Aufbau und Funktion

- Zusammengesetzt aus zwei gekoppelten NAND-Gattern
- Ausgänge sind (vom Zustand $\overline{S} = 0$ und $\overline{R} = 0$ abgesehen) invertiert
- \bullet Durch Setzen von $\overline{S}=1$ bzw. $\overline{R}=1$ können die Ausgänge gesetzt weden
- Wahrheitstafel des NAND-Gatters bewirkt, dass durch das Setzen der beiden Eingänge auf 1 der letzte Zustand des Flip-Flops ausgegeben wird - Flip-Flop kann Zustände speichern

Wahrheitstafel:

Funktionsweise

- Dem RS-Flip:Flop werden nun noch zwei NAND-Gatter vorrangestellt, die über das Clock-Signal verbunden sind
- Solange C = 0 ⇒ fester Anfangszustand, der nicht durch S und R beeinflusst wird, da NAND-Gatter 1 ausgibt, sobald eines der Signale 0 ist

D-Latch

S

•

A_0	A_1	A_2	A_3	Y_0	Y_1	C_2
0	0	0	0	0	0	0
1	0	0	0	1	0	0
1	1	0	0	1	1	0
1	1	1	0	0	0	1
1	1	1	1	0	1	1
0	1	1	1	1	0	1
0	0	1	1	1	1	0
0	0	0	1	0	1	0
0	1	0	0	0	1	0
0	0	1	0	1	0	0
0	1	1	0	1	1	0
0	1	0	1	0	0	1
1	0	1	0	0	1	0
1	1	0	1	1	0	1
1	0	0	1	1	1	0

