AD-766 145

HARPOON EXPENDABLE TURBOJET MODEL XJ401-GA-400

Alvin R. Finkelstein

AiResearch Manufacturing Company of Arizona

Prepared for:

Naval Air Systems Command

25 April 1973

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

Best Available Copy

HARPOON EXPENDABLE TURBOJET MODEL XJ401 GA-400 PHASE II FINAL TEST REPORT AND FINAL REPORT

(30 June 1971 to 13 April 1973) April 1973

Prepared under Contract N00019-71-C-0358

for

Naval Air Systems Command

Department of the Navy

. by

AiResearch Manufacturing Company of Arizona A Division of The Garrett Corporation Phoenix, Arizona

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
ITS Department of Commerce
Springfall (7.8.2315)

	TROL DATA - R & D
AIRESEARCH MANUFACTURING COMPANY O 402 SOUTH 36TH STREET PHOENIX, ARIZONA 85034	F ARIZONA PARIZONA UNCLASSIFIED 2b. GROUP
HARPOON EXPENDABLE TURB MODEL XJ401-GA-400 PHASE II FINAL TEST REP AND FINAL REPORT	
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) FINAL REPORT - DATED 25 5. AUTHOR(5) (First name, middle initial, last name) ALVIN R. FINKELSTEIN	APRIL 1973
25 APRIL 1973	76. TOTAL NO. OF PAGES 75. NO. OF REFS
N00019-71-C-0358 PROJECT NO. NAME OF THE NAVY	73-210057
c. d.	96. OTHER REPORT NO(8) (Any other numbers that may be assigned this report) None
DISTRIBUTION OF THIS DOCUMENT IS U	NLIMITED.
Details of illustrations in this document may be better studied on microfiche.	NAVAL AIR SYSTEMS COMMAND DEPARTMENT OF THE NAVY WASHINGTON, D.C. 20360
13. ABSTRACT	

THIS REPORT CONTAINS A SUMMARY OF THE ACTIVITIES OF THE HARPOON PHASE II ENGINE PROGRAM. (U)

DD FORM .. 1473

UNCLASSIFIED
Security Classification

UNCLASSIFIED

KEY WORDS	LIN	KA	LIN	INK B LINE		4K E	
NET WORDS	ROLE	WT	ROLE	WT	ROLE	WT	
HARPOON (CODE NAME)							
	=						
				, i			
				ļ į			
		1					
		1					
					l h		
	i					2	
				• •			
			}		ļ		

ia

UNCLASSIFIED
Security Classification

TABLE OF CONTENTS

					Page
1.0	INTR	ODUCTIO	N		1
2.0	SUMM	ARY			2
3.0	ENGI	NE DEVE	LOPMENT		6
			Design a II Final	t Start of Phase II Design	6 9
		3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.2.8 3.2.9 3.2.10 3.2.11 3.2.12	Starting Fuel Con	r System , Seals and Lubrication and Ignition trol al System System	9 11 14 14 19 19 24 30 32 36 39 39
4.0	TEST	RESULT	S		44
			unnel Tes 972 IFRT		44 45
			Test Req		45 46
			4.2.2.3	Starts Operating Performance Endurance	48 48 48 51
	4.4	Endura	e Flight once Tests	Tests mponent Tests	52 53 53
			Vibratio Electrom	n agnetic Interference (EMI)	53 66
				Test Summary Test Setup Test Results	66 66

TABLE OF CONTENTS (CONTD)

			Page
	4.6	Investigation of Facility Inlet Temperature Stratification	84
	4.7	Engine Rear Thrust Bearing Operating Life Extension	89
		4.7.1 Lubrication Evaluation Tests	94
		4.7.1.1 Low Temperature 4.7.1.2 High Temperature	94
		4.7.2 Engine Testing	95
	4.8	Preliminary IFRT	96
		4.8.1 Engine Serial No. 3301 4.8.2 Engine Serial No. 3302 4.8.3 Engine Serial No. 3310	96 105 105
	4.9	Diffuser-Combustor Improvement Program	105
5.0	INIT	CIAL FLIGHT RATING TEST (IFRT)	111
		Purpose Summary	11 111
		5.2.1 Abstract 5.2.2 Conclusions 5.2.3 Recommendations	111 113 113
		References Engine Description	114 114
		5.4.1 Test Engine Identification	116
	5.5	Facility Description	116
		5.5.1 Test Setup 5.5.2 Engine Installation 5.5.3 Instrumentation	116 121 123
		Test Procedure Test Results	130 131
		5.7.1 IFRT Engine No. 1	131

TABLE OF CONTENTS (CONTD)

					Page
			5.7.1.1	Green Run	131
			5.7.1.2	Acceptance Test	133
			5.7.1.3	Low-Temperature Soak	133
				Altitude Start	134
				Inlet Distortion Operation	134
				Design-Point Operation	136
			5.7.1.7	Disassembly and Inspection	136
		5.7.2	IFRT Eng	rine No. 2	137
			5.7.2.1	Green Run	137
			5.7.2.2	Acceptance Test	148
				Handling and Maneuver Loads Test	149
			5.7.2.4		149
				Altitude Start	153
				Design-Point Operation	153
				Disassembly and Inspection	154
		5.7.3	Vibratio	n Survey	159
	5.8	Supple	mental IF	RT Data	166
		5.8.1	Circumfe	rential Distortion Index (CDI)	166
		5.8.2	Non-Oper	ation of Ignitors	166
				earing Temperature Slope	169
		5.8.4	Exhaust-	Nozzle Effective Area Change	169
6.0	DOCU	MENTS A	ND DATA		176
	6.1	Test I	tem Defin	ition	176
	6.2	Facili	ties and	Instrumentation	191
				Reinspection Records	200
				Sheets, and Recorder Traces	217

LIST OF TABLES

TABLE	TITLE	PAGE
I	SUMMARY OF BACK-TO-BACK RIG TEST RESULTS	26
II	CUSTOMER CONNECTIONS	41
III	PERFORMANCE RATING AT SEA-LEVEL CONDITIONS	43
IV	PERFORMANCE RATING AT SEA-LEVEL ALTITUDE, 90°F AMBIENT CONDITION	43
V	JUNE IFRT REQUIREMENTS	45
VI	JUNE 1972 IFRT RESULTS	47
VII	CARTRIDGE STARTS	49
VIII	ACCEPTANCE TEST PERFORMANCE	50
IX	ENDURANCE TESTS	54
X	EMI TEST SUMMARY	67
XI	COMPRESSOR INLET TEMPERATURE VARIATION	87
XII	COMPRESSOR INLET TEMPERATURE VARIATIONS AFTER FACILITY MODIFICATION	87
XIII	COMPRESSOR INLET TEMPERATURE VARIATIONS FOLLOWING MODIFICATIONS TO PROCEDURE	88
XIV	ACCEPTANCE TEST PERFORMANCE	112
xv	IFRT TEST PERFORMANCE	113
XVI	EXPERIMENTAL VERIFICATION OF THE PERFORMANCE EFFECTS OF EXHAUST NOZZLE EFFECTIVE AREA CHANGE	174

LIST OF FIGURES

Figure	<u>Title</u>	Page
1	Final Phase II Engine Design	10
2	Model XJ401-GA-400 Engine Components Prior to Final Design	11
3	Stationary Inlet Nose Cone with T2 Sensor	12
4	Cast Compressor Rotor	13
5	Compressor Stator Assembly	15
6	Forward End of Midframe	16
7	Rear End of Midframe Assembly	17
8	Combustor and Turbine Nozzle Assembly (Forward View)	18
9	Combustor and Turbine Nozzle Assembly (Aft View)	20
10	Turbine Wheel and Shaft Assembly	21
11	One Piece Fuel Pump Drive Gear	22
12	Final Configuration of Rotating Assembly	23
13	Roller Bearing	27
14	Carbon Piston Ring Seals	28
15	Configuration of Bearing Oil Slingers	29
16	Geared and Ungeared Starters	31
17	Two-Jaw Decoupler with Engagement Shaft	33
18	Electromechanical Fuel Control	35
19	Power Conditioning Unit	37
20	Exhaust Nozzle	40
21	Vibration Limits at Mounting Flange	55
22	Vibration Axes	56
23-31	Vibration Test	57-65
32	Test Setup Power Line Conducted Emission	68
33-36	Electromagnetic Interference Test Data Sheets	69-72
37	Test Setup Radiated Emissions	73
38	Electromagnetic Interference Test Data Sheet	74
39	Test Setup Radio-Frequency Conducted Susceptibility	75

LIST OF FIGURES (CONTD)

Figure	<u>Title</u>	Page
40-41	Electromagnetic Interference Test Data Sheet	76-77
42	Test Setup Audio-Frequency Conducted Susceptibility	78
43-44	Electromagnetic Interference Test Data Sheet	79-80
45	Test Setup Radiated Susceptibility	81
46	Electromagnetic Interference Test Data Sheet	82
47	Inlet Plenum Mixing Chamber	85
48	Inlet Plenum Mixing Chamber with Modified Air Supply System	86
49	Enlarged Cooling Air Holes in Turbine Shaft	91
50	Slinger with Enlarged Cooling Holes	92
51	Thrust-Balance Cavity Relief Valve	93
52-57	Post Endurance Test Parts (Engine Serial No. 3301)	97-102
58	Sanborn Recording Traces	103
59	Thrust Vs Time Curve	104
60	Sanborn Recording Traces (Engine Serial No. 3302)	106
61	Thrust Vs Time Curve	107
62	Improved Diffuser Part 3470429	109
63	XJ401-GA-400	115
64	IFRT Engine Model XJ401-GA-400 (Right Front Oblique View)	117
65	IFRT Engine Model XJ401-GA-400 (Left Front Oblique View)	118
66	IFRT Engine Model XJ401-GA-400 (Right Rear Oblique View)	119
67	IFRT Engine Model XJ401-GA-400 (Left Rear Oblique View)	120
68	Large Altitude and Cold Chamber No. 2	122
69	Engine Installed on the Centrifuge in the Y-Axis	123
70	Engine Mounted on the Thrust Stand in the Altitude Chamber	124
71	Close-up View of Engine Mounted on the Thrust Stand	125
72	Altitude Chamber Inlet Plenum Schematic	126

LIST OF FIGURES (CONTD)

Figure	<u>Title</u>	Page
73	Electrical Control System	128
74	Engine Test Setup in the Altitude Chamber	129
75	Instrumented Green-Run Exhaust Nozzle	132
76	Inlet Distortion Screen	135
77	IFRT Engine No. 1 Bearings After Endurance	138
78	IFRT Engine No. 1 Compressor After Endurance	139
79	IFRT Engine No. 1 Combustor and Nozzle After Endurance	140
80	IFRT Engine No. 1 Turbine Rotor After Endurance	141
81	IFRT Engine No. 1 Alternator After Endurance	142
82	IFRT Engine No. 1 Starter After Endurance	143
83	IFRT Engine No. 1 Fuel Control And PCU After Endurance	144
84	IFRT Engine No. 1 Resilient Mount After Endurance	145
85	Fuel Control Assembly, Pre-and Post-Test Calibration, IFRT No. 1	146
86	Pressure Control Valve, Pre-and Post-Test Calibration, IFRT No. 1	147
87	Engine Mounted on the Centrifuge in the X-Axis	150
88	Engine Mounted on the Centrifuge in the Y-Axis	151
89	Engine Mounted on the Centrifuge in the Z-Axis	152
90	IFRT Engine No. 2 Bearing, Combustor and Nozzle After Endurance	155
91	IFRT Engine No. 2 Compressor and Turbine Rotor After Endurance	156
92	IFRT Engine No. 2 Fuel Control, PCU and Starter After Endurance	157
93	IFRT Engine No. 2 Roller Bearing After Endurance	158
94	Fuel Control Assembly, Pre-and Post-Test Calibration IFRT No. 2	160
95	Pressure Control Valve, Pre-and Post-Test Calibration, IFRT No. 2	161
96	Vibration Survey, IFRT No. 1	162
97	Vibration Survey, IFRT No. 1	163

LIST OF FIGURES (CONTD)

Figure	<u>Title</u>	Page
98	Vibration Survey, IFRT No. 2	164
99	Vibration Survey, IFRT No. 2	165
100	Numerical Procedure for Distortion Indices	167
101	Computer Output for Distortion Indices for IFRT No. 1	168
102	Thrust Bearing Temperature as a Function of Time	170
103	Ring Gear Shift, IFRT No. 2	172
104	Exhaust Nozzle-Diffuser Interactions, IFRT No.2	173

HARPOON EXPENDABLE TURBOJET MODEL XJ401-GA-400 PHASE II FINAL TEST REPORT AND FINAL REPORT

1.0 INTRODUCTION

This report is submitted by the AiResearch Manufacturing Company of Arizona, a division of The Garrett Corporation, in compliance with the contractual data requirements of U.S. Navy Naval Air Systems Command (NASC) Contract N00019-71-C-0358. This report documents Phase II of the development of a turbojet propulsion system for the Harpoon missile and covers the period from 30 June 1971 through 13 April 1973. The engine is designated as the Model XJ401-GA-400 Expendable Turbojet.

The objectives of the Phase II development program were:

- o Design, fabrication and development of engines suitable for wind tunnel and flight testing.
- .o Delivery of above engines to the Weapons System Contractor.
- o Technical liaison with the Weapons System Contractor, including systems test support.

Initial flight rating tests (IFRT) verifying the performance requirements defined in AiResearch Model Specification SC-8029-A, dated 30 November 1972 have been completed. Final IFRT test results are presented in 5.0.

2.0 SUMMARY

Phase II of the development program for the Harpoon propulsion system was started on 30 June 1971. Work on this phase of the program was initiated by a letter modification to the U.S. Navy, Naval Air Systems Command (NASC), Contract N00019-71-C-0358, C/N 0888-71. Major goals to be completed during this phase of the development program, as defined in the program plan published in August 1971, were:

- o Flight Engine Design Release
- o Contractor's Development Tests
- o Initial Flight Rating Tests
- o Wind-Tunnel Engine Design Release
- o Technical Liaison
- o Delivery of Mockups, Wind Tunnel, and Flight Test Engines

A chronological review of significant development achievements includes the following:

- July 1971 Installation interfaces established.
- o August 1971 Engine cycle computer programs were finalized. Prototype engine cross section installation and casting drawings were completed.

- o September 1971 Final drawings of turbine, compressor, seals, and bearings test rigs were completed and rig fabrication started.
- o October 1971 Evaluations of engine component and accessory designs completed. Rig testing commenced and the first mockup was submitted for review.
- o November 1971 Stress analyses of major structural elements was completed. Rotor dynamics were established. Thermal analyses were started and several development rig tests were completed. A second mockup was coordinated and delivered to the airframe manufacturer.
- o December 1971 Flight engine design was completed.

 The first scheduled run of the engine was concluded satisfactorily.
- o January 1972 The engine demonstrated thrust and TSFC meeting analytical model requirements. Successful compliance with model-specification requirements for circumferential distortion was demonstrated.
- o February 1972 Electrical system endurance tests completed satisfactorily. Development tests of accessories and components in engines and rigs evaluated.
- o March 1972 Completed acceptance testing of windtunnel engines. Started assembly of IFRT engines.
- o April 1972 Wind-tunnel testing commenced. The IFRT vibration survey was conducted.

o May 1972 - Three series of tests were concluded with engines installed in the McDonnel-Douglas ETB Harpoon Missile in the 8 x 6 wind tunnel facility of the NASA-Lewis Research Center, Cleveland, Ohio.

Three IFRT tests were also completed. They were the 0.6 simulated Mach number altitude start, high temperature start and inlet air pressure variation.

June 1972 - Five more IFRT tests were completed. The tests consisted of an altitude start (0.38 Mach number) and sea level endurance, two sea level endurance tests, high-temperature start and sea level endurance, altitude start (0.6 Mach number) and sea level endurance.

Captive flight tests of the engine installed in the Harpoon missile were conducted at altitude on the P-3A aircraft at the Naval Missile Center, Point Mugu, California.

- o July 1972 Development and investigatory tests were conducted on bearings, the fuel control and starting system.
- o August 1972 Development and investigatory tests continued. Special emphasis placed on dynamics of rotating components, shaft assembly and seals.
- September 1972 Based on intensive development test experience, several design refinements were incorporated. Tests conducted to verify these refinements included six successive 30 minute engine endurance runs at design conditions. IFRT requirements for completion provided by NASC.

- October 1972 Development tests with new configuration hardware continued. Engine tests were conducted to confirm the ability of the engine to make consistent successful starts at IFRT test conditions. Fuel control development tests were expanded to include test demonstrations with an electronic control unit.
- o November 1972 The excellent test results achieved with the electronic control led to its adoption in lieu of the fluidic control. Design modifications were completed for incorporating the electronic control into the final engine configuration. SC-8029-A engine specification issued.
- o February 1973 Preliminary IFRT tests completed.
- o March 1973 The diffuser-combustion system was developed to improve the combustor temperature spread factor (TSF), and a "green run" was conducted to determine the TSF prior to the acceptance test.
- o April 1973 IFRT tests completed

3.0 ENGINE DEVELOPMENT

The engine configuration at the start of the Phase II development program is reviewed below. The initial phase of the engine design and development program was reported in AiResearch Final Report PE-8259-R. Improvements incorporated in the engine during Phase II are discussed in 3.2.

3.1 Engine Design at Start of Phase II

The Model XJ401-GA-400 Engine designed for the Harpoon missile propulsion engine program consisted of a single spool turbojet having a four-stage axial compressor and a single-stage axial turbine supported by a pair of angular-contact ball bearings. Compressor discharge air is directed through a diffuser section in the midframe to an inline annular combustor having air-blast-type (vaporizer) fuel noz-Airflow is exhausted through a simple conversion nozzle selected on the basis of superior installed performance throughout the prescribed mission. The compressor rotors were scaled by a factor of 0.6144 from the AiResearch Model GTCP660-4 Auxiliary Power Unit (APU) compressor rotor. The steel rotors were machined separately and pinned together to form the compressor assembly. Each rotor was fabricated on a Pantagraph-type milling machine. Altering of the tracing linkage on this machine permitted immediate scaling of the APU compressor to the size required for the Harpoon engine. The compressor stators were designed to utilize existing production strip-stock tackwelded and sealed into separate bolted half-ring assemblies for each of the first three stages. The fourth-stage stator and annular diffuser were designed to form a part of the midsection structural housing. The midframe structure design specified a cast assembly and included a flange to be used for mounting the engine.

A straight-through-flow annular combustion system was selected in order to maintain minimum diameter and achieve compatibility with

the axial compressor. Burner geometry was set by volume considerations for altitude starting and pattern factor. An air-blast fuel-injection system with J-pipe injector elements provided a simple low-pressure fuel system with minimum parts and complexity.

The single-stage axial turbine configuration was selected because its performance is adequate and because engine cost and length were considerations. The aerodynamic design of the single-stage XJ401-GA-400 turbine was made to satisfy performance requirements, envelope restriction, and the low-cost manufacturing concept.

The initial rotating assembly consisted of an integral turbine wheel and shaft, alternator rotor, fuel pump drive gear, spacers, oil slingers, and compressor rotor. The compressor rotor consisted of four machined stages pinned together and a machined aluminum spinner. The group was supported by two 40-mm angular-contact ball bearings lubricated by a wick oil-mist system. Control of the thrust load on the turbine bearing was initially provided by a Belleville spring washer. The compressor bearing thrust was limited by a secondary flow system regulated by labyrinth and piston-ring seals.

The bearing and lubrication system is based on the wick-mist method. The engine was designed to use DuPont Krytox 143AC oil in its lubrication system. The bearings were lubricated by a wick-reservoir system capable of providing adequate lubrication over the specified temperature and altitude range. The reservoirs were designed to be filled during assembly eliminating future engine service requirements. The wicks were made of glass wool and carried bearing lubricating oil from a batten-filled sump to contacting surfaces on slingers at each end of the shaft adjacent to the bearings. The wicks rubbed on the conical surface of the slingers which produced a pumping action and directed the oil flow as a mist with the bearing cooling air to the bearing face. Cooling airflow and the oil mist were designed to be exhausted through strut cavities to atmosphere.

Starting and ignition energies are supplied by a cartridge starter located within the exhaust nozzle and a pyroflare igniter that fired into the combustor.

The pyroflare igniter was selected for simplicity and reliability. An electrical signal to redundant bridgewire circuits initiates an intense, high-density flame from the 62 percent magnesium flare material.

A fluidic fuel control was initially selected for the engine because of its potential ability to withstand high environmental temperatures that would occur at its mounting location. The simplicity of the fluidic control offered a potential for high reliability, low cost, and the necessary control functions throughout the engine operating envelope. The fuel control was comprised of three basic elements -- fuel pump, fuel metering unit, and fluidic computer. fuel pump design specified a floating-vane-type pump rotating at 92 percent of main shaft speed. The fuel flow to the combustor was regulated by the fuel metering unit, which consisted of a constant differential pressure (ΔP) valve and a metering valve. The ΔP valve was designed to maintain a constant fuel pressure across the metering valve spool, thus permitting the control of fuel flow through the positioning of the spool by command and feedback differential pressures generated by the fluidic computer. The fluidic computer scheduled fuel flow based on engine speed and compressor discharge pressure. The engine speed signal was produced by a chopper driven off the main shaft. The chopper was placed on the pump drive shaft. The pressure signal and computer power were obtained from a pressure tap.

A Rice-type alternator was chosen to provide electrical power to the missile. The Rice-type alternator is a brushless, nonrotatingcoil synchronous machine. The design adopted for the Harpoon engine produces 3-phase power. The alternator rotor was designed to be mounted directly on the engine shaft, thus fixing the rotor speed at shaft speed eliminating the requirement for separate bearings, seals, and lubrication. The stator was designed as a conventional 3-phase winding. The field excitation coils were stationary, and the flux was carried to the rotor through two auxiliary air gaps at each end of the rotor. The stator and field coils were cooled by a portion of the secondary flow.

A power conditioning unit was developed during Phase II. It provides for 3.8 kw of dc power from a 3-phase alternator regulated to 29.7 ±0.3 vdc. In addition, the PCU provides a ready signal at a nominal engine speed of 83 percent.

3.2 Phase II Final Design

Besides the normal development activity, refinements were incorporated during the Phase II program. An inlet device was added; shaft stiffening was employed to improve shaft dynamics; a new control system was developed; cartridge starter was modified; the lubricant was changed for cold starting; and the diffuser-combustor system was improved. A cross-section view of the final Model XJ401-GA-400 engine developed in Phase II is shown in Figure 1. A photograph of a disassembled engine prior to final design is shown in Figure 2. Discussions of final designs of the engine are presented in the following paragraphs.

3.2.1 <u>Inlet</u>

The stationary inlet nose cone shown in Figure 3 was developed during Phase II to provide improved airflow to the compressor when operating in the MDAC missile with the distortion produced by the missile inlet. Cooling air for the bearings and alternator enters the engine through the nose cone opening and flows through metering orifices in the main shaft. The temperature sensor visible at the top of Figure 3 has been incorporated in the nose cone to provide a compressor inlet temperature (T_2) signal to the electronic control governor circuit.

Figure 1. Final Phase II Engine Design.

Figure 2. Model XJ401-GA-400 Engine Components Prior to Final Design.

3.2.2 Compressor

The four-stage axial compressor rotor is cast from 17-4 PH stainless steel with integral blades and support structure. Each stage was piloted and pinned to the succeeding stage early in the Phase II development program. Later, testing in IFRT led to E-Beam welding of all four stages. An abradable material was added to the surfaces between the compressor stages and between the stator stages. The need for abradable material was disclosed in early Phase II development tests. The material was added to protect the hardware and improve clearances. A groove was added in the hub section to accomodate a second piston ring seal to minimize air leakage. An assembled rotor consisting of four cast stages with an integrally cast inlet spinner is shown in Figure 4.

Figure 3. Stationary Inlet Nose Cone with T_2 Sensor.

Figure 4. Cast Compressor Rotor.

The housing for the first three stator stages was machined from low carbon steel tubing and divided into halves. Stator vanes made from 17-4 PH material were welded into holes milled by electrical discharge machining in the housing and sealed in place. The compressor housing is held together with band clamps. V-type band clamps attach the housing to the mid-frame assembly. A view of the the first-three stator stages of the compressor housing is presented in Figure 5. The fourth-stage stator is cast as a single piece and bonded and pinned into the midframe assembly.

3.2.3 Midframe

The midframe in Figures 6 and 7 was the configuration prior to the improvements incorporating trip tubes and poles in the diffuser. The flange shown at the top of the midframe in Figure 6 holds the ignition pyroflare. The midframe was sand cast as a single unit of ductile iron. Provisions for relubrication were incorporated during Phase II by the addition of a 1/16 inch tube routed through the midframe to the rear bearing. The tube can be seen on the left side of the midframe in Figure 6. The midframe was originally designed to house a fluidic fuel control. Modifications required to accommodate the electronic fuel control were minor. The fuel manifold consisting of 12 nozzles brazed into a fuel distribution tube is press fitted and potted into the midframe assembly. The manifold is visible in Figure 7, and the improved midframe is shown in Figure 54.

3.2.4 Combustor

The original combustor design is shown in Figure 8 and the improved combustor is shown in Figure 52. The holes adjacent to the swirlers are the holes into which the fuel feed tubes are inserted during engine assembly. Cooling and dilution holes were punched in the sheet metal prior to forming. The "J" tubes and air swirlers are welded into place and the assembly is then welded to the turbine inlet nozzle. The pressure tap for P_{cd} was relocated from the midframe

Figure 5. Compressor Stator Assembly.

Figure 6. Forward End of Midframe. The Final Design is Shown in Figure 54.

Figure 7. Rear End of Midframe Assembly. The Final Design is Shown in Figure 54.

Figure 8. Combustor and Turbine Nozzle Assembly (Forward View). The Improved Combustor is Shown in Figure 52.

to the combustor plenum to provide steady pressure supply air to the control unit.

3.2.5 Turbine

The turbine wheel is cast with integral blades from IN-100. The choice of IN-100 material was based on engine life requirements. The wheel is E-Beam welded to the engine shaft, which is machined from CRES 21-6-9 material to form an integral unit.

The turbine stator vanes and turbine shroud were cast from HS-21 and welded to the combustor. The stator vanes are shown in Figure 9. The turbine wheel and shaft assembly (before cooling improvements) are shown in Figure 10, and the turbine shaft for improved bearing cooling is shown in Figure 49.

3.2.6 Rotating System

Following the June IFRT program, during which bearing problems were encountered, an engine was instrumented so that the motion of the rotating assembly could be recorded. The results (bearing loads and rotor excursions) showed that the third critical speed of the rotating assembly was too close to the operating speed of the engine. In some cases this resulted in radial unbalance loads that exceeded the design capability of the bearings.

To correct this problem, design changes were made to stiffen the rotating assembly, thereby increasing the third criitcal speed. The four-piece gear and spacer assembly that drives the fuel pump and provides shaft stiffness was consolidated into one piece as shown in Figure 11. The outside diameter of this assembly was increased contributing to shaft stiffness. The change to a one-piece assembly reduced the normality errors, providing an improved runout of the rotating assembly. The alternator rotor was changed from a three-piece assembly to a single piece for the same reasons. The one-piece rotor and single piece gear (before cooling improvement to thrust bearing) are shown assembled to the rotating group in Figure 12. The larger cooling holes in the shaft are shown in Figure 49.

Figure 9. Combustor and Turbine Nozzle Assembly (Aft View). The Improved Combustor is Shown in Figure 52.

Figure 10. Turbine Wheel and Shaft Assembly. The Final Design is Shown in Figure 52.

Figure 11. One Piece Fuel Pump Drive Gear; Replaces Three Spacers and Gear.

Figure 12. Final Configuration of Rotating Assembly Showing
One Piece Gear and One Piece Alternator Rotor.
(See Figure 52 for Larger Cooling Holes in the Shaft)

Other improvements related to shaft dynamics included increasing the turbine shaft diameter to provide tighter radial fits at both bearings and other members of the rotating group.

3.2.7 Bearings, Seals and Lubrication

Based upon rig test results, 40-mm-bore-diameter bearings were selected for use on the Phase II engine. The use of the larger-size bearings simplified the design of the engine shaft reducing fabrication costs. Split-inner-ring single row ball bearings were selected initially because they were less sensitive to temperature extremes. However, because of large radial tolerances they permitted excessive unbalanced movement of the rotating assembly which in turn contributes to bearing failures.

As a result of problems encountered during engine development and rig tests, several changes were introduced in the design of the bearing system. Initial problems led to enlargement of the metering orifices in the shaft to provide better airflow across the bearings. In addition, an extra set of holes were added to cool the aft-end of the alternator rotor and the turbine bearing. During the June IFRT, premature bearing failures were encountered. Examination of the failed bearings showed the cause to be excessive radial loads. Further investigations were made to determine the nature of the excessive radial loads. An engine was instrumented so that the radial bearing loads could be measured. Probes were incorporated to permit the motion of the rotating assembly to be recorded. The results (bearing loads and rotor excursions) showed that the third critical speed of the rotating assembly was too close to the operating speed of the engine. cases this resulted in radial unbalance loads in excess of the design capability of the ball bearing. Several alternatives to the original design were studied and tested to eliminate the third critical speed problem. Various combinations of ball bearings, roller bearings, hydraulically mounted bearings, one piece gear shafts, and different

alternator rotor configurations were tested. The majority of these tests were conducted on a dynamics rig capable of driving the complete Harpoon engine to 40,000 rpm. The results of these tests are presented in Table I. The configuration used in Engine S/N 3302, Build 2, was selected for the final engine design. Additionally, five 30-minute endurance runs were conducted with engines having roller-ball bearing configurations. Consequently the roller bearing shown in Figure 13 was substituted for the compressor ball bearing used in earlier Phase II engine configurations.

The roller bearing was selected from the AiResearch TSE231 Engine design. Every other roller was removed to allow for proper cooling airflow across the bearings. The roller-ball bearing configuration has performed very well since it was adopted.

The piston ring geometry has been altered from that of the earlier engine. The seals were modified in order to minimize housing bore wear during startup with the cartridge starter. The changes include larger diametral interference, extension of width dimension, increased wall thickness, and the introduction of carbon as a substitute for the steel rings selected initially. The new rings are shown in Figure 14.

Lubrication was provided by a wick system using DuPont Krytox 143AC as the lubricant. The wick system consists of fiber-glass wicks that carry the lubricant from a fiber-glass batting-packed sump to a conical-shaped slinger by capillary action. Due to centrifugal forces caused by shaft rotation, and airflow across the wick, the lubricant is pumped up the slinger and through the bearing. One wick system is used for each bearing. The change to a roller bearing-ball bearing configuration necessitated a change to the slinger length. The new slingers are shown in Figure 15. Further changes were incorporated as described in Section 4.7 due to low temperature difficulties.

TABLE I. SUMMARY OF BACK-TO-BACK RIG TEST RESULTS.

	Engi	ne		Shaft Excursion
Test No.	Serial No.	Build	Configuration	at 36,000 rpm, mils
1	3302	1	Ball-ball brgs. Std. alternator one-piece gear shaft (thin)	16
2	3302	1A	Ball-ball brgs. Dummy alternator, thin one-piece gear shaft	4
3	3305	1	Ball-ball brgs. Comp. brg. hyd. mount one- piece gear shaft (thin	- 6
4	3304	2	Roller-ball brgs. Std. alternator. One-piece gearshaft (thin)	4
5	3305	2	Roller-ball brgs. Hyd. mount compr. brg. Dummy alternator. One-piece gear shaft (thin)	10
6	3302	2	Roller-ball brgs. One- piece alt. Thick gear shaft (constant)	3
7	3302	2A	Roller-ball brgs. Thick sleeve alt. Thick gear shaft (con- stant OD)	4
8	3307	1	Roller-ball brg. One- piece alt. Externally fed hyd. mount on comp. brg.	5
9	3302	2B	Roller-ball brg. Std. alt., thick gear shaft (constant OD).	5

Figure 13. Roller Bearing.

Figure 14. Carbon Piston Ring Seals.

Figure 15. Configuration of Bearing Oil Slingers. Final Configurations is Shown in Figure 50.

3.2.8 Starting and Ignition

Two types of cartridge starters, geared and ungeared, were developed during Phase II. The geared starter is comprised of a small single stage axial turbine, a planetary gear train, a drive shaft, a clutch, and a solid propellant cartridge. The starter cartridge is ignited by an electrical initiator. Cartridge gases impinge on the starter turbine which is geared to a shaft that engages the engine rotor through the clutch. The starter mechanism and cartridge are housed within the engine exhaust cone.

A starter modification to eliminate the planetary gear train was also developed and tested during Phase II. The concept offerred promising returns in terms of cost savings and weight reduction. However, because of difficulties experienced with this starter at high altitude and low Mach numbers further development work was discontinued. Both starter types are shown in Figure 16.

A zero backlash type clutch has been developed in Phase II to provide more positive engagement of the engine and starter. The decoupler is pinned together as an assembly to ensure zero backlash and provide windmilling capability, and is inserted into the engine with a spline. It decouples with reverse torque as the starter slows down and the engine continues to rotate.

The turbine wheel is accelerated by the cartridge gases and torque is transmitted through the jaws of the decoupler mechanism to accelerate the engine to combustor ignition speed. The starter assists engine acceleration until the cartridge is spent. After cartridge burnout, positive torque is no longer provided by the starter and the aerodynamic drag of the starter turbine plus bearing friction create sufficient reverse torque to cause the decoupler jaws to shear the pin and disengage, thereby decoupling the starter from the engine. The pin is strong enough to withstand the reverse torque produced by

engine rotation during a Mach 0.9 inlet ram condition. Figure 17 shows a photograph of a two-jaw decoupler and engagement shaft.

Refinements were made to the starting system to provide consistent altitude cartridge starts at cold temperatures and low Mach numbers. An improved geared starter was developed in Phase II that produces higher assist speeds. The higher assist speeds assure successful altitude starts.

During the Phase II engine development program pyroflares made by two manufacturers were used. The pyroflares were made by Unidynamics Inc. and Holex Inc. Of the two, pyroflares manufactured by Unidynamics were selected because they exhibited better burning characteristics for longer periods than the Holex cartridges. Start tests conducted with the geared starter and Unidynamics pyroflares have consistently demonstrated the ability of the engine to start successfully.

3.2.9 Fuel-Control

During the engine wind-tunnel tests and the June IFRT, difficulties experienced with the set point on the fuel control sometimes caused the engine to operate erratically. Subsequent analyses disclosed several reason, for the inconsistent behavior of the fluidic control system. Chief among these was the high ambient temperature at the fuel control location within the engine. Thermal transients experienced by the maximum-ratio and governor fluidic circuits caused the fuel flow and thrust to fluctuate. Although improved temperature compensation measures were employed, satisfactory governor action was not consistently realized. As a result, the electronic backup control was perfected and incorporated in the final Phase II engine configuration.

The electronic control system provides for automatic control of the engine from initiation of the start sequence through acceleration to maximum speed and power, throughout the engine operating envelope.

Figure 17. Two-Jaw Decoupler with Engagement Shaft.

The system consists of an electronic computer, a fuel metering assembly, an inlet-total temperature sensing probe, and an electrically operated pressure control valve. All but the inlet temperature probe are shown in Figure 18. The T₂ probe can be seen on Figure 3.

The fuel metering assembly consists of a constant displacement fuel pump, a head-regulating valve, and a fuel-metering bellow actuated valve. A portion of the fuel supplied by the constant displacement pump is bypassed by the head-regulating valve back to the pump inlet, thus maintaining a constant differential pressure across the metering valve. The metering valve is stroked linearly by the sum of the control gauge pressure, P,, (bellows chamber pressure) and atmospheric pressure acting on the evacuated bellows. Fuel flow is therefore proportional to the absolute value of P. The selection of the pneumatic orifices in the circuit results in P, being proportional to compressor discharge pressure. The net effect of this arrangement is that fuel flow is proportional to compressor discharge pressure. Changing the position of the torque motor flapper changes the value of P, and results in a change in fuel flow, permitting modulation of fuel flow to the engine. The torque motor flapper is controlled by a signal from the electronic computer which in turn, has inputs of speed and total inlet temperature. The governor set point is a function of total temperature causing operating speed to decrease with decreasing temperature. Engine protection is provided by a maximum fuel schedule.

Another cause of inconsistent fuel control action was found to be fluctuations in compressor discharge pressure (P_{cd}). The P_{cd} probe in the June IFRT engine configuration was a total pressure probe located just aft of the fourth stage stator. The probe faced into the air flowpath and contained a small inline filter. Analysis of the pressure signal supplied by this probe indicated that it was sensitive to small fluctuations in total pressure. In addition, because of its small size, the filter was easily contaminated by trapped particles encountered during normal endurance testing and in turn contributed to

Figure 18. Electromechanical Fuel Control Showing Fuel Metering Section at Top, Electronic Computer at Bottom Right and an Electrically Operated Pressure Control Valve at Bottom Left.

pressure drops in the signal supplied to the control. In order to correct these problems, the $P_{\rm cd}$ probe was changed to a static pressure probe relocated to the combustor plenum. This area is much less subject to pressure fluctuations. In addition, a larger filtration system has been developed which has eliminated the pressure drops experienced in the previous system.

3.2.10 Electrical System

The engine electrical power system is a two-wire ungrounded design. The system provides up to 3.8 kw continuously in a voltage range of 29.4 to 30.0 volts do throughout the steady-state operating envelope of the engine. This power is generated by an internally mounted alternator described in 3.1 and is rectified by a power conditioning unit (PCU).

The PCU, shown in Figure 19, performs the following functions:

- o Rectification of the alternator output to dc
- o Regulation of the alternator field excitation to control the output voltage at a nominal 29.7 volts dc
- Sensing of alternator frequency and provision of a "ready" signal at a nominal engine speed of 83 percent.
- o Filtration of rectified dc power to meet specified EMI limits
- o Provides a continuous speed signal to the electronic control
- o Provides dc power to the electronic control

Figure 19. Power Conditioning Unit.

The PCU consists of the following major circuits:

- (a) Rectifier and Filter Circuit The rectifier and filter circuit takes the 3-phase ac power from the alternator, rectifies it by means of a simple 3-phase full-wave diode-rectifier bridge, and filters it with a group of capacitors. The resulting dc power provides the 3.8-kw output and all internal power requirements.
- (b) Field Regulator The field regulator circuit monitors the dc output voltage and controls the dc field current to the alternator in order to regulate the output voltage at 29.7 ±0.3 vdc. The field current is controlled by switching transistors that pulse the field with a dc voltage. The dc field voltage has a variable duty cycle, depending upon the dc load.

The field regulator circuit also monitors the average dc current to the field and limits it at 17 amperes in order to protect the alternator against an overload. This function is performed by a current-sensing amplifier that biases the field-regulation circuit to reduce the output voltage as the overload increases.

Finally, the field regulator circuit provides a reference voltage for the frequency sensor circuit and for its internal use.

(c) Frequency Sensor - The frequency sensor circuit monitors the frequencies of the alternator voltage, which is proportional to engine speed, and provides a "ready" signal output when the engine speed reaches 33 percent.

3.2.11 Exhaust System

The convergent nozzle developed during the Phase II program was required by MDAC and replaced the plug nozzle used on the demonstrator engine. The convergent nozzle is shown in Figure 20. The design was governed by the following constraints:

- o Inlet hub radius and slope
- o Inlet tip radius and slope
- o Inlet Mach number
- o Exhaust system length
- o Cartridge starter volume
- o External diametral limitations

In addition to the design of the tailcone, the contour of the cartridge starter housing and support struts was accomplished as part of the nozzle improvement.

3.2.12 Mountings and Fittings

Five engine mounts have been provided on the midframe casting to interface with the missile airframe. The mounts may be utilized to support the engine on ground equipment.

The engine air inlet provides for a slip-joint connection to the missile. Since there is no requirement or provision for mechanical fastening of the inlet duct to the engine inlet, a pliable seal on the missile ducting will allow for adjustments of minor misalignments. Clearances required for engine expansion and alignment are consistent with engine/missile mount provisions. Connections between the engine and airframe are listed on Table II.

Figure 20. Exhaust Nozzle.

TABLE II. CUSTOMER CONNECTIONS.

Type of Connection	Location	Size and Type
Electrical Input (Start-Ignition)	Top, right	M81511/01FB02P1 per MIL-C-81511
Electrical Output	Top, left	M81511/01EF03P1 per MIL-C-81511
Fuel Inlet	Top, just forward of Engine Mount M2	0.737-inch-diameter port
Pressure-Regulated Air	Top, left	0.423-inch-diameter port
Engine Air Inlet	Front of engine	9-inch-diameter slip fit
Engine Mount	Circumference of midframe	0.5-inch-diameter pin bore
Vibration Pickup Mount	Right side of mid- frame	0.190-inch 10-32 UNJF-3B threaded port

3.2.13 Performance

The engine rating at sea-level 90°F ambient-temperature and 0.85 Mach conditions is 600 pounds of net thrust plus an electrical output of 3.8 kw dc. Rated performance is summarized in Tables III and IV. Thermodynamic and mechanical limits based on the most critical engine tolerances are:

Maximum compressor inlet total temperature:

194°F (90°C) to 215°F (102°C) for 1 minute maximum 194°F (90°C)

continuous

Exhaust gas temperature: 0

> Starting, 3-second limit,

above 2000°F (1093°C) to 2200°F (1240°C)

Transient operation, 3-second limit,

above 1582°F (861°C) to 2000°F (1093°C)

Maximum allowable rotor speed: 0

Up to 37,060 rpm, continuous.

Above 37,060 rpm to below 38,000 rpm, 10 seconds.

Above 38,000 rpm to below 39,600 rpm, 3 seconds.

Electrical load extraction, maximum: 3.8 kw 0

TABLE III. PERFORMANCE RATING AT STANDARD SEA-LEVEL CONDITIONS.

	Mach	Net Thrust Pounds	Engine Rotor RPM	Specific Fuel Consumption lb/hr/lb of Thrust	Meas Ga Tempo tur (Ma	e Bra- B	Engine Airflow Pounds Per Second	Elec- trical Output
Rating	Number	(Min)	(Max)	(Max)	°F	°C	+3.0%	kw
Maximum	Zero	570	35,212	1,267	1500	816	9.5	Zero

TABLE IV. PERFORMANCE RATING AT SEA-LEVEL ALTITUDE, 90°F AMBIENT CONDITION.

		Mach	Net Thrust Pounds	Engine Rotor RPM	Specific Fuel Consumption lb/hr/lb of Thrust	Meas Ga Temp	s era- re	Engine Airflow Pounds Per Second	Elec- trical Output
	Rating	Number	(Min)	(Max)	(Max)	°F	°C	+3.0%	kw
a	Maximum	0.85	599	37,060	1.679	1579	859	13.5	Zero
Ъ	Maximum	0.85	600	37,012	1.687	1582	861	13.5	3.8

4.0 TEST RESULTS

4.1 Wind-Tunnel Tests

During the period from April 5 to May 10, 1972, three series of tests were conducted with the Model XJ401-GA-400 Engine installed in the McDonnell-Douglas ETB Harpoon Missile in the 8 x 6 wind tunnel test facility at the NASA-Lewis Research Center, Cleveland, Ohio. The objective of these tests, as defined in MDAC Report PTR-68, was to evaluate the starting and operating characteristics of the engine in the basic airframe over the expected range of flight Mach numbers and missile attitudes. Of particular interest were such features as surge-free starting and operation, start time, mechanical integrity, and installed performance.

- o The first series of tests was performed during the period from April 5 to April 14 with use of Engines S/N 3304 and 3305.
- o The second series, conducted from April 26 to May 4, was run on the same engines with modifications to the turbine stator and exhaust nozzle areas, and ultimately to the compressor inlet configuration.
- o The third series, run on May 8, 9, and 10 at the request of NASC, employed the inlet strut assembly with the basic engine having been restored to the original configuration.

In the latter two series, surge-free starting and operation of the engines were obtained with utilization of the inlet device over the entire range of Mach numbers and pitch/roll angles tested.

4.2 June 1972 IFRT Results

4.2.1 Test Requirements

Initial flight rating tests were first conducted on the XJ401-GA-400 Turbojet Engine between 21 April and 15 June 1972. The tests were conducted to demonstrate the ability of the engine to meet model specification requirements applicable to starting, operation, performance and endurance. Test categories and conditions to which the IFRT was addressed were defined by NASC and included the tests listed in Table V. Each test was scheduled for completion on a separate engine. Each engine was required to complete a minimum of 16 minutes of continuous operation while engine thrust and temperature were held at maximum. Additionally, it was specified that each engine continue to operate at maximum thrust for the test condition until failure occurred or 30 minutes of engine operation had been accumulated.

TABLE V. JUNE IFRT REQUIREMENTS.

Test Procedure	SC-8029 Spec Requirement	Test Title
QT-3079-R1	4.3.14	Altitude Start and Sea-Level Endurance
QT-8079-R2	4.3.6	Inlet Air Pressure Variation and Endurance
QT-8079-R3	4.3.2.2	High Temperature Start and Sea-Level Endurance
QT-8079-R4	4.3.2.1	Low Temperature Start and Sea-Level Endurance
QT-8079-R5	4.3.11	Handling and Maneuvering Loads and Sea-Level Endurance
QT-8079-R6	4.3.4	Vibration and Sea-Level Endurance

4.2.2 Test Results

The June 1972 IFRT program was scheduled for completion within an allotted time-frame. The results of those tests conducted during the specified test period are listed in Table VI. The tests confirmed that the engine will provide the following desirable features:

- o Component life--specifically, hot section life
- o Starter reliability
- o Fuel pump durability
- o Electrical system output and durability
- o Engine thrust
- o Engine fuel consumption
- o Start times
- o High-Mach-number operation
- o Operating with inlet distortion
- o Freedom from vibration resonances
- o Withstanding high-temperature soak

Problem areas encountered during the June IFRT that required further improvements in engine design were:

- (a) <u>Bearing Failures</u> Premature bearing failures were experienced during some tests.
- (b) <u>Fuel-Control Malfunctions</u> Erratic fuel control action was noted in IFRT and wind-tunnel tests.
- (c) <u>Inconsistent Altitude Starts</u> The engine did not exhibit consistent starting characteristics at 20,000 feet altitude.

TABLE VI. JUNE 1972 IFRT RESULTS.

	Starting	Para.	F a d	Date	Engine Serial No	÷ u o E	Endurance
Test Title	Number	SC-8029	Procedure	Completed		Report	Min.
Vibration Survey and Sea-Level Endurance	-	4.3.4	QT-8079-R6	4-22-72	3307/2	PE-8345-R1	25:20
Altitude Start and Sea-Level Endurance	09*0	4.3.14	QT-8079-R1	5-22-72	3309/3	PE-8345-R2	30:00
High Temperature Start and Sea-Level Endurance	0•38	4.3.2.2	QT-8079-R3	5-24-72	3311/1	PE-8345-R	5:12
Inlet Air Pressure Variation and Endurance	06*0	4.3.6	QT-8079-R2	5-29-72	3308/6	PE-8345-R	10:56
Altitude Start and sea-Level Endurance	0.38	4.3.14	QT-8079-R1	6-1-72	3309R/5	PE-8345-R	5:08
Sea-Level Endurance		4.3.1	SC-8029	6-6-72	3311R/2	PE-8345-R	23:32
High Temperature Start and Sea- Level Endurance	0.85	4.3.2.2	QT-8079-R3	6-14-72	3310/6	PE-8345-R	4:49
Altitude Start and Sea-Level Endurance	09*0	4.3.14	QT-8079-R1	6-15-72	3311RR/1	PE-8345-R	26:19
Sea-Level Endurance	0.75	4.3.1	SC-8029	6-15-72	3309RR/1	PE-8345-R3	32:30

4.2.2.1 Starts

During the IFRT, cartridge starts were made at the conditions summarized in Table VII. All starts were performed with the use of a gearless starter.

4.2.2.2 Operating

The electrical system performed excellently throughout the tests. The alternator and power conditioning unit (PCU) consistently produced rated power output at the required voltage level. The one problem experienced with the system when the PCU ready signal failed on Engine S/N 3309RR was traced to a faulty solder joint. That problem was easily corrected.

Engine operation following installation of the 10-percent circumferential distortion-generating screen was normal. Corrected engine performance consistently matched performance parameters predicted by an analytical model. No evidence of compressor surge was observed at any time during the operational testing.

The vibration survey indicated that no vibration resonances existed during normal engine operation. Vibration levels were nearly constant and within model specification requirements. Vibration did not increase as engine operating time increased. Post-test analyses of the vibration frequencies recorded during the test showed the excitation sources to be bearing ball rotation, shaft unbalance, and alternator pole passage.

4.2.2.3 Performance

Engine performance monitored during the acceptance tests is summarized in Table VIII. The test data shows that the engines developed positive performance margins for thrust or TSFC.

TABLE VII. CARTRIDGE STARTS.

	Pressure Altitude Ft	Simulated Mach No.	Inlet Total Temperature	Start Time Sec.	Spec Start Time Sec.
Acceptance	B.L.*	0.85	169	6.6**	ω
Altitude Start	20,000	09.0	21	12.5	18
Inlet Air Pressure Variation	B.L.*	06.0	173	5.2	æ
High Temperature Start	B.L.*	0.85	135	7.3	œ
Sea-Level Endurance	B.L.*	0.75	170	6.3	æ

*B.L. = Phoenix ambient pressure.

TABLE VIII. ACCEPTANCE TEST PERFORMANCE.

		Ne	Net thrust, 1b.	t, 1b.	TS	TSFC, lb/hr/lb	hr/1b
IFRT Test	Engine Serial No.	Spec.	Corr.	Percent Margin*	Spec.	Corr.	Percent Margin*
Vibration Survey	3307	0.009	637.6	+6.3	1.687	1.636	+3.0
Altitude Start (0.6M)	3309		651.2	+8.5		1.569	+7.0
High Temperature Start (0.38M)	3311		630.0	+5.0		1.582	+6.2
Inlet Air Pressure Variation	3308		620.0	+3.3		1.648	+2.3
Altitude Start (0.38M)	3309R		596.9	-0.5		1.649	+2.3
Sea-Level Endurance	3311R		612.0	+2.0		109.1	+5.1
High Temperature Start (0.85M)	3310		599.0	-0.2		1691	-0.2
Altitude Start (0.6M)	3311RR		608.0	+1.3		1.671	6-0+
Sea-Level Endurance	3309FR		598.0	-0.3		1.662	+1.5

*Percent margin relative to Model Specification requirements.

NOTES:

Performance was attained with 3.8 kw electrical load. Inlet strut assembly was on all engines, except Serial No. 3307. The data is corrected to sea-level 0.85 simulated Mach number, 169°F inlet total temperature conditions.

Engine S/N 3311R operated within 3 pounds of thrust and 0.002 lb/hr/lb of specified TSFC throughout the 23:32 minutes of its sealevel endurance test. Engine Serial No. 3311RR operated within 3 pounds of thrust and 0.010 lb/hr/lb of TSFC during the 26:19 minutes of its sealevel endurance run. The performance of Engine Serial No. 3309RR was actually higher at the end of the 30-minute endurance run than at the beginning because of a slight increase in fuel flow.

Engine performance at the off-design-point conditions of the IFRT occurred as predicted by the analytical model confirming the estimated performance contained in the model specification.

4.2.2.4 Endurance

Five of the engines subjected to initial flight rating tests exceeded 16 minutes of endurance running (Serial Nos. 3307, 3309, 3311R, 3311RR and 3309RR). Two engines completed 30 minutes of operation.

- o Engine S/N 3307 shut down after 25:20 minutes of operation because of a compressor stator-vane weld failure. In order to prevent further failures, all compressor stator welds were reinspected and abradable shrouds added to make the engine rub-tolerant.
- o Engine S/N 3311R was shut down after 23:32 minutes of operation. A failure analysis conducted after the test indicates that the fracture or relaxation of one of the turbine-end piston-ring seals caused overtemperature and resultant bearing failure. The test demonstrated the validity of the compressor-imbalance fixes, since the compressor bearing was in good condition after the test and showed that a correct thrust-to-radial load ratio had been obtained.

- o Engine S/N 3309 completed the 30:00-minute endurance run in good condition except for the damage resulting from four failed combustor J-tubes and combustor wall buckling. The J-tubes failed because of improper tolerances between the tubes and the reinforcing sleeves. The combustor wall material was subsequently changed from 0.032-inch-thick CRES 347 to 0.050-inch-thick HS-25 alloy.
- o Engine S/N 3311RR completed 26:19 minutes of operation in good condition except for damage resulting from failure of both bearings.
- o Engine Serial No. 3309RR was in excellent condition at the end of a 32.5-minute endurance run in which performance goals, turbine discharge total temperature, and endurance were achieved.

4.3 Captive Flight Tests

Captive flight tests of the Model XJ401-GA-400 Engine assembled in the Harpoon missile were conducted on a P-3A aircraft at the Naval Missile Center, Point Mugu, California. The tests were conducted on June 15 and 16, 1972 at the flight conditions listed below.

2,500 feet altitude, Mach 0.38

15,000 feet altitude, Mach 0.38

1,500 feet altitude, Mach 0.53

20,000 feet altitude, Mach 0.57

20,000 feet altitude, Mach 0.38

Good starts were achieved at the lower altitudes; however, insufficient gearless starter assist speeds did not permit lightoff or

engine acceleration during the tests conducted at the higher altitudes. This was corrected by the development of the improved geared starter discussed in 3.2.8.

4.4 Endurance Tests

Significant development tests were conducted from September 8 through December 4, 1972. These tests were 30 minute endurance tests conducted on 6 engine builds to evaluate the capability of the ball/roller bearing combination. The engine configurations, parameters measured, and the condition of the bearings after teardown inspection, are shown in Table IX.

4.5 Fuel Control Component Tests

Vibration and EMI tests were conducted as requested by NASC on the Harpoon Engine Electronic Speed Control, Part 306100-1-1.

4.5.1 Vibration

Vibration tests were conducted on the electronic speed control on 13 December 1972. The unit was subjected to the test limits defined on Figure 21. Power was supplied to the unit throughout the test. The output of the unit was monitored continuously. No failures or changes in governor set point occurred. Total vibration time accrued on the unit was 23.3 minutes. A functional check completed after the test showed that unit operation was unchanged.

Vibration axes are identified in Figure 22. Test results are presented in Figures 23 through 31.

TABLE IX. ENDURANCE TESTS

						Bearing S/N and Conc	S/N and Condition After Test
Engine S/N	Test Date	P _{CD} PSIG	Alternator Configuration	Gearshaft Configuration	Run Time Minutes	Ball (Steady St. Temp. °F)	Roller (Steady St. Temp. *F)
3304 Bld. 2A	9-11 - 72	70	Old Standard Four-Piece Rotor	Thin One-Piece	32	S/N 288 Wide paths and skid marks from insufficient thrust (560°F)	S/N 2862 Rollers and paths very good.
3305 Bld. 2	9-13-72	72	Dumny	Thin One-Piece	30	S/N 269 Excellent load ratio. Balls good. Thrust both fore and aft. (540°F)	S/N 2352 Excellent (400°F)
3307 Bld. 2	9-20-72	72	One-Piece Rotor	One-Piece Increased Stiffness	31	S/N 303 Thrust mostly aft. Good paths. (550°F)	S/N 2368 Rollers skidded and end loaded. (365°F)
3302 Bld. 2C	9-23-72	72	Old Standard Four-Piece Rotor	One-Piece Increased Stiffness	28	S/N 313 Inadequate lubricant. High unbalance. Skid at split. (540°F)	S/N 2356 Excellent (330°F)
3304 Bld. 3	9-26-72	1	Old Standard Four-Piece Rotor	One-Piece Increased Stiffness	31	S/N 301 Very wide paths. Skid marks. (510°F)	S/N 2358 Rollers skidded and end loaded. (460°F)
3301 Bld. 1	12-4-72	74	One-Piece Rotor	One-Piece Increased Stiffness	4.3 ATP 30 IFRT	S/N 2-278 Heavy aft cnrust load. Skidding at split. (660°F)	S/N 5926 Excellent (360°F)

PREPARED	LLC	7-67	VIBRATION LIMITS AT MOUNTING FLANGE	A88937
WRITTEN		7-67		<u> </u>
APPROVED	Min. K.	7-67	AiResearch Manufacturing Company of Arizona	Figure 21

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE GARRETT CORPORATION

Figure 22. Vibration Axes.

FREQUENCY - CPS

Figure 23. Vibration Test.

FREQUENCY - CPS

Figure 24. Vibration Test.

FREQUENCY - CPS

Figure 25. Vibration Test.

FREQUENCY - CPS

Figure 26. Vibration Test.

FREQUENCY - CPS

Figure 27. Vibration Test.

FREQUENCY - CPS

Figure 28. Vibration Test.

FREQUENCY - CPS

Figure 29. Vibration Test.

FREQUENCY - CPS

Figure 30. Vibration Test.

Figure 31. Vibration Test.

4.5.2 Electromagnetic Interference (EMI)

4.5.2.1 Test Summary

Speed Control Part 306100-1-1 Serial No. P-3 was subjected to electromagnetic interference (EMI) testing on December 18 and 19, 1972. The test was conducted at Motorola's EMI test facility in Scottsdale, Arizona. A summary of the tests conducted is presented in Table X. Testing was essentially in accordance with MIL-E-5009D. As verified by the test data, the speed control performance throughout the tests was in compliance with the limits of SC-8029-A, the applicable Harpoon engine model specification. Quality Control requirements were maintained as evidenced by "Certification of Conformance" presented at the conclusion of the data pages of this Section.

4.5.2.2 Test Setup

All tests were performed in a double shielded enclosure, 6 meters long by 3.5 meters wide by 2.4 meters high. The ground plane used was a copper-covered table, 3 meters long by 1 meter wide. The ambient level was at least 6 db below the specification limits. All loads were supplied by the Torque Motor Assembly Part 3740427-1 and the Temperature Sensor Part 377012-1E. The load to the temperature sensor was at room ambient. All connections were made through the Cable Harness Part 3740458. The input was supplied by a Wavetek Model 135 sweep generator at 1131 H_Z to simulate the turbine speed. Refer to Table X for the figure number of the test setup photographs contained herein, that are associated with each test.

4.5.2.3 Test Results

The test specimen was operated with an input voltage of 28.0 vdc and all testing was conducted at laboratory ambient conditions. All

TABLE X. EMI TEST SUMMARY.

		Figures
	Test Setup	Data
Power line conducted emissions	32	33, 34, 35, and 36
Radiated emission 150 KH_Z - $1GH_Z$	37	38
Radio-frequency conducted susceptbility 50 H _Z - 15KH _Z	39	40 and 41
Audio-frequency conducted susceptibility 150KH _Z - 1GH _Z	42	43 and 44
Radio-frequency radiated susceptibility 100KH _Z - 1GH _Z	45	46

measured signals, susceptibility responses, and the level of these responses are recorded on the EMI data sheets contained herein. Refer to Table X for the figure numbers of the data sheets associated with each test.

For susceptibility testing, a current meter was monitored for any increase or decrease in current of the input power, which could indicate an error in turbine speed. AiResearch established that if a change in current of +5 ma occurred, the test specimen was susceptible. The resulting test data showed the current change to be well below this value. For all tests the Speed Control was within the limits specified in MIL-E-5007C and SC-8029-A.

Figure 32. Test Setup Power Line Conducted Emission.

	DEPARTMENT 4342 - 008
EQUIPMENT MEASURED SPEED CUNTRUL	BERIAL HO. P- 3
MODE OF OPERATION ON GOVERNOR	DATE OF MEASUREMENT. 12-18-72
LINE OR COMPITION: 423VDC	SPEC NO. MIL-E 5007
PERFORMED BY R. STUNER	TEST PLAN NO.
PERFORMED BY R. STUNER TYPE OF MEASUREMENT. POWER LINE CONDUCTED EN	nissions, LSN, 150klla - 25 mHz

MHz	METER READING COUV/M/2	CORRE	CTION ORS	CORRECTED READING	SPEC LIMITE DELIMITE	AMBIENT december	REMARKS
.150	No menesy	able	Rue	Shoul	Signals		DO MERSURABLE
							Cw Signils
4	b						
.500	40			40	119	40	
. 600	40			40	116	40	
.800	43			43	113	43	
1.00	47			47	110	47	
1.50	68			68	105	68	
2,00	70			70	101	70	
3.00	64			64	1	64	
4.00	58			58		.58	
5.00	56			56		56	
6.00	50			50		50	
8.00	57			57		57	
100	60			60		60	
15.0	48			48		48	
20.0	52			52		52	
25,0	45			45	4	45	
							<u> </u>

ELECTROMAGNETIC INTERFERENCE

SPEED CONTROL PLICABLE SPECIFICATION MIL-E- 5007C 100 70 50 .100

FREGUENCY MWZ
Figure 34

	DEPARTMENT 434R - 608
EQUIPMENT MEASURED SPEED CONTROL	P. 3
HODE OF OPERATION: DU GOUERAIOR	DATE OF MEASUREMENT 12-18-72
LINE OR CONDITION: 28UDC REJURN	APRC NO. MIL- E-5007
PERF TAMED BY R STONER	TEST PLAN HO.
TYPE OF MEASUREMENT, POWER LINE CONDUCTED	EMISSION LSW IGOKHE- 25 MHZ

MH2	METER READING	CORRECTION FACTORS	CORRECTED READING	SPEC LIMIT downalt	ABUV/M/tz	REMARKS
150		ale Breadle	7.			No MEMBERALE
1						cw SignoL
4	1					
,500	40		40	119	40	
.600	44		44	116	44	
.800	47		47	113	47	
1.00	54		54	110	54	
1.50	76		76	105	76	
2.00	76		76	101	76	
3.00	66		66		66	
4.00	60		60		60	
5.00	57		57		57	
6.00	49		49		49	
8.00	57		57		57	
10.0	60		60		60	
15.0	49		49		47	
20.0	52		52		52	
25,0	46		46	4	46	
						(4)

ELECTROMAGNETIC INTERFERENCE

	UNDE				- 1	ob Co Ductes			, (5N		
	B Y	-		TUN					DATE	12.1	8-72	
	474					716-5	Sound				Relaxe	16
	ICABI	A below in growth of								0 6 13	<u> </u>	
LINE	ORIC	MOIT	10 N	26	VIX	REJUR	<i>N</i>					
							m a					
									00 1 100 10 10 10 10 10 10 10 10 10 10 1			
	····>											
1:::												
				7								
				X								

											: :::::::::::::::::::::::::::::::::::	
						\					<u> </u>	

						\						
		•••••										
										i H	11:11:11:11	
		.,,										
											: - : - : - : - : - : - : - : - : - :	
							\					
							1					
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •					1					
						$f: f: \dots$						
		* * * * * * * * * * * * * * * * * * * *				1						
:::						1	3	t:::::::::::::::::::::::::::::::::::::				
:::			•••••			/				\		
						/				$\Lambda : \coprod : \coprod$		
:::								\ \		1		
		• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •			المزيا	Λ	
											:1:X:::::::::::::::::::::::::::::::::::	
	••••									******	100	
				7								

Figure 37. Test Setup Radiated Emissions.

LINE OR COMPIT	R. STONER JREMENT RADIA METER READING	CORRECTION FACTORS	SPEC NO MIL-E- SUOT TEST PLAN NO. SUK (12 - 16/12 SPEC AMBIUNT REMARKS LIMIT				
		ANT CANE					
.150	NU MEASI	rance 5	MANALS	Brundband	or CW		
	 						
/// /	+						
1000	V						
			†				
					1		

Figure 39. Test Setup Radio-Frequency Conducted Susceptibility.

				DEPARTMENT	4342-00	.8			
-	OUDED SPEED	CONTROL		SEREAL NO.	P 3				
		OVERNER		DATE OF MEABU	шент <u>/2 -</u>	19-72			
			PPEC NO MIL-E. 5007						
PERFORMED BT	V. SchiFA	INO		7807 PLAN NO	WILLITY 150KH2 - 1000MH2				
TYPE OF MEASU	PENEUT RF	ONDUCTED	Susceri	WILLY.	150KHz - 10	eum Hz			
FREQ		THRESHULD				REMARKS			
Mlk	Vens	Vens	Vens						
.150		No Puspinse	7						
	1		1						
1									
1000.0	V	D	A						
					,				

				-	4342 0	08		
-	SPEED	CONTROL		65 REAL 140	P	3		
MORE OF OPERA	THO ON GO	OVERNOR		DATE OF MEASUREMENT 12-19-72				
	0 28UX							
*******	U. ScHiff	INO		14391111111				
TTPE OF MEABUL	PEWENT RE	UNDUCTED	SUSCEPT	ribility	150kHz-	lovomUz		
FREW	SCHA LOWL	THRESHID	Spec Limit			REMARKS		
MHZ	Vens	Vans	Vens					
.150	0.2	No RESPONSE	0.1					
_1								
4								
1000.0	V	V	P					
	ļ							
				-				
					-			

Figure 42. Test Setup Audio-Frequency Conducted Susceptibility.

				1/2/12 10	٥		
Speed	LINTROL		DOPARTMENT	P- ?	8		
			95 REAU 910.	/2 - /	9.72		
			BATE OF HEADURNESHT 12 (7)				
V COU C.							
DEMENT AF	CONDUCTED	Suscepi	113,1,74	50H2 - 19	SKH2		
					POWARUS		
4	1	1					
		1					
3.0	No Respuse	3.0					
1	1						
V	4	6					
		-22 TITE					
				,			
	TION ON GA TON JON JON JON JON JON JON JON JON JON J	SCH. FOND V. SCH. FOND PEMENT AF CONDUCTED SEAN LEVEL THE SHOLD VEMS VEMS 3.0 No Persone	SEM FORMO SEM FORMO SEMENT AF CONDUCTED SUSCEPT SEMPLEVEL THE SILOID SHE LIMIT VEMS VEMS 3.0 No Respusse 3.0	SCH. FONO THE DATE OF MEASURE V. SCH. FONO THAT PLAN NO PENERT AF CONDUCTED SUSCEPTIBILITY SEAN LEVEL THEISHOLD SHE LIMIT VEMS VEMS USES 3.0	SEMINATION DATE OF MEASUREMENT 12.10 SEMINATION TO SUSCEPTIBILITY SOHO. 19 SEMINATION THE CONDUCTED SUSCEPTIBILITY SOHO. 19 SEMINATION VAND VAND VAND 3.0		

	uured SPEED	CONTROL		DEPARTMENT	4342.0 P3	808		
	TION ON GO	WEN MAR		96 MAL (40	12.15	7.72		
	ON 28UD			DATE OF MEASUREMENT 12-19-72				
	1. Call	C - 1/4						
PERFORMED BY	AT (UNDIC TED	54515	THE PLAN NO.	1 501/2	· 15k11-		
					, ,,,,,	131015		
FRECY	SIANTENET	THROSINIA	Spec Limit			PEMARES		
Hz	Vens	VRMS	Vens					
50		No Response	30					
1								
15,000	D	8	4					
					-			
				_				

Figure 45. Test Setup Radiated Susceptibility.

	2000			DEPARTMENT	4347-	008		
	MUNED SPEED			SERIAL NO.	1-3			
MODE OF OPER	ATION. DA G	overner		BATE OF MEASUREMENT 12 · 19 · 72				
LINE OR CONDIT	11 51 5.			7400	1.6.200			
PERFORMED BY	V. SHIFA	NC		THET PLAN NO -				
TYPE OF MEASE	PREMERT PAC	NATED S	SCEPILE	31111				
FREQ	SEAN LEVEL	THRES HUID	Spec Cimit			PENAME		
MAZ	VRMS	VRMS	VRMS					
100	0.2	No Response	0.1					
<u> </u>								
4								
100.0	→	V	8					

MOTOROLA INC.

Government Electronic & Privisian

February 2, 1973

CERTIFICATION OF CONFORMANCE

I hereby certify that a Speed Control Unit was tested by Motorola for Airesearch Co., P.O. 509382, and that such assemblies were processed by Motorola in accordance with all quality requirements of the purchase order. Objective evidence of test and inspection of this material is on file and may be reviewed at Motorola upon request.

Bob Whitlatch

QA. Project Manager

4.6 Investigation of Facility Inlet Temperature Stratification

Difficulties experienced in setting the electromechanical fuel control governor in the test facility initiated an investigation of the facility ram air supply. With use of high response thermocouples in the inlet duct forward of the bellmouth as shown in Figure 47, it was ascertained that 20 to 30°F temperature variations existed in the ram air supply. However, further tests revealed the existence of a temperature stratified airstream.

Temperature variations with ram air supplied, as shown in Figure Figure 47, are listed in Table XI. As indicated, temperature measurements taken with thermocouples 2 through 5 at the bellmouth, disclosed a temperature differential (ΔT) of 21°F at the test conditions specified. In order to correct this problem, modifications to the air delivery system were incorporated to provide better mixing. As indicated in Figure 48, hot and cold air were introduced from opposite directions rather than as merging flowpaths as shown in Figure 47. Results of tests conducted following the facility modification, showed a ΔT of less than 5°F (see Table XII). In addition, the procedures for supplying the inlet air were revised and test results, as presented in Table XIII, show a total temperature variation of only 1°F. Subsequent engine tests resulted in satisfactory fuel control adjustments.

Figure 47. Inlet Plenum Mixing Chamber.

0

Inlet Plenum Mixing Chamber with Modified Air Supply System. Figure 48.

TABLE XI. COMPRESSOR INLET TEMPERATURE VARIATION.

P _{t2}	Wa	T _{t2}
4.0 inches Hg	10.0 lbs per sec	$(2) = 165 ^{\circ} F$
Ram ΔP		$(3) = 186 ^{\circ} \mathbf{F}$
		$(4) = 175^{\circ}F$
		$(5) = 174 ^{\circ} \mathbf{F}$
		ΔT = 21°F
A-1 and A-7 tem	peratures into ple	num
	A-1	A-7
	$(1) = 277^{\circ}F$	$(1) = 53^{\circ}F$
$(2) = 276 ^{\circ} F$		$(2) = 53^{\circ}F$

TABLE XII. COMPRESSOR INLET TEMPERATURE VARIATIONS AFTER FACILITY MODIFICATION.

P _{t2}	Wa	T _{t2}
4.0 inches Hg Ram ΔP	10.0 lbs per sec	(2) = 183°F (3) = 183°F
		(4) = 182°F
		$(5) = 179^{\circ}F$
		$\Delta T = 4^{\circ}F$
A-1 and A-7 tem	peratures into ple	enum
	A-1	A-7
	(1) = 291°F	$(1) = 51^{\circ}F$
	(2) = 292°F	$(2) = 52^{\circ}F$

TABLE XIII. COMPRESSOR INLET TEMPERATURE VARIATIONS FOLLOWING MODIFICATIONS TO PROCEDURE.

P _{t2}	Wa	T _{t2}
6.0 inches Hg	13.0 lbs per sec	(2) = +170°F
Ram ΔP		(3) = +169°F
		(4) = +169°F
		(5) = +169°F
	17	$\Delta T = 1°F$
A-1 and A-7 tem	peratures to plenum	
A-1		A-7
	(1) = 188°F	(1) = 143°F
	$(2) = 189^{\circ}F$	$(2) = 143 ^{\circ} F$

4.7 Engine Rear Thrust Bearing Operating Life Extension

A program was initiated to improve the engine rear bearing life after -65°F soaking. The program consisted of selecting a lubricant better suited for low-temperature operation, improving the cooling to the engine rear bearing, and regulating the amount of axial thrust loading on the rear bearing. The improvements resulting from this program and the tests conducted to evaluate them are summarized as follows:

- o Mobil Jet II (MIL-L-23699) oil was selected as a replacement for Krytox 143AC. Bearing test rig and engine tests verified that Mobil Jet II was a better lubricant at low-temperature (-65°F) conditions.
- o The rear bearing cooling air-flow area was increased 100 percent, by enlarging the cooling air holes in the turbine shaft as shown in Figure 49, and in the slinger as shown in Figure 50. This resulted in a bearing temperature reduction of approximately 150°F during testing.
- o A 1/2 inch diameter relief valve to regulate the amount of axial thrust load imposed on the rear bearing (see Figure 51) was used in place of the 4-hole orifice plate. This relief valve method, with a 20 psi differential cracking pressure, regulates the pressure in the thrust-balance cavity and causes a forward thrust loading, whereas the orifice plate has a non-regulated bleed-off of the balance-cavity pressure, permitting the bearing axial loading to be in either direction. Engine tests to evaluate this regulated axial loading were satisfactory.

These changes, as a combination, were effective in increasing the bearing life. The reduced temperature level in the rear bearing assured that the Mobil Jet II oil maintained the proper lubrication qualities at the high-temperature end, while being better than Krytox at the low-temperature end of the engine operating range. In addition, a constant forward axial loading of the rear bearing as provided by the relief valve, was found to be desirable.

Figure 49. Enlarged Cooling Air Holes in Turbine Shaft.

Figure 50. Slinger with Enlarged Cooling Holes.

Figure 51. Thrust-Balance Cavity Relief Valve, 1/2 Inch in Diameter

4.7.1 <u>Lubrication Evaluation Tests</u>

A series of bearing rig tests were conducted to evaluate Krytox 1.43 AC and Mobil Jet II (MIL-L-23699) lubricants. Testing was conducted under low- and high-temperature conditions.

4.7.1.1 Low Temperature

A total of 20 minus 65°F cold-soak tests were conducted, 14 using Krytox and 6 using Mobil Jet II. The soaks were of 3-hour duration except for three that were 10 hours in length. In general, the conclusions reached from these tests were:

- (a) All bearings tested with Mobil Jet II oil acquired either no skid damage or tolerable skid damage.
- (b) Bearings tested with Krytox 143 AC oil acquired some measure of ball skid damage.
- (c) The thrust bearing can operate for 3 minutes with no available oil supply other than the residual oil in the bearing. The oil in this case can be either Mobil Jet II or Krytox 143 AC.

4.7.1.2 High Temperature

High-temperature rig tests essentially imposing conditions simulating engine running, indicated that the oil sump can be filled with sufficient Mobil Jet II to permit 30 minutes of engine running. Two test runs were made to determine the quantity of oil required, up to the bearing failure point. Both runs were well over 1 hour duration with an oil consumption of approximately 100 cc per test. The quantity of oil remaining at the end of the tests was approximately 30 cc. The bearing temperature just prior to failure was 420°F.

4.7.2 Engine Testing

Two engine builds were completed which included the increased cooling to the rear bearing and installation of the 1/2 inch diameter relief valve, with a 20 psi differential cracking pressure, on the thrust-balance cavity.

The first test was conducted with use of Krytox 143 AC lubricant in the rear bearing. The test consisted of a standard acceptance test followed by IFRT No. 1 test, including the 10 hour, -65° soak. Examination of the bearing after the test showed indications of excessive ball skidding on the inner race. The second build and test of the engine was the same as the first build, except for the use of Mobil Jet II (23699) lubricant in the rear bearing. The condition of the bearing following this test was excellent, with no evidence of ball skidding.

An additional engine was built and instrumented to measure axial thrust loads on the rear bearing. With the 4-hole orifice plate, the bearing thrust loads were found to be in either direction, but generally aft. Several runs were conducted with the 1/2 inch relief valve, and the bearing thrust loads were found to be in the forward direction with a magnitude of 200 to 400 pounds. This engine satisfactorily completed a cartridge start at altitude and a 10 minute run, during which the engine performed all IFRT transitions for IFRT Engine No. 1, with the relief valve.

4.8 Preliminary IFRT

Three engines completed IFRT type testing during February 1973. These engines were assembled with the 1/2-inch-diameter relief valve with a 20-psi differential cracking pressure on the thrust-balance cavity, turbine wheel shaft and slinger with increased cooling holes for improved rear bearing cooling, and Mobil Jet II (23699) lubricant in the rear bearing. The remaining engine parts were of standard configuration. The engine serial numbers, the test they received in accordance with QT-8090A, and their endurance run time were as follows:

Serial Number	Test	Run Time
3301	IFRT No. 1	43 minutes
3302	IFRT No. 2	29 minutes
3310	IFRT No. 2 (except	32 minutes
	handling and maneuvering	
	loads test)	

4.8.1 Engine Serial No. 3301

On February 5, 1973, this engine performed a 4-minute acceptance test in accordance with ATP-8030, Rev. 6, dated January 18, 1973. Then, as required by the IFRT Procedure for engine No. 1, the engine was subjected to a 10-hour cold soak at minus 65°F, starting on February 6, 1973. A cartridge start was made at 20,000-foot, M = 0.38, minus 34°F inlet conditions. The engine was transitioned to Phoenix altitude, M = 0.85, 169°F inlet conditions and operated for a total of 43 minutes before being shut down for bearing temperature rise. This rise was due to depletion of available lubricant oil (MIL-L-23699). The 43 minutes of run time is considered as "run to destruction." As can be observed on Figures 52 through 57, the examination after test revealed the condition of the engine hardware to be excellent. Figure 58 shows the recordings, and Figure 59 presents the thrust of the engine during this test.

COMBUSTOR NOZZLE (P47043-11) ASSEMBLY, PART 3740292

COMBUSTOR NOZZLE ASSEMBLY (P47043-10) PART 3740292

PART 3740283-1

TURBINE WHEEL (P47043-3) TURBINE WHEEL ASSEMBLY (P47043-2) PART 3740283-1

Figure 52. Post-Endurance Test Parts (Engine Serial No. 3301)

COMPRESSOR HOUSING (P47043-15)
PART 3740270

COMPRESSOR HOUSING (P47043-12)
PART 3740270

Figure 53. Post-Endurance Test Parts (Engine Serial No. 3301)

REAR BEARING CARRIER (P47043-30) FRONT BEARING CARRIER ASSEMBLY (P47043-29)
PART 3740409
PART 3740408

MIDFRAME ASSEMBLY (P47043-17) 3740406

Figure 54. Post-Endurance Test Parts (Engine Serial No. 3301)

ROLLER BEARING (P47043-21) PART 358723-2

BALL BEARING (P47043-22) PART 3740290-1

REAR OIL SLINGER (P47043-23) PART 3740468

GEARSHAFT (P47043-4) PART 3740394

Figure 55. Post-Endurance Test Parts (Engine Serial No. 3301)

RELIEF VALVE (P47043-27) PART 771-612-9301

CONTROL WIRING HARNESS (P47043-20)
AND T_{T2} SENSOR
PART 3740458

PRESSURE REGULATOR (P47043-19)
PART 3740427

Figure 56. Post-Endurance Test Parts (Engine Serial No. 3301)

STARTER (P47043-8) PART 3505055

ALTERNATOR ASSEMBLY (P47043-18) PART 2045042-2-1

FUEL CONTROL ASSEMBLY (P47043-6) POWER CONDITIONING UNIT (P47043-7) PART 3740425

PART 3740463-1

Figure 57. Post-Endurance Test Parts (Engine Serial No. 3301)

MP-37363

4.8.2 Engine Serial No. 3302

A 4-minute acceptance test was performed on February 7, 1973, in accordance with ATP-8030, Rev. 6. This engine was then tested on February 7, 1973, in accordance with the requirements of IFRT engine No. 2 in QT-8090A.

The engine was subjected to the handling and maneuvering loads test followed by a 10-hour hot soak at plus 160°F. A cartridge start at 20,000-foot, M = 0.60, 60°F inlet conditions was conducted. Then a 29-minute endurance test during which the engine performed transitions to Phoenix altitude, M = 0.85, 169°F inlet conditions. The engine was shut down because of a sudden rise in rear bearing temperature due to depletion of available lubricant (MIL-L-23699). The condition of the hardware after the test was generally excellent. One stator vane burn-through was observed. Figure 60 shows the recordings, and Figure 61 presents the engine thrust information obtained during this run.

4.8.3 Engine Serial No. 3310

This engine was tested to evaluate the quantity of Mobil Jet II lubricant available to the rear engine bearing. The testing was conducted on February 1 and 2, 1973. The test consisted of a standard acceptance test followed by a 10-hour, 160°F soak and a cartridge start at 20,000 foot, M = 0.6, 60°F inlet conditions. Subsequently, the engine completed a 32-minute endurance test. The after-test condition of the engine bearings and other lubricated components was very good, indicating that an adequate quantity of lubricant was available during the test.

4.9 Diffuser-Combustor Improvement Program

The purpose of these tests was to evaluate the diffuser-combustor system effect upon turbine inlet temperature distribution. During acceptance tests started but not completed in February 1973, nozzle

vane distress occurred. Due to this distress, an intensive diffusercombustor improvement development program was conducted before starting the IFRT.

During this development program, back-to-back testing of a complete engine at full speed without combustion was used to refine the midframe design. A midframe Diffuser Part 3740406 used during the aborted acceptance testing was the reference design (see Figure 54). The improved diffuser design, Part 3740479, developed through the back-to-back rig testing is shown in Figure 62. The improved diffuser design is hand-finished smooth from the as-cast surface in order to provide consistent results, and incorporates radial poles in line with the fuel inlets. These poles are located in circumferential positions where there were no struts. Partial trip tubes to provide a uniform presentation of air to the combustor assembly were also incorporated. The pressure drop for this improved configuration was comparable to that of the reference design.

The combustor design was also improved, based upon a series of combustor rig tests with use of engine hardware. The original design Combustor, Part 3740293-1, had four rows of outer-wall dilution holes and three rows of inner-wall dilution holes, with each row containing 18 holes. The holes were all of the same diameter, pierced flat, with no flare. The improved Combustor, Part 3740478-1, utilized a different hole pattern with four rows of flared holes on the inner and outer walls. The holes in the first two rows were smaller in diameter, with 24 holes per row, and the two downstream rows had 12 holes per row. The new hole pattern and the flaring of the holes were intended to provide better mixing of the products of combustion with dilution air.

The improved combustor and midframe diffuser were assembled into engines and, prior to acceptance testing, subjected to a green run. This green run was conducted with the use of an exhaust nozzle instrumented with 33 equally spaced rows of three thermocouples. The maximum

Figure 62. Improved Diffuser Part 3470429.

allowable temperature spread factor (TSF) at a fuel-air ratio of 0.019 was 0.34 as evaluated from the following equation:

$$TSF = \frac{T_4 Maximum - T_4 Average}{T_4 Average - T_3 Average}$$

where T₄ = turbine inlet temperature, °F

T₃ = compressor discharge temperature, °F

The green-run TSF results for the IFRT engines are given in Section 6.4.

5.0 INITIAL FLIGHT RATING TEST (IFRT)

5.1 Purpose

The purpose of the test was to demonstrate the capability of the Model XJ401-GA-400 Expendable Turbojet Engine (AiResearch Part 3740300-1) to meet the IFRT requirements of QT-8090A, dated February 5, 1973. This test satisfies the initial flight rating test as described in Paragraph 4.3.2, Part III, of AiResearch Model Specification SC-8029-A, for the Naval Air System Command Model XJ401-GA-400 Engine, Missile, Turbojet.

5.2 Summary

5.2.1 Abstract

The initial flight rating tests were conducted on two engines. The engines and the tests they completed are listed as follows:

IFRT Engine No. 1

- o Green run [to determine temperature spread factor (TSF)]
- o Acceptance (ATP) (Windmill and altitude start, 4 minutes total run)
- o Low-temperature soak (minus 65°F for 10 hours)
- o Altitude start (20,000 feet, cold day)
- o Inlet distortion operation (10 percent CDI screen installed in inlet)
- o Design-point operation (tropical day, sea-level)
 vibration survey (total run time of 20.5 minutes)
- o Disassembly and inspection

IFRT Engine No. 2

- o Green run [to determine temperature spread factor (TSF)]
- Acceptance (ATP) (Windmill and altitude start,
 4.4 minutes total run)
- o Handling and maneuver loads (17.5 g's)
- o High-temperature soak (160°F for 10 hours)
- o Altitude start (20,000 feet, hot day)
- o Design-point operation (tropical day, sea-level) vibration survey (total run time of 26.2 minutes)
- o Disassembly and inspection

Testing was started on March 30, 1973, and completed on April 7, 1973. A summary listing of the acceptance test data for each engine, corrected to the design point (sea level, Mach 0.85, 90°F ambient temperature), and with a 3.8-kw output, is presented as follows:

TABLE XIV. ACCEPTANCE TEST.

IFRT No.	Net Thrust (Pounds)		TSFC (lb/hr/lb)			Measured Gas		
	Spec. (Min)	Engine	Percent *Margin	Spec. (Max)	Engine	Percent *Margin	Temp. (°F) Spec. (Max) E	Engine
1	600	607	+1.2	1.687	1.641	+2.7	1582	1553
2	600	611	+1.8	1.687	1.627	+3.6	1582	1580

A summary listing of the IFRT design-point performance data at 16 minutes of run time is presented in Table XV. The data is corrected to the design point (sea level, Mach 0.85, 90°F ambient temperature).

^{*}Percent margin relative to Model Specification requirements.

Positive margin indicates higher thrust or lower TSFC than required.

TABLE XV. IFRT TEST.

IFRT No.	Net Thrust (Pounds)		TSFC (lb/hr/lb)			Measured Gas		
	Spec. (Min)	Corr.	Percent *Margin	Spec. (Max)	Corr.	Percent *Margin	Temp. (°F) Spec. (Max)	Corr.
1	600	619	+3.2	1.687	1.631	+3,3	1612	1587
2**	600	578	-3.7	1.687	1.602	+5.0	1612	1418

^{*}Percent margin relative to Model Specification requirements.

Positive margin indicates higher thrust or lower TSFC than required.

5.2.2 Conclusions

From the test results it is concluded that the Model XJ401-GA-400 Expendable Turbojet Engine has met the requirements of the initial flight rating tests for the Harpoon Missile, as specified in QT-8090A.

This report is the Final Test Report and also the Final Report for the contract.

5.2.3 Recommendations

It is recommended that the tests reported herein be accepted by the Naval Air System Command as verification of the capability of the Model XJ401-GA-400 Expendable Turbojet Engine to meet the requirements of AiResearch Model Specification SC-8029A.

^{**}Demonstrated performance shown is discussed in Paragraph 5.8.4.

5.3 References

- o AiResearch Model Specification SC-8029-A, Engine, Missile, Turbojet, for Naval Air Systems Command Model No. XJ401-GA-400, AiResearch Part 3740300-1, 30 November 1972.
- o AiResearch Acceptance Test Procedure QT-8030, Rev. 6, for the Naval Air Systems Command Model XJ401-GA-400 Expendable Turbojet Engine, January 18, 1973.
- o AiResearch Initial Flight Rating Test Procedure QT-8090A, for Naval Air Systems Command Model XJ401-GA-400 Expendable Turbojet Engine, February 5, 1973.

5.4 Engine Description

The type and model designation of this turbojet engine is XJ401-GA-400 as assigned by the Naval Air Systems Command, U.S. Navy. The engine has a circumferential inlet. The engine comprises a four-stage axial compressor driven by a common rotor shaft connected to a single-stage axial turbine. Compressor discharge air is directed through an in-line annular air-blast atomization combustor. Combustion gases pass through the turbine and are discharged axially through an engine exhaust cone. A cross-section of the engine is shown in Figure 63.

The engine control system provides for automatic control of the engine from initiation of the start sequence through acceleration to maximum speed and power throughout the engine operating envelope. This schedule is used to accelerate the engine to maximum power and to maintain the maximum power setting without requiring an external signal input. The control system furnished with the engine consists of a constant-displacement fuel pump, a fuel metering section, and an airframe-mounted electronic computer assembly.

Figure 63. Cross-Section View of XJ401-GA-400.

The engine is started by a solid-propellant starter and a pyroflare, both of which are ignited by electrical squibs. The flaming products of the pyroflare ignite the fuel-air mixture in the combustor, and the combusted products drive the turbine. The fuel control schedules fuel automatically during starting, acceleration, and operation.

The engine rotor shaft is simply supported on two antifriction bearings. Each of the bearings is lubricated by a self-contained oil-wick lubrication system.

The engine is capable of furnishing a supply of dc electrical power.

Engine components are described in detail in Section 3.0, Paragraph 3.2.

5.4.1 Test Engine Identification

Photographs of the engine attached to its mounting plate, showing the right and left side in a front and rear oblique view, are shown in Figures 64 through 67.

The engine assembly traveler and engine build runout sheet, are contained in Section 6.1, and component inspection records for both engines are contained in Section 6.2 of this report. The engine parts for both engines were placed in the Government Bond Room after the post-test disassembly and inspection.

5.5 Facility Description

5.5.1 Test Setup

The acceptance tests and all initial flight rating tests except the handling and maneuvering loads test were conducted in the AiResearch

Figure 64. IFRT Engine Model XJ401-GA-400 (Right Front Oblique View).

Figure 66. IFRT Engine Model XJ401-GA-400 (Right Rear Oblique View).

Figure 65. IFRT Engine Model XJ401-GA-400 (Left Front Oblique View).

Figure 67. IFRT Engine Model XJ401-GA-400 (Left Rear Oblique View).

Large Altitude and Cold Chamber No. 2. The exterior of the chamber and the interior of the control room are shown in Figure 68. The air inlet ducting and a portion of the interior of the chamber, the control and instrument panels of the control room are shown in photographs contained in Section 6.2.

The handling and maneuvering loads test was conducted on the centrifuge test rig at the AiResearch San Tan Facility. The centrifuge with the engine mounted in the Y axis is shown in Figure 69.

5.5.2 Engine Installation

The engine installed in the Altitude Chamber thrust stand is shown in Figure 70. A close-up view is shown in Figure 71.

Isolation of the engine from the inlet ducting was accomplished with use of a labyrinth seal at the engine inlet. The isolation was verified prior to the engine tests by application of a measured force to the engine mount ring and comparison of this force with the control room thrust readout. The readout was within 1 pound of the applied force, with the applied force equal to 600 pounds.

Figure 72 presents a schematic that shows the plenum used to duct the inlet air to the engine. The plenum acts as a mixing chamber for the conditioned air supplied to the engine. It also contains a bellmouth, inlet condition sensing probes, and a dump valve. The plenum permits operation of the engine at the required inlet pressures and temperatures.

A vacuum system evacuates the chamber to maintain the required ambient altitude and exhaust pressure conditions.

EXTERIOR VIEW

CONTROL ROOM

Figure 68. Large Altitude and Cold Chamber No. 2.

Figure 69. Engine Installed on the Centrifuge in the Y-Axis.

Figure 70. Engine Mounted on the Thrust Stand in the Altitude Chamber.

Figure 71. Close-up View of Engine Mounted on the Thrust Stand in the Altitude Chamber.

Altitude Chamber Inlet Plenum Schematic. Figure 72.

The electrical system used for starting, stopping, and overspeed protection of the engine is shown in Figure 73. Safety for the pyrotechnic circuits was provided by an electrical connector wired, as shown in Figure 73, so that when installed in the chamber it both grounded the circuits and ensured interruption of the power supply. Further protection against inadvertent firing of the pyrotechnic devices was provided by a key-actuated switch in the control circuits.

The engine test setup in the altitude chamber is own schematically in Figure 74.

5.5.3 Instrumentation

The tests were conducted with the engine installed in a fully instrumented test setup. The parameters measured and the methods of recording them are listed in Section 6.2.

All instrumentation was of the laboratory precision type, and was certified by standards derived from those of the National Bureau of Standards. Certification of instrumentation used during testing was accomplished by the AiResearch Instrumentation Laboratory under the surveillance of the AiResearch Quality Control Department. A tag or label denoting the date of calibration and date of expiration of the certification was attached to each instrument.

The equipment and instrumentation used for the tests are listed in Section 6.2. This table lists the instrument type; manufacturer; model, type, or size; range; and accuracy limits. Specific information concerning the instrumentation used, including serial numbers, date of calibration certification, and location of the instrument in the test setup, is also shown in Section 6.2.

O FIRING SWITCH WHEN BALL IS NOT USED. ALSO ARMING SWITCH FOR BALL FIRING.

@ FOR USE WITH BALL ONLY

(3) KEY SWITCH IS OF A DESIGN THAT WILL NOT PERMIT KEY RENOVAL WITHOUT BEING IN "OFF" POSITION.

Figure 73. Electrical Control System.

.:O-

Figure 74. Engine Test Setup in the Altitude Chamber.

5.6 Test Procedure

Testing was conducted in accordance with the Initial Flight Rating Test Procedure, QT-8090A.

Prior to starting the initial flight rating tests, each engine satisfactorily completed a green run, followed by an acceptance test in accordance with ATP-8030, Rev. 6, dated January 18, 1973. The run time during acceptance testing for engine No. 1 was 4.4 minutes, and for engine No. 2, 4 minutes. The other tests, as listed above for each engine, are summarized by engine number as follows:

IFRT Engine No. 1 - The engine was installed in the test chamber with a 10-percent CDI screen in the inlet. Following a low-temperature soak at minus 65°F for 10 hours, the engine was cartridge-started at a simulated altitude of 20,000 feet (cold day), inlet Mach No. 0.38. The start was successful, and after stabilization of 1 minute at these conditions, the engine was transitioned to an inlet Mach number of 0.90 at 20,000 feet and then to sea level at Mach No. 0.90 and run for l minute at each condition at maximum thrust. The operating conditions were again changed to transition the engine to the design-point test condition (Condition 4, tropical day, Mach 0.85, sea level), and the engine was run at this condition until shut down. The engine performance and vibration levels throughout this test were satisfactory, and the engine accumulated a total run time of 20.5 minutes, with shutdown due to a change in bearing temperature.

<u>IFRT Engine No. 2</u> - This engine was subjected to the handling and maneuver loads test on a centrifuge, in which the engine received loads of 17.5 g's in each of three mutually perpendicular planes. A visual inspection of the engine following the test showed no

damage. The engine was then installed in the altitude chamber and subjected to the high-temperature soak test at 160°F ambient for 10 hours. Following completion of the soak period, the engine was cartridge-started at a simulated altitude of 20,000 feet (hot day), inlet Mach number of 0.6 (Condition 5). The start was successful, and after stabilization at the start condition and a run time of 1 minute, the engine was transitioned to the design point (Condition 4, tropical day, Mach 0.85, sea level) and was run at this condition until shut down. The engine accumulated a total run time of 26.2 minutes, with shutdown due to a change in bearing temperature.

Disassembly inspection of each engine showed all components to be in excellent condition and capable of continued operation, except for the thrust ball bearing.

5.7 Test Results

5.7.1 IFRT Engine No. 1

5.7.1.1 Green Run

Prior to the acceptance test, the engine was assembled with the improved diffuser-combustor assembly (see Paragraph 4.9), and subjected to a green-run. The test was conducted on the engine test stand with a special exhaust nozzle equipped with 99 thermocouples to measure T_{t5} as shown in Figure 75. The purpose of the green run was to determine the temperature spread factor (TSF). The maximum allowable TSF at a fuel-air ratio of 0.019 is 0.34. The actual TSF for this engine was 0.23 and the data for this test are contained in Section 6.4. The engine was tested at the following conditions:

LEFT SIDE VIEW

RIGHT SIDE VIEW

VIEW LOOKING FORWARD

Figure 75. Instrumented Green-Run Exhaust Nozzle

(Tt7 Rakes Not Shown).

Altitude = Phoenix

Mach number = 0.85

Total inlet temperature = 50°F

Fuel flow = 930 pph

5.7.1.2 Acceptance Test

The acceptance test was conducted in accordance with ATP-8030, Rev. 6, on April 6, 1973. The engine, installed in the Altitude and Cold Chamber No. 2 (see Figures 68, 70, and 71) completed a Phoenix altitude windmill start, and the control was set to provide specification thrust. After setting the control, a 10-percent inlet distortion screen was installed in the engine inlet and a 20,000-feetaltitude cartridge start was made. The run time during the acceptance test was 4.4 minutes.

The net thrust produced exceeded the minimum thrust required. The corrected engine performance data and log sheet for the test are contained in Section 6.4. Two separate automatic recordings (Sanborn traces) were made of the required parameters; they are identified as Traces No. 1 and 2, and are also contained in Section 6.4.

5.7.1.3 Low-Temperature Soak

Following completion of the acceptance test, the engine remained in the altitude and cold chamber, and was subjected to a 10-hour cold soak in accordance with QT-8090A. The chamber ambient temperature was reduced until the engine skin temperature on the plenum indicated minus 65°F, the starting point for the 10-hour soak. A data sheet for the low-temperature soak is contained in Section 6.4.

At the end of the soak period, a check was made of the printout from the digital computer, and data point P_{t7} was found to be inoperative. It was found that due to the extreme cold temperature, the data point selector (laboratory equipment) had malfunctioned. Consequently, P_{t7} was manually recorded during the remainder of IFRT No. 1 tests.

5.7.1.4 Altitude Start

Following completion of the 10-hour minus 65°F soak, the engine was cartridge-started at a simulated altitude of 20,000 feet (cold day) Mach 0.38, with inlet distortion. The start was successful, and the engine was run for 1 minute at the start condition (Condition No. 1). During this condition, the required data scan was made; and the recording traces, identified as trace No. 1 and No. 2 for IFRT No. 1, are contained in Section 6.4.

Prior to the successful altitude start reported above, two unsuccessful starts were attempted. The first attempt was unsuccessful due to the pyro-flare igniter not operating because of miswiring in the electrical connector. The second unsuccessful attempt was caused by an insufficient burn of the starter squib. The squib came from a new purchase lot of squibs, in which many were found to be defective. Details of the correction of these problems are presented in Paragraph 5.8.2.

The minus 65°F ambient temperature was maintained in the chamber during the igniter or squib replacements, to prevent disruption of the cold-soak effect.

5.7.1.5 Inlet Distortion Operation

During the altitude start of the acceptance test and for all IFRT No. 1 tests, a blockage screen was installed in the duct upstream of the engine inlet. This screen, as shown in Figure 76, produced a one-per-revolution 180-degree inlet air-pressure distortion pattern. The circumferential distortion index (CDI) measured during design-point operation was 12.4 percent. Detailed information on this screen is presented in Paragraph 5.8.1.

Figure 76. Inlet Distortion Screen.

After running at 20,000 feet, Mach 0.38, and minus 34°F total inlet temperature for 1 minute, the engine was transitioned into Condition No. 2 by first increasing the inlet total temperature to plus 21°F, and then increasing the ram ΔP to achieve a simulated Mach number of 0.90 while maintaining 20,000 feet. The engine was run at this condition for 1 minute. The engine was then transitioned into Condition No. 3 in steps as follows:

- (a) Inlet total temperature increased to 110°F
- (b) Ram ΔP increased to 17 inches Hg
- (c) Altitude reduced to Phoenix
- (d) Ram ΔP final increase to 23.5 inches Hg (Mach 0.90)
- (e) Inlet total temperature final increase to 179°F

The engine was run at Phoenix altitude, Mach 0.90, and 179°F total inlet temperature (Condition 3) for at least 1 minute.

The IFRT tests demonstrated the ability of the engine to start and operate satisfactorily with inlet distortion in excess of the model specification requirement of 10-percent CDI.

5.7.1.6 Design-Point Operation

The engine was again transitioned in two steps to the design point (Condition 4, tropical day, Mach 0.85 at sea level). The inlet total temperature was reduced to 169°F, and then the ram ΔP was reduced to 20.7 inches Hg. The engine was run at this condition until it was shut down due to a change in the engine thrust bearing temperature. The engine accumulated a total run time of 20.5 minutes, with the performance and vibration levels being satisfactory throughout the test.

The engine thrust bearing temperature slope is presented in detail in Paragraph 5.8.3 herein. The vibration survey conducted during the test is presented in detail in Paragraph 5.7.3. The orrected engine design-point performance data and log sheet for the test are contained in Section 6.4. The automatic recordings (Sanborn traces) were reduced for inclusion in this report and are contained in Section 6.4.

5.7.1.7 Disassembly and Inspection

IFRT Engine No. 1 was disassembled on April 9, 1973. The disassembly was witnessed by AiResearch Quality Control and NASC representatives. Each part was visually inspected and the critical parts received a magnetic-particle or fluorescent-penetrant inspection. In addition, the critical parts were dimensionally checked and the dimensions were recorded in the "AFTER" column on the Quality Control Reinspection Record cards. These cards and the teardown deficiency write-up data sheet are contained in Section 6.3.

The ball thrust bearing had experienced distress and all of the sixteen balls showed evidence of metal spalling and melting due to the high temperatures generated. Melted ball material was deposited on the bearing races and on the adjacent end of the alternator. This condition is shown in Figure 77-A,-B, and -C, and Figure 78-A.

A portion of the graphite-filled spoxy abradable coating on the compressor rotor behind the third-stage blades was missing, as shown in Figure 78-B. This condition has commonly been seen on development engines and is considered acceptable after this endurance time.

With the exception of a minor rub of the first-stage compressor blade tips as shown in Figure 79-B, the balance of the hardware was in excellent condition, as shown in Figures 77-D; 78-C,-D; 79-A,-C,-D; and 80 through 84. The effective area of the combustor/nozzle assembly was determined by a flow test to be 12.14 square inches. This area is an increase of 1 percent over the 12.01 square inches measured before assembly and test of the engine. This variation is within acceptable limits.

Control system components were examined and tested on the bench following engine teardown, and the test points were within the required limits. Figure 85 shows the pre- and post-test calibration of the Fuel Metering Assembly Part 3740425-1, and Figure 86 shows the pre- and post-test calibration of the Pressure Control Valve Part 3740427. The wiring harness assembly also checked satisfactorily following the test. Data sheets of the pre- and post-test checks of these components are contained in Section 6.4.

5.7.2 IFRT Engine No. 2

5.7.2.1 Green Run

Prior to the acceptance test, the engine was assembled with the improved diffuser-combustor assembly (see Paragraph 4.9) and subjected

A. BALL BEARING PART 3740290-1 SERIAL NO. 3-106

B. BALL BEARING PART 3740290-1 SERIAL NO. 3-106

C. BALL BEARING PART 3740290-1 SERIAL NO. 3-106

D. ROLLER BEARING PART 358723-2 SERIAL NO. 2708

Figure 77. IFRT Engine No. 1, Condition of Parts after 20 Minutes Endurance Run Time. Test Dates: April 6 and 7, 1973.

MIDFRAME AND ALTERNATOR

COMPRESSOR ROTOR PART 3740393-1 В. SERIAL NO. AC-17

C. COMPRESSOR ROTOR PART 3740393-1 D. COMPRESSOR ROTOR PART 3740393-1 SERIAL NO. AC-17

SERIAL NO. AC-17

Figure 78. IFRT Engine No. 1, Condition of Parts After 20 Minutes Endurance Run Time. Test Dates: April 6 and 7, 1973.

SERIAL NO. 72X150

A. COMPRESSOR STATCR PART 3740270-2 B. COMPRESSOR STATOR PART 3740270-2 SERIAL NO. 72X150

C. COMBUSTOR AND NOZZLE PART 3740292-3, SERIAL NO 1479

COMBUSTOR AND NOZZLE PART D. 3740292-3, SERIAL NO. 1479

Figure 79. IFRT Engine No. 1, Condition of Parts After 20 Minutes Endurance Run Time. Test Dates: April 6 and 7, 1973.

A. COMBUSTOR AND NOZZLE PART 3740292-3, SERIAL NO. 1479

B. TURBINE ROTOR PART 3740283-3 SERIAL NO. 958

C. TURBINE ROTOR AND SHAFT PART 3740283, SERIAL NO. 958

D. SPUR GEAR PART 3740394-1 SERIAL NO. 3

Figure 80. IFRT Engine No. 1, Condition of Parts after 20 Minutes Endurance Run Time. Test Dates: April 6 and 7, 1973.

MIDFRAME PART 3740387-3 SERIAL NO. 72X126

В. MIDFRAME PART 3740387-3 SERIAL NO. 72X126

C. ALTERNATOR PART 2045042-1-1 D. ALTERNATOR PART 2045042-1-1 SERIAL NO. 102-147

SERIAL NO. 102-147

Figure 81. IFRT Engine No. 1, Condition of Parts After 20 Minutes Endurance Run Time. Test Dates: April 6 and 7, 1973.

A. REAR BEARING SUPPORT PART 3740409-1, SERIAL NO. 72X126

B. FRONT BEARING SUPPORT PART 3740408-1, SERIAL NO. 72X126

C. STARTER PART 3505055-4

D. EXHAUST NOZZLE PART 3500205-1

Figure 82. IFRT Engine No. 1, Condition of Parts after 20 Minutes Endurance Run Time. Test Dates: April 6 and 7, 1973.

A. FUEL CONTROL SYSTEM

B. POWER CONDITIONER PART 3740463-1 SERIAL NO. 22-119

C. RELIEF VALVE PART 771-612-9301 D. SERIAL NO. 6

D. PYROTECHNIC IGNITER PART 3740403-1

Figure 83. IFRT Engine No. 1 Condition of Parts after 20 Minutes Endurance Run Time. Test Dates: April 6 and 7, 1973.

A. OIL SLINGER PART 3740381-1 SERIAL NO. 3

B. RESILIENT MOUNT PART 3740254-1, SERIAL NO. 3

Figure 84. IFRT Engine No. 1, Condition of Parts after 20 Minutes Endurance Run Time. Test Dates: April 6 and 7, 1973.

Figure 85. Calibration Results of the Fuel Control Assembly Part 3740425-1, Serial No. 2274-3 (IFRT Engine No. 1).

Figure 86. Calibration Results of the Pressure Control Valve Part 3740427-1, Serial No. 009 (IFRT Engine No.1).

to a green run. The test was conducted on the engine test stand with a special exhaust nozzle equipped with 99 thermocouples to measure T_{t5} (see Figure 75). The purpose of the green run was to determine the temperature spread factor (TSF). The limits and conditions for this test are the same as for IFRT No. 1 green run (refer to Paragraph 5.7.1.1). The actual TSF for the engine was 0.23, and the data for this test are contained in Section 6.4.

5.7.2.2 Acceptance Test

The acceptance test was conducted in accordance with ATP-8030, Rev. 6, on April 1, 1973. The engine, installed in Altitude and Cold Chamber No. 2 (see Figures 68, 70, and 71), completed a Phoenix altitude windmill start, and the control was set to provide specification thrust. After setting the control, a 20,000-feet Mach 0.60 altitude cartridge start was made. The run time during acceptance test was 4 minutes.

The net thrust produced exceeded the minimum thrust required. The corrected engine performance data and log sheet for the test are contained in Section 6.4. Two separate automatic recordings (Sanborn traces) were made of the required parameters, and are also contained in Section 6.4.

Prior to the above-described acceptance test, an earlier acceptance test was run on the engine. During inspection of the engine after completing the run (4 minutes in duration) the turbine blades were found to have foreign object damage. Investigation of the engine and test stand ducting revealed no loose items or foreign objects in the system. The conclusion was that there was possible contamination in the processed air supplied to the engine inlet. The damaged components were replaced prior to the successful acceptance test.

5.7.2.3 Handling and Maneuver Loads Test

Following completion of the acceptance test, the engine was transferred to the AiResearch San Tan Facility for the handling and maneuver loads test. The engine was mounted on the centrifuge fixture at a 162-inch radius of rotation, with the front of the engine pointed inboard, representing the X-axis. With the engine in a non-operating condition, the centrifuge was rotated at 61 to 65 rpm for 15 seconds. This rotational speed, with the engine at the 162-inch radius, produced a 17.5-g load. A photograph of the engine mounted on the centrifuge in the X-axis is shown in Figure 87.

The above procedure was repeated with the engine positioned in the Y-axis and the Z-axis. For the Y-axis the engine was positioned with the top inboard and the inlet 90 degrees to the centrifuge arm. For the Z-axis the engine was positioned with the left side outboard and the inlet 90 degrees to the centrifuge arm. Photographs of the engine on the centrifuge in the Y-axis and the Z-axis are presented in Figures 88 and 89.

Following completion of the test, the engine was removed from the centrifuge for a visual examination. This examination revealed no evidence of damage as a result of the test. The engine was then transferred to the Large Altitude and Cold Chamber No. 2 for the high-temperature test.

5.7.2.4 High-Temperature Soak

With the engine installed in the test chamber, it was subjected to a 10-hour high-temperature soak in accordance with QT-8090A. The chamber ambient temperature was increased until the engine skin temperature as measured on the plenum indicated 160°F. The 10-hour soak was started from this point. A data sheet for the high-temperature soak is contained in Section 6.4.

Figure 87. Engine Mounted on the Centrifuge in the X-Axis.

Figure 88. Engine Mounted on the Centrifuge in the Y-Axis.

Figure 89. Engine Mounted on the Centrifuge in the Z-Axis.

5.7.2.5 Altitude Start

Following completion of the 10-hour 160'F soak, the engine was cartridge-started at a simulated altitude of 20,000 feet (hot day), Mach 0.60, with no inlet distortion. The start was successful, and the engine was run for 1 minute at the start condition (Condition No. 5). The required data scans were made, and the recording Traces No. 1 and 2 for IFRT No. 2 are contained in Section 6.4.

With the engine running at Condition No. 5, it was transitioned into its design point (Condition 4, tropical day, Mach 0.85 at sea level) in the following steps:

- (a) Ram ΔP increased to 9.5 inches Hg. (Mach 0.90.)
- (b) Inlet total temperature increased to 110°F
- (c) Ram ΔP increased to 17.4 inches Hg. (Mach 0.85)
- (d) Altitude reduced to Phoenix ambient
- (e) Inlet total temperature final increase to 169°F

5.7.2.6 Design-Point Operation

The engine was run at the design-point until shut down due to a change in the engine thrust-bearing temperature. The engine accumulated a total run time of 26.2 minutes, with the performance and vibration levels being satisfactory throughout the test. Engine thrust was 3.7 percent below specification requirements during design-point operation. This was due to an inadvertent change in exhaust nozzle discharge coefficient. A complete discussion of this is presented in Paragraph 5.8.4.

The ball bearing temperature as a function of time is presented in Paragraph 5.8.3 herein. The vibration survey conducted during the test is presented in detail in Paragraph 5.7.3 herein. The corrected engine design-point performance data and log sheet for the test are contained in Section 6.4. The automatic recordings (Sanborn traces) were reduced for inclusion in this report and are contained in Section 6.4.

5.7.2.7 Disassembly and Inspection

IFRT Engine No. 2 was disassembled on April 4, 1973. The disassembly was witnessed by AiResearch Quality Control and NASC representatives. Each part was visually inspected, and the critical parts received a magnetic-particle or fluorescent-penetrant inspection. In addition, the critical parts were dimensionally checked, and the dimensions were recorded in the "AFTER" common the Quality Control Reinspection Record cards. These cards and the teardown deficiency write-up data sheets are contained in Section 6.3.

The ball thrust bearing had experienced distress due to depletion of the lubricant supply. The ball elements were discolored due to high temperature, and the silver plate on the separator was worn on the outside diameter and in the ball pockets. This condition is shown in Figure 90-D.

The compressor rotor exhibited a typical loss of a portion of the abradable coating behind the third stage blades, as shown in Figure 91-A and considered acceptable after this endurance time.

All other parts were in excellent condition, as shown in Figures 90-A,-B,-C; 91-B,-C,-D; 92; and 93. The effective area of the combustor/nozzle assembly (see Figure 90-A,-B, and -C) was determined by a flow test to be 12.10 square inches. This is an increase of 1 percent over the 11.98 square inches measured before assembly and test of the engine. This variation is within acceptable limits.

A. COMBUSTOR AND NOZZLE PART 3740292-3, SERIAL NO. 1480

B. COMBUSTOR AND NOZZLE PART 3740292-3, SERIAL NO. 1480

C. COMBUSTOR AND NOZZLE PART 3740292-3, SERIAL NO. 1480

D. THRUST BEARING AND SUPPORT PART 3740290-1, SERIAL NO 3-102.

Figure 90. IFRT Engine No. 2, Condition of Parts after 26 Minutes Endurance Run Time. Test Dates: March 30-April 4, 1973.

A. COMPRESSOR ROTOR PART 3740393-1 B. COMPRESSOR STATOR PART 3740270-2 SERIAL NO. AC-23 SERIAL NO. 72X142

D. MIDFRAME PART 3740387-3 SERIAL NO. 72X113

Figure 91. IFRT Engine No. 2, Condition of Parts after 26 Minutes Endurance Run Time. Test Dates: March 30-April 4, 1973.

A. FUEL CONTROL SYSTEM

B. ELECTRICAL SYSTEM

C. STARTER PART 3505055-4

Figure 92. IFRT Engine No. 2, Condition of Parts after 26 Minutes Endurance Run Time. Test Dates: March 30-April 4, 1973.

A. ROLLER BEARING

B. FUEL-CONTROL DRIVE GEAR

C. FORWARD BEARING CARRIER
Figure 93. IFRT Engine No. 2, Condition of Parts After 26 Minutes
Endurance Run Time. Test Sales: March 30-April 4, 1973.

Control system components were examined and tested on the bench following engine teardown, and the test points were within the required limits. Figure 94 shows the pre- and post-test calibration of the Fuel Metering Assembly Part 3740425-1, and Figure 95 shows the pre- and post-test calibration of the Pressure Control Valve Part 3740427. The wiring harness assembly also checked satisfactorily following the test. Data sheets of the pre- and post-test checks of the control-system components are contained in Section 6.4.

5.7.3 Vibration Survey

A vibration survey was conducted on each engine during the initial flight rating tests. The survey demonstrated compliance with the requirements that the compressor and turbine system be free from destructive vibration throughout the complete operating range of the engine. The vibrational characteristics of the compressor and turbine system are such that no fatigue cracks were present during the post-IFRT inspection.

Vibration was measured at the vibration sensor mounting point designated in the engine specification. The amplitudes of vibration as a function of time are shown in the automatic recording (Sanborn traces) Trace No. 1 for each engine, and are contained in Section 6.4. The vibration displacement units are in mils (1 mil = 0.001 inch double amplitude). The characteristics of this vibration were further investigated through the use of a frequency analyzer. The vibration signal was reduced to show the major frequency components that were present, as shown in Figures 96 and 97 for IFRT No. 1 and in Figures 98 and 99 for IFRT No. 2. The vertical scale is in mils, and the horizontal is frequency in cycles per second (Hertz).

For both tests, the major vibratory frequency was at shaft speed. During IFRT No. 1, a subsynchronous frequency appeared at

 \bigcirc = PRETEST (3-28-73) \square = POST-TEST (4-5-73)

Figure Calibration Results of the Fuel Metering Assembly Part 3740425-1, Serial No. 2274-3 (IFRT Engine No. 2).

Figure 95. Calibration Results of the Pressure Control Valve Part 3740427-1, Serial No. 011 (IFRT Engine No. 2).

DOUBLE AMPLITUDE - 0.5 MILS/CM
HORIZONTAL
FREQUENCY - 100 HZ/CM

Figure 96. Vibration Survey IFRT No. 1.

ENGINE SPEED = 36,000 RPM
ALTITUDE = PHOENIX
MACH NO. = 0.85
INLET TOTAL
TEMPERATURE = +169°F

VERTICAL

DOUBLE AMPLITUDE - 0.5 MILS/CM

HORIZONTAL

FREQUENCY - 100 Hz/CM

Figure 97. Vibration Survey IFRT No. 1.

DOUBLE AMPLITUDE - 0.5 MILS/CM

HORIZONTAL

FREQUENCY - 100 HZ/CM

Figure 98. Vibration Survey IFRT No. 2.

ENGINE SPEED = 36,000 RPM
ALTITUDE = PHOENIX
MACH NO. = 0.85
INLET TOTAL
TEMPERATURE = +169°F

VERTICAL

DOUBLE AMPLITUDE - 0.5 MILE/CM

HORIZONTAL

FREQUENCY - 100 E.Z. CM

Figure 99. Vibration Survey IFRT NO. 2.

approximately two-thirds of shaft speed. During IFRT No. 2, there were no significant frequencies other than shaft speed.

5.8 Supplemental IFRT Data

5.8.1 Circumferential Distortion Index (CDI)

The blockage screen used to produce the inlet air total pressure distortion pattern for testing of IFRT engine No. 1 is a semicircular screen made of 0.012-inch-diameter wire spaced 24 wires per inch in a square mesh (see Figure 75). This screen was installed between the cell inlet plenum and the transition duct ahead of the engine inlet.

The distortion pattern produced by the screen was measured during the test, by means of eight 5-element total pressure rakes installed in the transition duct at a plane 5 inches ahead of the leading edge of the first-stage compressor vanes. The rakes were circumferentially equally spaced. The five pressure probes on each rake were radially located so that each probe was centered in one of the five equal-area rings. The method of calculating the CDI from the total pressure measurements is shown in Figure 100. The CDI measured during design-point operation was 12.4 percent. The computer output for the CDI calculations is shown in Figure 101.

5.8.2 Non-Operation of Ignitors

The initial altitude start attempt on IFRT Engine No. 1, was not successful due to human error. Although the engine was accelerated properly by the cartridge starter, the pyroflare ignitor did not operate. The source of the problem was determined to be miswiring of the pyroflare ignitor to an electrical connector. The ignitor was miswired in such a manner that each of the bridgewires was short circuited to one pin of the connector.

 $RDI = \frac{\overline{p}_{TR(max)} - \overline{p}_{TR(min)}}{\overline{p}_{T(avg)}}$

There:
$$A_L$$
 = Continuous portion of A_R wherein the measured total pressures are less than $P_{TR(avg)}$
 A_R = Annulus area of ring at distortion measurement plane

 P_T (avg) = Average total pressure at the distortion measurement plans (all rings)

 $P_{TR(avg)}$ = Average total pressure of ring under consideration

 $P_{TR(max)}$ = Highest total pressure in ring under consideration

 $P_{TR(min)}$ = Lowest total pressure in ring under consideration

 $P_{TR(low)}$ = Area weighted average total pressure in A_L of ring under consideration

 $P_{TR(max)}$ = Maximum $P_{TR(avg)}$ for all rings

 $P_{TR(min)}$ = Minimum $P_{TR(avg)}$ for all rings

 $P_{TR(min)}$ = Minimum $P_{TR(avg)}$ for all rings

 $P_{TR(min)}$ = Shape factor = $\frac{\pi}{2}$ $P_{TR(avg)}$ - $P_{TR(low)}$ $P_{TR(min)}$

Figure 100. Numerical Procedure for Calculating Circumferential and Radial Distortion Indices (CDI and RDI).

TIME 15 12136137	00.								
Paint No. 1	RADIUS .		3.070			3.970		NO. OF LOES	44444 - 124
	801		3,501			3,561		100	.000 .000 .000 .000 .000 .000 .000 .00
	IP AADIUS .		2.959	4444444 6646 664		2.059		DELTAP/P	04444 E
ORIG/1 ATP	S		2.292			2,292		6	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
04/07/73 JFRT#1	16 INNER RADIUS	(UR RATIOS)	1.323		A PRESSURES	1,323	4444444 90444449 04046469	ш	1.005 1.016 1.005 1.005 1.618 0181681168
XJ401-64-400 LACC#2	GUTER RADIUS . 4.16	TABLE OF PRESSURES	RAKE RADII =	MN WN	TABLE OF EQUAL AREA	RAKE RADII B ANGLE	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	220	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Figure 101. Computer Output Data for CDI Calculations for IFRT No. 1

AIRESEARCH MANLIFACTURING COMPANY OF ARIZONA

A second start attempt was aborted when the starter grain did not ignite. Examination of the starter and its ignitor showed that the ignitor had fired, but with insufficient intensity to penetrate the foil covering over the starter cartridge. The defective ignitor was from a new lot, number HLX-2-9. Inspection of several other ignitors from the same lot revealed poor bonding of the Mylar seal over the end of the ignitor. The purpose of the Mylar seal is to allow the burning ignitor to build up sufficient pressure for rapid combustion. The probable cause of the aborted start was failure of the poorly bonded Mylar disc to seal properly, resulting in slow burning of the ignitor rather than a high energy explosion.

A new ignitor was selected and installed after several had been rejected by visual inspection. The start was then accomplished successfully.

5.8.3 Thrust Bearing Temperature Slope

During IFRT tests and preliminary IFRT testing, the engine thrust bearing temperature was continuously monitored and automatically recorded. When the bearing temperature indicated a sudden increase, while on the endurance condition, the test was terminated by an engine shutdown. Figure 102 is a plot of the thrust bearing temperature as a function of time, showing the slope of the temperature increase for IFRT Engines No. 1 and 2 and preliminary IFRT Engines Serial No. 3301 and 3302.

5.8.4 Exhaust Nozzle Effective Area Change

During the design-point operation portion of IFRT No. 2 it was noted that engine thrust was approximately 6 percent lower than the thrust level set during the acceptance test. The cause of the reduced thrust was determined to be due to a difference in starters

Thrust Bearing Temperature as a Function of Time for IFRT Engines. Figure 102.

between that used in acceptance testing and the starter used for the IFRT. This resulted in an effective area change in the exhaust thrust nozzle. The effect was the same as setting the engine speed during acceptance test to provide specification thrust with a small thrust nozzle, and then changing the nozzle for the IFRT to a larger size, without changing the engine speed setting.

A post-test investigation revealed that the ring gear on the "dummy" starter used for acceptance testing had become dislocated from its normal position and was shifted approximately 0.75 inch aft. The ring gear in the shifted position is represented in Figure 103 by the solidly shaded area. It was subsequently demonstrated, both analytically and by tests, that this shift was the cause of the difference in performance between the acceptance test and the IFRT.

With use of the geometric data from Figure 103, the change in discharge coefficient was determined from the curves of Figure 104 (these curves were plotted from model test data). It was analytically determined that the ring gear shift caused a 1.2-percent decrease in the flow coefficient of the exhaust nozzle. Inserting this new value of flow coefficient into the engine performance computer program resulted in a calculated change in thrust of approximately 5 percent. This calculation agreed very closely with the performance change seen between acceptance test and IFRT.

An engine test was performed to verify the analysis of the results of IFRT engine No. 2. The test results agreed with the analytical predictions. For this test, a development engine was installed in the same facility used for the IFRT. The tailpipe from the IFRT was used with the facility "dummy" starter, and the ring gear was retained by weldments 0.75 inch aft of its normal position. This was the same "dummy" starter used in the acceptance test of IFRT engine No. 2. The test was conducted at Phoenix altitude with a total inlet air temperature of 50°F, at Mach 0.85, as agreed to by NASC representatives in

• D, ~ EXIT JET DIAMETER	5.92 in
•D ~ DIFFUSER DUMP DIA.	3.35 /**
•L ~ SPACING	3.60 IN NOMENAL
•X ~ RING GEAR SHIFT	0.75 IN. APROXIMATE

	NOMINAL POSITION	SHIFTED POSITION
L/Ds	0.61	0.47
D/D,	0.57	0.57

Figure 103. Ring Gear Shift on IFRT Engine No. 2.

Figure 104. Exhaust Nozzle-Diffuser Interactions (IFRT Engine No. 2).

Phoenix on April 11, 1973. The engine speed was set to 32,000 rpm, and the performance data was recorded by computer.

Following the test the engine was shut down and the "dummy" starter was removed. The cartridge starter from IFRT engine No. 2, with the ring gear located normally, was then installed on the engine. With this being the only change to the engine, the above-described test was repeated. The data was reduced by the computer, and the results summarized in Table XVI, showed that the change in thrust noted during IFRT was caused by the changes in starter from the acceptance test to the IFRT.

TABLE XVI. EXPERIMENTAL VERIFICATION OF THE PERFORMANCE EFFECTS OF EXHAUST NOZZLE EFFECTIVE AREA CHANGE.

TEST CONDITIONS

Altitude = Phoenix (1050 feet)
Inlet total temperature = 50°F
Engine speed = 32,000 +0
-60 rpm

	Analytic	al Predicti	on	Test	Results	
	Ring Gear Aft	Ring Gear Normal	Δ	Ring Gear Aft	Ring Gear Normal	_Δ
F _n , 1b	547	520	5%	552	519	6%
W _f , lb/hr	807	767	5%	838	794	5%
Calculated T _{t7} , °F	1148	1096	52°F	1254	1185	69°F
Calculated T _{t4} , °F	1427	1375	52°F	1527	1462	65°F
P _{t7} /P _{am}	2.84	2.75	0.09	2.78	2.70	0.08
C _D	0.956	0.970	0.014	0.916	0.934	0.018

6.0 DOCUMENTS AND DATA

6.1 Test Item Definition

This section contains the assembly traveler and the parts list for each engine. The item and page numbers are as follows:

Item	IFRT Engine No.	Page
Assembly traveler	1 and 2	176
Parts list	1 and 2	177 - 190

		, '			,																		-								-
	PL REV OWG REV N	25		20 20	?	001	125		7	4																					
1		24	, 0	74		66	124		PEV I AI ITHORPITY I DAYE		+	+	H	+	-		+	-		+	t	-		\dagger			$\frac{1}{1}$	+	H		
	PL 3740301 SECTION SPEET LOF 12 SHEETS	23	2 9	7,		98	123		ov.																						
17	403 912 SH	22	4 7			9.7	122	PRAWIN	N N		1	-	\prod	1			4	+	Ц	1	1			+	ŀ		4	_			
	PL 374(SECTION SPEET LOF I	21	#			96	121		100	1 1	1	-		_			4	1		1	ļ			1		Ц	1	_	J. Tall	_	
		20	-	-		1 95	120	NO.	REVIAITHOBITYIDATE					\cdot																	
	ABLE	0	#-+~		╫╼╂	3 94	6	17.75 25.75	ILAIL		\dagger	T	H	†			†	+	H	+	\dagger		1	+	+		\dagger	t	H	t	
	9	9	# +	-	. -	2	7 118	18 SP	BOHL				$ \cdot $																	Ì	
	ASSY	1/2	# + +	9	4	<u>၈</u>	6 117	20NE			+	-	Н	+	\parallel		+	_	Ц	+	-		1	-	Н	4	+	+	1	+	ļ
	A	SHEE 1	# 1		╫╼╼╁	6 06	115 116	HANGE	JA:		1	L		1			1	-		+	L		1	H	Ц			+	\coprod	+	
	NO.		-	+	╫╼╅	6	14	~	PATE																						
	ENGINE TURBOJET	F 5	-	1	#	8	13	JI			T		Ħ	+		1	1			T			\dagger			+		+	Т	†	
H	-	2 2 2	37.3	#		8 7 8	11211		REVIAUTHORITY DATE (REVIAUTHORITY																	1					
	SSUE 1972) -	36	-	₩	86	Ξ		HISTO V		-	Н	+	+	\mathbb{H}	+	+		+	-		-	+	-	\sqcup	+	+	4	+	1	
	1. 100		35	#	₩	85	<u>C</u>		SON		-	ŀ		+		+	+	\coprod	+	-		+	+		Ц	4	1	\perp	+	igdash	
Н	ORGINAL P	20	34	11 -	 • • 	84	601		BEVE													ļ									
11	DEVICENT NO APPROVAL ORGANAL POPENIAL POPENIAL POPENIAL PROPERTY POPENIAL P	√ ∞	1	#		83	108	ω Έ	SILYI							1	T						†			1		Ħ	1	П	;
	APPOUNT APP	国 一	32	57		28	107	3000	THOF	-																					
1	ARCH N	00	31	56		- α	106	USE	VIAU		H	H	+	+	H	+	╀	H	+			+	+		H	+	+	otag	+	otag	
,	AIRESEARCH COC IDENT NO 99193	70	30	55	6		105	DWG DWG	132	70	72	7	75		27	S [2	12	린	7/2	161	3	<u> </u>	250		H	+	+	H	\downarrow	H	
		J 4	29	-	-	2	104	ONTRO P-SEE (IDATE	77-21-1	5.70	71:97-7	7-5-72	3-0-6	21-71-01		21-22-12	11-33	7-7-1	1227	2-1-2	1	3-2-13								
		SE	88	-	H	2	103	- SEEC OR ASSI	LA								iec.	S								T	T	\prod	T	П	
	ည	> 2	27				102	R ITEM PART C WER FU	HOR	77514	C715.12	ENGR	ロンプロ	さいるだ	577.3		INC. ADCEC	00	100	307	357	ソシンス	といいと								1
	PARTS	> - > -	8 = 2	-		₽ - >	<u>0</u>	1. VENDOR ITEM-SEE CONTROL DWG 2. SPARE PART OR ASSY-SEE DWG 3. CUSTOMER FURNISHED ITEM	REV AUTHORITY	1	H	E	שוע	H	\top	4	1 2	Ž.	لالا	1.	1		1	Н	4	+	-	H	\\/	,	,
		SE F	SHI	SHT	REV.		동	-'nn	国				Հ	1 1				ГЪ	华		SI	_	小	1 1		1		Ц	1.		
	to produce the second				٧4				177	7	1		,									-	4	-			·		b		

>		>0						111	
PL REV	>	REV REV	ω4. 2 >	<u>4</u> 4 <u>п</u> 2	<u> </u>	7 Z		DATE	0
	11	1	6,4	V V	. 4	4			H
R		Q D						AUTHORITY	
3	Z								Ш
R 3740301		TANT.						REV	Ш
4		0 12 -						DATE	
	ÀBI.							1-1-1	+
5	2							REV AUTHORITY	
۷	i A	-	×		0			№	Ш
П		38						PEV.	Ш
FNGINE ASSY	TURBOJET, EXPENDABLE	π π	ENGINE ASSY MID FRAME ASSY, SET, MATCHED IPLATE, IDENT SHIELD, MID FRAME	1144		X X X		NAME I	
	38	AN N	AM AM	49.5		- 5 5 5	9	<u> </u>	\mathbf{H}
TITLE	5	NOMENCLATURE OF DESCRIPTION	JGINE ASSY FRAME ASSY FIT, MATCHED ATE, IDENT HIELD, MID FRAME	TR A	<u> </u>	R, A	F	AUTH('RII	Н
		ומל ו	ZXX.TO	₹3, £	7	BA BA			
MY OF ARITHM	ORIGINAL ISSUE MARCH 9, 1972	Ö	Z Z Z	CLAMP HALF BAND, SPECIAL ALTERNATOR	NUT, SPL	BUS BAR, ALTNIR BUS BAR, ALTNTR BUS BAR, ALTNTR			
	PCH I	-						DATE RELIBERATION	7-75
	0 %	PART OR IDENTIFYING NO.	3740301-1 3740388-4 NDC 3740300- 3740280-	3740326-1 2045042-2-	3740322-1	3740317-1 3740318-1 3740319-1	.	> O = -	
		FYIN	22,33	03,)3.	<u> </u>	1	AUTHORIT ENSE ENSE	18
		PAR	44 % 4 2 % 3 4	4 4	74	444		AUTHORI ENGR ENGR	ENG
AINCECANCH MANUFACTURING COMP	99193	9	nm Hm	m x	3	minim		2	
	1 66	CODE						27-77 6-27-72	9-10-15
			m io N	V 0		01-1-0		C C C	9-1
<u>U</u>	Щ	ZONE	- G13 C16 G12	E16	E2	の 日 2 4 8 0		C S S S S S S S S S S S S S S S S S S S	5
ပ		द्वर	1 :		- • • •			AUTHORIT	ENTOR
PARTS 1.157		S S S S	0 W 4. A	7 00	'000'	0 - 2 5		511	
<u> </u>		<u>" </u>						اها ۱۱	ווינו

E C	PEV	5	N.	IO	UU	œ						DATE		
PL REV	350	4	4	44	44	4				••				1
စ္က	go											REV AUTHORITY		
9,	7											AUT		
Pt 3740301 SECTION												REV		
	AND QUANTITY REQD											DATE		
A. K.												H	$\dagger \dagger \dagger$	
LE ASSY,	ON HSWO					.(YX	(Y	~ ~	X	_	AUTHORITY		
E P	1				_	- 3	₹ ₹	AK:	₹ ₹	₹	4	REV AL	+	+
4	750			'n.	···	1	<u></u>						H	1
ENGINE TURBO JET EX	RO	e je Kasa	S,M	PIN RTNG	7	10					965	DAT	Ш	
TURE	TURE	9	ST(2)	NA	A,	33.0	K CK	CY C	XX	CK	THS.	WITY		
	1 子び	N. N.	MBUSTOR	T,PI	GE,	NU	CEI CEI	E L	PACER	Ć E	HSTORY	AUTHURITY		
197	NOM	BEARING		BOLT, PIN SPACER	SLINGE'R, OI	SLINGEROIL	SPACER	PA	SPA	SPACER		5	†††	1
ORIGINAL ISSUE		-	₩ Ö₹		<u>S</u>			m	4 10	10		\Box	12	1
8 3	PART OR IDENTIFYING NO.	0		37-	8	3740468-1		-65	3740289-	6	3		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+
5	FIN	3740290	3740292-	3740337- 3740338	3740381	3740468	3740289	3740289	222	28		AUTHORITY		1
	PAR	740	740	45	740	47	4	45	44	740		AUT	ENGR.	
99193		M	m	m w	m	mm	<u> </u>	n m	<i>ر</i> بر (in	\dashv	02	*44.	
1 \0	DEN				•							DATE	10-10-01	
	ZONE	BIZ	915	BII	BIA	BILL	B 4	B 24	8 14 14	4				
		<u> </u>	0	<u> </u>	<u>a</u>	8 4	<u> </u>	<u> </u>	<u> </u>	<u> </u>		AUTHORIT	ENGE	7 7 7
HARIS	O.S. P.S.	-				0-	- 01	W 4	rs	0				1
LIST	ON O	4 r.	9	<u> </u>	20	8-	22	n'i	<u> </u>	Ø.		RE.	49平	3

PL REV	כ	REV PEY	11	4	4 2	4		4 5		4. T	4 ۲	4 G	4 0				4 Σ	4 5	<u>い</u> サ		I L	Y DAIR		4	+ ,
R 3740301 PL REV		Y REOD																				AUTHORITY			1
Pt 374																					1	3-6-73 MEV			·
75.5	EXPENDABLE	NO AND									-											+			
NF A9	EXPE	H5W0 359	2		-					- 0	7 5	j	_		— . — .		ALT		··		OCV ALT	++			
TITLE ENGINE ASSY	TURBOJET	NOMENCLATURE OR U	RING, PISTON	SPUR	IND DELAY	CARRIER, RESILIET MI	MOUNT, RESILIENT	TURBINE ROTOR	CONNECTOR CHARGE	DING DISTON	7000 A A A S A Y	AESSOR'	ASSY -	COMPRESSOR	GNITER, PYROTECHNIC	PWR CONDITIONER	PWR CONDITIONER	PLATE, MOUNT, RELIEFVANG	, VALVE	NOT, SLOTED	THS SHET	1.38.1			
	6 1972	NOMEN	RING,	GEAR	IGNITER /	CARRIER	MOUNT	TURBIT	うしていること	SING	BOTO,	HAWO!	ROTOR	MOU	SANTER,	PWR CC	PWR CC	PLATE, NO	KELIEF, VALVE	FON.	計	11	11		
ANUTACTURING CO.	ORIGINAL 33 MARCH	PART OR IDENTIFYING NO.	ુ	3740384-1	3740469-1	3740396-1		3740283-3	374,3340-1	3740404-4			3740373-1		3 (40405-1	1	3-8940468	3740399-1	1006-7.10-111	37402711-1	V SP	ENGR	K EN 9 R 11-13-17 S	8	
	99193	CODE		0.1704.50																	חאוב ופ	1-1	ТТ.		!
	Ц	A ZONE	B	813	<u>5</u>	812	1812	<u>_</u>	F17	RIA	614		1 974	(0 in in	0	1 96	010		1 1514	ALITHORITY	11	KKKG KKKG		
PARTS		FIND SHI NO. NO.	1 22	58	62	30	3	32	33		35		35		0 m	71	m	300	, U.	7	BFV AL		10 C		

スペ	AN 		DATE	\prod_{i}
1080	G 44 44 444444	1 1	AUTHORITY [
Pt. 374	A LINE CONTRACTOR OF THE CONTR		٩	
ü			OB IE	
E ASSY, EXPENDABL			AUIHORITY	
m _(r)	$\mathbf{r} \mathbf{r} \mathbf{c} \mathbf{c}$		A L	
ENGINE	R SON	133	DAIL	
2		المرا	AUTHURITY	
ORIGINAL ISSUE	STATOR NOSE C TAIL PIP NOSE C TAIL PIP STARTER HARNESS TUBE A TUBE A SPACER SPACER SPACER SPACER SPACER SPACER	(学)	\mathbf{I}	
ORIGINAL MAYCH 9	900-4	1 6	+++	
OBIGINAL ISSUE	PART OR NO. 3740270-2 3740243-2 3500205-1 3505055-4 3740348-1 3740348-1 3740334-1 3740334-1 3740334-1 3740334-1 3740334-1 3740334-1 3740334-2 3740334-5		AUTHORI	
000 DENIED 9993	OF WWWWWWWWW TENTE	1.5	4-17-72 6-2-6-71	71-6-11
	200 000 000 000 000 000 000 000 000 000		080	
n	翌02-02		ENGRG ENGRG	ENGE
HARIS	50 - 444444444			77

REV	۵	REV REV		<u>a</u>	∢		<					<			DATE	П	П	
1	<u> </u>			4	4		4				p:	4			ட	#	H	o
R 3740301 PL	7	Y REOD													AUTHORITY			
37	SECTION	OLANTIY							-						Æ	Ш	Ц	
4	Щ	2-													DATE			
>	DA'BI	2													FaTY		П	
7007	PEN	HSW -	_			5	- V	_		- (<u> </u>	A A			AUTHORATY			
ł	מֿוַ	58								·					REV			!
NIE	SEE SEE	RO PO	PCU		9	Ś								9EET	DATE			
TITLE FNGINE		ノシの	BRACKET MOUNTING, P.C.U		BRACKET, MTG CONNECTOR	KEW F	JARW WIRE	O-RING	O-RING	O-RING	WASHEK O-RING	LE	42	ISTORY THIS	AUTHURITY			-
OF ARIZO	DAICHUM ISSUE	NON	38A 000		SPA 174		といる	9-P	0-6			CABLE		픠	>	Ш]	
MAGMO	ORIGINAL NAME: H	o Z	_		ī	2-1			<u>SI3</u>	- 8	3 00	W		REVISION	DATE			
AMERCARCH MANUFACTURING COMPANY OF ARIZONA		PART OR IDENTIFYING NO.	3740325-1		3740341	3740338-1	59098-1-20	59412-01	S8990-013	59412-01	59412-018	58728642E			V AUTHORITY			
A	99193	COOE			117	** / C	, ,					U 7		1	DATE REV	27.97	1	;
	Ц	DWC	618		FI7	C4 C3) = 	HIS	612	G19 71.	E 8	Ē			S S	9	1	31
တ		द्भ			_		- 0	_	-			7			AUTHO E NCR	אפ		174
PARTS	LIST	FIND NO.	55		26	57	2 6	8	0	62	34	65		ı	REV A	٩		

ZEV	Ш	\ \$ \$	< < 4	4	∢	∢			4	٥		u			4		117	E E		П
PL REV	ш	1	444	4	4	4			4	4		4	•		4			YOME	-	
ō		g_																AUTHORITY		
g		Ħ L					,											AUT		
R 3740301	ĮŠ.	MILI																REV		
4	SECTION	0															1 1	DATE		
			·															-	H	H
ENGINE ASSY	TURBOJETEXPENDARI	0N H2A 																REV AUTHORITY		
ASA	JEN J	7	4	2	A/R	A.A.	-	4/R	A/R	7	•			AR	_			AUT		
빌 기	EX	358						_	_	~	٠ –			_				PEV		
10	H	R.									0.0	7 m	EE	<u> </u>			SEET	DATE		
W W	8	NOMENCLATURE OF DESCRIPTION	α	~	- N	INSULATION	STRAP ASSY	07	2	•	BAND CLAMP	DAIND CLAMP COUPLING, VEE	(S)	COMPOUND			1[- 11	11	
TITLE	5	CRIP	WASHER WASHER WASHER	WASHER	FEN	ON THE	₹,	COMPOUND	COMPOUND	TERMINAL	9	7 2	Z	Q			1. 1	REV AUTHURITY	11	()
	22	MEN	WASHER WASHER WASH	ASI	SEL	SE	ZAF	APO	MP	×		74	<u>a</u>	A	- ·		HISTO	7	\square	4
20 V	19.11		32	>	NSC.	222	STE	Ö	S O	TER		O O	8	8	トンス		ואזו	1 1	\bot	-
AREBEARCH MANUFACTURING COMPANY OF ARECOMA	ORIGINAL ISSUE	ġ	58157N242-050 58157N242-050 58157N242-050	250	-			õ	<u>ō</u> :	0	<u> </u>	211-539-9201	211-539-9202 COUPLING VEE	8	5		Ž	DATE		
0		S S	12-0 12-0 42-0	42-0	Ġ,	Ġ.	194	7-90	- 90	2-90	6-4	192	-92	60	cas		ır		$\dagger \dagger$	
NYACT		RIFYI	N22	S8:57N242-050	59350-2	5 9350-2	680-514-9401	1008-280-3001	219-174-9001	724-515-901	680-514-9301	211-539-9201	539	1006-060-612	NASI291CBM			AUTHORITY		
CH MAN	2 m	PA	8157 8157 88157	8:57	393	S93	083	05	-612	724	88	200 1-1-20	51-	219	NASI		1 1	$\overline{}$	+	-
MEBEAN	09193 99193		<u>(C.C. C.)</u>	<u>()</u>	0,		<u> </u>	_	<u>.,,</u>							<u>.</u>	ll	22 REV	47	-
	Ť	CODE																A-LI-Z	25.7	
		20NE ZONE	E15 E18 E19	E20	= 4	<u>0</u>	F16	85	A7	20	F16	0.0	<u>G</u>	A5	67			. 11		
		FS FS		<u>-</u>	4	<i>Ω</i> . T							<u> </u>	<u>`</u>	_			AUTHORIN	ENGR	
PARTS	2	0	99	99	19	29	89	69	2	=	22	32	4	75	92		l c	るで	\mathbf{I}	
Œ -		u -	0 0 U	9	9	<u> </u>	<u> </u>	<u> </u>				- -						Z \	11	J

KEV	_	30				¥		00)	4			Ē		Π
PI REV	× 	786	_			4		44		4			Y DATE	1	\coprod
ō		DE DE	L										AUTHORITY		
40	Z v		_				-					4		#	H
r 3740301	SECTION	NA O	_										REV	#	H
_	щ	2										4	DATE		\coprod
55	TURBOJET, EXPENDABLE SECTION	Ž I										-	AUTHORITY		
Ä	Ž	- T	4	80	9		7			- 07	r	\exists	AUTH		
Z	ន័	¥8				: 1						-	REV		
ENGINE ASSY	JET,					į:							DATE		
ָ ע	8	ION C		1920mi			ď		~ ^	να	(cc	\$	ļ	+	
		NOMENCIATURE OF DESCRIPTION	SCREW	SCREW	SCREW		WASHER	33	WASHER	WASHER WASHER WASHER	WASHER	X 1	AUTH('RIT		
	417	OMEN	S	g	C.R.	St.	ASI	SCREW SCREW	ASI	4 ST 7 AST	AS	HISTORY	J	\coprod	Н
	MARCHY, 1972	ž	လ		ŭ		_≥	Sc	33	335	. ≥	NOS	REV	Н	H
	MAG	Ö.		NAS1102E3-6	I		OL	3.5	80 00	ה. פר	19 19	Æ	DATE RE		
		DENTIFYING NO.		02E	NAS1122-1 H	J.	AN96OCIOL	NAS HOIEOB-5.	AN960C8	AN960 CEL AN960 CEL	AN960C416L				
		NTE	NAS1121-1	S	SII		196	1018	196	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	961		AUTHORITY		
	56	9	₹	ž	Ž		A	242	¥ 8	24	A		REV A	H	
	99193	DENT											E R	1-18-11	-
		_	_					m ~	7.00	- 01,0				1 1 7	_
V		S S S	SC Cle	BI3	18		02	H18	H18	200	E2		ORITY	ENGRG	
) .		ξg	-	_	_					- N -			AUTH NN N	22 U	
IST	3	Z Š	11	78	62	8	8	82,82	833	400	85		•	ay	

چ		£2.		4 >	۸	z¥			4		7			اييا			
P. 6	_	REV REV		44	4				4		4			Y DATE	\coprod	\downarrow	ľ
ō	П	a											1	AUTHORITY			
3		Ä							****				1	AUTH			
R 3740301 PL REV	SECTION	OUANTITY REOD								77 : Julius .				REV	1	T	
		0						· · · · · · · · · · · · · · · · · · ·	·					DATE		T	
12	BE	4		14 54				-						100	H		
ASSY	ğ	ON HSWO				-							1	80	11		Ď
1	21972 TURBOJET, EXPENDABLE	ă -	2			M	_	4-	2	33	<u> </u>		1	AUTHORITY			
Z	ď,	38											1	PEV			
TITLE ENGINE	E)	R.							Š			· · · · · · · · · · · · · · · · · · ·	SEET	DATE			ļ ,
Ē	g	NOMENCLATURE OF DESCRIPTION							PP						Н	П	
TILE	2	RIPT		17	, :	:≥	≥	SCREW	入	•	•		₩ THS	AUTHURITY	П	П	
1	72	MENC	BOLT	Σ. Υ. Τ. Χ.		SCREW	A.	XX.	Š	Ž	BOLT	•	HISTORY		Ц		
Or AMI		Ö	B	CLAMP GASKET		S	20	S S S	SCF	B	D		NO	<u>%</u>		Ц	
HPANY OF ARIZONA	DRIGHMAL	o	0			-22	27	13.5	MS24630-9F SCREW, TAPPING	9	2		REVISION	ATE			
03	8 %	S S	36	0-63		8 8	-8	ထွဲထ	0-0	9-6	9-6		1 1		H	H	
1		DENTIFYING N	MS9489-1	MS9349-02 MS35769-9		MSI6998-27	569	12-8669ISM	463	WS21279-06	MS21279-0			AUTHORITY			
3		ENP	\$	539		151	1516	<u>3</u>	AS2	AS2	152			_			
CBEARC	80	-	<u> </u>	ΣΣ	- 4	: ≥	2	22			<u></u>		1	REV			
-	80		3	1										DATE	55 S. 0	3.6.73	
	V L	ZONE	D2	F16		E20	E15	Ei8/	CIS	BIZ	EZO		1				
_			Δ	Tr C		<u> </u>	Ш (<u>ЭШ</u>		<u> </u>	<u> </u>	-	1	AUTHOR!	190	10	
PARTS		<u> </u>	-		0	0 0	6	7~					1		الالا	THE STATE OF	
¥ :	3	E S S	86	88	8	89	8	86	8	7	5	1.		RE/	4	9	

4EV	G	2		2 E	ΔG	∢ ∢७		a lo
PL REV	-	28		44	44	444		
1 -		a_						AUTHORITY
Ö		Ă _						AUT
R 3740301	100	MM						<u> </u>
4	TURBOJET EXPENDABLE SECTION	O O						DAIL
حرا	Αġ	NO A						
55	S	<u> </u>						AUTHOR
E	Ä.	7	997	- m	- 20	4-0-		
Z	ET, E	38						EV.
ž	Š	g _			ð			Ball Ball
3	JRB	PTION		2	, f >	-		<u>4</u>
111	F,	SCR	 -	, W	Ä	- χ - ' Π		AUTHURII
ACH MANUFACTURING COMPANY OF ARIZONA	DRIGHMU, ISSUE MARCHY, 1972	NOMENCLATURE OF DESCRIPTION	252	KEY SCREW	CONNECTOR SCREW	NOT GASKET NOT NOT	(*)	Z >111
AMY 04	SHOW B							N S S S S S S S S S S S S S S S S S S S
8	MA	Ψ.O	525-580-9002 525-580-9002 525-580-9002	M520068-99 M551958-60	338-501-9002 MS16997-30	MS21043-04 MS35769-9 MS21043-06 MS21043-06	•	€ N
8		Z S	9899	268 58	-105	45 84 843		
		DENTIFYING NO.	N N N N	520	338-501-9001 MS16997-30	MS21043-0 MS35769-9 MS21043-06 MS21043-06		AUTHORATY
EVENDA	99193	ĕ	2222	Σž	βX	ZZZZ		REV
1	86	DEN S						11222F
			.00	4 0	- ^ _	r-28		
Ψ		SWC	052 052 052	85 80	ce G17	F17 C12 C12		
TS.	_ [ξg	7	– ⋈	2-	11 11		V AUTHOR ENGR ENGR BUCK
PARTS	LSJ [SS	222	84	88	2888		S COMPART

REV	2	7	REV REV CODE LTR	4	Y		4 A	4			4 T				00			3			5 V			7	DATE			2
1 1	5	Т	100 PR			4					_	4	74		4		4	_		-	4	4	-	4	AUTHORITY			
P 22 A	. 1 .	SECTION !	CUANTITY						_																REV	++	-	
			AND C						٠		-			- +				-							DATE		Ц	
> 0	1 4	700	ON HSWO									-													AUTHORITY			
1	PRATIC	ובוכר	7	-	4	7		_	Ŋ	A/R	A/R	-3	19			ړ	AR		A/R	AR		7	_		-	++		
THE PARTY	2 4	7 1	155E	-	_	_	_					3		_										_	E REV	#	H	
12	7 1 1 1	\frac{1}{2}	AC 2							ILE ILE	^	., R.C.	93						SOUPLE STATE	4				K	N N			
TITLE =	URBO.IF		ATURE SIPTION	ر						TEXT	727	MTG	RUC.			455	•	5	ER MOC	CM	_		4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	#\#\ \			
			NOMENCLATURE DESCRIPTION	ERMINAL	I CE	ICE E	I C E	IC E	AMA	101	OMPO	SEL	12	15 N	TEN TEN	D و	- 00 E	0-RING	WRE THERMOCOUPLE	COMPOUND	-RILL	ZEN	BRACK		AUTHURI	<u> </u>		
T OF AN	7.5		2	TER	SPLI	SPLI	SPL	SPL	277	BRA	Š	X.	1009	Ž - (NA V	رُ	Ö	WR	ઉ	0	SCREY	25.0	ZV.	32 X	250	Ц	
ARESCARCH MANUFACTURING COMPANY OF ARLEONA	TOPICAN	3-9-	NO.	ō	3002	8	8	8	=		õ	- 1	22	200	900	7	(8)	6	·KK	200		SAD	2-1		DATE	1 1 2		
ACTURNA TO THE			<u>₹</u>	32-9	69-6	9-50	503-6	603-	9-10	6	9-81	369-	1.1		1	2-67	Lote	3-0	-30.	ž	20-	-850	443	0427	AUTHORNTY	A55		
H MANUE	2		PART OR IDENTIFYING NO.	724-532-90	672-503-900	672-503-9003	672-503-900	672-503-90	211-501-911	66685	219-013-900	3740369	1000 11000	0 0140	337-5	AN 929-2	SEE Note 18	59413-007	HFD-30-	MITHRA	35412-0R	59098-8105AD	3740943-1	निद		SAC S		
ACBCARG	DE DEAT	의	-	72	<u>ဖ</u>	<u>ن</u>	<u>v</u>	9	N	S	<u>ر،</u>	3	io	2 1	ı m	<u> </u>	Ů		_		41	<u>v</u>	4,1	"	REV	42		ī
	7		DEN											·									_	E	DATE	525	7.12.72	
1	1		ZONE	Ξ	D D T	Ē	=	二 山	CB	C50	016	エリ	101	F17	<u>ה</u>	88	28	810	810	BIO	E19	610	613	50	ORITY	100		4-4
5		-	‡§	ત	ત	Ŋ	ત	Ŋ	ત	_	Ŋ	-1	14	- (7 6	1,1	7	_	_	_	_	_	_	-	AUTHORIT	1272	ENG	854
PARTS	LIST		2 2 2 2 2 2 3	0=	=	711	112	=3	114	5=	9.1	7°0	200	300	32	127	123	47	125	126	121	122	62	20	N	1911	II.	PS

PL REV	コ	REV PEV COCELTR				A		4	Z		4 A	44 J11		4 A		-			4 ት ጠ ገ			DATE		П
R 3740301 P	SECTION	BEOD											_									E REV AUTHORITY		
THE ENGINE ASSY,	XPENDABLE SECTION	04 0N H5W0 350	4	4/R	Ŋ	3	_		ત	_		_	60		A/R		A/R	1 A/R	AR		1	REV AUTHORITY DATE		
AMERICANCH HAMILYACTURING CONFANY OF AMERICA TITLE ENGINE	TURBOJET, E	NOMENCLATURE OF U	SCREW	LOCKWIRE	CLAMP	トつれ	トつれ		SCREW		CONNECTOR	CONNECTOR	BRACKET	STRAP, CABLE	STRAP, CABLE	¥	TAPE	TAPE	Lockwie		SION HISTORY THIS	REV AUTHURITY DATE	2	23 — — — — 12
ARCH MANUFACTURING CONFAN	gr.	PART OR	MS51957 - 14	MS20995C 20	MS9025-15	MS21046 C3	MS21046 C3		MAS 1351-3014	MBISII/OIFBO2 PI	PER MIL-C-81511/1	MBISIVOIFBOZPI PER MIL-C-BISIVI	MS 9592 -005	680-508-9001	680-508-9001			722-506-9001	MS 20995C20			REV AUTHORITY DATE	7 EVG 12-5-7	1
	99193	SONG CODE	F17	BII	CIS	88	CIS	100	HIS	F17		90	ca	F16	F 6		010	E	HIS		$\ \cdot \ $	A-17.70	6-26-72	GR 7-5-72
PARTS	LIST	PIND SHT	100	101		103 2	ત	104	102	1061		1 901	107 2	1081	1082	108	109 2	109 2	101		1 1	A FUGE	3	SUE IENG

	Pt REV	1		COCELTRY TREATMENT OF THE PROPERTY OF THE PROP	44	- 				4 7		44.	-	<u> </u>	4		٦ 7	4 万	4 0	4	4	lL	שותר זו			4
	10:20		2							•		_	-1/=					_					AUIHORII			
	PL374	8	I NO								_												RE	Ц	Ц	
	7	SECTION	S	71					٠.٠						1							41	DATE			
	1	100	UV 30					_				_											AUTHORITY			
		1	15	7	-			7	-	-	_	3	W	4	4	-	-	_	_	-	•		REV AUT	H	+	
1	100	2	一	300	71						_				_	yλ	_	>	lo		1	1	ш	H	+	
٠	ヨハッド	3	具	NO N	D 706				7		中中				92	RUCK	7	S	3	(on No	S SAB	Y	\parallel	+	1
	TITLE .	,	NEROJE	NOMENCLATURE DESCRIPTION	CROSS, FLARED TUB			7	X X			L		7	8	WIELTS HARD	TUBE ASS	COLINTER	BRACKET, VALVE	į	Š	E TH	THORIT			
		٦	7	MENCI	55,F			SCRE	S PK	3	SBUSOR	1708	WASHER	SZEEN	WASHER	PIN	SEE	21-18	X	ļ	1	HISTORY	-	H	+	1
	PANY OF ARIZONA		11-15-7	ON	280	1	-	3	7	8	V					3	F	g	Ŋ		7	NOWN	NATE RE	H	1	1
	COMPA	,	7-17	NO.	1-0			97.	1-2	\$	-	10-6	9.016	4-7	1-016	B	0	-	1-61	9	1	T	H	+	H	١.
	MANUFACTURING COM	ì		DENTIFYING NO.	3740418-1		39 39 80	M216938-26	3740462-1	AN929-45	977012-1	MS9489-07	38157N-169-016	1- 472422H	3815747-016	2740453	3740460.	306100-1	34240-		37404215-1		AUTHORITY			ľ
	H MANUT		2	PAR	4/2			1516	3740	67	777	489	S S F	152	8	274	374	306	37		274			+	H	11-71-1
	AIREBEARG		99193	-	-		•	2	n,	4	0.	_	4,	_=_	<u>, , , , , , , , , , , , , , , , , , , </u>	-	-						TE REV	11.13.7	F	113
		7	8	89			_	_	_		0	41	~	11,	n	<u></u>	ΔÌ	<u></u>	<u>a-</u>		0	_	Y DATE		10	-2
	7	Ü		DWG				119	212	7	0 0	ロロ	K18	Q P	003	4	3	189	OF		610	-	AUTHORITY	200	ENGR IN-S-12	TGR
١	٧	2 .		35	-			-	-		_	<u>-</u>	_	1		4	1/1	7	1			3			道	PE
	PAPTS	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	3	ON C	\bar{u}	50	123	46	ある	\bar{u}	127	138	139	· 4	4	142	1.0%	4	五五	146	4147	30	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A	12	0_

And the second s

189

AiResearch Manufacturing Company of Arizona ENGINEERING ORDER

							_		TOTAL				_	4	11610				1661	_	07		
	RAV	ING	YIYLE	-	NGINE	4554	T	PRO	JET E	KPEN	BAO	LE		HO HO	PL	-3	74	103	301		CH6	<u> </u>	
70	06 I	W NO	166	**					DATE		CHE .							0416			CHO. LE	P	
W	NDA	TORY	,	1	DRAWING	CHG.	X	VARIA	TION		VOIC	AFTE	ER	8476				DIST	RIDU	TION		L.A.	PHE
PR	ORIT	Y		2	ADV. DWG.	CHG		SUBST	TITUTION		VOIE	AFTE	R	NO 0/	PART	70	7	NOR	MAL				X
RO	UTIN	E		3	EMERGENC	Y DWG	П	REWO	RK	1	5.1.L	•				788		RUSI	1				
MII	VOR			4	E.C.P. NO.			MATL	REV. AC	Τ.	SER	VICE E	UL.	LETIP	v	760		TELE	TYPE				
			-								III				-	طسط		SPARE			Diero	LITION	97
41	10-6	3		_				DE	SCRIPTION		- 177						-	CODE	AUTH	DRITY	AFFEC	180 P	AT
2			F/1	N	2 cup	146	· P	APT	No	37	401	388	- 4	-		300	+		EN	14	114	TE	D
_					0 FRA	ME		185		031	86	-2					I			7		1	
3		2	E/1	A I	16- /4	0.41 (DART	· III co.	274	A 2	97 -	- 3				+			+-		+	_
_				<u>_</u>	IG CH	e E	N	221	<u> </u>	AS.	74	029	2	2			1					上	
																	\dashv			_			
		1									13						+					_	
																						7	
			<u> </u>										_				+	_					
_		_			·												+						
																	1						
-					-		-						_				+					_	-
٦				_		-						-					\top			_			_
										-													
-	-												_			-	+	-					
					-												1						
																	T						_
-		-		-													+	-					
																	1						_
4																	4	_					
\dashv	-			_													+	-				_	
_	NEX	T A55	٧.	T	MODEL NO.	M E.O.	_	OUTL	INE		TIFEE	38:32 =	Walls Walls	EPPE	CTIV	/ITY IN	STR	UCTIO	NS			7	-
				I			3	1403		UNDE	INCRES	175MB											_
				+						-							_					_	
_				+																			
							11																
	-			+		-											-	•					_
										VILIV	ERED IT						_						_
_				F						<u> </u>													_
-				+-		1				╂							-	_					-
																							_
				_	1					 	W S												
				_	COLUMN HOD		Λ.				MATED	76	7				7			0475		garw.	
***	DN FO	R CHA	NOS:	70	्राउटा	404	44	30	MBLY	Ų	Р	<u> </u>	_	~67		LT_		0 M	EIS	URE	ום רדו	4	_
																W							
											7.5-11						-				tt)		
ieu		•7			DATE	27174719/	7		DATE		Susce of	2)			047			17700	vy 0 0	111	- VI.	4)	_
\leq	•	10	NEZ		3-18-73	KEK	Jay	ents	13-2	8-73 19	KE	Nicy	ta	10	3-	187	١	U()	741			4)	낃
										190	?												}

6.2 Facilities and Instrumentation

This section contains facility photographs and instrumentation used during the testing of both IFRT engines. The item and page numbers are as follows:

<u>Item</u>	Page
Facility photographs:	
Air inlet ducting and interior of altitude chamber	192
Pen recorders and chamber operation instrumentation	193
Engine controls and instrumentation	194 - 195
Instrumentation	196
Test instrumentation and equipment	197 - 198
Identification of instrumentation used during tests	199

PEN RECORDERS AND CHAMBER OPERATION INSTRUMENTATION

ENGINE CONTROLS AND INSTRUMENTATION (NOTE CHAMBER VIEW PORT)

ENGINE CONTROLS AND INSTRUMENTATION (NOTE CLOSED-CIRCUIT TELEVISION MONITOR).

TABLE I. INSTRUMENTATION

	TABL	e I. Instrument	TATION:			Recor		, e
Master Number	Parameter	Parameter and Station	Range	Units	Computer	Traces	Visual	Visual Information
001-004	Inlet air temperature	Ttl.0	-65 - +200	*F	x	x		200
101-106	Turbine discharge temperature	^T t 7.0	0-2000	• P	×	X	x	x
121	Inlet fuel temperature	Tf	0-200	•7	×		x	х
202-205	Bellmouth total pressure	Pt1.2	-15 to +15	psig	x			
206-209	Bellmouth static '	Ps1.2	-15 to +15	psig	x			
250	Exhaust static pressure	Ps8.0	-1 to +1	in Hg	×			
269	Turbine discharge total pressure	Pt7.0	0-50	psig	x		x	
320	Compressor discharge static pressure	Ps3.0	0-100	psig	x	x		
358	Ram AP	Pt1.2-Ps8.0	0-10/0.50	psid/in Hg	х	x	x	х
363	Ambient altitude pressure	PAMB	0-30	in. Hg A	x			x
377	Inlet fuel pressure	Pf	0-50	psia	x	x	Γ	х
385	Bearing thrust.	Pcav	0-100	psia	х	х		
386	Seal AP	AP SEAL	0-100	psia .				х
401	Engine speed	N	0-50,000	rpm	x	x	x	x
403	Engine thrust	FMEAS	0-800	lbs	x	T	x	
405	Puel flow	Wg	0.2-3.0/0-2000	gpm/pph	x	x	x	х
409	Engine v bration	C _{VIB}	0-5	mils		x	x	х
455	Output current	A	0-200	amps	×	×	X	x
457	Output voltage	v _L	0-50	vdc	×	×	x	×
					_	_	_	

TEST INSTRUMENTATION AND EQUIPMENT

Instrument or Equipment	Manufacturer	Model, Type or Size	Range	Accuracy	Maximum Calibration Period (Days)
Thermocouple Thermometers	Doric Scientific Corp.	DS-100-T3	-	±0.05%	90
	Honeywell, Minne- apolis, Minn.	Electronik	0 - 2000°F	±5°p	90
Manometers	The Meriam Instrument Co, Cleveland, Ohio	Various	0 - 100 in.	0.1%	90
Pressure Gauges	Heise Newtown, Conn.	Various			
	Ashcroft Gauges, Manning, Maxwell & Moore, Inc, Stratford, Conn.	Duraqauge	0 - 60 psig 0 - 300 psig 0 - 1000 psig	±0.25 psi ±0.25 psi ±0.25%	90
	American Chain & Cable, Helicoid Gage Div, Bridgeport, Conn	Various			
Flowmeters	Cox Instrument Div, Lynch Corp, Detroit, Mich.	Series 12	4.5 - 26 PPH 26 - 140 PPH 130 - 800 PPH 750 - 5000 PPH	±1.6 PPH ±2.7 PPH ±5.0 PPH ±15.0 PPH	365
	Fischer & Porter, Warminster, Pa.	- '	40 - 180 PPH 110 - 600 PPH	±0.8 PPH ±7.6 PPH	365
	Flow Technology Tempe, Ariz.	FT-8M3-LB FT-20-LB	0.3 - 3.0 gpm 0.2 - 2.0 gpm	±0.7% ±0.7%	365 365
Digital Counters	Anadex Instru- ments Inc.	CF-201R		±1 count	90
Councers	Van Nuys, Calif.	CF-601R	-	±1 count	90
Vibration Sensing Systems	Consolidated Electrodynamics Corp. (Trans- ducer Div.), Monrovia, Calif.	Type 1-117 (Amplifier)	0 - 5 mils	±3%	120
Differential Pressure Gauge	Wallace & Tier- nan, Inc, Belleville, N.J.	PA145			
Pen Recorders	Hewlett-Packard Corp, Palo Alto, Calif.	1069-03A 7700 Series	As specified for parameter measured	±3% of ful scale	1 1
	Sanborn Waltham, Mass.	850	As specified for parameter measured	±3% of ful scale	1 1

TEST INSTRUMENTATION AND EQUIPMENT

Instrument or Equipment	Manufacturer	Model, Type or Size	Range	Accuracy	Maximum Calibration Period (Days)
Force Measurement	Doric Scientific Corp.	DS-100-T2	0 - 5000 1ь	±5 1b	90
Thermocouples	AiResearch	Various	-100 to 500°F 500 to 1400°F	±2°F ±3/8%	90
Airflow Sections	AiResearch	A.S.ME. low beta series	-	±0.05 lb/sec	365
Load Calla	Interface	Model 1111-5K	0 - 5000 lb	±2.9 lb	1
Transducers	Statham Viatran	Various Various	0 - 600 psig 0 - 30 psig	±0.25% ±0.25%	As used As used
Field Power Supply	Lambda Elec- tronic Corp, Melville, N.Y.	LK351-FM	0 - 36 vdc 0 - 15 amps	-	-
Ammeter	Weston	Model 1	0 - 300 amps	±1.0%	90
Integrating Digital Voltmeter	Hewlitt-Packard	Model 2401C	0 - 30 vđc	±0.5%	90
Load Bank	AiResearch	SK-50A-D602	0 - 280 amps at 30 vdc	-	-
Timer	Standard	-	0 - 1000 sec	±0.01%	180

IDENTIFICATION OF INSTRUMENTATION USED DURING TESTS.

Parameter	Station	Location in Test Setup	Type of Instrument	Serial No.	Expiration Date
Inlet air temperature	Ttl.0	Bellmouth Console Control room	Thermocouples Thermocouple thermometer Recorder	LTR401 S/N 62	5-1-73 9-23-73
Engine exhaust temperature	Tt7.0	Engine Console Control room	Thermocouples Thermocouple thermometer Recorder	LTR342 S/N 88	5-1-73 4-19-73
Inlet fuel temperature	^T f	Fuel system Console	Thermocouple Thermocouple thermometer	LTR401	5-1-73
Bellmouth total	Pt1.2	Bellmouth Console	Pressure rake Pressure gauge	LG3330	5-1-73
Bellmouth static	P _{s1.2}	Bellmouth	Pressure rake		
Turbine discharge total pressure	P _{t7.0}	Engine Console	Pressure rake Pressure gauge	LG3332	5-1-73
Compressor discharge static pressure	Ps3.0	Engine Console Control room	Pressure tap Pressure gauge Recorder	LG3333 S/N 83	5-1-73
Ram ΔP	Pt1.2 - Ps8.0	Bellmouth & engine Console Control room	Pressure rake and taps Manometer Recorder	 LM533 S/N 88	5-1-73 4-19-73
Ambient pressure	PBAR	Altitude chamber Console	Pressure tap Manometer	 LM533	 5-1-73
Exhaust static pressure	Ps8.0	Engine Console	Pressure tap Pressure gauge	LG3366	7-9-73
Engine speed	N	Engine Console Control room	Frequency pickup Digital counter Recorder	 EF 232 S/N's 62 and 88	5-1-73
Engine thrust	FMEAS	Thrust stand Console	Load cell Digital counter	LTR347	5-1-73
Fuel flow	W _£	Fuel system Console Altitude chamber Control room	Turbine meter Digital counter Rotometers Recorder	FM84 EP34 LR263-266 S/N 88	5-1-73 5-7-73
Engine vibration	c _{VIB}	Engine Console Control room Control room	Accelerometer Meter Recorder Spectrum analyzer	 VIB98 S/N 88	7-29-73
Output current	A	Load bank Console Control room	Shunt Meter Recorder	LA231 S/N 62	5-1-73
Output voltage	v _L	Load bank Console Control room	Voltage taps Digital voltmeter Recorder	 EC207 S/N 62	5-1-73
Run time		Console	Timer	LTC49	7-31-73
Inlet fuel pressure	P _f -	Altitude chamber Console Control room	Pressure tap Pressure gauge Recorder	 LG3334 S/N 88	5-1-73

6.3 Quality Control Reinspection Records

This section contains the Teardown Deficiency Write-up and the Quality Control Reinspection Record cards for each engine. The item and page numbers are as follows:

Item	IFRT Engine No.	Page
Teardown deficiency write-up	1	201
Quality control reinspection record cards	1	202-208
Teardown deficiency write-up	2	209
Quality control reinspection record cards	2	210-216

Ailesearth Manufacturing Company of Arizona PHOENIX. ARIZONA

TEAR DOWN DEFICIENCY WRITE-UP

CASE	NO.	1.5

REPORT NO. 7-15_

REPURI	NO.	7.10	 	

6	PROGRAM	DE 19-23 DATE MONTH DAY YR.	çuşt	OMER TRLR 58	50)				
A	HARPOON -	04093		T-1	IFRT	To	75 7		
•	LOCATION 27-30	OUTLINE OR ASSY, NO.	M	DDEL NO. 0	R NAME			TLINE SE	R NO 72-80)
1	4722	3740300-1			-GA- 400		1	PRT	'
6	14 RI	VERHAUL 19 PROD. REJ. EPAIR 00 OTHER	0 0	ACT. 05P. 5Y	MPTOM				
	PROD LINE ACC SIGNATURES	ODIFY	<u> </u>	10			54		-
Å	J. Dem	lat			T TES		A	LTITUO	4
25-25	PART NUMBER	PART NAME		IAL NO.	CONDITION	FLR PRI		NAME CODE	COND.
6	7-16	17-24		25.33		43 44	45	46-48	49.50
	3740395-1	COMPRESSOR ROTOR	AC	-17	3RD Smg	=			
	FRON FREDO	ED 360° - SLI	GNT	197 Sir	or Kiss				
L									
		COMPRESSUR STATOR			SLIGHT				
	RUBBON 12T STI	GF APPRIX 30 ARC	-	EPON ,	Pzersios		\perp		
	ON THE STAGE E	704							
		Tuzzine wheel			Rugged				
	ON BACK THRUST P	LANGE & OD SER	1 chan	esont	D. AFT				
	OF THE CARGO								
		BEARING	3 -	106	Same				
	Manne - Ben				4 Baus				
	WERRING - SEP					, Au	INR	RACU	
	Rome BRG (MRRIOR	I .			iD				
\vdash	Rubbed by the	*	7.40.	- F					1-1-1
	NOBBER DY THE	TOPPINE WHEE					+		1
									+
-							+		+
							-	-+	+
							-		+
							-		1
L							<u> </u>		
							\perp		
						1	\dagger		
\vdash									
			-: :						
	L	<u> </u>					1		لللل

AIResearch Monufacturing Compo QUALITY CONTROL REINSPECTION RE		ART NA		307= -	109-10/L <u>8/C</u> 25/108L/ 04/6/6/50	
Next Assembly 3700001 C/L	Fingl Assembl	A DESCRIPTION OF THE PARTY OF T	-	-	S/N &C-/2	1,
NO. Dimension and Location	8 6	Be	fore	After	Remark	1
DIA 8.481	8.	49 G	486	79.496	Marine	
DIA 8.38/	l la	11 (D)	: 87.5	The state of	under 3/4 min.	16
3 DIA 8.277	18	350	2.27	Jr. 279		
4 DIA 8.215	8	5c 5	2.2/7	8.2/7		1
5 DIA 8.128	B	17.50	1975	8,1375		1
6 DIA 8.085	8	085	8.084	9,095		1
7 DIA 8.059	8	52.20	2.06/	8.000		1
8 DIA 8.025	. 4	OSS (D)	.087	8,0257		1
9 DIA 5.700	5	700	6.695	5.697		1
10 DIA 5.862	1 1		862	5.82	41	1
nspection Before <u>Arita John</u>	Date 3-3-7-3 (2 Date 4.9-73 E	tuality Con	irol	mille	Date Date	مرط

	Research Manufacturing Company of Arizona UALITY CONTROL REINSPECTION RECORD	PART	NAME _		303-1 C/1 - 11-55-11 - 11-55-11	
	Assembly 274 (2011) C/L Final Ass. Dimension and Location	B P max.	Before	After	S/N AC-/7 Remark	
1	DIA 6.2/3	6.213	36.2115	5	According	dan
2	DIA 6.332	6.332		13 63W	mormal	
3	DIA 6.561	6.561		- 7	aremely	charan
4	DIA 6.637	6.637 850	86.645	W.	money	
5	DIA LABYRINTH SEAL	6.444	6 1191	6446		
6	D/A 80=E - A-	1.5745	,	1.5793		
7	1 A .0002 TWO	0502	BARZ	1002		
8	DIA REF.	2.100	2.1995	3/48		
9						
10						40
nsp	After Date Date	. >	Control ring	70%	Date_	2-4-7

ly			* P. 1
			S/N & -17
P AND B	efore /	After	Remark
002	1563	1095	
COZ		1005	
CCZ		1145	
0:2	720	511	
CCZ	11	014	
502	204	.116	RE. 374,0370
200	1., 15	(135	
502	102	2055	
002	202	113	14
	COZ	CO2	CO2 (1) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3

					4, 11			
0	Research Manufacturing Company of Arizona UALITY CONTROL REINSPECTION RECORD	PART NAME						
Nex	AssemblyC/LFingl Ass	embly	mbly SIN AC					
NO.	Dimension and Location	8 P 7 28	Before	After	Remark]		
1								
2						1		
3	BRIGHTE PLANE NOW	-:-				1		
4	BALLIE PLANE MINE]		
5]		
6]		
7								
В								
9								
10								
insp	ection BeforeDate AfterDate							

A Aithreorch Minuting turing Company of Ansono OUALITY CONTROL REINSPECTION RECORD			PART NUMBER 3740283 OFLEPART NAME TURBUNE BOTTON				
	nembra 374030 C/L Final			_		_S/N 75 8	
NO. DI	nension and Location	-	AP T	Butare	After	Remark .	
1.1	ABYRINOH DIA	16	5.99	6.0005	5.994		
2 B	LADE TIP DIA.	6	1.53	9.547	9,592		
-	HAET DIA B MIRKES	6	子公語	1 5750	15757		
-	1.5749 TO B-C B.PMIS	(%)	0004	.0002	coor		
3/	9.548 NA TO R-C	6	001)	.0007	0418		
100	-F- To B-6	(0000	2	ares		
_	ISTON SEAL AREA DIA.	6	1.967	1.9665	1.967		
	-A- TO B-C	(F)	002	.0005	00/2		
9	70 A-Bor 1967-1966	0	100	.0007	oors	V.	
10	LENGTH	6	15.45	15.425	15424	4	

	REINSPECTION RECORD		· 24	AFT	_ 5/N15/P	
	AssemblyC/LFind		BP MOL	Before	After	Remark
1	DIA HOLES	E	1866	186	400	
2	DIA HOLES	E 6	-124	125	11	
3	BALANCE PLANE P (02-IN)	8	.010	00388		COM
4	BALANCE PLANE Q (02-14)		.010	.005%	نا	XX :
5						1.0
6						, ,
7						
8						
•			-			
10						

Land CHROTION Control of Astronomy and the State of Control of Astronomy and the State of Control o	5/N 3-10	
CONTACT ANGLE	24° 22'	er aver as a seria en al maner.
SEPARATOR PLOT CLEAR	1010	
BALL POCKET CLEARANCE	.025	
BALL SIZE VARIATION	00000	
AXIAL CLOIR. UNDER AN	. CO 23.	
		£
		. , .
1		~(X)

RE'NSPECTION RECORD Lext Assembly 2740303-7_C/L A Final A	3			SIN 2708
10. Dimension and Location	BP min	Before	After	Remark
DIAMETRAL CILC.	.0013	.0011.	.0011	
End clearance	.0016		,0013	
ROWER DIA	7-85	.2755	2755	
INNER ROCE ID	1.571	137465	1 5747	' <i>D</i>
5 AGF OF INNER PACE	.0007	orios	0002	
DIAMETER TOWERS	1.850	18455	18488	
DIAMETER OUTER ROSE	2.421	2401	2.401	
8 PH 0 OF 2.421-2577	0000	1000/	10001	
9 // H OF 2.42/-2.397	.0001	,occos	.0001	
10				44)

REINSPECTION RECORD Next Assembly			embly	MATCHED S/N ZZZ/Z/		
	Dimension and Location		8 P MOL	Before	After	Remark .
t	DIA.	D6	8.338		8 359	-
2	DIA.	E9	8.779	9.780	8.781	
3	DIA.	E8	5.757		5.7515	
4	DIA.	E8	5.918	Parel	1	
5	DIA.	D7	6.27	De. 27/	2.2705	
6	DIA.	D7	6.385	6.385	E 1.3 ME	
7	DIA.	D7	6.61	The second second	D. 6/95	
8	DIA.	D7	6.69	6. 590		
9	DIA.	C11	8.526	1.523	2.510	
10	DIA.	C11	8.42	6.4243	(44)	
nepe		Date	_ Quality	Control_		Date

Next	AssemblyC/L_	_ Final Assi	mblyS/N					
	Dimension and Location		BP ACK	Before	After	Remark		
1	DIA.	B10	8.324	8.3255	1.3255			
2	DIA.	B10	8.267	8.2625	8.262			
3	DIA.	B10	8.18K	2.18/	8.776			
4	DIA.	B10	8.128	8-13/	8,127			
5	DIA.	B10	8.098	8.0985	19.092			
6	DIA.	B10	8.064	1.065	238.052			
7								
8								
9			_	,				
10						412		

Next	Assembly	nal Asse		3/4:1		S/N 228/25
	Dimension and Location		By may	Fistore	After	Remark
1	Diameres.	C-4	10.778	6.330	3360	
2	LENGTH	C-13	477	477	477	
3	·J. 11 ro-F.	C-13	.001	001	deg	
4	-D- 11 70 - J-	C-12	1021	2008	0008	
5	DIOMETER	D-12	4.6.22	1.623	4623	
6	1 JKAT 1623019	E-11	.001	c2718	sel.	
7	Dameure -G-	E-14	4.3	8.358	5-3575	
8	Dearth	E-11	10.4	12.65%	110560	
9	1870-F.G.	E-11	-2	cers	1018	
10	10.17 10 11 25 12 1 63	E-5		6,466	275	4017

QUALITY CONTROL REINSPECTION RECORD			PART HUMBER 199-1 C/L.				
Vext AssemblyC/L	Final Asse	nibly			_S/N		
VO. Dimension and Location		8 P (310)	Before	After	Remark		
1 1 or 6.466 DIA	E-5	<u> ,001</u>	009	001			
DIAMETER 5 PART	· Air	.3012	3/16	3716			
3							
4							
5							
6 FUEL FLOW DESTRIBUTE	ivet	5 % 10	4.6	3.9			
7							
0							
9					A-40		
10 3.0 /		7			2/1/2		

Airesearch Manufacturing Company of Arizona QUALITY CONTROL REINSPECTION RECORD		D/				C/L Sine
Next	Assembly Fit	of Assentiv				S/N 3 3
NO.	Diminision and Legation	1,0	7	Defore	After	Remark
1	DIV -A-	1.0		1015	1 5 752	
2	L.A. of-3-		10.3	me !	419.0 P	
3	11-8-	222	<u> </u>	.11115	1	
4	LENGTH	72	73.	11.735	4 733	
5						
6						
7						
8	,					
9						
10	12					211
ins po	After Date	6/1/73 o.	iality i	Control	Tille	Date

Mani	Assembly C/L Find		nbly					
	Dimension and Location	II ASSI	BP	Before	After	Remark		
ı	11 OF ATO F	64		010	011			
2	DIAMETER	F-4	10.45	1.10	10048			
3	8 FG 2 = 10.656 - 10.655	F. 4	-coz	0/2	1/			
4	SEAL DIAMETER	FE	6.015	6.015	3:11	374 0 294		
5	1 AA DE SEAL DIAMETER	F.0	,002/	005) ~	KEA 3740294		
6	DIAMETER	E-7	3 53	9.197	2801	3710794		
7	DIAMETER	F-7	9.523	7.587	1 574	75740294 919		
8	6404	E-7	.003	006	610	******* /		
9						$\overline{}$		
10						ANA		

CASE	NO	1-5
-	110	1 · V

TEAR DOWN DEFICIENCY WRITE-UP

REPORT NO. 7-15.
3209-410019-73-0100

6	HARPOON -	ODE 19-23 DATE VR 0 4 0 4 3	CUSTOMER 24-26 (TRLR 56-6		_			
6	LOCATION 27-30	OUTLINE OR ASSY, NO. 31-41 (TRLR 61-71)		IFR.		1	ITLINE SE	
6	14 RE	VERHAUL 19 PROD. REJ. EPAIR OO OTHER ODIFY	X-7 - 5 CODE ACT BSP 5Y 67-88 71 72 73	MPTOM .75	10		FRT	
•	PROD LINE ARC SIGNATURES	Solity The solit of the solit o		- HANDL	1 ~ G	1	407 50	45
18.JE 6	PART NUMBER 7-16	PART NAME 17-24	SERIAL NO. 25-33	CONDITION		RT FLR ISP CNF 14 45	NAME CODE 46-48	COND. CODE 49-50
	3740393-1	COMPRESSUR ROTOR	AC 23					
	BRO SMED E	PON ERRODEO	360 -					
	No OTH	TR DISCIPAN	y Norm			*	a (***	
_					-	\dashv		
\dashv					-			
						\dashv		+
\dashv						-		
						-		
						<u> </u> .		
_								
_					-	\dashv		
_						\dashv		++-
						\dashv		
-						+-		
-								+
+					+	++		
+					\top	11		
1						1 1		
							1	
ヿ								

Next Assembly 374030 C/L Find	Assembly		URBIG SERE	S/N 26 46
NO. Dimension and Location	8P==	Before	After	Remark
LABYRINTH DIA.	6.001 5. 9 99	2 wo	5947	
2 RLADE TIP DIA.	9,540 9,547	3619	9.554	
3 SHAFT DIA 8 PLACES		15749	1.5757	
4 \$1.5749 TO B-C 8. PLACE	.0004	1000	0001	
5 9 9.548 D/A TO 3-C	.001	3003	007	
6 1 · F- To B-6	.000	0000	0002	
7 PISTON SEAL AREA DIA.	1.967	1.964	19661	
8 1 -A- TO B-C	.002	0009	cooce	
9 1 TO A.B. 1.967-1.966	.001	2006	0006	
10 LENGTH	15,48	15459	15 +38	

	REINSPECTION RECORD			- 51	AFT	_S/N
	AssemblyC/1, Fine Dimension and Location	ASSE	BP min	Before	After	Remark
1	DIA HOLES	E-8	.186	21864	15411	
2	DIA HOLES	E-7	-129	125	1745	
3	BALANCE PLANE P (02-IN)		.010	.008		(Fine)
4	BALANCE PLANT Q (02-IN)		.010	,005		·
5		-	1			
6						,
7	4					
8						
9						
10					~	/ }

Arrivator Manufacturing Company of QUALITY CONTROL REINSPECTION RECORD	PART NAME ROTOR ASSEMBLY
Next Assembly 3740301 C/L F	mal Assembly 3/N AC-23
NO. Dimension and Location	3 P (131) Before After Remark
I DIA 8.481	F5C 8.484 8.4895
2 D/A 8.38/	3 30 2.3 2.5 (1) 2.755
3 D/A 8-277	9.275 8.275
4 DIA 8.2/5	8.2135 8.2146
5 PM 8.738	8.1385 8.140
6 DIA 8.085	8.085 2.087
7 D/A 8-059	8.059 8.059
B DIA 8.025	8.0245 8.025
9 DIA 5.705	5.701 5.701
10 DIA 5.852	5.862 5.863
	te Quality Control Thanka M Date 3-7-

247 3,27 AiResearch Manufacturing Company of Arizona
QUALITY CONTROL
REINSPECTION RECORD PART NUMBER_374 0393-1_ C/LMC PART NAME ROTOR ASSEMBLY Next Assembly -7 - C/L Fingl Assembly 3/N. AC BP Fin Before NO. Dimension and Location After Remark DIA 6.219 2 DIR 6.332 3 DIA 6.561 OK 4 DIA 6.637 6.444 5 DIA LASSEMTH SEAL 6 809E - A -DIA TWO .0002 7 2.0993 20995 (1) 8 REF. DIA 9 10 Inspection Before 3. 1. 18 After 4.9.9. Date 3-1-73 Quality Control Per Date 4.7-73 Engineering PortChuste Dale 7-7-71

QL	IALITY CONTROL REINSPECTION RECORD	PART NAME	BOTOC.	393 CALAC Assembly Rearder
-	Assembly_324A301_C/LFingl A	ssembly		S/N AC-23
10.	Dimension and Location	BP toto Before	After	Remark
1	RUNOUTS - TO 15745 DM			
2	IST BLADE	0005		
3	2 NO BANDE	1.00 2		
4	3 pg Binos	000		
5	ATH BLADS	.002.	1007	
6	LARYSINTH	-002	007	
7	FRONT 353 DIS RUNOUT	.002	007	Ref. 3740376
8	IST ARPADANIE	.001		() () () () () () () () () ()
9	ZND ARADODLE	002		
0	3RD ARRANARLE	1000		J
nsp	AfterDate	Quality Cont	on The	Date 3-7-
	·		'KI	12.01
				4 of
QL	Research Manufacturing Company of Arizon IALITY CONTROL REINSPECTION RECORD	PART NUMBE	Posto A	\$ \$ 750 (\$ 1 7
aut	AssemblyC/L Final A	The state of the s	distance della electr	S/N AC-23

REINSPECTION RECO	IND C	renserra.	Rossa As	
Next AssemblyC/I	Final Assembly			S/N AC-23
NO. Dimension and Location	BP Hin	Before	After	Remark
		3.24		
2				
3 BALANCE PLANE NO	(175)	R	elel	J S-10-75
4 BALANCE PLANE M (4)				-45
5	 			
G The state of the				
7			4	
8		1 1		
9				
10				
Inspection Before	Date Quality	Control	Hank	Date 3- 7-2

Airesearch Monufacturing Company of Arizona QUALITY CONTROL REINSPECTION RECORD			LITY CONTROL BAST STATOR ASSEMBLY					
		mbly	mbiyS/NS/NS/N					
NO.	Dimension and Location			BP	Before	After	Remark	
1	DIA.		D6	8.338	8.360	8360	-	
2	DIA.		E9	8.780		2.777	٢,	
3	DIA.	_	E8	5.753	5.75	55,749		
4	DIA.		E8	5.915	5.072	5.911		
5	DIA.	_	D7	6.271	6.2675	36.268	4	
6	DIA.		D7		6.392	3.382		
7	DIA.	_	D7	6.614	6.6/75	16/15	to and	
8	DIA.		D7	6.690	6.6879	0.688	المال المال	
9	DIA.	_	C11-	8.526	9-5-00	1.5/8	TR 472/0	
10	DIA.		C11	8.426	9.437	1920	HR47210	
nspe	After	Date			Control 2		20/00 5 - 27	

levi	REINSPECTION RECO	mbly S/N				
	Dimension and Location		BP MOX	Before	After	Remark
	DIA.	B10	8.324	8.323	8.3205	
2	DIA.	B10	8.262	8.259	8.2575	
3	DIA.	B10	8.181	8.1825	8.179	
4	DIA.	B10	8.128	8.134	8./305	TR 47210
5	DIA.	_ B10	8.098	8-045	180'8 S	
6	DIA.	B10	8.064	9,0675	8,0625	178 47210
7						*
8						
9						_
10				-	(984 2-

Mar	REINSPECTION RECORD Assembly	STATE OF THE PARTY OF THE PARTY.	KEF			5/11 22 V//Y
	Dimension and Location	nor Asse	BP mex	Before	After	Remark
ı	DIAMETER	C-14	6.331	8 3377	63782	
2	LENGTH	C-13	.477	417	417	
3	·J. 11 TO-F.	C-13	.001	-0009	01	
4	-0-11 TO -J-	C-12	.001	.001	001	
5	DIOMETER	D-12	4.624	4634	1424	
6	A JKOT 4.623010	E-11	.001	.001	00%	
7	DIAMPTER -G-	E-14	8.37	8-3575	8 357	
8	DIAMETER .	E-11	10.652	10057	10057	
9	\$ 8 TO. F. G-	15-11	.00:	1018	0079	SHA 3.
10	Dinmerson /	E-5	18.492	6467	1944	Fit gonet

		PART	NAME -	1.05 1	Alas -
AssemblyC/L Fin	ol Asse				_S/N 72X//3_
Dimension and Location	and the	BP max	Before	After	Remark
1 OF 6.466 DIA	E-5	1001	MAG	· Mig	
DIAMETER 5 PLACES	A-15	.5012 .4535	507	-5717	
		•			
		1			
ON MONTEUR TI ONE		5 % 16	4.4%		
		-			
					-M 3-2
Don 1					ZI
	JALITY CONTROL REINSPECTION RECORD Assembly: C/L Fin Dimension and Location # OF 6.466 DIA DIAMETER 5 PLACES	REINSPECTION RECORD Assembly: C/L Final Assem	Assembly C/L Final Assembly Dimension and Location BP max. A of 6.466 DIA E-5 DIAMETER 5 PLACES A-15 .4055	Assembly COL Final Assembly Dimension and Location AF 6.466 DIA E-5 COL MAGE DIAMETER 5 PLACES A-15 3707	Assembly COL Final Assembly Dimension and Location FOR G. 4.66 DIA DIAMETER 5 PLACES A-15

Vest Assembly		-1.02	- S/N
NO. Dimension and Location	ៀវា ខ ដូច្នេះ	ore Litter	Romark R
CONTACT ANGLE	20. 2	20	,3
SEPARATOR PLLOT CLEARCE	-020	16	No.
3 PALL PORKET CLEARPINGE	102 - 10	12	3 (19)
4 BALL SIZE VARIATION		w25	4000 C
5 AXIAL CLEAR HER LOAD	130	23	200
6			
7			
8			
9			
10			

RE	CONTROL INSPECTION RECORD			EEAL	ING SET
	1y - 1740507-7-C/LA Fin		710501		SIN 2705
NO. Dimensio	on and Location	B P mox	Before	After	Remark
DIA	METRAL CLC.	.0000	111	DOIL	
2 End	cleanance	.0007	,0011	.0011	
3 ROL	IER DIA	. 1.85	3756	2756	
4 IN	VER ROSE ZO	1.5745	1,3 116 5	1.5 7465	
5 AG	F. OF JANUER RACE	.0001	ecces	100005	
6 D10	METER TOWERS	1.850	1549	1.849	
7 DIA	METER DUT ER ROSE	2.4.7.1	2401	2.401	
	J' OF 2.421-2597	.0000	-11115	ecoul!	
9 // /	1 OF 2.47.1-2.397	.0001	. ccci	.0001	
10				and	-1971

SIN 1/4XL
JOP 1 1 8.1 And Remak
13757 15/50
. G. 11 2 /11 1
1000 2 100 2
4732 4132
7
1 All 3

Nex	AssemblyC/LFin	ni Asse		374020		_S/N _/4 C
NO.	Dimension and Location		BP max	Defore	After	Remark
1	11 or A to F	6.4	1007	15		
2	DIOMETER	F-4	10.65%	10000	1000	
3	1 FG 0 = 10.656 - 12:55	F. a	-coz	2.3	1	
4	Con Dinner	FE.	6.017	Bil	idi	REF 374 07 04
5	1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F. F	.002	02	11	807 2740204
6	Dungan	E-7		2501	· '	N2 F 375 47 64
7	Dinario	F-7	9 2 3	9661		77/02 0.4
8	9 05 2601 Den 70 18	F.7	.03	003	,.	NET
9			-			
10	100		-			al.

6.4 Test Logs, Data Sheets, and Recorder Traces

This section contains the test log sheets, data sheets, and recorder traces for the tests run on each engine. The item and page numbers are as follows:

IFRT ENGINE NO. 1

Item	Page
Log sheets	218-219
Green run (computed and measured data curves)	220-221
Acceptance test performance data sheet	222
Cold soak data sheet	223
Design-point performance data sheet	224
Fuel metering valve assembly pre- and post-test data sheets	225-228
Pressure control valve pre- and post-test data sheets	229-230
Oil and fuel analysis data sheet	231
Acceptance test recording traces (windmill and cartridge start)	232-235
IFRT recording traces	236-237
IFRT ENGINE NO. 2	
Log sheets	238-241
Green run (computed and measured data curves)	242-243
Acceptance test performance data sheet	244
Hot soak data sheet	245
Design-point performance data sheet	246
Fuel metering valve assembly pre- and post-test data sheets	247-250
Pressure control valve pre- and post-test data sheets	251-252
Oil and fuel analysis data sheets	253-254
Acceptance test recording traces	255-258
IFRT recording traces	259-260

					QUALIFICATION		3 2 2	
					-0200 Date 4-5-73			
					Model No. X7 401 41 41 144 154 Technician 5			
	-	A			Test Schedule		Medification	
START TIME	STOP	RUN MIN.	***	TIME		REMARKS		(£26)
					GREEN RUN C	ONTROL %	0-106 Te seus	ne 642
					WINDMILL RUN-IN	P A, B, C	, O, E,	
/538		4:16	/		50 TO GOU SID, AD 120 SEC, TOTA	7 60V RU	N TIME ON	CONWEIL
755			2		ATP 1 4.2.1.	r,B,	P4.2.2.	1, 8,0,
	0759	453 4:19			D, E, F, G, H, 1, RUN TIME 243 ATI P4,3, A			-
(137	113%	4:39	3		1, J. K. L., TOROUS MEASU 350 IN-LB. PG.I. H, B, C,			
					SET UP PER QT A, B, C, D, E, F, C, -65°F	9090A	P 3.2.2.1.	
SUMMA	To	tal Man	ual S	larts		Ref. Data Pa	ge	

					QUALIFICATION T	EST LOC		
E.W.0.	No.	209-4	100	19-73-	200 Dale 4-7-73	Test Cell or S	lation No	LACC#2
					Medel No. X.T 401-2			
The second second second			_		TANSON Technician	The second secon		
Test T	ype_C	کر میں	MIS		Test Schedule QT 80	90 A	Modificatio	1
START TIME	STOP	RUN MIN. OS:31	3	TIME		REMARKS		FT. 170 00C5
					CONTINUE COLD	SOME, @	-65 F	PER
					QT 4090H P	32.2.1. 4.		
0767	-	08:39	4		IP 3.2.2.2, A,	B. C. D	EF	G. H.
					PYRO SQUIS DID N	OT PRE		RUN TIME 185E
					INST NEW STARTE	r + PTRO		
		-			COLD SOFFE ON C	ONOTTON (08	50 HRS -65
					SKIN TEMP			
					RE-RUN P3.2.	2.2. M, B	, C, D,	E, F, GH,
				· · · · · · · · · · · · · · · · · · ·	STARTER SQUIB FIR			
					INST NEW PYRO 4			
1216		20.000	5		RE- RUU 173,2.2	.2. A, B,	C, D, E,	1, 4, 4, 1,
	/237	20:35 21:24			RE- RUU (P 3.2.2 J, K, L, M, N, O	,		170 @
					FARDOWN FOR	VISUAL	INSPEC	T/3 N, [00];
					Zyoro & DIMENSIO	NAL INSPE	C710N	
SUMMA		ial Runn ial Man			hrsmin.	Ref. Data Pa	ige	
	-	olai Auto				Engineering_		

ANGLE-DEGREES
MEASURED CLOCKWISE FROM TOP LOOKING AFT

TURBINE INLET TEMPERATURE (T_4) COMPUTED DATA

O = r (3.6 INCHES) Δ = r (4.0 INCHES) + = r (4.4 INCHES)

GREEN RUN ON IFRT ENGINE NO. 1 (4-5-73) TEMPERATURE SPREAD FACTOR (TSF) = 0.23

ANGLE-DEGREES
MEASURED CLOCKWISE FROM TOP LOOKING AFT

TURBINE DISCHARGE TEMPERATURE (T_5) MEASURED DATA $O = R \quad (3.6 \text{ INCHES}) \quad \Delta = R \quad (4.0 \text{ INCHES}) \quad + = r \quad (4.4 \text{ INCHES})$

GREEN RUN ON IFRT ENGINE NO. 1 (4-5-73) TEMPERATURE SPREAD FACTOR (TSF) = 0.23

									DATE	\$603	TIME OF DAY	P DAY	9	•	Acv. 3
38	Barometric	28.00		Start			Altitude				(3.8 K.	Pating (b) KW OUTFUT)	Terf. Fat.	Sating (a)	
	presente		E HGA	time	20	X.O. sec. 2000	2000	Symbol	Parameter	Units	Measured	Referred Data	Neathree	Referred	_
, š	*	G	٠,	Hex.				T.1.0	Inlet temperature		172	169	171	169	H
		•		£7.0	9	•		E M	Att thrust	Tps	X	603	X	6/10	1
Pary	č	89	÷						pands	Rpm	* CCM	SECNO	KEL	2075	-
	•	DΕ		Engine	7			meas	Trust	Tps	39.0	X	392	X	L
Puel	Fuel	1	_			į		P _t 1.2	pressure	61 8d	8.55	X	258	X	_
954	gravity	7		Average exhaust nozzle				P 1.2	Scilmouth static pressure	bred	86.7	X	203	X	-
Speed	Speed			1.0	. T.	ë			Checific Fuel Consumpto	10s LE MR/LS	X	1.600	X	1.000	+
, U	tion							,	Airflow	L3/Sec	M	5	\mathbb{N}	12.9	+
(alte	rnator	art on cox	ad.	C.G.	142.2	٠.		Te7.0	Turbine discharge temperature	4.	1821	163	10.54	4	
			4					<	Output current	Amps	127.7	X	X	X	L
Tot	Total running time Ohinsec.	9 time 4 4	Jes : u					^	Cutbut roltage	SQX	29.65	X	X	X	L
									Electrical load	Ş	X	3.8	X	X	L
								W,	Fael flow	PPh	959	ž	3	40	H
90.7.								Vib.	Engine vibration	Mils	0./	X	9:/	X	L
1									-	14.					-
vel.	Fuel inlet pressure Operating time:	essure	41-65 p	41-65 psis (sea level)	level)			P 28	QU wes	in. Hg	124	124	1235	750	
Tibr	Electrical load: Vibration:	;	3.8 kw	minimum ls double	3.0 mils double amplitude maximum steady	aximum aximum s		×	Mach Number	1	.8.	0.85	.85	0.65	
								Alt.	Altitude	F.	(147	8.L.	1159	S.L.	
peec.	Start Time 18 Seconds wax. Speed signal actuating point:	18 Seconds wax.		3.700 rpm	28.700 rpm to 10 910 rpm	į		Θ-							
PER	PERFORMANCE R	RATING AT SEA-LEVEL ALTITUDE	64	ALTITUDE	. 90° F AMBIENT	ENT CONDITION	TION		(
					- 4			_			o	Θ—			
	Mach	Net Thrust Pounds	Engine Rotor RPM	Ib/hr/Ib of Thrust	OF X	Pounds Per Per Second	Elec- trical				/n	Į į	TEC KICIAN	SIGNATURE E House	3 4/6/
Maximum		+-		1.679	1579 259	-	+-				1	ans one	SUPERVISOR,	1	
Maximum	mum 0.85	600	36,960	1.687	1	L	3.8	_				8	COVERNO		
														1	2

S/N/ERE/ Date 4-6-73 Page 1 of Pages EWO No 2201-410019-73-0200 REMARKS Part No. 3740 300-4 3 Lab. Unit No. Station No. 12 = Dev. Engr. DAV CHRKTIHUSEN 2 "Hg Lab. Temp. LABORATORY DATA SHEET 0 œ _Test Personnel_ 1 Bar Ø S Test Purpose 10 HR COLD SORK & -65°F (E) 3 4 COMPLETED Heres 07 4.0 300 80 9.0 2.01 O -65'E -75'E 19-ついっ 100 17-63--68 89-79-69-77-NEW Y 99--65 -66 -65 -65 19--66 79-FURM NO SITTA 2 2100 2000 INSTR. S/N 3 120c 5.2400 223 4.1300 19 esec 11 6600 8 c3cc HOOH 9 6400 9 0100 4 15 12 <u>m</u> 9 12 8 6 2

Set thrus: Set thrus: Set thrus: Speed S	t temperature t temperature ttrust d	t temperature tit ratio and temperature tit valuer to where temperature to where t	######################################	t terperature t terp	Parenter Parenter Conditions Conditi	Parameter Paris Condition 1 Condition 2 Condition 2 Condition 3 Conditio	Primeter Condition Condi	Parameter Condition Condition Condition Parameter	Parcenter	Premeter Philipped Printing
		######################################	Altitude 1. Market 1. Mark	Altition 1. Altiton 1. Altition 1. Altition 1. Altition 1. Altition 1. Altiton 1. Altition 1. Altition 1. Altition 1. Altition 1. Altiton 1. Altition 1. Altition 1. Altition 1. Altition 1. Altiton 1. Altition 1. Altition 1. Altition 1. Altition 1. Altiton 1. Altition 1. Altition 1. Altition 1. Altition 1. Altiton 1. Altition 1. Altition 1. Altition 1. Altition 1. Altiton 1. Altition 1. Altition 1. Altition 1. Altition 1. Altiton 1. Altition 1. Altition 1. Altition 1. Altition 1. Altiton 1. Altition 1. Altition 1. Altition 1. Altition 1. Altiton 1. Altition 1. Al	Condition Cond	Condition Cond	Condition Cond	Condition Condition Condition Page	Addition 1	Attitude 1. California 2. Caldition 1. Enduring 1. Enduring 1. Caldition 2. Caldition 3. Calditi

DATA SHEET

FLUID: MIL-F-7024A, TYPE II AT 100° \pm 15°F P = 35 \pm 1 PSIG

P/N 3740425-/
S/N 22C2-2
DATE 3/29/73
STAND NO. #3
PUMP S/N 2/6

3.2 BYPASS VALVE SETTING:

TEST		SPEED	P 3	ΔP ; (PS	L-2 SI)	
PT.	FUNCTION	(RPM)	(PSIA)	REQD	ACT.	1
1	BYPASS VALVE SET	36000	80	69/71	71	SHIM (S-8154-105)
2	BYPASS VALVE CHECK	28800	80	RECORD	70	UNDER SPRING TO OBTAIN T.P.1.

3.3 METERING VALVE SETTING:

	FUNCTION	SPEED (RPM)	P ₃ (PSIA)	FUEL I		
3	SLOPE SETTING	36000	80	RECORD:	1015	
4		36000	40	RECORD:	430	SET SLOPE ADJUST. TO OBTAIN T.P. 5
5	T.P.3 MINUS T.P.4				585	VALUE OF 590 +10 PPH
		SPEED	P ₃	FUEL I		
	FUNCTION	(RPM)	(PSIA)	REQD	ACT.	
6	LEVEL ADJUST	36000	80	101 0± 10	1015	SHIM (S-8154-409)
7	MINIMUM FLOW STOP	21600	15	260 ±3	262	SCREW ADJUST.

		5(4)	Fue L FLOW (Pla)	P	(Psin)	athenicularies temperature and a second
	FUNA (194)	1800	(800)	Rice	ACT	
8	Minner of the Carry	MENO	270	32±2	32.4	The second of th

TI-3740425

FINAL

DATA SHEET

TEST FLUID: 7024A, TYPE II @ 100 \pm 15°F P_O = 35 \pm 1 PSIG

TEST STAND

Rump 3/N 2/6

3.5 HYSTERESIS & LINEARITY CHECK:

TEST		SPEED	P ₃	A		- 2 - 2		EL FLO	W
PT.	FUNCTION	(RPM)	(PS-IA)	Pg	G) (PSI	MIN.	ACT.	MAX.
	METERING VALVE:			U					
8	LINEARITY CHECK	36000	40					430	
9	·		60		ŀ			730	
10			80	1,	7		1000	1015	1020
11			100	4	1			1250	
12			120					1380	
13			80	R				1015	
14			40	1				430	
15	HYSTERESIS: DIFF. BETWEEN	r.P. 10	§ 13 S	SHAL	LI	TON	EXCEE	D 4 PI	PH.
16	SLOPE CHECK: DIFF. BETWEEN	T.P. 8	à 10 s	SHAL	LI	BE	580	535	600
17	MINIMUM FLOW STOP	21600	15	1			257	262	- 263
81	MIN I MY FLOW PARIZMONY	21500	32.4					270	
19	MAZINIM FLOW STOP	36000	COI				945	950	155

TI-3740425

DS-3740425, Rev. 1 11-20-72

T FPRT 1 : FINDINGS SHEET 1 OF 2.

PRESET LAB MAX FLOW PLUG

DATA SHEET

FLUID: MIL-F-7024A, TYPE II AT 100° +15°F

 $P_0 = 35 \pm 1 PSIG$

3.2 BYPASS VALVE SETTING:

TEST		SPEED	P ₃	ΔP. (PS	L-2 SI)	
PT.	FUNCTION	(RPM)	(PSIA)	REQD	ACT.	
1	BYPASS VALVE SET	36000	80	69/71	70	SHIM (S-8154-105)
2	BYPASS VALVE CHECK	28800	80	RECORD	68	UNDER SPRING TO OBTAIN T.P.1.

3.3 METERING VALVE SETTING:

	FUNCTION	SPEED (RPM)	P ₃ (PSIA)	FUE! (PPI		
.3	SLOPE SETTING	36000	80	RECORD:	1020	
4		36000	40	RECORD:	440	SET SLOPE ADJUST. TO OBTAIN T.P. 5
5	T.P.3 MINUS T.P.4				580	VALUE OF 590 ±10 PPH
		SPEED	P ₃	FUEL 1		
	FUNCTION	(RPM)	(PSIA)	REQD	ACT.	
6	LEVEL ADJUST	36000	80	101 0± 10	1020	SHIM (S-8154-409)
7	MINIMUM FLOW STOP	21600	15	260 ±3	263	SCREW ADJUST.

		FULL	P.	(P1A)	AND DOLLAR OF THE POLICE OF TH
Function 1	CROW		REQ.	ACT	PRET LEW VARIE FALLS - AND SO FOR AND AND SERVICE ARREST
8 Norman From Com.		270	32t2	32	THE STREET AS ASSESSED AS ABOVE SHADE.

'DS-3740425, Rev. 1 11-20-72

DATÁ SHEET

TEST FLUID: 7024A, TYPE II @ 100 \pm 15°F P_o = 35 \pm 1 PSIG

Pumi S/N

3.5 HYSTERESIS & LINEARITY CHECK:

TEST	· ·	SPEED	P ₃	A	۵	B-2		EL FLO (PPH)	OW .
PT.	FUNCTION	(RPM)	(PSIA)	PIS	G (PSI)	MIN.	ACT.	MAX.
	METERING VALVE:			11					
8	LINEARITY CHECK	36000	40					440	
9			60		ŀ			735	
10			80	Ĭ,	1		1000	955	1020
11			100	1				953	
12			120		11.			950	
13			80					953	
14			40	4		1		438	
15	HYSTERESIS: DIFF. BETWEEN	N T.P. 10	& 13 S	SHAL	LN	OT	EXCEE	0 4 PI	PH.
16	SLOPE CHECK: DIFF. BETWEE	EN T.P. 8	& 10 S	HAL	L E	E	580	1	600
17	MINIMUM FLOW STOP	21600	15	1		1	257	263	263
Si	MININT 16; FLOW BREICHUR,	/ 21550	32					270	
19	Missims FLOW STOP	35000	100			T	945	955	755

TI-3740425

D\$-3740427, Rev. 1 11-21-72 -

DATA SHEET

TEST STAND #3

TEST FLUID: DRY, FILTERED AIR @ 80° +40°F

P/N 3740.427-1

009 S/N

2-12-73 DATE

PAR. 3.2 - CONTINUITY CHECK

COIL RESISTANCE: 190 OHMS

APPROXIMATELY

180-216

TEST	T.I.		P ₁ (PSIA)	INPUT CURRENT	(P X PSIA)	
POINT	PARAGRAPH	CALIBRATION	<u>+</u> 0.2	(MA)	MIN	ACT	MAX
(2)	3.3.3	SET NOZZLE TO OBTAIN	90	+10	82.6	82.6	83.6
3	3.3.3	SLOPE CHECK POINT	90	+30	68.0		70.0

TEST	T.I.		P ₁ (PSIA)	INPUT CURRENT		P X (PSIA)	
POINT	PARAGRAPH	FUNCTION	+0.2	(MA)	MIN	ACT	MAX
5	3.4	Linearity & hysteresis	90	-10	-	90	
6				0	-	87.2	-
7				10	82.6		
8	•			20		764	-
9				30	68.0	69.9	
10				40		629	-
11				50	X	55.7	55.5
12				60		427	
13				50	X	55.7	55.5
14				40	-	628	-
15				30	68.C	698	70.0
16				. 20	-	76.6	_
17				10	82.6	826	84.6
18				0		87.2	
19				-10	-	900	_

17-21-72 -

D PAR. 3.2 - CONTINUITY CHECK

OST IFRT #/ FINDINGS

DATA SHEET

TEST FLUID: DRY, FILTERED AIR @ 80° +40°F

TEST STAND #3 P/N 3740427-1

COIL RESISTANCE:_

APPROXIMATELY

TEST	T.I.		P ₁ (PSIA)	INPUT CURRENT	(P X PSIA)	
POINT	PARAGRAPH	CALIBPATION	+0.2	(MA)	MIN	ACT	MAX
②	3.3.3	SET NOZZLE TO OCTAIN	90	+10	82.6	833	83.6
3	3.3.3	SLOPE CHECK POINT	90	+30	68.0	70	70.0

4 PAR. 3.3.3 - FINAL ORIFICE (do) DIAMETER: .0292 INCH.

TEST	т.1.	• .	P ₁ (PSIA)	INPUT	(P X PSIA)	
POINT	PARAGPAPH	FUNCTION	+0.2	(MA)	MIN	ACT	MAX
5	3.4	Linearity & hysteresis	90	-10		187.5	-
6				0	-	88,2	·
7				10	82.6	83.3	
8				20	-	77.0	
9				30	68.C	70.0	70.0
10				40	_	62.4	-
11				50		59.2	55.5
12				60	_	47.0	_
13				50	X	542	55.5
14				40	-	66.5	-
15				30	68.0	70.0	70.0
16				20	_	77.6	-
17				10	82.6	034	84.6
18				0	-	88.2	-
19			1	-10	-	89.5	-

AIRESEARCH MANUFACTURING COMPANY A DIVISION OF THE BARRETY SURPRISATION

OIL &	FUEL	ANALISIS	14	341

MATERIALS ENGINEERING

400 10 400	
APR 18 1973	D. Guetamen
Requestor D CHAST ANT. Dept. 93-1	Customer Engine Serial No. FRT # /
Copies To	Operating Hours Pas Filosoperation
	Sample Origin
	Charge No. 3209-610219-77-031)
Memufacturer Date 4-6-73	Date Required 4-5-73
4-6-75	-
B. P. Distillation	D Flash Point
IBP OP	coc °r
58	·
108	
208	OT.A.N.
30% 40%	
50% × 0 400°F	₹.н. v.
60%	18,570 BTU/LB
70% 80%	10,000
90%	
955	
E.P. S Distilled	
	Other
Specific Gravity	•
	1-1-1
51.0 APT 6) 60	of 1FRT# 1
. 0.775 BO 60°F	
©Reid Vap. Press. psi	•
□Viscosity	
<u>cs.</u> 6 <u>4</u>	
	•
100	
210	
	•

Analyst & Brilly

	\			and the second s	
		4 // 3	72:52		
		La l	-65°F		
8	£ i	#			
0	200A AITECHATOR	Joopsyn Thiruser County O	1200F MICT 1 -So	Pin Court	K. KDM -25.
	0				

AiResearch Manufacturing Company of Arizona

Page No.___et__

					QUALIFICATION T	EST LOC		
					7-010 Date 3-30-77			
					Model No. X740160			
Dorol	passal	Englacer.	1	. 4	HR1571 MER V Technician 57	V-WHIT	Grp. Ldr. BEUN	ETT
					7072 Test Schedule		Medification	
START	IME				i veni			3.0
					CLENN INVET C	ENTROL BOX	P-101	
			-		ONET RUG ILLAY	I RED III	27 Han E. 1 187.91	עניבו א
					COMBUSTOR DEFES	W GREE	U RUN YE	2.7.1
-11					8014			
		,			WINDOWNL RUN-IN	MIN) ELOU)	DENDUK	
					WINDSHIEL MUN-IN	July Lann	PARTY	
					INST 30 GA! PYRO -1	NO DELLY	SET UP =	R
2001			1		WIND MILL START	1 - 1A MAF		-
0531		 	-	 	40@ 9600 TO GOV	VERTINIA 15	60V	
	063/	04:26			TOTAL RUN TIME	266566		
			-	-	REMOVED TO D	EV AG,		

				-				
								
	-	-		}		.,		
	-		7					
			-					
SUMM	Ţ	otel Rune otel Manu otel Autor	nel St	arts_	hrsmin.	Rof. Data Pag Engineering		

					QUALIFICATION TEST LOG
E.W.O.	No.32	201-4	100	19-73	1-0200 Date 3-3/-73 Test Cell or Station No. 44 CC-2
					Model No. XJ 401-GH-400 Unit Serial No. IERT #2
Develo	pment E	ngineer	W.	E. WI	1-LUMAS Tochnician STV - WHIT Grp. Ldr. BENNETT
Test Ty	m K	CHIM	utl		Test Schedule 1971 SOSOR RENG Medification
START TIME	STOP TIME	RUN MIN.		TIME	REMARKS
					INSTALL ENG & HOOK OF REQ INSTRUMENTATION
					PER ATT 4030-A NEU G
					RUN-IN PEL P 4.1. A, B, C, MIN FLOW
					246 PPH , D, E.
		100100			P4.2.1. H, B,
1306	1307	:00:35	1		P4.2.2. A, B, C, D, E, F, G, H,
					LOST SPO SIGNAL - FRORT
	· 			· · · · ·	FOUND BROKEN HEADS IN PCU - REMIKED
		4994			RE-RUN 174.2.2. A, B, C, D, E, P, G, H, I, J, K,
1422	1415	03:40	2		L, M, N, O, P, Q, R, S,
					REJECT ENG PER ENG'R INSTRUCTIONS
	_				
			V3		
·					
SUMM		tal Runni tal Manu			hrs. min. Ref. Data Page
		tal Autor			Engineering

				QUALIFICATION TEST LOG
E.W.O.	h.32	9-410	0H-73	OSOO Date 4-1-73 Test Cell or Station No. ARCC-2
Assem	bly No.3	5740 3	:00-1	Model No. X J 401 414-400 Unit Serial No. 1 PRT # 2 840 1
Develo	pment E	ngineer	W.F.U	VILLIMALS Technician STU-WAIT Grp. Ldr. BENNETT
Test Ty	po A	CEIM	WE	Test Schedule ATT 9030 K REV 6 Modification
START TIME	STOP TIME	RUN MIN. 103:15	72	
				INST ENG + HOOK UP PER ATT 8030 R REU 6
				CONTROL BOX SN P-105, TO SENSOR 641.
				RUN-IN PER TP 4.1. M.B.C. MIN PLOW 245 PPH
				θ, ε.
A 41				P4, 2, 1, N, B,
1432		02:40	3	174,2.2. H, B, C, O, E, F, G, N, I, T, K, L, M, N,
	1835	5:55		0, P, Q, R, S.
				B 112
1953	10 - 1	1:20	4	P4.3, H, B, C, D, E, P, G, H, I, K, L,
	1954	7:15		RUN TIME 90 SEC.
				P 4.3, L, M, N, O.
				1P 6.1. H, B, C, 170
				4-2-73 SAN TAN
				INSTALLED ENGINE ON CENTRIFUGE PER
1440	1441			P 3.2.3.1(a) OF QT-8090 A. RAN
				61-65 RPM FOR 15 SECONDS.
				REPOSITIONED ENGINE PER P3.2.3.1(b) OF QT8090
1517	1518			RAN 61-64 RM FOR 15 SELONDS.
		5		REPOSITIONED ENGINE PER TP3.2.3.1(c) OF
1616	1617			QT-8090A. RAN 61-64 RPM FOR 15 SECONDS.
SUMM			ing Time_	hrs. min. Ref. Data Page
			al Starts_ natic Start	Engineering W.E. William

AiResearch Manufacturing Company of Arizona

Page No. 3 of

					QUALIF	CATION T	EST LOG		
E.W.O.	. lb.3	4410	<i>17-</i>	13-07	Date.	4-4-73	Test Cell or S	iation No. LACE - 2	
			_	-		-		Sorial No. 1587 #	
-				LW				Grp. Ldr. Bawal	77
Test Ty	po_//	FRT			Test Sche	tota 97 sopo	אוי	Medification	
TART	TIME	8UM MIN. 07:15	.4	, TIME			REMARKS		
					INSTAL	L ENG +	HOOK UP A	be at saur	
					P3,2.3	1 M, B, C, D,	E,F,G		
07%	0904	26:14 33:24	5	•	P3.2.3	2. N, B, C	0, E, F,	6, H, I, J, K, L,	M, de
						E 70 PE		170	EI
								ric .	
		Ã.	<i>j</i> 1						
SUMM		tal Runni tal Manu			hrs	min.	Ref. Data Pa	ge	
		tal Autor				_	Engineering		

ANGLE-DEGREES
MEASURED CLOCKWISE FROM TOP LOOKING AFT

TURBINE INLET TEMPERATURE (T_4) COMPUTED DATA O = r (3.6 INCHES) $\Delta = r$ (4.0 INCHES) + = r (4.4 INCHES)

GREEN RUN ON IFRT ENGINE NO. 2 (3-30-73) TEMPERATURE SPREAD FACTOR (TSF) = 0.23

ANGLE-DEGREES
MEASURED CLOCKWISE FROM TOP LOOKING AFT

TURBINE DISCHARGE TEMPERATURE (T_5) MEASURED DATA 0 = r (3.6 INCHES) $\Delta = r$ (4.0 INCHES) + = r (4.4 INCHES)

GREEN RUN ON IFRT ENGINE NO. 2 (3-30-73) TEMPERATURE SPREAD FACTOR (TSF) = 0.23

3 OFI. Reting (b) Ferf. Sating (a) (3.6 KF OUTPUT) CLED LOLD OUTPUT 1539 15856 35866 35979 35858 603 \$17.8 /305 S.L. 169 SERIN. 10. | FET 2 NUR TIME \$ 1400/77ES 162.7 1539 In. 89 1222 17,22 17. 1 TEC NICIAN, 8.44 SUPERVISOR GOVERNMEN 0.9 ENGINEER CONTROL TIME OF DAY 1835 1.627 1580 1580 ALISTO. 8.L. Data 169 0.85 957 999 110 × ***** Measured 7.00 0.75 Š 13,7 Specific Fuel Consumption LE/SP/L3 L3/Sec paig Petg Mils Amps Units 5 3 XX \$ 88 H ę, ż Turbine discharge Inlet temperature Delimouth static pressure Engine vibration sellmouth total Electrical load Cutput voltage Output current temperature Nach Number Ser thrust Fiel flow Altitude Airtion Tarust P. 61.2r. I.o : T. 7.0 2.73 Symbol 7 Alt. Vib. Sec. 20 000 rt Elec-2ero 41-65 psia (sea level)
Maximun of 4.0 minutes
3.8 kw minisum
4.0 kw maximum steady
3.0 mils double amplitude maximum steady 3.6 PERFORMANCE MATING AT SEA-LEVEL ALTITUDE, 90°F AMBIENT CONDITION Pounds Per Second 13.5 13.5 154.5 130 Speed signal actuating point: 28,700 rpm to 30,930 rpm. C.G. 142.8 Heasured Turbine Discharge Gas Temp. (Max) 859 961 1582 1579 Ingine weight Average exhaust nonrie ... Engine lb/hr/lb Rotor of RPM Thrust (Max) (Max) 1 37,060 1.679 36,960 1.687 Total running time 2,00 minises. 28.55 in. Has 18 Seconds max. 55. Thrust Pounds (Min) 665 600 Puel inlet pressure Operating time: Electrical load: Vibration: Kumber 0.85 0.85 Parcentric pressure Puel specific gravity Start Time Rating Maximum MAXIMUM ž LIMITS T. 244

	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	160 162 162 160 160
		0.000,000,000,000,000,000,000,000,000,0
		3.0 0.0
		5,000
		100
		0 %
3		000
	2	0.0

	ī	BIGH T	BIGH TEMPERATURE START AND SEA-LEVEL E	TART AND SE	A-LEVEL E	NDURANCE	TEST INITIAL PLICHT	RACION TEST DRICKS	ROSTAL					08-1145		2-9-73
		ION	100	400				-	Starting	tion	Endurance	5000	Endurance	¥ _	Operation	tion of
		SERIAL NO. IERT	N	TIME OF DAY 0738	. 0738	Symbol	Parabeter	Units	Heat.	Date	Heav.	Date	Meas. Re	Referred		ats.
						F. 1.0	Inlet temperature		29	09	173.6	1694	18.89	1634	168.3	169.9
							Net thrust	:ps	X	651	X	572	X	578	V	578
Barometric	3007 12 52		Start	9		*	Speed	Rpm	3/299	3/268	36024	36087 3	36 687 3	36072 3	83/98	36083
bressure	10:04	¢			**		Thrust	rps	124	X	357	X	373	Ž	375	X
, ž	49	:	7.7.0 15.2	. /7		2"13	Delimouth total pressure	psig	2.18	X	8.97	X	8.61	Ž	8.61	X
Tdry Fuel	109	•		٠ ر		1.2	Bellmouth static pressure	Sysd	851	X	7.40	X	7.04	Ż	7.02	X
specific	275		velght 15%.	C.			SPC	Lb/Rr/Lb	X	1.645	X	1.596	Ì	1602	X	1.676
AT CATES							Airflow	TP/Sec	M	2.16	Ž	12.94	Ì	12.97	X	13.65
Speed signal actuation			Exhaust 5.	.929 In.		£7.0	Turbine discharge temperature		\$68	899	1402	1405	1419	18/8/	1406	1406
point	×,200 rps		I.D.			4	Output current	Amps	511	X	113	Ž	122	X	122	X
						>	Output soltage	VDC	12	X	29	X	18.5	X	9.87	X
			Logine				Electrical load	ž	X	3.1	X	3.5	X	3.5	X	3.5
			Ä	192.8		,,	Purl flow	PPB	265	260	288	9/3	893 3	926	106	934
		,				Vib.	Engine vibration	Mils	6.0	X	27	X	9.0	X	7	1
				11					Sum li				-			
LIMITS: Fuel inle	LIMITS: Fuel inlet pressure	6	7		-	4.1.2	77 FM	8 '4' .	4.29	4.29	18.3	17.4	17.5	17.4	17.5	12.4
Operating time	time 1 load	41-46 psia	41-46 psia (Sea Level) Min. 16 min; Max. 30 min.	ft)	-		Nach number	×	, 65	9.0	.87	9.8	.855		.855	0.85
		THE REAL PROPERTY.	4.0 KV BEX.		=	Alt	Altitude	Yest	20,342	20,000	1159	S.L.	1211	7.5	141	S.L.
Start Time:	ü	18 Seconds Max.	Max.		,		•		15.3		77,	96.	Tongine Distance	1		1
Speed sig	Speed signal actuation point	Speed signal actuation 28,700 to 30,900 rpm point	30,900 rpm				<u>-</u>	Θ- Θ-	9	6 –	Θ-	K.			7	
TENG OFFI	-	SFC SFC	Measured	Airtiow				1		-4	<u> </u>			Stex	7	27
	E 2	Rotor of RPM Thrust		- V	trical Output		<u> </u>		100	Ś	- 1=	TECHNICIAN	AS K	telet		1.4.73
Rating	Mumber (Min)	(%ax)		ξ Τι	3		4			1		SUPERVISOR	CR.	de	Ż	4/4/13
			٥. 4.		T		/	•				CUALITY CONTR	787	3.1	, .a	5.4.7
Maximum	0.95 600	35,950 1.687	7 1582 861	13.5	9:8		`		-			GOVERNMENT	T	400	,	9 Den. 73
	•					_	~		9		_	ENGINEERING		al: Alber		1/0/15

DS-3740425, Rev. 1 11-20-72

PRESET

SHEET 1 OF 2'

DATA SHEET

FLUID: MIL-F-7024A, TYPE II AT 100° +15°F
Po = 35 +1 PSIG

P/N 3740425-S/N 2274-3 DATE 3-28-73 STAND NO. C/20#3 Pump S/N 2273

3.2 BYPASS VALVE SETTING:

TEST	:	SPEED	P ₃	P .	1-2 SI)	
PT.	FUNCTION	(RPM)	(PSIA)	REQD	ACT.	
1	BYPASS VALVE SET	36000	80	69/71	70	SHIM (S-8154-105)
2	BYPASS VALVE CHECK	28800	80	RECORD	69	UNDER SPRING TO OBTAIN T.P.1.

3.3 METERING VALVE SETTING:

33

	FUNCTION .	SPEED (RPM)	P ₃ (PSIA)	FUEL 1		
3	SLOPE SETTING	36000	80	RECORD:	1020	
4		36000	40	RECORD:	438	SET SLOPE ADJUST. LA TO OBTAIN T.P. 5
5	T.P.3 MINUS T.P.4				582	VALUE OF 590 ±10 PT

		SPEED	P ₃	FUEL F			
	FUNCTION	(PPM)	(PSIA)	FEQD	ACT.	·	ł
6	LEVEL ADJUST	36000	80	10:3 <u>+</u> 10	1020	SHIM (S-8154-409)	
7	MINIMUM FLOW STOP	21600	15	260 ±3	263	SCREW ADJUST.	

	,	SPECIA	FUEL	P	(PSIA)	THE PLAN SHEET SELECTION OF SELECTION	
	Foundary	(Fem)	(PPH)	REN	ACT.		(1)
8	Mission Flow (De com	2.1600	270	30 ±2	32.6		11

TI-3740425

FINAL

DATA SHEET

7024A, TYPE II @ 100 ±15°F P_o = 35 ±1 PSIG TEST FLUID:

P/N 3740425-1 S/N DATE 3-28-73

TEST STAND #3

Pump SIN 2273-3

3.5 HYSTERESIS & LINEARITY CHECK:

Test	:	SPEED	P ₃	P	ΔP -2	FU	EL FLO (PPH)	OW .
PT.	FUNCTION	(RPM)			1/5 B = 1	MIN.	ACT.	MAX.
	METERING VALVE:			刀				
8	LINEARITY CHECK	36000	40		72		438	
9			60		21		725	
10			80	1.		1000	1020	1020
11			100	,			1260	
12			120	-			1370	
13			80	1			1020	
14	·		40	1			438	
15	HYSTERESIS: DIFF. BETWEE	EN T.P. 10	& 13 S	HALL	NOT :	EXCEE	0 4 PI	PH.
16	SLOPE CHECK: DIFF. BETWE	EN T.P. 8	& 10 S	HALL	BE	580	522	600
17	MINIMUM FLOW STOP	21600	15	1		257	263	263
18	MINING THE FLOW BODGE LAUNA	1 21600	32.6	30.0			270	
19	MAYIMAM FLOW STOP	36000	100	,,,,		945	950	155

TI-3740425

PRESET

SHEET 1 OF 2"

POST I FRT FIUDIUS DATA SHEET

FLUID: MIL-F-7024A, TYPE II AT 100° +15°F $P_0 = 35 + 1$ PSIG

P/N 3790 925-1 s/N 22743 DATE 4/5/73

STAND NO. 753

Pump Sh 2273-3

3.2 BYPASS VALVE SETTING:

TEST		SPEED	P ₃		1-2 SI)	
PT.	FUNCTION	(RPM)	(PSIA)	REQD	ACT.	
1	BYPASS VALVE SET	36000	80	69/71	70	SHIM (S-8154-105)
2	BYPASS VALVE CHECK	28800	80	RECORD	67	UNDER SPRING TO OBTAIN T.P.1.

3.3 METERING VALVE SETTING:

4

	FUNCTION	SPEED (RPM)	P ₃ (PSIA)	FUEL F (PPH		
.3	SLOPE SETTING	36000	80	RECORD:	1000	72.5
4		36000	40	RECORD:	440	SET SLOPE ADJUST. TO OBTAIN T.P. 5
5	T.P.3 MINUS T.P.4				560	VALUE OF 590 ±10 PPH

	SPE		P ₃	FUEL FLOW (PPH)			
	FUNCTION	(RPM)	(PSIA)	REQD	ACT.		
6	LEVEL ADJUST	36000	80	1019 <u>+</u> 10	1000	SHIM (S-8154-409)	
7	MINIMUM FLOW STOP	21600	15	260 ±3		SCREW ADJUST.	

		SPEED	Fire L.	12	(PSIA)	CLARACON RECORD - CARRIAGE AND AND A
	FUNCTION	(RPM)	(PPH)	REQ.	NCT	
8	Missing of Court Charles		270	32 52	32	PAT-APTER PRO- ARE PROPER MANY AND .

'DS-3740425, Rev. 1 11-20-72

POST IFRT FININGS

SHEET 2 OF

DATA SHEET

7024A, TYPE II @ 100 ±15°F P_o = 35 ±1 PSIG

P/N 3790425-5/N 2279.

TEST STAND #3

3.5 HYSTERESIS & LINEARITY CHECK:

Pump SIN 2273-3

Test	3.5	SPEED	P ₃	人	4월-2	FU	OW	
PT.	FUNCTION	(RPM)	(PSIA)	PS G	(P\$1)	MIN.	ACT.	MAX.
	METERING VALVE:			1/1/				
8	LINEARITY CHECK	36000	40	j'	1		440	
9			60		11		720	
10			80	,	NI	3.000	1000	1020
11			100				1220	
12			120		1		1400	
13			80				1004	
14			40	- 1			442	-
15	HYSTERESIS: DIFF. BETWEEN	T.P. 10	§ 13 S	HALL	NOT	EXCEE	0 4 PI	PH.
16	SLOPE CHECK: DIFF. EETWEE	N T.P. 8	§ 10 S	HALL	BE	580	560	600
17	MINIMUM FLOW STOP	21600	15	1	Į	257	262	263
Si	MINIM IN FLOW BREEZEWAY	21600	32.0	72.2			270	
19	Mirania FLOUS STOP	36000	130		and serve	945	955	155

REMOVED MAXFOU STOD, TO CHECK All POINTS TO TI W.

TI-3740425

D\$-3740427, Rev. 1 11-21-72 3.

DATA SHEET

TEST FLUID: DRY, FILTERED AIR & 80° 440°F

TEST STAND #3 P/N 3740.42

DATE 3.22-7

D PAR. J.2 - CONTINUITY CHECK

COIL RESISTANCE:_

APPROXIMATELY 180-216

TEST	T.I.		.P ₁ (PSIA)	INPUT CURRENT	P X (PSIA)		
POINT	PARAGRAPH	CALIBRATION	±0.2	(MA)	MIN ACT MAX		
Q	3.3.3	SET NOZZLE TO OBTAIN	90	+10	192.6 826 183.6		
(3)	3.3.3	SLOPE CHECK POINT	90	+30	58.0 K99170.0		

3 PAR. 3.3.3 - FINAL ORIFICE (do) DIAMETER: OZFZINCH.

TEST	T.I.		P ₁ (PSIA)	INPUT CURRENT	(P PSIA)	·
POINT	PARAGRAPH	FUNCTION	+0.2	(MA)	MIN	ACT	MAN
5	3.4	Linearity & hysteresis	90	-10	-	90	_
6				0	-	87.5	-
7				10	82.6	924	وكالمنتفدة
8	·			20		76.6	-
9				30	68.0	69.9	70.0
10				40		62.0	_
11				50		53.0	55.5
12				60	_	164	_
13				50		53.0	55.5
14				40	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	62.2	-
15				30		699	70.0
16				20	-	77.0	_
17				10	82.6		84.6
18				С		97.5	
19			7	-10	-	90:	-

DS-3740427, Rev. 1 17-21-72-3.

POST IFRT I NOINGS

TEST STAND #3

TEST FLUID: DRY, FILTERED AIR 9 80° ±40°F

P/N 3740427-

S/N

DATE

(1) PAR. 3.2 - CONTINUITY CHECK

COIL RESISTANCE:

APPROXIMATELY

180-216

TEST	т.1.	•	P ₁ (PSIA)	INPUT CURRENT	P X (PSIA)		
POINT	FARAGRAPH	CALIBRATION	+0.2	(MA)	MIN	ACT	MAX
(2)	3.3.3	SET NOZZLE TO CETAIN	50	+10	82.6	83.2	83.6
3	3.3.3	SLOPE CHECK POINT	90	+30	55.0	distances in case of	70.0

4 PAR. 3.3.3 - FINAL ORIFICE (\overrightarrow{a}_0) DIAMETER: 0.292 INCH.

TEST	T.I,		P ₁ (PSIA)	INPUT CURRENT	(P _X (PSIA))
POINT	PARAGRAPH	FUNCTION:	÷0.2	(MA)	MIN	ACT	MAX
5	3.4	Linearity & hysteresis	90	-10	_	189	-
. 6				0	-	86.5	
7			TT	10	82.6	83.2	
8				20		745	-
9				30	68.C	695	70.0
10				40	-	62	_
11				50	X.	52	55.5
12				60	_	146.5	-
13		·		50	X	51.5	35.5
14				40	-	61	-
15				30	68.0	695	70.0
16				20	_	76	_
17				10	82.6	32.6	84.6
18				0		86.5	-
19				-10	_	39	

252

A DIVISION OF THE GARRETT GORPHATION

OIL & FUEL ANALYSIS 14.278

MATERIALS ENGINEERING

APR 1 2 1973	
Requestor APE Williams Dept. 93-17/7 Copies To R.D. Milliam 93-18/1 Manufacturer Date 4-1-73	Customer Engine Serial No. /F/T 2 Operating Hours Sample Origin / PCC 7 Charge No. 3209-4/0/14-73-0/09 Date Required 4-4-13
□ B. P. Distillation	□ Flash Point
18P 9 5% 10% 20%	COCOF
30% 40% 50% % 400°F 60% 70% 80% 90% 95%	15,570 Btu/16.
E.P. ★ Distilled	Other .
Specific Gravity 51.1° API@60°F	
. Spgr. 0.775@60°F	Ti II
Of.eid Vap. Press. pei	
DViscosity	
cs. 6 9	
	·
210	
	#

AIRESCARCH MANUFACTURING COMPANY A DIVIDION OF THE GARRETT REPPEATION CHOCKE, ARIENA

OIL & FUEL ANALYSIS 14.276

MATERIALS ENGINEERING

APR 12 1973 Requestor N. N. L. C. Dept. 93-17/ Copies To Kanufacturer Date 4-4-73	Customer Engine Serial No. //CT 2- Operating Hours Sample Origin Charge No. 3209-4/0019-73-0000 Date Required A 4 73	
D B. P. Distillation	O Flash Point	
TBP OF	COCOp	
10% 20% 30% 40%	T.A.N.	
50% % 400°F		
70% 80% 90% 95%		
E.P.	Other	
Specific Gravity 51.1 Aff@ 60°F Spec. 9775@60°F	T ₂ :	
□Reid Vap. Press. pei		
□ Viscosity	a	
<u>ce.</u> 6 ⁰ 7	•>	
	•	
210		
		

