ЛАБОРАТОРНАЯ РАБОТА №4

ПЕРЕХОДНЫЕ ПРОЦЕССЫ В НЕРАЗВЕТВЛЕННЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

Цель работы

Экспериментальное исследование апериодических и колебательных переходных процессов в линейных электрических цепях первого и второго порядков и сопоставление экспериментальных результатов с предварительно рассчитанными параметрами.

Задание 1. Определение постоянной времени

Рассчитаем переходный процесс в RL-цепи (рис.1) при

$$U=4\,\mathrm{B};$$

$$R=R_{\mathrm{Kp}}=2\sqrt{\frac{L}{C}}=200\,\mathrm{,OM};$$

$$C=int\left(\frac{100}{N}\right)=int\left(\frac{100}{16}\right)=6,\mathrm{MK\Phi};$$

$$L=10int\left(\frac{100}{N}\right)=10int\left(\frac{100}{16}\right)=60\,\mathrm{,M\Gamma H,}$$

Puc.1 RL-цепь

$$\tau = \frac{L}{R} = \frac{60*10^{-3}}{200} = 0,0003 c = 0.3 \text{ MC}$$

$$I_0 = \frac{U}{R} = \frac{4}{200} = 0.02$$

$$a = \frac{1}{\tau} = \frac{1}{0.0003} = 3333.3$$

$$i_L(t) = I_0 (1 - e^{-at}) = 0.02(1 - e^{-3333.3t})$$

$$u_L(t) = Ue^{-at} = 4e^{-3333.3t}$$

Построим графики функций $i_L(t)$ и $u_L(t)$.

Рис.2 Функции времени тока и напряжения на катушке

Определим постоянную времени τ RL-цепи и найдем значения тока и напряжения $u_L(0), u_L(\tau), u_L(2\tau), u_L(3\tau)$ и занесем их значения в таблицу 1

Таблица 1

Вариант N=16					
Время, мс		Рассчитано		Измерено	
		u_L , B	i_L , A	u_L , B	i_L , A
0	0	4	0	4	0
τ	0.3	1.47	0.01264	1.475	0.012627
2τ	0.6	0.54	0.01729	0.539	0.017302
3τ	0.9	0.19	0.01900	0.191	0.0179

Вывод: Ток в RL-цепи постепенно нарастает до своего установившегося значения и тем медленней, чем больше постоянная времени τ . Напряжение же наоборот спадает по экспоненте.

Задание 2. Расчет коэффициента затухания

Рассчитаем коэффициент затухания α , частоту свободных колебаний ω_c и период свободных колебаний $T_{\rm cB}$ переходного тока в RLC-цепи (рис. 3) при ее подключении к источнику постоянного напряжения U при параметрах, рассчитанных в задании 1, приняв

$$R = (0,1 \dots 0,2) R_{\mathrm{Kp}} = 0,1 \cdot 2 \cdot \sqrt{\frac{L}{C}} = 0,1 \cdot 2 \cdot \sqrt{\frac{0,06}{0,000006}} = 20 \text{ Om}$$

$$R < 2\sqrt{\frac{L}{C}} = >$$

$$\alpha = \frac{R}{2L} = \frac{20}{2 \cdot 0.06} = 166.6$$

$$\tau = \frac{1}{\alpha} = \frac{1}{166.6} = 0.006 \frac{1}{c}$$

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0.06 \cdot 0.000006}} = 1666.6$$

$$\omega_C = \sqrt{\omega_0^2 - \alpha^2} = \sqrt{1666.6^2 - 166.6^2} = 1658.25$$

$$T_{CB} = \frac{2\pi}{\omega_C} = \frac{2\pi}{1658.25} = 0.00378$$

$$i(t) = \frac{U}{\omega_C L} e^{-\alpha t} \sin \omega_C t$$

 $i(t) = \frac{4}{1658.25 \cdot 0.06} e^{-166.6t} \sin 1658.25 = 0.04 e^{-166.6t} \sin 1658.25t$

Рисунок 3. RLC-цепь

Построим график i(t)

Рисунок 4. RLC-цепь

Вывод: Переходный процесс в этом случае является колебательным вследствие периодического перераспределения запасов энергии в магнитном и электрическом полях элементов L и C цепи. Так как $\alpha < \omega_0$, цепь показывает затухающие колебания.

Задание 3. RL и RC-цепи

Соберем на рабочем поле схему (рис.5) для исследования переходных процессов в неразветвленных цепях первого и второго порядков.

Рис.5 Рабочая схема для исследования переходных процессов в неразветвленной цепи первого порядка

Исследуем переходные процессы в RL-цепи. Для этого установим переключатель Q в верхнее, а W — в правое положение, скорректируем развертку и уровни кривых i(t) и $u_L(t)$ на экране осциллографа.

Воспользовавшись визирными линиями и таблицей параметров, выводимой внизу экрана осциллографа, определим постоянную времени переходного процесса в RL-цепи и измерим значения переходных функций i(t) и $u_L(t)$ при

Занесем измеренные параметры тока i_L напряжения на катушке u_L в таблицу 1.

Вывод: Ток в RL-цепи постепенно нарастает до своего установившегося значения и тем медленней, чем больше постоянная времени т. Напряжение же наоборот спадает по экспоненте. Чем больше постоянная времени цепи, тем медленнее затухает переходный процесс.

Задание 4. RLC-цепь

Установим переключатель Q в верхнее, а W- в левое положение для исследования переходных процессов в RLC-цепи

Рис.6 Рабочая схема для исследования переходных процессов в неразветвленной цепи второго порядка

Для исследования колебательного затухающего процесса установим сопротивление потенциометра $R = (0.08 \dots 0.15) R_{\rm Kp}$ (Setting = (8...10) %); скорректируем развёртку и уровни кривых i(t) и u(t) на экране осциллографа.

Воспользовавшись визирными линиями и таблицей параметров, выводимой внизу экрана осциллографа, измерим период T_{cb} свободных колебаний тока, амплитуды тока I_{1m} и I_{2m} найти и сравнить с результатами расчёта коэффициент затухания α и частоту собственных колебаний ω_{c} тока i и напряжения u.

Puc.7 Осциллограммы тока i(t) и напряжения u(t) при $R < R_{KD}$.

$$\omega_c = \frac{2\pi}{T_{\rm CR}} = 1635.4$$

$$\alpha = \frac{\ln\left(\frac{I_{1m}}{I_{2m}}\right)}{T_{CB}} = \frac{\ln\left(\frac{202.4}{200.2}\right)}{0.00384} = 2.84$$

Вывод: Напряжения и ток периодически меняют знак. Амплитуда колебаний изменяется по экспоненциальному закону. В цепи совершаются затухающие колебания тока и напряжений с периодом $T_{\text{CB}} = \frac{2\pi}{\omega_{\text{C}}}$.

Задание 5. Апериодический переходный процесс

Задав значение сопротивления $R=2R_{\rm kp}$, убедимся, что вместо колебательного процесс стал апериодическим:

 $Puc.8\ Oc$ циллограммы тока i(t) и напряжения u(t) при $R=2R_{
m kp}.$

Выставив на потенциометре Setting =50 %, уменьшим сопротивление вдвое, чтобы сравнить крутизну нарастания критического переходного тока i и напряжения u в RLC-цепи с крутизной нарастания тока i и напряжения u при $R=2R_{\rm kp}$

Puc.9 Осциллограммы тока i(t) и напряжения u(t) при $R=R_{\mathrm{Kp}}$.

Вывод: Апериодические процессы – переходные процессы, при которых ток и напряжение в контуре принимают новые установившиеся значения, переходя к ним монотонно, либо имеют не более одного экстремума.

 $R=R_{\rm Kp}=2\sqrt{\frac{L}{c}}$ при данном равенстве сопротивление называется критическим ($\alpha=\omega_0$ и корни $p_1=p_2=-\alpha=-\frac{R}{2L}$ уравнения $p^2+2\alpha p+\omega_0^2=0$ вещественны и равны друг другу), получим $\omega_{\rm C}=0$ и $T_{\rm CB}=\infty$. При этом периодические затухающие колебания переходят в апериодические. Этот случай называют критическим (предельно апериодическим)