```
a data point to be considered as a core point.
db = DBSCAN(eps=3.0, min_samples=10).fit(X)
# Extract the cluster labels assigned to each data point
labels = db.labels_
                                                                     In [40]:
# Calculate the number of clusters in the dataset
n_{clusters} = \underline{len}(\underline{set}(labels)) - (1 if -1 in labels else 0)
# Print the number of clusters
print('The number of clusters in the dataset is:', n_clusters_)
The number of clusters in the dataset is: 39
                                                                     In [41]:
# Convert the cluster labels to a Pandas Series and count occurrences of
each label
label_counts = pd.Series(labels).value_counts()
# Print the counts of each cluster label
print(label_counts)
0
      196273
 1
        32446
-1
        20325
 9
        14841
 2
        12254
 5
         2046
         1405
 12
         1168
 10
          823
 3
          329
 26
          287
```

'min_samples' sets the minimum number of samples in a neighborhood for

```
13
          214
17
          212
          206
14
          170
11
18
          166
19
           81
4
           80
31
           48
22
           38
21
           32
24
           32
32
           24
15
           21
30
           20
16
           19
27
           18
29
           17
28
           16
23
           15
33
           14
35
           12
37
           10
38
           10
25
           10
6
           10
36
           10
8
            9
20
            8
            7
34
```

Name: count, dtype: int64

nstall datacleaner

unfold_moreshow hidden output

In [2]:

!pip install fasteda

unfold_moreshow hidden output

Importing Libraries

```
#for eda
%matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
pd.set_option('display.float_format', lambda x: '%.3f' % x)
import numpy as np

from fasteda import fast_eda
from datacleaner import autoclean
import scipy
import scipy.stats as stats

from collections import Counter
```

Data Loading

```
In [4]:
df = pd.read_csv("/kaggle/input/creditcardfraud/creditcard.csv")
```

Data Inspection

```
In [5]:
```

					-	_					_			_	_							_									_
	T i m e	V 1	V 2	> 3	V 4	V 5	V 6	V 7	V 8	V 9	V 1 0	V 1 1	V 1 2	V 1 3	V 1 4	V 1 5	V 1 6	V 1 7	V 1 8	V 1 9	V 2 0	V 2 1	V 2 2	V 2 3	V 2 4	V 2 5	V 2 6	V 2 7	V 2 8	A m o u n t	C I a s s
0	0 . 0 0 0	- 1 3 6 0	- 0 0 7 3	2 . 5 3 6	1 3 7 8	- 0 3 3 8	0 4 6 2	0 . 2 4 0	0.099	0 . 3 6 4	0 0 9 1	- 0 . 5 5 2	- 0 6 1 8	- 0 9 9	- 0 3 1	1 . 4 6 8	- 0 4 7 0	0 . 2 0 8	0 0 2 6	0 4 0 4	0 2 5 1	- 0 0 1 8	0 2 7 8	- 0 1 1 0	0 0 6 7	0 . 1 2 9	- 0 1 8 9	0 . 1 3 4	- 0 0 2	1 4 9 6 2	0
1	0 . 0 0	1 1 9 2	0 2 6 6	0 . 1 6 6	0 4 4 8	0 . 0 6 0	- 0 0 8 2	- 0 0 7 9	0 0 8 5	- 0 2 5 5	- 0 1 6 7	1 6 1 3	1 0 6 5	0 . 4 8 9	- 0 1 4	0 . 6 3 6	0 4 6 4	- 0 1 1 5	- 0 1 8 3	- 0 1 4 6	- 0 0 6 9	- 0 2 2 6	- 0 6 3 9	0 . 1 0 1	- 0 3 4	0 . 1 6 7	0 1 2 6	- 0 0 0	0 . 0 1 5	2 6 9 0	0
2	1 . 0 0 0	- 1 3 5 8	- 1 3 4 0	1 7 7 3	0 3 8 0	- 0 5 0 3	1 8 0	0 7 9 1	0 . 2 4 8	- 1 . 5 1 5	0 2 0 8	0 . 6 2 5	0 0 6	0 7 1 7	- 0 1 6	2 . 3 4 6	- 2 8 9	1 . 1 1 0	- 0 1 2	- 2 2 6 2	0 5 2 5	0 . 2 4 8	0 7 7 2	0 . 9 0 9	- 0 . 6 8 9	- 0 3 2 8	- 0 1 3	- 0 . 0 5 5	- 0 . 0 6 0	3 7 8 6 6	0
3	1 . 0 0	0 . 9 6 6	- 0 1 8 5	1 . 7 9 3	- 0 . 8 6 3	- 0 0 1	1 2 4 7	0 . 2 3 8	0 3 7 7	- 1 3 8 7	- 0 . 0 5 5	- 0 2 2 6	0 . 1 7 8	0 5 0 8	- 0 2 8	- 0 6 3 1	- 1 0 6	- 0 6 8 4	1 . 9 6 6	- 1 . 2 3 3	- 0 2 0 8	- 0 1 0 8	0 0 0 5	- 0 1 9	- 1 1 7	0 . 6 4 7	- 0 2 2	0 . 0 6 3	0 . 0 6 1	1 2 3 5 0	0

4 0 0 0	$\begin{bmatrix} 1 \\ . \\ 0 \\ 1 \\ 5 \end{bmatrix}$	0 8 7 8	1 5 4 9	0 . 4 0 3	. 4	0 0 9 6	0 5 9 3	- 0 2 7 1	0 8 1 8	0 7 5 3	- 0 8 2 3	0 5 3 8	1 3 4 6	- 1 1 2	0 1 7 5	- 0 4 5	- 0 2 3 7	- 0 0 3 8	0 . 8 0 3	0 . 4 0 9	. 0	0 7 9 8	- 0 1 3 7	0 1 4 1	- 0 2 0 6	0 5 0 2	0 2 1 9	0 2 1 5	69.990	0	
---------	---	------------------	------------------	-----------	-----	------------------	------------------	-----------------------	------------------	------------------	-----------------------	------------------	------------------	------------------	------------------	------------------	-----------------------	-----------------------	-----------	-----------	-----	------------------	-----------------------	------------------	-----------------------	------------------	------------------	------------------	--------	---	--

In [6]:

df.<u>tail()</u>

Out[6]:

																													ιĮσ		
	Ti m e	V 1	V 2	V 3	V 4	V 5	> 6	V 7	V 8	V 9	V 1 0	V 1 1	V 1 2	V 1 3	V 1 4	V 1 5	V 1 6	V 1 7	V 1 8	V 1 9	V 2 0	V 2 1	V 2 2	V 2 3	V 2 4	V 2 5	V 2 6	V 2 7	V 2 8	A m o u n t	C I a s s
2 8 4 8 0 2	1 7 2 7 8 6. 0 0	- 1 1 8 8	1 0 0 7 2	- 9 . 8 3 5	- 2 0 6 7	- 5 . 3 6 4	- 2 6 0 7	- 4 9 1 8	7 . 3 0 5	1 . 9 1 4	4 . 3 5 6	1 . 5 9 3	2 . 7 1 2	- 0 . 6 8 9	4 . 6 2 7	- 0 9 2 4	1 . 1 0 8	1 . 9 9 2	0 . 5 1 1	- 0 . 6 8 3	1 4 7 6	0 . 2 1 3	0 . 1 1 2	1 . 0 1 4	- 0 . 5 0 9	1 . 4 3 7	0 . 2 5 0	0 . 9 4 4	0 . 8 2 4	0 7 7 0	0
2 8 4 8 0 3	1 7 2 7 8 7. 0 0	- 0 7 3 3	- 0 . 0 5 5	2 . 0 3 5	- 0 7 3 9	0 . 8 6 8	1 . 0 5 8	0 . 0 2 4	0 . 2 9 5	0 . 5 8 5	- 0 9 7 6	- 0 1 5 0	0 . 9 1 6	1 . 2 1 5	- 0 6 7 5	1 . 1 6 5	- 0 7 1 2	0 . 0 2 6	- 1 2 2	- 1 5 4 6	0 . 0 6 0	0 . 2 1 4	0 . 9 2 4	0 . 0 1 2	- 1 0 1 6	- 0 6 0 7	. 0 . 3 9 5	0 . 0 6 8	- 0 0 5 4	2 4 7 9 0	0

2 8 4 8 0 6	2 8 4 8 0 5	2 8 4 8 0 4
1 7 2 7 9 2. 0 0	1 7 2 7 8 8. 0 0	1 7 2 7 8 8. 0 0
- 0 5 3 3	- 0 2 4	1 . 9 2 0
- 0 1 9	0 . 5 3 0	- 0 3 0
0 . 7 0 3	0 . 7 0 3	- 3 2 5 0
- 0 . 5 0 6	0 . 6 9 0	- 0 . 5 5 8
- 0 0 1 3	- 0 3 7 8	2 . 6 3 1
- 0 . 6 5 0	0 . 6 2 4	3 . 0 3 1
1 5 7 7	- O . 6 8 6	- 0 2 9 7
- 0 4 1 5	0 . 6 7 9	0 7 0 8
0 . 4 8 6	0 . 3 9 2	0 . 4 3 2
- 0 . 9 1 5	- 0 . 3 9 9	- 0 . 4 8 5
- 1 0 4 0	- 1 9 3 4	0 . 4 1 2
- 0 0 3 2	- 0 . 9 6 3	0 . 0 6 3
- 0 1 8	- 1 0 4 2	- 0 1 8 4
- 0 0 8 4	0 . 4 5 0	- 0 5 1 1
0 . 0 4 1	1 . 9 6 3	1 . 3 2 9
- 0 3 0 3	- 0 . 6 0 9	0 . 1 4 1
- 0 6 6 0	0 5 1 0	0 . 3 1 4
0 1 6 7	1 . 1 1 4	0 . 3 9 6
- 0 . 2 5 6	2 . 8 9 8	- 0 5 7
0 . 3 8 3	0 1 2 7	0 . 0 0 1
0 2 6 1	0 . 2 6 5	0 . 2 3 2
0 . 6 4 3	0 . 8 0 0	0 5 7 8
0 3 7 7	- 0 1 6 3	- 0 0 3 8
0 . 0 0 9	0 . 1 2 3	0 6 4 0
- 0 4 7 4	- 0 . 5 6 9	0 . 2 6 6
- 0 8 1 8	0 5 4 7	- 0 0 8 7
- 0 0 0 2	0 . 1 0 9	0 . 0 0 4
0 . 0 1 4	0 1 0 5	- 0 0 2 7
2 1 7 0 0	1 0 . 0 0 0	6 7 8 8 0
0	0	0

In [7]:

df.<u>shape</u>

Out[7]:

(284807, 31)

In [8]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 284807 entries, 0 to 284806
Data columns (total 31 columns):

#	Column	Non-Nu	ll Count	Dtype
0	Time	284807	non-null	float64
1	V1	284807	non-null	float64
2	V2	284807	non-null	float64
3	V3	284807	non-null	float64
4	V4	284807	non-null	float64
5	V5	284807	non-null	float64
6	V6	284807	non-null	float64
7	V7	284807	non-null	float64
8	V8	284807	non-null	float64
9	V9	284807	non-null	float64
10	V10	284807	non-null	float64
11	V11	284807	non-null	float64
12	V12	284807	non-null	float64
13	V13	284807	non-null	float64
14	V14	284807	non-null	float64
15	V15	284807	non-null	float64
16	V16	284807	non-null	float64
17	V17	284807	non-null	float64
18	V18	284807	non-null	float64
19	V19	284807	non-null	float64
20	V20	284807	non-null	float64
21	V21	284807	non-null	float64
22	V22	284807	non-null	float64
23	V23	284807	non-null	float64
24	V24	284807	non-null	float64
25	V25	284807	non-null	float64
26	V26	284807	non-null	float64
27	V27	284807	non-null	float64
28	V28	284807	non-null	float64
29	Amount	284807	non-null	float64
30	Class	284807	non-null	int64
من بالم	fl	+64(20)	in+61(1)	

dtypes: float64(30), int64(1)

memory usage: 67.4 MB

Out[9]:

																													υuτ		_ ·
	T i m e	V 1	V 2	> 3	V 4	> 5	> 6	V 7	> 8	V 9	V 1 0	V 1 1	V 1 2	V 1 3	V 1 4	V 1 5	V 1 6	V 1 7	V 1 8	V 1 9	V 2 0	V 2 1	V 2 2	V 2 3	V 2 4	V 2 5	V 2 6	V 2 7	V 2 8	A m o u n t	C _ a s s
c o u n t	2 8 4 8 0 7 0 0																														
m e a n	9 4 8 1 3 8 6 0	0 . 0 0	0 . 0 0 0	- 0 0 0	0 . 0 0 0	0 . 0 0 0	0 . 0 0 0	- 0 . 0 0 0	0 . 0 0 0	. 0 0 0	0 . 0 0 0	0 . 0 0 0	- 0 0 0	0 . 0 0 0	0 . 0 0 0	0 . 0 0 0	0 . 0 0 0	- 0 . 0 0 0	0 . 0 0 0	0 . 0 0	0 . 0 0 0	0 . 0 0 0	- 0 0 0	0 . 0 0 0	0 . 0 0 0	0 . 0 0 0	0 . 0 0 0	- 0 0 0	- 0 0 0	8 8 3 5 0	0 . 0 0 2
s t d	4 7 4 8 8	1 . 9 5 9	1 . 6 5 1	1 5 1 6	1 4 1 6	1 3 8 0	1 . 3 3 2	1 2 3 7	1 1 9 4	1 . 0 9	1 . 0 8 9	1 0 2 1	0 . 9 9 9	0 9 5	0 . 9 5 9	0 9 1 5	0 8 7 6	0 8 4 9	0 . 8 3 8	0 8 1 4	0 7 7	0 7 3 5	0 7 2 6	0 6 2 4	0 . 6 0 6	0 5 2 1	0 4 8 2	0 4 0 4	0 . 3 3 0	2 5 0 1 2	0 0 4 2

1 3 9 3 2 0 5 0	•			
	8 4 6 9 2 . 0 0 0	5 4 2 0 1 · 5 0 0	0 . 0 0	4 6
1 . 3 1 6	0 0 1 8	- 0 9 2	- 5 6 . 4 0 8	
0 8 0 4	0 . 0 6 5	. 0 . 5 9 9	- 7 2 7 1 6	
1 0 2 7	0 1 8 0	- 0 . 8 9 0	- 4 8 . 3 2 6	
0 7 4 3	- 0 0 2	- 0 8 4 9	. 5 . 6 8 3	
0 6 1 2	- 0 0 5 4	- 0 6 9 2	- 1 1 3 7 4 3	
0 . 3 9 9	- 0 2 7 4	- 0 7 6 8	- 2 6 . 1 6 1	
0 5 7 0	0 0 4 0	- 0 5 4	- 4 3 . 5 5 7	
0 3 2 7	0 0 2 2	- 0 2 0 9	- 7 3 2 1 7	
0 5 9 7	- 0 0 5	- 0 6 4 3	- 1 3 4 3 4	
0 4 5 4	0 . 0 9 3	- 0 . 5 3 5	- 2 4 · 5 8 8	
0 7 4 0	- 0 0 3	- 0 7 6 2	- 4 7 9 7	
0 6 1 8	0 1 4 0	- 0 4 0 6	1 8 . 6 8 4	
0 . 6 6 3	- 0 0 1 4	- 0 6 4 9	- 5 7 9 2	
0 . 4 9 3	0 . 0 5 1	- 0 4 2 6	- 1 9 . 2 1 4	
0 . 6 4 9	0 . 0 4 8	- 0 . 5 8 3	- 4 . 4 9 9	
0 5 2 3	0 . 0 6 6	- 0 4 6 8	- 1 4 1 3 0	
0 4 0	- 0 0 6	- 0 4 8 4	- 2 5 . 1 6 3	
0 5 0 1	- 0 0 0 4	- 0 4 9 9	- 9 . 4 9 9	
0 . 4 5 9	0 . 0 0 4	- 0 . 4 5 6	- 7 2 1 4	
0 1 3	- 0 0 6 2	- 0 2 1 2	- 5 4 4 9 8	
0 1 8 6	- 0 0 2	- 0 2 2 8	- 3 4 8 3 0	
0 . 5 2 9	0 0 0 7	- 0 5 4 2	- 1 0 9 3 3	
0 1 4 8	- 0 0 1	- 0 1 6 2	- 4 4 8 0 8	
0 4 4 0	0 0 4 1	- 0 . 3 5 5	- 2 8 3 7	
0 . 3 5 1	0 0 1 7	- 0 3 1 7	- 1 0 2 9 5	
0 2 4 1	- 0 0 5 2	- 0 3 2 7	- 2 . 6 0 5	
0 0 9 1	0 0 0 1	- 0 0 7	- 2 2 5 6 6	
0 0 7 8	0 . 0 1 1	- 0 0 5 3	- 1 5 4 3 0	
7 7 1 6 5	2 2 0 0	5 . 6 0 0	0 . 0 0 0	
0 . 0 0	0 . 0 0 0	0 0 0	0 . 0 0 0	

1 7 2 7 9 2 2 2	7 7 2 2 7 9 4 2 5 5	2 2 . 0 5 8	9.383	1 6 8 7 5	3 4 8 0 2	7 3 3 0 2	1 2 0 5 8 9	2 0 0 7	1 5 . 5 9 5	2 3 7 4 5	1 2 0 1 9	7 8 4 8	7 1 2 7	1 0 5 2 7	8 8 7 8	1 7 3 1 5	9 . 2 5 4	5 . 0 4 1	5 5 9 2	3 9 4 2 1	2 7 2 0 3	1 0 . 5 0 3	2 2 . 5 2 8	4 . 5 8 5	7 5 2 0	3 5 1 7	3 1 6 1 2	3 3 . 8 4 8	2 5 6 9 1 1 6	1 . 0 0 0	
--------------------------------------	--	-------------	-------	-----------------------	-----------------------	-----------------------	----------------------------	------------------	-------------	-----------------------	-----------------------	------------------	------------------	-----------------------	------------------	-----------------------	--------------------	-----------	------------------	-----------------------	-----------------------	-------------	-------------	-----------	------------------	------------------	-----------------------	-------------	---------------------------------	-----------	--

In [10]:

df.skew()

Out[10]:

```
Time
          -0.036
۷1
          -3.281
٧2
          -4.625
٧3
          -2.240
۷4
           0.676
٧5
          -2.426
           1.827
۷6
           2.554
٧7
8٧
          -8.522
۷9
           0.555
V10
           1.187
V11
           0.357
V12
          -2.278
V13
           0.065
V14
          -1.995
V15
          -0.308
V16
          -1.101
V17
          -3.845
V18
          -0.260
V19
           0.109
V20
          -2.037
V21
           3.593
V22
          -0.213
V23
          -5.875
V24
          -0.552
```

```
V25 -0.416
V26 0.577
V27 -1.170
V28 11.192
Amount 16.978
Class 23.998
```

dtype: float64

In [11]:

df.kurtosis()

Out[11]:

Time	-1.294
V1	32.487
V2	95.773
V3	26.620
V4	2.635
V5	206.905
V6	42.642
V7	405.607
V8	220.587
V9	3.731
V10	31.988
V11	1.634
V12	20.242
V13	0.195
V14	23.879
V15	0.285
V16	10.419
V17	94.800
V18	2.578
V19	1.725
V20	271.016
V21	207.287
V22	2.833
V23	440.089
V24	0.619
V25	4.290
V26	0.919
V27	244.989

```
V28 933.398
Amount 845.093
Class 573.888
```

dtype: float64

In [12]:

df.isnull().sum()

Out[12]:

```
Time
           0
۷1
           0
٧2
٧3
           0
٧4
           0
٧5
           0
۷6
           0
٧7
           0
۷8
           0
۷9
           0
V10
           0
V11
           0
V12
           0
V13
           0
V14
           0
V15
           0
V16
           0
V17
           0
V18
           0
V19
           0
V20
           0
V21
           0
V22
           0
V23
           0
V24
           0
V25
           0
V26
           0
V27
V28
           0
Amount
           0
Class
```

```
dtype: int64
                                                                           In [13]:
df.duplicated().sum()
                                                                           Out[13]:
1081
                                                                           In [14]:
df = df.drop_duplicates()
df.duplicated().sum()
                                                                           Out[14]:
0
                                                                           In [15]:
df.drop("Time", axis = 1, inplace = True)
df.head()
                                                                           Out[15]:
                    V \mid V \mid V
                                                          2 2 2 2 2 2 2
1 2 3 4 5 6 7
                6 7 8
                                 2
                                          5 6 7 8
                 0 0 0
                                                        0
              0
                               0
                                 0
                                    0
                                       0
                                             0
                                                           0
                                                                0
           .
3
                    . 2
                                                        .
2
                                                             .
2
                                                                   .
0
```

2 0 1

3

0

0

Outlier Analysis

```
In [16]:
# Define the list of features to use
feature_list = ['V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9',
'V10', 'V11',
```

```
'V12', 'V13', 'V14', 'V15', 'V16', 'V17', 'V18', 'V19',
'V20', 'V21',
               'V22', 'V23', 'V24', 'V25', 'V26', 'V27', 'V28',
'Amount']
                                                                  In [17]:
# Create subplots for visualizing features vs. Class
fig, axes = plt.subplots(nrows=3, ncols=3, figsize=(11, 17))
fig.suptitle('Features vs Class\n', size=18)
# Define the features you want to visualize
features_to_visualize = ['V17', 'V10', 'V12', 'V16', 'V14', 'V3', 'V7',
'V11', 'V4']
# Create boxplots for each feature
for i, feature in enumerate(features_to_visualize):
    row, col = i // 3, i \% 3 # Calculate the row and column for the
subplot
    # Create a boxplot for the feature grouped by 'Class' using the
viridis palette
    sns.boxplot(ax=axes[row, col], data=df, x='Class', y=feature,
palette='viridis')
    axes[row, col].set_title(f"{feature} Distribution")
# Adjust the layout to avoid overlap
plt.tight_layout()
# Show the plot
plt.show()
```


1. Tukey's IQR Method

```
In [18]:
def IQR_method(df, n, features):
   Identify outliers in a DataFrame using the Tukey IQR method.
   Parameters:
   df (DataFrame): The input DataFrame.
   n (int): The minimum number of outliers in an observation to be
considered.
    features (list): List of feature column names to analyze for
outliers.
   Returns:
    list: A list of indices corresponding to observations with more than
'n' outliers.
    outlier_list = []
    for column in features:
        # 1st quartile (25%)
        Q1 = np.percentile(df[column], 25)
        # 3rd quartile (75%)
        Q3 = np.percentile(df[column], 75)
        # Interquartile range (IQR)
        IQR = Q3 - Q1
        # Outlier step
        outlier_step = 1.5 * IQR
        # Determine a list of indices of outliers
        outlier_list_column = df[(df[column] < Q1 - outlier_step) |</pre>
(df[column] > Q3 + outlier_step)].index
        # Append the list of outliers
        outlier_list.extend(outlier_list_column)
    # Count occurrences of each outlier index
    outlier_count = Counter(outlier_list)
    # Select observations containing more than 'n' outliers
```

```
multiple_outliers = [k for k, v in outlier_count.items() if v > n]
    # Calculate the total number of outliers
    total_outliers = len(multiple_outliers)
    print('Total number of outliers is:', total_outliers)
    return multiple_outliers
                                                                  In [19]:
# Detecting outliers using the IQR_method function with a threshold of 1
outlier per observation
Outliers_IQR = IQR_method(df, 1, feature_list)
# Dropping outliers from the DataFrame
df_out = df.drop(Outliers_IQR, axis=0).reset_index(drop=True)
Total number of outliers is: 81014
                                                                  In [20]:
# Set the color palette to 'viridis'
sns.<u>set_palette('viridis')</u>
# Create subplots for visualizing the distributions of important features
after outlier removal
fig, axes = plt.subplots(nrows=3, ncols=3, figsize=(13, 8))
fig.suptitle('Distributions of Most Important Features after Dropping
Outliers using IQR Method\n', size=18)
# Plot histograms for each feature
axes[0, 0].hist(df_out['V17'], bins=60, linewidth=0.5,
edgecolor="white")
axes[0, 0].set_title("V17 Distribution")
axes[0, 1]. hist(df_out['V10'], bins=60, linewidth=0.5,
edgecolor="white")
axes[0, 1].set_title("V10 Distribution")
```

```
axes[0, 2].hist(df_out['V12'], bins=60, linewidth=0.5,
edgecolor="white")
axes[0, 2].set title("V12 Distribution")
axes[1, 0].hist(df_out['V16'], bins=60, linewidth=0.5,
edgecolor="white")
axes[1, 0].set_title("V16 Distribution")
axes[1, 1].hist(df_out['V14'], bins=60, linewidth=0.5,
edgecolor="white")
axes[1, 1].set_title("V14 Distribution")
axes[1, 2].hist(df_out['V3'], bins=60, linewidth=0.5,
edgecolor="white")
axes[1, 2].set_title("V3 Distribution")
axes[2, 0].hist(df_out['V7'], bins=60, linewidth=0.5,
edgecolor="white")
axes[2, 0].set_title("V7 Distribution")
axes[2, 1].hist(df_out['V11'], bins=60, linewidth=0.5,
edgecolor="white")
axes[2, 1].set_title("V11 Distribution")
axes[2, 2].hist(df_out['V4'], bins=60, linewidth=0.5,
edgecolor="white")
axes[2, 2].set_title("V4 Distribution")
# Adjust the layout to avoid overlap
plt.tight layout()
# Show the plot
plt.show()
```


In [21]:

```
# Set the color palette to 'viridis'
sns.<u>set_palette('viridis')</u>
# Create subplots for visualizing the distributions of important features
after outlier removal
fig, axes = plt.subplots(nrows=3, ncols=3, figsize=(13, 8))
fig.suptitle('Distributions of Most Important Features after Dropping
Outliers using IQR Method\n', size=18)
# Define a hue variable (e.g., 'Class') to add color differentiation
hue_variable = 'Class'
# Plot histograms for each feature with hue
for i, feature in enumerate(features_to_visualize):
    row, col = i // 3, i \% 3 # Calculate the row and column for the
subplot
    # Create a histogram for the feature with hue based on 'Class'
    sns.histplot(data=df_out, x=feature, bins=60, linewidth=0.5,
edgecolor="white", hue=hue_variable, ax=axes[row, col])
    axes[row, col].set title(f"{feature} Distribution")
```

Adjust the layout to avoid overlap

```
plt.tight_layout()
# Show the plot
plt.show()
```


2. Standard Deviation

```
In [22]:

def StDev_method(df, n, features):
    """

Identify outliers in a DataFrame using the Standard Deviation method.

Parameters:
    df (DataFrame): The input DataFrame.
    n (int): The minimum number of outliers in an observation to be considered.
    features (list): List of feature column names to analyze for outliers.
```

Returns: