Anthony Lombardi

CS469/569 Quantum Information and Computation. Final Exam (Spring 2024)

Submitted work must be your own. Please prepare your solution in TeX using quantikz.

The stabilizers of a 5-qubit quantum error correction are given by

$$M_1 = Z_2 X_3 X_4 Z_5, \quad M_2 = Z_3 X_4 X_5 Z_1, \quad M_3 = Z_4 X_5 X_1 Z_2, \quad M_4 = Z_5 X_1 X_2 Z_3.$$

The *encodings* of the basis states $|0\rangle$ and $|1\rangle$ are defined by

$$|\overline{0}\rangle := \frac{(I+M_1)}{\sqrt{2}} \frac{(I+M_2)}{\sqrt{2}} \frac{(I+M_3)}{\sqrt{2}} \frac{(I+M_4)}{\sqrt{2}} |00000\rangle, \ \ |\overline{1}\rangle := \frac{(I+M_1)}{\sqrt{2}} \frac{(I+M_2)}{\sqrt{2}} \frac{(I+M_3)}{\sqrt{2}} \frac{(I+M_4)}{\sqrt{2}} |11111\rangle.$$

By linearity, the qubit $|\psi\rangle=a|0\rangle+b|1\rangle$ is encoded as $|\overline{\psi}\rangle=a|\overline{0}\rangle+b|\overline{1}\rangle$.

1. (T/F) The stabilizers *commute* with each other: $M_jM_k=M_kM_j$, for j,k=1,2,3,4.

$$M_0 \text{ and } M_1 \text{ commute}$$

$$M_0 = I \otimes Z \otimes X \otimes X \otimes Z$$

$$M_1 = Z \otimes I \otimes Z \otimes X \otimes X$$

$$M_0 * M_1 = +1 * +1 * -1 * +1 * -1 = +1$$

$$M_0$$
 and M_2 commute
$$M_0=I\otimes Z\otimes X\otimes X\otimes Z$$

$$M_2=X\otimes Z\otimes I\otimes Z\otimes X$$

$$M_0*M_2=+1*+1*+1*-1*-1=1$$

$$M_0$$
 and M_3 commute
$$M_0=I\otimes Z\otimes X\otimes X\otimes Z \otimes I \otimes Z$$

$$M_3=X\otimes X\otimes Z\otimes I\otimes Z$$

$$M_0*M_3=+1*-1*-1*+1*+1=+1$$

$$M_1 \text{ and } M_2 \text{ commute}$$

$$M_1 = Z \otimes I \otimes Z \otimes X \otimes X$$

$$M_2 = X \otimes Z \otimes I \otimes Z \otimes X$$

$$M_1 * M_2 = -1 * +1 * +1 * -1 * +1 = +1$$

$$M_1 \text{ and } M_3 \text{ commute}$$

$$M_1 = Z \otimes I \otimes Z \otimes X \otimes X$$

$$M_3 = X \otimes X \otimes Z \otimes I \otimes Z$$

$$M_1*M_3 = -1*+1*+1*+1*-1 = +1$$

$$M_2 \text{ and } M_3 \text{ commute}$$

$$M_2 = X \otimes Z \otimes I \otimes Z \otimes X$$

$$M_3 = X \otimes X \otimes Z \otimes I \otimes Z$$

$$M_2*M_3 = +1*-1*+1*+1*-1 = +1$$

True, all of the stabilizers commute with eachother.

2. (T/F)
$$(I + M_k)^2 = 2(I + M_k)$$
 and $M_k(I + M_k) = I + M_k$ for $k = 1, 2, 3, 4$.

$$(I + M_k)^2 = (I + M_k)(I + M_k) = I^2 + I * M_k + M_k * I + M_k^2$$

= $I + M_k + M_k + I = 2I + 2M_k = 2(I + M_k)$

$$M_k(I + M_k) = M_k * I + M_k^2 = M_k + I = I + M_k$$

True

3. (T/F) $|\overline{0}\rangle$ and $|\overline{1}\rangle$ are +1-eigenvectors of the stabilizers: $M_k|\overline{0}\rangle = |\overline{0}\rangle$ and $M_k|\overline{1}\rangle = |\overline{1}\rangle$. So, any encoded state $|\overline{\psi}\rangle$ is a joint (+1)-eigenvector of the stabilizers.

Since we know that

$$|\overline{0}\rangle := \frac{(I+M_1)}{\sqrt{2}} \frac{(I+M_2)}{\sqrt{2}} \frac{(I+M_3)}{\sqrt{2}} \frac{(I+M_4)}{\sqrt{2}} |00000\rangle$$
$$= \frac{1}{4} (I+M_1)(I+M_2)(I+M_3)(I+M_4) |00000\rangle$$

We can say that for any k = 1,2,3,4 $M_k | \overline{0} \rangle = | \overline{0} \rangle$. For example M_1

$$M_{1}|\overline{0}\rangle = M_{1}\frac{1}{4}(I+M_{1})(I+M_{2})(I+M_{3})(I+M_{4})|00000\rangle$$

$$= \frac{1}{4}M_{1}(I+M_{1})(I+M_{2})(I+M_{3})(I+M_{4})|00000\rangle = \frac{1}{4}(M_{1}+M_{1}^{2})(I+M_{2})(I+M_{3})(I+M_{4})|00000\rangle$$

$$= \frac{1}{4}(M_{1}+I)(I+M_{2})(I+M_{3})(I+M_{4})|00000\rangle = |\overline{0}\rangle$$

Similarly, we can say that for any k = 1,2,3,4 $M_k|\overline{1}\rangle = |\overline{1}\rangle$. For example M_3

$$\begin{split} M_3|\overline{1}\rangle &= M_3\frac{1}{4}(I+M_1)(I+M_2)(I+M_3)(I+M_4)|11111\rangle\\ &= \frac{1}{4}(I+M_1)(I+M_2)M_3(I+M_3)(I+M_4)|11111\rangle = \frac{1}{4}(I+M_1)(I+M_2)(M_3+M_3^2)(I+M_4)|11111\rangle\\ &= \frac{1}{4}(I+M_1)(I+M_2)(M_3+I)(I+M_4)|11111\rangle = |\overline{1}\rangle \end{split}$$

True, since $|\overline{0}\rangle$ and $|\overline{1}\rangle$ are +1-eigenvectors of the stabilizers, we can describe any encoded state $|\overline{\psi}\rangle$ as a linear combination of the (+1)-eigenvectors of the stabilizers.

4. Complete the following *commutation* table: use 0 for commuting and 1 for anti-commuting.

	X_1	Y_1	Z_1	X_2	Y_2	Z_2	X_3	Y_3	Z_3	X_4	Y_4	Z_4	X_5	Y_5	Z_5	I
$M_1 = Z_2 X_3 X_4 Z_5$	0	0	0	1	1	0	0	1	1	0	1	1	1	1	0	0
$M_2 = Z_3 X_4 X_5 Z_1$	1	1	0	0	0	0	1	1	0	0	1	1	0	1	1	0
$M_3 = Z_4 X_5 X_1 Z_2$	0	1	1	1	1	0	0	0	0	1	1	0	0	1	1	0
$M_4 = Z_5 X_1 X_2 Z_3$	0	1	1	0	1	1	1	1	0	0	0	0	1	1	0	0

5. Consider the following circuit for the 5-qubit quantum error correction code. Assume the circuit ENC correctly encodes the qubit $|\psi\rangle$ into its encoded state $|\overline{\psi}\rangle$. Assume all measurements are in the Z basis (rectilinear basis).

(a) (T/F) The detection module is correct.

True the detection module is correct since it applies M_1 - M_4 . Given that

$$\begin{aligned} M_1 &= I \otimes Z \otimes X \otimes X \otimes Z \\ M_2 &= Z \otimes I \otimes Z \otimes X \otimes X \\ M_3 &= X \otimes Z \otimes I \otimes Z \otimes X \\ M_4 &= X \otimes X \otimes Z \otimes I \otimes Z \end{aligned}$$

(b) (T/F) The *correction* module is correct for error Y_5 .

True the correction Y gate will only get activated if all of the stabilizers measure $|-\rangle$.

(c) Expand the correction module to handle all other Y errors.

(d) Expand the correction module to handle all other errors on the 5th qubit.

6. (CS569) Consider the following encoding circuit for the 5-qubit quantum error correction code.

(a) Let $\overline{Z} = Z_1 Z_2 Z_3 Z_4 Z_5$.

i. (T/F) \overline{Z} commutes with all M_k , k = 1, 2, 3, 4.

$$\begin{array}{c} M_0 \text{ and } \overline{Z} \text{ commute} \\ \\ M_0 = I \otimes Z \otimes X \otimes X \otimes Z \\ \\ \overline{Z} = Z \otimes Z \otimes Z \otimes Z \otimes Z \\ \\ M_0 * \overline{Z} = +1 * +1 * -1 * -1 * +1 = +1 \end{array}$$

$$\begin{array}{c} M_1 \text{ and } \overline{Z} \text{ commute} \\ M_1 = Z \otimes I \otimes Z \otimes X \otimes X \\ \overline{Z} = Z \otimes Z \otimes Z \otimes Z \otimes Z \end{array}$$

$$\overline{Z} = +1*+1*+1*-1*-1=+1$$

$$M_2 \text{ and } \overline{Z} \text{ commute}$$

$$M_2 = X \otimes Z \otimes I \otimes Z \otimes X$$

$$\overline{Z} = Z \otimes Z \otimes Z \otimes Z \otimes Z$$

$$M_2 * \overline{Z} = -1 * +1 * +1 * +1 * -1 = +1$$

$$M_3$$
 and \overline{Z} commute
$$M_3 = X \otimes X \otimes Z \otimes I \otimes Z$$

$$\overline{Z} = Z \otimes Z \otimes Z \otimes Z \otimes Z \otimes Z$$

$$M_3 * \overline{Z} = -1 * -1 * +1 * +1 * +1 = +1$$

True, \overline{Z} commutes with all of the stabilizers.

ii. (T/F) $|\overline{0}\rangle$ is a (+1)-eigenvector of \overline{Z} but $|\overline{1}\rangle$ is a (-1)-eigenvector of \overline{Z} .

$$\begin{split} |\overline{0}\rangle &= |0\rangle \otimes |0\rangle \otimes |0\rangle \otimes |0\rangle \otimes |0\rangle \\ \overline{Z} &= Z \otimes Z \otimes Z \otimes Z \otimes Z \\ \overline{Z} |\overline{0}\rangle &= +1*+1*+1*+1=+1 \end{split}$$

$$\begin{split} |\overline{1}\rangle &= |1\rangle \otimes |1\rangle \otimes |1\rangle \otimes |1\rangle \otimes |1\rangle \\ \overline{Z} &= Z \otimes Z \otimes Z \otimes Z \otimes Z \\ \overline{Z} |\overline{1}\rangle &= -1*-1*-1*-1=-1 \end{split}$$

True, $\overline{Z}|\overline{0}\rangle = |\overline{0}\rangle$ and $\overline{Z}|\overline{1}\rangle = -|\overline{1}\rangle$

(b) (T/F) The circuit will encode qubit $|0\rangle$ into its encoded state $|\overline{0}\rangle$.

$$\begin{split} |00000\rangle \otimes |+++++\rangle &= |00000\rangle \otimes (\frac{|0\rangle+|1\rangle}{\sqrt{2}})(\frac{|0\rangle+|1\rangle}{\sqrt{2}})(\frac{|0\rangle+|1\rangle}{\sqrt{2}})(\frac{|0\rangle+|1\rangle}{\sqrt{2}})(\frac{|0\rangle+|1\rangle}{\sqrt{2}})(\frac{|0\rangle+|1\rangle}{\sqrt{2}})\\ &= |00000\rangle \otimes (\frac{I+M_1}{\sqrt{2}})(\frac{I+M_2}{\sqrt{2}})(\frac{I+M_3}{\sqrt{2}})(\frac{I+M_4}{\sqrt{2}})(\frac{Z+ZX}{\sqrt{2}})\\ &= |\overline{0}\rangle (\frac{Z+ZX}{\sqrt{2}}) \end{split}$$

Next, we can perform the Z parity messurement if the result is +1, we don't apply X. If the result is -1 we apply X, since we had $|\overline{1}\rangle$ instead of $|\overline{0}\rangle$.

True.

(c) Describe how the above circuit can be used to encode $|1\rangle$ into the encoded state $|\overline{1}\rangle$. The same circuit could be using to encode $|1\rangle$ into $|\overline{1}\rangle$ by simply swapping qu-bit 1 for $|1\rangle$.