

SINGLE-CELL COPY-NUMBER ANALYSIS

VIZBI 2015 WORKSHOP

Robert Aboukhalil raboukha@cshl.edu

What is Ginkgo?

Data visualization tools

Share with collaborators

Phylogenetic analysis

Single-cell CNV analysis

Outline

Single-cell sequencing

Circulating tumor cells

Neuronal mosaicism

Clonal evolution in tumors

Recombination/ crossover in germ cells

Single-cell vs. bulk sequencing

Single-cell vs. bulk sequencing

Whole Genome Amplification (WGA) methods

DOP-PCR (Degenerate Oligonucleotide Primed PCR)

MDA (Multiple Displacement Amplification)

MALBAC (Multiple Annealing and Looping Based Amplification Cycles)

Whole Genome Amplification (WGA) methods

MALBAC (Multiple Annealing and Looping Based Amplification Cycles)

Low coverage allows us to study copy-number variants

Divide genome into "bins" with ~50 – 100 reads / bin

Circular Binary Segmentation

 Recursively divide up the genome until identify segments that have probe distribution different than neighbors

Circular Binary Segmentation

 Recursively divide up the genome until identify segments that have probe distribution different than neighbors

Circular Binary Segmentation

 Recursively divide up the genome until identify segments that have probe distribution different than neighbors

Analysis Pipeline

Ginkgo

Galaxy intro

Demo – Galaxy Pipeline

SRR054622

Analysis Pipeline

Ginkgo

Hands-on with Ginkgo

Ginkgo: qb.cshl.edu/ginkgo

Sample Data: qb.cshl.edu/ginkgo/vizbi2015.tar