《微分几何入门与广义相对论》 部分习题参考解答

by 薛定谔的大喵¹

2020年6月11日

 $^{^{1}}$ wyj1234@mail.ustc.edu.cn

说明

本文档虽今天重新编译生成,但是内容是我数月前初学时所写,所有习题解答 没有多次复核,仅供参考。若有错误之处请多多谅解,也可与我联系指出。

前五章是 18 年寒假时所写,之后春季学期断断续续写了些后面的,第六章所需作图很多,当时我尚未熟悉使用 TikZ 作图,感到比较吃力,后来就鸽了……之后读其他章节时陆续写了点。

我一向觉得初学一个领域需要一些练习的积累,而苦于很多书上的练习题没有解答,做来又不知道对不对。梁先生的《微分几何入门与广义相对论》三卷在中文教材中可谓精品,我很希望梁书能流行起来,希望我以后能有空将这份答案补全(Flag 立下……)

薛定谔的大喵 2018.11.3

目录

第一部分 上册	4
第一章 拓扑空间简介	5
第二章 流形和张量场	9
第三章 黎曼(内禀)曲率张量	26
第四章 李导数、Killing 场和超曲面	45
第五章 微分形式及其积分	54
第六章 狭义相对论	74
第七章 广义相对论基础	81
第八章 爱因斯坦方程的求解	83
第九章 施瓦西时空	84
第十章 宇宙论	85
第二部分 中册	86
第十一章 时空的整体因果结构	87
附录 B 量子力学数学基础简介	89
附录 G 李群和李代数	90

第一部分

上册

第六章 狭义相对论

习题

1. 惯性观者 G 和 G' 相对速率为 u = 0.6c,相遇时把时钟都调为零。用时空图讨论: (a) 在 G 所属的惯性参考系看来(以其同时观判断),当 G 钟读数为 $5\,\mu s$ 时,G' 钟的读数是多少? (b) 当 G 钟读数为 $5\,\mu s$ 时,他实际看见 G' 钟的读数是多少?

解 如图 6.1, 其中 a 点 G 的固有时为 $\tau = 5 \mu s$.

图 6.1: 题 1 解答图

(a) 易知 b 点的 x 坐标为 0.6τ , 于是 b 点 G' 的固有时为

$$\tau' = \sqrt{1 - 0.6^2} \tau = 0.8 \tau = 4 \, \mu s.$$

(b) 易求得 b 点在 t,x 坐标系下的坐标为 $\left(\frac{3}{8}\tau,\frac{5}{8}\tau\right)$,于是 c 点 G' 的固有时为

$$\tau'' = \sqrt{\left(\frac{5}{8}\right)^2 - \left(\frac{3}{8}\right)^2} \tau = \frac{\tau}{2} = 2.5 \,\text{µs}.$$

2. 远方星体以 0.8c 的速率(匀速直线地)离开我们,我们测得它辐射来的闪光按 5 昼夜的周期变化。用时空图求星上观者测得的闪光周期。

解 如图 6.2, 记 c 点坐标为 $(0,\tau)$, 其中 $\tau=5$ d, 则可算得 b_2 点坐标为 $\left(\frac{4}{9},\frac{5}{9}\right)\tau$, 于是

图 6.2: 题 2 解答图

 b_1 到 b_2 星上观者经过的固有时 $\tau' = \sqrt{5^2 - 4^2} \frac{\tau}{9} = \frac{\tau}{3} = \frac{5}{3} d.$

3. 把图 6-20 的 *oa* 段和 *oe* 段线长分别记作 τ 和 τ' 。(a) 用两钟的相对速率 u 表出 τ'/τ ; (b) 在 u=0.6c 和 u=0.8c 两种情况下求出 τ'/τ 的数值。

图 6.3: 正文图 6-20

解 (a) 如图 6.4, 记 t = of,

$$\frac{\tau'}{\tau} = \frac{\sqrt{t^2 - u^2 t^2}}{t - ut} = \sqrt{\frac{1 + u}{1 - u}}.$$
(6.1)

图 6.4: 题 3 解答图

(b) 将 u=0.6 和 u=0.8 代入,分别得 $\frac{\tau'}{\tau}$ 为 2 和 3。

4. 惯性质点 A,B,C 排成一条直线并沿此线相对运动(见 图 6.5),相对速率 $u_{BA}=0.6c$, $u_{CA}=0.8c$, A,B 所在惯性系各为 \mathcal{R}_A 和 \mathcal{R}_B 。设 \mathcal{R}_B 系认为(测得)C 走了 $60\,\mathrm{m}$,画出时空图并求 \mathcal{R}_A 认为(测得)这一过程的时间。

$$\overrightarrow{A}$$
 \overrightarrow{B} \overrightarrow{C}

图 6.5: 题 4 用图

解 如图 6.6, oa 段长 $l=60\,\mathrm{m}$, 则可算得 a 的坐标为 $\left(\frac{5}{4},\frac{3}{4}\right)l$, 由 ac 的斜率为 $\frac{1}{0.6c}$, oc 的斜

图 6.6: 题 4 解答图

率为 $\frac{1}{0.8c}$ 可求得 c 点坐标为 $\left(\frac{16}{5},\frac{4}{c}\right)l$,即 oc 在 \mathcal{R}_A 看来的时间为 $\frac{4l}{c}=\frac{240}{299792458}s$ 。

5. A, B 是同一惯性系的两个惯性观者,他们互相发射中子,每一中子以相对速率 0.6c 离开中子枪。设 B 测得 B 枪的中子发射速率为 10^4 s⁻¹ (即每秒发射 10^4 个),求 A 所发中子(根据中子自己的标准钟)测得的 B 枪的中子发射率(要求画时空图求解)。

解 如图 6.7, oa 长为 $\Delta \tau_B$, 则由对称性易知 $ob=ab=\frac{\Delta \tau_B}{2}$, 则 $bc=0.3\Delta \tau_B$, 故算得 $\Delta \tau=ac=0.4\Delta \tau_B$, 因此 A 发射的中子测得的 B 的发射率为 $f=\frac{1}{\Delta \tau}=2.5f_B=2.5\times 10^4\,\mathrm{s}^{-1}$ 。

图 6.7: 题 5 解答图

6. 静止 μ 子的平均寿命为 $\tau_0 = 2 \times 10^{-6} \, \mathrm{s}$ 。 宇宙线产生的 μ 子相对于地球以 0.995c 的速率匀速直线下落,用时空图求地球观者测得的 $(\mathrm{a})\mu$ 子的平均寿命; $(\mathrm{b})\mu$ 子在其平均寿命内所走过的距离。

解 如图

- 7. 暂略。
- 8. 暂略。
- 9. 暂略。
- 10. 暂略。
- 11. 暂略。

12. 试证命题 6-3-4.

证明 命题 6-3-4 如下

Thm 质点世界线上各点的 4 加速 A^a 与 4 速 U^a 正交,即 $A^aU_a=\eta_{ab}A^aU^b=0$ 。

$$\begin{split} U_a \, A^a &= U_a \, U^b \partial_b U^a \\ &= \frac{1}{2} U^b \partial_b \left(U_a U^a \right) \\ &= 0. \end{split}$$

13. 设观者世界线为 $t\sim x$ 面内的双曲线 G (见图 6.7),图中 K 为已知, A^a 为观者的 4 加速,求 A^aA_a (结论是 A^aA_a 为常数,因此 G 称为匀加速运动观者¹。请注意这指的是 4 加速。)

图 6.8: 习题 13 用图

解 由图知此双曲线的参数为 a=b=K, 可写出双曲线方程为

$$x^2 - t^2 = K^2.$$

两边对固有时求导,

$$2x\frac{\mathrm{d}x}{\mathrm{d}\tau} - 2t\frac{\mathrm{d}t}{\mathrm{d}\tau} = 0,$$
$$\frac{\mathrm{d}x}{\mathrm{d}\tau} = \frac{t}{x}\frac{\mathrm{d}t}{\mathrm{d}\tau},$$

而

$$Z^{a} = \frac{\mathrm{d}t}{\mathrm{d}\tau} \left(\frac{\partial}{\partial t} \right)^{a} + \frac{\mathrm{d}x}{\mathrm{d}\tau} \left(\frac{\partial}{\partial x} \right)^{a}$$

¹或称 Rindler 观者——笔者注

是归一的,则

$$\left(\frac{\mathrm{d}x}{\mathrm{d}\tau}\right)^2 - \left(\frac{\mathrm{d}t}{\mathrm{d}\tau}\right)^2 = \left[\left(\frac{t}{x}\right)^2 - 1\right] \left(\frac{\mathrm{d}t}{\mathrm{d}\tau}\right)^2$$
$$= -\left(\frac{K}{x}\frac{\mathrm{d}t}{\mathrm{d}\tau}\right)^2$$
$$= -1,$$

$$\implies \frac{1}{x} \frac{\mathrm{d}t}{\mathrm{d}\tau} = \frac{1}{t} \frac{\mathrm{d}x}{\mathrm{d}\tau} = \frac{1}{K},$$

于是4速又可改写为

$$Z^{a}=\frac{1}{K}\left[x\left(\frac{\partial}{\partial t}\right)^{a}+t\left(\frac{\partial}{\partial x}\right)^{a}\right],$$

故

$$\begin{split} A^a &= \frac{\mathrm{d}Z^a}{\mathrm{d}\tau} \\ &= \frac{1}{K} \left[\frac{\mathrm{d}x}{\mathrm{d}\tau} \left(\frac{\partial}{\partial t} \right)^a + \frac{\mathrm{d}t}{\mathrm{d}\tau} \left(\frac{\partial}{\partial x} \right)^a \right] \\ &= \frac{1}{K^2} \left[t \left(\frac{\partial}{\partial t} \right)^a + x \left(\frac{\partial}{\partial x} \right)^a \right], \\ A_a A^a &= \frac{1}{K^4} \left(x^2 - t^2 \right) \\ &= \frac{1}{K^2}. \end{split}$$

14. 试证命题 6-6-2.

证明 命题 6-6-2 如下

Thm 设惯性系 @ 和 @' 由洛伦兹变换

$$t = \gamma (t' + vx'), \quad x = \gamma (x' + vt'), \quad y = y', \quad z = z'$$

相联系,则两者测同一电磁场 F_{ab} 所得值 (\mathbf{E},\mathbf{B}) 和 $(\mathbf{E}',\mathbf{B}')$ 有如下关系:

$$E'_1 = E_1,$$
 $E'_2 = \gamma (E_2 - vB_3),$ $E'_3 = \gamma (E_3 + vB_2);$ $B'_1 = B_1,$ $B'_2 = \gamma (B_2 + vE_3),$ $B'_3 = \gamma (B_3 - vE_2).$

Prf 记矩阵 Λ 为

$$[\Lambda^{\mu}_{\ \nu}] = \left[\frac{\partial x^{\mu}}{\partial x'^{\nu}}\right] = \begin{pmatrix} \gamma & \gamma v & 0 & 0\\ \gamma v & \gamma & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix},$$

则易知

$$\left[\left(\Lambda^{-1} \right)^{\mu}_{\ \nu} \right] = \left[\frac{\partial x'^{\mu}}{\partial x^{\nu}} \right] = \begin{pmatrix} \gamma & -\gamma v & 0 & 0 \\ -\gamma v & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

而根据张量变换律

$$F'^{\mu}_{\ \nu} = \frac{\partial x'^{\mu}}{\partial x^{\sigma}} \frac{\partial x^{\rho}}{\partial x'^{\nu}} F^{\sigma}_{\ \rho}$$
$$= (\Lambda^{-1})^{\mu}_{\ \sigma} F^{\sigma}_{\ \rho} \Lambda^{\rho}_{\ \nu},$$

于是有矩阵等式

$$[F'] = \Lambda^{-1} [F] \Lambda,$$

其中 [F] 表示 F^{μ}_{ν} 排成的矩阵

$$[F] = \begin{pmatrix} 0 & E_1 & E_2 & E_3 \\ E_1 & 0 & B_3 & -B_2 \\ E_2 & -B_3 & 0 & B_1 \\ E_3 & B_2 & -B_1 & 0 \end{pmatrix},$$

于是经过简单的矩阵乘法算得

$$[F'] = \begin{pmatrix} 0 & E_1 & \gamma (E_2 - vB_3) & \gamma (E_3 + vB_2) \\ E_1 & 0 & \gamma (B_3 - vE_2) & -\gamma (B_2 + vE_3) \\ \gamma (E_2 - vB_3) & -\gamma (B_3 - vE_2) & 0 & B_1 \\ \gamma (E_3 + vB_2) & \gamma (B_2 + vE_3) & -B_1 & 0 \end{pmatrix},$$

可以直接读出

$$E'_1 = E_1,$$
 $E'_2 = \gamma (E_2 - vB_3),$ $E'_3 = \gamma (E_3 + vB_2);$ $B'_1 = B_1,$ $B'_2 = \gamma (B_2 + vE_3),$ $B'_3 = \gamma (B_3 - vE_2).$

第二部分 中册