平成30年度(2018年度)日本留学試験

数学(80分)

【コース 1 (基本, Basic)・コース 2 (上級, Advanced)】

※ どちらかのコースを一つだけ選んで解答してください。

I 試験全体に関する注意

- 1. 係員の許可なしに、部屋の外に出ることはできません。
- 2. この問題冊子を持ち帰ることはできません。

Ⅱ 問題冊子に関する注意

- 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
- 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
- 4. 足りないページがあったら、手をあげて知らせてください。
- 5. メモや計算などを書く場合は、問題冊子に書いてください。

Ⅲ 解答方法に関する注意

- 1. 解答は、解答用紙に鉛筆(HB)で記入してください。
- 2. 問題文中のA, B, C,…には、それぞれ-(マイナスの符号)、または、0から9までの数が一つずつ入ります。あてはまるものを選び、解答用紙(マークシート)の対応する解答欄にマークしてください。
- 3. 同一の問題文中に **A** , **BC** などが繰り返し現れる場合, 2度目以降 は, **A** , **BC** のように表しています。

解答に関する記入上の注意

- (1) 根号 ($\sqrt{}$) の中に現れる自然数が最小となる形で答えてください。 (例: $\sqrt{32}$ のときは、 $2\sqrt{8}$ ではなく $4\sqrt{2}$ と答えます。)
- (2) 分数を答えるときは、符号は分子につけ、既約分数(reduced fraction) にして答えてください。

(例: $\frac{2}{6}$ は $\frac{1}{3}$, $-\frac{2}{\sqrt{6}}$ は $\frac{-2\sqrt{6}}{6}$ と分母を有理化してから約分し、 $\frac{-\sqrt{6}}{3}$ と答えます。)

- (3) A \sqrt{B} に $-\sqrt{3}$ と答える場合は、下のようにマークしてください。
- (4) $\boxed{\textbf{DE}} x$ に -x と答える場合は、 $\boxed{\textbf{D}} x$ に -x と答える。

【解答用紙】

Α	0	0	1)	2	3	4	6	6	0	8	9
В	Θ	0	1	2	0	4	(5)	6	0	8	9
C	Θ	0	1	2	3	0	(5)	6	0	8	9
D	0	0	1	2	3	4	(5)	6	0	8	9
E	Θ	0	0	2	3	4	(5)	6	0	8	9

4. 解答用紙に書いてある注意事項も必ず読んでください。

※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番号	*	*	
名 前			

数学 コース 2 (上級コース)

「解答コース」記入方法

解答コースには「コース1」と「コース2」がありますので、どちらかのコースを -つだけ選んで解答してください。「コース2」を解答する場合は、右のように、解答用紙の「解答コース」の「コース2」を〇で囲み、その下のマーク欄をマークしてください。

選択したコースを正しくマークしないと、採点されません。

I

数学コースと

問 1 a を実数とし, 2 次関数

$$f(x) = \frac{1}{4}x^2 - (2a - 1)x + a$$

について考える。

(1) y = f(x) のグラフの頂点の座標は

である。

(2) y = f(x) のグラフと x 軸が異なる 2 点 A, B で交わるような a の値の範囲は

$$a < \frac{\mathsf{F}}{\mathsf{G}}, \quad \mathsf{H} < a$$

である。

(3) (2) の 2 点 A, B で、それらの x 座標がともに 0 以上 6 以下となる a の値の範囲は

$$\boxed{ \quad \quad } \quad | \quad \quad$$

である。

数学-18

- 問 2 大きさの異なる 4 枚のカードがある。これらのカードに赤、黒、青、黄の色を塗る。ただし、 どのカードにも 1 つの色のみを使い、また同じ色のカードが 2 枚以上あってもよいものとする。
 - 全部で NOP 通りの塗り方がある。
 - (2) 全部の色を使う塗り方は **QR** 通りある。
 - (3) 2 枚は赤で, 1 枚が黒, 1 枚が青となるような塗り方は ST 通りある。
 - (4) 3 つの色を使う塗り方は **UVW** 通りある。
 - (5) 2 つの色を使う塗り方は **XY** 通りある。

問1 右図の平行六面体は

$$AB = 2$$
, $AD = 3$, $AE = 1$

$$\angle BAD = 60^{\circ}$$
, $\angle BAE = 90^{\circ}$, $\angle DAE = 120^{\circ}$

を満たしている。辺 GH の中点を M とする。また, 辺 BF, DH 上にそれぞれ点 P, Q をとる。このとき, 4点 A, P, M, Q は同一平面上にあるとする。その ような P, Q の中で線分 PQ の長さが最大になるも のを求めよう。

(1)
$$\overrightarrow{AB} = \overrightarrow{a}$$
, $\overrightarrow{AD} = \overrightarrow{b}$, $\overrightarrow{AE} = \overrightarrow{c}$ とおくと, これらのベクトルの内積について

$$\overrightarrow{a} \cdot \overrightarrow{b} = \boxed{\mathbf{A}}, \quad \overrightarrow{b} \cdot \overrightarrow{c} = - \boxed{\mathbf{B}}, \quad \overrightarrow{c} \cdot \overrightarrow{a} = \boxed{\mathbf{D}}$$

が成り立つ。

(2) $s, t \ge 0 \le s \le 1, 0 \le t \le 1 \ge 0$, BP: PF = s: (1-s), DQ: QH = t: (1-t) とおく。4点 A, P, M, Q が同一平面上にあるから

$$\overrightarrow{AM} = \alpha \overrightarrow{AP} + \beta \overrightarrow{AQ}$$

が成り立つような実数 α , β が存在する。したがって, s, t は

$$s = \boxed{\mathsf{E}} \left(\boxed{\mathsf{F}} - t \right)$$

を満たす。このとき, $|\overrightarrow{PQ}|$ は t を用いて

$$\left|\overrightarrow{PQ}\right|^2 =$$
 G $t^2 -$ HI $t +$ JK

と表される。

よって,線分 PQ の長さが最大になるのは L のときである。ただし, L に は、下の選択肢 $0 \sim 5$ の中から適するものを選びなさい。

$$0 \quad s = 0, \quad t = 1$$

①
$$s = 0$$
, $t = 1$ ① $s = 0$, $t = \frac{1}{2}$ ② $s = \frac{1}{2}$, $t = \frac{3}{4}$

③
$$s = \frac{2}{3}$$
, $t = \frac{2}{3}$ ④ $s = 1$, $t = \frac{1}{2}$ ⑤ $s = 1$, $t = \frac{2}{3}$

(4)
$$s = 1$$
, $t = \frac{1}{2}$

$$5 \quad s = 1, \quad t = \frac{2}{3}$$

内積: inner product

- x>0, y>0 を満たす x, y に対して, $\frac{y}{x}$, x, $\frac{8}{y}$ の中で最も小さい値を m とおく。 また, $m=\frac{y}{x}$ となるような点 (x,y) の集合を $A, m=\frac{8}{y}$ となるような点 (x,y) の集合 を B とする。
 - (1) 次の文中の \mathbf{M} ~ \mathbf{S} には、下の選択肢 $\mathbf{0}$ ~ $\mathbf{7}$ の中から適するものを選び なさい。

A, B を求めると次のようになる。

$$A = \left\{ (x, y) \mid \mathbf{M} \leq \mathbf{N}, \quad \mathbf{O} \leq 8 \mathbf{P} \right\}$$

$$B = \left\{ (x, y) \mid 8 \mathbf{Q} \leq \mathbf{R}, \quad 8 \leq \mathbf{S} \right\}$$

- (4) x^2 (5) xy (6) y^2 (7) $x^2 + y^2$
- **T** , **U** には, 右ページの選択肢 ® ~ 8 の中から適するものを (2) 次の文中の 選びなさい。

xy 平面上に A, B を図示すると, A は lacktriangle , B は lacktriangle の灰色部分である。 ただし, 座標軸は灰色部分に含まれない。

(3) 点 P(x,y) が $A \cup B$ を動くとき, m の最大値を求めよう。

 $P(x,y) \in A$ のとき, y = mx であるから、原点 O と P を通る直線の傾きを最大にする 点 P を見つければよい。

また, $P(x,y) \in B$ のとき, $m = \frac{8}{y}$ であるから, P の y 座標が最小になる点 P を見つ ければよい。

以上より, m は (x,y) = ($\boxed{ V }$, $\boxed{ W })$ のとき, 最大値 $\boxed{ X }$ をとる。

(問2は次ページに続く)

注) 灰色部分: shaded portion

[(2)の選択肢]

 $0 \le x \le \pi$ のとき, 関数

$$f(x) = 4\sin^3 x + 4\cos^3 x - 8\sin 2x - 7$$

の最大値,最小値を求めよう。

 $t = \sin x + \cos x$ とおく。

$$\sin x + \cos x = \sqrt{\boxed{\mathbf{A}}} \sin \left(x + \frac{\boxed{\mathbf{B}}}{\boxed{\mathbf{C}}} \pi \right) \quad (\text{ttil}, \boxed{\boxed{\mathbf{B}}} < \boxed{\boxed{\mathbf{C}}})$$

であるから, t のとる値の範囲は - $\boxed{ \mathbf{D} } \leqq t \leqq \sqrt{ \boxed{ \mathbf{E} } }$ である。また

$$\sin 2x = t^2 - \boxed{\mathbf{F}}$$

$$4\sin^3 x + 4\cos^3 x = -\boxed{\mathbf{G}}t^3 + \boxed{\mathbf{H}}t$$

であるから

$$f(x) = -$$
 G $t^3 -$ I $t^2 +$ H $t +$ J ①

である。① の右辺を g(t) とおき,t で微分すると

$$g'(t) = - \left[\mathbf{K} \left(\mathbf{L} t - \mathbf{M} \right) \left(t + \mathbf{N} \right) \right]$$

である。

最小値
$$V$$
 \sqrt{W} – XY をとる。

IV

 $a_n = \int_0^1 x^{2n} \sqrt{1-x^2} \ dx \ (n=0,1,2,\cdots)$ とおくとき,極限値 $\lim_{n\to\infty} \frac{a_n}{a_{n-1}}$ を求めよう。

(1) まず、 a_0 、 a_1 を求めてみよう。半径 1 の円の面積は π であるから

$$a_0 = \int_0^1 \sqrt{1 - x^2} \, dx = \frac{\pi}{\boxed{\textbf{A}}}$$

である。 a_1 は部分積分法により

$$a_{1} = \int_{0}^{1} x^{2} \sqrt{1 - x^{2}} dx$$

$$= -\frac{\boxed{\mathbf{B}}}{\boxed{\mathbf{C}}} \left[x(1 - x^{2})^{\boxed{\boxed{\mathbf{E}}}} \right]_{0}^{1} + \frac{\boxed{\mathbf{F}}}{\boxed{\mathbf{G}}} \int_{0}^{1} (1 - x^{2})^{\boxed{\boxed{\mathbf{H}}}} dx$$

$$= \frac{\boxed{\mathbf{J}}}{\boxed{\mathbf{K}}} \left\{ \int_{0}^{1} \sqrt{1 - x^{2}} dx - \int_{0}^{1} x^{\boxed{\mathbf{L}}} \sqrt{1 - x^{2}} dx \right\}$$

となる。よって, $a_1 = \frac{\pi}{\boxed{\mbox{MN}}}$ である。

(IV)は次ページに続く)

注) 部分積分法: the partial integral method

yの文中の O ~ U には,下の選択肢 ® ~ 9 の中がなさい。	ら適するものを選び
a_1 を求めたのと同様にして、 a_n は部分積分法により	
$a_n = \frac{\boxed{\mathbf{O}}}{\boxed{\mathbf{P}}} \left\{ \int_0^1 x^{\boxed{\mathbf{Q}}} \sqrt{1 - x^2} \ dx - \int_0^1 x^{\boxed{\mathbf{R}}} \sqrt{1 - x^2} \ dx \right\}$	$(n = 1, 2, 3, \cdots)$
となる。よって	
$\left(\begin{array}{ c c } \hline \mathbf{S} \end{array} \right) a_n = \left(\begin{array}{ c c } \hline \mathbf{T} \end{array} \right) a_{n-1}$	
となる。したがって	
$\lim_{n \to \infty} \frac{a_n}{a_{n-1}} = \boxed{\mathbf{U}}$	
n→∞ a _{n-1}	
<pre>0 0</pre>	4
(5) $2n-2$ (6) $2n-1$ (7) $2n$ (8) $2n+1$	9 2n + 2
$oxed{IV}$ の問題はこれで終わりです。 $oxed{IV}$ の解答欄 $oxed{V}$ \sim $oxed{Z}$ はマークレ	
解答用紙の解答コース欄に「コース 2」が正しくマークして もう一度確かめてください。	

この問題冊子を持ち帰ることはできません。

〈数 学〉Mathematics

	7-	-ス1 Cour	se 1	
問 Q.		解答番号 row	正解 A.	
	4.0	AB	42	
I	問 1	CDE	451	
		FG	14	
		Н	11	
			1	
		JKLM	1511	
		NOP	256	
		QR	24	
	問2	ST	12	
		UVW	144	
		XY AB	84	
		AB	18 1	
		С	1	
		D	3 3 336	
	問 1	E	3	
		FGH	336	
			3	
I		JKL	352	
ш		MN OP	-1	
			-2	
		Q	4	
	問 2	RS	12	
		TU	-2	
		V	1	
		WX	17	
		AB CD	66 65 2	
		CD	65	
		E	2	
		F	6	
		G	6	
***		HI	11	
Ш		HI J K	2	
		N I	5	
		NANI	11 5 5 6 16	
		MN OP QR ST AB CD	11	
		OP	11 23 43 12 23	
		ST	43	
V	-	ΔR	12	
	H	CD	23	
		FF	94	
		GHI	235	
		IKI	235 235	
		MN	74	
		EF GHI JKL MN OP QRST	79	
		ORST	7325	

	二二	ース2 Cou	ırse 2
目	引 Q.	解答番号 row	正解 A.
I	Ring	AB	42
		CDE	451
		FG	14
	問 1	H	1
			1
	7	JKLM	1511
	15,	NOP	256
		QR	24
	問 2	ST	12
		UVW	144
	8	XY	84
	1	Α	84 3 32
		ВС	32
	88 4	D	0
	問 1	EF	21
		GHIJK	92117
-	10		4
I	yel -	MNOP	1460
		QRS	065
	BBO	T)	0
	問 2	U	7
		VW	24
		X	2 214
		ABC	214
		DE	12
		F	1
	3	GH	26
Ш		IJ	81
Ш		KLMN	2313
		OP	13
		KLMN OP QRST U	2313 13 5527
		U	2
		VWXY	2215
N		A	4
		BCDEFGHI	2 2215 4 13321332
		JKL	132
		MN	16
		OPQR	6357
		JKL MN OPQR ST	13321332 132 16 6357 96
		U	1