Logică matematică CURS 5

Andrei Sipos

Facultatea de Matematică și Informatică, DL Mate, Anul I Semestrul II, 2023/2024

Axioma alegerii

Așadar, mai este nevoie să demonstrăm doar că orice mulțime este bine-ordonabilă. Pentru aceasta, vom avea nevoie de o nouă axiomă.

Propoziție

Următoarele enunțuri sunt echivalente:

- Pentru orice S cu $\emptyset \notin S$ există $(g_y)_{y \in S}$ astfel încât pentru orice $y \in S$, $g_v \in y$.
- Pentru orice I și orice familie de mulțimi **nevide** indexată după I, $(F_i)_{i \in I}$, avem că $\prod_{i \in I} F_i \neq \emptyset$, i.e. există $(f_i)_{i \in I}$ astfel încât pentru orice $i \in I$, $f_i \in F_i$.
- Pentru orice I și orice familie de mulțimi **nevide**, **disjuncte două câte două**, indexată după I, $(D_i)_{i \in I}$, avem că $\prod_{i \in I} D_i \neq \emptyset$, i.e. există $(d_i)_{i \in I}$ astfel încât pentru orice $i \in I$, $d_i \in D_i$.

Oricare dintre cele trei enunțuri de mai sus este cunoscut ca **Axioma alegerii**. În continuare, le vom demonstra echivalența.

Echivalența enunțurilor

Arătăm întâi echivalența dintre prima și a doua formă.

Pentru a demonstra că primul enunț îl implică pe al doilea, notăm $S := \{F_i \mid i \in I\}$ și obținem că există $(g_y)_{y \in S}$ astfel încât pentru orice $y \in S$, $g_y \in y$. Pentru orice $i \in I$, cum $F_i \in S$, notăm $f_i := g_{F_i}$. Atunci familia $(f_i)_{i \in I}$ este cea căutată, deoarece pentru orice $i \in I$, avem $f_i = g_{F_i} \in F_i$.

Invers, acum! Presupunem că avem S și notăm $F:=\{(i,i)\mid i\in S\}$. Atunci F este o familie indexată după S și pentru orice $i\in S$, $F_i=i$. Ca urmare, există $(f_y)_{y\in S}$ astfel încât pentru orice $y\in S$, $f_y\in F_y=y$ și am terminat.

Mulțimi disjuncte

Rămâne de demonstrat că al treilea enunț îl implică pe al doilea.

Pentru orice $i \in I$ punem $D_i := \{i\} \times F_i$. Atunci familia $(D_i)_{i \in I}$ satisface condițiile din al treilea enunț, deci există $(d_i)_{i \in I}$ astfel încât pentru orice $i \in I$, $d_i \in D_i$.

Avem că pentru orice $i \in I$ există și este unic $a \in F_i$ cu $d_i = (i, a)$ – unicitatea este imediată, iar existența rezultă din faptul că pentru orice $i \in I$, $d_i \in D_i = \{i\} \times F_i$.

Punem, pentru orice $i \in I$, f_i să fie acel $a \in F_i$ cu $d_i = (i, a)$. Atunci familia $(f_i)_{i \in I}$ este cea căutată.

Axioma alegerii pe mulțimi finite

Pentru mulțimi finite, Axioma alegerii este o teoremă care rezultă din axiomele prezentate anterior. De exemplu, în prima formulare:

Propoziție

Pentru orice S finită cu $\emptyset \notin S$ există $(g_y)_{y \in S}$ astfel încât pentru orice $y \in S$, $g_y \in y$.

Demonstrație

Demonstrăm prin inducție după cardinalul n al lui S. Pentru n=0, avem $S=\emptyset$ și putem lua $g:=\emptyset$. Arătăm acum pentru un S de cardinal n^+ . Atunci există T și s cu |T|=n și $S=T\cup\{s\}$. Din ipoteza de inducție, fie $(h_y)_{y\in T}$ astfel încât pentru orice $y\in T$, $h_y\in y$. Cum $\emptyset\not\in S$, $s\neq\emptyset$, deci există $z\in s$. Putem, atunci, defini pe $(g_y)_{y\in S}$, cel căutat, punând, pentru orice $y\in S$, $g_y:=h_y$, dacă $y\in T$, și $g_y:=z$, dacă y=s.

Variantele finite ale celorlalte formulări rămân ca exercițiu.

Lema lui Zorn

Axioma alegerii ne permite să demonstrăm un rezultat util în matematică, anume Lema lui Zorn.

Definiție

Fie (A, \leq) o mulțime ordonată și $B \subseteq A$. B se numește **lanț** al lui A dacă pentru orice $x, y \in B$, avem $x \leq y$ sau $y \leq x$.

Definiție

Fie (A, \leq) o mulțime ordonată. Ea se numește **inductiv ordonată** dacă orice lanț al său admite majorant, i.e. pentru orice $B \subseteq A$ care este lanț, există $z \in A$ astfel încât pentru orice $x \in B$, $x \leq z$. (Observăm că, dacă aplicăm condiția pentru $B := \emptyset$, obținem $A \neq \emptyset$.)

Lema lui Zorn

Orice mulțime inductiv ordonată admite un element maximal.

Demonstrația lemei lui Zorn

Presupunem prin absurd că există o mulțime inductiv ordonată (A, \leq) fără element maximal. Facem observația că pentru orice lanț $B \subseteq A$ există $z \in A$ astfel încât pentru orice $y \in B$ avem $y \leq z$, iar, cum z nu e maximal, există x cu z < x, deci, pentru orice $y \in B$, avem y < x.

Aplicăm Axioma alegerii pentru mulțimea $I := \mathcal{P}(A) \setminus \{\emptyset\}$ și obținem o familie $(g_i)_{i \in I}$ astfel încât pentru orice $i \in I$, $g_i \in i$. Fie $b \notin A$ și vom defini o operație pe ordinali F prin recursie. Fie α un ordinal. Presupunem că am definit, pentru orice $\gamma < \alpha$, $F(\gamma)$ și definim $F(\alpha)$.

În cazul în care, pentru orice $\gamma < \alpha$, $F(\gamma) \in A$ și există $x \in A$ astfel încât pentru orice $\gamma < \alpha$, $F(\gamma) < x$, punem

$$F(\alpha) := g_{\{x \in A \mid \text{pentru orice } \gamma < \alpha, F(\gamma) < x\}},$$

altfel punem $F(\alpha) := b$.

Demonstrația lemei lui Zorn

Demonstrăm acum prin inducție că, pentru orice ordinal α , $F(\alpha) \in A$ și pentru orice $\beta < \alpha$, $F(\beta) < F(\alpha)$. Presupunem enunțul adevărat pentru orice $\gamma < \alpha$ și demonstrăm pentru α . Fie

$$L := \{ F(\gamma) \mid \gamma < \alpha \} \subseteq A.$$

Atunci, pentru orice β , δ cu $\beta < \delta < \alpha$, din ipoteza de inducție avem că $F(\beta)$, $F(\delta) \in A$ și $F(\beta) < F(\delta)$. Deci L este lanț și așadar există x astfel încât pentru orice $\gamma < \alpha$, $F(\gamma) < x$. Atunci, din definiția lui F, $F(\alpha)$ este un asemenea x și am încheiat.

Wikipedia: "This sequence is really long."

Definim acum $f:h(A)\to A$, pentru orice $\alpha\in h(A)$, prin $f(\alpha):=F(\alpha)$. Atunci f este injectivă și deci $|h(A)|\leq |A|$, ceea ce contrazice definiția ordinalului Hartogs.

Teorema lui Zermelo

În acest moment, putem arăta enunțul dorit.

Teorema bunei ordonări (Zermelo)

Orice mulțime este bine-ordonabilă.

Demonstrația teoremei lui Zermelo

Fie X o mulțime. Observăm că pentru orice $A\subseteq X$ și orice $R\subseteq A\times A$, avem $(A,R)\in \mathcal{P}(X)\times \mathcal{P}(X\times X)$, deci pot defini

$$W := \{(A, R) \mid A \subseteq X \text{ si } R \text{ este o relație de bună ordine pe } A\}.$$

Pe W definesc următoarea relație de ordine: pentru orice (A, R), $(B, S) \in W$, avem $(A, R) \leq (B, S)$ dacă $A \subseteq B$ și $R = S \cap (A \times A)$.

Fie $L \subseteq W$ un lanţ. Notăm

$$M := \{A \subseteq X \mid \text{există } R \text{ cu } (A, R) \in L\}$$

şi

$$N := \{R \subseteq X \times X \mid \text{există } A \text{ cu } (A, R) \in L\}.$$

Atunci $(\bigcup M, \bigcup N) \in W$ și este majorant pentru L (exercițiu!). Deci (W, \leq) este inductiv ordonată și, deci, aplicând Lema lui Zorn, admite un element maximal pe care îl notăm cu (A, R).

Demonstrația teoremei lui Zermelo

Vrem să arătăm că A=X și atunci R va fi relația de bună ordine cerută.

Dacă $A \neq X$, există $a \in X \setminus A$. Atunci avem că

$$(A \cup \{a\}, R \cup \{(y, a) \mid y \in A\} \cup \{(a, a)\}) \in W$$

(exercițiu!), ceea ce contrazice maximalitatea lui (A, R). Demonstrația este deci încheiată.

Acest mod de aplicare a Lemei lui Zorn este tipic.

Marea echivalență

Mai mult, dacă admitem Teorema lui Zermelo, putem demonstra Axioma alegerii în felul următor. Fie S cu $\emptyset \not\in S$. Fie \le o relație de bună ordine pe $\bigcup S$. Știm că pentru orice $y \in S$, avem $y \subseteq \bigcup S$. Definim atunci $(g_y)_{y \in S}$, punând, pentru orice $y \in S$, $g_y := \min(y) \in y$.

Prin urmare, am arătat că Axioma alegerii, Lema lui Zorn și Teorema bunei ordonări sunt enunțuri echivalente.

Jerry Bona: "The Axiom of Choice is obviously true, the well-ordering principle obviously false, and who can tell about Zorn's lemma?"

Inverse la dreapta

La seminar se va demonstra că și următorul enunț este echivalent cu Axioma alegerii.

Propoziție

Fie X, Y mulțimi și $g:Y\to X$ surjectivă. Atunci există $f:X\to Y$ cu $g\circ f=\mathrm{id}_X.$

Funcția f se numește **inversa la dreapta** a lui g și se observă (exercițiu!) că este injectivă, deci $|X| \leq |Y|$.

Există și următorul enunț mai slab.

Principiul Partiției

Fie X, Y mulțimi și $g:Y\to X$ surjectivă. Atunci există $f:X\to Y$ injectivă.

Problemă deschisă (Levy, 1963): Este acest enunț echivalent cu Axioma alegerii sau este **strict** mai slab?

Axioma alegerii dependente

Teoremă (Axioma alegerii dependente)

Fie $X \neq \emptyset$ și $R \subseteq X \times X$ astfel încât, pentru orice $x \in X$, există $y \in X$ cu $(x,y) \in R$.

Atunci există $(x_n)_{n\in\mathbb{N}}$, un șir X-valuat, astfel încât, pentru orice $n\in\mathbb{N}$, $(x_n,x_{n+1})\in R$.

Demonstrație

Aplicăm Axioma alegerii pentru mulțimea $I:=\mathcal{P}(X)\setminus\{\emptyset\}$ și obținem o familie $(g_i)_{i\in I}$ astfel încât pentru orice $i\in I,\ g_i\in i$. Cum $X\neq\emptyset,\ X\in I$. Definim acum șirul punând $x_0:=g_X$ și, pentru orice $n\in\mathbb{N},\ x_{n+1}:=g_{\{y\in X\mid (x_n,y)\in R\}}$.

Înapoi la cardinali

Prin urmare, Axioma alegerii ne permite să folosim fără probleme definiția cardinalilor ca ordinali inițiali. În particular, ordonarea cardinalilor este totală, iar pentru orice mulțime infinită A există un ordinal α cu $|A|=\aleph_{\alpha}$.

Propoziție

Orice mulțime infinită admite o submulțime numărabilă.

Demonstrație

Fie A o mulțime infinită și α astfel încât există o bijecție $g:\aleph_{\alpha}\to A$. Cum $\aleph_0\le\aleph_{\alpha}$, există o injecție $f:\aleph_0\to\aleph_{\alpha}$. Fie B imaginea lui $g\circ f$. Atunci B este submulțimea căutată.

Faptul demonstrat că $\aleph_0 < 2^{\aleph_0}$ se poate reformula acum ca $\aleph_1 \leq 2^{\aleph_0}$. De asemenea, ipoteza continuumului se poate reformula ca

$$2^{\aleph_0}=\aleph_1$$
.

Există suficiente mulțimi

Următoarea propoziție ne arată că avem, într-un anume sens, suficiente mulțimi de orice cardinal.

Propoziție¹

Fie A o mulțime și κ un cardinal. Atunci există B cu $|B| = \kappa$ astfel încât $A \cap B = \emptyset$.

Demonstrație

Fie $z \notin \bigcup \bigcup A$. Luăm $B := \{z\} \times \kappa$. Clar, $|B| = \kappa$. Presupunem că $A \cap B \neq \emptyset$. Atunci există $\alpha \in \kappa$ cu $(z, \alpha) \in A$, adică $\{\{z\}, \{z, \alpha\}\} \in A$. Rezultă $\{z\} \in \bigcup A$, deci $z \in \bigcup \bigcup A$. Contradicție!

Cardinalul reuniunii

Propoziție

Fie I o mulțime și λ un cardinal. Fie $(A_i)_{i \in I}$ astfel încât, pentru orice $i \in I$, $|A_i| \leq \lambda$. Atunci

$$\left|\bigcup_{i\in I}A_i\right|\leq |I|\cdot\lambda.$$

Demonstrație

Pentru orice $i \in I$, există $g: A_i \to \lambda$ injectivă și deci mulțimea $S_i:=\{g: A_i \to \lambda \mid g \text{ injectivă}\}$ este nevidă. Aplicăm Axioma alegerii pentru $(S_i)_{i \in I}$ și obținem o familie $(s_i)_{i \in I}$ astfel încât pentru orice $i \in I$, s_i este o injecție de la A_i la λ . (Acesta este un mod tipic de aplicare a Axiomei alegerii pentru a face un număr potențial infinit de alegeri.)

Cardinalul reuniunii

Demonstrație (cont.)

Fie \leq o relație de bună ordine pe I. Definim o funcție $f:\bigcup_{i\in I}A_i\to I$, pentru orice $a\in\bigcup_{i\in I}A_i$, astfel: știm că $\{i\in I\mid a\in A_i\}\neq\emptyset$ și atunci punem

$$f(a) := \min(\{i \in I \mid a \in A_i\}).$$

Definim apoi $h: \bigcup_{i \in I} A_i \to I \times \lambda$, pentru orice $a \in \bigcup_{i \in I} A_i$, prin

$$h(a) := (f(a), s_{f(a)}(a)).$$

Atunci h este injectivă (exercițiu!) și deci

$$\left|\bigcup_{i\in I}A_i\right|\leq |I\times\lambda|=|I|\cdot|\lambda|=|I|\cdot\lambda.$$

Cardinalul reuniunii cel mult numărabile

Corolar

O reuniune cel mult numărabilă de mulțimi cel mult numărabile este cel mult numărabilă.

Demonstrație

Din propoziția anterioară, cardinalul reuniunii trebuie să fie cel mult $\aleph_0 \cdot \aleph_0 = |\mathbb{N} \times \mathbb{N}| = \aleph_0$.

Corolar

O reuniune numărabilă de mulțimi numărabile este numărabilă.

Demonstrație

Reuniunea conține o mulțime numărabilă și este deci infinită.

Are sens, deci, să studiem mai mult cum arată produsele de cardinali.

Propoziție

Pentru orice cardinal infinit κ , avem $\kappa \cdot \kappa = \kappa$.

Demonstrație

Presupunem contrariul, și deci există un κ minim cu $\kappa \cdot \kappa \neq \kappa$. Cum $\kappa = \kappa \cdot 1 \leq \kappa \cdot \kappa$, avem $\kappa < \kappa \cdot \kappa$. Pe mulțimea $\kappa \times \kappa$ definim relația R astfel: pentru orice α , β , γ , $\delta \in \kappa$, avem

$$\begin{split} (\alpha,\beta)R(\gamma,\delta) :&\Leftrightarrow \; \max(\alpha,\beta) < \max(\gamma,\delta) \\ &\mathsf{SAU} \; \max(\alpha,\beta) = \max(\gamma,\delta) \; \mathsf{ si } \; \alpha < \gamma \\ &\mathsf{SAU} \; \max(\alpha,\beta) = \max(\gamma,\delta) \; \mathsf{ si } \; \alpha = \gamma \; \mathsf{ si } \; \beta < \delta. \end{split}$$

Avem că R este o relație de bună ordine strictă (exercițiu!). Deci există α astfel încât $(\kappa \times \kappa, R)$ este izomorfă cu (α, \in_{α}) și fie f un izomorfism.

Demonstrație (cont.)

Atunci

$$\kappa < \kappa \cdot \kappa = |\kappa \times \kappa| = |\alpha| \le \alpha,$$

deci $\kappa \in \alpha$ și prin urmare există β , $\gamma \in \kappa$ cu $f(\beta, \gamma) = \kappa$. Avem că mulțimea tuturor acelor (δ, ε) cu $(\delta, \varepsilon)R(\beta, \gamma)$ este de cardinal κ .

Avem că $\max(\beta,\gamma)<\kappa$ și deci $\varphi:=\max(\beta,\gamma)^+\leq\kappa$. Însă κ este inițial, deci nu e succesor, prin urmare $\varphi<\kappa$. Cum pentru orice δ , ε cu $(\delta,\varepsilon)R(\beta,\gamma)$, avem $\max(\delta,\varepsilon)\leq\max(\beta,\gamma)<\varphi$ și deci δ , $\varepsilon<\varphi$, avem

$$\kappa \le |\varphi \times \varphi| = |\varphi| \cdot |\varphi|.$$

Dar cum avem $|\varphi| \leq \varphi < \kappa$, atunci, dacă $|\varphi|$ este finit, avem că $|\varphi| \cdot |\varphi|$ este tot finit, iar dacă $|\varphi|$ este infinit, avem, din minimalitatea lui κ , că $|\varphi| \cdot |\varphi| = |\varphi|$. În ambele cazuri, avem $|\varphi| \cdot |\varphi| < \kappa$. Contradicție!

Aritmetica cardinalilor

Corolar

Fie κ un cardinal infinit și $n \in \mathbb{N}$, $n \neq 0$. Atunci $\kappa^n = \kappa$.

Corolar

Fie λ , μ cardinali cu $\lambda \leq \mu$ și μ infinit. Atunci $\lambda + \mu = \mu$.

Demonstrație

Avem $\mu \leq \lambda + \mu \leq \mu + \mu = 2 \cdot \mu \leq \mu \cdot \mu = \mu$.

Corolar

Fie λ , μ cardinali cu $1 \le \lambda \le \mu$ și μ infinit. Atunci $\lambda \cdot \mu = \mu$.

Demonstrație

Avem $\mu = 1 \cdot \mu \le \lambda \cdot \mu \le \mu \cdot \mu = \mu$.

Caracterizarea mulțimilor infinite

Propoziție

Fie X infinită. Atunci există $Y \subsetneq X$ cu $X \sim Y$.

Demonstrație

Avem că $X \sim |X| \sim |X|^+$. Fie $g: |X|^+ \to X$ o bijecție. Luăm Y să fie imaginea lui |X| prin g.

Așadar, o mulțime este infinită dacă și numai dacă este în bijecție cu o parte strictă a sa.

Părți finite

Pentru orice $n \in \mathbb{N}$ și X, definim $\mathcal{P}_n(X) := \{A \in \mathcal{P}(X) \mid |A| = n\}$.

Propoziție

Pentru orice $n \in \mathbb{N} \setminus \{0\}$ și orice X infinită, avem $|\mathcal{P}_n(X)| = |X|$.

Demonstrație

Pentru a găsi o injecție de la X la $\mathcal{P}_n(X)$, fixăm întâi $a_0,\ldots,a_n\in X$, diferite două câte două. Apoi, orice $x\in\{a_i\mid i\leq n\}$ va fi dus în $\{a_i\mid i\leq n\}\setminus\{x\}$, iar orice x din afara acelei mulțimi va fi dus în $\{a_i\mid i< n-1\}\cup\{x\}$.

În sens invers, bine-ordonăm X și atunci fiecărui element $\{x_i \mid i < n\}$ al lui $\mathcal{P}_n(X)$, considerând w.l.o.g. $x_0 < \ldots < x_{n-1}$ îi asociem elementul $(x_0, \ldots, x_{n-1}) \in X^n$. Așadar, $|\mathcal{P}_n(X)| \leq |X^n| = |X|$.

Părți finite

Pentru orice X, definim $\mathcal{P}_{fin}(X) := \{A \in \mathcal{P}(X) \mid A \text{ finit} \check{a}\}.$

Propoziție

Pentru orice X infinită, avem $|\mathcal{P}_{fin}(X)| = |X|$.

Demonstrație

Cum

$$\mathcal{P}_{\mathrm{fin}}(X) = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n(X),$$

avem

$$|\mathcal{P}_{\text{fin}}(X)| \leq |\mathbb{N}| \cdot |X| = |X|$$

și, pe de altă parte,

$$|X| = |\mathcal{P}_1(X)| \le |\mathcal{P}_{fin}(X)|.$$

Baze în spații vectoriale

Considerăm cunoscută de la Algebră liniară noțiunea de spațiu vectorial.

Definiție

Fie k un corp, V un k-spațiu vectorial și $A \subseteq V$.

- A se numește **sistem de generatori** pentru V dacă pentru orice $v \in V$ există $n \in \mathbb{N}$, $\lambda_1, \ldots, \lambda_n \in k$, $v_1, \ldots, v_n \in A$ cu $v = \sum_{i=1}^n \lambda_i v_i$.
- A se numește **sistem liniar independent** pentru V dacă pentru orice $n \in \mathbb{N}$, $\lambda_1, \ldots, \lambda_n \in k$, $v_1, \ldots, v_n \in A$ cu $0 = \sum_{i=1}^n \lambda_i v_i$, avem că, pentru orice i, $\lambda_i = 0$.
- A se numește **bază** pentru V dacă este și sistem de generatori pentru V, și sistem liniar independent pentru V.

Este aproape imediat faptul că, dat fiind un corp k, două k-spații vectoriale care admit respectiv două baze echipotente sunt izomorfe.

Caracterizarea bazelor

Propoziție

Fie k un corp, V un k-spațiu vectorial și $A \subseteq V$. Atunci A este bază pentru V dacă și numai dacă A este sistem liniar independent **maximal** pentru V.

Demonstrație

Implicația " \Rightarrow " rămâne ca exercițiu. Pentru " \Leftarrow ", presupunem că A nu ar fi sistem de generatori pentru V și, ca urmare, există $v \in V$ ce nu este generat de A, în particular $v \not\in A$. Vom arăta că $A \cup \{v\}$ este sistem liniar independent pentru V, contrazicând maximalitatea lui A. Fie $n \in \mathbb{N}$, $\lambda_1, \ldots, \lambda_n, \lambda \in k$, $v_1, \ldots, v_n \in A$ cu $0 = \sum_{i=1}^n \lambda_i v_i + \lambda v$. Presupunem $\lambda \neq 0$. Atunci $v = -\frac{1}{\lambda} \sum_{i=1}^n \lambda_i v_i$, contrazicând modul cum a fost ales v. Deci $\lambda = 0$, prin urmare $\sum_{i=1}^n \lambda_i v_i = 0$, așadar, din faptul că A este sistem liniar independent pentru V, pentru orice i, $\lambda_i = 0$.

Existența bazei

Propoziție

Fie k un corp, V un k-spațiu vectorial. Atunci V admite o bază.

Demonstrație

Fie \mathcal{F} mulţimea tuturor sistemelor liniar independente pentru V. Atunci (\mathcal{F},\subseteq) este inductiv ordonată (pentru orice lanț $X\subseteq\mathcal{F}$, $\bigcup X$ este majorant pentru X), deci admite un element maximal, care, din propoziția anterioară, este chiar baza căutată.

Cu titlu informativ, menționăm că faptul că orice spațiu vectorial admite o bază este echivalent cu Axioma alegerii. Mai menționăm și că orice două baze au același cardinal, iar acest fapt este strict mai slab decât Axioma alegerii.

Cardinalul spațiilor vectoriale I

Propoziție

Fie k un corp, V un k-spațiu vectorial și B o bază pentru V cu $B \neq \emptyset$ (i.e. $V \neq \{0_V\}$). Atunci $\max(|B|, |k|) \leq |V|$.

Demonstrație

Cum $B \neq \emptyset$, fie $v \in B$. Considerăm $f: k \to V$, definită, pentru orice $\alpha \in k$, prin $f(\alpha) := \alpha \cdot v$. Atunci f este injectivă și, deci, $|k| \leq |V|$. Cum $B \subseteq V$, avem $|B| \leq |V|$, de unde obținem concluzia dorită.

Cardinalul spațiilor vectoriale II

Propoziție

Fie k un corp infinit, V un k-spațiu vectorial și B o bază pentru V cu $B \neq \emptyset$ și B finită. Atunci |V| = |k|.

Demonstrație

Avem că V este izomorf cu $k^{|B|}$, deci $|V| = |k|^{|B|} = |k|$.

Teoremă

Fie k un corp infinit, V un k-spațiu vectorial și B o bază pentru V cu B infinită. Atunci $|V| = \max(|B|, |k|)$.

Demonstratie

Avem

$$V = \bigcup_{D \in \mathcal{P}_{fin}(B)} \langle D \rangle,$$

 $\mathsf{deci}\ |V| \leq |\mathcal{P}_{\mathrm{fin}}(B)| \cdot |k| = |B| \cdot |k| = \mathsf{max}(|B|, |k|).$

Aplicația 1: $\mathbb{Q}^{\mathbb{N}}$

Mulțimea funcțiilor de la $\mathbb N$ la $\mathbb Q$, notată cu $\mathbb Q^\mathbb N$, are o structură naturală de $\mathbb Q$ -spațiu vectorial.

Propoziție

Fie B o bază pentru $\mathbb{Q}^{\mathbb{N}}$. Atunci $|B| = \mathfrak{c}$.

Demonstrație

Avem că
$$\left|\mathbb{Q}^{\mathbb{N}}\right|=|\mathbb{Q}|^{|\mathbb{N}|}=\aleph_0^{\aleph_0}=2^{\aleph_0}=\mathfrak{c}.$$

Clar, $\mathbb{Q}^{\mathbb{N}} \neq \{0_{\mathbb{Q}^{\mathbb{N}}}\}$, deci $B \neq \emptyset$. Presupunem că B este finită.

Atunci
$$\left|\mathbb{Q}^{\mathbb{N}}\right|=\left|\mathbb{Q}\right|=\aleph_{0}$$
, contradicție.

Rezultă că B este infinită, de unde scoatem $\left|\mathbb{Q}^{\mathbb{N}}\right|=\max(|B|,|\mathbb{Q}|)=\max(|B|,\aleph_0)=|B|,$ deci $|B|=\mathfrak{c}.$

Aplicația 2: $(\mathbb{R},+)$ și $(\mathbb{C},+)$

Ştim că $(\mathbb{R},+)$ are o structură naturală de \mathbb{Q} -spațiu vectorial. Fie B o bază a lui. Clar, $B \neq \emptyset$, iar, dacă B ar fi finită, am avea $|\mathbb{R}| = |\mathbb{Q}|$, fals. Deci B este infinită, de unde scoatem $|\mathbb{R}| = \max(|B|, |\mathbb{Q}|)$, deci $|B| = |\mathbb{R}|$.

Analog, $(\mathbb{C},+)$ are o structură naturală de \mathbb{Q} -spațiu vectorial și, pentru orice bază B' a sa, avem $|B'|=|\mathbb{R}|$.

Așadar, $(\mathbb{R},+)$ și $(\mathbb{C},+)$ sunt izomorfe ca \mathbb{Q} -spații vectoriale, și, deci, și ca grupuri abeliene. În particular, $(\mathbb{R},+)$ are o structură naturală de \mathbb{C} -spațiu vectorial.