$$f(x)=x^3-3x^2.$$

ightharpoonup Найдем производную: $f'(x) = 3x^2 - 6x$.

Решая неравенство $f'(x) \ge 0$, т. е. неравенство

Puc. 123

 $3x^2 - 6x > 0$, находим интервалы возрастания: x < 0, x > 2.

Решая неравенство $f'(x) \le 0$, т. е. $3x^2 - 6x < 0$, находим неравенство интервал убывания 0 < x < 2.

График функции $y = x^3 - 3x^2$ изображен на рисунке 123. Из этого рисунка видно, что функция $y = x^3 - 3x^2$ возрастает не только на интервалах x < 0и x > 2, но и на промежутках $x \le 0$ и $x \ge 2$; убывает не только на интервале 0 < x < 2, но и на отрезке $0 \le x \le 2$.

Упражнения

Доказать, что функция $f(x) = x^2 + \frac{2}{x}$ возрастает на проме-899 жутке x > 1, убывает на промежутках x < 0 и 0 < x < 1.

900 Найти интервалы возрастания и убывания функции:

$$1) \quad y = x^2 - x;$$

2)
$$y = 5x^2 - 3x - 1$$
;

3)
$$y = x^2 - 2x$$
;

4)
$$y = x^2 + 12x - 100$$
;

5)
$$y = x^3 - 3x$$
;

6)
$$y = x^4 - 2x^2$$
;

7)
$$y = 2x^3 - 3x^2 - 36x + 40$$
; 8) $y = x^3 - 6x^2 + 9$.

$$8) \ \ y = x^3 - 6x^2 + 9$$

Построить эскиз графика непрерывной функции y = f(x), определенной на отрезке [a; b], если:

1)
$$a = 0$$
, $b = 5$, $f'(x) > 0$ при $0 < x < 5$, $f(1) = 0$, $f(5) = 3$;

2)
$$a = -1$$
, $b = 3$, $f'(x) < 0$ при $-1 < x < 3$, $f(0) = 0$, $f(3) = -4$.

Найти интервалы возрастания и убывания функции (902—905).

902 1)
$$y = \frac{1}{x+2}$$
; 2) $y = 1 + \frac{2}{x}$; 3) $y = -\sqrt{x-3}$; 4) $y = 1 + 3\sqrt{x-5}$.

903 1)
$$y = \frac{x^3}{x^2 + 3}$$
;

2)
$$y = \frac{(x-2)(8-x)}{x^2}$$
;

3)
$$y = (x - 1) e^{3x}$$
;

4)
$$y = xe^{-3x}$$
.

904 1)
$$y = e^{x^2 - 3x}$$
;

2)
$$y = 3^{x^2 - x}$$
.

905 1)
$$y = x - \sin 2x$$
;

2)
$$y = 3x + 2 \cos 3x$$
.