$$\frac{d^{k}}{dt^{k}}, M_{x}(t) = \frac{d^{k}}{dt^{k}} E(e^{tX}) = E(X^{k}e^{tX})$$

$$E(X^{k}e^{tX}) \Big|_{t=0} = E(X^{k}) \Big|_{t=0} k^{-th} \text{ mount}$$

moment generating Ametions:

laplace:
$$M_{x}(t) = \int_{-\infty}^{\infty} e^{+x} \frac{1}{z\sigma} \frac{1}{e^{-y}} dx = \frac{e^{yt}}{1-\sigma^{2}t^{2}}$$

Gans:
$$M_{K}(t) = \int_{-\infty}^{\infty} e^{tx} \frac{1}{7707\pi} e^{-\frac{(k-\mu)^{2}}{207}} dt = e^{\mu t} + \frac{\sigma^{2}k^{2}}{2}$$

The contered moment generaling function: $M_k(t) = E(e^{t(x-\mu)}) = E(e^{tx}) - E(e^{t\mu}) = M_x(t) \cdot e^{t\mu}$

The shordardized moments are then calculated as described in the exercice.

	Laplace (µ,6)	GanB(M, o)	(unform (a,L)
$\langle x \rangle$	M	N	2(946)
$\langle x^2 \rangle_c$	202	52	£ (6-a)2
$\langle x^3 \rangle_S$	O	O	\Diamond
(x 4 > 1	6	O	- 6