Climate-Informed Modelling of Health Risk

Authors: Group 3

Clara Sobejano, Louis-Esmel Kodo, Lucas Ihnen, Massimo Tassinari, Nitin Jangir, Yousef Mohammad

Mentor: Idafen Santana Pérez

Our Repository

Introduction

Project Objective

Microsoft's Capstone Challenge asked us to turn GRIDMET, a 40-year archive of high-resolution climate data, into a revenue-generating service with clear real-world value.

Why GRIDMET?

With daily weather data across the U.S. at 4 km resolution, GRIDMET supports decisions in energy, agriculture, insurance, logistics, and public health. These variables help reduce risk, improve planning, and protect lives.

Our Focus

We chose to forecast hospital admissions linked to climate-driven events like heatwaves, flu seasons, and wildfire smoke. These surges often overwhelm hospitals, causing:

- Emergency department overcrowding
- Staffing and supply shortages
- Significant cost increases

The stakes are high:

- \$3.75B/year in flu-related admissions
- \$1B in extra costs from summer heat
- \$2–4M/year in efficiency losses per hospital

Methodology

Data Sources

FluView

- Coverage from 2009 refreshed in near-real time
- City & State level confirmed weekly influenza hospitalisations
- Age group, Virus Type, Race & Gender granularity

GridMET Planetary Computer

- 40 years of daily U.S. weather, 4 km grid
- 10+ variables (temp, humidity, precip, wind, fire danger...)
- > 12 billion records in daily granularity and (lat, long) pairs

Data Extraction Pipeline

A modular, cloud-ready pipeline to transform massive climate data into structured health inputs

Feature Engineering

To capture trends and improve predictive power:

Lag Features: 1–8 weeks of past climate data

Rolling Statistics: Weekly averages, min/max, variability

Interaction Terms: E.g., humidity × temperature

Seasonality Features: Captured recurring temporal patterns relevant to flu cycles

Lagged Target Variable: Flu rates from the past 1–3 weeks

Specific Humidity Air Temperature Dead Fuel Moisture 100Hr Mean Vapor Pressure Deficit Potential Evapotranspiration Dead Fuel Moisture 1000Hr Precipitation Amount Wind From Direction

Correlation of Climate Features with Flu Hospitalization Rate

Model Development & Selection

- 10+ XGBoost models tested with progressive enhancements
- Improvements through tuning, feature selection, and hybrid design
- Final model (v6.2): predicts correction over lag-1 baseline
- Optimized via time-series CV + Optuna (30 trials)

XGBOOSt

 $R^2: 0.82$ RMSE: 1.35

+ Optuna

best among 10+ tested

Tools & Tech Stack

Data Manipulation

Data Extraction

EDA

Machine Learning

Results

MODEL PERFORMANCE

Hybrid model outperforms baseline:

- RMSE: 2.43 → 1.34 (-44.9% error)
- R²: 0.467 → **0.823** (+35.6 pts explained variance)

OPERATIONAL IMPACT

- ~120 fewer admissions/year in Rochester
- At \$12,500 per flu admission, that's \$1.5M saved
- Across 12 hospitals: \$125K annual savings per hospital

MARKET OPPORTUNITY

- 5,000 hospitals in the U.S.
- Just 1% penetration = 50 clients/year
- Product ROI: 125%–188%, depending on tier

Conclusion

This project shows how open climate data and public health surveillance can be combined to forecast hospital admissions with high accuracy.

By leveraging GRIDMET and CDC FluView, we built a model that reduced prediction error by over 44% in Rochester and reached an R² of 0.93 in California. These improvements translate to up to \$1.5M in annual savings for a mid-sized city.

