Matière: Mathématiques Niveau : TS2 Date: 22/05/2025 Durée : 4 heures

Correction Composition Du 2nd Semestre

PROBLEME (10pt)

PARTIE A

Soit h la fonction dérivable sur \mathbb{R} définie par $h(x) = 1 + e^{2x-4}$ et $K = \left[1; \frac{5}{4}\right]$.

b) Montrons que $h(K) \subset K$:

Comme h est croissante et $K = \left[1; \frac{5}{4}\right]$, on a :

$$h(K) = \left[h(1); h\left(\frac{5}{4}\right)\right]$$

Calculons:

$$h(1) = 1 + e^{2(1)-4} = 1 + e^{-2} \approx 1 + 0.1353 = 1.1353$$

$$h\left(\frac{5}{4}\right) = 1 + e^{2\cdot\frac{5}{4}-4} = 1 + e^{-1.5} \approx 1 + 0.2231 = 1.2231$$

Donc:

$$h(K) = [1{,}1353; 1{,}2231] \subset \left[1; \frac{5}{4}\right]$$

Ainsi, $h(K) \subset K$. (0,5pt)

a) Resoudre h(x) = x revient à resoudre h(x) - x = 0On définit la fonction $\phi(x) = h(x) - x = 1 + e^{2x-4} - x$.

Existance

 ϕ est continue sur $K = \left[1; \frac{5}{4}\right]$.

Calculons:

$$\phi(1) = 1 + e^{-2} - 1 = e^{-2} > 0$$
 ; $\phi\left(\frac{5}{4}\right) = 1 + e^{-1.5} - \frac{5}{4} \approx 1.2231 - 1.25 < 0$

Donc, $\phi(1) > 0$ et $\phi\left(\frac{5}{4}\right) < 0$, par le théorème des valeurs intermédiaires, il existe un $\lambda \in \left]1; \frac{5}{4}\right[$ tel que $\phi(\lambda) = 0$, soit $h(\lambda) = \lambda$.

Unicité

$$\phi'(x) = h'(x) - 1 = 2e^{2x-4} - 1$$

Supposons que
$$\phi'(x) < 0$$

 $\phi'(x) < 0 \iff 2e^{2x-4} - 1 < 0$
 $\iff e^{2x-4} < \frac{1}{2}$
 $\iff 2x - 4 < \ln\left(\frac{1}{2}\right)$
 $\iff 2x < 4 - \ln(2)$
 $\iff x < 2 - \frac{\ln(2)}{2}$
 $\iff x < 1, 7$

Donc si $x \in]-\infty; 1, 7[$ alors $\phi'(x) < 0$

Comme
$$K = \left[1; \frac{5}{4}\right] \subset]-\infty; 1, 7[$$
 donc $\forall x \in K, \phi'(x) < 0$

Donc $\phi'(x) < 0$ sur K, donc ϕ est strictement décroissante sur K.

Or, une fonction continue et strictement monotone sur un intervalle admet **au plus une** racine. Comme on a déjà montré l'existence d'un λ , on en déduit que :

L'équation h(x) = x admet une **unique solution** $\lambda \in K$.

(0,5pt)

b) On a:
$$h'(x) = 2e^{2x-4}$$

Encadrons $x \in K = \left[1; \frac{5}{4}\right]$:

$$x \in K \implies 1 \le x \le \frac{5}{4}$$

$$\implies 2 \le 2x \le \frac{5}{2}$$

$$\implies -2 \le 2x - 4 \le -\frac{3}{2}$$

$$\implies e^{-2} \le e^{2x-4} \le e^{-1.5}$$

$$\implies 2e^{-2} \le 2e^{2x-4} \le 2e^{-1.5}$$

$$\implies 0 \le 2e^{-2} \le 2e^{2x-4} \le 2e^{-1.5} \le \frac{1}{2}$$

$$\implies 0 \le 2e^{2x-4} \le \frac{1}{2}$$

Donc:
$$\forall x \in K, \quad 0 < h'(x) < \frac{1}{2}$$
 (0,25pt)

c) Soit $x \in K$, et $\lambda \in K$ l'unique solution de $h(\lambda) = \lambda$.

D'après l'inégalité des accroissements finis (ou le théorème de la moyenne) appliquée à h sur K, il existe $c \in [x; \lambda] \subset K$ tel que :

$$h(x) - h(\lambda) = h(x) - \lambda = h'(c)(x - \lambda)$$

Donc:

$$|h(x) - \lambda| = |h'(c)| \times |x - \lambda| \le \frac{1}{2}|x - \lambda|$$

(0,25pt)

3.a) Montrons par récurrence que $\forall n \in \mathbb{N}, W_n \in K$.

Initialisation:

On a $W_0=1\in K=\left[1;\frac{5}{4}\right]$. L'assertion est vraie au rang n=0.

Hérédité:

Supposons que pour un entier $n \in \mathbb{N}$, on ait $W_n \in K$.

Alors par définition:

$$W_{n+1} = h(W_n)$$

Or à la question 1.b), on a démontré que $h(K) \subset K$. Donc comme $W_n \in K$, on a $W_{n+1} \in h(K) \subset K$.

Conclusion:

Par le principe de récurrence, on a :

$$\forall n \in \mathbb{N}, \quad W_n \in K$$

(0,5pt)

b) On veut montrer que:

$$|W_{n+1} - \lambda| \le \frac{1}{2}|W_n - \lambda| \quad \text{et} \quad |W_n - \lambda| \le \left(\frac{1}{2}\right)^n, \quad \forall n \in \mathbb{N}$$

1) Inégalité de récurrence :

On sait que $W_{n+1} = h(W_n)$ et que λ est l'unique solution de $h(\lambda) = \lambda$.

D'après la question 2.c), on a pour tout $x \in K$:

$$|h(x) - \lambda| \le \frac{1}{2}|x - \lambda|$$

Or, à la question 3.a), on a montré que $\forall n, W_n \in K$. Donc :

$$|W_{n+1} - \lambda| = |h(W_n) - \lambda| \le \frac{1}{2}|W_n - \lambda|$$

2) Majoration par $\left(\frac{1}{2}\right)^n$ par récurrence :

3.b) On a $W_{n+1} = h(W_n)$ et $h(\lambda) = \lambda$.

D'après la question 2.c), pour tout $x \in K$, on a :

$$|h(x) - \lambda| \le \frac{1}{2}|x - \lambda|$$

Or, à la question 3.a), on a montré que $W_n \in K$ pour tout $n \in \mathbb{N}$, donc on peut appliquer cette inégalité à chaque itération :

$$\begin{split} |W_1 - \lambda| &\leq \frac{1}{2}|W_0 - \lambda| \\ |W_2 - \lambda| &\leq \frac{1}{2}|W_1 - \lambda| \\ |W_3 - \lambda| &\leq \frac{1}{2}|W_2 - \lambda| \\ &\vdots \\ |W_k - \lambda| &\leq \frac{1}{2}|W_{k-1} - \lambda| \end{split}$$

En multipliant ces inégalités **membre à membre**, on obtient :

$$|W_k - \lambda| \le \left(\frac{1}{2}\right)^k |W_0 - \lambda|$$

$$\forall k \in \mathbb{N}, \quad |W_k - \lambda| \le \left(\frac{1}{2}\right)^k$$

(0,5pt + 0,25pt)

c) D'après la question précédente, on a :

$$|W_n - \lambda| \le \left(\frac{1}{2}\right)^n$$

Or
$$\left(\frac{1}{2}\right)^n o 0$$
 quand $n o +\infty$, donc :

$$|W_n - \lambda| \to 0$$
 ce qui équivaut à $W_n \to \lambda$ quand $n \to +\infty$

Ainsi, la suite (W_n) **converge vers le réel λ **, qui est l'unique solution de l'équation h(x) = x dans l'intervalle K. (0,25pt)

PARTIE B

Soit f la fonction définie par :

$$f(x) = \begin{cases} \ln\left(\left|\frac{x-1}{x+1}\right|\right) & \text{si } x \in [0; +\infty[\\ x - \frac{e^x - 1}{e^x + 1} & \text{si } x \in] - \infty; 0[\end{cases}$$

1 Déterminons le domaine de définition D_f de f.

Sur $[0; +\infty[$: on considère l'expression

$$f(x) = \ln\left(\left|\frac{x-1}{x+1}\right|\right)$$

Cette expression est définie si :

- $x + 1 \neq 0 \Rightarrow x \neq -1$ (toujours vrai car $x \geq 0$)
- $\left| \frac{x-1}{x+1} \right| > 0 \Rightarrow \frac{x-1}{x+1} \neq 0 \Rightarrow x \neq 1$

Donc sur $[0; +\infty[$, la fonction est définie sauf en x = 1.

Sur $]-\infty;0[$: on considère

$$f(x) = x - \frac{e^x - 1}{e^x + 1}$$

Cette expression est définie pour tout $x \in \mathbb{R}$, car le dénominateur $e^x + 1 > 0$ pour tout x.

Donc la fonction f est définie sur :

$$D_f =]-\infty; 1[\cup]1; +\infty[$$

(0,5pt)

2. Étudions la continuité de f en 0.

La fonction f est définie par morceaux :

$$f(x) = \begin{cases} \ln\left(\left|\frac{x-1}{x+1}\right|\right) & \text{si } x \in [0; +\infty[\\ x - \frac{e^x - 1}{e^x + 1} & \text{si } x \in] - \infty; 0[\end{cases}$$

A-t-on
$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x) = f(0)$$
?

Limite à gauche (vers 0^-):

Pour x < 0,

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} x - \frac{e^{x} - 1}{e^{x} + 1}$$
$$= 0 - \frac{1 - 1}{1 + 1}$$
$$= 0$$

$$\lim_{\mathbf{x}\to\mathbf{0}^-}\mathbf{f}(\mathbf{x})=\mathbf{0}$$

Limite à droite (vers 0^+):

Pour x > 0,

$$\lim_{x \to 0^+} f(x) = \ln \left(\left| \frac{x - 1}{x + 1} \right| \right)$$

$$= \ln \left(\left| \frac{-1}{1} \right| \right)$$

$$= \ln(1)$$

$$= 0$$

$$\lim_{\mathbf{x}\to\mathbf{0}^+}\mathbf{f}(\mathbf{x})=\mathbf{0}$$

Conclusion:

La limite de f(x) en 0 existe et vaut 0.

De plus,
$$f(0) = \ln\left(\left|\frac{0-1}{0+1}\right|\right) = \ln(1) = 0$$

$$\mathbf{Donc}: \lim_{\mathbf{x} \to \mathbf{0}^-} \mathbf{f}(\mathbf{x}) = \lim_{\mathbf{x} \to \mathbf{0}^+} \mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{0}) \Rightarrow \mathbf{f} \text{ est continue en } \mathbf{0}$$

2 **a** Soit $x \in]0;1[$.

On a : x < 1, donc x - 1 < 0, donc : |x - 1| = -(x - 1) = 1 - x

De plus, dans ce cas x > 0, donc $f(x) = \ln \left(\left| \frac{x-1}{x+1} \right| \right)$.

On remplace |x-1| par 1-x, et on obtient : $f(x) = \ln\left(\frac{1-x}{x+1}\right)$

Or, on sait que : $\ln \left(\frac{1-x}{1+x} \right) = \ln(1-x) - \ln(1+x)$

Donc: $f(x) = \ln(1-x) - \ln(1+x) \Rightarrow \frac{f(x)}{x} = \frac{\ln(1-x)}{x} - \frac{\ln(1+x)}{x}$ (0,5pt)

b Étudions la dérivabilité de f en 0.

On cherche la limite du taux d'accroissement : $\lim_{x\to 0} \frac{f(x)-f(0)}{x}$ avec f(0)=0 (voir question 2)

À gauche (
$$x \rightarrow 0^-$$
) :

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{f(x)}{x}$$

$$= \lim_{x \to 0^{-}} \frac{x - \frac{e^{x} - 1}{e^{x} + 1}}{x}$$

$$= \lim_{x \to 0^{-}} 1 - \frac{e^{x} - 1}{x} \times \frac{1}{e^{x} + 1}$$

$$= 1 - 1 \times \frac{1}{2}$$

$$= \frac{1}{2}$$

$$\lim_{\mathbf{x}\to\mathbf{0}^{-}}\frac{\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{0})}{\mathbf{x}-\mathbf{0}}=\frac{1}{2}$$

À droite ($x \to 0^+$):

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{f(x)}{x}$$

$$= \lim_{x \to 0^{+}} \frac{\ln(1 - x)}{x} - \frac{\ln(1 + x)}{x}$$

$$= -1 - 1$$

$$= -2$$

$$\lim_{\mathbf{x}\to\mathbf{0}^+}\frac{\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{0})}{\mathbf{x}-\mathbf{0}}=-\mathbf{2}$$

Conclusion:

$$\lim_{\mathbf{x}\to \mathbf{0}^+}\frac{\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{0})}{\mathbf{x}-\mathbf{0}}=-2\text{ et }\lim_{\mathbf{x}\to \mathbf{0}^-}\frac{\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{0})}{\mathbf{x}-\mathbf{0}}=\frac{1}{2}$$

Donc la fonction f **n'est pas dérivable** en 0.

(0,5pt)

c À gauche de 0 :

La pente de la demi-tangente est $\frac{1}{2}$, donc l'équation de la tangente gauche est :

$$y = \frac{1}{2}x$$

À droite de 0 :

La pente de la demi-tangente est -2, donc l'équation de la tangente droite est :

$$y = -2x$$

$$y = \frac{1}{2}x$$
 et $y = -2x$ (0,5pt)

Démonstration:

$$x + 1 - \frac{2e^x}{e^x + 1} = \frac{(x+1)(e^x + 1) - 2e^x}{e^x + 1}$$
$$= \frac{xe^x + x + e^x + 1 - 2e^x}{e^x + 1}$$

Partons du membre de droite :

$$= \frac{e^{x} + 1}{e^{x} + x - e^{x} + 1}$$

$$= \frac{x(e^{x} + 1)}{e^{x} + 1} + \frac{-e^{x} + 1}{e^{x} + 1}$$

$$= x + \frac{-e^{x} + 1}{e^{x} + 1}$$

$$= x - \frac{e^{x} - 1}{e^{x} + 1} \mathbf{CQFD}$$

(0,25pt)

f 4 Calculons les limites de f aux bornes des intervalles de son domaine de définition.

(0,5pt)

À gauche de 1 : $x \rightarrow 1^-$

Sur
$$[0; 1[$$
, on a: $f(x) = \ln\left(\left|\frac{x-1}{x+1}\right|\right) = \ln\left(\frac{1-x}{x+1}\right)$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \ln \left(\frac{1 - x}{x + 1} \right)$$
$$= \ln(0^{+})$$
$$= -\infty$$

$$\lim_{x \to 1^{-}} f(x) = -\infty$$

À droite de 1 : $x \rightarrow 1^+$

Sur]1;
$$+\infty$$
[, même expression : $f(x) = \ln\left(\left|\frac{x-1}{x+1}\right|\right)$

$$\lim_{x \to 1^+} f(x) = \ln\left(\frac{x-1}{x+1}\right)$$
$$= \ln(0^+)$$
$$= -\infty$$

$$\lim_{x \to 1^+} f(x) = -\infty$$

À gauche de $0: x \to -\infty$

Sur
$$]-\infty;0[$$
, on a $f(x)=x-\frac{e^x-1}{e^x+1}.$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x - \frac{e^x - 1}{e^x + 1}$$
$$= -\infty - \frac{-1}{1}$$
$$= -\infty$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

À droite de $0: x \to +\infty$

Sur]1;
$$+\infty$$
[, $f(x) = \ln\left(\left|\frac{x-1}{x+1}\right|\right)$.

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \ln \left(\left| \frac{x-1}{x+1} \right| \right)$$

$$= \ln(1)$$

$$= 0$$

$$\lim_{x \to +\infty} f(x) = 0$$

5 En déduire les équations des asymptotes à la courbe \mathcal{C}_f de f.

(0,25pt)

Asymptote verticale:

D'après la question précédente, on a :

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = -\infty$$

Donc la droite x = 1 est une **asymptote verticale** à la courbe \mathscr{C}_f .

Asymptote horizontale:

On a également :

$$\lim_{x \to +\infty} f(x) = 0$$

Donc la droite y=0 est une **asymptote horizontale** à droite de la courbe \mathscr{C}_f .

Asymptotes de
$$\mathscr{C}_f$$
: $x = 1$ et $y = 0$

6 Calculer f'(x) pour tout $x \in \mathbb{R} \setminus \{0; 1\}$.

(0,5pt)

Sur $]0;1[\cup]1;+\infty[:$

Pour x > 0, on a:

$$f(x) = \ln\left(\left|\frac{x-1}{x+1}\right|\right) = \ln\left(\frac{x-1}{x+1}\right) \quad \operatorname{car}\frac{x-1}{x+1} > 0$$

$$f'(x) = \frac{1}{x+1} - \frac{1}{x-1} \implies f'(x) = \frac{2}{(x+1)(x-1)}$$

Sur $]-\infty;0[:$

Pour x < 0, on a :

$$f(x) = x - \frac{e^x - 1}{e^x + 1}$$
 ou encore $f(x) = x + 1 - \frac{2e^x}{e^x + 1}$

$$f'(x) = 1 - \frac{2e^x(e^x + 1) - (e^x - 1)(e^x)}{(e^x + 1)^2} = 1 - \frac{e^x(e^x + 1 - e^x + 1)}{(e^x + 1)^2} = 1 - \frac{2e^x}{(e^x + 1)^2}$$

Donc:

$$f'(x) = 1 - \frac{2e^x}{(e^x + 1)^2}$$

$$f'(x) = \begin{cases} \frac{2}{(x+1)(x-1)} & \text{si } x \in]0; 1[\cup]1; +\infty[\\ 1 - \frac{2e^x}{(e^x+1)^2} & \text{si } x \in]-\infty; 0[\end{cases}$$

7 Étudier les variations de f.

(0,5pt)

On rappelle que le domaine de définition de f est :

$$D_f =]-\infty; 1[\cup]1; +\infty[$$

Sur $]-\infty;0[:$

On a montré précédemment :

$$f'(x) = 1 - \frac{2e^x}{(e^x + 1)^2}$$

$$= \frac{(e^x + 1)^2 - 2e^x}{(e^x + 1)^2}$$

$$= \frac{e^{2x} + 2e^x + 1 - 2e^x}{(e^x + 1)^2}$$

$$= \frac{e^{2x} + 1}{(e^x + 1)^2} > 0$$

$$f'(x) > 0$$
 sur $] - \infty; 0[\Rightarrow f$ est strictement croissante sur $] - \infty; 0[$

Sur $]0;1[\cup]1;+\infty[:$

On a:

$$f'(x) = \frac{2}{(x+1)(x-1)}$$

Le signe de f'(x) dépend du signe de (x+1)(x-1).

x	$-\infty$	-1	0	1	$+\infty$
x + 1		0	0	+	+
x-1				- 0	+
(x+1)(x-1)				- 0	+

- Sur]0; 1[, on a (x+1)(x-1) < 0 donc f'(x) < 0: f est décroissante sur]0; 1[
- Sur $]1; +\infty[$, (x+1)(x-1)>0 donc f'(x)>0: f est croissante sur $]1; +\infty[$

x	$-\infty$	0	1	$+\infty$
f'	+	0 -	_	+
f		0		0
	$-\infty$		$-\infty$	$-\infty$

Clique ici pour voir la figure sur géogébra

PARTIE C

Soit g la restriction de la fonction f à l'intervalle $I =]1; +\infty[$.

1 Montrons que g réalise une bijection de I vers un intervalle J.

On a vu que sur $]1; +\infty[$, la fonction f est définie et strictement croissante.

Or une fonction continue et strictement monotone est bijective de son domaine d'étude sur son image.

Donc, $g: I \to J$ est une bijection.

$$J =]-\infty;0[$$

(0,5pt)

2 Soit $y \in J =]-\infty; 0[$. On cherche l'expression de $g^{-1}(y)$.

Par définition:

$$y = g(x) = \ln\left(\frac{x-1}{x+1}\right)$$
 avec $x \in]1; +\infty[$

Posons $y = \ln\left(\frac{x-1}{x+1}\right)$. Exponentions :

$$e^y = \frac{x-1}{x+1}$$

On résout cette équation pour x:

$$e^{y}(x+1) = x - 1 \implies e^{y}x + e^{y} = x - 1$$

$$e^{y}x - x = -1 - e^{y} \implies x(e^{y} - 1) = -1 - e^{y}$$

$$x = \frac{-1 - e^{y}}{e^{y} - 1} = \frac{-(1 + e^{y})}{e^{y} - 1} = 1 - \frac{2e^{y}}{e^{y} - 1}$$

Donc:

$$g^{-1}(y) = 1 - \frac{2e^y}{e^y - 1}$$
 soit $g^{-1}(x) = 1 - \frac{2e^x}{e^x - 1}$

(0,25pt)

3 Pour tracer la courbe $C_{g^{-1}}$, on peut exploiter la symétrie par rapport à la droite y = x, puisque g^{-1} est la bijection réciproque de g.

On pourra donc obtenir $\mathcal{C}_{g^{-1}}$ en prenant les points symétriques de ceux de \mathcal{C}_g par rapport à la droite y=x.

Elle est définie sur $J=]-\infty;0[$ et a pour équation :

Clique ici pour voir la figure sur géogébra