Curs 14

Reprezentări și raţionamente legate de timp și spaţiu

Cunoaştere, necunoaştere şi recunoaşterea a ceea ce ştiu şi nu ştiu

- Un agent trebuie să fie conştient de ceea ce ştie şi de ceea ce nu ştie dar are nevoie să ştie
 - dacă ştiu ceva dar nu ştiu că ştiu → nu pot folosi ceea ce ştiu
 - dacă nu ştiu ceva şi ştiu că nu ştiu → voi încerca să aflu ceea ce nu ştiu (de exemplu, de la un agent care ştie acest lucru)

Belief Systems

Evenimentele se desfășoară în timp

Când <u>a intrat în cameră_{e1}, Ion a aprins</u>

<u>lumina_{e2}. După cinci minute <u>a ieşit_{e3}. La</u>

ieşire <u>a stins lumina_{e4}.</u></u>

Evenimentele se desfășoară în timp

Când <u>a intrat în cameră_{e1}, Ion a aprins</u>
<u>lumina_{e2}. După cinci minute a ieşit_{e3}. La ieşire a stins lumina_{e4}.</u>

Două tipuri de mărimi temporale:

puncte...

e1:t1 / e2:t1 / e3:t2=t1+5min / e4:t2

Evenimentele se desfăşoară în timp

Când <u>a intrat în cameră_{e1}, lon a aprins</u>

<u>lumina_{e2}. După cinci minute a ieşit_{e3}. La ieşire a stins lumina_{e4}.</u>

Două tipuri de mărimi temporale:

...şi intervale:

Evenimentele pot fi...

Instantanee:

Ion a ieşit din cameră.

Maria s-a întâlnit cu proful de mate

De durată:

Ion a citit toată seara.

Afară plouă.

Semnalizatori de relaţii temporale

Când <u>a intrat în cameră</u>_{e1}, <u>lon a aprins</u> <u>lumina</u>_{e2}. <u>După cinci minute a ieşit</u>_{e3}. <u>La ieşire a stins lumina</u>_{e4}. <u>când e_i, e_j \rightarrow t(e_i) = t(e_j) e_i. <u>După <interval> e_j \rightarrow t(e_j) = t(e_j)+<interval></u></u>

La <referință(e_i)> $e_i \rightarrow t(e_i) = t(e_i)$

Raţionamente în care intervine timpul

Prelucrarea enunţurilor

<object ID="obj1" ISA="companie" NAME="Samurai S.R.L."/>
<event ID="ev1" ISA="a_lua_ființă" REC="obj1" TIME="23.01.1984"/>

Prelucrarea enunţurilor

<event ID="ev2" ISA="a_falimenta" REC="obj1" TIME="timex1"/>

<timex ID="timex1" TYPE="after" REF="ev1" DUR="1" UNIT="year"/>

Calculul timpului

```
<object ID="obj1" ISA="companie" NAME="Samurai S.R.L."/>
```

```
<event ID="ev1" ISA="a_lua_fiinţă" REC="obj1" TIME="23.01.1984"/>
```

<event ID="ev2" ISA="a_falimenta" REC="obj1" TIME="timex1"/>

<timex ID="timex1" TYPE="after" REF="ev1" DUR="1" UNIT="year"/>

<event ID="ev2" ISA="a_falimenta" REC="obj1" TIME="23.01.1985"/>

În simularea căderii oului nu intervine timpul...

Probleme:

- spaţiul reprezentării explodează pentru că nici un eveniment adăugat nu este retras
- nu putem face nici o predicţie relativă la timp (exemplu: apoi din propoziţia a doua înseamnă după un minut, o oră, o zi, o săptămână, un an?)

Reparaţii:

- o regulă introduce cât şi retrage evenimente
- reprezentările evenimentelor se clasifică în instantanee şi de durată
- apar reprezentări stabile: situaţiile
- se marchează timpii asociaţi desfăşurării evenimentelor

v. şi Calculul Situaţional (John McCarthy)

Reprezentarea spaţiului şi raţionamente asupra lui

- Ce reprezentăm?
 - forme de objecte
 - plasarea obiectelor în spaţiu
- Cu ce scop?
 - ca să găsim drumuri
- Două sau trei dimensiuni?

Spaţiul în care se poate deplasa un agent (robot)

Spaţiul în care se poate deplasa un agent mobil (robot) – spaţiul liber

Stabilește un punct al robotului și apoi găsește spațiul maxim al coordonatelor acestui punct când robotul ocupă orice poziție care nu se suprapune peste obstacole.

Graful vizibilităţilor

Se consideră toate colțurile zonei libere (inclusiv pozițiile inițială și finală). Graful vizibilităților este dat de toate segmentele are unesc aceste extremități și nu intersectează zona interzisă.

Găsirea drumului

Drumul este dat de calea cea mai scurtă în graful vizibilităților.

Reprezentarea prin caroiaje

Granularitatea caroiajului este dependentă de dimensiunea robotului.

Reprezentarea prin caroiaje

Se calculează drumul cel mai scurt în graful vizibilităților.

Reprezentarea prin caroiaje

Drumul efectiv urmat de robot aproximează apoi acest drum optim.

