W1. Phenotype data

Bora Kim

March 4, 2021

This is meant for sharing dataset and script of the publication "Strigolactone_structural specificity in microbiome recruitment in rice, 2021". This markdown contains the process of phenotypic data: Biomass and levels of strigolactones (SLs) from 16 genotypes of rice grown two natural soils for 31 days.

1. Getting strarted

Load required dataset (samples names on row, phenotypic observation on column).

```
load("W1_phenotype_data_image.Rdata")
meta[1:5,1:5]
```

```
Soil Compartment Soil_compartment Replicate
          Genotype
## R_A1_e
            IAC165 Field
                                 Root
                                                  Fi RT
                                                  Fi_RS
## R_A1_r
            IAC165 Field Rhizosphere
                                                                1
## R_A10_e
            IAC165 Forest
                                                  Fo_RT
                                                                5
## R A10 r IAC165 Forest Rhizosphere
                                                  Fo_RS
                                                                5
                                                                2
## R_A2_e
            IAC165 Field
                                                  Fi_RT
                                  Root
```

Load required packages for analysis

```
library(ggplot2)
library(FSA)
library(rcompanion)
library(dplyr)
library(ggfortify)
library(tibble)
library(reshape2)
```

2. Comparing biomass (Fig S1)

To handle data easier, grouping information and biomass were subsetted from initial meta data

2.1. Kruskal-Wallis test

Test the biomass by soil type and genotype in each soil using non-parametric Kruskal-Wallis test together with P value correction using Benjamini-Hochberg method.

```
bm_kw<-kruskal.test(bm$total_fresh_biomass_g_per_plant~bm$Soil, data=bm)
bm_kw</pre>
```

```
##
## Kruskal-Wallis rank sum test
##
## data: bm$total_fresh_biomass_g_per_plant by bm$Soil
## Kruskal-Wallis chi-squared = 103.27, df = 1, p-value < 2.2e-16
Create a result table combining all results
bm_kw_res<-as.data.frame(matrix(NA, 1, 4))</pre>
bm kw res[,1]<-bm kw$statistic</pre>
bm_kw_res[,2]<-bm_kw$parameter</pre>
bm_kw_res[,3]<-bm_kw$p.value</pre>
bm_kw_res[,4]<-p.adjust(bm_kw$p.value,method="BH" )</pre>
colnames(bm_kw_res)<-c("chi_squared", "Df", "P value", "adjusted P value")</pre>
rownames(bm_kw_res)<-"Total biomass_by_soil"</pre>
bm_kw_res
##
                          chi_squared Df
                                              P value adjusted P value
## Total biomass_by_soil
                             103.2744 1 2.91797e-24
                                                            2.91797e-24
2.3. Duun test
Compare biomass among genotypes in each soil, therefore subset the biomass from each soil
fobm_dunn<-subset(bm, Soil=="Forest")</pre>
PT<-dunnTest(fobm_dunn$total_fresh_biomass_g_per_plant~Genotype, data=fobm_dunn, method = "bh")
fobm_dunn_res<-PT$res
fobm_dunn_res_letter<-cldList(comparison = fobm_dunn_res$Comparison,p.value = fobm_dunn_res$P.adj,thres
fobm_dunn_res[1:5,1:4]
##
      Comparison
                            Z
                                 P.unadj
                                               P.adj
## 1 Bhas - Bina -1.88095303 0.05997831 0.13841148
## 2 Bhas - d10 0.24803776 0.80410519 0.92781368
## 3 Bina - d10 2.12899079 0.03325502 0.08675223
## 4 Bhas - d14 0.06889938 0.94506971 0.96930227
## 5 Bina - d14 1.94985241 0.05119371 0.12286491
fobm_dunn_res_letter
##
         Group Letter MonoLetter
## 1
          Bhas
                    ab
                            ab
## 2
          Bina abcde
                            abcde
## 3
            d1
                     a
                            a
## 4
           d14
                    ab
                            ab
## 5
           d17
                   abc
                            abc
## 6
           d27
                    ab
                            ab
## 7
            d3
                     a
## 8
         Dullo abcde
                            abcde
## 9
           GWD
                 abcd
                            abcd
## 10 IAC1246
                    е
## 11
        IAC165
                     е
                                 e
## 12
         Kinko
                   cde
                              cde
## 13
            SC
                              cde
                   cde
## 14 Shiokari
                   de
                               de
```

```
## 15
          Sonk
                 bcde
                             bcde
                            abcde
## 16
           TN1 abcde
fibm_dunn<-subset(bm, Soil=="Forest")</pre>
PT<-dunnTest(fibm_dunn$total_fresh_biomass_g_per_plant~Genotype, data=fibm_dunn, method = "bh")
fibm_dunn_res<-PT$res
fibm_dunn_res_letter<-cldList(comparison = fibm_dunn_res$Comparison,p.value = fibm_dunn_res$P.adj,thres
fibm_dunn_res[1:5,1:4]
##
      Comparison
                            Z
                                 P.unadj
                                              P.adj
## 1 Bhas - Bina -1.88095303 0.05997831 0.13841148
## 2 Bhas - d10 0.24803776 0.80410519 0.92781368
## 3 Bina - d10 2.12899079 0.03325502 0.08675223
## 4 Bhas - d14 0.06889938 0.94506971 0.96930227
## 5 Bina - d14 1.94985241 0.05119371 0.12286491
fibm_dunn_res_letter
##
         Group Letter MonoLetter
## 1
          Bhas
                           ab
                   ab
## 2
          Bina abcde
                            abcde
## 3
            d1
                    а
## 4
           d14
                   ab
                            ab
## 5
           d17
                  abc
                            abc
## 6
           d27
                   ab
                            ab
## 7
            d3
## 8
         Dullo
                abcde
                            abcde
## 9
           GWD
                 abcd
                            abcd
## 10
      IAC1246
                    е
                                е
## 11
        IAC165
                    е
                                е
```

2.4. Plot biomass

14 Shiokari

Kinko

SC

Sonk

TN1

cde

cde

bcde

abcde

de

cde

cde

bcde

abcde

de

12

13

15

16

3. Comparing strigolactone level (figure 1)

As SLs were not detected in field soil, further SL-related studies are only samples obtained from forest soil foSLs<-subset(meta, Soil_compartment=="Fo_RS"&SL_analysis=="yes")

3.1. Principle component analysis on three endogenous SLs

3.2. Dunn test

First, remove some genotypes due to zeros in all replicates (non-detectable) which could make problem during Dunn test.

```
foSLs_dunn<-foSLs %>% filter(!Genotype%in%c('Kinko','TN1','Bhas','SC','d10','d17','d27'))
foSLs_dunn<-foSLs_dunn[,c(11:13,1)]
foSLs_dunn[1:5,1:4]</pre>
```

```
##
          orobanchol_pmol_g X4DO_pmol_g MeO5DS_pmol_g Genotype
## R_A7_r
                  0.1201817
                                5.554455
                                             0.9425109
                                                         IAC165
## R A8 r
                  0.2420453
                                9.055589
                                            16.2683221
                                                         IAC165
## R_A9_r
                  0.3023398
                                5.792403
                                            15.6206970
                                                         IAC165
## R B7 r
                  0.1252308
                                0.000000
                                             4.7847343
                                                        IAC1246
                  0.2688506
                                8.246183
                                            16.3267069 IAC1246
## R_B8_r
```

Perfom Dunn test using loop. As level of MeO5DS was not significantly different among genotype, it was excluded.

```
indices=2
Z<-as.data.frame(matrix(NA, 36, indices)) #results list =36
P.unadj<-as.data.frame(matrix(NA, 36, indices)) #results list =36
P.adj<-as.data.frame(matrix(NA, 36, indices)) #results list =36
foSLs_dunn_letter<-as.data.frame(matrix(NA, 9, indices)) #results list =9

for(i in 1:indices) {
    PT<-dunnTest(foSLs_dunn[,i]~Genotype, data=foSLs_dunn, method = "bh")
    Z[,i]<-PT$res$Z</pre>
```

```
P.unadj[,i]<-PT$res$P.unadj
  P.adj[,i]<-PT$res$P.adj
  PT2<-PT$res
  cl<-cldList(comparison = PT2$Comparison, p.value = PT2$P.adj,threshold = 0.05)</pre>
  foSLs_dunn_letter[,i]<-cl$Letter</pre>
foSLs_dunn_res<-cbind(Z,P.unadj, P.adj)</pre>
rownames(foSLs_dunn_res)<- PT$res$Comparison</pre>
colnames(foSLs_dunn_res)<-c("Z_orobanchol","Z_4D0",</pre>
                              "unadjusted.P_orobanchol", "unadjusted.P_4D0",
                              "adjusted.P_orobanchol", "adjusted.P_4D0")
rownames(foSLs_dunn_letter) <- cl$Group</pre>
colnames(foSLs_dunn_letter) <- colnames(foSLs_dunn[1:indices])</pre>
foSLs_dunn_res[1:5, 1:6]
##
                Z_orobanchol
                                     Z_4DO unadjusted.P_orobanchol unadjusted.P_4DO
## Bina - d14
                 -0.43210273 -2.44556403
                                                        0.66566675
                                                                          0.014462576
## Bina - d3
                  1.46434814 -1.24675813
                                                         0.14309885
                                                                          0.212486195
                  1.89645087 1.19880590
## d14 - d3
                                                        0.05790045
                                                                          0.230603428
## Bina - Dullo -0.07514975 -0.09650201
                                                         0.94009556
                                                                          0.923121875
## d14 - Dullo
                  0.40795579 2.63772170
                                                         0.68330613
                                                                          0.008346505
                adjusted.P_orobanchol adjusted.P_4D0
## Bina - d14
                             0.7988001
                                            0.1041306
## Bina - d3
                             0.3030329
                                             0.4249724
## d14 - d3
                             0.2084416
                                             0.4150862
## Bina - Dullo
                             0.9400956
                                             0.9774232
## d14 - Dullo
                             0.7935168
                                             0.1001581
foSLs_dunn_letter
##
            orobanchol_pmol_g X4D0_pmol_g
## Bina
                            ab
                                         ab
## d14
                            ab
                                          a
## d3
                            ab
                                         ab
## Dullo
                            ab
                                         ab
## GWD
                            a
                                         ab
## IAC1246
                            b
                                         ab
## IAC165
                             b
                                         ab
## Shiokari
                            ab
                                          a
## Sonk
                            ab
                                          b
3.3. Plot SLs
foSLs$Genotype<-droplevels(as.factor(foSLs$Genotype))</pre>
foSLs$Genotype2<-factor(foSLs$Genotype,</pre>
                          c("IAC165", "IAC1246", "GWD", "Dullo", "Bina", "Sonk",
                            "Kinko", "TN1", "Bhas", "SC", "Shiokari", "d3", "d14", "d10", "d17", "d27"))
ggplot(foSLs)+
  geom_boxplot(aes(x=Genotype2, y=X4D0_pmol_g), outlier.colour = NA)+labs(x="Rice genotype", y = "4D0 pmol_g)
  geom_point(aes(x=Genotype2, y=X4D0_pmol_g), alpha = 0.3, shape = 21) +
  theme(axis.text.x = element_text(size = 13, colour = "black",angle=90, hjust=1),
```

```
axis.text.y = element_text(size = 13),
axis.title.y = element_text(face = "bold", size = 13, vjust = 3),
legend.text = element_text(size = 13), legend.title = element_text(size = 13,face = "bold"))
```


version

sessionInfo()

```
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19042)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
                                                                   base
## other attached packages:
```

```
## [1] reshape2_1.4.4
                         tibble 3.0.4
                                            ggfortify_0.4.11 dplyr_1.0.2
## [5] rcompanion_2.3.27 FSA_0.8.30
                                            ggplot2_3.3.2
## loaded via a namespace (and not attached):
##
   [1] Rcpp_1.0.5
                           mvtnorm 1.1-1
                                               lattice_0.20-41
                                                                  tidyr_1.1.2
   [5] class_7.3-17
                           multcompView_0.1-8 zoo_1.8-8
                                                                  digest_0.6.25
##
  [9] lmtest 0.9-38
                           R6 2.4.1
                                               plyr_1.8.6
                                                                  EMT 1.1
## [13] stats4_4.0.3
                           evaluate_0.14
                                                                  e1071_1.7-4
                                               rootSolve_1.8.2.1
## [17] highr_0.8
                           pillar_1.4.6
                                               rlang_0.4.10
                                                                  Exact_2.1
## [21] multcomp_1.4-16
                           rstudioapi_0.11
                                               Matrix_1.2-18
                                                                  rmarkdown_2.7
## [25] labeling_0.4.2
                           splines_4.0.3
                                               stringr_1.4.0
                                                                  munsell_0.5.0
## [29] compiler_4.0.3
                                                                  libcoin_1.0-7
                           xfun_0.21
                                               pkgconfig_2.0.3
## [33] DescTools_0.99.40
                           htmltools_0.5.1.1
                                               tidyselect_1.1.0
                                                                  gridExtra_2.3
## [37] lmom_2.8
                           expm_0.999-6
                                               coin_1.4-0
                                                                  codetools_0.2-16
## [41] matrixStats_0.57.0 dunn.test_1.3.5
                                               crayon_1.3.4
                                                                  withr_2.3.0
## [45] MASS_7.3-53
                           grid_4.0.3
                                               gtable_0.3.0
                                                                  lifecycle_0.2.0
## [49] magrittr_1.5
                           scales_1.1.1
                                                                  stringi_1.5.3
                                               gld_2.6.2
## [53] farver 2.0.3
                           ellipsis 0.3.1
                                               generics_0.0.2
                                                                  vctrs 0.3.4
## [57] boot_1.3-25
                           sandwich_3.0-0
                                               nortest_1.0-4
                                                                  TH.data_1.0-10
## [61] tools 4.0.3
                           glue_1.4.2
                                               purrr_0.3.4
                                                                  parallel_4.0.3
## [65] survival_3.2-7
                           yaml_2.2.1
                                               colorspace_1.4-1
                                                                  knitr_1.31
## [69] modeltools_0.2-23
```