XOR Count

October XXth, 2017

FluxFingers

Workgroup Symmetric Cryptography Ruhr University Bochum

Friedrich Wiemer

RUB

Joint Work - Its not me alone

Thorsten Kranz, Gregor Leander, Ko Stoffelen, Friedrich Wiemer

RUHR UNIVERSITÄT BOCHUM

Radboud University

Outline

- 1 Motivation
- 2 Preliminaries
- 3 State of the Art and Related Work
- 4 Future Work

What is the XOR count, and why is it important?

Some facts

- Lightweight Block Ciphers
- Efficient Linear Layers
- MDS matrices are "optimal" (regarding security)¹

¹Are they?

What is the XOR count, and why is it important?

Some facts

- Lightweight Block Ciphers
- Efficient Linear Layers
- MDS matrices are "optimal" (regarding security)¹
- What is the lightest implementable MDS matrix?
- What about additional features (Involutory)?

¹Are they?

Definition: MDS

A matrix M of dimension k over the field \mathbb{F} is *maximum distance* separable (MDS), iff all possible submatrices of M are invertible (or nonsingular).

Definition: MDS

A matrix M of dimension k over the field \mathbb{F} is maximum distance separable (MDS), iff all possible submatrices of M are invertible (or nonsingular).

Example

The AES MIXCOLUMN matrix is defined over $\mathbb{F}_{2^8} \cong \mathbb{F}[x]/0 \times 11b$:

$$\begin{pmatrix} 0 \times 02 & 0 \times 03 & 0 \times 01 & 0 \times 01 \\ 0 \times 01 & 0 \times 02 & 0 \times 03 & 0 \times 01 \\ 0 \times 01 & 0 \times 01 & 0 \times 02 & 0 \times 03 \\ 0 \times 03 & 0 \times 01 & 0 \times 01 & 0 \times 02 \end{pmatrix} = \begin{pmatrix} x & x+1 & 1 & 1 \\ 1 & x & x+1 & 1 \\ 1 & 1 & x & x+1 \\ x+1 & 1 & 1 & x \end{pmatrix}$$

This is a (right) *circulant* matrix: circ(x, x + 1, 1, 1).

Constructions

Constructions

Constructions

Representations

What is an MDS matrix?

Representations

The General Linear Group

State of the Art Before our Paper

Related Work I

Related Work II

State of the Art After our Paper

RUB

Friedrich Wiemer | XOR Count | October XXth, 2017

Future Work

Questions?

Thank you for your attention!

Mainboard & Questionmark Images: flickr

References I

