Санкт-Петербургский государственный университет Математико-механический факультет Кафедра физической механики

МЕТОДЫ ИЗМЕРЕНИЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ СИСТЕМЫ Отчёт по лабораторной работе №1

«Многократные прямые измерения физических величин и обработка результатов наблюдений»

Выполнил студент:

Самохин Павел Константинович группа: 23.Б12-мм

Проверил:

к.ф.-м.н., доцент, профессор Морозов Виктор Александрович

Содержание

1	Вве	едение	2
	1.1	Цель работы	2
		Решаемые задачи	
2	Осн	ювная часть	2
	2.1	Теоретическая часть	2
	2.2		3
	2.3	Обработка данных и обсуждение результатов	4
		Исходный код	4
		Таблицы	7
		Графики	9
3	Вы	волы	12

1 Введение

1.1 Цель работы

Цель данной лабораторной работы заключается в изучении методов многократных прямых измерений физических величин, а также в освоении процедур обработки полученных данных для повышения их точности и достоверности. Для достижения поставленной цели необходимо выполнить серию измерений одной и той же физической величины, обработать полученные результаты с помощью статистических методов и оценить погрешности измерений.

Методы исследования включают использование стандартных измерительных приборов, математическое моделирование процессов, а также статистическую обработку данных с применением соответствующих формул для оценки погрешностей и анализа результатов.

1.2 Решаемые задачи

- 1. Освоение методики использования измерительного прибора для многократного прямого измерения физической величины.
- 2. Выполнение простейшей статистической обработки серии результатов наблюдений при прямых измерениях.

2 Основная часть

2.1 Теоретическая часть

В данной лабораторной работе используется метод многократных прямых измерений для регистрации данных с частотомера, который отображает временные диапазоны регистрации сигналов с генератора. Мы проводим серию измерений с целью определения средней величины, отклонений и оценки погрешностей, связанных с приборами.

Формула для нахождения среднего арифметического \overline{f} :

$$\overline{f} = \frac{\sum_{i=1}^{n} f_i}{n} \tag{1}$$

где n - количество результатов отдельных наблюдений, f_i - результат измерения отдельного наблюдения.

Вычисление погрешности прибора $\Delta f_{
m приб}$ определяется следующей формулой:

$$\delta f = \pm (\gamma_0 + \frac{f_0}{f_x * 10^n}) * 100\%$$
 (2)

Среднеквадратичное отклонение σ :

$$\sigma \approx \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (f_i - \overline{f}^2)}$$
 (3)

Средняя квадратичная погрешность среднего Δf :

$$\Delta f = \sigma_{\overline{f}} \approx \frac{\sigma}{\sqrt{n}} \tag{4}$$

2.2 Эксперимент

От генератора сигналов на частотомер подается последовательность прямоугольных импульсов, диапозоны которых были заданы $0-10^5$ мс для грубой шкалы и $0-10^4$ мс для точной шкалы. Частота следования импульсов многократно измерялась с помощью частотомера на двух шкалах: грубой и точной. В качестве генератора импульсов использовался генератор Γ 5-2A, а в качестве частотомера – Ч3—32. Все данные в ходе эксперимента записывались в протокол наблюдения.

Рис. 1. Схема установки

Рис. 2. Фотография установки

2.3 Обработка данных и обсуждение результатов

Для написания программы, вычисляющей все требуемые данные, используется язык C++; среда разработки - Visual Studio. Код полностью расположен в репозитории на GitHub.

Исходный код

Программа выполняет обработку данных, считанных из файлов с точными и грубыми измерениями. Вначале открывается файл с точными значениями, и все строки с числами считываются в вектор. После этого вычисляется среднее значение для этих данных, и это значение используется для вычисления отклонений от среднего для каждого числа в векторе. Далее программа рассчитывает квадрат этих отклонений, что соответствует стандартному отклонению, и выводит результаты.

После вычисления стандартного отклонения программа вычисляет среднюю погрешность прибора, используя заранее определённые параметры. Далее, с ис-

пользованием функции, которая рассчитывает погрешности на основе значений времени и других параметров, программа выводит погрешности для каждого значения.

Аналогично проводятся измерения и для грубых, и для точных значений.

Листинг 1. Вычисление среднего

```
Функции для вычислений
 double avarage (const vector < double > & data)
      double sum = 0.0;
      for (double u : data)
6
           sum += u;
7
8
      return sum / data.size();
9
10
11
 vector < double > standart Deviation (vector < double > & rand Dev Ar)
12
13
      vector < double > standAr;
14
      for (int i = 0; i < randDevAr.size(); i++)
15
16
           double t = randDevAr[i];
17
           standAr.push back(t * t);
18
19
      return standAr;
20
21
22
  vector < double > random Deviation (const vector < double > & data, double
     avarage)
      vector < double > randDevAr;
      for (int i = 0; i < data.size(); i++)
26
      {
           randDevAr.push back(data[i] - avarage);
29
30
      return randDevAr;
31
^{32}
33
  vector < double > calculate Deltaf (const vector < double > & fx values, double
      gamma0, double f0, double f avg)
35
      vector < double > deltaf results;
36
      for (double fx : fx values)
37
38
           double gamma f = gamma0 + (f0 / fx);
39
           deltaf results.push back(gamma f * f avg);
40
41
      return deltaf results;
42
43 }
```

```
44
45
       // Вычисление среднего значения
46
      double mean = avarage(values);
47
       cout << "Среднее значение точные(): " << mean << endl;
48
49
      // Вычисление отклонений от среднего для каждого значения
50
       cout << "Отклонения от среднего: " << endl;
51
       vector < double > ar1 = random Deviation (values, mean);
53
54
       for (int i = 0; i < ar1.size(); i++)
55
           cout << ar1[i] << "\n";</pre>
57
      cout << endl:
59
60
      // Вычисление стандартного отклонения
61
62
      cout << "Стандартное отклонение: " << endl;
63
64
       vector < double > ar2 = standartDeviation(ar1);
65
       for (int i = 0; i < ar2.size(); i++)
66
67
           cout \ll ar2[i] \ll "\n";
68
69
      cout << endl;
70
71
      // Вычисление средней погрешности прибора
72
       cout << "Средняя погрешность прибора: " << endl;
73
74
      cout \ll (gamma0 + (f0 / mean)) * mean \ll "\n";
75
       cout << endl;
76
77
      // Вычисление погрешностей
78
       cout << "Погрешности точные(): " << endl;
79
80
      vector < double > delta f1 = calculateDeltaf(values, gamma0, f0, mean)
81
      for (int i = 0; i < delta f1.size(); i++)
83
           cout \ll delta f1[i] \ll "\n";
84
85
      cout << endl;
86
87
```

Таблицы

Таблица 1. Результаты грубых измерений

<u>№</u> п.п.	Диапазон показаний использованной шка- лы прибора	Результаты отдельных наблюдений (f_i)	Погрешность прибора на данной шкале $(\Delta f_{ m приб})$
	кГц	кГц	кГц
1	$0 - 10^5$	4,52	0.01
2	$0 - 10^5$	4,52	0.01
3	$0 - 10^5$	4,54	0.01
4	$0 - 10^5$	4,52	0.01
5	$0 - 10^5$	4,50	0.01
6	$0 - 10^5$	4,52	0.01
7	$0 - 10^5$	4,52	0.01
8	$0 - 10^5$	4,52	0.01
9	$0 - 10^5$	4,50	0.01
10	$0 - 10^5$	$4{,}52$	0.01

Таблица 2. Результаты точных измерений

$N_{\overline{0}}$	Результаты отдельных	Случайные откло-	
	наблюдений (f_i)	нения от среднего	$d_i^2 = (f_i - \overline{f})^2$
п.п.	$ $ наолюдении (j_i)	$d_i = f_i - \overline{f}$,
	кΓц	кΓц	кΓц
1	4,524	0,002	$2,496*10^{-7}$
2	4,514	-0,008	$7,090*10^{-6}$
3	4,509	-0,013	$1,801*10^{-5}$
4	4,514	-0,008	$7,090*10^{-6}$
5	4,512	-0,010	$1,086*10^{-5}$
6	4,504	-0,018	$3,393*10^{-5}$
7	4,496	-0,026	$6,980*10^{-5}$
8	4,490	-0,032	$1,051*10^{-4}$
9	4,498	-0,024	$5,963*10^{-5}$
10	4,497	-0,025	$6,462*10^{-5}$
11	4,491	-0,031	$9,872*10^{-5}$
12	4,508	-0,014	$2,079*10^{-5}$
13	4,502	-0,020	$4,170*10^{-5}$
14	4,530	0,008	$5,746*10^{-6}$
15	4,538	0,016	$2,427*10^{-5}$

Таблица 3. Результаты точных измерений

$N_{ar{0}}$	Результаты отдельных	Случайные откло-	
	наблюдений (fi)	нения от среднего	$d_i^2 = (f_i - \overline{f})^2$
П.П.	` ′	$d_i = f_i - \overline{f}$	
	кГц	кГц	кГц
16	4,548	0,026	$6,543*10^{-5}$
17	4,544	0,022	$4,657*10^{-5}$
18	4,542	0,020	$3,834*10^{-5}$
19	4,532	0,010	$9,178*10^{-6}$
20	4,528	0,006	$3,114*10^{-6}$
21	4,526	0,004	$1,282*10^{-6}$
22	4,520	-0,002	$5,856*10^{-7}$
23	4,512	-0,010	$1,086*10^{-5}$
24	4,516	-0,006	$4,122*10^{-6}$
25	4,524	0,002	$2,496*10^{-7}$
26	4,518	-0,004	$1,954*10^{-6}$
27	4,520	-0,002	$5,856*10^{-7}$
28	4,514	-0,008	$7,090*10^{-6}$
29	4,516	-0,006	$4,122*10^{-6}$
30	4,514	-0,008	$7,090*10^{-6}$
31	4,524	0,002	$2,496*10^{-7}$
32	4,536	0,014	$1,844*10^{-5}$
33	4,540	0,018	$3,091*10^{-5}$
34	4,532	0,010	$9,178*10^{-6}$
35	4,538	0,016	$2,427*10^{-5}$
36	4,538	0,016	$2,427*10^{-5}$
37	4,530	0,008	$5,746*10^{-6}$
38	4,536	0.014	$1,844*10^{-5}$
39	4,530	0,008	$5,746*10^{-6}$
40	4,524	0,002	$2,496*10^{-7}$
41	4,522	-0,001	$1,764*10^{-8}$
42	4,524	0,002	$2,496*10^{-7}$
43	4,534	0,012	$1,341*10^{-4}$
44	4,534	0,012	$1,341*10^{-4}$
45	4,534	0,012	$1,341*10^{-4}$
46	4,530	0,008	$5,746*10^{-6}$
47	4,530	0,008	$5,746*10^{-6}$
48	4,530	0,008	$5,746*10^{-6}$
49	4,528	0,006	$3,114*10^{-6}$
50	4,526	0,004	$1,282*10^{-6}$

Таблица 4. Таблица для построения гистограммы и кривой распределения

№ ин- тер- ва-	Γ раницы интервалов (ширина интервала $\Delta h = 0.01)$	Число случаев (Δn) , когда результат наблюдения попадает в данный интервал	Доля (часть) полного числа результатов, попадающих в данный интервал $(\delta n = \frac{\Delta n}{n})$
1	4.490 - 4.500	5	0.083
2	4.500 - 4.510	6	0.100
3	4.510 - 4.520	9	0.150
4	4.520 - 4.530	19	0.317
5	4.530 - 4.540	16	0.267
6	4.540 - 4.550	5	0.083

Графики

Рис. 3. Плотность распределения

Рис. 4. Зависимость измерений от времени

Рис. 5. Гистограмма

Среднеквадратичное отклонение:

$$\sigma \approx \sqrt{\frac{\sum_{i=1}^{n} (f_i - \overline{f})^2}{n-1}} = 1,405 * 10^{-2}$$
 (5)

Дисперсия:

$$\sigma^2 = 1,975 * 10^{-4} \tag{6}$$

Средняя квадратичная погрешность среднего:

$$\Delta f \approx \frac{\sigma}{\sqrt{n}} = 1,987 * 10^{-3} \text{ к}\Gamma\text{ц} \tag{7}$$

Погрешнность прибора на грубой шкале:

$$\Delta f_{\text{приб}} = \pm 0.01 \text{ Mc} \tag{8}$$

Погрешность прибора на точной шкале:

$$\Delta f_{\text{приб}} = \pm 0.001 \text{ MC} \tag{9}$$

Окончательный результат:

$$f = f_{\rm cp} \pm \Delta f = 4.522 \pm 1.987 * 10^{-3}$$
 к Γ ц (10)

3 Выводы

В ходе выполнения лабораторной работы были достигнуты поставленные цели по изучению методов многократных прямых измерений физических величин и освоению процедур статистической обработки экспериментальных данных.

Экспериментальная часть исследования включала сбор и систематизацию данных, их визуализацию в виде таблиц, гистограмм и диаграмм с использованием специализированного программного обеспечения.

Непосредственная работа с лабораторными установками значительно углубила понимание изучаемых процессов, обеспечив наглядность и практическую подтверждаемость теоретических положений.

Полученные навыки работы с измерительными приборами и обработки экспериментальных данных имеют важное значение для дальнейшей научно-исследовател деятельности.

Список литературы

[1] https://github.com/st117168/2025-4sem-Measurement_methods/tree/main/Workshop1