## 1. Параллельный сумматор

### 1.1. Подготовка

Для работы выбраны резисторы  $R_1=5,1$  кОм,  $R_2=10$  кОм, тогда  $R=\frac{3}{2}R_1||R_2=5,066\approx5,1$  кОм. В этом случае  $\alpha=1,96,~\beta=4,04.$ 

#### 1.2. Вычисления

Соберём следующую схему, где на  $E_1$  подадим синусоидальное напряжение амплитудой 2 B, а на  $E_2$  постоянно напряжение амплитудой 5 B.



Рис. 1: Параллельный сумматор

В этом случае осциллограф показываем постоянную составляющую напряжения U  $U_{const}=0,575$  В, амплитуда переменной составляющей равна  $U_{vol}=0,117$  В.

Подавая сигналы на первый и второй входы сумматора поочерёдно при коротком замыкании на свободном входе, измерим коэффициенты  $\alpha$  и  $\beta$ .

В случае замыкания накоротко источника  $E_1$  имеем  $U_2=1,004$ , для  $E_2$  имеем  $U_1=2,056$  В (в качестве напряжения источника используется E=5 В). Тогда  $\alpha=\frac{U_1}{E}=0,411$ , когда  $\beta=\frac{U_2}{E}=0,201$ . Получили значения, почти совпадающие с теортическими. При этом  $\frac{\alpha}{\beta}=2,044\approx 2$ .

Найдём сопротивление схемы (см. Рис. 2)  $R^*$ . Дл этого используем метод двух нагрузок. Разорвав цепи в месте источников постоянного тока пусть напряжение 5 В на полученную схему. При этом напряжение на выходе  $U_{01}=1,177$  В. В случае ещё одной параллельно соединённой нагрузки  $R_{add}=3,9$  кОм, имеем  $U_{02}=0,777$  В.

Тогда

$$U_{01} = R^* \cdot I, \ U_{02} = \frac{R_{add}R^*}{R_{add} + R^*} \cdot I = \frac{U_{01}R_{add}}{R_{add} + R^*}$$

Отсюда  $R^* = 1,99$  кОм.

Теоретиеское же значение сопротивления равно  $R^* = R_1 ||R_2||R =$ 2,03 kOm.



Рис. 2: Эквивалетная схема

#### 2. Н-параметры

#### 2.1. Проверка основной формулы

Если  $U_2=0$ , то коэффициент  $h_{11}$  очевиден:  $h_{11}=R_1+R_2||R_3$ . Аналогично  $h_{21}=\frac{R_3}{R_2+R_3}$  – из закона Ома. Если  $I_1=0$ , то  $h_{12}=\frac{U_1}{U_2}=-\frac{R_3}{R_2+R_3}$ ,  $h_{22}=\frac{I_2}{U_2}=\frac{1}{R_2+R_3}$  – получается из

предыдущих результатов.

#### 2.2. Снятие данных

Посчитаем эксперимментальные значения этих параметров с помощью схемы из программы Micro-Cap.

$$h_{11} = \frac{U_1}{I_1} = \frac{2,2 \text{ B}}{1 \text{ мA}} = 2,2 \text{ кОм}$$
  $h_{21} = \frac{I_2}{I_1} = \frac{0,6 \text{ мA}}{1 \text{ мA}} = 0,6$ 

$$h_{22} = \frac{I_2}{U_2} = \frac{0.2 \text{ MA}}{1 \text{ B}} = 0.2 \cdot 10^{-3} \text{ Om}^{-1}$$

$$h_{12} = \frac{U_1}{U_2} = \frac{0.6 \text{ B}}{1 \text{ B}} = 0.6$$

Учитывая, что сопротивления резисторов равны  $R_1=1$  кОм,  $R_2=2$  кОм,  $R_3=3$  кОм, легко убедиться, что теоретические значения совпадают.

# 3. Звезда и треугольник

### 3.1. Проверка основной формулы

Уравнение  $U_1=(R_1+R_3)I_1+R_3I_2$  следует из закона Ома для контура. Аналогично  $U_2=(R_2+R_3)I_2+R_3I_1$ .

### 3.2. Снятие данных

Пересчитаем параметры звезды в параметры треугольника:

$$R_{13} = 5,5$$
 кОм,  $R_{12} = 11/3$  кОм,  $R_{23} = 11$  кОм

Вычислим параметры  $X_{ij}$  из схемы в программе Micro-Cap.

$$X_{11} = \frac{U_1}{I_1} = \frac{4 \text{ B}}{1 \text{ мA}} = 4 \text{ кОм}$$
 $X_{12} = \frac{U_2}{I_1} = \frac{3 \text{ B}}{1 \text{ мA}} = 3 \text{ кОм}$ 
 $X_{21} = \frac{U_2}{I_2} = \frac{3 \text{ B}}{1 \text{ мA}} = 3 \text{ кОм}$ 
 $X_{22} = \frac{U_2}{I_1} = \frac{5 \text{ B}}{1 \text{ мA}} = 5 \text{ кОм}$ 

# 4. Лестничные структуры

## 4.1. Исследование лестничной структуры

Рассмотрим лестничную структуру с параметрами  $\alpha=2,\ \gamma=1/2,$   $\omega=2$  кОм.



Рис. 3: Лестничная структура

Для напряжений и сил тока для рассматриваемой конфигурации имеем:



Рис. 4: Напряжения лестничной структуры (1 вариант)



Рис. 5: Силы тока лестничной структуры (1 вариант)

Далее пусть  $\alpha=6,\ \gamma=2/3$ , сопротивления  $R_{2j}=6$  кОм. Далее пусть  $\alpha=12,\ \gamma=3/4$ , сопротивления  $R_{2j}=12$  кОм. Пусть  $\alpha=1,\ \gamma=0.38$ , сопротивления  $R_{2j}=1$  кОм.

## 4.2. Исследование ЦАП

Исследуем схему АЦП, показанную на рисунке.

Исследуем зависимость выходящего напряжения OUT в зависимости от двоичного кода (X1, X2, X3, X4).



Рис. 6: Напряжения лестничной структуры (2 вариант)



Рис. 7: Силы тока лестничной структуры (2 вариант)



Рис. 8: Напряжения лестничной структуры (3 вариант)



Рис. 9: Силы тока лестничной структуры (3 вариант)



Рис. 10: Напряжения лестничной структуры (4 вариант)



Рис. 11: Силы тока лестничной структуры (4 вариант)

| Число | OUT, B |
|-------|--------|
| 0001  | 1      |
| 0010  | 2      |
| 0011  | 3      |
| 0101  | 5      |
| 0111  | 7      |
| 1011  | 11     |
| 1110  | 14     |



Рис. 12: Схема АЦП