О применимости эмпирического соотношения Варшни для температурной зависимости ширины запрещенной зоны

© И.А. Вайнштейн, А.Ф. Зацепин, В.С. Кортов

Уральский государственный технический университет, 620002 Екатеринбург, Россия

E-mail: zats@dpt.ustu.ru

(Поступила в Редакцию 9 июля 1998 г. В окончательной редакции 27 октября 1998 г.)

Выполнено сравнение соотношений, используемых для описания температурной зависимости ширины запрещенной зоны в кристаллах. Показано, что при $kT\gg\hbar\omega$ известное соотношение Варшни может быть получено из неэмпирического выражения Фэна, в явном виде учитывающего статистику фононов. В диапазоне, где высокотемпературное условие не соблюдается, для ряда материалов рассчитаны величины температурного коэффициента β ширины запрещенной зоны. Установлено, что соотношение Варшни дает завышенные значения β , тогда как результаты расчета по выражению Фэна соглауются с экспериментом.

Важно характеристикой энергетической структуры твердых тел является температурный коэффициент etaширины запрещенной зоны E_{ρ} , который для большинства материалов имеет отрицательное значение [1]. личину $\beta = dE_g/dT$ определяют обычно по наклону линейной части температурной зависимости $E_g(T)$, которая, однако, в области низких температур носит существенно нелинейный характер [2]. В настоящее время для описания $E_{\mathfrak{g}}(T)$ распространены различные эмпирические и полуэмпирические методы, которые на качественном уровне удовлетворительно воспроизводят форму наблюдаемых зависимостей [3-6]. Как правило, подобные расчеты не несут количественной информации о физических величинах, например, энергии фононов, хотя не вызывает сомнений, что электронно-колебательные взаимодействия в значительно степени влияют на $E_{g}(T)$. Основная цель настоящей работы — сравнить применимость эмпирического соотношения Варшни [5] и аналитического выражения Фэна [7], учитывающего в явном виде статистику фононной подсистемы кристалла, для аппроксимации экспериментальных зависимостей $E_{g}(T)$, а также показать наличие взаимосвязи между этими выражениями.

Линейно-квадратичное соотношение, предложенное Варшни [5] и получившее широкое распространение для описания зависимостей $E_{\rm g}(T)$ имеет вид

$$E_g(T) = E_g(0) - \frac{\alpha_1 T^2}{\alpha_2 + T},$$
 (1)

где $E_g(0)$ — ширина запрещенной зоны при нулевой температуре, α_1 и α_2 — эмпирические параметры, не имеющие конкретного физического смысла. Для константы α_2 , имеющей размерность $[\alpha_2]=[T]$, принимают, что она близка по величине к температуре Дебая [5,6]. В пределе высоких температур, когда $T\gg\alpha_2$, из (1) следует, что $\alpha_1\approx\beta$. В ряде случаев коэффициенты α_1 и α_2 получаются отрицательными [3,5], что вообще затрудняет физическую интерпретацию регистрируемых зависимостей. Тем не менее, несмотря на ограниченное

количество извлекаемой информации, выражение (1) вполне удовлетворительно описывает экспериментально наблюдаемую форму температурной характеристики $E_g(T)$, что проверено на большом числе различных объектов [3,5,6,8].

Вместе с тем, в рамках однофононного приближения и теории возмущения второго порядка температурная зависимость ширины запрещенной зоны может быть представлена как [7,9,10]

$$E_{g}(t) = E_{g}(0) - A(\langle n \rangle + \text{const}), \tag{2}$$

здесь A — параметр Фэна, зависящий от микроскопических свойств материала [11]; $\langle n \rangle = [\exp(\hbar \omega/kT)-1]^{-1}$ — фактор Бозе–Эйнштейна для фононов с энергией $\hbar \omega$; сопѕt — постоянная, влияющая на величину E_g при нулевой температуре. В теории уширения электронных уровней conѕt =0 [9], при учете смещения энергетических уровней conѕt =1 [7], в рамках учета экситон-фононного взаимодействия получено выражение вида (2) с conѕt =1/2 [10]. Полагая, что температура в правой части (2) содержится только в фононной статистике, можно варьировать $E_g(0)$ и A как температурнонезависимые параметры. Тогда при расчете энергии фононов значение conѕt не влияет на конечный результат, и поэтому в дальнейшем будем считать conѕt =0.

Следует заметить, что выражение (2) не учитывает в явном виде вклада теплового расширения решетки. Как показано в [5,12], этот вклад в общее температурное изменение ширины запрещенной зоны составляет величину порядка 20% и в первом приближении им можно пренебречь. Кроме того, можно считать, что при больших температурах вклад теплового расширения в

¹ В отличие от уширения уровней, когда учитываются реальные электронные переходы, сохраняющие энергию и волновой вектор, при вычислении смещения энергетических уровней рассматриваются виртуальные переходы с обязательным сохранением только волнового вектора. Это обстоятельство оказывается особенно существенным при взаимодействии с акустическими колебаниями, когда матричный элемент перехода пропорционален волновому вектору фонона [11].

величину сдвига энергетических уровней также будет пропорционален $\langle n \rangle$ [12]. В этом случае значение параметра A, получаемое в расчетах, учитывает как внутренний (электрон-фононное взаимодействие), так и внешний (термическое расширение) вклады в зависимость $E_g(T)$.

Зависимость, аналогичная (2), в которой изменение ширины запрещенной зоны пропорционально числу заполнения фононных состояний, может быть записана в виде [13]

$$E_{g}(T) = E_{g}(0) - D\left(\langle u^{2} \rangle_{T} - \langle u^{2} \rangle_{0}\right), \tag{3}$$

где D — константа деформационного потенциала второго порядка, $\langle u^2 \rangle_T$ — среднеквадратичное смещение атомов решетки из положения равновесия при температуре T, $\langle u^2 \rangle_0$ — среднеквадратичное смещение при нулевых колебаниях. Выражая $\langle u^2 \rangle_T$ в рамках однофононной модели с использованием статистики Бозе—Эйнштейна, для осциллятора с массой M можно установить связь между параметром Фэна A и константой D

$$A = \frac{\hbar}{\omega M} D. \tag{4}$$

Отметим, что из (2) видно, что параметр A имеет размерность энергии и совпадает по величине с изменением ширины запрещенной зоны при температуре, когда среднее число фононов, ответственных за смещение энергетических уровней краев зон, равно единице. Микроскопическое выражение для параметра Φ эна было записано в работе [11]

$$A = \frac{e^2}{\sqrt{2}\hbar} (m_0 \hbar \omega)^{1/2}$$

$$\times \frac{1}{4\pi\varepsilon} \left(\frac{1}{\varepsilon_\infty} - \frac{1}{\varepsilon_0} \right) \left[\left(\frac{m_c}{m_0} \right)^{1/2} + \left(\frac{m_h}{m_0} \right)^{1/2} \right], \quad (5)$$

здесь e — заряд электрона, ε — диэлектрическая постоянная; ε_0 и ε_∞ — соответственно статическая и высокочастотная диэлектрические проницаемости; m_0 — масса свободного электрона; m_e и m_h — эффективные массы электрона и дырки соответственно. Выражение (5), в котором все величины являются табличными, можно использовать для оценки параметра Фэна в отсутствие экспериментальных данных о зависимости $E_g(T)$.

Для сравнения применимости соотношений (1) и (2) при описании зависимостей $E_g(T)$ на рис. 1 приведены примеры аппроксимации экспериментальных данных для кремния и селенида цинка. В качестве критерия точности воспроизведения формы наблюдаемых зависимостей использован средний квадрат ошибки

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} \left(E_{g_i}^{\text{exp}} - E_{g_i}^{\text{calc}} \right)^2,$$

где индексы "exp" и "calc" обозначают соответственно экспериментальное и расчетное значения E_g . Из табл. 1

Рис. 1. Температурные зависимости $E_g(T)$ для кремния и селенида цинка. Точки — эксперимент, Si [5] и ZnSe [8]; штриховая линия — аппроксимация по соотношению Варшни (1); сплошная линия — аппроксимация по выражению Фэна (2).

хорошо видно, что как для вышеуказанных, так и для всех других материалов величины погрешностей соизмеримы, и выражения (1) и (2) описывают экспериментальные данные с высокой степенью точности.

Кроме того, в табл. 1 для ряда веществ представлены взятые из оригинальных работ значения коэффициентов Варшни (α_1 и α_2) и значения параметра Фэна (A), рассчитанные нами по выражениям (2) и (5), а также значения A, полученные в работах [14–16], в том числе и для аморфных модификаций некоторых материалов. В качестве энергии фононов при выполнении расчетов по формуле (5) были взяты энергии продольных оптических колебаний ([1] и ссылки в нем). Из табл. 1 видно, что для ряда материалов расчетные значения параметров Фэна, полученные с использованием (5), близки к значениям, определяемым из выражения (2) при аппроксимации экспериментальных данных.

Дифференцируя (2) в пределе высоких температур $kT \gg \hbar \omega$, получаем следующее выражение для темпе-

Вещество	Коэффициенты Вар	Параметр	Фэна A , eV	σ^2 , (6	Источник		
Бещество	$\alpha_1, 10^{-4} \text{eV} \cdot \text{K}^{-1}$	α ₂ , K	(2)**	(5)	(1)	(2)	ИСТОЧНИК
Алмаз	-1.979	-1437	_				[5]
	_	_	0.740^{*}	_	_	_	[16]
Si	7.021	1108	0.225	0.000	$3.0 \cdot 10^{-6}$	$5.1 \cdot 10^{-6}$	[5]
	_	_	0.100^{*}	0.090	_	_	[16]
Ge	4.561	210	0.082	0.002	$1.4 \cdot 10^{-6}$	$6.6 \cdot 10^{-7}$	[5]
	_	_	0.095*	0.082	_	_	[16]
6 <i>H</i> ⋅SiC	-0.3055	-311	0.189	_	$1.5\cdot 10^{-6}$	$3.0 \cdot 10^{-7}$	[6]
ZnSe	5.780	175	0.049	0.031	$1.2 \cdot 10^{-6}$	$1.0 \cdot 10^{-6}$	[8]
As_2S_3	_	_	1.00*	_	_	_	[14]
GaP	6.860	576	0.377	0.037	$7.6 \cdot 10^{-5}$	$1.1 \cdot 10^{-4}$	[6]
GaAs	8.871	572	0.171	0.020	$5.8 \cdot 10^{-5}$	$9.6 \cdot 10^{-6}$	[6]
InP	4.906	327	0.050	0.045	$6.8 \cdot 10^{-8}$	$3.1 \cdot 10^{-11}$	[6]
InAs	3.158	93	0.044	0.020	$4.5 \cdot 10^{-6}$	$4.1 \cdot 10^{-7}$	[6]
a -Si: H_x	_	_	0.220*	_	_	_	[16]
a -Ge: H_x	_	_	0.096*	_	_	_	[16]
a-As ₂ S ₃	_	_	1.00*	_	_	_	[15]

Таблица 1. Параметры выражений Варшни (1) и Фэна (2)

Примечание. *Значения взяты из литературы. ** Рассчитано по данным оригинальных работ.

Таблица 2. Значения физических величин, рассчитанные по выражениям Варшни (1) и Фэна (2)

Вещество	$\hbar\omega$, meV			$\beta, 1 \cdot 10^{-4} \text{eV} \cdot \text{K}^{-1}$			$E_g(0)$, eV			Источник
Вещество	(7)*	(2)**	эксп. [1]	(1)	(6)	эксп. [1]	(1)*	(2)**	эксп. [1]	FICTOTHIK
Алмаз	(-248) -	_ 117	165	(-1.979) -	-	1.2	5.41 —	_	5.41	[5] [16]
Si	191 —	48 30*	063	7.02 —	4.05 2.87	2.8	1.155 —	1.150 1.169*	1.17	[5] [16]
Ge	36 -	18 20*	37	4.56 —	3.84 4.09	3.7	0.741 —	0.739 —	0.744	[5] [16]
6 <i>H</i> ⋅SiC	(-54)	50	89	(-0.31)	3.35	3.8	3.023	3.023	2.86	[6]
ZnSe	30	11	31	5.78	4.04	4.50	2.81	2.81	2.80	[8]
As_2S_3	_	46*	50	_	18.7	7.0	_	2.77*	2.60	[14]
GaP	99	55	49	6.86	5.91	5.5	2.330	2.321	2.35	[6]
GaAs	99	28	36	8.87	5.18	5.0	1.521	1.518	1.52	[6]
InP	56	14	43	4.91	3.09	2.9	1.421	1.421	1.42	[6] [6] [6]
InAs	16	13	30	3.16	2.95	2.2	0.425	0.425	0.410	[6]
a -Si: H_x	_	34*	79	_	5.57	_	_	_	_	[16]
a -Ge: H_x	_	17*	_	_	4.86	4.5	_	1.045^{*}	_	[16]
a-As ₂ S ₃	_	45*	_		16.0	_	_	2.42*	_	[15]

Пр и ме ч а н и е . * и ** аналогичны табл. 1. Экспериментальные значения $\hbar\omega$, β и $E_g(0)$ для всех других веществ взяты из [1].

ратурного коэффициента ширины запрещенной зоны:

$$\beta = A \frac{k}{\hbar \omega}.\tag{6}$$

Покажем взаимосвязь между соотношением Варшни (1) и выражением Фэна (2). Раскладывая в ряд правую часть (2) в пределе $kT \gg \hbar \omega$ до квадратичных членов по температуре, получаем выражение, тождественное (1),

со следующими коэффициентами:

$$\alpha_1 = A \frac{k}{\hbar \omega}, \quad \alpha_2 = \frac{\hbar \omega}{kT}; \quad A = 2\alpha_1 \alpha_2.$$
 (7)

Следовательно, при соблюдении условия $T\gg 2\alpha_2$ коэффициенты Варшни α_1 и α_2 должны содержать информацию об эффективной энергии фононов.

В табл. 2 представлены значения $\hbar\omega$, рассчитанные на основании (7) и с использованием выражения (2).

Рис. 2. Зависимости $E_g(T)$ для германия и фосфида индия, экстраполированные в область высоких температур. Точки — эксперимент, Ge [5] и InP [6]; штриховая линия — расчет по соотношению Варшни (1); сплошная линия — расчет по выражению Фэна (2).

Однако для большинства материалов указанные величины не совпадают, поскольку температуры реальных экспериментов не удовлетворяют высокотемпературному условию. Исключение составляет лишь InAs, для которого значения $\hbar\omega$ близки (16 meV по выражению (7) и 13 meV по выражению (2)). Учитывая, что в данном случае значение $\alpha_2=93\,\mathrm{K}$ соответствует диапазону температур 20–300 K эксперимента, можно считать, что условие $T\gg 2\alpha_2$ (186 K) для арсенида индия вполне удовлетворяется.

Другими словами, в области температур, когда условие $kT\gg\hbar\omega$ не выполняется, а выражения (1) и (2) становятся математически неэквивалентными, интерпретация коэффициентов Варшни на основании (7) некорректна. Более того реализация отрицательных значений α_1 и α_2 вообще не имеет физического смысла. В подобных случаях предпочтительным следует считать выражение (2), которое при описании зависимости $E_g(T)$ для конкретного объекта дает информацию об энергии эффективных фононов.

Типичная ситуация, когда температура реального эксперимента не удовлетворяет описанному высокотемпературному пределу, проиллюстрирована на примере германия и фосфида индия (рис. 2). Характерно, что кривые аппроксимаций по выражениям (1) и (2) хорошо описывают экспериментальные точки (см. значения σ^2 в табл. 1), но значительно расходятся при экстраполяции в область высоких температур. Такое явное расхождение приводит к различиям в оценке температурного коэффициента ширины запрещенной зоны. Значения β , получаемые на основании выражений Варшни и Фэна, в сравнении со справочными данными [1]приведены в Практически для всех объектов результаты оценки по Фэну находятся в лучшем согласии с экспериментом, а оценка по соотношению Варшни дает завышенные значения β . На рис. 2 хорошо видно, что высокотемпературные линейные участки кривых Варшни имеют больший наклон по сравнению с линейными участками кривых Фэна.

На основании сравнения значений физических величин, извлекаемые из параметров Варшни и Фэна с соответствующими экспериментальными данными (табл. 2) следует, что во многих случаях выражение (2) дает наиболее удовлетворительные значения для энергии эффективных фононов и температурного коэффициента ширины запрещенной зоны. Более того, при использовании выражения (2) полностью отсутствуют физически бессмысленные результаты. Интересно также отметить (см. табл. 1 и 2), что выражение Фэна (2) оказывается вполне применимым и для анализа зависимости $E_g(T)$ в аморфных материалах, где вследствие структурного беспорядка края энергетических зон размыты и имеются протяженные хвосты плотности состояний.

Таким образом, выражение (2) для $E_g(T)$, получаемое в рамках однофононного приближения, в области температур $kT\gg\hbar\omega$ принимает асимптотический вид хорошо известного эмпирического соотношения Варшни (1). При этом на основании значений коэффициентов Варшни в принципе можно оценить эффективную энергию фононов, ответственных за сдвиг граничных уровней энергетических зон. Однако, когда условие $kT\gg\hbar\omega$ не выполняется, использование выражения Фэна (2) позволяет не только с той же степенью точности воспроизводить форму наблюдаемых зависимостей, но и в отличие от соотношения Варшни (1) получать достоверную количественную информацию об энергии фононов и температурном коэффициенте ширины запрещенной зоны.

Список литературы

- [1] Физические величины. Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. Энергоатомиздат, М. (1991). 1232 с.
- [2] Н. Ашкрофт, Н. Мермин. Физика твердого тела. Т. 2. Мир, М. (1979). 422 с.

- [3] Ж. Панков. Оптические процессы в полупроводниках. Мир, М. (1973). 257 с.
- [4] К.В. Шалимова. Физика полупроводников. Энергия, М. (1976). 416 с.
- [5] Y.P. Varshni. Physica 34, 149 (1967).
- [6] N.M. Ravindra, V.K. Srivastava. J. Phys. Chem. Solids 40, 791 (1979).
- [7] H.Y. Fan. Phys. Rev. 82, 6, 900 (1951).
- [8] R.C. Tu, Y.K. Su, C.F. Li, Y.S. Huang, S.T. Chou, W.H. Lan, S.L. Tu, H. Chang. J. Appl. Phys. 83, 3, 1664 (1998).
- [9] A. Radkowsky. Phys. Rev. 73, 749 (1948).
- [10] А.С. Давыдов. Теория поглощения света в молекулярных кристаллах. Изд-во АН УССР, Киев (1951). 320 с.
- [11] Г. Фэн. Фотон-электронное взаимодействие в кристаллах в отсутствие внешних полей. Мир, М. (1969). 127 с.
- [12] T. Skettrup. Phys. Rev. **B18**, 6, 2622 (1978).
- [13] P.B. Allen, M. Cardona. Phys. Rev. B23, 4, 1495 (1981); B24, 7479 (1981).
- [14] J.N. Zakis, H. Fritzsche. Phys. Stat. Sol. (b) 64, 123 (1974).
- [15] Ю.Р. Закис, А.В. Москальонов. Уч. зап. ЛГУ **231**, *3*, 61 (1975).
- [16] G.D. Cody. The optical absorption edge of a-Si:H. In: Hydrogenated Amorphous Silicon. Part B/ Ed. by J. Pankove. Academic Press Inc. N.Y. (1984). P. 11.