TEORIA

- Wszystkie problemy optymalizacji kombinatorycznej, które dają się rozwiązać do optymalności w wielomianowym czasie:
 - a. muszą być matroidami
 - b. muszą być z klasy NP
 - c. mogą być matroidami matroidy mozemy za pomoca greedy
 - d. muszą być z klasy P z definicji problemow p trudnych
- 2. Jeżeli P=NP to
 - a. wszystkie problemy NP-trudne dadzą się rozwiązać w wielomianowym czasie
 - b. żadne problemy NP-równoważne nie dadza sie rozwiazać w wielomianowym czasie
 - c. wszystkie problemy NP-równoważne dadzą się rozwiązać w wielomianowym czasie np-equivalent = np-easy + np-hard In a nutshell NP-hard at least as difficult as NP, NP-easy at most as hard as NP, NP-equivalent the same complexity as NP.
 - c. żadne problemy NP-łatwe nie dadzą się rozwiązać w wielomianowym czasie
 - d. żadne problemy NP-trudne nie dadzą się rozwiązać w wielomianowym czasie
 - e. wszystkie problemy NP-łatwe dadzą się rozwiązać w wielomianowym czasie
- 3. Jeżeli P nie jest równe NP (P!=NP) to
 - a. wszystkie problemy NP-łatwe dadzą się rozwiązać w wielomianowym czasie
 - b. wszystkie problemy NP-trudne dadzą się rozwiązać w wielomianowym czasie
 - c. żadne problemy NP-łatwe nie dadzą się rozwiązać w wielomianowym czasie
 - d. żadne problemy NP-trudne nie dadzą się rozwiązać w wielomianowym czasie NP-EASY DA SIE SPRAWDZIC W WIELOMIANOWYM i NP-EASY przy dobrych wiatrach da sie w

wielomianowym rozwiazac

- 4. Wyobraźmy sobie, że dla problemu szeregowania zadań na równoległych identycznych procesorach dla kryterium długości uszeregowania (P||Cmax) podano wielomianowe algorytmy aproksymacyjne A,B spełniające dla każdej instancji I warunki 1) algorytm: A: |A(I)-OPT(I)|<=k, gdzie k>0 jest stałą, 2) algorytm B: B(I)/OPT(I)<=k, gdzie 1<k? Wynika z tego, że:
 - a. z 1) wynika, że P=NP, z 2) wynika, że P!=NP
 - b. z 1) wynika, że P=NP, z 2) nic nie wynika w 2 nic nie wynika bo sama zlozonosc czasowa nie udowadnia P!=NP, k>=1 powinno byc bo inaczej to nie ma sensu w 1)
 - problem Π can be solved by a polynomial algorithm which guarantees that $|A(I) OPT(I)| \le k$, where k is some constant.
 - c. z 1) nic nie wynika, z 2) wynika, że P=NP
 - d. z 1) wynika, że P!=NP, z 2) wynika, że P=NP k moze wynosic zero wiec odpada w 1

- Idea of $\alpha|\beta|\gamma$ notation in short: α scheduling environment (factory, computer), β features of task set, γ objective function. Problem P|pmtn| denotes:
 - $\alpha = P$: scheduling on some number m of parallel and identical processors P_1, \ldots, P_m ;
 - $\beta = pmtn$ tasks are preemptive and beyond this assumptions on the tasks are standard: no precedence constraints, no deadlines, all tasks are ready to be executed at time 0, etc. ... Tasks have processing times p_1, \ldots, p_n (hence there are n tasks);
 - $\gamma = C_{max}$ schedule length (makespan) is the objective function.
- 5. Problem optymalizacji kombinatorycznej jest nieaproksymowalny gdy
 - a. jest NP-trudny
 - b. nie jest znany dla niego wielomianowy algorytm o skończonym oszacowaniu jakości to ze nie jest znany nie oznacza ze nie istnieje
 - c. można wykazać, że nie istnieje dla niego wielomianowy algorytm o skończonym oszacowaniu
 - d. istnieje dla niego wielomianowy algorytm o skończonym oszacowaniu jakości
 - e. istnienie dla niego wielomianowego algorytmu o gwarantowanej jakości pociągałoby P=NP
 - f. ogólnie, gdy P jest różne od NP
 - g. ten problem nie transformuje się wielomianową transformacją Turinga do innego aproksymowalnego problemu optymalizacji kombinatorycznej. zla transofmracja i chuj
 - h. istnienie dla niego wielomianowego algorytmu o gwarantowanej jakości pociągałoby P!=NP

- 6. Przetarg między jakością rozwiązań i czasem wykonania w poprawnie skonstruowanym algorytmie dla problemu optymalizacji kombinatorycznej oznacza, że:
 - a. im krótszy czas działania tym lepszej jakości rozwiązania
 - b. dobrej jakości rozwiązanie są łatwe do uzyskania w krótkim czasie
 - c. im dłuższy czas działania tym lepszej jakości rozwiązania
 - d. z upływem czasu jakość rozwiązania się ustala nie wiem czemu nie?
- 7. W kolejnych iteracjach algorytmu Dinica kolejne sieci warstwowe mają
 - a. stałą liczbę warstw
 - b. niemalejącą liczbę warstw
 - c. rosnącą liczbę warstw drozdo powiedzial ze z kazda kolejna iteracja wiecej warstw
 - d. liczba warstw nie ma związku z numerem iteracji w algorytmie Dinica liczba warst jest stala, liczba nieodkrytych warstw maleje
- 8. Jeżeli w grafie istnieje cykl o ujemnej długości, to
 - a. między niektórymi wierzchołkami da się a między innymi nie da się określić odległości
 - b. wszystkie najkrótsze ścieżki w grafie przechodzą przez ten cykl
 - c. między wszystkim wierzchołkami da się określić odległość
 - d. między żadnymi wierzchołkami nie da się określić odległości
- Porównując algorytmy zachłanne i dokładne dla problemów optymalizacji kombinatorycznej
 - a. tylko algorytmy dokładne dają gwarancję optymalności rozwiązań
 - b. tylko algorytmy zachłanne dają gwarancję optymalności
 - c. ani algorytmy dokładne ani zachłanne nie dają gwarancji optymalności rozwiązań.
 - d. algorytmy dokładne i zachłanne dają gwarancję optymalności rozwiązań
 - e. Wykładnicze są algorytmy dokładne i zachłanne
 - f. Wielomianowe są algorytmy dokładne, zachłanne są wykładnicze
 - g. Wykładnicze są algorytmy dokładne, zachłanne są wielomianowe
 - h. Algorytmy dokładne i zachłanne są wielomianowe
- 10. Wyobraźmy sobie, że 1) dla problemu wierzchołkowego kolorowania grafu podano wielomianowy algorytm A dla każdej instancji I spełniający warunek A(I)/OPT(I)<4/3, 2) dla problemu krawędziowego kolorowania grafu podano wielomianowy algorytm B spełniający warunek: |B(I)-OPT(I)|≤k. Gdzie 0<k<2 jest stałą, A(I), B(I) oznaczają jakość rozwiązań aproksymacyjnych, OPT(I) wartość optymalna. Z tego wynika, że:
 - a. z 1) wynika, że P=NP, z 2) wynika że P!=NP
 - b. z 1) wynika, że P!=NP, z 2) wynika że P=NP

- c. z 1) wynika, że P=NP, z 2) nic nie wynika 2 JEST BEZ SENSU BO JEDYNIE JEDEN KOLOR ROZNICY DO ROZWIAZANIA NIE JEST UNIWERSALNY
- d. z 1) nic nie wynika, z 2) wynika, że P=NP.
- 11. W świetle obecnego stanu wiedzy pewne problemy optymalizacji kombinatorycznej 1) nie dają się rozwiązać do optymalności algorytmami zachłannymi, 2) inne dają się rozwiązać do optymalności algorytmami zachłannymi. Jest tak gdyż:
 - a. problemy 1) są matroidami, problemy 2) są z klasy P
 - b. problemy 1) są z klasy P, problemy 2) są matroidami
 - c. problemy 1) są NP-trudne, problemy 2) są matroidami
 - d. problemy 1) sa NP-zupełne, problemy 2) sa z klasy P
- 12. W problemie wyznaczania maksymalnego przepływu w sieci, ścieżka powiększająca przepływ zawiera 1) łuki zwrócone od s do t i 2) zwrócone od t do s, gdy
 - a. łuki 1) mają przepływ równy pojemności, łuki 2) mają przepływ dodatni
 - b. łuki 1) mają przepływ dodatni, łuki 2) mają przepływ zerowy
 - c. łuki 1) mają przepływ mniejszy od pojemności, łuki 2) mają przepływ dodatni 1) przeplyw mniejszy od pojemnosci w 2) z t do s to jest wiekszy do zerra (definicje użyteczności)
 - d. łuki 1) mają przepływ dodatni, łuki 2) mają przepływ mniejszy od pojemności
- 13. W problemie wyznaczania maksymalnego przepływu w sieci, ścieżka powiększająca przepływ
 - a. może zawierać łuki zwrócone od t do s gdy przepływ na nich jest nieujemny
 - b. może zawierać łuki zwrócone od t do s gdy przepływ na nich jest dodatni
 - c. może zawierać tylko łuki zwrócone od s do t
 - d. może zawierać łuki zwrócone od t do s gdy przepływ na nich jest zerowy

- 14. W problemie wyznaczania maksymalnego skojarzenia w grafie, chodzi o to, aby
 - a. wybrać krawędzie, które do siebie nie przylegają w żadnych wierzchołkach skojarzenia to znaczy ze krawedzie nie maja wspolnych wierzcholkow
 - b. wybrać określone wierzchołki z grafu
 - c. wybrać krawędzie, które tworzą ścieżkę naprzemienną to by bylo prawdziwe dla grafu dwudzielnego
 - d. wybrać krawędzie, które do siebie przylegają we wskazanych wierzchołkach

- 15. Jeżeli dla jakiegoś problemu optymalizacji kombinatorycznej zostanie podany algorytm aproksymacyjny o pewnym oszacowaniu X, to dla lepszego oszacowania możliwości tego algorytmu podaje się jeszcze instancję, dla której rozwiązanie tym algorytmem ma
 - a. wartość jak najbliższą OPT

$$S_{A}(I) = \frac{A(I)}{OPT(I)}$$

dla minimalizacji dla maksymalizacji OPT(I)/A(I)

- b. wartość jak najbliższą X
- c. wartość jak najbliższą X*OPT
- d. wartość jak najdalszą od X*OPT

- 16. Problem NP-łatwy jest
 - a. jest problemem optymalizacyjnym
 - b. co najwyżej tak trudny jak problemy NP-zupełne
 - c. co najmniej tak trudny jak problemy NP-zupełne
 - d. jest problemem decyzyjnym
 - e. z klasy NP
 - f. co najmniej tak trudny jak klasa NP
 - g. rozwiązywalny w wielomianowym czasie
 - h. co najwyżej tak trudny jak klasa NP
- 17. Odległość między wierzchołkami w grafie może być nieokreślona, gdy
 - a. Graf nie jest spójny
 - b. Graf ma ścieżkę o ujemnej długości
 - c. Graf ma klikę o ujemnej długości
 - d. Graf ma cykl o ujemnej długości
- 18. Odległość między wierzchołkami w grafie jest określona, gdy
 - a. graf nie ma cyklu o nieujemnej długości
 - b. graf nie ma cyklu o ujemnej długości
 - c. graf nie ma ścieżki o ujemnej długości
 - d. graf jest spójny
- 19. Jeżeli pewien problem optymalizacji kombinatorycznej jest silnie NP-zupełny w wersji decyzyjnej, to
 - a. Istnienie w pełni wielomianowego schematu obliczeń pociąga P!=NP
 - b. Istnienie w pełni wielomianowego schematu obliczeń (FPTAS) pociąga P=NP

fully polynomial time approximation scheme

- c. P=NP pociąga istnienie w pełni wielomianowego schematu obliczeń (FPTAS)
- d. P!=NP pociąga istnienie w pełni wielomianowego schematu obliczeń (FPTAS)
- 20. Ścieżka powiększa skojarzenie na zasadzie różnicy symetrycznej krawędzi i bieżącego skojarzenia jeżeli
 - a. jest naprzemienna
 - b. jest nieparzystej długości i naprzemienna

- c. jest nieparzystej długości
- d. jest parzystej długości i naprzemienna

- 21. Najkrótsze ścieżki w grafie są proste ponieważ
 - a. Wszystkie cykle są nieujemnej długości
 - b. Wszystkie ścieżki sa nieujemnej długości
 - c. Między wszystkimi parami wierzchołków odległości są nieujemne
 - d. Między wszystkimi parami wierzchołków odległości są dodatnie
 - e. Wszystkie cykle są dodatniej długości
 - f. W grafie są tylko ścieżki dodatniej długości
 - g. Wszystkie cykle są nieujemnej długości
 - h. W grafie są tylko ścieżki nieujemnej długości
- 22. Skojarzenie w grafie jest maksymalne gdy
 - a. nie istnieją w nim żadne ścieżki zaczynające i kończące się w wierzchołku wolnym
 - b. nie istnieją w nim ścieżki naprzemienne zaczynające i kończące się w wierzchołku wolnym
 - c. nie istnieją w nim ścieżki naprzemienne o nieparzystej długości
 - d. nie istnieją w nim ścieżki nieparzystej długości zaczynające i kończące się w wierzchołku wolnym
 - e. nie istnieją w nim ścieżki o nieparzystej długości
 - f. żaden z pozostałych warunków nie jest wystarczający aby skojarzenie było maksymalne
 - g. nie istnieją w nim ścieżki naprzemienne
 - h. nie istnieją ścieżki zaczynające i kończące się w wierzchołku wolnym
- 23. Jeżeli P jest różne od NP (P!=NP) to problem NP-trudny
 - a. daje się rozwiązać w wielomianowym czasie
 - b. nie daje się rozwiązać w wielomianowym czasie
 - c. to nie jest rozstrzygające

- 24. W krawędziowym kolorowaniu grafu jeden kolor to zbiór krawędzi, który tworzy
 - a. Klikę
 - b. Drzewo
 - c. Skojarzenie

- 25. Trudny problem optymalizacji kombinatorycznej jest aproksymowalny gdy
 - a. Istnieje dla niego wielomianowy algorytm o gwarantowanej jakości rozwiązań
 - b. Ten problem transformuje się wielomianową transformacją Turinga do innego aproksymowalnego problemu optymalizacji kombinatorycznej
 - c. P jest równe NP
 - d. Istnieje dla niego jakikolwiek algorytm o gwarantowanej jakości rozwiązań
- 26. Rozwiązaniem problemu wyboru algorytmu dla optymalizacji kombinatorycznej jest
 - a. minimalny czas wykonania algorytmu dla zadanej instancji
 - b. najlepsza instancja dla każdego algorytmu
 - c. instancja na której dany algorytm wykona się w minimalnym czasie
 - d. najlepszy algorytm dla każdej instancji
- 27. Wyobraźmy sobie, że 1) dla problemu wierzchołkowego kolorowania grafu podano w pełni wielomianowy schemat obliczeń, 2) dla problemu krawędziowego kolorowania grafu podano wielomianowy algorytm B spełniający warunek: |B(I)-OPT(I)|<=k. Gdzie 0<k<2 jest stałą, B(I) oznacza jakość rozwiązań aproksymacyjnych, OPT(I) k =1
 - a. Z 1) nic nie wynika, z 2) wynika że P=NP
 - b. Z 1) wynika, że P=NP 2) wynika że P!=NP
 - c. Z 1) wynika, że P=NP, z 2) nic nie wynika
 - d. Z 1) wynika, że P!=NP, z 2) wynika że P=NP
- 28. Problem sortowania liczb należy do klasy problemów
 - a. decyzyjnych
 - b. do klasy P
 - c. do klasy NP-trudnych
 - d. Przeszukiwania

- 29. Hill climber to
 - a. Zaawansowana wersja tabu search

- b. Algorytm zachłanny
- c. Uproszczona wersja tabu search
- d. Algorytm populacyjny
- e. Protoplasta symulowanego wyżarzania (simulated annealing)
- f. Wersja pochodna od symulowanego wyżarzania (simulated annealing)

- 30. W problemie wyznaczania maksymalnego przepływu w sieci
 - a. należy tylko określić maksymalną wartość przepływu przy źródle
 - b. należy określić przepływ na każdym łuku
 - c. trzeba najpierw wyznaczyć wąskie gardło (bottle neck)
 - d. należy tylko określić maksymalną wartość przepływu przy ujściu
 - e. przepływy łukowe mogą być nieograniczone
 - f. przepływy łukowe są ograniczone i nieujemne
 - g. przepływy łukowe mogą być ujemne
 - h. przepływy łukowe są nieograniczone i nieujemne
 - i. Z dwoma wyjątkami suma przepływów wchodzących do wierzchołka zawsze równa się sumie przepływów wychodzących
 - j. Suma przepływów wchodzących do wierzchołka zawsze równa się sumie przepływów wychodzących
 - k. Suma przepływów wchodzących do wierzchołka jest niezależna od sumy przepływów wychodzących
 - I. Suma przepływów wchodzących do wierzchołka jest różna od sumy przepływów wychodzących
- 31. Wyobraźmy sobie, że dla problemu komiwojażera (TSP) mogą istnieć wielomianowe algorytmy aproksymacyjne A,B spełniające dla każdej instancji I warunki 1) algorytm A: |A(I)-OPT(I)|<=k, gdzie k>0 jest stałą, 2) algorytm B: B(I)/OPT(I) <= k gdzie k> 1 jest stałą? Wynika z tego wynika, że:
 - a. 1) nic nie wynika, z 2) wynika że P=NP
 - b. 1) wynika, że P=NP, z 2) wynika że P!=NP
 - c. 1) wynika, że P=NP, z 2) nic nie wynika
 - d. 1) wynika, że PL=NP, z 2) wynika że P=NP
- 32. Ścieżka powiększająca skojarzenie powiększa skojarzenie bo
 - a. bo kończy się w wierzchołku wolnym
 - b. zaczyna się w wierzchołku wolnym
 - c. ma nieparzystą liczbę krawędzi
 - d. bo zaczyna i kończy się w wierzchołku wolnym
- 33. Problem NP-trudny jest

- a. co najmniej tak trudny jak problemy z klasy NP
- b. co najwyżej tak trudny jak problemy z klasy NP
- c. tak samo trudny jak cała klasa NP
- d. trudność problemów w klasie NP nie jest rozstrzygająca
- e. z klasy NP
- f. co najwyżej tak trudny jak problemy NP-zupełne
- g. rozwiązywalny w wielomianowym czasie
- h. co najmniej tak trudny jak problemy NP-zupełne
- i. co najwyżej tak trudny jak klasa NP
- j. z klasy NP
- k. co najmniej tak trudny jak klasa NP
- I. rozwiązywalny w wielomianowym czasie
- m. tak samo trudny jak cała klasa NP
- n. co najwyżej tak trudny jak problemy z klasy NP
- o. co najmniej tak trudny jak problemy z klasy NP
- p. trudność problemów w klasie NP nie jest rozstrzygająca
- q. rozwiązywalny w wielomianowym czasie
- r. co najmniej tak trudny jak klasa NP
- s. z klasy NP
- t. co najwyżej tak trudny jak klasa NP

- 34. W problemie wyznaczania maksymalnego przepływu w sieci przepływ netto przez pewien przekrój ze strony źródła na stronę ujścia
 - a. jest zawsze równa sumarycznej pojemności wszystkich łuków przecinanych przez ten przekrój
 - b. nie zależy od każdego przekroju
 - c. zależy od każdego przekroju
 - d. jest mniejsza lub równa sumarycznej pojemności wszystkich łuków przecinanych przez ten przekrój

35. Problem NP-równoważny jest

- a. Tak samo trudny jak cała klasa NP
- b. Co najwyżej tak trudny jak problemy z klasy NP
- c. Trudność problemów w klasie NP nie jest rozstrzygająca
- d. Co najmniej tak trudny jak problemy z klasy NP
- e. Z klasy NP
- f. Tak trudny jak klasa NP
- g. Jest tak trudny jak klasa P
- h. Rozwiązywalny w wielomianowym czasie
- i. Tak trudny jak problemy NP-zupełne
- j. Z klasy NP
- k. Co najmniej trudny jak problemy NP-trudne
- I. Rozwiązywalny w wielomianowym czasie
- 36. Metaheurystyka to metoda która
 - a. nie ulepsza znalezionych rozwiązań
 - b. jest zdefiniowana na meta-poziomie
 - c. jest jedno-przebiegowa
 - d. ulepsza znalezione rozwiązania
- 37. Algorytm zachłanny daje optymalne rozwiązanie problemu optymalizacji kombinatorycznej pod warunkiem, że
 - a. Gdy nie jest NP-zupełny
 - b. można znaleźć ciąg pośrednich rozwiązań od rozwiązania pustego do dowolnego innego
 - c. Ciąg pośrednich rozwiązań od rozwiązania pustego do dowolnego innego nie musi istnieć
 - d. Ten problem jest z klasy P
 - e. rozwiązanie startowe nie jest puste i jest wstępnie znane
 - f. ten problem jest z klasy P
 - g. gdy nie jest NP-zupełny
 - h. rozwiązanie startowe jest puste

- 38. W problemie minimalnego drzewa rozpinającego w grafie o N wierzchołkach chodzi o to, żeby
 - a. wybrać n-1 najtańszych krawędzi
 - b. wybrać n-1 krawędzi
 - c. wybrać n-1 krawędzi bez cykli
 - d. wybrać n-1 najtańszych krawędzi bez cykli
 - e. połączyć wybrane wierzchołki krawędziami tworzącymi drzewo
 - f. połączyć wszystkie wierzchołki N najtańszymi krawędziami
 - g. połączyć wszystkie wierzchołki N-1 najtańszymi krawędziami
 - h. połączyć wszystkie wierzchołki krawędziami
 - i. wybrać N krawędzi tworzących drzewo
 - j. wybrać N-1 krawędzi tworzących drzewo
 - k. wybrać krawędzie tworzące najtańsze drzewo
 - I. wybrać krawędzie tworzące drzewo
- 39. To że jakiś problem optymalizacji kombinatorycznej daje się rozwiązać do optymalności algorytmem zachłannym pociąga za sobą, że
 - a. rozwiązanie puste nie musi być dopuszczalne i zawsze istnieje ciąg kroków od rozwiązania pustego do innego dopuszczalnego
 - b. rozwiązanie puste jest dopuszczalne i zawsze istnieje ciąg kroków od rozwiązania pustego do innego dopuszczalnego
 - c. rozwiązanie puste jest dopuszczalne i nie musi istnieć ciąg kroków od rozwiązania pustego do innego dopuszczalnego
 - d. rozwiązanie puste nie musi być dopuszczalne i nie musi istnieć ciąg kroków od rozwiązania pustego do innego dopuszczalnego
- 40. W NP-zupełnym problemie podziału zbioru pyta się, czy zbiór liczb można podzielić na dwa podzbiory o równej sumie dobranych liczb. Z tego wynika, że w problemie pakowania liczb w minimalnej liczbie pudełek o stałej wysokości, nie istnieje
 - a. algorytm wielomianowy o asymptotycznym oszacowaniu lepszym niż 1.5
 - b. algorytm wielomianowy o asymptotycznym oszacowaniu lepszym niż 2
 - c. FPTAS (w pełni wielomianowy schemat obliczeń) dla tego problemu
 - d. żaden wielomianowy algorytm aproksymacyjny
- 41. O pewnym problemie optymalizacji kombinatorycznej wiadomo, że odpowiedź na pytanie czy istnieje rozwiązanie o wartości X>0 jest problemem NP-zupełnym. Z tego wynika, że

- a. nie mogą istnieć wielomianowe algorytmy aproksymacyjne o skończonym oszacowaniu jakości i mogą istnieć w pełni wielomianowe schematy obliczeń
- b. mogą istnieć wielomianowe algorytmy aproksymacyjne o skończonym oszacowaniu jakości i mogą istnieć w pełni wielomianowe schematy obliczeń
- c. nie mogą istnieć wielomianowe algorytmy aproksymacyjne o skończonym oszacowaniu jakości i nie mogą istnieć w pełni wielomianowe schematy obliczeń
- d. mogą istnieć wielomianowe algorytmy aproksymacyjne o skończonym oszacowaniu jakości i nie mogą istnieć w pełni wielomianowe schematy obliczeń
- 42. Jeżeli P=NP to problem NP-trudny
 - a. to nie jest rozstrzygające
 - b. nie daje się rozwiązać w wielomianowym czasie
 - c. daje się rozwiązać w wielomianowym czasie
- 43. To że jakiś problem optymalizacji kombinatorycznej jest matroidem pociąga za sobą, że:
 - a. rozwiązanie puste nie musi być dopuszczalne i zawsze istnieje ciąg kroków od rozwiązania pustego do innego dopuszczalnego
 - b. rozwiązanie puste jest dopuszczalne i zawsze istnieje ciąg kroków od rozwiązania pustego do innego dopuszczalnego
 - c. rozwiązanie puste nie musi być dopuszczalne i nie musi istnieć ciąg kroków od rozwiązania pustego do innego dopuszczalnego
 - d. rozwiązanie puste jest dopuszczalne i nie musi istnieć ciąg kroków od rozwiązania pustego do innego dopuszczalnego jest problem jest matroidem to da sie go rozwiazac w czasie wielomianowym
- 44. Między domknięciem przechodnim binarnej relacji endogennej, mnożeniem macierzy i wyznaczaniem odległości w grafie jest taki związek, że przez podmianę operatorów dodawania, maksimum, mnożenia, logicznych i/lub
 - a. algorytm wyznaczania odległości można zastąpić mnożeniem
 - b. algorytmu wyznaczania domkniecia przechodniego nie można zastąpić mnożeniem
 - c. algorytmu wyznaczania domknięcia przechodniego nie można zastąpić wyznaczaniem odległości
 - d. algorytm wyznaczania domkniecia przechodniego można zastąpić mnożeniem
- 45. W problemie wyznaczania maksymalnego przepływu w sieci rozwiązanie jest optymalne gdy
 - a. istnieje przekrój o pojemności większej niż wartość przepływu
 - b. istnieje przekrój o pojemności równej wartości przepływu
 - c. w wszystkich przekrojach pojemność przekroju jest mniejsza niż wartość przepływu
 - d. w wszystkich przekrojach pojemność przekroju jest większa niż wartość przepływu

- 46. Jeżeli jakiś algorytm aproksymacyjny dla jakiejś instancji konstruuje rozwiązanie o jakości 1.5*OPT, to bezwzględne oszacowanie jakości dla tego algorytmu jest
 - a. To niczego nie determinuje
 - b. Mniejsze lub równe 1.5
 - c. Równe 1.5
 - d. Większe lub równe 1.5

Bezwzględne oszacowanie odnosi się do najgorszego przypadku

- 48. W problemie wyznaczania przepływu o zadanej wartości F i minimalnym koszcie, przepływ jest optymalny gdy
 - a. nie istnieje cykl o ujemnym koszcie
 - b. istnieje cykl o ujemnym koszcie
 - c. cenie istnieje ścieżka od źródła do ujścia o ujemnym koszcie
 - d. istnieje przekrój o pojemności równej wartości przepływu F
 - e. Nie istnieje cykl o ujemnym koszcie i wartość przepływu wynosi F
 - f. Istnieje cykl o ujemnym koszcie i wartość przepływu wynosi F
 - g. Wszystkie ścieżki od źródła do ujścia mają dodatnie koszty
 - h. Osiągniemy wartość przepływu równą F
- 49. Dla problemu plecakowego podano wielomianowy algorytmy aproksymacyjne A, B spełniające dla każdej instancji | warunki 1) algorytm A: |A(I)-OPT(I)|<=k, 2) algorytm B: B()/OPT(I)<=k, gdzie k>1 jest stałą, A(I), B(I) jakość rozwiązań aproksymacyjnych, OPT(I) wartość optymalna. Z tego wynika, że:
 - a. z 1) wynika, że P!=NP, z 2) wynika że P=NP
 - b. z 1) nic nie wynika, z 2) wynika że P=NP
 - c. z 1) wynika, że P=NP, z 2) nic nie wynika
 - d. z 1) wynika, że P=NP, z 2) wynika że P!I=NP
- 50. Skojarzenie w grafie, to
 - a. zbiór krawędzi które nie dają się pokolorować tym samym kolorem w problemie krawędziowego kolorowania grafu
 - b. zbiór krawędzi które dają się pokolorować tym samym kolorem w problemie krawędziowego kolorowania grafu
 - c. zbiór wierzchołków które dają się pokolorować tym samym kolorem w problemie wierzchołkowego kolorowania grafu
 - d. zbiór wierzchołków które nie dają się pokolorować tym samym kolorem w problemie wierzchołkowego kolorowania grafu

- 51. Jeżeli pewien problem optymalizacji jest silnie NP-zupełny w wersji decyzyjnej, to
 - a. P=NP pociąga istnienie w pełni wielomianowego schemat obliczeń (FPTAS)
 - b. istnienie w pełni wielomianowego schematu obliczeń (FPTAS) pociąga P=NP
 - c. istnienie w pełni wielomianowego schematu obliczeń pociąga PI=NP
 - d. P!=NP pociąga istnienie w pełni wielomianowy schemat obliczeń (FPTAS)
- 52. W problemie wyznaczania maksymalnego przepływu w sieci wartość przepływu liczona przy ujściu
 - a. jest mniejsza lub równa sumarycznej pojemności wszystkich łuków przecinanych przez każdy przekrój
 - b. jest inna w każdym przekroju
 - c. jest taka sama w każdym przekroju –maybe baby
 - d. jest zawsze równa sumarycznej pojemności wszystkich łuków przecinanych przez przekrój
 - e. jest mniejsza lub równa sumarycznej pojemności wszystkich łuków przecinanych przez dowolny przekrój O
 - f. jest mniejsza lub równa najmniejszej sumarycznej pojemności łuków przecinających dowolny przekrój ze strony źródła na stronę ujścia
 - g. jest mniejsza niż pojemność wszystkich łuków przecinanych przez każdy przekrój
- 53. Jeśli problem jest NP-łatwy
 - a. tak samo trudny jak cała klasa NP
 - b. to daje się rozwiązać w wielomianowym czasie
 - c. To jest nie trudniejszy niż klasa NP
 - d. to nie jest NP-trudny
- 54. Granice łatwości i trudności obliczeniowej problemu optymalizacji kombinatorycznej, można określić przez(relaksacja)
 - a. zmianę założeń tego problemu i poszukiwanie przypadków łatwych
 - b. rozwiązania ciągłego problemu plecakowego
 - c. rozwiązywanie problemów podzielnego szeregowania zadań
 - d. zmianę założeń tego problemu i poszukiwanie przypadków łatwych i trudnych

- 55. W NP-zupełnym problemie podziału zbioru pyta się, czy zbiór liczb można podzielić na dwa podzbiory o równej sumie dobranych liczb. Z tego wynika, że w problemie pakowania liczb w minimalnej liczbie pudełek o stałej wysokości, nie istnieje wielomianowy algorytm aproksymacyjny
 - a. o bezwzględnym oszacowaniu jakości równym 1.5
 - b. o bezwzględnym oszacowaniu jakości równym 1
 - c. o bezwzględnym oszacowaniu jakości równym 2

- d. o skończonym bezwzględnym oszacowaniu jakości
- 56. Problem domknięcia przechodniego binarnej relacji endogennej w ujęciu grafowym polega na tym żeby
 - a. dodać wszystkie łuki wynikające z symetrii relacji
 - b. dodać wszystkie łuki wynikające z symetrii i przechodniości relacji
 - c. dodać wszystkie możliwe łuki
 - d. dodać wszystkie łuki wynikające z przechodniości relacji
- 57. Porównując algorytmy dokładne i przybliżone dla problemów optymalizacji kombinatorycznej
 - a. algorytmy przybliżone mają wykładniczą złożoność, a dokładne nie
 - b. algorytmy dokładne dają gwarancje optymalności, a przybliżone nie
 - c. algorytmy dokładne mają wykładniczą złożoność, a przybliżone nie
 - d. algorytmy przybliżone dają gwarancje optymalności, a dokładne nie
- 58. Załóżmy, że w sieć warstwowa zbudowana przez algorytm Dinica do wyznaczania maksymalnego przepływu w sieci ma np. warstwy 1, 2, 3, wówczas:
 - a. łuki łączą warstwę 1 i 2 oraz 2 i 3 i mogą wystąpić łuki z warstwy 3 do 1
 - b. łuki łączą warstwę 1 i 2 oraz 2 i 3 i mogą wystąpić łuki wewnątrz każdej z warstw
 - c. łuki łączą warstwę 1 i 2 oraz 2 i 3 i mogą wystąpić łuki z warstwy 3 do 1 i wewnątrz każdej z warstw.
 - d. łuki łączą tylko warstwę 1 i 2 oraz 2 i 3
- 59. Problem kolorowania grafu jest
 - a. jest łatwy dla 2 kolorów i trudny dla 3 kolorów i dlatego nie istnieje algorytm aproksymacyjny o oszacowaniu lepszym niż 4/3
 - b. jest łatwy dla 3 kolorów i trudny dla 4 kolorów i dlatego nie istnieje algorytm aproksymacyjny o oszacowaniu lepszym niż 3
 - c. jest łatwy dla 2 kolorów i trudny dla 3 kolorów i dlatego nie istnieje algorytm aproksymacyjny o oszacowaniu lepszym niż 3
 - d. trudny obliczeniowo już od 2 kolorów i dlatego nie istnieje algorytm aproksymacyjny o oszacowaniu lepszym niż 1.5
 - e. jest łatwy dla 2 kolorów i trudny dla 3 kolorów i dlatego nie istnieje algorytm aproksymacyjny o oszacowaniu lepszym niż 3/2
 - f. jest łatwy dla 2 kolorów i trudny dla 3 kolorów i dlatego nie istnieje algorytm aproksymacyjny o oszacowaniu lepszym niż 4/3
 - g. jest łatwy dla 3 kolorów i trudny dla 2 kolorów i dlatego nie istnieje algorytm aproksymacyjny o oszacowaniu lepszym niż 3/2
 - h. jest łatwy dla 2 kolorów i trudny dla 3 kolorów i dlatego nie istnieje algorytm aproksymacyjny o oszacowaniu lepszym niż 3
- 60. Podanie bezwzględnego oszacowanie jakości algorytmu aproksymacyjnego
 - a. ogranicza od góry względną odległość rozwiązania od optimum
 - b. ogranicza od dołu względną odległość rozwiązania od optimum
 - c. ogranicza od góry bezwzględną odległość rozwiązania od optimum

- d. ogranicza od dołu bezwzględną odległość rozwiązania od optimum
- 61. Jeżeli pewien problem jest silnie NP-zupełny i jego optymalizacyjny odpowiednik ma w pełni wielomianowy schemat obliczeń (FPTAS), to
 - a. P!=NP bo FPTAS jest wówczas algorytmem wielomianowym
 - b. P!=NP bo FPTAS jest wówczas algorytmem pseudowielomianowym
 - c. P=NP bo FPTAS jest wówczas algorytmem wielomianowym
 - d. P=NP bo FPTAS jest wówczas algorytmem pseudowielomianowym
- 62. Problem niepodzielnego szeregowania zadań na procesorach równoległych ma wielomianowe algorytmy aproksymacyjne
 - a. Nie ma o skończonej bezwzględnej odległości od optimum i ma o skończonej względnej odległości od optimum
 - b. Ma o skończonej bezwzględnej odległości od optimum i nie ma o skończonej względnej odległości od optimum
 - c. Nie ma o skończonej bezwzględnej odległości od optimum i nie ma o skończonej odległości od optimum
 - d. Ma o skończonej bezwzględnej odległości od optimum i ma o skończonej względnej odległości od optimum
- 63. Problem komiwojażera ma wielomianowe algorytmy aproksymacyjne
 - a. Nie ma o skończonej bezwzględnej odległości od optimum i ma o skończonej względnej odległości od optimum
 - b. Ma o skończonej bezwzględnej odległości od optimum i nie ma o skończonej względnej odległości od optimum
 - c. Nie ma o skończonej bezwzględnej odległości od optimum i nie ma o skończonej odległości od optimum
 - d. Ma o skończonej bezwzględnej odległości od optimum i ma o skończonej względnej odległości od optimum
- 64. Jeżeli P=NP to problem NP-łatwy
 - a. Daje się rozwiązać w wielomianowym czasie
 - b. Nie daje się rozwiązać w wielomianowym czasie
 - c. To nie jest rozstrzygające

- 65. Jeżeli P jest różne od NP (P!=NP) to problem NP-łatwy
 - a. Daje się rozwiązać w wielomianowym czasie
 - b. To nie jest rozstrzygające
 - c. Nie daje się rozwiązać w wielomianowym czasie
- 66. W problemie wyznaczania maksymalnego przepływu w sieci z dolnymi i górnymi ograniczeniami na przepływ (po powrocie od sieci rozszerzonej do sieci pierwotnej), ścieżka powiększająca przepływ zawiera 1) łuki zwrócone od s do t i 2) wrócone od t do s, gdy
 - a. Łuki 1) mają przepływ większy od dolnego ograniczenia, łuki 2) mają przepływ mniejszy od pojemności
 - b. Łuki 1) mają przepływ większy od dolnego ograniczenia, łuki 2) mają przepływ zerowy
 - c. Łuki 1) mają przepływ równy pojemności, łuki 2) mają przepływ dodatni
 - d. Łuki 1) mają przepływ mniejszy od pojemności, łuki 2) mają przepływ większy od dolnego ograniczenia

- 67. Problem NP-trudny jest:
 - a. Z klasy NP
 - b. Co najwyżej tak trudny jak problemy NP-zupełne
 - c. Rozwiązywalny w wielomianowym czasie
 - d. Co najmniej tak trudny jak problemy NP-zupełne
- 68. Jeżeli P jest różne od NP (P!=NP) to
 - a. Żadne problemy NP-trudne nie dadzą się rozwiązać w wielomianowym czasie
 - b. Wszystkie problemy NP-równoważne dadzą się rozwiązać w wielomianowym czasie
 - c. Wszystkie problemy NP-trudne dadzą się rozwiązać w wielomianowym czasie
 - d. Wszystkie problemy NP-łatwe dadzą się rozwiązać w wielomianowym czasie
- 69. W problemie wyznaczania maksymalnego przepływu w sieci wartość przepływu liczona przy ujściu:
 - a. Jest mniejsza lub równa sumarycznej pojemności wszystkich łuków przecinanych przez każdy przekrój
 - b. Jest inna w każdym przekroju
 - c. Jest taka sama w każdym przekroju
 - d. Jest zawsze równa sumarycznej pojemności wszystkich łuków przecinanych przez przekrój

- e. Jest mniejsza lub równa najmniejszej sumarycznej pojemności łuków przecinających dowolny przekrój ze strony źródła na stronę ujścia
- 70. Jeżeli P jest różne od NP (P!=NP) to
 - a. Żadne problemy NP-trudne nie dadzą się rozwiązać w wielomianowym czasie
 - b. Wszystkie problemy NP-równoważne dadzą się rozwiązać w wielomianowym czasie
 - c. Wszystkie problemy NP-trudne dadzą się rozwiązać w wielomianowym czasie
 - d. Wszystkie problemy NP-łatwe dadzą się rozwiązać w wielomianowym czasie

- 71. W problemie wyboru algorytmu przestrzeń cech (feature space) jest
 - a. Jest stała między problemami optymalizacji kombinatorycznej
 - b. Ułatwia klasyfikację instancji
 - c. Ułatwia klasyfikację algorytmów
 - d. Niezbędna do rozwijania tego problemu
- 72. Problem równoważenia drzewa binarnego należy do klasy problemów
 - a. Przeszukiwania
 - b. Do klasy NP-zupełnych
 - c. Decyzyjnych
 - d. Do klasy NP-łatwych
- 73. Czy dla problemu plecakowego mogą istnieć wielomianowe algorytmy aproksymacyjne A,B spełniające dla każdej instancji I warunki 1) algorytm A: |A(I)-OPT(I)<=k, gdzie k>0 jest stałą, 2) algorytm B: OPT(I)/B(I) <= k?

01 1(1)/2(1)

- a. 1 tak, 2 tak
- b. 1 tak, 2 nie
- c. 1 nie, 2 tak
- d. 1 nie, 2 nie
- 74. Jeżeli takie oszacowania istnieją, to bezwzględne oszacowanie jakości algorytmu aproksymacyjnego jest
 - a. Większe lub równe asymptotycznemu oszacowaniu jakości
 - b. Mniejsze od asymptotycznego oszacowania jakości

- c. Mniejsze lub równe asymptotycznemu oszacowaniu jakości
- d. Większe od asymptotycznego oszcowanie jakości
- 75. Problem plecakowy ma wielomianowe algorytmy aproksymacyjne
 - a. Ma o skończonej bezwzględnej odległości od optimum i nie ma skończonej względnej odległości od optimum
 - b. O skończonej bezwzględnej odległości od optimum i skończonej względnej odległości od optimum
 - c. Nie ma o skończonej bezwzględnej odległości od optimum i nie ma o skończonej względnej odległości od optimum
 - d. Nie ma o skończonej bezwzględnej odległości od optimum i ma o skończonej względnej odległości od optimum
- 76. Wyobraźmy sobie, że dla problemu komiwojażera (TSP), który jest silnie NP-zupełny w wersji decyzyjnej, podano wielomianowe algorytmy aproksymacyjne A,B spełniające dla każdej instancji I warunki 1) algorytm A który jest w pełni wielomianowym schematem obliczeń (FPTAS), 2) algorytm B: B(I)/OPT(I)<=k, gdzie 1<k? Wynika z tego, że:
 - a. Z 1) wynika, że P=NP, z 2) wynika że P!=NP
 - b. Z 1) wynika, że P=NP, z 2) nic nie wynika
 - c. Z 1) nic nie wynika, z 2) wynika że P=NP
 - d. Z 1) wynika, że P!=NP, z 2) wynika że P=NP
- 77. W problemie wyznaczania maksymalnego przepływu w sieci wartość przepływu jest
 - a. większa niż pojemność dowolnego przekroju
 - b. mniejsza niż pojemność dowolnego przekroju
 - c. większa lub równa pojemności dowolnego przekroju
 - d. mniejsza lub równa pojemności dowolnego przekroju

- 78. Algorytm symulowanego wyżarzania (simulated annealing) to
 - a. algorytm zachłanny
 - b. zaawansowana wersja hill climbera
 - c. algorytm populacyjny
 - d. uproszczona wersja hill climbera

- 79. Czy dla problemu plecakowego mogą istnieć wielomianowe algorytmy aproksymacyjne A,B spełniające dla każdej instancji I warunki 1) algorytm A: |A(I)-OPT(I)|<=K, gdzie k>0 jest stałą, 2) algorytm B: OPT(I)/B(I)<=k?
 - a. 1 nie, 2 tak
 - b. 1 tak, 2 tak
 - c. 1 nie, 2 nie
 - d. 1 tak, 2 nie
- 80. Algorytm zachłanny daje optymalne rozwiązanie problemu optymalizacji kombinatorycznej pod warunkiem, że
 - a. Rozwiązanie startowe jest puste
 - b. Gdy nie jest NP-zupełny
 - c. Ten problem jest z klasy P
 - d. Rozwiązanie startowe nie jest puste i jest wstępnie znane

- 81. Graf GT trudny do kolorowania algorytmem A od dość trudnego GD do kolorowania algorytmem A różni się tym, że:
 - a. GT będzie pokolorowany nieoptymalnie tylko przy pewnej ustalonej numeracji wierzchołków, a GD będzie pokolorowany optymalnie przy pewnej określonej numeracji wierzchołków
 - b. GT będzie zawsze pokolorowany nieoptymalnie, a GD będzie pokolorowany nieoptymalnie tylko w losowych sytuacjach
 - c. GT będzie pokolorowany nieoptymalnie tylko przy pewnej ustalonej numeracji wierzchołków, a GD będzie pokolorowany nieoptymalnie w losowych sytuacjach
 - d. GT będzie zawsze pokolorowany nieoptymalnie, a GD będzie pokolorowany optymalnie przy pewnej określonej numeracji wierzchołków.
- 82. W kolorowaniu krawędziowym, przy założeniu, że P!=NP, oszacowanie wartości indeksu chromatycznego jest:
 - a. Bliskie indeksu chromatycznego i nieobliczalne w wielomianowym czasie
 - b. Bliskie indeksu chromatycznego i obliczalne w wielomianowym czasie
 - c. ?
 - d. ?

W kolorowaniu wierzchołkowym, przy założeniu P!=NP, oszacowanie liczby chromatycznej równe 4 dla grafów płaskich (planarnych) jest

- O a. dowolnie odległe od liczby chromatycznej i nieobliczalne w wielomianowym czasie
- O b. dowolnie odległe od liczby chromatycznej i obliczalne w wielomianowym czasie
- \bigcirc c. bliskie liczby chromatycznej i obliczalne w wielomianowym czasie
- d. bliskie liczby chromatycznej i nieobliczalne w wielomianowym czasie
- 81. W kolorowaniu wierzchołkowym, przy założeniu P != NP, oszacowanie liczby chromatycznej jako mniejszej od lub równej stopniowi grafu plus 1 jest
 - a. Dowolnie odległe od liczby chromatycznej i nieobliczalne w wielomianowym czasie
 - b. Bardzo bliskie liczby chromatycznej i obliczalne w wielomianowym czasie
 - c. Bardzo bliskie liczby chromatycznej i nieobliczalne w wielomianowym czasie
 - d. Dowolnie odległe od liczby chromatycznej i obliczalne w wielomianowym czasie
- 82. Problem przydziału z N stanowiskami można rozwiązać przez sprowadzenie go do wyznaczania przepływu o wartości F=N i minimalnym koszcie, wykorzystując wyznaczanie najkrótszych ścieżek w grafie z uogólnionymi odległościami, ten algorytm ma złożoność O(F*N^3), gdzie O(N^3) to koszt wyznaczania odległości w grafie, ale złożoność tego algorytmu można

- a. Ulepszyć stosując algorytm dla skierowanych grafów acyklicznych (DAG)
- b. Ulepszyć stosując algorytm Forda-Bellmana
- c. Ulepszyć w przeciętnym przypadku stosując algorytm Moore'a, Bellmana, d'Esopo, Pape'ego (używa kolejki deq)
- d. Ulepszyć stosując algorytm Dijkstry

83.Graf GT trudny do kolorowania algorytmem A od dość trudnego GD do kolorowania algorytmem A różni się tym, że:

- a. GT będzie pokolorowany nieoptymalnie tylko przy pewnej ustalonej numeracji wierzchołków, a GD będzie pokolorowany optymalnie przy pewnej określonej numeracji wierzchołków
- b. GT będzie zawsze pokolorowany nieoptymalnie, a GD będzie pokolorowany nieoptymalnie tylko w losowych sytuacjach
- c. GT będzie pokolorowany nieoptymalnie tylko przy pewnej ustalonej numeracji wierzchołków, a GD będzie pokolorowany nieoptymalnie w losowych sytuacjach
- d. GT będzie zawsze pokolorowany nieoptymalnie, a GD będzie pokolorowany optymalnie przy pewnej określonej numeracji wierzchołków
- 84. W kolorowaniu wierzchołkowym, przy założeniu P != NP, oszacowanie liczby chromatycznej równe 4 dla grafów płaskich (planarnych) jest:
 - a. Dowolnie odległe od liczby chromatycznej i nieobliczalne w wielomianowym czasie
 - b. Dowolnie odległe od liczby chromatycznej i obliczalne w wielomianowym czasie
 - c. Bliskie liczby chromatycznej i obliczalne w wielomianowym czasie
 - d. Bliskie liczby chromatycznej i nieobliczalne w wielomianowym czasie
- 85. Graf trudny do kolorowania dla algorytmu random sequential
 - a. Nie może istnieć bo można odgadnąć optymalne kolorowanie
 - b. Może istnieć ale jeszcze tego grafu nie odkryto
 - c. Może istnieć bo można odgadnąć graf dość trudny
 - d. Nie może istnieć bo problem jest NP-trudny
- 86. W kolorowaniu wierzchołkowym, przy założeniu P!=NP, oszacowanie liczby chromatycznej jako większej od lub równej liczbie klikowej grafu jest:
 - a. Dowolnie odległe od liczby chromatycznej i nieobliczalne w wielomianowym czasie
 - b. Dowolnie odległe od liczby chromatycznej i obliczalne w wielomianowym czasie
 - c. Bardzo bliskie liczby chromatycznej i obliczalne w wielomianowym czasie
 - d. Bardzo bliskie liczby chromatycznej i nieobliczalne w wielomianowym czasie

- 87. W kolorowanie krawędziowym, przy założeniu P!=NP, oszacowanie wartości indeksu chromatycznego jest
 - a. Dowolnie odległe od indeksu chromatycznego i nieobliczalne w wielomianowym czasie
 - b. Dowolnie odległe od indeksu chromatycznego i obliczalne w wielomianowym czasie
 - c. Bliskie indeksu chromatycznego i nieobliczalne w wielomianowym czasie
 - d. Bliskie indeksu chromatycznego i obliczalne w wielomianowym czasie
- 88. W kolorowaniu wierzchołkowym, przy założeniu P!=NP, oszacowanie liczby chromatycznej równe 2 dla grafów dwudzielnych jest
 - a. Bliskie liczby chromatycznej i nieobliczalne w wielomianowym czasie
 - b. Dowolnie odległe od liczby chromatycznej i obliczalne w wielomianowym czasie
 - c. Dowolnie odległe od liczby chromatycznej i nieobliczalne w wielomianowym czasie
 - d. Bliskie liczby chromatycznej i obliczalne w wielomianowym czasie
- 89. W kolorowaniu wierzchołkowym, przy założeniu P!=NP, oszacowanie liczby chromatycznej równe stopniowi grafu (Delta) dla grafów dwudzielnych jest
 - a. Dowolnie odległe od liczby chromatycznej i nieobliczalne w wielomianowym czasie
 - b. Dowolnie odległe od liczby chromatycznej i obliczalne w wielomianowym czasie
 - c. Bliskie liczby chromatycznej i nieobliczalne w wielomianowym czasie
 - d. Bliskie liczby chromatycznej i obliczalne w wielomianowym czasie
- 90. W krawędziowym kolorowaniu grafu kolorowanie to funkcja
 - a. Określona na wierzchołkach
 - b. Liczbowa
 - c. Określona na parach krawędzi
 - d. Jej wartościami są krawędzie
- 91. W kolorowaniu wierzchołkowym, przy założeniu P!=NP, oszacowanie liczby chromatycznej jako większej od lub równej liczbie wierzchołków podzielonej przez liczbę niezależną grafu jest
 - a. Dowolnie odległe od liczby chromatycznej i obliczalne w wielomianowym czasie
 - b. Bardzo bliskie liczby chromatycznej i obliczalne w wielomianowym czasie

- c. Bardzo bliskie liczby chromatycznej i nieobliczalne w wielomianowym czasie
- d. Dowolnie odległe od liczby chromatycznej i nieobliczalne w wielomianowym czasie

PYTANIA BEZ ODPOWIEDZI

- 92. W problemie wyboru algorytmu przestrzeń cech (feature space) jest:
 - a. jest funkcją od instancji do rozwiązań
 - b. jest funkcją od instancji do algorytmów
 - c. jest funkcją od instancji do abstrakcyjnej przestrzeni
 - d. niezbędna do rozwiązania tego problemu
- 93. To że jakiś problem optymalizacji kombinatorycznej daje się rozwiązać do optymalności algorytmem zachłannym pociąga za sobą, że
 - a. rozwiązane puste jest dopuszczalne i zawsze istnieje ciąg kroków od rozwiązania pustego do innego dopuszczalnego
 - b. rozwiązane puste nie musi być dopuszczalne i nie musi istnieć ciąg kroków od rozwiązania pustego do innego dopuszczalnego
 - c. rozwiązane puste nie musi być dopuszczalne i zawsze istnieje ciąg kroków od rozwiązania pustego do innego dopuszczalnego
 - d. rozwiązanie puste jest dopuszczalne i nie musi istnieć ciąg kroków od rozwiązania pustego do innego dopuszczalnego
- 94. Skojarzenie w grafie jest maksymalne, gdy
 - a. nie istnieją w nim ścieżki naprzemienne
 - b. żaden z pozostałych warunków nie jest wystarczający, aby skojarzenie było maksymalne
 - c. nie istnieją w nim ścieżki o nieparzystej długości
 - d. nie istnieją w nim ścieżki zaczynające i kończące się w wierzchołku wolnym
- 95. Porównując metody przeszukiwania lokalnego i populacyjne
 - a. przeszukiwania lokalnego potrzebują mniej pamięci niż populacyjne
 - b. przeszukiwania lokalnego i populacyjne potrzebują tyle są nieporównywalne ze względu na ilość używanej pamięci
 - c. przeszukiwania lokalnego i populacyjne potrzebują tyle samo pamięci
 - d. przeszukiwania lokalnego potrzebują więcej pamięci niż populacyjne
 - e. populacyjne podążają jedną trajektorią rozwiązania
 - f. przeszukiwania lokalnego podążają jedną trajektorią rozwiązania
 - g. przeszukiwania lokalnego i populacyjne podążają jedną trajektorią rozwiązania
 - h. ani przeszukiwania lokalnego ani populacyjne nie podążają jedną trajektorią rozwiązania

- 96. Twierdzenie o nieistnieniu darmowych obiadów (no free lunch) dla problemów optymalizacji kombinatorycznej oznacza, że
 - a. tylko w niektórych okolicznościach, tylko niektóre algorytmy są efektywne
 - b. żadna metoda nie rozwiązuje wszystkich problemów optymalizacji kombinatorycznej
 - c. we wszelkich okolicznościach, tylko niektóre algorytmy są efektywne
 - d. problemy optymalizacji kombinatorycznej są za trudne, aby rozwiązać je efektywnie
- 97. W problemie wyznaczania maksymalnego przepływu w sieci
 - a. przepływy łukowe mogą być nieograniczone
 - b. przepływy łukowe są ograniczone i nieujemne
 - c. przepływy łukowe są nieograniczone i nieujemne
 - d. przepływy łukowe mogą być ujemne
- 98. Porównując algorytmy Multistart Local Search (MLS) i Iterated Local Search (ILS)
 - a. MLS ma pamięć, ILS nie ma pamięci
 - b. MLS nie ma pamięci, ILS nie ma pamięci
 - c. MLS nie ma pamięci, ILS ma pamięć
 - d. MLS ma pamięć, ILS ma pamięć
 - e. MLS częściowo niszczy optimum lokalne, ILS wielokrotnie startuje od nowa
 - f. MLS wielokrotnie startuje od nowa, ILS wielokrotnie startuje od nowa
 - g. MLS wielokrotnie startuje od nowa, ILS częściowo niszczy optimum lokalne
 - h. MLS częściowo niszczy optimum lokalne, ILS częściowo niszczy optimum lokalne
- 99. Przetarg między jakością rozwiązań i czasem wykonania w optymalizacji kombinatorycznej oznacza, że
 - a. zwykle szybsze algorytmy dają gorsze rozwiązania
 - b. zwykle szybsze algorytmy dają lepsze rozwiązania
 - c. zawsze im szybszy algorytm tym gorsza jakość rozwiązania
 - d. wolniejsze algorytmy są zdominowane pod kątem jakości rozwiązań

- 100. Algorytm GRASP to metoda która
 - a. jest wersją algorytmu przeszukiwania lokalnego
 - b. wprowadza losowość dołączania elementów do rozwiązania
 - c. błądzi losowo
 - d. jest jedno-przebiegowa
- 101. W algorytmie genetycznym
 - a. rozwiązanie musi być łańcuchem
 - b. niezbędna jest duża populacja rozwiązań
 - c. operatory genetyczne są binarne
 - d. kodowane rozwiązanie nie może być permutacją
- 102. W kolorowaniu wierzchołkowym, przy założeniu P!=NP, oszacowanie liczby chromatycznej jako mniejszej od lub równej stopniowi grafu Delta (o ile nie jest cyklem o nieparzystej długości i nie zawiera kliki o rozmiarze Delta+1) jest
 - a. dowolnie odległe od liczby chromatycznej i nieobliczalne w wielomianowym czasie
 - b. bardzo bliskie liczby chromatycznej i obliczalne w wielomianowym czasie
 - c. dowolnie odległe od liczby chromatycznej i obliczalne w wielomianowym czasie
 - d. bardzo bliskie liczby chromatycznej i nieobliczalne w wielomianowym czasie
- 103. Porównując metody przeszukiwania lokalnego i populacyjne
 - a. przeszukiwania lokalnego wymieniają cechy między rozwiązaniami
 - b. przeszukiwania lokalnego i populacyjne wymieniają cechy między rozwiązaniami
 - c. populacyjne wymieniają cechy między rozwiązaniami
 - d. ani przeszukiwania lokalnego ani populacyjne nie wymieniają cech między rozwiązaniami

ALGORYTMY

https://colab.research.google.com/drive/1xBhIG6uA66Rnz-yK9QnSiLZxAYAN2-OA#scrollTo=Fx0omXQX Nmi

• Wartości elementów. w=[2, 2, 4, 9, 8, 1, 6, 7, 6]. Rozmiary elementów: s=[4, 5, 5, 7, 5, 1, 5, 5, 4]. Rozmiar plecaka: 10.

- Wartości elementów. w=[10, 9, 8, 10, 5, 9, 1, 1, 4]. Rozmiary elementów: s=[3, 9, 6, 6, 6, 7, 6, 4, 7].
 Rozmiar plecaka: 11.
- Wartości elementów. w=[8, 9, 3, 3, 3, 8, 7, 1, 1]. Rozmiary elementów: s=[6, 1, 4, 8, 10, 5, 8, 4, 1].
 Rozmiar plecaka: 11.
- Wartości elementów. w=[4, 6, 6, 5, 1, 10, 4, 9, 9]. Rozmiary elementów: s=[6, 5, 6, 9, 2, 8, 2, 10, 5].
 Rozmiar plecaka: 13.
- Wartości elementów: w=[5, 5, 10,5, 9, 1, 2, 5, 2]. Rozmiary elementów: s=[5, 6, 7, 10, 10, 4, 9, 7, 5]. Rozmiar plecaka: 13.
- Wartości elementów: w=[10, 9, 7, 8, 10, 2, 5, 10, 5]. Rozmiary elementów: s=[4, 4, 7, 6, 1, 6, 1, 3, 4]. Rozmiar plecaka: 15.
- Wartości elementów: w=[9, 1, 7, 9, 2, 3, 7, 1, 7]. Rozmiary elementów: s=[10, 7, 10, 1, 8, 8, 8, 3, 7].
 Rozmiar plecaka: 11.
- Wartości elementów: w=[10, 5, 8, 8, 3, 10, 9, 7, 8]. Rozmiary elementów: s=[10, 10, 2, 9, 2,5, 4, 9, 7]. Rozmiar plecaka: 10.
- Wartości elementów: w=[2, 9, 3, 2, 10, 2, 6, 10]. Rozmiary elementów: s=[3, 10, 9, 4, 6, 9, 10, 2]. Rozmiar plecaka: 10.
- Wartości elementów: w=[1, 8, 6, 1, 3, 10, 2, 5, 7]. Rozmiary elementów: s=[6, 8, 5, 7, 9, 3, 3, 7, 4]. Rozmiar plecaka: 15.
- Wartości elementów: w=[4, 3, 5, 2, 10, 2, 10, 2, 7]. Rozmiary elementów: s=[4, 3, 5, 2, 10, 2, 10, 2, 7]. Rozmiar plecaka: 13.
- Wartości elementów: w=[10, 5, 2, 9, 9, 2, 10, 10, 6]. Rozmiary elementów: s=[2, 10, 8, 4, 5, 7, 8, 3, 1]. Rozmiar plecaka: 10.

- Wartości elementów: w=[4, 8, 9, 1, 6, 9, 5, 10, 10]. Rozmiary elementów: s=[5, 2, 9, 7, 2, 2, 10, 11, 5]. Rozmiar plecaka: 15.
- Wartości elementów: w=[8, 4, 9, 5, 2, 5, 2, 8, 3]. Rozmiary elementów: s=[5, 5, 8, 7, 1, 1, 8, 9, 3].
 Rozmiar plecaka: 11 .

Zad. 103

Rozwiązać następującą instancję problemu plecakowego stosując **drugą** metodę z wykładu.

Wartości elementów: w=[5, 3, 2, 2, 9, 3, 5]. Rozmiary elementów: s=[2, 6, 3, 6, 5, 3, 6]. Rozmiary plecaka: 12 .

Z przebiegu rozwiązania podać tylko dwie linie wskazane w ponizszej tabelce. Proszę także podać rozwiązanie. Wartość "nieskończoność" w tabelce wpisać jako 100.

Pominąć zerową kolumnę. Proszę wpisywać także wartości większe od rozmiaru plecaka. Jeżeli cała tabelka się nie mieści w okienku, to proszę zmiejszyć rozmiar tekstu.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6 100 3 3 9 2 9 5 5 5 8 8 8 14 7 14 10

7 100 3 3 9 2 9 5 5 5 8 8 8 8 11 7 14 10

Wpisz 1/0 gdy element wchodzi/nie wchodzi do plecaka: *1: 1 *2: 0 *3: 0 *4: 0 *5: 1 *6: 1 *7: 0

Wpisz wartość plecaka: 17

Rozwiązać następującą instancję problemu plecakowego stosując **drugą** metodę z wykładu. Wartości elementów: w=[3, 2, 2, 8, 5, 3, 4]. Rozmiary elementów: s=[5, 5, 2, 7, 6, 6, 7]. Rozmiar plecaka: 10.

Z przebiegu rozwiązania podać tylko dwie linie wskazane w poniższej tabelce. Proszę także podać rozwiązanie. Wartość "nieskończoność" w tabelce wpisać jako 100.

Pominąć zerową kolumnę. Proszę wpisywać także wartości większe od rozmiaru plecaka. Jeżeli cała tabelka się nie mieści w okienku, to proszę zmiejszyć rozmiar tekstu.

Zad. 104 1 2 3 1 5 6 7 8 9 10

Zad.105

Wartości Z przebie	Receivable or descriptions of material profit contract profit																												
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
5 5	7	12	8	2	7	9	14	10	7	12	14	19	15	20	22	27	100	100	100	100	100	100	100	100	100	100	100	100	100
7 5	7	12	8	2	7	2	7	9	7	10	4	9	7	12	12	9	14	9	14	16	21	17	14	19	21	26	22	27	29
	gdy eleme	nt wchodzi/s	nie wchodz	si do plecak	ac * 1: 0	*2:	1	3: 0	*4: 0	* 5: 0	* 6:	1	* 7: 1																

		W poniższej sieci działań wierzchołki są stanami przetwarzania, a łuki przedstawiają działania i ich poprzedzanie. Wszystkie działania poprzedzające dany stan muszą zostać wykonane zanim stan można uznać za osiągnięty. Łuki opisane są czasem trwania działania. Łuki od->do w sieci i ich czasy trwania, zapisane (od.do):czas, są następujące														
		(0,1): 1														
		(0,2): 4														
		(0,7): 9														
		(1,2): 1														
		(1,3): 6														
		(1,5): 7														
		(1,7): 7														
		(1,8): 7														
		(2,3): 1														
		(2,7): 8														
		(2,8): 6														
		(3,4): 1														
		(4,5): 1														
		(4,7): 3														
		(5,6): 1														
		(5,7): 9														
		(6,7): 1														
		(7,8): 1														
		Active to														
		Wyznaczyć najwcześniejsze momenty osiągnięcia każdego stanu i najpóźniejsze momenty opuszczenia stanów, które nie naruszają czasu trwania ścieżki krytycznej. Algorytm wyznaczan														
						. Wartość "nieskończoność" wpisywać jako 100.										
		wierzchołek 0: najwcześniej:	0	najpóźniej:	0											
		wierzchołek 1: najwcześniej:	1	najpóźniej:	1											
		wierzchołek 2: najwcześniej:	и	najpóźniej:	6											
		wierzchofek z. Hajwczesfilej.	*	najpozniej.	O											
		wierzchołek 3: najwcześniej:	7	najpóźniej:	7											
		wierzchołek 4: najwcześniej:	8	najpóźniej:	8											
		wierzchołek 5: najwcześniej:	9	najpóźniej:	9											
		wierzchołek 6: najwcześniej:	10	najpóźniej:	17											
		wierzchołek 7: najwcześniej:	18	najpóźniej:	18											
Zad.	106	wierzchołek 8: najwcześniej:	19	najpóźniej:	19											

Zad. 107

trwania, zapisane (od,do)xzas, są na	ki sa stanami nezatwarzan		Pytanie 13
		a, a kuki przedstawiają działania i ich poprzedzanie. Wszystkie działania poprzedzające dany stan muszą zostać wykonane zanim stan można uznać za osiągnięty, Łuki opisane są czasem trwania działania. Łuki od->do w sieci i ich czasy	Nie udzielono odpowiedzi
(0,1): 1			Punkty maks: 3
(0,2): 7			F' Oflaguj pyte
(1,2): 1			
(1,3): 9			
(1,5): 9			
(1,6): 10			
(1,8): 3			
(2,3): 1 (2,4): 2			
(2,5): 9			
(2,7): 10			
(2,8): 3			
(3,4): 1			
(3,8): 4			
(4,5): 1			
(5,6): 1			
(6,7): 1 (7,8): 1			
(7,8). 1			
Wyznaczyć najwcześniejsze momen	ity osiągnięcia każdego st	mu i najpóźniejsze momenty opuszczenia stanów, które nie naruszają czasu trwania ścieżki krytycznej. Algorytm wyznaczania odległości - dowolny. Wyniki wpisać do poniższych komórek. Wartość "nieskończoność" wpisywać jako 100.	
wierzchołek 0: najwcześniej:	najpóźniej:		
wierzchołek 1: najwcześniej:	najpóźniej:		
wierzchołek 2: najwcześniej:	najpóźniej:		
wierzchołek 3: najwcześniej:	najpóźniej:		
wierzchołek 4: najwcześniej:	najpóźniej:		
wierzchołek 5: najwcześniej:	najpôźniej:		
wierzchołek 6: najwcześniej:	najpóźniej:		
wierzchołek 7: najwcześniej:	najpôźniej:		
wierzchołek 8: najwcześniej:	najpóźniej:		

Wartos Z prze	zwązac następującą instancję pronemu piecakowego sosucją <u>cmugą metooę</u> z wykadu. rotości elementów "eljo, 7.1, 9.1, 1]. Rozmiary elementów. sr.[2, 4, 7, 3, 7, 8, 8]. Rozmiar płecaka: 10 . rzebiegu rozwiązania podać tylko dwie linie wskazane w poniższej tabelce. Proszę także podać rozwiązanie. Wartość "nieskończoność" w tabelce wpisać jako 100. ninąć zerową kolumnę. Proszę wpisywać także wartości większe od rozmiaru płecaka. Jeżeli cała tabelika się nie mieści w okienku, to proszę zmiejszyć rozmiar stu.															odpo Punk	dzielono wiedzi ty maks.: 7,00 Itaguj pytanie		7 8 9 10 11 12				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	Zapisz po	dejście	
4																							
7																							
	1/0 gdy ele wartość ple		odzi/nie w	chodzi do pl	lecaka: * 1	:	* 2:	* 3:		* 4:	* 5:	* 6:	* 7:										

Zad. 109

Zad. 110

