Machine learning techniques for flowbased intrusion detection systems

Axel Faes: Bachelorthesis

Onderwerp

Intrusie detectie

Classificeren/detectie van onverwacht netwerkgedrag

Extern en intern

IP Flows

Geaggregeerd vanuit packet data

specifiek bedoeld voor high traffic systems

vereist geen in-depth knowledge van het netwerk

Hoe kan flow data gebruikt worden in een IDS?

Welke types anomalie kunnen we automatisch detecteren?

Onderwerp

machine learning technieken

Algoritmes 'leren' zelf zonder regeltjes expliciet te programmeren

7 verschillende algoritmes

In hoeverre zijn machine learning technieken inzetbaar voor anomaly detection?

Kunnen we een IDS maken dat out-of-the-box een aanvaardbare 'hit rate' biedt?

Zijn dergelijke technieken bruikbaar in real-life condities?

Werking:

Demo

Stap 1: Learning curves

Stap 1: Learning curves

Stap 1: Learning curves

Stap 2: CTU dataset

Stap 2: CTU dataset

Stap 3: Cross dataset

Stap 3: Cross dataset

Stap 3: K-nearest neighbors

Stap 4: real-world testing

	K-Nearest Neighbours	Decision tree classifier
F-score	0,7633	0,0155

......

Vragen?

Doelstelling ID systemen

Classificeren/detectie van onverwacht netwerkgedrag

Extern:

Intern:

ssh connection attempts

side-effect verkeer (ICMP, IRC)

high volume DDoS

low volume DDoS

botnets (communication with master/assist with DDoS attacks)

worms (bij binnendringen/uitbreken van systeem)

Typische werking van bestaande ID systemen

Veel voorkomende technieken:

Signature-based detecties (op basis van rule matching op inhoud van flow/packet data)

Anomaly detection

Algemene doelstelling: patroonherkenning

Binaire classificatie: malicious vs non-malicious

Classificatie voor specifieke type van malicious behaviour

Specifieke eigenschappen v.h. te ontwikkelen systeem

Detectie louter gebaseerd op flow data:

i.t.t packet- en log-based ID systemen

specifiek bedoeld voor high traffic systems

vereist geen in-depth knowledge van het netwerk

Gebruik van machine learning technieken

Kosten-efficiënt inzetten in bestaande netwerken

Algoritmes 'leren' zelf zonder regeltjes expliciet te programmeren

De onderzoeksvragen van de bachelorproef

In hoeverre zijn machine learning technieken inzetbaar voor anomaly detection (welke technieken werken goed/niet goed)?

Hoe kan flow data gebruikt worden in deze technieken?

Kunnen we een IDS maken dat out-of-the-box een aanvaardbare 'hit rate' biedt?

Welke types anomalie kunnen we automatisch detecteren?

Is (automatische) klassificatie van de anomalie mogelijk?

Zijn dergelijke technieken bruikbaar in real-life condities?

Training data

Geannoteerde data sets zijn specifiek bedoeld om het algoritme een model aan te leren (stap 1 en 2)

worden typisch opgedeeld in disjuncte subsets

1 subset specifiek om een model aan te leren

1 subset om dit model te kunnen valideren

Momenteel gebruikte datasets

CTU-13 dataset (stappen 1, 2 en 3):

Bevat botnet, normaal en background traffic

Zeer gedetailleerd geclassificeerd

Tracelabel dataset van UTwente (stappen 1, 2 en 3):

Bevat traffic geclassificeerd als malicious door honeypot

Bevat ftp, http, ssh, icmp, irc verkeer

EDM dataverkeer (stap 4):

Unlabeled data

Manuele verificatie van classificatie