bour 2 - Maximisation de l'utilité

d'un nevenu n > 0, Gisonme d'un nevenu n > 0, Gisonme dles bies, en quantités x, nz > 0, dent le prin sont p, et pe > 0.

Cett our ommatie chenche à:

- faire un chin de consommation (que l'an va supposen pationnel), il à choisin de quantités n, n2 > 0

- respecten sa containte budgetain:

pr. nr f j2. n2 En (par de nédit!)

On se vième supposer que cette cossementice soutaite pain le "me: ller drin possible", setant dons son budget (limité).

Pour cela, en suppose ses sonts modélisés par une fonction de chain voir fiant les propriétés voues au comme 1 (cohérence, notemment...): si ses préférences sont pationnelles, au seus on la relation de préférence L'qui les modélises vir fre:

Or est donc corduit, si on appelle u: X -> 12
une faction d'estillé réprésentant les
préférences de notre consommative, à
cusidérer le problème «-april:
maximiser l'axlité (u(x, x2))
I mes la contrainte de bridget
I men la contrainte de bridget pr. mr f pr. mr = (12)
très its dés charlé " proprème d'estime"
Mathimotiquement, il 6'agit d'un problème très étridée appelé "problème d'optimisation" qui s'écrit : trouver $n = (n_1, n_2) \in IR^2$
solution de
$N(x_1, x_2) \longrightarrow mex$
$\left(\int_{\mathbb{R}} u_1 + \int_{\mathbb{R}} u_2 \leq n \right) $
d Partie (-
$(x_1, x_2) \xrightarrow{9} \text{ mex}$ (1) $(x_1, x_2) \xrightarrow{9} \text{ mex}$ (1) $(x_1 > 0, x_2 > 0) X = 1R_f$
Remarque: n feut isalement s'intévenn à
un search problème, cusistant à
échange out et contrainte, à servin:
échenge out et contrainte, à servir : _ minimiser la dipense
- tous contrainte de satisfection d'une
utilité minimale (u.);
•
c'est encoro un problème de chrix (tronver
n=(n, ne) E X1) ophual, nais prince
auti cut à optimiser (ic minimiser), it
d'autres contraintes (utilité et mon budget).

Mathémariquement, ce problème s'écrit: traver $u = (u_1, n_2) \in X = \mathbb{R}^2$ to p.n, + p2.n2 - win $\begin{pmatrix}
(u(n_1, n_2) > u_0) \\
(n_1 > 0, u_2 > 0)
\end{pmatrix}$ Demarque: que u soit pour le marianisation de l'uplité on le minimisation de budget, le fait de prosin modéliser a profesence (les chia...) par une fonction d'utilité permet de quantifier et d'inine un problème mathémoriquement (et municipalment) traitable. Le présent alors les questions usuelle : - (existence de solution?)] n sol. de (1) - (unicité) de solution? - Cerecterischim (et calcul effectif) de la on des polerions. Etudi géométique du problème. Déf.: int u: X-> 12 une faction d'arilité; mit 40 EIR une valeen ponn eette utilité, on appelle courbe d'in à férence (de niveau us) l'ensemba $\{x \in X \mid u(x) = y_0\}.$

L'essemble des contraintes C=X, d'élimité pan le contrainte de bridget (p. x, f p. uz

n et les contraintes de joditivité des choix des biles 1 et 2, x, >0, uz >,0, en le triangle ai-demus.

L'nest solution, on doit avoin:

_ nec (n vérifie les contraintes)

_ (+nec): u(n) > u(n) (optimalité)

En particulier, partant de re, quelle que soit le direction d'hans lequelle je me déflece tout en testant (lo calement) dons l'ensemble des contraintes C, je me peux que faire diminuer l'usilité!

 $u(\pi + \epsilon \cdot d) \leq u(\bar{z})$ $u(\pi_1 | \pi_2) >, u(\pi_1 | \pi_2)$ $(=) (\pi_1 | \pi_2) \geq (\pi_1 | \pi_2)$ $(=) (\pi_1 | \pi_2) \geq (\pi_1 | \pi_2)$

u(nf E.d) - u(n) (o, même ni E > 0 er très petit. On a donc $u(\bar{x} + \varepsilon \cdot d) - u(\bar{n})$ E dépinér

quantité qui tend vers (u'(\bar{x}). d) (dérivée de u qu'on suppose déhivable) en u appliquée à d quand E -> 0 Van ouséquent, sion suppose u désirable sur XCIR2, pour toute director d'Elleque, lo calement, on teste dans C (l'ensemble le cer direction 6'appelle le cône tempent a C en n'et se note TaC), on doit amit: u'(n). d <0. En utilisant plusét le gradient de nem n, cette relation de récorit : (tde Tic): (Vu(n) d) =0. Notaben: ni u: (R2-+1P) est dénivable, on rappelle que [300 (m, n2) 30 (m, n2)] (ligne) Vu (u, uz) = [on (u, u-)] (colonno = vecter de 122) rectur $\frac{\partial u}{\partial u_2} (u_{31}u_2)$ (213) = m. 4, 4 u2. 42 de 122 prod. scalaire Six Cixi

et que (+d=(d,,d2) EIRL): u((x,,12).d=(74(24,42) |d) =0 = 00 (x1, x2). d1 f 00 (x1, x2). d2. Graphiquement, le gradient Pu(n) de l'unilité en no Ele combe d'indifférence L x ∈ X | u(n) = (n0) 6 , Pu(2) et dirigé dans le sens (1) (2) EPL des utilités crossantes Eprouvez-le! On sait penailler, détenuinen, en chaque point n de c, l'ensemble de Rinections NEIR' to (4) d ∈ Tn C): ((v) (d) ≤0) : il s'agit dell'arcemble des vedturs qui forment x2 (.1.) ≤ 0

augli un augle obtus avec toutes les directions dans TnC p1 71 + p2 22 = th

La condition nécessaire de solution (+d∈ T_RC): ((\(\nu\)\)d) < 0 ((\(\x)\) expreine donc qu'an est par exemple dans la situation in - lessous plusieum countres d'intifférence / Vu(~) ~(~) u (x) euz La Lun p, 7, + p2 x2 = 12 Exercice: représentez les antres possibilités permettant de réaliser le oudition (*). Juite du ouvs: - traduine analysiquement la condition (+) - donner des conditions ganantissant l'existence/l'unicité de solution, et le fait que (x) Caractérise les solutions.