Comprehensive and Reliable Crowd Assessment Algorithms

MANAS JOGLEKAR
HECTOR GARCIA-MOLINA
ADITYA PARAMESWARAN

Background

- Crowdsourcing: Human workers perform tasks that are hard for computers, such as image tagging
- Workers are often unreliable
- Need to assess quality
- Need for Confidence intervals
 - o 1/3 errors vs 10/30 errors

Problem Setting

- **m** tasks (t₁...t_m)
- Binary tasks OR k responses (r₁...r_k)
- **n** workers (w₁...w_n)
- Non-regular data
 - A worker may not respond to every task
- No gold standard
- Accuracy model
 - \circ Worker $\mathbf{w_i}$ has error rate $\mathbf{p_i}$, or confusion matrix $\mathbf{P_i}$
 - Worker response independent of each other, given true answer

Warm-up: 3 workers, binary tasks

- Equal false positive and negative error rates
- To find: mean, variance of p_i for each I
- **Theorem**: $Y = f(X_1, X_2, X_3)$
 - \circ X_i's **normal**, f **linear** (\sim a₁X₁ + a₂X₂ + a₃X₃)
 - $o Var(Y) = a_1^2 Var(X_1) + a_2^2 Var(X_2) + a_3^2 Var(X_3)$
- Works for approximately normal (binomial), locally linear (differentiable)
- Linear coefficients given by partial derivatives

Warm-up: 3 workers, binary tasks

Compute agreement rates (Q_{ij} for worker w_i, w_j)

	t ₁	t_2	t_3	t ₄	t_5
W_1	Y	Y	-	N	N
W_2	N	-	Y	N	N
W_3	-	Y	Y	N	Y
True	N	Y	Y	N	N

- $Q_{ij} \sim p_i p_j + (1-p_i)(1-p_j)$
- So $p_i = f_i(q_{ij}, q_{ik}, q_{jk})$ = $\frac{1}{2} + \frac{1}{2} \sqrt{((q_{ij} - \frac{1}{2})(q_{ik} - \frac{1}{2})/(q_{jk} - \frac{1}{2}))}$

Warm-up: 3 workers, binary tasks

- Variance in p estimate depends on
 - Variance in q estimates
 - \circ $\delta f_i/\delta q_{ij}$, $\delta f_i/\delta q_{jk}$
- $Var(p_i) = \Sigma_{q,q'} Cov(q,q') \times \delta f_i / \delta q \times \delta f_i / \delta q'$
- Estimate variances, derivatives
- Use E[p_i], Var(p_i) to get confidence interval

Generalizing to many workers

- Key Idea: Take multiple sets of 3 workers and combine estimates
- For each worker, form N/2 triples.
- E.g. For n=5, for 'w₁' we have groups (w₁, w₂, w₃) (w₁, w₄, w₅)
- Use each triple to compute estimate for p₁
- Compute variances, covariances of estimates
- Use weighted combination of estimates

Generalizing to many workers

- Optimum weights for combining
 - Covariance matrix A
 - o Given by $A^{-1}L_{N/2}$ where L_k is a k-length vector with values 1/k
- Greedy way of group forming
 - Better to have two good workers in one group than one good worker in two groups, due to weighting
 - Greedily form groups

3 Workers Non-binary Tasks

• Confusion matrix P_i, Selectivity vector S, diagonal S^D

e.g.

0.8	0.1	0.3	
0.1	0.7	0.1	
0.1	0.2	0.6	

0.4	
0.2	
0.4	

0.4	0	0
0	0.2	0
0	0	0.4

- P_i's, S: Column-stochastic, unknown
- Observation probabilities given by P_iS

0.46

0.22

0.32

3 Workers Non-binary Tasks

- Compute comparison matrices (frequencies of response-pairs of workers w_i,w_j)
- $C_{ij} \sim P_i S^D P_j^T$
- Compute $D_i = C_{ij}(C_{jk}^T)^{-1}C_{ki} = P_iS^DP_i^T$
- Eigenvalue decomposition of D_i gives $V_i = U \sqrt{S^D P_i}$, for a unitary U.

3 Workers Non-binary Tasks

- U can be recovered using 3-way comparisons
- S^D can be recovered using column stochasticity of Pⁱ
- For confidence intervals, use variances/derivatives like in the binary tasks case
- Details in paper

Results: Weight Optimization

Results: Calibration (Synthetic Data)

0.9 8.0 0.7 0.6 Accuracy 0.5 Ideal interval-accuracy 0.4 arity 2, 100 tasks arity 3, 100 tasks 0.3 arity 4, 100 tasks --■ arity 2, 1000 tasks arity 3, 1000 tasks --arity 4, 1000 tasks 0.2 0.3 0.4 0.5 0.6 0.7 0.9 Confidence Level

Binary Tasks

Non-Binary Tasks

Results: Calibration (Real Data)

Binary Tasks

Non-Binary Tasks

Thank You! Questions?