Unidad: Análisis de Datos

Exploratory Data Analysis (EDA): Enfoque Conceptual

Nicolás Sidicaro Abril 2025

¿Qué es el EDA?

- Exploratory Data Analysis (EDA) es un enfoque para analizar conjuntos de datos con el fin de:
 - Descubrir patrones subyacentes
 - Identificar anomalías
 - Probar hipótesis
 - Verificar supuestos

Importancia del EDA

El EDA es **fundamental** porque:

- Es el primer paso crucial antes de cualquier análisis formal
- Permite **entender realmente los datos** antes de aplicar modelos complejos
- Puede revelar problemas que afectarían los resultados del análisis
- Guía la selección de técnicas apropiadas para el análisis posterior
- Proporciona contexto valioso para interpretar resultados

El EDA en el Ciclo de Ciencia de Datos

El EDA es una fase iterativa que:

- 1. Sigue a la importación y limpieza inicial de datos
- 2. Precede y guía la modelización formal
- 3. A menudo lleva a **revisitar** las fases de limpieza de datos
- 4. Informa sobre qué variables considerar en el modelado
- 5. Ayuda a **interpretar** los resultados de los modelos

Filosofía del EDA

El enfoque "filosófico" del EDA:

- Escéptico: No aceptar los datos en su valor nominal
- Exploratorio: Buscar sin ideas preconcebidas
- Iterativo: Las preguntas llevan a más preguntas
- Visual: "Ver para creer" la visualización es clave
- Contextual: Utilizar el conocimiento del dominio

Componentes Principales del EDA

El EDA tiene cuatro componentes principales:

1. Comprensión del contexto y objetivos

- ¿Cuál es el problema de negocio?
- ¿Qué preguntas estamos tratando de responder?

2. Análisis univariante

- Examinar cada variable individualmente
- Distribuciones, estadísticas descriptivas, etc.

3. Análisis bivariante

- Relaciones entre pares de variables
- Correlaciones, tendencias, agrupaciones

4. Análisis multivariante

- Interacciones complejas entre múltiples variables
- Patrones y estructuras en dimensiones superiores
 Nicolás Sidicaro Exploratory Data Analysis (EDA): Enfoque Conceptual FCE-UBA

Etapas del EDA

Un enfoque estructurado para el EDA incluye:

- 1. Formular preguntas sobre los datos
- 2. Buscar respuestas mediante análisis y visualización
- 3. Refinar preguntas basándose en lo descubierto
- 4. **Generar nuevas preguntas** para profundizar
- 5. **Comunicar hallazgos** para informar decisiones

1. Comprensión Inicial de los Datos

Antes de cualquier análisis detallado:

- Explorar la estructura básica:
 - Número de observaciones y variables
 - Tipos de datos (numérico, categórico, fechas, etc.)
 - Identificadores únicos y claves
- Examinar las primeras filas:
 - ¿Los datos tienen sentido a primera vista?
 - ¿Hay problemas evidentes?
- Comprender el contexto de negocio:
 - ¿Qué representa cada variable?
 - ¿Cómo se recolectaron los datos?
 - ¿Qué limitaciones podrían tener?

2. Calidad de los Datos

```
# Código para verificar valores faltantes
colSums(is.na(datos))
# Código para verificar duplicados
sum(duplicated(datos))
```

Aspectos clave a verificar:

Valores faltantes:

- ¿Cuántos hay y dónde están?
- ¿Hay patrones en su distribución?
- ¿Cómo afectan a nuestro análisis?

Valores atípicos y extremos:

- ¿Hay valores que parecen erróneos?
- ¿Los outliers son datos reales o errores?

2. Calidad de los Datos

- Inconsistencias:
 - ¿Hay valores contradictorios?
 - ¿Existen registros duplicados?

3. Análisis Univariado: Numéricas

Para cada variable numérica, examinar:

• Estadísticas descriptivas:

- Centro (media, mediana, moda)
- Dispersión (rango, varianza, desviación estándar)
- Forma (asimetría, curtosis)
- Rango (mínimo, máximo, percentiles)

Visualizaciones:

- Histogramas
- Gráficos de densidad
- Boxplots
- QQ plots (para normalidad)

Ejemplo: Análisis Univariado (Num)

```
# Estadísticas descriptivas
summary(datos$variable_numerica)

# Visualización
par(mfrow=c(2,2))
hist(datos$variable_numerica, main="Histograma")
plot(density(datos$variable_numerica), main="Densidad")
boxplot(datos$variable_numerica, main="Boxplot")
qqnorm(datos$variable_numerica); qqline(datos$variable_numerica)
```

Preguntas clave:

- ¿La distribución es normal, sesgada, multimodal?
- ¿Hay valores atípicos que requieren atención?
- ¿Los valores están dentro de rangos razonables?

4. Análisis Univariado: Categóricas

Para cada variable categórica, examinar:

• Frecuencias y proporciones:

- ¿Cuántos casos hay en cada categoría?
- ¿Hay un desbalance significativo?

Cardinalidad:

- ¿Cuántas categorías únicas hay?
- ¿Hay categorías con muy pocos casos?

• Visualizaciones:

- Gráficos de barras
- Gráficos circulares (para pocas categorías)
- Gráficos de Pareto

Ejemplo: Análisis Univariante

```
# Tabla de frecuencias
table(datos$variable_categorica)
prop.table(table(datos$variable_categorica))

# Visualización
barplot(table(datos$variable_categorica), main="Frecuencias")
pie(table(datos$variable_categorica), main="Proporciones")
```

Preguntas clave:

- ¿Hay categorías dominantes?
- ¿Se necesita agrupar categorías poco frecuentes?
- ¿Las categorías están codificadas de manera consistente?

5. Análisis Bivariado: Relaciones

Examinamos cómo se relacionan pares de variables:

• Numérica vs. Numérica:

- Correlación (Pearson, Spearman, Kendall)
- Gráficos de dispersión
- Heatmaps de correlación

• Categórica vs. Categórica:

- Tablas de contingencia
- Pruebas de chi-cuadrado
- Gráficos de mosaico

• Numérica vs. Categórica:

- Boxplots agrupados
- Gráficos de violín
- ANOVA

Ejemplo: Análisis Bivariado

```
# Correlación numérica
cor(datos$numerica1, datos$numerica2)

# Tabla de contingencia
table(datos$categorica1, datos$categorica2)

# Boxplot agrupado
boxplot(numerica ~ categorica, data = datos)
```

Preguntas clave:

- ¿Qué variables están fuertemente correlacionadas?
- ¿Hay relaciones no lineales que la correlación no captura?
- ¿Las distribuciones varían significativamente entre grupos?

6. Análisis Multivariado: Interacciones

Examinar interacciones entre múltiples variables:

Técnicas de visualización:

- Gráficos de pares (pairplots)
- Gráficos de coordenadas paralelas
- Heatmaps
- Gráficos 3D

Técnicas analíticas:

- Análisis de componentes principales (PCA)
- Análisis de clúster
- Análisis factorial

7. Análisis Temporal

Si los datos tienen componente temporal:

- Tendencias:
 - ¿Hay aumentos o disminuciones sistemáticos a lo largo del tiempo?
- Estacionalidad:
 - ¿Existen patrones que se repiten periódicamente?
- Ciclos:
 - ¿Hay patrones no periódicos más largos?
- Irregularidades:
 - ¿Aparecen eventos inusuales o outliers temporales?
 - ¿Hay cambios estructurales en la serie?

8. Patrones a Buscar

Durante el EDA, debemos estar atentos a:

- Agrupaciones: Concentraciones de datos que sugieren segmentos naturales
- Correlaciones: Relaciones lineales o no lineales entre variables
- Tendencias: Patrones direccionales en los datos
- Valores atípicos: Puntos de datos que difieren significativamente del resto
- Huecos: Áreas donde faltan datos que podrían ser significativas
- Distribuciones: Formas que toman los datos (normal, sesgada, multimodal)

9. Formulación de Hipótesis

El EDA debe generar hipótesis que guíen análisis posteriores:

- Cómo formular hipótesis basadas en datos:
 - Partir de patrones observados
 - Considerar el contexto de negocio
 - Incorporar conocimiento previo del dominio
- Refinamiento iterativo:
 - Comprobar hipótesis iniciales
 - Reformular basándose en la evidencia
 - Generar nuevas hipótesis más específicas
- Documentar hipótesis:
 - Mantener un registro de todas las hipótesis
 - Anotar la evidencia que las apoya o refuta

10. Herramientas para EDA en R

R ofrece numerosas herramientas para realizar EDA:

• Paquetes básicos:

- base: Funciones estadísticas fundamentales
- stats: Pruebas estadísticas y modelos
- o graphics: Visualizaciones básicas

Paquetes del Tidyverse:

- dplyr: Manipulación de datos
- ggplot2: Visualizaciones avanzadas
- tidyr: Ordenamiento de datos

Paquetes especializados:

- DataExplorer: Automatización de EDA
- GGally: Extensiones de ggplot2 para análisis multivariante
- corrplot : Visualización de matrices de correlación

11. Automatización vs. Exploración

Ventajas y limitaciones de cada enfoque:

- Automatización: ✓ Eficiente para conjuntos de datos grandes ✓ Reduce la posibilidad de olvidar verificaciones importantes ✓ Consistente y reproducible X Puede pasar por alto patrones sutiles o particulares X Limitado por lo que está programado para buscar
- Exploración manual: ✓ Permite seguir la intuición y el conocimiento del dominio ✓ Facilita descubrir lo inesperado ✓ Adaptable a las peculiaridades de cada conjunto de datos X Más lento y menos sistemático X Susceptible a sesgos del analista
 - La combinación de ambos enfoques suele ser lo óptimo

12. Documentación del EDA

La documentación es crucial:

¿Por qué documentar?

- Asegura la reproducibilidad
- Facilita la comunicación con stakeholders
- Permite revisar y refinar el análisis
- Sirve como referencia para futuros proyectos

¿Qué documentar?

- Preguntas iniciales y objetivos
- Hallazgos principales
- Decisiones tomadas (y por qué)
- Visualizaciones clave
- Hipótesis generadas
- Limitaciones identificadas

13. Errores Comunes en EDA

Frrores a evitar:

- Saltarse la exploración e ir directamente al modelado
- Confiar ciegamente en estadísticas resumidas sin visualizar
- No considerar el contexto del dominio
- Centrarse solo en tendencias centrales ignorando la variabilidad
- No verificar supuestos de normalidad, independencia, etc.
- Sobreinterpretar patrones aleatorios
- Ignorar valores atípicos sin investigarlos adecuadamente
- No documentar el proceso y los hallazgos

14. Pasos Clave para un EDA Efectivo

1. Define claramente tus objetivos

• ¿Qué preguntas específicas quieres responder?

2. Comprende la estructura de tus datos

Tipos de variables, dimensiones, granularidad

3. Evalúa la calidad de los datos

Valores faltantes, outliers, inconsistencias

4. Explora cada variable individualmente

Distribuciones, estadísticas descriptivas

5. Analiza relaciones entre variables

Correlaciones, patrones, agrupaciones

14. Pasos Clave para un EDA Efectivo

- 1. Genera y refina hipótesis
 - Documenta tus observaciones y preguntas
- 2. Comunica los hallazgos con visualizaciones efectivas
 - Elije los gráficos apropiados para tus datos
- 3. **Itera y profundiza** en áreas de interés

15. EDA y Toma de Decisiones

El EDA informa decisiones críticas:

- Selección de variables para modelado
 - ¿Qué variables tienen mayor poder predictivo?
 - ¿Cuáles son redundantes?
- Transformación de datos
 - ¿Se necesitan normalizar variables?
 - ¿Hay que crear nuevas variables?
- Gestión de valores atípicos
 - ¿Deben eliminarse, transformarse o analizarse por separado?
- Imputación de valores faltantes
 - ¿Qué método es más apropiado según el patrón observado?
- Validación cruzada y división de datos