Organização e Arquitetura de Processadores

Organização do MIPS

Introdução a Pipeline

Cálculo do Relógio e Comparação entre Organizações Monociclo, Multiciclo e Pipeline

Pipeline é Natural!

Exemplo da Lavanderia:

Ana, Bruno, Cristiane e Daniela têm cada um uma trouxa de roupas para lavar,

secar e dobrar;

- Lavagem leva 30 minutos
- Secagem leva 40 minutos
- Dobragem leva 20 minutos

Lavanderia Sequencial

Lavanderia Pipeline

Ciclos são sobrepostos — Maior ciclo determina o atraso

Lavanderia pipeline levaria 210 min (3.5 horas) para as mesmas 4 cargas

Definições para Pipelines

- Pipeline = em inglês, tubo, oleoduto instruções entram numa ponta e são processadas na ordem de entrada
- Tubo é dividido em estágios ou segmentos
- Tempo que uma instrução fica no tubo = latência
- Número de instruções executadas na unidade de tempo = vazão (em inglês, throughput)
- Tempo que uma instrução permanece em um estágio = ciclo de máquina normalmente, igual a um ciclo de relógio (excepcionalmente dois)
- Balanceamento é uma técnica para gerar uniformidade do atraso dos estágios

Lavanderia Pipeline

O que aconteceria se este pipeline fosse perfeitamente balanceado?

→ Considere a média dos tempos de cada tarefa para efetuar o balanceamento e calcule o novo valor total para fazer todas as tarefas

Lavanderia Pipeline

OBS.: O exemplo serve apenas para elucidar a questão de estágios perfeitamente balanceados; contudo, pode não ser prático, pois é necessário mudar as características da secadora ou do processo para operar em apenas 30 min. No caso de mudança do processo, poderia retirar a roupa um pouco úmida da secadora, prevendo que a mesma seja seca no estágio de dobragem

Lavanderia pipeline levaria 180 min (3 horas) para as mesmas 4 cargas

Lições Apreendidas com Pipeline

- Pipeline não reduz a latência de uma única tarefa, ajuda no throughput de todo o trabalho
- A taxa de pipeline é limitada pelo estágio mais lento
- Tarefas múltiplas operam de forma simultânea
- Aceleração potencial (speedup) = Número de estágios do pipe
- Comprimentos desbalanceados de estágios reduz speedup
- Tempo para "preencher" o pipeline e tempo para "drená-lo" reduzem speedup

Implementação Sequencial e Pipeline – Dissipação de Potência e Consumo de Energia

Considere lavadora, secadora e dobradora consumindo 15W, 25W e 10W, respectivamente. Calcule o consumo de energia e dissipação de potência para cada implementação da lavanderia

mecanismo que desligue as máquinas que já

terminaram sua operação

este exemplo é só ilustrativo

Visão Geral do Pipeline

Princípio básico

- Paralelismo em nível de instrução
- Divide uma instrução em N estágios
- N instruções executadas em paralelo, uma em cada estágio
- Técnica empregada para aumentar a vazão de instruções
- Reduz caminhos críticos, acelerando o relógio
- Técnica em nível de hardware
 - Solução "transparente" ao programador de <u>alto nível</u>
 - Mesmo programa de alto nível pode ser usado em uma organização monociclo, multiciclo ou pipeline

Visão Geral do Pipeline no MIPS

Instruções do MIPS básico são executadas em 5 etapas:

- 1. Busca da instrução na memória de código
- 2. Leitura dos registradores em paralelo com a decodificação da instrução
- 3. Execução de uma operação na ULA ou cálculo de um endereço de memória de dados
- 4. Acesso à memória de dados para executar load ou store
- 5. Escrita do resultado da ULA ou da leitura de memória em um registrador

No MIPS com Pipeline cada etapa é executada em um estágio do Pipeline

Estágios são separados com uma barreira temporal (registrador / flip-flops)

Frequência de Operação de um Sistema

• A estimativa do período de um relógio é dada pela soma do atraso para a escrita na memória controlada pelo relógio (∆Tmem) com o maior atraso combinacional (∆Tcomb)

- $T = \Delta Tmem + \Delta Tcomb$
- f = 1/T \rightarrow $f = 1/(\Delta Tmem + \Delta Tcomb)$

Análise de Hazards

 Não respeitar a frequência mínima determinada pelo caminho crítico pode implicar em registrar informação antiga ou eventuais hazards

```
entity Atrasos is
     port(a, b: in std_logic;
          e: out std_logic);
                                                                                          3ns
end Atrasos;
                                                                     5ns
architecture Atrasos of Atrasos is
     signal c, d: std_logic;
begin
                                                                                  1 - 1 - 1 - 2 - 1 - 3 - 1 - 4 - 1 - 5 - 1 - 6 - 1 - 7 - 1 - 8 - 1 - 9 - 1 10 - 111 - 12 - 13 - 14 - 15 - 16 - 17 - 18
     c <= not a after 1ns;
                                                                                                                              1 ns
     d <= not (a and b) after 5ns;
                                                                            • a
     e <= c xor d after 3ns;
end Atrasos;
                                                                                                    10 ns
entity tb Atrasos is
                                                                            • b
end tb Atrasos;
architecture tb Atrasos of tb Atrasos is
                                                                                                        10 ns
                                                                                                                                        4 ns
                                                                                1 ns
    signal a, b, e: std_logic;
                                                                            u C
begin
    a <= '0', '1' after 10ns;
                                                                                       5000 ps
                                                                                                                          10 ns
                                                                                                                                                        3 ns
     b <= '0', '1' after 10ns;
                                                                            ₩ d
                                                                                                                                                       Hazard
    UUT: entity Atrasos port map (a \Rightarrow a, b \Rightarrow b, e \Rightarrow e);
end tb Atrasos;
                                                                                              8000 ps
                                                                                                                               6 ns
                                                                                                                                                      4 ns
```

- 1. (ENADE 2005) A figura apresenta um circuito contador serial síncrono de n+1 bits, construído com flip-flops, portas E e entrada habilitadora HAB
- Considere que o único parâmetro temporal relevante é o tempo de propagação ou tempo de atraso e que os atrasos são de M segundos para cada flip-flop e de N segundos para cada porta E
- Qual a expressão da maior frequência, em Hz, da onda quadrada a ser aplicada na entrada CLK para que o circuito funcione convenientemente?

Resposta

- 1. (ENADE 2005) A figura apresenta um circuito contador serial síncrono de n+1 bits, construído com flip-flops, portas E e entrada habilitadora HAB
- Considere que o único parâmetro temporal relevante é o tempo de propagação ou tempo de atraso e que os atrasos são de M segundos para cada flip-flop e de N segundos para cada porta E
- Qual a expressão da maior frequência, em Hz, da onda quadrada a ser aplicada na entrada CLK para que o circuito funcione convenientemente?

Organização Geral de um Pipeline e Frequência de Operação

- Alternância de elementos de memória e blocos combinacionais:
 - memória: armazena dados entre estágios, entre ciclos de relógio
 - CC: lógica combinacional que processa informação

 Pipeline divide caminho combinacional, reduzindo o caminho crítico → consequentemente reduzindo o período do relógio

- 1. Analise o circuito e calcule o período mínimo de relógio
- 2. Insira novas barreiras de forma a conseguir um relógio de 100 MHz

3. Determine a frequência máxima de operação do pipeline ilustrado abaixo. Considerando que portas NOT (inversores) atrasam 1ns, portas NAND (não e lógico) e NOR (não ou lógico) atrasam 3ns, portas AND (e lógico) e portas OR (ou lógico) atrasam 5ns, e as MEMÓRIAS têm atraso de 10ns

4. Explique o que acontecerá se o relógio operar em frequência maior que a calculada

5. Faça a mesma análise do circuito anterior, considerando agora o novo caminho de sinal inserido abaixo

6. Qual a frequência máxima de operação (sinal CK) em MHz do circuito abaixo; os números internos aos blocos e barreiras temporais estão em nano segundos (ns). Marque na figura qual é o caminho crítico

Resposta

6. Qual a frequência máxima de operação (sinal CK) em MHz do circuito abaixo; os números internos aos blocos e barreiras temporais estão em nano segundos (ns). Marque na figura qual é o caminho crítico

t =
$$(8 \text{ ns} + 27 \text{ ns} + 5 \text{ ns}) = 40 \text{ ns}$$

f = $1/t = 1/40 \times 10^{-9} = 25 \text{ MHz}$

Organizações MIPS – Maior Detalhamento Monociclo, Multiciclo, Pipeline

Comparação das Organizações MIPS – Maior Abstração Monociclo, Multiciclo e Pipeline

Barreiras Temporais

Monociclo

(apenas o PC)

Multiciclo

(PC e maq. de estados finita)

Pipeline

(PC e reg. entre estados)

Comparação das Organizações MIPS Monociclo, Multiciclo e Pipeline

E

M

W

Latência (L) / período (T) das arquiteturas

D

В

PC

CC

Reg

Monociclo

L = T = 8 ns

Multiciclo

L = 5, 6, 7, 8 ns T = 1ns*

*Estágio 2ns requer divisor de clock

Consideração - FSM com 0 ns

Classe da instrução	Busca da instrução	Leitura de registrador	Operação na ULA	Acesso ao dado	Escrita no registrador	Tempo total
Load word (1d)	2 ns	1 ns	2 ns	2 ns	1 ns	8 ns
Store word (sw)	2 ns	1 ns	2 ns	2 ns		7 ns
Formato R (add, sub, and, or, slt)	2 ns	1 ns	2 ns		1 ns	6 ns
Branch (beq)	2 ns	1 ns	2 ns			5 ns

Pipeline

L = 10 ns T = 2 ns

Consideração – barreira temporal com 0 ns

Comparação das Organizações MIPS

Execução de um Trecho de Programa em Organização Monociclo

Trecho de Programa MIPS:

main:

lw

\$t2, 0(\$t1)

addi

\$t3, \$zero, 1

beq

\$t4, \$zero, fim

SW

\$t5, 0(\$t1)

fim:

Organização Monociclo:

Cicl	В	D	E	M	W	Tempo	Tempo acumulado
1	LW	LW	LW	LW	LW	8	8
2	ADDI	ADDI	ADDI	ADDI	ADDI	8	16
3	BEQ	BEQ	BEQ	BEQ	BEQ	8	24
4	SW	SW	SW	SW	SW	8	32

Comparação das Organizações MIPS

Execução de um Trecho de Programa em Organização Multiciclo

Trecho de Programa MIPS:

main:

lw

\$t2, 0(\$t1)

addi

\$t3, \$zero, 1

beq

\$t4, \$zero, fim

SW

\$t5, 0(\$t1)

fim:

Organização Multiciclo:

Diagrama de Instruções (Estágio x Ciclo):

Ciclo	В	D	Е	M	W	Tempo	Tempo
							acumulado
1	LW					2	2
2		LW				1	3
3			LW			2	5
4				LW		2	7
5					LW	1	8
6	ADDI					2	10
7		ADDI				1	11
8			ADDI			2	13
9					ADDI	1	14
10	BEQ					2	16
11		BEQ				1	17
12			BEQ			2	19
13	SW					1	20
14		SW				2	22
15			SW			2	24
16				SW		2	26

Comparação das Organizações MIPS Execução de um Trecho de Programa em Organização Pipeline

Trecho de Programa MIPS:

main:

lw

\$t2, 0(\$t1)

addi

\$t3, \$zero, 1

beq

\$t4, \$zero, fim

SW

\$t5, 0(\$t1)

fim:

Organização Pipeline:

Diagrama de Instruções (Estágio x Ciclo):

Ciclo	В	D	E	М	W	Tempo	Tempo acumulado
1	LW		i I	1		2	2
2	ADDI	LW	I I	 	1	2	4
3	BEQ	ADDI	LW			2	6
4	SW	BEQ	ADDI	. LW		2	8
5		SW	BEQ	ADDI	LW	2	10
6			SW	BEQ	ADDI	2	12
7			I I	SW	BEQ	2	14
8			I I		SW	2	16

Monociclo

Multiciclo

Pipeline

Ciclo	В	D	E	М	w	Tempo	Tempo acumulado
1	LW	LW	LW	LW	LW	8	8
2	ADDI	ADDI	ADDI	ADDI	ADDI	8	16
3	BEQ	BEQ	BEQ	BEQ	BEQ	8	24
4	SW	SW	SW	SW	SW	8	32

Ciclo	В	D	E	М	w	Tempo	Tempo acumulado
1	LW					2	2
2		LW				1	3
3			LW			2	5
4 5				LW		2	7 8
5					LW	1	8
6	ADDI					2	10
7		ADDI				1	11
8			ADDI			2	13
9					ADDI	1	14
10	BEQ					2	16
11		BEQ				1	17
12			BEQ			2	19
13	sw					1	20
14		sw				2	22
15			sw			2	24
16				sw		2	26

Ciclo	В	D	E	M	w	Tempo	Tempo acumulado
1	LW					2	2
2	ADDI	LW				2	4
3	BEQ	ADDI	LW			2	6
4	SW	BEQ	ADDI	LW		2	8
5		SW	BEQ	ADDI	LW	2	10
6			SW	BEQ	ADDI	2	12
7				SW	BEQ	2	14
8					SW	2	16

Normalizado por tempo

Ciclo	В	D	Е	М	W	Tempo	Tempo acumulado
1	LW	LW	LW	LW	LW	8	8
2	ADDI	ADDI	ADDI	ADDI	ADDI	8	16
3	BEQ	BEQ	BEQ	BEQ	BEQ	8	24
4	SW	SW	SW	SW	SW	8	32

Ciclo	В	D	Е	М	w	Tempo	Tempo acumulado
1	LW					2	2
2		LW				1	3
3			LW			2	5
4				LW		2	7
5					LW	1	8
6	ADDI					2	10
7		ADDI				1	11
8			ADDI			2	13
9					ADDI	1	14
10	BEQ					2	16
11		BEQ				1	17
12			BEQ			2	19
13	SW					1	20
14		SW				2	22
15			SW			2	24
16				SW		2	26

Ciclo	В	D	E	М	W	Tempo	acumulado
1	LW					2	2
2	ADDI	LW				2	4
3	BEQ	ADDI	LW			2	6
4	SW	BEQ	ADDI	LW		2	8
5		SW	BEQ	ADDI	LW	2	10
6			SW	BEQ	ADDI	2	12
7				SW	BEQ	2	14
8					SW	2	16

Normalizado por ciclo

*Multiciclo implementada com ciclos de tempos variáveis

- 1. (POSCOMP 2003 22) Para que serve a segmentação de um processador (pipelining)?
 - a) Permitir a execução de mais de uma instrução por ciclo de relógio
 - b) Aumentar a velocidade do relógio
 - c) Simplificar o conjunto de instruções
 - d) Reduzir o número de instruções estáticas nos programas
 - e) Simplificar a implementação do processador

Resposta

- 1. (POSCOMP 2003 22) Para que serve a segmentação de um processador (pipelining)?
 - a) Permitir a execução de mais de uma instrução por ciclo de relógio
 - b) Aumentar a velocidade do relógio
 - c) Simplificar o conjunto de instruções
 - d) Reduzir o número de instruções estáticas nos programas
 - e) Simplificar a implementação do processador
- OBS.: A resposta b também seria adequada!!

- 2. (POSCOMP 2004 30) Ao segmentar um processador, transformando-o num pipeline, obtém-se:
 - a) Redução no número de ciclos necessários para executar uma instrução
 - b) Redução no número de ciclos necessários para executar um programa
 - c) Redução no número de ciclos necessários para tratar uma exceção
 - d) Redução no número de ciclos necessários para tratar uma interrupção
 - e) O circuito do processador fica mais simples

Resposta

- 2. (POSCOMP 2004 30) Ao segmentar um processador, transformando-o num pipeline, obtém-se:
 - a) Redução no número de ciclos necessários para executar uma instrução
 - b) Redução no número de ciclos necessários para executar um programa
 - c) Redução no número de ciclos necessários para tratar uma exceção
 - d) Redução no número de ciclos necessários para tratar uma interrupção
 - e) O circuito do processador fica mais simples

 OBS.: para a resposta b ser correta é necessário trocar "número de ciclos" por tempo de execução, pois o número de ciclos de um pipeline é sempre superior que o de uma arquitetura monociclo! O que reduz é o período do relógio, consequentemente, o tempo de execução do programa

- 3. (POSCOMP 2014, Questão 45) Sobre pipelines, assinale a alternativa correta.
 - a) Cada estágio do pipeline possui seu próprio tempo de duração
 - b) Um pipeline precisa de registradores para armazenar dados entre estágios
 - c) Dependências de dados irão paralisar o pipeline
 - d) O pipeline é paralisado ao executar uma instrução de desvio
 - e) O tempo de leitura de uma instrução é maior que o tempo de execução

Resposta

- 3. (POSCOMP 2014, Questão 45) Sobre pipelines, assinale a alternativa correta.
 - a) Cada estágio do pipeline possui seu próprio tempo de duração
 - b) Um pipeline precisa de registradores para armazenar dados entre estágios
 - c) Dependências de dados irão paralisar o pipeline
 - d) O pipeline é paralisado ao executar uma instrução de desvio
 - e) O tempo de leitura de uma instrução é maior que o tempo de execução

- 4. (POSCOMP 2011 28) Um processador RISC é implementado em duas versões de organização síncrona: uma monociclo, em que cada instrução executa em exatamente um ciclo de relógio, e uma versão pipeline de 5 estágios. Os estágios da versão pipeline são: (1) busca de instrução, (2) busca de operandos, (3) execução da operação, (4) acesso à memória e (5) atualização do banco de registradores. A frequência máxima de operação das organizações foi calculada em 100 MHz para a versão monociclo e 400 MHz para a versão pipeline. Um programa X que executa 200 instruções é usado para comparar o desempenho das organizações. Das 200 instruções, apenas 40% fazem acesso à memória, enquanto as demais operam apenas sobre registradores internos da organização. Considere que o programa não apresenta nenhum conflito de dados ou de controle entre instruções que podem estar simultaneamente dentro do pipeline da segunda organização. Assim, o tempo de execução do programa X nas organizações monociclo e pipeline é, respectivamente:
- a) 2.000 nanossegundos e 510 nanossegundos
- b) 2.000 nanossegundos e 500 nanossegundos
- c) 2.000 nanossegundos e 2.300 nanossegundos
- d) 2.300 nanossegundos e 500 nanossegundos
- e) 2.300 nanossegundos e 510 nanossegundos

Resposta

4. (POSCOMP 2011 - 28) Um processador RISC é implementado em duas versões de organização síncrona: uma monociclo, em que cada instrução executa em exatamente um ciclo de relógio, e uma versão pipeline de 5 estágios. Os estágios da versão pipeline são: (1) busca de instrução, (2) busca de operandos, (3) execução da operação, (4) acesso à memória e (5) atualização do banco de registradores. A frequência máxima de operação das organizações foi calculada em 100 MHz para a versão monociclo e 400 MHz para a versão pipeline. Um programa X que executa 200 instruções é usado para comparar o desempenho das organizações. Das 200 instruções, apenas 40% fazem acesso à memória, enquanto as demais operam apenas sobre registradores internos da organização. Considere que o programa não apresenta nenhum conflito de dados ou de controle entre instruções que podem estar simultaneamente dentro do pipeline da segunda organização. Assim, o tempo de execução do programa X nas organizações monociclo e pipeline é, respectivamente:

a) 2.000 nanossegundos e 510 nanossegundos

- b) 2.000 nanossegundos e 500 nanossegundos
- c) 2.000 nanossegundos e 2.300 nanossegundos
- d) 2.300 nanossegundos e 500 nanossegundos
- e) 2.300 nanossegundos e 510 nanossegundos