Notes for CPSC 4148: Theory of Computation

Ryan Zimmerman

Spring 2024

Contents

0 Mathematical Review			
	0.1	Sets	2
	0.2	Sequences and Tuples	2
	0.3	Funtions and Relations	3
	0.4	Graphs	3
	0.5	Strings and Languages	3
	0.6	Boolean Logic	3
	0.7	Proofs	3
1	Reg	gular Languages	4
	1.1	Finite Automata	4
\mathbf{R}	efere	nces	5

0 Mathematical Review

0.1 Sets

Sets are **unordered collections** of **elements**, or **members**, commonly denoted using curly brackets. A set of two elements is called an **unordered pair**.

Let:
$$U = \{-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$A = \{1, 2, 4, 5, 6\}$$

$$B = \{1, 3, 5, 7, 9\}$$

$$A \subset U$$

$$B \subset U$$

Sets do **not** count for the multiplicity of elements; each appears only once in the result of set operations. Below are some characteristics of an example set A, the set of **integers** \mathbb{Z} , the set of **natural numbers** \mathbb{N} , the **empty** set \emptyset , and basic set **operations** on sets A and B.

$$2 \in A \iff 2 \in \{1, 2, 4, 5, 6\}$$

$$7 \notin A \iff 7 \notin \{1, 2, 4, 5, 6\}$$

$$\mathbb{N} = \{1, 2, 3, \dots\}$$

$$\mathbb{Z} = \{\dots, -1, 0, 1, \dots\}$$

$$\emptyset = \{\}$$

$$A \cup B = \{1, 2, 3, 4, 5, 6, 7, 9\}$$

$$A \cap B = \{1, 5\}$$

$$\overline{A} = \{-1, 0, 3, 6, 7, 8, 9\} \iff \overline{A} = U - A$$

$$\overline{B} = \{-1, 0, 2, 4, 6, 8\} \iff \overline{B} = U - B$$

$$A \times B = \{(1, 1), (1, 3), (1, 5), \dots, (6, 5), (6, 7), (6, 9)\}$$

Note: $A \times B$ is the **cross**, or **Cartesian**, **product** of two sets. Each element of each set in the set of sets is multiplied together. The set $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$ consists of all ordered pairs of natural numbers. It can also be written as $\{(i,j)|i,j\geq 1\}$

0.2 Sequences and Tuples

Sequences are **ordered collections** of **elements**, or **members**, commonly denoted using parentheses. Finite sequences are often called **tuples**; the **2-tuple** is referred to as an **ordered pair**.

Let:
$$A = (1, 2, 3)$$

 $A \neq (2, 3, 1)$

0.3 Funtions and Relations

n	f(n)
0	1
1	2
2	3
3	4
4	0

Table 1: $f(n) = n + 1 \mod 5$

Note: $n+1 \mod 5$ is of the form $dividend \mod divisor$. Subtract the divisor from the dividend over and again until the remainder is less than the divisor. That remainder is your answer.

n	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Table 2: $g(i,j) = i + j \mod 4$

- 0.4 Graphs
- 0.5 Strings and Languages
- 0.6 Boolean Logic

a	b	$(\neg a \lor b)$	$(b \Rightarrow a)$	$((a \Rightarrow a) \land (b \Rightarrow a))$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	1
1	1	1	1	1

Table 3:

0.7 Proofs

Proof. \Box

1 Regular Languages

1.1 Finite Automata

References

[1] Michael Sipser. Introduction to the Theory of Computation. Course Technology, Boston, MA, third edition, 2013.