Understanding Intersection Over Union

Selecting Bounding Box

Selecting Bounding Box

Which Bounding Box is more accurate? Box 1 Box 2

Predicted Bounding Boxes

Bounding Box Intersection

Which Bounding Box is more accurate?

Predicted Bounding Boxes

Bounding Box Intersection

Which Bounding Box is more accurate?

Area of Intersection = 70%

Predicted Bounding Boxes

Bounding Box Intersection

Which Bounding Box is more accurate?

Area of Intersection = 20%

Predicted Bounding Boxes

Problem with Bounding Box Intersection

Area of Intersection = 100%

Area of Intersection = 70%

Which Bounding Box is more accurate?

IoU = Area of Intersection

Area of Union

Predicted Bounding Boxes

Range of Intersection over Union (IoU)

Range of Intersection over Union (IoU)

Prepare Train Data for Naive Approach

filename	patch	xmin	xmax	ymin	ymax	WBC (1/0)
1.jpg	1	0	320	0	240	0
1.jpg	2	320	640	0	240	1
1.jpg	3	0	320	240	480	0
1.jpg	4	320	640	240	480	0

Calculating IoU

IOU > 0.5

filename	patch	xmin	xmax	ymin	ymax	WBC (1/0)
1.jpg	1	0	320	0	240	0
1.jpg	2	320	640	0	240	1
1.jpg	3	0	320	240	480	0
1.jpg	4	320	640	240	480	0

- IoU can be used Can be used -
 - For selecting the best bounding box
 - As an Evaluation Metric

Original Bounding Box

Predicted Bounding Boxes

Which Bounding Box is more accurate?

Predicted Bounding Boxes

Which Bounding Box is more accurate?

Predicted Bounding Boxes

Which Bounding Box is more accurate?

Area of Intersection = 70%

Predicted Bounding Box 1

Which Bounding Box is more accurate?

Area of Intersection = 20%

Predicted Bounding Box 2

Predicted Bounding Box 3

Predicted Bounding Box 1

Which Bounding Box is more accurate?

IoU = Area of Intersection

Predicted Bounding Boxes

Which Bounding Box is more accurate?

IoU = Area of Intersection
Area of Union

Predicted Bounding Boxes

True Positive

Actual class and predicted class

False Positive

Object not present in the bounding tox
Analytics Vidhya