

VIGILADA MINEDUCACIÓN - SNIES 1732

PROGRAMACIÓN LINEAL Método de la Gran M

La empresa ABC produce dos tipos de bienes R y S. La planta puede producir al menos 90 unidades de R, 180 de S diariamente, y una producción combinada de ambos productos de al menos 100 unidades. El costo por unidad del producto R representa 45 USD, mientras que el costo del producto S es de 80 USD.

La empresa ABC produce dos tipos de bienes R y S. La planta puede producir al menos 90 unidades de R, 180 de S diariamente, y una producción combinada de ambos productos de al menos 100 unidades. El costo por unidad del producto R representa 45 USD, mientras que el costo del producto S es de 80 USD.

X₁: cantidad de producto R a producir

La empresa ABC produce dos tipos de bienes R y S. La planta puede producir al menos 90 unidades de R, 180 de S diariamente, y una producción combinada de ambos productos de al menos 100 unidades. El costo por unidad del producto R representa 45 USD, mientras que el costo del producto S es de 80 USD.

X₁: cantidad de producto R a producir

X₂: cantidad de producto S a producir

Min $Z = 45X_1 + 80X_2$

La empresa ABC produce dos tipos de bienes R y S. La planta puede producir al menos 90 unidades de R, 180 de S diariamente, y una producción combinada de ambos productos de al menos 100 unidades. El costo por unidad del producto R representa 45 USD, mientras que el costo del producto S es de 80 USD.

X₁: cantidad de producto R a producir

Min
$$Z = 45X_1 + 80X_2$$

 $X_1 >= 90$

La empresa ABC produce dos tipos de bienes R y S. La planta puede producir al menos 90 unidades de R, 180 de S diariamente, y una producción combinada de ambos productos de al menos 100 unidades. El costo por unidad del producto R representa 45 USD, mientras que el costo del producto S es de 80 USD.

X₁: cantidad de producto R a producir

Min Z =
$$45X_1 + 80X_2$$

 $X_1 >= 90$
 $X_2 >= 180$

La empresa ABC produce dos tipos de bienes R y S. La planta puede producir al menos 90 unidades de R, 180 de S diariamente, y una producción combinada de ambos productos de al menos 100 unidades. El costo por unidad del producto R representa 45 USD, mientras que el costo del producto S es de 80 USD.

X₁: cantidad de producto R a producir

Min Z =
$$45X_1 + 80X_2$$

 $X_1 >= 90$
 $X_2 >= 180$
 $X_1 + X_2 >= 100$
 $X_1, X_2 >= 0$

La empresa ABC produce dos tipos de bienes R y S. La planta puede producir al menos 90 unidades de R, 180 de S diariamente, y una producción combinada de ambos productos de al menos 100 unidades. El costo por unidad del producto R representa 45 USD, mientras que el costo del producto S es de 80 USD.

X₁: cantidad de producto R a producir

Min
$$Z = 45X_1 + 80X_2$$

$$X_1 >= 90$$

$$X_2 >= 180$$

$$X_1 + X_2 >= 100$$

$$X_1, X_2 >= 0$$

Signo de restricción	Transformación
<=	+ Variable de holgura
>=	- Variable de holgura + variable artificial
=	+ variable artificial

X₁: cantidad de producto R a producir

Min Z =
$$45X_1 + 80X_2$$

 $X_1 >= 90$
 $X_2 >= 180$
 $X_1 + X_2 >= 100$
 $X_1, X_2 >= 0$

Signo de restricción	Transformación
<=	+ Variable de holgura
>=	- Variable de holgura + variable artificial
=	+ variable artificial

Min Z =
$$45X_1 + 80X_2 - 0S_1 - 0S_2 - 0S_3 + Ma_1 + Ma_2 + Ma_3$$

 $X_1 - 1S_1 + Ma_1 = 90$
 $X_2 - 1S_2 + Ma_2 = 180$
 $X_1 + X_2 - 1S_3 + Ma_3 = 100$

Min Z =
$$45X_1 + 80X_2 - 0S_1 - 0S_2 - 0S_3 + Ma_1 + Ma_2 + Ma_3$$

 $X_1 - 1S_1 + Ma_1 = 90$
 $X_2 - 1S_2 + Ma_2 = 180$
 $X_1 + X_2 - 1S_3 + Ma_3 = 100$

	Cj									
	Variables									
	básicas	X1	X2	S1	S2	S 3	a1	a2	a3	Solución
M	a1									
M	a2									
M	a3									
	Z									

Min Z =
$$45X_1 + 80X_2 - 0S_1 - 0S_2 - 0S_3 + Ma_1 + Ma_2 + Ma_3$$

 $X_1 - 1S_1 + Ma_1 = 90$
 $X_2 - 1S_2 + Ma_2 = 180$
 $X_1 + X_2 - 1S_3 + Ma_3 = 100$

		Cj	45	80	0	0	0	M	M	M	
		Variables									
		básicas	X1	X2	S1	S2	S 3	a1	a2	a3	Solución
N	/	a1	1	0	-1	0	0	1	0	0	90
N	/	a2	0	1	0	-1	0	0	1	0	180
N	/	a3	1	1	0	0	-1	0	0	1	100
		Z									

Min Z =
$$45X_1 + 80X_2 - 0S_1 - 0S_2 - 0S_3 + Ma_1 + Ma_2 + Ma_3$$

 $X_1 - 1S_1 + Ma_1 = 90$
 $X_2 - 1S_2 + Ma_2 = 180$
 $X_1 + X_2 - 1S_3 + Ma_3 = 100$

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S 3	a1	a2	a3	Solución
M	a1	1	0	-1	0	0	1	0	0	90
M	a2	0	1	0	-1	0	0	1	0	180
M	a3	1	1	0	0	-1	0	0	1	100
	Z									370M

Min Z =
$$45X_1 + 80X_2 - 0S_1 - 0S_2 - 0S_3 + Ma_1 + Ma_2 + Ma_3$$

 $X_1 - 1S_1 + Ma_1 = 90$
 $X_2 - 1S_2 + Ma_2 = 180$
 $X_1 + X_2 - 1S_3 + Ma_3 = 100$

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S 3	a1	a2	a3	Solución
M	a1	1	0	-1	0	0	1	0	0	90
M	a2	0	1	0	-1	0	0	1	0	180
M	a3	1	1	0	0	-1	0	0	1	100
	Z	2M	2M	-M	-M	-M	M	M	M	370M

Min Z =
$$45X_1 + 80X_2 - 0S_1 - 0S_2 - 0S_3 + Ma_1 + Ma_2 + Ma_3$$

 $X_1 - 1S_1 + Ma_1 = 90$
 $X_2 - 1S_2 + Ma_2 = 180$
 $X_1 + X_2 - 1S_3 + Ma_3 = 100$

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S 3	a1	a2	a3	Solución
M	a1	1	0	-1	0	0	1	0	0	90
M	a2	0	1	0	-1	0	0	1	0	180
M	a3	1	1	0	0	-1	0	0	1	100
	Z	2M	2M	-M	-M	-M	M	M	M	370M
	Z - Cj	2M	2M	-M	-M	-M	0	0	0	

Si no hay valor de M para restar, se deja el valor igual, de lo contrario se resta. M representa un número demasiado grande.

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S3	a1	a2	a3	Solución
M	a1	1	0	-1	0	0	1	0	0	90
M	a2	0	1	0	-1	0	0	1	0	180
M	a3	1	1	0	0	-1	0	0	1	100
	Z	2M	2M	-M	-M	-M	M	M	M	370M
	Z - Cj	2M	2M	-M	-M	-M	0	0	0	

Vector de costos reducido

Verificar si la solución actual es la óptima o si es posible mejorarla.

- Si es **maximización**: se verifica que todos los coeficientes del vector de costes reducido sean mayores o iguales a cero. Ahí está el punto óptimo y se finaliza la solución.
- Si es **minimización**: se verifica que todos los coeficientes del vector de costes reducido sean menores o iguales a cero, para tener la solución óptima.

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S3	a1	a2	a3	Solución
M	a1	1	0	-1	0	0	1	0	0	90
M	a2	0	1	0	-1	0	0	1	0	180
M	a3	1	1	0	0	-1	0	0	1	100
	Z	2M	2M	-M	-M	-M	M	M	M	370M
	Z - Cj	2M	2M	- M	-M	-M	0	0	0	

Vector de costos reducido

Verificar si la solución actual es la óptima o si es posible mejorarla.

- Si es **maximización**: se verifica que todos los coeficientes del vector de costes reducido sean mayores o iguales a cero. Ahí está el punto óptimo y se finaliza la solución.
- Si es **minimización**: se verifica que todos los coeficientes del vector de costes reducido sean menores o iguales a cero, para tener la solución óptima.

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S3	a1	a2	a3	Solución
M	a1	1	0	-1	0	0	1	0	0	90
M	a2	0	1	0	-1	0	0	1	0	180
M	a3	1	1	0	0	-1	0	0	1	100
	Z	2M	2M	-M	-M	-M	M	M	M	370M
	Z - Cj	2M	2M	-M	-M	-M	0	0	0	

Vector de costos reducido

- Si es **maximización**: la variable de entrada será la variable no básica con el coeficiente más negativo en el vector de costes reducidos.
- Si es minimización: la variable de entrada será la variable no básica con el coeficiente más positivo en el vector de costes reducidos.

	Cj	45	80	0	0	0	M	M	M		
	Variables		1								
	básicas	X1	X2	S1	S2	S3	a1	a2	a3	Solución	
M	a1	1	0	-1	0	0	1	0	0	90	90/1
M	a2	0	1	0	-1	0	0	1	0	180	180/0
M	a3	1	1	0	0	-1	0	0	1	100	100/1
	Z	2M	2M	-M	-M	-M	M	M	M	370M	
	Z - Cj	2M	2M	-M	-M	-M	0	0	0		Vector de costos reducido

- Si es **maximización**: la variable de entrada será la variable no básica con el coeficiente más negativo en el vector de costes reducidos.
- Si es **minimización**: la variable de entrada será la variable no básica con el coeficiente más positivo en el vector de costes reducidos.

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S3	a1	a2	a3	Solución
M	a1	1	0	-1	0	0	1	0	0	90
M	a2	0	1	0	-1	0	0	1	0	180
M	a3	1	1	0	0	-1	0	0	1	100
	Z	2M	2M	-M	-M	-M	M	M	M	370M
	Z - Cj	2M	2M	-M	-M	-M	0	0	0	

90/1 = 90180/0 = indet

100/1 = 100

Vector de costos reducido

- Si es **maximización**: la variable de entrada será la variable no básica con el coeficiente más negativo en el vector de costes reducidos.
- Si es minimización: la variable de entrada será la variable no básica con el coeficiente más positivo en el vector de costes reducidos.

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S3	a1	a2	a3	Solución
М	a1	1	0	-1	0	0	1	0	0	90
M	a2	0	1	0	-1	0	0	1	0	180
M	a3	1	1	0	0	-1	0	0	1	100
	Z	2M	2M	-M	-M	-M	M	M	M	370M
	Z - Cj	2M	2M	-M	-M	-M	0	0	0	

90/1 = 90

180/0 = indet

100/1 = 100

Vector de costos reducido

- Si es **maximización**: la variable de entrada será la variable no básica con el coeficiente más negativo en el vector de costes reducidos.
- Si es **minimización**: la variable de entrada será la variable no básica con el coeficiente más positivo en el vector de costes reducidos.

	CJ	45	80	0	0	0	M	M	M	
	ariables		1							
	básicas	X1	X2	<u>S1</u>	S2	S3	a1	a2	a3	Solución
45	X1	1	0	-1	0	0	1	0	0	90
M	a2	0	1	0	-1	0	0	1	0	180
M	a3	1	1	0	0	-1	0	0	1	100
	Z	2M	2M	-M	-M	-M	M	M	M	370M
	Z - Cj	2M	2M	-M	-M	-M	0	0	0	

90/1 = 90

180/0 = indet

100/1 = 100

	Cj	45	80	0	0	0	M	M	M	
	Variables		,							
	básicas	X1	X2	<u>S1</u>	S2	S3	a1	a2	a3	Solución
45	X1	1	0	-1	0	0	1	0	0	90
M	a2	0	1	0	-1	0	0	1	0	180
M	a3	0	1	1	0	-1	-1	0	1	10
	Z									
	Z - Cj									

90/1 = 90180/0 = indet

100/1 = 100

	Cj	45	80	0	0	0	M	M	M	
	Variables		,							
	básicas	X1	X2	<u>S1</u>	S2	<u>S3</u>	a1	a2	a3	Solución
45	X1	1	0	-1	0	0	1	0	0	90
M	a2	0	1	0	-1	0	0	1	0	180
M	a3	0	1	1	0	-1	-1	0	1	10
	Z	0	2M	M	-M	-M	-M	M	M	190M
	Z - Cj									

90/1 = 90

180/0 = indet

100/1 = 100

	Cj	45	80	0	0	0	M	M	M	
	Variables		,							
	básicas	X1	X2	<u>S1</u>	S2	<u>S3</u>	a1	a2	a3	Solución
45	X1	1	0	-1	0	0	1	0	0	90
M	a2	0	1	0	-1	0	0	1	0	180
M	a3	0	1	1	0	-1	-1	0	1	10
	Z	0	2M	M	-M	-M	-M	M	M	190M
	Z - Cj	0	2M	M	-M	-M	-2M	0	0	

90/1 = 90

180/0 = indet

100/1 = 100

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S3	a1	a2	a3	Solución
45	X1	1	0	-1	0	0	1	0	0	90
M	a2	0	1	0	-1	0	0	1	0	180
M	a3	0	1	1	0	-1	-1	0	1	10
	Z	0	2M	M	-M	-M	-M	M	M	190M
	Z - Cj	0	2M	M	-M	-M	-2M	0	0	

Vector de costos reducido

Verificar si la solución actual es la óptima o si es posible mejorarla.

- Si es maximización: se verifica que todos los coeficientes del vector de costes reducido sean mayores o iguales a cero. Ahí está el punto óptimo y se finaliza la solución.
- Si es **minimización**: se verifica que todos los coeficientes del vector de costes reducido sean menores o iguales a cero, para tener la solución óptima.

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S3	a1	a2	a3	Solución
45	X1	1	0	-1	0	0	1	0	0	90
M	a2	0	1	0	-1	0	0	1	0	180
M	a3	0	1	1	0	-1	-1	0	1	10
	Z	0	2M	M	-M	-M	-M	M	M	190M
	Z - Cj	0	2M	M	-M	-M	-2M	0	0	

Vector de costos reducido

Verificar si la solución actual es la óptima o si es posible mejorarla.

- Si es maximización: se verifica que todos los coeficientes del vector de costes reducido sean mayores o iguales a cero. Ahí está el punto óptimo y se finaliza la solución.
- Si es **minimización**: se verifica que todos los coeficientes del vector de costes reducido sean menores o iguales a cero, para tener la solución óptima.

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S 3	a1	a2	a3	Solución
45	X1	1	0	-1	0	0	1	0	0	90
M	a2	0	1	0	-1	0	0	1	0	180
M	a3	0	1	1	0	-1	-1	0	1	10
	Z	0	2M	М	-M	-M	-M	M	M	190M
	Z - Cj	0	2M	M	- M	-M	-2M	0	0	

90/0 = indeter 180/1 = 18010/1 = 10

Vector de costos reducido

- Si es **maximización**: la variable de entrada será la variable no básica con el coeficiente más negativo en el vector de costes reducidos.
- Si es **minimización**: la variable de entrada será la variable no básica con el coeficiente más positivo en el vector de costes reducidos.

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S 3	a1	a2	a3	Solución
45	X1	1	0	-1	0	0	1	0	0	90
M	a2	0	1	0	-1	0	0	1	0	180
M	a3	0	1	1	0	-1	-1	0	1	10
	Z	0	2M	М	-M	-M	-M	M	M	190M
	Z - Cj	0	2M	M	-M	-M	-2M	0	0	

90/0 = indeter 180/1 = 18010/1 = 10

Vector de costos reducido

- Si es **maximización**: la variable de entrada será la variable no básica con el coeficiente más negativo en el vector de costes reducidos.
- Si es **minimización**: la variable de entrada será la variable no básica con el coeficiente más positivo en el vector de costes reducidos.

			80	0	0	0	M	M	M	
	yables									
	asicas	X1	X2	S1	S2	S3	a1	a2	a3	Solución
45	X1	1	0	-1	0	0	1	0	0	90
	a2	0	1	0	-1	0	0	1	0	180
80	X2	0	1	1	0	-1	-1	0	1	10
	Z	0	2M	М	-M	-M	-M	M	M	190M
	Z - Cj	0	2M	M	-M	-M	-2M	0	0	

90/0 = indeter 180/1 = 18010/1 = 10

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S 3	a1	a2	a3	Solución
45	X1	1	0	-1	0	0	1	0	0	90
M	a2	0	1	0	-1	0	0	1	0	180
80	X2	0	1	1	0	-1	-1	0	1	10
	Z									
	Z - Cj									

90/0 = indeter 180/1 = 18010/1 = 10

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S3	a1	a2	a3	Solución
45	X1	1	0	-1	0	0	1	0	0	90
M	a2	0	1	0	-1	0	0	1	0	180
80	X2	0	1	1	0	-1	-1	0	1	10
	Z									
	Z - Cj									

90/0 = indeter 180/1 = 18010/1 = 10

Vector de costos reducido

Se convierte toda la columna pivote en forma de identidad. Solo la intersección es 1 (fila3) y el resto deben ser 1. En este caso solo se debe modificar la segunda fila que está en 1 para que sea 0. Para esto, restamos la fila 2 menos la fila 3.

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S 3	a1	a2	a3	Solución
45	X1	1	0	-1	0	0	1	0	0	90
M	a2	0	0	-1	-1	1	1	1	-1	170
80	X2	0	1	1	0	-1	-1	0	1	10
	Z									
	Z - Cj									

90/0 = indeter 180/1 = 18010/1 = 10

Vector de costos reducido

Se convierte toda la columna pivote en forma de identidad. Solo la intersección es 1 (fila3) y el resto deben ser 1. En este caso solo se debe modificar la segunda fila que está en 1 para que sea 0. Para esto, restamos la fila 2 menos la fila 3.

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S 3	a1	a2	a3	Solución
45	X1	1	0	-1	0	0	1	0	0	90
M	a2	0	0	-1	-1	1	1	1	-1	170
80	X2	0	1	1	0	-1	-1	0	1	10
	Z	0	0	-M	-M	M	M	M	-M	170M
	Z - Cj									

90/0 = indeter 180/1 = 18010/1 = 10

Vector de costos reducido

Se tiene en cuenta solo la fila 2 para calcular las sumas en Z. Esto debido a que es la única que conserva la M en la primera columna.

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S 3	a1	a2	a3	Solución
45	X1	1	0	-1	0	0	1	0	0	90
M	a2	0	0	-1	-1	1	1	1	-1	170
80	X2	0	1	1	0	-1	-1	0	1	10
	Z	0	0	-M	-M	M	M	M	-M	170M
	Z - Cj	0	0	-M	-M	M	0	0	-2M	

90/0 = indeter 180/1 = 18010/1 = 10

Vector de costos reducido

Se calcula la resta entre Z y Cj. En este caso solo se resta cuando en Cj hay M

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S 3	a1	a2	a3	Solución
45	X1	1	0	-1	0	0	1	0	0	90
M	a2	0	0	-1	-1	1	1	1	-1	170
80	X2	0	1	1	0	-1	-1	0	1	10
	Z	0	0	-M	-M	M	M	M	-M	170M
	Z - Cj	0	0	-M	-M	M	0	0	-2M	

90/0 = indeter 180/1 = 18010/1 = 10

Vector de costos reducido

Acá se termina la segunda iteración y se va a revisar si hace falta seguir iterando

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S3	a1	a2	a3	Solución
45	X1	1	0	-1	0	0	1	0	0	90
M	a2	0	0	-1	-1	1	1	1	-1	170
80	X2	0	1	1	0	-1	-1	0	1	10
	Z	0	0	-M	-M	M	M	M	-M	170M
	Z - Cj	0	0	-M	-M	M	0	0	-2M	

Vector de costos reducido

Verificar si la solución actual es la óptima o si es posible mejorarla.

- Si es **maximización**: se verifica que todos los coeficientes del vector de costes reducido sean mayores o iguales a cero. Ahí está el punto óptimo y se finaliza la solución.
- Si es minimización: se verifica que todos los coeficientes del vector de costes reducido sean menores o iguales a cero, para tener la solución óptima.

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S3	a1	a2	a3	Solución
45	X1	1	0	-1	0	0	1	0	0	90
M	a2	0	0	-1	-1	1	1	1	-1	170
80	X2	0	1	1	0	-1	-1	0	1	10
	Z	0	0	-M	-M	M	M	M	-M	170M
	Z - Cj	0	0	-M	-M	M	0	0	-2M	

Vector de costos reducido

Verificar si la solución actual es la óptima o si es posible mejorarla.

- Si es **maximización**: se verifica que todos los coeficientes del vector de costes reducido sean mayores o iguales a cero. Ahí está el punto óptimo y se finaliza la solución.
- Si es minimización: se verifica que todos los coeficientes del vector de costes reducido sean menores o iguales a cero, para tener la solución óptima.

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S3	a1	a2	a3	Solución
45	X1	1	0	-1	0	0	1	0	0	90
M	a2	0	0	-1	-1	1	1	1	-1	170
80	X2	0	1	1	0	-1	-1	0	1	10
	Z	0	0	-M	-M	M	М	M	-M	170M
	Z - Cj	0	0	-M	-M	M	0	0	-2M	

90/0 = indeter 170/1 =170 10/-1 =No se cuenta

Vector de costos reducido

OJO: SI SE ESTÁ DIVIDIENDO ENTRE UN VALOR NEGATIVO, ESTE VALOR NO SE TIENE EN CUENTA. SOLO SE CUENTAN LOS QUE SON POSITIVOS

	Cj	45	80			0	M	M	M	
	Variables									
	básicas	y	1	S1	S2	3	a1	a2	a3	Solución
45	X1		0	-1	0	0	1	0	0	90
0	S3	0	0	-1	-1	1	1	1	-1	170
80	X2	0	1	1	0	-1	-1	0	1	10
	Z	0	0	-M	-M	M	M	M	-M	170M
	Z - Cj	0	0	-M	-M	M	0	0	-2M	

90/0 = indeter 170/1 =170 10/-1 =No se cuenta

Vector de costos reducido

OJO: SI SE ESTÁ DIVIDIENDO ENTRE UN VALOR NEGATIVO, ESTE VALOR NO SE TIENE EN CUENTA. SOLO SE CUENTAN LOS QUE SON POSITIVOS

	Cj	45	80	0	0	0	M	M	M	
	Variables						_			
	básicas	X1	X2	S1	S2	S3	a1	a2	a3	Solución
45	X1	1	0	-1	0	0	1	0	0	90
0	S3	0	0	-1	-1	1	1	1	-1	170
80	X2	0	1	1	0	(-1)	-1	0	1	10
	Z									
	Z - Cj									

90/0 = indeter 170/1 =170 10/-1 =No se cuenta

Vector de costos reducido

Para eliminar ese -1 se suman las filas 2 y 3

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S3	a1	a2	a3	Solución
45	X1	1	0	-1	0	0	1	0	0	90
0	S3	0	0	-1	-1	1	1	1	-1	170
80	X2	0	1	0	-1	0	0	1	0	180
	Z									
	Z - Cj									

90/0 = indeter 170/1 =170 10/-1 =No se cuenta

Vector de costos reducido

Para eliminar ese -1 se suman las filas 2 y 3

	Cj	45	80	0	0	0	M	M	M	
	Variables									
	básicas	X1	X2	S1	S2	S 3	a1	a2	a3	Solución
45	X1	1	0	-1	0	0	1	0	0	90
0	S 3	0	0	-1	-1	1	1	1	-1	170
80	X2	0	1	0	-1	0	0	1	0	180
	Z	45	80	-45	-80	0	45	80	0	18450
	Z - Cj									

90x45=4050 170x0 = 0 180x80= 14400

Vector de costos reducido

Como ya no hay M en la primera columna, entonces ya los valores que se tienen en cuenta son los diferentes a M, para calcular el valor de Z

		Cj	45	80	0	0	0	M	M	M	
		Variables									
		básicas	X1	X2	S1	S2	S 3	a1	a2	a3	Soluciór
4	5	X1	1	0	-1	0	0	1	0	0	90
()	S 3	0	0	-1	-1	1	1	1	-1	170
8	0	X2	0	1	0	-1	0	0	1	0	180
		Z	45	80	-45	-80	0	45	80	0	18450
		Z - Cj	0	0	-45	-80	0				

90x45=4050 170x0 = 0 180x80= 14400

Vector de costos reducido

Se calcula Z-Cj también sin tener en cuenta las columnas de las

M

Como ya no hay M en la primera columna ya no reviso las M de arriba

	Cj	45	80	0	0	0			
	Variables								
	básicas	X1	X2	S1	S2	S 3	Como ya no hay	Solución	
45	X1	1	0	-1	0	0	M en la primera	90	90x45=4050
0	S 3	0	0	-1	-1	1	columna ya no reviso las M de	170	170x0 = 0
80	X2	0	1	0	-1	0	arriba	180	180x80= 14400
	Z	45	80	-45	-80	0		18450	
	Z - Cj	0	0	-45	-80	0			Vector de costos reducido

Rta:

X1 = 90 unidades de R

X2 = 180 unidades de S

S3 = 170 sobrante de la producción

Z = costo de la producción = \$18450

REFERENCIA BIBLIOGRÁFICA

Hillier, F. S. L., Hillier, G. J. F. S., & Lieberman, G. J. (1989). Introducción a la Investigación de Operaciones. McGraw-Hill. 2018

Puente Riofrío, M. & Gavilánez Álvarez, O. (2018). Programación lineal para la toma de decisiones. ESPOCH.

UNIVERSIDAD SANTO TOMÁS PRIMER CLAUSTRO UNIVERSITARIO DE COLOMBIA

SECCIONAL TUNJA

VIGILADA MINEDUCACIÓN - SNIES 1732

iSiempre_{Ito!}

USTATUNJA.EDU.CO

@santotomastunja