Abstract Algebra Homework 7

Huize(Jack) Shi - A92122910 March 2, 2018

Section 9:

6.

$$\{3n \mid n \in \mathbb{Z}\}, \{3n+1 \mid n \in \mathbb{Z}\}, \{3n+2 \mid n \in \mathbb{Z}\}\}$$

9.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 3 & 7 & 8 & 6 & 2 & 1 \end{pmatrix}$$

23.

a. False.

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} = (1,2)(3,4)$$

- b. True. A cycle can be written in permutation presentation.
- c. False. The even and odd properties must be mutually exclusive.
- d. False. Counter example: $H = \{(123), (123)(123)\}$
- e. False. $\frac{5!}{2} = 60 \neq 120$
- f. False. S_1 contains only the identity therefore it is trivially cyclic.
- g. True.
- h. True.
- i. True.
- j. False. Odd permutations in S_8 is not closed. Permutation multiplication of two odd permutation result in a even permutation.

29.

Let $\omega \in H$ be an odd permutation, $\epsilon \in H$ be an even permutation. We know ϵ exists if ω exists because odd permutation is not a closed, since odd permutation becomes even under permutation multiplication. Wants to show there exists bijection $f(\epsilon) = \sigma \epsilon$. This function maps even permutation to odd permutation. f is a bijection because $f^{-1}(\tau) = \sigma^1 \tau$. τ^{-1} exists because τ is a odd permutation in H which is bijective.

This shows that f is a bijection that maps even permutations in H to odd permutations in H. This means the cardinality of odd permutation in H must equal to the cardinality of even permutation if there exists a odd permutation. Since even permutations are closed under permutation multiplication, every subgroup H of S_n for $n \geq 2$, either all the permutations in H are even or exactly half of them are even (cardinality are the same between even permutations and odd permutations in H).

34.

Let
$$\tau = (a_1 \ a_2 \ a_3 \cdots a_{2k} \ a_{2k+1})$$

$$\tau^2 = (a_1 \ a_3 \ a_5 \cdots a_{2k+1} \ a_2 \ a_4 \cdots a_{2k})$$

Hence shown square of an odd length cycle is a cycle.

36.

Wants to show $\lambda_a(g)=ag$ is a bijection from G to G. $\lambda_a^{-1}(g')=a^{-1}g'$ is the inverse. It is well defined because G is a group therefore $a\in G$ implies $a^{-1}\in G$