

USTHB-Info |2023

SÉRIE D'EXERCICES 5 RÉSEAUX L3 ACAD

Par Dr. Khadidja CHAOUI

Q1) Peut-on attribuer les adresses suivantes à un ordinateur TCP/IP?

```
0.1.1.1; 18.1.0.1; 126.200.15.89;
129.256.58.84; 10.255.255.255; 185.27.1.25; 255.100.1.1;
234.10.20.30; 64.255.11.48; 220.87.56.95; 10.0.0.0.
```


Q1) Peut-on attribuer les adresses suivantes à un ordinateur TCP/IP?

```
0.1.1.1; 18.1.0.1; 126.200.15.89; 129.256.58.84; 10.255.255.255; 185.27.1.25; 255.100.1.1; 234.10.20.30; 64.255.11.48; 220.87.56.95; 10.0.0.0.
```

Réponse

0.1.1.1 Non car c'est une adresse particulière ; adresse machine.

 $18.1.0.1 \rightarrow$ Oui, adresse classe A.

126.200.15.89 → Oui, adresse classe *A.*

129.256.58.84 → Non, la valeur 256 est en dehors de la marge > 255.

- 10.255.255.255 → Non, c'est une adresse de diffusion dans 10.0.0.0.
- *185.27.1.25* → Oui, adresse classe *B.*
- 255.100.1.1 → Non, c'est une adresse hors classe.
- 234.10.20.30 → Non, c'est une adresse de Multicast.
- 64.255.11.48 → Oui, c'est une adresse classe A.
- 220.87.56.95 → Oui, c'est une adresse classe C.
- 10.0.0.0 → Non, c'est une adresse d'identification réseau.

Soit le datagramme IP suivant

0100	0101	11111111	0000 00	1000 0000
Ver	LongE	TOS	Longueur totale	
0000 0000 0000 0101			0 0 0	00001 000 0000
identification			drapeaux	Déplacement
0001 0000		0000 0110		
TTL		Protocole	Total de contrôle d'erreur	
01001111. 11110000.00001111.10001001				
11001000. 1110 0001. 10001100. 11111111				
Données				

Q1) Quel protocole IP est utilisé, justifiez ?

Q2) A quel protocole est destiné le datagramme IP, justifiez ?

Q3) Qu'indiquent les valeurs des champs drapeaux et déplacement ?

Q1) Quel protocole IP est utilisé, justifiez?

Réponse

Protocole IPv 4, car la valeur indiquée dans le champs protocole est 0100.

Q2) A quel protocole est destiné le datagramme IP, justifiez ?

Réponse

Ce datagramme IP est destiné au protocole TCP, car la valeur indiquée dans le champs protocole est 0000 0110 (6).

Q2) Qu'indiquent les valeurs des champs drapeaux et déplacement ?

Réponse

Comme la valeur du déplacement est non nulle donc ce datagramme est un fragment du datagramme identifié par la valeur 0101=5. Plus encore, c'est le dernier fragment car la valeur du drapeau 0.

Q4) Interpréter la valeur du champ TOS ?

Q4) Interpréter la valeur du champ TOS ?

Réponse

La valeur du champs TOS : 111 1111.

Ce datagramme doit être routé de manière prioritaire car la priorité (les trois premiers bits), est maximale à 111=7.

De même tous les autres drapeaux sont à 1, donc le paquet doit être routé de telle façon à emprunter un chemin sécurisé.

Q5) Donner l'adresse IP (en décimal) des réseaux source et destination, ainsi que leurs classes?

Q5) Donner l'adresse IP (en décimal) des réseaux source et destination, ainsi que leurs classes?

Réponse

Adresse IP source: 79.240.15.137

Adresse IP destination: 200.225.140.255

En supposant que la MTU des réseaux suivants est comme suit :

- $(R_1-R_2):2000$
- $(R_2-R_3):1000$
- $A_1:500$

Q1) Décrire alors les opérations effectuées sur un paquet venant du PC1 de 2220 octets est envoyé vers PC1.

Q2) Donner le résultat de ces opérations.

2220 Octets > 20 entête, 2200 données

Réponse

- Sortie R₁ (MTU=2000) dont 1980 de données.
 - $-F_1$: ID=F; (20-1980); depl=0; More=1.
 - $-F_2: ID=F; (20-220); depl=1980; More=0.$
- Sortie R₂ (MTU=1000) dont 980 de données.
- F₁ est fragmenté en
 - F_{11} : ID=F; (20-980); depl=0; More=1.
 - F_{12} : ID=F; (20-980); depl=980; More=1.
 - F₁₃: ID=F; (20-20); depl=1960; More=1.
- F₂ n'est pas fragmenté.

Sortie R₃ (MTU=500) dont 480 de données.

- F₁₁ est fragmenté en
 - F_{111} : ID=F; (20-480); depl=0; More=1.
 - F_{112} : ID=F; (20-480); depl=480; More=1.
 - F₁₁₃: ID=F; (20-20); depl=960; More=1.
- F₁₂ est fragmenté en.
 - F_{121} : ID=F; (20-480); depl=980; More=1.
 - $-F_{122}$: ID=F; (20-480); depl=1460; More=1.
 - F_{123} : ID=F; (20-20); depl=1940; More=1.
- F₁₃ et F₂ ne sont pas fragmentés

