Fondamenti di Automatica

Giorgio Battistelli

Dipartimento di Ingegneria dell'Informazione, Università di Firenze

UNIVERSITÀ
DEGLI STUDI
FIRENZE
DINFO
DIPARTIMENTO DI
INGEGNERIA
DELL'INFORMAZIONE

2 Analisi dei sistemi dinamici

2.13 Analisi dei sistemi tempo discreto

Risposta dei sistemi LTI TD

Consideriamo un sistema LTI TD

$$x(t+1) = A x(t) + B u(t)$$

$$y(t) = C x(t) + D u(t)$$

Forma della soluzione nel dominio del tempo

$$x(t) = \underbrace{A^{t} x(0) + \sum_{\tau=0}^{t-1} A^{t-\tau-1} Bu(\tau)}_{x_{\ell}(t)}$$

$$y(t) = \underbrace{C A^{t} x(0) + \sum_{\tau=0}^{t-1} C A^{t-\tau-1} Bu(\tau) + D u(t)}_{y_{\ell}(t)}$$

Nota: in alternativa, possiamo calcolare la soluzione utilizzando la **trasformata Zeta**

Trasformata Zeta

Definizione: Dato un segnale f(t) causale TD, la sua **trasformata Zeta** è

$$\mathcal{Z}{f(t)} = \sum_{t=0}^{\infty} f(t)z^{-t}$$

con z variabile complessa

 Notazione: usiamo la lettera maiuscola per indicare la trasformata Zeta di un segnale

$$F(z) = \mathcal{Z}\{f(t)\}\$$

- F(z) è definita per tutti i $z \in \mathbb{C}$ tale che la serie converge
- La trasformata Zeta è l'equivalente della trasformata di Laplace per segnali TD

Proprietà della trasformata Zeta

Linearità: per ogni coppia di segnali causali $f_1(t)$ e $f_2(t)$ e ogni coppia di costanti α_1 e α_2

$$\mathcal{Z}\{\alpha_1 f_1(t) + \alpha_2 f_2(t)\} = \alpha_1 F_1(z) + \alpha_2 F_2(z)$$

- ② Anticipo di tempo: $\mathcal{Z}\{f(t+1)\} = zF(z) zf(0)$
- lacksquare Ritardo di tempo: $\mathcal{Z}\{f(t-1)\}=rac{F(z)}{z}$

- $oldsymbol{ iny}$ z può essere interpretato simbolicamente come un operatore di **anticipo unitario** nel tempo

Risposta libera e risposta forzata nel dominio Zeta

Consideriamo un sistema LTI TD

$$\begin{cases} x(t+1) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) + Du(t) \end{cases} \quad t \ge 0$$

Definiamo

$$\mathcal{Z}\{x(t)\} = X(z) \qquad \mathcal{Z}\{u(t)\} = U(z) \qquad \mathcal{Z}\{y(t)\} = Y(z)$$

• Applicando le proprietà 1 e 2 della trasformata Zeta

$$\mathcal{Z}\left\{x(t+1)\right\} = \mathcal{Z}\left\{Ax(t) + Bu(t)\right\}$$

$$\downarrow \qquad \qquad \qquad zX(z) - zx(0) = AX(z) + BU(z)$$

■ Equazione alle differenze ←→ equazione algebrica

Risposta libera e risposta forzata nel dominio Zeta

Risolvendo l'equazione algebrica

$$zX(z) - zx(0) = AX(z) + BU(z)$$

$$\downarrow \qquad \qquad (zI - A)X(z) = zx(0) + BU(z)$$

$$\downarrow \qquad \qquad X(z) = \underbrace{(zI - A)^{-1}zx_0}_{X_{\ell}(z)} + \underbrace{(zI - A)^{-1}BU(z)}_{X_{f}(z)}$$

$$Y(z) = \underbrace{C(zI - A)^{-1}zx_0}_{Y_{\ell}(z)} + \underbrace{C(zI - A)^{-1}BU(z) + DU(z)}_{Y_{f}(z)}$$

 Anche nel dominio Zeta: evoluzione/risposta complessiva = evoluzione/risposta libera + evoluzione/risposta forzata

$$X(z) = X_{\ell}(z) + X_f(z)$$

$$Y(z) = Y_{\ell}(z) + Y_f(z)$$

Relazione tra dominio del tempo e Zeta

	Tempo	Zeta
Evoluzione libera nello stato $x_\ell(t)$	$A^t x(0)$	$(zI-A)^{-1} z x(0)$
Evoluzione forzata nello stato $x_f(t)$	$\sum_{\tau=0}^{t-1} A^{t-\tau-1} Bu(\tau)$	$(zI - A)^{-1}BU(z)$
Risposta libera $y_\ell(t)$	$C A^t x(0)$	$C(zI-A)^{-1} z x(0)$
Risposta forzata $y_f(t)$	$\sum_{\tau=0}^{t-1} CA^{t-\tau-1}Bu(\tau) + Du(t)$	$\left[C(zI-A)^{-1}B+D\right]U(z)$

- ullet Potenza di matrice $A^t \longleftrightarrow$ inversa $(zI-A)^{-1} z$
- ullet Convoluzione discreta \longleftrightarrow prodotto $(zI-A)^{-1}B\,U(z)$
- Funzione di trasferimento TD

$$G(z) = C(zI - A)^{-1}B + D$$

Calcolo della potenza di matrice

Per la potenza di matrice vale

$$\mathcal{Z}\left\{A^{t}\right\} = \left(zI - A\right)^{-1}z$$

• $(zI-A)^{-1}$ matrice di funzioni razionali aventi come poli gli autovalori di A con la loro molteplicità nel polinomo minimo m(z)

Per calcolare la potenza di matrice A^t

- Si calcola l'inversa $(zI A)^{-1}$
- ② Si scompongono in fratti semplici gli elementi di $(zI-A)^{-1}$
- Si calcola l'antitrasformata Zeta

$$A^{t} = \mathcal{Z}^{-1} \left\{ (zI - A)^{-1} z \right\}$$

Relazione tra posizione dei poli e andamento nel tempo

Tempo continuo

Trasformata del gradino TC

$$\mathcal{L}\{1(t)\} = \frac{1}{s}$$

Trasformata dell'esponenziale TC

$$\mathcal{L}\lbrace e^{\lambda t} \, 1(t) \rbrace = \frac{1}{s - \lambda}$$

• Un polo in λ dà luogo al modo di evoluzione

$$e^{\lambda t} 1(t)$$

• Un polo in λ di molteplicità m dà luogo ai modi di evoluzione

$$e^{\lambda t}$$
, $t e^{\lambda t}$, ..., $t^{m-1} e^{\lambda t}$

Tempo discreto

Trasformata del gradino TD

$$\mathcal{Z}\{1(t)\} = \frac{z}{z-1}$$

Trasformata della potenza TD

$$\mathcal{Z}\{\lambda^t \, 1(t)\} = \frac{z}{z - \lambda}$$

• Un polo in λ dà luogo al modo di evoluzione

$$\lambda^t 1(t)$$

• Un polo in λ di molteplicità m dà luogo ai modi di evoluzione

$$\lambda^t$$
, $t\lambda^t$, ..., $t^{m-1}\lambda^t$

Modi naturali

• La matrice inversa $(zI - A)^{-1}$ ha come poli gli autovalori del sistema

$$\lambda_1, \ldots, \lambda_k$$

con le molteplicità

$$m_1,\ldots,m_k$$

Ricordiamo che per per l'evoluzione libera vale

$$x_{\ell}(t) = A^{t}x(0) = \mathcal{Z}^{-1}\left\{ (zI - A)^{-1} z \right\} x(0)$$

Teorema 2.7 A^t è una matrice avente come elementi opportune **combinazioni lineari** di

$$\lambda_i^t, t \lambda_i^t, \ldots, t^{m_i-1} \lambda_i^t$$

 $per i = 1, \dots, k.$

Tale segnali sono detti modi naturali del sistema.

• Di conseguenza $x_\ell(t) = A^t x(0)$ e $y_\ell(t) = C \, A^t x(0)$ evolvono secondo una opportuna **combinazione dei modi naturali** del sistema (al variare delle **condizioni iniziali**)

Modi naturali TD

• Scomponento gli autovalori in termini di modulo e fase

$$\lambda_i = \rho_i e^{j\theta_i}$$

con

$$\rho_i = |\lambda_i| \qquad \theta_i = \angle \lambda_i$$

Modo naturale

$$t^{\ell} \lambda_i^t = t^{\ell} \rho_i^t e^{j\theta_i t}$$
$$= t^{\ell} \rho_i^t [\cos(\theta_i t) + j \sin(\theta_i t)]$$

- Modulo $ho_i = |\lambda_i|$ dell'autovalore determina la **convergenza/divergenza** del modo naturale
- Fase $\theta_i = \angle \lambda_i$ dell'autovalore determina la presenza o meno di **oscillazioni**
- Attenzione: se λ_i autovalore complesso allora anche il suo complesso coniugato $\overline{\lambda}_i = \rho_i e^{-j\theta_i}$ è autovalore con la stessa molteplicità \Rightarrow i modi $t^\ell \, \lambda_i^t \, e \, t^\ell \, \overline{\lambda_i}^t$ sono presenti sempre in coppia e si combinano per dare luogo ai modi reali

$$t^{\ell} \rho_i^t \cos(\theta_i t)$$
 $t^{\ell} \rho_i^t \sin(\theta_i t)$

Modi naturali TD per λ_i reale positivo

Modi naturali TD per λ_i reale negativo

Classificazione dei modi naturali TD $t^\ell \, \lambda_i^t \, 1(t)$

	$ \lambda_i < 1$	$ \lambda_i = 1$	$ \lambda_i > 1$
$\ell = 0$	convergente	limitato	divergente
$\ell > 0$	convergente	divergente	divergente

- Modulo $|\lambda_i|$ e molteplicità m_i (nel caso $|\lambda_i|=1$) determinano la convergenza/divergenza
- Fase $\angle \lambda_i$ determina la presenza o meno di **oscillazioni**

Nota: Per conoscere l'andamento qualitativo di $A^t=\mathcal{Z}^{-1}\{(zI-A)^{-1}z\}$ è sufficiente guardare la **posizione degli autovalori** nel piano z e la loro **molteplicità** nel polinomio minimo

Stabilità interna e modi naturali

• Un autovalore λ_i con molteplicità m_i come radice del polinomio minimo m(z) dà origine ai modi naturali

$$t^{\ell}\lambda_i^t$$
 $\ell=0,1,\ldots,m_i-1$

• Modi naturali associati ad un autovalore λ_i tutti **convergenti**

$$\Leftrightarrow |\lambda_i| < 1$$

se e solo se il modulo di λ_i è < 1

• Modi naturali associati ad un autovalore λ_i tutti **limitati**

$$\Leftrightarrow |\lambda_i| \leq 1$$

- e, nel caso il modulo sia 1, la molteplicità m_i sia unitaria
- Negli altri casi esiste almeno un modo naturale divergente

Condizioni per la stabilità interna

Teorema 2.8 Un sistema LTI TD è

- asintoticamente stabile
 - \Leftrightarrow tutti gli autovalori del sistema hanno modulo < 1
- marginalmente stabile
 - \Leftrightarrow tutti gli autovalori del sistema hanno modulo ≤ 1 AND quelli con modulo = 1 hanno molteplicità = 1 come radici del polinomio minimo
- internamente instabile negli altri casi
 - \Leftrightarrow esiste almeno un autovalore con modulo > 1 **OR** con modulo = 1 e molteplicità > 1 nel polinomio minimo

ullet La regione di stabilità asintotica nel piano z corrisponde al cerchio unitario

$$\mathbb{C}_z = \{ z \in \mathbb{C} : |z| < 1 \}$$

Condizioni per la stabilità esterna

• Consideriamo un sistema LTI tempo discreto SISO con funzione di trasferimento

$$G(z) = \frac{b(z)}{a(z)}$$

con b(z) e a(z) polinomi coprimi (senza radici comuni)

• Poli di G(z) = radici di a(z)

Teorema 2.4 Sistema LTI TD SISO **stabile esternamente** \Leftrightarrow tutti i poli di G(z) hanno modulo <1

- Anche per sistemi TD, stabilità asintotica ⇒ stabilità esterna
- ullet L'implicazione inversa in generale non vale (conoscere G(z) non è sufficiente per concludere sulla stabilità interna)

Tabella riassuntiva sulla stabilità dei sistemi LTI TD

STABILITÀ	Quantità di interesse	Condizione
Asintotica	Polinomio caratteristico $arphi(z)$	$ \lambda_i < 1$ per ogni λ_i tale che $arphi(\lambda_i) = 0$
Marginale	Polinomio minimo $m(z)$	$ \lambda_i \leq 1$ per ogni λ_i tale che $arphi(\lambda_i) = 0$ & $m_i = 1 \ { m nel \ caso \ in \ cui} \ \lambda_i = 1$
Esterna	Funzione di trasferimento $G(z) = \frac{b(z)}{a(z)}$	$ \lambda_i < 1$ per ogni λ_i tale che $a(\lambda_i) = 0$

Nota: per verificare se le radici di un polinomio hanno tutte modulo < 1 si può utilizzare ad esempio il **criterio di Jury** (equivalente TD del criterio di Routh-Hurwitz)

Punti di equilibrio

Consideriamo un sistema TI TD

$$x(t+1) = f(x(t), u(t))$$

$$y(t) = h(x(t), u(t))$$

Studiamo la stabilità di una particolare classe di traiettorie del sistema:
 i punti di equilibrio

Definizione: Si definisce **punto di equilibrio** una coppia (x_e, u_e) tale che

$$\begin{array}{rcl} x(0) & = & x_e \\ u(t) & = & u_e, & \forall t \ge 0 \end{array} \quad \Longrightarrow \quad x(t) = x_e \quad \forall t \ge 0$$

- punto di equilibrio = **traiettoria costante** del sistema
- Dato un punto di equilibrio (x_e,u_e) definiamo l'uscita di equilibrio

$$y_e = h(x_e, u_e)$$

Punti di equilibrio

I punti di equilibrio di un sistema TD sono tutte e sole le coppie (x_e,u_e) tali che

$$f(x_e, u_e) = x_e$$

- Questo risultato è una conseguenza immediata della definizione
- La definizione di punti di equilibrio non cambia, rispetto al caso TC, ma cambia la condizione da verificare
- **Per sistemi autonomi:** x_e equilibrio $\Leftrightarrow f(x_e) = x_e$ In questo caso, uno stato di equilibrio è un **punto fisso** della funzione f
- Per gli equilibri di un sistema TD, possiamo definire gli stessi concetti di stabilità già introdotti per il caso TC

Punti di equilibrio nei sistemi LTI TD

Nota: possiamo rivisitare i concetti di stabilità interna visti per sistemi LTI TD in termini di stabilità degli equilibri.

Consideriamo un sistema LTI TD

$$x(t+1) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

- Funzione di transizione dello stato f(x, u) = Ax + Bu
- (x_e, u_e) punto di equilibrio $\Leftrightarrow f(x_e, u_e) = Ax_e + Bu_e = x_e$
- Dato un segnale di ingresso costante

$$u(t) = u_e \quad \forall t \ge 0$$

i corrispondenti stati di equilibrio sono le soluzioni del **sistema di equazioni** lineari

$$(I - A) x_e = B u_e$$

Punti di equilibrio nei sistemi LTI TD

• Ingresso costante $u(t) = u_e$ per $t \ge 0$ \Rightarrow stati di equilibrio soluzioni di

$$(I - A) x_e = B u_e$$

ullet Per sistemi LTI $x_e=0$ e $u_e=0$ è **sempre** un punto di equilibrio (corrisponde alla situazione di quiete in cui il sistema rimane nello stato 0)

Quando I-A invertibile, ad un ingresso costante $u(t)=u_e$, corrisponde un ${\bf unico}$ stato di equilibrio

$$x_e = (I - A)^{-1} B u_e$$

Notiamo che

I-A invertibile \Leftrightarrow A non ha autovalori in 1

Stabilità dei punti di equilibrio nei sistemi LTI TD

- \bullet Per un sistema LTI TD, stabilità asintotica $\ \Leftrightarrow\$ tutti autovalori di A hanno modulo < 1
- Di conseguenza, stabilità asintotica $\Rightarrow I A$ invertibile
- ullet Per un sistema LTI TD asintoticamente stabile, ad un ingresso costante $u(t)=u_e$, corrisponde un **unico** stato di equilibrio

$$x_e = (I - A)^{-1} B u_e$$

- Per sistemi LTI la stabilità è una proprietà globale
 - \Rightarrow Per un sistema LTI asintoticamente stabile, l'equilibrio $x_e = (I A)^{-1} B u_e$ risulta essere **globalmente asintoticamente stabile**

Per un sistema LTI TD asintoticamente stabile si ha che

$$u(t) = u_e \quad \forall t \ge 0 \quad \Longrightarrow \quad \lim_{t \to \infty} x(t) = x_e = (I - A)^{-1} B u_e$$
$$\lim_{t \to +\infty} y(t) = y_e = [C(I - A)^{-1} B + D] u_e$$

Guadagno in continua nei sistemi LTI TD

ullet Per un sistema LTI TD **asintoticamente stabile** la risposta ad un ingresso costante $u(t)=u_e$ converge asintoticamente a

$$\lim_{t \to +\infty} y(t) = y_e = [C(I - A)^{-1} B + D] u_e$$

Notiamo che

$$G(1) = G(z)|_{z=1} = C(I - A)^{-1} B + D$$

• In risposta ad un ingresso costante $u(t)=u_e$, l'uscita complessiva y(t) converge al ${\bf regime\ permanente}$

$$y_f^U(t) = [C(I - A)^{-1} B + D] u_e = G(1) u_e$$

ullet La quantità G(1) rappresenta il **guadagno in continua** per sistemi LTI TD

Esempio: analisi dell'algoritmo di PageRank

PageRank: algoritmo per assegnare un peso a ciascuna pagina web che ne quantifica l'importanza relativa
Utile per decidere l'**ordine** (ranking) con cui presentare i risultati di una ricerca

PageRank si basa su

- Modello dinamico per descrivere la navigazione di un utente nel World Wide Web (modello tipo random walk)
- PageRank
 della pagina i = probabilità asintotica

$$\lim_{t \to \infty} x_i(t) = \bar{x}_i$$

di essere nella pagina i dopo un periodo di navigazione sufficientemente lungo

Esempio: analisi dell'algoritmo di PageRank

• PageRank con damping factor $d \in (0,1)$

$$x(t+1) = d \begin{bmatrix} 0 & 0 & 0.5 & 0 \\ 0.5 & 0 & 0.5 & 0.5 \\ 0 & 1 & 0 & 0.5 \\ 0.5 & 0 & 0 & 0 \end{bmatrix} x(t) + \frac{1-d}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

 Possiamo vedere l'algoritmo come un sistema LTI TD

$$x(t+1) = Ax(t) + Bu(t)$$

con

$$A = d \begin{bmatrix} 0 & 0 & 0.5 & 0 \\ 0.5 & 0 & 0.5 & 0.5 \\ 0 & 1 & 0 & 0.5 \\ 0.5 & 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

e ingresso costante u(t) = (1 - d)/4

Esempio: analisi dell'algoritmo di PageRank

• Autovalori di *A*:

$$\lambda_1 = d$$
, $\lambda_2 = -d/2$, $\lambda_3 = -d/4 + j\sqrt{3}d/4$, $\lambda_4 = -d/4 - j\sqrt{3}d/4$

- - ⇒ sistema asintoticamente stabile
 - \Rightarrow in risposta all'ingresso costante u(t)=(1-d)/4, lo stato x(t) converge al valore di equilibrio

$$x_e = (I - A)^{-1} B \frac{1 - d}{4}$$

• Scegliendo d=0.85

$$x_e = \left[\begin{array}{c} 0.1922\\ 0.3246\\ 0.3640\\ 0.1192 \end{array} \right]$$

 \Rightarrow ordine di importanza 3, 2, 1, 4

Nota: Per qualsiasi rete, **per costruzione** la matrice A ha sempre tutti gli autovalori con modulo < 1 per ogni $d \in (0,1)$

⇒ analisi può essere generalizzata a una qualsiasi rete di qualsiasi dimensione

Metodo indiretto (della linearizzazione di Lyapunov) TD

ullet Consideriamo la matrice A_e della dinamica del sistema linearizzato

$$A_e = \left. \frac{\partial f}{\partial x} \right|_{(x,u)=(x_e,u_e)}$$

Teorema 2.10 (Metodo della linearizzazione di Lyapunov TD) Consideriamo un sistema TI TD. Sia A_e la matrice del sistema linearizzato nell'intorno di un equilibrio (x_e,u_e) .

- $\begin{tabular}{l} \bullet & \end{tabular} Se tutti gli autovalori di A_e hanno modulo < 1 \\ \Rightarrow equilibrio (localmente) asintoticamente stabile$
- (caso critico) Se invece tutti gli autovalori di A_e hanno modulo ≤ 1 AND almeno un autovalore con modulo =1 \Rightarrow non si può concludere nulla

Esempio: algoritmo babilonese

Consideriamo sistema dinamico autonomo TD

$$x(t+1) = \frac{1}{2} \left[x(t) + \frac{\alpha}{x(t)} \right]$$

 $con \alpha > 0$ parametro reale

- Consideriamo il dominio x > 0
- Gli equilibri del sistema sono soluzione dell'equazione

$$f(x_e) = \frac{1}{2} \left(x_e + \frac{\alpha}{x_e} \right) = x_e$$

$$\updownarrow$$

$$\frac{1}{2} \frac{\alpha}{x_e} = \frac{1}{2} x_e$$

$$\updownarrow$$

$$x_e^2 = \alpha$$

• Per x > 0 esiste un unico punto di equilibrio

$$x_e = \sqrt{\alpha}$$

Esempio: algoritmo babilonese

• Per studiare la stabilità dell'equilibrio linearizziamo $f(x) = \frac{1}{2} \left(x + \frac{\alpha}{x} \right)$

$$A_e = \left. \frac{\partial f}{\partial x} \right|_{x=x_e} = \left. \frac{1}{2} \left(1 - \frac{\alpha}{x^2} \right) \right|_{x=\sqrt{\alpha}} = 0$$

- $A_e=0$ ha autovalore $\lambda_1=0$ $\Rightarrow A_e=0$ ha tutti autovalori con modulo <1 \Rightarrow equilibrio $x_e=\sqrt{\alpha}$ localmente asintoticamente stabile
- Utilizzando strumenti di analisi più avanzati si può dimostrare che il sistema converge all'equilibrio $x_e=\sqrt{\alpha}$ per ogni stato iniziale x(0)>0

Nota: Questo sistema, già noto ai matematici dell'antichità, fornisce un algoritmo iterativo per calcolare la **radice quadrata** del parametro α (che può essere interpretato come l'ingresso dell'algoritmo iterativo)