Regression Assignment

Insurance Charges Prediction

Dataset:insurance_pre.csv

- 1. Problem Statement: Predict the insurance charges based on the parameters provided in the dataset.
- 2.Basic Info about Dataset: The dataset contains 1338 rows × 6 columns. The columns are ['age', 'sex', 'bmi', 'children', 'smoker', 'charges']
- 3.Pre-processing Method: The columns 'sex' and 'smoker' is a string categorical data. Hence using Ordinal Encoder we are converting string to number.

4.

Model: Multiple Linear Regression

r score/accuracy is: 0.789479034986701

Model: Support Vector Machine

C value	Kernel <i>linear</i>	Kernel <i>poly</i>	Kernel <i>rbf</i>	Kernel <i>sigmoid</i>
0.01	-0.07976206842205191	-0.08930331146175452	- 0.0896956828423929 3	- 0.089712455753105 27
0.1	-0.12207668380229886	-0.08625251710262294	- 0.0895762459881295 2	- 0.089743519104659 61
1	-0.11166128719608448	-0.06429258402105531	- 0.0884273277691387 5	- 0.089941217025675 7
10	-0.001617632488647213	-0.09311615532848516	- 0.0819691039642085 3	-0.09078319814614
100	0.5432818196692804	-0.09976172333666167	- 0.1248036777503966 9	- 0.118145548284114 05
1000	0.6340369312632063	- 0.055505937517909665	- 0.1174909243918322 9	- 1.665908131553306 4
3000	0.759089036774111	0.04892896389686585	- 0.0962128508309709 8	- 12.01904810585073 2

The most highest r2 score and accuracy is with c=3000,kernel=linear is 0.759089036774111

Model : Decision Tree

criterion	max_features	splitter	min_sample_split	max_depth	R2 Score
squared_error	None	best	3	2	0.8569635601474321
squared_error	None None	<mark>best</mark>	<mark>10</mark>	2	0.8569635601474321
squared_error	None	random	10	2	0.7830284613940716
squared_error	None	random	3	2	0.7538171837959771
squared_error	sqrt	best	3	2	0.43133147427721696
squared_error	sqrt	best	10	2	0.1203259297863446
squared_error	sqrt	random	3	2	0.7671705086777151
squared_error	sqrt	random	10	2	0.6708866467634225
squared_error	log2	best	3	2	0.6751467884822075
squared_error	log2	best	10	2	0.7239504326343124
squared_error	log2	random	3	2	0.7513136703586799
squared_error	log2	random	10	2	0.4270787261079686

criterion	max_features	splitter	min_sample_split	max_depth	R2 Score
friedman_mse	None	best	3	2	0.8569635601474321
friedman_mse	None	best	5	2	0.8569635601474321
friedman_mse	None	random	3	2	0.7469673777081562
friedman_mse	None	random	7	4	0.8724621145030536
friedman_mse	sqrt	best	3	10	0.78175532466799
friedman_mse	sqrt	best	5	10	0.7909667944419413
friedman_mse	sqrt	random	3	10	0.7369044395699538
friedman_mse	sqrt	random	5	10	0.79604328654133
friedman_mse	log2	best	3	2	0.7513136703586799
friedman_mse	log2	best	5	2	0.44543266260573744
friedman_mse	log2	random	3	10	0.7795851157345066
friedman_mse	log2	random	4	10	0.8054612864790988

criterion	max_features	splitter	min_sample_split	max_depth	R2 Score
absolute_error	None	best	5	3	0.8679279967169236
absolute_error	None	best	5	4	0.8823500165656668
absolute_error	None	random	5	4	0.8615866553087528

absolute_error	None	random	4	6	0.8716488546132559
absolute_error	sqrt	best	4	4	0.8608170102197585
absolute_error	sqrt	best	5	5	0.8712629202707325
absolute_error	sqrt	random	3	10	0.8116508518684163
absolute_error	sqrt	random	5	10	0.841964998570084
absolute_error	log2	best	7	8	0.8479826058537915
absolute_error	log2	best	3	4	0.8718019982495898
absolute_error	log2	random	3	7	0.7547237065327816
absolute_error	log2	random	4	4	0.8108096684781412

criterion	max_features	splitter	min_sample_split	max_depth	R2 Score
poisson	None	best	7	4	0.884713903308847
poisson	None	best	4	7	0.8229327876970126
poisson	None	random	4	7	0.8632836562581366
poisson	None	random	3	6	0.8739421860539673
poisson	sqrt	best	5	5	0.8653850237395369
poisson	sqrt	best	5	7	0.8061288831546138
poisson	sqrt	random	5	7	0.8512259746260167
poisson	sqrt	random	5	10	0.7728797574287636
poisson	log2	best	7	6	0.8574298342328606
poisson	log2	best	3	5	0.8542570000558944
poisson	log2	random	6	7	0.7497301270204006
poisson	log2	random	7	6	0.7955622289236295

The highest accurate model is DecisionTreeRegressor(criterion='poisson', max_depth=5, max_features=None,min_samples_split=3,splitter='best') is 0.884713903308847

Model: Random Forest

n_estimators	Max_depth	Min_samples_leaf	R2 Score
100	10	2	0.8792115089484558
300	10	5	0.8872668462833726
300	5	5	0.8921108090344467
500	5	5	0.892074804534408
500	7	10	0.8893914852816728
1000	7	10	0.8891691066052605
1000	5	5	0.8924971855669555

5.Final Model

Random Forest with n_estiamtors=1000,max_depth=5,min_samples_leaf=5 with accuracy 0.8924971855669555