Oficina CIF

Visualização de dados em Farmacologia: tipos de gráficos, como plotá-los e boas práticas para publicações

Tamires Martins Aluna(o)

Índice

1	Introdução	1
2	Passos básicos com R 2.1 Como se ajudar	1 1
3	Como rodar o código? 3.1 A ordem importa (rode o código na sequência):	1 2
	Os dados 4.1 Carregando pacotes	2 2 3
5	Os gráficos 5.1 Gráfico box plot simples usando ggplot2	
6	Agora ó a sua voz:	10

1 Introdução

Nesta prática, vamos explorar como visualizar dados da Farmacologia em R. Para isso, também vamos aprender passos básicos com a linguagem.

2 Passos básicos com R

2.1 Como se ajudar

Abrir a documentação de uma função é essencial para entender como ela funciona e quais parâmetros você pode usar. Existem várias maneiras de acessar a documentação no R:

```
1 ?mean
2 # ou
3 help(mean)
4 # ou clicar no nome da função apertar F1
```

3 Como rodar o código?

Coloque o cursor na linha que deseja rodar e aperte "Run" ou "Ctrl + Enter". O resultado irá aparecer no console, faça o teste:

```
print("Olá, mundo!") # Imprimindo uma mensagem no console
[1] "Olá, mundo!"

1 1 + 1

[1] 2
```

3.1 A ordem importa (rode o código na sequência):

```
# tire a anotação da frente e tente rodar:
# numero

# Atribuindo um valor a um objeto
numero <- 10

numero

[1] 10</pre>
```

Para acessar a classe de um objeto:

```
class(numero)
[1] "numeric"
```

Os pacotes são conjuntos de funções. Para instalar um pacote, use install.packages("nome_do_pacote"). Para carregar um pacote já instalado, use library(nome_do_pacote). Algumas funções são da base:

```
1  # mean() calcula a média
2
3  # A média de um vetor
4  meu_vetor <- c(1, 2, 3, 4, 5)
5  mean(meu_vetor)</pre>
```

[1] 3

4 Os dados

Os dados que iremos trabalhar são simulações baseadas em dados reais (Eckert et al. (não publicado)). O experimento consiste em avaliar comportamentos das moscas-das-frutas (*Drosophila melanogaster*) machos e fêmeas, em diferentes condições de tratamento.

Figura 1: Experimento com *Drosophila melanogaster*

4.1 Carregando pacotes

```
# seguido de texto são anotações, não código.

# Instale se ainda não tiver
# install.packages("ggplot2")
```

```
5  # install.packages("tidyplots")
6  # install.packages("patchwork")
7
8  library(ggplot2)
9  library(tidyplots)
10  library(patchwork)
```

4.2 Importando os dados

Os dados estão disponíveis no arquivo dados_moscas.xlsx, que deve estar na mesma pasta do arquivo .qmd.

```
# Importar os dados do arquivo Excel
 dados <- readxl::read_excel("dados_moscas.xlsx")</pre>
  dados
# A tibble: 259 x 31
  video animal_no_video sexo tratamento animal_number tempo test_duration_s
  <chr> <chr>
                      <chr> <chr>
                                       <chr>
                                                     <chr>
                                                                     <dbl>
1 G1V3 2
                             controle
                                                     Total
                                                                     2400
                       M
                                        1
                             controle 2
2 G1V2 8
                                                     Total
                       M
                                                                     2400
3 G1V1 1
                       Μ
                             controle 3
                                                     Total
                                                                     2400
4 G1V1 3
                       M
                           controle 4
                                                                     2400
                                                     Total
5 G1V3 12
                       M
                           controle 5
                                                     Total
                                                                     2400
                       M controle 6
6 G2V1 2
                                                     Total
                                                                     2400
                       M controle 7
7 G2V3 13
                                                     Total
                                                                     2400
8 G2V4 1
                       Μ
                             controle 8
                                                     Total
                                                                     2400
9 G2V4 3
                       M
                             controle
                                       9
                                                     Total
                                                                     2400
10 G3V1 7
                       Μ
                             controle 10
                                                     Total
                                                                     2400
# i 249 more rows
# i 24 more variables: total_distance_travelled_m <dbl>,
   total_time_mobile_s <dbl>, total_time_immobile_s <dbl>,
   total_mobile_episodes <dbl>, total_immobile_episodes <dbl>,
   number_of_entries_to_the_agar_zone <dbl>, time_in_the_agar_zone_s <dbl>,
#
#
   distance_travelled_in_the_agar_zone_m <dbl>,
   time_mobile_in_the_agar_zone_s <dbl>, ...
```

4.3 Visualizando os dados

```
<chr> "2", "8", "1", "3", "12", "2~
$ animal_no_video
                                            <chr> "M", "M", "M", "M", "M", "M"~
$ sexo
                                            <chr> "controle", "controle", "con~
$ tratamento
                                            <chr> "1", "2", "3", "4", "5", "6"~
$ animal_number
                                            <chr> "Total", "Total", "Total", "~
$ tempo
                                            <dbl> 2400, 2400, 2400, 2400, 2400~
$ test_duration_s
$ total_distance_travelled_m
                                            <dbl> 20.703724, 14.925057, 7.7662~
$ total_time_mobile_s
                                            <dbl> 2238.402, 1796.914, 2277.511~
$ total_time_immobile_s
                                            <dbl> 161.5979, 603.0864, 122.4891~
$ total_mobile_episodes
                                            <dbl> 92, 189, 158, 61, 61, 144, 1~
                                            <dbl> 105, 178, 59, 172, 214, 130,~
$ total immobile episodes
$ number_of_entries_to_the_agar_zone
                                            <dbl> 63, 21, 81, 80, 21, 1, 60, 3~
$ time in the agar zone s
                                            <dbl> 193.33418, 302.93306, 110.19~
$ distance_travelled_in_the_agar_zone_m
                                            <dbl> 0.92832895, 0.46652902, 0.89~
$ time_mobile_in_the_agar_zone_s
                                            <dbl> 140.29460, 297.49660, 77.520~
$ time_immobile_in_the_agar_zone_s
                                            <dbl> 53.039574, 5.436460, 32.6709~
$ immobile_episodes_in_the_agar_zone
                                            <dbl> 1, 7, 20, 9, 11, 1, 3, 5, 6,~
                                            <dbl> 204, 174, 217, 247, 153, 300~
$ number_of_entries_to_the_raia_zone
                                            <dbl> 1926.100, 1862.902, 2033.823~
$ time_in_the_raia_zone_s
                                            <dbl> 19.313651, 13.688998, 6.3153~
$ distance_travelled_in_the_raia_zone_m
$ time_mobile_in_the_raia_zone_s
                                            <dbl> 1887.455, 1296.854, 1950.409~
$ time_immobile_in_the_raia_zone_s
                                            <dbl> 38.64488, 566.04737, 83.4141~
                                            <dbl> 94, 163, 34, 159, 193, 120, ~
$ immobile_episodes_in_the_raia_zone
$ number_of_entries_to_the_sacarose_zone
                                            <dbl> 91, 92, 142, 62, 89, 11, 184~
$ time_in_the_sacarose_zone_s
                                            <dbl> 280.56567, 234.16512, 255.98~
$ distance travelled in the sacarose zone m <dbl> 0.46174388, 0.76953020, 0.55~
$ time_mobile_in_the_sacarose_zone_s
                                            <dbl> 210.65218, 202.56256, 249.58~
$ time_immobile_in_the_sacarose_zone_s
                                            <dbl> 69.913487, 31.602566, 6.4040~
$ immobile_episodes_in_the_sacarose_zone
                                            <dbl> 10, 8, 5, 4, 10, 9, 4, 6, 3,~
$ pindex
                                            <dbl> 1.4511954, 0.7729930, 2.3230~
```

Name	dados
Number of rows	259
Number of columns	31
Column type frequency:	_
character	6
numeric	25
Group variables	— None
Croup variables	140110

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
video	0	1	4	4	0	22	0
animal_no_video	0	1	1	2	0	14	0
sexo	0	1	1	1	0	2	0
tratamento	0	1	4	8	0	5	0
animal_number	0	1	1	3	0	259	0
tempo	0	1	5	5	0	1	0

Variable type: numeric

skim_variable	n_missing comp	lete_rate	mean	sd	p0	p25	p50	p75	p100	hist
test_duration_s	0	1	2400.00	0.00	2400.00	2400.00	2400.00	2400.00	2400.00	
total_distance_travelled_m	0	1	13.29	4.25	5.61	9.63	13.18	16.84	21.71	
total_time_mobile_s	0	1	2001.32	179.09	1646.57	1841.93	2006.30	2154.65	2373.74	
total_time_immobile_s	0	1	398.68	179.09	26.26	245.35	393.70	558.07	753.43	
total_mobile_episodes	0	1	125.07	44.12	51.00	86.00	122.00	162.00	200.00	
total immobile episodes	0	1	114.33	57.80	11.00	62.00	115.00	165.00	217.00	

0

distance_travelled_in_the_agar_zone_m	0	1	0.50	0.28	0.02	0.27	0.49	0.75	1.00	
time_mobile_in_the_agar_zone_s	0	1	190.64	109.52	1.59	96.00	187.74	279.97	396.42	
time_immobile_in_the_agar_zone_s	0	1	52.08	29.09	0.35	27.00	53.04	77.70	99.49	
immobile_episodes_in_the_agar_zone	0	1	10.49	6.06	1.00	5.00	11.00	16.00	20.00	
number_of_entries_to_the_raia_zone	0	1	193.84	58.55	100.00	147.00	183.00	250.00	300.00	
time_in_the_raia_zone_s	0	1	1906.39	150.57	1510.82	1799.10	1902.12	2015.79	2280.83	
distance_travelled_in_the_raia_zone_m	0	1	12.31	4.24	5.01	8.57	12.11	15.82	19.84	
time_mobile_in_the_raia_zone_s	0	1	1609.04	232.60	951.70	1431.21	1621.05	1786.10	2142.30	
time_immobile_in_the_raia_zone_s	0	1	297.35	178.04	2.75	137.88	295.15	451.37	598.57	
immobile_episodes_in_the_raia_zone	0	1	98.52	56.69	1.00	46.50	99.00	145.50	199.00	
number_of_entries_to_the_sacarose_zone	0	1	104.86	55.90	2.00	61.50	109.00	153.00	200.00	
time_in_the_sacarose_zone_s	0	1	250.89	117.64	10.83	151.86	257.50	346.42	483.69	
distance_travelled_in_the_sacarose_zone_m	0	1	0.48	0.28	0.00	0.23	0.46	0.73	1.00	
time_mobile_in_the_sacarose_zone_s	0	1	201.64	115.06	1.22	92.13	218.22	292.37	399.75	
time_immobile_in_the_sacarose_zone_s	0	1	49.25	28.08	0.25	23.78	50.44	71.73	99.74	

5.32

1.62

3.07

2.07

1

1

mean

46.41

242.72 115.71

1

sd

29.16

n_missing complete_rate

0

0

0

0

skim_variable

pindex

number_of_entries_to_the_agar_zone

immobile_episodes_in_the_sacarose_zone

time_in_the_agar_zone_s

p100 hist

10.00

19.62

99.00

482.63

p25

20.50

146.97

p0

1.00

14.44

0.00

0.02

2.50

0.58

p50

45.00

5.00

1.06

8.00

1.87

239.52

p75

72.00

330.19

5 Os gráficos

5.1 Gráfico box plot simples usando ggplot2

```
ggplot(dados, aes(x = sexo, y = total_distance_travelled_m)) +
geom_boxplot() +
theme_minimal()
```



```
# dando nome ao objeto, adicionando mais uma variável categórica, e mudando o tema:
   grafico <- ggplot(</pre>
     dados,
     aes(x = sexo, y = total_distance_travelled_m, fill = tratamento)) +
     geom_boxplot() +
5
     labs(
       title= "Quem caminha mais? machos ou fêmeas? com ggplot2",
       x = "Grupos",
       y = "Distância percorrida (m)") +
9
     theme_classic()
10
11
   grafico
12
```

Quem caminha mais? machos ou fêmeas? com ggplot2

Depois de satisfeitos, podemos salvar:

```
ggsave(
plot = grafico, # o default é o ultimo gráfico gerado
filename = "ggplot2.png",
path = "figuras",
dpi = 600 # o default é 300
)
```

5.2 Gráfico box plot simples usando tidyplots

```
grafico <- tidyplot(</pre>
       dados,
2
       x = sexo,
3
       y = total_distance_travelled_m,
       fill = tratamento
     ) |>
6
     add_boxplot() |>
     adjust_title("Quem caminha mais? machos ou fêmeas? com tidyplots") |>
8
     adjust_x_axis_title("Grupos") |>
9
     adjust_y_axis_title("Distância percorrida (m)") |>
10
     theme_tidyplot() |> # tema padrão do tidyplots
11
     save_plot("figuras/tidyplot.png")
```



```
# ou salvando com ggplot2
ggsave(
plot = grafico,
filename = "tidyplots.png",
path = "figuras",
dpi = 600
```

6 Agora é a sua vez:

- 1. Faça uma pergunta sobre os dados.
- 2. Crie um gráfico que responda a essa pergunta.
- 3. Personalize o gráfico com títulos, rótulos e cores.
- 4. Salve o gráfico.
- 1 # [ADICIONE O CÓDIGO AQUI]