COMP3411: Artificial Intelligence

Automated Reasoning

This Lecture

- Proof systems
 - ► Soundness, completeness, decidability
- Resolution and Refutation
- Horn clauses and SLD resolution
- Prolog

Summary So Far

- Propositional Logic
 - ▶ Syntax: Formal language built from \land , \lor , \neg , \rightarrow
 - ► Semantics: Definition of truth table for every formula
 - \triangleright S \models P if whenever all formulae in S are True, P is True
- Proof System
 - System of axioms and rules for deduction
 - ► Enables computation of proofs of *P* from *S*
- Basic Questions
 - ► Are the proofs that are computed always correct? (soundness)
 - ightharpoonup If S
 the P, is there always a proof of P from S (completeness)

Prove lamp l_2 is lit

 $light_{-}l_{1}$.

 $light_{-}l_{2}$.

 $down_{-}s_{1}$.

 $up_{-}s_{2}$.

 $up_{-}s_3$.

 $ok_{-}l_{1}$.

 $ok_{-}l_{2}$.

 ok_-cb_1 .

 ok_-cb_2 .

live_outside.

 $lit_{-}l_{1} \leftarrow live_{-}w_{0} \wedge ok_{-}l_{1}$

 $live_{-}w_0 \leftarrow live_{-}w_1 \wedge up_{-}s_2$.

 $live_{-}w_0 \leftarrow live_{-}w_2 \wedge down_{-}s_2$.

 $live_-w_1 \leftarrow live_-w_3 \wedge up_-s_1$.

 $live_w_2 \leftarrow live_w_3 \wedge down_s_1$.

 $lit_{-}l_{2} \leftarrow live_{-}w_{4} \wedge ok_{-}l_{2}$.

 $live_{-}w_4 \leftarrow live_{-}w_3 \wedge up_{-}s_3$.

 $live_p_1 \leftarrow live_w_3$.

 $live_{-}w_3 \leftarrow live_{-}w_5 \wedge ok_{-}cb_1$.

 $live_-p_2 \leftarrow live_-w_6$.

 $live_-w_6 \leftarrow live_-w_5 \wedge ok_-cb_2$.

 $live_w_5 \leftarrow live_outside$.

$$\begin{split} lit_l_2 \leftarrow live_w_4 \wedge ok_l_2 \\ lit_l_2 \leftarrow live_w_3 \wedge up_s_3 \wedge ok_l_2 \\ lit_l_2 \leftarrow live_w_5 \wedge ok_cb_1 \wedge up_s_3 \wedge ok_l_2 \\ lit_l_2 \leftarrow live_outside \wedge ok_cb_1 \wedge up_s_3 \wedge ok_l_2 \\ lit_l_2 \leftarrow ok_cb_1 \wedge up_s_3 \wedge ok_l_2 \\ lit_l_2 \leftarrow up_s_3 \wedge ok_l_2 \\ lit_l_2 \leftarrow ok_l_2 \\ lit_l_2 \end{split}$$

Mechanising Proof

- A proof of a formula P from a set of premises S is a sequence of lines in which any line in the proof is
 - 1. An axiom of logic or premise from *S*, or
 - 2. A formula deduced from previous lines of the proof using a rule of inference and the last line of the proof is the formula *P*
- Formally captures the notion of mathematical proof
- S proves $P(S \vdash P)$ if there is a proof of P from S; alternatively, P follows from S
- Example: Resolution proof

Soundness, Completeness and Decidability

- A proof system is **decidable** if there is a mechanical procedure that, when asked whether $S \vdash P$, can always answer **True** or **False** correctly
 - i.e. the procedure is sound, complete and terminating
- **Soundness** means that the algorithm never returns **True** when it shouldn't.
 - i.e it is able to prove all consequences of any set of premises (including infinite sets)
 - \triangleright Whenever $S \vdash P$, if every formula in S is **True**, P is also True
 - \triangleright Whenever $S \vdash P$, $S \models P$
- **Completeness** means it always returns **True** when it should.
 - i.e it is able to prove all consequences of any set of premises (including infinite sets)
 - ► Whenever *P* is entailed by *S*, there is a proof of *P* from *S*
 - \triangleright Whenever $S \models P, S \vdash P$

Resolution

- A common type of proof system based on refutation
- Well suited to computer implementation
- Decidable in the case of Propositional Logic
- Generalises to First-Order Logic (see next set of lectures)
- Needs all formulae to be converted to clausal form

Normal Forms

- To make it easier to mechanise a proof, first rewrite all sentence in normal form
- E.g.

Rewrite:

$$lit_{-}l_{2} \leftarrow live_{-}w_{3} \wedge up_{-}s_{3} \wedge ok_{-}l_{2}$$

as a disjunction:

$$lit_l_2 \lor \neg live_w_3 \lor \neg up_s_3 \lor \neg ok_l_2$$

because $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$

Normal Forms

- A literal ℓ is a propositional variable or the negation of a propositional variable (P or $\neg P$)
- A clause is a disjunction of literals $\ell_1 \vee \ell_2 \vee \cdots \vee \ell_n$
- Conjunctive Normal Form (CNF) a conjunction of clauses, e.g. $(P \lor Q \lor \neg R) \land (\neg S \lor \neg R)$ or just one clause, e.g. $P \lor Q$
- Disjunctive Normal Form (DNF) a disjunction of conjunctions of literals, e.g. $(P \land Q \land \neg R) \lor (\neg S \land \neg R)$ or just one conjunction, e.g. $P \land Q$
- Every Propositional Logic formula can be converted to CNF and DNF
- Every Propositional Logic formula is equivalent to its CNF and DNF

Conversion to Conjunctive Normal Form

- Eliminate \leftrightarrow rewriting $P \leftrightarrow Q$ as $(P \rightarrow Q) \land (Q \rightarrow P)$
- Eliminate \rightarrow rewriting $P \rightarrow Q$ as $\neg P \lor Q$
- Use De Morgan's laws to push ¬ inwards (repeatedly)
 - \triangleright Rewrite $\neg (P \land Q)$ as $\neg P \lor \neg Q$
 - ightharpoonup Rewrite $\neg (P \lor Q)$ as $\neg P \land \neg Q$
- Eliminate double negations: rewrite $\neg \neg P$ as P
- Use the distributive laws to get CNF [or DNF] if necessary
 - ightharpoonup Rewrite $(P \land Q) \lor R$ as $(P \lor R) \land (Q \lor R)$ [for CNF]
 - ► Rewrite $(P \lor Q) \land R$ as $(P \land R) \lor (Q \land R)$ [for DNF]

Example Clausal Form

Clausal Form = set of clauses in the CNF

1.
$$\neg (P \rightarrow (Q \land R))$$

2.
$$\neg(\neg P \lor (Q \land R))$$

3.
$$\neg \neg P \land \neg (Q \land R)$$

4.
$$\neg \neg P \land (\neg Q \lor \neg R)$$

5.
$$P \wedge (\neg Q \vee \neg R)$$

Clausal Form: $\{P, \neg Q \lor \neg R\}$

Resolution Rule of Inference

where B is a propositional variable and A_i and C_j are literals

- \blacksquare B and $\neg B$ are complementary literals
- $A_1 \vee \cdots \vee A_m \vee C_1 \vee \cdots \vee C_n$ is the resolvent of the two clauses
- Special case: If no A_i and C_j , resolvent is empty clause, denoted \square or \bot

Resolution Rule

- Consider $A_1 \vee \cdots \vee A_m \vee B$ and $\neg B \vee C_1 \vee \cdots \vee C_n$
 - ► Suppose both are True
 - ► If B is True, $\neg B$ is False so $C_1 \lor \cdots \lor C_n$ must be True
 - ightharpoonup If B is False, $A_1 \vee \cdots \vee A_m$ must be True
 - ightharpoonup Hence $A_1 \vee \cdots \vee A_m \vee C_1 \vee \cdots \vee C_n$ is True

Hence the resolution rule is sound

Starting with true premises, any conclusion made using resolution must be true

Applying Resolution: Naive Method

- Convert knowledge base into clausal form
- Repeatedly apply resolution rule to the resulting clauses
- *P* follows from the knowledge base if and only if each clause in the CNF of *P* can be derived using resolution from the clauses of the knowledge base (or subsumption)
- Example
 - $ightharpoonup \{P o Q, Q o R\} \vdash P o R$
 - ightharpoonup Clauses $\neg P \lor Q$, $\neg Q \lor R$, show $\neg P \lor R$
 - ► Follows from one resolution step (Q and $\neg Q$ cancel, leaving $\neg P \lor R$)

Proof by contradiction

- Assume negative of what you are trying to prove and see if that leads to a contradiction
- So, assume lit_l_2 is false, i.e. $\neg lit_l_2$ is true

```
lit_{-}l_{1} \leftarrow live_{-}w_{0} \wedge ok_{-}l_{1}
light_{-}l_{1}.
                                                   live\_w_0 \leftarrow live\_w_1 \wedge up\_s_2.
light_l2.
                                                                                                                                                 lit l_2 \vee \neg live w_4 \vee \neg ok l_2
                                                    live_{-w_0} \leftarrow live_{-w_2} \wedge down_{-s_2}.
                                                                                                                                          lit l_2 \vee \neg live \ w_2 \vee \neg up \ s_2 \vee \neg ok \ l_2
down_{-}s_{1}.
                                                                                                                                 lit_{l_2} \lor \neg live_{w_5} \lor \neg ok_{cb_1} \lor \neg up_{s_3} \lor \neg ok_{l_2}
                                                   live_{-}w_1 \leftarrow live_{-}w_3 \wedge up_{-}s_1.
up_{-}s_{2}.
                                                                                                                            lit_{l_2} \lor \neg live\_outside \lor \neg ok\_cb_1 \lor \neg up\_s_3 \lor \neg ok\_l_2
                                                   live_{-w_2} \leftarrow live_{-w_3} \wedge down_{-s_1}.
up_{-}s_{3}.
                                                                                                                                           lit l_2 V \neg ok cb_1 V \neg up s_2 V \neg ok l_2
                                                   lit_{-}l_{2} \leftarrow live_{-}w_{4} \wedge ok_{-}l_{2}.
                                                                                                                                                   lit l_2 \vee \neg up \ s_3 \vee \neg ok \ l_2
ok_{-}l_{1}.
                                                                                                                                                           lit_{-l_2} \lor \neg ok_{-l_2}
                                                   live_{-}w_{4} \leftarrow live_{-}w_{3} \wedge up_{-}s_{3}.
ok_{-1}.
                                                                                                                                                                   lit la
                                                   live_p_1 \leftarrow live_w_3.
ok_-cb_1.
                                                   live_{-}w_3 \leftarrow live_{-}w_5 \wedge ok_{-}cb_1.
                                                                                                                           but we assumed \neg lit_{-l_2}
ok_{-}cb_{2}.
                                                   live_p_2 \leftarrow live_w_6.
live outside.
                                                                                                                                                           lit l_2 \wedge \neg lit l_2
                                                    live_{-}w_6 \leftarrow live_{-}w_5 \wedge ok_{-}cb_2.
                                                                                                                           is a contradiction
                                                    live\_w_5 \leftarrow live\_outside.
```

Refutation Systems

- To show that P follows from S (i.e. $S \vdash P$) using refutation, start with S and $\neg P$ in clausal form and derive a contradiction using resolution
- A contradiction is the "empty clause" (a clause with no literals)
- The empty clause \square is unsatisfiable (always False)
- So if the empty clause \square is derived using resolution, the original set of clauses is unsatisfiable (never all True together)
- That is, if we can derive \square from the clausal forms of S and $\neg P$, these clauses can never be all True together
- Hence whenever the clauses of S are all True, at least one clause from $\neg P$ must be False, i.e. $\neg P$ must be False and P must be True
- By definition, $S \models P$ (so P can correctly be concluded from S)

Applying Resolution Refutation

- Negate query to be proven (resolution is a refutation system)
- Convert knowledge base and negated query into CNF
- Repeatedly apply resolution until either the empty clause (contradiction) is derived or no more clauses can be derived
- If the empty clause is derived, answer 'true' (query follows from knowledge base), otherwise answer 'false' (query does not follow from knowledge base)

Resolution: Example 1

$$(G \lor H) \to (\neg J \land \neg K), G \vdash \neg J$$

Clausal form of is $\{\neg G \lor \neg J, \neg H \lor \neg J, \neg G \lor \neg K, \neg H \lor \neg K, G\}$

$$1. \neg G \lor \neg J$$
 [Premise]

$$2. \neg H \lor \neg J$$
 [Premise]

$$3. \neg G \lor \neg K$$
 [Premise]

$$4. \neg H \lor \neg K$$
 [Premise]

$$\begin{array}{cccc}
1. \neg G \lor \neg J & [Premise] \\
2. \neg H \lor \neg J & [Premise] \\
3. \neg G \lor \neg K & [Premise] \\
4. \neg H \lor \neg K & [Premise] \\
5. G & [Premise] \\
6. J & [\neg Query] \\
7. \neg G & [1, 6 Resolution]
\end{array}$$

$$8.\square$$
 [5, 7 Resolution]

Resolution: Example 2

$$P \rightarrow \neg Q, \neg Q \rightarrow R \vdash P \rightarrow R$$

Recall $P \to R \Leftrightarrow \neg P \lor R$

Clausal form of $\neg(\neg P \lor R)$ is $\{P, \neg R\}$

$$1. \neg P \lor \neg Q$$
 [Premise]

$$2.Q \lor R$$
 [Premise]

$$4. \neg R$$
 [¬ Query]

$$5. \neg Q$$
 [1, 3 Resolution]

$$7.\square$$
 [4, 6 Resolution]

Resolution: Example 3

$$\vdash ((P \lor Q) \land \neg P) \rightarrow Q$$

Clausal form of $\vdash ((P \lor Q) \land \neg P) \rightarrow Q$ is $\{P \lor Q, \neg P, \neg Q\}$

$$\rightarrow 1.P \lor Q$$

[¬ Query]

$$2.\neg P$$

[¬ Query]

$$3. \neg Q$$

[¬ Query]

[1, 2 Resolution

5. \Box

[3, 4 Resolution]

Rewriting negated query in CNF:

$$\neg[((P \lor Q) \land \neg P) \to Q]$$

$$\neg \left[\neg \left((P \lor Q) \land \neg P \right) \lor Q \right]$$

$$\neg\neg((P \lor Q) \land \neg P) \land \neg Q$$
$$(P \lor Q) \land \neg P \land \neg Q$$

$$(P \lor Q) \land \neg P \land \neg Q$$

Now write in clausal form:

$$\{P \lor Q, \neg P, \neg Q\}$$

Soundness and Completeness Again

For Propositional Logic

- Resolution refutation is sound, i.e. it preserves truth (if a set of premises are all true, any conclusion drawn from those premises must also be true)
- Resolution refutation is complete, i.e. it is capable of proving all consequences of any knowledge base (not shown here!)
- Resolution refutation is decidable, i.e. there is an algorithm implementing resolution which when asked whether $S \vdash P$, can always answer 'true' or 'false' (correctly)

Heuristics in Applying Resolution

- Clause elimination can disregard certain types of clauses
 - \triangleright Pure clauses: contain literal L where $\neg L$ doesn't appear elsewhere
 - ightharpoonup Tautologies: clauses containing both L and $\neg L$
 - ► Subsumed clauses: another clause is a subset of the literals
- Ordering strategies
 - Resolve unit clauses (only one literal) first
 - ► Start with query clauses
 - ► Aim to shorten clauses

Horn Clauses

Using a less expressive language makes proof procedure easier.

- Review
 - ► literal proposition variable or negation of proposition variable
 - ► clause disjunction of literals
- Definite Clause exactly one positive literal
 - ▶ e.g. $B \vee \neg A_1 \vee ... \vee \neg A_n$, i.e. $B \leftarrow A_1 \wedge ... \wedge A_n$
- Negative Clause no positive literals
 - ightharpoonup e.g. $\neg Q_1 \lor \neg Q_2$ (negation of a query)
- Horn Clause clause with at most one positive literal

Prolog

- Horn clauses in First-Order Logic
- SLD resolution
- Depth-first search strategy with backtracking
- User control
 - ► Ordering of clauses in Prolog database (facts and rules)
 - Ordering of subgoals in body of a rule
- Prolog is a programming language based on resolution refutation relying on the programmer to exploit search control rules

Prolog Clauses

$$P := Q, R, S.$$

$$P \leftarrow Q \land R \land S$$
.

$$P \vee \neg (Q \wedge R \wedge S)$$

$$P \vee \neg Q \vee \neg R \vee \neg S$$

Prolog DB = set of clauses

Queries:

$$\bot \leftarrow Q \land R \land S$$

$$\neg (Q \land R \land S)$$

$$\neg Q \lor \neg R \lor \neg S$$

$$P \to Q \equiv \neg P \lor Q$$

$$P \leftarrow Q \equiv P \vee \neg Q$$

⊥≡false (i.e. a contradiction)

SLD Resolution – \vdash_{SLD}

- Selected literals Linear form Definite clauses resolution
- \blacksquare SLD refutation of a clause C from a set of clauses KB is a sequence
 - 1. First clause of sequence is C
 - 2. Each intermediate clause C_i is derived by resolving the previous clause C_{i-1} and a clause from KB
 - 3. The last clause in the sequence is \square
- For a definite KB and negative clause query $Q: KB \cup Q \vdash \Box$ if and only if $KB \cup Q \vdash_{SLD} \Box$

Prolog Example

```
r. % facts
u.
v.

q:-r, u. % rules
s:-v.
p:-q, r, s.

?- p. % query
true
```

Example Execution of Prolog interpreter

```
r.
                                      Initial goal set = \{p\}
11.
                                      1. \{q, r, s\}
                                                            because p :- q, r, s.
V.
                                      2. \{r, u, r, s\}
                                                            because q :- r, u.
                                      3. \{u, r, s\}
                                                            because r.
q:- r, u.
                                      4. \{r, s\}
                                                            because u.
s :- v.
                                      5. {s}
                                                            because r.
p:-q, r, s.
                                      6. {v}
                                                            because s :- v
                                      7. {}
                                                            because v.
?- p.
                                      8. => true
                                                            because empty clause
```

- In each step, we remove the first element in the goal set and replace it with the body of the clause whose head matches that element. E.g. remove *p* and replace by *q*, *r*, *s*.
- **Note**: The simple Prolog interpreter isn't smart enough to remove the duplication of r in step 2.

Prolog Interpreter

Depth-first, left-right with backtracking

```
Input: A query Q and a logic program KB
Output: 'true' if Q follows from KB, 'false' otherwise
      Initialise current goal set to \{Q\}
      while the current goal set is not empty do
               Choose G from the current goal set; (first in goal set)
               Make a copy G' := B_1, \ldots, B_n of a clause from KB
                                                                                  Inefficient and not how a
               (try all in KB) (if no such rule, try alternative rules)
                                                                                  real Prolog interpreter works
               Replace G by B_1, \ldots, B_n in current goal set
               if current goal set is empty:
                        output 'true'
               else output 'false'
```

Conclusion: Propositional Logic

- Propositions built from \land , \lor , \neg , \rightarrow
- Sound, complete and decidable proof systems (inference procedures)
 - ► Resolution refutation
 - ► Prolog for special case of definite clauses
 - Limited expressive power
 - Cannot express ontologies (no relations)
- First-Order Logic can express knowledge about objects, properties and relationships between objects