Exercícios Resolvidos do Livro Geometria Analítica e Álgebra Linear de Elon Lages Lima (Segunda Edição-Oitava Impressão)

Gustavo de Oliveira

12 de maio de 2017

Seção 14 - Vetores no Plano

2. Prove geometricamente que um quadrilátero é um paralelogramo se, e somente se, suas diagonais se cortam mutuamente ao meio.

 $Solução.\ (\Rightarrow)$ Suponha que o quadrilátero ABCD é um paralelogramo. O paralelogramo é formado por dois pares de lados. Em cada par, os lados são paralelos e têm o mesmo comprimento. Portanto $\overrightarrow{AD} = \overrightarrow{BC}$ e $\overrightarrow{AB} = \overrightarrow{DC}$. Seja P o ponto médio de DB, e seja Q o ponto médio de AC. Vamos provar que Q = P.

Escolhemos um sistema de coordenadas OXY de modo que A=(0,0), B=(b,0) e D=(c,d). Logo $\overrightarrow{AD}=(c,d)$ e $C=B+\overrightarrow{AD}=(b+c,d)$. Calculando os pontos P e Q, obtemos

$$P = \left(\frac{c+b}{2}, \frac{d+0}{2}\right) = \left(\frac{b+c}{2}, \frac{d}{2}\right),$$

$$Q = \left(\frac{b+c+0}{2}, \frac{d+0}{2}\right) = \left(\frac{b+c}{2}, \frac{d}{2}\right).$$

Portanto P = Q.

(\Leftarrow) Seja P o ponto médio de DB, e seja Q o ponto médio de AC. Suponha que as diagonais do paralelogramo se cortam mutuamente ao meio, ou seja, suponha que P=Q. Escolhemos um sistema de coordenadas OXY de modo que A=(0,0), B=(b,0) e D=(c,d). Temos então $\overrightarrow{AD}=(c,d)$ e $\overrightarrow{AB}=(b,0)$. Escrevemos C=(x,y). Vamos determinar x e y. Calculando

os pontos P e Q, obtemos

$$P = \left(\frac{c+b}{2}, \frac{d}{2}\right),$$

$$Q = \left(\frac{x}{2}, \frac{y}{2}\right).$$

A igualdade P=Q implica x=c+b e $y=\underline{d}$. Logo (x,y)=(b+c,d), ou seja, $C=(b+c,\underline{d})$. Portanto $C=B+\overrightarrow{AD}$ e $C=D+\overrightarrow{AB}$, ou seja, $\overrightarrow{BC}=\overrightarrow{AD}$ e $\overrightarrow{DC}=\overrightarrow{AB}$. Isso implica que ABCD é um paralelogramo.

Seção 15 – Operações com Vetores

7. Seja P um ponto interior ao triângulo ABC tal que $\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=0$. Prove que as retas AP, BP e CP são medianas de ABC, logo P é o baricentro desse triângulo.

Solução. Seja Q o ponto de intersecção da reta BP com o segmento AC. Observamos que $\overrightarrow{QA} = \alpha \overrightarrow{CA}$ para $\alpha \in \mathbb{R}$. Logo

$$\overrightarrow{QC} = \overrightarrow{QA} + \overrightarrow{AC} = \alpha \overrightarrow{CA} - \overrightarrow{CA} = (\alpha - 1)\overrightarrow{CA}.$$

Vamos provar que Q é o ponto médio do lado AC, ou seja, vamos provar que $\alpha=1/2$.

Escrevemos

$$\begin{split} \overrightarrow{PA} &= \overrightarrow{PQ} + \overrightarrow{QA} = \overrightarrow{PQ} + \alpha \overrightarrow{CA}, \\ \overrightarrow{PB} &= \overrightarrow{PQ} + \overrightarrow{QC} + \overrightarrow{CB} = \overrightarrow{PQ} + (\alpha - 1)\overrightarrow{CA} + \overrightarrow{CB}, \\ \overrightarrow{PC} &= \overrightarrow{PQ} + \overrightarrow{QC} = \overrightarrow{PQ} + (\alpha - 1)\overrightarrow{CA}. \end{split}$$

Logo

$$\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 3\overrightarrow{PQ} + (3\alpha - 2)\overrightarrow{CA} + \overrightarrow{CB}.$$

Além disso

$$\overrightarrow{BQ} = \overrightarrow{BC} + \overrightarrow{CQ} = -\overrightarrow{CB} - \overrightarrow{QC} = -\overrightarrow{CB} + (1-\alpha)\overrightarrow{CA}$$

e

$$\overrightarrow{PQ} = \beta \overrightarrow{BQ}$$

para $\beta \in \mathbb{R}$. Portanto

$$\overrightarrow{PQ} = \beta \overrightarrow{BQ} = -\beta \overrightarrow{CB} + \beta (1 - \alpha) \overrightarrow{CA}.$$

Consequentemente

$$\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = (3\beta(1-\alpha) + 3\alpha - 2)\overrightarrow{CA} + (1-3\beta)\overrightarrow{CB}.$$

Por outro lado, temos $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 0$. Logo

$$(3\beta(1-\alpha) + 3\alpha - 2)\overrightarrow{CA} + (1-3\beta)\overrightarrow{CB} = 0.$$

Como \overrightarrow{CA} e \overrightarrow{CB} são linearmente independentes, essa igualdade implica (veja o Exercício 1 da Seção 15)

$$(3\beta(1-\alpha) + 3\alpha - 2) = 0$$
 e $1 - 3\beta = 0$.

A segunda equação implica $\beta=1/3$. Substituindo esse valor de β na primeira equação, obtemos $3(1/3)(1-\alpha)+3\alpha-2=0$, ou seja $\alpha=1/2$. Portanto Q é o ponto médio de AC. Renomeando os pontos, obtemos a demonstração para as medianas correspondentes aos outros vértices do triângulo.

1 Seção 16 – Equação da Elipse

10. Quais são as tangentes à elipse $x^2 + 4y^2 = 32$ que têm inclinação igual a 1/2?

Solução. Uma reta com inclinação igual a 1/2 é dada por y=(1/2)x+b para $b \in \mathbb{R}$. Vamos determinar b para o qual a reta y=(1/2)x+b é tangente à elipse $x^2+4y^2=32$, ou seja, vamos determinar b para o qual o sistema

$$x^{2} + 4y^{2} = 32,$$

 $y = (1/2)x + b$

tem apenas uma solução. Substituindo a segunda equação na primeira e desenvolvendo obtemos

$$2x^2 + 4bx + (4b^2 - 32) = 0.$$

Essa equação em x possui apenas uma solução se e somente se o discriminante da equação é igual a zero, ou seja,

$$\Delta = -16b^2 + 16^2 = 0.$$

Isso implica em $b=\pm 4$. Portanto as retas tangentes são

$$y = \frac{1}{2}x - 4$$
 e $y = \frac{1}{2}x + 4$.