Machine Learning Theory

Multivariate Sobolev Regression

David A. Hirshberg February 7, 2025

Emory University

TODO

- Illustrate Slower Rate of Convergence for 2D Data (image) Empirically [Zero image; Gaussian Bump]
- Do Additive Model Example (Maybe prove truncation result?) also with Rate of Convergence
- Introduce Mixed Partials Model in Lab [Do Calculations Yourself; Main lab content = finding/playing with images]

Today

- 1. Sobolev Models Review
- 2. Homework Review
 - · Gaussian Width Calculations
 - · Error Bounds for Sobolev Regression
- 3. Multidimensional Sobolev Models and the Curve of Dimensionality

Multidimensional Sobolev Models

The Isotropic Sobolev Model

To get a multidimensional generalization of our (p=1) Sobolev model, we can replace the squared derivative with the squared norm of the gradient.

$$\mathcal{M}^1 = \{m: \rho_{-\Delta}(m) \leq B\} \quad \text{ where } \quad \rho_{-\Delta}(m) = \sqrt{\int_{[0,1]^d} \lVert \nabla m(x)\rVert^2 dx}.$$

Much like in the univariate case, we can use integration by parts to get an equivalent definition in terms of a self-adjoint operator.

$$\mathcal{M}^1 = \{m : \rho_{-\Delta}(m) \leq B\}$$
 where $\rho_{-\Delta}(m) = \sqrt{\langle -\Delta^p \ m, m \rangle_{L_2}}.$

That operator is the second derivative's simplest higher-dimensional generalization.

The Laplacian
$$-\Delta \ m=-\frac{\partial^2}{\partial x_1^2}m(x)-\ldots-\frac{\partial^2}{\partial x_d^2}m(x)$$

It's a self-adjoint operator on functions that are even and 2-periodic along each axis.

$$f(\pm x_1,\ldots,\pm x_d)=f(x_1+2j_1,\ldots,x_j+2j_d)=f(x_1,\ldots,x_d)$$
 for $j\in\mathbb{Z}^d$ integer vectors

Eigenvectors and Eigenvalues

Because this operator self-adjoint, we know it has an orthogonal basis of eigenvectors.

The Laplacian
$$-\Delta\,m = -\frac{\partial^2}{\partial x_1^2}\,m(x) - \ldots - \frac{\partial^2}{\partial x_d^2}\,m(x)$$

Anybody want to guess?

Eigenvectors and Eigenvalues

Because this operator self-adjoint, we know it has an orthogonal basis of eigenvectors.

The Laplacian
$$-\Delta\,m=-\frac{\partial^2}{\partial x_1^2}m(x)-\ldots-\frac{\partial^2}{\partial x_d^2}m(x)$$

Anybody want to guess?

They're products of cosines.

$$\phi_j(x) = \cos(\pi j_1 x_1) \cdots \cos(\pi j_d x_d)$$
 with eigenvalue $\lambda_j = (\pi \|j\|_2)^2$ for $j \in \mathbb{Z}^d$.

Smoother Isotropic Sobolev Models

There are versions for higher order derivatives.

$$\mathcal{M}^p = \{m: \rho_{-\Delta^p}(m) \leq B\} \quad \text{ where } \quad \rho_{-\Delta^p}(m) = \sqrt{\langle -\Delta^p \, m, m \rangle_{L_2}}$$

And Fourier series representations.

$$\mathcal{M}^p = \left\{ \sum_{j \in \mathbb{Z}^d} m_j \phi_j : \sum_{j \in \mathbb{Z}^d} \lambda_j^p \ m_j^2 \le B^2 \right\} \quad \text{ for } \quad \phi_j(x) = \cos(\pi j_1 x_1) \cdots \cos(\pi j_d x_d)$$
 and
$$\lambda_j = (\pi \|j\|_2)^2.$$

You can derive all this stuff the same way as the univariate case.

The Gaussian Width of a Neighborhood

Abstractly, width is the same thing. All we used before were the eigenvalues.

$$w(\mathcal{M}_s^p) \le \sqrt{\frac{8B^2}{n}} \sum_j \min \left\{ \lambda_j^{-1}, \ s^2 \right\} \quad \text{for} \quad \lambda_j = (\pi ||j||_2)^{2p}.$$

- \cdot But now we're summing more or them, spreading out in all d directions.
- This means we see the same value of λ_i^{-1} in the sum multiple times.
- Same $||j||_2$, different j.

Integral approximation makes it easy to 'count' these copies.

$$w(\mathcal{M}_{s}^{p}) \lesssim \sqrt{\frac{8B^{2}}{n} \int_{x \in \mathbb{R}^{d}} \min\{(\pi ||x||_{2})^{-2p}, \ s^{2}\} dx}$$

- The 'number of copies' gets larger as $||x||_2$ does.
- \cdot To be precise, it's the surface area of the sphere of radius $r=\|x\|_2$
- · And if we change variables to polar coordinates, the integral is easy.

Step 1. Reduce it to a one-dimensional integral.

$$w(\mathcal{M}_{s}^{p})^{2} \lesssim \frac{8B^{2}}{n} \int_{x \in \mathbb{R}^{d}} \min\{(\pi || x ||_{2})^{-2p}, s^{2}\} dx$$

in rectangular coordinates

Step 1. Reduce it to a one-dimensional integral.

$$\begin{split} \mathbf{w}(\mathcal{M}^p_s)^2 &\lesssim \frac{8B^2}{n} \int_{x \in \mathbb{R}^d} \min \big\{ (\pi \|x\|_2)^{-2p}, s^2 \big\} dx & \text{in rectangular coordin} \\ &= \frac{8B^2}{n} \int \left[\int r^{d-1} \min \big\{ (\pi r)^{-2p}, s^2 \big\} dr \right] d\theta_1 \dots \theta_{d-1} & \text{in polar coordinates} \end{split}$$

Step 1. Reduce it to a one-dimensional integral.

$$\begin{split} \mathbf{w}(\mathcal{M}^p_s)^2 &\lesssim \frac{8B^2}{n} \int_{x \in \mathbb{R}^d} \min \big\{ (\pi \|x\|_2)^{-2p}, s^2 \big\} dx & \text{in rectangular coordinate} \\ &= \frac{8B^2}{n} \int \left[\int r^{d-1} \min \big\{ (\pi r)^{-2p}, s^2 \big\} dr \right] d\theta_1 \dots \theta_{d-1} & \text{in polar coordinates} \\ &= \frac{8B^2}{n} \quad \left[\int r^{d-1} \min \big\{ (\pi r)^{-2p}, s^2 \big\} dr \right] \int 1 d\theta_1 \dots \theta_{d-1} & \left[\int \dots \right] \text{ is constant in } \theta \end{split}$$

$$\left[\int\ldots\right]$$
 is constant in θ

Figure 1: sphere surface area vs. dimension

Step 2. Calculate the one-dimensional integral. This should be familiar.

$$w(\mathcal{M}_s^p)^2 \lesssim \frac{8B^2}{n} \cdot \frac{2\pi^{d/2}}{\Gamma(d/2)} \cdot \int r^{d-1} \min\{(\pi r)^{-2p}, s^2\} dr$$

The integral has two parts.

- 1. The beginning, where $(\pi r)^{-2p}$ is big and we're just integrating $r^{d-1} \times s^2$.
- 2. The end, where $(\pi r)^{-2p}$ is small and we're integrating $r^{d-1} \times$ that.

When does the end start?

Step 2. Calculate the one-dimensional integral. This should be familiar.

$$w(\mathcal{M}_s^p)^2 \lesssim \frac{8B^2}{n} \cdot \frac{2\pi^{d/2}}{\Gamma(d/2)} \cdot \int r^{d-1} \min\{(\pi r)^{-2p}, s^2\} dr$$

The integral has two parts.

- 1. The beginning, where $(\pi r)^{-2p}$ is big and we're just integrating $r^{d-1} \times s^2$.
- 2. The end, where $(\pi r)^{-2p}$ is small and we're integrating $r^{d-1} \times$ that.

It starts when
$$r>\pi^{-1}s^{-1/p}$$
. Let's do it.

Step 2. Calculate the one-dimensional integral. This should be familiar.

$$w(\mathcal{M}_{s}^{p})^{2} \lesssim \frac{8B^{2}}{n} \cdot \frac{2\pi^{d/2}}{\Gamma(d/2)} \cdot \int r^{d-1} \min\{(\pi r)^{-2p}, s^{2}\} dr$$

The integral has two parts.

- 1. The beginning, where $(\pi r)^{-2p}$ is big and we're just integrating $r^{d-1} \times s^2$.
- 2. The end, where $(\pi r)^{-2p}$ is small and we're integrating $r^{d-1} \times$ that.

It starts when $r > \pi^{-1} s^{-1/p}$. Let's do it.

$$\begin{split} &= \int_0^{\pi^{-1} s^{-1/p}} r^{d-1} s^2 dr \quad + \quad \int_{\pi^{-1} s^{-1/p}}^{\infty} \pi^{-2p} r^{d-1-2p} dr \\ &= s^2 \frac{r^d}{d} \left| \begin{matrix} \pi^{-1} s^{-1/p} \\ \end{matrix} \right| \quad + \quad \pi^{-2p} \frac{r^{d-2p}}{d-2p} \left| \begin{matrix} \infty \\ \end{matrix} \right|_{\pi^{-1} s^{-1/p}} \qquad & \text{if } p > d/2 \text{, otherwise } \infty \\ &= \frac{\pi^{-d} s^{2-d/p}}{d} \quad + \quad \frac{\pi^{-d} s^{2-d/p}}{2p-d} = c_{d,p} s^{2-d/p} \qquad & \text{for } c_{d,p} = \frac{\pi^{-d}}{d} \left\{ 1 + \frac{1}{\frac{2p}{d}-1} \right\} \end{split}$$

Summary.

Our width bound is proportional to $n^{-1/2} \ s^{1-d/2p}$.

$$w(\mathcal{M}_s^p)^2 \lesssim \frac{8B^2}{n} \cdot \frac{2\pi^{d/2}}{\Gamma(d/2)} \cdot c_{d,p} s^{2-d/p}$$

An Error Bound

To bound our least squares estimator's error, we do what we always do.

$$\|\hat{\mu} - \mu^\star\| \leq s \text{ w.p } 1 - \delta \quad \text{ if } s^2 \geq 2\sigma \, c_\delta \, \text{w}(\mathcal{M}^p_s) \quad \text{and therefore if } s^2 \geq c_\delta' \, B n^{-1/2} s^{1 - d/2p} s^{1 - d/2p}$$

We've essentially solved this in the 1D case. But now smoothness is relative to dimension: p/d is the new p.

 $n^{-1/(2+d/p)}$ is our rate of convergence.

To bound our least squares estimator's error, we do what we always do.

$$\|\hat{\mu} - \mu^\star\| \leq s \text{ w.p } 1 - \delta \quad \text{ if } s^2 \geq 2\sigma c_\delta \, \text{w}(\mathcal{M}^p_s) \quad \text{and therefore if } s^2 \geq c_\delta' B n^{-1/2} s^{1-d/2p}$$

We've essentially solved this in the 1D case. But now smoothness is relative to dimension: p/d is the new p.

 $n^{-1/(2+d/p)}$ is our rate of convergence.

Derivation.

$$s^2 \gtrsim n^{-1/2} s^{1-d/2p} \qquad \qquad \text{or equivalently}$$

$$s^{1+d/2p} \gtrsim n^{-1/2} \qquad \qquad \text{or equivalently}$$

$$s \gtrsim n^{-1/\{2(1+d/2p)\}} = n^{-1/(2+d/p)}.$$

An Error Bound

To bound our least squares estimator's error, we do what we always do.

$$\|\hat{\mu} - \mu^\star\| \leq s \text{ w.p } 1 - \delta \quad \text{ if } s^2 \geq 2\sigma c_\delta \operatorname{w}(\mathcal{M}^p_s) \quad \text{and therefore if } s^2 \geq c_\delta' B n^{-1/2} s^{1 - d/2p}$$

We've essentially solved this in the 1D case.

But now smoothness is relative to dimension: p/d is the new p.

 $n^{-1/(2+d/p)}$ is our rate of convergence.

Implications.

This means that we gain a decimal point of precision with \dots

An Error Bound

To bound our least squares estimator's error, we do what we always do.

$$\|\hat{\mu} - \mu^\star\| \leq s \text{ w.p } 1 - \delta \quad \text{ if } s^2 \geq 2\sigma \, c_\delta \, \text{w}(\mathcal{M}^p_s) \quad \text{and therefore if } s^2 \geq c_\delta' B n^{-1/2} s^{1 - d/2p}$$

We've essentially solved this in the 1D case.

But now smoothness is relative to dimension: p/d is the new p.

$$n^{-1/(2+d/p)}$$
 is our rate of convergence.

Implications.

This means that we gain a decimal point of precision with ...

- $10^4 = 10,000$ times more data using a model with p = d/2 bounded derivatives.
- $10^3 = 1000$ times more data using a model with p = d bounded derivatives.
- $\cdot 10^{2.50} \approx 300$ times more data using a model with p=2d bounded derivatives.
- \cdot $10^{2.33} \approx 200$ times more data using a model with p=3d bounded derivatives.
- \cdot 10^{2.25} pprox 175 times more data using a model with p=4d bounded derivatives.

Smoothness doesn't count for much if it's spread over many dimensions. Even if we've got tons of data, we need 3+ derivatives in 3+ dimensions. That's the curse of dimensionality.

Intuition

If two points are close, a smooth functions's values at them will be close.

But this isn't very useful if our observations are far apart.

And higher-dimensional observations do tend to be further apart.

Left Uniformly distributed points in the unit interval. Right Uniformly distributed points in the square interval.

Intuition

If two points are close, a smooth functions's values at them will be close.

But this isn't very useful if our observations are far apart.

And higher-dimensional observations do tend to be further apart.

Left. As before, but overlaid.

Right. Fraction of points (y) within a distance (x) of one of them (\diamond) .

Intuition

If two points are close, a smooth functions's values at them will be close.

But this isn't very useful if our observations are far apart.

And higher-dimensional observations do tend to be further apart.

Left. As before, but overlaid.

Right. Fraction of points (y) within a distance (x) of one of them (\diamond) . Extra curves are for the unit 3/4/5-dimensional cubes.

 $n^{-1/(2+d/p)}$ is our rate of convergence.

The cube-root interpretation.

- · With one-dimensional data, we've been getting $n^{-1/3}$ rates.
 - \cdot That's more 1 digit of precision / $1000 \times$ more observations.
 - It's going from a study that enrolls the students in one intro class to everyone at Emory, UGA and Tech.
 - That's a lot, but maybe it's what we're used to and we can accept that.
 - · It's what we got for monotone, bounded variation, and lipschitz regression.
- · With two-dimensional data, we can do that by constraining second derivatives.
- · With data in 3+ dimensions, we'd need to constrain 3rd derivatives. That's bad.
 - · We don't have much intution for 3rd derivatives
 - $\cdot\,$ So we'd be relying on assumptions we essentially don't understand.
- · People say the curse is a *high dimensional* phenomenon. It's not.
- \cdot By this standard, 3 dimensional data most data is high dimensional.

 $n^{-1/(2+d/p)}$ is our rate of convergence.

The fourth-root interpretation.

- If we want to estimate something like an average treatment effect— a number rather than a curve—things aren't quite as bad.
- · Clever estimators like the *R-Learner* amplify our precision.
- They make it possible to get a $n^{-1/2}$ rate estimates the effect.
 - \cdot That's more 1 digit of precision / $100 \times$ more observations.
 - It's going from a study that enrolls the students in one intro class to everyone at Emory. Not terrible.
 - · And there's no way to do better, even with extremely strong assumptions.
 - · That's the rate at which sample averages converge.
- What we need to do that is $n^{-1/4}$ rate estimates of a few curves. π and β .
- We can do that with constrained pth derivatives for p = d/2.
- \cdot i.e. we can do without third derivatives until we've got 5+-dimensional data.

This looks bad

$$n^{-1/(2+d/p)}$$
 is our rate of convergence.

The everyone in the world interpretation

- · Suppose we've run a study on a 80-student intro class.
- · And we're now going to rerun it on everyone in the world.
- About 8 billion people. A hundred million (10^8) times more.
- That's a hard thing to do, so we want a big return. Two more digits.
- We can do that if we're estimating curve in K-or-fewer dimensions. What's K?

Good news?

The Isotropic Sobolev model may be the wrong model to use. It's popular, but it's a terrible model for most things.

$$\mathcal{M} = \left\{ m : \frac{1}{2^d} \int_{[-1,1]^d} \|\nabla m(x)\|_2^2 \le B^2 \right\}$$

The problem is that it's isotropic, i.e. rotation invariant. Almost.

You can show it using the chain rule. If $m_R(x) = m(Rx)$ for a rotation matrix R,

Good news?

The Isotropic Sobolev model may be the wrong model to use. It's popular, but it's a terrible model for most things.

$$\mathcal{M} = \left\{ m : \frac{1}{2^d} \int_{[-1,1]^d} ||\nabla m(x)||_2^2 \le B^2 \right\}$$

The problem is that it's isotropic, i.e. rotation invariant. Almost.

You can show it using the chain rule. If $m_R(x) = m(Rx)$ for a rotation matrix R,

$$\nabla m_R(x) = R \, \nabla m(Rx) \implies \|\nabla m_R(x)\|_2^2 = \langle R \, \nabla m(Rx), \, R \, \nabla m(Rx) \rangle_2$$
$$= \langle R^T_{,R} \, \nabla m(Rx), \, \nabla m(Rx) \rangle_2 = \|\nabla m(Rx)\|_2^2$$

And our squared Sobolev norm is this integrated over the unit cube. That's $\|\nabla m\|_2^2$ integrated over a rotation of that cube.

Good news?

The Isotropic Sobolev model may be the wrong model to use. It's popular, but it's a terrible model for most things.

$$\mathcal{M} = \left\{ m : \frac{1}{2^d} \int_{[-1,1]^d} ||\nabla m(x)||_2^2 \le B^2 \right\}$$

The problem is that it's isotropic, i.e. rotation invariant. Almost.

Intuition.

We pay the same for variation along every unit-length combination of covariates.

We usually expect different amounts of variation along different combinations. The curse hits, in part, because the model doesn't encode our assumptions.

An Overcorrection

Additive models only allow variation along the axes.

$$\mathcal{M} = \left\{ m(x) = m_1(x_1) + \ldots + m_d(x_d) : \|m_1'\|_{L_2}^2 + \ldots \|m_d'\|_{L_2}^2 \le B^2 \right\}$$

We take the contributions of each covariate and sum them up.

- What's nice is that they don't suffer from the curse of dimensionality.
- \cdot We always get error bounds comparable to what we'd get in $1D\!.$
- What isn't is that they can't fit all that much.

An Overcorrection

Additive models only allow variation along the axes.

$$\mathcal{M} = \left\{ m(x) = m_1(x_1) + \ldots + m_d(x_d) : \|m_1'\|_{L_2}^2 + \ldots \|m_d'\|_{L_2}^2 \le B^2 \right\}$$

We take the contributions of each covariate and sum them up.

$$\begin{pmatrix}
\text{income74} \\
\text{income75}
\end{pmatrix} \quad \text{rotates to} \quad \frac{1}{\sqrt{2}} \begin{pmatrix} \text{income74} - \text{income75} \\
\text{income74} + \text{income75} \end{pmatrix}.$$

- · You might think average income in 74 and 75 predicts income in 76. Additive.
- · Maybe you'll earn a bit more if you were on an upward trajectory. Maybe Additive.
- Maybe you'll also earn much more if you took a big dip in 75.
 e.g. you spent part of 75 unemployed. That's not additive.

Sobolev Models with Higher Order *Mixed Partials* are somewhere between these.

They penalize off-axis variation *more*, but still allow it.

This is a 2D version. We include the mixed partial.

$$\mathcal{M} = \left\{ m : \frac{1}{4} \int_{[-1,1]^2} \|\nabla m(x)\|^2 + \left\{ \frac{\partial^2}{\partial x_1 \partial x_2} m(x) \right\}^2 \le B^2 \right\}$$

And this is the general case. We include all mixed partials.

$$\mathcal{M} = \left\{ m : \frac{1}{2^d} \int_{[-1,1]^d} \sum_{\substack{k \in \mathbb{Z}_+^d \\ \max_{i \le d} k_i = 1}} \left\{ \frac{\partial^{\sum_i k_i}}{\partial x_1^{k_1} \dots \partial x_d^{k_d}} m(x) \right\}^2 \le B^2 \right\}$$

A Picture

Exercise

Bound the width of a neighborhood in this model.

$$\mathcal{M} = \left\{ m(x) = m_1(x_1) + \ldots + m_d(x_d) : \|m_1'\|_{L_2}^2 + \ldots \|m_d'\|_{L_2}^2 \le B^2 \right\}$$

Exercise

Bound the width of a neighborhood in this model.

$$\mathcal{M} = \left\{ m : \frac{1}{4} \int_{[-1,1]^2} \|\nabla m(x)\|^2 + \left\{ \frac{\partial^2}{\partial x_1 \partial x_2} m(x) \right\}^2 \le B^2 \right\}$$