MATH III (DAY 4)

REMINDERS:

- · QUIZ 2 -> CANVAS FRI 09/13
- . WEBASSIGN 4 DUE THURS 09/12 LAST ONE WY NO EXTENSION
- · PRECALC MODULES -7 DUE FRO 09/13 (2% EC!)

LAST TIME:

CONTINUOUS AT X = a IF

- (1) lim f(x) exists
- (2) fla) is defined
- (3) $\lim_{x \to a} f(x) = f(a)$

THM INTERMEDIATE VALUE THM

(1) If fix) is continuous on [a,b].

(2) f(a) < W < f(b)

=> There is atleast one value x=c such that f(c)=w

1. Working algebraically with limits. Can you evaluate the following limits?

(a)
$$\lim_{x \to \frac{\pi}{3}} \frac{\sin x}{\cos x} = \frac{\sin (\sqrt[\pi]{3})}{\cos (\sqrt[\pi]{3})} = \frac{\sqrt{3}/2}{1/2} = \sqrt{3}$$

(b)
$$\lim_{x \to 3\pi^+} \frac{\sin x}{\cos x}$$
 $= 0$ $= 0$ $= 0$

2. Summarize: if you're trying to evaluate $\lim_{x\to a} \frac{f(x)}{g(x)}$, and you first find that $\lim_{x\to a} g(x) = 0$, what else do you need to look at?

$$\begin{array}{ccc}
\text{lim } f(x) = 0, & \text{then this is a (\%) limit} & \rightarrow & \text{Algebraically} \\
\text{"Needs more work"}
\end{array}$$

- 3. Last class we saw that $\lim_{x\to 0} \sin\left(\frac{\pi}{x}\right)$ does not exist. In this problem, we'll look at $\lim_{x\to 0} x^2 \sin\left(\frac{\pi}{x}\right)$.
 - (a) Amani is thinking about this limit and says, "As $x \to 0$, x^2 approaches 0. 0 times anything is 0. so $\lim_{x\to 0} x^2 \sin\left(\frac{\pi}{x}\right)$ must be 0." What do you think of Amani's reasoning?

E.g.
$$\lim_{X\to 0} x^2 \cdot \frac{1}{x^2} = \lim_{X\to 0} 1 = 1 \neq 0$$
No AMANI IS
NOT RIGHT!

$$\lim_{X\to 0} x^2 \cdot \frac{1}{x^2} = \lim_{X\to 0} \frac{1}{x^2} = DNE \text{ button} \neq 0$$

(b) Find
$$\lim_{x\to 0} x^2 \sin\left(\frac{\pi}{x}\right)$$
. Explain your reasoning carefully.

Can't plug in b/c $\sin\left(\frac{\pi}{x}\right)$ is und. at $x=0$.

"not continuous"

$$-|\cdot x^2 \le \sin\left(\frac{\pi}{x}\right) \cdot x^2 \le |\cdot x^2|$$

$$-x^2 \le x^2 \sin\left(\frac{\pi}{x}\right) \le x^2$$
nice! messy! nice!

$$\lim_{x\to 0} -x^2 \le \lim_{x\to 0} x^2 \sin\left(\frac{\pi}{x}\right) \le \lim_{x\to 0} x^2$$

$$0 \le \lim_{x\to 0} x^2 \sin\left(\frac{\pi}{x}\right) \le 0$$

$$0 \le \lim_{x\to 0} x^2 \sin\left(\frac{\pi}{x}\right) \le 0$$

(c) Sketch a rough graph of $f(x) = x^2 \sin\left(\frac{\pi}{x}\right)$ for x near 0.

The Squeeze Theorem

Suppose that $g(x) \le f(x) \le h(x)$ for all x in some open interval containing c, except possibly at x = c itself. Suppose also that

Then
$$\lim_{x \to c} f(x) = L$$

$$\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L$$
 Casier to Compute

4. There is one special limit that we want you to know. We'll make sense of these eventually. Assume that θ is in radians. Then:

Use this to compute the following:
$$(a) \lim_{x\to 0} \frac{\sin x}{\pi x} = \frac{1}{\pi} \cdot \lim_{x\to 0} \frac{\sin x}{x} = \lim_{x\to 0} \frac{$$

More Practice

- 1. (a) Evaluate $\lim_{x\to 0^+} \left(\frac{1}{x} \frac{1}{x^2}\right)$.
 - (b) Sketch $\frac{1}{x}$ and $\frac{1}{x^2}$ together to explain why your answer to (a) makes sense.
- 2. Compute the following limit: $\lim_{t\to 0} f(t)$, where $1-t^2 \le f(t) \le 1+t^2$. Can you draw a picture to show why your answer makes sense?
- 3. The graphs of f and g are given below.

As
$$x \rightarrow 2$$
, $g(x) \rightarrow 2$

Evaluate each of the following limits.

As
$$x \to 2$$
, $g(x) \to 2$

(a) $\lim_{x \to 2} (g(x) - f(x))$

(b) $\lim_{x \to 0} \frac{f(x)}{g(x)}$

(c) $\lim_{x \to 0} \frac{f(x)}{g(x)}$

(d) $\lim_{x \to 0} \frac{f(x)}{g(x)}$

(e) $\lim_{x \to 0} \frac{f(x)}{g(x)}$

(f(x)) = 2-(-1)

(c)
$$\lim_{x \to -2} \frac{f(x)}{g(x)}$$

(d)
$$\lim_{x \to 1} \frac{f(x)}{g(x)}$$

(e)
$$\lim_{x \to 2} \frac{f(x)}{g(x)}$$

As
$$x \to 0$$
, $g(x) \to 0$
As $x \to 0$, $f(x) \to 2$

$$\int_{0}^{10^{-2} \text{ero}} 0$$

As
$$x \rightarrow 0^+, 0^-, g(x)$$
 is neg.

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \underset{\text{small neg #}}{\text{positive #}} = \boxed{-\infty}$$