

CNS diagonalisable <=> polynôme c. scindé ex i	
multiplicité des recteurs soit égale à la dim. des sous	chaca bubbes
semblable: ∃P∈GN(R), A=PBP-1	
7 (4) = P 7 (4) P = x x x	
<u>₽</u> ₽→₽ ₽ = ₽	
· trigonalisable <=> polynôme scindé sur IK	
11.10 12.10 12. 40.10 12. 12.10 12. 12.	
Application diagonalisable	
Rq: la E de deux matrice diagonalisables n'est pas dia	gorali salok.
en: A= (1 1) D= (-1 0)	
<u> </u>	
· deux matrices peurent ne pas être semblables mais	avoir le m
pol. c.	
·	
Police 2 P(v) = 2 v 2	
Polynam: $P(x) = 2 + 2 \times + + 2 \times^{n}$ $P(x) = 2 + 2 \times + + 2 \times^{n}$	
$P(A) = a_0 I_n + a_1 A + \dots + a_n A^n$	
Adyrôme anulator: Pro)=0	
P(A)=O	
maribia: 5.(0) = 3525; as 5 d , oducións 200 do	Les- P1
$proposition: Sp(A) \subseteq \{78 cines du polynôme anula$	301 1
Theoreme C.H. 20(0)=0	
Det un polynôme minimal est annulateur unitaire	et de de minimal.
Property oders and minimal decreases desired by the	1100m. 200.42t
Rop: 3! polynôme minimal du u qui divise tout pod	your armiateur.
des racines du polynôme minimal sont exactement	ks val.o.
u dont le adunque caractéristique est sondé si	t discoulitable
u dont le podynôme caractéristique est soudie es ser con podynôme minimal est soudie à racine	i simples
EN POR PORTIONS HORIZINGS EN SINCE A LACTICE	a simpica.

$$X_A(\lambda) = dut(\lambda I_3 - A) = |\lambda - \lambda| = |\lambda - \lambda| = |(\lambda - 1)[(\lambda - 2)(\lambda - 1) + \lambda]$$

$$|\lambda - \lambda| = |\lambda - \lambda|$$

$$= (\lambda - 1) \left[\lambda^{2} - 3\lambda + 3 \right] - (\lambda - 1) = (\lambda - 1) \left[\lambda^{2} - 3\lambda + 3 - \lambda \right]$$

$$= (\lambda - 1) \left[\lambda^{2} - 3\lambda + \lambda \right] = (\lambda - 1) \left(\lambda - \lambda \right) (\lambda - \lambda)$$

$$\chi_{A}(\lambda) = (\lambda - \lambda)^{2} (\lambda - \lambda)$$

de pol. c. est scindé dans IR, donc A est trigonalisable.

Done
$$E_{\lambda} = \text{vect}\left[\begin{pmatrix} 1\\1\\0 \end{pmatrix}\right]$$
. $Dim(E_{i}) = 1$

Aq: dim E, = 1 + ordre de multiplicité de la racine 1 => A par diagonalisable.

$$\begin{pmatrix} 0 & 0 & -1 \\ 1 & 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}.$$

3.
$$R_{q}$$
 por $u=(0,0,1)$: $(R-id_{R_{3}})(u)=U$
 $(R-id_{R_{3}})(u)=F(u)-v$ cas $(R-I_{3})\cdot v=\begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 0 \end{pmatrix}\begin{pmatrix} 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$
 $R(u)\cdot v=0$: $(R(u)=v+v)$

1. On resolve:

 $\begin{cases} x_{1} & x_{2} & 1 & 2x_{2} \\ x_{3} & -2x_{3} & 1 & 2x_{3} \\ x_{4} & -2x_{3} & 1 & 2x_{3} \\ x_{5} & -2x_{5} & 1 & 2x_{5} \\ x_{7} & -2x_{5} & 1 & 2$

5.
$$f(u) = 0 = 5 f''(u) = 0$$

 $f(u) = 2u = 5 f''(u) = 2''u$
 $f(v) = 0 + v = 5 f''(v) = ?$

Rondrons par recurence que $f^{\mu}(v) = ku+v$ For k=1 Oh HR: Supposens par un k tini que $f^{\mu}(v) = ku+v$ TQ $f^{\mu+v}(v) = (k+1)v+v$

$$f^{k+1}(v) = \frac{1}{2}(\frac{1}{2}(v)) = \frac{1}{2}(kv+v) = \frac{1}{2}(kv+v) + \frac{1}{2}(v)$$

$$= kv+v+v$$

$$= (k+1)v+v$$

Donc on a bien then; th(1)=k0+1

$$\frac{dut(XI_3-A)= \begin{vmatrix} X-1 & -4 & 2 \\ 0 & X-6 & 3 \end{vmatrix} = |C_1 & C_2 & C_3| = |C_1+C_2+C_3 & C_2 & C_3|}{|X-4|}$$

Donc $\chi_{A}(\Lambda)=(\Lambda-3)(\Lambda-2)^{2}$ solvate donc A trigonalisable $\chi_{A}(\Lambda)=\{2,3\}$

for 4=2:

Donc
$$\in_{\mathbf{3}}$$
=vect $\left[\left(\frac{1}{3} \right) \right]$ = vect $\left[\left(\frac{1}{3} \right) \right]$ = vect $\left[v \right]$

din E2 = 1 = ordre de multiplicité de la racine 2, donc A pas diag.

Por L=3

Par exemple:
$$\omega = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, or a $(0,0,\omega)$ base, $f(\omega) = A\omega = \dots$

$$(V_1, \dots, V_{\hat{\delta}}, O_{\hat{\delta}+1}, \dots, O_{\hat{\Lambda}})$$
 ; $V_k = \alpha_k O_{\hat{\delta}+1} + \dots + \alpha_k O_{\hat{\Lambda}}$

$$\mathcal{D} = \begin{pmatrix} 2 & -1 & -1 \\ 2 & 1 & -2 \\ 2 & -1 & -2 \end{pmatrix} \quad ; \quad \aleph_{g}(\lambda) = (\lambda+1)(\lambda-1)^{2} \quad ; \quad \wp(G) = \{-1, 1\}$$

Par K=1 E = rect ((1))

POI N=1; E,=vect([o]); din(E,) +2 donc B pos diagonalisable.

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
on cherche $(0, 1, 1, 0, 1)$

$$T = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
on C

Or vert w= eu,

Bu = {(w) = 20 +bv + 10 *

On past prendre $\omega = \alpha \binom{0}{0}$ for ex $\omega = \binom{0}{0}$ On a bien $(0, 1, \omega)$ base - justifier

Par * , on 2:

$$\begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix} = a \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + b \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad b = 1$$

Exercia 3:

$$\nabla = \begin{pmatrix}
A & C \\
A & C \\
A & C
\end{pmatrix}$$

$$\nabla = \begin{pmatrix}
A & C \\
A & C \\
A & A
\end{pmatrix}$$

$$A \cdot T = \begin{pmatrix} P_1 T_1 P_1^{-1} & C \\ O & P_2 T_2 P_2^{-1} \end{pmatrix} = \begin{pmatrix} P_1 & O \\ O & P_2 \end{pmatrix} \begin{pmatrix} T_1 & X \\ O & T_2 \end{pmatrix} \begin{pmatrix} P_1^{-1} & O \\ O & P_2^{-1} \end{pmatrix}$$

$$= \begin{pmatrix} P_1 T_1 P_1^{-1} & P_1 X P_2^{-1} \\ O & P_2 T_2 P_2^{-1} \end{pmatrix}$$

On page
$$P = \begin{pmatrix} T_m & L \\ O & T_m \end{pmatrix}$$
; P invertible car triangulaire s.p. anex
$$P^{-1} = \begin{pmatrix} T_m & -L \\ O & T_m \end{pmatrix}$$
 deal s.r sa diag. done det(P)=1 +0

$$P\begin{pmatrix} \chi_{1} & O \\ O & D \end{pmatrix} = \begin{pmatrix} \chi_{1} & \chi_{1} \\ O & D \end{pmatrix} = \begin{pmatrix} \chi_{1} & \zeta_{1} \\ O & \zeta_{2} \\ O & C \end{pmatrix}$$

D'OU C=L(B-KIn)

Comme $\Lambda \notin Sp(B)$; $B - \Lambda I_m$ est inversible done det(B- ΛI_m) $\neq 0$ $D'où B - \Lambda I_m$ est inversible.

Ains: L= C(B-(In)-1

$$A = \begin{pmatrix} A & -3 & 0 & 3 \\ -2 & -6 & 0 & 13 \\ 0 & -3 & A & 3 \\ -1 & -4 & 0 & 8 \end{pmatrix}$$

$$= (\lambda - 1) \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda - 1 & 3 & -3 \\ 0 & \lambda - 2 & -2\lambda + 3 \\ 1 & 1 & \lambda - 2 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda - 1 & 3 & 0 \\ 0 & \lambda - 2 & -\lambda + 1 \\ 1 & 1 & \lambda - 4 \end{vmatrix}$$

$$= (\lambda - 1) \begin{vmatrix} 1 & 1 & 3 & 0 \\ 0 & \lambda - 2 & -\lambda + 1 \\ 1 & 1 & \lambda - 4 \end{vmatrix}$$

$$= (\lambda - 1) | C_1 C_2 C_2 + C_3 | = (\lambda - 1) | C_1 C_2 C_3 - \lambda - 1 | C_4 C_4 - \lambda - 1 | C_4 C_4 - C_4 | C_5 | C_5 | C_5 | C_5 | C_6 |$$

=
$$(\lambda-1)(A-1)(A^2-2A+1) = (\lambda-1)^2$$

$$A = \frac{1}{2}$$
 $\Rightarrow = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in E_1 = kcs(I-A)$

Dave
$$\begin{pmatrix} f \\ g \\ g \\ g \end{pmatrix} = \begin{pmatrix} f \\ f \\ f \\ g \end{pmatrix} = f \begin{pmatrix} f \\ f \\ g \\ g \end{pmatrix} + 5 \begin{pmatrix} f \\ f \\ g \\ g \end{pmatrix} \Rightarrow E' = Accf \left[\begin{pmatrix} f \\ f \\ g \\ g \\ g \end{pmatrix} \right]$$

$$C = \begin{pmatrix} 3 & -1 & 1 & -7 \\ 9 & -2 & -3 & -1 \\ 0 & 0 & 4 & -8 \\ 0 & 0 & 2 & -4 \end{pmatrix} = \begin{pmatrix} A & C \\ O & D \end{pmatrix}$$

(0)=(0)

· Trigonalisation de A:

$$x = {\binom{2}{3}} \in E_0 = \ker(A) \iff A \approx = 0 \iff 3 \times = y \implies = {\binom{1}{3}}$$

$$E_0 = \ker(A) = {\binom{1}{3}} =$$

$$\mathcal{B} = \begin{pmatrix} 1 & -8 \\ 2 & -4 \end{pmatrix} \qquad \chi_{\mathcal{C}}(\lambda) = \lambda^2 \qquad \zeta_{\mathcal{C}}(\mathcal{C}) = \{0\}$$

$$\frac{\lambda=0}{\Delta} = \frac{\lambda=0}{\lambda} = \frac{\lambda=$$

$$P = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$T = \begin{pmatrix} 0 & 3 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Exercice S: dim(E)=n; p=n u est nilpotent d'ordre p: up=0 et tie IO, p-1], vi +0 $\exists x \neq 0$; $x \in E + q = (x, o(x), ..., o^{p}(x))$ (ibre $o^{q}(x) = 0 \Rightarrow A^{q} = 0$. On a X' est anulatour de A. Sp(A) = 1 racines --1 ici, la seul val p est 0 - seul solo de 20(x)=0 D'ai le poly. c. de A est de la torme XL Par ailleurs, le p.c est de degré n. D'ai le p.c est xn=x,(x).

Cxesci ce 6!

P(x) = X(x + 2) polynôme anulateur.

- · Il existe un polynôme anulateur scholi à racine simple, donc A diagonalisable.
- · Sp(A) < (racin de A) ; racin de P=10,-2)
- · Supposions que -2 n'est pas une valeur propre de A. Alors O est l'unique val. P. et on aurait $A=Q_{n(R)}$. O impossible: on a par hypothète que A est non vulle. D'OO -2 est une val P. de A.

Pour trouve un pot. an s: AETA(R), calcular /trouver sol de :

Exercice 7:

2. On a $A^2 = 3T_u + 4A$, donc $A^2 - 2A - 3T_{u_1} = 0$ Ains; $P(X) = X^2 - 2X - 3$ est in polynôme 2 millateur de A. (X - 2)

Donc 1 120me de P1=1-1,31

Comme il existe un pody nôme annulateur scindé à sacine simple, alors A est diagonalisable.

Sp(A) < 1-1,3}

Of 8: $Sp(A)=\frac{1}{2}$, $A=-I_{ij}$ ce qui est toux et 8: $Sp(A)=\frac{1}{2}$; $A=3I_{ij}$ qui est aossi toux. Denc $Sp(A)=\frac{1}{2}$.

3. Por 1=-1: boit x=(3); E,=ker(-I,A)

Donc d'après le thom du rg, dim(E) - rg(-I-A)= dim(ker(-I-A))

$$E_{-1} = \text{vect}\left[\begin{pmatrix} -1\\1\\0\\0 \end{pmatrix}; \begin{pmatrix} -1\\0\\0\\0\\1 \end{pmatrix}; \begin{pmatrix} -1\\0\\0\\1\\0 \end{pmatrix}\right]$$

 $Rq: S: On n'substitute of 3 less & val. p. dim <math>E_{-1}: 3.$ On soit que A ext diag. For theorem l'astre val p. On calculation A.

·4~(A)~0

Darc D = (0-100) . P= (37,-A)

Exercice 8: $n \in \mathbb{N}^*$, $A \in \mathcal{N}_n(\mathbb{R})$

 $J \cdot A^3 - 3A - 4I_{\Lambda} = 0$ To det(A) > 0 $P(X) = X^3 - 3X - 4$ est un poyrôme anulateur. $P'(x) = 3x^2 - 3 = 3(x^2 - 1) = 3(x + 1)(x - 1)$

On a une rache réelle be]1; + 20 E on a d et at qui st des racines.

A finir

Exercice 3:

Tr(A) = Tr(O); det(A) = det(B)

$$\chi_{A}(\Lambda) = \Lambda \quad 0 \quad -4 = \Lambda [\Lambda(\Lambda - S) + 8] - 4$$

$$-1 \quad \Lambda \quad 8$$

$$0 \quad -1 \quad \Lambda - S = \Lambda [\Lambda^{2} - S\Lambda + 8] - 4$$

$$= (\lambda - 1)(\lambda - 2)^{2} - \chi_{\Omega}(\lambda) = \lambda^{2} - 5\lambda^{2} + 8\lambda^{2} - 4\lambda^{2}$$

For A, for
$$k=2$$
: $\infty = {2 \choose 2 \choose 2 \choose 2} \in E_2 = \ker(\alpha I - A)$
 $E_2 = \operatorname{vect}({2 \choose 2})$
 $\dim E_{2} = 1 + \text{ order do multiplicity de } k=2$

$$B = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix} ; \chi_{B}(\lambda) = \begin{pmatrix} \lambda - 2 & -1 & -1 \\ 0 & \lambda & 2 \\ 0 & -1 & \lambda - 3 \end{pmatrix}$$

for D, for her

B diagonalisable;
$$B = \begin{pmatrix} 1 & 1 & 0 \\ -2 & 0 & -1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & P & P \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} P^{-1}$$

A et B paz semblables sinon A serait semblable à une matrice diagonale donc serait diagonalisable.
diagonalisable une matrice diagonale donc serait diagonalisable.

$$(S) \leftarrow \begin{pmatrix} U_{n+1} \\ U_{n+1} \\ W_{n+1} \end{pmatrix} = \begin{pmatrix} -4 & -6 & 0 \\ 3 & S & 0 \\ 3 & 6 & S \end{pmatrix} \begin{pmatrix} U_{n} \\ V_{n} \\ W_{n} \end{pmatrix} , \quad \text{on pose } X = \begin{pmatrix} U_{n} \\ V_{n} \\ W_{n} \end{pmatrix}$$

 $(S) \Longleftrightarrow x_{n+1} = A x_n$ $\iff x_n = A^n x_n$

XA (K)= (K-1) (K-X) (K-X) = (X, Z)

On a un polynôme scinde à racines simples, donc A est diag.

$$P = \begin{pmatrix} 2 & 1 & 0 \\ -1 & -2 & 0 \\ 0 & 2 & \lambda \end{pmatrix} ; D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} ; P^{-1} = \begin{pmatrix} \lambda & \lambda & 0 \\ -1 & -2 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} U_n \\ V_n \\ W_n \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ -1 & -2 & 0 \\ 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} (-1)^n & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 5^n \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ -1 & -2 & 0 \\ 0 & 0 & 5^n \end{pmatrix} \begin{pmatrix} U_0 \\ V_0 \\ W_0 \end{pmatrix}$$

$$=\begin{pmatrix} 0 & 5v_{+1} & 2v \\ (-1)v_{+1} & -5v_{+1} & 0 \\ 0 & 5v_{+1} & 2v \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} -3_{V+1} + 2_{V} & -3_{V+2} + VO_{V} & 2_{V} \\ (-1)_{V+1} + 3_{V+1} & (-1)_{V+1} + 3_{V+2} & 0 \\ 3(-1)_{V} - 3_{V} & 3(-1)_{V} - 3_{V+1} & 0 \end{pmatrix} \begin{pmatrix} VO \\ VO \\ OO \end{pmatrix}$$

D= (2-18)

	Exercice 12:					
traver les tep. > traver P, calculur 8 > D = (4, 0)	$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \end{pmatrix}, \chi_{A}(\lambda) = \begin{pmatrix} 1 & 2 & 1 \\ -1 & \lambda - 2 & -1 \end{pmatrix}$					
(O* 4 ₃)	= (1)[(1-2)(1-3)-2]+[2+2(1-2)]					
	$= (\lambda - 1) \left[\lambda^{2} - 2\lambda - 3\lambda + 6 - 2 \right] + \left[2 + 2\lambda - 4 \right]$ $= (\lambda - 1) \left(\lambda^{2} - 5\lambda + 4 \right) + (2\lambda - 2)$ $(\lambda - 1) \left(\lambda - 2 \right) (\lambda - 3)$ For $\lambda = 1$					
	$\begin{cases} x_{1} - x_{3} = x_{1} \\ x_{1} + 2x_{2} + x_{3} = x_{2} \end{cases} = \begin{cases} x_{3} = 0 \\ x_{1} = -x_{2} \end{cases} \in_{A} = \text{vect}\left[\left(\frac{1}{2}\right)\right]$					
	Par L=L:					
	24 - 25 = 22 -25 = 21 22 = 21 22 = 25					
	3P inversible et D diagonalisable to A = PDP-1					
Traver N	On churche Ti qui commute avec A, AD=TA <=> PDP" TI = DPDP"1 <=> P"PDP" TI = P"TIPDP")					
	<=> D4-17 = B-10PDP-1					
	<=> D P-1 UP = 6-, L1606-, 6					
	En résolvant DB = DD, on dotient une matrice B diagonale					
	$\mathcal{B} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \mathcal{B} = P^{-1} \mathcal{D} P \iff \mathcal{D} = P \mathcal{D} P^{-1}$					

A	F	A	ユ	R	\subseteq
---	---	---	---	---	-------------

des matrices or qui commutent avec A sont donc de la torme:

