Fixed point -> decimal position of representing a number is fixed

$$-123456. \times 10^{-1} = -12345.6 \times 10^{0}$$

$$= -123456 \times 104 \text{ (nonnalised)}$$

$$\text{Crist } - \left(20.12345 \times 10^{6} \right)$$

$$\approx -0.01234 \times 10^{6}$$

(-1) Sign x Significant x modix exponent

Distribution of Floating Point Numbers

- 3-bit mantissa
- Unequally distributed
- Exponent: {-1,0,+1}

e = - <u>1</u>	e = 0	e = 1
1.00 X 2 ⁽⁻¹⁾ = 1/2	1.00 X 2^0 = 1	1.00 X 2^1 = 2
1.01 X 2 ⁽⁻¹⁾ = 5/8	1.01 X 2^0 = 5/4	1.01 X 2^1 = 5/2
1.10 X 2 ⁽⁻¹⁾ = 3/4	1.10 X 2 ⁰ = 3/2	1.10 X 2^1= 3
$1.11 \times 24-1) = 7/8$	1.11 X 2 ⁴ 0 = 7/4	1.11 X 2^1 = 7/2

Fixed point: Represent & less, Floating point: Represent more but

[1.00]] 125

1.10] 1.25

Sign magnitude X. 22-0 2 complement 30-23 Significand Mantissa is normalized, always has a leading pre binary - point 1 bt (1.0 staignificand) 2 O is a special care Exponent biased exponent actual + Bias Ensures exponents is unsigned bros of 127 for single provision 1023 for double p Why not sign bit! (1) younced 25 complement for signed bit (unsigned is easin to handle) (2) Special numbers cannot be represented 09.0, NaNate Normalized

Types of Data

- Data represented in this format are classified in five groups.
 - Normalized numbers,
 - Zeros,
 - Subnormal(denormal) numbers, 🛩
 - Infinity and not-a-number (nan).

· Single Precision data interpretation

Single Precision		Data Type
Exponent	Signific and	
0 vc	0w	±0
0	nonzero	\pm subnormal number
1 - 254	anything	\pm normalized number
255	0	±∞
255	nonzero	NaN (not a number)

if we used sign:

-128 for Ob 7 grother

we may use -128 for Ob 7 grother

127 for O') way

Our range is -127 to 126

biased: -126 to 127 j this representation is way

more g significant than

2-127