第1章 极值原理

1.1 调和函数的极值原理

定义 1.1 (调和函数)

设 Ω 是 \mathbb{R}^n 上的一个开集. 设 $u\in C^2\left(\Omega\right)$. 若 $\Delta u=0$ 在 Ω 上成立, 则称 u 是 Ω 上的调和函数.

定理 1.1 (平均值性质)

若 u 是 Ω 上的调和函数, $B_r(x_0) \subseteq \Omega$. 则

1.

$$u\left(x_{0}\right) = \frac{1}{\operatorname{vol}\left(B_{r}\left(x_{0}\right)\right)} \int_{B_{r}\left(x_{0}\right)} u\left(x\right) dx$$

2.

$$u(x_0) = \frac{1}{\operatorname{area}(\partial B_r(x_0))} \int_{\partial B_r(x_0)} u(x) dS$$

1.2 调和函数的极值原理

定理 1.2 (弱极值原理)

设 Ω 是 \mathbb{R}^n 上的一个有界开集. 若 u 是 Ω 上的调和函数, 且在 $\bar{\Omega}$ 上连续. 则

1. u 在 $\bar{\Omega}$ 上的最大值在边界 $\partial\Omega$ 上取得:

$$\max_{x \in \bar{\Omega}} u\left(x\right) = \max_{x \in \partial \Omega} u\left(x\right)$$

2. u 在 $\bar{\Omega}$ 上的最小值在边界 $\partial\Omega$ 上取得:

$$\min_{x \in \bar{\Omega}} u\left(x\right) = \min_{x \in \partial\Omega} u\left(x\right)$$

定理 1.3 (强极值原理)

设 Ω 是 \mathbb{R}^n 中的一个连通开集. 若 u 是 Ω 上的调和函数. 若以下成立其一:

- 1. u 在 Ω 的内部某点 x_0 取得局部最大值
- 2. u 在 Ω 的内部某点 x_0 取得局部最小值.

,则u在整个 Ω 上是常函数.

 \Diamond

1.3 热方程的极值原理

本节中, 考虑区域 $\Omega\subseteq\mathbb{R}^n$ 上, 时间 $t\in(0,T]$ 内的热方程

$$u_t - \Delta u = 0, \quad (x, t) \in \Omega \times (0, T]$$

定义 1.2 (拋物型边界)

对于热方程, 定义其抛物型边界 (Parabolic Boundary) $\partial_p \Omega_T$ 为

$$\partial_p \Omega_T = (\bar{\Omega} \times \{0\}) \cup (\partial \Omega \times [0, T])$$

定理 1.4 (弱最大値原理)

设 $u\left(x,t\right)\in C^{2}\left(\Omega_{T}\right)\cap C_{0}\left(\overline{\Omega_{T}}\right)$ 是在 Ω_{T} 上满足 $u_{t}-\Delta u=0$ 的一个经典解. 那么 u 在 $\bar{\Omega}_{T}$ 上的最大值和最小值一定在抛物型边界 $\partial_{p}\Omega_{T}$ 上取得. 即:

$$\max_{(x,t)\in\bar{\Omega_{T}}}u\left(x,t\right)=\max_{(x,t)\in\partial_{p}\Omega_{T}}u\left(x,t\right)$$

定理 1.5 (强最大值原理)

设 $u\left(x,t\right)\in C^{2}\left(\Omega_{T}\right)\cap C_{0}\left(\overline{\Omega_{T}}\right)$ 是在 Ω_{T} 上满足 $u_{t}-\Delta u=0$ 的一个经典解. 如果 u 在 Ω_{T} 的内部某个点 (x_{0},t_{0}) 处达到 $\overline{Q_{T}}$ 上的最大值, 那么 u 在区域 $\overline{\Omega}\times\left[0,T\right]$ 上必须是常数.

❤ 第1章 练习 ❤

Problem 1.1

1. 设 $\Omega \subset \mathbb{R}^n$ 为有界区域, 记 $\Omega' = \mathbb{R}^n \setminus \overline{\Omega}$. 考虑如下调和方程的 Dirichlet 外问题:

$$\begin{cases}
-\Delta u = 0, & x \in \Omega' \\
u|_{\partial\Omega} = \varphi(x) \\
\lim_{|x| \to +\infty} u(x) = 0.
\end{cases}$$

利用调和方程的极值原理,证明上述外问题的经典解是唯一的.

2. 并举例说明, 在没有 $\lim_{|x|\to+\infty}u(x)=0$ 的条件下经典解可以是不唯一的.

Proof

1. 设 u_1, u_2 是外问题的两个经典解, 令 $w = u_1 - u_2$, 则 w 是满足以下性质

$$\begin{cases}
-\Delta w = 0, \\
w|_{\partial\Omega} = 0, \\
\lim_{|x| \to +\infty} w(x) = 0
\end{cases}$$

对于任意的 R>0, 使得 $\bar{\Omega}\subseteq B_R(0)$, 定义 $D_R:=B_R(0)\setminus \bar{\Omega}$, 则 D_R 是 \mathbb{R}^n 上的有界开集, 并且 $\partial D_R=\partial \Omega\cup \partial B_R(0)$.

由于 $\lim_{|x|\to +\infty} w(x)$, 对于任意的 $\varepsilon>0$, 存在 $R(\varepsilon)>0$, 使得 $\bar\Omega\subseteq B_R(0)$ 且 $\sup_{x\in\partial B_R(0)}|w(x)|<\varepsilon$ 对于所有的 $R>R(\varepsilon)$ 成立. 又 $w|_{\partial\Omega}=0$ 由极值原理,

$$-\varepsilon < \min_{x \in D_R} w\left(x\right) \le w\left(x\right) \le \max_{x \in D_R} w\left(x\right) < \varepsilon, \quad \forall R > R\left(\varepsilon\right), \forall x \in \partial D_R,$$

对于 Ω' 中任意一点 x_0 , 可以选取足够大的 R(比如 $R=\max\left(R\left(\varepsilon\right),\left|x_0\right|+1\right)$), 使得

$$|w(x_0)| \le \varepsilon$$

由于 ε 是任取的, $w(x_0) = 0$. 这表明 $w \equiv 0$. 经典解唯一.

2. 考虑 ℝ3 上的外问题

$$\begin{cases}
-\Delta u = 0, \\
u|_{\partial B_1(0)} = 0 \\
\lim_{|x| \to \infty} u(x) = 0
\end{cases}$$

令

$$u\left(x\right) = 1 - \frac{1}{|x|}$$

,则

$$\Delta u = \Delta \left(-\frac{1}{r} \right) = \frac{1}{r^2} \partial_r \left(r^2 \partial_r \left(-\frac{1}{r} \right) \right) = 0, \quad r > 0$$

于是

$$u\left(x\right) = 1 - \frac{1}{|x|}$$

是外问题的一个解, 但是 $u\equiv 0$ 也是一个解, 这就说明了外问题不具有唯一性.