







# โครงงานวิทยาศาตร์

# เรื่อง รูปทั่วไปของลำดับฟิโบนักชีแบบสมบูรณ์

(On complete generalized Fibonacci sequences)

โดย

นายวิษณุ พรภาวนาเลิศ

อาจารย์ที่ปรึกษา

อ.ดร.ภาสวรรณ นพแก้ว

อ.ดร.ธนากร ปริญญาศาสตร์

รายงานนี้ เป็นส่วนหนึ่งของรายวิชา 232219 โครงงานวิทยาศาสตร์2
หลักสูตรห้องเรียนวิทยาศาสตร์โรงเรียนสิรินธรราชวิทยาลัยโดยการกำกับดูแลของ
มหาวิทยาลัยศิลปากร

ภาคเรียนที่ 2 ชั้นมัธยมศึกษาปีที่ 5 ปีการศึกษา 2563









### โครงงานวิทยาศาตร์

# เรื่อง รูปทั่วไปของลำดับฟิโบนักชีแบบสมบูรณ์

(On complete generalized Fibonacci sequences)

โดย

นายวิษณุ พรภาวนาเลิศ

อาจารย์ที่ปรึกษา

อ.ดร.ภาสวรรณ นพแก้ว

อ.ดร.ธนากร ปริญญาศาสตร์

รายงานนี้ เป็นส่วนหนึ่งของรายวิชา ว32219 โครงงานวิทยาศาสตร์2
หลักสูตรห้องเรียนวิทยาศาสตร์โรงเรียนสิรินธรราชวิทยาลัยโดยการกำกับดูแลของ
มหาวิทยาลัยศิลปากร

ภาคเรียนที่ 2 ชั้นมัธยมศึกษาปีที่ 5 ปีการศึกษา 2563

### บทคัดย่อ

รูปทั่วไปของลำดับฟิโบนักซี  $(A_n)_{n\in\mathbb{N}}$  เป็นลำดับที่ถูกกำหนดโดยความสัมพันธ์เวียนเกิด  $A_n=aA_{n-1}+bA_{n-2}$  เมื่อ  $A_1,A_2,a,b$  เป็นจำนวนเต็มที่ไม่เป็นลบ ในโครงงานคณิตศาสตร์นี้ ผู้วิจัยสนใจ ที่จะศึกษา (a,b) ที่ทำให้  $(A_n)_{n\in\mathbb{N}}$  เป็นลำดับสมบูรณ์ และหาเงื่อนไขที่ทำให้แต่ละจำนวนนับสามารถเขียน ในรูปผลรวมเชิงเส้นของสมาชิกในรูปทั่วไปของฟิโบนักซีที่เป็นลำดับสมบูรณ์ ได้เพียงแบบเดียวเท่านั้น คำสำคัญ: ลำดับสมบูรณ์, ลำดับฟิโบนักซี, Zeckendorf representation

### กิตกรรมประกาศ

โครงงานเรื่องนี้ประกอบด้วยการดำเนินงานหลายขั้นตอน นับตั้งแต่การศึกษาหาข้อมูล คิดทฤษฎี พิสูจน์ การจัดทำโครงงานเป็นรูปเล่ม จนกระทั่งโครงงานนี้สำเร็จลุล่วงไปด้วยดี ตลอดระยะเวลาที่กล่าวมานั้น ทางคณะ ผู้จัดทำได้รับความช่วยเหลือ คำชี้แนะในด้านต่าง ๆ รวมไปถึงกำลังใจจากบุคคลหลายท่าน คณะผู้จัดทำตระหนัก และซาบซึ้งในความกรุณาจากทุก ๆ ท่านเป็นอย่างยิ่ง ณ โอกาสนี้ ขอขอบพระคุณทุก ๆ ท่าน ดังนี้

กราบขอบพระคุณ อาจารย์ภาสวรรณ พนแก้ว และอาจารย์ธนากร ปริญญาศาสตร์ จากภาควิชา คณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากร ผู้ให้คำแนะนำ และได้ให้ความเมตตา ช่วยเหลือในทุก ๆ ด้าน ตลอดจนเอื้อเฟื้อห้องประชุม และเครื่องมือต่าง ๆ ในการทำโครงงานนี้จนประสบความสำเร็จ

ขอขอบพระคุณโครงการสนับสนุนการจัดตั้งห้องเรียนวิทยาศาสตร์ในโรงเรียน โดยการกำกับดูแลของ มหาวิทยาลัย (วมว.) ที่ให้เงินทุนสำหรับสนับสนุนการทำโครงงานครั้งนี้

ขอขอบคุณ เพื่อน ๆ ที่ได้ให้ความช่วยเหลือในการทำโครงงาน

ท้ายที่สุด ขอกราบขอบพระคุณ คุณพ่อและคุณแม่ ผู้ที่ให้ความรัก ดูแลเอาใจใส่ คอยให้กำลังใจ และคอย สนับสนุนเรื่อยมา

วิษณุ พรภาวนาเลิศ

# สารบัญ

|                                                                       | หน้า |
|-----------------------------------------------------------------------|------|
| บทคัดย่อ                                                              | ก    |
| กิตติกรรมประกาศ                                                       | ๆ    |
| สารบัญ                                                                | ମ    |
| บทที่ 1 บทนำ                                                          | 1    |
| ที่มาและความสำคัญ                                                     | 1    |
| วัตถุประสงค์                                                          | 2    |
| ขอบเขตของการศึกษา                                                     | 2    |
| บทที่ 2 เอกสารที่เกี่ยวข้อง                                           | 3    |
| บทที่ 3 วิธีดำเนินการทดลอง                                            | 5    |
| วัสดุอุปกรณ์                                                          | 5    |
| ขั้นตอนการดำเนินงาน                                                   | 5    |
| บทที่ 4 ผลการทดลอง                                                    | 6    |
| ลำดับฟิโบนักชีแบบสมบูรณ์                                              | 6    |
| การเขียนจำนวนนับในรูปแบบผลรวมเชิงเส้นของพจน์ในลำดับฟิโบนักชีแบบทั่วไป | 12   |
| บทที่ 5 สรุป                                                          | 25   |
| เอกสารอ้างอิง                                                         | 26   |

## บทที่ 1

#### บทน้ำ

### 1.1 ที่มาและความสำคัญ

ลำดับฟิโบนักชี  $(F_n)_{n\in\mathbb{N}}$  เป็นลำดับที่กำหนดโดยความสัมพันธ์เวียนเกิด  $F_0=0, F_1=1,$   $F_n=F_{n-1}+F_{n-2}$  สำหรับ  $n\geq 2$  ซึ่งลำดับฟิโบนักชีเป็นลำดับสมบูรณ์ [8] และนอกจากนี้ยังพบว่าสำหรับ จำนวนนับ m ใด ๆ จะสามารถเขียนในรูป

$$m = \sum_{i=2}^{\infty} \alpha_i F_i, \alpha_i \in \{0,1\}$$

ได้แบบเดียวภายใต้เงื่อนไข  $\alpha_i\alpha_{i+1}=0$  ซึ่งการเขียนจำนวนเต็มใด ๆ ในรูปผลรวมเชิงเส้นภายใต้เงื่อนไขกล่าว เรียกว่า Zeckendorf Representation [12] ซึ่งมีการนำ Zeckendorf Representation ไปประยุกต์ใช้ในด้าน การเข้ารหัสและด้านการเข้ารหัส [2,6] และยังใช้ในอังกอริทึมสำหรับเกม [3,10,11] ทำให้การศึกษาลำดับสมบูรณ์ และหาเงื่อนไขที่จะทำให้จำนวนนับใด ๆ สามารถเขียนได้ในรูปผลรวมเชิงเส้นของสมาชิกในลำดับสมบูรณ์ได้เพียง แบบเดียวเป็นที่น่าสนใจต่อมาในปี1969 J. L. BROWN [5] ได้ศึกษาเงื่อนไขที่ทำให้ลำดับลูคัสสามารถเขียนในรูป ผลรวมเชิงเส้นแต่ละจำนวนนับสามารถเขียนได้แบบเดียว ซึ่งลำดับลูคัสนิยามโดยให้  $L_0=2, L_1=1$  และ  $L_{n+2}=L_{n+1}+L_n$  เมื่อ  $n\geq 0$  J. L. BROWN พบว่าถ้า m ไม่เป็นจำนวนเต็มลบ แล้วจะมีลำดับ  $(\alpha_n)_{n\in\{0\}\cup\mathbb{N}}$  ใน  $\{0,1\}$  เพียงลำดับเดียวเท่านั้นที่ทำให้

$$m = \sum_{i=0}^{\infty} \alpha_i L_i$$

เมื่อ  $lpha_ilpha_{i+1}=0$  สำหรับทุก  $i\geq 0$  และ  $lpha_0lpha_2=0$ 

รูปทั่วไปของพิโบนักชี  $(A_n)_{n\in\mathbb{N}}$  เป็นลำดับที่ถูกกำหนดโดย  $A_n=aA_{n-1}+bA_{n-2}$  เมื่อ  $A_1,A_2,a,b$  เป็นจำนวนเต็มที่ไม่เป็นลบ จากการศึกษาเบื้องต้นพบว่า  $A_n$  ไม่จำเป็นต้องเป็นลำดับสมบูรณ์ เช่นเมื่อ  $A_1=A_2=1, (a,b)=(0,4)$  ดังนั้นในโครงงานนี้เราจะศึกษา (a,b) ทำให้  $A_n$  เป็นลำดับสมบูรณ์ นอกจากนี้ ผู้วิจัยต้องการเงื่อนไขที่ทำให้ผลรวมเชิงเส้นแต่ละจำนวนนับสามารถเขียนได้แบบเดียว

# 1.2 วัตถุประสงค์

- 1. ศึกษาคู่อันดับ (a,b) ที่ทำให้รูปทั่วไปของลำดับฟิโบนักซี  $(A_n)_{n\in\mathbb{N}}$  เป็นลำดับสมบูรณ์
- 2. ศึกษาเงื่อนไขที่ทำให้การเขียนจำนวนนับใด ๆ ในรูปผลรวมเชิงเส้นของสมาชิกในรูปทั่วไปของฟิโบนักชีที่ สมบูรณ์ สามารถเขียนได้แบบเดียวเท่านั้น

### 1.3 ขอบเขตของการศึกษา

ศึกษารูปทั่วไปของฟิโบนักชีซึ่ง  $A_1,A_2$  เป็นจำนวนเต็มบวก และเป็นลำดับไม่ลด

## บทที่ 2

# เอกสารและงานวิจัยที่เกี่ยวข้อง

#### บทนิยาม 1

ลำดับ คือ ฟังก์ชันที่มีโดเมน เป็นเซตของจำนวนเต็มบวก และมีเรนจ์ เป็นเซตของจำนวนจริง [1] ตัวอย่าง ให้  $f\colon \mathbb{N} \to \mathbb{R}$  นิยามโดย f(n)=n+1 สำหรับทุก  $n\in \mathbb{N}$  แล้ว f เป็นลำดับ โดยเรานิยามเขียน แทนลำดับ f ด้วย  $(f(n))_{n\in \mathbb{N}}$ 

#### บทนิยาม 2

ให้  $(A_n)_{n\in\mathbb{N}}$  เป็นลำดับของจำนวนนับ เราจะกล่าวว่า  $(A_n)_{n\in\mathbb{N}}$  เป็น**ลำดับสมบูรณ์** [4] ก็ต่อเมื่อ สำหรับแต่ละจำนวนนับ k จะมีลำดับ  $(\alpha_n)_{n\in\mathbb{N}}$  ใน  $\{0,1\}$  ซึ่ง  $k=\sum_{i=1}^\infty \alpha_i A_i$  ตัวอย่าง  $A_n=\{1,2,3,\ldots,n,\ldots\}, B_n=\{1,1,1,\ldots,1,\ldots\}$  และ  $C_n=\{1,3,5,\ldots,2n-1,\ldots\}$  จะเห็นได้ว่า  $A_n,B_n$  เป็นลำดับสมบูรณ์ แต่  $C_n$  ไม่เป็นลำดับสมบูรณ์เพราะ 2 ไม่สามารถเขียนในรูป  $k=\sum_{i=1}^\infty \alpha_i A_i$  เนื่องจาก  $C_1<2$  และ  $C_n>2$  สำหรับ  $n\geq 2$ 

#### บทนิยาม 3

จะเรียกลำดับ  $(A_n)_{n\in\mathbb{N}}$  ว่าเป็น **ลำดับไม่ลด** เมื่อ  $A_1\leq A_2\leq A_3\leq \cdots \leq A_n\leq \cdots$  **ตัวอย่าง**  $A_n=\{1,1,2,2,3,3,\ldots,n,n,\ldots\}$  จะเห็นได้ว่า  $A_n$  เป็นลำดับไม่ลด

#### บทนิยาม 4

รูปทั่วไปของลำดับฟิโบนักซี [7] คือ ลำดับ  $(A_n)_{n\in\mathbb{N}}$  ซึ่ง  $A_1$ ,  $A_2$ , a,b เป็นจำนวนเต็มที่ไม่เป็นลบ และ  $A_n=aA_{n-1}+bA_{n-2}$ 

# ทฤษฎีบท 1

ให้  $(A_n)_{n\in\mathbb{N}}$  เป็นลำดับไม่ลด ของจำนวนนับซึ่ง  $A_1=1$  แล้ว  $(A_n)_{n\in\mathbb{N}}$  เป็น**ลำดับสมบูรณ์** [4] ก็ ต่อเมื่อ  $A_{k+1}\leq 1+\sum_{i=1}^k A_i$ สำหรับทุก  $k\in\mathbb{N}$ 

**ตัวอย่าง** กำหนดให้  $F_1=1, F_2=1$  และ  $F_n=F_{n-1}+F_{n-2}$  แล้วลำดับ  $(F_n)_{n\in\mathbb{N}}$  เป็นลำดับไม่ลดอย่างเห็น ได้ชัด นอกจากนี้จากอุปนัยเชิงคณิตศาสตร์เราจะสามารถพิสูจน์ได้ว่า  $F_{n+2}\leq 1+\sum_{i=1}^{n+1}F_i$  ดังนั้น  $F_n$  เป็น ลำดับสมบูรณ์

# บทที่ 3

### วิธีดำเนินการทดลอง

# 3.1 วัสดุอุปกรณ์

- 1.คอมพิวเตอร์
- 2.กระดาษ
- 3.เครื่องเขียน
- 4.เครื่องคิดเลข

# 3.2 ขั้นตอนการดำเนินงาน

- 1. ศึกษาข้อมูลเกี่ยวกับลำดับ
- 2. ศึกษาข้อมูลที่เกี่ยวข้อง
- 3. หาคู่อันดับ (a,b) ที่ทำให้รูปทั่วไปของลำดับฟิโบนักชี  $(A_n)_{n\in\mathbb{N}}$  เป็นลำดับสมบูรณ์
- 4. หาเงื่อนไขที่ทำให้การเขียนจำนวนนับใด ๆ ในรูปผลรวมเชิงเส้นของสมาชิกในรูปทั่วไปของฟิโบนักชีที่ สมบูรณ์ สามารถเขียนได้แบบเดียวเท่านั้น
- 5. เขียนรายงาน
- 6. ตรวจสอบ และแก้ไขรายงาน

## บทที่ 4

#### ผลการทดลอง

### 1. ลำดับฟิโบนักชีแบบสมบูรณ์

กำหนดให้  $A_n$  เป็นลำดับฟิโบนักชีแบบทั่วไปที่เป็นลำดับไม่ลดที่นิยามโดยความสัมพันธ์เวียนเกิด ที่กำหนดโดย  $A_1=1,\ A_2=1,2$  และ  $A_n=aA_{n-1}+bA_{n-2}$  ในบทนี้เราจะหาสัมประสิทธิ์ (a,b) ที่เป็นไปได้ทั้งหมดของความสัมพันธ์เวียนเกิดนี้ที่ทำให้  $A_n$  เป็นลำดับสมบูรณ์

#### ทฤษฎีบท 1.1

ให้ a,b เป็นจำนวนเต็มที่ไม่เป็นลบ และ  $(A_n)_{n\in\mathbb{N}}$  เป็นลำดับไม่ลดซึ่ง  $A_1=A_2=1$  และ  $A_n=aA_{n-1}+bA_{n-2}$  สำหรับทุกจำนวนนับ  $n\geq 3$  เราได้ว่าลำดับ  $(A_n)_{n\in\mathbb{N}}$  จะเป็นลำดับสมบูรณ์ก็ต่อเมื่อ  $(a,b)\in\{(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(2,0)\}$  พิสูจน์

สมมติว่า  $(A_n)_{n\in\mathbb{N}}$  เป็นลำดับสมบูรณ์ สังเกตว่า ถ้า (a,b)=(0,0) แล้ว  $(A_n)_{n\in\mathbb{N}}$  ไม่เป็นลำดับไม่ลด ดังนั้น  $(a,b)\neq(0,0)$ 

เนื่องจาก  $(A_n)_{n\in\mathbb{N}}$  เป็นลำดับสมบูรณ์ที่เป็นลำดับไม่ลด โดยทฤษฎีบท 1 เราได้ว่า

$$a + b = A_3 \le 1 + A_1 + A_2 = 3$$

ดังนั้น

$$(a,b) \in \{(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(2,0),(2,1),(3,0)\}$$

สังเกตว่า ถ้า (a,b)=(2,1) แล้ว  $A_1,A_2,A_3,A_4$  จะมีค่าเป็น 1,1,3,7 ตามลำดับ ซึ่งทำให้ได้ว่า  $A_4=7>6=1+\sum_{i=1}^3A_i$  และ  $(A_n)_{n\in\mathbb{N}}$  ไม่เป็นลำดับสมบูรณ์โดยทฤษฎีบท 1 เราจึงได้ว่า  $(a,b)\neq(2,1)$  ในทำนองเดียวกัน ถ้า (a,b)=(3,0) แล้ว  $A_1,A_2,A_3,A_4$  จะมีค่าเป็น 1,1,3,9 ตามลำดับ ซึ่งทำให้ได้ว่า  $A_4=9>6=1+\sum_{i=1}^3A_i$  และ  $(A_n)_{n\in\mathbb{N}}$  ไม่เป็นลำดับสมบูรณ์โดยทฤษฎีบท 1 เช่นเดียวกัน ดังนั้น  $(a,b)\neq(3,0)$  ทำให้เราสรุปได้ว่า

$$(a,b) \in \{(0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (2,0)\}$$

ตามต้องการ

ในทางกลับกันสมมติว่า

$$(a,b) \in \{(0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (2,0)\}$$

เราต้องการจะแสดงว่า  $(A_n)_{n\in\mathbb{N}}$  เป็นลำดับสมบูรณ์ นั่นคือ เราจะแสดงว่า  $A_{n+1}\leq 1+\sum_{i=1}^n A_i$  สำหรับทุก  $n\in\mathbb{N}$ 

กรณี 
$$(a,b)\in\{(0,1),(0,2),(0,3),(1,0),(1,1)\}$$
 สังเกตว่า  $A_2=1\leq 2=1+A_1$  และ  $A_3=a+b\leq 3=1+A_1+A_2$  ให้  $k\in\mathbb{N}$  สมมติว่า  $A_{k+1}\leq 1+\sum_{i=1}^kA_i$  และ  $A_{k+2}\leq 1+\sum_{i=1}^{k+1}A_i$  เนื่องจาก  $2a+b\leq 3=1+A_1+A_2$  ดังนั้น  $A_{k+3}=aA_{k+2}+bA_{k+1}$   $\leq a+\left(\sum_{i=1}^{k+1}aA_i\right)+b+\left(\sum_{i=1}^kbA_i\right)$   $=a+b+aA_1+\sum_{i=3}^{k+2}(aA_{i-1}+bA_{i-2})$   $=2a+b+\sum_{i=3}^{k+2}A_i$   $\leq 1+A_1+A_2+\sum_{i=3}^{k+2}A_i$ 

 $=1+\sum_{i=1}^{k+2}A_{i}$ 

โดยหลักอุปนัยเชิงคณิตศาสตร์ เราสรุปได้ว่า  $A_{n+1} \leq 1 + \sum_{i=1}^n A_i$  สำหรับทุก  $n \in \mathbb{N}$ 

กรณี a=2 และ b=0

สังเกตว่า  $A_2=1\leq 2=1+A_1$ 

ให้  $k \in \mathbb{N}$  สมมติว่า  $A_{k+1} \leq 1 + \sum_{i=1}^k A_i$  ดังนั้น

$$\begin{aligned} A_{k+2} &= 2A_{k+1} \\ &= A_{k+1} + A_{k+1} \\ &\leq \left(1 + \sum_{i=1}^{k} A_i\right) + A_{k+1} \\ &= 1 + \sum_{i=1}^{k+1} A_i \end{aligned}$$

โดยหลักอุปนัยเชิงคณิตศาสตร์ เราสรุปได้ว่า  $A_{n+1} \leq 1 + \sum_{i=1}^n A_i$  สำหรับทุก  $n \in \mathbb{N}$ 

กรณี  $oldsymbol{a} = \mathbf{1}$  และ  $oldsymbol{b} = \mathbf{2}$ 

ในกรณีนี้ เราจะแสดงว่า สำหรับทุกจำนวนนับ n

$$A_{n+1} = egin{cases} 1 + \sum_{i=1}^n A_i & ext{เมื่อ } n & ext{เป็นจำนวนคู่} \ \sum_{i=1}^n A_i & ext{เมื่อ } n & ext{เป็นจำนวนคี} \end{cases}$$

สังเกตว่า  $A_2=1=A_1$  และ  $A_3=3=1+A_1+A_2$ 

ให้  $k \in \mathbb{N}$  สมมติว่า

$$A_{k+1} = egin{cases} 1 + \sum_{i=1}^k A_i & \ \mathrm{i}\ \mathrm{i}\$$

และ

$$A_{k+2} = egin{cases} 1 + \sum_{i=1}^{k+1} A_i & \mbox{เมื่อ} \ k+1 & \mbox{เป็นจำนวนคู่} \ \sum_{i=1}^{k+1} A_i & \mbox{เมื่อ} \ k+1 & \mbox{เป็นจำนวนคี} \end{cases}$$

ดังนั้น

$$A_{k+3} = A_{k+2} + 2A_{k+1}$$

$$= \begin{cases} \left(\sum_{i=1}^{k+1} A_i\right) + 2\left(1 + \sum_{i=1}^{k} A_i\right) & \text{id} \ k + 2 \text{ idunature} \ i \end{cases}$$

$$= \begin{cases} \left(1 + \sum_{i=1}^{k+1} A_i\right) + 2\sum_{i=1}^{k} A_i & \text{id} \ k + 2 \text{ iduature} \ i \end{cases}$$

$$= \begin{cases} A_1 + 2 + \sum_{i=2}^{k+1} (A_i + 2A_{i-1}) & \text{id} \ k + 2 \text{ iduature} \ i \end{cases}$$

$$= \begin{cases} A_1 + 2 + \sum_{i=2}^{k+1} (A_i + 2A_{i-1}) & \text{id} \ k + 2 \text{ iduature} \ i \end{cases}$$

$$= \begin{cases} A_1 + 2 + \sum_{i=2}^{k+1} A_{i+1} & \text{id} \ k + 2 \text{ iduature} \ i \end{cases}$$

$$= \begin{cases} A_1 + 2 + \sum_{i=2}^{k+1} A_{i+1} & \text{id} \ k + 2 \text{ iduature} \ i \end{cases}$$

$$= \begin{cases} 1 + \sum_{i=1}^{k+2} A_i & \text{id} \ k + 2 \text{ iduature} \ i \end{cases}$$

$$= \begin{cases} 1 + \sum_{i=1}^{k+2} A_i & \text{id} \ k + 2 \text{ iduature} \ i \end{cases}$$

$$= \begin{cases} 1 + \sum_{i=1}^{k+2} A_i & \text{id} \ k + 2 \text{ iduature} \ i \end{cases}$$

โดยหลักอุปนัยเชิงคณิตศาสตร์ เราสรุปได้ว่า สำหรับทุกจำนวนนับ n

$$A_{n+1} = egin{cases} 1 + \sum_{i=1}^n A_i & \ \mathrm{i} \ \mathrm{i} \ \mathrm{j} \ \mathrm{o} \ n \ \mathrm{i} \ \mathrm{f} \ \mathrm{u} \ \mathrm{o} \ \mathrm{i} \ \mathrm{f} \ \mathrm{o} \ \mathrm{o} \ \mathrm{i} \ \mathrm{f} \ \mathrm{o} \$$

ทำให้ได้ว่า  $A_{n+1} \leq 1 + \sum_{i=1}^n A_i$  สำหรับทุกจำนวนนับ n จากทั้งสามกรณี เราได้ว่า  $(A_n)_{n\in\mathbb{N}}$  เป็นลำดับสมบูรณ์

#### ทฤษฎีบท 1.2

ให้ a,b เป็นจำนวนเต็มที่ไม่เป็นลบ และ  $(A_n)_{n\in\mathbb{N}}$  เป็นลำดับไม่ลดซึ่ง  $A_1=1,A_2=2$  และ  $A_n=aA_{n-1}+bA_{n-2}$  สำหรับทุกจำนวนนับ  $n\geq 3$  เราได้ว่าลำดับ  $(A_n)_{n\in\mathbb{N}}$  จะเป็นลำดับสมบูรณ์ก็ต่อเมื่อ

$$(a,b) \in \{(0,2), (0,3), (0,4), (1,0), (1,1), (1,2), (2,0)\}$$

พิสูจน์

สมมติว่า  $(A_n)_{n\in\mathbb{N}}$  เป็นลำดับสมบูรณ์ สังเกตว่า ถ้า (a,b)=(0,0) หรือ (a,b)=(0,1) แล้ว  $(A_n)_{n\in\mathbb{N}}$  จะเป็นลำดับไม่ลด ดังนั้น  $a\geq 1$  หรือ  $b\geq 2$ 

เนื่องจาก  $(A_n)_{n\in\mathbb{N}}$  เป็นลำดับสมบูรณ์ที่เป็นลำดับไม่ลด โดยทฤษฎีบท 1 เราได้ว่า

$$2a + b = A_3 \le 1 + A_1 + A_2 = 4$$

ดังนั้น

$$(a,b) \in \{(0,2), (0,3), (0,4), (1,0), (1,1), (1,2), (2,0)\}$$

ตามต้องการ

ในทางกลับกันสมมติว่า

$$(a,b) \in \{(0,2), (0,3), (0,4), (1,0), (1,1), (1,2), (2,0)\}$$

เราต้องการจะแสดงว่า  $(A_n)_{n\in\mathbb{N}}$  เป็นลำดับสมบูรณ์ นั่นคือ เราจะแสดงว่า  $A_{n+1}\leq 1+\sum_{i=1}^n A_i$  สำหรับทุก  $n\in\mathbb{N}$ 

สังเกตว่า 
$$A_2=2\leq 1+A_1$$
 และ  $A_3=2a+b\leq 4=1+A_1+A_2$ 

ให้ 
$$k\in\mathbb{N}$$
 สมมติว่า  $A_{k+1}\leq 1+\sum_{i=1}^kA_i$  และ  $A_{k+2}\leq 1+\sum_{i=1}^{k+1}A_i$ 

ดังนั้น

$$A_{k+3} = aA_{k+2} + bA_{k+1}$$

$$\leq a + \left(\sum_{i=1}^{k+1} aA_i\right) + b + \left(\sum_{i=1}^{k} bA_i\right)$$

$$= a + b + aA_1 + \sum_{i=3}^{k+2} (aA_{i-1} + bA_{i-2})$$

$$= 2a + b + \sum_{i=3}^{k+2} A_i$$

$$\leq 1 + A_1 + A_2 + \sum_{i=3}^{k+2} A_i$$

$$= 1 + \sum_{i=1}^{k+2} A_i$$

โดยหลักอุปนัยเชิงคณิตศาสตร์ เราสรุปได้ว่า  $A_{n+1} \leq 1 + \sum_{i=1}^n A_i$  สำหรับทุก  $n \in \mathbb{N}$ 

# 2. การเขียนจำนวนนับในรูปแบบผลรวมเชิงเส้นของพจน์ในลำดับฟิโบนักชีแบบทั่วไป

จากบทก่อนหน้าเราทราบแล้วว่าลำดับฟิโบนักชีแบบทั่วไป  $(A_n)_{n\in\mathbb{N}}$  ที่เป็นลำดับไม่ลดจะเป็น ลำดับสมบูรณ์เมื่อใด ในหัวข้อนี้เราจะศึกษาเงื่อนไขที่ทำให้จำนวนนับใด ๆ สามารถเขียนอยู่ในรูปของผลรวม เชิงเส้นของพจน์ใน  $(A_n)_{n\in\mathbb{N}}$  ได้

### 2.1 เงื่อนไขเมื่อ $A_1=A_2=1$

ในหัวข้อนี้เราให้  $(A_n)_{n\in\mathbb{N}}$  เป็นลำดับซึ่ง  $A_1=A_2=1$  และ  $A_n=aA_{n-1}+bA_{n-2}$  สำหรับทุก  $n\geq 3$  เมื่อ

$$(a,b) \in \{(0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (2,0)\}$$

เราได้ผลการศึกษาดังต่อไปนี้

### ทฤษฎีบท 2.1

ให้ (a,b)=(0,1) ถ้า  $n\in\mathbb{N}\cup\{0\}$  แล้วจะมีลำดับ  $(\alpha_i)_{i\in\mathbb{N}}$  เมื่อ  $\alpha_i\in\{0,1\}$  ที่ทำให้  $n=\sum_{i=1}^\infty\alpha_i\,A_i$  และ  $\alpha_i=0$  สำหรับทุก i>n

พิสูจน์

ให้  $n\in\mathbb{N}\cup 0$  กำหนดให้  $(\alpha_i)_{i\in\mathbb{N}}$  เป็นลำดับซึ่ง  $\alpha_i=1$  สำหรับทุก  $i\le n$  และ  $\alpha_i=0$  สำหรับทุก i>n จะได้ว่า  $n=\sum_{i=1}^n\alpha_iA_i=\sum_{i=1}^\infty\alpha_iA_i$ 

กำหนดให้ (a,b)=(0,1) และ

$$n = \sum_{i=1}^{\infty} \alpha_i A_{i,} \, \alpha_i \in \{0,1\}$$

เมื่อ  $\alpha_i=0$  สำหรับทุก i>n เราได้ว่าการเขียน n ในรูปแบบผลรวมเชิงเส้นภายใต้เงื่อนไขดังกล่าวนั้น เขียนได้แบบเดียว

พิสูจน์ เนื่องจาก  $\alpha_i=0$  สำหรับทุก i>n ดังนั้น  $n=\sum_{i=1}^n\alpha_iA_i$  ถ้ามี  $i\le n$  ซึ่ง  $\alpha_i=0$  แล้ว  $n=\sum_{i=1}^n\alpha_iA_i< n$  ซึ่งเป็นไปไม่ได้ เพราะฉะนั้น  $\alpha_i=1$  สำหรับทุก  $i\le n$  ซึ่งทำให้ได้ว่าการเขียน n ในรูปแบบผลรวมเชิงเส้นภายใต้เงื่อนไขนี้เขียนได้แบบเดียว

#### ทฤษฎีบท 2.3

กำหนดให้ (a,b)=(0,2) และ  $n\in\{0\}\cup\mathbb{N}$  เราได้ว่ามีลำดับ  $(\alpha_i)_{i\in\mathbb{N}}$  เมื่อ  $\alpha_i\in\{0,1\}$  ที่ทำให้  $n=\sum_{i=1}^\infty \alpha_i A_i$  และ  $\alpha_{2i-1}=0$  สำหรับทุก  $i\in\mathbb{N}$  พิสูจน์

โดยทฤษฎีบท 1.2 เราจะได้ว่า  $(A_{2i})_{i\in\mathbb{N}}$  เป็นลำดับสมบูรณ์ ดังนั้น มีลำดับ  $(\alpha_i)_{i\in\mathbb{N}}$  เมื่อ  $\alpha_i\in\{0,1\}$  ที่ทำให้  $n=\sum_{i=1}^\infty \alpha_i A_i$  และ  $\alpha_{2i-1}=0$  สำหรับทุก  $i\in\mathbb{N}$ 

### ทฤษฎีบท 2.4

กำหนดให้ (a,b)=(0,2) และ

$$n = \sum_{i=1}^{\infty} \alpha_i A_i, \alpha_i \in \{0,1\}$$

เมื่อ  $lpha_{2i-1}=0$  สำหรับทุก  $i\in\mathbb{N}$  เราได้ว่าการเขียน n ในรูปแบบผลรวมเชิงเส้นภายใต้เงื่อนไขดังกล่าวนั้น เขียนได้แบบเดียว

พิสูจน์

ให้  $n=\sum_{i=1}^\infty \beta_i A_i, \beta_i \in \{0,1\}$  และ  $\beta_{2i-1}=0$  สำหรับทุก  $i\in\mathbb{N}$  สมมติว่า  $(\alpha_{2i})_{i\in\mathbb{N}}\neq (\beta_{2i})_{i\in\mathbb{N}}$  ให้ k เป็นจำนวนนับที่มากที่สุดที่  $\alpha_{2k}\neq \beta_{2k}$  โดยไม่เสียนัยทั่วไป กำหนดให้  $\alpha_{2k}=1$  และ  $\beta_{2k}=0$ 

ดังนั้น

$$A_{2k} + \sum_{i=1}^{k-1} \alpha_{2i} A_{2i} = \sum_{i=1}^{k-1} \beta_{2i} A_{2i}$$

ทำให้ได้ว่า

$$2^{k-1} \le A_{2k} + \sum_{i=1}^{k-1} \alpha_{2i} A_{2i} = \sum_{i=1}^{k-1} \beta_{2i} A_{2i} \le \sum_{i=1}^{k-1} A_{2i} = 2^{k-1} - 1$$

ซึ่งเป็นข้อขัดแย้ง ดังนั้น  $(lpha_i)_{i\in\mathbb{N}}=(eta_i)_{i\in\mathbb{N}}$ 

#### ทฤษฎีบท 2.5

กำหนดให้ (a,b)=(0,3) และ  $n\in\{0\}\cup\mathbb{N}$  เราได้ว่ามีลำดับ  $(\alpha_i)_{i\in\mathbb{N}}$  เมื่อ  $\alpha_i\in\{0,1\}$  ที่ทำให้

$$n = \sum_{i=1}^{\infty} \alpha_i A_i$$

เมื่อ  $lpha_{2i-1} \leq lpha_{2i}$  สำหรับทุก  $i \in \mathbb{N}$ 

พิสูจน์ ให้  $n\in\{0\}$  U N จากทฤษฎีบท 1.1 จะมีลำดับ  $(\alpha_i)_{i\in\mathbb{N}}$  เมื่อ  $\alpha_i\in\{0,1\}$  ที่ทำให้  $n=\sum_{i=1}^\infty\alpha_iA_i$  นิยาม  $\beta_i\in\{0,1\}$  สำหรับแต่ละ  $i\in\mathbb{N}$  โดย

$$\beta_{2i-1} = \begin{cases} \alpha_{2i} & \text{เมื่อ } \alpha_{2i-1} > \alpha_{2i} \\ \alpha_{2i-1} & \text{เมื่อ } \alpha_{2i-1} \leq \alpha_{2i} \end{cases}$$
 และ  $\beta_{2i} = \begin{cases} \alpha_{2i-1} & \text{เมื่อ } \alpha_{2i-1} > \alpha_{2i} \\ \alpha_{2i} & \text{เมื่อ } \alpha_{2i-1} \leq \alpha_{2i} \end{cases}$ 

สำหรับทุก  $i\in\mathbb{N}$  เนื่องจาก  $A_{2i-1}=A_{2i}$  สำหรับทุก  $i\in\mathbb{N}$ 

ดังนั้น

$$n = \sum_{i=1}^{\infty} \beta_i A_i$$

และจากการสร้าง  $eta_i$  จะได้ว่า  $eta_{2i-1} \leq eta_{2i}$  สำหรับทุก  $i \in \mathbb{N}$ 

### ทฤษฎีบท 2.6

กำหนดให้ (a,b)=(0,3) และ

$$n = \sum_{i=1}^{\infty} \alpha_i A_i, \alpha_i \in \{0,1\}$$

เมื่อ  $\alpha_i \in \{0,1\}$  และ  $\alpha_{2i-1} \leq \alpha_{2i}$  สำหรับทุก  $i \in \mathbb{N}$  เราได้ว่าการเขียน n ในรูปแบบผลรวมเชิงเส้นภายใต้ เงื่อนไขดังกล่าวนั้นเขียนได้แบบเดียว

พิสูจน์ สมมติ  $n=\sum_{i=1}^\infty \beta_i A_i$  เมื่อ  $\beta_i \in \{0,1\}$  และ  $\beta_{2i-1} \leq \beta_{2i}$  สำหรับทุก  $i \in \mathbb{N}$  เราจะพิสูจน์โดย ข้อขัดแย้งโดย สมมติ  $(\alpha_i)_{i \in \mathbb{N}} \neq (\beta_i)_{i \in \mathbb{N}}$  ให้ k เป็นจำนวนนับที่มากที่สุดที่ทำให้  $\alpha_k \neq \beta_k$  โดยไม่เสียนัยทั่วไป กำหนดให้  $\alpha_k = 1, \beta_k = 0$  จะได้ว่า

$$\sum_{i=1}^{k} \alpha_i A_i = \sum_{i=1}^{k-1} \beta_i A_i$$

กรณีที่ k เป็นจำนวนคู่ เนื่องจาก  $eta_k=0$  และ  $eta_{2i-1}\leq eta_{2i}$  สำหรับทุก  $i\in\mathbb{N}$  ทำให้  $eta_{k-1}=0$  และ

$$\sum_{i=1}^k \alpha_i A_i = \sum_{i=1}^{k-2} \beta_i A_i$$

แต่  $\sum_{i=1}^{k-2} \beta_i A_i \leq \sum_{i=1}^{k-2} A_i = A_k - 1 < \sum_{i=1}^k \alpha_i A_i = \sum_{i=1}^{k-2} \beta_i A_i$  ซึ่งทำให้เกิดข้อขัดแย้ง

กรณีที่ k เป็นจำนวนคี่

$$\sum_{i=1}^k \alpha_i A_i = \sum_{i=1}^{k-1} \beta_i A_i$$

แต่  $\sum_{i=1}^{k-1} \beta_i A_i \leq \sum_{i=1}^{k-1} A_i = A_k - 1 < \sum_{i=1}^k \alpha_i A_i = \sum_{i=1}^{k-1} \beta_i A_i$  ซึ่งทำให้เกิดข้อขัดแย้ง ดังนั้น  $(\alpha_i)_{i\in\mathbb{N}} = (\beta_i)_{i\in\mathbb{N}}$ 

### ทฤษฎีบท 2.7

กำหนดให้ (a,b)=(1,0) และ  $n\in\mathbb{N}\cup\{0\}$  เราได้ว่ามีลำดับ  $(\alpha_i)_{i\in\mathbb{N}}$  เมื่อ  $\alpha_i\in\{0,1\}$  ที่ทำให้

$$n = \sum_{i=1}^{\infty} \alpha_i A_i$$

และ  $\alpha_i=0$  สำหรับทุก i>n

พิสูจน์

กำหนดให้  $n\in\{0\}\cup\mathbb{N}$  และให้  $(\alpha_i)_{i\in\mathbb{N}}$  เป็นลำดับซึ่ง  $\alpha_i=1$  สำหรับทุก  $i\leq n$  และ  $\alpha_i=0$  สำหรับทุก i>n จะได้ว่า  $n=\sum_{i=1}^n\alpha_iA_i=\sum_{i=1}^\infty\alpha_iA_i$  เพราะ  $A_i=1$  สำหรับทุก  $i\in\mathbb{N}$ 

### ทฤษฎีบท 2.8

กำหนดให้ (a,b)=(1,0) และ

$$n = \sum_{i=1}^{\infty} \alpha_i A_i , \alpha_i \in \{0,1\}$$

เมื่อ  $lpha_i=0$  สำหรับทุก i>n เราจะได้ว่าการเขียน n ในรูปแบบผลรวมเชิงเส้นภายใต้เงื่อนไขดังกล่าวนั้น ได้แบบเดียว พิสูจน์

ให้  $n=\sum_{i=1}^\infty \alpha_i A_i$  ,  $\alpha_i\in\{0,1\}$  เมื่อ  $\alpha_i=0$  สำหรับทุก i>n ดังนั้น  $n=\sum_{i=1}^n \alpha_i A_i$  ถ้ามี  $i\leq n$  ซึ่ง  $\alpha_i=0$  แล้ว  $n=\sum_{i=1}^n \alpha_i A_i < n$  ซึ่งเป็นไปไม่ได้เพราะฉะนั้น  $\alpha_i=1$  สำหรับทุก  $i\leq n$  ซึ่งทำให้ได้ว่า การเขียน n ในรูปแบบผลรวมเชิงเส้นภายใต้เงื่อนไขนี้เขียนได้แบบเดียว

ในกรณีที่ (a,b)=(1,1) เราจะได้ว่าลำดับนี้เป็นลำดับฟิโบนักชีไม่รวม 0 ดังนั้นโดย Zeckendorf Representation จะได้ว่าสำหรับ  $n\in\{0\}\cup\mathbb{N}$  จะมีลำดับ  $(\alpha_i)_{i\in\mathbb{N}}$  เมื่อ  $\alpha_i\in\{0,1\}$  เพียงลำดับเดียวที่ทำให้  $n=\sum_{i=1}^\infty \alpha_i A_i$  ,  $\alpha_1=0$  และ  $\alpha_i \alpha_{i+1}=0$  สำหรับทุก  $i\in\mathbb{N}$ 

### ทฤษฎีบท 2.9

ให้ (a,b)=(1,2) ถ้า  $n\in\{0\}\cup\mathbb{N}$  แล้วจะมีลำดับ  $(\alpha_i)_{i\in\mathbb{N}}$  เมื่อ  $\alpha_i\in\{0,1\}$  ที่ทำให้  $n=\sum_{i=1}^\infty \alpha_i A_i$  และ  $min\ \{k|\alpha_k=1\}$  เป็นจำนวนคี่

พิสูจน์

ให้  $n\in\mathbb{N}\cup\{0\}$  เนื่องจาก  $(A_i)_{i\in\mathbb{N}}$  เป็นลำดับสมบูรณ์ ดังนั้นจะมีลำดับ  $(\alpha_i)_{i\in\mathbb{N}}$  ที่ทำให้ ให้  $n=\sum_{i=1}^\infty\alpha_iA_i$  เมื่อ  $\alpha_i\in\{0,1\}$ 

กรณี  $min~\{k | \alpha_k=1\}$  เป็นจำนวนคี่ จะได้ว่า  $n=\sum_{i=1}^\infty \alpha_i A_i$  เมื่อ  $\alpha_i \in \{0,1\}$  และสอดคล้องกับเงื่อนไข ที่ต้องการ

กรณี m=min  $\{k|\alpha_k=1\}$  เป็นจำนวนคู่ จากบทพิสูจน์ของทฤษฎีบท 1.1 เราทราบว่า  $\sum_{i=1}^{m-1}A_i=A_m$  ดังนั้น ถ้าเราให้  $\gamma_i=1$  เมื่อ  $1\leq i\leq m-1$ ,  $\gamma_m=0$  และ  $\gamma_j=\alpha_j$  เมื่อ j>m จะได้ว่า  $n=\sum_{i=1}^{\infty}\alpha_iA_i=\sum_{i=1}^{\infty}\gamma_iA_i$  และ min  $\{k|\gamma_k=1\}=1$  ซึ่งเป็นจำนวนคี่ จะเห็นว่ามีลำดับ  $(\gamma_i)_{i\in\mathbb{N}}$  ที่ทำ ให้  $n=\sum_{i=1}^{\infty}\gamma_iA_i$  ,  $\gamma_i\in\{0,1\}$  ภายใต้เงื่อนไขที่ต้องการ

กำหนดให้ (a,b)=(1,2) และ

$$n = \sum_{i=1}^{\infty} \alpha_i A_i$$
 ,  $\alpha_i \in \{0,1\}$ 

เมื่อ  $min\ \{k|\alpha_k=1\}$  เป็นจำนวนคี่ เราได้ว่าการเขียน n ในรูปแบบผลรวมเชิงเส้นภายใต้เงื่อนไขดังกล่าวนั้น เขียนได้แบบเดียว

พิสูจน์

สมมติ  $n=\sum_{i=1}^\infty \gamma_i A_i$  เมื่อ  $\gamma_i\in\{0,1\}$  สำหรับทุก  $i\in\mathbb{N}$  และ  $min\,\{k|\gamma_k=1\}$  เป็นจำนวนคี่ เราจะพิสูจน์ โดยข้อขัดแย้งโดยสมมติว่า  $(\alpha_i)_{i\in\mathbb{N}}\neq (\gamma_i)_{i\in\mathbb{N}}$  ให้ l เป็นจำนวนนับมากที่สุดที่ทำให้  $\alpha_l\neq \gamma_l$  โดยไม่เสีย นัยทั่วไปกำหนดให้  $\alpha_l=1, \gamma_l=0$  จะได้ว่า

$$n = \sum_{i=1}^{l} \alpha_i A_i = \sum_{i=1}^{l-1} \gamma_i A_i$$

กรณี l เป็นจำนวนคี่

จากบทพิสูจน์ของทฤษฎีบท 1.1 เราทราบว่า

$$A_k = 1 + \sum_{i=1}^{k-1} A_i$$

ดังนั้น

$$A_k \le \sum_{i=1}^k \alpha_i A_i = n = \sum_{i=1}^{k-1} \gamma_i A_i \le \sum_{i=1}^{k-1} A_i = A_k - 1$$

ซึ่งเป็นข้อขัดแย้ง

กรณี l เป็นจำนวนคู่

จาก  $m = min \, \{k | lpha_k = 1\}$  เป็นจำนวนคี่ จะได้ว่า m < l และ

$$A_m + A_l \le \sum_{i=1}^{l} \alpha_i A_i = \sum_{i=1}^{l-1} \gamma_i A_i \le \sum_{i=1}^{l-1} A_i$$

จากบทพิสูจน์ของทฤษฎีบท 1.1 เราทราบว่า

$$\sum_{i=1}^{l-1} A_i = A_l$$

ดังนั้น  $A_m+A_l\leq A_l$  นั่นคือ  $A_m\leq 0$  ซึ่งเป็นข้อขัดแย้ง ดังนั้น  $(\alpha_i)_{i\in\mathbb{N}}=(\gamma_i)_{i\in\mathbb{N}}$ 

### ทฤษฎีบท 2.11

ให้ (a,b)=(2,0) ถ้า  $n\in\{0\}\cup\mathbb{N}$  แล้วจะมีลำดับ  $(\alpha_i)_{i\in\mathbb{N}}$  เมื่อ  $\alpha_i\in\{0,1\}$  เพียงลำดับเดียวเท่าที่ทำให้  $n=\sum_{i=1}^\infty \alpha_i A_i$  และ  $\alpha_1=0$ 

พิสูจน์

ให้  $(B_i)_{i\in\mathbb{N}}$  เป็นลำดับซึ่ง  $B_1=B_2=1$  และ  $B_n=2B_{n-2}$  สำหรับทุก  $n\geq 3$  เนื่องจากลำดับ  $(A_{i+1})_{i\in\mathbb{N}}=(B_{2i})_{i\in\mathbb{N}}$  ดังนั้น โดยทฤษฎีบท 2.3 และทฤษฎีบท 2.4 เราจะได้ว่า มีลำดับ  $(\alpha_i)_{i\in\mathbb{N}}$  เมื่อ  $\alpha_i\in\{0,1\}$  เพียงลำดับเดียวเท่าที่ทำให้  $n=\sum_{i=1}^\infty \alpha_i A_i$  และ  $\alpha_1=0$ 

### 2.2 เงื่อนไขเมื่อ $A_1=1$ และ $A_2=2$

### ทฤษฎีบท 2.12

กำหนดให้  $(a,b)\in\{(0,4),(1,2),(2,0)\}$  และ  $n\in\{0\}\cup\mathbb{N}$  เราได้ว่า จะมีลำดับ  $(\alpha_i)_{i\in\mathbb{N}}$  เมื่อ  $\alpha_i\in\{0,1\}$  เพียงลำดับเดียวที่ทำให้  $n=\sum_{i=1}^\infty\alpha_iA_i$ 

พิสูจน์

ให้  $(B_i)_{i\in\mathbb{N}}$  เป็นลำดับซึ่ง  $B_1=B_2=1$  และ  $B_n=2B_{n-2}$  สำหรับทุก  $n\geq 3$  จะเห็นว่า  $(A_i)_{i\in\mathbb{N}}=(B_{2i})_{i\in\mathbb{N}}$  ดังนั้น โดยทฤษฎีบท 2.3 และทฤษฎีบท 2.4 จะได้ว่า มีลำดับ  $(\alpha_i)_{i\in\mathbb{N}}$  เมื่อ  $\alpha_i\in\{0,1\}$  เพียงลำดับเดียวที่ทำให้  $n=\sum_{i=1}^\infty \alpha_i A_i$ 

### ทฤษฎีบท 2.13

กำหนดให้ (a,b)=(0,2) และ  $n\in\{0\}\cup\mathbb{N}$  เราได้ว่า จะมีลำดับ  $(\alpha_i)_{i\in\mathbb{N}}$  เมื่อ  $\alpha_i\in\{0,1\}$  เพียงลำดับเดียว ที่ทำให้  $n=\sum_{i=1}^\infty \alpha_i A_i$  และ  $\alpha_{2i}=0$  สำหรับทุก  $i\in\mathbb{N}$ 

พิสูจน์

ให้  $(B_i)_{i\in\mathbb{N}}$  เป็นลำดับซึ่ง  $B_1=1, B_2=2$  และ  $B_n=2B_{n-1}$  สำหรับทุก  $n\geq 3$  จะเห็นว่า  $(A_{2i-1})_{i\in\mathbb{N}}=(B_i)_{i\in\mathbb{N}}$  ดังนั้น โดยทฤษฎีบท 2.13 จะได้ว่า มีลำดับ  $(\alpha_i)_{i\in\mathbb{N}}$  เมื่อ  $\alpha_i\in\{0,1\}$  เพียงลำดับเดียว ที่ทำให้  $n=\sum_{i=1}^\infty \alpha_i A_i$  และ  $\alpha_{2i}=0$  สำหรับทุก  $i\in\mathbb{N}$ 

ให้ (a,b)=(1,0) ถ้า  $n=\{0\}\cup\mathbb{N}$  แล้วจะมีลำดับ  $(\alpha)_{i\in\mathbb{N}}$  เมื่อ  $\alpha_i\in\{0,1\}$  ที่ทำให้  $n=\sum_{i=1}^\infty \alpha_i A_i$  และ  $\alpha_{i+1}\leq \alpha_i$  สำหรับทุก  $i\in\mathbb{N}-\{1\}$ 

พิสูจน์

กำหนดให้  $n=\{0\}\cup\mathbb{N}$ 

กรณี n เป็นคู่

กำหนดให้

$$lpha_i = egin{cases} 1$$
 เมื่อ  $2 \leq i \leq rac{n}{2} + 1 \ 0$  เมื่อ  $i = 1$  หรือ  $i > rac{n}{2} + 1 \end{cases}$ 

จะได้  $n=\sum_{i=1}^\infty lpha_i A_i$  และ  $lpha_{i+1} \leq lpha_i$  สำหรับทุก  $i \in \mathbb{N}-\{1\}$ 

กรณี n เป็นคี่

กำหนดให้

$$\alpha_i = \begin{cases} 1 \text{ เมื่อ } 1 \le i \le \frac{n+1}{2} \\ 0 \text{ เมื่อ } i > \frac{n+1}{2} \end{cases}$$

จะได้  $n=\sum_{i=1}^\infty lpha_i A_i$  และ  $lpha_{i+1} \leq lpha_i$  สำหรับทุก  $i \in \mathbb{N}-\{1\}$ 

กำหนดให้ (a,b)=(1,0) และ

$$n = \sum_{i=1}^{\infty} \alpha_i A_i, \alpha_i \in \{0,1\}$$

เมื่อ  $lpha_{i+1} \leq lpha_i$  สำหรับทุก  $i \in \mathbb{N} - \{1\}$  จะได้ว่า n เขียนในรูปผลรวมเชิงเส้นได้แบบเดียว พิสูจน์

สมมติ  $n=\sum_{i=1}^\infty \gamma_i A_i$  เมื่อ  $\gamma_i\in\{0,1\}$  สำหรับทุก  $i\in\mathbb{N}$  และ  $\gamma_{i+1}\leq\gamma_i$  สำหรับทุก  $i\in\mathbb{N}-\{1\}$  ซึ่งเราจะ พิสูจน์โดยข้อขัดแย้งโดยสมมติว่ามี  $i\in\mathbb{N}$  ที่ทำให้  $\gamma_i\neq\alpha_i$  ให้ k เป็นจำนวนนับมากที่สุดที่ทำให้  $\gamma_k\neq\alpha_k$  โดยไม่เสียนัยทั่วไปกำหนดให้  $\alpha_k=1$ ,  $\gamma_k=0$  จะได้ว่า

$$n = \sum_{i=1}^{k} \alpha_i A_i = \sum_{i=1}^{k-1} \gamma_i A_i$$

เนื่องจาก  $\alpha_k=1$  และ  $\alpha_{i+1}\leq \alpha_i$  สำหรับทุก  $i\in\mathbb{N}-\{1\}$  ทำให้  $\alpha_i=1$  สำหรับทุก  $1< i\leq k$  แต่เมื่อ n เป็นจำนวนคี่เราจะได้ว่า  $n=\sum_{i=1}^k \alpha_i A_i=2k-1$  และ  $n=\sum_{i=1}^{k-1} \gamma_i A_i\leq 2k-3$  ซึ่งเป็น ข้อขัดแย้ง

นอกจากนี้ถ้า n เป็นจำนวนคู่แล้ว  $n=\sum_{i=1}^k \alpha_i A_i=2k-2$  และ  $n=\sum_{i=1}^{k-1} \gamma_i A_i \leq 2k-4$  ซึ่งเป็น ข้อขัดแย้งเช่นเดียวกัน

ดังนั้น n สามารถเขียนในรูปผลรวมเชิงเส้นได้แบบเดียวภายใต้เงื่อนไขที่กำหนด

ให้ (a,b)=(0,3) ถ้า  $n\in\{0\}\cup\mathbb{N}$  แล้วจะมีลำดับ  $(\alpha_i)_{i\in\mathbb{N}}$  ที่ทำให้  $n=\sum_{i=1}^\infty \alpha_iA_i$  ,  $\alpha_i\in\{0,1\}$  และ  $\alpha_i\alpha_{i+1}=0$  สำหรับทุก i ที่เป็นจำนวนคี่

พิสูจน์

กำหนดให้  $(B_i)_{i\in\mathbb{N}}$  เป็นลำดับซึ่งกำหนดโดยเงื่อนไข  $B_1=1, B_2=1$  และ  $B_n=3B_{n-2}$  เมื่อ  $n\geq 3$  ให้  $n\in\mathbb{N}\cup\{0\}$  จากทฤษฎีบท 2.5 จะมีลำดับ  $(\gamma_i)_{i\in\mathbb{N}}$  เมื่อ  $\gamma_i\in\{0,1\}$  ซึ่ง  $n=\sum_{i=1}^{\infty}\gamma_iB_i$  ให้  $(\alpha_i)_{i\in\mathbb{N}}$  เป็น ลำดับซึ่ง  $\alpha_{2i}=\begin{cases} 1$  เมื่อ  $\gamma_{2i}\gamma_{2i-1}=1\\ 0$  เมื่อ  $\gamma_{2i}\gamma_{2i-1}=0 \end{cases}$  และ  $\alpha_{2i-1}=\begin{cases} 1$  เมื่อ  $\gamma_{2i}\neq\gamma_{2i-1}$  สำหรับทุก  $i\in\mathbb{N}$  เนื่องจาก  $A_{2i}=B_{2i-1}+B_{2i}$  และ  $A_{2i-1}=B_{2i-1}=B_{2i}$  สำหรับทุก  $i\in\mathbb{N}$  ดังนั้น

$$n = \sum_{i=1}^{\infty} \gamma_i B_i = \sum_{i=1}^{\infty} \alpha_i A_i$$

และจากเงื่อนไขข้างต้นจะเห็นได้ชัดว่า  $lpha_{2i-1}lpha_{2i}=0$  สำหรับทุก  $i\in\mathbb{N}$ 

### ทฤษฎีบท 2.17

กำหนดให้ (a,b)=(0,3) และ

$$n = \sum_{i=1}^{\infty} \alpha_i A_i, \alpha_i \in \{0,1\}$$

เมื่อ  $lpha_ilpha_{i+1}=0$  สำหรับทุก i ที่เป็นจำนวนคี่จะได้ว่า n เขียนในรูปเชิงเส้นได้แบบเดียว

พิสูจน์

#### กรณี (1, 1)

ถ้า (a,b)=(1,1) แล้วจะได้ว่าลำดับ  $(A_n)_{n\in\mathbb{N}}$  เหมือนลำดับ  $(F_n)_{n\in\mathbb{N}}$  ทำให้ได้ว่าสามารถเขียนในรูป ผลรวมเชิงเส้นได้แบบเดียวภายใต้เงื่อนไข  $\alpha_i\alpha_{i+1}=0$  สำหรับทุก  $i\in\mathbb{N}$  ซึ่งเป็นจริงโดย Zeckendorf's theorem

# บทที่ 5

# สรุป

**ตารางที่ 1** แสดงคู่อันดับ (a,b) ที่ทำให้รูปทั่วไปของลำดับฟิโบนักซี  $(A_n)_{n\in\mathbb{N}}$  เป็นลำดับสมบูรณ์ และเงื่อนไข ที่ทำให้การเขียนจำนวนนับใด ๆ ในรูปผลรวมเชิงเส้นของสมาชิกในรูปทั่วไปของฟิโบนักซีที่สมบูรณ์ สามารถเขียน ได้แบบเดียวเท่านั้น เมื่อ  $A_1=1$ ,  $A_2=1$ 

| (a, b) | เงื่อนไข                                                     |
|--------|--------------------------------------------------------------|
| (0,1)  | $lpha_i = 0$ สำหรับทุก $i > n$                               |
| (0,2)  | $lpha_{2i-1}=0$ สำหรับทุก $i\in\mathbb{N}$                   |
| (0,3)  | $lpha_{2i-1} \leq lpha_i$ สำหรับทุก $i \in \mathbb{N}$       |
| (1,0)  | $lpha_i = 0$ สำหรับทุก $i > n$                               |
| (1,1)  | $lpha_1=0$ , $lpha_ilpha_{i+1}=0$ สำหรับทุก $i\in\mathbb{N}$ |
| (1,2)  | $min~\{k lpha_k=1\}$ เป็นจำนวนคี่                            |
| (2,0)  | $\alpha_1 = 0$                                               |

**ตารางที่ 2** แสดงคู่อันดับ (a,b) ที่ทำให้รูปทั่วไปของลำดับฟิโบนักชี  $(A_n)_{n\in\mathbb{N}}$  เป็นลำดับสมบูรณ์ และเงื่อนไข ที่ทำให้การเขียนจำนวนนับใด ๆ ในรูปผลรวมเชิงเส้นของสมาชิกในรูปทั่วไปของฟิโบนักชีที่สมบูรณ์ สามารถเขียน ได้แบบเดียวเท่านั้น เมื่อ  $A_1=1$ ,  $A_2=2$ 

| (a, b) | เงื่อนไข                                                       |
|--------|----------------------------------------------------------------|
| (0,2)  | $lpha_{2i}=0$ สำหรับทุก $i\in\mathbb{N}$                       |
| (0,3)  | $lpha_ilpha_{i+1}=0$ สำหรับทุก $i$ ที่เป็นจำนวนคี่             |
| (0,4)  | _                                                              |
| (1,0)  | $lpha_{2i+1} \leq lpha_i$ สำหรับทุก $i \in \mathbb{N} - \{1\}$ |
| (1,1)  | $lpha_ilpha_{i+1}=0$ สำหรับทุก $i\in\mathbb{N}$                |
| (1,2)  | _                                                              |
| (2,0)  | _                                                              |

### เอกสารอ้างอิง

- [1] สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี กระทรวงศึกษาธิการ, รายวิชาเพิ่มเติม คณิตศาสตร์ ชั้น มัธยมศึกษาปีที่ 6 เล่ม 1, พิมพ์ครั้งที่ 1, สำนักพิมพ์จุฬาลงกรณ์มหาวิทยาลัย, 2563
- [2] A. Apostolico and A. S. Fraenkel, *Robust Transmission of Unbounded Strings Using Fibonacci Represen-tations*, IEEE Trans. Inform. Theory 33 (1987), 238–245.
- [3] Brother Alfred Brousseau, *Fibonacci Magic Cards*, Fibonacci Quarterly, Vol. 10, No. 2, 1972, pp. 197-198.
- [4] J. L. Brown, Jr., *Note on Complete Sequences of Integers*, The American Mathematical Monthly, Vol. 68, No. 6 (Jun. -Jul., 1961), pp. 557-560.
- [5] J. L. BROWN, JR., *UNIQUE REPRESENTATIONS OF INTEGERS AS SUMS OF DISTINCT LUCAS NUMBERS*, Ordnance Research Laboratory, The Pennsylvania State University, State College, Pennsylvania, 1969, p. 243-252.
- [6] A. S. Fraenkel and S. T. Klein, *Robust Universal Complete Codes for Transmission and Compression*, Discr. Appl. Math. 64 (1996), 31–55.
- [7] V.K. Gupta, Yashwant K. Panwar and Omprakash Sikhwal, *Generalized Fibonacci Sequences*, Theoretical Mathematics & Applications, vol.2, no.2, 2012, p. 115-124.
- [8] V. E. Hoggatt, Jr., and C. King, *Problem E1424*, Amer. Math. Monthly, Vol. 67, 1960, p. 593.
- [9] Bencharat Prempreesuk, Passawan Noppakaew, Prapanpong Pongsriiam, Zeckendorf Representation and Multiplicative Inverse of  $F_m \mod F_n$ , International Journal of Mathematics and Computer Science, 15(2020), no. 1, p. 17–25.
- [10] R. Silber, Wythoff 's Nim and Fibonacci Representations, The Fibonacci Quartertly 15 (1977), 85–88.
- [11] W. A. Wythoff, *A Modification of the Game of Nim*, Nieuw Archief voor Wiskunde (2) 7 (1907), 199–202.
- [12] É. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège, 1972.