

Trabalho laboratorial de refração e de reflexão

Feito por:

Adriano Santos, 37826 Chen Cheng, 38147 Miguel Neto, 37649 Ruben Peixoto, 37514

Datas: 27 de Outubro e 3 de Novembro

1. Objetivos

Tal como se apresenta na ficha "Trabalho experimental no 2", o objetivo desta experiência é experimentar as leis da reflexão e da refração da luz e introduzir a equação das lentes delgadas.

2. Introdução

A reflexão baseia-se no fenómeno de ao incidirmos um feixe de raios (raio incidente) numa determinada superfície, de preferência opaca, este refleti-lo-á (raio refletido). Para que tal seja verdade temos que considerar que o plano em questão não só é opaco como também é perpendicular à superfície de separação entre os dois feixes. Como estes raios pertencem ao mesmo plano podemos dizer que são complanares.

A refração da luz é um fenómeno em que o feixe de luz, ao incidir num plano perpendicular à superfície de separação entre os dois meios, este feixe sofre um determinado desvio de direção.

Este trabalho está divido em 2 partes. Na primeira parte estudaremos a lei de reflexão e lei de Snell para refração usando um feixe de raios paralelos de luz branca, espelhos, paralelepípedo e um prisma de vidro.

Na segunda parte estudaremos a refração de um feixe de raios ao atravessar uma lente côncava e uma lente convexa. Estas lentes estarão a distâncias diferentes do feixe de luz de modo a estudarmos e caracterizarmos as imagens.

Estes resultados serão apresentados na parte do "5. Tratamento de dados".

3. Material Utilizado

- Banco de ótica
- Foco de luz
- Paralelepípedo transparente
- Prisma de vidro triangular
- Lentes (côncavo e convexo)
- Espelhos (côncavo, convexo e plano)
- Lápis
- Folha quadriculada
- Folha branca A5
- Transferidor:

Alcance do transferidor: 180°
Resolução do transferidor: 1°

Datas: 27 de Outubro e 3 de Novembro

4. Esquema de montagem

1ª Parte:

2ª Parte:

5. Tratamento dos dados

1ª Parte:

O tratamento de dados desta parte encontra-se presente nas folhas A5 (em anexo).

2ª Parte:

	d < f	f < d < 2 f	d > 2 f
Lente côncavo (divergente) -150mm	Virtual	Virtual	Virtual
	Direita	Direita	Direita
	Reduzida	Reduzida	Reduzida
Lente convexo (divergente) +150mm	Virtual	Real	Real
	Direita	Invertida	Invertida
	Ampliada	Ampliada	Reduzida

Tabela 1 - |f| = Distância focal; d = Distância do objeto à lente

6. Resultados

Na primeira parte verifica-se, para a lei de reflexão, que ao incidirmos um feixe de raios num determinado plano, o ângulo do raio refletido será o mesmo do raio incidente se considerarmos uma superfície de separação perpendicular ao plano. Nesta parte também verificamos que, para a lei de refração, que um feixe de luz incidente (raio incidente) ao entrar noutro meio este sofre uma modificação da sua velocidade e do seu comprimento (é o que acontece ao ser incidido um feixe de luz num prisma de vidro), porém a sua frequência permanece.

E estas informações podem ser aproveitadas para a segunda parte desta experiência laboratorial. Vimos também o tamanho da imagem, tamanho do objeto e a ampliação podem sofrer alterações consoante a distância da lente à fonte de luz

7. Comentários/Crítica

Nesta experiência houve um erro humano e erro instrumental. Erro humano, pois, pode ter havido um erro na medição, com o transferidor, dos ângulos do raio incidente e raio refletido. Erro instrumental pelo fato da linha criada pelo lápis não ser suficientemente fina para desenhar os pontos sem erro.

8. Bibliografia

Webgrafia:

- http://www.sofisica.com.br/conteudos/Otica/Refracaodaluz/leis_de_refracao.php
- http://www.sofisica.com.br/conteudos/Otica/Reflexaodaluz/reflexao.php

Bibliografia:

- CARRAÇA, GRAÇA. Ficha experimental nº2 (Reflexão e Refração da Luz)

Datas: 27 de Outubro e 3 de Novembro