Mathe C2

Felix Leitl

7. August 2023

Inhaltsverzeichnis

Stetige Funktionen
$\mathbb Q$ ist dicht in $\mathbb R$
Eigenschaften stetiger Funktionen
Komposition stetig er Funktionen
Zwischenwertsatz
Satz über Nullstellen
Satz von Minimum und Maximum
Metrik in normierten Räumen
Differenzierbare Funktionen
Integration
Folgen und Reihen

Stetige Funktionen

Def:

Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine Funktion

- f heißt stetig im Punkt $x \in I$, wenn gilt: Für jede Folge (X_n) in I mit $x_n \to x$ gilt auch $f(x_n) \to f(x)$
- f heißt stetig, wenn f in jedem Punkt $x \in I$ stetig ist

Anschaulich:

- " f stetig in x " bedeutet, dass f in x nicht springt
- " f stetig " bedeutet, dass f nirgendwo springt

\mathbb{Q} ist dicht in \mathbb{R}

Zu jeder reellen Zahl $r\in\mathbb{R}$ und jedem $\epsilon>0$ exestiert eine rationale Zahl $q\in\mathbb{Q}$ mit $|r-q|<\epsilon$

Zu jeder reellen Zahl $r\in\mathbb{R}$ und jedem $\epsilon>0$ existiert eine rationale Zahl $r\in\mathbb{R}\backslash\mathbb{Q}$ mit $|r-q|<\epsilon$

Zu jeder reellen Zahl $x \in \mathbb{R}$ existiert eine Folge (x_n) in \mathbb{Q} mit $x_n \to x$ Zu jeder rationalen Zahl $x \in \mathbb{Q}$ existiert eine Folge (x_n) in $\mathbb{R} \setminus \mathbb{Q}$ mit $x_n \to x$

Eigenschaften stetiger Funktionen

Sei Iein Intervall, $x\in I$ und $f,g:I\to\mathbb{R}$ Funktionen, die stetig in x sind. Dann gilt:

- f + g ist stetig in x
- f g ist stetig in x
- $f \cdot g$ ist stetig in x
- Falls $g(y) \neq 0, \forall y \in I$, so ist $\frac{f}{g}$ stetig in x

Komposition stetig er Funktionen

Seien I,J Intervalle, $f:I\to\mathbb{R}$ und $g:J\to\mathbb{R}$ und $f(I)\subset J$ Ferner sei f stetig in $x\in I$ und g stetig in y=f(x)Dann ist $g\circ f:I\to\mathbb{R}$ stetig in x

Zwischenwertsatz

Sei $f:[a,b]\to\mathbb{R}$ stetig auf dem abgeschlossenen Intervall [a,b]. Dann nimmt f in (a,b) jeden beliebigen Wert y zwischen f(a) und f(b) an

Sei $f:[a,b]\to\mathbb{R}$ stetig auf dem abgeschlossenen Intervall [a,b]. Dann nimmt f in [a,b] jeden beliebigen Wert

$$y \in [\min_{x \in [a,b]} f(x), \max_{x \in [a,b]} f(x)]$$

an

Satz über Nullstellen

Sei $f:[a,b] \to \mathbb{R}$ stetig auf dem abgeschlossenen Intervall [a,b] und es gelte f(a) < 0 < f(b) oder f(a) > 0 > f(b). Dann hat f in (a,b) mindestens eine Nullstelle, d.h. es existiert ein $x \in (a,b)$ mit f(x) = 0

Satz von Minimum und Maximum

Sei $f:[a,b]\to\mathbb{R}$ stetig auf dem abgeschlossenen Intervall [a,b]. Dann nimmt f in [a,b] Maximum und Minimum an, d.h. es existieren $x_{\min}, x_{\max} \in [a,b]$ mit

$$f(x_{\min}) \le f(x) \le f(x_{\max}, \forall x \in [a, b]$$

Insbesondere gilt für x_{\min} und x_{\max}

$$f(x_{\min}) = \inf_{x \in [a,b]} f(x) = \min_{x \in [a,b]} f(x)$$
$$f(x_{\max}) = \sup_{x \in [a,b]} f(x) = \max_{x \in [a,b]} f(x)$$

Sei (x_n) eine reelle Folge. Wir schreiben $x_n \to \infty$, wenn gilt

$$\forall C \in \mathbb{R} \exists n_0 \in \mathbb{N} \forall n \ge n_0 : x_n \ge C$$

Analog schreiben wir $x_n \to -\infty$, wenn gilt

 $\forall C \in \mathbb{R} \exists n_0 \in \mathbb{N} \forall n \ge n_0 : x_n \le C$

Metrik in normierten Räumen

Differenzierbare Funktionen

Integration

Folgen und Reihen