통계 학

2014년 시행 5급(행정) 공채 제2차시험

응시번호: 성명:

- 제 1 문. 특정 민원서비스 제도에 대한 만족도가 기존 점수 65점(100점 만점)에 비해 향상되었는지를 알아보기 위하여, 평균 만족도 점수를 μ 라고 할 때, $H_0: \mu=65$ 에 대해 $H_1: \mu>65$ 을 검정하고자 한다. 이를 위해 n명의 표본을 대상으로 만족도를 조사하였다. 표본으로부터 구한 평균 만족도 점수를 \overline{X} 라고 하고, 만족도 점수의 분포는 분산 (σ^2) 이 100인 정규분포를 따른다고 가정 하기로 한다. 다음 물음에 답하시오. (단, 표준정규분포를 따르는 확률변수 Z에 대하여 $P(Z>1.96)=0.025,\ P(Z>1.645)=0.05,\ P(Z>1.28)=0.1,\ P(Z>1)=0.15,\ P(Z>0.84)=0.2$ 이다)
 - 1) $\overline{X} > 67$ 이면 귀무가설 (H_0) 을 기각하려고 한다. n=25일 때, H_0 가 참인데 H_0 을 기각할 오류확률 즉, 유의수준을 구하시오. (5점)
 - 2) n=25이고, 기각역을 $\overline{X}>K$ 라고 할 때, 유의수준 $\alpha=0.05$ 가 되기 위한 K값은? (5점)
 - 3) $\overline{X} > 67$ 이면 귀무가설 (H_0) 을 기각하려고 한다. 평균 만족도 점수가 $\mu = 68$ 일 때의 검정력(power)을 0.8로 하기 위해서 필요한 최소 표본수를 구하시오. (5점)

제 2 문. 다음은 자동차의 배기량(x1)과 무게(x2)가 자동차의 연비(y)에 어떤 영향을 주는지 알아보고자 30 대의 차량을 대상으로 조사한 후, y를 x1과 x2의 선형식으로 표현하는 중회귀모형을 적합시켜 얻은 결과이다. (총 12점)

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr> F
Model	2	199.33894	99.66947	32.86	<.0001
Error	27	81.90330	3.03346		
Corrected	Total 29	281.24224			
		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	15.05151	0.92001	16.36	<.0001
x1	1	-0.00227	0.000464	-4.89	<.0001
x2	1	-0.00025	0.000133	-1.95	0.0616

- 1) 적합된 회귀식을 쓰고, 회귀계수에 대한 유의성 검정을 유의수준 5%에서 실시하시오. (3점)
- 2) 결정계수를 구하고, 그 의미를 쓰시오. (단, 소수점 이하는 무시하고 계산할 것) (3점)
- 3) F-검정의 가설을 기술하고, 그 결과를 해석하시오. (3점)
- 4) x1의 계수 -0.00227의 의미가 무엇인지 설명하시오. (3점)

제 3 문. 다음은 어느 기관에서 직원들을 대상으로 600명을 임의로 추출하여 새로운 정책에 대한 여론조사를 실시한 결과이다. <표 1>은 경력이 10년 이상 된 직원에 대한 결과이고, <표 2>는 경력이 10년 미만인 직원에 대한 결과이며, <표 3>은 전체 직원에 대한 결과이다. (단, 자유도가 1인 카이제곱분포의 5% 유의수준의 기각역은 3.84이다)

<표 1> 경력이 10년 이상 된 직원표본

	찬성	반대	합계
나이가 40세 미만	25	50	75
나이가 40세 이상	75	150	225
합계	100	200	300

<표 2> 경력이 10년 미만인 직원표본

	찬성	반대	합계
나이가 40세 미만	150	50	200
나이가 40세 이상	75	25	100
합계	225	75	300

<표 3> 전체 표본

	찬성	반대	합계
나이가 40세 미만	175	100	275
나이가 40세 이상	150	175	325
합계	325	275	600

- 1) <표 1>과 <표 2>에서 각각 나이와 찬성여부가 서로 독립인지에 대한 χ^2 검정을 유의수준 $\alpha = 0.05$ 에서 실시하시오. (4점)
- 2) <표 3>에서 나이와 찬성여부가 서로 독립인지에 대한 유의수준 $\alpha=0.05$ 의 검정을 실시한 결과, 1)과는 다른 결론을 얻게 되었다. 이와 같이 상이한 결론이 나온 이유를 설명하고, 올바른 분석 방향을 제시하시오. (5점)
- 3) <표 3>에서 나이에 따른 두 집단에 대해 찬성의 비율이 같은 지를 검정하고자 한다. 가설 및 검정통계량을 제시하고, 유의확률(p-값)을 구하는 과정을 기술하시오. (4점)

- 제 4 문. 5급 공무원 시험의 어떤 한 문제는 m개의 보기 중 하나를 고르는 선다형 문제라 가정하자. 이때 확률변수 Y와 T는 다음과 같이 정의된다.
 - \circ 만약 시험응시자가 그 문제의 답을 알고 있으면 Y=1, 그렇지 않으면 Y=0 이다.
 - \circ 만약 시험응시자가 선택한 답이 정답이면 T=1, 그렇지 않으면 T=0 이다.

이때 P(Y=1)=p, P(T=1|Y=1)=1 이라 하자. 또한, 시험응시자가 문제의 답을 모르면, m개 중에서 답을 임의로 선택한다고 하자(즉, P(T=1|Y=0)=1/m). 다음 물음에 답하시오. (총 10점)

- 1) 어느 시험 응시자가 그 문제의 정답을 맞혔다는 조건 하에서 그 응시자가 답을 알고 있을 조건부 확률을 구하시오. (5점)
- 2) 문제의 정답을 맞히면 1점을 얻고, 답이 틀리면 c만큼 감점한다고 하자. 즉, S가 문제에 대한 점수라고 할 때, T = 1이면 S = 1이고, T = 0이면 S = -c 이다. S의 기댓값인 E(S)를 구하시오. (5점)

안전행정부 시험출제과장