ELE222E INTRODUCTION TO ELECTRONICS (21506) Midterm Exam #2 - 20 April 2009 - 9:30 - 11:30 Devrim Y. AKSIN, PhD; P. Başak BAŞYURT, MSE

1. For the circuit shown in Figure 1:

$$(W/L)_1$$
 = $(W/L)_2$ = 8 , $(W/L)_3$ = $(W/L)_4$ = 24; I_B =100 μA $\mu_n C_{ox}$ = $100 \mu A/V^2$, $\mu_p C_{ox}$ = $33 \mu A/V^2$; V_{THn} = 0.5V, V_{THp} = -0.6V ; V_{An} = 75V, V_{Ap} = 50V;

- a) Assuming all the transistors operate in saturation region calculate the small signal gain v_o / v_i and output impedance r_o . (20)
- **b)** For $v_i = 10mV$ peak to peak sine wave, sketch the node voltages V_1 , V_2 and V_0 as a function of time. (30)
- c) Find the I_B interval in order to satisfy saturation condition. (20 bonus !!!)

2. For the circuit shown in Figure 2:

$$\begin{split} |V_{BE}| &= 0.6 \text{V}, \ V_T = 25 \text{mV}, \\ H_{FE} &= h_{fe} = 250 \text{ , } V_A = \infty, \\ R_1 &= 100 \text{k}\Omega, \ R_3 = 1 \text{k}\Omega, \ R_4 = 15 \text{k}\Omega, \\ R_5 &= 3.3 \text{k}\Omega, \ R_6 = 330\Omega, \ R_7 = 560\Omega, \\ R_y &= 10 \text{k}\Omega \ R_g = 50\Omega \end{split}$$

- a) Determine the value of the R_2 in order to obtain $V_0 = 0V$. (10)
- **b)** Calculate small signal gain v_o / v_g and input and output impedances r_i and r_o respectively. (30)
- c) For $v_g = 10mV$ peak to peak sine wave, sketch output voltage V_0 as a function of time. (10)

Figure 2

Good Luck!