Co-linear antenna modeling 915MHz

F. Ferrero

New optimization

- Using a diameter of 13mm for the loop
- Diameter of 1.4mm for the wire
- 167mm 221mm-180mm

Simulation: Realized Gain, Gain,

Simulation: VSWR

Simulation: S11

Simulation: Rad pattern

	Freq [MHz]	dB(PeakDirectivity) Setup1 : LastAdaptive Phi="0deg" Theta="0deg"	dB(PeakGain) Setup1: LastAdaptive Phi="0deg" Theta="0deg"	dB(PeakRealizedGain) Sefup1 : LastAdaptive Phi="0deg" Theta="0deg"	dB(RadiatedPower) Sefup1 : LastAdaptive Phi="0deg" Theta="0deg"	dB(RadiationEfficiency) Setup1 : LastAdaptive Phi= 0deg' Theta= 0deg'
1	915.000000	5.763504	5.797892	5.694515	-0.068989	0.034388

Simulation: Smith chart

Tips

- By changing the size of the last loop, you can tune the resonance frequency (larger loop means lower frequency)
- The size of the loop is important
- If you want to use a radome, we might have to slightly retune the antenna but cutting the length of the last loop