Лекция №10.

Решение матричной игры ($m \times n$) среди смешанных стратегий. Теорема об активных стратегиях.

Игры $(m \times n)$ с седловой точкой, имеющие практическое значение, встречаются достаточно редко. Более типичным является случай, когда нижняя и верхняя цены игры различны.

Анализируя платежные матрицы игр $(m \times n)$, мы показали, что если каждому игроку предоставить выбор только одной стратегии, то в расчете на разумного противника этот выбор должен определяться принципом минимакса. При этом игрок A гарантирует себе выигрыш, равный нижней цене игры α . Возникает вопрос: нельзя ли обеспечить выигрыш больший α , если применять не чистую стратегию, а чередовать случайным образом несколько стратегий. Такие стратегии, состоящие в случайном чередовании исходных стратегий, называются смешанными.

При использовании смешанной стратегии перед каждой партией игры пускается в ход какой-то механизм случайного выбора, обеспечивающий появление каждой стратегии с некоторой вероятностью, и затем принимается стратегия, на которую пал жребий.

Смешанные стратегии представляют собой математическую модель гибкой тактики, при которой противник не знает и не может узнать заранее с какой обстановкой ему придется встретиться.

Пусть имеется игра $(m \times n)$ без седловой точки. Игрок A имеет стратегии A_i $(i=\overline{1,m})$, а игрок B — стратегии B_j $(j=\overline{1,n})$. Обозначим смешанную стратегию игрока A как $S_A(p_1,p_2,...,p_m)$, в которой стратегии $A_1,A_2,...,A_m$ применяются с вероятностями $p_1,p_2,...,p_m$ соответственно. Очевидно для этих вероятностей справедливы условия:

$$\sum_{i=1}^{m} p_{i} = 1, \quad (1)$$

$$p_{i} \ge 0, (i = \overline{1, m}). \quad (2)$$

Смешанную стратегию игрока B обозначим $S_{\scriptscriptstyle B}(q_{\scriptscriptstyle 1},q_{\scriptscriptstyle 2},...,q_{\scriptscriptstyle n})$, в которой стратегии $B_{\scriptscriptstyle 1},B_{\scriptscriptstyle 2},...,B_{\scriptscriptstyle n}$ применяются с вероятностями $q_{\scriptscriptstyle 1},q_{\scriptscriptstyle 2},...,q_{\scriptscriptstyle n}$. Они удовлетворяют условиям:

$$\sum_{j=1}^{n} q_{j} = 1, \quad (3)$$

$$q_{j} \ge 0, (j = \overline{1, n}). \quad (4)$$

Отметим, что смешанных стратегии бесчисленное множество, так как вероятностей $p_i(q_j)$, удовлетворяющих условиям (1)-(2) ((3)-(4)) бесчисленное множество.

Поскольку игроки в партии применяют стратегии случайным образом, то и исход партии будет случайным.

Допустим игроки A и B используют соответственно свои смешанные стратегии $S_{_{A}}$ и $S_{_{B}}$. Тогда среднее значение выигрыша будет равно:

$$J(S_{A}, S_{B}) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} p_{i} q_{j}$$
 (5)

Пусть оптимальными смешанными стратегиями игроков A и B будут соответственно:

$$S_A^* = S_A^*(p_1^*, p_2^*, ..., p_m^*)$$
 и $S_B^* = S_B^*(q_1^*, q_2^*, ..., q_m^*)$

Пара смешанных стратегий ($S_{\scriptscriptstyle A}^*, S_{\scriptscriptstyle B}^*$) называется оптимальной парой, если ни одному из игроков невыгодно от нее отклоняться, если противник придерживается оптимальной смешанной стратегии. Величина среднего выигрыша $\gamma = J(S_{\scriptscriptstyle A}^*, S_{\scriptscriptstyle B}^*)$ называется ценой игры.

Из определения оптимальной пары ($S_{\scriptscriptstyle A}^*, S_{\scriptscriptstyle B}^*$) следует неравенство:

$$J(S_{A}, S_{B}^{*}) \leq J(S_{A}^{*}, S_{B}^{*}) \leq J(S_{A}^{*}, S_{B}) \qquad (6)$$

Из этого неравенства вытекает, что оптимальная пара $(S_{\scriptscriptstyle A}^{\scriptscriptstyle *}, S_{\scriptscriptstyle B}^{\scriptscriptstyle *})$ является

седловой точкой на платежной функции $J(S_{A}, S_{B})$. Таким образом ДЛЯ определения оптимальной пары $(S_{\scriptscriptstyle A}^*, S_{\scriptscriptstyle B}^*)$ смешанных стратегий необходимо найти седловую точку на платежной функции. Предположим, что найдено решение рассматриваемой игры. оптимальных смешанных стратегиях некоторые вероятности p_i^* и

 $q_{_{j}}^{^{*}}$ могут быть равными нулю. Это означает, что соответствующие им стратегии не используются. Такие стратегии называются пассивными, а те стратегии, которые входят в оптимальную смешанную стратегию называются активными.

Теорема об активных стратегиях.

Применение оптимальной смешанной стратегии обеспечивает игроку максимальный средний выигрыш (или минимальный средний проигрыш) равный цене игры γ независимо от того какие действия предпринимает другой игрок, и если только он не выходит за пределы своих активных стратегий (он может применять активные стратегии либо в чистом виде, либо менять их по любому закону).

<u>Доказательство 1.</u> Пусть найдено решение игры $(m \times n)$ в смешанных стратегиях, в которых первые r стратегий $(r \le m)$ игрока A и первые s стратегий $(s \le n)$ игрока B являются активными (это не нарушает общности, так как стратегии всегда можно перенумеровать таким образом, чтобы первыми были активные). Таким образом, известны оптимальные смешанные стратегии

$$S_A^* = S_A^*(p_1^*, p_2^*, ..., p_r^*, 0, ..., 0)$$
 и $S_B^* = S_B^*(q_1^*, q_2^*, ..., q_s^*, 0, ..., 0)$.

Для найденных вероятностей справедливы равенства $\sum_{i=1}^{r} p^*_{i} = 1$ и $\sum_{j=1}^{s} q^*_{j} = 1$.

Выигрыш при этом равен цене игры: $\gamma = \sum_{i=1}^r \sum_{j=1}^s a_{ij} p_i^* q_j^*$

Выигрыш игрока A, если он пользуется оптимальной смешанной стратегией $S_{_A}^*$, а игрок B — чистыми стратегиями $B_{_1}, B_{_2}, ..., B_{_s}$, обозначим через $\gamma_{_1}, \gamma_{_2}, ..., \gamma_{_s}$. Из свойства оптимального решения игры следует, что отклонение игрока B от оптимальной стратегии $S_{_B}^*$ может лишь увеличить его проигрыш. Следовательно $\gamma_{_1} \geq \gamma, \gamma_{_2} \geq \gamma, ..., \gamma_{_s} \geq \gamma$.

Выразим теперь цену игры γ при оптимальной паре (S_A^*, S_B^*) через выигрыш $\gamma_1, \gamma_2, ..., \gamma_s$. Так как в оптимальной смешанной стратегии S_B^* стратегии $B_1, B_2, ..., B_s$ применяются с вероятностями $q_1^*, q_2^*, ..., q_s^*$, то $\gamma = \gamma_1 q_1^* + \gamma_2 q_2^* + ... + \gamma_s q_s^*$. При этом справедливо $\sum_{j=1}^s q_j^* = 1$. Сумма $\gamma_1 q_1^* + \gamma_2 q_2^* + ... + \gamma_s q_s^*$ есть средневзвешенное значение величин $\gamma_1, \gamma_2, ..., \gamma_s$. Но средневзвешенное значение было бы больше γ , если хотя бы один из выигрышей γ_j был больше γ . Следовательно $\gamma_1 = \gamma_2 = ... = \gamma$.

<u>Доказательство 2.</u> Пусть найдено решение игры $(m \times n)$ в смешанных стратегиях, в которых первые r стратегий $(r \le m)$ игрока A и первые s стратегий $(s \le n)$ игрока B являются активными (это не нарушает общности, так как стратегии всегда можно перенумеровать таким образом, чтобы первыми были активные), то есть

$$S_{A}^{*}(p_{1}^{*},p_{2}^{*},...,p_{r}^{*},0,...,0)$$
 и $S_{B}^{*}(q_{1}^{*},q_{2}^{*},...,q_{s}^{*},0,...,0)$.

Очевидно $\sum_{i=1}^{r} p *_{i} = 1$ и $\sum_{i=1}^{s} q *_{j} = 1$, при этом цена игры равна:

$$\gamma = \sum_{i=1}^{r} \sum_{j=1}^{s} a_{ij} p_{i}^{*} q_{j}^{*} \qquad (7)$$

Пусть игрок A придерживается своей оптимальной смешанной стратегией $S_{\scriptscriptstyle A}^*$, а игрок B использует чистую стратегию $B_{\scriptscriptstyle J}$. Тогда, в силу определения оптимальной пары $(S_{\scriptscriptstyle A}^*,S_{\scriptscriptstyle B}^*)$ можно записать:

$$\sum_{i=1}^{r} a_{ij} p_i^* \ge \gamma \quad (j = \overline{1,s}) \quad (8)$$

Учитывая неравенство (8) можно равенство (7) записать:

$$\gamma = \sum_{i=1}^{r} \sum_{j=1}^{s} a_{ij} p_{i}^{*} q_{j}^{*} = \sum_{i=1}^{s} q_{j}^{*} \sum_{j=1}^{r} a_{ij} p_{i}^{*} \ge \sum_{j=1}^{s} q_{j}^{*} \gamma = \gamma$$
 (9)

Соотношение (9) выполнимо только тогда, когда неравенства (8) превращаются в равенства. Отсюда следует, что для любой смешанной стратегии $(q_1,q_2,...,q_s,0,...,0)$ выполняется равенство $\sum\limits_{i=1}^r\sum\limits_{j=1}^s a_{ij}p_i^*q_j=\gamma$.

<u>Основная теорем теории игр.</u> Любая конечная парная игра с нулевой суммой имеет по крайней мере одно решение, возможно в смешанных стратегиях.

Определение оптимальных смешанных стратегий.

В предыдущей лекции было показано, что если матричная игра ($m \times n$) имеет седловую точку, то пару оптимальных стратегий составляют чистые стратегии, определяемые на основе принципа минимакса. Если же игра не имеет седловой точки, то ее решение нужно искать в смешанных стратегиях.

Процесс отыскания оптимальных смешанных стратегий S_A^* и S_B^* является весьма трудоемким, особенно при большой размерности игры. Поэтому целесообразно, если это возможно, предварительно "редуцировать" игру, то есть упростить ее путем сокращения числа стратегий за счет вычеркивания дублирующих и доминируемых строк, а также замены некоторых групп стратегий смешанными стратегиями.

Определение1. Если в платежной матрице $(a_{ij})_{mxn}$ игры все элементы строки (столбца) равны соответствующим элементам другой строки (столбца), то соответствующим строкам (столбцам) стратегии называются дублирующими.

Определение2. Если в матрице $(a_{ij})_{mxn}$ элементы $a_{ij} \geq a_{kj} \ (1 \leq i \leq m; 1 \leq k \leq m) \ (k \neq i, \ j = \overline{1,n})$ и $a_{ij} > a_{kj}$ хотя бы для одного номера j , то стратегия A_i называется доминирующей над стратегией A_k .

<u>Определение3.</u> Если в матрице $(a_{ij})_{mxn}$ элементы $a_{ij} \leq a_{ik}$ $(i=\overline{1,m}\,;1\leq j\leq n\,;1\leq k\leq n\,;\,j\neq k,)$ и $a_{ij} < a_{ik}$ хотя бы для одного номера i, то стратегия B_j игрока B называется доминирующей над стратегией B_k .

Естественно, если для какой-то стратегии есть доминирующая или дублирующая стратегии, то их не рассматривают. Это позволяет уменьшить размерность пары $(m \times n)$.

Пример. Имеется игра (4×5) с заданной платежной матрицей. Требуется "редуцировать" эту игру. После "редуцирования" она свелась к игре (2×2)

A B	$B_{\scriptscriptstyle 1}$	B_{2}	B_{3}	$B_{_4}$	$B_{\scriptscriptstyle 5}$
$A_{_{\mathrm{I}}}$	4	7	2	3	4
A_{2}	3	5	6	8	9
A_3	4	4	2	2	8
$A_{_4}$	3	6	1	2	4

AB	$B_{_{1}}$	$B_{_3}$
$A_{_{\mathrm{I}}}$	4	2
A_{2}	3	6

Пусть теперь имеется парная конечная игра $(m \times n)$ с нулевой суммой и платежной матрицей $(a_{ij})_{mxn}$ без седловой точки. Игрок A имеет стратегии A_i $(i=\overline{1,m})$, а игрок B — стратегии B_i $(j=\overline{1,n})$. Необходимо найти

решение игры в смешанных стратегиях. То есть оптимальную пару смешанных стратегий $(S_A^* \ (p_i^*, i = \overline{1,m}), \ S_B^* \ (q_j^*, j = \overline{1,n}))$. Здесь p_i^* и q_j^* вероятности применения стратегий $A_{\scriptscriptstyle i}$ и $B_{\scriptscriptstyle j}$, которые удовлетворяют $\sum_{i=1}^{m} p_{i} = 1, \sum_{i=1}^{n} q_{j} = 1, p_{i}^{*} \geq 0, q_{j}^{*} \geq 0. \qquad (S_{A}^{*}, S_{B}^{*}) \qquad \text{соответствует}$ выигрыш, равный цене игры $\gamma = \sum_{i=1}^r \sum_{j=1}^s a_{ij} p_i^* q_j^*$.

Сначала найдем оптимальную смешанную стратегию $S_{\scriptscriptstyle A}^*$. Эта стратегия должна обеспечить игроку A выигрыш не меньший γ при любом поведении игрока B, и выигрыш равный γ при его оптимальном поведении.

Допустим, игрок A использует стратегию $S_{\scriptscriptstyle A}^*$, а игрок B — некоторую стратегию B_i в чистом виде, или $S_{\scriptscriptstyle B}(q_i=1,q_s=0,s\neq j,s=\overline{1,n})$. В этом случае игрок A имеет средний выигрыш:

$$\sum_{ij} a_{ij} p_i^* q_j = \sum_{i=1}^m a_{ij} p_i^* \quad j = \overline{1, n}.$$

Поскольку игрок B отклонился от оптимальной стратегии $S_{\scriptscriptstyle B}^*$, то это может привести лишь к увеличению среднего выигрыша игрока A, следовательно, можно записать:

$$\sum_{i=1}^{m} a_{ij} p_{i}^{*} \geq \gamma \quad j = \overline{1, n}$$
 (1)
$$\sum_{i=1}^{m} p_{i}^{*} = 1$$
 (2)
$$p_{i}^{*} \geq 0, i = \overline{1, m}$$
 (3)

$$\sum_{i=1}^{m} p_i^* = 1 \tag{2}$$

$$p_{i}^{*} \ge 0, i = \overline{1, m} \tag{3}$$

Отметим, что выражение (3) превращается в равенство в случае, если все стратегии Ві активны (см. теорему об активных стратегиях). Но так как мы не знаем заранее, все ли В_і активны, то в (1) ставится неравенство.

Цена игры γ есть гарантированный выигрыш игрока A, естественно он будет стремиться максимизировать эту величину, то есть:

$$\gamma \Rightarrow \max$$
 (4)

Таким образом задача нахождения решения игры свелась к задаче линейного программирования (1)-(4), в которой необходимо найти вероятности p_i^* удовлетворяющие ограничениям (1)-(3) и максимизирующие целевую функцию (4).

Преобразуем эту ЗЛП к более удобному виду. Для этого предположим, что $a_{ij}>0$ ($i=\overline{1,m}$; $j=\overline{1,n}$). Если это условие не выполняется, то прибавляя одну и ту же положительную величину c к элементам платежной матрицы, всегда можно этого добиться. В этом случае цена игры $\gamma>0$. Такое преобразование не приводит к изменению решения игры, что следует из следующей

Теоремы: Оптимальные смешанные стратегии $S_{_A}^*$ и $S_{_B}^*$ игроков A и B в матричной игре $(a_{_{ij}})_{_{mxn}}$ с ценой игры γ будут оптимальными и в матричной игре $(ba_{_{ij}}+c)_{_{mxn}}$ с ценой игры $\gamma=b\gamma+c$, где $b>0,\ c\geq 0$. (Без доказательства).

Теперь, поделив левую и правую части каждого из неравенств (1)-(3)
на величину $\gamma > 0$ и обозначив $p_i^*/\gamma = x_i$, преобразуем ЗЛП (1)-(4) к виду:

$$\sum_{i=1}^{m} a_{ij} x_i \ge 1 \qquad (j = \overline{1, n})$$
 (5)

$$x_i \ge 0 \qquad (i = \overline{1, m}) \tag{6}$$

$$L = \sum_{i=1}^{m} x_i = \frac{1}{\gamma} \Longrightarrow \min$$
 (7)

Таким образом, определение оптимальной смешанной стратегии S_A^* свелась к ЗЛП (5)-(7). Пусть она решена и найдены оптимальные значения x_i^* ($i=\overline{1,m}$). Тогда с учетом введенного обозначения и вида целевой функции (7) найдем искомые вероятности и максимальный выигрыш игрока $A p_i^* = \gamma \cdot x_i^*$ ($i=\overline{1,m}$), где $\gamma = 1/\sum_{i=1}^m x_i^*$.

Определим оптимальную смешанную стратегию $S_{_B}^*$ $(q_{_j}^*,\,j=\overline{1,n})$ игрока B .

Пусть игрок B использует оптимальную стратегию $S_{\scriptscriptstyle B}^*$, а игрок A — чистую стратегию $A_{\scriptscriptstyle i}$

игрок A имеет средний выигрыш: $\sum_{i=1}^n a_{ij} q_i^*$, $(i = \overline{1,m})$.

Так как игрок A отклонился от оптимальной смешанной стратегии, то его средний выигрыш может быть только меньше или равен цене игры γ . Поэтому можно записать:

$$\sum_{j=1}^{n} a_{ij} q_{j}^{*} \leq \gamma \quad i = \overline{1, m}$$
 (8)

$$\sum_{j=1}^{n} q_{j}^{*} = 1$$
 (9)

$$q_{j}^{*} \geq 0, j = \overline{1, n}$$
 (10)

Тут, так же, как и в (1), ставим неравенство, так как неизвестно, все ли стратегии игрока A активны.

Игрок B , выбирая свою оптимальную смешанную стратегию $S_{_B}^*$ стремится уменьшить средний выигрыш игрока A . Тогда целевая функция будет иметь вид $\gamma \Longrightarrow \min$ (11)

Теперь преобразуем ЗЛП (8)-(11). Для этого разделим левые и правые части выражений (8)-(10) на величину $\gamma>0$ и введем обозначим $y_{_j}=q_{_j}^*/\gamma$. Тогда ЗЛП (8)-(11) перепишется:

$$\sum_{j=1}^{n} a_{ij} y_{j}^{*} \leq 1 \quad i = \overline{1, m}$$

$$y_{j} \geq 0, \quad j = \overline{1, n}$$

$$\sum_{j=1}^{n} y_{j} = \frac{1}{\gamma}$$

$$F = \sum_{j=1}^{n} y_{j} = \frac{1}{\gamma} \Rightarrow \max$$

$$(15)$$

Пусть y_j^* решение ЗЛП (13)-(15), тогда из введенных обозначений следует $\gamma=1/\sum_{i=1}^n y_j^*$, $q_j^*=\gamma y_j^*$, $(j=\overline{1,n})$

Таким образом найденная пара оптимальных стратегий (S_A^*, S_B^*), которая является решением игры ($m \times n$) среди смешанных стратегий.

Цена игры γ , которая получается при решении ЗЛП (5)-(7) и (13)-(15) должна быть одной и той же величиной. Будут ли они действительно равны? Положительный ответ на этот вопрос следует из факта, что эти две задачи образуют пару двойственных ЗЛП. Теорема о таких задачах гласит: если одна из ЗЛП двойственной пары имеет решение, то другая задача также имеет решение, причем экстремальные значения целевых функций совпадают.

Покажем, что ЗЛП (13)-(15) имеет решение. Для этого необходимо, чтобы условия (13)-(14) были совместны, то есть имели хотя бы одно решение, а максимизируемая целевая функция была ограничена сверху.

Действительно, ограничения (13)-(14) совместны, так как $y_j = 0$, $j = \overline{1,n}$ удовлетворяют ограничениям (13), (14). Следовательно, множество планов (13), (14) не пустое. В силу условия (13) все значения y_j , ($j = \overline{1,n}$) ограничены сверху, а это означает ограниченность сверху целевой функции (15). Таким образом, ЗЛП (13)-(15) имеет решение. Тогда на основании теоремы о двойственности ЗЛП (5)-(7) тоже имеет решение, причем $\max \sum_{j=1}^n y_j = \min \sum_{i=1}^m x_i = \frac{1}{\gamma}$, то есть в обеих задачах значение цены игры γ одинаковые.

Теорема. Любая парная конечная игра с нулевой суммой имеет решение по крайне мере среди смешанных стратегий.

Если в результате решения задач (5)-(7) и (13)-(15) найдены оптимальные смешанные стратегии игроков A и B $S*_A$ и $S*_B$, и при этом все

их стратегии активны $(p_i^*>0 \ i=\overline{1,m} \ u \ q_j^*>0 \ j=\overline{1,n})$, то такая игра называется ПОЛНОСТЬЮ УСРЕДНЕННОЙ. В этом случае решение S^*_A и S^*_B обращает неравенства (1) и (8) в строгие равенства согласно теореме об активных стратегиях. Если же в оптимальной паре (S^*_A, S^*_B) присутствуют неактивные стратегии $(\exists p_i^*=0 \ unu \ \exists q_j^*=0)$, то игра называется не полностью усредненной, и оптимальные решения обращают (1) или (8) в строгое неравенство.