Movelt 轨迹规划时的耗时原因

- 碰撞检测耗时
 - o 简化机械臂的碰撞模型
 - o 简化场景障碍物模型
 - o 降低octomap分辨率
 - o 更换更高效的碰撞检测器
 - 默认的是FCL
- 运动学求逆解耗时
 - o KDL
 - 基于雅克比矩阵和牛顿法数值优化,在关节限制方面表现不佳
 - 速度慢
 - 失败概率高
 - 求解不一致
 - o track-IK
 - 两种方法
 - 方法1:基于KDL,在关节限制方面做随机跳跃以退出局部最优
 - 方法2:使用SQP,针对关节限制表现比KDL更好
 - 比较两个方法的结果
 - 求解不具有一致性
 - IK-Fast
 - 适用于机械臂 <= 7dof
 - 解析解
 - 速度快
 - 求解具有一致性
- planner 耗时
 - 。 参数上的优化
 - 增加路径步长?
 - 减少末端精度要求
 - o 选取不同的planner
 - OMPL-RRTConnect
 - rrtconnect是一个概率不完备的planner,基于采样的规划器
 - 找到的轨迹不一定是最优轨迹,有时会出现难以预料的复杂轨迹,或与障碍物距离 很近
 - 不一定能找到显而易见的目标轨迹
 - SBPL
 - 基于搜索
 - STOMP

- 从初始猜测轨迹通过最小化各个航点的成本来迭代优化同一轨迹。这种方法的好处 是,只要有合适的成本函数,几乎可以支持任何轨迹要求。
- 与其他规划方法相比,STOMP 的缺点是规划时间较长,而且难以调整规划器配置和成本函数,容易出现局部最小值。
- 可以与其他规划进行组合,比如先用rrtconnect 找到轨迹,随后通过stomp进行优化

CHOMP

- 基于梯度优化
- Covariant Hamiltonian optimization for motion planning
- 大多数高维运动规划器将轨迹生成分为不同的规划和优化阶段,而本算法则利用协变梯度和函数梯度方法来优化阶段,从而设计出一种完全基于轨迹优化的运动规划算法。