Задание 3 "Геометрия"

Дедлайн 30 ноября 2018 г.

C сылка на контест: https://contest.yandex.ru/contest/9862 Ведомость:

https://drive.google.com/open?id=129E7aoaeum_3wPxNaeUlAmWjn_MQ51 Ob_P_qItb7jrQ

Задача 1. Расстояние между отрезками. (4 балла)

А. Даны два отрезка в пространстве (x_1, y_1, z_1) - (x_2, y_2, z_2) и (x_3, y_3, z_3) - (x_4, y_4, z_4) . Найдите расстояние между отрезками.

Формат ввода.

Заданы целые x_1 , y_1 , z_1 , x_2 , y_2 , z_2 , x_3 , y_3 , z_3 , x_4 , y_4 , z_4 . Координаты по модулю не превосходят 1000.

Формат вывода.

Выведите искомую величину с точностью не менее 6 знаков после десятичной точки.

stdin	stdout
abab	7

Задача 2. Выпуклая оболочка 3D. (6 баллов)

В. Даны n точек в пространстве. Никакие 4 точки не лежат в одной полуплоскости. Найдите выпуклую оболочку этих точек за O(n²) (или быстрее :)).

Формат ввода.

Первая строка содержит число m - количество тестов. В последующих строках описаны сами тесты. Каждый тест начинается со строки, содержащей n ($n \le 1000$) - число точек. Далее, в n строках даны по три числа - координаты точек. Все координаты целые, не превосходят по модулю 500.

Формат вывода.

Для каждого теста выведите следующее. В первую строку выведите количество граней m. Далее в последующие m строк выведите описание граней: количество точек грани (=3) и номера точек в исходном множестве. Точки нумеруются в том же порядке, в котором они даны во входном файле.

Точки в пределах грани должны быть отсортированы в порядке против часовой стрелки относительно внешней нормали к грани. Первая точка – точка с минимальным номером.

Порядок граней лексикографический.

stdin	stdout
1	4
4	3 0 1 3
0 0 0	3 0 2 1
	3 0 3 2
0 1 0	3 1 2 3
0 0 1	

Задача 3. Пересечение многоугольников. (4 балла)

С. Даны два выпуклых многоугольника на плоскости. В первом n точек, во втором m. Определите, пересекаются ли они за O(n+m).

Указание. Используйте сумму Минковского.

Формат ввода.

Первая строка содержит число n точек первого многоугольника. Затем идут n строчек с координатами точек первого многоугольника по часовой стрелке (координаты – действительные числа, double).

Второй прямоугольник задается аналогично.

n, $m \le 80000$.

Формат вывода.

YES/NO.

stdin	stdout
5	YES
0 0	
0 1	
1 2	
2 1	
1 0	
3	
3 0	
2 0	
1 1	

Задача 4. Диаграмма Вороного. (6 баллов)

D. Даны точки, никакие 3 из которых не лежат на одной прямой. Никакие 4 точки не лежат на одной окружности. Кроме того, все точки имеют различные х-координаты. Определите среднее число сторон в многоугольниках диаграммы Вороного этого множества точек. Считаются только конечные многоугольники. Если все многоугольники неограниченны, ответ полагается равным 0. Число точек n ≤ 100000. Алгоритм должен иметь асимптотику O(n log n).

Формат ввода.

В каждой строке через пробел записаны действительные координаты точек \mathbf{x}_i \mathbf{y}_i . Формат вывода.

Число - среднее число сторон в ограниченных многоугольниках диаграммы Вороного. 0, если таких многоугольников нет.

stdin	stdout
0 0	3
3 -3	
4 1	
2 -1	