Lista #4

Curso: Ciência da Computação Disciplina: Inteligência Articial

Prof^a. Cristiane Neri Nobre

Data de entrega: 07/04

Valor: 2 pontos

Questão 01

Considere a seguinte base de dados

Dia	Aparência	temperatura	Umidade	Ventando	Jogar
d1	Sol	Quente	Alta	Não	Não
d2	Sol	Quente	Alta	Sim	Não
d3	Nublado	Quente	Alta	Não	Sim
d4	Chuva	Agradável	Alta	Não	Sim
d5	Chuva	Fria	Normal	Não	Sim
d6	Chuva	Fria	Normal	Sim	Não
d7	Nublado	Fria	Normal	Sim	Sim
d8	Sol	Agradável	Alta	Não	Não
d9	Sol	Fria	Normal	Não	Sim
d10	Chuva	Agradável	Normal	Não	Sim
d11	Sol	Agradável	Normal	Sim	Sim
d12	Nublado	Agradável	Alta	Sim	Sim
d13	Nublado	Quente	Normal	Não	Sim
d14	Chuva	Agradável	Alta	Sim	Não

Utilizando o algoritmo de Naive Bayes, qual a probabilidade de Jogar ou não Jogar, respectivamente, para o seguinte registro:

Aparência = Chuva Temperatura = Fria

Umidade = Normal

Ventando = Sim

Questão 02

Implemente o método de Naive Bayes utilizando o python. Veja a resposta do algoritmo para o registro acima.

Questão 03

Implemente o método de **Random Forest** utilizando o python. Utilize a base acima e compare o resultado deste método com o **Naive Bayes** e a **Árvore de decisão**. Ajuste os hiperparâmetros, utilizando o RandomSearch.

Questão 04

Considere que em um determinado supermercado foram efetuadas as seguintes transações:

N°	Leite	Café	Cerveja	Pão	Manteiga	Arroz	Feijão
1	Não	Sim	Não	Sim	Sim	Não	Não
2	Sim	Não	Sim	Sim	Sim	Não	Não
3	Não	Sim	Não	Sim	Sim	Não	Não
4	Sim	Sim	Não	Sim	Sim	Não	Não
5	Não	Não	Sim	Não	Não	Não	Não
6	Não	Não	Não	Não	Sim	Não	Não
7	Não	Não	Não	Sim	Não	Não	Não
8	Não	Não	Não	Não	Não	Não	Sim
9	Não	Não	Não	Não	Não	Sim	Sim
10	Não	Não	Não	Não	Não	Sim	Não

Utilizando-se o algoritmo Apriori, um suporte mínimo aceitável de **0.3** e confiança de **0.8**, o número de I**tensSets 1, 2, 3 e de regras** a partir desta base de dados são:

Obs: Gerar as regras apenas para quem levou o produto.

Questão 05

Considerando-se o código que está em **Módulos/Apriori.ipynb**, rode o código com a base acima e confira os resultados.

Questão 06

Considerando-se o código que está em **Módulos/Apriori.ipynb**, altere-o para que ele imprima os temsets gerados, com os respectivos suportes

Questão 07

Considerando-se o código que está em **Módulos/Apriori.ipynb**, altere-o para que ele gere regras de associação quando não há presença do produto. Ou seja, gostaria de ver regras da seguinte forma:

Quem não leva álcool leva detergente;

Quem não leva detergente leva arroz, etc

Questão 08 (Opcional - 1 ponto extra)

Investigue o funcionamento da biblioteca **mlxtend** para geração de regras de associação e gere as regras a partir da base de dados supracitada.

https://github.com/rasbt/mlxtendLinks to an external site.

https://github.com/rasbt/mlxtend/blob/master/mlxtend/frequent_patterns/apriori.py

Leituras complementares dos seguintes artigos que estão no CANVAS (opcional)

- 1) A Literature Survey on Association Rule Mining Algorithms.pdf
- 2) A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects