Ejercicios Módulo 3

En los ejercicios 1 a 3 determine si el vector dado \mathbf{w} es combinación lineal de \mathbf{v}_1 y \mathbf{v}_2 . Si lo es, encuentre a_1 y a_2 tales que $\mathbf{w} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2$.

1.
$$\mathbf{v}_1 = (2, -1) \text{ y } \mathbf{v}_2 = (-4, 2).$$

a.
$$\mathbf{w} = (-6, 3)$$
.

b.
$$\mathbf{w} = (1, 1)$$
.

c.
$$\mathbf{w} = (0, 0)$$
.

2.
$$\mathbf{v}_1 = (1, -3) \text{ y } \mathbf{v}_2 = (-2, 6).$$

a.
$$\mathbf{w} = (-3, 9)$$
.

b.
$$\mathbf{w} = (3, 6)$$
.

c.
$$\mathbf{w} = (0, 3)$$
.

3.
$$\mathbf{v}_1 = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 3 & 2 \\ -1 & 1 \end{bmatrix}.$$

a.
$$\mathbf{w} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

b.
$$\mathbf{w} = \begin{bmatrix} -3 & 2 \\ -4 & 1 \end{bmatrix}.$$

$$\mathbf{v} = \begin{bmatrix} -13 & -6 \\ 1 & -3 \end{bmatrix}.$$

4. Sean
$$p_1 = x + x^2$$
, $p_2 = x + x^3$ y $p_3 = x + x^2 + x^3$.

Determine cuál o cuáles de los siguientes polinomios son combinación lineal de p_1 , p_2 y p_3 .

a.
$$2x + x^2$$

b.
$$2-3x+4x^2+x^3$$

En los ejercicios 5 a 10 describa el espacio generado por los vectores dados.

5.
$$\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
.

6.
$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 3 \\ 0 \end{bmatrix}$.

7.
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 6 \\ 0 \\ -1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 7 \\ 0 \\ 2 \end{bmatrix}$.

8.
$$A = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix}$.

9.
$$p_1 = 2x + 3, p_2 = -3x - 5.$$

10.
$$p_1 = 3x + 4x^2$$
, $p_2 = 2x - 5x^2$, $p_3 = x + x^2$.

En los ejercicios 11 a 14 determine si el conjunto dado de vectores genera el espacio vectorial dado.

11. En
$$\mathbb{R}^2$$
; $\binom{1}{3}$, $\binom{-2}{0}$.

12. En
$$\mathbb{R}^2$$
; $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 4 \end{pmatrix}$, $\begin{pmatrix} -3 \\ -6 \end{pmatrix}$.

13. En
$$\mathbb{R}^3$$
; $\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$, $\begin{pmatrix} -2 \\ 3 \\ 5 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$.

14. En
$$\mathbb{R}^3$$
; $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 5 \\ 9 \\ 3 \end{pmatrix}$.

- 15. Muestre que un conjunto de dos vectores de \mathbb{R}^3 no puede generar a \mathbb{R}^3 .
- 16. Demuestre que si \mathbf{u} y \mathbf{v} están en $\operatorname{gen}\{\mathbf{v}_1,\mathbf{v}_2,...,\mathbf{v}_k\}$, entonces $\mathbf{u}+\mathbf{v}$ y $\alpha\mathbf{u}$ están en $\operatorname{gen}\{\mathbf{v}_1,\mathbf{v}_2,...,\mathbf{v}_k\}$.

Capítulo 1: Espacios vectoriales