1

Control Systems

G V V Sharma*

		Contents		10	Oscilla 10.1	tor 2 Introduction
1	Signal	Flow Graph	1		10.1	Example
	1.1	Mason's Gain Formula	1		10.2	Example
	1.2	Matrix Formula	1	Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python		
2	Bode Plot		1	codes are available in the text.		
	2.1	Introduction		Download python codes using		
	2.2	Example	1	svn co https://github.com/gadepall/school/trunk/		
3	Second order System		1	control/codes		
	3.1	Damping	1			
	3.2	Example	1	1 Signal Flow Graph		
4	Routh Hurwitz Criterion		1	1.1 Mason's Gain Formula		
	4.1	Routh Array	1	12 N	1.2 Matrix Formula	
	4.2	Marginal Stability	1			
	4.3	Stability	1			2 Bode Plot
	4.4	Example	2	2.1 Ir	itroducti	ion
5	State-Space Model		2	2.2 E	xample	
	5.1	5.1 Controllability and Observability		3 Second order System		
				3 1 D	amnina	
	5.2	Second Order System	2			
	5.3	Example	2	3.2 E	xample	
	5.4	Example	2 2		4	ROUTH HURWITZ CRITERION
	5.5	Example	2	4.1 R	outh Ar	ray
6	Nyquist	t Plot	2	4.2 M	larginal	Stability
7	Compensators		2	4.3 Stability		
	_	Example	2		losed lo	op system has the characteristic equa-
8	Gain Margin		2		•	$K^2 \cdot (K \cdot 2) \cdot 2 \cdot 0 \qquad (4.2.1)$
	8.1		2 2		$s^{\circ} + s$	$Ks^2 + (K+2)s + 3 = 0$ (4.3.1)
	8.2			For the	nis syst	em to be stable, which one of the
		_	_			ditions should be satisfied?
9	Phase I	Margin	2	(A) 0 (D) K		0.5 (B) $0.5 < K < 1$ (C) $0 < K < 1$

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Solution: Computing the Routh array for the given characteristic equation, we get-

$$\begin{vmatrix} s^{3} \\ s^{2} \\ s \\ s^{0} \end{vmatrix} \begin{vmatrix} 1 & K+2 & 0 \\ K & 3 & 0 \\ \frac{K^{2}+2K-3}{K} & 0 & 0 \\ 3 & 0 & 0 \end{vmatrix}$$
 (4.3.2)

According to the Routh-Hurwitz stability criterion, for the system to be stable there should be no sign changes in the first column of the Routh array. That means-

$$K > 0$$
 and $\frac{K^2 + 2K - 3}{K} > 0$ (4.3.3)

$$\Rightarrow K > 0 \text{ and } (K-1)(K+3) > 0$$
 (4.3.4)

which gives us

$$K > 0$$
 and $(K > 1 \text{ or } K < -3)$. (4.3.5)

Note that K cannot be negative.

$$\Rightarrow K > 1 \tag{4.3.6}$$

The program to compute the routh-array and stabilty for different values of K.

codes/ee18btech11039/routh array.py

The program for plotting the poles of the system for different values of K.

codes/ee18btech11039/pole plot.py

4.4 Example

- 5 STATE-SPACE MODEL
- 5.1 Controllability and Observability
- 5.2 Second Order System
- 5.3 Example
- 5.4 Example
- 5.5 Example
- 6 Nyquist Plot
- 7 Compensators
- 7.1 Example
- 8 GAIN MARGIN
- 8.1 Introduction
- 8.2 Example
- 9 Phase Margin
- 10 OSCILLATOR
- 10.1 Introduction
- 10.2 Example