116 PGS SPEC

WO 2005/066867 PCT/GB2005/000099

RECEPTOR MODULATORS

Field of the Invention

5

10

25

30

The present invention relates to use of a crystal structure to obtain modulators of a cell surface receptor and to the generation of therapeutic antibodies and chimeric proteins that bind a particular class of signalling receptors.

Background of the Invention

CD28 is present on the surface of T cells and plays an important role in their activation. Signal transduction occurs through CD28 after it is activated (triggered) by binding to its ligand. CD28 activation is dependent on phosphorylation of its cytoplasmic domain. CD28 does not have intrinsic phosphorylation activity but instead is dependent on an extrinsic kinase, e.g. p56lck.

15 Summary of the Invention

The invention relates to the obtaining of the structure of CD28. This was done by crystallizing a CD28/Fab fragment complex, subjecting it to X-ray diffraction and deriving the structural coordinates from the diffraction measurements. The Fab fragment is from an antibody that has superagonist activity towards CD28, i.e. is able to cause activation of CD28 without the need for a T cell receptor-derived signal. Conventional antibodies that activate CD28 need an additional signal generated by the T cell receptor. The deduced structure allows modulators of CD28 signalling to be obtained which can in turn be used to modulate the immune system.

Accordingly the invention provides a method of identifying a modulator of CD28 comprising comparing a structural model of a candidate modulator with a structural model of CD28 to thereby determine whether the modulator will bind to CD28, wherein the structural model is derived from, or comprises, structural coordinates of a crystal of: (i) CD28, (ii) a fragment of CD28, or (iii) a homologue of (i) or (ii).

In addition the invention relates to antibodies and chimeric proteins that are capable of being superagonists of particular receptors by preferentially excluding phosphatases (as opposed to kinases) from the vicinity of the said receptor.

15

20

25

30

Accordingly the invention provides an antibody that causes superagonistic signalling of a cell surface receptor, wherein said antibody binds to the extracellular portion of the receptor at a membrane proximal region and said receptor comprises a cytoplasmic domain which is dependent on an extrinsic protein kinase, wherein said antibody does not bind only the C'-D loop of human CD28.

In addition the invention provides a chimeric protein that causes superagonistic signalling of a cell surface receptor, which chimeric protein comprises (i) sequence representing a fragment of a ligand of the receptor, or a homologue of such a fragment, wherein the fragment or homologue is capable of binding to the extracellular portion of the receptor at a membrane proximal region, and (ii) an Fc region of an antibody, wherein said receptor comprises a cytoplasmic domain which is dependent on an extrinsic protein kinase.

Further the invention provides a chimeric protein that causes superagonistic signalling of a first cell surface receptor, which chimeric protein comprises two Fv regions of an antibody that may be the same or different, wherein at least one of the Fv regions is capable of binding to said first receptor, and the other Fv region binds to a second cell surface receptor expressed on another cell, wherein said first receptor comprises a cytoplasmic domain which is dependent on an extrinsic protein kinase, and the first receptor can be identical to the second receptor.

Description of the drawings

Figure 1 shows mechanisms of differential triggering of extrinsic kinasedependent receptors, by superagonistic agents *in vitro* and in *vivo*.

A. In vitro superagonistic signalling, giving the example of CD28 antibodies. The basic signalling principle is as follows. Antibodies raised against CD28 bind distally ("conventional" antibodies, left) or membrane-proximally ("superagonists", right), as indicated by the structure of the CD28-5.11A1 antibody-Fab complex. The antibodies hold the cell surface at certain distances from an immobilising substrate: in this case plastic, and as shown in parts B, C and D of the figure, Fc receptor- or other receptor-bearing cells. For superagonistic antibodies this distance is typically 150-200Å, whereas for costimulatory antibodies, it is considerably larger.

10

.15

20

25

30

The induced proximity of the membrane and the immobilising substrate in the region of the immobilised antibody and receptor will lead to the differential steric exclusion, from the immediate vicinity of the receptor, of other molecules whose extracellular domains are comparable in size or larger than CD28-antibody complexes, such as the tyrosine phosphatase, CD45. In contrast, tyrosine kinases, e.g. p56lck, will be unaffected because they are small and/or attached to the inner leaflet of the membrane. The result is that, overall, the phosphorylation of CD28 by the kinases will be favoured over its de-phoshorylation by phosphatases, with the net increase in phosphorylation amounting to receptor triggering. Superagonists are more potent than conventional antibodies because they bind epitopes close to the membrane rather than at the "top" of the molecule, leading to more efficient exclusion of, e.g., CD45, and therefore a larger increase in the net phosphorylation of CD28.

B. In vivo superagonistic signalling, giving the example of CD28 antibodies. The binding of the antibody to the membrane-proximal region of CD28 on a T cell, and to the Fc receptor of, e.g. an antigen presenting cell, forces the membranes of the two cells into close proximity (150-200 Å). This in turn excludes CD45 from the immediate vicinity of CD28 as described in A, leading to signalling by CD28.

C. In vivo superagonistic signalling, giving the example of a chimeric, ligand-based agent. The chimera consists of a receptor-binding region of the ligand of the receptor, fused to the Fc region of an antibody. The binding of the ligand portion of the chimera to the receptor, and of the Fc region of the chimera to the Fc receptor of, e.g. an antigen presenting cell, forces the membranes of the two cells into close proximity (150-200 Å). This in turn excludes CD45 from the immediate vicinity of the receptor as described in A, leading to signalling by the receptor.

D. In vivo superagonistic signalling, giving the example of a chimeric, Fv-based agent. The chimera consists of the receptor-binding Fv region of one antibody, fused to the Fv region of a second antibody reactive with another receptor on a second cell. The binding of the chimera to both receptors forces the membranes of the two cells into close proximity (150-200 Å). This in turn excludes CD45 from the immediate vicinity of the receptor as described in A, leading to signalling by the receptor.

WO 2005/066867 PCT/GB2005/000099

Figure 2 shows the method for identification of binding sites for superagonist antibodies of receptors raised against example receptors.

Description of the sequences mentioned herein

SEQ ID NO:1 shows the amino acid sequence of CD28.

SEQ ID NO:2 shows the sequence of the CD28/Fc fusion protein used to express and dimerise CD28.

Detailed description of the invention

10 The CD28 protein

5

15

20

· 25

30

Many of the different aspects of the invention discussed herein refer to CD28. It is to be understood that references to CD28 herein also include (i) a homologue of CD28, or (ii) a fragment of CD28 or the homologue, or (iii) a fusion protein comprising CD28, (i) or (ii), unless the context requires otherwise. The homologue and/or fragment of CD28 may be of particular lengths, as discussed below, or may have the binding or functional properties of naturally occurring (native) CD28, such as the ability to bind a cell membrane and/or bind to B7-1 or B7-2. The homologue and/or fragment may comprise the extracellular domain of CD28. The homologue and/or fragment may comprise, or essentially consist of, the fragment of CD28 present in the fusion protein of SEQ ID NO:2. The homologue and/or fragment may have the ability to transduce a signal to the cytoplasm of a T cell.

The CD28 may be of any species of animal, such as a mammalian or avian CD28. The CD28 is preferably a human CD28, for example as shown in SEQ ID NO:1. The CD28 protein may be present in particular forms, for example which aid expression and/or crystallization. Thus the CD28 may be fully glycosylated, partially glycosylated or lack glycosylation and/or have a reduced and alkylated stalk region.

The CD28 crystal

The crystal of CD28 generally comprises CD28 present in a regular repeating array. As mentioned above the term "CD28" includes fragments and/or homologues. Preferred fragments or homologues present in the crystal comprise the extracellular

.15

20

25

30

domain of native CD28. In the crystal the CD28 is preferably in the form of a monomer. The crystal may be of CD28 bound to another moiety. Such a moiety may be an antibody specific for CD28, including fragments/ derivatives of the antibody (as further discussed below), which bind CD28. In a preferred embodiment the crystal is of CD28 bound to the Fab fragment of an antibody. The crystal may comprise CD28 in a form that aids crystallization, and thus the CD28 may be fully glycosylated, partially glycosylated or lack glycosylation and/or have a reduced and alkylated stalk region. In one embodiment the crystal has the coordinates shown in Table 4.

The crystal is generally obtained by providing a solution that comprises CD28 and optionally a moiety that binds to CD28, such as an antibody fragment, and subjecting the solution to conditions that allow the crystal to form. The CD28 which is to be crystallized is generally obtained by recombinant expression, optionally in the form of a fusion protein. The fusion protein may comprise CD28 and a polypeptide sequence which forms a homodimer. Such a fusion protein aids the formation of a CD28 homodimer. Preferably the fusion protein comprises the sequence of the Fc region of an antibody. The fusion protein may be cleaved before crystallisation to separate CD28 from the other polypeptide sequence, for example by thrombin.

The CD28 may be expressed in any suitable cell that is able to express large amounts of CD28, such as a Chinese hamster ovary (CHO) cell.

The CD28 may be further treated in order to aid crystallization. Binding to an antibody fragment, such as a Fab fragment, may be used to prevent the N-linked glycans present on the fully glycosylated form of CD28 from inhibiting the crystallisation of the protein. In one embodiment the antibody (or fragment thereof) is a superagonistic antibody, which may have any of the properties of the superagonistic antibodies mentioned herein. Thus, in one embodiment the antibody (or fragment thereof) binds to a loop region in the extracellular membrane proximal region of CD28, such as the C'-D loop (said loop being defined for example as defined in US-A1-2003/0166860 as the sequence from amino acid positions 52 to 66 CD28 represented by the sequence GNYSQQLQVYSKTGF).

15

· 20

25

30

The treatment may comprise reduction of the interchain disulphide bonds in the stalk-like region of CD28, e.g. using dithioreitol (DTT). The reduced cysteines may then be inactivated, for example by alkylation (typically the alkyl moiety has 2 to 6, preferably 2, carbons). The alkylation may be performed using iodoacetamide.

Crystallisation is typically carried out at 15 to 25°C, such as at 17 to 19°C, preferably 18°C. Magnesium formate and polyethylene glycol (PEG) may be used as precipitating agents. Preferably precipitation is carried out using 0.15 to 0.25 M magnesium formate (such as 0.2 M magnesium formate) and 15 to 25 % PEG 3350 (such as 20% PEG 3350).

In the work described in the Examples it was found that in order to crystallise CD28 this protein had to be expressed in the form of a fusion protein with a second protein capable of forming a homodimer (the Fc region of an antibody), the fully glycosylated form of CD28 needed to be complexed with an Fab fragment of an antibody in order that the N-linked glycans did not interfere with crystallisation, and the disulphide bonds in the stalk region of CD28 needed to be reduced and alkylated so that the stalk did not interfere with crystallisation. Thus in a preferred embodiment the method of obtaining a crystal of CD28 (including fragment and/or homologue thereof) comprises

- (a) expressing CD28 in the form of a fusion protein with a second protein that is able to form a homodimer, wherein the presence of the second protein in the fusion protein causes CD28 to dimerise,
 - (b) cleaving the second protein from the fusion protein,
- (c) reducing and alkylating the disulphide bond present in the stalk-like region of CD28, and
 - (d) crystallising CD28 bound to the Fab fragment of an antibody.

Identifying a modulator of CD28

The invention provides a method of identifying a modulator using the structural coordinates determined from the above-mentioned crystal of CD28. The structural coordinates used in the method may be in the form of a structural model, such as a three dimensional representation of the structure or a pharmacophore. The coordinates/model typically comprise information relating to the identity of each

WO 2005/066867 PCT/GB2005/000099

atom (i.e. whether it is nitrogen, oxygen, hydrogen etc.) and its three dimensional location (normally defined by three spatial coordinates) in the structure. The model may also comprise additional information relevant to obtaining modulators, such as the electronic charge at different locations in the structure or information concerning whether or not the bonds in the structure can be rotated.

5

10

15

20

25

30

The coordinates/model used in the method typically comprise a specific region of the surface of CD28 corresponding to the site where it is desired for the modulator to bind. Such a site typically comprises Glu-32, Arg-34, Tyr-51, Glu-97, Met-99, Tyr-100, Pro-101, Pro-102, Pro-103, Tyr-104 and Leu-105, or a part thereof which comprises one or more of these amino acids. Preferred modulators bind to such a site or part thereof. In one embodiment the modulator is able to inhibit binding of another moiety to this site. Such a moiety may be an antibody which is specific to the site.

In the method the coordinates/model of CD28 are compared to the structural coordinates/model of a candidate modulator to determine whether or not the candidate modulator will bind to CD28. The comparison may be performed by any suitable means, such as the methods described or referenced in Lyne (2002) Drug Discovery Today 7, 1047-1055. Thus one or more of the algorithms described in this document may be used, such as one or more of Dock, FlexX, FlexE, Slide, Fred, Gold, Glide, AutoDock, LigandFit, ICM, QXP, Amber, CHARMM, SCORE, VALIDATE, Chemscore, Ludi, PLP, PMF, Bleep, SmoG, ZAP, VIDA, GRID, MCSS, Superstar and ROCS.

The method typically comprises deducing one or more ways of fitting (docking) a candidate modulator with CD28 followed by an evaluation (scoring) of the fit. The evaluation may comprise deducing the binding energy between CD28 and the modulator. This may be done based on the interatomic distances between the atoms involved in binding or by analysis of the force fields of CD28 and the modulator. In one embodiment the evaluation comprises comparing the similarity between the fit between CD28 and the candidate modulator and the fit between one or more other proteins and their ligands. Thus the evaluation may comprise comparison with a database of structures of proteins fitted/bound to ligands.

20 .

25

30

A candidate modulator which has been selected computationally as discussed above may be physically tested to determine whether or not it is able to bind or modulate CD28. Any suitable binding or activity assay may be used. The binding assay may measure the extent of direct binding between the candidate modulator and CD28 or instead be in the form of a competition assay. The binding assay may comprise/use of any of the following:

- (a) an assay of binding to CD28 (which may be immobilized), for example in which
- (i) the inhibition of B7-1 binding to the CD28 (a soluble form of B7-1 may be used) in the presence of the candidate modulator is measured,
- (ii) inhibition of the binding of an antibody (that binds to the ligand binding face of CD28) to the CD28 in the presence of the candidate modulator is measured,
 - (b) a scintillation proximity assay (SPA) in which (i) or (ii) above are measured,
 - (c) an ELISA assay in which (i) or (ii) above are measured.

The activity assay may test the effect of the candidate modulator on the ability of B7-1 or B7-2 to activate CD28. In such an assay, B7-1 or B7-2 may be present on a natural or artificial antigen-presenting cell and CD28 may be present on a T cell. CD28 activity may be detected by measuring the extent of T cell activation, for example by determining the extent of T cell proliferation (e.g. thymidine incorporation) or gene expression in the T cell (e.g. with microarrays).

The candidate modulator may be tested using the assays described in Green NJ, Xiang J, Chen J, Chen L, Davies AM, Erbe D, Tam S, Tobin JF. (2003) Structure-activity studies of a series of dipyrazolo[3,4-b:3',4'-d]pyridin-3-ones binding to the immune regulatory protein B7.1. Bioorg Med Chem. 11, 2991-3013 or Erbe DV, Wang S, Xing Y, Tobin JF. (2002) Small molecule ligands define a binding site on the immune regulatory protein B7.1. J Biol Chem. 277, 7363-8.

The antibody and chimeric protein of the invention

The term "antibody" as used herein is understood to also include fragments and derivatives of the antibody which retain binding ability, unless the context requires otherwise. Such fragments/derivatives include Fv, F(ab') and F(ab')₂ fragments, as well as single chain antibodies, carnelid antibodies and similarly acting proteins.

10

20

25

30

The antibody of the invention may be of any species, such as a mammalian or bird antibody, preferably a rodent (such as mouse) or primate (such as human) antibody. The antibody may be a chimeric antibody, a CDR-grafted antibody or a humanised antibody. The antibody may be monoclonal or polyclonal. The antibody is preferably an IgG antibody.

The invention also provides two types of chimeric protein that bind to a receptor. One type of chimeric protein comprises the sequence of a fragment of a ligand of the receptor, or sequence that is homologous to such a fragment. The sequence is capable of binding to an extracellular region of the receptor, as discussed further below. The chimeric protein also comprises the Fc region of an antibody, such as that of any of the types of antibody discussed above. Where the chimeric protein is administered to an individual the Fc region may be of an antibody of the same species as the individual.

The second type of chimeric protein provided by the invention comprises two Fv regions of an antibody. The Fv regions may be the same or different. One of the Fv regions is capable of binding to the extracellular region of the receptor (the "first" receptor). The other Fv region may bind the extracellular region of a "second" apposing receptor, this being the same type of receptor as the first receptor (with the second Fv binding at a location which is the same or different from the first Fv region) or an entirely different cell surface receptor, for example in the case where the first and second receptors are each expressed on the surfaces of two cells capable of interacting/contacting each other. Such cells may be any of the types of cell mentioned herein, including T cells.

In one embodiment the second Fv region of the second type of chimeric protein binds to a protein expressed on the surface of T cells, such as the T cell receptor, CD2, CD4, CD5, CD8, CD52 or CS1. The second Fv region may bind proteins expressed on the surface of other cells, such as CD48, CD58, CD59, B7-1 or B7-2. The term "receptor" when used in the present context refers to a protein expressed on surface of a cell (which may or may not be one which is capable of signal transduction, for example).

The antibody and chimeric protein of the invention are able to cause superagonistic signalling of a cell surface receptor when they bind to the receptor,

15

20

25

typically according to the mechanism illustrated in Figure 1. Thus the antibody or chimeric protein is able to cause activation of the receptor (i.e. cause the receptor to transduce a signal to the cytoplasm of the cell) without the need for additional costimulus of the receptor or cell. As mentioned above, in one embodiment the second type of chimeric protein comprises Fv regions able to bind to different types of receptors. Such a chimeric protein is preferably able to induce superagonistic signalling by both of the receptors which it binds.

The antibody and both types of chimeric protein bind the extracellular portion of the receptor at a membrane proximal region of the receptor, typically to a region of the receptor which is within 75Å of the cell membrane, such as within 60Å, 50Å or 40Å of the cell membrane. However the second type of chimeric protein of the invention typically also binds the extracellular portion of the second apposing receptor (as defined above), within 75Å of the cell membrane, such as within 60Å, 50Å or 40Å of the cell mémbrane.

Generally the antibody or chimeric protein will be capable of binding the native form of the receptor (at the extracellular regions discussed above) when the receptor is present on the surface of the cell where it occurs naturally.

The antibody or chimeric protein cause superagonistic signalling by sterically hindering the access of phosphatases (which tend to be large proteins), such as CD45, to the receptor (i.e. hindering contact of the phosphatase and receptor). In the case of the antibody or first type of chimeric protein such steric hindrance may be caused by the antibody binding to the receptor at one end (through the Fab of the antibody of the invention or the ligand sequence of the first type of chimeric protein) and typically binding to a protein on the surface of another cell (e.g. due to the Fc region of the antibody or chimeric protein binding to an Fc receptor expressed on a second cell), thus bringing the cell membrane of the two cells into close proximity in the region of the receptor.

For the second type of chimeric protein, one of the Fv fragments of the chimeric protein will bind to the receptor, and in the case where the other Fv fragment is specific for a second type of receptor expressed on another cell, the other Fv fragment will bind to the second receptor and thus bring the cell membranes of the two cells into close proximity in the region of the first receptor.

15

20

25

For the antibody and both types of chimeric protein, the close proximities of the cell membranes in the region of the first receptor will sterically hinder phosphatases from accessing the receptor, leading to signal transduction or "triggering" of the receptor. The antibody or chimeric protein are typically capable of bringing the cell membranes of two cells within 200Å of each other, such as within 180Å, 150Å or 120Å of each other.

The antibody or chimeric protein will preferably bind orthogonally to the main axis of the domain of the receptor which is bound, such as at more than 60 degrees from the main axis of the bound domain of the receptor, for example at more than 70, 80 or 90 degrees. The antibody or chimeric protein will preferably lie substantially parallel to the cell surface when bound to the receptor (to ensure the membranes are brought into close proximity).

The antibody or chimeric protein will bind to an extracellular region of the receptor, generally to amino acids of the receptor that are exposed at the surface of the protein. The amino acids in the receptor that are bound may be present in a loop region or a β -strand of the receptor. Preferred loops and strand sequences are shown for key examples in Table 1. The antibody or chimeric protein may bind to any of the epitopes or part thereof shown in Table 1 or an equivalent homologous sequence from the membrane proximal region of other receptors.

The antibody of the invention does not bind only to the C'-D loop of CD28, and thus in one embodiment will bind both the C'-D loop of CD28 and another region of CD28. The antibody may be one which does not bind any portion of the C'-D loop of CD28. The antibody may or may not bind to the C'-D loop (or the equivalent loop) of any other member of the CD28 family of proteins. The antibody of the invention may or may not bind to any or all of the sequences shown in Table 3.

The first type of chimeric protein of the invention may or may not bind to only the C'-D loop of CD28. The first type of chimeric protein may be one which does not bind to any portion of the C'-D loop of CD28. The first type of chimeric protein may or may not bind to the C'-D loop (or the equivalent loop) of any other member of the CD28 family of proteins. The first type of chimeric protein may or may not bind to any or all of the sequences shown in Table 3.

The second type of chimeric protein of the invention may or may not bind to

15

20

25

30

only the C'-D loop of CD28. The second type of chimeric protein may be one which does not bind to any portion of the C'-D loop of CD28. The second type of chimeric protein may or may not bind to the C'-D loop (or the equivalent loop) of any other member of the CD28 family of proteins. The second type of protein may or may not bind to any or all of the sequences shown in Table 3.

Receptors bound by the antibody and chimeric protein

The receptors which are bound by the antibody or chimeric protein of the invention are expressed on the cell surface. The receptor is capable of being phosphorylated (typically at one or more tyrosine residues in the cytoplasmic region of the receptor), and phosphorylation of the receptor will typically lead to its activation. The receptor will comprise a cytoplasmic domain that is dependent on extrinsic protein kinases to be phosphorylated. Thus the receptor will not have an intrinsic enzymatic (kinase or phophatase) activity. The receptor will typically comprise tyrosine-containing, activating ITAM motifs (YxxL/Ix₇₋₁₂YxxL/I), inhibitory ITIM motifs (I/V/L/SxYxxL/V) or "switch" (TxYxxV/I; activating and inhibitory) signalling motifs (where x is any amino acid). These motifs are phosphorylated by cytoplasmic tyrosine kinases, such as the Src kinases, in competition with antagonistic tyrosine phosphatases, such as CD45. The signalling character of the receptors is defined exclusively by the nature of these motifs (ITAM vs ITIM: activating vs inhibitory).

The receptor may be a member of any surface protein superfamily, but is typically a member of the immunoglobulin superfamily. The receptor may be a member of the CD28 superfamily. The receptor may be any of the specific receptors which are shown in Table 1 or 2 or may comprise a sequence which is homologous to the sequence of any of these specific receptors. The receptor may be CD28, CTLA-4, ICOS, PD-1 or BTLA or comprise a sequence which is homologous to the sequence of any of these specific receptors.

The receptor may be of any of the species that are mentioned herein, and thus may be a mammalian or avian, preferably rodent (such as mouse or rat) or primate (such as human) receptor.

10

15

20

25

30

The receptor may be naturally present on a cell of the immune system such as a T cell, B cell, myeloid cell, mast cell, NK cell or a granulocyte.

Screening methods of the invention

The invention provides a method of obtaining an agent which is capable of superagonising the above-mentioned receptor which binds to the antibody and chimeric protein of the invention. The method comprises determining whether a candidate agent has any of the properties discussed above possessed by the antibody or chimeric protein of the invention which allows them to induce superagonistic signalling by a receptor. Thus the method will generally comprise determining whether a candidate agent is able to bind to an extracellular membrane proximal region of the receptor, and may also determine whether a candidate agent is able to bind

- at a particular location from the cell membrane (such as within 75Å of the cell membrane),
- to particular sequences (such as the sequences mentioned in Table 1), or
 in a manner (such as orthogonal to the main axis of the bound receptor domain)
 which is discussed above for binding of the antibody or chimeric protein of the
 invention.

Suitable extracellular membrane proximal regions of a receptor may be identified using a sequence database search algorithm (e.g. BLAST) to search for the solved structure most related to the receptor in the protein structural database (PDB). This structure would then be used to identify membrane proximal regions (preferably β-strands) in the receptor by sequence alignment. Whether or not a candidate agent binds to the identified sequences could be determined by taking the midpoint of the strand and the side chains of amino acids two- and three-residues below this midpoint could then be mutated. Mutant forms of the receptor mutated at each of these residues would then be expressed (e.g. on suitable target cells that can be transfected stably or transiently, such as 293T cells), and used to screen for candidate agents that bound the non-mutated receptor but failed to bind the mutant receptor, for example using fluorescence-activated cell sorting. It is envisaged that only every second strand in a conventional beta barrel protein would need to be mutated. In the case of

WO 2005/066867 PCT/GB2005/000099

a receptor which is a member of the immunoglobulin superfamily, this corresponds to 8-10 mutant lines being generated, in total. Examples of this process are shown in Figure 2 for the immediate CD28 family members (ICOS and CTLA-4) and for the PD-1 protein, which is representative of receptors not related to CD28.

Agents that induce superagonistic signalling by a receptor may also be identified using a peptide which comprises sequence from the extracellular membrane proximal region of a receptor or homologous sequence thereto. Such a sequence is typically 5 to 20 amino acids long, such as 10 to 15 amino acids long. In one embodiment the agent is identified using peptide arrays. The mapping of discontinuous epitopes can be performed using overlapping peptides derived from the entire primary sequence of a protein. The whole protein sequence is generated in the form of short overlapping peptides (for example each shifted by 3 amino acids), e.g. prepared by standard spot synthesis (Automated Spot Synthesiser, Abimed, Langenfeld, Germany) on Whatman 50 filter paper (Whatman, Maidstone, England). The C-termini of the peptides may be attached to cellulose via a (β-Ala)₂ spacer and the N-termini acetylated. The arrays may be subsequently probed either directly on the peptide membrane or after transfer to another surface (e.g. nitrocellulose) using the monoclonal antibody and a chemiluminescence-based detection system (ECL Western Blotting Detection System, Amersham Pharmacia Biotech).

Suitable candidate agents that can be tested in the above screening methods include antibody agents (for example, monoclonal and polyclonal antibodies, single chain antibodies, chimeric antibodies and CDR-grafted antibodies). Furthermore, combinatorial libraries, defined chemical identities, peptide and peptide mimetics, oligonucleotides and natural agent libraries, such as display libraries (e.g. phage display libraries) may also be tested. The candidate agents may be chemical compounds, which are typically derived from synthesis around small molecules. Batches of the candidate agents may be used in an initial screen of, for example, ten substances per assay, and the agents of batches which show the required property tested individually.

5

10

15

20

25

15

20

25

30

Obtaining a superagonistic antibody

The invention provides methods for obtaining a superagonistic antibody. In one embodiment the method comprises screening antibodies for the ability to superagonise a receptor, wherein the antibodies have been obtained either by immunizing an animal with the receptor or a homologue or fragment of the receptor, or from a combinatorial antibody library. Preferably the animal is immunized with a protein which comprises the sequences shown in Table 1, or a fragment thereof, or a homologue of such a sequence or fragment.

Whether or not an antibody is a superagonistic antibody may be ascertained by determining whether or not the antibody can bind an extracellular membrane proximal region of a receptor, for example using any of the suitable methods described above in the section of screening for superagonistic agents.

Alternatively the antibody can be tested in an activity assay to see whether or not it causes activation of the receptor. Receptors that are activated by the antibody will either transduce an activating signal or an inhibitory signal to the cell cytoplasm. In the case of receptors which transduce an activating signal, as in the case of CD28, the activity which is tested may be activation of the cell. This can be determined using functional screens based on, for example, cell proliferation, increased cellular calcium, enhanced tyrosine phosphorylation of proteins in the cell or the production of/release of substances by the cell, e.g. IL-2 production. In the case of receptors that transduce inhibitory signals when activated, activation of such receptors can be ascertained by detection of any of the changes which occur to the receptor or the cell when such a signal is transduced, such as changes in the extent of phosphorylation of one or more proteins in the cell.

The binding or activity assay may be carried out *in vitro* (inside or outside a cell) or *in vivo*.

In one embodiment of the method the antibody is obtained by immunising an animal with a peptide comprising a sequence of length 5 to 20 amino acids which represents an extracellular membrane proximal region of the receptor, or a homologue of such sequence, and obtaining the antibody produced by the animal against said sequence. Alternatively the antibody may be obtained by selecting an antibody from a combinatorial library based on its ability to bind a peptide

comprising a sequence of length 5 to 20 amino acids which represents an extracellular membrane proximal region of the receptor, or a homologue of such sequence.

In one embodiment the peptide which is used to immunise the animal or select an antibody from a library only comprises sequence from the receptor, or a homologue thereof, and does not comprise any additional sequence. In this embodiment the peptide will only be 5 to 20 amino acids long. However in other emobodiments the peptide comprises other sequence to the N-terminus and/or C-terminus of the receptor sequence, such as sequence which is different from (and typically not homologous to) receptor sequence.

Antibodies

10

15

20

25

30

Various types of antibodies are mentioned herein, including antibodies obtained by immunisation. Such antibodies may be raised against specific epitopes/sequences. An antibody, or other compound, "specifically binds" to a sequence when it binds with preferential or high affinity to the sequence for which it is specific but does not bind or binds with only low affinity to other sequences. A variety of protocols for competitive binding or immunoradiometric assays to determine the specific binding capability of an antibody are well known in the art (see for example Maddox *et al*, J. Exp. Med. <u>158</u>, 1211-1226, 1993). Such immunoassays typically involve the formation of complexes between the specific sequence and its antibody and the measurement of complex formation.

Means for preparing and characterising antibodies are well known in the art, see for example Harlow and Lane (1988) "Antibodies: A Laboratory Manual", Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. For example, an antibody may be produced by raising antibody in a host animal.

A method for producing a polyclonal antibody comprises immunising a suitable host animal, for example an experimental animal, with the immunogen and isolating immunoglobulins from the animal's serum. The animal may therefore be inoculated with the immunogen, blood subsequently removed from the animal and the IgG fraction purified.

20

30

A method for producing a monoclonal antibody comprises immortalising cells which produce the desired antibody. Hybridoma cells may be produced by fusing spleen cells from an inoculated experimental animal with tumour cells (Kohler and Milstein (1975) *Nature* **256**, 495-497).

An immortalized cell producing the desired antibody may be selected by a conventional procedure. The hybridomas may be grown in culture or injected intraperitoneally for formation of ascites fluid or into the blood stream of an allogenic host or immunocompromised host. Human antibody may be prepared by in vitro immunisation of human lymphocytes, followed by transformation of the lymphocytes with Epstein-Barr virus.

For the production of both monoclonal and polyclonal antibodies, the experimental animal is suitably a goat, rabbit, rat, mouse, guinea pig, chicken, sheep or horse. If desired, the immunogen may be administered as a conjugate in which the immunogen is coupled, for example via a side chain of one of the amino acid residues, to a suitable carrier. The carrier molecule is typically a physiologically acceptable carrier. The antibody obtained may be isolated and, if desired, purified.

The peptide of the invention

The invention also provides a peptide of length 5 to 20 amino acids comprising a sequence which binds to the superagonistic antibody of the invention. The peptide may have a length of 10 to 15 amino acids. The peptide may comprise sequence from an extracellular membrane proximal region of any of the receptors mentioned herein or have a homologous sequence thereto (such sequence may have a length of 5 to 20 amino acids). The peptide may thus comprise any of the sequences shown in Table 1 or homologues of such sequences.

Therapeutic aspects of the invention

The invention provides substances which can be used to treat a patient. The patient is typically a human or animal, such as a mammal or bird, for example a cow, sheep, goat, pig, camel, horse, dog, cat, goose, duck or chicken.

The modulator of CD28 which is identified from a structural model or structural coordinates of CD28 can be used to modulate the immune system of a

15

25

30

patient. Such modulators will either agonise or antagonize CD28 (i.e. cause or contribute to an increase or decrease, respectively, in CD28 signalling activity). Modulators which agonise CD28 may be used to stimulate the activity of T cells (which express CD28) and thus to stimulate an immune response against an antigen. Such modulators may therefore be used in the prevention or treatment of a disease caused by a pathogenic agent, such as a virus, microorganism (for example a bacterium) or multicellular organism; or in the prevention or treatment of a cancer.

Modulators which antagonise CD28 may be used to inhibit the activity of T cells, and thus to inhibit an immune response to an antigen. Such modulators may be used to prevent or treat an autoimmune disease (such as rheumatoid arthritis or asthma), allergy or transplantation rejection.

The superagonistic antibodies, chimeric proteins and agent described herein may also be used in the therapy of patients to prevent or treat a disease. These substances may be used to modulate the state of a cell on which the relevant receptor is present. Thus the substance may activate or inhibit cell activity depending on whether the activated receptor transduces a stimulatory or inhibitory signal to the cytoplasm of the cell. The modulation of the cell may thus be used to treat a disease caused by the cell or a disease which can be alleviated or prevented by the cell.

In a preferred embodiment the cell is a cell of the immune system (e.g. any such cell mentioned herein) and therefore superagonistic antibodies, chimeric proteins and agents may be used to modulate the immune response of a patient. Superagonistic antibodies, chimeric proteins and agents which stimulate an immune response may be used in the prevention or treatment of a disease caused by a pathogenic agent, such as a virus, microorganism (for example a bacterium) or multicellular organism; or in the prevention or treatment of a cancer. Superagonistic antibodies, chimeric proteins and agents which inhibit an immune response may be used to prevent or treat an autoimmune disease (such as rheumatoid arthritis or asthma), allergy or transplantation rejection.

The patient may also be treated by generating a superagonistic antibody response in the patient by immunisation with a peptide that stimulates the generation of such a response. The antibody that is generated will be specific to a sequence present in the peptide. The peptide will comprise sequence from the extracellular

membrane proximal region of a receptor, or sequence which is homologous thereto. Such receptor sequence may be any of the membrane proximal sequences of a receptor (or homologues thereof) mentioned herein. Thus the peptide may be any of the peptides mentioned herein which comprise such sequence.

In one embodiment a nucleic acid capable of expressing any of the abovementioned therapeutic substances is administered to the patient. Such a nucleic acid typically comprises a region which encodes the therapeutic substance and a control region which causes expression of the coding sequence, such as a promoter. Thus the nucleic acid may be in the form of a vector.

10

5

The substances mentioned herein

The modulators, antibodies, chimeric proteins, peptides and nucleic acids mentioned herein may be present in a substantially isolated form. They may be mixed with carriers or diluents which will not interfere with their intended use and still be regarded as substantially isolated. They may also be in a substantially purified form, in which case they will generally comprise at least 90%, e.g. at least 95%, 98% or 99%, of the proteins nucleic acids or dry mass of the preparation.

Homologues

20

Homologues of protein sequences are referred to herein. Such homologues typically have at least 50% homology, preferably at least 60%, 70%, 80, 90%, 95%, 97% or 99% homology, for example over a region of at least 15, 20, 30, 100 more contiguous amino acids. The homology may be calculated on the basis of amino acid identity (sometimes referred to as "hard homology").

25

30 -

For example the UWGCG Package provides the BESTFIT program which can be used to calculate homology (for example used on its default settings) (Devereux et al (1984) Nucleic Acids Research 12, p387-395). The PILEUP and BLAST algorithms can be used to calculate homology or line up sequences (such as identifying equivalent or corresponding sequences (typically on their default settings), for example as described in Altschul S. F. (1993) J Mol Evol 36:290-300; Altschul, S, F et al (1990) J Mol Biol 215:403-10.

15

20

25

Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pair (HSPs) by identifying short words of length W in the query sequence that either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighbourhood word score threshold (Altschul et al, supra). These initial neighbourhood word hits act as seeds for initiating searches to find HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Extensions for the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment. The BLAST program uses as defaults a word length (W) of 11, the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1992) Proc. Natl. Acad. Sci. USA 89: 10915-10919) alignments (B) of 50, expectation (E) of 10, M=5, N=4, and a comparison of both strands.

The BLAST algorithm performs a statistical analysis of the similarity between two sequences; see e.g., Karlin and Altschul (1993) *Proc. Natl. Acad. Sci.* USA 90: 5873-5787. One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two amino acid sequences would occur by chance. For example, a sequence is considered similar to another sequence if the smallest sum probability in comparison of the first sequence to the second sequence is less than about 1, preferably less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.

The homologous sequence typically differs by at least 1, 2, 5, 10, 20 or more mutations (each of which may be a substitution, deletion or insertion of an amino acid). These mutations may be measured across any of the regions mentioned above in relation to calculating homology. The substitutions are preferably conservative substitutions. These are defined according to the following Table. Amino acids in

the same block in the second column and preferably in the same line in the third column may be substituted for each other:

ALIPHATIC	Non-polar	GAP
		ILV
	Polar – uncharged	CSTM
		NQ
	Polar - charged	DE
	·	KR
AROMATIC		HFWY

5 Administration

10

15

The formulation of any of the therapeutic substances mentioned herein will depend upon factors such as the nature of the substance and the condition to be treated. Any such substance may be administered in a variety of dosage forms. It may be administered orally (e.g. as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules), parenterally, subcutaneously, intravenously, intramuscularly, intrasternally, transdermally or by infusion techniques. The substance may also be administered as suppositories. A physician will be able to determine the required route of administration for each particular patient.

Typically the substance is formulated for use with a pharmaceutically acceptable carrier or diluent. The pharmaceutical carrier or diluent may be, for example, an isotonic solution. For example, solid oral forms may contain, together with the active compound, diluents, e.g. lactose, dextrose, saccharose, cellulose, corn starch or potato starch; lubricants, e.g. silica, talc, stearic acid, magnesium or calcium stearate, and/or polyethylene glycols; binding agents; e.g. starches, arabic gums, gelatin, methylcellulose, carboxymethylcellulose or polyvinyl pyrrolidone; disaggregating agents, e.g. starch, alginic acid, alginates or sodium starch glycolate; effervescing mixtures; dyestuffs; sweeteners; wetting agents, such as lecithin, polysorbates, laurylsulphates; and, in general, non-toxic and pharmacologically

15

20

25

30

inactive substances used in pharmaceutical formulations. Such pharmaceutical preparations may be manufactured in a known manner, for example, by means of mixing, granulating, tabletting, sugar-coating, or film coating processes.

Liquid dispersions for oral administration may be syrups, emulsions and suspensions. The syrups may contain as carriers, for example, saccharose or saccharose with glycerine and/or mannitol and/or sorbitol.

Suspensions and emulsions may contain as carrier, for example a natural gum, agar, sodium alginate, pectin, methylcellulose, carboxymethylcellulose, or polyvinyl alcohol. The suspensions or solutions for intramuscular injections may contain, together with the active compound, a pharmaceutically acceptable carrier, e.g. sterile water, olive oil, ethyl oleate, glycols, e.g. propylene glycol, and if desired, a suitable amount of lidocaine hydrochloride.

Solutions for intravenous or infusions may contain as carrier, for example, sterile water or preferably they may be in the form of sterile, aqueous, isotonic saline solutions.

A therapeutically effective amount of substance is administered. The dose may be determined according to various parameters, especially according to the substance used; the age, weight and condition of the patient to be treated; the route of administration; and the required regimen. Again, a physician will be able to determine the required route of administration and dosage for any particular patient. A typical daily dose is from about 0.1 to 50 mg per kg, preferably from about 1.0 mg per kg to 10 mg per kg of body weight, according to the activity of the specific therapeutic substance, the age, weight and condition of the subject to be treated, the type and severity of the disease and the frequency and route of administration.

Preferably, daily dosage levels are from 5 mg to 2 g.

The following Examples illustrate the invention:

Examples

Overview of crystallisation strategy

In order to undertake crystallization trials with glycoproteins, such as the CD28 homodimer, it is generally necessary to produce large amounts of protein (>10 milligrams). For this the glutamine synthetase-based Chinese hamster ovary cell expression system (Lonza Biologics Plc, UK) was chosen, which is one of the few

PCT/GB2005/000099

10

15

20

25

30

eukaryotic expression systems capable of glycoprotein production at this level. The Lec3.2.8.1 cell line was used as the expression host as this provides the option of enzymatically removing unnecessary glycosylation after protein folding and secretion has taken place, which generally favours crystallization. In order to enhance homodimerization, the protein was expressed in the form of a fusion protein with the Fc region of immunoglobulin, which is itself a homodimer. Because the link between the CD28 portion and the Fc is extremely flexible (which will generally discourage crystallization), the construct was prepared in a way that made it thrombin-cleavable.

It was found that producing active, thrombin-cleavable protein depended on the location of the cleavage site. When the cleavage site was too close to the ligand binding domain (to make a more compact protein for crystallization), the protein produced was mis-folded.

In general removal of the N-linked glycans from a glycoprotein substantially enhances its ability to crystallise. Unexpectedly, and in marked contrast to other cell surface glycoproteins, which are generally very stable and active after deglycosylation, the CD28 homodimer proved to be very unstable after deglycosylation with the enzyme endoglycosidase H at the slightly acidic pH at which this enzyme is active. Therefore it was necessary to leave the glycosylation of CD28 intact. The glycosylated form of the homodimer failed to crystallise in more than 100 trials.

To reduce the impact of the glycosylation, therefore, an alternative strategy was employed, in which Fab fragments of anti-CD28 antibodies were prepared and crystallised with CD28. Fab fragments are almost invariably unglycosylated, so the formation of complexes with the Fab can be expected to reduce the impact of the glycans by 80%, regardless of where they bind the protein of interest (a Fab is four times the size of the CD28 monomer). The likelihood that the complex of the Fab and protein of interest will crystallise depends on the overall shape of the complex, (i.e. its "compactness") and on the chemical properties of the surfaces of the complex involved in forming crystal lattice contacts. Because the surface of the complex that will form lattice contacts cannot be predicted a priori, it is impossible to predict whether a given Fab will give crystals when complexed with the protein. Not unexpectedly, therefore, the homodimer still failed to crystallize after being complexed with one Fab molecule

20

30

per homodimer for two different antibodies (5.11A1 and 9D7), or two Fabs per homodimer for one of these antibodies (5.11A1), in >100 trials per complex.

In addition the stalk region was expected to create problems. The key to obtaining crystals was to prepare monomeric CD28 by gentle reduction and alkylation of the interchain disulphide bond in the stalk-like region of the homodimer. The expectation was that the presence of an intact disulphide in the stalk might rigidify the stalk, making the overall structure less compact. Two complexes formed with the monomer and two different Fabs (5.11A1 and 9D7) gave crystals, but only one of these crystal forms (obtained with 5.11A1 Fab fragments) proved to be suitable for data collection. Other antibodies may also have been useful in crystallising CD28, including antibodies that bind to the same loop of CD28 as bound by 5.11A1 (the C'-D loop) or that bind to the ligand binding site of CD28. Suitable antibodies are described in US-A1-2003/0166860 and Luhder et al (2003) J. Exp. Med., 197, 955-66.

15 Preparation of CD28 homodimer

(i) Construct generation

The polymerase chain reaction (PCR) was used to amplify complementary DNA (cDNA) encoding the signal peptide sequence of mouse immunoglobulin heavy chain and the extracellular domain of CD28 (residues 1-134 of the mature polypeptide; SEQ ID NO:1) from 44 ng of the plasmid, pKGe1145. The oligonucleotides used in the reaction added, at the 5' end, an Xba I cleavage site and 24 nt of the rat CD4 5' untranslated region and, at the 3' end, codons for the thrombin cleavage site, LVPRGS. The sequences of the oligonucleotide primers used for this were (oligonucleotide sequences are given in 5' to 3' direction) CD28T_5': TAG TAG TCT AGA CCC CAT CCG CTC AAG CAG GCC ACC ATG GAT TGG CTG CGG AAC TTG; and CD28T_3': CTA CCA CTA CCC CTG GGT ACC AGG GGC TTA G. In a second reaction, cDNA encoding the heavy chain constant (C) region-2 and C region-3 domains of murine Ig (residues 103-323 of the secreted protein) was amplified by PCR from 44 ng of pKGe1145. At the 3' end, the oligonucleotides added an Xba I restriction site to aid cloning. The NH2-terminus of the protein encoded by the Ig cDNA had the sequence GSKPSIS rather than GCKPCIC. The sequences of the oligonucleotide primers for this reaction were Ig_5': CTA AGC CCC TGG TAC CCA GGG GTA GTG

25

30

GTA G; and Ig_3': CTA CTA TCT AGA TTA TTT ACC AGG AGA GTG GGA G. The PCR conditions for both reactions were: denaturation at 94°C for 15s, annealing at 59°C for 30s, extension at 68°C for 210s; 2.5U of Accuzyme polymerase (Bioline Ltd, U.K.), 300 nM oligonucleotides and 200 µM dNTPs were used and the reactions run for 20 cycles.

In a third reaction, PCR was used to anneal the two initial products together to generate cDNA encoding a chimera consisting of the CD28 extracellular domain fused to murine IgGFc via a thrombin cleavable sequence (called the CD28TFc chimera; SEQ ID NO:2). Ten microlitres of each of the initial PCR reaction product mixtures was used as template and 300 nM of the CD28_5' and Ig_3' oligonucleotides was also added to the mix. The PCR conditions were otherwise identical to the first set except that they were run for only 4 cycles. The PCR product was gel-purified, cut with Xba I and cloned into the Xba I site of pEE14 for expression in the glutamine synthetase-based gene expression system (Eonza Biologics Plc, UK). The plasmid construct was then sequenced using dideoxy sequencing.

(ii) Expression of the CD28TFc chimera

Lec3.2.8.1 cells, 2 x 10⁶/flask, were transfected with 20 µg of DNA/flask for 3h using Pfx-8 lipids (Invitrogen Inc), and then the cells were cloned the following day by plating out at 2 x 10⁶ cells/96-well plate. After 2 weeks, the clones expressing the highest amounts of CD28TFc were selected by Western-blotting using the semi-quantitive ECL detection system (Amersham-Pharmacia, UK) and an anti-mouse Fc primary antibody (Sigma-Aldrich Co.). The best-expressing clone was expanded and grown to confluence in bulk culture in Cell Factories (Nunc A/S, Denmark) containing immunoglobulin-free medium (Invitrogen-Gibco Ltd, UK) in the presence of 2mM sodium butyrate. The supernatant was harvested after approximately four weeks and clarified by centrifugation at 5,000g.

(iii) CD28TFc purification

The spent, clarified medium was concentrated to approximately 1/6 of the original volume using a Masterflex L/S concentrator (Helixx Technologies, Inc.). The sample was then buffer-exchanged against the original volume of 3M NaCl, 1.5M

10

15

20

. 30

glycine, pH 8.5 high-salt buffer and the protein incubated with Protein A Sepharose beads (Sigma-Aldrich Co.) using 10 mls of swollen beads/litre of concentrated supernatant at 1 litre of supernatant/5 litre conical flask or beaker. The pH was adjusted to pH 8.5 with 2.75 M Tris, pH 8.5 to allow binding of the CD28TFc to Protein A overnight with gentle stirring at 4°C.

The beads were allowed to settle for 2 h prior to siphoning off the depleted supernatant. The settled beads were then transferred to 50 ml Falcon tubes (Becton Dickinson Biosciences, UK) and recovered by centrifugation at 200g. The beads were transferred to a 30 ml column (Biorad, UK) and then washed with 300 mls of cold phosphate-buffered saline, 0.5 M NaCl, pH 8.3. The column was eluted with 0.1 M citric acid, pH 3.0 into 10 x 2 ml fractions in glass tubes containing 0.4 ml of 2.75M Tris, pH 8.5 for immediate neutralization of the citric acid. Fractions containing CD28TFc according to analysis by 12% sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) were concentrated to 0.5ml or no higher concentration than 20 mg/ml using a Centriprep 10 concentrator (Millipore Corp). The protein was then applied to a Superdex 200 H/R gel filtration column (Amersham Biosciences) preequilibrated with 10 mM Hepes, 140 mM NaCl, pH 7.4 (HBS buffer) for up to three successive runs. Eluting fractions were monitored for absorbance at 280 nm. Proteincontaining fractions were examined by SDS-PAGE. Each cycle of batch purification yielded ~9 mgs of CD28TFc; up to 7 batch-purfications was required to deplete all the CD28TFc per set of 6 cell factories (~5 litres of starting tissue culture supernatant).

(iv) Thrombin protease cleavage of CD28TFc

The most-pure fractions containing CD28TFc were pooled for thrombin cleavage. Initial trial titrations dictated the use of the following conditions for large-scale cleavage of CD2TFc: lyophilized thrombin (Sigma-Aldrich Co.) was re-hydrated in HBS buffer to a concentration of 1U/µl and this was then added to the CD28TFc at 0.11 µl/6 µg of protein for overnight digestion at 37°C. The reaction was stopped by addition of freshly re-hydrated benzamidine to a final concentration of 1mM. A 12% non-reducing SDS-PAGE gel was used to confirm the extent of cleavage.

20

25

(v) Purification of the CD28 homodimer

The pH of the thrombin-cleaved protein was adjusted to pH 8.5 using 2.75M Tris pH 8.5, prior to concentration to 0.5 ml using a Centriprep 10 concentrator (Millipore Corp). Fresh Protein A beads were washed and rehydrated to a final volume of ~5 mls, prior to being packed into a 0.7 cm x 20 cm Econo-column (Bio-Rad, U.K.) and then equilibriated with HBS, pH 8.5 at 4°C. The concentrated protein was then applied to the column, allowed to run into the bed, and then sequential fractions were eluted by addition of 0.5 ml of HBS, pH 8.5 to the top of the bed every 10 minutes for 2h. The absorbance of each fraction was determined at 280 nm. The extent of separation of the Fc from the thrombin-released CD28 homodimer was determined by 12% SDS-PAGE analysis of the fractions under non-reducing conditions. The critical steps for good separation were (1) to allow the protein to pass slowly through the column and (2) to conduct the separation at 4°C. The homodimer was concentrated to 0.5 ml and subjected to gel-filtration on a Superdex 75 H/R column (Amersham Biosciences). The purified homodimer was used for crystallization trials, reduced and alkylated for other crystallization trials (see below), or frozen at -80°C for future use.

Preparation of Fab fragments of 5.11A1 antibody

Fab fragments were prepared using the Pierce Biotechnology ImmunoPure® Fab Preparation Kit, as briefly outlined below.

(i) Fab fragment generation and purification

Nine millilitres of whole, purified 5.11A1 antibody at 0.3 mg/ml in PBS was concentrated to 1 ml and then diluted to 10 mls with 20 mM sodium phosphate, 10 mM EDTA, pH 7 and then re-concentrated to 0.5 ml. To this was added 0.5 ml of 20 mM sodium phosphate, pH 7 containing 3.5 mg/ml cysteine•HCl. The 1 ml mixture was then added to 0.5 ml of a 50% slurry of Sepharose-immobilized Papain supplied with the kit, which had been pre-equilibrated with 20 mM sodium phosphate pH 7 containing 3.5 mg/ml cysteine•HCl. This was then incubated for 5 hours in a shaking water bath at 37°C. The cleaved Fab and Fc fragments and undigested IgG were separated from the Immobilized Papain beads by centrifugation at 1000g and the beads rinsed with 1.5 ml of the ImmunoPure IgG Binding Buffer supplied with the kit. The wash was then combined with the crude digest and the mix applied to a Sepharose-immobilized Protein

15

20

25

.30

A column pre-equilibrated with 13 ml of ImmunoPure IgG Binding Buffer. The column was washed with 6.0 ml of the Binding Buffer and the eluate containing the Fab fragments collected (9 mls in total). The eluate was concentrated to 0.5 ml and applied to a Superdex 200 H/R gel filtration column (Amersham Biosciences) pre-equilibrated with HBS buffer. Eluting fractions were monitored for absorbance at 280 nm. Protein-containing fractions were examined by SDS-PAGE.

Preparation of a crystallizable form of CD28

(i) Reduction and alkylation of CD28

CD28 has an interchain disulphide bond within the "stalk-like" region that is largely responsible for homodimerization. It was speculated that its location within the stalk would render it more sensitive to reducing agents than the "canonical" disulphide bond and one other disulphide buried within the ligand-binding domain. If true this meant that monomeric CD28 could be generated which was native-like and fully active for ligand and antibody binding. The minimum concentration of reducing agent required to release the monomer was ascertained by titrating the reducing agent, dithiothreitol (DTT). The reduced cysteines in the protein and excess DTT were each then inactivated by alkylation with a 2.2-fold molar excess of iodoacetamide (IAA). This titration indicated that the optimal conditions were 12.5 µM protein, 1.5mM DTT and 3.3 mM IAA. The reduced protein sample, generally ~4 ml, was finally concentrated to 0.5 ml and separated from unreduced homodimer by gel-filtration on a Superdex 75 H/R column (Amersham Biosciences).

Crystallographic methods

(i) Crystallization and data collection

The CD28/5.11A1 Fab complex was formed by incubating a 2:1 molar ratio of CD28 and Fab, followed by concentration of the protein mixture to 15.6 mg/ml in HBS (the extinction coefficient, ε , of CD28 is 1.7 and that of the Fab is 1.4). Crystals were grown at 18°C in 0.2 μ l hanging drops (0.1 μ l of the protein mixture plus 0.1 μ l of precipitating reagent) set up using a Cartesian Robot (APS Robotics & Integration, llc; Brown et al (2003) J. Appl. Cryst. 36, 315-18). The precipitating reagent consisted of a mixture of 0.2 M magnesium formate and 20% polyethylene glycol 3350 in water.

15

20

25

30

Crystals appeared in 5-7 days and were cooled to 100K in the precipitating reagent with glycerol added to a final concentration of 10%, using a Cryojet liquid nitrogen system for data collection (Oxford Instruments, Abingdon, UK). Crystals belong to space group C2 with unit cell dimensions a = 191.2, b = 47.4, c = 71.8 Å and a calculated solvent content of 56-58% for one CD28 monomer and one Fab molecule per asymmetric unit (ignoring the effects of glycosylation). The 2.7Å resolution data were collected from a single crystal at 100K at Beamline ID2 at the European Synchrotron Radiation Facility using a FReLoN CCD. One hundred and fifty-eight 1° rotation images were collected and reduced with HKL2000 (Otwinowski and Minor (1997) Methods Enzym. 276, 307-26).

(ii) Structure determination and refinement

The structure was solved by molecular replacement in XPLOR v3.851 (Brünger (1992) X-PLOR Version 3.1. A system for X-ray crystallography and NMR. Yale University Press, New Haven, CT.) using a set of search models generated from a single Fab structure (PDB accession no. 15c8) by varying the elbow angle in 2° steps using an XPLOR script. A single unambiguous solution was found when the elbow angle was altered by -8° as defined by the script. After rigid body refinement of each domain of the Fab in CNS (Brünger et al. (1998) Acta Cryst. D54, 905-21), the R-factor was 44.4%. Initial electron density maps phased with Fab alone showed very limited, if any, electron density for the CD28 molecule. The Fab model was mutated to the sequence of 5.11A1 before proceeding with two cycles of manual rebuilding in O (Jones et al (1990) O: A macromolecular modelling environment. Crystallographic and modeling methods in molecular design. Bugg and Ealick, Eds. Springer-Verlag Press 189-95) and positional refinement in CNS, reducing the R-factor to 36.4%. A molecular replacement solution for CD28 was then found by using only regions of human CTLA-4 (from PDB 1i81) with strong sequence homology to CD28, i.e. all the β-strands (except C') and the EF and FG loops, as a search model and by fixing the refined Fab structure. In order to avoid model bias, the refined constant regions of the Fab were replaced with the unaltered constant domains from PDB 15c8 by superposition using SHP (Stuart et al (1979) J. Mol. Biol. 134, 109-42), and the positions were fixed during refinement. The variable regions of the Fab and the CD28 monomer were refined in X-PLOR v3.851

15

20

25

30

using positional refinement followed by grouped and restrained individual B factor refinement along with manual rebuilding in O. All refinement procedures used data from 25.0-2.7Å and excluded 5% of reflections randomly selected for generation of the R_{free} data set. The anisotropy of the data was corrected for using X-PLOR and the data were sharpened for all but the last round of refinement. The current model has an R factor of 25.3% and an R_{free} of 33.4% against all data to 2.7Å. The model includes the CD28 monomer (excluding its C-terminal stalk) from residues 2 to 118, excluding residues Leu28 and Phe29, which are poorly ordered, and the Fab, but with none of the sugar chains built onto the CD28. The model has 76% of residues in the most favoured regions of the Ramachandran plot, with a further 21% in additionally allowed regions.

The structure of a CD28-superagonist antibody complex

The ligand-binding V-set IgSF domain of the CD28 monomer, solved in complex with 5.11A1 Fab, is very similar to the equivalent region of CTLA-4. Lattice contacts generate a plausible CD28 homodimer. Whilst this dimer is similar to the CTLA-4 homodimer (which is bivalent), the arrangement of the monomers in CD28 is sufficiently distinct to suggest an explanation for the apparent monovalence of CD28, i.e. the membrane proximal domains of ligands competing for each ligand binding site are likely to clash. Cryoelectron microscopic analyses show that both classes of antibodies are bivalent, ruling out aggregation-based explanations for the differential signalling effects of conventional versus superagonistic antibodies. The 5.11A1 Fab fragment binds orthogonally to the surface formed by the CC'C" strands of CD28, favouring the C'C" "edge" of the monomer. This places the two long axes of the Fabs parallel to each other and the cell surface. In contrast, the epitopes of the conventional antibodies are close to the ligand binding "top" of the homodimer.

Signalling by receptors dependent on extrinsic kinases

The existence of two classes of activating anti-CD28 antibodies, i.e. costimulatory antibodies and superagonists, greatly simplifies the analysis of signalling by this archetypal costimulatory receptor. The observation that the two antibody classes have homologous effects in two different species, and that these effects are predictable simply according to the location of their epitopes, rules out

PCT/GB2005/000099

3

trivial explanations for the distinct signalling properties of these antibodies, e.g. affinity differences. Instead, the receptor-triggering problem is reduced to a comparison of the structural properties of the complexes that these two types of antibodies form with CD28.

From the present crystal structure of the complex of CD28 with a superagonistic antibody, it can be deduced that an antibody-induced increase in the net phosphorylation of the cytoplasmic domain of a given cell surface receptor, due to changes in the rates of phosphorylation and dephosphorylation of it, results in the triggering of that receptor (see Figure 1). In more detail, the antibodies hold the cell surface at certain distances from an immobilizing substrate (i.e. other, Fc receptorbearing cells, in vivo or plastic, in vitro), such that the membrane separation in the region of the immobilized antibody and receptor will differentially exclude, from the immediate vicinity of the receptor, other molecules whose extracellular domains are comparable in size or larger than CD28-antibody complexes, such as the tyrosine phosphatase, CD45. In contrast, tyrosine kinases, e.g. p56lck, will be unaffected because they are small and/or attached to the inner leaflet of the membrane. The result is that, overall, the phosphorylation of CD28 will be favoured over its dephoshorylation (by CD45), with the net increase in phosphorylation amounting to receptor triggering. Superagonists are more potent than conventional antibodies because they bind epitopes close to the membrane rather than at the "top" of the molecule, leading to more efficient segregation of, e.g. CD45, and therefore a larger increase in the net phosphorylation of CD28.

The important corollary of this explanation is that antibodies that bind the membrane-proximal epitopes of the large number of other cell surface molecules not belonging to the CD28 subset of the immunoglobulin superfamily, but sharing the key signalling property of CD28-subset molecules, *i.e.* a reliance on extrinsic tyrosine kinases, for example PD-1 and BTLA, should also potently invoke the activating or inhibitory signalling properties of those molecules in precisely the same way, allowing the manipulation of cell behaviour with such antibodies.

20

25

WO 2005/066867

5

10

5 -

10

15

20

30

PD-1 and BTLA

Programmed Death (PD)-1 protein modulates the responses of previously activated T- and B-cells in secondary lymphoid organs or peripheral (parenchymal) tissues. PD-1 is expressed on a subset of thymocytes and upregulated on activated T, B and myeloid cells. The PD-1 ligands, B7-H1 and B7-DC, are more widely expressed than those of CD28 family members and are induced by pro-inflammatory agents on monocytes and dendritic cells and on activated but not resting B cells. B7-DC is expressed in a variety of peripheral tissues, including heart, pancreas, lung and liver. The B and T lymphocyte attenuator (BTLA), is also expressed on activated T and B cells, but attenuates production of IL-2 after binding a different peripherally expressed B7-related protein, called B7x.

PD-1 and BTLA are structurally comparable to other members of the CD28 family only insofar as the proteins also consist of a single V-set IgSF domain supported on stalks, and the cytoplasmic domains contain immunoreceptor tyrosine-based motifs (inhibitory in these two cases). The sequences of the IgSF domains of PD-1 and BTLA indicate that these proteins are unrelated and *do not* belong to the same subset of the IgSF as CD28. Consistent with the view that PD-1 is involved in maintaining tolerance in normal T cells in the periphery, mice lacking the gene develop a variety of autoimmune-like diseases dependent on the genetic background, including lupus-like arthritis and glomerulonephritis, and have increased serum IgG3 and augmented B-cell proliferative responses to anti-IgM *in vivo*.

Activating signalling by PD-1 and BTLA, because these molecules are inhibitory, would be expected to dampen a variety of peripheral immune pathologies. Signalling of this type could be stimulated by the binding of superagonistic antibodies to the membrane proximal regions of these proteins. A set of additional molecules, each of which has inhibitory immunoreceptor tyrosine-based signalling motifs and are therefore targets for generating superagonists, is shown in Table 2.

Identifying epitopes for superagonists

The procedure is as follows. The "lower", membrane-proximal half of the membrane proximal domain of a given structure, e.g. CD28 in Figure 2A, is identified by visual inspection of the structure. Superagonistic agents bind residues in

15

this region. For identifying superagonistic agents in receptors closely related to the known structure, the equivalent regions are identified in an alignment of the sequence of the known structure with that of the related proteins as shown in Figure 2A. To identify the epitopes of superagonistic antibodies in other molecules that have the requisite signalling properties but for which there is no structure, e.g. PD-1 in Figure 2B, a structural model is identified by alignment of the sequence with that of the most similar molecule of known structure in the Protein Data Bank (in the example in Figure 2B, the variable domain of the Ig kappa chain is the structure with the most similar sequence to PD-1). The "lower", membrane proximal half of this domain is highlighted on the structure by visual inspection and the equivalent regions are identified in the sequence alignment. To screen for superagonists, the second and third residues "down" (i.e. toward the membrane) in the marked epitopes shown in parts A and B are identified as shown in Figures 2C and 2D. These residues, singly or together preferably form at least part of the epitopes of antibodies or other superagonistic agents, as binding to these residues will require that the binding of the agent is parallel with the cell membrane. These residues can therefore be mutated in proteins used for screening the superagonistic agents (i.e. agents binding to the unmutated protein but not the mutated protein, should be superagonistic).

Table 1

CD28 family superagonistic epitopes Epitopes are named according to the strands from which they derive.

				• :	: .			34
G	NGTITHY	NGIOIYV	TGGYLHI			G	LRAELR	TTLYVT
F	TDIYFC	IGLYIC	ANYYFC			F	NDSGTY	NDNGSY
E	FYLQN	LIIQG	FFLYN			E	MSVVR	LHFEP
C.,-D	VYSKTGFNCDG	FLDDSICIG	VSIKSLKFCHS	mietic onitonde	mone chirapes	<i>Q</i> -" <i>D</i>	QPGQDCRFR	QTSWK.
<i>C-C</i> ,	KGLDSAVEVCV	RQADSQVTEVCA) LLKGGQILCD	DD 1 and RM 4 conservationistic onitonise	D-1 unu D1LA superugo		RMSPSNQTDK	KTNG
· .	SLF	IAL				В	DNATF	DPFEL
В	AVNLS						CVV	SEHSI
A'	SPMLV	PAVVL	YEMFI			4	PALLVV	OSE
Protein	hCD28	hCTLA-4	HICOS		•	Protein	hPD-1	hBTLA

Table 3

GNYSQQLQVYSKTGF	YMMGNELTFLDDS	KTKGSGNTVSIKSLK	LAAFPEDRSQPGQDCR
hCD28	hCTLA-4	HCOS	hPD-1
		4	4

Table 2
Targets of inhibitory superagonist antibodies

•	•		
Receptor	Chromosome	Expression	no. of ITIMs
FcRIIB	1q23-24	B, myeloid, mast	1
PILR	7q22	Myeloid	2
CD72	9p	В	2
CD5	11q13	T, subset B	1
MAFA	12p12-13	Myeloid, mast, NK	1
NKG2A	12p13.1-13.2	NK, T	2
CD31	17q23	Myeloid, etc	1
CMRF35H	17q24	Leukocytes	. 3
CD22	19q13.1	В	4
CD66a	19q13.2	Granulocytes, etc	2
CD66d	19q13.2	Granulocytes	· 1
CD33	19q13.3	Myeloid	1
SIGLEC5	19q13.3	Myeloid	1
SIGLEC6	19q13.3	B cells, myeloid	1
SIGLEC7	19q13.3	NK, myeloid, etc	1
ILT2,3,4,5	19q13.4	Myeloid, B, etc	4
LIR8	19q13.4	Myeloid, B, etc	4
LAIR-1	19q13.4	Leukocytes	2
KIR2DL	19q13.4	NK, T	2
KIR3DL	19q13.4	NK, T	2
SIRP	20p13	Myeloid, etc	2

Table 4 Co-ordinates of the CD28/5.11A1 crystal structure

					·				
REMARK						8_all/xp	lor/ref1	8/positionaln3	.pdb"
REMARK	R=0	.2510	35 £	rom 25 to	2.7		•		
REMARK	DATE:	09-Ja	n-04	09:48:1	9 · c	reated b	_		
MOTA	1	CB	ASP	1	122.280	49.781	38.327	1.00 64.18	L
ATOM	2	CG	ASP	1	123.319	49.071	37.463	1.00 67.78	L
ATOM	3	OD1	ASP	1	122.934	48.417	36.470	1.00 66.82	L
ATOM	4	OD2	ASP	1 ·	124.524	49.162	37.779	1.00 54.04	P
MOTA	5	Ç	ASP	1	122.104	52.265	38.005	1.00 50.51	r.
ATOM	6	0	ASP	1	122.541	53.057	37.163	1.00 41.52	L
ATOM	7	N	ASP	1	121.674	50.711	36.112	1.00 37.53	L
ATOM	8	CA	ASP	1	121.547	50.905	37.579	1.00 50.29	L
ATOM	9	N	ILE	2	122.073	52.527	39.314	1.00 51.24	L
ATOM	10	CA	ILE	2	122.567	53.783	39.890	1.00 50.84	L
ATOM	11	CB	ILE	2	121.842	54.094	41.240	1.00 22.62	L
ATOM	. 12	CG2	ILE	2	122.278	55.454	41.781	1.00 18.55	L
ATOM	13	CG1		2	120.327	54.081	41.022	1.00 30.61	L
ATOM	14	CD1		2	119.510	54.521	42.229	1.00 31.86	L
ATOM	15	C	ILE		124.086	53.714	40.119	1.00 54.91	L
ATOM	16	. 0	ILE	2	124.645	52.630	40.283	1.00 55.68	L
ATOM	17	N	GLN	3 ′	124.749	54.869	40.136	1.00 58.93	L
ATOM	18	CA	GLN	. 3	126.204	54.923	40.322	1.00 56.95	L
ATOM	19	CB	GLN	3	126.847	55.679	39.145	1.00 60.02	L
ATOM	20	CG	GLN	3.	127.010	54.851	37.863	1.00 63.51	L
ATOM	21	CD	GLN	3	126.479	55.552	36.615	1.00 65.36	L
ATOM	22		GLN	3 .	127.024	56.568	36.174	1.00 62.07	L
•	23	NE2	GLN	3	125.412	55.003	36.038	1.00 72.37	· L
ATOM :	24.	C	GLN	3	126.635	55.564	41.650	1.00 51.69	L
ATOM	25	0	GLN	3 .	126.179	56.649	42.004	1.00 54.63	L
MOTA	26	N	MET	4	127.522	54.889	4.5	1.00 42.42	· L
MOTA	27	CA	MET	· 4	128.005	55.392	43.660	1.00 37.64	L
ATOM	28	CB	MET	4	128.066	54.248	44.671	1.00 54.55	${f L}$
ATOM		CG	MET	4	127.037	54.319	45.783	1.00 56.74	L
ATOM	29		MET	.4	125.360	54.633	45.189	1.00 76.06	L
ATOM	30	·SD	MET	4	125.083	56.269	45.843	1.00 68.01	L
MOTA	31	CE		4	129.392	56.008	43.507	1.00 44.16	L
MOTA	32	C	MET		130.358	55.311	43.176	1.00 35.72	L
MOTA	33	0	MET	4	129.496	57.310	43.750	1.00 50.40	r _
MOTA	34	N	ASN	5 .		57.996	43.624	1.00 58.90	 L
MOTA	35	CA	ASN	5	130.779 130.703	59.060	42.521	1.00 67.94	L L
ATOM	36	CB	ASN	- 5			41.233	1.00 59.91	L
MOTA	37	CG	ASN	5	130.113	58.517 57.811	40.474	1.00 49.08	L
ATOM	38		ASN	5	130.783	58.839	40.981		L
MOTA	39		ASN	5 .	128.848	58.643	44.939	1.00 46.55	L
MOTA	40	C	ASN	5	131.191	59.637		1.00 40.94	L
ATOM	41	0	ASN	5	130.612		45.577	1.00 33.77	L
MOTA	42	N	GLN	6	132.202	58.607	46.846	1.00 35.77	P.
MOTA	43	CA	GLN	6	132.661	57.476	47.679	1.00 30.03	L
ATOM	44	CB	GLN	6	133.257	•	47.684	1.00 24.74	L
MOTA	45	CG	GLN	6	132.395	56.218 55.524	49.029	1.00 27.56	L
MOTA	46	CD	GLN	6	132.393	55.544	4 2.042	2.00 27.50	_

							. •					
ATOM	47 (DE1	GLN	6		132.925	56.048	50.013	1.00	30.84		L
ATOM	48 1	NE2	GLN	6	:	131.803	54.339	49.082	1.00	34.41	•	L
ATOM	49 (C	GLN	6	. :	133.677	59.725	46.647	1.00	43.10	•	L
ATOM	50 (o	GLN	6		134.328	59.800	45.608	1.00	55.89		L
MOTA	51 1	N.	SER	7	- :	133.807	60.598	47.641	1.00	47.45		L
ATOM	52 (CA	SER -	7	:	134.736	61.714	47.543	1.00	54.98		·L
ATOM	53 (СВ	SER	7	:	134.285	62.858	48.469	1.00	70.71	•	L
ATOM	54 (OG	SER	7		135.232	63.917	48.514	1.00	61.37		L
ATOM		C	SER	7		136.187	61.304	47.812	1.00	57.75		L
ATOM	56 (o	SER	7		136.828	60.732	46.928	1.00	68.97		L.
ATOM			PRO	8 .		136.722	61.540	49.029	1.00	48.65		L
ATOM			PRO	8		136.250	62.116	50.300	1.00	21.82		L
ATOM		CA	PRO	8	:	138.118	61.109	49.140	1.00	47.63		L
ATOM			PRO	. 8		138.515	61.533	50.559	1.00	29.91	•	L
ATOM		CG	PRO	8		137.525	62.576	50.933	1.00	26.41		L
ATOM			PRO	8		138.358	59.622	48.893	1.00	48.77		L
ATOM			PRO	8		137.820	58.772	49.604	1.00	63.86		L
ATOM			SER	9		139.161	59.318	47.876	1.00	33.02		L
ATOM		CA	SER	9		139.500	57.939	47.548	1.00	32.48		L
ATOM			SER	9		140.151	57.864	46.169	1.00	30.85		L
ATOM			SER	9		141.554	57.812	46.286	1.00	25.75		L
ATOM			SER	9		140.469	57.407	48.602	1.00	30.90		L
ATOM			SER	. 9		140.661	56.197	48.737		32.96		L
ATOM			SER	10	•	141.076	58.333	49.340	1.00	29.68		L
MOTA			SER .	10		142.022	58.018	50.412		35.34		L
ATOM			SER	10		143.387	57.645	49.831		49.82		L
ATOM			SER	10		144.392	58.538	50.289		81.38		L
ATOM			SER	10		142.161	59.254	51.308	1.00	31.04		L
ATOM			SER	10		141.964	60.379	50.839	1.00	35.88		L
ATOM			LEU	11			59.056	52.582	1.00	27.16	. '	L
ATOM			LEU	11		142.634	60.181	53.498	1.00	24.50		Ļ
ATOM			LEU.	11		141.258	60.780	53.780	1.00	47.56		L
ATOM			LEU	11		141.120	61.488	55.134	1.00	57.17		L
ATOM		ZD1		11		141.752	62.878	55.063	1.00	65.58		L
ATOM		CD2		. 11		139.650	61.583	55.509	1.00	61.17		L
ATOM			LEU	11		143.308	59.884	54.831	1.00	22.63	_	L
ATOM			LEU	11	:	142.978	58.919	55.508	1.00	25.60		L
ATOM			SER	12		144.233	60.759	55.209	1.00	33.11		L
MOTA			SER	12		144.965	60.653	56.466	1.00	35.62		L
MOTA	86 0	СВ	SER	12		146.465	60.745	56.201	1.00	34.92		L
ATOM			SER	12		147.186	60.895	57.409	1.00	29.53		L
ATOM	88 0	3	SER	12		144.534	61.798	57.392	1.00	38.38		L
ATOM			SER	12		144.226	62.894	56.928	1.00	46.48		L
ATOM			ALA	13		144.519	61.546	.58.696	1.00	31.39		L
MOTA			ALA	13	. :	144.116	62.559	59.666	1.00	34.62		L
MOTA			ALA	13		142.615	62.610	59.753	1.00	28.98		L
ATOM			ALA	13		144.706	62.178	61.012	1.00	38.12		L
MOTA			ALA	13		144.928	61.002	61.268	1.00	41.17		L
MOTA			SER	14	:	144.946	63.156	61.878	1.00	36.11		L
MOTA			SER	14	:	145.553	62.865	63.177	1.00	42.50		L
ATOM	97 (CB	SER ·	14		146.477	64.012	63.593	.1.00	45.35		L
ATOM		OG	SER	14	:	147.608	63.522	64.299	1.00	51.37		L
MOTA		2	SER	14		144.618	62.553	64.343	1.00	36.84		L

			•					
ATOM	100	o s	ER 14	143.395	62.586	64.217	1.00 30.77	L
ATOM	101		EU 15	145.246	62.246	65.477	1.00 42.69	L
ATOM	102		EU 15	144.588	61.919	66.737	1.00 51.12	L
ATOM	103		EU 15	145.077	62.874	67.829	1.00 35.76	L
ATOM	104		EU 15	145.549	64.244	67.331	1.00 50.27	L
ATOM	105		EU 15	144.709	65.353	67.956	1.00 45.12	L
			EU 15	147.023	64.425	67.671	1.00 46.79	L
MOTA	106		EU 15	143.071	61.968	66.666	1.00 63.00	L
ATOM	107		EU 15	142.440	61.062	66.125	1.00 71.25	L
MOTA	108			142.495	63.029	67.229	1.00 61.62	L
ATOM	109		LY 16 LY 16	141.052		67.225	1.00 58.47	L
ATOM	110			140.588	64.176	66.177	1.00 62.05	. L
ATOM	111		LY 16	139.827	65.094	66.481	1.00 59.73	. L
ATOM .	112		LY 16		63.991	64.942	1.00 62.73	Ŀ
MOTA	113		SP 17	141.052		63.828	1.00 55.42	L
MOTA	114		SP 17	140.690	64.863	62.715	1.00 35.42	L
MOTA	115		SP 17	141.729	64.728		1.00 45.39	L
MOTA	116		SP 17	142.006	66.039	62.017	1.00 58.02	L
MOTA	117	OD1 A		142.467	66.992	62.682	1.00 51.84	L
MOTA	118		SP 17	141.762	66.116	60.795		r r
MOTA	119		SP 17	139.313	64.470	63.298	1.00 54.85 1.00 69.38	L
MOTA	120		SP 17	139.066	63.296	63.027		L
MOTA	121		HR 18	138.425	65.448	63.150	1.00 39.55	
ATOM	122		HR 18	, 137.073	65.189	62.661	1.00 35.18	P P
MOTA	123		HR 18	136.089	66.238	63.211	1.00 39.72	
MOTA	124	OG1 T		136.155	66.250	64.644	1.00 36.21	L
ATOM	125		HR 18	134.668	65.918	62.774	1.00 28.85	L
MOTA	126		HR 18	136.967	65.172	61.132	1.00 39.85	L
MOTA	127		HR 18	136.590		60.522	1.00 51.97	L
MOTA	128	N I	LE 19	137.289	64.035	60.521	1.00 38.56	L
MOTA	129		LE 19	137.233	63.881	59.065	1.00 40.49	L
MOTA	130		LE 19	137.917	.62.579	58.621	1.00 43.22	L
MOTA	131		LE 19	139.334	62.545	59.144	1.00 53.54	L
MOTA	132	CG1 I	LE 19	137.148		59.161	1.00 31.99	L
ATOM	133	CD1 I	LE 19	136.020	60.889	58.260	1.00 27.22	· L
MOTA	134		LE . 19	135.811	63.857	58.519	1.00 41.63	L
ATOM	135	O' I	LE 19	134.850	63.825	59.284	1.00 48.28	L
ATOM	136	N T	HR 20	135.690	63.839	57.191	1.00 41.74	L -
MOTA	137	CA T	HR 20	134.388	63.814	56.517	1.00 46.28	L
MOTA	138	CB T	HR 20	133.761	65.246	56.473	1.00 55.85	L
MOTA .	139	OG1 T		132.666	65.316	57.396	1.00 68.15	L
MOTA	140	CG2 T		133.260	65.592	55.073	1.00 57.90	. L
MOTA	141	C T	HR 20	134.516	63.260	55.090	1.00 34.62	. T
MOTA	142	ОТ	HR 20	135.433	63.620	54.351	1.00 35.05	r T
MOTA	143	N I	LE .21	133.592	62.385	54.706	1.00 27.66	L
MOTA	144	CA I	LE 21	133.613	61.793	53.371	1.00 40.68	L
ATOM	145	CB I	LE 21	133.646	60.260	53.466	1.00 45.17	L
ATOM	146	CG2 I	LE 21	133.946	59.641	52.110	1.00 58.28	r
ATOM	147	CG1 I	LE . 21	134.757		54.432	1.00 37.17	L
MOTA	148		LE 21	134.556	58.489	55.038	1.00 30.25	L
MOTA	149	CI	LE 21	132.412	62.266	52.552	1.00 41.14	L
ATOM	150	. O I	LE 21	131.706		52.978	1.00 52.31	L
MOTA	151	n T	'HR 22	132.176		51.386	1.00 37.16	L
ATOM	152	CA T	HR 22	131.069	62.096	50.533	1.00 30.97	L
				•				

			•					•	•
ATOM	153	CB I	HR 22		131.426	63.392	49.791	1.00 33.17	· L
ATOM	154	OG1 T	THR 22	•	131.754	64.417	50.736	1.00 20.87	L
ATOM	155		HR 22		130.270	63.832	48.913	1.00 26.45	L
ATOM	156		HR 22		130.703	61.078	49.462	1.00 45.82	L
ATOM	157		HR 22		131.563	60.656	48.694	1.00 54.24	L
ATOM	158		YS 23		129.430	60.705	49.381	1.00 50.07	. L
ATOM	159		YS 23		129.004	59.746	48.363	1.00 63.67	L
ATOM	160		YS 23		127.790	60.230	47.570	1.00 68.93	L
ATOM	161		YS 23		126.651	60.017	47.983	1.00 85.32	L
ATOM	162		YS 23		128.682	58.384	48.998	1.00 53.28	L
ATOM	163		CYS 23		127.931	57.193	47.829	1.00 60.78	L
MOTA	164		IIS 24		128.035	60.874	46.432	1.00 62.30	L
MOTA	165		IIS 24		126.958	61.376	45.581	1.00 55.79	L
MOTA	166		IIS 24		127.438	62.585	44.766	1.00 66.11	L
ATOM	167		IIS 24		127.210	63.903	45.443	1.00 94.47	· L
ATOM	168	CD2 H			127.360	64.280	46.736	1.00100.00	L
ATOM	169	ND1 H			126.760	65.020	44.771	1.00 99.99	L
ATOM	170	CE1 H			126.647	66.029	45.618	1.00 96.64	L
ATOM	171	NE2 H			127.005	65.605	46.818	1.00100.00	L
ATOM	172		IIS 24		126.456	60.282	44.636	1.00 53.07	L
ATOM	173		IIS 24		127.232	59.442	44.174	1.00 50.30	L
ATOM	174		ALA 25		125.154		44.359	1.00 48.84	L
ATOM			LA 25		124.546	59.309	43.470	1.00 62.65	ŗ.
ATOM	176		LA 25	•	123.334	58.678	44.149	1.00 50.68	L
MOTA	177		LA 25		124.135	59.923	42.124	1.00 71.88	L
ATOM	178		LA 25		123.769	61.098	42.053	1.00 69.35	${f L}$
ATOM	179		SER 26		124.196	59.120	41.061	1.00 75.26	L
ATOM	180		SER 26		123.833	59.585	39.724	1.00 65.26	L
ATOM	181		SER 26		123.832	58.421	38.724	1.00 51.17	L
ATOM	182		SER . 26	. :	122.779	57.511	38.981	1.00 34.32	L
ATOM .	183		SER 26.		122.466	60.247	39.755	1.00 68.59	L
ATOM	184		SER 26	•	122.329	61.422	39.413	1.00 70.72	L
ATOM	185		LN 27		121.452	59.490	40.163	1.00 70.13	L
ATOM	186		ELN 27		120.103	60.030	40.253	1.00 61.69.	L
ATOM	187		IN 27		119.171	59.312	39.273	1.00 49.30	T
ATOM	188		ELN 27		119.385	57.827	39.181	1.00 40.46	. L
ATOM	189		3LN 27		118.295	57.064	39.899	1.00 47.76	L
ATOM	190	OE1 G	3LN 27		117.623	57.601	40.785	1.00 42.99	L
ATOM	191	NE2 C	3LN 27		118.110	55.806	39.523	1.00 37.30	, L
ATOM	192	C . 0	GLN 27	•	119.568	59.937	41.690	1.00 59.24	L
MOTA	193		in 27		120.323	59.658	42.623	1.00 58.99	. L
ATOM	194	N A	ASN 28		118.268	60.160	41.859	1.00 54.50	\mathbf{r}
ATOM	195	CA A	ASN 28		117.628	60.162	43.176		L
ATOM	196	CB A	ASN 28		116.286	60.871	43.058	1.00 28.87	\mathbf{L}
ATOM	197.,	CG A	ASN 28		115.671	61.159	44.397	1.00 25.62	L
ATOM	198	OD1 A	ASN 28		116.346	61.607	45.321	1.00 43.90	L
ATOM	199	ND2 A			114.383	60.894	44.518	1.00 47.96	L
ATOM	200		ASN 28		117.422	58.833	43.917	1.00 53.06	L
ATOM	201		ASN 28		116.727	57.939	43.431	1.00 50.76	. L
MOTA	202		LE 29		118.011	58.727	45.112	1.00 49.78	L
ATOM	203	CA . I	ILE 29		117.887	57.528	45.951		L
MOTA	204	CB I	ILE 29		119.278	56.900			L
ATOM	205	CG2	ILE 29	•	119.870	56.276	45.028	1.00 38.09	L
									•

					-: '				
MOTA	206	CG1	ILE 29	120.	235 57.	965 46.8	301 1.00	35.93	. Ь
MOTA	207	· CD1	ILE 29	121.	444 57.	381 47.4	98 1.00	24.13	L
MOTA	208	c :	ILE 29	117.	176 57.	883 47.2	270 1.00	49.01	L
ATOM	209	0 :	ILE 29	117.	043 57.	056 48.1	1.00	28.15	L
ATOM	210		ryr 30	116.	720 59.	127 47.3	1.00	51.14	L
ATOM	211		TYR 30	116.	018 59.	610 48.5	36 1.00	40.55	. L
ATOM	212		ryr 30	114.				51.35	L
MOTA	213		ryr 30	113.			52 1.00	50.82	L
ATOM	214	CD1		112.			18 1.00	57.07	L
ATOM	215	CE1		112.				48.93	L
ATOM	216		ryr 30	114.		•		54.94	L
MOTA	. 217	CE2		113.				54.60	L
ATOM	218		ryr 30	112.				54.60	L
ATOM	219		ryr 30	111.				46.05	L
ATOM	220	•	ryr 30	116.				36.49	ь
ATOM	221		ryr 30	117.				36.08	L
ATOM	222		VAL 31					27.22	L
ATOM	223		VAL 31	117.				25.88	L
ATOM	224		VAL 31	116.				24.60	r _
ATOM	225	CG1 V		115.				39.18	L
ATOM	225	CG2 V	,					11.43	L
ATOM	227		VAL 31					30.74	L
	227		VAL 31	118.		•		32.26	L
ATOM ATOM	. 229		TRP 32	•	612 56.		•	34.27	L
	230		IRP 32	117.		796 · 51.0		29.66	L —
ATOM ATOM	230		TRP 32	117.				37.57	L
			IRP 32 IRP 32	115.				45.16	L
ATOM	232		IRP 32	114.	-			28.80	P.
MOTA	233		IRP 32 IRP 32					36.20	, L
ATOM	234 235		IRP 32	115.				25.93	L
ATOM ATOM	236	CD1		114.		-		47.52	r L
ATOM	237	NE1		113.				36.87	L
ATOM	238		rrp 32	112.				25.25	L
ATOM			rrp 32	114.				21.98	L.
ATOM	240	CH2		112.		•		2.00	L.
ATOM	241		rrp 32	119.	•			17.38	L
MOTA	242	· ·	rrp 32				•	20.83	· L
MOTA	243		LEU 33	120.				19.97	, r
ATOM	244	•	LEU 33	121.				39.54	L
								44.19	L
ATOM ATOM	245 246		LEU 33 LEU 33			803 50.5		34.32	L
ATOM	247	CD1 I				190 49.0		27.47	L
	248	CD2 I				774 51.5		19.98	L
ATOM ATOM	. 249		LEU 33					39.15	L
ATOM			LEU 33				95 1.00		L
ATOM	250		ASN 34					38.96	L
ATOM	252		ASN 34					33.81	L
ATOM	253		ASN 34					29.67	L
ATOM	253 254		ASN 34					18.96	L
ATOM	255	OD1 2				484 54.3		22.09	L
ATOM	256	ND2				269 52.8		22.68	L
ATOM	250		ASN 34				89 1.00		L
ATOM	258		ASN 34					25.60	L
AT ON	200	0 1	54						_

				, .		•			
MOTA	259	N	TRP	35 ·	126.125	53.242	55.041	1.00 31.00	L
ATOM	260	CA	TRP	35	127.574	53.380	55.122	1.00 37.04	Ĺ
ATOM	261	CB.	TRP	. 35	127.942	54.663	55.871	1.00 44.59	\mathbf{L}_{\cdot}
ATOM	262	CG	TRP	35	127.725	55.956	55.099	1.00 50.73	L
ATOM	263	CD2	TRP	35	128.624	56.560	54.155	1.00 39.25	L
ATOM	264	CE2		35	128.042	57.776	53.738	1.00 36.81	L
MOTA	265	CE3		35	129.868	56.194	53.621	1.00 29.95	L
ATOM	266		TRP	35	126.660	56.808	55.208	1.00 38.58	. L
ATOM	267	NEI		35	126.843	57.900	54.397	1.00 40.14	L
ATOM	268	CZ2		35	128.655	58.629	52.812	1.00 36.05	L
ATOM	269	CZ3	TRP	35	130.479	57.045	52.698	1.00 39.51	L
ATOM	270	CH2	TRP	35	129.871	58.247	52.307	1.00 31.94	L
ATOM	271	C	TRP	35	128.118	52.168	55.885	1.00 32.85	L
ATOM	272	ō	TRP	35	127.499	51.715	56.849	1.00 24.56	L
ATOM	273	И	TYR	36	129.271	51.654	55.451	1.00 29.03	L
ATOM	274	CA	TYR	36	129.894	50.488	56.080	1.00 24.01	L
ATOM	275	CB.	TYR	36	129.760	49.256	55.178	1.00 24.57	L
ATOM	276	CG	TYR	36	128.341	48.844	54.845	1.00 36.78	ľ
ATOM	277	CD1		36	127.740	47.745	55.469	1.00 45.66	L
ATOM	278	CE1		36	126.439	47.350	55.138	1.00 29.26	L
ATOM	279	CD2		36	127.606	49.536	53.885	1.00 43.28	L
ATOM	280	CE2		36	126.314	49.153	53.550	1.00 29.25	L
ATOM	281	CZ	TYR	36	125.736	48.064	54.174	1.00 33.13	L
ATOM	282	OH	TYR	36	124.458	47.709	53.810	1.00 29.39	L
ATOM	283	C .	TYR	36	131.379	50.683	56.401	1.00 34.79	L
ATOM	284	ō	TYR	36	132.060	51.530	55.813	1.00 31.84	L
ATOM	. 285	N	GLN	37	131.876	49.880	57.337	1.00 38.75	L
ATOM	286	CA	GLN	37	133.278	49.923	57.731	1.00 41.58	. T
ATOM	287	СВ	GLN	37	133.406	50.342	59.199	1.00 30.71	L
ATOM	288	CG .	GLN	37	134.852	50.495	59.704	1.00 37.19	L
ATOM	289	CD	GLN	37	134.989	50.332	61.222	1.00 25.39	${f r}$
ATOM	290	OE1	-	37	134.904	49.222	61.753	1.00 36.25	L
ATOM	291	NE2	GLN	37	135.209	51.439	61.918	1.00 22.58	${f r}$
ATOM	-292	C	GLN	37 .	133.884	48.528	57.528	1.00 39.79	L
ATOM	293	0	GLN	37	133.319	47.526	57.975	1.00 29.52	L
ATOM	294	N	GLN	38	135.022	48.465	56.839	1.00 29.65	L
ATOM	·295	CA	GLN	38	135.695	47.195	56.596	1.00 31.00	L
ATOM	296	CB	GLN	38	135.471	46.738	55.155	1.00 37.06	L
MOTA	297	CG	GLN	38	136.385	45.597	54.724	1.00 37.85	L
ATOM	298	CD	GLN	38	135.973	44.992	53.401	1.00 51.91	L
ATOM	299		GLN	38	135.856	45.693	52.399	1.00 56.78	L
ATOM	300	NE2	GLN	38	135.753	43.683	53.390	1.00 47.92	L
MOTA	301	, C	GLN	. 38	137.192	47.285	56.860	1.00 23.61	L
MOTA	302	0	GLN	38	137.952	47.630	55.963	1.00 30.06	L
MOTA	303	N	LYS	39	137.610	46.969	58.086	1.00 29.96	L
MOTA	304	CA	LYS	39	139.021	47.022	58.464	1.00 20.79	L
ATOM	305	CB	LYS	39	139.204		59.925	1.00 26.60	L
ATOM	306	CG	LYS	39	139.493	47.764	60.884	1.00 31.56	L
MOTA	307	CD	LYS	39 ·	138.268	48.135	61.72.7	1.00 24.64	.L
MOTA	308	CE	LYS	39	138.633	48.266	63.205	1.00 28.08	L
MOTA	309	NZ	LYS	39	137.922	47.293		1.00 32.42	L
MOTA	310	C	LYS	39	139.831		57.566	1.00 39.66	
MOTA	311	Ō	LYS	39	139.272	45.238	56.886	1.00 49.56	· . L
								•	

				•		•,			
ATOM	312	N	PRO	.40	141.161	46.283	57.533	1.00 54.59	L
ATOM	313	CD.	PRO	40	141.957	47.289	58.266	1.00 52.22	L
ATOM	314	CA	PRO	40	142.007	45.434	56.686	1.00 54.43	L
ATOM	315	CB	PRO	40	143.431	45.874	57.037	1.00 40.87	L
ATOM	316	CG	PRO	40	143.274	47.280	57.530	1.00 36.77	L
ATOM	317	C	PRO	40	141.792	43.935	56.895	1.00 53.33	L
ATOM	318	ō	PRO	40	141.962	43.429	58.003	1.00 48.18	L
ATOM	319	N	GLY	41	141.403	43.244	55.825	1.00 56.47	L
ATOM	320	CA	GLY	41	141.178	41.807	55.889	1.00 46.36	L
ATOM	321	C	GLY	41	140.030	41.378	56.783	1.00 47.51	L
ATOM	322	ō	GLY	41	139.890	40.195	57.103	1.00 42.82	L
	323	N	ASN	42	139.198	42.336	57.177	1.00 39.14	L.
ATOM	324	CA	ASN	42	138.061	42.049	58.044	1.00 33.16	L
ATOM	325	CB	ASN	42	138.031	43.041	59.210	1.00 25.23	L
ATOM	326	CG	ASN	42	137.400	42.453	60.451	1.00 34.65	L
ATOM	327	OD1		42	136.876	41.338	60.416	1.00 42.65	L
	328	ND2	ASN	42	137.444	43.194	61.558	1.00 15.22	· L
ATOM	329	C	ASN	42	136.743	42.123	57.287	1.00 36.43	L
ATOM	330	0	ASN	42	136.726	42.413	56.092	1.00 31.10	L
ATOM		и	ILE	43	135.648	41.852	57.993	1.00 46.04	L
ATOM	331	CA	ILE	43	134.310	41.894	57.407	1.00 55.78	L
ATOM	332	CB	ILE	43	133.340	40.879	58.089	1.00 55.57	L
MOTA	333	CG2	ILE	43	134.038	39.554	58.323	1.00 47.83	L
MOTA	334	CG1	ILE	43	132.828	41.439	59.423	1.00 61.00	L
ATOM	335 336		ILE	43	131.656	40.662	60.017	1.00 68.36	L
ATOM		CDI	ILE -	43	133.726	43.298		1.00 63.83	L
MOTA	337	0 .	ILE	43	134.037	44.010	58.513	1.00 72.13	L
ATOM	338	N	PRO	44	132.881	43.720	56.605	1.00 56.85	L
ATOM			PRO	44	132.444	42.988	55.402	1.00 59.76	L
MOTA	340	CD CA	PRO	44	132.282		56.681	1.00 47.82	Ŀ
MOTA	341	CB	PRO	44		45.349	55.242	1.00 52.95	L
ATOM	342 343	CG.	PRO	44	131.590	43.997	54.665	1.00 66.17	· L
ATOM ATOM	344	C.	PRO	44	131.079	45.064	57.613	1.00 41.70	L
ATOM	345	0	PRO	44	130.160	44.258	57.460	1.00 35.22	L
MOTA	346	N	LYS		131.095	45.982	58.575	1.00 33.96	L
ATOM	347	CA	LYS	45	130.010	46.106	59.537	1.00 39 65	L
ATOM	348	CB	LYS.		130.576		60.953	1.00 36.05	· L
MOTA	349	CG	LYS	45	132.096	46.222	61.012	1.00 44.96	L
	350	CD	LYS	45	132.651	45.003	61.752	1.00 53.54	L
ATOM	351	CE	LYS	45	134.060	45.269	62.297	1.00 58.35	L
ATOM ATOM	352	NZ	LYS		134.818	44.011		1.00 46.04	L
MOTA	353	C	LYS	45	129.162		59.218		L
ATOM	354	0	LYS	.45	129.686		58.817		L
ATOM	355	N	LEU	46	127.850		59.385	1.00 22.26	L
ATOM	356	CA	LEU	46	126.969		59.107	1.00 28.40	L
ATOM	357	CB	LEU		125.505		59.239	1.00 32.99	L
ATOM	358	CG .				48.756		1.00 40.56	L
	359		LEU	46	123.264	48.947		1.00 53.21	· L
ATOM	360		LEU	46	124.987			1.00 41.53	, L
ATOM	361	C	LEU	46	127.268				L
ATOM	362	ō	LEU	46	127.353			1.00 40.74	L
ATOM	363	N	LEU .	47	127.414			1.00 31.54	L
ATOM	364	CA	LEU	47	127.719		60.362	1.00 26.31	L
									

						٠.				•		٠.	•				
MOTA	':	365	CB	LEU	 47		128	.915	52	. 562	59	755			25.09		Ŀ
ATOM		366	CG	LEU	 47		130	.100	52	. 926	60	.636			16.21		L
ATOM		367	CD1	LEU	47		130	.727	· 51	.676	61	.198	1.	00	17.63		L
MOTA		368	CD2	LEU	47		131	.094	53	.701	59	.805		00	2.00		L
MOTA		369	C	LEU	 47		-126	.535	52	.807	60	.449	1.	00	34.89		L
ATOM		370	0	LEU	47	•	126	.190	53	.282	61	535	1.	00	26.31		L
ATOM		371	N	ILE	48		125	.934	53	.100	59	.293	1.	00	44.65		L
MOTA		372	CA	ILE	4 8·		124	.794	54	.018	59	.187	1.	00	34.33		L
MOTA		37.3	CB	ILE	48		125	.251	55	.439	.58	.788	1.	00	24.64		L
ATOM		374	CG2	ILE	 48		124	.145	56	.146	58	.008	1.	00	29.43		L
MOTA		375	CG1	ILE	48		125	.591	56	.253	60	.033	1.	00	28.98		L
MOTA		376 [.]	CD1	ILE	48		126	.967	56	.866	59	.993	1.	00	25.03		L
MOTA		377	C	ILE	48		123	.775	53	.576	58	.133	1.	00	29.31		L
ATOM		378	0	ILE	48		124	.113	53	.411	56	.962	1.	00	40.59		L
MOTA		379	N	TYR	49		122	.527	53	.405	58	.547	1.	00	15.91		L
ATOM		380	CA	TYR	49		121	.485	53	.018	57	.613			21.27		L
MOTA		381	CB	TYR	49		120	.762	51	.748	58	.087			36.34		L
MOTA		382	CG	TYR	49		119	.779	51	. 925	59	.231	1.	00	35.16		L
MOTA		383	CD1	TYR	49		118	.408	52	.066	58	.986	1.	00	25.01		L
MOTA		384	CE1	TYR	49	٠.	117	.498	52	.216	60	0.028			28.72		L
MOTA		385	CD2	TYR	49			.214	51	.934	60	.560			28.85		L
MOTA		386	CE2	TYR	49		119	.308	52	.084	61	614			30.37		Г
MOTA		387	CZ	TYR	49	,	117	.953	52	.228		340	•		42.99		L
MOTA		388	OH	TYR	49		117	.048		.410		.370			55.09		L
MOTA		389	C	TYR	49		120	.510		.172		.486			24.72		L
MOTA	•	390	O . 1	TYR	49		120	.451		.037		3.356			26.69		L
MOTA		391	N	LYS	50		119	.762		.189		5.392			25.34		L
MOTA		392	CA	LYS	50			.786		.241		5.132			19.61		L.
MOTA	·:	393	CB	LYS	50			.611		.134		7.108			42.59		L
ATOM		394	CG	LYS	50			.426		.345		5.566			36.91		L
MOTA		395	CD	LYS	50			.124		.118		.723			40.28		L
ATOM		396	CE	LYS	50			.289		.568		.865			33.03		L
ATOM		397	NZ.	LYS	50			.829		.799		7.659			38.05		L
ATOM		398	C	LYS	50			.368		.645		5.192			22.01		L
MOTA		399	0	LYS	50	•		.697		.575		5.623			30.12		L
MOTA		400	N	ALA	51			.622		.790		779			32.92		T.
MOTA	•	401	CA	ALA	51			.275		.094		749			27.76 14.79		L L
MOTA		402	CB	ALA	51			.346		.117		5.100			25.18	•	P r
MOTA		403	C	ALA	51			.787		.647		7.073			28.58		L
MOTA			. 0	ALA	51			.949		.026					22.15		L
MOTA		405	N	SER	52			.927		.714		3.081			19.39		L
MOTA		406	CA	SER	52			.347		.270		3.362			25.09		L
ATOM		407	CB	SER	52			.690		.632		9.599 3.390			53.81		L
MOTA		408	OG	SER	52			.199		.188 .369).518			20.68		L
MOTA		409	C .	SER	52			.021		.729		1.674			23.62		L
ATOM		410	0	SER	52			.232				0.209			25.87		L
ATOM		411	N	ASN	53			.497 .157		.194 .253		L.254			27.39		L
ATOM	•	412	CA	ASN	53			.992		.253		0.811			27.54		L
ATOM		413	CB	ASN	53 53			.668		.895		1.323			28.84		L
MOTA		414	CG OD1	asn asn	53 53			.619		.656		729			26.55		L
MOTA		415			53			.713		.607		2.450			36.37		L
ATOM		416 417	C C	asn asn	53 53			.366		.402		1.592			25.27		L
ATOM		4 I /	·	MON	در		I		55		٠.		_		,•		

•				•		• .	2			
ATOM	418	0	ASN	53 ·	121.809	54.592	60.783	1.00		L
ATOM	419	N	LEU	54	121.899	55.607	62.795	1.00	34.99	L
ATOM	420	CA	LEU	54	123.064	54.880	63.294	1.00 4	17.12	L
ATOM	421	CB	LEU	54	123.649	55.607	64.510		37.02	. L
ATOM	422	CG	LEU	54	125.152	55.873	64.594	1.00 2	20.40	Г
ATOM	423		LEU	54	125,508	57.117	63.830	1.00	25.30	L
ATOM	424		LEU	54 .	125.533	56.034	66.039	1.00 2	22.53	Ľ
ATOM	425	C	LEU	54	122.660	53.468	63.705	.1.00	56.63	L
ATOM	426	ō	LEU	54	121.529	53.250	64.145	1.00	58.94	· L
ATOM	427	· N	HIS	55	123.578	52.513	63.573	1.00	51.79	L
ATOM	428	CA	HIS	55	123.267	51.142	63.948	1.00	38.57	. L
ATOM	429	CB	HIS	55	124.091	50.139	63.137	1.00	36.54	L
ATOM	430	CG	HIS	55	123.551	48.742	63.186	1.00	27.93	· L
ATOM	431		HIS	55	122.338	48.268	63.551	1.00	31.02	L
ATOM	432		HIS	55	124.303	47.639	62.841	1.00	36.74	L
ATOM	433		HIS	55	123.573	46.545	62.993	1.00	43.03	Г
ATOM	434		HIS	55	122.376	46.902	63.423	1.00	37.77	L
ATOM	435	C	HIS	55	123.513	50.925	65.424	1.00	38.01	L
ATOM	436	0	HIS	55	124.296	51.634	66.058	1.00	47.97	L
ATOM	437	N	THR	56	122.832	49.930	65.966	1.00	33.15	L
ATOM	438	CA	THR	56	122.951	49.600	67.371	1.00	41.46	L
MOTA	439	CB	THR	56	122.008	48.436	67.708	1.00	58.72	L
MOTA	440	OG1	THR	56	121.601	47.787	66.495	1.00	57.81	L
ATOM	441	CG2	THR	56 ´	120.770	48.955	68.430	1.00	63.75	L
ATOM	442	Ċ	THR	56	124.380	49.260	67.805	1.00	32.47	L
ATOM	443	0	THR	56 .	124.940	48.236	67.415	1.00	23.36	L
MOTA	444	N	GLY.	·57	124.967	50.136	68.612	1.00		L
ATOM	445	CA	GLY	57	126.311	49.893	69.101	1.00		L
ATOM	446	С	GLY	57	127.388	50.703	68.403	1.00		L
ATOM	447	0	GLY	57	128.584	50.506	68.641		45.48	
ATOM .	448	N	VAL	58	126.971	51.616	67.537	1.00		r
MOTA	449	CA	VAL	58	127.926	52.439	66.819		42.70	r _
MOTA	450	. CB	VAL	58	127.448	52.680	65.372	1.00		· _
MOTA	451	CG1	VAL	58	128.383	53.648	64.654	1.00		L -
ATOM	452	CG2	VAL	58	127.380	51.354	64.635	1.00		L
MOTA	453	C	VAL	58	128.129	53.768	67.546	1.00		. L
ATOM	454	0	·VAL	58	127.178	54.509	67.780	1.00		ŗ
MOTA	455	N	PRO	59	129.378	54.059		1.00		L
MOTA	456	ĊD	PRO	59	130.553	53.187	67.788	1.00		. ь
MOTA	457	CA	PRO	59	129.717		68.658	1.00		L
MOTA	458	CB	PRO	59	131.253	55.289	68.706	1.00		L
MOTA	459	CG	PRO	59	131.698		67.847			L
MOTA	460	C	PRO	59	129.174	56.543	67.980			L
MOTA	461	Ο.	PRO	59	129.273	56.694	66.762	1.00		L
MOTA	462	N	SER	60	128.605	57.437	68.782	1.00		L
ATOM .	463	CA	SER	60	128.044	58.680	68.274		37.70	. т
MOTA	464	CB	SER	60	127.466	59.513	69.424	1.00		Ĺ
MOTA	465	OG	SER	60	128.108		70.648		44.15	r P
MOTA	466	C	SER	60	129.096		67.536		33.70 38.05	P P
MOTA	467	0	SER	60	128.760				31.36	L
ATOM	468	N	ARG	61	130.369				40.37	L
ATOM	469	CA	ARG	61 61	131.440		67.361		45.69	r
MOTA	470	· CB	ARG	61	132.801	99.24I	07.301	1.00		-

							•		
ATOM	471	CG	ARG	61	133.316	58.277	66.278	1.00 69.44	Г
ATOM	472		ARG	61	134.854	58.263	66.188	1.00 56.63	L
ATOM	473	NE	ARG	61	135.482	57.895	67.458	1.00 41.22	L.
ATOM	474	CZ	ARG	61	135.733	56.646	67.834	1.00 36.39	L
ATOM	475	NH1		61	135.411	55.637	67.041	1.00 46.50	L
ATOM	476	NH2	ARG	61	136.294	56.405	69.008	1.00 45.10	L
ATOM	477	C	ARG	61.	131.137	59.822	65.573	1.00 39.44	L
ATOM	478	0	ARG	. 61	131.495	60.718	64.807	1.00 31.59	L
ATOM	479	N	PHE	62	130.468	58.744	65.176	1.00 29.20	L
ATOM	480	CA	PHE	62	130.083	58.534	63.795	1.00 21.62	Ļ
ATOM	481	CB	PHE	62	129.922	57.038	63.507	1.00 15.95	\mathbf{r}
ATOM	482	CG	PHE	62	131.216	56.325	63.248	1.00 28.60	L
ATOM	483		PHE	62	131.770	56.303	61.975	1.00 25.81	L
ATOM	484	CD2	PHE	62	131.884	55.661	64.277	1.00 34.71	L
ATOM	485		PHE	·62	132.973	55.629	61.730	1.00 25.28	Ľ
ATOM	486		PHE	62	133.086	54.987	64.039	1.00 17.13	L
ATOM	487	CZ	PHE	62	133.628	54.972	62.759	1.00 16.17	L
ATOM	488	C	PHE	62	128.749	59.223	63.574	1.00 27.58	L
ATOM	489	ō	PHE	62	127.812	59.041	64.347	1.00 26.02	L
ATOM	490	N	SER	63	128.667	60.028	62.526	1.00 27.01	L
ATOM	491	CA	SER	63	127.432	60.724	62.194	1.00 29.21	L
ATOM	492	CB	SER	63	127.512	62.197	62.620	1.00 27.06	L
ATOM	493	OG	SER	63	127.604	63.059	61.501	1.00 46.67	L
ATOM	494	C	SER	63	127.271	60.609	60.689	1.00 31.69	L
ATOM	495	o	SER	63 .	128.247	60.359	59.983	1.00 35.00	L
ATOM	496	N	GLY	64	126.046	60.778	60.203	1.00 32.44	. T
ATOM	497	CA	GLY	64 .	125.796	60.677	58.775	1.00 28.03	L
ATOM	498	C	GLY	64	124.656	61.567	58.325	1.00 36.15	L
ATOM	499	0	GLY	64	123.678	61.753	59.050	1.00 31.20	${f L}$
ATOM	500	N	SER	65	124.761	62.103	57.115	1.00 45.47	${f L}$
ATOM	501	CA	SER	65	123.723	62.993	56.612	1.00 43.02	L
ATOM	.502	СВ	SER	65	124.029	64.412	57.075	1.00 39.26	L
ATOM	503	OG	SER	65	125.378	64.487	57.510	1.00 49.79	L
ATOM	. 504	C	SER	65	123.566	62.975	55.097	1.00 33.50	L
ATOM	505	ō	SER	65	124.401	62.428	54.373	1.00 35.77	L
ATOM	506	N	GLY	66	122.485	63.579	54.625	1.00 17.16	r
MOTA	. 507	CA	GLY	66	122.258	63.641	53.196	1.00 29.10	L
ATOM	508	C	GLY	66	.120.920	63.081	52.769	1.00 35.42	L
ATOM	509	0	GLY	66	120.321	62.267	53.479	1.00 32.46	L
ATOM	- 510	N	SER	67	120.449	63.527	51.608	1.00 24.62	L
ATOM .		CA	SER	67	119.184	63.062	51.061	1.00 28.74	. L
MOTA	- 512	CB	SER	67	118.012	63.757	51.757		L
ATOM	513	OG	SER	67	116.780	63.142	51.412	1.00 59.32	r
ATOM	514	С	SER	67	119.129	63.343	49.567	1.00 32.92	L
ATOM	515	0	SER	67	119.579	64.391	49.113	1.00 35.08	L
ATOM	516	N	GLY	68	118.589	62.399	48.803	1.00 32.00	L
ATOM	517	CA	GLY	68 -	118.485	62.585	47.367	1.00 22.78	L
ATOM	518	C	GLY	· 68	119.712	62.129	46.604	1.00 35.09	L
MOTA	519	0	GLY	68	119.885	60.935	46.341	1.00 32.80	L
ATOM	520	N	THR	69 · ·	120.567	63.086	46.255	1.00 36.67	L
ATOM	521	CA	THR	69	121.784	62.805	45.505	1.00 36.14	L
ATOM	522	CB	THR	69	121.890	63.748	44.285	1.00 43.08	r
MOTA	. 523	OG1	THR	69	120.775	63.516	43.414	1.00 47.12	L

				1	• •			•	4
ATOM	524	CG2	THR	69	123.175	63.505	43.514	1.00 44.41	L
MOTA	525	C ·	THR	69	123.029	62.953	46.376	1.00 29.87	. L
ATOM	526	0	THR	69	123.915	62.101	46.350	1.00 38.58	L
ATOM	527	·N	GLY	70 -	123.082	64.022	47.160	1.00 31.63	. L
ATOM	528	CA	GLY	70	124.234	64.256	48.016	1.00 42.61	L
ATOM	529	С	GLY	70	124.171	63.521	49.337	1.00 36.70	L
ATOM	530	0	GLY	70	123.119	63.471	49.965	1.00 45.53	, L
MOTA	531	N.	PHE	71	125.295	62.944	49.755	1.00 38.83	L
ATOM	532	CA	PHE	71	125.370	62.206	51.019	1.00 33.73	r
ATOM	533	CB	PHE	71	124.999	60.739	50.798	1.00 31.54	r.
MOTA	534	ÇG	PHE	71	123.602	60.540	50.263	1.00 38.58	L
ATOM	535		PHE	71	122.561	60.199	51.120	1.00 21.48	L
MOTA	536	CD2	PHE	71	123.329	60.697	48.908	1.00 26.22	ŗ
MOTA	537	CE1	PHE	71	121.278	60.021	50.641	1.00 26.37	L
MOTA	538	CE2	PHE	71 ·	122.044	60.520	48.422	1.00 42.61	L
MOTA	539	CZ	PHE	71	121.016	60.183	49.286	1.00 24.00	L
MOTA	540	C	PHE	71	126.774	62.296	51.605	1.00 27.97	L
MOTA	541	0	PHE	71	127.760	62.212	50.877	1.00 31.31	L
MOTA	542	N	THR	72	126.866	62.457	52.921	1.00 26.78	L
MOTA	543	CA	THR	72	128.167	62.582	53.564	1.00 26.67	L.
MOTA	544	CB	THR	72	128.520	64.069	53.781	1.00 32.81	L
ATOM	545	QG1	THR	72	129.493	64.187	54.826	1.00 56.77	L L
MOTA	546	CG2		72	127.288	64.856	54.164	1.00 32.03 1.00 27.04	r L
MOTA	547	C	THR	72	128.291	61.866	54.903	1.00 27.04	P
MOTA	548	0	THR	, 72	127.308	61.722	55.635	1.00 23.90	r r
ATOM	549	N	LEU	73	129.511	61.417	55.207	1.00 31.33	L
MOTA	550	CA	LEU	73	129.816	60.722	56.459	1.00 24.32	. ь
MOTA	551	CB	LEU	73	130.387	59.333	56.194 57.490	1.00 34.57	L
MOTA	552	CG	LEU	73	130.625	58.551	58.021	1.00 34.37	. Г
MOTA	√553	CD1		73.	129.287	58.045 57.404	57.246	1.00 10.86	L
ATOM	554	CD2		73	131.586 130.826	61.512	57.274	•	L
MOTA	555	C	LEU	73	131.823	62.004	56.755	1.00 39.03	L
ATOM	556	0	LEU	73 74	130.581	61.593		1.00 21.07	L
ATOM	557	N	THR	. 74	131.443	62.362	59.436	1.00 25.98	L
MOTA	558	CA.	THR THR	7 4 74	130.686		. 59.933	1.00 34.99	L .
ATOM	559	CB OG1		74	130.181	64.351	58.808	1.00 35.85	L
ATOM.	560 561	CG2		74		64.524	60.747	1.00 27.11	. L
MOTA	562	C	THR	74	131.886	61.542	60.640	1.00 29.95	L
MOTA	563	0	THR	74.	131.065	60.931	61.322	1.00 36.77	L
ATOM ATOM	564	·N	·ILE	75	133.186	61.522	60.896	1.00 24.95	. L .
ATOM	565	CA	ILE	75	133.706	60.813	62.052	1.00 23.49	, T
ATOM	566	СВ	ILE	75	134.723	59.737	61.659	1.00 21.59	· L
ATOM	567		ILE		135.597	59.401	62.847		
ATOM	568		ILE	75	133.988	58.479	61.198	1.00 33.47	· L
ATOM	569		ILE	75	133.840	58.343	59.687	1.00 25.94	L
ATOM	570	C	ILE	75	134.399	61.855	62.914	1.00 34.16	L
ATOM	571	0	ILE	75	135.440	62.381	62.537	1.00 28.63	L
ATOM	572	N	SER	76	133.803	62.167	64.059	1.00 42.00	L L
ATOM	573	CA	SER	· 76	134.366		64.971	1.00 51.91	L
MOTA	574	CB	SER	76	133.251	63.762	65.829	1.00 67.85	L
ATOM	575	OG	SER	76	131.981		65.449	1.00 75.08	L
MOTA	576	С	SER	76	135.424	. 62.507	65.865	1.00 55.79	Ŀ

			• .		•				• ' .	
	MOTA	577 °	Ó "	SER	76	135.372	61.304	66.131	1.00 54.31	L.
	MOTA	578	N	SER	77	136.384	63.307	66.319	1.00 51.60	ŗ
	MOTA	579	CA	SER	77	137.459	62.818	67.177	1.00 51.14	L
	MOTA	580	CB	SER	77	136.993	62.788	68.633	1.00 51.40	L
	MOTA	581	OG	SER	77	136.336	63.998	68.967	1.00 52.89	L
	MOTA	582	ď	SER	77	137.938	61.433	66.755	1.00 49.10	L
	MOTA	583	0	SER	77	137.515	60.422	67.311	1.00 47.48	L
	MOTA	584	N	LEU	78 .	138.832	61.406	65.771	1.00 46.54	L
	MOTA	585	CA	LEU	[,] 78	139.389	60.168	65.241	1.00 32.83	L
	MOTA	586	CB	LEU	78	140.333	60.495	64.084	1.00 27.78	L
	MOTA	587	CG	LEU	78	140.423	59.481	62.950	1.00 35.44	L
	ATOM	588	CD1	LEU	78	139,472	59.898	61.855	1.00 40.91	L
	ATOM	589	CD2	LEU.	78	141.852	59.397	62.421	1.00 25.57	L
	MOTA	590	C .	LEU	78	140.134	59.314	66.268	1.00 28.27	L
	MOTA	591	0	LEU	78	140.668	59.809	67.264	1.00 19.55	L
	ATOM	592	N	GLN	. 79	140.163	58.016	65.999	1.00 30.85	L
	MOTA	593	CA	GLN	79	140.847	57.064	66.859	1.00 34.63	L
	MOTA	594	·CB	GLN	79	139.855	56.338	67.763	1.00 47.40	L
	ATOM	595	CG	GLN	79	139.162	57.238	68.764		L
	ATOM	596	CD	GLN	79	140.118	57 .793	69.791	1.00 51.70	L
	ATOM	597	OE1	GLN	79	141.184	57.229	70.022	1.00 38.18	L
	ATOM	598	NE2	GLN	79	139.740	58.901	70.419	1.00 50.52	L
	ATOM	599	С	GLN	79	, 141.534	56.054	65.965	1.00 36.58	L
	MOTA	600	0	GLN	79	141.056	55.755	64.869	1.00 30.40	L
	MOTA	601	N.	PRO	80	142.663	55.504	66.430	1.00 40.78	. L
	MOTA	602	CD	PRO	80 ·	143.270	55.791	67.740	1.00 37.68	. L
	MOTA	603	ÇA	PRO	80	143.430	54.513	65.665	1.00 41.10	L.
	MOTA	604	CB	PRO	80	144.460	53.991	66.672	1.00 43.39	L
	ATOM	605	CG	PRO	80	144.056		68.021	1.00 37.64	L
	MOTA	606	C ·	PRO	. 80	142.532	53.398		1.00 46.35 1.00 41.86	. P
	ATOM	-607	0	PRO	80	142.569	53.048	63.969	1.00 41.88	P.
	MOTA	608	N	GLU.	81	141.721	52.859	66.056	1.00 57.27	L
	MOTA	609	CA	GLU	81	140.793	51.773	65.761 66.967	1.00 54.76	L
	ATOM	610	CB	GLU	81	139.870	51.548 52.498	67.042	1.00 34.76	L
	ATOM	611	CG	GLU	81	138.677 138.507	53.125	68.419	1.00 74.52	
	ATOM	612	CD	GLU	81	137.390	53.039	68.983	1.00 71.52	· L
,	MOTA	613		GLU	81 81	137.390	53.703	68.934	1.00 65.39	L
	MOTA	614 615	C C	GLU GLU	81	139.956	51.998	64.503	1.00 62.35	L
	ATOM	616	0	GLU	81	139.618	51.052	63.794	1.00 64.51	L
	ATOM ATOM	617	N	ASP	82	139.629	53.256	64.230	1.00 63.68	L
		618	CA	ASP	82	138.823	53.600	63.069	1.00 50.22	. L
	ATOM ATOM	619	CB	ASP	82	138.299	55.024	63.212	1.00 50.14	L
	ATOM	620	CG	ASP	82	137.729	55.285	64.581	1.00 50.17	L
	ATOM	621		ASP	82 .	137.107	54.358	65.143	1.00 56.15	L
	ATOM	622		ASP	82	137.906	56.408	65.095	1.00 62.15	L
	ATOM	623	C	ASP	82	139.583	53.462	61.761	1.00 47.40	. L
	ATOM	624	0	ASP	82	139.080	53.837	60.706	1.00 44.58	L
	ATOM	625	N	ILE	83	140.801	.52.935	61.830	1.00 43.70	ь
	ATOM	626	CA	ILE	83	141.586	52.738	60.621	1.00 38.44	L
	MOTA	627	CB	ILE	83	142.991	52.194	60.932	1.00 41.83	L
	MOTA	628	CG2	ILE	83	143.428	51.225	59.846	1.00 41.86	L
.•	MOTA	629	CG1	ILE	83	143.982	53.356	61.025	1.00 52.87	L
					•					

										•	٠.
ATOM	630	CD1	ILE	83		145.232	53.032	61.826	1.00 47	.10	L
ATOM	631	C	ILE	83		140.827	51.706	59.794	1.00 32	. 55	L
MOTA	632	0	ILE	83	:	140.588	50.594	60.263	1.00 26	. 83	· P
ATOM	633	N	ALA	84		140.441	52.085	58.575	1.00 26	. 12	L
MOTA	634	CA	ALA	84		139.692	51.200	57.693	1.00 15	.10	· L
MOTA	635	СВ	ALA	84		138.453	50.702	58.406	1.00 21	. 07	L
ATOM	636	C	ALA	84		139.290	51.913	56.414	1.00 12	. 91	L
MOTA	637	0	ALA	84		139.668	53.060	56.195	1.00 24	.44	L
ATOM	638	N	THR	85		138.519	51.224	55.578	1.00 19		L
ATOM	639·	CA	THR	85		138.025	51.774	54.320	1.00 17	. 95	L
ATOM	640	CB	THR	85		138.413	50.898	53.131	1.00 21	.81	L
ATOM	641	OG1	THR	85		137.552	51.197	52.024	1.00 45	. 12	L
ATOM	642	CG2	THR	85		138.277	49.435	53.490	1.00 27	. 37	L
ATOM	643	С	THR	85		136.505	51.809	54.410	1.00 27	.74	Ŀ
ATOM	644	0	THR	85		135.876	50.804	54.732	1.00 32		L
ATOM	645	N	TYR	86		135.914	52.960	54.116	1.00 37		· L
MOTA	646	CA	TYR	86		134.469	53.109	54.213	1.00 33		L
ATOM	647	CB	TYR	86		134.153	54.363	55.028	1.00 25		L
MOTA	648	CG	TYR	86		134.852	54.381	56.372	1.00 28		L
MOTA	649	CD1	TYR	86	•	134.151	54.118	57.547	1.00 44		L
MOTA	650	CE1	TYR	- 86		134.801	54.071	58.789	1.00 21		L
MOTA	651	CD2	TYR	86		136.226		56.467	1.00 14		L
ATOM	652	CE2	TYR	86	•	136.884	54.561	57.705	1.00 22		L
MOTA	653	. CZ	TYR	86		136.158	54.289	58.857	1.00 22		L
MOTA	654	OH	TYR	86		136.786	54.210	60.072	1.00 25		L
MOTA	655	C	TYR	. 86		133.766	53.159	52.868	1.00 44		L
MOTA	656	0	TYR	86		134.164	53.908	51.975	1.00 50		L
MOTA	657	N	TYR.	87		132.712	52.353	52.748	1.00 51		L
ATOM	658	CA		87		131.910	52.248	51.526	1.00 48		L
MOTA	659	CB	TYR	87		131.795	50.780	51:108	1.00 25		. L
MOTA	660	CG.		87		133.108	50.126	50.753	1.00 41		L L
MOTA	661			87		133.551	50.080	49.427	1.00 38		L
MOTA	662	CE1	TYR	87		134.769	49.484	49.096 51.742	1.00 42		L L
MOTA	663	CD2	TYR	87		133.918	49.555	51.742	1.00 33		L
ATOM	664	CE2	TYR	87		135.137	48.957	50.096	1.00 33		Ŀ
MOTA	665	CZ	TYR	87		135.555	48.929 48.380	49.779	1.00 23		L
ATOM	666		TYR	. 87		136.771	52.813	51.687	1.00 52		L
ATOM	667	, C	TYR	. 87		130.493 129.948	52.838	52.786	1.00 65		L
ATOM	668	0	TYR	87		129.895	53.250	50.582	1.00 47		L
ATOM	669	N	CYS	88		128.538	53.789	50.598	1.00 32		
ATOM	670	CA	CYS	88 88		127.715	52.920	49.661	1.00 32		Ъ
MOTA	671	C.	CYS	88		128.140	52.641	48.547	1.00 32		
MOTA	672 -		CYS	88		128.530	55.233	50.093	1.00.33		· L
ATOM	673	CB	CYS .	. 88		128.799	55.411	48.289	1.00 51		L
MOTA	674	SG		89		126.733		50.109			L
MOTA	675	N	GLN			125.709	51.648				L
ATOM	676	CA CB	GLN GLN	89 89		125.703	50.179	49.700	1.00 31		L
ATOM	677 678	CG	GLN	89		124.788		.50.735	1.00 42		L
ATOM ATOM	679	CD	GLN .	89		123.613		50.132	1.00 34		· L
ATOM	680		GLN		,)	122.664					L
MOTA	681		GLN	89		123.671	48.723	48.831	1.00 46		L
MOTA	682	C	GLN	89		124.262	52.131	49.287	1.00 25		L
TION	002	_		٥.	•				•	•	

	•					No. of			. •
MOTA	683	0 .	GLN	89	123.783	52.603	50.313	1.00 20.31	L
MOTA	684	N	GLN	90	123.574	52.035	48.153	1.00 19.13	L
ATOM	685	CA	GLN	90	122.183	52.457	48.096	1.00 19.46	L.
MOTA	686	CB	GLN	90	121.882	53.162	46.769	1.00 22.24	$^{\cdot}\mathbf{L}$
ATOM	687	CG	GLN	90	122.072	52.299	45.523	1.00 38.10	L
ATOM	688	CD	GLN	90	120.775	51.666	45.009	1.00 30.31	L
ATOM	689		GLN	90	119.701	51.853	45.586	1.00 32.81	L.
ATOM	690		GLN	90	120.878	50.908	43.921	1.00 28.00	L
ATOM	691	C	GLN	90	121.257	51.250	48.267	1.00 30.72	. Ь
ATOM	692	ō	GLN	90	121.556	50.143	47.801	1.00 25.46	L
ATOM	693	И	GLY	91	120.137	51.473	48.951	1.00 34.63	L
ATOM	694	CA	GLY	91	119.166	50.416	49.179	1.00 33.97	L
	695	C	GLY	91	117.820	50.781	48.580	1.00 38.48	L
MOTA	696	0	GLY	91	116.762	50.335	49.035	1.00 28.43	L
MOTA		N	GLN	92	117.869	51.603	47.540	1.00 28.95	L
MOTA	697	CA .		92	116.668	52.043	46.868	1.00 29.94	· L
MOTA	698		GLN	92	116.841	53.489	46.418	1.00 30.37	L
ATOM	699	CB	GLN	92	115.571	54.307	46.498	1.00 39.02	L
MOTA	700	CG		92	115.079	54.736	45.130	1.00 41.59	L
ATOM	701	CD	GLN	. 92	114.039	54.274	44.663	1.00 31.97	L
ATOM	702	OE1			115.829	55.621	44.479	1.00 59.08	L
ATOM	703	NE2	GLN	92	116.352	51.144	45.680	1.00 41.66	P —
ATOM	704 .		GLN	92	115.495	50.267	45.782		L
ATOM	705	0	GLN	92 03	117.046	51.373	44.564	1.00 60.13	L
ATOM	706	N	THR	93	117.046	50.596	43.327	1.00 66.93	Г
ATOM	707	CA	THR	93		51.242	42.149	1.00 78.05	L L
MOTA	708	CB.	THR	93	117.639	52.647	42.104	1.00 79.52	r _
MOTA	709	OG1		. 93	117.362	50.610	40.829	1.00 75.70	L
MOTA	710	CG2		93	117.233		43.539	1.00 75.70	L
MOTA	711	C	THR	93	117.391	49.180	44.183	1.00 58.37	r L
MOTA	712	. 0	THR	. 93	118.425	49.009		1.00 50.57	L
ATOM		· N	TYR	94	116.703	48.173	42.993	1.00 50.32	L
MOTA	714	CA	TYR	94	117.127	46.791	43.209	1.00 55.69	L
ATOM	715	CB	TYR	94	116.119	45.793	42.646	1.00 53.05	L
MOTA	716	CG	TYR	94	115.809	44.706	43.658	1.00 66.44	r
MOTA	717		TYR	94	116.742	44.361		1.00 61.74	L
ATOM	718		TYR	94	116.451	43.413	45.622	1.00 65.08	· L
MOTA	719		TYR-	94 .	114.573	44.066	43.676 44.654	1.00 05.00	L
MOTA	720	CE2		94	114.269	43.112 42.796	45.623	1.00 73.24	· T
ATOM	721	CZ	TYR	94	115.214	41.877	46.603	1.00 71.00	L
MOTA	722	ОН	TYR	94	114.918		42.797	1.00 71.00	· L
MOTA	723	C	TYR	94	118.530			1.00 72.46	, L
ATOM	724	0	TYR	94	119.146	45.561	43.487	1.00 72.40	, T
ATOM	725	N	PRO	95	119.045	46.851	41.650	1.00 30.22	L
MOTA	726	CD	PRO	95	118.550		40.573	1.00 45.68	L
MOTA	727	CA	PRO	. 95	120.412	46.375	41.404	1.00 45.66	. L
ATOM	728	CB	PRO	. 95	120.673	46.762	39.946	1.00 19.42	L
MOTA	729	ÇG	PRO		119.780	47.938	39.712		. T
MOTA	730	С	PRO	95	121.286	47.156	42.398	1.00 43.53 1.00 52.07	L
MOTA	731	0	PRO	95	121.936	48.131	42.027		P.
MOTA	732	. И	TYR	. 96	121.253	46.734	43.667	1.00 32.53	P.
MOTA	733	CA	TYR	96	122.000	47.378	44.748	1.00 29.95	r L
ATOM-	734	CB	TYR	96	122.099	46.463	45.971	1.00 35.33	L
MOTA	735	CG	TYR	96	120.833	46.317	46.792	1.00 28.60	ם

									•		
ATOM	736	CD1	TYR	96		120.678	45.244	47.663	1.00	33.58	· L
ATOM	737	CE1	TYR	96		119.523	45.087	48.430		23.02	. L
ATOM	738	CD2	TYR	96		119.792	47.244	46.701	1.00	29.21	L
ATOM	739	CE2	TYR	96		118.625	47.096	47.466	1.00	29.26	\mathbf{L}
ATOM	740	CZ	TYR	96		118.506	46.011	48.329	1.00	29.92	${f r}$
ATOM	741	OH	TYR	96		117.383	45.853	49.102	1.00	25.77	L
ATOM	742	C	TYR	96		123.392	47.712	44.281	1.00	29.68	L
ATOM	743	0	TYR	96		123.980	46.954	43.511	1.00	37.11	L
ATOM	744	N	THR	.97		123.926	48.830	44.770	1.00	36.89	L
ATOM	745	CA	THR	97		125.259	49.280	44.372	1.00	40.63	L
ATOM	746	CB	THR	97		125.153	50.181	43.141	1.00	46.47	L
ATOM	747		THR	97		123.945	50.951	43.228	1.00	49.45	· L
ATOM	748		THR	97		125.123	49.342	41.874	1.00	48.22	L
ATOM	749	C	THR	97		126.017	50.049	45.458	1.00	34.47	L
ATOM	750	ο.	THR	97		125.473	50.975	46.062	1.00	27.32	L
ATOM	751	N	PHE	98		127.268	49:662	45.700	1.00	24.58	L
ATOM	752	CA	PHE	98		128.097	50.338	46.689	1.00	19.63	L
ATOM	753	CB	PHE	98		129.009	49.369	47.458	1.00	21.69	L
ATOM	754	CG	PHE	98		128.386	48.051	47.780	1.00	22.09	L
ATOM	755		PHE	98		128.078	47.719	49.098	1.00	28.14	L
ATOM	756	CD2	PHE	98		128.145	47.117	46:780	1.00	29.87	L
ATOM	757		PHE	98		127.543	46.481	49.409	1.00	20.31	L
ATOM	758		PHE	98		127.610	45.877	47.080	1.00	20.97	L
MOTA	759	CZ	PHE	98	•	127.308	45.556	48.397	1.00	35.93	L
ATOM	760	С	PHE	98		128.994	51.317	45.947	1.00	27.49	L
ATOM	761	0	PHE	98		128.868	51.493	44.738	1.00	15.09	${f L}$
ATOM	762	N	GLY			129.912	51.931	46.689	1.00	32.03	L
ATOM.	763	CA	GLY.			130.839	52.878	46.106	1.00	37.27	L
ATOM	764	C	GLY	. 99		132.207	52.250	45.927	1.00	44.52	L
ATOM	765	0	GLY	99		132.319	51.038	45.717	1.00	42.71	, · L
	766	N	GLY	100		133.246	53.077	46.008	1.00	42.44	, L
ATOM	767	CA	GLY	100	•	134.600	52.584	45.848	1.00	51.35	L
ATOM	768	C	GLY	. 100		135.344	52.448	47.164	1.00	53.12	Г
ATOM	769	0	GLY	100		136.390	51.791	47.241	1.00	49.35	r
ATOM	770	N	GLY	101		134.799	53.067	48.204	1.00	43.66	. L
ATOM	771	CA	GLY	101		135.430	53.013	49.504	1.00	26.42	· L
MOTA	772	C	GLY	101		136.368	54.181	49.696	1.00	21.78	L
MOTA	773	0	GLY	101	;	136.710	54.886	48.747		23.28	\mathbf{r}
MOTA	774	N	THR	102		136.787	54.392	50.933		17.65	. L
MOTA	775	CA	THR	102		137.682	55.489	51.221		39.10	L
MOTA	776	CB.	THR	102	-	136.869	56.745	51.644	1.00	.49.68	L
MOTA	777	0G1	THR	102		137.738	57.731	52.224	1.00	42.53	Ъ
MOTA	778	CG2	THR	102		135.780	56.357	52.630		55.18	. L
MOTA	779	C ·	THR	102		138.659	55.072	52.311		37.54	L
MOTA	780	0	THR	102		138.295	54.948	53.478		44.36	L
MOTA	781	N	LYS	103		139.903	54.830	51.911		34.42	L
MOTA	782	CA	LYS	103		140.943	54.427	52.850		33.42	L
MOTA	783	CB	LYS	103		142.245	54.118	52.095		27.82	ь
MOTA	784	. CG	LYS	103		143.518		52.937		32.59	L
MOTA	785	CD	LYS	103		144.038		53.036		39.07	r L
MOTA	786	CE	LYS	103		145.366				45.98	L -
MOTA	787	NZ	LYS	103		146.255					L
MOTA	788	C .	LYS	103		141.185	55.531	53.868	1.00	23.38	L

MOTA	789	.0	LYS	103	140.842	56.687	53:637	1.00 30.72	Г
ATOM	790	N	LEU	104	141.770	55.171	55.002	1.00 32.38	Ĺ
MOTA	791	CA	LEU	104	142.077	56.159	56.021	1.00 38.59	L
ATOM	792	СВ	LEU	104	140.904	56.368	56.966	1.00 25.66	L
MOTA	793	CG	LEU	104	141.378	57.265	58.113	1.00 32.02	. L
MOTA	794.	CD1	LEU	104	140.804	58.658	57.944	1.00 23.79	L.
MOTA	795	CD2	LEU	.104	140.996	56.648	59.452	1.00 29.54	L
ATOM	796	С	LEU	104	143.300	55.784	56.841	1.00 45.89	L
ATOM	797	0	LEU	104	143.525	54.612	57.154	1.00 45.41	L
MOTA	798	N	GLU	105	144.080	56.799	57.197	1.00 40.34	L
ATOM	799	CA	GLU	105	145.280	56.597	57.979	1.00 35.75	· L
ATOM	800	CB	GLU -	105	146.510	56.674	57.064	1.00 52.11	L
ATOM	801	CG	GLU	105	147.798	57.154	57.728	1.00 69.87	L
MOTA	802	CD	GLU	105	148.876	57.513	56.712	1.00 84.87	\mathbf{r}
MOTA	803	OE1	GLU	105	150.027	57.054	56.875	1.00 87.68	L
ATOM	804	OE2	GLU	105	148.578	58.251	55.748	1.00 91.43	L
ATOM	805	C	GLU	105	145.365	57.644	59.076	1.00 23.69	L
ATOM	806	0	GLU	105	145.640	58.804	58.808	1.00 36.93	ŗ
ATOM	807	N .	ILE	106	145.088	57.241	60.311	1.00 29.41	L
ATOM	808	CA	ILE	106	145.199	58.168	61.425	1.00 38.27	L
ATOM	809	CB	ILE	106	144.723	57.513	62.769	1.00 40.94	L
ATOM	810	CG2	ILE	106	145.030	56.026	62.766	1.00 31.48	. L
ATOM	811	CG1	ILE	106	145.387	58.193	63.971	1.00 37.37	L
ATOM	812	CD1	ILE	106	144.571	59.336	64.579	1.00 27.37	L
ATOM	813	С	ILE	106	146.702	58.441	61.434	1.00 40.57	. L
ATOM	814	0	ILE	106	147.497	57.506	61.438	1.00 41.72	. <u>L</u>
ATOM	815	N	LAS .	107	147.088	59.716	61.399	1.00 48.16	L
ATOM	816	CA	LYS	107	148.500	60.100	61.364	1.00 42.60	r L
ATOM	817	CB	LYS	107	148.640	61.486	60.736	1.00 20.26	L
MOTA	818	CG	LYS	107	150.043	62.069		1.00 43.13	L
ATOM	819	CD	LYS	107	150.034	63.572	60.590	1.00 34.99	L
MOTA	820	CE	LYS	107	149.967	63.895	59.108	1.00 38.89	. L
MOTA	821	NZ	LYS	107	148.581	63.791	58.588	1.00 13.28	L
MOTA	822	C	LYS	.107	149.186		62.729	1.00 51.65 1.00 65.04	L
MOTA	823	0	LYS	107	148.643	60.592	63.713	1.00 53.04	ь
MOTA	824	N	ARG	108	150.388	59.519	62.781 64.028	1.00 32.00	L
MOTA	825	CA	ARG	108	151.147 151.199	59.450 58.007	64.553	1.00 33.40	L
. ATOM	826	CB	ARG	108	152.127	57.083	63.771	1.00 28.54	L
MOTA	827	CG	ARG	108	152.127	55.957	64.635	1.00 25.73	. L
ATOM	828	CD	ARG	108	153.934	56.297	65.246	1.00 34.47	r _
MOTA	829	NE	ARG	108	154.303	55.928	66.471	1.00 34.06	· L
MOTA	830	CZ	ARG	108		55.205	67.224	1.00 57.79	L
ATOM	831		ARG	108	153.489	56.280	66.947	1.00 37.75	· L
ATOM	832	•	ARG	108	155.484	59.974	63.858	1.00 41.80	. <u>r</u>
ATOM	833	C	ARG	108	152.566 153.071	60.102	62.733	1.00 36.52	L
ATOM	834	0	ARG	108	.153.193	60.271	64.996	1.00 49.39	L
ATOM	835	N	ALA		154.557	60.774	65.040	1.00 56.62	L
MOTA	836	CA	ALA ALA	109 109	155.042	60.822	66.479	1.00 33.22	L
MOTA	837	CB C	ALA	109	155.479	59.894	64.209	1.00 68.35	L
ATOM ATOM	838 839	0	ALA	109	155.350	58.667.		1.00 79.99	L
ATOM	840	N	ASP	110		60.524	63.492	1.00 75.21	
MOTA	841	CA	ASP	110	157.350		62.673	1.00 65.78	L
ALOM	041	-							

						•						
	ATOM	842	CB	ASP	110		158.395	60.740	62.082		68.55	L
	MOTA	843	CG	ASP	110		157.861	61.528	60.889		84.17	L
	ATOM	844	OD1	ASP	110		156.656	61.399	60.580	1.00		L
	ATOM	845	OD2	ASP	110		158.641	62.277	60.256		94.16	L
	MOTA	846	C	ASP	110		158.022	58.731	63.551	1.00	60.38	Ĺ
	ATOM	847	0	ASP	110		158.093	58.882	64.776	1.00	54.97	r
	ATOM	848	N	ALA	111		158.487	57.651	62.932	1.00	55.72	r
	ATOM	849	CA	ALA	111		159.151	56.577	63.661	1.00	59.37	${f L}$
	ATOM	850	CB	ALA	111		158.123	55.633	64.272		55.98	L
	ATOM	851	C	ALA	111		160.074	55.815	62.730	1.00	51.95	L
	ATOM	852	0	ALA	111		159.669	55.363	61.658	1.00	59.98	${f r}$
	ATOM	853	N	ALA	112		161.328	55.685	63.141	1.00	47.00	L
	ATOM	854	CA	ALA	112		162.318	54.977	62.348	1.00	42.20	L
	ATOM	855	CB	ALA	112		163.712	55.266	62.887	1.00	43.77	${f L}$
	ATOM	856	С	ALA	112		162.043	53.476	62.376	1.00	42.23	L
	MOTA	857	0	ALA	112		161.447	52.957	63.325	1.00	45.43	Ľ
	ATOM	858	N	PRO	113		162.464	52.761	61.325	1.00	51.11	${f L}$
	MOTA	859	CD	PRO	113		163.153	53.256	60.117	1.00	52.49	L
	ATOM	860	CA	PRO	113		162.250	51.316	61.269	1.00	49.74	L
	ATOM	861	CB	PRO	113		162.267	51.018	59.776	1.00	32.76	L
	ATOM	862	CG	PRO	113		163.223	52.029	59.220	1.00	41.64	L
	ATOM	863	C	PRO	113		163.356	50.568	61.997	1.00	45.33	L
	ATOM:	864	0	PRO	113	,	164.511	50.988	61.974		53.16	L
	MOTA	865	N	THR	114	•	163.006	49.475	62.661	1.00	36.71	L
	ATOM	866	CA	THR	114		164.009	48.675	63.341	1.00	39.49	, L
	ATOM	867	CB .	THR	114		163.505	48.159	64.706	1.00	34.54	L
	MOTA	868	OG1	THR	114		162.504	47.153	64.511	1.00	38.54	. L
	MOTA	869	CG2	THR	114		162.926	49.305	65.518	1.00	31.63	. Г
•	MOTA	870	C	THR	114		164.322	47.515	62.406	1.00	42.88	L
	MOTA	871	Ο.	THR	114		163.527	46.585	62.247		35.53	L
	MOTA	872	N	VAL	115		165.488	47.596	61.769		36.33	L
	ATOM	873	CA	VAL	115		165.939	46.594	60.815		42.49	L
	ATOM	874	CB	VAL	115		166.973	47.210	59.839		46.96	L
	ATOM	875	CG1	VAL	115		167.217	46.269	58.670		26.72	L
	MOTA	876	CG2	VAL	115		166.470	48.555	59.338		30.46	L
	MOTA	877	C	VAL	115		166.544	45.324	61.424		38.71	. L
	ATOM	878	0 '	VAL	115		167.064	45.327	62.541		36.49	L
	MOTA	879	N	SER	116	•	166.458	44.237	60.659		44.76	L
	MOTA	880	CA	SER	116		166.988	42.939	61.053		51.12	L
	MOTA	881	CB	SER	116		165.975	42.188	61.913		55.78	L _
	ATOM	882.	OG	SER	116		165.653	42.932	63.068		58.23	. L
	ATOM ·	883	С	SER	116		167.292	42.130	59.799		44.61	T.
	MOTA	884	0	SER	116		166.413	41.891	58.976		53.07	L
	MOTA	885	N	ILE	117		168.547	41.726	59.641		40.79	L
	ATOM	886	CA	ILE	117		168.935	40.929	58.487		35.02	L
	ATOM	887	CB	ILE	117		170.299		57.902		20.96	L
	MOTA	888		ILE	117		171.426	41.040	58.848		28.48	L
	ATOM	889		ILE	117		170.529	40.742	56.537		16.89	Ļ
	MOTA	890	CD1		117		171.461	41.525	55.632		18.50	L
	ATOM	891	C	ILE	117		169.039	39.484	58.952		32.15 40.81	L L
	ATOM .	892	0	ILE	117		169.467	39.212	60.076		28.82	. L
	ATOM	893	N	PHE	118		168.626	38.560	58.091 58.423		26.62 22.76	. <u>.</u> .
	ATOM	894	CA	PHE	118		168.671	37.145	JU.423	1.00		

						•			· ·	•
ATOM	895	CB	PHE	118		167.260	36.601	58.654	1.00 32.60	. L
ATOM	896	CG	PHE	118		166.589	37.174	59.858	1.00 32.33	. Li
ATOM	897	CD1	PHE	118	•	165.845	:38.339	59.761	1.00 32.14	${f L}$
MOTA	898	CD2	PHE	118		166.731	36.572	61.100	1.00 30.97	L
ATOM	899	CE1	PHE	118		165.262	38.902	60.884	1.00 43.45	r
ATOM	900	CE2	PHE	118		166.148	37.128	62.230	1.00 24.60	L
ATOM	901	CZ	PHE	118		165.411	38.294	62.124	1.00 41.49	L
ATOM	902	С	PHE	118		169.339	36.332	57.329	1.00 26.66	L
ATOM	903	0	PHE	118		168.928	36.370	56.170	1.00 29.78	L
ATOM	904	N	PRO	119		170.402	35.602	57.685	1.00 34.94	L
ATOM	905	CD	PRO	119		170.999	35.559	59.027	1.00 32.83	\mathbf{r}
ATOM	906	CA	PRO	119		171.136	34.763	56.734	1.00 37.60	L
ATOM	907	CB	PRO	119		172.400	34.369	57.497	1.00 31.28	L
ATOM	908	CG	PRO	119		172.428	35.261	58.732	1.00 32.18	L
ATOM	909	Ġ	PRO	119		170.278	33.551	56.389	1.00 36.29	L
ATOM	910	ō	PRO	119		169.297	33.266	57.079	1.00 43.06	L
ATOM	911	N	PRO	120		170.628	32.822	55.321	1.00 33.16	${f L}$
ATOM	912	CD	PRO	120		171.752	33.046	54.401	1.00 35.66	L
ATOM	913	CA	PRO	120		169.838	31.645	54.944	1.00 27.25	L
MOTA	914	CB	PRO	120		170.543	31.110	53.699	1.00 23.84	L
ATOM	915	CG	PRO	120		171.345	32.258	53.186	1.00 47.85	L
ATOM	916	C	PRO	120		169.771	30.597	56.052	1.00 47.51	L
ATOM	917	ō	PRO	120		170.408	30.733	57.097	1.00 61.24	r.
ATOM	918	N	SER	121	•	168.990	29.552	55.812	1.00 46.49	. L
ATOM	919	CA	SER	121		168.836	28.481	56.781	1.00 35.79	L
ATOM	920	CB	SER	121		167.366	28.091	56.9Ó8	1.00 39.97	L
ATOM	921	OG	SER	121		166.848	28.512	58.153	1.00 61.95	, L
	922	С	SER	121		169.643	27.264	56.366	1.00 35.14	L
ATOM	923	0	SER	121		169.776	26.970	55.178	1.00 54.90	L
ATOM .	924	N	SER	122		170.190	26.566	57.352	1.00 34.00	L
ATOM	925	CA	SER	122		170.964	25.367	57.078	1.00 43.67	L
ATOM	926	CB	SER	122	٠.	171.319	24.661	58.385	1.00 55.34	L
ATOM	927	OG ·	SER	122.		170.845	25.401	59.496	1.00 66.58	L
ATOM .	928	C.	SER	122		170.038	24.496	56.265	1.00 39.48	L
ATOM	929	0	SER	122		170.345	24.107	55.139	1.00 38.43	L
ATOM	930	N	GLU	123		168.878	24.223	56.850	1.00 39.62	L
ATOM	931	CA	GLU	123		167.865	23.412	56.208	1.00 42.31	L
ATOM	932	CB	GLU	123		166.569	23.487	57.012	1.00 49.13	L
ATOM	933	CG	GLU	123		165.364	22.895	56.294	1.00 85.24	\mathbf{L}
ATOM	934	CD	GLU	123		164.237	22.520	57.240	1.00100.00	L'
ATOM	935		GLU	123		164.458	22.525	58.473	1.00 99.99	. L
ATOM	936	OE2	GLU	123	:	163.127	22.221	56.742	1.00 99.98	L
MOTA	937	С	GLU	123		167.627	23.885	54.774	1.00 34.58	${f L}$
ATOM	938	0	GLU	123		167.599	23.079	53.843	1.00 33.93	r
MOTA	939	N	GLN	124		167.467	25.193	54.588	1.00 36.30	\mathbf{r}
ATOM	940	CA	GLN	124		167.228	25.719	53.254	1.00 21.55	${f L}$
ATOM	941	CB	GLN	124		166.875	27.207	53.289	1.00 32.12	L
ATOM	942	CG	GLN	124		167.075	27.854	51.927	1.00 35.77	L
ATOM	943	CD .	GLN	124		166.351	29.160	51.766	1.00 35.92	Г
ATOM	944	OE1	GLN	124		166.349	29.995	52.669		L
ATOM	945	NE2	GLN	124		165.739	29.355	50.603	1.00 40.10	. L
ATOM ·	946	C	GLN	124		168.441	25.534	52.353	1.00 29.80	${f L}$
ATOM	947	Ο.	GLN	124		168.308	25.269	51.159	1.00 40.34	L

					;	•				:	
	ATOM	948	Ν̈́	LEU	125	169.626	25.691	52.921	1.00 29.81	· · · · ·	L
	MOTA	949	CA	LEU	125	170.837	25.538	52.142	1.00 30.50	:	L
	ATOM	950	СВ	LEU ·	125 .	172.047	25.907	52.998	1.00 28.95		L
	ATOM	951	CG	LEU	125	172.296	27.418	53.004	1.00 38.05	:	L
	ATOM	952		LEU -	125	173.275	27.794	54.099	1.00 45.58		Ľ.
	ATOM	953		LEU	125	172.814	27.836	51.636	1.00 18.04		L
	ATOM	954	C	LEU	125	170.952	24.108	51.630	1.00 31.63		Ĺ
	ATOM .	955	ō	LEU	125	171.396	23.873	50.503	1.00 28.04		L
	ATOM	956	N	THR	126	170.530	23,156	52.454	1.00 34.33		L
	ATOM	957	CA.	THR	126	170.570	21.741		1.00 40.34		L
	ATOM	958	CB	THR	126	169.981	20.876	53.226	1.00 47.29		L
		959	·OG1		126	170.445	21.364	54.490	1.00 38.65		L,
	MOTA		CG2	THR	126	170.397	19.426	53.063	1.00 58.05		L
	MOTA	960			126	169.806	21.444	50.796	1.00 47.30		L
	MOTA	961	C .	THR	126	170.142	20.515	50.750	1.00 54.95		L
	ATOM	962	0	THR		168.779	22.236	50.513	1.00 57.73		L
•	ATOM	963	N	SER	127		22.236	49.308	1.00 63.60		L
	MOTA	964	CA	SER	127	167.985 166.551		49.542	1.00 63.78		L
	ATOM	965	CB	SER	127		22.525	50.186	1.00 64.66		L
	MOTA	966	OG.	SER	127	166.528	23.787		1.00 67.39		L
	MOTA	967	C	SER	127	168.581	22.760	48.096 46.994	1.00 07.39		L
	MOTA	968	0	SER	127	168.031	22.693 23.446	48.303	1.00 60.63		L
	MOTA	969	N	GLY	128	169.701		47.209	1.00 50.24		L
	MOTA	970	CA	GLY	128	170.350	24.154	46.947	1.00 50.24		L
•	MOTA	971	C	GLY	128	169.838	25.563		1.00 31.03		L
	MOTA	972	0	GLY	128	170.151	26.169	45.917			L
	MOTA	973	N	GLY	129	169.043	26.083	47.877	1.00 48.06		
	MOTA	974	CA	GLY	129	168.507	27.425	47.731	1.00 48.39		L
	MOTA	975	C	GLY	129	168.926	28.261	48.919	1.00 45.57		L
	MOTA	976	0 ,	GLY	129	169.221	27.719	49.986	1.00 58.83		
	MOTA	977	N	ALA	130	168.964	29.577	48.746	1.00 44.51		L
	MOTA	978	CA	ALA	130	169.368	30.467	49.834	1.00 42.67		
	MOTA	979	CB	ALA	130	170.868	30.721	49.766	1.00 41.38		L
	MOTA	980	С	ALA	130	168.612	31.784	49.784	1.00 38.53		
	ATOM	981	0	ALA	130	168.661	32.506	48.783	1.00 43.66		L
	ATOM	982	N _.	SER	131	167.923	32.103	50.872	1.00 34.81		L
	ATOM		·CA	SER	131	167.154	33.334	50.936	1.00 28.61		L
	ATOM	984	CB	SER	131	165.662	33.019	51.035	1.00 29.28		L
	MOTA	985	OG	SER	131	165.165	32.494	49.817	1.00 65.36		L
	MOTA	986	C	SER	131	167.568	34.177	52.118			L
	MOTA	987	.0	SER	131	167.547	33.714	53.259	1.00 23.33		L
	ATOM	988	N	VAL	132	167.958	35.413	51.842	1.00 21.04		L
٠	ATOM	989	CA	VAL.	132	168.353	36.345	52.891			L
	MOTA	990	CB	VAL	132	169.558		52.474	1.00 24.09		L
	MOTA	991		VAL	132	170.321	37.669	53.711			L
	MOTA	992		VAL	132	170.468	36.420	51.535	1.00 26.09		L
	MOTA	993	C	JAV	132	167.143	37.238	53.115	1.00 27.45		L
	MOTA	994	0	VAL	132	166.609	37.836	52.179	1.00 34.77		L
	MOTA	995	N	VAL	133	166.701	37.314	54.360	1.00 21.35		L
	MOTA	996	CA	VAL	133	165.532	38.101	54.688	1.00 15.87		L
	MOTA	997	CB	VAL	133	164.483	37.235	55.426	1.00 18.41		L
	MOTA	998	CG1		133	163.382	38.111	56.010	1.00 41.56		L
	MOTA	999		VAL	133	163.900	36.211		1.00 38.08		L
	ATOM	1000	C	VAL	133	165.870	39.296	55.548	1.00 10.26		L

			_				11.		
MOTA	1001	0:	VAL	133	166.701	39.222	56.454	1.00 24.39	·· L
MOTA	1002	И ·	CYS	134	165.206	40.404	55.254	1.00 24.79	L
MOTA	.1003	CA	CYS	134	165.412	41.626	55.999	1.00 33.03	\mathbf{L}
ATOM	1004	C	CYS	134	164.070	42.163	56.444	1.00 34.77	L
ATOM	1005	0	CYS	134	163.166	42.338	55.631	1.00 37.02	Ļ
ATOM	1006	CB	CYS	134	166.104	42.660	55.127	1.00 37.32	L
ATOM	1007	SG	CYS	134	166.705	44.083	56.077	1.00 64.48	L
ATOM	1008	N	PHE	135	163.946	42.420	57.737	1.00 28.41	L
ATOM.	1009	CA	PHE	135	162.710	42.949	58.296	1.00 35.98	, L
ATOM	1010	CB	PHE	135	162.297	42.152	59.536	1.00 23.45	L
ATOM	1011	CG	PHE	135	161.854	40.746	59.244	1.00 41.99	Ĺ
ATOM	1012	CD1		135	160.991	40.472	58.187	1.00 58.79	L
ATOM	1013	CD2		135	162.280	39.696	60.049	1.00 38.90	L
ATOM	1014	CE1		135	160.555	39.170	57.939	1.00 56.32	. L
ATOM	1015		PHE	135	161.849	38.391	59.810	1.00 57.18	${f L}$
ATOM	1016	CZ	PHE	135	160.987	38.127	58.753	1.00 46.88	L
ATOM	1017	C	PHE	135	162.880	44.412	58.696	1.00 37.21	L
ATOM	1018	Ō	PHE	135	163.841	44.773	59.373	1.00 31.75	L
ATOM	1019	N	LEU	136	161.951	45.253	58.264	1.00 38.27	L
MOTA	1020		LEU	136	161.968	46.665	58.622	1.00 33.10	L
ATOM	1021	CB	LEU	136	162.049	47.531	57.369	1.00 23.62	. L
ATOM	1022	CG	LEU	136	163.303	47.259	56.534	1.00 17.58	. Ь
ATOM	1023	CD1		136	163.055	46.103	55.572	1.00 17.79	L
ATOM	1024	CD2	LEU	136	163.686	48.512	55.770	1.00 29.81	. L
ATOM	1025	С	LEU	. 136	160.632	46.839	59.319	1.00 30.65	L
ATOM	1026	O	LEU	136	159.600	47.002	58.673	1.00 30.43	. L
ATOM	1027	N	ASN -	137	160.651	46.779	60.643	1.00 35.92	L
ATOM	1028	CA	ASN	137	159.421	46.873	61.400	1.00 43.25	L
ATOM '	1029	CB .	ASN	137	159.387	45.751	62.433	1.00 42.56	L
ATOM	1030	CG	ASN	137	159.308	44.384	61.793	1.00 30.61	L
MOTA	1031	OD1	ASN	137	159.471	43.356	62.454	1.00 37.72	, L
ATOM	1032	ND2	ASN	137	159.057	44.363	60.490	1.00 39.03	T.
ATOM	1033	c ·	ASN	137	159.101	48.199	62.075	1.00 40.01	L
ATOM	1034	0	ASN	137	159.975	49.028	62.305	1.00 39.51	L
ATOM	1035	N .	ASN	138	157.813	48.362	62.370	1.00 41.07	L
ATOM	1036	CA	ASN	138	157.239	49.526	63.036	1.00 38.43	L
MOTA	1037	CB	ASN	138	157.227	49,273	64.540	1.00 34.91	L
ATOM	1038	CG	asn	138	156.667	47.916	64.883	1.00 33.75	L
ATOM	1039	OD1	ASN	138	155.592	47.806	65.459	1.00 29.26	L
ATOM	1040	ND2	ASN	138	157.402	46.864	64.537	1.00 33.12	L
MOTA	1041	C	ASN	138	157.838	50.898	62.749	1.00 31.73	L
MOTA	1042	0	ASN.	138	158.582	51.447	63.559		L
ATOM	1043	N	PHE	139	157.492	51.458	61.599	1.00 32.60	L
ATOM	1044	CA	PHE	139	157.982	52.770	61.227	1.00 34.36	Ļ
ATOM	1045	CB	PHE	139	159.138	52.644	60.237	1.00 37.95	Г
MOTA	1046	CG	PHE	139	158.770	51.972	58.946	1.00 21.99	L
MOTA	1047	CD1	PHE	139	158.295	52.716	57.869	1.00 28.23	L
MOTA	1048	CD2	PHE	139	158.941	50.597	58.792	1.00 23.34	L
MOTA	1049		PHE	139	157.998	52.102	56.651	1.00 22.39	r
ATOM	1050	CE2		139	158.646	49.969	57.578	1.00 15.56	L
MOTA	1051	CZ	PHE	139	158.175	50.723	56.505	1.00 21.70	L
ATOM	1052	С	PHE	139	156.868	53.626	60.627	1.00 42.27	L
MOTA	1053	0	PHE	139	155.772	53.142	60.350	1.00 50.50	L

				•		:			
ATOM	1054	N	TYR	140	157.15	54.906	60.444	1.00 53.69	L
MOTA	1055	CA	TYR	140	156.20	5 55.847	59.883	1.00 47.40	L
MOTA	1056	CB	TYR	140	155.19	3 56.266	60.942	1.00 53.56	L
MOTA	1057	CG	TYR	140	154.00	2 56.979	60.360	1.00 71.75	L
MOTA	1058	CD1	TYR	140	154.072	2 58.331	60.029	1.00 76.99	L
MOTA	1059	ĊE1	TYR,	140	152.97		59.471	1.00 91.66	L
MOTA	1060	CD2	TYR	140	152.80	56.301	. 60.119	1.00 85.47	L
MOTA	1061	CE2	TYR	140	151.71	2 56.948	59.562	1.00 96.08	ь
MOTA	1062	CZ	TYR	140	151.80	3 58.293	59.242	1.00 93.77	L
MOTA	1063	OH	TYR	140	150.71		58.706	1.00 99.99	L
ATOM	1064	С	TYR	140	156.98		59.410	1.00 31.82	L
MOTA	1065	0	TYR	140	157.900		60.088	1.00 34.79	L
MOTA	1066	N	PRO	141	156.63		58.240	1.00 33.26	L
ATOM	1067	CD	PRO	141	157.36		57.691	1.00 26.57	L
MOTA	1068	CA	PRO	141	155.56		57.336	1.00 39.66	L
MOTA	1069	CB	PRO	141	155.450		56.323	1.00 45.22	L
MOTA	1070	CG	PRO	141	156.35		56.804	1.00 34.28	L
MOTA	1071	C	PRO	141	155.882		56.651	1.00 32.49	L
MOTA	1072	0	PRO	141	.156.913		56.913 55.762	1.00 34.82 1.00 33.41	L L
MOTA	1073	N	LYS	142	154.986		55.762	1.00 33.41	•
ATOM	1074	CA	LYS	142	155.15° 153.86		54.304	1.00 43.13	L
ATOM	1075	CB	LYS	142	152.85		54.200	1.00 82.02	. L
ATOM	1076	CG	LYS	142 142	152.009		52.943	1.00 86.08	L
MOTA	1077	CD	LYS	142	152.00		52.114	1.00 97.81	L
ATOM	1078 1079	CE NZ	LYS	142	153.22			1.00100.00	L
ATOM ATOM	1079	C	LYS	142	156.29		54.029	1.00 47.94	L
ATOM	1081	0	LYS	142	156.926		53.679	1.00 60.89	L
ATOM	1082	N .	ASP	143	156.543		53.565	1.00 61.49	L
ATOM	1083	CA	ASP	143	157.60		52.603	1.00 70.17	L
ATOM	1084	CB	ASP	143	157.73	•	52.259	1.00 86.10	L
ATOM	1085	CG	ASP	143			51.286	1.00 99.99	L
ATOM	1086		ASP		155.526		51.727	1.00 98.78	L
ATOM	1087		ASP		156.992		50.080	1.00 99.96	L
MOTA	1088	C	ASP	143	158.923	55.207	53.148	1.00 62.40	L
ATOM	1089	0	ASP	143	159.344	55.564	54.251	1.00 47.98	L
ATOM	1090	N	ILE	144	159.563	54.348	52.363	1.00 59.85	L
MOTA	1091	CA	ILE	. 144	160.839	53,752	52.722	1.00 51.41	L
ATOM -	1092	CB	ILE	. 144	160.664	52.644	53.785	1.00 41.53	L
ATOM	1093	CG2	ILE	144	160.074	1 51.392	53.155		L
MOTA	1094	CG1	ILE	144	162.01	L 52.320	54.427	1.00 24.47	L.
ATOM	1095	CD1	ILE	144	161.892		55.671		L
MOTA	1096	C	ILE	144	161.44		51.460	1.00 48.41	L
MOTA	1097	0	ILE	144	160.719		50.557	1.00 31.96	L
MOTA	1098	N	ASN	145	162.76		51.387	1.00 56.85	ŗ
ATOM	1099		ASN	145	163.44		50.221	1.00 62.49	ŗ
MOTA	1100	CB	ASN	145	164.063		49.399	1.00 75.48	L
MOTA	1101	CG	ASN	145	164.104		47.922	1.00 98.08	L
MOTA	1102		ASN	145	163.684		47.094	1.00 99.97	L
MOTA	1103		ASN	145	164.612		47.579	1.00 99.99	L
ATOM	1104	C	ASN	145	164.53		50.650	1.00 52.75	L L
ATOM	1105	0	ASN	145	165.53			1.00 46.53 1.00 60.86	P P
MOTA	1106	N	VAL	146	164.324	50.362	50.330	1.00 00.86	ц

				٠.	• .						:	
	MOTA		1107	CA	VAL	146	165.283	49.327	50.683	1.00	55.40	L
	MOTA		1108	CB	VAL	146	164.572	48.048	51.171	1.00	51.60	, L
•	MOTA		1109	CG1	VAL	146	165.593	47.066	51.728	1.00	23.45	L
	MOTA		1110	CG2	VAL	146	163.545	48.397	52.234	1.00	57.40	L
	ATOM		1111	C	VAL	146	166.158	48.975	49.490	1.00	53.23	L
	MOTA		1112	0	VAL	146	165.707	48.977	48.341	1.00	69.79	L
	MOTA		1113	N	LYS	147	167.421	48.679	49.775	1.00	49.86	L
	MOTA		1114	CA	LYS	147	168.378	48.312	48.746	1.00	42.42	L
	MOTA		1115	CB	LYS	147	169.281	49.499	48.413	1.00	47.62	L
	ATOM		1116	CG	LYS	147	168.754	50.388	47.302	1.00	79.82	L
	ATOM		1117	CD	LYS	147	169.895	51.010	46.512	1.00	86.84	· L
	MOTA		1118	CE	LYS	147	169.939	52.524	46.691	1.00	93.63	L
	MOTA		1119	NZ	LYS	147	170.983	52.943	47.671	1.00	75.73	L
	ATOM		1120	С	LYS	147	169.222	47.159	49.265	1.00	35.56	L
	ATOM		1121	0	LYS	147	169.545	47.103	50.451	1.00	22.60	L
	ATOM		1122	N	TRP	148	169.566	46.236	48.375	1.00	43.57	L
	ATOM		1123	ĊA	TRP	148	170.386	45.095	48.758	1.00	34.06	${f r}$
	MOTA		1124	CB	TRP	148	169.782	43.796	48.214	1.00	32.94	L
	ATOM		1125	CG	TRP	148	168.782	43.185	49.150	1.00	47.82	L
	MOTA		1126	CD2	TRP	148	169.062	42.433	50.338	1.00	46.07	L
	ATOM		1127	CE2	TRP	148	167.822	42.096	50.923	1.00	40.42	L
	ATOM		1128	CE3	TRP	148	170.243	42.012	50.967	1.00	64.21	. L
	ATOM		1129		TRP	148	167.420	43.270	49.065	1.00	34.71	L
	ATOM		1130	NE1		-	166.838	42.621	50.125	1.00	38.06	L
	ATOM		1131	CZ2	TRP	148	167.725	41.357	52.109	1.00	15.75	. L
	ATOM		1132	CZ3	TRP	148	170.146	41.277	52.148	1.00	72.60	L
	ATOM		1133	CH2	TRP	148	168.894	40.958	52.705	1.00	49.76	L
	ATOM		1134	C	TRP	148	171.793	45.269	48.217	1.00	36.36	L
	ATOM		1135	0	TRP	148	171.984	45.624	47.055	1.00	34.43	L
	ATOM		1136	N	LYS	149	172.784	45.027	49.062	1.00	44.04	. . .
	ATOM		1137	CA	LYS	149	174.157	45.161	48.623	1.00	41.49	L
•	ATOM		1138	СВ	LYS	149	174.820	46.341	49.321	1.00	34.89	. ц
	MOTA		1139	CG	LYS	149	175.080	47.515	48.400	1.00	38.34	L
	ATOM	•	1140	CD	LYS	149	174.417	48.774	48.915	1.00	36.55	L
	MOTA		1141	CE	LYS	149	175.294	49.986	48.667	1.00	43.94	L
	MOTA		1142	NZ	LYS	149	175.270	50.930	49.819	1.00	55.84	L
	MOTA		1143	С	LYS	149	174.937	43.893	48.896	1.00	38.62	L
	MOTA		1144	0	LYS	149	175.125	43.505	50.045	1.00	42.16	L
	ATOM		1145	N	ILE	150	175.372	43.241	47.825		22.84	L
	ATOM ·		1146	CA	ILE	150	176.157	42.020	47.938	1.00	24.90	Ļ
	ATOM		1147	CB	ILE	150	175.675	40.954	46.958	1.00	42.14	T.
	ATOM		1148	CG2	ILE	150	176.371	39.642	47.255	1.00	38.41	L
	MOTA	•	1149	CG1	ILE	150	174.159	40.812	47.060	1.00	42.99	L
	ATOM		1150	CD1	ILE	150	173.598	39.635	46.309	1.00	32.26	, L
•	MOTA		1151	С	ILE	150	177.600	42.361	47.614	1.00	23.92	Ļ
	ATOM		1152	0	ILE	150	177.975	42.479	46.443	1.00	24.95	Г
	MOTA		1153	N ·	ASP	151	178.404	42.527	48.658	1.00	48.84	L
	ATOM		1154	CA	ASP	151	179.805	42.886	48.488	1.00	63.98	ь
	MOTA		1155	CB	ASP	151	180,507	41.896	47.547	1.00	74.75	L
	MOTA		1156	CG	ASP	151 ·	180.844	40.574	48.223		76.70	. L
	MOTA		1157	OD1	ASP	151	180.681	40.465	49.460		79.84	L
	ATOM		1158	OD2	ASP	151	181.274	39.638	47.508		56.23	L
	MOTA		1159	C	ASP ·	151	179.854	44.300	47.905	1.00	70.87	L

* *			•						
ATOM	1160	ο.	ASP	151	180.483	44.536	46.868	1.00 70.42	L
ATOM	1161	N	GLY	152	179.172	45.226	48.577	1.00 76.86	. . . L
ATOM	1162	CA	GLY	152	179.139	46.613	48.139	1.00 67.78	\mathbf{L}
ATOM	1163	C	GLY	152	178.418	46.840	46.824	1.00 70.46	ŗ
ATOM	1164	ō	GLY	152	178.156	47.980	46.438	1.00 79.32	L
ATOM	1165	N	SER	153	178.098	45.754	46.131	1.00 62.96	. L
ATOM	1166	CA	SER	153	177.409		44.856	1.00 60.58	L
ATOM	1167	CB	SER	153	177.840	44.693	43.947	1.00 68.60	L
ATOM	1168	OG	SER	153	178.171	45.160	42.653	1.00 71.40	L
ATOM	1169	C	SER	153	175.902	45.800	45.063	1.00 61.38	· L
ATOM	1170	ō	SER	153	175.401	45.044	45.895	1.00 59.28	. Г
MOTA	1171	N	GLU	154	175.183	46.620	44.304		L
	1172	CA	GLU	154	173.731	46.677	44.393	1.00 66.09	L
ATOM ATOM	1173	CB	GLU	154	173.222	47.987	43.793	1.00 81.88	L
	1174	CG	GLU	154	172.299	48.776	44.700	1.00 78.09	L
ATOM ATOM	1175	CD.	GLU	154	171.857	50.087	44.079	1.00 85.76	L
	1176		GLU	154	170.891	50.074	43.283	1.00 65.69	L
ATOM	1177	OE2	GLU	154	172.476	51.131	44.385	1.00 98.75	L
MOTA MOTA	1178	C ·	GLU	154	173.123	45.505	43.635	1.00 78.80	L
	1179	0	GLU	154	173.476	45.248	42.485	1.00 87.43	L
ATOM ATOM	1180	N	ARG	155	172.211	44.791	44.288	1.00 78.61	L
ATOM	1181	CA	ARG	155	171.552	43.654	43.669	1.00 72.18	. L
	1182	CB	ARG	155	171.904	42.371	44.411	1.00 57.25	L
ATOM	1183	CG	ARG	155	172.051	41.177	43.500	1.00 53.97	L
MOTA	1184	CD.	ARG	155	170.868		43.648	1.00 47.95	L
MOTA	1185	NE	ARG	155	170.680	39.401	42.474	1.00 59.26	Ľ
ATOM ATOM	1186	CZ	ARG	155	171.533	38.459	42.084	1.00 47.18	· L
ATOM	1187		ARG	155	172.644	38.239	42.776	1.00 58.65	Ĺ
	1188		ARG	155	171.272	37.731	41.007	1.00 62.18	. L
ATOM ATOM	1189	C	ARG	155	170.049	43.862	43.692	1.00 76.06	L
ATOM	1190	0	ARG	155	169.470	44.142	44.741	1.00 79.59	L
ATOM	1191		GLN	156	169.426	43.726	42.527	1.00 81.46	L
ATOM	1192	CA	GLN	156	167.984	43.913	42.395	1.00 75.51	L
ATOM	1193	CB	GLN	156	167.702	45.122	41.510	1.00 76.21	· L
ATOM	1194	CG	GLN	156	168.779	46.179	41.579	1.00 86.59	L.
MOTA	1195	CD	GLN	156	168.216	47.575	41.514	1.00 82.98	L
MOTA	1196		GLN	156	167.460	47.912	40.597	1.00 74.92	L.
ATOM	1197		GLN	156	168.579	48.402	42.486	1.00 79.96	L
ATOM	1198	C	GLN	156	167.308	42.690	41.799	1.00 75.18	$^{\circ}\mathbf{L}$
ATOM	1199	o	GLN	156	166.094	42.663	41.629	1.00 78.45	· L
ATOM	1200	N	ASN	157	168.106	41.681	41.485	1.00 69.92	L
ATOM	1201	CA	ASN	157	167.577	40.460	40.909	1.00 62.62	L
MOTA	1202	CB	ASN	157	168.587	39.880	39.912	1.00 83.40	L
MOTA	1203	CG	ASN	157	168.058	38.656	39.189	1.00 96.73	L
ATOM	1204		ASN	157	168.142	37.534	39.692	1.00 99.98	L
MOTA	1205		ASN	157	167.509	38.865	38.000	1.00 96.79	L
ATOM	1206		ASN	157	167.270	39.440	42.009	1.00 43.07	. L
ATOM	1207	o	ASN	157	168.169	38.978	42.711	1.00 51.60	L
ATOM	1208	N	GLY	158	165.994	39.103	42.166	1.00 37.93	L
ATOM	1209	CA	GLY	158	165.613	38.126	43.168	1.00 45.50	L
ATOM	1210	C	GLY	158	165.052	38.719	44.441	1.00 46.88	L
ATOM	1211	0	GLY	158	164.905	38.016	45.438	1.00 46.67	L
MOTA	1212	N	VAL	159	164.730	40.005	44.409	1.00 46.40	L

		٠.	•	٠				•	
ATOM	1213	CA V	ъъ 159		164.191	40.668	45.582	1.00 48.04	\mathbf{r}
ATOM	1214	CB V	L 159		164.746	42.089	45.707	1.00 46.84	: L
MOTA	1215	CG1 V	L 159		164.497	42.616	47.106	1.00 49.41	L
ATOM	1216	CG2 V	AL 159		166.234	42.091	45.398	1.00 31.32	L
ATOM	1217	C V	AL 159		162.668	40.738	45.570	1.00 50.14	Г
ATOM	1218	o v	AL 159		162.065	41.111	44.563	1.00 70.43	L,
ATOM	1219	N L	EU 160	•	162060	40.371	46.699	1.00 47.07	L
ATOM	1220	CA LI	EU 160		160.606	40.379	46.862	1.00 40.66	L
ATOM	1221	CB LI	3U 160		160.060	38.958	46.894	1.00 28.04	L
ATOM	1222	CG LI	EU 160		160.148	38.197	45.577	1.00 32:43	L
ATOM	1223	CD1 L			159.270	36.965	45.669	1.00 37.34	L
ATOM	1224	CD2 LI			159.722	39.095	44.413	1.00 7.94	L
ATOM	1225		EU 160		160.204	41.077	48 151	1.00 42.42	L
ATOM			SU 160		160.474	40.583	49.250	1.00 48.94	L
ATOM	1227		SN 161	•	159.545	42.220	48.011	1.00 40.58	L
ATOM	1228		5N 161		159.109	42.996	49.161	1.00 26.69	L
ATOM	1229		SN 161		159.377	44.477	48.917	1.00 24.90	L
ATOM	1230		SN 161		160.804	44.746	48.500	1.00 36.23	L
ATOM	1231	OD1 AS			161.743	44.301	49.153	1.00 55.57	L
ATOM	1232	ND2 AS			160.975	45.475	47.407	1.00 47.35	L
ATOM	1232		SN 161		157.637	42.792	49.471	1.00 32.25	L
ATOM	1233		SN 161		156.850	42.415	48.605	1.00 34.73	. L
	1235		ER 162		157.276	43.052	50.722	1.00 28.82	L
ATOM ATOM	1235		ER 162	•	155.908	42.907	51.179	1.00 30.10	r _
MOTA	1237		ER 162		155.655	41.470	51.623	1.00 25.07	L
ATOM	1237		ER 162		154.368	41.341	52.203	1.00 34.98	L
ATOM	1239		ER 162		155.687	43.855	52.349	1.00 28.22	L.
	1240		ER 162		156.542	43.949	53.231	1.00 28.01	. L
MOTA	1240		RP 163		154.556	44.560	52.346	1.00 44.68	L
MOTA			RP 163		154.217	45.502	53.413	1.00 47.01	_ L
ATOM	1242		RP 163		153.977	46.914	52.865	1.00 47.04	L
MOTA	1243		RP 163		155.114	47.542	52.139	1.00 50.28	L
MOTA	1244		RP 163		155.581	47.209		1.00 47.77	L
ATOM	1245 1246	CE2 TI			156.655	48.079	50.529	1.00 47.30	. T
MOTA	1247	CE2 II	•		155.193	46.258	49.865	1.00 36.64	L
ATOM	1247	CD1 TI			155.899	48.573	52.578	1.00 61.33	. L
MOTA	1248	NE1 TI		•	156.828	48.901	51.615	1.00 51.73	: <u>L</u>
MOTA	1250		RP 163		157.349	48.028	49.313	1.00 41.27	L
MOTA			RP 163	٠.	155.882	46.206	48.655	1.00 43.64	L
MOTA	1251	CH2 TI			156.950	47.089	48.391	1.00 31.42	L
ATOM	1252		RP 163		152.937	45.087	54.111	1.00 47.66	L
MOTA	1253		RP 163		152.056	44.487	53.504		L
MOTA	1254					45.420	55.389		L
ATOM	1255				151.623	45.119	56.141	1.00 39.34	L
ATOM			HR 164 HR 164		151.927	44.805	57.604	1.00 40.04	L
MOTA			HR 164		152.625	45.911	58.185	1.00 45.73	L
ATOM			HR 164		152.770	43.552	57.720	1.00 45.43	L
MOTA MOTA			HR 164		150.804	46.400	56.099	1.00 33.70	L
MOTA			HR · 164		151.268	47.424	55.597	1.00 27.93	L
ATOM	•		SP 165		149.584	46.349	56.620	1.00 29.63	L
ATOM,			SP 165		148.739	47.533	56.649	1.00 37.94	L
ATOM,		•	SP 165		147.261	47.141	56.673	1.00 57.52	L
ATOM			SP 165		146.784		55.352	1.00 78.24	L
MION	1203	CG A			110.704	14.571		·-·	

					• • • •				
ATOM	1266	OD1 ASI	165	147.303	47.005	54.302	1.00 92	. 25	L
ATOM	1267	OD2 ASI		145.891	.45.698	55.364	1.00 85	. 65	L
ATOM	1268	C ASI	•	149.078	48.282	57.923	1.00 47	. 66	- L
ATOM	1269	O ASI		149.760	47.746	58.792	1.00 50	50	L
ATOM	1270			148.609	49.516	58.030	1.00 47	. 56	L
ATOM	1271	CA GL		148.850	50.319	59.220	1.00 42	. 28	. L
ATOM	1272	CB GLM		147.982	51.570	59.185	1.00 44	.46	L
ATOM	1273	CG GL	*	148.213	52.541	60.320	1.00 29	. 22	L
ATOM	1274	CD GL		147.967	53.965	59.885	1.00 17	.51	L
ATOM	1275	OE1 GLA		146.909	54.283	59.343	1.00 43	.27	L
ATOM	1276	NE2 GL	•	148.949	54.830	60.103	1.00 25	.31	L
ATOM	1277	C GLI		148.462	49.478	60.422	1.00 38	.24	L
ATOM	1278	O GLI		147.361	48.934	60.465	1.00 28	. 20	L
MOTA	1279	N ASI		149.361	49.364	61.393	1.00 47	. 65	L
ATOM	1280	CA ASI		149.072	48.577	62.576	1.00 59	. 05	L
ATOM	1281	CB ASI		150.200	48.691	63.591	1.00 40	. 82	L
ATOM	1282	CG ASI		150.022	47.742	64.752	1.00 39	. 12	${f L}$
ATOM	1283	OD1 ASI		149.966	46.517	64.510	1.00 57	. 63	${f L}$
ATOM	1284	OD2 ASI		149.927	48.214	65.902	1.00 58	. 29	L
ATOM	1285	C ASI		147.768	49.040	63.205	1.00 68	. 64	L
ATOM	1286	O ASI		147.482	50.237	63.274	1.00 62	. 87	L
MOTA	1287	N SEI		146.978	48.079	63.658	1.00 81	. 22	L
ATOM	1288	CA SEI		145.695	48.374	64.271	1.00 77	.38	ь
ATOM	1289	CB SEI		144.865	47.095	64.370	1.00 77	.42	L
ATOM	1290	OG SEI		145.397	46.080	63.532	1.00 89	. 64	L
MOTA	1291	C SE		145.839	48.994	65.651	1.00 79	.26	. L
ATOM	1292	O SEI	168	144.922	49.650	66.139	1.00 85	.04	L
ATOM	1293	N LYS		146.990	48.792	66.282	1.00 71		L
ATOM	1294	CA LY	169	147.210	49.330	67.617	1.00 55	. 95	· P
ATOM	1295	CB LYS	169	147.785	48.247	68.534	1.00 74	. 95	Г
ATOM	1296	CG LYS	169	147.259	46.849	68.253	1.00 84		L
ATOM	1297	CD LYS	169	148.379	45.938	67.762	1.00 83		L
ATOM	1298	CE LYS	169	147.843	44.810	66.885	1.00 85		Г
ATOM	1299	NZ LYS	169	148.678	44.588	65.665	1.00 81		L
MOTA	1300	C LYS	169	148.114	50.556	67.658	1.00 46		${f L}$
MOTA	1301	O LYS	169	147.720	51.614	68.145	1.00 59		L
MOTA	1302	n asi	2. 170	149.331		67.142			L
ATOM	1303	CA ASI	2 170			67.164			L
ATOM	1304	CB AS	170	151.647	51.033	67.620	1.00 37	.35	L
MOTA	/1305	CG AS		152.505	50.537	66.479	1.00 58		L
MOTA	. 1306	OD1 AS		152.200		65.909	1.00 65		L
MOTA	1307	OD2 AS		153.500		66.162	1.00 76		L
MOTA	1308	C AS		150.370		65.856			L
MOTA	1309	O . AS		151.246		65.693	1.00 26		r T
MOTA	1310	N SE		149.466		64.927	1.00 29		, L
ATOM	1311	CA SE		149.429		63.648	1.00 32		· L
MOTA	1312	CB SE		148.876		63.845	1.00 36		L
MOTA	1313	OG SE		147.612		64.486	1.00 87		L
MOTA	1314	C SE		150.750			1.00 34		L t.
MOTA	. 1315	O SE		151.004		62.223	1.00 25		L T.
MOTA	1316	N TH		151.591		62.993			r L
MOTA	1317	CA TH		152.866		62.271	1.00 19 1.00 41		r r
MOTA	1318	CB TH	R 172	154.046	51.292	63.129	T.00 4T	/	<u></u>

						*			•	
ATOM	1319	OG1	THR	172	153.590	50.286	64.039	1.00	61.43	$\mathbf{r} \cdot \mathbf{r}$
MOTA	1320	CG2	THR	172	154.686	52.449	63'. 876	1.00	35.62	L
MOTA	1321	C	THR ·	172	152.807	50.877	61.058	1.00	25.70	L
MOTA	1322	0	THR	172	151.812	50.189	60.826	1.00	23.98	L
ATOM	1323	N	TYR	173	153.892	50.871	60.295	1.00	30.31	. L
ATOM	1324	CA	TYR	173	153.985	50.042	59.109	1.00	21.84	Ľ
ATOM	1325	CB	TYR	173 .	154.167	50.911	57.863	1.00	39.03	L
ATOM	1326	CG	TYR	173	152.916	51.668	57.487	1.00	42.99	L
ATOM	1327	CD1	TYR	173	151.794	50.994	57.008	1.00	41.83	L
ATOM	1328	CE1	TYR	173	150.621	51.678	56.709	1.00	59.78	L
ATOM	1329	CD2	TYR	173	152.834	53.050	57.651	1.00	48.81	L
ATOM	1330	CE2	TYR	173	151.663	53.745	57.355	1.00	38.39	· L
ATOM	1331	CZ	TYR	173	150.560	53.052	56.888	1.00	60.04	L
ATOM	1332	OH	TYR	173	149.392	53.723	56.607	1.00	65.26	· L
MOTA	1333	C	TYR	173	155.160	49.098	59.245	1.00	30.15	${f L}$
ATOM	1334	0	TYR	173	156.089	49.350	60.009	1.00	35.37	\mathbf{r}
ATOM	1335	N	SER	174	155.111	48.005	58.505	1.00	26.54	L
MOTA	1336	CA	SER	174	156.184	47.035	58:539	1.00	25.11	L
ATOM	1337	CB	SER	174	155.832	45.874	59.467	1.00	32.70	L
MOTA	1338	OG	SER	174	156.004	46.246	60.824	1.00	23.41	Г
MOTA	1339	С	SER	174	156.394	46.518	57.136	1.00	28.29	L
MOTA	1340	0	SER	174	155.475	46.515	56.314	1.00	22.73	\mathbf{L}
MOTA	1341	N	MET	175 ,	157.614	46.093	56.857	1.00	29.61	L
MOTA	1342	CA	MET	175	157.925	45.571	55.552		24.86	L
MOTA	1343	CB	MET	175	158.423	46.693	54.646		16.99	L
ATOM	1344	CG	MET	175	159.379	46.232	53.575	1.00	9.33	L
MOTA	1345	SD	MET	175	159.949	47.595	52.577		36.70	L
ATOM	1346	CE	MET	175	160.270	46.761	51.036			L
MOTA	1347	C	MET	175	158.986	44.498	55.686		31.31	L
MOTA	1348	0	MET	175	159.800	44.522	56.615		32.20	L
MOTA	1349	N	SER	176	158.947	43.544	54.765		27.89	L
MOTA	1350	CA	SER	176	159.916	42.462	54.737	1.00		L
MOTA	1351	CB	SER	176	159.263	41.137	•		32.59	L
ATOM	1352	OG	SER	176	159.019	40.331	53.997	1.00	22.54	L L
ATOM	1353	C	SER	176	160.435	42.382	53.312		28.72	L
ATOM .	1354	0	SER		159.669	42.497	52.356 53.169	1.00		ь
ATOM	1355	N	SER	177	161.743	42.210	51.856		27.57	· L
ATOM	1356	CA ·	SER SER	177. 177	162.355 163.231	42.107 43.320	51.574	1.00		L
ATOM	1357	CB		177	163.231	43.272	50.245	1.00		L
ATOM ATOM	1358 1359	OG C	SER	177	163.715	40.847	51.802	1.00		L
ATOM	1360	0	SER	177	164.047	40.621	52.661	1.00		L
ATOM	1361	N	THR	178	162.956	40.026	50.788		18.89	L
MOTA		CA	THR	178	163.687	38.780	50.656	1.00		L
ATOM	1363	СВ	THR	178	162.740		50.740	1.00		L
ATOM	1364	OG1		178	161.938	37.681	51.922		36.63	L
ATOM	1365	CG2		178	163.533	36.285	50.782		22.64	L
ATOM	1366	C.	THR	178	164.481	38.675	49.362	1.00	21.04	L
MOTA	1367	0	THR	178	163.949	38.878	48.266		32.90	L
ATOM	1368	N .	LEU	179	165.764	38.358			23.97	${f r}$
ATOM	1369	CA	LEU	179	166.679	38.183	48.395	1.00	27.62	L
ATOM	1370	CB	LEU	179	168.000	38.899	48.669	1.00	25.50	L
MOTA	1371	CG	LEU	179	169.043	38.856	47.557	1.00	25.95	L
						•				

							•		
MOTA	1372	CDI	LĖU	179	168.487	39.491	46.291.	1.00 44.04	· L
ATOM	1373	CD2		179	170.289	39.591	48.025	1.00 24.41	L
ATOM :	1374	C .	LEU .	179	166.920	36.687	48.293	1.00 22.54	L
ATOM	1375	0	LEU	179	167.417	36.070	49.236	1.00 16.26	L
MOTA	1376	N	THR	180	166.558	36.110	47.153	1.00 27.81	L
ATOM	1377	CA	THR	180	166.699	34.675	46.941	1.00 38.84	L
ATOM	1378	CB	THR	180	165.343	34.060	46.531	1.00 58.84	L
ATOM	1379	OG1	THR	180	164.391	34.253	47.585	1.00 69.01	L
ATOM	1380	CG2		180	165.489	32.571	46.243	1.00 65.13	L
ATOM	1381	C	THR	180	167.744	34.304	45.893	1.00 38.32	L
ATOM	1382	0	THR	180	167.658	34.715	44.733	1.00 23.89	L
ATOM	1383	N	LEU	181	168.726	33.515	46.318	1.00 50.48	L
ATOM	1384	CA	LEU	181	169.796	33.059	45.439	1.00 54.78	L
	1385	CB	LEU	181	171.118	33.751	45.782	1.00 57.52	L
MOTA	1386	CG	LEU	181	171.097	35.239	46.126	1.00 52.16	L
ATOM			LEU ·	181	171.777	35.466	47.468	1.00 64.66	L
MOTA	1387		LEU	181	171.800	36.017	45.032	1.00 59.17	. L
ATOM	1388 1389	CD2	LEU	181	169.978	31.558	45.595	1.00 45.72	L
ATOM	1390	0	LEU	181	169.250	30.904	46.347	1.00 53.82	L
MOTA			THR	182	170.964	31.021	44.882	1.00 33.32	L
ATOM	1391 1392	N . CA	THR	182	171.268	29.601	44.935	1.00 32.86	L
ATOM	1393	CB	THR	182	171.740	29.086	43.571	1.00 35.79	L
MOTA		OG1	THR	182 /	172.994	29.694	43.241	1.00 51.80	L
ATOM	1394	CG2	THR	182	170.726		42.497	1.00 10.97	L
MOTA	1395		THR	182	172.371		45.955	1.00 31.89	L
MOTA	1396	C O	THR	182	173.084	30.256	46.366	1.00 22.49	· L
MOTA	1397		LYS	183	172.498	28.086	46.369	1.00 18.19	L
ATOM	1398	N CA	LYS	183	173.521	27.703	47.326	1.00 22.39	L
MOTA	1399	CB		183	173.521	26.186	47.492	1.00 27.09	L
ATOM	1400	CG	ĻYS ĻYS	183	173.959	25.715	48.868	1.00 21.06	L
ATOM	1401	CD	LYS	183	174.795	24.443	48.785	1.00 28.23	L
ATOM	1402 1403	CE	LYS	183	175.371	24.075	50.148	1.00 65.45	L
ATOM		NZ	LYS	183	176.860	24.085	50.151	1.00 66.90	ь
ATOM	1404 1405	C	LYS	183	174.847	28.168	46.750	1.00 30.33	L
MOTA		0	LYS	183	175.732	28.640	47.462	1.00 47.79	L
ATOM	1406		ASP	184	174.957	28.044	45.436	1.00 33.23	. L
MOTA	1407	N CA	ASP	184	176.162	28.422	44.729	1.00 32.28	L
ATOM	1408 1409		ASP	184	176.089	27.931	43.290	1.00 41.02	· L
ATOM	1410	CG	ASP	184	176.041	26.424	43.199	1.00 63.85	ŗ
ATOM	1411		ASP	184	176.516	25.754	44.147	1.00 80.57	L
ATOM ATOM	1412		ASP	184	175.530	25.907	42.185	1.00 76.42	L
ATOM	1413	C	ASP	184	176.443	29.910	44.747	1.00 37.31	L
ATOM	1414	0.	ASP	184	177.250	30.379	45.547	1.00 58.28	L
ATOM	1415	N.	GLU	185	175.770	30.652	43.873	1.00 33.24	L
ATOM	1416	CA	GLU	185	175.994	32.088	43.781	1.00 36.62	L
	1417	CB	GLU	185	175.088	32.691	42.702	1.00 37.34	L
ATOM ATOM	1418	CG	GLU	185	173.899	33.484	43.198	1.00 71.02	L
MOTA MOTA	1419	CD	GLU	185	172.973	33.876	42.058	1.00 78.07	L
ATOM	1420		GLU	185	173.399	34.680	41.198	1.00 94.70	L
ATOM	1421		GLU	185	171.826		42.020	1.00 82.48	L
ATOM	1421	C	GLU	185		32.849	45.095	1.00 40.77	L
ATOM	1423	0 .	GLU	185	176.154	34.039	45.144	1.00 28.19	L
MOTA	1424	N	TYR	186	175.455	32.171	46.160	1.00 45.72	L
ATOM.	T444	44		200			-		

MOTA	1425	CA TYR	186	175.357	32.824	47.461	1.00 31.13	L
ATOM	1426	CB TYR	186	174.183	32.284	48.271	1.00 29.29	${f L}$
ATOM	1427	CG TYR	186	174.394	32.396	49.769.	1.00 30.13	L
ATOM	1428	CD1 TYR	186	174.131	33.590	50.447	1.00 33.39	L
ATOM	1429	CE1 TYR	186	174.314	33.694	51.833	1.00 36.37	L
ATOM	1430	CD2 TYR	186	174.850	31.310	50,509	1.00 34.49	L
ATOM	1431	CE2 TYR		175.036	31.402	51.893	1.00 18.79	L
ATOM	1432	CZ TYR	186	174.766	32.594	52.549	1.00 34.18	. T
ATOM	1433	OH TYR	186	174.933	32.673	53.913	1.00 39.71	L
ATOM	1434	C TYR	186	176.641	32.530	48:224	1.00 25.69	L
ATOM	1435	O TYR	186	177.138	33.358	48.985	1.00 46.65	L
ATOM	1436	N GLU	187	177.163	31.327	48.025	1.00 33.86	L
ATOM	1437	CA GLU	187	178.380	30.916	48.695	1.00 30.31	L
ATOM	1438	CB GLU	187		.29.394	48.707	1.00 51.43	ь
ATOM	1439	CG GLU	187	177.688	28.757	49.831	1.00 68.32	. Г
ATOM	1440	CD GLU	187	177.931	27.269	49.944	1.00 84.34	ь
ATOM	1441	OE1 GLU	187	178.505	26.681	49.000	1.00 72.88	L
ATOM	1442	QE2 GLU	187	177.540	26.690	50.980	1.00 92.94	L
ATOM	1443	C GTU	187	179.608	31.516	48.021	1.00 25.34	L
ATOM	1444	O GLU	187	180.731	31.319	48.476	1.00 33.80	L
ATOM	1445	n arg	188	179.393	32.255	46.937	1.00 25.18	L
ATOM	1446	CA ARG	188	180.504	32.887	46.238	1.00 28.26	L
ATOM	1447	CB ARG	188	, 180.430	32.583	44.732	1.00 50.64	L
ATOM	1448	CG ARG	188	179.374	33.352	43.952	1.00 42.62	L
MOTA	1449	CD ARG	.188	179.332	32.895	42.493	1.00 43.87	L
MOTA	1450	NE ARG	188	179.213	31.440	42.378	1.00 93.56	L
MOTA	1451	CZ ARG	188	180.106	30.659	41.779	1.00 99.99	L
MOTA	1452	NH1 ARG	188	181.192	31.187	41.230	1.00 99.99	L
ATOM	1453	NH2 ARG	188	179.918	29.345	41.733	1.00 99.98	L
ATOM	1454	.C ARG	188	180.549	34.399	46.490	1.00 22.65	L
MOTA	1455	O ARG	188	181.077	35.160	45.679	1.00 30.16	L
MOTA	1456	N HIS	189	180.001	34.819	47.626	1.00 27.86	ь
MOTA	1457	CA HIS	189	179.979	36.223	48.023	1.00 21.88	L
MOTA	1458	CB HIS	189	178.650	36.871	47.650	1.00 40.07	L
MOTA	1459	CG HIS	189	178.480	37.107	46.182	1.00 47.15	L
MOTA	1460	CD2 HIS	189	178.796	38.171	45.405	1.00 55.79	L
MOTA	1461	ND1 HIS	189	177.891		45.342	1.00 63.86	L
MOTA	1462	CE1, HIS	189	177.849	36.672	44.115		L
MOTA	1463	NE2 HIS	189	178.391	37.876	44.127	1.00 60.31	L
MOTA	1464	C HIS	189	180.152	36.239	49.531	1.00 29.34	L
MOTA	1465		189	179.750	35.291	50.205	1.00 34.87	L
MOTA	1466	n asn	190	180.729	37.309	50.067	1.00 37.34	L
MOTA	1467	CA ASN	190	180.961	37.379	51.507	1.00 47.66	.L
MOTA	1468	CB ASN	190	182.388	37.855	51.795	1.00 68.12	ŗ
ATOM	1469	CG ASN	190	183.417	37.167	50.930	1.00100.00	L
MOTA	1470	OD1 ASN	190	183.407		50.784	1.00 99.97	L
ATOM	1471	ND2 ASN	190	184.320	37.954	50.350	1.00 99.98	L
ATOM	1472	C ASN	190	180.001		52.290	1.00 42.97	L
ATOM	1473	O ASN	190	179.383	37.797	53.259	1.00 33.80	L
MOTA	1474	N SER	191	179.885	39.511	51.892	1.00 39.67	. L
ATOM	1475	CA SER	191	179.010	40.419	52.614	1.00 30.33	L.
MOTA	1476	CB SER	191	179.698	41.774	52.801	1.00 31.09 1.00 59.06	L L
MOTA	1477	OG SER	191	179.887	42.056	54.177	2.00 33.00	

		٠.					.•		٠.		
ATOM	1478	Ċ.	SER	191		177.655	40.634	51.967	1.00	34.40	· L
ATOM.	1479	0	SER	191		177.550	40.836	50.753	1.00	48.04	L
ATOM	1480	N	TYR	192	•	176.620	40.574	52.802	1.00	25.05	L
MOTA	1481	CA	TYR	192		1.75.246	40.785	52.361	1.00	22.04	L
ATOM	1482	CB	TYR	192		174.420	39.517	52.582	1.00	16.56	L
ATOM	1483	CG	TYR	192		174.807	38.444	51.598	1.00	33.82	L
MOTA	1484	CD1		192		174.383	38.511	50.273	1.00	39.72	L
ATOM	1485	CE1	TYR	192		174.829	37.592	49.330	1.00	33.77	· L
ATOM	1486	CD2	TYR	192		175.683	37.417	51.961	1.00	36.76	L
ATOM	1487	CE2	TYR	192		176.135	36.492	51.024	1.00	36.40	L
ATOM	1488	CZ	TYR	192		175.707	36.587	49.711	1.00	39.55	L
ATOM	1489	OH	TYR	192		176.164	35.693	48.766	1.00	31.96	L
ATOM	1490	C	TYR	192		174.705	41.961	53.160	1.00	26.50	· L
ATOM	1491	0	TYR	192		174.749	41.970	54.389		26.85	L
ATOM	1492	N	THR	193		174.205	42.959	52.443		42.59	L
ATOM	1493	CA	THR	193		173.716	44.165	53.086		49.57	L
ATOM	1494	CB	THR			174.621	45.362	52.738		59.55	L
ATOM	1495	OG1	THR	193		175.983	45.025	53.025		51.20	
	1496	CG2	THR	193		174.219	46.592	53.536		59.94	L
MOTA	1497	C	THR	193		172.285	44.574	52.777		46.91	L
ATOM	1498	0	THR	193		171.848	44.573	51.621		57.88	L
ATOM		N	CYS	194		171.578	44.946	53.836		40.06	L
ATOM	1499 1500	CA	CYS	194		170.208	45.409	53.738		39.66	L
MOTA	1501	G ·	CYS	194	-	170.229	46.894	54.090		50.91	L
ATOM	1501		CYS	194	•	170.229	47.263	55.253		50.44	L
ATOM		O CB	CYS	194		169.326	44.652	54.719		56.36	Ъ
ATOM	1503	SG '	CYS	194		167.606	45.219	54.662		57.55	L
MOTA	1504 1505	N	GLU	195		170.039	47.734	53.080		62.99	L
ATOM		CA	GLU	195		170.055	49.182	53.262		56.68	L
ATOM	1506 1507	CB.	GLU	195		171.006	49.802	52.231		67.85	L
ATOM	1507	CG.	GLU	195		171.618	51.121	52.650		75.89	L
ATOM ATOM	1508	CD	GLU			172.492	51.711	51.560		66.08	L
ATOM	1510		GLU			171.941	52.170	50.533		83.91	L
ATOM	1511		GLU	195		173.731	51.710	51.731		69.63	L
ATOM .	1512	C	GLU	195		168.689	49.812	53.128		41.96	L
ATOM	1513	0	GLU	195		167.926	49.466	52.224		46.93	L
ATOM	1514	N :	ALA	196		168.381	50.755	54.014		39.48	L
ATOM	1515	CA	ALA	196		167.085	51.419	53.983		55.44	L
MOTA	1516	CB	ALA	196		166.114	50.674	54.880		62.95	L
	1517	C	ALA	196		167.111	52.897	54.375		56.78	L
ATOM	1518		ALA	196			53.254		1.00	57.46	L
ATOM	1519	И	THR	197		166.606				59.26	. L
ATOM	1520	CA	THR	197		166.532	55.186	53.738		71.50	L
ATOM .	1521	CB	THR	197		166.971	56.023	52.502		77.13	L
MOTA	1522	OG1		197		166.548	55.374	51.295		83.37	L
ATOM	1523		THR	197		168.486	56.185		1.00	62.62	L
ATOM	1524	C	THR	197		165.086	55.538	54.086	1.00		L
MOTA	1525	0	THR	197		164.155	55.182	53.362	•	73.27	L
ATOM	1525		HIS	198		164.901		55.200		66.28	L
ATOM	1527	CA	HIS	198		163.570	56.617			65.29	L
ATOM	1528	CB	HIS	198		163.203	55.777	56.889		59.65	L
ATOM	1529	CG	HIS	198		161.802	55.976	57.386		50.05	L
ATOM			HIS	198		161.333	56.281	58.619		10.46	L

	MOTA	1531	ND1	HIS	198	٠.	160.691	55.811	56.586	1.00 23.72	L
	MOTA	1532	CE1	HIS	198	•	159.601	56.009	57.306	1.00 8.26	L
	ATOM	·1533	NE2	HIS	198		159.962	56.295	58.545	1.00 26.12	L
	ATOM	1534	С	HIS	198		163.611	58.101	56.001	1.00 65.53	L
	MOTA	1535	0	HIS	198		164.642	58.601	56.446	1.00 44.38	L
	MOTA	1536	N	LYS	199		162.501	58.804	55.776	1.00 69.60	L
	ATOM	1537	CA	LYS	199		162.407	60.235	56.078	1.00 62.83	L
	MOTA	1538	CB	LYS	199		160.940	60.665	56.214	1.00 59.10	L
	ATOM	1539	CG	LYS	199		160.168	60.725	54.908	1.00 66.79	L
	MOTA	1540	CD	LYS	199		159.541	59.376	54.566	1.00 77.11	L
	MOTA	1541	CE ·	LYS	199		160.458	58.543	53.670	1.00 66.29	L
	MOTA	1542	NZ	LYS	199		160.372	58.922	52.226	1.00 71.28	L
	MOTA	1543	C	LYS	199		163.100	60.459	57.409	1.00 54.65	Г
	MOTA	1544	0	LYS	199		163.853	61.418	57.596	1.00 52.78	L,
	ATOM	1545	N	THR	200		162.823	59.538	58.322	1.00 59.05	L
	ATOM	1546	CA	THR	200		163.361	59.542	59.668	1.00 72.79	L
	ATOM	1547	CB	THR	. 200		162.896	58.262	60.404	1.00 72.74	L
	ATOM	1548	OG1	THR	200		162.485	58.594	61.732	1.00 81.55	L
	ATOM	1549	CG2	THR	200		164.002	57.222	60.439	1.00 67.03	L
	ATOM	1550	С	THR	200		164.890	59.648	59.712	1.00 77.51	L
	ATOM	1551	0	THR	200		165.479	59.774	60.785	1.00 76.37	L
	ATOM	1552	N	SER	201		165.536	59.607	58.550	1.00 82.04	L
	ATOM	. 1553	CA	SER	201	,	166.991	59.696	58.521	1.00 77.00	L
	ATOM	1554	CB	SER	201		167.599	58.411	59.082	1.00 70.20	L
	ATOM	1555	OG	SER	201		168.828	58.678	59.728	1.00 48.40	L
	ATOM	1556	C	SER	201		167.583	59.967	57.145	1.00 75.86	L
	MOTA	1557	0	SER	201		167.126	59.436	56.129	1.00 78.72	L
	MOTA	1558	N	THR	202		168.617	60.802	57.128	1.00 79.38	L
	ATOM	1559.	CA	THR	202		169.317	61.144	55.897	1.00 85.40	L
	MOTA	1560	CB	THR	202		169.864	62.586	55.942	1.00 82.98	
	ATOM .	1561	OG1	THR	202		170.536	62.807	57.190	1.00 58.44	L
	MOTA	1562	CG2	THR	202		168.725	63.591	55.800	1.00 81.93	L
	ATOM	1563	C	THR	202		170.481	60.165	55.752	1.00 87.12	
	ATOM	1564	0	THR	202		171.106	60.069	54.697	1.00 90.15	
	ATOM	1565	N	SER	203		170.757	59.442	56.835	1.00 85.15	
	MOTA	1566	CA	SER	203		171.826	58.452	56.866	1.00 85.74	
	ATOM .	1567	CB	SER	203	••	172.589	58.538	58.194	1.00 91.67	
•	ATOM '	1568	OG	SER	. 203		172.049	59.540	59.041	1.00 86.93	L
	ATOM	1569	C	SER	203	٠.	171.203	57.069	56.719	1.00 87.87	L
	ATOM	1570	0	SER	203		170.682	56.508	57.686	1.00 84.65	
	MOTA	1571	N	PRO	204		171.244	56.501	55.502	1.00 89.56	
	MOTA	1572	CD	PRO	204		171.858	57.072	54.292	1.00 93.06	
	ATOM	1573	CA	PRO	204		170.672	55.176	55.244	1.00 82.77	
	MOTA	1574	CB	PRO	204		171.269	54.772	53.888	1.00 81.38	
	ATOM	1575	CG	PRO	204		172.262	55.855	53.525	1.00 78.75	
	MOTA	1576	C	PRO	204		171.002	54.167	56.335	1.00 76.12	
	MOTA	1577	0	PRO	204		172.169	53.960	56.656	1.00 79.62	
	MOTA	1578	N	ILE	205		169.971	53.557	56.911	1.00 69.79	
	ATOM	1579	CA	ILE	205	-	170.172	52.556	57.953	1.00 59.52	
	MOTA	1580	CB	ILE	205		168.862	52.224	58.675		
•	MOTA	1581		ILE	205		169.124	51.192	59.763	1.00 62.73	
•	ATOM	1582		ILE	205	٠	168.264	53.503	59.263	1.00 51.85	
	ATOM	1583	CD1	ILE	205		166.912	53.310	59.921	1.00 48.97	ц

ATOM	. 1584	С	ILE	205	170.711	51.294	57.294	1.00 58.53	ъ
ATOM	1585	ō	ILE	205	170.225	50.873	56.241	1.00 60.90	. Г
MOTA	1586	N .	VAL ·		171.719	50.691	57.918	1.00 53.53	L
MOTA	1587	CA	VAL	206	172.332	49.498	57.356	1.00 41.22	L
ATOM	1588	CB	VAL	206	173.739	49.825	56.810	1.00 18.34	L
ATOM	1589		VAL	206	174.486	48.548	56.467	1.00 13.15	L
MOTA	1590	CG2		206	173.618	50.706	55.580	1.00 13.65	L
ATOM	1591	C	VAL	206	172.442	48.336	58.331	1.00 44.96	L
ATOM	1592	ō	VAL	206	172.747	48.517	59.509	1.00 44.72	L
ATOM	1593	N	LYS	207	172.180	47.137	57.818	1.00 51.44	L
ATOM	1594	CA	LYS	207	172.269	45.915	58.598	1.00 52.57	L
ATOM	1595	CB	LYS	207	170.882	45.438	59.020	1.00 54.70	L
ATOM	1596	CG	LYS	207	170.800	45.038	60.479	1.00 47.68	L
ATOM	1597	CD	LYS	207.	171.141	46.206	61.394	1.00 42.68	L
ATOM	1598	CE	LYS	207	170.477	46.060	62.758	1.00 53.93	L
MOTA	1599	NZ	LYS	207	170.763	44.740	63.395	1.00 56.72	L
ATOM	1600	C	LYS	207	172.906	44.900	57.671	1.00 51.25	L
MOTA	1601	0	LYS	207	172.357	44.592	56.610	1.00 57.87	L
ATOM	1602	N	SER	208	174.072	44.396	58.059	1.00 48.56	L
MOTA	1603	CA	SER	208	174.780	43.429	57.230	1.00 44.28	L
ATOM	1604	ÇВ	SER	208	175.956	44.095	56.525	1.00 43.06	L
MOTA	1605	OG	SER	208	175.511	45.119	55.659	1.00 64.64	L
MOTA	1606	c ·	SER	208	, 175.301	42.236	58.003	1.00 46.92	L
MOTA	1607		SER	208	175.121	42.129	59.221	1.00 49.18	. L
MOTA	1608	N	PHE	209	175.950	41.342	57.269	1.00 47.47	L
ATOM	1609	CA	PHE	209	176.539	40.152	57.850	1.00 48.36	L
MOTA	1610	CB	PHE	209	175.443	39.170	58.296	1.00 58.47	L
MOTA	1611	CG	PHE	209	174.804	38.414	57.168	1.00 68.93	L
MOTA	1612		PHE	209	173.734	38.960	56.471	1.00 77.87	· L
MOTA	1613	CD2	PHE.	209	175.280	37.161	56.793	1.00 73.00	L
ATOM	1614		PHE	209	173.148	38.270	55.411		L
MOTA	1615		PHE	209	174.703	36.461	55.736	1.00 64.61	L
ATOM	1616	CZ	PHE	209	173.633	37.017	55.043	1.00 71.74	L
MOTA	1617		PHE	209	177.481	39.498	56.851	1.00 44.99	L
ATOM	1618	0	PHE	209	177.336	39.658	55.637	1.00 35.92	L
MOTA	1619	N.	ASN		178.463	38.782	57.384	1.00 56.65	L L
ATOM	1620	CA	ASN	210	179.444	38.079	56.572 57.064	1.00 80.29	. · L
ATOM	1621	CB	ASN	210	180.853 181.925	38.402 37.920	56.112	1.00100.00	L
ATOM	1622		ASN	210	182.386	38.670	55.250		L
ATOM	1623		ASN	210	182.328	36.658	56.258	1.00100.00	L
ATOM	1624		ASN	210 210	179.165			1.00 63.50	. T
MOTA	1625		ASN	210	178.624	36.183	57.763	1.00 79.33	L
ATOM	1626 1627	N .	ASN ARG	211	179.524		55.756	1.00 60.96	L
ATOM	1628	CA	ARG	211	179.284	34.350	55.872	1.00 67.53	L
ATOM		CB	ARG	211	179.672	33.644	54.576	1.00 53.17	L
ATOM ATOM	1629 1630	CG	ARG	211	178.475	33.141	53.792	1.00 46.30	r -
ATOM	1631	CD	ARG	211	178.602	33.466	52.320	1.00 24.02	L
ATOM	1632	NE .	ARG	211	179.366	32.449	51.606		, L
MOTA	1633	CZ	ARG	211	180.693	32.431	51.527	1.00 46.60	· L
ATOM	1634		ARG	211	181.411	33.377	52.118	1.00 74.04	L
ATOM	1635		ARG	211	181.307	31.466	50.863	1.00 58.03	L
MOTA	1636	C	ARG	211	180.041	33.746	57.060	1.00 78.01	L
		,			,				

		٠.		•					•	·.
ATOM	1637	0	ARG	21	1	181.277	33.714	57.080°	1.00 62.45	L
MOTA	1638	N ·	ASN	21	2	179.264	33.284	58.046	1.00 96.28	
MOTA	1639	CA	ASN	21	2	179.747	32.661	59.288	1.00 99.99	
MOTA	1640	CB.	ASN	. 21	2	181.065	31.915	59.055	1.00 99.98	L
MOTA	1641	CG	ASN	21	2	181.130	30.602	59.816	1.00100.00	, P
ATOM	1642	OD1	ASN	21	2	180.343	30.360	60.738	1.00 94.94	L
ATOM	1643		ASN	21	2	182.070	29.743	59.434	1.00 99.99	L
ATOM	1644	C ·	ASN	21	2 ·	179.918	33.640	60.455	1.00 99.98	L
ATOM	1645	0	ASN	21		180.791	34.533	60.359	1.00 99.99	L
ATOM	1646	OT	ASN	21		181.064	34.157	61.055	1.00 99.99	L
ATOM	1647	CB	VAL		2 ·	121.621	36.267	64.620	1.00 37.38	н
ATOM	1648		VAL		2	120.401	36.241	65.515	1.00 27.71	H
ATOM	1649		VAL		2	122.281	37.627	64.680	1.00 34.18	H
ATOM	1650	C	VAL		2	123.855	35.223	64.193	1.00 42.92	
ATOM	1651	0	VAL		2	124.332	36.300	63.840	1.00 42.57	
ATOM	1652	N	VAL		2	122.979	35.304	66.494	1.00 47.65	
ATOM	1653	CA	VAL		2 .	122.610	35.160	65.057	1.00 44.59	
ATOM	1654	N	GLN		3	124.382	34.056	63.852	1.00 45.14	
ATOM	1655	CA	GLN		3	125.594	33.990	63.047	1.00 47.76	н
ATOM	1656	CB	GLN		3	126.585	33.018	63.684	1.00 47.79	
ATOM	1657	CG	GLN		3	128.013	33.216	63.226	1.00 70.50	H.
ATOM	1658	CD	GLN		3	128.654	31.926	62.768	1.00 77.13	
ATOM	1659	OE1		•		128,477		63.392	1.00 89.69	
ATOM	1660	NE2	GLN		3	129.403	31.990		1.00 74.80	
ATOM	1661	C	GLN	•	3	125.324	33.576	61.605	1.00 43.77	
ATOM	1662	0	GLN		3	124.223	33.144	61.264	1.00 28.11	•
ATOM	1663	И	LEU		4	126.341	33.721	60.761	1.00 43.76	
MOTA	1664	CA	LEU		4	126.231	33.358	59.356	1.00 47.78	
ATOM ·	1665	CB	LEU		4	126.061	34.620	58.502	1.00 41.23	
MOTA	1666	CG	LEU		4	125.041	34.700	57.351	1.00 30.41	
MOTA	1667		LEU		- 4 .	124.005	33.592	57.439	1.00 25.02	H
MOTA	1668		LEU		4	124.353	36.059		1.00 18.34	н
MOTA	1669	C	LEU		4	127.499	32.620	58.945	1.00 47.69	H
ATOM	1670	ō	LEU		4	128.468	33.245	58.524	1.00 52.13	H
ATOM	1671	N	GLN		5	127.500	31.296	59.081	1.00 46.16	н
ATOM	1672	CA	GLN		5	128.669	30.500	58.706	1.00 47.49	н
ATOM ·	1673	CB	GLN		5	128.591	29.109	59.335	1.00 47.97	н
ATOM	1674	CG	GLN	• •	5	129.142	29.029	60.747	1.00 41.56	H
MOTA	1675	CD	GLN		5	128.328	28.100	61.633	1.00 64.06	н
ATOM	1676				5	128.475	26.874	61.573	1.00 60.56	н
MOTA	1677		GLN		5	127.459	28.681	62.459	1.00 60.41	. н
ATOM		С	GLN		5	128.764	30.379	57.187	1.00 36.59	H
ATOM	1679		GLN		5	127.760	30.146	56.519	1.00 31.08	H
ATOM	1680	N	GLN		6	129.978	30.531	56.659	1.00 35.83	н
ATOM	1681	CA	GLN		6	130.214	30.460	55.220	1.00 33.41	. Н
ATOM	1682	CB	GLN	•	6 .	130.697	31.824	54.715	1.00 15.61	, H
ATOM	1683	CG.	GLN		6	130.089	32.252	53.377	1.00 48.11	H
ATOM	1684	CD	GLN		6	130.061	33.762	53.195	1.00 44.23	H
ATOM	1685		GLN		6	129.429	34.480	53.971	1.00 44.77	H
ATOM	1686		GLN		6	130.750	34.251	52.164	1.00 43.09	H
ATOM	1687	C	GLN	•	6	131.230	29.393	54.818	1.00 39.29	H
ATOM	1688	Ō	GLN		6	131.746	28.655	55.659	1.00 47.11	. Н
ATOM	1689	N	SER		7 ·	131.492	29.318	53.514	1.00 52.14	H
									and the second s	

			1	2			•	• •			
MOTA	,1690	CA	SER	7	1	32.464	28.402	52.913	1.00	45.28	H
MOTA	1691	CB ·	SER	· 7	1	33.561	28.037	53.913	1.00	3,0.02	H
ATOM	1692	OG	SER	7	1	34.775	27.764	53.240	1.00	36.01	H.
MOTA	1693	C	SER	7	1	31.963	27.125	52.255		53.29	H
MOTA	1694	0	SER	7	` 1	30.825	26.691	52.435	. 1.00	41.78	H
ATOM	1695	N.	GLY	. 8	1	32.873	26.546	51.478	1.00	74.11	H
ATOM	1696	CA	GLY	. 8	1	32.656	25.313	50.744	, 1.00	86.06	H
ATOM	1697	С	GLY	8	1	33.987	25.088	50.046	1.00	96.74	H
ATOM	1698	0	GLY	8	1	35.032	25.207	50.691	1.00	9 9.99	H
ATOM	1699	N	PRO	9	1	33.999	24.757	48.739	1.00	99.99	H
MOTA	1700	CD	PRO	9	1	32.851	24.529	47.850	1.00	99.99	H
MOTA	1701	CA	PRO	9	1	35.283	24.547	48.047	1.00	95.17	H
MOTA	1702	CB	PRO	9	1.	34.873	23.925	46.702	1.00	99.99	H
ATOM	1703	CG	PRO	9	1	33.404	23.557	46.852	1.00	99.98	H
ATOM	1704	C	PRO	9	1	36.019	25.882	47.872	1.00	83.28	H
MOTA	1705	0	PRO	9	1	35.387	26.937	47.793	1.00	73.84	Ħ
MOTA	1706	N	GLU	10	1	37.349	25.847	47.811	1.00	73.05	H
ATOM	1707	CA	GLU	10	1	38.109	27.087	47.672	1.00	56.11	H
ATOM	1708	CB	GLU	10	1	39.003	27.279	48.898	1.00	43.53	H
ATOM	1709	CG	GLU	10	1	38.487	26.554	50.136	1.00	30.69	H
ATOM	1710	CD	GLU	10	1	37.988	27.497	51.217	1.00	42.43	H
ATOM	1711	OE1	GLU	10	1	38.782	28.352	51.678	1.00	16.81	H
ATOM	1712	OE2	GLU	10	. 1	36.803	27.374	51.612	1.00	22.46	H
ATOM .	1713	C	GLU	10	1.	38.939	27.223	46.393	1.00	47.28	H
MOTA	1714	0	GLU	10	1	39.302	28.336	46.017	1.00	48.73	H
ATOM	1715	N	LEU	11	1.	39.239	26.106	45.730	1.00	37.54	H
ATOM	1716	CA	LEU	11	1	40.012	26.137	44.486		30.14	Н
ATOM	1717	CB .	LEU	11		41.398		44.676		20.14	H
MOTA	1718	CG	LEU	11		42.591		44.045		23.62	H
ATOM	1719		LEU.	11		43.477		43.309		18.85	H
ATOM	1720		LEU	11		42.110		43.100		23.67	H
ATOM	1721	C ,	LEU	11		39.306		43.357		44.95	H
ATOM		0	LEU	11		38.867		43.519		54.63	H .
MOTA	1723	N	VAL	12		39.210		42.207		41.04	H
MOTA	1724	CA	VAL	12		38.564		41.042		44.92	H
MOTA	1725	CB	VAL	12		37.198		40.760		55.40	H
ATOM	1726		VAL	12		36.166		41.736		60.33	H
ATOM	1727		VAL	12		37.324		40.849		67.40	·H
ATOM	1728	C .	VAL	12		39.428	25.687	39.824		38.99	H
	1729		VAL	12		40.065		39.702 38.928		23.16	H
ATOM ·	1730	N	LYS	13		39.451		37.701		61.99	Н
MOTA	1731	CA	LYS	13		40.230				47.53	H
ATOM	1732	CB	LYS	13		40.577		37.154 37.259		29.92	H
	1733	CG	LYS	. 13 13		42.054 42.364		36.416		39.21	H
. ATOM	1734	CD	LYS					35.596		40.05	H
ATOM	1735	CE	LYS	13 13		43.629	22.007	36.230			н
ATOM ATOM	1736 1737	NZ . C	LYS LYS			39.365		36.706		60.22	H
ATOM	1737	0	LYS	13		38.184				48.99	H
ATOM	1739	Ŋ	PRO	14		39.951		36.066		55.96	н
ATOM	1740	CD	PRO	14		41.359		36.236		55.17	н
ATOM	1741	CA	PRO	14		39.270		35.091		63.02	H
ATOM	1741		PRO	14		40.412				59.73	H
ATON.	1/74	C15 .	110					01,404	~		

		٠.			•			•		•							
ATOM	1743	CG	PRO	•	14		141.	.685	27.	633	34.	929			60.43		H
ATOM	1744	C ·	PRO		14		138	.356	26.	766	34.	096	1.0	00	61.60		H
ATOM	1745	0	PRO		14		138	.802	25.	957	33:	275	1.0	00	63.48		H
ATOM	1746	N	GLY		15		137	.069	27.	093	34.	185	1.0	00	55.03		H
MOTA	1747	CA	GLY		15		136	.077	26.	503	33.	307	1.0	00	55.23		H
MOTA	1748	C	GLY		15		134		25.	815	34.	.071	1.0	00	49.69		H
ATOM	1749	0	GLY		15			.800		865	33.	670	1.0	00	45.93		H
ATOM	1750	N	THR		16			.304		176	35.	. 182	1.0	00	46.88		H
ATOM	1751	CA	THR		16			.303		480	35.	. 969	1.0	00.	46.72		Н
ATOM	1752	CB	THR		16			.946	23.	549	36.	. 992	1.0	00	53.32		H
MOTA	1753		THR		16			.914		275		.758	1.0	00	63.69		H
MOTA	1754	CG2	THR		16			.615		387		. 286	1.0	00	61.76		H
MOTA	1755	C	THR		16			.361		415	36.	.700	.1.0	00	42.84		H
ATOM	1756	0.	THR		16			.391		626		.505			35.33	•	H
ATOM	1757	N .	SER		17			.535		829		. 559	1.0	00	46.34		Н
	1758	CA	SER		17			.543	.25.			.320	1.0	00	44.29		Н
MOTA	1759	CB	SER		17			.190		458		.621			43.09		H
MOTA	1760	OG	SER		17			.349		482		.211			37.03		Н
MOTA	1761	C	SER		17			.408		051		.742			45.39		Н
MOTA	1761	0	SER		17			.124		872		.956			51.18		н
MOTA			VAL		18			.599		938		.713			43.96		н
MOTA	1763 1764	N CA	VAL		18			.483		564		.119			45.50		н
MOTA		CB	VAL		18			.723		989		.932			47.04		н
ATOM	1765 1766		VAL		18	1		.979		469		.756			45.76		Н
ATOM			VAL		18			.513		665		.400			36.17		H.
MOTA	1767		VAL		18			.257		218		.742			46.62		Н
ATOM	1768	C	VAL		18			.772		240		258			24.82		Н
MOTA	1769	0			19			.758		610		.813			53.11		н
ATOM	1770	N	ARG					.589		122		.518			58.98		Н
ATOM	1771		ARG		19 19			.414		157		.354			48.17		н
ATOM	1772	CB	ARG ARG		19			.252		443		.280			32.81		Н
MOTA	1773	CG	ARG	·	19			.479		167		.605			61.51		Н
ATOM	1774	CD	ARG		19			.212		302		.530			70.76		н
MOTA	1775	NE CZ	ARG		19			.661		352		.283			68.17		Н
MOTA	1776		ARG		19			.353		124		.232			41.10		Н
ATOM	1777		ARG		19			.428		625		.090			47.54		н
ATOM	1778	C	ARG		19			.912		282		.000			57.70		н
ATOM	1779 1780	0 .	ARG	٠	19			.050		294		.716			66.45		Н
ATOM	1781	N	ILE	•	20			.043		523		.456			53.34		Н
ATOM								.345		780		.860			52.34		н
	. 1782	CA CB	ILE		20			.052		137		.067			45.51		Н
ATOM	1783		ILE		20			.474		053		.565			47.12		Н
MOTA	1784 1785		ILE		20	•		.280		243		.353			39.21		Н
MOTA	1786		ILE		20			.929		606		.466			37.76		Н
MOTA	1787	C	ILE		20			.059		.800		.666			55.83		Н
ATOM	1788	0	ILE		20			.960		764		.113			48.41		Н
ATOM	1789	И	SER	•	21			.208		860		.981			65.06		Н
MOTA		CA	SER		21			.058		. 892		.863			70.97		н
MOTA MOTA	1790 1791	CB	SER		21			.810		.503		.468			72.43		н
MOTA	1792	OG	SER		21			.562		.314		.654			60.74		н
ATOM	1793	C	SER		21			.260		.917		.968			69.87		н
ATOM	1794	o	SER		21			.288		.599		.026			70.39		Н
MOTA	1795	N	CYS		22			.262		.013		.839			69.21		Н
211011																	

		٠, ٠								•		• •
ATOM	1796	CA	CYS	2	2		126.263	29.940	53.963	1.00	61.84	·H
ATOM	1797	C	CYS		2		124.996	29.635	54.745	1.00	52.88	H
ATOM	1798	0	CYS	. 2	2		123.890	29.845	54.249	1.00	52.20	H
ATOM	1799	СВ	CYS		2		126.233	31.379	53.461	1,00	52.16	H
ATOM	1800	SG	CYS		2		125.483	32.535	54.637	1.00	54.59	H
MOTA	1801	N	GLU		:3		125.154	29.147	55.968	1.00	40.82	H
MOTA	1802	CA.	GLU		3		123.998	28.783	56.767	1.00	43.24	H
ATOM	1803	CB	GLU		13		124.140	27.339	57.230	1.00	55.82	H
MOTA	1804	CG	GLU		:3		125.578	26.915	57.456		76.19	H
ATOM	1805	CD	GLU		3.		125.807	26.370	58.853	1.00	92.47	H
ATOM .	1806	OE1			3		124.810	26.025	59.525	1.00	98.93	н
ATOM	1807	OE2			:3		126.982		59.278	1.00	.99.99	н
ATOM	1808	C	GLU		3		123.723	29.675	57.962		47.05	H
	1809	0	GLU		23		124.610	29.940	58.777		50.01	H
MOTA	1810	N	ALA		4		122.472	30.117	58.060		39.44	H
MOTA	1811	CA	ALA		24		122.022	30.980	59.143		43.91	·H
MOTA	1812	CB	ALA		24		120.770	31.729	58.709		40.39	H
ATOM.	1813	C	ALA		24		121.745	30.197	60.429		49.01	н
ATOM	1814	0	ALA		24		121.532	28.983	60.398		44.02	H
MOTA	1815	N	SER		25		121.752	30.909	61.555		60.65	H
MOTA	1816	CA	SER		25		121.504	30.321	62.872		64.10	H
ATOM	1817	CB -			25		122.557	29.250	63.192		76.12	H
ATOM		OG .	SER		25		123.782	29.512	62.529		87.44	· H
MOTA	1818	C	SER		25	•	121.514	31.391	63.966		53.28	H
ATOM	1819		SER		25		122.520	32.068	64.188		50.41	н
MOTA	1820	0	GLY		25. 26		120.384	31.533	64.651		46.94	н
MOTA	1821	N CA	GLY		26		120.275	32.520	65.708		30.92	H
MOTA	1822		GLY		26		119.044	33.377	65.502		32.69	н
MOTA	1823	С О	GLY		26	•	118.711	34.201	66.349		19.54	H
MOTA	1824	N	TYR		27		118.372	33.167	64.370		42.28	
ATOM .	1825 1826	CA	TYR		27		117.163	33.909	64.012		45.58	H
MOTA	1827	CB.	TYR		27		117.546	35.240	63.346	•	51.85	н
MOTA	1828	CG:			27		118.025	35.116	61.907	1.00	59.01	н
ATOM ATOM	1829		TYR		27		117.155	35.345	60.838	1.00	52.27	н
	1830	CE1			27		117.595	35.261	59.514		42.40	н
ATOM	1831	CD2			27		119.355	34.794	61.614		52.66	H
MOTA	1832						119.804	34.710	60.293	1.00	46.26	Н
ATOM ATOM	1833	CZ	TYR		27		118.919	34.947	59.250	,1.00	50.61	Н
ATOM	1834	OH	TYR		27		119.363	34.893	57.947		42.85	Н
MOTA	1835	C			27		116.250	33.109	63.072	1.00	48.20	H
MOTA	1836	0	TYR		27		116.553	31.963	62.712		30.85	H
ATOM	1837	И	THR		28		115.131	33.722	62.684		47.35	H
ATOM	1838	CA	THR		28		114.176	33.088	61.776		41.83	H
ATOM	1839	CB	THR		28		112.786	33.737	61.871	1.00	39.96	H
ATOM	1840		THR		28		112.270	33.577	63.197	1.00	50.93	· H
ATOM	1841	CG2			28		111.830	33.084	60.878		45.16	H
ATOM	1842	C	THR	_	28			33.204	60.328	1.00	40.89	H
ATOM	1843	0	THR		28		114.619	34.280	59.739	1.00	31.24	H
ATOM	1844	N	PHE		29		115.095	32.084	59.766		41.61	Н
ATOM	1845	CA	PHE		29			32.035	58.399	1.00	41.45	H
ATOM	1846	CB	PHE		29		115.946	30.593	58.034	1.00	30.51	H
MOTA	1847		· PHE		29		116.611	30.449	56.696		37.17	H
ATOM	1848		PHE		29		117.833	31.065	56.439	1.00	30.37	H

				•									
MOTA	1849	CD2	PHE	•	29	•	116.032	29.667	55.700	1.00	36.28	· I	H
MOTA	1850	CE1	PHE		29		118.469	30.904	55.214	1.00	21.32	I	Η
MOTA	1851	CE2	PHE		29		116.666	29.500	54.463	1.00	41.18	İ	H
MOTA	1852	CZ	PHE		29		117.889	30.122	54.225	1.00	35.05	I	H
MOTA	1853	C	PHE		29		114.594	32.572	57.379	1.00	54.24	1	H
MOTA	1854	.0	PHE		29	`.	114.952	33.331	56.480	1.00	66.70	1	H
MOTA	1855	N	THR		30		113.342	32.164	57.527	1.00	55.99	1	H
ATOM	1856	CA	THR		30	•	112.276	32.557	56.615	1.00	52.36	I	H
ATOM	1857	СВ	THR		30		111.052	31.652	56.824	1.00	53.76	1	F
ATOM	1858	OG1	THR		30		110.733	31.583	58.225	1.00	35.56	I	H
ATOM	1859	CG2	THR		30		111.357	30.244	56.304	1.00	44.72	1	H
ATOM	1860	С	THR		30		111.829	34.016	56.703	1.00	47.50	I	H
ATOM	1861	0	THR		30		110.914	34.426	55.996	1.00	53.11	1	H
ATOM	1862	N	SER		31		112.470	34.804	57.554	1.00	46.37	I	H
ATOM	1863	CA	SER		31		112.094	36.207	57.697	1.00	45.74	· I	Η
ATOM	1864	CB	SER		31		111.832	36.521	59.167	1.00	29.27	I	Η
ATOM	1865	OG	SER		31		110.583	37.159	59.337	1.00	47.69	I	Η
ATOM	1866	С	SER		31		113.143	37.175	57.150	1.00	47.78	I	H
ATOM	1867	0	SER		31		113.149	38:358	57.509	1.00	46.57	1	H
ATOM	1868	N	TYR		32		114.027	36.683	56.286	1.00	31.83	· I	Η
ATOM	1869	CA	TYR		32		115.068	37.530	55.720	1.00	30.55	1	H
ATOM	1870	CB	TYR		32		116.287	37.556	56.642	1.00	32.62	1	H
ATOM	1871	CG	TYR		32		116.075	38.248	57.963	1.00	37.51	1	H
ATOM	1872	CD1	TYR		32	_	115.494	37.579	59.031	1.00	33.89	I	H
ATOM	1873	CE1	TYR		32		115.358	38.184	60.266	1.00	35.72	I	Η
ATOM	1874	CD2	TYR	•	32	-	116.510	39.556	58.166	1.00	39.03	I	Η
ATOM	1875	CE2	TYR	,	32		116.378	40.173	59.401	1.00	40.85	1	H
MOTA	1876	$\mathbf{C}\mathbf{Z}$	TYR		32		115.803	39.476	60.449	1.00	43.40	I	H
MOTA	1877	OH	TYR		32		115.693	40.053	61.695	1.00	55.17	· I	H
ATOM	1878	С	TYR		32		115.526	37.071	54.342	1.00	42.11	, I	Ŧ.
ATOM	1879	0 -	TYR	•	32		115.438	35.889	54.012	1.00	37.33	1	H
ATOM	1880	N	TYR		33		116.021	38.017	53.545	1.00	52.12	1	Η
MOTA	1881	CA	TYR		33		116.544	37.721	52.210	1.00	50.02		H
ATOM	1882	CB	TYR		33		116.576	38.960	51.309		42.85		H
MOTA	1883	CG	TYR		33		115.263	39.601	50.944		58.80	1	H
ATOM	1884	CD1	TYR		33	•	114.637	39.313	49.730	1.00	66.77		H
ATOM	1885	CE1	TYR		33		113.466	39.968	49.345	1.00	69.61		H
MOTA	1886	CD2	TYR		33		114.683	40.558	51.771		76.77		H
MOTA	1887	CE2	TYR	•	33	:	113.513	41.220	51.398		80.20		H
ATOM	1888	CZ	TYR		33		112.909	40.921	50.185	1.00			Η .
MOTA	1889	OH	TYR		33		111.746		49.830		56.44		H
MOTA	1890	C	TYR	:	33		118.000	37.359	52.441		53.48		H
MOTA	1891	0	TYR		33		118.601	37.825	53.411		55.64		H
MOTA	1892	N	ILE		34		118.574	36.538	51.570		39.36		H
MOTA	1893	CA	ILE		34		119.991	36.237	51.705		36.92		H
MOTA	1894	CB	ILE		34		120.310	34.720	51.687		41.72		H
MOTA	1895		ILE	•	34		121.831	34.515	51.776		24.87		H
MOTA	1896		ILE		34		119.647	34.023	52.879		33.33		H
MOTA	1897		ILE		34		120.435	34.137	54.177		29.68		H
ATOM	1898	C	ILE	•	34		120.629	36.900	50.490		33.61		H
ATOM	1899	0	ILE		34		120.304	36.568	49.351		36.71		H
MOTA	1900	N	HIS		35		121.506	37.864	50.739		34.93		H H
ATOM	1901	CA	HIS		35		122.185	38.573	49.666	T.00	29.41	1	.1

1.00 22.47 122.300 40.062 49.990 Η CB HIS 35 MOTA 1902 50.047 1.00 28.34 Η 120.983 40.768 HIS 35 MOTA 1903 CG 51.049 1.00 17.42 H 120.082 40.885 1904 CD2 HIS 35 MOTA 41.427 48.965 1.00 34.24 Η 120.446 1905 ND1 HIS 35 ATOM 41.924 49.298 1.00 35.85 Η 1906 35 119.266 CE1 HIS MOTA 119.023 41.609 50.556 1.00 28.90 Η 35 NE2 HIS ATOM ' 1907 38.000 49.482 1.00 24.58 Н 123.574 1908 C HIS 35 ATOM 50.403 1.00 40.74 H 37.437 124.156 1909 0 HIS 35 MOTA 1.00 18.85 H 124.104 38.149 48.282 TRP 36 MOTA 1910 N 37.664 47.984 1.00 25.49 Н 125.430 36 MOTA 1911 CA TRP 36.410 47.104 1.00 38.00 125.334 1912 CB TRP 36 MOTA 47.882 1.00 42.56 H 35.122 36 125.226 1913 CG TRP MOTA 1.00 28.82 Н 126.288 34.433 48.564 CD2 TRP 36 1914 MOTA 33.274 49.146 1.00 18.67 Η 125.730 CE2 TRP 36 MOTA 1915 34.687 48.737 1.00 34.82 Н 127.658 1916 CE3 TRP 36 MOTA 34.368 48.075 1.00 40.81 Н CD1 TRP 124.097 36 1917 MOTA 1.00 30.56 Н 124.394 33.257 48.834 NE1 TRP 36 1918 ATOM H 126.492 32.368 49.889 1.00 44.00 CZ2 TRP 36 1919 ATOM Н 128.418 33.786 49.479 1.00 41.71 36 ATOM 1920 CZ3TRP 1.00 49.64 H 32.641 50.045 127.832 CH2 TRP 36 MOTA 1921 1.00 22.21 Н 38.784 47.269 126.189 1922 C TRP 36 MOTA 1.00 20.33 Н 125.658 39.410 46.352 TRP 36 1923 0 MOTA , 127.420 Н 39.044 47.703 1.00 21.22 VAL 37 MOTA 1924 N 1.00 29.63 Н 128.237 40.085 47.089 MOTA 1925 CA VAL 37 41.414 47.887 1.00 30.69 Н 128.157 VAL 37 MOTA 1926 CB 1.00 7.82 Н 41.453 48.701 126.874 1927 CG1 VAL 37 MOTA Н 1.00 16.02 41.569 48.780 1928 37 129.366 CG2 VAL MOTA н 1.00 33.49 39.641 46.984 37 129.693 MOTA 1929 С VAL Н 47.900 1.00 17.14 130.223 39.017 MOTA 1930 .0 VAL 37 Н 45.862 1.00 43.70 39.970 MOTA 1931 N LYS . 38 130.330 1.00 47.72 Н 45.619 39.591 MOTA 1932 CA LYS 38 131.720 1.00 55.60 Н 44.233 131.849 38.932 ATOM . 1933 CB LYS 38 H 39.756 43.175 1.00 55.19 38 132.592 MOTA 1934 CG LYS 42.022 1.00 50.50 H 133.109 38.890 38 MOTA 1935 CD LYS 131.967 38.347 1.00 51.42 н 41.155 1936 CE LYS 38 MOTA 40.335 1.00 38.13 Н 132.372 37.162 1937 NZLYS 38 MOTA 1.00 48.64 Н 45.732 132.699 40.757 1938 С 38 MOTA LYS 1.00 52.35 Н 41.837 45.189 132.467 38 MOTA 1939 0 LYS 1.00 38.36 Η 40.525 46.439 133.798 1940 N GLN. 39 MOTA 134.819 41.545 46.621 1.00 30.47 H 39 1941 CA GLN MOTA 1.00 40.49 H 134.969 41.879 48.103 MOTA CB GLN 39 1942 1.00 23.44 Н 39 136.078 42.863 48.409 CG GLN 1943 MOTA 49.803 1.00 27.61 H 39 135.965 43.424 GLN ATOM 1944 CD 135.386 44.485 50.004 1.00 26.42 H OE1 GLN 39 MOTA 1945 50.781 H 136.517 42.709 1.00 31.89 39 1946 NE2 GLN MOTA 1.00 29.22 Η 136.142 41.029 46.074 C 39 GLN MOTA 1947 1.00 19.00 H 39 136.781 40.160 46.672 0 GLN ATOM 1948 1.00 41.18 Н 136.548 41.560 44.928 ARG 40 MOTA 1949 N H 1.00 48.75 40 137.794 41.139 44.310 ATOM 1950 CA ARG H 1.00 47.54 137.805 41.496 42.819 1951 CB ARG 40 MOTA Н 41.923 1.00 39.67 137.203 40.422 ATOM 1952 CG ARG 40 1.00 63.74 40.448 ARG 40 137.409 40.741 MOTA 1.953 CD 39.997 1.00 66.96 40 138.762 40.415 1954 NE ARG MOTA

						•	1000			•
ATOM	1955	CZ	ARG	40	139.215	39.178	39.816	1.00 5	9.13	H
ATOM		· NH1		40	138.426	38.137	40.046	1.00 4	9.49	H
ATOM	1957		ARG	40	140.459	38.982	39.400	1.00 6	4.52	Н
	1958	C	ARG	40	138.971	41.791	45.024	1.00 4	9.05	·H
MOTA	1959	.0	ARG	40	138.955	42.989	45.312	1.00 4	1.67	H
MOTA	1960		PRO	41	140.007	40.996	45.329	1.00 4		H
ATOM		N.	PRO	41	140.102	39.557	45.022	1.00 6		H
MOTA	1961	CD	PRO	41	141.200	41.485	46.013	1.00 4		H
MOTA	1962	CA	PRO	41	142.268	40.476	45.625	1.00 5		H
MOTA	1963	CB		41	141.516	39.202	45.415	1.00 6		Н
ATOM	1964	CG	PRO PRO	41	141.558	42.888	45.576	1.00 3		н
MOTA	1965	C			141.769	43.147	44.392	1.00 4		. Н
MOTA	1966	0	PRO	41	141.703	43.794	46.542	1.00 3		H
MOTA	1967	N	GLY	42		45.170	46.241	1.00 3		н
MOTA	1968	CA	GLY	42	141.952		45.900	1.00 4		Н
MOTA	1969	C	GLY	42	140.726	45.981		1.00 4		H
MOTA	1970	Ο.	GLY	42	140.468	47.014	46.514	1.00 4		H
MOTA	1971	N	GLN	4,3	139.975	45.502	44.913			Н
ATOM	1972	CA	GLN	43	138.752	46.163	44.468	1.00 6		
MOTA	1973	CB	GLN	43	138.192	45.449	43.227	1.00 6		Н
MOTA	1974 [.]	CG	GLN	43	137.035	46.178	42.540	1.00 7		. н
MOTA	1975	CD	GLN	43	135.900	45.251	42.130		1.51	
MOTA	1976	OE1	GLN	43	135.330	44.540	42.963		7.00	Н
MOTA	1977	NE2	GLN	43 ,	135.566	45.255	40.842	1.00 5		Н
MOTA	1978	C	GLN	43	137.701	46.158	45.581	1.00 6		H
MOTA	1979	Ò	GLN	43	137.782	45.366	46.521		2.87	H
MOTA	1980	N	GLY	44	136.723	47.055	45.471	1.00 6		H
ATOM	1981	CA	GLY	44	135.661	47.119	46.458	1.00 5		H
ATOM	1982	C	GLY	44	134.746	45.927	46.268	1.00 5		H
ATOM	1983	0	GLY	. 44	135.191	44.881	45.794	1.00 6		H.
ATOM	1984	N	LEU	45	133.474	46.062	46.623	1.00.3		H
ATOM	1985	CA	LEU	45	132.552	44.946	46.456	1.00 5		H
MOTA	1986	CB	LEU	45	132.197	44.339	47.819	1.00 4		H
MOTA	1987	CG	LEU	45	131.306	45.109	48.790	1.00 3		H
ATOM	1988	CD1	LEU	45	131.661	44.692	50.212	1.00 3		H
MOTA	1989	CD2	LEU	45	131.480	46.605	48.597	1.00 3		H
ATOM	1990	C 1	LEU	45	131.283	45.315	45.689	1.00 4	7.35	H
ATOM	1991	0	LEU	45	130.876	46.475	45.656	1.00 5	2.97	H
MOTA	1992	N	GLU	46	130.673	44.311	45.066	1.00 3	8.18	H
MOTA	1993	CA	GLU	46	129.468	44.497	44.275	1.00 3	2.36	H
MOTA	. 1994	СВ	GLU	46	129.779	44.312	42.787	1.00 5	4.58	H
ATOM	1995	CG		46	131.106	43.601	42.502	1.00 7	0.14	H
ATOM	1996	CD	GLU	46	131.544	43.722	41.050	1.00 5	9.62	H
ATOM	1997		GLU	46	132.769	43.760	40.796	1.00 €	0.49	H
ATOM			GLU	46	130.660	43.778	40.171	1.00 €	2.64	H
ATOM	1999	C	GLU	46	128.400	43.506	44.686	1.00 3	3.28	H
ATOM	2000	0	GLU	46 .	128.697	42.477	45.293	1.00 2	2.50	H
MOTA	2001	N	TRP	47	127.157	43.818	.44.329	1.00 3	0.17	H
MOTA	2002	CA	TRP	47	126.010	42.982	44.661	1.00 3		H
ATOM	2003	СВ	TRP	47	124.794	43.881	44.906	1.00 5	0.31	H
ATOM	2004	CG	TRP	47	123.538	43.163	45.304	1.00 4	6.71	Н
ATOM	2005	CD2		47		42.881	44.459	1.00 4	6.71	H
ATOM	2005	CE2		47	121.440	42.259	45.262	1.00 4	10.21	H
MOTA		CE3		47	122.148	43.096	43.104	1.00 4	4.16	H
*** 01.1	_00,	7-0		-						

					• .				•
ATOM	2008	CD1	TRP	47	123.204	42.709	46.547	1.00 44.85	· H
ATOM	2009	NE1	TRP	47	121.942	42.165	.46.533	1.00 44.22	H
ATOM	2010	CZ2	TRP	47	120.205	41.852	44.750	1.00 48.68	H
ATOM	2011	CZ3	TRP	47	120.924	42.689	42.597	1.00 48.92	H
ATOM	2012	CH2	TRP	47	119.969	42.073	43.420	1.00 39.77	Ĥ
ATOM	2013	С	TRP	47	125.692	41.936	43.592	1.00 45.09	H
ATOM	2014	0.	TRP	47	125.359	42.260	42.449	1.00 45.19	H
MOTA	2015	N	ILE	48	125.800	40.671	43.981	1.00 45.61	H
ATOM	2016	CA	ILE	48	125.529	39.562	43.080	1.00 37.68	н
MOTA	2017	СВ	ILE	48	126.185	38.266	43.601	1.00 25.87	H
ATOM	2018	CG2		48	125.479	37.039	43.036	1.00 23.09	H
MOTA	2019			48	127.657	38.249	43.202	1.00 15.27	н
ATOM	2020	CD1		48	128.449	37.133	43.847	1.00 20.12	H
ATOM	2021	C	ILE	48	124.028	39.356	42.936	1.00 35.05	H
ATOM	2022	0	ILE	48	123.461	39.591	41.870	1.00 41.96	H
MOTA	2023	N	GLY	49	123.388	38.918	44.013	1.00 32.61	н
ATOM	2024	CA	GLY	49	121.953	38.689	43.986	1.00 30.75	H
ATOM	2025	С	GLY	49	121.432	38.298	45.359	1.00 38.37	н
MOTA	2026	0	GLY	49	122.161	38.327	46.349	1.00 41.94	Н
ATOM	2027	N	CYS	50	120.163	37.931	45.431	1.00 37.54	H
ATOM	2028	CA	CYS	50	119.587	37.540	46.705	1.00 38.40	H
ATOM	2029	CB	CYS	50	119.095	38.774	47.462	1.00 51.77	H
MOTA	2030	SG	CYS	50	117.500	39.407	46.877	1.00 50.59	H.
MOTA	2031	C	CYS	50	118.438	36.577	46.500	1.00 42.42	H
MOTA	2032	0	CYS	50	117.835	36.535	45.431	1.00 50.09	H
ATOM	2033	N	ILE	_. 51	118.146	35.804	47.537	1.00 42.92	H
ATOM	2034	CA	ILE	51	117.059	34.837	47.502	1.00 37.44	H
MOTA	2035	CB	ILE	51	117.596	33.380	47.377	1.00 28.69	H
ATOM	2036	CG2	ILE	51	118.648	33.111	48.440	1.00 29.15	H
MOTA	2037	CG1	ILE	51	116.448	32.382	47.521	1.00 22.13	H
MOTA	2038	CD1	ILE	51	115.840	31.963	46.201	1.00 43.28	H
MOTA	2039	С	ILE	51	116.277	34.989	48.800	1.00 42.00	H
MOTA	2040	0	ILE	51	116.861	35.219	49.868	1.00 34.19	H
MOTA	2041	N	TYR	52	114.957	34.886	48.706	1.00 38.73	H
MOTA	2042	CA	TYR	52	114.124	35.013	49.888	1.00 34.95	H
MOTA	2043	CB .	TYR	. 52	112.954	35.960	49.643	1.00 26.98	H
ATOM	.2044	CG	TYR	52	112.041	36.049	50.840	1.00 28.39	H
ATOM	2045	CD1	TYR	52	112.571	36.155	52.132	1.00 31.39	H
MOTA	2046	CEL	TYR	52	111.752	36.193	53.244	1.00 43.44	H
ATOM	. 2047	CD2	TYR	. 52	110.660	35.986	50.695	1.00 19.91	H
MOTA	2048	CE2	TYR	52	109.821	36.022	51.800	1.00 43.98	H.
MOTA	2049	CZ	TYR	52	110.376	36.124	53.075	1.00 56.97	. Н
MOTA	2050	OH	TYR	52	109.556	36.153	54.178		H
MOTA	2051	, C	TYR	52	113.578	33.674	50.350	1.00 39.53	H
MOTA	2052	0	TYR	52 ′	112.611	33.161	49.791	1.00 45.44	H
ATOM	2053	N	PRO	53 .	114.191	33.092	51.386	1.00 46.32	. Н
MOTA	2054	CD	PRO	53	115.347	33.610	52.137	1.00 58.13	H
ATOM	2055	CA	PRO	53	113.728	31.803	51.900	1.00 36.81	H
MOTA	2056	CB	PRO	53	114.599	31.566	53.126	1.00 38.59	H
ATOM	2057	CG	PRO	53	115.817	32.404	52.894	1.00 59.97	H
ATOM	2058	С	PRO	53	112.279	31.971	52.275	1.00 35.25	H
MOTA	2059	0	PRO	53	111.926	32.927	52.959	1.00 37.50	H
ATOM	2060	N	GLY	54	111.441	31.055	51.815	1.00 43.54	H

										٠.,
	ATOM	2061	CA	GLY	54	110.027	31.142	52.120	1.00 53.47	H
	ATOM	2062	Ċ	GLY	. 54	109.200	31.023	50.860	1.00 58.70	H
	ATOM	2063	0	GLY	54	108.726	29.936	50.530	1.00 74.82	H
	ATOM	2064	\mathbf{N}	ASN	55	109.021	32.132	50.150	1.00 48.62	H
	ATOM	2065	CA	ASN	55	108.248	32.116	48.917	1.00 45.89	H
	MOTA	2066	CB	ASN	55	107.602	33.482	48.675	1.00 46.66	H
	ATOM	2067	CG	ASN	55	108.344	34.312	47.658	1.00 46.59	H
	ATOM	2068		ASN	55	109.183	35.138	48.009	1.00 50.93	H
	ATOM	2069		ASN	55	108.027	34.107	46.384	1.00 65.32	H
	ATOM	2070.	C	ASN	55	109.177	31.740	47.777	1.00 59.93	H
	MOTA	2071	0	ASN	55	108.738	31.536	46.645	1.00 70.19	H
	ATOM	2072	N	VAL	56	110.466	31.644	48.110	1.00 68.48	H
	MOTA	2073	CA	VAL	56	111.541	31.269	47.182	1.00 68.32	· H
	ATOM	2074	CB	VAL	56	111.181	29.960	46.416	1.00 73.69	H
	ATOM	2075		VAL	56	110.739	30.271	44.989	1.00 75.39	H
	ATOM	2076		VAL	56	112.377	29.021	46.415	1.00 57.36	H
	ATOM	2077	С	VAL	56	111.958	32.352	46.182	1.00 64.26	H
	MOTA	2078	ō	VAL	56	112.859	32.142	45.366	1.00 50.69	H
	ATOM	2079	N	ASN	57	111.307	33.511	46.258	1.00 70.60	H
	MOTA	2080		ASN	57	111.610	34.622	45.366	1.00 62.78	H
	MOTA	2081	CB.	ASN	57	110.996	35.913	45.898	1.00 76.22	H.
	ATOM	2082	CG	ASN	57	109.868	36.422	45.032	1.00 82.20	H
	MOTA	2083		ASN	57	109.018	37.191	45.486	1.00 72.33	H
	ATOM	2084	ND2	ASN	57	109.849	35.989	43.772	1.00 72.74	H
	ATOM	2085	С	ASN	. 57	113.110	34.795	45.242	1.00 63.32	H
	ATOM	2086	Ο.	ASN	57	113.857	34.515	46.181	1.00 68.16	H
	MOTA	2087	N	THR	58	113.553	35.267	44.084	1.00 54.53	H
	ATOM	2088	CA	THR	58	114.974	35.465	43.859	1.00 52.32	H
	ATOM	2089	CB	THR	58	115.597	34.191	43.279	1.00 48.24	H
	MOTA	2090	OG1	THR	58	116.806	34.523	42.594	1.00 45.77	H
,	ATOM	. 2091	CG2	THR	58	114.628	33.516	42.314	1.00 53.99	H
	MOTA	2092	C	THR	58	115.243	36.641	42.921	1.00 52.31	H
	MOTA	2093	0	THR	58	114.436	36.935	42.039	1.00 59.83	H
	MOTA	.2094	N	ASN	59	116.375	37.313	43.117	1.00 40.59	H
	ATOM	2095	CA	ASN	59	116.730	38.462	42.290	1.00 38.18	H
	MOTA	2096	CB	ASN	59	116.330	39.758	42.998	1.00 53.76	. Н
	MOTA	2097	CG	ASN	59		40.217	42.632	1.00 53.44	H
٠.	MOTA	2098	OD1	asn	59	114.712	40.809	41.572	1.00 58.59	H
	MOTA	2099	ND2	ASN	59	113.970	39.951	43.512	1.00 44.63	. Н
	MOTA	2100	C	ASN	. 59	118.217	38.505	41.970	1.00 30.27	H
	MOTA	2101	0	ASN	59		38.423	42.873	1.00 35.55	H
	MOTA	2102	N	TYR	60	118.544	38.661	40.687	1.00 19.72	H
	MOTA	2103	CA	TYR	60	119.935	38.710	40.243	1.00 29.52	H
	ATOM	2104	CB	TYR	60	120.213	37.596	39.227	1.00 27.47	H
•	MOTA	2105	CG	TYR	60	119.809	36.215	39.675	1.00 25.29	Н
	MOTA	2106		TYR	60	120.762	35.233	39.929	1.00 18.79	H
	MOTA	2107		TYR	, 60	120.382	33.951	40.325	1.00 40.31	H
	MOTA	2108		TYR	60	118.468	35.883	39.825	1.00 40.64	H
	ATOM	2109		TYR	60	118.077	34.611	40.217	1.00 47.25	Н
	MOTA	2110	CZ	TYR	60	119.033	33.647	40.469	•	· H
	MOTA	2111	OH	TYR	60	118.621	32.391	40.883	1.00 56.18	H
	MOTA	2112	C	TYR	60	120.367	40.034	39.618	1.00 25.63	H H
	MOTA .	2113	0	TYR	60	119.574	40.746	39.008	1.00 17.78	, n

W	O 2005/0	66867						PCT/GB20	05/000099
							•		
						76			
					•				
									••
MOTA	2114	N _:	ASN		121.645	40.354	39.789	1.00 31.77	Н
ATOM	2115	CA	ASN	61	122.224	41.551	•	1.00 30.42	H
MOTA	2116	CB	ASN	61	123.542	41.891	39.907	1.00 26.96	H
MOTA	2117	CG	asn	61 .	124.176	43.155	39.367	1.00 28.98	H
MOTA	2118		ASN	61	124.721	43.964	40.120	1.00 39.03	H
MOTA	2119	ND2	ASN	61	124.105	43.335	3,8.052	1.00 39.88	H
MOTA	2120	C	ASN	61	122.480	41:102	37.787	1.00 42.86	H
MOTA	2121	0 .		61	123.062	40.041	37.571	1.00 56.00	H
ATOM	2122	N	GLU	62	122.045	41.889	36.812	1.00 46.51	H
MOTA	2123	CA	GLU	62	122.224	41.498	35.424	1.00 52.07	H
MOTA	2124	CB	GLU		121.511	42.490	34.504	1.00 57.39	H
MOTA	2125	CG	GLU	, 62	120.513	41.839	33.531	1.00 76.62	H
MOTA	2126	CD	GLU	62		41.242	34.214	1.00 81.14	H
MOTA	2127	OE1	GLU	. 62	119.442	40.484	35.197	1.00 79.43	H
MOTA	2128	OE2	GLU	62	118.148	41.528	33.759	1.00 70.90	H
MOTA	2129	C	GLU	62	123.678	41.327	35.000	1.00 53.65	H
MOTA	2130	0	GLU	62	123.953	40.991	33.847	1.00 75.05	H
MOTA	2131	N	ГĀЗ	63	124.610	41.543	35.922	1.00 36.05	H
ATOM	2132	CA	LYS	63	126.025	41.379	35.604	1.00 35.02	H
MOTA	2133	. CB	LYS	63	126.862	42.421	36.353	1.00 26.34	H
MOTA	2134	CG	LYS	63	127.215	43.653	35.532	1.00 49.15	H
MOTA	2135	CD	LYS	63	126.773	44.948	36.217	1.00 45.62	H
MOTA	2136	CE.	LYS	63	127.938	45.619	36.920	1.00 40.94	H
MOTA	2137	NZ	LYS	63 .	128.652	44.625	37.772	1.00 39.59	H
MOTA	2138	С	LYS	63	126.506	39.969	35.961	1.00 40.58	H
MOTA	2139	o i	LYS .	63	127.618	39.576	35.611	1.00 45.93	H
MOTA	2140	N	PHE	64	125.657	39.214	36.658	1.00 47.98	Н
MOTA	2141	CA	PHE	64	125.975	37.849	37.073	1.00 42.86	н
MOTA	2142	CB	PHE	64	126.263	37.789	38.579	1.00 42.85	H
MOTA	2143	CG	PHE	64	127.177	38.872	39.068	1.00 44.03	H
MOTA	2144		PHE	64	128.538	38.831	38.791	1.00 50.59	H
ATOM	2145	CD2	PHE	64	126.680	39.929	39.817	1.00 38.08	H
· MOTA	2146	CE1	PHE	64	129.388	39.830	39.255	1.00 45.27	H
ATOM	2147	CE2	PHE	64	127.524	40.933	40.284	1.00 43.09	H
MOTA	2148	CZ.	PHE	64	128.877	40.883	40.004	1.00 31.11	H
ATOM	2149	G.	PHE	64	124.823	36.908	36.768	1.00 43.11	H
MOTA	2150	0	PHE	64	124.560	35.988	37.535	1.00 47.33	. Н
ATOM	2151	N	LYS	65	124.148	37.128	35.644	1.00 55.21	H
MOTA	2152	CA	LYS	65	123.005	36.302	35.259	1.00 59.07	. Н
ATOM	2153	CB	LYS	65	122.383	36.806	33.949	1.00 45.97	H
ATOM	2154	CG	LYS	65	123.146	37.914	33.251	1.00 49.55	H
MOTA	2155	CD	LYS	65	124.165	37.363	32.270	1.00 46.70	H
ATOM	2156	CE	LYS	65	125.116	38.461	31.811	1.00 50.30	H
ATOM	2157	NZ	LYS	65	125.548	38.271	30.398	1.00 58.93	H
MOTA	2158	C	LYS	65 ·	123.279	34.802	35.118	1.00 67.16	H
MOTA	2159	Ο,	LYS	65	122.598	33.984	35.741	1.00 70.12	H
MOTA	2160	N	ASP	66	124.267	34.440	34.304	1.00 69.41	H
MOTA	2161	CA	ASP	66	124.579	33.031	34.073	1.00 66.83	H
MOTA	2162	CB	ASP	66	125.508	32.898	32.872	1.00 66.07	H
ATOM	2163	CG	ASP	66	124.747	32.712	31.580	1.00 66.45	H
MOTA	2164		ASP	66	124.869	31.628	30.973	1.00 66.35	H
MOTA	2165		ASP	66	124.023	33.649	31.177	1.00 50.12	H
ATOM	2166	C	ASP	66	125.168	32.265	35.251	1.00 70.25	H

			•	•							
MOTA	`2167	Ο.	ASP	66	124.514	31.365	35,.792	1.00	72.29		H
MOTA	2168	N.	LYS	·67	126.399	32.605	35.637	1.00	62.38	•	H
MOTA	2169	CA	LYS	67	127.071	31.934	36.750	1.00	49.02		Н
MOTA	2170	CB	LYS	67	128.374	32.653	37.115	1.00	25.39		Н
MOTA	2171	CG	LYS	67	128.541	34.034	36.489	1.00	48.63		H
MOTA	2172	CD	LYS	67	129.958	34.579	36.675	1.00	21.16		H
MOTA	2173	CE	LYS	67	130.912	34.018	35.624	1.00	43.17		H
ATOM	2174	NZ	LYS	67	132.251	33.618	36.179	1.00	34.20		H
ATOM ·	2175	C	LYS	67	126.178	31.887	37.977	1.00	59.48		H
MOTA	2176	0	LYS	67	125.721	30.816	38.390	1.00	51.12		H
MOTA	2177	N	ALA	68	125.929	33.066.	38.545	1.00	67.14		H
MOTA	2178	CA	ALA ·	68	125.104	33.220	39.741	1.00	54.74		H
MOTA	2179	CB	ALA	68	125.017	34.688	40.108	1.00	54.84		H
MOTA	2180	C	ALA	68	123.701	32.631	39.631	1.00	49.40		H
MOTA	2181	0	ALA	68	122.851	33.136	38.896	1.00	58.08		H
MOTA	2182	N	THR	69	123.473	31.564	40.387	1.00	32.05		H
MOTA	2183	CA	THR	69	122.192	30.874	40.429	1.00	37.56		H
MOTA	2184	CB	THR	69	122.284	29.541	39.655	1.00	35.94		H
MOTA	2185	OG1	THR	69	122.392	29.821	38.253		40.10		H
MOTA	2186	CG2	THR	69	121.065	28.676	39.908	1.00	26.92		Н
ATOM	2187	C	THR	69	121.915	30.626	41.914	1.00	43.54		Н
MOTA	2188	0	THR	69	122.595	29.823	42.550	1.00	40.52		H
MOTA	2189	N	LEU	70	120.924	31.319	42.469		45.97		H
MOTA	2190	CA	LEU	70	120.622	31.189	43.893	1.00	46.62		H
ATOM	2191	CB _.	LEU	70	120.166	32.536	44.445	1.00	47.28	•	H
MOTA	2192	CG	LEU	70	121.305	33.331	45.091	1.00	55.81		H
MOTA	2193	CD1	LEU	70	121.133	34.805	44.767	1.00	43.73		H
MOTA	2194	CD2	LEU	70	121.322	33.094	46.611		43.94		H
MOTA	2195	C	LEU	70	119.636	30.107	44.312	1.00	43.94		H
MOTA	2196	0	LEU	70	118.496	30.070	43.849		42.32		H
MOTA	2197	N	ILE	71	120.103	29.247	45.218		44.21		H
MOTA	2198	CA	ILE	71	119.333	28.125	45.755		49.89		H
MOTA	2199	CB	ILE	71 .	120.026	26.770	45.430		51.60		H
MOTA	2200	CG2	ILE	71	119.259	25.616	46.072		29.06		H
ATOM	2201,		ILE	71 .	120.107	26.573	43.911		54.43		H
MOTA	2202	CD1	ILE	71	121.184	27.402	43.222		43.28		H
MOTA	2203	С	ILE	71	119.203	28.255	47.278		52.79		H
MOTA	2204	0	ILE.	71	120.103	28.779	47.939		62.18		H
ATOM	2205	N	VAL	72	118.093	27.768	47.830		50.92	•	H
ATOM	2206	CA	VAL	72	117.837	27.843	49.269		52.77		H
ATOM	2207	CB	VAL	72	116.551	28.677	49.549		47.96		H
MOTA	2208	CG1		72	115.313	27.828	49.317		44.08		·H
MOTA	2209	CG2			116.569	29.224	50.967		43.63		H
ATOM	2210	С	VAL .	72	117.687	26.437	49.861		56.26		H
ATOM	2211	0	VAL	72	117.627	25.457	49.123		65.48		H
ATOM	2212	N	ASP	73	117.638	26.344	51.191		56.09	•	H
MOTA	2213	CA	ASP	73	117.492	25.064	51.891		50.35		H
MOTA	2214	CB	ASP	73	118.848	24.365	51.995		53.65		H
ATOM	2215	CG	ASP	_	118.721	22.907	52.384		57.99		H.
MOTA	2216	OD1		73	118.119 119.229	22.616 22.055	53.443 51.625		57.92 61.79		H H
ATOM	2217	OD2		73 73		25.313			50.51		н
MOTA MOTA	2218 2219	C .	ASP ASP	73 73	116.932 117.664	25.288	53.290 54.280		43.10	•	н
WION	441J	0	MOL	13	TT1.004	43.200	J	1.00	-z U		**

									4 1 1 1	
٠.	ATOM	2220	N	THR	74	115.624		53.352	1.00 56.54	H
	ATOM ·	2221	CA	THR	74	114.913	25.836	54.593	1.00 66.24	H
•	ATOM	2222	CB	THR	74	113.421	26.020	54.296	1.00 71.27	H
	ATOM	2223	OG1	THR	74	113.183	25.793	52.901	1.00 71.81	H
	MOTA	2224 .	CG2	THR	74	112.979	27.430	54.659	1.00 81.34	H
	ATOM	2225	C	THR	74 .	115.054	24.876	55.785	1.00 71.66	H
	ATOM	2226	o	THR	74	114.662	25.220	56.902	1.00 67.59	H
	ATOM	2227	N	SER	75	115.610	23.689	55.559	1.00 75.40	Ħ
	ATOM	2228	CA	SER	75	115.775	22.712	56.634	1.00 69.25	H
	ATOM	2229	CB	SER	75	115.833	21.292	56.063	1.00 76.48	H
	ATOM	2230	OG	SER	75	116.615	20.445	56.891	1.00 75.33	H
	ATOM	2231	С	SER	75	117.024	22.961	57.474	1.00 60.40	H
	ATOM	2232	0	SER	75	116.949	23.066	58.703	1.00 51.38	H
	ATOM	2233	N	SER	76	118.171	23.040	56.807	1.00 45.77	H
	ATOM	2234	CA	SER	76	119.435	23.282	57.498	1.00 44.97	H
	ATOM	2235	CB	SER	76	120.585	22.601	56.749	1.00 51.28	H
	ATOM	2236	OG	SER	76	120.106	21.807	55.676	1.00 43.07	H
	ATOM	2237	С	SER	76	119.691	24.781	57.589	1.00 34.83	H
	ATOM	2238	0	SER	76	120.755	25.221	58.008	1.00 28.11	H
	MOTA	2239	N	ASN	77	118.697	25.563	57.194	1.00 46.96	H
	ATOM	2240	CA	ASN	77 .	118.826	27.009	57.222	1.00 38.99	H
	ATOM	2241	CB	ASN	77	118.847	27.513	58.665	1.00 41.25	H
	ATOM	2242	CG	ASN	77	117.459	27.785	59.206	1.00 39.52	H
	ATOM	2243	OD1		77	116.470	27.731	58.468.	1.00 40.29	H
	ATOM	2244	ND2		77	117.377	28.082	60.496	1.00 23.39	H
	ATOM	2245	C	ASN	77	120.111	27.395	56.515	1.00 34.49	H
	ATOM	2246	0	ASN	77	120.971	28.067	57.077	1.00 45.69	H
	ATOM	2247	N	THR	78	120.240	26.944	55.275	1.00 39.07	H
	ATOM	2248	CA	THR	78	121.417	27.244	54.481	1.00 43.99	H
	ATOM	2249	CB ·	THR	78	122.340	26.001	54.336	1.00 47.54	H
	ATOM	2250	OG1		78	121.955	25.239	53.189	1.00 23.72	H
	ATOM	2251	CG2		78	122.244	.25.122	55.568	1.00 19.39	H
			, C	THR	78	121.030	27.761	53.100	1.00 35.58	H
	MOTA	2253	0	THR	78	120.107	27.255	52.465	1.00 41.21	H
	ATOM	2254		ALA	79 ·	121.738	28.791	52.658	1.00 32.09	H
	ATOM	2255	CA	ALA	79	121.498	29.399	51.361	1.00 45.71	· H
	ATOM	2256	СВ	ALA	79	121.265	30.903	51.520	1.00 20.04	H
	ATOM	2257	С	ALA	79	122.734	29.148	50.509	1.00 54.97	Н
	ATOM	2258	0	·ALA	79	123.854.	29.447	50.927	1.00 71.91	H
	ATOM	2259	N	TYR	80	122.550	28.589	49.321	1.00 37.02	H
	MOTA	2260	CA	TYR	80	123.697	28.329	48.480	1.00 32.51	H
;	MOTA	2261	CB	TYR	80	123.635	26.921	47.920	1.00 27.41	н
	MOTA	2262	CG	TYR	80	123.465	25.846	48.950		H
	ATOM	2263	CD1	TYR	80	124.539	25.049	49.332	1.00 30.12	H
	ATOM	2264		TYR	80	124.371	24.000	50.232	1.00 47.45	H
	ATOM	2265	CD2	TYR	80	122.212	25.575	49.495		H
	MOTA	2266	CE2	TYR	80	122.028	24.529	50.394	1.00 40.26	H
	ATOM	2267	CZ	TYR	80	123.111	23.742	50.759	1.00 45.55	H
	MOTA	2268	OH	TYR	80	122.933	22.695	51.643	1.00 45.67	H
	MOTA	2269	С	TYR	80	123.819	29.307	47.327	1.00 47.49	H
	MOTA	2270	0	TYR	80	122.870	30.010	46.974	1.00 54.32	H
	ATOM	2271	N	MET	81	125.012	29.328	46.744	1.00 58.24	H
	MOTA	2272	CA	MET	81	125.340	30.175	45.609	1.00 51.28	H

									.,				
ATOM	2273	СВ	MET	٠	81		126.117	31.401	46.073	1.00	47.13	•	Н
ATOM	2274	CG	MET		81		127.250	31.794	45.151	1.00	49.47		H
ATOM	2275	SD	MET		81		126.890	33.310	44.268	1.00	52.80		H
ATOM	2276	CE	MET		.81		127.508	34.508	45.421	1.00	52.92		H
ATOM	2277	C .	MET		81		126.220	29.327	44.699	1.00	51.47		H
ATOM	2278	0.	MET		81	٠.	127.342	28.976	45.065	1.00	48.72		H
ATOM	2279	N	GLN		82	•	125.707	28.981	43.525	1.00	46.87		H
MOTA	2280	CA	GLN		82		126.476	28.175	42.595	1.00	45.38		H
MOTA	2281	CB	GLN		82		125.589	27.113	41.943	1.00	71.53	•	H
ATOM	2282	CG	GLN		82		125.978	26.739	40.511	1.00	89.74		H
MOTA	2283	CD	GLN		82		127.278	25.955	40.433	1.00	96.73		H
ATOM	2284	OE1	GLN		82		127.925	25.699	41.448		98.73		H
MOTA	2285	NE2	GLN		82		127.665	25.572	39.220	1.00	94.58		H
MOTA	2286	C ·	GLN		82		127.075	29.065	41.530		44.59		H
MOTA	2287	0	GLN		82		126.366	29.787	40.833		42.20		H
MOTA	2288	N	LEU		83		128.394	29.014	41.422	1.00	49.17		H
MOTA	2289	CA	LEU		83		129.114	29.797	40.434	1.00	46.27		H
MOTA	2290	CB	LEU		83		130.369	30.398	41.067	1.00	32.33		H
ATOM	2291	CG	LEU		83		130.033	31.416	42.160		31.17		H
MOTA	2292		LEU		83		131.119	31.455	43.252	1.00	6.90		H
MOTA	2293		LEU		83		129.865	32.766	41.496		18.19		H H
MOTA	2294	C	LEU		83		129.471	28.845	39.298		45.11		H H
MOTA	2295	0	LEU		83		130.201	27.870	39.496	1.00	36.84		Н
ATOM	2296		SER		84		128.925	29.118	38.117		44.08 46.97		Н
MOTA	2297	CA	SER		84		129.160	28.280	36.948 36.323		54.37	•	Н
ATOM	2298	CB	SER		84		127.829 127.604	27.869 28.576	35.118		64.19		Н
MOTA	2299	OG G	SER		84		130.037	28.942	35.896		49.55		Н
MOTA	2300	C	SER SER		84 84		129.905	30.137	35.617	1.00			н
ATOM ATOM	2301 2302	N O	ARG		85		130.925	28.146	35.306	1.00	48.23		H
ATOM	2302	CA	ARG		85		131.842	28.637	34.294	1.00	41.86		Н
ATOM	2303	СВ	ARG		-85		131.057	29.141	33.082	1.00	46.21		H
ATOM	2305	CG	ARG		85		130.474		32.236	1.00	41.59		H
MOTA	2306	CD	ARG		85		129.125	28.393	31.630	1.00	68.47		H
MOTA	2307	NE	ARG		85		129.174	28.406	30.170	1.00	68.50		H
ATOM	2308	CZ	ARG		85		128.142	28.126	29.381	1.00	60.66		H
ATOM	2309	NH1	ARG		85		126.962	27.808	29.906	1.00	56.39		H
ATOM	2310	NH2	ARG		85		128.293	28.166	28.065	1.00	55.47		H
ATOM	2311	·C	ARG		85		132.670	29.752	34.912	1.00	40.27		H
MOTA	2312	0	ARG		85		132.430	30.939	34.669	1.00	37.17		H
ATOM		N	MET		86		133.645	29.350	35.722		35.41		H
ATOM	2314	CA	MET		86		134.518	30.288	36.412		32.72		H
ATOM	2315	CB	MET		86		134.974	29.684	.37.733		38.34		H
ATOM.	2316	CG	MET		86		134.091	28.551	38.215		45.32		H
ATOM	2317	SD	MET		86		133.310	28.856	39.804		63.97	•	H
ATOM	2318	CE	MET		86		133.680	30.599			45.50		H
MOTA	2319	С	MET		86		135.733	30.691	35.592		33,88		H
ATOM	2320	0	MET		86		136.097	30.018	34.627		28.01		H
ATOM	2321	N	THR		87		136.357	31.794	35.996		37.82		H H
ATOM	2322	CA	THR		87		137.525	32.330	35.310		39.63 31.11	,	H
MOTA	2323	CB	THR		87		137.081 136.455	33.070 32.132	34.035 33.153		44.08	•	Н
ATOM	2324		THR		87 87		136.455	32.132			41.18		H
ATOM	2325	↓ 62	THR		87		130.203	JJ. 700	33.324	1.00			

ATOM	2326	.C	THR		87 .	138.299	33.282	36.232	1.00	49.08	H
ATOM	2327	0	THR		87	137.797	33.684	37.278	1.00	56.80	H
ATOM	2328	N	SER		88	139.523	33.634	35.845	1.00	59.16	H
ATOM	2329	CA	SER		88	140.362	34.539	36.633	1.00	63.45	H
ATOM	2330		SER		88	141.693	34.780	35.911	1.00	64.98	H
ATOM	2331	OG	SER		88	142.614	33.729	3.6.165	1.00	44.05	H
ATOM	2332	C	SER		88	139.672	35.878	36.897		61.47	H
ATOM	2333	0	SER		88,	140.291	36.838	37:356	1.00	63.13	н
ATOM	2334	N	GLU		89	138.384	35.928	36.586		61.96	H
ATOM	2335	CA	GLU		89	137.567	37.114	36.791	1.00	60.40	н
ATOM	2336	CB	GLU		89	136.888	37.517	35.483		58.39	H
ATOM	2337	CG	GLU		89	136.045	36.410	34.861		65.30	Н
ATOM	2338	CD	GLU		89	134.607	36.832	34.614		74.02	н
ATOM	2339	OE1			89	134.227	36.969	33.430		59.34	Н
ATOM	2340	OE2	GLU		89	133.858	37.028	35.604		71.55	н
ATOM	2341	C	GLU		89	136.518	36.725	37.822		58.77	н
MOTA	2342	0	GLU		89	135.492	37.388	37.971		54.85	H
ATOM	2342	И	ASP		90	136.788	35.624	38.514		59.98	н
ATOM	2344	CA	ASP		90	135.898	35.102	39.544		62.69	H
ATOM	2345	CB	ASP		90	135.475	33.664	39.211		63.78	H
ATOM	2345	CG	ASP		90	134.268	33.601	38.293		63.07	н
ATOM	2340		ASP		90	133.728	32.488	38.109		51.98	H
ATOM	2347		ASP		90	133.864	34.653	37.757		64.25	H
		. C	ASP		90	136.653	35.105	40.867		58.67	Н
MOTA MOTA	2349	0	ASP		90	136.052	35.098	41.939		60.42	H
ATOM	2350	Ŋ	SER		91	137.979	35.102			57.82	H
ATOM	2352	CA	SER		91	138.806	35.113	41.978		51.69	H
ATOM	2353	CB	SER		91	140.285	35.096			44.52	H
ATOM	2354	OG	SER		91	140.598	33.935	40.846		46.65	н
ATOM	2355	C	SER		91	138.487	36.362	42.787		53.31	н
ATOM	2356	0	SER		91	138.881	37.471	42.427		45.71	Н
ATOM	2357	N	ALA		92	137.755	36.167	43.877		53.93	н
ATOM	2358	CA	ALA		92	137.356	37.257	44.755		50.72	H
ATOM	2359	CB	ALA		92	136.133	37.967	44.177		48.61	н
ATOM	2360	C	ALA		92	137.045	36.691	46.143		46.86	Н
ATOM	2361	0	ALA		92	137.638	35.690	46.545		49.03	н
ATOM	2362	N	VAL		93	136.116	37.313	46.868		46.02	Н
ATOM	2363		VAL		93	135.775	36.842	48.207		44.17	H
ATOM	2364	СВ	VAL		93	136.116	37.909	49.272		39.83	н
ATOM	2365		VAL	٠.,	93	136.006		50.663	1.00	31.85	H
ATOM	2366		VAL		93	137.523	38.450	49.049		37.20	H
ATOM	2367	C.	VAL		93	134.330		48.439	1.00	45.91	H
ATOM	2368	ō	VAL		93	134.092	35.525	49.301	1.00	48.37	H
ATOM	2369	N	TYR		94	133.373	36.916	47.691	1.00	38.60	H
ATOM	2370		TYR		94	131.963	36.524	47.825	1.00	49.33	· H
ATOM	2371	CB	TYR		94	131.706	35.189	47.125		40.10	H
ATOM	2372	CG	TYR		94	132.160	35.137	45.692	1.00	31.43	H
ATOM	2373		TYR		94	131.372	35.660	44.675		29.40	Н
ATOM	2374		TYR		94	131.758	35.556	43.344	1.00	41.76	H
ATOM	2375	CD2	TYR		94	133.355	34.512		1.00	33.02	H
ATOM	2376	CE2	TYR		94	133.750	34.402	44.025	1.00	31.73	· H
ATOM	2377	CZ	TYR		94	132.949	34.922	43.028	1.00	46.94	н
ATOM	2378	OH	TYR		94	133.336	34.796	41.711	1.00	62.64	Н

	ATOM	2379	C ·	TYR	94		131.450	36.407	49.267	1.00 50.08	H
	ATOM	2380	Ο,	TYR	94		131.708	35.413.	49.953	1.00 34.70	H
	ATOM	2381	N	PHE	95		130.688	37.408	49.703	1.00 50.03	H
	MOTA	2382	CA	PHE	95		130.140	37.431	51.051	1.00 34.71	H
	MOTA	2383	СВ	PHE	95		130.292	38.814	51.671	1.00 32.84	H
	ATOM	2384	CG	PHE	95		131.646	39.077	52.243	1.00 19.95	H
	ATOM	2385	CD1		95		131.966	38.638	53.516	1.00 6.35	н
	MOTA	2386	CD2		95		132.600	39.780	51.508	1.00 14.02	н
	ATOM	2387	CE1		95		133.219	38.892	54.057	1.00 29.11	H
	MOTA	2388	CE2	PHE	95		133.849	40.037	52.041	1.00 21.81	Н
	ATOM	2389	CZ	PHE	95		134.162	39.592	53.321	1.00 20.98	н
	ATOM	2390	C	PHE	95		128.678	37.082	51.077	1.00 37.58	H
	ATOM	2391	0	PHE	95		127.941	37.378	50.146	1.00 40.29	н
	ATOM	2392	N	CYS	96		128.272	36.455	52.168	1.00 47.35	н
	ATOM	2393	CA	CYS	96		126.888	36.080	52.375	1.00 48.56	н
	ATOM	2394	C	CYS	96		126.368	37.062	53.415	1.00 47.93	н
	ATOM	2395	0	CYS	96		127.035	37.326	54.420	1.00 49.37	H
	ATOM	2396	СВ	CYS	96	•	126.796	34.652	52.911	1.00 45.82	н
	ATOM	2397	SG	CYS	96		125.140	34.190	53.511	1.00 75.54	н
	ATOM	2398	N	THR	97		125.188	37.614	53.168	1.00 37.05	H
	ATOM	2399	CA	THR	97		124.595	38.575	54.086	1.00 35.84	н
	ATOM	2400	СВ	THR	97		125.127	40.008	53.807	1.00 33.55	. н
		2401	OG1		97		124.832	40.851	54.922	1.00 24.79	н
		2402	CG2	THR	97		124.517	40.584	52.542	1.00 23.01	н
	ATOM	2403	C	THR	97		123.085	38.518	53.931	1.00 34.60	н
	ATOM	2404	0	THR	97		122.584	37.860	53.026	1.00 34.26	н
	ATOM	2405	N	ARG	98		122.356	39.192	54.814	1.00 46.98	н
	ATOM	2406	CA	ARG	98		120.896	39.158	54.752	1.00 49.01	н
	ATOM	2407	CB	ARG	98		120.352	38.157	55.795	1.00 38.44	· H
	ATOM	2408	CG	ARG	98		119.596	38.781	56.963	1.00 40.81	H
	ATOM	2409	CD	ARG	98		120.319	38.594	58.296	1.00 27.38	H
	ATOM	2410	NE	ARG	98		119.849	39.546	59.307	1.00 53.08	H
	MOTA	2411	CZ	ARG	98		119.540	39.230	60.563	1.00 40.53	H
	ATOM	2412	NH1	ARG	98		119.651	37.977	60.980	1.00 58.43	H
	ATOM	2413	NH2	ARG	98		119.113	40.167	61.403	1.00 33.33	H
·	MOTA	2414	Ċ.	ARG	98		120.229	40.507	54.938	1.00 39.44	· H
	MOTA	2415	0	ARG	98		120.740	41.377	55.637	1.00 41.38	H
	ATOM	2416	N	SER	99		119.079	40.666	54.296	1.00 35.04	H
	ATOM	2417	CA	SER	99		118.299	41.889	54.388	1.00 24.81	H
	MOTA	2418	CB	SER	99	•	117.920	42.396	53.004	1.00 14.04	. H
	ATOM	2419	OG	SER	99		117.671	43.780	53.039	1.00 29.22	H
	ATOM	2420	С	SER	99		117.050	41.455	55.106	1.00 28.87	H
	MOTA	2421	0	SER	99		116.660	40.294	55.009	1.00 36.12	н
	MOTA	2422	N	HIS	100		116.418	42.367	55.829	1.00 34.54	H
	MOTA	2423	CA	HIS -	100		115.209	41.998	56.541	1.00 40.60	H
	ATOM	2424	CB	HIS	100		114.976	42.943	57.714	1.00 35.00	H
	ATOM	2425	CG	HIS	100		113.731	42.641	58.492	1.00 48.41	Н
	MOTA	2426 .	CD2	HIS	100		113.141	41.463	58.812	1.00 45.56	Н
	ATOM	2427	ND1	HIS	100		112.947	43.625	59.057	1.00 32.49	н
	MOTA	2428	CE1	HIS	100		111.930	43.069	59.687	1.00 29.00	н
	MOTA	2429	NE2	HIS	100		112.023	41.759	59.557	1.00 33.71	H
	MOTA	2430	C	HIS	100		114.037	42.072	55.584	1.00 41.32	H
	MOTA	2431	0	HIS	100	٠	113.824	43.110	54.964	1.00 48.72	H

							•	•	
MOTA	2432 -	Ŋ	TYR	101	113.295	40.976	55.438	1.00 35.01	H
MOTA	2433	CA	TYR ·	101	112.136	41.001	54.551	1.00 39.86	H
MOTA	2434	CB	TYR	101	111.509	39.606	54.408	1.00 26.52	H
ATOM	2435	CG	TYR	101	110.507	39.496	53.267	1.00 26.05	H
MOTA	2436	CD1	TYR	101	110.933	39.404	51.945	1.00 40.86	H
MOTA	2437	CE1	TYR	101	110.024	39.324	50.885	1.00 27.58	H
ATOM	2438	CD2	TŸR	101	109.135	39.502	53.507	1.00 33.96	H
ATOM	2439	CE2	TYR	101	108.216	39.422	52.450	1.00 40.43	H
MOTA	2440	CZ	TYR	101	108.673	39.336	51.145	1.00 27.74	H
MOTA	2441	OH -	TYR	101	107.779	39.275	50.100	1.00 40.21	H
MOTA	2442	C	TYR	101 ·	111.167	41.950	55.247	1.00 55.50	H
MOTA	2443	0	TYR	101	111.013	41.892	56.470	1.00 73.70	H
MOTA	2444	N	GLY	102	110.525	42.828	54.482	1.00 45.70	H
MOTA	2445	CA	GLY	102	109.611	43.790	55.079	1.00 43.01	H
MOTA	2446	C	GLY	102	110.364	45.094	55.237	1.00 39.11	H
MOTA	2447	0	GLY	102	110.169	46.028	54.464	1.00 47.90	н
MOTA	2448	N	LEU	103	111.229	45.155	56.243	1.00 31.80	H
MOTA	2449	CA	LEU	103	112.062	46.331	56.475	1.00 34.98	H
MOTA	2450	CB	LEU	103	112.270	46.554	57.975	1.00 47.24	H
MOTA	2451	CG	LEU	103	111.258	47.406	58.750	1.00 56.12	H
MOTA	2452	CD1'	LEU	103	109.959	47.593	57.956	1.00 31.67	H
MOTA	2453	CD2	LEU	103	110.993	46.730	60.092	1.00 44.52	H
MOTA	2454	С	LEU	103	113.394	46.019	55.807	1.00 31.85	H
MOTA	.2455	Ο .	LEU	103	114.392	45.736	56.471	1.00 32.76	H
MOTA	2456	N	ASP	104	113.368	46.045	54.477	1.00 33.42	. н
MOTA	2457	CA	ASP	104	114.512	45.757	53.625	1.00 20.79	H
MOTA	2458	CB	ASP	104	113.992	45.202	52.295	1.00 32.02	H
MOTA	2459	CG	ASP	104	115.093	44.901	51.298	1.00 55.62	H
ATOM	2460	OD1	ASP	104	114.753	44.583	50.136	1.00 38.63	H
ATOM	2461	OD2			116.286	44.985	51.663	1.00 61.09	H
MOTA	2462	C .	ASP	104	115.255	47.067	53.415	1.00 29.02	H
MOTA	2463	0	ASP	104	115.021	47.775	52.440	1.00 33.69	H
MOTA	2464	N	TRP	105	116.148	47.386	54.346	1.00 37.55	H
MOTA	2465	CA	TRP	105	116.907	•	54.288	1.00 32.28	H
ATOM	2466	CB	TRP	105	116.599	49.484	55.518	1.00 42.44	H
ATOM	2467	CG		105	115.123	49.751	55.717	1.00 44.69	H
ATOM	2468	CD2	TRP	105	114.456	50.028	56.955	1.00 43.59	H
ATOM	2469	CE2		105	113.091	50.217	56.662	1.00 39.38	H
ATOM	2470	CE3		105	114.887	50.136	58.285	1.00 53.16	H
ATOM	2471	CD1		105	114.157	49.780	54.751	1.00 25.93	н
ATOM	2472	NE1		.105	112.942	50.059	55.313	1.00 37.01	H
ATOM	2473	CZ2		105	112.144	50.507	57.650	1.00 45.54	H
ATOM	2474	CZ3		105	113.945	50.425	59.270	1.00 48.69	H
ATOM	2475	CH2		105	112.588	50.609	58.945	1.00 55.24	H
ATOM	2476	C	TRP	105	118.405	48.421	54.187	1.00 40.80	H
ATOM	2477	0	TRP	105	119.063	49.042	53.352 55.038	1.00 47.85 1.00 49.48	H H
MOTA	2478	N	ASN	106	118.952 120.389	47.556 47.305	55.038	1.00 46.39	Н
ATOM	2479	CA	ASN	106			55.951	1.00 46.39	H
ATOM	2480	CB	ASN	106	121.103 120.869	48.280 47.961	57.408	1.00 38.85	Н
ATOM	2481 2482	CG OD1	ASN	106 106	119.909	48.434	58.013	1.00 28.91	н
ATOM ATOM	2482	ND2		106	121.744	47.152	57.981	1.00 32.97	Н
ATOM ATOM	2484	C	ASN	106	121.744	45.877	55.363	1.00 48.25	н
PTON	2202	_	7.217.TA	200		20.077	22.203		

						+		•		
ATOM	2485	0	ASN.	106		119.950	45.059	55.760	1.00 46:92	.Н
ATOM	2486	N	PHE	107		122.079	45.602	55.202	1.00.47.37	
MOTA	2487	CA	PHE	107		122.665	44.294	55.489	1.00 47.06	H
MOTA	2488	CB	PHE	107		123.589	43.862	54.341	1.00 51.22	H
ATOM	2489	ÇG	PHE	107		123.004	44.052	52.954	1.00 36.58	H
MOTA	2490.		PHE	107		121.628	44.053	52.737	1.00 43.99	
MOTA	2491		PHE	107		123.847	44.180	51.851	1.00 35.28	H
MOTA	2492		PHE	107		121.107	44.175	51.449	1.00 41.51	H
MOTA	2493		PHE	107		123.334	44.301	50.561	1.00 20.31	H
ATOM	2494		PHE	107		121.965	44.296	50.362	1.00 40.17	H
MOTA	2495	С	PHE	107		123.479		56.787	1.00 45.87	H
ATOM	2496	0	PHE	107		124.641	44.805	56.765	1.00 38.80	H
ATOM	2497	Ν.	ASP	108		122.874	43.982	57.905	1.00 44.31	H
MOTA	2498	CA	ASP	108		123.528	44.053	59.215	1.00 40.48	H
ATOM		CB	ASP	108		122.479	44.243	60.325	1.00 54.96	H
MOTA	2500	CG	ASP	108		121.048	44.057	59.833	1.00 66.26	H H
ATOM	2501		ASP	108		120.304	45.059	59.790 59.494	1.00 56.03 1.00 63.18	Н
MOTA	2502		ASP	108		120.664 124.445	42.914 42.889	59.600	1.00 63.18	н
MOTA	2503	C	ASP	108 108		124.445	43.077	60.328	1.00 27.33	H
ATOM	2504 2505	O N	ASP VAL	108		124.133	41.690	59.128	1.00 18.58	н
ATOM ATOM	2506	CA	VAL	109		124.133	40.527	59.458	1.00 20.11	н
ATOM	2507	CB	VAL	109		124.072	39.410	60.037	1.00 25.57	H
ATOM	2508		VAL	109	•	124.936	38.353	60.691	1.00 22.40	н
ATOM	2509		VAL	109		123.098	39.998	61.038	1.00 21.93	H
ATOM	2510	C	VAL	109		125.704	39.984	58.246	1.00 26.64	. Н
ATOM	2511	o	VAL	109		125.110	39.594	57.248	1.00 34.79	Н
ATOM	2512	N	TRP	110	.,	127.023	39.949	58.336	1.00 27.30	Н
ATOM	2513	CA	TRP	110		127.818	39.459	57.229	1.00 27.28	Н
ATOM	2514	СВ	TRP	110		128.834	40.519	56.810	1.00 33.78	Н
ATOM	2515	CG	TRP	110		128.248	41.738	56.167	1.00 36.21	Н
MOTA	.2516	CD2	TRP	110		128.440	42.162	54.813	1.00 25.48	H
MOTA	2517	CE2	TRP	110		127.801	43,411	54.669	1.00 33.24	H
MOTA	2518	CE3	TRP	110		129.097	41.609	53.711	1.00 13.14	H
MOTA	2519	CD1	TRP	110		127.511	42.715	56.770	1.00 42.55	H
MOTA	2520	NEI	TRP	110		127.236	43.728	55.879	1.00 36.86	H
MOTA	2521	CZ2	TRP	110		127.795	44.115	53.467	1.00 25.21	H
MOTA	2522	CZ3	TRP	110		129.096	42.314	52.511	1.00 30.00	H
MOTA	2523	CH2	TRP	110		128.449	43.553	52.402	1.00 26.50	H
MOTA	2524	С	TRP	110		128.566	38.187	57.601	1.00 29.69	H
MOTA	2525	0	TRP	110		128.946	37.993	58.753	1.00 39.20	. н
ATOM	2526	N	GLY	111	•	128.774	37.317	56.621	1.00 26.69	Н
MOTA	2527	CA	GLY	111		129.523	36.110	56.880	1.00 15.66	Н
ATOM	2528	C	GLY	111		130.988	36.505	56.847	1.00 32.31	H
MOTA	2529	0	GLY	111		131.327	37.622	56.451	1.00 24.60	Н
MOTA	2530	N	ALA	112		131.867	35.604	57.261	1.00 41.72	Н
ATOM	2531	CA	ALA	112		133.287	35.907	57.249 58.119	1.00 41.34 1.00 39.24	H H
ATOM	2532	CB	ALA	112		134.033	34.911 35.896	55.826	1.00 39.24	Н
ATOM	2533	C	ALA ALA	112 112		133.857 134.902	35.896	55.568	1.00 49.85	H
ATOM MOTA	2534 2535	N O	GLY	112		134.902	35.217	54.906	1.00 45.09	H
ATOM	2536	CA	GLY	113		133.665	35.161	53.538	1.00 44.98	H
MOTA	2537	C	GLY	113		134.180	33.798	53.099	1.00 44.48	H
	~~,	-					,			_

						•	(F)		•
MOTA	2538	Ο,,	GLY	113	134.273	32.862	53.894	1.00 40.99	· H
ATOM	2539	N	THR	114	134.519	33.690	51.819	1.00 44.31	Н
MOTA	2540	CA	THR	114	135.019	32.446	51.242	1.00 31.88	H
ATOM	2541	CB	THR	114	133.845	31.530	50.772	1.00 20.38	H
MOTA	2542	OG1	THR	114	133.279	30.861	51.900	1.00 35.87	H
MOTA	2543	CG2	THR	114	134.328	30.478	49.789	1.00 32.39	H
ATOM	2544	С	THR	114	135.865	32.814	50.032	1.00 33.60	H
MOTA	2545	0	THR	114	135.325	33.054	48.953	1.00 42.98	H
MOTA	. 2546	N	THR	115	137.182	32.880	50.208	1.00 35.92	H
ATOM	2547	CA	THR	115	138.055	33.208	49.089	1.00 33.21	H
ATOM	2548	СВ	THR	115	139.525	33.317	49.499	1.00 43.78	H
ATOM.	2549	OG1	THR	115	139.649	34.185	50.632	1.00 41.45	Н
ATOM	2550	CG2	THR	115	140.351	33.867	48.332	1.00 43.50	H
MOTA	2551	C	THR	115	137.938	32.100	48.059	1.00 39.18	H
ATOM	2552	0	THR	115	137.823	30.918	48.406	1.00 28.11	H
ATOM	2553	N	VAL	116	137.958	32.490	46.791	1.00 36.51	H
ATOM	2554	CA	VAL	116	137.840	31.537	45.708	1.00 40.64	H
ATOM	2555	CB	VAL	116	.136.443	31.616	45.051	1.00 41.04	H
ATOM	2556	CG1	VAL	116	136.337	30.599	43.931	1.00 35.25	H
ATOM	2557	CG2	VAL	116	135.362	31.359	46.096	1.00 33.28	H
ATOM	2558	С	VAL	116	138.899	31.816	44.661	1.00 43.76	H
ATOM	2559	0	VAL	. 116	139.009	32.929	44.146	1.00 46.23	H
MOTA	2560	N	THR	117	139.683	30.791	44.354	1.00 44.39	H
MOTA	2561	CA	THR	117	140.740	30.919	43.370	1.00 40.89	H
MOTA	2562	CB	THR	117	142.095	30.552	43.969	1.00 38.40	H
MOTA	2563	OG1	THR	117	142.320	31.340	45.145	1.00 36.59	H
MOTA	2564	CG2	THR	117	143.205	30.810	42.966	1.00 32.70	H
MOTA	2565	С	THR	117	140.449		42.203	1.00 38.02	. Н
ATOM	2566.	0	THR	117	139.802	28.971	42.357	1.00 37.58	H
ATOM	2567	N	VAL	118	140.928	30.386	41.031	1.00 45.45	H
MOTA	2568	CA	VAL	118	140.705	29.597	39.838	1.00 47.20	H
MOTA	2569	СВ	VAL	118	140.199	30.481	38.694	1.00 54.07	H
MOTA	2570		VAL	118	138.698	30.704	38.844	1.00 40.64	Н
MOTA	2571		VAL	118	140.942	31.807	38.700	1.00 46.30	H
ATOM	2572	C	VAL	118	141.973	28.890	39.400	1.00 42.28	н
MOTA	2573	0	VAL	118	141.946	27.706		1.00 42.04	H
ATOM	2574	N	SER	119	143.081	29.622	39.415	1.00 40.12	H
ATOM	2575	CA	SER.		144.381	29.089	39.015	1.00 48.99	Н
ATOM	2576	CB	SER	119	145.469	29.569	39.983	1.00 49.51 1.00 31.69	Н
ATOM	2577	OG	SER	119	146.419	30.398	39.331		Н
ATOM	2578	C	SER	119	144.418	27.563	38.929	1.00 49.87	H
ATOM	2579	0	SER	119	144.028	26.856		1.00 42.52	H H
ATOM	2580	N	SER	120	144.887	27.067			Н
MOTA	2581	CA	SER	120	144.996	25.633	37.540		Н
ATOM	2582	CB	SER	120	144.774	25.334	36.050		H
ATOM	2583	OG G	SER	120	145.785	25.919 25.145	35.239 37.965		H
ATOM	2584	C	SER	120	146.377			1.00 49.63	н
ATOM ATOM	2585 · 2586	и О	SER ALA	120 121	146.879 146.974	25.858	37.447		H
ATOM	2586 2587	CA.	ALA	121	148.307	25.544	39.445		н
ATOM	2588	CB	ALA	121	148.830	26.714	40.278		H
ATOM	2589	C	ALA	121	148.333	24.268			н
ATOM	2590	0	ALA	121	147.318	23.584		1.00 56.38	H
TOM	4390	9	with	46.4	441.940	20.504			••

						10 miles		•		
ATOM	2591	N	LYS	122	149.498	23.951	40.841	1.00	48.35	H
MOTA	2592	CA	LYS	122	149.624	22.750	41.649	1.00	46.60	
ATOM	2593	CB	LYS	122	150.912	21.998	41.318		51.72	H
MOTA	2594	CG	LYS ·	122	150.682	20.565	40.843		51.16	H
MOTA	2595	CD	LYS	122	150.117	19.675	41.948		40.43	н
MOTA	2596	CE.	LYS	122	151.191	18.754	42.525		52.69	Н
MOTA	2597	NZ	LYS	122	150.980	17.320	42.166		52.23	H
ATOM	2598	C	LYS	122	149.577	23.043	43.133		52.24	H
MOTA	2599	Ο.	LYS	122	150.258	23.933	43.644		51.54	H
MOTA	2600	N	THR	123	148.758	22.255	43.811		58.75	H
MOTA	2601	CA	THR	123	148.562	22.363	45.249		59.16	H
MOTA	2602	CB	THR	123	147.422	21.459	45.722		70.62	Н
ATOM	2603	OG1		123	146.234	21.774	44.989		100.00	H
MOTA	2604	CG2	THR	123	147.174	21.644	47.216		71.56	H
MOTA	2605	C	THR	123	149.851	21.904	45.913		59.76	H
MOTA	2606	0	THR	123	150.327	20.797	45.654		51,50	H
MOTA	2607	N	THR	124	150.430	22.671	46.957		60.58	H
MOTA	2608	CA	THR	124	151.805	22.409	47.339		54.63	Н
MOTA	2609	CB	THR	124	152.776	23.187	46.433		44.65	H
MOTA	2610	OG1		124	152.458	22.930	45.055		43.48 35.75	H H
ATOM	2611	CG2	THR	124	154.207	22.779	46.719 48.776		61.90	Н
ATOM	2612	C	THR	124	152.034	22.844			66.47	H
ATOM	2613	0	THR	124	151.832 152.470	24.005 21.918	49.113		63.12	н
ATOM	2614	N	PRO	125		20.505	49.387		43.60	H
MOTA	2615	CD	PRO	125	152.792 152.705	22.286	51.044			н
ATOM	2616	CA	PRO	125 125	153.012	20.956	51.725		53.31	н
ATOM	2617	CB	PRO PRO		153.525	20.089	50.636		27.09	н
MOTA	2618 2619	CG C	PRO	125	153.858	23.274	51.141		60.12	н
ATOM ATOM	2620	0	PRO	125	154.781	23.255	50.329		49.68	Н
MOTA	2621	N		126	153.811	24.153	52.140		55.19	Н
ATOM	2622	CD	PRO	126	152.761	24.258	53.169		61.07	H
	2623	CA	PRO	126	154.855	25.156	52.333		47.53	H
ATOM	2624	CB	PRO	126	154.213	26.141	53.296	1.00	49.84	H
ATOM	2625	CG	PRO	126	153.315	25.289	54.118	1.00	73.92	H
ATOM	2626	C	PRO	126	156.155	24.608	52.891	1.00	49.11	H
ATOM	2627	ō	PRO	126	156.148	23.695	53.716	1.00	53.71	H
ATOM	2628	N	SER	127	157.266	25.174	52.429	1.00	38.85	H
ATOM	2629	CA	SER	127	158.586	24.792	52.913	1.00	21.97	H
MOTA	2630	CB	SER	127	159.628	24.904	51.798	1.00	39.50	H
MOTA	2631	OG	SER	127	159.487	23.866	50.845	1.00	52.42	. н
MOTA	2632	С	SER	127	158.864	25.826	53.990	1.00	33.98	H
ATOM	2633	0	SER	127 ·	159.021	27.008	53.687	1.00	34.88	H
MOTA	2634	N	VAL	128	158.903	25.393	55.243	1.00	39.20	H
MOTA	2635	CA	VAL	128 .	159.135	26.308	56.353		46.26	H
MOTA	2636	CB	VAL	128	158.247	25.929	57.562		49.37	H
MOTA	2637	CG1	VAL	128	158.162	27.089	58.545		42.90	H
MOTA	2638		VAL	128	156.862	25.538			51.53	H
MOTA	2639	C	VAL	128	160.594	26.350	56.794		37.55	· H
MOTA	2640	0	LAV	128	161.183	25.329	57.153		49.56	H
MOTA	2641	N	TYR	129	161.172		56.765		48.51	H
MOTA	2642	CA	TYR	129	162.562	27.740	57.150		44.86	H
MOTA	2643	CB	TYR	129	163.364	28.279	55.969	1.00	35.54	H

					٠.					
	MOTA	2644	CG	TYR	129	163.348		54.736	1.00 27.55	H
	MOTA	2645	CD1	TYR		163.718	26.059	54.800	1.00 42.44	H
	MOTA	2646		TYR	129	163.729	25.256	53.654	1.00 44.45	. H.
	MOTA	2647	CD2	TYR	129	162.986	27.928	53.497	1.00 28.77	. Н
	MOTA	2648	CE2	TYR	129	162.991	27.135	52.345	1.00 44.26	H
	MOTA	2649	CZ	TYR	129	163.363	25.806	52.430	1.00 46.95	• Н
	ATOM	2650	OH ·	TYR	129	163.366	25.036	51.291	1.00 71.81	H
	MOTA	2651	C	TYR	129	162.670	28.722	58.312	1.00 41.49	H
	MOTA	2652	0	TYR	129	162.195	29.856	58.225	1.00 48.76	· H
	ATOM	2653	\mathbf{N} .	PRO	130	163.309	28.302	59.415	1.00 46.24	H
	MOTA	2654	CD	PRO	130	163.913	26.972	59.604	1.00 58.08	H
	ATOM	2655	CA	PRO	130	163.482	29.152	60.597	1.00 40.62	H
	ATOM	2656	CB	PRO	130	163.970	28.180	61.661	1.00 49.21	H
	ATOM	2657	CG	PRO	130	164.699	27.132	60.872	1.00 50.86	H
	ATOM	2658	·C	PRO	130	164.486	30.276	60.359	1.00 42.13	H
	ATOM	2659	0	PRO	130	165.506	30.079	59.704	1.00 49.80	H
	MOTA	2660	N	LEU	131	164.195	31.455	60.895	1.00 40.92	H
	MOTA	2661	CA	LEU	131	165.081	32.598	60.732	1.00 35.23	H
	ATOM	2662	CB	LEU	131	164.319	33.772	60.120	1.00 34.49	Н
	ATOM	2663	CG	LEU	131	163.916	33.644	58.652	1.00 34.92	н
	ATOM	2664	CD1	LEU	131	163.135	34.878	58.245	1.00 11.51	H
	MOTA	2665	·CD2	LEU	131	165.144	33.483	57.781	1.00 26.67	H
	ATOM	2666	C	LEU	131	165.666	33.014	62.077	1.00 40.36	H
	MOTA	2667	0	LEU	131	164.956	33.557	62.927	1.00 46.95	H
	MOTA	2668	Ŋ	ALA	132	166.956	32.755	62.263	1.00 56.70	H
	ATOM	2669	ÇA	ALA	132	167.632	33.110	63.507	1.00 56.71	H.
	ATOM	2670	CB	ALA	132	168.300		64.096	1.00 57.53	H
	ATOM	2671	C	ALA	132 .	168.662	34.210	63.268	1.00 55.87	H
	ATOM	2672	0	ALA	132	169.276	34.279	62.204		H
	MOTA	2673	N	PRO	133	168.864	35.091	64.262	1.00 57.72	H
	MOTA	2674	CD	PRO	133	168.161	35, 065	65.557	1.00 47.07	. Н
	MOTA	2675	CA	PRO	133 .	169.815	36.206	64.187	1.00 60.50	Н
	ATOM	2676	CB	PRO	133	169.496	37.030	65.431	1.00 59.11	H
	MOTA	2677	CG	PRO	133	168.946	36.033	66.393	1.00 46.85	н
	MOTA	2678	G .	PRO	133	171.285	35.780	64.154	1.00 64.47	H
	ATOM	2679	0	PRO	133	171.743	35.030	65.021	1.00 63.82	Н
	MOTA	2680	N	GLY	134	172.021	36.276	63.161	1.00 66.38	. н
	MOTA	2681	CA	GLY	134	173.429	35.937		1.00 54.50	H
	MOTA	2682	C	GLY	134	174.356	36.531	64.074	1.00 60.13	H
	MOTA	2683	0	GLY	134	175.515	36.851	63.795	1.00 70.75	H
•	ATOM	2684	N .	SER	135	173.893	36.652	65.276	1.00 74.93	H
	ATOM	2685	CA	SER	135	174.743	37.216	66.319	1.00 86.16	H
	ATOM	2686	CB	SER	135	176.038	36.396	66.439	1.00 90.22	H
	MOTA	2687	OG	SER	135	176.965	36.773		1.00100.00	H
	MOTA	2688	C	SER	135	175.096	38.660		1.00 88.57	H
	ATOM	2689	0	SER	135	176.088	38.928	65.255	1.00 77.68	H
	MOTA	2690	N	ALA	136	174.255	39.552	66.431	1.00 94.60	H
	MOTA	2691	CA		136	174.413	40.992	66.206	1.00 96.15	H
	MOTA	2692	CB	ALA	136	174.299	41.304	64.714	1.00 91.75 1.00 99.99	H H
	MOTA	2693	C	ALA	136	173.334	41.759	66.962		H
	MOTA	2694	0	ALA	136	172.158	41.398	66.918	1.00 99.98	
	MOTA	2695	N	ALA	137	173.740	42.818	67.655	1.00 99.99	H H
	MOTA	2696	CA	ALA	137	172.802	43.637	68.417	1.00100.00	п

		٠.							
ATOM	2697	CB	ALA	137	173.565	44.631	69.285	1.00 89.73	H
MOTA	2698	С	ALA	137	171.860	44.377	67.474	1.00 99.97	H
ATOM	2699	0	ALA	137	172.119	45.518	67.094	1.00 99.95	· H
MOTA	2700	N	GLN	138	170.768	43.718	67.103	1.00 99.99	H
MOTA	2701	CA	GLN	138	169.788	44.308	66.198	1.00 99.99	H
ATOM	2702	CB	GLN	138	168.740	43.264	65.804	1.00 92.32	H
MOTA	2703	CG	GLN	138	167.946	42,702	66.972	1.00 80.27	H
MOTA	2704	CD	GLN	138	166.461	42.627	66.679	1.00 62.10	
MOTA	2705	OE1	GLN	138	166.051	42.463	65.530	1.00 72.23	H
MOTA	2706	NE2	GLN	138	165.646	42.749	67.720	1.00 47.02	H
MOTA	2707	C	GLN	138	169.100	45.522	66.818	1.00 99.97	H
ATOM	2708	0	GLN	138	168.850	46.516	66.136	1.00 99.97	H
ATOM	2709	N	THR	139	168.797	45.438	68.116	1.00 99.99	Ή
ATOM	2710	CA	THR	139	168.138	46.530	68.810	1.00100.00	H
MOTA	2711	CB	THR	139	166.629	46.520	68.570	1.00100.00	H
MOTA	2712	OG1		139	166.068	45.306	69.085	1.00 99.99	H
ATOM	2713	CG2	THR	139	166.326	46.637	67.084	1.00 99.99	H
ATOM	2714	C	THR	139	168.421		70.301	1.00 99.99	H
MOTA	2715	0	THR.	139	167.865	45.622	71.014	1.00 99.98	H
ATOM	2716	·N	ASN	140	169.282	47.359	70.792	1.00 99.98	H
ATOM	2717	CA	ASN	140	169.654	47.435 48.381	72.187	1.00 96.92 1.00 94.82	H H
ATOM	2718	CB	ASN	140	168.714		72.927	1.00 94.82	н
ATOM	2719	CG	ASN	140	168.783 169.866	49.786 50.280	72.357 72.032	1.00 91.71	н
ATOM	2720	OD1		140	167.633	50.280	72.032	1.00 91.05	H
ATOM	2721		ASN	140 140	169.724	46.052	72.223	1.00 91.03	. н
ATOM	2722	C	asn asn	140	170.715	45.321	72.647	1.00 93.45	н
ATOM	2723 2724	N O	SER	141	168.684	45.691	73.529	1.00 91.74	. н
MOTA MOTA	2725	CA	SER	141	168.629	44.391		1.00 78.99	. н
ATOM	2726	CB	SER	141	168.101	44.544	75.629	1.00 69.11	H
ATOM	2727	OG	SER	141	166.899	45.297	75.639	1.00 60.50	н
ATOM	2728	C	SER	141	167.726	43.431		1.00 75.37	H
ATOM	2729	ö	SER	141	168.173	42.413	72.896	1.00 88.08	н
ATOM	2730	N	MET	142	166.479	43.787	73.391	1.00 59.56	н
MOTA	2731	CA	MET	142	165.449	42.970	72.766	1.00 44.97	н
MOTA	2732	СВ	MET	142	164.206	43.807	72.516	1.00 56.70	Н
ATOM	2733	ĊĠ	MET	142	163.645	44.397	73.800	1.00 86.09	H
ATOM	2734	SD	MET	142	162.177	45.354	73.535	1.00 99.97	H
ATOM	2735	CE	MET	142	162.239	46.814	74.546	1.00 99.42	H
ATOM	2736	C	MET	142	165.871	42.372	71.432	1.00 32.94	H
ATOM	2737	0	MET	142	166.780	42.880	70.772	1.00 33.63	Н
ATOM	2738	N	VAL	143	165.183	41.304	71.027	1.00 27.18	H
MOTA	2739	CA.	VAL	143	165.501	40.615	69.779	1.00 24.76	H
MOTA	2740	CB	VAL	143	166.197	39.272	70.065	1.00 10.57	H
MOTA	2741	CG1	VAL	143	165.186	38.268	70.594	1.00 34.15	; H
MOTA	2742	CG2	VAL	143	166.872	38.750		1.00 21.19	H
MOTA	2743	C	VAL	143	164.299	40.345		1.00 32.37	Н
MOTA	2744	0	VAL		163.150	40.451		1.00 31.65	. Н
MOTA	2745	N	THR	144	164.588		67.623		H
ATOM	2746	CA	THR	144	163.561	39.686			H
ATOM	2747	CB	THR	144	163.459				H
MOTA	2748		THR	144	162.934				H
MOTA	2749	CG2	THR	144	162.543	40.394	64.436	1.00 20.69	н

					•							
ATOM	2750	C .	THR	144	163.855	38.384	65.891	1.00	39.99	-	H	
ATOM	2751	0	THR	144	164.958	38.178	65.384	1.00	46.16		H	
ATOM	2752	N	LEU	145	162.858	37.507	65.830	1.00	32.72		H	
ATOM	2753	CA	LEU	145	163.004	36.237	65.138	1.00	13.00		H	
ATOM	2754	CB	LEU	145	162.645	35.082	66.062	1.00	22.16		H	
ATOM	2755	CG	LEU	145	163.748	34.615	67.003	1.00	24.64		н	
ATOM	2756		LEU	145	163.529	35.237	68.376		21.35	•	H	
ATOM	2757	CD2	LEU	145	163.736	33.095	67.084		18.63		H	
ATOM	2758	C.	LEU	145	162.064	36.220			24.06		H	
ATOM	2759	o	LEU	145	161.188	37.073	63.831		32.59		H	
ATOM	2760	N	GLY	146	162.244	35.240	63.072		32.97		Н	
ATOM	2761	CA	GLY	146	161.397	35.153	61.903	•	32.08		H	
ATOM	2762	C	GLY	146	161.254	33.741 .			29.89		Н	
ATOM	2763	0	GLY	146	161.995	32.845	61.778		19.61		Н	
ATOM	2764	N	CYS	147	160.283	33.553	60.499		39.08		Н	
ATOM	2765	CA	CYS	147	160.023	32.258	59.885		38.87		H	
ATOM	2766	C	CYS	147	159.696	32.518	58.425		30.42		H	
ATOM	2767		CYS	147	158.934	33.431	58.109		37.75		Н	
ATOM	2768	CB	CYS	147	158.843	31.560	60.574		55.35		H	
ATOM	2769	SG	CYS	147	159.313	30.021	61.435		81.70		H	
ATOM	2770	N	LEU	148	160.288	31.730	57.536		28.82		Н	
ATOM	2771	CA	LEU	148	160.037	31.891	56.115		27.56		H	
ATOM	2772	CB	LEU	148	161.363	31.967	55.352		34.75		H	
MOTA	2773	CĠ	LEU	148	161.254	32.129	53.831		34.95		H	
ATOM	2774		LEU	148	160.549	33.425	53.488		18.93		н	
ATOM	2775		LEU	148	162.636	32.111	53.219		21.69		Н	
ATOM	2776	C	LEU	148	159.187	30.737	55.580		24.86		H	
ATOM	2777	0	LEU .	148	159.576	29.572	55.663		30.70		Н	
ATOM	2778	И	VAL	149	158.020	31.077	55.045		27.57		Н	
ATOM	2779	CA	VAL	149	157.091	30.096	54.487		25.23		Н	
ATOM	2780	CB	VAL	149	155.658	30.376		1.00	3.47		н	
ATOM	2781		VAL	149	154.800	29.127	54.827		25.66		H	
ATOM	2782		VAL	149	155.695	30.830	56.417		15.58		H	
ATOM	2783	C	VAL	149	157.152		52.969		43.19		H	
ATOM	2784	0	VAL	149	156.520	31.080	52.375		55.54		H	
ATOM		N	LYS	150	157.906	29.313	52.341		45.51		H	
ATOM	2786	CA	LYS	150	158.078	29.377	50.897		36.67		H	
ATOM	2787	СВ	LYS	150	159.572	29.376	50.570	1.00	23.27		H	
ATOM	2788	CG	LYS	150	159.950	30.226	49.366	1.00	37.80		H	
ATOM	2789	CD	LYS	150	161.441	30.145	49.070	1.00	45.44		H	
ATOM		CE	LYS	150	161.689	29.729	47.631		47.90		H.	
ATOM	2791	NZ	LYS	150	163.035	30.147	47.149	1.00	74.67	•	H	
· ATOM	2792	C	LYS	150	157.393	28.322	50.047	1.00	47.62		H	
	2793	0	LYS	150	157.086	27.225	50.503	1.00	61.91		H	
ATOM	2794	N	GLY	151	157.172	28.686	48.789	1.00	52.19		H	
ATOM	2795	CA	GLY	151	156.562	27.808	47.805	1.00	56.42		H	
ATOM	2796	С	GLY	151	155.344	26.981	48.176	1.00	65.95		H	
ATOM	2797	0	GLY	151	155.404	25.751	48.146	1.00	83.19		H	
ATOM	2798	N	TYR	152	154.238	27.641	48.522	1.00	68.59		H	
ATOM	2799	CA		152	153.018	26.919	48.866	1.00	57.51		H	
ATOM	2800	СВ	TYR	152	152.646	27.131	50.342	1.00	55.56		H	
ATOM	2801		TYR	152	152.211	28.529	50.695	1.00	49.75		H	
ATOM	2802		TYR	152	150.893	28.938	50.497	1.00	37.14		H	

	٠.						•			
	MOTA	2803	CE1	TYR	152	150.474	30.222	50.847	1.00 37.53	н
	MOTA	2804	CD2	TYR	152	153.104	29.437	51.250	1.00 44.59	H
	ATOM	2805	CE2	TYR	152	152.696	30.726	51.605	1.00 49.92	H
	MOTA	2806	CZ	TYR	152	151.379	31.107	51.400	1.00 51.57	H
	ATOM	2807	OH	TYR	152	150.967	32.371	51.745	1.00 62.33	H
	ATOM	2808	C	TYR	152	151.874	27.358	47.965	1.00 48.01	H
	MOTA	2809	0	TYR	152	151.962	28.386	47.291	1.00 28.34	H
	MOTA	2810	N	PHE	153	150.810	26.567	47.947	1.00 50.83	H
	MOTA	2811	CA	PHE	153	149.646	26.857	47.125	1.00 59.21	H
	MOTA	2812	CB	PHE	153	150.003	26.728	45.646	1.00 64.09	H
	MOTA	2,813	CG	PHE	153	148.926	27.214	44.725	1.00 66.51	H
	MOTA	2814	CD1	PHE	153	148.786	28.571	44.464	1.00 66.83	H
	MOTA	2815	CD2	PHE	153	148.036	26.323	44.147	1.00 60.06	H
	ATOM	2816	CE1	PHE	153	147.770	29.037	43.638	1.00 55.52	H
	MOTA	2817	CE2	PHE	153	147.013	26.775	43.316	1.00 50.07	H
	MOTA	2818	CZ	PHE	153	146.880	28.138	43.061	1.00 49.86	Н
	ATOM	2819	C	PHE	153	148.499	25.907	47.449	1.00 52.00	H
	ATOM	2820	0	PHE	153	148.709	24.702	47.619	1.00 57.40	H
	MOTA	2821	N	PRO	154	147.265	26.436	47.538	1.00 46.46	H
	ATOM	2822	CD	PRO	154	146.057	25.644	47.815	1.00 39.60	Н
	MOTA	2823	CA	PRO	154	146.931	27.851	47.353	1.00 44.22	H
	ATOM	2824	CB	PRO	154	145.533	27.795	46.772	1.00 48.46	H
	MOTA	2825	CG	PRO	154	, 144.923	26.614	47.482	1.00 49.48	H
٠	ATOM	2826	C	PRO	154	146.932	28.559	48.694	1.00 48.75	H
	MOTA	2827	0	PRO	154	147.255	27.958	49.722	1.00 45.97	H
	ATOM	2828	N.	GLU	155	146.573	29.835	48.683	1.00 45.51	H
	ATOM	2829	CA	GLU	155	146.508	30.585	49.927	1.00 46.54	H
	ATOM	2830	CB .	GLU	155	146.287	32.072	49.649	1.00 42.15	, H
	ATOM	2831	CG	GLU	155	147.565	32.888	49.519	1.00 52.55	H
	MOTA	2832	CD	GLU	155	147.866	33.696	50.773	1.00 54.96	H
	ATOM ATOM	2833 2834		GLU GLU	155 155	148.005 · 147.964	33.096 34.938	51.862 50.667	1.00 38.84 1.00 57.00	н
	ATOM	2835	C .	GLU .	155	145.292	30.003	50.625	1.00 37.00	H.
	ATOM	2836	0	GLU	155	144.445	29.388	49.974	1.00 43.37	н
	ATOM	2837	N	PRO	156	145.203	30.148	51.953	1.00 28.63	H.
	ATOM	2838	CD	PRO	156	143.203	29.751	52.682	1.00 21.85	Н
	ATOM	2839	CA	PRO	156	146.134	30.804	52.873	1.00 32.78	, H
	ATOM	2840	CB	PRO	156	145.212	31.685	53.699	1.00 41.77	Н
	ATOM	2841	CG	PRO	156	143.896	30.824	53.775	1.00 10.50	Н
	ATOM		Ċ	PRO	156	146.879	29.797		1.00 40.11	H
	ATOM	2843	ō	PRO	156	146.757		53.613	1.00 30.70	H
	ATOM	2844	N	VAL	157	147.641				Н
	ATOM	2845	CA	VAL	157	148.383			1.00 58.27	H
	ATOM	2846	СВ	VAL	157	149.898	29.452	55.362	1.00 52.20	. Н
	ATOM	2847		VAL	157	150.106		54.011	1.00 56.74	н
	ATOM	2848	CG2	VAL	157	150.525	30.837	55.387	1.00 45.36	H
	ATOM	2849	С	VAL	157	148.239	30.258	57.032	1.00 68.19	H
	MOTA	2850	0	VAL	157	147.993	31.466	57.076	1.00 78.90	H
	ATOM	2851	N	THR -	158	148.395		58.122	1.00 68.08	H
	ATOM	2852	CA	THR	158	148.282	30.116	59.442	1.00 63.24	· H
	MOTA	2853	CB	THR	158	147.209	29.396	60.279	1.00 61.67	H.
	ATOM	2854	OG1	THR	158	145.962			1.00 52.99	H
	MOTA	2855	CG2	THR	158	147.034	30.079	61.632	1.00 56.86	H

						•			
ATOM	2856	C .	THR	158	149.623	30.035	60.154	1.00 64.54	H
ATOM	2857	0	THR	158	150.187	28.954	60.312	1.00 65.02	H
ATOM	2858	N	VAL	159	150.131	31.190	60.571	1.00.48.72	H
ATOM	2859	CA	VAL	159	151.409	31.266	61.256	1.00 38.04	н
MOTA	2860	СВ	VAL	159	152.384	32.209	60.517	1.00 35.68	· H
ATOM	2861	CG1		159	153.745	32.207	61.195	1.00 13.69	H
ATOM	2862	CG2		159	152.520	31.765	59.072	1.00 35.33	H
ATOM	2863	C	VAL		151.239	31.746	62.690	1.00 32.37	. н
MOTA	2864	0	VAL	159	150.940	32.917	62.951	1.00 46.22	н
	2865	·N	THR	160	151.430	30.812	63.616	1.00 34.81	н
MOTA MOTA	2866	CA	THR	160	151.430	31.088	65.037	1.00 34.01	Н
	2867	CB	THR	160	150.305	30.146	65.702	1.00 29.19	H
ATOM	2868.		THR	160	149.788	29.230	64.729	1.00 41.86	н
ATOM	2869	CG2	THR	160	149.165	30.943	66.295	1.00 40.64	н
MOTA	2870	C	THR	160	152.676	30.872	65.681	1.00 28.21	н
ATOM		0	THR	•	153.501	30.118	65.169	1.00 20.21	н
MOTA	2871	N	TRP	161	152.909	31.546	66.800	1.00 43.52	н
ATOM	2872		TRP	161	154.171	31.404	67.506	1.00 54.28	н
MOTA	2873	CA				32.773	67.672	1.00 34.20	н
ATOM	2874	CB	TRP	161	154.833 155.369	33.327	66.379	1.00 31.10	н
ATOM	2875	CG	TRP	161			65.790	1.00 31.10	H
ATOM	2876	CD2	TRP	161	156.648 156.710	33.059 33.782	64.579	1.00 33.01	H
MOTA	2877	CE2	TRP	161			66.169	1.00 31.39	н
MOTA	2878	CE3	TRP	•	157.748	32.277 34.179	65.525	1.00 31.39	H
MOTA	2879	CD1	TRP	161	154.727			1.00 30.34	. н
ATOM	2880	NE1		161	155.525	34.458	64.443	1.00 31.32	Н
ATOM	2881	CZ2	TRP	161	157.829	33.749	63.741	1.00 33.89	H
ATOM	. 2882	CZ3	TRP	161	158.861	32.242	65.335		Н
ATOM	2883	CH2	TRP	161	158.893	32:975	64.134	1.00 38.71 1.00 57.21	. H
ATOM	2884	C	TRP	161	153.920	30.746	68.862	1.00 57.21	Н
ATOM	2885	0	TRP	161	153.157	31.255	69.691		Н
ATOM	2886	N	ASN	162	154.569	29.602	69.071	1.00 56.37	н
ATOM	2887	CA	ASN	162	154.426	28.829	70.298	1.00 50.72 1.00 39.98	н
ATOM	2888	CB	ASN	162	154.818	29.676	71.515 71.698	1.00 39.98	Н
ATOM	2889	CG	ASN	162	156.331	29.771		1.00 45.87	Н
ATOM	2890		ASN	162	157.103	29.298	70.854 72.801	1.00 61.34	Н
ATOM	2891		ASN	162	156.760	30.385	70.399	1.00 44.59	. н
MOTA	2892	C	ASN	162	152.979 152.387	28.329	70.333	1.00 33.04	H
ATOM	2893		ASN SER	162 163	152.419	28.021	69.242	1.00 55.71	H
MOTA	2894	•			_			1.00 65.28	Н
MOTA	2895	CA.	SER	163	151.048 150.858	27.541 26.313	69.133 70.021	1.00 69.26	H
ATOM	2896	CB	SER	163	•	25.391	69.823	1.00 87.88	H,
MOTA	2897	OG	SER	163	151.917	28.592	69.468	1.00 64.07	н.
ATOM	2898	C	SER	163	149.993 148.799	28.363	69.267	1.00 04.07	н
MOTA	. 2899	0	SER	163		29.744	69.970	1.00 71.33	н
ATOM	2900	N	GLY	164	150.430	30.798	70.308	1.00 36.72	н
MOTA	2901	CA	GLY	164	149.490 149.953	30.738	70.308	1.00 45.89	н
MOTA		C	GLY	164 364	149.953	32.807	71.597	1.00 41.13	н
ATOM	2903 [°] 2904	О М	GLY SER	164 165	150.739	31.011	72.355	1.00 41.15	H
ATOM	2904	N CA	SER	165	151.259	31.688	73.533	1.00 50.43	н
ATOM		CB		165	151.259	30.745	74.316	1.00 57.02	н
ATOM	2906	OG	SER SER	165	151.418	29.663	74.836	1.00 50.35	н
ATOM	2907	C		165	152.020	32.945	73.153	1.00 50.33	H
ATOM	2908	C	SER	102	132.020	J2.JEJ	, , , , , ,	2.00 3/.5/	**

							•		
MOTA	2909	0	SER	165	152.276	33.809	73.989	1.00 41.07	H
MOTA	2910	N	LEU	166	152.385	33.049	71.883	1.00 64.03	· H
ATOM	2911	CA	LEU	166	153.102	34.227	71.421	1.00 56.74	H
MOTA	2912	CB	LEU	166	154.493	33.841	70.923	1.00 37.44	H
ATOM	2913	CG	LEU	166	155.626	34.088	71.922	1.00 41.79	H
MOTA	2914	CD1	LEU	166	156.948	33.782	71.254	1.00 36.73	H
ATOM	2915	CD2	LEU	166	155.598 ⁻	35.532	72.416	1.00 58.45	, H
ATOM	2916	C	LEU	166	152.318	34.920	70.319	1.00 60.22	H
MOTA	2917	0	LEU	166	152.399	34.547	69.147	1.00 63.00	H
MOTA	2918	N	SER	167	151.547	35.928	70.708	1.00 65.96	H
MOTA	2919	CA	SER	167	150.740	36.684	69.762	1.00 64.77	H
ATOM	2920	CB	SER	167	149.255	36.347	69.946	1.00 66.65	H
ATOM	2921	QG	SER	167	148.697	37.030	71.057	1.00 54.23	H
MOTA	2922	C	SER	167	150.978	38.172	69.977	1.00 65.40	H
MOTA	2923	0	SER	167	150.141	39.009	69.637	1.00 63.94	· H
MOTA	2924	N	SER	168	152.134	38.486	70.548	1.00 72.22	H
MOTA	2925	CA	SER	168	152.515	39.868	70.814	1.00 66.97	H
MOTA	2926	CB	SER	168	152.814	40.052	72.306	1.00 83.10	H
MOTA	2927	OG	SER	168	153.476	41.282	72.551	1.00 92.96	н
ATOM	2928	С	SER	168	153.754	40.212	69.997	1.00 58.05	H
MOTA	2929	0	SER	168	154.694	39.422	69.922	1.00 58.07	H
ATOM	2930	N	GLY	169	153.754	41.392	69.381	1.00 49.62	H
ATOM	2931·	CA	GLY	169	154.897	41.799	68.582	1.00 43.99	H
ATOM	2932	С	GLY	169	155.088	40.916	67.366	1.00 44.05	H
MOTA	2933	0	GLY	169	156.205	40.731	66.887	1.00 49.35	H
MOTA	2934	N	VAL	170	153.991	40.366	66.862	1.00 45.75	H
MOTA	2935	CA	VAL	170	154.058	39.506	65.697	1.00 34.35	H
ATOM	2936	CB	VAL	170	153.135	38.291	65.854	1.00 29.09	H
MOTA	2937		VAL '	170	153.213	37.418	64.614	1.00 23.76	H
ATOM .			VAL	170	153.539	37.492	67.079	1.00 30.40	H.
ATOM	2939		VAL	170	153.660	40.269	64.445	1.00 37.22	H
ATOM		.0	VAL	170	152.732	41.074	64.460	1.00 35.69	H
ATOM	2941	N	HIS	171	154.383	40.017	63.364	1.00 38.69	H
ATOM	2942	CA	HIS	171	154.118	40.664	62.088	1.00 33.69	
ATOM	2943	CB	HIS	171	155.167	41.743	61.802	1.00 38.36	H
ATOM	2944	CG	HIS	171	155.011	42.971	62.636	1.00 40.32	Н
	2945		HIS	171	155.806	44.055	62.783	1.00 49.35	H
MOTA	2946	ND1		171	153.923	43.182	63.456	1.00 58.85	.H
ATOM	2947		HIS	171	154.053	44.343	64.068	1.00 58.33 1.00 51.33	H
MOTA	2948		HIS	171	155.189 154.172	44.896 39.623	63.678 60.985	1.00 37.90	H
ATOM ATOM	2949	C	HIS	171	155.251	39.144	60.626		
	2950		HIS	171 172	153.251	39.250	60.465	1.00 32.23	H
ATOM	2951 2952	N	THR		153.012	38.289		1.00 30.40	. 11
ATOM	2952	CA CB	THR THR	172 172	151.865	37.251	59.576	1.00 30.37	H
ATOM ATOM		OG1		172	152.160	36.452	60.729	1.00 16.22	H
ATOM	2955	CG2	THR	172 ,	151.760	36.351	58.356	1.00 18.72	H
ATOM	2955 2956	CGZ	THR	172	152.708	39.097	58.118	1.00 43.29	· H
ATOM	2957	0	THR	172	151.690	39.782	58.011	1.00 42.87	H
MOTA	2958	И	PHE	173 .	153.635	39.031	57.172	1.00 42.03	н
ATOM	2959	CA	PHE	173	153.500	39.783	55.935	1.00 41.59	Н
ATOM	2960	CB	PHE	173	154.889	40.102	55.372	1.00 69.43	Н
ATOM	2961	CG	PHE	173	155.707	40.945	56.285	1.00 69.16	H
		-							

							•	•	
ATOM	2962	CD1	PHE	173	155.577	42.326	56.264	1.00 69.14	· H
ATOM	2963	CD2	PHE	173	156.555	40.360	57.216	1.00 71.48	н
ATOM	2964	CE1	PHE	173	156.277	43.117	57.165	1.00 47.16	H
MOTA	2965	CE2	PHE	173	157.260	41.140	58.122	1.00 46.77	· H
ATOM	2966		PHE	173	157.120	42.523	58.097	1.00 50.06	·
ATOM	2967	C	PHE	173	152.651	39.103	54.870	1.00 51.94	н
ATOM	2968	0	PHE	173	152.670	37.881	54.715	1.00 45.37	н
ATOM	2969	N	·PRO .	174	151.873	39.901	54.128	1.00 47.56	н
ATOM	2970	CD	PRO	174	151.760	41.360	54.268	1.00 40.08	н
ATOM	2971	CA	PRO	174	151.010	39.369	53.070	1.00 39.95	H
ATOM	2972	СВ	PRO	174	150.417		52.419	1.00 38.02	H
ATOM	2973	CG	PRO	174	151.234	41.778	52.945	1.00 41.70	н
ATOM	2974	С	PRO	174	151.793	38.515	52.080	1.00 34.30	H
MOTA	2975	0	PRO	174	152.926	38.844	51.719	1.00 38.61	н
ATOM	2976	N	ALA	175	151.191	37.407	51.655	1.00 33.98	н
ATOM		.CA	ALA	175	151.834	36.505	50.711	1.00 28.24	H
ATOM	2978	CB		175	150.947	35.303	50.455	1.00 24.04	Н
MOTA	2979	С	ALA	175	152.106	37.226	49.411	1.00 43.10	Н
ATOM	2980	0	ALA	175	151.420	38.182	49.064	1.00 41.83	н
ATOM	2981	N	VAL	176	153.119	36.758	48.691	1.00 47.34	H
MOTA	2982	CA	VAL	176	153.479	37.340	47.409	1.00 46.04	H
ATOM	2983	CB	VAL	176	154.660	38.335	47.546	1.00 48.76	H
ATOM	2984	CG1	VAL	176	155.822	37.686	48.280	1.00 50.38	H
ATOM	2985	CG2	VAL	176	155.100	38.809	46.167	1.00 64.07	H
ATOM	2986	C	VAL	176	.153.858	36.205	46.462	1.00 36.12	H
ATOM	2987	0	VAL	176	154.544	35.263	46.857	1.00 30.73	H
MOTA	2988	N ·	LEU	177	153.392	36.298	45.220	1.00 48.02	H
ATOM	2989	CA	LEU	177	153.647	35.282	44.205	1.00 60.32	. H
MOTA	2990	CB	LEU	177	152.686	35.467	43.036	1.00 39.51	H
MOTA	2991	CG	LEU	177	152.048		42.557	1.00 27.99	H
MOTA	2992		LEU	177	151.014	33.698	43.572	1.00 30.57	Н
MOTA	2993		LEU	177	151.410	34.378	41.197	1.00 38.71	H
ATOM	2994	C	LEU	177	155.074	35.257	43.679	1.00 73.61	H
ATOM	2995	0 -	LEU	177	155.621	36.275	43.254	1.00 78.42	н
ATOM	2996	N	GLN	178	155.669	34.074	43.694	1.00 79.08	H
ATOM	2997	CA	GLN	178	157.031	33.895	43.227	1.00 95.82	Н
ATOM	2998	CB	GLN	178	157.981	33.932	44.432	1.00 99.99	H
	2999	CG	GLN	178	159.244	33.098	44.308	1.00 99.99 1.00 99.99	H
ATOM	3000	CD	GLN	178	160.357	33.583	45.224		H
ATOM	3001		GLN	178	160.327	33.367	46.439	1.00 98.52	H
ATOM	3002		GLN	178	161.350	34.244	44.637		H
MOTA	3003	C	GLN	178	157.123		42.483	1.00 99.99	Н
MOTA	3004	0	GLN	178	157.289	32.637	43.092	1.00 96.75	н
ATOM	3005	N	SER	179 179	156.984 157.047		40.289	1.00 98.73	H
ATOM	3006	CA CB	SER SER	179	158.307	30.641	40.589	1.00 93.06	H
MOTA MOTA	3007 3008	OG	SER	179	159.098	30.472	39.425	1.00 53.00	H
MOTA	3009	C	SER	179	155.815	30.580	40.430	1.00 81.94	H
ATOM	3010	0	SER	179 .	155.927	29.351	40.461	1.00 85.05	н
ATOM	3011	И	ASP	180	154.649	31.217	40.517	1.00 61.79	Н
ATOM	3012	CA	ASP	180	153.367	30.518	40.643	1.00 53.42	Н
ATOM	3013	CB	ASP	180	153.284	29.372	39.633	1.00 63.39	H
ATOM	3014	CG	ASP	180	152.902	29.846	38.251	1.00 90.41	H
		-							

MOTA	3015	OD1	ASP	180	151	736	30.262	38.06	6 1.00	95.28	н
MOTA	3016	OD2	ASP	180	153	771	29.804	37.35	0 1.00	91.35	Н
ATOM	3017	С	ASP	- 180	153.	.036	29.975	42.03	0 [1.00	48.83	· H
ATOM	3018	0	ASP	180	151.	965	29.414	42.23	4 1.00	32.55	H
MOTA	3019	N	LEU	181	153	. 955	30.120	42.97	6 1.00	49.73	H
ATOM	3020	CA	LEU	181	153.	716	29.646	44.33	2 1.00	42.63	H
MOTA	3021	CB	LEU	181	154.	751	28.594	44.73	0 1.00	51.61	H
ATOM	3022	· CG	LEU	181	154.	817	27.335	43.86	5 1.00	45.19	H
ATOM	3023	CD1	LEU	181	155.	788	26.358	44.50	3 1.00	36.88	H
MOTA	3024	CD2	LEU	181	153.	429	26.712	43.72	3 1.00	49.90	H
MOTA	3025	C	LEU	181	153.		30.840	45.26	5 1.00	36.09	H
ATOM	3026	0	·LEU	181.	154.		31.859	44.91	4 1.00	47.48	. н
ATOM	3027	N	TYR	182	153.	235	30.711	46.45	4 1.00	34.48	Н
ATOM	3028	CA	TYR	182	153.		31.803	47.41	0 1.00	34.99	H
ATOM	3029	CB	TYR	182	151.		31.824	48.22	1 1.00	43.15	н
MOTA	3030	CG	TYR	182	150.		32.266	47.43	1 1.00	26.23	н
ATOM	3031		TYR	182	150.		33.621	47.21	9 .1.00	24.46	Н
MOTA	3032	CE1		182	149.		34.034	46.45		26.76	н
ATOM	3033	CD2		182	149.		31.332	46.86	4 1.00	28.50	Н
ATOM	3034	CE2		182	148.		31.733	46.09		40.52	Н
ATOM	3035	CZ	TYR	182	148.		33.085	45.89	3 1.00	31.63	н
ATOM	3036	ОН	TYR	182	147.		33.480	45.10	8 1.00	52.38	н
ATOM	3037		TYR	182	154.	410	31.694	48.36	1 1.00	34.67	Н
ATOM	3038	0	TYR	182	154.	902	30.604	48.64		30.57	н
ATOM	3039	N	THR	183	154.		32.844	48.86		46.64	н
ATOM	3040	CA	THR	183	155.		32.914	49.83	3 1.00	32.69	н
ATOM	3041	CB	THR	183	157.		33.348	49.23		32.26	н
ATOM	3042	OG1		183	157.		32.396	48.25		39.58	н
ATOM	3043	CG2	THR	183	158.		33.442	50.31		33.99	. Н
ATOM	3044	C.	THR	183	155.		33.981	50.82		28:00	н
ATOM	3045	0	THR	183	154.		35.009	50.44		38.20	Н
ATOM	3046	N	LEU	184	155.		33,743	52.09	7 1.00	27.54	. н
ATOM	3047	CA	LEU	184	155.	353	34.696	53.11	1.00	30.19	н
ATOM	3048	CB	LEU	184	153.	926	34.380	53.55	9 . 1.00	30.95	Н
ATOM	3049	CG	LEU	184	153.	483	34.617	54.99	1.00	46.42	Н
ATOM	3050	CD1	LEU	184	151.	969	34.814	55.01	1.00	25.32	H
ATOM	3051	CD2	LEU	184	153.	891	33.439	55.86	7 1.00	45.00	H
ATOM	3052	С	LEU	184	156.	337	34.598	54.27	1.00	30.88	·H
ATOM	3053	0	LEU	184	157.		33.623	54.383	31.00	17.03	H
MOTA	3054	N	SER	185	156.	370	35.613	55.12	2 . 1.00	29.51	H
MOTA	3055	CA	SER	185	157.	278	35.599	56.25	2 1.00	24.01	H
ATOM	3056	CB	SER	185	158.	573	36.350	55.91	1.00	21.45	H
ATOM	3057	OG	SER	185	158.	354	37.749	55.84	1.00	46.01	. Н
ATOM	3058	С	SER	185	156.	610	36.235	57.44	9 1.00	28.20	H
MOTA	3059	0	SER	185	155.	828	37.173	57.31	2 1.00	26.88	H
MOTA	3060	N	SER	186	156.	917	35.710	58.62	5 1.00	38.58	H
ATOM	3061	CA	SER	186	156.	354	36.229	59.85	3 1.00	34.31	H
ATOM	3062	CB	SER	186	155.	389	35.210	60.46		37.09	H
MOTA	3063	OG	SER	186	154.	862	35.685			44.43	H
ATOM	3064	C	SER	186			36.510			25.01	H
MOTA	3065	0	SER	186	158.		35.663			38.29	H
MOTA	3066	N	SER	187	157.		37.703			15.70	H
MOTA	3067	CA	SER	187	158.	524	38.066	62.34	3 1.00	25.23	H

					٠,				• • •
MOTA	3068	CB	SER	187	159.100	39.440	62.008	1.00 18.98	H
ATOM	3069	OG	SER	187	158.187	40.466	62.346	1.00 36.58	H
ATOM	3070	C	SER	187 `	157.905	38.092	63.739	1.00 27.63	·H
MOTA	3071	Ο,	SER	187	156.692	38.240	63.882	1.00 26.02	H
MOTA	3072	N	VAL	188 ·	158.739	37.926	64.762.	1.00 31.12	H
MOTA	3073	CA	VAL	188	158.266	37.950	66.141	1.00 31.94	H
ATOM	3074	CB	VAL	188	157.996	36.524	66.681	1.00 32.97	H
MOTA	3075	CG1	VAL	188	159.298	35.776	66.878	1.00 21.32	H
MOTA	3076	CG2	VAL	188	157.221	36.606	67.987	1.00 48.09	H
MOTA	3077	C ·	VAL	188	159.284	38.646	67.030	1.00 29.00	н
MOTA	3078	0	VAL	188	160.469	38.322	67.016	1.00 18.81	н
ATOM	3079	N	THR	189	158.811	39.618	67.799	1.00 43.09	H
ATOM	3080	CA	THR	189	159.664	40.385	68.691	1.00 52.62	H
ATOM	3081	CB	THR	189	159.381	41.890	68.535	1.00 55.64	H
ATOM	3082	OG1	THR	189	159.915	42.346	67.288	1.00 72.06	H
ATOM	3083	CG2	THR	189	160.006	42.678	69.676	1.00 47.82	H
ATOM	3084	C	THR	189	159.450	39.981	70.147	1.00 47.05	H
MOTA	3085	0	THR	189	158.313	39.914	70.622	1.00 51.99	Н
ATOM	3086	N	VAL	190	160.547	39.715	70.846	1.00 33.42	H
MOTA	3087	CA	VAL	190	160.489	39.327	72.251	1.00 49.20	H
ATOM	3088	CB	VAL	190	160.501	37.795	72.408	1.00 46.79	H
ATOM	3089	CG1	VAL	190	159.222	37.205	71.839	1.00 24.58	H
ATOM	3090	CG2	VAL	190	161.717	37.217	71.715	1.00 27.47	H
ATOM	3091	C	VAL	190 (161.670	39.893	73.037	1.00 57.65	H
ATOM	3092	0	VAL	190	162.797	39.935	72.538	1.00 35.32	H
ATOM	3093	N	PRO	191	161.419	40.347	74.277	1.00 74.09	· H
ATOM	3094	CD	PRO	191	160.096	40.363	74.931	1.00 85.05	H
ATOM	3095	CA	PRO	191	162.461	40.912	75.142	1.00 73.28	н
ATOM	3096	CB	PRO	191	161.769	41.033	76.496	1.00 85.43	H
ATOM	3097	CG	PRO	191	160.328	41.206	76.155	1.00 90.65	H
MOTA	3098	C	PRO	191	163.708	40.031	75.207	1.00 69.24	H
MOTA	3099	0	PRO	191	163.618	38.814	75.392	1.00 45.94	H
MOTA	3100	N	SER	192 ·	164.871	40.663	75.063	1.00 75.06	H
MOTA	3101	CA.	SER	192	166.146	39.952	75.082	1.00 71.45	H
MOTA	3102	CB	SER	192	167.311	40.955	75.103	1.00 59.57	. н
ATOM	3103	QG	SER	192	167.154	41.923	76.129	1.00 83.36	H
MOTA	3104	C	SER	192	166.291	38.977	76.248	1.00 74.48	H
ATOM	3105	0	SER	192	167.095	38.051	76.184	1.00 78.55	H
MOTA	3106	N	SER	193	165.498	39.169	77.297	1.00 78.60	н
ATOM	3107	CA	SER	193	165.574	38.315	78.476	1.00 75.62	H
MOTA	3108	CB	SER	193	164.901	39.019	79.661		н
MOTA	3109	OG	SER	193	163.490		79.525	1.00 99.66	H
ATOM	3110	C	SER	193	165.013	36.898	78.345		H
MOTA	3111	0	SER	193	165.430	35.998	79.073	1.00 55.75	H
ATOM	3112	N	THR	194	164.083	36.684	77.418	1.00 72.49	H
ATOM	3113	CA	THR	194	163.464	35.365	77.259	1.00 71.00	H
MOTA	3114	CB	THR	194	161.967	35.507	76.936		H
ATOM	3115	OG1	THR	194	161.795		75.846		H
MOTA	3116	CG2	THR	194	161.213	36.023	78.154		. H
ATOM	3117	C	THR	194	164.082	34.432	76.219		H
ATOM .	3118	O .		194	163.726		76.150		H
MOTA	3119	N	TRP	195	164.996				H
MOTA	3120	CA	TRP	195	165.654	34.154	74.381	1.00 48.60	Ħ

195 165.109 34.515 72.990 1.00 43.12 Н 3121 CB TRP ATOM 1.00 50.92 Η ĊG TRP 165.338 33.444 71.945 3122 195 MOTA 70.907 1.00 56.48 Η 166.332 33.451 3123 CD2 TRP 195 MOTA 1.00 47.66 32.235 70.192 Н 3124 CE2 TRP 195 166.199 MOTA 167.320 34.365 70.513 1.00 53.35 H MOTA 3125 CE3 TRP 195 195 164.664 32.259 71.817 1.00 57.45 Н 3126 CD1 TRP ATOM 165.175 31.528 70.766 .1.00 58.35 Н 195 3127 NE1 TRP MOTA 31.911 69.104 1.00 45.39 H 167.019 3128 CZ2 TRP 195 ATOM 34.040 69.430 1.00 48.84 Н 168.136 3129 CZ3 TRP 195 MOTA 32.821 68.741 1.00 37.86 167.979 CH2 TRP 195 3130 ATOM 34.383 74.420 1.00 55.91 Η С 167.164 MOTA 3131 TRP 195 74.702 35.492 1.00 67.87 Η 0 TRP 195 167.620 ATOM 3132 167.960 33.334 74.143 1.00 55.52 Η 3133 N PRO 196 MOTA 33.449 74.122 1.00 48.86 н PRO 196 169.426 3134 CD ATOM 167.526 31.972 73.804 1.00 46.54 Н 3135 CA PRO .196 MOTA 168.764 31.339 73.154 1.00 39.17 Н 3136 CB PRO 196 ATOM 169.812 32.444 73.087 1.00 48.88 H 3137 CG PRO 196 ATOM 167.047 31.179 75.016 1.00 48.13 Н 3138 С PRO 196 ATOM · 196 166.920 29.951 74.958 1.00 51.32 Н 3139 0 PRO MOTA 1.00 63.32 Н 166.789 31.891 76.109 3140 N. SER 197 MOTA 77.343 1.00 62.46 H 166.315 31.282 ATOM 3141 CA SER 197 Н CB SER 197 165.718 32.353 78.255 1.00 69.33 MOTA 3142 1.00 75.74 H MOTA 3143 OG SER 197 166.324 32.329 79.533 197 30.225 77.029 1.00 55.85 H 3144 C SER 165.261 MOTA 165.557 29.029 76.979 1.00 63.63 H 3145 SER 197 MOTA 0 1.00 50.23 164.032 30.680 76.809 H ATOM 3146 N GLU 198 1.00 57.31 H 29.787 76.494 ATOM 3147 CA GLU 198 162.925 H 161.605 30.416 76.945 1.00 72.95 MOTA 3148 CB GLU 198 30.972 1.00 75.15 Н 161.645 78.360 ATOM 3149 CG GLU 198 3150 1.00 85.11 78.584 Н 160.646 32.093 ATOM CD GLU 198 77.680 1.00 99.04 H ATOM 3151 OE1 GLU 198 159.817 32.341 198 . . 160.689 32.725 79.664 1.00 77.93 H ATOM 3152 OE2 GLU 74.995 1.00 56.54 Н 162.889 29.516 ATOM 3153 C GLÙ 198 74.201 1.00 63.21 Н 198 163.247 30.384 ATOM 3154 0 GLU Н 1.00 54.93 THR 199 162.462 28.314 74.614 ATOM 3155 N Н 73.203 1.00 53.51 3156 CA THR 199 162.392 27.937 ATOM 26.400 73.031 1.00 61.18 Н 3157 CB THR 199 162.304 ATOM 199 1.00 51.25 Н 161.128 25.903 73.681 3158 OG1 THR MOTA 25.727 73.623 1.00 78.07 199 163.536 MOTA 3159 CG2 THR. 1.00 59.63 H 72.485 ATOM · 3160 C. THR 199 161.205 28.583 THR 199 160.120 28.730 73.054 1.00 59.98 Η MOTA 3161 0 3162 N VAL 200 161.429 28.966 71.228 1.00 57.25 H ATOM Η CA VAL 200 160.407 29.603 70.405 1.00 51.96 3163 MOTA 160.815 31.039 70.035 1.00 33.42 Н CB VAL 200 ATOM 3164 159.951 31.540 68.899 1.00 17.75 H CG1 VAL 200 MOTA 3165 160.680 31.944 71.239 1.00 31.97 Н ATOM 3166 CG2 VAL 200 C 200 160.195 28.832 69.112 1.00 51.65 Н ATOM . 3167 VAL 200 -161.136 28.613 68.353 1.00 62.16 H ATOM 3168 0 VAL Н THR 201 158.955 28.427 68.862 1.00 39.44 ATOM 3169 Ν 27.684 67.648 1.00 32.31 Н ATOM 3170 CA THR 201 158.631 26.267 67.969 1.00 41.49 H MOTA 3171 CB THR 201 158.116 159.042 25.602 68.831 1.00 51.63 H MOTA 3172 OG1 THR 201 157.949 25.458 66.688 1.00 39.87 Н 201 MOTA 3173 CG2 THR

					1.4				
ATOM	3174	·C	THR	201	157.545	28.399	66.860	1.00 26.58	H
MOTA	3175	0	THR	. 201	156.682	29.055	67.438	1.00 25.18	H
ATOM	3176	N	CYS	202	157.593	28.279	65.538	1.00 22.39	H.
ATOM	3177	CA	CYS	202	156.582	28.902	64.699	1.00 25.43	H
MOTA	3178	.C	CYS	202	155.765	27.777	64.064	1.00 25.96	H
MOTA	3179	0	CYS	202	156.324	26.826	63.522	1.00 34.22	H
ATOM	3180	·CB	CYS	202	157.243	29.820	63.649	1.00 49.34	· H
ATOM	3181	SG	CYS.	202	157.564	29.150	61.983	1.00 74.97	H
ATOM	3182	N	ASN	203	154.441	27.871	64.172	1.00 24.52	H
ATOM	3183	CA	ASN	203	153.554	26.842	63.628	1.00 29.46	H
ATOM	3184	СВ	ASN	203	152.539	26.387	64.686	1.00 36.69	H
ATOM		CG	ASN	203	152.926	26.807	66.099	1.00 44.66	H
ATOM	3186		ASN	203	152.586	27.904	66.552	1.00 28.02	н
ATOM	3187		ASN	203	153.629	25.926	66.805	1.00 33.32	Ħ
ATOM	3188	C	ASN	203	152.800	27.293	62.389	1.00 18.74	. н
ATOM	3189	ō	ASN	203	151.964		62.447	1.00 38.03	H
ATOM	3190	Ŋ	VAL	204	153.099	26.646	61.270	1.00 23.45	H
ATOM	3191	CA	VAL	204	152.451	26.957	60.006	1.00 38.87	Н
ATOM	3192	CB	VAL	204	153.473	27.049	58.853	1.00 39.50	H
ATOM	3193		VAL	204	152.795	27.575	57.599	1.00 52.52	н
ATOM	3194		VAL	204	154.624	27.944	59.254	1.00 29.99	H
ATOM	3195	C ·	VAL	204	151.461	25.854	59.676	1.00 41.89	Н
ATOM	3196	ō	VAL	.204	151.733	24.682	59.919	1.00 46.77	H
ATOM	3197	N	ALA	205	150.312	26.236	59.126	1.00 41.52	н
MOTA	3198	CA	ALA	205	149.285	25.273		1.00 32.14	H
ATOM	3199	CB.	ALA	205	148.156	25.281	59.777	1.00 44.74	н
ATOM	3200	C	ALA	205	148.749	25.614	57.365	1.00 28.16	н
ATOM	3201	0	ALA	205	148.349	26.750		1.00 23.06	н
ATOM	3202		HIS	206	148.756	24.629	56.474	1.00 38.89	H
ATOM	3203	CA	HIS	206	148.267	24.825	55.121	1.00 31.01	H
MOTA	3204	СВ	HIS	206	149.357	24.497	.54.112	1.00 34.08	. Н
ATOM	3205	CG	HIS	206	149.025	24.909	52.715	1.00 25.51	Н
ATOM	3206		HIS	206	148.521	26.065	52.227	1.00 33.37	H
MOTA	3207		HIS	206	149.193	24.073	51.635	1.00 28.36	Н
ATOM	3208		HIS	206	148.807	24.698	50.535	1.00 30.36	Н
ATOM	3209		HIS	206	148.393	25.907	50.868	1.00 29.53	
ATOM	3210	C	HIS	206	147.061	23.930	54.876	1.00 38.48	H
ATOM	3211	o	HIS	206	147.198	22.819	54.371	1.00 42.18	Н
ATOM	3212	N	PRO	207	145.856	24.417	55.228	1.00 46.11	Н
MOTA	3213	CD	PRO	207	145.636	25.758	55.802	1.00 59.24	H
MOTA	3214	CA	PRO	207	144.597		55.065	1.00 49.09	Н
MOTA	3215	CB	PRO	207	143.538		55.138		н
ATOM	3216	CG	PRO	207	144.146		56.018	1.00 65.42	H
ATOM	3217	C ·		207	144.504		53.769		H
ATOM	3218	0	PRO	207	144.293	21.680	53.787	1.00 51.48	H
MOTA	3219	N	ALA	208	144.664		52.646	1.00 56.11	н
ATOM	3220	CA	ALA		144.584	22.933	51:342	1.00 41.51	Н
ATOM	3221	CB	ALA	. 208	145.043		50.261	1.00 34.52	H
ATOM	3222	C	ALA	208	145.397				н
ATOM	3223	ō	ALA	208	144.983	•			H
ATOM	3224	N	SER	209	146.550				H
ATOM	3225	CA	SER	209	147.396			1.00 48.72	н
ATOM	3226	CB	SER	209	148.852	20.811		1.00 44.67	Ħ
						•		_	

					•		٠.	•	
ATOM	3227	OG	SER	209	149.387	21.642	52.650	1.00 55.80	н
ATOM	3228	C	SER	209	147.304	19.643	53.236	1.00 53.29	Н
ATOM	3229	0	SER	209	147.973	18.624	53.411	1.00 52.35	Н
ATOM	3230	N	SER	210	146.462	20.119	54.148	1.00 71.17	H
ATOM	3231	CA	SER	210	146.269	19.475	55.444	1.00 82.90	. н
ATOM	3232	CB	SER	210	145.509	18.158	55.277	1.00 90.95	H
ATOM	3233	OG	SER	210	144.137	18.333	55.578	1.00100.00	. н
ATOM	3234		SER	210	147.579	19.213	56.169	1.00 79.59	H
ATOM	3235	ō	SER	210	147.702	18.234	56.908	1.00 80.94	H
ATOM	3236	N	THR	211		: 20.088	55.950	1.00 73.59	H
ATOM	3237	CA	THR	211	149.854	19.964	56.594	1.00 75.14	H
ATOM	3238	CB	THR	211	151.027	20.111	55.599	1.00 76.28	H.
ATOM	3239		THR	211	150.990	21.414	55.008	1.00 73.09	H
ATOM	3240	CG2	THR	211	150.950	19.062	54.510	1.00 89.67	H
ATOM	3241	C	THR	211	150.024	21.051	57.643	1.00 74.45	H
ATOM	3242	ō	THR	211	149.536	22.172	57.491	1.00 76.65	H
ATOM	3243	N	LYS	212	150.711	20.699	58.722	1.00 69.16	H
ATOM	3244	CA	LYS	212	150.988	21.645	59.783	1.00 61.67	. H
ATOM	3245	СВ	LYS	212	150.041	21.450	60.967	1.00 73.38	H
ATOM .	3246	CG	LYS	212	150.718	21.612	62.317	1.00 89.85	. Н
ATOM	3247	CD	LYS	212	150.006	22.614	63.192	1.00 99.99	H
ATOM	3248	CE	LYS	212	150.452	22.449	64.637	1.00 97.52	H
ATOM	3249	NZ	LYS	212	, 150.308	23.707	65.419	1.00 95.76	H
ATOM	3250	C	LYS	212	152.413	21.344	60.198	1.00 51.18	H
MOTA	3251	0	LYS	212	152.730	20.222	60.594	1.00 46.57	H
ATOM	3252	N	VAL	213	153.275	22.349	60.081	1.00 47.52	H
MOTA	3253	CA	VAL	213	154.672	22.201	60.434	1.00 33.06	H
ATOM	3254	CB	VAL	213	155.593	22.651	59.282	1.00 35.68	H
MOTA	3255	CG1	VAL	213	157.002	22.136	59.511	1.00 51.97	. H
MOTA	3256	CG2	VAL	213	155.047	22.154	57.948	1.00 53.21	H
MOTA	3257	С	VAL	213	155.011	23.028	61.661	1.00 30.06	H
ATOM	3258	0	VAL	213	154.324	23.996	61.991	1.00 34.34	H
MOTA	3259	· N	ASP	214	156.071	22.625	62.343	1.00 35.26	H
MOTA	3260	CA	ASP	· 214	156.541	23.325	. 63 . 523 .	1.00 39.19	H
MOTA	3261	CB	ASP	214	156.228	22.526	64.791	1.00 58.41	H H
MOTA	3262	CG	ASP	214	154.791	22.709	65.259	1.00 63.54 1.00 65.10	Н
MOTA	3263		ASP	214	154.397	23.857	65.553	1.00 80.45	H
ATOM	3264		ASP	214	154.059	21.699 23.454	65.336	1.00 37.64	H
MOTA	3265	G ·	ASP	214	158.046				H
MOTA	3266	0	ASP	214	158.725	22.489 24.652	62.983	1.00 41.00	н
MOTA	3267	N	LYS	215	158.564		63.410	1.00 34.03	H
MOTA	3268	CA	LYS	215	159.985 160.261	24.877 25.637	62.112	1.00 33.05	Н
ATOM	3269	CB	LYS	215	161.248	24.948	61.191	1.00 59.89	н
ATOM .	3270	CG	LYS	215	160.536	23.992	60.251	1.00 59.31	H
MOTA	3271	CD	LYS	215 215	161.386	22.766	59.964	1.00 53.98	H
MOTA	3272	CE NZ	LYS	215	160.573	21.613	59.475	1.00 65.45	H
ATOM ATOM	3273 3274	C	LYS	215	160.515	25.659	64.588	1.00 38.73	н
ATOM	3275	0	LYS	215	160.030	26.745	64.904	1.00 53.68	Н
MOTA	3276	N	LYS	216	161.511	25.084	65.244	1.00 48.31	H
ATOM	3277	CA	LYS	216	162.141		66.389	1.00 47.35	H
ATOM	3278	СВ	LYS	216	162.649	*	67.357	1.00 48.55	H
MOTA	3279	CG	LYS	216	162.043	23.256	67.119	1.00 74.84	н

									1
MOTA	3280	CD	LYS	216	162.861	22.156	67.793	1.00 85.40	H
ATOM	3281	CE	LYS	216	162.592	.22.085	69.296	1.00 94.97	H
ATOM	3282	NZ	LYS	216	162.133	20.733	69.738	1.00 92.19	H
MOTA	3283	C	LYS	216	163.305	26.543	65.860	1.00 46.24	H
MOTA	3284	0	LYS	216	163.898	26.203	64.838	1.00 34.41	· H
ATOM	3285	N .	ILE	217	163.622	27.637	66.541	1.00 41.02	H
ATOM	3286	CA	ILE	217	164.719	28.497	66.116	1.00 44.97	Н
MOTA	3287	CB	ILE	217	164.273	29.978	66.046	1.00 41.86	н
MOTA	3288	CG2	ILE	217	165.094	30.716	64.991	1.00 44.48	H
ATOM	3289	CG1	ILE	217	162.768	30.063	65.749	1.00 33.66	H
ATOM	3290			217	162.407	30.038	64.270	1.00 17.95	H
ATOM	.3291	С	ILE	217	165.890	28.363	67.094	1.00 47.47	H
ATOM	3292	0 .	ILE	217	165.690	28.400	68.310	1.00 43.27	н
ATOM	3293	N	VAL	218	167.103	28.219	66.559	1.00 50.40	H
ATOM	3294	CA	VAL	218	168.301	28.054	67.394	1.00 50.95	н
ATOM	3295	СВ	VAL	218	169.003	26.705	67.084	1.00 57.08	Н
ATOM	3296		VAL	218	167.974	25.686	66.599	1.00 55.44	H
ATOM	3297	CG2	VAL	218	170.105	26.903	66.037	1.00 73.39	H
ATOM	3298	С	VAL	218	169.344	29.175	67.289	1.00 41.93	Н
ATOM	3299	0	VAL	218	170.001	29.458	68.317	1.00 46.19	н
ATOM	3300	OT	VAL	218	170.011	29.390	69.119	1.00 52.14	Н
ATOM	3301	CB	LYS	2	95.854	32.588	47.685	1:00 42.79	C
ATOM .	3302	CG	LYS .	2	95.825	31.435	46.699	1.00 53.80	Ċ
ATOM	3303	CD	LYS	2	94.407	30.925	46.486	1.00 62.43	Ċ
ATOM .	3304	CE	LYS	2	94.373	29.740	45.531	1.00 62.95	· . c
ATOM	3305	NZ	LYS	2	94.065	28.460	46.232	1.00 60.28	· c
ATOM	3306	C	LYS	2	94.693	33.099	49.840	1.00 46.91	Ċ
ATOM	3307	0	LYS	2	93.606	32.673	50.239	1.00 58.66	Ċ
ATOM	3308	N	LYS	2	95.259	30.740	49.234	1.00 34.71	Ċ
ATOM	3309	CA	LYS	. 2	95.690	32.169	49.150	1.00 47.34	C
MOTA	3310	N	ILE	3	95.072	34.368	49.975	1.00 39.77	C
ATOM	3311	CA	ILE	. 3	94.226	35.372	50.621	1.00 41.61	C
MOTA	3312	CB	ILE	3 .	95.062	36.456	51.331	1.00 43.12	С
ATOM	3313	CG2	ILE	3	94.142	37.421	52.074	1.00 41.52	C
ATOM	3314	CG1	ILE	3	96.056	35.818	52.301	1.00 48.11	. C
ATOM	3315	CD1	ILE	3	97.282	36.672	52.556	1.00 29.73	C
MOTA	3316	С	ILE	. з	93.346	36.101	49.623	1.00 38.09	С
ATOM "	3317	0	ILE	3	93.645	36.147	48.437	1.00 41.06	С
ATOM ·	3318	N	LEU	4	92.266	36.686	50.124	1.00 41.63	С
ATOM	3319	CA	LEU	4	91.349	37.439	49.287	1.00 47.21	C
ATOM	3320	CB	LEU	4		37.026	49.581	1.00 47.90	C
ATOM	3321·	CG	LEU	4	89.389	35.782	48.852	1.00 49.25	. С
ATOM	3322			4	89.552	35.970	47.351	1.00 37.24	C
ATOM	3323	CD2		4	90.138	34.543	49.324	1.00 54.80	C
ATOM	3324	C	LEU	4	91.536	38.927	49.569	1.00 48.08	С
MOTA	3325	0	LEU	4	91.868	39.322	50.695	1.00 31.46	С
ATOM	3326	N	VAL	5	91.326	39.743	48.538	1.00 43.17	C
ATOM	3327	CA	VAL	5	91.469	41.190	48.660	1.00 33.62	C.
ATOM	3328	СВ	VAL	5	92.806	41.673	4.8.047	1.00 32.71	С
ATOM	3329	CG1		5	93.315	42.880	48.803	1.00 22.52	C
MOTA	3330	CG2	VAL	5 .	93.836	40.559	48.081	1.00 29.21	C
MOTA	3331	C	VAL	5	90.325	41.911	47.945	1.00 36.98	С
MOTA	3332	0	VAL	5	90.028	41.628	46.788	1.00 50.54	C

						•			
ATOM	3333	N	LYS	6	89.689	42.844	48.640	1.00 39.70	, C
ATOM	3334	CA	LYS	6	88.593	43.622	48.068	1.00 41.54	Ċ
MOTA	3335	CB	LYS	6 ·	87.299	43.378	48.857	1.00 38.28	C
ATOM	3336	CG	LYS	· 6	86.443	42.233	48.341	1.00 48.43	, G
ATOM	3337	. CD	LYS	6	85.343	41.841	49.339	1.00 58.62	С
ATOM	3338	CE	LYS	6	85.905	41.158	50.593	1.00 47.34	С
ATOM	3339	NZ	LYS	6	86.645	39.893	50.281	1.00 51.47	С
ATOM	3340	С	LYS	6	88.957	45.108	48.147	1.00 32.95	C
ATOM	3341	0	LYS	6 .	89.265	45.614	49.222	1.00 43.88	С
ATOM	3342	N	GLN	7	88.926	45.805	47.021	1.00 30.15	. с
ATOM	3343	CA	GLN	7 '	89.258	47.224	47.022	1.00 39.07	С
ATOM	3344	СВ	GLN	7	90.631	47.449	46.395	1.00 44.76	С
ATOM	3345	CG	GLN	7	91.355	46.178	46.002	1.00 48.85	С
ATOM	3346	CD	GLN	7	92.745	46.462	45.467	1.00 53.95	C
ATOM	3347	OE1	GLN	7	93.575	45.560	45.334	1.00 50.12	C
ATOM	3348	NE2	GLN	7	93.007	47.730	45.155	1.00 35.66	С
ATOM	3349	С	GLN	7	88.230	48.035	46.262	1.00 36.89	C
ATOM	3350	0	GLN	. 7	87.567	47.514	45.370	1.00 42.41	C
MOTA	3351	N	SER	. 8	88.095	49.307	46.623	1.00 34.89	C
ATOM	3352	CA	SER	8	87.148	50.178	45.940	1.00 33.64	С
ATOM	3353	CB	SER	8	87.247	51.613	46.475	1.00 39.10	C
MOTA	3354	OG	SER	8	86.259	51.882	47.465	1.00 33.65	Ç
MOTA	3355	C	SER	8	87.564	50.141	44.481	1.00 36.57	Ċ
MOTA	3356	0	SER	8	88.751	50.012	44.180	1.00 34.54	C
MOTA	3357	N	PRO	9	86.596	50.239	43.553	1.00 45.61	C
MOTA	3358	CD	PRO	9	85.146	50.390	43.755	1.00 42.54	C
ATOM	3359	CA	PRO	9	86.946	50.207	42.128	1.00 42.76	C
MOTA	3360	CB	PRO	_. 9	85.594	50.325	41.411	1.00 35.11	C
ATOM	3361	CG	PRO	9	84.577	49.955	42.428	1.00 29.77	С
ATOM	3362	C	PRO	9	87.879	51.370	41.813	1.00 45.27	C
ATOM ·	3363	0 .	PRO	9	88.929	51.194		1.00 49.59	C
ATOM	3364	N .	MET	10	87.486	52.561	42:254	1.00 34.14	C
ATOM	3365	CA	MET	10	88.292	53.749	42.041	1.00 36.35	C
ATOM	3366	CB	MET	10	. 87.975	54.374 55.908	40.674	1.00 51.67	. C
MOTA	3367	CG	MET	10	87.958		40.628	1.00 45.29 1.00 41.23	C
MOTA	3368	SD	MET	10	86.852	56.596	39.357 38.239	1.00 41.23	c
ATOM	3369	CE	MET	10	88.067	57.323 54.730	43.172	1.00 38.20	C
ATOM	3370 3371	0	MET MET	10 10	88.031 87.032	54.629	43.882	1.00 31.40	C.
ATOM ATOM	3371	N	LEU	11	88.962	55.661	43.344	1.00 22.03	C .
ATOM	3372	CA	LEU	11 .	88.890	56.669	44.385	1.00 34.02	C
MOTA	3374	CB	LEU	11	89.826	56.264	45.530	1.00 20.95	C
ATOM	3375	CG	LEU	11	89.592	54.804	45.946	1.00 18.02	· C
ATOM	3376		LEU	11	90.765	54.235	46.696	1.00 5.04	Ċ
MOTA	3377	CD2		11	88.339	54.745	46.785	1.00 31.87	C
ATOM	3378	C	LEU	. 11	89.306	58.008	43.789	1.00 22.25	С
ATOM	3379	0	LEU	11	90.294	58.093	43.061	1.00 23.22	С
MOTA	3380	N	VAL	12	88.540	59.051	44.075	1.00 23.39	C
ATOM		CA	VAL	12	88.871	60.365	43.551	1.00 25.58	C
ATOM	3382	СВ	`VAL	12	87.610	61.166	43.174	1.00 37.83	С
MOTA	3383	CG1	VAL	12	88.008	62.509	42.585	1.00 20.17	C
MOTA	3384	CG2	VAL	12	86.771	60.387	42.173	1.00 25.83	C
MOTA	3385	C	VAL	12	89.655	61.133	44.603	1.00 30.45	C

W	O 2 005/0	66867							PCT/GB200	05/0000099
					:	,	:			
							100			
					:		100			
	. :	4.)								
MOTA	3386	0.7	VAL	12		89.106	61.605	45.597	1.00 47.50	. C
MOTA	3387	N	ALA	13		90.955	61.246	44.379	1.00 37.89	C
ATOM	3388	CA	ALÁ	13		91.820	61.943	45.307	1.00 26.16	С
MOTA	3389	CB	ALA	13		93.203	62.091	44.706	1.00 30.65	C
MOTA	3390	С .	ALA.	13		91.241	63.309	45.615	1.00 33.79	· C
ATOM	3391	0	ALA	13		90.816	64.028	44.711	1.00 39.57	С
MOTA	3392	N	TYR	14	٠	91,206	63.657	46.895	1.00 39.35	С
ATOM	3393	CA	TYR	14		90.711	64.959	47.306	1.00 37.04	C
ATOM	3394	CB	TYR	14		89.660	64.835	48.410	1.00 33.79	C
ATOM	3395	CG	TYR	. 14		89.555	66.110	49.213	1.00 48.57	C
ATOM	3396	CD1	TYR	` 14		90.182	66.233	50.458	1.00 50.52	С
MOTA	3397	CE1	TYR	14		90.178	67.444	51.148	1.00 54.90	С
MOTA	3398	CD2	TYR	14		88.913	67.231	48.685	1.00 44.13	С
ATOM.	3399	CE2	TYR	14		88.904	68.441	49.364	1.00 49.92	С
MOTA	3400	CZ	TYR	14		89.538	68.545	50.590	1.00 58.83	С
MOTA	3401	OH	TYR	14		89.536	69.761	51.240	1.00 69.05	C
MOTA	3402	C	TYR	14		91.884	65.765	47.846	1.00 39.91	C
ATOM	3403	0	TYR	14		92.626	65.283	48.703	1.00 36.85	C
MOTA	3404	N	ASP	15		92.041	66.992	47.359	1.00 34.60	С
ATOM	3405	CA	ASP	15		93.131	67.838	47.820	1.00 35.97	С
ATOM	3406	CB	ASP	15		92.958	68.141	49.307	1.00 54.21	С
MOTA	3407	CG	ASP	15		92.605	69.588	49.573	1.00 74.11	C.
MOTA	3408	OD1	ASP	15	,	92.300	70.322	48.604	1.00 77.84	C
MOTA	3409	OD2	ASP	15	-	92.634	69.985	50.758	1.00 75.11	С
ATOM	3410	C	ASP	15		94.448	67.112	47.603	1.00 33.47	C .
MOTA	3411	O	ASP	15		95.389	67.265	48.380	1.00 34.49	C
MOTA	3412	N	ASN	16		94.499	66.309	46.543	1.00 44.74	С
MOTA	3413	CA	ASN	. 16		95.683	65.534	46.196	1.00 48.87	C
ATOM	3414	CB	ASN	16		96.898	66.457	46.053	1.00 62.07	С
MOTA	3415	CG	ASN	16		96.840	67.292	44.793	1.00 64.94	. С
MOTA	3416	OD1	ASN	16		96.213	68.355	44.760	1.00 66.06	С
MOTA	3417	ND2	ASN	16		97.497	66.816	43.742	1.00 73.29	С
MOTA	3418	C	ASN	16		95.983	64.449	47.225	1.00.48.29	С
MOTA	3419	0	ASN	16	•	97.148	64.096	47.451	1.00 38.81	С
MOTA	3420	N	ALA	17	•	94.923	63.923	47.835	1.00 34.08	C
MOTA	3421	CA	ALA	17		95.055	62.867	48.840	1.00 29.57	С
MOTA	3422	CB	ALA	17		94.996	63.459	50.237	1.00 33.14	С
MOTA	3423	. C	ALA	17 .		93.955	61.832	48.667	1.00 29.96	C
MOTA	3424	0	ALA	17		92.931	62.107	48.049	1.00 32.16	С
ATOM	3425	N	VAL	.18		94.169		49.213	1.00 28.09	C
MOTA	3426	CA	VAL	18		93.188	59.568	49.111	1.00 30.54	С
MOTA	3427	CB	VAL	18		93.339	58.824	47.767	1.00 15.07	C
MOTA	3428	CG1	VAL	18		94.517	57.889	47.829	1.00 23.83	C
MOTA	3429	· CG2	VAL	18		92.086	58.054	47.448	1.00 16.29	C
MOTA	3430	C	VAL	18		93.356		50.266	1.00 33.43	C
MOTA	3431	0	VAL	18		94.314	58.660	51.029	1.00 28.92	C
ATOM	3432	И.	ASN	19		92.419	57.643	50.398	1.00 30.17	С
MOTA	3433	CA	ASN	19		92.496	56.642	51.456	1.00 28.35	C
MOTA	3434	CB	ASN	19		91.468	56.959	52.545	1.00 37.98	C
ATOM	3435	CG	ASN	19		92.105	57.540	53.794	1.00 36.06	C
MOTA	3436		asn	19		92.991	56.923	54.385	1.00 36.77	C
ATOM	3437		ASN	19		91.659	58.732	54.205	1.00 27.02	C
MOTA	3438	С	ASN	19		92.241	55.260	50.867	1.00 28.23	С

					- 1			•	
						101			
						101			
						٠.			
ATOM	3439	0	ASN	19	91.113	54.941	50.502	1.00 25.92	Ċ.
ATOM	3440	N	LEU	20	93.291	54.446	50.781	1.00 37.11	С
MOTA	3441	CA	LEU	20	93.192	53.097	50.204	1.00 39.33	C
MOTA	3442	CB	LEU	20	94.382	52.830	49.284	1.00 52.73	C
MOTA	3443	CG	LEU	20 :	94.409	53,492	47.913	1.00 59.34	C
MOTA	3444	CD1	LEU	20	95.375	54.657	47.953	1.00 54.35	, G
MOTA	3445	CD2	LEU	20	94.826	52.478	46.855	1.00 58.17	C
MOTA	3446	- C	LEU	20	93.122	51.946	51.202	1.00 24.88	С
ATOM	3447	0	LEU	20	94.141	51.349	51.532	1.00 27.29	C
MOTA	3448	N	SER	21	91.926	51.619	51.670	1.00 24.25	С
MOTA	3449	CA	SER	21	91.795	50.515	52.601	1.00 32.93	С
MOTA	3450	CB	SER	21.	90.474	50.603	53.357	1.00 22.84	C
ATOM	3451	OG	SER	21	90.626	50.123	54.682	1.00 42.82	C
MOTA	3452	С	SER	21	91.834	49.250	51.760	1.00 36.87	C
ATOM	3453	0	SER	21	91.633	49.308	50.551	1.00 50.83	C
MOTA	3454	N	CYS	22	92.098	48.109	52.384	1.00 41.84	C
ATOM	3455	CA	CYS	22	92.142	46.858	51.636	1.00 34.97	C
MOTA	3456	С	CYS	22	91.519	45.728	52.420	1.00 29.54	C
MOTA	3457	0	CYS	22	92.086	45.250	53.400	1.00 31.51	C
MOTA	3458	CB	CYS	22	93.578	46.504	51.294	1.00 44.42	C
ATOM	3459	SG	CYS	22	94.382	47.674	50.162	1.00 54.15	C
ATOM	3460	N	LYS	23	90.339	45.312	51.983	1.00 9.94	C
MOTA	3461	CA	LYS	23	89.630	44.234	52.639	1.00 27.48	C
ATOM	3462	CB	LYS	23	88.196	44.149	52.099	1.00 45.60	C
MOTA	3463	CG	LYS	23	87.083	44.123	53.160	1.00 46.91	, C
MOTA	3464	CD	LYS	23	85.742	44.572	52.558	1.00 49.03	C
ATOM	3465	CE	LYS	23	84.537	43.911	53.219	1.00 44.60	C
MOTA	3466	NZ	LYS	23	83.321	43.966	52.347	1.00 31.56	C
MOTA	3467	C	LYS	23	90.373	42.933	52.354	1.00 28.04	C
MOTA	3468	0	LYS	23	90.727	42.651	51.209	1.00 27.74	C
MOTA	3469	N	TYR	24	90.616	42.154	53.404	1.00 48.19	C
MOTA	3470	CA.	TYR	24	91.305	40.869	53.279	1.00 51,31	C
ATOM	3471	CB	TYR	24	92.585	40.864	54.121	1.00 33.41	C
MOTA	3472	CG	TYR	24	93.582	41.914	53.708	1.00 28.69	C.
ATOM	3473	CD1	TYR	24	94.190	41.867	52.454	1.00 41.70	C
ATOM	3474	CE1	TYR	24	95.089	42.846	52.049	1.00 20.51	C
MOTA	3475	CD2	TYR	24	93.901	42.971	54.554	1.00 29.67	C
MOTA	3476	CE2	TYR	24	94.803	43.960	54.159	1.00 21.03	C
MOTA	3477	CZ	TYR	24	95.389 ⁻	43.889	52.905	1.00 18.10	С
ATOM	3478	OH	TYR	24	96.263	44.862	52.495	1.00 37.76	C
MOTA	3479	C	TYR	24	90.403	39.736	53.749	1.00 47.73	,C
ATOM	3480	0	TYR	24	89.264	39.957	54.151	1.00 49.24	C
ATOM	3481	N	SER	25	90.920	38.518	53.690	1.00 57.38	C
MOTA	3482	CA	SER	25	90.175	37.353	54.146	1.00 60.28	С
MOTA	3483	CB	SER	25	89.888	36.407	52.975	1.00 59.25	C
MOTA	3484	OG	SER	25	. 91.068	36.142	52.238	1.00 69.79	С
ATOM	3485	C	SER	25	91.076	36.668	55.164	1.00 54.52	C
MOTA	3486	0	SER	25	91.290	35.455	55.108	1.00 60.55	C
ATOM	3487	N	TYR	26	91.606	37.458	56.096	1.00 43.18	C
ATOM	3488	CA	TYR	26	92.516	36.933	57.101		С
MOTA	3489	CB	TYR	26	93.949	36.995	56.566	1.00 26.62	С
MOTA	3490	CG	TYR	26	94.845	35.878	57.060	1.00 37.63	C.
ATOM	3491	CD1	TYR	26	95.606	36.026	58.220	1.00 43.69	C
					•				

MOTA	3492	CE1	TYR	26	96.443	35.003	58.673	1.00 50	.14	C
MOTA	3493	CD2	TYR	26	94.941	34.677	56.363	1.00 43	.23	C
MOTA	3494	CE2	TYR	26	95.776	33.646	56.809	1.00 62	.28	C
MOTA	3495	CZ	TYR	26	96.524	33.816	57.964	1.00 56	.86	C
ATOM	3496	OH	TYR	26	97.352	32.801	58.404	1.00 54	.48	С
ATOM	3497	C	TYR	26	92.455	37.637	58.451	1.00 30	.34	C
ATOM	3498	0	TYR	26 .	92.275	38.851	58.518	1.00 12	.16	C
ATOM	3499	N	ASN	27	92.626	36.832	59.504	1.00 35	.16	C
MOTA	3500	CA	ASN	27	92.639	37.230	60.920	1.00 43	.53	C
ATOM	3501	СВ	ASN	27	94.092	37.461	61.380	1.00 44	.74	С
ATOM	3502	CG	ASN	27	94.595	38.869	61.095	1.00 54	.71	C
ATOM	3503	OD1		27	93.890	39.691	60.503	1.00 49	.86	C
ATOM	3504	ND2	ASN	27	95.833	39.153	61.521	1.00 38	.35	C
ATOM	3505	С	ASN	27	91.760	38.379	61.413	1.00 52	.07	С
MOTA	3506	0	ASN	27	91.255	39.159	60.582	1.00 64	.58	C
ATOM	3507	OT	ASN	27	91.583	38.478	62.651	1.00 38	.64	C
MOTA	3508	CB	SER	30 -	98.029	39.101	66.273	1.00 38	.67	C
MOTA	3509	OG	SER	30	99.164	39.940	66.371	1.00 28	.74	С
ATOM	3510	С	SER	30	99.198	37.741	64.527	1.00 48	.62	C
ATOM	3511	0	SER	30	99.534	36.748	65.163	1.00 42	.19	C
ATOM	3512	N	SER	30	96.758	37.537	64.847	1.00 40	.61	C
ATOM	3513	CA	SER	30	97.910	38.480	64.881	1.00 46	.89	С
ATOM	3514	N	ARG	31	, 99.906	38.226	63.505	1.00 52	.76	C
ATOM	3515	CA	ARG	31	101.156	37.606	63.056	1.00 48	.62	С
ATOM	3516	СВ	ARG	31	100.864	36.509	62.014	1.00 48	.21	С
ATOM	3517	CG	ARG	31	99.390	36.316	61.654	1.00 45	.83	С
ATOM	3518	CD	ARG	31	99.123	34.913	61.098	1.00 45	.48	C
ATOM	3519	NE	ARG	31	98.202	34.159	61.946	1.00 56	.80	C
ATOM	3520	CZ	ARG	31	97.819	32.904	61.723	1.00 60	.88	C
ATOM	3521	NH1	ARG	31	98.273	32.238	60.666	1.00 53	.06	C
ATOM	3522	NH2	ARG	31	96.980	32.312	62.565	1.00 65	.41	C
ATOM	3523	С	ARG	31 .	102.140	38.620	62.457	1.00 42	.34	C
MOTA	3524	0	ARG	31	102.024	39.821	62.696	1.00 37	.05	C
ATOM	3525	N	GLU	32 .	103.109	38.119	61.688	1.00 33	.63	C
ATOM	3526	CA	GLU	32	104.114	38.959	61.035	1.00 28	.55	C
ATOM	3527	CB	GLU	32	105.510	38.366	61.211	1.00 35	.76	C
MOTA	3528	CG	GLU	32	106.639	39.289	60.762	1.00 44	.46	C
MOTA	3529	CD	GLU	32	107.993	38.584	60.704	1.00 47	. 94	C
MOTA	3530	OE1	GLU	32	108.183	37.588	61.436	1.00 50	.54	C
MOTA	3531	OE2	GLU	32	108.870	39.024	59.931	1.00 43	.16	C
MOTA	3532	C	GLU	32	103.777	39.047	59.550	1.00 32	.96	C
ATOM	3533	0	GLU	32	103.876	38.061	58.815	1.00 19	.87	C
MOTA	3534	N.	PHE	33	103.394	40.244	59.122	1.00 41	.41	C
MOTA	3535	CA	PHE	33	102.989	40.488	57.747	1.00 35	.05	C
MOTA	3536	CB	PHE	33	101.494	40.691	57.715	1.00 26	.59	C
MOTA	3537	CG	PHE	33	101.065	41.944	58.408	1.00 24	.17	С
ATOM	3538	CD1	PHE	33	101.369	43.192	57.861	1.00 23		С
MOTA	3539	CD2	PHE	33	100.374	41.889	59.611	1.00 15		C
MOTA	3540	CE1		•	100.989	44.367		1.00 28		С
MOTA	3541	CE2		33	99.984	43.063		1.00 24		C
MOTA	3542	CZ	PHE	33	100.292	44.304	59.703	1.00 31		C
MOTA	3543	C	PHE	33	103.640	41.716	57.121	1.00 34		C
ATOM	3544	0	PHE	33	104.134	42.613	57.813	1.00 21	.74	C

	· · · .								٠		`. '
ATOM	3545	Ν.	ARG	34	103.564	41.771	55.797	1.00	28.28		С
ATOM	3546	CA	ARG	34	104.145	42.864	55.045	1.00	21.13	•	C
ATOM	3547	CB	ARG	34	105.469	42.413	54.437	1.00	12.61	•	C
ATOM	3548	CG	ARG	34	106.189	43.483	53.643	1.00	19.39		С
ATOM	3549	CD	ARG	34	106.709	42.916	52.339	1.00	18.93		С
ATOM	3550	NE	ARG	34	108.026	43.440	51.995	1.00	36.83		C
ATOM	3551	CZ ·	,	34	108.251	44.344	51.045	1.00	40.83		C
	3552	NH1	ARG	34	107.239	44.825	50.340	1.00	45.97		С
ATOM	3553		ARG	34	109.490	44.752	50.785	1.00	38.52		С
ATOM	3554	C	ARG	34	103.202	43.309	53.940	1.00	32.95		С
ATOM	3555	0	ARG	34	103.239	42.779	52.831	1.00	41.93		G.
ATOM	3556	N	ALA	35	102.362	44.294	54.239	1.00	34.63		С
ATOM	3557	CA	ALA	35	101.416	44.798	53.251	1.00	26.09		С
ATOM	3558	ĊB	ALA	35	100.381	45.657	53.921	1.00	26.37		С
ATOM	3559	C	ALA	35	102.134	45,599	52.173	1.00	28.19		С
ATOM	3560	0	ALA	· 35	103.201	46.163	52.414	1.00	19.20		С
ATOM	3561	N	SER	36	101.545	45.641	50.980	1.00	36.87		C
MOTA	3562	CA	SER	36	102.136	46.374	49.863	1.00	39.36		C
ATOM	3563	СВ	SER	36	103.172	45.488	49.160	1.00	51.82		C
MOTA	3564	OG	SER	36	103.705	44.516	50.050	1.00	62.97		C
ATOM	3565	С	SER	.36	101.099	46.886	48.847	1.00	32.13		C
ATOM	3566	0	SER	36	100.092	46.238	48.575	1.00	28.44		C
ATOM .	3567	N	LEU	37	101.364	48.069	48.304	1.00	34.51		C
ATOM	3568	CA	LEU	37	100.496	48.705	47.320	1.00	31.61		С
ATOM	·3569	CB	LEU	37	99.897	49.987	47.895	1.00	36.64		C
ATOM	3570	CĢ	LEU	37	98.943	50.801	47.023	1.00	21.97		C
ATOM	3571	CD1	LEU	37	97.533	50.720	47.578	1.00	21.64		С
MOTA	3572	CD2	LEU	37	99.412	52.231	46.991		26.43		С
MOTA	3573	C	LEU	37	101.393	49.042	46.148		28.60		C
MOTA	3574	0	LEU	37	102.341	49.811	46.295		35.19		С
MOTA	3575 -	N	HIS	38	101.112	48.454	44.993	1	22.34		C
, ATOM	3576	CA	HIS	38	101.935	48.694	43.816		21.00		C
MOTA	3577	CB	HIS	38	102.418	47.370	43.232		29.80		C
MOTA	3578	CG	HIS	38	103.038	46.464			41.65		С
MOTA	3579		HIS	38	104.324	46.102	44.458		36.66		.C
MOTA	3580		HIS	38	102.296	45.819	45.218		51.35		C
MOTA	3581		HIS	38	103.102	45.102	45.978		45.79		C
MOTA	3582		HIS	. 38	104.337	45.256	45.539		50.11		C
MOTA	3583	C ·	HIS	38	101.138	49.458	42.794		20.21		C
MOTA	3584	0	HIS	38	99.935	49.263	42.679		24.62		C
MOTA	3585	N	TAR	39	101.807	50.334	42.055		17.62		C
MOTA	3586	CA	LYS	39	101.135	51.154	41.065				C
ATOM	3587		LYS	39	101.458	52.627	41.334		33.83	•	C
MOTA	3588		LYS	39	100.938	53.579	40.281		47.76		C
ATOM	3589		LYS	39	102.046	54.496	39.767		56.33		C
MOTA	3590	CE	LYS -		101.922	54.727	38.264		52.05		C
ATOM	3591	NZ	LYS	39	101.573	56.133	37.920		39.26		C
MOTA	3592	C	LYS	39	101.527	50.784	39.644		37.38		C
ATOM	.3593	0	LYS	39	102.715	50.697	39.323		38.26		C
ATOM	3594	N	GLY	40	100.528	50.559			30.90		C
ATOM	3595	CA	GLY	40	100.819	50.230	37.412 36.913		33.65		C
MOTA	3596	C	GLY	40 . 40	100.183 100.025	48.957 47.997	37.665		26.93		C
ATOM '	3597	0	GLY		100.025	±1.001	37.003				_

,					•			• •		
MOTA	3598	Й	LEU	41	99.819	48.962	35.634	1.00	48.13	. С
MOTA	3599	CA	LEU	41	99.196	47.809	34.988		43.35	С
ATOM	3600	CB	LEU	41	98.598	48.211	33.633	1.00	41.37	С
MOTA	3601	CG	LEU	41	97.256	47.613	33.178		50.66	С
MOTA	3602	CD1	LEU	41	96.622	46.783	34.283		41.32	C
MOTA	3603	CD2	LEU	41	96.324	48.742	32.756	1.00	36.16	C
MOTA	3604	С	LEU	41	100.270	46.758	34.791	1.00	44.95	C
ATOM	3605	0	LEU	41	99,976	45.585	34.577	1.00	48.29	C
MOTA	3606	N	ASP	42	101.522	47.197	34.841		51.52	C
MOTA	3607	CA	ASP	42	102.648	46.285	34.713		53.82	C
MOTA	3608	CB	ASP	42	103.666	46.804	33.690	1.00	44.60	С
MOTA	3609	CG	ASP	42	104.352	48.090	34.125	1.00	49.55	G.
MOTA	3610	OD1	ASP	42	103.874	48.765	35.063	1.00	40.26	C
MOTA	3611	OD2	ASP	42 .	105.385	48.427	33.510		48.33	С
MOTA	3612	С	ASP	42	103.249	46.241	36.106	1.00	57.65	С
MOTA	3613	0	ASP	42	104.394	45.836	36.298		57.61	C
MOTA	3614	N ·	SER	43	102.433	46.679	37.065		57.54	C
MOTA	3615	CA	SER	43	102.767	46.741	38.486	1.00	56.75	C
MOTA	3616	CB	SER	43	102.299	45.467	39.177		40.78	С
MOTA	3617	OG	SER	43	100.896	45.502	39.359		32.86	С
MOTA	3618	C	SER	43	104.234	46.995	38.803		59.27	C
MOTA	3619	0	SER	43	104.795	46.413	39.732		57.66	С
MOTA	3620	N		44	104.847	47.884	38.033		54.64	С
MOTA	3621	CA	ALA	44	106.244	48.215	38.224		41.67	С
MOTA	3622	CB	ALA	44	106.654	49.295	37.239		41.38	C
MOTA	3623	С	ALA	44	106.514	48.679	39.646		42.01	C
ATOM	3624	0	ALA	44	107.073	47.935	40.449		48.39	C
ATOM	3625	N	VAL	45	106.083	49.904	39.943		40.52	C
MOTA	3626	CA	VAL	45	106.290	50.563	41.239		34.97	C
ATOM	3627	CB.	VAL	45	106.036	52.073	41.094		27.80	C
ATOM	3628		VAL	45	106.126		42.441		32.20	c
ATOM	3629		VAL	45	107.036	52.674	40.126		35.71 35.47	C
ATOM	3630	C .	VAL	45	105.526	50.100	42.489		45.80	C
ATOM	3631	0	VAL	45	104.307	49.956 49.893	43.585		39.87	· C
MOTA	3632	N	GLU	46	106.259 105.666	49.503	44.868		41.71	C
ATOM	3633	CA	GLU	46 46	106.546	48.488	45.615		50.85	C
ATOM '	3634 3635	CB . CG	GTA	46	106.163	48.251	47.094		34.64	C
ATOM	3636	CD	GLU	46	106.638	46.895		1.00		C
ATOM		OE1		46	107.869	46.712	47.809		47.66	c
ATOM	3638	-	GTA	46	107.003	46.014			29.27	C
ATOM		CEZ	GLU	46	105.705	50.791	45.680		37.48	C
ATOM	3639 3640		GTA	46	106.530	51.189	46.338		43.67	Ċ
ATOM	3641	O NT	VAL	47	104.418	51.433	45.614		25.13	Ċ
ATOM	3642	CA	VAL	47	104.173	52.692	46.297		15.83	Ċ
ATOM	3643	CB	VAL	47	102.736	53.146	46.037		19.37	Ċ
ATOM	3644		VAL	47	102.428	54.405	46.826		28.90	,C
ATOM	3645		VAL	47	102.543	53.374	44.547		26.86	C
ATOM	3646	C	VAL	47	104.437	52.717	47.800 .			С
ATOM	3647	0 -	VAL	47	105.070	53.641	48.310		31.30	С
ATOM	3648	N	CYS	48	103.952	51.709	48.512		40.43	С
ATOM	3649	CA	CYS	48	104.142	51.665	49.955		37.33	С
ATOM	3650	C	CYS	48	104.145	50.246	50.495	1.00	27.79	C

							• • • • • • • • • • • • • • • • • • • •			
MOTA	. 3651	0	CYS	48		103.618	49.331	49.864	1.00 20.24	
MOTA	3652	CB	CYS	48		103.035	52.459	50.644	1.00 57.93	
MOTA	3653	. SG	CYS	48		103.314	52.822	52.407	1.00 69.94	
ATOM	3654	N	VAL	49		104.747	50.070	51.664	1.00 18.58	•
MOTA	3655	CA	VAL	49		104.802	48.764	52.290	1.00 20.44	
ATOM	3656	CB	VAL	49		106.139	48.030	51.966	1.00 27.56	C
ATOM	3657	CG1	VAL	49		107.042	48.931	51.131	1.00 18.34	C
ATOM	3658	CG2	VAL	49		106.851	47.592	53.249	1.00 17.63	C
ATOM	3659	C	VAL	49		104.654	48.926	53.794	1.00 33.14	C
ATOM	3660	0	VAL	49		105.537	49.471	54.455	1.00 29.92	C
ATOM	3661	N	VAL	50		103.523	48.467	54.324	1.00 41.12	C
ATOM	3662	CA	VAL	50		103.255	48.539	55.759	1.00 44.37	С
ATOM	3663	CB	VAL	50		101.796	48.932	56.031	1.00 48.04	C
ATOM	3664	CG1	VAL	50		101.486	48.786	57.511	1.00 45.70	С
ATOM	3665	CG2	VAL	50		101.562	50.367	55.576	1.00 35.76	C
. ATOM	3666	C	VAL	50		103.553	47.176	56.385	1.00 38.20	C
ATOM	3667	0	VAL	50		102.899	46.176	56.085	1.00 36.51	C
ATOM	3668	N	TYR	51		104.543	47.146	57.264	1.00 25.60	
ATOM	3669	CA	TYR	51		104.957	45.898	57.879	1.00 34.11	С
ATOM	3670	СВ	TYR	51		106.479	45.779	57.799	1.00 34.41	C
MOTA	3671	CG	TYR	51		107.060	44.744	58.724	1.00 31.19	
ATOM	3672			51		107.617	45.109	59.944	1.00 38.77	
ATOM	3673	CE1		51		108.122	44.153	60.822	1.00 44.07	. C
ATOM	3674	CD2	TYR	51		107.025	43.396	58.395	1.00 33.29	C
ATOM	3675	CE2	TYR	51		107.525	42.432	59.265	1.00 41.62	C
ATOM	3676	CZ	TYR	51		108.068	42.818	60.477	1.00 39.08	C
ATOM		OH	TYR	51		108.511	41.867	61.364	1.00 47.15	C
ATOM	3678	C	TYR	51		104.507	45.729	59.315	1.00 33.68	C
ATOM	3679	0	.TYR	. 51		104.696	46.613	60.145	1.00 23.59	C
ATOM	3680	N	GLY	52	•	103.927	44.571	59.603	1.00 29.01	C
ATOM	3681	CA	GLY	52		103.459	44.300	60.947	1.00 30.05	С
ATOM	3682	C	GLY	. 52	•	104.067	43.041	61.527	1.00 39.73	С
ATOM	3683	0	GLY	52		104.393	42.096	60.806	1.00 40.35	C
ATOM	3684	N ·	ASN	53		104.224	43.032	62.843	1.00 46.66	
ATOM	3685	CA	ASN	53	·	104.798	41.888	63.537	1.00 57.56	
ATOM	3686	CB	ASN	53		106.308	42.073	63.721	1.00 32.73	C
ATOM .	3687	CG	ASN	53		106.971	40.851	64.322	1.00 30.74	C
MOTA	3688	OD1	ASN	53		106.474	39.728	64.185	1.00 25.99	
ATOM	3689	ND2	ASN	53		108.099	41.059	64.995	1.00 35.70	C
MOTA	3690	C	ASN	53		104.141	41.729	64.897	1.00 63.15	C
MOTA	3691	0	ASN	53		104.709	42.114	65.918	1.00 67.81	
MOTA	3,692	N	TYR	54		102.941	41.159	64.906		
ATOM	3693	CA	TYR	54		102.213	40.953		1.00 70.87	
MOTA	3694	CB	TYR	54		103.004	40.008	67.072	1.00 60.20	
ATOM	3695	CG	TYR	54		103.185	38.604	66.521		
MOTA	3696	CD1	TYR	54		104.380	38.215	65.923	1.00 49.72	
ATOM	3697	CEl	TYR	54		104.538	36.931	65.393		
ATOM	3698	CD2	TYR	54		102.149	1	66.579		
MOTA	3699		TYR	54		102.297			.1.00 53.22	
ATOM	3700	CZ	TYR	54		103.489				
MOTA	3701	OH	TYR	54		103.625	34.761			
MOTA	3702	С	TYR	54		102.018				
MOTA	3703	0	TYR	54		101.118	43.072	66.443	1.00 70.77	С

			,							
MOTA	3704	N	SER :	55	102.870	42.617	67.784	1.00	83.17	C C
ATOM	3705	CA	SER	55	102.805	43.892	68.483	1.00.	89.21	C
ATOM	3706	CB	SER	55	103.373	43.750	69.896	1.00	89.77	C
ATOM	3707	OG	SER	55	102.332	43.662	70.853	1.00	90.69	C
ATOM	3708	C	SER	55	103.617	44.916	67.695	1.00	90.09	С
MOTA	3709	Ó	SER	55	103.181	45.378	66.639	1.00	92.24	C
ATOM	3710	N	GLN	56	104.796	45.251	68.218	1.00	90.35	С
ATOM	3711	CA	GLN	56	105.715	46.207	67.600	1.00	93.42	C
ATOM	3712	CB	GLN	56	106.882	45.448	66.957	1.00	91.24	С
ATOM	3713	CG	GLN	56	107.492	44.372	67.861	1.00	94.20	C
ATOM	3714	CD	GLN		108.069	43.192	67.088	1.00	99.99	С
ATOM	3715	OE1	GLN	56	108.128	42.066	67.595	1.00	87.06	G.
ATOM	3716	NE2	GLN	56	108.500	43.446	65.854	1.00	99.99	·. C
ATOM	3717	C	GLN	56.	105.040	47.121	66.572	1.00	96.11	C
ATOM	3718	ō	GLN	56	104.866	46.744	65.413	1.00	99.98	C
ATOM	3719	N	GLN	57	104.670	48.323	67.013 .	1.00	90.45	С
ATOM	3720	CA	GLN	57	103.995	49.318	66.177		83.45	С
ATOM	3721	CB		57	104.417	50.732	66.589		85.60	C
ATOM.	3722	CG	GLN	57	104.367	50.991	68.084		89.34	С
ATOM	3723	CD	GLN	57	105.744	50.966	68.718	1.00	87.16	С
ATOM	3724	OE1	GLN	57	106.497	51.937	68.635	1.00	76.99	C
MOTA	3725	NE2	GLN	57.	106.080	49.849	69.355	1.00	90.12	C
ATOM	3726	C	GLN			49.175	64.669	1.00	80.35	С
ATOM	3727	0	GLN	57	105.278	48.877	64.182	1.00	77.96	Ċ
ATOM	3728	N	LEU	58	103.095	49.401	63.943	1.00	76.47	С
ATOM	3729	CA	LEU	58	103.077	49.331	62.487	1.00	61.35	C
ATOM	3730	CB	LEU	58	101.723	49.838	61.972	1.00	52.59	C
	3731	CG'	LEU	58	100.956	49.130	60.845	1.00	50.02	C
ATOM	3732	CD1	LEU	58	100.916	47.634	61.070	1.00	55.58	C
ATOM	3733	CD2	LEU	58	99.535	49.671 ·	60.794	1.00	39.64	С
ATOM	3734	C	LEU	58	104.209	50.181	61.906	1.00	54.39	, G
ATOM	3735	0	LEU	58	104.387	51.345	62.284	1.00	51.09	C
ATOM	3736	N .	GLN	59	104.976	49.589	60.997	1.00	51.81	C
ATOM	3737	CA	GLN	59	106.080	50.290	60.346	1.00	46.97	C
ATOM	3738	CB	GLN	59	107.394	49.516	60.524	1.00	35.66	С
ATOM	3739	CG	GLN	59	108.469	50.260	61.308	1.00	32.42	C
ATOM	3740	CD	GLN ·	59	109.327	49.340	62.171	1.00	53.43	C
ATOM	3741	OE1	GLN	59	110.198	49.799	62.912	1.00	50.95	Ċ
ATOM	3742	NE2	GLN .	59	109.082	48.037	62.079	1.00	46.72	C
ATOM	3743	C	GLN	59	105.748	50.417	58.859	1.00	43.43	C
ATOM	3744	0	GLN	59 -	105.697	49.422	58.138	1.00	42.60	C
ATOM	3745	N	VAL	60	105.505	51.645	58.412	100	40.75	C
MOTA	3746	CA	VAL	60	105.172	51.907	57.018	1.00	39.80	C
ATOM	3747	CB	VAL	60	103.828	52.659	56.896	1.00	26.19	С
ATOM	3748	CG1	VAL	60	103.878	53.955	57.678	1.00	21.41	C
ATOM	3749	CG2	VAL	60	103.528	52.946	55.448		27.26	C
ATOM	3750	C	VAL	60	106.267	52.745	56.371		41.05	C
MOTA	3751	0	VAL	60	106.733	53.727	56.950		51.96	C
ATOM	3752	N	TYR	61	106.692	52.349	55.177			C
MOTA	3753	CA	TYR	61	107.731	53.086	54.477		25.83	C
MOTA	3754	CB	TYR .	61	109.118	52.575	54.861		12.00	С
ATOM	3755	CG	TYR	61.	109.496	51.237	54.274		18.91	C
ATOM	3756	CD1	TYR	61	109.216	50.053	54.953	1.00	42.23	C.

•					• • •	•	•		
ATOM	3757	CE1	TYR	61	109.599	48.819	54.439		C
MOTA	3758	CD2	TYR	61	110.173	51.150	53.057	1.00 38.49	. C
MOTA	3759 -	CE2	TYR	61	110.562	49.918	52.533	1.00 23.48	Ċ
MOTA	3760	CZ	TYR	61	110.269	48.758	53.231	1.00 29.34	C
MOTA	3761	OH	TYR	61	110.627	47.535	52.714	1.00 30.14	C
MOTA	3762	С	TYR .	61	107.540	52.981	52.986	1.00 35.71	С
MOTA	3763.	۰0	TYR	61	106.694	52.214	52.513	1.00 35.76	C
MOTA	3764	N	SER	62	108.322	53.775	52.258	1.00 39.08	С
ATOM .	3765	CA	SER	62	108.268	53.813	50.805	1.00 39.42	C
ATOM -	3766	CB	SER	62	107.247	54.857	50.345	1.00 32.31	C
MOTA	3767	OG	SER	62	107.120	54.853	48.932	1.00 23.48	С
MOTA	3768	C	SER	62	109.643	54.137	50.220	1.00 45.43	C
MOTA	3769	0	SER	62	110.287	55.116	50.601	1.00 42.20	C
MOTA	3770	N	LYS	63	110.094	53.302	49.294	1.00 50.45	C
MOTA	3771	CA	LYS	63	111.388	53.499	48.655	1.00 44.30	C
MOTA	3772	CB	LYS	63	112.040	52.136	48.373	1.00 41.16	, C
MOTA	3773	CG -	LYS	63	113.045	51.676	49.431	1.00 41.13	C
MOTA	3774	CD	LYS	63	112.720	50.288	49.969	1.00 36.52	C
MOTA	3775	CE	LYS	63	113.769	49.809	50.972	1.00 27.51	С
MOTA	3776	NZ	LYS	63	114.917	49.099	50.322	1.00 14.01	C
MOTA	3777	C	LYS	63	111.173	54.243	47.343	1.00 40.39	C
MOTA	3778	0	LYS	63	112.079	54.322	46.515	1.00 43.49	С
MOTA	3779	N	THR	64	109.977	54.802	47.166	1.00 38.77	С
MOTA	3780	CA	THR	64	109.635	55.496	45.926		C
MOTA	3781	CB .	THR	64	108.407	54.837	45.264	1.00 45.65	C
MOTA	3782	OG1	THR	64	107.445	54.502	46.272	1.00 61.07	С
MOTA	3783	CG2	THR	64	108.811		44.520	1.00 45.91	C
MOTA	3784	C	THR	64	109.360	56.988	46.033	1.00 33.47	Ç
MOTA	3785	0	THR	64	109.122	57.651	45.023	1.00 25.44	C
MOTA	3786	N	GLY	65	109.375	57.525	47.244	1.00 35.21	С
MOTA	3787	CA	GLY	65	109.119	58.946	47.383	1.00 35.72	C
MOTA	3788	C	GLY	65	107.644	59.286	47.468	1.00 35.69	C
MOTA	3789	0	GLY	65	107.198	60.317	46.970	1.00 41.32	C
MOTA	3790	N	PHE	66 .	106.881	58.405	48.100	1.00 31.14	C
MOTA	3791	CA	PHE ·	66	105.454	58.616	48.280	1.00 22.44	C
MOTA	3792	CB	PHE	66	104.680	57.350	47.914	1.00 15.68	
MOTA	3793	CG	PHE	66	104.307	57.256	46.463	1.00 27.36	С
MOTA	3794	CD1		66	105.243	56.859	45.514	1.00 38.42	, C
MOTA	3795	CD2	PHE	66	103.009	57.536	46.042	1.00 42.24	С
MOTA	3796		PHE	66	104.889	56.738	44.159	1.00 42.03	. C
MOTA	3797		PHE	66	102.648	57.419	44.694	1.00 38.62	C
MOTA	3798	CZ	PHE	66	103.590	57.018	43.750	1.00 28.00	C
MOTA	3799	C·	PHE	66	105.238	58.921	49.758	1.00 29.60	C
ATOM	3800	0	PHE	66	105.701	58.176	50.622		. C
MOTA	3801	N	ASN		104.569	60.028	50.053	1.00 29.26	
MOTA	3802	CA	ASN	67	104.289	60.375	51.436	1.00 28.71	С
MOTA	3803	СВ	ASN	67	103.776	61.814	51.516	1.00 44.50	С
MOTA	3804	CG	ASN	67	103.832	62.385	52.923	1.00 56.37	C
MOTA	3805		ASN	67	103.890	63.603		.1.00 55.38	C
MOTA	3806	ND2	ASN	67	103.816	61.507	53.922	1.00 49.90	C
MOTA	3807	C	ASN	67 ·	103.208	59.390	51.891	1.00 30.16	C
MOTA	3808	0	ASN	67	102.018	59.698	51.893	1.00 22.60	. C
ATOM	3809	N	CYS	68 .	103.627	58.190	52.276	1.00 45.93	С

					•		•		
MOTA	3810	CA	CYS	· 68	102.678	57.165	52.691		, c
MOTA	3811	C	CYS	68	102.480	56.998	54.198	1.00 40.89	C.
ATOM	3812	Ο΄	CYS	68	103.414	57.122	54.986	1.00 26.35	· C .
MOTA	3813	CB	CYS	68	103.087	55.824	52.089	1.00 23.40	С
ATOM	3814	SG	CYS	68	102.108	54.426	52.713	1.00 53.33	C
ATOM	3815	N	ASP	69	101.243	56.700	54.579	1.00 44.34	С
ATOM	3816	CA	ASP.	69	100.880	56.482	55.974	1.00 40.80	C
MOTA	3817	CB	ASP	69	100.101	57.683	56.515	1.00 56.37	C
ATOM	3818	CG	ASP	69	100.821	59.001	56.287	1.00 59.33	C
MOTA	3819	OD1	ASP	69	100.303	59.840	55.520	1.00 66.37	С
MOTA	3820	OD2	ASP	69	101.902	59.200	56.877	1.00 68.80	C
MOTA	3821	C	ASP	69	100.001	55.240	56.013	1.00 32.24	C
ATOM	3822	0	ASP	69	99.172	55.051	55.128	1.00 33.63	C
ATOM	3823	N	GLY	70	100.175	54.395	57.026	1.00 34.87	C
ATOM	3824	CA	GLY	70	.99.369	53.184	57.107	1.00 28.23	C
ATOM	3825	С	GLY	70	98.691	52.933	58.444	1.00 28.75	C
ATOM	3826	0	GLY	70	99.260	53.198	59.501	1.00 34.76	C
ATOM	3827	N	LYS	71	97.468	52.416	58.394	1.00 40.41	C
ATOM	3828	CA	LYS	71	96.697	52.123	59.599	1.00 49.78	C
MOTA	3829	CB	LYS	71	95.522	53.095	59.714	1.00 57.09	C
ATOM	3830	CG	LYS	71	95.747	54.285	60.629	1.00 56.31	C
ATOM	3831	CD	LYS	71	94.477	55.139	60.720	1.00 55.32	C
ATOM	3832	CE	LYS	71	94.459	56.004	61.984	1.00 59.27	C
MOTA	3833	NZ	LYS	71	93.094	56.536	62.310	1.00 33.49	C
ATOM	3834	С	LYS	71	96.160	50.690	59.553	1.00 51.01	C
MOTA	3835	0	LYS	71	95.553	50.274	58.568	1.00 42.24	С
ATOM	3836	N	LEU	72	96.373	49.940	60.628	1.00 51.79	С
ATOM	3837	CA	LEU	72	95.907	48.564	60.684	1.00 61.74	С
ATOM	3838	СВ	LEU	72	96.773	47.760	61.650	1.00 62.34	С
ATOM	3839	CG	LEU	72	97.284	46.425	61.103	1.00 66.36	C
ATOM	3840	CD1	LEU	72	98.165	45.754	62.147	1.00 68.74	C
ATOM	3841		LEU	72	96.107	45.527	60.736	1.00 53.65	C
ATOM	3842	C.	LEU	72	94.436	48.447	61.090	1.00 73.73	C
ATOM	3843	ō	LEU	72	93.860	49.374	61.663	1.00 88.59	.C
MOTA	3844	N	GLY	73	93.835	47.298	60.789	1.00 67.09	C
ATOM	3845	CA	GLY	73	92.443	47.075	61.126	1.00 50.60	C
ATOM	3846	C	GLY	73	91.964	45.670	60.808	1.00 56.73	·C
ATOM	3847	0	GLY	73	91:356	45.434	59.760	1.00 64.99	C
MOTA	3848	N	ASN	74	92.246	44.735	61.713	1.00 46.04	C
ATOM	3849	CA	ASN	74	91.828.	43.342	61.566	1.00 54.16	C
ATOM	3850		ASN	74	90.316	43.231	61.790	1.00 79.65	C
ATOM	3851	CG	ASN	74	89.953	42.174	62.814	1.00 90.87	C
ATOM	3852		ASN	74	88.992	42.334	63.574	1.00 90.68	C
ATOM	3853	ND2	ASN	74	90.715	41.086	62.838	1.00 89.35	C
MOTA	3854	С	ASN	74	92.180	42.738	60.215	1.00 54.40	C
ATOM	3855	Ο.	ASN	74	93.332	42.413	59.951	1.00 62.07	C
ATOM	3856	N	GLU	75	91.171	42.577	59.364	1.00 55.88	C
ATOM	3857	CA	GLU	75	91.364	42.010	58.035	1.00 47.09	C
ATOM	3858	СВ	GLU	75	90.269	40.988	57.722	.1.00 56.56	С
ATOM	3859	CG	GLU	75	88.966	41.211	58.471	1.00 48.68	С
MOTA	3860	CD	GLU	. 75	88.614	40.047	59.379	1.00 58.55	C
MOTA	3861		GLU	75 .	88.407	38.928	58.859	1.00 55.16	C
ATOM	3862		GLU		88.547		60.612	1.00 54.08	С

-			٠.,								
ATOM	3863	C	GLU	75		91.323	43.127	57.013	1.00 4	4.01	C.
ATOM	3864	0	GLU	75		90.606	43.055	56.017	1.00 2	7.15	С
MOTA	3865	N ·	SER	76		92.107	44.162	57.268	1.00 3	6.46	C
ATOM	3866	CA	SER	76		92.143	45.296	56.376	1.00 3	1.85	C
ATOM	3867	СВ	SER	76		90.835	46.072	56.492	1.00 2	4.92	C
MOTA	3868	OG	SER	76		90.835	46.835	57.681	1.00 1	6.45	C
ATOM	3869	С	SER	76		93.292	46.208	56.733	1.00 3	2.47	C
ATOM	3870	0	SER	76		93.689	46.294	57.892	1.00 3	4.00	С
ATOM	3871	N	VAL	77		93.826	46.884	55.723	1.00 3	8.60	C
ATOM	3872	CA	VAL	7 7		94.906	47.848	55.908	1.00 3	2.38	C
ATOM	3873	CB	VAL '	77		96.272	47.308	55.386	1.00 4	5.71	C
ATOM	3874		VAL	77		96.747	48.122	54.190	1.00 3	7.47	C
ATOM	3875	CG2	VAL	77		97.327	47.372	56.484	1.00 1	9.29	· C
ATOM	3876	С	VAL	77		94.509	49.083	55.101	1.00 3	3.67	C
MOTA	3877	ō	VAL	77		93.934	48.972	54.013	1.00 3		C
ATOM	3878	N	THR	78		94.811	50.260	55.630	1.00 4	0.03	С
MOTA	3879	CA	THR	78		94.475	51.493	54.929	1.00 3	8.24	С
ATOM	3880	СВ	THR	78		93.548	52.377	55.787	1.00 3	5.10	С
MOTA	3881	0G1	THR	78		92.594	51.551	56.472	1.00 3	6.53	С
MOTA	3882	CG2	THR	78		92.804	53.363	54.916	1.00 3	6.45	С
ATOM	3883	C	THR	78		95.745	52.269	54.580	1.00 3	5.91	С
ATOM	3884	0	THR	78		96.574	52.540	55.451	1.00 3	1.92	C
ATOM	3885	N	PHE	79		95.896	52.610	53.301	1.00 3	9.13	С
ATOM	3886	CA	PHE	79	•	97.059	53.358	52.824	1.00 2	9.89	С
ATOM	3887	CB	PHE	79		97.532	52.801	51.487	1.00 3	5.47	C
ATOM	3888	CG	PHE	79		97.996	51.380	51.553	1.00 4	1.67	. C
ATOM	3889		PHE	79		97.174	50.342	51.123	1.00 4	6.33	C
ATOM	3890		PHE	79		99.271	51.077	52.019	1.00 3	5.39	С
ATOM	3891		PHE	79		97.621	49.026	51.155	1.00 3	4.72	C
ATOM	3892	CE2	PHE	79		99.724	49.765	52.054	1.00 1	7.78	C
ATOM	3893	CZ	PHE	79		98.895	48.736	51.619	1.00 2	6.82	С
ATOM	3894	C	PHE	79		96.687	54.816	52.645	1.00 2	0.01	C
ATOM	3895	0.	PHE	. 79		95.843	55.143	51.817	1.00 3	9.07	C
ATOM	3896		TYR	80		97.328	55.690	53.414	1.00 3	7.92	С
ATOM	3897	CA	TYR	80		97.048	57.123	53.361	1.00 3	9.66	С
ATOM	3898	CB	TYR	80		97.043	57.706	54.775	1.00 4	1.42	С
ATOM	3899	CG	TYR	80		96.541	59.125	54.849	1.00 2	9.87	C
ATOM	3900		TYR	80		95.857	59.702	53.782	1.00 3	1.82	C
ATOM	3901		TYR	80		95.404	61.008	53.842	1.00 3	8.26	C
ATOM	3902	CD2	TYR	80		96.756	59.895	55.984	1.00 3	5.48	C
ATOM	3903	CE2	TYR	80		96.307	61.207	56.060	1.00 3	8.78	C
MOTA	3904	CZ	TYR	80	•	95.632	61.758	54.984	1.00 4	6.52	С
ATOM	3905	OH	TYR	80 .		95.195	63.066	55.046	1.00 4	3.37	C
ATOM	3906	C	TYR	80		98.034	57.901	52.508	1.00 3	6.43	C.
MOTA	3907	0	TYR	80		98.960	58.529	53.028	1.00 4	1.51	C
MOTA	3908	N	LEU	81		97.817	57.873	51.199	1.00 3	7.66	C
MOTA	3909	CA	LEU	81		98.694	58.576	50.268	1.00 4	3.35	C
ATOM	3910	CB	LEU	81		98.538	57.997	48.861	1.00 4	0.97	C
ATOM	3911	CG	LEU	81		98.392	56.485	48.721	.1.00 3	5.20	C
MOTA	3912	CD1	LEU	81		98.068	56.154	47.268	1.00 4		C
MOTA	3913	CD2	LEU	81		99.670	55.798	49.141	1.00 3		C
MOTA	3914	C	LEU	81		98.457	60.092	50.216	1.00 3		С
ATOM	3915	0	LEU	81		97.410	60.552	49.759	1.00 3	0.90	С

	-						٠.	,		
MOTA	3916	N	GLN	82	99.450	60.853	50.678	1.00	45.56	С
ATOM	3917	CA	GLN	82	99.397	62.315	50.681	1.00	47.39	.C
ATOM	3918	CB	GLN	82	99.884	62.868	52.023	1.00	48.95	C.
ATOM	3919	CG	GLN	82	99.479	62.062	53.246	1.00	42.53	C
ATOM	3920°	CD	GLN	82	99.397	62.921	54.491	1.00	35.76	C
	3921	OE1	GLN	82	99.826	62.514	55.575	1.00	35.27	С
ATOM	3922	NE2	GLN	82	98.857	64.127	54.339	1.00	29.92	C.
ATOM	3923	C	GLN	82	100.280	62.884	49.571	1.00	42.88	C
ATOM	3924	0	GLN	82	101.148	62.194	49.035	1.00	41.58	. C
ATOM	3925	N	ASN	83	100.060	64.148	49.237	1.00	45.46	C
ATOM	3926	CA	ASN	83	100.843	64.806	48.197	1.00	43.88	С
ATOM	3927	CB	ASN	83	102.229	65.139	48.748	1.00	38.56	C
MOTA	3928	CG	ASN	83	102.170	66.242	49.779	1.00	47.82	С
MOTA	3929	OD1	ASN	83	101.274	67.083	49.735	1.00	46.58	С
ATOM	3930	ND2	ASN	83	103.118	66.249	50.715	1.00	33.98	C
ATOM	3931	C.	ASN	83	100.951	63.966	46.933	1.00	37.91	С
ATOM	3932	0	ASN	83	102.045	63.718	46.424	1.00	45.24	С
ATOM	3933	N	LEU	84	99.803	63.535	46.430	1.00	28.03	C
ATOM	3934	CA	LEU	84	99.760	62.723	45.230		19.39	С
ATOM	3935	CB	LEU	84	98.540	61.802	45.263	1.00	26,73	C
MOTA	3936	CG	LEU	84	98.774	60.341	45.664		34.93	C
MOTA	3937	CD1	LEU	84	97.483	59.552	45.502		37.57	С
MOTA	3938	CD2	LEU	84	,99.877	59.729	44.812		36.66	C
MOTA	3939	C	LEU	84	99.675	63.650	44.037		20.07	C
ATOM	3940	0	LEU	84	98.914	64.609	44.049		31.39	C
ATOM	3941	N	TYR	85	100.460	63.365	43.006		33.90	C
ATOM	3942	CA	TYR	85	100.464	64.187	41.806		40.42	C
MOTA	3943	CB	TYR	85	101.840	64.117	41.123		59.23	. C
MOTA	3944	CG	TYR	85	102.989	64.613	41.980		61.79	C
ATOM	3945		TYR	85	103.155	65.973			63.76	C
MOTA	3946		TYR	85	104.193	66.430	43.053		67.56	C C
ATOM	3947	CD2		85	103.897	63.717	42.549		64.22	C
ATOM	3948	CE2	TYR	85	104.938	64.162	43.360		65.83	C
ATOM	3949	CZ	TYR	85 05	105.079	65.519	43.610 44.428		70.24 73.68	c
ATOM	3950		TYR	85 05	106.093 99.378	65.965 63.724	40.841		33.25	C
ATOM		. C	TYR	85 05	99.376	62.606	40.943		33.16	C
MOTA	3952	0	TYR	85	99.018	64.598	39.907		32.80	C
ATOM	3953	N	VAL VAL	86 86	97.994	64.297	38.914		31.92	c
MOTA	3954 3955	CA CB	VAL	86	97.503		38.241		29.33	· c
MOTA	3956		VAL	86	98.476	66.730	38.548		32.20	C
MOTA	3957		VAL	86	97.361	65.409	36.743		34.84	C
MOTA	3958	C	VAL	86	98.504	63.312	37.854		30.06	C
ATOM ATOM	3959	0	VAL	86	97.721	62.621	37.204		28.12	C
ATOM	3960	N	ASN	87	99.819	63.246	37.685		37.39	C
ATOM	3961	CA	ASN	87	100.411	62.330	36.716		31.78	C
MOTA	3962	CB	ASN	87	101.803	62.811	36.348		30.37	C
ATOM	3963	CG	ASN	87 .	102.721	62.866	37.542		15.74	C
ATOM	3964		ASN	87	102.334	62.461	38.631		26.61	C
ATOM	3965		ASN	87	103.939	63.370	37.350		44.07	С
ATOM	3966	C	ASN	87	100.504		37.374		31.73	С
MOTA	3967	o	ASN	87	100.964	59.981	36.773	1.00	29.36	C
MOTA	3968	N	GLN	88	100.063	60.897	38.627	1.00	33.61	Ć

111

			:	٠.					
ATOM	3969	CA	GLN	88	100.082	59.665	39.402	1.00 24.73	C
MOTA	3970	CB	GLN	88	100.430	59.983	40.871	1.00 26.06	C
ATOM	3971	CG	GLN	88	101.721	59.314	41.400	1.00 44.43	· C
ATOM	3972	CD	GLN	88	102.692	60.285	42.081	1.00 36.54	C
ATOM	3973	OE1	GLN	88	102.504	60.675	43.235	1.00 26.99	· C
ATOM	3974	NE2	GLN	88	103.743	60.668	41.363	1.00 38.97	C
ATOM	3975	C	GLN	. 88	98.747	58.896	39.322	1.00 26.16	C
MOTA	3976	Ó	GLN	88	98.635	57.805	39.872	1.00 22.71	C
MOTA	3977	N	THR	89	97.735	59.448	38.645	1.00 29.74	C
ATOM	3978	CA	THR	89	96.450	58.742	38.548	1.00 35.51	С
ATOM	3979	CB	THR	89	95.381	59.548	37.786	1.00 23.56	C
ATOM	3980	OG1		89 .	95.586	59.391	36.381	1.00 37.82	C
ATOM ·	3981	CG2	THR	89	95.456	61.008	38.140	1.00 8.56	С
ATOM	3982	С	THR	89	96.686	57.434	37.808	1.00 30.57	С
MOTA	3983	0	THR	89	97.222	57.427	36.701	1.00 19.99	С
ATOM	3984	N	ASP	90	96.274	56.326	38.411	1.00 26.02	C
ATOM	3985	CA	ASP	90	96.520	55.032	37.799	1.00 29.88	C
MOTA	3986	CB	ASP	90	98.023	54.758	37.848	1.00 17.27	C
MOTA	3987	CG	ASP	90	98.492	53.857	36.738	1.00 29.31	C
MOTA	3988		ASP	90	99.661	54.010	36.312	1.00 28.02	C
MOTA	3989		ASP	90	97.695	53.002	36.299	1.00 35.12	C
MOTA	3990	C	ASP	90	95.774	53.918	38.519	1.00 32.73	C
ATOM	3991	0	ASP	90	,94.869	54.181	39.307	1.00 28.33	C
ATOM	3992	N	ILE	91	96.155	52.674	38.234	1.00 33.15	C
ATOM	3993	CA	ILE	91	95.549		38.891	1.00 29.34	C
ATOM	3994	CB	ILE	91	95.320	50.330 49.803	37.960	1.00 19.19	. C
ATOM	3995	CG2	ILE	91	93.891		38.124	1.00 7.46 1.00 24.90	C
MOTA	3996	CG1	ILE	91 01	95.613	50.734 49.967	36.525 35.904	1.00 24.30	C
ATOM	3997	CD1		91 91	96.736 96.539	51.070	39.929	1.00 33.79	C
ATOM ATOM	3998 3999	0	ILE ILE	91 91	97.707	50.844	39.615	1.00 35.79	· c
MOTA	4000	N	TYR	· 92	96.064	50.948	41.162	1.00 39.40	c
ATOM	4001	CA	TYR	92	96.891	50.521	42.274	1.00 25.36	C
ATOM	4002	CB	TYR '	92	96.817	51.555	43.398	1.00 24.66	Ċ
ATOM	4002	CG.	TYR	92	97.472	52.872	43.039	1.00 27.16	Ċ
ATOM	4004		TYR	92	98.646	53.282	43.669	1.00 32.14	Ċ
ATOM	4005		TYR	.92	99.265	54.474	43.327	1.00 24.99	C
ATOM	4006	CD2	TYR	92	96.933		42.051	1.00 24.44	Ċ
ATOM	4007	CE2	TYR	92	97.547	54.896	41.703	1.00 24.44	Ċ
ATOM	4008	CZ	TYR	92	98.712	55.275	42.344	1.00 18.97	C
ATOM	4009			92	99.332	56.454	42.010	1.00 18.71	C
ATOM	4010	C.	TYR	92	96.381		42.761	1.00 25.56	C
ATOM	4011	0		92	95.173	48.942	42.791	1.00 36.33	С
ATOM	4012	Ň	PHE	93	97.303	48.298	43.127	1.00 28.40	C
ATOM	4013	CA	PHE	93	96.931	46.984	43.621	1.00 29.94	C
ATOM	4014	CB	PHE	93	97.448	45.893	42.689	1.00 17.97	С
MOTA	4015	CG	PHE	93	97.105	46.113	41.258	1.00 24.43	C
MOTA	4016	CD1	PHE	93	97.978	46.793	40.422	1.00 27.44	C
MOTA	4017		PHE	93	95.921	45.617	40.733	1.00 30.96	C
MOTA	4018	CEL	PHE	93		46.973		1.00 46.97	C
MOTA	4019	CE2	PHE	93		45.792		1.00 31.89	C
MOTA	4020	CZ	PHE	93	96.483	46.467		1.00 33.13	С
MOTA	4021	C	PHE	93	97.470	46.739	45.020	1.00 35.26	С

		•			•	. ; .			
ATOM	4022	0	PHE	93	98.635	47.022	45.325	1.00 34.73	C
MOTA	4023	. И ·	CYS	. 94	96.601	46.209	45.870	1.00 48.06	С
ATOM	4024	CA	CYS	94	96.969	45.907	47.235	1.00 36.83	С
MOTA	4025	Ç	CYS	94	97.635	44.546	47.284	1.00 31.31	C
MOTA	4026	0	CYS	94	97.397	43.692	46.431	1.00 33.02	C
MOTA	4027	CB	CYS	94	95.738	45.921	48.121	1.00 39.16	С
ATOM	4028	SG	CYS	94	96.102	46.711	49.706	1.00 59.22	C
ATOM	4029	N	LYS	95	98.475	44.349	48.288	1.00 35.15	С
ATOM	4030	CA	LYS	95	99.194	43.093	48.430	1.00 32.02	C
ATOM	4031	CB	LYS	95	100.593	43.227	47.824	1.00 20.95	С
MOTA	4032	CG	LYS	95	101.265	41.913	47.532	1.00 16.51	C
ATOM	4033	CD	LYS	95	102.720	42.111	47.179	1.00 20.20	, ,C
MOTA	4034	CE	LYS	95	103.419	40.772	46.979	1.00 39.20	C
MOTA	4035	NZ	LYS	95 ·	104.812	40.931	46.471	1.00 47.09	C
MOTA	4'036	C	LYS	95	99.301	42.731	49.896	1.00 29.30	C
MOTA	4037	0	LYS	95	99.224	43.602	50.759	1.00 32.79	C
MOTA	4038	N	ILE	96	99.480	41.444	50.172	1.00 24.46	C
MOTA	4039	CA	ILE	96	99.619	40.978	51.542	1.00 19.72	С
MOTA	4040	CB	ILE	96	98.258	40.925	52.251	1.00 14.76	С
MOTA	4041	CG2	ILE	96	97.299	40.052	51.477	1.00 17.83	, C
MOTA	4042	CG1	ILE	96	98.434	40.405	53.673	1.00 17.25	C
ATOM	4043	,CD1	·ILE	96	99.184	41.352	54.570	1.00 5.02	С
ATOM	4044	C ·	ILE	96	j 00.276	39.599	51.602	1.00 26.57	С
ATOM	4045	0	ILE	96	99.852	38.662	50.916	1.00 34.37	C
ATOM	4046	N	GLU	97	101.321	39.491	52.419	1.00 20.47	С
MOTA	4047	CA	GLU	97	102.052	38.243	52.592	1.00 27.23	С
MOTA	4048	CB	GLU	97	103.367	38.279	51.793	1.00 32.57	С
MOTA	4049	CG	GLU	97	104.186	39.550	51.949	1.00 38.60	C
MOTA	4050	CD	GLU	97	104.535	40.193	50.618	1.00 46.08	C
ATOM	4051	OE1		97	105.239		49.815	1.00 37.73	С
MOTA	4052	OE2	GLU	97	104.108	41.348	50.379	1.00 54.19	C
MOTA	4053	C	GLU	. 97	102.343	37.951	54.071	1.00 30.22	С
MOTA	4054	0	GLU	97	102.705	38.841			C
ATOM	4055	N	VAL	98	102.158	36.694	54.455	1.00 24.37	C
ATOM	4056	CA	VAL	98	102.395		55.817	1.00 17.97	C
MOTA	4057	CB	VAL	98	101.361	35.183	56.224	1.00 33.66	С
MOTA	4058		VAL	98 .	102.002	34.115	57.113	1.00 46.61	C
MOTA	4059		VAL	98	100.200	35.844	56.931	1.00 31.46	C
MOTA	4060	C	VAL	98	. 103.787	35.664	55.808	1.00 24.36	C
MOTA	4061	0	VAL	. 98	104.147	34.979	54.858	1.00 17.44	C
MOTA	4062	N	MET	99	104.569	35.936	56.851	1.00 41.56	C
MOTA	4063	CA	MET	· 99	105.932	35.414	56.940	1.00 37.25	C
MOTA	4064	CB	MET	99	106.951	36.540	56.753	1.00 26.44	C
MOTA	4065	CG	MET	99	106.449	37.906	57.176	1.00 37.71	C
MOTA	4066	SD	MET	99	106.981	39.212	56.039	1.00 49.54	C
MOTA	4067	CE	MET	99	105.587	39.271	54.899	1.00 38.22	C
MOTA	4068	C	MET	99	106.182	34.728	58.273	1.00 37.57	C
MOTA	4069	0	MET	99	107.286	34.241	58.526	1.00 31.40	C
ATOM	4070	N	TYR	100	105.154	34.712	59119	.1.00 45.50	C
MOTA	4071	CA	TYR	100	105.210	34.084	60.439	1.00 45.47	C
MOTA	4072	CB	TYR	100		34.532	61.218	1.00 49.87	C
ATOM	4073	CG	TYR	100	106.979	33.489	62.176	1.00 54.53	C
ATOM	4074	CD1	TYR	100	107.908	32.545	61.745	1.00 66.10	С

						•					
ATOM	4075	CE1	TYR	100	٠,	108.466	31.625	62.622	1.00	67.96	С
MOTA	4076	CD2	TYR	100		106.611	33.483	63.523	1.00	50.84	С
ATOM	4077	CE2	TYR	100		107.166	32.559	64.415	1.00	57.94	C
ATOM	4078	CZ	TYR	100		108.098	31.636	63:951	1.00	57.97	С
ATOM	4079	OH	TYR	100		108.687	30.728	64.801	1.00	53.54	С
MOTA	4080	C	TYR	100		103.978	34.429	61.259	1.00	49.53	C
MOTA	4081	·O	TYR	100		103.561	35.587	61,307	1.00	42.87	C
MOTA	4082	N	PRO	101 [.]		103.380	33.422	61.920	1.00	53.02	C
MOTA	4083	CD	PRO	101		102.180	33.528	62.771	1.00	52.41	C
ATOM	4084	CA	PRO	101		103.902	32.054	61.844	1.00	46.66	С
MOTA	4085	CB	PRO	101		103.126	31.300	62.927		42.16	C
ATOM	4086	CG	PRO	101		101.906	32.115	63.189	1.00	38.19	. C
ATOM	4087	C	PRO	101		103.711	31.468	60.441	1.00	57.32	С
MOTA	4088	0	PRO	101		102.901	31.960	59.648	1.00	47.74	C
MOTA	4089	N	PRO	102		104.455	30.400	60.122	1.00	58.81	C
ATOM	4090	CD	PRO	102		105.410	29.707	61.000	1.00	43.99	C
ATOM	4091	CA	PRO	102		104.368	29.758	58.807	1.00	54.29	C
ATOM	4092	CB	PRO	102		105.585	28.824	58.766	1.00	46.96	C
MOTA	4093	CG	PRO	102		106.354	29.090	60.030		46.28	C
MOTA	4094	C	PRO	102		103.072	28.997	58.565	1.00	50.83	C
MOTA	4095	0	PRO	102		102.265	28.812	59.475		51.79	C
MOTA	4096	N	PRO	103		102.858	28.550	57.321		43.58	С
ATOM	4097	CD	PRO	103		J01.692	27.757	56.901		38.84	С
ATOM	4098	CA	PRO	103		103.784	28.756	56.209		34.80	C
MOTA	4099	CB	PRO	103		103.457	27.611	55.247		35.84	С
ATOM	4100	CG	PRO	103	•	102.280	26.863	55.860		31.11	С
ATOM	4101	C.	PRO	103		103.581	30.127	55.566		39.20	С
ATOM	4102	0	PRO	103		102.790	30.939	56.055		35.30	C
MOTA	4103	N	TYR	104		104.311	30.382	54.481		40.51	C
MOTA.	4104	CA	TYR	104		104.199	31.644	53.760		40.50	C ·
MOTA	4105	CB	TYR	104		105.226	31.719	52.630		34.12	C.
ATOM	4106	CG	TYR	104		105.224	33.036	51.888		35.99	C
MOTA	4107	CD1	TYR	104		104.659	33.143	50.615		49.18	C
ATOM	4108	CE1	TYR	104		104.652	34.363	49.926		50.34	C
MOTA	4109	CD2	TYR	104		105.784	34.179	52.458		34.98	C
MOTA	4110	CE2	TYR	104		105.782	35.403	51.779		35.62	C
MOTA	4111	CZ	TYR	104		105.215	35.485	50.518		39.99	C
ATOM	4112	OH	TYR	104		105.205	36.685	49.853		32.85	C
	4113	C	TYR	104		102.804	31.725	53.168		44.36	C
MOTA	4114	0	TYR	104		102.311	30.749	52.603		46.76	C
MOTA	4115	N	LEU.	105		102.171	32.885	53.304		47.99	C
MOTA	4116	CA	LEU	105		100.827	33.096			43.06	C
MOTA	4117	CB	LEU	105		99.859		53.929		44.75	C
ATOM	4118	CG	LEU	105		98.748	32.310	54.097		55.87	C
MOTA	4119		LEU	105		98.181	31.958	52.725		60.46	C
ATOM	4120		LEU	105		99.289	31.062	54.797		56.52	C
ATOM	4121	C	LEU	105		100.819	34.283	51.813		45.31	C
MOTA	4122	0	LEU	105		101.438	35.308	52.085		44.10	C
MOTA	4123	N	ASP	106		100.107	34.144 35.199	50.696 49.681		56.65	C
ATOM	4124	CA	ASP	106		100.046		49.681		73.34	C
ATOM ·	4125	CB	ASP	106		100.961	36.011	47.979		81.75	C
ATOM	4126	CG	ASP	106 106		101.724	37.143	48.432		85.62	C
MOTA	4127	ODI	ASP	106		707.43/	21.143	TU. TJ2	1.00	JJ.02	C

		٠.		, ,		•	• .		
MOTA	4128	OD2	ASP	106 -	102.603	35.802	47.109	1.00 80.61	, C
MOTA	4129	C	ASP	106	98.639	35.462	49.145	1.00 52.61	. С
MOTA	4130	0	ASP	106	97.772	34.592	49.199	1.00 62.59	C
ATOM	4131	N	· ASN	107	98.422	36.658	48.609	1.00 42.29	C
ATOM	4132	CA	ASN	107 ·	97.110	37.028	48.072	1.00 50.80	C
MOTA	4133	CB	ASN	107	96.826	38.492	48.359	1.00 42.50	C
ATOM	4134	CG	ASN	107	97.855	39.393	47.736	1.00 41.45	C
ATOM	4135	OD1	ASN	107	97.691	39.852	46.607	1.00 44.69	C
ATOM ·	4136	ND2	ASN	107	98.940	39.637	48.461	1.00 38.52	C
ATOM	4137	C	ASN	107	96.997	36.815	46.564	1.00 55.83	C
ATOM	4138	0	ASN	107	97.990	36.865	45.840	1.00 54.74	C
ATOM	4139	N	GLU	108	95.771	36.601	46.098	1.00 61.82	C
ATOM	4140	CA	GLU	108.	95.513	36.393	44.678	1.00 62.32	C
ATOM	4141	CB	GLU	108	94.305	35.474	44.485	1.00 65.84	C
ATOM	4142	CG	GLU	108	93.817	34.809	45.757	1.00 72.69	С
ATOM	4143	CD	GLU	108	92.445	35.295	46.180	1.00 73.87	, C
MOTA	4144	OE1	GLU	108	91.534	34.453	46.327	1.00 58.56	C
ATOM	4145	OE2	GLU	108	92.285	36.522	46.366	1.00 79.05	C
MOTA	4146	С	GLU	108	95.244	37.722	43.991	1.00 64.40	C
MOTA	4147	0	GLU	108	94.094	38.171	43.936	1.00 61.70	C
MOTA	4148	N	LYS	109	96.306	38.339	43.467	1.00 64.63	C
ATOM	4149	CA	LYS	109	96.215	39.629	42.782	1.00 60.84	C
MOTA	4150	CB	LYS	109	96.054	39.420	41.274	1.00 43.96	С
MOTA	4151	CG	LYS	109	97.094	38.496	40.666	1.00 66.29	C
ATOM	4152	CD	LYS	109	98.399	39.235	40.373	1.00 84.02	С
MOTA	4153	CE	LYS	109	99.309	38.435	39.432	1.00 77.45	. С
MOTA	4154	NZ	LYS	109	100.234	39.299	38.636	1.00 53.39	C
MOTA	4155	C	LYS	109	95.040	40.435	43.331	1.00 59.47	C
MOTA	4156	Ο .	LYS	109	94.893	40.571	44.545	1.00 73.09	C
MOTA	4157	N	SER	110	94.201	40,950	42.440	1.00 49.53	C
MOTA	4158	CA	SER	110	93.038	41.734	42.841	1.00 50.60	C
MOTA	4159	CB	SER	110	93.404	42.706	43.969	1.00 48.38	C
MOTA	4160	OG	SER	110	93.807	43.962	43.448	1.00 55.94	C
MOTA	4161	С	SER	110	92.455	42.520	41.670	1.00 49.16	C
ATOM	4162	0	SER	110	93.098	42.693	40.634	1.00 36.85	C
ATOM	4163	Ŋ	ASN	111	91.228	43.000	41.841	1.00 50.24	C
ATOM	4164	CA	ASN	111	90.580	43.770		1.00 48.26	c c
MOTA	4165	CB	ASN	111	89.073	43.868 42.770	41.068 40.364	1.00 50.05	C .
ATOM	4166	CG	ASN	111	88.273	42.770		1.00 32.33	c
ATOM	4167		ASN	111	87.101 88.912	42.089	40.671 39.413	1.00 50.36	C
ATOM	4168		ASN	111	91.212		40.708	1.00 42.47	Ċ
ATOM	4169	C	ASN	111 111	90.982	45.896	39.748	1.00 48.01	C
ATOM	4170	0	ASN GLY	112	92.007	45.517	41.717	1.00 44.01	, C
MOTA	4171 4172	N CA	GLY	112	92.682	46.808	41.729	1.00 36.00	· C
ATOM ATOM	4173	C	GLY	112	91.830	48.015	42.081	1.00 36.58	
ATOM	4174	0	GLY	112	90.630	47.892	42.343	1.00 33.31	c
ATOM	4175	N	THR	113	92.455	49.189	42.094	1.00 28.16	Ċ
ATOM	4176	CA	THR	113	91.738	50.416		.1.00 29.29	Ċ
ATOM	4177	CB	THR	113	91.671	50.667	43.929	1.00 25.84	C
ATOM	4178		THR	113	90.959	51.884	44.186	1.00 13.15	C
ATOM	4179	CG2	THR	113	93.061	50.762	44.514	1.00 35.81	C
ATOM	4180	C	THR	113	92.344	51.636	41.722	1.00 29.94	C
				-					

						•				٠,		
	ATOM	4181	·O	THR .	113	93.375	52.157	42.133	1.00	21.21		C
	MOTA	4182	N	ILE ·	114	91.679	52.074	40.662	1.00	31.79	·	С
	ATOM	4183	CA	ILE	114	92.093	53.243	39.905	1.00	24.64		C.
	ATOM	4184	CB	ILE	114	91.132	53.521	38.721	1.00	29.78		С
	ATOM	4185	CG2	ILE.	114	91.159	55.001	38.361	1.00	29.89		C
	ATOM	4186	CG1	ILE	114	91.510	52.661	37.519	100	45.18		С
	ATOM	4187	CD1	ILE	114	91.376	53.376	36.182	1.00	48.49		C
	ATOM	4188	С	ILE		92.019	54.450	40.821	1.00	21.71		C
	ATOM	4189	0	ILE	114	91.050	54.632	41.546	1.00	23.04		C
	ATOM	4190	N	ILE	115	93.028	55.296	40.770	1.00	22.63		C
	MOTA	4191	CA	ILE	115	93.003	56.483	41.593	1.00	25.37		C
	MOTA	4192	СВ	ILE	115	94.147	56.461	42.585	1.00	19.98		C
	ATOM	4193	CG2	ILE	115	94.249	57.798	43.307	1.00	15.47		C
	MOTA	4194	CG1	ILE	115	93.925	55.312	43.558	1.00	5.93		C
	MOTA	4195	CD1	ILE	115	95.089	55.086	44.508	1.00	25.93		С
	ATOM	4196	С	ILE	115	93.104	57.712	40.701	1.00	36.88		C
	MOTA	4197	0	ILE	115	94.147	57.984	40.112	1.00	39.31		C
	MOTA	4198	N	HIS.	116	92.003	58.445	40.604		36.64		C
	ATOM	4199	CA	HIS	116	91.951	59.641	39.779		42.31		C
	ATOM	4200	CB	HIS	116	90.530	59.854	39.250		55.50		Ċ
	ATOM	4201	CG	HIS	116	90.397	61.008	38.303		53.01		С
	MOTA	4202	CD2	HIS	116	89.311	61.534	37.690		53.38		С
	MOTA	4203	ND1		116	,91.473	61.764	37.884		49.21		C ·
	ATOM	4204	CE1	HIS	116	91.054	62.700	37.058		52.55		C
	MOTA	4205	NE2	HIS	116	89.744	62.584	36.920		46.03		C
	MOTA	4206	C	HIS	116	92.380	60.847	40.592		38.13		C
	ATOM	4207	0	HIS	116	91.655	61.278	41.486		35.69		C
	ATOM	4208	N	VAL	117	93.554	61.387	40.274		35.30		C
	MOTA	4209	ÇA	VAL	117	94.078	62.550	40.980		36.81		C
	MOTA	4210	CB	VAL	117	95.606	62.463	41.146		24.40		C
	ATOM	4211		VAL	117	96.075	63.529	42.109		30.24		C C
	MOTA	4212		VAL	117	96.004	61.087	41.647		21.51		C
	MOTA	4213	C	VAL	117	93.747		40.271	•	44.32		C
	ATOM	4214	0	VAL	117	93.901	63.973	39.054		48.83		C _.
	MOTA	4215	N	LYS	118	93.304	64.837	41.055		61.70		c.
	MOTA	4216	CA	LYS	118	92.926	66.160	40.555		65.79 48.95		C
	MOTA	4217	CB	LYS ·	118	94.076	66.809	39.779		51.90		C
	ATOM	4218	CG	LYS	118	94.137	68.329	39.934		54.76		C
	ATOM	4219	CD	LYS	118	93.956	69.065	38.603		49.49		C
•	MOTA	4220	CE	LYS	118	94.163	70.575	38.754		45.55		C
	MOTA	4221	ΝZ	LYS	118	95.564	71.003	38.435 39.664		78.13		C
	ATOM	4222	C	LYS	118	91.693	66.107	39.664		88.53		C
	ATOM	4223	0	LYS	118	91.566	67.006 65.178	39.832		83.59	•	C
	ATOM	4224	OT	LYS	118	90.872	65.178	37.034	1.00	رد. دن		-
	END						•					

116

Table 5

DNA sequence of human CD28 cDNA

agactctcag	gccttggcag	gtgcgtcttt	cagttcccct	cacacttcgg	gttcctcggg	60
gaggagggc	tggaacccta	gcccatcgtc	aggacaaaga	tgctcaggct	gctcttggct	120
ctcaacttat	tcccttcaat	tcaagtaaca	ggaaacaaga	ttttggtgaa	gcagtcgccc	180
atgcttgtag	cgtacgacaa	tgcggtcaac	cttagctgca	agtattccta	caatctcttc	240
tcaagggagt	tccgggcatc	ccttcacaaa	ggactggata	gtgctgtgga	agtctgtgtt	300
gtatatggga	attactccca	gcagcttcag	gtttactcaa	aaacggggtt	caactgtgat	360
gggaaattgg	gcaatgaatc	agtgacattc	tacctccaga	atttgtatgt	taaccaaaca	420
gatatttact	tctgcaaaat	tgaagttatg	tatcctcctc	cttacctaga	caatgagaag	480
agcaatggaa	ccattatcca	tgtgaaaggg	<i>àaacaccttt</i>	gtccaagtcc	cctatttccc	540
ggaccttcta	agcccttttg	ggtgctggtg	gtggttggtg	gagtcctggc	ttgctatagc	600
ttgctagtaa	cagtggcctt	tattatttc	tgggtgagga	gtaagaggag	caggctcctg	660
cacagtgact	acatgaacat	gactccccgc	cgccccgggc	ccacccgcaa	gcattaccag	720
ccctatgccc	caccacgcga	cttcgcagcc	tatcgctcct	gacacggacg	cctatccaga	780
agccagccgg	ctggcagccc	ccatctgctc	aatatcactg	ctctggatag	gaaatgaccg	840
ccatctccag	ccggccacct	cagcccctgt	tgggccacca	atgccaattt	ttctcgagtg	900
actagaccaa	atatcaagat	cattttgaga	ctctgaaatg	aagtaaaaga	gatttcctgt	960
gacaggccaa	gtcttacagt	gccatggccc	acattccaac	ttaccatgta	cttagtgact	1020
tgactgagaa	gttagggtag	aaaacaaaaa	gggagtggat	tctgggagcc	tcttcccttt	1080
ctcactcacc	tgcacatctc	agtcaagcaa	agtgtggtat	ccacagacat	tttagttgca	1140
gaagaaaggc	taggaaatca	ttccttttgg	ttaaatgggt	gtttaatctt	ttggttagtg	1200
ggttaaacgg	ggtaagttag	agtaggggga	gggataggaa	gacatattta	aaaaccatta	1260
aaacactgtc	tcccactcat	gaaatgagcc	acgtagttcc	tatttaatgc	tgttttcctt	1320
tagtttagaa	atacatagac	attgtctttt	atgaattctg	atcatattta	gtcattttga	1380
ccaaatgagg	gatttggtca	aatgagggat	tccctcaaag	caatatcagg	taaaccaagt	1440
tgctttcctc	actccctgtc	atgagacttc	agtgttaatg	ttcacaatat	actttcgaaa	1500
gaataaaata	gttc					1514

Amino acid sequence of human CD28 (SEQ ID NO:1)

MLRLLLALNL FPSIQVTGNK ILVKQSPMLV AYDNAVNLSC KYSYNLFSRE FRASLHKGLD SAVEVCVVYG NYSQQLQVYS KTGFNCDGKL GNESVTFYLQ NLYVNQTDIY FCKIEVMYPP PYLDNEKSNG TIIHVKGKHL CPSPLFPGPS KPFWVLVVVG GVLACYSLLV TVAFIIFWVR SKRSRLLHSD YMNMTPRRPG PTRKHYQPYA PPRDFAAYRS

The extracellular domain is shown in bold The stalk region is underlined