

SCHOOL OF COMPUTER ENGINEERING AND TECHNOLOGY

Active Learning

Data Science

Active Learning

Group Members

PA13	Ritika Bhosale	1032180325
PA58	Sanyukta Tamhankar	1032191637
PA59	Gayatri Awate	1032191702
PA63	Vaishnavi Bahirat	1032191728

Faculty

Prof Shilpa Sonawani

Problem Statement

Perform the following data visualization operation on IRIS data set.

Use ploty to plot following graph

- Line
- Bar
- Box
- Scatter
- ML graph

Details of dataset used: (with snapshots):

We are using IRIS data set which has 150 rows and 5 columns. The Columns names are sepallentgth, sepal width, petallength, petalwidth & Species.

Screenshots of work done:

DS ACTIVE LEARNING GROUP - 12

```
In [84]: pip install plotly
         Requirement already satisfied: plotly in c:\programdata\anaconda3\lib\site-packages (4.12.
         Requirement already satisfied: six in c:\programdata\anaconda3\lib\site-packages (from plo
         tly) (1.15.0)
         Requirement already satisfied: retrying>=1.3.3 in c:\programdata\anaconda3\lib\site-packag
         es (from plotly) (1.3.3)
         Note: you may need to restart the kernel to use updated packages.
In [1]: import pandas as pd
          import numpy as np
          import plotly.graph objects as go
In [2]:
         df=pd.read_csv('iris.csv')
          df.rename(columns = {'sepal width' : 'sepalwidth'}, inplace = True)
In [3]:
          df.head()
          df['Species'].unique()
Out[3]: array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)
         df.isnull().sum()
In [4]:
Out[4]: sepallentgth sepalwidth petallength
                         0
         petalwidth
         Species
        dtype: int64
In [5]: df.shape
Out[5]: (150, 5)
In [6]: df.describe()
Out[6]:
               sepallentgth sepalwidth petallength petalwidth
         count
               150.000000 150.000000 150.000000 150.000000
               5.843333 3.054000 3.758667 1.198667
                   0.828066
                              0.433594
                                          1.764420
                                                     0.763161
          min
                   4.300000 2.000000 1.000000 0.100000
          25%
                   5.100000
                             2.800000
                                          1.600000
                                                    0.300000
          50%
                   5.800000 3.000000 4.350000 1.300000
          75%
                   6.400000
                             3.300000
                                          5.100000
                                                    1.800000
                  7.900000 4.400000
                                         6.900000 2.500000
          max
```

Line plot fig.show() sepallentgth — 5.1 — 4.9 7.5 - 4.7 5.0 5.4 4.4 6.5 sepallentgth 4.8 4.3 - 5.8 - 5.7 5.2 5.5 4.5 5.5 5.3 7.0 6.4 6.9 6.5 4.5 2.5 2 3.5 sepalwidth

4

3

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

Bar graph

```
In [9]: from plotly.offline import init_notebook_mode, iplot
           d1 = df.groupby(df.Species).mean()
           d1['Species'] = d1.index
           t1 = qo.Bar(
                           x = d1.Species,
                           y = dl.sepallentgth,
name = "Sepal Length (cm)",
marker = dict(color = 'rgba(160, 55, 0, 0.8)', line = dict(color = 'rgb(0,0,0)
                           text = d1.Species
           t2 = go.Bar(
                           x = d1.Species,
y = d1.sepalwidth,
                           mame = "Sepal Width (cm)",
marker = dict(color = 'rgba(0, 55, 160, 0.8)', line = dict(color = 'rgb(0,0,0))
                           text = d1.Species
           t3 = go.Bar(
                           x = d1.Species,
                           y = dl.petallength,
                           mame = "Petal Length (cm)",
marker = dict(color = 'rgba(20, 55, 30, 0.8)', line = dict(color = 'rgb(0,0,0))
                           text = d1.Species
           t4 = go.Bar(
                          x = d1.Species,
y = d1.petalwidth,
name = "Petal Width (cm)",
marker = dict(color = 'rgba(70, 55, 160, 0.8)', line = dict(color = 'rgb(0,0))
                           text = d1.Species
           )
```

```
name = "Petal Width (cm)",
    marker = dict(color = 'rgba(70, 55, 160, 0.8)', line = dict(color = 'rgb(0,0,0)', width = 1.5)),
    text = d1.Species
)
b = [t1,t2,t3,t4]
layout_bar = go.Layout(barmode = "group")
fig_bar = go.Figure(data = b, layout = layout_bar)
iplot(fig_bar)
```


Box plot

```
8
```


Scatter plot

```
u = [S_SW, S_PL,S_PW]
fig = dict(data = u)
iplot(fig)
```


Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

ML graph

Pie chart

```
In [12]: fig = px.pie(df, values='petallength', names='Species', title='Pie-Chart')
fig.show()
```

Pie-Chart

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

Pair plot

Observation & Inferences

We have used **Plotly Python** library which is an interactive, open-source plotting library that supports over 40 unique chart types covering a wide range of statistical, financial, geographic, scientific, and 3-dimensional use-cases. Using Ploty Library we have plotted Line, Box, Bar, Scatter, ML graph

Screenshot of group activity

Conclusion

Thus , we have successfully plotted Line ,Box , Bar ,Scatter, ML graphs using Plotly Library.