Predicció de l'èxit o abandonament acadèmic dels estudiants

Mariona Farré Tapias

Índex:

01

Descripció de les dades originals

02

Preprocessament de les dades

03

Data Mining Models

04

Machine Learning methods

05

Conclusions

Ol Descripció de les dades originals

Dades originals

Extretes pàgina web: <u>UCI Machine Learning Repository</u>

Títol: **Predict students' dropout and academic success** - predicció de l'èxit o abandonament acadèmic dels estudiants.

Url:

[7 :	•	JIST -		LVBRUTERIZATION						
	Α	В	С	D	E	F	G	Н	1	J
1	Marital status	Application mode	Application order	Course	Daytime/evening attendance	Previous qualification	Previous qualification (grade)	Nacionality	Mother's qualification	Father's qualification
2	1	17	5	171	1	. 1	122.0	1	. 19	12
3	1	15	1	9254			160.0	1		. 3
4	1	1	. 5	9070	1	1	122.0	1	. 37	37
5	1	17	2	9773	1	1	122.0	1	. 38	37
6	2	39	1	8014	()	100.0	1	. 37	38

Dataset de 4424 exemples amb 36 atributs + l'objectiu

Dades originals

Atributs:

- Marital Status (Estat Civil)
- Application Mode (Mode de Sol·licitud)
- Application Order (Ordre de Sol·licitud)
- Course (Curs-Grau universitari)
- Daytime/Evening Attendance (Assistència Dia/Vespre)
- Previous Qualification (Qualificació Prèvia)
- Previous Qualification (Grade) (Qualificació Prèvia Nota)
- Nationality (Nacionalitat)
- Mother's Qualification (Qualificació de la Mare)
- Father's Qualification (Qualificació del Pare)
- Mother's Occupation (Ocupació de la Mare)
- Father's Occupation (Ocupació del Pare)
- Admission Grade (Nota d'Admissió)
- Displaced (Desplaçat)
- Educational Special Needs (Necessitats Educatives Especials)
- Debtor (Deutor)
- Tuition Fees Up to Date (Taxes Acadèmiques pagades)
- Gender (Gènere)
- Scholarship Holder (Becari)
- Age at Enrollment (Edat a l'Inscripció)
- International (Internacional)

- Curricular units 1st sem (credited) (Unitats Curriculars 1r semestre -Acreditades)
- Curricular units 1st sem (enrolled) (Unitats Curriculars 1r semestre -Matriculades)
- Curricular units 1st sem (evaluations) (Unitats Curriculars 1r semestre -Avaluacions)
- Curricular units 1st sem (approved) (Unitats Curriculars 1r semestre -Aprovades)
- Curricular units 1st sem (grade) (Unitats Curriculars 1r semestre Nota)
- Curricular units 1st sem (without evaluations) (Unitats Curriculars 1r semestre - Sense Avaluacions)
- Curricular units 2nd sem (credited) (Unitats Curriculars 2n semestre -Acreditades)
- Curricular units 2nd sem (enrolled) (Unitats Curriculars 2n semestre -Matriculades)
- Curricular units 2nd sem (evaluations) (Unitats Curriculars 2n semestre -Avaluacions)
- Curricular units 2nd sem (approved) (Unitats Curriculars 2n semestre -Aprovades)
- Curricular units 2nd sem (grade) (Unitats Curriculars 2n semestre Nota)
- Curricular units 2nd sem (without evaluations) (Unitats Curriculars 2n semestre Sense Avaluacions)
- Unemployment Rate (Taxa d'Atur)
- Inflation Rate (Taxa d'Inflació)
- GDP (PIB)
- Target (Objectiu)

Dades originals Representació gràfica:

Dades originals Representació gràfica:

Dades originals Representació gràfica amb l'objectiu:

Preprocessament de les dades

Preprocessament de les dades

Valors Buits:

Files Duplicades:

Marital status	
Application mode	
Application order	1
Course	
Daytime/evening attendance\t	
Previous qualification	
Previous qualification (grade)	
Nacionality	
Mother's qualification	
Father's qualification	
Mother's occupation	
Father's occupation	
Admission grade	
Displaced	
Educational special needs	
Debtor	
Tuition fees up to date	
Gender	
Scholarship holder	
Age at enrollment	
International	
Curricular units 1st sem (credited)	
Curricular units 1st sem (enrolled)	
Curricular units 1st sem (evaluations)	
Curricular units 1st sem (approved)	
Curricular units 1st sem (grade)	
Curricular units 1st sem (without evaluations)	
Curricular units 2nd sem (credited)	
Curricular units 2nd sem (enrolled)	
Curricular units 2nd sem (evaluations)	
Curricular units 2nd sem (approved)	
Curricular units 2nd sem (grade)	
Curricular units 2nd sem (without evaluations)	
Unemployment rate	
Inflation rate	
GDP Target	

Diferents divisions del dataset:

Quedar: 80% entrenament 20% test

Pàgina web:

Are there recommended data splits?

The dataset was used, in our project, with a data split of 80% for training and 20% for test.

Objectiu: Categòric a numeral:

```
Abans treure estudiants que actualment esta estudien:
Graduate
            2209
Dropout
            1421
Enrolled
Name: Target, dtype: int64
Estudiants totals 4424
Despres de treure els estudiants que actualment estudien:
Graduate
            1421
Name: Target, dtype: int64
Estudiants totals 3630
Canviar el target d'un atribut categoric a numeral:
    1421
Name: Target, dtype: int64
Estudiants totals 3630
--> 1 son els estudiants que s'han graduat i 0 els que no ho han fet
```

Pàgina web:

Was there any data preprocessing performed?

We performed a rigorous data preprocessing to handle data from anomalies, unexplainable outliers, and missing values.

Has Missing Values?

No

O3Data Mining Models

Data Mining Models: Single Fold CV

Dividir una sola vegada dataset: Model **RandomForestClassifer** Optimitzar amb **GridSearchCV**: trobar màxima profunditat

```
#Grid busqueda per cassificador validation
grid_search = GridSearchCV(RandomForestClassifier(n_estimators=100, random_state=20), param_grid, cv=5)
grid_search.fit(X_train, y_train)
```

Millor max depth trobada: 15

```
1 #Classificadors Random Forest Classifier
2 rf = RandomForestClassifier(n_estimators=50,max_depth=grid_search.best_params_['max_depth'],
,min samples split=4, min samples leaf=2, random state=20)
```

INFORME MODEL SINGLE FOLD CV

	precision	recall	fl-score	support	
θ	0.94	0.85	0.89	245	
1	0.93	0.97	0.95	481	
accuracy			0.93	726	
macro avg	0.93	0.91	0.92	726	
weighted avg	0.93	0.93	0.93	726	

MATRIU DE CONFUSIO

RESULTATS ACCURACY

Accuracy: 0.931129476584022

Training Accuracy (entrenat): 0.9755509641873278

Testing Accuracy (test): 0.931129476584022

Data Mining Models: K-Fold CV

Dividir una k vegades dataset: Model **KNeighborsClassifier** Optimitzar amb **GridSearchCV**: trobar valor millor de k

```
#Trobar millor parametre n neighbors pel model de kfold cross validation
param grid = {'n neighbors': range(1, 30)}
knn = KNeighborsClassifier()
grid search = GridSearchCV(knn, param grid, cv=5)
Millor número n neighors: 8
# K-Fold Cross-Validation
for train index, test index in kf.split(X train full, y train full):
   X train, X val = X train full.iloc[train index], X train full.iloc[test index]
   y train, y val = y train full.iloc[train index], y train full.iloc[test index]
    #Model amb el nombre n neighbors millor trobat
   model = KNeighborsClassifier(n neighbors=grid search.best params ['n neighbors'])
   model.fit(X train, y train)
   y pred = model.predict(X val) #Prediccio per cada fold
   # Calculate metrics
   accuracies.append(accuracy score(y val, y pred))
   precisions.append(precision score(y val, y pred, average='weighted'))
    recalls.append(recall score(y val, y pred, average='weighted'))
   fl scores.append(fl score(y val, y pred, average='weighted'))
```

INFORME MODEL K FOLD CV precision recall fl-score support 0.61 0.65 277 0.69 0.78 0.83 0.80 449 0.75 726 accuracy 0.73 0.72 0.72 726 macro avq 0.74 0.74 726 weighted avo

MATRIU DE CONFUSIÓ

MITJANES DE CADA FOLD

Average Accuracy: 0.7623995489346548 Average Precision: 0.7597992879252164 Average Recall: 0.7623995489346548 Average F1 Score: 0.7589954175837326

04 Machine Learning methods

Machine Learning methods: Naïve Bayes

Model Naïve Bayes

Optimitzar amb GridSearchCV: trobar millor valor var_smothing i el threshold

```
param grid nb = {'var smoothing': np.logspace(\theta, -9, num=100)}
#Stratified K-Fold per cross validation
cv = StratifiedKFold(n splits=10, random state=42, shuffle=True)
# Model Gaussian Naive Bayes
gnb = GaussianNB()
grid search nb = GridSearchCV(estimator=gnb, param grid=param grid nb, cv=cv, scoring='accuracy')
Millor var smoothing: {'var smoothing': 1e-08} Accuracy: 0.8421487603305785
qnb = GaussianNB(var smoothing=grid search nb.best params ['var smoothing'])
gnb.fit(X train, y train)
# Prediccions per la CLASSE 1
probs = qnb.predict proba(X test)[:, 1]
# Define thresholds to search for the optimal threshold
thresholds = np.linspace(0, 1, 101)
best threshold = 0
best fl score = 0
#Buscar millor threshold
for threshold in thresholds:
   preds = filterp(threshold, probs)
   f1 = f1 score(y test, preds, pos label=1)
   if fl > best fl score:
       best fl score = fl
       best threshold = threshold
print(f"Best threshold: {best threshold} with F1-score: {best f1 score}")
Best threshold: 0.98 with F1-score: 0.8974943052391801
```

Predicció valors optimitzats:

#Millor threshold trobat, aplicar en prediccions final preds = filterp(best threshold, probs)

INFORME M	ODE	L NAIVE BAYES			
		precision	recall	fl-score	support
	θ	0.82	0.87	0.84	278
	1	0.92	0.88	0.90	448
accura	су			0.88	726
macro a	vg	0.87	0.87	0.87	726
weighted a	vg	0.88	0.88	0.88	726

RESULTATS ACCURACY

Accuracy: 0.8760330578512396

Training Accuracy (entrenat): 0.84400826446281 Testing Accuracy (test): 0.8553719008264463

Machine Learning methods: KNN

Model K-nearest Neighbors

Optimitzar amb **GridSearchCV**: trobar millor valor n_neighbors i el weight

```
6 accuracies = []
7 for k in range(1,10):
8 knn = KNeighborsClassifier(n_neighbors=k)
9 cv_scores = cross_val_score(knn, X=X_train, y=y_train, cv=10)
10 accuracies.append(np.mean(cv_scores))
11 print(f"Accuracy {k} neighbours: {np.mean(cv_scores)}")

Accuracy 1 neighbours: 0.83991918473752813
Accuracy 2 neighbours: 0.816066769558005
Accuracy 3 neighbours: 0.8522810759568669
Accuracy 4 neighbours: 0.8572810759568669
Accuracy 5 neighbours: 0.8574534897499705
Accuracy 6 neighbours: 0.850545680767865
Accuracy 7 neighbours: 0.8505545680767865
Accuracy 8 neighbours: 0.8591669629102974
Accuracy 9 neighbours: 0.8522751510842518
```

Representació k amb el pes:


```
knc = nb.KNeighborsClassifier()
clf = GridSearchCV(knc, param_grid=params,cv=10,n_jobs=-1)
Millors Parametres: {'n neighbors': 5, 'weights': 'uniform'} Accuracy= 0.8574534897499705
```


Machine Learning methods: Decision Tree

Model **Decision Trees**

Optimitzar amb **GridSearchCV**: trobar millors paràmetres

```
param_grid = {
    'criterion': ['entropy', 'gini'],
    'max_depth': [None,2, 5, 10, 20, 30],
    'min_impurity_decrease': [0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5],
    'min_samples_split': [2, 5, 10, 15, 20, 25],
    'min_samples_leaf': [1, 2, 4],
}
```

```
Millors Parameters: {'criterion': 'entropy', 'max_depth': 5, 'min_impurity_decrease': 0, 'min_samples_leaf': 1, 'min_samples_split': 25} Accuracy: 0.8922232773458365
```

Representació de l'arbre:

```
best_tree = grid_search.best_estimator_ #millors parametres calculats
best_tree.fit(X_train, y_train)

plt.figure(figsize=(200, 100))
tree.plot_tree(best_tree, filled=True, rounded=True, feature_names=list(Xn.columns.values))
plt.title("Arbre de Decisió")
plt.show()
```

INFORME MODEL DECISION TREE

	precision	recall	fl-score	support
Θ	0.95	0.83	0.88	288
1	0.89	0.97	0.93	438
accuracy			0.91	726
macro avg	0.92	0.90	0.91	726
weighted avg	0.92	0.91	0.91	726

MATRIU DE CONFUSIÓ

RESULTATS MODEL

Accuracy 0.9132231404958677

Interval of confidence: (0.8906489244766083, 0.9320104152633979)

Machine Learning methods: Decision Tree

Machine Learning methods: **SVM**

Model **SVM**

Optimitzar amb GridSearchCV: trobar millors paràmetres depenen del kerenel

SVM lineal:

Trobar el valor de C

```
#Trobar cs amb grid search
Cs = np.logspace(-3, 5, num=7, base=10.0)
param grid linear = {'C': Cs, 'kernel': ['linear']}
grid search linear = GridSearchCV(SVC(), param grid linear, cv=10)
grid search linear.fit(X train, v train)
```


Millor C 10² a accuracy 90%

SVM polynomial:

Trobar el valor de C i degree

```
#Trobar cs amb grid search + degree
Cs = np.logspace(-3, 5, num=4, base=10.0)
param grid poly = {'C': Cs, 'kernel': ['poly'], 'degree': [2, 3,4], 'gamma': ['scale']}
grid_search_poly = GridSearchCV(SVC(), param_grid_poly, cv=3, n_jobs=-1, verbose=1)
```


Millor C 100000 a qualsevol degree a accuracy 89%

SVM rbf:

Trobar el valor de C i gammas

```
#Trobar cs + gammas amb gridsearch
gammas = np.logspace(-4, 1, num=5, base=10.0)
Cs = np.logspace(-1, 6, num=7, base=10.0)
param grid_rbf = {'C': Cs, 'qamma': gammas, 'kernel': ['rbf']}
```


Millor C a 21 i gamma a 0,0001 a accuracy 87%

Machine Learning methods: **SVM**

SVM lineal:

SVM polynomial:

SVM rbf:

Millors Resultats Kernel SVM:

- Accuracy dels kernels:
 - Linear: 44.6%
 - Polv: 60%
 - o Rbf: 60%

- Paràmetres per C:
 - Linear: 215.44
 - Poly: 100000.0
 - o Rbf: 21.54

- Número de suports / Proporció dels suports :
 - Linear: 523 0,180
 Poly: 840 0.289
 Rbf: 1114 0.383

polynomial

Machine Learning methods: Meta Learning algorithm

Classificadors per els algorismes:

Naïve Bayes:

```
5 cv = 50

6 meta_nb1 = GaussianNB()

7 scores = cross_val_score(meta_nb1, X, y, cv=cv, scoring='accuracy')

8 print("Accuracy: %0.3f de Naive Bayes" % scores.mean())

Accuracy: 0.839 de Naive Bayes
```

Decision Tree:

```
4 meta_dt1 = DecisionTreeClassifier(criterion='entropy')
5 scores = cross_val_score(meta_dt1, X, y, cv=cv, scoring='accuracy')
6 print("Accuracy: %0.3f de Decision Tree" % scores.mean())
Accuracy: 0.862 de Decision Tree
```

kNN:

```
> params = ('n_neighbors': list(range(i, 30, 2)), 'weights': ('distance', 'uniform'))

6 kmc = KNeighbors(Lassifier(), 'grama_grid=params, cvecv, n_jobs=-1)

8 cft kmn = foridsearch(Vkmc, param_grid=params, cvecv, n_jobs=-1)

8 cft kmn.fit(X, y)

9 print("Millors parametres per KNN =", cff_kmn.best_params_", "Accuracy =", cff_kmn.best_score_)

11 #Willitrar els parametres trobats per kmn

12 meta kmn! = KNeighbors(Lassifier(n_neighbors=cff_kmn.best_params_['n_neighbors'], weights=cff_kmn.best_params_['weights'])

13 scores = cross_val_score(meta_kmnl, X, y, cvecv, scoring='accuracy')

14 print("Accuracy: %0.3f de KNN " % scores.mean())

15

Millors parametres per KNN = ('n_neighbors': 5, 'weights': 'distance') Accuracy = 0.7718692541856925

Accuracy: 9.771 de KNN
```

Majority Voting:

Hard Voting:

Accuracy: 0.771 [Majority Voting: Hard voting]

Soft Voting:

Accuracy: 0.840 [Weighted Voting: Soft voting]

Millor majority voting: **soft voting** a **84%**

Machine Learning methods: Meta Learning algorithm **Bagging:**

Bagging Classifier amb DecisionTreeClassifier

```
RESULTATS DECISION TREE BAGGING - ESTIMADORS
Accuracy: 0.8509550989345509

    num estimadors: 1

Accuracy: 0.820955098934551

    num estimadors: 2

Accuracy: 0.8889954337899542

    num estimadors: 5

Accuracy: 0.8936757990867581
                               - num estimadors: 10
Accuracy: 0.9000114155251141
Accuracy: 0.900818112633181
                               - num estimadors: 50
Accuracy: 0.9021917808219178
                               - num estimadors: 100
Accuracy: 0.9038432267884322
                              - num estimadors: 200
```

Millor num estimadors 200 amb un Accuracy de: 0.9038432267884322

Bagging Classifier amb DecisionTreeClassifier amb max features

```
RESULTATS DECISION TREE BAGGING - ESTIMADORS i MAX FEATURES:
Accuracy: 0.7814726027397261 - num estimadors: 1
Accuracy: 0.7651369863013697 - num estimadors: 2
Accuracy: 0.8589459665144596
Accuracy: 0.8806887366818874
Accuracy: 0.8928919330289194
Accuracy: 0.9068797564687975 - num estimadors: 50
Accuracy: 0.9052283105022831 - num estimadors: 100
Accuracy: 0.9049619482496195 - num estimadors: 200
Millor num estimadors 50 amb un Accuracy de: 0.9068797564687975 amb maxim features: 0.35
```

RandomForest i Extra Trees

Millor bagging: max característiques amb 90,6%

Pandom Forest

```
RESULTATS RANDOM FOREST:
Accuracy: 0.8360881542699724 - num arbres: 1
Accuracy: 0.8201101928374657
                             - num arbres: 2
Accuracy: 0.8820936639118457 - num arbres: 5
Accuracy: 0.8914600550964187
                             - num arbres: 10
Accuracy: 0.9024793388429752 - num arbres: 20
Accuracy: 0.9068870523415977
                             - num arbres: 50
Accuracy: 0.9049586776859504
                             - num arbres: 100
Accuracy: 0.9055096418732782
                              - num arbres: 200
Millor num d'arbre 50 amb un Accuracy de: 0.9068870523415977
```

Extra Trees:

```
RESULTATS EXTRA TREES:
Accuracy: 0.8286501377410469
                               - num arbres: 1
Accuracy: 0.8074380165289256
                               - num arbres: 2
Accuracy: 0.8887052341597796
                               - num arbres: 5
Accuracy: 0.8922865013774105
                               - num arbres: 10
Accuracy: 0.9079889807162533
                               - num arbres: 20
Accuracy: 0.9088154269972453
                                - num arbres: 50
Accuracy: 0.9115702479338843
                               - num arbres: 100
Accuracy: 0.9115702479338843
                                - num arbres: 200
Millor num d'arbre 100 amb un Accuracy de: 0.9115702479338843
```

Millor arbre extra Trees amb 91.1%

Machine Learning methods: Meta Learning algorithm AdaBoost:

Adaboost

```
RESULTATS ADABOOST:
Accuracy: 0.8680365296803652
                               - num estimadors: 1
Accuracy: 0.8875875190258752
                               - num estimadors: 2
Accuracy: 0.8906126331811264
                               - num estimadors: 5
Accuracy: 0.8958523592085236 - num estimadors: 10
Accuracy: 0.8988812785388127
                               - num estimadors: 20
Accuracy: 0.8999809741248096
                               - num estimadors: 50
Accuracy: 0.9052283105022831
                               - num estimadors: 100
Accuracy: 0.9038546423135463
                               - num estimadors: 200
```

Millor num d'estimadors 100 amb un Accuracy de: 0.9052283105022831

Millors Resultats meta Learning

Millor: Extra Trees Classifier amb 91.1%

INFORME MODE	L EXTRA TREE	S		
	precision	recall	fl-score	support
Θ	0.94	0.85	0.89	245
1	0.93	0.97	0.95	481
accuracy			0.93	726
macro avg	0.93	0.91	0.92	726
weighted avg	0.93	0.93	0.93	726

Adaboost amb maxima profunditat

Millor adaboost, no máxima profunditat amb 90,6%

Conclusions

Conclusions:

Cross Validation	Accuracy	%
Single-Fold CV	0.931129476584022	93,1%
K-Fold CV	0.7623995489346548	76,2%

- -millors models però mètode no representatiu
- -pitjor resultat no generalitza bé

Model/Classificador	Accuracy	%	
Naïve Bayes	0.8760330578512396	87,6%	
KNN	0.8567493112947658	85,6%	
Decision Tree	0.9132231404958677	91,3%	
SVM (polinominal)	0.8705234159779615	87,0%	
Meta-learning (Extra Trees)	0.9297520661157025	92,2%	

- -intermedia, suposició independencia atributs correcte en el dataset
- intermedia, dades compactes, agrupació natural
- millors models, divisons clares facil de seguir categories
- intermig, relacions dades no sigui polinominal, igualment millor kernel svm
- millors models. decision tree millorats amb més diversitat

Conclusions:

Model/Classificador	pre	cision	recall	f1-score	support
Naïve Bayes	0	0.82	0.87	0.84	278
á	1	0.92	0.88	0.90	448
	accuracy			0.88	726
KNN	0	0.92	0.69	0.79	277
#**********	1	0.83	0.96	0.89	449
	accurac	су		0.86	726
Decision Tree	0	0.95	0.83	0.88	288
	1	0.89	0.97	0.93	438
	accurac	су		0.91	726
SVM (polinominal)	0	0.81	0.81	0.81	245
	1	0.90	0.90	0.90	481
	accurac	су		0.87	726
Meta-learning (Extra Trees)	0	0.94	0.85	0.89	245
5.50	1	0.93	0.97	0.95	481
	accurac	у		0.93	726

- equilibrat precision/recall bon model, inconvenient amb possibles independencies de atributs
- -alta precisió predicció classe 0, dificultats classes menys representades
- alta precisió i recall, millor classe 1, bones relacions entre característiques
- -rendiment equilibrat efectiu per separar les diferents classes, sobretot si els paràmetres s'optimitzen
- millor rendiment alta precisió i alt recall en les dues classes, ajuden les millores de meta learning

Millors mètode:

DECISION TREES I EXTRA TREES

Preguntes?

Moltes gràcies