Table 2: Experimental results on the four binary classification tasks derived from RCV1. "Train" denotes the number of training corrections, while "Test" gives the fraction of misclassified patterns in the test set. Only the results corresponding to the best test set accuracy are shown. In bold are the smallest figures achieved for each of the 8 combinations of dataset (RCV1 $_x$, x = 70, 101, 4, 59) and phase (training or test).

or test).	FO		HO_2		so	
	TRAIN	TEST	TRAIN	TEST	TRAIN	TEST
RCV170	993	7.20%	941	6.83%	880	6.95%
RCV1 ₁₀₁	673	6.39%	665	5.81%	677	5.48%
$RCV1_4$	803	6.14%	783	5.94%	819	6.05%
RCV159	767	6.45%	762	6.04%	760	6.84%

Table 3: Experimental results on the OCR tasks. "Train" denotes the total number of training corrections, summed over the 10 categories, while "Test" denotes the fraction of misclassified patterns in the test set. Only the results corresponding to the best test set accuracy are shown. For the sparse version of HO₂ we also reported (in parentheses) the number of matrix updates during training. In bold are the smallest figures achieved for each of the 8 combinations of dataset (USPS or MNIST), kernel type (Gaussian or Polynomial), and phase (training or test).

	TD TN	HO ₂	Sparse HO2	DROTT TROTT
USPS GAUSS	1305	945 4.76%		13% FRAIN TEST 13% 1003 5.05%
Pery	1669 7.37% 5034 02100/	1696 571% 5351 1.79%	5363 (2596) E	1054 5.53% 1054 1.82%
PCLY	8148 3.64%	6404 2.27%	64 76 (33 (1) 2.	28% 5440 2.63%
Cesa-Bianch	il A Conconta	Gentile (2005). A se	cond-order perceptro	algorithm St.M. Joy nal
	1 2 2 2 2 2 2	Tools W		Vi Vi or
threspold algori	tims. JMLR 7 120		st-case allalysis bi se	resuve sampning for innear-
C Cortes & W	Vapuik (1995) Supr	port-vector networks	Machine Learning 2	0(3) 273- 297
10 O Dekel S. Si			Forgetron a kernel-t	ased Perceptron on a fixed
	1) A new approxim		classification algorith	m JMLR 213 242
				ing 53(3), pp 265-299.
13 AJ Grove N.	Littlestone & D Sci	marmans (2001). Ge	heral convergence res	ults for linear discriminant
updates Machin	ne Legraing Journal	1 1 2 2 10.		
		ser Res. 61. 5979-59		nated with remarkably dis-
				new linearys logarithmic
		rables are relevant. A	runciai intetagence	911323-3431
1995. pp 53-60		SOI OF ICCORNING MISON	difficient for fland writter	digit recognition ICANN
	g (2002) The relax	ed optine maximum	malgin algorithm A	Learning, 46(1-3)
18 M Littlestone	1988) Learning un	CKIV Wiler Grellwan	attributes abound a	new linear-threshold algo-
	Lea ming 2(4) 283	100		
[1 <mark>9] M. Littlestone &</mark> 102(2), 212, 26	M.K. Waynuth (19	94) The weighted in	apority algorithm Info	nation and Competation,
20 K Long & X	(2004) Mistake b	oands for maximum	entropy discrimination	n WPS 2604
21 A.B.J Nevikov	(1962) Di conver	rence proofs on pere	epirons Proc of the	Symposium on the Mathe-
raai palaanal	oj Autenuaa vor X.	A pp 615-622	anghandatanda	rda /aornua /
23 St Shaley Shwa	10 34 200	of Online Learning		the Dual Coll 2006 pp.
423-437				777
[24] B Schoolkopf	A Smola (2002)	Learning with kernel		
[23] VOVK V (2001)	Competitive on-in	statistics, internation	onal Statistical Revie	w 69, 2 13- 248