Conflictos en LR

Ejemplo:

Queremos hacer un analizador sintáctico (parser LR(0)) para la gramática G:

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

- Que lenguaje genera?
- Es una gramática LR(0)?

Tenemos que construir la tabla LR(0) y ver si existen conflictos en la tabla de acciones

Obs:

Es una gramática ambigua!

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

Podemos usar una gramática no ambigua que genera el mismo lenguaje:

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T^*F \mid F$$

$$F \rightarrow (E) \mid id$$

Preferimos usar la gramática ambigua porque es más simple y fácil de entender

Paso 1: aumentar

$$E' \rightarrow E$$

 $E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$

Aumentamos la gramática con el nuevo símbolo distinguido *E'*

Paso 2: Items LR(0)

Paso 2: Items LR(0)

Tarea: completar las transiciones.

$$I_0: \quad E' \to \cdot E$$

$$E \to \cdot E + E$$

$$E \to \cdot E * E$$

$$E \to \cdot (E)$$

$$E \to \cdot \mathbf{id}$$

$$I_1: \quad E' \to E \cdot \\ E \to E \cdot + E \cdot \\ E \to E \cdot * E$$

$$I_2: \quad E \to (\cdot E)$$

$$E \to \cdot E + E$$

$$E \to \cdot E * E$$

$$E \to \cdot (E)$$

$$E \to \cdot \mathbf{id}$$

$$I_3: E \to id$$

$$I_4: \quad E \to E + \cdot E$$

$$E \to \cdot E + E$$

$$E \to \cdot E * E$$

$$E \to \cdot (E)$$

$$E \to \cdot \mathbf{id}$$

$$I_5 \colon \quad E \to E * \cdot E$$

$$E \to \cdot E + E$$

$$E \to \cdot E * E$$

$$E \to \cdot (E)$$

$$E \to \cdot \mathbf{id}$$

$$I_6: \quad E \to (E \cdot)$$
 $E \to E \cdot + E$
 $E \to E \cdot * E$

$$I_7: \quad E \to E + E \cdot \\ E \to E \cdot + E \\ E \to E \cdot * E$$

$$I_9$$
: $E \rightarrow (E)$ ·

Paso 3: tabla

$$I_0: \quad E' \to \cdot E$$

$$E \to \cdot E + E$$

$$E \to \cdot E * E$$

$$E \to \cdot (E)$$

$$E \to \mathbf{id}$$

$$I_1: \quad E' \to E \cdot E' \to E \cdot E \to E \cdot E \to E \cdot E' \times E'$$

$$I_{2}: \quad E \to (\cdot E)$$

$$E \to \cdot E + E$$

$$E \to \cdot E * E$$

$$E \to \cdot (E)$$

$$E \to \mathbf{id}$$

$$I_3$$
: $E \rightarrow \mathbf{id}$.

$$I_{4}: \quad E \rightarrow E + \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow \cdot \mathbf{id}$$

$$I_5: \quad E \to E * \cdot E$$

$$E \to \cdot E + E$$

$$E \to \cdot E * E$$

$$E \to \cdot (E)$$

$$E \to \mathbf{id}$$

$$I_6: \quad E \to (E \cdot)$$

$$E \to E \cdot + E$$

$$E \to E \cdot * E$$

I. P. P. P

17:	$E \to E \cdot + E$ $E \to E \cdot * E$	
I_8 :	$E \rightarrow E * E \cdot E \cdot E \rightarrow E \cdot E \rightarrow E \cdot E \cdot E$	

I_9 :	$E \rightarrow$	(E)
---------	-----------------	-----

acta da		t	tabla ir_a				
estado	id	+	*	()	\$	E
0	s3			s2			1
1		s4	s5			acc	
2	s3			s2			6
3	r4	r4	r4	r4	r4	r4	
4	s3			s2			7
5	s3			s2			8
6		s4	s5		s9		
7	1		rls5	$^{\mathrm{r1}}$	r1	r1	
8	r2	r2s4	r2s5	r2	r2	r2	
9	r3	r3	r3	r3	r3	r3	

Conflictos!

Observación:

 $E \rightarrow id$

$I_0: E' \rightarrow \cdot E$			I ₆ : E	$\rightarrow (E \cdot)$
	icto no se SUIENTES	•	esolv	⁄er
Por ejemp	olo, en el cor	nflicto r1 s4		

SLR(1) pone la reducción r1: $E \rightarrow E + E$ solo si el no terminal + está en Siguientes(E)= $\{+,*\}$

 $E \rightarrow -id$

estado		t	tabla ir_{-6}				
	id	+	*	()	\$	E
0	s3			s2			1
1		s4	s5			acc	
2	s3			s2			6
3	r4	r4	r4	r4	r4	r4	
4	s3			s2			7
5	s3			s2			8
6	\downarrow	s4	s5		s9		
7	rl	r1s4	r1s5	r1	r1	r1	
8	r2	r2s4	r2s5	r2	r2	r2	
9	r3	r3	r3	r3	r3	r3	

Conflictos!

Paso 4: precedencia y asociatividad

 $I_9: E \to (E)$

Ejemplo:

En este punto tendríamos un conflicto shift/reduce

- 1				
	<u>Pila</u>	<u>Entrada</u>	Accion	
	0	id+id*id\$	shift 3	
	0 id3	+id*id\$	r4 por E→ id	
	0 E1	+id*id\$	shift 4	
	0 E1 +4	id*id\$	shift 3	
	0 E1 +4 id3	*id\$	r4 por E→ id	
•	0 E1 +4 E7	*id\$	shift 5 ■ Elijo shift shift 5 ■ dar mayor	•
	0 E1 +4 E7 *5	id\$	shift 3 precedence	cia a
	0 E1 +4 E7 *5 id3	\$	r4 por E→ id	
	0 E1 +4 E7 *5 E8	\$	r2 por E→ E*E	
	0 E1 +4 E7	\$	r1 por E→ E+E	
	0 E1	\$	aceptar	

Conflictos que no se pueden resolver

(Ejercicio 6 de la Práctica 9)

Т	а	b	\$	S	Α
0	S4			1	2
1			Α		
2		S3			
3			R1		
4		R3 / S5			
5	S4				6
6		R2			

 Considerar la cadena abab y verificar que ninguna elección de R3 ó S5 resuelve el conflicto.