Blob Detection

Slides adapted from Lana Lazebnik

Features

- We want to find the most "interesting" pixels in an image
 - Called image features or interest points
- Our progression...
 - Edge points (high gradient magnitude)
 - Corner points (high magnitudes in multiple directions)
- Issue: Scale-invariance
 - Today: Blobs or regions

Harris Corner Detector

Yes

Affine Intensity Invariant? Sort of

Rotation covariant?

• Translation covariant? Yes

Scale covariant?No

All points will be classified as edges

Corner!

Scale invariant interest points How can we independently select interest points in

How can we independently select interest points in each image, such that the detections are repeatable across different scales?

Automatic Scale Selection

Intuition:

• Find scale that gives local maxima of some function *f* in both position and scale.

Scale-invariant features: Blobs

Recall: Edge detection

Source: S. Seitz

Edge detection, Take 2

Source: S. Seitz

From Edges to Blobs

- Edge = ripple
- Blob = superposition of two ripples

Original signal

Spatial selection: the magnitude of the Laplacian response will achieve a maximum at the center of the blob, provided the scale of the Laplacian is "matched" to the scale of the blob

Scale selection

- We want to find the characteristic scale of the blob by convolving it with Laplacians at several scales and looking for the maximum response
- However, Laplacian response decays as scale increases:

Why does this happen?

Scale normalization

• The response of a derivative of Gaussian filter to a perfect step edge decreases as $\boldsymbol{\sigma}$

increases

Scale normalization

- The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases
- To keep response the same (scale-invariant), must multiply Gaussian derivative by σ
- Laplacian is the second Gaussian derivative, so it must be multiplied by σ^2

Effect of scale normalization

maximum

Blob detection in 2D

 Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

Blob detection in 2D

 Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

Scale-normalized:

$$\nabla_{\text{norm}}^2 g = \sigma^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right)$$

Blob detection in 2D: scale selection

• Laplacian-of-Gaussian = "blob" detector

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

Bastian Leibe

Characteristic scale

 We define the characteristic scale as the scale that produces peak of Laplacian response

T. Lindeberg (1998). <u>"Feature detection with automatic scale selection."</u> *International Journal of Computer Vision* **30** (2): pp 77--116.

Scale-Space Blob Detector

 Convolve image with scale-normalized Laplacian at several scales

Scale

2. Find maxima of squared Laplacian response in scale-space

Scale-space blob detector: Example

Scale-space blob detector: Example

sigma = 11.9912

Scale-space blob detector: Example

Efficient Implementation

Approximating the Laplacian with a difference

of Gaussians:

$$L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
(Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

(Difference of Gaussians)

$$I(k\sigma)$$

 $I(\sigma)$

Efficient implementation

David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

Feature Matching

- We can now find multiple interest points (edges, corners, blobs) in images
- How do we match a feature in one image to a feature in another?
 - We'll start to find out next class...

