Intermediate Statistics

By Junru Shao <junrushao1994@gmail.com>

https://github.com/junrushao1994/Cheat-Sheets

- Moment generating function: $M_x(t) = \mathbb{E}\left[\exp(tx)\right]$
- σ -sub-Gaussian: $M_{x-\mu} \leq \exp\left(\sigma^2 t^2/2\right)$, 0-mean [a, b] bounded RVs are $\frac{(b-a)}{2}$ -sub-Gaussian
- Jensen's inequality: for g convex, $g(\mathbb{E}[X]) \leq \mathbb{E}[g(X)]$
- Cauchy inequality: $(\mathbb{E}[XY])^2 \leq \mathbb{E}[X^2] \mathbb{E}[Y^2]$
- maximin ≤ minimax
- $\operatorname{Var}(X) = \mathbb{E}[X^2] \mathbb{E}[X]^2$, $\operatorname{Var}(aX) = a^2 \operatorname{Var}(X)$, $\operatorname{Var}(\sum_{i=1}^n \alpha_i X_i) = \sum_{i=1}^n \sum_{j=1}^n \alpha_j \alpha_j \operatorname{Cov}(X_i, X_j)$
- $\operatorname{Var}(XY) = \mathbb{E}[X^2] \mathbb{E}[Y^2] \mathbb{E}[X]^2 \mathbb{E}[Y]^2$ Gamma function $\Gamma(z) = \int_0^\infty x^{z-1} \exp(-x) \ dx$. $\Gamma(n) = (n-1)!$ for $n \in \mathbb{N}$. $\Gamma(x+1) = x\Gamma(x)$
- Law of total expectation: $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X \mid Y]]$, total variance: $\text{Var}(Y) = \mathbb{E}[\text{Var}(Y \mid X)] + \text{Var}[\mathbb{E}(Y \mid X)]$
- Conditional gaussian: $\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$ $(\mu_1 \in \mathbb{R}^q, \mu_2 \in \mathbb{R}^{N-q}), \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$. Then
- $\overline{\mu} = \mu_1 + \Sigma_{12}\Sigma_{22}^{-1} (a \mu_2), \overline{\Sigma} = \Sigma_{11} \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$ Posterior for μ in Gaussian, with known σ , and prior $\mu \sim \mathcal{N}(m, \tau^2)$
- $-\mathbb{E}[\mu | X^n] = \frac{\tau^2}{\tau^2 + \sigma^2/n} \overline{X}_n + \frac{\sigma^2/n}{\tau^2 + \sigma^2/n} m$ $-\operatorname{Var}(\mu \mid X^n) = \tau^2 \cdot \frac{\sigma^2}{n} / \left(\tau^2 + \frac{\sigma^2}{n}\right)$
- Berry-Essen Theorem: let $F_n(x) = P\left(\frac{\sqrt{n}}{\sigma}(\hat{\mu} \mu) \le x\right)$, then $\sup |F_n(x) \Phi(x)| \le \frac{33}{4}\mathbb{E}|X_1 \mu|^3/\sigma^3\sqrt{n}$
- KL divergence: $KL(P||Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$
- Total variance distance: $\delta(P, Q) = \frac{1}{2} \int |P(x) Q(x)| dx$

Inequalities

- Markov: for $X \geq 0$, $P[X \geq t] \leq \mathbb{E}[X]/t$
- Chebyshev: $P[|X \mathbb{E}X| \ge k\sigma] \le 1/k^2$
- Chernoff bound: $P[X \mu \ge u] \le \inf_{0 \le t \le b} \frac{M_{x-\mu}(t)}{\exp(tu)}$, where $M_{x-\mu}$ is finite $\forall |t| \le b$
- (sub-)Gaussian tail bound: $P(|X \mu| \ge k\sigma) \le 2 \exp(-2k^2)$ • Hoeffding bound (bounded RV): $P(|x - \mu| \ge k(b - a)) \le 2 \exp(-2k^2)$
- for n RVs, $P(|x \mu| \ge t) \le 2 \exp\left(-2n^2t^2/\sum_{i=1}^n (b_i a_i)^2\right)$
- Bernstein ([a, b] bounded RV, $\mu = 0$, small σ , i.i.d.)
- $-P(|\mu-\hat{\mu}| \geq t) \leq 2\exp\left(-\frac{nt^2}{2(\sigma^2+(b-a)t)}\right)$ $-\ P\left(|\mu-\hat{\mu}| \leq 4\sigma\sqrt{\frac{\ln(2/\delta)}{n}} + \frac{4(b-a)\ln(2/\delta)}{n}\right) \geq 1 - \delta$
- Azuma's bound (difference bounded: $|f(x_1, ..., x_k, ..., x_n) f(x_1, ..., x'_k, ..., x_n)| \le L_k$) $-P[|f(x_1, ..., f_n) \mu| \ge t] \le 2 \exp(-2t^2/\sum_{k=1}^n L_k^2)$
- U-statistics: $U(x_1, \ldots, x_n) = \frac{1}{(n)} \sum_{j < k} g(x_j, x_k)$ and g is symmetric and $|g| \leq B$
 - Azuma gives: $P[|U(x_1, \ldots, x_n) \mu| \ge t] \le 2 \exp(-nt^2/8B^2)$
- χ^2 tail bound: $Y \sim X_n^2$ where $X_n \sim \mathcal{N}(0, 1)$. $P\left[\left|\frac{1}{n}Y 1\right| \ge t\right] \le 2\exp\left(-nt^2/8\right)$
- Johnson-Lindenstrauss Lemma: for $X^n \in \mathbb{R}^d$, $m \ge 16 \frac{\log(n/\delta)}{\varepsilon^2}$, $Z \in \mathbb{R}^{m \times d}$, $Z_{i,j} \sim \mathcal{N}(0,1)$, $F(X_i) = \frac{Z}{\sqrt{n}}X_i$ $-(1-\varepsilon)\|X_i - X_j\|_2^2 \le \|F(X_i) - F(X_j)\|_2^2 \le (1+\varepsilon)\|X_i - X_j\|_2^2$, holds w.p. $1-\delta$

Convergence: estimator $\hat{\theta}_n$ is consistent iff $\hat{\theta}_n \xrightarrow{p} \theta$

- a.s. $P\left(\lim_{n\to\infty}X_n=X\right)=1$; i.p. $\lim_{n\to\infty}P\left(|X_n-X|\geq\varepsilon\right)=0$; q.m. $\lim_{n\to\infty}\mathbb{E}\left(X_n-X\right)^2=0$; d $\lim_{n\to\infty}F_{X_n}\left(t\right)=F_X\left(t\right)$ - a.s. \Rightarrow p; q.m. \Rightarrow p; q.m. \Leftarrow p if $|X_n|$ bounded; p \Rightarrow d; p \Leftarrow d if X = c; p $\not\Rightarrow \mathbb{E}[X_n] = c$
- Continuous mapping: if $X_n \xrightarrow{p} X$, then for any continuous function f, $f(X_n) \xrightarrow{p} f(X)$; if $X_n \xrightarrow{d} X$, then for any continuous function f, $f(X_n) \xrightarrow{d} f(X)$
- Slutsky's theorem: if $X_n \xrightarrow{p} X$, $Y_n \xrightarrow{p} Y$, then $X_n + Y_n \xrightarrow{p} X + Y$, and $X_n Y_n \xrightarrow{p} XY$; if $X_n \xrightarrow{d} X$, $Y_n \xrightarrow{d} c$, then $X_n + Y_n \xrightarrow{d} X + c$, and $X_n Y_n \xrightarrow{d} cX$
- WLLN: $\frac{1}{n}\sum_{i=1}^{n}X_{i}\xrightarrow{p}\mu$ for i.i.d. X_{i} s with $\mathbb{E}\left(|X|\right)<\infty$ and $\mathrm{Var}\left(X\right)<\infty$
- CLT: X^n independent RVs, mean and variance finite, then $\frac{\sqrt{n}}{r}$ ($\hat{\mu} \mu$) $\xrightarrow{d} \mathcal{N}(0, 1)$, works also with estimated
 - Lyapunov CLT: X^n are independent but not i.i.d. Define $s_n = \frac{1}{n} \sqrt{\sum_{i=1}^n \sigma_n^2}$. If $\lim_{n \to \infty} \frac{1}{s^3} \sum_{i=1}^n \mathbb{E}|X_i X_i|$

- $|\mu_i|^3 < \infty$, we have $\frac{1}{s} \sum_{i=1}^n (X_i \mu_i) \xrightarrow{d} \mathcal{N}(0, 1)$
- multivariate CLT: $\sqrt{n} (\mu \hat{\mu}) \xrightarrow{d} \mathcal{N} (0, \Sigma)$
- Delta method (CLT for function of RV): if √π/2 (μ̂ − μ) → N (0, 1), g continuous differentiable, g' (μ) ≠ 0 $-\frac{\sqrt{n}}{\sigma}\left(g\left(\hat{\mu}\right)-g\left(\mu\right)\right)\to\mathcal{N}\left(0,\left[g'\left(\mu\right)\right]^{2}\right)$
- multivariate delta method: $\sqrt{n} (g(\hat{\mu}) g(\mu)) \to \mathcal{N} (0, \nabla_q^T(\mu) \Sigma \nabla_q(\mu))$

Empirical process

- Vapnik-Chervonenkis Theory
- empirical CDF: $\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(X_i \leq x)$
- * Glivenko-Cantelli Theorem: $\Delta = \sup_{x \in \mathbb{R}} \left| \hat{F}_n(x) F_X(x) \right| \xrightarrow{p} 0$
- empirical probability of set: $P_n\left(A\right) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}\left(X_i \in A\right)$, and $\Delta\left(A\right) = \sup_{A \in \mathcal{A}} |P_n\left(A\right) P\left(A\right)|$ empirical process: $\Delta\left(\mathcal{F}\right) = \sup_{f \in \mathcal{F}} \left|\frac{1}{n} \sum_{i=1}^n f\left(X_i\right) \mathbb{E}\left[f\right]\right|$
- Glivenko-Cantelli class: $\Delta(\mathcal{F}) \xrightarrow{p} 0$ where X^n i.i.d.
- Shattering: n-th shattering coef of A: $s(A, n) = \max_{z^n} N_A(z^n)$, where $N_A = \#\{z^n \cap A\}$ (valid coloring)
- VC dimension: max d that $s(A, d) = 2^d$. There exists $\{z_i\}_{i=1}^d$ each of whose colorings are valid, but for any (d+1) points, there exists an invalid coloring
- you select the best x_1, \ldots, x_n , adversary assigns label y_1, \ldots, y_n
- if $VC_A \ge n$, you can find $f \in A$ that is consistent with the labels
- VC dimension example:
- $\mathcal{A} = \{A_1, \dots, A_N\}, V_{\mathcal{A}} \le \log_2 N$
- intervals [a, b] on the real line: 2
- discs in \mathbb{R}^2 : 3
- closed balls in \mathbb{R}^d : $V_{\mathcal{A}} \leq d+2$
- rectangles in \mathbb{R}^d : 2d
- half-space in \mathbb{R}^d : d+1
- convex polygons in \mathbb{R}^2 : ∞
- convex polygon with d vertices: 2d + 1
- Empirical risk minimization: $\hat{f} = \arg\min_{f \in \mathcal{F}} \hat{R}_n(f)$, optimal $f^* = \arg\min_{f \in \mathcal{F}} R(f)$
- minimize $\Delta(\mathcal{F}) = R(\hat{f}) R(f^*)$, consider minimize $\Delta(\mathcal{A}) = \sup_{A \in \mathcal{A}} |P_n(A) P(A)|$
- if |A| is finite: $P(|P_n(A) P(A)| \ge t) \le 2 \exp(-2nt^2)$, $P(\Delta(A) \ge t) \le 2 |A| \exp(-2nt^2)$
- if |A| is not finite: $P(\Delta(A) \ge t) \le 8s(A, n) \exp(-nt^2/32)$
- Sauer's Lemma: if VC $(A) = d < \infty$, then for n > d, $s(A, n) \le (n+1)^d$
- another form: $S_{\mathcal{F}}(n) \leq \sum_{k=1}^{VC_{\mathcal{F}}} \binom{n}{k}$
- Rademacher complexity: $\mathcal{R}\left(\mathcal{F}\right) = \mathbb{E}_{\epsilon}\mathbb{E}_{X}\left[\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}f\left(X_{i}\right)\right|\right]$
 - $\begin{array}{l} -\Delta\left(\mathcal{F}\right) = \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right) \mathbb{E}\left[f\right] \right| \\ \text{ Rademacher Theorem: } \mathbb{E}\left[\Delta\left(\mathcal{F}\right)\right] \leq 2\mathcal{R}\left(\mathcal{F}\right) \end{array}$

 - finite class bound: if $|\mathcal{F}| = N$, $\forall f_i \in \mathcal{F}$ we have $||f_i||_{\infty} \leq b$, then $\mathcal{R}(\mathcal{F}) \leq 2b\sqrt{\frac{\log(2N)}{n}}$

Sufficiency

- Sufficient statistics: $T(X_1, \ldots, X_n)$ is sufficient for θ if $p(X^n | T = t; \theta)$ does not depend on θ - factorization: $T(X_1, \ldots, X_n)$ is sufficient for θ iff $p(X_1, \ldots, X_n; \theta) = h(X_1, \ldots, X_n) g(T; \theta)$
- Minimal sufficient statistics \Rightarrow for RVs $\{x_n\}$ and $\{y_n\}$, $T(X^n) = T(Y^n) \Leftrightarrow \frac{p(Y^n;\theta)}{p(X^n;\theta)}$ does not depend on θ
- Rao-Blackwell Theorem: $\hat{\theta}$ an estimator, T SS, $\tilde{\theta} = \mathbb{E}\left[\hat{\theta} \mid T\right]$, then $R\left(\tilde{\theta}, \theta\right) \leq R\left(\hat{\theta}, \theta\right)$ under squared loss

Parameter Estimation

- Method of moments (MOM): solve for θ such that $\mathbb{E}\left[X^{j}\right] = \frac{1}{n}\sum_{i=1}^{n}X_{i}^{j}$
- MLE: $\hat{\theta}$ maximize $\mathcal{L}(X^n; \theta)$
- equivariance: if we replace θ by $\eta = g(\theta)$, the MLE estimators satisfy $\hat{\eta} = g(\hat{\theta})$ and $\mathcal{L}(\hat{\eta}) = \mathcal{L}(\hat{\theta})$
 - * profile likelihood: if g not invertible, let $\mathcal{L}^*\left(\eta\right) = \sup_{\theta \in g(\theta) = \eta} \mathcal{L}\left(\theta\right)$, then $\hat{\eta} = g(\hat{\theta})$ and $\mathcal{L}^*\left(\eta\right) = \mathcal{L}\left(\hat{\theta}\right)$
- MLE, ERM and KL: $R_n\left(\theta, \hat{\theta}\right) = \frac{1}{n} \sum_{i=1}^n \log \frac{p(X_i; \theta)}{p(X_i; \hat{\theta})} = \text{constant} \text{MLE}$
- * population risk is $R\left(\theta, \hat{\theta}\right) = \mathbb{E}_{X; \theta} \log \frac{p(X; \theta)}{p(X; \hat{\theta})} = \text{KL}\left(p(X; \theta) \| p\left(X; \hat{\theta}\right)\right)$ - conditions for MLE to be consistent
- * strong identifiability: $\inf_{\tilde{\theta}: |\tilde{\theta} \theta| \ge \varepsilon} \text{KL}\left(p\left(X; \theta\right) \parallel p\left(X; \hat{\theta}\right)\right) > 0$
- * uniform LLN: $\sup_{\widetilde{\theta}} \left| R_n \left(\widetilde{\theta}, \theta \right) R \left(\widetilde{\theta}, \theta \right) \right| \stackrel{p}{\to} 0$

- MLE asymptotics: $\sqrt{n} \left(\hat{\theta} \theta \right) \xrightarrow{d} \mathcal{N} \left(0, I_1^{-1} \left(\theta \right) \right)$, or $\sqrt{n} \left(\hat{\tau} \tau \right) \rightsquigarrow \mathcal{N} \left(0, \left(g' \right)^T I_1^{-1} g' \right)$ where $\tau = g \left(\theta \right)$, conditions:
 - * 1) θ is identifiable. 2) $p(X;\theta)$ is thrice differentiable function of θ ; 3) The range of X does not depend on $\theta \Leftarrow$ interchange diff w.r.t θ and int over X. 4) θ is in the interior of Θ . 5) dimension space does not change with n
- Influence functions: $\psi(x) = \frac{\nabla_{\theta} \log p(x;\theta)}{I(\theta)}$, $\hat{\theta} = \theta + \frac{1}{n} \sum_{i=1}^{n} \psi(X_i) + \text{Remainder. Robust if } \psi$ is bounded
 - asymptotically linear estimators: satisfy $\hat{\theta} \approx \theta + \frac{1}{n} \sum_{i=1}^{n} \psi(X_i)$
- any sufficiently well-behaved (regular) estimator is asymptotically linear
- Asymptotic Relative Efficiency (ARE): two estimators W_n and V_n estimating $\tau(\theta)$ where $\sqrt{n}(W_n \tau(\theta)) \rightsquigarrow$ $\mathcal{N}(0, \sigma_w^2), \sqrt{n}(V_n - \tau(\theta)) \rightsquigarrow \mathcal{N}(0, \sigma_v^2).$ Then ARE $(V_n, W_n) = \sigma_w^2/\sigma_v^2$. In general, MLE estimator $\hat{\theta}$ satisfies ARE $(\tilde{\theta}, \hat{\theta}) \leq 1$ for any other estimator $\tilde{\theta}$.

Decision Theory

- Fisher information
- score function: $s\left(\theta\right) = \sum_{i=1}^{n} \nabla_{\theta} \log p\left(X_{i};\theta\right)$. data dependent, but $\mathbb{E}_{X^{n};\theta}\left[s\left(\theta\right)\right] = 0$ fisher information: $I\left(\theta\right) = \mathbb{E}\left[s\left(\theta\right)s^{T}\left(\theta\right)\right] = \cos\left(s\left(\theta\right)\right)$. data independent
- single sample: $I_1(\theta) = \mathbb{E}\left[-\nabla^2_{\theta} \log p(X;\theta)\right]$; n samples: $I(\theta) = nI_1(\theta)$
- Cramér-Rao bound: Var $(\hat{\theta}) \geq 1/nI_1(\theta)$. Multivariate: Var $(\hat{\theta}) \succeq \frac{1}{n}I_1^{-1}(\theta)$
- efficient estimațor: unbiased & achieve Cramér-Rao bound
- Risk w.r.t loss $L(\theta, \hat{\theta})$ is $R(\theta, \hat{\theta}) = \mathbb{E}_{X^n; \theta} [L(\theta, \hat{\theta})]$
- MSE: L is squared error. $MSE = \mathbb{E}_{\theta} \left| \left(\hat{\theta} \theta \right)^2 \right| = \left(\mathbb{E}_{\theta} \left[\hat{\theta} \right] \theta \right)^2 + \operatorname{Var}_{\theta} \left(\hat{\theta} \right)$
- minimax risk: $R_n = \inf_{\hat{\theta}} \sup_{\theta \in \Theta} R(\theta, \hat{\theta}) = \inf_{\hat{\theta}} \sup_{\theta \in \Theta} \mathbb{E}_{X^n; \theta} \left[L(\theta, \hat{\theta}) \right]$
- Minimax estimator: $\hat{\theta}$ that minimize the worst case $R\left(\hat{\theta},\cdot\right)$: $\sup_{\theta} R(\theta,\hat{\theta}) = \inf_{\hat{\theta}} \sup_{\theta} R(\hat{\theta},\theta)$
- maximum risk: $\overline{R}\left(\hat{\theta}\right) = \sup_{\theta \in \Theta} R\left(\theta, \hat{\theta}\right) = \sup_{\theta \in \Theta} \mathbb{E}_{X^n; \theta}\left[L\left(\theta, \hat{\theta}\right)\right]$
- if Bayes estimator $\hat{\theta}$ for prior distribution π satisfies $\overline{R}(\hat{\theta}) \leq B_{\pi}(\hat{\theta})$, then $\hat{\theta}$ is minimax. π is least favorable prior
 - * Corollary: if risk $R(\theta, \hat{\theta})$ is constant for a Bayes estimator $\hat{\theta}$, then $\hat{\theta}$ is also minimax
- if $L(\theta, \hat{\theta}) = l(\theta \hat{\theta})$ where l is convex and bounded, symmetric about the origin, $X \sim \mathcal{N}(\theta, \Sigma)$, then X is the unique minimax estimator of θ
- MLE estimator is approximately minimax as $n \to \infty$
- Bayes estimator (natural estimator): $\hat{\theta}$ that minimizes Bayes risk
- Bayes risk: $B_{\pi}\left(\hat{\theta}\right) = \mathbb{E}_{\pi}\left[R\left(\theta, \hat{\theta}\right)\right] = \mathbb{E}_{\pi}\mathbb{E}_{X^{n};\theta}\left[L\left(\theta, \hat{\theta}\right)\right] \leq \overline{R}\left(\hat{\theta}\right)$
- marginal: $m(X^n) = \int p(X^n|\theta) \pi(\theta) d\theta = \frac{p(\theta, X^n)}{\pi(\theta|X^n)}$ (normalizer in Bayes)
- Bayes estimator $\hat{\theta}_B$ minimizes posterior risk: $r\left(\hat{\theta} \mid X^n\right) = \mathbb{E}_{\theta \mid X^n} \left| L\left(\theta, \hat{\theta}\right) \right|$
 - * squared loss: posterior mean $\mathbb{E}[\theta | X^n = x^n]$; absolute loss: median; 0/1 loss: mode
 - * under squared loss, $r(\hat{\theta} | X^n) = \text{Var}(\theta | X^n)$
- Bayes risk equivalence: $B_{\pi}\left(\hat{\theta}\right) = \int r\left(\hat{\theta} \mid X^{n}\right) m\left(X^{n}\right) dX^{n}$

Exponential family: $p(X; \theta) = \exp\left[\sum_{i=1}^{s} \eta_i(\theta) T_i(x) - A(\theta)\right] h(x)$

- Canonical parametrization: $\eta_i(\theta) = \theta_i$. $A(\theta) = \log \left[\int_X \exp \left[\sum_{i=1}^s \theta_i T_i(x) \right] h(x) dx \right]$
- Log partition: $\frac{\partial A(\theta)}{\partial \theta_i} = \mathbb{E}\left[T_i\left(X\right)\right], \frac{\partial^2 A(\theta)}{\partial \theta_i \partial \theta_j} = \operatorname{cov}\left(T_i\left(X\right), T_j\left(X\right)\right).$ Therefore, A is convex
- Sufficient statistics: $T(X^n) = \left(\sum_{i=1}^n T_1(X_i), \ldots, \sum_{i=1}^n T_s(X_i)\right)$ Concave log-likelihood: $\mathcal{LL}(\theta; X^n) \propto \sum_{i=1}^s \theta_i \sum_{j=1}^n T_i(x_j) nA(\theta)$, $\mathcal{LL} \propto \langle \theta, T \rangle nA(\theta)$
- Minimal representation: the T_i s are linearly independent
- over-complete exponential families are not statistically identifiable

Hypothesis testing: Null hypothesis: $H_0: \theta \in \Theta_0$. Alternative hypothesis: $H_1: \theta \in \Theta_1$

- TN = retain True; FP = reject True (type 1); FN = retain False (type 2); TP = reject False
 - type 1: the incorrect rejection of a true H_0
 - type 2: the failure to reject a false H_0
- Statistical significance (from Wikipedia)
- definition: unlikely to have occurred under H_0 , when $p < \alpha$
- significance level α : Pr [reject $H_0 \mid H_0$ is true] = Pr [type 1]

- Power (prob of rejection θ): should be large for $\theta \in \Theta_1$, small for $\theta \in \Theta_0$
- probability of rejection when true parameter is θ (Type 1 error): $\beta(\theta) = P_{\theta}(X^n \in R)$ - always favor the null hypothesis and only consider tests that control the Type-I error.
- $-\operatorname{size} s = \sup_{\theta \in \Theta_0} \beta(\theta)$. level α : $s \leq \alpha$
- power of a test: Pr (reject $H_0 \mid H_1$ is true) = 1 Pr [type 2]
- p-value: defined for data $x, H_0: \theta \in \Theta_0$, smallest α at which we would reject H_0
- definition: $p = \inf \{ \alpha : T(x) \in R_{\alpha} \} = \sup_{\theta \in \Theta_{0}} P_{\theta} (T(X) \ge T(x))$
- $-p \sim \text{Unif}(0, 1) \text{ under } \Theta_0$
- a small p-value indicates strong evidence against H_0
- Neyman-Pearson Test $(H_0: \theta = \theta_0 \text{ vs } H_1: \theta = \theta_1)$
 - $-T = \frac{\mathcal{L}(\theta_1)}{\mathcal{L}(\theta_0)}, R_{\alpha} = \{T > k_{\alpha}\}; \text{ set } k \in \{t : P_{\theta_0}(T > t) \leq \alpha\} \text{ to obtain tests of level } \alpha.$
- Wald Test $(H_0: \theta = \theta_0 \text{ vs } H_1: \theta \neq \theta_0)$: MLE $\hat{\theta}, T = \frac{\hat{\theta} \theta}{\hat{\sigma}_0}$, reject $|T_n| \geq z_{\alpha/2}$
- Assumption: asymptotically normal estimator $\hat{\theta}$ that satisfies $\hat{\theta} \xrightarrow{d} \mathcal{N}(\theta_0, \sigma_0^2)$ under H_0 . Can replace σ_0 with its plug-in estimation se $(\hat{\theta})$
- For MLE $\hat{\theta}$: $T = \sqrt{nI_1(\theta_0)} (\hat{\theta} \theta_0)$, $R_{\alpha} = \{|T| \geq z_{\alpha/2}\}$
- Power: let $\Delta = \sqrt{nI_1(\theta_0)}(\theta \theta_0)$, $\beta(\theta) = 1 \Phi(\Delta + z_{\alpha/2}) + \Phi(\Delta z_{\alpha/2})$. Large if $|\theta \theta_0|$ or n large
- Likelihood Ratio Test $(H_0: \theta \in \Theta_0, H_1: \theta \notin \Theta_0), p$ -value = $P\left(\chi^2_{\#param} > \lambda\right)$
- $-\lambda\left(X^{n}\right)=2\log\frac{\sup_{\theta\in\Theta}\mathcal{L}(\theta)}{\sup_{\theta\in\Theta}\mathcal{L}(\theta)}\sim\chi_{d}^{2},\,R_{\alpha}=\left\{\chi_{d,\,\alpha}^{2}>\lambda\right\},\,\text{where }d=\dim\left(\Theta\right)-\dim\left(\Theta_{0}\right)$
- Goodness-of-fit test:
- $-\chi^2$ test for multinomial distributions
- * one sample testing: H_0 : $\mathbf{p} = \mathbf{p}_0 = (p_{01}, \dots, p_{0k})$ vs H_1 : $\mathbf{p} \neq \mathbf{p}_0$. Z^k is bin counts
- $\begin{array}{l} \cdot \ T = \sum_{i=1}^k \frac{(Z_i np_{0i})^2}{np_{0i}} \sim \chi_{k-1}^2, \, R_\alpha = \{\chi_{k-1,\alpha}^2 > T\}, \, p\text{-value} = \chi_{k-1,\,T}^2 \\ * \text{ two sample testing: } H_0: \mathbf{p}_x = \mathbf{p}_y \text{ vs } H_1: \, \mathbf{p}_x \neq \mathbf{p}_y. \, Z_x, \, Z_y \text{ are bin counts for } x, \, y \end{array}$
- $\cdot \text{ Let } \hat{p}_i = \frac{Z_{xi} + Z_{yi}}{n_x + n_y}, \text{ then } T = \sum_{i=1}^k \frac{(Z_{xi} n_x \hat{p}_i)^2}{n_x \hat{p}_i} + \frac{(Z_{yi} n_y \hat{p}_i)^2}{n_y \hat{p}_i} \sim \chi_{k-1}^2, \, R_\alpha = \{\chi_{k-1,\alpha}^2 > T\}$
- permutation test: observe $\{X_i\}_{i=1}^n \sim P, \{Y_j\}_{j=1}^m \sim Q$. We have $H_0: P = Q$ vs $H_1: P \neq Q$
- * $T = \frac{1}{N!} \sum_{L} \mathbb{I}(g(X, Y, L) > g(X, Y, L^*))$ $\sim \text{Unif}(0, 1), R_{\alpha} = \{T < \alpha\}, p\text{-value} = \{T < \alpha\}, p\text{-value} = \{T < \alpha\}, q = \{T < \alpha\},$ $\frac{1}{N!} \sum_{i=1}^{N!} \mathbb{I}(T_i > T_{\text{obs}})$

Multiple testing

- Family-Wise Error Rate (FWER): P [exist false rej]. False Discovery Rate (FDR): E [#false rej/#rej]
- FWER > FDR, control FWER is controlling FDR; under global null, FDR = FWER
- Multiple Testing: d tests in total
 - Sidak method: reject any test if its p-value $\leq 1 (1 \alpha)^{1/d} = \alpha_t$ (p-value independent), then FWER $\leq \alpha$
- Bonferroni method: p-value $< \alpha/d$, then FWER $< \alpha$
- Holm's procedure: $i^* = \min \left\{ i : p_i > \frac{\alpha}{d-i+1} \right\}$, reject all H_i for $i < i^*$, then FWER $\leq \alpha$
- BH procedure: $t_i = \frac{i\alpha}{2}$, $t^* = \max\{i: p_i < t_i\}$, reject all H_i for $i \leq i_{\max}$, then FDR $\leq \alpha$

Confidence set: a random set $C(X, \alpha)$ for $\alpha \in (0, 1)$ that satisfies $P(\theta \in C(X)) > 1 - \alpha$

- Probability inequalities: if a bounded $\hat{\theta}$ is an unbiased estimator of θ , we can apply Hoeffding's bound
- Inverting a test: $C(X, \alpha) = \{\theta : X \in A(\theta, \alpha)\}$, where A is the acceptance region of the test with "center" θ
- Wald Interval: for MLE $\hat{\theta}$ we have se $\left(\hat{\theta}\right) = \frac{1}{\sqrt{nI_1(\hat{\theta})}}$. Then $C\left(X, \alpha\right) = \left(\hat{\theta} z_{\alpha/2}\operatorname{se}\left(\hat{\theta}\right), \hat{\theta} + z_{\alpha/2}\operatorname{se}\left(\hat{\theta}\right)\right)$
 - * Note: can also be applied to another asymptoically normal estimators
 - * delta method: $\tau\left(\hat{\theta}_n\right) \pm z_{\alpha/2} \operatorname{se} \left|\tau'\left(\hat{\theta}_n\right)\right|$
- Likelihood Interval: for MLE $\hat{\theta}$ we have $C(X, \alpha) = \left\{\theta : \frac{\mathcal{L}(\theta)}{\mathcal{L}(\hat{\theta})} > \exp\left(-\frac{1}{2}\chi_{d,\alpha}^2\right)\right\}$, where $d = \dim \Theta$
- Pivots: a function $Q(X, \theta)$ whose distribution does not depend on θ . Therefore, a interval for θ is $\{\theta: Q(X, \theta) \in C(Q, 1-\alpha)\}$

Causal inference:

- Average treatment effect: $\tau = \mathbb{E}\left(Y\left(1\right) Y\left(0\right)\right)$. Association: $\alpha = \mathbb{E}\left[Y\left(1\right) \mid W=1\right] \mathbb{E}\left[Y\left(0\right) \mid W=0\right]$
- α is easy to estimate: we have $\hat{\alpha} = \frac{1}{m} \sum_{i:W_i=1} Y^{obs} \frac{1}{n-m} \sum_{i:W_i=0} Y^{obs} = \sum_{i=1}^n \frac{W_i Y_i(1)}{m} \frac{(1-W_i)Y_i(0)}{n-m} \text{If } W \perp (Y(0), Y(1)), \text{ then } \alpha = \tau \text{ and } \hat{\alpha} = \hat{\tau} \text{ is an unbiased estimator for } \tau. \text{ Otherwise, we suffer from } \mathbf{0}$
- selection bias
- Exact p-values: we test hypothesis $H_0: \mathbb{E}[Y(1)] = \mathbb{E}[Y(0)]$ vs $H_1: \mathbb{E}[Y(1)] \neq \mathbb{E}[Y(0)]$
- define L^* as the original treatment assignment and \mathcal{L} as the set of possible assignments

- randomly assign treatments. For each assignment L we calculate $\hat{\tau}_L = \frac{1}{m} \sum_{i:W_L = 1} Y^{obs}$ $\frac{1}{n-m}\sum_{i:W_{Li}=0} Y^{\text{obs}}$ - we then have $p = \frac{1}{|\mathcal{L}|} \sum_{L} \mathbb{I}_{\{|\hat{\tau}_L| > |\hat{\tau}_{L^*}|\}}$ • No unmeasured confounding: we have $W \perp (Y(0), Y(1)|X)$, where X is the confounding variable $-\tau = \mathbb{E}_X[\mathbb{E}(Y^{obs}|X,W=1)] - \mathbb{E}_X[\mathbb{E}(Y^{obs}|X,W=0)] = \mathbb{E}[\mu_1(X)] - \mathbb{E}[\mu_0(X)]$ - Suppose we can estimate μ_1 and μ_0 by $\hat{\mu}_1$ and $\hat{\mu}_0$. Then we directly have the plug-in estimator $\hat{\tau}$ $\frac{1}{n}\sum_{i=1}^{n} [\hat{\mu}_1(X_i) - \hat{\mu}_0(X_i)]$ - Alternative estimator (Horvitz-Thompson): $\hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{Y_i^{obs} W_i}{\pi(X_i)} - \frac{Y_i^{obs} (1-W_i)}{1-\pi(X_i)} \right], \text{ where } \pi(x) = \mathbb{E}(W|X)$ **Regression**: estimate $r(x) = \mathbb{E}[Y \mid X = x]$, risk of \hat{r} : $R(\hat{r}) = \mathbb{E}[\mathcal{L}(Y, \hat{r}(X))]$ • If joint distribution of (X, Y) is known, under square, risk is minimized by $\hat{r}(x) = \mathbb{E}[Y | X = x]$ • Kernel regression: $r(x) = \sum_{i=1}^{n} w_i(x) Y_i$, where $w_i = K\left(\frac{x-x_i}{h}\right) / \sum_{j=1}^{n} K\left(\frac{x-x_j}{h}\right)$ - bandwidth h: larger h, smoother regression function, more bias, less variance - Gaussian kernel: $K(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-x^2/2\right)$ - simple analysis * assumption: 1) $y_i = r(x_i) + \epsilon_i$; 2) x_i is 1-dimensional, equally spaced in [0, 1]; 3) $r(x) = \mathbb{E}[Y | X = x]$ is L-Lipschitz $\left| \frac{d}{dx} r(x) \right| \leq L$; 4) noise i.i.d: $\epsilon_i \sim \mathcal{N} \left(0, \sigma^2 \right)$; 5) use spherical kernel $k(x) = \mathbb{I} \left(-1 \leq x \leq 1 \right)$ * if bandwidth $h \geq 1/n$, then bias $b(x) \leq Lh$, variance $v(x) \leq \frac{\sigma^2}{nh}$. * let bandwidth $h=\left(\frac{\sigma^2}{2nL^2}\right)^{1/3}$, then $\hat{R}(\hat{r},\,r)\leq 2\left(\frac{L\sigma^2}{n}\right)^{2/3}$ – Extension: if r is β -smooth, then $b(x) \approx h^{2\beta}$, $v(x) \approx \frac{1}{nh^d}$. Consequently, $R(\hat{r}, r) \approx n^{-2\beta/(2\beta+d)}$ * the curse of dimensionality: the rate gets exponentially slow as d increases (we only get linearly slow in parametric regression). * get rid: smoothness / parametric (e.g. linear) / sparsity assumption • Gaussian sequence model: observe y^n where $y_i = \theta_i + \epsilon_i$, $\epsilon_i \sim \mathcal{N}\left(0, \frac{\sigma^2}{n}\right)$ - minimax estimator under squared loss: $\hat{\theta} = [y_1, \dots, y_d]^T$, l_2 risk: $R(\hat{\theta}, \theta) = \frac{\sigma^2 d}{r}$. Not consistent when - hard thresholding t: $\hat{\theta}_i = y_i \mathbb{I}(|y_i| \ge t)$. Solution to: $\hat{\theta} = \arg\min_{\theta} \frac{1}{2} ||y - \theta||_2^2 + \frac{t^2}{2} \sum_{i=1}^d \mathbb{I}(\theta_i \ne 0)$ - soft thresholding t: $\hat{\theta}_i = \text{sign}(y_i) \max(|y_i| - t, 0)$. Solution to: $\hat{\theta} = \arg\min_{\theta} \frac{1}{2} \|y - \theta\|_2^2 + t \sum_{i=1}^d \|\theta_i\|_2^2$ - analyzing hard thresholding * maximum of Gaussians: if $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$, then w.p. $\geq 1 - \delta$, $\max_{i=1}^{d} |\epsilon_i| \leq \sigma \sqrt{2\log(2d/\delta)}$ * let threshold $t = 2\sigma\sqrt{2\log(2d/\delta)/n}$, then w.p. $\geq 1 - \delta$, $\|\hat{\theta} - \theta\|_{0}^{2} \leq 9\sum_{i=1}^{d} \min\left(\theta_{i}^{2}, \frac{t^{2}}{4}\right)$ * risk upper bound: $R\left(\hat{\theta}, \theta\right) \lesssim \sum_{i=1}^{d} \min\left(\theta_i^2, \frac{\sigma^2 \log d}{n}\right)$ worst case: $R(\hat{\theta}, \theta) \lesssim \frac{\sigma^2 d \log d}{n}$, similar to minimax estimator \cdot s sparse: $R(\hat{\theta}, \theta) \leq \frac{\sigma^2 s \log d}{\sigma^2}$, consistent · l_1 sparse: if $\sum_{i=1}^{d} |\theta| \leq R$, then $R(\hat{\theta}, \theta) \lesssim 2R\sigma\sqrt{\frac{\log d}{R}}$ • Linear regression: observe $\{(x_i, y_i)\}_{i=1}^n$, model $y_i = \langle x_i, \beta^* \rangle + \epsilon_i$, where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$, $\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^n x_i x_i^T$ $-\hat{\beta} = \arg\min_{\beta} \frac{1}{2} \sum_{i=1}^{n} (y_i - \langle x_i, \beta \rangle)^2 = \hat{\Sigma}^{-1} X^T y = (X^T X)^{-1} X^T y \sim \mathcal{N} \left(\beta^*, \sigma^2 (X^T X)^{-1} \right)$ * consider $X \in \mathbb{R}^{n \times d}$ as random variables: random design matrix * consider $X \in \mathbb{R}^{n \times d}$ as fixed: fixed design matrix - in-sample prediction error $\mathbb{E}\left[\left\|X\hat{\beta}-X\beta\right\|_{2}^{2}/n\right]$ * $X\hat{\beta} \sim \mathcal{N}\left(X\beta^*, \sigma^2 X \left(X^T X\right)^{-1} X^T\right)$ * $\mathbb{E}\left[\left\|X\hat{\beta} - X\beta\right\|_{2}^{2}/n\right] = \sigma^{2}\mathbb{E}\left[\operatorname{tr}\left(X\left(X^{T}X\right)^{-1}X^{T}\right)\right]/n = \sigma^{2}d/n$ $-l_2 \text{ error } \mathbb{E}\left[\left\|\hat{\beta} - \beta\right\|_2^2\right] = \frac{\sigma^2}{n} \operatorname{tr}\left(\hat{\Sigma}^{-1}\right)$ * if eigenvalues of $\hat{\Sigma}^{-1}$ are lower bounded by c, then l_2 error $\leq \frac{\sigma^2 d}{cn}$ * $I_n(\beta) = n\mathbb{E}\left[\frac{X^TX}{n\sigma^2}\right] = \frac{n\Sigma}{\sigma^2}$ * $\sqrt{n} \left(\hat{\beta} - \beta^* \right) \xrightarrow{d} \mathcal{N} \left(0, \sigma^2 \Sigma^{-1} \right)$
- issues when d increases: 1) $\hat{\Sigma}$ not invertible; 2) error dominated by d; 3) too many solutions of $y = X\beta$ in high dimension
- High dimensional regression
- hard thresholding type estimator
- * penalized form: $\hat{\beta} = \arg\min_{\beta} \frac{1}{2} \|y X\beta\|_2^2 + \frac{t^2}{2} \sum_{i=1}^d \mathbb{I}(\beta_i \neq 0)$
- * constraint form (best subset regression): $\hat{\beta} = \arg\min_{\beta} \frac{1}{2} ||y X\beta||_2^2$, subject to $\sum_{i=1}^d \mathbb{I}(\beta_i \neq 0) \leq k$ soft thresholding type estimator (LASSO: least absolute selection and shrinkage operator)
- * penalized form: $\hat{\beta} = \arg\min_{\beta} \frac{1}{2} \|y X\beta\|_2^2 + t \sum_{i=1}^d |\beta_i|$
- * constraint form: $\hat{\beta} = \arg\min_{\beta} \frac{1}{2} \|y X\beta\|_{2}^{2}$, subject to $\sum_{i=1}^{d} |\beta_{i}| \leq k$
- * prediction error, w.p. $\geq 1 \delta$, $\frac{1}{n} \|X\hat{\beta} X\beta\|_{2}^{2} \leq 4\sigma \|\beta^{*}\|_{1} \sqrt{\frac{2\log 2d/\delta}{n}}$

Bayesian inference

- Bayesian vs Frequentist
- probability: subjective degree of belief; limiting frequency
- goal: analyze belief; create procedures with frequency guarantee
- $-\theta$: random variable; fixed
- X: random variable; random variable
- use Bayes: Yes, to update beliefs; Yes if it leads to procedure with good frequentist behavior, otherwise no
- Setup: given a collection of distributions $\{P_{\theta}: \theta \in \Theta\}$; prior: $\theta \sim \pi$; likelihood: $p(X^n \mid \theta) \sim P_{\theta}$
 - compute posterior belief: $\pi(\theta \mid X) = p(X \mid \theta) \pi(\theta) / \int_{\theta} p(X \mid \theta) \pi(\theta) \propto p(X \mid \theta) \pi(\theta)$
- Bayesian: success if you can calculate posterior
- frequentist: success if the posterior concentrates on the true parameter θ^*
- Credible set C_{α} for posterior distribution: $\int_{C_{\alpha}} \pi(\theta|X^n) d\theta = 1 \alpha$
- Frequestist view
- Consistency: $\forall \epsilon > 0, \ \pi\left(\left\{\theta : \|\theta \theta^*\| \ge \epsilon\right\} \mid X^n\right) \to 0$
- Convergence rate (based on consistency): for $\forall \delta > 0$, we define its convergence rate $\epsilon = \sup\{\epsilon'\}$ $\pi_{\theta}(\|\theta - \theta^*\| \ge \epsilon' | X) \le \delta$
- Bernstein-von Mises Theorem: if prior is continuous and strictly positive around θ^* , then for a fixed dimension d, as $n \to \infty$, the posterior is close to Gaussian:
- $-\|\pi(\theta; X^n) \mathcal{N}(\hat{\theta}_n, 1/nI_1(\hat{\theta}_n))\|_{\text{TV}} \to 0$, where $\hat{\theta}_n$ is MLE, and TV is total variance
- in high-dimensional or non-parametric setting, strictly positive around θ^* is hard to be true
- if it is true, can use credible sets like Wald test
- Ideas in choosing prior: 1) by convenience (minimax); 2) doesn't matter (low-dimensional / parametric); 3) based on data: empirical Bayes; 4) non-informative prior; 5) Joffrey's prior: $\pi(\theta) \sim \sqrt{I(\theta)}$: invariant under transformations; 6) hierarchical prior
- Regularizer: 1) LASSO: posterior mode with Laplace prior; 2) ridge regression: Gaussian prio; 3) estimating Bernoulli prob with laplace smoothing: posterior mean with Beta prior

Monte Carlo

- MC Integration: compute $\mu = \mathbb{E}_{X \sim P} [f(X)]$ directly sampling from P: $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} f(X_i)$. If cannot sample from P
- importance weighting: $\mu = \mathbb{E}_{X \sim Q} \left[\frac{p(X)}{q(X)} f(X) \right] = \mathbb{E}_{X \sim Q} \left[w(X) f(X) \right], \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} w(X_i) f(X_i)$
- if doesn't work, use Markov Chain Monte Carlo
- Markov chain: transition probability $T(x_i, x_{i+1}) = P(x_{i+1} | x_i)$
- limiting distribution always exists: $\pi(x) = P(\lim_{n \to \infty} x_n = x)$
- detailed balance: condition for reaching limiting distribution: $\forall x, y, \pi(x) T(x, y) = \pi(y) T(y, x)$
- Markov LLN: MC $\{X^n\}$, limiting distribution π , then $\frac{1}{n}\sum_{i=1}^n f(X_i) \to \mathbb{E}_{\pi}[f(x)]$ (weak dependence)
- Metropolis-Hastings: at step $i, y \sim q(y \mid X = x_i)$, accept w.p. $r = \min \left\{1, \frac{f(y)q(x \mid y)}{f(x)q(y \mid x)}\right\}$
- proposal distribution q, often $q(y | x_i = x) \sim \mathcal{N}(x, \sigma^2)$
- if $q(\cdot|\cdot)$ is symmetric, we sample more from high-prob regions, and accept w.p. 1 if prob going up
- limiting distribution of this Markov chain is f: T(y, x) = q(y|x)r, verify f(x)T(y, x) = f(y)T(x, y)

Bootstrap: test the variability of a point estimate (variance, confidence set)

- Given $X^n \sim P$, estimate empirical distribution $P_n(A) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(X_i \in A)$, then draw from P_n
- Bootstrap variance estimate
- draw bootstrap sample $X^{*n} \sim P_n$, compute $\hat{\theta}_n^* = q(X^{*n})$
- repeat B times, yielding $\hat{\theta}_{n-1}^*$, $\hat{\theta}_{n-2}^*$, ..., $\hat{\theta}_{n-B}^*$, $\bar{\theta} = \frac{1}{B} \sum_{i=1}^B \hat{\theta}_n^*$
- bootstrap variance $\hat{s}^2 = \frac{1}{B} \sum_{i=1}^{B} \left(\hat{\theta}_{n,j}^* \overline{\theta} \right)$
- Bootstrap confidence interval

- draw bootstrap sample $X^{*n} \sim P_n$, compute $\hat{\theta}_n^* = g(X^{*n})$
- repeat B times, yielding $\hat{\theta}_{n,1}^*$, $\hat{\theta}_{n,2}^*$, ..., $\hat{\theta}_{n,B}^*$
- calculate Bootstrap CDF: $\hat{G}(t) = \frac{1}{B} \sum_{j=1}^{B} \mathbb{I}\left(\sqrt{n} \left(\hat{\theta}_{n,j}^* \hat{\theta}_{n}\right) \leq t\right)$
- $-C_{n} = \left[\hat{\theta}_{n} \frac{g_{1-\alpha/2}}{\sqrt{n}}, \, \hat{\theta}_{n} \frac{g_{\alpha/2}}{\sqrt{n}}\right] \text{ where } g_{\alpha/2} = \hat{G}^{-1}\left(\alpha/2\right), \, g_{1-\alpha/2} = \hat{G}^{-1}\left(1 \alpha/2\right)$
- Bootstrap theorem: $F_n(t) = P\left(\sqrt{n}\left(\hat{\theta}_n \theta\right) \le t\right)$, $\hat{F}_n(t) = P\left(\sqrt{n}\left(\hat{\theta}_n^* \hat{\theta}_n\right) \le t\right)$, where $\hat{\theta}_n$ is the estimator based on X^n .
 - Example: if $\mu_3 = E|X_i|^3 < \infty$, and $\hat{\theta}_n$ is sample mean, then $\sup_t \left| \hat{F}_n(t) F_n(t) \right| = O_P\left(\frac{1}{\sqrt{n}}\right)$

Model selection

- Definition: A scheme S is model selection consistent: as sample size $n \to \infty$, $P(S \text{ selects wrong model}) \to 0$
- Cross validation:
 - prediction consistent: as test size $n_{\rm te} \to \infty$, risk estimation converges to its expectation.
- not model selection consistent
- Akaike Information Criterion (AIC): define for model space Θ
- AIC $(\Theta) = 2l(\hat{\theta}) 2\dim\Theta$, where parameter $\hat{\theta}$ is the MLE within Θ and $l(\hat{\theta}) = \log P(X | \hat{\theta})$
- not model selection consistent
- Bayesian Information Criterion (BIC): define for model space Θ with sample size n.
- BIC $(\Theta) = 2l(\hat{\theta}) \dim \Theta \log n$, where parameter $\hat{\theta}$ is the MLE within Θ and $l(\hat{\theta}) = \log P(X | \hat{\theta})$
- compared to AIC, prefer sparser / simpler models
- model selection consistent
- Application of AIC and BIC: compare among different model spaces and select the one that maximizes AIC
 / BIC.
- Main take-away
 - if goal is "prediction", and have reasonable sample size & computational budget \Rightarrow cross validation
 - if goal is "prediction", less samples / computational budget ⇒ AIC
- if goal is "selecting true model" \Rightarrow BIC

	$\mathcal{N}\left(\mu,\Sigma ight)$	$Gamma(\alpha, \beta)$	$\operatorname{Exp}(\lambda)$	Poisson (λ)
support	$\mu + \operatorname{span}(\Sigma)$	$(0, +\infty)$	$(0, +\infty)$	$k \in \mathbb{N}^+ \cup \{0\}$
pdf	$\frac{\exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))}{(2\pi)^{d/2} \det(\Sigma) ^{1/2}}$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}\exp\left(-\beta x\right)$	$\lambda e^{-\lambda x}$	$\frac{\lambda^k \exp(-\lambda)}{k!}$
cdf	-	$\frac{1}{\Gamma(\alpha)}\gamma(\alpha,\beta x)$	$1 - e^{-\lambda x}$	$e^{-\lambda} \sum_{i=0}^{\lfloor k \rfloor} \frac{\lambda^i}{i!}$
mean	μ	α/β	λ^{-1}	λ
variance	Σ	α/β^2	λ^{-2}	λ
mgf	$\exp\left(\mu^T t + \frac{1}{2} t^T \Sigma t\right)$	$(1 - t/\beta)^{-\alpha}$ for $t < \beta$	$\frac{\lambda}{\lambda - t}$ for $t < \lambda$	$\exp\left(\lambda\left(z-1\right)\right)$
conv	$\mathcal{N}\left(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2\right)$	Gamma $(\alpha_1 + \alpha_2, \beta)$	-	Poisson $(\lambda_1 + \lambda_2)$
fisher	$\begin{bmatrix} 1/\sigma^2 \\ 1/2\sigma^4 \end{bmatrix}$	-	λ^{-2}	λ^{-1}
MoM	$\hat{\mu} = \overline{X}_n, \ \sigma^2 = \frac{1}{n} \sum_{i=1}^n \left(X - \overline{X}_n \right)$			$\hat{\lambda} = \overline{X}_n$
MLE	same			same

	$\mathrm{Ber}\left(p\right)$	Rademacher	Binom (n, p)	Geometric (p)	$\chi^{2}\left(k\right)$
support	$\{0, 1\}$	$\{-1,1\}$	$k \in \mathbb{N} \cup \{0\}$	N+	$x \in (0, \infty)$
pdf	-	-	$\binom{n}{k} p^k \left(1 - p\right)^{n - k}$	$(1-p)^{k-1} p$	$\frac{1}{2^{k/2}\Gamma(k/2)}x^{k/2-1}e^{-\frac{x}{2}}$
cdf	-	-	-	$1 - (1 - p)^k$	-
mean	p	0	np	1/p	k
variance	p(1-p)	1	np(1-p)	$(1-p)/p^2$	2k
mgf	$q + pe^t$	$\exp\left(t^2/2\right)$	$\left(1 - p + pe^t\right)^n$	$\frac{pe^t}{1 - (1 - p)\exp(t)}$	$(1-2t)^{-k/2}$ for $t < \frac{1}{2}$
conv	-	-	Binom $(n+m, p)$	-	-
fisher	1/p(1-p)	-	n/p(1-p)	-	-
MoM			$\hat{p} = \overline{X}_n/n$	$\hat{p} = 1/\overline{X}_n$	
MLE			same	same	

		$\operatorname{Beta}\left(lpha,eta ight)$
sı	ıpport	(0, 1)
	pdf	$\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}x^{\alpha-1}(1-x)^{\beta-1}$
	cdf	-
1	mean	$\frac{\alpha}{\alpha+\beta}$
va	ariance	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
	mgf	$1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{t^k}{k!}$
	conv	-
1	fisher	$ \begin{bmatrix} \operatorname{Var} [\ln X] & \operatorname{Cov} [\ln X, \ln (1 - X)] \\ \operatorname{Cov} [\ln X, \ln (1 - X)] & \operatorname{Var} [\ln (1 - X)] \end{bmatrix} $
	MoM	
	MLE	

Table 1: Probability distribution