DS-GA 1008 HW 3

Long Chen Center for Data Science, New York University lc3424@nyu.edu

Fall 2021

1 Theory

1.1 Convolutional Neural Network

a)

For width:

$$W_{output} = \frac{W - K + 2P}{S} + 1 = \frac{10 - 3}{2} + 1 = 4.5$$

Thus we round it down to get $W_{output}=4$.

For hight:

$$H_{output} = \frac{H - K + 2P}{S} + 1 = \frac{11 - 3}{2} + 1 = 5$$

Therefore, the output dimension will be 4×5 .

b)

For height:

$$H_{output} = \frac{H - D \times (K - 1) + 2P - 1}{S} + 1$$

For width:

$$W_{output} = \frac{W - D \times (K - 1) + 2P - 1}{S} + 1$$

Therefore the output dimension is $F \times H_{output} \times W_{output}$. If we encounter non-integer results in the calculation, round it down.

c)

i) Dimension of the output is:

$$f_w(x) \in \mathbb{R}^{1 \times 2}$$
,

where the first dimension indicates the number of filters, second dimension indicates the number of channels, and third dimension indicates the size of output for each convolution.

Let's further define $W \in \mathbb{R}^{1\times 3}$, where the first dimension indicates the number of filters, second dimension indicates the number of channels, and third dimension indicates the kernel size.

Intuitively, the value of $f_w(x)[i,k]$ is the sum over channels of the dot products of x' = x[j,2k:2k+3] (i.e. the slice of x in jth channel with index equal to 2k,2k+1,2k+2, where k is 0-indexed), and W' = W[i,j,:] (i.e. the weight for filter i in channel j):

$$f_w(x)[i,j,k] = (W')^T \times X' \in \mathbb{R}.$$

ii) Dimension of

$$\frac{\partial f_W(x)}{\partial W}$$

is $1 \times 2 \times 3$, where the first dimension indicates the output size of convolution for each channel, and the second dimension indicates the kernel size.

Let $[f_w(x)]_{jk}$ the partial output of convolution, where j indicates j-th channel and k indicates k-th output from convolution.

Let W_j be the weight of j-th channel and W_{jp} be the weight of p-th kernel index in the j-th channel.

Let x_{jk} be the slice vector of x in j-th channel such that index $i \in [2k, 2k + 3] \cap \mathbb{Z}$.

Note that we are ignoring filter dimension because we only have 1 filter, though adding the additional dimension is trivial. With such setting:

$$[f_w(x)]_{jk} = (W_j)^T \times x_{jk}$$

= $W_{j0} \times x_{jk}[0] + W_{j1} \times x_{jk}[1] + W_{j2} \times x_{jk}[2],$

where $x_{jk}[i]$ indicates the *i*-th element in the x_{jk} vector. This is essentially the dot product between corresponding weight and data. Therefore, easily can we find its partial derivative $w.r.t W_i$:

$$\begin{split} \frac{\partial [f_w(x)]_{jk}}{\partial w_j} &= \left(\frac{\partial [f_w(x)]_{jk}}{\partial w_{j0}} \quad \frac{\partial [f_w(x)]_{jk}}{\partial w_{j1}} \quad \frac{\partial [f_w(x)]_{jk}}{\partial w_{j2}}\right) \\ &= (x_{jk}[0] \quad x_{jk}[1] \quad x_{jk}[2]) \end{split}$$

Therefore we could find all $\frac{\partial [f_w(x)]_{jk}}{\partial w_j}$ for $j=1,\ldots,C$ and $k=1,\ldots,O$, where O indicates the output size of convolution, that form $\frac{\partial f_w(x)}{\partial w}$.

iii) The dimension is $2 \times 2 \times 5$. Using settings from ii), we could easily find that:

$$\frac{\partial [f_w(x)]_{jk}}{\partial x_j} = \begin{pmatrix} \frac{\partial [f_w(x)]_{jk}}{\partial x_j[0]} & \frac{\partial [f_w(x)]_{jk}}{\partial x_j[1]} & \frac{\partial [f_w(x)]_{jk}}{\partial x_j[2]} & \frac{\partial [f_w(x)]_{jk}}{\partial x_j[3]} & \frac{\partial [f_w(x)]_{jk}}{\partial x_j[4]} \end{pmatrix}$$

Therefore we could find all $\frac{\partial [f_w(x)]_{jk}}{\partial x_{jk}}$ for $j=1,\ldots,C$ and $k=1,\ldots,O$, where O indicates the output size of convolution, that form $\frac{\partial f_w(x)}{\partial x}$.

iv) The dimension of $\frac{\partial \ell}{\partial f_w(x)}$ is 2×2 . The dimension of $\frac{\partial \ell}{\partial W}$ is 2×3 , where the first dimension indicates channel, and the second dimension indicates kernel size. For $j=1,\ldots,C,\ p=1,\ldots,K$ (K is the kernel size), and $k=1,\ldots,O$ (O is the output size of convolution). We thus have:

$$\frac{\partial \ell}{\partial W_{jp}} = \sum_{k=0}^{1} \frac{\partial \ell}{\partial [f_w(x)]_{jk}} \frac{\partial [f_w(x)]_{jk}}{W_{jp}}$$

1.2 Recurrent Neural Networks

a) Diagram

Figure 1: RNN visualization

b)

 $c[t] \in \mathbb{R}^m$, since $W_c x[t] \in \mathbb{R}^{m \times 1}$, $W_h h[t] \in \mathbb{R}^{m \times 1}$, and element-wise sigmoid does not change dimensions.

c) $\frac{\partial \ell}{\partial w_x} \in \mathbb{R}^{m \times n}$.

$$\frac{\partial \ell}{\partial w_x} = \sum_{t=1}^k \left[\frac{\partial \ell}{\partial h[t]} \frac{\partial h[t]}{\partial w_x} \right]$$

Similarities: Need all timestamp t for forward and backward.

 \mathbf{d}

Yes. Gradient at timestamp depends on all previous gradients and does not have long-term memories. Therefore, gradient could still vanish or explode.