Unsupervised learning

Katarzyna Kedzierska

25 October 2019

Outline

What will be talking about today?

- Unsupervised learning
- Dimensionality reduction techniques
 - PCA
 - PCoA
 - nMDS
 - tSNE
 - UMAP
- Clustering
 - K-means
 - Hierarchical

Unsupervised learning

The goal: find hidden patterns in unlabeled data.

What does dimensionality reduction mean?

We can reduce dimensionality of our data by for example explaining two measuremnets by one.

Let's say we have the dimenions of a recatngle:

We can reduce dimenions by expressing the $\bf a$ and $\bf b$ variables by choosing some representation. For example, we can calculate the area:

```
rect dims %>%
  mutate(area = a * b) %>%
  select(rect, area)
## # A tibble: 5 x 2
     rect area
##
    <int> <int>
##
           40
## 1
       1
## 2 2 80
## 3 3 36
## 4 4 14
## 5 5
          40
```

Why bother you may ask.

```
head(iris)
##
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
                                      1.4
## 1
             5.1
                         3.5
                                                  0.2 setosa
             4.9
                         3.0
                                      1.4
                                                  0.2 setosa
## 2
                         3.2
## 3
             4.7
                                      1.3
                                                  0.2 setosa
             4.6
                         3.1
                                      1.5
                                                  0.2 setosa
## 4
## 5
             5.0
                         3.6
                                      1.4
                                                  0.2 setosa
## 6
             5.4
                         3.9
                                                  0.4 setosa
                                      1.7
cor.test(~ Sepal.Length + Petal.Length, data = iris)
##
      Pearson's product-moment correlation
##
##
## data: Sepal.Length and Petal.Length
## t = 21.646, df = 148, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.8270363 0.9055080
## sample estimates:
##
         cor
## 0.8717538
```

Why do dimensionality reduction?

Dimensionality Reduction methods

Note: those are the ones we will touch on in this brief tutorial, there are many more methods! Note2: the following classification of the methos is arbitrary and serves only teaching purposes.

- Linear methods
- Principal Component Aanalysis (PCA)
- Classical / Metric Multidimensioanl Scaling == Principal Coordinate Analysis (PCoA)
- Non-linear methos
- Non-Metric Multidimensional Scaling (NMDS)
- t-distributed Stochastic Neighbor Embedding (tSNE)
- Uniform Manifold Approximation and Projection (UMAP)

Iris data set

```
head(iris, n=3)
```

```
##
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
             5.1
                        3.5
                                     1.4
                                                0.2 setosa
## 2
             4.9
                        3.0
                                    1.4
                                                0.2 setosa
## 3
             4.7
                        3.2
                                    1.3
                                                0.2 setosa
```


Iris data set

##

```
summary(iris)
##
     Sepal.Length
                     Sepal.Width
                                      Petal.Length
                                                      Petal.Width
##
    Min.
          :4.300
                    Min.
                            :2.000
                                     Min.
                                            :1.000
                                                     Min.
                                                             :0.100
    1st Qu.:5.100
                    1st Ou.:2.800
                                     1st Qu.:1.600
                                                      1st Qu.:0.300
##
   Median :5.800
                    Median :3.000
                                     Median :4.350
                                                     Median :1.300
##
##
   Mean
           :5.843
                    Mean
                          :3.057
                                     Mean
                                            :3.758
                                                     Mean
                                                           :1.199
##
   3rd Qu.:6.400
                    3rd Ou.:3.300
                                     3rd Ou.:5.100
                                                     3rd Qu.:1.800
           :7.900
                    Max.
                            :4.400
                                            :6.900
##
    Max.
                                     Max.
                                                     Max.
                                                             :2.500
##
          Species
              :50
##
    setosa
##
    versicolor:50
##
    virginica :50
```

Principal Component Analysis (PCA)

The goal of the PCA

PCA in R

```
iris_pca <- prcomp(iris[,1:4], scale = TRUE, center = TRUE)
summary(iris_pca)</pre>
```

```
## Importance of components:

## PC1 PC2 PC3 PC4

## Standard deviation 1.7084 0.9560 0.38309 0.14393

## Proportion of Variance 0.7296 0.2285 0.03669 0.00518

## Cumulative Proportion 0.7296 0.9581 0.99482 1.00000
```


Distances

Exactly what you think it is.:)

```
set.seed(7)
samp_df <- tibble(x = rnorm(10), y = rnorm(10))
samp_df[1:2,] %>%
    dist()
```

1 ## 2 4.207954


```
sqrt((x1 - x2)^2 + (y1 - y2)^2)
```

x ## 1 4.207954

Classical / Metric Multidimensioanl Scaling == Principal Coordinate Analysis (PCoA)

```
iris_dist <- iris[,1:4] %>%
    scale() %>%
    dist()
iris_pcoa <- cmdscale(iris_dist)

head(iris_pcoa, n = 5)

## [1,] -2.257141  0.4784238
## [2,] -2.074013 -0.6718827
## [3,] -2.356335 -0.3407664
## [4,] -2.291707 -0.5953999
## [5,] -2.381863  0.6446757</pre>
```


iris_pca_plt

iris_pcoa_plt

However, this method gives us more flexibility. For example, we can use prior knowledge about our dataset and reduce the dimenions using distance appropriate for our method. Like,

- correlation distance for correlated measurements (gene expression?)
- binary distance for multiple binary meaurements (smoking/nonsmoking and similiar)
- ranking based distanced to apply rank based normalisation (mutations in genes)

Non linear methods

[1] 4.817789

Non-Metric Multidimensional Scaling (NMDS)

- No assumptions about the linear relationship!
- NMDS tries to find a Euclidean distance matrix in 2D that will best correlate with the distances in the original space.

Here: Kruskal's non-metric multidimensional scaling

```
iris_nmds <- MASS::isoMDS(iris_dist2)

## initial value 4.818162
## final value 4.817789

## converged

head(iris_nmds$points, n=3)

## [,1] [,2]
## 1 -2.234280  0.4449669
## 2 -2.054236 -0.6096799
## 3 -2.305528 -0.2795758

iris_nmds$stress</pre>
```


tSNE

- 1. Step 1. Determining the similarity of the points. (normal dist)
- 2. Step 2. Random projection of the data. (t-distribution)
- 3. Step 3. Moving the points so Matrix from Step 2 resembles Matrix form Step 1.

Simple, ain't it?:)

[&]quot;How to Use t-SNE Effectively"

t-SNE

##

[2,]

[,1]

-4.091358 -8.422715

[1,] -8.678520 -10.075163

[,2]

```
iris tsne <- tsne::tsne(iris[,1:4])</pre>
## sigma summary: Min.: 0.486505661043274 | 1st Qu.: 0.587913800179832 | Median: 0.61487243
## Epoch: Iteration #100 error is: 12.652124554884
## Epoch: Iteration #200 error is: 0.205306339588185
## Epoch: Iteration #300 error is: 0.20432551195561
## Epoch: Iteration #400 error is: 0.204287989607803
## Epoch: Iteration #500 error is: 0.204287652103515
## Epoch: Iteration #600 error is: 0.204287647840186
## Epoch: Iteration #700 error is: 0.204287647776791
## Epoch: Iteration #800 error is: 0.204287647776038
## Epoch: Iteration #900 error is: 0.204287647776029
## Epoch: Iteration #1000 error is: 0.204287647776029
head(iris tsne)
```


UMAP

```
iris_umap <- umap::umap(iris[,1:4])

head(iris_umap$layout)

##        [,1]        [,2]
## [1,] 15.91344 -2.837810
## [2,] 13.88194 -2.409741
## [3,] 14.15320 -2.041289
## [4,] 13.98945 -1.966901
## [5,] 16.05571 -2.627575
## [6,] 17.18179 -2.073115</pre>
```

```
str(iris_umap)
```

```
## list of 4
## $ layout: num [1:150, 1:2] 15.9 13.9 14.2 14 16.1 ...
## $ data : num [1:150, 1:4] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
##
     ... attr(*, "dimnames")=List of 2
##
     ....$ : NULL
##
     ....$ : chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
##
   $ knn :List of 2
##
     ..$ indexes : int [1:150, 1:15] 1 2 3 4 5 6 7 8 9 10 ...
##
     ..$ distances: num [1:150, 1:15] 0 0 0 0 0 0 0 0 0 ...
     ... attr(*, "class")= chr "umap.knn"
##
   $ config:List of 23
##
##
     ..$ n neighbors
                             : int 15
##
     ..$ n components
                            : int 2
##
     ..$ metric
                            : chr "euclidean"
##
     ..$ n epochs
                            : int 200
                            : chr "data"
##
     ..$ input
##
     ..$ init
                             : chr "spectral"
                             : num 0.1
##
     ..$ min dist
##
     ..$ set op mix ratio
                             : num 1
     ..$ local connectivity : num 1
##
##
     ..$ bandwidth
                             : num 1
##
     ..$ alpha
                             : num 1
##
     ..$ gamma
                             : num 1
##
     ..$ negative sample rate: int 5
##
     ..$ a
                             : num 1.58
##
     ..$ b
                             : num 0.895
##
     ..$ spread
                             : num 1
##
     ..$ random state
                             : int 147849767
##
     ..$ transform state
                             : int NA
##
     ..$ knn repeats
                            : num 1
##
     ..$ verbose
                             : logi FALSE
                             : logi NA
##
     ..$ umap learn args
```


Clustering

Concept - assing data points into groups.

Kmeans

Biggest disadvantage: you need to know k.

Kmeans


```
iris_hclust <- hclust(iris_dist)</pre>
```


iris_hclust_labels <- dendextend::cutree(iris_hclust, 3)</pre>

Resources

• Modern Statistics for Modern Biology

- In-depth introdction to DR methods
- Making sense of PCA on CrossValidated
- UMAP @ SciPy2018