INTRO TO DATA SCIENCE LECTURE 2: MACHINE LEARNING

LAST TIME:

- FIRST LOOK AT DATA SCIENCE & THE DATA MINING WORKFLOW
- DATA VISUALIZATION WITH R & GGPLOT2
- FIRST LINEAR MODEL

QUESTIONS?

What's big data?

The practical viewpoint:

- $O(n^2)$ algorithm feasible: small data
- Pits on one machine: medium data
- Ooesn't fit on one machine: big data

- I. WHAT IS MACHINE LEARNING?
- II. MACHINE LEARNING PROBLEMS

EXERCISES:

III. MULTIPLE REGRESSION & FEATURE EXTRACTION

LEARNING?

WHAT IS MACHINE LEARNING?

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can *learn from data*."

WHAT IS MACHINE LEARNING?

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can *learn from data*."

"The core of machine learning deals with representation and generalization..."

- representation extracting structure from data
- generalization making predictions from data

II. MACHINE LEARNING PROBLEMS

TYPES OF LEARNING PROBLEMS

supervised unsupervised

making predictions extracting structure

generalization

supervised unsupervised

making predictions extracting structure

representation

continuous	categorical
quantitative	qualitative

TYPES OF DATA

continuous

categorical

NOTE

The space where data live is called the *feature* space.

Each point in this space is called a *record*.

quantitative

qualitative

	continuous	categorical
supervised unsupervised	regression dimension reduction	classification clustering

supervised unsupervised

continuous

regression
dimension reduction

categorical

classification clustering

NOTE

We will implement solutions using *models* and *algorithms*.

Each will fall into one of these four buckets depending on the type of problem and type of data.

DATA SCIENCE AND MACHINE LEARNING

YOU WANT TO GO HERE

ANSWER: PROBLEM SOLVING!

NOTE

Implementing solutions to ML problems is the focus of this course!

III. RELATIONSHIPS AMONG SEVERAL VARIABLES

EXERCISE — MULTIPLE REGRESSION (BACKWARD ELIMINATION)

KEY OBJECTIVES

- Create a regression model using several independent variables

- Extract meaningful features

TOOLS

- R (plot, lm, update)

ASSUMPTIONS FOR LINEAR REGRESSION

- Linearity of the relationship between dependent and independent variables (doesn't mean the relation between y and x has to be linear since we can use transformations if y and x as well)
- 2) **Independence** of the errors
- 3) Homoscedasticity (constant variance of the errors)
 - 1) versus time
 - 2) Versus the predictions or any independent variables
- 4) **Normality** of the error distribution

INTRO TO DATA SCIENCE

DISCUSSION