Comparing expected coalescence rates for multinomial & residual resampling

Suzie Brown

April 30, 2019

Case N=2

We can calculate the expected coalescence rates explicitly. With only N=2 particles, the coalescence rate becomes

$$\mathbb{E}[c_N(t)|w_t^{(1:3)}] = \frac{1}{(N)_2} \sum_{i=1}^N \mathbb{E}\left[(v_t^{(i)})_2 | w_t^{(1:3)}\right] = \mathbb{P}[v_t^{(1)} = 0] + \mathbb{P}[v_t^{(1)} = 2]$$

For residual resampling,

$$\mathbb{E}[c_2^r(t)|w_t^{(1:3)}] = \mathbb{I}\{w_t^{(1)} \geq 1/2\}(2w_t^{(1)} - 1) + \mathbb{I}\{w_t^{(1)} < 1/2\}(2w_t^{(2)} - 1)$$

And for multinomial resampling,

$$\begin{split} \mathbb{E}[c_2^m(t)|w_t^{(1:3)}] &= (w_t^{(1)})^2 + (w_t^{(2)})^2 \\ &= \mathbb{I}\{w_t^{(1)} \geq 1/2\}((w_t^{(1)})^2 + (w_t^{(2)})^2) + \mathbb{I}\{w_t^{(1)} < 1/2\}((w_t^{(1)})^2 + (w_t^{(2)})^2) \\ &\geq \mathbb{I}\{w_t^{(1)} \geq 1/2\}(w_t^{(1)})^2 + \mathbb{I}\{w_t^{(1)} < 1/2\}(w_t^{(2)})^2 \end{split}$$

Then since $(w_t^{(i)}-1)^2=(w_t^{(i)})^2-2w_t^{(i)}+1\geq 0$, we have that $(w_t^{(i)})^2\geq 2w_t^{(i)}-1$ and hence we can conclude $\mathbb{E}[c_2^m(t)|w_t^{(1:3)}]\geq \mathbb{E}[c_2^r(t)|w_t^{(1:3)}]. \quad \Box$

dependence of E[c_N] on weights (N=2)

Suzie Brown 1

Figure 1: Multinomial resampling when ${\cal N}=3$

Figure 2: Residual resampling when ${\cal N}=3$

Case N=3

Given a weight vector $(w_t^{(1)}, w_t^{(2)}, w_t^{(3)})$, let $w_{(1)} \ge w_{(2)} \ge w_{(3)}$ denote the weights sorted from high to low.

Case	Weights	Offspring counts	Conditional probabilities	$\mathbb{E}[c_2^r(t) w_t^{(1:3)}]$
(A)	$w_{(1)} = 1$	(3,0,0)	1	1
(B)	$2/3 < w_{(1)} < 1$	(3,0,0)	$3w_{(1)}-2$	$12w_{(1)} - 6$
	, ,	(2,1,0)	$ \ 3w_{(2)} $	
		(2,0,1)	$3w_{(3)}$	
(C)	$w_{(1)} = 2/3$	(2,1,0)	$ 3w_{(2)} $	2
		(2,0,1)	$3w_{(3)}$	
(D1)	$1/3 < w_{(1)} < 2/3$ and	(2,1,0)	$3w_{(1)}-1$	$2-6w_{(3)}$
	$1/3 \le w_{(2)} < 2/3$	(1,2,0)	$3w_{(2)}-1$	
		(1,1,1)	$ \ 3w_{(3)} $	
(D2)	$1/3 < w_{(1)} < 2/3$ and $w_{(2)} < 1/3$	(3,0,0)	$(3/2)^2(w_{(1)}-1/3)^2$	$(3/2)(3w_{(1)}-1)(w_{(1)}+1)$
	$w_{(2)} < 1/3$	(2,1,0)	$(3/2)^2 2(w_{(1)} - 1/3)w_{(2)}$	
		(2,0,1)	$(3/2)^2 2(w_{(1)} - 1/3)w_{(3)}$	
		(1,2,0)	$(3/2)^2 w_{(2)}^2$	
		(1,0,2)	$ \begin{array}{c} (3/2)^2 w_{(2)}^2 \\ (3/2)^2 w_{(3)}^2 \end{array} $	
		(1,1,1)	$(3/2)^2 2w_{(2)}w_{(3)}$	
(E)	$w_{(1)} = 1/3$	(1, 1, 1)	1	0

Suzie Brown 2