Error Detection and Correction

Syndrome Decoding

Decoding involves parity-check information derived from the code's coefficient matrix, P.

Associated with any systematic linear (n,k) block code is a (n-k)-by-n matrix, H called the parity-check matrix.

H is defined as

$$\mathbf{H} = [\mathbf{I}_{\mathbf{n}-\mathbf{k}} \middle| \mathbf{P}^{\mathsf{T}}]$$

Where **P**^T is the transpose of the coefficient matrix, P and is an (n-k)-by-k matrix.

 I_{n-k} is the (n-k)-by-(n-k) identity matrix.

For error detection purposes, the parity check matrix, H has the following property

$$c.H^T = (0 \ 0 \ \dots \ 0)$$
 (ie Null matrix)

Syndrome Decoding

$$c.H^{T} = (0 \ 0 \ \ 0)$$
 (ie Null matrix)

Since c=m.G, therefore

$$m.G.H^T = (0 \ 0 \ \ 0)$$

This property is satisfied only when c is correctly received. Errors are indicated by the presence of non-zero elements in the matrix.

Let **r** denotes the 1-by-n received vector that results from sending the code vector **c** over a noisy channel.

When there is an error, the decoding operation will give a syndrome vector, s whose elements contain at least 1 non-zero element.

Syndrome Decoding – Example for the (7,4) Hamming Code

A (7,4) Hamming code with the following parameters n=7; k=4, m=7-4=3

The k-by-(n-k) (4-by-3) coefficient matrix, **P** =

$$P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

The generator matrix, G is, G =

$$G = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Syndrome Decoding –Example for (7,4) Hamming Code

Associated with the (7,4) Hamming Code is a 3-by-7 matrix, H called the parity-check matrix.

H is defined as

$$\mathbf{H} = [\mathbf{I}_{\mathbf{n-k}} | \mathbf{P}^{\mathsf{T}}]$$

$$\begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{bmatrix}$$

When a codeword is correctly received, the $c.H^T$ will result in a null matrix, otherwise it will result in a syndrome vector, s.

Syndrome Decoding –Example for (7,4) Hamming Code

Example: The received code vector is [1110010], check whether this is a correct codeword

Syndrome Decoding –Example for (7,4) Hamming Code

Example: The received code vector is [1100010], check whether this is a correct codeword

Error pattern

Error pattern is an error vector E whose nonzero element mark the position of the transmission errors in the received codeword We can work out all syndromes and find the corresponding error patterns and store them in a look up table for decoding purposes For example the (7,4) Hamming code

Syndrome	Error Pattern
000	0000000
100	1000000
010	0100000
001	0010000
110	0001000
011	0000100
111	0000010
101	0000001

Error detection & correction

The error pattern, E is essentially the modulo-2 sum of the correct code vector and the erroneous received code vector. For example, c = 1110010 and c = 1100010 (ie error in the c = 3rd bit)

$$c + r = E$$

$$1110010 + 1100010 = 0010000$$

This error pattern corresponds to a syndrome vector in the look up table, 001

Recall that the syndrome vector, $s = rH^T$

$$s = (c + E)H^T$$

= $cH^T + EH^T$
= EH^T

Error detection and correction

Therefore, the decoding procedure involves working out the syndrome for the received code vector and look up for the corresponding error pattern.

Then, modulo-2 sum the error pattern, E and the received vector, r, so that c = r + E, and the correct codeword can be recovered.

Error detection and correction Example

For message word 0010, the correctly encoded codeword is c = 1110010. Due to channel noise, the received code vector is r = [1100010]. Show how the decoder recover the correct codeword.

 The decoder uses r and the H^T to find the error syndrome, s

 $S=r.H^{T} = 001$

- 2) Using the resulting syndrome, refer the look up table for the corresponding assumed error vector, E.
- S=001 corresponds to assumed error vector, E = 0010000
- 3) Then ex-OR E and r to recover the correct codeword E+r = 0010000 + 1100010 = 1110010

Error detection and correction Exercise

- i) For message word 0110, the correctly encoded codeword is c = 1000110. Due to channel noise, the received code vector is r = [1100110]. Show how the decoder recover the correct codeword.
- ii) For message word 0110, the correctly encoded codeword is c = 1000110. Due to channel noise, the received code vector is r = [1100100]. Show how the decoder performs its decoding operation. What is your observation and explain it.