- 4. In the same circle or in congruent circles:
 - a. Congruent minor arcs have congruent central angles.

 Congruent central angles have congruent arcs.
 - **b.** Congruent arcs have congruent chords. Congruent chords have congruent arcs.
 - c. Chords equally distant from the center are congruent.

 Congruent chords are equally distant from the center.
- 5. A diameter that is perpendicular to a chord bisects the chord and its arc.
- 6. If two inscribed angles intercept the same arc, then the angles are congruent.
- 7. An angle inscribed in a semicircle is a right angle.
- **8.** If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary.
- 9. Relationships expressed by formulas:

 $m \angle 1 = k$

 $m \angle 1 = \frac{1}{2}k$

 $m \angle 1 = \frac{1}{2}k$

$$m \angle 1 = \frac{1}{2}(k+j)$$
$$a \cdot b = c \cdot d$$

$$m \angle 1 = \frac{1}{2}(k - j)$$

$$s \cdot e = r \cdot c$$

$$m \angle 1 = \frac{1}{2}(k - j)$$
$$t = q$$

$$m \angle 1 = \frac{1}{2}(k - j)$$

$$s \cdot e = t^2$$

Chapter Review

Points A, B, and C lie on $\bigcirc O$.

- 1. \overrightarrow{AC} is called a $\stackrel{?}{=}$, while \overrightarrow{AC} is called a $\stackrel{?}{=}$.
- 2. \overline{OB} is called a $\frac{?}{}$.
- 3. The best name for \overline{AB} is $\frac{?}{}$.
- **4.** $\triangle ABC$ is $\frac{?}{\text{(inscribed in/circumscribed about)}} \odot O$
- **5.** \overrightarrow{CD} intersects $\bigcirc O$ in one point. \overrightarrow{CD} is called a $\stackrel{?}{=}$.

9-1