MODULE-1

Introduction to Computer Organization

What is a Computer organisation?

- Describes function & design of various units of digital computers
- Deals with Computer Hardware and Architecture
- Computer/Digital Computer

Classification of Computers

Range of powerful computers

computer Hope, com

Continued...

- ► Input Unit-accepts information through input units, which read the data
- Memory Unit- 2 types
- ► ALU-Faster than other devices connected to system.
- Output unit-Counter part of input unit
- Control Unit-Sends control signal to other units ans sense their states

Information Handled by a Computer

- Instructions/machine instructions
- Govern the transfer of information within a computer as well as between the computer and its I/O devices
- Specify the arithmetic and logic operations to be performed
- Program
- Data
- Used as operands by the instructions
- Source program
- \triangleright Encoded in binary code 0 and 1

Motherboard

Input Devices

Output Devices

Memory Devices

Memory Unit

- Store programs and data
- Two classes of storage
- Primary storage
- Fast
- Programs must be stored in memory while they are being executed
- Large number of semiconductor storage cells
- Processed in words.
- Address
- **Expensive.**
- ☐ Secondary storage larger amount of data and cheaper

How memory chip looks like?

2^12*8 =4Kx8.R/W

- ► CPU wants data from cell 4(Read/write)
- CPU communicates R,W control signals along with address -memory requests

addr control

Address/Data

- ► Datasheet of memory chip-64K*16 or 64K*32.
- ►2^16 locations=(64k),cell width 16 bits.
- ► Word or cell widths.
- ► Cell width-width of data bus.
- ►2^k=n locations,k-no of address lines

Control signals

R/W

Arithmetic and Logic Unit (ALU)

- Most computer operations are executed in ALU of the processor.
- ► Load the operands into memory bring them to the processor perform operation in ALU store the result back to memory or retain in the processor.
- Registers
- Fast control of ALU

Arithmetic and Logic Unit (ALU)

Most computer operations are executed in ALU of the processor.

s ₁ s ₀	Operation
0 0	Z=A+B
0 1	Z=A+1
1 0	Z=NOT A

Control Unit

- ► All computer operations are controlled by the control unit.
- The timing signals that govern the I/O transfers are also generated by the control unit.
- Control unit is usually distributed throughout the machine instead of standing alone.
- Operations of a computer:
- Accept information in the form of programs and data through an input unit and store it in the memory
- Fetch the information stored in the memory, under program control, into an ALU, where the information is processed
- Output the processed information through an output unit
- Control all activities inside the machine through a control unit

Basic Operational Concepts

- To execute program, Sequence of instructions
- A Typical Instruction ADD LOCA,R0
- Add the operand at memory location LOCA to the operand in a register R0 in the processor.
- ► Place the sum into register R0.
- ► The original contents of LOCA are preserved.
- ► The original contents of R0 is overwritten.
- ► Instruction is fetched from the memory into the processor the operand at LOCA is fetched and added to the contents of R0 the resulting sum is stored in register R0.

Connection Between the Processor and the Memory

- ► Add r4,r2,r3
- ► Pc-□MAR
- Issue read
- Wait for the requested word to MDR
- ightharpoonup Mdr \Box IR
- ► R4,R2□ALU
- ADDDITION OPERATION
- ► ALU□R3
- RESULT IN MDR
- MAR
- **PC**

Registers

- Instruction register (IR)
- Program counter (PC)
- General-purpose register $(R_0 R_{n-1})$
- Memory address register (MAR)
- Memory data register (MDR)

Typical Operating Steps

- Programs reside in the memory through input devices
- ► PC is set to point to the first instruction
- The contents of PC are transferred to MAR
- A Read signal is sent to the memory
- ► The first instruction is read out and loaded into MDR
- ► The contents of MDR are transferred to IR
- Decode and execute the instruction

Typical Operating Steps (Cont')

- Get operands for ALU
 - ☐ General-purpose register
 - ☐ Memory (address to MAR Read MDR to ALU)
- Perform operation in ALU
- Store the result back
 - ☐ To general-purpose register
 - ☐ To memory (address to MAR, result to MDR Write)
- During the execution, PC is incremented to the next instruction

Interrupt

- Normal execution of programs may be preempted if some device requires urgent servicing.
- ► The normal execution of the current program must be interrupted the device raises an *interrupt* signal.
- Interrupt-service routine
- Current system information backup and restore (PC, general-purpose registers, control information, specific information)

Bus Structures

- There are many ways to connect different parts inside a computer together.
- A group of lines that serves as a connecting path for several devices is called a *bus*.
- System bus-connects major computer components.

Address Bus-unidirectional

Data Bus-bidirectional

Control BIDIRECTIONAL Bus-regulates the activity sending control signals like memory read,memory write,I/O read I/O write,interrupt request,reset so on.

Bus Structure

Single-bus

- ► All units connected –system bus
- Only 2 device communicate at a time
- Advantage-Low cost, facility to connecting peripheral devices.
- Disadvantage-slow speed.
- Uses-minicomputers

Bus Structures

Speed Issue

- Different devices have different transfer/operate speed.
- If the speed of bus is bounded by the slowest device connected to it, the efficiency will be very low.
- ► How to solve this?
- ► A common approach use buffers.

Performance

- The most important measure of a computer is how quickly it can execute programs.
- ► Three factors affect performance:
- Hardware design
- ☐ Instruction set
- Compiler

Performance

Processor time to execute a program depends on the hardware involved in the execution of individual machine instructions.

Figure The processor

Performance

- ► The processor and a relatively small cache memory can be fabricated on a single integrated circuit chip.
- Speed
- Cost
- Memory management

Processor Clock

- Clock, clock cycle, and clock rate
- ► The execution of each instruction is divided into several steps, each of which completes in one clock cycle.
- ► Hertz cycles per second
- LENGTH OG CLOCK CYCLE-P
- ► R(CLOCK RATE)=1/P cps
- HERTZ

Basic Performance Equation

- ► T processor time required to execute a program that has been prepared in high-level language
- ► N number of actual machine language instructions needed to complete the execution (note: loop)
- ► S average number of basic steps needed to execute one machine instruction. Each step completes in one clock cycle
- ► R clock rate
- Note: these are not independent to each other

$$T = \frac{N \times S}{R}$$

How to improve T?

Clock Rate

- Increase clock rate
- ☐ Improve the integrated-circuit (IC) technology to make the circuits faster
- Reduce the amount of processing done in one basic step (however, this may increase the number of basic steps needed)
- Increases in R that are entirely caused by improvements in IC technology affect all aspects of the processor's operation equally except the time to access the main memory.

Instruction Rate

- Simple instruction requires small number
- Complex instruction requires large number
- Processor with simple instruction are called RISC
- Processor with complex instruction are called CISC
- Tradeoff between N and S
- A key consideration is the use of pipelining
- S is close to 1 even though the number of basic steps per instruction may be considerably larger
- ☐ It is much easier to implement efficient pipelining in processor with simple instruction sets
- Reduced Instruction Set Computers (RISC)
- Complex Instruction Set Computers (CISC)

Compiler

- A compiler translates a high-level language program into a sequence of machine instructions.
- ► To reduce N, we need a suitable machine instruction set and a compiler that makes good use of it.
- ► Goal reduce N×S
- A compiler may not be designed for a specific processor; however, a high-quality compiler is usually designed for, and with, a specific processor.

Performance Measurement

- T is difficult to compute.
- Measure computer performance using benchmark programs.
- System Performance Evaluation Corporation (SPEC) selects and publishes representative application programs for different application domains, together with test results for many commercially available computers.
- Compile and run (no simulation)
- Reference computer

$$SPEC\ rating = \frac{\text{Running time on the reference computer}}{\text{Running time on the computer under test}}$$

$$SPEC\ rating = \left(\prod_{i=1}^{n} SPEC_{i}\right)^{\frac{1}{n}}$$

PROBLEMS

There are 5 Processors P1 is consuming 50μsec & every successive process consumes double the time of previous process. Calculate SPEC rating of each process & SPEC of entire suite(Assume reference system which can execute P1 in 100μsec & each successive process with increase of 50μsec

SOLUTION

- Number of processes=5
- ightharpoonup Texe(P1)=50µsec
- ightharpoonup Texe(P2)=100µsec
- ► Texe(P3)=200µsec
- Texe(P4)=400μsec
- Texe(P5)=800μsec
- ► SPEC rating=Running time on the reference computer/Running time on computer under test

Continued...

- ➤ SPEC(P1)=100µsec/50µsec=2
- \triangleright SPEC(P2)=150µsec / 100µsec=1.5
- SPEC(P3)=200μsec/200μsec=1
- \triangleright SPEC(P4)=250µsec/400µsec=0.625
- SPEC(P5)=300μsec/800μsec=0.375
- ► SPEC(suite)= $5\sqrt{2} * 1.5 * 0.625 * 0.375 = (0.703125)^{1}/5$
- ► SPEC(suite)=**0.932**

Problem 2

- A program contains 1000 instruction. Out of that 25% instructions require 4 clock cycles,40% instruction require 5 clock cycles & remaining require 3 clock cycles for execution. Find the total time required to execute the program running in a 1 GHz machine
- ightharpoonup T=(N*S/R)

- ► N=1000
- ► 25% of N=250 instruction require 4 clock cycle
- ► 40% of N=400 instruction require 5 clock cycle
- ► 35% of N=350 instruction require 3 clock cycle
- ightharpoonup T=(N*S/R)
- ► 4.05µsec

Problem

- ► If the length of the clock cycle(P)=0.8ns then calculate the clock rate
- $R=1/P=1/2*10^-9=500MHz$
- ► R is 500 million cycles per second

Multiprocessors and Multicomputers

Multiprocessor computer

- Execute a number of different application tasks in parallel
- Execute subtasks of a single large task in parallel
- All processors have access to all of the memory shared-memory multiprocessor
- Cost processors, memory units, complex interconnection networks

Multicomputers

- Each computer only have access to its own memory
- Exchange message via a communication network message-passing multicomputers

- Memory consists
 of many millions
 of storage cells,
 each of which can
 store 1 bit.
- Data is usually accessed in *n*-bit groups. *n* is called word length.

Figure 2.5. Memory words.

► 32-bit word length example

- ► To retrieve information from memory, either for one word or one byte (8-bit), addresses for each location are needed.
- A k-bit address memory has 2^k memory locations, namely $0 2^k$ -1, =0 TO 15called memory space.
- Arr 24-bit memory: $2^{24} = 16,777,216 = 16M (1M=<math>2^{20}$)
- Arr 32-bit memory: $2^{32} = 4G (1G=2^{30})$
- 1K(kilo)=2¹⁰
- $-1T(tera)=2^{40}$

- It is impractical to assign distinct addresses to individual bit locations in the memory.
- ► The most practical assignment is to have successive addresses refer to successive byte locations in the memory byte-addressable memory.
- ► Byte locations have addresses 0, 1, 2, ... If word length is 32 bits, they successive words are located at addresses 0, 4, 8,...

Big-Endian and Little-Endian Assignments

- ► Big-Endian: lower byte addresses are used for the most significant bytes of the word
- Little-Endian: opposite ordering. lower byte addresses are used for the less significant bytes of the word

(a) Big-endian assignment

(b) Little-endian assignment

Figure 2.7. Byte and word addressing.

- Address ordering of bytes
- Word alignment
 - ► Words are said to be aligned in memory if they begin at a byte addr. that is a multiple of the num of bytes in a word.
 - ► 16-bit word: word addresses: 0, 2, 4,....
 - ► 32-bit word: word addresses: 0, 4, 8,....
 - ► 64-bit word: word addresses: 0, 8,16,....
- Access numbers, characters, and character strings