Transmon Qulat 21324 OltM (2022, Field. Otskit Hackathan Korea Metal Challenge 2127432)

Gyeonghun Kun

aiskit Advocate

Seal National Univ.





| 2 LC & Bell Josephson                                            | Junction                      | -                                                          | ~                        |                                         |
|------------------------------------------------------------------|-------------------------------|------------------------------------------------------------|--------------------------|-----------------------------------------|
| 1) LC &B                                                         | • 기3台注 出                      | 刘广对帝里色                                                     | ^                        |                                         |
|                                                                  |                               | L INUZOIM                                                  | Riot → Vc                | )+(V)=0                                 |
|                                                                  | • <del>`\</del> 77710141      | Q = CW = C                                                 | - (d <u>F</u> )          | → <u>•</u> + <u>•</u> = 0               |
|                                                                  | . શુભકનામ                     | PL = L.T                                                   |                          |                                         |
| <u>_</u>                                                         | · (1)= dQ ⇒ 1                 | $\Phi_{L} = C \cdot \frac{d^2 \Phi_{c}}{dt^2} \Rightarrow$ | d = -                    | $\frac{1}{1}$ $\Phi_c$ $\Phi = \Phi$    |
|                                                                  | ~~~ <u>~</u>                  |                                                            | 452                      | = -                                     |
|                                                                  | Λ <sup>2</sup> τ <sup>2</sup> | ⇒                                                          | $\frac{1}{dt^2} = -1$    | L E                                     |
| সক্ষেপ্ত গাদ্য                                                   | == 22 + 31                    | <u> </u>                                                   | ÷ ω. = 7                 | 上 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |
|                                                                  |                               |                                                            | str(wt) =>               | w cos(ut)                               |
| 2) \$1914 山正。                                                    | $F_1 = -kx = w$               | d <sup>2</sup> x                                           | <b>= +</b>               | - CO-SERVED                             |
| - X                                                              |                               |                                                            | V                        |                                         |
| -w-m                                                             | $\Rightarrow \frac{da}{dt}$   | $=$ $-\frac{k}{m}x$                                        | $\frac{d^2\Phi}{dt} = -$ | ( ( ) <del>E</del>                      |
|                                                                  | OH-                           | AT                                                         |                          | A E                                     |
|                                                                  |                               | max ==                                                     | ? Q = CV                 | = C. (At)                               |
| - d-2 U.5                                                        | r Q . 专 子 .                   | 00 52 6                                                    | 姓.                       | (x => 1                                 |
| 7 22 0                                                           |                               |                                                            | CE.                      | PERO                                    |
| $E = \left(\frac{p^2}{2m}\right) + \left(\frac{1}{2}kx^2\right)$ |                               | $E = \left(\frac{Q^2}{2C}\right) +$                        | -( <u>\$</u> 2           | meac                                    |
| E - 2m                                                           |                               | 20                                                         | 21                       | /Ker-1                                  |
|                                                                  | 00                            |                                                            | <del>१</del> त्र्याप्रथ  |                                         |
|                                                                  | <del>ुँड</del> ुग ५१२।        |                                                            |                          |                                         |
|                                                                  |                               |                                                            |                          |                                         |
|                                                                  |                               |                                                            |                          |                                         |
|                                                                  |                               |                                                            |                          |                                         |
|                                                                  |                               |                                                            |                          |                                         |



3) J.J. 71 玉缸 刨3.

$$\Rightarrow \frac{d^2 \underline{p}}{dt^2} = -\frac{\underline{I}_c}{C} \operatorname{STN} \left( 2\pi \frac{\underline{p}}{\phi_c} \right) = -\frac{\phi_c}{2\pi \underline{I}_3 \cdot C} \operatorname{STN} \left( 2\pi \frac{\underline{p}}{\phi_o} \right)$$

$$E = \frac{Q^2}{2C} - E_J \cos\left(2\pi \frac{E}{A}\right)$$

## 4) Quantum Harmoric Oscillator

\* अधिया प्राप्त प्राप्त प्राप्त प्राप्त अभिकार की विश्वेष या अभिकार की विश्वेष या

रे अप्रेगम रूपन पार्टा अरेग निय!

$$-\frac{K^2}{2m}\frac{d^2t}{dx^2} + V(x) t = E^2 + (421811 + 384)$$



→ 【(超四张器的张 フトントラン、 しくかるろ

7£2 थरपा<u>०३</u> जाकाभार 好好到次的

\* WAL PENDING ASSETT OHIZY, Jan Cube Insole भीवा उन्हार

ピーチャの









In transmon gubit,  $\omega_{01} = \omega_{0}^{2}$ ,  $\omega_{12} = \omega_{0} + \omega_{0}^{2}$   $\omega_{12} = \omega_{0} + \omega_{0}^{2}$ 

 $W_1 = W_0 \simeq \sqrt{8EGEJ}$ ,  $\alpha \simeq -EG$   $\frac{\alpha_{rel} = \frac{\alpha}{W_0} \sim \sqrt{E}}{m_{parton}}$ 

⇒ ETTERS quart freq, conhormating on  $\frac{1}{2}$ ?

Ec=  $\frac{e^2}{2C}$ 

국 Capacitance 를 내귀는 것이 가상 효다지

Phase  $\phi$ [Ref: Distit textbook, "Introduction to Travenous play"

4. Resonator

QISEN Metal OWN 7/23 7/25/23 NSTE responden transmission true co-planar waveguide (CPW) OICT.

## V 7501 7978 → 3987/354 7978



न्युप्त प्र भागा Matt म जार.



or restrict,  $\omega = 2\pi t$  orm, क्षेत्र एम श्रीप. श्रीकर 7303 Up = निर्दे ह 715年3 子文中 四沿 हिंदीना व्याप परमार्थ

ONIA CPWS resownt Arguency ? FISHE US of & SIZEII, Upor NEAR SHOT, Walle of Son CAME TOSS A WE TRXX 中 96元 吃午 961.





$$\mathcal{H} = \underbrace{\frac{Q_r^2}{2C_{res}} + \frac{\Phi_r^2}{2L_r}}_{\text{Resonator}} + \underbrace{\frac{Q_J^2}{2C_{\Sigma}} - E_J \cos\left(2\pi\frac{\phi_J}{\Phi_0}\right)}_{\text{Transmon}} + \underbrace{\beta_{rJ}Q_rQ_J}_{\text{coupling}} + \underbrace{\beta_{r}VQ_r + \beta_JVQ_J}_{\text{drive terms}}$$
(2.125)

where

$$C_{res} = C_r + C_s + \frac{C_J C_g}{C_J + C_g}$$
 (2.126)

$$C_{\Sigma} = C_J + \frac{C_g(C_s + C_r)}{C_g + C_s + C_r}$$
 (2.127)

$$\beta_r = \frac{C_s(C_b + C_g)}{C_b(C_g + C_r + C_s) + C_g(C_r + C_s)}$$
(2.128)

$$\beta_J = \frac{C_g C_s}{C_b (C_g + C_r + C_s) + C_g (C_r + C_s)}$$
(2.129)

$$\bigvee \beta_{rJ} = \frac{C_g}{C_b(C_g + C_r + C_s) + C_g(C_r + C_s)}.$$

(Ref: Baladitya Suri Ph.D. Thesis)

$$\omega_{r} = \frac{1}{\sqrt{L_{r}C_{res}}}$$

$$E_{c} = \frac{e^{2}}{2C_{\Sigma}}$$

$$\hbar \omega_{J} = \sqrt{8E_{J}E_{c}} - E_{c}$$

$$Q = \frac{(2.133)}{\sqrt{\hbar Z_{r}}}$$

$$\Omega_{J} = \frac{e}{\hbar} \beta_{J}V_{0} \left(\frac{8E_{J}}{E_{c}}\right)^{1/4}$$

