#1 Assignment - CMPT 405

Luiz Fernando Peres de Oliveira - 301288301 - lperesde@sfu.ca

September 20, 2018

#1 - Let C be the array containing all the possible coins $\{1, 5, 10, 25, 100, 200\}$. Let V be the total change value.

```
Algorithm:  \begin{aligned} & \textbf{Input:} \ \ C, \ V \\ & d \leftarrow \text{sort C such that } d_1 \geq d_2 \geq ... \geq d_n \\ & res \leftarrow \emptyset; \ i \leftarrow 1 \\ & \textbf{while } V > 0 \ \textbf{do} \\ & \textbf{if } V \geq d_i \ \textbf{then} \\ & n_{coins} \leftarrow \left\lfloor \frac{V}{d_i} \right\rfloor \\ & V \leftarrow V - (n_{coins} * d_i) \\ & res \leftarrow res \cup \{(d_i, n_{coins})\} \\ & \textbf{end if} \\ & i \leftarrow i + 1 \\ & \textbf{end while} \\ & \textbf{return } res \end{aligned}
```

Intuition: For all $d_i, d_j \in C$, $1 \le i < j \le n$, $d_i \ge 2 * d_j$, meaning that if I the algorithm chooses any d_j over any d_i , it will have to pick at least 2 times more coins for some value V that satisfies both d_i and d_j .

Proof. The only way to give more coins than the smallest possible number of coins for any change would be in a case where the algorithm chooses d_j over a d_i (see *Intuition*). Now, imagine that the algorithm chooses d_j over d_i , then we have two cases:

```
- Case 1. d_i > V:
```

If so, we are done because there are no possible ways of choosing d_i for value V.

```
- Case 2. d_i \leq V:
```

If that was the case (as a mean of contradiction), we would have an optimal set OPT such that $OPT_{i-1} \cup d_j \subseteq OPT$, which is not the case, once the iteration i will happen before the iteration j, causing the algorithm to choose d_i over d_j (and never the opposite) for any value V that satisfies both d_i and d_j .

#2 a)

Greedy approach to the fractional knapsack:

- n objects and a knapsack
- item i weighs $w_i > 0$ and has utility $u_i > 0$
- fill knapsack so as to $\mathbf{maximize}$ total utility/weight, not exceeding total capacity W

Algorithm approach:

- sort items in decreasing order of their utility-to-weight ratio u_i/w_i
- repeatedly add item with max ratio u_i/w_i . If not possible to add the whole object, add a fraction $\alpha \in (0,1)$ of it, if possible.

Proof. Let $K_{opt} \subseteq \{i_1, i_2, i_3, ..., i_n\}$ be the optimal set of items in a knapsack and let K_j be the chosen items after an iteration j, $0 \le j \le n$. Let K_j be considered "promising" if $K_j \subseteq K_{opt}$.

Base case: K_0 : K_0 is promising since the total number of chosen objects, in this case none, does not exceed total capacity W. Thus, there exists some optimal K_{opt} such that $K_0 \subseteq K_{opt} \subseteq K_0 \cup \{i_1, i_2, ..., i_n\}$.

Induction step: Assume K_{j-1} is promising for stage j-1, meaning that $K_{j-1} \subseteq K_{opt} \subseteq K_{j-1} \cup \{i_j, i_{j+1}, ..., i_n\}$. We want to show K_j . On a stage j we have two cases:

Case 1. i_j is rejected. Then $K_{j-1} \cup \{i_j\}$ or $K_{j-1} \cup \{i_j * \alpha\}$ (any fraction $\alpha \in (0,1)$ of i_j) exceed the capacity W; thus, $K_{j-1} = K_j$. Since $K_{j-1} \subseteq K_{opt}$ and K_{opt} does not exceed the total capacity W, $i_j \notin K_{opt}$. So $K_j \subseteq K_{opt} \subseteq K_j \cup \{i_{j+1}, i_{j+2}, ..., i_n\}$.

Case 2. i_j or $i_j * \alpha$ is added to K_{j-1} . Let item i_{chosen} be i_j or $i_j * \alpha$ (whichever was added to K_{j-1}). Then $K_{j-1} \cup \{i_{chosen}\}$ does not exceed the total capacity W and we have $K_{j-1} \cup \{i_{chosen}\} = K_j$.

Case 2.1. $i_{chosen} \in K_{opt}$. Then we have $K_j \subseteq K_{opt} \subseteq K_j \cup \{i_{j+1}, i_{j+2}, ..., i_n\}$.

Case 2.2. $i_{chosen} \notin K_{opt}$. We show that there is another maximum set of utility-to-weight items K'_{opt} that witnesses the fact that K_j is promising. For example, consider an item i_{chosen} added to K_{opt} . This will exceed the capacity W and the knapsack will contain at least one item of $\{i_{j+1}, i_{j+2}, ..., i_n\}$.

Proof of claim (Case 2.2): K_{opt} contains all elements of K_{j-1} and can be obtained from K_{j-1} by adding some items from the set $\{i_j, i_{j+1}, ..., i_n\}$. Adding i_j does not exceed capacity W, so the excess in $K_{opt} \cup \{i_{chosen}\}$ must contain some elements other items in $\{i_{j+1}, i_{j+2}, ..., i_n\}$.

#2 b)

π= υ,			
item	utility	weight	
1	2	1	W = 1000
2	1000	1000	

 $K_{opt} = \{i_2\}$ (utility = 1000), $K_{greedy} = \{i_1\}$ (utility = 2)

#3

The idea here is to use the greedy approach of the **set cover** problem. Let U be the collection with all tiles a_{ij} and let two tiles a_{ij} , a_{i+1k} be adjancent if it is possible to color them horizontally, meeting the algorithm criteria.

Algorithm:

```
Input: U

for i from 1 to K do

for j from 1 to n_i do

arr[i] \leftarrow sort tiles such that a_{ij} \geq a_{ij+1} \geq ... \geq a_{i_n i}

end for

end for

S \leftarrow create sets S_1, S_2, ..., S_{n_{overlaps}} for each possible row using adjacent tiles in arr.

C \leftarrow 0

while all tiles are not covered do

choose s \in S such that s contains most uncovered tiles.

mark the tiles in s as covered

C \leftarrow C + 1

end while

return C
```

Counter example:

```
Columns:
```

```
\begin{array}{l} col\ 1:a_{11}=0.325,\ a_{12}=0.225,\ a_{13}=0.225,\ a_{14}=0.225\\ col\ 2:a_{21}=0.45,\ a_{22}=0.225,\ a_{23}=0.225,\ a_{24}=0.1\\ col\ 3:a_{31}=0.225,\ a_{32}=0.225,\ a_{33}=0.225,\ a_{34}=0.225,\ a_{35}=0.1\\ col\ 4:a_{41}=0.325,\ a_{42}=0.225,\ a_{43}=0.1125,\ a_{44}=0.1125,\ a_{45}=0.1125,\\ a_{46}=0.1125\\ col\ 5:a_{51}=0.55,\ a_{52}=0.45\\ col\ 6:a_{61}=0.33333,\ a_{62}=0.33333,\ a_{63}=0.33333\\ col\ 7:a_{71}=0.44444,\ a_{72}=0.22222,\ a_{73}=0.22222,\ a_{74}=0.11112 \end{array}
```

Created Sets:

```
\begin{split} S_1 &= \{a_{11},\, a_{21},\, a_{31},\, a_{41},\, a_{51},\, a_{61},\, a_{71}\} \\ S_2 &= \{a_{11},\, a_{21},\, a_{32},\, a_{41},\, a_{51},\, a_{61},\, a_{71}\} \\ S_3 &= \{a_{12},\, a_{21},\, a_{32},\, a_{42},\, a_{51},\, a_{62},\, a_{71}\} \\ S_4 &= \{a_{12},\, a_{22},\, a_{33},\, a_{42},\, a_{51},\, a_{62},\, a_{72}\} \\ S_5 &= \{a_{13},\, a_{22},\, a_{33},\, a_{43},\, a_{52},\, a_{62},\, a_{72}\} \\ S_6 &= \{a_{13},\, a_{23},\, a_{34},\, a_{44},\, a_{52},\, a_{63},\, a_{73}\} \\ S_7 &= \{a_{14},\, a_{23},\, a_{34},\, a_{45},\, a_{52},\, a_{63},\, a_{73}\} \\ S_8 &= \{a_{14},\, a_{24},\, a_{35},\, a_{46},\, a_{52},\, a_{63},\, a_{74}\} \end{split}
```

Our Greedy algorithm selects the set with largest number of uncovered tiles S_1 . As we mark all tiles of first row $a_{i1} \in S_1$ as covered, the algorithm will choose the next set $s \in S$ that contains most uncovered tiles, repeating this process until all tiles are covered. After S_1 is chosen, the algorithm selects S_6 , S_4 , S_8 , S_2 , S_5 and S_7 , respectively. Every time the algorithm selects a set with the largest number of uncovered tiles, the number of colors needed increase by one, therefore, with our Greedy approach, the algorithm will return 7 as the minimal number of colors, however, the optimal number of colors for the given example is 6. Thus, the Greedy approach given is not optimal. See below:

$$\begin{split} T_{greedy} &= \{S_1, S_2, S_4, S_5, S_6, S_7, S_8\}. \text{ min: 7 colors} \\ T_{opt} &= \{S_1, S_2, S_5, S_6, S_7, S_8\}. \text{ min: 6 colors} \end{split}$$