Generalized Anomaly Detection https://arxiv.org/pdf/2110.15108.pdf

Михеев Борис

ВМК МГУ Кафедра ММП

22 декабря 2021

Задача детекции аномалий

Заключается в выявлении новых, некорректных или до сих пор неизвестных модели данных, отличных от типичных точек. Обычно предполагается, что нормальные данные сосредоточены в компактной области признакового пространства, схожи и близки друг к другу. Объекты вне этой области считаются аномалиями.

О терминологии

- Anomaly объект из конкретно другого распределения, нет схожести с нормальными объектами
- Outlier редкий, маловероятный объект, схожий с нормальными
- Novelty объект из новой области значений вероятности, данные, с которыми модель еще не сталкивалась.

Методы детекции аномалий

Методы, основанные на классификации

В случае, когда нормальный класс состоит из одной категории объектов, классификатор обучается на данных с двумя классами - нормальным и аномальным. Ищется отображение $\mathcal F$ из пространства признаков входных объектов $\mathcal X$ в признаковое пространство $\mathcal Y$ меньшей размерности. Посредством некой функции $\mathcal D$ представлениям объектов присваивается степень принадлежности к нормальному/аномальному классу.

Способы обобщения на случай m категорий нормального класса:

- Обучить m классификаторов для каждого класса на своем классе, применять их в совокупности для идентификации нового объекта
- Использовать один классификатор, приняв все нормальные категории за одну

Теория Демпстера-Шаффера

$$\mathbb{H}=\{\mathbb{H}_1,...,\mathbb{H}_n\}$$
 - множество взаимоисключающих утверждений, $2^\mathbb{H}=\{A|A\subseteq\mathbb{H}\}$

Массовоые функции:
$$m(\emptyset)=0$$
, $m(A)\geq 0$, $\sum\limits_{A|A\subseteq 2^{\mathbb{H}}}m(A)=1$

Функция доверия:
$$Bel(A) = \sum_{S|S\subseteq A} m(S) = m(A) + \sum_{S|S\subset A} m(S)$$

$$Bel(\overline{A}) = \sum_{S|S \cap A = \emptyset} m(S)$$

Функция правдоподобия:
$$PI(A) = 1 - BeI(\overline{A}) = \sum\limits_{S \mid S \cap A \neq \emptyset} m(S)$$

Правило Демпстера: пусть $m_1(S)$, $m_2(S)$ - два набора масс для всех $S\subseteq \mathbb{H}$

Тогда
$$m(A) = \frac{1}{\mathcal{N}} \sum_{S_1 \cap S_2 = A} m_1(S_1) m_2(S_2), \ A \neq \emptyset$$

где
$$\mathcal{N}=\sum\limits_{S\subseteq\mathbb{H}}\sum\limits_{S_1\cap S_2=S}^{\sum_{S_1\cap S_2=N}}m_1(S_1)m_2(S_2)=\sum\limits_{S_1\cap S_2\neq\emptyset}m_1(S_1)m_2(S_2)==$$
=1- $\sum\limits_{S_1\cap S_2\neq\emptyset}m_1(S_1)m_2(S_2)$

 $S_1 \cap S_2 = \emptyset$

Многоклассовая задача

Table 1: Probability estimates for sample $x \in \mathcal{X}$ provided by m classifiers.

$$U = \{1, 2, ..., m, \Lambda\}$$

$$\mathbb{P}(\Lambda|x) = \frac{1}{K} \sum_{\neg \{1\} \cap ... \cap \neg \{m\} = \Lambda} \prod_{i=1}^{m} \mathbb{P}_{i}(\neg \{i\}|x) = \frac{1}{K} \prod_{i=1}^{m} \mathbb{P}_{i}(\neg \{i\}|x)$$

$$K = 1 - \sum_{u_{1} \cap ... \cap u_{m} = \emptyset} \prod_{i=1}^{m} \mathbb{P}_{i}(u_{i}|x), \ u_{i} = \{\{i\}, \neg \{i\}\}\}$$

$$K = \prod_{i=1}^{m} \mathbb{P}_{i}(\neg \{i\}|x) + \sum_{i=1}^{m} \mathbb{P}_{i}(\{i\}|x) \prod_{j=1, j \neq i}^{m} \mathbb{P}_{j}(\neg \{j\}|x)$$

Алгоритмы

Algorithm 1: Using m Single-Class Anomaly Detection for Multi-Class Case.

Training: Let (\mathcal{F}, D) be any one-class anomaly detection algorithm. Given training set $X = \{X_1, X_2, \cdots, X_m\}$ consisting of training examples from m classes $X_i \subset \mathcal{X}_i$, train (\mathcal{F}, D) separately on each class producing m classifiers, $(\mathcal{F}_i, D_i)1 < i < m$.

Testing: Given $x \in \mathcal{X}$, classify it with each of the m classifiers. Declare x anomalous if all classifiers classify it as anomalous.

Notes: A classifier (\mathcal{F}, D) typically uses a comparison $D(\mathcal{F}(x)) < T$ for classification $(T \text{ is an arbitrary threshold that can be tuned). For SVDD this is a distance from the center while for DROCC it is distance from a manifold.$

Algorithm 2: Training a single classifier by combining all m classes.

Training: Given a training set $X = X_1 \cup X_2 \cup \cdots \cup X_m$, train a single classifier (\mathcal{F}, D) on this set (see *Notes* in Algorithm 1).

Testing: An example x is classified as normal or anomalous by this classifier (just like any single-class classifier).

Notes: This algorithm can be applied directly to the *inseparable* model described previously.

Алгоритмы

Lemma 3.1: Algorithm 2 has a higher AUC value than Algorithm 1 when the same single-class anomaly detection algorithm is used in both cases.

Proof: Recall that the AUC value is the integral of the True Positive Rate (TPR) vs. False Positive Rate (FPR) curve (each point on the curve corresponds to a different value for the detection threshold T). For Algorithm 1 we can write the TPR and FPR as,

TPR₁ = 1 - False Negative Rate
=
$$1 - \frac{1}{R} \sum_{x_j \in \bigcup_{i=1}^n X_i} p(x_j) \prod_{i=1}^n (1 - P_i(\{i\}|x_j))$$

FPR₁ = 1 - True Negative Rate
= $1 - \frac{1}{R} \sum_{x_j \in X_i \setminus \bigcup_{i=1}^n X_j} p(x_j) \prod_{i=1}^n (1 - P_i(\{i\}|x_j))$
lete that the difference in the two expressions is in the set

Note that the difference in the two expressions is in the sets that x_j is selected from. The similar expressions for Algorithm 2 are,

$$\begin{array}{ll} \text{TPR}_2 &= 1 - \text{False Negative Rate} \\ &= 1 - \frac{1}{K} \sum_{x_j \in \mathcal{U}_{p_i}^m \lambda_j} p(x_j) (1 - P(\text{Normal}|x_j)) \\ &= 1 - \frac{1}{K} \sum_{x_j \in \mathcal{U}_{p_i}^m \lambda_j} p(x_j) \sum_{i=1}^{j} \frac{1}{n!} (1 - P_i(\{i\}|x_j)) \\ \text{FPR}_2 &= 1 - \text{True Negative Rate} \\ &= 1 - \frac{1}{K} \sum_{x_j \in \mathcal{K} \setminus \mathcal{U}_{p_i}^m \lambda_j} p(x_j) (1 - P(\text{Normal}|x_j) \\ &= 1 - \frac{1}{K} \sum_{x_j \in \mathcal{K} \setminus \mathcal{U}_{p_i}^m \lambda_j} p(x_j) \sum_{i=1}^{j} \frac{1}{m!} (1 - P_i(\{i\}|x_j)) \end{array}$$

The difference in the TPR (and FPR) values of this set of expressions is that for Algorithm 1 we take a product of the form $\prod_i (1 - P_i(\{i\}|x_j))$ whereas for Algorithm 2 this is a mean of the same probabilities. As m increases, we would expect the product term to decrease rapidly, Indeed, the values of TPR and FPR for Algorithm 1 approach 1 as m increases resulting in a purely random classifier. On the other hand, the TPR and FPR for Algorithm 2 remain relatively unchanged since they use an arithmetic mean of the probability rather than a geometric mean as in Algorithm 1. QED Corollary 3.1.1: As m increases, the AUC value for Algorithm 1 decreases.

Deep AD methods

- Метрические методы
- Основывающиеся на трансформациях
- Генеративные методы

DeepSVDD

Минимизируемая функция потерь:

$$\min_{R,\mathcal{W}} R^2 + \frac{1}{\nu n} \sum_{i=1}^n \max\{0, \|\phi(\boldsymbol{x}_i; \mathcal{W}) - \boldsymbol{c}\|^2 - R^2\}
+ \frac{\lambda}{2} \sum_{\ell=1}^L \|\boldsymbol{W}^{\ell}\|_F^2.$$
(3)

Algorithm 1 Training neural networks via DROCC

Input: Training data $D = [x_1, x_2, \dots x_n]$.

Parameters: Radius $r, \lambda \geq 0, \mu \geq 0$, step-size η , number of gradient steps m, number of initial training steps n_0 .

Initial steps: For $B = 1, \dots n_0$

$$X_B$$
: Batch of training inputs

$$\theta = \theta - \text{Gradient-Step}\Big(\sum_{x \in X_B} \ell(f_{\theta}(x), 1)\Big)$$

DROCC steps: For $B = n_0, \dots n_0 + N$

 X_B : Batch of training inputs

$$\forall x \in X_B : h \sim \mathcal{N}(0, I_d)$$

Adversarial search: For i = 1, ..., m

1.
$$\ell(h) = \ell(f_{\theta}(x+h), -1)$$

2. $h = h + \eta \frac{\nabla_h \ell(h)}{\|\nabla_h \ell(h)\|}$

2.
$$h = h + \eta \frac{\nabla_h \ell(h)}{\|\nabla_h \ell(h)\|}$$

3.
$$h = \frac{\alpha}{\|h\|} \cdot h \text{ where } \alpha = r \cdot \mathbb{1}[\|h\| \le r] + \|h\| \cdot \mathbb{1}[r \le r]$$

$$\begin{split} \|h\| &\leq \gamma \cdot r] + \gamma \cdot r \cdot \mathbb{1}[\|h\| \geq \gamma \cdot r] \\ \ell^{itr} &= \lambda \|\theta\|^2 + \sum_{x \in X_B} \ell(f_\theta(x), 1) + \mu \ell(f_\theta(x+h), -1) \end{split}$$

 $\theta = \theta - \text{Gradient-Step}(\ell^{itr})$

$$\ell^{\mathrm{dr}}(\theta) = \lambda \|\theta\|^2 + \sum_{i=1}^n [\ell(f_\theta(x_i), 1) + \mu \max_{\substack{\tilde{x}_i \in \\ N_i(r)}} \ell(f_\theta(\tilde{x}_i), -1)],$$

$$N_i(r) \stackrel{\text{def}}{=} \left\{ \|\tilde{x}_i - x_i\|_2 \le \gamma \cdot r; \ r \le \|\tilde{x}_i - x_j\|, \right.$$

$$\forall j = 1, 2, \dots n \},\,$$

DeepMAD

Algorithm 3: DeepMAD

Training: Randomly initialize m autoencoders A_i ; For every A_i , train A_i on provided examples X_i ; Using the encoder part E_i of the autoencoder, identify a point c_i , the "center" for this class; For every encoder E_i , create labeled training data $\{(x,l)|$ if $x \in X_i$ then l = +1 else if $x \in \bigcup_{j=1, j \neq i}^m X_j$ then l = -1. Then train E_i on this data using loss function $\mathcal L$ Result: m trained encoders E_i

Testing: Given x to classify, Compute $d(x) = \min_{i=1}^m ||c_i - E_i(x; \theta_i)||_2$; If $d(x) < \gamma$ then x is normal else x is anomalous

 $\begin{array}{l} \mathcal{L}(\theta_i) = \frac{1}{N} \sum_{j=1}^{N_i} ||E_i(x_j;\theta_i) - c_i||^2 + \\ \frac{\eta}{N} \sum_{x_k \in (\bigcup_j X_j) \backslash X_i} (\max{(0,\delta - ||E_i(x_k;\theta_i) - c_i||_2)^2}) \\ + \frac{\lambda}{2} \sum_{l=1}^{L} ||W^l||_F^2 \end{array}$

	2-in, 8-out	5-in, 5-out	9-in, 1-out	
DROCC	$0.4728 \longleftrightarrow 0.7252$	$0.4316 \longleftrightarrow 0.7219$	$0.4107 \longleftrightarrow 0.7146$	
	$\pm 0.0119 \pm 0.0081$	$\pm 0.0257 \pm 0.0039$	$\pm 0.0454 \pm 0.0079$	
Outlier	$(0,8)$ 0.8359 ± 0.0117			
DROCC(m)	$0.4216 \longleftrightarrow 0.6912$	$0.3806 \longleftrightarrow 0.7023$	$0.3439 \longleftrightarrow 0.6896$	
	$\pm 0.0424 \pm 0.0188$	$\pm 0.0047 \pm 0.0648$	$\pm 0.1034 \pm 0.0453$	
Outlier	$(0,8)$ 0.8255 ± 0.0137			
DeepSVDD	$0.4088 \longleftrightarrow 0.7623$	$0.3382 \longleftrightarrow 0.7105$	$0.3058 \longleftrightarrow 0.6844$	
	$\pm 0.0068 \pm 0.0193$	$\pm 0.0076 \pm 0.0077$	$\pm 0.0169 \pm 0.0144$	
DeepSVDD(m)	$0.4147 \longleftrightarrow 0.7516$	$0.3482 \longleftrightarrow 0.6909$	$0.3580 \longleftrightarrow 0.5864$	
	$\pm 0.0129 \pm 0.0093$	$\pm 0.0123 \pm 0.0133$	$\pm 0.0166 \pm 0.0167$	
DeepMAD	$0.5396 \longleftrightarrow 0.7647$	$0.4929 \longleftrightarrow 0.7738$	$0.5437 \longleftrightarrow 0.7230$	
	± 0.0031 ± 0.0014	$\pm 0.0046 \pm 0.0022$	$\pm 0.0028 \pm 0.0084$	

Table 2: AUC range for CIFAR-10

		RECYCLE		CIFAR-100		
	2-in, 8-out	5-in, 5-out	9-in, 1-out	4-in, 1-out	5-in, 1-out	2-in, 18-out
DROCC	$0.6873 \leftrightarrow 0.9774$	$0.5738 \leftrightarrow 0.9260$	$0.5408 \leftrightarrow 0.8247$	$0.4447 \leftrightarrow 0.7997$	90.56	$0.3548 \leftrightarrow 0.7329$
	$\pm 0.0937 \pm 0.0049$	$\pm 0.0397 \pm 0.0307$	$\pm 0.0961 \pm 0.0507$	$\pm 0.0176 \pm 0.0719$		$\pm 0.0006 \pm 0.0971$
Mean	0.8161	0.7448	0.6992	0.6128		0.5638
Deep	$0.6622 \leftrightarrow 0.9871$	$0.5438 \leftrightarrow 0.9279$	$0.4551 \leftrightarrow 0.8825$	$0.3703 \leftrightarrow 0.8728$	90.12	$0.4196 \leftrightarrow 0.7185$
SVDD	$\pm 0.0502 \pm 0.0033$	$\pm 0.0274 \pm 0.0325$	$\pm 0.0285 \pm 0.0137$	$\pm 0.0207 \pm 0.0079$		$\pm 0.0077 \pm 0.0180$
Mean	0.8538	0.7269	0.6523	0.5791		0.5559
Deep	$0.6434 \leftrightarrow 0.9714$	$0.5732 \leftrightarrow 0.8832$	$0.4860 \leftrightarrow 0.9395$	$0.5906 \leftrightarrow 0.8283$	98.38	$0.5384 \leftrightarrow 0.8213$
MAD	$\pm 0.0640 \pm 0.0011$	$\pm 0.0485 \pm 0.0137$	$\pm 0.0267 \pm 0.3466$	$\pm 0.0035 \pm 0.0073$		$\pm 0.0018 \pm 0.0012$
Mean	0.8329	0.7739	0.7613	0.6966		0.6580

Figure 3: 2 in and 8 out case (CIFAR-10).

Figure 5: CDF of distances DeepSVDD.

Figure 6: CDF of logits output by DROCC.

Figure 7: CDF of distances from 'center' DeepMAD.

				DRC	OCC				
0	1	2	3	4	5	6	7	8	9
KS((0,8),-), AUC = 0.84									
0	63	57	61	61	61	64	63	0	63
KS((5,9),-), AUC = 0.5									
45	12	36	50	51	14	52	31	38	14
DeepSVDD KS((4,6),-), AUC = 0.75									
37	45	9	30	0	24	0	29	36	49
					AUC =				
28	0	18	13	18	0	34	15	31	14
				ъ.	MAD				
				Deepl		0.7174			
		1	n classe			0.7174			
0	100	4.4	107	KS(128	126	120	60	105
0	100	44	127	124		126	128	60	125
100	0	101	122	KS(100	121	107	124
100	0	101	123	118	123	123	121	107	124
In classes (3,5), AUC=0.5277									
				KS(_			
6	1	4	0	16	96	2	73	81	99
KS(5,-)									
96	94	77	96	87	0	97	29	105	106

Table 4: h values for the KS test.

