

SEQUENCE LISTING

<110> DODO, HORTENSE W.
ARNTZEN, CHARLES J.
KONAN, KOFFI N'DA
VIQUEZ, OLGA

120> DOWN-REGULATION AND SILENCING OF ALLERGEN GENES IN TRANSGENIC PEANUT SEEDS

130> 072121/0104

<140> 09/715,036
<141> 2000-11-20

<150> 60/167,255
<151> 1999-11-19

<160> 8

<170> PatentIn Ver. 2.1

<210> 1
<211> 1162
<212> DNA
<213> *Arachis hypogaea*

<220>
<221> CDS
<222> (110) .. (730)

<400> 1
tccttacgcg aaatacgggc agacatggcc tgcccggtta ttattattt tgacacagac 60
caactggtaa tggttagcgac cggcgctcag ctggaattcg cggccgcca atg gcc aag 118
Met Ala Lys
1

ctc acc ata cta gta gcc ctc gcc ctt ttc ctc ctc gct gcc cac gca 166
 Leu Thr Ile Leu Val Ala Leu Ala Leu Phe Leu Leu Ala Ala His Ala
 5 10 15

tct	gcg	agg	cag	cag	tgg	gaa	ctc	caa	gga	gac	aga	aga	tgc	cag	agc	214
Ser	Ala	Arg	Gln	Gln	Trp	Glu	Leu	Gln	Gly	Asp	Arg	Arg	Cys	Gln	Ser	
20					25					30					35	

cag ctc gag agg gcg aac ctg agg ccc tgc gag caa cat ctc atg cag 262
 Gln Leu Glu Arg Ala Asn Leu Arg Pro Cys Glu Gln His Leu Met Gln
 40 45 50

aag atc caa cgt gac gag gat tca tat gaa cg^g gac cc^g tac agc cct 310
 Lys Ile Gln Arg Asp Glu Asp Ser Tyr Glu Arg Asp Pro Tyr Ser Pro
 55 60 65

agt cag gat ccg tac agc cct agt cca tat gat cgg aga ggc gct gga 358
 Ser Gln Asp Pro Tyr Ser Pro Ser Pro Tyr Asp Arg Arg Gly Ala Gly
 70 75 80

tcc tct cag cac caa gag agg tgt tgc aat gag ctg aac gag ttt gag	406
Ser Ser Gln His Gln Glu Arg Cys Cys Asn Glu Leu Asn Glu Phe Glu	
85 90 95	
aac aac caa agg tgc atg tgc gag gca ttg caa cag atc atg gag aac	454
Asn Asn Gln Arg Cys Met Cys Glu Ala Leu Gln Gln Ile Met Glu Asn	
100 105 110 115	
cag agc gat agg ttg cag ggg agg caa cag gag caa cag ttc aag agg	502
Gln Ser Asp Arg Leu Gln Gly Arg Gln Gln Glu Gln Gln Phe Lys Arg	
120 125 130	
gag ctc agg aac ttg cct caa cag tgc ggc ctt agg gca cca cag cgt	550
Glu Leu Arg Asn Leu Pro Gln Gln Cys Gly Leu Arg Ala Pro Gln Arg	
135 140 145	
tgc gac ttg gac gtc gaa agt ggc ggc agg cgg ccg cga att ccg ccg	598
Cys Asp Leu Asp Val Glu Ser Gly Gly Arg Arg Pro Arg Ile Pro Pro	
150 155 160	
ata ctg acg ggc tcc agg agt cgt cgc cac caa tcc cca tat gga aac	646
Ile Leu Thr Gly Ser Arg Ser Arg Arg His Gln Ser Pro Tyr Gly Asn	
165 170 175	
cgt cga tat tca gcc atg tgc ctt ctt ccg cgt gca gca gat ggc gat	694
Arg Arg Tyr Ser Ala Met Cys Leu Leu Pro Arg Ala Ala Asp Gly Asp	
180 185 190 195	
ggc tgg ttt cca tca gtt gct gtt gac tgt agc ggc tgatgttcaa	740
Gly Trp Phe Pro Ser Val Ala Val Asp Cys Ser Gly	
200 205	
ctggaaagtcg ccgcgccact ggtgtggcc ataattcaat tcgcgcgtcc cgcagcgcag	800
accgttttcg ctcggaaaga cgtacgggt atacatgtct gacaatggca gatcccagcg	860
gtcaaaacag gcggcagtaa ggcggtcggg atagtttct tgcggcccta atccgagcca	920
gtttacccgc tctgctacct gcgccagctg gcagttcaag ccaatccgcg ccggatgcgg	980
tgtatcgctc gccacttcaa catcaacggt aatcgccatt tgaccactac catcaatccg	1040
gttagtttc cggctgataa ataaaggttt tcccctgatg ctgccacgc tgagcggtcg	1100
taatcagcac cgcatcaaca agtgtatTTT gccgtgcact gcaacaacgc tggttcgggc	1160
tg	1162
<210> 2	
<211> 207	
<212> PRT	
<213> Arachis hypogaea	
<400> 2	
Met Ala Lys Leu Thr Ile Leu Val Ala Leu Ala Leu Phe Leu Leu Ala	
1 5 10 15	

Ala His Ala Ser Ala Arg Gln Gln Trp Glu Leu Gln Gly Asp Arg Arg
 20 25 30

Cys Gln Ser Gln Leu Glu Arg Ala Asn Leu Arg Pro Cys Glu Gln His
 35 40 45

Leu Met Gln Lys Ile Gln Arg Asp Glu Asp Ser Tyr Glu Arg Asp Pro
 50 55 60

Tyr Ser Pro Ser Gln Asp Pro Tyr Ser Pro Ser Pro Tyr Asp Arg Arg
 65 70 75 80

Gly Ala Gly Ser Ser Gln His Gln Glu Arg Cys Cys Asn Glu Leu Asn
 85 90 95

Glu Phe Glu Asn Asn Gln Arg Cys Met Cys Glu Ala Leu Gln Gln Ile
 100 105 110

Met Glu Asn Gln Ser Asp Arg Leu Gln Gly Arg Gln Gln Glu Gln Gln
 115 120 125

Phe Lys Arg Glu Leu Arg Asn Leu Pro Gln Gln Cys Gly Leu Arg Ala
 130 135 140

Pro Gln Arg Cys Asp Leu Asp Val Glu Ser Gly Gly Arg Arg Pro Arg
 145 150 155 160

Ile Pro Pro Ile Leu Thr Gly Ser Arg Ser Arg Arg His Gln Ser Pro
 165 170 175

Tyr Gly Asn Arg Arg Tyr Ser Ala Met Cys Leu Leu Pro Arg Ala Ala
 180 185 190

Asp Gly Asp Gly Trp Phe Pro Ser Val Ala Val Asp Cys Ser Gly
 195 200 205

<210> 3
 <211> 682
 <212> DNA
 <213> Arachis hypogaea

<400> 3

gacacagacc aactggtaat ggttagcgacc ggcgctcagc tggaattcgc ggccgccaat 60
 ggccaagctc accatactag tagccctcgc ccttttcctc ctcgctgccc acgcatactgc 120
 gaggcagcag tgggaaactcc aaggagacag aagatgccag agccagctcg agagggcgaa 180
 cctgaggccc tgcgagcaac atctcatgca gaagatccaa cgtgacgagg attcatatga 240
 acgggaccgg tacagcccta gtcaggatcc gtacagccct agtccatatg atcggagagg 300
 cgctggatcc tctcagcacc aagagaggtg ttgcaatgag ctgaacgagt ttgagaacaa 360
 ccaaagggtgc atgtgcgagg cattgcaaca gatcatggag aaccagagcg ataggttgca 420
 ggggaggcaa caggagcaac agttcaagag ggagctcagg aacttgcctc aacagtgcgg 480
 ccttagggca ccacagcggt gcgacttggc cgtcgaaagt ggcggcaggc ggccgcgaat 540
 tccggccata ctgacgggct ccaggagtcg tcgcccaccaa tccccatatg gaaaccgtcg 600
 atattcagcc atgtgccttc ttccgcgtgc agcagatggc gatggctggt ttccatcagt 660
 tgctgttgac tgttagggct ga 682

<210> 4
 <211> 1853
 <212> DNA
 <213> Arachis hypogaea

<400> 4

atggctaagc ttcttgagct ttctttgc ttttgctttc tagttctggg agctagcagc	60
atctccttca ggcagcagcc ggaggagaat gcgtgccagt tccagcgct caatgcgcag	120
agacctgaca accgcattga atcggagggc gtttacattt agacttggaa ccccaacaac	180
caggagttcg aatgcgcgg cgtcgcctc tctcgcttag tcctccgccc caacgcctt	240
cgtaggcctt tctactccaa tgctccccag gagatcttca tccagcaagg aaggggatac	300
tttgggttga tattccctgg ttgtccttagc acatatgaag agcctgcaca acaaggacgc	360
cgatatcagt cccaaagacc accaagacgt ttgcaagaag aagaccaaag ccaacaccaa	420
caagatagtc accagaaggt gcaccgttc aatgagggtg atctcattgc agttcccacc	480
ggtgttgctt tctggctgta caacgaccac gacactgatg ttgttgctgt ttctcttact	540
gacaccaaca acaacgacaa ccagcttcat cagttccca ggagattcaa tttggctggg	600
aaccacgagc aagagttctt aaggtaccag caacaaagca gacaaagcag acgaagaagc	660
ttaccatata gcccatacag cccgcatagt cggcctagac gagaagagcg tgaatttcgc	720
cctcgaggac agcacagccg cagagaacga gcaggacaag aagaagaaga cgaagggtgga	780
aacatcttca gcggcttcac gccggagttc ctggacaacaag cttccaggt tgacgacaga	840
cagattgtgc aaaatctgtg gggcgagaac gagagtgaag aagagggagc cattgtgacg	900
gtgaggggag gcctcagaat cttgagccca gatggAACGA gaggtgcccga cgaagaagag	960
gaatacgtat aagatcaata tgaataccat gaacaggatg gaaggcgtgg cagggaaagc	1020
agaggcgggg ggaatggat tgaagagacg atctgcaccg catgtttaa aaagaacatt	1080
ggtgaaaca gatcccctca catctacat cctcagcgct gtttcaactca aaactgcccac	1140
gatctcaacc ttctaatcct tagtggtctt ggacttagtg ctgaatatgg aaatctctac	1200
aggaatgcat tgggggtccc tcactacaac accaacgcac acagcatcat atatgcattt	1260
aggggacggg ctcacgtgca agtgggtggac agcaacggca acagagtgtt ctagcaggag	1320
cttcaagagg gtcacgttct tgggtgcca cagaacttcg ccgtggctgg gaagtcccag	1380
agcgagaact tcgaataacgt ggcattcaag acagattcaa ggcccaagcat agccaacttt	1440
gccggtaaaa actccttcat agataacctg ccggaggagg tgggtcaaa ttcatatggc	1500
ctcccaaggg agcaggcaag gcagcttaag aacaacaacc cttcaagtt ctgcgttcca	1560
ccttttcagc agtctccgag ggctgtggct taaaaacgac cagttttt tgcaagcgtg	1620
ttatccacta acataactt ttgccacaaa tgaataat aataataaga agaataatgt	1680
agtttaatt tttagtatga ataagaatac aaagggcat tggcccttt ttgttaaga	1740
tcggaatgta acatatgtgc aatgagcaga tatggagaaa acctttgcg ggaaaaacat	1800
gaataataaa agaagtatg gtctcagca aaaaaaaaaaaa aaaaaaaaaaaa aaa	1853

<210> 5
 <211> 2032
 <212> DNA
 <213> Arachis hypogaea

<400> 5

aataatcata tatattcata aatcatctat ataagtagta gcaggagcaa tgagagggag	60
ggtttctcca ctgtatgtgt tgcttagggat cttgtcctg gttttagttt ctgcacgcac	120
tgc当地tca tcaccttacc agaagaaaac agagaacccc tgc当地caga ggtgc当地cca	180
gagttgtcaa caggaaccgg atgacttggaa gcaaaaggca tgc当地tcc gctgcaccaa	240
gctcgagttat gatcctcgat gtgtctatga tcctcgagga cacactggca ccaccaacca	300
acgttcccctt ccaggggagc ggacacgtgg cc当地caaccc ggagactacg atgatgaccg	360
ccgtcaaccc cgaagagagg aaggaggccg atggggacca gctggaccga gggagcgtga	420
aagagaagaa gactggagac aaccaagaga agattggagg cgaccaagtc atcagcagcc	480
acggaaaata aggcccgaag gaagagaagg agaacaagag tggggacac caggtagcca	540
tgtgagggaa gaaacatctc ggaacaaccc ttctacttc cc当地caaggc ggtttagcac	600
ccgctacggg aaccaaaaacg gtaggatccg gtc当地cgag aggtttgacc aaaggtcaag	660
gcagtttcag aatctccaga atcaccgtat tggcagatc gaggccaaac ctaacactct	720
tgttcttccc aagcaccgtg atgctgataa catccttgc tttccagcaag ggcaagccac	780

cgtgaccgta gcaaatggca ataacagaaa gagcttaat cttgacgagg gccatgcact 840
 cagaatccca tccggtttca tttcctacat cttgaaccgc catgacaacc agaacctcag 900
 agtagctaaa atctccatgc ccgttaaacac acccgccag tttgaggatt tcttcccgcc 960
 gagcagccga gaccaatcat cctacttgca gggcttcage aggaatacgt tggaggccgc 1020
 cttcaatgcg gaattcaatg agatacggag ggtgctgtt gaagagaatg caggaggtga 1080
 gcaagaggag agagggcaga ggcgatggag tactcgaggt agtgagaaca atgaaggagt 1140
 gatagtcaaa gtgtcaaagg agcacgttga agaacttact aagcacgcta aatccgtctc 1200
 aaagaaaggc tccgaagaag agggagatat caccaaccca atcaacttga gagaaggcga 1260
 gcccgttctt tctaacaact ttgggaagtt atttgaggtg aagccagaca agaagaaccc 1320
 ccagcttcag gacctggaca ttagtgcac ctgtgttagag atcaaagaag gagctttgat 1380
 gctcccacac ttcaactcaa aggccatggt tatcgctcgtc gtcaacaaag gaactggaaa 1440
 ccttgaactc gtggctgtaa gaaaagagca acaacagagg ggacggcggg aagaagagga 1500
 ggacgaagac gaagaagagg agggaaagtaa cagagaggtg cgtaggtaca cagcgagggt 1560
 gaaggaaggc gatgtgttca tcatgcccggc agctcatcca gttagccatca acgcttcctc 1620
 cgaactccat ctgcttggct tcggtatcaa cgctgaaaac aaccacagaa tcttccttgc 1680
 aggtgataag gacaatgtga tagaccagat agagaagcaa gcgaaggatt tagcattccc 1740
 tgggtcgggt gaacaagttt agaagctcat caaaaaccag aaggaatctc actttgtgag 1800
 tgctcgcttcaatctcaat ctcaatctcc gtcgtctcct gagaagagt ctcctgagaa 1860
 agaggatcaa gaggaggaaa accaaggagg gaagggtcca ctccttcaa ttttgaaggc 1920
 ttttaactga gaatggaggc aacttggat gtatcgataa taagatcacg cttttgtact 1980
 ctactatcca aaaacttatac aataaataaa aacgtttgc cgttttct cc 2032

<210> 6
 <211> 743
 <212> DNA
 <213> Arachis hypogaea

<400> 6
 agaaagagaa gacaagatgt cgtggcaaacc ctacgtcgat aaccacccctc tctgcgaaat 60
 tgaaggcgac cacctctcct ccggcccaat cctcgccaa gacggcggtg tttggctca 120
 gagctctcat ttccctcagt tcaaggctga ggaaattact gctatcatga acgactttgc 180
 tgagcctgga tcgctcgccc ctaccgggtt gtacctcggt ggcaccaaatt acatggttat 240
 ccaagggtgaa cccggagcta tcattccagg gaagaagggt cctgggtggtg ttaccattga 300
 gaagacgaat caggcgatcaa tcatcgaaat ctacgataaag ccaatgactc cggggcagtg 360
 caacatgatt gttgaaaggc tgggtgatta tctcattgtat acgggtcttt aagtcccttt 420
 tgttatattct tgttatctgc ttgcttattt cactggctcc tatacgaggc ttgcgcattcga 480
 tggccaaaga gaatgctcga ttgttagtgcataatattaa ttgatgggtt ttcaaaagtc 540
 atgggatctg cgtcttaggaa agaagttatg gtgcttgaga agtgaatgtat aactatcatc 600
 tctgttgttgc tgcttttag cgggtatctg tatacaattt acaagtggtt ttaatgctgt 660
 gggcataaaat gggcattaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaaaa 720
 aaaaaaaaaa aaaaaaaaaa aaa 743

<210> 7
 <211> 80
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Probe

<400> 7
 ctagtagccc tcggccctttt cctcctcgct gcccacgcatt ctgcgaggca gcagtggaa 60
 ctccaaggag acagaagatg 80

<210> 8
<211> 62
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Probe

<400> 8
gtgcattgc gaggcattgc aacagatcat ggagaaccag agcgataggt tgcagggag 60
62
gc