Álgebra Linear Aula 12

Josefran de Oliveira Bastos

Universidade Federal do Ceará

A atividade deverá ser entregue em um prazo de no máximo 20 min após início da aula. Lembrando que m_i é o i-ésimo dígito a partir da esquerda da sua matrícula.

Atividade 09

Considere a matriz

$$A = \left[\begin{array}{ccc} m_1 & m_2 & m_3 \\ 1 & 0 & 0 \\ m_1 + 1 & m_2 & m_3 \end{array} \right].$$

Utilizando as definições e resultados apresentados na aula passada resolva.

- 1. Calcule o determinante usando uma linha como expansão.
- 2. Calcule o determinante usando uma coluna como expansão.

Gabarito

- 1. 0.
- 2. 0.

Seja A uma matriz quadrada de tamanho $n \times n$, com $n \ge 2$. As seguintes afirmações são verdadeiras:

1. Para todo $1 \le i_1 < i_2 \le n$ temos

$$\sum_{j=1}^{n} (-1)^{i_1+j} (A)_{i_1,j} \det(T_{i_1,j}) = \sum_{j=1}^{n} (-1)^{i_2+j} (A)_{i_2,j} \det(T_{i_2,j}).$$

Seja A uma matriz quadrada de tamanho $n \times n$, com $n \ge 2$. As seguintes afirmações são verdadeiras:

1. Para todo $1 \le i_1 < i_2 \le n$ temos

$$\sum_{j=1}^{n} (-1)^{i_1+j} (A)_{i_1,j} \det(T_{i_1,j}) = \sum_{j=1}^{n} (-1)^{i_2+j} (A)_{i_2,j} \det(T_{i_2,j}).$$

Seja A uma matriz quadrada de tamanho $n \times n$, com $n \ge 2$. As seguintes afirmações são verdadeiras:

1. Para todo $1 \le i_1 < i_2 \le n$ temos

$$\sum_{j=1}^{n} (-1)^{i_1+j} (A)_{i_1,j} \det(T_{i_1,j}) = \sum_{j=1}^{n} (-1)^{i_2+j} (A)_{i_2,j} \det(T_{i_2,j}).$$

2. Para todo $1 \le i \le n$ e $1 \le k \le n$ temos

$$\sum_{j=1}^{n} (-1)^{i+j} (A)_{i,j} \det(T_{i,j}) = \sum_{j=1}^{n} (-1)^{j+k} (A)_{j,k} \det(T_{j,k}).$$

Seja A uma matriz quadrada, temos que $det(A) = det(A^T)$.

Detonamos por $M_{ij}(A) = \det(T_{i,j})$.

Detonamos por $M_{ij}(A) = \det(T_{i,j})$.

Cofator da entrada $(A)_{i,j}$

Para i e j fixos denotamos por $C_{i,j} = (-1)^{i+j} M_{i,j}$.

Detonamos por $M_{ij}(A) = \det(T_{i,j})$.

Cofator da entrada $(A)_{i,j}$

Para i e j fixos denotamos por $C_{i,j} = (-1)^{i+j} M_{i,j}$.

Expansão em cofatores

Dado uma matriz quadrada A de tamanho $n \times n$ denominamos por

Detonamos por $M_{ij}(A) = \det(T_{i,j})$.

Cofator da entrada $(A)_{i,j}$

Para i e j fixos denotamos por $C_{i,j} = (-1)^{i+j} M_{i,j}$.

Expansão em cofatores

Dado uma matriz quadrada A de tamanho $n \times n$ denominamos por

ullet Expansão em cofatores ao longo da linha i

$$\det(A) = (A)_{i,1}C_{i,1} + \dots + (A)_{i,n}C_{i,n}.$$

Detonamos por $M_{ij}(A) = \det(T_{i,j})$.

Cofator da entrada $(A)_{i,j}$

Para i e j fixos denotamos por $C_{i,j} = (-1)^{i+j} M_{i,j}$.

Expansão em cofatores

Dado uma matriz quadrada A de tamanho $n \times n$ denominamos por

ullet Expansão em cofatores ao longo da linha i

$$\det(A) = (A)_{i,1}C_{i,1} + \dots + (A)_{i,n}C_{i,n}.$$

ullet Expansão em cofatores ao longo da coluna j

$$\det(A) = (A)_{1,j}C_{1,j} + \dots + (A)_{n,j}C_{n,j}.$$

$$\det\left(\left[\begin{array}{ccc} 3 & 1 & -4 \\ 3 & 2 & 1 \\ 5 & 3 & 2 \end{array}\right]\right)$$

$$\left|\begin{array}{ccc} 3 & 0 & 0 \\ 3 & 2 & 1 \\ 5 & 3 & 0 \end{array}\right|$$

$$\begin{array}{c|cccc}
3 & 0 & 0 \\
3 & 2 & 0 \\
5 & 3 & 1
\end{array}$$

Calcule

 $\left|\begin{array}{ccc|c} 3 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{array}\right|$

$$\left| \begin{array}{cccc}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array} \right|$$

Se A é uma matriz triangular de tamanho $n \times n$ então $\det(A) = \prod_{i=1}^n (A)_{i,i}$.

$$\left| \begin{array}{ccc|c}
0 & 0 & 0 \\
1 & 1 & 1 \\
2 & 3 & 1
\end{array} \right|$$

Calcule

$$\left|\begin{array}{ccc|c} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 3 & 1 \end{array}\right|$$

Teorema

Se A é uma matriz quadrada com uma linha ou coluna nula então $\det(A)=0.$

Calcule o determinante da matriz A a seguir e compare com o determinante da obtida após uma única operação elementar em A.

$$A = \left[\begin{array}{rrr} 3 & 2 & 0 \\ 1 & 2 & 0 \\ 1 & 3 & 1 \end{array} \right]$$

Seja A uma matriz $n \times n$.

Seja A uma matriz $n \times n$.

1. Se B é uma matriz obtida a partir de A após multiplicarmos uma linha ou coluna de A por uma constante então $\det(B) = k \det(A)$;

Seja A uma matriz $n \times n$.

- 1. Se B é uma matriz obtida a partir de A após multiplicarmos uma linha ou coluna de A por uma constante então $\det(B) = k \det(A)$;
- 2. Se B é uma matriz obtida a partir de A após permutarmos duas linhas (ou colunas) então $\det(B) = -\det(A)$;

Seja A uma matriz $n \times n$.

- 1. Se B é uma matriz obtida a partir de A após multiplicarmos uma linha ou coluna de A por uma constante então $\det(B) = k \det(A)$;
- 2. Se B é uma matriz obtida a partir de A após permutarmos duas linhas (ou colunas) então $\det(B) = -\det(A)$;
- 3. Se B é uma matriz obtida a partir de A após somarmos um múltiplo de uma linha (coluna) a outra linha (coluna) então $\det(B) = \det(A)$.

$$\begin{array}{cccc} 0 & 1 & 5 \\ 3 & -6 & 9 \\ 2 & 6 & 1 \end{array}$$

Pergunta

Será que o determinante preserva soma, produto e multiplicação por escalar?

Suponha que A e B seja matrizes quadradas de tamanhos 2×2 e 3×3 respectivamente. Para um escalar k, calcule $\det(kA)$ e $\det(kB)$.

Suponha que A e B seja matrizes quadradas de tamanhos 2×2 e 3×3 respectivamente. Para um escalar k, calcule $\det(kA)$ e $\det(kB)$.

Proposição

Sejam A uma matriz quadrada de tamanho $n \times n$ e k um escalar. Temos que

$$\det(kA) = k^n \det(A).$$

Considere as matrizes abaixo

$$A = \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right], \ B = \left[\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array} \right] \ \mathbf{e} \ C = \left[\begin{array}{cc} 1 & 2 \\ 4 & 5 \end{array} \right].$$

Calcule $\det(A)$, $\det(B)$, $\det(C)$, $\det(A+B)$, $\det(A+C)$ e $\det(B+C)$.

Considere as matrizes abaixo

$$A = \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right], \ B = \left[\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array} \right] \ \mathbf{e} \ C = \left[\begin{array}{cc} 1 & 2 \\ 4 & 5 \end{array} \right].$$

Calcule $\det(A)$, $\det(B)$, $\det(C)$, $\det(A+B)$, $\det(A+C)$ e $\det(B+C)$.

Teorema (2.3.1)

Sejam A,B e C matrizes $n \times n$ que diferem em uma única linha, a r-ésima, e suponha que a r-ésima linha de C possa ser obtida através somando as entradas correspondentes nas r-ésimas linhas de A e B. Então

$$\det(C) = \det(A) + \det(B).$$

O mesmo vale para as colunas.

