

Figure 1

STC-1 GTC-1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 8

Figure 7

Figure 9

Figure 10

Figure 11A

Figure 11B

Figure 12

Figure 13

GIP Promoter

atctctccag tcccttcctc aacccttctga gaacaggcaa actccaccat gattggcta
taaatcgta tatggaccta ctaaggatgt aacaactggg agcatgtta cctagcatgt
ccgaaaccccg gagttcagtc cctagcactg cacaatctca gtccttatga agtagaggg
agatcagagg ttcaaggaca acatcaattt gagaccagcc tggctactt accaaagaaa
gaaagagaga aataaataaaa tagatagata aataaataaaa taagtaaata aatatcttat
ggctggagag ttggtcagt tttaagagc acttattgtg gggttgggta tttagctcag
ttgttagagcg ttgcctagg aagctcaagg ccctgggttc ggccccagc tccggaaaca
aaacaaaaca aaacaaaacaa aaacaaaacaa aaaaaaaacc ctgtctggaa aacacctaaa
taaagatata tatataata atataatatacata tatataatata tatataatata atatcttgt
ggaggaagct ataccttctt ttcttgagcc tccaacacat aatgtgcc tgcacatccca
ttcatattgc cccaagtggg aaaccatgtg actataaact ctaagttcct agtcaactagg
aactctcaag acacccatct cagcagcat cacttccgga gtgccaccat tatcagttaa
catccacatc ttggattcag atcccagatc cttctgttc ctcagaagt cacctacagc
tttgggggg tgccccctcc ctcagagagt gccaccccgag ttgaccctca ccaaggcaac
cctttgtacc cacagaatcc aacaggaagt agggggaga aacggccggcc ctgtggccag
aaaaaaagag gggaggaga aggggggtgc cagctacca cggggcaggt cccagataac
actgcagata cccaaatgtt aatcacccat tagcacagc ccagagcaaa gggaaagt
attaggtta taatgggtt cactgggcag gaccagtggg tttagcttc aaagataaga
gtttttcagg taatcagca ccctgtggtg ttggatata aggaagctaa cacaggct
tgaagcaaga tcctgag

Mouse chromogranin A (Chga) gene, promoter region.

ACCESSION L31361

1 ccgaaattac ccactacgtt ggaattctat aagggttggg ttgtgtttt ttgttacagc
61 tgcgttttg gcacccagca cagctgagtg ttcttaagcc cacgtcgatg cttaaacacat
121 ggttgttggaa tgaatacacag cgaagccgggt tctcatttttag gggcatgagt aggcagaggt
181 gtgggcagga agcagggaaag agcggaaaca ggtgcggaca gaaaggaggg gctctgaagg
241 atgcacgtca gtgc当地act gtcatccaga taccagggttc actgtggccc taggcagac
301 tgcacggggc ttccatgtg gtctgcccag ggtgagagca gaactcggtt gggcgcccc
361 gaaggaaacc aaccaggaag cagggttgc cccaaattat ccaggttttt agtacattt
421 agagacaagg ctgggtgtt gaaggtcaga ggtgtccctg ggggtctgga ctaggactga
481 ccactctgt tttagtttaa tggtgagaac tgc当地cacac tgc当地tgc ctacttgcc
541 ccttgagagc tgc当地gctta ggaccaccc atgtgtgggt tggaccctca gtc当地cacact
601 gaacgtgtt gaagccactg ttgtcagag cagggtcttc ggc当地tgagg aagcagtgac
661 cactatcccc tatcaaataa caattaaata cacacagaat gcgaggccaca caactgagg
721 tcaggagagg ctc当地ctcag gcaagggtt caagaggctt ctgtgggacc cgctggatgt
781 tccaggagg tcttaaagat gggcgtgcct ccagccaagt gaaatcaaga gaaaagtac
841 cgaagtatag gaaaactcag cagctggag agttaatag gggaggaatc cgaggctcag
901 agacaggagt gacttgc当地 cggacgcaca gcaagttggc aggtggagtt cagctgtgcc
961 accttctgaa gccgggtacc ct当地acaccc accagataca agcgggatag agacagctga
1021 tggagaagct ggagggtgggg ggc当地gaccc cgaagggtgg gaaaggcgc gggggggcgg
1081 tc当地atgacg taatttccctg gggtgtgcg cgc当地gtgcg tgc当地gtgcg tgc当地tatataaa
1141 agccggcata gcattgtc cgc当地ccgccc gccaccggcc ccatcaccgc tgc当地taccacc
1201 accgctactg cagtttccctg gtc当地gtgcag agctttggta gccagactac agacccactc
1261 cc当地ccatctt ctc当地cagcag ctc当地ccactt cttccgac cgtccggcgc gctatgcgc

//

Figure 14

Mus musculus secretogranin II (Scg2) gene, promoter and exon 1, complete sequence.
ACCESSION AF037451

Mus musculus glucokinase gene, 5' flanking region.
ACCESSION U93275

Figure 15

721 ataaaatggga atgtaaagagc ctttgtctat gaatggtagt ctaactagat gtgttacaag
781 aaatgttgac gtatgacgt gtggaaactt ggtattgaag atgtggactc gaaactttgt
841 ggatttttg atgccatgtat aaaaatgtga agaatactgt tccttaccaa aaagaagaag
901 aagaaggaga aggaggaggaa agaggaggag gaggaagaag agggggagga agaagaagag
961 aaggaggagg aagaggaggaa ggaggaagaa gagaggaggag aggaagaaga agagaaggag
1021 gaggactagg aggaggaggaa gaagaaggag aaggggaagg agagagtgc cagaacattt
1081 ggggtccat cagaataccca gatactcccg acatagtcac agaaggactg ttgttgg
1141 taaatagggt ctgtaaaaag ttgtgggaa aacctgcagt gagatgtgt gtcttagaaa
1201 tgataggcaaa gattcatcca caagaatgcg acaagatggc tgcctgaaca agccctgaac
1261 attaacagca ccagtagacc tgcttacacg gaagaaagca atctcatagg ccctcacccc
1321 aaacaaagac tacagacacg agaggaactg gagagcagga gaaattgggt ctccctttt
1381 tgagccccct aactgggtgt caaatactca atggtcagcc ctgaaatcat atgcacaaag
1441 taatacttagc gcaactgaac agatgttagc tttgtgtgt tttgttaatga taacaaagaa
1501 gaaaaggccc catgttagag agggagcaag gtggcatgg agtgttggaa ggagtggaa
1561 ggaggggtga gaagggaaa gtatgtta tatctttttt ttataaaaa aataaaaaat
1621 gggctgtga gatggctcg tggtaagag cacccgactg ctcttccga aggtctggag
1681 ttcaatccc agcaaccaca tggggctca caaccatccg taacgagatc tggccccc
1741 ttctggagtgt ctgttagaca gctacagtgt acttacat aataaataaa taaatcttt
1801 aaaaaaaaaata aaaaataaaaa ttttagaata aatgttagag gaatattttt aatttaacaa
1861 ctgggtgtg gcaaaagctt tcttcaacaa aaacttaatc cttcagataa gaaaagacta
1921 gaatccacga cgtggataga tactttctgtt tgatgcaaga cactattttt caggttggtaa
1981 cttagcaga actttagttt taactttgtt ggaaacacaa cacccttggc aaacaaaaga
2041 ttactagata ttttagatga aatataaaaa tactttccac aactgtatgg taggaaacag
2101 ttcaatagta atataatttt tgaacaaata atcctttttt gaagaaatcc agagggatag
2161 caagtttaggg gaagagaggg tttgtgtgtg tttgtgtgtc cgcacattt tagccaaaat
2221 agatgtataa cttaatggaa catggcattt aaacccattt tttgtatcata agtttacata
2281 tgctaatgaa tactttttt aaaaacattt ggattggaga gaaatggctc agtgggttaag
2341 agtcaattt ccagcaacca catgtatgtc cacaaccatc tttgtatggta tttgtatgcct
2401 ttttttgtt tgatgttggaa aagtggaccgt gtacttataa ttataaataa ataaatcttt
2461 aaccaaaaaa ccccccataat ttcaacaaca gatatgtctt ggtctggc tttccaggcat
2521 agaaatagaa acacacagag tttgtggagccca gtgcgggttca ggtccggccat tccagttcg
2581 gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt

H.sapiens adenosine deaminase (ADA) gene 5' flanking region and exon 1 (and joined CDS).
ACCESSION X02189

1 tccaggaat gcgcgttcca ggccggcggg cggggcgggg gctccggcga gagggcgccc
61 cccgggaacg gcggcgccggcggcggagg cggggcccccgg cccgttaaga agagcgtggc
121 cggccgcggcaccgcgtggcccccaggaaa gccgagcggcaccggagccgc
181 accgagcggcggcggaggaga gcgacgcggggcgcacgag ggccacc

Homo sapiens mRNA for pre-proinsulin.
ACCESSION X70508

MALWMRLPLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFYTPKTRREA
EDLQVGVQVELGGGPGAGSLQPLALEGSLSQKRGIVEQCCTSICSLYQLENYCN"

l gctgcatcag aagaggccat caagcacatc actgtccatc tgccatggcc ctgtggatgc

61 gcctcctgcc cctgtggcg ctgctggcc tctggggacc tgacccagcc gcagccttg
121 tgaaccaaca cctgtgcggc tcacaccctg tggaaagctct ctacctatgt tgcggggAAC
181 gaggcttctt ctacacaccc aagacccgccc gggaggcaga ggacctgcag gtggggcagg
241 tggagctggg cgggggcctt gggtcaggca gcctgcagcc ctggccctg gaggggtcccc
301 tgcagaagcg tggcatgtg gaacaatgtt gtaccagcat ctgtcccttc taccagctgg
361 agaactactg caactagacg cagcccgcaag gcagcccccc accccggcgc tcctgcacccg
421 agagagatgg aataaaagcccc ttgaaccagc

Homo sapiens leptin (LEP), mRNA.
ACCESSION XM 004625

"MHWGTLGFLWLWPYLFYVQAVPIKQVQDDTKTLIKTTVTRINDISHTQS VSSKQKV
LDFIPGLHPILTLSKMDQTLAVYQQILTSMPSRNVIQISNDLENLRDLLHVLAFSKSCHLP
WASGLETLDSLGGVLEASGYSTEVVVALSRLOGSLODMLWOLDLSPGC"

Figure 17

2101 gctatcacac agtgggtggt ggatctgtcc aaggaaacctt gaatcaaagc agtttaacttt
2161 aagactgagc acctgttca tgctcagccc tgactgggtgc tataggctgg agaagtcac
2221 ccaataaaaca ttaagattga ggcctgccc cagggatctt gcattccag tggtaaaacc
2281 gcactcaccc atgtgccaaag gggggattt taccacagca gctgaacagc caaatgcac
2341 gtgcagtta cagcagggtgg gaaatggat gagctgaggg gggccgtgcc cagggccca
2401 cagggAACCC tgcttgcact ttgttaacatg ttacttttc agggcatctt agcttctatt
2461 atagccacat ccctttgaaa caagataact gagaatttaa aaataagaaa atacataaga
2521 ccataaacagc caacagggtgg caggaccagg actatagccc aggtcctctg atacccagag
2581 cattacgtga gccaggtaat gagggactgg aaccaggag accgagcgct ttctggaaaa
2641 gaggagtttc gaggttagat ttgttaaggagg tgagggatgt gaattgcctg cagagagaag
2701 cctgttttgt tgtaagggtt ggtgttgga gatgcagagg taaaagtgtg agcagtgt
2761 tacagcgaga ggcagagaaa gaagagacag gagggcaagg gccatgtga agggacctt
2821 aagggttaag aagtttgata ttaaaggagt taagagttagc aagttctaga gaagaggctg
2881 gtgtgtggc cagggtgaga gctgtctgg aaaatgtgac ccagatcctc acaaccacct
2941 aatcaggctg aggtgttta agcctttgc tcacaaaacc tggcacaatg gctaattccc
3001 agagtgtgaa acttcctaag tataaatgt tgcgtttt tgtaactta aaaaaaaaaa
3061 aaaagtttgg cccgggtgcgg tggctcacgc ctgttaatccc agcactttgg gagggcaagg
3121 tggggggatc acaaggcac tagatggcga gcatcctggc caacatggt aaaccccgtc
3181 tctactaaaaa acacaaaagt tagtgcggc tggtggcggg cgcctgtat cccagccact
3241 cgggaggctg agacaggaga atcgcttaa cctggggagc ggagagtaca gtgagccaag
3301 atcgcgcccc tgcactccgg cctgtatgaca gaggcagattt ccgtttttttt aaaaaaaaaa
3361 aaaaagtttt tttttttttt aatctaaata aaataactt gccccctg

Homo sapiens cholecystokinin (CCK), mRNA.

ACCESSION XM_003225

"GSAAGLLRLETPSQLRPNPKAMNSGVCLCVLMAVLAAAGALTQPVPPADPAGSGLQRAE
EAPRRQLRVSQRTDGESRAHLGALLARYIQQARKAPSGRMSIVKNLQNLDPSHRISDRD
YMGWMDFGRRSAEEYEYPS"

1 ggctcagctg cccggctgct cccgggtggaa acgccaagcc agctgcgtcc taatccaaaa
61 gccatgaaca cggccgtgtg cctgtcgctg ctgtatggcgg tactggcggc tggcccccctg
121 acgcagccgg tgcctcccgc agatcccgcg ggctccgggc tgcaaggccggc agaggaggcg
181 ccccttaggc agtgcgggtt atgcagaga acggatggcg agtcccggc gcacctggc
241 gcccgtgg caagatacat ccagcaggcc cggaaagctc ctgtggacg aatgtccatc
301 gttaaaacc tgcagaacct gaccccccggc cacaggataa gtgaccggga ctacatggc
361 tggatggatt tggccgtcg cagtgcggag gatgtatgtt accccctcta gaggaccccg
421 cccgcattcag cccaaacgggaa agcaacccctcc caaccccgag gaggcagaat aagaaaaacaa
481 tcacactcat aactcatgt ctgtggatgt tgacattgtat tttatcttatttattaatgttc
541 tcaatgtgaa aaatgtgtct gtaagattgtt ccagtgcac cacacaccc accagaattt
601 tgcaaatggaa agacaaaatgtt tttttttttt ctgtactcc tggctgtttt atgttgttat
661 gctattaaag tgatttcattt ctggc

CCK Promoter (Rat)

ACCESSION S70690

1 aattcgcgc ctaagccgca ttatccacgt ttccagacat gtcacaaata cagctaattc

Figure 18

Human messenger RNA for growth hormone (presomatotropin).
ACCESSION V00519

"MATGSRSTSLLAFLCLPWLQEGLAFPTIPLSRPFDNAMLRAHRLHQLAFTYQEFE
AYIPKEQKYSFLQNPQTSLCFSESIPTPSNREETQQKSNLLELRISLILIQSWE
FANSLVYGASDSNVYDLLKDLEEGIQTLMGRLEDGSPRTGQIFKQTYSKFDTNSH
NDAA
LLKNYGLLYCERKDMDKVETFLRIVOCRSVEGSCGE"

1 cgaaccactc agggctctgt ggacagctca cctagctgc atggctacag gctccggac
61 gtccccgtc ctggctttg gcctgctcg ctcggccctgg cttaagagg gcagtgcctt
121 cccaaaccatt cccttatcca ggcctttga caacgctatg ctccgcgcc atcgctgc
181 ccagctggcc tttagcacacct accaggaggt tgaagaagcc tatatcccaa aggaacagaa
241 gtattccatc ctgcagaacc cccagaccc cctctgtttc tcagagtcta ttccgcacacc
301 ctccaaacagg gaggaaacac aacagaaatc caaccttagag ctgcgtccgc tctccctgc
361 gctcatcccg tcgtggctgg agcccggtca gttcctcagg agtgtctcg ccaacagcc
421 ggtgtacggc gcctctgaca gcaacgtcta tgacctccta aaggacctag aggaaggcat
481 ccaaacgcgtg atggggagggc tggaaagatgg cagccccccgg actgggcaga tttcaagca
541 gacctacagc aagttcgaca caaaactcaca caacgatgac gcactactca agaactacgg
601 gctgtctac tgcttcagga aggacatggc caaggtcgag acattctgc gcacgtgca
661 gtgcgcgtct gtggagggca gctgtggctt ctagctgcgc gggtgccatc ccttgaccc
721 ctccccagtg cctctcctgg ccctggaagt tgccactcca gtgcccacca gccttgtcct
781 aataaaaatta agttgcac

11

Figure 19

Rat GIP Promoter -1 to -1894 bp.

(-1894)

5' _GAGTGGCGACAGGCTGCTAGCAGGCTCACACTGAGCTAACCCACCCATAT
ATATACA TAGTTACTATTAGCTTATTTATTTTAAGATTATCATTATATATAG
TACACTGTAGTGTCTAGATAACACAGAAGAGGCATCGGTCTTACAGAGAGCCACC
ATGTGGTTGCTGGGATTGAACTCACCTCTGGCAGAGCAGTCGGTGCTTAACG
CTGAGCCATCTCTCCAGCGCCCCAAAGCCCAGCTTTAAAAATATTTAAAATTCT
TTCTACAGATTGTTATGTATATGAGTGTGTTGTGATGCGTTGATGTGTGTA
CTGTGCA TGGCACATGCCAGTGGGCCACAGACAGAGGGACATGAGATTCCCCTGAA
ACTTGGAGTTACAGATGGCTGTGGCTGCCATGTGAGTGAGCGCCTTGGAACCAA
CCTGGTCCTGCACAAAAGCAACAAGCACTCTTAATCGTTGAGGCCACCTCTCCAACC
CCTGATATTCTTCTGTTGGTCATTAAAATTGATAAACAGAGGGTTCTTATT
TAAAGATTATTTATTTATGTGAGTACACTGTTGCTCTTCAGACACATAGAAGAG
GGCATTGCTGGATTCTGCTACAGATGGTTGTGAGCCACCATGTGGTGCTGGAGTT
AAACTCAGGACCTCTGGAAGAGCAGTCAGTGCTCTAACCACTGAGCCATCTCTCCA
GTCCCTTCCTCAACCTCTGAGAACAGGAAACTCCACCATGATTGGCTTATAAATC
GTTATATGGACCTACTAAGGATGTAACAACACTGGGAGCATGCTTACCTAGCATGTCCG
AAACCCGGAGTTCAAGGACAACATCAATTGAGACCAGCCTGGGACTTACCAAA
GAAAGAAAAGAGAGAAATAAAATAGATAGATAAAATAAAATAAGTAAATAA
ATATCTTATGGCTGGAGAGTTGGTCAGTGTGTTAAGAGCACTTATTGTGGGGTTGG
GATTATCTCAGTGGTAGAGCGTTGCCCTAGGAAGCTCAAGGCCCTGGGTCGGTCC
CCAGCTCCGGAAACAAAACAAAACAAAACAAACAAACAAACAAAAAC
CTGTCGGAAAACACCTAAATAAAGATATATATATAATATACATATAATAT
ATATATGATATATATATATATATCTTGTGGAGGAAGCTACCTTCTTCTT
GAGCCTCCAACACATAAAATGTGCCCTGTCATCCCATTCAATTGCCCAAGTGGGAA
ACCATGTGACTATAAACTCTAAGTCCCTAGTCACTAGGAACACTCTCAAGACACCTACC
TCAGGCAGCATCACTCCGGAGTGCCACCATATTCAAGTTAACATCCACATCTGGGAT
TCAGATCCCAGATCCCTCTGTCAGAAGTCACCTACAGCTTGTGGGGTGC
CCCTCCCTCAGAGAGTGCCACCCGAGTTGACCTCACCAAGGCAACCCCTTGTACC
CACAGAATCCAACAGGAAGTAGGGGGAGAACAGGCCGGCCTGTGCCAGAAAAAA
AGAGGGGAGGGAGAACAGGGGTGCTCAGCCTACCAACCGGGCAGGTCCCAGATAACA
CTGCAGATAACCAAATGTTAATCACCCATTAGCACAGGCCAGAGCAAAAGGGAAA
GTGATTAGGTGTATAATGGGGTCACTGGCAGGAGCAGTGGCTTGAGCTTCAA
GATAAGAGGTTTCAGGTTAACAGCACCCGTGGTGTGGATAAGGAAGCTAA
CACAGGGTCTGAAGCAAGATC_3' (-1)

Figure 20