Summary Part 2: Concentration of Measure and Functional Methods

Tianpei Xie

Jan. 26th., 2023

Contents

1	Log	garithmic Sobolev Inequality	2
	1.1	Functional Form of Logarithmic Sobolev Inequality	2
	1.2	Bernoulli Logarithmic Sobolev Inequality	3
	1.3	Gaussian Logarithmic Sobolev Inequality	4
	1.4	Modified Logarithmic Sobolev Inequalities	
2	Isoperimetric Inequalities and Concentration of Measure		5
	2.1	Brunn-Minkowski Inequality	
	2.2	Classical Isoperimetric Problem on Euclidean Space \mathbb{R}^n	6
	2.3	Isoperimetric Problem on Unit Sphere	7
	2.4	Concentration via Isoperimetric Inequalities	8
	2.5	Convex Distance Inequality	10
	2.6	Concentration of Convex Lipschitz Functions	10
3	Concentration of Gaussian Measure		11
	3.1	Gaussian Isoperimetric Theorem and Gaussian Concentration Theorem	11
	3.2	Lipschitz Functions of Gaussian Variables	13
	3.3	Gaussian Logarithmic Sobolev Inequality	14
	3.4	Gaussian Transportation Inequality	14
	3.5	Gaussian Hypercontractivity	15
	3.6	Suprema of Gaussian Process	15
4	Cor	acentration of Bernoulli Measure on the Binary Hypercube	15
	4.1	Edge Isoperimetric Inequality on the Binary Hypercube	15
	4.2	Bobkov's Inequality	15
	4.3	Vertex Isoperimetric Inequality on the Binary Hypercube	16
	4.4	Hypercontractivity: The Bonami-Beckner Inequality	16
	4.5	Influence Function	16
	4.6	Monotone Sets	16
	17	Threshold Phenomena	16

1 Logarithmic Sobolev Inequality

1.1 Functional Form of Logarithmic Sobolev Inequality

• From functional analysis, we have the Sobolev inequality,

Remark (The Sobolev Inequality) [Evans, 2010] The Sobolev inequality states for smooth function $f: \mathbb{R}^n \to \mathbb{R}$ in Sobolev space where $n \geq 3$ and $p = \frac{2n}{n-2} > 2$

$$||f||_p^2 \le C_n \int_{\mathbb{R}^n} |\nabla f|^2 \, dx.$$

The inequality is sharp when the constant

$$C_n := \frac{1}{\pi n(n-2)} \left(\frac{\Gamma(n)}{\Gamma(n/2)}\right)^{2/n}$$

• Proposition 1.1 (Euclidean Logarithmic Sobolev Inequality). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a smooth function and m be Lebesque measure on \mathbb{R}^n , then

$$Ent_{m}(f^{2}) \leq \frac{n}{2} \log \left(\frac{2}{n\pi e} \mathbb{E}_{m} \left[\|\nabla f\|_{2}^{2} \right] \right)$$

$$\Leftrightarrow \int f^{2} \log \left(\frac{f^{2}}{\int f^{2} dx} \right) dx \leq \frac{n}{2} \log \left(\frac{2}{n\pi e} \int |\nabla f|^{2} dx \right)$$

$$(1)$$

• Definition (Logarithmic Sobolev Inequality for General Probability Measure). A probability measure μ on \mathbb{R}^n is said to satisfy the <u>logarithmic Sobolev inequality</u> for some constant C > 0 if for any smooth function f

$$\operatorname{Ent}_{\mu}(f^{2}) \leq C \operatorname{\mathbb{E}}_{\mu} \left[\|\nabla f\|_{2}^{2} \right] \tag{2}$$

holds for any *continuous differentiable* function $f: \mathbb{R}^n \to \mathbb{R}$. The left-hand side is called *the entropy functional*, which is defined as

$$\operatorname{Ent}(f^2) := \mathbb{E}_{\mu} \left[f^2 \log f^2 \right] - \mathbb{E}_{\mu} \left[f^2 \right] \log \mathbb{E}_{\mu} \left[f^2 \right]$$
$$= \int f^2 \log \left(\frac{f^2}{\int f^2 d\mu} \right) d\mu.$$

The right-hand side is defined as

$$\mathbb{E}_{\mu} \left[\|\nabla f\|_{2}^{2} \right] = \int \|\nabla f\|_{2}^{2} d\mu.$$

Thus we can rewrite the logarithmic Sobolev inequality in functional form

$$\int f^2 \log \left(\frac{f^2}{\int f^2 d\mu} \right) d\mu \le C \int \|\nabla f\|_2^2 d\mu \tag{3}$$

• Remark (Logarithmic Sobolev Inequality)
For non-negative function f, we can replace $f \to \sqrt{f}$, so that the logarithmic Sobolev inequality becomes

$$\operatorname{Ent}_{\mu}(f) \le C \int \frac{\|\nabla f\|_{2}^{2}}{f} d\mu \tag{4}$$

• Remark (Modified Logarithmic Sobolev Inequality via Convex Cost and Duality) For some convex non-negative cost $c: \mathbb{R}^n \to \mathbb{R}_+$, the convex conjugate of c (Legendre transform of c) is defined as

$$c^*(x) := \sup_{y} \left\{ \langle x, y \rangle - c(y) \right\}$$

Then we can obtain the modified logarithmic Sobolev inequality

$$\operatorname{Ent}_{\mu}(f) \le \int f^2 \, c^* \left(\frac{\nabla f}{f}\right) d\mu \tag{5}$$

1.2 Bernoulli Logarithmic Sobolev Inequality

• Remark (Setting)

Consider a uniformly distributed binary vector $Z = (Z_1, ..., Z_n)$ on the hypercube $\{-1, +1\}^n$. In other words, the components of X are independent, identically distributed random sign (Rademacher) variables with $\mathbb{P}\{Z_i = -1\} = \mathbb{P}\{Z_i = +1\} = 1/2$ (i.e. symmetric Bernoulli random variables).

Let $f: \{-1, +1\}^n \to \mathbb{R}$ be a real-valued function on **binary hypercube**. X:=f(Z) is an induced real-valued random variable. Define $\widetilde{Z}^{(i)}=(Z_1,\ldots,Z_{i-1},Z_i',Z_{i+1},\ldots,Z_n)$ be the sample Z with i-th component replaced by an independent copy Z_i' . Since $Z,\widetilde{Z}^{(i)} \in \{-1,+1\}^n$, $\widetilde{Z}^{(i)}=(Z_1,\ldots,Z_{i-1},-Z_i,Z_{i+1},\ldots,Z_n)$, i.e. the i-th sign is **flipped**. Also denote the i-th Jackknife sample as $Z_{(i)}=(Z_1,\ldots,Z_{i-1},Z_{i+1},\ldots,Z_n)$ by leaving out the i-th component. $\mathbb{E}_{(-i)}[X]:=\mathbb{E}[X|Z_{(i)}].$

Denote the i-th component of $discrete \ gradient$ of f as

$$\nabla_i f(z) := \frac{1}{2} \left(f(z) - f(\widetilde{z}^{(i)}) \right)$$

and $\nabla f(z) = (\nabla_1 f(z), \dots, \nabla_n f(z))$

• Proposition 1.2 (Logarithmic Sobolev Inequality for Rademacher Random Variables). [Boucheron et al., 2013]

If $f: \{-1,+1\}^n \to \mathbb{R}$ be an arbitrary real-valued function defined on the n-dimensional binary hypercube and assume that Z is uniformly distributed over $\{-1,+1\}^n$. Then

$$Ent(f^2) \le \mathcal{E}(f) \tag{6}$$

$$\Leftrightarrow \operatorname{Ent}(f^2(Z)) \le 2\mathbb{E}\left[\|\nabla f(Z)\|_2^2\right] \tag{7}$$

• Remark (*Logarithmic Sobolev Inequality* \Rightarrow *Efron-Stein Inequality*). [Boucheron et al., 2013]

Note that for f non-negative,

$$Var(f(Z)) \le Ent(f^2(Z)).$$

Thus logarithmic Sobolev inequality (6) implies

$$Var(f(Z)) \le \mathcal{E}(f)$$

which is the Efron-Stein inequality.

• Corollary 1.3 (Logarithmic Sobolev Inequality for Asymmetric Bernoulli Random Variables). [Boucheron et al., 2013]

If $f: \{-1, +1\}^n \to \mathbb{R}$ be an arbitrary real-valued function and $Z = (Z_1, \dots, Z_n) \in \{-1, +1\}^n$ with $p = \mathbb{P}\{Z_i = +1\}$. Then

$$Ent(f^2) \le c(p) \mathbb{E}\left[\|\nabla f(Z)\|_2^2 \right]$$
 (8)

where

$$c(p) = \frac{1}{1 - 2p} \log \frac{1 - p}{p}$$

Note that $\lim_{p\to 1/2} c(p) = 2$.

1.3 Gaussian Logarithmic Sobolev Inequality

• Proposition 1.4 (Gaussian Logarithmic Sobolev Inequality). [Boucheron et al., 2013] Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous differentiable function and let $Z = (Z_1, \ldots, Z_n)$ be a vector of n independent standard Gaussian random variables. Then

$$Ent(f^{2}(Z)) \le 2\mathbb{E}\left[\|\nabla f(Z)\|_{2}^{2}\right]. \tag{9}$$

1.4 Modified Logarithmic Sobolev Inequalities

• Proposition 1.5 (A Modified Logarithmic Sobolev Inequalities for Moment Generating Function) [Boucheron et al., 2013]

Consider independent random variables Z_1, \ldots, Z_n taking values in \mathcal{X} , a real-valued function $f: \mathcal{X}^n \to \mathbb{R}$ and the random variable $X = f(Z_1, \ldots, Z_n)$. Also denote $Z_{(-i)} = (Z_1, \ldots, Z_{i-1}, Z_{i+1}, \ldots, Z_n)$ and $X_{(-i)} = f_i(Z_{(-i)})$ where $f_i: \mathcal{X}^{n-1} \to \mathbb{R}$ is an arbitrary function. Let $\phi(x) = e^x - x - 1$. Then for all $\lambda \in \mathbb{R}$,

$$Ent(e^{\lambda X}) := \mathbb{E}\left[\lambda X e^{\lambda X}\right] - \mathbb{E}\left[e^{\lambda X}\right] \log \mathbb{E}\left[e^{\lambda X}\right] \le \sum_{i=1}^{n} \mathbb{E}\left[e^{\lambda X}\phi(-\lambda(X - X_{(-i)}))\right]$$
(10)

• Proposition 1.6 (Symmetrized Modified Logarithmic Sobolev Inequalities) [Boucheron et al., 2013]

Consider independent random variables Z_1, \ldots, Z_n taking values in \mathcal{X} , a real-valued function $f: \mathcal{X}^n \to \mathbb{R}$ and the random variable $X = f(Z_1, \ldots, Z_n)$. Also denote $\widetilde{X}^{(i)} = f(Z_1, \ldots, Z_{i-1}, Z'_i, Z_{i+1}, \ldots, Z_n)$. Let $\phi(x) = e^x - x - 1$. Then for all $\lambda \in \mathbb{R}$,

$$\lambda \mathbb{E}\left[Xe^{\lambda X}\right] - \mathbb{E}\left[e^{\lambda X}\right] \log \mathbb{E}\left[e^{\lambda X}\right] \le \sum_{i=1}^{n} \mathbb{E}\left[e^{\lambda X}\phi(-\lambda(X-\widetilde{X}^{(i)}))\right]$$
(11)

Moreover, denoting $\tau(x) = x(e^x - 1)$, for all $\lambda \in \mathbb{R}$,

$$\lambda \mathbb{E}\left[Xe^{\lambda X}\right] - \mathbb{E}\left[e^{\lambda X}\right] \log \mathbb{E}\left[e^{\lambda X}\right] \leq \sum_{i=1}^{n} \mathbb{E}\left[e^{\lambda X}\tau(-\lambda(X-\widetilde{X}^{(i)})_{+})\right],$$
$$\lambda \mathbb{E}\left[Xe^{\lambda X}\right] - \mathbb{E}\left[e^{\lambda X}\right] \log \mathbb{E}\left[e^{\lambda X}\right] \leq \sum_{i=1}^{n} \mathbb{E}\left[e^{\lambda X}\tau(\lambda(\widetilde{X}^{(i)}-X)_{-})\right].$$

2 Isoperimetric Inequalities and Concentration of Measure

2.1 Brunn-Minkowski Inequality

• Definition (Minkowski Sum of Sets)

Consider sets $A, B \subseteq \mathbb{R}^n$ and define <u>the Minkowski sum</u> of A and B as the set of all vectors in \mathbb{R}^n formed by sums of elements of A and B:

$$A + B := \{x + y : x \in A, y \in B\}$$

Similarly, for $c \in \mathbb{R}$, let $cA = \{cx : x \in A\}$. Denote by Vol(A) the **Lebesgue measure** of a (measurable) set $A \subset \mathbb{R}^n$.

• Theorem 2.1 (The Prékopa-Leindler Inequality). [Boucheron et al., 2013, Wainwright, 2019]

Let $\lambda \in (0,1)$, and let $f,g,h:\mathbb{R}^n \to [0,\infty)$ be non-negative measurable functions such that for all $x,y\in\mathbb{R}^n$,

$$h(\lambda x + (1 - \lambda)y) \ge f(x)^{\lambda} g(y)^{1-\lambda}.$$

Then

$$\int_{\mathbb{R}^n} h(x)dx \ge \left(\int_{\mathbb{R}^n} f(x)dx\right)^{\lambda} \left(\int_{\mathbb{R}^n} g(x)dx\right)^{1-\lambda}.$$
 (12)

• Corollary 2.2 (Weaker Brunn-Minkowski Inequality) [Boucheron et al., 2013, Wainwright, 2019]

Let $A, B \subset \mathbb{R}^n$ be non-empty compact sets. Then for all $\lambda \in [0, 1]$,

$$Vol(\lambda A + (1 - \lambda)B) \ge Vol(A)^{\lambda} Vol(B)^{1-\lambda}.$$
 (13)

• Theorem 2.3 (Brunn-Minkowski Inequality) [Boucheron et al., 2013, Vershynin, 2018, Wainwright, 2019]

Let $A, B \subset \mathbb{R}^n$ be non-empty compact sets. Then for all $\lambda \in [0, 1]$,

$$Vol(\lambda A + (1 - \lambda)B)^{\frac{1}{n}} \ge \lambda Vol(A)^{\frac{1}{n}} + (1 - \lambda) Vol(B)^{\frac{1}{n}}.$$
 (14)

2.2 Classical Isoperimetric Problem on Euclidean Space \mathbb{R}^n

• Definition (Blowup of Sets)

For any t > 0, and any (measurable) sets $A \subset \mathbb{R}^n$, the t-blowup (or, t-enlargement) of A is defined by

$$A_t := \{ x \in \mathbb{R}^n : d(x, A) < t \} = A + t B$$

where $B = \{x \in \mathbb{R}^n : d(0,x) < 1\}$ is an open unit ball and $d(x,A) = \inf_{y \in A} d(x,y)$.

• Definition (Surface Area of Sets)

let $A \subset \mathbb{R}^n$ be a measurable set and denote by $\operatorname{Vol}(A)$ its Lebesgue measure. The <u>surface area</u> of A is defined by

$$\operatorname{Vol}(\partial A) = \lim_{t \to 0} \frac{\operatorname{Vol}(A_t) - \operatorname{Vol}(A)}{t}.$$

provided that the limit exists. Here A_t denotes the t-blowup of A.

• Remark (*Isoperimetry Theorem*)

The classical isoperimetric theorem in \mathbb{R}^n states that, among all sets with a given volume, the Euclidean unit ball minimizes the surface area. This theorem can be formally stated as below:

• Theorem 2.4 (Isoperimetry Theorem) [Boucheron et al., 2013, Vershynin, 2018, Wainwright, 2019]

Let $A \subset \mathbb{R}^n$ be such that Vol(A) = Vol(B) where $B := \{x \in \mathbb{R}^n : d(0,x) < 1\}$ is an unit ball. Then for any t > 0,

$$Vol(A_t) > Vol(B_t)$$
 (15)

Moreover, if $Vol(\partial A)$ exists, then

$$Vol(\partial A) > Vol(\partial B).$$
 (16)

• Example (Concentration of Lebesgue Measure in \mathbb{R}^n and Isoperimetric Inequality)

Note that the volume of a t-ball in \mathbb{R}^n is

$$Vol(tB) = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)} t^n \equiv c_n t^n$$

Thus the radius of ball B with the same volume of A is

$$r := \left(\frac{\operatorname{Vol}(A)}{c_n}\right)^{\frac{1}{n}}.$$

The classical isoperimetric inequality states that

$$\operatorname{Vol}(A_t)) \ge \left((r+t)\operatorname{Vol}(B)^{1/n} \right)^n$$

$$\Leftrightarrow \operatorname{Vol}(A_t) \ge c_n \left(\left(\frac{\operatorname{Vol}(A)}{c_n} \right)^{\frac{1}{n}} + t \right)^n$$

$$\Leftrightarrow \left(\frac{\operatorname{Vol}(A_t)}{c_n} \right)^{\frac{1}{n}} \ge \left(\frac{\operatorname{Vol}(A)}{c_n} \right)^{\frac{1}{n}} + t$$
(17)

• Definition (Isoperimetric Function of Probability Measure) Define the isoperimetric function of the Lebesgue measure space (\mathbb{R}^n, μ) as

$$\lambda(u) := \left(\frac{u}{c_n}\right)^{\frac{1}{n}}$$

so the classical isoperimetric inequality is equivalent to the concentration of Lebesgue measure

$$\lambda \left(\mu(A_t)\right) \ge \lambda \left(\mu(A)\right) + t.$$

2.3 Isoperimetric Problem on Unit Sphere

• Definition (Spherical Cap and its t-Blowup) Let $\mathbb{S}^{n-1} := \{x \in \mathbb{R}^n : ||x|| = 1\}$ be the (n-1)-dimensional unit sphere. The intersection of a half-space and \mathbb{S}^{n-1} is called a spherical cap. In particular, for some $y \in \mathbb{R}^n$, denote the associated spherical cap as

$$H_y := \left\{ x \in \mathbb{S}^{n-1} : \langle x \,,\, y \rangle \le 0 \right\}$$

With some simple geometry, it can be shown that its t-blowup corresponds to the set

$$H_y^t := \left\{ x \in \mathbb{S}^{n-1} : \langle x, y \rangle < \sin(t) \right\}$$

• Theorem 2.5 (Isoperimetry Theorem on Unit Sphere) [Boucheron et al., 2013, Vershynin, 2018, Wainwright, 2019] Let A be a subset of the sphere \mathbb{S}^{n-1} , and let σ denote the normalized area on that sphere. Let t > 0. Then, among all sets $A \subset \mathbb{S}^{n-1}$ with given area $\sigma(A)$, the <u>spherical caps</u> minimize the area of the neighborhood $\sigma(A_t)$, where

$$A_t := \left\{ x \in \mathbb{S}^{n-1} : \exists y \in A \text{ such that } ||x - y|| < t \right\}$$

• Remark Define a metric ρ on sphere \mathbb{S}^{n-1} as

$$\rho(x,y) := \arccos(\langle x, y \rangle)$$

Thus (\mathbb{S}^{n-1}, ρ) is a **metric space**. Let \mathbb{P} be uniform distribution on \mathbb{S}^{n-1} so that $((\mathbb{S}^{n-1}, \rho), \mathbb{P})$ is a probability space.

• Proposition 2.6 (Isoperimetric Inequalities for Uniform Distribution over Sphere) [Boucheron et al., 2013, Vershynin, 2018, Wainwright, 2019] Let $\mathbb{S}^{n-1} := \{x \in \mathbb{R}^n : ||x|| = 1\}$ be the (n-1)-dimensional unit sphere. For any $t \in [0,1]$,

$$\alpha_{\mathbb{S}^{n-1}}(t) \le c \exp\left(-\frac{nt^2}{2}\right) \tag{18}$$

for some constant c.

• By Levy's inequality, we have the following proposition

Proposition 2.7 (Lipschitz Function on \mathbb{S}^{n-1}) [Wainwright, 2019]

For any 1-Lipschitz function f defined on the sphere \mathbb{S}^{n-1} , we have the two-sided bound

$$\mathbb{P}\left\{|f(Z) - Med(f(Z))| \ge t\right\} \le \sqrt{2\pi} \exp\left(-\frac{nt^2}{2}\right) \tag{19}$$

Moreover, replacing median by the mean, we have

$$\mathbb{P}\left\{|f(Z) - \mathbb{E}\left[f(Z)\right]| \ge t\right\} \le 2\sqrt{2\pi} \exp\left(-\frac{nt^2}{8}\right) \tag{20}$$

• Exercise 2.8 (The Blow-Up Phenomenon)

Let A be a subset of the sphere $\sqrt{n}\mathbb{S}^{n-1}$ such that

$$\mathbb{P}(A) > 2 \exp(-cs^2)$$
 for some $s > 0$;

- 1. Prove that $\mathbb{P}(A_s) > 1/2$.
- 2. Deduce from this that for any $t \geq s$,

$$\mathbb{P}(A_{2t}) > 1 - 2\exp(-ct^2).$$

Here c > 0 is the absolute constant in upper bound of concentration function.

2.4 Concentration via Isoperimetric Inequalities

• **Definition** (*Isoperimetry Problem*) [Boucheron et al., 2013]

Given a *metric space* \mathcal{X} with corresponding *distance* d, consider *the measure space* formed by \mathcal{X} , the σ -algebra of all **Borel sets** of \mathcal{X} , and a probability measure \mathbb{P} . Let X be a *random variable* taking values in \mathcal{X} , distributed according to \mathbb{P} .

<u>The isoperimetric problem</u> in this case is the following: given $p \in (0,1)$ and t > 0, <u>determine the sets A</u> with $\mathbb{P}[X \in A] \geq p$ for which the measure

$$\mathbb{P}\left[d(X,A) \ge t\right]$$

is *maximal*.

• Remark (*Isoperimetric Inequalities*)

Even though the exact solution is only known in a few special cases, useful bounds for $\mathbb{P}[d(X,A) \geq t]$ can be derived under remarkably general circumstances. Such bounds are usually referred to as isoperimetric inequalities.

• Definition (Concentration Function) [Boucheron et al., 2013, Wainwright, 2019] <u>The concentration function</u> $\alpha:[0,\infty)\to\mathbb{R}_+$ associated with metric measure space $\overline{((\mathcal{X},d),\mathbb{P})}$ is given by

$$\alpha_{\mathbb{P},(\mathcal{X},d)}(t) := \sup_{A \subset \mathcal{X}:\, \mathbb{P}(A) \geq \frac{1}{2}} \mathbb{P}\left[d(X,A) \geq t\right] = \sup_{A \subset \mathcal{X}:\, \mathbb{P}(A) \geq \frac{1}{2}} \mathbb{P}\left(A_t^c\right)$$

where $A_t := A + tB = \{x \in \mathcal{X} : d(x, A) < t\}$ is the t-blowup of $A \subset \mathcal{X}$. We simply denote it as $\alpha(t)$.

Thus the optimal A^* for isoperimetry problem is the one that attains the $\alpha(t) = \mathbb{P}(A_t^c)$.

• Theorem 2.9 (Levy's Inequalities)[Boucheron et al., 2013, Wainwright, 2019] For any Lipschitz function $f: \mathcal{X} \to \mathbb{R}$,

$$\mathbb{P}\left\{f(X) \ge Med(f(X)) + t\right\} \le \alpha_{\mathbb{P}}(t)
\mathbb{P}\left\{f(X) \le Med(f(X)) - t\right\} \le \alpha_{\mathbb{P}}(t).$$
(21)

where Med(f(X)) is **the median** of f(X), i.e.

$$\mathbb{P}\left\{f(X) \leq \operatorname{Med}(f(X)\right\} \geq \frac{1}{2}, \quad \operatorname{and} \ \mathbb{P}\left\{f(X) \geq \operatorname{Med}(f(X)\right\} \geq \frac{1}{2}.$$

Conversely, if $\beta : \mathbb{R}_+ \to [0,1]$ is a function such that for **every Lipschitz function** $f : \mathcal{X} \to \mathbb{R}$

$$\mathbb{P}\left\{f(X) - Med(f(X)) \ge t\right\} \le \beta(t). \tag{22}$$

then $\beta(t) \geq \alpha_{\mathbb{P}}(t)$.

• Corollary 2.10 (Concentration of Measure on Hamming Metric Space) [Boucheron et al., 2013]

Consider independent random variables Z_1, \ldots, Z_n taking their values in a (measurable) set \mathcal{X} and denote the vector of these variables by $Z = (Z_1, \ldots, Z_n)$ taking its value in \mathcal{X}^n . For an arbitrary (measurable) set $A \subset \mathcal{X}^n$, we write $\mathbb{P}(A) = \mathbb{P}(Z \in A)$. The **Hamming distance** $d_H(x,y)$ between the vectors $x,y \in \mathcal{X}^n$ is defined as **the number of coordinates** in which x and y **differ**. Then for any t > 0,

$$\mathbb{P}\left\{d_H(x,A) \ge \sqrt{\frac{n}{2}\log\frac{1}{\mathbb{P}(A)}} + t\right\} \le \exp\left(-\frac{2t^2}{n}\right) \tag{23}$$

• Remark (Equivalent Form)

From above isoperimetric inequality,

$$\mathbb{P}\left\{d_H(x,A) \ge \sqrt{\frac{n}{2}\log\frac{1}{\mathbb{P}(A)}} + t\right\} \le \exp\left(-\frac{2t^2}{n}\right)$$

Denote $u := \sqrt{\frac{n}{2} \log \frac{1}{\mathbb{P}(A)}}$. By change of variable, for any $t \geq u$,

$$\mathbb{P}\left\{d_H(x,A) \ge t\right\} \le \exp\left(-\frac{2(t-u)^2}{n}\right).$$

On the one hand, if $t \leq 2u = \sqrt{-2n\log\mathbb{P}(A)}$, then $\mathbb{P}(A) \leq \exp(-t^2/(2n))$. On the other hand, since $(t-u)^2 \geq t^2/4$ for $t \geq 2u = \sqrt{-2n\log\mathbb{P}(A)}$. the inequality above implies $\mathbb{P}\{d_H(x,A) \geq t\} \leq \exp(-t^2/(2n))$. Thus, for all t > 0, we have **the concentration of** measure in Hamming metric space:

$$\mathbb{P}(A)\mathbb{P}\left\{d_H(x,A) \ge t\right\} \le \min\left\{\mathbb{P}(A), \mathbb{P}\left\{d_H(x,A) \ge t\right\}\right\} \le \exp\left(-\frac{t^2}{2n}\right) \tag{24}$$

• Proposition 2.11 (Levy's Inequalities for Mean)[Boucheron et al., 2013, Wainwright, 2019]

If $\beta: \mathbb{R}_+ \to [0,1]$ is a function such that for **every Lipschitz function** $f: \mathcal{X} \to \mathbb{R}$

$$\mathbb{P}\left\{f(X) - \mathbb{E}\left[f(X)\right] \ge t\right\} \le \beta(t). \tag{25}$$

then $\beta(t) \geq \alpha_{\mathbb{P}}(t/2)$.

2.5 Convex Distance Inequality

• Definition (Weighted Hamming Distance) Given $\alpha = (\alpha_1, \dots, \alpha_n)$, where $\alpha_i \geq 0$, the weighted Hamming distance between $x, y \in \mathcal{X}^n$ is defined as

$$d_{\alpha}(x,y) = \sum_{i=1}^{n} \alpha_{i} \mathbb{1} \left\{ x_{i} \neq y_{i} \right\}.$$

• **Definition** (*Convex Distance*) For any $x = (x_1, ..., x_n) \in \mathcal{X}^n$, *the convex distance* of x from the set A by

$$d_T(x,A) := \sup_{\alpha \in \mathbb{R}^n_+ : \|\alpha\|_2 = 1} d_\alpha(x,A)$$

• Theorem 2.12 (Convex Distance Inequality) [Boucheron et al., 2013] For any subset $A \subset \mathcal{X}^n$ and t > 0,

$$\mathbb{P}(A)\mathbb{P}\left\{d_{T}(X,A) \geq t\right\} \leq \exp\left(-\frac{t^{2}}{4}\right). \tag{26}$$

$$\Leftrightarrow \mathbb{P}(A)\mathbb{P}\left\{\sup_{\alpha \in \mathbb{R}^{n}_{+}: \|\alpha\|_{2}=1} \inf_{y \in A} \sum_{i=1}^{n} \alpha_{i} \mathbb{1}\left\{x_{i} \neq y_{i}\right\} \geq t\right\} \leq \exp\left(-\frac{t^{2}}{4}\right).$$

2.6 Concentration of Convex Lipschitz Functions

• Theorem 2.13 (Concentration of Separately Convex Lipschitz Functions) [Boucheron et al., 2013]

Let $Z := (Z_1, \ldots, Z_n)$ be independent random variables taking values in the interval [0,1] and let $f : [0,1]^n \to \mathbb{R}$ be a **separately convex function** (i.e. f is convex in each coordinate while the others are fixed) such that

$$|f(x) - f(y)| \le ||x - y||$$
 for all $x, y \in [0, 1]^n$.

Then $X = f(Z_1, ..., Z_n)$ satisfies, for all t > 0,

$$\mathbb{P}\left\{f(Z) - \mathbb{E}\left[f(Z)\right] \ge t\right\} \le \exp\left(-\frac{t^2}{2}\right). \tag{27}$$

• Remark For $Z_i \in [a_i, b_i]$, and f being L-Lipschitz function, we have

$$\mathbb{P}\left\{f(Z) - \mathbb{E}\left[f(Z)\right] \ge t\right\} \le \exp\left(-\frac{t^2}{2L^2 \sum_{i=1}^n (b_i - a_i)^2}\right)$$

• With convex distance inequality, we can improve the concentration bound for convex Lipschitz functions. First, we relate convex distance with the minimal distance to convex set

Lemma 2.14 (Convex Distance vs. Distance to Convex Set) [Boucheron et al., 2013] Let $A \subset [0,1]^n$ be a convex set and let $x = (x_1, \ldots, x_n) \in [0,1]^n$. Then

$$d(x,A) := \inf_{y \in A} \|x - y\|_2 \le d_T(x,A).$$
(28)

• Theorem 2.15 (Concentration of Convex Lipschitz Functions) [Boucheron et al., 2013]

Let $Z := (Z_1, ..., Z_n)$ be independent random variables taking values in the interval [0,1] and let $f : [0,1]^n \to \mathbb{R}$ be a quasi-convex function; that is

$$\{z: f(z) \leq s\}$$
 is convex set for all $s \in \mathbb{R}$.

Moreover, f is Lipschitz function satisfying

$$|f(x) - f(y)| \le ||x - y||$$
 for all $x, y \in [0, 1]^n$.

Then $X = f(Z_1, \ldots, Z_n)$ satisfies, for all t > 0,

$$\mathbb{P}\left\{f(Z) \ge Med(f(Z)) + t\right\} \le 2\exp\left(-\frac{t^2}{4}\right),\tag{29}$$

$$\mathbb{P}\left\{f(Z) \le Med(f(Z)) - t\right\} \le 2\exp\left(-\frac{t^2}{4}\right).$$

• Remark This result can be generalized to convex Lipschitz function of sub-Gaussian random variables. Note that in above theorems, $Z_i \in [0, 1]$ is sub-Gaussian as well.

3 Concentration of Gaussian Measure

3.1 Gaussian Isoperimetric Theorem and Gaussian Concentration Theorem

• Remark (Gaussian Isoperimetric Problem)

<u>The Gaussian isoperimetric problem</u> is to determine which (Borel) sets A have minimal Gaussian boundary measure among all sets in \mathbb{R}^n with a given probability p.

<u>The Gaussian isoperimetric theorem</u> states the beautiful fact that <u>the extremal sets</u> are <u>linear half-spaces</u> in all dimensions and for all p.

• Definition (Gaussian Isoperimetric Function)

Denote the cumulative distribution function of standard Normal distribution:

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt := \int_{-\infty}^{x} \varphi(t) dt$$

where $\varphi(x) := \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} = (\Phi(x))'$ is the probability density function of standard normal distribution. $\Phi^{-1}(x)$ is the quantile function of normal distribution.

Define the Gaussian isoperimetric function as

$$\gamma(x) := \varphi\left(\Phi^{-1}(x)\right), \quad x \in (0,1).$$

Also we define $\gamma(0) = \gamma(1) = 0$

• Remark Note that

$$x = \Phi(\Phi^{-1}(x))$$

$$\Rightarrow 1 = \varphi(\Phi^{-1}(x))(\Phi^{-1}(x))' = \gamma(x)(\Phi^{-1}(x))'$$

$$\Leftrightarrow 1/\gamma(x) = (\Phi^{-1}(x))'.$$

The quantity $1/\gamma(x) = (\Phi^{-1}(x))'$ is known as **quantile-density function** of normal distribution.

• Proposition 3.1 (Basic Property of the Gaussian Isoperimetric Function) [Boucheron et al., 2013]

The Gaussian isoperimetric function γ satisfies:

1.

$$\gamma'(x) = -\Phi^{-1}(x)$$
, for all $x \in (0, 1)$,

2.

$$\gamma(x)\gamma''(x) = -1$$
, for all $x \in (0,1)$,

- 3. $(\gamma')^2$ is convex over (0,1).
- Lemma 3.2 (Asymptotic Behavior of Gaussian Isoperimetric Function) [Boucheron et al., 2013]
 For all x ∈ [0, 1/2],

$$x\sqrt{\frac{1}{2}\log\frac{1}{x}} \le \gamma(x) \le x\sqrt{2\log\frac{1}{x}}.$$

Moreover,

$$\lim_{x \to 0} \frac{\gamma(x)}{x\sqrt{2\log\frac{1}{x}}} = 1$$

• Proposition 3.3 (Bobkov's Gaussian Inequality) [Boucheron et al., 2013] Let $Z := (Z_1, ..., Z_n)$ be a vector of independent standard Gaussian random variables. Let $f : \mathbb{R}^n \to [0,1]$ be a differentiable function with gradient ∇f . Then

$$\gamma\left(\mathbb{E}\left[f(X)\right]\right) \le \mathbb{E}\left[\sqrt{\gamma(f(X))^2 + \|\nabla f(X)\|_2^2}\right]$$
(30)

where $\gamma = \varphi \circ \Phi^{-1}$ is the Gaussian isoperimetric function.

• Theorem 3.4 (Gaussian Isoperimetric Theorem) [Boucheron et al., 2013] [Boucheron et al., 2013, Vershynin, 2018, Wainwright, 2019] Let \mathbb{P} be the **standard Gaussian measure** on \mathbb{R}^n and let $A \subset \mathbb{R}^n$ be a Borel set. Then

$$\liminf_{t \to 0} \frac{\mathbb{P}(A_t) - \mathbb{P}(A)}{t} \ge \gamma(\mathbb{P}(A)), \tag{31}$$

where $A_t := \{x : d(x, A) < t\}$ be the t-blowup of A. Moreover, if A is a <u>half-space</u> defined by $A := \{x \in \mathbb{R}^n : x_1 \leq z\}$, then

$$\liminf_{t \to 0} \frac{\mathbb{P}(A_t) - \mathbb{P}(A)}{t} = \gamma(\mathbb{P}(A)) = \varphi(z), \tag{32}$$

where $\gamma := \varphi \circ \Phi^{-1}$ is the Gaussian isoperimetric function.

- Proposition 3.5 (Differentiablity of Measure of t-Blowup) [Boucheron et al., 2013] If A is a finite union of open balls in \mathbb{R}^n , then $\mathbb{P}(A_t)$ is a differentiable function of t > 0.
- Next we describe *an equivalent version* of *the Gaussian isoperimetric theorem* in the manner of *measure concentration*:

Theorem 3.6 (Gaussian Concentration Theorem) [Boucheron et al., 2013] [Boucheron et al., 2013, Vershynin, 2018, Wainwright, 2019]

Let \mathbb{P} be the **standard Gaussian measure** on \mathbb{R}^n and let $A \subset \mathbb{R}^n$ be a Borel set. Then for all $t \geq 0$,

$$\mathbb{P}(A_t) \ge \Phi\left(\Phi^{-1}\left(\mathbb{P}(A)\right) + t\right). \tag{33}$$

$$\Leftrightarrow \Phi^{-1}(\mathbb{P}(A_t)) \ge \Phi^{-1}\left(\mathbb{P}(A)\right) + t$$

Equality holds if A is a half-space.

• Remark (Gaussian Concentration Theorem \equiv Gaussian Isoperimetric Theorem) The Gaussian concentration theorem is equivalent to the Gaussian isoperimetric theorem since

$$\lim_{t \to 0} \inf \frac{\mathbb{P}(A_t) - \mathbb{P}(A)}{t} \ge \liminf_{t \to 0} \frac{\Phi\left(\Phi^{-1}\left(\mathbb{P}(A)\right) + t\right) - \Phi\left(\Phi^{-1}\left(\mathbb{P}(A)\right)\right)}{t}$$

$$= \Phi'(\Phi^{-1}(\mathbb{P}(A)))$$

$$= \varphi(\Phi^{-1}(\mathbb{P}(A)))$$

$$= \gamma(\mathbb{P}(A)).$$

• Exercise 3.7 (From Isoperimetry to Concentration) [Boucheron et al., 2013] Assume that a probability distribution \mathbb{P} on \mathbb{R}^n satisfies, for all Borel sets $A \subset \mathbb{R}^n$,

$$\liminf_{t \to 0} \frac{\mathbb{P}(A_t) - \mathbb{P}(A)}{t} \ge c f\left(F^{-1}(\mathbb{P}(A))\right),\,$$

where $c \in (0,1]$ is a constant, F is a continuously differentiable distribution function and f = F' is its derivative. Prove that for all Borel set A and all $t \ge 0$,

$$\mathbb{P}(A_t) \ge F\left(F^{-1}(\mathbb{P}(A)) + ct\right).$$

3.2 Lipschitz Functions of Gaussian Variables

- Theorem 3.8 (Rademacher Theorem). If $f: U \to \mathbb{R}$ is a L-Lipschitz function where $U \subseteq \mathbb{R}^n$, then f is differentiable almost everywhere in U and the essential supremum of the norm of its derivative is bounded by its Lipschitz constant.
- Theorem 3.9 (Lipschitz Functions of Gaussian Variables) [Boucheron et al., 2013] Let $Z = (Z_1, ..., Z_n)$ be a vector of n independent standard normal random variables. Let $f : \mathbb{R}^n \to \mathbb{R}$ denote an L-Lipschitz function, that is, there exists a constant L > 0 such that for all $x, y \in \mathbb{R}^n$,

$$|f(x) - f(y)| \le L ||x - y||$$
.

Then, for all $\lambda \in \mathbb{R}$,

$$\psi_{f(Z)-\mathbb{E}[f(Z)]}(\lambda) := \log \mathbb{E}\left[e^{\lambda(f(Z)-\mathbb{E}[f(Z)])}\right] \le \frac{L^2 \lambda^2}{2}$$
(34)

• Theorem 3.10 (Gaussian Concentration Inequality) (The Tsirelson-Ibragimov-Sudakov Inequality) [Boucheron et al., 2013, Wainwright, 2019]

Let $Z = (Z_1, ..., Z_n)$ be a vector of n independent standard normal random variables. Let $f : \mathbb{R}^n \to \mathbb{R}$ denote an L-Lipschitz function. Then, for all t > 0,

$$\mathbb{P}\left\{f(Z) - \mathbb{E}\left[f(Z)\right] \ge t\right\} \le \exp\left(-\frac{t^2}{2L^2}\right). \tag{35}$$

• As a direct consequence of the Gaussian isoperimetric inequality, we have the improved result for Gaussian concentration inequality:

Theorem 3.11 (Gaussian Concentration Inequality, Sharp Bound) [Boucheron et al., 2013, Wainwright, 2019]

Let $Z = (Z_1, ..., Z_n)$ be a vector of n independent standard normal random variables. Let $f : \mathbb{R}^n \to \mathbb{R}$ denote an L-Lipschitz function. Then, for all t > 0,

$$\mathbb{P}\left\{f(Z) - Med(f(Z)) \ge t\right\} \le 1 - \Phi\left(\frac{t}{L}\right). \tag{36}$$

where $\Phi(t)$ is the cumulative distribution function of standard normal random variable.

• Remark Note that by Gordon's inequality

$$1 - \Phi(t) \le \left(\frac{1}{\sqrt{2\pi}}\right) \frac{1}{t} e^{-\frac{t^2}{2}} = \frac{1}{t} \varphi(t)$$

The Gaussian concentration inequality fails to capture the corrective factor t^{-1} . The inequality above cannot be improved in general as for $f(x) = n^{-1/2} \sum_{i=1}^{n} x_i$, equality is achieved for all t > 0.

3.3 Gaussian Logarithmic Sobolev Inequality

• Proposition 3.12 (Gaussian Logarithmic Sobolev Inequality). [Boucheron et al., 2013] Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous differentiable function and let $Z = (Z_1, \ldots, Z_n)$ be a vector of n independent standard Gaussian random variables. Then

$$Ent(f^{2}(Z)) \leq 2\mathbb{E}\left[\|\nabla f(Z)\|_{2}^{2}\right]. \tag{37}$$

3.4 Gaussian Transportation Inequality

• Theorem 3.13 (Talagrand's Gaussian Transportation Inequality) [Boucheron et al., 2013]

Let \mathbb{P} be be the standard Gaussian probability measure on \mathbb{R}^n , and let \mathbb{Q} be a probability measure absolutely continuous with respect to \mathbb{P} . Define two random vectors $X = (X_1, \ldots, X_n), Y = (Y_1, \ldots, Y_n)$ in \mathcal{X}^n with distribution \mathbb{P} and \mathbb{Q} respectively. Then

$$\mathcal{W}_{2,d}(\mathbb{Q}, \mathbb{P}) := \sqrt{\min_{\gamma \in \Pi(\mathbb{Q}, \mathbb{P})} \sum_{i=1}^{n} \mathbb{E}_{\gamma} \left[(X_{i} - Y_{i})^{2} \right]} \leq \sqrt{2\mathbb{KL} \left(\mathbb{Q} \parallel \mathbb{P} \right)}$$

$$\Leftrightarrow \min_{\gamma \in \Pi(\mathbb{Q}, \mathbb{P})} \sum_{i=1}^{n} \mathbb{E}_{\gamma} \left[(X_{i} - Y_{i})^{2} \right] \leq 2\mathbb{KL} \left(\mathbb{Q} \parallel \mathbb{P} \right)$$
(38)

3.5 Gaussian Hypercontractivity

3.6 Suprema of Gaussian Process

• Definition (Gaussian Process)

Let T be a metric space. A stochastic process $(X_t)_{t\in T}$ is a Gaussian process indexed by T if for any finite collection $\{t_1,\ldots,t_n\}\subset T$, the vector (X_{t_1},\ldots,X_{t_n}) has a jointly Gaussian distribution.

In addition, we assume that T is **totally bounded** (i.e. for every t > 0 it can be covered by finitely many balls of radius t) and that the Gaussian process is **almost surely continuous**, that is, with probability 1, X_t is a continuous function of t.

• Theorem 3.14 (Concentration of Suprema of Gaussian Process) [Boucheron et al., 2013, Vershynin, 2018, Wainwright, 2019, Giné and Nickl, 2021]

Let (X_t)_{t∈T} be an almost surely continuous centered Gaussian process indexed by a totally bounded set T. If

$$\sigma^2 := \sup_{t \in T} \mathbb{E}\left[X_t^2\right],$$

then $Z = \sup_{t \in T} X_t$ satisfies $Var(Z) \leq \sigma^2$, and for all u > 0,

$$\mathbb{P}\left\{Z - \mathbb{E}\left[Z\right] \ge u\right\} \le \exp\left(-\frac{u^2}{2\sigma^2}\right) \tag{39}$$

and

$$\mathbb{P}\left\{\mathbb{E}\left[Z\right] - Z \ge u\right\} \le \exp\left(-\frac{u^2}{2\sigma^2}\right) \tag{40}$$

4 Concentration of Bernoulli Measure on the Binary Hypercube

- 4.1 Edge Isoperimetric Inequality on the Binary Hypercube
- 4.2 Bobkov's Inequality
 - Proposition 4.1 (Bobkov's Inequality) [Boucheron et al., 2013] Suppose Z is uniformly distributed over $\{-1,1\}^n$. Then for all $n \ge 1$ and for all functions

$$f: \{-1,1\}^n \to [0,1],$$

$$\gamma\left(\mathbb{E}\left[f(Z)\right]\right) \le \mathbb{E}\left[\sqrt{\gamma(f(Z))^2 + \|\nabla f(Z)\|_2^2}\right] \tag{41}$$

- 4.3 Vertex Isoperimetric Inequality on the Binary Hypercube
- 4.4 Hypercontractivity: The Bonami-Beckner Inequality
- 4.5 Influence Function
- 4.6 Monotone Sets
- 4.7 Threshold Phenomena

References

- Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymptotic theory of independence. Oxford university press, 2013.
- Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Soc., 2010.
- Evarist Giné and Richard Nickl. Mathematical foundations of infinite-dimensional statistical models. Cambridge university press, 2021.
- Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*, volume 47. Cambridge university press, 2018.
- Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cambridge University Press, 2019.