- 韵文散文文本分类任务
 - 任务介绍
 - 任务简介
 - 任务流程
 - 数据处理
 - 收集数据
 - 数据预处理
 - 实验方法
 - 预训练模型选择
 - 分类器模型
 - 实验模型
 - 实验过程
 - 实验数据准备
 - 实验过程
 - 实验结果
 - 实验结论
 - 实验中遇到的问题
 - 整体结论

韵文散文文本分类任务

任务介绍

任务简介

本实验的主要任务为对古文中的韵文和散文进行分类。

本实验使用多种不同的中文预训练词向量将古文文本转换为词向量,然后使用不同的分类器进行二分类任务

本次实验基于Bert-Chinese-Text-Classfication-Pytorch库进行扩展

任务流程

• 收集数据

- 数据预处理
- 模型训练
- 结果分析

数据处理

收集数据

本次实验的语料包含韵文语料和散文语料

- 韵文语料来源于古诗文网,https://github.com/Werneror/Poetry。
 - 。 包含历朝历代的诗词曲赋等, 共 853385条
 - 。 从各朝代语料中按照8-1-1的比例随机抽取训练集8万条,验证集1万条,测 试集1万条
- 散文语料来源于

https://disk.pku.edu.cn443/link/94FA2F534E12B25FDD7B1F7F4B8F37F3

- 。包括传记、四书、正史等散文, 共220余万条
- 。从中抽取10万条,按照8-1-1的比例随机抽取训练集8万条,验证集1万条,测试集1万条

数据预处理

数据预处理的代码在 preprocess.py中

预处理过程

- 去除多余的html内容、分隔符和空格
- 去除逗号和句号外所有的特殊符号,让散文和韵文保持统一
- 基于opencc库将所有的繁体字转化为简体字

实验方法

预训练模型选择

所有的预训练模型都使用Base版本,预训练语言模型的地址:

https://github.com/ymcui/Chinese-BERT-wwm

预训练模型	模型特点			
BERT	使用google基于中文维基内容的预训练模型,以字为单位训练			
ERNIE	在Bert的基础上将MASK分为token、word和phase级			
BERT-wwm	Bert的升级版本,引入全词MASK			
ROBERTA-wwm	Bert的基础上训练序列更长,引入动态调整Masking			

分类器模型

分类 器	特点
MLP	Embedding层后直接使用全连接层进行分类
RNN	LSTM代替全连接层进行预测,保留全局记忆
CNN	用三层卷积核的卷积结果堆叠接全连接层 代替基本的全连接层,捕捉更多局部信息

实验模型

基于上面的四种预训练模型和三种分类器模型,共计生成了12中不同的分类模型,其中的baseline为BERT + MLP模型

模型的实现位于 model 文件夹中

实验过程

实验数据准备

基于上文的实验数据提取,在保持测试集不变的情况下,将训练集和验证集等比例缩小进行进一步的实验

对应的四种训练集的大小为2000,4000,10000,40000

生成训练集的代码位于csv_data文件夹中

实验过程

在上文所述的12个模型上在四个训练集上使用3个随机数种子进行3次实验取平均值实验的脚本见 experiment.py,具体的实验过程见 run.py

实验结果

以准确率Accuracy为指标得到实验的结果如下:

分类器模 型	预训练模 型	2000 条训练 集	4000 条训练 集	10000条训练 集	40000 条训练 集
MLP	BERT	50.89%	66.89%	98.81%	99.68%
	ERNIE	52.25%	99.10%	99.53%	99.76%
	WWM	51.33%	68.41%	99.73%	99.84%
	ROBERTA	58.41%	98.17%	99.77%	99.91%
RNN	BERT	62.84%	68.7%	98.84%	98.94%
	ERNIE	65.96%	99.13%	99.4%	99.76%
	WWM	66.90%	69.82%	99.78%	99.62%
	ROBERTA	69.82%	99.57%	99.76%	99.84%
	BERT	45.31%	61.28%	99.56%	99.7%
CNN	ERNIE	50.04%	98.04%	99.61%	99.77%
CIVIN	WWM	46.98%	63.98%	98.84%	99.12%
	ROBERTA	52.48%	97.08%	99.75%	98.91%

实验结论

根据上述实验结果得到以下基本结论:

- 整体上,在数据量较大的场景(训练集数量 >= 10000)下每个分类器 + 预训练模型的组合在简单的二分类任务上都能取得比较好的效果,因为训练的epoch较少,模型过拟合的概率不大。
- 模型之间的差别主要体现在数据量较小的场景。

- 分类器模型相同的情况下对于预训练模型进行比较可以得出,在准确性上BERT是最差的。ROBERTA是最好的,ERNIE的效果也非常的不错,仅仅在4000条训练集的情况下就取得了很好的效果(可能过拟合)。原因可能因为,ROBERTA和ERINIE均是在BERT的基础上进行了知识层面的改进,更好的提取了语义知识信息
- 预训练模型相同的情况下对于分类器模型进行比较。首先是CNN主要提取的是局部的特征信息,而RNN主要是对于整体特征信息的把握。整体看来,RNN > MLP > CNN,词向量整体代表了文本的语义知识信息,所以对于整体信息的提取更有利于进行二分类。

实验中遇到的问题

- 开源框架使用的问题
 - 。解决方法:读README和代码
- 在数据量较小的情况下,根据混淆矩阵,出现了模型将99%以上的测试文本分为某一类的情况
 - 。解决方法:训练的时候引入随机种子,在训练集生成的时候保证散文和韵文数量基本一致的情况下进行shuffle。模型的参数的初始化,numpy向量的初始化都使用固定的随机种子。使用不同的随机种子进行多次实验,综合实验结果作为整体的结果

整体结论

- 在数据量较大的情况下,可以使用最基本的baseline完成任务
- 在数据量较小的情况下,可以使用效果较好的预训练模型,根据任务侧重于文本的局部特征还是整体特征,在Embedding层之后基于CNN或者RNN进行合适的扩展