Учет предпочтения экспертов в задаче ранжирования.

Алсаханова Надежда

Москва, 2021

Постановка задачи

Задача

Получить рейтинг продуктов, учитывающий экспертные оценки и показатели продукта, с учетом наличия предпочтения на множестве экспертов.

Исследуемая проблема:

Как учесть то, что мы предпочитаем одного эксперта другому?

Используемый метод:

Линейное согласование.

Код:

https://github.com/NadezhdaAlsahanova/Ratings.

Описание данных

Описания объектов (продуктов питания) представлено в виде матрицы исходных данных:

$$A = \{a_{i,j}\}_{i,j=1}^{m,n}$$

где m – количество объектов, n – количество показателей.

Каждый эксперт дает оценку весовых коэффициентов $\mathbf{w}_{0,k} \in \mathbb{R}^n$ и оценку объектов $\mathbf{q}_{0,k} \in \mathbb{R}^m$, где k - номер эксперта.

Линейное согласование

Экспертные оценки несогласованны, то есть $q_0 \neq Aw_0$. Необходимо провести согласование. Для этого воспользуемся линейным согласованием:

$$q_{\alpha} = \alpha q_0 + (1 - \alpha)Aw_0$$
$$w_{\alpha} = (1 - \alpha)w_0 + \alpha A^+ q_0$$

Где $\alpha\in[0,1]$ - параметр доверия экспертным оценкам объектов, либо весов. При $\alpha=0$ мы игнорируем экспертные оценки объектов, при $\alpha=1$ мы игнорируем экспертные оценки весов.

Оптимизационная задача:

$$\alpha^* = \arg\min_{\alpha} \left\{ \frac{1}{n} \|w_{\alpha} - w_{0}\|_{2}^{2} + \frac{1}{m} \|q_{\alpha} - q_{0}\|_{2}^{2} \right\}$$

Предподчтение экспертов

Пусть у нас есть рейтинг экспертов $\vec{r} \in \mathbb{R}^{\mathbb{K}}$, где K - количество экспертов., состоящий из неповторяющихся оценок от 1 до K. Чем выше оценка эксперта, тем предпочтительнее его оценки.

В качестве q_0 и w_0 были взяты взвешанные средние значения по $q_{0,k}$ и $w_{0,k}.$

Результаты эксперимента

Рис.: Без учета рейтинга экспертов

Сравнение

$$Q = \frac{1}{n} \|w_{\alpha} - w_{0}\|_{2}^{2} + \frac{1}{m} \|q_{\alpha} - q_{0}\|_{2}^{2}$$

Рис.: Изменение ошибки согласования