

Random Forests - Combines the OP of multiple decision trees (ensemble of many decision heres) - How the algo works: > random seed - pull out random collection of samples mountains class distribution - random set of attr. from of dataset is chosen. > ALL 1/P variables not considered. R= no of up attr. R= no of attr. chuscuat random } R<M > M=no. of 1/P attr. > This gives best possible split to develop decision here model. 1/3 not used -> ODB MSE. - Evaluating the algo: > create bootstrapped dataset. > create dt. using random subset of features > get OOB error - run samples this kf + classify based on voting - Advantages: - no mud for pruning -> accuracy - variable importance - automatic. > overfitting = no prob -> doesn't care about outhers. - easy to set parameters. > good performance. - Okay but what if Missing attribute? > fill in missing attr. using normal imputation methods. > make a proximily makex - HELP. Extra Trees - EXTremely RANdomized hers - Thereases randomness in her construction - But WH47 > High randomness (random sphit points) → Super fast (avoids search for ophimal split) → Robustness (more stability) > less overfitting - Howdoes it work? -> Sample data (random sample) > Random feature selectron -> Random split points.

-> Aggregate predictions

		tro-de allegae	
	> Kandom	split points. to predictions	
	nggrega	2 predictions	
_	Difference between extra t	rees and random forest:	
	Extra Trees	Random Forest	
	Random splits for each feature	Optimal split for selected features	
	More randomness	Less randomness	
	Lower computational cost	Higher computational cost	
	May have higher bias	Generally lower bias	
_	Advantages		
	Advantages → spreient 1 → Reduced → No boots	Yaining	
	→ Reduced	vanance	
	→ No books	habbing	
_	Disadvantages		
	Disadvantages → higher dess int	oras	
	→ less int	pretability	