- 1. 1/2 point for right answer, 1/2 point for wrong answer
 - a) every non-greedy action is chosen with probability $\frac{\epsilon}{n}$, where n is number of actions
 - b) each action is at least picked with probability in
 - c) Q-Learning has a maximization bias problem
 - d) Q-Learning is on-policy learning
 - e) episodic tasks can be transformed to non episodic tasks
 - f) TD-learning can learn before episode terminates
 - g) Inverse RL tries to learn the transition function
 - h) Value function of Soursa converges to aptimal value function if all state-action pours are infinitely often visited
 - i) Value iteration converges after one step for any MDP if r=1
 - j) Monte Carlo is non-applicable on non-episodic tasks

- 2. Bandits
 - a) 3 actions, $p(a_1) = 0.6$, $p(a_2) = p(a_3) = 0.2$ Find Action Function for $Q(a_1)$, $Q(a_2)$ and for ε
 - b) For arbitrary distribution p_1, p_2, p_3 , can ϵ and Q- Functions be represented? Give a proof or a counter example

3. Backup diagrams

Give the backup diagrams for a-Learning, Sassa and Monte Carlo

4. Value iteration

- a) Give the recursive relationship of v_{π}
- b) Express que in terms of vir
- c) Prove the Contraction Theorem (Bellman Operator given)

5. Markov decision process

- a) Uhout is the optimal policy
- b) Calculate value iteration for V1, V2 for all states
- c) (alculate optimal value function V^* for all states thint: $\sum_{i=0}^{\infty} a^i = \frac{1}{1-\alpha}$, |a| < 1

6. Policy improvement

a) μ is probabilistic policy, that is greedy wrt up IT is a deterministic policy

Prove that Up(s) > Up(s) for all s

b) If $v_{\mu}(s) = v_{ii}(s)$ for all s, show that $v_{\mu}(s)$ is the optimal policy

7. Monte Carlo

a) Give the update rule for first visit MC

7		8	9	
4		5	6	
1		2	3	

3 episodes given as table with Rwards

- ·ep1: s=3, r=2
- · ep 2: s=3, r=2
- ·ep3: s=4, r=1, s=3, r=3
- b) Calcule the value function for all states for first visit and for every visit
- c) Episodes are done with a policy that chooses each action with probability 0.25. Now we want to learn a target policy with $\pi(+|s|=0.5=\pi(\to 1s))$ YS Perform ordinary importance sampling and provide a value function.

8. Sarsa

a) Provide the updak rule for Sarsa

7		* 8		9	
4			5	6	
1_			2	3	

- b) Calculate the relevant Q-Functions for states and actions after each episode
- c) $Q(S_{t},A_{t}) \leftarrow Q(S_{t},A_{t}) + \alpha(R_{t+n} + \gamma \sum_{a} \pi(a|S_{t+n})Q(S_{t+n},a) Q(S_{t},A_{t}))$ Explain if this appeals rule is on-policy or off-policy
- d) Give the value function for Linear function approximation and explain
- e) $\omega^{T} = [1, -1, 2, 1]$

features consist of x-position and y-position of field, i.e. 1 has (1,1), 1 has (2,3) and actions encoded as: 1 is [1,0], 1 is [0,-1], 1 is [0,1] and 1 is [-1,0] features: [x-position, y-position] Calculate q(1,1), q(5,1), q(5,1), q(6,1)

f) Discuss if this choice of features is a good representation.

9. Policy gradient

Trajectory $\tau = (S_0, A_0, R_1, S_1, A_1, R_2 \dots S_T)$

- a) Give to log p(T/Q). Start with the likelihood of the probability
- b) Give a formula for Po E[Go]
- c) Two actions are given as and a,. Give a simple parametrization for $\pi(a_0|s_1\theta)$ and $\pi(a_1|s_1\theta)$ with features $\Phi(s)$