Un ànalisi de la convergència de l'exponeciació recursiva

Arnau Mas

19 de Març de 2018

Considerem la següent expressió:

Si volem entendre'n el comportament, el primer pas necessari és establir de forma precisa sobre què estem parlant. Una manera natural és definir una successió (z_n) com

$$z_0 = z \in \mathbb{R}^+$$
$$z_{n+1} = z^{z_n}.$$

Observem que si considerem la funció exponencial definida a \mathbb{R} , $f(x) = z^x$ aleshores $z_{n+1} = f(z_n)$. Per tant, si la successió z_n convergeix haurà de convergir a un punt fix de f. Així doncs,trobant per a quines bases l'exponencial té algun punt fix podrem establir quan la successió no convergeix.

Si $f(x) = z^x$ té un punt fix, posem $c \in \mathbb{R}$ podem dir dues coses. Primer, que c > 0 ja que l'exponencial és sempre estrictament positiva en qualsevol base. En segon lloc tenim

$$z^c = c \iff z = c^{1/c}$$
.

És a dir, que una exponencial té un punt fix si i només si la seva base és de la forma $c^{1/c}$ per $c \in \mathbb{R}^+$. Resulta, però, que la funció $g(x) = x^{1/x}$ està fitada. Efectivament, tenim

$$x^{1/x} = e^{\frac{\log x}{x}}$$

i $(\log x)/x\to 0$ quan $x\to\infty$ i $(\log x)/x\to -\infty$ quan $x\to 0$. Per tant, com que l'exponencial és continua, tenim

$$x^{1/x} \xrightarrow{x \to \infty} 1$$

$$x^{1/x} \xrightarrow{x \to 0} 0$$

Una funció continua en un interval obert amb límits finits als seus extrems és fitada. Podriem derivar g per trobar-ne els màxims locals, però com que el logaritme és creixent, podem derivar $\log g$:

$$\frac{d}{dx}(\log g(x)) = \frac{d}{dx}\left(\frac{\log x}{x}\right) = \frac{1 - \log x}{x^2}$$

La derivada només s'anul·la a x = e. Tenim $g(e) = e^{1/e} > 1$ per tant $x^{1/x}$ té per màxim global $e^{1/e}$. Això ens diu que l'exponencial en base z no té punts fixos per $z > e^{1/e}$, i per tant que (z_n) no pot convergir en aquest cas.

Donat que acabem de provar que tota exponencial amb base $z \in (0, e^{1/e}]$ té almenys un punt fix, podem assegurar que la successió d'iterats sempre convergirà en aquest rang? Sabem que si una funció f té un punt fix c, aleshores la successió $(f^n(x_0))$ convergeix a c quan |f'(c)| < 1, és a dir, quan c sigui un punt fix atractor. Així, si $f(x) = z^x$, l'exponenciació iterada en base $z = c^{1/c}$ convergirà quan

$$|f'(c)| = |\log(z)z^c| = |\log c^{1/c}c| = |\log c| < 1$$

i per tant quan $c \in (e^{-1}, e)$. És a dir, $z \in (e^{-e}, e^{1/e})$. Per $z < e^{-e}$ tindrem que $c < e^{-1}$ i que $\log c < -1$ i per tant que c és un punt fix repulsor. En aquest cas, la successió d'iterats no convergirà a c i per tant no serà convergent.

Ens queda només establir el comportament dels iterats quan $z=e^{-e}$ i quan $z=e^{1/e}$. Per el segon cas, demostrarem que els iterats són creixents i estant fitats per e. Primer observem que e és l'únic punt fix de $e^{x/e}$ ja que $x^{1/x}$ assoleix el seu únic màxim global per x=e per tant no hi ha $c\neq e$ tal que $c^{1/c}=e^{1/e}$. I com que $(e^{1/e})^0>0$ i que per x prou gran tota exponencial és més gran que x ha de ser que $e^{x/e}\geq x$ per tot x, per Bolzano. En particular

$$z_{n+1} = e^{z_n/e} \ge z_n.$$

Veiem per inducció que $z_n < e$ per tot $n \in \mathbb{N}$. Com que 1/e < 1, és clar que $z_0 = e^{1/e} < e$. I tenim $z_{n+1} = e^{z_n/e} < e^{e/e} = e$ fent servir l'hipotesi d'inducció. Per tant la successió d'iterats és creixent i està fitada per e per sobre, per tant convergeix. En particular convergeix a e ja que e és l'únicp unt fix.

Veure que el cas $z=e^{-e}$ també dóna lloc a una successió convergent és una mica més complicat ja que la successió no és monòtona. Ara bé, es pot demostrar de manera similar al cas anterior, que la parcial z_{2k} dels termes parells és creixent i fitada per damunt per 1/e, mentre que la parcial dels senars, z_{2k+1} , és decreixent i fitada per avall per 1/e, i per tant que tota la successió és convergent.

Així doncs, concloem que l'exponenciació iterada serà convergent si i només si la base estigui a l'interval $[e^{-e},e^{1/e}]$, i que convergirà al punt fix de l'exponencial, c amb $|\log c| < 1$. Si $z \le 1$ o $z = e^{1/e}$ aleshores hi ha un únic punt fix, mentre que si $1 < z < e^{1/e}$ n'hi ha dos, però només un que sigui atractor. Per trobar el punt fix, es pot fer servir la funció W de Lambert. Aquesta funció compleix que

$$W(y)e^{W(y)} = y$$

per $y \in \mathbb{C}$. Per tant

$$z^{-\frac{W(-\log z)}{\log z}} = e^{-W(-\log z)} = -\frac{W(-\log z)}{\log z}$$

i $-\frac{W(-\log z)}{\log z}$ és un punt fix de z^x , i per tant a on convergeix l'exponenciació iterada. Es pot demostrar que $-\frac{W(-\log z)}{\log z}$ és real precisament per $z \in [e^{-e}, e^{1/e},$ com era d'esperar pel que acabem de demostrar.