Project 1

Step 1: Open the sat_scores.csv file. Investigate the data, and answer the questions below.

1. What does the data describe?

```
In [ ]: This data describes the average Sat Verbal and Math scores by state.
```

2. Does the data look complete? Are there any obvious issues with the observations?

3. Create a data dictionary for the dataset.

```
In [110]: import csv

with open("/Users/colinjclemence/Documents/DSI_SM_01/projects/01-project
s-weekly/project-01/assets/sat_scores.csv", mode='r') as infile:
    reader = csv.reader(infile)
    #for row in reader:

    mydict = dict((rows[0],[rows[1],rows[2],rows[3]]) for rows in
    reader)
    print mydict
```

```
{'WA': ['53', '527', '527'], 'DE': ['67', '501', '499'], 'DC': ['56',
 '482', '474'], 'WI': ['6', '584', '596'], 'WV': ['18', '527', '512'],
 'State': ['Rate', 'Verbal', 'Math'], 'HI': ['52', '485', '515'], 'FL':
 ['54', '498', '499'], 'WY': ['11', '547', '545'], 'NH': ['72', '520',
 '516'], 'NJ': ['81', '499', '513'], 'NM': ['13', '551', '542'], 'TX':
 ['53', '493', '499'], 'LA': ['7', '564', '562'], 'NB': ['8', '562', '5
68'], 'NC': ['65', '493', '499'], 'ND': ['4', '592', '599'], 'TN': ['1
3', '562', '553'], 'NY': ['77', '495', '505'], 'PA': ['71', '500', '49
9'], 'RI': ['71', '501', '499'], 'NV': ['33', '509', '515'], 'VA': ['6
8', '510', '501'], 'CO': ['31', '539', '542'], 'AK': ['51', '514', '51
0'], 'AL': ['9', '559', '554'], 'AR': ['6', '562', '550'], 'VT': ['69',
 '511', '506'], 'IL': ['12', '576', '589'], 'GA': ['63', '491', '489'],
 'IN': ['60', '499', '501'], 'IA': ['5', '593', '603'], 'OK': ['8', '56
7', '561'], 'AZ': ['34', '523', '525'], 'CA': ['51', '498', '517'], 'I
D': ['17', '543', '542'], 'CT': ['82', '509', '510'], 'ME': ['69', '50
6', '500'], 'MD': ['65', '508', '510'], 'All': ['45', '506', '514'], 'M
A': ['79', '511', '515'], 'OH': ['26', '534', '439'], 'UT': ['5',
5', '570'], 'MO': ['8', '577', '577'], 'MN': ['9', '580', '589'], 'MI':
 ['11', '561', '572'], 'KS': ['9', '577', '580'], 'MT': ['23', '539',
 '539'], 'MS': ['4', '566', '551'], 'SC': ['57', '486', '488'], 'KY':
 ['12', '550', '550'], 'OR': ['55', '526', '526'], 'SD': ['4', '577',
 '582']}
```

Step 2: Load the data.

4. Load the data into a list of lists

```
In [99]: import csv

data = []

with open("/Users/colinjclemence/Documents/DSI_SM_01/projects/01-project
s-weekly/project-01/assets/sat_scores.csv",'r') as f:
    reader = csv.reader(f)
    for row in reader:
        data.append(row)
f.close()
```

5. Print the data

```
In [85]: print data
         [['State', 'Rate', 'Verbal', 'Math'], ['CT', '82', '509', '510'], ['N
         J', '81', '499', '513'], ['MA', '79', '511', '515'], ['NY', '77', '49
         5', '505'], ['NH', '72', '520', '516'], ['RI', '71', '501', '499'], ['P
            '71', '500', '499'], ['VT', '69', '511', '506'], ['ME',
                                                                     '69', '50
         6', '500'], ['VA', '68', '510', '501'], ['DE', '67', '501', '499'], ['M
         D', '65', '508', '510'], ['NC', '65', '493', '499'], ['GA', '63', '49
         1', '489'], ['IN', '60', '499', '501'], ['SC', '57', '486', '488'], ['D
           , '56', '482', '474'], ['OR', '55', '526', '526'], ['FL', '54', '49
            '499'], ['WA', '53', '527', '527'], ['TX', '53', '493',
                                                                     '499'], ['H
         I', '52', '485', '515'], ['AK', '51', '514', '510'], ['CA', '51', '49
         8', '517'], ['AZ', '34', '523', '525'], ['NV', '33', '509', '515'], ['C
         O', '31', '539', '542'], ['OH', '26', '534', '439'], ['MT', '23', '53
         9', '539'], ['WV', '18', '527', '512'], ['ID', '17', '543', '542'], ['T
         N', '13', '562', '553'], ['NM', '13', '551', '542'], ['IL', '12', '57
         6', '589'], ['KY', '12', '550', '550'], ['WY', '11', '547', '545'], ['M
         I', '11', '561', '572'], ['MN', '9', '580', '589'], ['KS', '9', '577',
          '580'], ['AL', '9', '559', '554'], ['NB', '8', '562', '568'], ['OK',
          '8', '567', '561'], ['MO', '8', '577', '577'], ['LA', '7', '564', '56
         2'], ['WI', '6', '584', '596'], ['AR', '6', '562', '550'], ['UT', '5',
          '575', '570'], ['IA', '5', '593', '603'], ['SD', '4', '577', '582'],
          ['ND', '4', '592', '599'], ['MS', '4', '566', '551'], ['All', '45', '5
```

6. Extract a list of the labels from the data, and remove them from the data.

06', '514']]

```
In [42]: #print data
label = data[0]
data.pop(0)
print label

['State', 'Rate', 'Verbal', 'Math']
```

7. Create a list of State names extracted from the data. (Hint: use the list of labels to index on the State column)

8. Print the types of each column

9. Do any types need to be reassigned? If so, go ahead and do it.

```
In [45]:
        for i in data:
             i[1] = int(i[1])
             i[2] = int(i[2])
             i[3] = int(i[3])
         print data
         [['CT', 82, 509, 510], ['NJ', 81, 499, 513], ['MA', 79, 511, 515], ['N
         Y', 77, 495, 505], ['NH', 72, 520, 516], ['RI', 71, 501, 499], ['PA', 7
         1, 500, 499], ['VT', 69, 511, 506], ['ME', 69, 506, 500], ['VA', 68, 51
         0, 501], ['DE', 67, 501, 499], ['MD', 65, 508, 510], ['NC', 65, 493, 49
         9], ['GA', 63, 491, 489], ['IN', 60, 499, 501], ['SC', 57, 486, 488],
          ['DC', 56, 482, 474], ['OR', 55, 526, 526], ['FL', 54, 498, 499], ['W
         A', 53, 527, 527], ['TX', 53, 493, 499], ['HI', 52, 485, 515], ['AK', 5
         1, 514, 510], ['CA', 51, 498, 517], ['AZ', 34, 523, 525], ['NV', 33, 50
         9, 515], ['CO', 31, 539, 542], ['OH', 26, 534, 439], ['MT', 23, 539, 53
         9], ['WV', 18, 527, 512], ['ID', 17, 543, 542], ['TN', 13, 562, 553],
          ['NM', 13, 551, 542], ['IL', 12, 576, 589], ['KY', 12, 550, 550], ['W
         Y', 11, 547, 545], ['MI', 11, 561, 572], ['MN', 9, 580, 589], ['KS', 9,
          577, 580], ['AL', 9, 559, 554], ['NB', 8, 562, 568], ['OK', 8, 567, 56
         1], ['MO', 8, 577, 577], ['LA', 7, 564, 562], ['WI', 6, 584, 596], ['A
         R', 6, 562, 550], ['UT', 5, 575, 570], ['IA', 5, 593, 603], ['SD', 4, 5
         77, 582], ['ND', 4, 592, 599], ['MS', 4, 566, 551], ['All', 45, 506, 51
         4]]
```

10. Create a dictionary for each column mapping the State to its respective value for that column.

{'Rate': [{'CT': 82}, {'NJ': 81}, {'MA': 79}, {'NY': 77}, {'NH': 72}, {'RI': 71}, {'PA': 71}, {'VT': 69}, {'ME': 69}, {'VA': 68}, {'DE': 6 7}, {'MD': 65}, {'NC': 65}, {'GA': 63}, {'IN': 60}, {'SC': 57}, {'DC': 56}, {'OR': 55}, {'FL': 54}, {'WA': 53}, {'TX': 53}, {'HI': 52}, {'A K': 51}, {'CA': 51}, {'AZ': 34}, {'NV': 33}, {'CO': 31}, {'OH': 26}, {'MT': 23}, {'WV': 18}, {'ID': 17}, {'TN': 13}, {'NM': 13}, {'IL': 1 2}, {'KY': 12}, {'WY': 11}, {'MI': 11}, {'MN': 9}, {'KS': 9}, {'AL': 9}, {'NB': 8}, {'OK': 8}, {'MO': 8}, {'LA': 7}, {'WI': 6}, {'AR': 6}, {'UT': 5}, {'IA': 5}, {'SD': 4}, {'ND': 4}, {'MS': 4}, {'All': 45}], 'Math': [{'CT': 510}, {'NJ': 513}, {'MA': 515}, {'NY': 505}, {'NH': 51 6}, {'RI': 499}, {'PA': 499}, {'VT': 506}, {'ME': 500}, {'VA': 501}, {'DE': 499}, {'MD': 510}, {'NC': 499}, {'GA': 489}, {'IN': 501}, {'S C': 488}, {'DC': 474}, {'OR': 526}, {'FL': 499}, {'WA': 527}, {'TX': 49 9}, {'HI': 515}, {'AK': 510}, {'CA': 517}, {'AZ': 525}, {'NV': 515}, {'CO': 542}, {'OH': 439}, {'MT': 539}, {'WV': 512}, {'ID': 542}, {'T N': 553}, {'NM': 542}, {'IL': 589}, {'KY': 550}, {'WY': 545}, {'MI': 57 2}, {'MN': 589}, {'KS': 580}, {'AL': 554}, {'NB': 568}, {'OK': 561}, {'MO': 577}, {'LA': 562}, {'WI': 596}, {'AR': 550}, {'UT': 570}, {'I A': 603}, {'SD': 582}, {'ND': 599}, {'MS': 551}, {'All': 514}], 'Verba l': [{'CT': 509}, {'NJ': 499}, {'MA': 511}, {'NY': 495}, {'NH': 520}, {'RI': 501}, {'PA': 500}, {'VT': 511}, {'ME': 506}, {'VA': 510}, {'D E': 501}, {'MD': 508}, {'NC': 493}, {'GA': 491}, {'IN': 499}, {'SC': 48 6}, {'DC': 482}, {'OR': 526}, {'FL': 498}, {'WA': 527}, {'TX': 493}, {'HI': 485}, {'AK': 514}, {'CA': 498}, {'AZ': 523}, {'NV': 509}, {'C O': 539}, {'OH': 534}, {'MT': 539}, {'WV': 527}, {'ID': 543}, {'TN': 56 2}, {'NM': 551}, {'IL': 576}, {'KY': 550}, {'WY': 547}, {'MI': 561}, {'MN': 580}, {'KS': 577}, {'AL': 559}, {'NB': 562}, {'OK': 567}, {'M O': 577}, {'LA': 564}, {'WI': 584}, {'AR': 562}, {'UT': 575}, {'IA': 59 3}, {'SD': 577}, {'ND': 592}, {'MS': 566}, {'All': 506}]}

11. Create a dictionary with the values for each of the numeric columns

```
{'Rate': [82, 81, 79, 77, 72, 71, 71, 69, 69, 68, 67, 65, 65, 63, 60, 57, 56, 55, 54, 53, 53, 52, 51, 51, 34, 33, 31, 26, 23, 18, 17, 13, 13, 12, 12, 11, 11, 9, 9, 9, 8, 8, 8, 7, 6, 6, 5, 5, 4, 4, 4, 4, 45], 'Math': [510, 513, 515, 505, 516, 499, 499, 506, 500, 501, 499, 510, 499, 489, 501, 488, 474, 526, 499, 527, 499, 515, 510, 517, 525, 515, 542, 439, 539, 512, 542, 553, 542, 589, 550, 545, 572, 589, 580, 554, 568, 561, 577, 562, 596, 550, 570, 603, 582, 599, 551, 514], 'Verbal': [509, 49, 511, 495, 520, 501, 500, 511, 506, 510, 501, 508, 493, 491, 499, 48, 6, 482, 526, 498, 527, 493, 485, 514, 498, 523, 509, 539, 534, 539, 52, 7, 543, 562, 551, 576, 550, 547, 561, 580, 577, 559, 562, 567, 577, 564, 584, 562, 575, 593, 577, 592, 566, 506]}
```

Step 3: Describe the data

12. Print the min and max of each column

```
In [48]: print "Max Rate: " + str(max(curRate))
print "Min Rate: " + str(min(curRate))
print "Max Verbal: " + str(max(curVerbal))
print "Min Verbal: " + str(min(curVerbal))
print "Max Math: " + str(max(curMath))
print "Min Math: " + str(min(curMath))

Max Rate: 82
Min Rate: 4
Max Verbal: 593
Min Verbal: 482
Max Math: 603
Min Math: 439
```

13. Write a function using only list comprehensions, no loops, to compute Standard Deviation. Print the Standard Deviation of each numeric column.

```
In [50]:
         \#standard deviation = sqrt(mean(abs(x - x.mean())**2))
         import math
         def standard_deviation(curList):
             return math.sqrt(
                 sum(
                     [x for x in [
                             abs(x-(sum([x for x in curList])/len(curList)))**2 f
         or x in curList]])
                 /len(curList))
         sdRate = standard_deviation(curRate)
         sdVerbal = standard_deviation(curVerbal)
         sdMath = standard deviation(curMath)
         print "Rate SD: " + str(sdRate) + ", Verbal SD: " + str(sdVerbal) + ", M
         ath SD: " + str(sdMath)
         Rate SD: 27.0370116692, Verbal SD: 32.9089653438, Math SD: 35.665109000
```

Step 4: Visualize the data

14. Using MatPlotLib and PyPlot, plot the distribution of the Rate using histograms.

```
In [62]: import numpy as np
   import matplotlib
   import matplotlib.pyplot as plt
   %matplotlib inline
   plt.hist(curRate)
```

```
2.,
Out[62]: (array([ 16.,
                        6.,
                                                                      4.]),
                                   3.,
                                         0.,
                                               1.,
                                                          4.,
                                                                7.,
         array([ 4., 11.8, 19.6, 27.4, 35.2,
                                                   43.,
                                                         50.8,
                                                                58.6, 66.4,
                 74.2,
                       82.]),
         <a list of 10 Patch objects>)
```


15. Plot the Math distribution

In [60]: plt.plot(curMath)

Out[60]: [<matplotlib.lines.Line2D at 0x110052c10>]

16. Plot the Verbal distribution

In [61]: plt.plot(curVerbal)

Out[61]: [<matplotlib.lines.Line2D at 0x1100fd4d0>]

17. What is the typical assumption for data distribution?

In []: Typical assumption is that the data is normal.

18. Does that distribution hold true for our data?

In []: This is not true with our data as we have a positive skew on both math a
 nd verbal scores.

19. Plot some scatterplots. BONUS: Use a PyPlot figure to present multiple plots at once.

In []:

20. Are there any interesting relationships to note?

In []:

21. Create box plots for each variable.

In []:

BONUS: Using Tableau, create a heat map for each variable using a map of the US.

In []: