Co-algebras — a short summary

MMF, 28 feb 1994

Co-algebras are dual to algebras, and finality is dual to initiality. We shall be very brief in the formal exposition, since it is just a matter of dualisation, but more elaborate in the informal explanation and examples.

- **1 Co-algebras.** Let \mathcal{A} be a category (for example $\mathcal{S}et$), and take this one as the default category. Let F be an endofunctor (so its type is $\mathcal{A} \to \mathcal{A}$).
 - An F-co-algebra is: a morphism φ of type $a \to Fa$ for some a, called its carrier.
 - An F-co-algebra homomorphism from φ to ψ is: a morphism f satisfying

$$\varphi, Ff = f, \psi$$
.

• The (pre)category CoAlg(F) of F-co-algebras is defined thus: it is built upon category \mathcal{A} (so it inherits the composition and identities from \mathcal{A}), its objects are F-co-algebras, its morphisms are F-co-algebra homomorphisms, its typing is defined as you would expect from the definition of 'homomorphism'.

Dualisation of initiality in Alg(F) gives us the following about finality in CoAlg(F).

2 Finality. An F-co-algebra α is final (a final object in CoAlg(F)) if: there exists a mapping [-] satisfying ana-Type and ana-Charn, and therefore also the other laws:

$$\varphi \, F \text{-co-algebra} \qquad \Rightarrow \qquad \llbracket \varphi \rrbracket \colon \text{carrier of } \varphi \to \text{carrier of } \alpha \qquad \text{ana-Type ana-Charn}$$

$$f = \llbracket \varphi \rrbracket \qquad \equiv \qquad \varphi \, ; \, Ff = f \, ; \, \alpha \qquad \qquad \text{ana-Charn}$$

$$\varphi \, ; \, F \, \llbracket \varphi \rrbracket = \llbracket \varphi \rrbracket \, ; \, \alpha \qquad \qquad \text{ana-Self}$$

$$id = \llbracket \alpha \rrbracket \qquad \qquad \text{ana-Id}$$

$$\varphi \, ; \, Ff = f \, ; \, \alpha \, \wedge \, \varphi \, ; \, Fg = g \, ; \, \alpha \qquad \Rightarrow \qquad f = g \qquad \qquad \text{ana-Uniq}$$

$$\varphi \, ; \, Ff = f \, ; \, \psi \qquad \Rightarrow \qquad \llbracket \varphi \rrbracket = f \, ; \, \llbracket \psi \rrbracket \quad . \qquad \qquad \text{ana-Fusion}$$

We call a morphism of the form $[\![\varphi]\!]$ an anamorphism.

3 Disussion. For an intuitive understanding of the above results, we give here an explanation in terms of category $\mathcal{A} = \mathcal{S}et$ (though most formulas are valid in any category). First observe that by dualisation it also follows that a final F-co-algebra α : $t \to Ft$ is an isomorphism, so that it has an inverse, which we write as $\alpha \cup : Ft \to t$. (In programming language terminology types are sets, and for this reason we use the letter t for the carrier of α .)

We may call α a destructor since it decomposes an element of its carrier t into its constituents: a value in the set Ft, an F-structure over t. It is right to say 'decomposes'

and 'constituents' because subsequent application of α^{\cup} yields the original value in t back again: α , $\alpha^{\cup} = id_t$.

Finality of α means that for each φ : $a \to Fa$ there exists precisely one f satisfying:

$$\begin{array}{lll} \varphi \, ; Ff & = & f \, ; \, \alpha, & \quad \text{or, equivalently} \\ f \, ; \, \alpha & = & \varphi \, ; Ff & \quad \text{or, equivalently} \\ f & = & \varphi \, ; Ff \, ; \, \alpha \cup & : \quad a \to t \quad . \end{array}$$

The second equation can be read as a definition of f by induction on the α -destruction of the result of f. The third equation says how to compute f: first apply φ , then do f recursively on the results, and finally apply $\alpha \cup$, thus constructing a value in the set t.

In a programming language syntax we write the declaration "let α be a final F-coalgebra, say with carrier t" thus:

datatype t has destructors α : $t \to Ft$

In case F has the form $F = G \times H$, we know that $\alpha = \beta \triangle \gamma$ and we may write:

datatype t has destructors
$$\beta$$
: $t \to Gt$, γ : $t \to Ht$.

Moreover, the programmer may introduce another name for $[\![\]\!]$, say generate, and introduce that by a with-clause thus:

datatype t with generate has destructors $\alpha: t \to Ft$.

4 Parameterisation. Let F have an extra parameter, a say, so that α and t depend on a. Writing Ta instead of t_a , we have α_a : $Ta \to F(a, Ta)$.

By dualisation of the theory for algebras, it follows that α is natural in a, that T is a functor, and that:

In the latter law the typing reads:

SO

$$\varphi \colon a \to F(a,a)$$
 $f \colon a \to b$ $\psi \colon b \to F(b,b)$
$$\llbracket \varphi \rrbracket \colon a \to Ta$$

$$\llbracket \psi \rrbracket \colon b \to Tb .$$

The programming language syntax now reads:

datatype Ta with $[\![\ \]\!]$ has destructors $\alpha \colon Ta \to FTa$.

Examples

Throughout this section we speak as if $\mathcal{A} = \mathcal{S}et$. But a lot of the formal claims hold in any category.

5 Final Id-co-algebra. Consider a one-point set, or more generally a final object I in A. Then, for arbitrary a there exists precisely one $f: a \to I$. So, trivially, also for arbitrary $\varphi: a \to a$ there exists precisely one f satisfying:

$$\varphi , f = f , id_1 : a \rightarrow 1 .$$

Now observe that id_1 and φ are Id-co-algebras:

$$\begin{array}{cccc} id_{\scriptscriptstyle 1} & : & {\scriptscriptstyle 1} \to Id_{\scriptscriptstyle 1} \\ \varphi & : & a \to Id_{\scriptscriptstyle 1} a & . \end{array}$$

Thus we have shown that $id_1: 1 \to 1$ is a final Id-co-algebra.

In the programming language syntax we may declare:

datatype unit has destructors $iden: unit \rightarrow unit$

Then unit is (isomorphic to) 1, and iden is its identity.

6 Streams. Let $F(x,y) = x \times y$, so that $F(a, _) = \underline{a} \times Id$. We shall show that the datatype of streams over a is a final $F(a, _)$ -co-algebra.

First, recall the datatype of streams over a: the set *Stream* a consists of all infinite sequences $[a_0, a_1, \ldots]$ with elements from a, and the head and tail function are defined thus:

$$\begin{array}{llll} hd & = & [a_0,a_1,\ldots] \mapsto a_0 & : & \mathit{Stream}\ a \to a \\ tl & = & [a_0,a_1,\ldots] \mapsto [a_1,\ldots] & : & \mathit{Stream}\ a \to \mathit{Stream}\ a \end{array}.$$

So, we have

$$hd \triangle tl$$
 : Stream $a \rightarrow a \times Stream a$
= Stream $a \rightarrow (\underline{a} \times Id)$ Stream a ,

and $hd \triangle tl$ is a $(\underline{a} \times Id)$ -co-algebra.

Next, observe that for arbitrary $e: b \to a$ and $g: b \to b$ the two equations below fully determine a function $f: b \to Stream a$:

$$egin{array}{lcl} f:hd&=&e&:&b o a\ f:tl&=&g:f&:&b o Stream\ a&. \end{array}$$

Indeed, by induction on n one can easily prove that the two equations imply:

$$f$$
, tl^n , $hd = g^n$, e or, equivalently —in Set —
$$f(x) = [e(x), e(g(x)), e(g(g(x)), \dots, e(g^n(x)), \dots] .$$

Using the product laws, the two equations above can be written as one equation:

$$f : hd \triangle tl = e \triangle g : id_a \times f$$
.

Putting $\alpha = hd \triangle tl$ and $\varphi = e \triangle g$, this equation reads:

$$f : \alpha = \varphi : (\underline{a} \times Id) f$$
.

So, since this determines f uniquely, $\alpha = hd \triangle tl$ is a final $(\underline{a} \times Id)$ -co-algebra. Moreover, since $[\![\varphi]\!]$ is a notation for the f so defined, we have:

$$[e \triangle g](x) = [e(x), e(g(x)), e(g(g(x)), \dots, e(g^n(x)), \dots]$$

Since $hd \triangle tl$ is a final co-algebra, we may declare it by:

datatype Stream a with generate has destructors

 $hd: Stream \ a \rightarrow a$

 $tl: Stream \ a \rightarrow Stream \ a$

7 Iterate. We continue the preceding discussion of streams.

Let $f: a \to a$ be arbitrary, and consider the function f-iterate, denoted f^{ω} :

$$f^{\omega}\left(x
ight) = \left[x, fx, f^{2}x, f^{3}x, \ldots\right] : a \rightarrow \textit{Stream } a$$
 .

From the formulas above, it is now immediate that we can express f^{ω} as an anamorphism:

$$f^{\omega} = [id \Delta f]$$
.

As an example, the stream of natural numbers, and the stream of ones now read:

$$nats = zero ; succ^{\omega} : 1 \rightarrow Stream \ nat$$

 $ones = one ; id^{\omega} : 1 \rightarrow Stream \ nat$.

Further, we have the following law:

$$g: f = f: h \quad \Rightarrow \quad g^{\omega}: \mathit{Stream} \ f = f: h^{\omega} \quad .$$
 iterate-Trafo

The proof is easy:

$$g^{\omega}$$
; Stream $f = f$; h^{ω}
 \equiv definition iterate

$$[\![id \triangle g]\!]; Stream f = f; [\![id \triangle h]\!]$$

$$\Leftarrow \quad \text{ana-Trafo}$$

$$id \triangle g; f \times f = f; id \triangle h$$

$$\equiv \quad \text{product}$$

$$g; f = f; h .$$

As an application of iterate-Trafo we find another way to express the stream of ones:

$$id^{\omega}$$
; Stream one = one; id^{ω} (= ones).

As another application we derive an alternative recursive equation for f-iterate:

$$\begin{split} f^{\omega} &= \llbracket id \mathrel{\vartriangle} f \rrbracket \\ &\equiv \quad \text{ana-Charn (with functor } \underline{a} \times Id \;) \\ f^{\omega} \;; \; hd \mathrel{\vartriangle} tl &= id \mathrel{\vartriangle} f \;; \; id_{a} \times f^{\omega} \\ &\equiv \quad \text{product} \\ f^{\omega} \;; \; hd \mathrel{\vartriangle} tl &= id \mathrel{\vartriangle} (f \;; f^{\omega}) \\ &\equiv \quad \text{iterate-Trafo (the condition } f \;; f = f \;; f \; \text{is clearly true)} \\ f^{\omega} \;; \; hd \mathrel{\vartriangle} tl &= id \mathrel{\vartriangle} (f^{\omega} \;; f) \;\;. \end{split}$$

By the way, law iterate-TRAFO expresses nothing but the fact that the iterate operation $_{-}^{\omega}$ is, in a sense, natural in its parameter $_{-}$. Precisely, we claim that $_{-}^{\omega}$ is a natural transformation with type:

$$L^{\omega}$$
: $Id \rightarrow Stream$ in category $Alg(Id)$

To prove this claim, we first observe that an Id-algebra is just a morphism of type $a \to a$ for some a, and so it makes sense to consider *Stream* as a functor on $\mathcal{A}lg(Id)$. Next, we unfold the naturality claim, and find that it is precisely law iterate-TRAFO:

8 Exercise. The function zip maps a pair of streams into a stream of pairs, like a zipper, and the function zipwith-f applies in addition function f to each pair in the result stream of zip:

$$[a,\ldots],[b,\ldots] \stackrel{zip}{\mapsto} [(a,b),\ldots] \stackrel{Stream f}{\mapsto} [f(a,b),\ldots]$$
.

Express zip and zipwith-f = zip; Stream f both as a single anamorphism.

- **9 Exercise.** Express the categorical product as a final co-algebra. (Hint: prove that $ext \triangle exr$ is a final $\underline{a} \times \underline{b}$ -co-algebra.)
- **10 Note.** Recall that the set *Stream a* consists of the *infinite* sequences over a, and that its destructor $hd \triangle tl$ is a final $(\underline{a} \times Id)$ -co-algebra.

Also, recall that the set $Seq\ a$ consists of the finite sequences over a, and its constructor $nil\ v\ cons$ is an initial F-algebra, where:

$$F = \underline{1} + \underline{a} \times Id$$
.

The remarkable point is that the carrier of the final F-co-algebra (for that same F) is a set that consists of all *finite and infinite* sequences over a. We don't prove that claim here.