

ESTADÍSTICA

Intervalos de Confianza 1 parámetro desconocido

IC PARA LA MEDIA DE UNA POBLACIÓN NORMAL CON σ^2 CONOCIDA

Función pivote:

$$\frac{\bar{x}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$$

Intervalo:

$$IC(\mu) = \bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

IC PARA LA MEDIA DE UNA POBLACIÓN NORMAL CON σ^2 DESCONOCIDA

Hay que utilizar la cuasidesviación típica muestral s_1 y la distribución cambia.

Función pivote:

$$\frac{\bar{x}-\mu}{s_1/\sqrt{n}} \sim t_{n-1}$$

Intervalo:

$$IC(\mu) = \bar{x} \pm t_{n-1;\alpha/2} \frac{s_1}{\sqrt{n}}$$

IC PARA LA MEDIA DE UNA POBLACIÓN NO NORMAL CON σ^2 DESCONOCIDA PERO EN MUESTRAS GRANDES ($n \geq 30$).

Hay que utilizar la cuasidesviación típica muestral s_1 pero la distribución será Normal por el Teorema central del límite.

Función pivote:

$$\frac{\bar{x}-\mu}{s_1/\sqrt{n}} \sim N(0,1)$$

Intervalo:

$$IC(\mu) = \bar{x} \pm z_{\alpha/2} \frac{s_1}{\sqrt{n}}$$

IC PARA LA VARIANZA DE UNA POBLACIÓN NORMAL

Función pivote:

$$\frac{(n-1)s_1^2}{\sigma^2} \sim \chi_{n-1}^2$$

Intervalo:

$$IC(\sigma^2) = \left[\frac{(n-1){s_1}^2}{\lambda_2} \; ; \; \frac{(n-1){s_1}^2}{\lambda_1}\right]$$

Como la χ^2 no es simétrica (como la Normal o la t-student), hay que usar las tablas para hallar por separado λ_1 y λ_2 , tales que:

$$\lambda_1$$
: $P(\chi_{n-1}^2 \le \lambda_1) = \alpha/2$

$$\lambda_2$$
: $P(\chi_{n-1}^2 \ge \lambda_2) = \alpha/2$

IC PARA UNA PROPORCIÓN DE UNA POBLACIÓN BINOMIAL PERO EN MUESTRAS GRANDES $n \geq 30$

Función pivote:

$$\frac{\hat{p}-p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \sim N(0,1)$$

Intervalo:

$$IC(p) = \hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$