Geometría Analítica I

Reposición del Segundo Parcial

Grupo 4072 Semestre 2025-1

Profesor: Ramón Reyes Carrión

Fecha de aplicación: Miércoles 11 de diciembre de 2024

<u>Instrucciones</u>: Resuelve los 5 ejercicios indicados debajo. Cada uno vale 2 puntos. Para el segundo ejercicio, puede elegir entre 2) y 2'), y análogamente para el tercero. El examen es INDIVIDUAL. Cualquier conducta que falte a las normas de honestidad académica y ética universitaria anulará la entrega del examen.

- 1. (2.5 pts) Considera los puntos $P_1 = (2,2), P_2 = (4,6), Q_1 = (-2,1)$ y $Q_2 = (-3,2)$.
 - a) Da ecuaciones normales para las mediatrices $\mathcal{M}_{P_1P_2}$ y $\mathcal{M}_{Q_1Q_2}$.
 - b) Encuentra la intersección de las mediatrices previas. Llamemos a este punto A.
 - c) Encuentra la distancia de A a las rectas $\mathcal{L}_{P_1Q_1}$ y $\mathcal{L}_{P_2Q_2}.$
- 2. (3 pts) Sea n el último dígito de su número de cuenta **distinto de 0**. Considera el vector $u_0 = (2, n)$.
 - a) Normaliza u_0 , denotemos al vector resultante como u_1 y encuentra un vector u_2 , tal que $\{u_1, u_2\} \subseteq \mathbb{R}^2$ es una base ortonormal de \mathbb{R}^2 . Demuestra explícitamente que forman una base ortonormal, es decir, que satisfacen $u_i \cdot u_j = \delta_i^i$.
 - b) ¿Cuántos vectores $w \in \mathbb{R}^2$ cumplen que $\{u/|u|, w\}$ es una base ortonormal? Explica tu respuesta.
 - c) Escribe a los vectores (1,1), (7,4) y (-3,5) como combinación lineal de u_1 y u_2 .
 - d) Refleja al punto (7,4) con respecto a la recta generada por u_1 . Escribe a este punto reflejado como combinación lineal de u_1 y u_2 . ¿Qué puedes notar de estos coeficientes con respecto a los de (7,4)?
- 3. (3 pts) Sea C la circunstancia $x^2 + y^2 6x + 8y = 0$.
 - a) Encuentra el centro, \mathbf{a} , y el radio, r, de \mathcal{C} . Escríbela en la forma $(\mathbf{x} \mathbf{a}) \cdot (\mathbf{x} \mathbf{a}) = r^2$.
 - b) Encuentra las rectas tangentes a \mathcal{C} que pasan por el punto $\mathbf{p} = (37/4, -4)$, sus ecuaciones y los puntos de tangencia.
 - c) Elige un punto \mathbf{c} intermedio en el segmento de recta que conecta a los puntos de tangencia, encuentra la ecuación de su recta polar, $\mathcal{P}_{\mathbf{c}}$, y verifica que \mathbf{p} está en dicha polar.
- 4. (2.5 pts) Sean $\mathbf{p} = (-1, 3)$ y $\mathbf{q} = (3, -1)$.
 - a) Encuentra la ecuación vectorial de la circunferencia que tiene al segmento \overline{pq} como diámetro.
 - b) Elije un número $\tau \in (0,1), \tau \neq \frac{1}{2}$ y considera el punto $a = \mathbf{p} + \tau(\mathbf{q} \mathbf{p})$. Encuentra el conjugado armónico de a.

¡Mucha suerte!