Understanding and Improving Layer Normalization

Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guanxiang Zhao, Junyang Lin MOE Key Lab of Computational Linguistics, School of EECS, Peking University {jingjingxu,xusun,zzy1210,zhaoguangxiang,linjunyang}@pku.edu.cn

What is layer normalization?

- Layer Normalization (LayerNorm) is a widely-used technique that scales the distributions of intermediate layers to have zero mean and unit standard deviation.
- It enables smoother gradients, faster training, and better generalization accuracy.

Figure 1:Illustration of LayerNorm.

How does LayerNorm work?

- The widely accepted explanation is that forward normalization brings distribution stability.
- However, recent studies show that the effects of normalization have nothing to do with the stability of input distribution.
- It is still unclear where the success of LayerNorm stems from.

How do we explore LayerNorm?

To investigate how LayerNorm works, we conduct a series of experiments on different tasks.

- Machine translation includes three widely-used datasets, WMT English-German, IWSLT 14 German-English and IWSLT 15 English-Vietnamese.
- Language modeling includes a large dataset, Enwiki8.
- Text classification includes two sentence classification datasets: RT, and SST5.
- Image classification includes a widely-used dataset, MNIST.
- **Dependency parsing** uses English Penn TreeBank.

Observation 1: The bias and gain do not work in most cases.

- Dropping the bias and gain ("LayerNorm-simple") does not decrease the performance on six datasets. Surprisingly, it outperforms LayerNorm on four datasets and achieves SOTA on En-Vi translation.
- From convergence curves, we can see that current affine transformation mechanism has a potential risk of over-fitting and needs to be further improved.

Models	Machine Translation			Language Modeling		Classification		
	$\overline{\left \text{En-De}(+) \right }$	De-En(+)	$\overline{) \operatorname{En-Vi}(+)}$	Enwiki8(-)	RT(+)	$\overline{SST5(+)}$	$\overline{\text{MNIST}(+)}$	
Model Layers	12	12	12	12	4	4	3	
w/o Norm	Diverge	34.0	28.4	1.04	76.85	38.55	99.14	
LayerNorm	28.3	35.5	31.2	1.07	77.21	39.23	99.13	
LayerNorm-simple	28.4	35.5	31.6	1.07	76.66	40.54	99.09	

Table 1:The bias and gain do not work in most cases.

Observation 2: The derivatives of the mean and variance are more important than forward normalization.

- "DetachNorm" treats the mean and variance as changeable constants, rather than variables. The difference between LayerNorm and DetachNorm is that DetachNorm detaches the derivatives of the mean and variance.
- The derivatives of the mean and variance bring higher improvements than forward normalization does.
- The derivative of mean μ re-centers $\frac{\partial \ell}{\partial \mathbf{x}}$ to zero. The derivative of variance σ reduces the variance of $\frac{\partial \ell}{\partial \mathbf{x}}$, which can be seen a kind of re-scaling.
- The derivative of variance is more important than that of mean for deeper networks.

Theorem

Given $\frac{\partial \ell}{\partial \boldsymbol{y}} = (g_1, g_2, ..., g_H)^T$, let \bar{g} and D_g be the mean and variance of $g_1, g_2, ..., g_H$. For the case of detaching the derivatives of μ and σ , suppose $\frac{\partial \ell}{\partial \boldsymbol{x}} = (a_1, a_2, ..., a_H)^T$ is the gradient of \boldsymbol{x} with mean \bar{a} and variance D_a . We have $\bar{a} = \bar{g}/\sigma$ and $D_a = D_g/(\sigma^2)$.

(1) For the case of standard LayerNorm-simple, suppose $\frac{\partial \ell}{\partial \boldsymbol{x}} = (b_1, b_2, ..., b_H)^T$ is the gradient of \boldsymbol{x} with mean \bar{b} and variance D_b . We have $\bar{b} = 0$ and $D_b \leq D_g/(\sigma^2)$.

(2) For the case of detaching the derivative of μ , suppose $\frac{\partial \ell}{\partial \boldsymbol{x}} = (c_1, c_2, ..., c_H)^T$ is the gradient of \boldsymbol{x} with mean \bar{c} and variance D_c . We have $\bar{c} = \bar{g}/\sigma$ and $D_c \leq D_g/(\sigma^2)$.

(3) For the case of detaching the derivative of σ , suppose $\frac{\partial \ell}{\partial \boldsymbol{x}} = (d_1, d_2, ..., d_H)^T$ is the gradient of \boldsymbol{x} with mean \bar{d} and variance D_d . We have $\bar{d} = 0$ and $D_c = D_g/(\sigma^2)$.

Machine Translation			Language Modeling		Parsing		
En-De I	De-En(+	$)\operatorname{En-Vi}(+)$	Enwiki8(-)	RT(+)	$\overline{\text{SST5}(+)}$	MNIST(+)	$\overline{) PTB(+) }$
12	12	12	12	4	4	3	3
Diverge	34.0	28.4	1.04	76.85	38.55	99.14	88.31
Diverge	33.9	27.7	1.12	76.40	40.04	99.10	89.79
_	-0.1	-0.7	-0.08	-0.45	1.49	-0.04	1.48
Mach	ine Tran	slation	Language Modeling		Classifica	ation	Parsing
En-De I	De-En(+	$\overline{) \operatorname{En-Vi}(+)}$	Enwiki8(-)	RT(+)	$\overline{\text{SST5}(+)}$	MNIST(+)	$\overline{) PTB(+) }$
12	12	12	12	4	4	3	3
Diverge	33.9	27.7	1.12	76.40	40.04	99.10	89.79
28.4	35.5	31.6	1.07	76.66	40.54	99.09	89.19
_	1.6	3.9	0.05	0.26	0.50	-0.01	-0.60
	En-De D 12 Diverge Diverge Mach En-De D 12 Diverge	En-De De-En(+ 12	En-De De-En(+) En-Vi(+) 12 12 12 Diverge 34.0 28.4 Diverge 33.9 27.7 0.1 -0.7 Machine Translation En-De De-En(+) En-Vi(+) 12 12 12 Diverge 33.9 27.7 28.4 35.5 31.6	En-De De-En(+) En-Vi(+) Enwiki8(-) 12	En-De De-En(+) En-Vi(+) Enwiki8(-) RT(+) 12	En-De De-En(+) En-Vi(+) Enwiki8(-) RT(+) SST5(+) 12 12 12 4 4 Diverge 34.0 28.4 1.04 76.85 38.55 Diverge 33.9 27.7 1.12 76.40 40.04 - -0.1 -0.7 -0.08 -0.45 1.49 Machine Translation Language Modeling Classification En-De De-En(+) En-Vi(+) Enwiki8(-) RT(+) SST5(+) 12 12 12 4 4 Diverge 33.9 27.7 1.12 76.40 40.04 28.4 35.5 31.6 1.07 76.66 40.54	$ \begin{array}{ c c c c c c c c } \hline En-De \ De-En(+) En-Vi(+) & Enwiki8(-) & RT(+) SST5(+) MNIST(+) \\ \hline 12 & 12 & 12 & 12 & 4 & 4 & 3 \\ \hline Diverge \ \ \textbf{34.0} & \textbf{28.4} & \textbf{1.04} & \textbf{76.85} & 38.55 & \textbf{99.14} \\ \hline Diverge \ \ 33.9 & 27.7 & 1.12 & 76.40 & \textbf{40.04} & 99.10 \\ \hline - & -0.1 & -0.7 & -0.08 & -0.45 & 1.49 & -0.04 \\ \hline \hline Machine Translation & Language Modeling & Classification \\ \hline En-De \ De-En(+) En-Vi(+) & Enwiki8(-) & RT(+) SST5(+) MNIST(+) \\ \hline 12 & 12 & 12 & 12 & 4 & 4 & 3 \\ \hline Diverge \ \ 33.9 & 27.7 & 1.12 & 76.40 & 40.04 & \textbf{99.10} \\ \hline \textbf{28.4} & \textbf{35.5} & \textbf{31.6} & \textbf{1.07} & \textbf{76.66} & \textbf{40.54} & 99.09 \\ \hline \end{array} $

Table 2: The derivatives of the mean and variance matter.

AdaNorm

To address the over-fitting problem, we propose a normalization method, Adaptive Normalization.

$$\mathbf{z} = \phi(\mathbf{y}) \odot \mathbf{y} = \phi(N(\mathbf{x})) \odot N(\mathbf{x})$$
 (1)

It achieves better results on seven out of eight datasets.

Models	Machine Translation			Language Model		Classifica	Parsin	
	$\overline{\text{En-De}(+)}$	$\overline{\text{De-En}(+)}$	$\operatorname{En-Vi}(+)$	Enwiki8(-)	RT(+)	$\overline{\text{SST5}(+)}$	MNIST(+)	PTB(+
w/o Norm	Diverge	34.0	28.4	1.04	76.85	38.55	99.14	88.31
LayerNorm	28.3	35.5	31.2	1.07	77.21	39.23	99.13	89.12
LayerNorm-simple	28.4	35.5	31.6	1.07	76.66	40.54	99.09	89.19
AdaNorm	28.5	35.6	31 4	1 07	77.50	40.54	99.35	89.23

Table 3:Results of LayerNorm and AdaNorm.

Better Convergence

• Compared to AdaNorm, LayerNorm has lower training loss but higher validation loss. Lower validation loss proves that AdaNorm has better convergence.

Couclusions

- In this paper, we investigate how layer normalization works.
- Based on a series of experiments and theoretical analysis, we summarize some interesting conclusions.
- We find that the derivatives of the mean and variance are important to the success of LayerNorm by re-centering and re-scaling backward gradients. Furthermore, the bias and gain increase the risk of over-fitting and do not work in most cases.
- To address the over-fitting problem, we propose a normalization method AdaNorm. Experiments show that AdaNorm outperforms LayerNorm on seven datasets.
- In the future work, we would like to explore more alternatives to LayerNorm from the perspective of gradient normalization.