2.1 Atoms and reactions

2.1.1 Atomic structure and isotopes

Definitions

	Term	Definition
•	Isotopes	Atoms of the same element with the same number of protons and electrons and different numbers of neutrons and different masses .
	Proton number / atomic number	The number of protons in the nucleus of an atom.
	Nucleon number / mass number	The number of protons and neutrons in the nucleus of an atom.
	Relative isotopic mass / A	The mass of an isotope of an element compared to 1/12th of the mass of an carbon-12 atom.
	Relative atomic mass / A_r / A_R	The weighted mean mass of an atom of an element compared to 1/12 of the mass of an atom of carbon-12.
	Cation	A positively charged ion with fewer electrons than protons.
	Anion	A negatively charged ion with more electrons than protons.

- Properties of isotopes
 - · Same chemical reactions
 - Same electron configuration & the same number of protons
 - o Number of neutrons has no effect on reactions of an element
 - Small differences in physical properties
 - Higher mass isotopes = higher melting and boiling point + higher density
- Mass and charge of sub-atomic particles

	Particle	Relative charge	Relative mass
	Proton / p+	1+	1
•	Neutron / n	0	1
	Electron / e-	1-	1/1836

- Determining relative atomic mass and relative isotopic mass (for ions with single charges)
 - Mass spectrometer
 - Records abundance of ions of different isotopes and their mass-to-charge ratio (m/z ratio)
 - Value of relative isotopic mass can be worked out from m/z ratio and hence relative atomic mass

2.1.2 Compounds, formulae and equations

Definitions

	Term	Definition	
	Binary compounds	Compounds that contains two elements only.	
•	Diatomic molecules	Molecules composed of two atoms only.	
	Polyatomic ions	Ion containing more than one atoms.	

Anions to know

	Ion	Formula
	Nitrate	NO ₃ -
,	Carbonate	CO ₃ ²⁻
	Sulfate	SO ₄ ²⁻

Hydroxide OH⁻

· Cations to know

	Ion	Formula
	Ammonium	NH ₄ ⁺
•	Zinc ion	Zn ²⁺
	Silver ion	Ag⁺

Writing ionic equations

- We can only dissociate the aqueous compounds
- Split all chemicals into ions
- Cancel out spectator ions
- ★ No aqueous compound = no ionic equation

• Solubility

Solubility	Compounds
Soluble in water	 All common sodium, potassium and ammonium salts (also their carbonate and hydroxide salt) All nitrates Most common chlorides Most common sulfates
Insoluble in water	 Silver chloride, lead chloride Lead sulfate, barium sulfate, calcium sulfate, strontium sulfate Most common carbonates Most common hydroxides

2.1.3 Amount of substance

Definitions

Term	Definition
Mole	A mole is the amount of a substance that contains the Avogadro number of elementary particles / the amount of a substance that contains the same amount of particles as 12 g of carbon-12.
Molar mass / M	The mass in grams in each mole of the substance, measured in g mol ⁻¹ .
Hydrated	A crystalline compound that contains water (e.g. CuSO ₄ ·5H ₂ O _(s)).
Anhydrous	A crystalline compound containing no water (e.g. CuSO _{4(s)}).
Water of	Water molecules that form part of the crystalline structure of a
crystallisation	compound (e.g. H ₂ O in CuSO ₄ ·5H ₂ O _(s)).
Stoichiometry	The relative quantities of substances in a reaction.
Standard solution	A solution of known concentration.
Limiting reagent	The reactant that is not in excess and will be used up in the reaction.
	Mole Molar mass / M Hydrated Anhydrous Water of crystallisation Stoichiometry Standard solution

Amount of substance

- Symbol *n*
- Measured in moles (symbol mol)
- * Always use **decimals (not fractions)** in **every step** of a calculation
- Avogadro constant / N_A
 - $6.02 \times 10^{23} \text{ mol}^{-1}$
 - The number of particles per mole
- Concentration (c)

 - Unit = mol dm⁻³ (aka molar / M) or g dm⁻³
 mol dm⁻³: c = ⁿ/_V = ^{number of moles}/_{volume (in dm⁻³)}

- g dm⁻³: $c = \frac{\text{mass (in g)}}{\text{volume (in dm}^{-3})}$
- Concentration in mol dm⁻³ = $\frac{\text{concentration in g dm}^{-3}}{M_r}$
- Room temperature and pressure (RTP)
 - Temp = $20 \, ^{\circ}\text{C} / 293 \, \text{K}$
 - pressure = 1 atm or 1.01×10^5 Nm⁻²
- Standard temperature and pressure (STP)
 - Temp = $0 \, ^{\circ}\text{C} / 273 \, \text{K}$
 - pressure = 1 atm or 1.01×10^5 Nm⁻²
- Molar gas volume / V_m
 - The volume per mole of gas at a stated temperature and pressure
 - Under RTP: 1 mol = $24 \text{ dm}^3 = 24,000 \text{ cm}^3$
 - Under STP: 1 mol = 22.4 dm³ = 22,400 cm³
- Ideal gas equation
 - pV = nRT
 - $p = \text{pressure (Pa or N m}^{-2})$
 - $V = \text{volume (m}^3)$
 - n = amount of gas molecules (mol)
 - $R = \text{ideal gas constant (8.314 J mol}^{-1} \text{ K}^{-1})$
 - T = temperature (K not °C)
 - Rearranged: $\frac{p_1v_1}{T_1} = \frac{p_2v_2}{T_2}$
- · Ideal gas assumptions
 - Random motion in straight lines
 - Molecules behave as rigid spheres
 - Pressure is due to collisions between the molecules and the walls of the container
 - Elastic collisions between the molecules and between the molecules and the walls of the container

 - The molecules occupy an entirely negligible volume
 - No intermolecular forces between the gas molecules
- Percentages yield
 - Percentage yield = $\frac{\text{actual yield}}{\text{thereotical yield}} \times 100\%$
 - Actual yield: the amount of the product obtained from a reaction
 - Theoretical yield: the yield resulting from complete conversion of reactants into products
 - Reasons for < 100% percentage yield
 - Reaction did not go to completion
 - Side reactions may have taken place along the main reaction
 - Purification of the product may result in the loss of some products
- · Atom economy
 - Atom economy = $\frac{\text{sum of masses of useful product(s)}}{\text{sum of masses of all products or reactants}} \times 100\%$ = $\frac{\text{sum of molar masses of useful products}}{\text{sum of molar masses of all products or reactants}} \times 100\%$
- Benefits of high atom economy
 - More efficient industrial process
 - Preserve raw materials
 - Reduce waste
- Means to improve sustainability
 - Use processes with high atom economy and fewer steps
 - Redesign methods to use less hazardous starting materials
 - Use milder reaction conditions / better catalysts / less hazardous solvents
- Experimental techniques

Variable	Method
measured	

	Mass	 Use a digital mass balance Choose a balance with a suitable resolution for the experiment
•	Volume of solution	Use a measuring cylinderStandard solution: use volumetric flask
	Gas produced	Use a gas syringe / measure mass lost on a balance and calculate the number of moles of gas produced

• Types of formulae

	Formula	Meaning
	Empirical formula	The simplest whole number ratio of atoms of each element present in a compound.
	Molecular formula	The number and type of atoms of each element in a molecule (if the elements are the same then combine them, e.g. not CH_3COOH , use $C_2H_4O_2$).
	Displayed (graphical) formula	Shows all the bonds in the structure.
	Structural formula	A molecular formula that shows not only what atoms are present but also how they are joined together.

2.1.4 Acids

- Acids
 - When dissolved in water an acid releases H⁺ ions (proton) into the solution
 - Common acids
 - HCl
 - H₂SO₄
 - O HNO₃
 - CH₃COOH
- Bases
 - React with acid by accepting H⁺ ions (protons) and neutralising the acid to form a salt
 - Common bases
 - Carbonates
 - Hydrogencarbonates
 - Metal oxides
 - Metal hydroxides
 - Ammonia (accept H⁺ and form NH4⁺ ions)
- Alkalis
 - Bases that dissolve in water and release OH⁻ ions into the solution
 - Common alkalis
 - NaOH
 - \circ KOH
 - o NH₃
- Salt
 - When the H⁺ in an acid is replaced by a positive ion
- · Strong and weak acid
 - Both release H⁺ ions / H⁺ donor in aqueous solutions
 - Strong acid
 - **Completely dissociates** in aqueous solutions / releases all hydrogen atoms as H⁺ ions
 - \circ e.g. $HCI(aq) \rightarrow H^+(aq) + CI^-(aq)$
 - · Weak acid
 - Partially dissociates in aqueous solutions / only releases a portion of available hydrogen atoms as H⁺ ions
 - e.g. $CH_3COOH(aq) \rightleftharpoons H^+(aq) + CH_3COO^-(aq)$
- Neutralisation
 - The reaction of acids with bases (including carbonates, metal oxides and alkalis) to form salts

- Ionic equation: $H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$
- Preparing standard solution
 - Solid weighed accurately using a balance with 2 dp or more
 - Dissolve solid in a beaker
 - Use less distilled water than needed to fill the volumetric flask to the mark
 - Transfer the solution to (250 cm³) volumetric flask
 - Rinse the beaker and transfer washings to the flask so the last traces of the solution is transferred to the volumetric flask
 - Volumetric flask is filled to the graduation line
 - o Add distilled water a drop at a time using a dropping pipette
 - Keep adding until the bottom of the meniscus lines up exactly with the mark
 - Mix the solution thoroughly
 - Volumetric flask is sealed with a stopper and inverted several times
- Titration
 - Add measured volume of one solution to conical flask using pipette
 - Typical tolerances: 10 cm³: \pm 0.04 cm³, 25 cm³: \pm 0.04 cm³, 50 cm³: \pm 0.10 cm³
 - · Add other solution to burette, record initial reading
 - Add a few drops of indicator to conical flask (phenolphthalein / methyl orange)
 - Run solution from burette into conical flask until it reaches the end point
 - o Swirl the flask while the solution is added
 - Record final reading
 - Titre = final reading initial reading
 - First titre carried out quickly to get approximate titre
 - · Repeat accurately by adding solution dropwise as the end point is approached
 - Carry out until two accurate titres are concordant (within 0.1 cm³)
 - * Only use concordant results for calculating the mean titre

2.1.5 Redox

Definitions

	Term	Definition
	Redox reactions	A reaction involving reduction and oxidation.
Oxidising agent A reagent that accepts / takes in elect		A reagent that accepts / takes in electrons.
•	Reducing agent	A reagent that donates / gives out electrons.
Oxidation number A measure of the number of electrons that an atom atoms of another element. Oxidation numbers are rules.		atoms of another element. Oxidation numbers are derived from a set of

- Oxidation number (oxidation state) rules
 - Elements
 - o Always 0
 - o Any bonding is to atoms of the same element in pure elements
 - Compound and ions
 - o Each atom in a compound has an oxidation number
 - Sign is placed before the number
 - o Sum of oxidation numbers in a compound / ion = total charge
- Fixed oxidation numbers

Co	ombined element	Oxidation number
0	(normally)	-2
Н	(normally)	+1
, F		-1
Gı	roup 1	+1
Gı	roup 2	+2

Group 3	+3
---------	----

• Oxidation number for special cases

	Combined element	Oxidation number
	H in metal hydrides (e.g. NaH, CaH ₂)	-1
•	O in peroxide ions (O ₂ ²⁻)	-1
	O bonded to F (e.g. F₂O)	+2

- Roman numerals in chemical names
 - Show oxidation number without sign
 - Nitrate = assume to be NO₃-
 - Sulfate = assume to be SO_4^{2-}
 - e.g. chlorate(I) = CIO⁻
- Redox reaction
 - Oxidation
 - Gain of oxygen
 - o Loss of hydrogen
 - Loss of electrons
 - o Increase in oxidation number
 - Reduction
 - Loss of oxygen
 - o Gain of hydrogen
 - o Gain of electrons
 - o Decrease in oxidation number
 - * Oxidation and reduction always happen together
- Redox reaction of acids
 - Metal + acid → salt + hydrogen
 - Metal oxidised (oxidation number increases from 0 to ...)
 - Hydrogen in acid reduced (oxidation number decreases from +1 to 0)
 - (Iron is normally Fe²⁺ in redox reactions)