$G_{1}(s) = \frac{s^{2} - 2s + 4}{(s+1)(s+10)(s+30)}$	$G_{2}(s) = \frac{s+4}{s(s+6)(s+8)(s^{2}+3s+4)}$
a) N-M=3-2=1	a) N-M = 5-1 = 4
poles : _l, _lo, _30	poles: $0, -6, -8, -1.5 \pm \frac{\sqrt{7}}{2}$
zeros: l±j√3	zens : _4
$\sigma = \frac{((-1)+(-10)+(-30))-(1+1)}{1} = -43$	$\sigma = \frac{((-6) + (-8) + (-1.5) + (-1.5) + (-1.5)) - (-4)}{4} = -3.25$
$\Phi = \frac{2k+1}{1} 180^{\circ} \longrightarrow \{180\}$	$\dot{\Phi} = \frac{2k+1}{4} 80^{\circ} - \{45, 135, 225, 315\}$
b) $a(s) = s^2 - 2s + 4$	b) A(5) = 5+9
$b(5) = -(5+1)(5+10)(5+30) = 5^{3}+115^{2}+3+0.5+300$	$b(5) = -5(5+6)(5+8)(5^{2}+35+4) = -5^{\frac{5}{2}} \cdot 175^{\frac{4}{2}} \cdot 945^{\frac{3}{2}} + 2005^{\frac{1}{2}} + 192.5$
$a\frac{db}{dt} = b\frac{da}{dt}$	$a \frac{db}{dt} = b \frac{da}{dt}$
$\longrightarrow \left(5^{2} - 25 + 4\right) \left(35^{2} + 823 + 340\right) = \left(5^{3} + 415^{2} + 3405 + 300\right) \left(25 - 2\right)$	$\longrightarrow (5+4)(55^{4}+685^{3}+2825^{2}+4005+192) = (5^{5}+175^{4}+995^{3}+2005^{2}+192)$
-> 5 ⁴ -45 ⁷ -410 5 ¹ -272 5 + 1960 = 0	-> 45 + 7154 + 460 53 + 132852 + 1600 5 + 768 = 0
	., \{-7.07, -4.35 \pm 1.44 \pm j, -0.78 \pm 0.56 \pm \} \times \times
c) + KG;(s) = 0	$C) = 1 + KG_1(s) = 0$
د نعد ماده : 5 + (41+ k) 5 + (340-2k)5+300+4k	عماره متعنه : 5 ⁵ + 17 ⁵ + 94 ه ³ + 200 ه ⁵ + (192 + 14) ه - + 14 ا
53 346-1k	5 ⁵ 94 92+k
5 ² 41+k 300+4k 5 ¹ C •	5 ⁴ 17 200 4 K 5 ³ 82.23 192+0.76 k o
5° 300+4k 0	5 ² 160.3-0.15k 4 K o
41+k>, - k>-41	s' c o o
$c = 3+0-2k - \frac{300+4k}{91+k} > 0 \longrightarrow \begin{cases} k < -91 & \text{f} \\ -40.67 < k < 167.67 \end{cases}$	[60.3 - 0.15k > 0 ⇒ K < 1068.66
340+4k>> k>-75	$C = 192 + 0.76k - \frac{82.25(4k)}{160.3 - 0.15k} > 0 \Rightarrow$ $K > 1068.67$
$\Rightarrow \circ \langle k \langle 167.67 \rightarrow (k \langle o)U(167.67 \langle k))$	160.3-0.15k K> 1068.67 X 4k>0 ⇒ k>0
(stable) for being unstable	$\Rightarrow 0 < k < 23.14 \rightarrow (k < 0)U(23.19 < k)$
	(stable) for being unstable
$\frac{1}{2} = \frac{1}{2} - \frac{1}{2} + \frac{1}$	$\int \int dx^{-1} \left(\frac{\sqrt{7}}{2.5}\right) - \left(\tan^{-1}\left(\frac{\sqrt{7}}{2.5}\right) + 90 + \tan^{-1}\left(\frac{\sqrt{7}}{2.5}\right) + \tan^{-1}\left(\frac{\sqrt{7}}{2.5}\right) + \theta\right) = \pm 180(2)$
$90 + \theta = (40.89 + 8.94 + 3.19) = 180 \implies \theta = 143.02^{\circ}$	$20.7 - (138.6 + 90 + 16.38 + 11.5 + \theta) = -180 \implies \theta = -55.79^{\circ}$
e) $K_0 = \frac{-b(f_0)}{a(f_0)} = \frac{324.416}{15.46} = 20.32$	e) $K_0 = \frac{-b(f_0)}{A(f_0)} = \frac{-230.58}{-3.07} = 75.1$

2)
$$(s-z_1)(s-z_2)...(s-z_n) = s^n - (\sum_{i=1}^n z_i) s^{n-1} + ...$$

$$\lim_{S \to \infty} (1 + KG(S) H(S)) = \lim_{S \to \infty} 1 + K \frac{b_0 (s^m_- (\frac{p_0}{l_{21}} z_1) s^{m-l} + \dots)}{a_0 (s^m_- (\frac{p_0}{l_{21}} p_1) s^{n-l} + \dots)} = \lim_{S \to \infty} K \frac{b_0 (s^m_- (\frac{p_0}{l_{21}} z_1) s^{m-l})}{a_0 (s^m_- (\frac{p_0}{l_{21}} p_1) s^{n-l})} = \lim_{S \to \infty} K \frac{b_0 (1 - (\frac{p_0}{l_{21}} z_1) s^{l-l})}{a_0 (s^m_- (\frac{p_0}{l_{21}} p_1) s^{m-l})}$$

$$\left(\begin{array}{c} \lim_{N\to 0} (1-N) \simeq \frac{1}{1+N} \right)$$

$$\Rightarrow \lim_{S \to \infty} \left(I_{+} \times G(s) \times H(S) \right) = K \frac{b_{0}}{A_{0}} \frac{1}{\left(s^{n-n}_{-} \left(\frac{\beta}{L_{1}} \right)^{n} \right) s^{n-n-1} \right) \left(\left(\left(\frac{\beta}{L_{1}} \right)^{n} \right)^{n}} = K \frac{b_{0}}{A_{0}} \frac{1}{\left(s^{n-n}_{-} \left(\frac{\beta}{L_{1}} \right)^{n} \right) s^{n-n-1} - \left(\frac{\beta}{L_{1}} \right) \left(\frac{\beta}{L_{1}} \right)^{n} \right) s^{n-n-2}}$$

$$\lim_{S \to \infty} (1 + KG(s) H(s)) = K \frac{b_0}{a_0} \frac{1}{(s^{n-m} + (\sum_{i=1}^{m} z_i - \sum_{i=1}^{n} y_i) s^{n-m-1})} = K \frac{b_0}{a_0} \frac{1}{s^{\frac{q}{2}} \kappa s^{\frac{q}{2}-1}}$$

$$\Rightarrow -46 = K \Rightarrow 6 = \frac{\sum_{i=1}^{n} \gamma_{i} - \sum_{i=1}^{n} z_{i}}{A - M}$$

3)
$$G(5) = \frac{5+2}{(5+1)^2}$$

N-M = 2-1=1

zeros: _2

poles : -1, -1

 $\phi = \frac{2k+1}{l} 180^{\circ} \rightarrow \{180\}$

$$A(5) = 5 + 2$$
 $b(5) = 5^{2} + 25 + 1$

$$a \frac{db}{ds} = b \frac{da}{ds}$$

$$(5+2)(25+2) = (5^{\frac{3}{4}}25+1) \rightarrow 5^{\frac{3}{4}}45+3=0 \rightarrow 5: \{-1,-3\}$$

$$K_{o} = \frac{\prod_{j=1}^{N} \left| s + F_{j} \right|}{\prod_{i=1}^{N} \left| s + Z_{i} \right|} \xrightarrow{s=S_{o}} 4 = \frac{\left| s_{o} - 1 \right|^{2}}{\left| s_{o} - 2 \right|} \Rightarrow s_{o} = 3.$$

$$G(5) = \frac{5+0.1}{5(5-0.2)(5^{2}+5+0.6)}$$

poles: 0, 0.2, -0.5 ± 0.59 j

zeros : _0.1

$$\sigma = \frac{((0.2) + (-0.5) + (-0.5) + (0)) - (-0.1)}{3} = \frac{-0.7}{3} = -0.23$$

$$\phi = \frac{2k+1}{3} |80^{\circ} \rightarrow \{60, 180, 300\} \quad \{0, 120, 240\}$$

$$b(5) = 5(5-0.2)(5^2+5+0.6) = 5^4+0.85^3+0.45^2-0.125$$

$$a\frac{Jb}{Js}=b\frac{Ja}{Js}$$

$$(5+0.1)$$
 $(45^{3}+2.45^{2}+0.85-0.12) = (5^{4}+0.85^{3}+0.45^{2}-0.12.5)$

C) asico : 54 0.853 + 0.452 (K. 0.12)5 + 0.1 K

$$\left(c = K - 0.12 - \frac{0.08 \, k}{0.55 - 1.25 \, k}\right)$$

d)
$$\tan^{-1}(\frac{0.59}{-0.9}) = (\tan^{-1}(\frac{0.59}{-0.5}) + \tan^{-1}(\frac{0.59}{-0.7}) + 90 + 9) = \pm (2 k + 1) 180$$

$$\theta = -56.01$$

$$\theta = 123.99$$

(4)
$$K_0 = \frac{-b(s_0)}{a(s_0)} \begin{cases} S_0 = -0.76 & : & \frac{-0.0745}{-0.26} = 0.28 \\ S_0 = 0.08 & : & \frac{0.0065}{0.18} = 0.036 \end{cases}$$
 (4)

5)
$$G(s) = \frac{4+5+40}{s}$$
, $H(s) = \frac{1}{s+p}$

$$a \frac{Jb}{Js} = b \frac{Ja}{Js}$$

$$5^2$$
 | 40
 5^1 4+p 0 4+p>0 \Rightarrow p>-4 \Rightarrow always stable when 0

$$\tan^{-1}(\frac{6}{2}) - (\theta + 90) = \pm (2k+1)$$
 (80)

$$\theta = 161.56$$

	$\frac{k (b_1 s + 1) (1 - b_2 s) \omega_n^2}{(T_1 s + 1) (T_2 s + 1) (s_+^2 2 L \omega_n s + \omega_n^2)}$
Ŷ, =0.	
τ̂, ≥ 5	
Î = 0.:	
$\hat{\omega}_n = 2$	
"	
ĵ, = 3	
b2=1	
1) when	we have input noise we will see our nominal output with the noise which is effected by transfer function.
50	old D is appropriate for this.
2) whe	we have output noise we have our nominal output effected by noised so plot H is appropriate for this.
	n we have output noise we have our nominal output effected by noised so plot H is appropriate for this. Its like gain value for system, so plot C is appropriate for this.
3) K A	ts like gain value for system. so plot c is appropriate for this.
3) K A	
3) K a 5,4) ch	ts like gain value for system. so plot c is appropriate for this.
3) K a 5,4) ch	ts like gain value for system, so plot c is appropriate for this. Inging the amplitude of poles effects on slower or faster response, higher values will effect less on response by changing
3) K A 5,4) ch	ts like gain value for system, so plot c is appropriate for this. Inging the amplitude of poles effects on slower or faster response, higher values will effect less on response by changing
3) K A 5,4) ch 50	ts like gain value for system, so plot C is appropriate for this. Inging the amplitude of poles effects on slower or faster response, higher values will effect less on response by changing plot A and B are appropriate for T2 and T4. Value for I system has higher overshoot and lower rise time, so plot E is appropriate for this.
3) K A 5,4) ch 50	ts like gain value for system, so plot c is appropriate for this. Inging the amplitude of poles effects on slower or faster response, higher values will effect less on response by changing plot A and B are appropriate for T2 and T1.
3) K A 5,4) ch 50 6) less 7) Wn	ts like gain value for system, so plot C is appropriate for this. unging the amplitude of poles effects on slower or faster response, higher values will effect less on response by changing plot A and B are appropriate for T2 and T1. Value for I system has higher overshoot and lower rise time, so plot E is appropriate for this. will effect of ontput frequency, so plot I is appropriate for this.
3) K A 5,4) ch 50 6) less 7) Wn	ts like gain value for system, so plot C is appropriate for this. Inging the amplitude of poles effects on slower or faster response, higher values will effect less on response by changing plot A and B are appropriate for T2 and T4. Value for I system has higher overshoot and lower rise time, so plot E is appropriate for this.
3) K A 5,4) ch 50 6) less 7) Wn	ts like gain value for system, so plot C is appropriate for this. unging the amplitude of poles effects on slower or faster response, higher values will effect less on response by changing plot A and B are appropriate for T2 and T1. Value for I system has higher overshoot and lower rise time, so plot E is appropriate for this. will effect of ontput frequency, so plot I is appropriate for this.

MATLAB Assignments

7 Breakaway Points

a)


```
function Baway= breakaway(Gs)

TF = Gs;

num = TF.Numerator;
den = TF.Denominator;

syms s
aS = poly2sym(num{1,1},s);
bS = poly2sym(den{1,1},s);
Baway = vpasolve(aS*diff(bS)-bS*diff(aS));
end
```

b)

closed loop transfer function is like below:

$$1 + K G(s) H(s) = 0$$

Where K varies from zero to infinity. So if we consider $K^{\prime} = -K$, it varies from zero to minus infinity.

$$1 + K'G(s)H(s) = 0 \implies 1 + (-K)G(s)H(s) = 0 \implies 1 + K(-G(s))H(s) = 0$$

So for plotting complementary root-locus we can use rlocus function but instead of using G(s) as input we give -G(s) to this function so the output plot will be complementary root-locus.

function [] = complementRlocus(Gs)
 rlocus(-Gs);
end

We used this fact that in root locus each part of the real axis which has odd numbers of zeros and poles right side of it is part of our root locus. For complementary root locus there should be even numbers of zeros and poles right side of it.

```
function [Baway, rootl, crootl ,notbelong] =
breakaway(Gs)
  TF = Gs;
  num = TF.Numerator;
  den = TF.Denominator;
  syms s
  aS = poly2sym(num\{1,1\},s);
  bS = poly2sym(den{1,1},s);
  Baway = vpasolve(aS*diff(bS)-bS*diff(aS));
  realZP = [real( zero(Gs) ) ; real( pole(Gs) )];
  notbelong = [];
  rootl = [];
  crootl = [];
  for i = 1:size(Baway)
    k = 0;
    if imag(Baway(i)) \sim = 0
       notbelong = [notbelong Baway(i)];
    else
       for j = 1:size(realZP)
         k = k+(Baway(i) \le realZP(j));
       end
    if mod(k,2)==0
       crootl = [crootl Baway(i)];
    else
       rootl = [rootl Baway(i)];
    end
    end
  end
end
```