Irisation d'une lame d'eau

On considère une lame d'eau dans l'air ; l'épaisseur de la lame est noté e et son indice est égal à 1,3. Le Soleil éclaire la lame en incidence normale. On donne les expressions des coefficients de réflexion r et de transmission t en amplitude du champ électrique à l'interface entre deux milieux 1 et 2 :

$$r = \frac{n_1 - n_2}{n_1 + n_2}$$
 et $t = \frac{2n_1}{n_1 + n_2}$

- Justifier les propositions suivantes : "les deux rayons R_1 et R_2 , R_1 directement réfléchi sur la face d'entrée de la lame et R_2 ayant subi un aller-retour dans la lame, ont à peu près même amplitude" et "nous pouvons limiter l'étude de l'interférence des deux ondes associées à R_1 et R_2 ".
- Quel est le déphasage entre ces deux rayons?
- Écrire en un point M de l'espace, le champ électrique résultant et l'intensité associée aux deux ondes.
- A quelle condition la lame apparaîtra-t-elle colorée?

Interférences par réflexion sur un prisme

Une onde plane monochromatique de longueur d'onde λ arrive avec l'incidence i sur un prisme ABC en verre, d'indice n=1,5 pour cette longueur d'onde, et d'angle au sommet α . On étudie l'interférence des deux ondes issues de la réflexion de l'onde incidente sur les faces AB et AC.

- Comparer les amplitudes des champs électriques associés aux ondes qui interfèrent. On pourra utiliser les formules des coefficients de transmission et réflexion vu à l'exercice précédent.
- Pourrait-on observer des interférences par transmission?
- Où sont localisées les franges d'interférence (on ne mènera pas de calcul)?

On se place maintenant dans le cas où l'onde arrive en incidence normale sur la face AB.

— Calculer la figure d'interférence sur la face AB, qu'on assimile au plan de localisation des franges, en fonction de x, α , et n pour α petit.

Mesure interférentielle de l'indice d'un gaz

Pour mesurer l'indice de l'air, on fait le vide dans une enceinte contenant un ensemble de deux lames de verre parallèles distantes de d=1 mm (et d'épaisseur négligeable). L'ensemble est éclairé par une source S étendue monochromatique de longueur d'onde $\lambda=0,56$ µm.

- Qu'observe-t-on sur l'écran? Y a-t-il un intérêt à « traiter » les lames de verre?
- L'indice de l'air, dans les conditions normales, est voisin de 1,003. Combien d'anneaux voit-on défiler au centre lorsqu'on fait le vide dans l'appareil? Dans quel sens se déplacent ils?

Les anneaux de Newton

On considère le dispositif des anneaux de Newton. On utilise pour cela une lentille plan convexe de rayon R et d'angle d'ouverture θ . La lentille repose par sa face courbe en O sur un plan de verre Ox. Il existe donc entre le plan et la lentille une lame d'air d'épaisseur e(x) variable, avec e(0)=0. On suppose que e reste faible devant le rayon R de la face courbe. Une source monochromatique étendue éclaire la lentille en incidence normale.

- Rappeler quelles ondes interférent et préciser le lieu de localisation des franges d'interférence.
- Calculer la différence de marche $\delta(x)$ entre deux rayons susceptibles d'interférer.
- Exprimer e(x) en fonction de x; décrire la figure d'interférence. Quel aspect a la frange centrale?