Séance 1 - Simulation de variables aléatoires

Exercice 1. Variables aléatoires réelles. On considère la loi de densité

$$\forall x \in \mathbb{R}, \quad p(x) = c(x + 2x^4) \, \mathbb{1}_{[0,1]}(x) \, .$$

- 1. Calculer la constante c. Rappeler le principe de simulation par inversion.
- 2. Rappeler le principe de simulation par rejet par rapport à la loi uniforme, puis par rapport à une densité quelconque (appelée loi *instrumentale*).
- 3. Proposer un algorithme de simulation par rejet par rapport à la loi uniforme pour la loi de densité p(x).
- 4. Evaluer le nombre moyen de rejets nécessaires pour obtenir un échantillon (de taille 1).
- 5. Proposer un algorithme de simulation par rejet par rapport à une loi nonuniforme, et le comparer à l'algorithme précédent.
- 6. Proposer un algorithme de simulation de mélange pour la loi de densité p(x).
- 7. Ecrire les algorithmes précédents dans le langage de programmation R.
- 8. Simuler un échantillon de taille 10000 à l'aide de chacun des algorithmes. Vérifier que les histogrammes estiment bien la densité p(x), et pour les algorithmes de rejet, estimer les probabilités de rejet.

Exercice 2. Couples de variables aléatoires. On considère la loi de densité

$$\forall x, y \in \mathbb{R}, \quad p(x, y) = \frac{1}{2\sqrt{xy}} \mathbf{1}_D(x, y),$$

où $D = \{(x, y) \in \mathbb{R}^2, 0 < x < y < 1\}.$

- 1. Rappeler le principe de simulation d'une loi de densité p(x,y) définie sur \mathbb{R}^2 .
- 2. Calculer les lois marginales p(x), p(y) du couple de densité p(x,y).
- 3. Lorsqu'elles sont définies, calculer les lois conditionnelles p(x|y), p(y|x) du couple de densité p(x,y).
- 4. Proposer un algorithme de simulation pour la loi de densité p(x,y) et prouver sa validité en appliquant le théorème de changement de variables.
- 5. Programmer cet algorithme dans langage R.
- 6. Effectuer 10000 tirages selon cet algorithme, afficher les rèsultats.
- 7. Proposer des approximations de Monte-Carlo des grandeurs E[X] et $\rho(X,Y)$ (coefficient de corrélation). Calculer les valeurs théoriques de ces grandeurs.