安徽大学 20 20 - 20 21 学年第 1 学期

《 大学物理 A (下) 》期末考试试卷 (闭卷 时间 120 分钟)

考场登记表序号

			27	JAL NOW	11.2		_	
	题号 -	_ =	三(16)	三(17)	三(18)	三 (19)	四	总分
	得 分		化 英国安	0 AX	Silver			
	阅卷人			深刻全国	SHEET R			
487								得分
	一、选择题(每小			14.4+ #	中昌生の	IA Artım	水谷头	
	1. 真空中有半径为密度为	NK、均匀市	电的头心:	环冲,市	电里 月 2	,则环グ	干位内	r 处的电功
7		Fol	02-2		sa02			O^2
	A. $\frac{Q^2r^2}{32\pi^2\varepsilon_0R^6}$	B. $\frac{\varepsilon_0}{32}$	$\pi^2 R^6$	($\frac{\varepsilon_0 Q^2}{32\pi^2 r^4}$	(0)	D. $\frac{1}{32}$	$\frac{Q^2}{2\pi^2\varepsilon_0r^4}$
*	2 大田라ば日本2	- 44 44 tt TH	人氏力如	加油甘	74.17.32 中	: Y_ 77 11	11 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 	
y .	2. 在相对磁导率为 感应程度 B 分别才				唿切蚀及	.万H,贝	引该处做	化独皮 M
2 1	感应强度 B 分别为		、做一个八	μ_0)				(
2	A. $(\mu_{r}-1)H$, $\mu_{0}\mu_{r}H$	B. $\mu_r H$	$\mu_0 \mu_r H$	C	$\mu_t H$, ()	$\mu_{\rm r}$ -1) $\mu_0 H$	D. μ_1	$_{\rm r}H$, $(\mu_{\rm r}-1)\mu$
þ	3. 关于磁场的高期		$\vec{S} = 0$, T	列说法正	E确的是			(
	A. 穿入封闭曲面的							
	B. 穿入封闭曲面的	的磁感应线条	数不一定	等于穿出	的磁感应	2线条数		
	C. 磁场是有源场							
	D. 一根磁感应线7	可以终止于封	闭曲面内					
架	4. 如图所示,长直	1导线与矩形	线圈共面	且长直导	线中通り	向上的恒	巨定电流	I. 当矩形
	向右匀速运动时,					- 1		(
	A. 由于 I 恒定, 约	战圈内没有感	应电流			1		
	B. 线圈中有感应	电流, 呈顺时	针方向				1 +	→
	C. 线圈中有感应。	电流, 呈逆时	针方向					
i	D. 随着线圈远离-	长直导线,线	圈内感应	电流越来	越强	!		
	5. 麦克斯韦电磁均	场理论中引入	了两个重	要假说,	一是涡旋	电场假说	,另一是	是位移电流
	其实质分别是	_•						(
	A. 静态磁场可以	激发出电场,	变化的电	场可以激	发出磁场	勿		
	B. 自由电荷周围等	空间存在电场	, 传导电	流可以激	发磁场			

C. 变化的磁场可以激发出电场,变化的电场也可以激发出磁场

D. 静电场可感应出磁场, 静磁场可感应出	电场		
6. 一长密绕螺线管的长度为 l , 匝数为 N	, 横截面积为 S, 则	其自感系数 L =	
(设管内部为真空,磁导率为 μ_0 且无漏磁)	7. 19.3. d)
A. $\frac{NS}{l}$ B. $\frac{\mu_0 NS}{l}$	C. $\frac{\varepsilon_0 N^2 S}{l}$	D. $\frac{\mu_0 N^2 S}{l}$	
7. 如图所示,一玻璃半球,其平面的一侧银	度银,在其球面顶点左	方有一个物体,则在空	气
中该物体会经历次成像.)
A. 1 B. 2			
C. 3 D. 4			
8. 如图所示, 波长为 à 的平行单色光垂直	入射在折射率为 no 的	薄膜上, 经薄膜上下两	j个
表面反射的两束光发生干涉. 若薄膜厚度为	id 而目 n ₁ > n ₂ > n	。则两束反射光在相遇	点
) a, <u>h</u> h - h 2 - h	_ ()
的相位差为		n_1	,
A. $\pi + 4\pi n_2 d/\lambda$ B. $2\pi n_2 d/\lambda$		d	
C. $4\pi n_2 d/\lambda$ D. $\pi/2 + 4\pi n_2 d/\lambda$		n_3	
9. 在如图所示的单缝衍射实验中,把单缝和	肖稍上移时, 屏上衍射	图案 ()
A. 向上平移 B. 不动			
		1	
C. 向下平移 D. 中央明纹宽度3			
10. 康普顿散射强有力证明光具有粒子性-	一面. 当波长为 礼 的	《射线击中一个电子后》	久田
子获得了的动能. 假定该电子原来是静止	的,则散射光的波节	: 况 与原波长之间的为	たか、
是		()
A. $\lambda > \lambda'$ B. $\lambda = \lambda'$	C. $\lambda < \lambda'$	D. 无法判断	
		得分	
二、填空题 (每小题 2 分, 共 10 分)		14 71	<u> </u>
11. 杨氏双缝干涉实验中, 当双缝间距由			及明
纹,则 d': d =			
12. 设强度为 Io 的自然光连续入射起偏夹	角为30°两个偏振片_	上,出射光强 =	
13. 在单缝衍射实验中,入射单色光波长	为 λ, 狭缝宽度为 a	则第3级暗纹对应衍射	肘角
的正弦值 =			
14. 现有两种介质, 折射率分别为 n ₁ 和 n	$_2$, 其中 $n_1 > n_2$, 当	光线由一种介质入射到	另一
种介质产生全发射对应的入射临界角 = _	·		

15. 爱因斯坦光电效应实验中,已知某材料的逸出功为 A,当入射光的频率为 λ 照射时,可以产生光电子,则电子逸出材料表面的最大初动能 = _______. (普朗克常数为 h,光速为 c)

三、计算题(共60分)

16. (本题 15 分)

验

型

超 教

得分

如图所示,长为L的铜棒OA,绕其固定端O在均匀磁场B中以角速度 ω 逆时针转动,铜棒与B垂直,B的方向垂直纸面向里。求动生电动势 ε 的大小,并指出哪端电势高。

17. (本题 15 分)

得分

如图所示,一长密绕螺线管内部填满相对磁导率 $\mu_r = 1000$ 的磁性材料,长度为 l = 1.0 m,截面积 S = 10 cm², 匝数 $N_1 = 1000$. 在其上中端密绕另一匝数 $N_2 = 20$ 的短线圈,计算这两个线圈的互感(设线圈 1 产生的磁场完全穿过线圈 2 的每一匝,无漏磁). 若线圈 1 中电流的变化率为 10 A/s,则线圈 2 中的感应电动势为多少?

18. (本题 20 分)

得分

一平面衍射光栅的光栅常数为 $d = (a+b) = 2.4 \mu \text{m} (1 \mu \text{m} = 10^{-6} \text{m})$,现用波长 $\lambda = 600 \text{ nm} (1 \text{nm} = 10^{-9} \text{m})$ 的单色光垂直入射该光栅上,测得第三级缺级. (1) 第二级主极大对应的衍射角 θ 为多少度? (2) 透光缝可能的最大宽度 a 等于多少? (3) 在选定了上述(a+b)和 a 之后,用白光照射(波长在 400-760 nm 之间),求第二级光谱的张角. $(\sin^{-1}(0.333) = 19.5^{\circ}, \sin^{-1}(0.633) = 39.3^{\circ})$

19. (本题 10分)

得分

牛顿环是一种典型的分振幅干涉图案,可用来检测单色光的波长:在实验中测得第 3 个暗环的半径为 r_1 ,第 7 个暗环的半径为 r_2 ,且已知平凸透镜的半径为 R. 求入射光的波长 λ .

四、证明题(本题 10 分)

得分

20. 一波长为 λ 单色平行光自左向右垂直照射一宽度为 α 的狭缝, 狭缝的右方放置一焦距为 f 的薄凸透镜, 在该透镜像方焦平面处竖直放置一屏幕, 如图所示. 由于衍射, 单色光透过狭缝后产生干涉在屏幕上出现明暗相间的条纹. 在衍射角 θ 很小的情况下,证明中央明纹的宽度是第一级明纹宽度的 2 倍.

安徽大学 20_20_-20_21_学年第_1_学期

《大学物理 A (下) 》期末考试试卷参考答案及评分标准

一、选择题 (每小题 2 分, 共 20 分)

DAABC DCCBC

- 二、填空题(每小题2分,共10分)
- 11. 2: 1;
- 12. $3I_0/8$.
- 13. $3\lambda/a$.
- 14. $\arcsin(n_2/n_1)$ 或 $\sin^{-1}(n_2/n_1)$.
- 15. hv-A 或 $h\lambda-A$.

16. (本题 15分)

解: 取线元 dl, 其运动速度大小为 $v = \omega l$,

$$\vec{v} \times \vec{B}$$
与 dl 方向相反, $d\varepsilon = \vec{v} \times \vec{B} \cdot d\vec{l} = vBdl = B\omega ldl$,

$$\varepsilon = \int d\varepsilon = \int_0^L B\omega l dl = \frac{1}{2} B\omega L^2.$$

根据电子受到洛伦兹的方向,电子将向 A 端累积,所以 O 点的电势高. (2分)

- (5分)
- (5分)

- 17. (本题 15分)
- 解:设线圈 1 的电流为 I_1 ,则其产生的磁场

$$H = n_1 I_1 = N_1 I_1 / l$$

 $B = \mu_0 \mu_r H = \mu_0 \mu_r N_1 I_1 / l$

线圈 2 捕获的磁通链匝数

$$\Psi_{12} = N_2 \iint_{S} \vec{B} \cdot d\vec{S} = N_2 \iint_{S} B dS = \frac{\mu_0 \mu_r N_1 N_2 S I_1}{l}$$

$$M = \frac{\Psi_{12}}{I_1} = \frac{\mu_0 \mu_r N_1 N_2 S}{l} \approx 25 \text{mH}$$

$$\varepsilon = -\frac{d\Psi_{12}}{dt} = -M\frac{dI_1}{dt} = \frac{\mu_0 \mu_r N_1 N_2 S}{l} \frac{dI_1}{dt} \approx -250 \text{mV}$$

18. (本题 20 分)

比较上述两个式子,故得证.

16. (本区20万)	
解: (1) 由光栅方程 $(a+b)\sin\theta = k\lambda$,	(4分)
得 $\sin \theta = k \lambda / (a+b) = 2 \times 600 \text{ nm}/2.4 \mu\text{m} = 0.5$, $\theta = 30$ °.	(2分)
(2) 同时满足 $(a+b)\sin\theta = k\lambda$ 和 $a\sin\theta = k'\lambda$, 即 $k = (a+b)k'/a$ 对应的 k 出	现缺级. (4分)
于是, $a = (a+b)k/k = (a+b)k/3$, 又要求 $a < (a+b)$,	(2分)
于是 $k'=1$ 和 2. 因此,透光缝可能的最大宽度 $a \leq k'=2$ 时取值,于是	,
$a = (a+b)/3 = 1.6 \mu m.$	(2分)
(3) 根据 $(a+b)\sin\theta = k\lambda$, $k=2$, 得 $\sin\theta = k\lambda/\sin\theta = 2\lambda/(a+b)$	(2分)
	(1分)
$\stackrel{\text{def}}{=} \lambda = 760 \text{ nm}, \sin \theta_{\text{M}} = 0.633, \theta_{\text{M}} = 39.3 ^{\circ}$	(1分)
所以第二级光谱的张角为 39.3 °-19.5 °= 19.8 °	(2分)
19. (本题 10 分)	
解:根据牛顿环原理,第 k 个暗环对应的半径为 $r_k = \sqrt{kR\lambda}$	(3分)
则,有 $r_1 = \sqrt{3R\lambda}$ 和 $r_2 = \sqrt{7R\lambda}$	(4分)
上式联立可得, $\lambda = \frac{r_2^2 - r_1^2}{4R}$	
$\frac{1}{4R}$	(3分)
四、证明题(本题10分)	_
证明:根据单缝衍射的暗纹条件,可知	
→ A	
$a\sin\theta = \pm 2k\frac{\lambda}{2} = \pm k\lambda (k=1,2,3,\ldots)$	(2分)
在衍射角很小的情况下,有 $\sin \theta = \tan \theta$.	
中央明纹的宽度为中央明纹上下两侧一级暗纹之间的宽度,	(2分)
1 2 26 2 2	
$l_0 = 2x_1 = 2f tan\theta_1 \approx 2f sin\theta_1 = 2\frac{\lambda}{a}f$	(2分)
第一级明纹的宽度,相当于第二级暗纹和第一级暗纹之间的距离,	(2分)
$\Delta x_1 = f \tan \theta_2 - f \tan \theta_1 \approx f (\sin \theta_2 - \sin \theta_1) = \frac{\lambda}{a} f$	(2分)