First Sign of Congruency of Triangles

Theorem 1 If two sides and the angle between these sides of one triangle are equal to two sides and the angle between them of another triangle, then these triangles are congruent.

Proof

Consider two triangles ABC and $A_1B_1C_1$, where $AB = A_1B_1$, $AC = A_1C_1$ and angles A and A_1 are equal.

Since $\angle A = \angle A_1$, then we can overlay triangle ABC onto triangle $A_1B_1C_1$ such that vertices A and A_1 coincide and sides AB and AC will be on top of rays A_1B_1 and A_1C_1 respectively. Since $AB = A_1B_1$ and $AC = A_1C_1$, then side AB will coincide with side A_1B_1 and side AC will coincide with side A_1C_1 (Axioms 8,10). Points B and B_1 and C and C_1 will coincide. This means that sides BC and B_1C_1 will coincide (Axiom 7).

Now we need to prove that all points inside of the triangle ABC will overlay all points of triangle $A_1B_1C_1$. Let's take a random point M inside triangle ABC. Draw a line segment PQ through point M such that its ends are on sides AB and AC of $\triangle ABC$. Since side AB overlays

Figure 1

side A_1B_1 then point P will overlay some point P_1 on side A_1B_1 . In the same fashion, point Q will overlay some point Q_1 on side A_1C_1 . By axiom #7, line segment PQ will overlay some line segment P_1Q_1 , and hence point M of line segment PQ will overlay some point PQ of line segment PQ.

The same way we can prove that any interior point of triangle $A_1B_1C_1$ will overlay with any interior point of ABC meaning, that all interior points of both triangles overlay only with points of the other triangle. Therefore triangles ABC and $A_1B_1C_1$ will completely overlay each other, meaning that they are congruent.

\therefore QED

* Note: The proof that all interior points of both triangles overlay each other is identical for all other signs of congruency of triangles.