

Tree

Considerar un **tree** (arbol) que consiste en N **vertices**, numerados desde 0 hasta N-1. El vertice 0 es llamado **root**. Cada vertice, excepto la raiz(root), tiene un unico **parent** (padre). para cada i, dado que $1 \le i < N$, el padre del vertice i es el vertice P[i], donde P[i] < i. Tambien asumimos que P[0] = -1.

Para cualquier vértice i ($0 \le i < N$), el **subtree** (sub-arbol) de i es el conjunto de los siguientes vértices:

- *i*, y
- cualquier vértice cuyo padre sea i, y
- cualquier vertice cuyo padre de su padre sea i, y
- cualquier vertice cuyo padre del padre de su padre sea i, y
- etc.

La siguiente imagen muestra un ejemplo de árbol que consta de N=6 vértices. Cada flecha conecta un vértice con su padre, excepto la raiz, que no tiene padre. El sub-árbol de vértice 2 contiene los vertices 2,3,4 y 5. El sub-árbol de vértice 0 contiene todos los 6 vertices del árbol y el sub-árbol de vértice 4 contiene solo el vértice 4.

Cada vertice tiene asigando un **weight** (peso) no negativo. Denotamos el peso del vertice i ($0 \le i \le N$) como W[i].

Tu tarea es escribir un programa que responda Q consultas, cada una especificada por un par de enteros (L,R). La respuesta a la consulta debe ser calculada como sigue.

Considera asignar un entero, llamado **coefficient** (coeficiente), a cada vertice del árbol. Tal asignación se describe mediante una secuencia $C[0],\ldots,C[N-1]$, donde C[i] ($0 \le i < N$) es el coeficiente asignado al vertice i. Lamaremos a esta secuencia **coefficient sequence**. Nótese que los elementos de la secuencia de coeficientes pueden ser negativos, 0, o positivos.

Para una consulta (L,R), Una secuencia de coeficientes se llama **valid** si, para cada vertice i $(0 \le i < N)$, se cumplen las siguientes condicones: la suma de los coeficientes de los vértices en el subárbol del vértice i no es menor a L ni mas grande que R.

Para una secuencia de coeficientes $C[0],\ldots,C[N-1]$, el **cost** (costo) de un vertice i es $|C[i]|\cdot W[i]$, donde |C[i]| denota el valor absoluto de C[i]. Finalmente, el **total cost** es la suma de los costos de todos los vértices. Su tarea es calcular, para cada consulta, el **minimum total cost** (costo minimo total) que puede lograrse mediante alguna secuencia de coeficientes válida.

Detalles de implementacion

Debes implementar los dos procedimientos siguientes:

```
void init(std::vector<int> P, std::vector<int> W)
```

- P, W: arreglos de enteros de tamaño N especificando los padres y los pesos.
- Este procedimiento se llama exactamente una vez al comienzo de la interacción entre el grader y tu programa en cada caso de prueba

```
long long query(int L, int R)
```

- L, R: enteros describiendo una pregunta.
- ullet Este procedimiento es llamado Q veces después de la llamada a init en cada caso de prueba.
- Este procedimiento debe retornar la respuesta a la pregunta dada.

Restricciones

- $1 \le N \le 200\,000$
- 1 < Q < 100000
- P[0] = -1
- $0 \le P[i] < i$ para cada i tal que $1 \le i < N$
- $0 < W[i] < 1\,000\,000$ para cada i tal que 0 < i < N
- $1 \le L \le R \le 1\,000\,000$ en cada pregunta

Subtasks

Subtask	Score	Additional Constraints	
1	10	$Q \leq 10$; $W[P[i]] \leq W[i]$ para cada i tal que $1 \leq i < N$	
2	13	$Q \leq$ 10; $N \leq$ 2 000	
3	18	$Q \leq$ 10; $N \leq$ 60 000	
4	7	$W[i] = 1$ para cada i tal que $0 \leq i < N$	
5	11	$W[i] \leq 1$ para cada i tal que $0 \leq i < N$	
6	22	L=1	
7	19	Sin restricciones adicionales.	

Ejemplos

Considere las llamadas siguientes:

El árbol que consiste de 3 vértices: la raíz y sus 2 hijos. Todos los vértices tienen peso 1.

En esta pregunta L=R=1, que significa que la suma de los coeficientes en cada subárbol debe ser igual a 1. Considere la secuencia de coeficientes [-1,1,1]. El árbol y los coeficientes correspondientes (en rectángulos sombreados) son ilustrados a continuación.

Para cada vértice i ($0 \le i < 3$), la suma de los coeficientes de todos los vértices en el subárbol de i es igual a 1. Por lo tanto, esta secuencia de coeficientes es válida. El costo total se calcula de la siguiente manera:

Vértice	Peso	Coeficiente	Costo
0	1	-1	$ -1 \cdot 1 = 1$
1	1	1	$ 1 \cdot 1 = 1$
2	1	1	$ 1 \cdot 1 = 1$

Por lo tanto, el costo total es 3. Esta es la única secuencia válida de coeficientes; por lo tanto, esta llamada debe retornar 3.

```
query(1, 2)
```

El costo total de esta pregunta es 2, y es obtenida cuando la secuencia de coeficientes es [0,1,1].

Calificador Local (Grader)

Formato de entrada:

```
N
P[1] P[2] ... P[N-1]
W[0] W[1] ... W[N-2] W[N-1]
Q
L[0] R[0]
L[1] R[1]
...
L[Q-1] R[Q-1]
```

donde L[j] y R[j] (para $0 \le j < Q$) son los parámetros de entrada en la j-ésima llamada a query. Nota que la segunda línea de entrada contiene **únicamente** N-1 **enteros**, ya que el calificador local(Grader) no lee el valor de P[0].

Formato de salida:

```
A[0]
A[1]
...
A[Q-1]
```

donde A[j] (para $0 \le j < Q$) es el valor retornado por la j-ésima llamada a query.