DS1: Analyse Réelle, 2 heures

Exercice 1

Soit d>0 un nombre rationnel tel que $d\neq r^2$ pour tout $r\in\mathbb{Q}$ et soit l'application $f:\mathbb{Q}\to\mathbb{Q}$ définie par $f(x)=\frac{x(x^2+3d)}{3x^2+d}$.

- 1. Montrer que f est injective.
- 2. Soit $\mathbb{Q} = A_1 \cup A_2$ tels que $A_1 = \{x \in \mathbb{Q} \mid x^2 < d\}$ et $A_2 = \{x \in \mathbb{Q} \mid x^2 > d\}$
 - (a) Montrer que f(x) x < 0 pour tout $x \in A_1$.
 - (b) Montrer que f(x) x > 0 pour tout $x \in A_2$.
 - (c) En déduire que $\sup(A_1) \notin A_1$ et $\inf(A_2) \notin A_2$.
- 3. Le couple (A_1, A_2) s'appelle une **coupure de Dedekind**. Montrer qu'on peut définir $\sqrt{2}$ à l'aide d'une coupure de Dedekind.

Exercice 2

Soient b>0 et $a\geq 0$ deux nombres réelles. On considère la suite définie par

$$u_0 = \alpha \in \mathbb{R}$$
 et $u_{n+1} = \sqrt{a + b u_n}$ pour tout $n \ge 0$

- 1. A quelles conditions, vérifiées par α , la suite u_n est-elle définie? Justifier
- 2. A quelles conditions, vérifiées par α , la suite u_n est-elle décroissante? Justifier
- 3. Supposons que ces conditions sont satisfaites. Montrer que la suite $(u_n)_{n\geq 0}$ est convergente, puis calculer sa limite.

Exercice 3

On considère la fonction numérique f définie par $f(x) = \frac{x^2 + 2}{2x}$

- 1. Étudier la fonction f (Domaine de définition, Tableau de variation,...)
- 2. Résoudre, dans \mathbb{R} , l'équation f(x) = x.
- 3. Soit (u_n) la suite numérique définie par $u_0 = 2$ et $u_{n+1} = f(u_n)$ pour tout $n \ge 0$.
 - (a) Étudier la convergence de la suite $(u_n)_{n\geq 0}$.
 - (b) Pour tout $n \in \mathbb{N}$, on pose $e_n = \frac{u_n \sqrt{2}}{2\sqrt{2}}$.
 - i. Montrer que pour tout $n \in \mathbb{N}$ on a $0 \le e_{n+1} \le e_n^2$.

ii. Montrer que : $e_1 \leq \frac{1}{10}$, puis que pour tout $n \in \mathbb{N}$ on a $0 \leq e_n \leq \frac{1}{10^{2^{n-1}}}$. (c) Que peut-on en déduire?

Exercice 4 (Les questions sont indépendantes)

- 1. Montrer que l'ensemble $E = \left\{ \frac{pq}{p^2 + q^2} / (p, q) \in \mathbb{N}^{*2} \right\}$ est majoré, minoré et atteint ses bornes.
- 2. Montrer que si $(u_n)_{n\geq 0}$ est une suite de Cauchy, alors $(|u_n|)_{n\geq 0}$ est aussi une suite de Cauchy. La réciproque est-elle vraie? Justifier.
- 3. Montrer que de toute suite bornée on peut extraire une sous-suite convergente.
- 4. Soit $(u_n)_{n\geq 0}$ une suite convergente vers ℓ . Montrer qu'il existe $N\in\mathbb{N}$ et qu'il existe un voisinage V_ℓ de ℓ contenant $(u_n)_{n\geq N}$; en déduire qu'il existe des voisinages V_1 de u_1,\ldots,V_{N-1} de u_{N-1} tels que $(u_n)_{n\geq 0}\subset V_\ell\cup (V_1\cup\ldots\cup V_{N-1})$.