0.1 H16 数学必修

- (2) \mathbb{R} 上の有限次元ベクトル空間であるから W の正規直交基底 $\{w_1,\dots w_k\}$ $(k=\dim W)$ がとれる.これを V の基底へと延長して正規直交化することで V の基底 $\{w_1,\dots,w_k,w_{k+1},\dots,w_n\}$ を得る.このとき $(w_i,w_j)=0$ $(j=1,\dots,k,i=k+1,\dots,n)$ である. $\{w_1,\dots,w_k\}$ は W の基底であり内積は双線形であるから, $w_i\in W^\perp$ $(i=k+1,\dots,n)$ したがって $\{w_{k+1},\dots,w_n\}$ は W^\perp の一次独立な集合である.

 W^\perp の元で $\{w_{k+1},\dots,w_n\}$ の線形結合で表されない x が存在するなら $x=\sum\limits_{i=1}^n a_iw_i$ と表したときに $a_i\neq 0$ なる $1\leq i\leq k$ が存在する. $(x,w_i)=a_i$ となり $x\in W^\perp$ に矛盾.

よって W^{\perp} は $\{w_{k+1},\ldots,w_n\}$ を基底にもち、 $\dim W^{\perp}=\dim V-\dim W$

- $(3)w \in W$ は任意の $v \in W^{\perp}$ に対して (v,w) = 0 である. よって $w \in (W^{\perp})^{\perp}$. よって $W \subset (W^{\perp})^{\perp}$ である.
- (2) の結果を W^{\perp} に対して使うと $\dim(W^{\perp})^{\perp} = \dim V \dim W^{\perp} = \dim V (\dim V \dim W) = \dim W$ である. $(W^{\perp})^{\perp}$ の部分空間 W の次元が $(W^{\perp})^{\perp}$ の次元と等しいから $W = (W^{\perp})^{\perp}$.
- ② $(1)r(x,y) = \sqrt{x^2+y^2}, q(x,y) = (x/r(x,y),y/r(x,y))$ とすれば、 $D^* = D \setminus \{(0,0)\}$ の点で $g(x,y) = r(x,y)f \circ q(x,y)$ と表せる.

 D^* 上での連続性を確かめる。 D^* 上で r は連続である。 $(x,y)\mapsto x/r(x,y), (x,y)\mapsto y/r(x,y)$ は連続である から q も連続である。 よって合成関数 $f\circ q$ は連続で積 $g=r\cdot (f\circ q)$ も連続.

- $\{0,0\}$ で連続であることを確かめる. f(x,y) はコンパクト空間からの連続写像であるから最大値 M をもつよって $g(x,y) \leq M\sqrt{x^2+y^2}$ である. よって $\lim_{(x,y)\to(0,0)}g(x,y) \leq \lim_{(x,y)\to(0,0)}M\sqrt{x^2+y^2}=0=g(0,0)$ である. すなわち g は連続関数.
 - (2) $x = r\cos\theta, y = r\sin\theta$ $(0 \le r \le 1, 0 \le \theta < 2\pi)$ と変数変換する. ヤコビアンは r である.

 $\int_D g(x,y) dx dy = \int_0^1 \int_0^{2\pi} r^2 f(\cos\theta,\sin\theta) dr d\theta = \int_0^1 r^2 dr \int_0^{2\pi} f(\cos\theta,\sin\theta) d\theta$ である.

 $\theta = \tau + \pi$ と変数変換すると $\int_{\pi}^{2\pi} f(\cos \theta, \sin \theta) d\theta = \int_{0}^{\pi} f(\cos(\tau + \pi), \sin(\tau + \pi)) d\tau = \int_{0}^{\pi} f(-\cos \tau, -\sin \tau) d\tau = -\int_{0}^{\pi} f(\cos \tau, \sin \tau) d\tau$ である.

よって $\int_0^{2\pi} f(\cos\theta,\sin\theta)d\theta = \int_0^{\pi} f(\cos\theta,\sin\theta)d\theta + \int_{\pi}^{2\pi} f(\cos\theta,\sin\theta)d\theta = 0$ である. すなわち $\int_D g(x,y)dxdy = 0$.

 $\boxed{3}\lim_{n \to \infty} c_n = lpha$ とする. $|b_m - lpha| = |b_m - a_{m,n} + a_{m,n} - c_n + c_n - lpha| \le |b_m - a_{m,n}| + |a_{m,n} - c_n| + |c_n - lpha|$ である.

 $\lim_{n\to\infty}a_{m,n}=b_m\ \mathcal{O}\ m\ \mathrm{に関する} \to \ \&V$ 収束性から $\forall \varepsilon>0, \ ^\exists N_1\in\mathbb{N}, \ \forall n\geq N_1, \ \forall m, \ |b_m-a_{m,n}|<\varepsilon$ である. また $\forall \varepsilon>0, \ ^\exists N_2\in\mathbb{N}, \ \forall n\geq N_2,, \ |c_n-\alpha|<\varepsilon$ である.

 $N=N_1+N_2$ とすると, $n\geq N$ のとき $|b_m-lpha|<2arepsilon+|a_{m,n}-c_n|$ である. $^{orall}n,^{orall}arepsilon,^{orall}M(n)\in\mathbb{N},^{orall}m\geq M, |a_{m,n}-c_n|<arepsilon$ である.

よって $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \exists M(N) \in \mathbb{N}, \forall m > M(N), |b_m - \alpha| < 3\varepsilon$ である.

- |4|(1)|S(1,2,3,4)|=4!=24 である.
- (2)G は正四面体の 4 頂点を入れ替える群 S_4 の部分群であるから G の位数は 24 の約数である.

ある頂点 α と,他の 3 つの頂点を結んでできる三角形の中心 β を考える. α,β を結んでできる直線を軸にして \mathbb{R}^3 を $2\pi/3$ ラジアン回転させると, α 以外の 3 頂点が一つずれる. すなわち G は 3 頂点による巡回置換を元にもつ. 頂点を固定するごとに巡回置換があるから $|G| \geq 2 \cdot 4 + 1 = 9$ である. したがって |G| = 12,24 のいずれか.

二つの頂点を固定し残りを入れかえる置換を考える. 頂点 $\alpha, \beta, \gamma, \delta$ に対して α, β を固定して γ, δ を入れ替えるとする.

入れ替える前は 3 頂点 β,γ,δ によってできる三角形は四面体のうち側から見て反時計まわりに β,γ,δ の順

に並んでいたとする. γ, δ を入れ替えると, β, δ, γ の順に並ぶがこれは回転では実現不可能なので, G は二つの頂点を固定し残りを入れかえる置換を含まない.

よって |G| = 12 である.

- $(3)x \in S(1,2,3,4)$ に対して, $\sigma \in G$ によって $\sigma(x)$ で x が回転によって移った置き方を表すことにすると, $\sigma(x)=x$ となるような σ は G の単位元以外に存在しないから,各同値類の大きさは 12 である.よって同値類の数は 24/2=12 である.
- (4)|S(1,1,2,3)|=4!/2=12 である. G の元は必ず 3 頂点以上を入れ替えるので $x\in S(1,1,2,3)$ に対しても $\sigma(x)=x$ となるような σ は単位元以外に存在しないから各同値類の大きさは 12 で同値類の数は 1.
- 5 $(1)x \in X \setminus A$ について $f(x) \neq g(x) \in Y$ より $U, V \in \mathcal{O}_Y, f(x) \in U, g(x) \in V, U \cap V = \emptyset$ なる U, V がとれる. $W = f^{-1}(U) \cap g^{-1}(V)$ とすれば W は開集合で $x \in W$.
 - $x' \in W \cap A$ とすると、 $U \ni f(x') = g(x') \in V$ であるから $U \cap V = \emptyset$ に矛盾. よって $W \subset X \setminus A$ である.
- (2)X の空でない開集合 U,V であって $X=U\cup V,U\cap V=\emptyset$ となる U,V が存在しないとき X は連結である.
- $(3)X \times Y$ が連結でないと仮定する.定義から空でない集合 $U,V \in \mathcal{O}_{X \times Y}$ であって $X \times Y = U \cup V, U \cap V = \emptyset$ となる U,V が存在する.

積位相の定義から $U=\bigcup_{i\in I}U_{X,i}\times U_{Y,i}, V=\bigcup_{j\in J}V_{X,j}\times V_{Y,j}$ となる $U_{X,i},V_{X,j}\in\mathcal{O}_X,U_{Y,i},V_{Y,j}\in\mathcal{O}_Y$ が存在する.

 $U_X = \bigcup_{i \in I} U_{X,i}, V_X = \bigcup_{j \in J} V_{X,j}$ とすると $X = U_X \cup V_X$ であるから X の連結性より $\exists x \in U_X \cap V_X$ である。したがって $x \in U_{X,i_x}, x \in V_{X,j_x}$ となる i_x, j_x が存在する。同様に Y の連結性から $\exists y \in U_{Y,i_y} \cap V_{Y,j_y}$ が存在する。このとき $(x,y) \in U_{X,i_x} \times U_{Y,i_y} \subset U, (x,y) \in V_{X,j_x} \times V_{Y,j_y} \subset V$ であるから $U \cap V \neq \emptyset$ に矛盾。