

WYPEŁNIA ZDAJĄCY Miejsce na naklejkę. Sprawdź, czy kod na naklejce to E-100. Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

Egzamin maturalny

Formula 2015

MATEMATYKA

Poziom podstawowy

*Symbol arkusza*EMAP-P0-**100**-2405

DATA: 8 maja 2024 r.

GODZINA ROZPOCZĘCIA: 9:00

CZAS TRWANIA: 170 minut

LICZBA PUNKTÓW DO UZYSKANIA: 🗸	16
--------------------------------	----

WYPEŁNIA ZESPÓŁ NADZORUJĄCY Uprawnienia zdającego do: dostosowania zasad oceniania dostosowania w zw. z dyskalkulią nieprzenoszenia odpowiedzi na kartę.

Przed rozpoczęciem pracy z arkuszem egzaminacyjnym

- 1. Sprawdź, czy nauczyciel przekazał Ci właściwy arkusz egzaminacyjny, tj. arkusz we właściwej formule, z właściwego przedmiotu na właściwym poziomie.
- 2. Jeżeli przekazano Ci **niewłaściwy** arkusz natychmiast zgłoś to nauczycielowi. Nie rozrywaj banderol.
- 3. Jeżeli przekazano Ci **właściwy** arkusz rozerwij banderole po otrzymaniu takiego polecenia od nauczyciela. Zapoznaj się z instrukcją na stronie 2.

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 31 stron (zadania 1–36). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na pierwszej stronie arkusza oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Odpowiedzi do zadań zamkniętych (1–29) zaznacz na karcie odpowiedzi w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (30–36) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 6. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 7. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 8. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 9. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 10. Możesz korzystać z *Wybranych wzorów matematycznych*, cyrkla i linijki oraz kalkulatora prostego. Upewnij się, czy przekazano Ci broszurę z okładką taką jak widoczna poniżej.

Zadania egzaminacyjne są wydrukowane na następnych stronach.

W każdym z zadań od 1. do 29. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Na początku sezonu letniego cenę x pary sandałów podwyższono o 20%. Po miesiącu nową cenę obniżono o 10%. Po obu tych zmianach ta para sandałów kosztowała 81 zł. Początkowa cena x pary sandałów była równa

- **A.** 45 zł
- **B.** 73,63 zł
- **C.** 75 zł
- **D.** 87,48 zł

Zadanie 2. (0-1)

Liczba $\left(\frac{1}{16}\right)^8 \cdot 8^{16}$ jest równa

- **A.** 2^{24}
- **B.** 2^{16}
- **C.** 2^{12}
- **D.** 2⁸

Zadanie 3. (0-1)

Liczba log_{√3} 9 jest równa

A. 2

B. 3

C. 4

D. 9

Zadanie 4. (0-1)

Dla każdej liczby rzeczywistej a i dla każdej liczby rzeczywistej b wartość wyrażenia $(2a + b)^2 - (2a - b)^2$ jest równa wartości wyrażenia

- **A.** $8a^2$
- **B.** 8*ab*
- \mathbf{C} . -8ab
 - **D.** $2b^2$

Zadanie 5. (0-1)

Zbiorem wszystkich rozwiązań nierówności

$$1 - \frac{3}{2}x < \frac{2}{3} - x$$

jest przedział

- A. $\left(-\infty, -\frac{2}{3}\right)$ B. $\left(-\infty, \frac{2}{3}\right)$ C. $\left(-\frac{2}{3}, +\infty\right)$ D. $\left(\frac{2}{3}, +\infty\right)$

Zadanie 6. (0-1)

Największą liczbą będącą rozwiązaniem rzeczywistym równania $x(x+2)(x^2+9)=0$ jest

A. (-2)

B. 0

C. 2

D. 3

Zadanie 7. (0-1)

Równanie $\frac{x+1}{(x+2)(x-3)} = 0$ w zbiorze liczb rzeczywistych

A. nie ma rozwiązania.

B. ma dokładnie jedno rozwiązanie: (-1).

C. ma dokładnie dwa rozwiązania: (-2) oraz 3.

D. ma dokładnie trzy rozwiązania: (-1), (-2) oraz 3.

Zadanie 8. (0-1)

W październiku 2022 roku założono dwa sady, w których posadzono łącznie $1960\,$ drzew. Po roku stwierdzono, że uschło $5\%\,$ drzew w pierwszym sadzie i $10\%\,$ drzew w drugim sadzie. Uschnięte drzewa usunięto, a nowych nie dosadzano.

Liczba drzew, które pozostały w drugim sadzie, stanowiła 60% liczby drzew, które pozostały w pierwszym sadzie.

Niech x oraz y oznaczają liczby drzew posadzonych – odpowiednio – w pierwszym i drugim sadzie.

Układem równań, którego poprawne rozwiązanie prowadzi do obliczenia liczby x drzew posadzonych w pierwszym sadzie oraz liczby y drzew posadzonych w drugim sadzie, jest

A.
$$\begin{cases} x + y = 1960 \\ 0.6 \cdot 0.95x = 0.9y \end{cases}$$

B.
$$\begin{cases} x + y = 1960 \\ 0.95x = 0.6 \cdot 0.9y \end{cases}$$

c.
$$\begin{cases} x + y = 1960 \\ 0.05x = 0.6 \cdot 0.1y \end{cases}$$

D.
$$\begin{cases} x + y = 1960 \\ 0.4 \cdot 0.95x = 0.9y \end{cases}$$

Zadanie 9. (0-1)

Średnia arytmetyczna trzech liczb: a, b, c, jest równa 9.

Średnia arytmetyczna sześciu liczb: a, a, b, b, c, c, jest równa

- **A.** 9
- **B.** 6

- **C.** 4,5
- **D.** 18

Zadanie 10. (0-1)

Na rysunku przedstawiono dwie proste równoległe, które są interpretacją geometryczną jednego z poniższych układów równań A-D.

Układem równań, którego interpretację geometryczną przedstawiono na rysunku, jest

A.
$$\begin{cases} y = -\frac{3}{2}x + 3 \\ y = -\frac{3}{2}x - 1 \end{cases}$$

B.
$$\begin{cases} y = \frac{3}{2}x + 3 \\ y = -\frac{2}{3}x - 1 \end{cases}$$
C.
$$\begin{cases} y = \frac{3}{2}x + 3 \\ y = \frac{3}{2}x - 1 \end{cases}$$

C.
$$\begin{cases} y = \frac{3}{2}x + 3 \\ y = \frac{3}{2}x - 1 \end{cases}$$

D.
$$\begin{cases} y = -\frac{3}{2}x - 3 \\ y = \frac{3}{2}x + 1 \end{cases}$$

Zadanie 11. (0-1)

Na rysunku przedstawiono wykres funkcji f.

Zbiorem wartości tej funkcji jest

- **A.** (-6,6)
- **B.** (1,4)
- **C.** (1, 4)
- **D.** (-6, 6)

Zadanie 12. (0-1)

Funkcja liniowa f jest określona wzorem f(x) = (-2k+3)x + k - 1, gdzie $k \in \mathbb{R}$. Funkcja f jest malejąca dla każdej liczby k należącej do przedziału

A.
$$(-\infty, 1)$$
 B. $(-\infty, -\frac{3}{2})$ **C.** $(1, +\infty)$ **D.** $(\frac{3}{2}, +\infty)$

C.
$$(1, +\infty)$$

D.
$$\left(\frac{3}{2}, +\infty\right)$$

Zadanie 13. (0-1)

Funkcje liniowe f oraz g, określone wzorami f(x) = 3x + 6 oraz g(x) = ax + 7, mają to samo miejsce zerowe.

Współczynnik a we wzorze funkcji g jest równy

A.
$$\left(-\frac{7}{2}\right)$$
 B. $\left(-\frac{2}{7}\right)$ **C.** $\frac{2}{7}$

B.
$$\left(-\frac{2}{7}\right)$$

c.
$$\frac{2}{7}$$

D.
$$\frac{7}{2}$$

Informacja do zadań 14.–15.

Na rysunku przedstawiono fragment paraboli, która jest wykresem funkcji kwadratowej f (zobacz rysunek). Wierzchołek tej paraboli oraz punkty przecięcia paraboli z osiami układu współrzędnych mają obie współrzędne całkowite.

Zadanie 14. (0-1)

Funkcja kwadratowa f jest określona wzorem

A.
$$f(x) = -(x+1)^2 - 9$$

B.
$$f(x) = -(x-1)^2 + 9$$

C.
$$f(x) = -(x-1)^2 - 9$$

D.
$$f(x) = -(x+1)^2 + 9$$

Zadanie 15. (0-1)

Dla funkcji f prawdziwa jest równość

A.
$$f(-4) = f(6)$$

B.
$$f(-4) = f(4)$$

C.
$$f(-4) = f(5)$$

D.
$$f(-4) = f(7)$$

Zadanie 16. (0-1)

W ciągu arytmetycznym (a_n) , określonym dla każdej liczby naturalnej $n \geq 1$, dane są wyrazy $a_4 = -2$ oraz $a_6 = 16$.

Piąty wyraz tego ciągu jest równy

A. $\frac{7}{2}$

B. $\frac{9}{2}$

C. 7

D. 9

Zadanie 17. (0-1)

Ciąg geometryczny (a_n) jest określony wzorem $a_n = 2^{n-1}$, dla każdej liczby naturalnej $n \ge 1$. Iloraz tego ciągu jest równy

A. $\frac{1}{2}$

B. (-2)

C. 2

D. 1

Zadanie 18. (0-1)

Ciąg (b_n) jest określony wzorem $b_n = (n+2)(7-n)$, dla każdej liczby naturalnej $n \ge 1$. Liczba dodatnich wyrazów ciągu (b_n) jest równa

A. 6

B. 7

C. 8

D. 9

Zadanie 19. (0-1)

Liczba $\sin^3 20^\circ + \cos^2 20^\circ \cdot \sin 20^\circ$ jest równa

A. $\cos 20^{\circ}$

B. sin 20°

C. $tg 20^{\circ}$

D. $\sin 20^{\circ} \cdot \cos 20^{\circ}$

Zadanie 20. (0-1)

Kąt α jest ostry oraz $\cos \alpha = \frac{5}{13}$. Wtedy

A. $\lg \alpha = \frac{12}{13}$ **B.** $\lg \alpha = \frac{12}{5}$ **C.** $\lg \alpha = \frac{5}{12}$ **D.** $\lg \alpha = \frac{13}{12}$

Zadanie 21. (0-1)

Dany jest równoległobok o bokach długości 3 i 4 oraz o kącie między nimi o mierze 120°. Pole tego równoległoboku jest równe

- **A.** 6
- **B.** $6\sqrt{3}$ **C.** 12
- **D.** $12\sqrt{3}$

Zadanie 22. (0-1)

W trójkącie MKC bok MK ma długość 24. Prosta równoległa do boku MK przecina boki MC i KC – odpowiednio – w punktach A oraz B takich, że |AB| = 6 i |AC| = 3(zobacz rysunek).

Długość odcinka MA jest równa

- **A.** 18
- **B.** 15
- **C.** 9
- **D.** 12

Zadanie 23. (0-1)

W trójkącie ABC, wpisanym w okrąg o środku w punkcie S, kąt ACB ma miarę 42° (zobacz rysunek).

Miara kata ostrego BAS jest równa

- **A.** 42°
- **B.** 45°
- **C.** 48°
- **D**. 69°

Zadanie 24. (0-1)

Proste k oraz l są określone równaniami

k:
$$y = (m+1)x + 7$$

$$l: y = -2x + 7$$

Proste k oraz l są prostopadłe, gdy liczba m jest równa

- **A.** $\left(-\frac{1}{2}\right)$
- **B.** $\frac{1}{2}$
- **C.** (-3)
- **D.** 1

Zadanie 25. (0-1)

Na prostej l o współczynniku kierunkowym $\frac{1}{2}$ leżą punkty A=(2,-4) oraz B=(0,b). Wtedy liczba b jest równa

- **A.** (-5)
- **B.** 10
- **C.** (-2)
- **D**. 0

Zadanie 26. (0-1)

Wysokość graniastosłupa prawidłowego sześciokątnego jest równa 6 (zobacz rysunek). Pole podstawy tego graniastosłupa jest równe $15\sqrt{3}$.

Pole jednej ściany bocznej tego graniastosłupa jest równe

- **A.** $36\sqrt{10}$
- **B.** 60
- **C.** $6\sqrt{10}$
- **D.** 360

Zadanie 27. (0-1)

Kąt nachylenia najdłuższej przekątnej graniastosłupa prawidłowego sześciokątnego do płaszczyzny podstawy jest zaznaczony na rysunku

A.

В.

C.

D.

Zadanie 28. (0-1)

Objętość ostrosłupa prawidłowego czworokątnego jest równa 64. Wysokość tego ostrosłupa jest równa 12.

Długość krawędzi podstawy tego ostrosłupa jest równa

A. 2

- **B**. 4
- **C.** 6

D. 8

Zadanie 29. (0-1)

Rozważamy wszystkie kody czterocyfrowe utworzone tylko z cyfr 1, 3, 6, 8, przy czym w każdym kodzie każda z tych cyfr występuje dokładnie jeden raz. Liczba wszystkich takich kodów jest równa

A. 4

- **B.** 10
- **C.** 24
- **D.** 16

Zadanie 30. (0-2)

Rozwiąż nierówność

$$x^2 - 4 \le 3x$$

Zadanie 31. (0-2)

Wykaż, że dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y takich, że $x \neq y$, prawdziwa jest nierówność

$$(3x+y)(x+3y) > 16xy$$

146 l	Nr zadania	30.	31.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 32. (0-2)

Osią symetrii wykresu funkcji kwadratowej $f(x) = x^2 + bx + c$ jest prosta o równaniu x = -2. Jednym z miejsc zerowych funkcji f jest liczba 1.

Oblicz współczynniki b oraz c.

Zadanie 33. (0-2)

Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej $n \ge 1$. Trzeci wyraz tego ciągu jest równy (-1), a suma piętnastu początkowych kolejnych wyrazów tego ciągu jest równa (-165).

Oblicz różnicę tego ciągu.

Wypełnia egzaminator	Nr zadania	32.	33.
	Maks. liczba pkt	2	2
	Uzyskana liczba pkt		

Zadanie 34. (0-2)

Dany jest równoległobok ABCD, w którym A=(-2,6) oraz B=(10,2). Przekątne AC oraz BD tego równoległoboku przecinają się w punkcie P=(6,7). Oblicz długość boku BC tego równoległoboku.

Zadanie 35. (0-2)

Dany jest pięcioelementowy zbiór $K = \{5, 6, 7, 8, 9\}$. Wylosowanie każdej liczby z tego zbioru jest jednakowo prawdopodobne. Ze zbioru K losujemy <u>ze zwracaniem</u> kolejno dwa razy po jednej liczbie i zapisujemy je w kolejności losowania.

Oblicz prawdopodobieństwo zdarzenia $\,A\,$ polegającego na tym, że suma wylosowanych liczb jest liczbą parzystą.

Wypełnia egzaminator	Nr zadania	34.	35.
	Maks. liczba pkt	2	2
	Uzyskana liczba pkt		

Zadanie 36. (0-5)

W graniastosłupie prawidłowym czworokątnym o objętości równej 108 stosunek długości krawędzi podstawy do wysokości graniastosłupa jest równy $\frac{1}{4}$.

Przekątna tego graniastosłupa jest nachylona do płaszczyzny jego podstawy pod kątem $\,\alpha\,$ (zobacz rysunek).

Oblicz cosinus kąta $\, \alpha \,$ oraz pole powierzchni całkowitej tego graniastosłupa.

	Nr zadania	36.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

MATEMATYKA Poziom podstawowy

Formula 2015

MATEMATYKA Poziom podstawowy Formuła 2015

Formula 2015

MATEMATYKA Poziom podstawowy

Formula 2015