

Universidade do Vale do Itajaí Escola Politécnica NID (Núcleo Integrado de Disciplinas)

Algoritmos e Programação (22760)

Definição do trabalho da M3 - SUDOKU

<u>Data de entrega:</u> 21/06/2023. (até 08:00) <u>Modalidade:</u> grupos de 3 ou 4 integrantes.

Visão Geral:

4	9	5	2	8	7	3	6	1
7	2	8	6	1	3	4	9	5
3	6	1	9	5	4	7	2	8
6	5	3	8	4	9	2	1	7
9	8	4	1	7	2	6	5	3
2	1	7	5	3	6	9	8	4
1	3	2	4	6	5	8	7	9
5	4	6	7	9	8	1	3	2
8	7	9	3	2	1	5	4	6

O **Sudoku** é um jogo de raciocínio e lógica. Apesar de ser bastante simples, é divertido e viciante. O jogo normalmente é formado por uma tabela de 9x9 formando 81 células. A tabela se divide em 9 blocos de 3x3. Algumas das células já vêm preenchidas como forma de pistas.

O objetivo é preencher as células, em branco, de forma que cada linha, coluna e bloco (3x3) tenham todos os números de 1 a 9. Os números não podem se repetir nem na linha, nem na coluna e nem no bloco (3X3).

REGRAS PARA O DESENVOLVIMENTO

O jogo deverá, inicialmente, **definir uma matriz principal com todas as posições preenchidas**, isso porque o jogo irá utilizar essa matriz principal para gerar a matriz jogo.

O jogo deverá possuir um **menu** onde será possível escolher:

- Jogar
- Sobre
- Fim

A seguir será listado, de trás para frente, o que deve ser implementado em cada parte do menu.

Fim:

Essa é uma opção para finalizar o programa. Observe que seu jogo só deve ser encerrado ao selecionar essa opção, caso qualquer outra opção seja escolhida ela deve retornar ao menu no fim de sua execução.

Sobre:

Quando essa opção for selecionada, deverão ser exibidas a equipe de desenvolvimento (o nome de cada membro da equipe), o mês/ano (exemplo: junho/2023) e o nome do professor/disciplina.

Jogar:

Inicie o jogo, aplicando, **aleatoriamente**, uma das seguintes operações na matriz principal para gerar a matriz gabarito (**a matriz gabarito deverá ser preenchida durante a execução do algoritmo**, ou seja, não é permitido ter ela já disponível no algoritmo):

- 1. **Sem modificação**: a matriz gabarito será uma cópia da matriz principal.
- 2. **Transposta**: obtida transportando-se ordenadamente os elementos das linhas da matriz principal para as colunas da matriz gabarito.

	MATRIZ PRINCIPAL									MATRIZ TRANSPOSTA										
4	9	5	2	8	7	3	6	1	4	7	3	6	9	2	1	5	8			
7	2	8	6	1	3	4	9	5	9	2	6	5	8	1	3	4	7			
3	6	1	9	5	4	7	2	8	5	8	1	3	4	7	2	6	9			
6	5	3	8	4	9	2	1	7	2	6	9	8	1	5	4	7	3			
9	8	4	1	7	2	6	5	3	8	1	5	4	7	3	6	9	2			
2	1	7	5	3	6	9	8	4	7	3	4	9	2	6	5	8	1			
1	3	2	4	6	5	8	7	9	3	4	7	2	6	9	8	1	5			
5	4	6	7	9	8	1	3	2	6	9	2	1	5	8	7	3	4			
8	7	9	3	2	1	5	4	6	1	5	8	7	3	4	9	2	6			

3. **Invertida por linha**: obtida transportando-se ordenadamente os elementos das últimas linhas da matriz principal para as primeiras linhas da matriz gabarito.

	MATRIZ PRINCIPAL										MATRIZ INVERTIDA POR LINH										
															L						
4	9	5	2	8	7	3	6	1	8	1	9	3	2	1	5	4	6				
7	2	8	6	1	3	4	9	5	5	4	1 6	7	9	8	1	3	2				
3	6	1	9	5	4	7	2	8	1	(.)	3 2	4	6	5	8	7	9				
6	5	3	8	4	9	2	1	7	2	1	. 7	5	3	6	9	8	4				
9	8	4	1	7	2	6	5	3	9	8	3 4	1	7	2	6	5	3				
2	1	7	5	3	6	9	8	4	6		5 3	8	4	9	2	1	7				
1	3	2	4	6	5	8	7	9	3	6	5 1	9	5	4	7	2	8				
5	4	6	7	9	8	1	3	2	7	1	2 8	6	1	3	4	9	5				
8	7	9	3	2	1	5	4	6	4	9	5	2	8	7	3	6	1				

4. **Invertida por coluna**: obtida transportando-se ordenadamente os elementos das últimas colunas da matriz principal para as primeiras colunas da matriz gabarito.

MATRIZ PRINCIPAL										MATRIZ INVERTIDA POR COLUN										
4	9	5	2	8	7	3	6	1	1 6	1	6	3	7	8	2	5	9	4		
7	2	8	6	1	3			5		5	9	4	3	1	6	8		7		
3	6	1	9	5	4	7	2	8	8 2	8	2	7	4	5	9	1	6	3		
	5	3	8	4	9	2	1	7	7 1	7	1	2	9	4	8	3	5	6		
8 4	4		1	7	2	6	5	3	3 5	3	5	6	2	7	1	4	8	9		
1		7	5	3	6	9	8	4	4 8	4	8	9	6	3	5	7	1	2		
3		2	4	6	5	8	7	9	9 7	9	7	8	5	6	4	2	3	1		
4		6	7	9	8	1	3	2	2 3	2	3	1	8	9	7	6	4	5		
7		9	3	2	1	5	4	6	6 4	6	4	5	1	2	3	9	7	8		

Após a geração da matriz gabarito deverá ser criada a matriz jogo. Essa matriz é a matriz que será exibida e preenchida pelo jogador, a quantidade de posições preenchidas deverá ter 41 posições da matriz copiadas da matriz gabarito de forma aleatória. *Cuide para não copiar 2 vezes a mesma posição*.

Uma vez que a matriz gabarito e a matriz jogo estão preparadas o jogador poderá, sucessivamente, escolher uma coordenada (linha e coluna) **que estejam vazias** e tentar colocar o número desejado. Se estiver correto o número deverá ser inserido na matriz jogo, caso contrário um aviso deverá ser fornecido ao jogador e o número não deverá ser colocado.

Lembre-se de exibir a matriz jogo antes de solicitar as coordenadas para o jogador.

Quando a matriz estiver totalmente preenchida o jogo deverá exibir uma mensagem de vitória informando a quantidade de jogadas feitas pelo jogador.

Dicas de desenvolvimento:

O código, a seguir, exemplifica o uso das funções rand() e srand();

- rand() gera um número pseudo-aleatório entre 0 e RAND_MAX, mas essa faixa pode ser facilmente alterada com o operador de resto da divisão inteira.
- srand() gera uma nova semente aleatória baseada no parâmetro passado entre os parênteses da função. É comum utilizar a função time(), pois ela pega o horário do sistema que muda a cada milésimo de segundo. Note que se a função srand() não for utilizada a sequência de números pseudo-aleatórios gerados pela função rand() será sempre a mesma.

```
1
      #include <iostream>
 2
      #include <time.h> //para habilitar a função time
 3
      using namespace std;
 4
 5
     int main()
 6
 7
          srand(time(NULL)); //semente randomica gerada a partir da hora do sistema
 8
 9
          int numeroAleatorio;
10
11
          numeroAleatorio = rand()%10; //0 %(mod) coloca os números gerados entre 0 e o resto da divisão-1
12
13
          cout << numeroAleatorio << endl;</pre>
14
15
```

Outros dois comandos bastante úteis no desenvolvimento de programas no console, são os comandos system ("cls") e system ("pause").

- system ("cls") é um comando que limpa a tela do console (clear screen). Esse comando é bastante útil, pois em uma tela limpa é mais fácil dar destaque aquilo que se está mostrando no momento.
- system("pause") é um comando útil, principalmente quando usado em conjunto com o system("cls"), pois ele pausa a execução da aplicação até que o usuário aperte qualquer tecla, bastante útil quando se quer exibir algo antes de limpar a tela para iniciar uma nova execução.

*Os comandos equivalentes ao system("cls") e system("pause") no linux/MacOS são respectivamente o system("clear") e system("read 0 -p").

Obs.: Para o desenvolvimento do código não poderão ser utilizadas funções ou structs.

Defesa (Obrigatória)

Durante a defesa serão realizados questionamento sobre o trabalho realizado pelo grupo. A defesa é obrigatória e deverá ser feita pelos integrantes do grupo na aula. Se algum integrante não estiver presente durante a aula de defesa, deverá justificar a falta, o mesmo defenderá posteriormente em data a ser agendada com o professor.

Entregas:

- Postar no repositório criado especialmente para o trabalho no material didático: Trabalho
 T3
- Código fonte desenvolvido: é de responsabilidade do grupo verificar se o arquivo postado é o correto.

Critérios de Avaliação:

- 1. Organização e clareza do código = 5% da nota.
- 2. Identificação dos autores e Comentários pertinentes e oportunos no código = 10% da nota.
- 3. Funcionamento correto conforme a especificação = 40% da nota.
- 4. Recursos da linguagem utilizados = 20% da nota.
- 5. Apresentação/Desesa do código = 25% da nota.

Obs.: Todas as notas relativas ao código dependem do desempenho na defesa. Sem a defesa o trabalho terá nota ZERO.