Massive Superpoly Recovery with Nested Monomial Predictions

Kai Hu, Siwei Sun, Yosuke Todo, Meiqin Wang, Qingju Wang

ASIACRYPT 2021

December 7, 2021

Introduction

- Stream and Block cipher
- Degree Evaluations, Cube Attacks
- Division Properties, Integral Attack

Contribution

- Propose a new technique called monomial prediction, can be regarded as a new language for describing the division properties
- Apply this technique to Degree Evaluations and Cube Attacks

Preliminaries

Boolean Function

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$ be a Boolean function whose algebraic normal form (ANF) is

$$f(\mathbf{x}) = f(x_0, x_1, ..., x_{n-1}) = \bigoplus_{\mathbf{u} \in \mathbb{F}_2^n} a_{\mathbf{u}} \prod_{i=0}^{n-1} x_i^{u_i}$$

where $a_{\boldsymbol{u}\in\mathbb{F}_2}$ and

$$x^{u} = \pi_{u}(x) = \prod_{i=0}^{n-1} x_{i}^{u_{i}} = \begin{cases} x_{i}, if & u_{i} = 1, \\ 1, if & u_{i} = 0, \end{cases}$$

Example 1

Let $f(x_0,x_1)=x_0x_1\oplus x_0\oplus 1$,then we have

$$x_0x_1 \to f, x_0 \to f, 1 \to f, x_1 \not\to f$$

Vectorial Boolean Function

 $m{f}: \mathbb{F}_2^n o \mathbb{F}_2^m$ be a vectorial Boolean function with $m{y} = (y_0, y_1, ..., y_{m-1}) = m{f}(m{x}) = (f_0(m{x}), ..., f_{n-1}(m{x}))$. For $m{x} \in \mathbb{F}_2^n$, we use $m{y}^v$ to denote the product of some coordinates of $m{y}$:

$$m{y}^v = \prod_{i=0}^{m-1} y_i^{v_i} = \prod_{i=0}^{m-1} (f_i(m{x}))^{v_i}$$

4 / 15

Monomial Prediction

Let $f: \mathbb{F}_2^{n_0} o \mathbb{F}_2^{n_r}$ be a composite vectorial Boolean function of a sequence of r smaller function $f^i: \mathbb{F}_2^{n_i} o \mathbb{F}_2^{n_{i+1}}, 0 \leq i \leq r-1$ as

$$f = f^{(r-1)} \circ f^{(r-2)} \circ \cdots \circ f^{(0)}$$

$$\tag{1}$$

Definition 1 (Monomial Trail)

Let $\boldsymbol{x}^{(i+1)} = \boldsymbol{f}^{(i)}(\boldsymbol{x}^{(i)})$ for $0 \leq i < r$. We call a sequence of monomails $(\pi_{\boldsymbol{u}^{(0)}}(\boldsymbol{x}^{(0)}), \pi_{\boldsymbol{u}^{(1)}}(\boldsymbol{x}^{(1)}), \dots, \pi_{\boldsymbol{u}^{(r)}}(\boldsymbol{x}^{(r)}))$ an r-round monomial trail connecting $\pi_{\boldsymbol{u}^{(0)}}(\boldsymbol{x}^{(0)})$ and $\pi_{\boldsymbol{u}^{(r)}}(\boldsymbol{x}^{(r)})$ with respect to the composite function $\boldsymbol{f} = \boldsymbol{f}^{(r-1)} \circ \boldsymbol{f}^{(r-2)} \circ \cdots \circ \boldsymbol{f}^{(0)}$ if

$$\pi_{{m u}^{(0)}}({m x}^{(0)}) o \pi_{{m u}^{(1)}}({m x}^{(1)}) o \cdots o \pi_{{m u}^{(r)}}({m x}^{(r)})$$

If there is at least one monomial trail connecting $\pi_{\boldsymbol{u}^{(0)}}(\boldsymbol{x}^{(0)})$ and $\pi_{\boldsymbol{u}^{(r)}}(\boldsymbol{x}^{(r)})$, we write $\pi_{\boldsymbol{u}^{(0)}}(\boldsymbol{x}^{(0)}) \leadsto \pi_{\boldsymbol{u}^{(r)}}(\boldsymbol{x}^{(r)})$. Otherwise, $\pi_{\boldsymbol{u}^{(0)}}(\boldsymbol{x}^{(0)}) \not\leadsto \pi_{\boldsymbol{u}^{(r)}}(\boldsymbol{x}^{(r)})$

Example 2

Let
$$z = (z_0, z_1) = f^{(0)}(y_0, y_1) = (y_0y_1, y_0 \oplus y_1), y = (y_0, y_1) = f^{(0)}(x_0, x_1, x_2) = (x_0 \oplus x_1 \oplus x_2, x_0x_1 \oplus x_0 \oplus x_2)$$
 and $f = f^{(0)}f^{(1)}$.Consider $(x_0, x_1, x_2)^{(1,0,0)} = x_0$

$$(y_0, y_1)^{(0,0)} = 1, (y_0, y_1)^{(1,0)} = y_0 = \underline{x_0} \oplus x_1 \oplus x_2, (y_0, y_1)^{(0,1)} = y_1 = x_0 x_1 \oplus \underline{x_0} \oplus x_2,$$

$$(y_0, y_1)^{(1,1)} = y_0 y_1 = x_0 x_1 x_2 \oplus x_0 x_1 \oplus x_1 x_2 \oplus \underline{x_0} \oplus x_2.$$

Then

$$x_0 \to y_0, x_0 \to y_1, x_0 \to y_0 y_1$$

Similarly

$$(z_0, z_1)^{(0,0)} = 1, (z_0, z_1)^{(1,0)} = z_0 = y_0 y_1, (z_0, z_1)^{(0,1)} = z_1 = y_0 \oplus y_1, (z_0, z_1)^{(1,1)} = z_0 z_1 = 0$$

Then connecting x_0 and monomials of z:

$$x_0 \to y_0 \to z_1, x_0 \to y_1 \to z_1, x_0 \to y_0 y_1 \to z_0$$

Lemma 1

$$\pi_{\boldsymbol{u}^{(0)}}(\boldsymbol{x}^{(0)}) \leadsto \pi_{\boldsymbol{u}^{(r)}}(\boldsymbol{x}^{(r)}). \text{ if } \pi_{\boldsymbol{u}^{(0)}}(\boldsymbol{x}^{(0)}) \to \pi_{\boldsymbol{u}^{(r)}}(\boldsymbol{x}^{(r)}), \text{and thus } \pi_{\boldsymbol{u}^{(0)}}(\boldsymbol{x}^{(0)}) \not \leadsto \pi_{\boldsymbol{u}^{(r)}}(\boldsymbol{x}^{(r)}) \text{ implies } \pi_{\boldsymbol{u}^{(0)}}(\boldsymbol{x}^{(0)}) \not \leadsto \pi_{\boldsymbol{u}^{(r)}}(\boldsymbol{x}^{(r)})$$

Considering Example 2, although $x_0 \leadsto z_1$, we have $x_0 \not\to z_1$ since

$$z_1 = y_0 \oplus y_1 = \underline{x_0} \oplus x_1 \oplus x_2 \oplus x_0 x_1 \oplus \underline{x_0} \oplus x_2 = x_0 x_1 \oplus x_1.$$

Definition 2 (Monomial Hull)

For f with a specific composition sequence, the monomial hull of $\pi_{u^{(0)}}(x^{(0)})$ and $\pi_{u^{(r)}}(x^{(r)})$, denoted by $\pi_{u^{(0)}}(x^{(0)})\bowtie \pi_{u^{(r)}}(x^{(r)})$, is the set of all monomial trails connecting them. The number of trails in the monomial hull is called the **size** of the hull and is denoted by $|\pi_{u^{(0)}}(x^{(0)})\bowtie \pi_{u^{(r)}}(x^{(r)})|$.

Example 3

Consider Example 2, the monomial hull of x_0 and z_1 is the set

$$x_0 \bowtie z_1 = \{x_0 \to y_0 \to z_1, x_0 \to y_1 \to z_1\}$$

Thus the size of $x_0 \bowtie z_1$ is 2. Furthermore, since $x_0 \not \rightsquigarrow z_0 z_1$, $x_0 \bowtie z_0 z_1 = \emptyset$ and $|x_0 \bowtie z_0 z_1| = 0$.

Theorem 1

Let $m{f} = m{f}^{(r-1)} \circ m{f}^{(r-2)} \circ \cdots \circ m{f}^{(0)}$ defined as above. $\pi_{m{u}^{(0)}}(m{x}^{(0)}) o \pi_{m{u}^{(r)}}(m{x}^{(r)})$ if and only if

$$|\pi_{u(0)}(x^{(0)}) \bowtie \pi_{u(r)}(x^{(r)}) \equiv 1 \pmod{2}.$$

8 / 15

Propation rules

Rule 1(Copy)

Let $x=(x_0,x_1,...,x_{n-1})$ and $y=(x_0,x_0.x_1,...,x_{n-1})$ be the input and ouput vector of a Copy function.Consider a monomial of x as x^u , the monomial y^v of y, $x^u \to y^v$

$$\mathbf{v} = \begin{cases} (0, u_1, ..., u_{n-1}) \Rightarrow_{copy} (0, 0, u_1, ... u_{n-1}), \\ (1, u_1, ..., u_{n-1}) \Rightarrow_{copy} (1, 0, u_1, ... u_{n-1}) \text{ or } (0, 1, u_1, ... u_{n-1}) \text{ or } (1, 1, u_1, ... u_{n-1}) \end{cases}$$

Rule 2(Xor)

Let $x=(x_0,x_1,...,x_{n-1})$ and $y=(x_0\oplus x_1,...,x_{n-1})$ be the input and ouput vector of a XOR function. Consider a monomial of x as x^u , the monomial y^v of y, $x^u\to y^v$

$$\mathbf{v} = (u_0 + u_1, ..., u_{n-1}), (u_0, u - 1) \in \{(0, 0), (0, 1), (1, 0)\}$$

9/15

Rule 3(And)

Let $x=(x_0,x_1,...,x_{n-1})$ and $y=(x_0\wedge x_1,...,x_{n-1})$ be the input and ouput vector of a XOR function. Consider a monomial of x as x^u , the monomial y^v of y, $x^u\to y^v$

$$\mathbf{v} = (u_0, u_2, ..., u_{n-1}), (u_0, u - 1) \in \{(0, 0), (1, 1)\}$$

Degree Evaluation

The degree of a Boolean function f is defined as follows,

$$deg(f) = max_{\pi_{\boldsymbol{u}}(\boldsymbol{x}^{(0)}) \to f} wt(\boldsymbol{u}^{(0)})$$

- Find a monomial $\pi_{\boldsymbol{u}}(\boldsymbol{x}^{(0)}) \leadsto f$ with $wt(\boldsymbol{u}) = d$ and prove $\pi_{\hat{\boldsymbol{u}}}(\boldsymbol{x}^{(0)}) \not\to f$ for any $wt(\hat{\boldsymbol{u}}) > d$
- ② Compute $|\pi_{\boldsymbol{u}^{(0)}}(\boldsymbol{x}^{(0)})\bowtie f|$,if the value is odd, then the deg(f)=d,else,repeat the process until we find a desired monomial of f.

MILP-based approach to search for the monomials of f.In this MILP model, the objective function of the model is to maximize $wt(\boldsymbol{u}^{(0)})$.

Cube Attack

For a cipher with a secret key $k=(k_0,...,k_{m-1})\in\mathbb{F}_2^m$ and a public input $v=(v_0,...v_{n-1})\in\mathbb{F}_2^n$, a Boolean function f(v,k)

$$f(\boldsymbol{v}, \boldsymbol{k}) = p(\boldsymbol{v}[\hat{\boldsymbol{u}}], \boldsymbol{k}) \cdot \boldsymbol{v}^{\boldsymbol{u}} + q(\boldsymbol{v}, \boldsymbol{k})$$

Let $\mathbb{C}_u = \boldsymbol{v} \in \mathbb{F}_2^n : \boldsymbol{v} \leq \boldsymbol{u}, wt(\boldsymbol{u}) \leq n$,

$$\bigoplus_{\boldsymbol{v} \in \mathbb{C}_u} f(\boldsymbol{v}, \boldsymbol{k}) = \bigoplus_{\boldsymbol{v} \in \mathbb{C}_u} (p \cdot \boldsymbol{v}^{\boldsymbol{u}} + q(\boldsymbol{v}, \boldsymbol{k})) = p$$

It is easy to check that the superpoly of \mathbb{C}_u is just the coeffcient of x^u in the parameterized Boolean function f(v, k)

$$p(\mathbf{v}[\hat{\mathbf{u}}], \mathbf{k}) = Coe(f(\mathbf{v}, \mathbf{k}), \mathbf{v}^{\mathbf{u}}).$$

Kai Hu, Siwei Sun, Yosuke Todo, Meiqin Wang, Qingju Wassive Superpoly Recovery with Nested Monomial Pred

Example

We suppose a stream cipher has input $\boldsymbol{v}=(v_0,v_1,v_2,v_3)\in\mathbb{F}_2^4$ and $\boldsymbol{k}=(k_0,k_1,k_2)\in\mathbb{F}_2^3$,

$$f(\mathbf{v}, \mathbf{k}) = v_0 v_1 v_2 (v_3 k_0 + k_2) + v_0 v_2 (k_1 k_2) + v_0 + k_0$$

then we chose $\mathbb{C}_u=(v_0,v_1,v_2)$,and calculate

$$\bigoplus_{\mathbf{v}\in\mathbb{C}_u} f(\mathbf{v}, \mathbf{k}) = \bigoplus_{\mathbf{v}\in\mathbb{C}_u} (p \cdot \mathbf{v}^u + q(\mathbf{v}, \mathbf{k})) = (v_3k_0 + k_2)$$

or we chose $\mathbb{C}_u=(v_0,v_2)$,and the superpoly will be

$$v_1(v_3k_0+k_2)+k_1k_2$$

Kai Hu, Siwei Sun, Yosuke Todo, Meiqin Wang, Qingju Wassive Superpoly Recovery with Nested Monomial Pred

Key-Recovery Attacks with Superpolies

Offline

We have recovered the exact ANF of superpoly p(f) for the cube term x^u (the corresponding cube is denoted by \mathbb{C}_u).

Online

In the online phase, we first call the cipher oracle to encrypt all elements in the cube and get the value of the superpoly with time complexity $2^{wt(u)}$.

Next, we try to obtain some information of the secret key from the equation:

$$p(\mathbf{k}) = \bigoplus_{\mathbf{x} \in \mathbb{C}_+} f_{\mathbf{k}}(\mathbf{x}).$$

Thank You