Lab 2 Energy Efficient Displays

Objective and organization

- Demonstrates how manipulation of an image can be used to tradeoff image quality and power saving in emissive displays
 - 1 report 2 days
 - Python
- Organize all implemented methods in functions and scripts to automatically test and evaluate all images and all techniques

OLED vs LED

- OLED TVs
 - Do not require external lighting
 - Better black levels

OLED vs LED

OLED TVs

- Pixels are independent from each other
 - More sense of depth
 - Higher contrast makes images more realistic

OLED

- Interesting case study from our perspective...
- Organic light-emitting diode (OLED)
 - Do not require external lighting
 - Pixels are emissive
 - Emissive layer is a film of organic compound which emits light in response to an electric current

 Each pixel is made of three devices corresponding to red, green and blue components

OLED

- In LCDs, backlight dominates power consumption and color has only negligible power impact
- With OLED displays, the color of a pixel impacts on power consumption
 - E.g., hungry blue
 - Different luminance efficacies
 - Different images imply different power consumption

Day 1 Energy efficient image processing

OLED

- Power consumption depends on color components of a pixel...
 - So we can save power by changing the spectrum of the image!
 - First class of power saving methods:
 - Change pixel color
 - Given a certain tolerance level on color distorsion

Assignment 2 - Part 1

Evaluate the power consumption / image distortion tradeoff

1. Identification of images

- Test images will be:
 - The images from the USC SIPI database
 - http://sipi.usc.edu/database/database.php?volume=misc
 - The images from the BSDS500 training set
 - https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/groupi ng/BSR/BSR bsds500.tgz
 - 5 images representing screenshots of your computer
- Different colors and characteristics...

1. Identification of images

- Test images will be:
 - The images from the USC SIPI database
 - http://sipi.usc.edu/database/database.php?volume=misc
 - The images from the BSEQ00 training set

Some grayscale images are present, you can skip them!!

• Diffteent colors and characteristics...

n/grouping

l

- Experiments require to adopt different color spaces...
- TASK: Learn how to:
 - Import the image
 - Image.open() function
 - Extract the R, G, B channels
 - Convert between different color spaces

RGB

- Additive color space
 - All possible colors that can be made from three colorants for red, green and blue
- Stores individual values for red, green and blue
- Convenient color model for computer graphics as it is similar to the human visual system
 - Used in LCDs

Lab

- One channel for luminance (L) and two color channels (a and b)
- Includes all perceivable colors
 - Super-set of RGB
- The space is a threedimensional Real number space
 - Allows the definition of Euclidean distance

- HSV
 - Hue
 - Perceived color
 - Saturation
 - Colorfulness, amount of white component
 - Value
 - Brightness
 - Cylindrical-coordinate representations of points in an RGB color model
 - Widely used in computer graphics

Evaluate the power consumption / image distortion tradeoff

3. Evaluation of power consumption

Power model

$$-P_{pixel} = f(R) + h(G) + k(B)$$

- Depends on pixel color in terms of RGB components
- f, h and k determined experimentally by:
 - Setting black screen to estimate C
 - For f, set G and B components to 0 and vary R component
 - Similar for h and k

$$-P_{image} = C + \sum_{i=1}^{n} \{ f(R_i) + h(G_i) + k(B_i) \}$$

- Sums up power contributions of single pixels
- C static power independent of pixel values

1. Evaluation of power consumption

Experimental Setup:

 Show monochromatic images with different RGB values on the OLED, e.g.:

Measure power supply current (and convert to power)

1. Power model for the provided OLED (cont'd)

• Interpolation:

 Find regression model type that fits best the data and determine the corresponding parameters

For this Lab, we used a model format from literature (see next slide)

Assignment 2 – Part 1

 TASK: Define a MATLAB function that estimates power consumed to display an image

$$-P_{pixel} = w_R * R^{\gamma} + w_G * G^{\gamma} + w_B * B^{\gamma}$$

$$-P_{image} = w_0 + \sum_{i=1}^{n} \{P_i(R, G, B)\}$$

- R, G, B are pixel values between 0 and 255

γ	W_0	W_R	\mathbf{W}_{G}	W_{B}
0.7755	1.48169521*10 ⁻⁶	2.13636845*10-7	1.77746705*10 ⁻⁷	2.14348309*10 ⁻⁷

Compute power consumption

Apply image transformation

Compute distortion

Compute power consumption

Evaluate the power consumption / image distortion tradeoff

4. Evaluation of image distortion

- Transformations imply a distorsion
 - Must determine a measure of distortion based on the distance between images...
 - We will work in the L*a*b* space
 - Has a notion of Euclidean distance between colors that well matches the perceived distortion
 - Can define what is the distance between two images..
 - Importantly, distortion is different from perceived visual quality, which is subjective, not a scientific measure!

4. Evaluation of image distortion

- Evaluation of image distortion
 - Difference between two images
 - $\varepsilon(image_i, image_j) = \sum_{k=1}^{N} \left(\sqrt{(L_{i,k} L_{j,k})^2 + (a_{i,k} a_{j,k})^2 + (b_{i,k} b_{j,k})^2} \right)$
 - N = number of pixels
 - k = kth pixel
 - Pixel per pixel, compute the difference of L, a and b components between the two images

Assignment 2 - Part 1

- TASK: Define a python function that estimated the distortion w.r.t. the original image
 - $\varepsilon(image_i, image_j) = \sum_{k=1}^{N} \left(\sqrt{(L_{i,k} L_{j,k})^2 + (a_{i,k} a_{j,k})^2 + (b_{i,k} b_{j,k})^2} \right)$
 - Work in the L*a*b* space and compute the Euclidian distance pixel per pixel
 - Convert by using scikit-image functions
 rgb21ab() and lab2rgb() functions

Assignment 2 – Part 1

- Easier to reason in terms of percentage distortion
 - E.g., distortion of new image w.r.t. maximum possible distance between 2 images in Lab space.

$$-dist = \frac{\varepsilon(image_{new}, image_{orig})}{W*H*\sqrt{(100^2 + 255^2 + 255^2)}} \cdot 100 \quad (\%)$$

NOTE: This will be quite small for most transformations!
So, use a small constraint (1%, 2%, 3%)

Compute power consumption

transformation

Compute distortion

Compute power consumption

Evaluate the power consumption / image distortion tradeoff

Assignment 2 - Part 1

- TASK: Experiment with various image manipulation strategies to reduce power consumption:
 - Pixel-wise transformations
 - Work on colors
 - Histogram equalization
 - Work on luminance (requires HVS color space)
 - Other types of brightness/contrast modifications

Assignment 2 - Part 1

- Apply each transformation to all images!
 - In your report, show (and comment) summary tables. For example:
 - Average, min, max power saving
 - Average, min, max distortion
 - Moreover, show (and comment) some representative examples of transformations outputs
 - E.g., the images for which you get most/least saving/distortion.
 - Do <u>not</u> include 50 pictures for each transformation in the report!!

Image Transformations

Hungry-blue:

- Blue is the more costly component..
- So, subtract a constant value to the blue component
- Will introduce a distortion but reduces power
 - Depending on the weight of the blue component

Histogram equalization:

- Flatten the histogram of the image, e.g., by working on luminance...
- Requires to work in the HSV color space
 - Hue saturation value (i.e., luminance)
- Introduces distortion. What about power?

Other types of brightness/contrast transformations:

- E.g. Convert to HSV and scale the value component (V \rightarrow k*V with k < 1) or do some more complex transformation
- Use your creativity!!!

Compute power consumption

Apply image transformation

Compute distortion

Compute power consumption

Evaluate the power consumption / image distortion tradeoff

Assignment 2 - Part 1

- Analyse power/distortion tradeoff
 - Do different images behave differently?
 - What changes in terms of power consumption with different manipulation strategies?
 - How can I save more power with lower distorsions?
 - Etc.

Assignment 2 – Part 1

Example: Pareto curve

Assignment 2 – Part 1

- Compare the transformations you applied and find the solution that:
 - Minimizes the average power consumption (i.e., maximizes avg power saving)
 - Under an average distortion constraint (e.g., avg distortion smaller than 0.5%, 1%, 2%, 3%)

Example:

- Blue reduction
 - Power saving 29.11%
 - Distortion3.99%
- Histogram equalization
 - Power saving 11.99%
 - Distortion2.46%

Original image

After blue reduction

After histogram equalization

Day 2 Dynamic Voltage Scaling

Dynamic Voltage Scaling of OLEDs

- Power consumption of OLEDs depends only on pixels...
 - No back light
 - Pixels are emissive, i.e., emits light in response to an electric current
- ... and pixels power consumption depends on:
 - Displayed colors
 - Hungry blue / low power green
 - Input current

- Supply voltage is set to maximum to support full luminance of pixel
 - But maximum luminance may not be necessary
- Dynamic Voltage Scaling
 - Scale the supply voltage
 - Reduces maximum current that can flow
 - Saves power
 - Note that reducing current implies changing the RGB color of some pixels!
 - Sacrifice image quality for power saving

- Effects of DVS
 - Reducing current implies changing the RGB color of pixels!
 - Emitted color strictly depends on input current
 - Reduced voltage → reduced current through some pixels

- Effects of DVS
 - Sacrifice image quality for power saving
 - Reduced color luminance
 - Color distortion in displayed images
 - Saved power

- Can compensate the image distortion by applying an image compensation
 - E.g., working on image luminance

Original image

Effect of voltage scaling

Effect of image compensation + voltage scaling

Compute power consumption

Compute power consumption

Apply DVS (displayed_image)

Compute distortion

Compute power consumption

Assignment 2 - Part 2: How To

1. Cell current calculation and evaluation of power consumption

 Given the RGB color of each pixel, determine current flowing through the cell

$$I_{cell} = \frac{p_1 V_{dd} D_{RGB}}{255} + \frac{p_2 D_{RGB}}{255} + p_3$$
 [mA]

 D_{RGB} is the RGB color value of current pixel

- Determine power consumption
 - Different (less accurate) model w.r.t. the one used in Part 1, but expressing dependency from DVS

$$-P_{panel} = V_{dd} \sum_{i=1}^{W} \sum_{j=1}^{H} \sum_{\{R,G,B\}} I_{cell(i,j)}$$
 [mW]

TASK: Implement the new current and power models

$$-I_{cell} = \left(\frac{p_1 \, V_{dd} \, D_{RGB}}{255}\right) + \left(\frac{p_2 \, D_{RGB}}{255}\right) + p_3 \qquad [mA]$$

- $p_1 = +4.251e-05$
- $p_2 = -3.029e-4$
- $p_3 = +3.024e-5$
- Default $V_{dd} = 15V$

Better to have two separate functions (see later)

$$-P_{panel} = V_{dd} \sum_{i=1}^{W} \sum_{j=1}^{H} \sum_{\{R,G,B\}} I_{cell(i,j)}$$

[mW]

- Voltage supply determines the maximum current that can flow in the OLED
 - Current value → pixel color
- Effect simulated by the function

$$displayed_image(I_{cell}, V_{dd})$$

- Given an image as the matrix of currents corresponding to pixels
- Applies voltage scaling with the specified V_{dd}
- This function is provided. You don't have to implement it.

- Effect simulated by the displayed_image() function
 - Computes the maximum current that can flow with the new V_{dd}
 - Determines the corresponding maximum RGB value RGB_{max}
 - Any RGB value higher than RGB_{max} is saturated to RGB_{max}

Given

$$-I_{cell} = \left(\frac{p_1 V_{dd} D_{RGB}}{255}\right) + \left(\frac{p_2 D_{RGB}}{255}\right) + p_3$$

• The maximum current given V_{dd} is:

$$-I_{max} = \left(\frac{p_1 V_{dd} [255 255 255]}{255}\right) + \left(\frac{p_2 [255 255 255]}{255}\right) + p_3$$

...and the maximum RGB that can be displayed without distortion is:

$$- RGB_{max} = \frac{(I_{max} - p_3) 255}{p_1 V_{dd} + p_2}$$

- Whenever $I_{cell} > I_{max}$ the pixel is assigned RGB value RGB_{max}
- Saturate to the maximum RGB value that can be generated given V_{dd}

- Note: the image RGB values do not actually change!
 - What changes is the *effect* on the display
 - displayed_image()
 function simulates this effect

3. Apply image compensation

- Want to improve quality of resulting image
 - Apply some techniques <u>before</u> DVS!
 - Enhance brightness/contrast of image
- The goal is to <u>increase the perceived image</u> <u>quality!</u>

3. Apply image compensation

- Brightness scaling
 - Increase the pixel values by a certain constant b
 - E.g., b equal to luminance loss
 - V' = v + b
- Contrast enhancement
 - Amplification of contrast
 - V' = V * b
 - Multiply pixel values by a certain constant factor
 - Depends on variation of V_{dd}

3. Apply image compensation

- Implemented in the HSV space
- You can determine the factor b as dependent from the original V_{dd} and new (scaled) V_{dd}
 - Brightness compensation
 - V' = V + b
 - $b(V_{dd} original, V_{dd} new)$
 - Contrast enhancement
 - V' = V * b
 - $b(V_{dd} original, V_{dd} new)$
 - Application of both

- TASK: Experiment with various image compensation strategies:
 - Brightness scaling
 - Contrast enhancement
 - Combined BS + CE
 - Others... (again, use your creativity!).

- Compare the different DVS + image compensation strategies
 - With respect to part 1, you have a new «free variable» → The DVS voltage

- The goal becomes "find optimal supply voltage" and compensated image" to:
 - Minimize power consumption
 - Maximize perceived visual quality
 - Important: image compensations will typically increase the distortion.
 - Remember: visual quality is different from distortion!
 - But the former is only qualitative...

- So, what you can do, is:
 - Impose a maximum distortion constraint (e.g., 1%, 2%, 3%), as in Part 1
 - Use the LAB distance for distortion, as in Part 1
 - Among the (V_{DD}, compensation) pairs that meet this constraint, select the one that in your opinion yields the best-quality images
 - Of course, this is subjective!!!

- Apply the overall flow to all images!
 - Automatically, with a script

