13 This question is about the use of radioactivity to treat tumours.

A horse has a tumour near one eye.

The tumour is several centimetres across.

A vet treats the tumour using radiotherapy.

The vet puts an isotope called iridium-192 into the tumour.

Iridium-192 emits beta particles.

(a) Iridium-192 is written using this symbol

(i) How many protons does a nucleus of iridium-192 contain?

(1)

(ii) How many neutrons does a nucleus of iridium-192 contain?

(1)

(b) Iridium-191 is a different isotope of iridium. What are isotopes?

(2)

	mplete the nuclear equation that shows this decay.	
	inplote the nuclear equation that shows this accuy.	(2)
192 77	Ir \rightarrow Pt + β^-	
Ex	e tumour in the horse is several centimetres across. blain why beta radiation is more suitable than alpha or gamma radiations for this atment.	(3)
a p	e energy from the beta radiation is expected to destroy the cells in the tumour overiod of several weeks.	er
		er (1)
a p	eriod of several weeks.	
a p	The most suitable half-life for the radioactive source would be	
a p	The most suitable half-life for the radioactive source would be A 75 minutes	
a p (i)	The most suitable half-life for the radioactive source would be A 75 minutes B 75 hours	
a p (i)	The most suitable half-life for the radioactive source would be A 75 minutes B 75 hours C 75 days	

