Elijah Andrushenko

09/18/2018

Parallel Computing

CPTS 411

Homework 1

1.

- i) **Speedup** = $(n \lg n) / ((n/p) \lg n + \lg p)$ Amdahl's Law states Speed up is the ratio of Serial / Parallel.
- ii) The Speedup is sublinear. In the table below we plugged in the speedup equation making n = 64 and p = 1, 2, 4, 8, and 16. The speedup is sublinear since for each process the speedup is less than the number of processes.

	1	2	4	8	16
Speedup	1	1.99	3.92	7.52	13.714
Linear	1	2	4	8	16

- iii) **Efficiency** = (n lg n) / (p * ((n/p) lg n + lg p)) Efficiency equation is Serial / p * Parallel, p being the number of processors.
- iv) Overhead = $((n/p) \lg n + \lg p) (n \lg n)$ as stated in the homework and in Gustafson's Law overhead is Parallel Serial.

2.

a)

Parallel Runtime \rightarrow T(n,p)

n	1	2	4	8	16	32
64	1000	582	310	200	156	102
128	2078	1010	689	412	255	175
256	5100	2600	1420	780	420	250
512	11029	5900	2900	1580	780	390

See graph below, there are PNGs saved in the zip file for a better look at the graphs

b) $Speedup \mathrel{->} S(n,\,P) = T(n,\,1) \: / \: T(n\,\,,\,p)$

n	1	2	4	8	16	32
64	1	1.72	3.23	5	6.41	9.80
128	1	2.06	3.02	5.04	8.15	11.87
256	1	1.96	3.59	6.54	12.14	20.4
512	1	1.87	3.80	6.98	14.14	28.27

c)

Efficiency -> E(n,p) = T(n,1) / (p * T(n,p))

n	1	2	4	8	16	32
64	1	0.86	0.81	0.63	0.40	0.31
128	1	1.02	0.75	0.63	0.51	0.37
256	1	0.98	0.90	0.82	0.76	0.64
512	1	0.93	0.95	0.87	0.88	0.88

