

BBM406: Fundamentals of Machine Learning

Linear Regression, Cost Function, Gradient Descent

Regression

Given:

- Data $X = \{x^{(1)}, x^{(2)}, \dots, x^{(n)}\}$, where $x^{(i)} \in R$
- Corresponding labels $y = \{y^{(1)}, y^{(2)}, \dots, y^{(n)}\}$, where $x^{(i)} \in R$

Linear Regression

• Hypothesis: Assume $x_0 = 1$ $y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d = \sum_{j=0}^d \theta_j x_j = h_{\theta}(X)$

Fit model by minimizing sum of squared errors

Least Squares Linear Regression

Cost Function

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

Fit by solving

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

For insight on J(), let's assume $x^{(i)} \in R$ and $\theta = [\theta_0, \theta_1]$

$$J([0,1]) = \frac{1}{2 \times 3} [(1-1)^2 + (2-2)^2 + (3-3)^2] = 0$$

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

For insight on J(), let's assume $x^{(i)} \in R$ and $\theta = [\theta_0, \theta_1]$

 $J(\theta_1)$ (function of the parameter θ_1)

$$J([0,0.5]) = \frac{1}{2 \times 3} [(0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2] \approx 0.58$$

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

For insight on J(), let's assume $x^{(i)} \in R$ and $\theta = [\theta_0, \theta_1]$

 $J(\theta_1)$ (function of the parameter θ_1) J([0, 0]) ↑ 2.333 $J(\theta_1)$ J() is concave θ_1

$$J([0,0]) = \frac{1}{2 \times 3} [(0-1)^2 + (0-2)^2 + (0-3)^2] \approx 2.33$$

Basic Search Procedure

- Choose initial value for θ
- Until we reach a minimum:
 - Choose a new value for θ to reduce $J(\theta)$

Basic Search Procedure

- Choose initial value for θ
- Until we reach a minimum:
 - Choose a new value for θ to reduce $J(\theta)$

Basic Search Procedure

- Choose initial value for θ
- Until we reach a minimum:
 - Choose a new value for θ to reduce $J(\theta)$

Since the least squares objective function is convex (concave), we don't need to worry about local minima

Figure by Andrew Ng

- Initialize θ
- Repeat until convergence

$$\theta \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

simultaneous update for $j = 0 \dots d$

learning rate (small) e.g., $\alpha = 0.05$

- Initialize θ
- Repeat until convergence

$$\theta \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

simultaneous update for $j = 0 \dots d$

- Initialize θ
- Repeat until convergence

$$\theta \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

simultaneous update for $j = 0 \dots d$

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

For linear regression: $\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$

- Initialize θ
- Repeat until convergence

$$\theta \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

simultaneous update for $j = 0 \dots d$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d = \sum_{j=0}^{d} \theta_j x_j$$

For linear regression: $\frac{\partial}{\partial \Omega} J(\theta) = \frac{\partial}{\partial \Omega}$

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$
$$= \frac{\partial}{\partial \theta_{j}} \frac{1}{2n} \sum_{i=1}^{n} \left(\sum_{i=0}^{d} \theta_{j} x_{j}^{(i)} - y^{(i)} \right)^{2}$$

- Initialize θ
- Repeat until convergence

$$\theta \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

simultaneous update for $j = 0 \dots d$

For linear regression:
$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2n} \sum_{i=1}^{n} \left(\sum_{j=0}^{d} \theta_{j} x_{j}^{(i)} - y^{(i)} \right)^{2}$$
$$= \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=0}^{d} \theta_{j} x_{j}^{(i)} - y^{(i)} \right) \frac{\partial}{\partial \theta_{j}} \left(\sum_{j=0}^{d} \theta_{j} x_{j}^{(i)} - y^{(i)} \right)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=0}^{d} \theta_{j} x_{j}^{(i)} - y^{(i)} \right) x_{j}^{(i)}$$

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \propto \frac{1}{n} \sum_{i=1}^n \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

simultaneous update for $j = 0 \dots d$

- To achieve simultaneous update
 - At the start of each GD iteration, compute $h_{\theta}(x^{(i)})$
 - Use this stored value in the update step loop
- Assume convergence when $\|\theta_{new} \theta_{old}\|_2 < \epsilon$

L₂ norm:
$$||v||_2 = \sqrt{\sum_i v_i^2} = \sqrt{v_1^2 + v_2^2 + \dots + v_{|v|}^2}$$

Choosing a

α too small

slow convergence

α too large

Increasing value for J(√)

- May overshoot the minimum
- May fail to converge
- May even diverge

To see if gradient descent is working, print out $J(\checkmark)$ each iteration

- The value should decrease at each iteration
- If it doesn't, adjust α