chard_wuebker@berkeley.eau-rev J MFE Math Foundations Assignment 3 Solutions

Sep 5, 2021, 4:21:39 PM PST be ab 1. (a) By the way the sequence f_J was constructed, we will be able to show that $||f_{J+1} - f_J|| \le c \cdot 2^{-J/2}$. Then by the argument in the problem description, f_J would be a Cauchy sequence (and would thus converge since the space is complete under the sup-norm). Indeed, recall that f_{J+1} is defined from f_J via $f_{J+1} = f_J$ on the set X^J , and

$$f_{J+1}(t) = f_J(t) + (-1)^{k+J+1} 2^{-J/2-1}, \quad t = (2k-1)2^{-J-1} \in X^{J+1} \setminus X^J$$

It then follows that richard_N

$$||f_{J+1} - f_J|| = \sup_{t \in [0,1]} |f_{J+1}(t) - f_J(t)|$$

$$\leq \sup_{t \in X^{J+1}} |f_{J+1}(t) - f_J(t)|$$

$$\leq \frac{1}{2} \cdot 2^{-J/2}$$

so we are done.

21:39 PM PS

2021 A.21:39 PM PST

Feb 5, 2021, 4:21:39 Ph (b) Let $t = k \cdot 2^{-J}$. First consider J' = J + 1. We need to examine the quantity

$$Z := |f_{J+1}(t + 2^{-J-1}) - f_{J+1}(t)|$$

Recall that $f_{J+1}(t) = f_J(t)$ by construction. As for $f_{J+1}(t+2^{-J-1})$, note that f_J is linear on the interval $[t, t + 2^{-J}]$. Thus, if we define $a = f_J(t)$ and $b = f_J(t + 2^{-J})$, then we have (by the construction of f_{J+1} from f_J

ction of
$$f_{J+1}$$
 from f_J)
$$f_{J+1}(t+2^{-J-1}) = f_J(t+2^{-J-1}) \pm 2^{-J/2-1}$$
$$= \frac{a+b}{2} \pm 2^{-J/2-1}$$

Combining the above, we have
$$Z=|f_{J+1}(t+2^{-J-1})-f_{J+1}(t)|=\left|\frac{a+b}{2}\pm 2^{-J/2-1}-a\right|\\ =\left|\frac{b-a}{2}\pm 2^{-J/2-1}\right|$$
 Now, we are done if $Z\geq \frac{2^{-(J+1)/2}}{8}$. If not, then $Z<\frac{2^{-(J+1)/2}}{8}$, and we use this fact to show that we get what we need with $J'=J+2$ in this case. Specifically, recall that $f_{J+2}(t)=f_J(t)$. We

richard_W

have
$$|f_{J+2}(t+2^{-J-2})-f_J(t)| = \begin{vmatrix} a+(\frac{a+b}{2}\pm 2^{-J/2-1})\\ \frac{b-a}{2}\pm 2^{-J/2-1} \end{pmatrix} \mp 2^{-\frac{J+1}{2}-1}-a$$

$$= \begin{vmatrix} \frac{b-a}{2}\pm 2^{-J/2-1} \\ \frac{J}{2} - 2^{-(J+3)/2} \end{vmatrix}$$

$$\geq \begin{vmatrix} \frac{J}{2}-2^{-(J+3)/2} \\ \frac{J}{2} \end{vmatrix}$$

$$\geq 2^{-(J+3)/2} \cdot \frac{Z}{2}$$

$$\geq 2^{-(J+3)/2} \cdot \frac{Z}{2}$$

$$\geq 2^{-(J+3)/2} \cdot \frac{J}{2}$$

$$= 2^{-(J+2)/2}$$

$$= \frac{2^{-(J+2)/2}}{\sqrt{2}} - \frac{1}{8\sqrt{2}}$$

$$= 2^{-(J+2)/2} \left(\frac{1}{\sqrt{2}} - \frac{1}{8\sqrt{2}} \right)$$

$$\geq \frac{2^{-(J+2)/2}}{8}$$
Thus, the desired result either holds for $J' = J + 1$ or $J' = J + 2$.
(c) Let $\alpha > \frac{1}{2}$. For any dyadic $t = k \cdot 2^{-J}$, with $0 < k < 2^{J}$, we will show that
$$\sup_{x \neq t} \frac{|f(x) - f(t)|}{|x - t|^{\alpha}} = +\infty.$$
Note that we can always write t as $m2^{-J'}$ for any $J' \geq J$ by choosing $m = k2^{J'-J}$. This fact,

(c) Let $\alpha > \frac{1}{2}$. For any dyadic $t = k \cdot 2^{-J}$, with $0 < k < 2^{J}$, we will show that

$$\sup_{x \neq t} \frac{|f(x) - f(t)|}{|x - t|^{\alpha}} = +\infty.$$

Note that we can always write t as $m2^{-J'}$ for any $J' \geq J$ by choosing $m = k2^{J'-J}$. This fact, together with our work in part (b) implies that there are arbitrarily large J' > J and $x = t + 2^{-J'}$, such that

$$\frac{|f(x) - f(t)|}{|x - t|^{\alpha}} = \frac{|f_{J'}(x) - f_{J'}(t)|}{|x - t|^{\alpha}} \ge \frac{2^{-J'/2}}{8 \cdot 2^{-J'\alpha}} = \frac{2^{J'(\alpha - \frac{1}{2})}}{8}$$

We observe that since $\alpha > \frac{1}{2}$, the right side of the above inequality is unbounded as J' grows. Thus one lets $J' \to \infty$ to obtain the desired result.

(d) We claim that $f_J(t) = 1 - f_J(1-t)$ for all J and t. We proceed by induction on J; the base case J=1 is trivial since $f_1(t)=t$ and t=1-(1-t). Suppose then that the result holds for Feb 5, 2021 $1, \ldots, J-1$. Observe that if $t=k\cdot 2^{-J}$, then 1-t is also in X^J , and is given by $m\cdot 2^{-J}$, where $m=2^J-k$. If k is even, then $t\in X^{J-1}$ also. This implies $1-t\in X^{J-1}$, and by the inductive 21:39 PM PS hypothesis we would have

$$f_J(t) = f_{J-1}(t) = 1 - f_{J-1}(1-t) = 1 - f_J(1-t)$$

Otherwise, k is odd, which implies that m is odd as well. Suppose that k = 2k'-1 and m = 2m'-1. Then we have

$$f_J(t) = f_{J-1}(t) + (-1)^{k'+J+1} 2^{-\frac{J-1}{2}-1}$$

$$f_J(1-t) = f_{J-1}(1-t) + (-1)^{m'+J+1} 2^{-\frac{J-1}{2}-1}$$

However, we know that $m = 2^J - k$, which implies that $m' + k' = 2^J + 1$. In particular, one has $(-1)^{k'+J+1} = -(-1)^{m'+J+1}$. Thus, by adding the above equations, we obtain that

$$f_J(t) + f_J(1-t) = f_{J-1}(t) + f_{J-1}(1-t) = 1$$

2021 A.21.39 PM PST Waley edu - F by using the inductive hypothesis again.

For general t, one can argue that since f_J is extended linearly between dyadic points for which the relationship holds, it will be maintained over these intervals as well.

(e) We can now show that $\int_0^1 f(t) dt = \frac{1}{2}$. Using our previous result, we note that for all J, we have

$$1 = \int_0^1 (f_J(t) + f_J(1-t)) dt = \int_0^1 f_J(t) dt + \int_0^1 f_J(1-t) dt = 2 \int_0^1 f_J(t) dt$$
ich it follows that $\int_0^1 f_J(t) dt = \frac{1}{2}$ for all J .

where we have $f_J \to f$ in the sup-norm, we can compute

from which it follows that $\int_0^1 f_J(t) dt = \frac{1}{2}$ for all J. Now, since we have $f_J \to f$ in the sup-norm, we can compute

$$\int_0^1 f(t) \, dt = \lim_{J \to \infty} \int_0^1 f_J(t) \, dt = \frac{1}{2}$$

Remember that uniform convergence is required to interchange the integral and the limit!

(f) Denote by V_J the sum corresponding to the Jth quadratic variation:

$$\sum_{k=0}^{2^{J}-1} \left[f_J((k+1)2^{-J} - f_J(k \cdot 2^{-J})) \right]^2$$

Let $t = k \cdot 2^{-J}$ and $s = 2^{-J}$. Note that $t, t+s \in X^J$. Define $f_J(t) = a$ and $f_J(t+s) = b$. Then the contribution to V_J is $(a-b)^2$. In X^{J+1} , the interval [t,t+s) is split into the two halves $[t,t+\frac{s}{2})$ and $[t+\frac{s}{2},t+s)$. Thus the same interval [t,t+s) contributes two terms to V_{J+1} : $[f_{J+1}(t+s/2) - f_{J+1}(t)]^2 + [f_{J+1}(t+s) - f_{J+1}(t+s/2)]^2$ However by the construction of f_{J+1} from f_{J+1} from f_{J+1} from f_{J+1} from f_{J+1}

$$[f_{J+1}(t+s/2) - f_{J+1}(t)]^2 + [f_{J+1}(t+s) - f_{J+1}(t+s/2)]^2$$

However by the construction of f_{J+1} from f_J , we have

2021 A:21:39 PM PST

However by the construction of
$$f_{J+1}$$
 from f_J , we have
$$f_{J+1}(t) = a$$

$$f_{J+1}(t+s) = b$$

$$f_{J+1}(t+s/2) = \frac{f_J(t) + f_J(t+s/2)}{2} \pm 2^{-\frac{J+2}{2}}$$

$$= \frac{a+b}{2} + c$$
where we have defined $c = \pm 2^{-\frac{J+2}{2}}$. Thus, the total contribution to V_{J+1} is given by

$$\left[\frac{a+b}{2} + c - a\right]^2 + \left[b - \frac{a+b}{2} + c\right]^2 = \left[\frac{a-b}{2} - c\right]^2 + \left[\frac{a-b}{2} + c\right]^2$$
$$= \frac{(a-b)^2}{2} + 2c^2$$

th Feb 5, 2021 21:39 PM PST But $a = f_J(t)$ and $b = f_J(t+s)$. Since $c^2 = 2^{-(J+2)}$, the previous line is equivalent to the desired result.

> (g) By summing up all the contributions using our results from the previous part, we obtain (for $J \ge 2$

$$V_{J+1} = \frac{V_J}{2} + 2^J \cdot 2^{-(J+1)} = \frac{V_J}{2} + \frac{1}{2}$$

However, we can use the relationship $V_{J+1}=\frac{V_J}{2}+\frac{1}{2}$ to prove that in fact we have $V_J=1-2^{-J}$

$$V_J = 1 - 2^{-J}$$

We can easily compute
$$V_1=\frac{1}{2}$$
. Assume this result holds for the first J integers; then we have
$$V_{J+1}=\frac{V_J}{2}+\frac{1}{2}$$

$$=\frac{1-2^{-J}}{2}+\frac{1}{2}$$

$$=\frac{2-2^{-J}}{2}$$

$$=1-2^{-(J+1)}.$$
 2. (a) Let $V(t)$ denote the value of the contract that, at time $T=10$, pays out \$1,000. Given the explicit

(a) Let V(t) denote the value of the contract that, at time T = 10, pays out \$1,000. Given the explicit formula for the short rate, we have $V(t) = 1000 \ e^{-\int_t^T r(s) \ ds}$

$$V(t) = 1000 e^{-\int_t^T r(s) \, ds}$$

Thus to compute V(0) we need to evaluate $\int_0^{10} r(s) ds$. Note that we can also write $r(t) = \frac{2}{40+t}$. For any a, b, we have

$$\int_{a}^{b} r(s) \, ds = \int_{a}^{b} \frac{2}{40 + s} \, ds = 2 \log(40 + s) \Big|_{a}^{b} = 2 \log(40 + b) - 2 \log(40 + a) = 2 \log\left(\frac{40 + b}{40 + a}\right)$$
Thus $\int_{0}^{10} r(s) \, ds = 2 \log \frac{5}{4}$, so we conclude that
$$V(0) = 1000 \, e^{-2 \log \frac{5}{4}} = 1000 \, e^{\log \frac{16}{25}} = \$640.00$$
(b) Let $t^* = \inf\{t > 0 \mid V(t) = 3312\}$. Then for $t > t^*$, we have $I(t) = 0$. We can solve the equation easily in the domain (t^*, ∞) ; indeed, for any $t > t^*$ one has

Thus $\int_0^{10} r(s) ds = 2 \log \frac{5}{4}$, so we conclude that

$$V(0) = 1000 e^{-2\log\frac{5}{4}} = 1000 e^{\log\frac{16}{25}} = $640.00$$

(b) Let $t^* = \inf\{t > 0 \mid V(t) = 3312\}$. Then for $t > t^*$, we have I(t) = 0. We can solve the equation easily in the domain (t^*, ∞) ; indeed, for any $t > t^*$ one has

$$\log V(t) - \log V(t^*) = \int_{t^*}^t r(s) \, ds = 2\log(40 + s) \Big|_{t^*}^t = 2\log\left(\frac{40 + t}{40 + t^*}\right)$$

But $V(t^*) = 3312$ (this assumes a priori that V is continuous) from which it follows that (again

$$V(t) = 3312e^{2\log\left(\frac{40+t}{40+t^*}\right)} = 3312\left(\frac{40+t}{40+t^*}\right)^2$$

$$V'(t) - r(t)V(t) = 300$$

V'(t)-r(t)V(t)=300 Note that if we define $\mu(t):=e^{-\int_0^t r(u)\ du}$, then $\mu'(t)=-r(t)\mu(t)$. Thus, for any $0< t< t^*$, we have $\frac{d}{dt}\left(\mu(t)V(t)\right)=300\mu(t)$ Integrating from 0 to t, we obtain $\mu(t)V(t)-V(0)\mu(0)=300\int_0^t \mu(s)\ ds$

$$\frac{d}{dt}\left(\mu(t)V(t)\right) = 300\mu(t)$$

21:39 PM PST

2021 A.21:39 PM PST

$$\mu(t)V(t) - V(0)\mu(0) = 300 \int_0^t \mu(s) ds$$

Since
$$\mu(0) = 1$$
 and $V(0) = 300$, this is equivalent to
$$V(t) = 300e^{\int_0^t r(u) \, du} + 300 \int_0^t e^{\int_s^t r(u) \, du} \, ds$$

$$= 300e^{2\log\left(\frac{40+t}{40}\right)} + 300 \int_0^t e^{2\log\left(\frac{40+t}{40+s}\right)} \, ds$$

$$= \frac{3}{16}(40+t)^2 + 300(40+t)^2 \int_0^t \frac{1}{(40+s)^2} \, ds$$

$$= \frac{3}{16}(40+t)^2 + 300(40+t)^2 \left[\frac{1}{40+s}\right]_0^t$$

$$= \frac{3}{16}(40+t)^2 + 300(40+t)^2 \left[\frac{t}{40(40+t)}\right]$$

$$= \frac{3}{16}(40+t)^2 + \frac{15}{2}t (40+t)$$

This formula is valid for $0 < t < t^*$, i.e. until V(t) reaches 3312. We can now compute t^* by solving V(t) = 3312 using the formula for $0 < t < t^*$. Solving the equation

$$3312 = \frac{3}{16}(40 + t^*)^2 + \frac{15}{2}t^* (40 + t^*)$$

yields $t^* = 8$.

21:39 PM PST

2021 A.21:39 PM PST

Our complete solution to the problem is now given by

using the formula for
$$0 < t < t^*$$
. Solving the equation
$$3312 = \frac{3}{16}(40 + t^*)^2 + \frac{15}{2}t^* (40 + t^*)$$
 on to the problem is now given by
$$V(t) = \begin{cases} \frac{3}{16}(40 + t)^2 + \frac{15}{2}t (40 + t), & 0 \le t < 8, \\ \frac{23}{16}(40 + t)^2, & t \ge 8 \end{cases}$$
 Figure 1: Solution Plot of V

Plot of V

Note that in Figure 1, we can see that V(t) is actually not differentiable at $t^*=8$. This is to be expected since the ODE tells us that V'(t) is discontinuous there.