# Lecture 17: Clustering and density estimation

**Professor Ilias Bilionis** 

#### Clustering using k-means



### Clustering

Your are given n observations:

$$\mathbf{x}_{1:n} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$$

(inputs, features, ...)

**Problem**: Separate the data into K groups? How many such groups exist?







## K-means objective

K clusters as content 
$$f_1$$
, ...,  $f_k = 1$  Voronoi tesseltion

 $X_1: y = (X_1, X_2, ..., X_n)$ 
 $S_1 \subset \{X_1, ..., X_n\}, S_2 \subset \{X_1, ..., X_n\}$ 
 $S_3, ..., S_k$ 

with  $S_1 \subset \{X_1, ..., X_n\}$ 
 $S_1 \subset \{X_1, ..., X_n\}, S_2 \subset \{X_1, ..., X_n\}$ 
 $S_1 \subset \{X_1, ..., X_n\}, S_2 \subset \{X_1, ..., X_n\}$ 
 $S_1 \subset \{X_1, ..., X_n\}, S_2 \subset \{X_1, ..., X_n\}$ 
 $S_1 \subset \{X_1, ..., X_n\}, S_2 \subset \{X_1, ..., X_n\}$ 



## Standard k-means algorithm

1. Start by randomly choosing 
$$f_{1},...,f_{k}$$
  $f_{k}$   $f_{k$ 



## Example





## Example





#### What if I used two clusters?





#### What if I used five clusters?





#### Limitations of k-means

- How many clusters?
- Assumes spherical clusters.
- Cannot be applied to high-dimensional datasets, e.g., images.



#### Beyond k-means

- Clustering is related to density estimation.
- Idea:
  - Make hypothesis about how data are generated.
  - Train your model.
  - Let the structure arise naturally.

