

CI 3 – CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES SYSTÈMES

CHAPITRE 7 – TORSEURS

APPLICATIONS

Pôle Chateaubriand – Joliot Curie – Rennes.

Robot de manutention

Le système étudié (voir photos ci-dessous) est un robot industriel destiné à la manutention de pièces lourdes. Ce robot a une structure en parallélogramme déformable qui lui permet de déplacer son poignet dans l'aire de travail.

On associe a chaque solide i une base orthonormée directe $\mathscr{B}_i(\overrightarrow{x_i}, \overrightarrow{y_i}, \overrightarrow{z})$.

Le mouvement de 1/0 est une rotation d'axe (A, \overrightarrow{z}) ; on pose $\alpha = (\overrightarrow{x_0}, \overrightarrow{x_1})$.

Le mouvement de 2/0 est une rotation d'axe (A, \overrightarrow{z}) ; on pose $\beta = (\overrightarrow{x_0}, \overrightarrow{x_2})$.

Le mouvement de 1/3 est une rotation d'axe (B, \overrightarrow{z}) .

Le mouvement de 2/4 est une rotation d'axe (E, \overrightarrow{z}) .

Le mouvement de 3/4 est une rotation d'axe (C, \overrightarrow{z}) .

Par ailleurs : $\overrightarrow{AB} = L \cdot \overrightarrow{x_1}$, $\overrightarrow{EA} = D \cdot \overrightarrow{x_2}$, $\overrightarrow{CB} = -D \cdot \overrightarrow{x_3}$, $\overrightarrow{BJ} = H \cdot \overrightarrow{x_3}$ et $\overrightarrow{EC} = L \cdot \overrightarrow{x_4}$.

Question 1

Que peut-on dire sur les bases \mathcal{B}_1 , \mathcal{B}_2 , \mathcal{B}_3 et \mathcal{B}_4 ? En déduire les 2 figures de changement de base définissant les 2 paramètres d'orientation.

Question 2

Déterminer les torseurs cinématiques $\{ \mathcal{V}(4/2) \}$ et $\{ \mathcal{V}(2/0) \}$.

Question 3

En déduire le torseur cinématique $\{\mathcal{V}(4/0)\}\$ au point E.

Question 4

Déterminer les torseurs cinématiques $\{\mathcal{V}(3/1)\}\$ et $\{\mathcal{V}(1/0)\}\$.

Question 5

En déduire le torseur cinématique $\{\mathcal{V}(3/0)\}$ au point B.

Question 6

En déduire le vecteur vitesse $\overrightarrow{V(J \in 3/0)}$.

Question 7

Déterminer le vecteur accélération $\Gamma(J \in 3/0)$.

Question 8

Déterminer la trajectoire $T_{I \in 3/0}$ lorsque le moteur M2 est à l'arrêt et $\beta = 0$.

Question 9

Déterminer la trajectoire $T_{J \in 3/0}$ lorsque le moteur M1 est à l'arrêt et $\alpha = \frac{\pi}{3}$.

Question 10

Tracer sur une figure la surface liée à \mathcal{R}_0 dans laquelle se déplace le point J lorsque α et β varient dans les limites précédemment définies (les deux moteurs fonctionnent).