MATH 470: Communications and Cryptography

Homework 2

Due date: 7 September 2023 Name: Huy Lai

Problem 1. For each of the gcd(a, b) values in Exercise 1.9, use the extended Euclidean algorithm (Theorem 1.11) to find integers u and v such that au + bv = gcd(a, b). Let a = 291 and b = 252

Solution:

q	r	u	v
	291	1	0
	252	0	1
1	39	1	-1
6	18	-6	7
2	3	13	-15
	0	u	v

Table 1: Extended Euclidean Algorithm

$$u = 13, v = -15$$

Problem 2. Let a_1, a_2, \ldots, a_k be integers with $gcd(a_1, a_2, \cdots, a_k) = 1$ i.e., the largest positive integer dividing all of a_1, a_2, \ldots, a_k is 1. Prove that the equation

$$a_1u_1 + a_2u_2 + \cdots + a_ku_k = 1$$

has a solution in integers u_1, u_2, \ldots, u_k . (*Hint*. Repeatedly apply the extended Euclidean algorithm, Theorem 1.11. You may find it easier to prove a more general statement in which $gcd(a_1, \ldots, a_k)$ is allowed to be larger than 1.)

Solution:

Proof by Induction

Proof. Base case:
$$k = 1$$

 $a_1 \cdot 1 = \gcd(a_1)$

$$k = 2$$

This is proven by the Extended Euclidean Algorithm

Inductive Hypothesis: Assume $\forall k \geq 3$ that

$$a_1u_1 + a_2u_2 + \dots + a_{k-1}u_{k-1} = \gcd(a_1, a_2, \dots, a_{k-1})$$

Let $b = \gcd(a_1, \dots, a_{k-1})$.

Apply the Extended Euclidean algorithm to b and a_k , this gives the solution

$$bu + a_k v = \gcd(b, a_k)$$

Multiplying the Inductive Hypothesis by v results in

$$a_1u_1v+a_2u_2v+\cdots+a_{k-1}u_{k-1}v=\gcd(a_1,a_2,\cdots,a_{k-1})v$$

$$=bv \text{ by the definition of } b$$

$$=-a_kv+\gcd(b,a_k) \text{ by rearranging the EEA}$$

Adding $a_k v$ to both sides of this equation results in

$$a_1u_1 + a_2u_2 + \dots + a_{k-1}u_{k-1} + a_kv = \gcd(b, a_k)$$

Since
$$b = \gcd(a_1, \dots, a_{k-1})$$
,

$$\gcd(b, a_k) = \gcd(\gcd(a_1, \dots, a_{k-1}), a_k)$$
$$= \gcd(a_1, a_2, \dots, a_{k_1}, a_k)$$

Problem 3. Find all values of x between 0 and m-1 that are solutions of the following congruences. (*Hint*. If you can't figure out a clever way to find the solution(s), you can just substitute each value $x=1, x=2, \ldots, x=m-1$ and see which ones work.)

Subproblem 1. $x^2 \equiv 3 \mod 11$

Solution:

The squares modulo 11 are $\{0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1\}$ Therefore, $5^2 \equiv 3 \mod 11$ and $6^2 \equiv 3 \mod 11$

Subproblem 2. $x^2 \equiv 2 \mod 13$

Solution:

The squares modulo 13 are $\{0, 1, 4, 9, 3, 12, 10, 10, 12, 3, 9, 4, 1\}$ Therefore, $x^2 \equiv 2 \mod 13$ has no solutions

Problem 4. Suppose that $g^a \equiv 1 \mod m$ and that $g^b \equiv 1 \mod m$. Prove that

$$g^{\gcd(a,b)} \equiv 1 \mod m$$

Solution:

According to the Extended Euclidean Algorithm, $\exists u, v \in \mathbb{Z}$ such that $au + bv = \gcd(a, b)$. Then

$$g^{\gcd(a,b)} = g^{au+bv} = (g^a)^u \cdot (g^b)^v \equiv 1^u \cdot 1^v \equiv 1 \mod m$$

Since $g^a \equiv 1 \mod m$ and $g^b \equiv 1 \mod m$, the above equation holds.

Problem 5. Let $m \in \mathbb{Z}$

Subproblem 1. Suppose that m is odd. What integer between 1 and m-1 equals $2^{-1} \mod m$?

Solution:

Since m is odd, then $\frac{m+1}{2}$ must also be an integer, since m+1 is an even number. Therefore

$$2 \cdot \frac{m+1}{2} = m+1 \equiv 1 \mod m$$

Therefore $\frac{m+1}{2} = 2^{-1} \mod m$

Subproblem 2. More generally, suppose that $m \equiv 1 \mod b$. What integer between 1 and m-1 is equal to $b^{-1} \mod m$?

Solution:

The assumption that $m = 1 \mod b \to b \mid (m-1)$ by proposition.

By the definition of division, $b \mid (m-1) \to \exists x \in \mathbb{Z}$ such that m-1=bx. This requires that $\frac{m-1}{b} \in \mathbb{Z}$ Multiplying this fraction by b results in

$$b \cdot \frac{m-1}{b} = m-1 \equiv -1 \mod m$$

Multiplying this result by -1 results in

$$b \cdot \frac{1-m}{b} = 1 - m \equiv 1 \mod m$$

However, $\frac{1-m}{b}$ is negative, but we can add multiples of m without effecting the value of modulo m. As a result, $\frac{1-m}{b}+m=\frac{1+(b-1)m}{b}$ is an integer and more importantly is congruent to $1 \mod m$.

Therefore, $\frac{1+(b-1)m}{b} = b^{-1} \mod m$

Problem 6. Consider the congruence

$$ax \equiv c \mod m$$

Prove that there is a solution if and only if $gcd(a, m) \mid c$.

Solution:

First we prove that if $ax \equiv c \mod m$ has a solution, then $gcd(a, m) \mid c$

Proof. Let x be a solution to the congruency $ax \equiv c \mod m$.

By definition of congruence and divisibility

$$\exists y \in \mathbb{Z}, ax = c + my$$

Since $gcd(a, m) \mid a$ and $gcd(a, m) \mid m \ gcd(a, m) \mid ax - my$ by proposition on linear combinations

Next we prove that if $gcd(a, m) \mid c$, then $ax \equiv c \mod m$ has a solution

Proof. According to the Extended Euclidean Algorithm, $\exists u, v \in \mathbb{Z}$ such that

$$au + mv = \gcd(a, m)$$

 $\gcd(a,m)|c \to (au + mv)|c$

By definition of divisibility, $\exists y \in \mathbb{Z}$ such that c = (au + mv)y

Rearranging this equation results in $mvy = c - auy \Rightarrow -mvy = auy - c$ or equivalently mY = aX - c where X = uy, Y = -vy

Since $X, Y \in \mathbb{Z}$, the definition of divisibility implies that $m \mid (aX - c)$.

By one of the modular propositions, $m \mid (aX - c) \to aX \equiv c \mod m$.

This proves that if $gcd(a, m) \mid c$, then $ax \equiv c \mod m$ has a solution

Problem 7. Let

Find the inverse of a modulo b AND the inverse of b modulo a (as an integer between 0 and b-1 in the first case, and as an integer between 0 and a-1 in the second case), or explain why these inverses do not exist.

Solution:

```
def gcdExtended(a, b):
   if (a == 0):
      return b, 0, 1
   g, v, u = gcdExtended(b % a,a)
   return g, u - (b // a) * v, v
def modInverse(a, m):
   g, u, v = gcdExtended(a, m)
   if (q != 1):
      raise Exception("No Modular Inverse")
   return u % m
def main():
   aInv = modInverse(a, b)
   bInv = modInverse(b, a)
   print(f"a^(-1) mod b = \{aInv\}")
   print (f''a*a^(-1) == 1 \mod b? \{(a * aInv) % b == 1\}'')
   print(f"b^(-1) mod a = \{bInv\}")
   print (f"b*b^(-1) == 1 \mod a? \{ (b * bInv) % a == 1 \}" )
if __name__ == "__main__":
   main()
```


Figure 1: Output