

Acetaldehyde production by liquid phase hydration of acetylene

Ashish Kumar

Department of Chemical Engineering, BIT Sindri, Dhanbad

Background and Description:

Acetaldehyde is found in various plants, vegetables, smoke, gasoline and diesel exhaust. This substance is widely used in the manufacture of acetic acid, perfumes, dyes and drugs, as a flavouring agent and as an intermediate in the metabolism of alcohol.

Reaction involved:

 $C_2H_2 + H_2O \rightarrow CH_3CHO$

Process:

The process initially involves passing acetylene and steam streams into a hydrator. The thermodynamic property used is Raoult's Law for accuracy. The products are passed through a series of coolers and pumps, thereafter passing it through an absorber. Major product (acetaldehyde) is collected and rest is recycled to the hydrator for further conversion.

Flowsheet:

Results:

Master Property Table							
Object	acetaldehyde out2	acetaldehyde out1	Steam in	Acetylene+Stream	Acetylene in		
Temperature	317.364	349.152	700	350.857	188.426	К	
Pressure	101325	101320	3.89523E+07	101325	101325	Pa	
Mass Flow	0.970602	43.0709	18.0422	46.3128	25	kg/s	
Molar Flow	53.8699	1003.11	1001.49	2038.78	960.162	mol/s	
Volumetric Flow	0.000980575	28.7395	0.149632	51.4508	0.0401093	m3/s	
Mixture Density	989.829	1.49866	120.577	0.900136	623.297	kg/m3	
Mixture Molar Weight	18.0175	42.9371	18.0153	22.7159	26.0373	kg/kmol	
Mixture Specific Enthalpy	-2360.65	67.5035	785.639	-133.128	-817.33	kJ/kg	
Mixture Specific Entropy	-7.43455	0.278951	-1.0905	-0.0874293	-4.14399	kJ/[kg.K]	
Mixture Molar Enthalpy	-42533	2898.41	14153.5	-3024.12	-21281	kJ/kmol	
Mixture Molar Entropy	-133.952	11.9774	-19.6456	-1.98604	-107.898	kJ/[kmol.K]	

PROPERTIES TABLE					
Hydrator	Water: Conversion	95.4084	%		
Hydrator	Acetylene: Conversion	100	%		
Hydrator	acetaldehyde synthesis: Extent	100	%		

Master Property Table							
Object	E-5	E-4	E-3	E-2	E-1		
Energy Flow	0.309054	10	0.154595	100	-137298	kW	

So, according to this flowshhet, we get Acetaldehyde as our desired product.