Part 1 Complex Analysis

(1) a)Find the radius of the largest disc, D centered at the origin such that

$$f(z) = \frac{1}{2 - \sin z}$$

is holomorphic on D.

- b) Find the first 4 non-zero terms of the power series expansion about the origin of f(z) on D.
- (2) Let $Z=\{0\}\cup\{\frac{1}{n}|n\in\mathbb{Z},n>1\}$. Let f be a bounded holomorphic function on $(|z|<1)\setminus Z$. Show that f extends holomorphically to |z|<1.
- (3) Use the residue calculus to evaluate

$$\int_0^\infty \frac{\sin x}{x} \, dx.$$

(4) Prove that the equation

$$ze^{2-z} = 1$$

has exactly one solution in |z| < 1 and that solution is real.

Part 2 Real and Functional Analysis

- (1) Give an example of a function which is continuous on [0,1] but not of bounded variation. Prove that the function satisfies these properties. Your answer should include a definition of bounded variation
- (2) a) Let f, g be measurable functions on \mathbb{R} . Show that h(x, y) = f(x)g(y) is measurable on \mathbb{R}^2 .
 - b) If E_1, E_2 are measurable subsets of \mathbb{R} , show that $E_1 \times E_2$ is a measurable subset of \mathbb{R}^2 .
- (3) Each of the integrals

$$\int_{1}^{\infty} \left(\int_{0}^{1} (e^{-xy} - 2e^{-2xy}) \, dy \right) \, dx)$$

and

$$\int_0^1 \left(\int_1^\infty (e^{-xy} - 2e^{-2xy}) \, dx \right) \, dy$$

exists but are not equal to each other. What can you conclude from this?

- (4) Suppose that $p \geq 1$ and that f_n is a sequence of functions which converges to a function f in $L^p[0,1]$. show that a subsequence f_{n_k} converges to f a.e. Hint: Show that $f_n \to f$ in measure.
- (5) If $f \in L^2[0, 2\pi]$ show that

$$\lim_{k \to \infty} \int_0^{2\pi} f(t) \sin kt \, dt = 0.$$

(6) Suppose that K(x, y) is continuous on $[0, 1] \times [0, 1]$ and is bounded in absolute value by M > 0. Define a mapping

$$A: C[0,1] \to C[0,1]$$

as follows

$$Af(x) = \int_0^1 K(x, y) f(y) \, dy.$$

Show that the equation

$$f = \lambda A f$$

has a unique solution if $|\lambda| < M^{-1}$.