

Reinforcement Learning Notes

Learn from trying!

Author: occupymars **Date:** June. 20, 2025

Version: 0.1

Contents

Chapter	1 Math of Reinforcement Learning
1.1	Markov Decision Process
	Value Function
1.3	Solving Value Function
1.4	Action Value Function
1.5	Bellman Optimality Equation
	Value Iteration and Policy Iteration
1.7	Monte Carlo Method
Chapter	2 From LQR to RL
2.1	LOR and Value function

Chapter 1 Math of Reinforcement Learning

	Introduction
Markov Decision Process	Action Value Function
Value Function	Bellman Optimality Equation
Solving Value Function	

1.1 Markov Decision Process

State and Action can describe a robot state respect to the environment and actions to move around, \mathcal{S} , \mathcal{A} are states and actions a robot can take, when taking an action, state after may not be deterministic, it has a probability. We use a transition function $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to [0,1]$ to denote this, $T(s,a,s') = p(s'\mid s,a)$ is the probability of reaching s' given s and a. For $\forall s \in \mathcal{S}$ and $\forall a \in \mathcal{A}$, $\sum_{s' \in \mathcal{S}} T(s,a,s') = 1$.

Reward $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$, r(s, a) depends on current state and action. And the reward may also be stochastic, given state and action, the reward has probability $p(r \mid s, a)$.

Policy $\pi(a \mid s)$ tells agent which actions to take at every state, $\sum_a \pi(a \mid s) = 1$.

This can build a Markov Decision Process, (S, A, T, r) from the *Trajectory* $\tau = (s_0, a_0, r_0, s_1, a_1, r_1, s_2, a_2, r_2, \ldots)$, which has probability of:

$$p(\tau) = \pi(a_0 \mid s_0) \cdot p(s_1 \mid s_0, a_0) \cdot \pi(a_1 \mid s_1) \cdot p(s_2 \mid s_1, a_1) \cdots$$

We then define *Return* as the total reward $R(\tau) = \sum_t r_t$, the goal of reinforcement learning is to find a trajectory that has the largest return. The trajectory might be infinite, so in order for a meaningful formular of its return, we introduce a discount factor $\gamma < 1$, $R(\tau) = \sum_{t=0}^{\infty} \gamma^t r_t$. For large γ , the robot is encouraged to explore, for small one to take a short trajectory to goal.

Markov system only depend on current state and action, not the history one (but we can always augment the system). Remark In this book, the reward to a state that is not forbidden and is not a boundary is set to 0. There are five actions: up, right, down, left, and stay, with a_1, \dots, a_5 .

1.2 Value Function

Value Function is the value of a state, from that state, the expected sum reward (return).

The formular of value function is:

$$V^{\pi}(s_0) = \mathbb{E}_{a_t \sim \pi(s_t)}[R(\tau)] = \mathbb{E}_{a_t \sim \pi(s_t)} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right]$$
 (1.1)

If we divede the trajectory into two parts, s_0 and τ' , we get the return:

$$R(\tau) = r(s_0, a_0) + \gamma \sum_{t=1}^{\infty} \gamma^{t-1} r(s_t, a_t) = r(s_0, a_0) + \gamma R(\tau')$$

Put it back into the value function, using law of total expectation:

$$\mathbb{E}[X] = \sum_a \mathbb{E}[X \mid A = a] p(a) = \mathbb{E}_a \left[\mathbb{E}[X \mid A = a] \right]$$

we get:

$$V^{\pi}(s_{0}) = \mathbb{E}_{a_{t} \sim \pi(s_{t})}[r(s_{0}, a_{0}) + \gamma R(\tau')]$$

$$= \mathbb{E}_{a_{0} \sim \pi(s_{0})}[r(s_{0}, a_{0})] + \gamma \mathbb{E}_{a_{t} \sim \pi(s_{t})}[R(\tau')]$$

$$= \mathbb{E}_{a_{0} \sim \pi(s_{0})}[r(s_{0}, a_{0})] + \gamma \mathbb{E}_{a_{0} \sim \pi(s_{0})}\left[\mathbb{E}_{s_{1} \sim p(s_{1}|a_{0}, s_{0})}[\mathbb{E}_{a_{t} \sim \pi(s_{t})}[R(\tau') \mid s_{1}, a_{0}]]\right]$$

$$= \mathbb{E}_{a_{0} \sim \pi(s_{0})}[r(s_{0}, a_{0})] + \gamma \mathbb{E}_{a_{0} \sim \pi(s_{0})}\left[\mathbb{E}_{s_{1} \sim p(s_{1}|a_{0}, s_{0})}[V^{\pi}(s_{1})]\right]$$

$$= \mathbb{E}_{a \sim \pi(s)}\left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s_{1} \sim p(s_{1}|a_{0}, s_{0})}[V^{\pi}(s_{1})]\right]$$

$$(1.2)$$

before we put s_1 to the right as the condition, it is stochastic, inside the $E_{s_1 \sim p(s_1|s_0,a_0)}$ scope it is deterministic, then we can get $V^{\pi}(s_1)$, as it needs the state to be deterministic.

The discrete formular is (get rid of the notation of time) so called *Bellman Equation*:

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) \left[r(s, a) + \gamma \sum_{s'} p(s' \mid s, a) V^{\pi}(s') \right], \forall s \in S$$

$$(1.3)$$

And if we write r(s,a) as $\sum_{r} p(r \mid s,a)r$, then

$$p(r \mid s, a) = \sum_{s' \in \mathcal{S}} p(s', r \mid s, a)$$

We can also get

$$p(s' \mid s, a) = \sum_{r \in \mathcal{R}} p(s', r \mid s, a)$$

combined we get

$$V^{\pi}(s) = \sum_{a \in A} \pi(a \mid s) \sum_{s' \in S} \sum_{r \in \mathcal{R}} p(s', r \mid s, a) [r + \gamma V^{\pi}(s')]$$
(1.4)

If the reward depend solely on the next state s', then

$$V^{\pi}(s) = \sum_{a \in A} \pi(a \mid s) \sum_{s' \in S} p(s' \mid s, a) \left[r(s') + \gamma V^{\pi}(s') \right]$$
 (1.5)

Let

$$r^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) \sum_{r} p(r \mid s, a) r$$

$$p^{\pi}(s' \mid s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) p(s' \mid s, a)$$

$$(1.6)$$

rewirte 1.3 into the vector form:

$$V^{\pi} = r^{\pi} + \gamma P^{\pi} V^{\pi} \tag{1.7}$$

 $\text{where } V^\pi = [V^\pi(s_1), \dots, V^\pi(s_n)]^\top \in \mathbb{R}^n, r^\pi = [r^\pi(s_1), \dots, r^\pi(s_n)]^\top \in \mathbb{R}^n, \text{ and } P^\pi \in \mathbb{R}^{n \times n} \text{ with } P^\pi_{ij} = p^\pi(s_j \mid s_i).$

1.3 Solving Value Function

Next, we need to solve the value function, first way is closed-form solution:

$$V^{\pi} = (I - \gamma P^{\pi})^{-1} r^{\pi}$$

Some properties: $I - \gamma P^{\pi}$ is invertible, $(I - \gamma P^{\pi})^{-1} \ge I$ which means every element of this inverse is nonnegative. For every vector $r \ge 0$, it holds that $(I - \gamma P^{\pi})^{-1} r^{\pi} \ge r \ge 0$, so if $r_1 \ge r_2$, $(I - \gamma P^{\pi})^{-1} r_1^{\pi} \ge (I - \gamma P^{\pi})^{-1} r_2^{\pi}$

However, this method need to calculate the inverse of the matrix, that need some numerical algorithms. We can use a iterative solution:

$$V_{k+1} = r^{\pi} + \gamma P^{\pi} V_k$$

as $k \to \infty$, $V_k \to V^{\pi} = (I - \gamma P^{\pi})^{-1} r^{\pi}$.

Proof Define the error as $\delta_k = V_k - V^{\pi}$, substitute $V_{k+1} = \delta_{k+1} + V^{\pi}$ and $V_k = \delta_k + V^{\pi}$ into the equation:

$$\delta_{k+1} + V^{\pi} = r^{\pi} + \gamma P^{\pi} (\delta_k + V^{\pi})$$

Rearrange it:

$$\delta_{k+1} = r^{\pi} + \gamma P^{\pi} V^{\pi} + \gamma P^{\pi} \delta_k - V^{\pi}$$
$$= \gamma P^{\pi} V^{\pi} + r^{\pi} + \gamma P^{\pi} \delta_k - V^{\pi}$$
$$= \gamma P^{\pi} \delta_k$$

As a result, $\delta_{k+1} = \gamma P^{\pi} \delta_k = (\gamma P^{\pi})^2 \delta_{k-1} = \dots = (\gamma P^{\pi})^{k+1} \delta_0$. Since every entry of P^{π} is nonnegative and no greater than 1, and $\gamma < 1$, we have $\|(\gamma P^{\pi})^{k+1}\| \to 0$ as $k \to \infty$, and the error $\|\delta_k\| \to 0$ as $k \to \infty$.

1.4 Action Value Function

Similarly to value function, *Action Value Function* is the value of an action at state s, from that state, take that action, the expected sum reward (return). We use $V^{\pi}(s)$ to denote value function, and $Q^{\pi}(s,a)$ to denote action value, their connection is:

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) Q^{\pi}(s, a)$$

$$\tag{1.8}$$

The action value function is given as:

$$Q^{\pi}(s_{0}, a_{0}) = r(s_{0}, a_{0}) + \mathbb{E}_{a_{t} \sim \pi(s_{t})} \left[\sum_{t=1}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \right]$$

$$= r(s_{0}, a_{0}) + \gamma \mathbb{E}_{a_{t} \sim \pi(s_{t})} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r(s_{t}, a_{t}) \right]$$

$$= r(s_{0}, a_{0}) + \gamma \mathbb{E}_{a_{t} \sim \pi(s_{t})} [R(\tau')]$$

$$= r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s_{1} \sim p(s_{1}|s_{0}, a_{0})} \left[\mathbb{E}_{a_{t} \sim \pi(s_{t})} [R(\tau') \mid s_{1}] \right]$$

$$= r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s_{1} \sim p(s_{1}|s_{0}, a_{0})} [V^{\pi}(s_{1})]$$

$$= r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s_{1} \sim p(s_{1}|s_{0}, a_{0})} \left[\sum_{a_{1} \in \mathcal{A}} \pi(a_{1} \mid s_{1}) Q^{\pi}(s_{1}, a_{1}) \right]$$

$$(1.9)$$

Then the bellman equation of action value is:

$$Q^{\pi}(s,a) = r(s,a) + \gamma \sum_{s'} p(s' \mid s,a) V^{\pi}(s')$$

= $r(s,a) + \gamma \sum_{s'} p(s' \mid s,a) \sum_{a' \in A} \pi(a' \mid s') Q^{\pi}(s',a')$ (1.10)

Note that we can always write r(s,a) as $\sum_r p(r \mid s,a)r$ if it is stochastic, and it follows the same notation in the book *Math of Reinforcement Learning*.

Rewrite 1.10 into vector form:

$$Q^{\pi} = \tilde{r} + \gamma P \Pi Q^{\pi} \tag{1.11}$$

where $\tilde{r}_{(s,a)} = \sum_{r} p(r \mid s, a)r$, $P_{(s,a),s'} = p(s' \mid s, a)$, $\Pi_{s',(s',a')} = \pi(a' \mid s')$.

1.5 Bellman Optimality Equation

Definition 1.1 (Optimal Policy)

If $V^{\pi_1}(s) \geq V^{\pi_2}(s)$, $\forall s \in \mathcal{S}$, than π_1 is better than π_2 , if π_1 is better than all other policies, it is called **Optimal Policy** π^* .

Bellman Optimality Equation (BOE) is given by:

$$V(s) = \max_{\pi(s) \in \Pi(s)} \sum_{a \in \mathcal{A}} \pi(a \mid s) \left(\sum_{r} p(r \mid s, a) r + \gamma \sum_{s'} p(s' \mid s, a) V(s') \right)$$

$$= \max_{\pi(s) \in \Pi(s)} \sum_{a \in \mathcal{A}} \pi(a \mid s) Q(s, a)$$

$$(1.12)$$

There are two unknowns in the equation, V(s) and $\pi(a \mid s)$, we can first consider the right hand side, to compute the $\pi(a \mid s)$.

Example 1.1 Consider $\sum_{1}^{3} c_i q_i$, where $c_1 + c_2 + c_3 = 1$ and they are all greater than 0, without loss of generality, we can assume $q_3 \ge q_1, q_2$, then the maximum is achieved when $c_3 = 1, c_1 = 0, c_2 = 0$. This is beacuse:

$$q_3 = (c_1 + c_2 + c_3)q_3 = c_1q_3 + c_2q_3 + c_3q_3 \ge c_1q_1 + c_2q_2 + c_3q_3$$

Inspired by the example, since $\sum_a \pi(a \mid s) = 1$, we have:

$$\sum_{a \in \mathcal{A}} \pi(a \mid s) Q(s, a) \leq \sum_{a \in \mathcal{A}} \pi(a \mid s) \max_{a \in \mathcal{A}} Q(s, a) = \max_{a \in \mathcal{A}} Q(s, a)$$

where the equality is achieved when

$$\pi(a \mid s) = \begin{cases} 1, & a = a^*, \\ 0, & a \neq a^*. \end{cases}$$

here $a^* = \arg \max_{a \in \mathcal{A}} Q(s, a)$.

Then the matrix form of BOE is:

$$V = \max_{\pi \in \Pi} (r^{\pi} + \gamma P^{\pi} V) = f(V)$$

the r^{π} and P^{π} are the same before in normal Bellman equation 1.6.

In order to solve this nonlinear equation, we first need to introduce *Contraction Mapping* theorem or Fixed Point theorem:

Definition 1.2 (Contraction Mapping)

Consider function f(x), where $x \in \mathbb{R}^d$ and $f: \mathbb{R}^d \to \mathbb{R}^d$. A point x^* is called a fixed point if $f(x^*) = x^*$, and the function is a contraction mapping if there exists $\gamma \in (0,1)$ such that:

$$||f(x_1) - f(x_2)|| \le \gamma ||x_1 - x_2||, \forall x_1, x_2 \in \mathbb{R}^d$$

The relation between a fixed point and the contraction property is characterized by:

Theorem 1.1 (Banach's Fixed Point Theorem)

For any equation that has the form x = f(x) where x and f(x) are real vectors, if f is a contraction mapping, than:

- 1. Existence: There exists a fixed point x^* such that $f(x^*) = x^*$.
- 2. Uniqueness: There exists a unique fixed point x^* such that $f(x^*) = x^*$.
- 3. Algorithm: For any initial point x_0 , the sequence $x_{k+1} = f(x_k)$ converges to the fixed point x^* . Moreover, the convergence rate is exponentially fast.

The proof of the theorem can be found in the book, it is based on Cauthy sequence. Then we need to show the right hand side of the BOE is a contraction mapping:

Theorem 1.2 (Contraction Property of right-hand side of BOE)

For any $V_1, V_2 \in \mathbb{R}^{|\mathcal{S}|}$, it holds that:

$$||f(V_1) - f(V_2)||_{\infty} \le \gamma ||V_1 - V_2||_{\infty}$$

where $\gamma \in (0,1)$ is the discount factor, $\|\cdot\|_{\infty}$ is the maximum norm, which is the maximum absolute value of the elements of a vector.

Proof

$$f(V_1) = \max_{\pi} (r^{\pi} + \gamma P^{\pi} V_1) = r^{\pi_1^*} + \gamma P^{\pi_1^*} V_1 \ge r^{\pi_2^*} + \gamma P^{\pi_2^*} V_1$$

$$f(V_2) = \max_{\pi} (r^{\pi} + \gamma P^{\pi} V_2) = r^{\pi_2^*} + \gamma P^{\pi_2^*} V_2 \ge r^{\pi_1^*} + \gamma P^{\pi_1^*} V_2$$

where > is elementwise comparison, as a result:

$$f(V_1) - f(V_2) = (r^{\pi_1^*} - r^{\pi_2^*}) + \gamma P^{\pi_1^*} V_1 - \gamma P^{\pi_2^*} V_2$$

$$\leq (r^{\pi_1^*} - r^{\pi_1^*}) + \gamma P^{\pi_1^*} V_1 - \gamma P^{\pi_1^*} V_2$$

$$= \gamma P^{\pi_1^*} (V_1 - V_2)$$

similarly we can get $f(V_2) - f(V_1) \le \gamma P^{\pi_2^*}(V_2 - V_1)$, so we have:

$$\gamma P^{\pi_2^*}(V_1 - V_2) \le f(V_1) - f(V_2) \le \gamma P^{\pi_1^*}(V_1 - V_2)$$

define

$$z = \max \left\{ |\gamma P^{\pi_1^*}(V_1 - V_2)|, |\gamma P^{\pi_2^*}(V_1 - V_2)| \right\} \in \mathbb{R}^{|\mathcal{S}|}$$

all the operations are elementwise, z > 0, then we have:

$$-z < \gamma P^{\pi_2^*}(V_1 - V_2) < f(V_1) - f(V_2) < \gamma P^{\pi_1^*}(V_1 - V_2) < z$$

which imlies:

$$|f(V_1) - f(V_2)| \le z$$

it then follows that:

$$||f(V_1) - f(V_2)||_{\infty} \le ||z||_{\infty} \tag{1.13}$$

suppose z_i, p_i^T, q_i^T are *i*th entry of $z, P^{\pi_1^*}, P^{\pi_2^*}$, then:

$$z_i = \max\{|\gamma p_i^T (V_1 - V_2)|, |\gamma q_i^T (V_1 - V_2)|\}$$

since p_i sums up to 1 and nonnegative, we have:

$$|p_i^T(V_1 - V_2)| \le p_i^T|V_1 - V_2| \le ||V_1 - V_2||_{\infty}$$

similarly we have $|q_i^T(V_1-V_2)| \leq ||V_1-V_2||_{\infty}$, therefore $z_i \leq \gamma ||V_1-V_2||_{\infty}$, and hence

$$||z||_{\infty} = \max_{i} |z_i| \le \gamma ||V_1 - V_2||_{\infty}$$

Substitute it back to 1.13, we have:

$$||f(V_1) - f(V_2)||_{\infty} \le \gamma ||V_1 - V_2||_{\infty}$$

Then we can use this to solve an optimal policy from the BOE. Since $V^* = \max_{\pi \in \Pi} (r^{\pi} + \gamma P^{\pi} V^*)$, so it is clearly a fixed point.

Theorem 1.3 (Existence, Uniqueness and Algorithm of Optimal Policy)

The optimal policy V^* exists and is unique, and the sequence $V_{k+1} = f(V_k)$ converges to the optimal policy V^* exponentially fast given any initial guess V_0 with the iteration algorithm:

$$V_{k+1} = f(V_k) = \max_{\pi \in \Pi} (r^{\pi} + \gamma P^{\pi} V_k)$$

The proof follows the proof of the contraction mapping theorem, and the iteration algorithm is called *Value Iteration*. Once we have the optimal value function V^* , we can get the optimal policy π^* by:

$$\pi^* = \arg\max_{\pi \in \Pi} (r^{\pi} + \gamma P^{\pi} V^*) \tag{1.14}$$

substitute this into the BOE yields $V^* = r^{\pi^*} + \gamma P^{\pi^*} V^*$, which is the optimal value function.

Theorem 1.4 (Optimality of Value Function and Policy)

The solution V^* and the policy π^* are optimal, i.e., for any other policy $\pi \in \Pi$, it holds that:

$$V^* = V^{\pi^*} \ge V^{\pi}$$

Proof

$$V^* - V^\pi = r^{\pi^*} + \gamma P^{\pi^*} V^* - r^\pi - \gamma P^\pi V^\pi \ge r^\pi + \gamma P^\pi V^* - r^\pi - \gamma P^\pi V^\pi = \gamma P^\pi (V^* - V^\pi)$$

iteratively we have $V^* - V^{\pi} \ge \lim_{n \to \infty} (\gamma P^{\pi})^n (V^* - V^{\pi}).$

Theorem 1.5 (Greedy optimal policy)

For any $s \in S$, the deterministic greedy policy:

$$\pi(a \mid s) = \begin{cases} 1, & a = a^*, \\ 0, & a \neq a^*. \end{cases}$$
 (1.15)

is an optimal policy, where $a^* = \arg \max_{a \in \mathcal{A}} Q^*(s, a)$, where

$$Q^*(s,a) = \sum_{r \in \mathcal{R}} p(r \mid s,a)r + \gamma \sum_{s'} p(s' \mid s,a)V^*(s')$$

remember that even though V^* is unique, the optimal policy may not be unique, and there always exists a greedy optimal policy.

We can talk about the impact of the reward values:

Theorem 1.6 (Optimal policy invaraince)

If every reward $r \in \mathcal{R}$ is changed by an affine transformation to $\alpha r + \beta$, where $\alpha, \beta \in \mathbb{R}$ and $\alpha > 0$, then the corresponding optimal state value V' is also an affine transformation of V^* :

$$V' = \alpha V^* + \frac{\beta}{1 - \gamma} \mathbf{1}$$

Consequently, the optimal policy derived from V' is invariant to the affine transformation of the reward values.

And with the discount factor γ , the optimal policy will not take any meaningless detour.

1.6 Value Iteration and Policy Iteration

The algorithm of *Value Iteration* is:

$$V_{k+1} = \max_{\pi \in \Pi} (r^{\pi} + \gamma P^{\pi} V_k)$$

and there are two steps in one iteration, first one is called Policy Update:

$$\pi_{k+1} = \arg\max_{\pi \in \Pi} (r^{\pi} + \gamma P^{\pi} V_k)$$

the second one is called Value Update:

$$V_{k+1} = r^{\pi_{k+1}} + \gamma P^{\pi_{k+1}} V_k$$

With the elementwise form, the policy update is (if there are same actions that takes the maximum, we can choose any of them):

$$\pi_{k+1}(s) = \arg \max_{\pi(s) \in \Pi(s)} \sum_{a \in A} \pi(a \mid s) \left(\sum_{r} p(r \mid s, a) r + \gamma \sum_{s'} p(s' \mid s, a) V_k(s') \right)$$

Then the value update is:

$$V_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi_{k+1}(a \mid s) \left(\sum_{r} p(r \mid s, a) r + \gamma \sum_{s'} p(s' \mid s, a) V_k(s') \right)$$

We can use the greedy deterministic policy, which is then:

$$V_{k+1}(s) = \max_{a} Q_k(s, a)$$

We should know that V_k is not a state value though it converges to the optimal state value, it is not ensured to satisfy the Bellman equation. So the Q_k is also not a action value, they are all intermediate values.

The algorithm of *Policy Iteration* has also two steps, first one is called *Policy Evaluation*:

$$V^{\pi_k} = r^{\pi_k} + \gamma P^{\pi_k} V^{\pi_k}$$

second one is called *Policy Improvement*:

$$\pi_{k+1} = \arg\max_{\pi \in \Pi} (r^{\pi_k} + \gamma P^{\pi_k} V^{\pi_k})$$

Here comes the first question, how to solve the policy evaluation? We can use the iterative method introduced in 1.3, and this results an iteration algorithm inside an iteration algorithm. We will not do infinite iteration here, so the V^{π_k} will not be the exact solution, would this cause problem? No, see the truncated policy iteration algorithm.

And the second question, why π_{k+1} is better than π_k ?

Lemma 1.1 (Policy Improvement)

If
$$\pi_{k+1} = \arg\max_{\pi \in \Pi} (r^{\pi_k} + \gamma P^{\pi_k} V^{\pi_k})$$
, then $V^{\pi_{k+1}}(s) \ge V^{\pi_k}(s), \forall s \in \mathcal{S}$.

Proof We know that:

$$r^{\pi_{k+1}} + \gamma P^{\pi_{k+1}} V^{\pi_{k+1}} \ge r^{\pi_k} + \gamma P^{\pi_k} V^{\pi_k}$$

 \Diamond

Then

$$V^{\pi_{k}} - V^{\pi_{k+1}} = r^{\pi_{k}} + \gamma P^{\pi_{k}} V^{\pi_{k}} - (r^{\pi_{k+1}} + \gamma P^{\pi_{k+1}} V^{\pi_{k+1}})$$

$$\leq r^{\pi_{k+1}} + \gamma P^{\pi_{k+1}} V^{\pi_{k}} - (r^{\pi_{k+1}} + \gamma P^{\pi_{k+1}} V^{\pi_{k+1}})$$

$$\leq \gamma P^{\pi_{k+1}} (V^{\pi_{k}} - V^{\pi_{k+1}})$$

again iteratively we have:

$$V^{\pi_k} - V^{\pi_{k+1}} \le \lim_{n \to \infty} (\gamma P^{\pi_{k+1}})^n (V^{\pi_k} - V^{\pi_{k+1}}) = 0$$

Theorem 1.7 (Convergence of policy iteration)

The state value sequence $\{V^{\pi_k}\}_{k=0}^{\infty}$ converges to the optimal state value V^* , and the policy sequence $\{\pi_k\}_{k=0}^{\infty}$ converges to the optimal policy π^* in policy iteration algorithm.

Proof We introduce another sequence $\{V_k\}_{k=0}^{\infty}$ generated by:

$$V_{k+1} = f(V_k) = \max_{\pi} (r^{\pi} + \gamma P^{\pi} V_k)$$

which is exactly the value iteration algorithm, and we know that $V_k \to V^*$ as $k \to \infty$. For k = 0, we can always find a V_0 such that $V_0 \le V^{\pi_0}$, then we use induction: for $k \ge 0$, if $V_k \le V^{\pi_k}$, then for k + 1:

$$\begin{split} V^{\pi_{k+1}} - V_{k+1} &= (r^{\pi_{k+1}} + \gamma P^{\pi_{k+1}} V^{\pi_{k+1}}) - \max_{\pi} \left(r^{\pi} + \gamma P^{\pi} V_{k} \right) \\ &\geq (r^{\pi_{k+1}} + \gamma P^{\pi_{k+1}} V_{k}) - \max_{\pi} \left(r^{\pi} + \gamma P^{\pi} V_{k} \right) \\ & (\text{because } V^{\pi_{k+1}} \geq V_{k} \text{ by Lemma 1.1 and } P^{\pi_{k+1}} \geq 0) \\ &= \left(r^{\pi'_{k}} + \gamma P^{\pi'_{k}} V_{k} \right) - \left(r^{\pi'_{k}} + \gamma P^{\pi'_{k}} V_{k} \right) \\ & (\text{suppose } \pi'_{k} = \arg\max_{\pi} \left(r^{\pi} + \gamma P^{\pi} V_{k} \right)) \\ &\geq \left(r^{\pi'_{k}} + \gamma P^{\pi'_{k}} V_{k} \right) - \left(r^{\pi'_{k}} + \gamma P^{\pi'_{k}} V_{k} \right) \\ & (\text{because } \pi_{k+1} = \arg\max_{\pi} \left(r^{\pi} + \gamma P^{\pi} V_{k} \right)) \\ &= \gamma P^{\pi'_{k}} \left(V_{k+1} - V_{k} \right) \geq 0 \end{split}$$

Since V_k converges to V^* , V^{π_k} is also converges to V^* .

Then the elementwise form of the policy iteration algorithm is, policy evaluation:

$$V_{(j+1)}^{\pi_k}(s) = \sum_{a \in \mathcal{A}} \pi_{k+1}(a \mid s) \Big(\sum_r p(r \mid s, a) r + \gamma \sum_{s'} p(s' \mid s, a) V_{(j)}^{\pi_k}(s') \Big)$$

and policy improvement:

$$\pi_{k+1}(s) = \arg\max_{\pi(s) \in \Pi(s)} \sum_{a \in \mathcal{A}} \pi(a \mid s) \left(\sum_{r} p(r \mid s, a) r + \gamma \sum_{s'} p(s' \mid s, a) V^{\pi_k}(s') \right)$$

Next we introduce *Truncated Policy Iteration* algorithm, which is a combination of value iteration and policy iteration. We will see that the value iteration and policy iteration algorithms are two special cases of the truncated policy iteration algorithm.

If we start from $V_0^{\pi_1} = V_0$, we get:

Figure 1.1: 3 iteration methods

Proposition 1.1 (Value Improvement)

In the policy evaluation step if the initial guess is selected as $V_{(0)}^{\pi_k} = V^{\pi_{k-1}}$, then it holds that:

$$V_{(j+1)}^{\pi_k} \ge V_{(j)}^{\pi_k}$$

Proof

$$V_{(j+1)}^{\pi_k} - V_{(j)}^{\pi_k} = \gamma P^{\pi_k} (V_{(j)}^{\pi_k} - V_{(j-1)}^{\pi_k}) = \dots = \gamma^j P^{\pi_k} (V_{(1)}^{\pi_k} - V_{(0)}^{\pi_k})$$

we have

$$V_{(1)}^{\pi_k} = r^{\pi_k} + \gamma P^{\pi_k} V^{\pi_{k-1}} \ge r^{\pi_{k-1}} + \gamma P^{\pi_{k-1}} V^{\pi_{k-1}} = V^{\pi_{k-1}} = V_{(0)}^{\pi_k}$$

where the inequality is due to $\pi_k = \arg\max_{\pi} (r^{\pi} + \gamma P^{\pi} V^{\pi_{k-1}})$, substitute $V_{(1)}^{\pi_k} \geq V_{(0)}^{\pi_k}$ into the first equation, we have $V_{(j+1)}^{\pi_k} \geq V_{(j)}^{\pi_k}$.

But we have to note that this is based on the assumption that the initial guess is $V_{(0)}^{\pi_k} = V^{\pi_{k-1}}$, and $V^{\pi_{k-1}}$ is not always available, like in the truncated policy iteration algorithm, we do not do the iteration until convergence, but only do a few steps, so the initial value is approximation. And in Deep Reinforcement Learning, we do not have the exact value function, even if we have it may not be transferable or meaningful.

1.7 Monte Carlo Method

Chapter 2 From LQR to RL

Introduction

■ LQR Problem■ iLQR and DDP

Reinforcement Learning

2.1 LQR and Value function

Given a linear model $x_{t+1} = f(x_t, u_k) = A_t x_t + B_t u_t + C_t$. We want to optimize:

$$\min_{u_1,\dots,u_T} c(x_1,u_1) + c(f(x_1,u_1),u_2) + \dots + c(f(f(\dots)),u_T)$$

where we denotes

$$c(x_t, u_t) = \frac{1}{2} \begin{bmatrix} x_t \\ u_t \end{bmatrix}^T C_t \begin{bmatrix} x_t \\ u_t \end{bmatrix} + \begin{bmatrix} x_t \\ u_t \end{bmatrix}^T c_t$$

and

$$f(x_t, u_t) = F_t \begin{bmatrix} x_t \\ u_t \end{bmatrix} + f_t$$

We first do the **Backward Recursion**, solve for u_T only, then the action value function (or the negitive cost function, here we take them with same sign) is:

$$Q(x_T, u_T) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} x_T \\ u_T \end{bmatrix}^T C_T \begin{bmatrix} x_T \\ u_T \end{bmatrix} + \begin{bmatrix} x_T \\ u_T \end{bmatrix}^T c_T$$

Get the derivative respect to u_T , which is:

$$\nabla_{u_T} Q(x_T, u_T) = C_{u_T, x_T} x_T + C_{u_T, u_T} u_T + c_{u_T}^T = 0$$

so we can get $K_T = -C_{u_T,u_T}^{-1}C_{u_T,x_T}, k_T = -C_{u_T,u_T}^{-1}c_{u_T}.$

And we get the policy (which is a linear policy): $u_T = K_T x_T + k_T$. Because u_T is fully determined by x_T , we can eliminate it via substitution:

$$V(x_T) = \mathrm{const} + \frac{1}{2} \begin{bmatrix} x_T \\ K_T x_T + k_T \end{bmatrix}^T C_T \begin{bmatrix} x_T \\ K_T x_T + k_T \end{bmatrix} + \begin{bmatrix} x_T \\ K_T x_T + k_T \end{bmatrix}^T c_T$$

Open the equation:

$$\begin{split} V(\boldsymbol{x}_T) &= \operatorname{const} + \frac{1}{2} \boldsymbol{x}_T^T \boldsymbol{V}_T \boldsymbol{x}_T + \boldsymbol{x}_T^T \boldsymbol{v}_T \\ \boldsymbol{V}_T &= \boldsymbol{C}_{\boldsymbol{x}_T, \boldsymbol{x}_T} + \boldsymbol{C}_{\boldsymbol{x}_T, \boldsymbol{u}_T} \boldsymbol{K}_T + \boldsymbol{K}_T^T \boldsymbol{C}_{\boldsymbol{u}_T, \boldsymbol{x}_T} + \boldsymbol{K}_T^T \boldsymbol{C}_{\boldsymbol{u}_T, \boldsymbol{u}_T} \boldsymbol{K}_T \\ \boldsymbol{v}_T &= \boldsymbol{c}_{\boldsymbol{x}_T} + \boldsymbol{C}_{\boldsymbol{x}_T, \boldsymbol{u}_T} \boldsymbol{k}_T + \boldsymbol{K}_T^T \boldsymbol{C}_{\boldsymbol{u}_T} + \boldsymbol{K}_T^T \boldsymbol{C}_{\boldsymbol{u}_T, \boldsymbol{u}_T} \boldsymbol{k}_T \end{split}$$

Use x_{T-1} and u_{T-1} to substitute the action value equation:

$$Q(x_{T-1}, u_{T-1}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T C_{T-1} \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T C_{T-1} + V(f(x_{T-1}, u_{T-1}))$$

And the value function of x_T can be written as

$$V(x_T) = \text{const} + \frac{1}{2} \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T V_T F_{T-1} \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T V_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T f_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T f_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T f_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T f_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T f_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T f_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T f_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T f_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T f_$$

So the action value function is:

$$Q(x_{T-1}, u_{T-1}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T Q_{T-1} \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T q_{T-1}$$

where

$$Q_{T-1} = C_{T-1} + F_{T-1}^T V_T F_{T-1}$$
$$q_{T-1} = c_{T-1} + F_{T-1}^T V_T f_{T-1} + F_{T-1}^T v_T$$

get the derivative:

$$\nabla_{u_{T-1}}Q(x_{T-1},u_{T-1}) = Q_{u_{T-1},x_{T-1}}x_{T-1} + Q_{u_{T-1},u_{T-1}}u_{T-1} + q_{u_{T-1}}^T = 0$$

where

$$u_{T-1} = K_{T-1}x_{T-1} + k_{T-1}$$

$$K_{T-1} = -Q_{u_{T-1}, u_{T-1}}^{-1}Q_{u_{T-1}, x_{T-1}}$$

$$k_{T-1} = -Q_{u_{T-1}, u_{T-1}}^{-1}q_{u_{T-1}}$$

So we can continue the substitution process to the first control u_0 , with the information of x_0 , we start a **Forward Recursion**, $u_t = K_t x_t + k_t$, $x_{t+1} = f(x_t, u_t)$ to get the future states.

We can wirte the Backward Recursion as algorithm:

Algorithm 1: Backward Pass for Value Function Computation

$$\begin{array}{lll} \mathbf{1} \ \ \mathbf{for} \ t = T \ to \ 1 \ \mathbf{do} \\ \mathbf{2} & \mathbf{Q}_t = \mathbf{C}_t + \mathbf{F}_t^T \mathbf{V}_{t+1} \mathbf{F}_t; \\ \mathbf{3} & \mathbf{q}_t = \mathbf{c}_t + \mathbf{F}_t^T \mathbf{V}_{t+1} \mathbf{f}_t + \mathbf{F}_t^T \mathbf{v}_{t+1}; \\ \mathbf{4} & Q(x_t, u_t) = \mathrm{const} + \frac{1}{2} \begin{bmatrix} x_t \\ u_t \end{bmatrix}^T \mathbf{Q}_t \begin{bmatrix} x_t \\ u_t \end{bmatrix} + \begin{bmatrix} x_t \\ u_t \end{bmatrix}^T \mathbf{q}_t; \\ \mathbf{5} & u_t \leftarrow \arg\min_{u_t} Q(x_t, u_t) = \mathbf{K}_t x_t + \mathbf{k}_t; \\ \mathbf{6} & \mathbf{K}_t = -\mathbf{Q}_{u_t, u_t}^{-1} \mathbf{Q}_{u_t, x_t}; \\ \mathbf{7} & \mathbf{k}_t = -\mathbf{Q}_{u_t, u_t}^{-1} \mathbf{Q}_{u_t}; \\ \mathbf{8} & \mathbf{V}_t = \mathbf{Q}_{x_t, x_t} + \mathbf{Q}_{x_t, u_t} \mathbf{K}_t + \mathbf{K}_t^T \mathbf{Q}_{u_t, x_t} + \mathbf{K}_t^T \mathbf{Q}_{u_t, u_t} \mathbf{K}_t; \\ \mathbf{9} & \mathbf{v}_t = \mathbf{q}_{x_t} + \mathbf{Q}_{x_t, u_t} \mathbf{k}_t + \mathbf{K}_t^T \mathbf{q}_{u_t} + \mathbf{K}_t^T \mathbf{Q}_{u_t, u_t} \mathbf{k}_t; \\ \mathbf{10} & V(x_t) = \mathrm{const} + \frac{1}{2} x_t^T \mathbf{V}_t x_t + x_t^T \mathbf{v}_t; \\ \end{array}$$

11 end

We can generalize it to stochastic case, where system dynamic with a gaussian noise (control is still deterministic), beacuse the expectation of gaussian is zero for linear and constant for quadratic cost $(\mathbb{E}[x_{t+1}^{\top}Vx_{t+1}] = (Ax_t + Bu_t)^{\top}V(Ax_t + Bu_t) + tr(VW)$, so when minimizing it is ignored).

For the nonlinear case, we linearlize it with reference point:

$$f(\mathbf{x}_{t}, \mathbf{u}_{t}) \approx f(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) + \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}} f(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \begin{bmatrix} \mathbf{x}_{t} - \hat{\mathbf{x}}_{t} \\ \mathbf{u}_{t} - \hat{\mathbf{u}}_{t} \end{bmatrix}$$

$$c(\mathbf{x}_{t}, \mathbf{u}_{t}) \approx c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) + \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}} c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \begin{bmatrix} \mathbf{x}_{t} - \hat{\mathbf{x}}_{t} \\ \mathbf{u}_{t} - \hat{\mathbf{u}}_{t} \end{bmatrix}$$

$$+ \frac{1}{2} \begin{bmatrix} \mathbf{x}_{t} - \hat{\mathbf{x}}_{t} \\ \mathbf{u}_{t} - \hat{\mathbf{u}}_{t} \end{bmatrix}^{T} \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}}^{2} c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \begin{bmatrix} \mathbf{x}_{t} - \hat{\mathbf{x}}_{t} \\ \mathbf{u}_{t} - \hat{\mathbf{u}}_{t} \end{bmatrix}$$

and use

$$\bar{f}(\delta \mathbf{x}_t, \delta \mathbf{u}_t) = \mathbf{F}_t \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix}, \, \bar{c}(\delta \mathbf{x}_t, \delta \mathbf{u}_t) = \frac{1}{2} \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix}^T \mathbf{C}_t \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix}^T \mathbf{c}_t$$

Now we can run LQR with it, this is called *iLQR*, we get $u_t = K_t(x_t - \hat{x}_t) + k_t + \hat{u}_t$, this is an approximation of Newton's method for solving the entire cost function over the horizon. And if we linearlize the dynamic with second order information:

$$f(\mathbf{x}_t, \mathbf{u}_t) \approx f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) + \nabla_{\mathbf{x}_t, \mathbf{u}_t} f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix} + \frac{1}{2} \left(\nabla_{\mathbf{x}_t, \mathbf{u}_t}^2 f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix} \right) \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix}$$

it is called **DDP**.