Sprawozdanie z Laboratorium 8 - Pomiar czasu algorytmów BFS i DFS grafu nieskierowanego.

Kamil Kuczaj

15 maja 2016

1 Wstęp

Zadaniem na laboratorium był pomiar czasu przeszukania grafu korzystając z dwóch algorytmów:

- 1. DFS (Depth First Search, czyli tzw. przeszukiwanie wgłąb grafu
- 2. BFS (Breadth First Search, czyli tzw. przeszukiwanie wszerz grafu.

Wg teorii oba algorytmy mają złożoność obliczeniową równą O(E), gdzie E jest liczbą krawędzi w grafie (ang. Edge. Zdecydowano się na implementację grafu na postawie listy sąsiedztwa. Jest to trudniejsza konstrukcja, jednak oba algorytmy będą szybsze na takiej strukturze. Iterowanie po liście jest znacznie szybsze niż iterowanie po tablicy oraz pozwala zaoszczędzić wiele pamięci operacyjnej.

W naszym przypadku mieliśmy załadować kolejno 10^1 , 10^3 , 10^5 , 10^6 oraz sprawdzić czas wyszukiwania znanego elementu. Sposób generacji polegał na tym, aby stworzyć n wierzchołków, połączyć każdy wierzchołek z następnym krawędzią o wadze równej 1. Łącząc ostatni wierzchołek z pierwszym powstawało koło. Następnie round(ln(n)) pierwszych wierzchołków pseudolosowo (biblioteka < cstdlib >) było łączone krawędzią o wadze 1 z round(ln(n)) innymi wierzchołkami. W ten sposób można było otrzymać:

Tablica 1:

n	10	100	1000	10000	100000
round(ln(n))	2	5	7	9	12
$V + E = n + \ln(n) \cdot \ln(n)$	14	125	1049	10081	100144

2 Specyfikacja komputera

Tablica 2:

Wersja kompilatora $g++$	4.8.4
System	Ubuntu 14.04.4
Procesor	Intel Core i5 2510M 2.3 GHz
Pamięć RAM	8 GB DDR3 1600 MHz
Dysk twardy	HDD (5400 obr./min)
Rozmiar zmiennej int	4 bajty

3 Pomiary oraz ich interpretacja

Średni czas działania BFS

Rysunek 1: Wyniki wraz z regresją kwadratową. Oś odciętych w skali logarytmicznej.

Tablica 3:

Ilość elementów	10	100	1 000	10 000	100 000
Średni czas BFS [us]	18,3	170,76	10464,54	961902,28	127787700
Średni czas BFS [s]	0,0000183	0,00017076	0,01046454	0,96190228	127,7877

Tablica 4:

	BFS (czasy w mikrosekundach)						
Ilość elementów	10	100	1 000	10 000	100 000		
Pomiar nr 1	20	170	10 683	926 741	125 348 000		
Pomiar nr 2	21	170	9 971	961 815	138 205 000		
Pomiar nr 3	18	168	10 918	927 253	122 429 000		
Pomiar nr 4	17	170	11 563	935 551	133 909 000		
Pomiar nr 5	16	170	10 186	928 440	124 432 000		
Pomiar nr 6	21	171	12 834	930 681	132 298 000		
Pomiar nr 7	17	167	10 637	931 452	119 586 000		
Pomiar nr 8	17	166	9 990	945 340	131 274 000		
Pomiar nr 9	15	178	10 174	960 872	119 598 000		
Pomiar nr 10	15	169	10 132	931 477	130 798 000		
Pomiar nr 11	16	168	10 033	946 035			
Pomiar nr 12	16	165	10 009	950 542			
Pomiar nr 13	16	170	11 172	964 619			
Pomiar nr 14	16	171	11 589	935 598			
Pomiar nr 15	15	169	10 965	935 523			
Pomiar nr 16	15	168	11 419	943 430			
Pomiar nr 17	16	178	12 129	926 995			
Pomiar nr 18	16	177	11 021	$975\ 528$			
Pomiar nr 19	15	179	10 682	937 638			
Pomiar nr 20	16	167	11 351	933 311			
Pomiar nr 21	15	167	10 938	926 383			
Pomiar nr 22	15	167	11 065	932 908			
Pomiar nr 23	17	167	10 409	929 015			
Pomiar nr 24	26	166	10 391	936 482			
Pomiar nr 25	18	167	9 927	$931\ 784$			
Pomiar nr 26	25	169	10 060	931 614			
Pomiar nr 27	25	167	10 068	925 970			
Pomiar nr 28	35	169	9 892	931 366			
Pomiar nr 29	25	166	9 971	927 612			
Pomiar nr 30	25	168	10 527	931 082			
Pomiar nr 31	25	166	9 748	926 937			
Pomiar nr 32	25	169	10 109	933 378			
Pomiar nr 33	24	167	10 667	999 666			
Pomiar nr 34	22	168	10 087	936 703			
Pomiar nr 35	17	169	10 089	932 640			
Pomiar nr 36	17	167	10 171	939 062			
Pomiar nr 37	17	168	9 727	1 011 730			
Pomiar nr 38	16	175	10 862	1 174 270			
Pomiar nr 39	17	167	10 084	1 086 720			

	BFS (czasy w mikrosekundach)						
Ilość elementów	10	100	1 000	10 000	100 000		
Pomiar nr 40	15	169	9 667	1 009 240			
Pomiar nr 41	16	167	9 849	956 614			
Pomiar nr 42	16	168	10 844	938 082			
Pomiar nr 43	16	167	9 822	958 697			
Pomiar nr 44	16	168	10 024	966 607			
Pomiar nr 45	16	167	10 531	954 374			
Pomiar nr 46	16	166	9 982	943 325			
Pomiar nr 47	16	165	10 108	999 292			
Pomiar nr 48	16	180	10 377	1 184 950			
Pomiar nr 49	16	204	9 678	1 095 680			
Pomiar nr 50	16	217	10 095	1 014 090			

Średni czas działania DFS

Rysunek 2: Wyniki wraz z regresją kwadratową. Oś odciętych w skali logarytmicznej.

Tablica 5:

Ilość elementów	10	100	1 000	10 000	100 000
Średni czas DFS [us]	15,22	210,96	11246,56	1010026,8	128707900
Średni czas DFS [s]	0,00001522	0,00021096	0,01124656	1,0100268	128,7079

Tablica 6:

	DFS (czasy w mikrosekundach)						
Ilość elementów	10	100	1 000	10 000	100 000		
Pomiar nr 1	15	236	11 123	977 594	123 924 000		
Pomiar nr 2	14	232	11 055	1 036 480	134 461 000		
Pomiar nr 3	25	222	10 931	981 043	122 972 000		
Pomiar nr 4	13	334	10 373	974 835	133 993 000		
Pomiar nr 5	11	183	11 018	981 799	123 124 000		
Pomiar nr 6	11	188	11 233	980 246	134 154 000		
Pomiar nr 7	11	289	10 466	1 001 290	123 260 000		
Pomiar nr 8	15	252	11 245	1 023 200	134 145 000		
Pomiar nr 9	18	261	12 406	1 023 590	123 061 000		
Pomiar nr 10	20	253	12 306	1 024 250	133 985 000		
Pomiar nr 11	20	267	12 304	1 043 130			
Pomiar nr 12	17	245	12 247	1 004 590			
Pomiar nr 13	19	285	11 561	980 044			
Pomiar nr 14	18	245	13 837	1 003 490			
Pomiar nr 15	14	282	12 506	982 557			
Pomiar nr 16	15	243	13 721	1 080 970			
Pomiar nr 17	16	166	11 737	1 115 090			
Pomiar nr 18	16	166	11 792	1 090 640			
Pomiar nr 19	15	167	11 452	1 008 580			
Pomiar nr 20	15	211	12 001	998 792			
Pomiar nr 21	17	172	15 057	971 206			
Pomiar nr 22	11	171	13 704	982 753			
Pomiar nr 23	10	172	11 760	986 193			
Pomiar nr 24	12	171	11 702	991 021			
Pomiar nr 25	17	169	10 498	970 686			
Pomiar nr 26	16	195	10 938	972 182			
Pomiar nr 27	14	179	11 014	982 944			
Pomiar nr 28	14	172	10 350	975 137			
Pomiar nr 29	14	171	10 933	967 219			
Pomiar nr 30	14	170	10 436	970 418			
Pomiar nr 31	15	171	10 494	970 582			
Pomiar nr 32	16	192	10 918	971 951			
Pomiar nr 33	16	172	10 464	971 862			
Pomiar nr 34	16	220	10 531	979 564			
Pomiar nr 35	16	225	10 538	968 014			
Pomiar nr 36	16	246	10 021	965 789			
Pomiar nr 37	15	171	10 268	966 561			
Pomiar nr 38	15	224	10 555	970 707			
Pomiar nr 39	15	244	9 997	983 825			

Tablica 7:

	DFS (czasy w mikrosekundach)							
Ilość elementów	10	100	1 000	10 000	100 000			
Pomiar nr 40	15	172	10 332	1 003 690				
Pomiar nr 41	15	182	10 459	1 015 170				
Pomiar nr 42	16	225	10 011	1 145 720				
Pomiar nr 43	16	241	13 384	1 266 370				
Pomiar nr 44	16	171	10 564	1 259 700				
Pomiar nr 45	15	214	10 157	1 019 210				
Pomiar nr 46	15	225	10 403	1 090 350				
Pomiar nr 47	15	172	10 412	985 216				
Pomiar nr 48	13	214	10 343	968 916				
Pomiar nr 49	14	226	10 342	957 518				
Pomiar nr 50	14	172	10 429	958 656				

4 Wnioski

W implementacji nie wykorzystano tablicy odwiedzonych wierzchołków. Za każdym razem przeszukiwano listę odwiedzonych wierzchołków, celem sprawdzenia czy wierzchołek zdjęty ze stosu lub z kolejki jest już tym odwiedzonym. Wskutek tego operacje wykonywały się dodatkowe n-razy. Złożoność samego algorytmu wynosiła O(V+E, gdzie V - ilość wierzchołków, E - ilość krawędzi. W moim przypadku, wg tablicy 1, znajdującej się we wstępie, złożoność ta wynosiła praktycznie O(n). Zastosowanie tablicy wierzchołków odwiedzonych spowodowałoby to, że dane na wykresie można przybliżyć regresją liniową. Wskutek tego, że operacje te trwały bardzo długo, zdecydowano się wykonywać jedynie pomiary do 10^5 , a dla największej liczby elementów jedynie dziesięć pomiarów.