"Bildverarbeitung"

Hochschule Niederrhein

Regina Pohle-Fröhlich

Grauwerttransformation

Roter Faden durch die Vorlesung

- Bildaufnahme
- Histogramme
- Grauwertmodifikation
- Glättungsfilter
- Kantenfilter
- Nichtlineare Filter
- Segmentierung
- Morphologische Operationen
- Fourier Transformation
- Anwendung der FFT
- Probeklausur

3 Einsatzbereiche

Wann ist eine Veränderung der Grauwerte/Farbwerte sinnvoll?

- Bei visueller Betrachtung der Bilder
- Bei einer interaktiven bzw. semiautomatischen Bildsegmentierung
- Wenn ähnlich wahrgenommene Farbwerte die Grundlage für eine Homogenitätsentscheidung liefern sollen
- Bei Bildern, deren Werteumfang den darstellbaren Bereich überschreitet
- für Bildmontagen oder bei 3D-Darstellung
- bei Klassifikationsaufgaben

- Jeder neue Pixelwert hängt ausschließlich vom alten Pixelwert ab, unabhängig von anderen Pixelwerten im Bild
- Homogene Punktoperation: Operation ist unabhängig von den Bildkoordinaten

Beispiele:

- Grauwert- oder Farbwerttransformation $(g_{neu}=f(g) \text{ oder } [r_{neu}, g_{neu}, b_{neu}]=[f(r), f(g), f(b)])$
- Falschfarbdarstellung ($[r_{neu}, g_{neu}, b_{neu}] = [f(g)]$)
- Invertieren und Addieren von Bildern
- Schwellwertbildung
- Realisierung oft über Lookup-Tabellen (LUTs)

Änderung der Bildintensität

- Kontraständerung: $f_c(g) = 1.5 \cdot g$
- Helligkeitsänderung: $f_b(g) = g + 10$
- Beschränkung (clamping): für (g > 255) g = 255 und für (g < 0) g = 0;
- Invertieren: $f_{inv}(g) = g_{max} g$
- Schwellwert (Thresholding): $f_{th}(g) = g_0$ für $g < g_{th}$ und $f_{th}(g) = g_1$ für $g \ge g_{th}$

Verlust von Bildinformation/Dynamik ist möglich

- Methoden
 - Monotone, lineare Abbildung der Grauwerte
 - Erhöhung des globalen Kontrasts
 - Monotone, nichtlineare Grauwertabbildung
 - Erhöhung des lokalen Kontrasts
 - Linearer Histogrammausgleich
 - Erhöhung der Entropie
 - Nichtmonotone Skalierung der Grauwerte
 - Falschfarbdarstellung

3.2 Monotone lineare Skalierung

Einfachste Kontrastanpassung: Dehne und verschiebe Histogramm so, dass dunkelster Pixel g_{min} auf w_{min} (z.B. 0) und hellster Pixel g_{max} auf Maximalwert w_{max} (z.B. 255) fällt

Transferfunktion:
$$g'(g) = (g - g_{\min}) \cdot \frac{w_{\max} - w_{\min}}{g_{\max} - g_{\min}}$$

3.2 Monotone lineare Skalierung

$$g_{\text{min}} = 100, g_{\text{max}} = 112$$

 $g'(g) = (g - 100) \cdot \frac{255}{12}$

Transferfunktion

[2]

3.2 Monotone lineare Skalierung

Robuste Kontrastanpassung mit Quantilen: s_{low} und s_{high} sei der Anteil der Pixel, der in Dunkel- bzw. Hellsättigung übergehen darf und A ist die Fläche des Bildes in Pixeln.

Quantile:
$$\hat{g}_{\min} = \min \{ i | H(i) \ge A_{s_{\min}} \}$$

 $\hat{g}_{\max} = \min \{ i | H(i) \le A_{s_{\max}} \}$

Problem:

- Bilder können trotzt hohem globalem Kontrast in weiten Bildbereichen schlecht ausgeleuchtet wirken, aber globaler Kontrast kann auch nicht weiter erhöht werden
- Reale Aufnahmesysteme (Kameras, Scanner,..) setzen Intensitäten nicht 1:1 in Grauwerte um sondern nutzen meist eine nichtlineare Funktion
- Ausgabegeräte (z.B. Bildschirme) setzen Grauwerte nicht 1:1 in Helligkeiten um → Nichtlinearitäten
- Grundidee der Gammakorrektur: homogene Punktoperation kompensiert die geräteabhängige Nichtlinearität
- Grauwerte entsprechen nach der Korrektur nicht den absoluten Intensitäten, aber ihr relatives Verhältnis entspricht (idealerweise) der Wirklichkeit

Kenngröße zur Messung der Verbesserung

 Lokaler Kontrast: z.B. durchschnittlicher Grauwertunterschied zwischen benachbarten Pixeln

 $c_{\text{local}}(f) = 1/MN \sum_{m} \sum_{n} |f(m,n) - f_{nb}(m,n)| \text{ mit } f_{nb}(m,n) - \text{durchschnittlicher Grauwert in der Umgebung von } (m,n)$

[2]

Gammakorrektur

$$g'(g) = w_{\text{max}} \cdot \left(\frac{g}{w_{\text{max}}}\right)^{\gamma}$$

- γ heißt Gammawert
- $\gamma = 1$: $I_{out} = I_{in}$, lineare Abbildung
- γ <1: konkave Abbildung (kleine Eingabewerte werden stark gespreizt, große gestaucht)
- γ >1: konvexe Abbildung (kleine Eingabewerte werden gestaucht, große gespreizt)

$$g'(g) = w_{\text{max}} \cdot \left(\frac{g}{w_{\text{max}}}\right)^{\gamma}$$

[2]

$$g' = (255 / 255^{\gamma}) \cdot g^{\gamma}$$

$$\gamma = 3.0$$

$$\gamma = 1.0$$

 $\gamma = 0.3$

[4]

Kenngröße zur Beschreibung des Informationsgehalts

• Beschreibt die "Überraschung", die "Unordnung" des Bildes

$$E = -\sum h(g) \cdot log_2[h(g)]$$

E - Entropie

h - Wahrscheinlichkeitsverteilung

g - Grauwert

Ziel: Bild durch homogene Punktoperation so verändern, dass gleichverteiltes Histogramm vorliegt. Gleichverteilte Grauwerte haben theoretisch den höchsten Informationsgehalt.

Bildverarbeitung, Regina Pohle-Fröhlich, 3. Grauwerttransformation

- Histogrammeinträge können nur verschoben oder zusammenfügt, nicht aber getrennt werden
- Verschieben so gestalten, dass n\u00e4herungsweise keilf\u00f6rmiges Histogramm entsteht

Transferfunktion für ein diskretes Histogramm:

Algorithmus

- Berechne Histogramm
- Normierung des Histogramms
- Berechnung des kumulativen Histogramms
- Multiplikation mit Anzahl der Grauwerte
- Aufrunden
- Subtraktion von 1

Keine Linearisierung, sondern von der Häufigkeit abhängige Spreizung.

Bildverarbeitung, Regina Pohle-Fröhlich, 3. Grauwerttransformation

Problem

Das "Unwichtige" wurde verstärkt, das Wichtige abgeschwächt!

[2]

- Das geht auch in Farbe.
- Farbkanäle werden unabhängig voneinander behandelt, was zu verändertem Farbeindruck führt

3.5 Äquidensitendarstellung

stückweise konstante Transformation

Transferfunktion

$$f(g) = \begin{cases} g_{0,} & \text{für } I_0 \leq g < I_1 \\ g_{1,} & \text{für } I_1 \leq g < I_2 \\ \dots \\ g_{k,} & \text{für } I_{k-1} \leq g < I_k \end{cases}$$

[3]

3.6 Nichtmonotone Grauwertabbildung

Fensterung: Anwendung bei Bilddaten mit mehr als 256 Graustufen

Zwei Grauwertfenster in einem Bild.

- Erzeugt künstliche Kanten.
- Grenzen von Maxima der Transferfunktion nicht immer erkennbar.

[2]

3.7 Farbe zur Kontrastverstärkung

Es können wesentlich mehr Farb- als Grauwerte unterschieden werden.

Kontrastverstärkung durch drei nicht-lineare, nicht-monotone Abbildungsfunktionen der Grauwerte: $red_i(g)$, $green_i(g)$ $blue_i(g)$

3.7 Farbe zur Kontrastverstärkung

3.7 Farbe zur Kontrastverstärkung

Zusammenfassung

- Punktbasierte Verfahren werden über eine Transferfunktion zwischen Grauwerten (Farbwerten) definiert.
- Grauwerttransformationen
 - monoton: linear, γ -Korrektur, Histogrammausgleich
 - Nicht monoton: Stufentransformation, Falschfarbdarstellung.
- Erfolg kann an kontrastbasierten Maßzahlen ermittelt werden.

Bildquellen

- [1] A. Ehrhardt: Einführung in die Digitale Bildverarbeitung, Vieweg+Teubner, 2008
- [2] K. D. Tönnies: Grundlagen der Bildverarbeitung, Pearson Studium, 2005
- [3] W. Burger, M.J. Burge: Digitale Bildverarbeitung, Springer Verlag, 2005
- [4] B. Jähne: Digitale Bildverarbeitung, Springer Verlag, 2005