Ambulance perambulation

The current situation of emergency response

Road traffic accidents (RTA) are the number one cause of death for people aged 5-29 in Kenya

More than 3.000 lives are lost each year due to RTA's

Skull icon

About 90% of these deaths could be prevented by a faster emergency response

Only 1.4% of road traffic accidents victims are attended to by an ambulance

Challenges and opportunities in emergency response

<u>Challenges</u>

Ambulances are a limited resource

Accidents are difficult to predict

Ambulance response time is critical

Opportunities

- Positioning ambulances determines the response time
- Current positioning of ambulance relies on individuals' knowledge/perception
- A coordinated placement of ambulances can improve response time

The "Golden Hour" principle (Explanation)

The goal is to reduce the response time to save lives

We capture response time using two measures

Percentage of cases within the "Golden Hour"

- A proxy for "successful" emergency responses
- Improvements within Golden Hour are not as important as getting more cases within that range

Mean response time over all cases:

- Paints an overall picture
- Accounts for "hard cases"

Description of problem

Task:

- Place 6 ambulances (latitude and longitude)
- Placement can be changed every 3 hours (8 time windows per day and ambulance -> 24 placement per day)
- Overall time frame is 6 months (07/2019-12-2019)

Goal:

Reduce (LOWER) response time (Score)

Several models are chained together.

We start with a simple, common-sense baseline.

Simplified k-means clustering will be the ML baseline.

RAW Baseline evaluation

(Baseline 0) = One placement for whole timeframe and all are placed at the same spot

Baseline 1.0 = One placement for timeframe but equi-distant placements on grid defined by outmost accident occurrences

Baseline 2.0 = One placement according to k-means clustering

RAW Problem description and motivation

<u>Problem description</u>

- Ambulances are a limited resource
 - only 1.4% of road traffic accidents (RTA) victims are attended to by an ambulance
 - > 3.000+ lives are lost each year due to RTA's
 - 90% of these could have been saved with a speedier response
- Accidents are difficult to predict
- Time for an ambulance to reach an accident site is critical to outcome. (every second counts - golden hour)

Motivation

- Positioning ambulances in a city determines the time needed.
- Current methods for positioning rely on local knowledge in individuals heads.
- Placement of each Ambulance is not coordinated to optimize the entire system.

RAW Objective

Reduce time to care

Golden hour principle (priority is to have as few cases as possible outside of the one hour threshold - secondary goal is to have the lowest average/median time response time possible)

Conceptual model

Input for regression (prediction) model

ID	Time Buckets (interactio n with traffic is possible to measure) if else: fixed effects model	Zebra Crossings per size unit		Weather for all zones not for each zone!	