1.

ENGINEERING & MANAGEMENT EXAMINATIONS. JUNE - 2008 MECHANICAL SCIENCE:

SEMESTER - 2

	 the state of the s	•
Time: 3 Hours I		Full Marks: 70
naic o nouis i		i rum wanks . / c

GROUP - A

(h.ultiple Choice Type Questions)

Cha	ose ti	ne cerreet alternatives for the	followin	g: $10 \times 1 = 10$			
ij.	Wh	Which of the following is an intensive thermodyn, mic property?					
	a)	Voiume	b)	Temperature			
	c)	Mass	d)	Energy.			
ti)	For	tropy is					
	a)	greater than dQ/T	b)	less than dQ/T			
	c)	zero	d)	equal to GQ/T.			
iii)	Du	During throttling, which of the following quantity desa not change?					
	a)	Internal energy	b)	Entroly			
	c)	Pressure	d)	Enthalpy.			
iv)	Wo	rk dene in a free expansion is	• • · · · · · · · · · · · · · · · · · ·				
	a)	Positive	b)	Negative			
	c)	Zero	d)	Maximum.			
v)	A c ₅	cle with constant volume h	eat addit	ion and constant volume heat rejectic 1			
i) ii) iv)	is						
	a)	Otio cycle	b)	Diesel cycle			
	c)	Joule cycle	d)	Rankine cycle,			
vi) Triple point of a pure substance is a point at which				t at which			
	a) -	liquid and vapour coexist					
	b)	solid and vapour coexist		en e			
	c)	solid and liquid coexist					
	d)	all three phases coexist.					

II-222833 (3)

20/15	L dt A	_A - 2/M0	E-1.)1/06

Γ		1
9	Die 5	
9	94	1
1	T :	¥

- Banoulli's equation deals with the conservation of
 - 1

- Mass Mo.nentian
- c) Energy

- Continuity equation is based on the principle of conservation of
 - 2.) Mass

Momentum

C) Energy

- Entropy.
- A Pitot tule is used for measuring
 - State of fluid
- Velcaty of fluid
- Density of fluid **c**)
- Viscosity of fluid.
- Dynamic viscosity has dimensions of

Short Answer Type Questions)

Answer any three of the following.

3 x 5 = 1

- State the first law of thermodynamics for a closed system undergoing a cycle not be stated the first law of thermodynamics for a closed system undergoing a cycle not be stated to the first law of thermodynamics for a closed system undergoing a cycle not be stated to the first law of thermodynamics for a closed system undergoing a cycle not be stated to the first law of the firs 2. process.
- liminain thermodynamic equilibrium. 3,
- The fluid flow is given by $\overline{V} = x^2 y \hat{i} + y^2 z (2 xyz + yz^2) \hat{k}$. Show that this is a 4. of possible steady incompressible flow. Calculate the velocity and acceleration (2, 1, 3).
- Draw a block diagram of vapour compression refrigeration cycle and also Traw 5. corresponding P-V and T-S plots.
- Datve Barnoulli's equation form first principles, stating the assumptions. b.
 - Englain PMM-1 and PMM-2.

n-228333 (&)

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

3 × 15 = 45

- 8. a) Which is a more effective way of increasing the efficiency of a Carnot engine to increase source temperature (T_1), keeping sink temperature (T_2) constant or to decrease T_2 keeping T_1 constant.
 - b) State Classius inequality.
 - c) A mass of m kg of liquid (specific heat = C_p) at a temperature T_1 is mixed with an equal mass of the same liquid at a temperature T_2 ($T_1 > T_2$) and the system is thermally insulated. Show that the entropy change of the universe is given by $2mC_p l\left(\frac{T_1 + T_2}{\sqrt{T_1 T_2}}\right)$ and prove that this is necessarily positive. 3 + 2 + 10
- 9. a) Derive the expression for efficiency of an Otto cycle and show the process on p-V and T-s planes.
 - b) For the same compression ratio, explain why the efficiency of Otto cycle is greater than that of Diesel cycle.
 - In a diesel engine the compression ratio is 13:1 and fuel is cut off at 8% of the stroke. Find the air standard efficiency of the engine. Take γ for air = 1.4.

5 + 3 + 2 + 5

- 10. a) A gas occupies 0.024 m 3 at 700 kPa and 95 °C. It is expanded in the non-flow process according to the law $pv^{1.2}$ = constant to a pressure of 70 kPa after which it is heated at a constant pressure back to its original temperature. Sketch the process on the p-V and T-s diagrams and calculate for the whole process the work done and the heat transferred. Take C_p =1.047 and C_n = 0.775 kJ/kg K for the gas.
 - b) A rigid closed tank of volume 3 m ³ contains 5 kg of wet steam at a pressure of 200 kPa. The tank is heated until the steam becomes dry saturated. Determine the pressure and the heat transfer to the tank.

II-222833 (3)

6

- 11. a) Write the steady flow energy equation for a single steam entering and single steam leaving a control volume and explain the various terms.
 - At the inlet to a nozzle, the enthalpy of the fluid passing is 3000 kd/kg and velocity is 60 m/s. At the exit, the enthalpy is 2762 kJ/kg. The nozzle is norizontal and there is negligible heat loss.
 - i) Find the velocity at the nozzle exit
 - ii) The inlet area is 0.1 m² and the specific volume at inle¹⁸ 187 m³/1g. Find the mass flow rate.
 - iii) If the specific volume at the nozzle exit is 0.498 m³/kg, find the exit area of the nozzle.
- 12. a) Derive Euler's equation of motion along a streamline.
 - b) A venturimeter has inlet and throat diameters of 300 mm and 150 mm. Verifiews through it at the rate of 0.065m³/s and the differential gauge is deflected by 1.2 m. The specific gravity of the manometric liquid is 1.6. Determine the coefficient of discharge of the venturimeter.
 - A jet of water from a 25 mm diameter nozzle is directed vertically upwards.

 Assuming that the jet remains circular and neglecting any loss of energy, which will be the diameter of the jet at a point 4.5 m above the nozzle, if the jet leave the nozzle with a velocity of 12 m/s?

 5 + +
- 13. a) A circular disk of diameter d is slowly rotated in a liquid of viscosity μ at a small distance h from a fixed surface. Derive an expression for the torque necessary to maintain an angular velocity ω.
 - b) Distinguish between the follow:
 - laminar and turbulent flow
 - ii) compressible and incompressible fluid
 - iii) static pressure and stagnation pressure
 - iv) viscous and inviscid fluid.

7 + 3

14. Write short notes on any three of the following:

3 x

- s) Pitot tube
- D Orifice meter
- Point function and path function
- Streamline, streakline and pathline.

ENL

E-222353 (3)