UNIVERSITÀ DEGLI STUDI DI BARI "ALDO MORO"

DIPARTIMENTO DI INFORMATICA

Corso di Laurea in Informatica

RICONOSCIMENTO DI ANOMALIE DA TELECAMERA DI VIDEOSORVEGLIANZA

RELATORE

Prof. Donato Impedovo

Laureando

Marco Cappiello

INTRODUZIONE:

Le telecamere messe in commercio al giorno d'oggi non riescono ad identificare crimini autonomamente.

Attraverso tecniche di computer vision e machine learning è possibile identificare azioni sospette in maniera automatica.

INTRODUZIONE:

Ma che cos'è un'azione anomala?

Intuitivamente: un'azione anomala è un'azione infrequente in un contesto pubblico.

OBIETTIVO

Creare un sistema capace di identificare autonomamente situazioni sospette in un video di sorveglianza

IDEA GENERALE

Creare un modello che sfrutta il multiple instance learning per assegnare punteggi di anomalia ai video ricevuti in input.

DATASET 1

- Il primo dataset utilizzato è l'UCF-crime.
- Il dataset è composto da 14 classi di azioni
- 950 video normali e 950 video anomali per un totale di 1900

Categoria	Numero di video
Anomali	950
Normali	950
#Totale	1900

DATASET 2

- Il secondo dataset utilizzato è il real life violence situations
- Il dataset è composto da 2 classi di azioni
- 1000 video normali e 1000 video anomali

Categoria	Numero di video per categoria
Anomali	1000
Normali	1000
#Totale	2000

DATASET

- Tutti i video sono stati raccolti da contesti reali e sono di lunghezza variabile.
- Ogni video è stato fissato a 25 fps con risoluzione di 320x240 px.
- Di ogni video si conosce unicamente la classe di appartenenza e la lunghezza.

MULTIPLE INSTANCE LEARNING

- Una bag è formata da istanze.
- Una bag è positiva se almeno una delle sue istanze è positiva
- Altrimenti la bag è negativa

Nel nostro caso i video sono bag e i segmenti sono istanze.

FEATURE EXTRACTION

La features extraction è stata effettuata attraverso una convolutional neural network.

Il kernel utilizzato ha 3 dimensioni e estrae features da clip di 16 frames.

SEGMENTAZIONE

- Ogni segmento è stato diviso in 32 segmenti
- Ogni segmento
 contiene il valore
 medio delle features
 delle clip di cui è
 composto

MODELLO

SPERIMENTAZIONE: PRIMO DATASET

Il dataset è stato diviso in 2 partizioni:

- 1620 video per il train set
- 280 video per il test set

Categoria	Numero di	Numero di
	video nel train	video nel test
	set	set
Anomali	810	140
Normali	810	140
#Totale	1620	280

SPERIMENTAZIONE: SECONDO DATASET

Il dataset è stato diviso in 2 partizioni:

- 1400 video per il train set
- 600 video per il test set

Categoria	Numero di	Numero di
	video nel train	video nel test
	set	set
Violenza	700	300
Normali	700	300
#Totale	1400	600

Ogni video presentato al sistema viene segmentato e viene effettuata la features extraction attraverso una C3DNN.

I punteggi di anomalia relativi ai singoli segmenti vengono riportati su un grafico che ha:

- punteggio di anomalia sull'asse delle ascisse
- frame sull'asse delle ordinate

METRICA DI VALUTAZIONE

- La metrica di valutazione utilizzata è la curva Receiver Operating Characteristic e la corrispondente AUC.

- Modello addestrato sull'UCF-Crime e testato sull'UCF-CRIME
- •L'AUC raggiunto nella prima sperimentazione è del 70%.

- Modello addestrato sul Real Life Violence Situations e testato sul Real Life Violence Situations.
- L'AUC raggiunto nella seconda sperimentazione è del 81%.

- Modello addestrato sull'UCF-Crime e testato sul Real Life Violence Situations
- •L'AUC raggiunto nella terza sperimentazione è del 74%.

CONCLUSIONI

Il sistema raggiunge un buon AUC in ogni sperimentazione.

La prima sperimentazione raggiunge un AUC del 70% avvicinandosi di molto all'AUC conseguito nello stato dell'arte del 75%.

Modello	AUC
Esperimento 1	70%
Esperimento 2	74%
Esperimento 3	84%
Stato dell'arte	75%

SVILUPPI FUTURI

Possibili sviluppi futuri prevedono:

- L'utilizzo di un dataset con video di qualità migliore
- L'utilizzo di diverso tipo di features (es: I3D features)
- L'implementazione del sistema per riconoscimento di anomalie in tempo reale

GRAZIE PER L'ATTENZIONE!