V rámci původní úlohy zaměřené na Problém obchodního cestujícího byl vypracován i dodatečný úkol, který spočíval v úpravě jedné z použitých metod, konkrétně metody Best Insertion. V původní úloze byl kód napsán tak, že po vybrání 3 náhodných bodů z množiny a vytvoření kružnice byly ostatní body do kružnice přidávány tak, že byl náhodně vybrán uzel z dosud nezpracovaných a pro něj bylo vypočítáno nejlepší možné zapojení do kružnice. Úloha tedy byla nedeterministická.

V rámci dodatečného úkolu byla metoda upravena na deterministickou. Část původního kódu, v níž docházelo k náhodnému výběru bodů byla odstraněna a nahrazena for cyklem, který postupně vybírá dosud nezpracované uzly a ve vnořeném for cyklu počítá jejich vzdálenost od hran Hamiltonovské kružnice. Nezpracovaný uzel s nejkratší vzdáleností od hrany je poté připojen do kružnice stejným způsobem jako původní náhodný uzel.

Výsledné hodnoty délky Hamiltonovské kružnice byly poté porovnány s výsledky původní verze BI. Porovnání je k dispozici níže v Tabulkách 1 a 2.

Tab. 1 – Hodnoty W a	k pro nedeterministickou metodu Best Insertion

	Letiště ČR		Obce okresu Tábor	
	W [km]	k [%]	W [km]	k [%]
1	2312,289	100,106	368,186	107,798
2	2355,041	101,957	364,883	106,831
3	2369,396	102,578	369,852	108,286
4	2431,306	105,258	360,162	105,449
5	2405,302	104,133	374,442	109,630
6	2391,480	103,534	348,072	101,909
7	2365,586	102,413	372,372	109,024
8	2391,675	103,543	358,343	104,916
9	2313,909	100,176	362,294	106,073
10	2331,787	100,950	356,790	104,462
průměr	2366,777	102,465	363,540	106,438

Tab. 2 – Hodnoty W a k pro deterministickou metodu Best Insertion

	Letiště ČR		Obce okresu Tábor	
	W [km]	k [%]	W [km]	k [%]
1	2322,642	100,554	355,934	104,211
2	2411,360	104,395	376,171	110,136
3	2387,267	103,352	365,597	107,040
4	2376,004	102,864	377,199	110,437
5	2434,860	105,412	365,853	107,115
6	2445,786	105,885	354,168	103,694
7	2383,875	103,205	362,548	106,148
8	2340,532	101,329	357,687	104,724
9	2394,992	103,686	366,271	107,238
10	2395,452	103,706	354,429	103,770
průměr	2389,277	103,439	363,586	106,451

Má původní myšlenka byla, že tato úprava metody zajistí spíše mírné zlepšení výsledků. Opak je však pravdou. Bylo opět provedeno 10 spuštění programu a vypočítána délka Hamiltonovské kružnice (W) a poměr délky vůči nejkratší nalezené délce ze softwaru ArcMap. Výsledné hodnoty ale nebyly příliš rozdílné. Pokud se podíváme nejprve na vrstvu letišť ČR, deterministická metoda měla v průměru o 1 % horší výsledky než varianta nedeterministická. Zároveň i nejlepší dosažená délka Hamiltonovské kružnice byla o 10 km kratší u původního kódu. U vrstvy obcí v okresu Tábor byly výsledky vyrovnanější. Poměrově byl sice větší rozdíl mezi nejkratšími dosaženými vzdálenostmi, ale průměrná délka kružnice byla u deterministické verze větší pouze o půl desetiny procenta. Svou roli na výsledcích jistě sehrálo i rozložení uzlů ve vrstvě a jejich počet. Drobnou zajímavostí vzpírající se teorii pravděpodobnosti je pak to, že u obou verzí metody byl nejlepší výsledek dosažen u první, resp. šestého spuštění programu.

EDIT 27. 1. 2022:

V rámci první verze dodatečného úkolu vznikla ne zcela deterministická verze úlohy. V první fázi řešení totiž došlo k náhodnému výběru tří bodů, které inicializovaly HK. Aby byl tento krok učiněn deterministickým, byl proces náhodného výběru nahrazen nalezením extrémních hodnot bodů na osách x a y. Pomocí funkce *def get_extremes()* na řádcích 24 až 42 byly nalezeny uzly s extrémními hodnotami v souřadnicích (minimum a maximum na osách x a y). Díky této změně tak již při různých spuštění kódu nebylo dosahováno různých výsledků, nýbrž vždy jednoho stejného.

Pro vrstvu letišť ČR bylo dosaženo délky Hamiltonovské kružnice **2398,490 km** (k = 103,838 %) a pro vrstvu obcí v okrese Tábor to bylo **357,933 km** (k =104,796 %). Při porovnání výsledných hodnot s průměry z předchozích metod můžeme u obou vrstev pozorovat poměrně odlišné výsledky. Zatímco u vrstvy táborských obcí vyšla kratší vzdálenost W o zhruba 5,5 km (1,6 %), u českých letišť byl výsledek nejnovější verze metody BI naopak horší než obě předchozí verze. Oproti první verzi dokonce došlo k prodloužení délky o necelých 32 km (3,7 %). Výsledné kružnice jsou vizualizovány na Obrázcích 1 a 2.

Obr. 1 – Hamiltonovská kružnice letišť ČR pro nejnovější verzi metody BI

Obr. 2 - Hamiltonovská kružnice obcí okresu Tábor pro nejnovější verzi metody BI

