GARCH

- 我们已知ARIMA的模型是 $r_t = \mu_t + a_t$, μ_t 是均值,我们用ARIMA来拟合,我们之前假设 $a_t = \sigma_t \epsilon_t$, σ_t 是一个常数,但实际上不是这样的,而且我们的volatility是不能直接被观察到的,那么 a_t 到底包不包含之前的信息呢(我们之前的 a_t 是不包含的,因为 σ 是常数)
- ARCH test: 为什么at^2的ACF等于0?
- GARCH
 - 抛开对于 μ_t 的ARIMA模型,我们观察针对 a_t/σ_t 的ARCH、ARCH模型
 - ARCH: $a_t=\sigma_t\epsilon_t, \sigma_t^2=lpha_0+lpha_1a_{t-1}^2+...+lpha_ma_{t-m}^2$
 - GARCH: $a_t=\sigma_t\epsilon_t, \sigma_t^2=lpha_0+\sumlpha_ia_{t-i}^2+\sumeta_i\sigma_{t-i}^2$
 - ϵ_t 的分布: norm, t,GED,skewed t
 - reparameterization:
 - example: GARCH(1,1)
 - propoerties
 - forcast
 - IGARCH
 - 满足 $\alpha_i + \beta_i = 1$
 - pros:
 - 简单,已经规定了函数形式,只需要进行参数拟合即可
 - 性质3, 如果满足一定的条件, 具有heavy tails-->volatility clustering
 - cons:
 - 不管是上升还是下降,都是一个固定的数值,但这明显是不太符合市场逻辑的,如果波动性上升,那么接下来的波动性会有更大的概率下降,所以针对上升下降时存在不对称性的
 - 另外,如果价格下降,会有更大的可能直接崩溃,也即是说波动性上升,这也是不对称的
 - 有限制条件: $\beta_1<1,\alpha_1+\beta_1<1,\alpha_0>0,\beta_0>0$,这个条件比AR $|\beta|<1$ 的条件 要小得多
 - 没有金融理论支撑
 - 为了解决这些不足,延伸了一些其他的GARCH
 - GARCH-M
 - formula
 - cons:没有一个具体的展开式,不能理论推导forecast error