

ENSAYO N° 12 ENSAYO DE UN VENTILADOR RADIAL.

Profesor: Cristóbal Galleguillos Ketterer

> Alumno: Marcelo León Vargas

Contenido

1	Objetivo.	.3
	Trabajo de laboratorio.	
3	Informe	.5
3.1-Tal	bla de valores medidos	.5
3.3	Tabla de valores calculados.	.7
Gráfico	os y preguntas	.8

1.- Objetivo.

Determinar el comportamiento de un ventilador radial.

2.- Trabajo de laboratorio.

Hacer un reconocimiento del dispositivo de ensayo.

Poner en marcha la instalación, con la descarga totalmente abierta.

Luego de inspeccionar los instrumentos y su operación y esperar que se estabilice su funcionamiento, tome las siguientes mediciones:

* P _{e4}	presi	ón diferencial	$[mm_{H2}]$.0]
* nx	veloc	idad del ventilador	[rpm]	
	* t _a	temperatura ambiente		[°C]
	* t _d	temperatura de descarga		[°C]
	* W_1, W_2	Potencia eléctrica, método 2	wat.	[kW]

Finalizadas estas, estrangular la descarga colocando un disco con una abertura menor.

El procedimiento se repite hasta colocar el disco menor y luego tapar totalmente la descarga.

La presión atmosférica, [mm_{Hg}], se mide al inicio del ensayo.

3.- Informe.

El informe incluye el número del ensayo, la fecha, el título, los objetivos, enumeración y características de los instrumentos utilizados y los puntos siguientes.

3.1-Tabla de valores medidos.

	VALORES MEDIDOS						
	nx	P _{e4}	С	td	W_1	W_2	P _{atm}
	[rpm]	[mmca]	[°C]	[°C]	[kW]	[kW]	[mm _{Hg}]
1	1831	5	21	23	0,44	0,82	758,8
2	1845	30	22	23	0,34	0,7	758,8
3	1867	45	22	23	0,19	0,56	758,8
4	1867	48,5	21	23	0,14	0,52	758,8
5	1871	57	21,5	23	0,11	0,49	758,8

3.2 Fórmulas

Caudal.

$$q_{vm} = \alpha * s_5 * (\frac{2*P_{e4}}{\rho_{05}})^{\frac{1}{2}} [\frac{m^3}{s}]$$

DATOS				
D_5	D ₅ /D ₄	α		
[mm]	[-]	[-]		
00	00	0.600		
90	0.15	0.6025		
120	0.2	0.604		
180	0.3	0.611		
300	0.5	0.641		

Pe4 en [Pa] en todas las fórmulas.

Diferencia de presión:

$$\Delta P = P_{e4} + 0.263 * \frac{{V_1}^2}{2} * \rho_{medio} [Pa]$$

Velocidad del aire:

$$V_1 = \frac{q_{vm}}{S_1} \left[\frac{m}{S} \right]$$

$$s_1 = 0.070686 \text{ [m2]}$$

Potencia eléctrica.

$$N_{elec} = W_1 + W_2 [KW]$$

Potencia hidráulica.

$$N_h = q_{vm} * \Delta P[W]$$

Rendimiento global.

$$N_{gl} = \frac{N_h*100}{N_{elec}} \ [\%]$$
 Corregir los valores respecto a la velocidad

3.3 Tabla de valores calculados.

pmedio	q _{vm}	V1	ΔΡ	N _{elec}	Nh	q _{vm}	η_{gl}
[kg/m3]	[m3/s]	[m/s]	[Pa]	[kW]	[kW]	[m3/h]	[%]
1,19517336	0,4107626	5,81108844	54,3072754	1,26	0,0223074	1478,74535	1,770428373
1,19464056	0,34526472	4,88448513	297,748009	1,04	0,10280188	1242,95298	9,884796304
1,19564056	0,18578517	2,62831632	442,08613	0,75	0,08213305	668,826602	10,95107273
1,19767336	0,10822268	1,53103417	475,669176	0,66	0,05147819	389,601652	7,799726311
1,19715523	0	0	558,6	0,6	0	0	0

Gráficos y preguntas

Trace los siguientes gráficos:

Curva ΔP - q_{vm}

Grafico 1

¿Qué tipo de ventilador es? Descríbalo con detalle.

El ventilador ensayado corresponde a uno de tipo radial, el cual su función es aumentar la presión de cierto fluido para ser transportado, pero a caudales reducidos, esta maquina se puede considerar como una turbomáquina de desplazamiento negativo. En general se puede decir que es un sistema de cajón reducido.

¿Las curvas tiene la forma esperada para ese tipo de ventilador?

Según lo observado en el grafico ΔP - q_{vm} y comparándolo con el grafico 2 se puede concluir que la curva del ventilador ensayado corresponde a los que se pueden esperar de este tipo de ventiladores.

Curva de potencia eléctrica vs caudal

¿Cuál es la potencia máxima consumida?

La potencia máxima consumida corresponde a 1,26 kW, lo cual corresponde a aproximadamente 1500m3/h de caudal.

¿Cuál es su posible potencia en el eje?

La potencia que el sistema puede tener en el eje es aproximadamente un 90% de la potencia máxima anteriormente mostrada, ya que se consideraran las perdidas de transmisión que pueda poseer el sistema y las perdidas del motor eléctrico que alimenta al anteriormente mencionado.

Curva de rendimiento vs caudal

¿Cuál es el punto de óptimo rendimiento?

El rendimiento optimo se puede observar según el grafico anterior es entre los 600 a 900 m3/h que es el intervalo donde se alcanza el mayor rendimiento del ventilador.