G13: Licitaciones públicas - ChileCompra

Andrés Carvallo Camilo Rojas Jonathan Wai Lam Lee

Feedback Hito 2

- Puede mostrar ejemplos reales
- La relación entre los experimentos y el objetivo no está clara
- No está claro el problema y el objetivo

Agenda

- 1. Introducción
- 2. 3 experimentos
- 3. Conclusion
- 4. Trabajo futuro

Ciclo de vida de una licitación

Oportunidad para DM

- Nov 2016 Region Metropolitana
- 3640 licitaciones
- 13582 productos licitados
- 222 organizaciones públicas
- > 1761 proveedores (69,2% micro, pequeña y mediana [1])

- 3640 / 30 = **121** licitaciones por dia
- 452 productos licitados por dia

Problema general

- No es factible revisar >452 productos/dia
- Atraer más oferentes
- Evaluar la calidad de licitación

Ejemplo de aplicación

```
rate<sub>proveedor</sub>(licitación) = f<sub>proveedor</sub>(licitación.atr1, licitación.atr2, ..., licitación.atrn)
```

Sistema recomendador

Que es una buena licitación?

- Atributos? (adjudicación, precio adjudicado, número de oferentes)
- Perspectivas? (general, proveedor, organización pública)
- Experimentar con 2 aspectos
 - a. Adjudicacion
 - b. Proveedor

E1: Trazas de licitaciones

- ~20% desierta (3000 licitaciones, 7000 productos)
- Qué pasa con las licitaciones desiertas?
- Trazas de licitaciones

TID	Estado	Publicacion	Cierre	Producto	Organización
<u>2592-622-11616</u>	D	2016-11-02	2016-11-14	Africenal palea 14 fortograprizadoras	Ilustre Municipalidad de Plantalen
2592-704-ILEG 6	EA	2016-11-29	2016-12-03	Africienal palea 14 fortographadoras	Ilustre Municipalidad de Haatpl en

E1: Preguntas de investigación

- Transformar desierta (mala) a adjudicada (buena)
- Cuales son las características de trazas que terminan con estado adjudicada?

E1: Experimentos

- Desequilibrio: 350/500 = ~70%
- Train (Original, Oversample)
- Test (Original, NoDuplicado)
- 4 variaciones

E1: Resultados

- Train (Original), Test (NoDuplicado)
- Mejor que Dummy (Stratified)
- AdaBoost es DT configurado para ruido

avg / total Nearest Neighbors avg / total

Dummy (Stratified)

precision

precision

0.22

0.77

0.64

0.41

0.84

0.74

recall f1-score

0.25

0.73

0.28

0.70

support

25

84

109

25

84

109

25

84

109

25

84

109

25

84

109

E1: Reflexiones

- Es buena práctica re-publicar una licitación
- Se puede aplicar clasificación
- Quizas deberia usar clustering en vez de clasificación

E2: Preguntas de investigación

 Podemos aplicar clustering para verificar que la clase class_sold tiene sentido?

E2: Clustering

- Verificar con clustering
- Visualizar trace_df (10 dim) PCA
- Usar clase_sold como label

E2: Reflexiones

- Calidad de los clusters
- Verificación de la intuición anterior
- Significado de los clusters

E3: Experimento clasificación proveedores

- Para este experimento queremos determinar qué features son relevantes para que un proveedor aumente sus probabilidades tener éxito en una licitación.
- Primero que nada un proveedor puede ofrecer muchos productos y una licitación también puede ser abastecida de uno o más productos.

 $proveedor_i = \{ producto_1, producto_2, ... \}$

E3: Probabilidad de adjudicación de licitación

- Como un proveedor puede participar de una licitación con varios productos.
- Consideramos que una empresa que tiene una mayor cantidad de productos ofrecidos respecto al total de productos ponderados del dataset, es una empresa con más chances de adjudicarse licitación (exitosa)

$$proveedor_i = \{ producto_1, producto_2, ... \}$$

$$\frac{licitacion(1)}{licitacion(1) + licitacion(2)} * \frac{licitacion^pi(1)}{licitacion(1)} + \frac{licitacion(2)}{licitacion(1) + licitacion(2)} * \frac{licitacion^pi(2)}{licitacion(2)}$$

E3: Experimento clasificación proveedores

- Hacemos el siguiente supuesto:
- Empresa exitosa: un alto porcentaje de productos respecto del total de productos del dataset
- Empresa medianamente exitosa: porcentaje intermedio
- Empresa poco exitosa: porcentaje bajo

```
# 0 no exitosa, 1 medianamente exitosa, 2 exitosa
def tramo_success(row):
    if 0 < row['prob'] < 0.003:
        return 0
    if 0.003 <= row['prob'] < 0.005:
        return 1
    else:
        return 2</pre>
```


E3: Experimento clasificación proveedores

- Ocupamos clasificación con Bayes, Decision Tree, Dummy, K-Neighbors
- Consideramos como variable target el tramo al que pertenecería el proveedor de acuerdo a su probabilidad de éxito (2 exitosa, 1 mediana, 0 no exitosa)
- Features considerados:
 - Región (1 metropolitana, 0 otras regiones)
 - Monto Licitación
 - Cantidad (Volumen)
 - Precio unitario

Dummy Classifier					
	precision	recall	f1-score	support	E3: Resultados
0	0.18	0.19	0.18	169	ES. RESultados
1	0.14	0.12	0.13	144	
2	0.73	0.73	0.73	845	
avg / total	0.58	0.58	0.58	1158	
					Mejor clasificador es:
Decision Tre	e Classifier	-			
	precision	recall	f1-score	support	K-NEIGHBORS CLASSIFIER
0	0.32	0.33	0.32	169	
1	0.24	0.25	0.24	144	
2	0.79	0.78	0.79	845	
avg / total	0.65	0.65	0.65	1158	
Gaussian Nai	ve Bayes Cla				
	precision	recall	f1-score	support	
0	0.50	0.07	0.12	169	
1	0.40	0.01	0.03	144	
2	0.74	0.99	0.84	845	
_					
avg / total	0.66	0.73	0.64	1158	
	- 100 Tes 100 Tes 100 Tes				
KNeighbors Classiffier					
	precision	recall	f1-score	support	
_	0.05	0 0-	0.00	1.50	
0	0.36	0.25	0.29	169	
1	0.36	0.12	0.19	144	
2	0.77	0.90	0.83	845	
ava / total	0.66	0.71	0.67	1158	
avg / total	0.00	0.71	0.67	1128	

E3: Resultados

Vemos que al aumentar la cantidad de vecinos aumenta el accuracy score.

E3: Resultados y observaciones del clasificador

	No exitosa (0)	Mediana exitosa (1)	Exitosa (2)
No exitosa (0)	32	9	128
Medianamente (1)	12	17	115
Exitosa (2)	33	18	794

El algoritmo de clasificación tiene un sesgo por clasificar empresas exitosas por sobre no exitosa y medianamente exitosas.

En definitiva una empresa que **NO ES EXITOSA** para **aumentar las chances de adjudicarse una licitación** debe tener en consideración **ofertas de la región metropolitana, el precio de la licitación y el volumen de producción exigido**, mismo que a veces está fuera de su alcance...

Conclusion

- Fenómeno de trazas de licitaciones
- Sugerencia de re-publicación
- Definir el éxito de un proveedor

Trabajo futuro

- Seguir con la investigación de trazas de licitaciones
- Otras perspectivas:
 - o Organizacion: efecto de sus características, e.g., numero de reclamos
- Otras técnicas:
 - NLP para descripción
 - Word2Vec para establecer relaciones entre productos para resolver problemas de granularidad

END

Desafíos en la calidad de datos

- Agrupación de productos licitados
- Falta granularidad en la categorización de productos
- Nivel de detalle no es uniforme

CodigoProducto	Descripcion	AMontoUnitario	ACantidad	Proveedor
6012506	Juguetes de navidad	11684030 CLP	1.0	Importaciones Maya Limitada
6012506	Implementos deportivos para taller de relajacion	1230900 CLP	1.0	Manuel Emilio Munoz

E1: Estatísticas

Todo el 2016

Dec: 17 / 319 trazas tiene largo > 1 (5%)

• 11 terminan adjudicada (79%)

E1: Pre-procesamiento

- Eliminar ruido e información con varianza baja
- Eliminar licitaciones con un producto
- No considerar licitaciones relacionadas a productos médicos
- Para cada licitación desierta, buscamos otras licitaciones con:
 - Nombre
 - La misma organización
 - Los mismos productos licitados (tipo y cantidad)
 - Fechas
- Ampliar al dataset de 2016

Dimensiones de trace_df

- 10 dim
- Class_sold, CompradorCodigoOrganismo, lapse (entre licitaciones), avg_tduration, CompradorRegionUnidad, ItemsCantidad, CantidadReclamos, desc len, avg desc chg, trace len

E1: Correlacion

E2: Clustering

- Método del codo para encontrar optimal k
- Alta dimension problema

