MEMORY HIERARCHY

Memory Hierarchy

- Registers
 - In CPU
- Primary Memory
 - May include one or more levels of cache
 - "RAM"
- Secondary memory
 - Magnetic/Optical

CACHE:

-High Speed Memory (SRAMs)

-Small in Size

-High cost

MAIN MEMORY

-High density (DRAMs)

-Low cost

-Slower than Cache.

RAM

Static RAM

- Bits stored as on/off switches
- No charges to leak
- No refreshing needed when powered
- More complex construction
- Larger per bit
- More expensive
- Does not need refresh circuits
- Faster
- Cache

Fig. 7-2 Block Diagram of a Memory Unit

Memory address

Binary	decimal	Memory contest
0000000000	0	1011010101011101
0000000001	1	1010101110001001
0000000010	2	0000110101000110
	•	• • •
1111111101	1021	1001110100010100
1111111110	1022	0000110100011110
1111111111	1023	11011111000100101

Fig. 7-3 Content of a 1024×16 Memory

Fig. 7-5 Memory Cell

Fig. 7-6 Diagram of a 4 \times 4 RAM

© 2002 Prentice Hall, Inc. M. Morris Mano **DIGITAL DESIGN,** 3e.

Static RAM Cell

6-Transistor SRAM Cell

1-Transistor Memory Cell (DRAM)

- Write:
 - 1. Drive bit line
 - 2. Select row
- Read:
 - 1. Precharge bit line to Vdd
 - 2. Select row
 - Cell and bit line share chargesVery small voltage changes on the bit line
 - 4. Sense (fancy sense amp)
 - 5. Write: restore the value
- Refresh
 - Just do a dummy read to every cell.

