Course 3

Formal Languages

- Basic notions -

Regular languages

Why?

- Search engine succes of Google
- 2. Unix commands
- 3. Programming languages new feature

Problem: The door to the tower is closed by the Red Dragon, using a complicated machinery. Prince Charming has managed to steal the plans and is asking for your help. Can you help him determining all the person names that can unlock the door

Finite Automata

Intuitive model

Definition: A **finite automaton (FA)** is a 5-tuple

$$M = (Q, \Sigma, \delta, q0, F)$$

where:

- Q finite set of states (|Q|<∞)
- Σ finite alphabet ($|\Sigma| < \infty$)
- δ transition function : $\delta: Q \times \Sigma \rightarrow P(Q)$
- q_0 initial state $q_0 \in Q$
- F⊆Q set of final states

Remarks

- 1. $Q \cap \Sigma = \emptyset$
- 2. $\delta: Q \times \Sigma \rightarrow P(Q)$, $\epsilon \in \Sigma^0$ relation $\delta(q, \epsilon) = p$ **NOT** allowed
- 3. If $|\delta(q,a)| \le 1 = \infty$ deterministic finite automaton (DFA)
- 4. If $|\delta(q,a)|>1$ (more than a state obtained as result) => nondeterministic finite automaton (NFA)

Property: For any NFA M there exists a DFA M' equivalent to M

Configuration C=(q,x)

where:

- q state
- x unread sequence from input: $x \in \Sigma^*$

```
Initial configuration : (q_0, w), w - whole sequence
Final configuration: (q_f, \epsilon), q_f \in F, \epsilon -empty sequence
(corresponds to accept)
```

Relations between configurations

- \vdash move / transition (simple, one step) $(q,ax) \vdash (p,x)$, $p \in \delta(q,a)$
- $k \mapsto k \mod = a$ sequence of k simple transitions) $C_0 \vdash C_1 \vdash ... \vdash C_k$
- \dotplus + move C \dotplus C': \exists k>0 such that $C \not \vdash$ C'
- $\stackrel{*}{\vdash}$ * move (star move) C $\stackrel{*}{\vdash}$ C' : $\exists \ k \ge 0$ such that $C \stackrel{k}{\vdash}$ C'

Definition: Language accepted by FA M = (Q,Σ,δ,q0,F) is:

$$L(M)=\{ w \in \Sigma^* \mid (q_0,w) \vdash^* (q_f,\epsilon), q_f \in F \}$$

Remarks

1. 2 finite automata M_1 and M_2 are equivalent if and only if they accept the same language

$$L(M_1)=L(M_2)$$

1. $\varepsilon \in L(M) \Leftrightarrow q_0 \in F$ (initial state is final state)

Representing FA

- 1. List of all elements
- 2. Table
- 3. Graphical representation

(p,aab)|-(q,ab)|-(r,e) => aab accepted (p,aba)|-(q,ba)|-(r,a) => aba not accepted

Remember

• Grammar

$$G=(N,\Sigma,P,S)$$

$$M = (Q, \Sigma, \delta, q_0, F)$$

$$L(G)=\{w\in\Sigma^*\mid S\stackrel{*}{\Rightarrow}w\}$$

$$L(M)=\{ w \in \Sigma^* \mid (q_0,w) \vdash (q_f,\varepsilon), q_f \in F \}$$

Regular grammars

• G = (N, Σ , P, S) right linear grammar if

 $\forall p \in P: A \rightarrow aB \text{ or } A \rightarrow b, \text{ where } A,B \in N \text{ and } a,b \in \Sigma$

- G = (N, Σ, P, S) regular grammar if
 - G is right linear grammar and
 - A $\rightarrow \varepsilon \notin P$, with the exception that S $\rightarrow \varepsilon \in P$, in which case S does not appear in the rhs (right hand side) of any other production
- $L(G) = \{w \in \Sigma^* \mid S^* = > w\}$ right linear language

Theorem 1: For any regular grammar $G=(N, \Sigma, P, S)$ there exists a FA $M=(Q, \Sigma, \delta, q_0, F)$ such that L(G) = L(M)

```
Proof: construct M based on G
Q = N \cup \{K\}, K \notin N
q_0 = S
F = \{K\} \cup \{S \mid \text{if } S \rightarrow \varepsilon \in P\}
```

$$\delta$$
: if A \rightarrow aB \in P then δ (A,a) = B if A \rightarrow a \in P then δ (A,a) = K

```
Prove that L(G) = L(M) (w \in L(G) \Leftrightarrow w \in L(M)):

S \stackrel{*}{\Rightarrow} w \Leftrightarrow (S, w) \stackrel{*}{\vdash} (qf, \varepsilon)

w = \varepsilon : S \stackrel{*}{\Rightarrow} \varepsilon \Leftrightarrow (S, \varepsilon) \stackrel{*}{\vdash} (S, \varepsilon) - \text{true}

w = a_1 a_2 \dots a_n : S \stackrel{*}{\Rightarrow} w \Leftrightarrow (S, w) \stackrel{*}{\vdash} (K, \varepsilon)

S \Rightarrow a_1 A_1 \Rightarrow a_1 a_2 A_2 \Rightarrow \dots \Rightarrow a_1 a_2 \dots a_{n-1} A_{n-1} \Rightarrow a_1 a_2 \dots a_{n-1} a_n

S \Rightarrow a_1 A_1 \text{ exists if } S \Rightarrow a_1 A_1 \text{ and then } \delta(S, a_1) = A_1

A_1 \Rightarrow a_2 A_2 : \delta(A_1, a_2) = A_2 \dots

A_{n-1} \Rightarrow a_n : \delta(A_{n-1}, a_n) = K

(S, a_1 a_2 \dots a_n) \vdash (A_1, a_2 \dots a_n) \vdash (A_2, a_3 \dots a_n) \vdash \dots \vdash (A_{n-1}, a_n) \vdash (K, \varepsilon), K \in F
```

Theorem 2: For any FA M=(Q, Σ , δ , q₀,F) there exists a <u>right</u> linear grammar G=(N, Σ , P, S) such that L(G) = L(M)

P: if $\delta(q,a) = p$ then $q \rightarrow ap \in P$

```
if p \in F then q \rightarrow a \in P
N = Q
                                                                                                                       if q_0 \in F then S \rightarrow \varepsilon
S = q_0
Prove that L(M) = L(G) (w \in L(M) \Leftrightarrow w \in L(G)):
P(i): q \stackrel{i+1}{\Rightarrow} x \Leftrightarrow (q,x) \stackrel{i}{\vdash} (q_f, \varepsilon), q_f \in F -prove by induction
Apply P: q_0 \stackrel{i+1}{\Rightarrow} w \Leftrightarrow (q_0,w) \stackrel{i}{\vdash} (q_f, \varepsilon), q_f \in F
If i=0: q \Rightarrow x \Leftrightarrow (q,x) \stackrel{\mathbf{0}}{\vdash} (q_f, \varepsilon) (x = \varepsilon, q = q_f) q \Rightarrow \varepsilon \Leftrightarrow q_0 \rightarrow \varepsilon, q_0 \in F
Assume ∀ k≤i P is true
q \stackrel{i+1}{\Rightarrow} x \Leftrightarrow (q,x) \stackrel{i}{\vdash} (q_f, \varepsilon)
For q \in N apply "\Rightarrow": q \Rightarrow ap \Rightarrow ax
If q \Rightarrow ap then \delta(q,a) = p; if p \stackrel{i}{\Rightarrow} ax then (p,x) \stackrel{i-1}{\vdash} (q_f, \varepsilon), qf \in F
THEN (q,ax) \stackrel{i}{\vdash} (q_f, \varepsilon), qf \in F
```

Proof: construct G based on M

Regular sets

Definition: Let Σ be a finite alphabet. We define <u>regular sets</u> over Σ recursively in the following way:

- 1. ϕ is a regular set over Σ (empty set)
- 2. $\{\boldsymbol{\varepsilon}\}$ is a regular set over $\boldsymbol{\Sigma}$
- 3. {a} is a regular set over Σ , \forall a \in Σ
- 4. If P, Q are regular sets over Σ , then PUQ, PQ, P* are regular sets over Σ
- 5. Nothing else is a regular set over Σ

Regular expressions

Definition: Let Σ be a finite alphabet. We define <u>regular expressions</u> over Σ recursively in the following way:

- 1. ϕ is a regular expression denoting the regular set ϕ (empty set)
- 2. ε is a regular expression denoting the regular set $\{\varepsilon\}$
- **3.** a is a regular expression denoting the regular set $\{a\}$, \forall $a \in \Sigma$
- 4. If **p,q** are regular expression denoting the regular sets P, Q then:
 - p+q is a regular expression denoting the regular set PUQ,
 - pq is a regular expression denoting the regular set PQ,
 - p* is a regular expression denoting the regular set P*
- 5. Nothing else is a regular expression

Remarks:

Examples

- 1. $p^+ = pp^*$
- 2. Use paranthesis to avoid ambiguity
- 3. Priority of operations: *, concat, + (from high to low)
- 4. For each regular set we can find at least one regular exp to denote it (there is an infinity of reg exp denoting them)
- 5. For each regular exp, we can construct the corresponding regular set
- 6. 2 regular expressions are equivalent iff they denote the same regular set

Algebraic properties of regular exp

Let α , β , γ be regular expressions.

1.
$$\alpha + \beta = \beta + \alpha$$

2.
$$\boldsymbol{\phi}^* = \boldsymbol{\varepsilon}$$

3.
$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$$

4.
$$\alpha(\beta\gamma) = (\alpha\beta)\gamma$$

5.
$$\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma$$

6.
$$(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$$

7.
$$\alpha \varepsilon = \varepsilon \alpha = \alpha$$

8.
$$\phi \alpha = \alpha \phi = \phi$$

9.
$$\alpha^* = \alpha + \alpha^*$$

$$10.(\alpha^*)^* = \alpha^*$$

$$11.\alpha + \alpha = \alpha$$

$$12.\alpha + \Phi = \alpha$$

Reg exp equations

• Normal form:
$$X = aX + b$$

• Solution:
$$X = a*b$$

$$a a * b + b = (aa * + \varepsilon)b = a * b$$

System of reg exp equations:

$$\begin{cases} X = a_1 X + a_2 Y + a_3 \\ Y = b_1 X + b_2 Y + b_3 \end{cases}$$

Solution: Gauss method (replace X_i and solve X_n)

Prop:Regular sets are right linear languages

Lemma 1: ϕ , $\{\varepsilon\}$, $\{a\}$, $\forall a \in \Sigma$ are right linear languages

Proof: constructive

i. $G = (\{S\}, \Sigma, \Phi, S)$ – regular grammar such that $L(G) = \Phi$

ii. $G = (\{S\}, \Sigma, \{S \rightarrow \varepsilon\}, S)$ – regular grammar such that $L(G) = \{\varepsilon\}$

iii. $G = (\{S\}, \Sigma, \{S \rightarrow a\}, S) - regular grammar such that L(G) = \{a\}$

Lemma 2: If L_1 and L_2 are right linear languages then: $L_1 \cup L_2$, L_1L_2 and L_1^* are right linear languages.

Proof: constructive

 L_1, L_2 right linear languages => $\exists G_1, G_2$ such that

$$G_1 = (N_1, \Sigma_1, P_1, S_1)$$
 and $L_1 = L(G_1)$

$$G_2 = (N_2, \Sigma_2, P_2, S_2)$$
 and $L_2 = L(G_2)$ assume $N_1 \cap N_2 = \emptyset$

i.
$$G_3 = (N_3, \Sigma, P_3, S_3)$$

$$N_3 = N_1 U N_2 U \{S_3\}; \Sigma_3 = \Sigma_1 U \Sigma_2$$

$$P_3 = P_1 U P_2 U \{S_3 \rightarrow S_1 \mid S_2\}$$

$$\{S_3 \rightarrow \alpha_1 \mid S_1 \rightarrow \alpha_1 \in P_1\} \cup \{S_3 \rightarrow \alpha_2 \mid S_2 \rightarrow \alpha_2 \in P_2\}$$

G₃ – right linear language and

$$L(G_3) = L(G_1) \cup L(G_2)$$

PROOF!!! Homework

ii.
$$G_4 = (N_4, \Sigma, P_4, S_4)$$

$$N_4 = N_1 U N_2$$
; $S_4 = S_{1}, \Sigma_4 = \Sigma_1 U \Sigma_2$

$$P_{4} = \{A \rightarrow aB \mid \text{if } A \rightarrow aB \in P_{1}\} \ U$$

$$\{A \rightarrow aS_{2} \mid \text{if } A \rightarrow a \in P_{1}\} \ U$$

$$P_{2} \ U$$

$$\{S_{1} \rightarrow \alpha_{2} \mid \text{if } S_{1} \rightarrow \epsilon \in P_{1} \text{ and } S_{2} \rightarrow \alpha_{2} \in P_{2}\}$$

 G_4 – right linear language and $L(G_4) = L(G_1) L(G_2)$

PROOF!!! Homework

iii.
$$G_5 = (N_5, \Sigma_1, P_5, S_5)$$

//IDEA: concatenate L₁ with itself

$$N_4 = N_1 U \{S_5\};$$

$$P_{5} = P_{1} \cup \{S_{5} \rightarrow \boldsymbol{\varepsilon}\} \cup \{S_{5} \rightarrow \boldsymbol{\alpha}_{1} | S_{1} \rightarrow \boldsymbol{\alpha}_{1} \in P_{1}\} \cup \{A \rightarrow aS_{1} | if A \rightarrow a \in P_{1}\}$$

G₅ – right linear language and

$$L(G_5) = L(G_1)^*$$

PROOF!!! Homework

Theorem: A language is a regular set if and only if is a right linear language

Proof:

- => Apply lemma 1 and lemma 2
- <= construct a system of regular exp equations where:
- Indeterminants nonterminals
- Coefficients terminals
- Equation for A: all the possible rewritings of A Example: G=({S,A,B},{0,1}, P, S)

P:
$$S \rightarrow 0A \mid 1B \mid \epsilon$$

 $A \rightarrow 0B \mid 1A$
 $B \rightarrow 0S \mid 1$

$$\begin{cases} S = 0A + 1B + \epsilon \\ A = 0B + 1A \\ B = 0S + 1 \end{cases}$$

Regular exp = solution corresponding to S