Компьютерная графика Практика 9: Shadow mapping 2

2021

Подбираем shadow bias

► Нужно прибавить константу (bias) к значению, прочитанному из shadow map

Подбираем shadow bias

- Нужно прибавить константу (bias) к значению, прочитанному из shadow map
- Слишком большое значение приведёт к заметному peter panning (тень будет съезжать в сторону от модели)

Подбираем shadow bias

- Нужно прибавить константу (bias) к значению, прочитанному из shadow map
- Слишком большое значение приведёт к заметному peter panning (тень будет съезжать в сторону от модели)
- Слишком маленького значения будет недостаточно, чтобы убрать shadow acne

Вычисляем хорошую матрицу проекции для shadow map

ightharpoonup Нужно найти центр видимой области и оси X,Y,Z

- ▶ Нужно найти центр видимой области и оси X, Y, Z
- ightharpoonup Направления осей $\hat{X}, \hat{Y}, \hat{Z}$ уже посчитаны, нужно только вычислить их длину

- ▶ Нужно найти центр видимой области и оси X, Y, Z
- lacktriangle Направления осей $\hat{X}, \hat{Y}, \hat{Z}$ уже посчитаны, нужно только вычислить их длину
- ightharpoonup С помощью функции bbox можно посчитать bounding box сцены, её центр C центр видимой области

- ightharpoonup Нужно найти центр видимой области и оси X,Y,Z
- lacktriangle Направления осей $\hat{X}, \hat{Y}, \hat{Z}$ уже посчитаны, нужно только вычислить их длину
- ightharpoonup С помощью функции bbox можно посчитать bounding box сцены, её центр C центр видимой области
- ▶ Пройдясь по всем 8 вершинам V bounding box'а сцены, можно посчитать скалярное произведение $(V-C)\cdot \hat{X}$, максимум модуля таких произведений длина вектора X

- ightharpoonup Нужно найти центр видимой области и оси X,Y,Z
- lacktriangle Направления осей $\hat{X}, \hat{Y}, \hat{Z}$ уже посчитаны, нужно только вычислить их длину
- ightharpoonup С помощью функции bbox можно посчитать bounding box сцены, её центр C центр видимой области
- ▶ Пройдясь по всем 8 вершинам V bounding box'а сцены, можно посчитать скалярное произведение $(V-C)\cdot \hat{X}$, максимум модуля таких произведений длина вектора X
- ightharpoonup Аналогично для Y и Z

- ightharpoonup Нужно найти центр видимой области и оси X,Y,Z
- ightharpoonup Направления осей $\hat{X}, \hat{Y}, \hat{Z}$ уже посчитаны, нужно только вычислить их длину
- ightharpoonup С помощью функции bbox можно посчитать bounding box сцены, её центр C центр видимой области
- ▶ Пройдясь по всем 8 вершинам V bounding box'a сцены, можно посчитать скалярное произведение $(V-C)\cdot \hat{X}$, максимум модуля таких произведений длина вектора X
- ightharpoonup Аналогично для Y и Z
- ightharpoonup Используя X, Y, Z, C можно построить матрицу ортографической проекции

Shadow sampler + PCF

▶ Меняем min/mag фильтры shadow map на GL_LINEAR

Shadow sampler + PCF

- ▶ Меняем min/mag фильтры shadow map на GL_LINEAR
- Устанавливаем текстуре shadow map свойства
 GL_TEXTURE_COMPARE_MODE = GL_COMPARE_REF_TO_TEXTURE
 и GL_TEXTURE_COMPARE_FUNC, GL_LESS

Shadow sampler + PCF

- ▶ Меняем min/mag фильтры shadow map на GL_LINEAR
- ▶ Устанавливаем текстуре shadow map свойства GL_TEXTURE_COMPARE_MODE = GL_COMPARE_REF_TO_TEXTURE и GL_TEXTURE_COMPARE_FUNC, GL_LESS
- ▶ Меняем тип sampler'a в шейдере на sampler2DShadow

Shadow sampler + PCF

- ▶ Меняем min/mag фильтры shadow map на GL_LINEAR
- ▶ Устанавливаем текстуре shadow map свойства GL_TEXTURE_COMPARE_MODE = GL_COMPARE_REF_TO_TEXTURE и GL_TEXTURE_COMPARE_FUNC, GL_LESS
- ▶ Меняем тип sampler'а в шейдере на sampler2DShadow
- Меняем обращение к текстуре: texture(..., shadow_pos.xyz + bias) (возвращает float, a не vec4!)

Variance shadow maps

▶ Убираем свойства GL_TEXTURE_COMPARE_MODE и GL_TEXTURE_COMPARE_FUNC

- Убираем свойства GL_TEXTURE_COMPARE_MODE и GL_TEXTURE_COMPARE_FUNC
- ▶ Устанавливаем текстуре shadow map тип данных GL_RG32F (format и type не принипиальны, можно GL_RGBA и GL_FLOAT)

- Убираем свойства GL_TEXTURE_COMPARE_MODE и GL_TEXTURE_COMPARE_FUNC
- Устанавливаем текстуре shadow map тип данных GL_RG32F (format и type не принипиальны, можно GL_RGBA и GL_FLOAT)
- Добавляем shadow map к фреймбуферу как GL_COLOR_ATTACHMENTO (вместо GL_DEPTH_ATTACHMENT)

- Убираем свойства GL_TEXTURE_COMPARE_MODE и GL_TEXTURE_COMPARE_FUNC
- Устанавливаем текстуре shadow map тип данных GL_RG32F (format и type не принипиальны, можно GL_RGBA и GL_FLOAT)
- Добавляем shadow map к фреймбуферу как GL_COLOR_ATTACHMENTO (вместо GL_DEPTH_ATTACHMENT)
- Создаём текстуру или renderbuffer, которые будут использоваться для глубины, и добавляем его как GL_DEPTH_ATTACHMENT фреймбуфера

- Убираем свойства GL_TEXTURE_COMPARE_MODE и GL_TEXTURE_COMPARE_FUNC
- Устанавливаем текстуре shadow map тип данных GL_RG32F (format и type не принипиальны, можно GL_RGBA и GL_FLOAT)
- Добавляем shadow map к фреймбуферу как GL_COLOR_ATTACHMENTO (вместо GL_DEPTH_ATTACHMENT)
- Создаём текстуру или renderbuffer, которые будут использоваться для глубины, и добавляем его как GL_DEPTH_ATTACHMENT фреймбуфера
- Во фрагментном шейдере, рисующем shadow map, добавляем out-переменную и пишем в неё vec4(z, z*z, 0.0, 0.0) (z можно достать из gl_FragCoord)

- Убираем свойства GL_TEXTURE_COMPARE_MODE и GL_TEXTURE_COMPARE_FUNC
- Устанавливаем текстуре shadow map тип данных GL_RG32F (format и type не принипиальны, можно GL_RGBA и GL_FLOAT)
- ▶ Добавляем shadow map к фреймбуферу как GL_COLOR_ATTACHMENTO (вместо GL_DEPTH_ATTACHMENT)
- Создаём текстуру или renderbuffer, которые будут использоваться для глубины, и добавляем его как GL_DEPTH_ATTACHMENT фреймбуфера
- Во фрагментном шейдере, рисующем shadow map, добавляем out-переменную и пишем в неё vec4(z, z*z, 0.0, 0.0) (z можно достать из gl_FragCoord)
- В основном фрагментном шейдере меняем тип sampler'a обратно на sampler2D, читаем из него и используем неравенство Чебышёва для вычисления освещённости: vec2 data = texture(shadow_map, shadow_pos.xy).rg; float mu = data.r; float sigma = data.g mu * mu; float z = shadow_pos.z; float factor = (z < mu) ? 1.0

 : sigma / (sigma + (z mu) * (z mu));

Исправляем артефакты

- Добавляем наклон поверхности к среднему значению квадрата глубины:
 - ► Через dFdx и dFdy можно получить градиент глубины по X и Y
 - ightharpoonup К квадрату глубины добавляем $rac{1}{4}\left[\left(rac{\partial Z}{\partial X}
 ight)^2+\left(rac{\partial Z}{\partial Y}
 ight)^2
 ight]$

Исправляем артефакты

- Добавляем наклон поверхности к среднему значению квадрата глубины:
 - ► Через dFdx и dFdy можно получить градиент глубины по X и Y
 - ightharpoonup К квадрату глубины добавляем $rac{1}{4}\left[\left(rac{\partial Z}{\partial X}
 ight)^2+\left(rac{\partial Z}{\partial Y}
 ight)^2
 ight]$
- Добавляем shadow bias (вычитаем константу из значения
 Z, использующегося для вычисления освещённости)

Исправляем артефакты

- Добавляем наклон поверхности к среднему значению квадрата глубины:
 - ► Через dFdx и dFdy можно получить градиент глубины по X и Y
 - ightharpoonup К квадрату глубины добавляем $rac{1}{4}\left[\left(rac{\partial Z}{\partial X}
 ight)^2+\left(rac{\partial Z}{\partial Y}
 ight)^2
 ight]$
- Добавляем shadow bias (вычитаем константу из значения Z, использующегося для вычисления освещённости)
- lacktriangle Значение, получающееся из формулы неравенства Чебышёва, преобразуем: диапазон $[0,\delta]$ переходит в [0,1] (δ некое фиксированное значение, например, 0.125)

Размываем shadow map

Вместо чтения одного пикселя из shadow map, читаем набор значений из соседних пикселей (аналогично тому, как делалось размытие в задании №5 практики №7) и усредняем по Гауссу

Размываем shadow map

- Вместо чтения одного пикселя из shadow map, читаем набор значений из соседних пикселей (аналогично тому, как делалось размытие в задании №5 практики №7) и усредняем по Гауссу
- Полученный двумерный вектор используем для вычисления освещённости через неравенство Чебышёва

Размываем shadow map

- Вместо чтения одного пикселя из shadow map, читаем набор значений из соседних пикселей (аналогично тому, как делалось размытие в задании №5 практики №7) и усредняем по Гауссу
- Полученный двумерный вектор используем для вычисления освещённости через неравенство Чебышёва
- N.B.: по-хорошему это размытие нужно делать отдельными проходами с отдельными шейдерами и отдельным размытием по X и Y (см. separable Gaussian blur)