Cycle 09

Proposal for Chandra Observations

Cover Page

Principal Investigator Dr. Christopher P. O'Dea		
Department/Mailstop Physics 76-3144		
Institute		
Rochester Institute of Technolo	gy	
Address / Street		City / Town
84 Lomb Memorial Drive		Rochester
State / Province	Zip / Postal Code	Country
NY	14534	USA
Telephone	Fax	
585 475-7493	585 475-5988	
E-Mail Address:		
odea@cis.rit.edu		

Proposal Title Why are Some Brightest Cluster Galaxies Forming Stars?									
Subject Category CLUSTERS OF GALAXIES									
Proposal Type G0	Linked Proposal	Distr. Medium WWW ONLY	Proprietary Rights						
Total Requested Time 201.00	Number of Targets 4		Proposed Budget						

Joint Proposal?		XMM Time	RXTE T	lime				
HST Orbits	HST Instrument	HST Instruments:						
Spitzer Time	Spitzer AOTs:							
NOAO Nights?	NOAO Telescop	e/Instruments:						
NRAO/VLA Hours	NRAO/VLA Ar	ray	RAO/VLA	Wavelength				
	·		•					
NRAO/VLBA Hours	NRAO/VLBA V	Vavelength						
·	·	-						

Abstract

Spitzer observations show that at least 25 percent of a sample of 63 Brightest Cluster Galaxies (BCGs) with bright Halpha emission show a mid-IR-excess (MIRE). The MIRE is found in high X-ray luminosity clusters and is consistent with star formation at the level of several solar masses per year. Why is star formation so common in BCGs? What causes it? What does it tell us about the process of AGN feedback and the "final" mass accretion rate? . We propose to study samples of ten MIRE and non-MIRE BCGs matched in X-ray luminosity. Since there is already some archival data, we are requesting 6 additional BCGs - 3 of each type. The combined dataset will establish a complete sample of the MIRE BCGs and a well matched comparison sample with which to address these key questions.

Proposal Number	Date:	2007-03-15		
			Admin.	use only

${\bf Proposal~for~\it Chandra~\bf Observations}$

General Form

ΡI	Dr.	Christopher P. O'Dea
\mathbf{Prc}	posal	Title
	Why a	are Some Brightest Cluster Galaxies Forming Stars?

Co-Investigator(s)										
First Name E-Mail Last Name Institute Co										
Aegan Oonahue	donahue@pa.msu.edu Michigan State University	USA								
Kenneth Cavagnolo	cavagnolo@pa.msu.edu Michigan State University	USA								
aehong	jaehong®pas.rochester.edu University of Rochester	USA								
Alice Quillen	aquillen@pas.rochester.edu University of Rochester	USA								
Alastair Edge	alastair.edge@durham.ac.uk University of Durham	UK								
Stefi 3aum	baum@cis.rit.edu Rochester Institute of Technology	USA								
Mark Voit	voit@pa.msu.edu Michigan State University	USA								
Craig Sarazin	cls7i@mail.astro.virginia.edu University of Virginia	USA								
Are there additional C	Co-Is listed in the science justification? N									

Institute Endorsement

Name of Administrator	Donald Boyd
Administrative Authority	Vice President for Research
Administrative Institute	Rochester Institute of Technology
Admin Signature:	Date:
PI Signature:	Date:

Cycle 09

Proposal for Chandra Observations

Target Summary

PI Dr. Christopher P. O'Dea

Proposal Title

Why are Some Brightest Cluster Galaxies Forming Stars?

	Target Name	(J200	U)	Offsets			Detector	(c/s)		Grid
	Solar System Object	(3200	U)	Y Detector	Ontical	Observ.	Grating	Count Rate	Time-	GHU
Tar	Grid Name	R.A.		Z Detector	Monitor	Time	HRC	1st Order		#Points
No	Target Description (keywords)	Dec.		Z Detector SIM Trans	V-Mag	(ksec)	Timing	Total Fld.		MaxDist.
1	R1442+22	14 42	19.4	DIM Hans	N N	42.0000	ACIS-S	1.182000	N	N
	NONE	+22 18					NONE	1.102000	N	
	10.12	- 22 20	10.0				N			
	COOLING FLOWS									
	0001114 1 10110									
2	Z3179	10 25	58.0		N	47.0000	ACIS-S	1.053000	N	N
	NONE	+12 41					NONE	1.000000	N	
	10.12						N			
	COOLING FLOWS									
	0001114 1 10110									
3	A646	08 22	09.6		N	42.0000	ACIS-S	1.199000	N	N
	NONE	+47 05					NONE		N	
	10.12	11 00	0 1 1 0				N			
	COOLING FLOWS									
	0001114 1 10110									
4	Z348	01 06	49.3		N	70.0000	ACIS-S	0.710000	N	N
	NONE	+01 03					NONE		N	
							N			
	COOLING FLOWS									

Cycle 09

Proposal for Chandra Observations

 ${\it ACIS~Parameters~(Required,~Pileup,~Telemetry~Parameters)}$

PI Dr. Christopher P. O'Dea

Proposal Title

Why are Some Brightest Cluster Galaxies Forming Stars?

	Exposure Mode		CC	Ds	On	TO.		Most	Subar	rray	Alte	rnating Exp.	En	ergy Filter	**
Tar	Telemetry.	~			I2		~	Eff.		StartRow		Nbr. Rows		$\frac{\text{Lower Thrsh.}}{\text{Energy}}$	Use Spatial Windows
No. 1	Format TE	S0	S1 N	S2 N		S4 02	S5	Time Y	Type NONE	No.Rows	Y/N N	Exp.Time	Y/N N	Range	Windows
	F	N	Y	Y	Y	Y	N		NONE		IV.		14		14
2	TE F	N	N Y	N Y	01 Y	02 Y	N	Y	NONE		N		N		N
3	TE F	N	N Y	N Y	01 Y	02 Y	N	Y	NONE		N		N		N
4	TE F	N	N Y	N Y	01 Y	02 Y	N	Y	NONE		N		N		N

Proposal for Chandra Observations

Cycle 09

ACIS Parameters (Custom:Telemetry Overflow Parameters)

PI	Dr.	Christopher P. O'Dea
Pro	posal	Title
	Why a	are Some Brightest Cluster Galaxies Forming Stars?

				a. .	· ·	Spatia	l Win	dows		~ .	
Tai No	der	Chip	Туре	Start Row	Start Col	Width	Height	Lower Threshold	Enery l Range	Sample Rate	Additional Spatial Windows

Proposal for Chandra Observations

Cycle 09

Target Constraints

PI Dr.	Christopher P. O'Dea
Proposal	Title
Why	are Some Brightest Cluster Galaxies Forming Stars?

	Window Constraint			Roll Constraints				Phase Dependent Observations			
Tar No	Flag	Start Time	Stop Time	Flag	180?	Angle (degrees)	Tolerance (degrees)	Flag	Epoch(MJD) Period(days)	Min.Phase Min.Error	Max.Phase Max.Error
			•						.,,		

	N	Monitoring C	Observations	i		Group Obser	Un-	Coord-	Add.	
Flag	No.	Geometric Factor	$\begin{array}{c} {\rm Interval} \\ {\rm (days)} \end{array}$	Tolerance (%)	Flag		Interval (days)	inter rupt?	inated Obs.?	Con- straints
	Flag		Geometric	Geometric Interval		Geometric Interval Tolerance	Geometric Interval Tolerance	Geometric Interval Tolerance Interval	Geometric Interval Tolerance Interval inter	Geometric Interval Tolerance Interval inter inated

Proposal for Chandra Observations

Cycle 09

TOO Details

PI Dr.	Christopher P. O'Dea
Proposal Why	Title are Some Brightest Cluster Galaxies Forming Stars?

		Alternates		Res	ponse Win	dow]	Followup	Observat	ions	Obs.Params
Tar No	Trig- ger?	Group Name	Nbr. Req.	Type (days)	Start	Stop	Prob- ability	Initial Alloc.	Order	Obs. Time	Interval (days)	Tolerance (%)	specified by Target No.
110	801.	Group Traine	rtoq.	(days)	Start	Бтор	asing	THIOC:	4	Time	(days)	(70)	141800 110.
									2				
									3				
									4				
									5				
									6				
									'				
									8				

TOO Trigger Criteria
TOO Followup Instructions

If this TOO is a resubmission of a proposal approved in the previous Cycle, should this TOO be canceled if the previous Cycle TOO is triggered?

${\bf Proposal~for~\it Chandra~\bf Observations}$

Cycle 09

Target Remarks

PI	Dr.	Christopher P. O'Dea					
Pro	Proposal Title						
	Why a	are Some Brightest Cluster Galaxies Forming Stars?					

Tar No	Remarks Coordinated Observation: Observatories