Daniel J. McDonald, Cosma Rohilla Shalizi and Mark Schervish Department of Statistics, Carnegie Mellon University

Introduction

- Statistical learning for time series assumes asymptotic independence or "mixing"
- Mixing behavior assumed known
- Processes known to be β -mixing:
 - Independent RVs
 - Markov processes
 - ???
- No way to estimate

Literature using β -mixing

- Vidyasagar (1997) β -mixing "just right" for extension of IID results
- Meir (ML 2000) GEBs for nonparametric methods
- Lozano et al. (NIPS 2006) boosting
- Karandikar and Vidyasagar (2009) PAC algorithms
- Mohri and Rostamizadeh (NIPS 2008, JMLR 2010) − Rademacher complexity and stability bounds

Definitions

• (β -mixing) For each positive integer a, the the coefficient of absolute regularity, or β -mixing coefficient, $\beta(a)$, is

$$\beta(a) \equiv \sup_{t} \left| \left| \mathbb{P}_{-\infty}^{t} \otimes \mathbb{P}_{t+a}^{\infty} - \mathbb{P}_{t,a} \right| \right|_{TV}$$

where $||\cdot||_{TV}$ is the total variation norm, and $\mathbb{P}_{t,a}$ is the joint distribution of $(\mathbf{X}_{-\infty}^t, \mathbf{X}_{t+a}^{\infty})$. A stochastic process is said to be absolutely regular, or β -mixing, if $\beta(a) \to 0$ as $a \to \infty$.

- **Stationarity**) A sequence of random variables \mathbf{X} is stationary when all its finite-dimensional distributions are invariant over time: for all t and all non-negative integers i and j, the random vectors \mathbf{X}_t^{t+i} and \mathbf{X}_{t+j}^{t+i+j} have the same distribution.
- (Finite dimensional coefficients) For positive integers t, d, and a, define

$$\beta^{d}(a) = \left| \left| \mathbb{P}_{t-d+1}^{t} \otimes \mathbb{P}_{t+a}^{t+a+d-1} - \mathbb{P}_{t,a,d} \right| \right|_{TV},$$

where $\mathbb{P}_{t,a,d}$ is the joint distribution of $(\mathbf{X}_{t-d+1}^t, \mathbf{X}_{t+a}^{t+a+d-1})$.

Estimator

$$\widehat{\beta}^d(a) = \frac{1}{2} \int \left| \widehat{f}_a^{2d} - \widehat{f}^d \otimes \widehat{f}^d \right|,$$

where \widehat{f}_a^{2d} is a histogram based on 2 length d sequences separated by a-1 points and \widehat{f}^d is a histogram based on a length d sequence.

Performance evaluation (theory)

■ Decompose the ℓ_1 risk of the estimator

$$|\widehat{\beta}^d(a) - \beta(a)| \le |\widehat{\beta}^d(a) - \beta^d(a)| + |\beta^d(a) - \beta(a)|.$$

- Estimation error goes to zero
 - Can use McDiarmid type results
 - Speed depends on $\beta(a)$
 - If **X** is a Markov chain, then $\beta(a) = o(a^{-r})$
 - In this case $|\widehat{\beta}^d(a) \beta^d(a)| = o(n^{r/(1+r)})$
- Approximation error goes to zero
 - Requires measure theoretic proof
 - Speed depends on $\beta(a)$

Stochastic processes

Define the Markov chain S_t

- 1 Observe S_t directly
 - The true β -mixing coefficient

$$\beta(a) = \beta^{1}(a) = \frac{4}{9}2^{-a}$$

- Can be calculated exactly
- Finite dimensional rate is exact, since the process is Markovian
- 2 Observe HMM ("Even" process)

$$O_t = \begin{cases} 1 & \text{if } (S_t, S_{t-1}) = (A, B) \text{ or } (B, A) \\ 0 & \text{else} \end{cases}$$

 \blacksquare β -mixing coefficient is upper bounded

$$\beta(a) \le \frac{8}{9} 2^{-a}$$

- Rate for the observed process is unknown process is non-Markovian
- Observed process is a function of the joint process which is Markovian gives upper bound

Simulations

- n = 1000
- $a \in \{1, 2, \dots, 10\}$
- $d = o(\log_2 n)$ is the optimal rate
- 1000 replications

 S_t

O_t ("Even" process)

Black line is an upper bound

Conclusions

- \blacksquare First procedure to estimate β -mixing coefficients
- Works reasonably well
- lacktriangleright There is an upward bias to the estimates as d increases (estimator is nonnegative)
- Future work
- Eliminate the bias (decreases as $n \to \infty$)
- 2 Rates of convergence for approximation error (likely impossible)
- Do we even need $\beta(a)$? Maybe just $\beta^d(a)$ for fixed d.