Lab 9 - BJT DC Biasing

Ty Davis ECE 3110 November 20, 2024

Introduction

In this lab we are analyzing the DC operating points of an NPN-type BJT. There are three modes of operation for a BJT, namely *active*, *saturation*, and *cutoff*. We are going to analyze the BJT in both the *active* and *saturation* regions of operation.

Fig. 1 shows our circuit. For each mode of operation we will select different resistor values in order to bias the circuit.

Figure 1: The circuit we use in the lab.

Analysis

Active Mode Operation

For active mode operation we are going to design the circuit such that $I_C = 1$ mA, $V_B = 0$ V, and $V_C = 5$ V.

We can quickly find I_B because we know that β from the data sheet is $\beta = 161.205$. This means that $I_B = I_C/\beta = 6.203 \, \mu\text{A}$. Knowing that $I_E = I_C + I_B$, we get $I_E = 1.006203 \, \text{mA}$.

With these values we can find $R_C = \frac{15-5}{1 \text{ mA}} = 10 \text{ k}\Omega$. Using the constant drop model, we can assume that $V_E = V_B - 0.7 \text{ V} = -0.7 \text{ V}$. This leads us to $R_E = \frac{-0.7 - (-15)}{1.006203 \text{ mA}} = 14.371 \text{ k}\Omega$.

For the remaining two resistors, the function is not fully specified, but we know that $V_B = 0$ V, and the current through R_1 is equal to the current through R_2 and the current I_B . As such, we can do some brief nodal analysis to find:

$$\frac{V_{CC} - 0}{R_1} + \frac{0 - V_{EE}}{R_2} + I_B = 0$$

Rearranging this to solve for R_1 in terms of R_2 we find this equation:

$$R_1 = V_{CC} \cdot \left(\frac{1}{-I_B - V_{EE}/R_2}\right)$$

That expression allowed us to choose some R_2 and determine a necessary R_1 . We chose the value $R_2 = 100 \text{ k}\Omega$, and the corresponding R_1 is found to be $R_1 = 96.028 \text{ k}\Omega$.

Saturation Mode Operation

The Saturation Mode operation is even more straightforward. We are going to design the circuit such that $I_C = 1 \text{ mA}$, $I_E = 0.2 \text{ mA}$, $V_C = 2 \text{ V}$, and $V_{CE} = 0.2 \text{ V}$.

Knowing I_C and I_B means that we can find $I_E = 200 \,\mu\text{A}$. Also, we find that $V_E = 1.8 \,\text{V}$ because $V_{CE} = 0.2 \,\text{V}$.

With values for V_C and V_E we can find that $R_C = 13 \text{ k}\Omega$ and $R_E = 14 \text{ k}\Omega$.

The same method for calculating R_1 and R_2 applies in this circuit as well, so we can select $R_2 = 100 \text{ k}\Omega$ and find that $R_1 = 33.333 \text{ k}\Omega$.

The $\beta_{\rm forced}$ that we found is $\frac{1~\rm mA}{200~\mu A}=5.$

Simulation Results

Building the circuit in Multisim we recorded the following values:

	Active Mode	Saturation Mode
V_C	5.12 V	1.92 V
V_B	$-40.0~\mathrm{mV}$	2.54 V
V_E	-0.704 V	1.86 V
V_{BE}	0.66 V	0.68 V
V_{CE}	$5.82~\mathrm{V}$	0.08 V
I_C	$0.988~\mathrm{mA}$	$1.01~\mathrm{mA}$
I_B	$7.02~\mu\mathrm{A}$	$198.68~\mu\mathrm{A}$
I_E	$0.995~\mathrm{mA}$	1.20 mA

Table 1: Simulation results.

Measurement Results

Building the circuit we found that the our analysis and simulation in both active mode and saturation mode operation were very close to the actual performance of the device. Look at Tables 3 and 4 to see the resistor values that we used.

The β_{forced} that we calculated is $\frac{1.012 \text{ mA}}{205.7 \mu \text{A}} = 4.921$.

	Active Mode	Saturation Mode
V_C	5.06 V	1.918 V
V_B	$-3.0~\mathrm{mV}$	2.546 V
V_E	-0.661 V	1.873 V
V_{BE}	0.658 V	0.673 V
V_{CE}	5.721 V	0.045 V
I_C	$1.00638~\mathrm{mA}$	$1.01215~\mathrm{mA}$
I_B	5.12 μΑ	$205.68~\mu\mathrm{A}$
I_E	1.0115 mA	$1.21783~\mathrm{mA}$

Table 2: Measurement results.

Calculated Resistor	Equivalent Resistor	Measured Resistor	
10 kΩ	10 kΩ	$9.877~\mathrm{k}\Omega$	R_C
14.371 kΩ	14.347 kΩ 15 kΩ	14.176 kΩ 14.82 kΩ	R_E
	$330~\mathrm{k}\Omega$	$325.38~\mathrm{k}\Omega$	
96.028 kΩ	96.2 kΩ 47 kΩ 47 kΩ 2.2 kΩ	$\begin{array}{c} 95.542 \text{ k}\Omega \\ 46.689 \text{ k}\Omega \\ 46.679 \text{ k}\Omega \\ 2.173 \text{ k}\Omega \end{array}$	R_1
100 kΩ	100 kΩ	$98.75~\mathrm{k}\Omega$	R_2

Table 3: Active Mode Resistors.

Calculated Resistor	Equivalent Resistor	Measured Resistor	
13 kΩ	$13.043~\mathrm{k}\Omega$	$12.925~\mathrm{k}\Omega$	R_C
	$15~\mathrm{k}\Omega$	$14.86~\mathrm{k}\Omega$	
	$100~\mathrm{k}\Omega$	$99.35~\mathrm{k}\Omega$	
14 kΩ	$14.042~\mathrm{k}\Omega$	$13.855~\mathrm{k}\Omega$	R_E
	$15~\mathrm{k}\Omega$	$14.82~\mathrm{k}\Omega$	
	$220~\mathrm{k}\Omega$	$217.68~\mathrm{k}\Omega$	
96.028 kΩ	96.2 kΩ	$95.542~\mathrm{k}\Omega$	R_1
	$47~\mathrm{k}\Omega$	$46.689~\mathrm{k}\Omega$	
	$47~\mathrm{k}\Omega$	$46.679~\mathrm{k}\Omega$	
	$2.2~\mathrm{k}\Omega$	$2.173~\mathrm{k}\Omega$	
100 kΩ	100 kΩ	$98.75~\mathrm{k}\Omega$	R_2

Table 4: Active Mode Resistors.