

Lecture 1: Random variables, probability distributions and sampling EMAT30007 Applied Statistics

Nikolai Bode & Filippo Simini

Department of Engineering Mathematics

Housekeeping arrangements

Lectures

- theory and examples
- with Lecturers Filippo Simini in weeks 13-17 and Nikolai Bode in weeks 19-23

k Labs

- hands-on exercises and applications using Matlab
- with TAs Thomas, David and Elisa.

Assessments

- First coursework (25%)
 - Set in week 16 due on 10 March (week 19)
- Second coursework (25%)
 - Set in week 21 due on 30 April (week 23)
- ► Summer exam (50%)
 - Past papers on blackboard

Spring Semester 2020

Outline of the lecture

In this lecture you will learn:

- How to use Random Variables to model empirical data.
- We How to plot empirical probability density (PDF) and cumulative distribution (CDF) functions.
- How to compute probability distributions of functions of Random Variables.
- ₭ How to generate synthetic data sampling from a Random Variable.

What is statistics?

Statistics aims to describe and interpret empirical data using the mathematical objects of probability theory.

A statistical model is a mathematical representation of a real world process that has some degree randomness.

Example: Dice roll

We roll a 6-sided dice and write down each outcome in a list:

dice rolls =
$$\{ \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C} \} = [3, 4, 5, 2, 6]$$

An empirical data set is a collection of outcomes of a specific real-world process or experiment (a dice roll, in this case).

We imagine that each outcome has a given *probability* to be observed.

In statistics, we interpret an empirical data set as a collection of outcomes generated by a Random Variable.

Random Variables

A Random Variable (RV) is a function that maps any possible outcome of an experiment (sample space) to a number.

Example: if D is a RV for a dice roll, then $D(\boxdot) = 1, \ldots, D(\boxdot) = 6$.

A random variable has an associated probability distribution that provides the probability of occurrence of all possible outcomes.

Example: if D is a fair dice, then $P_D(1) = \cdots = P_D(6) = 1/6$.

Example: Toss of a fair coin

Possible outcomes (sample space): $\Omega = \{\text{'head', 'tail'}\}.$

Random Variable:
$$X(\omega) = \begin{cases} 1 & \text{if } \omega = \text{`head'} \\ 0 & \text{if } \omega = \text{`tail'} \end{cases}$$

Probability distribution: $P_X(x) = p^x (1-p)^{1-x} = \begin{cases} p & \text{if } x=1\\ 1-p & \text{if } x=0 \end{cases}$

where p=1/2 is the probability of 'head' ('head' and 'tail' are equally likely).

Discrete Random Variables

A discrete RV maps outcomes to discrete (natural) numbers.

Example: Sum of two dices

Sample space (possible outcomes):

$$\{(\mathbf{\bullet},\mathbf{\bullet}),(\mathbf{\bullet},\mathbf{\bullet}),\ldots,(\mathbf{H},\mathbf{\bullet}),(\mathbf{H},\mathbf{H})\}$$

$$\Omega = \{ (d_1, d_2) \mid d_i \in [1, 2, 3, 4, 5, 6], i = [1, 2] \}$$

RV 'Sum of two dices': $S(d_1,d_2)=d_1+d_2$

Probability Mass Function (PMF):

Continuous Random Variables

A continuous RV maps outcomes to continuous (real) numbers.

Example: Diameter of a tennis ball

Sample space (possible outcomes): any real number larger than zero.

$$\Omega = [0, +\infty] = \mathbb{R}^+$$

 ${\sf RV}$: D is the measured diameter in centimetres.

Probability Density Function (PDF):

$$D \sim \mathrm{Gamma}(\alpha = 6540, \theta = 0.001)$$

Gamma distribution:

$$P_D(d; \alpha, \theta) = \frac{1}{\Gamma(\alpha)\theta^{\alpha}} d^{\alpha - 1} e^{-d/\theta}$$

Cumulative Distribution Function (CDF)

The Cumulative Distribution Function (CDF) of a random variable X, $F_X(x)$, is the probability to get an outcome with value less or equal to x:

$$F_X(x) = Prob(X \le x) = \sum_{y \le x} P_X(y)$$
 for discrete RVs (1)
= $\int_{-\infty}^x P_X(y) dy$ for continuous RVs (2)

Example: Sum of two dices

Example: Diameter of a tennis ball

$$F_D(d; \alpha, \theta) = \int_0^d \frac{1}{\Gamma(\alpha)\theta^{\alpha}} y^{\alpha - 1} e^{-y/\theta} dy$$

Properties of the CDF and PDF

- the CDF is a non decreasing function.
- the maximum value is 1 and the minimum is 0.
- $\bigvee Prob(X > x) = 1 F_X(x)$ is the Complementary CDF (CCDF).
- **№ From CDF to PDF**

If the CDF of a continuous RV is differentiable, then the PDF is given by

$$P_X(x) = \frac{dF_X(x)}{dx} = \lim_{dx \to 0} \frac{F_X(x + dx) - F_X(x)}{dx}$$
 (3)

Example: Uniform distribution

The continuous RV U defined over the interval $u \in [a,b]$ has CDF $F_U(u) = (u-a)/(b-a)$ and its PDF is the Uniform distribution:

$$P_U(u) = F'_U(u) = 1/(b-a).$$

How to compute the empirical CDF from data

Plot of the empirical CDF

- 1. Load data in a one-dim array, d.
- 2. Sort data in ascending order, x.
- Create an array, y, of increasing integers from 1 to the length of x.
- 4. Divide each element of y by the length of x, so that the max of y is 1.
- 5. If there are (x_i, y_i) pairs with identical x-value, keep only the pair with the largest y-value. $y = F_X(x)$.

- 1. d = [2, 7, 2, 1, 5]
- **2.** x = [1, 2, 2, 5, 7]
- 3. $x = \begin{bmatrix} 1, & 2, & 2, & 5, & 7 \end{bmatrix}$ $y = \begin{bmatrix} 1, & 2, & 3, & 4, & 5 \end{bmatrix}$
- 5. $x = \begin{bmatrix} 1, & ., & 2, & 5, & 7 \end{bmatrix}$ $y = \begin{bmatrix} 0.2, & ., & 0.6, & 0.8, & 1 \end{bmatrix}$

In MATLAB, use stairs(x, y) or cdfplot(d) to plot the empirical CDF.

How to compute the empirical PDF from data

Plot of the empirical PDF, using the definition in Eq. (3)

- 1. Divide the range of data d, $[\min(d), \max(d)]$, into bins, with bin edges b.
- 2. Compute the mid-point of each bin, $x_i = (b_{i+1} + b_i)/2$.

Count the number of data elements.

- that fall in each bin, $c_i = |\{d_i : b_i \le d_i < b_{i+1}\}|.$
- 4. Normalise. Rescale each element of c: $y_i = c_i/(|d|(b_{i+1} b_i))$, so that the PDF integral is 1. $y = P_X(x)$.

- 1. d = [2, 7, 2, 1, 5]b = [1, 3, 5, 7, 9]
- $2. \quad x = [2, 4, 6, 8]$
- 3. $x = \begin{bmatrix} 2, & 4, & 6, & 8 \end{bmatrix}$ $c = \begin{bmatrix} 3, & 0, & 1, & 1 \end{bmatrix}$
- 4. $x = \begin{bmatrix} 2, & 4, & 6, & 8 \end{bmatrix}$ $y = \begin{bmatrix} 0.3, & 0, & 0.1, & 0.1 \end{bmatrix}$

In MATLAB, use histcounts or histogram(d, 'normalization', 'pdf') to plot the empirical PDF of data in array d (use option 'BinEdges' to specify bin edges).

Common Random Variables

- Uniform (continuous outcomes, all equally likely)
- ₭ Bernoulli (coin toss)
- **Einomial** (# of 'heads' in n tosses)
- \checkmark Multinomial (# of '1's, '2's, ..., '6's in n dice rolls)
- Poisson (# of independent arrivals/events)
- Exponential (time between consecutive independent arrivals/events)
- Normal (sum of many independent RVs)
- Lognormal (product of many independent RVs)
- Gamma (waiting times)
- Pareto (distribution of wealth, city populations)
- https://en.wikipedia.org/wiki/List_of_probability_distributions

Expectation of RVs

The expectation or expected value, E(X), of Random Variable X with PDF $P_X(x)$ is defined as

$$E(X) \equiv \int P_X(x) x dx$$
 or $E(X) \equiv \sum_x P_X(x) x$ (4)

for continuous and discrete RVs. ${\cal E}(X)$ is also called first moment or mean of ${\cal X}.$

Properties of the expectation:

- Linearity of expectation: for any two RVs X and Y and any constant a E(X+Y)=E(X)+E(Y) and E(aX)=aE(X).
- Expectation of a product of **independent** RVs: if X and Y are independent RVs then $E(X \cdot Y) = E(X) \cdot E(Y)$. This is not true in general.
- **Variance** of a RV: $E[(X E(X))^2] = E[X^2] (E[X])^2$.
- \mathbb{K} Expectation of a function of a RV: $E(g(X)) = \int P_X(x) g(x) dx$.

Function of a Random Variable

Let X be a continuous RV with CDF $F_X(x)$ and PDF $P_X(x)$. If g is a strictly increasing or decreasing function with inverse $g^{-1}=h$, then the RV Y=g(X) has the following CDF and PDF (if F_X and h differentiable):

$$F_Y(y) = \begin{cases} F_X(h(y)) & \text{if } h \text{ and } g \text{ increasing} \\ 1 - F_X(h(y)) & \text{if } h \text{ and } g \text{ decreasing} \end{cases}$$
 (5)

$$P_Y(y) = P_X(h(y)) \cdot \left| \frac{dh(y)}{dy} \right|$$
 (6)

The domain of the new RV is transformed too: $Y \in [g(x_{min}), g(x_{max})]$ if g increasing or $Y \in [g(x_{max}), g(x_{min})]$ if g decreasing.

Example: Surface area of a tennis ball

Recall the RV D for the diameter of a tennis ball, which has a Gamma distribution: $P_D(d;\alpha,\theta)=\frac{1}{\Gamma(\alpha)\theta^\alpha}d^{\alpha-1}e^{-d/\theta}.$ We can define the RV $S=\pi D^2$ for the surface of a

tennis ball. What is the PDF of S?

We can apply the function $s=\pi d^2$ to our diameter data, obtaining the corresponding surface areas, and compute the empirical PDF (blue histogram).

We can also apply Eq. (6) and obtain $P_S(s) = P_D(\sqrt{s/\pi}) |\frac{1}{2\pi} \sqrt{\pi/s}|$ (red curve).

Sampling from a Random Variable

Sampling from a RV X with PDF P_X means to generate numbers such that the probability to generate number x is $P_X(x)$.

Being able to sample from a RV allows us to simulate real-world processes.

Computers have (pseudo) random numbers generators that produce numbers that are uniformly distributed in [0,1).

How can we use a computer's uniform random number generator to sample from a RV with a given distribution?

Example: Simulate a fair coin.

A fair coin can be modelled as a RV X with PDF $P_X(0)=1/2$ and $P_X(1)=1/2$, so we want to generate 0 ('tail') with probability 1/2 and 1 ('head') with probability 1/2.

We can sample a random number u from U(0,1), the computer's uniform random number generator: u will be smaller than 0.5 with probability 1/2 and larger than 0.5 with probability 1/2. To simulate the RV X we can transform u into x such that: x=0 if $0 \le u < 0.5$ and x=1 if $0.5 \le u < 1$.

Inverse Probability Integral Transform

The Inverse Probability Integral Transform (IPIT) is a method to transform uniformly distributed random numbers into numbers with a different distribution.

The IPIT is a sampling method based on Eq. (5) for the function of a RV: to sample numbers from RV X we only need to know the inverse of its CDF, F_X^{-1} :

Sampling using the Inverse Probability Integral Transform (IPIT)

- 1. Generate a number u from the uniform distribution U(0,1).
- 2. Compute $x = F_{\mathbf{v}}^{-1}(u)$

The CDF of X will be F_X because if $X=F_X^{-1}(U)$ then from Eq. (5) $F_X(x)=F_U((F_X^{-1})^{-1}(x))=F_U(F_X(x))=F_X(x).$

The inverse of the CDF, F_X^{-1} , is called the quantile function.

Example: Exponential distribution

To sample from $P_X(x)=ae^{-ax}$ with CDF $F_X(x)=1-e^{-ax}$, compute the inverse of $u=F_X(x)=1-e^{-ax}$, obtaining $x=F_Y^{-1}(u)=-\ln(1-u)/a$.

Visual intuition for the IPIT

https://en.wikipedia.org/wiki/Inverse_transform_sampling

IPIT for the Exponential distribution, $X \sim Exp(1)$.

IPIT for the fair coin example, $X \sim Bernoulli(0.5)$.