Exercise (H2.1)

Given a string A of digits, write a program that prints the maximum digit (d), deletes all occurrences of d from A, and continues to do so with the remaining string until no digit is left in A.

E.g., given "5998355", the program prints:

max = 9 in "5998355"

max = 8 in "58355"

max = 5 in "5355"

 $\max = 3 \text{ in "3"}$

Exercise (H2.2)

Given a string showing student marks, write a program that prints the students with the best and worst marks. The string is formed as a sequence of "s:X m:Y;", where X is the student ID and Y is the mark.

E.g., given A = ``s:213 m:28;s:78 m:16;s:765 m:19;'' the program prints:

Best student -> ID: 213 Mark: 28

Worst student -> ID: 78 Mark: 16

Exercise (H2.3)

Given a string A, write an interactive program that iteratively asks the user a character (c), deletes c from A, and prints the new string, until no character is left in A.

Exercise (H2.4)

Given an integer number, write a function that returns the number of digits in the number.

E.g., given the number 1234, the function returns 4.

Exercise (H2.5)

Given a string, write a function that rearranges the string characters in a way that the lowercase letters come before the upper case letters, and all the other characters are ignored.

E.g., given the string "Hello World!", the function call returns "elloorldHW".

Exercise (H2.6)

Given an integer number $N \ge 2$, write a function that prints a tree with N layers. E.g., given N = 4, the function returns:

```
*
 * *
 * * *
* * * * *
 * * *
 * *
```

*

Exercise (H2.7)

Given a string A of digits, write a function that prints the histogram of the digits 0 to 9 in A.

E.g., given the digits "32563241", the function prints:

0: 5: *

1: * 6: *

2: ** 7:

3: ** 8:

4: * 9:

Exercise (H2.8)

Given two non-negative numers A and B, write a function that returns A^B using only summation operation.

E.g., given A = 2, B = 5, the function returns 32.

Exercise (H2.9)

Write an interactive program which asks the user iteratively to choose an operation (op) between 0, 1, 2, and 3.

- With op = 0, the program ends; otherwise the program asks the user to provide a string S and rearranges the characters in S in three different ways.
- With op = 1, swaps the (2*i)th and (2*i+1)th elements of S for each possible i starting from 0.
- With op = 2, forms all possible strings by shifting S one position to the left.
- With op = 3, reverses each word in S.

Exercise (H2.9)

E.g., given the string "Come on", the program prints:

- with op = 1, "oCemo n"
- with op = 2, "Come on", "ome onC", "me onCo", "e onCom", "onCome", "onCome ", "onCome ", "onCome ", "onCome ", "onCome o"
- with op = 2, "emoC no"

Write two versions of the program, one with the use of functions, the other without functions.