

STATISTICS WITH R

AULA 9 Séries temporais

Séries Temporais

Mortes por Covid-19 por dia

Número de mortes divulgadas diariamente (barras) e média móvel (linha)

Fonte: Consórcio de veículos de imprensa a partir de dados da secretarias estaduais de Saúde

Técnica de Previsão

MODELOS DE SÉRIES TEMPORAIS

O objetivo é identificar os padrões e suas mudanças, desenvolvido através de sua série histórica.

Utilização: As técnicas quantitativas são aplicadas nas condições

- Informações históricas de pelo menos dois anos disponíveis;
- Informações quantificáveis em forma numérica:
- Assumir a hipótese de que algo dos padrões do passado irá se repetir no futuro (hipótese de continuidade).

Considerações gerais

- Uma série temporal é qualquer conjunto de observações ordenadas no tempo
 - Exemplos:
 - Faturamento de campanha
 - Número de pedidos
 - Produção mensal
 - Estoque mensal

Principais objetivos ao analisar uma série temporal

- Investigar o mecanismo gerador da série temporal; por exemplo: analisando uma série de altura de ondas, queremos saber como estas ondas foram geradas.
- Fazer previsões de valores futuros (curto ou longo prazo)
- Descrever apenas o comportamento da série;
- Procurar periodicidade relevante nos dados.

A análise de séries temporais visa identificar e explicar;

- **Tendência** evolução do fenômeno de interesse
- Sazonalidade regularidade ou variação sistemática na série de dados
- Padrões Cíclicos repetição de padrão num prazo superior a 2 anos
- Aleatório comportamento não explicável pelas componentes anteriores (erro aleatório)

A análise de séries temporais visa identificar e explicar;

Série =
$$T + S + C + a$$

T: Tendência

S: Sazonalidade

C: Ciclo

a: Aleatório

SÉRIES TEMPORAIS

Série temporal do faturamento (R\$)

SÉRIES TEMPORAIS

Série temporal do consumo de energia (Kw/h) de empresas do setor Agricultura

A série apresenta tendência? Sazonalidade?

SÉRIES TEMPORAIS

Série temporal do consumo de energia (Kw/h) de empresas do setor Agricultura

A série apresenta tendência? Sazonalidade?

FREQUÊNCIA DAS SÉRIES TEMPORAIS

FREQUÊNCIA DA SÉRIE

UNIDADE DE ANÁLISE	FREQUÊNCIA	
Anual	1	
Mensal	12	
Diária	365	
Trimestral	4	
Semanal	52	

Exemplo 1:

Ano	Mes	Faturamento	
2011	1	43484	
2011	2	45859	
2011	3	56254	
2011	4	58224	
2011	5	75403	
2011	6	61255	
2011	7	65601	
2011	8	80099	
2011	9	75017	
2011	10	87932	
2011	11	95266	
2011	12	79175	
2012	1	54085	
2012	2	63808	
2012	3	66330	
2012	4	72442	
2012	5	83072	
2012	6	71321	
2012	7	70095	
2012	8	99071	
2012	9	103100	
2012	10	98380	
2012	11	113751	
2012	12	84933	

Exemplo 2:

Período	Proporção de vendas
17/01 a 23/01	34.1
24/01 a 30/01	27.9
31/01 a 06/02	26.7
07/02 a 13/02	15.4
14/02 a 20/02	37.0
21/02 a 27/02	25.0
28/02 a 06/03	46.7

Exemplo 3:

instant	dteday	Bikes alugadas
1	01/01/2011	985
2	02/01/2011	801
3	03/01/2011	1349
4	04/01/2011	1562
5	05/01/2011	1600
6	06/01/2011	1606
7	07/01/2011	1510
8	08/01/2011	959
9	09/01/2011	822
10	10/01/2011	1321
11	11/01/2011	1263
12	12/01/2011	1162
13	13/01/2011	1406
14	14/01/2011	1421
15	15/01/2011	1248
16	16/01/2011	1204
17	17/01/2011	1000

+

MODELOS DE SÉRIES TEMPORAIS

UTILIZAÇÃO

- As técnicas quantitativas são aplicadas:
- Informações do passado disponíveis
- Assumir a hipótese de que algo dos padrões passados irá se repetir no futuro. (continuidade)

PROCESSO DE MODELAGEM

PROCESSO DE MODELAGEM

PROCESSO DE MODELAGEM

MODELOS DE SÉRIES TEMPORAIS

A análise de séries temporais visa identificar e explicar;

Série =
$$T + S + C + a$$

T: Tendência

S: Sazonalidade

C: Ciclo

a: Aleatório

MODELO MÉDIA MÓVEL

Média Móvel

A Média Móvel consiste em calcular a média das r observações mais recentes.

O nome de Média Móvel é utilizado pois, a cada período, a observação mais antiga é substituída pela mais recente, calculando-se nova média.

A previsão é dada pela última média calculada.

Exemplos:

série (10	12	13	14	16	18
média móvel ordem 2		11	12.5	13.5	15	17
série (10	12	13	14	16	18
média móvel ordem 3			11.7	13.0	14.3	16.0

SÉRIES TEMPORAIS

- Médias Móveis -
- PERÍODOS 2 E 4

Cheques Devolvidos

Cheques Devolvidos 2 por. Méd. Móv. (Cheques Devolvidos) 4 por. Méd. Móv. (Cheques Devolvidos)

SÉRIES TEMPORAIS

Médias Móveis -

PERÍODOS 2, 4 E 6

SÉRIES TEMPORAIS

Médias Móveis -

PERÍODOS 2, 4, 6 e 12

SÉRIES TEMPORAIS

Médias Móveis -

PERÍODOS 2, 4, 6 e 12

No R

Utilizar a biblioteca "zoo"

zoo::rollmeanr(base, k = ordem, fill = NA)

MODELOS DE ALISAMENTO EXPLONENCIAL

SÉRIES TEMPORAIS

Alisamento exponencial simples

A princípio, o método conhecido como Alisamento Exponencial Simples se assemelha ao da Média Móvel por extrair das observações da série temporal o comportamento aleatório pelo alisamento dos dados históricos. Entretanto, a inovação introduzida pelo Alisamento Exponencial Simples advém do fato de este método atribuir pesos diferentes a cada observação da série. Enquanto que na Média Móvel as observações usadas para encontrar a previsão do valor futuro contribuem em igual proporção para o cálculo dessa previsão, no Alisamento Exponencial Simples as informações mais recentes são evidenciadas pela aplicação de um fator que determina essa importância. Este método corresponde a uma média ponderada onde se dá peso maior para as observações mais recentes.

O método Alisamento Exponencial Simples pode ser representado através da equação:

$$\overline{Z}_t = \alpha Z_t + (1 - \alpha) \overline{Z}_{t-1}$$

Onde \overline{Z} representa a série suavizada no tempo t e t-1 e α é o peso atribuído à série, $0 \le \alpha \le 1$.

A previsão do valor futuro é dada pelo último valor exponencialmente alisado.

Alisamento exponencial holt winters

O método Alisamento Exponencial Holt Winters

- Tendência Linear Bi Paramétrico HW
- Sazonal HW
 - Aditivo (variação sazonal constante)
 - Multiplicativo (variação sazonal não é constante)

Alisamento exponencial holt winters

Nível

$$L_{t} = \underbrace{\alpha \frac{X_{t}}{S_{t-s}}}_{S_{t-s}} + (1 - \alpha)(L_{t-1} + b_{t-1})$$

Tendência

$$b_t = \beta(L_t - L_{t-1}) + (1 - \gamma)b_{t-1}$$

Sazonalidade

$$S_t = \boxed{\gamma} \frac{X_t}{L_t} + (1 - \beta) S_{t-s}$$

s = comprimento da sazonalidade (trimestre, semana ou mês)

SÉRIES TEMPORAIS

Exemplo: Quarterly Time Series of the Number of Australian Residents

SÉRIES TEMPORAIS

Exemplo: Quarterly Time Series of the Number of Australian Residents

SÉRIES TEMPORAIS

SÉRIES TEMPORAIS

SÉRIES TEMPORAIS

. COMPETIÇÃO ENTRE MODELOS

CRITÉRIOS PARA SELEÇÃO DE MODELOS

Critério	Descrição
Akaike Information Criterion (AIC)	Fornece uma medida da qualidade do modelo obtida pela simulação da situação em que este é testado em um conjunto de dados diferente. Isto é, amostra, treino e validação.
Bayesian Information Criterion (BIC)	Fornece uma medida da qualidade do modelo dentro do contexto Bayesiano.

Exercício

Utilizar a base "Bike_Sharing_day.csv" e utilizar os modelos estudados para "alisar" o campo CNT

Descrição das features

instant: record index

dteday: date

season: season (1:spring, 2:summer, 3:fall, 4:winter)

yr: year (0: 2011, 1:2012) **mnth:** month (1 to 12)

holiday: weather day is holiday **weekday:** day of the week

workingday: if day is neither weekend nor holiday is 1, otherwise is 0.

weathersit:

1: Clear, Few clouds, Partly cloudy

2: Mist and Cloudy, Mist and Broken clouds, Mist and Few clouds, Mist

3: Light Snow, Light Rain and Thunderstorm and Scattered clouds, Light Rain and Scattered clouds

4: Heavy Rain and Ice Pallets and Thunderstorm and Mist, Snow and Fog

temp: Normalized temperature in Celsius. The values are divided to 41 (max)

atemp: Normalized feeling temperature in Celsius. The values are divided to 50 (max)

hum: Normalized humidity. The values are divided to 100 (max)

windspeed: Normalized wind speed. The values are divided to 67 (max)

casual: count of casual users

registered: count of registered users

cnt: count of total rental bikes including both casual and registered

O que você achou da aula de hoje?

Pelo aplicativo da FIAP

(Entrar no FIAPP, e no menu clicar em Experience Survey)

OBRIGADO

