Machine Learning Formulae

Notations

```
m = Number of training examples.
```

n = Number of features.

 $x^{(i)}$ = The features of the i_{th} training example, which is an n+1 vector.

 $y^{(i)}$ = The Target value of the i_{th} training example, which is a number.

 $(x^{(i)}, y^{(i)})$ = The i_{th} training example.

 $\boldsymbol{x}_{j}^{(i)}$ = The j_{th} feature of the i_{th} training example, which is a number.

 α = Learning rate

Multivariate Linear Regression

Hypothesis

$$h_x(\theta) = \sum_{i=0}^n \theta_i x_i \; x_0$$
 is always equal to 1.

Cost Function

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2)$$

Gradient Desecnt

Repeat{

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

 $(j = 0, 1, 2, \dots, n)$, α stands for learning rate.

}

Calculate the $\frac{\partial}{\partial \theta_i} J(\theta)$, which means the partial derivative respect to θ_j :

Repeat{

$$heta_j := heta_j - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Feature Scaling

Replace every x with:

$$\frac{x-\mu}{\epsilon}$$

 μ stands for the average of x's, and s stands for the standard deviation of x's.

Normal Equation

Define the feature vector of the \boldsymbol{i}_{th} training example:

$$x^{(i)} = egin{bmatrix} x_0^{(i)} \ x_1^{(i)} \ & \ddots \ x_n^{(i)} \end{bmatrix} x^{(i)} ext{ is an } n+1 ext{ vector.}$$

Define **design matrix** X:

$$X = egin{bmatrix} (x^{(1)})^T \ (x^{(2)})^T \ & \dots \ (x^{(m)})^T \end{bmatrix} X$$
 is an $m imes (n+1)$ matrix.

Define the target value vector:

$$y=egin{bmatrix} y^{(1)} \ y^{(2)} \ \dots \ y^{(m)} \end{bmatrix}$$
 y is an $m imes(n+1)$ vector.

Then, we can calculate θ :

$$heta = (X^TX)^{-1}X^Ty\, heta$$
 Is an $n+1$ vector.

Logistic Regression

Hypothesis

Define:

$$heta = \left[egin{array}{c} heta_0 \ heta_1 \ heta_1 \ heta_n \end{array}
ight] x = \left[egin{array}{c} x_0 \ x_1 \ heta_1 \ heta_n \end{array}
ight]$$

Hypothesis:

$$h_{ heta}(x) = g(heta^T x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$
 (sigmoid/logistic function)

which means:

$$h_{ heta}(x) = rac{1}{1+e^{- heta^Tx}} \in (0,1)$$

Cost Function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x^{(i)}), y^{(i)}) = \begin{cases} -log(1 - h_{\theta}(x)), & y = 0 \\ -log(h_{\theta}(x)), & y = 1 \end{cases} \iff Cost(h_{\theta}(x^{(i)}), y^{(i)}) = -ylog(h_{\theta}(x)) - (1 - y)log(1 - h_{\theta}(x))$$

Gradient Descent

Repeat {
$$heta_j:= heta_j-lpharac{1}{m}\sum_{i=1}^m(h_ heta(x^{(i)})-y^{(i)})x_j^{(i)}$$
 }

Multiclass Classification

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y=i. On a new input x, to make a prediction, pick the class i that maximizes $h_{\theta}^{(i)}(x)$.

Regularized Linear Regression

Cost Function

$$J(heta) = rac{1}{2m} [\, \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{i=1}^n heta_j^2 \,]$$

Gradient Descent

Repeat {
$$heta_0 := heta_0 - lpha rac{1}{m} \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$
 $heta_j := heta_j - lpha [rac{1}{m} \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)}) x^{(j)} + rac{\lambda}{m} heta_j]$ $(j=1,2,3,\ldots,n)$ }

Normal Equation

$$heta = (X^TX + \lambda egin{bmatrix} 0 & 0 & 0 & 0 & \dots & 0 \ 0 & 1 & 0 & 0 & \dots & 0 \ 0 & 0 & 1 & 0 & \dots & 0 \ 0 & 0 & 0 & 1 & \dots & 0 \ & & & & & & \ 0 & 0 & 0 & 0 & \dots & 1 \end{bmatrix})^{-1}X^Ty$$

Regularized Logistic Regression

Cost Function

$$J(heta) = -[\,rac{1}{m}\sum_{i=1}^{m}y^{(i)}logh_{ heta}(x^{(i)}) + (1-y^{(i)})log(1-h_{ heta}(x^{(i)}))\,] + rac{\lambda}{2m}\sum_{j=1}^{n} heta_{j}^{2}$$

Gradient Desecnt

Repeat {
$$\theta_0 := \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j := \theta_j - \alpha [\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \theta_j]$$

$$(j = 1, 2, 3, \dots, n)$$
 }