Week 1 Tutorial Attempt

XK

October 22, 2024

Contents

1	Question 1	2
2	Question 2	4
3	Question 3	5

1 Question 1

If
$$f(x) = 2x^3 - x$$
, find $f(-1), f(0), f(x^2), f(\sqrt{x}), f(\frac{1}{x})$

Answer:

Just substitute the numbers accordingly

$$f(-1) = 2(-1)^{3} - (-1)$$

$$= 2(-1) + 1$$

$$= -2 + 1$$

$$= -1 \blacksquare$$

$$f(0) = 2(0)^3 - (0)$$

= 2(0)
= 0

$$f(x^{2}) = 2(x^{2})^{3} - (x^{2})$$

$$= 2(x^{6}) - x^{2}$$

$$= 2x^{6} - x^{2}$$

$$= x^{2}(2x^{4} - 1) \blacksquare$$

$$f(\sqrt{x}) = 2(\sqrt{x})^3 - (\sqrt{x})^3$$

$$= 2(x^{\frac{3}{2}}) - \sqrt{x}$$

$$= 2x^{\frac{3}{2}} - x^{\frac{1}{2}}$$

$$= x^{\frac{1}{2}}(2x - 1) \blacksquare$$

$$f\left(\frac{1}{x}\right) = 2\left(\frac{1}{x^3}\right) - \left(\frac{1}{x}\right)$$
$$= 2\left(\frac{1}{x^3}\right) - \frac{1}{x}$$
$$= \frac{2}{x^3} - \frac{1}{x}$$
$$= \frac{1}{x}\left(\frac{2}{x^2} - 1\right) \blacksquare$$

2 Question 2

If
$$f(x) = \begin{cases} x^2 + 1, & \text{if } x \le 0 \\ \sqrt{x}, & \text{if } x > 0 \end{cases}$$
, find $f(-2), f(0)$ and $f(1)$

Answer:

Same as Q1, proper substitution needs to be performed here.

$$f(-2) = 2(-2)^2 + 1 \quad x < 0 \text{ hence take 1st option}$$
$$= 2(4) + 1$$
$$= 7 \quad \blacksquare$$

$$f(0) = 2(0)^2 + 1 \quad x = 0 \text{ hence take 1st option}$$
$$= 1 \quad \blacksquare$$

$$f(1) = 2(1)^{2} + 1 \quad x > 0 \text{ hence take 2nd option}$$
$$= 2(1) + 1$$
$$= 3 \quad \blacksquare$$

3 Question 3

Find domain of the following function:

$$f(x) = \sqrt{x-2} + \sqrt{4-x}$$

$$f(x) = \frac{\sqrt{x+2} + \sqrt{2-x}}{x^3 - x}$$

Answer

Honestly, I have a problem with this question. Specifically the first function. There no indication of what the field is. Is it \mathbb{R} or \mathbb{C} field, as such I'll write both fields for both the first and second functions. Going forward, the domain is just what numbers can fit into this function to produce an output.

$$f(x) = \sqrt{x-2} + \sqrt{4-x}$$

 \mathbb{C} field for domain: $(-\infty, \infty)$

 \mathbb{R} field for domain: [2, 4]

So in the complex field, we don't care. Honestly, the square roots means nothing. You might as well eat them. But once we reached the real field, \sqrt{x} matters more to us. Looking at the first part of

 $\sqrt{x-2}$, x-2>0 for the real answersw hence x>2. Now onto the second part, $\sqrt{4-x}$, 4-x>0 hence x>4. This only leaves us with the domain between 2 and 4 or [2,4]

$$f(x) = \frac{\sqrt{x+2} + \sqrt{2-x}}{x^3 - x}$$
$$= \frac{\sqrt{x+2} + \sqrt{2-x}}{x(x^2 - 1)}$$
$$= \frac{\sqrt{x+2} + \sqrt{2-x}}{x(x+1)(x-1)}$$

 \mathbb{C} field for domain: $(-\infty, -1) \cup (1, \infty)$

 \mathbb{R} field for domain: $(-\infty, -2] \cup [2, \infty)$