association-rules-17-02

March 10, 2025

```
[]: from google.colab import drive
     drive.mount('/content/drive')
    Mounted at /content/drive
[]: import pandas as pd
     from mlxtend.frequent_patterns import apriori
     from mlxtend.frequent_patterns import association_rules
     from mlxtend.preprocessing import TransactionEncoder
[]: from google.colab import drive
     drive.mount('/content/drive')
    /usr/local/lib/python3.11/dist-packages/ipykernel/ipkernel.py:283:
    DeprecationWarning: `should_run_async` will not call `transform_cell`
    automatically in the future. Please pass the result to `transformed_cell`
    argument and any exception that happen during thetransform in
    `preprocessing_exc_tuple` in IPython 7.17 and above.
      and should run async(code)
    Drive already mounted at /content/drive; to attempt to forcibly remount, call
    drive.mount("/content/drive", force_remount=True).
[]: file_name ='/content/Titanic.csv'
    /usr/local/lib/python3.11/dist-packages/ipykernel/ipkernel.py:283:
    DeprecationWarning: `should run async` will not call `transform cell`
    automatically in the future. Please pass the result to `transformed_cell`
    argument and any exception that happen during thetransform in
    `preprocessing_exc_tuple` in IPython 7.17 and above.
      and should_run_async(code)
[]: titanic = pd.read_csv(file_name)
    /usr/local/lib/python3.11/dist-packages/ipykernel/ipkernel.py:283:
    DeprecationWarning: `should_run_async` will not call `transform_cell`
    automatically in the future. Please pass the result to `transformed_cell`
```

argument and any exception that happen during thetransform in

`preprocessing_exc_tuple` in IPython 7.17 and above. and should_run_async(code)

[]: titanic

/usr/local/lib/python3.11/dist-packages/ipykernel/ipkernel.py:283:
DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above.

and should_run_async(code)

[]:		Class	Gender	Age	${\tt Survived}$
	0	3rd	Male	Child	No
	1	3rd	Male	Child	No
	2	3rd	Male	Child	No
	3	3rd	Male	Child	No
	4	3rd	Male	Child	No
		•••		•••	
	2196	Crew	Female	Adult	Yes
	2197	Crew	Female	Adult	Yes
	2198	Crew	Female	Adult	Yes
	2199	Crew	Female	Adult	Yes
	2200	Crew	Female	Adult	Yes

[2201 rows x 4 columns]

[]: | #pre processing

df=pd.get_dummies(titanic)
df.head()

/usr/local/lib/python3.11/dist-packages/ipykernel/ipkernel.py:283:
DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above.

and should run_async(code)

[]:	Class_1st	${\tt Class_2nd}$	Class_3rd	Class_Crew	Gender_Female	<pre>Gender_Male</pre>	\
0	False	False	True	False	False	True	
1	False	False	True	False	False	True	
2	False	False	True	False	False	True	
3	False	False	True	False	False	True	
4	False	False	True	False	False	True	
	Age_Adult	Age_Child	Survived_No	Survived_Y	es		
0	False	True	True	Fal	se		

1	False	True	True	False
2	False	True	True	False
3	False	True	True	False
4	False	True	True	False

[]: df

/usr/local/lib/python3.11/dist-packages/ipykernel/ipkernel.py:283:
DeprecationWarning: `should_run_async` will not call `transform_cell`
automatically in the future. Please pass the result to `transformed_cell`
argument and any exception that happen during thetransform in
`preprocessing_exc_tuple` in IPython 7.17 and above.
and should_run_async(code)

[]:		Class_1st	Class_2nd	Class_3rd	Class_Crew	Gender_Female	<pre>Gender_Male</pre>	\
	0	False	False	True	False	False	True	
	1	False	False	True	False	False	True	
	2	False	False	True	False	False	True	
	3	False	False	True	False	False	True	
	4	False	False	True	False	False	True	
		•••	•••					
	2196	False	False	False	True	True	False	
	2197	False	False	False	True	True	False	
	2198	False	False	False	True	True	False	
	2199	False	False	False	True	True	False	
	2200	False	False	False	True	True	False	
		Age_Adult	Age_Child	Survived_No	Survived_\	les .		
	0	False	True	True	Fa]	Lse		
	1	False	True	True	Fa]	Lse		
	2	False	True	True	Fa]	Lse		
	3	False	True	True	Fa]	lse		
	1							
	4	False	True	True	Fa]	Lse		
		False 	True 	True 	Fa] 	Lse		
			True … False		•••	rue		
	 2196 2197	•••	•••	•••	 Tr			
	 2196 2197 2198	 True True True	 False False False	 False False False	 Tr Tr	rue		
	 2196 2197 2198 2199	 True True True True	 False False False False	 False False False False	 Tr Tr Tr	rue rue rue rue		
	 2196 2197 2198	 True True True	 False False False	 False False False	 Tr Tr Tr	rue rue rue		

[2201 rows x 10 columns]

```
[]: #Apriori Algorithm

frequent_itemsets = apriori(df, min_support=0.1, use_colnames=True)
frequent_itemsets
```

/usr/local/lib/python3.11/dist-packages/ipykernel/ipkernel.py:283:

DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above.

and should run async(code)

```
[]:
          support
                                                              itemsets
         0.147660
     0
                                                           (Class_1st)
     1
         0.129487
                                                           (Class_2nd)
     2
                                                           (Class_3rd)
         0.320763
     3
                                                          (Class_Crew)
         0.402090
     4
         0.213539
                                                       (Gender_Female)
                                                         (Gender Male)
     5
         0.786461
                                                           (Age_Adult)
     6
         0.950477
     7
         0.676965
                                                         (Survived No)
                                                        (Survived_Yes)
     8
         0.323035
     9
         0.144934
                                                (Class_1st, Age_Adult)
                                                (Class_2nd, Age_Adult)
        0.118582
     10
        0.231713
                                              (Class_3rd, Gender_Male)
     11
                                                (Class_3rd, Age_Adult)
     12
        0.284871
                                              (Class_3rd, Survived_No)
     13
        0.239891
     14
        0.391640
                                             (Class_Crew, Gender_Male)
     15
        0.402090
                                               (Class_Crew, Age_Adult)
                                             (Class_Crew, Survived_No)
     16
        0.305770
                                            (Age_Adult, Gender_Female)
     17
         0.193094
                                        (Gender_Female, Survived_Yes)
        0.156293
     18
     19
        0.757383
                                              (Gender_Male, Age_Adult)
    20
        0.619718
                                            (Survived No, Gender Male)
                                          (Gender_Male, Survived_Yes)
     21
        0.166742
    22
        0.653339
                                              (Survived No, Age Adult)
                                             (Age_Adult, Survived_Yes)
    23
        0.297138
     24
        0.209905
                                  (Class_3rd, Gender_Male, Age_Adult)
                                (Class 3rd, Survived No, Gender Male)
     25
        0.191731
                                  (Class_3rd, Survived_No, Age_Adult)
     26
        0.216265
    27
        0.391640
                                 (Class_Crew, Gender_Male, Age_Adult)
        0.304407
                               (Class_Crew, Survived_No, Gender_Male)
     28
                                 (Class_Crew, Survived_No, Age_Adult)
     29
        0.305770
        0.143571
                             (Age_Adult, Gender_Female, Survived_Yes)
     30
                                (Survived_No, Gender_Male, Age_Adult)
     31
        0.603816
     32
        0.153567
                               (Age_Adult, Gender_Male, Survived_Yes)
                    (Class_3rd, Survived_No, Gender_Male, Age_Adult)
     33
        0.175829
                    (Class_Crew, Survived_No, Gender_Male, Age_Adult)
        0.304407
```

[]: rules = association_rules(frequent_itemsets, metric="lift", min_threshold=0.7) rules

/usr/local/lib/python3.11/dist-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above.

and should_run_async(code)

```
[]:
                                                                  consequents \
                        antecedents
     0
                        (Class_1st)
                                                                  (Age_Adult)
     1
                        (Age_Adult)
                                                                  (Class_1st)
     2
                        (Class_2nd)
                                                                  (Age_Adult)
     3
                        (Age_Adult)
                                                                  (Class_2nd)
     4
                        (Class_3rd)
                                                                (Gender_Male)
     . .
                                                    (Class_Crew, Survived_No)
          (Gender_Male, Age_Adult)
     101
     102
                       (Class_Crew)
                                       (Survived_No, Gender_Male, Age_Adult)
                                        (Class Crew, Gender Male, Age Adult)
     103
                      (Survived No)
     104
                      (Gender Male)
                                        (Class_Crew, Survived_No, Age_Adult)
                                      (Class_Crew, Survived_No, Gender_Male)
     105
                        (Age_Adult)
                               consequent support
          antecedent support
                                                     support
                                                               confidence
                                                                                lift
     0
                     0.147660
                                          0.950477
                                                    0.144934
                                                                 0.981538
                                                                            1.032680
     1
                                                    0.144934
                                                                            1.032680
                     0.950477
                                          0.147660
                                                                 0.152486
     2
                     0.129487
                                          0.950477
                                                    0.118582
                                                                 0.915789
                                                                            0.963505
     3
                     0.950477
                                          0.129487
                                                    0.118582
                                                                 0.124761
                                                                            0.963505
     4
                     0.320763
                                          0.786461
                                                    0.231713
                                                                 0.722380
                                                                            0.918520
     . .
     101
                     0.757383
                                          0.305770
                                                    0.304407
                                                                 0.401920
                                                                            1.314450
     102
                     0.402090
                                          0.603816
                                                    0.304407
                                                                 0.757062
                                                                            1.253795
     103
                     0.676965
                                          0.391640
                                                    0.304407
                                                                 0.449664
                                                                           1.148157
     104
                     0.786461
                                          0.305770
                                                    0.304407
                                                                 0.387060
                                                                            1.265851
     105
                     0.950477
                                          0.304407
                                                    0.304407
                                                                 0.320268
                                                                           1.052103
          representativity
                             leverage
                                      conviction
                                                    zhangs_metric
                                                                     jaccard
                                          2.682493
     0
                        1.0
                             0.004587
                                                          0.037128
                                                                    0.152050
     1
                             0.004587
                                                                    0.152050
                        1.0
                                          1.005694
                                                          0.639010
     2
                        1.0 -0.004492
                                          0.588085
                                                        -0.041697
                                                                    0.123346
     3
                        1.0 -0.004492
                                                         -0.433377
                                          0.994601
                                                                    0.123346
     4
                        1.0 -0.020555
                                          0.769177
                                                         -0.115514 0.264660
     101
                        1.0 0.072822
                                          1.160764
                                                          0.986022 0.401198
     102
                        1.0 0.061619
                                          1.630802
                                                          0.338549 0.433938
     103
                        1.0
                             0.039280
                                                                    0.398335
                                          1.105434
                                                          0.399458
     104
                        1.0
                             0.063931
                                          1.132622
                                                          0.983509
                                                                    0.386390
     105
                        1.0 0.015075
                                          1.023334
                                                          1.000000 0.320268
          certainty kulczynski
     0
           0.627212
                        0.567012
     1
           0.005661
                        0.567012
```

```
2
     -0.700435
                   0.520275
3
     -0.005429
                   0.520275
4
     -0.300090
                   0.508503
. .
101
      0.138498
                   0.698731
102
      0.386805
                   0.630600
103
                   0.613463
      0.095378
104
      0.117093
                   0.691301
105
      0.022802
                   0.660134
```

[106 rows x 14 columns]

```
[]: rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1) rules
```

/usr/local/lib/python3.11/dist-packages/ipykernel/ipkernel.py:283:
DeprecationWarning: `should_run_async` will not call `transform_cell`
automatically in the future. Please pass the result to `transformed_cell`
argument and any exception that happen during thetransform in
`preprocessing_exc_tuple` in IPython 7.17 and above.
and should run async(code)

```
[]:
                      antecedents
                                                                consequents \
     0
                       (Class_1st)
                                                                (Age_Adult)
                                                                (Class 1st)
     1
                       (Age Adult)
     2
                       (Class 3rd)
                                                              (Survived No)
     3
                     (Survived No)
                                                                (Class 3rd)
     4
                      (Class_Crew)
                                                              (Gender_Male)
     . .
         (Gender_Male, Age_Adult)
                                                  (Class_Crew, Survived_No)
     69
     70
                     (Class_Crew)
                                     (Survived_No, Gender_Male, Age_Adult)
     71
                     (Survived_No)
                                      (Class_Crew, Gender_Male, Age_Adult)
                                      (Class_Crew, Survived_No, Age_Adult)
     72
                     (Gender_Male)
     73
                       (Age_Adult)
                                    (Class_Crew, Survived_No, Gender_Male)
         antecedent support
                              consequent support
                                                   support
                                                             confidence
                                                                              lift \
     0
                   0.147660
                                        0.950477
                                                  0.144934
                                                               0.981538 1.032680
     1
                   0.950477
                                        0.147660
                                                  0.144934
                                                               0.152486 1.032680
     2
                   0.320763
                                        0.676965
                                                  0.239891
                                                               0.747875 1.104747
     3
                                                  0.239891
                   0.676965
                                        0.320763
                                                               0.354362
                                                                         1.104747
     4
                   0.402090
                                        0.786461
                                                  0.391640
                                                               0.974011
                                                                         1.238474
     69
                   0.757383
                                        0.305770 0.304407
                                                               0.401920 1.314450
     70
                   0.402090
                                        0.603816
                                                  0.304407
                                                               0.757062 1.253795
     71
                   0.676965
                                        0.391640
                                                  0.304407
                                                               0.449664 1.148157
     72
                   0.786461
                                        0.305770
                                                  0.304407
                                                               0.387060 1.265851
     73
                   0.950477
                                        0.304407
                                                  0.304407
                                                               0.320268 1.052103
```

```
representativity leverage conviction
                                                 zhangs_metric
                                                                  jaccard \
     0
                      1.0 0.004587
                                       2.682493
                                                      0.037128 0.152050
     1
                      1.0 0.004587
                                       1.005694
                                                      0.639010
                                                                0.152050
     2
                      1.0 0.022745
                                       1.281251
                                                      0.139592 0.316547
     3
                      1.0 0.022745
                                       1.052040
                                                      0.293515 0.316547
     4
                      1.0 0.075412
                                                      0.322047 0.491448
                                       8.216621
                      1.0 0.072822
                                                      0.986022 0.401198
     69
                                       1.160764
     70
                      1.0 0.061619
                                       1.630802
                                                      0.338549 0.433938
     71
                      1.0 0.039280
                                                      0.399458 0.398335
                                       1.105434
     72
                      1.0 0.063931
                                       1.132622
                                                      0.983509 0.386390
     73
                      1.0 0.015075
                                       1.023334
                                                       1.000000 0.320268
         certainty kulczynski
                      0.567012
     0
          0.627212
     1
                      0.567012
          0.005661
     2
          0.219513
                      0.551119
     3
          0.049466
                      0.551119
     4
          0.878295
                      0.735995
     . .
     69
          0.138498
                      0.698731
     70
          0.386805
                      0.630600
     71
          0.095378
                      0.613463
     72
          0.117093
                      0.691301
     73
          0.022802
                      0.660134
     [74 rows x 14 columns]
[]: rules = association_rules(frequent_itemsets, metric="confidence", ___
      →min_threshold=0.7)
     rules
    /usr/local/lib/python3.11/dist-packages/ipykernel/ipkernel.py:283:
    DeprecationWarning: `should_run_async` will not call `transform_cell`
    automatically in the future. Please pass the result to `transformed_cell`
    argument and any exception that happen during thetransform in
    `preprocessing_exc_tuple` in IPython 7.17 and above.
      and should_run_async(code)
[]:
                                    antecedents \
     0
                                    (Class 1st)
     1
                                    (Class_2nd)
     2
                                    (Class_3rd)
     3
                                    (Class_3rd)
     4
                                    (Class_3rd)
     5
                                    (Class_Crew)
```

```
6
                                (Class_Crew)
7
                                (Class_Crew)
8
                             (Gender_Female)
9
                             (Gender_Female)
10
                               (Gender_Male)
                                 (Age_Adult)
11
12
                               (Survived_No)
13
                               (Gender_Male)
                               (Survived No)
14
15
                              (Survived_Yes)
                   (Class_3rd, Gender_Male)
16
17
                     (Class_3rd, Age_Adult)
18
                   (Class_3rd, Survived_No)
19
                   (Class_3rd, Gender_Male)
20
                   (Class_3rd, Survived_No)
21
                     (Class_3rd, Age_Adult)
22
                  (Class_Crew, Gender_Male)
23
                    (Class_Crew, Age_Adult)
                                (Class_Crew)
24
                  (Class_Crew, Survived_No)
25
26
                  (Class_Crew, Gender_Male)
27
                                (Class_Crew)
28
                  (Class_Crew, Survived_No)
29
                    (Class_Crew, Age_Adult)
30
                                (Class_Crew)
31
                 (Gender_Female, Age_Adult)
              (Gender_Female, Survived_Yes)
32
33
                 (Survived_No, Gender_Male)
34
                   (Survived_No, Age_Adult)
35
                   (Gender_Male, Age_Adult)
36
                               (Survived_No)
37
                               (Gender_Male)
38
                (Gender_Male, Survived_Yes)
39
     (Class_3rd, Survived_No, Gender_Male)
40
       (Class_3rd, Survived_No, Age_Adult)
41
       (Class_3rd, Gender_Male, Age_Adult)
42
                   (Class_3rd, Survived_No)
43
                   (Class_3rd, Gender_Male)
    (Class Crew, Survived No, Gender Male)
44
45
      (Class_Crew, Survived_No, Age_Adult)
      (Class Crew, Gender Male, Age Adult)
46
47
                  (Class_Crew, Survived_No)
48
                  (Class_Crew, Gender_Male)
49
                    (Class_Crew, Age_Adult)
50
                                (Class_Crew)
```

consequents antecedent support

0	(Age_Adult)	0.147660
	5 –	
1	(Age_Adult)	0.129487
2	(Gender_Male)	0.320763
3	(Age_Adult)	0.320763
4	(Survived_No)	0.320763
5	(Gender_Male)	0.402090
6	(Age_Adult)	0.402090
7	(Survived_No)	0.402090
8	(Age_Adult)	0.213539
9	(Survived_Yes)	0.213539
10	(Age_Adult)	0.786461
	_	
11	(Gender_Male)	0.950477
12	(Gender_Male)	0.676965
13	(Survived_No)	0.786461
14	(Age_Adult)	0.676965
15	(Age_Adult)	0.323035
16	(Age_Adult)	0.231713
17	(Gender_Male)	0.284871
18	(Gender_Male)	0.239891
19	(Survived_No)	0.231713
20	(Age_Adult)	0.239891
	3 –	
21	(Survived_No)	0.284871
22	(Age_Adult)	0.391640
23	(Gender_Male)	0.402090
24	(Gender_Male, Age_Adult)	0.402090
25	(Gender_Male)	0.305770
26	(Survived_No)	0.391640
27	(Survived_No, Gender_Male)	0.402090
28	(Age_Adult)	0.305770
29	(Survived_No)	0.402090
30	(Survived_No, Age_Adult)	0.402090
31	(Survived_Yes)	0.193094
32		0.156293
	(Age_Adult)	
33	(Age_Adult)	0.619718
34	(Gender_Male)	0.653339
35	(Survived_No)	0.757383
36	(Gender_Male, Age_Adult)	0.676965
37	(Survived_No, Age_Adult)	0.786461
38	(Age_Adult)	0.166742
39	(Age_Adult)	0.191731
40	(Gender_Male)	0.216265
41	(Survived_No)	0.209905
42	(Gender_Male, Age_Adult)	0.239891
43	(Survived_No, Age_Adult)	0.231713
	_	
44	(Age_Adult)	0.304407
45	(Gender_Male)	0.305770
46	(Survived_No)	0.391640

```
(Gender_Male, Age_Adult)
                                                        0.305770
48
                  (Survived_No, Age_Adult)
                                                        0.391640
49
                (Survived_No, Gender_Male)
                                                        0.402090
    (Survived_No, Gender_Male, Age_Adult)
50
                                                        0.402090
    consequent support
                          support
                                    confidence
                                                           representativity \
                                                     lift
0
              0.950477
                         0.144934
                                      0.981538
                                                1.032680
                                                                         1.0
1
              0.950477
                         0.118582
                                      0.915789
                                                0.963505
                                                                         1.0
2
                         0.231713
                                      0.722380
                                                0.918520
                                                                         1.0
              0.786461
3
              0.950477
                         0.284871
                                      0.888102
                                                0.934375
                                                                         1.0
4
              0.676965
                         0.239891
                                      0.747875
                                                 1.104747
                                                                         1.0
5
              0.786461
                         0.391640
                                      0.974011
                                                 1.238474
                                                                         1.0
6
              0.950477
                         0.402090
                                      1.000000
                                                1.052103
                                                                         1.0
7
              0.676965
                         0.305770
                                      0.760452
                                                 1.123325
                                                                         1.0
8
              0.950477
                         0.193094
                                      0.904255
                                                0.951370
                                                                         1.0
9
              0.323035
                         0.156293
                                      0.731915
                                                 2.265745
                                                                         1.0
10
                         0.757383
                                      0.963027
                                                                         1.0
              0.950477
                                                 1.013204
11
              0.786461
                         0.757383
                                      0.796845
                                                 1.013204
                                                                         1.0
12
              0.786461
                         0.619718
                                      0.915436
                                                 1.163995
                                                                         1.0
13
                                      0.787984
              0.676965
                         0.619718
                                                1.163995
                                                                         1.0
14
              0.950477
                         0.653339
                                      0.965101
                                                 1.015386
                                                                         1.0
15
                                      0.919831
              0.950477
                         0.297138
                                                0.967757
                                                                         1.0
16
                         0.209905
                                      0.905882
                                                                         1.0
              0.950477
                                                0.953082
17
              0.786461
                         0.209905
                                      0.736842 0.936909
                                                                         1.0
18
                                      0.799242
                                                                         1.0
              0.786461
                         0.191731
                                                 1.016252
19
              0.676965
                         0.191731
                                      0.827451
                                                1.222295
                                                                         1.0
                                      0.901515
20
              0.950477
                         0.216265
                                                0.948487
                                                                         1.0
21
              0.676965
                         0.216265
                                      0.759171
                                                 1.121433
                                                                         1.0
22
              0.950477
                         0.391640
                                      1.000000
                                                 1.052103
                                                                         1.0
23
              0.786461
                         0.391640
                                      0.974011
                                                 1.238474
                                                                         1.0
24
              0.757383
                         0.391640
                                      0.974011
                                                 1.286022
                                                                         1.0
25
                         0.304407
                                      0.995542
                                                 1.265851
                                                                         1.0
              0.786461
26
              0.676965
                         0.304407
                                      0.777262
                                                 1.148157
                                                                         1.0
27
              0.619718
                         0.304407
                                      0.757062
                                                 1.221623
                                                                         1.0
                                      1.000000
28
                                                1.052103
                                                                         1.0
              0.950477
                         0.305770
29
              0.676965
                         0.305770
                                      0.760452
                                                 1.123325
                                                                         1.0
30
                                                                         1.0
              0.653339
                         0.305770
                                      0.760452
                                                1.163946
                         0.143571
31
                                      0.743529
                                                 2.301699
                                                                         1.0
              0.323035
32
              0.950477
                         0.143571
                                      0.918605 0.966467
                                                                         1.0
33
                                      0.974340
              0.950477
                         0.603816
                                                 1.025106
                                                                         1.0
34
              0.786461
                         0.603816
                                      0.924200
                                                 1.175139
                                                                         1.0
35
              0.676965
                         0.603816
                                      0.797241
                                                1.177669
                                                                         1.0
36
                         0.603816
                                      0.891946
              0.757383
                                                 1.177669
                                                                         1.0
37
              0.653339
                         0.603816
                                      0.767764
                                                1.175139
                                                                         1.0
38
              0.950477
                         0.153567
                                      0.920981
                                                0.968967
                                                                         1.0
39
                                                                         1.0
              0.950477
                         0.175829
                                      0.917062
                                                 0.964844
40
              0.786461
                         0.175829
                                      0.813025
                                                 1.033777
                                                                         1.0
```

47

41		0.676965	0.175829	0.83	37662	1.2373	79	1.0
42		0.757383	0.175829	0.73	32955 (0.9677	46	1.0
43		0.653339	0.175829	0.75	8824 1	1.1614	54	1.0
44		0.950477	0.304407	1.00	00000	1.0521	03	1.0
45		0.786461	0.304407	0.99	5542 1	1.2658	51	1.0
46		0.676965	0.304407	0.77	7262	1.1481	57	1.0
47		0.757383	0.304407	0.99	5542	1.3144	50	1.0
48		0.653339	0.304407	0.77	7262	1.1896	76	1.0
49		0.619718	0.304407	0.75	7062	1.2216	23	1.0
50		0.603816	0.304407	0.75	7062 1	1.2537	95	1.0
	leverage	conviction	n zhangs	_metric	jacca	ard c	ertainty	kulczynski
0	0.004587	2.682493	•	.037128	0.1520		0.627212	0.567012
1	-0.004492	0.58808		.041697	0.1233		0.700435	0.520275
2	-0.020555	0.76917		.115514	0.2646		0.300090	0.508503
3	-0.020008	0.442572		.093712	0.2888		1.259519	0.593908
4	0.022745	1.28125		. 139592	0.3165		0.219513	0.551119
5	0.075412	8.21662		.322047	0.4914		0.878295	0.735995
6	0.019913	in		.082827	0.4230	040	1.000000	0.711520
7	0.033569	1.348519	9 0	. 183616	0.3954	417	0.258446	0.606065
8	-0.009870	0.517240	0 -0	.061028	0.1988	377 -	0.933340	0.553705
9	0.087312	2.52518	7 0	.710327	0.4109	992 (0.603990	0.607870
10	0.009870	1.33944	0	.061028	0.7731	191 (0.253420	0.879936
11	0.009870	1.051116	3 0	.263149	0.7731	191 (0.048630	0.879936
12	0.087312	2.52518	7 0	.436144	0.7345	518 (0.603990	0.851710
13	0.087312	1.523634	1 0	.659783	0.7345	518 (0.343674	0.851710
14	0.009900	1.41902	3 0	.046906	0.6707	709 (0.295290	0.826241
15	-0.009900	0.61773	1 -0	.046906	0.3043	328 -	0.618821	0.616225
16	-0.010333	0.52618	L -0	.060217	0.2158	388 -	0.900486	0.563362
17	-0.014135	0.811449	-0	.086060	0.2436	371 - 0	0.232363	0.501870
18	0.003066	1.06366	7 0	.021039	0.2297	722	0.059857	0.521516
19	0.034870	1.87213	5 0	.236717	0.2674	127	0.465850	0.555336
20	-0.011746	0.502848	3 -0	.066686	0.2220	015 -	0.988671	0.564524
21	0.023418	1.34134	1 0	. 151418	0.2900	067 (0.254479	0.539317
22	0.019395	in		.081404	0.4120	046	1.000000	0.706023
23	0.075412	8.21662		.322047	0.4914	148 (0.878295	0.735995
24	0.087104	9.335480	0	.371976	0.5100	059 (0.892882	0.745554
25	0.063931	47.903983	3 0	.302519	0.3863		0.979125	0.691301
26	0.039280	1.45029	2 0	.212110	0.3983		0.310484	0.613463
27	0.055225	1.56534		.303418	0.4243		0.361163	0.624132
28	0.015143	in		.071335	0.3217		1.000000	0.660851
29	0.033569	1.348519		. 183616	0.3954		0.258446	0.606065
30	0.043069	1.44714		. 235577	0.4078		0.308984	0.614232
31	0.081195	2.639542		.700873	0.3853		0.621146	0.593987
	-0.004981	0.60842		.039500	0.1490		0.643589	0.534828
33	0.014788	1.929980		.064404	0.6248		0.481860	0.804809
34	0.089991	2.81715	2 0	.429921	0.7222	283 (0.645032	0.845982

```
35
   0.091095
                1.593193
                                0.621823
                                          0.727024
                                                     0.372330
                                                                  0.844593
36
   0.091095
                2.245337
                                0.467023
                                          0.727024
                                                     0.554633
                                                                  0.844593
37
   0.089991
                1.492710
                                0.697935
                                          0.722283
                                                     0.330078
                                                                  0.845982
38 -0.004918
                0.626721
                               -0.037013
                                          0.159359
                                                    -0.595605
                                                                  0.541274
39 -0.006407
                0.597105
                                          0.181946
                                                    -0.674747
                               -0.043136
                                                                  0.551026
40 0.005745
                1.142075
                               0.041690
                                          0.212637
                                                     0.124401
                                                                  0.518298
41
   0.033731
                                          0.247284
                                                     0.497461
                1.989896
                               0.242806
                                                                  0.548697
42 -0.005860
                0.908523
                               -0.042006
                                          0.214049
                                                    -0.100687
                                                                  0.482554
43
   0.024442
                1.437373
                               0.180935
                                          0.247918
                                                     0.304286
                                                                  0.513974
   0.015075
                                0.071195
                                          0.320268
                                                                  0.660134
44
                     inf
                                                     1.000000
45
   0.063931
               47.903983
                               0.302519
                                          0.386390
                                                     0.979125
                                                                  0.691301
46
   0.039280
                1.450292
                               0.212110
                                          0.398335
                                                     0.310484
                                                                  0.613463
47
   0.072822
               54.427079
                               0.344592
                                          0.401198
                                                     0.981627
                                                                  0.698731
48
   0.048533
                1.556362
                               0.262074
                                          0.411043
                                                     0.357476
                                                                  0.621594
49
   0.055225
                1.565346
                               0.303418
                                          0.424319
                                                     0.361163
                                                                  0.624132
50
   0.061619
                1.630802
                               0.338549
                                          0.433938
                                                     0.386805
                                                                  0.630600
```

/usr/local/lib/python3.11/dist-packages/ipykernel/ipkernel.py:283:
DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above.

and should_run_async(code)

```
[]:
                                    antecedents consequents
                                                               antecedent support
     0
                                   (Class_Crew)
                                                 (Age_Adult)
                                                                         0.402090
     1
                     (Class Crew, Gender Male)
                                                 (Age_Adult)
                                                                         0.391640
     2
                     (Class_Crew, Survived_No)
                                                 (Age_Adult)
                                                                         0.305770
        (Class_Crew, Survived_No, Gender_Male)
                                                 (Age_Adult)
                                                                         0.304407
        consequent support
                             support
                                       confidence
                                                       lift
                                                              representativity
                                                  1.052103
     0
                                                                           1.0
                  0.950477
                            0.402090
                                              1.0
     1
                                              1.0
                                                   1.052103
                                                                           1.0
                  0.950477
                            0.391640
     2
                  0.950477
                            0.305770
                                              1.0
                                                   1.052103
                                                                           1.0
     3
                  0.950477
                            0.304407
                                              1.0
                                                   1.052103
                                                                           1.0
        leverage
                  conviction
                                               jaccard
                                                        certainty
                                                                   kulczynski
                              zhangs_metric
     0 0.019913
                         inf
                                              0.423040
                                                               1.0
                                                                      0.711520
                                    0.082827
     1 0.019395
                         inf
                                    0.081404
                                              0.412046
                                                               1.0
                                                                      0.706023
     2 0.015143
                                    0.071335
                                                               1.0
                                                                      0.660851
                         inf
                                              0.321702
     3 0.015075
                         inf
                                    0.071195 0.320268
                                                               1.0
                                                                      0.660134
```

/usr/local/lib/python3.11/dist-packages/ipykernel/ipkernel.py:283:
DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above.

and should_run_async(code)

```
[]:
                                    antecedents
     31
                    (Gender_Female, Age_Adult)
     9
                                (Gender_Female)
     47
                     (Class_Crew, Survived_No)
     24
                                   (Class_Crew)
                     (Class_Crew, Survived_No)
     25
         (Class_Crew, Survived_No, Age_Adult)
     45
     50
                                   (Class Crew)
     5
                                   (Class_Crew)
     23
                       (Class_Crew, Age_Adult)
          (Class_3rd, Gender_Male, Age_Adult)
     41
     19
                      (Class_3rd, Gender_Male)
     49
                       (Class_Crew, Age_Adult)
     27
                                   (Class_Crew)
     48
                     (Class_Crew, Gender_Male)
     36
                                  (Survived_No)
                      (Gender_Male, Age_Adult)
     35
     34
                      (Survived_No, Age_Adult)
     37
                                  (Gender_Male)
     13
                                  (Gender_Male)
     12
                                  (Survived_No)
                                     consequents
                                                   antecedent support
     31
                                  (Survived Yes)
                                                             0.193094
     9
                                  (Survived_Yes)
                                                             0.213539
                       (Gender Male, Age Adult)
     47
                                                             0.305770
     24
                       (Gender_Male, Age_Adult)
                                                              0.402090
     25
                                   (Gender_Male)
                                                             0.305770
     45
                                   (Gender_Male)
                                                              0.305770
     50
         (Survived_No, Gender_Male, Age_Adult)
                                                              0.402090
     5
                                   (Gender_Male)
                                                              0.402090
     23
                                   (Gender_Male)
                                                             0.402090
     41
                                   (Survived_No)
                                                             0.209905
     19
                                   (Survived No)
                                                              0.231713
     49
                     (Survived_No, Gender_Male)
                                                             0.402090
                     (Survived No, Gender Male)
     27
                                                              0.402090
     48
                       (Survived_No, Age_Adult)
                                                              0.391640
     36
                       (Gender_Male, Age_Adult)
                                                             0.676965
                                                             0.757383
                                   (Survived_No)
     35
     34
                                   (Gender_Male)
                                                              0.653339
```

```
37
                  (Survived_No, Age_Adult)
                                                        0.786461
                              (Survived_No)
                                                        0.786461
13
12
                              (Gender_Male)
                                                        0.676965
                          support
                                    confidence
                                                           representativity
    consequent support
                                                     lift
31
              0.323035
                         0.143571
                                      0.743529 2.301699
                                                                         1.0
9
                                                 2.265745
                                                                         1.0
              0.323035
                         0.156293
                                      0.731915
47
              0.757383
                         0.304407
                                      0.995542
                                                 1.314450
                                                                         1.0
24
              0.757383
                         0.391640
                                      0.974011
                                                 1.286022
                                                                         1.0
25
                                      0.995542
                                                 1.265851
              0.786461
                         0.304407
                                                                         1.0
45
              0.786461
                         0.304407
                                      0.995542
                                                 1.265851
                                                                         1.0
50
              0.603816
                         0.304407
                                      0.757062 1.253795
                                                                         1.0
5
              0.786461
                         0.391640
                                      0.974011
                                                1.238474
                                                                         1.0
                                                 1.238474
23
              0.786461
                         0.391640
                                      0.974011
                                                                         1.0
41
              0.676965
                         0.175829
                                      0.837662
                                                 1.237379
                                                                         1.0
19
              0.676965
                         0.191731
                                      0.827451
                                                 1.222295
                                                                         1.0
49
              0.619718
                         0.304407
                                      0.757062
                                                1.221623
                                                                         1.0
27
                                      0.757062
                                                 1.221623
                                                                         1.0
              0.619718
                         0.304407
48
              0.653339
                         0.304407
                                      0.777262
                                                1.189676
                                                                         1.0
36
              0.757383
                         0.603816
                                      0.891946
                                                1.177669
                                                                         1.0
35
              0.676965
                         0.603816
                                      0.797241
                                                 1.177669
                                                                         1.0
34
                         0.603816
                                      0.924200
                                                                         1.0
              0.786461
                                                 1.175139
37
              0.653339
                         0.603816
                                      0.767764
                                                 1.175139
                                                                         1.0
13
              0.676965
                         0.619718
                                      0.787984
                                                 1.163995
                                                                         1.0
12
              0.786461
                         0.619718
                                      0.915436
                                                 1.163995
                                                                         1.0
                                            jaccard
              conviction
                                                      certainty kulczynski
    leverage
                           zhangs_metric
31
    0.081195
                 2.639542
                                           0.385366
                                                       0.621146
                                                                    0.593987
                                 0.700873
9
    0.087312
                 2.525187
                                 0.710327
                                           0.410992
                                                       0.603990
                                                                    0.607870
47
    0.072822
               54.427079
                                 0.344592
                                           0.401198
                                                       0.981627
                                                                    0.698731
24
    0.087104
                                           0.510059
                9.335480
                                 0.371976
                                                       0.892882
                                                                    0.745554
25
    0.063931
                47.903983
                                 0.302519
                                           0.386390
                                                       0.979125
                                                                    0.691301
    0.063931
                47.903983
                                           0.386390
                                                                    0.691301
45
                                 0.302519
                                                       0.979125
50
    0.061619
                 1.630802
                                 0.338549
                                           0.433938
                                                       0.386805
                                                                    0.630600
5
    0.075412
                 8.216621
                                 0.322047
                                           0.491448
                                                       0.878295
                                                                    0.735995
23
    0.075412
                 8.216621
                                 0.322047
                                           0.491448
                                                       0.878295
                                                                    0.735995
41
    0.033731
                 1.989896
                                 0.242806
                                           0.247284
                                                       0.497461
                                                                    0.548697
19
    0.034870
                 1.872135
                                 0.236717
                                           0.267427
                                                       0.465850
                                                                    0.555336
    0.055225
49
                 1.565346
                                 0.303418
                                           0.424319
                                                       0.361163
                                                                    0.624132
27
    0.055225
                 1.565346
                                 0.303418
                                           0.424319
                                                                    0.624132
                                                       0.361163
    0.048533
                 1.556362
                                           0.411043
                                                                    0.621594
48
                                 0.262074
                                                       0.357476
36
    0.091095
                 2.245337
                                 0.467023
                                           0.727024
                                                       0.554633
                                                                    0.844593
    0.091095
                 1.593193
                                 0.621823
                                           0.727024
                                                       0.372330
                                                                    0.844593
35
34
    0.089991
                 2.817152
                                 0.429921
                                           0.722283
                                                       0.645032
                                                                    0.845982
    0.089991
                                           0.722283
37
                 1.492710
                                 0.697935
                                                       0.330078
                                                                    0.845982
    0.087312
                 1.523634
                                 0.659783
                                           0.734518
                                                       0.343674
                                                                    0.851710
13
    0.087312
12
                 2.525187
                                 0.436144
                                           0.734518
                                                       0.603990
                                                                    0.851710
```

[]:	
[]:	
,	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	