EE Formula Sheet

Constants

$$\begin{split} q &= 1.602 \times 10^{-19} \text{ C} \\ m_e &= 9.109 \times 10^{-31} \text{ kg} \\ h &= 6.626 \times 10^{-34} \text{ J} \cdot \text{s} \\ k &= 1.381 \times 10^{-23} \text{ J/K} \\ \varepsilon_0 &= 8.854 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2) \\ c &= 3.00 \times 10^8 \text{ m/s} \\ e &\approx 1.6 \times 10^{-19} \text{ C} \\ kT &\approx 0.026 \text{eVat} T = 300 \text{K} \end{split}$$

Formulae

 $kT_{temp} = 0.026(\frac{temp}{300})$, kT at a temperature temp $\sigma = en\mu_n + ep\mu_p$, Conduction $n_i^2 = n_0 p_0$, concentration at equilibrium $n_i^2 = n_c n_v e^{-E_g/kT},$ $n_i^2 \propto T^3 e^{-E_g/kT}$, proportionality ratio $n_i^2 at500 = (\frac{500}{300})^3 e^{-E_g/kTat500} e^{E_g/kTat300}$, proportional temp $E = \frac{hc}{\lambda}$, energy of photon $E_g = E_c - E_v$, Energy band gap $f(E) = \frac{1}{E-E_f}$, Fermi-Dirac Distribution Function $n=N_c\cdot e^{-\sum\limits_{E_c-E_f}^{\Lambda I}}$, Electron carrier concentration $p = N_v \cdot e^{-rac{E_f - E_v}{kT}}$, Hole carrier concentration $J_d = q \cdot n \cdot \mu_n \cdot E$, Drift Current $J_n = q \cdot D_n \cdot \frac{dn}{dx}$, Diffusion Current $E_g = E_c - E_v$, Energy-Band Gap (Eg) $\frac{1}{m^*} = \frac{1}{m_l} + \frac{1}{m_t}$, Electron and Hole Effective Mass $q = 1.602 \times 10^{-19}$ C, Charge of an Electron $n = N_c \cdot e^{-\frac{E_c - E_f}{kT}}$, Electron Carrier Concentration $p = N_v \cdot e^{-\frac{E_f - E_v}{kT}}$, Hole Carrier Concentration $J_n = q \cdot n \cdot \mu_n \cdot E$, Drift Current Density for Electrons $J_p = q \cdot p \cdot \mu_p \cdot E$, Drift Current Density for Holes $J_n = q \cdot D_n \cdot \frac{dn}{dx}$, Diffusion Current Density for Electrons $J_p = q \cdot D_p \cdot \frac{d\overline{p}}{dx}$, Diffusion Current Density for Holes $N_c = 2\left(\frac{2\pi m_e kT}{h^2}\right)^{3/2}$, Density of States in the Conduction $N_v = 2 \left(\frac{2\pi m_h kT}{h^2} \right)^{3/2}$, Density of States in the Valence Band $P_0 = n_i e^{\frac{E_{fi} - E_f}{kT}}$ $P_0 = \frac{N_A - N_D}{2} + \sqrt{(\frac{N_A - N_D}{2})^2 + n_i^2}$ $N_0 = \frac{N_D - N_A}{2} + \sqrt{(\frac{N_D - N_A}{2})^2 + n_i^2}$ $f_F(E) = \frac{1}{1+e^{\frac{1}{E-E_f}}},$ Fermi-Dirac Distribution Function

 $f_F(E) = e^{\frac{-(E-E_f)}{kT}}$, Boltzman Approximation when $\mu_n = \frac{\vec{q} \cdot \vec{\tau_n}}{m^*}$, Electron Mobility $\mu_p = \frac{g^{\prime\prime}\tau_p}{m^*}$, Hole Mobility $G = \alpha \cdot I$, Generation Rate of Electron-Hole Pairs $R = B \cdot np - A \cdot n_i^2$, Recombination Rate $\frac{\partial n}{\partial x} + \nabla \cdot \mathbf{J}_n = G - R$, Continuity Equation for Electron $\frac{\partial p}{\partial t} - \nabla \cdot \mathbf{J}_p = G - R$, Continuity Equation for Hole Current $P_0 + N_D = n_0 + N_A$, Charge neutrality $J_{drf} = en\mu_n E + ep\mu_p E = \sigma E$, Total Drift $I = AJ_{drf}$, Current E = Volt/Len, Electric Field $V_{dn} = \mu_n E$, Drift velocity for electrons $V_{dp} = \mu_p E$, Drift velocity for holes

§EEO 311

 $A_v = \frac{V_{out}}{V_{in}}$, Voltage Gain Formula $|A_v| = gmR_D,$ $A_v = \frac{R_D}{1/gm},$ $V_{ov} = V_{bias} - V_{th},$ Overdrive Voltage $g_m = K_n' \frac{W}{L} V_{ov},$ transconductance parameter $g_m = \frac{2I_D}{V_{av}}$ $I_D = \frac{1}{2}gmV_{ov}$, Drain Current Equation $I_D = \frac{1}{2} K'_n \frac{W}{L} V_{ov}^2$, Drain Current Equation $V_{ov} = \frac{I_D}{I_{M'_n} \cdot \frac{U}{L}}$, Overdrive voltage $I_D = gm \cdot V_{gs}$, Drain current $I_D = \frac{V_{DD}}{R_D}$, Drain current $g_m = \frac{\Delta I_D}{\Delta V_{GS}} = K_n' \frac{W}{L} V_{ov},$ $V_{DD} = V_{DS} + I_D \cdot R_D$, Load line equation $V_{DD} = V_{DS} + I_D \cdot R_D$, Load line equation $r_o = \frac{V_A}{I_D}$, Early voltage V_A $V_A' = \frac{\overline{V}_A}{L}$, early voltage process parameter = $20V/\mu m$ $A_o = gm \cdot r_o$, Intrinsic gain for bjt and mosfet $A_o = \frac{2V_A}{V_{ov}}$, Intrinsic gain $A_o = \frac{2V_A'L}{V_{ov}}$, Intrinsic gain

Proportionalities

 $I_D \propto V_{ov}^2$, drain current and overdrive voltage proportionality

§1.2 - The PN Junction

Notes

Common Source: Input connected to gate, output connected to drain.

Common Drain (Source Follower): Input connected to gate, output connected to source.

Common Gate: Input connected to source, output connected to drain.

When $N_A >> N_D$, the semiconductor is p-type. When $N_D >> N_A$, the semiconductor is n-type.

BJT Amplifier

$$\begin{split} g_m &= 2\sqrt{K_n I_{DQ}}, \\ g_m &= \frac{I_D}{V_{GS}}, \\ g_m &= 2K_n (V_{GS} - V_{TH}), \\ g_m &= \frac{I_C}{V_T H}, \\ g_m &= \frac{I_C}{V_T} \\ r_o &= \frac{1}{\lambda I_{DQ}}, \\ r_o &= \frac{V_A}{I_C}, \\ r_\pi &= \frac{V_T}{I_B}, \\ r_\pi &= \frac{\beta}{g_m}, \\ A_v &= -g_m \cdot R_C ||R_L, \text{ Voltage Gain Formula} \end{split}$$

Transistor DC Equivalent

$$\begin{split} V_{th} &= \frac{V_{cc}}{R_1 + R_2} \cdot R_2, \\ R_{th} &= R_1 || R_2, \\ V_{ce}(sat) &\cong 0.2(typ), \\ I_E &\cong I_C \text{, In active region} \\ &- \frac{1}{R_E - R_C}, \text{ load line slope, where } R_C \ \& \ R_E \text{ are from the AC} \\ \text{or DC equivalent circuit. A load line plot is } I_C \text{ vs } V_{CE} \\ I_{RE} &= I_B (\beta + 1) R_E, \end{split}$$

Transistor formulas

This state of the transfer of the transfer
$$I_C = \beta \cdot I_B$$
, Conduction Parameter $I_C = I_S e^{\frac{V_{BE}}{V_T}}$, $I_B = \frac{I_E}{I_E}$, C current Ratio $I_C = I_E - I_B$, Kirchhoff's Current Law $V_{CE} = V_{BE} + V_{CB}$, Voltage Relationships $I_C = I_{CO} \left(e^{\frac{V_{BE}}{V_T}} - 1 \right)$, BJT Current Equation $I = I_0 \cdot \left(e^{\frac{V}{N \cdot V_T}} - 1 \right)$, Schottky Diode Equation $I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(V_{GS} - V_{TH} \right)^2$, MOSFET Drain Current Equation $I_D = \mu_n C_{ox} \frac{W}{L} \left[\left(V_{GS} - V_{TH} \right) V_{DS} - \frac{V_{DS}^2}{2} \right]$, MOSFET Drain Current Equation (Triode Region) $g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D}$, Transconductance Parameter $A_v = -g_m \cdot R_D$, Voltage Gain Formula

MOS Field-Effect Transistor

N-Channel

 $v_{DS}(sat) = v_{GS} - V_{TN}$, Saturation Voltage, where V_{TN} is the threshold voltage.

 $i_D = K_n \left[2(v_{GS} - V_{TN}) v_{DS} - v_{DS}^2 \right],$ I-V Characteristic in

 $i_D = K_n(v_{GS} - V_{TN})^2$, I-V Characteristic in saturation. $C_{ox} = \epsilon_{ox}/t_{ox}$, Oxide capacitance per unit area. $\epsilon_{ox} = (3.9)(8.85 \times 10^{-14} \,\mathrm{F/cm})$, Oxide permittivity for Si

devices. $K_n = \frac{W\mu_n C_{ox}}{2L}$, Conduction Parameter

 $K_n = \frac{k_n'}{2} \cdot \frac{W}{L}$, Conduction Parameter $k_n' = \mu_n C_{ox}$, Process conduction parameter. μ_n , Electron mobility in the inversion layer.

P-Channel

 $rms = \frac{1}{\sqrt{2}},$

$$\begin{split} i_D &= K_p \left[2(v_{SG} - V_{TP}) v_{SD} - v_{SD}^2 \right] \text{, I-V Characteristic in } \\ non-saturation. \\ i_D &= K_p (v_{SG} - V_{TP})^2 \text{, I-V Characteristic in saturation.} \\ K_p &= \frac{W \mu_p C_{ox}}{2L} \text{, Conduction Parameter} \\ K_p &= \frac{k_p'}{2} \cdot \frac{W}{L} \text{, Conduction Parameter} \\ k_p' &= \mu_p C_{ox} \end{split}$$

EE General Formulae

 $V = I \cdot \dot{R}, \text{ Ohm's law.}$ $P = V \cdot I, \text{ DC Power.}$ $P = V \cdot I \cdot \cos(\theta), \text{ AC power.}$ $E = P \cdot t, \text{ Energy.}$ $C = \frac{Q}{V}, \text{ Capacitance.}$ $V = L \cdot \frac{di}{dt}, \text{ Inductance.}$ $\tau = R \cdot C, \text{ Time constant to reach 63.2\% of capacitors final voltage.}$ $\tau = \frac{V_1}{R}, \text{ Time constant to reach 63.2\% of inductors final value.}$ $\frac{N_1}{N_2} = \frac{V_1}{V_2}, \text{ Transformer turns ratio.}$ $V_{\text{peak}} = \sqrt{2} \cdot V_{\text{rms}}, \text{ Peak AC Voltage.}$ $V_{\text{rms}} = \frac{V_{\text{peak}}}{\sqrt{2}}, \text{ RMS AC Voltage.}$ $V_{\text{avg}} = \frac{1}{T} \int_0^T V(t) \, dt, \text{ RMS AC Voltage.}$ $V_{\text{out}} = V_{\text{in}} \cdot \frac{R_2}{R_1 + R_2}, \text{ voltage divider.}$ $R_{\text{eq}} = R_1 + R_2 + \ldots + R_n, \text{ series resistors.}$ $\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n}, \text{ Parallel resistors.}$ $\frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2} + \ldots + \frac{1}{C_n}, \text{ Series capacitors.}$ $C_{\text{eq}} = C_1 + C_2 + \ldots + C_n, \text{ parallel capacitors.}$

Convert Polar to Rectangular

 $x = r\cos\theta$ $y = r\sin\theta$

Exact Slope of a Tangent Line

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$$

Basic integration Rules

Some Integrals

$$\begin{split} &\int \sin u du = -\cos u + C, \int \cos u du = \sin u + C, \\ &\int \tan u du = -\ln |\cos u| + C, \int \cot u du = \ln |\sin u| + C, \\ &\int \sec u du = \ln |\sec u + \tan u| + C, \\ &\int \csc u du = -\ln |\csc u + \cot u| + C, \int \sec^2 u du = \tan u + C, \\ &\int \csc^2 u du = -\cot u + C, \int \sec u \tan u du = \sec u + C, \\ &\int \csc u \cot u du = -\csc u + C, \int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C, \\ &\int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan \frac{u}{a} + C, \int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \operatorname{arcsec} \frac{|u|}{a} + C, \\ &\int \sin 3x = -\frac{1}{3} \cos 3x, \int e^{-4x} = \frac{e^{-4x}}{-4} \\ &\int k dx = kx + C, \int x dx = \frac{1}{2}x^2 + C, \int x^2 dx = \frac{1}{3}x^3 + C, \\ &\int \frac{1}{x} dx = \ln |x| + C, \int e^x dx = e^x + C, \int k^u du = \frac{k^u}{\ln u} + C, \\ &\int \sin x dx = -\cos x + C, \int \sec^2 x dx = \tan x + C, \\ &\int x^n dx = \frac{x^{n+1}}{n+1} + C, \int \tan x = -\ln(\cos x) + C, \end{split}$$

Integration by Parts

$$\int u dv = uv - \int v du$$

Some Identities

 $\sin 2x = 2\sin x \cos x$

Pythagorean:

 $\sin^2 x + \cos^2 x = 1,\, 1 + \tan^2 x = \sec^2 x,\, 1 + \cot^2 x = \csc^2 x$

Reciprocal:

 $\sin x = \frac{1}{\csc x}, \cos x = \frac{1}{\sec x}, \tan x = \frac{\sin x}{\cos x} = \frac{1}{\cot x}$ $\csc x = \frac{1}{\sin x}, \sec x = \frac{1}{\cos x}, \cot x = \frac{\cos x}{\sin x} = \frac{1}{\tan x}$

Half Angle:

 $\sin^2 x = \frac{1}{2}(1 - \cos 2x), \cos^2 x = \frac{1}{2}(1 + \cos 2x)$

Additional Notes:

$$\ln(x * y) = \ln(x) + \ln(y), \ \ln(x/y) = \ln(x) - \ln(y)$$

$$\ln x^{a} = a \ln x, \ \tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$ax^{2} + bx + c = 0, \ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$\ln a = c \equiv e^{c} = a$$

$$\sqrt[n]{a} = a^{\frac{1}{n}}, \ a^{-n} = \frac{1}{a^{n}}, \ \sqrt[n]{a^{m}} = a^{\frac{m}{n}}, \ a^{0} = 1, \ (a^{m})^{n} = a^{mn},$$

$$a^{m} * a^{n} = a^{m+n}, \ \frac{a^{m}}{a^{n}} = a^{m-n}, \ \text{Rewrite} \ \sqrt{5x} \ \text{as} \ \sqrt{5}\sqrt{x},$$

Some Derivatives:

$$\begin{array}{l} \frac{d}{du} \sin u = (\cos u)u', \ \frac{d}{du} \cos u = -(\sin u)u', \\ \frac{d}{du} \tan u = (\sec^2 u)u', \ \frac{d}{du} \cot u = -(\csc^2 u)u', \\ \frac{d}{du} \sec u = (\sec u \tan u)u', \ \frac{d}{du} \csc u = -(\csc u \cot u)u', \\ \frac{d}{du} \arcsin u = \frac{u'}{\sqrt{1-u^2}}, \ \frac{d}{du} \arccos u = \frac{-u'}{\sqrt{1-u^2}}, \\ \frac{d}{du} \arctan u = \frac{u'}{1+u^2}, \ \frac{d}{du} \arccos u = \frac{-u'}{1+u^2}, \\ \frac{d}{du} \arctan u = \frac{u'}{|u|\sqrt{u^2-1}}, \ \frac{d}{du} \arccos u = \frac{-u'}{|u|\sqrt{u^2-1}}, \\ \frac{d}{du} \operatorname{arcsec} u = \frac{u'}{|u|\sqrt{u^2-1}}, \ \frac{d}{du} \operatorname{arcscc} u = \frac{-u'}{|u|\sqrt{u^2-1}}, \\ \frac{d}{du} [\ln u] = \frac{1}{u}u', \ \frac{d}{dx}[e^{-x}] = -e^{-x}, \ e^{\ln a} = a \\ \frac{d}{du} [\sqrt{u}] = \frac{u'}{2\sqrt{u}}, \ e^{3x} = 3e^{3x}, \ \frac{d}{dx}[x] = 1, \ \frac{d}{dx}[c] = 0, \\ \frac{d}{du} [\frac{1}{u}] = \frac{1}{u^2}, \ \frac{du}{u} = \ln |u|, \end{array}$$

