ADA

SINGLE COMMON POWERTRAIN LUBRICANT (SCPL) DEVELOPMENT (PART 2)

INTERIM REPORT TFLRF No. 442

by
Adam C. Brandt
Edwin A. Frame
Gregory A. Hansen
Robert W. Warden

U.S. Army TARDEC Fuels and Lubricants Research Facility Southwest Research Institute[®] (SwRI[®]) San Antonio, TX

for Allen S. Comfort

U.S. Army TARDEC Force Projection Technologies Warren, Michigan

Contract No. W56HZV-09-C-0100 (WD17-Task 3)

UNCLASSIFIED: Distribution Statement A. Approved for public release

April 2014

Disclaimers

Reference herein to any specific commercial company, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not be used for advertising or product endorsement purposes.

Contracted Author

As the author(s) is(are) not a Government employee(s), this document was only reviewed for export controls, and improper Army association or emblem usage considerations. All other legal considerations are the responsibility of the author and his/her/their employer(s).

DTIC Availability Notice

Qualified requestors may obtain copies of this report from the Defense Technical Information Center, Attn: DTIC-OCC, 8725 John J. Kingman Road, Suite 0944, Fort Belvoir, Virginia 22060-6218.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.

SINGLE COMMON POWERTRAIN LUBRICANT (SCPL) DEVELOPMENT (PART 2)

INTERIM REPORT TFLRF No. 442

by
Adam C. Brandt
Edwin A. Frame
Gregory A. Hansen
Robert W. Warden

U.S. Army TARDEC Fuels and Lubricants Research Facility Southwest Research Institute[®] (SwRI[®]) San Antonio, TX

for Allen S. Comfort

U.S. Army TARDEC Force Projection Technologies Warren, Michigan

Contract No. W56HZV-09-C-0100 (WD17-Task 3) SwRI[®] Project No. 08.14734.17

UNCLASSIFIED: Distribution Statement A. Approved for public release

April 2014

Approved by:

Gary B. Bessee, Director

U.S. Army TARDEC Fuels and Lubricants

Research Facility (SwRI®)

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 3. DATES COVERED (From - To) 2. REPORT TYPE June 2011 - April 2014 07-01-2013 Interim Report 5a. CONTRACT NUMBER 4. TITLE AND SUBTITLE SINGLE COMMON POWERTRAIN LUBRICANT (SCPL) DEVELOPMENT (PART 2) W56HZV-09-C-0100 **5b. GRANT NUMBER** 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) **5d. PROJECT NUMBER** Brandt, Adam C; Frame, Edwin A; Hansen, Gregory A; Warden, Robert W SwRI 08.14734.17 5e. TASK NUMBER WD 17 **5f. WORK UNIT NUMBER** 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT **NUMBER** U.S. Army TARDEC Fuels and Lubricants Research Facility (SwRI[®]) TFLRF No. 442 Southwest Research Institute® P.O. Drawer 28510 San Antonio, TX 78228-0510 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) U.S. Army RDECOM 11. SPONSOR/MONITOR'S REPORT U.S. Army TARDEC NUMBER(S) Force Projection Technologies Warren, MI 48397-5000

12. DISTRIBUTION / AVAILABILITY STATEMENT

UNCLASSIFIED: Dist A

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The U.S. Army has a desire to consolidate multiple MIL specification fluids into a single specification, or Single Common Powertrain Lubricant (SCPL). The application of this fluid would include engine lubrication, power shift transmission operation, and limited use in hydraulic systems, and must be designed to operate in ambients ranging from low temperature arctic, to high temperature desert type conditions. The U.S. Army TARDEC Fuels and Lubricants Research Facility (TFLRF) located at Southwest Research Institute (SwRI) has aided TARDEC in the initial development of the SCPL. This report covers the testing of two revised candidates identified in TFLRF Report No. 418. Testing included high temperate endurance in the General Engine Products 6.5L(T) diesel engine to assess engine protection and oil performance at elevated temperatures, 2-cycle diesel engine compatibility using the Detroit Diesel 6V53T, multiple industry standardized transmission tests (Allison C4, Caterpillar TO-4, John Deere JDQ) to assess frictional performance and driveline durability, and quantification of fuel consumption improvement over standard military oils through viscosity reduction in the SCPL.

15. SUBJECT TERMS

Single Common Powertrain Lubricant (SCPL), General Engine Products (GEP) 6.5L(T), Detroit Diesel Corporation (DDC) 6V53T, High Temperature Oil Endurance, MIL-PRF-46167, MIL-PRF-2104, Total Acid Number (TAN), Total Base Number (TBN), Wear Metals, Oxidation, Fuel Economy, Pumping Losses, Transmission, Caterpillar TO-4, Allison C4, John Deere JDO-96

16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a. REPORT	b. ABSTRACT	c. THIS PAGE			19b. TELEPHONE NUMBER (include area code)
Unclassified	Unclassified	Unclassified	Unclassified	585	,

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18

EXECUTIVE SUMMARY

The U.S. Army has a desire to consolidate multiple lubricant specifications into a single specification, or Single Common Powertrain Lubricant (SCPL). The application of this fluid would include engine lubrication, power shift transmission operation, and limited use in hydraulic systems where MIL-PRF-2104 is currently used. The SCPL must be designed to operate in ambients ranging from low temperature arctic, to high temperature desert type conditions, representative of the wide range of potential military operating conditions.

This report is the second in a series covering the SCPL development, and focuses on the refinement of two initial SCPL candidates identified during research reported under TFLRF Interim Report 418, Single Common Powertrain Lubricant (SCPL) Development (Part 1). All SCPL testing reported was completed at the U.S. Army TARDEC Fuels and Lubricants Research Facility (TFLRF), located at Southwest Research Institute (SwRI) in San Antonio, Texas. Performance investigations reported here of the revised SCPL candidates included: chemical and physical analysis, high temperature endurance testing in the General Engine Products (GEP) 6.5L(T) engine, 2-cycle diesel engine compatibility using the Detroit Diesel Corporation (DDC) 6V53T, American Society for Testing and Materials (ASTM) D5966 roller follower wear protection, frictional analysis in industry standardized transmission tests, and the quantification of fuel consumption improvement through lowered viscosities.

Two initial SCPL candidates were identified in TFLRF Interim Report 418 to receive further development and testing for the U.S. Army SCPL program. Results from initial testing was shared with industry suppliers, and specific goals were outlined for their improvement. The two initial SCPL candidates were then reformulated by each respective supplier and resubmitted as revised candidates for continued testing.

Consistent with the initial testing, the General Engine Products (GEP) 6.5L(T) engine, from the High Mobility Multipurpose Wheeled Vehicle (HMMWV), was used to complete high temperature oil endurance evaluations on each revised candidate. This allowed for comparisons between revised and initial candidates, as well as performance comparisons to current

commercial products and current MIL specification products tested and reported in IR418. End of test used oil analysis for each of these tests can be seen below in Table ES1 (Note – Full data for 2104G, 2104H, CJ-4, LO253071, and LO251746 oils were reported in IR418). Both candidates improved their performance in the GEP 6.5L(T) test from their respective initial evaluations. Revised candidate LO271510 improved from 168 hours to 196 hours, still falling slightly short of the 210 hour target. Revised candidate LO268869 improved from 126 hours to the targeted 210 hours, while still maintaining favorable oil condition and low accumulation rates of critical wear metals.

Table ES1. All Tests, End of Test Used Oil Analysis

Property	ASTM Test	MIL SP	EC & Com	mercial	SCPL Candidates					
Lubricant		2104G	2104H	CJ-4	LO253071 Initial	. LO268869 Revised	LO251746 Initial	LO271510 Revised		
Hours Density	D4052	84 0.9161	154 0.9276	210 0.920	126 0.896	210 0.8874	168 0.8859	196 0.894		
Viscosity @ 100°C	D4052	0.5101	0.5270	0.520	0.050	0.0074	0.0033	0.054		
(cSt)	D445	17.58	25.47	25.59	12.17	13.64	11.96	15.63		
Total Base Number (mg KOH/g)	D4739	0.74	1.17	0.82	2.61	4.37	3.84	4.55		
Total Acid Number (mg KOH/g)	D664	12.87	17.1	11.06	10.86	7.33	9.19	9.67		
Oxidation	E168									
(Abs./cm)	FTNG	171.63	217.99	117.53	136.69	68.76	99.08	111.73		
Nitration	E168									
(Abs./cm)	FTNG	36.6	33.76	39.21	80.5	25.97	52.77	51.99		
Soot	Soot	1.982	2.864	2.695	2.214	2.082	2.597	2.568		
Wear Metals	D5185									
(ppm)	20100	_	_	F 0	44	4.4		_		
Al Sb		5 <1	5 <1	5.0 <1	11 <1	11 <1	6 <1	5 <1		
Ba		<1	<1	<1	<1	<1	<1	<1		
В		5	4	40.0	4	3	55	22		
Са		3620	3056	3522.0	4629	5393	1183	1469		
Cr		6 234	6 345	6.0 65.0	6 311	10 47	7 48	6 61		
Cu Fe		264	468	355.0	476	447	541	452		
Pb		332	693	378.0	564	92	152	232		
Mg		13	380	30.0	17	21	1669	1995		
Mn Mo		5 22	6 21	6.0 24.0	6 28	7 32	7 124	6 132		
Ni		6	6	6.0	8	8	9	9		
P		1089	1302	1334.0	1366	1607	1318	1476		
Si		51 <1	38	46.0 <1	56	46 <1	53 <1	56		
Ag Na		8	<1 <5	8.0	<1 22	10	12	<1 9		
Sn		17	24	17.0	20	18	18	15		
Zn		1544	1914	1775.0	2306	2747	1780	1979		
K		<5 1	<5 <1	13.0 1.0	8 2	10 2	<5 <1	<5 <1		
Sr V		<1	<1	1.0 <1	<1	<1	<1	<1		
Ti		<1	<1	<1	<1	1	<1	<1		
Cd		1	<1	<1	2	<1	<1	<1		

New in this round of testing was a 2-cycle diesel compatibility test with the SCPL candidates. A Detroit Diesel Corporation (DDC) 6V53T, from the M113A3 Armored Personnel Carrier (APC), was used to evaluate the two revised candidates and a MIL-PRF-2104H OE/HDO 15W-40 baseline to determine compatibility and performance in a 2-cycle diesel application. Both SCPL candidates provided comparable engine protection of the critical piston and liner interface in the 2-cycle engine when compared to the baseline MIL-PRF-2104H OE/HDO 15W-40 evaluation at normal ambient type engine operation. With respect to engine cleanliness, both revised SCPL candidates showed a reduced trend of deposit formation, reducing overall deposits and a tendency to experience a cold stuck condition on the 2nd compression ring when compared to the baseline 2104H evaluation.

To determine transmission compatibility, several industry standardized transmission tests were completed on the revised SCPL candidates, including selected: Allison C4, Caterpillar TO-4, and John Deer Qualification tests. As with testing reported in IR418, the revised SCPL candidates were found to have mixed results overall, with no candidates being able to pass all tests (Note: JDQ and CAT TO-4 Seq 1222 tests are not required tests by the MIL-PRF-2104 product specification). There was some improvements from the first round of testing, and none of the oils tested showed signs of catastrophic incompatibilities. It is again expected that the revised candidates will be able to pass the various frictional evaluations with minor formulation changes.

Fuel consumption improvement evaluations were completed to quantify improvement with the use of low viscosity lubricants over traditional higher viscosity diesel engine oils. The GEP 6.5L(T) engine was used for testing due to its utilization of a fully mechanical fuel injection system which adds greater consistency to fuel consumption measurements. The 14 mode fuel consumption test cycle developed and reported in IR418 from data acquired during HMMWV field operations at Ft. Hood, Texas, was used to quantify fuel consumption changes. As expected, the revised candidate SCPL oils showed similar fuel consumption improvement results as seen from the initial candidates compared to the straight SAE 40 grade. This is attributed to the similar viscometric properties measured from the revised candidates. Overall, the fuel consumption improvement was greater than 1.5% over standard military diesel engine oils.

It is the recommendation of TFLRF staff that both revised candidates continue to be considered for the SCPL program. Focused formulation changes need to be made for both candidates to improve transmission performance without negatively impacting engine durability, oil degradation, and 2–cycle compatibility. Long term considerations for the SCPL program should include: high temperature 2–cycle diesel engine compatibility testing, high output air-cooled diesel engine compatibility, detailed investigation of ring pack wear changes due to lowered viscosities, and the conduct of SCPL field demonstrations at U.S. Army Installations at cold, moderate, and high temperature climate conditions.

FOREWORD/ACKNOWLEDGMENTS

The U.S. Army TARDEC Fuel and Lubricants Research Facility (TFLRF) located at Southwest Research Institute (SwRI), San Antonio, Texas, performed this work during the period June 2011 through April 2014 under Contract No. W56HZV-09-C-0100. The U.S. Army Tank Automotive RD&E Center, Force Projection Technologies, Warren, Michigan administered the project. Mr. Eric Sattler (AMSRD-TAR-D/MS110) served as the TARDEC contracting officer's technical representative. Mr. Allen Comfort of TARDEC served as project technical monitor.

The authors would like to acknowledge the contribution of the TFLRF technical support staff.

TABLE OF CONTENTS

Sect	<u>tion</u>			<u>Page</u>
EXE	ECUT	IVE SI	JMMARY	v
			CKNOWLEDGMENTS	
			ES	
			ES	
ACI	RONY	MS Al	ND ABBREVIATIONS	xiv
1.0			CTION & BACKGROUND	
2.0	OBJ	ECTIV	E & APPROACH	3
	2.1		NE DURABILITY TESTING	
	2.2		SMISSION COMPATIBILITY	
	2.3	Engin	NE FUEL CONSUMPTION IMPROVEMENT	5
3.0	DIS	CUSSI	ON OF RESULTS	6
	3.1	SCPL	CANDIDATE CHEMICAL & PHYSICAL PROPERTIES	6
	3.2	GEP 6	5.5L(T) Engine Durability Testing	8
		3.2.1	Test Stand Construction	8
		3.2.2	Test Cycle Operation	10
		3.2.3	Engine Metrology and Ratings	
		3.2.4	Revised Candidate Evaluation Results	14
	3.3	2-Cyc	CLE ENGINE COMPATIBILITY TESTING	23
		3.3.1	Test Stand Construction	23
		3.3.2	Test Cycle Operation	
		3.3.3	Engine Metrology and Ratings	
		3.3.4	MIL-PRF-2104H and Revised Candidate Evaluation Results	
	3.4		Roller Follower Wear Testing	
	3.5	TRAN	SMISSION COMPATIBILITY	
		3.5.1	Allison C4 Testing	
		3.5.2	Caterpillar TO-4 Testing	
		3.5.3	John Deere JDQ-96 Wet Brake Testing	
	3.6	Engin	NE FUEL CONSUMPTION IMPROVEMENT	51
		3.6.1	Stand Configuration and Cycle Development	51
		3.6.2	Fuel Consumption Test Procedure	
		3.6.3	Candidate Results	53
4.0			IONS	
5.0			ENDATIONS	
6.0	DEL	EDENI	CEC	57

APPENDICES

APPENDIX – A1	EVALUATION OF SCPL CANDIDATE - LO268869
APPENDIX – A2	EVALUATION OF SCPL CANDIDATE - LO271510
APPENDIX-B1	EVALUATION OF MIL - PRF - 2104H - LO257264
APPENDIX – B2	EVALUATION OF SCPL CANDIDATE - LO268869
APPENDIX - C1	ROLLER FOLLOWER WEAR TEST - LO268869
APPENDIX - C2	ROLLER FOLLOWER WEAR TEST - LO271510
APPENDIX – D1 (PA	ART 1) TYPE C-4 GRAPHITE CLUTCH FRICTION TEST - LO268869
APPENDIX – D1 (PA	ART 2) Type C-4 Paper Clutch Friction Test - LO268869
APPENDIX – D2 (PA	ART 1) – TYPE C-4 GRAPHITE CLUTCH FRICTION TEST - LO271510
APPENDIX – D2 (PA	ART 2) Type C-4 Paper Clutch Friction Test - LO271510
APPENDIX – E1	CATERPILLAR TO-4 FRICTION PROPERTIES, VC-70 - LO268869
APPENDIX – E2	CATERPILLAR TO-4 FRICTION PROPERTIES, VC-70 - LO271510
APPENDIX-F1	JOHN DEERE JDQ-96 PERFORMED USING 1400 SERIES AXLE - LO268869
APPENDIX-F2	JOHN DEERE JDQ-96 PERFORMED USING 1400 SERIES AXLE - LO271510
APPENDIX G	GEP 6.5L(T) TEST FUEL

LIST OF TABLES

<u>Table</u>	Page
Table 1 . Baseline & SCPL Candidate Preliminary Chemical & Physical Properties	7
Table 2 . Tactical Wheeled Vehicle Test Cycle Operating Conditions	
Table 3 . Used Oil Analysis Tests	
Table 4 . SCPL Revised Candidate Evaluations, Rated Engine Operation Summary	
Table 5 . SCPL Candidate Evaluations, Accumulated Oil Consumption Rate	
Table 6. SCPL Revised Candidate Evaluations, Main Bearing Mass Changes, grams	
Table 7. SCPL Revised Candidate Evaluations, Connecting Rod Bearing Mass Changes.	
grams	
Table 8 . SCPL Revised Candidate Evaluations, Cam Lobe Peak Surface Variation	20
Table 9 . SCPL Candidate Evaluations, Piston Ring Mass Changes	
Table 10 . SCPL Candidate Evaluations, Piston Deposits	22
Table 11 . DDC 6V53T Operating Conditions	
Table 12 . Used Oil Analysis Tests	27
Table 13. DDC 6V53T Average Bore Diameter Changes, Baseline & SCPL Revised	
Candidates	31
Table 14. DDC 6V53T Piston to Liner Clearance Changes, Baseline & SCPL Revised	
Candidates	32
Table 15 . DDC 6V53T Cylinder Liner Ratings	33
Table 16 . DDC 6V53T Piston Skirt Ratings	34
Table 17. DDC 6V53T Ring Mass Changes, Baseline & SCPL Revised Candidates	35
Table 18. DDC 6V53T Top, Second, and Third Ring Radial Thickness, Baseline &	
	36
Table 19. DDC 6V53T Slipper Bushing Mass Changes, Baseline & SCPL Revised	
Candidates	
Table 20 . DDC 6V53T Slipper Bushing Exposed Copper Ratings	38
Table 21 . DDC 6V53T Connecting Rod Bearing Mass Changes, Baseline & SCPL	
Revised Candidates	
Table 22 . DDC 6V53T Post-Test Piston Deposit Ratings	
Table 23 DDC 6V53T Ring Pack Ratings	
Table 24 . DDC 6V53T Intake Port Plugging	
Table 25 . ASTM D5966 Roller Follower Wear Results	
Table 26 . Revised SCPL Candidate Evaluations, Allison C4 Paper Friction	
Table 27 . Revised SCPL Candidate Evaluations, Allison C4 Graphite Friction Testing	
Table 28 . Revised SCPL Candidate Evaluations, Caterpillar TO-4 Friction Testing	
Table 29 . SCPL Revised Candidate Evaluations, JDQ-96 Wet Brake Compatibility	
Table 30 . GEP 6.5L(T) Fuel Consumption Test Points	
Table 31 . LO271510 Fuel Consumption Improvement	
Table 32 . LO268869 Fuel Consumption Improvement	
Table 33 . SAE 40 Baseline Shift	55

LIST OF FIGURES

<u>Figure</u>	<u>Page</u>
Figure 1 . General Engine Products 6.5L(T) Test Cell Installation	9
Figure 2 . SCPL Revised Candidate Evaluations, TAN/TBN Response	
Figure 3 . SCPL Revised Candidate Evaluations, Oxidation and Nitration Response	16
Figure 4 . SCPL Revised Candidate Evaluations, Lead and Copper Accumulation	17
Figure 5 . Detroit Diesel 6V53T Test Cell Installation	24
Figure 6 . Revised SCPL Candidate LO271510, CAT TO-4 SEQ1222 Dynamic	
Coefficient of Friction vs Load Trace	48

ACRONYMS AND ABBREVIATIONS

ΔPI_	American	Petroleum	Inctitute
Ari -	- Аппенсан	renoieum	mstitute

ASTM – American Society of Testing Materials

ATF – automatic transmission fluid

bhp – brake horse power

bsfc – brake specific fuel consumption

CAT - Caterpillar

CL - chem. lab

coeff - coefficient

COTR – Contracting Officer Technical Representative

cP - centipoise

CRC - Coordinating Research Council

cSt – centistokes

DDC - Detroit Diesel Corporation

EOT – end of test

FRRET – friction retention

ft - feet

GEP - General Engine Products

GM – General Motors

GOCO - Government Owned, Contractor Operated

HDO – heavy duty oil

HMMWV – High Mobility Multipurpose Wheeled Vehicle

hp – horsepower

hr – hour

JDQ - John Deere Qualification

JP8 – jet propulsion 8

lb – pound

ft-lb - pound feet

LO – lab oil

MIL – military

mils – (unit of measure) thousands of an inch

N-Newton

NA – naturally aspriated

NVH – noise, vibration, and harshness

OE – oil engine

OEA – oil engine arctic

OEM – original equipment manufacturer

ppm - parts per million

psi – pounds per square inch

psiA – pounds per square inch absolute

RPM – revolutions per minute

SAE – Society of Automotive Engineers

SCPL – Single Common Powertrain Lubricant

SwRI – Southwest Research Institute

TAN – total acid number

TARDEC - Tank Automotive Research and Development Engineering Center

TBN – total base number

TFLRF - TARDEC Fuels and Lubricants Research Facility

1.0 INTRODUCTION & BACKGROUND

The U.S. Army has a desire to consolidate multiple lubricant specifications into a single specification, or Single Common Powertrain Lubricant (SCPL). The application of this fluid would include engine lubrication, power shift transmission operation, and limited use in hydraulic systems where MIL-PRF-2104 products are currently used. The SCPL must be designed to operate in ambients ranging from low temperature arctic to high temperature desert conditions, representative of the wide range of potential military operating conditions. In addition to this universal application, the SCPL must meet or exceed performance currently attained by approved MIL specification products. By achieving these goals, multiple lubricant specifications could be reduced into a single specification, or SCPL, that could be used successfully in tactical and combat vehicles in any seasonal or geographical location. The development of this lubricant has the potential to reduce the logistical burden on the military's supply chain, reduce operating costs, and improve performance beyond current approved and fielded products.

Due to the extreme application requirements and performance goals, it is desirable that the SCPL be formulated from synthetic basestocks. These synthetic basestocks typically have a higher cost when compared to traditional petroleum derived basestocks. To offset the increased price, several additional performance goals must be met, such as increased vehicle fuel efficiency, and extended drain intervals. Current research has shown that there is a potential reduction in fuel consumption through the use of low viscosity lubricating fluids [1,2]. This change in fuel consumption is attributed to the reduction in mechanical losses within the system. These mechanical losses can be related to shifts in frictional properties, pumping efficiencies, and overall bulk churning of the lubricant in mechanical applications. Although reductions in fuel consumption through viscosity changes are expected to be relatively small (1-2%), when incrementally multiplied over a large group of vehicles such as the military's combat and tactical fleet, the fuel savings can be substantial. These efficiency increases through reduced viscosities complement the SCPL's requirement to provide extreme cold climate performance, as lower fluid viscosities must be obtained to ensure pumpability at low temperatures than typical average climate heavy duty diesel oils. Premium synthetic basestocks also typically offer an increased

resistance to oil degradation, which allows the extension of time required between drain intervals. This extension of service intervals, combined with the increased efficiency through lowered viscosity, helps counteract increased costs associated with synthetic basestocks [3].

This report is the second in a series covering the SCPL development, and focuses on the refinement of two initial SCPL candidates identified during research reported in TFLRF Interim Report 418, Single Common Powertrain Lubricant (SCPL) Development (hereinafter referred to as Part 1) [4]. All SCPL testing reported was completed at the government owned, contractor operated (GOCO) U.S. Army TARDEC Fuels and Lubricants Research Facility (TFLRF), located at Southwest Research Institute (SwRI) in San Antonio, Texas. Performance investigations reported here of the revised SCPL candidates included: chemical and physical analysis, high temperature endurance testing in the General Engine Products (GEP) 6.5L(T) engine, 2-cycle diesel engine compatibility using the Detroit Diesel Corporation (DDC) 6V53T, American Society for Testing and Materials (ASTM) D5966 roller follower wear protection, frictional analysis in industry standardized transmission tests, and the quantification of fuel consumption improvement through lowered viscosities.

2.0 OBJECTIVE & APPROACH

The overall objective of this project was to evaluate two SCPL candidates that have been revised for improved performance based off of previously attained performance results from SCPL Development Part 1. This data would reinforce the previously completed feasibility study [5,6,7], preliminary development efforts (Part 1), and verify candidate advancement towards the goals of the SCPL.

2.1 ENGINE DURABILITY TESTING

Due to the low temperature properties required to meet SCPL performance guidelines, candidate SCPLs were expected to be formulated to attain lower viscometric properties than those seen in traditional heavy duty diesel engine oils. To ensure that these low viscosity lubricants provided adequate engine component protection at all operating conditions, particularly desert operation, high temperature engine oil endurance testing was completed in an effort to assess each revised candidates performance at worst case conditions. Consistent with testing completed during Part 1, the General Engine Products (GEP) 6.5L(T) diesel engine, as used in the High Mobility Multipurpose Wheeled Vehicles (HMMWV), was selected as the test bed for determining overall engine durability. The GEP 6.5L(T) engine is a 6.5L V8, turbocharged, non-intercooled, indirect injected, roller follower, cam in block engine. Fueling is controlled by a mechanical Stanadyne DB2-5079 rotary injection pump in a pump-line-nozzle configuration, and produces approximately 170hp on JP-8 fuel. The GEP 6.5L(T) engine was selected primarily because of its traditionally rapid degradation of engine oil during use (i.e., high severity), and the engine family's high density in the current military fleet (engine family includes the GEP 6.2L(NA). 6.5L(NA), and 6.5L(T) in all variants of the HMMWV). Results from revised candidate testing were used to determine performance improvement in comparison to each initial first round candidate evaluation, MIL-PRF-2104 (G and H revisions) evaluations, and the commercial 15W-40 baselines completed during Part 1.

In addition to engine durability using the GEP 6.5L(T), each revised candidate was also evaluated using the Detroit Diesel Corporation (DDC) 6V53T. The DDC 6V53T test was used to determine 2-cycle diesel compatibility, as 2-cycle engines have historically shown to be sensitive to variation in engine oils due to their own unique lubricant requirements. The 6V53T was chosen over other 2-cycle variants as it represents the highest power density two-cycle diesel engine in the Army's fleet. For this test, candidate oils must be able to provide adequate protection of the interface between the piston and liner surface to prevent cylinder scuffing, as well as protect the load bearing slipper bushings located between each connecting rod and articulated piston assembly. The DDC 6V53T is a 318C.I., turbo-supercharged, non-intercooled, direct injected, V6 diesel engine. Fueling is controlled through cam driven mechanical unit injectors, and the engine produces approximately 235hp using JP-8 fuel. The DDC 6V53T tested was configured as used in the M113A3 Armored Personnel Carrier (APC). A MIL-PRF-2104H oil evaluation was completed prior to SCPL testing to establish a current baseline for revised SCPL candidate comparison. Following the baseline, each revised candidate SCPL was tested to determine performance with respect to engine wear, oil life expectancy, and deposit formation.

In addition, each revised candidate SCPL was also evaluated in the American Society of Testing Methods (ASTM) D5966-10 roller follower wear test. This test evaluates a lubricants ability to protect roller follower valve train components from wear in high load at low to moderate engine speed scenarios. This test utilizes a General Motors (GM) 6.5L(NA) diesel engine which is the basis of GEP family of engines powering the HMMWV, and specifically monitors critical roller axle wear on the hydraulic lifters.

2.2 TRANSMISSION COMPATIBILITY

In addition to engine crankcase applications, the SCPL is intended to be used in power shift transmissions where MIL-PRF-2104 products are currently utilized. To ensure revised SCPL candidate compatibility in these applications, several industry established standardized transmission tests were completed to assess each of the candidates' frictional properties. These tests included:

- Caterpillar TO-4
 - o Sequence 1220 Sintered Bronze
 - o Sequence 1222 Wheel Brake Paper
- Allison C4
 - High Energy Friction Graphite
 - High Energy Friction Paper
- John Deere Qualification
 - o JDQ-96 Wet Brake (abbreviated 1k cycles)

From these standardized transmission tests, revised candidate SCPL results could be compared to automatic transmission fluid (ATF) reference tests and past results of current MIL-PRF-2104 products. As with current MIL-PRF-2104 products, it is expected that the utilization of formulated engine oils in powershift transmission applications could forfeit some of the refined benefits of a purpose built ATF. Although these refinements are good goals for the SCPL, the primary requirement for candidates in these tests was to ensure that adequate performance was retained (i.e., acceptable frictional properties, torque capacity, protection, etc), and that the SCPL would meet or exceed the performance of MIL-PRF-2104 oils currently in utilization. Operator feel and noise, vibration, and harshness (NVH) effects are important in the commercial formulation of an ATF, but are of lesser concern to the military in comparison to overall functionality and durability of the equipment.

2.3 ENGINE FUEL CONSUMPTION IMPROVEMENT

Revised SCPL candidate lubricants were also evaluated for fuel consumption changes using a GEP 6.5L(T) diesel engine dynamometer test. Consistent with testing under Part 1, the cycle used to measure fuel consumption changes evaluated each lubricant over a range of load points and oil sump temperatures derived from previously acquired data from HMMWV operation at Ft. Hood, TX [8]. Unlike testing completed during Part 1 that used both new and "aged" lubricants to determine fuel consumption changes, only the new lubricants were tested on the revised candidate evaluations.

3.0 DISCUSSION OF RESULTS

The following sections outline and discuss test results acquired during revised candidate testing of the SCPL. These include: revised candidate chemical and physical analysis results, engine compatibility and oil endurance testing (includes GEP 6.5L(T), DDC 6V53T, and ASTM D5966 RFWT), standardized transmission compatibility tests, and fuel consumption improvement quantification.

3.1 SCPL CANDIDATE CHEMICAL & PHYSICAL PROPERTIES

Each revised SCPL candidate received was initially tested to document its chemical and physical properties to determine how closely it aligned with the goals of the SCPL. Analytical test results from each revised SCPL candidate can be seen in Table 1. Results from their respective initial candidates from Part 1 were included into the table for comparison. Observations from the analyses are listed below:

- Both revised candidates appear to have a slightly increased viscosity from the initial candidates, but still classify as an SAE 0W20 viscosity grade lubricant
- NOACK volatility increased for both candidates outside of the desired range as stated in the original request for experimental products (target 10%, minimum acceptable 11%)
- Shear stability improved for LO268869, remained consistent with LO271510
- All other properties were comparable from initial to revised candidate

Table 1. Baseline & SCPL Candidate Preliminary Chemical & Physical Properties

=	_	_	_	Initial Candid	dates (Part 1)	Revised Candi	dates (Part 2)
=	_	_	_	а	b	а	b
_	_	-	_	LO-253071	LO-251746	LO-268869	LO-271510
Method	Temp	Property	Units				
D445	-40°C	Viscosity	cSt	7661.6	11158	14798.2	12885.34
D445	40°C	Viscosity	cSt	43.36	42.52	47.39	45.34
D445	100°C	High Temp Viscosity	cSt	8.42	8.13	8.6	8.49
D445 LT	-48°C	Low Temp Viscosity	cSt	36325.09	38427.23	27003.4*	**
D2983	-40°C	Brookfield Viscosity	cPs	10878	11158	12517	11917
D4683 TBS	150°C	Tapered Bearing Shear Viscosity	cPs	2.69	2.59	2.73	2.68
D4684	-40°C	Apparent Viscosity	mPa/s	10300	10000	12000	11000
D5293 COLD	-35°C	Cold Cranking	mPa/s	4190	4070	4864	4319
D5800		Noack Volitility	wt%	10	12.4	12	14.3
D7109	100°C	Shear Stability			<u>. </u>		
		Viscosity @ 100C after 30 Passes	cSt	8.33	8.11	8.59	8.43
		Viscosity loss after 30 Passes	% Loss	1.07	0.25	0.12	0.71
		Viscosity @ 100C after 90 Passes	cSt	8.22	8.07	8.55	8.47
		Viscosity loss after 90 Passes	% Loss	2.38	0.74	0.58	0.24
D97		Pour Point	°C	-60	<-60	<-63	<-60

^{*}Results is suspect. No re-test results available.

^{**}Initial sample found too viscous to obtain repeatable results. Re-test conducted by lube supplier yielded 47,939 cSt.

3.2 GEP 6.5L(T) ENGINE DURABILITY TESTING

The following section discusses the results obtained during the GEP 6.5L(T) engine durability portion of the SCPL development. Focus areas include construction of the engine durability test stand, description of the test cycle, and the revised SCPL candidate evaluation results (used oil analysis, engine metrology, and deposit ratings).

3.2.1 Test Stand Construction

The same GEP 6.5L(T) high temperature engine oil endurance test stand constructed during Part 1 of the SCPL development was used to evaluate each revised candidate during Part 2. As previously discussed, the GEP 6.5L(T) diesel engine was selected for SCPL evaluations due to its high severity on engine lubricants, and its high density in the military's tactical wheeled fleet. The GEP 6.5L(T) engine utilized for testing was purchased directly from General Engine Products, a subsidiary of AM General, the original equipment manufacturer (OEM) for the HMMWV. The 2HT GEP 6.5L(T) engine model tested is rated at 190 hp at 3400 rpm, and 380 lb-ft at 1800 rpm using diesel fuel. When utilizing JP-8, as was the case during the SCPL testing, power levels typically drop to around 170 hp and 320 lb-ft of torque at their respective peaks. To serve as a consistent test bed, this dedicated engine test stand was built to complete all of the high temperature evaluations for each initial and revised SCPL candidates. A picture of the GEP 6.5L(T) engine installation can be seen in Figure 1.

Figure 1. General Engine Products 6.5L(T) Test Cell Installation

The 6.5L(T) engine was mounted in a test cell at TFLRF with an engine dynamometer and equipped with all necessary ancillary equipment to operate the engine, with the exception of accessory equipment that would be installed and utilized in a vehicle (i.e., alternator, cooling fan, etc.). The bulleted list below outlines the basic hardware configuration utilized on the GEP 6.5L(T) engine dyno evaluations:

- The engine used SwRI developed PRISM data acquisition software to monitor and control engine operation throughout testing. Monitored engine parameters included all critical temperatures, pressures, and flow rates, as well as the engine's speed and output power/torque.
- Engine loading was provided by an eddy current engine dynamometer and an electro
 mechanical throttle actuation system. The dynamometer controlled overall engine speed,
 while the throttle actuation system adjusted the injection pump's rack position via a
 throttle cable to the injection pump rack.

- Liquid-liquid heat exchangers were used to regulate the engine water jacket and oil sump temperatures with building supplied process water.
- Fuel was supplied from bulk storage tanks to an engine "day-tank" that served as a common location for the engine supply and return lines. The engine's fuel consumption was monitored by a coriolis flow meter for measuring the make-up fuel required to maintain the day tank at a constant volume.
- Inlet fuel temperature was controlled by a secondary heater control loop to maintain steady temperatures throughout testing. The control loop maintained a reservoir of a glycol-water solution at a specified temperature, and was then used as a heat source to elevate the incoming fuel to the desired set point through a liquid-liquid heat exchanger.
- Engine inlet air was drawn past a chilled water core to lower intake air temperatures prior to the engine air filtering system. This was required to maintain exhaust gas temperatures at safe levels during the long segments of continuous operation at rated speed and load during the test cycle. Air was filtered through an OEM-style air filter housing with an adjusting valve to vary intake air depression prior to the turbocharger inlet.
- Engine exhaust gases were ducted into an exhaust ventilation system integrated into the engine laboratory building. Back-pressure was controlled through a butterfly valve located in the exhaust stack prior to the buildings common exhaust header exiting the test cell.
- Engine blow-by gases were ducted into a drum to capture any entrained oil, and then vented through a hot-wire flow meter to monitor engine blow-by rates. Waste gases were then ducted to the buildings exhaust ventilation system at ambient pressure (to not effect crankcase pressure) to expel blow-by gasses from the test cell.
- Engine coolant was a 60/40 blend of ethylene glycol and de-ionized water.
- Fuel used during testing was JP-8 blended at location from commercially available Jet A with a double max-treat rate of lubricity enhancer DCI-4A. (Appendix G).

3.2.2 Test Cycle Operation

Consistent with Part 1, the test cycle used for revised candidate evaluations was a modified version of the 210 hour Tactical Wheeled Vehicle cycle as outlined in CRC Report No. 406, Development of Military Fuel/Lubricant/Engine Compatibility Test [9]. At time of its

publishing, the standard 210 hour tactical wheeled vehicle laboratory engine cycle was correlated to 20,000 miles of actual military vehicle proving ground operation. For SCPL testing, modifications were made to the test temperature specifications to further increase the severity on the oil being tested in an effort to raise the standards for the baseline and candidate tests. Test termination would occur at the completion of the scheduled 210 hours, or upon major oil degradation, which ever occurred first. The test cycle consisted of alternating between two hours at rated speed and load followed by one hour at no-load idle. This was completed for 14 hours daily, followed by a 10 hour engine-off soak period to allow time for chemical reactions to take place in the oil sump. Engine oil temperatures were elevated during rated speed and load test conditions to simulate high ambient temperatures typical of desert operations. During no-load idle steps, engine temperatures (oil sump and coolant) were lowered to stress the lubricant through thermal cycling. The critical engine operating parameters controlled throughout testing are specified in Table 2. For consistency, engine output torque was controlled to a value of 256 lb-ft of torque for each test. This is a slight reduction of the typical total capable torque output of the GEP 6.5L(T), but was selected so that any full load output variation between test engines would not bias any single SCPL evaluation. To target this output torque, the throttle actuation control system would slightly back off of the injection pump rack position to meet the specified output, and control it over the test duration. This provided a consistent loading of all the internal engine components, so that each lubricant tested would be subjected to the same internal engine conditions as possible. The oil sump temperature specification of 260 °F for the rated speed and load step was selected based off a 4% increase in general requirement for MIL-PRF-2104 lubricants to be capable of continuous operation at 250 °F. This further stressed the SCPL candidates ability to control engine oil oxidation, which is a function of time at elevated temperatures. Coolant jacket outlet temperature during the rated speed and load step was maintained at 205 °F to maintain engine integrity throughout the test cycle.

Table 2. Tactical Wheeled Vehicle Test Cycle Operating Conditions

Parameter	Rated Speed & Load	No-Load Idle
Engine Speed [RPM]	3400 +/- 25	900 +/- 25
Engine Output Torque [lb-ft]	256 +/- 5	Not specified
Water Jacket Out [°F]	205 +/- 5	100 +/- 5
Oil Sump [°F]	260 +/- 5	125 +/- 5

Used engine oil samples were collected every 14 hours for chemical and physical analysis. These data were used to assess the condition of the lubricant and to determine test termination if necessary. Tests conducted on daily samples are outlined below in Table 3. The oil level of the engine was replenished daily after sampling to restore it to its proper level. All engine oil additions and samples were weighed throughout testing to track engine oil consumption.

Table 3. Used Oil Analysis Tests

Every 14hrs						
ASTM	ASTM D4739 Total Base Number					
ASTM D664 Total Acid Number						
ASTM D445 Kinematic Viscosity @ 100°C						
ASTM API Gravity API Gravity						
ASTM	D4052	Density				
ASTM	TGA SOOT	TGA Soot				
ASTM	E168	Oxidation				
	E168	Nitration				
ASTM	D5185	Wear Metals by ICP				

Every 70hrs							
ASTM	ASTM D445 Kinematic Viscosity @ 40°C						
ASTM	D2270	Kinematic Viscosity Index					

3.2.3 Engine Metrology and Ratings

Each revised SCPL evaluation started with a new GEP 6.5L(T) engine. Prior to testing, each engine was disassembled to complete a pre-test inspection and metrology process. Engines were inspected for manufacturing defects (corrected as needed), and measurements of critical engine components were taken to document pre-test engine condition. These pre-test metrology procedures included measurements of:

- Crankshaft main bearing mass
- Connecting rod bearing mass
- Top, second, and bottom piston ring mass
- Top, and second piston ring radial thickness
- Piston ring end gap (in block)
- Piston skirt diameter

DRAFT

Piston bore diameter (measured top, mid, and bottom of bore in the transverse and longitudinal directions)

After the inspection and metrology process was completed, engines were reassembled according to factory specifications. During assembly, parts requiring lubrication were assembled using an additive free assembly lubricant. This is consistent with many ASTM standardized tests procedures, as to remove any bias on subsequent lubricant test data.

At the completion of each endurance test, the engine was once again disassembled and inspected. This allowed for documentation of wear experienced over the test duration. Since each test was terminated based on used oil condition and not operated for a fixed period of time, straight across comparisons of engine wear for each lubricant from metrology measurements cannot be completed. Many wear parameters are a function of total engine operation time, with the lubricant condition having a smaller impact. For example, ring wear experienced in an 84 hour test cannot be directly compared to a 140 hour test due to the difference in test length. Regardless, metrology measurements still prove useful in showing indications of overall wear patterns, and help to identify any large outliers during testing. Similar to pretest metrology, post-test procedures included measurements of:

- Crankshaft main bearing mass
- Connecting rod bearing mass
- Top, second, and bottom piston ring mass
- Top, and second piston ring radial thickness
- Piston ring end gap (in block)
- Piston skirt diameter
- Piston bore diameter (measured top, mid, and bottom bore in the transverse and longitudinal direction)

In addition to post-test metrology, engine pistons and valves received deposit ratings to quantify the amount and location of carbonaceous and lacquer type deposits present. This process was

completed following industry standardized ASTM deposits and rating procedures [10]. This was done to quantify the overall cleanliness of the lubricant and its ability to control harmful engine deposits when tested under severe conditions.

3.2.4 Revised Candidate Evaluation Results

Table 4 shows the engine operating summary for each revised SCPL candidate run during the rated speed and load step compared to its initial candidate evaluation. This shows the consistency that was achieved between the two revised candidate evaluation tests, and the initial candidates evaluated during Part 1. For both revised candidates, the overall averaged torque was slightly below the target 256 lb-ft, but within the +/- 5 lb-ft repeatability margin. Due to variation in absolute engine output between each production based engine, some engines only marginally meet the 256 lb-ft target at the start of testing, and upon oil aging and thickening within the crankcase, the engine output power/torque would begin to drop below the threshold. This small variation in engine torque output is not considered to have biased these evaluations, as overall engine oil sump temperature is expected to be the driving factor in lubricant degradation. The consistency achieved for the more critical engine oil sump temperature can be seen in Table 4.

Table 4. SCPL Revised Candidate Evaluations, Rated Engine Operation Summary

		LO2	53071	LO26	8869		LO25	51746	LO271510	
		Initial C	andidate	Revised (Candidate		Initial C	andidate	Revised (Candidate
		Rated Co	onditions	Rated Co	onditions		Rated Co	onditions	Rated Co	onditions
		(3400	RPM)	(3400	RPM)		(3400	(3400 RPM)		RPM)
Perameter:	Units:	Average	Std. Dev.	Average	Std. Dev.		Average	Std. Dev.	Average	Std. Dev.
Engine Speed	RPM	3400.02	0.82	3400.01	0.73		3400.00	0.72	3400.01	0.76
Torque*	lb-ft	251.40	4.43	253.98	2.61		256.24	1.74	254.23	2.88
Fuel Flow	lb/hr	82.51	1.06	79.24	0.79		77.86	0.89	80.52	0.83
Power*	bhp	162.74	2.87	164.42	1.68		165.88	1.11	164.58	1.86
BSFC*	lb/bhp*hr	0.507	0.012	0.482	0.007		0.469	0.006	0.489	0.006
Temperatures:										
Coolant In	°F	190.31	0.92	190.06	1.09		191.39	0.73	190.40	0.92
Coolant Out	°F	205.00	0.84	205.00	1.01		204.99	0.66	204.99	0.84
Oil Sump	°F	260.02	0.41	260.05	0.44		259.96	0.37	260.05	0.50
Fuel In	°F	95.00	0.31	95.02	0.31		95.01	0.33	95.01	0.34
Intake Air	°F	69.72	4.99	74.94	3.62		69.95	2.24	68.33	3.34
Cylinder 1 Exhaust	°F	1148.60	9.38	1136.32	15.48		1098.38	14.59	1135.40	16.16
Cylinder 2 Exhaust	°F	1104.56	14.95	1204.35	10.67		1158.88	18.88	1205.01	13.90
Cylinder 3 Exhaust	°F	1216.91	13.84	1186.67	14.53		1224.78	31.99	1206.48	16.88
Cylinder 4 Exhaust	°F	1158.22	17.08	1141.38	14.00		1115.13	16.48	1144.29	15.49
Cylinder 5 Exhaust	°F	1173.29	9.48	1152.53	16.09		1181.29	25.83	1162.88	14.26
Cylinder 6 Exhaust	°F	1206.17	21.87	1162.03	13.27		1118.51	17.07	1166.94	17.23
Cylinder 7 Exhaust	°F	1133.30	10.52	1150.77	14.52		1123.50	19.87	1144.28	18.44
Cylinder 8 Exhaust	°F	1189.49	23.12	1147.97	11.32		1144.84	18.46	1164.26	13.81
Pressures:										
Oil Galley	psi	34.70	0.74	35.94	0.56		37.13	0.99	36.96	1.59
Ambient Pressure	psiA	14.25	0.05	14.26	0.05		14.23	0.04	14.30	0.07
Boost Pressure	psi	4.95	0.11	4.32	0.08		3.96	0.09	4.84	0.12
	* Non-corrected Values									<u>-</u>

Figure 2 shows the TAN/TBN response of each revised candidate and its respective initial evaluation. Revised candidate LO268869 showed a large improvement in TAN/TBN control compared to its initial evaluation (LO253071). The TAN/TBN cross over for its evaluation occurred approximately 50 hours later in the test cycle, and the useful lubricant life was extended by over 80 hours. Revised candidate LO271510 showed a smaller improvement over its initial evaluation (LO251746), but still extended the useful lubricant life by 28 hours. Although this improvement was smaller, the performance achieved by its initial candidate (LO251746) was greater than that shown by LO268869's initial candidate during Part 1, so less change was expected overall. Despite the improvement shown by candidate LO271510, it still did not reach the full 210 hour test target, with testing being terminated at 196 hours due to oil condition. From comparing the slopes of the TAN/TBN curves for LO271510 to its initial evaluation (LO251746), it appears that the formulation changes had little impact on the oils overall ability to resist degradation, resulting in similar degradation rates being observed during both evaluations. In the end, the used oil condition of LO268869 at EOT is more favorable than that of LO271510.

Figure 2. SCPL Revised Candidate Evaluations, TAN/TBN Response

UNCLASSIFIED

Like the TAN/TBN results, the used oil oxidation and nitration curves presented in Figure 3 show similar trends. LO268869 showed the largest improvement over its initial candidate (LO253071) with an approximate 50% reduction in overall oxidation at end of test (EOT). LO271510 showed overall similar oxidation rates as its initial candidate (LO251746) testing which resulted in a slightly higher end of test oxidation rate due to the extended length of operation.

Figure 3. SCPL Revised Candidate Evaluations, Oxidation and Nitration Response

Figure 4 shows the lead and copper wear metal accumulations for the initial and revised SCPL evaluations. As before, revised candidate LO268869 showed much improvement from its initial evaluation (LO253071,) in which the initial candidate broke early in the test and experienced rapid accumulation of lead (Pb) and copper (Cu) wear metals topping 500 ppm and 300 ppm respectively. These wear metals are indicative of main bearing and connecting rod bearing distress, and serve as a good litmus test for this engine to monitor how well an oil is protecting critical engine components. During the LO268869 revised candidate evaluation, the overall oil condition remained favorable, which showed in these reduced key wear metals that remained under 100 ppm for over the entire 210 hour duration. Conversely, revised candidate LO271510 showed effectively no change in wear metal accumulation rates from its initial evaluation. This resulted in an overall higher total accumulation by the end of testing due to the increased test length. Lead wear metals in this evaluation approached 250 ppm at EOT.

Figure 4. SCPL Revised Candidate Evaluations, Lead and Copper Accumulation

Table 5 shows the overall accumulated oil consumption rates for the revised and initial SCPL evaluation runs. Hourly consumption rates for each revised candidate were in line with what was seen previously in Part 1. Both revised candidates showed a slightly higher consumption rate than their initial evaluation. This is likely attributed to the increased volatility that both revised candidates showed over their initial submittals.

Table 5. SCPL Candidate Evaluations, Accumulated Oil Consumption Rate

	LO253071	LO268869	LO251746	LO271510
Engine Oil Consumption [lb/hr]	0.069	0.081	0.072	0.084

Table 6 shows the main bearing mass changes for each of the revised and initial SCPL candidate evaluations. As reported during Part 1, the number three thrust bearing mass is omitted from calculations. This is due to a large variation in thrust surface wear on the number three main bearing from loading attributed to interactions between the dynamometer and engine coupling. From past experience, these varying thrust loads applied during testing have resulted in inconsistent thrust surface wear which biases main bearing mass change measurements. Both maximum and average weight change for the remaining bearings were increased from their initial evaluations. Although unusual, the overall values still fall within the range of variations (0.03 to 0.15 grams) seen during the MIL Spec and commercial 15W-40 oil evaluations completed during Part 1, and thus are not considered out of line.

Table 6. SCPL Revised Candidate Evaluations, Main Bearing Mass Changes, grams

	Main Bearing Mass Changes (grams)						
		initial	initial revised		initial	revised	
Main Bearing	Shell	LO253071	LO268869		LO251746	LO271510	
4	Тор	0.0171	0.0471		0.0257	0.0328	
1	Bottom	0.0146	0.0983		0.0237	0.0581	
2	Тор	0.0205	0.0323		0.0240	0.0319	
2	Bottom	0.0891	0.2106		0.0338	0.2133	
3	Thrust Bearing Excluded From Calculations						
4	Тор	0.0124	0.0272		0.0293	0.0359	
4	Bottom	0.0385	0.1414		0.0305	0.1148	
E	Тор	0.0777	0.0603		0.0411	0.0563	
5	Bottom	0.1066	0.0934		0.0830	0.1152	
	Maximum	0.1066	0.2106		0.0830	0.2133	
	Average	0.0471	0.0888		0.0364	0.0823	

UNCLASSIFIED

Table 7 shows the connecting rod bearing mass changes for the revised and initial SCPL candidate evaluations. Average and maximum connecting rod bearing mass changes for the revised SCPL evaluations were reduced from their initial evaluations, and result in some of the lowest values seen compared to the previous testing completed during Part 1 (0.02 to 0.04 gram variation).

Table 7. SCPL Revised Candidate Evaluations, Connecting Rod Bearing Mass Changes, grams

		-	,				
	Rod Bearing Mass Changes (grams)						
		initial	revised		initial	revised	
Rod Bearing	Shell	LO253071	LO268869		LO251746	LO271510	
1	Тор	0.1668	0.0239		0.0339	0.0131	
ı	Bottom	0.0598	0.0106		0.0347	0.0165	
2	Тор	0.0289	0.0172		0.0147	0.0157	
	Bottom	0.0374	0.0088		0.0177	0.0134	
2	Тор	0.0520	0.0473		0.0239	0.0231	
3	Bottom	0.0540	0.0361		0.0290	0.0070	
4	Тор	0.0135	0.0175		0.0431	0.0165	
4	Bottom	0.0082	0.0124		0.0695	0.0105	
5	Тор	0.0316	0.0275		0.0158	0.0136	
	Bottom	0.0612	0.0134		0.0155	0.0139	
6	Тор	0.0338	0.0264		0.0454	0.0127	
0	Bottom	0.0342	0.0153		0.0703	0.0078	
7	Тор	0.0139	0.0250		0.0664	0.0169	
/	Bottom	0.0188	0.0189		0.0564	0.0178	
8	Тор	0.0115	0.0142		0.0416	0.0164	
0	Bottom	0.0098	0.0130		0.0542	0.0165	
	r	1					
	Maximum	0.1668	0.0473		0.0703	0.0231	
	Average	0.0397	0.0205		0.0395	0.0145	

Table 8 shows the camshaft lobe peak surface variation for each of the revised and initial SCPL candidate evaluations. From testing completed during Part 1, a typical range of 1.4 to 1.9 microns was established as normal. During its initial evaluation, candidate LO253071 showed an unusually high value of 3.1 micron variation, but its revised candidate LO268869 improved on this and brought total average variation in line with normally expected values yielding a total variation of 1.7 microns. Revised candidate LO271510 also improved from its initial (LO251746) evaluation, and showed the lowest variation seen to date at 1.1 microns. This suggest that both revised candidates are adequately protecting the camshaft from wear.

Table 8. SCPL Revised Candidate Evaluations, Cam Lobe Peak Surface Variation

Cam Lobe Waviness Parameter [µm]									
	initial revised initial revised								
Cam Lobe	LO253071 LO268869			LO251746	LO271510				
1	3.49	1.73		1.74	1.07				
2	3.00	1.24		1.47	0.95				
3	3.80	1.47		1.60	0.92				
4	2.79	1.17		1.58	1.32				
5	2.24	1.66		1.38	0.83				
6	2.40	2.21		1.94	1.44				
7	2.78	1.82		1.46	1.01				
8	3.37	1.31		2.25	1.23				
9	5.34	2.24		1.53	1.18				
10	2.97	1.43		1.92	1.03				
11	2.39	0.91		1.41	1.06				
12	4.16	1.24		3.33	1.05				
13	3.04	2.06		1.72	1.10				
14	2.44	2.98		1.49	1.14				
15	3.10	1.59		1.54	1.25				
16	2.06	1.42		1.67	1.02				
Maximum	5.34	2.98		3.33	1.44				
Average	3.09	1.66		1.75	1.10				

Table 9 shows the ring pack mass loss for each of the revised and initial SCPL candidate evaluations. Average and maximum weight loss changes for both revised SCPL candidates were generally in line with what was seen during the initial evaluations (Note: for candidate LO251746 piston number 8 oil control ring, mass loss shows as 0.5625 grams. This appears to be an isolated anomaly, and is not representative of the remaining oil control rings changes on pistons 1 through 7). Ring weight loss is predominately attributed to the overall viscosity of the lubricating fluid impacting the film thickness seen at the piston liner wall interface. Since the revised candidates did not have any significant viscosity change, no large changes were expected in the weight loss measurements.

Table 9. SCPL Candidate Evaluations, Piston Ring Mass Changes

Piston Ring Mass Changes						
		initial	revised		initial	revised
Cylinder	Ring No.	LO253071	LO268869		LO251746	LO271510
	1	0.0678	0.1008		0.0768	0.0631
1	2	0.0241	0.0313		0.0260	0.0234
	3	0.0160	0.0125		0.0154	0.0121
	1	0.0661	0.0987		0.0875	0.0725
2	2	0.0290	0.0366		0.0262	0.0273
	3	0.0160	0.0143		0.0135	0.0115
	1	0.0790	0.0899		0.0914	0.0800
3	2	0.0342	0.0391		0.0247	0.0308
	3	0.0198	0.0182		0.0167	0.0138
	1	0.0676	0.0845		0.0857	0.0929
4	2	0.0252	0.0338		0.0273	0.0296
	3	0.0163	0.0170		0.0191	0.0127
	1	0.0740	0.1054		0.0786	0.0800
5	2	0.0261	0.0437		0.0264	0.0234
	3	0.0182	0.0164		0.0190	0.0116
	1	0.0993	0.0918		0.0937	0.1007
6	2	0.0328	0.0392		0.0277	0.0252
	3	0.0223	0.0163		0.0173	0.0123
	1	0.0635	0.0809		0.0905	0.0992
7	2	0.0256	0.0333		0.0236	0.0317
	3	0.0188	0.0147		0.0129	0.0131
	1	0.0828	0.0865		0.0716	0.1007
8	2	0.0277	0.0311		0.0268	0.0263
	3	0.0186	0.0188		0.5625	0.0122
Maximum Ring 1		0.0993	0.1054		0.0937	0.1007
Maximum Ring 2		0.0342	0.0437		0.0277	0.0317
Maximum Ring 3		0.0223	0.0188		0.5625	0.0138
Average	e Ring 1	0.0750	0.0923		0.0845	0.0861
Average	e Ring 2	0.0281	0.0360		0.0261	0.0272
Average Ring 3		0.0183	0.0160		0.0846	0.0124

UNCLASSIFIED

DRAFT

Lastly, Table 10 shows the 8 piston average deposit ratings for each of the revised and initial SCPL candidate evaluations. Overall deposit demerits of the revised candidates slightly increased from their initial evaluations. Total demerits were still well within ranges seen during testing completed in Part 1, and none of the deposits seen during the revised candidate evaluations would be considered excessive and harmful to engine operation.

Table 10. SCPL Candidate Evaluations, Piston Deposits

Piston Deposits					
		Cylinder	Average		
Ratings	initial	revised	initial	revised	
	LO253071	LO268869	LO251746	LO271510	
Ring Sticking					
Ring No.1	No	No	No	No	
Ring No.2	No	No	No	No	
Ring No.3	No	No	No	No	
Scuffing % Area					
Ring No.1	0	0	0	0	
Ring No.2	0	0	0	0	
Ring No.3	0	0	0	0	
Piston Crown	0	0	0	0	
Piston Skirt	0	0	0	0	
Cylinder Liner, %	0	0	0	0	
Piston Carbon, Demerits					
No.1 Groove	43.88	60.59	36.28	48.72	
No.2 Groove	0.66	3.10	5.84	3.66	
No.3 Groove	0.31	0.00	0.00	0.00	
No.1 Land	36.50	44.38	36.31	34.63	
No.2 Land	11.69	12.75	14.25	11.91	
No.3 Land	0.00	0.34	0.88	0.41	
Upper Skirt	0.00	0.00	0.00	0.00	
Under Crown	0.00	0.00	0.00	1.56	
Front Pin Bore	0.00	0.00	0.00	0.00	
Rear Pin Bore	0.00	0.00	0.00	0.00	
Piston Lacquer, Demerits					
No.1 Groove	0.00	0.02	0.00	0.00	
No.2 Groove	3.17	2.98	2.73	2.53	
No.3 Groove	2.57	1.71	1.41	1.83	
No.1 Land	0.05	0.07	0.02	0.03	
No.2 Land	1.89	1.77	2.20	1.30	
No.3 Land	2.37	2.08	1.21	1.79	
Upper Skirt	0.34	0.63	0.54	0.65	
Under Crown	2.95	3.64	4.77	3.86	
Front Pin Bore	1.26	1.37	0.80	1.47	
Rear Pin Bore	1.20	1.47	0.74	1.40	
Total, Demerits	108.84	136.90	107.98	115.73	
Miscellanous					
Top Groove Fill, %	38.63	56.63	28.50	40.13	
Intermediate Groove Fill, %	0.00	2.38	2.13	1.50	
Top Land Heavy Carbon, %	18.38	27.13	16.38	14.38	
Top Lan Flaked Carbon, %	0.00	0.00	0.00	0.00	
Valve Tulip Deposits, Merits					
Exahust	9.2	9.2	9.0	9.0	
Intake	8.6	7.3	8.6	7.3	
IIICANO	0.0	1.0	0.0	1.0	

UNCLASSIFIED

Full 6.5L(T) test report data from each revised candidate test (LO268869 and LO271510) can be seen in Appendix A1, and A2 respectively. Full test report data from each initial SCPL candidate can be found attached to TFLRF Interim Report 418, *Single Common Powertrain Development* [4].

3.3 2-CYCLE ENGINE COMPATIBILITY TESTING

The following section discusses the results obtained during the 2-cycle diesel engine compatibility portion of the SCPL development. Focus areas included construction of the engine test stand, description of the test cycle, and the baseline MIL-PRF-2104H 15W-40 and revised SCPL candidate evaluation results (metrology and deposit ratings).

3.3.1 Test Stand Construction

A DDC 6V53T engine test stand was constructed to evaluate SCPL compatibility with a 2-cycle diesel engine. Similar to the GEP 6.5L(T) testing, the same engine test stand was used to evaluate all of the lubricants for consistency. Evaluations included the current MIL-PRF-2104H 15W-40 OE/HDO to establish a known baseline condition (consistent with actual current military applications), followed by testing of the revised candidates LO268869 and LO271510. The DDC 6V53T was purchased new from the manufacturer through the local Detroit Diesel authorized dealer (Stewart and Stevenson LLC of San Antonio TX). The engine was configured in its military version, built according to the specifications for the current M113A3 APC. The DDC 6V53T as tested produced approximately 235hp and 560 lb-ft of torque using JP-8 fuel. A picture of the DDC 6V53T engine installation can be seen on the following page in Figure 5.

Figure 5. Detroit Diesel 6V53T Test Cell Installation

Like the GEP 6.5L(T), the 6V53T engine was mounted in an engine dynamometer test cell for SCPL testing and equipped with all necessary ancillary equipment to operate the engine, with the exception of accessory equipment that would be installed and utilized in a vehicle (i.e., alternator, cooling fan, etc.). The bulleted list below outlines the basic test stand configuration utilized in the SCPL engine oil test program:

- The engine used SwRI developed PRISM data acquisition software to monitor and control engine operation throughout testing. Monitored engine parameters included all critical temperatures, pressures, and flow rates, as well as engine speed and output power/torque.
- Engine loading was provided by an eddy current engine dynamometer and an electro
 mechanical throttle actuation system. The dynamometer controlled overall engine speed,
 while the throttle actuation system adjusted the rack position via a throttle cable to
 manipulate engine load.

- A liquid-liquid heat exchanger was used to regulate the engine water jacket temperature with building supplied process water.
- The oil filter housing and oil cooler was removed from the engine and their inlets and outlets were plugged. The original engine oil filter housing was then remotely mounted to the test stand and connected via steel braided Teflon hose to the engines oil filter outlet port. A remote liquid-liquid heat exchanger was then added in series with the stainless braided Teflon oil lines (after the oil filter), and its return was plumbed back to the engine via the engine's front lower cover. These modifications were completed to allow easier servicing of the engine's airbox covers for routine bore inspections during testing, as well as independent control of the engine oil sump temperature by removing the oil cooler from the engine water jacket. Changes made to the engine had no impact on its internal oiling/lubrication.
- Fuel was supplied from bulk storage tanks to an engine "day-tank" that served as a
 common location for the engine supply and return lines. The engine's fuel consumption
 was monitored by a coriolis flow meter for measuring the make-up fuel required to
 maintain the day tank at a constant volume.
- Inlet fuel temperature was controlled by a heater control loop to maintain steady inlet temperature throughout testing. The control loop maintained a reservoir of a glycol-water solution at a specified temperature, and was then used as a heat source to elevate the temperature of incoming fuel to the desired set point through a liquid-liquid heat exchanger.
- Engine inlet air was drawn past a chilled (process water) water core to lower intake air temperatures prior to the engine air filtering system. Air was filtered through an OEM-style air filter housing with an adjusting valve to vary intake air restriction prior to the turbocharger inlet.
- Engine exhaust gases were ducted into an exhaust ventilation system integrated into the
 engine laboratory building. Back-pressure was controlled via a butterfly valve located in
 the exhaust stack between the engine and the buildings common exhaust header before
 exiting the test cell.

- Engine blow-by gases were ducted into a drum to capture any entrained oil, and then vented through a hot-wire flow meter to monitor engine blow-by rates. Waste gasses were then ducted to the buildings exhaust ventilation system at ambient pressure (to not effect crankcase pressure) to expel blow-by gasses from the test cell.
- Engine coolant was a 60/40 blend of ethylene glycol and de-ionized water.
- Fuel used during testing was JP-8 blended at location from commercially available Jet A with a double max-treat rate of lubricity enhancer DCI-4A. (Appendix I)

3.3.2 Test Cycle Operation

The test cycle used for 2-cycle compatibility evaluations was based on procedures outlined in Federal Test Method Standard No. 791C, Method 355, Performance of Engine Lubricating Oils in a Two-Cycle Diesel Engine Under Cyclic, Turbo-Supercharged Conditions [11]. Some modifications were made to selected operating conditions as the engine output and torque characteristics of the current 6V53T model have changed since the original establishment of the test method. Despite this, the general operation of the engine test cycle remained unchanged. The test cycle included cyclic modes of 0.5 hours at idle, 2 hours at max power, 0.5 hours at idle, and 2 hours at max torque. This was repeated 4 times daily for a total of 20 hours runtime, accumulating 240 hours over a 12 day test. Daily operation was followed by a 4 hour engine off soak prior to the next day's running to allow thermal cycling of the lubricant. Similar to the GEP 6.5L(T), the cycle called out in this Federal Test Method was based off of work reported under CRC Report No. 406, Development of Military Fuel/Lubricant/Engine Compatibility Test [9]. As with the tactical wheeled vehicle cycle, the report also outlined a 240 hour tracked vehicle cycle that was correlated at the time of its publishing to 4,000 miles of actual military tracked vehicle proving ground operation.

Prior to the start of testing, and upon completion of every 60 hours an engine airbox inspection was completed to assess the condition of the piston skirts, ring faces, and cylinder liner. This allowed a quasi real time monitoring of the oils performance in protecting critical engine components throughout the test duration. Bore inspections were completed by passing a borescope through the engines airbox and liner intake ports and rating the condition of the liner

surface. Per the procedure, if any single liner experienced greater than 30% scuffing while other liners remained in good condition, a single cylinder kit could be replaced and testing continued. This could only be completed once during the test cycle, otherwise testing was to be terminated. If at any time multiple liners experience severe scuffing, and was deemed progressive in nature, the test was to be terminated. Severe scuffing could potentially lead to failure of the liner O-ring and cause catastrophic engine damage.

During testing, engine oil sump and coolant temperatures were controlled to ensure test consistency and severity for each lubricant tested. No engine oil changes were made during the test cycle, and testing was continued until the completed 240 hours, or upon the occurrence of major oil degradation or liner scuffing. Table 11 below shows the operation conditions for the 6V53T testing.

Table 11. DDC 6V53T Operating Conditions

Parameter	Max Power	Max Torque	Idle
Engine Speed [RPM]	2800 +/- 25	1600 +/- 25	950 +/- 25
Water Jacket Out [°F]	170 +/- 5	170 +/- 5	170+/- 5
Oil Sump [°F]	245+/- 5	230 +/- 5	220 +/- 5

Used engine oil samples were collected every 20 hours for analysis. These samples were used to assess the condition of the lubricant and to determine test termination if necessary. Extreme liner scuffing could also be identified by sharp changes in iron accumulation rates in the used oil. Tests conducted on daily samples are outlined below in Table 12. Engine oil level was replenished daily after sampling to restore its capacity. All engine oil additions and samples were weighed throughout testing to track engine oil consumption.

Table 12. Used Oil Analysis Tests

Test Method	Description
ASTM D445	Kinematic Viscosity @ 100 °C
ASTM D4739	Total Base Number
ASTM D664	Total Acid Number
ASTM D5185	Wear Metals by ICP

3.3.3 Engine Metrology and Ratings

Each lubricant was evaluated using the same DDC 6V53T engine after completing an "in-frame" rebuild. The primary item of focus for 2-cycle compatibility was the engines liner and piston, commonly referred to as the cylinder kit. Each cylinder kit underwent a metrology process before use to fully document its starting condition prior to build up. The pre-test metrology process included measurements of the cylinder kit, as well as other critical engine parameters to ensure integrity of the engine.

Pre-test metrology included:

- Piston ring clearances (end gap & side clearance, all)
- Top, second, and third ring radial thickness
- Piston ring mass, all
- Upper oil control ring and expander tension (reference only measurement)
- Piston skirt diameter
- Liner bore (free standing, T/AT & F/B) at:
 - 13 mm from top
 - 25 mm above ports
 - 25 mm below ports
 - 13mm from bottom
- Liner surface finish (single pass above ports)
- Engine block bore (top & bottom, T/AT & F/B)
- Slipper bushing tin plate thickness (reference only measurement)
- Slipper bushing mass
- Connecting rod bearing mass
- Connecting rod bearing to crank journal clearance
- Exhaust valve recession
- Crankshaft endplay

After the inspection and metrology process was completed, the engine was reassembled according to factory specifications. As with the 6.5L(T) testing, any parts requiring lubrication during assembly were lubricated using an additive free lubricant in order to remove any bias on subsequent lubricant test data.

At the completion of each test, the engine was again disassembled and inspected. This allowed for documentation of wear experienced over the test duration, and assessment of the piston skirt, rings, and liner condition. Similar to pretest metrology, post-test metrology procedures included measurements of:

- Piston ring clearances (end gap only, all)
- Top, second, and third ring radial thickness
- Piston ring mass, all
- Piston skirt diameter
- Liner bore (free standing, T/AT & F/B) at:
 - 13mm from top
 - 25mm above ports
 - 25mm below ports
 - 13mm from bottom
- Slipper bushing mass
- Connecting rod bearing mass

In addition to metrology, critical engine components received post-test ratings to quantify the amount and location of carbonaceous and lacquer type deposits present, and wear experienced during testing. Like the 6.5L(T) testing, this process was completed following industry standardized ASTM ratings procedures [10]. Ratings included piston deposits, ring face distress, piston skirt and liner ratings, intake port plugging, and slipper bushing exposed copper.

3.3.4 MIL-PRF-2104H and Revised Candidate Evaluation Results

Each of the MIL-PRF-2104H 15W-40 and revised SCPL candidate tests completed the 240 hours test cycle in the 6V53T without experiencing major oil degradation or severe liner scuffing. Due to the DDC 6V53T's comparatively lower engine oil sump temperatures and higher overall oil consumption compared to that of the GEP 6.5L(T), the used engine oil condition did not exhibit much degradation throughout each test. As a result, used oil analysis comparisons were uneventful, and detailed comparison was excluded from discussion. Full used oil analysis for each test can be reviewed in the respective test reported attached as appendices to this report.

As previously stated, engine metrology was completed during pre and post test activities to document overall engine wear and to assess the oil's ability to protect critical engine components. Table 13 and Table 14 show the average liner bore diameter change and piston to liner clearance change for each of the SCPL revised candidates and the baseline MIL-PRF-2014H 15W-40 evaluation. Average liner bore diameter changes from start to end of testing were within two-ten thousands (0.0002") of an inch for all tests. Similarly, the piston to liner clearance remained within four-ten thousands (0.0004") of an inch. Overall, the SCPL candidates provided comparable piston and liner protection as the current MIL-PRF-2104H products in 2-cycle applications. (Note- For candidate LO268869, liner 3L was inadvertently split for ratings prior to the post-test liner bore diameter measurements, thus measurements were not made).

DRAFT

Table 13. DDC 6V53T Average LinerBore Diameter Changes, Baseline & SCPL Revised Candidates.

MIL-PRF-2104H 15W40			
Cylinder	Avg Bore DIA Change	Out of Round	
		0.0004	
	0.0003	0.0004	
1L		0.0001	
		0.0000	
		0.0001	
	0.0002	0.0001	
2L		0.0001	
		0.0001	
		0.0004	
	0.0000	0.0004	
21	0.0002	0.0000	
3L		0.0000	
		0.0005	
		0.0004	
1R	0.0003	0.0001 0.0001	
	0.0003	0.0001	
IIX		0.0002	
		0.0003	
		0.0005	
	0.0003	0.0000	
2R	0.000	0.0002	
		0.0004	
		0.0003	
	0.0003	0.0002	
3R		0.0003	
-		0.0006	
Average All	0.0002		
Cylinders			

Candidate LO268869			
Cylinder	Cylinder Avg Bore DIA Change		
Cylinder	Avg bore bix change	Round	
		0.0012	
	0.0004	0.0003	
1L		0.0001	
		0.0003	
		0.0005	
	0.0003	0.0002	
2L		0.0000	
		0.0003	
		N/A	
	N/A	N/A	
3L		N/A	
		N/A	
		0.0006	
	0.0003	0.0001	
1R		0.0000	
		0.0003	
		0.0002	
	0.0002	0.0002	
2R		0.0003	
		0.0002	
		0.0001	
	0.0000	0.0004	
0.0	0.0002	0.0001	
3R		0.0002	
		0.0001	
Average All	0.0003		
Cylinders	0.0000		
Cyllilders			

Candidate LO271510			
Cylinder	Avg Bore DIA Change	Out of Round	
		0.0003	
	0.0002	0.0004	
1L		0.0004	
		0.0001	
		0.0002	
	0.0002	0.0001	
2L		0.0000	
		0.0001	
		0.0002	
	0.0003	0.0001	
3L		0.0001	
		0.0003	
		0.0004	
45	0.0002	0.0003	
1R		0.0002	
		0.0001	
		0.0000	
	0.0000	0.0000	
an.	0.0002	0.0000	
2R		0.0000	
		0.0003	
		0.0003	
	0.0003	0.0003	
3R	0.0003	0.0001	
		0.0001	
		5.0000	
Average All	0.0002		
Cylinders	0.0002		
3,			

DRAFT

Table 14. DDC 6V53T Piston to Liner Clearance Changes, Baseline & SCPL Revised Candidates

MIL-PRF-2104H			
15W40			
	Cylinder Clearance		
	1	0.0058	ı
st	2	0.0060	
Test	3	0.0059	
Pre -	4	0.0058	
P	5	0.0059	
	6	0.0059	
			Change
	1	0.0059	0.0002
est	2	0.0071	0.0010
Ť-	3	0.0073	0.0015
Post - Test	4	0.0068	0.0011
Po	5	0.0064	0.0005
	6	0.0070	0.0010

Average	0.0009
Max	0.0015

Ca	andidate		
	Cylinder	Piston to Liner Clearance	
	1	0.0056	
st	2	0.0046	
Te	3	0.0048	
Pre - Test	4	0.0067	
P	5	0.0058	
	6	0.0063	
			Change
	1	0.0068	0.0013
est	2	0.0065	0.0019
Ĭ,	3	N/A	N/A
Post - Test	4	0.0078	0.0011
Po	5	0.0072	0.0014
	6	0.0069	0.0006

Average	0.0012
Max	0.0019

Candidate LO271510			
	Cylinder	Piston to Liner Clearance	
	1	0.0052	
st	2	0.0046	
Pre - Test	3	0.0057	
ė	4	0.0046	
<u>-</u>	5	0.0055	
	6	0.0058	
			Change
	1	0.0063	0.0011
Post - Test	2	0.0059	0.0013
Ť-	3	0.0068	0.0012
st	4	0.0063	0.0017
Ро	5	0.0065	0.0011
	6	0.0074	0.0016

The piston and liner metrology findings were in agreement with the ratings of these components. Table 15 shows the liner surface ratings. Each liner was rated to assess surface condition after being cut in half at the end of testing. Specifically, each liner was rated to quantify the percent area of polish or scuffing present. As seen below, each test had average values below 15% polish, and below 25% polish on any single liner. The revised SCPL candidates did show a slightly higher average polished area than that seen during the baseline 15W-40 test, but still remained relatively low. None of the post-test liners showed scuffing on their surfaces which supports that the revised candidate SCPL's are compatible for use in two-cycle diesel engine applications, and are providing comparable protection as the current MIL-PRF-2104H 15W-40.

Table 15. DDC 6V53T Cylinder Liner Ratings					
Cylinder Liner Ratings					
_		% Pc	olish	Total % Area	
MIL-PRF-2104H 15W40		Т	AT	Polished	
:1C 0	1L	8	3	11	
PRF-21 15W40	2L	0	10	10	
R 5	3L	7	4	11	
٦ ⁻ ۲	1R	2	4	6	
∥	2R	3	5	8	Average
U	3R	6	4	10	9.3
		% Po	olish	Total % Area	
4. –		T	AT	Polished	
Candidate LO268869	1L	15	4	19	
lid 888	2L	10	12	22	
nd 26	3L	5	2	7	
Sa LO	1R	5	2	7	
O –	2R	2	7	9	Average
	3R	4	2	6	11.7
	_				
		% Po	olish	Total % Area	
6 6		Т	AT	Polished	
ate 510	1L	10	8	18	
lid 71	2L	0	3	3	
nd 127	3L	2	4	6	
Candidate LO271510	1R	16	2	18	
_	2R	2	18	20	Average
	3R	1	14	15	13.3
	Percent of total ring travel area				

Table 16 shows the piston skirt surface ratings. Only minor scuffing (<5%) was present on any single piston, which is in line with the ratings seen from the liner surfaces. Remaining defects noted on the piston skirts included only light or trace scratches.

Table 16. DDC 6V53T Piston Skirt Ratings

		Piston Skirt Ratings			
		Thrust	Anti-Thrust		
Ħ	1L	Few Light Scratches, 1% Scuffing	Few Light Scratches, 2% Scuffing		
104	2L	Few Light Scratches	Few Light Scratches		
RF-27 5W40	3L	Few Light Scratches	Few Light Scratches		
MIL-PRF-2104H 15W40	1R	Few Light Scratches	Few Light Scratches		
≟ `	2R	Few Light Scratches	Few Light Scratches		
Σ	3R	Numerous Light Scratches	Few Light Scratches		
		Thrust	Anti-Thrust		
	1L	Few Light Scratches & 1% Scuffing	Few Light Scratches		
Candidate LO268869	2L	Few Light Scratches	Few Light Scratches		
15 88 E	3L	Few Light Scratches	Few Very Light Scratches		
126 26 27	1R	Few Light Scratches	Few Light Scratches & 1% Scuffing		
👸 🖸	2R	Few Light Scratches	Few Light Scratches & 1% Scuffing		
	3R	Few Very Light Scratches	Few Light Scraches & 1% Scuffing		
		Thrust	Anti-Thrust		
	1L	5% Light Scratches	Trace Scratches		
date 1510	2L	Trace Scratches	Trace Scratches		
ida 715	3L	15% Light Scratches	Trace Scratches		
Candidate LO271510	1R	8% Light Scratches	Trace Scratches		
ا د ق	2R	Trace to Light Scratches	Trace Scratches		
	3R	10% Light Scratches	Trace Scratches		

As previously mentioned in the GEP 6.5L(T) metrology section, ring mass and radial thickness changes can give insight into the low viscosity oils ability to provide adequate film thickness and protect from excessive ring pack wear. Table 17 and Table 18 show the ring mass and ring radial thickness changes for the 6V53T tests, respectively. From the ring mass measurements, we can again see similar weight loss trends with the low viscosity SCPL candidates compared to the MIL-PRF-2104 15W-40 evaluation as tested during Part 1. Although small, each of the SCPL candidate tests experienced an increased ring pack weight loss compared to the baseline 15W-40 test. Likewise, the same trend is seen with the 1st, 2nd, and 3rd ring radial thickness. Further detailed studies would be required to more definitively quantify the true long term impact of increased wear due to the reduction in oil viscosity. To put this back into military application focus, the correlation initially developed to the 240 hour test was representative of 4,000 miles of

proving ground operation, which does represent a significant life span expectation of tracked vehicles. Due to this consideration, and the overall satisfactory operation and performance of the engine during testing, the revised SCPL candidates do cautiously appear to provide adequate protection.

Table 17. DDC 6V53T Ring Mass Changes, Baseline & SCPL Revised Candidates

		MIL-PRF-2104H 15W40	Candidate LO268869	Candidate LO271510
Cylinder	Ring No.		Delta	
	1	0.0145	0.0350	0.0312
	2	0.1140	0.1374	0.0983
1L	3	0.0601	0.0736	0.0319
	4	0.0169	0.0164	0.0183
	5	0.0241	0.0306	0.0240
	1	0.0189	0.0241	0.0313
	2	0.0404	0.0751	0.0571
2L	3	0.0125	0.0250	0.0193
	4	0.0179	0.0222	0.0137
	5	0.0177	0.0328	0.0189
	1	0.0148	0.0345	0.0191
	2	0.0469	0.1102	0.0597
3L	3	0.0197	0.0385	0.0128
	4	0.0179	0.0187	0.0134
	5	0.0186	0.0280	0.0188
	1	0.0111	0.0297	0.0297
l	2	0.0717	0.1308	0.1008
1R	3	0.0328	0.0584	0.0318
	4	0.0202	0.0233	0.0139
	5	0.0208	0.0312	0.0204
	1	0.0153	0.0226	0.0177
	2	0.0539	0.0552	0.1104
2R	3	0.0191	0.0172	0.0544
	4	0.0151	0.0214	0.0162
	5	0.0190	0.0327	0.0407
	1	0.0095	0.0321	0.0328
l	2	0.0403	0.1072	0.0612
3R	3	0.0110	0.0641	0.0256
	4	0.0174	0.0201	0.0175
	5	0.0196	0.0463	0.0211

Ring No. 1 max decrease	0.0189	0.0350	0.0328
Ring No. 2 max decrease	0.1140	0.1374	0.1104
Ring No. 3 max decrease	0.0601	0.0736	0.0544
Ring No. 4 max decrease	0.0202	0.0233	0.0183
Ring No. 5 max decrease	0.0241	0.0463	0.0407

Ring No. 1 avg decrease	0.0140	0.0297	0.0270
Ring No. 2 avg decrease	0.0612	0.1026	0.0813
Ring No. 3 avg decrease	0.0259	0.0461	0.0293
Ring No. 4 avg decrease	0.0176	0.0203	0.0155
Ring No. 5 avg decrease	0.0200	0.0336	0.0240

Table~18.~DDC~6V53T~Top, Second, and~Third~Ring~Radial~Thickness, Baseline~&~SCPL~Revised~Candidates

MIL-PRF-2104H 15W40					
Dodiel T	'hialma aa	Тор	Second	Third	
Radial Thickness		Ring	Ring	Ring	
Cylinder	Position	Delta	Delta	Delta	
	1	0.00080	0.00095	0.00060	
	2	0.00020	0.00075	0.00045	
1L	3	0.00035	0.00120	0.00085	
I L	4	0.00005	0.00115	0.00075	
	5	0.00075	0.00100	0.00065	
	1	0.00080	0.00090	0.00025	
	2	0.00030	0.00040	0.00020	
2L	3	0.00020	0.00055	0.00015	
	4	0.00020	0.00055	0.00015	
	5	0.00090	0.00060	0.00040	
	1	0.00080	0.00075	0.00040	
	2	0.00040	0.00035	0.00030	
3L	3	0.00045	0.00070	0.00045	
	4	0.00040	0.00040	0.00015	
	5	0.00110	0.00065	0.00040	
	1	0.00125	0.00100	0.00035	
	2	0.00000	0.00065	0.00025	
1R	3	0.00035	0.00065	0.00025	
	4	0.00035	0.00070	0.00035	
	5	0.00160	0.00080	0.00095	
	1	0.00095	0.00080	0.00030	
	2	0.00025	0.00060	0.00030	
2R	3	0.00060	0.00075	0.00030	
	4	0.00035	0.00080	0.00030	
	5	0.00100	0.00060	0.00035	
	1	0.00050	0.00050	0.00015	
	2	0.00015	0.00060	0.00035	
3R	3	0.00010	0.00255	0.00030	
	4	0.00025	0.00035	0.00020	
	5	0.00055	0.00050	0.00025	
		0.004.00	0.00055	0.00005	

J	0.00010	0.00233	0.00030
4	0.00025	0.00035	0.00020
5	0.00055	0.00050	0.00025
ximum	0.00160	0.00255	0.00095
erage	0.00053	0.00076	0.00037

SCPL Candidate LO268869				
Radial Thickness		Top Ring	Second Ring	Third Ring
Cylinder	Position	Delta	Delta	Delta
	1	0.00130	0.00120	0.00075
	2	0.00075	0.00115	0.00070
1L	3	0.00080	0.00120	0.00080
	4	0.00090	0.00100	0.00050
	5	0.00150	0.00105	0.00070
	1	0.00085	0.00070	0.00045
	2	0.00040	0.00075	0.00050
2L	3	0.00030	0.00085	0.00035
	4	0.00035	0.00070	0.00025
	5	0.00085	0.00080	0.00040
	1	0.00135	0.00110	0.00055
	2	0.00060	0.00120	0.00035
3L	3	0.00035	0.03100	0.00040
	4	0.00045	0.00090	0.00040
	5	0.00140	0.00110	0.00055
	1	0.00125	0.00140	0.00085
	2	0.00050	0.00090	0.00030
1R	3	0.00050	0.00110	0.00050
	4	0.00045	0.00105	0.00060
	5	0.00135	0.00155	0.00140
	1	0.00100	0.00060	0.00040
I	2	0.00045	0.00065	0.00025
2R	3	0.00035	0.00080	0.00025
	4	0.00040	0.00055	0.00025
	5	0.00065	0.00070	0.00035
	1	0.00150	0.00100	0.00065
I	2	0.00085	0.00075	0.00050
3R	3	0.00065	0.00110	0.00065
	4	0.00085	0.00100	0.00090
	5	0.00040	0.00120	0.00095
	Maximum	0.00150	0.03100	0.00140
	Average	0.00078	0.00197	0.00055

SCPL Candidate LO271510					
Radial Thickness		Тор	Second	Third	
		Ring	Ring	Ring	
Cylinder	Position	Delta	Delta	Delta	
	1	0.00090	0.00085	0.00045	
	2	0.00030	0.00070	0.00045	
1L	3	0.00005	0.00095	0.00050	
	4	0.00050	0.00085	0.00040	
	5	0.00120	0.00145	0.00070	
	1	0.00065	0.00065	0.00035	
	2	0.00060	0.00090	0.00035	
2L	3	0.00045	0.00065	0.00050	
	4	0.00010	0.00065	0.00020	
	5	0.00065	0.00060	0.00050	
	1	0.00065	0.00050	0.00025	
	2	0.00015	0.00080	0.00025	
3L	3	0.00035	0.00070	0.00035	
	4	0.00015	0.00070	0.00015	
	5	0.00065	0.00075	0.00025	
	1	0.00115	0.00080	0.00055	
	2	0.00020	0.00075	0.00020	
1R	3	0.00075	0.00145	0.00025	
	4	0.00040	0.00095	0.00045	
	5	0.00120	0.00060	0.00050	
	1	0.00120	0.00095	0.00085	
	2	0.00050	0.00085	0.00055	
2R	3	0.00030	0.00135	0.00050	
	4	0.00055	0.00065	0.00050	
	5	0.00150	0.00100	0.00070	
	1	0.00060	0.00065	0.00030	
	2	0.00010	0.00060	0.00025	
3R	3	0.00005	0.00075	0.00085	
	4	0.00045	0.00055	0.00040	
	5	0.00095	0.00050	0.00040	

Maximum	0.00150	0.00145	0.00085
Average	0.00058	0.00080	0.00043

Table 19 shows the slipper bushing weight loss for each of the DDC 6V53T tests. The baseline MIL-PRF-2104H 15W-40 test experienced an average slipper bushing weight loss of 0.11 grams compared to the revised SCPL candidates average of 0.15 grams. This change in weight loss was not immediately alarming, and was reinforced by the slipper bushing visual ratings reported in Table 20.

Table 19. DDC 6V53T Slipper Bushing Mass Changes, Baseline & SCPL Revised Candidates

04H	Slipper Bushing	Before	After	Change
	1L	56.2768	56.2085	0.0683
RF-21 5W40	2L	55.9443	55.8420	0.1023
RF 5W	3L	56.2014	56.0414	0.1600
Ğ ←	1R	56.0874	56.0086	0.0788
	2R	56.2125	56.1151	0.0974
	3R	56.1273	55.9975	0.1298

Maximum	0.1600
Average	0.1061

0.0	Slipper Bushing	Before	After	Change
idate 8869	1L	56.1310	55.9758	0.1552
<u> 5</u> 86	2L	56.0567	55.9313	0.1254
andi 026	3L	56.0873	55.9811	0.1062
Ca	1R	56.0515	55.8908	0.1607
	2R	56.0870	55.9288	0.1582
	3R	55.7503	55.5740	0.1763

Maximum	0.1763
Average	0.1470

Φ. Ο	Slipper Bushing	Before	After	Change
idate 1510	1L	56.1116	55.9466	0.1650
<u> </u>	으 (2L	56.3117	56.1454	0.1663
andi 027	3L	56.0924	55.9997	0.0927
Sa	1R	56.0745	55.9075	0.1670
•	2R	55.9797	55.7885	0.1912
	3R	56.4089	56.2706	0.1383

Maximum	0.1912
Average	0.1534

Table 20 shows the slipper bushing exposed copper ratings. The two revised candidate SCPL tests yielded reduced exposed copper than the baseline 15W-40 test. This again demonstrates that the revised SCPL candidates are providing adequate engine protection. None of the slipper bushings experienced wear that would be considered detrimental to performance. This is noted in the metrology and ratings, as well as a lack of bearing related wear metal accumulation in the used oil.

Table 20. DDC 6V53T Slipper Bushing Exposed Copper Ratings

Slipper Bushing % Exposed Copper	MIL-PRF-2104H 15W-40	Candidate LO268869	Candidate LO271510
1L	2	1	0
2L	15	1	10
3L	10	2	0
1R	6	2	12
2R	8	1	15
3R	12	2	2
Average	8.83	1.50	6.50

Table 21 shows the connecting rod bearing weight loss for each DDC 6V53T test. Like the slipper bushings, a similar trend was also seen here. The revised candidate SCPL evaluations yielded a higher average weight loss than the baseline, with measured averages of 0.014 and 0.011 grams for the revised SCPL candidates, and 0.009 grams for the 15W-40 baseline. As before, this increase was not an alarming result. All of the removed connecting rod bearings appeared to be in good condition upon visual inspection, and low levels of lead and copper wear metals in the engines used oil analysis suggest low overall bearing distress.

Table 21. DDC 6V53T Connecting Rod Bearing Mass Changes, Baseline & SCPL Revised Candidates

	Rod Bearing		Before	After	Change
	41	Тор	73.6495	73.6297	0.0198
_	1L	Bottom	67.8243	67.8210	0.0033
RF-2104H 5W40	21	Тор	73.4362	73.4133	0.0229
2.0	2L	Bottom	67.7831	67.7786	0.0045
RF-21 5W40	21	Тор	73.4769	73.4644	0.0125
	3L	Bottom	67.8587	67.8555	0.0032
٠ <u>-</u> -	1R	Тор	73.4915	73.4771	0.0144
₩	IK	Bottom	68.3085	68.3036	0.0049
_	2R	Тор	73.4822	73.4681	0.0141
	2K	Bottom	68.1717 68.1779		-0 0062
	3R	Тор	73.2623	73.2486	0.0137
	υK	Bottom	69.3699	69.3658	0.0041

Maximum	0 0229
Average	0 0093

	Rod	Shell	nell Before After		Change
	1L	Тор	73.5096	73.4845	0.0251
	IL	Bottom	68.4050	68.3979	0.0071
ate	2L	Тор	73.5891	73.5602	0.0289
Candidate 268869	2L	Bottom	67.9048	67.9006	0.0042
pr 86	3L 1R	Тор	73.5592 73.5377		0.0215
Candid 268869		Bottom	68.0659	68.0599	0.0060
Ö		Тор	73.7570	73.7359	0.0211
CPI		Bottom	67.8936	67.8878	0.0058
SC	2R	Тор	73.5076 73.4869		0.0207
		Bottom	67.9593	67.9563	0.0030
	3R	Тор	73.4451	73.4258	0.0193
	JK	Bottom	67.8821	67.8766	0.0055

Maximum	0 0289
Average	0 0140

	Rod Bearing	Shell	Before	After	Change
	1L	Тор	73.5154	73.4940	0.0214
<u>o</u>	IL.	Bottom	69.0551	69.0506	0.0045
Candidate	2L	Тор	73.5056	73.4842	0.0214
g 57	4L	Bottom	68.8418	68.8369	0.0049
an 715	21	Тор	73.6489	73.6331	0.0158
Ç 72	3L	Bottom	69.0457	69.0425	0.0032
	1R	Тор	73.3940	73.3765	0.0175
CPI	IK	Bottom	67.8570	67.8504	0.0066
S	2R	Тор	73.7199	73.7059	0.0140
	2K	Bottom	68.4373	68.4338	0.0035
	3R	Тор	73.7069	73.6937	0.0132
	3K	Bottom	68.1779	68.1725	0.0054

Maximum 0.0214 Average 0.0109

In addition to the metrology, deposit ratings were completed on post test pistons, rings, and liners to assess the ability of each oil to control deposit formation and buildup. Table 22 shows the overall piston deposits accumulated for each test. The two revised candidates had similar overall deposit levels compared to the baseline 15W-40 test. As with the 6.5L(T), none of the deposit levels shown were considered excessive.

Table 22. DDC 6V53T Post-Test Piston Deposit Ratings

	MIL-PRF-2104H 15W40	Candidate LO268869	Candidate LO271510
Piston Carbon, Average De	emerits		
No.1 Groove	60.33	62.58	58.96
No.2 Groove	34.54	35.13	37.00
No.3 Groove	24.46	23.25	22.79
No.1 Land	40.25	40.50	41.71
No.2 Land	57.08	59.88	56.50
No.3 Land	10.58	16.79	10.00
No.4 Land	6.88	6.42	3.54
Piston Lacquer, Average D	Demerits		
No.1 Groove	0.00	0.00	0.00
No.2 Groove	0.01	0.00	0.00
No.3 Groove	0.08	0.31	0.23
No.1 Land	0.26	0.00	0.00
No.2 Land	0.09	0.00	0.00
No.3 Land	1.93	1.52	1.78
No.4 Land	2.50	2.57	2.64
Total, Average Demerits	238.99	248.94	235.16

Miscellanous (Average)			
Top Groove Fill, %	59.50	62.00	73.00
Intermediate Groove Fill, %	60.50	58.83	66.50
Top Land Heavy Carbon, %	21.33	20.67	22.83
Top Lan Flaked Carbon, %	0.00	0.17	0.00

Table 23 shows deposit ratings for the ring packs only. Interestingly, all of the tests show some propensity to develop deposits on the 2nd fire ring. This resulted in a varying amount of cold stuck rings for the post test pistons. From the ratings, it was found that the two revised SCPL candidates showed better overall control of deposit formations resulting in fewer stuck rings. The baseline 15W-40 test showed 5 of the 6 number 2 rings to be cold stuck, varying between 10 to 95% of the ring circumference being unmovable. The two revised candidate SCPL tests only showed two cold stuck rings each, with much lower pinched ring circumferences. Specific carbon ratings of the number two rings were performed to better quantify this carbonaceous accumulation, and the baseline 15W-40 showed nearly twice the heavy carbon buildup as revised

candidate LO268869. Unfortunately, the second rings for revised candidate LO271510 were inadvertently cleaned (i.e., carbon removed via abrasive blasting) for metrology measurements prior to the ratings being completed, but based solely off of the ring sticking ratings, it would have likely shown similar rating trends as LO268869.

Table 23. DDC 6V53T Ring Pack Ratings

	Ring Pack Deposit Control							
	Ratings		Cylinder Number					
-	Raungs	1L	2L	3L	1R	2R	3R	
_	Ring Sticking (F=Free, CS=Cold Stuck	k, HS=Hot Stu	ck, CP=Colla		o. Denotes %	Of Ring Circ	cumference)	
MIL-PRF-2104H 15W40	Тор	F	F	F	F	F	F	
2.0	Second	25% CS	F	40% CS	10% CS	95% CS	90% CS	
1	Third	F	F	F	F	F	F	
PRF-21 15W40	Oil Control Rings	F	F	F	F	F	F	
٠ <u></u> –	2nd Ring Carbon	•		•			•	Average
I ≢	Heavy Carbon	26	33	93	70	76	53	59
_	Light Carbon	74	67	7	30	20	37	39
	Ring Sticking							
0.0	Тор	F	F	F	F	F	F	
ate 369	Second	F	CS 5%	CS 10%	F	F	F	
₽ 88	Third	F	F	F	F	F	F	
Candidate LO268869	Oil Control Rings	F	F	F	F	F	F	
l a O	2nd Ring Carbon	•		,				Average
• –	Heavy Carbon	62	10	78	5	4	40	33
	Light Carbon	38	90	22	46	86	60	57
		•					•	
	Ring Sticking	•					•	
40.0	Тор	F	F	F	F	F	F	
ate 10	Second	F	F	F	F	CS 20%	CS 15%	
id 15	Third	F	F	F	F	F	F	
nd 27	Oil Control Rings	F	F	F	F	F	F	
Candidate LO271510	2nd Ring Carbon							Average
~ _	Heavy Carbon	-	-	-	-	-	-	-
	Light Carbon	-	-	-	-	-	-	-

Lastly, intake port plugging for each liner was quantified as another form of determining deposit control. Similar to what was seen in the ring pack ratings, the two revised candidates showed less overall intake port buildup than the baseline 15W-40. All of the intake port deposits were considered minor. Intake port deposit levels can be seen in Table 24.

Full DDC 6V53T test report data from each revised candidate test (LO268869 and LO271510) are presented in Appendix B1, and B2 respectively.

Table 24. I	DDC 6V53T	Intake l	Port P	lugging
-------------	-----------	----------	--------	---------

Intake Port Plugging	MIL-PRF-2104H 15W40	Canddiate LO268869	Candidate LO271510
1L	2.5	2	3
2L	2	2	3
3L	3	3	2
1R	0.5	3	2
2R	1	2	2
3R	25.5	3	2
Average	5.75	2.5	2.33

3.4 6.5L ROLLER FOLLOWER WEAR TESTING

Each revised SCPL candidate was also evaluated in the ASTM D5966 Roller Follower Wear Test. This procedure, approved for API CJ-4 oil qualification, is used to determine the effects of lubricating oil on camshaft roller follower axle wear. The engine used in testing is the GM 6.5L(NA) V8 diesel engine, which is the base engine the GEP family of V8 diesel engines originate from. The test operates the engine near maximum load at 1000 rpm for a total of 50 hours while controlling engine coolant out and oil galley temperatures at 248 °F. The test is completed without an oil change, with makeup oil being added at the 25 hour point. Once completed, the roller follower assemblies are removed from the engine and disassembled, and the roller axles are measured using a single pass profilometer to determine resulting axle wear. Table 25 on the following page shows the results for the two revised candidates, and the single test MTAC limits set out by the API CJ-4 classification. From the results, we can see that the average axle wear for both revised candidates remains under the maximum average of 0.30 mils allowed by the CJ-4 classification. Revised candidate LO268869 had the higher wear, and resulted just under the MTAC limit at 0.28 mils, while LO271510 had an average wear of 0.15 mils. When comparing the maximum and minimum measurements for all of the follower assemblies, it becomes more clear how variable the wear can be in a single test. The MTAC limits increase to 0.33 mils for a two test qualification, and 0.36 mils for a three test qualification. Both revised candidates passed the CJ-4 requirements, and demonstrate adequate protection of the roller follower assembly.

Full ASTM test reports for each revised candidate can be reviewed in Appendix C1 and C2 for revised candidates LO268869 and LO271510 respectively.

Table 25. ASTM D5966 Roller Follower Wear Results

	Single Test CJ-4 MTAC Limits	SCPL LO268869	SCPL LO271510
Follow Axle Wear, Average [mil]	0.30	0.28	0.15
Maximum	N/A	0.47	0.31
Minimum	N/A	0.12	0.07

3.5 Transmission Compatibility

As stated in the background and introduction, the SCPL must be capable of being used in military power shift transmission applications in addition to engine crankcase applications. To assess the transmission performance of each revised SCPL candidate, several industry standardized transmission test procedures were completed, including selected: Allison C4, Caterpillar TO-4, and John Deere JDQ test procedures. Many of these industry transmission frictional tests utilize an SAE No. 2 friction testing machine. This machine measures the engagement properties of one friction and reaction plate over a wide range of speeds and application forces. It instantaneously records multiple parameters including load applied, torque transmitted, and plate speed to determine overall torque capacity, dynamic and static coefficients of friction, and slip time. Results are then compared to a baseline fluid which brackets desired performance and determines pass fail of a candidate fluid. Results for the SCPL testing are summarized as follows.

3.5.1 Allison C4 Testing

Allison C4 transmission compatibility evaluations for the revised SCPL candidate included frictional testing using paper and graphite materials. Table 26 shows the results from the paper friction testing. Overall, neither of the revised candidates changed their pass/fail results with respect to their initial evaluations. Like initial candidate LO253071, revised candidate LO268869 fell short on the minimum midpoint coefficient of friction at the 100 cycles engagement. This could potentially manifest itself as a greater amount of slip of the friction material during early engagements. Revised candidate LO271510 again passed the paper friction testing.

Table 26. Revised SCPL Candidate Evaluations, Allison C4 Paper Friction

Initial Candidates

ALLISON C-4 PAPER FRICTION TEST

 Sponsor Fluid Code: LO-253071
 Test Number:
 C2-7-1552

 Lab Fluid Code: 253071
 Fric. Plate Batch:
 Batch 5

 Completion Date: 07/25/2010
 Steel Plate Batch:
 10/9/2008

	L	Limits		Results		
	Value	% Change	100 N	10,000 N	% Change	P/F
Slip Time Max.	0 600	N/A	0.540	0.450	-16.67	Р
Mid-Point Fric. Coeff. Min.	0 096	N/A	0.087	0.114	31 03	F
Static Friction Coeff.	N/A	N/A	0.161	0.125	-22.36	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.173	0.135	-21.97	
0 25 Second Low Speed Coeff.	N/A	N/A	0.163	0.131	-19.63	

ALLISON C-4 PAPER FRICTION TEST

 Sponsor Fluid Code: LO-251746
 Test Number:
 C2-6-1551

 Lab Fluid Code: 251746
 Fric. Plate Batch:
 BATCH 5

 Completion Date: 07/23/2010
 Steel Plate Batch:
 10/9/2008

	Li	Limits		Results		
	Value	% Change	100 N	10,000 N	% Change	P/F
Slip Time Max.	0 600	N/A	0.470	0.420	-10.64	Р
Mid-Point Fric. Coeff. Min.	0 096	N/A	0.103	0.120	16 50	Р
Static Friction Coeff.	N/A	N/A	0.173	0.160	-7 51	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.197	0.173	-12.18	
0 25 Second Low Speed Coeff.	N/A	N/A	0.182	0.165	-9 34	

Revised Candidates

ALLISON C-4 PAPER FRICTION TEST

 Sponsor Fluid Code: LO268869
 Test Number: C2-3-1573

 Lab Fluid Code: 268869
 Fric. Plate Batch: Lot 6

 Completion Date: 10/15/2011
 Steel Plate Batch: 10/9/2008

	Li	Limits		Results		
	Value	% Change	100 N	10,000 N	% Change	P/F
Slip Time Max.	0 600	N/A	0.530	0.460	-13.21	Р
Mid-Point Fric. Coeff. Min.	0 096	N/A	0.093	0.111	19 35	F
Static Friction Coeff.	N/A	N/A	0.103	0.111	7.77	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.102	0.115	12.75	
0 25 Second Low Speed Coeff.	N/A	N/A	0.095	0.111	16 84	

ALLISON C-4 PAPER FRICTION TEST

 Sponsor Fluid Code: L0271510
 Test Number: C2-4-1574

 Lab Fluid Code: 271510
 Fric. Plate Batch: Lot 6

 Completion Date: 10/17/2011
 Steel Plate Batch: 10/9/2008

	Limits		Results			
	Value	% Change	100 N	10,000 N	% Change	P/F
Slip Time Max.	0 600	N/A	0.500	0.430	-14.00	Р
Mid-Point Fric. Coeff. Min.	0.085	N/A	0.095	0.118	23.16	Р
Static Friction Coeff.	N/A	N/A	0.173	0.158	-8 67	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.187	0.166	-11.23	
0 25 Second Low Speed Coeff.	N/A	N/A	0.171	0.163	-9 94	

DRAFT

Table 27 shows the results from the graphite friction testing. Both initial candidates LO253071 and LO251746 did not meet the targets in either slip time or midpoint minimum coefficient of friction. Both candidates performed similarly overall. Each showed a borderline increase in slip time with respect to the maximum allowable for the 5,500 cycles engagement (1,500 cycles engagement OK). For midpoint friction coefficient, each candidate met the minimum at 1,500 cycles engagement but fell below the specification at 5,500 cycles engagement. For revised candidate LO268869, the formulations changes improved the slip time response staying below the maximum allowable time. LO268869 was still below the minimum midpoint coefficient of friction, but would be considered a borderline fail (0.088 versus passing 0.089). Revised candidate LO271510's formulation changes allowed a passing result for both criteria.

Full Allison C4 frictional test report data from each revised candidate test, LO268869, and LO271510 are presented in Appendix D1, and D2 respectively.

Table 27. Revised SCPL Candidate Evaluations, Allison C4 Graphite Friction Testing

Initial Candidates

ALLISON C-4 GRAPHITE FRICTION TEST SUMMARY

(Torque in Ft-Lbs)

 Sponsor Fluid Code: LO253071
 Test Number: C4-8-1286

 Lab Fluid Code: LO-253071
 Fric. Plate Batch: BATCH 44

 Completion Date: 7/22/2010
 Steel Plate Batch: 10/9/2008

	Li	Limits		Results		
	Max	Max Change	1,500 N	5,500 N	% Change	P/F
Slip Time Max.	0.89	N/A	0.79	0.91	15.19	F
0.2 Second Dynamic Coeff.	N/A	N/A	0.084	0.063	-25.000	
Mid-Point Fric. Coeff. Min.	0.089	N/A	0.093	0.082	-11.828	F
Static Friction Coeff.	N/A	N/A	0.129	0.112	-13.178	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.154	0.136	-11.688	
0.25 Second Low Speed Coeff.	N/A	N/A	0.130	0.123	-5.385	

ALLISON C-4 GRAPHITE FRICTION TEST SUMMARY

(Torque in Ft-Lbs)

 Sponsor Fluid Code: LO251746
 Test Number: C4-7-1285

 Lab Fluid Code: LO-251746
 Fric. Plate Batch: Batch 44

 Completion Date: 7/21/2010
 Steel Plate Batch: 10/9/2008

	Li	Limits		Results		
	Max	Max Change	1,500 N	5,500 N	% Change	P/F
Slip Time Max.	0.89	N/A	0.81	0.90	11.11	F
0.2 Second Dynamic Coeff.	N/A	N/A	0.072	0.048	-33.333	
Mid-Point Fric. Coeff. Min.	0.089	N/A	0.090	0.084	-6.667	F
Static Friction Coeff.	N/A	N/A	0.142	0.136	-4.225	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.160	0.153	-4.375	
0.25 Second Low Speed Coeff.	N/A	N/A	0.149	0.142	-4.698	

Revised Candidates

ALLISON C-4 GRAPHITE FRICTION TEST SUMMARY

(Torque in Ft-Lbs)

 Sponsor Fluid Code: LO268869
 Test Number: C4-3-1341

 Lab Fluid Code: 268869
 Fric. Plate Batch: Lot 44

 Completion Date: 10/14/2011
 Steel Plate Batch: 10/19/2008

	Li	Limits		Results		
	Max	Max Change	1,500 N	5,500 N	% Change	P/F
Slip Time Max.	0.89	N/A	0.75	0.86	14.67	Р
0.2 Second Dynamic Coeff.	N/A	N/A	0.090	0.067	-25.556	
Mid-Point Fric. Coeff. Min.	0.089	N/A	0.099	0.087	-12.121	BL-F
Static Friction Coeff.	N/A	N/A	0.132	0.113	-14.394	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.138	0.123	-10.870	
0.25 Second Low Speed Coeff.	N/A	N/A	0.126	0.112	-11.111	1

ALLISON C-4 GRAPHITE FRICTION TEST SUMMARY

(Torque in Ft-Lbs)

 Sponsor Fluid Code: L0271510
 Test Number: C4-4-1342

 Lab Fluid Code: 271510
 Fric. Plate Batch: Lot 44

 Completion Date: 10/15/2011
 Steel Plate Batch: 10/19/2008

	Li	mits	Results			
	Max	Max Change	1,500 N	5,500 N	% Change	P/F
Slip Time Max.	0.89	N/A	0.76	0.81	6.58	Р
0.2 Second Dynamic Coeff.	N/A	N/A	0.086	0.077	-10.465	
Mid-Point Fric. Coeff. Min.	0.089	N/A	0.097	0.094	-3.093	Р
Static Friction Coeff.	N/A	N/A	0.140	0.128	-8.571	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.164	0.148	-9.756	
0.25 Second Low Speed Coeff.	N/A	N/A	0.147	0.140	-4.762	

DRAFT

3.5.2 Caterpillar TO-4 Testing

Similar to the Allison C4 transmission compatibility tests, Caterpillar TO-4 standardized tests were completed on each revised candidate to assess potential performance in Caterpillar transmission applications. The Caterpillar TO-4 testing matrix for the SCPL candidates included frictional testing on sintered bronze (Sequence 1220) and wheel brake paper (Sequence 1222).

Table 28 shows a summary of the CAT TO-4 frictional testing. Revised candidate LO268869 showed essentially no change over its initial evaluation (LO253071) by passing the sintered bronze (SEQ1220) and failing the wheel brake paper (SEQ1222) tests. For revised candidate LO271510, the formulation changes improved the sintered bronze (SEQ1220) response and passed the test, but still failed the wheel brake paper (SEQ1222).

Both revised SCPL candidates continue to struggle with the wheel brake paper (SEQ1222) portion of the CAT TO-4 test. From further review, revised candidate LO268869 generally showed lower coefficients of friction (static and dynamic) than the limit lines generated by reference fluids. This would suggest increased slipping and potentially reduced torque capacity in a wet clutch/brake arrangement. Despite this, the coefficient of friction traces remained smooth and predictable throughout testing, not showing any tendencies to rapidly change its frictional properties. This suggests that, although a technical failure, the candidate should not cause catastrophic failure within a transmission, but has room for improvement to ensure proper performance in all scenarios. Upon further review of revised candidate LO271510's wheel brake paper (SEQ1222) results, failures only occurred during the dynamic coefficient friction tests. In general it showed very borderline failures during each of these traces with only 1 to 2 points being below the limit lines of the reference fluid. Figure 6 on the following page shows a plot of one of the borderline dynamic coefficient failures seen during LO271510 testing. This suggest that again, although a technical failure, the candidate should perform as intended in this type application.

Figure 6. Revised SCPL Candidate LO271510, CAT TO-4 SEQ1222 Dynamic Coefficient of Friction vs Load Trace

As before, it is expected that all of these borderline failures for the revised SCPL candidates could be corrected with slight formulation changes. None of the SCPL candidates exhibited behaviors that would be considered catastrophic if used in transmissions, but room for improvement remains for the SCPL oils in regards to Caterpillar TO-4 friction testing. Full Caterpillar TO-4 test report data from each candidate test, LO268869 and LO271510, are presented in Appendix E1, and E2 respectively.

DRAFT

Table 28. Revised SCPL Candidate Evaluations, Caterpillar TO-4 Friction Testing

CAT TO-4	LO253071	LO268869	LO251746	LO271510
Sequence 1220	initial	revised	initial	revised
Dynamic Coef vs Cycle	Pass	Pass	Fail	Pass
Dynamic Coef vs Load	Pass	Pass	Fail	Pass
Dynamic Coef vs Speed	Pass	Pass	Fail	Pass
Energy Limit	Pass	Pass	Pass	Pass
Static Coef vs Load	Pass	Pass	Fail	Pass
Static Coef vs Speed	Pass	Pass	Fail	Pass
Energy Limit	Pass	Pass	Pass	Pass
Total Wear	0.039	0.016	0.039	0.006
Sequence 1222				
Dynamic Coef vs Cycle	Fail	Fail	Fail	Fail
Dynamic Coef vs Load	Fail	Fail	Fail	Fail
Dynamic Coef vs Speed	Fail	Fail	Fail	Fail
Energy Limit	Pass	Pass	Pass	Pass
Static Coef vs Load	Fail	Fail	Fail	FP
Static Coef vs Speed	Pass	Fail	Fail	Pass
Energy Limit	Pass	Pass	Pass	Pass
Total Wear	0.03	0.029	0.007	0.029
Friction Retention				
	Pass	N/A	Pass	N/A

3.5.3 John Deere JDQ-96 Wet Brake Testing

John Deere JDQ-96 testing assesses lubricant interactions with a submerged wet braking system. Although not a MIL-PRF-2104 spec requirement, this test provides useful information into the frictional properties of the candidate SCPLs combined with different friction materials. As with previous evaluations, an abbreviated 1,000 cycle test was run to get an indication of overall compatibility for the revised SCPL candidates. The two main primary parameters of interest are the relative capacity, and overall torque variation. The relative capacity is a measure of the overall torque capacity of the system with the lubricant being tested, and torque variation is a measure between the peak and valley of the torque trace calculated from high speed torque data acquired across several engagements.

It is important to note here, that direct comparisons between initial and revised candidate testing cannot be made. This is due to a change in the John Deere JDQ-96 test stand. Previously the stand was motored using a fired diesel engine to operate the test axle, whereas the new stand uses a large variable speed drive for powering. This has caused some shifting in results generated between the two stand configurations. In addition, it has been noted by project managers that the JDQ-96 test is sensitive to the actual braking hardware being used. Even from hardware supplied from a single source, the magnitude of torque variation has been found to be highly hardware dependant. To help mitigate these confounding effects, a 1,000 cycle reference was operated using the tested components (piston & backing plate) prior to running the candidate tests, so that baseline data was most relevant to the results.

Table 29 summarizes results for each of the revised SCPL candidates and their respective initial evaluations. All of the candidates provided adequate torque capacity compared to the reference fluid baseline. The overall torque variation for the revised SCPL candidates was again larger than that of the reference fluid, a trend that was consistent with initial SCPL evaluations. This behavior has been noted in previous testing as being typical of engine oils in this type application. This explains each fluid being noted as creating high levels of brake noise. Other than a higher level of audible noise, this increase should not pose adverse effects on overall function and usability of the system.

Full JDQ-96 test report data from each candidate test, LO268869, and LO271510 are presented in Appendix F1 and F2 respectively.

Table 29. SCPL Revised Candidate Evaluations, JDQ-96 Wet Brake Compatibility

John Deere JDQ-96				
Performed using 1400 Series Axle	initial	initial	revised	revised
Test Number	10979	10739	11843	111114
Oil Code	LO253071	LO251746	LO268869	LO271510
EOT Date	8/2/2010	7/31/2010	11/23/2011	12/1/2011
Relative Capacity		Current Reference E	Baseline Average (N*m)	
@ 1,000 Cycles	342,372	342,372	330,753	330,753
Torque Variation				
@ 1,000 Cycles	93,746	93,746	171,228	171,228
Relative Capacity		Results From	n Test Candidate	
@ 1,000 Cycles	360,738	398,534	335,125	392,229
Torque Variation				
@ 1,000 Cycles	164,190	253,990	206,202	264,603
**Notes	This oil created high levels			
Notes	of brake noise.	of brake noise.	of brake noise.	of brake noise.

3.6 ENGINE FUEL CONSUMPTION IMPROVEMENT

To quantify fuel consumption improvements from the use of SCPL candidates, it was desired to develop a "standardized" type test to measure the fuel consumption of a baseline oil compared to each SCPL candidate. The following sections summarize the test stand configuration, cycle development, and procedures used during fuel consumption testing. Results are presented for the revised SCPL candidate evaluations.

3.6.1 Stand Configuration and Cycle Development

Similar to Part 1, fuel consumption evaluations were conducted on a test stand configured for the GEP 6.5L(T) engine, similar in many ways to the stand used for endurance evaluations. Variations between the two stands included oil system heat exchanger layout and the inclusion of an inlet air cooler for finer intake air temperature control. Field data from actual HMMWV operation at Ft. Hood, TX was used to create a series of 26 operating modes for testing. After determining which modes had the highest repeatability when conducted in the laboratory setting, a 14-mode cycle was derived. Power output and fuel flow rate (measured by a coriolis mass-flow meter) were used to calculate the engine break-specific fuel consumption (BSFC) for each of the 14 operating modes. After completing all 14 modes, each mode's BSFC value was weighted

based upon the corresponding fuel flow rate and then combined to form a cycle BSFC result. For each lubricant evaluation, the 14-mode cycle was repeated seven times for repeatability purposes to verify BSFC changes.

3.6.2 Fuel Consumption Test Procedure

Prior to testing each candidate oil, a baseline SAE 40 oil was run to measure and account for engine drift over time. Engine oil was changed in the engine using a double flush method, along with an accompanying filter change. Once fluid levels were set, the engine was started and idled for 60 seconds to stabilize operation and check for system leaks. Next, a 1,500 rpm, half throttle warm-up brought up engine coolant and oil temperatures prior to test cycle initiation. Throughout testing, inlet air was maintained at 75 °F, and fuel temperature at 95 °F. The fuel source used for the evaluations was identical to that used in SCPL endurance testing in the GEP 6.5L(T) engine (Appendix G). Following warm-up, the engine was brought to rated conditions (full load, 3,400 rpm) to set inlet and exhaust restrictions (0.55 psi and 0.27 psi respectively). After the restrictions were set and verified, the engine was then ramped down and controlled to 1,100 rpm and 60 lb-ft for 30 minutes to stabilize temperatures before continuing with the 14-mode cycle shown in Table 30.

Table 30. GEP 6.5L(T) Fuel Consumption Test Points

Point	RPM	Torque, lb-ft	Power, hp	Oil Sump, °F	Intake Air, °F	Fuel Inlet, °F
1	1100	59.7	12.5	165		
2	2100	59.7	23.9			
3	1100	99.6	20.9	180		
4	1100	179.2	37.5			
5	1600	99.6	30.3	195	75	95
6	2100	139.4	55.7			
7	2600	99.6	49.3	215		
8	2100	179.2	71.7			
9	3100	99.6	58.8			
10	2600	139.4	69.0			
11	3100	139.4	82.3			
12	2600	179.2	88.7	245		
13	2400	302.4	138.2			
14	2800	250.8	133.7			

At the completion of mode 14, the engine would return to the 30 minute stabilization step for the next cycle. This continued until all seven cycles were completed. In the event of a shut-down, the cycle was restarted from the temperature stabilization step.

3.6.3 Candidate Results

Results from the revised candidate SCPL's are shown in Table 31 and Table 32. The (4) and (5) associated with the SAE 40 Baseline results reference the order in which that baseline evaluation occurred for the engine installation. Additional baseline evaluations were conducted prior to the SCPL candidate evaluations to ensure engine stability and oil discrimination.

Table 31. LO271510 Fuel Consumption Improvement

General Engi	ne Products 6.5 Turbo Fuel Consumption	BSFC
	Run	FE Cycle
	1	0.4989
	2	0.4997
	3	0.4988
CAE 40	4	0.4983
SAE 40 LO258269	5	0.4961
Baseline (4)	6	0.4932
Dasenne (4)	7	0.4968
	Average	0.49741
	Standard Deviation	0.00224
	COV	0.45%
	1	0.4854
	2	0.4856
	3	0.4830
· LCCDI	4	0.4848
evised SCPL LO271510	5	0.4860
Candidate	6	0.4845
Candidate	7	0.4836
	Average	0.48472
	Standard Deviation	0.00109
	COV	0.22%
	Percent change:	2.55%
	F-Test, two tail	0.102
	Variance: Equal=2, Unequal=3	2
	T-test	1.29x10 ⁻⁰
	Statistically significant with 95% CI	Yes
	Statistically significant with 99% CI	Yes

Table 32. LO268869 Fuel Consumption Improvement

General Engin	ne Products 6.5 Turbo Fuel Consumption	BSFC
	Run	FE Cycle
	1	0.4980
	2	0.4977
	3	0.4974
G 1 = 10	4	0.4983
SAE 40 LO258269	5	0.4961
Baseline (5)	6	0.4969
Bascinic (3)	7	0.4988
	Average	0.49760
	Standard Deviation	0.00090
	COV	0.18%
	1	0.4874
	2	0.4861
	3	0.4857
	4	0.4845
Revised SCPL LO268869	5	0.4835
Candidate	6	0.4842
Canulate	7	0.4830
	Average	0.48490
	Standard Deviation	0.00157
	COV	0.32%
	Percent change:	2.55%
	F-Test, two tail	0.205
	Variance: Equal=2, Unequal=3	2
	T-test	3.33×10^{-10}
	Statistically significant with 95% CI	Yes
	Statistically significant with 99% CI	Yes

Both revised SCPL candidate lubricants showed a statistically significant improvement of 2.55% with respect to the SAE 40 baseline oil. To determine the shift in engine baseline performance, the baseline tests used in each of the candidate lubricant evaluations were compared. This is shown in Table 33.

Table 33. SAE 40 Baseline Shift

General Engi	ine Products 6.5 Turbo Fuel Consumption	BSFC
	Run	FE Cycle
	1	0.4989
	2	0.4997
	3	0.4988
GAT: 40	4	0.4983
SAE 40	5	0.4961
LO258269	6	0.4932
Baseline (4)	7	0.4968
	Average	0.49741
	Standard Deviation	0.00224
	COV	0.45%
	1	0.4980
	2	0.4977
	3	0.4974
G 1 7 10	4	0.4983
SAE 40	5	0.4961
LO258269	6	0.4969
Baseline (5)	7	0.4988
	Average	0.49760
	Standard Deviation	0.00090
	COV	0.18%
	Percent change:	-0.04%
	F-Test, two tail	0.044
	Variance: Equal=2, Unequal=3	3
	T-test	8.44x10 ⁻⁰¹
	Statistically significant with 95% CI	No
	Statistically significant with 99% CI	No

4.0 CONCLUSIONS

From testing completed, the revised SCPL candidates provided promising results for the continued development of the SCPL. Overall engine durability and oil degradation testing using the GEP 6.5L(T) engine yielded improved results. Revised candidate LO268869 showed the most improvement in the GEP 6.5L(T) testing, and was capable of operating to the full 210 hour test target while maintaining acceptable used oil condition. Although revised candidate LO271510 did not make the target 210 hours, it ran for 196 hours prior to termination, which is an improvement over its initial evaluation. Both revised candidates demonstrated improved oxidation stability over current military approved oils as tested during Part 1, which reinforces the feasibility aspects of SCPL utilization. In the 2-cycle diesel engine testing using the DDC 6V53T, both revised candidates provided comparable, and in some cases such as deposit control, better performance than that seen during the MIL-PRF-2104H OE/HDO 15W-40 baseline. This suggests that low viscosity SCPL can be successfully used in the military's 2-cycle engines. Lastly, the ASTM D5966 Roller Follower Wear Test demonstrated that each revised candidate provided adequate protection to critical roller follower valve train components.

Transmission testing completed on the revised candidates again confirmed the possibilities of using the SCPL in powershift transmission applications. Some improvements were made over the initial SCPL candidates provided, but further modifications in formulation are desired to improve function and ensure adequate performance during all conditions. Despite this, none of the revised SCPL candidates exhibited any catastrophic incompatibility with typical transmission components they would be expected to come into contact with.

Lastly, fuel consumption improvements were found to be similar for both revised candidate lubricants. Results help confirm that through the use of low viscosity lubricants, potential fuel savings for the military could be realized. The 2.55% improvement over the SAE40 baseline oil translates into an approximate 1.5% improvement over MIL-PRF-2104H 15W-40 diesel engine oils [4]. These savings, combined with goals of extended drain intervals, all help in making an SCPL lubricant potentially cost effective when compared to current products.

5.0 **RECOMMENDATIONS**

It is the recommendation of TFLRF staff that both LO268869 and LO271510 continue to be considered candidates for the SCPL program. Formulation changes need to be made for both candidates to improve transmission performance without negatively impacting engine durability, oil degradation, and 2-cycle compatibility.

Long term considerations for the SCPL program should include:

- High temperature 2–cycle diesel engine compatibility testing
- Aircooled diesel engine compatibility using the AVDS-1790 engine
- Detailed investigation of ring pack wear changes due to lowered viscosities
- Conduct multiple field demonstrations at U.S. Army posts consisting of cold, moderate, and high temperature climate conditions.

6.0 REFERENCES

- 1. Warden, R.W., Frame, E.A., Brandt, A.C., "SAE J1321 Testing Using M1083A1 FMTVS," Interim Report TFLRF No. 404, March 2010, ADA528430.
- 2. Warden, R.W, et. al. "Fuel Efficiency Effects of Lubricants in Military Vehicles," SAE Technical Paper 2010-01-280, 2010.
- 3. CTC REPORT "Single Common Powertrain Lubricant Evaluation", Final Report (Draft), February 26, 2010, by Concurrent Technologies Corporation, for SwRI Subcontract No. 899059X.
- 4. Brandt, A.C., Frame, E.A., Hansen, G.A., Warden, R.W., "Single Common Powertrain Lubricant Development," Draft Interim Report TFLRF No. 418, January 2012.
- 5. Brandt, A.C., Frame, E.A., Alvarez, R.A., "Feasibility of using Full Synthetic Low Viscosity Engine Oil at High Ambient Temperatures in U.S. Army Engines", Interim Report TFLRF No. 415, June 2011, ADA560574.

UNCLASSIFIED

- 6. Brandt, A.C., et. al. "Feasibility of Using Full Synthetic Low Viscosity Engine Oil at High Ambient Temperatures in Military Vehicles," SAE Technical Paper 2010-01-2176, 2010
- 7. Brandt, A.C., Frame, E.A., "Transmission Bench Testing for Single Common Powertrain Lubricant Candidates", Draft Interim Report TFLRF No. 417, January 2012.
- 8. Warden, R.W., et. al. "Evaluation of Single Common Powertrain Lubricant (SCPL) Candidates for Fuel Consumption Benefits in Military Equipment," Technical paper published in: 2011 NDIA Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), August 2011.
- 9. Development of Military Fuel/Lubricant/Engine Compatibility Test, CRC Report 406, January 1967.
- 10. ASTM Deposit Rating Manual 20 (Formerly CRC Manual 20), ASTM International, West Conshohocken, PA, www.astm.org.
- 11. "Performance of Engine Lubricating Oils in a Two-Cycle Diesel Engine Under Cyclic, Turbo-Supercharged Conditions" Federal Test Method STD 791C, Method 355, September 1986.

APPENDIX – A1 EVALUATION OF SCPL CANDIDATE LO-268869

EVALUATION OF SCPL CANDIDATE LO-268869

Project 14734.17

GEP 6.5L Turbocharged HMMWV Engine

Test Lubricant: LO-268869 Test Fuel: Jet-A w/DCI-4A

Test Number: LO268869-65T1-W-210 Start of Test Date: August 22, 2011 End of Test Date: September 12, 2011 Test Duration: 210 Hours

Test Procedure: Tactical Wheeled Vehicle

Conducted for
U.S. Army TARDEC
Force Projection Technologies
Warren, Michigan

Table of Contents

Introduction	A1-3
Test Engine	
Test Stand Configuration	A1-3
Engine Run-in	A1-3
Pre-Test Engine Performance Check	
Test Cycle	
Oil Sampling	
Oil Level Checks	A1-5
Post-Test Engine Performance Check	A1-5
Engine Operating Conditions Summary	A1-6
Engine Performance Curves	A1-7
Engine Oil Analysis	
Engine Oil Analysis Trends	A1-9
Oil Consumption Data	
Post Test Engine Ratings	A1-13
Engine Measurement Changes	A1-14
Engine Rebuild Measurements, inches	A1-14
Pre-Test Cylinder Bore Measurements, inches	A1-15
Post-Test Cylinder Bore Measurements, in	A1-16
Cylinder Bore Diameter Changes, in	A1-17
Valve Guide Measurement Changes, in	A1-18
Valve Stem Measurement Changes, in	A1-18
Valve Stem to Guide Clearance Changes, in	A1-19
Valve Recession Measurement Changes, in	A1-19
Post-Test Cam Lobe Profile, in	
Piston Skirt to Bore Clearance, in	
Top and Second Ring Radial Wear, in	
Piston Ring Gap Measurements, in	
Piston Ring Mass, grams	A1-23
Connecting Rod Bearing Weight Loss, grams	A1-24
Main Bearing Weight Loss, grams	
Stanadyne Injection Pump Calibration/Evaluation	
PHOTOGRAPHS	A1-26

Introduction

This test was used to determine the performance of Single Common Powertrain Lubricant (SCPL) candidate LO-268869 when used in the General Engine Products (GEP) 6.5L turbocharged engine by the procedures outlined in the Tactical Wheeled Vehicle Cycle (CRC Report No.406, Development of Military Fuel/Lubricant/Engine Compatibility Test). This work was completed in support of Project 14734.17, Single Common Powertrain Lubricants for Combat/Tactical Equipment.

Test Engine

The oil was evaluated in the General Engine Products 6.5L turbocharged diesel engine, representative of engines currently fielded in High Mobility Multipurpose Wheeled Vehicles (HMMWV). Prior to testing, the engine was disassembled and measured for pre-test wear. Engine clearances and specifications were verified, and the engine was reassembled following standard assembly procedures.

Test Stand Configuration

The engine was mounted in a test stand specifically configured for GEP engine testing. Engine monitoring, control, and data acquisition was supplied by Southwest Research Institute (SwRI) developed PRISM software. An appropriately sized absorption dynamometer was used to supply engine loading. Engine oil and coolant temperatures were controlled with the use of liquid-to-liquid heat exchangers. Engine intake air was supplied at ambient conditions, and inlet fuel temperatures were controlled through an auxiliary fuel heater loop.

Engine Run-in

Prior to testing, the engine was run-in following procedures outlined below. Cyclic modes were repeated for a total of 24 cycles. Total runtime for engine run-in was approximately 6 hours.

Time, min	Mode	Speed, RPM	Torque, lb*ft	Coolant Out, °F	Oil Galley, °F
10	Steady State	1500	10	215	220
10	Steady State	1600	109	215	220
10	Steady State	2400	145	215	220
10	Steady State	3200	165	215	220
1	Cyclic	900	0	215	220
2	Cyclic	2600	50%	215	220
2	Cyclic	1800	1%	215	220
2	Cyclic	1200	25%	215	220
2	Cyclic	1800	50%	215	220
2	Cyclic	3200	5%	215	220
2	Cyclic	2200	50%	215	220

Figure A1-1: Test Engine Run-In Procedure

Pre-Test Engine Performance Check

After completion of engine run-in, a full load powercurve was completed from 1000 rpm to rated engine speed (3400 rpm) to determine pre-test engine performance. The pre-test engine performance check was completed using the same oil charge used during the engine run-in segment. Powercurve plots can be seen in the Engine Performance Curves section.

Test Cycle

The test cycle followed during oil evaluation was the standard 210 hr Tactical Wheeled Vehicle cycle as outlined in CRC Report No. 406, Development of Military Fuel/Lubricant/Engine Compatibility Test. Test termination would occur at 210 hrs or upon major oil degradation, which ever occurred first. The test cycle consisted of cyclic modes alternating between 2 hr rated speed conditions and 1 hr idle soaks. Total daily run-time was 14 hrs, 10 hrs at rated and 4 hrs at idle, with a 10 hr soak overnight before resuming the next day's testing. Engine oil temperatures were elevated to simulate conditions consistent with high ambient temperature typical of desert operations. Engine operating parameters were controlled throughout testing as specified below in Figure A1-2.

Parameter	Rated Speed	ldle
Engine Speed, RPM	3400 +/- 25	900 +/- 25
Water Jacket Out, °F	204 +/- 5	100 +/- 5
Oil Sump, °F	260 +/- 5	125 +/- 5

Figure A2-2. Test Cycle Operating Parameters

Engine coolant was a 60/40 blend of ethylene glycol antifreeze and deionized water. Test fuel was JP-8 blended onsite from Jet A with double the max treat rate of corrosion inhibitor/lubricity enhancer DCI-4A.

Oil Sampling

Four ounces of engine oil was sampled every 14 hrs for used oil analysis. Engine oil analysis consisted of the following tests: (Note – at every 70 hr interval, two additional tests were completed on the used oil as shown below). All oil samples were weighed and logged to take into account during calculations of total engine oil consumption for the test duration.

Every 14hrs						
ASTM D4739 Total Base Number						
ASTM	D664	Total Acid Number				
ASTM	ASTM D445 Kinematic Viscosity @ 100°C					
ASTM	API Gravity	API Gravity				
ASTM	D4052	Density				
ASTM	TGA SOOT	TGA Soot				
ASTM	E168	Oxidation				
ASTM	E168	Nitration				
ASTM	D5185	Wear Metals by ICP				

Every 70hrs							
ASTM	D445	Kinematic Viscosity @ 40°C					
ASTM	D2270	Kinematic Viscosity Index					

Figure A1-3. Used Oil Analysis Procedures

Used oil analysis results can be seen in the engine oil analysis and engine oil analysis trends section of the report.

Oil Level Checks

Engine oil level was checked daily and replenished as needed to restore oil level to full mark. This process occurred after the completion of the 10hr soak, prior to restarting the test. All oil additions were weighed and logged to take into account during calculation of total engine oil consumption for the test duration.

Post-Test Engine Performance Check

After completion of testing, a full load powercurve was completed from 1000 rpm to rated engine speed (3400 rpm) to determine post-test engine performance. The post-test engine performance check was completed using the same oil charge used during the testing segment. Powercurve plots can be seen in the Engine Performance Curves section.

Engine Operating Conditions Summary

Below is a summary of the engine operating conditions over the test duration. The tested lubricant completed the full 210hr test schedule with satisfactory performance.

			onditions (RPM)		nditions RPM)
Perameter:	Units:	Average	Std. Dev.	Average	Std. Dev.
Engine Speed	RPM	3400.01	0.73	900.21	2.73
Torque*	ft*lb	253.98	2.61	21.78	1.95
Fuel Flow	lb/hr	79.24	0.79	5.54	0.19
Power*	bhp	164.42	1.68	3.73	0.33
BSFC*	lb/bhp*hr	0.482	0.007	1.493	0.103
Temperatures:					
Coolant In	°F	190.06	1.09	91.96	0.89
Coolant Out	°F	205.00	1.01	99.97	0.79
Oil Sump	°F	260.05	0.44	125.61	1.81
Fuel In	°F	95.02	0.31	94.99	0.32
Intake Air	°F	74.94	3.62	72.25	3.25
Cylinder 1 Exhaust	°F	1136.32	15.48	194.86	5.21
Cylinder 2 Exhaust	°F	1204.35	10.67	199.40	6.03
Cylinder 3 Exhaust	°F	1186.67	14.53	211.52	7.07
Cylinder 4 Exhaust	°F	1141.38	14.00	201.10	7.13
Cylinder 5 Exhaust	°F	1152.53	16.09	195.86	8.32
Cylinder 6 Exhaust	°F	1162.03	13.27	197.34	6.78
Cylinder 7 Exhaust	°F	1150.77	14.52	190.82	4.81
Cylinder 8 Exhaust	°F	1147.97	11.32	191.63	5.31
Pressures:					
Oil Galley	psi	35.94	0.56	37.11	3.25
Ambient Pressure	psiA	14.26	0.05	14.25	0.05
Boost Pressure	psi	4.32	0.08	-0.17	0.05
		* Non-corrected	Values		

Engine Performance Curves

*Note - Breaks in BSFC plot due to invalid values for engine fuel flow during powercurve.

Engine Oil Analysis

Property	ASTM Test Hours																
	Test	0	14	28	42	56	70	84	98	112	126	140	154	168	182	196	210
Density	D4052	0.8562	0.8593	0.8594	0.8625	0.863	0.8662	0.8671	0.8692	0.8721	0.8738	0.8758	0.8783	0.8803	0.8822	0.8847	0.8874
Viscosity @ 100°C (cSt)	D445	8.8	9.4	9.8	10.1	10.4	10.6	10.9	11.3	11.5	11.9	12.1	12.4	12.6	12.9	13.3	13.6
Viscosity @ 40°C (cSt)	D445						61.5					76.0					93.5
Viscosity Index (dyne/cm)	D2270						164.0					156.0					148.0
Total Base Number (mg KOH/g)	D4739	10.7	9.5	7.9	8.4	6.6	7.0	5.8	6.4	5.5	4.9	4.8	4.6	4.6	4.8	4.9	4.4
Total Acid Number (mg KOH/g)	D664	3.0	3.0	3.0	3.5	3.7	4.1	4.2	4.8	4.8	4.8	6.6	5.9	6.7	6.7	7.6	7.3
Oxidation (Abs./cm)	E168 FTNG	0.0	1.2	5.4	9.6	13.7	18.1	22.5	26.6	30.8	35.0	39.9	45.2	50.3	55.3	63.8	68.8
Nitration (Abs./cm)	E168 FTNG	0.0	4.1	5.3	5.2	4.6	4.9	5.4	7.0	8.3	9.8	13.2	15.7	17.5	19.9	23.1	26.0
Soot	Soot	0.2	0.3	0.5	0.6	0.8	0.9	0.9	1.1	1.3	1.5	1.5	1.8	1.9	1.8	2.1	2.1
Wear Metals (ppm)	D5185																
Al		6	7	7	7	8	8	8	9	9	9	10	10	10	11	11	11
Sb		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ва		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
В		<1	1	2	3	2	3	5	4	4	3	3	<1	5	3	3	3
Ca		3524	3693	3874	3918	4085	4166	4267	4409	4599	4662	4996	4945	5003	5242	5363	5393
Cr		<1	1	2	3	4	5	5	6	6	7	8	8	8	9	9	10
Cu		<1	28	29	29	34	36	38	38	38	38	39	41	40	41	43	47
Fe		2	46	82	113	144	168	198	223	257	288	328	359	373	400	422	447
Pb		<1	15	17	18	21	24	27	31	34	40	46	52	58	67	78	92
Mg		11	20	16	16	17	19	18	19	19	19	22	21	22	22	21	21
Mn		<1	2	2	3	4	4	4	5	5	6	6	6	6	6	7	7
Mo		<1	10	14	18	21	23	26	27	29	30	32	32	31	32	32	32
Ni		<1	2	3	4	5	5	6	6	7	7	7	8	8	8	8	8
P		1309	1234	1218	1212	1225	1246	1244	1297	1364	1377	1464	1498	1463	1560	1592	1607
Si		2	47	55	56	57	54	57	55	54	52	51	52	49	48	46	46
Ag		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Na C-		7 <1	6 8	6 10	6 10	6 11	7 12	7 13	7 13	8 14	8 15	10	8 17	8 16	10 17	10 17	10 18
Sn Zn		1873	1874	1932	1897	2043	2078	2119	2236	2274	2342	15 2449	2603	2547	2621	2652	2747
Zn K					1897	2043 8	8	9	8	9	2342		2603 9		10	2652	10
Sr Sr		7	7	7	8 <1	2	1	1	2	1	1	10 <1	2	10 2	10	11 <1	2
Sr V		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
V Ti		<1 <1	<1	<1	<1 <1	<1 <1	<1	<1	<1	<1	<1	1	1	1	1	<1 1	<1 1
Cd		<1	<1	<1 <1	<1 <1	<1	<1	<1 <1	<1 <1	<1	<1	<1	<1	<1	<1	<1	<1
Ca		<1	<1	<1	<1	<t< td=""><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td></t<>	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1

Engine Oil Analysis Trends

Wear Metals by ICP

Oil Consumption Data

Average oil consumption per test hour was 0.081 lbs/hr.

			Consumption	Consumption
	Additions (lbs)	Samples (lbs)	(lbs)	Accumulated
14 -hr	1.38	0.25	1.13	1.13
28 -hr	1.43	0.24	1.19	2.32
42 -hr	1.46	0.22	1.24	3.56
56 -hr	1.46	0.23	1.23	4.79
70 -hr	1.4	0.24	1.16	5.95
84 -hr	1.56	0.25	1.31	7.26
98 -hr	1.49	0.25	1.24	8.5
112 -hr	1.42	0.24	1.18	9.68
126 -hr	1.56	0.25	1.31	10.99
140 -hr	1.39	0.26	1.13	12.12
154 -hr	1.48	0.25	1.23	13.35
168 -hr	1.69	0.25	1.44	14.79
182 -hr	1.71	0.25	1.46	16.25
196 -hr	1.73	0.245	1.485	17.735
210 -hr	2	0.25	1.75	19.485
	Initial Fill	13.31	Total Additions	23.16
	EOT Drain	15.85	Total Samples	3.675

(Initial Fill + Additions)	36.47
(EOT Drain + Samples)	19.525
Total Oil Consumption	16 945

Post Test Engine Ratings

Cylinder Number									
Ratings	1	2	3	4	5	6	7	8	Avg
Ring Sticking	<u>'</u>		Ü	•	Ü	Ŭ	•	Ü	7119
Ring No.1	NO	NO	NO	NO	NO	NO	NO	NO	
Ring No.2	NO	NO	NO	NO	NO	NO	NO	NO	
Ring No.3	NO	NO	NO	NO	NO	NO	NO	NO	
Scuffing % Area	140	110	110	110	110	110	110	110	
Ring No.1	0	0	0	0	0	0	0	0	0.00
Ring No.2	0	0	0	0	0	0	0	0	0.00
Ring No.3	0	0	0	0	0	0	0	0	0.00
Piston Crown	0	0	0	0	0	0	0	0	0.00
Piston Skirt	0	0	0	0	0	0	0	0	0.00
Cylinder Liner, %	0	0	0	0	0	0	0	0	0.00
	U	U	U	U	U	U	U	U	0.00
Piston Carbon, Demerits	17 75	80.50	68.75	27.50	70.00	42 FO	72.00	57.75	60 F0
No.1 Groove	47.75			37.50	78.00	42.50			60.59
No.2 Groove	0.05	0.00	10.50	0.00	0.00	0.50	0.50	13.25	3.10
No.3 Groove	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00
No.1 Land	38.00	30.25	42.00	45.25	45.50	38.25	54.50	61.25	44.38
No.2 Land	2.50	3.25	24.00	3.75	12.00	6.50	20.00	30.00	12.75
No.3 Land	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.75	0.34
Upper Skirt	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Under Crown	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Front Pin Bore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rear Pin Bore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Piston Lacquer, Demerits	I	1	1			1			
No.1 Groove	0.00	0.00	0.00	0.00	0.00	0.00	0.18	0.00	0.02
No.2 Groove	2.53	3.53	2.82	3.12	3.20	3.12	4.03	1.46	2.98
No.3 Groove	1.50	2.00	1.50	1.50	1.61	2.33	1.50	1.74	1.71
No.1 Land	0.02	0.13	0.02	0.30	0.01	0.02	0.04	0.02	0.07
No.2 Land	2.11	2.73	0.74	2.43	1.53	3.25	0.89	0.48	1.77
No.3 Land	1.73	2.99	1.72	2.33	1.68	2.27	1.84	2.07	2.08
Upper Skirt	0.66	0.66	0.86	0.73	0.33	0.66	0.39	0.77	0.63
Under Crown	2.70	3.40	3.85	3.10	5.02	3.55	2.98	4.52	3.64
Front Pin Bore	1.40	1.33	1.40	1.40	1.13	1.40	1.50	1.40	1.37
Rear Pin Bore	1.40	1.40	1.67	1.40	1.40	1.67	1.40	1.40	1.47
Total, Demerits	102.35	132.17	159.83	102.81	151.41	106.02	161.75	178.86	136.90
Miscellanous									
Top Groove Fill, %	44	75	69	29	65	42	73	56	56.63
Intermediate Groove Fill, %	0	0	5	0	00	0	0	14	2.38
Top Land Heavy Carbon, %	18	10	24	29	28	19	40	49	27.13
Top Lan Flaked Carbon, %	0	0	0	0	0	0	0	0	0.00
Valve Tulip Deposits, Merits									
Exahust	9.0	9.3	9.2	9.0	9.5	9.5	9.0	9.0	9.19
Intake	7.8	8.7	7.1	8.0	7.1	6.2	6.0	7.3	7.28

Engine Measurement Changes

Engine Rebuild Measurements, inches

Cylinder Bore	Minimum	<u>Maximum</u>	Average	Spec:
Inside Diameter	4.0547	4.0555	4.0550	Cylinder 1 thru 6 ID 4.054"- 4.075"
0	0.0004	0.0007	0.0004	Cylinder 7 thru 8 ID 4.055"-
Out of Round	0.0001	0.0007	0.0004	Maximum 0.008"
Taper	0.0001	0.0005	0.0003	
Piston Skirt Diameter	4.0496	4.0499	4.0497	
Piston Skirt to Cylinder Bore Clearance	0.0050	0.0058	0.0053	Cylinder 1 thru 7 0.003"-0.004" Cylinder 7 thru 8 0.004"-0.005"
Piston Ring End Gaps				
Top Ring	0.012	0.016	0.014	
Second Ring	0.033	0.038	0.035	
Oil Control Ring	0.012	0.016	0.014	
Ring To Groove Clearance				
Second Ring	0.0020	0.0020	0.0020	0.0015"-0.003"
Oil Control Ring	0.0016	0.0020	0.0019	0.0015"-0.0035"
Piston Pin				
Piston Pin Diameter	1.2205	1.2205	1.2205	1.2203"-1.2206"
Pin Bore Diameter (Piston)	1.2215	1.2216	1.2216	1.2207"-1.2212"
Piston Pin Clearance	0.0010	0.0011	0.0011	0.0003"-0.0012"
Piston Pin Diameter	1.2205	1.2205	1.2205	1.2203"-1.2206"
Pin Bore Diameter (Rod)	1.2215	1.2216	1.2215	1.2207"-1.2212"
Piston Pin Clearance	0.0010	0.0011	0.0010	0.0003"-0.0012"
Bearing Clerances				
Connecting Rod to Journal	0.0025	0.0030	0.0027	0.0017"-0.0039"
Main Bearing to Journa	0.0020	0.0030	0.0022	0.001"-0.005"
Crankshaft Endplay				
Crankshaft Endplay	N/A	N/A	0.006	0.004-0.010"
Rod Side Clearance	0.008	0.009	0.009	0.007-0.024"

Note: Referenced specifications are to 1994 General Motors Light Duty Truck guidelines. Some variation in engine specifications are expected between updated versions of the GEP 6.5L(T) engines used by the military and those used previously by General Motors. GEP engine specifications are not public infomrmation. GM specifications serve only as guielines to acess the pre-test engine condition for fit for purpose.

Pre-Test Cylinder Bore Measurements, inches

Cylinder	Depth	Tranverse (TD)	Longitude (LD)	Avg Bore Dia. (ABD), (TD@MID + TD@BOT)/2	Out of Round
	Тор	4.0549	4.0547	(2 2 7	0.0002
	Middle	4.0548	4.0544	4.0548	0.0004
1	Bottom	4.0548	4.0546		0.0002
	Taper	0.0001	0.0003		
	Тор	4.0548	4.0547		0.0001
	Middle	4.0547	4.0543	4.0547	0.0004
2	Bottom	4.0546	4.0545		0.0001
	Taper	0.0002	0.0004		
	Тор	4.0552	4.0545		0.0007
3	Middle	4.0549	4.0542	4.0549	0.0007
3	Bottom	4.0548	4.0545		0.0003
	Taper	0.0004	0.0003		
	Тор	4.0549	4.0545		0.0004
4	Middle	4.0548	4.0542	4.0548	0.0006
	Bottom	4.0547	4.0545		0.0002
	Taper	0.0002	0.0003		
	Тор	4.0552	4.0546		0.0006
5	Middle	4.0550	4.0543	4.0550	0.0007
5	Bottom	4.0549	4.0547		0.0002
	Taper	0.0003	0.0004		
	Тор	4.0551	4.0546		0.0005
6	Middle	4.0548	4.0543	4.0548	0.0005
0	Bottom	4.0547	4.0546		0.0001
	Taper	0.0004	0.0003		
	Top	4.0556	4.0555		0.0001
7	Middle	4.0555	4.0550	4.0555	0.0005
'	Bottom	4.0555	4.0551		0.0004
	Taper	0.0001	0.0005		
	Тор	4.0556	4.0553		0.0003
8	Middle	4.0555	4.0548	4.0555	0.0007
0	Bottom	4.0554	4.0550		0.0004
	Taper	0.0002	0.0005		

Post-Test Cylinder Bore Measurements, in

Cylinder	Depth	Tranverse (TD)	Longitude (LD)	Avg Bore Dia. (ABD), (TD@MID + TD@BOT)/2	Out of Round
	Тор	4.0551	4.0547		0.0004
_	Middle	4.0548	4.0544	4.0548	0.0004
1	Bottom	4.0547	4.0547		0.0000
	Taper	0.0004	0.0003		
	Тор	4.0552	4.0547		0.0005
2	Middle	4.0551	4.0544	4.0550	0.0007
	Bottom	4.0549	4.0547		0.0002
	Taper	0.0003	0.0003		
	Тор	4.0555	4.0545		0.0010
3	Middle	4.0550	4.0542	4.0549	0.0008
3	Bottom	4.0548	4.0545		0.0003
	Taper	0.0007	0.0003		
	Тор	4.0551	4.0547		0.0004
4	Middle	4.0550	4.0543	4.0550	0.0007
4	Bottom	4.0549	4.0547		0.0002
	Taper	0.0002	0.0004		
	Тор	4.0554	4.0547		0.0007
5	Middle	4.0550	4.0543	4.0550	0.0007
5	Bottom	4.0549	4.0548		0.0001
	Taper	0.0005	0.0005		
	Тор	4.0557	4.0546		0.0011
6	Middle	4.0552	4.0543	4.0551	0.0009
0	Bottom	4.0549	4.0547		0.0002
	Taper	0.0008	0.0004		
	Тор	4.0558	4.0555		0.0003
7	Middle	4.0555	4.0550	4.0555	0.0005
'	Bottom	4.0554	4.0552		0.0002
	Taper	0.0004	0.0005		
	Тор	4.0559	4.0553		0.0006
8	Middle	4.0558	4.0548	4.0557	0.0010
0	Bottom	4.0555	4.0553		0.0002
	Taper	0.0004	0.0005		

Cylinder Bore Diameter Changes, in

Cylinder	Depth	Tranverse (TD)	Longitude (LD)	Avg Bore Dia. Change (TD@MID + TD@BOT)/2
	Тор	0.0002	0.0000	
1	Middle	0.0000	0.0000	0.0000
1	Bottom	0.0001	0.0001	
	Тор	0.0004	0.0000	
2	Middle	0.0004	0.0001	0.0004
	Bottom	0.0003	0.0002	
	Тор	0.0003	0.0000	
3	Middle	0.0001	0.0000	0.0000
3	Bottom	0.0000	0.0000	
	Тор	0.0002	0.0002	
4	Middle	0.0002	0.0001	0.0002
4	Bottom	0.0002	0.0002	
	Тор	0.0002	0.0001	
5	Middle	0.0000	0.0000	0.0000
5	Bottom	0.0000	0.0001	
	Тор	0.0006	0.0000	
6	Middle	0.0004	0.0000	0.0003
0	Bottom	0.0002	0.0001	
	Top	0.0002	0.0000	
7	Middle	0.0000	0.0000	0.0001
'	Bottom	0.0001	0.0001	
	Тор	0.0003	0.0000	
8	Middle	0.0003	0.0000	0.0002
0	Bottom	0.0001	0.0003	
	Тор	0.0003	0.0000	
Avgerage All	Middle	0.0002	0.0000	
Cylinders	Bottom	0.0001	0.0001	
J				

Valve Guide Measurement Changes, in

	Valve Guide Diameter			Valve Guid	e Diameter	
	Inta	ake		Exa	hust	
Cylinder	Before	After	Change	Before	After	Change
1	0.3424	0.4240	0.0816	0.3726	0.3728	0.0002
2	0.3425	0.3425	0.0000	0.3725	0.3728	0.0003
3	0.3425	0.3424	-0.0001	0.3726	0.3728	0.0002
4	0.3424	0.3424	0.0000	0.3726	0.3729	0.0003
5	0.3424	0.3424	0.0000	0.3726	0.3728	0.0002
6	0.3425	0.3425	0.0000	0.3725	0.3729	0.0004
7	0.3425	0.3425	0.0000	0.3726	0.3728	0.0002
8	0.3424	0.3424	0.0000	0.3726	0.3728	0.0002

Maximum	0.0816
Average	0.0102

Maximum	0.0004
Average	0.0003

Valve Stem Measurement Changes, in

	9 ,					
	Valve Ster	Valve Stem Diameter		Valve Stem Diameter		
	Inta	ake		Exa	hust	
Cylinder	Before	After	Change	Before	After	Change
1	0.3414	0.3411	0.0003	0.3711	0.3710	0.0001
2	0.3414	0.3410	0.0004	0.3712	0.3710	0.0002
3	0.3414	0.3412	0.0002	0.3712	0.3706	0.0006
4	0.3413	0.3409	0.0004	0.3712	0.3709	0.0003
5	0.3413	0.3411	0.0002	0.3712	0.3711	0.0001
6	0.3414	0.3410	0.0004	0.3711	0.3711	0.0000
7	0.3414	0.3411	0.0003	0.3711	0.3710	0.0001
8	0.3414	0.3410	0.0004	0.3712	0.3709	0.0003

Maximum	0.0004
Average	0.0003

Maximum	0.0006
Average	0.0002

Valve Stem to Guide Clearance Changes, in

	Stem/Guide Clearance			Stem Guide	e Clearance	
	Inta	ake		Exa	hust	
Cylinder	Before	After	Change	Before	After	Change
1	0.0010	0.0829	0.0819	0.0015	0.0018	0.0003
2	0.0011	0.0015	0.0004	0.0013	0.0018	0.0005
3	0.0011	0.0012	0.0001	0.0014	0.0022	0.0008
4	0.0011	0.0015	0.0004	0.0014	0.0020	0.0006
5	0.0011	0.0013	0.0002	0.0014	0.0017	0.0003
6	0.0011	0.0015	0.0004	0.0014	0.0018	0.0004
7	0.0011	0.0014	0.0003	0.0015	0.0018	0.0003
8	0.0010	0.0014	0.0004	0.0014	0.0019	0.0005

Maximum	0.0819
Average	0.0105

Maximum	0.0008		
Average	0.0005		

Valve Recession Measurement Changes, in

	Valve Recession			Valve Re	ecession	
	Inta	ake		Exa	hust	
Cylinder	Before	After	Change	Before	After	Change
1	0.024	0.062	0.038	0.027	0.037	0.010
2	0.025	0.065	0.040	0.026	0.028	0.002
3	0.025	0.055	0.030	0.027	0.029	0.002
4	0.024	0.042	0.018	0.027	0.027	0.000
5	0.024	0.062	0.038	0.028	0.036	0.008
6	0.025	0.040	0.015	0.027	0.027	0.000
7	0.022	0.043	0.021	0.025	0.029	0.004
8	0.024	0.048	0.024	0.026	0.030	0.004

Maximum	0.040
Average	0.028

Ν	1aximum	0.010
Α	verage	0.004

Post-Test Cam Lobe Profile, in

	Waviness
Cam Lobe	Parameter
	[µm]
1	1.73
2	1.24
3	1.47
4	1.17
5	1.66
6	2.21
7	1.82
8	1.31
9	2.24
10	1.43
11	0.91
12	1.24
13	2.06
14	2.98
15	1.59
16	1.42

Maximum	2.98
Average	1.66

Piston Skirt to Bore Clearance, in

	Cylinder	Average Bore Diameter	Piston Skirt Diameter	Clearance
	1	4.0548	4.0497	0.0051
	2	4.0547	4.0497	0.0050
Test	3	4.0549	4.0497	0.0052
	4	4.0548	4.0497	0.0051
- ә.	5	4.0550	4.0499	0.0050
Pre	6	4.0548	4.0496	0.0052
	7	4.0555	4.0497	0.0058
	8	4.0555	4.0497	0.0058
	1	4.0548	4.0493	0.0055
	2	4.0550	4.0492	0.0058
Test	3	4.0549	4.0493	0.0056
Ľ-	4	4.0550	4.0491	0.0058
Post	5	4.0550	4.0493	0.0057
Ро	6	4.0551	4.0491	0.0059
	7	4.0555	4.0494	0.0061
	8	4.0557	4.0493	0.0064

Top and Second Ring Radial Wear, in

Cylinder Position Before After Delta 1 0.17780 0.17705 0.00075 2 0.17770 0.17695 0.00075 3 0.17650 0.17595 0.00055 4 0.17750 0.17710 0.00040 5 0.17740 0.17690 0.00050 2 0.17855 0.17800 0.00065 2 0.17855 0.17800 0.00065 4 0.17835 0.17795 0.00040 5 0.17880 0.17730 0.00050 4 0.17835 0.17795 0.00040 5 0.17780 0.17730 0.00050 4 0.17855 0.17815 0.00040 5 0.17840 0.17790 0.00050 4 0.17815 0.17855 0.00060 5 0.17830 0.17780 0.00050 4 0.17895 0.17865 0.00040 4 0.17895 0.17865 0.000	Top Ring				
1 2 0.17770 0.17695 0.00075 3 0.17650 0.17595 0.00055 4 0.17750 0.17710 0.00040 5 0.17740 0.17690 0.00050 1 0.17830 0.17770 0.00060 2 0.17855 0.17800 0.00055 4 0.17835 0.17795 0.00040 5 0.17780 0.17730 0.00050 4 0.17855 0.17815 0.00040 5 0.17805 0.17815 0.00040 2 0.17925 0.17885 0.00040 2 0.17925 0.17885 0.00040 2 0.17840 0.17790 0.00050 4 0.17830 0.17780 0.00040 5 0.17830 0.17785 0.00040 6 0.17895 0.17895 0.00040 1 0.17905 0.17865 0.00040 2 0.17875 0.17845 0.00030	Cylinder	Position	Before	After	Delta
1 3 0.17650 0.17595 0.00055 4 0.17750 0.17710 0.00040 5 0.17740 0.17690 0.00050 1 0.17830 0.17770 0.00060 2 0.17855 0.17800 0.00055 4 0.17880 0.17815 0.00065 4 0.17835 0.17795 0.00040 5 0.17780 0.17730 0.00050 1 0.17855 0.17815 0.00040 5 0.17780 0.17730 0.00050 1 0.17855 0.17815 0.00040 2 0.17925 0.17885 0.00040 2 0.17925 0.17885 0.00040 3 0.17840 0.17790 0.00050 4 0.17815 0.17755 0.00060 5 0.17830 0.17780 0.00050 1 0.17905 0.17865 0.00040 2 0.17975 0.17865 0.00040 2 0.17975 0.17865 0.00040 2 0.17875 0.17845 0.00030 4 0.17825 0.17760 0.00065 5 0.17845 0.17805 0.00040 1 0.17865 0.17815 0.00050 5 0.17845 0.17805 0.00040 1 0.17865 0.17815 0.00050 5 0.17845 0.17805 0.00040 1 0.17865 0.17940 0.00065 5 0.17870 0.17895 0.00055 4 0.17970 0.17895 0.00050 2 0.17795 0.17952 0.00065 5 0.17890 0.17850 0.00050 1 0.17890 0.17825 0.00065 5 0.17870 0.17825 0.00065 5 0.17970 0.17920 0.00050 1 0.17890 0.17825 0.00065 5 0.17870 0.17825 0.00065 5 0.17870 0.17825 0.00065 5 0.17870 0.17825 0.00065 5 0.17890 0.17825 0.00065 5 0.17890 0.17825 0.00065 5 0.17895 0.17845 0.00030 5 0.17895 0.17845 0.00030 5 0.17895 0.17855 0.00055		1	0.17780	0.17705	0.00075
4 0.17750 0.17710 0.00040 5 0.17740 0.17690 0.00050 1 0.17830 0.17770 0.00060 2 0.17855 0.17800 0.00055 4 0.17880 0.17815 0.00065 4 0.17835 0.17795 0.00040 5 0.17780 0.17730 0.00050 1 0.17855 0.17815 0.00040 2 0.17925 0.17885 0.00040 2 0.17925 0.17885 0.00040 2 0.17925 0.17885 0.00040 3 0.17840 0.17790 0.00050 4 0.17815 0.17755 0.00060 5 0.17830 0.17780 0.00050 4 0.17815 0.17765 0.00040 2 0.17905 0.17865 0.00040 2 0.17975 0.17952 0.00023 4 0.17875 0.17845 0.00030 4 0.17825 0.17760 0.00065 5 0.17845 0.17805 0.00040 1 0.17865 0.17815 0.00050 5 0.17845 0.17805 0.00040 1 0.17865 0.17815 0.00050 5 0.17870 0.17895 0.00055 4 0.17970 0.17895 0.00055 5 0.17895 0.17940 0.00065 5 0.17895 0.17945 0.00050 1 0.17955 0.17905 0.00050 2 0.17795 0.17745 0.00050 1 0.17990 0.17825 0.00065 5 0.17970 0.17825 0.00065 5 0.17870 0.17825 0.00065 5 0.17870 0.17825 0.00065 5 0.17890 0.17825 0.00065 5 0.17890 0.17825 0.00055 4 0.17895 0.17845 0.00030 5 0.17895 0.17845 0.00050 1 0.17895 0.17855 0.00055 1 0.17875 0.17855 0.00055		2	0.17770	0.17695	0.00075
5 0.17740 0.17690 0.00050 1 0.17830 0.17770 0.00060 2 0.17855 0.17800 0.00055 3 0.17880 0.17815 0.00065 4 0.17835 0.17795 0.00040 5 0.17780 0.17730 0.00050 1 0.17855 0.17815 0.00040 2 0.17925 0.17885 0.00040 2 0.17925 0.17885 0.00040 4 0.17840 0.17790 0.00050 4 0.17815 0.17785 0.00040 5 0.17830 0.17780 0.00050 4 0.17905 0.17865 0.00040 2 0.17875 0.17865 0.00040 2 0.17875 0.17845 0.00030 4 0.17825 0.17845 0.00030 4 0.17825 0.17845 0.00030 5 0.17845 0.17845 0.00040	1	3	0.17650	0.17595	0.00055
1 0.17830 0.17770 0.00060 2 0.17855 0.17800 0.00055 3 0.17880 0.17815 0.00065 4 0.17835 0.17795 0.00040 5 0.17780 0.17730 0.00050 1 0.17855 0.17815 0.00040 2 0.17925 0.17885 0.00040 2 0.17925 0.17885 0.00040 4 0.17815 0.17790 0.00050 4 0.17815 0.17780 0.00050 5 0.17830 0.17780 0.00050 6 0.17830 0.17780 0.00050 1 0.17905 0.17865 0.00040 2 0.17875 0.17865 0.00040 2 0.17875 0.17845 0.00030 4 0.17825 0.17845 0.00030 4 0.17885 0.17845 0.00040 5 0.1805 0.17845 0.00055		4	0.17750	0.17710	0.00040
2 0.17855 0.17800 0.00055 3 0.17880 0.17815 0.00065 4 0.17835 0.17795 0.00040 5 0.17780 0.17730 0.00050 1 0.17855 0.17815 0.00040 2 0.17925 0.17885 0.00040 2 0.17925 0.17885 0.00040 3 0.17840 0.17790 0.00050 4 0.17815 0.17755 0.00060 5 0.17830 0.17780 0.00050 1 0.17905 0.17865 0.00040 2 0.17975 0.17952 0.00023 3 0.17875 0.17952 0.00023 4 0.17825 0.17760 0.00065 5 0.17845 0.17845 0.00040 4 0.17825 0.17760 0.00065 5 0.17845 0.17805 0.00040 1 0.17865 0.17815 0.00050 2 0.18005 0.17940 0.00065 4 0.17970 0.17895 0.00075 5 0.17870 0.17895 0.00040 1 0.17955 0.17905 0.00050 2 0.17895 0.17905 0.00050 4 0.17990 0.17830 0.00040 1 0.17990 0.17825 0.00065 5 0.17870 0.17825 0.00065 5 0.17890 0.17825 0.00065 5 0.17870 0.17825 0.00065 5 0.17890 0.17825 0.00040 2 0.17890 0.17825 0.00065 5 0.17890 0.17825 0.00045 1 0.17895 0.17845 0.00030 5 0.17895 0.17845 0.00030 5 0.17895 0.17855 0.00050		5	0.17740	0.17690	0.00050
2 3 0.17880 0.17815 0.00065 4 0.17835 0.17795 0.00040 5 0.17780 0.17730 0.00050 1 0.17855 0.17815 0.00040 2 0.17925 0.17885 0.00040 2 0.17925 0.17885 0.00040 4 0.17815 0.17790 0.00050 5 0.17830 0.17780 0.00050 5 0.17830 0.177865 0.00040 2 0.17975 0.17865 0.00040 2 0.17975 0.17845 0.00050 4 0.17825 0.17845 0.00040 2 0.17845 0.17845 0.00030 4 0.17825 0.17845 0.00030 4 0.17865 0.17845 0.00040 5 0.18015 0.17845 0.00050 5 0.18005 0.17845 0.00055 4 0.17970 0.17830 0.00040		1	0.17830	0.17770	0.00060
4 0.17835 0.17795 0.00040 5 0.17780 0.17730 0.00050 1 0.17855 0.17815 0.00040 2 0.17925 0.17885 0.00040 3 0.17840 0.17790 0.00050 4 0.17815 0.17755 0.00060 5 0.17830 0.17780 0.00050 1 0.17905 0.17865 0.00040 2 0.17975 0.17952 0.00023 4 0.17875 0.17845 0.00030 4 0.17825 0.17760 0.00065 5 0.17845 0.17805 0.00040 1 0.17865 0.17815 0.00040 1 0.17865 0.17815 0.00050 5 0.17845 0.17895 0.00040 1 0.17865 0.17815 0.00050 5 0.18015 0.17940 0.00065 4 0.17970 0.17895 0.00075 5 0.17870 0.17895 0.00040 1 0.17955 0.17905 0.00050 2 0.17795 0.17745 0.00050 2 0.17795 0.17745 0.00050 4 0.17990 0.17825 0.00065 5 0.17870 0.17825 0.00065 5 0.17890 0.17825 0.00065 5 0.17870 0.17825 0.00065 5 0.17890 0.17825 0.00040 2 0.17890 0.17825 0.00065 5 0.17895 0.17845 0.00030 5 0.17895 0.17845 0.00030 5 0.17895 0.17845 0.00030 5 0.17895 0.17855 0.00055			0.17855	0.17800	0.00055
5 0.17780 0.17730 0.00050 1 0.17855 0.17815 0.00040 2 0.17925 0.17885 0.00040 3 0.17840 0.17790 0.00050 4 0.17815 0.17755 0.00060 5 0.17830 0.17780 0.00050 1 0.17905 0.17865 0.00040 2 0.17975 0.17952 0.00023 4 0.17875 0.17845 0.00030 4 0.17825 0.17845 0.00030 4 0.17825 0.17845 0.00030 4 0.17845 0.17805 0.00040 5 0.17845 0.17815 0.00030 4 0.17865 0.17815 0.00050 2 0.18005 0.17840 0.00055 4 0.17970 0.17830 0.00040 5 0.17870 0.17830 0.00040 6 3 0.17955 0.17905 0.00050	2	3			0.00065
3 1 0.17855 0.17815 0.00040 2 0.17925 0.17885 0.00040 3 0.17840 0.17790 0.00050 4 0.17815 0.17755 0.00060 5 0.17830 0.17780 0.00050 1 0.17905 0.17865 0.00040 2 0.17975 0.17952 0.00023 3 0.17875 0.17845 0.00030 4 0.17825 0.17845 0.00030 4 0.17825 0.17805 0.00040 5 0.17845 0.17805 0.00040 1 0.17865 0.17815 0.00050 2 0.18015 0.17815 0.00050 2 0.18005 0.17815 0.00055 4 0.17970 0.17830 0.00040 2 0.17870 0.17830 0.00040 4 0.17955 0.17915 0.00050 2 0.17795 0.17745 0.00050		4	0.17835	0.17795	0.00040
2 0.17925 0.17885 0.00040 3 0.17840 0.17790 0.00050 4 0.17815 0.17755 0.00060 5 0.17830 0.17780 0.00050 1 0.17905 0.17865 0.00040 2 0.17975 0.17952 0.00023 3 0.17875 0.17845 0.00030 4 0.17825 0.17760 0.00065 5 0.17845 0.17805 0.00040 1 0.17865 0.17815 0.00050 2 0.18005 0.17940 0.00065 3 0.18015 0.17960 0.00055 4 0.17970 0.17895 0.00040 1 0.17955 0.17905 0.00040 1 0.17955 0.17905 0.00050 2 0.17870 0.17830 0.00040 1 0.17955 0.17905 0.00050 2 0.17970 0.17895 0.00050 2 0.17990 0.17925 0.00065 5 0.17990 0.17925 0.00065 5 0.17890 0.17825 0.00040 2 0.17890 0.17825 0.00040 2 0.17890 0.17825 0.00045 4 0.17890 0.17825 0.00045 5 0.17890 0.17835 0.00050 1 0.17895 0.17845 0.00030 5 0.17905 0.17855 0.00050		5	0.17780	0.17730	0.00050
3 0.17840 0.17790 0.00050 4 0.17815 0.17755 0.00060 5 0.17830 0.17780 0.00050 1 0.17905 0.17865 0.00040 2 0.17975 0.17952 0.00023 3 0.17875 0.17845 0.00030 4 0.17825 0.17760 0.00065 5 0.17845 0.17805 0.00040 1 0.17865 0.17815 0.00050 2 0.18005 0.17940 0.00065 3 0.18015 0.17960 0.00055 4 0.17970 0.17895 0.00040 1 0.17970 0.17830 0.00040 1 0.17955 0.17905 0.00050 2 0.17870 0.17830 0.00050 2 0.17990 0.17925 0.00050 4 0.17990 0.17925 0.00065 5 0.17870 0.17825 0.00065 5 0.17970 0.17825 0.00065 5 0.17890 0.17825 0.00040 2 0.17890 0.17825 0.00045 4 0.17890 0.17825 0.00045 5 0.17890 0.17825 0.00045 1 0.17890 0.17825 0.00055 4 0.17875 0.17845 0.00030 5 0.17905 0.17855 0.00050		1	0.17855	0.17815	0.00040
4 0.17815 0.17755 0.00060 5 0.17830 0.17780 0.00050 1 0.17905 0.17865 0.00040 2 0.17975 0.17952 0.00023 4 0.17825 0.17845 0.00030 4 0.17825 0.17760 0.00065 5 0.17845 0.17805 0.00040 2 0.18005 0.17815 0.00050 2 0.18005 0.17940 0.00065 3 0.18015 0.17960 0.00055 4 0.17970 0.17835 0.00075 5 0.17870 0.17830 0.00040 1 0.17955 0.17905 0.00050 2 0.17795 0.17745 0.00050 2 0.17795 0.17745 0.00050 3 0.17895 0.17815 0.00065 5 0.17990 0.17925 0.00065 5 0.17970 0.17825 0.00040		2	0.17925	0.17885	0.00040
5 0.17830 0.17780 0.00050 1 0.17905 0.17865 0.00040 2 0.17975 0.17952 0.00023 3 0.17875 0.17845 0.00030 4 0.17825 0.17760 0.00065 5 0.17845 0.17805 0.00040 1 0.17865 0.17815 0.00050 2 0.18005 0.17940 0.00065 3 0.18015 0.17960 0.00055 4 0.17970 0.17830 0.00040 5 0.17870 0.17830 0.00040 1 0.17955 0.17905 0.00050 2 0.17795 0.17745 0.00050 2 0.17795 0.17745 0.00050 2 0.17895 0.17815 0.00065 3 0.17895 0.17815 0.00065 4 0.17990 0.17920 0.00050 4 0.17890 0.17825 0.00045	3	3	0.17840	0.17790	0.00050
4 0.17905 0.17865 0.00040 2 0.17975 0.17952 0.00023 3 0.17875 0.17845 0.00030 4 0.17825 0.17760 0.00065 5 0.17845 0.17805 0.00040 1 0.17865 0.17815 0.00050 2 0.18005 0.17940 0.00065 3 0.18015 0.17960 0.00055 4 0.17970 0.17895 0.00075 5 0.17870 0.17830 0.00040 1 0.17955 0.17905 0.00050 2 0.17795 0.17745 0.00050 2 0.17795 0.17815 0.00080 4 0.17990 0.17925 0.00065 5 0.17970 0.17920 0.00050 1 0.17890 0.17825 0.00044 2 0.17870 0.17825 0.00045 3 0.17890 0.17835 0.00055		4	0.17815	0.17755	0.00060
4 2 0.17975 0.17952 0.00023 4 0.17875 0.17845 0.00030 4 0.17825 0.17760 0.00065 5 0.17845 0.17805 0.00040 1 0.17865 0.17815 0.00050 2 0.18005 0.17940 0.00065 3 0.18015 0.17960 0.00055 4 0.17970 0.17830 0.00040 5 0.17870 0.17830 0.00040 1 0.17955 0.17905 0.00050 2 0.17795 0.17745 0.00050 2 0.17795 0.17745 0.00080 4 0.17990 0.17925 0.00065 5 0.17970 0.17920 0.00050 4 0.17890 0.17825 0.00040 2 0.17870 0.17825 0.00045 4 0.17890 0.17835 0.00055 4 0.17890 0.17845 0.00030		5	0.17830	0.17780	0.00050
4 3 0.17875 0.17845 0.00030 4 0.17825 0.17760 0.00065 5 0.17845 0.17805 0.00040 1 0.17865 0.17815 0.00050 2 0.18005 0.17940 0.00065 3 0.18015 0.17960 0.00055 4 0.17970 0.17830 0.00040 5 0.17870 0.17830 0.00040 2 0.17795 0.17905 0.00050 2 0.17795 0.17745 0.00050 2 0.17895 0.17815 0.00080 4 0.17990 0.17925 0.00065 5 0.17970 0.17920 0.00050 4 0.17890 0.17825 0.00040 2 0.17870 0.17825 0.00045 4 0.17890 0.17835 0.00055 4 0.17890 0.17845 0.00030 5 0.17895 0.17845 0.00030		1	0.17905	0.17865	0.00040
4 0.17825 0.17760 0.00065 5 0.17845 0.17805 0.00040 1 0.17865 0.17815 0.00050 2 0.18005 0.17940 0.00065 3 0.18015 0.17960 0.00055 4 0.17970 0.17895 0.00075 5 0.17870 0.17830 0.00040 1 0.17955 0.17905 0.00050 2 0.17795 0.17745 0.00050 2 0.17895 0.17815 0.00080 4 0.17990 0.17925 0.00065 5 0.17890 0.17850 0.00040 2 0.17870 0.17825 0.00040 2 0.17870 0.17825 0.00045 3 0.17890 0.17835 0.00055 4 0.17875 0.17845 0.00030 5 0.17905 0.17855 0.00050 1 0.17790 0.17855 0.00050		2	0.17975	0.17952	0.00023
5 0.17845 0.17805 0.00040 1 0.17865 0.17815 0.00050 2 0.18005 0.17940 0.00065 3 0.18015 0.17960 0.00075 4 0.17970 0.17830 0.00040 5 0.17870 0.17905 0.00050 2 0.17795 0.17745 0.00050 3 0.17895 0.17815 0.00080 4 0.17990 0.17925 0.00065 5 0.17970 0.17920 0.00050 1 0.17890 0.17850 0.00040 2 0.17870 0.17825 0.00045 5 0.17890 0.17825 0.00045 7 3 0.17890 0.17845 0.00030 5 0.17905 0.17855 0.00050 4 0.17905 0.17855 0.00050 5 0.17905 0.17855 0.00050	4	3	0.17875	0.17845	0.00030
5 1 0.17865 0.17815 0.00050 2 0.18005 0.17940 0.00065 3 0.18015 0.17960 0.00075 4 0.17970 0.17830 0.00040 5 0.17870 0.17905 0.00050 2 0.17795 0.17745 0.00050 3 0.17895 0.17815 0.00080 4 0.17990 0.17925 0.00065 5 0.17970 0.17920 0.00050 1 0.17890 0.17850 0.00040 2 0.17870 0.17825 0.00045 3 0.17890 0.17835 0.00055 4 0.17890 0.17845 0.00030 5 0.17905 0.17855 0.00050 1 0.17790 0.17725 0.00065		4	0.17825	0.17760	0.00065
5 2 0.18005 0.17940 0.00065 3 0.18015 0.17960 0.00055 4 0.17970 0.17895 0.00075 5 0.17870 0.17830 0.00040 1 0.17955 0.17905 0.00050 2 0.17795 0.17745 0.00050 3 0.17895 0.17815 0.00080 4 0.17990 0.17925 0.00065 5 0.17970 0.17920 0.00050 1 0.17890 0.17850 0.00040 2 0.17870 0.17825 0.00045 3 0.17890 0.17835 0.00055 4 0.17875 0.17845 0.00030 5 0.17905 0.17855 0.00050 1 0.17790 0.17725 0.00065		5	0.17845	0.17805	0.00040
5 3 0.18015 0.17960 0.00055 4 0.17970 0.17895 0.00075 5 0.17870 0.17830 0.00040 1 0.17955 0.17905 0.00050 2 0.17795 0.17745 0.00050 3 0.17895 0.17815 0.00080 4 0.17990 0.17925 0.00065 5 0.17970 0.17920 0.00050 1 0.17890 0.17850 0.00040 2 0.17870 0.17825 0.00045 3 0.17890 0.17835 0.00055 4 0.17875 0.17845 0.00030 5 0.17905 0.17855 0.00050 1 0.17790 0.17725 0.00065		1	0.17865	0.17815	0.00050
4 0.17970 0.17895 0.00075 5 0.17870 0.17830 0.00040 1 0.17955 0.17905 0.00050 2 0.17795 0.17745 0.00050 3 0.17895 0.17815 0.00080 4 0.17990 0.17925 0.00065 5 0.17970 0.17820 0.00050 1 0.17890 0.17850 0.00040 2 0.17870 0.17825 0.00045 3 0.17890 0.17835 0.00055 4 0.17875 0.17845 0.00030 5 0.17905 0.17855 0.00050 1 0.17790 0.17725 0.00065		2	0.18005	0.17940	
5 0.17870 0.17830 0.00040 1 0.17955 0.17905 0.00050 2 0.17795 0.17745 0.00050 3 0.17895 0.17815 0.00080 4 0.17990 0.17925 0.00065 5 0.17970 0.17920 0.00050 1 0.17890 0.17850 0.00040 2 0.17870 0.17825 0.00045 3 0.17890 0.17835 0.00055 4 0.17875 0.17845 0.00030 5 0.17905 0.17855 0.00050 1 0.17790 0.17725 0.00065	5				0.00055
1 0.17955 0.17905 0.00050 2 0.17795 0.17745 0.00050 3 0.17895 0.17815 0.00080 4 0.17990 0.17925 0.00065 5 0.17970 0.17920 0.00050 1 0.17890 0.17850 0.00040 2 0.17870 0.17825 0.00045 3 0.17890 0.17835 0.00055 4 0.17875 0.17845 0.00030 5 0.17905 0.17855 0.00050 1 0.17790 0.17725 0.00065		4	0.17970	0.17895	0.00075
6 2 0.17795 0.17745 0.00050 3 0.17895 0.17815 0.00080 4 0.17990 0.17925 0.00065 5 0.17970 0.17920 0.00050 1 0.17890 0.17850 0.00040 2 0.17870 0.17825 0.00045 3 0.17890 0.17835 0.00055 4 0.17875 0.17845 0.00030 5 0.17905 0.17855 0.00050 1 0.17790 0.17725 0.00065		5	0.17870	0.17830	0.00040
6 3 0.17895 0.17815 0.00080 4 0.17990 0.17925 0.00065 5 0.17970 0.17920 0.00050 1 0.17890 0.17850 0.00040 2 0.17870 0.17825 0.00045 3 0.17890 0.17835 0.00055 4 0.17875 0.17845 0.00030 5 0.17905 0.17855 0.00050 1 0.17790 0.17725 0.00065		1	0.17955	0.17905	0.00050
4 0.17990 0.17925 0.00065 5 0.17970 0.17920 0.00050 1 0.17890 0.17850 0.00040 2 0.17870 0.17825 0.00045 3 0.17890 0.17835 0.00055 4 0.17875 0.17845 0.00030 5 0.17905 0.17855 0.00050 1 0.17790 0.17725 0.00065		2	0.17795	0.17745	0.00050
5 0.17970 0.17920 0.00050 1 0.17890 0.17850 0.00040 2 0.17870 0.17825 0.00045 3 0.17890 0.17835 0.00055 4 0.17875 0.17845 0.00030 5 0.17905 0.17855 0.00050 1 0.17790 0.17725 0.00065	6	3	0.17895	0.17815	0.00080
7 1 0.17890 0.17850 0.00040 2 0.17870 0.17825 0.00045 3 0.17890 0.17835 0.00055 4 0.17875 0.17845 0.00030 5 0.17905 0.17855 0.00050 1 0.17790 0.17725 0.00065		4	0.17990	0.17925	0.00065
7 2 0.17870 0.17825 0.00045 3 0.17890 0.17835 0.00055 4 0.17875 0.17845 0.00030 5 0.17905 0.17855 0.00050 1 0.17790 0.17725 0.00065		5	0.17970	0.17920	0.00050
7 3 0.17890 0.17835 0.00055 4 0.17875 0.17845 0.00030 5 0.17905 0.17855 0.00050 1 0.17790 0.17725 0.00065		1	0.17890	0.17850	0.00040
4 0.17875 0.17845 0.00030 5 0.17905 0.17855 0.00050 1 0.17790 0.17725 0.00065		2	0.17870	0.17825	0.00045
5 0.17905 0.17855 0.00050 1 0.17790 0.17725 0.00065	7	3		0.17835	0.00055
1 0.17790 0.17725 0.00065		4	0.17875	0.17845	0.00030
		5			
2 0.17750 0.17700 0.00050					0.00065
		2	0.17750	0.17700	0.00050
8 3 0.17805 0.17745 0.00060	8	3			0.00060
4 0.17880 0.17835 0.00045					-
5 0.17800 0.17735 0.00065		_			

*Note - Measurements with a negitive delta value, shown in italics, are considered pre-test measurements error

gitive delta value, shown at measurements error			
N4 '	0.00000		
Maximum	0.00080		
Average	0.00052		

Second Ring				
Cylinder	Position	Before	After	Delta
	1	0.16210	0.16150	0.00060
	2	0.16200	0.16155	0.00045
1	3	0.15990	0.15950	0.00040
	4	0.15920	0.15885	0.00035
	5	0.16105	0.16070	0.00035
	1	0.16165	0.16120	0.00045
	2	0.16290	0.16225	0.00065
2	3	0.16030	0.15985	0.00045
	4	0.16010	0.15960	0.00050
	5	0.16125	0.16080	0.00045
	1	0.16155	0.16080	0.00075
	2	0.16075	0.16020	0.00055
3	3	0.16040	0.15970	0.00070
	4	0.16185	0.16150	0.00035
	5	0.16150	0.16100	0.00050
	1	0.16190	0.16125	0.00065
	2	0.16140	0.16085	0.00055
4	3	0.16070	0.15985	0.00085
	4	0.16100	0.16040	0.00060
	5	0.16175	0.16130	0.00045
_	1	0.16230	0.16185	0.00045
	2	0.16315	0.16245	0.00070
5	3	0.16145	0.16080	0.00065
	4	0.16120	0.16055	0.00065
	5	0.16175	0.16120	0.00055
	1	0.16200	0.16140	0.00060
_	2	0.16230	0.16205	0.00025
6	3	0.16020	0.15970	0.00050
	4	0.16075	0.16010	0.00065
	5	0.16220	0.16145	0.00075
	1	0.16215	0.16145	0.00070
_	2	0.16227	0.16205	0.00022
7	3	0.16155	0.16105	0.00050
	4	0.16075	0.16025	0.00050
	5	0.16215	0.16165	0.00050
	1	0.16125	0.16085	0.00040
_	2	0.16190	0.16165	0.00025
8	3	0.16025	0.15990	0.00035
	4	0.16160	0.16120	0.00040
	5	0.16115	0.16100	0.00015

*Note - Measurements with a negitive delta value, shown in italics, are considered pre-test measurements error

Maximum	0.00085
Average	0.00051

Piston Ring Gap Measurements, in

Cylinder	Ring No.	Before	After	Delta
	1	0.013	0.016	0.003
1	2	0.033	0.037	0.004
	3	0.013	0.015	0.002
	1	0.013	0.016	0.003
2	2	0.033	0.038	0.005
	3	0.013	0.015	0.002
	1	0.012	0.016	0.004
3	2	0.035	0.037	0.002
	3	0.013	0.016	0.003
	1	0.013	0.017	0.004
4	2	0.034	0.038	0.004
	3	0.013	0.016	0.003
	1	0.013	0.015	0.002
5	2	0.038	0.042	0.004
	3	0.014	0.016	0.002
	1	0.013	0.020	0.007
6	2	0.035	0.036	0.001
	3	0.014	0.017	0.003
	1	0.016	0.018	0.002
7	2	0.038	0.041	0.003
	3	0.016	0.018	0.002
	1	0.016	0.020	0.004
8	2	0.034	0.039	0.005
	3	0.012	0.017	0.005

Ring No. 1 max increase	0.007
Ring No. 2 max increase	0.005
Ring No. 3 max increase	0.005

Ring No. 1 avg increase	0.004
Ring No. 2 avg increase	0.004
Ring No. 3 avg increase	0.003

Piston Ring Mass, grams

Cylinder	Ring No.	Before	After	Delta
	1	22.7541	22.6533	0.1008
1	2	17.0669	17.0356	0.0313
	3	15.2482	15.2357	0.0125
	1	22.8106	22.7119	0.0987
2	2	17.0748	17.0382	0.0366
	3	14.9461	14.9318	0.0143
	1	22.8003	22.7104	0.0899
3	2	17.0292	16.9901	0.0391
	3	3 15.3226 15.3044 0.0183 1 22.8790 22.7945 0.0849 2 17.0481 17.0143 0.0338	0.0182	
	1	22.8790	22.7945	0.0845
4	2	17.0481	17.0143	0.0338
	3	14.9637	14.9467	0.0170
	1	22.8445	22.7391	0.1054
5	2	17.1074	17.0637	0.0437
	3	15.3087	15.2923	0.0164
	1	22.8318	22.7400	0.0918
6	2	17.0351	16.9959	0.0392
	3	15.0681	15.0518	0.0163
	1	22.8722	22.7913	0.0809
7	2	17.0542	17.0209	0.0333
	3	15.2659	15.2512	0.0147
	1	22.8376	22.7511	0.0865
8	2	17.0606	17.0295	0.0311
	3	15.3035	15.2847	0.0188

Ring No. 1 max decrease	0.1054
Ring No. 2 max decrease	0.0437
Ring No. 3 max decrease	0.0188

Ring No. 1 avg decrease	0.0923
Ring No. 2 avg decrease	0.0360
Ring No. 3 avg decrease	0.0160

Connecting Rod Bearing Weight Loss, grams

Rod Bearing	Shell	Before	After	Change
4	Тор	27.5997	27.5758	0.0239
	Bottom	27.5825	27.5719	0.0106
2	Тор	27.5555	27.5383	0.0172
2	Bottom	27.5790	27.5702	0.0088
2	Тор	27.6239	27.5766	0.0473
3	Bottom	27.5660	27.5299	0.0361
4	Тор	27.5801	27.5626	0.0175
4	Bottom	27.6037	27.5913	0.0124
F	Тор	27.5768	27.5493	0.0275
5	Bottom	27.5344	27.5210	0.0134
6	Тор	27.4884	27.4620	0.0264
O	Bottom	27.6483	27.6330	0.0153
7	Тор	27.5598	27.5348	0.0250
1	Bottom	27.6727	27.6538	0.0189
8	Тор	27.6420	27.6278	0.0142
0	Bottom	27.6912	27.6782	0.0130

Maximum	0.0473
Average	0.0205

Main Bearing Weight Loss, grams

Main Bearing	Shell	Before	After	Change
4	Тор	48.1879	48.1408	0.0471
1	Bottom	51.7463	51.6480	0.0983
2	Тор	48.0748	48.0425	0.0323
2	Bottom	51.5846	51.3740	0.2106
2	Тор	97.7533	97.4820	0.2713
3	Bottom	103.4375	103.0981	0.3394
4	Тор	47.9910	47.9638	0.0272
4	Bottom	51.5284	51.3870	0.1414
5	Тор	69.0709	69.0106	0.0603
	Bottom	72.9269	72.8335	0.0934

Maximum	0.3394
Average	0.1321

Stanadyne Injection Pump Calibration/Evaluation

Stanadyne Pump Calibration / Evaluation

Pump Type : DB2831-5079 (arctic)	SN: 15714947
Test condition :	AL:

PUMP RPM	Description	Spec.	Before	After	Change
1000	Transfer pump psi.	60-62 psi	62	61	1
1000	Return Fuel	225-375 cc	260	270	10
	Low Idle	12-16 cc	15	7.5	7.5
350	Housing psi.	8-12 psi	10	11	1
330	Advance	3.5 deg. min	2.5	2.98	0.48
	Cold Advance Solenoid	0-1 psi.	0	0	0
750	Shut-Off	4 cc max.	0	0	0
900	Fuel Delivery	66.5 - 69.5cc	66	66	0
	WOT Fuel delivery	59.5 min.	64	64	0
	WOT Advance	2.5 - 3.5 deg.	3.03	3.2	0.17
1600	Face Cam Fuel delivery	21.5 - 23.5	22	22	0
	Face Cam Advance	5.25 - 7.25 deg.	6.15	6.1	0.05
	Low Idle	11 - 12 deg.	11.03	11.01	0.02
1825	Fuel Delivery	33 cc min.	38	39	1
1950	High Idle	15 cc max.	2	2	0
1930	Transfer pump psi.	125 psi max.	112	111	1
200	WOT Fuel Delivery	58 cc min.	60	60	0
200	WOT Shut-Off	4 cc max.	0	0	0
	Low Idle Fuel Delivery	37 cc min.	48	48	0
75	Transfer pump psi.	16 psi min.	24	22	2
	Housing psi.	0 -12 psi	10	10	0
	Air Timing	5 deg.(+/5 deg)	-0.5	-0.5	0

^{*}Pump calibration data to be used for reference only

PHOTOGRAPHS

Oil Code:	LO268869	EOT Date:	9-12-11	
Test No.:	LO268869-65T1-W-210	Test Length:	210	

Piston Skirt Thrust - Best Cyl 1

Piston Skirt Anti-thrust - Best Cyl 1

Oil Code:	LO268869	EOT Date:	9-12-11	
Test No.:	LO268869-65T1-W-210	Test Length:	210	

Piston Skirt Thrust - Worst Cyl 8

Piston Skirt Anti-thrust - Worst Cyl 8

Oil Code:	LO268869	EOT Date:	9-12-11	
Test No.:	LO268869-65T1-W-210	Test Length:	210	

Piston Rings - Best Cyl 7

Piston Rings - Worst Cyl 5

Oil Code:	LO268869	EOT Date:	9-12-11	
Test No.:	LO268869-65T1-W-210	Test Length:	210	

Piston Undercrown - Best Cyl 1

Piston Undercrown - Worst Cyl 8

Oil Code:	LO268869	EOT Date:	9-12-11	
Test No.:	LO268869-65T1-W-210	Test Length:	210	

Engine Block Cylinder Bore - Best Cyl 5

Engine Block Cylinder Bore - Worst Cyl 8

Oil Code:	LO268869	EOT Date:	9-12-11	
Test No.:	LO268869-65T1-W-210	Test Length:	210	

Exhaust and Intake Valve - Best Cyl 2

Oil Code:	LO268869	EOT Date:	9-12-11	
Test No.:	LO268869-65T1-W-210	Test Length:	210	

Exhaust and Intake Valve - Worst Cyl 7

Oil Code:	LO268869	EOT Date:	9-12-11	
Test No.:	LO268869-65T1-W-210	Test Length:	210	

Rod Bearings

Oil Code:	LO268869	EOT Date:	9-12-11	
Test No.:	LO268869-65T1-W-210	Test Length:	210	

Main Bearings

APPENDIX – A2 EVALUATION OF SCPL CANDIDATE LO-271510

EVALUATION OF SCPL CANDIDATE LO-271510

Project 14734.01

GEP 6.5L Turbocharged HMMWV Engine

Test Lubricant: LO-271510 Test Fuel: Jet-A w/DCI-4A

Test Number: LO271510-65T1-W-210 Start of Test Date: October 11, 2011 End of Test Date: October 31, 2011

Test Duration: 196 Hours

Test Procedure: Tactical Wheeled Vehicle

Conducted for

U.S. Army TARDEC Force Projection Technologies Warren, Michigan

Table of Contents

Introduction	A2-3
Test Engine	A2-3
Test Stand Configuration	A2-3
Engine Run-in	A2-3
Pre-Test Engine Performance Check	A2-3
Test Cycle	A2-4
Oil Sampling	A2-4
Oil Level Checks	A2-4
Post-Test Engine Performance Check	A2-5
Engine Operating Conditions Summary	A2-5
Engine Performance Curves	A2-6
Engine Oil Analysis	A2-7
Engine Oil Analysis Trends	A2-8
Oil Consumption Data	A2-11
Post Test Engine Ratings	A2-12
Engine Measurement Changes	A2-13
Engine Rebuild Measurements, inches	A2-13
Pre-Test Cylinder Bore Measurements, inches	A2-14
Post-Test Cylinder Bore Measurements, in	A2-15
Cylinder Bore Diameter Changes, in	A2-16
Valve Guide Measurement Changes, in	A2-17
Valve Stem Measurement Changes, in	A2-17
Valve Stem to Guide Clearance Changes, in	A2-18
Valve Recession Measurement Changes, in	A2-18
Post-Test Cam Lobe Profile, in	A2-19
Piston Skirt to Bore Clearance, in	A2-19
Top and Second Ring Radial Wear, in	A2-20
Piston Ring Gap Measurements, in	A2-21
Piston Ring Mass, grams	A2-22
Connecting Rod Bearing Weight Loss, grams	A2-23
Main Bearing Weight Loss, grams	A2-23
Stanadyne Injection Pump Calibration/Evaluation	A2-24
PHOTOGRAPHS	

Introduction

This test was used to determine the performance of Single Common Powertrain Lubricant (SCPL) candidate LO-271510 when used in the General Engine Products (GEP) 6.5L turbocharged engine by the procedures outlined in the Tactical Wheeled Vehicle Cycle (CRC Report No.406, Development of Military Fuel/Lubricant/Engine Compatibility Test). This work was completed in support of Project 14734.01, Single Common Powertrain Lubricants for Combat/Tactical Equipment.

Test Engine

The oil was evaluated in the General Engine Products 6.5L turbocharged diesel engine, representative of engines currently fielded in High Mobility Multipurpose Wheeled Vehicles (HMMWV). Prior to testing, the engine was disassembled and measured for pre-test wear. Engine clearances and specifications were verified, and the engine was reassembled following standard assembly procedures.

Test Stand Configuration

The engine was mounted in a test stand specifically configured for GEP engine testing. Engine monitoring, control, and data acquisition was supplied by Southwest Research Institute (SwRI) developed PRISM software. An appropriately sized absorption dynamometer was used to supply engine loading. Engine oil and coolant temperatures were controlled with the use of liquid-to-liquid heat exchangers. Engine intake air was supplied at ambient conditions, and inlet fuel temperatures were controlled through an auxiliary fuel heater loop.

Engine Run-in

Prior to testing, the engine was run-in following procedures outlined below. Cyclic modes were repeated for a total of 24 cycles. Total runtime for engine run-in was approximately 6 hours.

Time, min	Mode	Speed, RPM	Torque, lb*ft	Coolant Out, °F	Oil Galley, °F
10	Steady State	1500	10	215	220
10	Steady State	1600	109	215	220
10	Steady State	2400	145	215	220
10	Steady State	3200	165	215	220
1	Cyclic	900	0	215	220
2	Cyclic	2600	50%	215	220
2	Cyclic	1800	1%	215	220
2	Cyclic	1200	25%	215	220
2	Cyclic	1800	50%	215	220
2	Cyclic	3200	5%	215	220
2	Cyclic	2200	50%	215	220

Figure 1 - Test Engine Run-In Procedure

Pre-Test Engine Performance Check

After completion of engine run-in, a full load powercurve was completed from 1000 rpm to rated engine speed (3400 rpm) to determine pre-test engine performance. The pre-test engine performance check was completed using the same oil charge used during the engine run-in segment. Powercurve plots can be seen in the Engine Performance Curves section.

Test Cycle

The test cycle followed during oil evaluation was the standard 210 hr Tactical Wheeled Vehicle cycle as outlined in CRC Report No. 406, Development of Military Fuel/Lubricant/Engine Compatibility Test. Test termination would occur at 210 hrs or upon major oil degradation, which ever occurred first. The test cycle consists of cyclic modes alternating between 2 hr rated speed conditions and 1 hr idle soaks. Total daily run-time was 14 hrs, 10 hrs at rated and 4 hrs at idle, with a 10 hr soak overnight before resuming the next days testing. Engine oil temperatures were elevated to simulate conditions consistent with high ambient temperature typical of desert operations. Engine operating parameters were controlled throughout testing as specified in the table below.

Parameter	Rated Speed	Idle
Engine Speed, RPM	3400 +/- 25	900 +/- 25
Water Jacket Out, °F	204 +/- 5	100 +/- 5
Oil Sump, °F	260 +/- 5	125 +/- 5

Figure 2 - Test Cycle Operating Parameters

Engine coolant was a 60/40 blend of ethylene glycol antifreeze and deionized water. Test fuel was JP8 blended onsite from Jet-A with double the max treat rate of corrosion inhibitor/lubricity enhancer DCI-4A.

Oil Sampling

Four ounces of engine oil was sampled every 14 hrs for used oil analysis. Engine oil analysis consisted of the following tests: (Note – at every 70 hr interval, two additional tests were completed on the used oil as shown below). All oil samples were weighed and logged to take into account during calculations of total engine oil consumption for the test duration.

Every 14hrs					
ASTM	D4739	Total Base Number			
ASTM	D664	Total Acid Number			
ASTM	D445	Kinematic Viscosity @ 100°C			
ASTM	API Gravity	API Gravity			
ASTM	D4052	Density			
ASTM	TGA SOOT	TGA Soot			
ASTM	E168	Oxidation			
ASTM	E168	Nitration			
ASTM	D5185	Wear Metals by ICP			

Every 70hrs						
ASTM	D445	Kinematic Viscosity @ 40°C				
ASTM	D2270	Kinematic Viscosity Index				

Figure 3 - Used Oil Analysis Procedures

Used oil analysis results can be seen in the engine oil analysis and engine oil analysis trends section of the report.

Oil Level Checks

Engine oil level was checked daily and replenished as needed to restore oil level to full mark. This process occurred after the completion of the 10hr soak, prior to restarting the test. All oil

additions were weighed and logged to take into account during calculation of total engine oil consumption for the test duration.

Post-Test Engine Performance Check

After completion of testing, a full load powercurve was completed from 1000 rpm to rated engine speed (3400 rpm) to determine post-test engine performance. The post-test engine performance check was completed using the same oil charge used during the testing segment. Powercurve plots can be seen in the Engine Performance Curves section.

Engine Operating Conditions Summary

Below is a summary of the engine operating conditions over the test duration. The tested lubricant completed 196hrs of the scheduled 210hr test before being stopped due to oil degradation.

			onditions RPM)		nditions RPM)
		(5-00	, 131 141)	(500)	
Perameter:	Units:	Average	Std. Dev.	Average	Std. Dev.
Engine Speed	RPM	3400.01	0.76	900.58	5.12
Torque*	ft*lb	254.23	2.88	26.49	1.94
Fuel Flow	lb/hr	80.52	0.83	5.79	6.54
Power*	bhp	164.58	1.86	4.55	0.33
BSFC*	lb/bhp*hr	0.489	0.006	1.282	1.453
Temperatures:					
Coolant In	°F	190.40	0.92	92.28	0.93
Coolant Out	°F	204.99	0.84	100.00	0.80
Oil Sump	°F	260.05	0.50	125.59	1.94
Fuel In	°F	95.01	0.34	94.98	0.32
Intake Air	°F	68.33	3.34	65.14	3.14
Cylinder 1 Exhaust	°F	1135.40	16.16	180.81	4.02
Cylinder 2 Exhaust	°F	1205.01	13.90	181.45	4.63
Cylinder 3 Exhaust	°F	1206.48	16.88	185.56	4.70
Cylinder 4 Exhaust	°F	1144.29	15.49	194.32	6.49
Cylinder 5 Exhaust	°F	1162.88	14.26	187.07	4.81
Cylinder 6 Exhaust	°F	1166.94	17.23	196.79	5.34
Cylinder 7 Exhaust	°F	1144.28	18.44	186.20	4.77
Cylinder 8 Exhaust	°F	1164.26	13.81	186.75	4.35
Pressures:					
Oil Galley	psi	36.96	1.59	40.60	5.59
Ambient Pressure	psiA	14.30	0.07	14.30	0.07
Boost Pressure	psi	4.84	0.12	-0.14	0.06
	-	* Non-corrected	Values		

^{*} Non-corrected Values

Engine Performance Curves

*Note - Breaks in BSFC plot due to invalid values for engine fuel flow during powercurve.

Engine Oil Analysis

Property	ASTM	Test Hours							Durs							
	Test	0	14	28	42	56	70	84	98	112	126	140	154	168	182	196
Density	D4052	0.8466	0.8512	0.8552	0.8582	0.861	0.864	0.8667	0.8693	0.8717	0.8752	0.8796	0.8831	0.887	0.8908	0.894
Viscosity @ 100°C (cSt)	D445	8.5	9.1	9.8	10.3	10.9	11.3	11.6	12.0	12.3	12.7	13.2	13.6	14.2	14.9	15.6
Viscosity @ 40°C (cSt)	D445						68.3					88.4				
Viscosity Index (dyne/cm)	D2270						159.0					150.0				
Total Base Number (mg KOH/g)	D4739	9.5	8.4	7.5	7.1	6.7	6.0	5.6	5.6	5.8	5.7	5.4	4.9	4.7	4.2	4.6
Total Acid Number (mg KOH/g)	D664	1.7	2.4	2.4	2.9	3.6	4.0	4.5	4.9	5.7	6.0	7.0	7.6	8.1	8.7	9.7
Oxidation (Abs./cm)	E168 FTNG	0.0	6.9	13.3	18.7	24.2	31.5	37.3	43.7	50.3	58.8	69.6	80.4	91.3	103.0	111.7
Nitration	E168	0.0	5.6	6.2	7.3	9.8	15.0	18.2	21.8	26.6	33.7	39.7	44.1	48.0	51.2	52.0
(Abs./cm)	FTNG															
Soot	Soot	0.2	0.4	0.6	0.8	1.0	1.1	1.3	1.4	1.6	1.7	1.8	2.2	2.3	2.4	2.6
Wear Metals (ppm)	D5185															
Al		2	4	4	4	5	5	5	5	5	5	5	5	4	4	5
Sb		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ba		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
В		14	14	16	15	18	16	17	17	17	17	18	17	18	19	22
Са		902	1012	1013	1080	1081	1172	1206	1204	1254	1291	1312	1355	1422	1436	1469
Cr		<1	2	2	3	4	4	4	5	5	5	6	5	6	6	6
Cu		<1	33	36	36	37	39	40	39	39	40	42	43	47	52	61
Fe		1	54	85	112	136	173	200	217	239	270	297	323	366	398	452
Pb		<1	19	24	27	29	34	38	41	45	56	74	94	128	174	232
Mg		1259	1330	1392	1453 3	1485	1583 4	1617 4	1644 4	1700 4	1756 4	1806 5	1841 5	1915	1926 6	1995 6
Mn Mo		<1 64	2 78	2 88	96	98	105	110	111	110	120	122	120	5 128	130	132
Ni		<1	3	4	5	6	6	7	7	7	8	8	8	8	8	9
P		1079	1083	1076	1104	1079	1169	1207	1214	1223	1304	1350	1336	1463	1474	1476
Si		5	53	64	69	67	71	71	68	63	65	63	59	57	55	56
Ag		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Na Na		<5	<5	<5	5	5	6	7	6	7	7	8	8	9	10	9
Sn		<1	8	10	10	11	12	12	12	12	13	14	14	13	14	15
Zn		1265	1324	1379	1453	1506	1564	1611	1648	1691	1752	1812	1867	1876	1878	1979
K		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Sr		<1	<1	<1	<1	1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
V		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ti		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cd		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1

Engine Oil Analysis Trends

Oil Consumption Data

Average oil consumption per test hour was 0.084 lbs/hr.

			Consumption	Consumption
	Additions (lbs)	Samples (lbs)	(lbs)	Accumulated
14 -hr	1.24	0.235	1.005	1.005
28 -hr	1.63	0.22	1.41	2.415
42 -hr	1.61	0.21	1.4	3.815
56 -hr	1.2	0.22	0.98	4.795
70 -hr	1.64	0.21	1.43	6.225
84 -hr	1.61	0.23	1.38	7.605
98 -hr	1.62	0.23	1.39	8.995
112 -hr	1.44	0.22	1.22	10.215
126 -hr	1.57	0.25	1.32	11.535
140 -hr	1.65	0.26	1.39	12.925
154 -hr	1.7	0.26	1.44	14.365
168 -hr	1.61	0.26	1.35	15.715
182 -hr	1.69	0.235	1.455	17.17
196 -hr	1.61	0.25	1.36	18.53
	Initial Fill	13.33	Total Additions	21.82
				_
	EOT Drain	15.36	Total Samples	3.29

(Initial Fill + Additions)	35.15
(EOT Drain + Samples)	18.65
Total Oil Consumption	16.5

Post Test Engine Ratings

Cylinder Number									
Ratings	1	2	3	4	5	6	7	8	Avg
Ring Sticking							-		7.1.9
Ring No.1	NO	NO	NO	NO	NO	NO	NO	NO	
Ring No.2	NO	NO	NO	NO	NO	NO	NO	NO	
Ring No.3	NO	NO	NO	NO	NO	NO	NO	NO	
Scuffing % Area	140	110	110	110	110	110	110	110	
Ring No.1	0	0	0	0	0	0	0	0	0.00
Ring No.2	0	0	0	0	0	0	0	0	0.00
Ring No.3	0	0	0	0	0	0	0	0	0.00
Piston Crown	0	0	0	0	0	0	0	0	0.00
Piston Skirt	0	0	0	0	0	0	0	0	0.00
Cylinder Liner, %	0	0	0	0	0	0	0	0	0.00
Piston Carbon, Demerits	U			U	U	U	U		0.00
No.1 Groove	44.75	47.50	65.75	59.50	35.50	52.25	33.25	51.25	48.72
No.2 Groove	0.00	0.50	10.00	1.25	2.25	5.25	0.00	10.00	3.66
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
No.3 Groove	30.00								
No.1 Land		28.75	40.50	35.75	39.50	36.50	27.25	38.75	34.63
No.2 Land	7.25	11.25	13.50	2.25	17.25	15.00	6.75	22.00	11.91
No.3 Land	0.00	0.00	0.50	0.00	1.00	1.25	0.00	0.50	0.41
Upper Skirt	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Under Crown	0.00	0.00	0.00	0.00	0.00	0.00	0.00	12.50	1.56
Front Pin Bore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rear Pin Bore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Piston Lacquer, Demerits				I					I
No.1 Groove	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
No.2 Groove	3.67	2.09	2.59	2.93	1.98	2.14	3.00	1.84	2.53
No.3 Groove	2.10	1.60	1.90	1.84	1.20	1.99	1.80	2.20	1.83
No.1 Land	0.04	0.03	0.02	0.01	0.01	0.02	0.06	0.01	0.03
No.2 Land	1.96	1.13	0.92	1.74	0.92	1.47	1.63	0.64	1.30
No.3 Land	1.24	1.69	1.96	1.52	1.70	2.37	1.50	2.34	1.79
Upper Skirt	0.33	0.68	0.64	0.70	0.50	0.77	0.55	0.99	0.65
Under Crown	5.13	4.13	4.87	3.06	3.11	4.44	4.07	2.10	3.86
Front Pin Bore	1.36	1.36	1.36	1.40	1.78	1.36	1.36	1.78	1.47
Rear Pin Bore	1.78	1.36	1.10	1.10	1.36	1.78	1.36	1.36	1.40
Total, Demerits	99.61	102.07	145.61	113.05	108.06	126.59	82.58	148.26	115.73
Miscellanous									
Top Groove Fill, %	41	40	65	41	29	40	22	43	40.13
Intermediate Groove Fill, %	0	0	7	0	0	1	0	4	1.50
Top Land Heavy Carbon, %	8	7	22	15	20	17	7	19	14.38
Top Lan Flaked Carbon, %	0	0	0	0	0	0	0	0	0.00
Value Tulin Demants M. M.									
Valve Tulip Deposits, Merits	0.0	T 0.4	0.4	0.0	0.0	0.0	0.0		0.04
Exahust	9.0	9.1	9.1	9.0	9.0	9.0	9.0	9.1	9.04
Intake	7.0	7.6	7.7	6.8	6.8	8.7	7.1	7.0	7.34

Engine Measurement Changes

Engine Rebuild Measurements, inches

Cylinder Bore	<u>Minimum</u>	<u>Maximum</u>	<u>Average</u>	Spec:
Inside Diameter	4.0546	4.0555	4.0549	Cylinder 1 thru 6 ID 4.054"- 4.075"
Out of Round	0.0001	0.0045	0.0006	Cylinder 7 thru 8 ID 4.055"- Maximum 0.008"
Taper	0.0001	0.0042	0.0005	
Piston Skirt Diameter	4.0499	4.0504	4.0502	
Piston Skirt to Cylinder Bore Clearance	0.0044	0.0051	0.0047	Cylinder 1 thru 7 0.003"-0.004" Cylinder 7 thru 8 0.004"-0.005"
Piston Ring End Gaps				
Top Ring Second Ring Oil Control Ring Ring To Groove Clearance	0.013 0.032 0.013	0.016 0.039 0.015	0.015 0.035 0.014	
Second Ring Oil Control Ring	0.0020 0.0016	0.0020 0.0020	0.0020 0.0019	0.0015"-0.003" 0.0015"-0.0035"
Piston Pin				
Piston Pin Diameter Pin Bore Diameter (Piston) Piston Pin Clearance	1.2205 1.2216 0.0011	1.2205 1.2218 0.0013	1.2205 1.2217 0.0012	1.2203"-1.2206" 1.2207"-1.2212" 0.0003"-0.0012"
Piston Pin Diameter Pin Bore Diameter (Rod) Piston Pin Clearance	1.2205 1.2217 0.0012	1.2205 1.2218 0.0013	1.2205 1.2218 0.0013	1.2203"-1.2206" 1.2207"-1.2212" 0.0003"-0.0012"
Bearing Clerances				
Connecting Rod to Journal Main Bearing to Journa Crankshaft Endplay	0.0025 0.0020	0.0030 0.0030	0.0028 0.0022	0.0017"-0.0039" 0.001"-0.005"
Crankshaft Endplay	N/A	N/A	0.007	0.004-0.010"
Rod Side Clearance	0.009	0.010	0.010	0.007-0.024"

Note: Referenced specifications are to 1994 General Motors Light Duty Truck guidelines. Some variation in engine specifications are expected between updated versions of the GEP 6.5L(T) engines used by the military and those used previously by General Motors. GEP engine specifications are not public infomrmation. GM specifications serve only as guielines to acess the pre-test engine condition for fit for purpose.

Pre-Test Cylinder Bore Measurements, inches

Cylinder	Depth	Tranverse (TD)	Longitude (LD)	Avg Bore Dia. (ABD), (TD@MID + TD@BOT)/2	Out of Round
	Тор	4.0549	4.0546		0.0003
	Middle	4.0548	4.0543	4.0548	0.0005
1	Bottom	4.0547	4.0546		0.0001
	Taper	0.0002	0.0003		
	Тор	4.0548	4.0545		0.0003
2	Middle	4.0547	4.0541	4.0547	0.0006
	Bottom	4.0547	4.0544		0.0003
	Taper	0.0001	0.0004		
	Тор	4.0550	4.0545		0.0005
3	Middle	4.0548	4.0542	4.0548	0.0006
3	Bottom	4.0547	4.0545		0.0002
	Taper	0.0003	0.0003		
	Тор	4.0548	4.0545		0.0003
	Middle	4.0547	4.0541	4.0546	0.0006
4	Bottom	4.0545	4.0544		0.0001
	Taper	0.0003	0.0004		
	Тор	4.0551	4.0545		0.0006
5	Middle	4.0549	4.0542	4.0549	0.0007
5	Bottom	4.0548	4.0546		0.0002
	Taper	0.0003	0.0004		
	Тор	4.0550	4.0545		0.0005
6	Middle	4.0548	4.0541	4.0548	0.0007
0	Bottom	4.0547	4.0544		0.0003
	Taper	0.0003	0.0004		
	Тор	4.0556	4.0552		0.0004
7	Middle	4.0555	4.0548	4.0555	0.0007
	Bottom	4.0555	4.0510		0.0045
	Taper	0.0001	0.0042		
	Тор	4.0556	4.0551		0.0005
8	Middle	4.0554	4.0547	4.0554	0.0007
0	Bottom	4.0553	4.0551		0.0002
	Taper	0.0003	0.0004		

Post-Test Cylinder Bore Measurements, in

Cylinder	Depth	Tranverse (TD)	Longitude (LD)	Avg Bore Dia. (ABD), (TD@MID + TD@BOT)/2	Out of Round
	Тор	4.0553	4.0546		0.0007
	Middle	4.0549	4.0543	4.0549	0.0006
1	Bottom	4.0548	4.0548		0.0000
	Taper	0.0005	0.0005		
	Тор	4.0555	4.0546		0.0009
2	Middle	4.0551	4.0541	4.0550	0.0010
	Bottom	4.0549	4.0546		0.0003
	Taper	0.0006	0.0005		
	Тор	4.0555	4.0545		0.0010
3	Middle	4.0551	4.0542	4.0549	0.0009
3	Bottom	4.0547	4.0546		0.0001
	Taper	0.0008	0.0004		
	Тор	4.0551	4.0547		0.0004
4	Middle	4.0550	4.0541	4.0550	0.0009
4	Bottom	4.0549	4.0547		0.0002
	Taper	0.0002	0.0006		
	Тор	4.0554	4.0545		0.0009
5	Middle	4.0552	4.0543	4.0551	0.0009
5	Bottom	4.0549	4.0548		0.0001
	Taper	0.0005	0.0005		
	Тор	4.0556	4.0545		0.0011
6	Middle	4.0553	4.0541	4.0551	0.0012
0	Bottom	4.0549	4.0548		0.0001
	Taper	0.0007	0.0007		
	Тор	4.0560	4.0553		0.0007
7	Middle	4.0557	4.0548	4.0557	0.0009
/	Bottom	4.0557	4.0552		0.0005
	Taper	0.0003	0.0005		
	Тор	4.0560	4.0553		0.0007
8	Middle	4.0557	4.0547	4.0557	0.0010
0	Bottom	4.0556	4.0552		0.0004
	Taper	0.0004	0.0006		

Cylinder Bore Diameter Changes, in

Cylinder	linder Depth Tranverse (TD)		Longitude (LD)	Avg Bore Dia. Change (TD@MID + TD@BOT)/2
	Top	0.0004	0.0000	
1	Middle	0.0001	0.0000	0.0001
'	Bottom	0.0001	0.0002	
	Тор	0.0007	0.0001	
2	Middle	0.0004	0.0000	0.0003
_	Bottom	0.0002	0.0002	
	Тор	0.0005	0.0000	
3	Middle	0.0003	0.0000	0.0002
	Bottom	0.0000	0.0001	
	Тор	0.0003	0.0002	
4	Middle	0.0003	0.0000	0.0003
-	Bottom	0.0004	0.0003	
	Тор	0.0003	0.0000	
5	Middle	0.0003	0.0001	0.0002
5	Bottom	0.0001	0.0002	
	Тор	0.0006	0.0000	
6	Middle	0.0005	0.0000	0.0003
6	Bottom	0.0002	0.0004	
	Тор	0.0004	0.0001	
7	Middle	0.0002	0.0000	0.0002
'	Bottom	0.0002	0.0042	
	Top	0.0004	0.0002	
8	Middle	0.0003	0.0000	0.0003
	Bottom	0.0003	0.0001	
	Тор	0.0005	0.0001	
Avgerage All	Middle	0.0003	0.0000	
Cylinders	Bottom	0.0002	0.0007	

Valve Guide Measurement Changes, in

				_		
	Valve Guid	Valve Guide Diameter		Valve Guid	e Diameter	
	Inta	Intake		Exa	hust	
Cylinder	Before	After	Change	Before	After	Change
1	0.3424	0.3424	0.0000	0.3726	0.3729	0.0003
2	0.3425	0.3425	0.0000	0.3726	0.3728	0.0002
3	0.3424	0.3425	0.0001	0.3725	0.3729	0.0004
4	0.3424	0.3425	0.0001	0.3725	0.3728	0.0003
5	0.3425	0.3426	0.0001	0.3726	0.3728	0.0002
6	0.3425	0.3425	0.0000	0.3725	0.3729	0.0004
7	0.3425	0.3425	0.0000	0.3725	0.3728	0.0003
8	0.3425	0.3425	0.0000	0.3726	0.3728	0.0002

Maximum	0.0001		
Average	0.0000		

Maximum	0.0004	
Average	0.0003	

Valve Stem Measurement Changes, in

				0	<i>'</i>	
	Valve Stem Diameter			Valve Sten	n Diameter	
	Inta	Intake		Exa	hust	
Cylinder	Before	After	Change	Before	After	Change
1	0.3414	0.3409	0.0005	0.3711	0.3709	0.0002
2	0.3414	0.3409	0.0005	0.3712	0.3709	0.0003
3	0.3414	0.3410	0.0004	0.3712	0.3708	0.0004
4	0.3414	0.3411	0.0003	0.3711	0.3708	0.0003
5	0.3414	0.3411	0.0003	0.3712	0.3708	0.0004
6	0.3414	0.3410	0.0004	0.3711	0.3708	0.0003
7	0.3414	0.3409	0.0005	0.3711	0.3708	0.0003
8	0.3414	0.3410	0.0004	0.3712	0.3708	0.0004

Maximum	0.0005		
Average	0.0004		

Maximum	0.0004		
Average	0.0003		

Valve Stem to Guide Clearance Changes, in

	Stem/Guide Clearance			Stem Guide	e Clearance	
	Inta	Intake		Exa	hust	
Cylinder	Before	After	Change	Before	After	Change
1	0.0010	0.0015	0.0005	0.0015	0.0020	0.0005
2	0.0011	0.0016	0.0005	0.0014	0.0019	0.0005
3	0.0010	0.0015	0.0005	0.0013	0.0021	8000.0
4	0.0010	0.0014	0.0004	0.0014	0.0020	0.0006
5	0.0011	0.0015	0.0004	0.0014	0.0020	0.0006
6	0.0011	0.0015	0.0004	0.0014	0.0021	0.0007
7	0.0011	0.0016	0.0005	0.0014	0.0020	0.0006
8	0.0011	0.0015	0.0004	0.0014	0.0020	0.0006

Maximum	0.0005		
Average	0.0004		

Maximum	0.0008
Average	0.0006

Valve Recession Measurement Changes, in

	Valve Re	ecession		Valve Re	ecession	
	Inta	ake		Exa	Exahust	
Cylinder	Before	After	Change	Before	After	Change
1	0.025	0.049	0.024	0.027	0.055	0.028
2	0.024	0.070	0.046	0.026	0.029	0.003
3	0.026	0.047	0.021	0.028	0.092	0.064
4	0.022	0.072	0.050	0.028	0.042	0.014
5	0.024	0.059	0.035	0.025	0.047	0.022
6	0.024	0.059	0.035	0.026	0.045	0.019
7	0.026	0.065	0.039	0.025	0.061	0.036
8	0.023	0.052	0.029	0.026	0.065	0.039

Maximum	0.050
Average	0.035

Maximum	0.064
Average	0.028

Post-Test Cam Lobe Profile, in

Cam Lobe	Waviness Parameter [µm]
1	1.07
2	0.95
3	0.92
4	1.32
5	0.83
6	1.44
7	1.01
8	1.23
9	1.18
10	1.03
11	1.06
12	1.05
13	1.10
14	1.14
15	1.25
16	1.02

Maximum	1.44	
Average	1.10	

Piston Skirt to Bore Clearance, in

	Cylinder Average Bore Diameter		Piston Skirt Diameter	Clearance
	1	4.0548	4.0500	0.0048
	2	4.0547	4.0503	0.0044
Test	3	4.0548	4.0499	0.0049
	4	4.0546	4.0501	0.0045
Pre -	5	4.0549	4.0502	0.0046
Ы	6	4.0548	4.0501	0.0047
	7	4.0555	4.0504	0.0051
	8	4.0554	4.0503	0.0050
	1	4.0549	4.0493	0.0056
	2	4.0550	4.0491	0.0059
Test	3	4.0549	4.0488	0.0061
- T	4	4.0550	4.0491	0.0058
Post	5	4.0551	4.0493	0.0057
Ро	6	4.0551	4.0488	0.0063
	7	4.0557	4.0494	0.0063
	8	4.0557	4.0495	0.0061

Top and Second Ring Radial Wear, in

Cylinder Position Before After Delta 1 0.17790 0.17760 0.00030 2 0.17840 0.17790 0.00050 3 0.17790 0.17765 0.00025 4 0.17687 0.17655 0.00032 5 0.17790 0.17750 0.00040 2 0.18005 0.17925 0.00040 2 0.18005 0.17975 0.00030 3 0.17905 0.17850 0.00035 4 0.17880 0.17840 0.00040 5 0.17895 0.17860 0.00035 4 0.17895 0.17860 0.00035 3 0.17675 0.17660 0.00035 4 0.17775 0.17665 0.00010 4 0.17770 0.17665 0.00005 4 0.17770 0.17665 0.00005 4 0.17775 0.17760 0.17660 0.00065 4 0.17785 0.176	Top Ring				
1 2 0.17840 0.17790 0.00050 3 0.17790 0.17765 0.00025 4 0.17687 0.17655 0.00032 5 0.17790 0.17750 0.00040 2 0.18005 0.17925 0.00040 2 0.18005 0.17975 0.00030 3 0.17905 0.17850 0.00055 4 0.17880 0.17840 0.00040 5 0.17895 0.17860 0.00035 4 0.17730 0.17700 0.00030 2 0.17755 0.17680 0.00075 3 0.17675 0.17680 0.00075 4 0.17770 0.17720 0.00050 5 0.17690 0.17655 0.00035 4 0.17775 0.17710 0.00065 2 0.17835 0.17810 0.00065 4 0.17745 0.17860 0.00065 5 0.17760 0.17860 0.00065	Cylinder	Position	Before	After	Delta
1 3 0.17790 0.17765 0.00025 4 0.17687 0.17655 0.00032 5 0.17790 0.17750 0.00040 1 0.17965 0.17925 0.00040 2 0.18005 0.17975 0.00030 2 3 0.17905 0.17850 0.00055 4 0.17880 0.17840 0.00040 5 0.17895 0.17860 0.00035 1 0.17730 0.17700 0.00030 2 0.17755 0.17660 0.00035 2 0.17755 0.17660 0.00075 3 0.17675 0.17665 0.00010 4 0.17770 0.17720 0.00050 5 0.17690 0.17655 0.00035 1 0.17770 0.17720 0.00050 5 0.17835 0.17810 0.00025 2 0.17835 0.17810 0.00065 4 0.17745 0.17760 0.00065 5 0.1760 0.17690 0.00070 1 0.17825 0.17770 0.00045 5 0.17815 0.17770 0.00045 5 0.17815 0.17770 0.00045 4 0.17915 0.17865 0.00050 5 0.17875 0.17810 0.00065 5 0.17875 0.17810 0.00065 5 0.17875 0.17810 0.00065 5 0.17855 0.17810 0.00055 5 0.17855 0.17810 0.00065 4 0.17935 0.17880 0.00050 5 0.17855 0.17880 0.00055 5 0.17855 0.17815 0.00040 1 0.17805 0.1785 0.00040 1 0.17805 0.1785 0.00040 1 0.17805 0.1785 0.00055 5 0.17855 0.1785 0.00055 5 0.17855 0.1785 0.00055 5 0.17855 0.1785 0.00055 5 0.17855 0.17855 0.00055 5 0.17855 0.17855 0.00055 5 0.17855 0.17855 0.00055 5 0.17830 0.17750 0.00055 5 0.17830 0.17755 0.00055 5 0.17835 0.17855 0.00050 5 0.17855 0.17850 0.00050 5 0.17855 0.17855 0.00055 5 0.17855 0.17855 0.00055 5 0.17855 0.17855 0.00055 5 0.17855 0.17855 0.00055 5 0.17855 0.17855 0.00055 5 0.17855 0.17855 0.00055		1	0.17790	0.17760	0.00030
4 0.17687 0.17655 0.00032 5 0.17790 0.17750 0.00040 1 0.17965 0.17925 0.00040 2 0.18005 0.17975 0.00030 3 0.17905 0.17850 0.00055 4 0.17880 0.17840 0.00040 5 0.17895 0.17860 0.00035 1 0.17730 0.17700 0.00030 2 0.17755 0.17680 0.00075 3 0.17675 0.17680 0.00075 4 0.17770 0.17720 0.00050 5 0.17690 0.17655 0.00035 1 0.17770 0.17720 0.00050 5 0.17835 0.17810 0.00025 4 0.17745 0.17680 0.00065 2 0.17835 0.17810 0.00065 5 0.17760 0.17690 0.00050 5 0.17760 0.17690 0.00050 5 0.17760 0.17770 0.00055 5 0.17815 0.17770 0.00045 4 0.17915 0.17770 0.00045 4 0.17915 0.17865 0.00050 5 0.17875 0.17810 0.00065 6 0.17875 0.17810 0.00065 1 0.17825 0.17770 0.00045 4 0.17915 0.17865 0.00050 5 0.17875 0.17810 0.00065 5 0.17875 0.17810 0.00065 5 0.17875 0.17810 0.00065 5 0.17875 0.17810 0.00065 5 0.17855 0.17790 0.00055 5 0.17855 0.17790 0.00055 5 0.17855 0.17790 0.00065 4 0.17935 0.17860 0.00050 5 0.17800 0.17750 0.00065 5 0.17855 0.17815 0.00040 1 0.17805 0.17850 0.00055 5 0.17830 0.17750 0.00055 5 0.17830 0.17750 0.00055 5 0.17830 0.17750 0.00055 5 0.17830 0.17750 0.00055 5 0.17830 0.17775 0.00055 5 0.17855 0.17850 0.00050 5 0.17855 0.17850 0.00050 5 0.17855 0.17795 0.00065 4 0.17855 0.17795 0.00065		2	0.17840	0.17790	0.00050
5 0.17790 0.17750 0.00040 1 0.17965 0.17925 0.00040 2 0.18005 0.17975 0.00030 3 0.17905 0.17850 0.00040 5 0.17880 0.17840 0.00040 5 0.17895 0.17860 0.00035 1 0.17730 0.17700 0.00030 2 0.17755 0.17680 0.00075 3 0.17675 0.17665 0.00010 4 0.17770 0.17720 0.00050 5 0.17690 0.17655 0.00035 1 0.17775 0.17710 0.00065 2 0.17835 0.17810 0.00025 3 0.17860 0.17795 0.00065 4 0.17745 0.17800 0.17800 0.00065 5 0.17760 0.17805 0.00055 2 0.17815 0.17770 0.00045 4 0.17825 0.17810 0.00065<	1	3	0.17790	0.17765	0.00025
1 0.17965 0.17925 0.00040 2 0.18005 0.17975 0.00030 3 0.17905 0.17850 0.00055 4 0.17880 0.17840 0.00040 5 0.17895 0.17860 0.00035 1 0.17730 0.17700 0.00030 2 0.17555 0.17680 0.00075 3 0.17675 0.17665 0.00010 4 0.17770 0.17720 0.00050 5 0.17690 0.17655 0.00035 1 0.17775 0.17710 0.00055 2 0.17835 0.17810 0.00025 3 0.17860 0.17795 0.00065 4 0.17745 0.17800 0.17995 0.00065 5 0.17760 0.17690 0.00070 1 0.17825 0.17770 0.00045 2 0.17815 0.17770 0.00045 4 0.17915 0.17865 0.00050<		4	0.17687		0.00032
2 0.18005 0.17975 0.00030 3 0.17905 0.17850 0.00055 4 0.17880 0.17840 0.00040 5 0.17895 0.17860 0.00035 1 0.17730 0.17700 0.00030 2 0.17755 0.17680 0.00075 3 0.17675 0.17665 0.00010 4 0.17770 0.17720 0.00050 5 0.17690 0.17655 0.00035 1 0.17775 0.17710 0.00065 2 0.17835 0.17810 0.00065 4 0.17745 0.17680 0.00065 4 0.17745 0.17680 0.00065 5 0.17860 0.17795 0.00065 5 0.17860 0.17795 0.00065 5 0.17800 0.17690 0.00070 1 0.17825 0.17770 0.00055 2 0.17815 0.17770 0.00045 4 0.17915 0.17865 0.00045 4 0.17915 0.17865 0.00050 5 0.17875 0.17810 0.00065 6 0.17875 0.17810 0.00065 1 0.17845 0.17790 0.00055 5 0.17875 0.17810 0.00065 4 0.17915 0.17880 0.00050 5 0.17895 0.17810 0.00065 4 0.17935 0.17810 0.00065 4 0.17935 0.17810 0.00065 4 0.17935 0.17850 0.00050 5 0.17855 0.17790 0.00065 4 0.17935 0.17850 0.00055 5 0.17855 0.17815 0.00040 1 0.17805 0.17850 0.00065 4 0.17875 0.17850 0.00055 5 0.17830 0.17750 0.00055 5 0.17830 0.17750 0.00055 5 0.17830 0.17775 0.00055 1 0.17900 0.17850 0.00050 5 0.17855 0.17795 0.00065 4 0.17855 0.17795 0.00055 5 0.17855 0.17795 0.00055 5 0.17855 0.17795 0.00055 5 0.17855 0.17795 0.00055 5 0.17855 0.17795 0.00060 3 0.17765 0.17710 0.00055		5	0.17790	0.17750	0.00040
2 3 0.17905 0.17850 0.00055 4 0.17880 0.17840 0.00040 5 0.17895 0.17860 0.00035 1 0.17730 0.17700 0.00030 2 0.17755 0.17680 0.00075 3 0.17675 0.17665 0.00010 4 0.17770 0.17720 0.00050 5 0.17690 0.17655 0.00035 1 0.17775 0.17710 0.00065 2 0.17835 0.17810 0.00025 3 0.17860 0.17795 0.00065 4 0.17745 0.17800 0.17800 0.00065 5 0.17760 0.17690 0.00070 1 0.17825 0.17770 0.00045 2 0.17815 0.17770 0.00045 4 0.17915 0.17865 0.00050 5 0.17825 0.17810 0.00065 4 0.17845 0.17790		1	0.17965	0.17925	0.00040
4 0.17880 0.17840 0.00040 5 0.17895 0.17860 0.00035 1 0.17730 0.17700 0.00030 2 0.17755 0.17680 0.00075 3 0.17675 0.17665 0.00010 4 0.17770 0.17720 0.00050 5 0.17690 0.17655 0.00035 1 0.17775 0.17710 0.00065 2 0.17835 0.17810 0.00065 4 0.17745 0.17680 0.00065 4 0.17745 0.17680 0.00065 5 0.17860 0.17795 0.00065 5 0.17760 0.17690 0.00070 1 0.17825 0.17770 0.00045 2 0.17815 0.17770 0.00045 3 0.17820 0.17775 0.00045 4 0.17915 0.17865 0.00050 5 0.17875 0.17810 0.00065 5 0.17875 0.17810 0.00065 6 0.17885 0.17790 0.00055 5 0.17885 0.17790 0.00055 6 0.17885 0.17790 0.00055 7 0.17855 0.17815 0.00050 1 0.17805 0.17880 0.00050 5 0.17805 0.17880 0.00055 5 0.17855 0.17815 0.00040 1 0.17805 0.17850 0.00055 5 0.17855 0.17815 0.00040 1 0.17805 0.17850 0.00055 5 0.17830 0.17750 0.00055 5 0.17830 0.17775 0.00055 5 0.17830 0.17775 0.00055 4 0.17855 0.17850 0.00050 5 0.17855 0.17850 0.00055 5 0.17830 0.17775 0.00055 4 0.17855 0.17850 0.00055 5 0.17855 0.17850 0.00055 5 0.17855 0.17795 0.00065 4 0.17860 0.17795 0.00065			0.18005	0.17975	0.00030
5 0.17895 0.17860 0.00035 1 0.17730 0.17700 0.00030 2 0.17755 0.17680 0.00075 3 0.17675 0.17665 0.00010 4 0.17770 0.17720 0.00050 5 0.17690 0.17655 0.00035 1 0.17775 0.17710 0.00065 2 0.17835 0.17810 0.00025 4 0.17745 0.17795 0.00065 4 0.17745 0.17800 0.17800 0.00065 5 0.17760 0.17690 0.00070 1 0.17825 0.17770 0.00055 2 0.17815 0.17770 0.00045 4 0.17915 0.17865 0.00050 5 0.17820 0.17775 0.00045 4 0.17915 0.17865 0.00050 5 0.17845 0.17790 0.00055 1 0.17845 0.17790 0.00065<	2	3	0.17905	0.17850	0.00055
3 1 0.17730 0.17700 0.00030 2 0.17755 0.17680 0.00075 3 0.17675 0.17665 0.00010 4 0.17770 0.17720 0.00050 5 0.17690 0.17655 0.00035 1 0.17775 0.17710 0.00065 2 0.17835 0.17810 0.00025 3 0.17860 0.17795 0.00065 4 0.17745 0.17680 0.00065 5 0.17760 0.17690 0.00070 1 0.17825 0.17770 0.00045 2 0.17815 0.17770 0.00045 3 0.17820 0.17775 0.00045 4 0.17915 0.17865 0.00050 5 0.17875 0.17810 0.00065 4 0.17845 0.17790 0.00055 5 0.17855 0.17785 0.00055 2 0.17835 0.17785 0.00055 4 0.17935 0.17880 0.00055 5 </th <th></th> <td>4</td> <td>0.17880</td> <td>0.17840</td> <td>0.00040</td>		4	0.17880	0.17840	0.00040
3 2 0.17755 0.17680 0.00075 3 0.17675 0.17665 0.00010 4 0.17770 0.17720 0.00050 5 0.17690 0.17655 0.00035 1 0.17775 0.17710 0.00065 2 0.17835 0.17810 0.00025 4 0.17745 0.17680 0.00065 5 0.17760 0.17690 0.00065 5 0.17760 0.17690 0.00070 1 0.17825 0.17770 0.00055 2 0.17815 0.17770 0.00045 3 0.17820 0.17775 0.00045 4 0.17915 0.17865 0.00050 5 0.17875 0.17810 0.00065 4 0.17845 0.17790 0.00055 5 0.17845 0.17790 0.00055 2 0.17835 0.17785 0.00050 3 0.17855 0.17880 0.00055		5		0.17860	0.00035
3 0.17675 0.17665 0.00010 4 0.17770 0.17720 0.00050 5 0.17690 0.17655 0.00035 1 0.17775 0.17710 0.00065 2 0.17835 0.17810 0.00025 4 0.17835 0.17810 0.00025 4 0.17745 0.17795 0.00065 5 0.17760 0.17690 0.00070 1 0.17825 0.17770 0.00045 2 0.17815 0.17770 0.00045 3 0.17820 0.17775 0.00045 4 0.17915 0.17865 0.00050 5 0.17875 0.17810 0.00055 1 0.17845 0.17790 0.00055 2 0.17835 0.17780 0.00055 4 0.17835 0.17790 0.00055 2 0.17835 0.17785 0.00050 4 0.17935 0.17880 0.00055 5 0.17855 0.17815 0.00045 4 0.17935 0.17800 0.00055 5 0.17855 0.17815 0.00040 1 0.17805 0.17750 0.00045 4 0.17920 0.17875 0.00045 7 0.17875 0.17860 0.00055 5 0.17830 0.17775 0.00055 5 0.17830 0.17775 0.00055 5 0.17835 0.17825 0.00050 5 0.17835 0.17825 0.00050 5 0.17830 0.17775 0.00055 4 0.17855 0.17850 0.00055 5 0.17855 0.17850 0.00055 4 0.17855 0.17795 0.00055 5 0.17855 0.17795 0.00055 4 0.17860 0.17795 0.00065		1	0.17730		0.00030
4 0.17770 0.17720 0.00050 5 0.17690 0.17655 0.00035 1 0.17775 0.17710 0.00065 2 0.17835 0.17810 0.00025 4 0.17745 0.17680 0.00065 5 0.17760 0.17690 0.00070 1 0.17825 0.17770 0.00045 2 0.17815 0.17770 0.00045 3 0.17820 0.17775 0.00045 4 0.17915 0.17865 0.00050 5 0.17875 0.17865 0.00050 5 0.17875 0.17810 0.00065 4 0.17845 0.17790 0.00055 2 0.17835 0.17785 0.00050 3 0.17855 0.17790 0.00065 4 0.17935 0.17880 0.00055 5 0.17855 0.17815 0.00040 1 0.17805 0.17850 0.00045		2	0.17755	0.17680	0.00075
5 0.17690 0.17655 0.00035 1 0.17775 0.17710 0.00065 2 0.17835 0.17810 0.00025 3 0.17860 0.17795 0.00065 4 0.17745 0.17680 0.00065 5 0.17760 0.17690 0.00070 1 0.17825 0.17770 0.00055 2 0.17815 0.17770 0.00045 3 0.17820 0.17775 0.00045 4 0.17915 0.17865 0.00050 5 0.17875 0.17810 0.00065 4 0.17845 0.17790 0.00055 2 0.17845 0.17780 0.00055 2 0.17835 0.17785 0.00050 3 0.17855 0.17780 0.00065 4 0.17935 0.17880 0.00055 5 0.17855 0.17815 0.00040 7 3 0.17805 0.17850 0.00065	3	3	0.17675		0.00010
4 0.17775 0.17710 0.00065 2 0.17835 0.17810 0.00025 3 0.17860 0.17795 0.00065 4 0.17745 0.17680 0.00065 5 0.17760 0.17690 0.00070 1 0.17825 0.17770 0.00055 2 0.17815 0.17770 0.00045 3 0.17820 0.17775 0.00045 4 0.17915 0.17865 0.00050 5 0.17875 0.17810 0.00065 4 0.17845 0.17790 0.00055 2 0.17835 0.17810 0.00055 2 0.17835 0.17785 0.00055 3 0.17855 0.17780 0.00055 4 0.17935 0.17880 0.00055 5 0.17855 0.17815 0.00040 1 0.17805 0.17750 0.00045 2 0.17920 0.17875 0.00055		4	0.17770	0.17720	0.00050
4 2 0.17835 0.17810 0.00025 3 0.17860 0.17795 0.00065 4 0.17745 0.17680 0.00065 5 0.17760 0.17690 0.00070 1 0.17825 0.17770 0.00045 2 0.17815 0.17770 0.00045 3 0.17820 0.17775 0.00045 4 0.17915 0.17865 0.00050 5 0.17875 0.17810 0.00065 1 0.17845 0.17790 0.00055 2 0.17835 0.17790 0.00055 2 0.17835 0.17790 0.00055 3 0.17855 0.17790 0.00065 4 0.17935 0.17880 0.00055 5 0.17855 0.17815 0.00040 1 0.17805 0.17750 0.00055 2 0.17920 0.17875 0.00055 4 0.17875 0.17825 0.00050		5	0.17690	0.17655	0.00035
4 3 0.17860 0.17795 0.00065 4 0.17745 0.17680 0.00065 5 0.17760 0.17690 0.00070 1 0.17825 0.17770 0.00055 2 0.17815 0.17770 0.00045 3 0.17820 0.17775 0.00045 4 0.17915 0.17865 0.00050 5 0.17875 0.17810 0.00065 2 0.17845 0.17790 0.00055 2 0.17835 0.17790 0.00050 3 0.17855 0.17790 0.00055 4 0.17935 0.17880 0.00055 5 0.17855 0.17815 0.00040 4 0.17805 0.17750 0.00045 5 0.17805 0.17850 0.00065 4 0.17895 0.17860 0.00050 5 0.17830 0.17775 0.00050 5 0.17830 0.17775 0.00055		1	0.17775	0.17710	0.00065
4 0.17745 0.17680 0.00065 5 0.17760 0.17690 0.00070 1 0.17825 0.17770 0.00055 2 0.17815 0.17770 0.00045 3 0.17820 0.17775 0.00045 4 0.17915 0.17865 0.00050 5 0.17875 0.17810 0.00065 1 0.17845 0.17790 0.00055 2 0.17835 0.17785 0.00050 3 0.17855 0.17790 0.00065 4 0.17935 0.17880 0.00055 5 0.17855 0.17815 0.00040 1 0.17805 0.17815 0.00040 1 0.17805 0.17750 0.00055 2 0.17920 0.17875 0.00045 4 0.17875 0.17825 0.00050 5 0.17830 0.17775 0.00055 5 0.17830 0.17775 0.00055		2	0.17835	0.17810	0.00025
5 0.17760 0.17690 0.00070 1 0.17825 0.17770 0.00055 2 0.17815 0.17770 0.00045 3 0.17820 0.17775 0.00045 4 0.17915 0.17865 0.00050 5 0.17875 0.17810 0.00065 2 0.17845 0.17790 0.00055 2 0.17835 0.17785 0.00050 3 0.17855 0.17790 0.00065 4 0.17935 0.17880 0.00055 5 0.17855 0.17815 0.00040 1 0.17805 0.17750 0.00045 2 0.17920 0.17875 0.00045 4 0.17875 0.17860 0.00065 4 0.17875 0.17825 0.00050 5 0.17830 0.17775 0.00055 5 0.17830 0.17775 0.00050 5 0.17830 0.17775 0.00055	4	3	0.17860	0.17795	0.00065
5 1 0.17825 0.17770 0.00055 2 0.17815 0.17770 0.00045 3 0.17820 0.17775 0.00045 4 0.17915 0.17865 0.00050 5 0.17875 0.17810 0.00065 1 0.17845 0.17790 0.00055 2 0.17835 0.17785 0.00050 3 0.17855 0.17790 0.00065 4 0.17935 0.17890 0.00055 5 0.17855 0.17815 0.00040 1 0.17805 0.17750 0.00045 2 0.17920 0.17875 0.00045 2 0.17925 0.17860 0.00065 4 0.17875 0.17825 0.00050 5 0.17830 0.17775 0.00055 5 0.17830 0.17775 0.00055 5 0.17855 0.17795 0.00060 5 0.17855 0.17795 0.00060		4	0.17745	0.17680	0.00065
5 2 0.17815 0.17770 0.00045 3 0.17820 0.17775 0.00045 4 0.17915 0.17865 0.00050 5 0.17875 0.17810 0.00065 1 0.17845 0.17790 0.00055 2 0.17835 0.17785 0.00050 4 0.17935 0.17880 0.00055 5 0.17855 0.17815 0.00040 1 0.17805 0.17750 0.00055 2 0.17920 0.17875 0.00045 2 0.17920 0.17860 0.00065 4 0.17875 0.17825 0.00050 5 0.17830 0.17775 0.00055 5 0.17830 0.17775 0.00055 5 0.17830 0.17775 0.00050 5 0.17855 0.17795 0.00060 2 0.17855 0.17795 0.00060 3 0.17765 0.17710 0.00055		5	0.17760	0.17690	0.00070
5 3 0.17820 0.17775 0.00045 4 0.17915 0.17865 0.00050 5 0.17875 0.17810 0.00065 1 0.17845 0.17790 0.00055 2 0.17835 0.17785 0.00050 3 0.17855 0.17790 0.00065 4 0.17935 0.17880 0.00055 5 0.17855 0.17815 0.00040 1 0.17805 0.17750 0.00055 2 0.17920 0.17875 0.00045 3 0.17925 0.17860 0.00065 4 0.17875 0.17825 0.00050 5 0.17830 0.17775 0.00055 5 0.17830 0.17775 0.00055 1 0.17900 0.17850 0.00050 2 0.17855 0.17795 0.00060 3 0.17765 0.17710 0.00055 4 0.17860 0.17795 0.00065		1	0.17825	0.17770	0.00055
4 0.17915 0.17865 0.00050 5 0.17875 0.17810 0.00065 1 0.17845 0.17790 0.00055 2 0.17835 0.17785 0.00050 3 0.17855 0.17790 0.00065 4 0.17935 0.17880 0.00055 5 0.17855 0.17815 0.00040 1 0.17805 0.17750 0.00055 2 0.17920 0.17875 0.00045 3 0.17925 0.17860 0.00065 4 0.17875 0.17825 0.00050 5 0.17830 0.17775 0.00055 5 0.17830 0.17775 0.00055 1 0.17900 0.17850 0.00050 2 0.17855 0.17795 0.00060 3 0.17765 0.17710 0.00055 4 0.17860 0.17795 0.00065		2	0.17815	0.17770	0.00045
6 0.17875 0.17810 0.00065 1 0.17845 0.17790 0.00055 2 0.17835 0.17785 0.00050 3 0.17855 0.17790 0.00065 4 0.17935 0.17880 0.00055 5 0.17855 0.17815 0.00040 1 0.17805 0.17750 0.00055 2 0.17920 0.17875 0.00045 3 0.17925 0.17860 0.00065 4 0.17875 0.17825 0.00050 5 0.17830 0.17775 0.00055 5 0.17830 0.17775 0.00050 2 0.17855 0.17795 0.00060 2 0.17855 0.17710 0.00055 4 0.17860 0.17710 0.00055	5				0.00045
6 1 0.17845 0.17790 0.00055 2 0.17835 0.17785 0.00050 3 0.17855 0.17790 0.00065 4 0.17935 0.17880 0.00055 5 0.17855 0.17815 0.00040 1 0.17805 0.17750 0.00055 2 0.17920 0.17875 0.00045 3 0.17925 0.17860 0.00065 4 0.17875 0.17825 0.00050 5 0.17830 0.17775 0.00055 1 0.17900 0.17850 0.00050 2 0.17855 0.17795 0.00060 3 0.17765 0.17710 0.00055 4 0.17860 0.17795 0.00065		4	0.17915	0.17865	0.00050
6 2 0.17835 0.17785 0.00050 3 0.17855 0.17790 0.00065 4 0.17935 0.17880 0.00055 5 0.17855 0.17815 0.00040 1 0.17805 0.17750 0.00055 2 0.17920 0.17875 0.00045 3 0.17925 0.17860 0.00065 4 0.17875 0.17825 0.00050 5 0.17830 0.17775 0.00055 1 0.17900 0.17850 0.00050 2 0.17855 0.17795 0.00060 3 0.17765 0.17710 0.00055 4 0.17860 0.17795 0.00065		5	0.17875	0.17810	0.00065
6 3 0.17855 0.17790 0.00065 4 0.17935 0.17880 0.00055 5 0.17855 0.17815 0.00040 1 0.17805 0.17750 0.00055 2 0.17920 0.17875 0.00045 3 0.17925 0.17860 0.00065 4 0.17875 0.17825 0.00050 5 0.17830 0.17775 0.00055 1 0.17900 0.17850 0.00060 2 0.17855 0.17795 0.00060 3 0.17765 0.17710 0.00055 4 0.17860 0.17795 0.00065		1	0.17845	0.17790	0.00055
4 0.17935 0.17880 0.00055 5 0.17855 0.17815 0.00040 1 0.17805 0.17750 0.00055 2 0.17920 0.17875 0.00045 3 0.17925 0.17860 0.00065 4 0.17875 0.17825 0.00050 5 0.17830 0.17775 0.00055 1 0.17900 0.17850 0.00060 2 0.17855 0.17795 0.00060 3 0.17765 0.17710 0.00055 4 0.17860 0.17795 0.00065		2	0.17835	0.17785	0.00050
5 0.17855 0.17815 0.00040 1 0.17805 0.17750 0.00055 2 0.17920 0.17875 0.00045 3 0.17925 0.17860 0.00065 4 0.17875 0.17825 0.00050 5 0.17830 0.17775 0.00055 1 0.17900 0.17850 0.00050 2 0.17855 0.17795 0.00060 3 0.17765 0.17710 0.00055 4 0.17860 0.17795 0.00065	6	3	0.17855		0.00065
7 1 0.17805 0.17750 0.00055 2 0.17920 0.17875 0.00045 3 0.17925 0.17860 0.00065 4 0.17875 0.17825 0.00050 5 0.17830 0.17775 0.00055 1 0.17900 0.17850 0.00050 2 0.17855 0.17795 0.00060 3 0.17765 0.17710 0.00055 4 0.17860 0.17795 0.00065		4	0.17935	0.17880	0.00055
2 0.17920 0.17875 0.00045 3 0.17925 0.17860 0.00065 4 0.17875 0.17825 0.00050 5 0.17830 0.17775 0.00055 1 0.17900 0.17850 0.00050 2 0.17855 0.17795 0.00060 3 0.17765 0.17710 0.00055 4 0.17860 0.17795 0.00065		5	0.17855	0.17815	0.00040
7 3 0.17925 0.17860 0.00065 4 0.17875 0.17825 0.00050 5 0.17830 0.17775 0.00055 1 0.17900 0.17850 0.00050 2 0.17855 0.17795 0.00060 3 0.17765 0.17710 0.00055 4 0.17860 0.17795 0.00065		1	0.17805	0.17750	0.00055
4 0.17875 0.17825 0.00050 5 0.17830 0.17775 0.00055 1 0.17900 0.17850 0.00050 2 0.17855 0.17795 0.00060 3 0.17765 0.17710 0.00055 4 0.17860 0.17795 0.00065		2	0.17920	0.17875	0.00045
5 0.17830 0.17775 0.00055 1 0.17900 0.17850 0.00050 2 0.17855 0.17795 0.00060 3 0.17765 0.17710 0.00055 4 0.17860 0.17795 0.00065	7	3	0.17925	0.17860	0.00065
1 0.17900 0.17850 0.00050 2 0.17855 0.17795 0.00060 3 0.17765 0.17710 0.00055 4 0.17860 0.17795 0.00065		4	0.17875	0.17825	0.00050
2 0.17855 0.17795 0.00060 3 0.17765 0.17710 0.00055 4 0.17860 0.17795 0.00065		5			
8 3 0.17765 0.17710 0.00055 4 0.17860 0.17795 0.00065					0.00050
4 0.17860 0.17795 0.00065					
	8	3			
E					
*Note - Measurements with a negitive delta value shown		5	0.17820	0.17765	0.00055

*Note - Measurements with a negitive delta value, shown in italics, are considered pre-test measurements error

	2	0.16145	0.16125	0.00020
1	3	0.16035	0.15990	0.00045
	4	0.16145	0.16105	0.00040
	5	0.16245	0.16190	0.00055
	1	0.16100	0.16065	0.00035
	2	0.16160	0.16140	0.00020
2	3	0.16035	0.16010	0.00025
	4	0.16100	0.16010	0.00090
	5	0.16140	0.16105	0.00035
	1	0.16200	0.16135	0.00065
	2	0.16140	0.16105	0.00035
3	3	0.15990	0.15945	0.00045
	4	0.16055	0.16020	0.00035
	5	0.16195	0.16125	0.00070
	1	0.16255	0.16180	0.00075
	2	0.16225	0.16150	0.00075
4	3	0.16085	0.16050	0.00035
	4	0.16065	0.16015	0.00050
	5	0.16160	0.16130	0.00030
	1	0.16235	0.16200	0.00035
	2	0.16225	0.16190	0.00035
5	3	0.16200	0.16155	0.00045
	4	0.16200	0.16165	0.00035
	5	0.16235	0.16210	0.00025
	1	0.16200	0.16160	0.00040
	2	0.16210	0.16170	0.00040
6	3	0.16150	0.16105	0.00045
	4	0.16230	0.16180	0.00050
	5	0.16195	0.16145	0.00050
	1	0.16235	0.16165	0.00070
	2	0.16215	0.16180	0.00035
7	3	0.16050	0.16000	0.00050
	4	0.16070	0.16020	0.00050
	5	0.16165	0.16130	0.00035
	1	0.16230	0.16175	0.00055
	2	0.16225	0.16185	0.00040
8	3	0.16155	0.16110	0.00045
	4	0.16175	0.16120	0.00055
	5	0.16235	0.16165	0.00070
*Note - Mea	surements	with a negi	tive delta va	

Second Ring

Before

0.16240

After

0.16180

Delta

0.00060

Cylinder Position

*Note - Measurements with a negitive delta value, shown in italics, are considered pre-test measurements error

Maximum	0.00075
Average	0.00049

Maximum	0.00090
Average	0.00046

Piston Ring Gap Measurements, in

Cylinder	Ring No.	Before	After	Delta
	1	0.015	0.019	0.004
1	2	0.039	0.036	-0.003
	3	0.014	0.017	0.003
	1	0.013	0.016	0.003
2	2	0.033	0.037	0.004
	3	0.013	0.014	0.001
	1	0.015	0.019	0.004
3	2	0.037	0.037	0.000
	3	0.013	0.015	0.002
	1	0.014	0.018	0.004
4	2	0.033	0.037	0.004
	3	0.013	0.014	0.001
	1	0.014	0.017	0.003
5	2	0.033	0.036	0.003
	3	0.014	0.015	0.001
	1	0.014	0.018	0.004
6	2	0.032	0.037	0.005
	3	0.013	0.015	0.002
	1	0.015	0.019	0.004
7	2	0.036	0.040	0.004
	3	0.015	0.019	0.004
	1	0.016	0.019	0.003
8	2	0.035	0.039	0.004
	3	0.013	0.016	0.003

Ring No. 1 max increase	0.004
Ring No. 2 max increase	0.005
Ring No. 3 max increase	0.004

Ring No. 1 avg increase	0.004
Ring No. 2 avg increase	0.003
Ring No. 3 avg increase	0.002

Piston Ring Mass, grams

Cylinder	Ring No.	Before	After	Delta
	1	22.6275	22.5644	0.0631
1	2	17.0414	17.0180	0.0234
	3	14.9285	14.9164	0.0121
	1	22.9259	22.8534	0.0725
2	2	17.0222	16.9949	0.0273
	3	15.1302	15.1187	0.0115
	1	22.7588	22.6788	0.0800
3	2	17.0284	16.9976	0.0308
	3	15.2237	15.2099	0.0138
	1	22.8261	22.7332	0.0929
4	2	17.0187	16.9891	0.0296
	3	15.2492	15.2365	0.0127
	1	22.7028	22.6228	0.0800
5	2	17.1366	17.1132	0.0234
	3	15.1280	15.1164	0.0116
	1	22.7503	22.6496	0.1007
6	2	17.1877	17.1625	0.0252
	3	15.1892	15.1769	0.0123
7	1	22.8320	22.7328	0.0992
	2	17.0632	17.0315	0.0317
	3	14.9747	14.9616	0.0131
	1	22.7414	22.6407	0.1007
8	2	17.1126	17.0863	0.0263
	3	15.2040	15.1918	0.0122

Ring No. 1 max decrease	0.1007
Ring No. 2 max decrease	0.0317
Ring No. 3 max decrease	0.0138

Ring No. 1 avg decrease	0.0861
Ring No. 2 avg decrease	0.0272
Ring No. 3 avg decrease	0.0124

Connecting Rod Bearing Weight Loss, grams

Rod Bearing	Shell	Before	After	Change
4	Тор	27.5345	27.5214	0.0131
I	Bottom	27.6127	27.5962	0.0165
2	Тор	27.5403	27.5246	0.0157
	Bottom	27.5795	27.5661	0.0134
2	Тор	27.5885	27.5654	0.0231
3	Bottom	27.5954	27.5884	0.0070
4	Тор	27.5868	27.5703	0.0165
4	Bottom	27.5086	27.4981	0.0105
_	Тор	27.5361	27.5225	0.0136
5	Bottom	27.5505	27.5366	0.0139
6	Тор	27.6061	27.5934	0.0127
0	Bottom	27.5823	27.5745	0.0078
7	Top 27.5794 27.5625 0.	0.0169		
1	Bottom	27.6012	27.5834	0.0178
8	Тор	27.5305	27.5141	0.0164
Ö	Bottom	27.6246	27.6081	0.0165

Maximum	0.0231
Average	0.0145

Main Bearing Weight Loss, grams

Main Bearing	Shell	Before	After	Change
4	Тор	48.0311	47.9983	0.0328
I	Bottom	51.5973	51.5392	0.0581
2	Тор	47.9831	47.9512	0.0319
2	Bottom	51.6018	51.3885	0.2133
2	Тор	97.8027	96.9159	0.8868
3	Bottom	103.4064	102.1396	1.2668
4	Тор	47.9791	47.9432	0.0359
	Bottom	51.5222	51.4074	0.1148
_	Тор	69.0665	69.0102	0.0563
5	Bottom	72.7559	72.6407	0.1152

Maximum	1.2668
Average	0.2812

Stanadyne Injection Pump Calibration/Evaluation

Stanadyne Pump Calibration / Evaluation

Pump Type : DB2831-5079 (arctic)	SN: 15684040
Test condition :	AL:

PUMP RPM	Description	Spec.	Before	After	Change
1000	Transfer pump psi.	60-62 psi	62	62	0
1000	Return Fuel	225-375 cc	270	348	78
	Low Idle	12-16 cc	16	20	4
350	Housing psi.	8-12 psi	10	11	1
330	Advance	3.5 deg. min	3.65	4.25	0.6
	Cold Advance Solenoid	0-1 psi.	0	0	0
750	Shut-Off	4 cc max.	0	0	0
900	Fuel Delivery	66.5 - 69.5cc	68	68	0
	WOT Fuel delivery	59.5 min.	66	65	1
	WOT Advance	2.5 - 3.5 deg.	2.98	3.46	0.48
1600	Face Cam Fuel delivery	21.5 - 23.5	22	21	1
	Face Cam Advance	5.25 - 7.25 deg.	6.41	7.2	0.79
	Low Idle	11 - 12 deg.	10.81	10.98	0.17
1825	Fuel Delivery	33 cc min.	37	54	17
1950	High Idle	15 cc max.	4	2	2
1950	Transfer pump psi.	125 psi max.	105	107	2
200	WOT Fuel Delivery	58 cc min.	62	62	0
200	WOT Shut-Off	4 cc max.	0	0	0
75	Low Idle Fuel Delivery	37 cc min.	47	47	0
	Transfer pump psi.	16 psi min.	25	30	5
	Housing psi.	0 -12 psi	9	10	1
	Air Timing	5 deg.(+/5 deg)	-0.5	-0.5	0

^{*}Pump calibration data to be used for reference only

PHOTOGRAPHS

Oil Code:	LO271510	EOT Date:	10-31-11
Test No.:	LO271510-65T1-W-210	Test Length:	196

Piston Skirt Thrust - Best Cyl 7

Piston Skirt Anti-thrust - Best Cyl 7

Oil Code:	LO271510	EOT Date:	10-31-11
Test No.:	LO271510-65T1-W-210	Test Length:	196

Piston Skirt Thrust - Worst Cyl 8

Piston Skirt Anti-thrust - Worst Cly 8

Oil Code:	LO271510	EOT Date:	10-31-11
Test No.:	LO271510-65T1-W-210	Test Length:	196

Piston Rings - Best Cyl 1

Piston Rings - Worst Cyl 7

Oil Code:	LO271510	EOT Date:	10-31-11
Test No.:	LO271510-65T1-W-210	Test Length:	196

Piston Undercrown - Best Cyl 7

Piston Undercrown - Worst Cyl 8

Oil Code:	LO271510	EOT Date:	10-31-11	
Test No.:	LO271510-65T1-W-210	Test Length:	196	

Engine Block Cylinder Bore - Best Cyl 7

Engine Block Cylinder Bore - Worst Cyl 4

Oil Code:	LO271510	EOT Date:	10-31-11	
Test No.:	LO271510-65T1-W-210	Test Length:	196	

Exhaust and Intake Valve - Best Cyl 6

Oil Code:	LO271510	EOT Date:	10-31-11	
Test No.:	LO271510-65T1-W-210	Test Length:	196	

Exhaust and Intake Valve - Worst Cyl 4

Oil Code:	LO271510	EOT Date:	10-31-11	
Test No.:	LO271510-65T1-W-210	Test Length:	196	

Rod Bearings

Oil Code:	LO271510	EOT Date:	10-31-11	
Test No.:	LO271510-65T1-W-210	Test Length:	196	

Main Bearings

APPENDIX-B1 EVALUATION OF MIL-PRF-2104H LO-257264

EVALUATION OF MIL-PRF-2104H LO-257264

Project 14734.17

Detroit Diesel Corporation 6V53T

Test Lubricant: LO-257264 Test Fuel: Jet-A w/DCI-4A Test Number: LO257264-6V53T1-T-240

Start of Test Date: August 25, 2011 End of Test Date: September 13, 2011

Test Duration: 240 Hours

Test Procedure: Tracked Vehicle Engine Cycle

Conducted for
U.S. Army TARDEC
Force Projection Technologies
Warren, Michigan

Table of Contents

Introduction	B1-3
Test Engine	B1-3
Test Stand Configuration	B1-3
Test Procedure	B1-3
Test Cycle	B1-5
Oil SamplingOil Level Checks	
Engine Operating Conditions Summary	B1-6
Engine Performance Curves	B1-7
Engine Oil Analysis	B1-8
Engine Oil Analysis Trends	B1-9
Oil Consumption Data	B1-11
Engine Measurements	B1-12
Pre-Test Cylinder Bore Measurements, inches	B1-12
Post-Test Cylinder Bore Measurements, inches	B1-13
Cylinder Bore Diameter Changes, inches	B1-14
Pre-Test Liner Surface Finish, μm	B1-15
Piston Skirt to Bore Clearance, inches.	B1-15
Connecting Rod Bearing Mass Change, grams	B1-16
Slipper Bushing Mass Change, grams	B1-16
Pre-Test Slipper Bushing Tin Plate Thickness, inches	B1-16
Top, Second, and Third Ring Radial Measurements, inches	B1-17
Piston Ring Gap Measurements, inches	B1-18
Piston Ring Mass Measurements, inches	B1-19
Oil Control & Expander Ring Tension, pounds	B1-20
Post Test Engine Ratings	B1-20
Piston Ratings, Demerits	B1-20
Ring Face Distress, Demerits.	
EOT Cylinder Liner Ratings, % Area	
Periodic Bore Inspection Results, % Area	
Piston Skirt Ratings	
EOT Intake Port Plugging & Slipper Bushing Exposed Copper, %	
Photographs	B1-24

Introduction

This test was used to determine the performance of MIL-PRF-2104H (LO-257264) when used in the Detroit Diesel Corporation (DDC) 6V53T engine, by the procedures outlined in the Tracked Vehicle Engine Cycle (CRC Report No.406, Development of Military Fuel/Lubricant/Engine Compatibility Test). This work was completed in support of Project 14734.17, Single Common Powertrain Lubricants for Combat/Tactical Equipment.

Test Engine

The oil was evaluated in the DDC 6V53T turbo-supercharged diesel engine representative of engines currently fielded in the M113 Armored Personnel Carrier (APC). Prior to testing, the engine was rebuilt using premeasured cylinder kits and rod bearings to provide a known starting condition for post test wear measurements. Engine clearances and specifications were verified, and the engine was assembled following standard assembly procedures.

Test Stand Configuration

The engine was mounted in a test stand specifically configured for DDC engine testing. Engine monitoring, control, and data acquisition was supplied by Southwest Research Institute (SwRI) developed PRISM software. An appropriately sized absorption dynamometer was used to supply engine loading. Engine oil and coolant temperatures were controlled with the use of liquid-to-liquid heat exchangers. Engine intake air was supplied at ambient conditions, and inlet fuel temperature was controlled through an auxiliary fuel heater loop.

Test Procedure

The procedure outline below is followed in sequential order for each lubricant test in the DDC 6V53T engine.

• Initial Oil Flush:

- -Engine is charged with fresh test oil and a new filter (not weighed).
- -Engine operated at 1200 rpm and 88 lb-ft load until engine and oil temperatures stabilize.
- -Engine shut down and oil charge drained to remove and solvent left from engine rebuild

• Engine Run In:

- -Engine is charged with fresh test oil and a new filter (weighed and recorded)
- -Engine is started and run-in following procedures outline in Table B1-1.
- -Immediately after run-in is complete, a no-load governor check is completed (2950-3030 rpm). If engine governed speed is out of spec, adjust and retest.

Table B1-1. Test Engine Run-In Procedure

Engine Speed [RPM]	Load [lb-ft]	Power (Observed) [bhp]	Duration [min]
1000	None commanded		10
2800	None commanded		30
1800	88	30	15
2200	310	130	30
2500	420	200	30
2800	422	225	30

• Engine Shake Down:

- -Engine operated for 5 hrs at 2800 rpm and 390 lb-ft load
- -After shakedown is complete, engine output is checked at max power and torque load points
- -Completed using run-in oil charge

• Pre Test Engine Powercurve:

- -Full load engine power is mapped over entire speed range in 200 rpm increments
- -Completed using run-in oil charge. Once complete, engine oil charge is drained and recorded.

• <u>Testing:</u>

- -Engine is charged with fresh test oil and a new filter (weighed and recorded)
- -Engine is operated on test for 240 hrs. Test termination can be determined early due to severe piston/liner scuffing, or upon major oil degradation.
- -Oil samples collected daily for used oil analysis
- -Airbox inspections take place at 0, 60, 120, and 180 hours.

• Post Test Engine Powercurve:

- -Full load engine power is mapped over entire speed range in 200 rpm increments
- -Completed using test oil charge. Once complete, engine oil charge is drained and recorded.

Test Cycle

The test cycle followed during oil evaluation was the standard 240 hr Tracked Vehicle Engine Cycle as outlined in CRC Report No. 406, Development of Military Fuel/Lubricant/Engine Compatibility Test. Test termination would occur at the completion of 240 hrs. Early test termination could be called due to severe oil degradation, or upon experiencing major piston and liner scuffing during the test. The test cycle consists of cyclic modes alternating between idle, max power, and max torque load points. Total daily runtime consisted of 20 hrs of operation followed by a 4 hr engine off soak period. The cyclic mode consisted of the following modes repeated 4 times daily: 30 minutes at idle speed, 2 hours at max power, 30 minutes of idle speed, and 2 hours at max torque. Multiple engine parameters were controlled throughout testing to ensure test consistency, and are specified below in Table B1-2.

Table B1-2. Test Cycle Operating Parameters

Parameter	Max Power	Max Torque	Idle
Speed [rpm]	2800 +/- 25	1600 +/- 25	950 +/- 25
Water Jacket Out [°F]	170 +/- 5	170 +/- 5	170 +/- 5
Inlet Fuel [°F]	100 +/- 5	100 +/- 5	100 +/- 5
Oil Sump [°F]	245 +/- 5	230 +/- 5	NS (190)

Engine coolant was a 60/40 blend of ethylene glycol antifreeze and deionized water. Test fuel was Jet-A with the max treat rate of corrosion inhibitor/lubricity enhancer DCI-4A.

Oil Sampling

Four ounces of engine oil was sampled every 20 hrs for used oil analysis. Engine oil analysis consisted of the following tests outlined in Table B1-3. All oil samples were weighed and logged to take into account during calculations of total engine oil consumption for the test duration.

Table B1-3. Used Oil Analysis Procedures

Daily Used Oil Analysis					
ASTM D445	Kinematic Viscosity @ 100°C				
ASTM D5185	Wear Metals by ICP				
ASTM D4739	Total Base Number				
ASTM D664	Total Acid Number				

Used oil analysis results can be seen in the engine oil analysis section of the report.

Oil Level Checks

Engine oil level was checked daily and replenished as needed to restore oil level to full mark. This process occurred daily after the completion of the 4 hr soak prior to restarting testing. All oil additions were weighed and logged to take into account during calculation of total engine oil consumption for the test duration.

Engine Operating Conditions Summary

Below is a summary of the engine operating conditions over the test duration. The complete 240hr test schedule was completed by the lubricant.

		Peak Power (2800 RPM)			Torque RPM)	Idle Conditions (950 RPM)		
Perameter:	Units:	Average	Std. Dev.	Average	Std. Dev.	Average	Std. Dev.	
Engine Speed	RPM	2799.92	5.36	1600.00	4.76	942.87	5.60	
Torque*	ft*lb	450.00	40.08	560.92	34.58	-	-	
Fuel Flow	lb/hr	94.28	1.30	64.52	0.64	2.98	0.60	
Power*	bhp	239.86	20.92	170.85	10.04	-	-	
BSFC*	lb/bhp*hr	0.396	0.035	0.379	0.022	-	-	
Engine Blowby	acfm	8.56	1.86	6.51	1.00	3.79	0.78	
Relative Humidity	%	30.40	14.81	32.46	16.46	32.76	15.66	
Temperatures:								
Coolant In	°F	160.61	0.88	158.74	0.93	164.81	6.41	
Coolant Out	°F	170.00	0.77	170.00	0.80	167.49	6.62	
Oil Galley	°F	212.51	1.43	207.66	0.82	194.12	13.05	
Oil Sump	°F	245.00	0.40	230.00	0.40	197.45	13.52	
Fuel In	°F	100.06	0.68	100.04	0.61	99.79	1.89	
Dry Bulb	°F	95.80	7.65	94.04	8.54	92.58	7.60	
Intake Air	°F	82.89	4.20	80.45	3.66	78.58	2.86	
Air After Turbo	°F	296.31	6.23	210.18	4.40	86.26	3.36	
Air After Supercharger	°F	279.27	4.55	201.28	3.53	143.04	10.51	
Cylinder 1 Exhaust	°F	797.60	9.97	616.65	6.41	208.22	7.80	
Cylinder 2 Exhaust	°F	870.37	9.93	723.30	7.13	219.11	8.44	
Cylinder 3 Exhaust	°F	826.26	10.88	702.00	7.41	208.62	9.31	
Cylinder 4 Exhaust	°F	794.12	10.04	646.46	8.68	186.53	6.23	
Cylinder 5 Exhaust	°F	884.20	10.93	837.94	11.34	200.19	6.05	
Cylinder 6 Exhaust	°F	855.70	8.83	803.17	13.50	179.17	5.96	
Exhaust Exit Left	°F	896.36	8.84	871.51	9.68	196.48	4.38	
Exhaust Exit Right	°F	892.39	10.71	815.79	9.71	228.93	8.24	
Exhaust After Turbo	°F	689.06	8.79	686.50	9.16	220.71	18.80	
Pressures:								
Oil Galley	psiG	55.15	0.54	41.86	0.54	25.49	3.53	
Ambient Pressure	psiA	14.35	0.05	14.35	0.04	14.35	0.04	
Pressure After Turbo	psiG	20.70	0.35	11.33	0.24	0.11	0.05	
Pressure After Supercharger	psiG	22.68	0.34	10.92	0.27	0.50	0.09	
Pressure Exhaust Left	psiG	19.68	0.30	10.05	0.23	0.33	0.07	
Pressure Exhaust Right	psiG	18.74	0.25	9.54	0.17	0.44	0.04	
Pressure Exhaust After Turbo	psiG	0.71	0.08	0.16	0.02	-0.02	0.00	
Fuel Pressure	psiG	28.65	2.23	11.70	1.44	5.06	0.34	

^{*} Non-corrected Values

Engine Performance Curves

Engine Oil Analysis

	ASTM					T	est Hour	s						
Property	Test	0	20	40	60	80	100	120	140	160	180	200	220	240
Viscosity @ 100°C (cSt)	D445	15.6	14.5	14.5	14.6	14.7	14.9	15.0	15.1	15.2	15.4	15.4	15.6	15.7
Total Base Number (mg KOH/g)	D4739	8.9	8.1	8.2	7.9	7.5	7.5	7.4	6.5	6.9	6.8	6.9	7.0	6.4
Total Acid Number (mg KOH/g)	D664	1.8	1.9	1.9	2.3	2.5	2.2	2.2	2.5	2.4	2.3	2.4	2.5	2.6
Wear Metals (ppm)	D5185													
Al		<1	<1	<1	<1	1	<1	<1	1	1	<1	1	1	1
Sb		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ва		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
В		3	1	2	2	2	2	2	2	<1	2	2	2	2
Ca		2290	2407	2446	2472	2544	2586	2569	2693	2570	2621	2676	2761	2722
Cr		<1	<1	<1	1	2	2	2	3	3	3	3	3	4
Cu		<1	6	9	11	11	10	10	10	10	9	9	9	9
Fe		1	14	29	46	60	72	83	98	113	124	135	150	164
Pb		<1	3	3	4	5	5	5	6	6	6	7	7	7
Mg		271	280	286	300	302	309	301	321	306	307	311	320	318
Mn		<1	<1	<1	<1	1	1	1	2	2	2	2	2	2
Mo		1	2	3	4	5	6	6	7	8	8	9	10	10
Ni		<1	<1	<1	<1	<1	<1	<1	<1	1	1	1	1	2
P		1177	1171	1149	1122	1151	1162	1136	1168	1128	1109	1148	1161	1131
Si		4	10	13	17	18	18	18	18	20	20	19	19	20
Ag		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Na		<5	<5	<5	5	<5	5	<5	7	<5	<5	5	6	<5
Sn		<1	2	4	5	6	6	7	7	8	8	8	8	9
Zn		1379	1398	1363	1375	1435	1412	1423	1448	1463	1452	1461	1472	1477
K		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Sr		1	1	<1	1	<1	<1	<1	<1	2	<1	<1	<1	1
V		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ti		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cd		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1

Engine Oil Analysis Trends

Total Acid and Base Numbers

Oil Consumption Data

Average oil consumption per test hour was 0.249 lbs/hr.

			Consumption	Consumption
	Additions (lbs)	Samples (lbs)	(lbs)	Accumulated
20 hr	4.6	0.23	4.37	4.37
40 hr	6.3	0.22	6.08	10.45
60 hr	7	0.22	6.78	17.23
80 hr	7.15	0.23	6.92	24.15
100 hr	5.51	0.22	5.29	29.44
120 hr	5.25	0.22	5.03	34.47
140 hr	3.48	0.22	3.26	37.73
160 hr	4.86	0.23	4.63	42.36
180 hr	5.63	0.24	5.39	47.75
200 hr	3.5	0.23	3.27	51.02
220 hr	2.34	0.23	2.11	53.13
240 hr	6.75	0.24	6.51	59.64
	Initial Fill	37.5	Total Additions	62.37
	EOT Drain	37.44	Total Samples	2.73

(Initial Fill + Additions)	99.87
(EOT Drain + Samples)	40.17
Total Oil Consumption	59.7

Engine Measurements

Pre-Test Cylinder Bore Measurements, inches

Cylinder	Depth	Thrust/Anti-Thrust	Front/Back	Avg Bore DIA	Out of Round
	13mm From Top	3.8761	3.8764		0.0003
	25mm Above Port	3.8760	3.8764	3.8762	0.0004
1L	25mm Below Port	3.8759	3.8762		0.0003
	13mm From Bottom	3.8764	3.8762		0.0002
	Taper	0.0005	0.0002		
	13mm From Top	3.8765	3.8762		0.0003
	25mm Above Port	3.8764	3.8763	3.8763	0.0001
2L	25mm Below Port	3.8762	3.8760		0.0002
	13mm From Bottom	3.8764	3.8763		0.0001
	Taper	0.0003	0.0003		
	13mm From Top	3.8764	3.8760		0.0004
	25mm Above Port	3.8764	3.8762	3.8763	0.0002
3L	25mm Below Port	3.8761	3.8760		0.0001
	13mm From Bottom	3.8767	3.8762		0.0005
	Taper	0.0006	0.0002		
	13mm From Top	3.8760	3.8763		0.0003
	25mm Above Port	3.8762	3.8761	3.8761	0.0001
1R	25mm Below Port	3.8759	3.8759		0.0000
	13mm From Bottom	3.8763	3.8761		0.0002
	Taper	0.0004	0.0004		
	13mm From Top	3.8766	3.8761		0.0005
	25mm Above Port	3.8764	3.8761	3.8763	0.0003
2R	25mm Below Port	3.8762	3.8760		0.0002
	13mm From Bottom	3.8765	3.8765		0.0000
	Taper	0.0004	0.0005		
	13mm From Top	3.8762	3.8764		0.0002
	25mm Above Port	3.8762	3.8763	3.8763	0.0001
3R	25mm Below Port	3.8760	3.8761		0.0001
JIX	13mm From Bottom	3.8765	3.8766		0.0001
	Taper	0.0005	0.0005		

Post-Test Cylinder Bore Measurements, inches

Cylinder	Depth	Thrust/Anti-Thrust	Front/Back	Avg Bore DIA	Out of Round
	13mm From Top	3.8769	3.8762		0.0007
	25mm Above Port	3.8763	3.8763	3.8763	0.0000
1L	25mm Below Port	3.8761	3.8763		0.0002
	13mm From Bottom	3.8761	3.8763		0.0002
	Taper	0.0008	0.0001		
	13mm From Top	3.8767	3.8765		0.0002
	25mm Above Port	3.8765	3.8763	3.8764	0.0002
2L	25mm Below Port	3.8764	3.8761		0.0003
	13mm From Bottom	3.8763	3.8765		0.0002
	Taper	0.0004	0.0004		
	13mm From Top	3.8770	3.8762		0.0008
	25mm Above Port	3.8764	3.8762	3.8764	0.0002
3L	25mm Below Port	3.8762	3.8761		0.0001
	13mm From Bottom	3.8764	3.8764		0.0000
	Taper	0.0008	0.0003		
	13mm From Top	3.8766	3.8764		0.0002
	25mm Above Port	3.8764	3.8764	3.8764	0.0000
1R	25mm Below Port	3.8761	3.8763		0.0002
	13mm From Bottom	3.8761	3.8766		0.0005
	Taper	0.0005	0.0003		
	13mm From Top	3.8772	3.8762		0.0010
	25mm Above Port	3.8768	3.8765	3.8766	0.0003
2R	25mm Below Port	3.8766	3.8762		0.0004
	13mm From Bottom	3.8765	3.8769		0.0004
	Taper	0.0007	0.0007		
	13mm From Top	3.8767	3.8762		0.0005
	25mm Above Port	3.8764	3.8761	3.8764	0.0003
3R	25mm Below Port	3.8764	3.8760		0.0004
JK	13mm From Bottom	3.8762	3.8769		0.0007
	Taper	0.0005	0.0009		

Cylinder Bore Diameter Changes, inches

Cylinder	Depth	Thrust/Anti-Thrust	Front/Back	Avg Bore DIA Change	Out of Round
	13mm From Top	0.0008	0.0002		0.0004
	25mm Above Port	0.0003	0.0001	0.0003	0.0004
1L	25mm Below Port	0.0002	0.0001		0.0001
	13mm From Bottom	0.0003	0.0001		0.0000
	Taper	0.0006	0.0001		
	13mm From Top	0.0002	0.0003		0.0001
	25mm Above Port	0.0001	0.0000	0.0002	0.0001
2L	25mm Below Port	0.0002	0.0001		0.0001
	13mm From Bottom	0.0001	0.0002		0.0001
	Taper	0.0001	0.0003		
	13mm From Top	0.0006	0.0002		0.0004
	25mm Above Port	0.0000	0.0000	0.0002	0.0000
3L	25mm Below Port	0.0001	0.0001		0.0000
	13mm From Bottom	0.0003	0.0002		0.0005
	Taper	0.0006	0.0002		
	13mm From Top	0.0006	0.0001		0.0001
	25mm Above Port	0.0002	0.0003	0.0003	0.0001
1R	25mm Below Port	0.0002	0.0004		0.0002
	13mm From Bottom	0.0002	0.0005		0.0003
	Taper	0.0004	0.0004		
	13mm From Top	0.0006	0.0001		0.0005
	25mm Above Port	0.0004	0.0004	0.0003	0.0000
2R	25mm Below Port	0.0004	0.0002		0.0002
	13mm From Bottom	0.0000	0.0004		0.0004
	Taper	0.0006	0.0003		
	13mm From Top	0.0005	0.0002		0.0003
	25mm Above Port	0.0002	0.0002	0.0003	0.0002
3R	25mm Below Port	0.0004	0.0001		0.0003
	13mm From Bottom	0.0003	0.0003		0.0006
	Taper	0.0003	0.0002		
	13mm From Top	0.0006	0.0002		
Avgerage All	25mm Above Port	0.0002	0.0002		Ĭ
Cylinders	25mm Below Port	0.0002	0.0002		1
	13mm From Bottom	0.0002	0.0003		Ĭ

Pre-Test Liner Surface Finish, μm

Pre Test Liner Surface Finish, μm								
1L	2L	3L	1R	2R	3R			
1.31	1.38	1.48	1.32	1.41	1.43			

Piston Skirt to Bore Clearance, inches

	Cylinder	Average Bore Diameter	Piston Skirt Diameter	Clearance
	1	3.8762	3.8705	0.0058
est	2	3.8763	3.8703	0.0060
P_	3	3.8763	3.8704	0.0059
ė.	4	3.8761	3.8704	0.0058
Pre	5	3.8763	3.8704	0.0059
	6	3.8763	3.8704	0.0059
	1	3.8763	3.8704	0.0059
est	2	3.8764	3.8694	0.0071
Ė	3	3.8764	3.8691	0.0073
ost	4	3.8764	3.8696	0.0068
P	5	3.8766	3.8702	0.0064
	6	3.8764	3.8694	0.0070

Connecting Rod Bearing Mass Change, grams

Rod Bearing	Shell	Before	After	Change
1L	Тор	73.6495	73.6297	0.0198
IL	Bottom	67.8243	67.8210	0.0033
2L	Тор	73.4362	73.4133	0.0229
ZL.	Bottom	67.7831	67.7786	0.0045
3L	Тор	73.4769	73.4644	0.0125
3L	Bottom	67.8587	67.8555	0.0032
1R	Тор	73.4915	73.4771	0.0144
IK	Bottom	68.3085	68.3036	0.0049
2R	Тор	73.4822	73.4681	0.0141
ZK	Bottom	68.1717	68.1779	-0.0062
3R	Тор	73.2623	73.2486	0.0137
JK	Bottom	69.3699	69.3658	0.0041

Maximum	0.0229	
Average	0.0093	

Slipper Bushing Mass Change, grams

Slipper Bushing	Before	After	Change
1L	56.2768	56.2085	0.0683
2L	55.9443	55.8420	0.1023
3L	56.2014	56.0414	0.1600
1R	56.0874	56.0086	0.0788
2R	56.2125	56.1151	0.0974
3R	56.1273	55.9975	0.1298

Maximum	0.1600		
Average	0.1061		

Pre-Test Slipper Bushing Tin Plate Thickness, inches

Slipper Bushing Tin Plate Thickness						
1L 2L 3L 1R 2R 3R						
0.02370	0.02300	0.02310	0.02330	0.02385	0.02310	

Top, Second, and Third Ring Radial Measurements, inches

Top Ring					
Cylinder	Position	Before	After	Delta	
	1	0.15950	0.15870	0.00080	
	2	0.15895	0.15875	0.00020	
1L	3	0.16040	0.16005	0.00035	
	4	0.16025	0.16020	0.00005	
	5	0.15895	0.15820	0.00075	
	1	0.15590	0.15510	0.00080	
	2	0.15550	0.15520	0.00030	
2L	3	0.15590	0.15570	0.00020	
	4	0.15570	0.15550	0.00020	
	5	0.15690	0.15600	0.00090	
	1	0.15680	0.15600	0.00080	
	2	0.15630	0.15590	0.00040	
3L	3	0.15905	0.15860	0.00045	
	4	0.15905	0.15865	0.00040	
	5	0.15765	0.15655	0.00110	
	1	0.15630	0.15505	0.00125	
	2	0.15570	0.15570	0.00000	
1R	3	0.15625	0.15590	0.00035	
	4	0.15655	0.15620	0.00035	
	5	0.15775	0.15615	0.00160	
	1	0.15655	0.15560	0.00095	
	2	0.15660	0.15635	0.00025	
2R	3	0.15685	0.15625	0.00060	
	4	0.15675	0.15640	0.00035	
	5	0.15690	0.15590	0.00100	
	1	0.15555	0.15505	0.00050	
	2	0.15570	0.15555	0.00015	
3R	3	0.15655	0.15645	0.00010	
	4	0.15570	0.15545	0.00025	
	5	0.15590	0.15535	0.00055	
*Note - Measurements with a negitive delta value, shown					

*Note - Measurements with a negitive delta value, shown in Italics, are considered pre-test measurements error

Maximum 0.00160 Average 0.00053

	Second Ring					
Cylinder	Position	Before	After	Delta		
	1	0.14860	0.14765	0.00095		
	2	0.14815	0.14740	0.00075		
1L	3	0.14840	0.14720	0.00120		
	4	0.14895	0.14780	0.00115		
	5	0.14880	0.14780	0.00100		
	1	0.14590	0.14500	0.00090		
	2	0.14690	0.14650	0.00040		
2L	3	0.14705	0.14650	0.00055		
	4	0.14620	0.14565	0.00055		
	5	0.14540	0.14480	0.00060		
	1	0.14730	0.14655	0.00075		
	2	0.14750	0.14715	0.00035		
3L	3	0.17640	0.17570	0.00070		
	4	0.14715	0.14675	0.00040		
	5	0.14735	0.14670	0.00065		
	1	0.14710	0.14610	0.00100		
	2	0.14785	0.14720	0.00065		
1R	3	0.14670	0.14605	0.00065		
	4	0.14620	0.14550	0.00070		
	5	0.14690	0.14610	0.00080		
	1	0.14680	0.14600	0.00080		
	2	0.14720	0.14660	0.00060		
2R	3	0.14775	0.14700	0.00075		
	4	0.14895	0.14815	0.00080		
	5	0.14810	0.14750	0.00060		
	1	0.14770	0.14720	0.00050		
	2	0.14815	0.14755	0.00060		
3R	3	0.14890	0.14635	0.00255		
	4	0.14625	0.14590	0.00035		
	5	0.14685	0.14635	0.00050		

*Note - Measurements with a negitive delta value, shown in italics, are considered pre-test measurements error

Maximum	0.00255
Average	0.00076

Third Ring					
Cylinder	Position	Before	After	Delta	
	1	0.14865	0.14805	0.00060	
	2	0.14950	0.14905	0.00045	
1L	3	0.14810	0.14725	0.00085	
	4	0.14820	0.14745	0.00075	
	5	0.14830	0.14765	0.00065	
	1	0.14655	0.14630	0.00025	
	2	0.14560	0.14540	0.00020	
2L	3	0.14625	0.14610	0.00015	
	4	0.14710	0.14695	0.00015	
	5	0.14675	0.14635	0.00040	
	1	0.14730	0.14690	0.00040	
	2	0.14720	0.14690	0.00030	
3L	3	0.14620	0.14575	0.00045	
	4	0.14675	0.14660	0.00015	
	5	0.14725	0.14685	0.00040	
	1	0.14655	0.14620	0.00035	
	2	0.14790	0.14765	0.00025	
1R	3	0.14680	0.14655	0.00025	
	4	0.14615	0.14580	0.00035	
	5	0.14655	0.14560	0.00095	
	1	0.14735	0.14705	0.00030	
	2	0.14885	0.14855	0.00030	
2R	3	0.14855	0.14825	0.00030	
	4	0.14750	0.14720	0.00030	
	5	0.14720	0.14685	0.00035	
	1	0.14800	0.14785	0.00015	
	2	0.14675	0.14640	0.00035	
3R	3	0.14680	0.14650	0.00030	
	4	0.14820	0.14800	0.00020	
	5	0.14800	0.14775	0.00025	
*** * **					

*Note - Measurements with a negitive delta value, shown in italics, are considered pre-test measurements error

Maximum	0.00095
Average	0.00037

Piston Ring Gap Measurements, inches

Cylinder	Ring No.	Before	After	Increase
	1	0.035	0.045	0.010
	2	0.025	0.038	0.013
1L	3	0.025	0.035	0.010
1-	4	0.015	0.026	0.011
	5a	0.013	0.021	0.008
	5b	0.013	0.021	0.008
	1	0.029	0.035	0.006
	2	0.027	0.035	0.008
2L	3	0.024	0.033	0.009
ZL	4	0.015	0.024	0.009
	5a	0.013	0.020	0.007
	5b	0.013	0.021	0.008
	1	0.033	0.035	0.002
	2	0.025	0.033	0.008
3L	3	0.026	0.034	0.008
3L	4	0.014	0.022	0.008
	5a	0.013	0.020	0.007
	5b	0.013	0.020	0.007
	1	0.028	0.035	0.007
	2	0.026	0.035	0.009
1R	3	0.026	0.035	0.009
117	4	0.013	0.021	0.008
	5a	0.015	0.021	0.006
	5b	0.015	0.021	0.006
	1	0.033	0.035	0.002
	2	0.027	0.035	0.008
2R	3	0.028	0.035	0.007
211	4	0.013	0.023	0.010
	5a	0.014	0.022	0.008
	5b	0.013	0.022	0.009
	1	0.032	0.033	0.001
	2	0.026	0.033	0.007
3R	3	0.027	0.034	0.007
	4	0.010	0.021	0.011
	5a	0.013	0.022	0.009
	5b	0.013	0.022	0.009

Ring No. 1 max increase	0.010
Ring No. 2 max increase	0.013
Ring No. 3 max increase	0.010
Ring No. 4 max increase	0.011
Ring No. 5a max increase	0.009
Ring No. 5b max increase	0.009

Ring No. 1 avg increase	0.005
Ring No. 2 avg increase	0.009
Ring No. 3 avg increase	0.008
Ring No. 4 avg increase	0.010
Ring No. 5a avg increase	0.008
Ring No. 5b avg increase	0.008

Piston Ring Mass Measurements, inches

Cylinder	Ring No.	Before	After	Delta
	1	23.5815	23.5670	0.0145
	2	20.3114	20.1974	0.1140
1L	3	20.2918	20.2317	0.0601
	4	27.4618	27.4449	0.0169
	5	24.6281	24.6040	0.0241
	1	22.9939	22.9750	0.0189
	2	20.0646	20.0242	0.0404
2L	3	20.0661	20.0536	0.0125
	4	27.8223	27.8044	0.0179
	5	24.0037	23.9860	0.0177
	1	23.2390	23.2242	0.0148
	2	20.1780	20.1311	0.0469
3L	3	20.1394	20.1197	0.0197
	4	27.5357	27.5178	0.0179
	5	24.3062	24.2876	0.0186
	1	23.0231	23.0120	0.0111
	2	20.1552	20.0835	0.0717
1R	3	20.1442	20.1114	0.0328
	4	27.5512	27.5310	0.0202
	5	24.2948	24.2740	0.0208
	1	23.1091	23.0938	0.0153
	2	20.2545	20.2006	0.0539
2R	3	20.3200	20.3009	0.0191
	4	27.3550	27.3399	0.0151
	5	24.3167	24.2977	0.0190
	1	23.0662	23.0567	0.0095
	2	20.1822	20.1419	0.0403
3R	3	20.2256	20.2146	0.0110
	4	27.3387	27.3213	0.0174
	5	24.4991	24.4795	0.0196

Ring No. 1 max decrease	0.0189
Ring No. 2 max decrease	0.1140
Ring No. 3 max decrease	0.0601
Ring No. 4 max decrease	0.0202
Ring No. 5 max decrease	0.0241

Ring No. 1 avg decrease	0.0140
Ring No. 2 avg decrease	0.0612
Ring No. 3 avg decrease	0.0259
Ring No. 4 avg decrease	0.0176
Ring No. 5 avg decrease	0.0200

Oil Control & Expander Ring Tension, pounds

		Oil Control & Expander Ring Tension				
	1L	2L	3L	1R	2R	3R
Top Oil Ring	7.7	8.3	7.5	10.7	7.7	7.7
Second Oil Ring	7.5	7.4	7.3	10.2	8	8.3

NOTE – To be used as reference only. Measurements taken with non-calibrated legacy equipment.

Post Test Engine Ratings

Piston Ratings, Demerits

Detinos			Cylinder	Number			
Ratings	1L	2L	3L	1R	2R	3R	Avg
Ring Sticking (F=Free, CS=Cold Stuck	, HS=Hot Stuck, CP=Collapsed Ring, No. Denotes % Of Ring Circumference)						
Тор	F	F	F	F	F	F	
Second	25% CS	F	40% CS	10% CS	95% CS	90% CS	
Third	F	F	F	F	F	F	
Oil Control Rings	F	F	F	F	F	F	
2nd Ring Carbon							
Heavy Carbon	26	33	93	70	76	53	
Light Carbon	74	67	7	30	20	37	
Piston Carbon, Demerits							
No.1 Groove	59.50	65.25	74.50	61.75	60.50	40.50	60.33
No.2 Groove	38.50	43.75	35.50	32.50	27.25	29.75	34.54
No.3 Groove	25.00	25.00	25.00	25.00	23.25	23.50	24.46
No.1 Land	35.50	45.25	41.00	48.50	30.50	40.75	40.25
No.2 Land	55.00	64.00	51.00	60.25	61.75	50.50	57.08
No.3 Land	20.00	0.00	13.25	10.75	9.00	10.50	10.58
No.4 Land	6.75	11.25	10.00	6.00	2.75	4.50	6.88
Piston Lacquer, Demerits							
No.1 Groove	0.00	0.00	0.00	0.00	0.00	0.00	0.00
No.2 Groove	0.00	0.00	0.00	0.00	0.00	0.06	0.01
No.3 Groove	0.00	0.00	0.00	0.00	0.21	0.27	0.08
No.1 Land	0.27	0.00	0.37	0.18	0.18	0.54	0.26
No.2 Land	0.00	0.00	0.09	0.00	0.16	0.27	0.09
No.3 Land	0.72	0.65	1.92	2.30	2.94	3.07	1.93
No.4 Land	2.25	1.90	1.89	2.25	3.66	3.03	2.50
Total, Demerits	243.49	257.05	254.52	249.48	222.15	207.24	238.99
Miscellanous							
Top Groove Fill, %	60	65	75	71	46	40	59.50
Intermediate Groove Fill, %	73	70	64	57	50	49	60.50
Top Land Heavy Carbon, %	15	27	23	32	8	23	21.33
Top Lan Flaked Carbon, %	0	0	0	0	0	0	0.00

Ring Face Distress, Demerits

Cylinder No.	Ring No.	Extreme Distress (1.00) % Area	Heavy Distress (0.75) % Area	Medium Distress (0.50) % Area	Light Distress (0.25) % Area	No Distress (0.00) % Area	Total Demerits
	1				17	83	0.0425
1L	2						0
	3						0
	1			1	4	95	0.015
2L	2						0
	3						0
	1				10	90	0.025
3L	2						0
	3						0
	1		3	1	14	82	0.0625
1R	2						0
	3						0
	1				8	92	0.02
2R	2						0
	3						0
	1				3	97	0.0075
3R	2						0
	3		-				0

Piston Ring Face	Fire	2nd	3rd
Distress	Ring	Ring	Ring
Average Demerits	0.0288	0.0000	0.0000

EOT Cylinder Liner Ratings, % Area

	Cylinder Liner Ratings							
	% Sci	uffing	Total % Area	% Pc	olish	Total % Area		
	Т	AT	Scuffed	Т	AT	Polished		
1L	0	0	0	8	3	11		
2L	0	0	0	0	10	10		
3L	0	0	0	7	4	11		
1R	0	0	0	2	4	6		
2R	0	0	0	3	5	8		
3R	0	0	0	6	4	10		
		Per	cent of total ring	travel area				

Periodic Bore Inspection Results, % Area

Peri	Periodic Bore Inspection, % Scuffed Area						
Cyl	0hr	60hr	120hr	180hr			
1L	0	0	0	0			
2L	0	0	0	0			
3L	0	0	0	0			
1R	0	0	0	0			
2R	0	0	0	0			
3R	0	0	0	0			

Piston Skirt Ratings

	Piston Skirt Ratings					
	Thrust	Anti-Thrust				
1L	Few Light Scratches, 1% Scuffing	Few Light Scratches, 2% Scuffing				
2L	Few Light Scratches	Few Light Scratches				
3L	Few Light Scratches	Few Light Scratches				
1R	Few Light Scratches	Few Light Scratches				
2R	Few Light Scratches	Few Light Scratches				
3R	Numerous Light Scratches	Few Light Scratches				

EOT Intake Port Plugging & Slipper Bushing Exposed Copper, %

Intake Port Plugging		
1L	2.5	
2L	2	
3L	3	
1R	0.5	
2R	1	
3R	25.5	
Average	5.75	

Slipper Bushing % Exposed Copper			
1L	2		
2L	15		
3L	10		
1R	6		
2R	8		
3R 12			
Average 8.83			

PHOTOGRAPHS

Oil Code:	LO257264	EOT Date:	9/13/11	
Test No.:	LO257264-6V53T2-T-240	Test Length:	240	

Ring Pack 1 Left

Ring Pack 1 Right

Oil Code:	LO257264	EOT Date:	9/13/11	
Test No.:	LO257264-6V53T2-T-240	Test Length:	240	

Piston 1 Left Thrust

Piston 1 Left Anti-thrust

Oil Code:	LO257264	EOT Date:	9/13/11	
Test No.:	LO257264-6V53T2-T-240	Test Length:	240	

Piston 1 Right Thrust

Piston 1 Right Anti-thrust

Oil Code:	LO257264	EOT Date:	9/13/11	
Test No.:	LO257264-6V53T2-T-240	Test Length:	240	

Liner 1 Left Thrust and Anti-thrust

Oil Code:	LO257264	EOT Date:	9/13/11	
Test No.:	LO257264-6V53T2-T-240	Test Length:	240	

Liner 1 Right Thrust and Anti-thrust

Oil Code:	LO257264	EOT Date:	9/13/11	
Test No.:	LO257264-6V53T2-T-240	Test Length:	240	

Ring Pack 2 Left

Ring Pack 2 Right

Oil Code:	LO257264	EOT Date:	9/13/11	
Test No.:	LO257264-6V53T2-T-240	Test Length:	240	

Piston 2 Left Thrust

Piston 2 Left Anti-thrust

Oil Code:	LO257264	EOT Date:	9/13/11	
Test No.:	LO257264-6V53T2-T-240	Test Length:	240	

Piston 2 Right Thrust

Piston 2 Right Anti-thrust

Oil Code:	LO257264	EOT Date:	9/13/11	
Test No.:	LO257264-6V53T2-T-240	Test Length:	240	

Liner 2 Left Thrust and Anti-thrust

Oil Code:	LO257264	EOT Date:	9/13/11	
Test No.:	LO257264-6V53T2-T-240	Test Length:	240	

Liner 2 Right Thrust and Anti-thrust

Oil Code:	LO257264	EOT Date:	9/13/11
Test No.:	LO257264-6V53T2-T-240	Test Length:	240

Ring Pack 3 Left

Ring Pack 3 Right

Oil Code:	LO257264	EOT Date:	9/13/11	
Test No.:	LO257264-6V53T2-T-240	Test Length:	240	

Piston 3 Left Thrust

Piston 3 Left Anti-thrust

Oil Code:	LO257264	EOT Date:	9/13/11	
Test No.:	LO257264-6V53T2-T-240	Test Length:	240	

Piston 3 Right Thrust

Piston 3 Right Anti-thrust

Oil Code:	LO257264	EOT Date:	9/13/11	
Test No.:	LO257264-6V53T2-T-240	Test Length:	240	

Liner 3 Left Thrust and Anti-thrust

Oil Code:	LO257264	EOT Date:	9/13/11	
Test No.:	LO257264-6V53T2-T-240	Test Length:	240	

Liner 3 Right Thrust and Anti-thrust

Oil Code:	LO257264	EOT Date:	9/13/11	
Test No.:	LO257264-6V53T2-T-240	Test Length:	240	

Slipper Bushings 1R, 2R, 3R

Slipper Bushings 1L, 2L, 3L

Oil Code:	LO257264	EOT Date:	9/13/11	
Test No.:	LO257264-6V53T2-T-240	Test Length:	240	

Connecting Rod Bearings

Upper 1L, 2L, 3L, 1R, 2R, 3R

Lower 1L, 2L, 3L, 1R, 2R, 3R

APPENDIX – B2 EVALUATION OF SCPL CANDIDATE LO-268869

EVALUATION OF SCPL CANDIDATE LO-268869

Project 14734.17

Detroit Diesel Corporation 6V53T

Test Lubricant: LO-268869 Test Fuel: Jet-A w/DCI-4A

Test Number: LO268869-6V53T1-T-240 Start of Test Date: October 11, 2011 End of Test Date: October 27, 2011

Test Duration: 240 Hours

Test Procedure: Tracked Vehicle Engine Cycle

Conducted for
U.S. Army TARDEC
Force Projection Technologies

Warren, Michigan

Table of Contents

Introduction	B2-3
Test Engine	B2-3
Test Stand Configuration	B2-3
Test Procedure	B2-3
Test Cycle	B2-5
Oil Sampling	B2-5
Oil Level Checks	B2-5
Engine Operating Conditions Summary	B2-6
Engine Performance Curves	B2-7
Engine Oil Analysis	B2-8
Engine Oil Analysis Trends	B2-9
Oil Consumption Data	B2-11
Engine Measurements	B2-12
Pre-Test Cylinder Bore Measurements, inches	B2-12
Post-Test Cylinder Bore Measurements, inches	B2-13
Cylinder Bore Diameter Changes, inches	
Pre-Test Liner Surface Finish, µm	B2-15
Piston Skirt to Bore Clearance, inches	B2-15
Connecting Rod Bearing Mass Change, grams	B2-16
Slipper Bushing Mass Change, grams	B2-16
Pre-Test Slipper Bushing Tin Plate Thickness, inches	
Top, Second, and Third Ring Radial Measurements, inches	B2-17
Piston Ring Gap Measurements, inches	B2-18
Piston Ring Mass Measurements, inches	B2-19
Oil Control & Expander Ring Tension, pounds	B2-20
Post Test Engine Ratings	B2-20
Piston Ratings, Demerits	
Ring Face Distress, Demerits	
EOT Cylinder Liner Ratings, % Area	
Periodic Bore Inspection Results, % Area	
Piston Skirt Ratings	
EOT Intake Port Plugging & Slipper Bushing Exposed Copper, %	
Photographs	B2-23

Introduction

This test was used to determine the performance of SCPL candidate LO268869 when used in the Detroit Diesel Corporation (DDC) 6V53T engine, by the procedures outlined in the Tracked Vehicle Engine Cycle (CRC Report No.406, Development of Military Fuel/Lubricant/Engine Compatibility Test). This work was completed in support of Project 14734.17, Single Common Powertrain Lubricants for Combat/Tactical Equipment.

Test Engine

The oil was evaluated in the DDC 6V53T turbo-supercharged diesel engine representative of engines currently fielded in the M113 Armored Personnel Carrier (APC). Prior to testing, the engine was rebuilt using premeasured cylinder kits and rod bearings to provide a known starting condition for post test wear measurements. Engine clearances and specifications were verified, and the engine was assembled following standard assembly procedures.

Test Stand Configuration

The engine was mounted in a test stand specifically configured for DDC engine testing. Engine monitoring, control, and data acquisition was supplied by Southwest Research Institute (SwRI) developed PRISM software. An appropriately sized absorption dynamometer was used to supply engine loading. Engine oil and coolant temperatures were controlled with the use of liquid-to-liquid heat exchangers. Engine intake air was supplied at ambient conditions, and inlet fuel temperature was controlled through an auxiliary fuel heater loop.

Test Procedure

The procedure outline below is followed in sequential order for each lubricant test in the DDC 6V53T engine.

• Initial Oil Flush:

- -Engine is charged with fresh test oil and a new filter (not weighed).
- -Engine operated at 1200 rpm and 88 lb-ft load until engine and oil temperatures stabilize.
- -Engine shut down and oil charge drained to remove and solvent left from engine rebuild

• Engine Run In:

- -Engine is charged with fresh test oil and a new filter (weighed and recorded)
- -Engine is started and run-in following procedures outline below.
- -Immediately after run-in is complete, a no-load governor check is completed (2950-
- 3030rpm). If engine governed speed is out of spec, adjust and retest.

Table 1 - Test Engine Run-In Procedure

Engine Speed [RPM]	Load [lb-ft]	Power (Observed) [bhp]	Duration [min]
1000	None commanded		10
2800	None commanded		30
1800	88	30	15
2200	310	130	30
2500	420	200	30
2800	422	225	30

• Engine Shake Down:

- -Engine operated for 5hrs at 2800 rpm and 390 lb-ft load
- -After shakedown is complete, engine output is checked at max power and torque load points
- -Completed using run-in oil charge

• Pre Test Engine Powercurve:

- -Full load engine power is mapped over entire speed range in 200 rpm increments
- -Completed using run-in oil charge. Once complete, engine oil charge is drained and recorded.

• Testing:

- -Engine is charged with fresh test oil and a new filter (weighed and recorded)
- -Engine is operated on test for 240hrs. Test termination can be determined early due to severe piston/liner scuffing, or upon major oil degradation.
- -Oil samples collected daily for used oil analysis
- -Airbox inspections take place at 0, 60, 120, and 180 hours.

• Post Test Engine Powercurve:

- -Full load engine power is mapped over entire speed range in 200 rpm increments
- -Completed using test oil charge. Once complete, engine oil charge is drained and recorded.

Test Cycle

The test cycle followed during oil evaluation was the standard 240 hr Tracked Vehicle Engine Cycle as outlined in CRC Report No. 406, Development of Military Fuel/Lubricant/Engine Compatibility Test. Test termination would occur at the completion of 240 hrs. Early test termination could be called due to severe oil degradation, or upon experiencing major piston and liner scuffing during the test. The test cycle consists of cyclic modes alternating between idle, max power, and max torque load points. Total daily runtime consisted of 20hrs of operation followed by a 4hr engine off soak period. The cyclic mode consisted of the following modes repeated 4 times daily: 30 minutes at idle speed, 2 hours at max power, 30 minutes of idle speed, 2 hours at max torque. Multiple engine parameters were controlled throughout testing to ensure test consistency, and are specified below in Table 2.

Idle Parameter **Max Power** Max Torque Speed [rpm] 2800 +/- 25 1600 +/- 25 950 +/- 25 170 +/- 5 170 +/- 5 Water Jacket Out [°F] 170 +/- 5 Inlet Fuel [°F] 100 +/- 5 100 +/- 5 100 + / -5245 +/- 5 230 +/- 5 Oil Sump [°F] NS (190)

Table 2 - Test Cycle Operating Parameters

Engine coolant was a 60/40 blend of ethylene glycol antifreeze and deionized water. Test fuel was Jet-A with the max treat rate of corrosion inhibitor/lubricity enhancer DCI-4A.

Oil Sampling

Four ounces of engine oil was sampled every 20 hrs for used oil analysis. Engine oil analysis consisted of the following tests outlined in Table 3. All oil samples were weighed and logged to take into account during calculations of total engine oil consumption for the test duration.

Daily Used Oil Analysis					
ASTM D445	Kinematic Viscosity @ 100°C				
ASTM D5185	Wear Metals by ICP				
ASTM D4739	Total Base Number				
ASTM D664	Total Acid Number				

Table 3 - Used Oil Analysis Procedures

Used oil analysis results can be seen in the engine oil analysis section of the report.

Oil Level Checks

Engine oil level was checked daily and replenished as needed to restore oil level to full mark. This process occurred daily after the completion of the 4hr soak prior to restarting testing. All oil additions were weighed and logged to take into account during calculation of total engine oil consumption for the test duration.

Engine Operating Conditions Summary

Below is a summary of the engine operating conditions over the test duration. The complete 240hr test schedule was completed by the lubricant.

			Power RPM)		Forque RPM)		nditions RPM)
Perameter:	Units:	Average	Std. Dev.	Average	Std. Dev.	Average	Std. Dev.
Engine Speed	RPM	2799.86	5.69	1600.06	4.94	870.25	4.75
Torque*	ft*lb	462.47	42.57	565.71	36.31		
Fuel Flow	lb/hr	92.03	1.26	63.85	0.92	2.61	0.44
Power*	bhp	246.50	22.22	172.32	10.55		
BSFC*	lb/bhp*hr	0.376	0.034	0.372	0.023		
Engine Blowby	acfm	8.93	1.77	6.62	0.78	3.78	0.70
Relative Humidity	%	42.78	17.10	44.25	17.58	44.75	17.57
Temperatures:							
Coolant In	°F	160.61	1.46	158.70	1.59	163.64	9.19
Coolant Out	°F	170.00	1.30	169.99	1.39	166.22	9.40
Oil Galley	°F	218.88	2.35	210.04	1.04	189.01	15.46
Oil Sump	°F	245.00	0.46	230.00	0.41	192.28	15.96
Fuel In	°F	100.00	0.81	100.05	0.82	99.88	2.50
Dry Bulb	°F	81.24	6.86	80.18	7.74	78.82	7.32
Intake Air	°F	76.89	3.87	75.73	3.12	75.51	2.40
Air After Turbo	°F	281.87	4.15	202.44	3.01	83.06	3.08
Air After Supercharger	°F	270.02	3.98	198.63	2.90	142.50	12.39
Cylinder 1 Exhaust	°F	785.51	8.26	617.25	6.39	202.98	9.61
Cylinder 2 Exhaust	°F	846.25	9.05	722.13	6.27	214.73	10.06
Cylinder 3 Exhaust	°F	803.45	9.09	692.67	6.50	189.46	9.15
Cylinder 4 Exhaust	°F	804.89	9.06	660.59	11.71	190.13	12.14
Cylinder 5 Exhaust	°F	889.94	10.22	847.96	12.15	200.92	11.06
Cylinder 6 Exhaust	°F	834.71	7.65	798.13	9.95	181.75	10.54
Exhaust Exit Left	°F	876.29	8.52	854.90	8.43	194.56	10.30
Exhaust Exit Right	°F	867.27	9.68	802.86	9.25	209.61	9.45
Exhaust After Turbo	°F	760.36	262.35	803.02	318.79	389.43	476.98
Pressures:							
Oil Galley	psiG	41.09	1.09	26.24	0.80	14.95	2.43
Ambient Pressure	psiA	14.36	0.06	14.35	0.06	14.36	0.06
Pressure After Turbo	psiG	20.08	0.44	11.27	0.26	0.21	0.32
Pressure After Supercharger	psiG	22.26	0.47	10.86	0.27	0.55	0.14
Pressure Exhaust Left	psiG	19.25	0.38	9.97	0.21	0.40	0.11
Pressure Exhaust Right	psiG	18.31	0.34	9.43	0.17	0.44	0.09
Pressure Exhaust After Turbo	psiG	0.66	0.16	0.06	0.04	-0.01	0.07
Fuel Pressure	psiG	30.55	2.33	12.01	1.75	4.67	0.40

^{*} Non-corrected Values

Engine Performance Curves

Engine Oil Analysis

	ASTM					1	est Hour	's						
Property	Test	0	20	40	60	80	100	120	140	160	180	200	220	240
Viscosity @ 100°C (cSt)	D445	8.8	9.6	9.7	9.9	10.0	10.1	10.1	10.3	10.3	10.3	10.4	10.5	10.6
Total Base Number (mg KOH/g)	D4739	10.4	9.6	9.0	8.9	8.7	8.3	8.2	8.3	8.4	8.7	8.6	8.3	8.1
Total Acid Number (mg KOH/g)	D664	1.9	2.6	2.6	3.0	3.0	2.8	3.1	3.0	3.1	3.1	2.8	3.3	3.1
Wear Metals (ppm)	D5185													
Al		5	6	6	7	7	7	7	7	7	7	7	7	8
Sb		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ва		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
В		<1	<1	2	<1	<1	<1	1	2	2	<1	2	<1	<1
Ca		3563	3744	3710	3700	3762	3911	3912	3843	4152	3993	3987	3968	4134
Cr		<1	2	2	3	4	4	4	4	4	4	5	4	5
Cu		<1	3	3	4	4	4	4	4	4	5	5	4	4
Fe		2	49	61	95	119	139	155	162	174	188	199	200	209
Pb		<1	4	4	6	7	7	8	7	7	7	8	7	7
Mg		11	19	15	15	13	16	14	15	13	15	14	13	14
Mn		<1	<1	<1	1	2	2	2	2	2	2	2	2	2
Mo		<1	5	6	7	8	9	10	11	11	12	12	12	13
Ni		<1	<1	<1	1	1	1	1	2	2	2	2	2	2
P		1314	1271	1251	1249	1172	1244	1209	1199	1187	1226	1216	1182	1261
Si		2	11	11	13	14	14	16	15	14	14	14	14	13
Ag		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Na		6	9	8	9	8	10	10	8	9	8	9	8	9
Sn		<1	11	10	11	12	12	12	12	11	12	12	12	11
Zn		1863	1873	1870	1913	1902	1930	1887	1907	1929	1935	1927	1952	1906
K		8	8	11	9	11	9	9	8	10	9	9	9	10
Sr		1	1	2	1	2	2	<1	2	2	1	2	2	<1
V		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ti		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cd		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1

Engine Oil Analysis Trends

Oil Consumption Data

Average oil consumption per test hour was 0.359 lbs/hr.

	Additions (lbs)	Samples (lbs)	Consumption (lbs)	Consumption Accumulated
20 hr	8.8	0.2	8.6	8.6
40 hr	7.44	0.22	7.22	15.82
60 hr	8.76	0.22	8.54	24.36
80 hr	8.32	0.23	8.09	32.45
100 hr	6.96	0.23	6.73	39.18
120 hr	7.98	0.22	7.76	46.94
140 hr	6.81	0.22	6.59	53.53
160 hr	6.02	0.23	5.79	59.32
180 hr	7.34	0.23	7.11	66.43
200 hr	7.32	0.23	7.09	73.52
220 hr	7.29	0.22	7.07	80.59
240 hr	8.4	0.23	8.17	88.76
	Initial Fill	33.6	Total Additions	91.44
	EOT Drain	36.17	Total Samples	2.68

(Initial Fill + Additions)	125.04
(EOT Drain + Samples)	38.85
Total Oil Consumption	86.19

Engine Measurements

Pre-Test Cylinder Bore Measurements, inches

Cylinder	Depth	Thrust/Anti-Thrust	Front/Back	Avg Bore DIA	Out of Round
	13mm From Top	3.8761	3.8762		0.0001
	25mm Above Port	3.8764	3.8762	3.8762	0.0002
1L	25mm Below Port	3.8763	3.8757		0.0006
	13mm From Bottom	3.8766	3.8763		0.0003
	Taper	0.0005	0.0006		
	13mm From Top	3.8763	3.8763		0.0000
	25mm Above Port	3.8762	3.8762	3.8762	0.0000
2L	25mm Below Port	3.8760	3.8760		0.0000
	13mm From Bottom	3.8766	3.8763		0.0003
	Taper	0.0006	0.0003		
	13mm From Top	3.8762	3.8761		0.0001
	25mm Above Port	3.8760	3.8760	3.8760	0.0000
3L	25mm Below Port	3.8759	3.8757		0.0002
	13mm From Bottom	3.8760	3.8762		0.0002
	Taper	0.0003	0.0005		
	13mm From Top	3.8763	3.8763		0.0000
	25mm Above Port	3.8761	3.8761	3.8763	0.0000
1R	25mm Below Port	3.8760	3.8760		0.0000
	13mm From Bottom	3.8765	3.8767		0.0002
	Taper	0.0005	0.0007		
	13mm From Top	3.8766	3.8761		0.0005
	25mm Above Port	3.8765	3.8761	3.8763	0.0004
2R	25mm Below Port	3.8762	3.8759		0.0003
	13mm From Bottom	3.8766	3.8765		0.0001
	Taper	0.0004	0.0006		
	13mm From Top	3.8766	3.8762		0.0004
	25mm Above Port	3.8764	3.8762	3.8763	0.0002
3R	25mm Below Port	3.8762	3.8760		0.0002
	13mm From Bottom	3.8764	3.8765		0.0001
	Taper	0.0004	0.0005		

Post-Test Cylinder Bore Measurements, inches

Cylinder	Depth	Thrust/Anti-Thrust	Front/Back	Avg Bore DIA	Out of Round
	13mm From Top	3.8776	3.8763		0.0013
	25mm Above Port	3.8768	3.8763	3.8766	0.0005
1L	25mm Below Port	3.8765	3.8760		0.0005
	13mm From Bottom	3.8766	3.8766		0.0000
	Taper	0.0011	0.0006		
	13mm From Top	3.8770	3.8765		0.0005
	25mm Above Port	3.8765	3.8763	3.8765	0.0002
2L	25mm Below Port	3.8763	3.8763		0.0000
	13mm From Bottom	3.8766	3.8766		0.0000
	Taper	0.0007	0.0003		
	13mm From Top	N/A	N/A		N/A
	25mm Above Port	N/A	N/A	N/A	N/A
3L	25mm Below Port	N/A	N/A		N/A
	13mm From Bottom	N/A	N/A		N/A
	Taper	0.0000	0.0000		
	13mm From Top	3.8770	3.8764		0.0006
	25mm Above Port	3.8765	3.8764	3.8766	0.0001
1R	25mm Below Port	3.8763	3.8763		0.0000
	13mm From Bottom	3.8765	3.8770		0.0005
	Taper	0.0007	0.0007		
	13mm From Top	3.8770	3.8763		0.0007
	25mm Above Port	3.8767	3.8761	3.8765	0.0006
2R	25mm Below Port	3.8767	3.8761		0.0006
	13mm From Bottom	3.8765	3.8768		0.0003
	Taper	0.0005	0.0007		
	13mm From Top	3.8771	3.8763		0.0008
	25mm Above Port	3.8766	3.8763	3.8765	0.0003
3R	25mm Below Port	3.8765	3.8761		0.0004
	13mm From Bottom	3.8763	3.8765		0.0002
	Taper	0.0008	0.0004		

Cylinder Bore Diameter Changes, inches

Cylinder	Depth	Thrust/Anti-Thrust	Front/Back	Avg Bore DIA Change	Out of Round
	13mm From Top	0.0015	0.0001		0.0012
	25mm Above Port	0.0004	0.0001	0.0004	0.0003
1L	25mm Below Port	0.0002	0.0003		0.0001
	13mm From Bottom	0.0000	0.0003		0.0003
	Taper	0.0015	0.0002		
	13mm From Top	0.0007	0.0002		0.0005
21	25mm Above Port	0.0003	0.0001	0.0003	0.0002
2L	25mm Below Port	0.0003	0.0003		0.0000
	13mm From Bottom	0.0000	0.0003		0.0003
	Taper	0.0007	0.0002		
	13mm From Top	N/A	N/A		N/A
	25mm Above Port	N/A	N/A	N/A	N/A
3L	25mm Below Port	N/A	N/A		N/A
	13mm From Bottom	N/A	N/A		N/A
	Taper	N/A	N/A		
	13mm From Top	0.0007	0.0001		0.0006
	25mm Above Port	0.0004	0.0003	0.0003	0.0001
1R	25mm Below Port	0.0003	0.0003		0.0000
	13mm From Bottom	0.0000	0.0003		0.0003
	Taper	0.0007	0.0002		
	13mm From Top	0.0004	0.0002		0.0002
	25mm Above Port	0.0002	0.0000	0.0002	0.0002
2R	25mm Below Port	0.0005	0.0002		0.0003
	13mm From Bottom	0.0001	0.0003		0.0002
	Taper	0.0004	0.0003		
	13mm From Top	0.0005	0.0001		0.0004
	25mm Above Port	0.0002	0.0001	0.0002	0.0001
3R	25mm Below Port	0.0003	0.0001		0.0002
	13mm From Bottom	0.0001	0.0000		0.0001
	Taper	0.0004	0.0001		
	13mm From Top	0.0008	0.0001		
Avgerage All	25mm Above Port	0.0003	0.0001		
Cylinders	25mm Below Port	0.0003	0.0002		
	13mm From Bottom	0.0000	0.0002		
					-

Pre-Test Liner Surface Finish, µm

Pre Test Liner Surface Finish, µm						
1L 2L 3L 1R 2R 3						
1.46	1.33	1.46	1.49	1.31	1.32	

Piston Skirt to Bore Clearance, inches

	Cylinder	Average Bore Diameter	Piston Skirt Diameter	Clearance
	1	3.8762	3.8707	0.0056
Test	2	3.8762	3.8717	0.0046
Te	3	3.8760	3.8712	0.0048
Pre -	4 3.8763		3.8696	0.0067
P.	5	3.8763	3.8705	0.0058
	6	3.8763 3.8700		0.0063
	1	3.8766	3.8698	0.0068
est	2	3.8765	3.8700	0.0065
·	3	N/A	3.8699	N/A
Post	4	3.8766	3.8688	0.0078
Pc	5	3.8765	3.8693	0.0072
	6 3.8765		3.8696	0.0069

Connecting Rod Bearing Mass Change, grams

Rod Bearing	Shell	Before	After	Change
1L	Тор	73.5096	73.4845	0.0251
IL	Bottom	68.4050	68.3979	0.0071
2L	Тор	73.5891	73.5602	0.0289
ZL.	Bottom	67.9048	67.9006	0.0042
3L	Тор	73.5592	73.5377	0.0215
3L	Bottom	68.0659	68.0599	0.0060
1R	Тор	73.7570	73.7359	0.0211
IK	Bottom	67.8936	67.8878	0.0058
2R	Тор	73.5076	73.4869	0.0207
ZK	Bottom	67.9593	67.9563	0.0030
3R	Тор	73.4451	73.4258	0.0193
JK	Bottom	67.8821	67.8766	0.0055

Maximum	0.0289
Average	0.0140

Slipper Bushing Mass Change, grams

Slipper Bushing	Before	After	Change
1L	56.1310	55.9758	0.1552
2L	56.0567	55.9313	0.1254
3L	56.0873	55.9811	0.1062
1R	56.0515	55.8908	0.1607
2R	56.0870	55.9288	0.1582
3R	55.7503	55.5740	0.1763

Maximum	0.1763
Average	0.1470

Pre-Test Slipper Bushing Tin Plate Thickness, inches

Slipper Bushing Tin Plate Thickness						
1L	2L	3L	1R	2R	3R	
0.02355	0.02350	0.02350	0.02245	0.02300	0.02340	

Top, Second, and Third Ring Radial Measurements, inches

Cylinder Position

1L

2

4

5

Second Ring

Before

0.14690

0.14775

0.14735

0.14680

0.14730

0.14660

0.14840

After

0.14570

0.14660

0.14615

0.14580

0.14625

0.14590

0.14765

Delta

0.00120

0.00115

0.00120

0.00100

0.00105

0.00070

0.00075

	Top Ring						
Cylinder	Position	Before	After	Delta			
	1	0.15650	0.15520	0.00130			
	2	0.15585	0.15510	0.00075			
1L	3	0.15635	0.15555	0.00080			
	4	0.15575	0.15485	0.00090			
	5	0.15685	0.15535	0.00150			
	1	0.15650	0.15565	0.00085			
	2	0.15800	0.15760	0.00040			
2L	3	0.15695	0.15665	0.00030			
	4	0.15635	0.15600	0.00035			
	5	0.15720	0.15635	0.00085			
	1	0.15755	0.15620	0.00135			
	2	0.15620	0.15560	0.00060			
3L	3	0.15630	0.15595	0.00035			
	4	0.15645	0.15600	0.00045			
	5	0.15750	0.15610	0.00140			
	1	0.15650	0.15525	0.00125			
	2	0.15625	0.15575	0.00050			
1R	3	0.15760	0.15710	0.00050			
	4	0.15750	0.15705	0.00045			
	5	0.15685	0.15550	0.00135			
	1	0.15465	0.15365	0.00100			
	2	0.15500	0.15455	0.00045			
2R	3	0.15645	0.15610	0.00035			
	4	0.15690	0.15650	0.00040			
	5	0.15620	0.15555	0.00065			
	1	0.15545	0.15395	0.00150			
	2	0.15460	0.15375	0.00085			
3R	3	0.15595	0.15530	0.00065			
	4	0.15675	0.15590	0.00085			
	5	0.15610	0.15570	0.00040			
AND A Market Mar							

*Note - Measurements with a negitive delta value, shown in italics, are considered pre-test measurements error

2L	3	0.14725	0.14640	0.00085		
	4	0.14695	0.14625	0.00070		
	5	0.14685	0.14605	0.00080		
	1	0.14725	0.14615	0.00110		
	2	0.14785	0.14665	0.00120		
3L	3	0.17860	0.14760	0.03100		
	4	0.14850	0.14760	0.00090		
	5	0.14735	0.14625	0.00110		
	1	0.14670	0.14530	0.00140		
	2	0.14745	0.14655	0.00090		
1R	3	0.14750	0.14640	0.00110		
	4	0.14645	0.14540	0.00105		
	5	0.14625	0.14470	0.00155		
	1	0.14670	0.14610	0.00060		
	2	0.14810	0.14745	0.00065		
2R	3	0.14755	0.14675	0.00080		
	4	0.14745	0.14690	0.00055		
	5	0.14710	0.14640	0.00070		
	1	0.14795	0.14695	0.00100		
	2	0.14720	0.14645	0.00075		
3R	3	0.14635	0.14525	0.00110		
	4	0.14700	0.14600	0.00100		
	5	0.14775	0.14655	0.00120		
*Note - Measurements with a negitive delta value, shown in italics, are considered pre-test measurements error						

	2	0.14705	0.14635	0.00070
1L	3	0.14755	0.14675	0.00080
	4	0.14680 0.14630		0.00050
	5	0.14660	0.14590	0.00070
	1	0.14665	0.14620	0.00045
	2	0.14760	0.14710	0.00050
2L	3	0.14765	0.14730	0.00035
	4	0.14705	0.14680	0.00025
	5	0.14690	0.14650	0.00040
	1	0.14800	0.14745	0.00055
	2	0.14735	0.14700	0.00035
3L	3	0.14785	0.14745	0.00040
	4	0.14845	0.14805	0.00040
	5	0.14830	0.14775	0.00055
	1	0.14795	0.14710	0.00085
	2	0.14730	0.14700	0.00030
1R	3	0.14610	0.14560	0.00050
	4	0.14670	0.14610	0.00060
	5	0.14725	0.14585	0.00140
	1	0.14720	0.14680	0.00040
	2	0.14730	0.14705	0.00025
2R	3	0.14740	0.14715	0.00025
	4	0.14815	0.14790	0.00025
	5	0.14745	0.14710	0.00035
	1	0.14650	0.14585	0.00065
	2	0.14770	0.14720	0.00050
3R	3	0.14775	0.14710	0.00065
	4	0.14635	0.14545	0.00090
	5	0.14645	0.14550	0.00095

Third Ring

Before

0.14665

Delta

0.00075

After

0.14590

Cylinder Position

*Note - Measurements with a negitive delta value, shown in italics, are considered pre-test measurements error

Maximum	0.00150
Average	0.00078

Maximum	0.03100		
Average	0.00197		

Maximum	0.00140
Average	0.00055

Piston Ring Gap Measurements, inches

Cylinder	Ring No.	Before	After	Increase	
	1	0.041	0.045	0.004	
	2	0.028 0.039		0.011	
1L	3	0.030 0.037		0.007	
'-	4	0.019 0.025		0.006	
	5a	0.016	0.022	0.006	
	5b	0.017	0.024	0.007	
	1	0.030	0.035	0.005	
	2	0.031	0.038	0.007	
2L	3	0.031	0.036	0.005	
2L	4	0.019	0.025	0.006	
	5a	0.017	0.022	0.005	
	5b	0.017	0.022	0.005	
	1	0.032	0.035	0.003	
	2	0.029	0.039	0.010	
3L	3	0.030	0.035	0.005	
3L	4	0.018	0.023	0.005	
	5a	0.017 0.023		0.006	
	5b	0.017 0.023		0.006	
	1	0.031	0.036	0.005	
	2	0.030 0.040		0.010	
1R	3	0.030	0.037	0.007	
IIN	4	0.017 0.022		0.005	
	5a	0.017 0.024		0.007	
	5b	0.018 0.025		0.007	
	1	0.031	0.037	0.006	
	2	0.029	0.036	0.007	
2R	3	0.029	0.034	0.005	
ZK	4	0.016	0.021	0.005	
	5a	0.018	0.024	0.006	
	5b	0.017	0.023	0.006	
	1	0.031 0.036		0.005	
	2	0.031	0.040	0.009	
3R	3	0.031	0.038	0.007	
3K	4	0.018	0.018 0.024		
	5a	0.019	0.025	0.006	
	5b	0.018	0.024	0.006	

Ring No. 1 max increase	0.006
Ring No. 2 max increase	0.011
Ring No. 3 max increase	0.007
Ring No. 4 max increase	0.006
Ring No. 5a max increase	0.007
Ring No. 5b max increase	0.007

Ring No. 1 avg increase	0.005
Ring No. 2 avg increase	0.009
Ring No. 3 avg increase	0.006
Ring No. 4 avg increase	0.006
Ring No. 5a avg increase	0.006
Ring No. 5b avg increase	0.006

Piston Ring Mass Measurements, inches

Cylinder	Ring No.	Before	After	Delta	
	1	22.8443	22.8093	0.0350	
	2	20.1878	20.0504	0.1374	
1L	3	20.1517 20.0781		0.0736	
	4	27.4218	27.4054	0.0164	
	5	24.3984	24.3678	0.0306	
	1	23.1662	23.1421	0.0241	
	2	20.2026	20.1275	0.0751	
2L	3	20.1997	20.1747	0.0250	
	4	27.4120	27.3898	0.0222	
	5	24.3628	24.3300	0.0328	
	1	23.0348	23.0003	0.0345	
	2	20.3096	20.1994	0.1102	
3L	3	20.2840	20.2455	0.0385	
	4	27.4054	27.3867	0.0187	
	5	24.3822	24.3542	0.0280	
	1	23.2131	23.1834	0.0297	
	2	20.1729	20.0421	0.1308	
1R	3	20.1572	20.0988	0.0584	
	4	27.4500	27.4267	0.0233	
	5	24.3835	24.3523	0.0312	
	1	22.9615	22.9389	0.0226	
	2	20.1967	20.1415	0.0552	
2R	3	20.2070	20.1898	0.0172	
	4	27.5839	27.5625	0.0214	
	5	24.4885	24.4558	0.0327	
3R	1	22.9341	22.9020	0.0321	
	2	20.1809	20.0737	0.1072	
	3	20.1792	20.1151	0.0641	
	4	27.3799 27.3598		0.0201	
	5	27.2522	27.2059	0.0463	

Ring No. 1 max decrease	0.0350
Ring No. 2 max decrease	0.1374
Ring No. 3 max decrease	0.0736
Ring No. 4 max decrease	0.0233
Ring No. 5 max decrease	0.0463

Ring No. 1 avg decrease	0.0297
Ring No. 2 avg decrease	0.1026
Ring No. 3 avg decrease	0.0461
Ring No. 4 avg decrease	0.0203
Ring No. 5 avg decrease	0.0336

Oil Control & Expander Ring Tension, pounds

	Oil Control & Expander Ring Tension					
	1L	2L	3L	1R	2R	3R
Top Oil Ring	7.1	7.4	7.2	7.8	8.5	7.5
Second Oil Ring	7.6	8.0	8.1	8.4	8.1	8.0

NOTE – To be used as reference only. Measurements taken with non-calibrated legacy equipment.

Post Test Engine Ratings

Piston Ratings, Demerits

Detings			Cylinder	Number			
Ratings	1L	2L	3L	1R	2R	3R	Avg
Ring Sticking (F=Free, CS=Cold Stuck	, HS=Hot Stu	ck, CP=Colla _l	osed Ring, No	o. Denotes %	Of Ring Circ	cumference)	
Тор	F	F	F	F	F	F	
Second	F	CS 5%	CS 10%	F	F	F	
Third	F	F	F	F	F	F	
Oil Control Rings	F	F	F	F	F	F	
2nd Ring Carbon							
Heavy Carbon	62	10	78	5	4	40	
Light Carbon	38	90	22	46	86	60	
Piston Carbon, Demerits							
No.1 Groove	48.00	57.50	73.50	72.50	66.75	57.25	62.58
No.2 Groove	42.25	26.50	37.75	37.75	36.25	30.25	35.13
No.3 Groove	25.00	23.00	25.00	25.00	16.50	25.00	23.25
No.1 Land	40.75	42.25	54.25	28.75	43.00	34.00	40.50
No.2 Land	59.50	61.00	65.50	63.25	59.50	50.50	59.88
No.3 Land	15.75	17.00	17.00	20.50	20.50	10.00	16.79
No.4 Land	10.00	3.00	7.50	6.75	2.50	8.75	6.42
Piston Lacquer, Demerits							
No.1 Groove	0.00	0.00	0.00	0.00	0.00	0.00	0.00
No.2 Groove	0.00	0.00	0.00	0.00	0.00	0.00	0.00
No.3 Groove	0.00	0.22	0.00	0.00	1.64	0.00	0.31
No.1 Land	0.00	0.00	0.00	0.00	0.00	0.00	0.00
No.2 Land	0.00	0.00	0.00	0.00	0.00	0.00	0.00
No.3 Land	1.64	1.25	1.12	1.38	1.21	2.52	1.52
No.4 Land	1.97	3.12	2.00	2.33	3.32	2.69	2.57
Total, Demerits	244.86	234.84	283.62	258.21	251.17	220.96	248.94
Miscellanous							
Top Groove Fill, %	47	55	76	77	60	57	62.00
Intermediate Groove Fill, %	55	60	70	59	57	52	58.83
Top Land Heavy Carbon, %	21	23	39	5	24	12	20.67
Top Lan Flaked Carbon, %	1	0	0	0	0	0	0.17

Ring Face Distress, Demerits

Cylinder No.	Ring No.	Extreme Distress (1.00) % Area	Heavy Distress (0.75) % Area	Medium Distress (0.50) % Area	Light Distress (0.25) % Area	No Distress (0.00) % Area	Total Demerits
	1				7	93	0.0175
1L	2						0
	3						0
	1				8	92	0.02
2L	2						0
	3						0
	1				5	95	0.0125
3L	2						0
	3						0
	1				10	90	0.025
1R	2						0
	3						0
	1				9	91	0.0225
2R	2						0
	3						0
	1				22	78	0.055
3R	2				_		0
	3						0

Piston Ring Face	Fire	2nd	3rd
Distress	Ring	Ring	Ring
Average Demerits	0.0254	0.0000	0.0000

EOT Cylinder Liner Ratings, % Area

	Cylinder Liner Ratings					
	% Sc	uffing	Total % Area	% Pc	olish	Total % Area
	Т	AT	Scuffed	Т	AT	Polished
1L	0	0	0	15	4	19
2L	0	0	0	10	12	22
3L	0	0	0	5	2	7
1R	0	0	0	5	2	7
2R	0	0	0	2	7	9
3R	0	0	0	4	2	6
		Per	cent of total ring	travel area	_	

Periodic Bore Inspection Results, % Area

Periodic Bore Inspection, % Scuffed Area					
Cyl 0hr 60hr 120hr 180h					
1L	0	0	0	0	
2L	0	0	0	0	
3L	0	0	3	3	
1R	0	0	0	0	
2R	0	0	0	0	
3R	0	0	0	0	

Piston Skirt Ratings

	Piston Skirt Ratings				
	Thrust	Anti-Thrust			
1L	Few Light Scratches & 1% Scuffing	Few Light Scratches			
2L	Few Light Scratches	Few Light Scratches			
3L	Few Light Scratches	Few Very Light Scratches			
1R	Few Light Scratches	Few Light Scratches & 1% Scuffing			
2R	Few Light Scratches	Few Light Scratches & 1% Scuffing			
3R	Few Very Light Scratches	Few Light Scraches & 1% Scuffing			

EOT Intake Port Plugging & Slipper Bushing Exposed Copper, %

Intake Port Plugging			
1L	2		
2L	2		
3L	3		
1R	3		
2R	2		
3R	3		
Average	2.5		

Slipper Bushing % Exposed Copper			
1L 1			
2L	1		
3L	2		
1R	2		
2R	1		
3R	2		
Average	1.50		

PHOTOGRAPHS

Oil Code:	LO268869	EOT Date:	10/27/11
Test No.:	LO268869-6V53T1-T-240	Test Length:	240

Ring Pack 1 Left

Ring Pack 1 Right

Oil Code:	LO268869	EOT Date:	10/27/11	
Test No.:	LO268869-6V53T1-T-240	Test Length:	240	

Piston 1 Left Thrust

Piston 1 Left Anti-thrust

Oil Code:	LO268869	EOT Date:	10/27/11
Test No.:	LO268869-6V53T1-T-240	Test Length:	240

Piston 1 Right Thrust

Piston 1 Right Anti-thrust

Oil Code:	LO268869	EOT Date:	10/27/11	
Test No.:	LO268869-6V53T1-T-240	Test Length:	240	

Liner 1 Left Thrust and Anti-thrust

Oil Code:	LO268869	EOT Date: 10/27/11
Test No.:	LO268869-6V53T1-T-240	Test Length: 240

Liner 1 Right Thrust and Anti-thrust

Oil Code:	LO268869	EOT Date:	10/27/11	
Test No.:	LO268869-6V53T1-T-240	Test Length:	240	

Ring Pack 2 Left

Ring Pack 2 Right

Oil Code:	LO268869	EOT Date:	10/27/11
Test No.:	LO268869-6V53T1-T-240	Test Length:	240

Piston 2 Left Thrust

Piston 2 Left Anti-thrust

Oil Code:	LO268869	EOT Date:	10/27/11	
Test No.:	LO268869-6V53T1-T-240	Test Length:	240	

Piston 2 Right Thrust

Piston 2 Right Anti-thrust

Oil Code:	LO268869	EOT Date:	10/27/11	
Test No.:	LO268869-6V53T1-T-240	Test Length:	240	

Liner 2 Left Thrust and Anti-thrust

Oil Code:	LO268869	EOT Date: 10/27/11
Test No.:	LO268869-6V53T1-T-240	Test Length: 240

Liner 2 Right Thrust and Anti-thrust

Oil Code:	LO268869	EOT Date:	10/27/11	
Test No.:	LO268869-6V53T1-T-240	Test Length:	240	

Ring Pack 3 Left

Ring Pack 3 Right

Oil Code:	LO268869	EOT Date:	10/27/11	
Test No.:	LO268869-6V53T1-T-240	Test Length:	240	

Piston 3 Left Thrust

Piston 3 Left Anti-thrust

Oil Code:	LO268869	EOT Date: 10/27/11
Test No.:	LO268869-6V53T1-T-240	Test Length: 240

Piston 3 Right Thrust

Piston 3 Right Anti-thrust

Oil Code:	LO268869	EOT Date:	10/27/11	
Test No.:	LO268869-6V53T1-T-240	Test Length:	240	

Liner 3 Left Thrust and Anti-thrust

Oil Code:	LO268869	EOT Date: 10/27/11
Test No.:	LO268869-6V53T1-T-240	Test Length: 240

Liner 3 Right Thrust and Anti-thrust

Oil Code:	LO268869	EOT Date:	10/27/11
Test No.:	LO268869-6V53T1-T-240	Test Length:	240

Slipper Bushings 1R, 2R, 3R

Slipper Bushings 1L, 2L, 3L

Oil Code:	LO268869	EOT Date:	10/27/11	
Test No.:	LO268869-6V53T1-T-240	Test Length:	240	

Connecting Rod Bearings

Upper 1L, 2L, 3L, 1R, 2R, 3R

Lower 1L, 2L, 3L, 1R, 2R, 3R

APPENDIX – C1 ROLLER FOLLOWER WEAR TEST LO-268869

D 5966 Roller Follower Wear Test

Version 20040401

Title / Validity Declaration Page

Conducted for

U.S. ARMY TARDEC

	٧	=	Valid; The Reference Oil / Non-Reference Oil was E	Evaluated	in
V			Accordance with the Test Prodecure.		
V	1	-	Invalid; The Reference Oil / Non-Reference Oil was I	Evaluated	in
			Accordance with the Test Procedure.		

Stand:	65	Stand Run No.:	404	Engine No.: 2	22	Engine Run No.:	9
End of Test	Date:	20120203		End of Test Time	16:5	⁵⁹ CST	
Oil Code: *	LO-2	68869					
Formulation	ı / Stan	d Code: ^A					
Alternate C	odes: ^B						

In my opinion this test <u>has</u> been conducted in a valid manner in accordance with the Test Method D 5966 and the appropriate amendments through the information letter system. The remarks included in the report describe the anomalies associated with this test.

The results of this report relate only to the items tested.

This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute [®].

Submitted by:

Southwest Research Institute (R)

Testing Laboratory

Signature

Perry Grosch

Typed Name

Principal Research Technologist

Title

^{*} CMIR or Non-Reference Oil Code

AACC -Registered Tests Only

^B When Provided or Required by Client

D 5966 Roller Follower Wear Test Test Identification Cover Sheet Test Lab Affidavit Form 1

	Engine Run No.	o	Test Length	50	Viscosity Grade	N/A	268869		Adjustment Average Wear	0.28
Test	Engine	222	EOT of Test Time	16:59			2	Code		
Non-Reference Oil Test	Stand Run No.	404				6		Formulation / Stand Code	Severity Adjustment	0.00
Non-R	Stand	65	Date Completed	20120203	Oil Code	LO-268869	To the second se	Formul		
	Lab	SR	Start Date	20120201			Laboratory Oil Code		Average Wear (mils)	0.28
	Engine Run No.		Test Length	0	Viscosity Grade					
st	Engine	222	EOT of Test Time					6.5L		
Reference Oil Test	Stand Run No.		EOT		TMC Oil Code					
Refer	Stand	65	Date Completed		TM		Ð	nt		
	Lab	SR	Start Date	C1	CMIR		Laboratory Oil Code	Engine Displacement	Average Wear (mils)	

C1 - 3 Page 2 of 21

D 5966 **Roller Follower Wear Test** Summary of Roller Follower Wear Form 2

Laboratory: SR	EOT Date: 20120203
Test Number: * 65-404-222-9	
Oil Code: LO-268869	
Formulation / Stand Code:	

Lifter Part Number 171098650

Profilometer Wear Measurements (mils)						
Lifter Number	Wear (mils)	Lifter Number	Wear (mils)			
1L	0.21	1R	0.18			
2L	0.28	2R	0.20			
3L	0.23	3R	0.12			
4L	0.25	4R	0.19			
5L	0.28	5R	0.25			
6L	0.47	6R	0.19			
7L	0.45	7R	0.46			
8L	0.46	8R	0.23			
	Wear Statistics					
Minimum	Maximum	Average	Std. Deviation			
0.12	0.47	0.28	0.12			

Wear is Measured at Location Shown by Arrow.

^{*}Test Number is: Stand - Stand Run No. - Engine No. - Engine Run No.

ROLLER FOLLOWER WEAR TEST Operational Data Summary

Form 3

Laboratory:	SR	EOT Date:	20120203	
Test Number:	65-404-222-9			
Oil Code:	LO-268869			
Formulation/S	tand Code:			

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

ENGINE SPEED vs TEST HOURS

Process Mean Xav = 1000.0

Process Variability (s) Sav = 0.0

C1 - 5 Page 4 of 21

Operational Data Summary

Form 4

Laboratory:	SR	EOT Date:	20120203	
Test Number:	65-404-222-9			
Oil Code:	LO-268869			
Formulation/St	and Code:		· · · · · · · · · · · · · · · · · · ·	

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

POWER vs TEST HOURS

Process Mean Xav = 34.8

Process Variability (s) Sav = 0.3

C1 - 6 Page 5 of 21

Operational Data Summary

Form 5

Laboratory: SR	EOT Date: 20120203
Test Number: 65-404-222-9	
Oil Code: LO-268869	
Formulation/Stand Code:	

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

FUEL FLOW vs TEST HOURS

Process Mean Xav = 9.4

Process Variability (s) Sav = 0.0

C1 - 7 Page 6 of 21

Operational Data Summary

Form 6

Laboratory:	SR	EOT Date:	20120203	
Test Number	: 65-404-222-9			
Oil Code:	LO-268869			
Formulation/s	Stand Code:			

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

COOLANT OUT TEMPERATURE vs TEST HOURS

Process Mean Xav = 120.0

Process Variability (s) Sav = 0.1

Operational Data Summary

Form 7

Laboratory:	SR	EOT Date:	20120203	
Test Number:	65-404-222-9			
Oil Code: L	.O-268869			
Formulation/Sta	nd Code:			

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

COOLANT INLET TEMPERATURE vs TEST HOURS

Process Mean Xav = 111.5

Process Variability (s) Sav = 0.2

C1 - 9 Page 8 of 21

Operational Data Summary

Form 8

Laboratory:	SR	EOT Date:	20120203	
Test Number:	65-404-222-9			
Oil Code:	LO-268869			
Formulation/St	and Code:			

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

OIL GALLERY TEMPERATURE vs TEST HOURS

Process Mean Xav = 120.0

Process Variability (s) Sav = 0.1

Operational Data Summary

Form 9

Laboratory: SR	EOT Date: 20120203
Test Number: 65-404-222-9	
Oil Code: LO-268869	
Formulation/Stand Code:	

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

OIL GALLERY PRESSURE vs TEST HOURS

Process Mean Xav = 107.3

Process Variability (s) Sav = 0.2

C1 - 11 Page 10 of 21

Operational Data Summary

Form 10

Laboratory:	SR	EOT Date:	20120203	
Test Number:	65-404-222-9			
Oil Code:	LO-268869			
Formulation/St	and Code:			

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

INTAKE AIR TEMPERATURE vs TEST HOURS

Process Mean Xav = 32.3

Process Variability (s) Sav = 0.1

TEST HOURS

C1 - 12 Page 11 of 21

Operational Data Summary

Form 11

Laboratory:	SR	EOT Date:	20120203
Test Numbe	r: 65-404-222-9		
Oil Code:	LO-268869		
Formulation/	/Stand Code:		

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

CRANKCASE PRESSURE vs TEST HOURS

Process Mean Xav = 1.3

Process Variability (s) Sav = 0.0

TEST HOURS

C1 - 13 Page 12 of 21

Operational Data Summary

Form 12

Laboratory: SR	EOT Date: 20120203
Test Number: 65-404-222-9	
Oil Code: LO-268869	
Formulation/Stand Code:	

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

INTAKE AIR PRESSURE vs TEST HOURS

Process Mean Xav = 97.1

Process Variability (s) Sav = 0.0

TEST HOURS

C1 - 14 Page 13 of 21

Operational Data Summary

Form 13

Laboratory:	SR	EOT Date:	20120203	
Test Number:	: 65-404-222-9			
Oil Code:	LO-268869			
Formulation/Stand Code:				

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

EXHAUST BACK PRESSURE vs TEST HOURS

Process Mean Xav = 102.9

Process Variability (s) Sav = 0.1

TEST HOURS

C1 - 15 Page 14 of 21

Operational Data Summary

Form 14

Laboratory:	SR	EOT Date: 20120203
Test Number:	65-404-222-9	
Oil Code:	LO-268869	
Formulation/S	Stand Code:	

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

FUEL INLET TEMPERATURE vs TEST HOURS

Process Mean Xav = 35.0

Process Variability (s) Sav = 0.8

TEST HOURS

C1 - 16 Page 15 of 21

Operational Data Summary

Form 15

Laboratory:	SR	EOT Date:	20120203	
Test Number:	65-404-222-9	-		
Oil Code:	LO-268869			
Formulation/St	and Code:		***************************************	

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

EXHAUST TEMPERATURE vs TEST HOURS

Process Mean Xav = 311.0

Process Variability (s) Sav = 1.6

C1 - 17 Page 16 of 21

D 5966 Roller Follower Wear Test Operational Summary

 Laboratory:
 SR
 EOT Date:
 20120203

 Test Number:
 *
 65-404-222-9

 Oil Code:
 LO-268869

 Formulation / Stand Code:

^{*}Test Number is: Stand - Stand Run No. - Engine No. - Engine Run No.

Test Parameter	Specif	Specification		Std. Dev.	Minimum	Maximum
Engine Speed, r/min	6.2L Engine 1000 ± 5	6.5L Engine 1000 ± 5	1000.0	0.1	1000.0	1001.0
Torque, N-m	Record	Record	333.1	2.8	327.0	338.3
Fuel Flow, kg/h	9.0 ± 0.1	9.4 ± 0.1	9.4	0.0	9.4	9.4
Total Oil Consumption, kg	Record	Record	3.9		V.	

Test Parameter	Specification	Average	Std. Dev.	Minimum	Maximum
Coolant Out, °C	120 ± 2	120.0	0.1	119.7	120.3
Coolant In, °C	Report Only	111.5	0.1	111.1	111.9
Main Oil Gallery, °C	120 ± 2	120.0	0.0	119.9	120.1
Fuel In, °C	35 ± 2	35.0	0.3	34.4	35.6
Intake Air, °C	32 ± 2	32.3	1.0	29.9	34.9
Oil Sump, °C	Report	128.2	0.2	127.8	128.7
Exhaust, °C	Report	311.0	2.6	303.6	317.9

Pressures	Specification	Average	Std. Dev.	Minimum	Maximum
Crankcase, kPa	Report	1.3	0.0	1.4	1.2
Back Pressure, kPa	103 ± 1	102.9	0.1	102.4	103.1
Intake Air, kPa	97 ± 1	97.1	0.1	96.6	97.3

D 5966 Roller Follower Wear Test Oil Analysis Form 17

Laboratory: SR	EOT Date: 20120203			
Test Number: * 65-404-222-9				
Oil Code: LO-268869				
Formulation / Stand Code:				

^{*}Test Number is: Stand - Stand Run No. - Engine No. - Engine Run No.

Hours	Viscosity, cSt @ 100°C	% SOOT
NEW	8.80	0.2
025	10.90	2.5
050	12.07	4.4

11				Elements			
Hours	AI	Cr	Cu	Fe	Pb	Si	Sn
NEW	6	0	0	2	0	2	0
025	6	2	3	100	5	5	2
050	7	4	4	202	9	6	3

Average Bosch Smokes	6.5
Average BSFC	0.270 kg/kW-h

D 5966 Roller Follower Wear Test Unscheduled Downtime & Maintenance Summary Form 18

Laboratory: S	iR	EOT Date:	20120203		
Test Number: *	65-404-222-9				
Oil Code: LO-268869					
Formulation / Stand Code:					

^{*}Test Number is: Stand - Stand Run No. - Engine No. - Engine Run No.

Number of	Downtime	Occurrences:	0
Test	Date	Downtime	Reasons
* * * * * * * * * * * * * * * * * * * 			
	<u></u>		

Total D	owntime	0:00	

Other Comments			
Number of Comment Lines:	0		
		, , ,	

D 5966 Roller Follower Wear Test Test Fuel Analysis (Last Batch) Form 21

 Laboratory:
 SR
 EOT Date:
 20120203

 Test Number:
 *
 65-404-222-9

 Oil Code:
 LO-268869

 Formulation / Stand Code:

 Supplier:
 Batch Identifiers:
 11JPPC901

^{*}Test Number is: Stand - Stand Run No. - Engine No. - Engine Run No.

Measurement	Specifications	Analysis	Test Method
Total Sulfur, % Weight	0.03 - 0.05	0.04	D 2622
Gravity, °API	32 - 36	35.1	D 287
Hydrocarbon Composition			
Aromatics, % Vol.	28 - 35	30.7	D 5186
Olefin	Report	4.3	D 1319
Saturates	Report	65.0	D 1319
Cetane Index	42 - 48	44.0	D 4737
Cetane No.	42 - 48	46.0	D 613
Copper Strip Corrosion	3 Maximum	1A	D 130
Flash Point, °C	54 Minimum	63	D 92
Cloud Point, °C	-12 Maximum	-21	D 2500
Pour Point, °C	-18 Maximum	-27	D 97
Carbon Residue on 10% Residuum, %	0.35 Maximum	0.10	D 524 (10% Bottoms)
Water & Sediment, % Vol.	0.05 Maximum	0.00	D 2709
Ash, % Wgt.	0.01 Maximum	0.000	D 482
Viscosity, cSt @ 40°C	2.0 - 3.2	2.4	D 445
Distillation, °C	Mark Special		
IBP	177 - 199	173	D 86
10%	210 - 232	206	D 86
50%	249 - 277	252	D 86
90%	299 - 327	326	D 86
EP	327 - 360	361	D 86

D 5966

Roller Follower Wear Test

Laboratory: SR	EOT Date: 20120203			
Test Number: * 65-404-222-9				
Oil Code: LO-268869				
Formulation / Stand Code:				

^{*}Test Number is: Stand - Stand Run No. - Engine No. - Engine Run No.

Parameter	Sensing Device	Calibration Frequency	Record Device	Observation Frequency	Record Frequency	Log Frequency	System Response
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Temperatures							
Main Oil G.	Thermocouple	Every ref test	C/D	0	0	1 per min	2.0s
Fuel In.	Thermocouple	Every ref test	C/D	0	0	1 per min	2.0s
Intake Air	Thermocouple	Every ref test	C/D	0	0	1 per min	2.0s
Oil Sump	Thermocouple	Every ref test	C/D	0	0	1 per min	2.0s
Exhaust	Thermocouple	Every ref test	C/D	0	0	1 per min	2.0s
Coolant Out	Thermocouple	Every ref test	C/D	0	0	1 per min	2.0s
Other							
Fuel Flow	Mass Flow	Every ref test	C/D	0	0	1 per min	2.5s
Engine RPM	Magnetic	Every ref test	C/D	0	0	1 per min	0.5s
Load	Strain Gage	Every ref test	C/D	0	0	1 per min	0.5s
Intake Press.	Mechanical	Every ref test	C/D	0	0	1 per min	N/A
Exhaust Press.	Mechanical	Every ref test	C/D	0	0	1 per min	N/A
Oil Gallery Press.	Mechanical	Every ref test	C/D	0	0	1 per min	N/A

Legend:

- (1) Operating Parameter
- (2) The Type of Device Used to Measure Temperature, Pressure or Flow

T/C - Thermocouple

- (3) Frequency at Which the Measurement System is Calibrated
- (4) The Type of Device Where Data is Recorded
 - LG Handlog Sheet
 - DL Automatic Data Logger
 - SC Strip Chart Recorded
 - C/M Computer, Using Manual Data Entry
 - C/D Computer, Using Direct I/O Entry
- (5) Data are Observed but Only if Recorded Off Spec.
- (6) Data are Recorded but are not Retained at EOT
- (7) Data are Logged as Permanent Record, Note Specify if:
 - SS Snapshot Taken at Specified Frequency
 - AG/X Average of X Data Points at Specified Frequency
- (8) Time for the Output to Reach 63.2% of Final Value for Step Change at Input

D5966 Roller Follower Wear Test

Laboratory: SR	EOT Date: 20120203			
Test Number: * 65-404-222-9				
Oil Code: LO-268869				
Formulation / Stand Code:				

^{*}Test Number is: Stand - Stand Run No. - Engine No. - Engine Run No.

Appendix A

Roller Follower Wear Test Traces

1. Profilometer Traces 1-8 (Right and Left) (8 pages)

Settings
Software: 2.46; Advanced; 3.95 Data
Collected: Mon Feb 06 09:29 2012 By: Kerry McCubbin
At: SWRI- UNIT # 1 Tracer Used: PDT-2-522
Sampled Length: 0.541 in Sample Spacing: 18.9 μ in
Description RFWT, Pin R1
Run 65-404-222-9 File: C:\S-2000-2\DATA\RFWT\40422209. <i>F</i>
Instrument
Name: MicroAnalyzer 2000 Serial #: S-2000-3027
Current Tracer:PDT-2-522 Travel Distance: 0.541 in
Trace Velocity: 0.030 in/s Form
Form Type: Two-Point Line Roughness Filter
Type: Gaussian Cutoff: 0.030 in
No Filter Width Removal at Ends Parameter Calculation Settings
Peak Count Threshold: 19.7 µin High Spot Count Threshold: 19.7 µin
tp Reference Percent: 5 % tp Slice Depth: 19.7 µin
Short Wavelength Filter Type: Gaussian
Cutoff: 0.0001 in Waviness Filter
Type: No Filter

Parameters						
PARAMETER	VALUE	UNITS				
Summary Standards Waviness Par	System =	ANSI/ASME	B46.1	1995		
Wt	177.4	μ in				
		:			1	The state of the s
	Sent of the Advertis	ota e peres de serán	- 1915 A.A	na siling	.1	
		manu y minum	عی با بیاند	_ 1 225		
Waviness Pai	rameters:	i grant tradition i de station				

Settings
Software: 2.46; Advanced; 3.95
Data
Collected: Mon Feb 06 09:31 2012
By: Kerry McCubbin
At: SWRI- UNIT # 1
Tracer Used: PDT-2-522
Sampled Length: 0.541 in
Sample Spacing: 18.9 μ in
Description
RFWT, Pin R2
Run 65-404-222-9
File: C:\S-2000-2\DATA\RFWT\40422209.
Instrument
Name: MicroAnalyzer 2000 Serial #: S-2000-3027
Current Tracer:PDT-2-522
Travel Distance: 0.541 in
Trace Velocity: 0.030 in/s
Form
Form Type: Two-Point Line
Roughness Filter
Type: Gaussian
Cutoff: 0.030 in
No Filter Width Removal at Ends
Parameter Calculation Settings
Peak Count Threshold: 19.7 μin
High Spot Count Threshold: 19.7 μin
tp Reference Percent: 5 %
tp"Slice~Depth:~19.7~μin
Short Wavelength Filter
Type: Gaussian
Cutoff: 0.0001 in
Waviness Filter
Type: No Filter

		Parameters	
PARAMETER	VALUE	UNITS	
Summary Standards Waviness Par	System = rameters:	ANSI/ASME B46	5.1 1995
Wt	203.2	μ in	
			f
The second secon		জিৰ এ এটি ইউৰ্লিক কৈছে। কাৰ্য এই ইউৰ্লিক	

Settings
Software: 2.46; Advanced; 3.95 Data Collected: Mon Feb 06 09:33 2012 By: Kerry McCubbin At: SWRI- UNIT # 1 Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 µin Description RFWT, Pin R3 Run 65-404-222-9 File: C:\S-2000-2\DATA\RFWT\40422209.F Instrument Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer: PDT-2-522
Travel Distance: 0.541 in Trace Velocity: 0.030 in/s Form Form Type: Two-Point Line Roughness Filter Type: Gaussian
Cutoff: 0.030 in No Filter Width Removal at Ends Parameter Calculation Settings Peak Count Threshold: 19.7 µin High Spot Count Threshold: 19.7 µin tp Reference Percent: 5 % tp Slice Depth: 19.7 µin
Short Wavelength Filter Type: Gaussian Cutoff: 0.0001 in Waviness Filter Type: No Filter

	Parameters
PARAMETER VA	
Summary Standards Syste Waviness Paramete	
Wt 13	19.9 μin
tyr kreity.	Parameters
and the second second	المراجع

Settings Software: 2.46; Advanced; 3.95 Data Collected: Mon Feb 06 09:35 2012 By: Kerry McCubbin At: SWRI- UNIT # 1 Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 μ in Description RFWT, Pin R4 Run 65-404-222-9 File: C:\S-2000-2\DATA\RFWT\40422209.F Instrument Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer:PDT-2-522 Travel Distance: 0.541 in Trace Velocity: 0.030 in/s Form Form Type: Two-Point Line Roughness Filter Type: Gaussian Cutoff: 0.030 in No Filter Width Removal at Ends Parameter Calculation Settings Peak Count Threshold: 19.7 μ in High Spot Count Threshold: 19.7 μ in tp Reference Percent: 5 % tp Slice Depth: 19.7 μ in Short Wavelength Filter Type: Gaussian Cutoff: 0.0001 in Waviness Filter Type: No Filter Deenrintion

PARAMETER VALUE UNITS

Summary
Standards System = ANSI/ASME B46.1 1995
Waviness Parameters:
Wt 189.1 µin

Settings				Parameter	S
Software: 2.46; Advanced; 3.95		PARAMETER	VALUE	UNITS	,
Data					
Collected: Mon Feb 06 09:38 2012		Summary		7370 T / 7 CMT - F	A.C. 1. 1005
By: Kerry McCubbin At: SWRI- UNIT # 1		Waviness Para		ANSI/ASME E	346.1 1995
Tracer Used: PDT-2-522		Waviness Para	250.7	μ in	
Sampled Length: 0.541 in		***C	250.7	$\mu_{\perp 11}$	
Sample Spacing: 18.9 μ in					
Description					
RFWT, Pin R5					
Run 65-404-222-9					
File: C:\S-2000-2\DATA\RFWT\40422209.F					
Instrument					
Name: MicroAnalyzer 2000					
Serial #: S-2000-3027					
Current Tracer:PDT-2-522					
Travel Distance: 0.541 in					
Trace Velocity: 0.030 in/s					
Form					
Form Type: Two-Point Line					
Roughness Filter					
Type: Gaussian					
Cutoff: 0.030 in	GHU =	ווווקטטן עט דון ווצט.ע	V	Same and the state of the state	
NO FIICEI WIGCH REMOVAL AC ENGS					
Parameter Calculation Settings					
Peak Count Threshold: 19.7 µin					
High Spot Count Threshold: 19.7 μin tp Reference Percent: 5 %					
tp Slice Depth: 19.7 μin					
Short Wavelength Filter					
Type: Gaussian					
Cutoff: 0.0001 in					
Waviness Filter					
Type: No Filter					
Sampled Length: 0.541 in	man from	and the second second	p * The state of t	e to the contract of the second	grade to the control of

O-LL:
Settings
Software: 2.46; Advanced; 3.95 Data
Collected: Mon Feb 06 09:40 2012 By: Kerry McCubbin At: SWRI- UNIT # 1
Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 μ in
Description RFWT, Pin R6
Run 65-404-222-9 File: C:\S-2000-2\DATA\RFWT\40422209.F Instrument
Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer:PDT-2-522
Travel Distance: 0.541 in Trace Velocity: 0.030 in/s Form
Form Type: Two-Point Line Roughness Filter Type: Gaussian Cutoff: 0.030 in
No Filter Width Removal at Ends Parameter Calculation Settings Peak Count Threshold: 19.7 µin
High Spot Count Threshold: 19.7 μin tp Reference Percent: 5 % tp Slice Depth: 19.7 μin Short Wavelength Filter
Type: Gaussian Cutoff: 0.0001 in Waviness Filter # 1
Type: No Filter

			Para	neters		,	
PARAME:			UN	ITS			
Summary Standar Waviness Wt	rds Sy		 ANSI/A μi		6.1 199	95	
					,	î	
waviness 34	Färäm	êters: 188.9	9 .				

FIGURES: Waviness

Sett	2
 	 _

Software: 2.46; Advanced; 3.95

Data

Collected: Mon Feb 06 09:42 2012

By: Kerry McCubbin At: SWRI- UNIT # 1 Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 μ in

Description RFWT, Pin R7 Run 65-404-222-9

File: C:\S-2000-2\DATA\RFWT\40422209.F

Instrument

Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer: PDT-2-522 Travel Distance: 0.541 in Trace Velocity: 0.030 in/s

Form

Form Type: Two-Point Line

Roughness Filter Type: Gaussian Cutoff: 0.030 in

No Filter Width Removal at Ends Parameter Calculation Settings Peak Count Threshold: 19.7 μ in High Spot Count Threshold: 19.7 μ in

tp Reference Percent: 5 % tp Slice Depth: 19.7 μ in Short Wavelength Filter Type: Gaussian feb to bottom Lord

Cutoff: 0.0001 in Waviness Filter Type: No Filter

Parameters

PARAMETER VALUE UNITS -----

Summary

Standards System = ANSI/ASME B46.1 1995

Waviness Parameters:

 μ in 462.2

Standards System - ANSI/ASMF Bac : 1005

Settings
Software: 2.46; Advanced; 3.95 Data Collected: Mon Feb 06 09:43 2012 By: Kerry McCubbin At: SWRI- UNIT # 1 Tracer Used: PDT-2-522 Sampled Length: 0.541 in
Sample Spacing: 18.9 μin Description RFWT, Pin R8 Run 65-404-222-9 File: C:\S-2000-2\DATA\RFWT\40422209.F
Instrument Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer:PDT-2-522 Travel Distance: 0.541 in Trace Velocity: 0.030 in/s
Form Form Type: Two-Point Line Roughness Filter Type: Gaussian Cutoff: 0.030 in No Filter Width Removal at Ends Parameter Calculation Settings Peak Count Threshold: 19.7 µin High Spot Count Threshold: 19.7 µin
tp Reference Percent: 5 % tp Slice Depth: 19.7 μin Short Wavelength Filter Type: Gaussian Cutoff: 0.0001 in Waviness Filter Type: No Filter

Parameters	
PARAMETER VALUE UNITS	
Summary Standards System = ANSI/ASME B46.1 1995 Waviness Parameters:	
Wt 231.6 μ in	
បស្តិតសិច្ចក្នុំ មុខរួមក្តុំ អម្មេចក្តុ	

		Paramete	rs		
PARAMETER	VALUE	UNITS			
Summary Standards Waviness Par Wt	System = cameters: 210.5	ANSI/ASME µin	B46.1	1995	
W.C	210.5	μπιι			
* * * * * *		, v			
		ي د د د د د د د د د د د د د د د د د د د			
		**			
		te a			

Settings
Software: 2.46; Advanced; 3.95 Data
Collected: Mon Feb 06 09:13 2012 By: Kerry McCubbin At: SWRI- UNIT # 1
Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 µin
Description RFWT, Pin L2 Run 65-404-222-9
File: C:\S-2000-2\DATA\RFWT\40422209. Instrument
Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer:PDT-2-522 Travel Distance: 0.541 in
Trace Velocity: 0.030 in/s Form Form Type: Two-Point Line
Roughness Filter Type: Gaussian Cutoff: 0.030 in No Filter Width Removal at Ends
Parameter Calculation Settings Peak Count Threshold: 19.7 µin High Spot Count Threshold: 19.7 µin tp Reference Percent: 5 % tp Slice Depth: 19.7 µin
Short Wavelength Filter Type: Gaussian Cutoff: 0.0001 in
Waviness Filter Type: No Filter Sample Gracing 18 0 din

	Paramete	rs		
PARAMETER VALUE	UNITS			-
Summary Standards System = Waviness Parameters: Wt 276.5		B46.1	1995	
	Karaman a makada	w		

Settings
Software: 2.46; Advanced; 3.95
Collected: Mon Feb 06 09:14 2012 By: Kerry McCubbin
At: SWRI- UNIT # 1 Tracer Used: PDT-2-522
Sampled Length: 0.541 in Sample Spacing: 18.9 μ in
Description
RFWT, Pin L3 Run 65-404-222-9
File: C:\S-2000-2\DATA\RFWT\40422209.F Instrument
Name: MicroAnalyzer 2000 Serial #: S-2000-3027
Current Tracer:PDT-2-522 Travel Distance: 0.541 in
Trace Velocity: 0.030 in/s Form
Form Type: Two-Point Line
Roughness Filter Type: Gaussian
Cutoff: 0.030 in
No Filter Width Removal at Ends
Parameter Calculation Settings
Peak Count Threshold: 19.7 μ in
High Spot Count Threshold: 19.7 μ in tp Reference Percent: 5 %
tp Slice Depth: 19.7 μin
Short Wavelength Filter
Type: Gaussian
Cutoff: 0.0001 in
Waviness Filter Type: No Filter 1
Type. No Fifter

			Paramete	rs			
	PARAMETER	VALUE	UNITS				
	ummary Standards viness Pa: Wt	System = rameters: 233.2	ANSI/ASME μin	B46.1	1995		
	i kan i saa	, the Ma	to a str		. ·i	:	
P age	Wt	233.2	μin				

	Settings
	Software: 2.46; Advanced; 3.95 Data
	Collected: Mon Feb 06 09:17 2012 By: Kerry McCubbin
	At: SWRI- UNIT # 1 Tracer Used: PDT-2-522
	Sampled Length: 0.541 in
	Sample Spacing: 18.9 μ in Description
	RFWT, Pin L4 Run 65-404-222-9
	File: C:\S-2000-2\DATA\RFWT\40422209.
	Instrument Name: MicroAnalyzer 2000
	Serial #: S-2000-3027 Current Tracer:PDT-2-522
	Travel Distance: 0.541 in
	Trace Velocity: 0.030 in/s
	Form Type: Two-Point Line Roughness Filter
	Type: Gaussian
	Cutoff: 0.030 in No Filter Width Removal at Ends
	Parameter Calculation Settings Peak Count Threshold: 19.7 μin
	High Spot Count Threshold: 19.7 μ in
	tp Reference Percent: 5 st tp Slice Depth: 19.7 μ in
	Short Wavelength Filter Type: Gaussian Feb 06 00.17 2012
	Cutoff: 0.0001 in Waviness Filter
-	Type: No Filter
-	

		Paramete	rs	
	R VALUE			
Summary Standard Waviness P	s System =	ANSI/ASME	B46.1	1995
Wt		μ in		
•				
Summary :	un in indica in india 2 - Martin III	e Agricultura e espeta		

Settings
Software: 2.46; Advanced; 3.95
Collected: Mon Feb 06 09:20 2012 By: Kerry McCubbin At: SWRI- UNIT # 1
Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 µin
Description RFWT, Pin L5
Run 65-404-222-9 File: C:\S-2000-2\DATA\RFWT\40422209.F Instrument
Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer:PDT-2-522 Travel Distance: 0.541 in Trace Velocity: 0.030 in/s
Form
Form Type: Two-Point Line Roughness Filter Type: Gaussian Cutoff: 0.030 in No Filter Width Removal at Ends Parameter Calculation Settings
Peak Count Threshold: 19.7 µin High Spot Count Threshold: 19.7 µin tp Reference Percent: 5 % SotpwSlice ² Depth: 1976 µin 1995
Short Wavelength Filter Type: Gaussian Cutoff: 0.0001 in
Waviness Filter Type: No Filter

		Paramete	rs		
PARAMETER		UNITS			
Summary Standards Waviness Par	System = cameters: 283.2	ANSI/ASME μ in	B46.1	1995	
74.0	200.2	μ±11			
				,	
				1.	
PARAMETER	VALUE	UNITS			
	٠				
The Art of the Section Street	THE MOST STATE		1.7		

Settings Software: 2.46; Advanced; 3.95 Collected: Mon Feb 06 09:22 2012 By: Kerry McCubbin At: SWRI- UNIT # 1 Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 μ in Description RFWT, Pin L6 Run 65-404-222-9 File: C:\S-2000-2\DATA\RFWT\40422209.F Instrument Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer:PDT-2-522 Travel Distance: 0.541 in Trace Velocity: 0.030 in/s Form Form Type: Two-Point Line Roughness Filter Type: Gaussian Cutoff: 0.030 in No Filter Width Removal at Ends Parameter Calculation Settings Peak Count Threshold: 19.7 μ in High Spot Count Threshold: 19.7 μ in tp Reference Percent: 5 % tp Slice Depth: 19.7 μ in Short Wavelength Filter Type: Gaussian Cutoff: 0.0001 in Waviness Filter Type: No Filter RFWT, Pin Lo

Parameters VALUE UNITS PARAMETER Summary Standards System = ANSI/ASME B46.1 1995 Waviness Parameters: 469.5 μ in Parameters

Settings Software: 2.46; Advanced; 3.95 Data Collected: Mon Feb 06 09:24 2012 By: Kerry McCubbin At: SWRI- UNIT # 1 Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 μ in Description RFWT, Pin L7 Run 65-404-222-9 File: C:\S-2000-2\DATA\RFWT\40422209.F Instrument Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer: PDT-2-522 Travel Distance: 0.541 in Trace Velocity: 0.030 in/s Form Form Type: Two-Point Line Roughness Filter Type: Gaussian Cutoff: 0.030 in No Filter Width Removal at Ends Parameter Calculation Settings Peak Count Threshold: 19.7 μ in High Spot Count Threshold: 19.7 μ in tp Reference Percent: 5 % tp Slice Depth: 19.7 μ in Short Wavelength Filter Type: Gaussian Cutoff: 0.0001 in Waviness Filter Type: No Filter sample Spacing: 10.5 pin

Parameters PARAMETER VALUE UNITS ----Summary Standards System = ANSI/ASME B46.1 1995 Waviness Parameters: 444.5 μ in

Settings Software: 2.46; Advanced; 3.95 Collected: Mon Feb 06 09:26 2012 By: Kerry McCubbin

At: SWRI- UNIT # 1 Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 μ in

Description RFWT, Pin L8 Run 65-404-222-9

File: C:\S-2000-2\DATA\RFWT\40422209.F

Instrument

Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer: PDT-2-522 Travel Distance: 0.541 in Trace Velocity: 0.030 in/s

Form

Form Type: Two-Point Line

Roughness Filter Type: Gaussian Cutoff: 0.030 in

No Filter Width Removal at Ends Parameter Calculation Settings Peak Count Threshold: 19.7 μ in High Spot Count Threshold: 19.7 μ in tp Reference Percent: 5 % tp Slice Depth: 19.7 μ in Short Wavelength Filter Type: Gaussian

Cutoff: 0.0001 in Waviness Filter Type: No Filter - -

Parameters PARAMETER UNITS VALUE

Summary

Standards System = ANSI/ASME B46.1 1995

and the state of the state of

Waviness Parameters:

463.4 μ in

Grid = 0.02in H by 100uin V

AND THE PROPERTY OF THE PARTY O

D 5966 Roller Follower Wear Test

Laboratory: SR		EOT Date:	20120203	
Test Number: * 65	-404-222-9			
Oil Code: LO-268	869			
Formulation / Stand Co	de:			

^{*}Test Number is: Stand - Stand Run No. - Engine No. - Engine Run No.

Appendix B

Roller Follower Wear Test Photographs

- 1. Roller Follower Axle Pin Wear Best
- 2. Roller Follower Axle Pin Wear Worst

Roller Follower Wear Test

SR	Oil Code:	LO-268869	
65	Test No.:	65-404-222-9	
268869		Test Hours: 50	
	65	65 Test No.:	65 Test No. : 65-404-222-9

Roller Axle Wear

Best 3R

Roller Follower Wear Test

Laboratory:	SR	Oil Code:	LO-268869	
Test Stand No.:	65	Test No.:	65-404-222-9	
Laboratory Oil Code:	268869		Test Hours: 50	
Formulation / Stand Cod	le:			

Roller Axle Wear

Worst 6L

APPENDIX – C2 ROLLER FOLLOWER WEAR TEST LO-271510

D 5966 Roller Follower Wear Test

Version 20040401

Title / Validity Declaration Page

Conducted for

US ARMY TARDEC

	V	-	Valid; The Reference Oil / Non-Reference Accordance with the Test Prodecure.	Oil	was	Evaluated	in
V	I	=	Invalid; The Reference Oil / Non-Reference Accordance with the Test Procedure.	Oil	was	Evaluated	in

Stand:	65	Stand Run No.:	405	Engine No.:	222	Engine Run No.:	10
End of Test	Date:	20120206		End of Test Tir	me: 05:2	23 CST	
Oil Code: *	LO-2	71510					
Formulation	ı / Stan	d Code: ^A					,
Alternate C	odes: ^B						

In my opinion this test <u>has</u> been conducted in a valid manner in accordance with the Test Method D 5966 and the appropriate amendments through the information letter system. The remarks included in the report describe the anomalies associated with this test.

The results of this report relate only to the items tested.

This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute $^{\circledR}$.

Submitted by:

Southwest Research Institute (R)

Testing Laboratory

Signature

Perry Grosch

Typed Name

Principal Research Technologist

Title

^{*} CMIR or Non-Reference Oil Code

AACC -Registered Tests Only

^B When Provided or Required by Client

D 5966
Roller Follower Wear Test
Test Identification Cover Sheet
Test Lab Affidavit
Form 1

	Ref	Reference Oil Test	st			Non-	Non-Reference Oil Test	rest rest	
Lab	Stand	Stand Run No.	Engine	Engine Run No.	Lab	Stand	Stand Run No.	Engine	Engine Run No.
SR	65		222		SR	65	405	222	10
Start Date	Date Completed		EOT of Test Time	Test Length	Start Date	Date Completed		EOT of Test Time	Test Length
C2				0	20120204	20120206		05:23	50
CMIR	T	TMC Oil Code		Viscosity Grade		Oil Code	e		Viscosity Grade
						LO-271510	10		N/A
Laboratory Oil Code	qe				Laboratory Oil Code	de		271	271510
Engine Displacement	ent		6.5L			Formu	Formulation / Stand Code	Code	
Average Wear (mils)					Average Wear (mils)		Severity Adjustment		Adjustment Average Wear
					0.15		0.00		0.15

D 5966 Roller Follower Wear Test Summary of Roller Follower Wear Form 2

Laboratory: SR	EOT Date: 20120206
Test Number: * 65-405-222-10	
Oil Code: LO-271510	
Formulation / Stand Code:	

^{*}Test Number is: Stand - Stand Run No. - Engine No. - Engine Run No.

Lifter Part Number 17109650

Profilometer Wear Measurements (mils)				
Lifter Number	Wear (mils)	Lifter Number	Wear (mils)	
1L	0.12	1R	0.07	
2L	0.20	2R	0.13	
3L	0.31	3R	0.15	
4L	0.17	4R	0.12	
5L	0.18	5R	0.19	
6L	0.11	6R	0.08	
7L	0.11	7R	0.13	
8L	0.22	8R	0.12	
Wear Statistics				
Minimum	Maximum	Average	Std. Deviation	
0.07	0.31	0.15	0.06	

Wear is Measured at Location Shown by Arrow.

Page 3 of 21

Operational Data Summary

Form 3

Laboratory: SR	EOT Date: 20120206
Test Number: 65-405-222-10	
Oil Code: LO-271510	
Formulation/Stand Code:	

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

ENGINE SPEED vs TEST HOURS

Process Mean Xav = 1000.0

Process Variability (s) Sav = 0.0

C2 - 5

Page 4 of 21

Operational Data Summary

Form 4

Laboratory:	SR		EOT Date:	20120206	
Test Number:	65-405-222-10		İ		
Oil Code: L	.O-271510				
Formulation/Sta	Formulation/Stand Code:				

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

POWER vs TEST HOURS

Process Mean Xav = 35.1

Process Variability (s) Sav = 0.3

C2 - 6

Page 5 of 21

Operational Data Summary

Form 5

Laboratory: SR	EOT Date: 20120206
Test Number: 65-405-222-10	
Oil Code: LO-271510	
Formulation/Stand Code:	

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

FUEL FLOW vs TEST HOURS

Process Mean Xav = 9.4

Process Variability (s) Sav = 0.0

TEST HOURS

C2 - 7

Operational Data Summary

Form 6

Laboratory:	SR	EOT Date:	20120206	
Test Number:	65-405-222-10			
Oil Code:	LO-271510			
Formulation/St	and Code:			

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

COOLANT OUT TEMPERATURE vs TEST HOURS

Process Mean Xav = 120.0

Process Variability (s) Sav = 0.1

Operational Data Summary

Form 7

Laboratory:	SR	EOT Date:	20120206	
Test Number:	65-405-222-10			
Oil Code:	LO-271510			
Formulation/St	and Code:			

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

COOLANT INLET TEMPERATURE vs TEST HOURS

Process Mean Xav = 111.6

Process Variability (s) Sav = 0.2

Operational Data Summary

Form 8

Laboratory: SR	EOT Date: 20120206			
Test Number: 65-405-222-10				
Oil Code: LO-271510				
Formulation/Stand Code:				

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

OIL GALLERY TEMPERATURE vs TEST HOURS

Process Mean Xav = 120.0

Process Variability (s) Sav = 0.1

Page 9 of 21

Operational Data Summary

Form 9

Laboratory:	SR	EOT Date:	20120206	
Test Number:	65-405-222-10			
Oil Code:	LO-271510			
Formulation/St	and Code:			

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

OIL GALLERY PRESSURE vs TEST HOURS

Process Mean Xav = 104.7

Process Variability (s) Sav = 0.2

TEST HOURS C2 - 11

Page 10 of 21

Operational Data Summary

Form 10

Laboratory: SR	EOT Date:	20120206	
Test Number: 65-405-222-10			•
Oil Code: LO-271510			
Formulation/Stand Code:			

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

INTAKE AIR TEMPERATURE vs TEST HOURS

Process Mean Xav = 31.9

Process Variability (s) Sav = 0.1

TEST HOURS

C2 - 12

Page 11 of 21

Operational Data Summary

Form 11

Laboratory: SR		EOT Date:	20120206
Test Number: 65-	-405-222-10		
Oil Code: LO-27	71510		
Formulation/Stand Co	Formulation/Stand Code:		

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

CRANKCASE PRESSURE vs TEST HOURS

Process Mean Xav = 1.3

Process Variability (s) Sav = 0.0

Page 12 of 21

Operational Data Summary

Form 12

Laboratory:	SR	EOT Date:	20120206	
Test Number:	65-405-222-10			
Oil Code:	LO-271510			
Formulation/St	and Code:			

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

INTAKE AIR PRESSURE vs TEST HOURS

Process Mean Xav = 97.1

Process Variability (s) Sav = 0.0

Operational Data Summary

Form 13

Laboratory:	SR	EOT Date: 2012020	6
Test Number:	65-405-222-10		
Oil Code:	LO-271510		
Formulation/Stand Code:			

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

EXHAUST BACK PRESSURE vs TEST HOURS

Process Mean Xav = 103.1

Process Variability (s) Sav = 0.1

TEST HOURS C2 - 15

Page 14 of 21

Operational Data Summary

Form 14

Laboratory:	SR	EOT Date:	20120206
Test Numbe	r: 65-405-222-10	1	
Oil Code:	LO-271510		
Formulation/	/Stand Code:		

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

FUEL INLET TEMPERATURE vs TEST HOURS

Process Mean Xav = 35.0

Process Variability (s) Sav = 0.8

C2 - 16

Page 15 of 21

Operational Data Summary

Form 15

Laboratory:	SR	EOT Date:	20120206
Test Number:	65-405-222-10		
Oil Code:	LO-271510		
Formulation/St	and Code:		

^{*}Test Number Is: Stand - Stand Run No. - Engine No.

EXHAUST TEMPERATURE vs TEST HOURS

Process Mean Xav = 308.9

Process Variability (s) Sav = 1.7

C2 - 17

Page 16 of 21

D 5966 Roller Follower Wear Test

Operational Summary Form 16

 Laboratory:
 SR
 EOT Date:
 20120206

 Test Number:
 *
 65-405-222-10

 Oil Code:
 LO-271510

 Formulation / Stand Code:

^{*}Test Number is: Stand - Stand Run No. - Engine No. - Engine Run No.

Test Parameter	Specif	Specification		Std. Dev.	Minimum	Maximum
Engine Speed, r/min	6.2L Engine 1000 ± 5	6.5L Engine 1000 ± 5	1000.0	0.1	1000.0	1001.0
Torque, N-m	Record	Record	335.8	1.6	332.6	340.4
Fuel Flow, kg/h	9.0 ± 0.1	9.4 ± 0.1	9.4	0.0	9.4	9.4
Total Oil Consumption, kg	Record	Record	3.9			

Test Parameter	Specification	Average	Std. Dev.	Minimum	Maximum
Coolant Out, °C	120 ± 2	120.0	0.1	119.6	120.2
Coolant In, °C	Report Only	111.6	0.1	111.3	111.9
Main Oil Gallery, °C	120 ± 2	120.0	0.0	119.9	120.1
Fuel In, °C	35 ± 2	35.0	0.2	34.2	35.6
Intake Air, °C	32 ± 2	31.9	1.4	28.9	34.0
Oil Sump, °C	Report	128.2	0.3	127.5	128.7
Exhaust, °C	Report	308.9	3.2	304.0	318.1

Pressures	Pressures Specification		Std. Dev.	Minimum	Maximum
Crankcase, kPa	Report	1.3	0.1	1.4	1.2
Back Pressure, kPa	103 ± 1	103.1	0.1	102.8	103.5
Intake Air, kPa	97 ± 1	97.1	0.1	96.9	97.5

D 5966 Roller Follower Wear Test Oil Analysis

Form 17

Laboratory: SR	EOT Date:	20120206				
Test Number: * 65-405-22	-10					
Oil Code: LO-271510						
Formulation / Stand Code:						

^{*}Test Number is: Stand - Stand Run No. - Engine No. - Engine Run No.

Hours	Viscosity, cSt @ 100°C	% ѕоот
NEW	8.61	0.2
025	10.29	2.6
050	11.65	4.5

	Elements						
Hours	AI	Cr	Cu	Fe	Pb	Si	Sn
NEW	1	0	0	1	0	6	0
025	2	2	2	70	5	6	0
050	2	4	3	151	11	7	1

Average Bosch Smokes	6.5
Average BSFC	0.268 kg/kW-h

D 5966

Laboratory: SR	EOT Date: 20120206
Test Number: * 65-405-222-10	
Oil Code: LO-271510	
Formulation / Stand Code:	

^{*}Test Number is: Stand - Stand Run No. - Engine No. - Engine Run No.

lumber of	umber of Downtime Occurrences: 0					
Test	Date	Downtime	Reasons			
	THE PROPERTY OF THE PARTY OF TH					
Total Do	owntime	0:00				

Other Comments			
Number of Comment Lines:	0		

D 5966 Roller Follower Wear Test Test Fuel Analysis (Last Batch) Form 21

Laboratory:	SR	EOT Date:	20120206
Test Numbe	r: * 65-405-222-10		
Oil Code:	LO-271510		
Formulation	/ Stand Code:		
Supplier:	Chevron Phillips	Batch Identifier	s: 11JPPC901

^{*}Test Number is: Stand - Stand Run No. - Engine No. - Engine Run No.

Measurement	Specifications	Analysis	Test Method
Total Sulfur, % Weight	0.03 - 0.05	0.04	D 2622
Gravity, °API	32 - 36	35.1	D 287
Hydrocarbon Composition			
Aromatics, % Vol.	28 - 35	30.7	D 5186
Olefin	Report	4.3	D 1319
Saturates	Report	65.0	D 1319
Cetane Index	42 - 48	44.0	D 4737
Cetane No.	42 - 48	46.0	D 613
Copper Strip Corrosion	3 Maximum	1A	D 130
Flash Point, °C	54 Minimum	63	D 92
Cloud Point, °C	-12 Maximum	-21	D 2500
Pour Point, °C	-18 Maximum	-27	D 97
Carbon Residue on 10% Residuum, %	0.35 Maximum	0.10	D 524 (10% Bottoms)
Water & Sediment, % Vol.	0.05 Maximum	0.00	D 2709
Ash, % Wgt.	0.01 Maximum	0.000	D 482
Viscosity, cSt @ 40°C	2.0 - 3.2	2.4	D 445
Distillation, °C			
IBP	177 - 199	173	D 86
10%	210 - 232	206	D 86
50%	249 - 277	252	D 86
90%	299 - 327	326	D 86
EP	327 - 360	361	D 86

D 5966

Roller Follower Wear Test

Laboratory: SR	EOT Date:	20120206
Test Number: * 65-405-	222-10	
Oil Code: LO-271510		
Formulation / Stand Code:		

^{*}Test Number is: Stand - Stand Run No. - Engine No. - Engine Run No.

Parameter	Sensing Device	Calibration Frequency	Record Device	Observation Frequency	Record Frequency	Log Frequency	System Response
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Temperatures							
Main Oil G.	Thermocouple	Every ref test	C/D	0	0	1 per min	2.0s
Fuel In.	Thermocouple	Every ref test	C/D	0	0	1 per min	2.0s
Intake Air	Thermocouple	Every ref test	C/D	0	0	1 per min	2.0s
Oil Sump	Thermocouple	Every ref test	C/D	0	0	1 per min	2.0s
Exhaust	Thermocouple	Every ref test	C/D	0	0	1 per min	2.0s
Coolant Out	Thermocouple	Every ref test	C/D	0	0	1 per min	2.0s
Other							
Fuel Flow	Mass Flow	Every ref test	C/D	0	0	1 per min	2.5s
Engine RPM	Magnetic	Every ref test	C/D	0	0	1 per min	0.5s
Load	Strain Gage	Every ref test	C/D	0	0	1 per min	0.5s
Intake Press.	Mechanical	Every ref test	C/D	0	0	1 per min	N/A
Exhaust Press.	Mechanical	Every ref test	C/D	0	0	1 per min	N/A
Oil Gallery Press.	Mechanical	Every ref test	C/D	0	0	1 per min	N/A

Legend:

- (1) Operating Parameter
- (2) The Type of Device Used to Measure Temperature, Pressure or Flow
 - T/C Thermocouple
- (3) Frequency at Which the Measurement System is Calibrated
- (4) The Type of Device Where Data is Recorded
 - LG Handlog Sheet
 - DL Automatic Data Logger
 - SC Strip Chart Recorded
 - C/M Computer, Using Manual Data Entry
 - C/D Computer, Using Direct I/O Entry
- (5) Data are Observed but Only if Recorded Off Spec.
- (6) Data are Recorded but are not Retained at EOT
- (7) Data are Logged as Permanent Record, Note Specify if:
 - SS Snapshot Taken at Specified Frequency
 - AG/X Average of X Data Points at Specified Frequency
- (8) Time for the Output to Reach 63.2% of Final Value for Step Change at Input

D5966 Roller Follower Wear Test

Laboratory: SR	EOT Date:	20120206		
Test Number: * 65-405-222-10				
Oil Code: LO-271510				
Formulation / Stand Code:				

^{*}Test Number is: Stand - Stand Run No. - Engine No. - Engine Run No.

Appendix A

Roller Follower Wear Test Traces

1. Profilometer Traces 1-8 (Right and Left) (8 pages)

Settings Software: 2.46; Advanced; 3.95 Data Collected: Tue Feb 07 10:13 2012 By: Kerry McCubbin At: SWRI- UNIT # 1 Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 μ in Description RFWT, Pin R1 Run 65-405-222-10 File: C:\S-2000-2\DATA\RFWT\40522210.F Instrument Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer: PDT-2-522 Travel Distance: 0.541 in Trace Velocity: 0.030 in/s Form Form Type: Two-Point Line Roughness Filter Type: Gaussian Cutoff: 0.030 in No Filter Width Removal at Ends Parameter Calculation Settings Peak Count Threshold; 19.7 μ in High Spot Count Threshold: 19.7 μ in tp Reference Percent: 5 % tp Slice Depth: 19.7 μ in Short Wavelength Filter Type: Gaussian Cutoff: 0.0001 in Waviness Filter Type: No Filter Pin 65-405-222-10

Settings

Software: 2.46; Advanced; 3.95

Data

Collected: Tue Feb 07 10:15 2012

By: Kerry McCubbin At: SWRI- UNIT # 1 Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 μ in

Description RFWT, Pin R2

Run 65-405-222-10

File: C:\S-2000-2\DATA\RFWT\40522210.F

Instrument

Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer:PDT-2-522 Travel Distance: 0.541 in Trace Velocity: 0.030 in/s Form

Form Type: Two-Point Line

Roughness Filter Type: Gaussian Cutoff: 0.030 in

No Filter Width Removal at Ends Parameter Calculation Settings Peak Count Threshold: 19.7 μ in

High Spot Count Threshold: 19.7 μ in tp Reference Percent: 5 %

tp Slice Depth: 19.7 μ in Short Wavelength Filter

Type: Gaussian Cutoff: 0.0001 in Waviness Filter Type: No Filter

Description

Parameters

PARAMETER VALUE UNITS

Summary

Standards System = ANSI/ASME B46.1 1995

Waviness Parameters:

Wt 133.3 μ in

Settings
Software: 2.46; Advanced; 3.95 Data
Collected: Tue Feb 07 10:17 2012 By: Kerry McCubbin At: SWRI- UNIT # 1 Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 µin
Description RFWT, Pin R3 Run 65-405-222-10 *
File: C:\S-2000-2\DATA\RFWT\40522210.F Instrument Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer:PDT-2-522 Travel Distance: 0.541 in Trace Velocity: 0.030 in/s
Form
Form Type: Two-Point Line Roughness Filter Type: Gaussian Cutoff: 0.030 in No Filter Width Removal at Ends
Parameter Calculation Settings Peak Count Threshold: 19.7 μ in High Spot Count Threshold: 19.7 μ in tp Reference Percent: 5 % tp Slice Depth: 19.7 μ in
Short Wavelength Filter Type: Gaussian Cutoff: 0.0001 in Waviness Filter Type: No-Filter
ilboi vo tittoi

PARAMETER VALUE UNITS			Paramete	rs		
Standards System = ANSI/ASME B46.1 1995 Waviness Parameters: Wt 145.9 μin	PARAMETER	VALUE	UNITS			
	Standards Waviness Par	rameters:		B46.1	1995	
					:	

SWRI- UNIT # 1

Settings Software: 2.46; Advanced; 3.95 Data Collected: Tue Feb 07 10:19 2012 By: Kerry McCubbin At: SWRI- UNIT # 1 Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 μ in Description RFWT, Pin R4 Run 65-405-222-10 File: C:\S-2000-2\DATA\RFWT\40522210.F Instrument Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer: PDT-2-522 Travel Distance: 0.541 in Trace Velocity: 0.030 in/s Form Form Type: Two-Point Line Roughness Filter Type: Gaussian Cutoff: 0.030 in No Filter Width Removal at Ends Parameter Calculation Settings Peak Count Threshold: 19.7 μ in High Spot Count Threshold: 19.7 μ in tp Reference Percent: 5 % tp Slice Depth: 19.7 μ in Short Wavelength Filter Type: Gaussian Cutoff: 0.0001 in-Waviness Filter Type: No Filter

<u> </u>	Pa	arameters		
PARAMETER	VALUE	UNITS		į
Summary Standards Sys Waviness Parame	tem = ANS		.1 1995	
Wt	120.5	μ in		
			•	
			. 1	
માત્ર (૧૧,૦૦૦) કે લેવ વસેલ જુન	120.5	स्त्र में मुख्		

graphic control of the state of

Settings Software: 2.46; Advanced; 3.95 Data Collected: Tue Feb 07 10:22 2012 By: Kerry McCubbin At: SWRI- UNIT # 1 Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 μ in Description RFWT, Pin R5 Run 65-405-222-10 File: C:\S-2000-2\DATA\RFWT\40522210.F Instrument Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer: PDT-2-522 Travel Distance: 0.541 in Trace Velocity: 0.030 in/s Form Form Type: Two-Point Line Roughness Filter Type: Gaussian Cutoff: 0.030 in No Filter Width Removal at Ends Parameter Calculation Settings Peak Count Threshold: 19.7 μ in High Spot Count Threshold: 19.7 μ in tp Reference Percent: 5 % ---tp Slice Depth: 19.7 μin Short Wavelength Filter Type: Gaussian Cutoff: 0.0001 in Waviness Filter Type: No Filter

Parameters VALUE UNITS PARAMETER -----____ Summary Standards System = ANSI/ASME B46.1 1995 Waviness Parameters: μ in 193.6

Settings Software: 2.46; Advanced; 3.95 Collected: Tue Feb 07 10:24 2012 By: Kerry McCubbin At: SWRI- UNIT # 1 Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 μ in Description RFWT, Pin R6 Run 65-405-222-10 File: C:\S-2000-2\DATA\RFWT\40522210.F Instrument Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer:PDT-2-522 Travel Distance: 0.541 in Trace Velocity: 0.030 in/s Form Form Type: Two-Point Line Roughness Filter Type: Gaussian Cutoff: 0.030 in No Filter Width Removal at Ends Parameter Calculation Settings Peak Count Threshold: 19.7 μ in High Spot Count Threshold: 19.7 μ in tp Reference Percent: 5 % tp Slice Depth: 19.7 μ in Short Wavelength Filter Type: Gaussian Cutoff: 0.0001 in Waviness Filter Type: No Filter

PFWT, Pin P6

PARAMETER VALUE UNITS

Summary
Standards System = ANSI/ASME B46.1 1995
Waviness Parameters:
Wt 79.9 µin

Settings				Parameters	
Software: 2.46; Advanced; 3.95		PARAMETER	VALUE	UNITS	
Collected: Tue Feb 07 10:27 2012 By: Kerry McCubbin At: SWRI- UNIT # 1		Summary	ystem = AN	ISI/ASME B46.	1 1995
Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 µin		Wt	127.8	μ in	
Description RFWT, Pin R7 Run 65-405-222-10					1
File: C:\S-2000-2\DATA\RFWT\40522210.F Instrument					
Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer:PDT-2-522 Travel Distance: 0.541 in					
Trace Velocity: 0.030 in/s Form					
Form Type: Two-Point Line Roughness Filter Type: Gaussian	Grid =	1 02in H by 100uir	n V		· f · ·
Cutoff: 0.030 in No Filter Width Removal at Ends Parameter Calculation Settings Peak Count Threshold: 19.7 µin High Spot Count Threshold: 19.7 µin tp Reference Percent: 5 % tp Slice Depth: 19.7 µin					
Short Wavelength Filter Type: Gaussian Cutoff: 0.0001 in					
Waviness Filter: 21 22 22 22 22 22 22 22 22 22 22 22 22		86. ₇	201.0	μ ln $_{\odot}$	

Settings

Software: 2.46; Advanced; 3.95

Data

Collected: Tue Feb 07 10:29 2012

By: Kerry McCubbin At: SWRI- UNIT # 1 Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 μ in

Description RFWT, Pin R8 Run 65-405-222-10

File: C:\S-2000-2\DATA\RFWT\40522210.F

Instrument

Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer:PDT-2-522 Travel Distance: 0.541 in Trace Velocity: 0.030 in/s

 ${\tt Form}$

Form Type: Two-Point Line

Roughness Filter Type: Gaussian Cutoff: 0.030 in

No Filter Width Removal at Ends

Parameter Calculation Settings Peak Count Threshold: 19.7 µin High Spot Count Threshold: 19.7 µin tp Reference Percent: 5 %

tp Reference Percent: 5 % tp Slice Depth: 19.7 μin Short Wavelength Filter Type Gaussian Fin

Cutoff: 0.0001 in Waviness Filter Type: No Filter Parameters

PARAMETER VALUE UNITS

Summary

Standards System = ANSI/ASME B46.1 1995

Waviness Parameters:

Wt 121.7 μ in

Standards System = ANSI/ASME B46.1 1995

SWRI- UNIT # 1

Settings Software: 2.46; Advanced; 3.95 Data Collected: Tue Feb 07 09:30 2012 By: Kerry McCubbin At: SWRI- UNIT # 1 Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 μ in Description RFWT, Pin L1 Run 65-405-222-10 File: C:\S-2000-2\DATA\RFWT\40522210.F Instrument Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer: PDT-2-522 Travel Distance: 0.541 in Trace Velocity: 0.030 in/s Form Form Type: Two-Point Line Roughness Filter Type: Gaussian Cutoff: 0.030 in No Filter Width Removal at Ends Parameter Calculation Settings Peak Count Threshold: 19.7 μ in High Spot Count Threshold: 19.7 μ in tp Reference Percent: 5 % tp Slice Depth: 19.7 μ in Short Wavelength Filter Type: Gaussian Cutoff: 0.0001 in Waviness Filter Type: No Filter uescription

Parameters

Settings Software: 2.46; Advanced; 3.95 Collected: Tue Feb 07 09:34 2012 By: Kerry McCubbin At: SWRI- UNIT # 1 Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 μ in Description RFWT, Pin L2 Run 65-405-222-10 File: C:\S-2000-2\DATA\RFWT\40522210.F Instrument Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer:PDT-2-522 Travel Distance: 0.541 in Trace Velocity: 0.030 in/s Form Form Type: Two-Point Line Roughness Filter Type: Gaussian Cutoff: 0.030 in No Filter Width Removal at Ends Parameter Calculation Settings Peak Count Threshold: 19.7 μ in High Spot Count Threshold: 19.7 μ in tp Reference Percent: 5 % tp Slice Depth: 19.7 μ in Short Wavelength Filter Type: Gaussian Cutoff: 0.0001 in Waviness Filter Type: No Filter

PARAMETER VALUE UNITS
Summary
Standards System = ANSI/ASME B46.1 1995
Waviness Parameters:
Wt 197.8 μin

Grid = 2.02 n H to 100 nin V

Parameters

Settings

Software: 2.46; Advanced; 3.95

Data
Collected: Tue Feb 07 09:35 2012

By: Kerry McCubbin
At: SWRI- UNIT # 1

Tracer Used: PDT-2-522

Sampled Length: 0.541 in

Sample Spacing: 18.9 µin

Description
RFWT, Pin L3
Run 65-405-222-10
*

File: C:\S-2000-2\DATA\RFWT\40522210.F

Instrument

Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer:PDT-2-522 Travel Distance: 0.541 in Trace Velocity: 0.030 in/s

Form

Form Type: Two-Point Line

Roughness Filter Type: Gaussian Cutoff: 0.030 in

No Filter Width Removal at Ends Parameter Calculation Settings Peak Count Threshold: 19.7 μin High Spot Count Threshold: 19.7 μin tp Reference Percent: 5 %

tp Slice Depth: 19.7 µin Short Wavelength Filter 19:55 2012

Type: Gaussian Cutoff: 0.0001 in Waviness Filter Type: No Filter Parameters

PARAMETER VALUE UNITS

Summary

Standards System = ANSI/ASME B46.1 1995

Waviness Parameters:

Wt 308.3 μ in

summary

Settings Software: 2.46; Advanced; 3.95 Collected: Tue Feb 07 09:37 2012 By: Kerry McCubbin At: SWRI- UNIT # 1 Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 μ in Description RFWT, Pin L4 Run 65-405-222-10 File: C:\S-2000-2\DATA\RFWT\40522210.F Instrument Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer:PDT-2-522 Travel Distance: 0.541 in Trace Velocity: 0.030 in/s Form Form Type: Two-Point Line Roughness Filter Type: Gaussian Cutoff: 0.030 in No Filter Width Removal at Ends Parameter Calculation Settings Peak Count Threshold: 19.7 μ in High Spot Count Threshold: 19.7 μ in tp Reference Percent: 5 % tp Slice Depth: 19.7 μ in Short Wavelength Filter Type: Gaussian Cutoff: 0.0001 in Waviness Filter Type: No Filter

PARAMETER VALUE UNITS

Summary
Standards System = ANSI/ASME B46.1 1995
Waviness Parameters:
Wt 166.2 µin

PARAMETER VALUE UNITS

Settings Software: 2.46; Advanced; 3.95 Data Collected: Tue Feb 07 09:40 2012 By: Kerry McCubbin At: SWRI- UNIT # 1 Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 μ in Description RFWT, Pin L5 Run 65-405-222-10 File: C:\S-2000-2\DATA\RFWT\40522210.F Instrument Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer:PDT-2-522 Travel Distance: 0.541 in Trace Velocity: 0.030 in/s Form Form Type: Two-Point Line Roughness Filter Type: Gaussian Cutoff: 0.030 in No Filter Width Removal at Ends Parameter Calculation Settings Peak Count Threshold: 19.7 μin High Spot Count Threshold: 19.7 μ in tp Reference Percent: 5 % tp Slice Depth: 19.7 μ in Short Wavelength Filter Type: Gaussian Cutoff: 0.0001 in Waviness Filter Type: No Filter note of the contract

Settings

Software: 2.46; Advanced; 3.95

Data

Collected: Tue Feb 07 09:44 2012

By: Kerry McCubbin At: SWRI- UNIT # 1 Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 μ in

Description
RFWT, Pin L6
Run 65-405-222-10

File: C:\S-2000-2\DATA\RFWT\40522210.F

Instrument

Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer:PDT-2-522 Travel Distance: 0.541 in Trace Velocity: 0.030 in/s

Form

Form Type: Two-Point Line

Roughness Filter Type: Gaussian Cutoff: 0.030 in

No Filter Width Removal at Ends Parameter Calculation Settings Peak Count Threshold: 19.7 μ in

High Spot Count Threshold: 19.7 μ in

tp Reference Percent: 5 % tp Slice Depth: 19.7 µin Short Wavelength Filter

Type: Gaussian Cutoff: 0.0001 in Waviness Filter Type: No Filter

المواجر فالعيكو لأعويد البراء الم

Parameters

PARAMETER VALUE UNITS

Summary

Standards System = ANSI/ASME B46.1 1995

Waviness Parameters:

Wt 111.7 μ in

Settings
Software: 2.46; Advanced; 3.95 Data
Collected: Tue Feb 07 09:45 2012 By: Kerry McCubbin At: SWRI- UNIT # 1 Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 µin Description RFWT, Pin L7 Run 65-405-222-10
* File: C:\S-2000-2\DATA\RFWT\40522210.
Instrument Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer:PDT-2-522 Travel Distance: 0.541 in Trace Velocity: 0.030 in/s
Form
Form Type: Two-Point Line Roughness Filter Type: Gaussian Cutoff: 0.030 in No Filter Width Removal at Ends Parameter Calculation Settings Peak Count Threshold: 19.7 µin High Spot Count Threshold: 19.7 µin tp Reference Percent: 5 % tp Slice Depth: 19.7 µin Short Wavelength Filter Type: Gaussian Cutoff: 0.0001 in Waviness Filter

Parameters						
PARAMET	ER	VALUE	UNITS			
Summary Standar Waviness Wt		meters:	ANSI/ASME	B46.1	1995	
e e ty e	100	~ * #		, (·	
Wt		131.1	μin			

Settings Software: 2.46; Advanced; 3.95 Data Collected: Tue Feb 07 10:10 2012 By: Kerry McCubbin At: SWRI- UNIT # 1 Tracer Used: PDT-2-522 Sampled Length: 0.541 in Sample Spacing: 18.9 μ in Description RFWT, Pin L8 Run 65-405-222-10 File: C:\S-2000-2\DATA\RFWT\40522210.F Instrument Name: MicroAnalyzer 2000 Serial #: S-2000-3027 Current Tracer: PDT-2-522 Travel Distance: 0.541 in Trace Velocity: 0.030 in/s Form Form Type: Two-Point Line Roughness Filter Type: Gaussian Cutoff: 0.030 in No Filter Width Removal at Ends Parameter Calculation Settings Peak Count Threshold: 19.7 μ in High Spot Count Threshold: 19.7 μ in tp Reference Percent: 5 % tp Slice Depth: 19.7 µin Short Wavelength Filter Type: Gaussian Cutoff: 0.0001 in Waviness Filter Type: No Filter

PARAMETER VALUE UNITS

Summary
Standards System = ANSI/ASME B46.1 1995
Waviness Parameters:
Wt 222.4 µin

Summary

Summary

Summary

Standards System = ANSI/ASME B46.1 1995

Waviness Parameters:

Wt 222.4 µin

Parameters

D 5966 Roller Follower Wear Test

Laboratory: SR	EOT Date:	20120206	
Test Number: * 65-405-222-10			
Oil Code: LO-271510			
Formulation / Stand Code:			

^{*}Test Number is: Stand - Stand Run No. - Engine No. - Engine Run No.

Appendix B

Roller Follower Wear Test Photographs

- 1. Roller Follower Axle Pin Wear Best
- 2. Roller Follower Axle Pin Wear Worst

Roller Follower Wear Test

	LO-271510	Oil Code:	SR	Laboratory:
	65-405-222-10	Test No.:	65	Test Stand No.:
	Test Hours: 50		271510	Laboratory Oil Code:
_	Test Hours: 50			Laboratory Oil Code: Formulation / Stand Code

Roller Axle Wear

Best 1R

Roller Follower Wear Test

Laboratory:	SR	Oil Code:	LO-271510	
Test Stand No.:	65	Test No.:	65-405-222-10	
Laboratory Oil Code:	271510	*	Test Hours: 50	
Formulation / Stand Cod	le:			

Roller Axle Wear

Worst 3L

APPENDIX – D1 (Part 1) TYPE C-4 GRAPHITE CLUTCH FRICTION TEST LO268869

SOUTHWEST RESEARCH INSTITUTE® San Antonio, Texas

Fuels and Lubricants Research Division

Report on

ALLISON HEAVY-DUTY TRANSMISSION FLUID TYPE C-4 GRAPHITE CLUTCH FRICTION TEST

Conducted for

ARMY LAB

Oil Code: **LO268869**

Test Number: **C4-3-1341**

October 14, 2011

Submitted by:

Matthew Jackson

Manager

Specialty & Driveline Fluid Evaluation

R

The results of this report relate only to the fluid tested.

This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute®.

C-4 Heavy Duty Transmission

Allison Transmission Division

Fluid Specification

VIII. Graphite Clutch Friction Test

Test Laboratory: SwRI Test Number: C4-3-1341 Friction Plate Batch: LOT 44

Steel Plate Batch: 10/9/2008

Lab Fluid Code: Sponsor Fluid Code: LO-268869

LO268869

Completion Date:

10/14/11

Clutch Wear Data

(units in mm)

	Maximum	Average
Steel Plates	0.0000	0.0000
Clutch Plate	0.0970	0.0818

	Before	After
Pack Clearance	0.5334	0.5588

Reference Tests

Test Number	Test Date	Test Fluid	
C4-0-1304	12/09/10	PASS REF-L-06-04	
C4-0-1315	03/30/11	MIL-PRF-2104H	
C4-0-1338	10/05/11	MIL-PRF-2104H	

	New	EOT
Viscosity at 40°C, cSt	47.29	41.16
Viscosity at 100°C, cSt	8.81	7.80
Iron Content, ppm	2	61

D5185	New Fluid (ppm)
Ba	<1
В	<1
Ca	3419
Mg	10
Р	1272
Si	2
Na	5
Zn	1874

Name: Matthew Jackson

Title: Manager

Date: 10/25/11

ALLISON C-4 GRAPHITE FRICTION TEST SUMMARY

Sw R

(Torque in Ft-Lbs)

Sponsor Fluid Code: LO268869

Test Number: C4-3-1341

Lab Fluid Code: LO-268869

Fric. Plate Batch: LOT 44

Completion Date: 10/14/2011 Steel Plate Batch: 10/9/2008

PHASE A

	SLIP	TORQUE	TORQUE	TORQUE	STATIC PEAK	LOW SPEED	LOWSPEED
CYCLE	TIME	(MIDPOINT)	STATIC PEAK	(.2 Second)	- 0.2 TORQUE	STATIC PEAK	STATIC TORQUE
500	1.17	54	56	42	14	60	53
1000	1.18	53	56	38	18	64	55

PHASE B

	SLIP	TORQUE	TORQUE	TORQUE	STATIC PEAK	LOW SPEED	LOWSPEED
CYCLE	TIME	(MIDPOINT)	STATIC PEAK	(0.2 Second)	- 0.2 TORQUE	STATIC PEAK	STATIC TORQUE
1500	0.75	106	141	96	45	147	134
2000	0.79	100	140	88	52	146	132
2500	0.81	97	137	82	55	144	131
3500	0.84	94	131	73	58	140	128
4000	0.86	92	129	72	57	139	126
4500	0.87	91	125	71	54	142	124
5000	0.87	91	123	70	53	135	122
5500	0.86	93	121	72	49	131	120

	L	imits	Results			
	Max	Max Change	1,500 N	5,500 N	% Change	P/F
Slip Time Max.	0.89	N/A	0.75	0.86	14.67	Р
0.2 Second Dynamic Coeff.	N/A	N/A	0.090	0.067	-25.556	
Mid-Point Fric. Coeff. Min.	0.089	N/A	0.099	0.087	-12.121	F
Static Friction Coeff.	N/A	N/A	0.132	0.113	-14.394	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.138	0.123	-10.870	1
0.25 Second Low Speed Coeff.	N/A	N/A	0.126	0.112	-11.111	1

SOUTHWEST RESEARCH INSTITUTE®

ALLISON C4-GRAPHITE FRICTION TEST

Candidate Fluid: LO268869 **Test Number** : C4-3-1341 Completion Date: 10/14/2011 Lab Fluid Code : LO-268869 Steel Plate Batch: 10/09/2008 Fric Plate Batch : LOT 44

			(al	l units in mm)				
	Location					Inner	Average	Outer
Plates	of Tooth	Near Inner Diameter		Near Outer Diameter		Diameter	Overall	Diameter
	(Clockwise)	Before	After	Before	After	Change	Change	Change
			FRIC	TION MATERIAL				
	Тор	2.2660	2.1690	2.2480	2.1810	0.0970		0.0670
2	120	2.2470	2.1600	2.2540	2.1830	0.0870		0.0710
	240	2.2460	2.1620	2.2640	2.1790	0.0840		0.0850
	Average					0.0893	0.0818	0.0743
***************************************			STEE	EL SEPARATORS				
	Тор	1.7460	1.7460	1.7450	1.7450	0.0000		0.0000
1	120	1.7500	1.7500	1.7500	1.7500	0.0000		0.0000
	240	1.7510	1.7510	1.7510	1.7510	0.0000		0.0000
	Average					0.0000	0.0000	0.0000
3	Тор	1.7580	1.7580	1.7580	1.7580	0.0000		0.0000
	120	1.7540	1.7540	1.7510	1.7510	0.0000		0.0000
	240	1.7560	1.7560	1.7560	1.7560	0.0000		0.0000
	Average				电线电流 工	0.0000	0.0000	0.0000

PLATE CONDITION AT E.O.T (Anything Unusual)	NO UNUSUAL DISCOLORATION ON STEEL PLATES
Test Date:	10/14/2011
Operator's Name:	JOE M

Pack ID#: 4667

Reviewed By (Signature and Date)

ALLISON HEAVY-DUTY TRANSMISSION FLUID **TYPE C-4 GRAPHITE FRICTION TEST**

EOT Date: 10/14/2011 Test Number: C4-3-1341

Fluid Code: LO268869 Plate Batch: LOT 44

Steel Batch: 10/9/2008

Page 5 of 54

C4 Reports Version, 03-30-07

DYNAMIC TRACES

C4 Reports Version, 03-30-07

0.4

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE A

Test Number: C4-3-1341

210

240

180

Fluid Code: LO268869

Cycle Number:

9

(93.3 ± 3.0 °C) 71.6 °C Temperature:

347 kPa (345 ± 7 KPa) Apply Pressure:

 $(0.15 \pm 0.02 \, \mathrm{Sec})$ 0.13 Sec Apply Rate:

14.2 KJ Energy:

(14.50 ± 0.40 KJ) **1.289 Sec** Engage Time:

Torque

0.2 Sec Dyn: Midpoint Dyn:

44 N*m 67 N*m 75 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

0.073 0.111 0.125

Pressure (kPa) & Speed (RPM*10) 400 350 9 300 20 6. 4. 1.2 TIME(SEC) 0.8 9.0

8

09

39

Torque (Mm)

150

0.095 0.122 0.125

ALLISON C-4 GRAPHITE DATA

 $(14.50 \pm 0.40 \text{ KJ})$ 1.152 Sec

74 N*m 75 N*m

57 N*m

Torque

 $(0.15 \pm 0.02 \text{ Sec})$

0.13 Sec

347 kPa (345 ± 7 KPa)

(93.3 ± 3.0 °C)

92.8 °C

499

Date of Test: 10/13/2011

Time of Test: 17:18:21

Test Number: C4-3-1341

Fluid Code: LO268869

200 Cycle Number:

Temperature:

347 kPa (345 ± 7 KPa) (93.3 ± 3.0 °C) 93.0 °C Apply Pressure:

0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ 14.3 KJ Energy:

 $(14.50 \pm 0.40 \text{ KJ})$ 1.154 Sec Engage Time:

Torque

57 N*m 74 N*m 75 N*m 0.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Coefficient of Friction .2 Sec Dyn:

0.095 0.122 0.124 Midpoint Dyn: LwSpd Dynamic:

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE A

400

Time of Test: 17:18:48

Test Number: C4-3-1341

350

210

240

180

Fluid Code: LO268869

501

Cycle Number:

300

88.7 °C Temperature:

(93.3 ± 3.0 °C) $(345 \pm 7 \text{ KPa})$ 347 kPa Apply Pressure:

0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ 14.3 KJ Energy:

Pressure (kPa) & Speed (RPM*10)

Engage Time:

 $(14.50 \pm 0.40 \text{ KJ})$ 1.183 Sec

Torque 0.2 Sec Dyn:

56 N*m 73 N*m 76 N*m Midpoint Dyn: LwSpd Dynamic:

9

Coefficient of Friction

20

0.092 0.121 0.126 LwSpd Dynamic:

.2 Sec Dyn: Midpoint Dyn:

1.8

1.6

1.2

9.0

0.4

TIME(SEC)

9

39

D1 (Part 1) - 12

90

Torque (Mm)

150

ALLISON C-4 GRAPHITE DATA

210

180

250

500

90

20

0 ⊬ ∞.

9.

4.

1.2

9.0

0.4

TIME(SEC)

9

9

30

Torque (Mm)

150

400

350

210

240

180

666

Cycle Number:

(93.3 ± 3.0 °C) 93.0 °C Temperature:

348 kPa (345 ± 7 KPa) Apply Pressure: Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ 0.13 Sec 14.3 KJ Energy:

Pressure (kPa) & Speed (RPM*10)

 $(14.50 \pm 0.40 \text{ KJ})$ 1.176 Sec **Engage Time:**

Torque

0.2 Sec Dyn:

52 N*m 73 N*m 77 N*m Midpoint Dyn: LwSpd Dynamic:

100

20

Coefficient of Friction

.2 Sec Dyn:

0.086 0.120 0.127 Midpoint Dyn: LwSpd Dynamic:

1.8

1.6

4.

1.2

9.0

9.4

TIME(SEC)

90

8

8

Torque (Mm)

93.1 °C Temperature:

1000

Cycle Number:

348 kPa (345 ± 7 KPa) (93.3 ± 3.0 °C) Apply Pressure:

0.13 Sec

 $(0.15 \pm 0.02 \text{ Sec})$ Apply Rate:

14.3 KJ Energy:

 $(14.50 \pm 0.40 \text{ KJ})$ 1.178 Sec

Engage Time:

Torque

52 N*m 72 N*m 76 N*m 0.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Coefficient of Friction

0.086 0.120 0.126 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Dressure (kPa) & Speed (RPM*10) 350 400 100 20 6. ن TIME(SEC) 0.8 9.0 0.4 Torque (Mm) 210 180 240 150 8 9 30

875

210 -

240

180

150

1010

(112.7 ± 3.0 °C)

18.4 KJ Energy:

161 N*m 0.2 Sec Dyn:

.2 Sec Dyn:

Midpoint Dyn:

Fluid Code: LO268869 Test Number: C4-3-1341 Cycle Number: Temperature: Apply Pressure: Apply Rate:

750

827 kPa 827 ± 7 KPa) 89.2 °C

625

 $(0.15 \pm 0.02 \text{ Sec})$ 0.14 Sec

Pressure (kPa) & Speed (RPM*10)

500

 $(18.71 \pm 0.40 \text{ KJ})$ **0.688 Sec Engage Time:**

Torque

375

163 N*m 159 N*m Midpoint Dyn: LwSpd Dynamic:

250

09

30

Coefficient of Friction

125

0.112

0.113 LwSpd Dynamic:

0

1.8

9.

1.

1.2

0.8

9.0

0.4

TIME(SEC)

90

Torque (Mm)

Date of Test: 10/13/2011

Fluid Code: LO268869

Test Number: C4-3-1341

1499 Cycle Number: $(112.7 \pm 3.0 \, ^{\circ}C)$ 829 kPa Apply Pressure:

110.9 °C

Temperature:

 $(0.15 \pm 0.02 \text{ Sec})$ 827 ± 7 KPa) 0.13 Sec Apply Rate:

18.4 KJ Energy:

(18.71 ± 0.40 KJ) **0.75 Sec** Engage Time:

Torque

0.2 Sec Dyn: Midpoint Dyn:

131 N*m 143 N*m 194 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn:

0.090 0.099 0.134 Midpoint Dyn: LwSpd Dynamic:

Pressure (kPa) & Speed (RPM*10) 1000 875 625 500 375 125 750 250 8. 1.6 4. 4. TIME(SEC) 9.0 0.4 0 210 180 150 240 **Torque (Nm)** 8 09 30

1000

Test Number: C4-3-1341

875

210

240

180

150

Fluid Code: LO268869

110.8 °C Temperature:

1500

Cycle Number:

750

(112.7 ± 3.0 °C) **829 kPa** 827 ± 7 KPa) Apply Pressure:

625

0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \mathrm{Sec})$ 18.4 KJ Energy:

Pressure (kPa) & Speed (RPM*10)

500

 $(18.71 \pm 0.40 \text{ KJ})$ 0.75 Sec

Engage Time:

Torque

375

0.2 Sec Dyn: Midpoint Dyn:

130 N*m 143 N*m 192 N*m LwSpd Dynamic:

250

09

9

Coefficient of Friction

125

.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

0

1.8

1.6

4.

1.2

9.0

9.0

0.4

TIME(SEC)

0.090 0.099 0.132

90

Torque (Mm) $\frac{5}{2}$

Test Number: C4-3-1341

Fluid Code: LO268869

105.8 °C Temperature:

1501

Cycle Number:

(112.7 ± 3.0 °C) 827 ± 7 KPa) 829 kPa Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ 0.13 Sec Apply Rate:

18.4 KJ Energy:

(18.71 ± 0.40 KJ) **0.755 Sec** Engage Time:

Torque

131 N*m 143 N*m 190 N*m 0.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Coefficient of Friction

0.091 0.099 0.131

.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

1000

Test Number: C4-3-1341

875

210 -

180

150

Fluid Code: L0268869

1999

Cycle Number:

750

(112.7 ± 3.0 °C) 110.7 °C Temperature:

830 kPa 827 ± 7 KPa) Apply Pressure: Apply Rate:

 $(0.15 \pm 0.02 \text{ Sec})$ 0.13 Sec

Pressure (kPa) & Speed (RPM*10)

500

625

18.4 KJ Energy:

(18.71 ± 0.40 KJ) **0.786 Sec**

Engage Time:

Torque

375

136 N*m 189 N*m 121 N*m 0.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

250

Coefficient of Friction

125

LwSpd Dynamic:

ن ھ

1.6

4.

TIME(SEC)

9.0

4.0

0.084 0.094 0.131 .2 Sec Dyn: Midpoint Dyn:

8

09

30

Torque (Mm)

1000

Test Number: C4-3-1341

Fluid Code: LO268869

875

210

180

2000 Cycle Number:

750

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 110.6 °C Temperature:

830 kPa 827 ± 7 KPa) 0.13 Sec Apply Pressure: Apply Rate:

625

 $(0.15 \pm 0.02 \text{ Sec})$ 18.4 KJ Energy:

Pressure (kPa) & Speed (RPM*10)

200

Engage Time:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.786 Sec

Torque 0.2 Sec Dyn:

375

121 N*m 136 N*m 189 N*m Midpoint Dyn: LwSpd Dynamic:

250

125

.2 Sec Dyn: Midpoint Dyn:

0.084 0.094 0.131

Coefficient of Friction

LwSpd Dynamic:

0

1.8

1.6

4.

TIME(SEC)

9.0

0.4

Ö

ဓ

D1 (Part 1) - 21

90

8

Torque (Mm) 20

TIME(SEC)

9.0

0.4

8

9

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE B

1000

Test Number: C4-3-1341

210 -

240

180

2001 Cycle Number:

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 827 ± 7 KPa) 830 kPa 106.0 °C Temperature: Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ 0.13 Sec Apply Rate:

18.4 KJ Energy:

Engage Time:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.794 Sec**

Torque

117 N*m 0.2 Sec Dyn: Midpoint Dyn:

136 N*m 191 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn:

0.081 0.094 0.132 Midpoint Dyn: LwSpd Dynamic:

Pressure (kPa) & Speed (RPM*10) 875 750 625 500 375 250 125 1.8 9. 1.4 4.

90

Torque (Mm)

1000

Test Number: C4-3-1341

875

Fluid Code: LO268869

111.0 °C Temperature:

2499

Cycle Number:

750

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 827 ± 7 KPa) 830 kPa Apply Pressure:

625

0.13 Sec Apply Rate:

Pressure (kPa) & Speed (RPM*10)

500

 $(0.15 \pm 0.02 \text{ Sec})$ 18.4 KJ Energy:

(18.71 ± 0.40 KJ) **0.807 Sec** Engage Time:

Torque

375

113 N*m 0.2 Sec Dyn: Midpoint Dyn:

132 N*m 186 N*m

LwSpd Dynamic:

250

Coefficient of Friction

125

.2 Sec Dyn:

Midpoint Dyn:

0.078 0.091 0.128

LwSpd Dynamic:

. 6

Test Number: C4-3-1341

Fluid Code: LO268869

110.9 °C Temperature:

2500

Cycle Number:

 $(112.7 \pm 3.0 \, ^{\circ}C)$ **830 kPa** 827 ± 7 KPa) Apply Pressure:

 $(0.15 \pm 0.02 \, \mathrm{Sec})$ 0.13 Sec 18.4 KJ Energy: Apply Rate:

(18.71 ± 0.40 KJ) **0.809 Sec Engage Time:**

Torque

113 N*m 0.2 Sec Dyn: Midpoint Dyn:

132 N*m 186 N*m LwSpd Dynamic:

Coefficient of Friction

0.078 0.091 0.128

.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Pressure (kPa) & Speed (RPM*10) 1000 875 625 500 375 250 125 750 0 1.8 1.6 1.4 TIME(SEC) 9.0 0.4 0 210 -Torque (Mm) 240 180 150 09 ဓ္ဌ 8

1000

Test Number: C4-3-1341

875

210

240

180

Fluid Code: LO268869 Cycle Number:

2501

750

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 106.4 °C Temperature:

827 ± 7 KPa) 830 kPa 0.13 Sec Apply Pressure: Apply Rate:

625

 $(0.15 \pm 0.02 \text{ Sec})$ 18.4 KJ Energy:

Pressure (kPa) & Speed (RPM*10)

200

(18.71 ± 0.40 KJ) **0.819 Sec** Engage Time:

Torque

375

109 N*m 131 N*m 186 N*m 0.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

250

9

9

Coefficient of Friction

125

6.

1.6

4.

TIME(SEC)

9.0

0.4

0.076 0.091 0.128 LwSpd Dynamic:

.2 Sec Dyn: Midpoint Dyn:

C4 Reports Version, 03-30-07

90

Torque (Nm)

Fluid Code: LO268869

Test Number: C4-3-1341

110.9 °C 2999 Cycle Number: Temperature:

 $(112.7 \pm 3.0 \, ^{\circ}C)$

827 ± 7 KPa) 831 kPa Apply Pressure:

 $(0.15 \pm 0.02 \text{ Sec})$ 0.13 Sec Apply Rate:

18.4 KJ Energy:

(18.71 ± 0.40 KJ) **0.829 Sec** Engage Time:

Torque

129 N*m 182 N*m 106 N*m 0.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Coefficient of Friction

0.073 0.089 0.126 Midpoint Dyn:

.2 Sec Dyn: LwSpd Dynamic:

Pressure (kPa) & Speed (RPM*10) 1000 875 625 500 375 250 750 125 1.8 1.6 4. TIME(SEC) 0.8 9.0 0.4 210 -**Torque (Mm)** 20 180 150 240 09 8 8

1000

875

210

240

750

Pressure (kPa) & Speed (RPM*10)

625

200

Torque

375

107 N*m 0.2 Sec Dyn: Midpoint Dyn:

250

.09

9

125

8.

1.6

TIME(SEC)

0.4

8

Torque (Mm)

150

0.070 0.088 0.123

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE B

(18.71 ± 0.40 KJ) **0.838 Sec**

128 N*m 177 N*m

102 N*m

Torque

 $(0.15 \pm 0.02 \, \text{Sec})$

18.4 KJ

Energy:

0.13 Sec

827 ± 7 KPa)

 $(112.7 \pm 3.0 \, ^{\circ}C)$

107.2 °C

3001

831 kPa

1000

Test Number: C4-3-1341

875

Fluid Code: LO268869

3499 Cycle Number:

750

(112.7 ± 3.0 °C) 110.7 °C Temperature: Apply Pressure:

832 kPa 827 ± 7 KPa) 0.13 Sec

 $(0.15 \pm 0.02 \, \text{Sec})$ Apply Rate:

Pressure (kPa) & Speed (RPM*10)

500

625

18.4 KJ Energy:

(18.71 ± 0.40 KJ) **0.843 Sec** Engage Time:

Torque

375

0.2 Sec Dyn: Midpoint Dyn:

103 N*m 127 N*m 179 N*m LwSpd Dynamic:

250

Coefficient of Friction

125

.2 Sec Dyn: Midpoint Dyn:

0.071 0.088 0.123 LwSpd Dynamic:

₩.

9.1

4.

1.2

C4 Reports Version, 03-30-07

TIME(SEC) 9.0 0.4 Torque (Mm) 210 -180 150 Ö 8 8 9

Fluid Code: LO268869

110.8 °C 3500

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 832 kPa

827 ± 7 KPa)

0.13 Sec (0.15 ± 0.02 Sec) 18.4 KJ

 $(18.71 \pm 0.40 \text{ KJ})$ **0.836 Sec**

128 N*m 180 N*m 103 N*m

Coefficient of Friction

Midpoint Dyn: LwSpd Dynamic:

0.071 0.089 0.124

.2 Sec Dyn:

Test Number: C4-3-1341 Torque Energy: Cycle Number: Engage Time: Temperature: 0.2 Sec Dyn: Apply Pressure: Apply Rate: Midpoint Dyn: LwSpd Dynamic:

1000

Test Number: C4-3-1341

875

210 -

240

180

Fluid Code: LO268869

3501 Cycle Number: Temperature:

750

106.4 °C (112.7 ± 3.0 °C) 832 kPa Apply Pressure:

827 ± 7 KPa) 0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ 18.4 KJ Energy:

Pressure (kPa) & Speed (RPM*10)

200

625

Engage Time:

(18.71 ± 0.40 KJ) **0.851 Sec**

Torque

375

126 N*m 176 N*m 96 N*m 0.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

250

09

30

Coefficient of Friction

125

0.066 0.087 0.122

1.6

4.

TIME(SEC)

9.0

0.4

.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

C4 Reports Version, 03-30-07

90

Torque (Mm)

1000

Test Number: C4-3-1341

875

210 -

240

180

Fluid Code: LO268869

3999

Cycle Number:

750

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 110.9 °C Temperature:

827 ± 7 KPa) 831 kPa Apply Pressure:

625

 $(0.15 \pm 0.02 \text{ Sec})$ 0.13 Sec Apply Rate:

Pressure (kPa) & Speed (RPM*10)

200

18.4 KJ Energy:

Engage Time:

(18.71 ± 0.40 KJ) **0.843 Sec**

Torque

375

102 N*m 128 N*m 176 N*m 0.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

250

Coefficient of Friction

125

LwSpd Dynamic:

8.

1.6

4.

5.

9.0

0.4

30

TIME(SEC)

0.071 0.089 0.122 .2 Sec Dyn: Midpoint Dyn:

8

09

Torque (Mm)

Test Number: C4-3-1341

875

210

240

180

Fluid Code: LO268869

4000 Cycle Number:

750

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 110.9 °C Temperature:

827 ± 7 KPa) 0.13 Sec 831 kPa Apply Pressure: Apply Rate:

625

 $(0.15 \pm 0.02 \, \text{Sec})$ 18.4 KJ Energy:

Pressure (kPa) & Speed (RPM*10)

500

Engage Time:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.848 Sec**

Torque

375

0.2 Sec Dyn: Midpoint Dyn:

100 N*m 127 N*m 176 N*m LwSpd Dynamic:

250

09

93

Coefficient of Friction

125

.2 Sec Dyn: Midpoint Dyn:

0.069 0.088 0.122 LwSpd Dynamic:

1.6 4. TIME(SEC) 0.4

90

Torque (Mm)

Date of Test: 10/14/2011 Time of Test: 8:46:09 Test Number: C4-3-1341

Fluid Code: LO268869

4001

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 106.7 °C Temperature:

832 kPa Apply Pressure:

827 ± 7 KPa) 0.13 Sec (0.15 ± 0.02 Sec) 18.4 KJ Energy: Apply Rate:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.87 Sec** Engage Time:

Torque

123 N*m 175 N*m 95 N*m 0.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.065 0.085 0.121 LwSpd Dynamic:

8.

1.6

4.

TIME(SEC)

0.4

1000

Test Number: C4-3-1341

875

210

180

150

Fluid Code: LO268869

111.6 °C Temperature:

4499

Cycle Number:

750

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 827 ± 7 KPa) 830 kPa Apply Pressure:

625

0.12 Sec (0.15 ± 0.02 Sec) Apply Rate:

Pressure (kPa) & Speed (RPM*10)

500

18.4 KJ Energy:

(18.71 ± 0.40 KJ) **0.846 Sec**

Engage Time:

Torque

375

128 N*m 173 N*m 99 N*m 0.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

250

09

30

Coefficient of Friction

125

.2 Sec Dyn:

₩.

1.6

4.

1.2

9.0

0.4

Midpoint Dyn:

0.069 0.088 0.120 LwSpd Dynamic:

TIME(SEC)

90

Torque (Mm)

Test Number: C4-3-1341

Fluid Code: LO268869

110.8 °C Temperature:

4500

Cycle Number:

 $(112.7 \pm 3.0 \, ^{\circ}C)$

830 kPa 827 ± 7 KPa) Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ 18.4 KJ 0.13 Sec Energy: Apply Rate:

(18.71 ± 0.40 KJ) **0.863 Sec** Engage Time:

Torque

99 N*m 0.2 Sec Dyn: Midpoint Dyn:

126 N*m 171 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn:

0.069 0.087 0.118

Midpoint Dyn:

LwSpd Dynamic:

1000

Test Number: C4-3-1341

875

210

180

150 -

4501 Fluid Code: L0268869 Cycle Number:

750

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 106.4 °C Temperature:

827 ± 7 KPa) 830 kPa Apply Pressure:

 $(0.15 \pm 0.02 \text{ Sec})$ 0.13 Sec Apply Rate:

Pressure (kPa) & Speed (RPM*10)

200

625

18.4 KJ Energy:

(18.71 ± 0.40 KJ) **0.885 Sec** Engage Time:

Torque

92 N*m 0.2 Sec Dyn:

375

120 N*m 169 N*m Midpoint Dyn:

LwSpd Dynamic:

250

Coefficient of Friction

125

.2 Sec Dyn:

Midpoint Dyn:

6.

1.6

1.

1.2

0.4

9

09

TIME(SEC)

0.064 0.083 0.117 LwSpd Dynamic:

8

Torque (Mm)

Fluid Code: LO268869

Test Number: C4-3-1341

4999 Cycle Number:

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 111.0 °C Temperature:

827 ± 7 KPa) 832 kPa 0.13 Sec Apply Pressure: Apply Rate:

 $(0.15 \pm 0.02 \text{ Sec})$ 18.5 KJ Energy:

Engage Time:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.864 Sec**

Torque

126 N*m 166 N*m 97 N*m 0.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn:

0.067 0.087 0.115 Midpoint Dyn: LwSpd Dynamic:

Pressure (kPa) & Speed (RPM*10) 1000 875 625 750 500 375 125 250 ω. 1.6 4. **DYNAMIC CYCLE PHASE B** 7. TIME(SEC) 9.0 0.4 210 180 150 Torque (Nm) 9 09 240 8

9.0

0.4

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE B

210

240

180

8

Torque (Mm)

150

09

1000

Test Number: C4-3-1341

875

210

240

180

Fluid Code: LO268869

5001 Cycle Number:

750

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 106.6 °C Temperature:

827 ± 7 KPa) 833 kPa Apply Pressure: Apply Rate:

625

0.13 Sec (0.15 ± 0.02 Sec) 18.5 KJ Energy:

Pressure (kPa) & Speed (RPM*10)

500

Engage Time:

(18.71 ± 0.40 KJ) **0.882 Sec**

Torque

375

92 N*m 0.2 Sec Dyn: Midpoint Dyn:

121 N*m 163 N*m LwSpd Dynamic:

250

09

30

Coefficient of Friction

125

.2 Sec Dyn:

0.064 0.083 0.113 Midpoint Dyn: LwSpd Dynamic:

8. 1.6 1. TIME(SEC) 9.0 9.4

8

Torque (Nm)

0.086 0.067

(18.71 ± 0.40 KJ) **0.87 Sec**

125 N*m 163 N*m

98 N*m

Torque

 $(0.15 \pm 0.02 \, \text{Sec})$

18.4 KJ

Energy:

0.13 Sec

 $(112.7 \pm 3.0 \, ^{\circ}C)$

110.8 °C

5498

827 ± 7 KPa)

833 kPa

Test Number: C4-3-1341

Fluid Code: LO268869

110.8 °C Cycle Number: Temperature:

5499

 $(112.7 \pm 3.0 \, ^{\circ}C)$

827 ± 7 KPa) 833 kPa Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ 0.13 Sec 18.4 KJ Energy: Apply Rate:

Engage Time:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.855 Sec

Torque

98 N*m 0.2 Sec Dyn: Midpoint Dyn:

126 N*m 167 N*m

LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn:

Midpoint Dyn:

0.068 0.087 0.116 LwSpd Dynamic:

Pressure (kPa) & Speed (RPM*10) 1000 875 625 200 750 375 250 125 8. 1.6 4. DYNAMIC CYCLE PHASE B 1.2 TIME(SEC) 9.0 0.4 210 -180 Torque (Nm) 09 30 150 90

Test Number: C4-3-1341

Fluid Code: LO268869

5500 Cycle Number:

(112.7 ± 3.0 °C) 110,9 °C Temperature:

0.13 Sec (0.15 ± 0.02 Sec) 827 ± 7 KPa) 833 kPa Apply Pressure: Apply Rate:

18.5 KJ Energy:

Engage Time:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.869 Sec

Torque

96 N*m 0.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

125 N*m 163 N*m

Coefficient of Friction

.2 Sec Dyn:

0.066 0.086 0.112 Midpoint Dyn:

LwSpd Dynamic: 1.8 1.6 4. 1.2

Pressure (kPa) & Speed (RPM*10) 1000 875 625 500 750 375 250 125 DYNAMIC CYCLE PHASE B TIME(SEC) 9.0 0.4 210 180 **Torque (Nm)** 09 30 150 8

STATIC TRACES

C4 Reports Version, 03-30-07

C4 Reports Version, 03-30-07

0.75

ALLISON C-4 GRAPHITE DATA

D1 (Part 1) - 50

120

Torque (Mm)

9

150

210

180

240

C4 Reports Version, 03-30-07

120 -

Torque (Mm)

- 09

210

240

180

150

C4 Reports Version, 03-30-07

APPENDIX – D1 (Part 2) TYPE C-4 PAPER CLUTCH FRICTION TEST LO-268869

SOUTHWEST RESEARCH INSTITUTE® San Antonio, Texas

Fuels and Lubricants Research Division

Report on

Allison Heavy-Duty Transmission Fluid TYPE C-4 PAPER CLUTCH FRICTION TEST

Conducted for

ARMY LAB

Oil Code: LO268869

Test Number: C2-3-1573

October 15, 2011

Submitted by:

Matthew Manager

Specialty & Driveline Fluid Evaluations

C-4 Heavy DutyTransmission

Fluid Specification

Allison Transmission Division

IX. Paper Clutch Friction Test

Test Laboratory: SWRI Test Number: C2-3-1573

Friction Plate Batch: LOT 6 Steel Plate Batch: 10/9/2008 Lab Fluid Code:

LO-268869

Sponsor Fluid Code:

LO268869

Completion Date:

10/15/11

Clutch Wear Data

(units in mm)

	Maximum	Average
Steel Plates	0.0000	0.0000
Clutch Plate	0.0970	0.0903

	Before	After
Pack Clearance	0.9144	1.1684

Reference Tests

Test Number	Test Date	Test Fluid
C2-0-1557	08/12/10	RDL-2746 08-05
C2-0-1568	12/10/10	RDL-2746 08-05
C2-0-1570	01/13/11	RDL-2746 08-05

	New	EOT
Viscosity at 40°C, cSt	47.67	41.55
Viscosity at 100°C, cSt	8.78	7.86
Iron Content, ppm	2	139

D5185	New Fluid (ppm)
Ba	<1
В	<1
Ca	3439
Mg	10
Р	1279
Si	2
Na	5
Zn	1879

Name: Matthew Jackson

Title: Manager Signature: /

Date: 10/24/11

ALLISON C- 4 PAPER FRICTION TEST

(Torque in N*m)

Sponsor Fluid Code: LO268869 Test Number: C2-3-1573

Lab Fluid Code: **LO-268869** Fric. Plate Batch: **LOT 6**

Completion Date: 10/15/2011 Steel Plate Batch: 10/9/2008

TORQUE

CYCLE	SLIP TIME	TORQUE	TORQUE	STATIC PEAK	LOW SPEED	LOWSPEED
CTCLE	LIME	(MIDPOINT)	STATIC PEAK	- MIDPOINT	STATIC PEAK	STATIC TORQUE
100	0.53	190	212	22	210	196
500	0.52	198	201	3	195	189
1000	0.49	209	258	49	271	260
2500	0.46	223	286	63	306	280
5000	0.45	231	255	24	272	249
7500	0.46	227	235	8	251	229
10000	0.46	227	228	1	236	227

COEFFICIENT OF FRICTION

	SLIP	TORQUE	TORQUE	STATIC PEAK	LOW SPEED	LOWSPEED
CYCLE	TIME	(MIDPOINT)	STATIC PEAK	- MIDPOINT	STATIC PEAK	STATIC TORQUE
100	0.53	0.093	0.103	0.010	0.102	0.095
500	0.52	0.096	0.098	0.002	0.095	0.092
1000	0.49	0.102	0.126	0.024	0.132	0.127
2500	0.46	0.109	0.139	0.030	0.149	0.136
5000	0.45	0.112	0.124	0.012	0.132	0.121
7500	0.46	0.111	0.114	0.003	0.122	0.112
10000	0.46	0.111	0.111	0.000	0.115	0.111

	Limits			Results		
	Value	% Change	100 N	10,000 N	% Change	P/F
Slip Time Max.	0.600	N/A	0.530	0.460	-13.21	Р
Mid-Point Fric. Coeff. Min.	0.096	N/A	0.093	0.111	19.35	F
Static Friction Coeff.	N/A	N/A	0.103	0.111	7.77	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.102	0.115	12.75	
0.25 Second Low Speed Coeff.	N/A	N/A	0.095	0.111	16.84	

SOUTHWEST RESEARCH INSTITUTE®

ALLISON C4-PAPER FRICTION TEST

(all units in mm)

Sw	1000
R	A CA
	0

Candidate Fluid: LO268869 Test Number : C2-3-1573 Completion Date : 10/15/2011					/2011			
Lab Fluid Code : LO-268869			Steel Plate Batch: 10/09/2008			Fric Plate Batch : LOT 6		
Lab i idia code	r	•	steel Flate B	atcii. 10/03/200	70		1	<u> </u>
5	Location					Inner	Average	Outer
Plates	of Tooth	Near Inner		Near Outer		Diameter	Overall	Diameter
	(Clockwise)	Before	After	Before	After	Change	Change	Change
			~	TION MATERIAL				
	Тор	2.0740	1.9810	2.0660	1.9690	0.0930		0.0970
2	120	2.0760	1.9850	2.0690	1.9810	0.0910		0.0880
	240	2.0760	1.9820	2.0730	1.9820	0.0940		0.0910
	Average					0.0927	0.0923	0.0920
	Тор	2.0780	1.9920	2.0760	1.9930	0.0860		0.0830
5	120	2.0700	1.9770	2.0620	1.9730	0.0930		0.0890
	240	2.0800	1.9910	2.0780	1.9890	0.0890		0.0890
	Average		4412			0.0893	0.0882	0.0870
			STEEL	S SEPARATOF	RS			
	Тор	1.7500	1.7500	1.7500	1.7500	0.0000	3544	0.0000
1	120	1.7500	1.7500	1.7500	1.7500	0.0000		0.0000
	240	1.7500	1.7500	1.7500	1.7500	0.0000		0.0000
	Average				以及 建设的证据	0.0000	0.0000	0.0000
	Тор	1.7580	1.7580	1.7590	1.7590	0.0000		0.0000
3	120	1.7560	1.7560	1.7560	1.7560	0.0000		0.0000
	240	1.7590	1.7590	1.7590	1.7590	0.0000		0.0000
	Average					0.0000	0.0000	0.0000
	Тор	1.7580	1.7580	1.7570	1.7570	0.0000		0.0000
4	120	1.7540	1.7540	1.7540	1.7540	0.0000		0.0000
	240	1.7570	1.7570	1.7580	1.7580	0.0000		0.0000
	Average					0.0000	0.0000	0.0000
	Тор	1.7560	1.7560	1.7560	1.7560	0.0000		0.0000
6	120	1.7570	1.7570	1.7570	1.7570	0.0000		0.0000
	240	1.7590	1.7590	1.7590	1.7590	0.0000		0.0000
	Average					0.0000	0.0000	0.0000

PLATE CONDITION AT E.O.T.:

STEEL PLATES NO UNUSUAL DISCOLORATION

(Anything Unusual)

NORMAL WEAR

Test Date and Operator's Name:

9/28/2011 JOE M

Pack ID#: 4658

ALLISON HYDRAULIC TRANSMISSION FLUID TYPE C-4 PAPER FRICTION TEST

Page 6 of 38

DYNAMIC TRACES

0.092 0.109

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

18.3 KJ (18.7 ± 0.40 KJ) 0.54 Sec

189 N*m 187 N*m 223 N*m

 $(0.15 \pm 0.02 \, \text{Sec})$

(586 ± 7 KPa) 0.13 Sec

 $(93.3 \pm 3.0 \, ^{\circ}\text{C})$

10

588 kPa

640

Time of Test: 15:17:39

Test Number: C2-3-1573

260

280

320

240

200

Fluid Code: LO268869 Cycle Number:

66

Temperature:

(93.3 ± 3.0 °C) Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ 588 kPa (586 ± 7 KPa) 0.13 Sec Apply Rate:

Energy:

26 40 80 80 40 Pressure (kPa) & Speed (RPM*10)

18.4 KJ (18.7 ± 0.40 KJ) 0.534 Sec

Engage Time:

Torque

190 N*m 0.2 Sec Dyn: Midpoint Dyn:

190 N*m 213 N*m LwSpd Dynamic:

160

80

.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

9.0

TIME(SEC)

0.092 0.093 0.103

Coefficient of Friction

Torque (Mm) 40 8 120

640

Time of Test: 15:17:55

Test Number: C2-3-1573

260

280

320

240

Fluid Code: LO268869

100

Cycle Number:

480

93.2 °C (93.3 ± 3.0 °C) Temperature:

(586 ± 7 KPa) 588 kPa Apply Pressure:

 $(0.15 \pm 0.02 \text{ Sec})$ 0.13 Sec Apply Rate:

Pressure (kPa) & Speed (RPM*10)

18.3 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.533 Sec

Engage Time:

Torque 0.2 Sec Dyn:

189 N*m 190 N*m 210 N*m Midpoint Dyn: LwSpd Dynamic:

160

8

40

80

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.092 0.093 0.102

LwSpd Dynamic:

9.0

0.4

TIME(SEC)

C4 Reports Version, 03-30-07

D1 (part 2) - 12

120

Torque (Nm) ⊕

200

(93.3 ± 3.0 °C) **588 kPa** $(0.15 \pm 0.02 \, \text{Sec})$ $(18.7 \pm 0.40 \text{ KJ})$ 0.535 Sec (586 ± 7 KPa) 0.13 Sec 189 N*m 189 N*m 214 N*m 18.3 KJ 85.4 °C 0.092 0.092 0.104 101 Date of Test: 10/13/2011 Test Number: C2-3-1573 Fluid Code: LO268869 Coefficient of Friction Time of Test: 15:18:26 Torque 0.2 Sec Dyn: Midpoint Dyn: Energy: Cycle Number: Engage Time: Temperature: .2 Sec Dyn: Apply Pressure: Apply Rate: LwSpd Dynamic: Midpoint Dyn: LwSpd Dynamic: Pressure (kPa) & Speed (RPM*10) 260 640 160 8 ALLISON C-4 PAPER DATA DYNAMIC CYCLE 0.8 9.0 TIME(SEC) 0.4 Torque (Nm) ≅ 280 240 200 40 8 120 320

Test Number: C2-3-1573

Fluid Code: LO268869

499 Cycle Number:

(93.3 ± 3.0 °C) **588 kPa** 92.7 °C Temperature: Apply Pressure:

0.13 Sec (0.15 ± 0.02 Sec) (586 ± 7 KPa)

Apply Rate:

18.4 KJ Energy:

Engage Time:

 $(18.7 \pm 0.40 \text{ KJ})$ **0.52 Sec**

Torque

196 N*m 0.2 Sec Dyn: Midpoint Dyn:

198 N*m 201 N*m LwSpd Dynamic:

Coefficient of Friction

0.096 0.096 0.098 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Test Number: C2-3-1573

Fluid Code: LO268869

92.7 °C Temperature:

500

Cycle Number:

(93.3 ± 3.0 °C) **588 kPa** Apply Pressure:

(586 ± 7 KPa) 0.13 Sec

 $(0.15 \pm 0.02 \, \mathrm{Sec})$ Apply Rate:

18.4 KJ Energy:

Engage Time:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.519 Sec

Torque

197 N*m 198 N*m 198 N*m 0.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn:

0.096 0.097 0.096 Midpoint Dyn: LwSpd Dynamic:

Pressure (kPa) & Speed (RPM*10) 560 640 160 80 ALLISON C-4 PAPER DATA DYNAMIC CYCLE 0.8 9.0 TIME(SEC) 0.4 0.2 Torque (Mm) ≅ 280 240 200 40 320 8 120

Time of Test: 16:58:42

Test Number: C2-3-1573

501 Fluid Code: LO268869 Cycle Number: **85.6 °C** (93.3 ± 3.0 °C) **588 kPa** Temperature:

(586 ± 7 KPa) Apply Pressure:

 $(0.15 \pm 0.02 \text{ Sec})$ 0.13 Sec Apply Rate:

18.3 KJ Energy:

Engage Time:

 $(18.7 \pm 0.40 \text{ KJ})$ **0.519 Sec**

Torque

198 N*m 0.2 Sec Dyn: Midpoint Dyn:

198 N*m 204 N*m

LwSpd Dynamic:

Coefficient of Friction

0.096 0.096 0.099

.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

8 8 Speed (RPM*10) Pressure (kPa) & Speed (RPM*10) 260 640 480 160 8 0.8 9.0 TIME(SEC) 0.4 280 240 200 Torque (Mm) 40 80 120 320

Test Number: C2-3-1573

Fluid Code: LO268869

666 Cycle Number: **93.4 °C** (93.3 ± 3.0 °C) Temperature: Apply Pressure:

(586 ± 7 KPa) 587 kPa

0.13 Sec (0.15 ± 0.02 Sec) Apply Rate:

18.4 KJ Energy:

Engage Time:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.486 Sec

Torque

207 N*m 210 N*m 256 N*m 0.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

Coefficient of Friction

LwSpd Dynamic:

0.101 0.102 0.124 .2 Sec Dyn: Midpoint Dyn:

$(0.15 \pm 0.02 \, \text{Sec})$ **93.4 °C** (93.3 ± 3.0 °C) $(18.7 \pm 0.40 \text{ KJ})$ 0.485 Sec (586 ± 7 KPa) 206 N*m 210 N*m 260 N*m 0.13 Sec 587 kPa 18.4 KJ 1000 0.100 0.102 0.126 Date of Test: 10/13/2011 Test Number: C2-3-1573 Fluid Code: LO268869 **Coefficient of Friction** Time of Test: 19:03:27 Torque Energy: Engage Time: Cycle Number: Temperature: Apply Pressure: Apply Rate: 0.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic: .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic: 640 260 160 8 ALLISON C-4 PAPER DATA DYNAMIC CYCLE 9.0 TIME(SEC) 0.4 Torque (Mm) ⊕ 240 200 280 40 120 80

$(0.15 \pm 0.02 \, \text{Sec})$ **87.0 °C** (93.3 ± 3.0 °C) $(18.7 \pm 0.40 \text{ KJ})$ **0.488 Sec** (586 ± 7 KPa) 206 N*m 208 N*m 258 N*m 0.13 Sec 587 kPa 18.4 KJ 0.100 0.101 0.126 1001 Date of Test: 10/13/2011 Test Number: C2-3-1573 Fluid Code: LO268869 **Coefficient of Friction** Time of Test: 19:03:58 Torque Engage Time: Cycle Number: Energy: Temperature: Apply Pressure: Apply Rate: 0.2 Sec Dyn: .2 Sec Dyn: Midpoint Dyn: Midpoint Dyn: LwSpd Dynamic: LwSpd Dynamic: Pressure (kPa) & Speed (RPM*10) 260 640 480 160 8 ALLISON C-4 PAPER DATA DYNAMIC CYCLE 9.0 TIME(SEC) 0.4 240 Torque (Mm) ⊕ 280 200 8 4 320 120

Test Number: C2-3-1573

Fluid Code: L0268869

93.3 °C 2499 Cycle Number: Temperature:

 $(93.3 \pm 3.0 \, ^{\circ}\text{C})$ 589 kPa Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ (586 ± 7 KPa) 0.13 Sec Apply Rate:

18.5 KJ Energy:

Engage Time:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.454 Sec

Torque

221 N*m 224 N*m 291 N*m 0.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

Coefficient of Friction

0.108 0.109 0.141 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Pressure (kPa) & Speed (RPM*10) 640 260 480 160 8 0.8 9.0 TIME(SEC) 0.4 280 240 200 Torque (Nm) ≅ 40 8 120 320

$(0.15 \pm 0.02 \, \text{Sec})$ $(18.7 \pm 0.40 \text{ KJ})$ 0.454 Sec (93.3 ± 3.0 °C) (586 ± 7 KPa) 224 N*m 285 N*m 0.13 Sec 589 kPa 222 N*m 93.1 °C 18.5 KJ 2500 0.108 0.109 Date of Test: 10/14/2011 Test Number: C2-3-1573 Fluid Code: LO268869 Coefficient of Friction Time of Test: 1:18:43 Torque Energy: Engage Time: Temperature: Apply Rate: 0.2 Sec Dyn: Midpoint Dyn: Cycle Number: Apply Pressure: LwSpd Dynamic: Midpoint Dyn: .2 Sec Dyn: LwSpd Dynamic: Pressure (kPa) & Speed (RPM*10) 640 260 480 160 8 ALLISON C-4 PAPER DATA DYNAMIC CYCLE 0.8 9.0 TIME(SEC) 0.4 Torque (Mm) 280 240 200 40 320 8 120

85.9 °C (93.3 ± 3.0 °C) **589 kPa** $(0.15 \pm 0.02 \text{ Sec})$ $(18.7 \pm 0.40 \text{ KJ})$ **0.459 Sec** (586 ± 7 KPa) 222 N*m 283 N*m 0.13 Sec 18.5 KJ 0.107 0.108 0.138 2501 Fluid Code: LO268869 Date of Test: 10/14/2011 Test Number: C2-3-1573 **Coefficient of Friction** Time of Test: 1:19:15 Torque Engage Time: Cycle Number: Energy: .2 Sec Dyn: Temperature: Apply Pressure: Apply Rate: 0.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic: Midpoint Dyn: LwSpd Dynamic: Pressure (kPa) & Speed (RPM*10) 260 640 480 160 8 ALLISON C-4 PAPER DATA DYNAMIC CYCLE 9.0 TIME(SEC) 0.4 Torque (Mm) [©] 240 280 200 40 120 88

18.5 KJ (18.7 ± 0.40 KJ) 0.448 Sec $(0.15 \pm 0.02 \, \text{Sec})$ **92.9 °C** (93.3 ± 3.0 °C) (586 ± 7 KPa) 230 N*m 232 N*m 257 N*m 589 kPa 0.13 Sec 0.112 0.113 0.125 4999 Date of Test: 10/14/2011 Test Number: C2-3-1573 Fluid Code: LO268869 **Coefficient of Friction** Time of Test: 11:42:34 Torque Cycle Number: Engage Time: Temperature: **Energy:** 0.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic: .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic: Apply Pressure: Apply Rate: Pressure (kPa) & Speed (RPM*10) 640 260 480 400 320 240 160 80 ALLISON C-4 PAPER DATA DYNAMIC CYCLE 9.0 TIME(SEC) 0.4 Torque (Mm) 240 280 200 40 120 8 320

$(0.15 \pm 0.02 \, \text{Sec})$ **92.8 °C** (93.3 ± 3.0 °C) $(18.7 \pm 0.40 \text{ KJ})$ 0.448 Sec (586 ± 7 KPa) 0.13 Sec 230 N*m 232 N*m 257 N*m 590 kPa 18.6 KJ 5000 0.112 0.113 Fluid Code: LO268869 Date of Test: 10/14/2011 Test Number: C2-3-1573 Coefficient of Friction Time of Test: 11:42:49 Torque Cycle Number: Energy: Engage Time: .2 Sec Dyn: Temperature: Apply Pressure: Midpoint Dyn: 0.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic: LwSpd Dynamic: Apply Rate: Pressure (kPa) & Speed (RPM*10) 260 640 160 8 ALLISON C-4 PAPER DATA DYNAMIC CYCLE 8.0 9.0 TIME(SEC) 0.4 Torque (Mm) ≅ 280 240 200 6 8 320 120

Test Number: C2-3-1573 Time of Test: 11:43:20

Fluid Code: LO268869

5001 Cycle Number: 87.0 °C

Temperature:

(93.3 ± 3.0 °C) Apply Pressure:

(586 ± 7 KPa) 590 kPa 0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ 18.5 KJ Energy:

Engage Time:

 $(18.7 \pm 0.40 \text{ KJ})$ **0.453 Sec**

Torque

227 N*m 229 N*m 251 N*m 0.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

Coefficient of Friction

0.110 .2 Sec Dyn: Midpoint Dyn:

0.112 LwSpd Dynamic:

Test Number: C2-3-1573

Fluid Code: L0268869

7499 Cycle Number:

 $(93.3 \pm 3.0 \, ^{\circ}\text{C})$ 93.1 °C Temperature:

589 kPa (586 ± 7 KPa) Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ 0.13 Sec Apply Rate:

Energy:

Engage Time:

18.5 KJ (18.7 ± 0.40 KJ) **0.458 Sec**

227 N*m Torque 0.2 Sec Dyn:

228 N*m 236 N*m Midpoint Dyn:

LwSpd Dynamic:

Coefficient of Friction

0.111 LwSpd Dynamic:

0.110 .2 Sec Dyn: Midpoint Dyn:

Pressure (kPa) & Speed (RPM*10) 260 640 160 8 9.0 TIME(SEC) Torque (Nm) ∂ 280 240 200 320 120 8 40

Test Number: C2-3-1573

Fluid Code: LO268869

7500 Cycle Number:

 $(93.3 \pm 3.0 \, ^{\circ}\text{C})$ 93.1 °C Temperature:

(586 ± 7 KPa) 589 kPa Apply Pressure:

0.13 Sec Apply Rate:

Energy:

(0.15 ± 0.02 Sec) 18.5 KJ (18.7 ± 0.40 KJ) 0.457 Sec Engage Time:

Torque

228 N*m 235 N*m 227 N*m 0.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Coefficient of Friction

0.110 0.111 0.114 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

640

Test Number: C2-3-1573

260

280

320

240 -

Fluid Code: LO268869

86.5 °C Temperature:

7501

Cycle Number:

589 kPa (586 ± 7 KPa) 0.13 Sec (93.3 ± 3.0 °C) Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ Apply Rate:

Pressure (kPa) & Speed (RPM*10)

18.4 KJ Energy:

Engage Time:

 $(18.7 \pm 0.40 \text{ KJ})$ **0.46 Sec**

Torque

0.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

224 N*m 225 N*m 236 N*m

160

Coefficient of Friction

8

.2 Sec Dyn:

9.0

4.0

TIME(SEC)

LwSpd Dynamic:

Midpoint Dyn:

0.110 0.109

120

8

4

Torque (Mm)

200

320

Test Number: C2-3-1573

Fluid Code: LO268869

8666 Cycle Number: 93.1 °C Temperature:

 $(93.3 \pm 3.0 \, ^{\circ}\text{C})$ 590 kPa Apply Pressure:

0.13 Sec (0.15 ± 0.02 Sec) (586 ± 7 KPa) Apply Rate:

18.5 KJ Energy:

Engage Time:

 $(18.7 \pm 0.40 \text{ KJ})$ **0.458 Sec**

Torque

227 N*m 227 N*m 226 N*m 0.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

Coefficient of Friction

0.110 0.111 0.110

.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

24 25 26 (RPa) & Speed (RPM*10) Pressure (kPa) & Speed (RPM*10) 260 640 160 8 0.8 9.0 TIME(SEC) 0.4 280 Torque (Mm) 240 200 120 8 40

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

Test Number: C2-3-1573

Fluid Code: L0268869

93.2 °C 6666 Cycle Number: Temperature:

(93.3 ± 3.0 °C) 590 kPa Apply Pressure:

(586 ± 7 KPa) 0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ 18.5 KJ Energy:

Engage Time:

 $(18.7 \pm 0.40 \text{ KJ})$ **0.458 Sec**

Torque

225 N*m 227 N*m 0.2 Sec Dyn: Midpoint Dyn:

227 N*m LwSpd Dynamic:

Coefficient of Friction

0.111

0.110 .2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

640

Test Number: C2-3-1573

260

280

240

Fluid Code: LO268869

93.2 °C Temperature:

10000

Cycle Number:

 $(93.3 \pm 3.0 \, ^{\circ}\text{C})$ (586 ± 7 KPa) 590 kPa Apply Pressure:

 $(0.15 \pm 0.02 \text{ Sec})$ 0.13 Sec Apply Rate:

18.5 KJ Energy:

(18.7 ± 0.40 KJ) **0.458 Sec**

Engage Time:

Torque

226 N*m 227 N*m 229 N*m 0.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

160

Coefficient of Friction

80

0.110 0.111 0.112 .2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic: 9.0 TIME(SEC) 0.4

120

8

40

Torque (Mm)

STATIC TRACES

ALLISON C-4 PAPER DATA

TIME(SEC)

0.75

0.25

40 -

8

ALLISON C-4 PAPER DATA

320

240 -

200

280

1.25 STATIC CYCLE

160

Torque (Mm)

1.25

0.75

0.25

40

8

TIME(SEC)

ALLISON C-4 PAPER DATA

STATIC CYCLE

320

280

240

200

160

Torque (Mm)

271 Nm 260 Nm

587 kPa

ALLISON C-4 PAPER DATA

Date of Test: 10/13/2011

Time of Test: 19:03:43

Test Number: C2-3-1573

Fluid Code: LO268869

306 Nm 280 Nm

40

8

120

589 KPa

ALLISON C-4 PAPER DATA

2500

160

Torque (Mm)

240

200

280

ALLISON C-4 PAPER DATA

251 Nm 229 Nm

0.122 0.112

589 kPa

C4 Reports Version, 03-30-07

ALLISON C-4 PAPER DATA

ALLISON C-4 PAPER DATA

APPENDIX – D2 (PART 1) TYPE C-4 GRAPHITE CLUTCH FRICTION TEST LO271510

SOUTHWEST RESEARCH INSTITUTE® San Antonio, Texas

Fuels and Lubricants Research Division

Report on

Allison Heavy-Duty Transmission Fluid TYPE C-4 GRAPHITE CLUTCH FRICTION TEST

Conducted for

ARMY LAB

Oil Code: LO271510

Test Number: C4-4-1342

October 15, 2011

Submitted by:

Matthew Jackson

Manager

Specialty & Driveline Fluid Evaluations

C-4 Heavy Duty Transmission

Fluid Specification

Allison Transmission Division

VIII. Graphite Clutch Friction Test

Test Laboratory: SWRI
Test Number: C4-4-1342
Friction Plate Batch: LOT 44

Lab Fluid Code: Sponsor Fluid Code: LO-271510 LO271510

Completion Date:

10/15/11

Steel Plate Batch: 10/9/2008

Clutch Wear Data (units in mm)

	Maximum	Average
Steel Plates	0.0000	0.0000
Clutch Plate	0.0840	0.0762

	Before	After
Pack Clearance	0.4826	0.6096

Reference Tests

Test Number	Test Date	Test Fluid
C4-0-1304	12/09/10	PASS REF-L-06-04
C4-0-1315	03/30/11	MIL-PRF-2104H
C4-0-1338	10/05/11	MIL-PRF-2104H

	New	EOT
Viscosity at 40°C, cSt	45.26	39.12
Viscosity at 100°C, cSt	8.45	7.55
Iron Content, ppm	1	83

D5 185	New Fluid (ppm)
Ва	<1
В	18
Ca	904
Mg	1261
Р	1063
Si	6
Na	<5
Zn	1261

Name: Matthew Jackson

Title: Manager

Signature:

Date:

ALLISON C-4 GRAPHITE FRICTION TEST SUMMARY

R

(Torque in Ft-Lbs)

Sponsor Fluid Code: LO271510 Test Number: C4-4-1342

Lab Fluid Code: LO-271510 Fric. Plate Batch: LOT 44

Completion Date: 10/15/2011 Steel Plate Batch: 10/9/2008

PHASE A

	SLIP	TORQUE	TORQUE	TORQUE	STATIC PEAK	LOW SPEED	LOWSPEED
CYCLE	TIME	(MIDPOINT)	STATIC PEAK	(.2 Second)	- 0.2 TORQUE	STATIC PEAK	STATIC TORQUE
500	1.21	50	73	39	34	88	72
1000	1.26	48	71	35	36	91	71

PHASE B

	SLIP	TORQUE	TORQUE	TORQUE	STATIC PEAK	LOW SPEED	LOWSPEED
CYCLE	TIME	(MIDPOINT)	STATIC PEAK	(0.2 Second)	- 0.2 TORQUE	STATIC PEAK	STATIC TORQUE
1500	0.76	104	149	92	57	175	157
2000	0.80	99	145	83	62	162	154
2500	0.82	96	143	78	65	167	154
3500	0.84	95	140	77	63	164	152
4000	0.83	96	141	75	66	164	150
4500	0.85	94	137	75	62	164	150
5000	0.83	97	141	75	66	162	149
5500	0.81	100	137	82	55	158	149

	L	Limits		Results		
	Max	Max Change	1,500 N	5,500 N	% Change	P/F
Slip Time Max.	0.89	N/A	0.76	0.81	6.58	Р
0.2 Second Dynamic Coeff.	N/A	Ņ/A	0.086	0.077	-10.465	
Mid-Point Fric. Coeff. Min.	0.089	N/A	0.097	0.094	-3.093	Р
Static Friction Coeff.	N/A	N/A	0.140	0.128	-8.571	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.164	0.148	-9.756	
0.25 Second Low Speed Coeff.	N/A	N/A	0.147	0.140	-4.762	

SOUTHWEST RESEARCH INSTITUTE®

ALLISON C4-GRAPHITE FRICTION TEST

Candidate Fluid: LO271510 Test Number : C4-4-1342 **Completion Date : 10/15/2011** Lab Fluid Code: LO-271510 Steel Plate Batch: 10/09/2008 Fric Plate Batch : LOT 44

			(al	l units in mm)				
	Location					Inner	Average	Outer
Plates	of Tooth	Near Inner	Diameter	Near Outer D	Near Outer Diameter		Overall	Diameter
	(Clockwise)	Before	After	Before	After	Change	Change	Change
			FRIC	CTION MATERIAL				
	Тор	2.2050	2.1220	2.2200	2.1430	0.0830	$(1/p^2) = (1/p^2)$	0.0770
2	120	2.2180	2.1340	2.2190	2.1460	0.0840		0.0730
	240	2.2100	2.1340	2.2090	2.1450	0.0760		0.0640
	Average					0.0810	0.0762	0.0713
			STE	EL SEPARATORS				
	Тор	1.7630	1.7630	1.7630	1.7630	0.0000	and the second of the second o	0.0000
1	120	1.7600	1.7600	1.7600	1.7600	0.0000		0.0000
	240	1.7620	1.7620	1.7620	1.7620	0.0000		0.0000
	Average					0.0000	0.0000	0.0000
	Тор	1.7590	1.7590	1.7590	1.7590	0.0000		0.0000
3	120	1.7580	1.7580	1.7580	1.7580	0.0000		0.0000
	240	1.7590	1.7590	1.7590	1.7590	0.0000	. 1	0.0000
	Average		right Surf			0.0000	0.0000	0.0000

PLATE CONDITION AT E.O.T (Anything Unusual)	STEEL PLATES HAVE NO UNUSUAL DISCOLORATION
Test Date:	10/15/2011
Operator's Name:	JOE M

Pack ID#: 4668

Reviewed By (Signature and Date)

ALLISON HYDRAULIC TRANSMISSION FLUID TYPE C-4 GRAPHITE FRICTION TEST

EOT Date: 10/15/2011 Test Number: C4-4-1342 Fluid Code: LO271510 Plate Batch: LOT 44 Steel Batch: 10/9/2008

Page 5 of 54

DYNAMIC TRACES

Test Number: C4-4-1342

Fluid Code: L0271510

74.0 °C Temperature:

9

Cycle Number:

(93.3 ± 3.0 °C) **345 kPa** Apply Pressure:

(345 ± 7 KPa)

 $(0.15 \pm 0.02 \, \text{Sec})$ 0.12 Sec Apply Rate:

14.3 KJ Energy:

 $(14.50 \pm 0.40 \text{ KJ})$ 1.118 Sec **Engage Time:**

Torque

62 N*m 0.2 Sec Dyn: Midpoint Dyn:

76 N*m 95 N*m LwSpd Dynamic:

Coefficient of Friction

0.125 LwSpd Dynamic:

0.102 .2 Sec Dyn: Midpoint Dyn:

210

180

92.5 °C

499

(93.3 ± 3.0 °C) **345 kPa**

(345 ± 7 KPa) 0.13 Sec

 $(0.15 \pm 0.02 \, \mathrm{Sec})$ Apply Rate:

14.3 KJ Energy:

(14.50 ± 0.40 KJ) 1.197 Sec Engage Time:

Torque

0.2 Sec Dyn: Midpoint Dyn:

68 N*m 97 N*m LwSpd Dynamic:

100

20

Coefficient of Friction

0.090 0.113 0.160 LwSpd Dynamic:

1.8

1.2

9.0

0.4

TIME(SEC)

.2 Sec Dyn: Midpoint Dyn:

Fluid Code: L0271510 Test Number: C4-4-1342 Cycle Number: Temperature: Apply Pressure:

Pressure (kPa) & Speed (RPM*10) 350 400

D2 (Part 1) - 10

8

09

ဓ္ထ

Torque (Nm)

Time of Test: 18:29:43

Test Number: C4-4-1342

210

180

Fluid Code: LO271510 Cycle Number:

200

92.4 °C Temperature:

(93.3 ± 3.0 °C) (345 ± 7 KPa) 346 kPa Apply Pressure:

0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ 14.3 KJ Energy:

 $(14.50 \pm 0.40 \text{ KJ})$ 1.198 Sec Engage Time:

Torque

0.2 Sec Dyn: Midpoint Dyn:

68 N*m 99 N*m LwSpd Dynamic:

Coefficient of Friction

0.113

0.089 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

400 350 100 300 20 8. 1.6 4. 7. TIME(SEC) 9.0 0.4

8

9

30

Torque (Nm)

Date of Test: 10/14/2011 Time of Test: 18:30:09

400

Fluid Code: L0271510

Test Number: C4-4-1342

350

210

180

501 Cycle Number:

300

(93.3 ± 3.0 °C) 88.7 °C Temperature:

346 kPa (345 ± 7 KPa) Apply Pressure:

0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ 14.3 KJ Energy:

Pressure (kPa) & Speed (RPM*10)

(14.50 ± 0.40 KJ) **1.226 Sec** Engage Time:

Torque

67 N*m 0.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

9

98 N*m

20

.2 Sec Dyn:

Coefficient of Friction

0.111

4.

1.2

9.0

0.4

TIME(SEC)

0.087 Midpoint Dyn: LwSpd Dynamic:

C4 Reports Version, 03-30-07

9

9

ဓ

Torque (Mm)

ALLISON C-4 GRAPHITE DATA

Test Number: C4-4-1342

Fluid Code: L0271510

866

Cycle Number:

(93.3 ± 3.0 °C) 93.0 °C Temperature:

(345 ± 7 KPa) 346 kPa Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ 0.13 Sec Apply Rate:

14.3 KJ Energy:

(14.50 ± 0.40 KJ) 1.26 Sec

Engage Time:

Torque

47 N*m 0.2 Sec Dyn: Midpoint Dyn:

65 N*m 95 N*m

LwSpd Dynamic:

Coefficient of Friction

0.108

0.078 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Pressure (kPa) & Speed (RPM*10) 350 400 300 100 20 1.8 1.6 4. 1.2 DYNAMIC CYCLE PHASE A TIME(SEC) 9.0 0.4 Torque (Mm) 210 180 240 150 9 09 3

400

Test Number: C4-4-1342

350

210

240

180

Fluid Code: L0271510

 $(93.3 \pm 3.0 \, ^{\circ}\text{C})$ 93.0 °C Temperature:

666

Cycle Number:

300

(345 ± 7 KPa) 346 kPa Apply Pressure:

0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ 14.3 KJ Energy:

Pressure (KPa) & Speed (RPM*10)

Engage Time:

(14.50 ± 0.40 KJ) **1.261 Sec**

Torque

0.2 Sec Dyn: Midpoint Dyn:

47 N*m 65 N*m 97 N*m LwSpd Dynamic:

100

Coefficient of Friction

20

.2 Sec Dyn: Midpoint Dyn:

0.078 0.107 0.161

LwSpd Dynamic:

1.8

4.

1.2

9.0

0.4

TIME(SEC)

C4 Reports Version, 03-30-07

8

00

8

Torque (Mm)

400

Test Number: C4-4-1342

350

210

240

180

Fluid Code: LO271510

1000

Cycle Number:

300

93.0 °C (93.3 ± 3.0 °C) Temperature:

(345 ± 7 KPa) 346 kPa Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ 0.13 Sec Apply Rate:

Pressure (kPa) & Speed (RPM*10)

14.3 KJ Energy:

Engage Time:

(14.50 ± 0.40 KJ) **1.264 Sec**

Torque

65 N*m 96 N*m Midpoint Dyn: LwSpd Dynamic:

47 N*m

0.2 Sec Dyn:

100

20

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.078 0.108 0.160 LwSpd Dynamic:

8.

4.

1,2

9.0

0.4

TIME(SEC)

C4 Reports Version, 03-30-07

90

09

ဓ

Torque (Nm)

0.107 0.110 0.142

ALLISON C-4 GRAPHITE DATA

210

180

240

(18.71 ± 0.40 KJ) **0.688 Sec**

155 N*m 159 N*m 206 N*m

 $(0.15 \pm 0.02 \, \text{Sec})$

18.4 KJ

0.14 Sec

827 ± 7 KPa)

829 kPa

 $(112.7 \pm 3.0 \, ^{\circ}C)$

90.4 °C

1010

8

09

9

Torque (Mm)

Time of Test: 23:29:09

Fluid Code: LO271510

Test Number: C4-4-1342

110.5 °C 1499 Cycle Number: Temperature:

827 ± 7 KPa) 831 kPa Apply Pressure:

 $(112.7 \pm 3.0 \, ^{\circ}C)$

 $(0.15 \pm 0.02 \, \text{Sec})$ 0.13 Sec 18.4 KJ Energy: Apply Rate:

Engage Time:

(18.71 ± 0.40 KJ) **0.752 Sec**

Torque

142 N*m 198 N*m 125 N*m 0.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.087 0.098 0.137 LwSpd Dynamic:

Pressure (kPa) & Speed (RPM*10) 1000 875 750 625 200 375 250 125 1.8 1.6 4. TIME(SEC) 9.0 0.4 Torque (Mm) 210 180 150 9 30 90 240

0.087 0.098 0.139

ALLISON C-4 GRAPHITE DATA

210

240

180

(18.71 ± 0.40 KJ) **0.754 Sec**

126 N*m 142 N*m 202 N*m

 $(0.15 \pm 0.02 \, \text{Sec})$

18.5 KJ

0.13 Sec

827 ± 7 KPa)

831 kPa

(112.7 ± 3.0 °C)

110.4 °C

1500

8

9

ဓ္ဌ

Torque (Nm)

TIME(SEC)

9.0

0.4

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE B

210

240

180

D2 (Part 1) - 19

8

.

9

Torque (Mm)

9.0

0.4

ALLISON C-4 GRAPHITE DATA

210

240

180

D2 (Part 1) - 20

8

.

8

Torque (Mm)

1000

Time of Test: 1:34:36

Fluid Code: L0271510 Test Number: C4-4-1342

875

210 -

240

180

2000 Cycle Number:

750

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 110.5 °C Temperature:

 $827 \pm 7 \text{ KPa}$ 0.13 Sec 832 kPa Apply Pressure: Apply Rate:

625

 $(0.15 \pm 0.02 \, \text{Sec})$

Pressure (kPa) & Speed (RPM*10)

500

18.4 KJ Energy:

(18.71 ± 0.40 KJ) **0.786 Sec** Engage Time:

Torque

375

114 N*m 136 N*m 196 N*m 0.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

250

125

30

09

Coefficient of Friction

0.079 0.094 0.135 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

8. 4. 1.2 TIME(SEC) 0.8 9.0 0.4

6

Torque (Mm)

Date of Test: 10/15/2011 Time of Test: 1:35:02 Test Number: C4-4-1342

210

240

180

2001 Fluid Code: LO271510 Cycle Number: 106.1 °C Temperature:

 $(112.7 \pm 3.0 \, ^{\circ}C)$ Apply Pressure:

827 ± 7 KPa) 0.13 Sec 832 kPa

 $(0.15 \pm 0.02 \, \text{Sec})$ Apply Rate:

18.4 KJ Energy: Engage Time:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.805 Sec

Torque

110 N*m 0.2 Sec Dyn: Midpoint Dyn:

132 N*m 198 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn:

0.076 0.091 0.136 Midpoint Dyn: LwSpd Dynamic:

Pressure (kPa) & Speed (RPM*10) 1000 875 750 625 500 375 125 250 8. 4. 1.2 TIME(SEC) 0.8 9.0 9.4

8

9

8

Torque (Mm)

ALLISON C-4 GRAPHITE DATA

Test Number: C4-4-1342

Fluid Code: LO271510

110.4 °C 2499 Cycle Number:

(112.7 ± 3.0 °C) 833 kPa Temperature: Apply Pressure:

0.13 Sec (0.15 ± 0.02 Sec) 827 ± 7 KPa) Apply Rate:

Pressure (kPa) & Speed (RPM*10)

18.4 KJ Energy:

Engage Time:

(18.71 ± 0.40 KJ) **0.805 Sec**

110 N*m Torque 0.2 Sec Dyn: Midpoint Dyn:

133 N*m 196 N*m

LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.076 0.092 0.135 LwSpd Dynamic:

1000 875 750 625 500 375 250 125 ω. 1.6 4. DYNAMIC CYCLE PHASE B 1.2 TIME(SEC) 9.0 0.4 210 180 150 Torque (Mm) 30 09 90 240

0.074 0.091 0.132

Coefficient of Friction

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE B

Date of Test: 10/15/2011

 $(18.71 \pm 0.40 \text{ KJ})$ **0.814 Sec**

Torque

107 N*m 132 N*m 191 N*m

0.2 Sec Dyn:

 $(0.15 \pm 0.02 \, \text{Sec})$

18.4 KJ

Energy:

0.13 Sec

Apply Rate:

827 ± 7 KPa)

833 kPa

 $(112.7 \pm 3.0 \, ^{\circ}C)$

110.5 °C

2500

Fluid Code: L0271510

1000

Test Number: C4-4-1342

875

210

240

180

150

Fluid Code: L0271510

2501 Cycle Number:

750

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 106.0 °C 833 kPa Temperature:

827 ± 7 KPa) Apply Pressure:

625

 $(0.15 \pm 0.02 \, \text{Sec})$ 0.13 Sec Apply Rate:

Pressure (kPa) & Speed (RPM*10)

200

18.4 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.829 Sec**

Engage Time:

0.2 Sec Dyn:

Torque

375

105 N*m 127 N*m 198 N*m Midpoint Dyn:

LwSpd Dynamic:

250

09

30

125

.2 Sec Dyn: Midpoint Dyn:

0.073 0.088 0.137 LwSpd Dynamic:

8.

1.6

4.

1.2

9.0

0.4

TIME(SEC)

Coefficient of Friction

8

Torque (Mm)

Test Number: C4-4-1342

Fluid Code: L0271510

2999 Cycle Number: (112.7 ± 3.0 °C) **833 kPa** 827 ± 7 KPa) Apply Pressure:

110.6 °C

Temperature:

0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ Energy:

18.4 KJ

(18.71 ± 0.40 KJ) **0.825 Sec** Engage Time:

Torque

106 N*m 132 N*m 188 N*m 0.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn:

0.073 0.091 0.130 LwSpd Dynamic:

Midpoint Dyn:

8. 1.6 4. 5. TIME(SEC) 9.0 0.4

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE B

1000

875

210

180

750

625

Pressure (kPa) & Speed (RPM*10)

500

375

250

125

6.

9.

4.

ط ن

9.0

0.4

30

. 09

8

TIME(SEC)

Torque (Mm)

0.071 0.089 0.135

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE B

 $(18.71 \pm 0.40 \text{ KJ})$ **0.833 Sec**

Torque

128 N*m 195 N*m

 $(0.15 \pm 0.02 \, \text{Sec})$

18.5 KJ

Energy:

0.13 Sec

827 ± 7 KPa)

833 kPa

 $(112.7 \pm 3.0 \, ^{\circ}C)$

106.1 °C

0.073 0.092 0.133

30

09

ALLISON C-4 GRAPHITE DATA

210 -

240

180

133 N*m 192 N*m

106 N*m

827 ± 7 KPa)

18.4 KJ

833 kPa

110.8 °C

3499

8

Torque (Nm) 52

0.073 0.091 0.130

.2 Sec Dyn:

Coefficient of Friction

ALLISON C-4 GRAPHITE DATA

(18.71 ± 0.40 KJ) **0.828 Sec**

132 N*m 188 N*m

106 N*m

Torque

 $(0.15 \pm 0.02 \text{ Sec})$

0.13 Sec

Apply Rate:

18.4 KJ

Energy:

 $(112.7 \pm 3.0 \, ^{\circ}C)$

110.9 °C

3500

Fluid Code: LO271510

827 ± 7 KPa)

833 kPa

0.070 0.086 0.133

.2 Sec Dyn:

Coefficient of Friction

ALLISON C-4 GRAPHITE DATA

Date of Test: 10/15/2011

Time of Test: 7:50:38

(18.71 ± 0.40 KJ) **0.846 Sec**

125 N*m 193 N*m

102 N*m

0.2 Sec Dyn:

Torque

 $(0.15 \pm 0.02 \, \text{Sec})$

0.13 Sec

Apply Rate:

18.4 KJ

Energy:

 $(112.7 \pm 3.0 \, ^{\circ}C)$

106.2 °C

3501

Fluid Code: LO271510

827 ± 7 KPa)

834 kPa

Test Number: C4-4-1342

3999 Fluid Code: LO271510 Cycle Number:

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 110.7 °C Temperature:

827 ± 7 KPa) 832 kPa 0.13 Sec Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ Energy: Apply Rate:

18.4 KJ Engage Time:

(18.71 ± 0.40 KJ) **0.833 Sec**

Torque

0.2 Sec Dyn: Midpoint Dyn:

132 N*m 183 N*m

LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn:

Midpoint Dyn:

0.073 0.091 0.127

LwSpd Dynamic: 8. 1.6 4. 1.2 TIME(SEC) 8.0 9.0 0.4

0.8

9.0

0.4

8

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE B

210

180

9

9

Torque (Mm)

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE B

Pressure (kPa) & Speed (RPM*10)

Torque

0.075 0.093 0.129

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE B

 $(18.71 \pm 0.40 \text{ KJ})$ **0.81 Sec**

135 N*m 186 N*m

109 N*m

Torque

 $(0.15 \pm 0.02 \, \text{Sec})$

18.4 KJ

Energy:

827 ± 7 KPa)

0.13 Sec

831 kPa

 $(112.7 \pm 3.0 ^{\circ}C)$

110.4 °C

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE B

1000

Test Number: C4-4-1342

875

210 -

240

180

4500 Fluid Code: L0271510 Cycle Number:

750

110.5 °**C** (112.7 ± 3.0 °C) Temperature:

827 ± 7 KPa) 0.13 Sec 831 kPa Apply Pressure: Apply Rate:

625

 $(0.15 \pm 0.02 \, \text{Sec})$ 18.5 KJ Energy:

Pressure (kPa) & Speed (RPM*10)

500

Engage Time:

(18.71 ± 0.40 KJ) **0.833 Sec**

Torque

375

0.2 Sec Dyn:

106 N*m 132 N*m 182 N*m Midpoint Dyn: LwSpd Dynamic:

250

Coefficient of Friction

125

LwSpd Dynamic:

8.

1.6

4.1

1.2

9.0

0.4

30

09

TIME(SEC)

0.073 0.091 0.126 .2 Sec Dyn: Midpoint Dyn:

C4 Reports Version, 03-30-07

8

Torque (Nm) $\frac{2}{5}$

0.068 0.086 0.131

.2 Sec Dyn:

Coefficient of Friction

ALLISON C-4 GRAPHITE DATA

 $(18.71 \pm 0.40 \text{ KJ})$ **0.859 Sec**

124 N*m 190 N*m

98 N*m

Torque

 $(0.15 \pm 0.02 \, \mathrm{Sec})$

18.4 KJ

Energy:

0.13 Sec

Apply Rate:

827 ± 7 KPa)

 $(112.7 \pm 3.0 \, ^{\circ}C)$

831 kPa

105.9 °C

4501

Fluid Code: LO271510

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE B

Test Number: C4-4-1342

210 -

240

180

Fluid Code: L0271510

4999 Cycle Number:

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 110.5 °C Temperature:

827 ± 7 KPa) 0.13 Sec 830 kPa Apply Rate: Apply Pressure:

 $(0.15 \pm 0.02 \text{ Sec})$ Energy:

Pressure (kPa) & Speed (RPM*10)

18.5 KJ

 $(18.71 \pm 0.40 \text{ KJ})$ **0.833 Sec** Engage Time:

Torque

102 N*m 0.2 Sec Dyn:

134 N*m 186 N*m Midpoint Dyn: LwSpd Dynamic:

30

9

.2 Sec Dyn:

0.092 0.071

Coefficient of Friction

Midpoint Dyn: LwSpd Dynamic:

1000 875 500 375 250 125 750 8. 1.6 4. 7 TIME(SEC) 9.0 9.0 9.4

8

Torque (Mm) $\frac{2}{5}$

 $(18.71 \pm 0.40 \text{ KJ})$ 0.812 Sec

137 N*m 188 N*m

0.074 0.094

107 N*m

Torque

 $(0.15 \pm 0.02 \, \text{Sec})$

18.5 KJ

Energy:

0.13 Sec

 $(112.7 \pm 3.0 \, ^{\circ}C)$

110,3 °C

5000

827 ± 7 KPa)

830 kPa

Midpoint Dyn:

LwSpd Dynamic:

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE B

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE B

1000

875

210

180

5498

Cycle Number:

750

625

Pressure (kPa) & Speed (RPM*10)

200

375

250

09

30

125

8.

1.6

4.

TIME(SEC)

0.8

9.0

0.4

8

Torque (Mm)

Test Number: C4-4-1342

Fluid Code: L0271510

5499

Cycle Number:

 $(112.7 \pm 3.0 \, ^{\circ}\text{C})$ 110.6 °C Temperature:

827 ± 7 KPa) 829 kPa Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ 18.5 KJ 0.13 Sec Energy: Apply Rate:

Engage Time:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.83 Sec**

108 N*m 0.2 Sec Dyn:

Torque

132 N*m Midpoint Dyn: LwSpd Dynamic:

184 N*m

0.074 **Coefficient of Friction** .2 Sec Dyn:

0.091 Midpoint Dyn: LwSpd Dynamic:

Pressure (kPa) & Speed (RPM*10) 1000 875 625 200 375 250 125 750 1.6 4. DYNAMIC CYCLE PHASE B TIME(SEC) 0.8 9.0 0.4 Torque (Mm) 210 180 8 50 9 8

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE B

STATIC TRACES

C4 Reports Version, 03-30-07

C4 Reports Version, 03-30-07

ALLISON C-4 GRAPHITE DATA

STATIC CYCLE

240

210

Date of Test: 10/15/2011

Test Number: C4-4-1342 Time of Test: 16:11:10

1000

Fluid Code: LO271510

875

750

Cycle Number:

5500

PHASE B

Apply Pressure (kPa)

500

625

Apply Pressure: At .25 Second:

375

829 kPa

Torque

250

9

8

9

214 Nm 202 Nm Static Peak: .25 Second:

125

Coefficient of Friction

0

1.75

ر:

1.25

TIME(SEC)

0.148

Static Peak: .25 Second:

120

Torque (Mm)

150

APPENDIX – D2 (PART 2) TYPE C-4 PAPER CLUTCH FRICTION TEST LO271510

SOUTHWEST RESEARCH INSTITUTE® San Antonio, Texas

Fuels and Lubricants Research Division

Report on

ALLISON HEAVY-DUTY TRANSMISSION FLUID TYPE C-4 PAPER CLUTCH FRICTION TEST

Conducted for

ARMY LAB

Oil Code: **LO271510**

Test Number: **C2-4-1574**

October 17, 2011

Submitted by:

Matthew Jackson

Manager

Specialty & Driveline Fluids Evaluation

Sw R

The results of this report relate only to the fluid tested.

This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute®.

C-4 Heavy DutyTransmission

Fluid Specification

Allison Transmission Division

IX. Paper Clutch Friction Test

Test Laboratory: SWRI Test Number: C2-4-1574 Friction Plate Batch: LOT 6

Steel Plate Batch: 10/9/2008

Lab Fluid Code: LO-271510 Sponsor Fluid Code: LO271510

Completion Date: 10/17/11

Clutch Wear Data

(units in mm)

	Maximum	Average
Steel Plates	0.0010	0.0004
Clutch Plate	0.1310	0.1174

	Before	After
Pack Clearance	0.8890	1.1176

Reference Tests

Test Number	Test Date	Test Fluid
C2-0-1557	08/12/10	RDL-2746 08-05
C2-0-1568	12/10/10	RDL-2746 08-05
C2-0-1570	01/13/11	RDL-2746 08-05

	New	EOT
Viscosity at 40°C, cSt	45.39	40.01
Viscosity at 100°C, cSt	8.48	7.80
Iron Content, ppm	1	181

D5185	New Fluid (ppm)
Ba	<1
В	18
Ca	896
Mg	1255
Р	1055
Si	6
Na	< 5
Zn	1272

Name: Matthew Jackson

Title: Manager Signature:

ALLISON C- 4 PAPER FRICTION TEST

(Torque in N*m)

Sponsor Fluid Code: LO271510 Test Number: C2-4-1574

Lab Fluid Code: LO-271510 Fric. Plate Batch: Lot 6

Completion Date: 10/17/2011 Steel Plate Batch: 10/9/2008

TORQUE

	SLIP	TORQUE	TORQUE	STATIC PEAK	LOW SPEED	LOWSPEED
CYCLE	TIME	(MIDPOINT)	STATIC PEAK	- MIDPOINT	STATIC PEAK	STATIC TORQUE
100	0.50	196	356	160	383	371
500	0.47	209	359	150	383	368
1000	0.45	221	349	128	365	359
2500	0.43	238	336	98	352	343
5000	0.42	244	333	89	353	340
7500	0.43	241	325	84	345	334
10000	0.43	241	325	84	341	335

COEFFICIENT OF FRICTION

	SLIP	TORQUE TORQUE STA		STATIC PEAK	LOW SPEED	LOWSPEED
CYCLE	TIME	(MIDPOINT)	STATIC PEAK	- MIDPOINT	STATIC PEAK	STATIC TORQUE
100	0.50	0.095	0.173	0.078	0.187	0.181
500	0.47	0.102	0.175	0.073	0.187	0.179
1000	0.45	0.108	0.170	0.062	0.178	0.175
2500	0.43	0.116	0.164	0.048	0.171	0.167
5000	0.42	0.119	0.162	0.043	0.172	0.166
7500	0.43	0.117	0.158	0.041	0.168	0.163
10000	0.43	0.117	0.158	0.041	0.166	0.163

	Limits			Results		
	Value	% Change	100 N	10,000 N	% Change	P/F
Slip Time Max.	0.600	N/A	0.500	0.430	-14.00	Р
Mid-Point Fric. Coeff. Min.	0.085	N/A	0.095	0.117	23.16	Р
Static Friction Coeff.	N/A	N/A	0.173	0.158	-8.67	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.187	0.166	-11.23	
0.25 Second Low Speed Coeff.	N/A	N/A	0.181	0.163	-9.94	

SOUTHWEST RESEARCH INSTITUTE®

ALLISON C4-PAPER FRICTION TEST

S. R

(all units in mm)

Candidate Fluid	l: LO271510	Test Number : C2-4-1574 Completion Date : 10/17/2011			/2011				
Lab Fluid Code	b Fluid Code : LO-271510 Steel Plate Batch: 1			atch: 10/09/200	9/2008 Fric Plate Batch : LOT 6				
	Location					Inner	Average	Outer	
Plates	of Tooth	Near Inner	Diameter	Near Outer I	Diameter	Diameter	Overall	Diameter	
	(Clockwise)	Before	After	Before	After	Change	Change	Change	
			FRIC	TION MATERIAL					
	Тор	2.0630	1.9430	2.0540	1.9380	0.1200		0.1160	
2	120	2.0770	1.9460	2.0620	1.9480	0.1310		0.1140	
	240	2.0860	1.9570	2.0790	1.9640	0.1290		0.1150	
	Average			STATE OF THE STATE	件。这个主要	0.1267	0.1208	0.1150	
	Тор	2.0820	1.9690	2.0760	1.9730	0.1130		0.1030	
5	120	2.0820	1.9620	2.0670	1.9640	0.1200		0.1030	
	240	2.0700	1.9440	2.0660	1.9470	0.1260		0.1190	
	Average					0.1197	0.1140	0.1083	
			STEELS	S SEPARATOR	S				
	Тор	1.7540	1.7540	1.7540	1.7540	0.0000		0.0000	
1	120	1.7590	1.7590	1.7580	1.7580	0.0000		0.0000	
	240	1.7570	1.7570	1.7570	1.7570	0.0000		0.0000	
	Average					0.0000	0.0000	0.0000	
	Тор	1.7550	1.7540	1.7560	1.7560	0.0010		0.0000	
3	120	1.7540	1.7530	1.7540	1.7530	0.0010		0.0010	
	240	1.7550	1.7550	1.7510	1.7500	0.0000		0.0010	
	Average					0.0007	0.0007	0.0007	
	Тор	1.7520	1.7510	1.7520	1.7520	0.0010		0.0000	
4	120	1.7510	1.7510	1.7510	1.7500	0.0000		0.0010	
	240	1.7510	1.7500	1.7540	1.7530	0.0010		0.0010	
	Average					0.0007	0.0007	0.0007	
	Тор	1.7510	1.7510	1.7510	1.7500	0.0000		0.0010	
6	120	1.7520	1.7520	1.7520	1.7520	0.0000	1.00	0.0000	
	240	1.7510	1.7500	1.7500	1.7500	0.0010		0.0000	
	Average			多数多数对对于		0.0003	0.0003	0.0003	

PLATE CONDITION AT E.O.T.:

PLATES IN GOOD CONDITION WITH VERY LIGHT DISCOLORATION ON INNER STEEL

(Anything Unusual)

PLATES. MICROMETER #0221190

Test Date and Operator's Name:

9/28/2011 MARK HOLMES

Pack ID#: 4659

Reviewed By (Signature and Date)

ALLISON HYDRAULIC TRANSMISSION FLUID TYPE C-4 PAPER FRICTION TEST

ALLISON HYDRAULIC TRANSMISSION FLUID

Page 6 of 38

C4 Reports Version, 03-30-07

DYNAMIC TRACES

0.097 0.097 0.184

.2 Sec Dyn: Midpoint Dyn:

Coefficient of Friction

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

 $(0.15 \pm 0.02 \, \text{Sec})$

18.4 KJ

Energy:

0.14 Sec

Apply Rate:

(586 ± 7 KPa) 589 kPa

(18.7 ± 0.40 KJ) **0.498 Sec**

Engage Time:

199 N*m 377 N*m

199 N*m

0.2 Sec Dyn: Midpoint Dyn:

Torque

75.6 °C (93.3 ± 3.0 °C)

Temperature:

9

Cycle Number:

Test Number: C2-4-1574

Time of Test: 9:29:03

Fluid Code: LO271510

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

Time of Test: 9:51:34

Test Number: C2-4-1574

Fluid Code: LO271510

66 Cycle Number:

(93.3 ± 3.0 °C) 93.2 °C Temperature:

(586 ± 7 KPa) 590 kPa 0.13 Sec Apply Pressure: Apply Rate:

 $(0.15 \pm 0.02 \text{ Sec})$ 18.4 KJ Energy:

(18.7 ± 0.40 KJ) 0.502 Sec Engage Time:

Torque

194 N*m 353 N*m 191 N*m 0.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Coefficient of Friction

0.093 0.095 0.172 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Pressure (kPa) & Speed (RPM*10) 8 6 8 160 8 200 320 8 9.0 TIME(SEC) 4.0 **Torque (Mm)** 8 က္သ 320 300 220 <u>8</u>

0.093 0.095 0.175

.2 Sec Dyn:

Midpoint Dyn:

Coefficient of Friction

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

Date of Test: 10/15/2011

 $(0.15 \pm 0.02 \text{ Sec})$

18.4 KJ

Energy:

(586 ± 7 KPa)

0.13 Sec

Apply Rate:

590 kPa

(93.3 ± 3.0 °C)

93.1 °C

Temperature:

100

Cycle Number:

Fluid Code: LO271510

Test Number: C2-4-1574

Time of Test: 9:51:49

(18.7 ± 0.40 KJ) 0.502 Sec

Engage Time:

195 N*m 360 N*m

190 N*m

0.2 Sec Dyn: Midpoint Dyn:

Torque

0.095 0.097 0.173

Coefficient of Friction

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

0.13 Sec (0.15 ± 0.02 Sec)

Apply Rate:

(586 ± 7 KPa)

590 kPa

 $(18.7 \pm 0.40 \text{ KJ})$ 0.493 Sec

Torque

18.4 KJ

Energy:

195 N*m 198 N*m 354 N*m

87.2 °C (93.3 ± 3.0 °C)

101

Fluid Code: LO271510

0.100 0.102 0.174

.2 Sec Dyn: Midpoint Dyn:

Coefficient of Friction

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

Date of Test: 10/15/2011

 $(0.15 \pm 0.02 \, \text{Sec})$

18.5 KJ

Energy:

(586 ± 7 KPa)

0.13 Sec

Apply Rate:

589 kPa

93.4 °C (93.3 ± 3.0 °C)

Temperature:

499

Cycle Number:

Fluid Code: LO271510

Test Number: C2-4-1574

Time of Test: 11:31:50

(18.7 ± 0.40 KJ) **0.472 Sec**

Engage Time:

Torque

205 N*m 210 N*m 357 N*m

0.100 0.102 0.174

.2 Sec Dyn:

Midpoint Dyn:

Coefficient of Friction

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

 $(0.15 \pm 0.02 \, \text{Sec})$

18.5 KJ

Energy:

(93.3 ± 3.0 °C)

93.4 °C

Temperature:

Fluid Code: LO271510

Cycle Number:

Test Number: C2-4-1574

Time of Test: 11:32:05

589 kPa

(586 ± 7 KPa)

0.13 Sec

Apply Rate:

(18.7 ± 0.40 KJ) **0.471 Sec**

Engage Time:

Torque

205 N*m 210 N*m 357 N*m

0.2 Sec Dyn: Midpoint Dyn:

0.098 0.100 0.176

Midpoint Dyn: .2 Sec Dyn:

Coefficient of Friction

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

Date of Test: 10/15/2011

 $(0.15 \pm 0.02 \text{ Sec})$

18.5 KJ

Energy:

0.13 Sec

Apply Rate:

 $(18.7 \pm 0.40 \text{ KJ})$ **0.477 Sec**

Engage Time:

Torque

202 N*m 206 N*m 362 N*m

86.7°C (93.3 ± 3.0°C)

Temperature:

Fluid Code: LO271510

Cycle Number:

Test Number: C2-4-1574

Time of Test: 11:32:36

589 kPa (586 ± 7 KPa)

0.106 0.108 0.169

.2 Sec Dyn: Midpoint Dyn:

Coefficient of Friction

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

Date of Test: 10/15/2011

 $(0.15 \pm 0.02 \, \text{Sec})$

18.5 KJ

Energy:

0.13 Sec

Apply Rate:

(586 ± 7 KPa)

(93.3 ± 3.0 °C)

93.0 °C

Temperature:

666

Cycle Number:

Fluid Code: LO271510

Test Number: C2-4-1574

Time of Test: 13:37:06

588 kPa

 $(18.7 \pm 0.40 \text{ KJ})$ 0.452 Sec

Engage Time:

222 N*m 348 N*m

217 N*m

0.2 Sec Dyn: Midpoint Dyn:

Torque

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

Date of Test: 10/15/2011 Time of Test: 13:37:21

Fluid Code: LO271510 Test Number: C2-4-1574

1000 Cycle Number: 93.0 °C

Temperature:

(93.3 ± 3.0 °C) Apply Pressure:

(586 ± 7 KPa) 588 kPa

 $(0.15 \pm 0.02 \, \text{Sec})$ 0.13 Sec Apply Rate:

18.5 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.451 Sec Engage Time:

Torque 0.2 Sec Dyn: Midpoint Dyn:

217 N*m 222 N*m 349 N*m LwSpd Dynamic:

Coefficient of Friction

0.106 0.108 0.170 .2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

0.105 0.107 0.171

.2 Sec Dyn: Midpoint Dyn:

Coefficient of Friction

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

 $(0.15 \pm 0.02 \, \text{Sec})$

18.5 KJ

Energy:

(586 ± 7 KPa)

0.13 Sec

Apply Rate:

589 kPa

 $(18.7 \pm 0.40 \text{ KJ})$ 0.455 Sec

Engage Time:

Torque

215 N*m 219 N*m 350 N*m

0.2 Sec Dyn:

Midpoint Dyn:

86.9 °C (93.3 ± 3.0 °C)

Temperature:

1001

Cycle Number:

Fluid Code: LO271510

Test Number: C2-4-1574

Time of Test: 13:37:53

0.115 0.116 0.162

.2 Sec Dyn:

Coefficient of Friction

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

Date of Test: 10/15/2011

 $(0.15 \pm 0.02 \text{ Sec})$

18.6 KJ

Energy:

0.13 Sec

Apply Rate:

(93.3 ± 3.0 °C)

93.3 °C

Temperature:

2499

Fluid Code: LO271510

Test Number: C2-4-1574

Time of Test: 19:52:23

589 kPa

(586 ± 7 KPa)

(18.7 ± 0.40 KJ) **0.428 Sec**

Engage Time:

Torque

236 N*m 239 N*m 333 N*m

0.2 Sec Dyn:

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

 $(0.15 \pm 0.02 \, \text{Sec})$

18.6 KJ

Energy:

(586 ± 7 KPa)

0.13 Sec

589 kPa

(93.3 ± 3.0 °C)

93.0 °C

2500

 $(18.7 \pm 0.40 \text{ KJ})$ 0.429 Sec

Torque

238 N*m 239 N*m 339 N*m

0.116 0.116

0.115 0.114

.2 Sec Dyn: Midpoint Dyn:

Coefficient of Friction

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

 $(0.15 \pm 0.02 \, \text{Sec})$

18.6 KJ

Energy:

(586 ± 7 KPa)

0.13 Sec

Apply Rate:

589 kPa

 $(18.7 \pm 0.40 \text{ KJ})$ 0.433 Sec

Engage Time:

Torque

234 N*m 236 N*m 335 N*m

0.2 Sec Dyn: Midpoint Dyn:

87.3 °C (93.3 ± 3.0 °C)

Temperature:

2501

Cycle Number:

Fluid Code: LO271510

Test Number: C2-4-1574

Time of Test: 19:53:09

0.119 0.119 0.162

.2 Sec Dyn: Midpoint Dyn:

Coefficient of Friction

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

Date of Test: 10/16/2011

 $(0.15 \pm 0.02 \, \text{Sec})$

18.6 KJ

Energy:

0.13 Sec

Apply Rate:

590 kPa (586 ± 7 KPa) (93.3 ± 3.0 °C)

92.7 °C

Temperature:

4999

Fluid Code: LO271510

Test Number: C2-4-1574

Time of Test: 6:17:39

(18.7 ± 0.40 KJ) **0.422 Sec**

Engage Time:

Torque

244 N*m 245 N*m 332 N*m

0.119 0.119 0.163

.2 Sec Dyn:

Midpoint Dyn:

Coefficient of Friction

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

Date of Test: 10/16/2011

 $(0.15 \pm 0.02 \, \text{Sec})$

18.6 KJ

Energy:

(586 ± 7 KPa)

0.13 Sec

Apply Rate:

590 kPa

 $(18.7 \pm 0.40 \text{ KJ})$ 0.422 Sec

Engage Time:

245 N*m 335 N*m

244 N*m

Torque

93.2 °C (93.3 ± 3.0 °C)

Temperature:

5000

Fluid Code: LO271510

Test Number: C2-4-1574

Time of Test: 6:17:54

D2 (Part 2) - 24

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

Time of Test: 6:18:25

330

380

5001

 $(18.7 \pm 0.40 \text{ KJ})$ 0.425 Sec

241 N*m 242 N*m 332 N*m

Coefficient of Friction

.2 Sec Dyn:

0.118 0.117 Midpoint Dyn: LwSpd Dynamic:

 $(0.15 \pm 0.02 \, \mathrm{Sec})$ **87.3 °C** (93.3 ± 3.0 °C) **590 kPa** (586 ± 7 KPa) 0.13 Sec 18.5 KJ Test Number: C2-4-1574 Fluid Code: LO271510 Torque 0.2 Sec Dyn: Midpoint Dyn: Engage Time: Cycle Number: Temperature: Apply Pressure: Energy: Apply Rate: LwSpd Dynamic:

Pressure (kPa) & Speed (RPM*10) 260 8 8 320 160 249 8 0.8 9.0 TIME(SEC) 9.4

55

9

20

Torque (Nm)

250

0.118 0.118 0.161

.2 Sec Dyn: Midpoint Dyn:

Coefficient of Friction

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

Date of Test: 10/16/2011

Test Number: C2-4-1574

Time of Test: 16:42:55

Fluid Code: LO271510

 $(0.15 \pm 0.02 \text{ Sec})$

18.5 KJ

Energy:

0.13 Sec

Apply Rate:

589 kPa (586 ± 7 KPa) (93.3 ± 3.0 °C)

92.8 °C

Temperature:

7499

Cycle Number:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.426 Sec

Engage Time:

Torque

242 N*m 242 N*m 330 N*m

0.2 Sec Dyn: Midpoint Dyn:

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

Test Number: C2-4-1574

Fluid Code: LO271510

7500 Cycle Number: Temperature:

92.9 °C (93.3 ± 3.0 °C) 589 kPa Apply Pressure:

 $(0.15 \pm 0.02 \text{ Sec})$ (586 ± 7 KPa) 0.13 Sec Apply Rate:

18.5 KJ Energy:

(18.7 ± 0.40 KJ) **0.428 Sec** Engage Time:

Torque

240 N*m 241 N*m 326 N*m 0.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

Coefficient of Friction

0.117 Midpoint Dyn: .2 Sec Dyn:

0.117 LwSpd Dynamic:

0.115 0.116 0.156

.2 Sec Dyn: Midpoint Dyn:

Coefficient of Friction

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

Date of Test: 10/16/2011

 $(0.15 \pm 0.02 \text{ Sec})$

18.5 KJ

Energy:

(586 ± 7 KPa)

0.13 Sec

Apply Rate:

589 kPa

Apply Pressure:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.431 Sec

Engage Time:

Torque

237 N*m 239 N*m 320 N*m

0.2 Sec Dyn: Midpoint Dyn:

87.3 °C (93.3 ± 3.0 °C)

Temperature:

7501

Cycle Number:

Fluid Code: LO271510

Test Number: C2-4-1574

Time of Test: 16:43:41

0.117

Midpoint Dyn:

.2 Sec Dyn:

0.117

Coefficient of Friction

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

 $(0.15 \pm 0.02 \text{ Sec})$

18.6 KJ

Energy:

0.13 Sec

Apply Rate:

(93.3 ± 3.0 °C)

93.1 °C

Temperature:

8666

Cycle Number:

Fluid Code: LO271510

Test Number: C2-4-1574

Time of Test: 3:07:57

(586 ± 7 KPa)

590 kPa

(18.7 ± 0.40 KJ) **0.428 Sec**

Engage Time:

Torque

239 N*m 241 N*m 323 N*m

Date of Test: 10/17/2011

0.116 0.117 0.157

Midpoint Dyn: .2 Sec Dyn:

Coefficient of Friction

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

Date of Test: 10/17/2011

 $(0.15 \pm 0.02 \text{ Sec})$

18.6 KJ

Energy:

(93.3 ± 3.0 °C)

92.7 °C

Temperature:

6666

Cycle Number:

Fluid Code: LO271510

Test Number: C2-4-1574

Time of Test: 3:08:12

(586 ± 7 KPa)

0.13 Sec

Apply Rate:

590 kPa

Apply Pressure:

(18.7 ± 0.40 KJ) **0.428 Sec**

Engage Time:

Torque

239 N*m 240 N*m 322 N*m

0.2 Sec Dyn: Midpoint Dyn:

0.116 0.117 0.160

Coefficient of Friction

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

Date of Test: 10/17/2011

0.13 Sec (0.15 ± 0.02 Sec)

Apply Rate:

(586 ± 7 KPa)

(93.3 ± 3.0 °C)

92.7 °C

Temperature:

10000

Cycle Number:

Fluid Code: LO271510

Test Number: C2-4-1574

Time of Test: 3:08:27

590 kPa

(18.7 ± 0.40 KJ) **0.427 Sec**

Engage Time:

Torque

18.6 KJ

Energy:

239 N*m 241 N*m 328 N*m

0.2 Sec Dyn: Midpoint Dyn:

STATIC TRACES

C4 Reports Version , 03-30-07

C4 Reports Version , 03-30-07

ALLISON C-4 PAPER DATA

Apply Pressure (kPa) 640 8 320 240 260 480 9 8 0 1.75 5. 1.25 STATIC CYCLE TIME(SEC) 0.75 Torque (Mm) 8 320 300 250 150 9 20

TIME(SEC)

0.75

0.25

ALLISON C-4 PAPER DATA

8

320

300

D2 (Part 2) - 34

120

5

S

Torque (Nm)

383 Nm 368 Nm

0.186

589 kPa

C4 Reports Version, 03-30-07

ALLISON C-4 PAPER DATA

500

365 Nm 359 Nm

588 kPa

C4 Reports Version, 03-30-07

ALLISON C-4 PAPER DATA

1000

352 Nm 343 Nm

Static Peak: .25 Second:

Static Peak: .25 Second:

589 kPa

ALLISON C-4 PAPER DATA

Date of Test: 10/15/2011

Time of Test: 19:52:54

Test Number: C2-4-1574

Fluid Code: LO271510

2500

Cycle Number:

353 Nm 340 Nm

590 kPa

C4 Reports Version, 03-30-07

ALLISON C-4 PAPER DATA

Date of Test: 10/16/2011

Test Number: C2-4-1574

Time of Test: 6:18:10

Fluid Code: LO271510

5000

Cycle Number:

345 Nm 334 Nm

0.168 0.163

589 kPa

ALLISON C-4 PAPER DATA

7500

Fluid Code: LO271510

341 Nm 335 Nm

590 kPa

ALLISON C-4 PAPER DATA

10000

APPENDIX – E1 CATERPILLAR TO-4 FRICTION PROPERTIES, VC-70 LO268869

SOUTHWEST RESEARCH INSTITUTE® San Antonio, Texas

Fuels and Lubricants Research Division

Report on

CATERPILLAR TO-4 FRICTION PROPERTIES, VC-70

Conducted for

ARMY LAB

Oil Code: **LO268869**

Test Number: VC70-A-163-J

October 19, 2011

Submitted by:

Brian Koehler Principal Engineer

Specialty & Driveline Fluid Evaluation

The results of this report relate only to the fluid tested.

This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute®.

CATERPILLAR TO-4 FRICTION PROPERTIES, VC-70 Summary Sheet

Company:	ARMY LAB						
Test start date: End of test date: Oil Code:	10/18/2011 10/19/2011 LO268869						
Sequence Number	1219	1220	1221	1222	1223	1224	Friction Retention
Dynamic Coefficient Vs. Cycle:		P		F			
Dynamic Coefficient Vs. Load:	***************************************	<u>P</u>		F			
Dynamic Coefficient Vs. Speed:		P	-	F			
Energy Limit:		Р		P	***************************************		
Static Coefficient Vs. Load:		P		F			
Static Coefficient Vs. Speed:	VI CONTRACTOR OF THE PARTY OF T	P		F	Mile Market annual	Marketine	
Energy Limit:	Part all a	P		P		***************************************	
Total Wear:		0.016		0.029	***************************************		
Wear Limit:	0.030	0.040	0.070	0.070	0.070	0.040	
Comments:	This testing wa	s conducted	on a referer	nced test star	nd. The resu	ılts are comp	pared to
TO-4 testing limits. 20	09 Batch parts w	ere used for t	nis sequence.				
<u> </u>		***	**			~~~~	
					····		

F = Fail P = Pass

N/A = Not Applicable

SOUTHWEST RESEARCH INSTITUTE "J" MACHINE OIL TEST LO268869 / LO-268869

Test name: A-163-J Test date: 10/18/11

Test description: J MACHINE LO268869 Oil type: LO268869 / LO-268869

Viscosity: N/A

Miscellaneous:

Software version: 1.40

Run name & desc: J0508336 - L0268869

Run date: 08/28/11
Oil temperature: 82 degrees C

Oil flow rate: 3.78 liter/minute

Operator: HC

Remarks: "J" MACHINE OIL TEST LO268869 / LO-268869

Sequence name: SEQ1220

Remarks: Use 1Y0709 Disc and 8E4095 Plate

Number of cycles run: 1097

Machine: J

Coast down check run: 02/01/00

Result: 71.40 seconds

Inertia check run: 02/01/00

Result: 1.0349 N-m-s²

Disc name & desc: 1Y0709 - Sintered Bronze Material: Raybestos 1349-ET Bronze

Groove pattern: Single Lead Spiral - 12 Radial

Miscellaneous: Use with 8E4095 Steel Plate for performance run

Outer diameter (mm): 285.80 Inner diameter (mm): 223.20 Mean radius (mm): 128.21

Batch number: 007080C800012 Remarks: SINTERED BRONZE

Plate name & desc: 8E4095 - Steel Plate

Surface: 0.70 to 1.00 micron Roughness

Miscellaneous: Install the side marked with the average roughness

Batch number: 007080C800012

Remarks: 0.80 SURFACE FINISH

Report limit name: LIM1220 - Reference run: J0508081

Limit file generated: 10/19/11

Report format name: REP1220 - SINTERED BRONZE

1Y0709 DISC THICKNESS

Loc		r Diam M2	eter M3		Inne M1	r Diam M2	eter M3
1	4.96	4.95	4.94	•	4.96	4.95	4.94
2	4.96	4.95	4.94	4	4.96	4.94	4.94
3	4.97	4.95	4.95	4	4.96	4.95	4.95
4	4.97	4.95	4.95	4	4.96	4.95	4.95
5	4.96	4.95	4.95	4	4.96	4.95	4.95
6	4.96	4.95	4.95	2	4.96	4.94	4.94
Avg	4.96	4.95	4.95	4	4.96	4.95	4.94

Compression set average wear: 0.013 M2 - M3 average Wear: 0.003

Total Wear (all measurements in mm): 0.016

Page 4 of 11 E1 - 6

Page 5 of 11 E1 - 7

SOUTHWEST RESEARCH INSTITUTE "J" MACHINE OIL TEST LO268869 / LO-268869

Test name: A-163-J Test date: 10/19/11

Test description: J MACHINE LO268869 Oil type: LO268869 / LO-268869

Viscosity: N/A

Miscellaneous:

Software version: 1.40

Run name & desc: J0508337 - J MACHINE L0268869

Run date: 08/29/11 Oil temperature: 82 degrees C

Oil flow rate: 3.78 liter/minute

Operator: HC

Remarks: "J" MACHINE OIL TEST LO268869 / LO-268869

Sequence name: SEQ1222

Remarks: Use 1Y0711 Disc and 1Y0726 Plate

Number of cycles run: 1145

Machine: J

Coast down check run: 02/01/00

Result: 71.40 seconds

Inertia check run: 02/01/00

Result: 1.0349 N-m-s²

Disc name & desc: 1Y0711 - Wheel Brake Paper Material: Raybestos 7902-1 Paper Groove pattern: 2 - 37 Multiple Parallel Use with 1Y0726 Steel Plate

Outer diameter (mm): 285.80
Inner diameter (mm): 223.20
Mean radius (mm): 128.21
Batch number: 06MR928188

Remarks: WHEEL BRAKE PAPER

Plate name & desc: 1Y0726 - Steel Plate

Surface: 0.30 micron Maximum Roughness

Miscellaneous: Install the side marked with the average roughness

Batch number: 06MR928188

Remarks: 0.24 SURFACE FINISH

Report limit name: LIM1222 - Reference run: J0508195

Limit file generated: 08/04/10

Report format name: REP1222 - WHEEL BRAKE PAPER

1Y0711 DISC THICKNESS

Loc	Oute M1	r Diam M2	eter M3	Inner Diameter M1 M2 M3
1	4.98	4.96	4.95	4.98 4.97 4.95
2	4.98	4.96	4.94	4.97 4.96 4.94
3	4.97	4.96	4.94	4.97 4.96 4.94
4	4.98	4.96	4.95	4.98 4.96 4.95
5	4.98	4.97	4.96	4.98 4.98 4.96
6	4.99	4.98	4.96	4.99 4.98 4.96
Avg	4.98	4.97	4.95	4.98 4.97 4.95

Compression set average wear: 0.013 M2 - M3 average Wear: 0.017

Total Wear (all measurements in mm): 0.029

Page 9 of 11 E1 - 11

Page 10 of 11

Page 11 of 1^o E1 - 13

APPENDIX – E2 CATERPILLAR TO-4 FRICTION PROPERTIES, VC-70 LO271510

SOUTHWEST RESEARCH INSTITUTE® San Antonio, Texas

Fuels and Lubricants Research Division

Report on

CATERPILLAR TO-4 FRICTION PROPERTIES, VC-70

Conducted for

ARMY LAB

Oil Code: **LO271510**

Test Number: VC70-A-164-J

October 21, 2011

Submitted by:

Brian Koehler // Principal Engineer

Specialty & Driveline Fluid Evaluation

The results of this report relate only to the fluid tested.

This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute®.

CATERPILLAR TO-4 FRICTION PROPERTIES, VC-70 Summary Sheet

Company:	ARMY LAB						
Test start date: End of test date: Oil Code:	10/20/2011 10/21/2011 LO271510						
Sequence Number	1219	1220	1221	1222	1223	1224	Friction Retention
Dynamic Coefficient Vs. Cycle:		P		F			
Dynamic Coefficient Vs. Load:		P		F			
Dynamic Coefficient Vs. Speed:		P		F	***************************************		
Energy Limit:		P		P			
Static Coefficient Vs. Load:		P		<u>P</u>	Walter the second second		
Static Coefficient Vs. Speed:		P		P			
Energy Limit:		P		P			
Total Wear:	Website State Stat	0.006	W. 44.00	0.029			
Wear Limit:	0.030	0.040	0.070	0.070	0.070	0.040	
Comments: TO-4 testing limits. 20	This testing wa				nd. The resu	ılts are com	pared to

F = Fail P = Pass

N/A = Not Applicable

SOUTHWEST RESEARCH INSTITUTE "J" MACHINE OIL TEST LO271510 / LO-271510

Test name: A-164-J Test date: 10/20/11

Test description: J MACHINE LO271510
Oil type: LO271510 / LO-271510

Viscosity: N/A

Miscellaneous:

Software version: 1.40

Run name & desc: J0508338 - J MACHINE L0271510

Run date: 08/30/11
Oil temperature: 82 degrees C
Oil flow rate: 3.78 liter/minute

Operator: HC

Remarks: "J" MACHINE OIL TEST LO271510 / LO-271510

Sequence name: SEQ1220

Remarks: Use 1Y0709 Disc and 8E4095 Plate

Number of cycles run: 1140

Machine: J

Coast down check run: 02/01/00

Result: 71.40 seconds

Inertia check run: 02/01/00

Result: 1.0349 N-m-s²

Disc name & desc: 1Y0709 - Sintered Bronze Material: Raybestos 1349-ET Bronze

Groove pattern: Single Lead Spiral - 12 Radial

Miscellaneous: Use with 8E4095 Steel Plate for performance run

Outer diameter (mm): 285.80 Inner diameter (mm): 223.20 Mean radius (mm): 128.21

Batch number: 007080C800012 Remarks: SINTERED BRONZE

Plate name & desc: 8E4095 - Steel Plate

Surface: 0.70 to 1.00 micron Roughness

Miscellaneous: Install the side marked with the average roughness

Batch number: 007080C800012

Remarks: 0.90 SURFACE FINISH

Report limit name: LIM1220 - Reference run: J0508081

Limit file generated: 10/19/11

Report format name: REP1220 - SINTERED BRONZE

1Y0709 DISC THICKNESS

Loc	Oute M1	r Diam M2	eter M3		Inne: M1	r Diame M2	eter M3
1	4.92	4.92	4.92	4	1.92	4.92	4.92
2	4.95	4.94	4.94	4	1.94	4.93	4.93
3	4.93	4.93	4.93	4	1.93	4.93	4.93
4	4.93	4.92	4.92	4	1.93	4.92	4.92
5	4.93	4.92	4.92	4	1.92	4.92	4.92
6	4.93	4.92	4.92	4	1.93	4.92	4.92
Avg	4.93	4.93	4.93	4	1.93	4.92	4.92

Compression set average wear: 0.006 M2 - M3 average Wear: 0.000

Total Wear (all measurements in mm): 0.006

Page 5 of 12

E2 - 7 Page 6 of 12

Page 7 of 12

SOUTHWEST RESEARCH INSTITUTE "J" MACHINE OIL TEST LO271510 / LO-271510

Test name: A-164-JTest date: 10/21/11

Test description: J MACHINE LO271510
Oil type: LO271510 / LO-271510

Viscosity: N/A

Miscellaneous:

Software version: 1.40

Run name & desc: J0508339 - J MACHINE L0271510

Run date: 08/31/11
Oil temperature: 82 degrees C
Oil flow rate: 3.78 liter/minute

Operator: HC

Remarks: "J" MACHINE OIL TEST LO271510 / LO-271510

Sequence name: SEQ1222

Remarks: Use 1Y0711 Disc and 1Y0726 Plate

Number of cycles run: 1132

Machine: J

Coast down check run: 02/01/00

Result: 71.40 seconds

Inertia check run: 02/01/00

Result: 1.0349 N-m-s²

Disc name & desc: 1Y0711 - Wheel Brake Paper Material: Raybestos 7902-1 Paper Groove pattern: 2 - 37 Multiple Parallel Use with 1Y0726 Steel Plate

Outer diameter (mm): 285.80
Inner diameter (mm): 223.20
Mean radius (mm): 128.21
Batch number: 06MR928188

Remarks: WHEEL BRAKE PAPER

Plate name & desc: 1Y0726 - Steel Plate

Surface: 0.30 micron Maximum Roughness

Miscellaneous: Install the side marked with the average roughness

Batch number: 06MR928188

Remarks: 0.32 SURFACE FINSH

Report limit name: LIM1222 - Reference run: J0508195

Limit file generated: 08/04/10

Report format name: REP1222 - WHEEL BRAKE PAPER

1Y0711 DISC THICKNESS

Loc	Oute M1	r Diam M2	eter M3	Inner Diameter M1 M2 M3	
1	4.92	4.89	4.88	4.91 4.89 4.8	8
2	4.89	4.86	4.86	4.88 4.86 4.8	5
3	4.89	4.86	4.86	4.89 4.87 4.8	6
4	4.90	4.87	4.87	4.90 4.87 4.8	7
5	4.89	4.87	4.87	4.89 4.87 4.8	7
6	4.91	4.88	4.88	4.91 4.88 4.8	8
Avg	4.90	4.87	4.87	4.90 4.87 4.8	7

Compression set average wear: 0.026 M2 - M3 average Wear: 0.003

Total Wear (all measurements in mm): 0.029

E2 - 11 Page 10 of 12

E2 - 12 Page 11 of 12

Page 12 of 12

APPENDIX – F1 JOHN DEERE JDQ-96 PERFORMED USING 1400 SERIES AXLE LO268869

SOUTHWEST RESEARCH INSTITUTE® San Antonio, Texas

Fuels and Lubricants Research Division

Report on

John Deere JDQ-96 Performed using 1400 Series Axle

Conducted for

U.S. Army TARDEC Fuels and Lubricants Research Facility

LO268869

Test Number 11843

November 23, 2011

Submitted by:

Brian Decker

Engineer

Specialty & Driveline Fluid Evaluations

The results of this report relate only to the items tested.

This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute[®].

General Information

 Oil Code: LO268869
 E.O.T. Date: November 23, 2011

Purpose

The purpose of this test was to evaluate the anti-chatter properties of this oil on the brakes of a 1400 series John Deere Inboard Planetary Axle.

Test Procedure

The test was performed as specified by John Deere Product Engineering. The only changes made to the Deere procedure were those necessary to compensate for a different spiral bevel gear ratio. This procedure is proprietary to Deere and Company.

Data Interpretation

The capacity for each engagement is the average torque during the middle of the engagement. The torque variation is the greatest difference between the maximum and minimum torque recorded during any 0.2-second portion of the engagement. The SwRI variation is the sum of all differences between the maximum torque and minimum torque for each engagement. It is obtained by summing all torque variations of each 0.2-second time block of all engagements.

Test Number

The run number listed on this report is a random number and is not sequential. Only SwRI[®] can link this run number to JDQ-96, LO268869, November 23, 2011.

Results

The candidate results can be compared to the baseline reference average. Pass or fail decisions are only made by John Deere Product Engineering. The current reference baseline average is the average of the five most recent tests.

Current Reference Baseline Average (N·m)										
	1,000 Cycles	10,000 Cycles	20,000 Cycles	30,000 Cycles	TOTAL					
Relative Capacity	330,753	340,749	339,241	341,212	1,351,955					
Torque Variation	171,228	148,851	144,908	139,005	603,993					

Results From Test Candidate LO268869										
	1,000 Cycles	10,000 Cycles	20,000 Cycles	30,000 Cycles	TOTAL					
Relative Capacity	335,125	N/A	N/A	N/A	335,125					
Torque Variation	206,202	N/A	N/A	N/A	206,202					

Table 1 of the Appendix contains chatter test results from 1,000. Table 2 contains results of the five current baseline reference tests. Table 3 contains the history of tests conducted on reference oil and a graphic presentation of 1000-cycle reference results on LO268869.

Figures 1 and 2 are graphic presentations of candidate oil performance compared to baseline reference data.

Oil Code: LO268869 E.O.T. Date: November 23, 2011

Appendix

- 1. Table 1 Durability results 1,000 cycles Candidate Oil
- 2. Table 2 Reference Data Compared to Candidate Data
- 3. Table 3 History of tests conducted on reference oil & graphic presentation of 1000 cycle reference results & Candidate
- 4. Figure 1 & Figure 2 Torque Variation & Relative Capacity Chart

TABLE 1: JDQ-96 DURABILITY TEST RESULTS 1,000 CYCLES
Electrically Powered Test Stand

LO268869 Sponsor Oil Code

November 23, 2011 Date

_	1																					
		Temp.	89	89	29	29	89	89	89	89	89	89	69	20	20	69	69	89	89	89	89	29
	Oil Temp. 71°C	Variation	1241	1570	2257	2573	2842	2718	2701	2631	2375	2557	2309	2595	2331	2485	2435	2595	2520	2799	3218	2894
	0	Torque	4228	4199	4127	4104	4057	4003	3960	3919	3859	3833	3795	3768	1606	2452	3289	4151	4937	9299	6461	7157
N in Nm)		Temp.	59	59	28	58	59	59	59	59	59	29	09	61	61	09	09	09	09	59	59	29
TORQUE VARIATION TEST RESULTS (TORQUE and VARIATION in Nm.)	Oil Temp. 60°C	Variation	1413	1645	2242	2826	2818	2618	2665	2533	2507	2625	2480	2411	2296	2402	2531	2524	2604	2913	3211	3106
SULTS (TOR		Torque	4067	4043	4026	3977	3930	3875	3829	3784	3736	3697	3661	3622	1625	2483	3348	4173	4808	5717	6538	7048
N TEST RES	O	Temp.	47	47	46	47	47	48	48	48	48	48	49	50	20	49	45	45	46	46	46	46
E VARIATIO	Oil Temp. 49°C	Variation	1427	1811	2316	2807	2858	2800	2513	2575	2587	2427	2300	2367	2369	2525	2501	2748	2680	3184	2995	3180
TORQUI	0	Torque	4201	4192	4140	4117	4059	4001	3950	3896	3852	3810	3773	3732	1621	2465	3312	4150	4979	2929	0809	7482
	၁	Temp.	21	21	21	21	22	22	23	24	25	27	28	29	30	30	30	30	30	30	30	31
	Oil Temp. 32°C	Variation	2220	2423	2865	2864	3226	2967	2750	2731	2741	2557	2551	2441	2400	2452	2718	2691	2872	3257	3467	3027
		Torque	4335	4369	4364	4312	4240	4178	4123	4077	4023	3959	3909	3864	1584	2477	3324	4211	5033	5862	6120	7614
Brake	Press.	(kPa)	3831	3831	3831	3831	3831	3831	3831	3831	3831	3831	3831	3831	1532	2300	3065	3831	4598	5364	6130	7050
Axle	Speed	(rpm)	80	10	15	20	25	30	35	40	45	50	55	09	15	15	15	15	15	15	15	15
_																						

	Relative	Torque	SwRI
Temp	Capacity	Variation	Variation
(°C)	(Nm)	(Nm)	(Nm)
32	85,978	55,218	896,035
49	83,577	50,970	822,720
09	81,987	50,368	795,669
71	83,584	49,645	784,552
TOTAL	335,125	206,202	3,298,976

TABLE 2: JDQ-96 Electric Initial Test Stand REFERENCE DATA

Candidate Oil Code: LO268869 EOT Date: November 23, 2011

Reference Oil Code: 69X31111M

					Average Facing
	Cycles	Relative Capacity	Torque Variation	SwRI Variation	Thickness
First Reference Run					(millimeters)
11279	1,000	329,975	160,449	2,530,213	7.45
	10,000	336,719	115,287	1,647,685	7.23
	20,000	334,984	119,314	1,755,276	7.03
	30,000	335,508	119,149	1,592,586	6.78
	Total	1,337,186	514,198	7,525,760	
Second Reference Run					
11852	1,000	327,258	172,283	2,624,608	7.42
	10,000	336,696	208,440	2,732,636	7.24
	20,000	339,033	152,391	2,143,494	7.08
	30,000	333,213	147,746	2,127,478	6.94
	Total	1,336,201	680,859	9,628,216	
Third Reference Run					
11663	1,000	325,464	179,529	2,696,409	7.43
	10,000	340,089	146,169	2,145,968	7.23
	20,000	330,568	145,948	2,016,724	7.07
	30,000	332,713	148,011	2,001,514	6.88
	Total	1,328,834	619,656	8,860,614	
Fourth Reference Run					
11922	1,000	325,990	179,251	2,596,844	7.46
	10,000	334,464	156,902	2,185,176	7.31
	20,000	333,886	183,892	2,437,145	7.18
	30,000	339,695	147,072	2,033,787	7.07
	Total	1,334,036	667,118	9,252,951	
Fifth Reference Run					
11175	1,000	345,076	164,630	2,569,506	7.46
	10,000	355,779	117,458	1,636,195	7.26
	20,000	357,736	122,993	1,721,073	7.09
	30,000	364,928	133,050	1,799,847	6.84
	Total	1,423,519	538,132	7,726,620	
Candidate oil					
LO268869		335,125	206,202	3,298,976	

Table 3: History of 1000 cycle reference tests

Candidate Oil Code: LO268869 EOT Date: November 23, 2011

Oil Code	Comments	Torque Variation 1000 cycles
69X31111M	new piston and backing plate	160,449
69X31111M	new piston and backing plate	172,283
69X31111M	new piston and backing plate	179,529
69X31111M	new piston and backing plate	179,251
69X31111M	new piston and backing plate	164,630
69X31111M	new piston and backing plate	194,668
69X31111M	new piston and backing plate	183,301
LO268869	new piston and backing plate	206,202

APPENDIX – F2 JOHN DEERE JDQ-96 PERFORMED USING 1400 SERIES AXLE LO271510

SOUTHWEST RESEARCH INSTITUTE® San Antonio, Texas

Fuels and Lubricants Research Division

Report on

John Deere JDQ-96 Performed using 1400 Series Axle

Conducted for

U.S. Army TARDEC Fuels and Lubricants Research Facility

LO271510

Test Number 11114

December 1, 2011

Submitted by:

R

Brian Decker Engineer

Specialty & Driveline Fluid Evaluations

The results of this report relate only to the items tested.

This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute[©].

General Information

Oil Code: LO271510	E.O.T. Date: December 1, 2011
+ Oil Code. LOZ/ 1310	FUI Date: December 1 2011
	L.O.I. Date. December 1, 2011

Purpose

The purpose of this test was to evaluate the anti-chatter properties of this oil on the brakes of a 1400 series John Deere Inboard Planetary Axle.

Test Procedure

The test was performed as specified by John Deere Product Engineering. The only changes made to the Deere procedure were those necessary to compensate for a different spiral bevel gear ratio. This procedure is proprietary to Deere and Company.

Data Interpretation

The capacity for each engagement is the average torque during the middle of the engagement. The torque variation is the greatest difference between the maximum and minimum torque recorded during any 0.2-second portion of the engagement. The SwRI variation is the sum of all differences between the maximum torque and minimum torque for each engagement. It is obtained by summing all torque variations of each 0.2-second time block of all engagements.

Test Number

The run number listed on this report is a random number and is not sequential. Only SwRI® can link this run number to JDQ-96, LO271510, December 1, 2011.

Results

Oil Code: LO271510	E.O.T. Date: December 1, 2011

The candidate results can be compared to the baseline reference average. Pass or fail decisions are only made by John Deere Product Engineering. The current reference baseline average is the average of the five most recent tests.

Current Reference Baseline Average (N · m)								
	1,000 Cycles	10,000 Cycles	20,000 Cycles	30,000 Cycles	TOTAL			
Relative Capacity	330,753	340,749	339,241	341,212	1,351,955			
Torque Variation	171,228	148,851	144,908	139,005	603,993			

Results From Test Candidate LO271510								
	1,000 Cycles	10,000 Cycles	20,000 Cycles	30,000 Cycles	TOTAL			
Relative Capacity	392,229	N/A	N/A	N/A	392,229			
Torque Variation	264,603	N/A	N/A	N/A	264,603			

Table 1 of the Appendix contains chatter test results from 1,000 cycles. Table 2 contains results of the five current baseline reference tests. Table 3 contains the history of tests conducted on reference oil and a graphic presentation of 1000-cycle reference results on LO271510.

Figures 1 and 2 are graphic presentations of candidate oil performance compared to baseline reference data.

 Oil Code:
 LO271510

 E.O.T. Date:
 December 1, 2011

Appendix

Tables

- 1. Table 1 Durability results 1,000 cycles Candidate Oil
- 2. Table 2 Reference Data Compared to Candidate Data
- 3. Table 3 History of tests conducted on reference oil and graphic presentation of 1000 cycle reference results & Candidate
- 4. Figure 1 & Figure 2 Torque Variation & Relative Capacity Chart

TABLE 1: JDQ-96 DURABILITY TEST RESULTS 1,000 CYCLES
Electrically Powered Test Stand

SwRI Oil Code

LO-271510

Sponsor Oil Code

LO271510

	Т	Т	Т																			
	0	Temp.	89	68	29	29	89	89	89	68	69	69	70	71	71	64	64	64	65	65	65	65
	Oil Temp. 71°C	Variation	1931	2240	2943	3854	4462	4918	5170	3101	3248	3135	3044	3110	2637	2919	3231	3521	3744	4170	4059	2786
		Torque	4914	4878	4888	4842	4819	4809	4808	4802	4808	4778	4742	4702	1888	2828	3801	4827	5794	6798	7235	8262
TION in Nm	O	Temp.	59	58	28	28	29	59	09	09	09	61	62	63	58	58	28	58	28	58	58	228
and VARIA	Oil Temp. 60°C	Variation	1884	2215	2908	3797	4409	4915	5334	3010	3407	3259	3040	2947	2498	2635	2661	3085	3293	3495	3689	2731
S (TORQUE	0	Torque	5021	4964	4976	4932	4887	4834	4772	4701	4714	4719	4704	4695	1918	2885	3892	4742	5463	6328	7029	8291
ST RESULT		Temp.	47	47	46	47	47	48	48	48	49	49	20	51	47	45	45	46	46	46	47	47
DRQUE VARIATION TEST RESULTS (TORQUE and VARIATION in Nm	Oil Temp. 49°C	Variation	1890	2213	2819	3679	4248	4830	4079	3026	3176	2930	3284	3236	2639	2947	3126	3393	3918	4163	3855	2543
ORQUE VA	0	Torque	5010	4978	4981	4949	4919	4853	4748	4687	4683	4682	4680	4671	1860	2817	3834	4823	5754	2699	7161	8420
	0	Temp.	20	21	21	21	21	22	23	24	25	27	28	30	30	30	30	30	30	30	31	31
	Oil Temp. 32°C	Variation	2429	2484	3085	3692	4244	4171	3250	3081	2982	2916	2972	2926	2591	2778	3147	3329	3676	4234	3859	3332
	-	Torque	4548	4597	4679	4727	4738	4700	4645	4593	4534	4520	4471	4426	1793	2700	3659	4587	5586	6524	7416	7888
Brake	Press.	(kPa)	3831	3831	3831	3831	3831	3831	3831	3831	3831	3831	3831	3831	1532	2300	3065	3831	4598	5364	6130	7050
Axle	Speed	(rpm)	∞	10	15	20	25	30	35	40	45	20	22	09	15	15	15	15	15	5	15	15
L		1																				

Z MA	Variation	(Nm)	1,067,069	1,057,131	1,079,366	1,088,670	4,292,236	
lorque	Variation	(Nm)	65,176	65,992	65,211	68,224	264,603	
Relative	Capacity	(Nm)	95,330	99,208	98,467	99,223	392,229	
	Temp	(°C)	32	49	09	71	TOTAL	

TABLE 2: JDQ-96 Electric Initial Test Stand REFERENCE DATA

Candidate Oil Code: LO271510 EOT Date: December 1, 2011

Reference Oil Code: 69X31111M

					Average Facing
	Cycles	Relative Capacity	Torque Variation	SwRI Variation	Thickness
First Reference Run					(millimeters)
11279	1,000	329,975	160,449	2,530,213	7.45
	10,000	336,719	115,287	1,647,685	7.23
	20,000	334,984	119,314	1,755,276	7.03
	30,000	335,508	119,149	1,592,586	6.78
	Total	1,337,186	514,198	7,525,760	
Second Reference Run					
11852	1,000	327,258	172,283	2,624,608	7.42
	10,000	336,696	208,440	2,732,636	7.24
	20,000	339,033	152,391	2,143,494	7.08
	30,000	333,213	147,746	2,127,478	6.94
	Total	1,336,201	680,859	9,628,216	
Third Reference Run					
11663	1,000	325,464	179,529	2,696,409	7.43
	10,000	340,089	146,169	2,145,968	7.23
	20,000	330,568	145,948	2,016,724	7.07
	30,000	332,713	148,011	2,001,514	6.88
	Total	1,328,834	619,656	8,860,614	
Fourth Reference Rur					
11922	1,000	325,990	179,251	2,596,844	7.46
	10,000	334,464	156,902	2,185,176	7.31
	20,000	333,886	183,892	2,437,145	7.18
	30,000	339,695	147,072	2,033,787	7.07
	Total	•	667,118	9,252,951	
Fifth Reference Run		, ,	,	-, - ,	
11175	1,000	345,076	164,630	2,569,506	7.46
	10,000	355,779	117,458	1,636,195	7.26
	20,000	357,736	122,993	1,721,073	7.09
	30,000	364,928	133,050	1,799,847	6.84
	Total		538,132	7,726,620	
Candidate oil		TO THE RESERVE OF THE PARTY OF			
LO271510	1,000	392,229	264,603	4,292,236	

Table 3: History of 1000 cycle reference tests

Canidate Oil Code: LO271510 EOT Date: December 1, 2011

Oil Code	Comments	Torque Variation 1000 cycles
69X31111M	new piston and backing plate	160,449
69X31111M	new piston and backing plate	172,283
69X31111M	new piston and backing plate	179,529
69X31111M	new piston and backing plate	179,251
69X31111M	new piston and backing plate	164,630
69X31111M	new piston and backing plate	194,668
69X31111M	new piston and backing plate	183,301
LO271510	new piston and backing plate	264,603

APPENDIX G GEP 6.5L(T) TEST FUEL

Test Fuel Description:

Fuel used for engine durability testing was blended on site from commercially available Jet-A. To ensure that fuel lubricity impacts would have a minimized role on fuel system degradation resulting in reduced engine performance, a double max treat rate of lubricity additive DCI-4A was used during blending. The remaining two additives utilized in JP8, anti-icing and anti-static, were not used in the test fuel blend, as they have little to no impact on the fuel used in this application. Table G1 below shows the certificate of analysis (COA) for the Jet-A as purchased for blending. Table G2 shows the resulting fuel lubricity values after the double max treat rate of DCI-4A was successfully blended into the test fuel.

 $Table\ G1-JET-A\ Certificate\ of\ Analysis$

San Antonio, Texas 78224-1017 Sample Type: Jet A Tank Number.: 103 nt @ 1600 02/21/10 pu @ 0600 02/22/10 Volatility Method D Speci Initial Boiling Point (°F) D 86 Distillation 10% Rec (°F) Report Distillation 50% Rec (°F) Report Distillation 95% Rec (°F) Report Distillation Final BP (°F) S72 Distillation Recovery (vol %) Distillation Residue (vol %) 1.5 Distillation Loss (vol %) 1.5 Flash Point, Tag Closed (°F) D 1298 37.0 / 51. Cetane Index D 4737 40.0 Particulate Matter Mgs/Gal D 2276 3.0 Sulfur Wt % D 7220 0.30 Copper Strip D130 No. 1 Existent Gum Mgs / 100 Mls. D381 7 Fluidity Freezing Point (°F) D 2386 -41.0 Contaminants Color (Saybolt) D 156 +15 Appearance D4176 clear/brig Water Reaction: Change D 1094 2.0 Water Reaction: Interface Rating D 1094 2		etrolab.com
P. O. Box 241017 San Antonio, Texas 78224-1017 Sample Type: Jet A Tank Number.: 103 nt @ 1600 02/21/10 pu @ 0600 02/22/10 Volatility Method D 86 Distillation 10% Rec (°F) A00 Distillation 50% Rec (°F) Report Report Report Distillation 90% Rec (°F) Report Distillation 95% Rec (°F) Report Distillation Final BP (°F) S72 Distillation Final BP (°F) S72 Distillation Recovery (vol %) Distillation Residue (vol %) 1.5 Distillation Loss (vol %) 1.5 Flash Point, Tag Closed (°F) D 56 100 API Gravity @ 60 (°F) D 1298 37.0 / 51. Cetane Index D 4737 40.0 Particulate Matter Mgs/Gal D 2276 3.0 Sulfur Wt % D 7220 0.30 Copper Strip D130 No. 1 Existent Gum Mgs / 100 Mls. D381 7 Fluidity Freezing Point (°F) D 2386 -41.0 Contaminants Color (Saybolt) D 156 +15 Appearance D4176 clear/brig Water Reaction: Interface Rating D 1094 2.0 Water Reaction: Interface Rating D 1094 2.0		uary 22, 2010
Tank Number.: 103 nt @ 1600 02/21/10 pu @ 0600 02/22/10 Volatility		
Volatility Initial Boiling Point (°F) Distillation 10% Rec (°F) Distillation 50% Rec (°F) Distillation 90% Rec (°F) Distillation 95% Rec (°F) Distillation Final BP (°F) Distillation Recovery (vol %) Distillation Residue (vol %) Distillation Loss (vol %) Distillation Loss (vol %) Flash Point, Tag Closed (°F) Detail Index Distillation Loss (vol %) Distillation Recovery (vol %) Distillation Point (°F) Distillation Point (°F) Distillation Recovery (vol %) Distillation Point (°F) Distillation Recovery (vol %) Distillation Point (°F) Distillation Point (Sample Date: Sample Time:	02/22/10 630
Initial Boiling Point (°F) Distillation 10% Rec (°F) Distillation 50% Rec (°F) Distillation 90% Rec (°F) Report Distillation 95% Rec (°F) Report Distillation Final BP (°F) Distillation Final BP (°F) Distillation Recovery (vol %) Distillation Residue (vol %) Distillation Loss (vol %) Distillation Loss (vol %) Flash Point, Tag Closed (°F) API Gravity @ 60 (°F) Cetane Index D 4737 D 1298 D 1298 D 37.0 / 51. Cetane Index D 4737 D 1298 D	ification	Result
Distillation 10% Rec (°F) 400 Distillation 50% Rec (°F) Report Distillation 90% Rec (°F) Report Distillation 95% Rec (°F) Report Distillation Final BP (°F) 572 Distillation Recovery (vol %) 1.5 Distillation Loss (vol %) 1.5 Flash Point, Tag Closed (°F) D 56 100 API Gravity @ 60 (°F) D 1298 37.0 / 51. Cetane Index D 4737 40.0 Particulate Matter Mgs/Gal D 2276 3.0 Sulfur Wt % D 7220 0.30 Copper Strip D130 No. 1 Existent Gum Mgs / 100 Mls. D381 7 Fluidity Freezing Point (°F) D 2386 -41.0 Contaminants Color (Saybolt) D 156 +15 Appearance D4176 clear/brig Water Reaction: Change D 1094 2.0 Water Reaction: Interface Rating D 1094 2	EARCH CALCADE	320.0
Distillation 50% Rec (°F) Distillation 90% Rec (°F) Distillation 95% Rec (°F) Distillation Final BP (°F) Distillation Final BP (°F) Distillation Recovery (vol %) Distillation Residue (vol %) Distillation Loss (vol %) Distillation Loss (vol %) Flash Point, Tag Closed (°F) API Gravity @ 60 (°F) Cetane Index D 4737 40.0 Particulate Matter Mgs/Gal D 2276 Sulfur Wt % D 7220 D 30 Copper Strip D 130 No. 1 Existent Gum Mgs / 100 Mls. D 2386 Fluidity Freezing Point (°F) Contaminants Color (Saybolt) Appearance Water Reaction: Change Water Reaction: Interface Rating D 1094 2	max	334.4
Distillation 90% Rec (°F) Distillation 95% Rec (°F) Distillation Final BP (°F) Distillation Recovery (vol %) Distillation Residue (vol %) Distillation Loss (vol %) Distillation Loss (vol %) Flash Point, Tag Closed (°F) API Gravity @ 60 (°F) Cetane Index Particulate Matter Mgs/Gal Sulfur Wt % Copper Strip Diad No. 1 Fluidity Freezing Point (°F) Contaminants Color (Saybolt) Appearance Water Reaction: Change Water Reaction: Interface Rating Distillation 95% Rec (°F) Report R		365.9
Distillation 95% Rec (°F) Distillation Final BP (°F) Distillation Recovery (vol %) Distillation Residue (vol %) Distillation Loss (vol %) Flash Point, Tag Closed (°F) API Gravity @ 60 (°F) Cetane Index Particulate Matter Mgs/Gal Sulfur Wt % Copper Strip Existent Gum Mgs / 100 Mls. Fluidity Freezing Point (°F) Contaminants Color (Saybolt) Appearance Water Reaction: Change Water Reaction: Interface Rating Distillation Proper Strip D 56 100 1.5 D 56 100 A7.0 / 51. D 298 37.0 / 51. 40.0 D 4737 40.0 D 2276 3.0 No. 1 D 7220 D 30 No. 1 Fluidity Freezing Point (°F) D 2386 -41.0 Contaminants Color (Saybolt) Appearance D 1094 2.0 Water Reaction: Interface Rating D 1094 2		415.4
Distillation Final BP (°F) Distillation Recovery (vol %) Distillation Residue (vol %) Distillation Loss (vol %) Flash Point, Tag Closed (°F) API Gravity @ 60 (°F) Cetane Index Particulate Matter Mgs/Gal Sulfur Wt % D 7220 D 30 Copper Strip D 130 No. 1 Existent Gum Mgs / 100 Mls. D 2386 -41.0 Contaminants Color (Saybolt) Appearance Water Reaction: Change Water Reaction: Interface Rating D 1094 2 1.5 1.5 1.5 1.5 1.5 1.5 1.5		433.4
Distillation Recovery (vol %) Distillation Residue (vol %) Distillation Loss (vol %) Flash Point, Tag Closed (°F) API Gravity @ 60 (°F) Cetane Index Particulate Matter Mgs/Gal Sulfur Wt % Copper Strip Di30 Existent Gum Mgs / 100 Mls. Fluidity Freezing Point (°F) Contaminants Color (Saybolt) Appearance Water Reaction: Change Water Reaction: Interface Rating D 56 100 1.5 1.5 1.5 1.5 1.5 1.5 1.5	max	459.5
Distillation Loss (vol %)		98.9
Flash Point, Tag Closed (°F) D 56 100 API Gravity @ 60 (°F) D 1298 37.0 / 51. Cetane Index D 4737 40.0 Particulate Matter Mgs/Gal D 2276 3.0 Sulfur Wt % D 7220 0.30 Copper Strip D130 No. 1 Existent Gum Mgs / 100 Mls. D381 7 Fluidity Freezing Point (°F) D 2386 -41.0 Contaminants Color (Saybolt) D 156 +15 Appearance D4176 clear/brig Water Reaction: Change D 1094 2.0 Water Reaction: Interface Rating D 1094 2	max	0.9
API Gravity @ 60 (°F) D 1298 37.0 / 51. Cetane Index D 4737 40.0 Particulate Matter Mgs/Gal D 2276 3.0 Sulfur Wt % D 7220 0.30 Copper Strip D130 No. 1 Existent Gum Mgs / 100 Mls. D381 7 Fluidity Freezing Point (°F) D 2386 -41.0 Contaminants Color (Saybolt) D 156 +15 Appearance D4176 clear/brig Water Reaction: Change D 1094 2.0 Water Reaction: Interface Rating D 1094 2	max	0.2
Cetane Index D 4737 40.0 Particulate Matter Mgs/Gal D 2276 3.0 Sulfur Wt % D 7220 0.30 Copper Strip D130 No. 1 Existent Gum Mgs / 100 Mls. D381 7 Fluidity Freezing Point (°F) D 2386 -41.0 Contaminants Color (Saybolt) D 156 +15 Appearance D4176 clear/brig Water Reaction: Change D 1094 2.0 Water Reaction: Interface Rating D 1094 2	min	121.0
Particulate Matter Mgs/Gal D 2276 3.0 Sulfur Wt % D 7220 0.30 Copper Strip D130 No. 1 Existent Gum Mgs / 100 Mls. D381 7 Fluidity Freezing Point (°F) D 2386 -41.0 Contaminants Color (Saybolt) D 156 +15 Appearance D4176 clear/brig Water Reaction: Change D 1094 2.0 Water Reaction: Interface Rating D 1094 2	.0	45.8
Sulfur Wt % D 7220 0.30 Copper Strip D130 No. 1 Existent Gum Mgs / 100 Mls. D381 7 Fluidity Freezing Point (°F) D 2386 -41.0 Contaminants Color (Saybolt) D 156 +15 Appearance D4176 clear/brig Water Reaction: Change D 1094 2.0 Water Reaction: Interface Rating D 1094 2	min	41.3
Copper Strip D130 No. 1 Existent Gum Mgs / 100 Mls. D381 7 Fluidity Freezing Point (°F) D 2386 -41.0 Contaminants Color (Saybolt) D 156 +15 Appearance D4176 clear/brig Water Reaction: Change D 1094 2.0 Water Reaction: Interface Rating D 1094 2	max	0.8
Existent Gum Mgs / 100 Mls. D381 7 Fluidity Freezing Point (°F) D 2386 -41.0 Contaminants Color (Saybolt) D 156 +15 Appearance D4176 clear/brig Water Reaction: Change D 1094 2.0 Water Reaction: Interface Rating D 1094 2	max	0.0001
Fluidity Freezing Point (°F) Contaminants Color (Saybolt) Appearance Water Reaction: Change Water Reaction: Interface Rating D 2386 -41.0 -41.0 -41.0 Clear/brig D 156 +15 clear/brig D 1094 2.0 D 1094 2	max	1A
Freezing Point (°F) Contaminants Color (Saybolt) Appearance Water Reaction: Change Water Reaction: Interface Rating D 2386 -41.0 -41.0 Clear/brig D 156 +15 clear/brig D 1094 2.0 D 1094 2	max	<1.0
Freezing Point (°F) Contaminants Color (Saybolt) Appearance Water Reaction: Change Water Reaction: Interface Rating D 2386 -41.0 -41.0 Clear/brig D 156 +15 clear/brig D 1094 2.0 D 1094 2		
Contaminants Color (Saybolt) D 156 +15 Appearance D4176 clear/brig Water Reaction: Change D 1094 2.0 Water Reaction: Interface Rating D 1094 2	max	-76.9
Color (Saybolt) D 156 +15 Appearance D4176 clear/brig Water Reaction: Change D 1094 2.0 Water Reaction: Interface Rating D 1094 2		
Appearance D4176 clear/brig Water Reaction: Change D 1094 2.0 Water Reaction: Interface Rating D 1094 2	min	+30
Water Reaction: Change D 1094 2.0 Water Reaction: Interface Rating D 1094 2		Pass
Water Reaction: Interface Rating D 1094 2	max	0
	max	1
The state of the s	max	1
MSEP D 3948 85	min	99
This Product Conforms to ASTM D1655 for the Above Tests: XX		55
Reviewed and submitted by,	110	

Table G2 - JET-A Lubricity Test Results

Property	ASTM	Result
Scuffing Load BOCLE	D6078	3450
BOCLE	D5001	0.5
HFFR	D6079	0.69