SPRAWOZDANIE

Przemysław Jordanek 200569 07.05.2017r.

Temat: Tablica asocjacyjna.

1. Cel laboratorium

Omówienie problemu tablicy asocjacyjnej oraz dyskusja na temat różnych algorytmów haszujących. Budowa szkieletu oraz implementacja prototypów funkcji tablicy asocjacyjnej. Badanie złożoności obliczeniowej funkcji wyszukującej oraz szybkości wyszukiwania elementu w takiej tablicy.

2. Struktura programu

W programie zaimplementowana została klasa 'Tab_hasz' bezpośrednio dziedzicząca z interfejsów: ITab_aso, Iprogram oraz Lista (z racji tego że każdy element tej tablicy jest listą). Stworzona tablica składa się ze zwykłej tablicy i listy (każda komórka tablicy to jeden element listy). Każdy element naszej listy składa się z klucza, wartości i wskaźnika na kolejny element.

3. Tablica asocjacyjna

Do interfejsu naszej tablicy zaliczają się 3 główne funkcje:

- dodaj element (podajemy klucz i wartość)
- usuń element (podajemy klucz)
- wyszukaj element (zwraca wartość po podaniu klucza)

4. Przebieg pomiarów

Mierzenie czasu wyszukiwania elementu w tablicy tej nie daje jednoznacznych rezultatów. Jest to spowodowane zazwyczaj inną długością każdej z list umieszczanej w tablicy. Tablica ta przetestowane została dla dwóch rodzajów funkcji haszującej:

- Haszowanie modularne sumowanie znaków ASCII z których składa się klucz. By uniknąć kolizji w wyniku brane jest modulo o parametrze rozmiaru tablicy h(k) = kmod(m)
- **Haszowanie przez mnożenie** bardziej skomplikowane (opisane na wykładzie dr Jelenia)

5. Testy programu

Tablicę tą przetestowano dla stałego rozmiaru 1000 elementów. Mierzenie czasu wyszukiwania elementu uzależnione zostało od wypełnienia tablicy kolejno 10, 100, 1000 elementów.

- Dla 10 elementów:

Zależność czasu znajdowania elementu od wypełnienia tablicy

- Dla 100 elementów:

Zależność czasu znajdowania elementu od wypełnienia tablicy

- Dla 1000 elementów:

Zależność czasu znajdowania elementu od wypełnienia tablicy

6. Wnioski:

Na pierwszym wykresie można dostrzec wyraźnie złożoność obliczeniową rzędu O(n) algorytmu wyszukiwania. Wykresy pokazują również że haszowanie przez mnożenie sprawdza się nieco lepiej w porównaniu z haszowaniem modularnym. Podsumowując tablice haszujące w połączeniu z listami bardzo dobrze nadają się do przechowywania danych i szybkiego odczytu wartości jako nowy rodzaj struktury.