内容集锦: 讨论班、课程讲义

张浩

中国科学院大学

目录

1	Wit	tt rings and NK-groups	3
	1.1	Typical Witt rings	3
	1.2	Big Witt rings	3
	1.3	Module structure on NK_*	3
		1.3.1 $\operatorname{End}_0(\Lambda)$	4

Chapter 1

Witt rings and NK-groups

References:

- C. A. Weibel, Mayer-Vietoris sequences and module structures on NK_* , pp. 466–493 in Lecture Notes in Math. 854, Springer-Verlag, 1981.
- D. R. Grayson, Grothendieck rings and witt vectors.
- C. A. Weibel, The K-Book: An Introduction to Algebraic K-theory.

1.1 Typical Witt rings

1.2 Big Witt rings

1.3 Module structure on NK_*

Notations Λ : a ring with 1

R: commutative ring

W(R): Witt ring of R

 $\mathbf{End}(\Lambda)$: the exact category of endomorphisms of finitely generated projective right Λ modules.

 $Nil(\Lambda)$: the full exact subcategory of nilpotent endomorphisms.

 $\mathbf{P}(\Lambda)$: the exact category of finitely generated projective right Λ -modules.

Goals:

- Define the $\operatorname{End}_0(R)$ -module structure on $NK_*(\Lambda)$
- (Stienstra's observation) this can extend to a W(R)-module structure.

• Computations in W(R) with Grothendieck rings.

1.3.1 End₀(Λ)

Let $\mathbf{End}(\Lambda)$ denote the exact category of endomorphisms of finitely generated projective right Λ -modules.

Objects: pairs (M, f) with M finitely generated projective and $f \in \text{End}(M)$.

Morphisms: $(M_1, f_1) \xrightarrow{\alpha} (M_2, f_2)$ with $f_2 \circ \alpha = \alpha \circ f_1$, i.e. such α make the following diagram commutes

$$\begin{array}{ccc} M_1 & \xrightarrow{f_1} & M_1 \\ \downarrow^{\alpha} & & \downarrow^{\alpha} \\ M_2 & \xrightarrow{f_2} & M_2 \end{array}$$

There are two interesting subcategories of $\mathbf{End}(\Lambda)$ —

 $Nil(\Lambda)$: the full exact subcategory of nilpotent endomorphisms.

 $\mathbf{P}(\Lambda)$: the exact category of finitely generated projective right Λ -modules. (Remark: the reflective subcategory of zero endomorphisms is naturally equivalent to $\mathbf{P}(\Lambda)$. Note that a full subcategory $i \colon \mathscr{C} \longrightarrow \mathscr{D}$ is called reflective if the inclusion functor i has a left adjoint $T, (T \dashv i) \colon \mathscr{C} \rightleftharpoons \mathscr{D}$.)

Since inclusions are split and all the functors below are exact, they induce homomorphisms between K-groups

$$\mathbf{P}(\Lambda) \rightleftarrows \mathbf{Nil}(\Lambda)$$
 $\mathbf{P}(\Lambda) \rightleftarrows \mathbf{End}(\Lambda)$
 $M \mapsto (M,0)$
 $M \longleftrightarrow (M,f)$

Definition 1.1.
$$K_n(\mathbf{End}(\Lambda)) = K_n(\Lambda) \oplus \operatorname{End}_n(\Lambda), K_n(\mathbf{Nil}(\Lambda)) = K_n(\Lambda) \oplus \operatorname{Nil}_n(\Lambda)$$

Now suppose Λ is an R-algebra for some commutative ring R, then there are exact pairings (i.e. bifunctors):

$$\otimes : \mathbf{End}(R) \times \mathbf{End}(\Lambda) \longrightarrow \mathbf{End}(\Lambda)$$

 $\otimes : \mathbf{End}(R) \times \mathbf{Nil}(\Lambda) \longrightarrow \mathbf{Nil}(\Lambda)$
 $(M, f) \otimes (N, q) = (M \otimes_R N, f \otimes q)$

These induce (use "generators-and-relations" tricks on K_0)

$$K_0(\mathbf{End}(R)) \otimes K_*(\mathbf{End}(\Lambda)) \longrightarrow K_*(\mathbf{End}(\Lambda))$$

 $K_0(\mathbf{End}(R)) \otimes K_*(\mathbf{Nil}(\Lambda)) \longrightarrow K_*(\mathbf{Nil}(\Lambda))$

 $[(0,0)],[(R,1)] \in K_0(\mathbf{End}(R))$ act as the zero and identity maps.

I think we can fix an element $(M, f) \in \mathbf{End}(R)$, then $(M, f) \otimes$ induces an endofunctor of $\mathbf{End}(\Lambda)$. We can get endomorphisms of K-groups, then we check that this does not depent on the isomorphism classes and the bilinear property. (Can also see Weibel The K-book chapter 2, chapter 3 Cor 1.6.1, Ex 5.4, chapter 4 Ex 1.14.)

If we take $R = \Lambda$, we see that $K_0(\mathbf{End}(R))$ is a commutative ring with unit [(R, 1)]. $K_0(R)$ is an ideal, generated by the idempotent [(R, 0)], and the quotient ring is $\mathrm{End}_0(R)$. Since $(R, 0) \otimes \mathrm{reflects} \ \mathbf{End}(\Lambda)$ into $\mathbf{P}(\Lambda)$,

$$i : \mathbf{P}(\Lambda) \longrightarrow \mathbf{End}(\Lambda); \quad (R,0) \otimes : \mathbf{End}(\Lambda) \longrightarrow \mathbf{P}(\Lambda)$$

 $K_0(R)$ acts as zero on $\operatorname{End}_*(\Lambda)$ and $\operatorname{Nil}_*(\Lambda)$. The following is immediate (and well-known):

Proposition 1.2. If Λ is an R-algebra with 1, $\operatorname{End}_*(\Lambda)$ and $\operatorname{Nil}_*(\Lambda)$ are graded modules over the ring $\operatorname{End}_0(R)$.

Now we focus on * = 0 and $\Lambda = R$:

The inclusion of $\mathbf{P}(R)$ in $\mathbf{End}(R)$ by f=0 is split by the forgetful functor, and the kernel $\mathrm{End}_0(R)$ of $K_0\mathbf{End}(R) \longrightarrow K_0(R)$ is not only an ideal but a commutative ring with unit 1 = [(R,1)] - [(R,0)].

Theorem 1.3 (Almkvist). The homomorphism (in fact it is a ring homomorphism)

$$\chi \colon \operatorname{End}_0(R) \longrightarrow W(R) = (1 + TR[[T]])^{\times}$$

 $(M, f) \mapsto \det(1 - fT)$

is injective and $\operatorname{End}_0(R) \cong \operatorname{Im} \chi = \left\{ \frac{g(T)}{h(T)} \in W(R) \mid g(T), h(T) \in 1 + TR[T] \right\}$

The map χ (taking characteristic polynomial) is well-diffined, and we have

$$\chi([(R,0)]) = 1, \quad \chi([(R,1)]) = 1 - T$$

 χ is a ring homomorphism, and $\text{Im}\chi = \text{the set of all rational functions in } W(R)$.

Definition 1.4 (NK_*) . s above, we define $NK_n(\Lambda) = \ker(K_n(\Lambda[y]) \longrightarrow K_n(\Lambda))$. Grayson proved that $NK_n(\Lambda) \cong \operatorname{Nil}_{n-1}(\Lambda)$ in "Higher algebraic K-theory II".