Задание 2

Молекурялная динамика

Софиа Белен Лопес Висенс Группа Б02-903

Московский физико-технический институт

Содержание

1	Радиальная функция распределения	3
2	Автокорреляционная функция скорости	4
3	Расчёт коэффициента самодиффузии	4
4	Сравнение с первым заданием	5
5	Влияние термостата на расчет коэффициента диффузии	7
6	Сравнение с результатами Naghizadeh и Rice	7

1 Радиальная функция распределения

Рис. 1: Радиальная функция распределения для жидкого Аргона при $\rho=0.0213\frac{atoms}{\mathring{\rm A}^3},$ $T=85^\circ K.$ Соответственные параметры в единицах Леннарда-Джонса $\rho=0.84,$ T=1.409.

2 Автокорреляционная функция скорости

Рис. 2: График автокорреляционной функции скорости в зависимости от времени при различных температурах. Расчёт коэффициент самодиффузии с помощью формулы Грина-Кубо.

3 Расчёт коэффициента самодиффузии

Maybe we are still in subdiffusive regime?

Рис. 3: График зависимость среднего квадратичного смещения в зависимости от времени. Расчет коэффициента самодиффузии через формулу Эйнштейна-Смолуховского.

Таблица 1: Коэффициент самодиффузии полученный через формулу Эйнштейна-Смолуховского и Грина-Кубо при $\rho=0.7$.

Темература	Эйнштейна-Смолуховского	Грина-Кубо	Ожидаемое значение
1.0	0.092	0.00743	0.105
1.5	0.119	0.01308	0.156
2.0	0.153	0.01515	0.217

4 Сравнение с первым заданием

Вопрос: Как это $<\Delta r^2(t)>$ связано с значением из другого пункта?

Рис. 4: Усреднённые разбегания координат $<\Delta r^2(t)>$ и скоростей $<\Delta v^2(t)>$ на двух траекториях, рассчитанных из тождественных начальных условий с шагами $\Delta t_1=0.001$ и $\Delta t_2=0.0001$. При температуре T=1.0 и плотности $\rho=0.7$ получаем коэффициент самодиффузии D=0.079. Он оказывается на порядок меньше значения полученного с помощью соотношения Эйнштейна-Смолуховского но сравнимый с значением из метода Грина-Кубо.

5 Влияние термостата на расчет коэффициента диффузии

Рис. 5: График зависимость среднего квадратичного смещения в зависимости от времени. Расчет коэффициента самодиффузии через формулу Эйнштейна-Смолуховского при температуре T=1.5 для различных характерных величин термостата τ . Вертикальная линия показывает момент, начиная с которого мы рассчитаем коэффициент диффузии.

6 Сравнение с результатами Naghizadeh и Rice

Для жидкостей Ar, Kr, Xe и CH_4 , описываемых потенциалом Леннарда-Джонса, Naghizadeh и Rice экспериментально получили следующую зависимость коэффициента самодиффузии D при $T<1.0,\,P<3.0$:

$$log_{10}D = 0.05 + 0.07P - \frac{1.04 + 0.1P}{T}.$$

Таблица 2: Сравнение значений $\log_{10} D$ полученное соотношением Naghizadeh и Rice с значениями, полученными путём моделирования. $<|\Delta|>=1.011.$

T	P	$\log_{10} D$, Моделирование	$\log_{10} D$, Эксперимент	$ \Delta $
0.20	0.13	-2.69	-5.21	2.52
0.25	0.27	-2.65	-4.20	1.55
0.30	0.42	-2.61	-3.53	0.92
0.40	0.71	-2.44	-2.68	0.24
0.50	1.01	-2.51	-2.16	0.35
0.60	1.35	-2.45	-1.81	0.64
0.70	1.62	-2.39	-1.55	0.84
0.75	1.78	-2.33	-1.45	0.88
0.80	1.93	-2.44	-1.36	1.08
0.90	2.27	-2.29	-1.20	1.09