Financial Domain Specific Word Embeddings

Bhumika Kapur, Jun Tao [John] Luo, Nathan Luskey, Amey Patel

Outline

Problem Description

Task

Data Pipeline

Methodology

Results and Discussion

Conclusions

Problem Description

Word Embeddings - General

Data Sources:

Wikipedia Books Google News

Downstream Tasks:

Question Answering Semantic-Syntactic Word Relationship Sentence Completion

Word Embeddings - Financial

Data Sources:

SEC Filings Earnings Call Transcripts Analyst Reports

Downstream Tasks:

Sentiment Analysis Stock Volatility Predictions

Task

Embedding Data

SEC Filings

• Standardized regulatory documents

Filed Quarterly

Earnings, Assets, Key Management

Downstream Data

FiQA 2018:

1111 Dataset Samples

Sentiment Score between 1 and -1

Phrasebank:

4840 Dataset Samples

Sentiment Scores as -1, 0, 1

Data Pipeline

Initial Pipeline

Final Pipeline

Methodology: Word Embeddings

Word Vectors

Word2Vec

- Continuous Bag of Words

$$L_{CBOW}(\theta) = \prod_{t=1}^{T} \prod_{\substack{m \leq j \leq m \\ j \neq 0}} P(w_t | w_{t+j}; \theta)$$

- Skip-Gram

$$L_{Skip-gram}(\theta) = \prod_{t=1}^{T} \prod_{\substack{-m \leq j \leq m \\ j \neq 0}} P(w_{t+j}|w_t; \theta)$$

GloVe: Global Vectors for Word Representations

Matrix factorization using global word-word co-occurrence counts

Weighted least squares objective

$$J = \sum_{i,j=1}^{V} f(X_{ij}) (w_i^T \tilde{w}_j + b_i + \tilde{b}_j - log X_{ij})^2$$

GloVe: Global Vectors for Word Representations

- Weighted least squares model that trains on global word-word co-occurrence counts
- Uses a probe word to deduce the relationship between two words
- $J = \sum_{i,j=1}^{V} f(X_{ij}) (w_i^T \tilde{w}_j + b_i + \tilde{b}_j \log X_{ij})^2,$ (8)
- Complexity ~ O(|C|)
- Implementation: 20 epochs trained on 1994 SEC filings
- Paper results: 75% word analogy

Midterm Results

 Performance on 2018 FiQA sentiment analysis task

- Regression task, lower residual is better

- Training on financial data improved downstream performance significantly

Methodology: Contextualized Word Embeddings

BERT

Why BERT?

Does not dynamically capture relationship based on the context of the words

Doesn't distinguish words with different meanings (river bank vs bank of America)

Encoder side of transformer

BERT uses transformer encoders to get bidirectional conditioning

Ablation Studies

Block Coordinate Descent

• Iteratively vary one parameter while keeping other constant

• Efficiently search through parameter space given limited computation resource

Learning Rate

Label Smoothing

Scheduler

Ablation Studies: CLM vs MLM

CLM Results

Base	Fine-tuned
62.68%	65.78%

3% improvement!

Ablation Studies: Models

Ablation Studies

Use information contained in intermediate layers:

- attention layers
- hidden states

8% improvement!!

Results

Conclusions

Conclusions

Data Importance

Training Optimization

BERT's Information Encoding for Embeddings

TODO: (John) t-sne or PCA

Thanks to Akshat Gupta & Amelia Kuang!

Sources

<u>Jay Alammar - The Illustrated Word2vec</u>

<u>Hugging Face - Financial Phrasebank Dataset</u>

FiQA 2018

<u>Investopedia - SEC Filings</u>

"Efficient Estimation of Word Representations in Vector Space"

MLM vs CLM

"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"

BERT Variants

"GloVe: Global Vectors for Word Representation"

"Block Coordinate Descent"