IUM Dokumentacja Końcowa

Rafał Budnik 318639 Ireneusz Okniński 310228

1. Temat

"Jakiś czas temu wprowadziliśmy konta premium, które uwalniają użytkowników od słuchania reklam. Nie są one jednak jeszcze zbyt popularne – czy możemy się dowiedzieć, które osoby są bardziej skłonne do zakupu takiego konta?"

2. Cele oraz założenia

a) Cel biznesowy

Zwiększenie popularności kont premium poprzez identyfikację cech użytkowników, które są powiązane z większą skłonnością do zakupu tych kont, co przełoży się na większe zyski.

b) Zadanie modelowania

Ocena czy dany klient jest skłonny do zakupu pakietu premium. Skorzystamy z różnych modeli klasyfikacyjnych w celu znalezienia najbardziej skutecznego. Zadaniem modelowania będzie klasyfikacja binarna (będziemy oceniać, czy użytkownik nabędzie premium bądź nie).

c) Analityczne kryterium sukcesu

Poprawienie wyników klasyfikatora naiwnego:

```
Skuteczność w przewidywaniu klasy premium_purchased: 0.5841
Skuteczność w przewidywaniu klasy premium_purchased_this_month: 0.9457
Skuteczność w przewidywaniu klasy premium_purchased_next_month: 0.9687
```

[TP, FN] [FP, TN]

premium_purchased [0, 12241] [0, 17192]	premium_purchased_this_month [0, 1599] [0, 27834]	premium_purchased_next_month [0, 921] [0, 28512]

Naszym priorytetem i zarazem kryterium sukcesu będzie poprawa tych wyników, koncentrując się szczególnie na zwiększeniu TP (czyli poprawnym klasyfikowaniu użytkowników kupujących premium) oraz zmniejszeniu liczby FN (czyli błędnej klasyfikacji, że użytkownik który kupi premium według modelu go nie kupi).

Za analityczne kryterium sukcesu posłuży analiza krzywej ROC oraz miara F1. Będziemy dążyć do uzyskania jak najlepszych wartości, ale za minimum sukcesu określamy F1 lepsze niż 0,5 oraz krzywą ROC lepszą od linii przechodzącej przez punkty (0,0) oraz (1,1).

3. Zaimplementowane modele

a) Regresja logistyczna

Prosta regresja logistyczna z bilbioteki sklearn. Oddzielny model dla przewidywania klasy *premium_purchased* i *premium_purchased_this_month*.

b) Sieć neuronowa

Skorzystaliśmy z biblioteki tensorflow. Jeden model dla przewidywania klasy premium purchased i premium purchased this month.

4. Wyniki

W drodze prac nad modelami zauważyliśmy, że nie radzą sobie z przewidywaniem klasy *premium_purchased_next_month*. Dostawaliśmy 0 przypadków TP (czyli nigdy modelowi nie udawało się przewidzieć, że dany użytkownik kupi premium w następnym miesiącu). Zrezygnowaliśmy więc z dalszego przewidywania tego atrybutu. Skupiliśmy się na przewidywaniu *premium_purchased* oraz *premium_purchased this month*.

a) Regresja logistyczna

i) premium_purchased

Class: premium_purchased Accuracy: 0.6858573920873431 AUC: 0.6928916884258887 F1-score: 0.5574056454170632 Classification Report:					
	precision	recall	f1-score	support	
0.0 1.0	0.86 0.46	0.68 0.71	0.76 0.56	12810 4959	
accuracy macro avg weighted avg	0.66 0.75	0.69 0.69	0.69 0.66 0.70	17769 17769 17769	

ii) premium_purchased_this_month

Class: premium_purchased_this_month Accuracy: 0.8851370364117283 AUC: 0.7003643831098559 F1-score: 0.3583778685947815 Classification Report:					
	recision	recall	fl-score	support	
0.0	0.96	0.91	0.94	16600	
1.0	0.28	0.49	0.36	1169	
accuracy			0.89	17769	
macro avg	0.62	0.70	0.65	17769	
weighted avg	0.92	0.89	0.90	17769	
·					

b) Sieć neuronowa

i) premium_purchased

Class: premium_purchased Accuracy: 0.6839439473239912 AUC: 0.6952722866144069 F1-score: 0.560081466395112 Classification Report:					
	precision	recall	fl-score	support	
0.0	0.86	0.67	0.75	12810	
1.0	0.46	0.72	0.56	4959	
accuracy			0.68	17769	
macro avg	0.66	0.70	0.66	17769	
weighted avg	0.75	0.68	0.70	17769	

ii) premium_purchased_this_month

Class: pr	Class: premium purchased this month						
Accuracy:	0.92746	165456694	425				
AUC: 0.72							
F1-score:	0.47566	97560975	61				
Classific	ation Re	port:					
			recall	f1-score	support		
	0.0	0.96	0.96	0.96	16600		
	1.0	0.45	0.50	0.48	1169		
accur	acv			0.93	17769		
macro		0.71	0.73	0.72	17769		
weighted	avg	0.93	0.93	0.93	17769		
J							

5. Porównanie modeli

Analizując zastosowane modele możemy dojść do wniosku, że lepiej spisuje się model sieci neuronowej. Wykazuje on lepsze wartości miary F1 oraz lepsze krzywe ROC, które to są naszymi analitycznymi kryteriami sukcesu.

F1 SCORE	Regresja logistyczna	Sieć neuronowa
premium_purchased	0,5574	0,5601
premium_purchased_this_month	0,3584	0,4756

POLE POD KRZYWĄ ROC	Regresja logistyczna	Sieć neuronowa
premium_purchased	0,73	0,74
premium_purchased_this_month	0,84	0,91

ACCURACY	Regresja logistyczna	Sieć neuronowa	Naiwny klasyfikator
premium_purchased	0,6859	0,6839	0,5841
premium_purchased_this_month	0,8851	0,9274	0,9457

Dokładność dla atrybutu *premium_purchased* jest lepsza dla regresji logistycznej, ale sieć neuronowa ma niewiele mniejszą. Obie metody są lepsze niż naiwny klasyfikator. Z kolei dla atrybutu *premium_purchased_this_month* najlepiej wypada naiwny klasyfikator - trzeba to jednak traktować z przymrużeniem oka ze względu na zdecydowanie większościową klasę oznaczającą w tym przypadku brak zakupu premium w tym miesiącu.

Ogólnie, biorąc pod uwagę najistotniejsze dla nas miary jakości, **najlepiej wypada** sieć neuronowa.

6. Mikroserwis - predykcja przy użyciu sieci neuronowej oraz regresji logistycznej

Działa przy użyciu uvicorn na ip 127.0.0.1:8000/predict/<lr/nn>.

Przesyłamy POSTem atrybuty danego usera. Otrzymujemy odpowiedź:

- czy user kupi premium?
- czy user kupi premium w tym miesiącu?

Przykładowe działanie:

sieć neuronowa:

```
curl -X 'POST' \
   'http://127.0.0.1:8000/predict/nn' \
   -H 'accept: application/json' \
   -H 'Content-Type: application/json' \
   -d '{
   "number of advertisements": 10,
   "number_of_skips": 5,
"number_of_likes": 7,
   "total_tracks_duration_ms": 1800000,
   "number_of_different_artists": 2,
   "average_release_date": 0.111,
"average_duration_ms": 1000000,
   "explicit_tracks_ratio": 0.18,
   "average_popularity": 50.0,
   "average acousticness": 0.3,
   "average danceability": 0.6,
   "average_energy": 0.5,

"average_instrumentalness": 0.1,

"average_liveness": 0.2,

"average_loudness": -10.3,

"average_speechiness": 0.1,

"average_tempo": 90.0,
   "average valence": 0.4
Request URL
 http://127.0.0.1:8000/predict/nn
Server response
Code
              Details
200
               Response body
                  "premium_purchased": 1,
                  "premium_purchased_this_month": 0
              Response headers
                 content-length: 56
                 content-type: application/json
                 date: Thu,04 Jan 2024 16:59:39 GMT
                 server: uvicorn
```

```
curl -X 'POST' \
    'http://127.0.0.1:8000/predict/lr' \
    -H 'accept: application/json' \
    -H 'Content-Type: application/json' \
    -d '{
    "number of advertisements": 10,
    "number_of_skips": 5,
"number_of_likes": 7,
"total_tracks_duration_ms": 1800000,
    "number_of_different_artists": 2,
    "average_release_date": 0.111,
"average_duration_ms": 1000000,
    "explicit_tracks_ratio": 0.18,
"average_popularity": 50.0,
    "average_acousticness": 0.3,
"average_danceability": 0.6,
   "average_danceability": 0.6,

"average_energy": 0.5,

"average_instrumentalness": 0.1,

"average_liveness": 0.2,

"average_loudness": -10.3,

"average_speechiness": 0.1,

"average_tempo": 90.0,

"average_valence": 0.4
Request URL
 http://127.0.0.1:8000/predict/lr
Server response
Code
                  Details
200
                  Response body
                      "premium_purchased": 0,
                      "premium_purchased_this_month": 0
                  Response headers
                      content-length: 56
                      content-type: application/json
```

date: Thu,04 Jan 2024 17:01:00 GMT

server: uvicorn

7. Mikroserwis - eksperymenty A/B

W celu przeprowadzenia eksperymentów A/B wytrenowaliśmy modele danymi do lipca. Późniejsze dane posłużą do porównania skuteczności modeli.

Podzieliliśmy późniejsze dane na dwie losowo wybrane grupy (A - sieć neuronowa i B - regresja logistyczna) i wrzuciliśmy do modeli.

Otrzymane wyniki dla poszczególnych grup wyeksportowaliśmy do pliku csv, a następnie skorzystaliśmy z funkcji *ttest_ind(gr_A, gr_B)* z biblioteki scipy.

Otrzymaliśmy następujące rezultaty:

dla premium purchased:

T-statistic: 29.0460362096324 P-value: 8.168457769831791e-184

Odrzucamy hipotezę zerową. Istnieje istotna różnica między grupami.

Grupa A jest lepsza niż grupa B.

dla premium purchased this month:

T-statistic: 25.562040790769686 P-value: 1.0377275487561015e-142

Odrzucamy hipotezę zerową. Istnieje istotna różnica między grupami.

Grupa A jest lepsza niż grupa B.

8. Wnioski końcowe

a) premium_purchased_vs premium_purchased_this_month

Nasze modele zdecydowanie lepiej radzą sobie z przewidywaniem parametru *premium_purchased* niż *premium_purchased_this_month*. Wynika to z natury dostępnych danych oraz można było się tego spodziewać zwracając uwagę na macierz korelacji. Rekomendujemy więc przykładanie większej uwagi do klasyfikacji parametru *premium purchased*.

b) Preferowany Model

Na podstawie analizy wyników modeli, wyraźnie widać, że sieć neuronowa osiągnęła lepsze rezultaty niż regresja logistyczna. Model ten charakteryzuje się wyższymi wartościami miary F1 i krzywej ROC, co świadczy o jego lepszej zdolności do identyfikacji potencjalnych klientów skłonnych do zakupu kont premium.

c) Miary Jakości

Zarówno dla modelu opartego na sieci neuronowej jak i modelu opartego na regresji logistycznej udało nam się poprawić rezultaty uzyskane dla modelu naiwnego. Krzywa ROC wygląda zdecydowanie lepiej niż prosta linia.

d) Eksperymenty A/B

Testy A/B potwierdziły istotne statystycznie różnice między grupą korzystającą z sieci neuronowej a grupą korzystającą z regresji logistycznej. Sieć neuronowa okazała się bardziej efektywna w identyfikacji użytkowników zainteresowanych zakupem kont premium.

Podsumowując, na podstawie analizy i wyników uzyskanych z różnych aspektów projektu, rekomendujemy skoncentrowanie się na implementacji sieci neuronowej jako preferowanego modelu dla prognozowania skłonności użytkowników do zakupu kont premium. Wdrożenie tej rekomendacji może przynieść korzyści biznesowe poprzez lepsze zrozumienie zachowań klientów i efektywniejsze działania marketingowe.