CSC343 Assignment 3

Ben Cheng

April 6, 2023

1

 $\mathbf{R}_1 = \mathrm{DEFGHIJK}, \, S_1 = \{D \to FG, E \to HK, F \to EIJ, F \to K\}$

1. $D^+ = DEFGHIJK$

 $E^+ = EHK$

 $F^+ = EFHIJK$

Since E and F are not superkeys of the relation, we know that each of them violates BCNF:

 $E \to H, K$

 $F \rightarrow E, I, J, K$

2. First, we can create the relation $R_1 = EHK$ with the functional dependency $E \to HK$. This relation is now in BCNF.

However, the original relation $R_2 = DEFGIJ$ is still not in BCNF because $F^+ = EFIJ$. Therefore, we need to further decompose R.

We can create two new relations: $R_3 = EFIJ$ and $R_4 = DFG$. R_3 and R_4 is now in BCNF.

The result is $\{R_1 = EHK, R_3 = EFIJ, R_4 = DFG\}$ The relations is $\{DFG, EFIJ, EHK\}$

3. The BCNF decomposition does not guarantee dependencies but dependencies are preserved this time.

Because the removed relation $F \to K$ can be derived by $F \to E$ and $E \to H$.

	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	H	I	J	\mathbf{K}
	d	е	f	g	h	i	j	k
ĺ		е			h			k
		w	f		h	i	j	k
		е	f			i	j	k

A whole row is filled, so lossless.

 $\mathbf{2}$

$$\begin{aligned} \mathbf{R}_2 &= JKLMNOPQ \\ S_2 &= \{JLM \rightarrow N, K \rightarrow LM, KN \rightarrow JLO, M \rightarrow JKO, N \rightarrow JL\} \end{aligned}$$

- 1. Step 1. Split RHS
 - $\bullet \ \mathrm{JLM} {\rightarrow} \mathrm{N}$
 - $\bullet \ K{\to}L$
 - $\bullet \ K {\rightarrow} M$
 - $\bullet \ \ KN{\rightarrow} J$
 - $\bullet \ \ KN{\rightarrow}L$
 - KN \rightarrow O
 - M→J
 - $\bullet \ M {\rightarrow} K$
 - \bullet M \rightarrow O
 - $\bullet \ N{\rightarrow} J$
 - $\bullet \ \ N{\rightarrow}L$

JLM \rightarrow N can't be saved as $J=J,\,L=L,\,M=M,\,JL=JL,\,JM=JM,$ and LM=LM.

 $K \rightarrow L$, $K \rightarrow M$, $M \rightarrow J$, $M \rightarrow K$, $M \rightarrow O$, and $N \rightarrow J$, $N \rightarrow L$ can't be saved as they are singleton.

For KN \rightarrow J, KN \rightarrow L, and KN \rightarrow O, $K^* = JKLMNO$ covers all of them, so they can be saved as K \rightarrow J, K \rightarrow L, and K \rightarrow O.

So we are left with

- $JLM\rightarrow N$
- $\bullet \ K{\to}L$
- $\bullet K \rightarrow M$
- $\bullet \ K{\rightarrow} J$
- \bullet K \rightarrow O

- $\bullet \ \mathrm{M} {\rightarrow} \mathrm{J}$
- \bullet M \rightarrow K
- $\bullet \ \mathrm{M} {\rightarrow} \mathrm{O}$
- $\bullet \ N{\rightarrow} J$
- \bullet N \rightarrow L

			(a)								
	FD		J	K	\mathbf{L}	\mathbf{M}	N	О	P	Q	
a	$JLM \rightarrow N$	$S_{2-\{a\}}$	J	K	L	M		О			need
b	$\mathrm{K} \to \mathrm{L}$	$S_{2-\{b\}}$	J	K		Μ		О			need
c	$K \to M$	$S_{2-\{c\}}$	J	K	L			О			need
d	$\mathrm{K} o \mathrm{J}$	$S_{2-\{d\}}$	J	K	L	Μ	N	О			no need
e	$\mathrm{K} ightarrow \mathrm{O}$	$S_{2-\{d,e\}}$	J	K	L	Μ	N	О			no need
f	$\mathrm{M} o \mathrm{J}$	$S_{2-\{d,e,f\}}$		K	L	Μ		О			need
g	$\mathrm{M} o \mathrm{K}$	$S_{2-\{d,e,g\}}$	J			M		О			need
h	$\mathrm{M} \to \mathrm{O}$	$S_{2-\{d,e,h\}}$	J	K	L	Μ	N				need
i	$N \to J$	$S_{2-\{d,e,i\}}$			L		N				need
j	$N \to L$	$S_{2-\{d,e,j\}}$	J				N				need

$$\{JLM \rightarrow N, K \rightarrow LM, M \rightarrow JKO, N \rightarrow JL\}$$

2. Attributes on the left but not right: none

Attributes on the right but not left: O, it's in no key Attributes on both left and right: JKLMN, need to check Attributes on neither left and right: P, Q, in every key

(a) :

J	K	\mathbf{L}	\mathbf{M}	N	Closure		
1	0	0	0	0	$JPQ^* = JPQ(no)$		
0	1	0	0	0	$KPQ^* = JKLMNOPQ(yes)$		
0	0	1	0	0	$LPQ^* = LPQ(no)$		
0	0	0	1	0	$MPQ^* = JKLMNOPQ(yes)$		
0	0	0	0	1	$NPQ^* = JLNPQ(no)$		
1	1	0	0	0	no		
1	0	1	0	0	$JLPQ^* = JLPQ(no)$		
1	0	0	1	0	no		
1	0	0	0	1	$JNPQ^* = JLPQ(no)$		
0	1	1	0	0	no		
0	1	0	1	0	no		
0	1	0	0	1	no		
0	0	1	1	0	no		
0	0	1	0	1	no		
0	0	0	1	1	no		

The keys: KPQ, MPQ

3. Relation: JLMN, KLM, MJKO, NJL

But still, no relation is a superkey of P and Q

Take a key KPQ

JLMN, KLM, MJKO, NJL, KPQ Becomes: JLMN, KLM, MJKO, KPQ

as NJL contained in JLMN $\,$