

Universidad Nacional del Litoral

Facultad de Ingeniería y Ciencias Hídricas

Estadística

Ingeniería en Informática

Mg. Susana Vanlesberg: Profesor Titular
Dr. Mario Silber: Profesor Adjunto
Dra. Andrea Bergesio: Jefe de Trabajos Prácticos
A.I.A. Juan Pablo Taulamet: Auxiliar de Primera

:: GUÍA 3 ::		
CARACTERÍSTICAS		
		:: 2014 ::

Ejercicio 1

Una variable aleatoria es descripta por la siguiente función de probabilidad:

X	p_i	
0	0.1	
1	0.2	
2	0.1	
3	0.4	
4	0.1	
5	0.1	

Calcule las características fundamentales de tendencia central y variabilidad.

Ejercicio 2

Una persona compra un número de una rifa, en la que puede ganar un primer premio de \$ 5000 con probabilidad de 0.001 o un segundo premio de \$ 2000 con probabilidad de 0.003. ¿Cuál sería el precio justo a pagar por dicho número?

Ejercicio 3

La proporción de tiempo X, que un ingeniero trabaja durante una semana de 40 hs. es una V.A. con la función de probabilidad:

$$f(x) = \begin{cases} 2x & \text{si } 0 \le x \le 1\\ 0 & \text{en otro caso} \end{cases}$$

Determine su valor medio y varianza e interprete los resultados.

La ganancia semanal Y para este ingeniero, está dada por: Y=200X-60. Determine la ganancia semanal esperada y su varianza.

Ejercicio 4

Sea Y una variable aleatoria con función de densidad:

$$f(y) = \begin{cases} \frac{1}{25}y & \text{si } 0 \le y < 5\\ \frac{2}{5} - \frac{1}{25}y & \text{si } 5 \le y < 10\\ 0 & \text{en otro caso} \end{cases}$$

Calcule E(Y) y V(Y).

Calcule E(1/Y). ¿Qué conclusión obtiene respecto a la relación entre E(1/Y) y 1/E(Y)?

Ejercicio 5

El error de medida de cierto aparato de laboratorio es una variable aleatoria con la siguiente función:

$$f(x) = \begin{cases} \frac{6}{11}(x^2 + x + 1) & \text{si } 0 \le x \le 1\\ 0 & \text{en el resto} \end{cases}$$

a) Obtenga el error de medida promedio. b) Calcule la Mediana. c) Halle el valor del error donde la función de densidad alcanza el máximo.

Ejercicio 6

La variable aleatoria bidimensional (X,Y) tiene la distribución de probabilidad conjunta dada por P(X = x; Y = y) = 1/36(x + 1)(y + 1) donde x; y = 0; 1; 2.

Halle las esperanzas marginales y E(XY).

¿Son X e Y son independientes? Justifique claramente su respuesta.

Ejercicio 7

Suponga que X e Y, con $X \ge 0$, son VA para las que:

$$E(X2) = 5$$

$$V(X) = 4$$

$$V(X + Y) = 10$$

$$COV(X,Y) = 2$$

Calcule E(X) y V(Y).

Sea Z=5X - 3. Calcule E(Z) y V(Z).

Ejercicio 8

Considere la siguiente función de densidad de probabilidad conjunta de las variables aleatorias X e Y:

$$f(x,y) = \begin{cases} \frac{3x-y}{9} & \text{si } 1 \le x < 3; 1 \le y < 2\\ 0 & \text{en otro caso} \end{cases}$$

Calcule las esperanzas marginales y E(XY).

Calcule la cov(X,Y). ¿Son X e Y son independientes? Justifique claramente su respuesta.

Ejercicio 9

Las variables X e Y tienen la siguiente densidad conjunta:

$$f(x,y) = \begin{cases} x - cy & \text{si } 1 \le x < 2; 0 \le y < 1\\ 0 & \text{en cualquier otro punto} \end{cases}$$

Obtenga la densidad marginal para Y e interprete su significado.

Obtenga las esperanzas marginales e interprete su significado teórico.

Determine la covarianza interpretando su valor.

Ejercicios propuestos

Un proceso industrial de fabricación de piezas produce lotes que contienen un número determinado de ellas. El proceso de control de calidad obliga a retirar los lotes que contienen al menos el 1 % de piezas defectuosas. La proporción de piezas defectuosas de un lote cualquiera es una variable aleatoria caracterizada por la siguiente función:

$$f(x) = \begin{cases} 10x & \text{si } 0 \le x < 0, 1\\ \frac{1}{16}(110x + 10) & \text{si } 0, 1 \le x \le 0, 5\\ 0 & \text{en el resto} \end{cases}$$

Obtenga la proporción media de piezas defectuosas.

El rendimiento de un sistema informático es una variable aleatoria cuya función viene dada por:

$$f(x) = \begin{cases} x & \text{si } 0 < x < 1\\ k - x & \text{si } 1 \le x \le 2\\ 0 & \text{en el resto} \end{cases}$$

Encuentre las medidas que caractericen al rendimiento.