Testi di esame precedenti a.a. e soluzioni

1 Problemi

Problema 1.1: Sia $D = \{0, 1, ..., 9\}$ l'insieme delle cifre decimali, e sia $\mathscr{P}(D)$ l'insieme dei polinomi a coefficienti in D. Dimostrare che l'insieme $\mathscr{P}(D)$ è numerabile.

Problema 1.2: Sia \mathcal{M} l'insieme delle matrici quadrate ad elementi nell'insieme $\{1,2,3,4,5,6,7,8,9\}$. Dimostrare che \mathcal{M} è numerabile.

Problema 1.3: Sia $\mathcal{P}(x)$ l'insieme dei polinomi nella variabile x a coefficienti interi. Ad esempio, il polinomio $-3x^4 + x^2 - 1$ è un elemento di $\mathcal{P}(x)$. Dimostrare che $\mathcal{P}(x)$ è numerabile e rispondere alla domanda seguente: perché, invece, l'insieme dei polinomi nella variabile x a coefficienti reali non è numerabile?

Suggerimento: come è possibile rappresentare un polinomo in forma di stringa?

Problema 1.4: Dimostrare che l'insieme dei polinomi a due variabili con coefficienti interi è numerabile.

Problema 1.5: Dimostrare che l'insieme dei sistemi lineari di due equazioni in due incognite con coefficienti interi è numerabile.

2 Soluzioni

Soluzione del problema 1.1

Sia $p(x) = d_0 + d_1x + d_2x^2 + ... + d_nx^n$ un qualunque elemento in $\mathcal{P}(D)$ e consideriamo la seguente funzione che associa un numero naturale a ciascun polinomio in $\mathcal{P}(D)$:

$$f(p(x)) = f(d_0 + d_1x + d_2x^2 + \dots + d_nx^n) = d_0 + 10d_1 + 10^2d_2 + \dots + 10^nd_n.$$

Mostriamo ora che $f: \mathcal{P}(D) \to \mathbb{N}$ è una biezione.

- Per ogni numero naturale n esiste un elemento $p_n(x) \in \mathcal{P}(D)$ tale che $f(p_n(x)) = n$: infatti, è sempre possibile esprimere n nella forma $a_0 + 10a_1 + 10^2a_2 + \ldots + 10^ka_k$, per un opportuno $k \ge 0$, dove a_0, a_1, \ldots, a_k sono cifre comprese fra 0 e 9; quindi, il polinomio $p_n(x) = a_0 + a_1x + a_2a^2 + \ldots + a_ka^k$ è tale che $f(p_n(x)) = n$. Questo prova che f è suriettiva.
- Siano $p(x) = a_0 + a_1x + a_2a^2 + \ldots + a_na^n$ e $q(x) = b_0 + b_1x + b_2a^2 + \ldots + b_ka^k$ due elementi di $\mathscr{P}(D)$ tali che $p(x) \neq q(x)$.

Se n < k allora f(p(x)) < f(q(x)), mentre se n > k allora f(p(x)) > f(q(x)): in entrambi i casi $f(p(x)) \neq f(q(x))$.

Resta da analizzare il caso n=k: in questo caso, poiché $p(x) \neq q(x)$, deve esistere almeno un indice $1 \leq i \leq n$ tale che $a_i \neq b_i$. Sia i_{max} il massimo indice tale che $a_{i_{max}} \neq b_{i_{max}}$ (ossia, per ogni $j > i_{max}$ accade che $a_j = b_j$). Di nuovo, se $a_{i_{max}} < b_{i_{max}}$ allora f(p(x)) < f(q(x)), altrimenti f(p(x)) > f(q(x)): in entrambi i casi $f(p(x)) \neq f(q(x))$. Questo prova che f è iniettiva.

Soluzione del problema 1.1

Sia \oplus l'operatore di concatenazione fra stringhe. Definiamo $f: \mathcal{M} \to \mathbb{N}$ nella maniera seguente: per ogni $M \in \mathcal{M}$, con n righe ed n colonne, sia

$$f(M) = M_{11} \oplus M_{12} \oplus \ldots \oplus M_{1n} \oplus M_{21} \oplus M_{22} \oplus \ldots \oplus M_{2n} \oplus \ldots \oplus M_{n1} \oplus M_{n2} \oplus \ldots \oplus M_{nn},$$

dove M_{ij} denota l'elemento che si trova nella riga i e nella colonna j. Osserviamo che, pur avendo definito f mediante operazioni fra stringhe, f(M) può essere facilmente interpretato come un valore intero in quanto ottenuto concatenando cifre in $\{1, \ldots, 9\}$. In effetti, una definizione equivalente per f è la seguente:

$$f(M) = \sum_{i=1}^{n} \sum_{j=1}^{n} 10^{n^2 - \left[\frac{(i+j-2)(i+j-1)}{2} + i\right]} \cdot M_{ij}.$$

Resta da mostrare che f è una biezione fra \mathcal{M} ed un sottoinsieme di \mathbb{N} , ossia che, per ogni coppia $M, M' \in \mathcal{M}$ con $M \neq M'$, si ha $f(M) \neq f(M')$. Siano $M, M' \in \mathcal{M}$ con $M \neq M'$; allora, se n è il numero di righe e di colonne di M e n' è il numero di righe e di colonne di M', sono possibili i casi seguenti:

- n < n': allora f(M) ha meno cifre di f(M') e, quindi, f(M) < f(M');
- n > n': allora f(M) ha più cifre di f(M') e, quindi, f(M) > f(M');
- n = n': allora, poiché $M \neq M'$, esistono i e j compresi fra 1 ed n tali che $M_{ij} \neq M'_{ij}$. Allora, la cifra in posizione (n-i) + (n-j) di f(M) è diversa dalla cifra in posizione (n-i) + (n-j) di f(M') e, quindi $f(M) \neq f(M')$.

In conclusione, abbiamo mostrato che f associa interi distinti a matrici distinte, ossia, che \mathcal{M} è in corrispondenza biunivoca con un sottoinsieme di \mathbb{N} . Questo prova che \mathcal{M} è numerabile.

Soluzione del problema ??

Costruiamo una biezione f_S fra l'insieme $\mathscr{P}(x)$ e un sottoinsieme delle parole (ossia, stringhe di lunghezza finita) sull'alfabeto $\{0,1,\ldots,9,+,x\}$: poiché l'insieme delle parole su un alfabeto finito è numerabile, l'esistenza di tale biezione dimostra la numerabilità di $\mathscr{P}(x)$.

Allo scopo, sia \oplus l'operatore di concatenazione fra stringhe, sia s(n) la rappresentazione in forma di stringa del numero naturale n (ad esempio, s(44) = 44) e sia $\sigma(z)$ la rappresentazione in forma di stringa dell'intero $z \in (Z)$ comprendente il suo segno: ad esempio, $\sigma(-146) = -146$ e $\sigma(44) = +44$.

Consideriamo un elemento $p \in \mathscr{P}(x)$: $p = \sum_{i=0}^{n} a_i x^i$, con $n \in \mathbb{N}$ e $a_i \in \mathbb{Z}$ per $i = 0, \dots, n$. Allora,

$$f_S(p) = \sigma(a_0) \oplus \sigma(a_1) \oplus x \oplus \sigma(a_2) \oplus x \oplus s(2) \oplus \ldots \oplus \sigma(a_n) \oplus x \oplus s(n).$$

Ad esempio, $f_S(1 - 14x^2 + 16x^{110}) = +1 - 14x^2 + 16x^{110}$.

Banalmente, ad ogni polinomio $p \in \mathscr{P}(x)$ è possibile associare una stringa $f_S(p)$. Inoltre, per ogni coppia di elementi distinti p_1 e p_2 di $\mathscr{P}(x)$ si ha che $f_S(p_1) \neq f_S(p_2)$. Infine, che, poiché il grado di ciascun polinomio in $\mathscr{P}(x)$ è finito e poiché ciascun coefficiente di ciascun poinomio è un numero con un numero finito di cifre (essendo un intero), per ogni $p \in \mathscr{P}(x)$ la sua rappresentazione $f_S(p)$ è una stringa di lunghezza finita. Dunque, f_S è una biezione fra $\mathscr{P}(x)$ ed un sottoinsieme di un insieme numerabile e questo prova che $\mathscr{P}(x)$ è numerabile.

Se, invece, q è un polinomio nella variabile x a coefficienti reali, qualcuno dei suoi coefficienti potrebbe essere irrazionale e non ammettere una rappresentazione finita. La stringa rappresentante q non sarebbe, in questo caso, finita.

Soluzione del problema ??

Indichiamo con $\mathcal{P}(x,y)$ l'insieme dei polinomi a due variabili con coefficienti interi. Sono possibili numerose soluzioni differenti a questo problema. In questa sede, ne presentiamo due.

1) Costruiamo una biezione f_S fra l'insieme $\mathcal{P}(x,y)$ e un sottoinsieme delle parole (ossia, stringhe di lunghezza finita) sull'alfabeto $\{0,1,\ldots,9,+,x\}$, analogamente a quanto illustrato nella soluzione del problema 1 proposto all'appello del 15/09/2011: poiché l'insieme delle parole su un alfabeto finito è numerabile, l'esistenza di tale biezione dimostra la numerabilità di $\mathcal{P}(x)$.

Allo scopo, sia \oplus l'operatore di concatenazione fra stringhe, sia s(n) la rappresentazione in forma di stringa del numero naturale n (ad esempio, s(44) = 44) e sia $\sigma(z)$ la rappresentazione in forma di stringa dell'intero $z \in (Z)$ comprendente il suo segno: ad esempio, $\sigma(-146) = -146$ e $\sigma(44) = +44$.

Consideriamo un elemento $p \in \mathscr{P}(x)$: $p = \sum_{i=0}^{n} \sum_{j=0}^{m} a_{ij} x^{i} y^{j}$, $\operatorname{con} n, m \in \mathbb{N}$ e $a_{ij} \in \mathbb{Z}$ per $i = 0, \dots, n$ e $j = 0, \dots, m$. Allora,

$$f_S(p) = \sigma(a_{00}) \oplus \sigma(a_{10}) \oplus x \oplus \ldots \oplus \sigma(a_{n0}) \oplus x \oplus s(n) \oplus \sigma(a_{01}) \oplus y \oplus \ldots \sigma(a_{0m}) \oplus y \oplus s(m) \oplus \sigma(a_{11}) \oplus x \oplus y \ldots \oplus \sigma(a_{n0}) \oplus s(n) \oplus s$$

La dimostrazione che $f_S(p)$ è una biezione è analoga a quella presentata per la soluzione del problema citato ed è, pertanto, omessa.

2) Poiché ogni polinomio in $\mathscr{P}(x,y)$ è il prodotto di un polinomio in $\mathscr{P}(x)$ e di un polinomio in $\mathscr{P}(y)$, allora $\mathscr{P}(x,y)$ è il prodotto cartesiano di $\mathscr{P}(x)$ e $\mathscr{P}(y)$, ossia, $\mathscr{P}(x,y)=\mathscr{P}(x)\times\mathscr{P}(x,y)$. Poiché $\mathscr{P}(x)$ è numerabile, come anche $\mathscr{P}(y)$, (problema 1 proposto all'appello del 15/09/2011) ed il prodotto cartesiano di due insiemi numerabili è numerabile, segue l'asserto.

Soluzione del problema ??

Indichiamo con $\mathcal{S}(x,y)$ l'insieme dei sistemi lineari a due variabili con coefficienti interi. Allora un elemento p di $\mathcal{S}(x,y)$ ha la forma

$$p = \begin{cases} a_1 x + b_1 y = c_1 \\ a_2 x + b_2 y = c_2 \end{cases}$$
 (1.1)

Sono possibili numerose soluzioni differenti a questo problema. In questa sede, ne presentiamo una.

Costruiamo una biezione f_S fra l'insieme $\mathscr{S}(x,y)$ e un sottoinsieme delle parole (ossia, stringhe di lunghezza finita) sull'alfabeto $\{0,1,\ldots,9,+,,-,=,x,y,*\}$. analogamente a quanto illustrato nella soluzione del problema 1 proposto all'appello del 15/09/2011: poiché l'insieme delle parole su un alfabeto finito è numerabile, l'esistenza di tale biezione dimostra la numerabilità di $\mathscr{S}(x,y)$.

Allo scopo, sia \oplus l'operatore di concatenazione fra stringhe, sia $\sigma(z)$ la rappresentazione in forma di stringa dell'intero $z \in (Z)$ comprendente il suo segno: ad esempio, $\sigma(-146) = -146$ e $\sigma(44) = +44$. Allora, l'elemento $p \in \mathcal{S}(x, y)$ descritto in (??) corrisponde alla parola

$$\sigma(a_1) \oplus x \oplus \sigma(b_1) \oplus y \oplus = \oplus \sigma(b_1) \oplus x \oplus \sigma(a_2) \oplus x \oplus \sigma(b_2) \oplus y \oplus = \oplus \sigma(c_2).$$

La dimostrazione che la corrispondenza appena descritta fra sistemi e parole è una biezione è analoga a quella presentata per la soluzione del problema citato ed è, pertanto, omessa.