

PRÁCTICA 2: "FLIP FLOPS"

Código VHDL

```
1 -- Santos Mèndez Ulises Jesùs
2 -- 2CV8
 3 -- Practica 2 "FLIP FLOPS"
4 library ieee;
5 use ieee.std logic 1164.all;
 7 entity pract is
 8 port (j,k,clk,clr,t,d,s,r: in std logic;
          qsr,qd,qt,qjk: inout std logic;
9
10
          sel: in std logic vector(1 downto 0);
        display: out std logic vector (5 downto 0));
11
12
13
      attribute pin numbers of pract: entity is
      "j:2 k:3 t:4 s:5 r:6 d:7 sel(0):8 sel(1):9 clr:13 "
14
     "display(5):21 display(4):20 display(3):19 "
15 €
     "display(2):18 display(1):17 display(0):16 ";
16 €
17 end pract;
18
19 architecture Apract of pract is
      signal Q: std logic;
20
21
22 begin
23 -- Flip Flop JK
24
      process(clk,clr,qjk)
25
      begin
26
           if(clr= '1') then
27
          qjk<='0';
28
         elsif(rising edge(clk)) then
      qjk<=(j and (not qjk)) or ((not k) and qjk);
29
          end if:
30
31
     end process;
```



```
32 -- Flip Flop T
33
       process(clk,clr,qt)
34
       begin
           if(clr='1') then
35
36
           qt<='0';
37
           elsif(rising edge(clk)) then
38
           qt<= t xor qt;
39
           end if:
40
       end process;
41
42 -- Flip Flop D
43
       process (clk, clr, qd)
44
       begin
           if(clr='1') then
45
           qd<='0';
46
47
           elsif(rising edge(clk)) then
48
           qd<=d;
49
           end if:
50
       end process;
51 -- Flip Flop SR
52
       process(clk,clr,qsr)
53
       begin
           if(clr='1') then
54
           gsr<='0';
55
56
           elsif(rising edge(clk)) then
57
           qsr<= s or ((not r) and qsr);
58
           end if:
59
           end process;
60 -- Multiplexor
61
       process(qjk,sel,qt,qd,qsr,q)
62
       begin
63
            if (sel="00") then
64
                Q<= qjk;
65
            elsif (sel="01") then
66
                Q<= qt;
67
            elsif (sel="10") then
68
                Q<= qd;
69
            else
70
                Q<= qsr;
            end if;
71
72
       end process;
```



```
73 -- Decodificador
74
       process (Q)
75
       begin
76
       case Q is
77
           when '0'=> display <= "111111";</pre>
78
           when others=> display <="011000";
       end case:
79
       end process;
80
81 end Apract;
```

Diagrama de pines del PALCE22V10-15PC (.rpt)

C22V10

clk	= 1	24 *	not used
ز	= 2	23 =	qsr
k	= 3	22 =	qd
t	= 4	21 =	display(5)
8	= 5	20 =	display(4)
r	= 6	19 =	display(3)
d	= 7	18 =	display(2)
sel(0)	= 8	17 =	display(1)
sel(1)	= 9	16 =	display(0)
not used	* 10	15 =	qjk
not used	* 11	14 =	qt
not used	* 12	13 =	clr

Simulación en Active-HDL Sim y Proteus

1) Caso donde clear está en 1: No importa que valor se introduzca en las entradas y que se seleccione, nuestro resultado será 0.

2) Se comprueba la tabla de verdad del flip flop JK

J	K	CLK	Q(t+1)
0	0	↑ó↓	Q(t)
0	1	↑ ó ↓	0
1	0	↑ ó ↓	1
1	1	↑ó↓	$\overline{Q(t)}$

Name	Value	Sti	- 1	. !	5,0		100	1	150		21
⊳ clk	0	Clock					L				
□ clr	0	<= 0									
+ r sel	0		0								
r j	0	<= 0									
⊳ k	1	<= 1									
마 t	1	<= 1									
⊳ d	0	<= 0									
r r	0	<= 0									
D- S	1	<= 1									
🛨 🗢 display	3F		ZX38)	(3F							

Name	Value	Sti 1 . 50 . 1 . 100 . 1 150 . 1 . 200
⊳ clk	0	Clock
P clr	0	<= 0
+ ⊏ sel	0	0
⊳ j	1	<= 1
⊳ k	0	<= 0
다 t	1	<= 1
⊳ d	0	<= 0
D- r	0	<= 0
D- S	1	<= 1
🛨 🗠 display	18	⟨ZZ)(38)(3F)(1F)(18

Presento oscilaciones el display en 1 y 0 y eso se debe a que en la tabla de estados y excitación el comportamiento depende mucho de Q(t) y será diferente en Q(t+1).

3) Se comprueba la tabla de verdad del Flip Flop T

Т	CLK	Q(t+1)
0	^ ó →	Q(t)
1	↑ ó ↓	$\overline{Q(t)}$

Name	Value	Sti 1 . 50 . 1 . 100 . 1 . 150 . 1 . 200 .
⊏ dk	0	Clock
P- clr	0	<= 0
+ □ sel	1	(1
⊳ j	1	<= 1
⊳ k	1	<= 1
D- t	0	<= 0
⊳ d	0	<= 0
D- r	0	<= 0
D- S	1	<= 1
	3F	(ZZ)(38)(3F

Name	Value	Sti 1 - 50 - 1 - 100 - 1 - 150 - 1 - 200 -
⊏ clk	0	Clock
¤ clr	0	<= 0
⊕ ⊳ sel	1	(1
□- j	1	<= 1
⊳ k	1	<= 1
₽t	1	<=1
⊳d	0	<= 0
D- r	0	<= 0
D- 5	1	<= 1
± ⇔ display	18	(ZZ)(38)(3F) (1F)(18) (38)(3F)

El Flip Flop tipo T también oscila debido a que dependiendo del pulso que se encuentre y de Q(t) se verá reflejado en Q(t+1).

4) Se comprueba la tabla de verdad del Flip Flop D

D	CLK	Q(t+1)
0	↑ó↓	0
1	↑ ó ↓	1

Name	Value	Sti	1 - 50 - 1 - 100 - 1 - 150 - 1 - 200 - 1
□ clk	0	Clock	
¤ clr	0	<= 0	
+ □ sel	2		(2
D- j	1	<= 1	
P- k	1	<= 1	
₽-t	1	<= 1	
⊳ d	0	<= 0	
D- y	0	<= 0	
D- S	1	<= 1	
± ⇔ display	3F		⟨ZZ⟩(38)(3F

Name	Value	Sti 1 - 50 - 1 - 100 - 1 - 150 - 1 - 200 - 1 - 2
⊳ clk	0	Clock
Þ- clr	0	<= 0
+ r sel	2	(2
D- j	1	<= 1
r- k	1	<= 1
P- t	1	<= 1
P- d	1	<= 1
D- y	0	<= 0
D- S	1	<= 1
	18	(ZZ)(38)(3F)(1F)(18

5) Se comprueba la tabla de verdad del Flip Flop RS

Name	Value	Sti	. 50 100 150 200
P clk	0	Clock	
P- clr	0	<= 0	
+ □ sel	3	(3	
⊳ j	1	<= 1	
⊳ k	1	<= 1	
₽ŧ	1	<= 1	
⊳ d	1	<= 1	
P- S	0	<= 0	
D- r	0	<= 0	
	3F	(Z)(38)	X3F

Name	Value	Sti	1 - 50 - 1 - 100 - 1 - 150 - 1 - 200 - 1 -
⊳ clk	0	Clock	
⊏ dr	0	<= 0	
± □ sel	3		(3
₽ij	1	<= 1	
r- k	1	<= 1	
마 반	1	<= 1	
⊳ d	1	<= 1	
D- S	0	<= 0	
Pr	1	<= 1	
	3F		⟨ZZ)(38)(3F

Name	Value	Sti 1 . 50 . 1 . 100 . 1 . 150 . 1 . 200 .
P clk	0	Clock
r clr	0	<= 0
+ □ sel	3	(3
⊳ j	1	<= 1
⊳ k	1	<= 1
₽t	1	<= 1
⊶d	1	<= 1
D- S	1	<= 1
D- y	0	<=0
± ⇔ display	18	(ZZ)(38)(3F)(1F)(18

Name	Value	Sti 1 - 50 - 1 - 100 - 1 - 150 - 1 - 200 -
P clk	0	Clock
P- clr	0	<= 0
+ - sel	3	(3
⊳j	1	<= 1
⊳ k	1	<= 1
P- t	1	<= 1
⊳d	1	<= 1
D- 5	1	<= 1
D- y	1	<= 1
± ⇔ display	18	(ZZ)(38)(3F)(1F)(18

CUESTIONARIO

1) ¿Cuántos dispositivos PLD 22V10 son necesarios para el desarrollo de esta práctica?

R= 1 dispositivo PLD 22V10

- 2) ¿Cuántos dispositivos de la serie 74xx(TTL) ó 40xx (CMOS) hubieras necesitado para el desarrollo de esta práctica?
- 1 FF 4013 (FFD)
- 1 NE555
- 1 7404 (NOT)
- 1 7408 (AND)
- 1 7432(OR)
- 1 74ls139 (Multiplexor)
- 1 74ls47 (codificador)
- 3) ¿Cuántos pines de entrada/salida del PLD 22V10 se usan en el diseño?
 - R= 4 pines para QJK, QT, QD, QSR
- 4) ¿Cuántos términos producto ocupan las ecuaciones para cada señal de salida y que porcentaje se usa en total del PLD 22V10?
 - R= 16 términos productos y se ocupa un 90% del PLD
- 5) ¿Por qué aparecen las señales QJK, QT, QD Y QRS entre paréntesis en los pines de salida?
 R= Porque son entradas/salidas.
- 6) ¿Cuáles son las señales que funcionan de manera síncrona y cuáles de manera asíncrona? R= La señales de entrada funcionan de forma síncrona y de manera asíncrona las salidas y el reloj.
- 7) ¿Qué puedes concluir de esta práctica?

R= En conclusión, esta práctica nos ayudo a ver el comportamiento de los Flip Flops y como construirlos a partir de 1 solo Flip Flop en este caso tipo D ya que el PLD tiene en su arquitectura solo Flip Flops tipo D.