Emission Sources - Maximum Allowable Emission Rates

Permit Numbers 50607, PSDTX331M1, PSDTX804, and PSDTX1017M1

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point	Source Name	Air Contaminant		
No. (1)	(2)	Name (3)	lbs/hour	TPY (4)
Normal Operations Emission Cap (10)	Combustion Units, Cooling Towers, Flares/Vapor Combustor, Fugitives (5), Loading, Process Vents, Storage Tanks, and Wastewater	Benzene	10.63	11.69
Normal Operations Emission Cap (10)	Combustion Units, Flares/Vapor Combustor, Fugitives, Process Vents, and Storage Tanks	H₂S	2.84	6.88
H-028	Crude Charge Heater 1 (100-H1)	NO _x	11.18	23.41
	(100-п1)	СО	14.61	44.41
		VOC	1.10	4.80
		SO ₂	15.53	14.52
		PM	1.51	6.63
		PM ₁₀	1.51	6.63
		PM _{2.5}	1.51	6.63
H-036	Crude Charge Heater 2 (100-H2)	NO _x	11.18	31.56
	(100-112)	СО	14.61	55.54
		VOC	1.10	4.80
		SO ₂	13.53	14.52
		PM	1.51	6.63
		PM ₁₀	1.51	6.63
		PM _{2.5}	1.51	6.63

Emission Sources - Maximum Allowable Emission Rates

Г			T	
H-016	Vacuum Unit Charge Heater (14- H1401)	NO _x	4.95	21.66
	112 102)	СО	8.43	18.45
		VOC	0.76	3.34
		SO ₂	9.41	10.10
		PM	1.05	4.62
		PM ₁₀	1.05	4.62
		PM _{2.5}	1.05	4.62
H-021	ROSE "DAO" Heater (160-H1)	NO _x	1.90	8.31
		СО	2.41	5.27
		VOC	0.22	0.96
		SO ₂	2.70	2.89
		PM	0.30	1.32
		PM ₁₀	0.30	1.32
		PM _{2.5}	0.30	1.32
H-022	Asphalt Heater (160-H2)	NO _x	0.98	4.22
		СО	1.62	3.51
		VOC	0.15	0.64
		SO ₂	1.81	1.92
		PM	0.20	0.88
		PM ₁₀	0.20	0.88
		PM _{2.5}	0.20	0.88

Emission Sources - Maximum Allowable Emission Rates

H-020	Isostripper Reboiler Heater (440- H1)	NO _x	1.99	4.90
	,	СО	3.08	3.79
		VOC	0.27	0.67
		SO ₂	1.90	1.53
		PM	0.37	0.92
		PM ₁₀	0.37	0.92
		PM _{2.5}	0.37	0.92
B-007	"BTX" Boiler (54-F1)	NO _x	12.33	34.16
		СО	18.02	27.76
		VOC	1.26	4.70
		SO ₂	0.17	0.48
		PM	1.74	6.49
		PM ₁₀	1.74	6.49
		PM _{2.5}	1.74	6.49
H-043	Reformate Splitter Heater No. 1. (54-H101)	NO _x	4.27	9.86
	(04 11202)	СО	4.24	4.90
		VOC	0.38	0.89
		SO ₂	4.73	2.68
		PM	0.53	1.22
		PM ₁₀	0.53	1.22
		PM _{2.5}	0.53	1.22

Emission Sources - Maximum Allowable Emission Rates

H-044	Reformate Splitter Heater No. 2	NO _x	1.78	5.75
	(54-H102)	CO	3.03	4.90
		VOC	0.27	0.89
		SO ₂	3.38	2.68
		PM	0.38	1.22
		PM ₁₀	0.38	1.22
		PM _{2.5}	0.38	1.22
B-004	Boiler 6F1-A and Boiler 6F1-B	NO _x	25.97	72.43
	(6F1-A & 6F1-B)	СО	9.18	12.80
		VOC	0.80	2.23
		SO ₂	5.66	5.16
		PM	1.11	3.08
		PM ₁₀	1.11	3.08
		PM _{2.5}	1.11	3.08
B-006	East Plant Boiler (6-F2)	NO _x	13.07	49.82
		СО	6.81	12.98
		VOC	0.59	2.24
		SO ₂	0.08	0.23
		PM	0.81	3.09
		PM ₁₀	0.81	3.09
		PM _{2.5}	0.81	3.09

Emission Sources - Maximum Allowable Emission Rates

H-041	DOT H₂ Recycle Furnace	NO	0.40	F 70
11-041	(F2201)	NO _x	3.40	5.70
		СО	2.90	2.43
		VOC	0.26	0.44
		SO ₂	3.24	1.33
		PM	0.36	0.60
		PM ₁₀ 0.36 0.60	0.60	
		PM _{2.5}	0.36	0.60
H-039	No. 1 SRU Hot Oil Heater (H101)	NO _x	0.69	1.60
		СО	0.43	0.50
		VOC	0.04	0.08
		SO ₂	0.27	0.20
		PM	0.05	0.11
		PM ₁₀	0.05	0.11
		PM _{2.5}	0.05	0.11

Emission Sources - Maximum Allowable Emission Rates

H-047	No. 2 SRU Hot Oil Heater (H401)	NO_x	1.84	6.58
		СО	2.06	3.69
		VOC	0.18	0.65
		SO ₂	2.28	2.00
		PM	0.25	0.91
		PM_{10}	0.25	0.91
		PM _{2.5}	0.25	0.91
H-015A	Lubricating Oil Crude Atmospheric Heater (H1001)	NO_x	0.58	2.53
	()	СО	1.01	2.20
		VOC	0.09	0.38
		SO ₂	0.02	0.04
		PM	0.12	0.53
		PM ₁₀	0.12	0.53
		PM _{2.5}	0.12	0.53
H-015B	Lubricating Oil Crude Atmospheric Heater (H1002)	NO_x	0.32	1.41
	()	СО	0.55	1.23
		VOC	0.05	0.22
		SO ₂	0.01	0.03
		PM	0.06	0.30
		PM ₁₀	0.06	0.30
		PM _{2.5}	0.06	0.30
H-037	HDU Charge Heater 2 (H101)	NO_x	2.68	6.72
		СО	3.02	3.78
		VOC	0.26	0.66

Emission Sources - Maximum Allowable Emission Rates

H-038 HDU Reboiler Heater 2 (H102) H-036 PM ₁₀ 0.36 0.91 PM ₂₅ 0.36 0.91 NO ₄ 1.85 4.65 CO 2.86 3.60 VOC 0.25 0.63 SO ₂ 1.76 1.45 PM 0.34 0.87 PM ₁₀ 0.34 0.87 PM ₂₅ 0.34 0.87 PM ₂₅ 0.34 0.87 PM ₂₅ 0.34 0.87 PM ₂₅ 0.34 0.87 PM ₂₆ PM 0.551 8.69 VOC 0.50 1.58 SO ₂ 6.16 4.76 PM 0.69 2.18 PM ₁₀ 0.69 2.18 PM ₁₀ 0.69 2.18 PM ₂₅ 0.69 PM ₂₅					
H-038 HDU Reboiler Heater 2 (H102) HOV Reboiler Heater 2 (H102) HOV 1.85			SO ₂	1.86	1.52
H-038 HDU Reboiler Heater 2 (H102) PM _{2.5} 0.36 0.91 NO _x 1.85 4.65 CO 2.86 3.60 VOC 0.25 0.63 SO ₂ 1.76 1.45 PM 0.34 0.87 PM ₁₀ 0.34 0.87 PM _{2.5} 0.34 0.87 PM _{2.5} 0.34 0.87 PM _{2.5} 0.34 0.87 PM _{2.5} 0.34 13.11 CO 5.51 8.69 VOC 0.50 1.58 SO ₂ 6.16 4.76 PM 0.69 2.18 PM ₁₀ 0.69 2.18 PM ₁₀ 0.69 2.18 PM ₁₀ 0.69 2.18 PM ₁₀ 0.69 2.18 PM _{2.5} 0.69 2			PM	0.36	0.91
H-038 HDU Reboiler Heater 2 (H102) NO _x 1.85 4.65 CO 2.86 3.60 VOC 0.25 0.63 SO ₂ 1.76 1.45 PM 0.34 0.87 PM ₁₀ 0.34 0.87 PM ₂₅ 0.34 0.87 PM ₂₅ NO _x 4.16 13.11 CO 5.51 8.69 VOC 0.50 1.58 SO ₂ 6.16 4.76 PM 0.69 2.18 PM ₁₀ 0.69 2.18 PM ₁₀ 0.69 2.18 PM ₁₀ 0.69 2.18 PM ₂₅ 0.69 PM ₂₅ 0.69 PM ₂₅ 0.69 PM ₂₅ 0.69 PM ₂₅ PM ₂₅ PM ₂₅ PM ₂₅ PM ₂₅ PM ₂₅			PM ₁₀	0.36	0.91
CO 2.86 3.60 VOC 0.25 0.63 SO2 1.76 1.45 PM 0.34 0.87 PM ₁₀ 0.34 0.87 PM ₂₅ 0.34 0.87 PM ₂₅ 0.34 0.87 NO _x 4.16 13.11 CO 5.51 8.69 VOC 0.50 1.58 SO2 6.16 4.76 PM 0.69 2.18 PM ₁₀ 0.69 2.18 PM ₂₅ 0.69 2.18			PM _{2.5}	0.36	0.91
H-014 Crude Charge Heater 3 (H1102) H-014 Crude Charge Heater 3 (H1102) Fig. 1.76	H-038	HDU Reboiler Heater 2 (H102)	NO _x	1.85	4.65
H-014 Crude Charge Heater 3 (H1102) SO2			СО	2.86	3.60
H-014 Crude Charge Heater 3 (H1102) PM _{2.5} 0.34 0.87 PM _{2.5} 0.69 VOC 0.50 1.58 SO ₂ 6.16 4.76 PM 0.69 2.18 PM ₁₀ 0.69 2.18 PM _{2.5} 0.69 2.18 SO ₂ 0.64 2.80 PM 0.52 1.67			VOC	0.25	0.63
H-014 Crude Charge Heater 3 (H1102) PM ₁₀ 0.34 0.87 PM ₂₅ 0.34 0.87 NO _x 4.16 13.11 CO 5.51 8.69 VOC 0.50 1.58 SO ₂ 6.16 4.76 PM 0.69 2.18 PM ₁₀ 0.69 2.18 PM ₂₅ 0.69 2.18 2.18 2.18 2.18 2.18 2.18 2.18 2.18			SO ₂	1.76	1.45
H-014 Crude Charge Heater 3 (H1102) PM _{2.5} 0.34 0.87 NO _x 4.16 13.11 CO 5.51 8.69 VOC 0.50 1.58 SO ₂ 6.16 4.76 PM 0.69 2.18 PM ₁₀ 0.69 2.18 PM _{2.5} 0.69 2.18 PM _{2.5} 0.69 2.18 PM _{2.5} 0.69 2.18 PM _{2.5} 0.69 2.18 CO 4.29 6.95 VOC 0.37 1.21 SO ₂ 2.64 2.80 PM 0.52 1.67			PM	0.34	0.87
H-014 Crude Charge Heater 3 (H1102) NO _x 4.16 13.11 CO 5.51 8.69 VOC 0.50 1.58 SO ₂ 6.16 4.76 PM 0.69 2.18 PM ₁₀ 0.69 2.18 PM _{2.5} 0.69 2.18 NO _x 11.24 CO 4.29 6.95 VOC 0.37 1.21 SO ₂ 2.64 2.80 PM 0.52 1.67			PM ₁₀	0.34	0.87
H-034 H.C.U. Recycle Heater (H1401) CO 5.51 8.69 VOC 0.50 1.58 SO ₂ 6.16 4.76 PM 0.69 2.18 PM ₁₀ 0.69 2.18 PM _{2.5} 0.69 2.18 PM _{2.5} 0.69 2.18 CO 4.29 6.95 VOC 0.37 1.21 SO ₂ 2.64 2.80 PM 0.52 1.67			PM _{2.5}	0.34	0.87
H-034 H.C.U. Recycle Heater (H1401) H.C.U. Recycle Heater (H1401) VOC 0.50 1.58 SO ₂ 6.16 4.76 PM 0.69 2.18 PM ₁₀ 0.69 2.18 PM _{2.5} 0.69 2.18 NO _x 3.47 11.24 CO 4.29 6.95 VOC 0.37 1.21 SO ₂ 2.64 2.80 PM 0.52 1.67	H-014	Crude Charge Heater 3 (H1102)	NO _x	4.16	13.11
H-034 H.C.U. Recycle Heater (H1401) H.C.U. Recycle Heater (H1401) SO ₂ 6.16 PM 0.69 2.18 PM _{2.5} 0.69 2.18 NO _x 3.47 11.24 CO 4.29 6.95 VOC 0.37 1.21 SO ₂ 2.64 2.80 PM 0.52 1.67			СО	5.51	8.69
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			VOC	0.50	1.58
H-034 H.C.U. Recycle Heater (H1401) H.C.U. Recycle Heater (H1401) NO _x 3.47 11.24 CO 4.29 6.95 VOC 0.37 1.21 SO ₂ 2.64 2.80 PM 0.52 1.67			SO ₂	6.16	4.76
H-034 H.C.U. Recycle Heater (H1401) PM _{2.5} 0.69 2.18 NO _x 3.47 11.24 CO 4.29 6.95 VOC 0.37 1.21 SO ₂ 2.64 2.80 PM 0.52 1.67			PM	0.69	2.18
H-034 H.C.U. Recycle Heater (H1401) NO _x 3.47 11.24 CO 4.29 6.95 VOC 0.37 1.21 SO ₂ 2.64 2.80 PM 0.52 1.67			PM ₁₀	0.69	2.18
CO 4.29 6.95 VOC 0.37 1.21 SO ₂ 2.64 2.80 PM 0.52 1.67			PM _{2.5}	0.69	2.18
VOC 0.37 1.21 SO2 2.64 2.80 PM 0.52 1.67	H-034	H.C.U. Recycle Heater (H1401)	NO _x	3.47	11.24
SO ₂ 2.64 2.80 PM 0.52 1.67			СО	4.29	6.95
PM 0.52 1.67			VOC	0.37	1.21
			SO ₂	2.64	2.80
			PM	0.52	1.67
PM_{10} 0.52 1.67			PM ₁₀	0.52	1.67

Emission Sources - Maximum Allowable Emission Rates

		PM _{2.5}	0.52	1.67
H-035	H.C.U. Debutanizer Reboiler Heater (H1402)	NO _x	3.39	11.67
		СО	5.24	9.02
		VOC	0.46	1.57
		SO ₂	3.23	3.63
		РМ	0.63	2.17
		PM ₁₀	0.63	2.17
		PM _{2.5}	0.63	2.17
H-018	H.C.U. Fractionation Heater (H1501A)	NO _x	2.40	10.51
		СО	3.71	16.22
		VOC	0.32	1.42
		SO ₂	2.28	3.27
		РМ	0.45	1.96
		PM ₁₀	0.45	1.96
		PM _{2.5}	0.45	1.96
H-019	H.C.U. Fractionation Heater (H1501B)	NO _x	2.40	8.02
		СО	3.71	6.20
		VOC	0.32	1.09
		SO ₂	2.28	2.50
		РМ	0.45	1.50
		PM ₁₀	0.45	1.50
		PM _{2.5}	0.45	1.50

Emission Sources - Maximum Allowable Emission Rates

H-045	DHT Charge Heater (H28001)	NO _x	1.91	8.37
		СО	2.28	4.99
		VOC	0.21	0.91
		SO ₂	2.55	2.73
		PM	0.28	1.25
		PM ₁₀	0.28	1.25
		PM _{2.5}	0.28	1.25
H-046	Fractionator Feed Heater (H28002)	NO _x	2.69	11.76
		СО	3.56	7.79
		VOC	0.32	1.41
		SO ₂	3.97	4.26
		PM	0.44	1.95
		PM ₁₀	0.44	1.95
		PM _{2.5}	0.44	1.95
H-023	Dowtherm Heater (160-H3)	NO _x	0.09	0.27
		СО	0.15	0.22
		VOC	0.01	0.04
		SO ₂	0.17	0.13
		PM	0.02	0.06
		PM ₁₀	0.02	0.06
		PM _{2.5}	0.02	0.06

Emission Sources - Maximum Allowable Emission Rates

H-004	Process Oil Treater (POT) (H401)	NO _x	0.41	1.79
		СО	0.72	3.12
		VOC	0.06	0.27
		SO ₂	0.01	0.03
		PM	0.09	0.37
		PM ₁₀	0.09	0.37
		PM _{2.5}	0.09	0.37
H-031	No. 1 HDU Stripper Reboiler Heater (H501)	NO _x	0.79	3.44
		СО	1.32	5.79
		VOC	0.12	0.51
		SO ₂	1.46	1.57
		PM	0.16	0.71
		PM ₁₀	0.16	0.71
		PM _{2.5}	0.16	0.71
H-010	No. 1 HDU Reactor Charge Heater (H502)	NO _x	1.05	4.59
		СО	1.76	7.71
		VOC	0.16	0.69
		SO ₂	1.95	2.09
		PM	0.22	0.96
		PM ₁₀	0.22	0.96
		PM _{2.5}	0.22	0.96

Emission Sources - Maximum Allowable Emission Rates

H-030	No. 2 Reformer Charge Heaters	NO _x	19.06	-
	(H201_H203_H204)	СО	13.63	-
		VOC	2.38	-
		SO ₂	16.78	-
		PM	3.29	-
		PM ₁₀	3.29	-
		PM _{2.5}	3.29	-
H-032	No. 2 Reformer Charge Heater (H202)	NO _x	12.27	-
		СО	11.16	-
		VOC	0.97	-
		SO ₂	6.87	-
		PM	1.35	-
		PM ₁₀	1.35	-
		PM _{2.5}	1.35	-
H-033	No. 2 Reformer Stab. Reboiler (H205)	NO _x	2.25	-
		СО	3.48	-
		VOC	0.30	-
		SO ₂	2.14	-
		PM	0.42	-
		PM ₁₀	0.42	-
		PM _{2.5}	0.42	-
H-012	No.1 Reformer Charge Heaters (H504, H505A, H505B)	NO _x	5.41	-
		СО	6.34	-
		VOC	0.57	-

Emission Sources - Maximum Allowable Emission Rates

		SO ₂	7.00	-
		PM	0.78	-
		PM_{10}	0.78	-
		PM _{2.5}	0.78	-
H-013	No. 1 Stabilizer Reboiler Heater (H506)	NO _x	1.86	-
		СО	1.05	-
		VOC	0.09	-
		SO ₂	1.15	-
		PM	0.13	-
		PM ₁₀	0.13	-
		PM _{2.5}	0.13	-
H-030, H-032, H-033, H-012, and	Subcaps for No.1 and No.2 Reformer Unit Heaters	NO _x	-	91.88
		СО	-	59.57
		VOC	-	10.46
		SO ₂	-	26.77
		PM	-	14.46
		PM ₁₀	-	14.46
		PM _{2.5}	-	14.46
S-007, S-008, S-033, S-036, S-039, S-044	Subcaps for Storage Tanks	VOC	14.08	18.67
FL-003, FL-004, FL-006 and FL-501	Subcaps for Flares	NO _x	15.59	18.83
		СО	80.33	96.98
		VOC	63.01	117.58
		SO ₂	5.17	7.00
F-28, F-100 (#1 Crude, Desalter),	VOC and NH₃ Subcaps for Equipment Fugitives (5)(10)	VOC	130.66	572.31

Emission Sources - Maximum Allowable Emission Rates

•				
		NH ₃	0.01	0.04
F-0670	No.1 West Plant Cooling Tower (5)	VOC	0.25	1.10
		PM	0.36	1.58
		PM ₁₀	0.14	0.60
		PM _{2.5}	0.01	0.01
F-2810	East Plant Cooling Tower (5)	VOC	1.68	7.36
		PM	2.40	10.52
		PM ₁₀	0.36	1.58
		PM _{2.5}	0.01	0.01
F-3670	No. 2 West Plant Cooling Tower (5)	VOC	0.59	2.58
		PM	0.84	3.68
		PM ₁₀	0.32	1.41
		PM _{2.5}	0.01	0.01
F-0680	F-0680 Open-Top Biotreatment	VOC	23.08	36.23
F-0671	No. 2 API Separator	VOC	0.48	0.95
F-0682	Crude Unit Sump	VOC	3.70	6.50
F-0683	No. 1 Reformer Sump	VOC	1.66	3.31
F-0684	600 Unit Sump	VOC	0.01	0.03
F-0685	R. R. Rack Sump	VOC	0.10	0.20
F-0686	Truck Loading Sump	VOC	0.09	0.18
F-0687	Land Farm	VOC	2.26	4.50
F-0688	Vacuum Unit Sump	VOC	2.08	4.14
F-0689	Crude Unload Sump	VOC	0.24	0.47

Emission Sources - Maximum Allowable Emission Rates

F-3110				
	No. 2 Reformer Sump	VOC	0.59	1.18

Emission Sources - Maximum Allowable Emission Rates

V-006				
	No. 1 Reformer Regeneration Vent	СО	37.50	1.50
		Cl ₂	0.40	0.02
		VOC	1.40	0.06
V-007	No. 2 Reformer Regeneration Vent	СО	5.00	14.02
		Cl ₂	0.01	0.04
		VOC	0.04	0.13
V-010	FCCU Regeneration Vent	NOx	62.69	28.82
		СО	195.47	184.29
		VOC	6.16	14.51
		SO ₂	43.64	52.65
		PM	30.00	69.98
		PM ₁₀	25.11	58.58
		PM _{2.5}	25.11	58.58
		H ₂ SO ₄	13.69	59.96
		O ₃	7.22	31.62

Emission Sources - Maximum Allowable Emission Rates

		HCN	19.49	45.47
V-008, V-009	Subcaps for Sulfur Plants	NO _x	6.83	19.32
		СО	29.09	82.32
		VOC	12.21	34.56
		SO ₂	38.88	98.27
		PM	0.37	1.02
		PM ₁₀	0.37	1.02
		PM _{2.5}	0.37	1.02
		TRS	2.63	9.51
L-001	Oil Truck Loading Rack	VOC	0.02	0.02
L-002	Gasoline Truck Loading Rack	VOC	9.09	3.46
L-004	Tank Car Loading Rack	VOC	0.01	0.01
VCU-1	Loading Rack Vapor Combustor	NO _x	3.01	0.71
		СО	8.75	2.07
		VOC	17.98	6.88
VCU-2	WWTP Vapor Combustor	VOC	1.41	2.09
		NOx	0.30	0.86
		СО	2.51	6.93
		SO ₂	0.19	0.16
		PM	0.03	0.10
		PM ₁₀	0.03	0.10
		PM _{2.5}	0.03	0.10
Planned Maintenance.				
Cooling Towers, Combustion Units		VOC (6) (7)	4,711.24	75.49

Emission Sources - Maximum Allowable Emission Rates

1				1		
(4)				NO _x (6) (7)	305.53	16.34
(1)	a plot pl	•	identification - either specific equipmer	t designation or em CO (6) (7)	Ission point num 1,202.92	ber (EPN) from 43.12
(2)			ource names. For fugitive sources, use	an area name or fu	igitive source na	me.
(3)	VOC	- VC	latile organic compounds as defined in			
	NO _x	- ca	al oxides of nitrogen rbpn monoxide	PM (6) (7)	4.54	0.66
	SO_2 PM	- to	Ifur dioxide cal particulate matter, suspended in the			<u>2</u> Q.66
	PM_{10}		ırti <mark>culate matter equal to or less than 10</mark>			
	$PM_{2.5}$	- pa	rticulate matter equal to or less than 2.	\$PiMcro(19) (17)diamet	4 .54	0.66
	Cl_2		lorine			
	cos		rbonyl sulfide	H ₂ S (6) (7)	2.65	0.51
	CS ₂		rbbn disulfide	Benzene (6) (7)		
	H ₂ S	•	drogen sulfide	(8)	90.70	2.65
	H_2SO_4		Ifuric acid	(0)		
	NH_3	- ar	nmonia	CS ₂ (7)	0.33	0.02
	TRS	- to	al reduced sulfur	(.)	0.00	
	O₃ HCN		one drogen cyanide	COS (7)	1.89	0.11
(4)04	_		h annual emission limits (tons per year	is bessel on a 10 m	a sakla wa Hisa ay sa a wis	- al
(6) fe rer (7) b	 (5) (SIP) issignces is an estimate and compliance is demonstrated by meeting the requirements of the incamplicated special conditions and permit application representations. (6) fere lacene \$\frac{1}{2}\$ (Since 1) (Since 2) (Since					
(9)			ye allowable emissions are specified by			
Reg			caps have been carried forward from		nd do not include	MSS
(_0)			e caps have been lowered to equal the			
B-01		s. The	caps do Boitenclude emissions from EP			
	i ciiiii c	JOJII.		СО	12.31	53.93
				VOC	1.83 Dated	8.03 June 22, 2018
				NH ₃	1.49	6.55
				SO ₂	4.55	19.93
				PM	2.53	11.10
				PM ₁₀	2.53	11.10
				PM _{2.5}	2.53	11.10