Analysis & Synthesis

การวิเคราะห์

หมายถึงการแยกแยะเพื่อให้เห็นเพื่อให้เห็นความสัมพันธ์ ของ องค์ประกอบต่าง ๆ ที่ทำให้เกิดสิ่งนั้น หรือเรื่องนั้น เวลาวิเคราะห์ต้อง พยายามหาคำตอบว่า ข้อความ บทความ เนื้อเรื่องนั้นให้ความรู้ อะไรบ้าง ผู้เขียนแสดงความคิดเห็นอะไรให้ทราบบ้าง มีความรู้สึก อย่างไร

การสังเคราะห์

หมายถึงกระบวนการหรือผลของการนำเอาปัจจัยสองอย่างหรือ มากกว่าที่แยกกัน โดยเฉพาะความคิด นำมารวมกันเข้าเป็นหนึ่ง ก่อให้เกิดสิ่งใหม่ขึ้นเป็นความรู้ใหม่ เครื่องมือใหม่ทางความคิด เช่น การรวมกันให้เป็นทฤษฎี หรือปรากฏการณ์ใหม่

กระบวนการวิจัย

- 1) กำหนดหัวข้อสำหรับการวิจัย/ปัญหาวิจัย
- 2) วิเคราะห์และประเมินปัญหาการวิจัย
- 3) ทบทวนวรรณกรรม/ทฤษฎีที่เกี่ยวข้องกับ ปัญหาวิจัย
- 4) สร้างกรอบแนวคิด/ข้อสมมุติฐาน

ขั้นตอนสำคัญของการวิจัย (ต่อ)

- 5) กำหนดประชากรเป้าหมาย/การสุ่มตัวอย่าง
- 6) ออกแบบวิจัย
- 7) สร้างเครื่องมือเก็บรวบรวมข้อมูล
- 8) เก็บข้อมูล

ขั้นตอนสำคัญของการวิจัย (ต่อ)

- 9) ดำเนินการกับข้อมูล
- 10) วิเคราะห์ข้อมูล
- 11) เขียนรายงานการวิจัย
- 12) เผยแพร่ผลงานวิจัย

ประเภทของการวิจัย

- 🔘 จำแนกตามเหตุผลของการวิจัย
 - ⇒ การวิจัยเบื้องต้น(basic research) แสวงหาข้อเท็จจริงเพื่อให้ เกิดความเข้าใจพื้นฐาน
 - ⇒ การวิจัยประยุกต์(apply research)แสวงหาข้อเท็จจริงเพื่อนำ ผลไปใช้ประโยชน์ในชีวิตจริง

- 🔘 จำแนกตามวัตถุประสงค์
 - ⇒ การวิจัยพรรณา(descriptive research) มุ่งพรรณาสภาพที่ เป็นอยู่ของปรากฏการณ์นั้น ๆ
 - ⇒ การวิจัยอธิบาย(explanatory research)มุ่งตอบปัญหาว่า ทำไม และ อย่างไร ปรากฏการณ์นั้นถึงได้เกิดขึ้น

- 🔘 จำแนกตามวิธีการเก็บข้อมูล
 - ⇒ อาศัยการทดลอง(experimental research)กระบวนการวิจัยที่มีการ กระตุ้นก่อให้เกิดการเปลี่ยนแปลงภายใต้การควบคุมดูแล
 - ⇒ ไม่ต้องอาศัยการทดลอง(non-experimental research)เก็บรวบรวมข้อมูลตามสภาพที่เป็นอยู่/ไม่ได้กระตุ้นให้เกิดการเปลี่ยนแปลงใด ๆ

- จำแนกตามสภาวะที่วิจัย
 - ⇒ ควบคุมได้เต็มที่ (highly controlled settings) (ใน ห้องปฏิบัติการ)
 - ⇒ ควบคุมได้บ้าง(partially controlled settings)
 - ⇒ ควบคุมไม่ได้ (uncontrolled setting)
 - field survey
 - case studies

- 🔘 จำแนกตามหน่วยวิเคราะห์
 - ⇒ การวิจัยระดับจุลภาค (micro level)
 - ⇒ การวิจัยระดับมหภาค(macro level)

- จำแนกตามลักษณะของข้อมูล
 - ⇒ เชิงปริมาณ (quantitative research)
 - ⇒ เชิงคุณภาพ (quanlitative research)

โปรดทราบ

- Oการ Review ทุกครั้ง
 - ⇒ ควรบันทึกสาระสำคัญที่พบ
 - ⇒ บันทึกสาระสำคัญ เพื่อการอ้างอิง/ บรรณานุกรม
 - ⇒เก็งสิ่งที่บันทึกให้เป็นระบบ

กรอบแนวคิดการวิจัย

- โป็นการบูรณาการแนวคิด/ทฤษฎีต่าง ๆจากการ Review
- เป็นการสรุปภาพรวมของแนวคิด/ทฤษฎีที่เชื่อมโยงกับปัญหาการ
 วิจัยโดยแผนภาพ
- 🔘 ประกอบด้วยตัวแปรและความสัมพันธ์ระหว่างตัวแปร

กรอบแนวคิดการวิจัย (ต่อ)

- → Theoretical framework

 (Theory formulation)
- ⇒ Conceptual framework
 (Theory + Idea + Literature review)

สมมติฐาน (Hypotheses)

- 🔘 สิ่งที่คาดคิดว่าจะเป็นคำตอบของปัญหาการวิจัย
 - ⇒ ได้มาจากการ Review ต่าง ๆ
- 🔘 เป็นข้อความที่คาดเดาไว้ก่อนว่าสิ่งนั้นจะมีความสัมพันธ์กับสิ่งนี้
- 🔘 ซึ่งนักวิจัยต้องการจะทดสอบว่าเป็นความจริงหรือไม่

ลักษณะสมมติฐานที่ดี

- ⇒ มีความชัดเจน/เฉพาะเจาะจง
- ⇒ เป็นสิ่งที่ทดสอบได้
- ⇒ ไม่ควรมีขอบเขตกว้างเกินไป → ทดสอบยาก/สรุปยาก
- ⇒ สอดคล้องกับความเป็นจริงเกี่ยวกับเรื่องที่ศึกษา

ลักษณะสมมติฐานที่ดี (ต่อ)

- ⇒ ใช้ภาษาง่าย ๆ อาจมีหลายข้อได้
- ⇒ ทดสอบได้ภายในเวลา/งบประมาณที่มี
- ⇒ สอดคล้องกับวัตถุประสงค์ของการวิจัย

ประโยชน์ของสมมติฐาน

- ⇒ จำกัดขอบเขตและทำให้ปัญหาในการวิจัยชัดเจนขึ้น
- ⇒ เลือกข้อมูลที่จะศึกษาได้ถูกต้อง/ตรงประเด็น
- ⇒ ช่วยพิจารณาตัวแปรที่จะนำมาศึกษา
- ⇒ ช่วยในการกำหนดแบบแผนการวิจัย
- ⇒ กำหนดขอบเขตการตีความหมายผลการวิจัย/และสรุปผล

ชนิดของสมมติฐาน

- Research Hypotheses (สมมติฐานวิจัย)
 - ⇒ เป็นสมมติฐานเชิงบรรยาย
 - ⇒ เขียนบรรยายความสัมพันธ์ระหว่าง ตัวแปรที่นักวิจัย คาดคะเนไว้

ชนิดของสมมติฐาน (ต่อ)

- O Statistical Hypotheses (สมมติฐานเชิงสถิติ)
 - ⇒ เขียนในรูปสัญลักษณ์ ซึ่งใช้แทนคุณลักษณะของประชากร
 - ⇒ แปลงสมมติฐานวิจัยมาเพื่อให้ทดสอบทางสถิติได้

Null Hypotheses (ห_)สมมุติฐานที่เป็นกลาง

Alternative Hypotheses (หุ)(ไม่เป็นกลาง)

การทดสอบสมมติฐาน

H_a: (ไม่มีความแตกต่าง)

H_i: (คล้ายข้อความ สมมติฐานวิจัย/ตรงข้ามกับ H_o)

⇒ การทดสอบสมมติฐานทางสถิติ จะ ทดสอบ Hุ

ตัวแปร (Variable)

- Anything we can put the value
- คุณสมบัติของบุคคล / สิ่งของ หรือสถานที่ ซึ่งสามารถสังเกตหรือวัดได้ และมี
 ความเปลี่ยนแปลงระหว่างหน่วยของประชากรนั้น
- สิ่งที่แปรค่าได้ เช่น เพศ น้ำหนัก
- สิ่งต่าง ๆ ซึ่งสามารถกำหนดค่าเป็นปริมาณ หรือคุณภาพได้

ชนิดของตัวแปร

- Independent V. /ตัวแปรอิสระ/ตัวแปรทดลอง
 - ⇒ เป็นตัวแปรเหตุ ทำให้ตัวแปรอื่นแปรสภาพ
 - ⇒ เป็นตัวแปรที่มาก่อน (antecedent)
 - ⇒ จัดกระทำในการทดลอง (manipulated)
 - ⇒ เป็น predicted from

ชนิดของตัวแปร (ต่อ)

- Dependent V. /ตัวแปรตาม
 - ⇒ ตัวแปรที่ต้องเปลี่ยนสภาพ⁄แปรผล
 - ⇒ เป็นตัวแปรที่เกิดทีหลัง (consequence)
 - \Rightarrow สังเกตหรือวัดได้ (observed)
 - ⇒ เป็น predicted to

ชนิดของตัวแปร (ต่อ)

- Intervening V. /ตัวแปรสอดแทรก
 - ⇒ ตัวแปรที่เกิดแทรกซ้อนระหว่าง Ind.V และ Dep.V ในระหว่างทำการ
- Extraneous V. /ตัวแปรเกิน
 - ⇒ ตัวแปรอื่น ๆที่มีผลกระทบต่อตัวแปรตาม แต่เราไม่ได้ศึกษา

ลักษณะของตัวแปร

- Discrete / Categorical V. (ตัวแปรไม่ต่อเนื่อง)
 - ⇒ ตัวแปรที่มีคุณลักษณะ / คุณสมบัติแยกจากกันเด็ดขาด เช่น เพศ ศาสนา

ลักษณะของตัวแปร (ต่อ)

- Continuous V. (ตัวแปรต่อเนื่อง)
 - ⇒ ตัวแปรที่มีคุณลักษณะ/คุณสมบัติ ปริมาณ ต่อเนื่องกัน เช่น น้ำหนัก ส่วนสูง ฯลฯ
- Dummy V. (ตัวแปรหุ่น)
 - ⇒ ตัวแปรที่กำหนดให้สิ่งที่มีคุณสมบัติ มีค่าเป็น 1 และสิ่งที่ไม่มี คุณสมบัติ มีค่าเป็น o

รูปแบบความสัมพันธ์ระหว่างตัวแปร (Jaime B. Valera)

Causation

Correlation

รูปแบบความสัมพันธ์ระหว่างตัวแปร (Jaime B.Valera) (ต่อ)

Indirect Causation

Indirect Correlation

รูปแบบความสัมพันธ์ระหว่างตัวแปร (Jaime B. Valera) (ต่อ)

Multiple Correlation

Causal and Correlation

ทิศทางของความสัมพันธ์

- Positive relationship
 - ⇒ เมื่อตัวแปรตัวหนึ่งมีค่าสูง (หรือต่ำ) ตัวแปรอีกตัวจะมี ค่าสูงขึ้นหรือต่ำกว่าไปด้วย
- Negative relationship
 - ⇒ เมื่อตัวแปรตัวหนึ่งมีค่าสูง (หรือต่ำ) ตัวแปรอีกตัวจะมี ค่าในทิศทางตรงกันข้าม

ประชากรและกลุ่มตัวอย่าง

- งาน ประชากร (population)
- ⇒ สิ่งต่าง ๆ ที่ต้องการศึกษาวิจัย ซึ่งแต่ละหน่วยประชากร (elements)ที่รวมกันเป็นประชากรนั้นมีลักษณะที่ต้องการศึกษา เหมือนกัน
- ⇒ All of people that you study

ประชากรและกลุ่มตัวอย่าง (ต่อ)

- กลุ่มตัวอย่าง (samples)
- ⇒ ส่วนหนึ่งของประชากรที่ใช้ในการศึกษาวิจัย
- ⇒ Sub set of population and it represent pop.
- ⇒ Small data, no error and exact characteristic of population.

ประโยชน์จากการรู้ว่าประชากรคืออะไร

- 1. มีความกระจ่างชัดเจนในการเก็บข้อมูล/ว่าจะเก็บจากใคร
- 2. ทราบขอบเขตของการวิจัย
- 3. สร้างกรอบการสุ่มตัวอย่าง (sampling frame)

ประโยชน์ของการศึกษาจากกลุ่มตัวอย่าง

- ⇒ ประหยัดค่าใช้จ่าย
- ⇒ ประหยัดเวลา
- ⇒ สะดวกในการปฏิบัติการ (accuracy)

หน่วยวิเคราะห์ (units of analysis)

- nลุ่มตัวอย่าง (samples)
- ⇒ หน่วยของสิ่งที่ผู้วิจัยจะนำลักษณะของสิ่งนั้นมาวิเคราะห์

 <u>ตัวอย่าง</u> การศึกษาความสัมพันธ์ระหว่างรายได้ของ คู่สมรสกับ
 จำนวนบุตร

หน่วยวิเคราะห์ = คู่สมรสแต่ละคู่

การสุ่มตัวอย่าง (Random Sampling)

 หมายถึง วิธีการเลือกกลุ่มตัวอย่างให้เป็นตัวแทน ของประชากร โดยให้ทุกหน่วยของประชากรมีโอกาสได้รับ การเลือกมาเป็นกลุ่มตัวอย่างเท่าเทียมกัน

การพิจารณา Sample size

- ⇒ ขึ้นอยู่กับสถานการณ์ของแต่ละปัญหาวิจัย
- ⇒ ถ้าประชากรมีความเป็นเอกพันธ์(Homogeneous) ขนาดตัวอย่างเล็ก ๆ ก็ พอ
- ⇒ ขึ้นอยู่กับเทคนิควิธีการสุ่ม
- ⇒ ขึ้นอยู่กับระดับความถูกต้องของข้อมูลที่ต้องการ (กลุ่มตัวอย่างยิ่งใหญ่ คุณสมบัติจะยิ่งใกล้ POP)

Sampling theory / ทฤษฎีการสุ่ม

- Non-Probability Sampling คำนึงถึงความน่าจะเป็น)
- 2. Probability Sampling คำนึงถึงความน่าจะเป็น

(การสู่มโดยไม่

(การสุ่มโดย

1. Non-Probability Sampling

- ⇒ Judgment sampling
- ⇒ Depend on the selected
- ⇒ Bias sampling / ไม่สามารถเป็นตัวแทนประชากรได้
- ⇒ เหมาะสำหรับ Descriptive statistic

1. Non-Probability Sampling (ต่อ)

- 1.1 Purposive Sampling (การสุ่มแบบเจาะจง)
 - ⇒ Selected purposive
 - ⇒ criteria by your own
- 1.2 Quota Sampling (การสุ่มแบบโควต้า)
 - ⇒ Similar the purposive but......
 - ⇒ concern the number quota

1. Non-Probability Sampling (ต่อ)

1.3 Accidental Sampling (การสุ่มแบบบังเอิญ)

⇒ accidental that you met.

ข้อจำกัด Non-Probability Sampling

→ ไม่อาจเป็นตัวแทนประชากรได้ / ใช้อธิบายเฉพาะกลุ่มตัวอย่างที่ ศึกษานั้น

2. Probability Sampling

- ⇒ unbias sampling /เป็นตัวแทนประชากรได้
- ⇒ Systematical to choose
- ⇒ Each element have equal chance being choose for sample
- ⇒ เหมาะสำหรับใช้ Inferential Statistic วิเคราะห์

2.1 การสุ่มแบบง่าย (Simple Random Sampling)

วิธี

- ⇒ ทำบัญชีหน่วยทุกหน่วยของประชากร/ทำหมายเลขกำกับ
- ⇒ ทำการเลือกตัวอย่าง
 - 🔷 ใช้ตารางเลขสุ่ม

2.2 การสุ่มแบบกลุ่ม (Cluster Sampling)

- * ประชากรที่ศึกษา มีคุณสมบัติบางอย่างแบ่งออกเป็นพื้นที่/กลุ่มได้
- ⇒ จัด Cluster ต่าง ๆ แล้วเรียงลำดับ
 (แต่ละ Cluster ต้องมีลักษณะของประชากรคล้ายกัน)
- ⇒ สุ่ม Cluster โดยวิธี Simple Random
 (ถ้าสุ่มได้ Cluster ใด ต้องใช้ประชากรนั้นทั้งหมดเป็นกลุ่มตัวอย่าง)

2.3 การสุ่มแบบแบ่งชั้น (Stratified Sampling)

- * ประชากรมีคุณลักษณะใกล้เคียงกันแบ่งเป็นชั้น ๆ ได้
- วิธี
- ⇒ แบ่งประชากรเป็นชั้น ๆ (strata) เช่น ปี 1,2,3,4
- ⇒ สุ่มตัวอย่างแต่ละชั้น (simple random)มาเป็นกลุ่มตัวอย่าง

2.4 การสุ่มแบบหลายขั้นตอน (Multi-stage Sampling)

* ใช้ simple random + วิธีการอื่น ๆ เช่น การเลือกตัวแทนนักศึกษา ในมหาวิทยาลัย

```
ขั้นที่ 1 ⇒ สุ่มเลือกคณะ
ขั้นที่ 2 ⇒ สุ่มเลือกภาควิชา(จากคณะที่สุ่มได้)
ขั้นที่ 3 ⇒ สุ่มเลือกนักศึกษา(จากภาควิชาที่สุ่มได้)
```

Error in Sampling

- Sampling error 🖈 ไม่สามารถหลีกเลี่ยงได้
- แก้ไขโดย
 เพิ่ม Sample size ให้มีขนาดใหญ่พอ

กระบวนการสุ่มตัวอย่าง

- 1. นิยามประชากรให้ชัดเจน
- 2. ทราบจำนวนสมาชิกและรายชื่อของสมาชิกทั้งหมด
- 3. การกำหนด Sample size (พอที่จะเป็นตัวแทนคุณลักษณะของประชากรได้)
- 4. การเลือกตัวอย่าง (Sampling)
 - → Non-probability sampling
 - ⇒ Probability sampling

เครื่องมือเก็บข้อมูลที่สำคัญ

แบบสังเกต/Observation

- * การที่ผู้วิจัยพยายามใช้ประสาทสัมผัสเพื่อแสวงหาความรู้หรือข้อมูลเพื่อ ใช้ในการวิจัย
 - \Rightarrow หู ตา จมูก ลิ้น สัมผัส ฯลฯ
- * ประเภทของการสังเกต

สังเกตโดยตรง

สังเกตทางอ้อม

การสังเกตโดยตรง(Direct Observation)

- * สามารถสังเกตด้วยตาโดยตรง
 - ⇒ สังเกตโดยตรงแบบมีส่วนร่วม
 - ⇒ สังเกตโดยตรงแบบไม่มีส่วนร่วม
 - ⇒ สังเกตโดยตรงแบบกึ่งมีส่วนร่วม

การสังเกตทางอ้อม(Indirect Observation)

- * ผู้สังเกตไม่สามารถมองเห็นเหตุการณ์ด้วยตา
- * ต้องอาศัยเครื่องมือต่าง ๆ ช่วยเก็บข้อมูล เช่น ข้อมูลการเต้นของ หัวใจ
- * เครื่องมือช่วยในการสังเกต

แบบสังเกต/แบบบันทึกข้อมูล/กล้อง/เทป/เครื่องมืออื่น ๆ

การสัมภาษณ์ /Interview

- * เป็นการสนทนาแบบมีจุดมุ่งหมายแน่นอน ผู้สนทนาทั้งสองฝ่าย ต่างให้และรับข่าวสารที่ต้องการ
- * กระบวนการติดต่อสื่อสาร ความหมายกันระหว่างบุคคลสองฝ่าย โดยใช้ภาษาเป็นสื่อ

ประเภทของการสัมภาษณ์

- 1. Unstructured Interview
 - ⇒ ใช้คำถามทั่ว ๆ ไป ประเภท อะไร ?
 - ⇒ เก็บข้อมูลได้ตามแต่ผู้ให้สัมภาษณ์จะตอบ
- 2. Structured Interview
 - ⇒ มีแบบสัมภาษณ์ แบบสอบถาม เป็นแนวทางการสัมภาษณ์
 - ⇒ ถามไปตามลำดับของแบบสัมภาษณ์

แบบสอบถาม (Questionnair)

- * เป็นรายการคำถามที่เตรียมไว้ เพื่อถามเรื่องใดเรื่องหนึ่ง และ รายการคำถามนี้ส่งให้คนกลุ่มหนึ่งเป็นผู้ตอบตามความสมัครใจ
 - ⇒ เราใช้คำถามเพื่อมุ่งเก็บข้อมูลประเภท ข้อเท็จจริง ซึ่งถือเป็น พฤติกรรมปกติ

ชนิดของแบบสอบถาม

- 1. แบบปิด (Closed form)
 - ⇒ เป็นแบบให้เลือกตอบจากตัวเลือกที่กำหนดไว้ล่วงหน้า
- 2. แบบเปิด (Open ended form)
 - ⇒ เป็นคำถาม แล้วเว้นที่ให้ผู้ตอบเขียนตอบ

แบบทดสอบ (Test)

- * เป็นชุดของคำถาม หรือแบบฝึกหัด หรือวิธีการใดก็ตาม ที่ใช้วัด ความรู้/ทักษะ/สติปัญญา/ความถนัดของแต่ละคน/หรือกลุ่มคน
 - ⇒ เป็นกระบวนการที่มีระบบ มุ่งวัดตัวอย่างของความรู้/ทักษะ/สติปัญญา/ความถนัด/พฤติกรรมของคน/หรือกลุ่มคน

ชนิดของแบบทดสอบ

แบบสอบสัมฤทธิ์ผล แบบสอบความถนัด/สติปัญญา แบบสอบบุคลิกภาพ

การวัด (Measurement)

- ⇒ กระบวนการให้ค่าของสิ่งที่ต้องการวัด (ข้อมูล) ออกมาเป็นตัวเลข / สัญญูลักษณ์
- ⇒ กระบวนการกำหนดตัวเลขให้แก่ วัตถุ หรือ เหตุการณ์ หรือคุณสมบัติ ต่าง ๆ ของบุคคล โดยมีกฎเกณฑ์และมาตรฐานในการวัด
- ⇒ เป็นการเปรียบเทียบปริมาณเพื่อแสดงค่าตัวเลข

การวัด (ต่อ)

- ⇒ การกำหนดหลักเกณฑ์ต่าง ๆ ที่จะใช้ในการจัดระเบียบข้อมูลให้อยู่ใน สภาพที่จะวิเคราะห์หรือเข้าใจได้ (ตัวเลข / สัญลักษณ์)
- ⇒ กระบวนการแปรสภาพแนวคิด (Concepts) ซึ่งมีลักษณะเป็นนามธรรม ให้เป็นข้อมูลทางสถิติเชิงปริมาณหรือคุณภาพ

ประโยชน์ของการวัด

- 1. ประโยชน์ในการวิจัยโดยตรง/เก็บข้อมูล
- 2. สามารถนำข้อมูลมาใช้เปรียบเทียบ/เชื่อมโยง
- 3. สามารถนำข้อมูลมาวิเคราะห์/ตรวจสอบได้ดีกว่าคำพูด
- 4. สามารถนำวิธีการทางสถิติมาใช้/ได้ข้อสรุปอย่างมีประสิทธิภาพ
- 5. สามารถประเมินสถานการณ์อย่างมีวัตถุวิสัย(Objectivity)
- 6. ให้ความแม่นยำในการสรุปผล

หลักสำคัญของการวัด

- 1. มีความถูกต้องของการวัด (Validity) สำคัญที่สุด
 - ⇒ วัดในสิ่งที่ต้องการวัด
- 2. มีความเชื่อถือได้ของการวัด (Reliability)
 - ⇒ ผลที่ได้จากการวัดมีความเหมือนกันทุกครั้ง หรือสอดคล้องกัน (Instrument)

หลักสำคัญของการวัด (ต่อ)

- 3. มีความว่องไว/สามารถจำแนกในการวัด (Sensitivity)
 - ⇒ ความสามารถของเครื่องมือวัดในการจำแนกความแตกต่างระหว่างหน่วย ต่าง ๆ ที่ต้องการจะศึกษา
- 4. มีความหมายของการวัด (Meaningfulness)
 - ⇒ การวัดนั้นจะต้องมีความหมาย

ระดับของการวัด

1. ระดับกลุ่ม/นามมาตร (Norminal Scale)

- กำหนดหลักเกณฑ์แบ่งแยกสิ่งที่จะศึกษา/ข้อมูล เป็นกลุ่ม
- หน่วยที่มีคุณสมบัติเหมือนกันจัดเป็นกลุ่มเดียวกัน
- 🔁 ใช้ตัวเลข หรือ สัญลักษณ์ใด ๆ แทนชื่อกลุ่ม (นาม/ชื่อ)
- ⇒ ตัวเลข ⁄ สัญลักษณ์นี้ ไม่สามารถนำไปคำนวณทางคณิตศาสตร์
- \Rightarrow เป็นข้อมูลประเภทคุณภาพ

เช่น เพศ——ชาย □ หญิง □

ระดับของการวัด (ต่อ)

- 2. ระดับอันดับ/อันดับมาตร (Ordinal Scale)
 - → ให้รายละเอียดมากขึ้นกว่าระดับกลุ่ม
 - → ใช้แบ่งเป็นกลุ่ม แล้วยังสามารถจัดอันดับความแตกต่างระหว่างกลุ่มได้ (มากกว่า/น้อยกว่า)
 - ⇒ เรียงลำดับก่อนหลังได้
 - \Rightarrow เป็นข้อมูลประเภทคุณภาพ
 - เช่น ยศทหาร \Longrightarrow สิบเอก \square สิบโท \square สิบตรี \square

ระดับของการวัด (ต่อ)

3. ระดับช่วง/ช่วงมาตร (Interval Scale)

- 🔁 ให้รายละเอียดมากกว่า ระดับกลุ่ม/ระดับอันดับ
- ⇒ กำหนดความห่างระหว่างช่วงวัดได้แน่นอน ⁄ เป็นมาตรฐานร่วมกัน
- → หน่วยการวัดอาจเปลี่ยนแปลงได้
- ⇒ มีจุดเริ่มต้นที่ไม่เป็นธรรมชาติ (กำหนดเอง)
- \Rightarrow เป็นข้อมูลเชิงปริมาณ เช่น อุณหภูมิ

 $\mathbf{C} = 0/10/30/100$

F = 32/50/86/212

ระดับของการวัด (ต่อ)

4. ระดับอัตราส่วน/อัตราส่วนมาตร (Ratio Scale)

- ⇒ การวัดที่ครอบคลุมคุณสมบัติ ระดับกลุ่ม/ระดับอันดับ/ระดับช่วง
- ⇒ มีช่วงการวัดที่แน่นอน/จุดเริ่มต้นเป็นธรรมชาติที่แท้จริง
- \Rightarrow เป็นข้อมูลเชิงปริมาณ เช่น น้ำหนัก ส่วนสูง

ขั้นตอนที่สำคัญของการวัด

- 1. กำหนดให้ชัดเจนว่าสิ่งที่ต้องการวัดคืออะไร/มืองค์ประกอบอะไรบ้าง/ส่วนใดที่ ต้องการวัด/อะไรเป็นตัวบ่งชื้
- 2. สร้างมาตรวัด/เครื่องมือ
 - ⇒ มีความถูกต้อง
 ⇒ มีความเชื่อถือได้
 - ⇒ มีความว่องไว∕จำแนก ⇒ มีความหมาย
- 3. นำไปวัด/เก็บข้อมูล

ระดับของหน่วยที่จะวัดในงานวิจัย (Units of analysis)

- 💠 เป็นหน่วยของการวิเคราะห์ในงานวิจัยจำแนกเป็นระดับ ดังนี้
 - 1. ระดับบุคคล (Individual unit)
 - ⇒ Micro study
 - 😝 ศึกษาปัจเจกบุคคล
 - 2. ระดับกลุ่ม (Group unit)
 - ⇒ เอาคุณสมบัติของกลุ่มบุคคลมาใช้วิเคราะห์
 - 😝 เป็นการวิเคราะห์ระดับรวมของกลุ่ม

ระดับของหน่วยที่จะวัดในงานวิจัย(ต่อ)

- 3. ระดับองค์กร (Organization unit)
 - ⇒ เป็นองค์กรที่มีโครงสร้างและเสถียรภาพแน่นอน
- 4. ระดับสถาบัน (Institutional unit)
 - ⇒ เป็นการวิเคราะห์สถาบันต่าง ๆ
 - → ศึกษาองค์ประกอบต่าง ๆ ภายในสถาบัน/ระหว่างสถาบัน

ระดับของหน่วยที่จะวัดในงานวิจัย(ต่อ)

5. ระดับพื้นที่ (Spatial unit)

อำเภอ จังหวัด

- 🖈 เป็นการวิเคราะห์วิจัยคุณสมบัติของพื้นที่ต่าง ๆ เช่น หมู่บ้าน
- 6. ระดับสังคม (Societal unit)

 - 🖈 เป็นการวิเคราะห์คุณสมบัติ/องค์ประกอบของสังคม
 - 🖈 ใช้คุณสมบัติของสังคมมาวิเคราะห์ เช่น อนุกรมเวลา

การวัดต้องมี Validity ประเภทของความถูกต้อง

- 1. ความถูกต้องเกี่ยวกับมาตรฐาน (Criterion–related validity)
 - 🔷 เป็นความถูกต้องที่สอดคล้องกับความคิด/มาตรฐาน ที่เราใช้อยู่ในชีวิตประจำวัน

ประเภทของความถูกต้อง (Validity) ต่อ

- 2. ความถูกต้องในเนื้อหา (Content validity)
 - 🜩 ความครอบคลุมของมาตรวัด/เครื่องมือในเรื่องที่เป็นเนื้อหาของสิ่งที่ต้องการวัด
 - \Rightarrow ต้องระบุเนื้อหาด้านต่าง ๆ ของสิ่งที่จะวัดให้สมบูรณ์
 - ⇒ เลือกตัวแทนจากเนื้อหาขององค์ประกอบในด้านต่าง ๆ
 - \Rightarrow นำตัวแทนของเนื้อหามาจัดระเบียบเป็นรูปแบบที่วัดได้

ประเภทของความถูกต้อง (Validity) ต่อ

- 3. ความถูกต้องในตัวสร้าง (Construct validity)
 - 🔷 เป็นมาตรวัด/เครื่องมือ ที่สร้างมาจากแนวคิด/ทฤษฎี/กฎเกณฑ์ต่าง ๆ
 - ⇒ ระบุความสัมพันธ์เชิงทฤษฎี ระหว่างแนวคิด ⁄ ตัวแปรต่าง ๆ
 - ⇒ ตีความหมายของความสัมพันธ์ที่พบ ⇒จัดทำมาตรวัด

การตรวจสอบความถูกต้องของเครื่องมือ/มาตรวัด

🔷 ใช้ Expert พิจารณา/ปรับปรุง (ตามสาขานั้น ๆ)

⇒ พิจารณาความสอดคล้องกันของ Expertist แล้วหาค่าดัชนีความสอดคล้อง (Index of item objective congruence)

$$= I.O.C = ER$$

Ν

R = คะแนนความเห็นของผู้เชี่ยวชาญ (+1/0/-1)

N = จำนวน

⇒ I.o.c มากว่า หรือ เท่ากับ 0.5 แสดงว่า Valid ∕ ใช้ได้

ความเชื่อถือได้ของมาตรวัด (Reliability)

- คือความสอดคล้องกันของผลที่ได้จากการวัดแต่ละครั้ง
 - ⇒ โดยการวัดวิธีเดียวกันหลาย ๆ ครั้ง แล้วนำผลการวัดมาหาความสัมพันธ์ กัน
 - ⇒ ค่าของความสัมพันธ์ของการวัด คือ ค่าบ่งชี้อัตราความเชื่อถือได้

1. วิธีการทดสอบแล้วทดสอบซ้ำ (Test and retest method)

- \Rightarrow ใช้มาตรวัดเดียวกันกับคนกลุ่มเดียวกันในเวลาต่างกัน
- ⇒ ดูความสัมพันธ์ระหว่างผลการวัดทั้ง 2 ครั้ง
- ⇒ ถ้ามีความสัมพันธ์สูง แสดงว่ามีความเชื่อมั่นสูง

2. วิธีวัดแบบที่ทดสอบแทนกันได้ (Alternate forms method)

- ⇒ มีมาตรวัดคู่ขนานกัน 2 ชุด (parallel form)
- ⇒ นำไปวัดคนกลุ่มเดียวกัน
- ⇒ ดูความสัมพันธ์ของผลการวัดทั้ง 2 มาตรวัด

3. Split-halves method

- ⇒ วัดครั้งเดียว
- \Rightarrow แบ่งเครื่องมือเป็น 2 ส่วน
 - * ส่วนบน/ส่วนล่าง
 - * ข้อคู่/ข้อคี่
- นำผลการวัดทั้งสองส่วนมาหาความสัมพันธ์กัน
- ⇒ ความยาวของมาตรวัดมีผลต่อความเชื่อถือ

4. การวัดความสอดคล้องภายใน

- ชาวัดเพียงครั้งเดียว วิเคราะห์ค่า "ความสอดคล้องภายใน " (ค่า สัมประสิทธิ์ความเชื่อถือได้)
 - 4.1 រិតី Kuder-Richardson (Zero/one Method)
 - ⇒ มาตรวัดทำถูกได้ 1 ทำผิดได้ o
 - \Rightarrow KR 20 / KR 21

- 4.2 រិតី Conbach's Alpha (Coefficient Alpha)
 - ⇒ ใช้หาความเชื่อมั่น Essay question
 - ⇒ หรือการให้คะแนนเป็น Scale

Validity / Reliability

- * ในการวัดสิ่งสำคัญที่สุดคือ Validity/ความตรง
- * มาตรวัดที่มีความตรงจะต้องมีความเชื่อถือได้ แต่ มาตรวัดที่มี ความเชื่อถือได้อาจไม่มีความตรง
- * ค่าความเชื่อถือได้ (r) อยู่ระหว่าง -1 ถึง +1
 - ⇒ ค่ายิ่งใกล้ +1 ยิ่งดี/ถ้าเกิน .75 ก็ **o**k แล้ว

การเขียนรายงานการวิจัย

ส่วนประกอบที่สำคัญของงานวิจัย 3 ส่วน

- 1) ส่วนน้ำ
- 2) ส่วนเนื้อความ
- 3) ส่วนอ้างอิง

ส่วนน้ำ ควรประกอบด้วย

- 1. ปก/หัวเรื่อง
 - ⇒ ชื่อเรื่อง⁄ชื่อผู้ทำวิจัย⁄ปีที่วิจัย ฯลฯ
- 2. บทคัดย่อ
 - ⇒ ข้อความสั้น ๆ ที่เกี่ยวกับงานวิจัยนั้น
 - ⇒ ปัญหา/วิธีวิจัย/ข้อสรุป/ข้อเสนอแนะ
- 3) คำนำ/คำนิยม
 - ⇒ อาจไม่มีก็ได้

ส่วนน้ำ ควรประกอบด้วย (ต่อ)

- 4. กิตติกรรมประกาศ
 - ⇒ กล่าวขอบคุณผู้ให้ความช่วยเหลือ
- 5. สารบัญ
 - ⇒ หัวเรื่องประจำบท/หัวเรื่องย่อย/เลขหน้า

ส่วนน้ำ ควรประกอบด้วย (ต่อ)

- 6. สารบัญตาราง
 - ⇒ เลขที่ตาราง/หัวเรื่องตาราง/เลขหน้า
- 7. สารบัญแผนภูมิ/ภาพ
 - ⇒ เลขที่ของแผนภูมิ/เลขหน้า

ส่วนเนื้อความ ควรประกอบด้วย

- บทที่ 1 บทนำ
- บทที่ 2 เอกสารและงานวิจัยที่เกี่ยวข้อง
- บทที่ 3 วิธีดำเนินการวิจัย
- บทที่ 4 ผลการวิเคราะห์ข้อมูล
- บทที่ 5 สรุปผลการวิจัยและการอภิปรายผล

บทที่ 1 บทน้ำ

- * ความเป็นมาและความสำคัญของปัญหา
 - ⇒ ทฤษฎี/ความคิดเห็น/แรงจูงใจ/ประโยชน์ต่อวิชาการ/ปัญหาที่พบ
- * ปัญหาของการวิจัย
- วัตถุประสงค์ที่จะทำวิจัย
 ขอบเขตของงานวิจัย
- * สมมุติฐาน * ข้อตกลงเบื้องต้น
- # คำจำกัดความ# ประโยชน์/คุณค่าของงานวิจัย

บทที่ 2 เอกสารและงานวิจัยที่เกี่ยวข้อง

- ⇒ สรุปเอกสารและงานวิจัยที่เกี่ยวข้อง
- ⇒ ทฤษฎีต่าง ๆ ที่เกี่ยวกับงานวิจัย
- ⇒ นำมาเขียนให้เกี่ยวโยงกัน สัมพันธ์กับปัญหาวิจัย
- ⇒ ควรหลีกเลี่ยงการลอกข้อความมาทั้งหมด
- ⇒ ควรเขียนเสนอเป็นคำพูดของผู้เขียนเอง
- ⇒ อ้างอิงแหล่งข้อมูล

บทที่ 3 วิธีดำเนินการวิจัย

- * กล่าวถึงวิธีการที่ใช้ในการวิจัยอย่างละเอียด
- ⇒ ประชากร
- → กลุ่มตัวอย่าง / วิธีการสุ่ม
- ⇒ เครื่องมือ/วิธีการรวบรวมข้อมูล/วิธีทดลอง/วิธีวัดผล/วิธีสร้าง เครื่องมือ/การหาความเที่ยงตรงของเครื่องมือ
- ⇒ การวิเคราะห์ข้อมูล

บทที่ 4 ผลการวิเคราะห์ข้อมูล

- * เสนอข้อมูลที่รวบรวมได้จากการวิจัย
- ⇒ ผลที่ได้จากการวิจัย ต้องมาจากข้อมูล/การวิเคราะห์
- ⇒ เสนอผลอย่างกระจ่าง/รัดกุม ตามข้อเท็จจริง เรียงลำดับอย่างเหมาะสม ตามวัตถุประสงค์
- ⇒ การใช้ตาราง ⁄ ภาพถ่าย จะช่วยให้การเสนอผลการวิจัยชัดเจนขึ้น
- ⇒ ถ้าเนื้อหามีมาก อาจแยกเป็น1-2 บทก็ได้

บทที่ 5 สรุปและอภิปรายผล

- * เป็นการสรุปผลการวิจัย การอภิปรายผลและการให้ข้อเสนอแนะ
- ⇒ เป็นหัวใจสำคัญของการเขียนรายงานวิจัย
- ⇒ ควรเขียนทบทวนปัญหาและวิธีที่ใช้ในการวิจัยด้วย
- ⇒ ควรระบุวัตถุประสงค์ของการวิจัยอย่างกระชับ และนำไปสู่การสรุปและอภิปราย ผลทันที
- ⇒ การสรุปขึ้นอยู่กับความซับซ้อนของผลที่ได้จากการวิจัย
- ⇒ ควรสรุปตามข้อเท็จจริงที่พบจากการวิจัย

บทที่ 5 สรุปและอภิปรายผล(ต่อ)

- ⇒ การสรุปอย่าให้กว้างหรือแคบเกินไป
- ⇒ การอภิปรายผลควรมีลักษณะสร้างสรรค์ อาศัยความเข้าใจเกี่ยวกับ ขอบเขตของการวิจัย และงานวิจัยต่าง ๆ และควรคำนึงถึงทฤษฎีต่าง ๆ อีกทั้งจุดอ่อนของงานวิจัยนี้ด้วย
- ⇒ ควรทบทวนแนวคิดในการวิจัย ขอบเขตการวิจัยเพื่อนำไปสู่ข้อเสนอแนะ ต่อไป

ส่วนอ้างอิง ควรประกอบด้วย

- 1. บรรณานุกรม (เขียนตามที่สถาบันแต่ละแห่งกำหนด)
- ⇒ หนังสือ ⇒ บทความ ⇒ สิ่งตีพิมพ์

ฯลฯ

- 2. ภาคผนวก
- ⇒ ข้อมูลที่ละเอียดน่าสนใจ ⇒ ตัวอย่างเครื่องมือ∕ข้อมูลสำคัญ
- ⇒ แสดงวิธีการทางสถิติ/วิเคราะห์ที่ชับซ้อน

ฯลฯ

การวางแผนดำเนินการวิจัย

- 1. เลือกปัญหาวิจัย/กำหนดขอบเขตของปัญหา
- 2. สำรวจรายงานการวิจัยที่เกี่ยวข้องกับปัญหาวิจัย
- 3. ระบุปัญหาที่จะทำการศึกษาอย่างละเอียด ชัดเจน จะทราบถึงตัวแปรที่ เกี่ยวข้อง
- 4. กำหนดสมมุติฐาน/ระบุตัวแปรที่เกี่ยวข้อง

การวางแผนดำเนินการวิจัย(ต่อ)

- 5. เขียนข้อตกลงเบื้องต้น
- 6. ออกแบบการวิจัย เพื่อให้มีความแม่นตรงภายในและภายนอก
 - → การเลือกกลุ่มตัวอย่าง
 - → การควบคุม/จัดกระทำตัวแปร
 - ⇒ สร้างเกณฑ์/ประเมิน
 - ⇒ เครื่องมือรวบรวมข้อมูล

การวางแผนดำเนินการวิจัย(ต่อ)

- 7. กำหนดวิธีรวบรวมข้อมูล
- 8. เลือกวิธีวิเคราะห์ข้อมูล/การใช้สถิติ
- 9. ปฏิบัติการวิจัยตามแผน

การประเมินคุณภาพงานวิจัย

- * การเข้าถึงข้อเท็จจริงที่เป็นพื้นฐานของการวิจัย
- * ความสำคัญและความชัดเจนของปัญหาการวิจัย
- ความน่าเชื่อถือของข้อตกลงเบื้องต้น
- ความครอบคลุมและเป็นประโยชน์ของเอกสารและงานวิจัยที่
 เกี่ยวข้อง

การประเมินคุณภาพงานวิจัย (ต่อ)

- ความเหมาะสมของแนวทางวิธีการวิจัย/สมมุติฐานการวิจัย
- 🜟 ความเหมาะสมของการออกแบบวิจัย
- ความสามารถในการควบคุมตัวแปรแทรกซ้อน
- ความเป็นตัวแทนของกลุ่มตัวอย่าง
- ความเหมาะสมของเทคนิคการเก็บข้อมูล
- ผูณภาพของเครื่องมือวิจัย

การประเมินคุณภาพงานวิจัย (ต่อ)

- * ความสมบูรณ์ของข้อมูลที่ใช้ในการวิจัย
- * ความเป็นมาตรฐานของรูปแบบการเขียนรายงานวิจัย
- ความเหมาะสมของการจัดประเภทข้อมูลเพื่อการวิเคราะห์
- ความถูกต้องเหมาะสมของการใช้สถิติวิเคราะห์
- ความถูกต้องของการแปลผลวิเคราะห์

การประเมินคุณภาพงานวิจัย (ต่อ)

- * ความเหมาะสมในการเสนอผลวิจัย
- # ความถูกต้องของการสรุป
- ความสมเหตุและความชัดเจนของการอภิปรายผลและข้อเสนอแนะ
- ความเป็นประโยชน์ทางวิชาการของงานวิจัย
- ความเป็นประโยชน์ในการนำไปปฏิบัติงานวิจัย

การวิจัยเชิงคุณภาพ

การวิจัยเชิงคุณภาพ เป็นการศึกษาสถานการณ์ที่เกิดขึ้นตาม ธรรมชาติที่เกิดขึ้นในรอบด้านโดยมุ่งการค้นหาประเด็นทางสังคมเพื่อ หาความสัมพันธ์ของปรากฏการณ์กับสภาพแวดล้อม ด้วยการเจาะลึก ลงไปโดยอาจจะไม่มีรูปแบบที่แน่นอนมีการออกแบบการวิจัยที่ยึด หยุ่นได้ จุดมุ่งเน้นคือการสร้างความเข้าใจในเหตุผลและปรากฏการณ์ มากกว่าวิธีที่เป็นระบบระเบียบและการวิเคราะห์ตัวแปร แต่จะใช้ ทักษะการสัมภาษณ์และใช้เวลานาน ดังนั้นนักวิจัยจะเป็นเครื่องมือ สำคัญในการวิจัยเชิงคุณภาพ

ประเภทการวิจัยเชิงคุณภาพ

1. การวิจัยเชิงชาติพันธุ์วรรณนา (Ethnographic study)

เป็นวิธีการวิจัยเชิงคุณภาพที่มุ่งการพรรณาและตีความ พฤติกรรมของกลุ่มคน รวมถึงระบบทางสังคมหรือทางวัฒนธรรม ใน การศึกษานั้นนักวิจัยมุ่งทำความเข้าใจแบบ แผนพฤติกรรมทางสังคม วัฒนธรรม ขนบประเพณี และวิถีชีวิตของกลุ่มคนในสังคมหรือ วัฒนธรรม นั้น นักวิจัยอาจใช้เทคนิคสำหรับเก็บข้อมูลหลายแบบ แต่ วีธีหลักคือการสังเกตแบบมีส่วนร่วม (Participatory observation) โดยนักวิจัยเองเป็นเครื่องมือสำคัญในการเก็บ ข้อมูล (Creswell, 1998)

2. การวิจัยแนวปรากฏการณ์วิทยา (Phenomenology study)

อาศัยแนวความคิดและโลกทัศน์จากปรัชญาปรากฏการณ์วิทยา เป็นเครื่องมือในการศึกษาปรากฏการณ์และประสบการณ์ของ มนุษย์ ปรากฏการณ์วิทยาเป็นปรัชญาหรือทัศนะต่อภาวการณ์มีอยู่ การดำรง อยู่ของมนุษย์ ไม่ใช่วิธีการวิจัยแต่ถูกนักวิจัยนำมาใช้เสมือนว่าเป็น "วิธีการ" เพื่อศึกษาปรากกฏการณ์ที่ชีวิตที่บุคคลได้ประสบมา (Lived experience) การวิจัยแบบนี้มุ่งทำความเข้าใจ ความหมายประสบการณ์ชีวิตที่บุคคลได้ประสบมาเป็นหลัก (Moustakas ,1994)

3. วิธีการศึกษาเฉพาะกรณี (Case study approach)

ในการวิจัยหมายถึงการนำข้อมูล รายละเอียดของกรณีศึกษามา ใช้เป็นหลักฐานในการสรุปหลักการุต่าง ๆ การศึกษารายกรณี ซึ่ง อาจเป็นบุคคล ชุมชน หน่วยุงาน เรื่อง เหตุการณ์ หรือปัญหา โดยเก็บ รวบรวมข้อมูลหลักฐานในเรื่องนั้นอย่างละเอียดและมีการวิเคราะห์ เจาะลึกุถึงสาเหตุที่แท้จริงของปัญหาที่เกี่ยวข้องเพื่อช่วยให้เกิดความ เข้าใจที่ลึกซึ้งและสามารถให้การ ปริกษาในเรื่องนั้นได้ (ราชบัณฑิตยสถาน, 2551)

4. การวิจัยแบบสร้างทฤษฎีจากข้อมูล (Grounded theory study)

เป็นการสร้างคำอธิบายเชิงทฤษฎีจากข้อมูลโดยตรง วิธีวิทยาของ การสร้างทฤษฎีฐานรากพัฒนาขึ้นมาจากความเชื่อพื้นฐานที่ว่า การจะทำ ความเข้าใจเกี่ยวกับพฤติกรรมมนุษย์และการอยู่รวมกันของมนุษย์ จำเป็นต้องเข้าใจถึงกระบวนการที่บุคคลได้สร้างความหมายให้กับสิ่ง ต่างๆ ที่อยู่รอบตัว โดยยึดหลักของการทำความเข้าใจสิ่งต่างๆ จากนั้นจึง นำข้อมูลที่ได้มาสร้างมในทัศน์ หาความเชื่อมโยงระหว่างมในทัศน์ต่างๆ เพื่อให้ได้ข้อสรุปเชิงทฤษฎีของปรากฏการณ์ทางสังคมที่ต้องการหา คำอธิบายหลักการสร้างทฤษฎีฐานราก โดย (Barney Glaser & Anselm Strauss, 1967)

5. การวิจัยแบบสนทนากลุ่ม (Focus group study)
กลุ่มคนที่ถูกจัดขึ้นมา เพื่อการสนทนาหรืออภิปรายกัน โดยมี
จุดมุ่งหมายเจาะจงเพื่อจะหาข้อมูลที่ถูกต้องตรงประเด็นสำหรับตอบ
คำถามการวิจัยเรื่องใดเรื่องหนึ่งโดยเฉพาะกลุ่มนี้จะถูกเจาะจงเลือก
มา การอภิปรายกันเกี่ยวกับประเด็นคำถามที่เจาะจงชุดหนึ่งซึ่งนักวิจัย
ยกขึ้นมาเป็นหัวข้อสนทนา การอภิปรายถกเถียงกันนั้น อาจจะ
เกี่ยวกับเนื้อหาหรือประเด็นของสิ่งที่นักวิจัยแสดงให้ผู้ร่วมสนทนาได้
ดูฟังก่อนการสนทนา

การวิเคราะห์ข้อมูลเชิงคุณภาพ

การตรวจสอบข้อมูลสามเส้า (Triangulation) (Denzin,1970) โดยแบ่งออกเป็น 3 ประเภท ได้แก่

- 1. การตรวจสอบสามเส้าด้านข้อมูล (Data triangulation)
- 2. การตรวจสอบสามเส้าด้านผู้วิจัย (Investigator triangulation)
- 3. การตรวจสอบสามเส้าด้านทฤษฎี (Theory triangulation)

เทคนิคการวิเคราะห์ข้อมูลเชิงคุณภาพ

- •การจำแนกและจัดระบบข้อมูล (Typology and taxonomy)
- •การวิเคราะห์สรุปอุปนัย (Analytic induction)
- •การเปรียบเทียบเหตุการณ์ (Constant comparison)
- •การวิเคราะห์ส่วนประกอบ (Componential analysis)
- •การวิเคราะห์ข้อมูลเอกสาร (Content analysis)
- •การวิเคราะห์สาเหตุและผล (Cause and effect analysis)
- •การสร้างจินตนาการเชิงสังคมวิทยา (Sociology imaginary)

#