Binary Classification

Notation

(x,y)
$$x \in \mathbb{R}^{n_x}$$
, $y \in \{0,1\}$
 $m + rainiy} evarples: \{(x^{(i)}, y^{(i)}), (x^{(i)}, y^{(i)}), \dots, (x^{(m)}, y^{(m)})\}$
 $m \in M + rain$
 $m + est = \# test examples.$

$$X = \begin{bmatrix} x_{(1)} & x_{(2)} & \dots & x_{(m)} \\ x_{(m)} & x_{(m)} & \dots & x_{(m)} \end{bmatrix}$$

$$X = \begin{bmatrix} x_{(1)} & x_{(2)} & \dots & x_{(m)} \\ x_{(m)} & x_{(m)} & \dots & x_{(m)} \end{bmatrix}$$

$$Y \in \mathbb{R}^{km}$$

deeplearning.ai

Basics of Neural Network Programming

Logistic Regression

Logistic Regression

Given
$$x$$
, want $\hat{y} = P(y=1|x)$
 $x \in \mathbb{R}^{n_x}$
 $0 \le \hat{y} \le 1$

Output
$$\hat{y} = 5(w^T \times + b)$$

Basics of Neural Network Programming

Logistic Regression cost function

deeplearning.ai

截图(Alt + A)

Logistic Regression cost function

$$\widehat{y}^{(i)} = \sigma(w^T \underline{x}^{(i)} + b), \text{ where } \sigma(z^{(i)}) = \frac{1}{1 + e^{-z}} (i) \qquad \forall i = w^T \underline{x}^{(i)} + b$$
Given $\{(\underline{x}^{(1)}, \underline{y}^{(1)}), \dots, (\underline{x}^{(m)}, \underline{y}^{(m)})\}, \text{ want } \widehat{y}^{(i)} \approx \underline{y}^{(i)} \approx \underline{y}^{(i)}. \qquad \forall i = w^T \underline{y}^{(i)} = w^T \underline{y}^{(i)$

Basics of Neural Network Programming

Gradient Descent

Gradient Descent

Recap:
$$\hat{y} = \sigma(w^T x + b)$$
, $\sigma(z) = \frac{1}{1 + e^{-z}}$

$$\underline{J(w,b)} = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Want to find w, b that minimize J(w, b)

Gradient Descent

dw

Andrew Ng

Ľ,

Basics of Neural Network Programming

Derivatives

deeplearning.ai

Intuition about derivatives

Basics of Neural Network Programming

deeplearning.ai

More derivatives examples

Intuition about derivatives

Andrew Ng

More derivative examples

$$f(a) = a^2$$

$$f(a) = a^2$$
 $\frac{\partial}{\partial a} f(a) = \frac{\partial}{\partial a} \frac{\partial}{\partial a} f(a) = \frac{\partial}{\partial a} f(a$

$$f(\omega) = \alpha^3$$

$$\frac{d}{da}f(a) = \frac{1}{a}$$

$$\frac{d}{da} \ln(a) = \frac{1}{a}$$

$$\frac{d}{da} \ln(a) = \frac{1}{a}$$

$$\frac{d}{da}(b) = \frac{3a^2}{3*2^2} = 12$$
 $a = 2.001$
 $f(a) = 8$
 $a = 2.001$
 $f(a) = 8$

$$C = 2.001 \quad f(m) \approx 0.69365$$

$$C = 2.001 \quad f(m) \approx 0.69365$$

Andrew Ng

截图(Alt + A) plearning.ai

Basics of Neural Network Programming

Computation Graph

Computation Graph
$$J(a,b,c) = 3(a+bc) = 3(5+3n^2) = 33$$

Basics of Neural Network Programming

Derivatives with a Computation Graph

Computing derivatives

Computing derivatives

$$\begin{array}{c}
a = 5 \\
b = 3 \\
b = 3
\end{array}$$

$$\begin{array}{c}
b = 3 \\
b = 6
\end{array}$$

$$\begin{array}{c}
c = 2 \\
du = 3
\end{array}$$

$$\begin{array}{c}
du = 3 \\
du = 3
\end{array}$$

$$\begin{array}{c}
du = 3 \\
du = 3
\end{array}$$

$$\begin{array}{c}
du = 3 \\
du = 3
\end{array}$$

$$\begin{array}{c}
du = 3 \\
du = 3
\end{array}$$

$$\begin{array}{c}
du = 3 \\
du = 3
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 3 \\
du = 3
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 3 \\
du = 3
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 3
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 3
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 3
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 3
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 3
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 3
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 3
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 3
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 3
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 3
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 3
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 3
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 3
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6$$

$$\begin{array}{c}
du = 6 \\
du = 6$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6$$

$$\begin{array}{c}
du = 6 \\
du = 6$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6$$

$$\begin{array}{c}
du = 6 \\
du = 6$$

$$\begin{array}{c}
du = 6 \\
du = 6
\end{array}$$

$$\begin{array}{c}
du = 6 \\
du = 6$$

Basics of Neural Network Programming

Logistic Regression Gradient descent

Logistic regression recap

$$\Rightarrow z = w^T x + b$$

$$\Rightarrow \hat{y} = a = \sigma(z)$$

$$\Rightarrow \mathcal{L}(a, y) = -(y \log(a) + (1 - y) \log(1 - a))$$

Logistic regression derivatives

deeplearning.ai

Basics of Neural Network Programming

Gradient descent on m examples

Logistic regression on m examples

$$\frac{J(u,b)}{J(u,b)} = \frac{1}{m} \sum_{i=1}^{m} \chi(a^{(i)}, y^{(i)})$$

$$= \alpha^{(i)} = \gamma^{(i)} = \epsilon(\chi^{(i)}) = \epsilon(\chi^{(i)} + b)$$

$$= \alpha^{(i)} = \gamma^{(i)} = \epsilon(\chi^{(i)}) = \epsilon(\chi^{(i)} + b)$$

$$= \alpha^{(i)} = \gamma^{(i)} = \epsilon(\chi^{(i)}) = \epsilon(\chi^{(i)} + b)$$

$$= \alpha^{(i)} = \gamma^{(i)} = \epsilon(\chi^{(i)}) = \epsilon(\chi^{(i)} + b)$$

$$= \alpha^{(i)} = \gamma^{(i)} = \epsilon(\chi^{(i)}) = \epsilon(\chi^{(i)} + b)$$

$$= \alpha^{(i)} = \gamma^{(i)} = \epsilon(\chi^{(i)}) = \epsilon(\chi^{(i)} + b)$$

$$= \alpha^{(i)} = \gamma^{(i)} = \epsilon(\chi^{(i)}) = \epsilon(\chi^{(i)} + b)$$

$$= \alpha^{(i)} = \gamma^{(i)} = \epsilon(\chi^{(i)}) = \epsilon(\chi^{(i)} + b)$$

$$\frac{\partial}{\partial \omega_{i}} J(\omega_{i}, \omega) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} \chi(\alpha_{i}^{(i)}, \omega_{i}^{(i)})$$

$$\frac{\partial}{\partial \omega_{i}} J(\omega_{i}, \omega_{i}) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} \chi(\alpha_{i}^{(i)}, \omega_{i}^{(i)})$$

截图(Alt + A)

Logistic regression on m examples

$$J=0$$
; $d\omega_{1}=0$; $d\omega_{2}=0$; $db=0$
 $Z^{(i)}=\omega^{T}x^{(i)}+b$
 $Z^{$

$$qm' = \frac{gm'}{g2}$$

Vectorization

deeplearning.ai

Basics of Neural Network Programming

Vectorization

What is vectorization?

Non-vertingel:

for i in ray
$$(n-x)$$
:
 $z + = \omega [i] + x[i]$

 \bigcirc

$$\mathbf{n}$$

$$\mathbf{n} = \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \times \mathbf{n}^{n_{x}}$$

Vertorised

Z = np. dot (w,x) tb

Basics of Neural Network Programming

More vectorization examples

Neural network programming guideline

Whenever possible, avoid explicit for-loops.

$$U = AV$$

$$U_{i} = \sum_{j} A_{ij} V_{j}$$

$$U = np. dot (A, v)$$

$$U = np. zeros ((n, i))$$

$$dor i \cdots \in Acitil + Acitil$$

Vectors and matrix valued functions

Say you need to apply the exponential operation on every element of a matrix/vector.

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \Rightarrow u = \begin{bmatrix} v_1 \\ e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix}$$

$$\Rightarrow u = \text{np.zeros}((n,1))$$

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ e^{v_n} \end{bmatrix}$$

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ e^{v_n} \end{bmatrix}$$

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ e^{v_n} \end{bmatrix}$$

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ e^{v_n} \end{bmatrix}$$

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ e^{v_n} \end{bmatrix}$$

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ e^{v_1} \end{bmatrix}$$

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ e^{v_1} \end{bmatrix}$$

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix}$$

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix}$$

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix}$$

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix}$$

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix}$$

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix}$$

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix}$$

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ v_n \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\ e^{v_n} \end{bmatrix} \Rightarrow u = \begin{bmatrix} e^{v_1} \\ \vdots \\$$

Logistic regression derivatives

$$J = 0, \quad dw1 = 0, \quad dw2 = 0, \quad db = 0$$

$$\Rightarrow \text{for } i = 1 \text{ to m}:$$

$$z^{(i)} = w^{T}x^{(i)} + b$$

$$a^{(i)} = \sigma(z^{(i)})$$

$$J + = -[y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})]$$

$$dz^{(i)} = a^{(i)}(1 - a^{(i)})$$

$$dw_{1} + x_{1}^{(i)} dz^{(i)}$$

$$dw_{2} + x_{2}^{(i)} dz^{(i)}$$

$$dw_{2} + x_{2}^{(i)} dz^{(i)}$$

$$J = J/m, \quad dw_{1} - dw_{1}/m, \quad dw_{2} = dw_{2}/m, \quad db = db/m$$

$$\partial \omega / = m.$$

deeplearning.ai

Basics of Neural Network Programming

Vectorizing Logistic Regression

deeplearning.ai

Basics of Neural Network Programming

Vectorizing Logistic Regression's Gradient Computation Vectorizing Logistic Regression

Andrew Ng

Implementing Logistic Regression

| Z = w x x + b |

J = 0, $dw_1 = 0$, $dw_2 = 0$, db = 0for i = 1 to m: $z^{(i)} = w^T x^{(i)} + b$ $J = -[y^{(i)} \log a^{(i)} + (1 - y^{(i)}) \log(1 - a^{(i)})]$ $dz^{(i)} = a^{(i)} - y^{(i)}$ $\int dw_1 + = x_1^{(i)} dz^{(i)} \left\{ \partial \omega + = x_1^{(i)} dz^{(i)} \right\}$ $dw_2 += x_2^{(i)} dz^{(i)}$ $db += dz^{(i)}$ J = J/m, $dw_1 = dw_1/m$, $dw_2 = dw_2/m$ db = db/m

The step in range (1000):
$$\angle$$

$$\begin{aligned}
Z &= \omega^T X + b \\
&= n \rho \cdot dot (\omega \cdot T \cdot X) + b \\
A &= \varepsilon (Z)
\end{aligned}$$

$$\begin{aligned}
A &= \varepsilon (Z)
\end{aligned}$$

$$\begin{aligned}
A &= \omega - \chi dZ^T
\end{aligned}$$

$$\begin{aligned}
A &= b - \chi d\omega
\end{aligned}$$

$$\begin{aligned}
\omega &= b - \chi d\omega
\end{aligned}$$

$$b &= b - \chi d\omega$$

deeplearning.ai

Basics of Neural Network Programming

Broadcasting in Python

Broadcasting example

Calories from Carbs, Proteins, Fats in 100g of different foods:

cal = A.sum(axis = 0)
percentage =
$$100*A/(cal \text{Assaurante}(1.4))$$

General Principle

$$(m, n)$$
 $\xrightarrow{\text{modrix}}$
 (m, n)
 $\xrightarrow{\text{modrix}}$
 (m, n)
 $\xrightarrow{\text{modrix}}$
 (m, n)

deeplearning.ai

Basics of Neural Network Programming

A note on python/ numpy vectors

Python/numpy vectors

```
a = np.random.randn(5) }
a.shope = (5,)
"ronk 1 aray"
a = np.random.randn(5,1) -> a.shqe=(5,1) Column / Vector
a = np.random.randn(1,5) > a.chype=(1,5) row vector.
assert(a.shape == (5,1)) \leftarrow
          a = a . reshape ((5,1))
```

Andrew Ng

Basics of Neural Network Programming

deeplearning.ai

Explanation of logistic regression cost function (Optional)

Logistic regression cost function

$$\hat{y} = G(w_1x + b) \quad \text{where} \quad G(z) = \frac{1}{14z^{-2}}$$

$$\text{Interpret} \quad \hat{y} = p(y=1|x)$$

$$\text{If} \quad y=1 : \quad p(y|x) = \hat{y}$$

$$\text{If} \quad y=0 : \quad p(y|x) = 1-\hat{y}$$

Logistic regression cost function

If
$$y = 1$$
: $p(y|x) = \hat{y}$

If $y = 0$: $p(y|x) = 1 - \hat{y}$

$$p(y|x) = \hat{y} \quad (1 - \hat{y}) \quad (1 - \hat{y})$$

$$Tf \quad y = 0$$
: $p(y|x) = \hat{y} \quad (1 - \hat{y}) \quad = 1 \times (1 - \hat{y}) = 1 - \hat{y}$

Andrew Ng

Cost on m examples

log
$$p(lobols in trotog set) = log TT p(y(i) | \chi(i))$$
 $log p(----) = \sum_{i=1}^{m} log p(y(i) | \chi(i))$
 $log p(y(i) | \chi(i))$

Movimum likelighted attention

 $log p(----) = \sum_{i=1}^{m} log p(y(i) | \chi(i))$
 $log p(y(i) | \chi(i))$
 lo