

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

STK-4051/9051 Computational Statistics Spring 2022 Markov Chain Monte Carlo

Instructor: Odd Kolbjørnsen, oddkol@math.uio.no

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Now

- Exact methods
 - Inversion/transformation methods
 - Rejection sampling
- Approximate methods
 - Sampling importance resampling
 - Sequential Monte Carlo
 - Markov chain Monte Carlo (Chapter 7 and 8)
- Variance reduction methods
 - Importance sampling
 - Antithetic sampling
 - Control variates
 - Rao-blackwellization
 - Common random numbers

Markov chain Monte Carlo

- Previously we computed weights to correct the distribution (or used rejection sampling)
- Now we will create a sequence of samples which will converge to samples from the correct distribution

$$p(x_{2}|x_{1}) \dots p(x_{t+1}|x_{t})$$

$$x_{1} \longrightarrow x_{2} \longrightarrow x_{3} \longrightarrow x_{4} \longrightarrow x_{t} \longrightarrow x_{t+1} \longrightarrow x_{t}$$

$$p(x_{1}) p(x_{2}) \dots p(x_{t}) p(x_{t+1}) \qquad p(x_{t}) \rightarrow f(x)$$

4

Markov chain Monte Carlo (McMC)

- Assume now simulating from f(X) is difficult directly
 - $f(\cdot)$ complicated
 - X high-dimensional
- Markov chain Monte Carlo:
 - Generates $\{\mathbf{X}^{(t)}\}$ sequentially
 - Markov structure: $\mathbf{X}^{(t)} \sim P(\cdot | \mathbf{X}^{(t-1)})$
- Aim now:
 - The distribution of $\mathbf{X}^{(t)}$ converges to $f(\cdot)$ as t increases
 - $\hat{\mu}_{MCMC} = N^{-1} \sum_{t=1}^{N} h(\mathbf{X}^{(t)})$ converges towards $\mu = E^{f}[h(\mathbf{X})]$ as t increases

Why?

We had problems with weight decay and degeneracy in the direct approach now we can iterate to improve results

UiO Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Markov chain theory – discrete case

• Assume $\{X^{(t)}\}$ is a Markov chain where $X^{(t)}$ is a discrete random variable

$$Pr(X^{(t)} = y | X^{(t-1)} = x) = P(y|x)$$

giving the transition probabilities

- Assume the chain is
 - irreducible: It is possible to move from any **x** to any **y** in a finite number of steps
 - reccurent: The chain will visit any state infinitely often.
 - aperiodic: Does not go in cycles
- Then there exists a unique distribution f(x) such that

$$\lim_{t \to \infty} \Pr(X^{(t)} = y | X^{(0)} = x) = f(y)$$
 $\hat{\mu}_{MCMC} \to \mu = E^f[X]$

Limit distribution

• How to find $f(\cdot)$ (the stationary distribution): Solve

$$f(y) = \sum_{x} f(x) P(y|x)$$

Stationary distribution (fix point)

- Our situation: We have f(y), want to find P(y|x)
 - Note: Many possible P(y|x)!

UiO Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Discrete Transition probability

- Need initial distribution $p(x_1)$, say we have 4 possible classes
- and transition probability $p(x_t|x_{t-1})$, we need a transition to each state

			x_2			
x_1	$p(x_1)$		1	2	3	4
1	0.4	$p(x_2 x_1=1)$	0.80	0.10	0.00	0.10
2	0.1	$p(x_2 x_1=2)$	0.05	0.90	0.05	0.00
3	0.1	$p(x_2 x_1=3)$	0.00	0.05	0.90	0.05
4	0.4	$p(x_2 x_1=4)$	0.10	0.00	0.10	0.80

UiO Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Irreducible/ aperiodic:

distribution

Recurrent (OK if finite and irreducible)

Problem if countable many discrete classes

$$P(x_t|x_{t-1}) = \begin{cases} 0.6 & x = x_{t-1} \\ 0.3 & x = x_{t-1} + 1 \\ 0.1 & x = x_{t-1} - 1 \end{cases}$$

No return

Det matematisk-naturvitenskapelige fakultet

Limiting distribution

When the Markov chain is irreducible / aperiodic /recurrent

The limiting distribution is equal to the stationary distribution

$$p_s = p_{\text{Lim}}$$

• Stationary distribution is fix point of iteration $p_s P = p_s$

• Limiting distribution (is independent of p_0)

$$\lim_{n\to\infty} p_0 P^n = p_{\text{Lim}}$$

Time to reach limiting distribution n=20

Time to reach limiting distribution n=100

Time to reach limiting distribution n=250

UiO Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Markov chain theory – discrete case

• Assume $\{X^{(t)}\}$ is a Markov chain where $X^{(t)}$ is a discrete random variable

$$Pr(X^{(t)} = y | X^{(t-1)} = x) = P(y | x)$$

giving the transition probabilities

- Assume the chain is
 - irreducible: It is possible to move from any x to any y in a finite number of steps
 - reccurent: The chain will visit any state infinitely often.
 - aperiodic: Does not go in cycles
- Then there exists a unique distribution f(x) such that

$$\lim_{t \to \infty} \Pr(X^{(t)} = y | X^{(0)} = x) = f(y)$$
 $\hat{\mu}_{MCMC} \to \mu = E^f[X]$

• How to find $f(\cdot)$ (the stationary distribution): Solve

$$f(y) = \sum_{x} f(x) P(y|x)$$

- Our situation: We have f(y), want to find P(y|x)
 - Note: Many possible P(y|x)!

Markov chain theory - general setting

ullet Assume $\{\mathbf{X}^{(t)}\}$ is a Markov chain where $\mathbf{X}^{(t)} \in \mathcal{S}$

$$\Pr(\mathbf{X}^{(t)} \in A | \mathbf{X}^{(t-1)} = \mathbf{x}) = P(\mathbf{x}, A) = \int_{\mathbf{y} \in A} P(\mathbf{y} | \mathbf{x}) d\mathbf{y}$$

giving the transition densities

- Assume the chain is
 - irreducible: It is possible to move from any **x** to any **y** in a finite number of steps
 - reccurrent: The chain will visit any $A \subset S$ infinitely often.
 - aperiodic: Do not go in cycles
- Then there exists a distribution $f(\mathbf{x})$ such that

$$\lim_{t \to \infty} \Pr(\mathbf{X}^{(t)} \in A | \mathbf{X}^{(0)} = \mathbf{x}) = \int_A f(\mathbf{y}) d\mathbf{y}$$
 $\hat{\mu}_{MCMC} \to \mu$

• How to find $f(\cdot)$ (the stationary distribution): Solve

$$f(\mathbf{y}) = \int_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{y}|\mathbf{x}) d\mathbf{x}$$

• Our situation: We have $f(\cdot)$, want to find $P(\mathbf{y}|\mathbf{x})$

Det matematisk-naturvitenskapelige fakultet

Example of a continuous transition density, AR1 model

$$p(x_t|x_{t-1}) = \phi(ax_{t-1}, \sigma^2(1-a^2))$$

Markov chain theory - general setting

• Assume $\{\mathbf{X}^{(t)}\}$ is a Markov chain where $\mathbf{X}^{(t)} \in S$

$$\Pr(\mathbf{X}^{(t)} \in A | \mathbf{X}^{(t-1)} = \mathbf{x}) = P(\mathbf{x}, A) = \int_{\mathbf{y} \in A} P(\mathbf{y} | \mathbf{x}) d\mathbf{y}$$

giving the transition densities

- Assume the chain is
 - irreducible: It is possible to move from any **x** to any **y** in a finite number of steps
 - reccurrent: The chain will visit any $A \subset S$ infinitely often.
 - aperiodic: Do not go in cycles
- Then there exists a distribution $f(\mathbf{x})$ such that

$$\lim_{t \to \infty} \Pr(\mathbf{X}^{(t)} \in A | \mathbf{X}^{(0)} = \mathbf{x}) = \int_A f(\mathbf{y}) d\mathbf{y}$$
 $\hat{\mu}_{MCMC} \to \mu$

• How to find $f(\cdot)$ (the stationary distribution): Solve

$$f(\mathbf{y}) = \int_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{y}|\mathbf{x}) d\mathbf{x}$$

• Our situation: We have $f(\cdot)$, want to find $P(\mathbf{y}|\mathbf{x})$

We want to construct P(x|y) to match our needs

- Need to have good properties
 - Stationary
 - Irreducible
 - Aperiodic
 - Recurrent
- Also need to get our target as a stationary distribution $f(\mathbf{y}) = \int_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{y}|\mathbf{x}) d\mathbf{x}$

- Simplify the hunt by introducing symmertry

detailed balance

Detailed balance

• The task: Find a transition probability/density P(y|x) satisfying

$$f(\mathbf{y}) = \int_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{y}|\mathbf{x}) d\mathbf{x}$$

Can in general be a difficult criterion to check

Sufficient criterion:

$$f(\mathbf{x})P(\mathbf{y}|\mathbf{x}) = f(\mathbf{y})P(\mathbf{x}|\mathbf{y})$$
 Detailed balance

We then have

$$\int_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{y}|\mathbf{x}) d\mathbf{x} = \int_{\mathbf{x}} f(\mathbf{y}) P(\mathbf{x}|\mathbf{y}) d\mathbf{x}$$
$$= f(\mathbf{y}) \int_{\mathbf{x}} P(\mathbf{x}|\mathbf{y}) d\mathbf{x} = f(\mathbf{y})$$

since $P(\mathbf{x}|\mathbf{y})$ is, for any given \mathbf{y} , a density wrt \mathbf{x} .

• Note: For $\mathbf{y} = \mathbf{x}$, detailed balance always fulfilled, only necessary to check for $\mathbf{y} \neq \mathbf{x}$.

Metropolis-Hastings algorithm

- P(y|x) defined through an algorithm:
 - **1** Sample a candidate value \mathbf{X}^* from a proposal distribution $g(\cdot|\mathbf{x})$.
 - Compute the Metropolis-Hastings ratio

$$R(\mathbf{x}, \mathbf{X}^*) = \frac{f(\mathbf{X}^*)g(\mathbf{x}|\mathbf{X}^*)}{f(\mathbf{x})g(\mathbf{X}^*|\mathbf{x})}$$

Put

$$\mathbf{Y} = \begin{cases} \mathbf{X}^* & \text{with probability min} \{1, R(\mathbf{x}, \mathbf{X}^*)\} \\ \mathbf{x} & \text{otherwise} \end{cases}$$

• For $\mathbf{y} \neq \mathbf{x}$:

$$P(\mathbf{y}|\mathbf{x}) = g(\mathbf{y}|\mathbf{x}) \min \left\{ 1, \frac{f(\mathbf{y})g(\mathbf{x}|\mathbf{y})}{f(\mathbf{x})g(\mathbf{y}|\mathbf{x})} \right\}$$

• Note: $P(\mathbf{x}|\mathbf{x})$ somewhat difficult to evaluate in this case.

Either we keep **x** with a certain probability Or we change to **X*** which have a certain density

Metropolis-Hastings algorithm Detailed balance

$$f(\mathbf{x})P(\mathbf{y}|\mathbf{x}) = f(\mathbf{x})g(\mathbf{y}|\mathbf{x}) \min \left\{ 1, \frac{f(\mathbf{y})g(\mathbf{x}|\mathbf{y})}{f(\mathbf{x})g(\mathbf{y}|\mathbf{x})} \right\}$$

$$= \min\{f(\mathbf{x})g(\mathbf{y}|\mathbf{x}), f(\mathbf{y})g(\mathbf{x}|\mathbf{y})\}$$

$$= f(\mathbf{y})g(\mathbf{x}|\mathbf{y}) \min \left\{ \frac{f(\mathbf{x})g(\mathbf{y}|\mathbf{x})}{f(\mathbf{y})g(\mathbf{x}|\mathbf{y})}, 1 \right\} = f(\mathbf{y})P(\mathbf{x}|\mathbf{y})$$

The probability of a value being repeated is positive

Pf:
$$P(y|x) = g(y|x)\min\left\{1, \frac{f(y)g(x|y)}{f(x)g(y|x)}\right\}$$

$$\int_{y \neq x} P(y|x)dy = \int_{y \neq x} g(y|x) \min \left\{ 1, \frac{f(y)g(x|y)}{f(x)g(y|x)} \right\} dy \le 1$$
Density: Positive number:

integrates to 1

< 1

What about unknown scaling and MH

• Assume now $f(\mathbf{x}) = c \cdot q(\mathbf{x})$ with c unknown.

$$R(\mathbf{x}, \mathbf{y}) = \frac{f(\mathbf{y})g(\mathbf{x}|\mathbf{y})}{f(\mathbf{x})g(\mathbf{y}|\mathbf{x})} = \frac{c \cdot q(\mathbf{y})g(\mathbf{x}|\mathbf{y})}{c \cdot q(\mathbf{x})g(\mathbf{y}|\mathbf{x})} = \frac{q(\mathbf{y})g(\mathbf{x}|\mathbf{y})}{q(\mathbf{x})g(\mathbf{y}|\mathbf{x})}$$

Do not depend on c!

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)} \propto p(y|x)p(x)$$

Important for Gibbs type distributions

$$Pr(\mathbf{C}) = Pr(C_{11},, C_{n_1 n_2})$$

$$= \frac{1}{Z} e^{-\beta \sum_{||(i,j)-(i'j')||=1} I(C_{ij} \neq C_{i'j'})}$$

$$\Pr(\mathbf{C}|\mathbf{y}) = \frac{\Pr(\mathbf{C}) \prod_{ij} f(y_{ij}|C_{ij})}{\sum_{\mathbf{C}'} \Pr(\mathbf{C}') \prod_{ij} f(y_{ij}|C'_{ij})}$$

Det matematisk-naturvitenskapelige fakultet

Metropolis Hastings is a general form:

- Specific chains:
 - Random walk chains
 - Independent chains
 - Gibbs sampler
- Tricks to customize sampling
 - Reparametrize
 - Block update
 - Hybrid
 - Griddy Gibbs

Random walk chains

Popular choice of proposal distribution:

$$\mathbf{X}^* = \mathbf{x} + \boldsymbol{\varepsilon}$$

- Popular choices: Uniform, Gaussian, t-distribution
- Note: If $h(\cdot)$ is symmetric, $g(\mathbf{x}^*|\mathbf{x}) = g(\mathbf{x}|\mathbf{x}^*)$ and

$$R(\mathbf{x}, \mathbf{x}^*) = \frac{f(\mathbf{x}^*)g(\mathbf{x}|\mathbf{x}^*)}{f(\mathbf{x})g(\mathbf{x}^*|\mathbf{x})} = \frac{f(\mathbf{x}^*)}{f(\mathbf{x})}$$

Example

- Assume $f(x) \propto \exp(-|x|^3/3)$
- Proposal distribution $N(x, 4^2)$
- Example_MH_cubic.R

Results random walk

Acceptance rate = 0.2755276

Lag one scatterplot

The repeats of a value is needed to get the correct distribution

Compare histograms to true distribution

This is kind of similar to what we have for sampling importance resampling (SIR) If a value is repeated it gets «more weight»

N = 10000

The effect variance in proposal distribution

Too small steps, high acceptance high correlation ⊗

Just about right, good acceptance low correlation ©

Too large changes proposed, low acceptance 31 high correlation 🕾

Independent chains

• Assume $g(\mathbf{x}^*|\mathbf{x}) = g(\mathbf{x}^*)$. Then

$$R(\mathbf{x}, \mathbf{x}^*) = \frac{f(\mathbf{x}^*)g(\mathbf{x})}{f(\mathbf{x})g(\mathbf{x}^*)} = \frac{\frac{f(\mathbf{x}^*)}{g(\mathbf{x}^*)}}{\frac{f(\mathbf{x})}{g(\mathbf{x})}},$$

fraction of importance weights!

- Behave very much like importance sampling and SIR
- Difficult to specify $g(\mathbf{x})$ for high-dimensional problems
- Theoretical properties easier to evaluate than for random walk versions.

Challenges similar to what seen in:

- rejection sampling
- importance sampling
- sampling importance resampling

Det matematisk-naturvitenskapelige fakultet

Example

• Assume $f(x) \propto \exp(-|x|^3/3)$

$$g(y|x) = \phi(y; 0, 1^2)$$

Example MH cubic independence.R

Results independent

Acceptance rate= 0.9149915

N = 10 000

The effect variance in proposal distribution

$$g(y|x) = \phi(y; 0, 0.25^2)$$

Histogram of x

Acc. rate =0.419

Too narrow proposal, good acceptance high correlation ⊕

Acc. Rate = 0.288

Just about right, reasonable acceptance low correlation ©

$$g(y|x) = \phi(y; 0, 100^2)$$

Too large changes proposed, low acceptance 35 high correlation 🙁

M-H and multivariate settings

- $\mathbf{X} = (X_1, ..., X_p)$
- Typical in this case: Only change one or a few components at a time.
 - Choose index j (randomly)
 - 2 Sample $X_i^* \sim g_j(\cdot | \mathbf{x})$, put $X_k^* = X_k$ for $k \neq j$
 - Compute

$$R(\mathbf{x}, \mathbf{X}^*) = \frac{f(\mathbf{X}^*)g(\mathbf{x}|\mathbf{X}^*)}{f(\mathbf{x})g(\mathbf{X}^*|\mathbf{x})}$$

Put

$$\mathbf{Y} = \begin{cases} \mathbf{X}^* & \text{with probability min}\{1, R(\mathbf{x}, \mathbf{X}^*)\} \\ \mathbf{x} & \text{otherwise} \end{cases}$$

- Can show that this version also satisfies detailed balance
- Can even go through indexes systematic
 - Should then consider the whole loop through all components as one iteration

Det matematisk-naturvitenskapelige fakultet

Example multivariate with single coordinate update

- Assume $f(\mathbf{x}) \propto \exp(-||\mathbf{x}||^3/3) = \exp(-[||\mathbf{x}||^2]^{3/2}/3)$
- Proposal distribution
 - **1** $j \sim \text{Uniform}[1, 2, ..., p]$

```
• Example_MH_cubic_multivariate.R
#Proposal distribution: Gaussian distribution centered at previous value
p = 50
            # Number of iterations
N = 10000
x = matrix(nrow=N,ncol=p)
#Initial value
x[1,] = rnorm(p)
acc = 0
for(i in 2:N)
 j = sample(1:p,1)
 y = x[i-1,]
 y[j] = rnorm(1,x[i-1,j],2)
 R = f(y) \cdot dnorm(x[i-1,j],y[j],1)/(f(x[i-1,j]) \cdot dnorm(y[j],x[i-1,j],1))
 if(runif(1)<R)
   x[i,] = y
    acc = acc+1
  else
  x[i,] = x[i-1,]
```

Results independent

