Started on	Sunday, 24 March 2024, 8:51 AM
State	Finished
Completed on	Sunday, 24 March 2024, 9:08 AM
Time taken	16 mins 27 secs

Question 1
Complete

Marked out of 1.00

Given the following unweighted undirected graph please fill in the corresponding adjacency matrix.

	1	2	3	4	5	6
1	0	Х	Х	Х	Х	Х
2	1	0	Х	Х	Х	Х
3	0	0	0	Х	Х	Х
4	0	1	1	0	Х	Х
5	1	1	0	0	0	Х
6	0	1	1	0	0	0

```
Question 2
Complete
Marked out of 1.00
```

Which of the following represent the correct pseudo code for non recursive DFS algorithm?

Select one:

```
procedure DFS-non_recursive(G,v):
    //let St be a stack
    St.push(v)
    while St is not empty
    v = St.pop()
    if v is not discovered:
        label v as discovered
        for all adjacent vertices of v do
        St.push(v)
```

```
procedure DFS-non_recursive(G,v):
    //let St be a stack
    St.pop()
    while St is not empty
    v = St.push(v)
    if v is not discovered:
        label v as discovered
        for all adjacent vertices of v do
            St.push(a) //a being the adjacent vertex
```

Question 3	
Complete	
Marked out of 1.00	
Time Complexity of Depth First Search is:	
Select one:	
○ O(V * E)	
○ ((L)	
0.04.04.5)	
○ O(log(V + E))	
0.04447	
○ O(V / E)	
Question 4	
Complete	
Marked out of 1.00	
Given two vertices in a graph s and t, both BFS and DFS ca	n be used to find if
there is path from s to t.	
Select one:	
True	
○ False	
_	
Question 5 Complete	
Marked out of 1.00	
Traversal of a graph is different than tree because.	
Select one:	
a. There can be a loop in the graph	
b. DFS on a graph uses stack, while inorder traversa	l is recursive
c. Both (a) and (b)	
○ d. None of the above	

Question 6 Complete Marked out of 1.00

Select one:

- 0123478569101112
- $\bigcirc \ \ 0\ 1\ 3\ 4\ 5\ 6\ 2\ 7\ 8\ 9\ 10\ 11\ 12$
- $\bigcirc \ \ 3\ 5\ 6\ 4\ 1\ 7\ 9\ 11\ 12\ 10\ 8\ 2\ 0$
- 3154607298111012

Question 7

Complete

Marked out of 1.00

Which of the following are NOT a real-life application of graphs?

- Google PageRank
- Social networks
- Binary Search Algorithm
- Routing algorithms in computer networks

Question 8
Complete
Marked out of 1.00

Find a output of Breadth-First Traversal of the following graph starting from 0 node:

Select one:

- 012345
- 0145320
- 014532
- 0 102435

Question 9

Complete

Marked out of 1.00

Which of the following data structure is used to implement DFS?

Select one:

- Tree
- Stack
- Queue
- Linked list

Question 10	
Complete	
Marked out of 1.00	

When the Breadth First Search of a graph will be unique?

Select one:

- When the graph is a n-ary Tree
- When the graph has no cycle
- When the graph is a Binary Tree
- When the graph is a Linked List