Problem 1. Show that for an arbitrary spatially bound charge-current source, the electric dipole moment **p** satisfies

$$\frac{d\mathbf{p}}{dt} = \int \mathbf{J} \, d^3x \,.$$

Solution. The electric dipole moment \mathbf{p} is defined by Eq. (2.36),

$$\mathbf{p} = \int \mathbf{x} \, \rho(x) \, d^3 x \,. \tag{1}$$

Differentiating both sides with respect to t, we find

$$\frac{d\mathbf{p}}{dt} = \frac{d}{dt} \int \mathbf{x} \rho \, d^3 x = \int \frac{d}{dt} (\mathbf{x} \rho) \, d^3 x = \int \mathbf{x} \frac{\partial \rho}{\partial t} \, d^3 x \,, \tag{2}$$

because \mathbf{x} is simply the point at which we are evaluating the potential, and is therefore independent of time.

The charge-current conservation law is given by Eq. (5.8),

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J} = 0. \tag{3}$$

Multiplying by \mathbf{x} on both sides and integrating over all space, we obtain

$$\int \mathbf{x} \frac{\partial \rho}{\partial t} d^3 x + \int \mathbf{x} (\mathbf{\nabla \cdot J}) d^3 x = 0.$$

Applying (2), we have

$$\frac{d\mathbf{p}}{dt} = -\int \mathbf{x}(\nabla \cdot \mathbf{J}) \, d^3x \,. \tag{4}$$

It remains to be shown that the right side is equal to the integral of J over all space.

Vector identity (5) in Griffiths is

$$\nabla \cdot (f\mathbf{a}) = f(\nabla \cdot \mathbf{a}) + \mathbf{a} \cdot (\nabla f).$$

Writing the right side of (4) in component notation and applying the identity gives us

$$-\int x_i(\nabla \cdot \mathbf{J}) d^3x = \int \mathbf{J} \cdot (\nabla x_i) d^3x - \int \nabla \cdot (x_i \mathbf{J}) d^3x.$$
 (5)

Gauss's theorem is given by Eq. (2.6),

$$\int_{\mathcal{V}} \mathbf{\nabla} \cdot \mathbf{v} \, d^3 x = \int_{S} \mathbf{v} \cdot \hat{\mathbf{n}} \, dS \,,$$

Here, let \mathcal{V} be a ball of radius R, with R large enough that the entire charge-current source is enclosed. Then S is the surface of \mathcal{V} , and $\hat{\mathbf{n}} = \hat{\mathbf{r}}$. Applying Gauss's theorem to the second integral on the right side of (5), we have

$$\int \mathbf{\nabla} \cdot (x_i \mathbf{J}) d^3 x = \lim_{R \to \infty} \int_{\mathcal{V}} \mathbf{\nabla} \cdot (x_i \mathbf{J}) d^3 x = \lim_{R \to \infty} \int_{S} x_i \mathbf{J} \cdot \hat{\mathbf{r}} dS = 0,$$

since **J** is bounded, and therefore **J** evaluated on S reaches zero well before x_i becomes very large.

March 1, 2020

2

Returning to (5), we now have

$$-\int x_i(\mathbf{\nabla \cdot J}) d^3x = \int \mathbf{J} \cdot (\mathbf{\nabla} x_i) d^3x = \sum_j \int J_j \partial_j x_i d^3x = \sum_j \int J_j \delta_{ij} d^3x = \int J_i d^3x,$$

where we have followed the proof in Eq. (4.24) of the course notes. Finally, (4) becomes

$$\frac{d\mathbf{p}}{dt} = \int \mathbf{J} \, d^3 x$$

as desired. \Box

Problem 2. A particle of charge q_1 moves with velocity v in a circular orbit of radius R about the origin in the xy plane, such that its φ coordinate varies as $\varphi = \omega t$, with $\omega = v/R$. Assume that $v \ll c$. Another particle of charge q_2 is at rest at point \mathbf{x} , where $|\mathbf{x}| \gg R$. To order $1/|\mathbf{x}|$, find the force \mathbf{F} on the particle of charge q_2 at time t.

Solution. The Lorentz force equation, Eq. (1.25), is written

$$\mathbf{F} = q \left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right),$$

where \mathbf{v} is the velocity of the charge q on which the force is exerted, and \mathbf{E} and \mathbf{B} are the total electric and magnetic fields. For this problem, we are interested in the force acting on a stationary point charge q_2 , so $\mathbf{v}_2 = 0$. Additionally, we do not have to consider the self-field contribution to \mathbf{E} , since static charge distributions do not experience any self force. Thus we need only find the electric field due to q_1 , \mathbf{E}_1 . The multipole expansion of the electric field in electrodynamics is given by Eq. (5.70),

$$\mathbf{E}(t, \mathbf{x}) = \frac{1}{c^2 |\mathbf{x}|} \left[\left(\hat{\mathbf{x}} \cdot \frac{d^2 \mathbf{p}}{dt^2} \right) \hat{\mathbf{x}} - \frac{d^2 \mathbf{p}}{dt^2} \right]_{\text{ret}} + \mathcal{O}\left(\frac{1}{|\mathbf{x}|^2} \right), \tag{6}$$

where $\hat{\mathbf{x}} = \mathbf{x}/|\mathbf{x}|$ is the unit vector in the direction of the point at which we are evaluating the field, and \mathbf{p} is the dipole moment defined by (1). In addition, (6) relies upon the assumption that the velocity of q_1 , v, satisfies $v \ll c$.

The position of q_1 at time t can be expressed as

$$\mathbf{x}_1(t) = R\cos(\omega t)\,\hat{\boldsymbol{\varphi}},$$

so the charge density for q_1 everywhere is

$$\rho_1(t, \mathbf{x}) = q_1 \, \delta(\mathbf{x} - \mathbf{x}_1(t)).$$

Then the dipole moment $\mathbf{p}_1(t,\mathbf{x})$ is

$$\mathbf{p}_1(t, \mathbf{x}) = \int \mathbf{x} \, \rho_1(t, \mathbf{x}) \, d^3 x = q_1 \int \mathbf{x} \, \delta(\mathbf{x} - \mathbf{x}_1(t)) \, d^3 x = q_1 \mathbf{x}_1(t) = q_1 R \cos(\omega t) \, \hat{\boldsymbol{\varphi}},$$

and so its second time derivative is

$$\frac{d^2\mathbf{p}_1(t)}{dt^2} = \frac{d}{dt}\left(\frac{d\mathbf{p}_1}{dt}\right) = \frac{d}{dt}\left(-q_1R\omega\sin(\omega t)\,\hat{\boldsymbol{\varphi}}\right) = -q_1R\omega^2\cos(\omega t)\,\hat{\boldsymbol{\varphi}}.$$

March 1, 2020

The retarded time t' is defined

$$t' = t - \frac{|\mathbf{x} - \mathbf{x}'|}{c},$$

so here

$$t' = t - \frac{|\mathbf{x} - \mathbf{x}_1(t)|}{c} = t - \frac{|\mathbf{x} - R\cos(\omega t)\,\hat{\boldsymbol{\varphi}}|}{c}.$$

Since $R \ll |\mathbf{x}|$, we can Taylor expand the second term about R = 0 as in Eq. (5.57),

$$|\mathbf{x} - \mathbf{x}'| = |\mathbf{x}| - \hat{\mathbf{x}} \cdot \mathbf{x}' + \mathcal{O}\left(\frac{1}{|\mathbf{x}|}\right).$$

This gives us

$$|\mathbf{x} - R\cos(\omega t)\,\hat{\boldsymbol{\varphi}}| \approx |\mathbf{x}| - R\cos(\omega t)(\hat{\mathbf{x}}\cdot\hat{\boldsymbol{\varphi}}),$$

SO

$$t' \approx t - \frac{|\mathbf{x}|}{c} - \frac{R\cos(\omega t)}{c} (\hat{\mathbf{x}} \cdot \hat{\boldsymbol{\varphi}}),$$

which is really not helpful.

Problem 3. An "antenna" is a segment of conducting wire in which a current flows (driven by an external power supply). Suppose an antenna of length L is placed on the z axis between z = 0 and z = L, and suppose that the current in the antenna is

$$\mathbf{J}(t,z) = I_0 \sin\left(\frac{\pi z}{L}\right) \cos(\omega t) \,\delta(x) \,\delta(y) \,\hat{\mathbf{z}}. \tag{7}$$

3.a Find the charge density $\rho(t,z)$ in the antenna.

Solution. From the charge-current conservation law (3), we have

$$\rho(t,z) = -\int \mathbf{\nabla \cdot J} \, dt \,.$$

For **J** given by (7),

$$\nabla \cdot \mathbf{J} = \frac{\partial J_z}{\partial z} = \frac{\pi}{L} I_0 \cos\left(\frac{\pi z}{L}\right) \cos(\omega t) \,\delta(x) \,\delta(y),$$

and so

$$\rho(t,z) = -\frac{\pi}{L} I_0 \cos\left(\frac{\pi z}{L}\right) \delta(x) \, \delta(y) \int \cos(\omega t) \, dt$$

3.b Assume that $\omega L \ll c$. Find the electric and magnetic fields, $\mathbf{E}(t,z)$ and $\mathbf{B}(t,z)$, at large distances from the antenna (valid to order $1/|\mathbf{x}|$).

In addition to the course lecture notes, I consulted Griffiths's *Introduction to Electrodynamics*, Jackson's *Classical Electrodynamics*, and K. T. McDonald's and D. K. Ghosh's notes on electromagnetism while writing up these solutions.