Aluna: Bárbara Rosa Sabino. 2° C.

Camada de rede

1. Camada física

Essa camada inclui o equipamento físico envolvido na transferência de dados, como cabos e comutadores. Essa também é a camada em que os dados são convertidos em um fluxo de bits, que é uma sequência de 1s e 0s. A camada física de ambos os dispositivos também precisa aceitar, de comum acordo, uma convenção de sinais para que se possa distinguir os 1s dos 0s em ambos os dispositivos.

The Physical Layer

2. Camada de enlace de dados

A camada de enlace de dados é muito semelhante à camada de rede, a não ser pelo fato de que a camada de enlace de dados facilita a transferência de dados entre dois dispositivos na mesma rede. A camada de enlace de dados pega os pacotes da camada de rede e os divide em pedaços menores denominados "quadros". Como a camada de rede, a camada de enlace de dados também é responsável pelo controle de fluxo e pelo controle de erros na comunicação intrarrede (a camada de transporte faz o controle de fluxo e o controle de erros para comunicações inter-rede).

The Data Link Layer

3. Camada de Rede

A camada de rede é responsável por facilitar a transferência de dados entre duas redes diferentes. Se os dois dispositivos que estão se comunicando estiverem na mesma rede, a camada de rede será desnecessária. A camada de rede divide os segmentos da camada de transporte em unidades menores denominadas pacotes no dispositivo remetente e remonta esses pacotes no dispositivo receptor. A camada de

rede também encontra o melhor caminho físico para que os dados cheguem ao seu destino, o que é conhecido como roteamento.

The Network Layer

4. Camada de transporte

A camada 4 é responsável pela comunicação de ponta a ponta entre os dois dispositivos. Isso inclui pegar os dados da camada de sessão e dividi-los em porções chamadas segmentos antes de enviá-los para a camada 3. A camada de transporte no dispositivo receptor é responsável por remontar os segmentos em dados que a camada de sessão possa consumir.

A camada de transporte também é responsável pelo controle de fluxo e pelo controle de erros. O controle de fluxo determina uma velocidade de transmissão ideal para garantir que um remetente com uma conexão rápida não sobrecarregue um receptor com uma conexão lenta. A camada de transporte executa o controle de erros no lado do receptor, garantindo que os dados recebidos estejam completos e solicitando uma retransmissão caso não estejam.

Transport Layer

5. Camada de sessão

Essa é a camada responsável pela abertura e fechamento da comunicação entre os dois dispositivos. O tempo decorrido entre o momento em que a comunicação é aberta e fechada é conhecido como "sessão". A camada de sessão garante que a sessão permaneça aberta pelo tempo necessário para transferir todos os dados que estão sendo trocados e, em seguida, fecha imediatamente a sessão para evitar o desperdício de recursos.

A camada de sessão também sincroniza a transferência de dados com pontos de verificação. Por exemplo, se um arquivo de 100 megabytes estiver sendo transferido, a camada de sessão poderá definir um ponto de verificação a cada 5 megabytes. No caso de uma desconexão ou falha após a transferência de 52 megabytes, a sessão

pode ser retomada a partir do último ponto de verificação, o que significa que apenas mais 50 megabytes de dados precisam ser transferidos. Sem os pontos de verificação, a transferência inteira teria que começar novamente do zero.

The Session Layer

Session of communication

6. Camada de apresentação

Essa camada é a principal responsável pela preparação dos dados para que possam ser usados pela camada de aplicação; em outras palavras, a camada 6 torna os dados apresentáveis para que os aplicativos os consumam. A camada de apresentação é responsável pela tradução, criptografia e compactação dos dados.

Dois dispositivos de comunicação que se comunicam podem usar métodos de codificação diferentes; por isso, a camada 6 é responsável pela tradução dos dados de entrada em uma sintaxe que a camada de aplicação do dispositivo receptor possa entender.

Se os dispositivos se comunicarem por meio de uma conexão criptografada, a camada 6 será responsável por adicionar a criptografia na extremidade do remetente e decodificar a criptografia na extremidade do destinatário, podendo, assim, apresentar dados não criptografados e legíveis à camada de aplicação.

Finalmente, a camada de apresentação também é responsável por compactar os dados recebidos da camada de aplicação antes de entregá-los à camada 5. Isso ajuda a aumentar a velocidade e a eficiência da comunicação ao minimizar a quantidade de dados que serão transferidos.

The Presentation Layer

7. Camada de aplicação

Essa é a única camada que interage diretamente com os dados do usuário. Os softwares aplicativos, como navegadores web e clientes de e-mail, dependem da camada de aplicação para iniciar as comunicações. Mas é preciso deixar claro que os

softwares aplicativos clientes não fazem parte da camada de aplicação, que, na verdade, é responsável pelos protocolos e manipulação de dados dos quais o software depende para apresentar dados significativos ao usuário.

Application Layer

