### Association rules computation

- Once we have the frequent itemsets, we want the association rules.
- Reminder: we are only interested in rules that have a high confidence value

Confidence of X 
$$\rightarrow$$
 Y:  $c = \frac{\text{support}(X \cup Y)}{\text{support}(X)}$ 

- Let F be an itemset, with |F| = k.
   How many possible rules ?
- What is a naive solution to compute them?

Is it efficient?

# Monotony of confidence?

| Transactions | Items (products bought)                | <ul> <li>{chocolate} → {bread, butter}</li> </ul> |
|--------------|----------------------------------------|---------------------------------------------------|
| 1            | bread, butter, chocolate, vine, pencil | confidence = $4/6 = 66\%$                         |
| 2            | bread, butter, chocolate, pencil       |                                                   |
| 3            | chocolate                              |                                                   |
| 4            | butter,chocolate                       |                                                   |
| 5            | bread, butter, chocolate, vine         |                                                   |
| 6            | bread,butter, chocolate                |                                                   |
| 7            | CONFIDENCE IS N                        | IOT MONOTONE / ANTI-                              |
| 8            | MONOTONE                               | 2                                                 |

## More on monotony of confidence

- For rules coming from the same itemset, confidence is anti-monotone
  - e.g.,  $L = \{A,B,C,D\}$ :

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

 Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

• → some pruning is possible

# Association rule generation algorithm

```
Input: T, minsup, minconf, F_{all} = union of F_1...F_n
H_1 = \emptyset
foreach f_k \in F_{all}, k \ge 2 do begin
   A = (k-1)-itemsets a_{k-1} such that a_{k-1} \subset f_k;
   foreach a_{k-1} \in A do begin
        conf = support(f_k)/support(a_{k-1});
        if conf ≥ minconf do begin
             output rule a_{k-1} \rightarrow (f_k - a_{k-1});
             add (f_k - a_{k-1}) to H_1;
         end
   end
   ap-genrules(f_k, H_1);
end
```

# ap-genrules

```
Input: f_k, H_m: set of m-item consequents
if (k>m+1) then begin
  H_{m+1} = apriori-gen(H_m); // Generate all possible m+1
                               itemsets
  foreach h_{m+1} \in H_{m+1} do begin
       conf = support(f_k)/support(f_k-h_{m+1});
        if conf ≥ minconf then
            output rule f_k - h_{m+1} \rightarrow h_{m+1};
         else
            delete h_{m+1} from H_{m+1}; Pruning by anti-monotony
  end
  ap-genrules(f_k, H_{m+1});
end
```

### The Eclat algorithm

[Zaki *et al.*, 97]

- Apriori : DB is in horizontal format
- Eclat introduces the vertical format
  - Itemset  $x \rightarrow tid-list(x)$

|          |   |   |   |   |   | A | В | C | L |
|----------|---|---|---|---|---|---|---|---|---|
|          | Α | В | С | D | Е | 1 | 1 | 1 | 1 |
| 1        | Х | Х | Х | Х | Х | • | - | 2 |   |
|          | Х | Х | Х |   | Х |   |   |   | 5 |
| <u> </u> |   |   | Х |   |   | 5 | 4 | 3 |   |
| _        |   |   |   |   |   | 6 | 5 | 4 |   |
| 4        |   | Х | Х |   |   |   | 6 | 5 |   |
| 5        | Х | Х | Х | Х |   |   | O | 0 |   |
| 6        | Х | Х | Х |   |   |   |   | Ь |   |

Horizontal format

Vertical format

### Vertical format

- Support counting can be done with tid-list intersections
  - $\forall I,J \text{ itemsets} : tidlist(I \cup J) = tidlist(I) \cap tidlist(J)$
  - No need for costly subset tests, hash tree generation...
- Problem
  - If database is big, tidlists of the many candidates created will be big also, and will not hold in memory
- Solution
  - Partition the lattice into equivalence classes
  - In Eclat : equivalence relation = sharing the same prefix



#### Equivalence classes inside [A] class



9

1: 
$$\{a, d, e\}$$

2:  $\{b, c, d\}$ 

3:  $\{a, c, e\}$ 

4:  $\{a, c, d, e\}$ 

5:  $\{a, e\}$ 

6:  $\{a, c, d\}$ 

7:  $\{b, c\}$ 

8:  $\{a, c, d, e\}$ 

9:  $\{b, c, e\}$ 

10:  $\{a, d, e\}$ 

a:7 | b:3 | c:7 | d:6 | e:7

- Form a transaction list for each item. Here: bit vector representation.
  - o grey: item is contained in transaction
  - white: item is not contained in transaction
- Transaction database is needed only once (for the single item transaction lists).



```
    a:7
    b:3
    c:7
    d:6
    e:7

    b:0
    c:4
    d:5
    e:6
```

- Intersect the transaction list for item a with the transaction lists of all other items (conditional database for item a).
- Count the number of bits that are set (number of containing transactions). This yields the support of all item sets with the prefix a.

```
1: \{a, d, e\}

2: \{b, c, d\}

3: \{a, c, e\}

4: \{a, c, d, e\}

5: \{a, e\}

6: \{a, c, d\}

7: \{b, c\}

8: \{a, c, d, e\}

9: \{b, c, e\}

10: \{a, d, e\}
```



- The item set  $\{a, b\}$  is infrequent and can be pruned.
- All other item sets with the prefix a are frequent and are therefore kept and processed recursively.





- Intersect the transaction list for the item set  $\{a, c\}$  with the transaction lists of the item sets  $\{a, x\}$ ,  $x \in \{d, e\}$ .
- Result: Transaction lists for the item sets  $\{a, c, d\}$  and  $\{a, c, e\}$ .
- Count the number of bits that are set (number of containing transactions). This yields the support of all item sets with the prefix ac.

```
1: \{a, d, e\}
                                                             a:7 \mid b:3 \mid c:7 \mid d:6 \mid e:7
 2: \{b, c, d\}
                                                  a
 3: \{a, c, e\}
                                      c:4 \mid d:\overline{5}
 4: \{a, c, d, e\}
 5: \{a, e\}
                                          c
 6: \{a, c, d\}
                                   d:3 \mid e:3
 7: \{b, c\}
 8: \{a, c, d, e\}
 9: \{b, c, e\}
                                   e:2
10: \{a, d, e\}
```

- Intersect the transaction lists for the item sets  $\{a, c, d\}$  and  $\{a, c, e\}$ .
- Result: Transaction list for the item set  $\{a, c, d, e\}$ .
- With Apriori this item set could be pruned before counting, because it was known that  $\{c, d, e\}$  is infrequent.

```
1: \{a, d, e\}

2: \{b, c, d\}

3: \{a, c, e\}

4: \{a, c, d, e\}

5: \{a, e\}

6: \{a, c, d\}

7: \{b, c\}

8: \{a, c, d, e\}

9: \{b, c, e\}

10: \{a, d, e\}
```

- The item set  $\{a, c, d, e\}$  is not frequent (support 2/20%) and therefore pruned.
- Since there is no transaction list left (and thus no intersection possible), the recursion is terminated and the search backtracks.

```
1: \{a, d, e\}

2: \{b, c, d\}

3: \{a, c, e\}

4: \{a, c, d, e\}

5: \{a, e\}

6: \{a, c, d\}

7: \{b, c\}

8: \{a, c, d, e\}

9: \{b, c, e\}

10: \{a, d, e\}
```

- The search backtracks to the second level of the search tree and intersect the transaction list for the item sets  $\{a, d\}$  and  $\{a, e\}$ .
- Result: Transaction list for the item set  $\{a, d, e\}$ .
- Since there is only one transaction list left (and thus no intersection possible), the recursion is terminated and the search backtracks again.

```
1: \{a, d, e\}

2: \{b, c, d\}

3: \{a, c, e\}

4: \{a, c, d, e\}

5: \{a, e\}

6: \{a, c, d\}

7: \{b, c\}

8: \{a, c, d, e\}

9: \{b, c, e\}

10: \{a, d, e\}
```

- The search backtracks to the first level of the search tree and intersect the transaction list for b with the transaction lists for c, d, and e.
- Result: Transaction lists for the item sets  $\{b,c\}$ ,  $\{b,d\}$ , and  $\{b,e\}$ .



- Only one item set has sufficient support  $\rightarrow$  prune all subtrees.
- Since there is only one transaction list left (and thus no intersection possible), the recursion is terminated and the search backtracks again.



- Backtrack to the first level of the search tree and intersect the transaction list for c with the transaction lists for d and e.
- Result: Transaction lists for the item sets  $\{c, d\}$  and  $\{c, e\}$ .



- Intersect the transaction list for the item sets  $\{c, d\}$  and  $\{c, e\}$ .
- Result: Transaction list for the item set  $\{c, d, e\}$ .



- The item set  $\{c, d, e\}$  is not frequent (support 2/20%) and therefore pruned.
- Since there is no transaction list left (and thus no intersection possible), the recursion is terminated and the search backtracks.



- The search backtracks to the first level of the search tree and intersect the transaction list for d with the transaction list for e.
- Result: Transaction list for the item set  $\{d, e\}$ .
- With this step the search is finished.



- The found frequent item sets coincide, of course, with those found by the Apriori algorithm.
- However, a fundamental difference is that
   Eclat usually only writes found frequent item sets to an output file,
   while Apriori keeps the whole search tree in main memory.



- Note that the item set  $\{a, c, d, e\}$  could be pruned by Apriori without computing its support, because the item set  $\{c, d, e\}$  is infrequent.
- The same can be achieved with Eclat if the depth-first traversal of the prefix tree is carried out from right to left and computed support values are stored. It is debatable whether the expected gains justify the memory requirement.

### Eclat algorithm

```
Input: T, minsup
compute L_1 and L_2 // like apriori
Transform T in vertical representation
CE_2 = Decompose L_2 in equivalence classes
forall E_2 \in CE_2 do
  compute_frequent(E<sub>2</sub>)
end forall
return \cup_k F_k;
```

#### $compute\_frequent(E_{k-1})$

```
forall itemsets I_1 and I_2 in E_{k-1} do 
 if |\text{tidlist}(I_1) \cap \text{tidlist}(I_2)| \geq \text{minsup then} 
 L_k \leftarrow L_k \cup \{I_1 \cup I_2\} 
 end if 
end forall 
 CE_k = \text{Decompose } L_k in equivalence classes 
 forall E_k \in CE_k do 
 compute_frequent(E_k) 
end forall
```

## The FP-growth approach

- FP-Growth : Frequent Pattern Growth
- No candidate generation
- Compress transaction database into FP-tree (Frequent Pattern Tree)
  - Extended prefix-tree
- Recursive processing of conditional databases
- Can be one order of magnitude faster than Apriori

### FP-tree

- Compact structure for representing DB and frequent itemsets
- 1. Composed of:
  - root
  - item-prefix subtrees
  - frequent-item-header array
- 2. Node =
  - item-name
  - count // number of transactions containing path reaching this node
  - node-link // next node having same item-name
- 3. Entry in frequent-item-header array =
  - item-name
  - head of node-link // pointer to first node having item-name
- Both an horizontal (prefix-tree) and a vertical (node links) structure

# FP-tree example (1/2)



# FP-tree example (2/2)

C CB CBA CBAD CBADE CBAE

Transactions sorted lexicographically



### Exercise

• Draw the FP-tree for the following DB: (minsup = 3)

ADF

ACDE

BD

BCD

BC

ABD

BDE

BCEG

CDF

ABD

#### FP-Growth: Preprocessing the Transaction Database



- 1. Original transaction database.
- 2. Frequency of individual items.
- 3. Items in transactions sorted descendingly w.r.t. their frequency and infrequent items removed.
- Transactions sorted lexicographically in ascending order (comparison of items is the same as in preceding step).
- Data structure used by the algorithm (details on next slide).

#### Transaction Representation: FP-Tree

- Build a **frequent pattern tree** (**FP-tree**) from the transactions (basically a prefix tree with links between branches for items).
- Frequent single item sets can be read directly from the FP-tree.

#### Simple Example Database





Christian Borgelt Frequent Pattern Mining 142

### **FP-Growth**

```
FP-growth(FP, prefix)
foreach frequent item x in increasing order of frequency do
   prefix = prefix \cup x
   Dx = \emptyset
   count_x = 0
   foreach node-link nl<sub>x</sub> of x do
   D_x = D_x \cup \{\text{transaction of path reaching } x, \text{ with for each item} = n_x \cdot \text{count}, \text{ without } x\}
                                                                                                                   count
             count_x += nl_x.count
   end
   if count<sub>x</sub> ≥ minsup then
             output (prefix \cup x)
              FP_x = FP-tree constructed from D_x
             FP-growth(FP<sub>x</sub>, prefix)
   end if
end
```

### FP-Growth example



### FP-Growth example (cont.)



Loop on AE, BE, CE

The rest is left as exercise...

#### For AE:

count<sub>AE</sub>= 2
$$\Rightarrow AE \text{ is frequent}$$

$$\Rightarrow Output AE$$

#### Conditional FP-tree for AE:



#### For BAE:



#### Conditional FP-tree for BAE:



For CBAE: 
$$count_{CBAE} = 2$$



Alexandre Termier

#### **Experiments: Execution Times**



Decimal logarithm of execution time in seconds over absolute minimum support.