Евгений Борисов

методы ML

- метрические измеряем расстояния, определить ближайших
- статистические восстановить плотность, определить вероятность
- *погические* построить правило (комбинацию предикатов)
- линейные построить разделяющую поверхность
- композиции собрать несколько классификаторов в один

Вероятностное пространство математическая модель случайного эксперимента (опыта)

 (Ω,A,P)

Вероятностное пространство математическая модель случайного эксперимента (опыта)

 (Ω,A,P)

 Ω - элементарные исходы эксперимента, множество объектов ω .

Вероятностное пространство математическая модель случайного эксперимента (опыта)

 (Ω,A,P)

 Ω - элементарные исходы эксперимента, множество объектов ω .

A - случайные события, набор подмножеств Ω .

А ∋ Ω - достоверное событие

A ∋ Ø - невозможное событие

Вероятностное пространство математическая модель случайного эксперимента (опыта)

 (Ω,A,P)

- Ω элементарные исходы эксперимента, множество объектов ω .
- ${f A}$ случайные события, набор подмножеств ${f \Omega}$.
 - **A**∋**Ω** достоверное событие
 - **А** ∋ Ø невозможное событие
- **P** функция вероятности **P**: **A** \longrightarrow [0,1] 0 \le **P**(**a**) \le **1** вероятность события **a** из **A P**(Ø)=**0** ; **P**(Ω)=**1**

Вероятностное пространство математическая модель случайного эксперимента (опыта)

 (Ω,A,P)

- Ω элементарные исходы эксперимента, множество объектов ω .
- **A** случайные события, набор подмножеств Ω .
 - **A**∋ Ω достоверное событие
 - A ∋ Ø невозможное событие
- **P** функция вероятности **P**: **A** → [0,1] $0 \le P(a) \le 1$ вероятность события **a** из **A** $P(\emptyset)=0$; $P(\Omega)=1$

Случайная величина в пространстве (Ω, A, P) это числовая функция

 $X: A \longrightarrow \mathbb{R}$

может быть интерпретирована как некоторое измерение объектов $oldsymbol{\Omega}$

Вероятностное пространство математическая модель случайного эксперимента (опыта)

 (Ω,A,P)

- Ω элементарные исходы эксперимента, множество объектов ω .
- **A** случайные события, набор подмножеств Ω .
 - A ∋ Ω достоверное событие
 - $A \ni \emptyset$ невозможное событие
- **Р** функция вероятности **Р**: **A** \longrightarrow [0,1] **0** \le **P**(**a**) \le **1** вероятность события **a** из **A**

 $P(\emptyset)=0$; $P(\Omega)=1$

Случайная величина в пространстве (Ω , A, P) это числовая функция

 $X: A \longrightarrow \mathbb{R}$

типы случайных величин:

<u>дискретные (discrete)</u> - принимающая конечное или счетное число значений (<u>Пример</u>: частота слов в тексте, количество детей в семье)

<u>непрерывные (continuous)</u> - принимают значение в определённом интервале (*Пример*: *рост людей*)

Вероятностное пространство (Ω , A, P)

 Ω - элементарные исходы эксперимента

 $oldsymbol{\mathsf{A}}$ - случайные события, набор подмножеств $oldsymbol{\Omega}$

Р - функция вероятности **Р**: **A** \rightarrow [0,1]

X - случайная величина **X:** $\mathbf{A} \longrightarrow \mathbb{R}$

случайная величина **X** задаётся распределением вероятностей **F** своих значений

$$F(x) = P(X \leqslant x)$$

Вероятностное пространство (Ω , A, P)

Ω - элементарные исходы эксперимента

 $oldsymbol{\mathsf{A}}$ - случайные события, набор подмножеств $oldsymbol{\Omega}$

Р - функция вероятности **Р**: $A \rightarrow [0,1]$

X - случайная величина X: $A \longrightarrow \mathbb{R}$

случайная величина **X** задаётся распределением вероятностей **F** своих значений

$$F(x) = P(X \leq x)$$

Рассмотрим интервалы $(x,x+\Delta x)$, где Δx - бесконечно малые приращения x для F(x)

$$\varphi(x) = \lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x}$$

Плотностью распределения (вероятности) $\phi(x)$ непрерывной случайной величины X назовём первую производную функции распределения F(x)

Вероятностное пространство (Ω, A, P)

Ω - элементарные исходы эксперимента

 ${f A}$ - случайные события, набор подмножеств ${f \Omega}$

Р - функция вероятности **Р**: **A** \rightarrow [0,1]

X - случайная величина X: $A \longrightarrow \mathbb{R}$

F(**x**)=**P**(**X**≤**x**) - распределение вероятностей **P**

 $\phi(x)=F^{*}(x)$ - плотность распределения **F**

график функции **ф(х)** плотности распределения **X**

Вероятностное пространство (Ω, A, P)

Ω - элементарные исходы эксперимента

 ${f A}$ - случайные события, набор подмножеств ${f \Omega}$

P - функция вероятности **P**: **A** \rightarrow [0,1]

X - случайная величина **X**: $\mathbf{A} \longrightarrow \mathbb{R}$

F(**x**)=**P**(**X**≤**x**) - распределение вероятностей **P**

 $\phi(x)=F^{x}(x)$ - плотность распределения F

площадь криволинейной трапеции, ограниченной графиком $\phi(x)$ и прямыми x=a, x=b, y=0 это вероятность $P(a \le X \le b)$ попадания X в интервал [a,b]

$$P(\alpha \leq X \leq \beta) = \int_{\alpha}^{\beta} \varphi(x) dx$$

Вероятностное пространство (Ω , A, P)

Ω - элементарные исходы эксперимента

 ${f A}$ - случайные события, набор подмножеств ${f \Omega}$

P - функция вероятности **P**: $A \rightarrow [0,1]$

X - случайная величина **X:** $\mathbf{A} \longrightarrow \mathbb{R}$

F(**x**)=**P**(**X**≤**x**) - распределение вероятностей **P**

 $\phi(x)=F^{*}(x)$ - плотность распределения **F**

площадь криволинейной трапеции, ограниченной графиком $\phi(x)$ и прямыми x=a, x=b, y=0 это вероятность $P(a \le X \le b)$ попадания X в интервал [a,b]

площадь бесконечной криволинейной трапеции, ограниченной графиком $\phi(x)$, прямой x=b, y=0 это функция распределения F(b)=P(X≤b)

$$P(\alpha \leq X \leq \beta) = \int_{\alpha}^{\beta} \varphi(x) dx$$

$$F(\beta) = P(X \le \beta) = \int_{-\infty}^{\beta} \varphi(x) dx$$

Вероятностное пространство (Ω , A, P)

Ω - элементарные исходы эксперимента

 ${f A}$ - случайные события, набор подмножеств ${f \Omega}$

P - функция вероятности **P**: $A \rightarrow [0,1]$

X - случайная величина **X:** $\mathbf{A} \longrightarrow \mathbb{R}$

F(**x**)=**P**(**X**≤**x**) - распределение вероятностей **P**

 $\phi(x)=F^{x}(x)$ - плотность распределения F

$$P(\Omega) = \int_{-\infty}^{+\infty} \varphi(x) dx = 1$$

площадь криволинейной трапеции, ограниченной графиком $\phi(x)$ и прямыми x=a, x=b, y=0 это вероятность $P(a \le X \le b)$ попадания X в интервал [a,b]

площадь бесконечной криволинейной трапеции, ограниченной графиком $\phi(x)$, прямой x=b, y=0 это функция распределения F(b)=P(X≤b)

$$P(\alpha \leq X \leq \beta) = \int_{\alpha}^{\beta} \varphi(x) dx$$

$$F(\beta) = P(X \leq \beta) = \int_{-\infty}^{\beta} \varphi(x) dx$$

Х - объекты, Ү - метки классов

$$X \times Y$$
- вероятностное пространство с плотностью $p(x,y)$

Х - объекты, Ү - метки классов

$$X\! imes\!Y$$
- вероятностное пространство с плотностью $p(x,y)$

выборка:
$$(X' \times Y') \subset (X \times Y)$$

Задача: построить классификатор с минимальной ошибкой

$$a: X' \rightarrow Y'$$

Х - объекты, Ү - метки классов

$$X\! imes\!Y$$
- вероятностное пространство с плотностью $p(x,y)$

выборка:
$$(X' \times Y') \subset (X \times Y)$$

Задача: построить классификатор с минимальной ошибкой

$$a: X' \rightarrow Y'$$

принцип максимума апостериорной вероятности

$$a(x) = \underset{y \in Y}{argmax} P(y|x)$$

принцип максимума апостериорной вероятности

$$a(x) = \underset{y \in Y}{\operatorname{argmax}} P(y|x) = \underset{y \in Y}{\operatorname{argmax}} P(y) p(x|y)$$

$$P\!\left(\,y\,
ight)$$
 - априорная вероятность класса у

$$p(x|y)$$
 - ф-ция правдоподобия класса у

$$P\left(\left.y\middle|x
ight)$$
 - апостериорная вероятность класса у

формула Байеса

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

о функционале среднего риска

$$a: X' \rightarrow Y'$$
 - классификатор $A_y = \{x \in X | a(x) = y\}, y \in Y$

- разбиение X на части классификатором

о функционале среднего риска

$$a\!:\! X'\!\!\to\!\! Y' \text{ - классификатор}$$

$$A_y\!=\!\!\{x\!\in\! X|a(x)\!=\!y\},y\!\in\! Y$$

- разбиение X на части классификатором

Ошибка: объект x класса y попал в класс s

 A_s , $s \neq y$ - множество ошибочно классифицированных

о функционале среднего риска

$$a: X' \rightarrow Y'$$
 - классификатор

$$A_y = \{x \in X | a(x) = y\}$$
, $y \in Y$ - разбиение X на части

Ошибка: объект x класса y попал в класс s

 A_s , $s \neq y$ - множество ошибочно классифицированных

Вероятность ошибки
$$P(A_s,y) = \int\limits_{A_s} p(x,y) dx$$
 где $p(x,y)$ - плотность вероятностного пространства

о функционале среднего риска

Вероятность ошибки
$$P(A_s,y) = \int\limits_{A_s} p(x,y) dx$$
 где $p(x,y)$ - плотность вероятностного пространства

Определим константы для каждого класса - потеря от ошибки

$$\lambda_{ys} > 0$$
, $ys \in Y \times Y$

о функционале среднего риска

Вероятность ошибки
$$P(A_s, y) = \int_{A_s} p(x, y) dx$$

где p(x,y) - плотность вероятностного пространства

Определим константы для каждого класса - потеря от ошибки

$$\lambda_{ys} > 0; y, s \in Y$$

Средний риск: мат.ожидание потери

классификатора
$$\mathbf{D}(\mathbf{a}) - \mathbf{\nabla} \mathbf{\nabla} \mathbf{a}$$

$$R(a) = \sum_{y \in Y} \sum_{s \in Y} \lambda_{ys} P(A_s, y)$$

Средний риск: мат. ожидание потери классификатора

$$R(a) = \sum_{y \in Y} \sum_{s \in Y} \lambda_{ys} P(A_s, y)$$

Теорема про оптимальный байесовский классификатор

пусть заданы:

- априорные вероятности классов $\,P(y)\,$
- плотности их распределений p(x,y)
- потери от ошибки $\lambda_{ys} > 0$

тогда минимум среднего риска R(a) достигается классификатором

$$a(x) = \underset{s \in Y}{\operatorname{argmin}} \sum_{y \in Y} \lambda_{ys} P(y) p(x|y)$$

Теорема про оптимальный байесовский классификатор

пусть заданы:

- априорные вероятности классов $\,P(\,y)\,$
- плотности их распределений p(x,y)
- потери от ошибки $\lambda_{vs} > 0$

тогда минимум среднего риска R(a) достигается классификатором

$$a(x) = \underset{s \in Y}{\operatorname{argmin}} \sum_{y \in Y} \lambda_{ys} P(y) p(x|y)$$

Дополнение:

если
$$\lambda_{yy} = 0$$
; $\lambda_y \equiv \lambda_{ys}$ то $a(x) = \underset{y \in Y}{argmax} \lambda_y P(y) p(x|y)$

принцип максимума апостериорной вероятности

$a(x) = \underset{y \in Y}{argmax} P(y|x)$

формула Байеса

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

байесовский классификатор

$$a(x) = \underset{y \in Y}{\operatorname{argmax}} \lambda_{y} P(y) p(x|y)$$

 λ_y - потеря для объектов у

 $P\left(\,y\,
ight)$ - доля примеров класса у (априорная вероятность)

p(x|y)- плотность класса у

Литература

Борисов E.C. Методы машинного обучения. 2024 https://github.com/mechanoid5/ml_lectorium_2024_I

Константин Воронцов - Машинное обучение. ШАД Яндекс https://www.youtube.com/playlist?list=PLJOzdkh8T5kp99tGTEFjH_b9zqEQiiBtC

Константин Воронцов Машинное_обучение. курс_лекций. http://www.machinelearning.ru/wiki/index.php?title=Машинное_обучение_(курс_лекций,_К.В.Воронцов)

SciKit-Learn : Naive Bayes

https://scikit-learn.org/stable/modules/naive bayes.html