Modos de Convergencia:

 (X, A, μ) espació medida. Existen diferentes vociones de convagencia asociados a funciones en $M_R(A)$.

Def: Sea IfnInzi $\subseteq M_R(A)$ masec. de finiciones mesurables, y sea $f \in M_R(A)$ Decimos que IfnInzi, converge printualmente a f Ai para todo eso, y $\forall x \in X$ $\exists N(\epsilon, x) \in \mathbb{N}$ tal que $n \ge N(\epsilon, x) \Rightarrow |f_n(x) - f_n(x)| < \epsilon$.

Notawin: lin fn(x)=f(x) fn -> f.

Def: $\{f_n\}_{n\geq 1}$ converge uniformemente a f si $\forall \epsilon > 0, \exists N(\epsilon) \approx N$ tal que $n \geq N(\epsilon) \Rightarrow |f_n(x) - f(x)| \langle \epsilon, \forall x \in X.$ Motación: franif. f es el limite miforme de las for

Def: $1fn_{n\geq 1}$ converge can en todo punto (c.t.p.) a f si existe MEA con $\mu(M)=0$ talque 1670 y todo 1670 Xe X-M, existe 1670 Xe Xe X-M, existe 1670 1

Notación: fu ctp.

Obs! · convergencia miforme => convergencia puntual => convergencia c.t.p.

#

#

Matarien: fr x>f

Dof. Si Ifn'in>, E LP(X) of f E LP(X), decimenque In converge en LP
a f si 48>0 3 N(E) 6 N tal que

 $n \geq N(\epsilon) \Rightarrow \|f_n - f\|_{p} \leq \epsilon.$ $\left(\int |f_n - f|^p d\mu\right)^{1/p} \leq \epsilon.$

Notavión: fr 19

Teorema: Sea $\mu(X) \angle \infty$ y $\{f_n\}_{n\geq 1} \subseteq L^p(X)$ que converge mi formente a f. Entonus, $f \in L^p(X)$ y $\{f_n\}_{n\geq 1}$ converge en L^p a f.

Prueba; Season y sea N(E) eIN tal que

 $n \ge N(s) \Rightarrow |f_n(x) - f(x)| \angle \varepsilon, \forall x \in X.$

Sin= N(E) entences

$$\|f_n - f\|_p = \left(\int |f_n(x) - f(x)|^p d\mu \right)^{p} \leq \left(\int \varepsilon^p d\mu \right)^{p} = \left(\varepsilon^p \int d\mu \right)^{p}$$

$$\leq \varepsilon \cdot \mu(x) = \varepsilon'.$$

000

Convergencia uniforme => Convergencia (P

 \forall

Ejemplo: X=[0,1], A=B(X), W=X. Considerarmon los intervalos [0,1], [0,1/2],[1/2,1], [0,1/3],[1/3,2/3],[2/3,1], [0,1/4],[1/4,1/2],[1/3,3/4],[3/4,1], ... Definamos Ifn no & M(A) por

fn = 11.

y sea f = 0.

$$n = \frac{m(m+1)}{2} = {m+1 \choose 2} = \sum_{i=1}^{m} v_i \qquad S_i \quad n \ge \frac{m(m+1)}{2} \implies f_n \quad m_m$$

indicadors en un intervalo de longitud & m

$$\Rightarrow \|f_n - f\|_p^p = \int |f_n - f|^p d\mu = \int |f_n|^p d\mu = \int |1_{I_n}|^p d\mu$$

⇒ fn LP + p>1.

Teorema: $f_n \xrightarrow{\text{unif}} f \Rightarrow f_n \xrightarrow{\mu} f$.

Por otro lado, trex fijo, that posee une subsemencia identicante ignal a 1, y otra identicamente ignal a 0.

Def: Ifn's nzi es can' uniformemente convergente a f si para Todo S>O, existe Es & f con $\mu(E_S) \wedge S$ mythel que Ifn n_2 , converge miformemente a f en X-Ez.

Notación: In mifir f

Obs! Ifn's, er Canchy en medida > Ifn's converge en medida.

Podemos rescatar un res. avialogo a Bolzano-Weverstraß.

Teorema: (Riesz). Si 4fn/n=1 es de Cauhy en medida. Entonnes, existe una subsemenció 2 fnx que converge c.t.p. y converge en medida a fe M(A).

| Hezo JN(E): lim p({1 xeX: |fm(x)-fn(x)| > Eb) = 0.

Jerargnia de modos de convergencia

fn mif

fn le

f

Espawos du Probabilidad (X, A, H) = (II, P(I), P). \Xn\frac{1}{n\zero} secrencia de v.a. X v.z. definida en \Q. Def: 1 Xny converge en distribución a X (converge debilmente, o converge en ley) pi $\lim_{n\to\infty} F_n(x) = F(x) \qquad f_n = dist \text{ ac. de } X_n$ F = " " X $\times \xrightarrow{d} \times$ Def: hxnynzi converge en probabilidad a X si tE>0 $\lim_{h\to\infty} \mathbb{P}(|X_h-X|\geq \epsilon)=0.$ \text{\text{Conveniencedida}}

X PX

1xn/n=1 converge casi seguralmente a x pi (almost surely) $\mathbb{P}\left(\lim_{n\to\infty}X_n=X\right)=1.$ Xn C.t.p. Xn a.s. X Def: Yxn uzi converge puritualmente X pi lim Xn(w) = X(w), twess Def: {Xn/n=1 converger en LP a X (converge en media de orden p) lim E(|Xn-X|P)=0. 5 $\mathbb{E}(|x_{n}-x|^{p}) = \int_{\Omega} |x_{n}-x|^{p} dP = \|x_{n}-x\|_{p}^{p}$