Формальные языки

домашнее задание до 23:59 05.03

- 1. Доказать или опровергнуть утверждение: произведение двух минимальных автоматов всегда дает минимальный автомат (рассмотреть случаи для пересечения, объединения и разности языков).
 - (а) Объединение:

Возьмём два автомата. Первый принимает все слова, в которых чётное количество букв a, а второй, в которых нечетное количество:

Тогда их объединением будет:

Но их объединение - это вообще все строки из букв a, поэтому минимальный автомат - это просто петля

(b) Пересечение:

У нас был пример на паре про делимость на 15. Если просто пересечь автоматы с делимостью на 3 и на 5, то получится 6 вершин, но на паре мы построили пример, где было только 4 вершины.

Ну или можно взять предыдущий пример, в нём пересечение языков - это пустое множество, а в автомате пересечения 3 вершины (если удалить BX)

(с) Разность:

Можно например взять автоматы для a^*b^* и a^+b^*

Тогда если рисовать полные автоматы, то в первом будет 2 вершины + дьявольская, во втором 3 вершины плюс дьявольская

Разность первого языка со вторым - это просто b^* - то есть просто одна петля, но сразу видно, что в произведение автоматов будет 12 вершин и даже после сокращения лишних это будет не петля, например потому что там как минимум 2 терминальные вершины - AX и BX

Или можно сделать по-другому. Возьмём 2 равных языка, например a^+b^+ , тогда их разность это пустое множество, но автомат произведения явно содержит хотя бы 2 вершины

2. Для регулярного выражения:

$$(a \mid b)^+(aa \mid bb \mid abab \mid baba)^*(a \mid b)^+$$

Построить эквивалентные:

- (а) Недетерминированный конечный автомат
- (b) Недетерминированный конечный автомат без ε -переходов
- (с) Минимальный полный детерминированный конечный автомат

Заметим, что из регулярного выражения можно выкинуть среднюю скобку. И будет тот же самый язык, так как:

Если слово S принадлежало

$$(a \mid b)^{+}(aa \mid bb \mid abab \mid baba)^{*}(a \mid b)^{+}$$

то его очевидно можно сконструировать с помощью

$$(a \mid b)^+(a \mid b)^+$$

Нужно просто среднюю часть $(aa \mid bb \mid abab \mid baba)^*$ 'занести' в $(a \mid b)^+$ (мы же там

можем произвольное количество букв а и b использовать) И обратно, если слово S принадлежало

$$(a | b)^+(a | b)^+$$

то его можно составить и с помощью

$$(a \mid b)^+(aa \mid bb \mid abab \mid baba)^*(a \mid b)^+$$

Так как средняя часть со звёздочкой, то можно просто повторить её 0 раз.

(a) (b) Недетерминированный конечный автомат без ε -переходов для

$$(a \mid b)^+(a \mid b)^+$$

(с) Минимальный полный детерминированный конечный автомат

Понятно, что меньше 3 вершин быть не может, так как у нас есть две скобочки со знаком +, а значит во всех словах есть как минимум 2 буквы, а значит нужно 3 вершины.

3. Построить регулярное выражение, распознающее тот же язык, что и автомат:

Вершина q_0 даёт нам скобочку $(a|b|c)^*$

А дальше у нас есть 3 пути до q_4 , перебираем каждый из них: $a(b|c)^*a$, $b(a|c)^*b$, $c(a|b)^*c$ Итого:

$$(a|b|c)^*((a(b|c)^*a) | (b(a|c)^*b) | (c(a|b)^*c))$$

4. Определить, является ли автоматным язык $\{\omega\omega^r \mid \omega \in \{0,1\}^*\}$. Если является — построить автомат, иначе — доказать.

Пусть он автоматный. Тогда выполняется условие леммы о накачке. Возьмём $w=1^n001^n$, где n - из леммы

w лежит в языке, так как $\omega = 1^n 0$

Так как |w| > n, то существует разбиение xyz = w, причём y не пустой. Так как по условию леммы |xy| < n, то y точно содержится в первых п единичках. Поэтому мы можем накачать w повторив y k >= 2 раза. Тогда будем получать слова вида $1^{n+c}001^n$ Такие слова точно не лежат в языке, так как y нас всего два нуля. А значит омега должна содержать ровно один ноль. А значит относительно этих нулей слово должно быть симметричным, но c+n>n, так как y не пуст

Противоречие с тем, что язык регулярный.

5. Определить, является ли автоматным язык $\{uaav \mid u, v \in \{a, b\}^*, |u|_b \ge |v|_a\}$. Если является — построить автомат, иначе — доказать.

Пусть он автоматный. Тогда выполняется условие леммы о накачке. Возьмём $w=b^naa(ba)^n$, где n - из леммы

w лежит в языке, так как $u=b^n,\ v=(ba)^n,\ w=uaav$ и $|u|_b=|v|_a=n$

Так как |w| > n, то существует разбиение xyz = w, причём y не пустой. Так как по условию леммы |xy| < n, то y точно содержит только буквы b и причём точно содержит хотя бы одну.

То есть если мы возьмём xy^0z , то количество букв b в u строго уменьшиться. При этом разбиение на u и v однозначное, так как в нашем слове есть всего одно место, где встречаются две буквы a подряд : bb...b aa bababa...ba

А то есть теперь $|u|_b < n = |v|_a$.

Полученное слово по условию леммы должно лежать в языке, но он не лежит. Противоречие с тем, что язык регулярный.

Пример применения алгоритма минимизации

Минимизируем данный автомат:

Автомат полный, в нем нет недостижимых вершин — продолжаем. Строим обратное δ отображение.

δ^{-1}	0	1
A		В
В	_	A
С	ΑВ	_
D	С	С
\mathbf{E}	D	_
\mathbf{F}	$\rm E~F$	DFG
G	G	${ m E}$

Отмечаем в таблице и добавляем в очередь пары состояний, различаемых словом ε : все пары, один элемент которых — терминальное состояние, а второй — не терминальное состояние. Для данного автомата это пары

$$(A,F),(B,F),(C,F),(D,F),(E,F),(A,G),(B,G),(C,G),(D,G),(E,G)$$

Дальше итерируем процесс определения неэквивалентных состояний, пока очередь не оказывается пуста.

(A,F) не дает нам новых неэквивалентных пар. Для (B,F) находится 2 пары: (A,D),(A,G). Первая пара не отмечена в таблице — отмечаем и добавляем в очередь. Вторая пара уже отмечена в таблице, значит, ничего делать не надо. Переходим к следующей паре из очереди. Итерируем дальше, пока очередь не опустошится.

Результирующая таблица (заполнен только треугольник, потому что остальное симметрично) и порядок добавления пар в очередь.

	Α	В	С	D	\mathbf{E}	F	G
A							
В							
С	√	√					
D	✓	\checkmark	✓				
Е	√	√	√	√			
F	✓	\checkmark	✓	\checkmark	✓		
G	√	\checkmark	√	\checkmark	√		

Очередь:

$$(A, F), (B, F), (C, F), (D, F), (E, F), (A, G), (B, G), (C, G), (D, G), (E, G), (B, D), (A, D), (A, E), (B, E), (C, E), (C, D), (D, E), (A, C), (B, C)$$

В таблице выделились классы эквивалентных вершин: $\{A,B\},\{C\},\{D\},\{E\},\{F,G\}$. Остается только нарисовать результирующий автомат с вершинами-классами. Переходы добавляются тогда, когда из какого-нибудь состояния первого класса есть переход в какое-нибудь состояние второго класса. Минимизированный автомат:

