第6章 线性规划

- 6.1 线性规划模型
 - 6.1.1 模型
 - 6.1.2 二维线性规划的图解法
- 6.2 标准形
 - 6.2.1 标准形
 - 6.2.2 标准形的可行解的性质
- 6.3 单纯形法
 - 6.3.1 确定初始基本可行解
 - 6.3.2 最优性检验

第6章 线性规划(续)

- 6.3.3 基变换
- 6.3.4 单纯形表
- 6.3.5 人工变量和两阶段法
- 6.3.6 单纯形法的有限终止性
- 6.4 对偶性
 - 6.4.1 对偶线性规划
 - 6.4.2 对偶单纯形法
- 6.5 整数线性规划的分支限界算法

简要历史

线性规划是应用最广的数学模型

L.V.Kantorovich 苏联数学家、经济学家、1975年诺贝尔经济学奖获得者,1939年在《组织和计划生产的数学方法》一文中最早提出线性规划

G.B.Dantzig 1947年 给出一般的线性规划模型和单纯形法.

L.G. Khachian 苏联数学家 1979年 椭球算法 这是多项式时间算法

N. Karmarkar 印度数学家 1984年 投影算法

6.1 线性规划模型

6.1.1 模型

例6.1 生产计划问题

用3种原料混合配制2种清洁剂

	原料1	原料2	原料3	售价(万元/吨)
清洁剂A	0.25	0.50	0.25	12
清洁剂 B	0.50	0.50		15
存量 (吨)	120	150	50	

这 2 种清洁剂应各配制多少才能使总价值最大?

例1(续)

设清洁剂A和B分别配制x和y

$$\max z = 12x + 15y$$

s.t.
$$0.25x + 0.50y \le 120$$

$$0.50x + 0.50y \le 150$$

$$0.25x \leq 50$$

$$x \ge 0, y \ge 0$$

目标函数

约束条件

投资组合问题

例6.2 10亿元投资 5 个项目,其中项目1和项目2是高新技术产业的企业债,项目3和项目4是基础工业的企业债,项目5是国债和地方政府债.

预测它们的年收益率(%)分别为 8.1, 10.5, 6.4, 7.5 和 5.0.

基于风险的考虑,要求投资组合满足下述条件:

- (1) 每个项目不超过 3 亿元.
- (2) 高新技术产业的投资不超过总投资的一半,即 5 亿元,其中项目2又不超过高新技术产业投资的一半.
- (3) 国债和地方政府债不少于基础工业项目投资的 40%.

试确定投资组合中各项目的投资额,使年收益率最大.

例6.2 (续)

设项目 i 的投资额为 x_i 亿元, i = 1, 2, 3, 4, 5.

$$\max z = 8.1x_1 + 10.5x_2 + 6.4x_3 + 7.5x_4 + 5.0x_5$$

s.t.
$$x_1 \le 3$$
, $x_2 \le 3$

$$x_3 \le 3$$
, $x_4 \le 3$

$$x_5 \le 3$$

$$x_1 + x_2 \le 5$$

- (2) 高新技术产业的投资不超过总 投资的一半, 即 5 亿元, 其中项目2 又不超过高新技术产业投资的一半.
- (3) 国债和地方政府债不少于基础工业项目投资的 40%.

$$x_2 \le 0.5(x_1 + x_2), \quad \mathbb{R} \quad x_1 - x_2 \ge 0$$

$$x_5 \ge 0.4(x_3 + x_4), \quad \exists \exists 0.4x_3 + 0.4x_4 - x_5 \le 0$$

$$x_1 + x_2 + x_3 + x_4 + x_5 = 10$$

$$x_i \ge 0$$
, $i = 1, 2, 3, 4, 5$

运输问题

例6.3

	分销中心1	分销中心2	分销中心3	产量
工厂1	3	2	7	5000
工厂2	7	5	2	6000
需求量	6000	4000	1000	11000

产销平衡. 试制定供销方案, 使总运费最小.

设工厂
$$i$$
 供应分销中心 j 的数量为 $x_{ij}, i = 1, 2; j = 1, 2, 3.$
min $z = 3x_{11} + 2x_{12} + 7x_{13} + 7x_{21} + 5x_{22} + 2x_{23}$
s.t. $x_{11} + x_{12} + x_{13} = 5000$
 $x_{21} + x_{22} + x_{23} = 6000$
 $x_{11} + x_{21} = 6000, \quad x_{12} + x_{22} = 4000$
 $x_{13} + x_{23} = 1000, \quad x_{ij} \ge 0, \quad i = 1, 2; \quad j = 1,2,3$

饲料配方问题

例6.4 每头牛每天至少需要 b_i 个单位的营养素 i, $1 \le i \le n$. 有n种饲料,饲料 j 每千克含有 a_{ij} 个单位的营养素 i, 售价 c_j 元, $1 \le j \le m$. 要保证动物有足够营养且饲料成本最低,应如何配方?

设每头每天的饲料中含 x_i 千克饲料j, $1 \le j \le n$.

$$\min z = \sum_{j=1}^{n} c_j x_j$$
s.t
$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i , \quad 1 \le i \le m$$

$$x_j \ge 0, \quad 1 \le j \le n$$

线性规划的一般形式

$$\min(\max) z = \sum_{j=1}^{n} c_j x_j$$

目标函数

s.t.
$$\sum_{j=1}^{n} a_{ij} x_{j} \le (=, \ge) b_{i}, \quad i=1,2,...,m$$

约束条件

$$x_j \ge 0$$
, $j \in J \subseteq \{1,2,...,n\}$
 x_j 任意, $j \in \{1,2,...,n\} - J$

非负条件自由变量

可行解 满足约束条件和非负条件的变量

可行域 全体可行解

最优解 目标函数值最小(最大)的可行解

最优值 最优解的目标函数值

6.1.2 二维线性规划的图解法

例6.1 (续)

$$\max z = 12x + 15y$$
s.t. $0.25x + 0.50y \le 120$
 $0.50x + 0.50y \le 150$
 $0.25x \le 50$
 $x \ge 0, y \ge 0$

O(0,0), A(0,240),

B(120,180), C(200,100),

D(200)

最优解 $x^*=120$, $y^*=180$ (点B) 最优值 $z^*=4140$.

例5

例6.1中的目标函数改为 $\max z = 12x + 12y$

最优解
$$x^*=120t+200(1-t)=200-80t$$
 $y^*=180t+100(1-t)=100+80t$, $0 \le t \le 1$ 线段 BC 最优值 $z^*=3600$.

例6.6

min
$$z = x-2y$$

s.t. $2x + y \ge 2$
 $x - y \le 2$
 $x \ge 0, y \ge 0$

有可行解 目标函数值可以任意小 无最优解.

如果把约束条件改为 $2x+y \le 2$ 与 $x-y \le 2$,则可行域为空集, 无可行解.

性质

- (1)解有4种可能
 - (a) 有唯一的最优解.
 - (b) 有无穷多个最优解.
 - (c) 有可行解, 但无最优解 (目标函数值无界).
 - (d) 无可行解, 更无最优解.
- (2) 可行域是一个凸多边形 (可能无界, 也可能是空集). 如果有最优解,则一定可以在凸多边形的顶点取到.
- 一般的n维线性规划也是如此.

6.2 标准形

6.2.1 标准形

min
$$z = \sum_{j=1}^{n} c_{j} x_{j}$$

s.t. $\sum_{j=1}^{n} a_{ij} x_{j} = b_{i} \ge 0$, $i = 1, 2, ..., m$
 $x_{i} \ge 0$, $j = 1, 2, ..., n$

化成标准形

- (1) 把 $\max z$ 替换成 $\min z' = -z$, 即取 $c_j' = -c_j$.
- (2) b_i <0. 两边同时变号, ≤改变成≥,≥改变成≤.
- (4) $\sum_{j=1}^{n} a_{ij} x_{j} \geq b_{i}.$ 引入剩余变量 $y_{i} \geq 0$,替换成 $\sum_{j=1}^{n} a_{ij} x_{j} y_{i} = b_{i}$
- (5) 自由变量 x_j 替换成 $x_j'-x_j''$, $x_j' \ge 0$, $x_j'' \ge 0$.

例6.7

写出下述线性规划的标准形

max
$$z = 3x_1 - 2x_2 + x_3$$

s.t. $x_1 + 3x_2 - 3x_3 \le 10$
 $4x_1 - x_2 - 5x_3 \le -30$
 $x_1 \ge 0, x_2 \ge 0, x_3$ 任意

$$min z' = -3x_1 + 2x_2 - x_3' + x_3''$$
s.t. $x_1 + 3x_2 - 3x_3' + 3x_3'' + x_4 = 10$

$$-4x_1 + x_2 + 5x_3' - 5x_3'' - x_5 = 30$$

 $x_1 \ge 0, x_2 \ge 0, x_3' \ge 0, x_3'' \ge 0, x_4 \ge 0, x_5 \ge 0,$

标准形

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \quad c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

矩阵形式

向量形式

$$\min z = c^T x$$
s.t. $Ax = b$

$$x \ge 0$$

min
$$z = \sum_{j=1}^{n} c_{j} x_{j}$$

s.t.
$$\sum_{j=1}^{n} P_{j} x_{j} = b$$
$$x_{j} \ge 0, \ j = 1, 2, ..., n$$
$$P_{j} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$$

$$P_{j} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$$

6.2.2 标准形的可行解的性质

定义 设A的秩为m,A的m个线性无关的列向量称作标准形的基. 给定基 $B=(P_{i_1},P_{i_2},\cdots,P_{i_m})$,对应基中列向量的变量 $x_{i_1},x_{i_2},\cdots,x_{i_m}$ 称作基变量,其余的变量称作非基变量.

基变量构成的向量记作 x_B , 非基变量构成的向量记作 x_N . 令 $x_N = 0$, 等式约束变成

$$Bx_B = b$$

解得 $x_B = B^{-1}b$. 这个向量 x 满足约束 Ax = b 且非基变量全为 0, 称作关于基 B 的基本解. 如果 x 是一个基本解且 $x \ge 0$, 则称 x 是一个基本可行解, 对应的基 B为可行基.

例6.8

$$\min z = -12x_1 - 15x_2$$
s.t. $0.25x_1 + 0.50x_2 + x_3 = 120$
 $0.50x_1 + 0.50x_2 + x_4 = 150$
 $0.25x_1 + x_5 = 50$
 $0.25 = 0.50 = 0.50$
 $0.50 = 0.50 = 0.50$
 $0.50 = 0.50 = 0.50$
 $0.50 = 0.50 = 0.50$
 $0.50 = 0.50 = 0.50$
 $0.25 = 0.50 = 0.50$
取基 $B_1 = (P_1, P_2, P_3)$. 基变量 x_1, x_2, x_3 , 非基变量 x_4, x_5 . 令 $x_4 = 0$, $x_5 = 0$, 得
$$0.25x_1 + 0.50x_2 + x_3 = 120$$

$$0.50x_1 + 0.50x_2 = 150$$

$$0.25x_1 = 50$$
解得 $x_1 = 200, x_2 = 100, x_3 = 20$.

 $x^{(1)}=(200,100,20,0,0)^T$ 是基本可行解, B_1 是可行基.

例6.8 (续)

取基
$$B_2$$
=(P_1 , P_2 , P_4). 基变量 x_1 , x_2 , x_4 , 非基变量 x_3 , x_5 . 令 x_3 =0, x_5 =0, 由 $0.25x_1 + 0.50x_2 = 120$ $0.50x_1 + 0.50x_2 + x_4 = 150$ $0.25x_1 = 50$

解得 x_1 =200, x_2 =140, x_4 = -20.

 $x^{(2)}=(200,140,0,-20,0)^T$ 是基本解,但不是基本可行解.

 B_2 不是可行基.

这个线性规划是例6.1中线性规划的标准形, $x^{(1)}$ 是例6.1图中的顶点C.

 $x^{(2)}$ 是直线0.25x+0.5y=120与0.25x=50的交点,不在可行域内.

基本可行解的性质

引理6.1 Ax = b 的解 α 是基本解 $\Leftrightarrow \alpha$ 中非零分量对应的列向量线性无关.

证 必要性 根据基本解的定义,这是显然的.

充分性 设 α 的非零分量为 α_{j_1} , α_{j_2} ,…, α_{j_r} ,对应的列向量 P_{j_1} , P_{j_2} ,…, P_{j_r} 线性无关.A的秩为m,必存在 P_{j_r+1} ,…, P_{j_m} 使得 P_{j_1} , P_{j_2} ,…, P_{j_m} 线性无关,构成一个基,记作B. α 是方程 $Bx_B = b$ 的解,而这个方程的解是唯一的,故 α 是关于B的基本解。

基本可行解的性质

定理6.1 如果标准形有可行解,则必有基本可行解.

证设 α 是一个可行解,从 α 开始,构造出一个基本可行解.

设 α 的非零分量为 α_1 , α_2 ,..., α_r , $r \le n$. 如果对应的列向量 P_1 , P_2 , ..., P_r 线性无关, 则 α 是一个基本可行解.

否则, 存在不全为 0 的 $\lambda_1, \lambda_2, \ldots, \lambda_r$ 使

$$\lambda_1 P_1 + \lambda_2 P_2 + \ldots + \lambda_r P_r = 0$$

取 $\lambda_{r+1} = \ldots = \lambda_n = 0$, 有

$$\lambda_1 P_1 + \lambda_2 P_2 + \ldots + \lambda_r P_n = 0$$

于是,对任意的 δ 有

$$\sum_{j=1}^{n} (\alpha_j + \delta \lambda_j) P_j = \sum_{j=1}^{n} \alpha_j P_j + \delta \sum_{j=1}^{n} \lambda_j P_j = b$$

定理6.1 (续)

记 $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n)^T$, 为使 $\alpha + \delta \lambda$ 成为一个可行解, 要求所有 $\alpha_j + \delta \lambda_j \geq 0$.

当 $\lambda_i = 0$ 时,不等式自然成立.

当 $\lambda_j > 0$ 时,要求 $\delta \ge -\alpha_j / \lambda_j$; 当 $\lambda_j < 0$ 时,要求 $\delta \le -\alpha_j / \lambda_j$. 综上所述,要求当 $\lambda_i \ne 0$ 时, $\delta \le |\alpha_i / \lambda_j|$.

设
$$\left|\alpha_{j_0}/\lambda_{j_0}\right| = \min\left\{\left|\alpha_j/\lambda_j\right| : \lambda_j \neq 0\right\}, \quad 1 \leq j_0 \leq r$$

取
$$\delta$$
*= $-\alpha_{j_0}/\lambda_{j_0}$,令 $\beta_j = \alpha_j + \delta * \lambda_j (j = 1, 2, ..., n)$,则 $\beta_1 P_1 + ... + \beta_n P_n = b$

且
$$\beta_j \ge 0$$
 $(j=1, 2, ..., n)$, $\beta_{j_0} = 0$, $\beta_{r+1} = ... = \beta_n = 0$.

从而, $\beta = (\beta_1, \beta_2, ..., \beta_n)$ 是可行解且比 α 至少少一个非零分量. 上述过程至多进行r-1次一定可以得到一个基本可行解.

基本可行解的性质

定理6.2 如果标准形有最优解,则必存在一个基本可行解是最优解.

证 补充证明: 只需证明,在定理6.1中, 当 α 是最优解时, β 也是最优解.

沿用定理6.1中构造的 λ ,对于任意的 δ ,已知有

$$\sum_{j=1}^{n} (\alpha_j + \delta \lambda_j) P_j = \sum_{j=1}^{n} (\alpha_j - \delta \lambda_j) P_j = \sum_{j=1}^{n} \alpha_j P_j + \left[\delta \sum_{j=1}^{n} \lambda_j P_j\right]$$

$$\overrightarrow{\mathbb{R}} \overset{\sim}{\Sigma} .$$

即由 α 是可行解,可得 $\alpha \pm \delta \lambda$ 都是解, $|\delta|$ 取较小则可保证都为可行解。(分析 $\lambda_j \neq 0$ 时,只需取 δ '< min $\{|\alpha_j/\lambda_j|: \lambda_j \neq 0\}$,则 $\alpha_j \pm \delta$ ' $\lambda_j \geq 0$) 又因为 α 是最优解,带入目标函数,从而

$$\sum_{j=1}^{n} c_{j} \alpha_{j} \leq \sum_{j=1}^{n} c_{j} (\alpha_{j} + \delta \lambda_{j}) = \sum_{j=1}^{n} c_{j} \alpha_{j} + \delta \sum_{j=1}^{n} c_{j} \lambda_{j}$$

$$\sum_{j=1}^{n} c_{j} \alpha_{j} \leq \sum_{j=1}^{n} c_{j} (\alpha_{j} - \delta \lambda_{j}) = \sum_{j=1}^{n} c_{j} \alpha_{j} - \delta \sum_{j=1}^{n} c_{j} \lambda_{j}$$

$$\beta \qquad \sum_{j=1}^{n} c_{j} \lambda_{j} = 0$$

定理6.2 (续)

于是

$$\sum_{j=1}^{n} c_j \beta_j \leq \sum_{j=1}^{n} c_j (\alpha_j + \delta^* \lambda_j) = \sum_{j=1}^{n} c_j \alpha_j + \delta^* \sum_{j=1}^{n} c_j \lambda_j = \sum_{j=1}^{n} c_j \alpha_j$$

得证 $\beta = \alpha + \delta * \lambda$ 也是最优解.

根据定理6.2,解线性规划问题只需考虑标准形的基本可行解. A有m行n列,至多有 C_n^m 个基,故至多有 C_n^m 个基本解. 从而,线性规划成为一个组合优化问题.

6.2.2 标准形的可行解的性质

定义 设A的秩为m,A的m个线性无关的列向量称作标准形的基. 给定基 $B=(P_{i_1},P_{i_2},\cdots,P_{i_m})$,对应基中列向量的变量 $x_{i_1},x_{i_2},\cdots,x_{i_m}$ 称作基变量,其余的变量称作非基变量.

基变量构成的向量记作 x_B , 非基变量构成的向量记作 x_N . 令 $x_N = 0$, 等式约束变成

$$Bx_B = b$$

解得 $x_B=B^{-1}b$. 这个向量 x 满足约束 Ax=b且非基变量全为 0, 称作关于基 B 的基本解. 如果 x 是一个基本解且 $x \ge 0$, 则称 x 是一个基本可行解, 对应的基 B为可行基.

基本可行解的性质

定理6.2 如果标准形有最优解,则必存在一个基本可行解是最优解.

证 补充证明: 只需证明,在定理6.1中, 当 α 是最优解时, β 也是最优解.

沿用定理6.1中构造的 λ ,对于任意的 δ ,已知有

$$\sum_{j=1}^{n}(\alpha_{j}+\delta\lambda_{j})P_{j}=\sum_{j=1}^{n}(\alpha_{j}-\delta\lambda_{j})P_{j}=\sum_{j=1}^{n}\alpha_{j}P_{j}+\delta\sum_{j=1}^{n}\lambda_{j}P_{j}$$

$$\overrightarrow{\mathbb{R}}\overset{\sim}{\mathcal{L}},$$

即由 α 是可行解,可得 $\alpha \pm \delta \lambda$ 都是解, $|\delta|$ 取较小则可保证都为可行解。(分析 $\lambda_j \neq 0$ 时,只需取 δ '< min $\{|\alpha_j/\lambda_j|: \lambda_j \neq 0\}$,则 $\alpha_j \pm \delta$ ' $\lambda_j \geq 0$ ' 又因为 α 是最优解,带入目标函数,从而

$$\sum_{j=1}^{n} c_{j} \alpha_{j} \leq \sum_{j=1}^{n} c_{j} (\alpha_{j} + \delta \lambda_{j}) = \sum_{j=1}^{n} c_{j} \alpha_{j} + \delta \sum_{j=1}^{n} c_{j} \lambda_{j}$$

$$\sum_{j=1}^{n} c_{j} \alpha_{j} \leq \sum_{j=1}^{n} c_{j} (\alpha_{j} - \delta \lambda_{j}) = \sum_{j=1}^{n} c_{j} \alpha_{j} - \delta \sum_{j=1}^{n} c_{j} \lambda_{j}$$

$$\beta \qquad \sum_{j=1}^{n} c_{j} \lambda_{j} = 0$$

6.3 单纯形法

基本步骤

- (1) 确定初始基本可行解.
- (2) 检查当前的基本可行解. 若是最优解或无最优解, 计算结束; 否则作基变换, 用一个非基变量替换一个基变量, 得到 一个新的可行基和对应的基本可行解, 且使目标函数值 下降(至少不升).
- (3) 重复(2).

6.3.1 确定初始基本可行解

暂时只考虑最简单的情况,设约束条件为

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i \ge 0, \quad i = 1, 2, \dots, m$$
 其中 $b_i \ge 0$ $(i = 1, 2, \dots, m)$.

引入
$$m$$
个松弛变量 $x_{n+i} \ge 0$ $(i = 1, 2, ..., m)$,
$$a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n + x_{n+i} = b_i, i = 1, 2, ..., m$$

取
$$x_{n+i}$$
 ($i=1,2,\ldots,m$) 作为基变量, 初始基本可行解为 $x^{(0)}=(0,0,\ldots,0,b_1,b_2,\ldots,b_m)^T$

例

例6.1 (续)

$$\max z = 12x + 15y$$

s.t.
$$0.25x + 0.50y \le 120$$

$$0.50x + 0.50y \le 150$$

$$\leq 50$$

$$x \ge 0, y \ge 0$$

标准形

$$\min z' = -12x_1 - 15x_2$$

s.t.
$$0.25x_1 + 0.50x_2 + x_3 = 120$$

$$0.50x_1 + 0.50x_2 + x_4 = 150$$

$$0.25x_1 + x_5 = 50$$

$$x_i \ge 0, i = 1, 2, ..., 5$$

取 x_3 , x_4 , x_5 作为基变量

$$x^{(0)} = (0, 0, 120, 150, 50)^T$$

6.3.2 最优性检验

给定可行基 $B=(P_{\pi(1)}, P_{\pi(2)}, ..., P_{\pi(m)}), Ax=b$ 两边同乘 B^{-1} , 得 $B^{-1}Ax=B^{-1}b$. 记A中对应非基变量的列构成的矩阵为N,

解得

$$x_B + B^{-1}Nx_N = B^{-1}b$$

解得 $x_B = B^{-1}b - B^{-1}Nx_N$
代入目标函数 $z = c^Tx$
 $= c_B^T x_B + c_N^T x_N$
 $= c_B^T (B^{-1}b - B^{-1}Nx_N) + c_N^T x_N$
 $= c_B^T B^{-1}b + (c_N^T - c_B^T B^{-1}N)x_N$

基本可行解 $x_B^{(0)} = B^{-1}b$, $x_N^{(0)} = 0$, 目标函数值 $z_0 = c_B^T B^{-1}b$

最优性检验

最优性检验

$$\lambda^T = c^T - c_B^T B^{-1} A$$

记 $B^{-1}A = (\alpha_{ij})_{m \times n}, P'_{j} = B^{-1}P_{j} (1 \le j \le n), \beta = B^{-1}b \ge 0.$

 $z = z_0 + \lambda^T x$

定理6.3 给定基本可行解 $x^{(0)}$, 若所有检验数大于等于0, 则 $x^{(0)}$ 是最优解. 若存在检验数 $\lambda_k < 0$ 且所有 $\alpha_{ik} \leq 0$ (1 $\leq i \leq m$), 则无最优解.

证 如果 $\lambda \ge 0$,则对任意可行解 $x \ge 0$, $z \ge z_0$,故 $x^{(0)}$ 是最优解. 如果存在检验数 $\lambda_k < 0$ (λ_k 必对应非基变量)且所有 $\alpha_{ik} \le 0$ ($1 \le i \le m$),取 $x_k = M > 0$,其余非基变量 $x_j = 0$,解得

$$x_{\pi(i)} = \beta_i - \alpha_{ik} M \ge 0, \qquad 1 \le i \le m$$

这是一个可行解, 其目标函数值为

$$z = z_0 + \lambda_k M$$

当 $M \to +\infty$ 时, $z \to -\infty$. 得证无最优解.

最优性检验

$$\lambda^T = c^T - c_B^T B^{-1} A$$

记 $B^{-1}A = (\alpha_{ij})_{m \times n}, P_i' = B^{-1}P_i (1 \le j \le n), \beta = B^{-1}b \ge 0.$

 $z = z_0 + \lambda^T x$

定理6.3 给定基本可行解 $x^{(0)}$, 若所有检验数大于等于0, 则 $x^{(0)}$ 是最优解. 若存在检验数 $\lambda_k < 0$ 且所有 $\alpha_{ik} \leq 0$ (1 $\leq i \leq m$), 则无最优解.

证 如果 $\lambda \ge 0$,则对任意可行解 $x \ge 0$, $z \ge z_0$,故 $x^{(0)}$ 是最优解. 如果存在检验数 $\lambda_k < 0$ (λ_k 必对应非基变量)且所有 $\alpha_{ik} \le 0$ ($1 \le i \le m$),取 $x_k = M > 0$,其余非基变量 $x_j = 0$,解得

$$x_{\pi(i)} = \beta_i - \alpha_{ik} M \ge 0, \qquad 1 \le i \le m$$

这是一个可行解, 其目标函数值为

$$z = z_0 + \lambda_k M$$

当 $M \to +\infty$ 时, $z \to -\infty$. 得证无最优解.

6.3.3 基变换

 $B^{-1}A = (\alpha_{ij})_{m \times n}, P'_{j} = B^{-1}P_{j}$

给定可行基 $B=(P_{\pi(1)},P_{\pi(2)},...,P_{\pi(m)})$, 设 $\lambda_k < 0$ 且 $\alpha_{lk} > 0$, x_k 必 是非基变量.

基变换: 用非基变量 x_k 替换基变量 $x_{\pi(l)}$, 用 P_k 替换 B 中的 $P_{\pi(l)}$, 新的基为 $B' = (P_{\pi(1)}, ..., P_{\pi(l-1)}, P_k, P_{\pi(l+1)}, ..., P_{\pi(m)})$. 称 x_k 为换入变量, $x_{\pi(l)}$ 为换出变量.

(1) 要证 B' 是一个基,即 $P_{\pi(1)}, \dots, P_{\pi(l-1)}, P_k, P_{\pi(l+1)}, \dots, P_{\pi(m)}$ 是线性无关的. 由于 $P_{\pi(1)}, P_{\pi(2)}, \dots, P_{\pi(m)}$ 是线性无关的,只需证 $P_{\pi(l)}$ 可表成 $P_{\pi(1)}, \dots, P_{\pi(l-1)}, P_k, P_{\pi(l+1)}, \dots, P_{\pi(m)}$ 的线性组合. 由于 $(P'_{\pi(1)}, P'_{\pi(2)}, \dots, P'_{\pi(m)}) = B^{-1}B = E$,

$$P'_k = \sum_{i=1}^m \alpha_{ik} P'_{\pi(i)}$$
 两边同乘 B $P_k = \sum_{i=1}^m \alpha_{ik} P_{\pi(i)}$

基变换(续)

解得

$$P_{\pi(l)} = \frac{1}{\alpha_{lk}} P_k - \sum_{\substack{i=1 \ \exists l \neq l}}^m \frac{\alpha_{ik}}{\alpha_{lk}} P_{\pi(i)}$$

得证 B' 是一个基.

(2) 要保证 B' 是可行基.

$$Ax = b$$

$$B^{-1}Ax = B^{-1}b = \beta$$

$$x_B + B^{-1}Nx_N = \beta$$

 $B^{-1}A=(P_1',P_2',...,P_m')$ 中对应 x_B 的列 (第 $\pi(1),...,\pi(n)$ 列) 构成单位矩阵. 用 P_k 替换 $P_{\pi(l)}$ 得到 B',将 x_B 中的 $x_{\pi(l)}$ 替换 成 x_k ,即解出第 l 个方程中的 x_k . 这只需用 α_{lk} 除第 l 个方程,再用第 l 个方程消去其它方程中的 x_k

基变换(续)

计算公式
$$\alpha_{lj}' = \alpha_{lj}/\alpha_{lk}$$
, $1 \le j \le n$ $\alpha_{ij}' = \alpha_{ij} - \alpha_{ik}\alpha_{lj}/\alpha_{lk}$, $1 \le i \le m \coprod i \ne l$, $1 \le j \le n$ $\beta_l' = \beta_l/\alpha_{lk}$ $\beta_l' = \beta_l - \alpha_{ik}\beta_l/\alpha_{lk}$, $1 \le i \le m \coprod i \ne l$ 要保证 B' 是可行的,只需 $\beta_i' = \beta_i - \alpha_{ik}\beta_l/\alpha_{lk} \ge 0$, $1 \le i \le m \coprod i \ne l$ 注意到 $\beta_i \ge 0$, $\beta_l \ge 0$, $\alpha_{lk} > 0$, 当 $\alpha_{ik} \le 0$ 时不等式自然成立. 于是,只需当 $\alpha_{ik} > 0$ 时有 $\beta_l/\alpha_{lk} \le \beta_i/\alpha_{ik}$ 应取 l 使得 $\beta_l/\alpha_{lk} = \min\{\beta_i/\alpha_{ik} \mid \alpha_{ik} > 0, \ 1 \le i \le m\}$ 用第 l 个方程消去简化的目标函数中的 x_k , $\lambda_j' = \lambda_j - \lambda_k \alpha_{lj}/\alpha_{lk}$, $1 \le j \le m$ $z_0' = z_0 + \lambda_k \beta_l/\alpha_{lk}$

单纯形法

算法 单纯形法 (针对最小化)

- 1. 设初始可行基 $B = (P_{\pi(1)}, P_{\pi(2)}, ..., P_{\pi(m)}), \alpha = B^{-1}A,$ $\beta = B^{-1}b, \lambda^T = c^T B^{-1}A, z_0 = B^{-1}b.$
- 2. 若所有 $\lambda_j \ge 0$ ($1 \le j \le n$), 则 $x_B = \beta, x_N = 0$ 是最优解, 计算结束
- 3. 取 $\lambda_k < 0$. 若所有 $\alpha_{ik} \le 0$ (1 $\le i \le m$),则无最优解,计算结束.
- 4. 取 l 使得

$$\beta_l/\alpha_{lk} = \min\{ \beta_i/\alpha_{ik} \mid \alpha_{ik} > 0, 1 \le i \le m \}$$

- 5. 以 x_k 为换入变量、 x_m 为换出变量做基变换.
- 6. 转2.

对最大化, $2 + \lambda_j \ge 0$ 改为 $\lambda_j \le 0$, $3 + \lambda_k < 0$ 改为 $\lambda_k > 0$.

单纯形表

			c_1	c_2 .	• •	c_n	
c_B	x_B	β	x_1	x_2	• • •	\boldsymbol{x}_n	$\boldsymbol{\theta}$
$c_{\pi\!(1)}$	$x_{\pi(1)}$	β_1	$lpha_{11}$	α_{12}	• • •	α_{1n}	
$c_{\pi(2)}$	$x_{\pi(2)}$	β_2	$lpha_{21}$	$lpha_{22}$	• • •	α_{2n}	
•	•	•	•	•	• • •	•	
$c_{\pi(m)}$	$x_{\pi(m)}$	β_m	α_{m1}	α_{m2}	• • •	α_{mn}	
	- z	$-z_0$	λ_1	λ_2	• • •	λ_n	

$$-z + \lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_n x_n = -z_0$$

 $\beta = B^{-1}b$, $\lambda^{T} = c^{T} - c_{B}^{T} B^{-1}A$, $z_{0} = B^{-1}b$

 $\theta = \beta_l/\alpha_{lk}$, $\mathbb{R} \min\{ \beta_i/\alpha_{ik} \mid \alpha_{ik} > 0, 1 \le i \le m \}$

 $\alpha_{lj} = \alpha_{lj}/\alpha_{lk}$ $\alpha_{ij}' = \alpha_{ij} - \alpha_{ik}\alpha_{lj}/\alpha_{lk}$ $\beta_{l}' = \beta_{l}/\alpha_{lk}$ $\beta_{i}' = \beta_{i} - \alpha_{ik}\beta_{l}/\alpha_{lk}$ $\beta_{i}' = \beta_{i} - \alpha_{ik}\beta_{l}/\alpha_{lk}$ $\beta_{i}' = \beta_{i} - \alpha_{ik}\beta_{l}/\alpha_{lk}$

注:如有多个 λ_k <0, 优先挑选最小的

$lpha_{ik}eta_l/lpha_{lk}$			-12	-15	0	0	0	
c_B	x_B	β	x_1	x_2	x_3	x_4	x_5	θ
0	$ x_3 $	120	0.25	0.50	1	0	0	240
0	$ x_4 $	150	0.50	0.50	0	1	0	300
0	x_5	50	0.25	0	0	0	1	
	- z	0	-12	-15	0	0	0	
-15	$ x_2 $	240	0.50	1	2	0	0	480
0	$ x_4 $	30	0.25	0	-1	1	0	120
0	$ x_5 $	50	0.25	0	0	0	1	200
	- z	3600	-4.5	0	30	0	0	
-15	$ x_2 $	180	0	1	4	-2	0	
-12	$ x_1 $	120	1	0	-4	4	0	
0	x_5	20	0	0	1	- 1	1	
	- z	4140	0	0	12	18	0	

例6.9

用单纯形法解下述线性规划

min
$$z = x_1 - 2x_2$$

s.t. $x_1 - x_2 \le 1$
 $-2x_1 + x_2 \le 4$
 $x_1 \ge 0, x_2 \ge 0$

解引入2个松弛变量 x3, x4, 得到标准形

min
$$z = x_1 - 2x_2$$

s.t. $x_1 - x_2 + x_3 = 1$
 $-2x_1 + x_2 + x_4 = 4$
 $x_j \ge 0, j = 1, 2, 3, 4$

例6.9 (续)

			1	-2	0	0	
c_B	x_B	b	x_1	x_2	x_3	x_4	θ
0	x_3	1	1	-1	1	0	
0	x_4	4	-2	1	0	1	4
	- Z	0	1	-2	0	0	
0	x_3	5	-1	0	1	1	
-2	x_2	4	-2	1	0	1	
	- Z	8	-3	0	0	2	

目标函数值没有下界, 无最优解

6.3.5 人工变量和两阶段法

现考虑剩余的两种情况:

$$(1) \sum_{j=1}^{n} a_{ij} x_j \ge b_i$$

$$(2) \sum_{j=1}^{n} a_{ij} x_{j} = b_{i}$$

其中 b_i ≥0. 对于(1), 引入剩余变量转化成(2).

对(2)引入 人工变量 $y_j \ge 0$,

$$\sum_{j=1}^{n} a_{ij} x_j + y_j = b_i$$

取所有松弛变量和人工变量作为基变量,得到初始可行基.

例6.10

min
$$z = -3x_1 + x_2 + x_3$$

s.t. $x_1-2x_2 + x_3 \le 11$
 $-4x_1 + x_2 + 2x_3 \ge 3$
 $-2x_1 + x_3 = 1$
 $x_j \ge 0, \ j = 1,2,3$

引入松弛变量
$$x_4$$
, 剩余变量 x_5 , 标准形为 min $z = -3x_1 + x_2 + x_3$ s.t. $x_1-2x_2 + x_3 + x_4 = 11$ $-4x_1 + x_2 + 2x_3 - x_5 = 3$ $-2x_1 + x_3 = 1$ $x_i \ge 0$, $1 \le j \le 5$

例6.10 (续)

再引入人工变量
$$x_6, x_7$$

 $\min z = -3x_1 + x_2 + x_3$
 $s.t.$ $x_1-2x_2 + x_3 + x_4 = 11$
 $-4x_1 + x_2 + 2x_3 - x_5 + x_6 = 3$
 $-2x_1 + x_3 + x_7 = 1$
 $x_j \ge 0$, $1 \le j \le 7$
取基变量 $x_4, x_6, x_7, x^{(0)} = (0,0,0,11,0,3,1)^T$

问题: x⁽⁰⁾不对应标准形的可行解.

只有当所有人工变量等于0时,才能舍去人工变量得到标准形的可行解.

两阶段法

设问题

$$\min \ z = \sum_{j=1}^n c_j x_j$$

s.t.
$$\sum_{j=1}^{n} a_{ij} x_j = b_i , 1 \le i \le m$$
$$x_j \ge 0, \qquad 1 \le j \le n$$

其中 $b_i \ge 0$, $1 \le i \le m$

引入人工变量 $y_1, y_2, ..., y_m$

辅助问题

min
$$w = \sum_{i=1}^{m} y_i$$

s.t. $\sum_{j=1}^{n} a_{ij} x_j + y_i = b_i$, $1 \le i \le m$
 $x_j \ge 0$, $1 \le j \le n$
 $y_i \ge 0$, $1 \le i \le m$

两阶段法 (续)

由于 $w \ge 0$,辅助问题必有最优解.设最优值为 w^* .有3种可能:

(1) $w^* > 0$. 原问题无可行解.

假如不然,设 $(x_1, ..., x_n)^T$ 是原问题的可行解,则 $(x_1, ..., x_n, 0, ..., 0)^T$ 是辅助问题的可行解,对应的 w = 0.与 $w^* > 0$ 矛盾.

- (2) 在最优解中所有的人工变量都是非基变量. 此时,人工变量都等于 $0, w^* = 0$,删去人工变量得到是原问题的基本可行解.
- (3) $w^* = 0$,但基变量中含有人工变量. 这种情况可以进一步转化成情况(2).

两阶段法(续)

此时,所有人工变量都等于0. 设 y_k 是基变量,

$$y_k + \sum_{j=1}^n \alpha_{ij} x_j + \sum_{\substack{t=1 \ \exists t \neq k}}^m \alpha'_{it} y_t = 0$$

且 y_k 不出现在其它约束等式中.

- (a) 若所有 $\alpha_{ij} = 0$ ($1 \le j \le n$), 则原问题中m 个约束等式不是线性无关的,可以把这个等式删去,从而删去了 y_k .
- (b) 存在某个 $\alpha_{il} \neq 0$ (可正可负). 用 x_l 作换入变量, y_k 作换出变量, 做基变换. 由于 $\beta_i = 0$, 经过基变换, β 的所有值均不改变, 从而新的基本解是可行解且 w = 0 不变.

总之,可以使基变量中的人工变量少一个,且保持 w = 0. 重复进行,最终总能变成情况(2).

两阶段法(续)

阶段一 引入人工变量,写出辅助问题,用单纯形法求解.若为情况(1),则原问题无可行解,计算结束.若为情况(2),则进入阶段二.

阶段二 删去人工变量,得到原问题的一个基本可行解.以这个解为初始基本可行解,用单纯形法解原问题.

例10(续)用两阶段法.阶段一辅助问题为

min
$$w = x_6 + x_7$$

s.t. $x_1 - 2x_2 + x_3 + x_4 = 11$
 $-4x_1 + x_2 + 2x_3 - x_5 + x_6 = 3$
 $-2x_1 + x_3 + x_7 = 1$
 $x_i \ge 0, \ j = 1, 2, ..., 7$

例6.10(续)

			0	0	0	0	0	1	1	
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ
0	x_4	11	1	-2	1	1	0	0	0	11
1	x_6	3	-4	1	2	0	-1	1	0	1.5
1	x_7	1	-2	0	1	0	0	0	1	1
	-w	-4	6	-1	-3	0	1	0	0	
0	x_4	10	3	-2	0	1	0	0	-1	_
1	x_6	1	0	1	0	0	-1	1	-2	1
0	x_3	1	-2	0	1	0	0	0	1	_
	-w	-1	0	-1	0	0	1	0	3	
0	x_4	12	3	0	0	1	-2	2	-5	
0	x_2	1	0	1	0	0	-1	1	-2	
0	x_3	1	-2	0	1	0	0	0	1	
	-w	0	0	0	0	0	0	0	1	

例6.10(续)

阶段二

			-3	1	1	0	0	
c_B	x_B	b	x_1	$\boldsymbol{x_2}$	x_3	x_4	x_5	θ
0	x_4	12	3	0	0	1	-2	4
1	x_2	1	0	1	0	0	-1	_
1	x_3	1	-2	0	1	0	0	_
	- Z	-2	-1	0	0	0	1	
-3	$ x_1 $	4	1	0	0	1/3	-2/3	
1	x_2^-	1	0	1	0	0	-1	
0	x_3	9	0	0	1	2/3	-4/3	
	- Z	2	0	0	0	1/3	1/3	

最优解 $x_1^*=4$, $x_2^*=1$, $x_3^*=9$, 最优值 $z^*=-2$

例6.11

min
$$z = 3x_1 - 2x_2$$

s.t. $2x_1 + x_2 \le 4$
 $x_1 - x_2 \ge 3$
 $x_1 \ge 0, x_2 \ge 0$

标准形
$$\min z = 3x_1 - 2x_2$$
 s.t. $2x_1 + x_2 + x_3 = 4$ $x_1 - x_2 - x_4 = 3$ $x_j \ge 0$, $1 \le j \le 4$

阶段一 辅助问题
$$\min w = x_5$$
s.t. $2x_1 + x_2 + x_3 = 4$
 $x_1 - x_2 - x_4 + x_5 = 3$
 $x_i \ge 0, 1 \le j \le 5$

例6.11 (续)

			0	0	0	0	1	
c_B	x_B	b	x_1	x_2	$\overline{x_3}$	x_4	x_5	θ
0	x_3	4	2	1	1	0	0	2
1	x_5	3	1	-1	0	-1	1	3
	-w	-3	-1	1	0	1	0	
0	x_1	2	1	1/2	1/2	0	0	
1	x_5	1	0	-3/2	-1/2	-1	1	
	-w	-1	0	3/2	1/2	1	0	

 $w^*=1>0$, 原问题没有可行解.

例6.12

min
$$z = x_1 + 3x_2 - 2x_3$$

s.t. $3x_1 + 6x_2 + 2x_3 - x_4 = 12$
 $2x_1 + x_3 = 4$
 $3x_1 - 6x_2 + x_3 + x_4 = 0$
 $x_j \ge 0, \ 1 \le j \le 4$

阶段一 辅助问题

$$\min z = x_1 + 3x_2 - 2x_3$$

s.t.
$$3x_1 + 6x_2 + 2x_3 - x_4 + x_5 = 12$$

 $2x_1 + x_3 + x_6 = 4$
 $3x_1 - 6x_2 + x_3 + x_4 + x_7 = 0$
 $x_i \ge 0, \ 1 \le j \le 7$

例6.12 (续)

			0	0	0	0	1	1	1	
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ
1	x_5	12	3	6	2	-1	1	0	0	4
1	x_6	4	2	0	1	0	0	1	0	2
1	x_7	0	3	-6	_1_	_1_	_0_	_0_	_1_	0
	-w	-16	-8	0	-4	0	0	0	0	
1	x_5	12	0	12	1	-2	1	0	-1	1
1	x_6	4	0	4	1/3	-2/3	0	1	-2/3	1
0	x_1	0	1	-2	1/3	1/3	0	0	1/3	_
	-w	-16	0	-16	-4/3	8/3	0	0	8/3	
1	x_5	0	0	0	0	0	1	-3	1	
0	x_2	1	0	1	1/12	-1/6	0	1/4	-1/6	
0	x_1	2	1	0	1/2	0	0	1/2	0	
	-w	0	0	0	0	0	0	4	0	

例6.12 (续)

 $w^*=0$,人工变量 x_5 是基变量且 $\alpha_{11}=\alpha_{12}=\alpha_{13}=\alpha_{14}=0$, β_1 必为 0. 原规划中第1个约束等式是另两个的线性组合,可以删去.

阶段二

			1	3	-2	0	
c_B	x_B	b	x_1	x_2	x_3	x_4	θ
3	x_2	1	0	1	1/12	-1/16	12
1	x_1	2	1	0	1/2	0	4
	- Z	-5	0	0	-11/4	1/2	
3	$\boldsymbol{x_2}$	2/3	-1/6	1	0	-1/6	
-2	x_3^-	4	2	0	1	0	
	- Z	6	11/2	0	0	1/2	

最优解 $x_1^*=0$, $x_2^*=2/3$, $x_3^*=4$, $x_4^*=0$, 最优值 $z^*=-6$.

6.3.6 单纯形法的有限终止

定义如果基本可行解中基变量的值都大于0,则称这个基本可行解是非退化的,否则称作退化的.

如果线性规划的所有基本可行解都是非退化的,则称这个线性规划是非退化的.

如果线性规划有可行解并且是非退化的,则在计算的每一步

$$z_0' = z_0 + \lambda_k \beta_l / \alpha_{lk} < z_0,$$

可行基不会重复出现, 因此单纯形法在有限步内终止.

如果不是非退化的, 当 $\beta_l = 0$ 且取 $x_{n(l)}$ 为换出变量时, 基变换不改变目标函数值. 这就可能使计算出现循环, 计算永不终止.

单纯形法出现循环的例子

1955年 E. Beal 给出一个例子

$$\min z = -0.75x_1 + 20x_2 - 0.5x_3 + 6x_4$$
s.t. $0.25x_1 - 8x_2 - x_3 + 9x_4 + x_5 = 0$

$$0.5x_1 - 12x_2 - 0.5x_3 + 3x_4 + x_6 = 0$$

$$x_3 + x_7 = 1$$

$$x_j \ge 0, \quad 1 \le j \le 7$$

取 x_5 , x_6 , x_7 作为初始基变量, 并规定: 当有多个 $\lambda_j < 0$ 时, 设 $|\lambda_k| = \max \{ |\lambda_j| : \lambda_j < 0 \}$, 取 x_k 作为换入变量; 当有多个 θ_i 同时取到最小值时, 取对应的下标最小的基变量作为换出变量. 计算经过 6 次基变换回到初始可行基, 从而计算出现循环, 永不终止.

避免循环的方法

1954年 G. B. Dantzigt 提出字典序方法.

1977年 R. G. Bland 提出避免循环的两条十分简单的规则.

Bland规则

规则1. 当有多个 $\lambda_j < 0$ 时, 取对应的非基变量中下标最小的作为换入变量.

规则2. 当有多个 $\theta_i = \beta_i / \alpha_{ik} (\alpha_{ik} > 0)$ 同时取到最小值时,取对应的基变量中下标最小的作为换出变量.

6.4 对偶性

6.4.1 对偶线性规划

再看例6.1 公司甲用 3 种原料混合成 2 种清洁剂. 这 2 种清洁剂应各配制多少才能使总价值最大?

	原料1	原料2	原料3	售价(万元/吨)
清洁剂A	0.25	0.50	0.25	12
清洁剂B	0.50	0.50		15
存量 (吨)	120	150	50	

公司乙急需这3种原料,打算向公司甲购买,应出什么价钱?

实例

设清洁剂 A 和 B 分别 配制 x 和 y

$$\max z = 12x + 15y$$
s.t. $0.25x + 0.50y \le 120$
 $0.50x + 0.50y \le 150$
 $0.25x \le 50$
 $x \ge 0, y \ge 0$

设公司乙出价原料每吨分别为y₁, y₂,y₃万元.希望总价尽可能小,但 又不低于公司甲用这些原料生 产清洁剂所产生的价值

min
$$w = 120y_1 + 150y_2 + 50y_3$$

s.t. $0.25y_1 + 0.50y_2 + 0.25y_3 \ge 12$
 $0.50y_1 + 0.50y_2 \ge 15$
 $y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$

对偶线性规划

定义 原始线性规划 (P)

 $\max c^T x$

s.t.
$$Ax \leq b$$

$$x \ge 0$$

对偶线性规划(D)

 $\min b^T y$

s.t.
$$A^t y \ge c$$

$$y \ge 0$$

定理4 对偶的对偶是原始线性规划.

证 (D) 可改写成 (D')

$$\max -b^T y$$

s.t.
$$-A^T y \le -c$$

 $y \ge 0$

(D') 的对偶为

$$\min - c^T x$$

s.t.
$$(-A^T)^T x \ge -b$$

 $x \ge 0$

例6.14

写出下述线性规划的对偶

max
$$2x_1 - x_2 + 3x_3$$

s.t. $x_1 + 3x_2 - 2x_3 \le 5$
 $-x_1 - 2x_2 + x_3 = 8$
 $x_1 \ge 0, x_2 \ge 0, x_3$ 任意

对偶规划为

min
$$5y_1 + 8y_2' - 8y_2''$$

s.t. $y_1 - y_2' + y_2'' \ge 2$
 $3y_1 - 2y_2' + 2y_2'' \ge -1$
 $-2y_1 + y_2' - y_2'' \ge 3$
 $2y_1 - y_2' + y_2'' \ge -3$
 $y_1 \ge 0, y_2' \ge 0, y_2'' \ge 0$

令 $x_3 = x_3' - x_3''$, A = B 等价于 $A \le B$ 和 $-A \le -B$, max $2x_1 - x_2 + 3x_3' - 3x_3''$ s.t. $x_1 + 3x_2 - 2x_3' + 2x_3'' \le 5$ $-x_1 - 2x_2 + x_3' - x_3'' \le 8$ $x_1 + 2x_2 - x_3' + x_3'' \le -8$ $x_1 \ge 0, x_2 \ge 0, x_3' \ge 0, x_3'' \ge 0$

令 $y_2 = y_2' - y_2''$, 合并后2个不等式 min $5y_1 + 8y_2$ s.t. $y_1 - y_2 \ge 2$ $3y_1 - 2y_2 \ge -1$ $-2y_1 + y_2 = 3$ $y_1 \ge 0$, y_2 任意

对偶规划的一般形式

原始规划

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$

$$\sum_{i=1}^{n} a_{ij} x_j \leq b_i, 1 \leq i \leq s$$

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i}, s+1 \le i \le m$$

$$x_j \ge 0, \ 1 \le j \le t$$

$$x_i$$
任意, $t+1 \le j \le n$

对偶规划

$$\min \sum_{i=1}^m b_i y_i$$

$$y_i \ge 0, 1 \le i \le s$$

$$y_i$$
任意, $s+1 \le i \le m$

$$\sum_{i=1}^{m} a_{ij} y_{i} \leq c_{j}, 1 \leq j \leq t$$

$$\sum_{i=1}^{m} a_{ij} y_{i} = c_{j}, t+1 \leq j \leq n$$

性质

定理6.5 设 x 是原始规划 (P) 的可行解, y是对偶规划 (D) 的可行解, 则恒有

$$c^T x \le b^T y$$

$$c^T x \le (A^T y)^T x = y^T (Ax) \le y^T b = b^T y$$

定理6.6 如果 x 和 y 分别是原始规划 (P) 和对偶规划 (D) 的可行解,且 $c^Tx = b^Ty$,则 x 和 y 分别是它们的最优解.

定理6.7 如果原始规划 (P) 有最优解,则对偶规划 (D) 也有最优解,且它们的最优值相等.反之亦然.

定理6.7证明

证引入松弛变量 u,将(P)写成

$$\max c^T x$$

A是 m×n 矩阵

$$\mathbf{s.t.} \, Ax + Eu = b$$

E是 $m \times m$ 单位矩阵

$$x \ge 0, u \ge 0$$

u 是 m 维向量

设最优解基为B, 基变量 $x_B = B^{-1}b$, 检验数 $\lambda \le 0$ (最大化问题). λ 分成两部分, 对应 x 的 λ_1 和对应 u 的 λ_2 . u 在目标函数中的系数都为 0, 有

$$\begin{aligned} & \lambda_1^{\mathrm{T}} = c^{\mathrm{T}} - c_B^{\mathrm{T}} B^{-1} A \leq 0 \\ & \lambda_2^{\mathrm{T}} = -c_B^{\mathrm{T}} B^{-1} E = -c_B^{\mathrm{T}} B^{-1} \leq 0 \end{aligned}$$

令 $y^T = c_B^T B^{-1}$,有 $y \ge 0$, $c^T - y^T A \le 0$, 即 $A^T y \ge c$ 从而 y 是 (**D**)的可行解. 又

$$w = b^{T}y = y^{T}b = c_{B}^{T}B^{-1}b = c_{B}^{T}x_{B} = z$$

得证 y 是 (D) 的最优解.

原始规划和对偶规划解的可能情况

- (1) 都有最优解,且最优值相等.
- (2)一个有可行解且目标函数值无界,而另一个无可行解.
- (3) 都没有可行解.

对偶规划 原始规划	有最优解	有可行解 且无界	无可行解
有最优解	(1)	×	×
有可行解 且无界	×	×	(2)
无可行解	×	(2)	(3)

互补松弛性

定理6.8 设 x 和 y 分别是原始规划 (P) 和对偶规划 (D) 的可行解,则 x 和 y 分别是它们的最优解当且仅当

$$(b_i - \sum_{j=1}^n a_{ij} x_j) y_i = 0, \quad 1 \le i \le m$$
 (*)

$$x_{j}(\sum_{i=1}^{m}a_{ij}y_{i}-c_{j})=0, \qquad 1\leq j\leq n$$
 (**)

证
$$u_i = (b_i - \sum_{j=1}^n a_{ij} x_j) y_i \ge 0, \quad v_j = x_j (\sum_{i=1}^m a_{ij} y_i - c_j) \ge 0$$
(*)和(**)成立 $\Leftrightarrow \sum_{i=1}^m u_i + \sum_{j=1}^n u_j = 0$

定理6.8证明(续)

$$\sum_{i=1}^{m} u_i + \sum_{j=1}^{n} u_j = \sum_{i=1}^{m} (b_i - \sum_{j=1}^{n} a_{ij} x_j) y_i + \sum_{j=1}^{n} x_j (\sum_{i=1}^{m} a_{ij} y_i - c_j)$$

$$= \sum_{i=1}^{m} b_i y_i - \sum_{j=1}^{n} c_j x_j$$

得证

(*)和(**)成立
$$\Leftrightarrow \sum_{j=1}^{n} c_j x_j = \sum_{i=1}^{m} b_i y_i$$

 $\Leftrightarrow x$ 是 (P) 的最优解, y是 (D) 的最优解.

6.4.2 对偶单纯形法

$$\min z = c^T x$$

s.t.
$$Ax = b$$

$$x \ge 0$$

对偶规划 (D)

$$\max w = b^T y$$

s.t.
$$A^T y \leq c$$

设 B是 (P) 的一个可行基, 对应的可行解 $x_B = B^{-1}b$, $x_N = 0$, $\lambda^T = c^T - c_B^T B^{-1}A$, $z_0 = c_B^T B^{-1}b$. 令 $y^T = c_B^T B^{-1}$, 恒有

$$w_0 = b^{\mathrm{T}}y = y^{\mathrm{T}}b = c_B^{\mathrm{T}}B^{-1}b = z_0$$

只要 y是 (D) 的可行解,则 x 和 y 分别是 (P) 和 (D)的最优解.

由
$$\lambda^{T} = c^{T} - c_{B}^{T} B^{-1} A = c^{T} - y^{T} A$$
,有

y是 (**D**) 的可行解 $\Leftrightarrow \lambda \geq 0$

对偶单纯形法

定义 设 B是一个基, 如果 $\lambda \ge 0$, 则称 B 是正则的.

如果 B 是正则的, 那么 y 是 (**D**)的可行解, 从而只要 x 是 (**P**) 的可行解, 亦即 $x_B = B^{-1}b \ge 0$, 则 x 和 y 分别是 (**P**) 和 (**D**) 的最优解.

单纯形法 保持 x 是 (P) 的可行解 (保持B是可行基),即保持 $B^{-1}b \ge 0$,通过基变换使 y 逐步成为 (D) 的可行解 (B变成正则基),即逐步使 $\lambda \ge 0$.

对偶单纯形法 保持 y 是 (D) 的可行解 (保持B是正则基),即保持 $\lambda \geq 0$,通过基变换使 x 逐步成为 (P) 的可行解 (B 变成可行基),即逐步使 $B^{-1}b \geq 0$.

对偶单纯形法

设 $\lambda \ge 0$, $\beta_l < 0$, 若所有 $\alpha_{lj} \ge 0$ ($1 \le j \le n$), 则不存在 $x \ge 0$ 使得 $\sum_{j=1}^{n} \alpha_{lj} x_j = \beta_l$, (P)无可行解. 若存在 $\alpha_{lk} < 0$, 则以 $x_{\pi(l)}$ 为换出

变量、 x_k 为换入变量做基变换,必须保证

$$\lambda_{j}' = \lambda_{j} - \lambda_{k} \alpha_{lj} / \alpha_{lk} \ge 0, \qquad 1 \le j \le n$$

注意到 $\lambda_j \ge 0$, $\lambda_k \ge 0$, $\alpha_{lk} < 0$, 当 $\alpha_{lj} \ge 0$ 时, 不等式自然成立. 于是, 只要当 $\alpha_{li} < 0$ 时,

$$\lambda_j / \alpha_{lj} \leq \lambda_k / \alpha_{lk}$$

故应取k使得

$$|\lambda_k/\alpha_{lk}| = \min\{|\lambda_j/\alpha_{lj}|: \alpha_{lj} < 0\}$$

对偶单纯形法

算法6.2 对偶单纯形法

- 1. 取正则基 B.
- 2. 如果 β ≥ 0, 则 x 是最优解, 计算结束.
- 3. 取 $\beta_l < 0$. 若所有 $\alpha_{lj} \ge 0$ ($1 \le j \le n$), 则无可行解, 计算结束.
- 4. 取 k 使得

$$|\lambda_k/\alpha_{lk}| = \min\{|\lambda_j/\alpha_{lj}|: \alpha_{lj} < 0\}$$

- 5. 以 $x_{\pi(l)}$ 为换出变量、 x_k 为换入变量做基变换.
- 6. 转2.

6.5 整数线性规划的分支限界算法

松弛规划(简称松弛) 删去整数 要求后得到的线性规划 松弛规划的最优值是原整数规 划的最优值的界限(最小化的 下界,最大化的上界),但通常不 是原整数规划的最优解

分支限界法

记整数线性规划为 ILP, 其松弛为 LP.

如果 LP的最优解 α 满足整数要求,则 α 是 ILP的最优解.

否则,设 α_1 不满足整数要求,在 LP 上分别添加 $x_1 \leq \lfloor \alpha_1 \rfloor$ 和 $x_1 \geq \lfloor \alpha_1 \rfloor + 1$,记作 LP₁和 LP₂.如果 LP₁或 LP₂的最优解符合整数要求,那么这个解也是 ILP 的可行解,得到 ILP 的最优值的一个界限 (最小化的上界,最大化的下界),该子问题的计算结束.

如果子问题的最优解不满足整数要求,则继续分支计算.如果子问题的最优值超过界限(最小化大于界限,最大化小于界限),则往下计算不可能得到 ILP 的最优解,计算结束.当没有待计算的子问题时,所有可行解中最好的是 ILP 的最优解.

例6.15

$$\min z = -3x - 5y$$
s.t. $-x + y \le 3/2$

$$2x + 3y \le 11$$

$$x, y \ge 0, 整数$$

LP的计算

			-3	-5	0	0	
c_B	x_B	b	x	y	u_1	u_2	θ
0	u_1	1.5	-1	1	1	0	1.5
0	u_2	11	2	3	0	1	11/3
	- Z	0	-3	-5	0	0	
-5	y	1.5	-1	1	1	0	-
0	u_2	6.5	5	0	-3	1	1.3
	- Z	7.5	-8	0	5	0	
-5	y	2.8	0	1	0.4	0.2	
-3	x	1.3	1	0	-0.6	0.2	
	- Z	17.9	0	0	0.2	1.6	

LP₁的计算

			-3	-5	0	0	0
c_B	x_B	b	\boldsymbol{x}	y	u_1	u_2	v_1
-5	y	2.8	0	1	0.4	0.2	0
-3	\boldsymbol{x}	1.3	1	0	-0.6	0.2	0
		1	1	0	0	0	1
	- z	17.9	0	0	0.2	1.6	0
-5	y	2.8	0	1	0.4	0.2	0
-3	\boldsymbol{x}	1.3	1	0	-0.6	0.2	0
0	$ v_1 $	-0.3	0	0	0.6	-0.2	1
	- Z	17.9	0	0	0.2	1.6	0
	θ		-	-	-	-8	-
-5	y	2.5	0	1	1	0	1
-3	\boldsymbol{x}	1	1	0	0	0	1
0	u_2	1.5	0	0	-3	1	-5
	- z	15.5	0	0	5	0	8

对 $x \le 1$ 引入松 弛变量 v_1 ,

$$x + v_1 = 1$$

第3行减第2行, 消去 x (x 是基 变量),取 v_1 作 为基变量.

用对偶单纯形法求解.

LP2的计算

			-3	-5	0	0	0
c_B	x_B	b	x	y	u_1	u_2	v_2
-5	y	2.8	0	1	0.4	0.2	0
-3	\boldsymbol{x}	1.3	1	0	-0.6	0.2	0
		-2	-1	0	0	0	1
	- z	17.9	0	0	0.2	1.6	0
-5	y	2.8	0	1	0.4	0.2	0
-3	\boldsymbol{x}	1.3	1	0	-0.6	0.2	0
0	v_2	-0.7	0	0	-0.6	0.2	1
	- Z	17.9	0	0	0.2	1.6	0
	θ		-	-	-1/3	-	-
-5	y	7/3	0	1	0	1/3	2/3
-3	\boldsymbol{x}	2	1	0	0	0	-1
0	u_1	7/6	0	0	0	-1/3	-1/6
	- Z	53/3	0	0	0	5/3	1/3

对 $x \ge 2$ 引入剩余变量 v_2 ,

$$-x + v_2 = -2$$

第 3行加第 2 行,消去 x,取 v_2 作为基变量.

用对偶单纯形法求解.

LP₂₂的计算

			-3	-5	0	0	0	0
c_B	x_B	b	\boldsymbol{x}	y	u_1	u_2	v_2	v_{22}
-5	y	7/3	0	1	0	1/3	2/3	0
-3	\boldsymbol{x}	2	1	0	0	0	-1	0
0	u_1	7/6	0	0	0	-1/3	-1/6	0
		-3	0	-1	0	0	0	1
	- z	53/3	0	0	0	5/3	1/3	0
-5	y	7/3	0	1	0	1/3	2/3	0
-3	x	2	1	0	0	0	-1	0
0	u_1	7/6	0	0	0	-1/3	-1/6	0
0	v_{22}	-2/3	0	0	0	1/3	2/3	1
	- z	53/3	0	0	0	5/3	1/3	0

无可行解