

EuroPython 2012

A. Quake Live

B. Shoot the Target

C. Bejeweled Befuddlement

D. Technology Planning

Questions asked

Submissions

Quake Live

5pt | Not attempted 30/48 users correct (63%)

10pt | Not attempted 28/28 users correct (100%)

Shoot the Target

8pt | Not attempted 1/4 users correct (25%)

12pt Not attempted 0/1 users correct (0%)

Bejeweled Befuddlement

10pt | Not attempted 1/3 users correct (33%)

Not attempted 0/1 users correct (0%)

Technology Planning

15pt Not attempted 13/16 users correct

20pt Not attempted 12/13 users correct (92%)

 Top Scores 	
andreidid	50
tlotze	50
alexamici	50
errebepe	50
almost	50
pts	50
bucko	50
r3m0t	43
eseriva	35
mumino	35

Problem D. Technology Planning

This contest is open for practice. You can try every problem as many times as you like, though we won't keep track of which problems you solve. Read the Quick-Start Guide to get started.

Small input 1 15 points

Small input 2 20 points

Solve D-small-2

Solve D-small-1

Problem

You are playing a culture simulation game, in which your culture can develop various technologies. Some technologies depend upon others; if technology A depends upon technology B, you cannot develop B until you have developed A. Your culture can work on only one technology at a time.

In the game, you have goals which require particular technologies. You have decided to write a program to help you by planning out the order in which to develop technologies.

The input to your program starts with the number of test cases, **T**, on a line by itself. T test cases follow. Each one consists of:

- One line with an integer, M, which is the number of technological dependencies.
- M lines, each one containing two technology names, separated by a colon (':'). The first technology depends on the second one.
- One line with an integer, Q, which is the number of goal technologies.
- Q lines, each naming a goal technology.

Each technology name is a sequence of alphanumeric characters (letters or numbers). Technology names are case-sensitive.

Output

The output for each case should start with a line of the form "Case #C: D", where $\hat{\mathbf{C}}$ is the case number, starting from 1, and \mathbf{D} is the smallest possible number of technologies that have to be researched. The next **D** lines should each contain one technology, in the order that they need to be researched.

If there are several possible correct orderings, any one of them is acceptable.

Limits

T ≤ 25 $M \ge 1$

 $\mathbf{0} \geq 1$

There will be no cycles in the dependency graph.

Small dataset

 $M \le 10$

 $\mathbf{Q} \leq 10$.

Large dataset

M≤ 100

 $\mathbf{Q} \leq 100.$

Sample

Input Output Case #1: 8 Fire Metalworking:Fire Metalworking Pottery:Fire Iron Iron:Metalworking Steel Steel:Iron Alchemy Battleships:Steel Chemistry Alchemy:Fire Explosives Chemistry: Alchemy Battleships Explosives: Chemistry Case #2: 3 Battleships: Explosives Fire Pottery Battleships Metalworking Case #3: 1 Metalworking:Fire d

All problem statements, input data and contest analyses are licensed under the <u>Creative Commons Attribution License</u>.

© 2008-2017 Google
Google Home - Terms and Conditions - Privacy Policies and Principles

Powered by

