

planetmath.org

Math for the people, by the people.

well-ordering principle implies axiom of choice

Canonical name WellorderingPrincipleImpliesAxiomOfChoice

Date of creation 2013-03-22 16:07:46 Last modified on 2013-03-22 16:07:46 Owner Wkbj79 (1863) Last modified by Wkbj79 (1863)

Numerical id 7

Author Wkbj79 (1863)

Entry type Theorem Classification msc 03E25

Related topic AxiomOfChoice

Related topic ZermelosWellOrderingTheorem

Theorem. The well-ordering principle implies the axiom of choice.
<i>Proof.</i> Let C be a collection of nonempty sets. Then $\bigcup_{S \in C} S$ is a set. By the
well-ordering principle, $\bigcup_{S \in C} S$ is well-ordered under some relation $<$. Since
each S is a nonempty subset of $\bigcup_{S \in C} S$, each S has a least member m_S with
respect to the relation <.
Define $f: C \to \bigcup S$ by $f(S) = m_S$. Then f is a choice function. Hence
the axiom of choice holds. \Box
une dividui of choice holds.