- 39. (2009ko apirila #1) bikoitia(x) eta batuta(D(1..r), (d_1 , d_2 , ..., d_r), E(1..r), (e_1 , e_2 , ..., e_r), pos) predikatuak eta A(1..n)-ko elementu bikoitiak B(1..n) taulan posizio berean dauden elementuei batzen dizkien eta A(1..n)-ko posizio horietan 0 balioa gordetzen duen programa. -- #
 - a) **bikoitia(x)** \equiv {x mod 2 = 0}
 - b) batuta(D(1..r), (d₁, d₂, ..., d_r), E(1..r), (e₁, e₂, ..., e_r), pos) \equiv {(0 \leq pos \leq r) \land{(bikoitia(d_k) \rightarrow (D(k) = 0 \land E(k) = d_k + e_k)) \land{(bikoitia(d_k) \rightarrow (D(k) = d_k \land E(k) = e_k)))}}
 - c) Asertzioak ematerakoan egokiena edo naturalena den ordena jarraituko da eta ez zenbakizko ordena:
 - (1) {Hasierako baldintza} \equiv { $n \ge 1 \land \forall k \ (1 \le k \le n \rightarrow (A(k) = a_k \land B(k) = b_k))$ }
 - (2) {Tarteko asertzioa} \equiv {(1) \land i = 0}
 - (8) {Bukaerako baldintza} = {batuta(A(1..n), $(a_1, a_2, ..., a_n)$, B(1..n), $(b_1, b_2, ..., b_n)$, \mathbf{n})}
 - (3) {Inbariantea} \equiv { $(0 \le i \le n) \land batuta(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), i)}$
 - (4) {Tarteko asertzioa} = { $(0 \le i \le n - 1) \land$ batuta(A(1..n), $(a_1, a_2, ..., a_n)$, B(1..n), $(b_1, b_2, ..., b_n)$, i)}
 - (5) {Tarteko asertzioa} = {($1 \le i \le n$) \land batuta(A(1..n), $(a_1, a_2, ..., a_n)$, B(1..n), $(b_1, b_2, ..., b_n)$, i 1)}
 - (6) {Tarteko asertzioa} = { $(1 \le i \le n) \land batuta(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), i - 1) \land bikoitia(A(i)) \land A(i) = a_i \land B(i) = b_i}$
 - (6) era laburrean:
 - $(6) \equiv \{(5) \land bikoitia(A(i)) \land A(i) = a_i \land B(i) = b_i\}$

- (7) era laburrean:
- $(7) \equiv \{(5) \land bikoitia(A(i)) \land A(i) = a_i \land B(i) = A(i) + b_i\}$
- (10) {Tarteko asertzioa} = { $(1 \le i \le n) \land batuta(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), i - 1) \land bikoitia(a_i) \land A(i) = 0 \land B(i) = a_i + b_i}$
 - (10) puntua A(i) := 0; esleipenaren ondoren betetzen den asertzioa da.
 - (10) era laburrean:

$$(10) \equiv \{(5) \land bikoitia(a_i) \land A(i) = 0 \land B(i) = a_i + b_i\}$$

Baina hor esan duguna honako hau da: 1etik i -1 posiziora arteko kalkuluak eginda daude eta i posizioko kalkulua ere eginda dago. Beraz 1etik i posiziora arteko kalkuluak eginda daudela esan dezakegu eta hori batuta predikatuan argumentu bezala i ipiniz egin dezakegu:

$$(10) \equiv \{(1 \le i \le n) \land batuta(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), i) \land bikoitia(a_i)\}$$

- (11) puntua **end if** eta **end loop**-en artean betetzen den asertzioa da.
 - (10) eta (11) puntuen arteko desberdintasuna honako hau da:
 - (10) badakigu if aginduko then bidetik joan garela baina (11) puntuan ez dakigu nola iritsi garen (then bidetik edo bestela ezer egin gabe).

(9)
$$E = n - i$$

Asertzio batetik bestera zer aldatzen den hobeto ikusteko, aldaketak kolorez ipini dira.