重点回顾

• 编码器

- 普通编码器(电路设计、好处、缺点)
- 优先编码器(电路设计、好处、缺点)
- 74x148: 结构、扩展原理

译码器

- 电路设计
- 74x139/74x138: 结构、扩展、任意三变量逻辑函数实现方法
- 七段显示译码器: 原理、应用(视觉暂留)

内容提纲

- 数据分配器
- 数据选择器

数据分配器

- 将一路输入数据分配到多路输出端的电路
 - 在通道选择信号控制下,可以将输入数据传送到多个输出通道中的任何一个通道输出

译码器实现数据分配器

$$\overline{Y_{i}} = \overline{E_{3}} \overline{E_{2}} \overline{E_{1}} m_{i}$$

$$\overline{Y_{i}} = \overline{D} m_{i}$$

$$\stackrel{+5V}{=} \overline{D} m_{i}$$

$$\stackrel{E_{3}}{=} Y_{0} \longrightarrow \overline{Y_{0}} \longrightarrow \overline{Y_{0}} \longrightarrow \overline{Y_{1}} \longrightarrow \overline{Y_{2}} \longrightarrow \overline{Y_{2$$

按照通道地址 $A_2A_1A_0$ 的取值,将输入数据D从相应的输出通道 Y_i 输出,其他输出通道保持高电平

译码器实现数据分配器

输入				输出									
E_3	\overline{E}_2	$\overline{\overline{E}}_1$	A_2	A_1	A_0	$\overline{\mathbf{Y}}_{0}$	$\overline{\mathbf{Y}}_1$	\overline{Y}_2	\overline{Y}_3	$\overline{\overline{Y}}_4$	\overline{Y}_5	$\overline{\overline{Y}}_6$	$\overline{\overline{Y}}_7$
0	X	0	X	X	X	1	1	1	1	1	1	1	1
1	D	0	0	0	0	D	1	1	1	1	1	1	1
1	D	0	0	0	1	1	D	1	1	1	1	1	1
1	D	0	0	1	0	1	1	D	1	1	1	1	1
1	D	0	0	1	1	1	1	1	D	1	1	1	1
1	D	0	1	0	0	1	1	1	1	D	1	1	1
1	D	0	1	0	1	1	1	1	1	1	D	1	1
1	D	0	1	1	0	1	1	1	1	1	1	D	1
1	D	0	1	1	1	1	1	1	1	1	1	1	D

数据选择器

- · 数据选择器(Multiplexer, 简称MUX): 根据通道 选择信号,从多个通道(路)输入数据中选择一个 通道数据输出,也称多路选择器
- 常见集成数据选择器
 - 2选1(74x157)
 - 4选1(74x153)
 - 8选1(74x151)
 - 16选1(74x150)等

设计4选1数据选择器

功能表

S_1	S_0	Y
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D_3

$$Y = \overline{S}_{1}\overline{S}_{0}D_{0} + \overline{S}_{1}S_{0}D_{1} + S_{1}\overline{S}_{0}D_{2} + S_{1}S_{0}D_{3} = \sum_{i=0}^{3} m_{i}D_{i}$$

双4选1数据选择器74x153

- 公用通道选择控制
- 独立选通(使能)控制

功能表

Ē	S_1	S_0	Y
1	X	X	0
0	0	0	D_0
0	0	1	D_1
0	1	0	D_2
0	1	1	D_3

8选1数据选择器74x151

- · 带使能和互补输出的8 通道数据选择器
- D0~D7: 8 路数据输入
- Y、Y: 互补输出
- S2~S0: 通道选择输入, S2为 最高位
- E: 使能输入,低电平有效
 - E=0时, Y=Di, Y=Di
 - E=1时, Y=0, Y=1

数据选择器的扩展

• 用1位2选1 MUX进行扩展设计 Ao Mo Bo 2-1 Mux **A**1 **M**1 **B**1 S 2位2选1 MUX 位扩展 字扩展 Mo M_2 В 4-1 M₁ **MUX** S₀ 1位4选1 MUX S₁

数据选择器的扩展(续)

• 用1片74x153构成 8选1数据选择器

数据选择器实现组合逻辑函数

· 用1片74x153和非门实现

$$Y_1 = \overline{A}B + A\overline{B}$$
$$= 1 \cdot (m_1 + m_2) + 0 \cdot (m_0 + m_3)$$

$$\mathbf{Y}_{2} = \overline{\mathbf{A}}\mathbf{C} + \overline{\mathbf{B}}\overline{\mathbf{C}}$$
$$= 1 \cdot \mathbf{m}_{0} + \mathbf{C} \cdot \mathbf{m}_{1} + \overline{\mathbf{C}} \cdot \mathbf{m}_{2} + 0 \cdot \mathbf{m}_{3}$$

