The λ -calculus

Foundations for Programming Languages MASTER IN SOFTWARE AND SYSTEMS Universidad Politécnica de Madrid/IMDEA Software Institute

November 15, 2017

To be turned in by December 1, 2017. Send them to me by mail to jmarino@fi.upm.es.

Fundamentos

Exercise 1. Clasifica los siguientes términos según α -equivalencia: $\lambda x.x$ y, $\lambda x.x$ z, $\lambda y.y$ z, $\lambda z.z$ z, $\lambda z.z$ y, $\lambda f.f$ y, $\lambda f.f$ f, $\lambda y.\lambda x.x$ y, $\lambda z.\lambda y.y$ z.

Exercise 2. Proporciona un término α -equivalente donde cada abstracción sea sobre un nombre de variable distinto: $\lambda x.((x(\lambda y.xy))(\lambda x.x))(\lambda y.yx)$.

Exercise 3. Reduce a forma normal el término $(\lambda x.(\lambda y.x y)) y$.

Exercise 4. Dados los siguientes *combinadores*: $S = \lambda x.\lambda y.\lambda z.(x\ z)(y\ z)$, $K = \lambda x.\lambda y.x$ e $I = \lambda x.x$, demuestra la equivalencia $S \ K \ K = I$.

Matemática constructiva en el cálculo λ

Exercise 5. Usando la codificación de booleanos en el cálculo λ puro de Church, define λ -términos en forma normal CONJ, DISY y NEG para representar conjunción, disyunción y negación, respectivamente. (Pista: define un λ -término COND que represente un *if-then-else* y aplica β -reducción.)

Exercise 6. Usando la codificación de Church de los números naturales define suma, multiplicación y exponentiation.

Exercise 7. Piensa una codificación de pares en el cálculo λ . Proporciona λ -términos PAIR (para construir un par) y las proyecciones FST y SND.

Exercise 8. Define las funciones predecesor y sustracción de naturales. (Pista: apóyate en los pares del ejercicio anterior.)

Exercise 9. Supongamos que vamos a representar la lista $[a_1, a_2 \dots a_n]$ en el cálculo lambda mediante el término

$$\lambda f.\lambda x.f \ a_1 \ (f \ a_2(...f \ a_n \ x))$$

Define:

- a. NIL, el constructor de la lista vacía,
- b. APP, una función para concatenar dos listas,
- c. HD, que proporciona el primer elemento de una lista no vacía, y
- d. una función ISEMPTY para comprobar si una lista es vacía.

El cálculo λ simplemente tipado

Exercise 10. Da una demostración en TA_{λ} del siguiente tipado para la composición de funciones:

$$\vdash \lambda f. \lambda g. \lambda x. f(g \ x) : (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)$$

Exercise 11. Proporciona un tipado para el combinador $S = \lambda x.\lambda y.\lambda z.(x z)(y z)$.

Exercise 12. Proporciona un tipado para el término $II = (\lambda x.x)(\lambda x.x)$.

Exercise 13. Proporciona tipos para los términos del ejercicio 5, acompañados de su derivación correspondiente.

Exercise 14. Demuestra que si $\Gamma \vdash M : \sigma$ entonces $\Gamma[\rho \mapsto \tau] \vdash M : \sigma[\rho \mapsto \tau]$.

Exercise 15. Demuestra que si Γ , $x : \sigma \vdash M : \tau \vee \Gamma \vdash N : \sigma$ entonces $\Gamma \vdash M[x \mapsto N] : \tau$.

Exercise 16. Demuestra que si $M \leadsto_{\beta}^* M'$ y $\Gamma \vdash M : \sigma$ entonces $\Gamma \vdash M' : \sigma$.

El cálculo λ en Haskell

Exercise 17. En Haskell, define funciones boolChurch y boolUnchurch para traducir booleanos Haskell a booleanos de Church y viceversa. Úsalas para comprobar la corrección de tus soluciones al ejercicio 5.

Exercise 18. Análogamente al ejercicio anterior, define en Haskell funciones para convertir entre las representaciones Haskell y Church de los números naturales y comprueba la corrección de tus soluciones al ejercicio 6.

Exercise 19. Define un tipo de datos Haskell para representar la sintaxis abstracta del cálculo λ .

Exercise 20. Apoyándote en el ejercicio anterior, define una función Haskell para obtener las variables libres de un término lambda.

Exercise 21. Apoyándote en los ejercicios anteriores, define una función Haskell que realice la *sustitución sin captura*.

Exercise 22. Apoyándote en los ejercicios anteriores, define una función Haskell que realice la β -reducción.

Exercise 23. Apoyándote en los ejercicios anteriores, define una función Haskell que reduzca un término lambda a forma β -normal. (Su terminación solo estará garantizada en el caso de términos tipables en TA $_{\lambda}$.)