本次课程提纲:随机图

- 随机图概念
- 随机图性质

随机图定义

- 给定N = p,对任意一对顶点,以概率p 连边,产生随机图记为 G_{np}
- $\bar{M} = p \cdot {N \choose 2} = pN(N-1)/2$
- 平均度数 $\bar{k} = 2\bar{M}/N = (N-1)p$

Pál Erdös (1913-1996)

Alfréd Rényi (1921-1970)

Erdös-Rényi model (1960)

度的分布

•
$$P(k) = {N-1 \choose k} p^k (1-p)^{N-1-k}$$

•
$$\bar{k} = 2\bar{M}/N = (N-1)p$$
, $\sigma_k^2 = (N-1)p(1-p)$, $\frac{\sigma_k}{\bar{k}} \simeq \frac{1}{\sqrt{N}}$

定理

 $k \ll N$ 时,P(k) 近似于 Poisson 分布

证明

•
$$\binom{N-1}{k} = (N-1)(N-2)\cdots(N-k+1)/k! \simeq (N-1)^k/k!$$

•
$$(1-p)^{N-1-k} \simeq \left[1 - \frac{\bar{k}}{N-1}\right]^{N-1-k} \simeq \exp(-\bar{k})$$

•
$$P(k) \simeq \frac{\bar{k}^k \exp(-\bar{k})}{k!}$$

度的分布

连通分支

定理

记 N_G 为 G_{Np} 最大连通分支的顶点个数

- $\stackrel{.}{\underline{}}$ $\underline{k} = Np < 1$ $\stackrel{.}{\underline{}}$ $\stackrel{.}{\underline{}}$ $\stackrel{.}{\underline{}}$ $\stackrel{.}{\underline{}}$ $\stackrel{.}{\underline{}}$ $\stackrel{.}{\underline{}}$ $\stackrel{.}{\underline{}}$ $\stackrel{.}{\underline{}}$ $\stackrel{.}{\underline{}}$ $\stackrel{.}{\underline{}}$
- $\stackrel{\text{def}}{=} \bar{k} = 1 \text{ pd}, \ N_G = O(N^{2/3})$
- 当 $1 < \bar{k} < \ln N$ 时,巨连通分支存在
- 当 $\bar{k} > \ln N$ 时, $N_G = N$,即 G 是连通图

连通分支:临界点

- 记 $u = 1 N_G/N$ 为不在最大连通分支顶点比例,也是顶点不在最大连通分支的概率
- $u = (1 p + pu)^{N-1} \simeq [1 p(1 u)]^N = [1 (1 u)\bar{k}/N]^N \simeq \exp[-(1 u)\bar{k}]$
- $\diamondsuit s = 1 u$, $\overleftarrow{q} 1 s = \exp(-k\overline{s})$
- $\bar{k} \le 1$ 时,有唯一解 s = 0
- $\bar{k} > 1$ 时,除了 0 之外还有解 $s \in (0,1)$,对应巨连通分支

连通分支:临界点

- 考察第二个临界点 $\bar{k} = \ln N$
- 假设仅有一个顶点不在最大连通分支里: s = 1 1/N
- $\pm 1 s = \exp[-\bar{k}s]$, $\pm 1/N = 1 s = \exp[-\bar{k}s] \simeq \exp[-\bar{k}]$
- $\bar{k} = \ln N$ 为第二个临界点,对应全连通

六度分离

- 考察全连通的情况 $\bar{k} > \ln N$
- 对任意顶点,有 \bar{k}^d 个距离为d的顶点
- $\sum_{d=0}^{d_{max}} \bar{k}^d \leq N$, $d_{max} = O(\ln N / \ln \bar{k})$
- 假定有 70 亿人,每人认识 100 人,任意两人距离 $\ln(7*10^9)/\ln 100 \simeq 5$