1. Argument

We will now describe how to construct $soc D\Gamma$ given $r\Gamma$, and the other way around.

Suppose that we know $\underline{r}\Gamma$. Then we also know Top Γ , and we have a canonical projection

$$\Gamma \xrightarrow{p} \operatorname{Top} \Gamma$$
.

Applying D we get a map

$$D\operatorname{Top}\Gamma \xrightarrow{p^*} D\Gamma$$
,

and im $p^* = \operatorname{Soc} D\Gamma$ reference.

Conversely, suppose that we know $Soc D\Gamma$. This is a simple right Γ -module reference . So if $f \in Soc D\Gamma$ is any non-zero element, we obtain a short exact sequence of right Γ -modules

$$0 \longrightarrow M \longrightarrow \Gamma \stackrel{\phi}{\longrightarrow} \operatorname{Soc} D\Gamma \longrightarrow 0,$$

where $\phi(a) = f \cdot a$ and $M = \ker \phi$. Since $\operatorname{Soc} D\Gamma$ is simple, M is a maximal right ideal. But Γ has only one right maximal ideal reference, so $M = \underline{r}\Gamma$.