Kyle Elbaum and Nicholas Lum Machine Problem 4 Report November 28, 2018

Part A

2) The major drawback using the standard multiplicative representation of joint probability is the inclusion of all the whitespace in a 28×28 image. It would count beyond the edge of a digit in the image.

5) Evaluation of the basic Naïve Bayes Classifier:

10: 0.733

20: 0.772

30: 0.792

40: 0.789

50: 0.8

60: 0.801

70: 0.805

80: 0.815

90: 0.813

100: 0.817

6) We chose k = 1. If choosing k > 1 or k > 1, the percentage decreases. Also, we wanted to avoid receiving a domain error when performing natural log on the probability. The result is reasonably good because the evaluation is on basic implementation of the classifier without extra features in Part B.

Part B

1)

- a) Using '#' as the only True variable in a binary feature set.
 Tests if using only the interior provides better results
 Checks if using less 'data' than basic will yield better results
- b) Using '+' as the only True variable in a binary feature set.

 Tests if using only the exterior provides better results

 Checks if using even less 'data' than the above makes a positive difference
- c) Each index contains data about the pixel and the pixel below
 - Indexes with no pixel below treat the index as a blank
 - Feature can take one of four values
 - 1. Empty, empty
 - 2. Empty, filled

- 3. Filled, empty
- 4. Filled, filled
- Gives extra power to each statistic index as they contain data for two pixels
- Checks if having more 'data' provides more reliable results.
- 2) Extract advanced features using different percent of testing data:

10: 0.742

20: 0.775

30: 0.799

40: 0.804

50: 0.815

60: 0.816

70: 0.823

80: 0.83

90: 0.829

100: 0.827

Using only the basic feature set predicts with 81.7% accuracy Using only the advanced feature set predicts with 82.7% accuracy

3) Using all the training data, extract_final_features() predicts with 83.1% accuracy using only the third new feature set.