1 Fixed Pattern

Definition 1.1. A fixed pattern pt is a tree structure for matching ASTs. It can be defined with a node set $N \cup \{*\}$ recursively as follows:

- pt can be a terminal n that matches AST terminals with the name n.name.
- pt can be a wildcard symbol * that matches any AST.
- pt can be a root nonterminal n with child fixed patterns in the form of $n(pt_1, \ldots, pt_k)$, e.g., expression(*, '+',*). An AST I|n' is matched if n.name = n'.name and the k ordered children can be matched by pt_1, \ldots, pt_k , respectively.

Definition 1.2. We define a partial order \leq among fixed patterns to compare their explicitness in matching ASTs. A pattern pt^a is more explicit than or equal to a pattern pt^b (denoted by $pt^a \leq pt^b$) if all the ASTs that can be matched by pt^a can also be matched by pt^b . $pt^a \leq pt^b$ holds if and only if any of the following holds:

- $pt^b = *$.
- pt^a and pt^b are terminals with the same name.
- $pt^a = n^a(pt_1^a, ..., pt_k^a)$ and $pt^b = n^b(pt_1^b, ..., pt_k^b)$ have the same root nonterminals (i.e., n^a .name = n^b .name) and $pt_i^a \leq pt_i^b$ for i = 1, ..., k.

Theorem 1.1. \leq on fixed patterns is a partial order.

Proof. \leq is reflexive:

- If pt = *, then $pt \leq pt$ by definition.
- If pt is a terminal, then $pt \leq pt$ by definition.
- Otherwise, $pt = n(pt_1, ..., pt_k)$, then $pt \leq pt$ holds if and only if $pt_i \leq pt_i$ for i = 1, ..., k, which is proved recursively.

 \preceq is antisymmetric. Supposed $pt^a \preceq pt^b$ and $pt^b \preceq pt^a.$

- If $pt^a = *$ and $pt^a \leq pt^b$, by definition, pt^b can only be *, so $pt^a = pt^b$.
- If pt^a and pt^b are terminals with the same name, obviously, $pt^a = pt^b$.

• Otherwise, $pt^a = n^a(pt_1^a, \ldots, pt_k^a)$, $pt^b = n^b(pt_1^b, \ldots, pt_k^b)$, $n^a = n^b$, and $pt_i^a \leq pt_i^b \wedge pt_i^b \leq pt_i^a$ for $i = 1, \ldots, k$. Therefore, as proved recursively, $pt_i^a = pt_i^b$ for $i = 1, \ldots, k$, and $pt^a = pt^b$.

Finally, \leq is transitive, i.e., $pt^a \leq pt^b \wedge pt^b \leq pt^c \Rightarrow pt^a \leq pt^c$.

- If $pt^c = *$, then $pt^a \leq pt^c$ by definition.
- If pt^c is a terminal, then we must have $pt^c = pt^b = pt^a$ and $pt^a \leq pt^c$.
- Otherwise, $pt^c = n^c(pt_1^c, \ldots, pt_k^c)$, $pt^b = n^b(pt_1^b, \ldots, pt_k^b)$, and $pt^a = n^a(pt_1^a, \ldots, pt_k^a)$. We must have n^c name = n^b name = n^a name and $pt_i^a \leq pt_i^b \wedge pt_i^b \leq pt_i^c$ for $i = 1, \ldots, k$. Then $pt_i^a \leq pt_i^c$ for $i = 1, \ldots, k$, which is proved recursively.

Definition 1.3. We define a join operation \vee such that $pt^a \vee pt^b$ is a fixed pattern that can cover the ASTs matched by the inputted fixed patterns pt^a and pt^b . $pt^a \vee pt^b$ is defined as follows:

- $pt^a \lor pt^b = *$, if either pt^a or pt^b is *, or the root nodes in pt^a and pt^b have different names.
- If pt^a and pt^b are terminals with the same name, $pt^a \vee pt^b = pt^a = pt^b$.
- In the case $pt^a = n^a(pt_1^a, \dots, pt_k^a)$, $pt^b = n^b(pt_1^b, \dots, pt_k^b)$, and $n^a = n^b = n$, $pt^a \lor pt^b = n(pt_1^a \lor pt_1^b, \dots, pt_k^a \lor pt_k^b)$.

Theorem 1.2. Fixed patterns partially ordered by \leq is a join-semilattice under \vee .

Proof. We can show that $pt^a \leq pt^a \vee pt^b$ with the previous two conditions as initial cases, and for the condition where $pt^a = n^a(pt_1^a, \ldots, pt_k^a)$, $pt^b = n^b(pt_1^b, \ldots, pt_k^b)$, and $n^a = n^b$, we can show $pt_i^a \leq pt_i^a \vee pt_i^b$ for $i = 1, \ldots, k$ recursively.

Similarly, we have $pt^b \prec pt^a \lor pt^b$.

Finally, we can show that supposed the least upper bound of pt^a and pt^b is l, then $l = pt^a \vee pt^b$.

For the previous two conditions, the result is obvious.

For the condition where $pt^a = n^a(pt_1^a, \ldots, pt_k^a)$, $pt^b = n^b(pt_1^b, \ldots, pt_k^b)$, and $n^a = n^b = n$, l must have the form $n(l_1, \ldots, l_k)$, and $l = pt^a \vee pt^b$ if and only if $l_i = pt_i^a \vee pt_i^b$ for $i = 1, \ldots, k$, which can be proved recursively. \square

Algorithm 1 Mining fixed patterns modulo example

```
1: function MINELUBS(I)
         \Sigma \leftarrow \{ \text{PATTERN}(n) \mid n \in I.N \}
                                                             \triangleright \Sigma is the accumulated fixed
    patterns.
         L \leftarrow \Sigma
                                                \triangleright L is the newly mined fixed patterns.
 3:
         while L \neq \emptyset do
 4:
             L' \leftarrow \{ \text{MERGELUB}(u, v) \mid u \in L \land v \in L \cup \Sigma \}
 5:
             L \leftarrow L' - \Sigma
 6:
             \Sigma \leftarrow \Sigma \cup L
 7:
         return \Sigma
 8:
 9: function MergeLub(u, v)
         if u = v then
10:
11:
             return u
         else if u = * or v = * or u, v do not have the same AST type then
12:
             return *
13:
         else
14:
             lu \leftarrow u.children
15:
             lv \leftarrow v.children
16:
             return Pattern(u.astType, MergeLub(lu_1, lv_1),..., MergeLub(lu_k, lv_k))
17:
```

Theorem 1.3. Algorithm 1 is bound to terminate.

Proof. As shown in Theorem 1.2, the MERGELUB(u,v) returns the least upper bound of u and v, and Σ is initialized by AST subtrees in I, which are also least upper bounds of themselves. Hence, Σ stores at most all the least upper bounds of the AST subsets in I, which is finite. After each iteration, L is either updated with unseen fixed patterns, or becomes empty. If L becomes empty, the algorithm terminates. If L is updated with unseen fixed patterns, the algorithm will terminate after a finite number of iterations. \square

Theorem 1.4. Algorithm 1 is sound (i.e., all the discovered patterns are LUBs of some AST subtrees in I) and complete (i.e., no LUB or equivalent class is missed).

Proof. (Soundness) Σ is initialized with the LUBs for each AST subtree in I (LUB for a subtree is the subtree itself), and MERGELUB(u,v) returns the LUB of u and v, which is the LUB of the subsets of ASTs represented by u and v. Therefore, all the fixed patterns in Σ are LUBs of some AST subtrees in I.

(Completeness) For any non-empty subset $\{n_1,\ldots,n_k\}\subseteq I.N$, the corresponding least upper bound must be in Σ . The iteration at line 5 of Algorithm 1 ensures that $n_1\vee n_2,\ n_1\vee n_2\vee n_3,\ \ldots,\ n_1\vee\ldots\vee n_k$ are all computed. Theorem 1.2 shows that $a\vee b$ is the least upper bound of a and b. Hence, the least upper bound of $\{n_1,\ldots,n_k\}$ must be in Σ .