Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича"

Протокол по лабораторной работе №2.4 ИССЛЕДОВАНИЕ ИСТОЧНИКА ТОКА

Выполнил:

Студент 1 курса

Группа

Бригада №

Цель работы:

- Изучение зависимости падения напряжения на внешнем участке электрической цепи от силы тока в ней.
- Расчёт на основании полученных данных величины электродвижущей силы и внутреннего сопротивления источника.
- Исследование зависимостей коэффициента полезного действия источника и мощностей, выделяемых на внутреннем и внешнем участках цепи, от силы тока, протекающего в этой цепи.
- Исследование батареи, состоящей из одинаковых источников, соединённых последовательно или параллельно

Схема установки:

Рис. 4.4 Схема лабораторной установки

К –ключ

А- Амперметр

V- Вольтметр

R –переменное сопротивление нагрузки

Рабочие формулы:

$$N_1 = \varepsilon I \quad N_2 = IU = I(\varepsilon - Ir) \quad N_3 = I^2 r \quad \eta = \frac{N_2}{N_1} = \frac{U}{\varepsilon} = 1 - \frac{Ir}{\varepsilon} r = tg\alpha = -\frac{\Delta U}{\Delta I} = \frac{U_i - U_k}{I_k - I_i} = \frac{\varepsilon}{I_{\kappa, \lambda}}$$

Формулы погрешностей:

$$\delta r = \sqrt{(\delta \varepsilon)^2 + (\delta I_{\kappa,3})^2} \ \delta N_1 = \frac{\Delta N_1}{N_1} = \sqrt{(\frac{\Delta \varepsilon}{\varepsilon})^2 + (\frac{\Delta I}{I})^2} \ \delta N_2 = \frac{\Delta N_2}{N_2} = \sqrt{(\frac{\Delta U}{U})^2 + (\frac{\Delta I}{I})^2} \ \delta N_3 = \frac{\Delta N_3}{N_3} = \sqrt{(\frac{\Delta r}{r})^2 + 4(\frac{\Delta I}{I})^2}$$

Таблица измерений и вычислений для первого источника

№	I ₁ , mA	U_1 , B	P, B _T	P_1 , B_T	P ₂ , B _T	ή
1	3,67	9,15	0,034	0,034	0,000013	1,00
2	3,83	8,91	0,035	0,034	0,000014	0,97
3	4,62	7,64	0,042	0,035	0,000021	0,83
4	4,98	7,07	0,046	0,035	0,000024	0,77
5	5,38	6,44	0,049	0,035	0,000028	0,70
6	5,85	5,70	0,054	0,033	0,000033	0,62
7	6,52	4,63	0,060	0,030	0,000041	0,51
8	7,32	3,36	0,067	0,025	0,000052	0,37
9	8,14	2,05	0,074	0,017	0,000064	0,22
10	9,41	0,03	0,086	0,000	0,000086	0,00

3	=	9,150
I_{κ_3}	=	9,410
r	=	0,972

Таблица измерений и вычислений для первого источника

No	I ₂ , mA	U ₂ , B	P, B _T	P ₁ , B _T	P ₂ , B _T	ή
1	3,18	7,96	0,025	0,025	0,000008	1,00
2	4,05	6,93	0,032	0,028	0,000013	0,87
3	4,83	6,00	0,038	0,029	0,000019	0,75
4	5,63	5,05	0,045	0,028	0,000026	0,63
5	6,47	4,04	0,052	0,026	0,000034	0,51
6	6,88	3,55	0,055	0,024	0,000038	0,45
7	7,52	2,79	0,060	0,021	0,000046	0,35
8	8,17	2,02	0,065	0,017	0,000054	0,25
9	8,73	1,34	0,069	0,012	0,000062	0,17
10	9,83	0,02	0,078	0,000	0,000078	0,00

3	=	7,960
Ікз	=	9,830
r	=	0,810

Таблица измерений и вычислений для батареи

No	I ₆ , mA	U ₆ , B	P, Bt	P ₁ , B _T	P ₂ , B _T	ή
1	5,16	12,89	0,067	0,067	0,000034	1,00
2	5,65	11,58	0,073	0,065	0,000041	0,90
3	6,31	9,83	0,081	0,062	0,000052	0,76
4	6,74	8,66	0,087	0,058	0,000059	0,67
5	7,06	7,81	0,091	0,055	0,000065	0,61
6	7,67	6,18	0,099	0,047	0,000076	0,48
7	8,16	4,85	0,105	0,040	0,000086	0,38
8	8,62	3,63	0,111	0,031	0,000096	0,28
9	9,34	1,69	0,120	0,016	0,000113	0,13
10	9,96	0,02	0,128	0,000	0,000128	0,00

3	=	12,890
Ікз	=	9,960
r	=	1,294

Вывод

В ходе выполнения лабораторной работы исследована зависимость напряжения на внешнем участке цепи от силы тока и рассчитаны основные параметры источника тока: электродвижущая сила (ЭДС) и внутреннее сопротивление. Были также проанализированы зависимости коэ ффициента полезного действия, мощности потерь и полезной мощности от силы тока.

Экспериментально установлено, что:

- 1. Напряжение на внешнем участке линейно уменьшается с ростом силы тока, что соответствует теоретическому закону Ома для полной цепи.
- 2. Полезная мощность достигает максимума, когда сопротивление нагрузки равно внутреннему сопротивлению источника.
- 3. КПД источника убывает с увеличением силы тока. Полученные экспериментальные данные подтверждают теоретические зависимости и позволяют оценить эффективность использования источника тока в различных режимах работы.