Advanced Mathematics: The Method of Differentiation of Multivariate Functions and Its Applications

Wuhan University

Lai Wei

March 9, 2025

Advanced Mathematics:	The Method of	f Differentiation	of Multivariate	Functions	and Its
Lai Wei	A	Applications			

目录

1	多元函数的基本概念					
	1.1	平面点	孫集			
		1.1.1	坐标平面			
		1.1.2	平面点集			
		1.1.3	邻域			
		1.1.4	注意			
		1.1.5	利用点与点集的关系			
		1.1.6	聚点			
		117	山占隼所属类的特征分类			

1 多元函数的基本概念

1.1 平面点集

1.1.1 坐标平面

建立了坐标系的平面。二元有序实数组(x,y) 的全体,即 $\mathbf{R}^2 = \mathbf{R} \times \mathbf{R} = \{(x,y) \mid x,y \in \mathbf{R}\}$ 就表示坐标平面。

1.1.2 平面点集

坐标平面上具有某种性质P的点的几何,称作平面点集,记作

$$E = \{(x, y) \mid (x, y)$$
 具有某种性质 $P\}$

1.1.3 邻域

设 $P_0(x_0,y_0)$ 是xOy平面上一点, δ 是某一正数,与点 $P_0(x_0,y_0)$ 距离小于 δ 的点P(x,y)的 全体,称为 P_0 的 δ 邻域,记作 $U(P_0,\delta)$,即

$$U(P_0, \delta) = \{(x, y) \mid |PP_0| < \delta\}$$

或

$$U(P_0, \delta) = \left\{ (x, y) \mid \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta \right\}$$

1.1.4 注意

1. 点 P_0 的去心邻域,记作 $\overset{\circ}{U}(P_0,\delta)$,即

$$\overset{\circ}{U}(P_0, \delta) = \{P \mid 0 < |PP_0| < \delta\}$$

2. 若不强调 δ ,也可记作 $U(P_0)$, $\overset{\circ}{U}(P_0)$

1.1.5 利用点与点集的关系

若有一点 $P \in \mathbb{R}^2$,任意点集 $E \subset \mathbb{R}^2$

- 1. 内点: $\exists U(P)$, 使 $U(P) \subset E$, 则P为E的内点。
- 2. 外点: $\exists U(P)$, 使 $U(P) \cap E = \phi$, 则 $P \rightarrow E$ 的内点。
- 3. 边界点: $\forall U(P)$, 若U(P) 即有属于E的点,又有不属于E的点,则P为E的边界点。
- 4. E的边界: E的边界点的全体,记作 ∂E

1.1.6 聚点

如果对于任意给定的 $\delta>0$,点P的去心邻域 $\overset{\circ}{U}$ (P,δ) 内总有E 中的点,那么称P是E的聚点。

例如,若
$$E = \{(x,y) \mid 1 < x^2 + y^2 \le 2\}$$
。则 $x^2 + y^2 = 1$ 和 $x^2 + y^2 = 2$ 都是 E 的聚点。

1.1.7 由点集所属类的特征分类

- 1. 开集: 若点集E中的所有点都是E的内点,则称E为开集;
- 2. 闭集: 若点集E的边界 $\partial E \in E$, 则称E为闭集。

例如,
$$\{(x,y) \mid 1 < x^2 + y^2 < 2\}$$
为开集, $\{(x,y) \mid 1 \leq x^2 + y^2 \leq 2\}$ 为闭集, $\{(x,y) \mid 1 < x^2 + y^2 \leq 2\}$