DIGITAL ELECTRONIC CIRCUITS LAB EXPERIMENT 4

Utkarsh Patel (18EC30048)

Objective

To display the 8 characters of two different roll number one after another using 74157 IC, 74138 IC, 7447 IC, 7493 IC, 7-segment display and logic gates.

Circuit Diagram

Truth Table

In this experiment, $\langle Y_7, Y_6, Y_5, Y_4, Y_3, Y_2, Y_1, Y_0 \rangle$ denotes the complement of output from 74138 IC, and $\langle A_3, A_2, A_1, A_0 \rangle$ and $\langle B_3, B_2, B_1, B_0 \rangle$ denotes the input to 74157 IC.

m	<i>Y</i> ₇	Y_6	<i>Y</i> ₅	Y_4	Y_3	<i>Y</i> ₂	Y_1	Y_0	A_3	A_2	A_1	A_0	B_3	B_2	B_1	B_0
0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1
1	0	0	0	0	0	0	1	0	1	0	0	0	1	0	0	0
2	0	0	0	0	0	1	0	0	1	1	1	0	1	1	1	0
3	0	0	0	0	1	0	0	0	1	0	1	0	1	0	1	0
4	0	0	0	1	0	0	0	0	0	0	1	1	0	0	1	1
5	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0	0
7	1	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0

On simplifying, we get,

$$A_0 = Y_1 + Y_4$$

$$A_1 = Y_2 + Y_3 + Y_4$$

$$A_2 = Y_2 + Y_6$$

$$A_3 = Y_1 + Y_2 + Y_3 + Y_7$$

$$B_3 = Y_1 + Y_2 + Y_3$$

$$B_2 = Y_2 + Y_6 + Y_7$$

$$B_1 = Y_2 + Y_3 + Y_4 + Y_7$$

$$B_0 = Y_0 + Y_4$$

Results

In this experiment, we needed to display two different roll numbers which are 18EC3048 and 18EC3046 on the 7-segment display as per the value of switch of the Quad 4-to-1 MUX. We chose S=0 for 18EC3046, and S=1 for 18EC3048. The recording of the simulation can be viewed by visiting following link:

https://drive.google.com/file/d/10ei7gJjMp4Z5WsEg1sC8D90ly5ZwZdAW/view?usp=sharing

Discussion:

- In this experiment, a counter is used as a clock to produce the input sequence [0, 1, 0, 1, 0, 1, ...].
- Clock is connected to 7493 IC, which converts it to modulo 8 number sequence [0, 1, 2, 3, 4, 5, 6, 70, 1, 2, ...].
- This number sequence is then passed through 74138 IC (3 to 8 decoder) which excites a given terminal as per its input. For example, if the input is x = 7, then the seventh terminal will be off, other terminals will be on.
- Every terminal of 74138 IC is connected to a NOT gate.
- Now, we encode the output of 74138 IC so that we can use it to display the roll numbers.
- $\langle A_3, A_2, A_1, A_0 \rangle$ is the encoding for **18EC3048** and $\langle B_3, B_2, B_1, B_0 \rangle$ is the encoding for **18EC3046**. This is done as per the truth table given above.
- We then use 74157 IC (quad 4-1 MUX) to display both the roll numbers on the 7-segment display as per the control input S.
- The output of 74157 IC is then fed to 7447 IC, which converts it into suitable codes compatible with 7-segment display.