

Multiple alignment

Adapted from the courses of the Bonsai team,

CRISTAL UMR 9189

Sylvain.legrand@univ-lille.fr

Introduction

Input: K sequences

Output: a table containing the k sequences, with indels

Zinc finger pattern (C2H2-type)

TYY1_HUMAN YVCPFDGCNKKFAQSTNLKSHILT--H YKQ8_CAEEL YKCT--VCRKDISSSESLRTHMFKQHH BASO_HUMAN FQCD--ICKKTFKNACSVKIHHKN-MH ZG2-9_XENL FVCT--VCGKTYKYKHGLNTHLHS--H P43_XENBO LKCSVPGCKRSFRKKRALRIHVSE--H IKAR_MOUSE FECN--MCGYHSQDRYEFSSHITRGEH TRA1_CAEEL YKCEFADCEKAFSNASDRAKHQNR-TH ZN10_HUMAN YKCN--QCGIIFSQNSPFIVHQIA--H XFIN_XENLA FRCS--ECSRSFTHNSDLTAHMRK--H TF3A_BUFAM CKCETENCNLAFTTASNMRLHFKR-AH ZG58_XENLA FVCT--ECNLSFAGLANLRSHQHL--H P43_XENBO YRCSYEDCQTVSPTWTALQTHLKK--H TSH_DROME FRCV--WCKQSFPTLEALTTHMKDSKH ZN76_HUMAN FRCGYKGCGRLYTTAHHLKVHERA--H TF3A_BUFAM YRCPRENCDRTYTTKFNLKSHILT-FH SUHW_DROAN YACK--ICGKDFTRSYHLKRHQKYSSC ZN76_HUMAN YTCPEPHCGRGFTSATNYKNHVRI--H SRYC_DROME FKCN--YCPRDFTNFPNWLKHTRR-RH EVI1_HUMAN YRCK--YCDRSFSISSNLQRHVRN-IH

modélisation : motif Prosite

C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-x(3,5)-H

Cellulose binding site

HWGQCGGI---GYSGCKTCTSGTTCQYSNDYYSQCL HYGQCGGI---GYSGPTVCASGTTCQVLNPYYSQCL QWGQCGGI---GYTGSTTCASPYTCHVLNPYYSQCY VWGQCGGQ---NWSGPTCCASGSTCVYSNDYYSQCL LYGQCGGA---GWTGPTTCQAPGTCKVQNQWYSQCL IWGQCGGN---GWTGATTCASGLKCEKINDWYYQCV VWGQCGGN---GWTGPTTCASGSTCVKQNDFYSQCL DWAQCGGN---GWTGPTTCVSPYTCTKQNDWYSQCL QWGQCGGQ---NYSGPTTCKSPFTCKKINDFYSQCQ RWQQCGGI---GFTGPTQCEEPYICTKLNDWYSQCL HWAQCGGI---GFSGPTTCPEPYTCAKDHDIYSQCV LYEQCGGI---GFDGVTCCSEGLMCMKMGPYYSQCR VWAQCGGQ---NWSGTPCCTSGNKCVKLNDFYSQCQ PYGQCGCM---NYSCKTMCSPGFKCVELNEFFSQCD AYYQCGCSKSAYPNGNLACATGSKCVKQNEYYSQCV EYAACGGE---MFMGAKCCKFGLVCYETSGKWSQCR

extrait de Prosite, entrée PS00562

$$C-G-G-x(4,7)-G-x(3)-C-x(5)-C-x(3,5)-[NHG]-x-[FYWM]-x(2)-Q-C$$

the 4 cysteines are involved in disulfide bonds (SS-bond)

RNA structure

- We have a family of RNAs possessing the same secondary structure
- For a given structure pairing:
 - if a base mutates in the RNA structure, the base that matches it must mutate too... → **compensatory mutation**

• Step 1: multiple alignment construction

Step 2: correlated positions detection

tRNA structure

tRNA structure

GGGGAATTAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---GGGGAATTAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---GGGGCCTTAGCTCAGTC-GGTAGAGCACTGCCTTTGCAAGGCAGATGTCAGGGGTTCGATTCCCCCTAGGCTCCA---GGGGGTATAGCTCAGTT-GGTAGAGCGCTGCCTTTGCAAGGCAGAAGTCAGCGGTTCGATTCCGCTTACCCCCA---GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGGCATAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGT-CGTCGGTTCGATCCCGTCTGCCTCCACCA GGGGCCATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCAGGAGTTCGATCCTCCTTGGCTCCACCA GGGGCCATAGCTCAGCTGGGGAGAGCGCCTGCCTTGCACGCAGGAGGTCAACGGTTCGATCCCGTTTGGCTCCA---GGGGCATAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGT-CGTCGGTTCGATCCCGTCTGCCTCCACCA GGGGCATTAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCAGCGGTTCGATCCCGCTATTCTCCACCA GGGGCCATAGCTCAGTT-GGTAGAGCGCCTGCTTTGCAAGCAGGTGT-CGTCGGTTCGAATCCGTCTGGCTCCACCA GGGGCCGTAGCTCAGCTGGG-AGAGCACCTGCTTTGCAAGCAGGGGGTCGGAGGTTCGATCCCGTCCGGCTCCACCA GGGGCCGTAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCGTCGGTTCGATCCCGTCCGGCTCCACCA GGGGCCGTAGCTCAGCT-GG-AGAGCACCTGCTTTGCAAGCAGGGGGTCGTCGGTTCGATCCCGTCCGGCTCCACCA

Implementation

Approach

Pairwise alignment

2 sequences → detect a syntactic similarity → Is there a common function?

Multiple alignment

Family of sequences with the same function \rightarrow To which syntactic conservation does this correspond?

Score of a multiple alignment

Sum of pairs

$$SP(m_i) = \sum_{1 \leq j < k \leq n} s(m_i^j, m_i^k)$$

 $m_i = la i$ -ème colonne de l'alignement

 $m_i^j = j$ -ème aa dans la colonne i

Score of a multiple alignment

Scoring system:

$$s(x,x)=1$$
, $s(x,y)=-1$, $s(x,-)=s(-,x)=-2$, $s(-,-)=0$

Score of a multiple alignment

Scoring system:

$$s(x,x)=1$$
, $s(x,y)=-1$, $s(x,-)=s(-,x)=-2$, $s(-,-)=0$

Alternatively... (identical)

$$(1-2)$$
 1 -2 1 1 1 1 -2 -1 1 1 -1 = 1

$$(1-3)$$
 -1 -1 1 1 1 1 -2 -1 -1 1 1 $=$ 0

$$(2-3)$$
 -1 -2 1 1 1 1 0 -2 -1 1 -1 = -2

-1

Exact algorithm: dynamic programming

- Pairwise alignment → path in a 2-dimensions matrix
- Multiple alignment of n sequences → path in a n-dimensions matrix

But, impossible to use in practice... Will be **too time consuming**...

Use of heuristics

- Definition: algorithm using simple rules to reduce the search space for solutions (but not necessarily giving the best solution)
- Examples: Clustal, Dialign, Muscle, Multalin, T-coffee...
 → as many programs that can produce different alignments!
- The algorithms will be seen next semester...

Méthode	ldée	Stratégie	
MSA	Extension de l'algorithme	Simultanée	
DCA	de Needlemen et Wunsh		
Clustal			
PIMA	Ajout successif de		
PILEUP	séquences ou groupes	Progressive	
MULTALIGN	de séquences		
Dialign			
Saga/Coffee	Réalignment lors de		
PRRN	l'ajout successif de		
HMMT	séquences ou groupes	Itérative	
MUSCLE	de séquences		
MA-FFT	uc sequences		

What method should I use?

- It depends on the type of sequences to be aligned...
- The more divergent the sequences, the less reliable the result
- When the identity percent is superior to 35% → all methods are satisfying
- Clustal tends to allow fewer gaps than Dialign2
 - local similarity → Dialign
 - Global similarity → Clustal

What method should I use?

- BaliBase: multiple alignment database for benchmark
 - More than 150 protein families
 - Alignments based on secondary structure of proteins

- For References 1, 2 and 3: Clustal>Dialign
- For references 4 and 5: Dialign > Clustal

Example from Cédric Notredame

GARFIELD THE LAST FAT CAT
GARFIELD THE FAT CAT
GARFIELD THE VERY FAST CAT
THE FAT CAT

Alignement fourni par Clustal

seq1	GARFIELDTHELASTFA-TCAT
seq2	GARFIELDTHEFA-TCAT
seq3	GARFIELDTHEVERYFASTCAT
seq4	THEFA-TCAT

Alignement fourni par Dialign2

seq1	GARFIELD	THE	LAST	FA-T	CAT
seq2	${\tt GARFIELD}$	THE		FA-T	CAT
seq3	${\tt GARFIELD}$	THE	VERY	FAST	CAT
seq4		THE		FA-T	CAT

Helix – loop – helix domain

- 5 sequences
- different lengths
- Local similarity

			ىبىلە ە		مبينك ه	
1)	HEN1-Human	133				*
2)	CBF1-Yeast	351	50 =	× .	50 -	
3)	HES5-Mouse	167	1	, ,		*
4)	INO4-Yeast	151	100 =	`	100 =	
5)	ESC1-Yeast	413			150	
			150 🖶		<u></u> <u></u>	

0

100

100

• Clustal result (in pink, the domain that should be aligned)

MMLNSDTMELDLPPTHSETESGFSDCGGG
-MNSLANNNKLSTEDEEIHSARKRGYNEEQNYSEARKKQRDQGLLSQESNDGNIDSALLSEGATLKGTQSQYESGLTSNKDE
SSYALPSMQPTPTSSIPLRQMSQPTTSAPSNSASSTPYSPQQVPLTHNSYPLSTPSSFQHGQTRLPPINCLAEPFNRPQPWHSNSAAP
MAPSTVAVEMLSPKEKNRLRKPVVEKMRRDRINSSIEQ
MTNDIKEIQTIQPGLSEIKEIKGELANVKKR
GPDGAGPGG
GSDDEDASVAEAAVAATVNYTDLIQGQEDSSDAHTSNQTNANGEHKDSLNGERAITPSNEGVKPNTSLEGMTSSPMEST
SSSPTSATLSTAAHPVHTNAAQVAGSSSSYVYSVPPTNSTTSQASAKHSAVPHRSSQFQSTTLTPSTTDSSSTDVSSSDSVSTSASSS KLL
KLL
PGGGQARGPEPGEPGRKDLQHLSREERRRRRATAKYRTA
QSKNDMLIPLAEHDRGPEHQQDDEDNDDADIDLKKDISMQPGRRGRKPTTLATTDEWKKQRKDS
ASNTVSVTSPASSSATPLPNQPSQQQFLVSKNDAFTTFVHSVHNTPMQQSMYVPQQQTSHSSGASYQNESANPPVQSPMQYSYSQGQP
LEQEFARHQPNSKLEKADILEMAVSYLKHSKAFAAAAGPKSLHQDYSEG
KRRSKKINKLTDGQIRINHVSSEKKRRELERAIFDELVAVVPDLQPQ
SYPQHKNQSFSASPIDPSMSYVYRAPESFSSINANVPYGRNEYLRRVTSLVPNQPEYTGPYTRNPEL <mark>RTSHKLAERKRRKEIKELFDDLKI</mark>
APAAPAKEPI
KQIIAKHEAR
AICYISYLNHVLDV
ASANEKLQEELGNAYKEIEYMKRVLRKEGIEYEDMHTHKKQENERKSTRSDNPHEA
PLDKSTKSSKWGLLTRAIQYIEQLKSEQVALEAYVKSLEENMQSNKEVTKGT
GAAPQPARSSAKAAAAAVSTSRQPACGLWRPW
SSSSSDPVQEQNGNIRDLVPKELIWELGDGQSGQ

• **Dialign** result, first part

mmlmml
MTmssyalpsmqptptssiplrqmsqpttsapsnsasstpyspqqvplthnsyplstpssfqhgqtrlppinclaepfnrpqpwhsnsaapaSSSPTSATLS
LPPTHSETESGFSDCGGGAGPDgagpggpgggqargTEDEEIHSARKRGYNEEQNYsearkkqrdqgllsqesndgnidsallsegatLKGTQSQYESGLTSNKDEKGSDdedasvaeaavaatvnytdliqgQED
TAAHPVHTNAAQVAGSSSSYVYSDSS
SSDAHTSNQTNANGEHKDSLNGERAITPSNEGVKPNTSLEGMTSSPMESTQQSKNdmliplaehdrg
STDVSSSDSVSTSASSSNASNTVSVTSPASSSATPLPNOPSOOgflyskndafttfyhsyhNTPMOOSMYVPOOOTSHSSGasygnesanppygspmgys

Dialign result, second part

DLQHLSREERRRRRATAKPEHQqddednddadidlkkdismqpgrrgrkPTTLAttdew-KKQRDLQHLSREERRRRRATA
YRTAHATRERIRVEAFNLAFAELRKLLPTLPPDKKLSKIEILRLAICYISYLNHVldv
ymkrvlrKEGIEYEDMHThkkqenerkstrsdnpheaKSLHQDYSEGYSwclQEAVQFLTLHAasdtqmkllyhfqrppapaapakeppapgaapqparssakaaaaavstsrqpacglwrpw KELIWELGDGQSgq

SH3 (Src homology 3) domain

- Often indicative of a protein involved in signal transduction related to cytoskeletal organization
- 5 sequences
- short sequences
- low and diffuse similarity (<25%)

1aboA	P00520	57
1ycsB	P04637	60
1pht	P27986	80
1ihvA	P00383	49
1vie	P12497	51

When we aligned secondary structures manually

```
-NLFVALYDfvasgdntlsitkGEKLRVLgynhn-----
1aboA
       kGVIYALWDyepqnddelpmkeGDCMTIIhrede-----
1ycsB
       gYQYRALYDykkereedidlhlGDILTVNkgslvalgfsd
1pht
       -NFRVYYRDsrd-----pvwkGPAKLLWkg-----
1ihvA
       -drvrkksga-----awqGQIVGWYctnlt-----
1vie
             --gEWCEAQt--kngqGWVPSNYITPVN-----
1aboA
       -----deiEWWWAR1--ndkeGYVPRNLLGLYP-----
1ycsB
       gqearpeeiGWLNGYnettgerGDFPGTYVEYIGrkkisp
1pht
       -----eGAVVIQd--nsdiKVVPRRKAKIIRd-----
1ihvA
       ----peGYAVESeahpgsvQIYPVAALERIN-----
1vie
```


Clustal result

```
1aboA -NLFV-ALYDFVASGDNTLSITKGEKLRV-----LGYNHNG
1ycsB KGVIY-ALWDYEPQNDDELPMKEGDCMTI-----IHREDED
1pht -GYQYRALYDYKKEREEDIDLHLGDILTVNKGSLVALGFSDGQ
1ihvA -----WKGEG
1vie ------DRVRKKSG--AAWQGQIVGW------YCTNL
```

```
1aboA -----EWCEA--QTKNGQGWVPSNYITPVN-----
1ycsB EI----EWWWA--RLNDKEGYVPRNLLGLYP-----
1pht EARPEEIGWLNGYNETTGERGDFPGTYVEYIGRKKISP
1ihvA -----AVVIQ---DNSDIKVVPRRKAKIIRD----
1vie TP----EGYAVESEAHPGSVQIYPVAALERIN-----
```


Dialign result

```
1aboA
      n-LFVALYDFVASGDNTLSITKGEKLRVL------
1ycsB
        VIYALWDYEPQNDDELPMKEGDCMTIIhr----EDEDEI------
        <mark>/QYRALYD</mark>YKKEREEDIDLHL<mark>GDILTVN</mark>KGSLVALGFSDgqearpeei
1pht
        NFRV---YYRDSRDPVWKGPAKLLWKGEGAVVIQDNSDI-----
1ihvA
           -----QGQI-----
1vie
       ----GYNhngEWCEAQTKNGQGWV-----PSNYItp------VN
1aboA
       -----PRNLLgLYP-----
1ycsB
       gwlnGYN-----ETTGERGDF-----PGTYV-EYigRKKIsp--
1pht
       -----PRr-----KAKIIRd-
1ihvA
       -----VGWYCTNLTPEGYAveseahPGSVQ-IYPv-AALERIN
1vie
```


Sylvain Legrand
Maître de Conférences
UMR CNRS 8198 EVO-ECO-PALEO
Evolution, Ecologie et Paléontologie
Université de Lille - Faculté des Sciences et Technologies
Bât SN2, bureau 208 - 59655 Villeneuve d'Ascq

sylvain.legrand@univ-lille.fr | http://eep.univ-lille.fr/ Tél. +33 (0)3 20 43 40 16