

Model Cost-benefit Analysis Framework

Cluster Analysis, Social Regression Analysis Classification Model **Example Model** Network Analysis, etc. Descriptive Analytics Models Predictive Analytics Models **Type of Analytics** Model Cost Benefit Calculation Level 1 Analysis **Cost Matrix Cost Regression Level 2 Analysis** Classification Value of Insights Derived for Decision-making **Instance Level Instance Level** Level 3 Analysis Regression Classification

Model Cost Benefit Analysis Framework – Predictive Analytics

Three potential levels of analysis, depending on the problem context

Lv 1 – Model Level

Lv 2 – Matrix Level

Lv 3 – Instance Level

Treat model like a black box
Couple TP/TN/FP/FN with costbenefit calculations

Input cost matrix ratios into model
Couple TP/TN/FP/FN with costbenefit calculations

Input instance-level costs into model

Couple TP/TN/FP/FN with costbenefit calculations

Model Cost Benefit Analysis Framework – Predictive Analytics

Three potential levels of analysis, depending on the problem context

Lv 1 – Model Level

Lv 2 – Matrix Level

Lv 3 – Instance Level

Model Cost-benefit Analysis Framework – Motivation

Draw a single straight line that can best separate circles from squares (i.e., minimal error rate)

Performance on Training Data:

Accuracy = 18/20 = 0.90

Circle Recall = 9/10 = 0.90

Square Recall = 9/10 = 0.90

Model Cost-benefit Analysis Framework – Equal Costs

Draw a single straight line that can best separate circles from squares (i.e., minimal error rate)

Performance on Training Data:

Accuracy = 18/20 = 0.90

Circle Recall = 9/10 = 0.90

Square Recall = 9/10 = 0.90

Cost of False Sq = 1; Cost of False Cr = 1

Model Cost-benefit Analysis Framework – Asymmetric Costs

Draw a single straight line that can best separate circles from squares (i.e., minimal error rate)

Performance on Training Data:

Accuracy = 18/20 = 0.90

Circle Recall = 9/10 = 0.90

Square Recall = 9/10 = 0.90

Cost of False Sq = 3; Cost of False Cr = 5

Model Cost-benefit Analysis Framework – Predictive Analytics Lv 1

Model level analysis example – what we discussed in confusion matrix video

Confusion Matrix

	Actual Class			
ss ss		Class = Yes	Class = No	
Predicted Class	Class = Yes	TP	FP	
	Class = No	FN	TN	

Cost Matrix

	Actual Class			
cted ss		Class = Yes	Class = No	
Predicted Class	Class = Yes	TP cost	FP cost	
	Class = No	FN cost	TN cost	

Model Cost-benefit Analysis Framework – Predictive Analytics Lv 1

Model level analysis example

Confusion Matrix

	Actual Class			
ss ss		Class = Yes	Class = No	
Predicted Class	Class = Yes	TP	FP	
	Class =	FN	TN	

Cost Matrix

	Actual Class			
ss ss		Class = Yes	Class = No	
Predicted Class	Class = Yes	TP cost	FP cost	
	Class =	FN cost	TN cost	

Step 1: Figure out cost matrix values

Step 2: Typically focus on FP/FN costs. <u>Model value</u> is cost reduction over some status quo

Step 3: Total cost = (FP cost x FP rate x Total annual instances)

+

(FN cost x FN rate x Total annual instances)

Model Cost-benefit Analysis Framework – Predictive Analytics Lv 1

Model level analysis example – fraud detection illustration assuming 1000 total cases per year

	Actual Class			
Predicted		Class = Yes	Class = No	Precision
Class	Class = Yes	3	1	75%
	Class = No	2	4	66.7%
	Recall	60%	80%	

Predicte
Class

	Actual Class			
Predicted		Class = Yes	Class = No	Precision
Class	Class = Yes	2	0	100%
5.0.00	Class = No	3	5	37.5%
	Recall	40%	100%	

Cost of audit is \$500: Cost of fraud is \$1000

