Transformation formula for the reduced Bergman kernel

Aakanksha Jain

(Joint work with Sahil Gehlawat and Amar Deep Sarkar)

September 17, 2021

Overview

- Reduced Bergman kernel
- Weighted reduced Bergman kernel
- 4 Holomorphic correspondences
- Transformation formula for reduced Bergman kernels under proper holomorphic correspondences
- Transformation formula for weighted reduced Bergman kernels under proper holomorphic maps
- Application

Reduced Bergman space

Let $D \subset \mathbb{C}$ be a domain. Define $\mathcal{D}(D)$, space of holomorphic functions f on D such that

We call $\mathcal{D}(D)$ the **reduced Bergman space** of D.

4 A Hilbert space w.r.t. the inner product

$$\langle f,g\rangle = \int_D f(z)\overline{g(z)}\,dA(z)$$

2 For every $\zeta \in D$, the evaluation functional

$$f \mapsto f(\zeta), \qquad f \in \mathcal{D}(D)$$

is continuous.

Reduced Bergman kernel

There exists a unique function $\tilde{K}_D(\cdot,\cdot)$ on $D\times D$ such that

- $\bullet \quad \tilde{K}_D(\cdot,\zeta) \in \mathcal{D}(D) \text{ when } \zeta \in D$
- ② $f(\zeta) = \langle f, \tilde{K}_D(\cdot, \zeta) \rangle$ when $f \in \mathcal{D}(D)$, $\zeta \in D$.

Definition

The function $\tilde{K}_D(\cdot,\cdot)$ is called the *reduced Bergman kernel of D*.

- $\bullet \ \tilde{K}_D(z,w) = \overline{\tilde{K}_D(w,z)} \text{ for all } z,w \in D.$
- \tilde{K}_D is holomorphic in first variable and antiholomorphic in the second variable.

Weighted reduced Bergman kernel

Let μ be positive function on D such that $1/\mu \in L^{\infty}_{loc}(D)$. Define $\mathcal{D}_{\mu}(D)$, space of holomorphic functions f on D such that

We call $\mathcal{D}_{\mu}(D)$ the reduced Bergman space of D with respect to the weight μ .

4 A Hilbert space w.r.t. the inner product

$$\langle f, g \rangle_{\mu} = \int_{D} f(z) \overline{g(z)} \mu(z) \, dA(z)$$

② For every $\zeta \in D$, the evaluation functional

$$f\mapsto f(\zeta), \qquad f\in \mathcal{D}_{\mu}(D)$$

is continuous.

Weighted reduced Bergman kernel

There exists a unique function $\tilde{K}_{D,\mu}(\cdot,\cdot)$ on $D\times D$ such that

- $\bullet \quad \tilde{K}_{D,\mu}(\cdot,\zeta) \in \mathcal{D}_{\mu}(D) \text{ when } \zeta \in D$

Definition

The function $K_{D,\mu}(\cdot,\cdot)$ is called the *reduced Bergman kernel of D* with respect to the weight μ .

- $\tilde{K}_{D,\mu}$ is holomorphic in first variable and antiholomorphic in the second variable.

Proper correspondences

- D_1 and D_2 are domains in \mathbb{C} and $\pi_1: D_1 \times D_2 \longrightarrow D_1$, $\pi_2: D_1 \times D_2 \longrightarrow D_2$ are canonical projections.
- ② V is an analytic subvariety of $D_1 \times D_2$.
- **3** Consider the multivalued map $f: D_1 \multimap D_2$ given by

$$f(z) = \pi_2 \pi_1^{-1}(z) = \{w : (z, w) \in V\}.$$

Definition

The map f is called a *holomorphic correspondence* and V is called the graph of f. The correspondence f is said to be proper if the projection maps $\pi_1: V \longrightarrow D_1$ and $\pi_2: V \longrightarrow D_2$ are proper.

For eg. $V = \{(z, w) \in D_1 \times D_2 : z^m = w^n\}$ for positive integers m and n.

Proper correspondences

Note that,

there exist analytic sub-varieties V_1 and V_2 of D_1 and D_2 respectively, and positive integers m and n such that

- $\pi_1\pi_2^{-1}$ is locally given by m holomorphic maps on $D_2 \setminus V_2$ which we will denote by $\{F_i\}_{i=1}^m$.
- ② $\pi_2\pi_1^{-1}$ is locally given by n holomorphic maps on $D_1\setminus V_1$ which we will denote by $\{f_i\}_{i=1}^n$,

Remark:

- **1** V_1 and V_2 are discrete subsets of D_1 and D_2 respectively.
- When n = 1, f is a proper holomorphic map with multiplicity m and $\{F_i\}_{i=1}^m$ denote the local inverses of f.

Transformation formula

Theorem

Let D_1 and D_2 be bounded domains in \mathbb{C} . If $f:D_1\multimap D_2$ is a proper holomorphic correspondence, then the reduced Bergman kernels \tilde{K}_j 's associated with D_j 's, j=1,2, transform according to

$$\sum_{i=1}^n f_i'(z) \tilde{K}_2(f_i(z), w) = \sum_{j=1}^m \tilde{K}_1(z, F_j(w)) \overline{F_j'(w)},$$

for all $z \in D_1$ and $w \in D_2$, where f_i 's and F_j 's, and the positive integers m, n are as above.

As a corollary, if $f: D_1 \rightarrow D_2$ is a proper holomorphic map, we get

$$f'(z)\tilde{K}_2(f(z),w) = \sum_{j=1}^m \tilde{K}_1(z,F_j(w))\overline{F'_j(w)},$$

for all $z \in D_1$ and $w \in D_2$, where m is the multiplicity of f and F_i 's are local inverses of f.

Steps

• For $u \in L^2(D_2)$ and $v \in L^2(D_1)$, define maps Γ_1 and Γ_2 by:

$$\Gamma_1(u) = \sum_{i=1}^n f_i'(u \circ f_i)$$
 and $\Gamma_2(v) = \sum_{j=1}^m F_j'(v \circ F_j)$.

- ② $\Gamma_1(u) \in L^2(D_1)$ for all $u \in L^2(D_2)$ and $\Gamma_2(v) \in L^2(D_2)$ for all $v \in L^2(D_1)$.
- **3** Γ_i 's, i = 1, 2 are bounded linear maps.
- We have

$$\Gamma_1(\mathcal{D}(D_2)) \subset \mathcal{D}(D_1)$$
 and $\Gamma_2(\mathcal{D}(D_1)) \subset \mathcal{D}(D_2)$.

 $\bullet \ \mathsf{Set} \ \tilde{\mathsf{\Gamma}}_1 := \mathsf{\Gamma}_1|_{\mathcal{D}(D_2)} \ \mathsf{and} \ \tilde{\mathsf{\Gamma}}_2 := \mathsf{\Gamma}_2|_{\mathcal{D}(D_1)}.$

Steps

In the final step,

• For $w \in D_2 \setminus V_2$, define

$$G(z) = \sum_{j=1}^m \widetilde{K}_1(z, F_j(w)) \overline{F'_j(w)}, \quad z \in D_1.$$

- ② We have $G \in \mathcal{D}(D_1)$.
- **3** For an arbitrarily chosen $v \in \mathcal{D}(D_1)$

$$\langle v, G \rangle_{1} = \sum_{j=1}^{m} F'_{j}(w) \langle v, \tilde{K}_{1}(\cdot, F_{j}(w)) \rangle_{1}$$

$$= \sum_{j=1}^{m} F'_{j}(w) v(F_{j}(w))$$

$$= (\tilde{\Gamma}_{2}v)(w)$$

$$= \langle \tilde{\Gamma}_{2}v, \tilde{K}_{2}(\cdot, w) \rangle_{2}$$

$$= \langle v, \tilde{\Gamma}_{1}(\tilde{K}_{2}(\cdot, w)) \rangle_{1}$$

Steps

- ② Therefore, $G = \tilde{\Gamma}_1(\tilde{K}_2(\cdot, w))$.
- 3 Thus, we have proved that

$$\sum_{i=1}^n f_i'(z) \tilde{K}_2(f_i(z), w) = \sum_{j=1}^m \tilde{K}_1(z, F_j(w)) \overline{F_j'(w)}.$$

for
$$z \in D_1$$
, $w \in D_2 \setminus V_2$.

• Since LHS is anti-holomorphic in w and V_2 is discrete, the points in V_2 are removable singularities of RHS. Hence, the formula holds everywhere by continuity.

Transformation formula

Theorem

Let D_1 and D_2 be bounded domains in $\mathbb C$ and ν be a positive measurable function on D_2 such that $1/\nu \in L^\infty_{loc}(D_2)$. If $f: D_1 \longrightarrow D_2$ is a proper holomorphic map, then the weighted reduced Bergman kernels $\tilde{K}_1^{\nu \circ f}$ and \tilde{K}_2^{ν} associated with D_1 and D_2 respectively, transform according to

$$f'(z)\tilde{K}_2^{\nu}(f(z),w) = \sum_{k=1}^m \tilde{K}_1^{\nu \circ f}(z,F_k(w))\overline{F_k'(w)},$$

for all $z \in D_1$ and $w \in D_2$, where m is the multiplicity of f and F_k 's are the local inverses of f.

The proof techniques are similar.

Application

Theorem

Suppose D is a bounded domain in \mathbb{C} whose associated reduced Bergman kernel is a rational function. Then every proper holomorphic mapping $f: D \to \mathbb{D}$ must be rational.

- ① We denote the reduced Bergman kernel of $\mathbb D$ and D by K and $\tilde K$ respectively.
- ② For fixed $w \in \mathbb{D}$ and $\alpha \in \mathbb{N} \cup \{0\}$, define a linear functional Λ on the Bergman space of D i.e. $A^2(D)$ by

$$\Lambda(h) = \partial^{\alpha} \bigg(\sum_{k=1}^{m} F'_{k}(h \circ F_{k}) \bigg) (w),$$

where $\partial^{\alpha}=\frac{\partial^{\alpha}}{\partial z^{\alpha}}$ denotes the standard holomorphic differential operator of order $\alpha.$

Proof

Lemma (Bell)

Let $\xi_1, \xi_2, \dots, \xi_q$ denote the points in $f^{-1}(w)$. There exist a positive integer s and constants $c_{l,\beta}$ such that:

$$\Lambda(h) = \sum_{l=1}^{q} \sum_{\beta \leq s} c_{l,\beta} \partial^{\beta} h(\xi_{l})$$

for all $h \in A^2(D)$.

Proof of the application:

- **1** Let $f^{-1}(0) = \{\zeta_1, \dots, \zeta_q\}.$
- ② Consider the linear functional Λ on $A^2(D)$, as defined above, corresponding to $\alpha=1\in\mathbb{N}\cup\{0\}$ and $0\in\mathbb{D}$, i.e.

$$\Lambda(h) = \frac{\partial}{\partial w} \left(\sum_{k=1}^m F'_k(h \circ F_k) \right) (0).$$

Proof

① We have a positive integer s > 0 and constants $c_{l,\beta}$ such that

$$\frac{\partial}{\partial w} \left(\sum_{k=1}^m F'_k (h \circ F_k) \right) (0) = \sum_{l=1}^q \sum_{\beta \leq s} c_{l,\beta} \partial^\beta h(\zeta_l)$$

for all $h \in A^2(D)$.

② On differentiating the transformation formula for the reduced Bergman kernels under f with respect to \bar{w} and setting w=0, we get

$$f'(z)\frac{\partial}{\partial \bar{w}}K(f(z),0) = \overline{\frac{\partial}{\partial w}\left(\sum_{k=1}^{m}\overline{\tilde{K}(z,F_{k}(\cdot))}F'_{k}(\cdot)\right)}(0)$$
$$= \sum_{l=1}^{q}\sum_{\beta\leq s}\bar{c}_{l,\beta}\,\overline{\partial}^{\beta}\tilde{K}(z,\zeta_{l}),$$

Proof

- **1** Since \tilde{K} is a rational function, $f'(z) \frac{\partial}{\partial \bar{w}} K(f(z), 0)$ is therefore a rational function in z.
- ② Similarly, taking $\alpha = 0$ proves that f'(z)K(f(z),0) is a rational function in z.
- **3** Note that for the disc \mathbb{D} , the reduced Bergman kernel is equal to the Bergman kernel as $\mathcal{D}(\mathbb{D}) = A^2(\mathbb{D})$. Therefore,

$$K(z, w) = \frac{1}{\pi} \frac{1}{(1 - z\bar{w})^2}.$$

 $\bullet \ \, \mathsf{So}, \, \tfrac{\partial}{\partial \bar{w}} K(z,0) = \tfrac{2z}{\pi} \, \, \mathsf{and} \, \, K(z,0) = \tfrac{1}{\pi}. \, \, \mathsf{Thus},$

$$\frac{f'(z)\frac{\partial}{\partial \bar{w}}K(f(z),0)}{f'(z)K(f(z),0)}=2f(z).$$

 \odot Hence, f is a rational function.

References

- Steven R. Bell, *Proper holomorphic mappings and the Bergman projection*, Duke Math. J. **48** (1981), no. 1, 167–175.
- Steven R. Bell, *Proper holomorphic mappings that must be rational*, Trans. Amer. Math. Soc. **284** (1984), no. 1, 425–429.
- Makoto Sakai, The sub-mean-value property of subharmonic functions and its application to the estimation of the Gaussian curvature of the span metric, Hiroshima Math. J. **9** (1979), no. 3, 555–593.
- Sahil Gehlawat, Aakanksha Jain, Amar Deep Sarkar:

 Transformation formula for the reduced Bergman kernel and its application. arXiv:2106.07295v1 [math.CV]