Public Policy 529 Power Analysis

Jonathan Hanson

Gerald R. Ford School of Public Policy University of Michigan

December 4, 2023

Power Analysis 1 / 42

Outline

1. Preliminaries

2. Digging In

3. Various Examples

4. Summary

Power Analysis Outline 2 / 4

Outline

1. Preliminaries

- 2. Digging Ir
- 3. Various Examples
- 4. Summary

Power Analysis Preliminaries 3 / 4:

What is Power Analysis?

- We seek to determine the minimum sample needed to detect an effect at a particular level of significance.
- This is important at the stage of research design. We are about to undertake data collection, how much data do we need?
- Power analysis can also determine how large an effect size needs to be in order for us to detect it with a given sample size.
- We have to think ahead to the hypothesis testing stage and anticipate what will be necessary to reject H_0 .

Power Analysis Preliminaries 4 / 4:

Statistical Power Defined

- The power of a test is the probability we will reject H_0 if H_A is correct.
- It is the complement of an error of Type II (β), which is the probability that we will fail to reject H_0 when it is false.
- Specifically, statistical power is 1β .
- For minimum desired power, a conventional level is .8. If H_A is correct, there is a probability of .8 that we will reject H_0 .
- Higher levels may be preferable.

Power Analysis Preliminaries 5 / 43

Possible Results from a Hypothesis Test

	Decision		
Truth	Reject <i>H</i> ₀	Do not Reject H_0	
H_0 True	Type I error (α)	Correct	
H_0 False	Correct	Type II error (β)	

Power Analysis Preliminaries 6 / 4:

Power Depends on the Following

- Sample size: larger samples decrease the standard error and make it more likely we would reject an incorrect H_0 .
- Effect size: the larger the effect size, the more likely we will reject H_0 because it is farther away.
- α -level: the smaller is α , the less likely we are to reject H_0 even if it is false
- If we know any two of these things, we can calculate the third when given a particular level of power.

Power Analysis Preliminaries 7 / 4

But Some of These Things are Unknown

- Obviously, we may not know the effect size in advance of doing the study.
- We can, however, decide upon a minimum effect size that is substantively meaningful and seek enough power to detect it.
- There are other things we can't know in advance, such as sample standard deviations, which are needed for standard errors.
- We may have to estimate these things based on previous data or do a pre-test to get some information.

Power Analysis Preliminaries 8 / 4

Measuring Effect Size (E)

- In power analysis, the effect size is standardized, meaning that the original scale is divided by a standard deviation.
- So, for the difference between two means:

$$E = ext{Cohen's } d = rac{\mu_2 - \mu_1}{\sigma_{pooled}}$$

• For a single mean versus a null hypothesis:

$$E = \frac{\mu - H_0}{\sigma}$$

• In general, effect size is the relevant difference in the original scale divided by the standard deviation for that effect.

Power Analysis Preliminaries 9 /

Outline

1. Preliminaries

2. Digging In

3. Various Examples

4. Summary

Power Analysis Digging In 10 / 4

How Does Power Analysis Work?

- We assume the effect is true and put it at the center of the sampling distribution for the relevant sample statistic.
- As we know, the dispersion of the sampling distribution shrinks as n increases.
- For more power, a larger proportion of the area of this sampling distribution must sit beyond the rejection threshold for H_0 .
- e.g. if we want statistical power of .8, then 80% of the sampling distribution needs to be beyond the rejection threshold.
- Find the minimum sample size needed to make this happen.

Power Analysis Digging In 11 / 4

Illustration: Power of .80

The sampling distribution on the left represents $H_0 = 0$; the one on the right represents the assumed effect size as a t-stat.

Power is .8, since 80% of the area of the distribution around the effect lies above the threshold at which we would reject H_0 .

Power Analysis Digging In 12 / 4

Illustration: Power of .99

This is the same scenario but statistical power is now .99. On the t-scale, the two distributions now are farther apart.

On the original scale of the riable, they have shrunk. They look as wide as before because the Y-scale converts into standard errors.

Power Analysis Digging In 13 /

Using Software vs. Doing it By Hand

- It is quite easy to perform power analysis in Stata, R, or other applications, such as G*Power.
- One needs to understand how the process works to specify the commands properly, however.
- We will do one example by hand, deriving the equation needed for the minimum sample size.
- This is just for illustration. The math is tedious, so normally we will let software do it for us.

Power Analysis Digging In 14 / 4

Logic Behind the Calculations

- Let's start with a one-sample test involving a mean.
- Suppose μ_A is the true mean but $H_0 = \mu_0$.
- Let's derive a formula to show when *n* is just large enough.
- Start with this scenario:

$$\mu_0 + t_\alpha \left(\frac{\sigma}{\sqrt{n}} \right) = \mu_A + t_\beta \left(\frac{\sigma}{\sqrt{n}} \right)$$

- The left side is the threshold at which we reject H_0 . The right side is the threshold for achieving the desired statistical power.
- Note: if $\mu_A > \mu_0$, then $t_\beta < 0$. If $\mu_A < \mu_0$, then $t_\alpha < 0$.

Power Analysis Digging In 15 /

At the blue line: $\mu_0 + t_\alpha \left(\frac{\sigma}{\sqrt{n}} \right) = \mu_A + t_\beta \left(\frac{\sigma}{\sqrt{n}} \right)$.

Note: t_{α} is the critical value for rejecting H_0 ; t_{β} is negative here.

Power Analysis Digging In 16,

Derive the Formula for Minimum *n*

$$\mu_{0} + t_{\alpha} \left(\frac{\sigma}{\sqrt{n}} \right) = \mu_{A} + t_{\beta} \left(\frac{\sigma}{\sqrt{n}} \right)$$

$$t_{\alpha} \left(\frac{\sigma}{\sqrt{n}} \right) - t_{\beta} \left(\frac{\sigma}{\sqrt{n}} \right) = \mu_{A} - \mu_{0}$$

$$(t_{\alpha} - t_{\beta}) \left(\frac{\sigma}{\sqrt{n}} \right) = \mu_{A} - \mu_{0}$$

$$t_{\alpha} - t_{\beta} = (\mu_{A} - \mu_{0}) \left(\frac{\sqrt{n}}{\sigma} \right)$$

$$t_{\alpha} - t_{\beta} = \left(\frac{\mu_{A} - \mu_{0}}{\sigma} \right) \sqrt{n}$$

$$t_{\alpha} - t_{\beta} = E \sqrt{n}$$

$$\left(\frac{t_{\alpha} - t_{\beta}}{F} \right)^{2} = n$$

Power Analysis Digging In 17 / 42

Now Use the Formula

$$n = \left(\frac{t_{\alpha} - t_{\beta}}{E}\right)^2$$
 where $E = \frac{\mu_A - \mu_0}{\sigma}$

- This formula will give us the minimum *n* needed for desired statistical power.
- We need to supply an estimate for σ .
- It's tricky because the t-statistics will change as n changes.
- Suggestion: start by assuming t=z. If n turns out to be small, then adjust the t-statistics for degrees freedom and recalculate.
- May have to repeat a few times until *n* stops changing

Power Analysis Digging In 18 /

Example

$$n = \left(\frac{t_{\alpha} - t_{\beta}}{E}\right)^2$$
 where $E = \frac{\mu_A - \mu_0}{\sigma}$

- Suppose we expect that $\mu_A = 9$, while H_0 says $\mu_0 = 6$.
- Based on other data, we believe that σ is about 5.
- Thus, $E = \frac{3}{5} = .6$
- Let $t_{\alpha} = 1.96$.
- Suppose we want statistical power of .9. Find t_{β} such that 90% of the area lies above t_{β} . This is $t_{\beta} = -1.282$.

Power Analysis Digging In

Example continued

$$n = \left(\frac{t_{\alpha} - t_{\beta}}{E}\right)^{2}$$

$$n = \left(\frac{1.96 - (-1.282)}{.6}\right)^{2}$$

$$n = \left(\frac{3.242}{.6}\right)^{2}$$

$$n = (5.40)^{2}$$

$$n = 29.2$$

• This suggests our minimum sample size is more like 30. But then the values of *t* would be different: 2.045 and -1.311.

Power Analysis Digging In 20 /

Example continued with revised t-statistics

$$n = \left(\frac{t_{\alpha} - t_{\beta}}{E}\right)^{2}$$

$$n = \left(\frac{2.045 - (-1.311)}{.6}\right)^{2}$$

$$n = \left(\frac{3.356}{.6}\right)^{2}$$

$$n = (5.59)^{2}$$

$$n = 31.3$$

• Our minimum sample size is probably about 32.

Power Analysis Digging In 21 / 4

Using Stata

- Stata can do these calculations with the power command.
- There are versions of this command for various types of power calculations: one sample means and proportions, two sample tests, correlation analysis, and many more.
- In this case, we will use the command for onemean.
 - power onemean 6 9, sd(5) power(.9)
- ullet The null is listed first. We have to specify our estimate of σ and our desired power.

Power Analysis Digging In 22 / 4

Stata Output: One Mean

```
power onemean 6 9, sd(5) power(.9)
Performing iteration ...
Estimated sample size for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0
Study parameters:
       alpha =
                 0.0500
       power = 0.9000
       delta = 0.6000
          m0 = 6.0000
          ma = 9.0000
          sd =
                 5.0000
Estimated sample size:
```

32

Power Analysis Digging In

N =

Using R

• In R, one option is to use the pwr library, which you would first have to install.

```
install.packages("pwr")
```

• Then, specify the effect size as a formula, the power level, and the type of test.

Power Analysis Digging In 24 / 4

Outline

1. Preliminaries

- 2. Digging In
- 3. Various Examples
- 4. Summary

Power Analysis Various Examples 25 / 4

One Sample Proportion

- We want sufficient power to identify when a sample proportion is meaningfully different from the null hypothesis.
- Suppose the airlines say 85% of flights arrive by the scheduled time.
- You would like to be able to claim that the true rate of on time arrival is 80% or less.
- For statistical power of .90, how large a sample of flights would you need to obtain?

power oneproportion .85 .80, alpha(.05) power(.9)

Power Analysis Various Examples 26 / 43

Stata Output: One Proportion

```
. power oneproportion .85 .80, alpha(.05) power(.9)
Performing iteration ...
Estimated sample size for a one-sample proportion test
Score z test
Ho: p = p0 versus Ha: p != p0
Study parameters:
       alpha = 0.0500
       power = 0.9000
       delta = -0.0500
          p0 = 0.8500
          pa = 0.8000
Estimated sample size:
```

589

N =

Power Analysis Various Examples 27 / 42

R Output: One Proportion

```
> pwr.p.test(h=ES.h(p1=.80, p2=.85), sig.level=.05, power=.9, alternative="two.sided")
proportion power calculation for binomial distribution (arcsine transformation)

h = 0.1318964
n = 603.9907
sig.level = 0.05
power = 0.9
alternative = two.sided
```

- Use the effect size function ES.h(p1, p2) to find the correct value for the first argument.
- The result is slightly different from Stata because here the binomial is used instead of the normal approximation.

Power Analysis Various Examples 28 / 4

Difference of Means Test

- With a difference of means test, we will have to make some additional educated guesses about parameters.
- The two samples each have a standard deviation. We need to estimate both.
- The samples may end up having different sizes:
 - ▶ If we will be doing random assignment, then the ratio of the two sample sizes will about 1 to 1.
 - ▶ If will be collecting observational data, we may have to guess the ratio of the sample sizes.

Power Analysis Various Examples 29 / 43

Difference of Means Scenario

- Suppose we plan to collect air quality samples from two cities and want to be able to detect a difference of 10 AQI.
- Let's imagine $\mu_1 = 150$ and $\mu_2 = 160$.
- We will sample both cities equally so the ratio of n_2 to n_1 is 1.
- From what we know based on the past, $\sigma_1 = 40$ and $\sigma_2 = 50$.

```
power twomeans 150 160, sd1(40) sd2(50)
```

or

power twomeans 150, diff(10) sd1(40) sd2(50)

Power Analysis Various Examples 30 / 4

Stata Output: Two Means

power twomeans 150 160, sd1(40) sd2(50)

Performing iteration ...

Estimated sample sizes for a two-sample means test Satterthwaite's t test assuming unequal variances Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500 power = 0.8000 delta = 10.0000 m1 = 150.0000 m2 = 160.0000 sd1 = 40.0000 sd2 = 50.0000

Estimated sample sizes:

N = 646 N per group = 323

Power Analysis Various Examples 31 / 42

R Output: Two Means

In R, we need to calculate the effect size (which is d below).

```
> m1 <- 150
> m2 <- 160
> sd1 <- 40
> sd2 <- 50
> sd.pooled <- sqrt((sd1^2 + sd2^2)/2)</pre>
> d <- (m2 - m1)/sd.pooled</pre>
> pwr.t.test(d=d, siq.level=0.05, power=0.80, type="two.sample")
     Two-sample t test power calculation
              n = 322.7665
              d = 0.2208631
      sig.level = 0.05
          power = 0.8
    alternative = two.sided
NOTE: n is number in *each* group
```

Power Analysis Various Examples 32 / 43

Variations of Difference of Means Power Analysis

- The default is to assume that both samples are the same size.
- We can add an option if we expect the ratio of n_2 to n_1 will be different.
- Suppose we think n_2 will be twice as large as n_1 : power twomeans 150 160, sd1(40) sd2(50) nratio(2)
- Suppose we think n_2 will be half as large as n_1 : power twomeans 150 160, sd1(40) sd2(50) nratio(.5)

Various Examples

power twomeans 150, diff(10) sd1(40) sd2(50) nratio(2)

Performing iteration ...

Estimated sample sizes for a two-sample means test Satterthwaite's t test assuming unequal variances Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500 power = 0.8000 delta = 10.0000 m1 = 150.0000 m2 = 160.0000 diff = 10.0000 sd1 = 40.0000 sd2 = 50.0000 N2/N1 = 2.0000

Estimated sample sizes:

N = 675 N1 = 225 N2 = 450

Power Analysis Various Examples 34 / 42

In R, the MESS library is needed.

```
> library(MESS)
> delta <- m2 - m1
> sd1 <- 40
> sd2 <- 50
> sd.pooled <- sqrt((.33*sd1^2 + .67*sd2^2))</pre>
> power_t_test(n=NULL, delta=delta, sd=sd.pooled, sig.level=.05,
               type="two.sample", sd.ratio=5/4, ratio=2, power=.8)
     Two-sample t test power calculation with unequal sample sizes and unequal variances
              n = 308.7889, 617.5778
          delta = 10
             sd = 46.93613, 58.67016
      sig.level = 0.05
          power = 0.8
    alternative = two.sided
NOTE: n is vector of number in each group
```

Power Analysis Various Examples 35 / 42

Difference of Proportions Test

Earlier this semester we had the following data about a program to raise the rate of high school graduation:

Participa	ant?
-----------	------

Graduated?	Yes	No	Total
Yes	83	102	185
No	10	19	29
Total	93	121	214
Proportion	.892	.843	.864

We failed to reject the null hypothesis. The program seems to make a difference, however. How large of a sample do we need to detect it?

Power Analysis Various Examples 36 / 4

Performing the Power Analysis

- Let's use the rates of graduation from the earlier study as our estimate of the proportions.
- If we call the students in the program sample 2, then the ratio of n_2 to n_1 is about .77.
- Let's say we want power of .8.
- This is all we need for the Stata command:

```
power twoproportions .843 .892, nratio(.77) power(.8)
```

or

power twoproportions .843, diff(.049) nratio(.77) power(.8)

Power Analysis Various Examples 37 / 4

. power twoproportions .843 .892, nratio(.77) power(.8)

Performing iteration ...

Estimated sample sizes for a two-sample proportions test Pearson's chi-squared test

Ho: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = **0.0500**

power = 0.8000
delta = 0.0490 (difference)

p1 = **0.8430**

p2 = 0.8920

N2/N1 = 0.7700

Estimated sample sizes:

N = 1,540

N1 = **870**

N2 = 670

N2/N1 = 0.7701

Power Analysis Various Examples 38 / 42

Power Analysis Various Examples 39 / 42

Outline

1. Preliminaries

- 2. Digging In
- 3. Various Examples

4. Summary

Power Analysis Summary 40 / 4

Other Power Tests and Software

- Stata has tests for dependent samples, correlation, bivariate regression, etc.
- There is also a very nice free application called G*Power for Mac and Windows that does power analysis.
- You can download it at the url below:

http://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html

Power Analysis Summary 41 / 4

Extensions

- We just calculated minimum n using, effect size, α -level, and desired power.
- Any one of these things can be calculated as a function of the others (making some assumptions about other parameters).
- For example, we can do sensitivity analysis: determining what effect size we can detect given a particular *n* and level of power.
- But that's for another course . . .

Power Analysis Summary 42 / 4