DATA MINING

Report by
Souravi

Table of Contents

Introduction	2
Problem - 1 Summary	3
Bank marketting Analysis	3
Problem 1	4
 Read the data, do the necessary initial steps, and exploratory data ana (Univariate, Bi-variate, and multivariate analysis). 	alysis 4
II. Do you think scaling is necessary for clustering in this case? Justify	10
III. Apply hierarchical clustering to scaled data. Identify the number of op clusters using Dendrogram and briefly describe them	otimum 12
IV. Apply K-Means clustering on scaled data and determine optimum clus Apply elbow curve and silhouette score. Explain the results properly. Interpand write inferences on the finalised clusters.	
V. Describe cluster profiles for the clusters defined. Recommend different promotional strategies for different clusters.	nt 17
Problem - 2 Summary	24
Insurance firm Analysis	24
Problem 2	25
 Read the data, do the necessary initial steps, and exploratory data ana (Univariate, Bi-variate, and multivariate analysis). 	alysis 25
II. Data Split: Split the data into test and train, build classification model Random Forest, Artificial Neural Network.	CART, 33
III. Performance Metrics: Comment and Check the performance of Prediction on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve an ROC_AUC score, classification reports for each model.	
IV. Final Model: Compare all the models and write an inference which mo best/optimised.	del is 46
V. Inference: Based on the whole Analysis, what are the business insights recommendations	s and 48

INTRODUCTION

This report includes a detailed explanation of the approach taken, inferences, and insights addressing all two problems. It includes outputs such as graphs, tables, and all other relevant information. This Report does not include any codes.

Cases Covered

PROBLEM - 1 SUMMARY

BANK MARKETTING ANALYSIS

A leading bank wants to develop a customer segmentation to give promotional offers to its customers. They collected a sample that summarises the activities of users during the past few months. You are given the task to identify the segments based on credit card usage.

Exploratory Data Analysis

Data Description

Data Dictionary for Market Segmentation:

- 1. **spending**: Amount spent by the customer per month (in 1000s)
- 2. **advance_payments**: Amount paid by the customer in advance by cash (in 100s)
- 3. **probability_of_full_payment**: Probability of payment done in full by the customer to the bank
- 4. **current_balance**: Balance amount left in the account to make purchases (in 1000s)
- 5. **credit_limit**: Limit of the amount in credit card (10000s)
- 6. **min_payment_amt**: minimum paid by the customer while making payments for purchases made monthly (in 100s)
- 7. max_spent_in_single_shopping: Maximum amount spent in one purchase (in 1000s)

PROBLEM 1

I. Read the data, do the necessary initial steps, and exploratory data analysis (Univariate, Bi-variate, and multivariate analysis).

Sample of the dataset

spending	advance_ payments	probability_of _full_payment	current_ balance	credit_ limit	min_payme nt_amt	max_spent _in_single_ shopping
19.94	16.92	0.875200	6.675	3.763	3.252	6.550
15.99	14.89	0.906400	5.363	3.582	3.336	5.144
18.95	16.42	0.882900	6.248	3.755	3.368	6.148
10.83	12.96	0.810588	5.278	2.641	5.182	5.185
17.99	15.86	0.899200	5.890	3.694	2.068	5.837

Table No. 1

Data types of different variable

Field Names	Non-Null Count	Dtype
spending	210 non-null	float64
advance_payments	210 non-null	float64
probability_of_full_payment	210 non-null	float64
current_balance	210 non-null	float64
credit_limit	210 non-null	float64
min_payment_amt	210 non-null	float64
max_spent_in_single_shopping	210 non-null	float64

Table No. 2

- 1. Dataset has a total of 210 rows and 7 columns.
- 2. All the fields are of float types.
- 3. There is no missing values.

Checking for duplicates

There is No duplicates present in the dataframe.

Missing data analysis for the variables

No missing values present in the data frame.

Fields	Null Present
spending	FALSE
advance_payments	FALSE
probability_of_full_payment	FALSE
current_balance	FALSE
credit_limit	FALSE
min_payment_amt	FALSE
max_spent_in_single_shopping	FALSE

Table No. 3

Univariate Analysis

Figure No. 1

Observations

Positively Skewed

- Skewness of current_balance is 0.5217206481959235
- Skewness of min_payment_amt is 0.35742468670751903

Bimodal Distribution

- Skewness of advance_payments is 0.38380604212562563
- Skewness of spending is 0.39702715402072153
- Skewness of max_spent_in_single_shopping is 0.5578758322317954

Negatively Skewed

• Skewness of probability_of_full_payment is -0.5190516297742105

Plateau or Multimodal Distribution

Skewness of credit_limit is 0.13341648969738135

Bivariant Analysis¶

This can be done both by Correlation Heat Map and PairPlot

HeatMap

Figure No. 2

Observations

- 1. Strong positive correlation can be observed in spending-advance_payments, spending-credit_limit, spending-current_balance, current_balance-max_spent_in_single_shopping.
- 2. No correlation is observed in fields like probability_of_full_payment-max_spent_in_single_shopping, min_payment_amt-max_spent_in_single_shopping etc.
- 3. No strong negative correlations.

PairPlot

Figure No. 3

Observations:

- 1. Positive covariance can be observed in spending-advance_payments, current_balance-spending, spending-credit_limit etc.
- 2. Negative Covariance can be observed in probability_of_full_payment-min_payment_amt etc.
- 3. No covariance seen in max_spent_in_single_shopping-probability_of_full_payment, probability_of_full_payment-credit_limit etc.

BoxPlot

Figure No. 4

Observations: ¶

- 1. Outliers are present for probability_of_full_payment and min_payment_amt.
- 2. Outlier treatment can be done for the mentioned fields.

After treating Outliers, we observe the below Boxplots.

Figure No. 5

II. Do you think scaling is necessary for clustering in this case? Justify

To determine if Scaling is required or not, we need to find the summary of all the fields and check if all those are in approximately same range.

Descriptive Statistic

	count	mean	std	min	25%	50%	75%	max
spending	210.0	14.8475	2.9096	10.5900	12.270	14.355	17.3050	21.1800
advance_paym ents	210.0	14.5592	1.3059	12.4100	13.450	14.320	15.7150	17.2500
probability_of_f ull_payment	210.0	0.87102	0.0235	0.81058	0.8569	0.8734	0.88777	0.91830
current_balanc e	210.0	5.62853	0.4430	4.89900	5.2622	5.5235	5.97975	6.67500
credit_limit	210.0	3.25860	0.3777	2.63000	2.9440	3.2370	3.56175	4.03300
min_payment_a mt	210.0	3.69728	1.4946	0.76510	2.5615	3.5990	4.76875	8.07962
max_spent_in_s ingle_shopping	210.0	5.40807	0.4914	4.51900	5.0450	5.2230	5.87700	6.55000

Table No. 4

As observed in the above descriptive statistics, the range of fields vary from one another. Hence, we would require scaling for clustering.

After applying zscore method of scaling, the scaled data detail is as follows:

	count	mean	std	min	25%	50%	75%	max
spending	210.0	9.148766E-	1.00238	-1.4667	-0.8879	-0.1696	0.84659	2.1815
advance_payment s	210.0	1.097006E-	1.00238	-1.6496	-0.8514	-0.1836	0.8870	2.06520
probability_of_full _payment	210.0	1.638372E-	1.00238	-2.5713	-0.6009	0.10317	0.71264	2.0113
current_balance	210.0	-1.358702E	1.00238	-1.6505	-0.8286	-0.2376	0.79459	2.3675
credit_limit	210.0	-2.790757E	1.00238	-1.6682	-0.8349	-0.0573	0.80449	2.0551
min_payment_amt	210.0	1.554312E-	1.00238	-1.9664	-0.7616	-0.0659	0.7185	2.9389
max_spent_in_sin gle_shopping	210.0	-1.935489E	1.00238	-1.8132	-0.7404	-0.3774	0.95639	2.32899

Table No. 5

III. Apply hierarchical clustering to scaled data. Identify the number of optimum clusters using Dendrogram and briefly describe them

We can apply hierarchical clustering to scaled data. Then we had plotted dendrogram to find the optimum numbers of clusters.

Figure No. 6

From the above plot, we can divide the dataframe into 3 clusters as those 3 are the big clusters:

cluster s	spendin g	advance _payme nts	probability _of_full_pa yment	current_ balance	credit_li mit	min_paym ent_amt	max_sp ent_in_s ingle_sh opping
1	1286.00	1130.18	61.908000	431.072	257.924	254.74100	421.216
2	795.45	888.22	56.826363	351.009	190.852	331.00025	343.188
3	1036.53	1039.05	64.180900	399.911	235.531	190.68920	371.291

Table No. 6

1. Cluster 1

- Highest: spending, advance_payments, current_balance, credit_limit and max_spent_in_single_shopping
- Moderate : probability_of_full_payment, min_payment_amt.

2. Cluster 2

- Highest : min_payment_amt.
- Lowest: spending, advance_payments, current_balance, credit_limit, max_spent_in_single_shopping and probability_of_full_payment

3. Cluster 3

- Highest : probability_of_full_payment.
- Moderate: spending, advance_payments, current_balance, credit_limit and max_spent_in_single_shopping.
- Lowest : min_payment_amt

Graphical representation of the same is as follows:

Figure No. 7

IV. Apply K-Means clustering on scaled data and determine optimum clusters. Apply elbow curve and silhouette score. Explain the results properly. Interpret and write inferences on the finalised clusters.

We can apply K-Means clustering to scaled data. First of all, Then we can find KMeans.inertia_ and silhouette_score for various no. of clusters along with the elbow graph.

Inertia	silhouette_score	Number of Clusters
708.499737	0.496583	2
441.127253	0.451895	3
390.103578	0.363339	4
343.154651	0.306584	5
308.725421	0.281221	6
276.122717	0.275013	7
254.475792	0.260384	8
234.102560	0.265238	9
213.966970	0.262797	10

Table No. 7

Figure No. 8

From the above graph, I had tested for both no. of clusters = 2 and 3. Since the silhouette_score i.e. (0.4965830066767461) is better for no. of clusters = 2, hence I chose it

Observations: ¶

1. Cluster 0

All the values in this cluster is at lower end.

2. Cluster 1

All the values in this cluster is at higher end.

K_Clust ers	spendin g	advance _payme nts	probabil ity_of_fu Il_paym ent	current_ balance	credit_li mit	min_pay ment_a mt	max_sp ent_in_s ingle_sh opping
0	1302.63	1145.64	62.782700	437.125	261.389	256.78100	427.093
1	1815.35	1911.81	120.13256	744.867	422.918	519.64945	708.602

Table No. 8

Graphical representation of the same is as follows:

Figure No. 9

V. Describe cluster profiles for the clusters defined. Recommend different promotional strategies for different clusters.

To describe the cluster profiles for 2 clusters, we will look into the clustered information in details:

Spending & Advance payments

Figure No. 10.1

K_Clusters	spending	advance_payments
0	18.346901	16.135775
1	13.060072	13.754029

Table No. 9.1

Observations

- Cluster 0: It divides the dataframe into high spending and high advance_payments.
- Cluster 1: It divides the dataframe into low spending and low advance payments.
- The clusters are not well separated.

Advance payments & probability of full payment

Figure No. 10. 2

K_Clusters	advance_payments	probability_of_full_payment
0	16.135775	0.884263
1	13.754029	0.864263

Table No. 9. 2

- Cluster 0 : It divides the dataframe into high probability_of_full_payment and high advance_payments.
- Cluster 1: It divides the dataframe into low probability_of_full_payment and low advance payments.
- The clusters are not well separated.
- The clusters overlap.

Current balance & probability of full payment

Figure No. 10.3

K_Clusters	probability_of_full_payment	current_balance
0	0.884263	6.156690
1	0.864263	5.358755

Table No. 9.3

- Cluster 0 : It divides the dataframe into high probability_of_full_payment and high Current_balance
- Cluster 1: It divides the dataframe into low probability_of_full_payment and low Current_balance.
- The clusters are not well separated.
- The clusters overlap.

Current balance & Credit limit

Figure No. 10.4

K_Clusters	current_balance	credit_limit
0	6.156690	3.681535
1	5.358755	3.042576

Table No. 9.4

- Cluster 0 : It divides the dataframe into low Current_balance & Credit_limit.
- Cluster 1 : It divides the dataframe into high Current_balance & Credit_limit.
- The clusters are not well separated.
- The clusters overlap.

Credit limit & Min payment amt

Figure No. 10.5

K_Clusters	credit_limit	min_payment_amt
0	3.681535	3.616634
1	3.042576	3.738485

Table No. 9.5

- Cluster 0 : It divides the dataframe into low Credit_limit & Min_payment_amt.
- Cluster 1: It divides the dataframe into high Credit_limit & Min_payment_amt.
- The clusters are not well separated.
- The clusters overlap.

Min payment amt & max spent in single shopping

Figure No. 10.6

K_Clusters	min_payment_amt	max_spent_in_single_shopping
0	3.616634	6.015394
1	3.738485	5.097856

Table No. 9.6

- Cluster 0: It divides the dataframe into low Min_payment_amt & max_spent_in_single_shopping.
- Cluster 1: It divides the dataframe into high Min_payment_amt & max_spent_in_single_shopping.
- The clusters are not well separated.
- The clusters overlap.

Recommendations

- 1. The customers with cluster 0, is a high spending group, so more products with higher price can be promoted to this group.
- 2. Credit limit can be increased for the customer group with cluster 0, as they are higher spending group as well as the advance payments made by this group is also higher. Hence, if we increase the credit limit more, the spending might increase further.
- 3. The probability that the amount will be paid is almost same for both the groups and is pretty good. Hence more credit cards can be offered like:
 - 1. For Group O(cluster O): Higher limit credit cards are be promoted.
 - 2. For Group 1 (cluster 1): Lower limit credit cards can be promoted.
- 4. Personal Loans can be promoted to group 1, as they make more minimum payments than group 0, which can help them repay the credit cards.

PROBLEM - 2 SUMMARY

INSURANCE FIRM ANALYSIS

An Insurance firm providing tour insurance is facing higher claim frequency. The management decides to collect data from the past few years. You are assigned the task to make a model which predicts the claim status and provide recommendations to management. Use CART, RF & ANN and compare the models' performances in train and test sets.

Exploratory Data Analysis

Data Description

Data Dictionary for Insurance Firm Analysis

- 1. Target: Claim Status (Claimed)
- 2. Code of tour firm (Agency Code)
- 3. Type of tour insurance firms (Type)
- 4. Distribution channel of tour insurance agencies (Channel)
- 5. Name of the tour insurance products (Product)
- 6. Duration of the tour (Duration in days)
- 7. Destination of the tour (Destination)
- 8. Amount worth of sales per customer in procuring tour insurance policies in rupees (in 100's)
- 9. The commission received for tour insurance firm (Commission is in percentage of sales)
- 10.Age of insured (Age)

PROBLEM 2

I. Read the data, do the necessary initial steps, and exploratory data analysis (Univariate, Bi-variate, and multivariate analysis).

Sample of the dataset

	Age	Agency _Code	Туре	Clai med	Commi sion	Chann el	Dura tion	Sales	Product Name	Destin ation
0	48	C2B	Airlin es	No	0.70	Online	7	2.51	Customise d Plan	ASIA
1	36	EPX	Travel Agen cy	No	0.00	Online	34	20.00	Customise d Plan	ASIA
2	39	CWT	Travel Agen cy	No	5.94	Online	3	9.90	Customise d Plan	Americ as
3	36	EPX	Travel Agen cy	No	0.00	Online	4	26.00	Cancellati on Plan	ASIA
4	33	JZI	Airlin es	No	6.30	Online	53	18.00	Bronze Plan	ASIA

Table No. 10.1

Data types of different variable

Column	Dtype
Age	int64
Agency_Code	object
Туре	object
Claimed	object
Commision	float64
Channel	object
Duration	int64
Sales	float64
Product Name	object
Destination	object

Table No. 10.2

Observations¶

- 1. Dataset has a total of 3000 rows and 10 columns.
- 2. There are 2 float64, 2 int64 and 6 object types.
- 3. There is no missing values.

Checking for duplicates

There is 139 duplicates present in the dataframe.

Example duplicate rows:

	Age	Agenc y_Cod e	Туре	Clai med	Commi sion	Cha nnel	Dura tion	Sa les	Product Name	Destin ation
63	30	C2B	Airlines	Yes	15.0	Onlin e	27	60.0	Bronze Plan	ASIA
329	36	EPX	Travel Agency	No	0.0	Onlin e	5	20.0	Customis ed Plan	ASIA
407	36	EPX	Travel Agency	No	0.0	Onlin e	11	19.0	Cancellati on Plan	ASIA
411	35	EPX	Travel Agency	No	0.0	Onlin e	2	20.0	Customis ed Plan	ASIA
422	36	EPX	Travel Agency	No	0.0	Onlin e	5	20.0	Customis ed Plan	ASIA

Table No. 10.3

Hence all the duplicate rows have been dropped.

Missing data analysis for the variables

No missing values present in the data frame.

Descriptive Statistics

Fields	count	mean	std	min	25%	50%	75%	max
Age	2861.0	38.204124	10.678106	8.0	31.0	36.00	43.00	84.00
Commision	2861.0	15.080996	25.826834	0.0	0.0	5.63	17.82	210.21
Duration	2861.0	72.120238	135.977200	-1.0	12.0	28.00	66.00	4580.00
Sales	2861.0	61.757878	71.399740	0.0	20.0	33.50	69.30	539.00

Table No. 10.4

Observation

- 1. Total No. of column after removing duplicate columns is 2861.
- 2. Means have slightly different range, hence scaling will be useful.
- 3. Duration should be at least 1 day, hence -1 is bad data and seems to have outlier too.
- 4. Sales and Commission also seems to have outliers too.

After removal of bad data, the descriptive statistics is as follows:

Fields	count	mean	std	min	25%	50%	75%	max	Sales
Age	2858.0	38.205738	10.679258	8.0	31.0	36.00	43.00	84.00	20.0
Commision	2858.0	15.077218	25.830284	0.0	0.0	5.63	17.82	210.21	19.0
Duration	2858.0	72.196291	136.028290	1.0	12.0	28.00	66.00	4580.00	20.0
Sales	2858.0	61.772841	71.413840	0.0	20.0	33.50	69.30	539.00	20.0

Table No. 10.5

<u>Univariate Analysis</u> <u>Histogram for Numerical Fields</u>

Figure No. 11.1

Observations

- 1. Outliers can be observed in all the plots.
- 2. Skewness:

A. Positively Skewed

- Skewness of Commission is 3.1031126292410716.
- Skewness of Duration is 13.778867077621834
- Skewness of Sales is 2.3434132352067008

B. Approximate Normal Distribution

Skewness of Age is 1.1025661500650201

CountPlot of Categorical Fields

Figure No. 11.2

- 1. In Agency_Code, highest count is off EPX and lowest is of JZ1.
- 2. We have maximum counts for Travel Agency among Airlines & Travel Agency.
- 3. Most number of Insurance is not claimed.
- 4. Most preferred channel is Online.
- 5. Customised Plan has been bought the most.
- 6. Maximum number of destination is Asia.

Bivariant Analysis¶

This can be done both by Correlation Heat Map and PairPlot

<u>HeatMap</u>

Figure No. 11.3

- 1. Some correlation can be observed between commision-Sales.
- 2. Other then that all other correlations are not significant.

PairPlot

Figure No. 11.4

Observations: ¶

- 1. Positive covariance can be observed in commision-Sales.
- 2. Negative Covariance is not observed.

BoxPlot

Figure No. 11.5

Observations: ¶

- 1. Outliers can be observed in Age, Commission, Duration and Sales.
- 2. Outlier treatment can be done for the mentioned fields.

After treating Outliers, we observe the below Box plots.

Figure No. 11.6

Scaling

As observed in the descriptive statistics, we can say that scalling should be done.

Fields	count	mean	std	min	25%	50%	75%	max	Sales
Age	2858.0	38.205738	10.679258	8.0	31.0	36.00	43.00	84.00	20.0
Commision	2858.0	15.077218	25.830284	0.0	0.0	5.63	17.82	210.21	19.0
Duration	2858.0	72.196291	136.028290	1.0	12.0	28.00	66.00	4580.00	20.0
Sales	2858.0	61.772841	71.413840	0.0	20.0	33.50	69.30	539.00	20.0

Table No. 10.6

Hence, after applying the z-score scaling, the statistics is as follows:

Fields	coun t	mean	std	min	25%	50%	75%	max
Age	2858.0	1.818388E-16	1.000175	-2.535324	-0.702374	-0.193222	0.519592	2.352543
Commisi on	2858.0	2.340541E-17	1.000175	-0.758443	-0.758443	-0.395078	0.391675	2.116852
Duration	2858.0	2.159846E-17	1.000175	-0.980968	-0.748357	-0.410012	0.393556	2.106426
Sales	2858.0	1.015633E-16	1.000175	-1.199765	-0.730087	-0.413055	0.427669	2.164303

Table No. 10.7

II. Data Split: Split the data into test and train, build classification model CART, Random Forest, Artificial Neural Network.

In our dataframe, we have a mixture of Data Types and object data should be converted into categorical/numerical data to fit in the models. Hence all the object type fields i.e. Agency_Code, Type, Claimed, Channel, Product Name and Destination are converted to codes.

The new datatypes is as follows:

Column	Dtype
Agency_Code	int8
Туре	int8
Claimed	int8
Commision	float64
Channel	int8
Duration	float64
Sales	float64
Product Name	int8
Destination	int8

Table No. 11.1

Observations

- 1. There are 2858 rows and 10 rows.
- 2. There are float64(4), int8(6).

Proportion of 1s and 0s

index	Claimed
0	0.680196
1	0.319804

Figure No. 11.2

The sample data looks as:

Age	Agency _Code	Ty pe	Claim ed	Commis ion	Chan nel	Durati on	Sal es	Produ ct Name	Destinat ion
48.0	0	0	0	0.70	1	7.0	2.51	2	0
36.0	2	1	0	0.00	1	34.0	20.00	2	0
39.0	1	1	0	5.94	1	3.0	9.90	2	1
36.0	2	1	0	0.00	1	4.0	26.00	1	0
33.0	3	0	0	6.30	1	53.0	18.00	0	0

Table No. 11.3

Extracting the target column into separate vectors for training set and test set, where X is data without output column and y with only target/output column

Then after splitting data into Train and Test, with 70% as Train and 30% as Test, I have the following shape of the created dataframe. I have splitted the train data into 70% as it will be adequate amount to train the model where 30% data is good enough for testing the model.

Data Frame	Number of Rows	Number of Columns		
X_train	2000	9		
X_test	858	9		
train_labels	2000	1		
test_labels	858	1		

Table No. 11.4

I have created 3 models: Cart, Random Forest and ANN. The details of each model is as follows:

CART

In this model, we had appleid GridSearchCV, to find the best parameter and is as follows:

Parameters

Criterion : gini
 Max depth : 10

3. Min_samples_leaf : 204. Min samples split : 180

Variable Importance

Variables	Imp		
Agency_Code	0.544634		
Sales	0.195672		
Product Name	0.120670		
Duration	0.067801		
Commision	0.033230		
Age	0.030816		
Destination	0.007178		
Туре	0.000000		
Channel	0.000000		

Table No. 11.5

Agency_Code is the most important variable for predicting claims.

RANDOM Forest

Grid Search for finding out the optimal values for the hyper parameters¶ Due to large volume of data, trying for different parameter values in the grid search with higher cv value will lead to performance issues and model will run for much longer time.

Parameters

n_estimators: 300
 Max depth: 10

3. Min_samples_leaf : 104. Min_samples_split : 50

5. Max features: 6

Variable Importance

Variable	Imp
Agency_Code	0.351272
Sales	0.196934
Product Name	0.171991
Duration	0.100257
Commision	0.080783
Age	0.069449
Туре	0.015376
Destination	0.012187
Channel	0.001751

Table No. 11.6

Agency_Code is the most important variable for predicting claims.

Artificial Neural Network

Grid Search for finding out the optimal values for the hyper parameters¶ Due to large volume of data, trying for different parameter values in the grid search with higher cv value will lead to performance issues and model will run for much longer time.

Parameters

1. hidden_layer_sizes: 200

2. max_iter: 70003. solver: adam

4. tol: 0.01

III. Performance Metrics: Comment and Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score, classification reports for each model.

Model Evaluation of CART <u>Training data</u> <u>ROC Curve</u>

Figure No. 12.1

Confusion Matrix

		True Class	
Predicted		No	Yes
Class	No	1200	160
	Yes	272	368

Table No. 12. 1

Classification report

	precision	recall	f1-score	support
0	0.82	0.88	0.85	1360
1	0.70	0.57	0.63	640
accuracy			0.78	2000
macro avg	0.76	0.73	0.74	2000
weighted avg	0.78	0.78	0.78	2000

Table No. 12.2

Test data ROC Curve

Figure No. 12.2

Confusion Matrix

		True Class	
Predicted		No	Yes
Class	No	510	74
	Yes	112	162

Table No. 12. 3

Classification report

	precision	recall	f1-score	support
0	0.82	0.87	0.85	584
1	0.69	0.59	0.64	274
accuracy			0.78	858
macro avg	0.75	0.73	0.74	858
weighted avg	0.78	0.78	0.78	858

Table No. 12.4

Cart Conclusion

Training and Test set results are almost similar, and with the overall measures high, the model is a good model.

	Train Data Test Data	
AUC	82.6%	81.8%
Accuracy	78.4%	78.3%
Sensitivity	88.2%	87.3%
Precision	70%	69%
Recall	57%	59%
f1-Score	63%	64%

Table No. 12.5

Model Evaluation of Random Forest Training data Confusion Matrix

		True Class	
Predicted		No	Yes
Class	No	1217	143
	Yes	261	379

Table No. 12. 6

ROC Curve

Figure No. 12.3

Classification report

	precision	recall	f1-score	support
0	0.82	0.89	0.86	1360
1	0.73	0.59	0.65	640
accuracy			0.80	2000
macro avg	0.77	0.74	0.75	2000
weighted avg	0.79	0.80	0.79	2000

Table No. 12.7

<u>Testing data</u> <u>Confusion Matrix</u>

		True Class	
Predicted		No	Yes
Class	No	506	78
	Yes	105	169

Table No. 12. 8

ROC Curve

Classification report

	precision	recall	f1-score	suppor t
0	0.83	0.87	0.85	584
1	0.68	0.62	0.65	274
accuracy			0.79	858
macro avg	0.76	0.74	0.75	858
weighted avg	0.78	0.79	0.78	858

Table No. 12.9

RM Conclusion

Training and Test set results are almost similar, and with the overall measures high, the model is a good model.

	Train Data	Test Data
AUC	74.3%	74.1%
Accuracy	79.8%	78.6%
Sensitivity	89.4%	86.6%
Precision	73%	68%
Recall	59%	62%
f1-Score	65%	65%

Table No. 12.10

Model Evaluation of ANN <u>Training data</u> <u>ROC Curve</u>

Figure No. 12.5

Confusion Matrix

		True Class	
Predicted Class		No	Yes
	No	1215	145
	Yes	321	319

Table No. 12. 11

Classification report

	precision	recall	f1-score	suppor t
0	0.79	0.89	0.84	1360
1	0.69	0.50	0.58	640
accuracy			0.77	2000
macro avg	0.74	0.70	0.71	2000
weighted avg	0.76	0.77	0.76	2000

Table No. 12.12

<u>Testing data</u> <u>Confusion Matrix</u>

Predicted Class		True Class	
		No	Yes
	No	520	64
	Yes	135	139

Table No. 12. 13

ROC Curve

Figure No. 12.6

Classification report

	precision	recall	f1-score	support	
0	0.79	0.89	0.84	584	
1	0.68	0.51	0.58	274	
accuracy			0.77	858	
macro avg	0.74	0.70	0.71	858	
weighted avg	0.76	0.77	0.76	858	

Table No. 12.14

ANN Conclusion

	Train Data	Test Data
AUC	62%	62.9%
Accuracy	89.3%	76.8%
Sensitivity	89.4%	89.04%
Precision	69%	68%
Recall	50%	51%
f1-Score	58%	58%

Table No. 12.15

Training and Test set results are almost similar, and with the overall measures high, the model is a good model.

IV. Final Model: Compare all the models and write an inference which model is best/optimised.

The Final Conclusion is as follows:

1. ROC Curve for the 3 models on the Training data

Figure No. 13

2. ROC Curve for the 3 models on the Test data

3. Comparison of the performance metrics from the 3 models:

	CART Train	CART Test	Random Forest Train	Random Forest Test	Neural Network Train	Neural Network Test
Accur acy	0.78	0.78	0.80	0.79	0.77	0.77
AUC	0.83	0.82	0.74	0.74	0.62	0.63
Recall	0.57	0.59	0.59	0.62	0.50	0.51
Precisi on	0.70	0.69	0.73	0.68	0.69	0.68
F1 Score	0.63	0.64	0.65	0.65	0.58	0.58

Table No. 13.1

According to above comparison data, following are results:

- 1. ROC Curve is better for RF and CART. Whereas ROC curve for NN is not so good.
- 2. Accuracy is approximately similar for all the three models.
- 3. Since, in our scenario, if the management is formed about less number of claims and more claims come, then false-negatives is a problem. Hence, **Recall** is a better measure than precision.
- 4. So, on the basis of this conclusion, Recall is slightly better in RF and CART.
- 5. Slight overfitting for RF model.

Hence, I will be selecting Random forest here.

V. Inference: Based on the whole Analysis, what are the business insights and recommendations

Recommendations are as follows:

- 1. With the above analysis, we can find the claims expected from a customer or not and mitigate risk by counting the amount approximately, that is to be given to the customers.
- 2. Getting more customers, who has lesser chances of claiming.
- 3. Modifying plans to be offered to the customers, who has higher chances of claiming to reduce maximum amount going out from the Insurance company.