Sistema de fechadura elétrica com teclado e display LCD

Talles Bezerra de Assunção¹

¹Departamento de Ciência da Computação da Universidade Federal de Roraima (UFRR)

– Boa Vista – RR – Brasil

tallesbezerra25@gmail.com

Resumo. O sistema de fechadura elétrica utiliza uma senha de 4 dígitos para trancar uma porta. Utilizando o microcontrolador Arduino Uno R3, um teclado, display LCD e um servo motor, foi implementado um sistema que substitui as chaves comuns, mostrando potencial para integrar sistemas de segurança mais robustos.

1. Introdução

Este trabalho apresenta um sistema de fechadura elétrica para porta, utilizando um sistema de segurança com senha de 4 dígitos numéricos entre 0 e 9 informados por um teclado, removendo a necessidade de chaves para trancar uma porta.

Para simular o sistema proposto foi utilizada a plataforma Tinkercard. Online e gratuito, o Tinkercard apresenta diversas placas de microcontroladores e componentes eletrônicos, sendo possível criar, codificar, simular e compartilhar projetos virtuais, podendo ser usado em qualquer computador com acesso a internet.

2. Descrição do Projeto

O sistema proposto consiste em desenvolver um sistema embarcado de uma fechadura elétrica para portas operando no microcontrolador Arduino Uno R3. Os componentes utilizados foram: um teclado matricial 4x4 para digitar a senha e realizar algumas funções do sistema, um display LCD 16x2 para passar os estados que o usuário se encontra e as ações que ele pode executar. No caso da fechadura da porta, existem no mercado fechaduras elétricas que utilizam a mesma quantidade de pinos que o servo motor, necessitando apenas uma pequena alteração no código para executar, como o Tinkercard não possui um componente de fechadura elétrica, foi utilizado micro servo motor para a simulação.

Abaixo, os valores aproximados dos componentes em março de 2022:

• Arduino Uno R3: R\$ 105,00;

• Teclado matricial 4x4: R\$ 12,00;

• Display LCD 16x2: R\$ 30,00;

• Micro servo motor: R\$ 25,00;

Figura 1: Big Picture

Figura 2: Storyboard

2.1. Modelagem do Sistema Proposto

O sistema proposto opera em 3 estados de execução. O estado inicial S0 representa quando o sistema não possui uma senha cadastrada e a fechadura está destravada, na tela LCD aparece a mensagem "CRIE UMA SENHA", após digitar uma senha com 4 dígitos numéricos, a senha é salva e o estado muda para S1. O estado S1 representa o sistema esperando a senha ser digitada com a fechadura travada, aparece a mensagem "TRAVADO" e o espaço da senha, se a senha digitada for correta, o estado muda para S2, se não, continua em S1 e o usuário poderá digitar novamente. No estado S2 a fechadura está destravada e se o usuário quiser travar novamente, basta digitar '#' e o estado voltará para S1, caso queira criar uma nova senha, basta digitar '*' que o estado voltará para S0.

Figure 3: Máquina de Mealy

Estados:

- S0 Criando senha / destravado
- S1 Esperando senha / travado
- S2 Senha correta inserida / destravado

2.2. Esquema de Conexões

Figura 4: Esquema de conexão

A Figura 4 apresenta um esquemático de conexão dos componentes utilizados no projeto que consiste:

• Teclado Matricial 4x4:

- o Row 1: Pino 9 do Arduino;
- o **Row 2**: Pino 8 do Arduino;
- o **Row 3**: Pino 7 do Arduino;
- o **Row 4**: Pino 6 do Arduino;
- o **Column 1**: Pino 5 do Arduino;
- o Column 2: Pino 4 do Arduino;
- o Column 3: Pino 3 do Arduino;
- Column 4: Pino 2 do Arduino;

• Display LCD 16x2:

- o **GND**: Pino GND do Arduino;
- o **VCC**: Pino 5v do Arduino;
- o **V0**: Pino GND do Arduino;
- o **RS**: Pino A5 do Arduino;

- o **RW**: Pino GND do Arduino;
- o **E**: Pino A4 do Arduino;
- o **DB0**: Não conectado;
- o **DB1**: Não conectado:
- o **DB2**: Não conectado;
- o **DB3**: Não conectado;
- o **DB4**: Pino A3 do Arduino;
- o **DB5**: Pino A2 do Arduino:
- o **DB6**: Pino A1 do Arduino;
- o **DB7**: Pino A0 do Arduino;
- o **LED Anode**: Pino 5v do Arduino com um resistor de 220 ohms;
- o **LED Cathode**: Pino GND do Arduino;

• Micro Servo Motor 9g:

o **Signal**: Pino 13 do Arduino;

o **Power:** Pino 5v do Arduino:

o **GND**: Pino GND do Arduino;

3. Testes e Avaliação Experimental

Todos os testes e as execuções do sistema proposto foram realizados na plataforma online Tinkercard. Inicialmente cada componente foi testado de forma individual a fim de entender seu funcionamento e interação com o Arduino. Em seguida, como o teclado e o display LCD utilizam muitos pinos, foi pensado um esquema de conexão onde todos os componentes funcionassem corretamente. Por fim, com o esquema de conexão definido e os componentes funcionando corretamente, foi desenvolvido a lógica de execução do sistema.

O usuário irá realizar as ações no sistema através do teclado. Assim que o usuário iniciar a execução, será necessário cadastrar uma senha primeiro, após a senha criada a trava será acionada e a fechadura estará fechada. Para abrir a fechadura novamente o usuário deverá passar a senha correta, caso erre, poderá tentar novamente até acertar. Após passar a senha correta a trava será acionada abrindo a fechadura, caso queira travar novamente basta clicar na tecla '#', nesse momento o usuário também tem a opção de mudar de senha clicando em '*'.

As execuções ocorreram de forma correta, com o teclado aceitando as entradas corretas para cada estado de execução, assim como a trava e a verificação de senha se comportando sem apresentar falhas, e o display LCD também sempre mostrando para o usuário as mensagens de qual estado de execução o sistema se encontra.

4. Considerações Finais

Este trabalho apresentou o sistema de fechadura elétrica com teclado e display LCD, uma alternativa para trancar portas sem a necessidade de utilizar chaves normais. Com poucos componentes e uma implementação simples, o sistema pode ser utilizado tanto em portas de salas como em cofres e com potencial de receber incrementações futuras, como implementar um alarme ou um alerta no celular após muitas tentativas

erradas, e trocar o teclado por um leitor de digital ou uma câmera para reconhecimento facial.

5. Referências

- BAUERMEISTER, Giovanni. Acionando uma trava elétrica com RFID. **FilipeFlop**, 2017. Disponível em: https://www.filipeflop.com/blog/acionando-trava-eletrica-com-rfid/. Acesso em: 02 de março de 2022.
- STANLEY, Mark and BREVIG, Alexander. Keypad Library for Arduino. **Arduino**, 2015. Disponível em: https://playground.arduino.cc/Code/Keypad/. Acesso em: 02 de março de 2022.
- Liquid Crystal Displays (LCD) with Arduino. **Arduino**, 2022. Disponível em: https://docs.arduino.cc/learn/electronics/lcd-displays. Acesso em: 02 de março de 2022.
- Servo Motor Basics with Arduino. **Arduino**, 2022. Disponível em: https://docs.arduino.cc/learn/electronics/servo-motors. Acesso em: 02 de março de 2022.