

CHEAT SHEET

Regularizers

When you look at regularizers, it helps to change the formulation of the optimization problem to obtain a better geometric intuition:

$$\min_{\mathbf{w},b} \sum_{i=1}^{n} \ell(h_{\mathbf{w}}(\mathbf{x}_i)) + \lambda r(\mathbf{w}) \iff \min_{\mathbf{w},b} \sum_{i=1}^{n} \ell(h_{\mathbf{w}}(\mathbf{x}_i))$$

subject to: $r(\mathbf{w}) \leq B$

Regularizers		Details
$\it l_2$ -Regularization	$r(\mathbf{w}) = \mathbf{w}^{T} \mathbf{w} = \mathbf{w} _2^2 = \sum_{i=1}^d [\mathbf{w}]_i^2$	 ADVANTAGE: Strictly Convex ADVANTAGE: Differentiable DISADVANTAGE: Uses weights on all features, i.e. relies on all features to some degree (ideally we would like to avoid this) - these are known as Dense Solutions.
l_1 -Regularization	$r(\mathbf{w}) = \mathbf{w} _1 = \sum_{i=1}^d [\mathbf{w}]_i $	Convex (but not strictly)DISADVANTAGE: Not differentiable at 0Effect: Sparse
l_p -Norm	$r(\mathbf{w}) = \mathbf{w} _p^p = d\sum_{i=1}^d [\mathbf{w}]_i^p$	 Often 0 DISADVANTAGE: Non-convex ADVANTAGE: Very sparse solutions Initialization dependent VERY sparse solutions (compared to l1 norm) if 0

Computing and Information Science