

- 01 강의/일정소개, 평가소개
- 02 개요 및 물리계층
- 03 데이터링크 계층 1
- 04 데이터링크 계층 2
- 05 무선통신
- 06 네트워크 계층 1
- 07 네트워크 계층 2
- 08 중간고사

데이터링크 계층

Quiz 1

- WAN : HDLC Protocol
- LAN: LLC/MAC Protocol

(9.25(목) Quiz 1 시험) - 4,5반

(10.3(목) 개천절, 웹엑스보강) - 5반

(10.6(월) 추석, 웹엑스보강) - 4반

(10.9(목) 한글날, 웹엑스보강) - 4, 5반

■ WAN에서의 데이터링크 계층 (HDLC)

SDLC(IBM)

HDLC(ISO)

LAPD

(ISDN)

LAPB

(X.25)

Response

종국n

WAN

Response

종국2

데이터링크 계층 [사례연구]

■ HDLC(High-level Data Link Control) 프로토콜

☑ HDLC의 개요 (WAN)

- ISO표준(ISO/IEC 13239:2002)으로 정한 대표적인 데이터링크 프로토콜
- Point-to-Point 또는 Multipoint 구성에서 오류없는 데이터의 전송기능을 정의 (=Multidrop)

☑ 링크구성

- 정규 응답모드(=NRM, Normal Response Mode)

주국이 세션을 열고, 종국은 단지 응답만 하는 모드(방식)

▲ Point to Point 구성

▲ Multipoint 구성

- 비동기 균형모드 (=ABM, Asynchronous Balanced Mode)
 - -균형적 링크(혼합국 = 주국과 종국이 동등한 위치)로 서로 각자 명령과 응답을 하여 동작함
 - -따라서, 상대방의 승인없이 전송을 개시할 수 있음
 - -전이중(Full duplex) 전송방식에서 가장 효과적임

- 비동기 응답모드 (=ARM, Asynchronous Response Mode)
 - 주국만이 전체적인 전송개시(연결설정/해제)를 담당
 - 연결설정후에는 주국의 폴링명령(승인) 없이도 종국이 데이터를 보낼 수 있음
 - 즉, 전송개시(연결관리)는 (NRM처럼 주/종관계) 이지만, 데이터와 응답전송은 (ABM과 같이) 자유로움

☑ HDLC 의 프레임 ·

— I Frame (정보프레임) — U Frame (비번호프레임) — S Frame (감독프레임)

☑ 프레임

- HDLC 전송에 사용되는 단일한 프레임 포맷 (비트프레임)
- Header Flag + Address + Control
- Data Information
- Trailer FCS + Flag

☑ Flag

- 특정 비트패턴(01111110)으로 프레임을 구분하며, 송신스테이션이 추가
- 수신스테이션이 지속적으로 Flag 를 검출, 프레임 동기화를 실현

Flag	Address	Control	Information	FCS	Flag
------	---------	---------	-------------	-----	------

bmlee made

☑ HDLC 의 프레임

— I Frame (정보프레임) — U Frame (비번호프레임) — S Frame (감독프레임)

☑ Address

- 가변크기, secondary station 수가 많을 경우 주소영역이 확장됨,
- (Point-to-Point 구성) 11111111 주소가 필요없어, 의미없는 1로 패딩됨
- (Multi-point 구성) 주소 마지막byte의 맨앞 '1', 11111111 -> Broadcast address

☑ HDLC 의 프레임

I Frame (정보프레임) U Frame (비번호프레임) S Frame (감독프레임)

☑ Control

- 3가지 유형(종류)의 프레임 (제어필드: 8bit 또는 16bit)
- Information Frame 데이터를 전송할때 사용하는 프레임 (Piggybacking 응답 포함)
- Unnumbered Frame 링크설정, 링크해제, 모드셋팅 등 제어용 프레임 (Seq.번호가 없음)
- Supervisory Frame 흐름제어와 오류제어용 사용하는 프레임

☑ HDLC 의 Protocol

SABM Set Asynchronous Balanced Mode

UA Unnumbered Acknowledgment

DISC Disconnect

P Poll F Final RNR Receive Not Ready (= ACK, 흐름제어) RR Receive Ready (= ACK)

데이터링크 계층 (사례연구)

Flag Address Control Information FCS Flag

☑ HDLC 의 Protocol

REJ Reject(=NAK)
RR Receive ready (= ACK)

P Poll F Final

bmlee made

Single and double errors, Odd nur

> 99.997% of 17-bit error bursts.

> 99.998% of 18-bit and longer er

> Bursts of length 16 or less

☑ HDLC 의 프레임

☑ FCS (Frame Check Sequence)

- 오류 검출을 위한 필드(2 bytes or 4 bytes)
- 기본다항식 16-bit CRC-CCITT 다항식(x¹⁶+x¹²+x⁵+1) or 32-bit CRC-32

(또는 CRC-32 로도 사용가능)

 $x^{32} + x^{26} + x^{23} + x^{22} + x + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$

- CRC-16과 CRC-32의 성능분석
 - > Single and double errors, Odd number of bit errors,
 - > Bursts of length 16 or less
 - > 99.997% of 17-bit bursts error
 - > Bursts of length 32 or less
 - > 99.99999977% of 33-bit burst errors

■ LAN에서의 데이터링크 계층

■ LAN의 위상(Topology)

☑ 네트워크 토폴로지

- 노드 간에 구성할 수 있는 네트워크의 여러가지 형태 (6가지)

Line

설치간단, 비용▼ 노드장애시 불통

Ring 균등한 성능 한방향으로 전송하면, 충돌발생이 없음 Tree

확장성 ▲ 노드많아지면, 성능저하

Star

중앙집중형태 노드추가/제거 간단 중앙노드장애시 전체불통 Bus :

설치간단, 비용▼ 규모가 커지면 성능저하

Mesh

분산연결형태 노드설치/추가/제거 어려움, 비용▲ 노드장애시에도 고가용성/신뢰성 확보

■ LAN의 프로토콜 계층

☑ 개요

- IEEE 표준 LAN 에서 사용하는 데이터링크 프로토콜
- LAN에서는 데이터링크계층이 MAC계층과 LLC계층으로 분리되어 있음
 - > MAC(Medium Access Control)계층 ... 접근제어(Access Control)에 집중된 기능을 제공
 - > LLC(Logical Link Control)계층 ... 링크를 생성/관리, 흐름제어등 전송에 집중된 기능을 제공

■ LLC 계층 (IEEE 802.2)

☑ LLC계층의 특징

- HDLC 프로토콜과 유사한 기능을 제공
- 링크제어, 오류정정, 흐름제어 제공
- LLC프레임 생성/관리
- MAC계층은 다르더라도 LLC계층은 같음

☑ 비교/분석

항목	HDLC	IEEE 802.2 LLC	
링크제어	NRM, ABM, ARM	연결지향, 비연결지향	
LLC프레임	Information 프레임 Supervisory 프레임 Unnumbered 프레임	Information 프레임 Supervisory 프레임 Unnumbered 프레임	
오류정정	ACK + 순서번호(NS/NR)	I프레임 (순서번호(NS/NR)) S프레임 (REJ/SREJ)	
흐름제어	RR RNR	RR (수신노드 계속보내! -> 송신노드) RNR (수신노드 기다려! -> 송신노드)	
MAC계층과 분리	분리하지 않음	분리항 (하위MAC: 802.3, 802.4, 802.5)	

■ MAC 계층

☑ Ethernet (IEEE 802.3)

- **Bus**형(더미허브), **Star**형(스위치)

- Bus형에서의 데이터 전송
 - > (b)에서 (d)로 데이터(프레임)를 송신할 경우 ... 전송신호는 전송매체 전체로 전파됨

- > 만약에 (a)가 (c)에게 (동시에) 데이터를 송신할 경우, 전송매체에서는 신호의 충돌이 발생!!!
- > 따라서, MAC계층에서는 충돌방지를 위해 적절한 통제가 필요 함!

데이터링크 계층 (사례연구)

■ MAC 계층

☑ Firmware 형태

☑ MAC주소 형태 (IEEE 802.3 기준)

- 48bit
- Unique address, in each LANcard
- OUI(Organizational Unit Identifier)

■ MAC 계층

- ☑ CSMA/CD (Carrier Sense Multiple Access with Collision Detection, IEEE 802.3 = Ethernet)
 - 데이터를 송신할때 전송충돌을 허용하되, 충돌이 발생하면 이를 피하여 재전송으로 해결
 - 전송매체의 길이가 길수록, 전송지연이 증가하여 충돌가능성이 높아짐

- 재전송시 재충돌 가능성을 줄이기 위해, 시간대를 달리하는 방식으로 진행
- 대표적인 경쟁기반프로토콜 (Contention based Protocol)

■ MAC 계층

☑ CSMA/CD 알고리즘(IEEE 802.3)

- 충돌하면, 랜덤시간만큼 대기한후(Backoff) 재전송 진행
- 재전송시 충돌가능성을 줄여기 위해 backoff 전략(binary exponential) 2ⁿ 개중
- 첫번째 충돌 : {0,1}에서 k를 선택
- 두번째 충돌 : {0,1,2,3}에서 k 선택
- 열번째 충돌 : {0,1,2,3,4,…,1023} 에서 k 선택
- 대기시간 = k x 512bit전송시간

CSMA/CD 알고리즘 ▶

■ MAC 계층

☑ 토큰 링(Token Ring, IEEE 802.5) Contention free protocol

- 물리적으로 링형태로 네트워크를 구성
- 매체접근제어 기준
 - > 토큰을 보유한 노드만이 전송권을 갖음
 - > 네트워크가 활성화되면, 특정노드가 토큰을 생성후 한방향으로만 전송함 (Round robin 방식 : 공평함)
 - > 토큰이 되돌아 오면 다시 새 토큰을 생성하여 전송
- (경쟁을 하지 않고) 토큰프레임으로 충돌을 회피하는 방식

■ MAC 계층

☑ 토큰버스(Token Bus, IEEE 802.4) Contention free protocol

- 물리적 구성은 Bus 형태이나, 논리적구성은 (토큰을 사용하는) Ring 형태임
- (Bus 구조에서는 충돌이 발생되기 때문에) 토큰(Token, 매체사용권)으로 순서를 결정함
- 매체접근 제어기준
 - > 토큰을 가진 노드만이 전송할 수 있음
 - > 최초 노드가 토콘을 생성한 후, 한방향으로만(예, 시계방향 또는 반시계방향)으로 전송하고,
 - > 되돌아오면 다시 토큰을 생성하여 전송
- Round robin 방식 (공평함)

■ MAC 계층

☑ 프레임생성/관리 (IEEE 802.3 = Ethernet = 유선LAN)

- MAC프레임의 구조 (비트프레임)

☑ 프레임 사례(IEEE 802.3, Ethernet)

10101010 10101010 10101010 10101010 10101010 10101010 10101010 10101011

???????? ???????? ???????? ????????

■ MAC 계층

☑ 프레임생성 및 관리 (Token Bus, IEEE 802.4)

- MAC프레임의 구조

■ MAC 계층

☑ 프레임생성 및 관리(Token Ring, IEEE 802.5)

- MAC프레임의 구조

유무선공유기

(2)

데이터링크 계층

데이터링크 계층의 대표장비

☑ 브릿지 (Bridge)

=00::

Q 메뉴탐색기

- 📭 고급 설정

- 조 네트워크 관리

IDT MEA1004

시스템 요약 정보

인터넷 연결 설정

2.4GHz 무선 설정/보안

5GHz 무선 설정/보안 펌웨어 언그레이드

인터넷 연결 정보

멀티 무선네트워크

MAC 주소 인증 WDS 설정

- 13 5GHz 무선턴 관리

- 수신한 신호를 다시 인코딩(재생)하여 송신하는 장치 (리피터기능 내장)

回 2.4GHz 무선 멀티브리지

⋒보안사용(WPA

■보안 사용 (WPA2)

●보안 사용 (WPA2)

●보안 사용 (WPA2)

보안 사용하지 않음

SPC2_4F_2.4GHz

네트워크이륨(SSID

인증 및 암호화 네트워크 암호

동작 설정

iptime (88-36-6C-DA-10-62)

무선 브리지

SK + AES

SPC2_4F_2.4GHz (88-36-6C-6A-6E-06)

dahyul_5F (B4-A9-4F-CB-1A-11)

데이터링크 계층

■ 데이터링크 계층의 대표장비

☑ 스위치 (Switch) - Star 형

- MAC주소를 기반으로 프레임을 목적지 포트로 전단하여, 충돌이 발생하지 않도록 해주는 네트워크 장비 (= L2 스위치 = Switching HUB)
- 포트별로 충돌 도메인 분리 가능, MAC 주소 학습 및 필터링, 포워딩 기능 수행, Full-duplex 방식
 - Switch HUB (= L2 Switch)
 - ·Star 구조
 - ·전송율 증가 (동시전송가능)
 - ·충돌가능성 낮음
 - ·Mac Table + 스위칭 회로

MAC주소	포트번호
4f-1a82	1
4f-1a4b	4

스위칭속도: 3.2Gbps 포트속도: 10/100Mbps

데이터링크 계층

- 참고용
 - Dummy HUB (=shared hub)
 - · Star 구조(물리적), Bus 구조 (논리적),
 - · 전송율 고정(예, 10Mbps)
 - · 충돌가능성 높음(CSMA/CD 활용됨)
 - · 사용되지 않음

강의 Q&A

아주 긴요한 유튜브 동영상 (필수시청)

https://www.youtube.com/watch?v=TliQiw7fpsU&t=274s

https://www.youtube.com/watch?v=iKn0GzF5-IU

https://www.youtube.com/watch?v=_NX99ad2FUA

https://www.youtube.com/watch?v=qQYiwmamq38