ALGEBRA I, GRUPO B

Convocatoria ordinaria 1-02-2021 Profesora: Pilar Carrasco

Examen test

- 1. Sea A un DFU ¿Cuál de la siguientes afirmaciones es verdadera?
- a. Existe el mínimo común múltiplo únicamente de aquellos elementos de A que sean primos relativos
- b. Existe el mínimo común múltiplo de cualesquiera dos elementos de A
- c. Existe el mínimo común múltiplo de cualesquiera dos elementos de A únicamente si A es un DE
- 2. ¿Cuál de la siguientes afirmaciones es verdadera?
- a. Todo DI es subanillo de un cuerpo pero no todo subanillo de un cuerpo es un DI
- b. Cualquier subanillo de un cuerpo es un DI pero no todo DI es subanillo de un cuerpo
- c. Cualquier subanillo de un cuerpo es un DI y cualquier DI es subanillo de un cuerpo
- **3**. En el anillo $\mathbb{Z}_3[x]$ sea l el ideal principal generado por el polinomio $x^2 + x + 1$. Entonces el conjunto de unidades del anillo cociente $\mathbb{Z}_3[x]/l$ tiene:
- a. 6 elementos
- b. 4 elementos
- c. 8 elementos
- **4**. Sea X un conjunto no vacío. En el conjunto P(X) se consideran las dos siguientes operaciones binarias: Dados $A, B \in P(X)$

$$A + B := A \cup B$$
, $AB := A \cap B$

- ¿Cuál de la siguientes afirmaciones es verdadera?
- a. Con estas dos operaciones P(X) no es un anillo conmutativo
- b. Con estas dos operaciones P(X) es un anillo conmutativo pero no es un cuerpo
- c. Con estas dos operaciones P(X) es un cuerpo
- **5**. Sea $f(x) \in Z[x]$ un polinomio de grado $n \ge 1$. Elige la respuesta correcta
- a. Si f(x) es irreducible en $\mathbb{Z}[x]$ entonces es irreducible en $\mathbb{Q}[x]$
- b. Si f(x) es irreducible en $\mathbb{Q}[x]$ entonces es primitivo
- c. Si f(x) es primitivo entonces es irreducible en $\mathbb{Z}[x]$
- **6**. Sean $n,m \ge 2$ ¿Cuál de los siguientes enunciados es verdadero?
- a. Existe un homomorfismo de \mathbb{Z}_n en \mathbb{Z}_m si, y solo si, el resto de dividir n entre m es cero
- b. Existe un homomorfismo de \mathbb{Z}_n en \mathbb{Z}_m si, y solo si, $m \leq n$
- c. Existe un homomorfismo de \mathbb{Z}_n en \mathbb{Z}_m si, y solo si, el resto de dividir m entre n es cero
- **7**. Sea A un anillo y $B \subseteq A$ un subanillo de A. Entonces:
- a. Puede ser B un cuerpo aunque no lo sea A y puede ser A cuerpo y no serlo B
- b. Si B no es cuerpo entonces A no es cuerpo.
- c. Si B es un cuerpo entonces A es un cuerpo

- 8. Elige la respuesta correcta
- a. Todo *DE* es un *DFU*, $\mathbb{Z}[x]$ es un *DFU* que no es *DE*
- b. Todo ideal de un *DE* es principal, pero $\mathbb{Q}[x]$ tiene ideales que no son principales
- c. Para todo $n \neq 0$, $\mathbb{Z}[\sqrt{n}]$ es un DFU y por lo tanto también lo es $\mathbb{Z}[\sqrt{n}][x]$
- **9**. El conjunto $\{\emptyset\}$
- a. No tiene elementos ya que Ø no tiene elementos
- b. Tiene un elemento pero no es el conjunto Ø
- c. Tiene un elemento que es el conjunto Ø
- **10**. Sea $\alpha = 2 + 4\sqrt{-5} \in \mathbb{Z} \left[\sqrt{-5} \right]$ ¿Cuál de las siguientes afirmaciones es verdadera?
- a. $\alpha \notin U(\mathbb{Z}\lceil \sqrt{-5} \rceil)$
- b. $\alpha \in U(\mathbb{Z}[\sqrt{-5}])$ y $\alpha^{-1} = 1 2\sqrt{-5}$
- c. $\alpha \in U(\mathbb{Q}[\sqrt{-5}])$ y $\alpha^{-1} = 1 2\sqrt{-5}$
- **11**. Sea $f: X \to Y$ una aplicación y sea $A \subseteq X$ y $B \subseteq Y$. Para $x \in X$, ¿cuál de las siguientes afirmaciones es verdadera?
- a. $f^*(f_*(\{x\})) = \{x\}$
- b. $f(x) \in B \Leftrightarrow x \in f^*(B)$
- $C. f(x) \in f_*(A) \Leftrightarrow x \in A$
- **12**. El conjunto $M_2(\mathbb{Z})$ de las matrices cuadradas 2×2 son entradas en Z, definimos la siguiente relación de equivalencia:

$$A \sim B \Leftrightarrow A - B$$
 tiene todas sus entradas en $2\mathbb{Z}$

El cardinal del conjunto cociente \mathbb{Z}/\sim es:

- a. 16
- b. 32
- c. 8
- 13. El cuerpo ℂ de los números complejos tiene
- a. Dos ideales {0} y ℂ e infinitos subanillos
- b. Infinitos ideales e infinitos subanillos
- c. Dos ideales $\{0\}$ y \mathbb{C} y tres subanillos, que son \mathbb{Z} , \mathbb{Q} y \mathbb{R}
- **14**. Sea X un conjunto con 3 elementos y R la relación de equivalencia en $P(X) \times P(X)$ definida por

$$(A,B) R (A',B') \Leftrightarrow A \cup B = A' \cup B'$$

Entonces el conjunto cociente $P(X) \times P(X) / R$ tiene

- a. 8 elementos
- b. 16 elementos
- c. 32 elementos