

Digital Twin Applications for Oil/Gas Industry

Optimizing and Validating Controls for Drilling

Jonathan LeSage, PhD

Senior Application Engineer – Energy and Automation

Agenda

- Introduction to Modeling with Simulink and Simscape
- Leveraging Models
 - Calibrating Digital Twin with Field Data
 - Sizing Systems using Operation Data
 - Digital Twins for Anomaly Detection
- Optimizing and Validation of Controls
 - Optimizing Drilling Operations
 - Importing Existing PLC Ladders and C Software
 - Controller Error Checking and Test Vectors
- Hardware-in-the-loop Testing of PLCs

Digital Twin of Drawworks Drilling System

Agenda

- Introduction to Modeling with Simulink and Simscape
- Leveraging Models
 - Calibrating Digital Twin with Field Data
 - Sizing Systems using Operation Data
 - Digital Twins for Anomaly Detection
- Optimizing and Validation of Controls
 - Optimizing Drilling Operations
 - Importing Existing PLC Ladders and C Software
 - Controller Error Checking and Test Vectors
- Hardware-in-the-loop Testing of PLCs

Introduction to Simulink and Simscape

Introduction to Simulink and Simscape

Agenda

- Introduction to Modeling with Simulink and Simscape
- Leveraging Models
 - Calibrating Digital Twin with Field Data
 - Sizing Systems using Operation Data
 - Digital Twins for Anomaly Detection
- Optimizing and Validation of Controls
 - Optimizing Drilling Operations
 - Importing Existing PLC Ladders and C Software
 - Controller Error Checking and Test Vectors
- Hardware-in-the-loop Testing of PLCs

Modeling Physical Systems with MathWorks Products

Modeling Approaches

- Purpose: Explore design or physical parameters
- Requirements:
 - Physics of system are well-known
 - Component-level models exist or can be created

Modeling Approaches

- Purpose: Model an existing design (real or virtual)
- Requirements:
 - Relevant set of measured data is available
 - Design and physical parameters will not be changed

Purely Data-Driven Modeling

Modeling Approaches

- Purpose: Ensuring parameter values are accurate
- Requirements:
 - Relevant set of measured data is available
 - Physically meaningful parameters can be automatically tuned

Calibrating Digital Twin – Using Field Data

Sizing Systems using Operation Data

Use "Digital Twin" for Fault Detection

Fault Detection Application of Digital Twin

Platform Architectural Diagram – Operationalizing Analytics

Desktop Users

Enterprise IT Systems

Embedded Systems (Including Edge Devices)

- Microcontrollers **NVIDIA GPUs** DSP chips
 - **FPGAs**

 - ARM-based
 - Low-cost:
 - Arduino
 - Raspberry Pi
 - BeagleBone

Technology Stack for Enterprise Integration

Platform

Customer Example: IoT Analytics on AWS

Industrial Air Compressors

- Networked communication
- Embedded sensors
- Data reduction

Customer Example: IoT Analytics on Azure

Building/HVAC automation control system

- Variety of sensors and controls
- Networked communication
- Data reduction

Agenda

- Introduction to Modeling with Simulink and Simscape
- Leveraging Models
 - Calibrating Digital Twin with Field Data
 - Sizing Systems using Operation Data
 - Digital Twins for Anomaly Detection
- Optimizing and Validation of Controls
 - Optimizing Drilling Operations
 - Importing Existing PLC Ladders and C Software
 - Controller Error Checking and Test Vectors
- Hardware-in-the-loop Testing of PLCs

Optimizing Drilling Operations – First Principles

Optimizing Drilling Operations – Range of Operation Sweep

Optimizing Drilling Operations – Create Lookup Table

Optimizing Drilling Operations – Generating PLC Structured Text

Agenda

- Introduction to Modeling with Simulink and Simscape
- Leveraging Models
 - Calibrating Digital Twin with Field Data
 - Sizing Systems using Operation Data
 - Digital Twins for Anomaly Detection
- Optimizing and Validation of Controls
 - Optimizing Drilling Operations
 - Importing Existing PLC Ladders and C Software
 - Controller Error Checking and Test Vectors
- Hardware-in-the-loop Testing of PLCs

Leveraging Legacy PLC Ladders for Digital Twins

Leveraging Legacy C Software for Digital Twins

Agenda

- Introduction to Modeling with Simulink and Simscape
- Leveraging Models
 - Calibrating Digital Twin with Field Data
 - Sizing Systems using Operation Data
 - Digital Twins for Anomaly Detection
- Optimizing and Validation of Controls
 - Optimizing Drilling Operations
 - Importing Existing PLC Ladders and C Software
 - Controller Error Checking and Test Vectors
- Hardware-in-the-loop Testing of PLCs

Validating New (and Existing) Logic before Deployment

Detect hard-to-find design errors before simulation:

- Dead logic
- Division by zero
- Range violation
- Integer overflow

- Assertion violation
- Out of bound array access

Rigorous Testing of Controls before Deployment

Agenda

- Introduction to Modeling with Simulink and Simscape
- Leveraging Models
 - Calibrating Digital Twin with Field Data
 - Sizing Systems using Operation Data
 - Digital Twins for Anomaly Detection
- Optimizing and Validation of Controls
 - Optimizing Drilling Operations
 - Importing Existing PLC Ladders and C Software
 - Controller Error Checking and Test Vectors
- Hardware-in-the-loop Testing of PLCs

Real-Time Simulation and Testing Tasks:

Hardware-in-the-loop (HIL) Simulation

Real-Time Simulation and Testing Example

Hardware-in-the-loop Simulation/Testing

- Hardware Under Test
 - Full authority digital engine control (FADEC)
- Simulation

Aircraft Engines

Development/target computer Ethernet switch

6 LVDT Simulation channels (IO422)

Shared/Reflective Memory (IO902)

FPGA 16 Encoder Emulation channels (IO312)

32 24V digital input channels (IO206)

32 24V/0.5A digital output channels (IO205)

16 DIFF 16-bit analog output channels (IO107)

32 SE/16 DIFF 16-bit analog input, 4 SE analog output, 8 TTL digital input, 8 TTL digital output channels (IO102)

RTD simulation (IO926)

Fixed-Function I/O Modules

Powerful "as is" functionality

- Delivery includes I/O cables, terminal boards, test models, and Simulink driver blocks
- 3 years of warranty, and long-term availability (7+ years for most I/O modules)

Real-Time Simulation and Testing Tasks:

Rapid Control Prototyping

