Perspective, Mosaics and Panoramas

Mosaics and Panoramas

- Basic idea
- Registration
- Resampling
- Blending

Why Mosaic?

- Are you getting the whole picture?
 - Compact Camera FOV = 50 x 35°

Why Mosaic?

- Are you getting the whole picture?
 - Compact Camera FOV = 50 x 35°
 - Human FOV $= 200 \times 135^{\circ}$

universität**bonn**

Why Mosaic?

- Are you getting the whole picture?
 - Compact Camera FOV = 50 x 35°
 - Human FOV $= 200 \times 135^{\circ}$
 - Panoramic Mosaic $= 360 \times 180^{\circ}$

universität**bonn**

Single vs. Multiple Viewpoint

- Single-viewpoint
 - Necessary for creating pure perspective images.
 - Many vision algorithms assume pinhole cameras.
 - Images that aren't perspective images look distorted.
- Multi-viewpoint
 - Cross-slit panoramas, etc.
 - necessary for scenes which cannot be captured from a single viewpoint

Image Mosaicing

- Register multiple images
- Blend

Single Center of Projection

- Take a sequence of images from the same position
 - Rotate the camera about its optical center
 - Where is optical center of thick lens?
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- If there are more images, repeat
- ...why don't we need the 3D geometry?

Image Reprojection

- The images are reprojected onto a common plane
- The mosaic is formed on this plane
- Mosaic is a synthetic wide-angle camera

A pencil of rays contains all views

Can generate any synthetic camera view as long as it has the same center of projection!

Image reprojection

 How to relate two images from the same camera center?

 Images contain the same information along the same ray.

 Use 2D image warp instead of ray tracing.

Taxonomy of Projective Transformations

 Homogeneous coordinates: Specify 2D image points using three dimensions.

$$\binom{x}{y} \to \binom{x}{y}$$

Points that differ only by scalar factor are equivalent.

Projective transformation:
$$\begin{pmatrix} x' \\ y' \\ w' \end{pmatrix} = \begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ w \end{pmatrix}$$

Taxonomy of Projective Transformations

$$\begin{pmatrix} x' \\ y' \\ w' \end{pmatrix} = \begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ w \end{pmatrix}$$

Group	Matrix	Distortion	Invariant properties
Projective 8 dof	$\left[\begin{array}{ccc} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{array}\right]$		Concurrency, collinearity, order of contact: intersection (1 pt contact); tangency (2 pt contact); inflections (3 pt contact with line); tangent discontinuities and cusps. cross ratio (ratio of ratio of lengths).
Affine 6 dof	$\left[\begin{array}{cccc} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Parallelism, ratio of areas, ratio of lengths on collinear or parallel lines (e.g. midpoints), linear combinations of vectors (e.g. centroids). The line at infinity, l_{∞} .
Similarity 4 dof	$\begin{bmatrix} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$		Ratio of lengths, angle.
Euclidean 3 dof	$\left[\begin{array}{ccc} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Length, area

Distortions under Central Projection

- Similarity: circle remains circle, square remains square
- ⇒ line orientation is preserved
- Affine: circle becomes ellipse, square becomes rhombus
- ⇒ parallel lines remain parallel
- Projective: imaged object size depends on distance from camera
- ⇒ parallel lines converge

Homography

- Projective mapping between any two PPs with the same center of projection
 - rectangle should map to arbitrary quadrilateral
 - parallel lines no longer parallel
 - but straight lines preserved
 - same as: project, rotate, reproject
- called Homography

$$\begin{pmatrix} x' \\ y' \\ w \end{pmatrix} = \begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
p' H p

To apply a homography H

- Compute $\mathbf{p}' = H\mathbf{p}$ (regular matrix multiply)
- Convert p' from homogeneous to image coordinates

Removing Projective Distortion

$$\begin{pmatrix} x' \\ y' \\ w' \end{pmatrix} = \begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Projective transformation in inhomogeneous form

$$x'^{(2D)} = \frac{x'}{w'} = \frac{h_{11}x + h_{12}y + h_{13}}{h_{31}x + h_{32}y + h_{33}} \qquad y'^{(2D)} = \frac{y'}{w'} = \frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + h_{33}}$$

4 general point correspondences $(x, y \rightarrow x'^{(2D)}, y'^{(2D)})$ on the planar facade lead to eight linear equations of the type

$$x'^{(2D)}(h_{31}x + h_{32}y + h_{33}) = h_{11}x + h_{12}y + h_{13}$$

$$y'^{(2D)}(h_{31}x + h_{32}y + h_{33}) = h_{21}x + h_{22}y + h_{23}$$

Sufficient to solve for H up to multiplicative factor

Getting it numerically stable is not trivial! Best use proven libraries like OpenCV universität**b**o

Panoramic Mosaicing

Rotation about camera center: homography

- choose one image as reference
- compute homography to map neighboring image to reference image plane
- projectively warp image, add to reference plane
- repeat for all images
- ⇒ bow tie shape

Image Blending

Feathering

Encoding transparency $I(x,y) = (\alpha R, \alpha G, \alpha B, \alpha)$ $I_{blend} = I_{left} + I_{right}$

Effect of Window Size

Effect of Window Size

Good Window Size

"Optimal" Window: smooth but not ghosted

[Slide: Efros]

What is the Optimal Window?

- To avoid seams
 - window >= size of largest prominent feature
- To avoid ghosting
 - window <= 2*size of smallest prominent feature
- Natural to cast this in the Fourier domain
 - largest frequency <= 2*size of smallest frequency
 - do blending in different frequency bands

What if the Frequency Spread is Wide

- Idea (Burt and Adelson)
 - Compute $F_{left} = FFT(I_{left})$, $F_{right} = FFT(I_{right})$
 - Decompose Fourier image into octaves (bands)

•
$$F_{left} = F_{left}^{1} + F_{left}^{2} + ...$$

- Feather corresponding octaves F_{left} with F_{right}
 - · Can compute inverse FFT and feather in spatial domain
- Sum feathered octave images in frequency domain
- Better implemented in spatial domain

What does blurring take away?

original

What does blurring take away?

smoothed (5x5 Gaussian)

High-Pass Filter

smoothed - original

Image Pyramids

Mipmap or precursor of wavelets

Image Sub-sampling

Throw away every other row and column to create a 1/2 size image

1/8

Image Sub-sampling

Why does this look so bad?

Gaussian Pyramid Construction

- Repeat
 - Filter
 - Subsample

· Until minimum resolution reached

filter kernel, e.g., discrete Gaussian with sigma=1

• Good filter kernel:
$$\frac{1}{256}\begin{bmatrix} 1\\4\\6\\4\\1 \end{bmatrix} \begin{bmatrix} 1 & 4 & 6 & 4 & 1\\4 & 16 & 24 & 16 & 4\\6 & 24 & 36 & 24 & 6\\4 & 16 & 24 & 16 & 4\\1 & 4 & 6 & 4 & 1 \end{bmatrix}$$

Whole pyramid is only 4/3 the size of the original image!

Gaussian pre-filtering

G 1/8

G 1/4

Gaussian 1/2

Solution: filter the image, then subsample

■ Filter size should double for each $\frac{1}{2}$ size reduction.

Subsampling with Gaussian pre-filtering

Gaussian 1/2 G 1/4 G 1/8

Solution: filter the image, then subsample

■ Filter size should double for each $\frac{1}{2}$ size reduction.

Compare with...

Band-pass filtering

Gaussian Pyramid (low-pass images)

- Laplacian Pyramid (subband images)
- Created from Gaussian pyramid by subtraction

Laplacian Pyramid

 How can we reconstruct (collapse) this pyramid into the original image?

Pyramid Blending

Left pyramid

blend

Right pyramid

Pyramid Blending

Simplification: Two-band Blending

- Brown & Lowe, 2003
 - Only use two bands: high freq. and low freq.
 - Blends low freq. smoothly
 - Blend high freq. with no smoothing: use binary mask

Still Some Artifacts Left...

- Ghosting—objects move in the scene.
- Differing exposures between images.
 - Pyramid blending does not solve this.

De-Ghosting

•In regions with differences don't blend – choose one.

[Uyttendaele et al. 2001]

Gradient domain blending

- In pyramid blending, we decomposed our image into 2nd derivatives (Laplacian) and a low-res image
- Let us now look at 1st derivatives (gradients):
- No need for low-res image
 - captures everything (up to a constant)
 - easy to deal with low-frequency differences
- Idea:
 - Differentiate
 - Blend
 - Reintegrate

Gradient domain blending (2D)

- Trickier in 2D:
 - Take partial derivatives dx and dy (gradient field)
 - Modify them (smooth, blend, feather, etc)
 - Reintegrate
 - But now integral(dx) might not equal integral(dy)
 - Find the most agreeable solution
 - Equivalent to solving Poisson equation
 - Can use FFT, deconvolution, multigrid solvers, etc.

1.Given:

- a. intended gradient field: $\nabla_x I(x,y)$, $\nabla_y I(x,y)$
- b. boundary conditions: $I_{fix}(x,y)_j$ fixed color at a couple of pixels $(x,y)_i$
- 2. Assemble gradient vector v and corresponding matrix A. Goal image g (as vector) $\rightarrow Ag = v$
 - a. constraint vector

$$v = egin{pmatrix}
abla_\chi I \\

abla_y I \\
 I_{\mathrm{fix}} \end{pmatrix} \qquad \text{(given gradients)}$$

Gradient domain fusion

• 2. Assemble gradient vector v and corresponding matrix A. Goal image g (as vector) $\rightarrow Ag = v$ b. assemble matrix A according to

$$g(x+1,y) - g(x,y) = \nabla_x I(x,y)$$

$$g(x,y+1) - g(x,y) = \nabla_y I(x,y)$$

structure similar to
$$A \approx \begin{pmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}$$
 always one "+1" and "-1" per row of the similar to $A \approx \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}$

Gradient domain fusion

- 2. Assemble gradient vector v and corresponding matrix
 - A. Goal image g (as vector) Ag = v
 - c. Extend matrix A with boundary conditions

$$g(x,y) = I_{fix}(x,y)$$

structure similar to
$$A \approx \begin{pmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
 always one +1" per row

Gradient domain fusion

- 3. Solve for g: Ag = v
 - As gradients might be contradicting, use least-squares solution

$$A^T A g = A^T v$$
 (normal equation)

$$\Rightarrow g = (A^T A)^{-1} A^T v$$

- Implicitly done by QR decomposition, SVD, etc.
- Alternatively, use conjugate gradient methods

e.g. http://www.eecs.berkeley.edu/~demmel/cs267/lecture24/lecture24.html

Comparisons [Levin et al 2004]

Pyramid blending

Pyramid blending on the gradients

Feathering

More common: Poisson editing

- Use Laplacian operator $\Delta = \nabla^2$ instead of $\nabla_{x,y}$
- Discrete Laplacian: convolution with 2D kernel $\begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$
- This leads to convolution matrix:

$$M_{\Delta} = \begin{bmatrix} +4 & -1 & & \\ -1 & \ddots & -1 \\ & -1 & +4 \end{bmatrix} \begin{bmatrix} -1 & & \\ & \ddots & \\ & & -1 \end{bmatrix}$$

$$M_{\Delta} = \begin{bmatrix} -1 & & & \\ & \ddots & \\ & & -1 \end{bmatrix} \begin{bmatrix} -1 & & \\ & \ddots & \\ & & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & & \\ & \ddots & \\ & & -1 \end{bmatrix} \begin{bmatrix} +4 & -1 & \\ -1 & \ddots & -1 \\ & & -1 & +4 \end{bmatrix}$$

read, "output pixel $(i,j) = 4 \cdot \text{input pixel } (i,j) - \sum \text{input pixels } (i \pm 1, j \pm 1)$ "

For a $w \times h$ image, M has $w \times w$ blocks of $h \times h$ elements each e.g., 307200×307200 matrix for a 640×480 image. Use sparse matrices, or die of memory exhaustion

Poisson editing continued

- Construct M_∆
- Compute $v_{1,2} = M_{\Delta}I_{1,2}$
- Blend $v_{1,2}$ using method of choice to obtain combined v
- Reconstruct I by solving $M_{\Delta}I = v$

Add constraints as before:

- Constraint matrix M_c with 1 entry per row
- Constraint vector v_c with prescribed pixel values

• Solve $\begin{bmatrix} M_{\Delta} \\ M_{\rm c} \end{bmatrix} I = \begin{bmatrix} v \\ v_{\rm c} \end{bmatrix}$ in least-squares sense

Panoramas and Image blending

- A multiresolution spline with application to image mosaics
 P. J. Burt, E. H. Adelson.
 ACM Transactions on Graphics. 2(4), pp. 217-236, 1983.
- Recognising Panoramas. M. Brown and D. G. Lowe. In Proceedings of the 9th International Conference on Computer Vision (ICCV2003), pages 1218-1225, Nice, France, 2003.
- Multiple View Geometry in Computer Vision (First Edition). Richard Hartley and Andrew Zisserman, Cambridge University Press, March 2001
- Seamless Image Stitching in the Gradient Domain. A. Levin, A. Zomet, S. Peleg and Y. Weiss, In Proc. ECCV 2004.
- Interactive Digital Photomontage. A. Agarwala, M. Dontcheva, M. Agrawala, S. Drucker, A. Colburn, B. Curless, D. Salesin, M. Cohen, In SIGGRAPH 2004.

