Παρουσίαση για χρήση με το σύγγραμμα, Αλγόριθμοι Σχεδίαση και Εφαρμογές, των Μ. Τ. Goodrich and R. Tamassia, Wiley, 2015 (στα ελληνικά από εκδόσεις Μ. Γκιούρδας)

Ανάλυση αλγορίθμων

Κλιμάκωση

- Οι επιστήμονες συχνά αντιμετωπίζουν διάφορες κλίμακες, από μικροσκοπικές έως αστρονομικά μεγάλες.
- Οι επιστήμονες της πληροφορικής επίσης αντιμετωπίζουν διάφορες κλίμακες, αλλά αφορούν κυρίως το μέγεθος των δεδομένων πάρα τον όγκο φυσικών αντικειμένων.
- Η κλιμάκωση αφορά την ικανότητα ενός συστήματος να διαχειριστεί αυξανόμενο όγκο δεδομένων ή φόρτου εργασίας.

Microscope: U.S. government image, from the N.I.H. Medical Instrument Gallery, DeWitt Stetten, Jr., Museum of Medical Research. Hubble Space Telescope: U.S. government image, from NASA, STS-125 Crew, May 25, 2009.

Εφαρμογή: Συνεντεύξεις

- Η εταιρίες υψηλής τεχνολογίας συνηθίζουν να κάνουν ερωτήσεις για αλγόριθμους και δομές δεδομένων στις συνεντεύξεις.
- Οι ερωτήσεις για αλγορίθμους μπορεί να είναι σύντομες αλλά απαιτούν κριτική σκέψη, δημιουργικότητα και γνώση του αντικειμένου.
 - Οι ερωτήσεις στην ενότητα ερωτήσεων «Εφαρμογές» του κεφαλαίου 1 του βιβλίου των Goodrich-Tamassia είναι ερωτήσεις πραγματικών συνεντεύξεων για πρόσληψη εργαζόμενων.

xkcd "Labyrinth Puzzle." http://xkcd.com/246/ Used with permission under Creative Commons 2.5 License.

Αλγόριθμοι και δομές δεδομένων

- Ένας αλγόριθμος είναι μία διαδικασία βήμα προς βήμα για την επίτευξη κάποιας εργασίας σε πεπερασμένο χρονικό διάστημα.
 - Συνήθως, ένας αλγόριθμος δέχεται κάποιες εισόδους και βάση αυτών παράγει κάποια έξοδο.

 Μία δομή δεδομένων είναι ένας συστηματικός τρόπος για οργάνωσης και πρόσβασης της πληροφορίας.

Χρόνος εκτέλεσης

- Οι περισσότεροι αλγόριθμοι μετατρέπουν εισόδους σε εξόδους.
- Ο χρόνος εκτέλεσης συνήθως αυξάνεται με το μέγεθος της εισόδου.
- Συχνά είναι δύσκολο να οριστεί κάποιος μέσος χρόνος.
- Κυρίως ασχολούμαστε με τον χρόνο εκτέλεσης στην χειρότερη δυνατή περίπτωση.
 - Πιο εὑκολη ανάλυση.
 - Κρίσιμο για εφαρμογές σε παιχνίδια, οικονομικά και ρομποτική.

Πειραματικές μελέτες

- Υλοποιούμε τον αλγόριθμο.
- Εκτελούμε τον
 αλγόριθμο με
 εισόδους διαφόρων
 μεγεθών και
 περιεχομένων και
 σημειώνουμε το χρόνο
 που απαιτείται.
- Σχεδιάζουμε τη γραφική παράσταση.

Περιορισμοί των πειραμάτων

- Πρέπει να υλοποιηθεί ο αλγόριθμος, που μπορεί να είναι δύσκολο.
- Τα αποτελέσματα μπορεί να μην είναι αντιπροσωπευτικά για άλλες εισόδους που δεν συμπεριλάβαμε στο πείραμα.
- Προκειμένου να συγκρίνουμε δύο αλγόριθμους πρέπει να έχουμε το ίδιο λογισμικό και υλικό.

Θεωρητική ανάλυση

- Χρειάζεται μία υψηλού επιπέδου περιγραφή του αλγορίθμου και όχι η υλοποίηση του.
- Χαρακτηρίζει το χρόνο εκτέλεσης βάσει του μεγέθους της εισόδου,
- Λαμβάνει υπόψη όλες τις πιθανές εισόδους.
- Μας επιτρέπει να υπολογίσουμε την ταχύτητα ενός αλγορίθμου ανεξαρτήτως περιβάλλοντος λογισμικού/υλισμικού.

Ψευδοκώδικας

- Υψηλού-επιπέδου περιγραφή ενός αλγορίθμου.
- Περισσότερο δομημένος από πεζό κείμενο.
- Λιγότερο λεπτομερής από κώδικα.
- Προτιμάται για την περιγραφή αλγορίθμων.
- Αποκρύπτει θέματα σχεδίασης ενός προγράμματος.

Λεπτομέρειες ψευδοκώδικα

- Έλεγχος ροής:
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Οι εσοχές αντικαθιστούν τα άγκιστρα.
- Δήλωση μεθόδων:

Algorithm method (arg [, arg...])

Input ...

Output ...

- Κλήση μεθόδων:
 method (arg [, arg...])
- Επιστροφή τιμών:

return expression

- Εκφράσεις:
 - ←Ανάθεση
 - = Σύγκριση ισότητας
 - π² Επιτρέπονται μαθηματικοί συμβολισμοί όπως η ύψωση σε δύναμη κ.α.

Το μοντέλο μηχανής τυχαίας προσπέλασης (Random Access Machine RAM)

Το μοντέλο **RAM** αποτελείται από:

- Mia CPU.
- Μια εν δυνάμει άπειρη συλλογή από κελιά μνήμης, με το καθένα από αυτά να μπορεί να περιέχει έναν αριθμό ή χαρακτήρα.
- Τα κελιά μνήμης είναι αριθμημένα και η προσπέλαση οποιουδήποτε κελιού απαιτεί 1 μονάδα χρόνου.

Επτά σημαντικές συναρτήσεις

- Επτά συναρτήσεις που εμφανίζονται συχνά στην ανάλυση αλγορίθμων:
 - Σταθερή ≈ 1
 - Λογαριθμική $\approx \log n$
 - Γραμμική $\approx n$
 - N-Log-N $\approx n \log n$
 - Τετραγωνική ≈ n^2
 - Kuβıκἡ ≈ n^3
 - E κ θ ετικ $\dot{\eta} \approx 2^n$
- Σε ένα διάγραμμα log-logη κλίση δείχνει τονρυθμό αύξησης.

© 2015 Goodrich and Tamassia

Ανάλυση Αλγορίθμων

12

Συναρτήσεις σχεδιασμένες

Slide by Matt Stallmann included with permission.

σχεδιασμένες σε «κανονική» κλίμακα.

Πρωτογενείς λειτουργίες

- Βασικοί υπολογισμοί ενός αλγορίθμου.
- □ Συναντώνται στον ψευδοκώδικα.
- Σε μεγάλο βαθμό δεν εξαρτώνται
 από τη γλώσσα προγραμματισμού.
- Ο ακριβής προσδιορισμός τους δεν είναι σημαντικός (θα δούμε γιατί αργότερα).
- Θεωρούμε ότι καταναλώνουν
 σταθερό χρόνο στο μοντέλο RAM.

Παραδείγματα:

- Υπολογισμός μίας ἐκφρασης
- Ανάθεση μίας τιμής σε μεταβλητή
- Δεικτοδότηση πίνακα
- Κλήση μίας μεθόδου
- Επιστροφή από μία μέθοδο

Μέτρηση βασικών βημάτων υπολογιστή

 Παράδειγμα: Εξετάζοντας τον ψευδοκώδικα μπορούμε να ορίσουμε το μέγιστο αριθμό βασικών πρωτογενών λειτουργιών, ως συνάρτηση του μεγέθους εισόδου.

Algorithm arrayMax(A, n):

Input: An array A storing $n \ge 1$ integers.

Output: The maximum element in A.

 $currentMax \leftarrow A[0]$

for $i \leftarrow 1$ to n-1 do

if currentMax < A[i] then

 $currentMax \leftarrow A[i]$

return currentMax

Εκτίμηση χρόνου εκτέλεσης

- □ Ο αλγόριθμος arrayMax εκτελεί 7n 2 πρωτογενών λειτουργιών στη χειρότερη περίπτωση, 5n στην καλύτερη περίπτωση. Ορίζουμε:
 - a = Ο χρόνος που χρειάζεται η ταχύτερη πρωτογενής λειτουργία.
 - b = Ο χρόνος που χρειάζεται η αργότερη πρωτογενής λειτουργία.
- ι Έστω T(n) ο χρόνος εκτέλεσης στη χειρότερη περίπτωση του arrayMax. Τότε:

$$a(5n) \le T(n) \le b(7n-2)$$

Έτσι, οριοθετούμε το χρόνο εκτέλεσης *T(n)* ανάμεσα σε δύο γραμμικές συναρτήσεις.

Ρυθμός αύξησης του χρόνου εκτέλεσης

- □ Αλλάζοντας το λογισμικό / υλικό
 - Επηρεάζεται ο *T*(*n*) με έναν σταθερό συντελεστή, αλλά
 - Δεν αλλάζει ο ρυθμός αύξησης του T(n)
- ο Ο γραμμικός ρυθμός αύξησης του T(n) είναι μία εγγενής ιδιότητα του αλγόριθμου arrayMax.

Slide by Matt Stallmann included with permission.

Γιατί έχει σημασία ο ρυθμός αύξησης;

Εάν ο χρόνος εκτέλεσης είναι:	Χρόνος για n + 1	Χρόνος για 2 n	Χρόνος για 4 n
c lg n	c lg (n + 1)	c (lg n + 1)	c(lg n + 2)
cn	c (n + 1)	2c n	4c n
c n lg n	~ c n lg n + c n	2c n lg n + 2cn	4c n lg n + 4cn
c n ²	~ c n ² + 2c n	4c n ²	16c n ²
c n ³	~ c n ³ + 3c n ²	8c n ³	64c n ³
c 2 ⁿ	c 2 n+1	c 2 ²ⁿ	c 2 ⁴ⁿ

Ο χρόνος εκτέλεσης τετραπλασιάζεται όταν το μέγεθος του προβλήματος διπλασιάζεται

Αναλύοντας αναδρομικούς αλγορίθμους

Βρείτε μία συνάρτηση, Τ(n), για να ορίσετε μια σχέση αναδρομής που χαρακτηρίζει το χρόνο εκτέλεσης του αλγόριθμου σε σχέση με το n.

Algorithm recursive Max(A, n):

Input: An array A storing $n \ge 1$ integers.

Output: The maximum element in A.

if n=1 then

return A[0]

return $\max\{\text{recursiveMax}(A, n-1), A[n-1]\}$

$$T(n) = \begin{cases} 3 & \text{if } n = 1 \\ T(n-1) + 7 & \text{otherwise,} \end{cases}$$

Σταθεροί παράγοντες

- Ο ρυθμός αύξησηςεπηρεάζεται ελάχιστααπό:
 - Σταθερούς παράγοντες ή
 - Όρους χαμηλότερης τάξης
- Παραδείγματα
 - H $10^2n + 10^5$ είναι μία γραμμική συνάρτηση.
 - H $10^5n^2 + 10^8n$ είναι μία τετραγωνική συνάρτηση.

© 2015 Goodrich and Tamassia

Ανάλυση Αλγορίθμων

20

Ο συμβολισμός του μεγάλου Όμικρον (Big-Oh)

10,000

1,000 -

- - · 3n

— n

-2n+10

- \Box Έστω οι συναρτήσεις f(n) και g(n), λέμε ότι η f(n) είναι O(g(n)) εάν υπάρχουν θετικές σταθερές c και n_0 έτσι ώστε:
 - $f(n) \leq cg(n)$ yia $n \geq n_0$
- Παράδειγμα: 2n + 10
 είναι O(n)
 - $2n + 10 \le cn$
 - $(c-2) n \ge 10$
 - $n \ge 10/(c-2)$
 - Επιλογή c = 3 και $n_0 = 10$

© 2015 Goodrich and Tamassia

Ανάλυση Αλγορίθμων

21

Big-Oh Παράδειγμα

- □ Παράδειγμα: η συνάρτηση n^2 ΔΕΝ είναι O(n)
 - $n^2 \leq cn$
 - $n \leq c$
 - Η παραπάνω ανισότητα δεν μπορεί να ικανοποιηθεί καθώς το *c* πρέπει να είναι σταθερά

Περισσότερα παραδείγματα Big-Oh

□ 7 n - 2

7 n - 2 είναι O(n).

Χρειαζόμαστε c>0 και $n_0\geq 1$ έτσι ώστε 7 $n-2\leq c$ n για $n\geq n_0$ Ισχύει για c=7 και $n_0=1$.

 \Box 3 n³ + 20 n² + 5

 $3 n^3 + 20 n^2 + 5 \epsilon i vai O(n^3)$.

Χρειαζόμαστε c>0 και $n_0\geq 1$ έτσι ώστε 3 n^3+20 $n^2+5\leq c$ n^3 για $n\geq n_0$ Ισχύει για c=4 και $n_0=21$.

 \square 3 log n + 5

 $3 \log n + 5 \text{ is } O(\log n).$

Χρειαζόμαστε c>0 και $n_0\geq 1$ έτσι ώστε $3\log n+5\leq c\log n$ για $n\geq n_0$ Ισχύει για c=8 και $n_0=2$.

Big-Oh και ρυθμός αύξησης

- Το big-Oh notation μας δίνει ένα άνω όριο για το ρυθμό αύξησης μίας συνάρτησης.
- \Box Η δήλωση "f(n) είναι O(g(n))" σημαίνει ότι ο ρυθμό αύξησης της f(n) δεν είναι μεγαλύτερος από τον ρυθμό αύξησης της g(n).
- Μπορούμε να χρησιμοποιήσουμε το big-Oh notation για να ταξινομήσουμε συναρτήσεις βάσει του ρυθμού αύξησης τους.

	f(n) Eival $O(g(n))$	g(n) είναι $O(f(n))$
g(n) αυξάνεται περισσότερο	Naı	Όχι
f(n) αυξάνεται περισσότερο	'Οχι	Nai
Ίδια αύξηση	Nai	Nai

Κανόνες Big-Oh

- □ Εάν η f(n) είναι πολυωνυμική βαθμού d, τότε η f(n) είναι $O(n^d)$, δηλαδή:
 - 1. Αφαιρούμε όρους χαμηλότερου βαθμού.
 - 2. Αφαιρούμε σταθερές.
- Χρησιμοποιούμε τη χαμηλότερη δυνατή κλάση:
 - Λέμε "2n είναι O(n)" αντί "2n είναι $O(n^2)$ ".
- Χρησιμοποιούμε την πιο απλή έκφραση.
 - $\Lambda \dot{\epsilon} \mu \epsilon$ " $3n + 5 \epsilon i val O(n)$ " avti " $3n + 5 \epsilon i val O(3n)$ "

Ασυμπτωτική ανάλυση αλγορίθμων

- Η ασυμπτωτική ανάλυση αλγόριθμου ορίζει τον χρόνο εκτέλεσης
 σε big-Oh notation.
- Για να πραγματοποιήσουμε ασυμπτωτική ανάλυση αλγόριθμου:
 - Βρίσκουμε τον αριθμό πρωτογενών λειτουργιών στη χειρότερη περίπτωση ως συνάρτηση του μεγέθους εισόδου.
 - Εκφράζουμε αυτήν τη συνάρτηση σε big-Oh notation.
- Παράδειγμα:
 - Λέμε ότι ο αλγόριθμος $\frac{1}{2}$ ατταγ $\frac{1}{2}$ εκτελείται σε χρόνο $\frac{1}{2}$ $\frac{1}{2}$.
- Από τη στιγμή που οι σταθερές και οι όροι χαμηλότερης τάξης εν τέλει θα αφαιρεθούν, μπορούμε να τους παρακάμψουμε όταν μετράμε βασικά βήματα υπολογιστή.

Μελέτη περίπτωσης στην ανάλυση αλγορίθμων

Έστω ένας πίνακας *n* ακεραίων,
 βρείτε τον υπό-πίνακα, A[j:k] που μεγιστοποιεί το άθροισμα:

$$s_{j,k} = a_j + a_{j+1} + \dots + a_k = \sum_{i=j}^k a_i.$$

Πέρα από το ότι είναι μια ερώτηση που ζητείται να απαντηθεί σε συνεντεύξεις εργασιών, το πρόβλημα μέγιστου υπόπίνακα (maximum subarray problem) έχει εφαρμογή στην ανάλυση μοτίβων ψηφιακών εικόνων.

A = [-2, -4, 3, -1, 5, 6, -7, -2, 4, -3, 2]

Μία πρώτη (Αργή) Λύση

Υπολογίζουμε το άθροισμα κάθε πιθανού υπο-πίνακα ξεχωριστά.

```
Algorithm MaxsubSlow(A):

Input: An n-element array A of numbers, indexed from 1 to n.

Output: The maximum subarray sum of array A.

m \leftarrow 0 // the maximum found so far for j \leftarrow 1 to n do

for k \leftarrow j to n do

s \leftarrow 0 // the next partial sum we are computing for i \leftarrow j to k do

s \leftarrow s + A[i]

if s > m then

m \leftarrow s
```

- Ο εξωτερικός βρόχος, για το δείκτη j, θα εκτελεστεί n φορές, ο εσωτερικός βρόχος, για το δείκτη k, θα εκτελεστεί το πολύ n φορές, ο πιο εσωτερικός βρόγχος, για το δείκτη i, θα εκτελεστεί το πολύ n φορές.
- Έτσι, ο χρόνος εκτέλεσης του αλγόριθμου MaxsubSlow είναι $O(n^3)$.

Ένας βελτιωμένος αλγόριθμος

Ένας πιο αποδοτικός τρόπος για να υπολογίσουμε αυτά τα αθροίσματα είναι να χρησιμοποιήσουμε τα προθεματικά αθροίσματα (prefix sums):

$$S_t = a_1 + a_2 + \dots + a_t = \sum_{i=1}^t a_i$$

Εάν έχουμε αυτά τα προθεματικά αθροίσματα (και υποθέτοντας ότι S₀=0), μπορούμε να υπολογίσουμε κάθε άθροισμα s_{i,k} σε σταθερό χρόνο:

$$s_{j,k} = S_k - S_{j-1}$$

Ένας βελτιωμένος αλγόριθμος, συνέχεια

- Υπολογίζουμε όλα τα προθεματικά αθροίσματα.
- Υπολογίζουμε όλα τα αθροίσματα υπό-πινάκων.

```
Algorithm MaxsubFaster(A):

Input: An n-element array A of numbers, indexed from 1 to n.

Output: The maximum subarray sum of array A.

S_0 \leftarrow 0 // the initial prefix sum

for i \leftarrow 1 to n do

S_i \leftarrow S_{i-1} + A[i]

m \leftarrow 0 // the maximum found so far

for j \leftarrow 1 to n do

for k \leftarrow j to n do

s = S_k - S_{j-1}

if s > m then

m \leftarrow s

return m
```

Αριθμητική πρόοδος

- □ Ο χρόνος εκτέλεσης του MaxsubFaster είναι O(1+2+...+n).
- Το άθροισμα των πρώτων *n* ακεραίων είναι *n* (*n* + 1) / 2.
 - Υπάρχει μία απλή οπτική απόδειξη.
- ο Οπότε, ο αλγόριθμος MaxsubFaster εκτελείται σε χρόνο $O(n^2)$.

Ένας αλγόριθμος γραμμικού χρόνου

□ Αντί να υπολογίσουμε το προθεματικό άθροισμα $S_t = s_{1,t}$, ας υπολογίσουμε το μέγιστο επιθεματικό άθροισμα, M_t , που είναι το μέγιστο από το 0 και το μέγιστο $s_{i,t}$ για j = 1,..., t.

$$M_t = \max\{0, \max_{j=1,\dots,t}\{s_{j,t}\}\}$$

- ο εάν $M_t > 0$, τότε είναι η τιμή του αθροίσματος για τον μέγιστο υπό-πίνακα που τελειώνει στο t, και αν $M_t = 0$, τότε μπορούμε με ασφάλεια να αγνοήσουμε κάθε υπό-πίνακα που τελειώνει στο t.
- εάν γνωρίζουμε όλες τις τιμές M_t, για t = 1, 2, ..., n, τότε η λύση στο πρόβλημα του μέγιστου υπό-πίνακα θα είναι η μέγιστη από αυτές τις τιμές.

Ένας αλγόριθμος γραμμικού χρόνου συνέχεια

□ για $t \ge 2$, εάν έχουμε έναν μέγιστο υπό-πίνακα που τελειώνει στο t και έχει θετικό πρόσημο, τότε είναι είτε A[t:t] είτε δημιουργείται από το μέγιστο υπό-πίνακα που τελειώνει στο t-1 συν το A[t]. Έτσι ορίζουμε το $M_0=0$ και

$$M_t = \max\{0, M_{t-1} + A[t]\}$$

- □ Εἀν δεν ἰσχυε, τότε θα μπορούσαμε να δημιουργήσουμε ἐναν υπό-πίνακα με μεγαλύτερο ἀθροισμα ανταλλάσσοντας αυτόν που επιλέξαμε να τελειώνει στο t − 1, με ἐναν ἀλλον υποπίνακα που θα τελειώνει στο t − 1, κάτι ὁμως που αντικρούει στο γεγονός ότι ἐχουμε χρησιμοποιήσει ήδη τον μέγιστο υπό-πίνακα που τελειώνει στο t.
- Επίσης, εάν στην τιμή του μέγιστου υπό-πίνακα που τελειώνει στο t-1 προσθέτοντας το A[t] το άθροισμα δεν είναι πλέον θετικός αριθμός, τότε $M_t=0$, γιατί δεν υπάρχει υπό-πίνακας που να τελειώνει στο t με θετικό άθροισμα.

Ένας αλγόριθμος γραμμικού χρόνου, συνέχεια

```
Algorithm MaxsubFastest(A):

Input: An n-element array A of numbers, indexed from 1 to n.

Output: The maximum subarray sum of array A.

M_0 \leftarrow 0 // the initial prefix maximum

for t \leftarrow 1 to n do

M_t \leftarrow \max\{0, M_{t-1} + A[t]\}

m \leftarrow 0 // the maximum found so far

for t \leftarrow 1 to n do

m \leftarrow \max\{m, M_t\}

return m
```

Ο αλγόριθμος MaxsubFastest αποτελείται από δύο βρόχους, ο καθένας εκτελείται η φορές και απαιτεί Ο(1) χρόνο σε κάθε επανάληψη. Έτσι, ο συνολικός χρόνος εκτέλεσης του αλγόριθμου MaxsubFastest είναι Ο(η).

Επανάληψη που πρέπει να κάνετε στα μαθηματικά

- Αθροίσματα
- Δυνάμεις
- □ Λογάριθμοι
- Τεχνικέςαπόδειξης
- Βασικέςπιθανότητες

Ιδιότητες δυνάμεων:

$$a^{(b+c)} = a^b a^c$$

 $a^{bc} = (a^b)^c$

$$a^{b}/a^{c} = a^{(b-c)}$$

$$b = a^{\log_a b}$$
$$b^c = a^{c*\log_a b}$$

Ιδιότητες λογαρίθμων:

$$log_b(xy) = log_bx + log_by$$

$$log_b(x/y) = log_bx - log_by$$

$$log_bx^a = alog_bx$$

$$log_ba = log_xa/log_xb$$

Συγγενείς του Big-Oh

big-Omega

■ f(n) είναι $\Omega(g(n))$ εάν υπάρχει μία σταθερά c>0 και μία ακέραια σταθερά $n_0 \ge 1$ έτσι ώστε $f(n) \ge c \ g(n) \ για \ n \ge n_0$

big-Theta

• f(n) είναι $\Theta(g(n))$ εάν υπάρχουν σταθερές c'>0 και c''>0 και μία ακέραια σταθερά $n_0\geq 1$ έτσι ώστε

$$c'g(n) \le f(n) \le c''g(n) \text{ yid } n \ge n_0$$

Ασυμπτωτική σημειογραφία

big-Oh

Η f(n) είναι O(g(n)) εάν f(n) είναι
 ασυμπτωτικά μικρότερη ἡ ίση από την g(n)

big-Omega

Η f(n) είναι Ω(g(n)) εάν η f(n) είναι
 ασυμπτωτικά μεγαλύτερη ἡ ίση από την g(n)

big-Theta

■ Η f(n) είναι Θ(g(n)) εάν η f(n) είναι ασυμπτωτικά ίση με την g(n)

Παραδείγματα των συγγενών του Big-Oh

• $5n^2$ είναι $\Omega(n^2)$

H f(n) είναι $\Omega(g(n))$ εάν υπάρχει σταθερά c>0 και μία ακέραια σταθερά $n_0 \ge 1$ έτσι ώστε $f(n) \ge c \ g(n)$ για $n \ge n_0$

Ισχύει για c = 5 και $n_0 = 1$

• $5n^2$ είναι $\Omega(n)$

Hf(n) είναι $\Omega(g(n))$ εάν υπάρχει σταθερά c>0 και μία ακέραια σταθερά $n_0 \geq 1$ έτσι ώστε $f(n) \geq c$ g(n) για $n \geq n_0$

Ισχύει για c=1 και $n_0=1$

■ $5n^2$ είναι $\Theta(n^2)$

H f(n) είναι $\Theta(g(n))$ εάν είναι $\Omega(n^2)$ και $O(n^2)$. Έχουμε ήδη δει η f(n) είναι $\Omega(g(n))$ παραπάνω. Η f(n) είναι O(g(n)) εάν υπάρχει σταθερά c>0 και μία ακέραια σταθερά $n_0 \geq 1$ έτσι ώστε $f(n) \leq c \ g(n)$ for $n \geq n_0$

Ισχύει για c = 5 και $n_0 = 1$

Επιμερισμός

- Ο επιμερισμένος χρόνος εκτέλεσης μίας λειτουργίας για μία σειρά λειτουργιών είναι ο χρόνος εκτέλεσης μιας σειράς λειτουργιών προς το πλήθος των λειτουργιών, στη χειρότερη δυνατή περίπτωση.
- Παράδειγμα: Ένας επεκτάσιμος πίνακας, Α. Όταν χρειάζεται να μεγαλώσει:
 - α. Δημιουργία ενός νέου πίνακα Β μεγαλύτερης χωρητικότητας.
 - b. Αντιγραφή του A[i] στο B[i], για i = 0, ..., n 1, όπου n το μέγεθος του A.

$$c. A = B$$

Περιγραφή επεκτάσιμου πίνακα

- Έστω add(e) η λειτουργία
 που προσθέτει το e στο τέλος
 του πίνακα.
- Όταν ο πίνακας γεμίσει τον αντικαθιστούμε με έναν μεγαλύτερο.
- Πόσο μεγάλος πρέπει να είναι ο νέος πίνακας;
 - Στρατηγική βηματικής αύξησης:
 αύξηση του μεγέθους του πίνακα κατά μία σταθερά c.
 - Στρατηγική διπλασιασμού:
 διπλασιασμός του μεγέθους.

```
Algorithm add(e)
if t = A.length - 1 then
B \leftarrow \text{new array of}
size ...
for i \leftarrow 0 to n-1 do
B[i] \leftarrow A[i]
A \leftarrow B
n \leftarrow n+1
A[n-1] \leftarrow e
```

Σύγκριση στρατηγικών

- Συγκρίνουμε τη στρατηγική της βηματικής αύξησης με τη στρατηγική του διπλασιασμού αναλύοντας το συνολικό χρόνο *T(n)* που χρειάζονται *n* προσθήκες.
- Υποθέτουμε ότι ξεκινάμε με μία άδεια λίστα,
 που αναπαρίσταται από έναν επεκτάσιμο
 πίνακα μεγέθους 1.
- ο Ορίζουμε ως επιμερισμένο χρόνο εκτέλεσης μίας λειτουργίας add το μέσο χρόνο που απαιτείται από μία λειτουργία add για μια σειρά λειτουργιών, δλδ., T(n)/n.

Ανάλυση στρατηγικής βηματικής αύξησης

- □ Για n λειτουργίες add, αντικαθιστούμε τον πίνακα k = n / c φορές, όπου c είναι μία σταθερά.
- \Box Ο συνολικός χρόνος T(n) μίας σειράς n add λειτουργιών είναι ανάλογος του:

$$n + c + 2c + 3c + 4c + ... + kc =$$
 $n + c(1 + 2 + 3 + ... + k) =$
 $n + ck(k + 1)/2$

- \Box Επειδή η c είναι σταθερά, η T(n) είναι $O(n+k^2)$, δλδ., $O(n^2)$.
- □ Έτσι, ο επιμερισμένος χρόνος μίας λειτουργίας add είναι O(n).

Ανάλυση στρατηγικής διπλασιασμού

- ο συνολικός χρόνος T(n) μίας σειράς από n λειτουργίες είναι ανάλογος με:

$$n + 1 + 2 + 4 + 8 + ... + 2^{k} =$$
 $n + 2^{k+1} - 1 =$
 $3n - 1$

- \Box HT(n) Eival O(n).
- Ο χρόνος απόσβεσης μίας
 λειτουργίας add είναι *O*(1).

γεωμετρική σειρά

Μέθοδος λογιστή για τη στρατηγική διπλασιασμού

- Θεωρούμε τον υπολογιστή ως μία συσκευή που λειτουργεί με κέρματα και απαιτεί 1 cyber-δολάριο για σταθερή ποσότητα υπολογιστικού χρόνου.
- Χρεώνοντας 3 cyber-δολάρια για κάθε λειτουργία add, ο επιμερισμένος χρόνος εκτέλεσης θα είναι O(1).
 - Υπερχρεώνουμε κάθε λειτουργία add που δεν προκαλεί υπερχείλιση με 2 cyber-δολάρια.
 - Σκεφτείτε τα 2 cyber-δολάρια που κερδήθηκαν σαν να «αποθηκεύονται» στο στοιχείο που εισάγεται.
 - Μία υπερχείλιση θα συμβεί όταν ο πίνακας Α έχει 2¹ στοιχεία.
 - Έτσι, ο διπλασιασμός θα απαιτήσει 2¹ cyber- δολάρια.
 - Αυτά τα cyber- δολάρια βρίσκονται στα κελιά 2ⁱ⁻¹ μέχρι 2ⁱ-1.

