1. WAP to find the sum of all elements of the array.

2. WAP to count the total number of duplicate elements in an array.

3. WAP to separate odd and even integers into separate arrays.

```
Total number of duplicate elements: 1
PS C:\Users\Samarpita\Desktop\sig web\task3> cd "c:\Users\Samarpita\Desktop\sig web\task3\"; if ($?) { javac ps3.java }; if ($?) { j
```

4. WAP for the multiplication of two square matrices.

```
| Second Foundation | Seco
```

5. WAP to find the transpose of a given matrix.

```
import juminitions and it juminitions provided in the provided provided in the provided provi
```

6. Define and compare single-dimensional and multi-dimensional arrays, providing examples for each.

comparison	Single-Dimensional Array:	Multi-Dimensional Array:
Definition:	Contains elements in a linear, one-dimensional sequence.	Contains elements organized in multiple dimensions, often represented as rows and columns.
Declaration:	Declared using one pair of square brackets [].	Declared using multiple pairs of square brackets, indicating the number of dimensions.
Initialization:	Elements are initialized in a single line.	Initialization involves nested arrays, with each inner array representing a row.
Accessing Elements:	Accessed using a single index.	Accessed using multiple indices, with one index for each dimension.
Example:	int[] scores = {85, 90, 75, 92, 88};	int[][] matrix = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} };