Tree Map

Expenditure

280,256

3,636

Category (group). Color shows sum of Expenditure. Size shows sum of Expenditure. The marks are labeled by Category (group).

Tree Map

Category (group). Color shows sum of Expenditure. Size shows sum of Expenditure. The marks are labeled by Category (group).

Tree Map

Category (group). Color shows sum of Expenditure. Size shows sum of Expenditure. The marks are labeled by Category (group).

Expenditure 3,636 280,256

Area Chart

Sum of Value for each Year (group).

Area Chart

Sum of Value for each Year (group).

Area Chart

Sum of Value for each Year (group).

Sum of Value for each Year (group). Color shows details about Period (group).

Sum of Value for each Year (group). Color shows details about Period (group).

Sum of Value for each Year (group). Color shows details about Period (group).

Sum of Value for each Year (group). Color shows details about Period (group).

```
import matplotlib.pyplot as plt
import squarify
import numpy as np
import pandas as pd

In [5]:

df=pd.read_csv("unemployement-rate-1948-2010.csv")
df
```

Out[5]:		Series id	Year	Period	Value
	0	LNS14000000	1948	M01	3.4
	1	LNS14000000	1948	M02	3.8
	2	LNS14000000	1948	M03	4.0
	3	LNS14000000	1948	M04	3.9
	4	LNS14000000	1948	M05	3.5
	•••				
	741	LNS14000000	2009	M10	10.1
	742	LNS14000000	2009	M11	10.0
	743	LNS14000000	2009	M12	10.0
	744	LNS14000000	2010	M01	9.7
	745	LNS14000000	2010	M02	9.7

746 rows × 4 columns

```
In [12]: df1=pd.read_csv("expenditures.txt", sep='\t')
    df1
```

Out[12]:	year		category	expenditure	sex
	0	2008	Food	6443	1
	1	2008	Alcoholic Beverages	444	1
	2	2008	Housing	17109	1
	3	2008	Apparel	1801	1
	4	2008	Transportation	8604	1
	•••				
	345	1984	Education	303	1
	346	1984	Tobacco Products	228	1
	347	1984	Miscellaneous	451	1
	348	1984	Cash Contributions	706	1
	349	1984	Personal Insurance	1897	1

350 rows × 4 columns

Out[19]: expenditure

```
category
Alcoholic Beverages
                           8424
           Apparel
                          41833
Cash Contributions
                          27987
         Education
                          14498
     Entertainment
                          44273
              Food
                         119297
        Healthcare
                          47383
           Housing
                         280256
     Miscellaneous
                          18327
     Personal Care
                          11123
 Personal Insurance
                          84269
           Reading
                           3636
  Tobacco Products
                           6936
    Transportation
                         160694
catg
```

```
In [27]:
          catg = df1.groupby('category')[['expenditure']].sum().index.get_level values(
Out[27]: ['Alcoholic Beverages',
           'Apparel',
           'Cash Contributions',
           'Education',
           'Entertainment',
           'Food',
           'Healthcare',
           'Housing',
           'Miscellaneous',
           'Personal Care',
           'Personal Insurance',
           'Reading',
           'Tobacco Products',
           'Transportation']
In [28]:
          exp = df1.groupby('category')[['expenditure']].sum().reset index().expenditure
          exp
```

```
Out[28]: [8424,
           41833,
           27987,
           14498,
           44273,
           119297,
           47383,
           280256,
           18327,
           11123,
           84269,
           3636,
           6936,
           160694]
In [35]:
          plt.figure(figsize=(15, 6))
          squarify.plot(sizes=exp, label=catg)
          plt.axis('off')
          plt.show()
```


Value Out[30]: Year 1948 45.0 1949 72.6 1950 62.5 1951 39.4 1952 36.3 ••• ... 2006 55.3 2007 55.3 2008 69.8 2009 111.3

2010

63 rows × 1 columns

19.4

```
In [34]:
    year = df.groupby('Year')[['Value']].sum().index.get_level_values(0).tolist()
    val = df.groupby('Year')[['Value']].sum().reset_index().Value.values.tolist()
    plt.figure(figsize=(15, 6))
    plt.fill_between(year, val, color='green')
    plt.title('Unemployment Rate Per Year')
    plt.xlabel('Year')
    plt.ylabel('Unemployment Rate')
    plt.show()
```



```
In [36]: df2 = df[(df['Year']>=1984) & (df['Year']<=2008)] df2
```

Out[36]:		Series id	Year	Period	Value
	432	LNS14000000	1984	M01	8.0
	433	LNS14000000	1984	M02	7.8
	434	LNS14000000	1984	M03	7.8
	435	LNS14000000	1984	M04	7.7
	436	LNS14000000	1984	M05	7.4
	•••				
	727	LNS14000000	2008	M08	6.1
	728	LNS14000000	2008	M09	6.2
	729	LNS14000000	2008	M10	6.6
	730	LNS14000000	2008	M11	6.9
	731	LNS14000000	2008	M12	7.4

300 rows × 4 columns

```
in [38]:
j = df2.groupby('Year')[['Value']].sum()
j
```

Out[38]:	Value
----------	-------

Year	
1984	90.1
1985	86.3
1986	84.0
1987	74.1
1988	65.9
1989	63.1
1990	67.4
1991	82.2
1992	89.9
1993	82.9
1994	73.2
1995	67.1
1996	64.9
1997	59.3
1998	54.0
1999	50.6
2000	47.6
2001	56.9
2002	69.4
2003	71.9
2004	66.5
2005	61.0
2006	55.3
2007	55.3
2008	69.8

```
In [40]:
    year = df2.groupby('Year')[['Value']].sum().index.get_level_values(0).tolist(
    val = df2.groupby('Year')[['Value']].sum().reset_index().Value.values.tolist()
```

Out[41]: expenditure

year	
1984	21972
1985	23489
1986	23865
1987	24415
1988	25893
1989	27811
1990	28379
1991	29614
1992	30296
1993	30692
1994	31733
1995	32262
1996	33798
1997	34820
1998	35536
1999	36996
2000	38045
2001	39519
2002	40676
2003	40818
2004	43392
2005	46407
2006	48400
2007	49619
2008	50489

```
In [45]:
           exp = df1.groupby('year')[['expenditure']].sum().reset_index().expenditure.va
           exp
Out[45]: [21972,
           23489,
           23865,
           24415,
           25893,
           27811,
           28379,
           29614,
           30296,
           30692,
           31733,
           32262,
           33798,
           34820,
           35536,
           36996,
           38045,
           39519,
           40676,
           40818,
           43392,
           46407,
           48400,
           49619,
           504891
In [47]:
          p = []
          for i in exp:
               p.append(i / 1000)
          р
```

```
Out[47]: [21.972,
           23.489,
           23.865,
           24.415,
           25.893,
           27.811,
           28.379,
           29.614,
           30.296,
           30.692,
           31.733,
           32.262,
           33.798,
           34.82,
           35.536,
           36.996,
           38.045,
           39.519,
           40.676,
           40.818,
           43.392,
           46.407,
           48.4,
           49.619,
           50.489]
In [49]:
          plt.figure(figsize=(15, 6))
          plt.stackplot(year,p, val, labels=['Expenses (Thousands)', 'Unemployment Rate'
          plt.legend(loc='upper left')
```

Out[49]: <matplotlib.legend.Legend at 0x7f82c0e7fa00>

In []:

```
library(ggplot2)
getwd()
setwd("~/Documents/DSC 640") library(readr)
df <- read_csv("unemployement-rate-1948-2010.csv")
x <- aggregate(df$Value, by=list(Category=df$Year), FUN=sum)
year <- x$Category
val <- x$x
ggplot(x, aes(x=year, y=val)) + geom_area() + ggtitle("Unemployment by Year") df1 <- read.delim("expenditures.txt", sep="\t')
df2 <- aggregate(df1$expenditure, by=list(Category=df1$category), FUN=sum) df2
catg <- df2$Category
exp <- df2$x install.packages("treemapify")
library(treemapify)
ggplot(df2, aes(area = exp, fill = catg, label = catg)) + geom\_treemap() + geom\_treemap\_text() \\ library(dplyr)
year <- df$Year
period <- df$Period
value <- df$Value
ggplot(df, aes(x=year, y=value, fill=period)) + geom_area()
```


Unemployment by Year 120 **-**90 -60 -30 -0 -1980 1960 2000 year

