.8 40.8	2.89 5.79 8.68 11.6 14.5 17.4 20.3 23.2 29 34.8 40.6 46.4	2.41 4.81 7.22 9.63 12 14.4 16.8 19.3 24 28.8 33.6 38.6	2.28 4.55 6.83 9.10 11.4 13.7 15.9 18.2 22.8 27.4 31.8 36.4.	2.63 5.26 7.89 10.5 13.2 15.8 18.4 21.1 26.4 31.6 36.8 42.2	2.73 5.46 8.19 10.9 13.7 16.4 19.1 21.9 27.4 32.8 38.2 43.8		12.1	10.9 13 15.2 17.5

TABLE FOR COMPUTING LENGTHS OF SHEETS FOR CIRCULAR ARCHES (KENT)

(Diameter = 1 Given the Chord and Height of the Arch)

Rule: Divide the height by the chord or (base). Find in the column of heights the number equal to this quotient. Take out the corresponding number from the column of lengths. Multiply this last number by the length of the given chord. The product will be the length of arch.

Example: Find length of sheet required for arch between two I-beams 100 inches apart. Arch to have 25 inches rise.

Divide 25 by 100 = .25 .25 in table = 1.15912

100 times 1.15912 = 115.912 inches or length of arch.

Height		Height		Height		Height		Height	
.001	1.00002		1.05743	. 236	1.14247	.324	1.25988	.412	1.40432
.005	1.00007		1.05896	.238	1.14480	.326	1.26288		1.40788
.01	1.00027		1.06051	.24	1.14714		1.26588		1.41145
$\begin{array}{c} .015 \\ .02 \end{array}$	1.00061 1.00107		1.06209	.242	1.14951	.33	1.26892	.418	1.41503
.025	1.00107		1.06368 1.06530	. 244 . 246	1.15189 1.15428	.332 .334	$1.27196 \\ 1.27502$.42 .422	1.41861 1.42221
.023	1.00107		1.06693	.248	1.15428	.336	1.27802 1.27810	.424	1.42583
.035	1.00327		1.06858	.25	1.15912	.338	1.28118	.426	1.42945
.04	1.00426		1.07025	.252	1.16156	.34	1.28428		1.43309
. 045	1.00539		1.07194	. 254	1.16402	.342	1.28739	.430	1.43673
.05	1.00665	. 168	1.07365	. 256	1.16650	.344	1.29052		1.44039
.055	1.00805		1.07537	.258	1.16889	. 346	1.29366		1.44405
.06	1.00957	.172	1.07711	. 26	1.17150	.348	1.29681		1.44773
.065	1.01123		1.07888	.262	1.17403	.35	1.29997		1.45142
. 07 . 075	1.01302 1.01493		1.08066 1.08246	.264 .266	1.17657 1.17912	$\begin{array}{c c} .352 \\ .354 \end{array}$	1.30315 1.30634		1.45512
.08	1.01493		1.08428	.268	1.17912	.356	1.30034		1.45883 1.46255
.085	1.01038		1.08611	27	1.18429	.358	1.31276		1.46628
.09	1.02146	.184	1.08797	.27 .272	1.18689	.36	1.31599		1.47002
.095	1.02389	. 186	1.08984	.274	1.18951	.362	1.31923	450	1.47377
. 10	1.02646	. 188	1.09174	. 276	1.19214	.364	1.32249		1.47753
. 102	1.02752	. 19	1.09365	.278	1.19479	. 366	1.32577		1.48131
. 104	1.02860	.192	1.09557	.28	1.19746	. 368	1.32905		1.48509
. 106	1.02970	.194	1.09752	.282	1.20014	.37	1.33234		1.48889
. 108	1.03082	.196	1.09949	.284	1.20284	.372	1.33564		1.49269
. 111 . 112	1.03196 1.03312	.198	1:10147 1:10347	.286	1.20555	.374	1.33896 1.34229		1.49651
.114	1.03312 1.03430	.20 .202	1.10547	.288	1.20827 1.21102	.376 .378	1.34229 1.34563		1.50033 1.50416
.116	1.03551	.204	1.10752	.292	1.21102 1.21377	.38	1.34899		1.50800
.118	1.03672	.206	1.10958	.294	1.21654	382	1.35237		1.51185
. 12	1.03797	.208	1.11165	296	1.21933	.384	1.35575		1.51571
. 122	1.03923	.21	1.11374	. 298	1.22213	. 386	1.35914	.474	1.51958
. 124	1.04051	.212	1.11584	.30	1.22495	.388	1.36254		1.52346
.126	1.04181	.214	1.11796	.302	1.22778	. 39	1.36596		1.52736
.128	1.04313	.216	1.12011	.304	1.23063	.392	1.36939		1.53126
.13 .132	1.04447 1.04584	.218	1.12225	.306	1.23349	.394	1.37283		1.53518
.134	$1.04584 \\ 1.04722$	$egin{array}{c} .22 \ .222 \end{array}$	1.12444 1.12664	.308 .31	1.23636 1.23926	.396	1.37628 1.37974		1.53910 1.54302
.134	1.04722	.224	1.12004 1.12885	.312	1.23926 1.24216	.40	$1.37974 \\ 1.38322$		1.54502 1.54696
.138	1.05003	.226	1.13108	.314	1.24507	.402	1.38671		1.55091
.140	1.05147	.228	1.13331	.316	1.24801	.404	1.39021		1.55487
.142	1.05293	.23	1.13557	.318	1.25095	.406	1.39372		1.55854
. 144	1.05441	.232	1.13785	. 32	1.25391	. 408	1.39724	.496	1.56282
.146	1.05591	.234	1.14015	. 322	1.25689	. 41	1.40077		1.56681
								. 50	1.57080

LONG MEASURE

Inches

12 = 1 ft.

36 = 3 ft. = 1 yd.

72 = 6 ft. = 2 yd. = 1 fathom (perch or

198 = 16.5 ft. = 5.5 yd. = 2.75 = 1 (rod)

7920 = 660 ft. = 220 yd. = 110 = 40 = 1 furlong

63360 = 5280 ft. = 1760 yd. = 880 = 320 = 8 furlong = 1 mile

GUNTER'S CHAIN (SURVEYORS MEASURE)

Inches

7.92 = 1 Link

792 = 100 Link = 1 Chain

63360 = 8000 Link = 80 Chain = 1 mile

NAUTICAL MEASURE

Naut, mile

1 = 6080 ft.

3 = 1 league

60 = 20 league = 1 deg. = 69.16 Eng. miles

SQUARE MEASURE

Inches

144 = 1 foot

1296 = 9 feet = 1 yard

39204 = 272.25 feet = 30.25 yard = 1 perch

1568160 = 10890 feet = 1210 yard = 40 perch = 1 rood

6272640 = 43560 feet = 4810 yard = 160 perch = 4 rood = 1 acre

An acre is 69.5701 yds. square or 208.710321 feet square

A township is 6 mile square = 36 sections

A Section is 1 mile square = 640 acres

1-4 section is $\frac{1}{2}$ mile square = 160 acres

1-16 section is $\frac{1}{4}$ mile square = 40 acres

SOLID MEASURE

Cubic inches

1728 = 1 cu. foot

46656 = 27 cu. foot = 1 cu. yd.

DRY MEASURE

Pints

1 = 33.6 cu. in.

2 = 1 quart 67.2 cu. in.

8 = 4 quart = 1 gallon = 268.8 cu. in.

16 = 8 quart = 2 gallon = 1 peck = 537.6 cu. in.

64 = 32 quart = 8 gallon = 4 peck = 1 bushel

Note—The U. S. Standard bushel is the Winchester bushel, which is in cylinder form, 18½ in. diameter and 8 in. deep, and contains 2150-42/100 cubic inches.

TROY WEIGHT

Grains

24 = 1 pwt.

480 = 20 pwt. = 1 oz.

5760 = 240 pwt. = 12 oz. = 1 lb.

AVOIRDUPOIS WEIGHT

Drachms

16 = 1 oz. = 437.5 grains Troy

256 = 16 oz. = 1 lb. = 1.2153 lb. Troy

6400 = 400 oz. = 25 lb. = 1 quarter

25600 = 1600 oz. = 100 lb. = 4 quarter = 1 cwt.

512000 = 32000 oz. = 2000 lb. = 80 quarter = 20 cwt = 1 short ton—2240 lbs.

= 1 long ton

APOTHECARIES WEIGHT

Grains

20 = 1 scruple or \mathfrak{F}

60 = 3 scruple = 1 drachm or 3

480 = 24 scruple = 8 drachm = 1 oz. or 3

5760 = 288 scruple = 96 drachm = 12 oz. = 1 lb.

LIQUID OR WINE MEASURE

```
Gills

1 = 7.2187 cu. in.

4 = 1 pint = 28.875 cu. in.

32 = 8 pint = 4 quart = 1 gallon

2016 = 404 pint = 252 quart = 63 gallon = 1 hogshead

4032 = 1008 pint = 504 quart = 126 gallon = 2 hogshead = 1 pipe

8064 = 2016 pint = 1008 quart = 252 gallon = 4 hogshead = 2 pipe = 1 tun
```

Note—The Standard unit of Liquid Measure adopted by the U. S. Government is the "Winchester Wine Gallon" which contains 231 cubic inches, and holds 8.339 lbs. Avoir. of distilled water, at its maximum density weighed in air, the barometer being at 30 inches.

The "Imperial Gallon" adopted by Great Britain contains 277.244 cu. inches and equals 1.20032 U. S. Gallons.

CIRCULAR MEASURE

```
Seconds
60 = 1 minute
3600 = 60 minute = 1 degree
108000 = 1800 minute = 30 degree = 1 sign
324000 = 5400 minute = 90 degree = 1 quadrant
1296000 = 21600 minute = 360 degree = 4 quadrant = 12 signs = 1 circle
```

TIME MEASURE

```
60 seconds = 1 minute
60 minutes = 1 hour
24 hours = 1 day
7 days = 1 week
28-29-30 or 31 days = 1 month
(30 days = 1 month in computing interest)
365 days = 1 year
366 days = 1 leap year
```

LUMBER MEASUREMENTS

The method of rough lumber mensuration is based on the board foot—12 inches square by one inch thick. The sales basis is 1000 feet. The number of feet in any piece of lumber may be obtained by multiplying the length in inches by the end area in inches, dividing by 144. Or multiply the length in feet by the end area in inches and divide by 12.

CONVERSION OF WEIGHTS AND MEASURES

Lineal feet	x	.00019	=	Miles
Lineal Yards	x	.0006	=	Miles
Square inches	x	.007	=	Square feet
Square feet	x	.111	=	Square yards
Square yards	x	.0002067	=	Acres
Acres ·	x	. 4840	=	Square yards
Cubic inches	x	.00058	=	Cubic feet
Cubic feet	x	.03704	=	Cubic yards
Circular inches	x	.00546	=	Square feet
Cylindrical inches	x	.0004546	=	Cubic feet
Cylindrical feet	x	.02909	=	Cubic yards
Links	x	.22	=	Yards
Links	x	. 66	=	Feet
Feet	x	1.5	=	Links
Width in chains	x	8 .	=	Acres per mile
183.346 circular inches	•		=	1 square foot
2200 cylindrical inches			=	1 cubic foot
Cubic feet	x	7.48	=	U. S. Gallons
Cubic inches	x	.004329	=	U. S. Gallons
Cylindrical feet	x	5.874	=	U. S. Gallons
Cylindrical inches	x	.0034	=	U. S. Gallons
U. S. Gallons	x	. 13367	=	Cubic feet
U. S. Gallons	x	231	=	Cubic inches
Cubic feet	x	. 8036	=	U. S. Bushel
Cubic inches	x	.000465	=	U. S. Bushel
U. S. Bushel	x	.0461 •	=	Cubic yards
U. S. Bushel	x	1.2446	=	Cubic feet
U. S. Bushel	x	2150.42	=	Cubic inches
Cylin. ft. of water	x	6.	=	U. S. Gallon
Lbs. avoirdupois	x	.009	=	Cwt. (112)
Lbs. avoirdupois	x	.01	=	Cwt. (100)
Lbs. avoirdupois	x	.00045	=	Tons (2240)
Lbs. avoirdupois	x	.0005	=	Tons (2000)
Cubic ft. of water	x	62.5	=	lbs. avoirdupois
Cubic inch water	x	.03617	=	lbs. avoirdupois
Cylin. ft. of water	x	49.1	=	lbs. avoirdupois
Cylin. inch of water	x	.02842	=	lbs. avoirdupois
13.43 U. S. Gallons of	wa	iter	=	1 cwt (112)
268.6 U. S. Gallons of	wa	iter	=	1 ton (2240)

MENSURATION FACTORS

Diameter of a circle x 3.1416 = circumference.

Radius of a circle x 6.2832 = circumference.

Square of the radius of a circle x = 3.1416 = area.

Square of the diameter of a circle x = 0.7854 = area.

Square of the circumference of a circle $\times 0.07958 = area$.

Half the circumference of a circle x half its diameter = area.

Doubling the diameter of a circle increases its area four times.

Circumference of a circle $\times 0.15915 = \text{radius}$.

Square root of the area of a circle $\times 0.56419 = \text{radius}$.

Circumference of a circle $\times 0.31831 = \text{diameter}$.

Square root of the area of a circle x 1.12838 = diameter.

Diameter of a circle \times 0.8660 = side of an inscribed equilateral triangle.

Diameter of a circle $\times 0.7071 = \text{side of an inscribed square.}$

Circumference of a circle $x \ 0.2251 = side$ of an inscribed square.

Circumference of a circle x 0.2821 = side of an equal square.

Diameter of a circle $\times 0.8862 = \text{side of an equal square}$.

Side of a square x 1.1142 = diameter of circumscribed circle.

Side of a square $x \cdot 4.443 = \text{circumference of circumscribed circle.}$

Base of a triangle x one-half the altitude = area.

Multiplying both diameters and 0.7854 together = area of an ellipse.

Surface of a sphere x one-sixth of its diameter = cubical contents.

Circumference of a sphere x its diameter = surface area.

Square of the diameter of a sphere x 3.1416 = surface area.

Square of the circumference of a sphere x = 0.3183 = surface area.

Cube of the diameter of a sphere $\times 0.5236 = \text{cubical contents}$.

Cube of the circumference of a sphere x 0.016887 = cubical contents.

Radius of a sphere x 1.1547 = side of inscribed cube.

Square root of one-third of the square of the diameter of a sphere = side of inscribed cube.

Area of its base x one-third of its altitude = cubical contents of a cone of pyramid, whether round, square, or triangular.

Altitude of trapezoid x one-half the sum of its parallel sides = area.

Area of a rectangle = length x breadth.

Side of a square x 1.128 = diameter of an equal circle.

Side of a square x 3.574 = circumference of an equal circle.

Square inches x 1.273 = circle inches of an equal circle.

PROPERTIES OF ELEMENTS AND METAL COMPOSITIONS

	Sym-	Density	Weight per	Specific	MELTING	G POINT
Elements	bol	(Specific	Cubic Foot	Heat	Degrees	Degrees
		Gravity)			Centigrade	Fahrenheit
Aluminum	Al	2.7	166.7	0.212	658.7	1217.7
Antimony	Sb	6.69	418.3	0.049	630	1166
"Armco" Ingot Iron	_	7.9	490 .	0.115	1535	2795
Carbon	C	3.51	219.1	0.113	3600	6512
Chromium	Cr	6.92	431.9	0.104	1520	2768
Columbium	Сь	7.25	452.54		2200	3992
Copper	Cu	8.89	555.6	0.092	1083	1981.4
Gold	Au	19.33	1205.	0.032	1063	1946
Hydrogen	Н	0.070*	.00533		-259	-434.2
Iridium	Ir	22.42	1 400 .	0.032	2300	4172
Iron	Fe	7.865	490.9	0.115	1530	2786
Lead	Pb	11.37	708.5	0.030	327	621
Manganese	Mn	7.4	463.2	0.111	1260	2300
Mercury	Hg	13.55	848.84	0.033	- 38.7	- 37.6
Nickel	Ni	8.8	555.6	0.109	1452	2645
Nitrogen	N	0.83*	.063		-210	-346
Oxygen	О	1.14*	. 0866		-280	-472
Phosphorus	P	2.34	146.1	0.19	44	111.2
Platinum	Pt	21.45	1336.	0.032	1755	3191
Potassium	K	0.87*	54.3	0.170	62.3	144.1
Silicon	Si	2.1	131.1	0.175	1420	2588
Silver	Ag	10.6	655.5	0.055	960.5	1761
Sodium	Na	0.971	60.6	0.253	97.5	207.5
Sulphur	S	2.05	128.	0.173	112.8	235
Tin	Sn	7.30	455.7	0.054	231.9	449.5
Titanium	Ti	3.5	218.5	0.110	1795	3263
Tungsten	W	18.85	1186.	0.034	3000	5432
Uranium	U	18.7	1167.	0.028		
Vanadium	V	5.5	343.3	0.115	1720	3128
Zinc	Zn	7.19	443.2	0.093	419	786.2
Bronze						
(90 Cu 10Sm)		8.78	548 .		850-1000	1562-1832
Brass	Ì					
(90 Cu 10Zn)		8.60	540 .	l	1020-1030	1868-1886
Brass				1		
(70 Cu 30 Zn)		8.44	527.		900-940	1652-1724
Cast Pig Iron		7.1	443.2		1100-1250	2012-2282
Open Hearth Steel .		7.8	486.9		1350-1530	2462-2786
Wrought Iron Bars.		7.8	486.9		1530	2786

^{*}NOTE—Density compared with air.

USEFUL INFORMATION

Doubling the diameter of a pipe increases its capacity four times. A gallon of water (U. S. Standard) weighs 8½ lbs. and contains 231 cubic inches.

A cubic foot of water contains $7\frac{1}{2}$ gallons, 1.728 cubic inches, and weighs $62\frac{1}{2}$ lbs.

To find the pressure in pounds per square inch of a column of water, multiply the height of the column in feet by .434.

Steam rising from water at its boiling point (212 degrees) has a pressure equal to the atmosphere (14.7 lbs. to the square inch).

A standard horse-power: The evaporation of 30 lbs. of water per hour from a feed water temperature of 100 degrees F. into steam of 70 lbs. gauge pressure.

To find capacity of a tank of any size: Given dimensions of a cylinder in inches, to find its capacity in U. S. gallons: Square the diameter, multiply by the length and by .0034.

To ascertain heating surface in tubular boilers multiply twothirds the circumference of boiler by length of boiler in inches and add to it the area of all the tubes.

One-sixth of tensile strength of plate multiplied by thickness of plate and divided by one-half the diameter of boiler gives safe working pressure for tubular boilers. For marine boilers add 20 per cent for drilled holes.

To find the capacity of an air compressor in cubic feet of free air per minute: Multiply the area of low pressure cylinder (on compound compressor), or area of simple compressor cylinder in square inches, by the stroke in inches, and divide by 1728; and multiply this result:

- (a) In single acting, simple or compound, by the r. p. m.
- (b) Double acting, simple or compound, by 2 x r. p. m.
- (c) Duplex double acting, by 4 x r. p. m.

EXPORT

Prior to 1910 manufacturers of the United States looked upon export business as an expensive luxury. At that time this country was third in the world's race for oversea's trade, this position being due to the immeasurable natural resources of the country and Yankee ingenuity, rather than to consistent efforts to obtain orders for export.

By 1911, "Armco" Ingot Iron had become so firmly established as a quality product in the United States that The American Rolling Mill Company realized the necessity of cultivating the markets of the world as well as our own.

Initial efforts were, in common with a host of other American exporters, directed to Brazil. Success here was so quickly attained and of such magnitude that immediate steps were taken to enlarge the export field, and the list of agencies and representatives shown on page 6 indicates the extent to which our export business has developed.

In choosing a representative in each foreign field it is our effort to select only such firms that are financially strong and which enjoy the good will and respect of their customers.

The following manufacturers have been licensed to produce Armco Quality Ingot Iron in the United Kingdom under our patents.

Shelton Iron, Steel & Coke Co., Limited.

Stoke-On-Trent, Staffordshire, England.

Licensed to produce "ARMCO" QUALITY INGOT IRON.

Plates, channels, joist, rounds, keel bars, angles, flats, tees, sections, conductivity rails and billets.

Whitecross Company, Ltd.

Warrington, Chester, England.

Licensed to produce "ARMCO" QUALITY INGOT IRON.

Wire Products.

Scottish Iron and Steel Co., Ltd.

Glasgow, Scotland.

Licensed to produce "ARMCO" QUALITY INGOT IRON.

Sheet Bars, Tube Strips and Billets.

Scottish Tube Co., Ltd.

Glasgow, Scotland.

Licensed to produce "ARMCO" QUALITY INGOT IRON, Lap Welded and Butt Welded Pipe and Tubes.

"ARMCO" COUNT BASED ON BIRMINGHAM GAUGE LEGALIZED BY BRITISH ORDER IN COUNCIL, JULY 16th, 1914

3 inch Corrugated Sheets corrugated to depth of ¾ inch.

 $10/3^{\prime\prime}$ Corrugated Sheets $32^{\prime\prime}$ wide after corrugating from $36^{\prime\prime}$ wide flat sheets.

8/3" Corrugated Sheets 26" wide after corrugating from 30" wide sheets.

Average number Galvanized $8/3^{\prime\prime}$ Corrugated Sheets per gross ton (2240 lbs.)

Gauge	6'	7'	8'	9'	10'
28	192	164	144	128	115
27	177	151	132	118	106
26	160	137	120	106	96
25	144	124	108	96	86
24	130	111	98	87	7 8
23	118	101	88	79	71
22	106	91	80	71	64
21	.97	83	72	64	58
20	87	75	65	58	52

Average number Galvanized $10/3^{\prime\prime}$ Corrugated Sheets per gross ton (2240 lbs.)

2 8	160	137	120	107	96
27	147	126	110	98	88
26	133	114	100	89	80
25	120	103	90	80	72
24	109	93	81	72	65
23	98	84	74	66	59
22	89	76	66	59	53
21	81	69	60	54	48
20	73	62	54	48	43

Average Galvanized Flat Sheets per gross ton (2240 lbs.)

Gauge	24" x72"	30" x 72"	36" x 72"
28	241	. 192	160
27	221	177	147
26	200	160	133
25	180	144	120
24	163	130	109
23	148	118	98
22	133	106	89
21	121	97	81
20	109	87	73
19	98	78	65
18	87	70	58
17	78	63	52
16	70	56	47
15	63	51	42
14	57	45	38
13	51	41	34
12	45	36	30
11	40	32	27

Average Black Sheets per gross ton (2240 lbs.)

26	239	191	159
25	212	169	141
24	188	151	126
23	168	134	112
22	149	120	99
21	134	107	89
20	120	96	80
19	106	85	71
18	94	75	63
17	84	67	56
16	75	60	50
15	67	53	44
14	60	48	40
13	53	42	35
12	47	38	31
11	42	33	28
10	37-	30	25

TABLE OF WEIGHTS BASED ON BIRMINGHAM GAUGE

Size 1 Meter x 2 Meters equivalent to 39.37" x 78.74"—21.526 sq. ft.

	GALV	ANIZED	BLACK		
	Wgt. per sq. ft.	Wgt. per sheet	Wgt. per sq. ft.	Wgt. per sheet	
10 B. G	. 82.50 oz.	110.99 lbs.	80.00 oz.	107.64 lbs.	
11 B. G	. 73.70 oz.	99.15 lbs.	71.20 oz.	95.80 lbs.	
12 B. G	. 65.86 oz.	88.16 lbs.	63.36 oz.	85.25 lbs.	
14 B. G	. 52.74 oz.	70.95 lbs.	50.24 oz.	67.59 lbs.	
16 B. G	. 42.50 oz.	57.18 lbs.	40.00 oz.	53.82 lbs.	
18 B. G	. 34.18 oz.	45.98 lbs.	31.68 oz.	42.62 lbs.	
19 B. G	. 30.66 oz.	41.25 lbs.	28.16 oz.	37.89 lbs.	
20 B. G	. 27.46 oz.	36.94 lbs.	24.96 oz.	33.58 lbs.	
22 B. G	. 22.50 oz.	30.27 lbs.	20.00 oz.	26.91 lbs.	
24 B. G	. 18.34 oz.	24.67 lbs.	15.84 oz.	21.31 lbs.	
26 B. G	. 14.98 oz.	20.15 lbs.	12.48 oz.	16.79 lbs.	
27 B. G	. 13.54 oz.	18.21 lbs.	11.04 oz.	14.85 lbs.	
28 B. G	. 12.42 oz.	16.70 lbs.	9.92 oz.	13.35 lbs.	
3" Gauge				161.45 lbs.	

A Metric Ton is equivalent to 2205 lbs.

ARMCO COUNT—BIRMINGHAM GAUGE

GALVANIZED		BLACK		
	Weight of Sheets		Weight of Sheets	
Gauge	Lbs. per Sq. Ft.	Gauge	Lbs. per Sq. Ft.	
28	.776	26	.78	
27	.846	25	.88	
26	.936	24	.99	
25	1.036	23	1.11	
24	1.146	22	1.25	
23	1.266	21	1.39	
22	1.406	20	1.56	
21	1.546	19	1.76	
20	1.716	18	1.98	
19	1.916	17	2.22	
18	2.136	16	2.50	
17	2.376	15	2.79	
16	2.656	14	3.14	
15	2.946	13	3.52	
14	3.296	12	3.96	
13	3.676	11	4.45	
12	4.116	10	5.00	
11	4.606			

DECIMALS OF AN INCH AND MILLIMETERS

For each 1/64 Inch

Millimeters x .03937 = Inches

Inches x 25.4 = Millimeters

1 2"	81 "	Decimal Inch.	Decimal Mm.	Frac- tional Inch.	1/32"	1 ''	Decimal Inch.	Decimal Mm.	Frac- tional Inch.
2	$\begin{array}{c} 1\\2\\3\\4\end{array}$.015625 .03125 .046875 .0625	.3968 .7937 1.1906 1.5874	 16	17 18	33 34 35 36	.515625 .53125 .546875 .5625	13.0966 13.4934 13.8903 14.2872	9 16
3 4	5 6 7 8	.078125 .09375 .109375 .125	1.9843 2.3812 2.7780 3.1749	1/8	19	37 38 39 40	.578125 .59375 .609375 .625	14.6841 15.0809 15.4778 15.8747	5
5	9 10 11 12	.140625 .15625 .171875 .1875	3.5718 3.9686 4.3655 4.7624	3 16	21	41 42 43 44	.640625 .65625 .671875 .6875	16.2715 16.6884 17.0653 17.4621	11 16
7	13 14 15 16	.203125 .21875 .234375 .25	5.1592 5.5561 5.9530 6.3498	1/4	23	45 46 47 48	.703125 .71875 .734375 .75	17.8590 18.2559 18.6527 19.0496	3/4
9	17 18 19 20	.267625 .28125 .296875 .3125	6.7467 7.1436 7.5404 7.9373		25 26	49 50 51 52	.765625 .78125 .796875 .8125	19.4465 19.8433 20.2402 20.6371	13 16
11	21 22 23 24	.326125 .34375 .359375 .375	8.3342 8.7310 9.1279 9.5248	3	27	53 54 55 56	.828125 .84375 .859375 .875	21.0339 21.4308 21.8277 22.2245	7/8
13	25 26 27 28	.390625 .40625 .421875 .4375	9.9216 10.3185 10.7154 11.1122	7 16	29 30	57 58 59 60	.890625 .90625 .921875 .9375	22.6214 23.0183 23.4151 23.8120	15 16
15	29 30 31 32	.453125 .46875 .484375	11.5091 11.9060 12.8029 12.6997	1/2	31	61 62 63 64	.953125 .96875 .984375 1.0000	24.2089 24.6057 25.0026 25.3895	i

DECIMAL EQUIVALENTS

of Millimeters and Fractions of Millimeters

Millimeters x .03937 = Inches

Inches x 25.4 = Millimeters

m/m	Inch	m/m	Inch	m/m	Inches
0.01	.00039	0.43	01693	0.85	03346
0.02	.00079	0.44		0.86	
0.03	.00118	$0.45.\ldots$		0.87	
0.04		0.46		0.88	03465
0.05	.00197	0.47		0.89	03504
0.06	.00236	0.48	01890	0.90	
0.07	.00276	0.49	01929	0.91	03583
0.08	. 00315	0.50	01969	0.92	03622
0.09	. 00354	0.51	02008	0.93	03661
0.10	. 00394	0.52	02047	0.94	03701
0.11	.00433	0.53	02087	0.95	03740
0.12		0.54		0.96	
0.13		0.55	02165	0.97	03819
0.14	. 00551	0.56	02205	0.98	03858
$0.15.\ldots$. 00591	0.57	02244	0.99	
0.16	. 00630	0.58	02283	1	03937
0.17	. 00669	0.59	02323	2	07874
0.18		0.60	02362	3	
$0.19.\ldots\ldots$	00748	0.61	02402	4	15748
0.20	00787	0.62	02441	5	19685
0.21	. 00827	0.63	02480	6	23622
0.22		0.64	02520	7	27559
0.23	00906	0.65	02559	8	31496
0.24	00945	0.66	02598	9	35433
0.25	00984	0.67	02638	10	39370
0.26	01024	0.68		11	43307
0.27	.01063	0.69	02717	12	47244
0.28		0.70	02756	13	
0.29	01142	0.71	02795	14	
0.30	01181	0.72	02835	15	59055
0.31	01220	0.73	02874	16	62992
0.32	01260	0.74	02913	17	
0.33	01299	0.75	02953	18	
$0.34.\ldots$	01339	0.76	02992	19	74803
0.35	01378	0.77	03032	20	
0.36	01417	0.78	03071	21	82677
0.37		0.79	03110	22	
0.38	0 1496	0.80	03150	23	
$0.39.\ldots$	01535	0.81	03189	24	
0.40	01575	0.82	03228	25	
0.41		0.83	03268	26	1.02362
0.42	01654	0.84	03307		

METRIC CONVERSION FACTORS

Millimeters x.03937 = inches. Millimeters \div 25.4 = inches. Centimeters x.3937 = inches. Centimeters $\div 2.54 = inches$. Meters x 39.37 = inches. Meters x 3.281 = feet. Meters x 1.094 = vards. Kilometers x.6214 = miles. Kilometers x 3280.8 = feet. Kilometers \div 1.6093 = miles. Sq. Millimeters x .001550 = sq. inches. Sq. Millimeters \div 645.2 = square inches. Sq. Centimeters x . 155 = square inches. Sq. Centimeters \div 6.452 = square inches. Square Meters x 10.764 = square feet. Square Kilometers x 247.1 = acres. Hectare x 2.471 = acres. Cubic Centimeters ÷ 16.387 = cubic inches. Cubic Centimeters ÷ 3.697 = fluid drahms. (U. S. P.) Cubic Centimeters \div 29.57 = fluid ounces. (U. S. P.) Cubic Meters x 35.315 = cubic feet. Cubic Meters x 1.308 = cubic yard. Cubic Meters x 264.2 = U. S. gallons (231 cubic inches). Liters x 61.022 = cubic inches (Act of Congress). Liters x 33.81 =fluid ounces (U. S. P.). Liters x .2642 = U. S. gallons (231 cubic inches). Liters \div 3.785 = U. S. gallons (231 cubic inches). Liters \div 28.316 = cubic feet. Hectoliters $x \cdot 3.531 = \text{cubic feet}$. Hectoliters $\times 2.838 = \text{bushel } (2150.42 \text{ cubic inches}).$ Hectoliters x . 1308 = cubic yard. Hectoliters x 26.42 = U. S. gallons (231 cubic inches). Grams x 15.432 = grains. Grams x 980.7 = dynes. Grams (water) \div 29.57 = fluid ounces. Grams \div 28.35 = ounces avoirdupois. Grams per cubic centimeter $\div 27.68 = lbs$. per cubic inch. Joule x .7375 = foot pounds. Kilograms $\times 2.2046 = \text{pounds}$. Kilograms x 35.274 = ounces (avoirdupois). Kilograms \div 907.19 = tons (2,000 pounds). Metric Ton $(1,000 \text{ kilos}) \times 1.102 = \text{tons } (2,000 \text{ pounds}).$ Kilograms per square centimeter x 14.223 = pounds per square inch. Kilogram-meters x 7.233 = foot pounds. Kilos per meter x .6720 = pounds per foot.Kilos per cubic meter x .06243 = pounds per cubic foot. Kilowatts x 1.340 = horse-power. Watts x .7375 = foot pounds per second. Calorie x 3.068 = B. T. U.Calorie (large) x 3.971 = B. T. U.Cheval vapeur x.9863 = horse-power. Gravity = 980.665 centimeters per second. Gravity = 981.2 at London, at 45 degrees latitude and sea level.

o
aple
ap
\vdash
_
5
Š
ersion
>
Ĕ
ς,
ANGE-C
J.
Á
ড
Z
∢;
天
$^{\circ}$
S S
EXC
EXC
EXC
AL EXC
NAL EXC
ONAL EXC
TIONAL EXC
TIONA
INTERNATIONAL EXC

	Form of	Par Value	London on	Form of Quotation	Par Value of Unit
New York on London—Demand sterling	Callors for 71	4 8666	Paris—Checks	francs to $\mathcal{L}1$	25.22-1/2
Cable transfers	dollars for & 1	0000	Berlin—Sight	marks to £1	20.40
Paris—Checks	francs for \$1	5.18-14	Vienna—Sight	kronen to £1	24.02
Surise—Chocks	•	9	Amsterdam—Checks	florin to £1	12.107
Cables	trancs for \$1	9.10-74	Christiania—Sight	kroner to $\mathcal{L}1$	18.159
Amsterdam—Sight	cents for 1 guilder	40.195	Stockholm—Sight	kroner to £1	18.159
Italy—Sight	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5.18-14	ght	kroner to £1	18.159
Cables					25.201
Greece—Checks	} drachma for \$1	5.18-14	ght	χ 10·····	94.5/
Copenhagen—Sight	cents for 1 krone	.26.80	Italy—SightGreece—Sight	lire to £1drachmae to £1	25.22-72
Sweden—Checks	cents for 1 krone	.26.80	ht	francs to £1	25.22-1/2
Norway—Checks	cents for 1 krone	26.80			25.22-1/2
Cables					
retrograu—Signt Cables	cents for 1 ruble	51.46	Alexandria—Signt	plastres to & 1	4.86-24
Spain—ChecksCables	cents for 1 peseta	. 19.30		dollars to £1	4.86-3
Berlin	cents for 1 mark	.23.82		pence to pesos	47.58
Vienna	cents for 1 crown	20.26	Rio de Janeiro—90 days	pence to mils	16
Santiago *	cents for 1 paper peso	. 22	Montevideo-T. T	pence to pesos	51
Lima	•	. 4.30	Valparaiso—90 days	pence to pesos	18
Buenos Aires—Gold	cents for 1 gold peso	42.45	Lima-90 days	.Eng. to Per. £1	par
Rio de Janeiro	cents for 1 milreis	32.4		ster. to rupee	1s 4d
Yokohama—Checks	cents for 1 yen	49.846		ster. to rupee	2s
Hong Kong—Checks	cents for 1 dollar	.42.898	Madras—T. T	ster. to dollar	Is 4d
Shanghai—Checks	dollars for 1 tael	:		ster. to tael	
* Altho by law the con nearly ten years past pesos	* Altho by law the conversion value of the Chilean peso is $36-1\%$ c. for nearly ten years past pesos have averaged about 22c.	36-½c. for	Singapore—1.1.1	ster, to yen	24-29/50d

INDEX 245

INDEX

	Page
Alloy Coated Sheets (Ingot Iron and Steel)	128
Annealing of Sheets	72
Areas of Circles	
Arches	227
Armco Products	119
Automobile Steel Sheets	121
Blue Annealed Sheets (Ingot Iron)	
Box and O. G. Gutters	
Bundling Table (Black Sheets)	
Bundling Table (Galvanized Sheets)	214
Castings	
Chemical Purity of Armco Ingot Iron	
Circles	
Circumferences of Circles	
Coke	
Cold Rolling Sheets	
Conductor Pipe	
Corrosion of Iron and Steel	
Corrugated Sheets	
Curved	
Arch	
Cut-Offs	
Cross Section of Ingot Showing Blow Holes, Gas Pockets, etc	105
Decimal Equivalents in Millimeters	240-241
Distributors of Armco Ingot Iron, Roofing, Siding, etc	
District Offices of the American Rolling Mill Co	
Diagram of Open Hearth Furnace	35
Eaves Trough	148-149
Elastic Limit (Definition)	
Electrical Conductivity of Armco Ingot Iron	97
Elbows1	
Elongation and Reduction of Area (Definition)	
Enameling Property of Armco Ingot Iron	
Enameling Sheets	
Export Section	235
Foreign Offices and Agencies	
Foreign Licensees	
Formed Products Section	133
Furniture Steel Sheets	197

Pag	gе
Gauge Tables	30
Gauge Tolerances	70
Galvanized Sheets (Bundling Table)	
Galvanized Sheets (Ingot Iron)	
6	74
Gutter End Sections 15 Gutter Head 15	
High Carbon Steel Sheets	
Historical Review of Iron Manufacture 1	11
Ingot Cross Sections)5
International Exchange	
	32
Iron and Steel Production Chart 9	92
Limits (Mill)	1 Q
Limits (Mill)	ıo
Mensuration Factors	
Metric Conversion Factors	
Mill Shearing	
Mitres	
Mutual Interest Section	
Mill Limits	18
Oiling Sheets 8	84
Pickled Specialties (Ingot Iron and Steel)	22
	73
Pictorial Review of Armco	9
Plants of the American Rolling Mill Co	5
- control of purpose of the control	93
Polished Sheets (Ingot Iron)	
Pressed Standing Seam Roofing	37
Raw Materials Used in Open Hearth Practice	31
Reduction of Area (Definition)	
Reference Tables	
Research Laboratory	99
Ridge Roll	5 0
Roller Leveling	80
Roof Gutters	51
Roofing: Pressed Standing Seams	20
Pressed Standing Seams—Self Capping	
Pressed Standing Seam Edges	4ſ
Roll Roofing	
Roll and Cap Roofing 1	44
V-Crimp	42
	96
Section Steel	30
Sketch Plates 15	
Special Treatments	

Page :
Split Ingots 105
Stretcher Leveling
Tables:
Areas of Circles
Birmingham Gauge 167
Bundling Table (Black Sheets)
Bundling Table (Galvanized Sheets)
Circular Arches
Circumferences of Circles
Comparison of Gauges
Corrugated Sheets
Conversion of Weights and Measures
Decimals, Millimeters and Fractions
Decimal Equivalent
International Exchange
Mensuration Factors
Metric Conversion Factors
Mill Limits
Number of Sheets in One Square of Roofing
Properties of Elements and Metal Composition
Sheets Per Ton Based on Birmingham Gauge
Square Feet of Sheets In One Ton
Temperature Conversion Table
Temperature and Color Table
U. S. Standard Gauge Table
Weights and Measures
Weight of Various Metals In Pounds Per Square Foot 226
Weight of Various Roofing Materials
Weight Per Square of Roofing and Siding
Weight Table for Black Sheets and Plates
Weight Table for Galvanized Sheets and Plates
Wire Table
Test Yards
Treatment of the Various Grades of Sheets
Trade Customs
Trade Customo.
Useful Information
V-Crimp Roofing
V-Ridge Cap
Welding Property of Armco Ingot Iron
-

EGLESTON

D669.1

Am3522

American rolling mill co., Middletown, 0.

Armoo in pictures and fact.

This book must be returned to the desk at which it was borrowed before 10 o'clock A. M. the pext day, unless special arrangement is made. nne of 25 not returned by that

