(Social) Network Analysis

Interesting phenomena in a network (examples)

- Bridges
 - · are important to connect two parts of the network
 - · are involved in many indirect connections

- · "Prestigious" nodes
 - tend to be referred to by many other nodes

25

Social Network Metrics

- Social network graphs can be analyzed using several metrics including:
 - Cohesion of the network or sub-network refers to the degree to which the nodes in the network are connected together
 - Density of the network or sub-network how close a network is to being a complete graph

Centrality of the nodes

gives a rough indication of the social power of a node in the network

 Degree Centrality, Betweenness, Closeness, Eigenvector (PageRank), Network centralization, ...

Degree Centrality

- Conveys the number of links to / from other nodes in the network
- Higher degree of a node might indicate that the node is popular in the network or have more influence on the information flow
- Degree Centrality of nodes is derived from the immediate connections
 - In-degree
 how many directed edges are incident on a node
- $\sum_{i=1}^{n} A_{ij}$ in-degree=3

Out-degree
 boy many directed adds

how many directed edges originate at a node

(Total) degree

number of edges incident on a node (in or out)

$$C_D(i) = deg(i)$$

(using the total degree of a node)

27

- Divide the degree of a node deg(i) by the maximum possible (i.e., n-1 nodes)
- $C'_D(i) = \frac{deg(i)}{n-1}$

• Range ∈ [0,1]

i	$C_D(i)$
а	1/5
b	1/5
С	1/5
d	1/5
е	1/5
f	5/5

There are also:
In-degree centrality
Out-degree centrality

Betweenness Centrality

- Number of shortest paths between each node pair in which a node is on
- Observation: nodes that bridge different groups in the network have a high betweenness
- High betweenness generally indicates a powerful / influential position in the network

$$C_B(i) = \sum_{j < k, j
eq i, k
eq i} rac{P_{jk}(i)}{P_{jk}}$$
 , where

- $P_{jk}(i)$ is the number of shortest paths between j and k that go through i ($i \neq j$, $i \neq k$)
- P_{ik} is the number of shortest paths between j and k
- Range $[0, (n-1) \times (n-2)]$, with n as the number of nodes (for **non-directed** networks)
- (n-1)(n-2)/2 is the total number of pairs of nodes not including i (for **directed** networks).

29

Closeness Centrality

- Inverse of the mean shortest path between a node and all other nodes in the network reachable from it
- Reflects the ability of a node in accessing information through the network
- High closeness generally indicates better visibility of what's going on in the network

 $C_C(i) = \frac{1}{\sum_{i \neq j} d(i, j)}$

Examples:

$$C_c(A) = \frac{1}{1+2+3+4} = 1/10 = 0.1$$

$$C_c(D) = \frac{1}{1+2+3+1} = 1/7 = 0.14$$

Network Analysis: centrality measures - Wrap-up

· Degree centrality:

- measures the **involvement** of a node in the network;
- it is an effective measure of the **importance**, **influence**, and **popularity** of a node in the network.

· Betweenness centrality:

- measures if a node has a critical role in the network, i.e., if it acts as a connection between different regions of the network;
- identifies *gatekeepers or bridges*, nodes that tend to control the flow of information between tightly knit groups.

· Closeness centrality:

- measures the **overall position** of a node in the network;
- a measure of **reachability and distance** that measures how fast a given node can reach every other nodes in the network.

33

Exercise

 Consider the following data on **friendship requests** in a social network:

- (a) Who would you pick for collecting information?
- (b) Who would you pick as a marketing mate?
- (c) Who would you pick for distribution of goods?

Network Analysis: "prestige" measures

Prestige is a metric similar to Centrality, but mainly-used for in-degree cases.

However, in-degree centrality may not provide a complete picture of a node's prestige. Other metrics can be useful:

- Betweenness centrality: (not directly related, however) a node with high betweenness centrality serves as a critical intermediary, potentially enhancing its influence
- Closeness centrality: (NDRH) nodes with high closeness centrality can quickly interact with other nodes making them more influential
- Eigenvector centrality: takes into account the quality/importance of the connections

Let's simplify this a bit....

35

Network Analysis: "prestige" measures

Prestige is a metric similar to Centrality, but mainly-used for in-degree cases.

- Assume that:
 - node A is referred by n ordinary nodes;
 - node B is referred by *n* nodes, *k* of which are "prestigious".
- · Which node has higher "prestige"?
- We must take the prestige of the pointing nodes into account.
- HITS (1998) and PageRank (1998) do just that!
 - Find the most valuable, authoritative or influential node (e.g. web page).

Important Pages Discovery

37

Using Web Structure for Information Retrieval

- · Search
 - · Search a page about topic X
 - · Then, each resulting page Y is relevant according to:
 - similarity between the contents of X and Y
- · Link analysis
 - · Each page Y is relevant according to
 - · number of references to page Y
 - · content of pages which refer to Y
- Pages linked to pages with interesting content are also potentialy interesting.

HITS (Hypertext Induced Topic Search)

- In a first stage, HITS uses text similarity and then uses link structure.
- · Relevance of an Authority
 - · If a page is referred to by many others, then it must be relevant
 - · this enables a more robust search to variation in terms
 - · example: "data mining" and "machine learning"
- · Quality of a Hub
 - · If a hub refers to many important authorities, then it is a good hub
- The relevance of an Authority and the quality of a Hub are interdependent
- The definition is circular: good authorities are pointed by good hubs and good hubs point to good authorities.

41

HITS: The idea

- 1. Given a query (or topic) Q, collect a set of *seed* pages $S = \{s_1, s_2, \ldots, s_n\}$ (this is the root set)
- 2. S is then expanded to $T = S \cup \{d \mid s \rightarrow d \lor d \rightarrow s, s \in S\}$
- 3. Initialize each page $r \in T$ with

authority weight a(r) = 1 and hub weight h(r) = 1

4. For each page, update the values of a and h

$$a(r) = \sum_{d \to r} h(d)$$
 $h(r) = \sum_{r \to d} a(d)$

- 5. Normalize a and h
- 6. Repeat step 4, until convergence (typically <10 iterations)
- 7. Select the top ranked pages with **highest** a **and** h.
- The pages with the highest Authority scores are the most relevant pages for the query topic.
- The pages with the **highest Hub scores** are the most useful pages for **finding additional information on the query topic**.

HITS (using iterative power method)

The computation of authority scores and hub scores uses the **iterative power method**:

- 1. Initialize $a^0 = h^0 = (1, 1, ..., 1)$
- 2. Until convergence, do:

1.
$$a^{(k)} = A^T h^{(k-1)}$$

- 2. $h^{(k)} = Aa^{(k-1)}$
- 3. k=k+1
- 4. Normalize $a^{(k)}$ and $h^{(k)}$
- a, the largest eigenvector¹ of $A^T A$
- h, the largest eigenvector of AAT

Note that:

 $a^{(k)} = A^T h^{(k-1)}$

 $h^{(k)} = Aa^{(k-1)}$

can be simplified to:

 $a^{(k)} = A^T A a^{(k-1)}$

 $h^{(k)} = AA^T h^{(k-1)}$

45

HITS: Some comments

- HITS ranks pages according to the query topic
 - search starts by content relevance (root set) and then the content is ignored, i.e. only the links are used.
- HITS finds the principal eigenvectors.
 - · top ranked authorities and hubs represent major communities
 - In some cases, smaller communities can also be relevant.
 example: "jaguar" can be grouped in 2 clusters (animal and car)
- HITS scores each page with two attributes (a,h) and is dependent on the query.
- Overall, while the original formulation of HITS did focus on a two-level network structure, the algorithm can be applied to networks with any number of levels.

 $^{^{1}}x$ is eigenvector of M, if Mx = kx where k is a scalar

HITS: Some comments (cont.)

- It is easy to influence HITS by adding out-links from a page to point to many good authorities, increasing the hub score of the page.
- Topic drift is another problem: the expansion of the root set may include pages which have nothing to do with query topic.
- Small changes in the web graph topology can significantly change the results.
- · Query time evaluation is a major drawback.

Note: a(i) and h(i) are sometimes written as x_i and y_i , respectively.

47

Exercise

2 Consider the following graph of web pages:

- (a) Determine the most interesting hub.
- (b) Determine the most important authority.
- (c) Suppose we are looking for information about a car model X and page A contains that model, how would that change your previous results?