

National Defence

Research and Development Branch Défense nationale

Bureau de recherche et développement

TECHNICAL MEMORANDUM 95/229

December 1995

THE FORCED RESPONSE AND DAMPING CHARACTERISTICS OF A CANTILEVER BEAM WITH A THICK DAMPING LAYER

David C. Stredulinsky — Jeffrey P. Szabo

DESTRIBUTION STATEMENT S

Approved for public releases
Distribution Unlimited

Defence Research Establishment Atlantic

Centre de Recherches pour la Défense Atlantique

Canadä^{*}

Date Catalon, hely married !

DEFENCE RESEARCH ESTABLISHMENT ATLANTIC

CENTRE DE RECHERCHES POUR LA DÉFENSE ATLANTIQUE

9 GROVE STREET

P.O. BOX 1012 DARTMOUTH, N.S. B2Y 3Z7

(902) 426-3100

9 GROVE STREET TELEPHONE

C.P. BOX 1012 DARTMOUTH, N.É. B2Y 3Z7

Research and Development Branch

National Defence Défense nationale Bureau de recherche et développement

THE FORCED RESPONSE AND DAMPING CHARACTERISTICS OF A CANTILEVER BEAM WITH A THICK DAMPING LAYER

David C. Stredulinsky - Jeffrey P. Szabo

December 1995

Approved by C.W. Bright **Deputy Director General**

Distribution Approved by C.W. Bright

TECHNICAL MEMORANDUM 95/229

Defence Research **Establishment Atlantic**

Centre de Recherches pour la Défense **Atlantique**

Abstract

This technical memorandum describes the vibration analysis of a steel cantilever beam. The beam was 649 mm long, 204 mm wide and 9.5 mm thick with a free viscoelastic damping layer (27 mm thick EAR Isodamp C-1002) bonded to one surface. Predictions of composite loss factor and response were made at forcing frequencies between 10 Hz and 3000 Hz using a direct frequency response capability recently developed for the DREA in-house finite element code VAST. Analytical results were also obtained with the code PREDC, acquired from the University of Dayton, Ohio. The frequency dependent dynamic mechanical material properties, used in the VAST and PREDC analyses, were measured at DREA using a forced vibration non-resonant method. The VAST forced response vibration analysis was in good agreement with experiment. Above 500 Hz, the system composite loss factors predicted with the PREDC code were significantly below the measured loss factors and those predicted by the VAST code. This is attributed to the more complicated deformation of the damping layer, predicted by the finite element model, but not accounted for by the Euler-Bernoulli beam formulation used in the PREDC code.

Résumé

Le présent document technique décrit l'analyse aux vibrations d'une poutre d'acier en porteà-faux. Cette poutre, mesurant 649 mm de longueur sur 204 mm de largeur et 9,5 mm d'épaisseur, comporte une couche d'amortissement libre faite d'une substance viscoélastique (EAR Isodamp C-1002 de 27 mm d'épaisseur) et collée à l'une de ses faces. Les prédictions relatives au facteur d'affaiblissement composite et à la courbe de réponse ont été obtenues à des fréquences forcées comprises entre 10 et 3000 Hz, appliquées grâce à une installation d'analyse de réponse en fréquence par modulation directe, récemment mise au point pour le code VAST d'analyse par éléments finis, utilisé au CRDA. D'autres résultats d'analyse ont également été recueillis au moyen du code PREDC, obtenu de l'Université de Dayton, en Ohio, Les propriétés mécaniques dynamiques des matériaux en fonction de la fréquence, utilisées dans les analyses VAST et PREDC, ont été mesurées au CRDA au moyen d'une méthode de vibration forcée non résonante. Les résultats de l'analyse VAST concordaient avec ceux de l'expérience. Aux fréquences supérieures à 500 Hz, les facteurs d'affaiblissement composite du système, prédits par le code PREDC, étaient nettement inférieurs aux facteurs d'affaiblissement mesurés et aux facteurs prédits par le code VAST. Cet écart est attribuable à la déformation plus complexe de la coche d'amortissement, prédite par le modèle d'analyse par éléments finis, mais non prise en compte dans la formulation de poutre Euler-Bernoulli utilisée dans le code PREDC.

DREA TM/95/229

THE FORCED RESPONSE AND DAMPING CHARACTERISTICS OF A CANTILEVER BEAM WITH THICK DAMPING LAYER

by

D. C. Stredulinsky and J. Szabo

EXECUTIVE SUMMARY

INTRODUCTION: The control of hull radiated noise is very important for naval platforms. Both the DREA Ship Structural Mechanics Group (SM group) and the DREA Dockyard Laboratory (Dockyard Lab) have been conducting research on the application of elastomeric materials to vibration isolation and damping systems used for the reduction of machinery and hull vibrations. Over the past twenty years the SM group has developed, in-house and through contract, the general purpose finite element computer code VAST for vibration and strength analysis of complex structures. Recently the code capabilities have been extended to allow modelling of vibration isolation and damping systems which include "rubber-like" materials having frequency dependent damping and stiffness properties. The Dockyard Lab has developed methods for measuring these properties and as part of their work on development of vibration damping materials and decoupling tiles, they contracted the Centre for Cold Oceans Resources Engineering at Memorial University to measure the vibration response and acoustic radiation (10 - 3000 Hz frequency range) for a cantilever plate with and without a thick viscoelastic damping material bonded to one surface. The purpose of the present work was to compare the vibrating cantilever plate experiment with numerical predictions using the VAST code.

PRINCIPAL RESULTS: The VAST finite element predictions were in good agreement with the experiments up to 1800 Hz. Better results at higher frequencies may be achieved through mesh refinement and improved modelling of damping material dynamic shear properties.

SIGNIFICANCE OF RESULTS: This work has demonstrated that the SM group numerical prediction capability, together with Dockyard Lab material property measurement capability, can provide accurate prediction of the vibration response of structural systems incorporating commercially available elastomeric damping materials. The methods under development could be used to design damping systems to reduce vibration of the hull and other structures such as seabays and vibration isolation rafts, and to analyse machinery isolation systems. These tools provide improved capabilities for the evaluation and optimization of damping and vibration isolation systems to solve noise or vibration problems and for the evaluation of 'off-the-shelf' systems for use on existing and future naval platforms.

FUTURE PLANS: Further enhancements of the VAST finite element code are planned to improve modelling accuracy at higher frequencies and to improve the efficiency of the code to allow modelling of layered damping systems for more complex structures. Further work is planned to validate experimentally the application of the VAST code to prediction of vibration isolation mount dynamic characteristics and analysis of vibration damping systems for ship structures.

Table of Contents

Al	bstract	ii						
Ex	xecutive Summary	iii						
1	Introduction	1						
2	2 Cantilever Beam Description							
3	3 Damping Material Dynamic Properties 3.1 Measured Properties							
4	Cantilever Beam Response and Damping Measurements	6						
5	Bare Beam Analysis 5.1 VAST Natural Frequency Predictions							
6	Damped Beam Analysis 6.1 PREDC Loss Factor and Natural Frequency Predictions							
7	Summary and Conclusions	16						
8	Recommendations for Further Work	17						
\mathbf{A}	PREDC database curve fitting	18						
В	VAST input data files B.1 CANT4 coarse mesh model of beam and damping layer							
Re	eferences	29						

1 Introduction

The control of hull radiated noise is very important on naval platforms. Both the DREA Ship Structural Mechanics Group (SM group) and the DREA Dockyard Laboratory (Dockyard Lab) have been conducting research on the application of viscoelastic materials for hull vibration damping and machinery vibration control.

Over the past twenty years the SM group has developed, in-house and through contract, the general purpose finite element code VAST [1] for vibration and strength analysis of complex structures. The possibility of using this code for modelling machinery vibration isolation systems was investigated by Stredulinsky [2]. Based on this work, a direct frequency response method was incorporated in VAST [3] to allow frequency dependent stiffness and damping properties to be specified for individual element groups. With this capability the code can be used to model the steady-state forced response of structural systems incorporating viscoelastic damping materials.

Dockyard Lab has developed a forced vibration non-resonant method for measuring the dynamic mechanical properties of viscoelastic materials [4]. As part of Dockyard Lab work developing improved materials for vibration mounts, vibration damping and decoupling tiles, the Centre for Cold Oceans Resources Engineering at Memorial University [5] was contracted to measure the vibration response and acoustic radiation from a cantilever plate with and without a thick viscoelastic damping material bonded to one surface.

DREA has also recently obtained a data base of dynamic mechanical properties for commercially available viscoelastic damping materials and an associated computer code called PREDC [6] from the University of Dayton. This code can be used to predict the vibration damping loss factors for beams and rectangular plates with free or constrained layer damping treatments.

The forced vibration response experimental data for the cantilever beam and the independently measured material dynamic property data provided a good test case to check both the VAST and PREDC code predictions and indirectly verify the material property measurements.

2 Cantilever Beam Description

The cantilever beam is shown in Figure 1. The steel beam was 9.5 mm thick and clamped between steel blocks at one end. A 27 mm thick layer of EAR Isodamp C-1002 viscoelastic damping material [7] was bonded to the upper surface of the beam. Analysis of EAR C-1002 at Dockyard Lab showed that this material is a thermoplastic elastomer consisting of polyvinyl chloride heavily plasticized with dioctylphthalate (approximately 50 percent by weight). The material properties used in the analysis are given in Table 1.

Note that the Young's modulus of the damping material is not shown. The measured dynamic properties of the EAR material are frequency dependent and are presented in Section 3. The Poisson's ratio for the damping material was not measured. Viscoelastic polymers typically have a Poisson's ratio ν of 0.5 (incompressible) in the 'rubbery' region, decreasing to a value of 0.3 in the 'glassy' region [8]. The materials are usually used in the transition region between the 'rubbery' and 'glassy' regions where damping properties are greatest. The PREDC code assumes a Poisson's ratio of 0.5. The VAST finite element code presently will not run with an incompressible material so that a Poisson's ratio of 0.47 was used instead. Typical values for

Figure 1: Steel cantilever with 27 mm thick free damping layer

the steel properties [9] were assumed since the measured properties were not available.

3 Damping Material Dynamic Properties

3.1 Measured Properties

A forced vibration non-resonant method [4] was used by DREA Dockyard Lab to measure the dynamic mechanical properties of the EAR material in tension and compression. Two experimental configurations were used since the frequency range accessible by tensile testing (0-1000 Hz) was complementary to that accessible by compression testing (100-10000 Hz). The tensile measurement involved mounting the specimen between a vibration shaker and a rigid support, as shown schematically in Figure 2. The amplitude of the force (F) transmitted to the support, the vibration acceleration (\ddot{x}) of the driven end of the sample and the phase angle (δ) between force and acceleration were measured using 1/12 octave band resolution on a Bruel & Kjaer 2133 spectrum analyser. The real and imaginary parts of the complex Young's modulus and the material loss factor were calculated from

$$E' = -\frac{LF}{A\ddot{x}}\omega^2\cos\delta \tag{1}$$

$$E'' = -\frac{LF}{A\ddot{x}}\omega^2 \sin \delta \tag{2}$$

Table 1: Material mechanical properties

Material	Young's modulus	Density	Poisson's ratio
	$E~(\mathrm{MPa})$	$\rho (\mathrm{kg/m^3})$	ν
Steel	$2.07 imes 10^5$	7870	0.30
EAR C-1002		1280	0.50

Figure 2: Schematic diagram of the set up for tensile excitation of polymer samples

loss factor
$$\equiv \frac{E''}{E'} = \tan \delta$$
 (3)

where L and A are the length and cross sectional area of the sample in tension. The experimental set up used for compression testing is not shown here but involved measuring the force and acceleration associated with dynamically compressing a 3 mm sheet of EAR between two rigid plates [4].

The measured storage moduli (E') and material loss factors shown in Figure 3 are combined data from tensile and compression experiments. The data are in good agreement with results from other laboratories, as can be seen from examination of the round robin trial data on EAR C-1002 [10].

3.2 PREDC input

The PREDC vibration damping prediction code obtains input material properties from a data base of materials in the form of a 10-parameter model defining curves fitted to measured data. The fitting procedure also uses a temperature-frequency superposition which allows the data to be interpolated/extrapolated to arbitrary temperatures. It was necessary to fit the measured DREA data for EAR C-1002 to obtain the curve fitting parameters to use in the PREDC database. A second University of Dayton code MATPROP was used to access the database and plot the measured data points and fitted curves. The ten required parameters were adjusted through trial and error until an acceptable 'visual' fit was obtained. The curve fitting equations and the parameters used to fit the EAR C-1002 data are given in Appendix A. Note that the data base uses the shear modulus G and that the PREDC program assumes that G=E'/3, consistent with $\nu = 0.5$. The measured Young's modulus E' was converted to a shear modulus G also by dividing by three to create the input data file for the MATPROP program. The fitted curves are compared to the measured data in Figure 4. A satisfactory fit was obtained up to 4000 Hz. This is above the highest forcing frequencies considered in the VAST and PREDC analyses. The 'peak' and 'valley' in the experimental values in the vicinity of 500 Hz are likely caused by some resonance in the experimental apparatus and not considered to be valid data.

Figure 3: Measured dynamic mechanical properties for EAR C-1002

Figure 4: PREDC fitted dynamic mechanical properties for EAR C-1002 (—— Fitted curve, - - - Measured data)

Figure 5: Measured frequency response function at tip of the cantilever (—— Damped beam, - - - Bare beam)

4 Cantilever Beam Response and Damping Measurements

The measurements of steady state forced response of a cantilever beam were reported in reference [5]. A vibration exciter was used to apply a transverse load on the centre-line at 9 mm from the tip on the bottom surface of the steel beam. A force transducer was used to measure the applied force and an accelerometer used to measure the acceleration of the top surface of the beam at several locations along the beam centre-line. A dual channel FFT analyser was employed to measure the frequency response function FRF (the transfer function between the applied force and the normal surface acceleration) over the frequency range from 0 to 3000 Hz. The frequency response function, measured on the centre-line near the tip, is shown in Figure 5 for both the bare steel beam and the beam with the damping layer bonded to it. Note that above 1000 Hz application of the damping layer dramatically reduced the level of the resonant peaks in the forced response.

More detailed transfer functions, in 200 Hz wide frequency bands, were also measured in the vicinity of the lower resonant peaks. No measurements of damping were given in the original report [5]. The graphs of the detailed transfer functions for the tip of the beam were digitized and the loss factors measured based on the bandwidths of the resonant peaks in the digitized data. The measured loss factors are summarized in Table 2 for both the bare beam and the damped beam.

The application of the damping layer reduced the first four natural frequencies by 17 to 20 percent. In the vicinity of the fourth mode the damped beam exhibits a double peak (506 Hz and 521 Hz). The original report does not identify the second peak which has a higher loss

Table 2: Measured beam natural frequencies and loss factors

Bending	Freque	ency (Hz)	Loss	Factor
Mode No.	Bare	Damped	Bare	Damped
1	17.8	14.3	0.069	0.063
2	113.3	94.5	0.009	0.034
3	315.3	262.0	0.003	0.016
4	620.5	506.0	0.002	0.019
?	_	521.0		0.034
5		860		0.065

factor than the lower peak. The first mode shows a significantly higher value of loss factor than the higher modes. For the first damped mode and the four measured bare beam modes, the bandwidths were all approximately one Hz wide, suggesting the possibility that this was the bandwidth of the FFT filter. The measured bandwidths may be wider than the resonant peak bandwidths, causing artificially high loss factors for these cases. This is considered further in Section 5.2.

5 Bare Beam Analysis

5.1 VAST Natural Frequency Predictions

Some analyses were conducted with the VAST finite element program for the bare beam before attempting the damped beam analysis. The most efficient VAST element for analysing the beam (essentially a flat plate) is the 8-noded thick/thin shell element (IEC 1). However in order to model the two layers (steel and damping layers), it was necessary to use 20-noded brick elements (IEC 2). The bare beam was modelled both with shell elements and with a single layer of brick elements to determine how well a thin layer of brick elements would work. A coarse mesh (shown in Figure 6a) having 10 elements along the length and 2 across the width was used initially. The convergence of the solution was then checked by considering a refined mesh (shown in Figure 6b) with 20 elements along the length and 4 across the width.

VAST natural frequency analyses were first conducted for four cases (combinations of the two element types and the two mesh refinements). The predicted natural frequencies are compared to the measured values in Table 3. The first ten predicted modes include five flexural bending modes, four torsional modes, and the 1st in-plane bending mode. Because of the symmetry of the loading from the vibration exciter, only the flexural modes were observed in the experiment. The shell element results show good convergence with differences between the coarse and refined meshes of less that 0.2 percent for the first four flexural modes and 0.8 percent for the 5th flexural mode. The differences in predicted natural frequencies between the coarse and fine meshes using brick elements were approximately ten times higher than for the shell elements and range from one percent for the 1st flexural mode to nine percent for the 5th flexural mode. This confirmed that the brick element meshes would not give as accurate a result as the shell elements, but should still provide results within two percent of the converged solution for the

Figure 6: Finite element meshes for bare beam analysis

first five flexural modes when using the refined mesh. The predicted natural frequencies for the first four bending modes were 4.8 to 5.6 percent higher than measured. The VAST analysis assumed rigidly clamped nodes at the root of the cantilever. This boundary condition and/or errors in the assumed material properties and/or thickness dimension may account for this systematic difference.

5.2 VAST Frequency Response Analysis

In Section 4 it was suggested that the damping loss factors, calculated for the bare beam based on the measured peak band widths, may be too large. A second estimate of the damping was obtained based on the acceleration levels at the resonant peaks. The forced response of the cantilever beam was predicted at the first four natural frequencies using the VAST modal frequency response method with a transverse load of 1 N amplitude at the centre of tip. A loss factor of 0.002 was assumed for each mode and the predicted levels compared to the measured levels at each resonant peak. Since the response at the peak is inversely proportional to the loss factor, the values of loss factor needed to match the experimental peaks were determined. The loss factors measured in this manner, subsequently referred to as the 'level' method are compared to those obtained from the bandwidth measurements in Table 4. The percent difference between the two methods of obtaining loss factors decreases from 115 percent for the 1st mode to only 14 percent for the fourth mode. All values measured by the bandwidth method were higher than for the 'level' method, which supports the hypothesis that the bandwidths measured were of the FFT filter and not the true resonant peak bandwidths.

Table 3: VAST predictions of bare beam natural frequencies

	N	atural Fre				
Mode	Shell	Shell	Brick	Brick		Mode
No.	Coarse	Refined	Coarse	Refined	Measured	Shape
1	19.004	19.013	19.34	19.14	17.8	1st bending
2	118.66	118.72	121.7	119.7	113.3	2nd bending
3	123.4					1st torsion
4	332.8	332.9	347.2	336.6	315.3	3rd bending
5	375.9					1st in plane
6	385.8					2nd torsion
7	654.3	653.1	699.4	662.6	620.5	4th bending
8	692.5					3rd torsion
9	1067					4th torsion
10	1085	1076	1193	1097		5th bending

Table 4: Comparison of loss factors based on resonant peak bandwidths to those based on peak levels

Mode	1	2	3	4
Frequency (Hz)	17.8	113.3	315.3	620.5
Bandwidth Method	0.069	0.0089	0.0028	0.0016
Level Method	0.032	0.0062	0.0022	0.0014
Percent difference	115	44	27	14

This would apply only to the bare beam modes and the first damped beam mode, which had bandwidths of approximately one Hz. The higher damped beam modes had bandwidths which were greater than seven Hz.

Even with the 'level' method, the loss factors are higher for the lower frequencies and significantly higher than typical values for steel. Some damping could be attributed to the clamped end connection and possibly air movement around the beam. Since one of the goals of the work was to verify the prediction of the response of the finite element model of the beam with the damping layer, the values of loss factor predicted with the 'level' method were used for steel in the damped beam analysis in Section 6.2 to calibrate the finite element model to predict the correct response for the bare beam.

6 Damped Beam Analysis

6.1 PREDC Loss Factor and Natural Frequency Predictions

Before conducting a finite element analysis of the beam with the damping layer, the University of Dayton code PREDC was used to predict the damped beam natural frequencies and composite

Table 5: Comparison of the PREDC and measured natural frequencies and loss factors

Bending	Freque	ncy (Hz)	Loss Factor				
Mode No.	PREDC	Measured	PREDC	Measured	Meas Bare		
1	15.5	14.3	0.0027	0.063	-0.006		
2	97.3	94.5	0.0076	0.034	0.025		
3	273.0	262.0	0.0138	0.016	0.013		
4	536.5	506.0	0.0200	0.019	0.017		
?		521.0		0.034			
5	889.5	860	0.0259	0.065	0.062		
6	1330.5	_	0.0315	_			
7	1868.1		0.0368				

loss factors. The program used the fitted damping material loss factor curves discussed in Section 3.2. The results are compared to the measured data in Table 5.

The predicted natural frequencies with PREDC were three to eight percent (averaging five percent) higher than the measured natural frequencies. This is consistent with the bare beam predictions with VAST which were five percent higher than the measured natural frequencies. Since the program only considers the damping material loss factor and does not include any other damping in the system, a column containing the differences between the measured damped beam and the measured bare beam loss factors has also been included. These differences are closer to the PREDC results but still two to three times higher than the PREDC loss factors for the second and fifth bending modes.

6.2 Damped Beam Finite Element Analysis

The forced response of the beam with a damping layer was predicted using the VAST Version #7.1 direct frequency response method [2, 3]. This code allows different frequency dependent Young's moduli and loss factors to be specified for each element group. The frequency dependence of the modulus and loss factor can be chosen by specifying coefficients of quadratic polynomial weighting functions or by using linear interpolation between points in a table of frequencies and corresponding weighting values. In the present work the tabular method was employed.

The table of frequency dependent loss factors for the steel beam was produced based on the predictions for the bare beam using the 'level' method (see Table 4). Tables of frequency weighting factors for the Young's modulus and loss factors for the damping material were produced using the PREDC code, based on the fitted curves shown in Figure 4. The tables were included in the VAST input files CANT4.USE and CANT5.USE which are listed along with the other VAST input files for these analyses in Appendix B.

The finite element models were constructed using 20-noded brick elements (IEC 2). Two meshes were used; a coarse mesh of the entire beam which is shown in Figure 7a and a refined 'half' model shown in Figure 7b. The half model was used to reduce the problem size and could be employed in this case because of the symmetry of the geometry and loading.

Figure 7: Finite element meshes of beam constructed with 20-noded brick elements

The forced response was predicted for 300 frequency values, equally spaced on a logarithmic scale over the frequency range from 10 Hz to 3000 Hz. The program is limited to considering 100 points in one run, so that three runs were required to cover the entire frequency range.

The displacement amplitudes and phases for each forcing frequency and each node in the finite element model were stored by VAST in a binary file PREFX.T52, where the PREFX is a five character label identifying all vast files associated with a given model and analysis. The postprocessing program for VAST Version #7.1 is still under development so a FORTRAN code T52RESP was created which would read the .T52 files and extract the displacement amplitudes for a given node and all forcing frequencies. These data were stored in an ASCII file which was used in PV-WAVE to create the frequency response graphs. Within PVWAVE the displacement amplitudes D (mm) were converted to acceleration amplitudes and reduced to a frequency response function magnitude, FRF in dB, at each forcing frequency f in Hz, using the equation

$$FRF = 20\log\left(4\pi^2 f^2 D\right). \tag{4}$$

The predicted FRFs for the coarse and refined meshes (CANT4 and CANT5 respectively) are compared to the measured FRFs [5] in Figure 8. The graph is plotted again in Figure 9 on a logarithmic frequency axis to show more clearly the low frequency response. The predicted phase plot is also shown although no experimental phase measurements were available for comparison.

Below 1800 Hz there is reasonably good agreement between the refined mesh curves and the experimental curve. The predicted frequency of the first resonant peak was ten percent higher than measured. The next four resonant peaks ranged from four to seven percent higher than measured, consistent with the five percent difference between the bare beam measurements and predictions. Over this frequency range the experiment and refined finite element model response differed by less than 5 dB.

Refining the mesh caused the FRF curve to shift to the left with the amount of the shift increasing at higher frequencies. Above 1000 Hz there were significant differences between FRFs for the coarse and the refined meshed suggesting that a further refinement of the mesh should be used in this region. The predicted FRF values over the frequency range from 1800 to 3000 Hz were up to 8 dB higher than the measured values.

The VAST direct frequency response module also predicts the system composite loss factor for each forcing frequency. This composite damping loss factor η is given by

$$\eta = \left(\sum_{i=1}^{n_g} W_i \eta_i\right) / W \tag{5}$$

where W_i is the strain energy and η_i is the loss factor for element group i, W is the total strain energy and n_g is the number of element groups in the finite element model. The system composite loss factor for each forcing frequency was also extracted from the .T52 file using the T52RESP code and graphed using PVWAVE. The predicted system composite loss factors are compared to the measured loss factors in Figure 10. The composite loss factors predicted using the University of Dayton code PREDC are shown also.

There is reasonable agreement between the VAST loss factor predictions and the measured points. Above 1000 Hz there is a significant shift between the curves for the coarse and refined

Figure 8: Comparison of measured and predicted frequency response functions at the center of the tip of the cantilever; (—— CANT5 refined FE mode, · · · · · · CANT4 coarse FE model, - - - measurement)

Figure 9: Comparison of measured and predicted frequency response functions at the center of the tip of the cantilever; (—— CANT5 refined FE mode, · · · · · CANT4 coarse FE model, - - - measurement)

Figure 10: Composite loss factors for damped cantilever; (—— CANT5 refined FE mode, CANT4 coarse FE model, * measurement, \(\triangle \) PREDC code)

meshes, suggesting that a further refinement of the mesh should be used in this frequency range. The loss factors predicted with the PREDC code prediction were significantly lower than the measured points and the VAST prediction, both at very low frequencies and at frequencies above 500 Hz. The PREDC code only considers the damping material loss factor. In the VAST analysis, the bare beam loss factors were used as the material loss factor for the steel beam. If no damping was assumed for the steel, then the VAST prediction was close to the PREDC points in the lower frequency range.

The PREDC code uses an Euler-Bernoulli beam formulation which considers only flexural bending of the steel beam and damping layer. The deformation of the beam and damping layer predicted by the VAST FE model shows much more complex motion of the damping layer at higher frequencies. This may account for the greater damping above 500 Hz which was not predicted with the PREDC code. An example of the deformed shape of the beam and damping layer, at a forcing frequency of 1440 Hz is shown in Figure 11. This is the refined half model. The upper left hand edge is the center-line of the beam. The free end, where the load was applied, is at the lower left hand corner of the figure.

The VAST finite element predictions of the forced vibration response of the steel cantilever beam with a thick damping layer, were in good agreement with experimental results up to 1800 Hz. Above this frequency the analysis indicated that a further refinement of the FE mesh should be considered. The FE analysis also showed that there was significant axial and transverse shear deformation in the damping layer at higher frequencies. Modification of the VAST code, to include frequency dependent values of Poisson's ratio, should improve modelling of the shear

Figure 11: Deformed shape of the damped cantilever at 1440 Hz

properties which may improve response predictions for higher frequencies. Characterization of the complex Poisson's ratio of a polymeric material requires accurate measurement of two complex moduli. Recent experiments at Dockyard Lab have yielded information about the complex Poisson's ratio of various polymers including EAR C-1002, from a combination of acoustic and dynamic mechanical experiments [11]. This information could be used in future calculations.

The PREDC code considered only flexural bending. The VAST FE analysis predicted much more complicated wave motion in the damping layer at higher frequencies. This may explain why the measured loss factors and those predicted by VAST were significantly larger than those obtained with the PREDC code at forcing frequencies above 500 Hz.

7 Summary and Conclusions

An analysis has been conducted at DREA of a steel cantilever plate with a thick free layer of EAR Isodamp C-1002 viscoelastic damping material bonded to one surface. Predictions obtained from a finite element analysis using the DREA in-house finite element code VAST, and an analytical code PREDC, have been compared to experimental data. Predictions of composite loss factor and response were made at forcing frequencies between 10 and 3000 Hz using the recently developed direct frequency response capability in VAST. Loss factor predictions were also obtained with the vibration damping prediction code PREDC, acquired from the University of Dayton, Ohio. The frequency dependent dynamic mechanical material properties, used in the VAST and PREDC analyses, were measured at the DREA Dockyard Laboratory using a forced vibration non-resonant method.

The VAST finite element predictions of the forced vibration response of the steel cantilever beam with a thick damping layer were in good agreement with experimental results up to 1800 Hz. Above this frequency the analysis indicated that a further refinement of the FE mesh and possibly a frequency dependent Poisson's ratio should be considered. Above 500 Hz, the system composite loss factors predicted with the PREDC code were significantly below the measured loss factors and those predicted by the VAST code. This is attributed to the more complicated deformation of the damping layer, predicted by the finite element model, but not accounted for by the Euler-Bernoulli beam formulation used in the PREDC code. The differences between the VAST and PREDC loss factor predictions may not be as large for a continuous application of a thick damping layer over a hull plate. The plate would likely provide greater constraint of in-plane motion of the damping layer than the cantilever beam.

8 Recommendations for Further Work

This investigation has lead to several recommendations for further work.

- Further enhancements of the VAST frequency response module are recommended. This
 includes the modelling of a complex frequency dependent Poisson's ratio, the modelling of
 incompressible materials and development of single and multiple layer, shear deformable,
 finite elements which will allow efficient modelling of free and constrained layer viscoelastic
 damping systems for application to plate and shell structures. A contract to conduct this
 work has recently been awarded.
- 2. It is desirable to conduct a more controlled experiment, possibly in-house, which would include measurement of all material properties, more accurate measurement of the system damping characteristics, and measurement of the forced response phase information. These data would then be compared to more refined finite element models including the modelling enhancements listed above. Plate structures, more representative of shipboard applications, would likely be considered.
- 3. Further experimental work could be conducted to validate the application of the VAST finite element code to more complicated shipboard damping systems, for example, to hull structures, seabays or machinery isolation rafts and mounts.
- 4. The fitting of the Dockyard Lab dynamic mechanical property data to the ten-parameter University of Dayton model was done manually by selecting approximate parameters, editing the ASCII material data file and then comparing the fitted curves to the data using the MPROP program. This process was repeated until an acceptable fit was obtained. It would be desirable to have a more efficient method to fit the experimental data to the material model. An interactive code is presently under development which employs a user friendly graphical interface to allow viewing of changes to the fitted modulus and loss factor curves as mouse-controlled sliders are moved to vary each parameter.

Appendix A PREDC database curve fitting

The following equations are used in the University of Dayton code PREDC and damping material data base.

The reduced frequency F_r is defined by the following equation

$$\log(F_r) = \log(F) - 12 \frac{(T - T_0)}{(\frac{525}{B} + T - T_0)}.$$
 (6)

where F is the frequency in Hz, T is the temperature (degrees F. or degrees C.), T_0 is a reference temperature and B = 1 for British units or B = 1.8 for metric units.

The shear modulus G is defined by the equation

$$\log(G) = \log(G_l) + 2 \frac{\log\left(\frac{G_{rom}}{G_l}\right)}{1 + \left(\frac{F_{rom}}{F_r}\right)^n} \tag{7}$$

and the loss factor defined by

$$\log(\eta) = \log(\eta_{frol}) + \frac{C}{2} \left[A(S_h + S_l) + \left(1 - \sqrt{1 + A^2} \right) (S_l - S_h) \right]$$
 (8)

where

$$A = \frac{\log(F_r) - \log(F_{rol})}{C} \tag{9}$$

Ten parameters are required to fit the modulus and loss factor curves. For the EAR C-1002 material the following parameters were used to obtain a good fit to the DREA measured data.

Param:	T_0	F_{rom}	G_{rom}	n	G_l	η_{frol}	S_l	S_h	F_{rol}	C
Value:	93.33	4E+07	2.67E+07	0.38	1.13E + 06	1.05	0.4	-0.33	5E+06	1.3

where the shear modulus G is in Pascals and the temperature is in degrees C.

The measure data was assumed to be at a temperature T=20 degrees C with the reference temperature T_0 arbitrarily selected, thus the curve fitting parameters are not likely to be valid for other temperatures in this case. Also the DREA experimental data was for the Young's modulus E' and, as assumed in the PREDC code, was converted to a shear modulus using G=E'/3.

Appendix B VAST input data files

The analysis was conducted on the VAX 6400 system using Version 7.1 of the VAST finite element code. The input files needed for the analysis were a USE file which controls the analysis and includes the damping loss factor information, a GOM file which contains node and element geometry information, an SMD file which contains the nodal displacement boundary conditions and a LOD file which contains the loading information.

Appendix B.1 CANT4 coarse mesh model of beam and damping layer

The VAST input files for the coarse finite model of the beam and damping layer are listed as follows:

The VAST control file CANT4.USE:

```
Entire cantilever structure forced response - coarse mesh
    0
         0
    1
IELEMA
                   1
                        1
    1
IASSEM
    0
              1
         1
IASEM4
    2
         0
    1
              1
    2
              2
TABLE2
              0
    1
         7
 1.000e+01 0.032e-00 1.910e+01 0.032e-00 1.197e+02 0.620e-02 3.365e+02 0.220e-02
 6.626e+02 0.140e-02 1.097e+03 0.120e-02 1.000e+04 0.100e-02
TABLE1
        27
              ٥
    1
 1.000e+01 6.202e-01 2.000e+01 7.273e-01 3.000e+01 8.113e-01 4.000e+01 8.835e-01
 5.000e+01 9.483e-01 6.000e+01 1.008e+00 7.000e+01 1.063e+00 8.000e+01 1.116e+00
 9.000e+01 1.166e+00 1.000e+02 1.214e+00 2.000e+02 1.620e+00 3.000e+02 1.955e+00
 4.000e+02 2.252e+00 5.000e+02 2.525e+00 6.000e+02 2.779e+00 7.000e+02 3.020e+00
 8.000e+02 3.249e+00 9.000e+02 3.468e+00 1.000e+03 3.679e+00 2.000e+03 5.496e+00
 3.000e+03 6.999e+00 4.000e+03 8.317e+00 5.000e+03 9.507e+00 6.000e+03 1.060e+01
 7.000e+03 1.162e+01 8.000e+03 1.257e+01 9.000e+03 1.346e+01
TABLE2
    2
        27
 1.000e+01 4.618e-01 2.000e+01 5.734e-01 3.000e+01 6.452e-01 4.000e+01 6.982e-01
 5.000e+01 7.400e-01 6.000e+01 7.742e-01 7.000e+01 8.029e-01 8.000e+01 8.274e-01
 9.000e+01 8.488e-01 1.000e+02 8.675e-01 2.000e+02 9.759e-01 3.000e+02 1.021e+00
 4.000e+02 1.043e+00 5.000e+02 1.052e+00 6.000e+02 1.055e+00 7.000e+02 1.055e+00
 8.000e+02 1.052e+00 9.000e+02 1.047e+00 1.000e+03 1.042e+00 2.000e+03 9.782e-01
 3.000e+03 9.238e-01 4.000e+03 8.803e-01 5.000e+03 8.447e-01 6.000e+03 8.150e-01
 7.000e+03 7.896e-01 8.000e+03 7.674e-01 9.000e+03 7.479e-01
ISTIFM
    1
IMASSM
```

```
0
       0
            0
   0
IDECOM
   1
ILOAD1
   0
IDISP6
   4
                            1 1 0
 198
 100
    448.0
           3000.0
IREACT
   0
       0
```

The VAST geometry file CANT4. GOM:

Cantilever beam with damping layer

0 0 3 3 321 321 2 1 0.0000 0.0000 9.5000 2 0.0000 0.0000 4.7500 3 0.0000 51.0000 9.5000 5 0.0000 51.0000 9.5000 6 0.0000 102.0000 9.5000 7 0.0000 102.0000 9.5000 8 0.0000 153.0000 0.0000 9 0.0000 153.0000 9.5000 10 0.0000 153.0000 9.5000 11 0.0000 204.0000 9.5000 12 0.0000 204.0000 9.5000 13 0.0000 204.0000 9.5000 14 32.4500 0.0000 0.0000 15 32.4500 0.0000 9.5000 16 32.4500 102.0000 9.5000 17 32.4500 0.0000 9.5000 18 32.4500 0.0000 9.5000 19 32.4500 0.0000 9.5000 20 64.9000 0.0000 9.5000 21 64.9000 0.0000 9.5000 22 64.9000 0.0000 9.5000 23 64.9000 0.0000 9.5000 24 64.9000 0.0000 9.5000 25 64.9000 51.0000 9.5000 26 64.9000 102.0000 9.5000 27 64.9000 102.0000 9.5000 28 64.9000 102.0000 9.5000 29 64.9000 102.0000 9.5000 20 64.9000 102.0000 9.5000 21 64.9000 102.0000 9.5000 22 64.9000 51.0000 9.5000 23 64.9000 102.0000 9.5000 24 64.9000 102.0000 9.5000 25 64.9000 153.0000 9.5000 26 64.9000 153.0000 9.5000 27 64.9000 153.0000 9.5000 28 64.9000 153.0000 9.5000 29 64.9000 153.0000 9.5000 30 64.9000 204.0000 9.5000				o,		
1 0.0000 0.0000 9.5000 2 0.0000 0.0000 4.7500 3 0.0000 0.0000 0.0000 4 0.0000 51.0000 9.5000 5 0.0000 51.0000 0.0000 6 0.0000 102.0000 9.5000 7 0.0000 102.0000 0.0000 9 0.0000 153.0000 0.0000 10 0.0000 153.0000 0.0000 11 0.0000 204.0000 9.5000 12 0.0000 204.0000 9.5000 13 0.0000 204.0000 0.0000 14 32.4500 0.0000 9.5000 15 32.4500 102.0000 9.5000 17 32.4500 102.0000 9.5000 18 32.4500 204.0000 9.5000 20 64.9000 0.0000 9.5000 21 64.9000 0.0000 9.5000 22 64.9000 51.0000 9.5000 24 64.9000	0	0 3	3			
2 0.0000 0.0000 4.7500 3 0.0000 0.0000 0.0000 4 0.0000 51.0000 9.5000 5 0.0000 51.0000 0.0000 6 0.0000 102.0000 9.5000 7 0.0000 102.0000 4.7500 8 0.0000 153.0000 9.5000 10 0.0000 153.0000 9.5000 11 0.0000 204.0000 9.5000 12 0.0000 204.0000 9.5000 13 0.0000 204.0000 9.5000 14 32.4500 0.0000 9.5000 15 32.4500 102.0000 9.5000 17 32.4500 102.0000 9.5000 18 32.4500 204.0000 9.5000 20 64.9000 0.0000 4.7500 21 64.9000 0.0000 4.7500 22 64.9000 51.0000 9.5000 24 64.9000 102.0000 9.5000 25 64.9000	321	321 2				
3 0.0000 0.0000 0.0000 4 0.0000 51.0000 9.5000 5 0.0000 51.0000 0.0000 6 0.0000 102.0000 9.5000 7 0.0000 102.0000 0.0000 8 0.0000 153.0000 0.0000 9 0.0000 153.0000 9.5000 10 0.0000 153.0000 9.5000 11 0.0000 204.0000 9.5000 12 0.0000 204.0000 9.5000 13 0.0000 204.0000 9.5000 14 32.4500 0.0000 9.5000 15 32.4500 102.0000 9.5000 17 32.4500 102.0000 9.5000 18 32.4500 204.0000 9.5000 20 64.9000 0.0000 9.5000 21 64.9000 0.0000 9.5000 21 64.9000 51.0000 9.5000 24 64.9000 102.0000 9.5000 25 64.9000		0.0000	0.0000	9.5000		
4 0.0000 51.0000 9.5000 5 0.0000 51.0000 0.0000 6 0.0000 102.0000 9.5000 7 0.0000 102.0000 4.7500 8 0.0000 102.0000 0.0000 9 0.0000 153.0000 9.5000 10 0.0000 204.0000 9.5000 12 0.0000 204.0000 9.5000 13 0.0000 204.0000 9.5000 14 32.4500 0.0000 9.5000 15 32.4500 102.0000 9.5000 17 32.4500 102.0000 9.5000 18 32.4500 204.0000 9.5000 19 32.4500 204.0000 9.5000 20 64.9000 0.0000 9.5000 21 64.9000 0.0000 4.7500 22 64.9000 51.0000 9.5000 24 64.9000 102.0000 9.5000 25 64.9000 102.0000 4.7500 27 64.9000	2	0.0000	0.0000	4.7500		
5 0.0000 51.0000 0.0000 6 0.0000 102.0000 9.5000 7 0.0000 102.0000 4.7500 8 0.0000 102.0000 0.0000 9 0.0000 153.0000 9.5000 10 0.0000 204.0000 9.5000 11 0.0000 204.0000 9.5000 12 0.0000 204.0000 0.0000 13 0.0000 204.0000 9.5000 14 32.4500 0.0000 9.5000 15 32.4500 102.0000 9.5000 16 32.4500 102.0000 9.5000 17 32.4500 102.0000 9.5000 18 32.4500 204.0000 9.5000 20 64.9000 0.0000 9.5000 21 64.9000 0.0000 4.7500 22 64.9000 51.0000 9.5000 24 64.9000 51.0000 9.5000 25 64.9000 102.0000 4.7500 27 64.900	3	0.0000	0.0000	0.0000		
6 0.0000 102.0000 9.5000 7 0.0000 102.0000 4.7500 8 0.0000 102.0000 0.0000 9 0.0000 153.0000 9.5000 10 0.0000 153.0000 0.0000 11 0.0000 204.0000 9.5000 12 0.0000 204.0000 0.0000 13 0.0000 204.0000 0.0000 14 32.4500 0.0000 9.5000 15 32.4500 102.0000 9.5000 16 32.4500 102.0000 9.5000 18 32.4500 204.0000 9.5000 19 32.4500 204.0000 9.5000 20 64.9000 0.0000 9.5000 21 64.9000 0.0000 4.7500 22 64.9000 51.0000 9.5000 24 64.9000 102.0000 9.5000 25 64.9000 102.0000 4.7500 27 64.9000 153.0000 9.5000 29 64		0.0000	51.0000	9.5000		
7 0.0000 102.0000 4.7500 8 0.0000 102.0000 0.0000 9 0.0000 153.0000 9.5000 10 0.0000 153.0000 0.0000 11 0.0000 204.0000 9.5000 12 0.0000 204.0000 0.0000 13 0.0000 204.0000 9.5000 14 32.4500 0.0000 9.5000 15 32.4500 102.0000 9.5000 16 32.4500 102.0000 9.5000 17 32.4500 204.0000 9.5000 18 32.4500 204.0000 9.5000 20 64.9000 0.0000 9.5000 21 64.9000 0.0000 4.7500 22 64.9000 51.0000 9.5000 24 64.9000 51.0000 9.5000 25 64.9000 102.0000 4.7500 27 64.9000 102.0000 9.5000 28 64.9000 153.0000 9.5000 29 6		0.0000	51.0000	0.0000		
8 0.0000 102.0000 0.0000 9 0.0000 153.0000 9.5000 10 0.0000 153.0000 0.0000 11 0.0000 204.0000 9.5000 12 0.0000 204.0000 0.0000 13 0.0000 204.0000 0.0000 14 32.4500 0.0000 0.0000 15 32.4500 0.0000 9.5000 16 32.4500 102.0000 9.5000 17 32.4500 102.0000 9.5000 18 32.4500 204.0000 9.5000 20 64.9000 0.0000 9.5000 21 64.9000 0.0000 4.7500 22 64.9000 51.0000 9.5000 24 64.9000 51.0000 9.5000 25 64.9000 102.0000 4.7500 26 64.9000 102.0000 4.7500 27 64.9000 153.0000 9.5000 29 64.9000 153.0000 9.5000 30 6		0.0000	102.0000	9.5000		
9 0.0000 153.0000 9.5000 10 0.0000 153.0000 0.0000 11 0.0000 204.0000 9.5000 12 0.0000 204.0000 4.7500 13 0.0000 204.0000 0.0000 14 32.4500 0.0000 9.5000 15 32.4500 0.0000 9.5000 16 32.4500 102.0000 9.5000 17 32.4500 102.0000 9.5000 18 32.4500 204.0000 9.5000 19 32.4500 204.0000 9.5000 20 64.9000 0.0000 9.5000 21 64.9000 0.0000 4.7500 22 64.9000 0.0000 9.5000 23 64.9000 51.0000 9.5000 24 64.9000 51.0000 9.5000 25 64.9000 102.0000 9.5000 26 64.9000 102.0000 9.5000 27 64.9000 102.0000 9.5000 28 64.9000 153.0000 9.5000 29 64.9000 153.0000 9.5000 29 64.9000 153.0000 9.5000 29 64.9000 153.0000 9.5000		0.0000	102.0000	4.7500		
10		0.0000	102.0000	0.0000		
11 0.0000 204.0000 9.5000 12 0.0000 204.0000 4.7500 13 0.0000 204.0000 0.0000 14 32.4500 0.0000 9.5000 15 32.4500 102.0000 9.5000 17 32.4500 102.0000 0.0000 18 32.4500 204.0000 9.5000 19 32.4500 204.0000 0.0000 20 64.9000 0.0000 9.5000 21 64.9000 0.0000 4.7500 22 64.9000 51.0000 9.5000 24 64.9000 51.0000 9.5000 25 64.9000 102.0000 4.7500 27 64.9000 102.0000 0.0000 28 64.9000 153.0000 9.5000 29 64.9000 153.0000 9.5000 30 64.9000 204.0000 9.5000	9	0.0000	153.0000	9.5000		
12 0.0000 204.0000 4.7500 13 0.0000 204.0000 0.0000 14 32.4500 0.0000 9.5000 15 32.4500 0.0000 9.5000 16 32.4500 102.0000 9.5000 17 32.4500 102.0000 9.5000 18 32.4500 204.0000 9.5000 19 32.4500 204.0000 9.5000 20 64.9000 0.0000 9.5000 21 64.9000 0.0000 4.7500 22 64.9000 0.0000 9.5000 23 64.9000 51.0000 9.5000 24 64.9000 51.0000 9.5000 25 64.9000 102.0000 9.5000 26 64.9000 102.0000 9.5000 27 64.9000 102.0000 9.5000 28 64.9000 153.0000 9.5000 29 64.9000 153.0000 9.5000 29 64.9000 153.0000 9.5000 29 64.9000 153.0000 9.5000	10	0.0000	153.0000	0.0000		
13	11	0.0000	204.0000	9.5000		
14 32.4500 0.0000 9.5000 15 32.4500 0.0000 0.0000 16 32.4500 102.0000 9.5000 17 32.4500 102.0000 9.5000 18 32.4500 204.0000 9.5000 20 64.9000 0.0000 9.5000 21 64.9000 0.0000 4.7500 22 64.9000 51.0000 9.5000 24 64.9000 51.0000 9.5000 25 64.9000 102.0000 4.7500 27 64.9000 102.0000 0.0000 28 64.9000 153.0000 9.5000 29 64.9000 153.0000 0.0000 30 64.9000 204.0000 9.5000	12	0.0000	204.0000	4.7500		
15	13	0.0000	204.0000	0.0000		
16 32.4500 102.0000 9.5000 17 32.4500 102.0000 0.0000 18 32.4500 204.0000 9.5000 19 32.4500 204.0000 0.0000 20 64.9000 0.0000 9.5000 21 64.9000 0.0000 4.7500 22 64.9000 51.0000 9.5000 24 64.9000 51.0000 9.5000 25 64.9000 102.0000 4.7500 27 64.9000 102.0000 0.0000 28 64.9000 153.0000 9.5000 29 64.9000 153.0000 0.0000 30 64.9000 204.0000 9.5000	14	32.4500	0.0000	9.5000		
17 32.4500 102.0000 0.0000 18 32.4500 204.0000 9.5000 19 32.4500 204.0000 0.0000 20 64.9000 0.0000 9.5000 21 64.9000 0.0000 4.7500 22 64.9000 0.0000 0.0000 23 64.9000 51.0000 9.5000 24 64.9000 51.0000 0.0000 25 64.9000 102.0000 9.5000 26 64.9000 102.0000 4.7500 27 64.9000 102.0000 4.7500 28 64.9000 153.0000 0.0000 29 64.9000 153.0000 0.0000 30 64.9000 204.0000 9.5000	15	32.4500	0.0000	0.0000		
18 32.4500 204.0000 9.5000 19 32.4500 204.0000 0.0000 20 64.9000 0.0000 9.5000 21 64.9000 0.0000 0.0000 22 64.9000 51.0000 9.5000 24 64.9000 51.0000 9.5000 25 64.9000 102.0000 9.5000 26 64.9000 102.0000 4.7500 27 64.9000 153.0000 9.5000 29 64.9000 153.0000 0.0000 30 64.9000 204.0000 9.5000	16	32.4500	102.0000	9.5000		
19 32.4500 204.0000 0.0000 20 64.9000 0.0000 9.5000 21 64.9000 0.0000 0.0000 22 64.9000 51.0000 9.5000 24 64.9000 51.0000 0.0000 25 64.9000 102.0000 9.5000 26 64.9000 102.0000 4.7500 27 64.9000 153.0000 9.5000 29 64.9000 153.0000 0.0000 30 64.9000 204.0000 9.5000				0.0000		
20 64.9000 0.0000 9.5000 21 64.9000 0.0000 4.7500 22 64.9000 0.0000 0.0000 23 64.9000 51.0000 9.5000 24 64.9000 51.0000 0.0000 25 64.9000 102.0000 9.5000 26 64.9000 102.0000 0.0000 27 64.9000 153.0000 9.5000 29 64.9000 153.0000 0.0000 30 64.9000 204.0000 9.5000				9.5000		
21 64.9000 0.0000 4.7500 22 64.9000 0.0000 0.0000 23 64.9000 51.0000 9.5000 24 64.9000 51.0000 0.0000 25 64.9000 102.0000 9.5000 26 64.9000 102.0000 0.0000 27 64.9000 153.0000 9.5000 29 64.9000 153.0000 0.0000 30 64.9000 204.0000 9.5000				0.0000		
22 64.9000 0.0000 0.0000 23 64.9000 51.0000 9.5000 24 64.9000 51.0000 0.0000 25 64.9000 102.0000 9.5000 26 64.9000 102.0000 4.7500 27 64.9000 102.0000 0.0000 28 64.9000 153.0000 9.5000 29 64.9000 204.0000 9.5000			0.0000	9.5000		
23 64.9000 51.0000 9.5000 24 64.9000 51.0000 0.0000 25 64.9000 102.0000 9.5000 26 64.9000 102.0000 4.7500 27 64.9000 102.0000 0.0000 28 64.9000 153.0000 9.5000 29 64.9000 153.0000 0.0000 30 64.9000 204.0000 9.5000		64.9000	0.0000			
24 64.9000 51.0000 0.0000 25 64.9000 102.0000 9.5000 26 64.9000 102.0000 4.7500 27 64.9000 102.0000 0.0000 28 64.9000 153.0000 9.5000 29 64.9000 153.0000 0.0000 30 64.9000 204.0000 9.5000		64.9000	0.0000	0.0000		
25 64.9000 102.0000 9.5000 26 64.9000 102.0000 4.7500 27 64.9000 102.0000 0.0000 28 64.9000 153.0000 9.5000 29 64.9000 153.0000 0.0000 30 64.9000 204.0000 9.5000	23		51.0000	9.5000		
26 64.9000 102.0000 4.7500 27 64.9000 102.0000 0.0000 28 64.9000 153.0000 9.5000 29 64.9000 153.0000 0.0000 30 64.9000 204.0000 9.5000				0.0000		
27 64.9000 102.0000 0.0000 28 64.9000 153.0000 9.5000 29 64.9000 153.0000 0.0000 30 64.9000 204.0000 9.5000	25		102.0000	9.5000		
28 64.9000 153.0000 9.5000 29 64.9000 153.0000 0.0000 30 64.9000 204.0000 9.5000	26	64.9000	102.0000	4.7500		
29 64.9000 153.0000 0.0000 30 64.9000 204.0000 9.5000	27	64.9000	102.0000	0.0000		
30 64.9000 204.0000 9.5000	28	64.9000	153.0000	9.5000		
	29	64.9000	153.0000	0.0000		
***** lines for nodes 31 to 291 removed from listing						
	****	lines for	nodes 31 to	291 removed	from listing	

```
292 519,2001
                  0.0000
                           36,5000
                                                                                0
 293 519.2001
                  0.0000
                           23.0000
                                                                                0
 294 519.2001
                 51.0000
                           36.5000
                                                                                0
 295 519.2001 102.0000
                           36.5000
                                                                                0
 296 519.2001 102.0000
                           23.0000
                                                                                0
 297 519.2001 153.0001
                           36.5000
                                                                                0
 298 519.2001 204.0001
                                                                                0
                           36.5000
 299 519.2001
                204.0001
                           23.0000
                                                                                0
 300 551.6501
                  0.0000
                           36.5000
                                                                                0
 301 551.6501 102.0000
                           36.5000
                                                                                0
 302 551.6501 204.0000
                           36.5000
                                                                                0
 303 584.1000
                  0.0000
                           36.5000
                                                                                0
 304 584.1001
                  0.0000
                           23.0000
                                                                                0
 305 584.1000
                 51.0000
                           36.5000
                                                                                0
 306 584.1001 102.0000
                           36.5000
                                                                                0
 307
     584.1002 102.0001
                           23.0000
                                                                                0
 308 584.1000 153.0001
                           36.5000
                                                                                0
 309 584.1000 204.0001
                           36,5000
                                                                                0
 310 584.1001 204.0001
                            23.0000
                                                                                0
 311 616.5505
                  0.0000
                           36.5001
                                                                                0
 312 616.5505 102.0003
                            36.5001
                                                                                0
 313 616.5505 204.0006
                           36.5001
                                                                                0
 314 649.0000
                  0.0000
                            36.5000
                                                                                0
 315 649.0000
                 0.0000
                           23.0000
                                                                                0
 316 649.0000
                 51.0000
                            36.5000
                                                                                0
 317 649.0000 102.0000
                            36.5000
                                                                                0
 318 649.0000 102.0000
                            23.0000
                                                                                0
 319 649.0000 153.0000
                                                                                0
                            36.5000
 320 649.0000 204.0000
                            36.5000
                                                                                0
 321 649.0000 204.0000
                            23,0000
                                                                                0
   2
       20
0.207E+06 0.300E+00 0.787E-08
***** numbers reduced from I5 to I4 format on next 20 lines of listing
  1 20
         25
              6 14
                    23
                         16
                               4
                                  3 22 27
                                               8 15
                                                      24
                                                          17
                                                               5
                                                                   2 21
                                                                               7
                                                                          26
 20
     39
         44
             25
                 33
                     42
                          35
                             23
                                 22
                                      41
                                         46
                                              27
                                                  34
                                                      43
                                                          36
                                                              24
                                                                  21
                                                                      40
                                                                          45
                                                                              26
 39
     58
         63
             44
                 52
                      61
                          54
                             42
                                 41
                                      60
                                          65
                                              46
                                                  53
                                                      62
                                                          55
                                                              43
                                                                  40
                                                                      59
                                                                          64
                                                                              45
 58 77
         82 63
                 71
                      80
                         73
                                 60
                                      79
                                         84
                                              65
                                                 72
                                                      81
                                                          74
                                                              62
                                                                  59
                                                                      78
                              61
                                                                          83
                                 79
                                     98 103
 77 96 101 82 90
                     99
                         92
                             80
                                             84
                                                 91 100
                                                          93
                                                              81
                                                                  78
                                                                      97 102
 96 115 120 101 109 118 111
                                 98 117 122 103 110 119 112 100
                                                                  97 116 121 102
                             99
 115 134 139 120 128 137 130 118 117 136 141 122 129 138 131 119 116 135 140 121
 134 153 158 139 147 156 149 137 136 155 160 141 148 157 150 138 135 154 159 140
153 172 177 158 166 175 168 156 155 174 179 160 167 176 169 157 154 173 178 159
 172 191 196 177 185 194 187 175 174 193 198 179 186 195 188 176 173 192 197 178
  6 25
         30
             11
                 16
                      28
                          18
                               9
                                   8
                                      27
                                         32
                                              13
                                                  17
                                                      29
                                                          19
                                                              10
                                                                   7
                                                                      26
                                                                          31
                                                                              12
 25
                      47
                                 27
    44
         49
              30
                 35
                          37
                              28
                                      46
                                          51
                                              32
                                                  36
                                                      48
                                                          38
                                                              29
                                                                  26
                                                                      45
                                                                          50
                                                                              31
 44 63
         68
             49
                 54
                      66
                          56
                              47
                                  46
                                      65
                                          70
                                              51
                                                      67
                                                          57
                                                              48
                                                                  45
                                                                      64
                                                                          69
                                                                              50
                                                  55
 63 82 87
              68
                 73
                      85
                          75
                              66
                                  65
                                      84
                                          89
                                              70
                                                  74
                                                      86
                                                          76
                                                              67
                                                                  64
                                                                      83
                                                                          88
                                                                              69
 82 101 106 87 92 104 94 85
                                 84 103 108
                                             89
                                                  93 105
                                                         95
                                                              86
                                                                  83 102 107
                                                                              88
 101 120 125 106 111 123 113 104 103 122 127 108 112 124 114 105 102 121 126 107
 120 139 144 125 130 142 132 123 122 141 146 127 131 143 133 124 121 140 145 126
```

139 158 163 144 149 161 151 142 141 160 165 146 150 162 152 143 140 159 164 145

```
158 177 182 163 168 180 170 161 160 179 184 165 169 181 171 162 159 178 183 164
177 196 201 182 187 199 189 180 179 198 203 184 188 200 190 181 178 197 202 183
   2
       20
             O
0.100E+02 0.470E+00 0.128E-08
***** numbers reduced from I5 to I4 format on next 20 lines of listing
204 215 218 207 212 217 213 206
                                1 20 25
                                            6 14 23 16
                                                           4 205 216 219 208
215 226 229 218 223 228 224 217
                                20 39 44 25
                                                33 42
                                                       35 23 216 227 230 219
226 237 240 229 234 239 235 228
                                39 58
                                        63 44 52 61 54 42 227 238 241 230
237 248 251 240 245 250 246 239
                                58 77 82 63 71 80 73 61 238 249 252 241
                                77 96 101 82 90 99 92 80 249 260 263 252
248 259 262 251 256 261 257 250
259 270 273 262 267 272 268 261 96 115 120 101 109 118 111 99 260 271 274 263
270 281 284 273 278 283 279 272 115 134 139 120 128 137 130 118 271 282 285 274
281 292 295 284 289 294 290 283 134 153 158 139 147 156 149 137 282 293 296 285
292 303 306 295 300 305 301 294 153 172 177 158 166 175 168 156 293 304 307 296
303 314 317 306 311 316 312 305 172 191 196 177 185 194 187 175 304 315 318 307
207 218 221 210 213 220 214 209
                                 6 25 30 11
                                               16 28
                                                       18
                                                            9 208 219 222 211
218 229 232 221 224 231 225 220
                               25 44 49
                                           30 35 47
                                                       37 28 219 230 233 222
229 240 243 232 235 242 236 231
                                44 63
                                        68
                                           49
                                                54
                                                    66
                                                       56 47 230 241 244 233
240 251 254 243 246 253 247 242 63 82 87
                                               73 85 75 66 241 252 255 244
                                           68
251 262 265 254 257 264 258 253 82 101 106 87 92 104 94 85 252 263 266 255
262 273 276 265 268 275 269 264 101 120 125 106 111 123 113 104 263 274 277 266
273 284 287 276 279 286 280 275 120 139 144 125 130 142 132 123 274 285 288 277
284 295 298 287 290 297 291 286 139 158 163 144 149 161 151 142 285 296 299 288
295 306 309 298 301 308 302 297 158 177 182 163 168 180 170 161 296 307 310 299
306 317 320 309 312 319 313 308 177 196 201 182 187 199 189 180 307 318 321 310
```

The VAST boundary condition file CANT4.SMD:

```
13 0.100E+26
1 1 1 1 1 1 1 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
2 1 1 1 1 1 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
3 1 1 1 1 1 1 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
4 1 1 1 1 1 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
5 1 1 1 1 1 1 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
6 1 1 1 1 1 1 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
7 1 1 1 1 1 1 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
8 1 1 1 1 1 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
9 1 1 1 1 1 1 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
10 1 1 1 1 1 1 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
11 1 1 1 1 1 1 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
12 1 1 1 1 1 1 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
13 1 1 1 1 1 1 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
 0
 0
```

The VAST load file CANT4.LOD:

```
cant4 - unit load in z direction at node 198 - center of end
     0      0
     1
     1      0
     198 0 0.000E+00 0.000E+00 1.000E+00 0.000E+00 0.000E+00 0.000E+00
```

Appendix B.2 CANT5 refined mesh half-model of beam and damping layer

The VAST input files for the refined mesh half-model of the beam and damping layer are listed as follows:

The VAST control file CANT5.USE:

```
Cantilever structure forced response - 1/2 model - refined mesh
    0
    1
         0
                                            6
                                                 0
                                                       0
IELEMA
              1
                   1
                        1
IASSEM
    0
         1
              1
IASEM4
    2
         O
    1
         0
              1
    2
              2
TABLE2
         7
    1
 1.000e+01 0.032e-00 1.910e+01 0.032e-00 1.197e+02 0.620e-02 3.365e+02 0.220e-02
 6.626e+02 0.140e-02 1.097e+03 0.120e-02 1.000e+04 0.100e-02
TABLE1
        27
              0
    1
 1.000e+01 6.202e-01 2.000e+01 7.273e-01 3.000e+01 8.113e-01 4.000e+01 8.835e-01
 5.000e+01 9.483e-01 6.000e+01 1.008e+00 7.000e+01 1.063e+00 8.000e+01 1.116e+00
 9.000e+01 1.166e+00 1.000e+02 1.214e+00 2.000e+02 1.620e+00 3.000e+02 1.955e+00
 4.000e+02 2.252e+00 5.000e+02 2.525e+00 6.000e+02 2.779e+00 7.000e+02 3.020e+00
 8.000e+02 3.249e+00 9.000e+02 3.468e+00 1.000e+03 3.679e+00 2.000e+03 5.496e+00
 3.000e+03 6.999e+00 4.000e+03 8.317e+00 5.000e+03 9.507e+00 6.000e+03 1.060e+01
 7.000e+03 1.162e+01 8.000e+03 1.257e+01 9.000e+03 1.346e+01
TABLE2
        27
              0
    2
 1.000e+01 4.618e-01 2.000e+01 5.734e-01 3.000e+01 6.452e-01 4.000e+01 6.982e-01
 5.000e+01 7.400e-01 6.000e+01 7.742e-01 7.000e+01 8.029e-01 8.000e+01 8.274e-01
 9.000e+01 8.488e-01 1.000e+02 8.675e-01 2.000e+02 9.759e-01 3.000e+02 1.021e+00
 4.000e+02 1.043e+00 5.000e+02 1.052e+00 6.000e+02 1.055e+00 7.000e+02 1.055e+00
 8.000e+02 1.052e+00 9.000e+02 1.047e+00 1.000e+03 1.042e+00 2.000e+03 9.782e-01
 3.000e+03 9.238e-01 4.000e+03 8.803e-01 5.000e+03 8.447e-01 6.000e+03 8.150e-01
 7.000e+03 7.896e-01 8.000e+03 7.674e-01 9.000e+03 7.479e-01
ISTIFM
    1
         1
IMASSM
    0
         0
              0
    0
IDECOM
    1
         0
ILOAD1
    0
IDISP6
  383
```

```
0
100 2
448.0 3000.0
0 0
IREACT
0 0
```

The VAST geometry file CANT5.GOM:

cantil	lever b	oeam	with	damping	layer -	1/2	mode	el				
0	0	3	3									
621	621	2										
1	0.0	0000	0.	.0000	9.5000							0
2	0.0	0000	0.	.0000	4.7500							0
3	0.0	0000	0.	.0000	0.0000							0
4	0.0	0000	25.	5000	9.5000							0
5	0.0	0000	25.	5000	0.0000							0
6	0.0	0000	51.	.0000	9.5000							0
7	0.0	0000	51.	.0000	4.7500							0
8	0.0	0000	51.	.0000	0.0000							0
9	0.0	0000	76.	5000	9.5000							0
10	0.0	0000	76.	5000	0.0000							0
11	0.0	0000	102.	.0000	9.5000							0
12	0.0	0000	102.	.0000	4.7500							0
13	0.0	0000	102.	.0000	0.0000							0
14	16.2	2250	0.	.0000	9.5000							0
15	16.2	2250	0.	.0000	0.0000							0
16	16.2	2250	51.	.0000	9.5000							0
17	16.2	2250	51.	.0000	0.0000							0
18	16.2	2250	102.	.0000	9.5000							0
19	16.2	2250	102.	.0000	0.0000							0
20	32.4	1500	0.	.0000	9.5000							0
21	32.4	1500	0.	.0000	4.7500							0
22	32.4	1500	0.	.0000	0.0000							0
23	32.4	1500		.5000	9.5000							0
24	32.4	1500		.5000	0.0000							0
25		1500	51.	.0000	9.5000							0
26		1500		.0000	4.7500							0
27	32.4	1500	51.	.0000	0.0000							0
28		1500		.5000	9.5000							0
29		1500	76.	.5000	0.0000							0
30		1500		.0000	9.5000							0
					591 remov	ved	from	listi	ng			
592	584.1				36.5000							0
593	584.1				23.0000							0
594	584.1				36.5000							0
595	584.1				36.5000							0
596	584.1				23.0000							0
597	584.1				36.5000							0
598	584.1				36.5000							0
599	584.1	1002	102.	.0000	23.0000							0

```
600 600.3254
                  0.0000
                            36.5000
                                                                                 0
 601 600.3254
                 51.0001
                            36.5000
                                                                                 0
 602 600.3254 102.0001
                            36,5000
                                                                                 0
 603 616.5498
                  0.0000
                            36.4999
 604 616.5498
                  0.0000
                            23.0000
                                                                                 0
 605
     616.5498
                 25.5000
                            36.4999
                                                                                 0
 606 616.5498
                 50.9999
                            36.4999
                                                                                 0
 607 616.5498
                 50.9999
                            23.0000
                                                                                 0
 608 616.5498
                 76.4999
                            36.4999
                                                                                 0
                101.9998
 609
     616.5498
                            36.4999
                                                                                 0
 610 616.5498
                101.9999
                            23.0000
                                                                                 0
 611
     632.7751
                  0.0000
                            36,5000
                                                                                 0
 612 632.7751
                 51.0001
                            36.5000
 613 632.7751
                102.0001
                            36.5000
                                                                                 0
 614 649.0000
                  0.0000
                            36.5000
                                                                                 0
 615 649.0000
                  0.0000
                            23.0000
                                                                                 0
 616 649.0000
                 25.5000
                            36.5000
 617 649.0000
                 51.0000
                            36,5000
                                                                                 0
 618
     649.0000
                 51.0000
                            23,0000
                                                                                 0
 619
      649.0000
                 76.5000
                            36.5000
                                                                                 ٥
 620
     649.0000 102.0000
                            36.5000
                                                                                 0
 621 649.0000
                102.0000
                            23.0000
                                                                                 0
   2
       40
             0
0.207E+06 0.300E+00 0.787E-08
***** numbers reduced from I5 to I4 format on next 40 lines of listing
  1
         25
     20
              6 14 23
                         16
                               4
                                      22
                                          27
                                                      24
                                                                                7
                                   3
                                               8
                                                 15
                                                         17
                                                               5
                                                                   2
                                                                      21
                                                                           26
 20
     39
         44
             25
                 33
                     42
                         35
                              23
                                  22
                                      41
                                              27
                                          46
                                                  34
                                                      43
                                                          36
                                                              24
                                                                  21
                                                                       40
                                                                           45
                                                                               26
 39
             44
     58
         63
                 52
                     61
                         54
                              42
                                  41
                                      60
                                          65
                                              46
                                                  53
                                                      62
                                                          55
                                                              43
                                                                  40
                                                                      59
                                                                           64
                                                                               45
 58 77 82 63
                 71
                     80
                         73
                              61
                                  60
                                      79
                                          84
                                              65
                                                  72
                                                      81
                                                          74
                                                              62
                                                                  59
                                                                       78
                                                                          83
                     99
                         92
                              80
                                                              81
                                  79
                                      98 103
                                              84
                                                  91 100 93
                                                                  78 97 102
                                                                               83
```

77 96 101 82 90 96 115 120 101 109 118 111 99 98 117 122 103 110 119 112 100 97 116 121 102 115 134 139 120 128 137 130 118 117 136 141 122 129 138 131 119 116 135 140 121 134 153 158 139 147 156 149 137 136 155 160 141 148 157 150 138 135 154 159 140 153 172 177 158 166 175 168 156 155 174 179 160 167 176 169 157 154 173 178 159 172 191 196 177 185 194 187 175 174 193 198 179 186 195 188 176 173 192 197 178 191 210 215 196 204 213 206 194 193 212 217 198 205 214 207 195 192 211 216 197 210 229 234 215 223 232 225 213 212 231 236 217 224 233 226 214 211 230 235 216 229 248 253 234 242 251 244 232 231 250 255 236 243 252 245 233 230 249 254 235 248 267 272 253 261 270 263 251 250 269 274 255 262 271 264 252 249 268 273 254 267 286 291 272 280 289 282 270 269 288 293 274 281 290 283 271 268 287 292 273 286 305 310 291 299 308 301 289 288 307 312 293 300 309 302 290 287 306 311 292 305 324 329 310 318 327 320 308 307 326 331 312 319 328 321 309 306 325 330 311 324 343 348 329 337 346 339 327 326 345 350 331 338 347 340 328 325 344 349 330 343 362 367 348 356 365 358 346 345 364 369 350 357 366 359 347 344 363 368 349 362 381 386 367 375 384 377 365 364 383 388 369 376 385 378 366 363 382 387 368 6 25 63 82 87 82 101 106 92 104 84 103 108 93 105 95 83 102 107 101 120 125 106 111 123 113 104 103 122 127 108 112 124 114 105 102 121 126 107

 120
 139
 144
 125
 130
 142
 132
 123
 122
 141
 146
 127
 131
 143
 133
 124
 121
 140
 145
 126

 139
 158
 163
 144
 149
 161
 151
 142
 141
 160
 165
 146
 150
 162
 152
 143
 140
 159
 164
 145

 158
 177
 182
 163
 168
 180
 170
 161
 160
 179
 184
 165
 169
 181
 171
 162
 159
 178
 183
 164

 177
 196
 201
 182
 187
 199
 189
 180
 179
 198
 203
 184
 188
 200
 190
 181
 178
 197
 202
 183

 196
 215
 220
 201
 206
 218
 208
 199
 198
 217
 222
 203
 207
 219
 200
 197
 216
 221
 202
 215
 238
 232
 2

0.100E+02 0.470E+00 0.128E-08

```
551 562 565 554 557 564 558 553 272 291 296 277 282 294 284 275 552 563 566 555 562 573 576 565 568 575 569 564 291 310 315 296 301 313 303 294 563 574 577 566 573 584 587 576 579 586 580 575 310 329 334 315 320 332 322 313 574 585 588 577 584 595 598 587 590 597 591 586 329 348 353 334 339 351 341 332 585 596 599 588 595 606 609 598 601 608 602 597 348 367 372 353 358 370 360 351 596 607 610 599 606 617 620 609 612 619 613 608 367 386 391 372 377 389 379 370 607 618 621 610
```

The VAST boundary condition file CANT5.SMD:

```
170
   1 1 1 1 1 1 1
   2 1 1 1 1 1 1
   3 1 1 1 1 1 1
   4 1 1 1 1 1 1
   5 1 1 1 1 1 1
   6 1 1 1 1 1 1
   7 1 1 1 1 1 1
   8 1 1 1 1 1 1
   9 1 1 1 1 1 1
  10 1 1 1 1 1 1
  11 1 1 1 1 1 1
  12 1 1 1 1 1 1
  13 1 1 1 1 1 1
  20 0 1 0 1 0 1
  21 0 1 0 1 0 1
  22 0 1 0 1 0 1
  33 0 1 0 1 0 1
  34 0 1 0 1 0 1
  39 0 1 0 1 0 1
  40 0 1 0 1 0 1
  41 0 1 0 1 0 1
  52 0 1 0 1 0 1
  53 0 1 0 1 0 1
  58 0 1 0 1 0 1
  59 0 1 0 1 0 1
  60 0 1 0 1 0 1
  71 0 1 0 1 0 1
  72 0 1 0 1 0 1
  77 0 1 0 1 0 1
  78 0 1 0 1 0 1
  79 0 1 0 1 0 1
  90 0 1 0 1 0 1
  91 0 1 0 1 0 1
  96 0 1 0 1 0 1
  97 0 1 0 1 0 1
  98 0 1 0 1 0 1
***** similar lines for the following nodes along the beam centerline
       have been removed from the file listing:
  109, 110, 115, 116, 117, 128, 129, 134, 135, 136, 147, 148, 153, 154, 155,
  166, 167, 172, 173, 174, 185, 186, 191, 192, 193, 204, 205, 210, 211, 212,
  223, 224, 229, 230, 231, 242, 243, 248, 249, 250, 261, 262, 267, 268, 269,
```

```
280, 281, 286, 287, 288, 299, 300, 305, 306, 307, 318, 319, 324, 325, 326,
337, 338, 343, 344, 345, 356, 357, 362, 363, 364, 375, 376, 381, 382, 383,
405, 406, 413, 416, 417, 424, 427, 428, 435, 438, 439, 446, 449, 450, 457,
460, 461, 468, 471, 472, 479, 482, 483, 490, 493, 494, 501, 504, 512, 516
523 0 1 0 1 0 1
526 0 1 0 1 0 1
527 0 1 0 1 0 1
534 0 1 0 1 0 1
537 0 1 0 1 0 1
538 0 1 0 1 0 1
545 0 1 0 1 0 1
548 0 1 0 1 0 1
549 0 1 0 1 0 1
556 0 1 0 1 0 1
559 0 1 0 1 0 1
560 0 1 0 1 0 1
567 0 1 0 1 0 1
570 0 1 0 1 0 1
571 0 1 0 1 0 1
578 0 1 0 1 0 1
581 0 1 0 1 0 1
582 0 1 0 1 0 1
589 0 1 0 1 0 1
592 0 1 0 1 0 1
593 0 1 0 1 0 1
600 0 1 0 1 0 1
603 0 1 0 1 0 1
604 0 1 0 1 0 1
611 0 1 0 1 0 1
614 0 1 0 1 0 1
615 0 1 0 1 0 1
  0
  0
```

The VAST load file CANT5.LOD:

```
cant5 - unit load in z direction at node 383 - center of end
    0     0
    0     1
    1     0
383 0 0.000E+00 0.000E+00 1.000E+00 0.000E+00 0.000E+00 0.000E+00
```

References

- [1] "Vibration and Strength Analysis Program (VAST), Version #7.0", Martec Limited, Halifax, Nova Scotia, December 1993.
- [2] Stredulinsky, D.C., "Isolation of Structure-Borne Sound from Ship Machinery: A Literature Review and Possibilities for Finite Element Modelling", DREA Technical Memorandum 91/208, May 1991.
- [3] Orisamolu, I.R., Palmeter, M.F., Jiang, L., and Chernuka, M.W., "Enhancement of the Frequency Response Module of the VAST Finite Element Program for Vibration Isolation and Structural Acoustic Analysis", DREA Contractor Report 94/408, October 1993.
- [4] Szabo, J.P., "A Forced Vibration Non-Resonant Method for the Determination of the Complex Modulus in the Audio Frequency Range", DREA Technical Memorandum 92/201, 1992.
- [5] Klein, K., and Guigné, J., "An Experimental Study of a Damping Material Applied to a Vibrating Cantilever", DREA Contractor Report 92/461, April 1993.
- [6] Drake, M.L., "PREDC/MPROP Vibration Damping Program User's Manual", Vibrations Group, Aerospace Mechanics Division, Research Institute, The University of Dayton, Dayton, Ohio, 1994.
- [7] EAR Isodamp C-1002 damping material, EAR Specialty Composites Division of Cabot Corporation, Indianapolis, IN.
- [8] Nashif, A.D., Jones, D.I.G, and Henderson, J.P., "Vibration Damping", John Wiley and Sons, New York, 1985.
- [9] Smithells Metals Reference Handbook, Eric A. Brandes, ed., Buttersworth, Toronto, 1983.
- [10] Jones, D.I.G., "Results of a Round Robin Test Program: Complex Modulus Properties of a Polymeric Damping Material", Wright Patterson Air Force Base, FWAL/TR-92/3104 (1992).
- [11] Taylor, E.L. and Szabo, J.P., "From Mechanics to Acoustics: Modelling Polymer Properties", DREA Technical Memorandum 95/211, May 1995.

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM (highest classification of Title, Abstract, Keywords)

	DOCUMENT CONTROL DATA (Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)								
1.	ORIGINATOR (The name and address of the organization prepared document. Organizations for whom the document was prepared, e Establishment sponsoring a contractor's report, or tasking agency in section 8.)	SECURITY CL (Overall secur special warnin	ASSIFICATION ity of the document including g terms if applicable.)						
	Defence Research Establishment Atlantic P.O. Box 1012, Dartmouth, N.S. B2Y 3Z	. 7	τ	Inclassified					
3.	TITLE (The complete document title as indicated on the title pa abbreviation (S,C.R or U) in parentheses after the title.)	ge. Its classificat	tion should be indic	ated by the appropriate					
	The Forced Response and Damping Characteristics Damping Layer	cteristics of	f a Cantileve	r Beam with a Thick					
4.	AUTHORS (Last name, first name, middle initial. If military, show	w rank, e.g. Doe,	Maj. John E.)						
	Stredulinsky, David C. and Szabo, Jeffrey P.								
5.	DATE OF PUBLICATION (Month and year of publication of document.)	Include Ann	GES (Total nformation. lexes, Appendices,	6b. NO. OF REFS. (Total cited in document.)					
	December 1995	etc.)	35	11					
6.	DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)								
	DREA Technical Memorandum								
8.	SPONSORING ACTIVITY (The name of the department project the address.)	office or laborato	ry sponsoring the r	eseach and development, include					
	Defence Research Establishment Atlantic								
	P.O. Box 1012, Dartmouth, N.S. B2Y 3Z	.7							
9a.	PROJECT OR GRANT NUMBER (If appropriate, the applicable research and development project or grant number under which the document was written. Please specify whether project or grant.)	9b. CONTRACT under which	NUMBER (If app the document was	propriate, the applicable number written.)					
	1.g.3 1.f.1								
10a.	ORIGINATOR'S DOCUMENT NUMBER (The official document number by which the document is identified by the originating activity. This number mrst be unique to this document.)		igned this documen	S (Any other numbers which t either by the originator or by					
	DREA Technical Memorandum 95/229								
11.	DOCUMENT AVAILABILITY (Any limitations on further dissemina classification)	ation of the docu	ment, other than the	ose imposed by security					
	(X) Unlimited distribution () Distribution limited to defence departments and defence contractors; further distribution only as approved () Distribution limited to defence departments and Canadian defence contractors; further distribution only as approved () Distribution limited to government departments and agencies; futher distribution only as approved () Distribution limited to defence departments; further distribution only as approved () Other (please specify):								
12.	DOCUMENT ANNOUNCEMENT (Any limitation to the bibliograph the Document Availability (11). However, where futher distribution announcement audience may be selected.)								
	UNLIMITED DISTRIBUTION								

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

UNCLASSIFIED SECURITY CLASSIFICATION OF FORM

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include here abstracts in both official languages unless the text is billingual).

This technical memorandum describes the vibration analysis of a steel cantilever beam. The beam was 649 mm long, 204 mm wide and 9.5 mm thick with a free viscoelastic damping layer (27 mm thick EAR Isodamp C-1002) bonded to one surface. Predictions of composite loss factor and response were made at forcing frequencies between 10 Hz and 3000 Hz using a direct frequency response capability recently developed for the DREA inhouse finite element code VAST. Analytical results were also obtained with the code PREDC, acquired from the University of Dayton, Ohio. The frequency dependent dynamic mechanical material properties, used in the VAST and PREDC analyses, were measured at DREA using a forced vibration non-resonant method. The VAST forced response vibration analysis was in good agreement with experiment. Above 500 Hz, the system composite loss factors predicted with the PREDC code were significantly below the measured loss factors and those predicted by the VAST code. This is attributed to the more complicated deformation of the damping layer, predicted by the finite element model, but not accounted for by the Euler-Bernoulli beam formulation used in the PREDC code.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with the title).

Vibration Damping Finite Element Polymer

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM