Eigenwerte, Eigenräume und das Charakteristische Polynom

August 18, 2021

1 Eigenwerte und Eigenvektoren

1.1 Definiton Eigenwert, Eigenvektor

Seien V ein K-Vektorraum und f:V ein Endomorphismus.

(a) Ein Skalar $\lambda \in K$ heißt Eigenwert von f, falls folgene Eigenschaft gilt:

$$\exists x \in V \ \{0_V\} : f(x) = \lambda x$$

(b) Ist $\lambda \in K$ ein Eigenwert von f, so heißt jedes $x \in V$ $\{0_V\}$ mit $f(x) = \lambda x$ Eigenvektor zum eigenwert λ von f und die Menge

$$Eig_f(\lambda):$$
 $\{x \in V | f(x) = \lambda x\}$

heißt Eigenraum zum Eigenwert von λ von f.

2 Charakteristisches Polynom

2.1 Definition

Seien K ein Körper, $n \in \mathbb{N}_{\geq 1}$ und $A = (\alpha_{ij})_{i,j} \in M_n(K)$. Betrachte über dem Polynomring K[X] die $n \times n$ -Matrix

$$XI_{n} - A = \begin{pmatrix} X - \alpha_{11} & -\alpha_{12} & \dots & -\alpha_{1n} \\ -\alpha_{21} & X - \alpha_{22} & \dots & -\alpha_{2n} \\ \vdots & \vdots & & \vdots \\ -\alpha_{n1} & -\alpha_{n2} & \dots & X - \alpha_{nn} \end{pmatrix} \in M_{n}(K[X]).$$

Deren Determinante

$$\chi_A(X) := \det(XI_n - A)$$

ist ein Polynom vom Grad n in K[X] und heißt charakteristisches Polynom von A.

2.2 Eigenwertbestimmung einer Matrix

Es gilt:

" λ ist Eigenwert von A" \Leftrightarrow " λ ist Nullstelle von $\chi_A(X)$ "

3 Bestimmung Eigenraum zum Eigenwert

3.1 Rechenvorschrift

Seien K ein Körper, $n \in \mathbb{N}_{\geq 1}$ und $A \in M_n(K)$. Dann heißt $\lambda \in K$ Eigenwert von A, falls λ Eigenwert von f_a ist. In diesem Fall ist der Eigenraum

$$Eig_A(\lambda) := \mathcal{L}(\lambda I_n - A, 0_{K^n})$$

3.2 Beispielrechnung

Sei
$$A := \begin{pmatrix} 3 & 1 & -3 \\ 0 & -2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$

Bestimme den Eigenraum zum kleinsten Eigenwert.

1. Bestimme das Charakteristische Polynom.

$$\chi_A(X) := \det(XI_n - A) = \det\begin{pmatrix} X - 3 & -1 & 3\\ 0 & X + 2 & -1\\ 0 & 0 & X - 3 \end{pmatrix} = (X - 3) \cdot (X + 2) \cdot (X - 3)$$

- 2. Bestimme die Nullstellen des Polynoms. Hier lassen sich die Nullstellen ablesen mit $\mathcal{L} = \{3, -2\}$ daher sind die Eigenwerte $\lambda_1 = 3, \lambda_2 = -2$.
- 3. Nun bestimmen wir den Eigenraum $Eig_A(-2) := \mathcal{L}(-2I_n A, 0_{K^n})$

4.
$$\mathcal{L}\left(\begin{pmatrix} -5 & -1 & -3\\ 0 & 0 & -1\\ 0 & 0 & -5 \end{pmatrix}, \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}\right)$$

5. Es resultieren drei Gleichungen

(i)
$$-5x_1 - x_2 - 3x_3 = 0 \Leftrightarrow x_1 = -\frac{1}{5}x_2 - \frac{3}{5}x_3$$

(ii)
$$-x_3 = 0 \Leftrightarrow x_3 = 0$$

(iii)
$$-5x_3 = 0 \Leftrightarrow x_3 = 0$$

- 6. Wir setzten die freie Variable $\lambda = x_2$
- 7. Bestimmung Lösungsmenge

8.
$$\mathcal{L}(-2I_n - A, 0_{K^n}) = \left\{ \begin{pmatrix} -\frac{1}{5}\lambda \\ \lambda \\ 0 \end{pmatrix} : \lambda \in K \right\} = \left\{ \begin{pmatrix} -\frac{1}{5} \\ 1 \\ 0 \end{pmatrix} \lambda : \lambda \in K \right\} = \left\langle \begin{pmatrix} -\frac{1}{5} \\ 1 \\ 0 \end{pmatrix} \right\rangle$$

3.3 Diagonalisierbarkeit

• Eine Matrix ist Diagonalisierbar wenn $\sum_{i=1}^k dim_k Eig_A(\lambda_i) = n$ gilt.