FIN 6271 DR. R. SOYER

Assignment 5

PART I: A stationary time-series Y of 450 observations can be adequately modeled by a second order autoregressive, AR(2), process. The autocorrelation and partial autocorrelation functions for the series Y are given below.

			The ARIMA Procedure	
			Name of Variable = Y	
		Mean	of Working Series 92.43435	
		Stand	ard Deviation 7.827059	
		Numbe	r of Observations 450	
			Autocorrelations	
₋ag	Covariance	Correlation	-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4	5 6 7 8 9 1
0	24.905536	1.00000	*****	*******
1	????????	???????	. ******	***
2	-1.130614	04540	.* .	
3	-7.824600	31417	*****	
4	????????	???????	****	
5	-1.471459	05908	. * .	
6	3.246942	0.13037	***	
7	3.908247	0.15692	. ***	
8	1.479795	0.05942	* .	
9	-0.558917	02244	· i ·	
10	-1.467693	05893	*	
11	-1.923781	07724	.**	
12	-0.257916	01036	· i ·	
13	1.801163	0.07232	. * .	
14	2.762085	0.11090	**	
15	1.248438	0.04902	. * .	
			Partial Autocorrelations	
	Lag	Correlation	-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4	5 6 7 8 9 1
	1	0.54302	. ******	***
	2	-0.48256	*******	
	3	-0.02881	.* .	
	4	-0.05285	.* .	
	5	0.06117	. *.	
	6	0.03922	. *.	
	7	-0.01704		
	8	-0.00644		
	9	0.03800	. *.	
	10	-0.02538	.* .	
	11	-0.05299	.* .	
	12	0.08417	. **	
	13	0.01445		
	14	0.05084	. *.	

- (a) Based on the output, discuss why it is appropriate to use an AR(2) process to model time-series Y. What is the estimate of autocorrelation at lag 1 for Y series?
- (b) Write down the Yule-Walker equations for Y based on the given output and information, and estimate the coefficients ϕ_1 and ϕ_2 for the AR(2) process.
- (c) Estimate the constant term and write down the estimated AR(2) model for Y. Write down the estimated conditional mean for Y_t , that is, write down μ_t .

- (d) Estimate the autocorrelation at lag 4 for Y series.
- (e) Assume that an analyst incorrectly models the Y series using a fourth-order autoregressive process, that is, by an AR(4) process. What will be the analyst's estimate of the coefficient ϕ_4 , that is, coefficient at lag 4, for that process ? Will ϕ_4 be statistically different than zero ? Discuss why or why not.

PART II: Monthly Change in Earnings Index for British Workers

In this assignment we will be interested in modeling the monthly change in earnings index (CEAR) for British workers over the period of January 1989 to October 2004 using a regression model. The time-series data is available in the file "UKEAR.TXT". The data consist of the following variables: Change in earnings index (CEAR), unemployment rate (UNEMP), inflation rate (INFL) and political party in power (PARTY). The independent variable PARTY takes a value 1 if the Labor party is in the government during a period and the value 0 if the Conservative party is in the government. In any statistical inference you can use a level of significance $\alpha=0.05$.

(a) Estimate the regression model CEAR by using the other three variables as independent variables, that is, estimate the model

$$CEAR_t = \beta_0 + \beta_1 UNEMP_t + \beta_2 INFL_t + \beta_3 PARTY_t + \epsilon_t.$$

Discuss if all three variables are significant at $\alpha = 0.05$.

- (b) Save the residuals from the estimated regression model and discuss why the residuals are not white noise.
- (c) Analyze the autocorrelation function (ACF) and the partial correlation function (PACF) of the residual series from part (a) and based on your analysis identify an autoregressive (AR) process to model the residual series.
- (d) Based on your analysis in part (c), estimate corrected regression model (according to the order of the AR process that you have identified) using PROC AUTOREG. In the PROC AUTOREG use METHOD=ULS in your MODEL statement.
- (e) Save the residuals of the corrected model and analyze them to check whether they are white noise.
- (f) Write down the estimated corrected model and discuss if all three variables are significant at $\alpha=0.05$.

PLEASE SUBMIT YOUR TYPED REPORT (NO MORE THAN 6 PAGES INCLUDING \underline{ONLY} THE RELEVANT SAS OUTPUT)