

Bancs de filtres

Roland Badeau, roland.badeau@telecom-paris.fr

Master Sciences et Technologies Parcours ATIAM - UE TSM

Partie I

Conversion de fréquence

Une école de l'IMT

Bancs de filtres

Sur-échantillonnage

► Formule de reconstruction (Nyquist)

$$x_a(t) = \sum_{m \in \mathbb{Z}} x(m) \operatorname{sinc}\left(\pi\left(\frac{t}{T} - m\right)\right)$$

Soit $y(n) = x_a(n\frac{T}{L})$ le signal interpolé $\times L$ $y(n) = h * w(n), \text{ où } \begin{cases} \forall n \in L\mathbb{Z}, w(n) = x(\frac{n}{L}) \\ \forall n \notin L\mathbb{Z}, w(n) = 0 \\ \forall n \in \mathbb{Z}, h(n) = \text{sinc}(\frac{\pi n}{L}) \end{cases}$

Sur-échantillonnage

Bancs de filtres

Sur-échantillonnage

Sous-échantillonnage

- $V(e^{i2\pi v}) = X(e^{i2\pi Lv})$
- $\Rightarrow \left\{ \begin{array}{l} Y(e^{i2\pi v}) = LX(e^{i2\pi Lv}) & \forall |v| < \frac{1}{2L} \\ Y(e^{i2\pi v}) = 0 & \forall \frac{1}{2L} < |v| < \frac{1}{2} \end{array} \right.$

Une école de l'IMT

Bancs de filtres

Une école de l'IMT

Bancs de filtres

Sous-échantillonnage

- $\begin{cases}
 H(e^{i2\pi v}) = 1 & \forall |v| < \frac{1}{2M} \\
 H(e^{i2\pi v}) = 0 & \forall \frac{1}{2M} < |v| < \frac{1}{2}
 \end{cases}$
- $Y(e^{i2\pi v}) = \frac{1}{M} \sum_{k=0}^{M-1} W\left(e^{i2\pi\left(\frac{v-k}{M}\right)}\right)$
- $ightharpoonup \Rightarrow Y(e^{i2\pi v}) = \frac{1}{M}X(e^{i2\pi \frac{v}{M}}) \ \forall |v| < \frac{1}{2}$

Ré-échantillonnage

- $\begin{cases} H(e^{i2\pi v}) = L & \forall |v| < \min\left(\frac{1}{2L}, \frac{1}{2M}\right) \\ H(e^{i2\pi v}) = 0 & \forall \min\left(\frac{1}{2L}, \frac{1}{2M}\right) < |v| < \frac{1}{2} \end{cases}$
- $Y(e^{i2\pi v}) = \frac{L}{M}X(e^{i2\pi \frac{L}{M}v}) \ \forall |v| < \min(\frac{1}{2}, \frac{M}{2I}) \ (\text{et 0 ailleurs})$

Identités nobles

▶ Échange filtre / décimation ou insertion

► Simplification insertion / décimation

$$\xrightarrow{x_n} \downarrow_M \xrightarrow{y_n} \Leftrightarrow \xrightarrow{x_n} \xrightarrow{y_n} \xrightarrow{\delta_M(n)}$$

► Permutation insertion / décimation?

$$\begin{array}{c} x_n \\ \downarrow M \\ \hline \end{array} \begin{array}{c} \uparrow L \\ \hline \end{array} \begin{array}{c} y_n \\ \downarrow M \\ \hline \end{array} \begin{array}{c} \downarrow M \\ \\ \end{array} \begin{array}{c} \downarrow M \\ \hline \end{array} \begin{array}{c} \downarrow M \\ \end{array} \begin{array}$$

Composantes polyphases

- ► Si *h* est un passe-bas idéal
 - \blacktriangleright h_0 , h_1 , h_2 sont passe-tout
 - \blacktriangleright h_0 , h_1 , h_2 diffèrent par leur phase

Une école de l'IMT

Bancs de filtres

Une école de l'IMT

Bancs de filtres

PARIS

Polyphases de type I

- ▶ Définition : $H(z) = \sum_{m=0}^{M-1} E_m(z^M)z^{-m}$
- ► Structure efficace pour une décimation

Polyphases de type II

- ► Définition : $H(z) = \sum_{l=0}^{L-1} R_l(z^L) z^{-(L-1-l)}$
- ► Structure efficace pour une interpolation

11/51

Bancs de filtres

Une école de l'IMT

Bancs de filtres

Partie II

Transformée de Fourier à Court Terme

Spectrogramme

Une école de l'IMT

Bancs de filtres

⊗ IP PARIS 14/51

Une école de l'IMT

D IP PARIS

Schéma de principe

Transformée de Fourier à Court Terme

- ► Définition : $\widetilde{X}(t_a, v) = \sum_{n \in \mathbb{Z}} x(n + t_a) w_a(n) e^{-i2\pi v n}$
 - \triangleright $w_a(n)$ est finie, réelle et symétrique
 - les instants t_a sont indexés par un entier m
- ► Version discrète de la TFCT :
 - ightharpoonup on pose $v_k = k/N$ $\widetilde{X}(t_a, v_k) = \sum_{n \in \mathbb{Z}} x(n + t_a) w_a(n) e^{-i2\pi v_k n}$
 - la longueur de $w_a(n)$ doit être $\leq N$ (supp $(w_a) \subset [0, N-1]$)

Filtre passe-bande équivalent

- $\widetilde{X}(t_a(m), v_k) = [h_k \star x](t_a(m)) \text{ où } h_k(n) = w_a(-n) e^{i2\pi v_k n}$
- lacksquare la TF de $h_k(n)$ est $H_k(e^{i2\pi v})=W_a\left(e^{i2\pi(v_k-v)}
 ight)$ $H_k(z) = H_0(zW_N^k)$ où $W_N^k = e^{-i2\pi \frac{k}{N}}$

- ▶ On pose $t_a(m) = Mm$ et $y_k(m) = \widetilde{X}(Mm, v_k)$
- ► Schéma équivalent :

Une école de l'IMT

Une école de l'IMT

Bancs de filtres

D IP PARIS

Schéma de reconstruction

Reconstruction du signal

- Synthèse par addition-recouvrement
 - $ightharpoonup \widehat{x}(n) = \sum w_s(n t_a(m)) y_w(n t_a(m), t_a(m))$ où $\operatorname{supp}(w_s) \subset [0, N-1]$ et $y_w(n, t_a(m)) = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}(t_a(m), v_k) e^{i2\pi v_k n}$
 - condition de reconstruction parfaite : $\sum w_a(n-t_a(m))\,w_s(n-t_a(m))\equiv 1$
- ► Filtrage passe-bande équivalent Soit $\widetilde{y}_k(mM) = y_k(m)$, et $\widetilde{y}_k(n) = 0$ partout ailleurs Alors $\widehat{x}(n) = \sum_{k=0}^{N-1} [f_k \star \widetilde{y}_k](n)$ où $f_k(n) = \frac{1}{N} w_s(n) e^{i2\pi v_k n}$ $F_{k}(z) = \frac{1}{N} W_{s}(zW_{N}^{k}) = F_{0}(zW_{N}^{k})$

Banc de filtres équivalent

Schéma d'analyse / synthèse

► Schéma équivalent :

► Cas particulier de banc de filtres à reconstruction parfaite, avec $H_k(z) = H_0(zW_N^k)$

Une école de l'IMT

Bancs de filtres

Bancs de filtres

(S) IP PARIS 22/51

Une école de l'IMT

Bancs de filtres

D IP PARIS

Banc de filtres idéal

Partie III

Bancs de filtres à 2 voies

- $ightharpoonup H_0$ et F_0 sont des passe-bas 1/2-bande idéaux
- $ightharpoonup H_1$ et F_1 sont des passe-haut 1/2-bande idéaux

Exemple avec recouvrement

- \blacktriangleright H_0 , F_0 , H_1 et F_1 sont passe-tout
- ► Mais reconstruction parfaite en sortie

Cas général de banc à 2 voies

► Relation entrée-sortie :

$$\widehat{X}(z) = T(z)X(z) + A(z)X(-z)$$
où
$$\begin{cases}
T(z) = \frac{1}{2}(H_0(z)F_0(z) + H_1(z)F_1(z)) \\
A(z) = \frac{1}{2}(H_0(-z)F_0(z) + H_1(-z)F_1(z))
\end{cases}$$

- Annulation de repliement : A(z) = 0
- ▶ Reconstruction parfaite : $T(z) = cz^{-n_0}$

Une école de l'IMT

Une école de l'IMT

Bancs de filtres

D IP PARIS

Reconstruction Parfaite (RP)

Solution exacte: $\begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix} \begin{bmatrix} F_0(z) \\ F_1(z) \end{bmatrix} = \begin{bmatrix} 2cz^{-n_0} \\ 0 \end{bmatrix}$ $\Rightarrow \begin{cases} F_0(z) = \frac{2cz^{-n_0}}{D(z)} H_1(-z) \\ F_1(z) = -\frac{2cz^{-n_0}}{D(z)} H_0(-z) \end{cases}$ où $D(z) = H_0(z)H_1(-z) - H_0(-z)H_1(z)$

- ▶ Solution avec H_k et F_k à RIF :
 - Condition d'AR : $\begin{cases} F_0(z) = H_1(-z) \\ F_1(z) = -H_0(-z) \end{cases}$
 - ► Condition de RP : $T(z) = \frac{1}{2}D(z) = cz^{-n_0}$

Partie IV

Filtres demi-bande

Filtre demi-bande passe-bas idéal :

$$G_R(v) = \begin{cases} 1 & \text{pour } 0 \le |v| < 0.25 \\ 0 & \text{pour } 0.25 \le |v| < 0.5 \end{cases}$$

- ▶ Définition générale : $G_R(v) + G_R(v + \frac{1}{2}) = 2c$ avec c > 0
- \triangleright Synthèse d'un filtre demi-bande g(n) de type I
 - ▶ La longueur de g(n) est 2N-1, où N est nécessairement pair
 - $m{g}(n)$ étant causal, $G(e^{2\imath\pi v})=G_R(v)e^{-2\imath\pi v(N-1)}$ avec $G_R(v)\in\mathbb{R}$
 - lackbox La condition demi-bande implique que $\exists V(z)$ tel que

$$G(z) = c(V(z^2) + z^{-(N-1)})$$

- \triangleright v(n) est un filtre de type II de longueur N
- $V(e^{2i\pi v})$ est presque passe-tout, mais coupe la fréquence 1/2

ightharpoonup Synthèse de V(z) par la méthode de Remez

9/51 Une école de l'IMT

Bancs de filtres

Une école de l'IMT

Bancs de filtres

IP PARIS

Partie V

Conjugate Quadrature Filters

Filtres CQF

- Rappel: relation entrée-sortie $\widehat{X}(z) = T(z)X(z) + A(z)X(-z)$ où $\begin{cases} T(z) = \frac{1}{2}(H_0(z)F_0(z) + H_1(z)F_1(z)) \\ A(z) = \frac{1}{2}(H_0(-z)F_0(z) + H_1(-z)F_1(z)) \end{cases}$
- Annulation de repliement : $\begin{cases} F_0(z) = H_1(-z) \\ F_1(z) = -H_0(-z) \end{cases}$
- Contrainte CQF : N pair, $H_1(z) = -z^{-(N-1)} \tilde{H}_0(-z)$ (les filtres d'analyse sont *conjugués en quadrature*), où $\tilde{H}_0(z) = H_0^*(\frac{1}{z})$
 - Les filtres d'analyse et de synthèse sont *paraconjugués* : $\forall k \in \{0,1\}, \ F_k(z) = z^{-(N-1)}\widetilde{H}_k(z)$

Filtres CQF

- Fonction de transfert : $T(z) = \frac{z^{-(N-1)}}{2} \left(\tilde{H}_0(z) H_0(z) + \tilde{H}_0(-z) H_0(-z) \right)$
- Contrainte de puissance symétrique : $\widetilde{H}_0(z)H_0(z) + \widetilde{H}_0(-z)H_0(-z) = 2c$
- \Rightarrow Reconstruction parfaite : $T(z) = c z^{-(N-1)}$
- ► Méthode : factorisation d'un demi-bande
 - ▶ Soit G(z) demi-bande de longueur 2N-1
 - La fonction $G_R(v) = G(e^{2i\pi v})e^{2i\pi v(N-1)}$ vérifie $G_R(v) + G_R(v + \frac{1}{2}) = 2c$

Réhaussement du demi-bande

► Soit $G_R^+(v) = G_R(v) + \varepsilon$ ⇒ $g^+(n) = g(n) + \varepsilon \delta_0(n - (N - 1))$ est encore demi-bande

3/51 Une école de l'IMT

Bancs de filtres

Une école de l'IMT

Bancs de filtres

Factorisation du demi-bande

Les 2N-2 racines de $G^+(z)$ vont par paires :

- L'équation $G_R^+(v) = \widetilde{H}_0(e^{2i\pi v})H_0(e^{2i\pi v})$ admet plusieurs solutions H_0
- On choisit celle à phase minimale : $H_0(z)$ est le filtre de longueur N dont les racines sont les N-1 racines de $G^+(z)$ situées à l'intérieur du cercle unité
- ⇒ Reconstruction parfaite

Filtres bi-orthogonaux

Rappel : relation entrée-sortie

$$\widehat{X}(z) = T(z)X(z) + A(z)X(-z)$$
où
$$\begin{cases}
T(z) = \frac{1}{2}(H_0(z)F_0(z) + H_1(z)F_1(z)) \\
A(z) = \frac{1}{2}(H_0(-z)F_0(z) + H_1(-z)F_1(z))
\end{cases}$$

- ▶ Annulation de repliement : $\begin{cases} F_0(z) = H_1(-z) \\ F_1(z) = -H_0(-z) \end{cases}$
- ► Soit $G(z) = H_0(z) F_0(z)$; RP $\Rightarrow G(z) G(-z) = 2cz^{-n_0}$
 - ► Solution générale : $G(z) = c(V(z^2 + z^{-n_0}))$
- ► Synthèse en 2 étapes :
 - Synthèse de G(z), factorisation en $H_0(z)F_0(z)$

Application: transmultiplexeur

► Transmettre plusieurs signaux sur un canal

► Problème posé : égalisation du canal

Partie VI

Bancs de filtres : du 2 voies au M voies

Structure pyramidale

Réalisation générale d'un banc à M voies

Bancs de filtres à M voies

Relation entrée-sortie :
$$\widehat{X}(z) = T(z)X(z) + \sum_{l=1}^{M-1} A_l(z)X(zW_M^l)$$
où $W_M^l = e^{-2\imath\pi\frac{l}{M}}$ et
$$\begin{cases} T(z) = \frac{1}{M}\sum_{k=0}^{M-1} H_k(z)F_k(z) \\ A_l(z) = \frac{1}{M}\sum_{k=0}^{M-1} H_k(zW_M^l)F_k(z) \end{cases}$$

- ▶ Annulation de repliement : $\forall I$, $A_I(z) = 0$
- ▶ Reconstruction parfaite : $T(z) = cz^{-n_0}$

- Solution exacte : $\mathbf{f}(z) = (\mathbf{H}_{M}^{\top}(z))^{-1} \mathbf{t}(z)$ $\begin{bmatrix}
 H_0(z) & \dots & H_{M-1}(z) \\
 H_0(zW_M^1) & \dots & H_{M-1}(zW_M^1) \\
 \vdots & \dots & \vdots \\
 H_0(zW_M^{M-1}) & \dots & H_{M-1}(zW_M^{M-1})
 \end{bmatrix}
 \begin{bmatrix}
 F_0(z) \\
 F_1(z) \\
 \vdots \\
 F_{M-1}(z)
 \end{bmatrix} = \begin{bmatrix}
 Mcz^{-n_0} \\
 0 \\
 \vdots \\
 0
 \end{bmatrix}$
- ▶ Une solution avec H_k et F_k RIF :
 - ► Condition d'AR : $\mathbf{f}(z) = \mathrm{Adj}(\mathbf{H}_M(z))\mathbf{e}_1$
 - Condition de RP : $T(z) = \frac{1}{M} \det(\mathbf{H}_M(z)) = cz^{-n_0}$

Une école de l'IMT

Bancs de filtres

Bancs de filtres

Une école de l'IMT

Composantes polyphases de type II

Bancs de filtres

Résolution polyphase

Composantes polyphases de type I

$$H_{k}(z) = \sum_{l=0}^{M-1} E_{kl}(z^{M})z^{-l}$$

$$\downarrow \underbrace{\begin{bmatrix} H_{0}(z) \\ H_{1}(z) \\ \vdots \\ H_{M-1}(z) \end{bmatrix}}_{\mathbf{h}(z)} = \underbrace{\begin{bmatrix} E_{0,0}(z^{M}) & E_{0,1}(z^{M}) & \dots & E_{0,M-1}(z^{M}) \\ E_{1,0}(z^{M}) & E_{1,1}(z^{M}) & \dots & E_{1,M-1}(z^{M}) \\ \vdots & \vdots & \vdots & \vdots \\ E_{M-1,0}(z^{M})E_{M-1,1}(z^{M})\dots E_{M-1,M-1}(z^{M}) \end{bmatrix}}_{\mathbf{h}(z)} \begin{bmatrix} 1 \\ z^{-1} \\ \vdots \\ z^{-(M-1)} \end{bmatrix}$$

Résolution polyphase

$$F_k(z) = \sum_{l=0}^{M-1} R_{lk}(z^M) z^{-(M-1-l)}$$

$$\downarrow \qquad \qquad \downarrow$$

$$F_0(z)$$

$$F_1(z)$$

$$\vdots$$

$$F_{M-1}(z)$$

$$f(z)$$

$$\underbrace{\begin{bmatrix} R_{0,0}(z^{M}) & R_{1,0}(z^{M}) & \dots & R_{M-1,0}(z^{M}) \\ R_{0,1}(z^{M}) & R_{1,1}(z^{M}) & \dots & R_{M-1,1}(z^{M}) \\ \vdots & \vdots & \vdots & \vdots \\ R_{0,M-1}(z^{M})R_{1,M-1}(z^{M})\dots R_{M-1,M-1}(z^{M}) \end{bmatrix} \begin{bmatrix} z^{-(M-1)} \\ z^{-(M-2)} \\ \vdots \\ 1 \end{bmatrix}}_{\mathbf{R}^{\top}(z^{M})}$$

D IP PARIS

Réalisation polyphase

Réalisation polyphase

Fonction de transfert :

$$T(z) = \frac{1}{M} \mathbf{f}(z)^{\top} \mathbf{h}(z) = \frac{1}{M} \widetilde{e}(z)^{\top} \underbrace{\mathbf{R}(z^M) \mathbf{E}(z^M)}_{\mathbf{P}(z^M)} e(z)$$

Fonction de transfert :

$$T(z) = \frac{1}{M} \mathbf{f}(z)^{\top} \mathbf{h}(z) = \frac{1}{M} \widetilde{e}(z)^{\top} \underbrace{\mathbf{R}(z^M) \mathbf{E}(z^M)}_{\mathbf{P}(z^M)} e(z)$$

Une école de l'IMT

Bancs de filtres

Une école de l'IMT

Bancs de filtres

D IP PARIS

Réalisation polyphase

Fonction de transfert :

$$T(z) = \frac{1}{M} \mathbf{f}(z)^{\top} \mathbf{h}(z) = \frac{1}{M} \widetilde{e}(z)^{\top} \mathbf{P}(z^{M}) e(z)$$

$$\Rightarrow$$
 si $\mathbf{P}(z)=cz^{-n_0'}\mathbf{I}_M$, $T(z)=cz^{-n_0}$ avec $n_0=Mn_0'+M-1$

Bancs de filtres paraunitaires

- Para-conjugaison : $\widetilde{\mathbf{E}}(z) = \mathbf{E}^H(z^{-1})$
- Matrice paraunitaire : $\mathbf{E}(z)\widetilde{\mathbf{E}}(z) = c \mathbf{I}_M$
 - ► On pose $\mathbf{R}(z) = z^{-\left(\frac{N}{M}-1\right)}\widetilde{\mathbf{E}}(z) \Rightarrow T(z) = cz^{-(N-1)}$
 - Conséquence (CQF) : $F_k(z) = z^{-(N-1)}\widetilde{H}_k(z)$

$$T(z) = \frac{1}{M} z^{-(N-1)} \sum_{k=0}^{M-1} H_k(z) \widetilde{H}_k(z)$$

- ► Synthèse des filtres d'analyse
 - Synthèse d'un filtre M-ème de bande passe-bas G(z)
 - Factorisation en $G_R^+(zW_M^k) = H_k(z)\widetilde{H}_k(z)$

Exemple : banc de filtres à TFD

- ► On pose $\mathbf{E}(z) = \mathbf{W}^H$ (où \mathbf{W} est la matrice de TFD) et $\mathbf{R}(z) = \widetilde{\mathbf{E}}(z) = \mathbf{W} \Rightarrow \mathbf{P}(z) = M\mathbf{I}_M$
- ► TFCT à fenêtre rectangulaire

ightharpoonup Cas général : $H_k(z) = H_0(zW_N^k)$

▶ Si les $E_k(z)$ ne sont pas des constantes, il ne peut y avoir reconstruction parfaite

0/51 Une école de l'IMT

Bancs de filtres

Une école de l'IMT

Bancs de filtres

D IP PARIS

Banc de filtres à TFD

