BDS-Assignment1

Author: Jingyi Wu(jingyiw2)

Used library:

Numpy

Pandas

Matplotlib

Seaborn

Haversine

Sklearn

Xgboost

Scipy

- 1. In this question, we need to load the two datasets provided to data frame. We get rainfall and VI as the result.
- 2. In Q2, we plot the two time series data of 30 districts. We get rainfall data as below. The rainfall data are quite similar for 30 districts and majority of values fall between 50~200.

Rainfall time series for 30 district

The vegetation index as plotted as below. Also, quite similar among districts. Majority of values vary between 110~140.

Vegetation index time series for 30 district

3. In Q3, we calculate statistics of these two variables for each month. As for rainfall, average of rainfall reaches highest in April and November, two rainy months for Rwanda, and reaches the lowest in July, dry season (June, July, August). There is abnormally high value in May, 2007 in Rusizi.

For vegetation index, there are two peaks in May and December, which implies a delayed impact of rainfall on vegetation index. The index is generally smallest in August.

4. In Q4, we are required to research the relationship between correlation of district pairs and their distance, and figure out the parameters.

After loading the coordinate data, we use the haversine module to calculate the distance. Then we fit the $C(d) = C0\exp(-ad)$ model to the data points and plot it on the scatter plot. In general, districts in Rwanda are strongly correlated to each other. With distance being larger, the correlation declines a little, but not too much. The estimated C0 is about 0.994 and decay constant a is

-2.4826529745717737e-05. Note that the R2 value for this model is only 0.038, showing the fitting result is not satisfying.

5. In Q5, we make scatter plot of vegetation and rainfall in 30 districts.

Although we use different color and symbol to distinguish between

30 districts, it seems quite messy and hard to find out insights. Therefore, I made a 6*5 subplots to see each district respectively, which is clearer. We can see from the plot that the patterns are quite similar in 30 districts. There is slightly positive correlation pattern between vegetation index and rainfall.

Scatter plots of vegetation index against rainfall in 30 district

- 6. In Q6, we transformed rainfall variable to delayed rainfall and find out the optimal shift number for each district. The result is: Except for Musanze, 1 is the best shift period. Therefore, the optimal k here is 1.
- 7. In Q7, we use SMA on rainfall variable to capture the relationship, and plot the correlation coefficient against moving

window size for each district.

The consensus in SMA turns out to be 3, so optimal n here is 3.

8. Q8 requires us to apply linear/quadratic/cubic regression model to capture the correlation. Also try different transformed rainfall at the same time. The result is as below.

R-squared value

Variable	Linear	Quadratic	Cubic
Rainfall	0.10945257623706	0.1161975165734	0.11897204790563
Delayed	0.38797887040735	0.446699179065	0.449685709769
Rainfall			
SMA Rainfall	0.450929714412	0.4690852180417	0.469938931742

Adjusted R-squared value

Variable	Linear	Quadratic	Cubic
Rainfall	0.10928384804	0.1160300663113	0.11880512332205
Delayed Rainfall	0.3878629133915	0.1160300663113	0.449581444083
SMA Rainfall	0.4508256844223	0.46898462789738	0.46983850334686

RMSE value

Variable	Linear	Quadratic	Cubic
Rainfall	13.19763984287	13.147565874387	13.1269124996877
Delayed Rainfall	10.9408472512	10.40275580575	10.3746425391401
SMA Rainfall	10.3629097842	10.1901401087	10.1819439136425

We can conclude that the best model here is using SMA and cubic model.

9. Use cross validation (train test split) to test if SMA and shift combined is a better transformation. Use window_size=3 and shift=1 from conclusions above and apply regression model. The results are as below.

R-squared value

Variable	Linear	Quadratic	Cubic
Rainfall	0.10741096	0.12009401927	0.1245250833
Delayed Rainfall	0.27284784248	0.369964131017	0.376388805465
SMA Rainfall	0.38291647316	0.398467784698	0.400395033994
Delayed SMA	0.37780995531	0.4285018953749	0.42697508724736

Adjusted R-squared value

Variable	Linear	Quadratic	Cubic
Rainfall	0.10658295416	0.11927777996	0.1237129544
Delayed Rainfall	0.2721733043	0.119277779956	0.375810316416
SMA Rainfall	0.38234403946	0.397909777077	0.399838814174
Delayed SMA	0.3772162625188	0.4279565727559	0.42642830775046

RMSE value

Variable	Linear	Quadratic	Cubic
Rainfall	13.23973308	13.145332911	13.1121922522
Delayed Rainfall	11.949950409	11.1233625359	11.0665029930
SMA Rainfall	11.00843116	10.8688326041	10.851407307149
Delayed SMA	11.61278181918	11.12966608779	11.1445231189418

We can see that combining two transformations together generates a <u>more satisfying</u> outcome (Adjusted R-squared wise). But SMA cubic performs better RMSE-wise. The best model here is delayed SMA Quadratic. But we will also consider SMA in Q10 as comparison.

10.In Q10, apart from the previous models, using the best outcome from Q9 research - SMA and delayed SMA, I tried decision tree regressor and a fancier xgb regressor. The results are as below.

R-squared value

Variable	Linear	Quadratic	Cubic	Decision Tree	Xgb
SMA Rain	0.38291647	0.398468	0.400395	0.41279840021	0.406857492
Delayed	0.37780995531	0.42850120	0.42697508724736	0.4225682246	0.390857768
SMA					

Adjusted R-squared value

Variable	Linear	Quadratic	Cubic	Decision	Xgb
				Tree	
SMA Rain	0.382344039	0.397909777	0.39983881	0.412253686	0.406307267
Delayed	0.377216263	0.427956573	0.42642831	0.422017240	0.3902765253
SMA					

RMSE value

Variable	Linear	Quadratic	Cubic	Decision Tree	Xgb
SMA Rain	11.008431	10.8688326	10.8514073	10.738585258059	10.7927714179
Delayed	11.612782	11.1296662	11.1445231	11.18729466	11.4903720960
SMA					

From the above charts, we can see that delayed SMA in Quadratic regression performs best, since we always consider R2 and adjusted R2. But Decision tree model using SMA performs best when we consider RMSE, so it can also be used in predictions. The plot of test data and fitted curves are as below.

Using SMA variable:

Using delayed SMA:

