Exercise 2

Let's try this exercise

Import the necessary libraries

In [1]:

```
import pandas as pd
import numpy as np
```

Get the dataset from this address

(https://raw.githubusercontent.com/justmarkham/DAT8/master/data/u.user) and import the data

In [2]:

data=pd.read_csv('https://raw.githubusercontent.com/justmarkham/DAT8/master/data/u.user',se data

Out[2]:							
	user_id	age	gender	occupation	zip_code		
0	1	24	М	technician	85711		
1	2	53	F	other	94043		
2	3	23	M	writer	32067		
3	4	24	М	technician	43537		
4	5	33	F	other	15213		
5	6	42	M	executive	98101		
6	7	57	M	administrator	91344		
7	8	36	M	administrator	05201		
8	9	29	M	student	01002		
9	10	53	М	lawyer	90703		

Assign it to a variable called users and use the 'user_id' as index

In [3]:

users=pd.read_csv('https://raw.githubusercontent.com/justmarkham/DAT8/master/data/u.user',s
users

Out[3]:

	age	gender	occupation	zip_code
user_id				
1	24	М	technician	85711
2	53	F	other	94043
3	23	М	writer	32067
4	24	М	technician	43537
5	33	F	other	15213
6	42	М	executive	98101
7	57	М	administrator	91344
8	36	М	administrator	05201
9	29	М	student	01002

See the first 25 entries

In [4]:

users.head(25)

Out[4]:								
	age	gender	occupation	zip_code				
user_id								
1	24	М	technician	85711				
2	53	F	other	94043				
3	23	M	writer	32067				
4	24	М	technician	43537				
5	33	F	other	15213				
6	42	М	executive	98101				
7	57	M	administrator	91344				
8	36	M	administrator	05201				
9	29	М	student	01002				

See the last 10 entries

In [5]:

Out[5]:

users.tail(10)

	age	gender	occupation	zip_code
user_id				
934	61	М	engineer	22902
935	42	М	doctor	66221
936	24	М	other	32789
937	48	М	educator	98072
938	38	F	technician	55038
939	26	F	student	33319
940	32	М	administrator	02215
941	20	М	student	97229
942	48	F	librarian	78209
943	22	М	student	77841

What is the number of observations in the dataset?

```
In [6]:
```

```
users.shape ## to observe number of rows and column
Out[6]:
(943, 4)
```

In [7]:

```
len(users) ## to observe number or rows
```

Out[7]:

943

What is the number of columns in the dataset?

```
In [8]:
```

```
len(users.columns)
```

Out[8]:

4

Print the name of all the columns.

```
In [9]:
list(users)
Out[9]:
['age', 'gender', 'occupation', 'zip_code']
```

How is the dataset indexed?

What is the data type of each column?

```
In [11]:
    users.dtypes
Out[11]:
```

age int64 gender object occupation object zip_code object dtype: object

Print only the occupation column

```
In [12]:
users.iloc[:,[2]]
Out[12]:
           occupation
 user_id
       1
             technician
       2
                 other
       3
                 writer
             technician
       5
                 other
       6
              executive
          administrator
       7
          administrator
       9
               student
```

How many different occupations there are in this dataset?

```
In [13]:
len(users.occupation.unique())
```

Out[13]:

21

What are the five most frequent occupation?

In [14]:

```
users.occupation.value_counts()
Out[14]:
student
                 196
other
                  105
educator
                  95
administrator
                  79
                   67
engineer
programmer
                   66
librarian
                   51
writer
                   45
executive
                   32
scientist
                   31
artist
                   28
technician
                   27
marketing
entertainment
                   18
healthcare
                   16
retired
                   14
lawyer
                   12
salesman
                   12
In [15]:
```

users.occupation.value_counts().head(5)

Out[15]:

student 196 other 105 educator 95 administrator 79 engineer 67

Name: occupation, dtype: int64

Summarize the quantitative variable in the DataFrame.

In [16]:

users.describe()

Out[16]:

	age		
count	943.000000		
mean	34.051962		
std	12.192740		
min	7.000000		
25%	25.000000		
50%	31.000000		
75%	43.000000		
max	73.000000		

Summarize all the columns

In [17]:

```
users.describe(include='all')
```

Out[17]:

	age	gender	occupation	zip_code
count	943.000000	943	943	943
unique	NaN	2	21	795
top	NaN	М	student	55414
freq	NaN	670	196	9
mean	34.051962	NaN	NaN	NaN
std	12.192740	NaN	NaN	NaN
min	7.000000	NaN	NaN	NaN
25%	25.000000	NaN	NaN	NaN
50%	31.000000	NaN	NaN	NaN
75%	43.000000	NaN	NaN	NaN
max	73.000000	NaN	NaN	NaN

Summarize the qualitative variables in the DataFrame.

In [18]:

```
users.describe(include=[np.object])
```

Out[18]:

	gender	occupation	zip_code
count	943	943	943
unique	2	21	795
top	М	student	55414
freq	670	196	9

What is the mean age of users?

In [19]:

```
users.age.mean()
```

Out[19]:

34.05196182396607

What is the age with least occurrence?

```
In [20]:
```

```
age_least=pd.DataFrame(users.age)
age_least['TotalNumber']=age_least.groupby('age')['age'].transform('count')
age_least[age_least.TotalNumber==1]
```

Out[20]:

age		TotalNumber
user_id		
30	7	1
211	66	1
289	11	1
471	10	1
481	73	1

What is the occupation of the person with user id equal to 19?

In [21]:

```
users.occupation[19]
```

Out[21]:

'librarian'

Sort the data according to age.

In [22]:

```
users.sort_values(['age'])
```

	_							
Out[22]	Out[22]:							
	age	gender	occupation	zin codo				
	age	gender	occupation	zip_code				
user_id								
30	7	М	student	55436				
471	10	M	student	77459				
289	11	M	none	94619				
880	13	M	student	83702				
609	13	F	student	55106				
142	13	M	other	48118				
674	13	F	student	55337				
628	13	М	none	94306				
813	14	F	student	02136				

Find out the oldest person in this data.

```
In [23]:
```

```
oldest_person=users[users.age==users.age.max()]
oldest_person
```

Out[23]:

	age	gender	occupation	zip_code
user_id				
481	73	М	retired	37771

Find out the youngest engineer in this data.

In [24]:

```
engineer=users[users.occupation=='engineer']
engineer[engineer.age==engineer.age.min()]
```

Out[24]:

	age	gender	occupation	zip_code
user_id				
216	22	М	engineer	02215
487	22	М	engineer	92121
493	22	М	engineer	60090
844	22	М	engineer	95662

Find out the occupation of people age between 27-32 years old.

```
In [25]:
newdata=users.occupation[(users.age>27) & (users.age<32)]
newdata</pre>
```

```
Out[25]:
user_id
             student
9
12
                other
          programmer
17
23
               artist
32
             student
38
                other
42
       administrator
43
           librarian
45
          programmer
51
            educator
63
           marketing
77
          technician
95
       administrator
                other
109
112
            salesman
115
            engineer
125
               lawver
```

In [26]:

```
newdata1=users.occupation[(users.age>27) & (users.age<32)]
list (newdata1.drop_duplicates())
## to list occupation description for people age between 27 and 32 (both age 27 and 32 excl</pre>
```

Out[26]:

```
['student',
 'other',
 'programmer',
 'artist',
 'administrator',
 'librarian',
 'educator',
 'marketing',
 'technician',
 'salesman',
 'engineer',
 'lawyer',
 'entertainment',
 'scientist',
 'writer',
 'executive',
 'doctor',
 'healthcare',
 'none']
```

In [27]: newdata2=users[(users.age>27) & (users.age<32)]</pre> newdata2.occupation.unique() newdata2.drop_duplicates() ## to list down all the records that full fill the condition of occupation with age between Out[27]: occupation zip_code age gender user_id 01002 9 29 Μ student F other 12 28 06405 17 30 06355 M programmer 23 30 F 48197 artist F 32 28 student 78741 F 38 28 other 54467 42 30 Μ administrator 17870 43 29 librarian 20854 45 29 50233 Μ programmer

Show the data for people age more than 60 years old.

In [28]: users[users.age>60] Out[28]: age gender occupation zip_code user_id 106 61 Μ retired 55125 211 66 M salesman 32605 266 administrator 62 78756 318 65 Μ retired 06518 349 68 retired 61455 Μ 351 61 M educator 49938 364 63 Μ engineer 01810 423 64 M other 91606 481 73 M retired 37771

Present only the age of homemakers in this data.

```
In [29]:
```

```
homemaker=users[users.occupation=='homemaker']
homemaker.age
Out[29]:
user_id
       42
20
35
       20
       32
356
362
       35
708
       26
722
       50
       23
898
Name: age, dtype: int64
```

What is the average age of each occupation in the DataFrame?

```
In [30]:
```

```
users.groupby('occupation')['age'].mean()
Out[30]:
occupation
administrator
                 38.746835
artist
                 31.392857
doctor
                 43.571429
educator
                 42.010526
                 36.388060
engineer
entertainment
                 29.22222
                 38.718750
executive
healthcare
                 41.562500
homemaker
                 32.571429
lawyer
                 36.750000
librarian
                 40.000000
                 37.615385
marketing
none
                 26.55556
other
                 34.523810
                 33.121212
programmer
retired
                 63.071429
salesman
                 35.666667
In [ ]:
```