北京工业大学 2022 ——2023 学年第1学期 《 电磁场理论》 考试试卷 A 卷

考试说明:考试时间:95分钟 考试形式 (闭卷)

适用专业: 电子科学与技术

承诺:

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考。若有违反,愿接受相应的处分。

承诺人:	学号:	班号:

注:本试卷共 <u>四</u> 大题,共 <u>8</u> 页,满分 100 分,考试时必须使用卷后附加的统一草稿纸,并将答案写在题目下方,如因答案写在其他位置而造成的成绩缺失由考生自己负责。不加说明情况下,每个小问满分 5 分。

卷 面 成 绩 汇 总 表 (阅卷教师填写)

题号	-	=	三	四	总成绩
满分	25	25	25	25	
得分					

得分 一、(25分)

(1) 写出真空中安培环路定理的积分形式,请区分时变和稳恒两种情况。(2) 如果真空中存在无限长线稳恒电流分布(半径为 a,总电流为 I),如图所示:对于 $\rho<$ a 的情况,画出磁场强度 H 的方向。(3)在柱坐标下(以 ρ 、 ϕ 和 z 为基本变量),给出 H 的分量表达形式(即写出 $H\rho$ 、 $H\phi$ 和 Hz)。(4)在直角坐标下(以 μ 、 μ 的旋度。

得分 二、(25分)(1)写出静电场高斯定理的积分形式。考虑真空中一个导体球(半径为 a),带电量为 Q。(2)面电荷密度是多少?(3)表面处的电场大小是多少(需要写出详细过程),写出或画出 Q>0 时电场的方向。(4)如果以无穷远作为电位零点,球面处的电位是多少?(5)如果在球外填充介质(介电常数为ε),球面的电位如何变化?

三、 $(25\,

eta)$ 平板电容器极板面积为 S,极板间距 d 远小于极板尺寸。如图所示,极板电位分别为 $0\,

abla U_0 > 0$,真空与介质各占一半,其中介质的介电常数为 ε 。(1) 根据图中的坐标架,写出真空和介质两个区域内电位函数满足的方程。(2) 写出极板/介质、介质/真空、真空/极板处电位函数应该满足的边界条件;(3) 求解出电

位函数; (4) 写出电场、电位移、极化强度的矢量形式; (5) 指出哪里存在极化电荷, 极化电荷密度(面密度或体密度)是多少?

得 分

四、 $(25\, \%)$ 已知真空中电场强度: $\overset{\mathsf{Y}}{E} = \overset{\mathsf{Y}}{e_x} E_0 \cos(\omega t - kz)$, 其中, $k = \omega/c$, $c = 1/\sqrt{\mu_0 \varepsilon_0}$ 。(1)写出真空中法拉第电磁感应定律的微分形式;(2)计算电场的旋度(矢量形式);(3)计算磁场强度(矢量形式);(4)

真空中的本征阻抗 η_0 是 \dot{E} 与 \dot{H} 大小的比值,请验证 η_0 等于 $\sqrt{\mu_0/\varepsilon_0}$; (5)请利用你学到的物理知识,说明 $\sqrt{\mu_0/\varepsilon_0}$ 具有与电阻相同的量纲。

附录:

球坐标系:

$$\nabla \times \overset{\mathbf{V}}{A}(\overset{\mathbf{V}}{r}) = \overset{\mathbf{ur}}{e_r} \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta A_{\varphi}) - \frac{\partial A_{\theta}}{\partial \varphi} \right] + \overset{\mathbf{uu}}{e_{\theta}} \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial A_r}{\partial \varphi} - \frac{\partial \left(rA_{\varphi}\right)}{\partial r} \right] + \overset{\mathbf{uu}}{e_{\varphi}} \frac{1}{r} \left[\frac{\partial (rA_{\theta})}{\partial r} - \frac{\partial A_r}{\partial \theta} \right]$$

$$\nabla \bullet \overset{\mathbf{V}}{A}(\overset{\mathbf{V}}{r}) = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_{\theta}) + \frac{1}{r \sin \theta} \frac{\partial A_{\varphi}}{\partial \varphi}$$

$$\nabla u = -\left(\frac{\partial}{\partial r} \overset{\mathbf{V}}{e_r} + \frac{\partial}{\partial \theta} \overset{\mathbf{V}}{e_{\theta}} + \frac{\partial}{\partial \theta} \overset{\mathbf{V}}{e_{\varphi}} \right) u$$

圆柱坐标系:

$$\nabla \times \overset{\mathbf{u}}{A} = \overset{\mathbf{v}}{e_{\rho}} \left(\frac{1}{\rho} \frac{\partial A_{z}}{\partial \varphi} - \frac{\partial A_{\varphi}}{\partial z} \right) + \overset{\mathbf{v}}{e_{\varphi}} \left(\frac{\partial A_{\rho}}{\partial z} - \frac{\partial A_{z}}{\partial \rho} \right) + \overset{\mathbf{v}}{e_{z}} \frac{1}{\rho} \left[\frac{\partial (\rho A_{\varphi})}{\partial \rho} - \frac{\partial A_{\rho}}{\partial \varphi} \right]$$

$$\nabla \bullet \overset{\mathbf{V}}{A} = \frac{1}{\rho} \frac{\partial (\rho A_{\rho})}{\partial \rho} + \frac{1}{\rho} \frac{\partial A_{\varphi}}{\partial \varphi} + \frac{\partial A_{z}}{\partial z}$$

$$\nabla u = \frac{\partial u}{\partial \rho} \overset{\mathbf{V}}{e}_{\rho} + \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \overset{\mathbf{V}}{e}_{\varphi} + \frac{\partial u}{\partial z} \overset{\mathbf{V}}{e}_{z}$$

坐标系变换:

	$\vec{e}_{ ho}$	\vec{e}_{ϕ}	\vec{e}_z
\vec{e}_x	$\cos \phi$	$-\sin\phi$	0
\vec{e}_y	$\sin \phi$	$\cos \phi$	0
\vec{e}_z	0	0	1

	\vec{e}_r	$ar{e}_{ heta}$	\vec{e}_{ϕ}	
\vec{e}_x	$\sin\theta\cos\phi$	$\cos\theta\cos\phi$	$-\sin\phi$	
\vec{e}_y	$\sin\theta\sin\phi$	$\cos\theta\sin\phi$	$\cos \phi$	
\vec{e}_z	$\cos \theta$	$-\sin\theta$	0	

	草	稿	纸	
姓名:	学号	; ;		