Table 1: Comparison of Kinetic Parameters and Activation Barriers for Hydrazone Formation and Friedel-Crafts Reactions

Reaction	System/ Catalyst	$k_{cat} \ (s^{-1} \ imes 10^{-2})$	K_M (mM)	k_{cat}/K_M (M $^{-1}$ s $^{-1}$)	ΔG^{\ddagger} , QM (kcal/mol)	ΔG^{\ddagger} , exp (kcal/mol)	Key Mechanistic Steps	Reference
Hydrazone formation	Buffer only	n.a.	n.a.	~0.001	23.0 (uncatalyzed)	· —	 Hydrazine attacks carbonyl Hemi-aminal formation Dehydration to hydrazone 	Drienovská et al., <i>Nat Chem</i> 2018
Hydrazone formation	LmrR (no pAF)	n.a.	n.a.	~0.002	_	_	 Hydrazine attacks carbonyl Hemi-aminal formation Dehydration to hydrazone 	Drienovská et al., <i>Nat Chem</i> 2018
Hydrazone formation	LmrR_pAF	1.2	0.017	0.72	15.2 (hemiaminal, 11.0 (hemiaminal, 8.7 (dehydration, 19.4 (dehydration,	R) S)	 pAF forms iminium (Schiff base) with carbonyl Hydrazine attacks iminium Dehydration to hydrazone 	Drienovská et al., <i>Nat Chem</i> 2018
Friedel–Crafts alkylation	Buffer only	n.a.	n.a.	0.01	_	24.7	 Indole attacks enal (direct nucleophilic addition) Proton transfer Product release 	Leveson-Gower et al., ACS Catal 2021
Friedel–Crafts alkylation	LmrR (no pAF)	n.a.	n.a.	0.02	_	23.4	 Indole attacks enal (direct nucleophilic addition) Proton transfer Product release 	Leveson-Gower et al., ACS Catal 2021
Friedel–Crafts alkylation	LmrR_pAF	1.45	18.2	0.80	_	20.8	 pAF forms iminium (Schiff base) with enal Indole attacks iminium (conjugate addition) Proton transfer Hydrolysis releases product and regenerates catalyst 	Leveson-Gower et al., ACS Catal 2021

How to Interpret the Table

Hydrazone formation

- Buffer only (no protein): The reaction is extremely slow. Only a theoretical (QM) barrier is available for this uncatalyzed reaction in water ($\Delta G_{\text{OM}}^{\ddagger} \approx 23 \text{ kcal/mol}$); the experimental barrier cannot be reliably measured due to the low rate.
- LmrR (no pAF): The wild-type protein gives only a marginal rate enhancement over buffer, with no measurable experimental or QM barrier specific to the protein system. The mechanism is the same as in buffer.
- LmrR_pAF: Incorporation of pAF provides a dramatic rate enhancement. Only QM barriers are available for this artificial enzyme $(\Delta G_{\text{OM}}^{\ddagger})$ as low as 8.7–15.2 kcal/mol for key steps), reflecting the new iminium-based mechanism.

Friedel-Crafts alkylation

- Buffer only (no protein): The reaction is slow, with a measurable experimental barrier ($\Delta G_{\text{exp}}^{\ddagger} \approx 24.7 \text{ kcal/mol}$).
- LmrR (no pAF): The wild-type protein provides a slight rate enhancement ($\Delta G_{\rm exp}^{\ddagger} \approx 23.4 \; {\rm kcal/mol}$), but no significant catalysis or mechanistic change.
- LmrR_pAF: The artificial enzyme lowers the experimental barrier substantially ($\Delta G_{\rm exp}^{\ddagger}=20.8~{\rm kcal/mol}$), demonstrating true catalytic activity via an iminium mechanism.

Significance

- Catalysis lowers the activation barrier (ΔG^{\ddagger}) , leading to increased reaction rates.
- Agreement between QM and experimental barriers in buffer/water validates the mechanistic understanding of the uncatalyzed process.
- Artificial enzymes like LmrR_pAF can dramatically accelerate reactions by introducing new catalytic mechanisms (e.g., iminium catalysis for hydrazone formation).