Integrating Scientific Simulations with Machine Learning Algorithms

Ludger Paehler Jan Hückelheim Sri Hari Krishna Narayanan

SIAM CSE 2023

Welcome

Ludger Paehler

Jan Hückelheim

Krishna Narayanan

► Thanks for showing up on the last day!

What do we have in store

- ► Session 1:
 - ► Introduction
 - Seed matrices
 - ▶ Demo & Hands on: AD basics in PyTorch, Tapenade & Enzyme
- ► Session 2:
 - ► Interfacing in PyTorch
 - ▶ Demo & Hands on: Example 1
 - ▶ Demo & Hands on: Example 2

Resources: https://tinyurl.com/siamcse23

Our goals for this tutorial

Participants will . . .

- be able to use AD tools effectively,
- imagine what ML frameworks do "behind the scenes",
- understand how ML frameworks and simulation code can be interfaced
- understand enough about AD concepts that you can diagnose problems

What we assume about you

Computational scientists facing challenging problems, through advanced modeling and simulation, using the most capable computers.

- ▶ large complex codes
- continuously developed
- including sophisticated math/physics
- using multiple libraries
- performance is essential
- parallelism involved

Why derivatives?

Sensitivity Analysis:

Find sensitivity of the computed field wrt one input parameter

Why derivatives?

Why derivatives?

Inverse problems:

from measurements and model, estimate hidden parameters

Other uses: Reduced models, Error estimation, Mesh adaption, Uncertainty Quantification, Backpropagation for ML training...

What is AD?

The chain rule applied to algorithms

See any algorithm/program $P:\{I_1; I_2; \dots I_p;\}$ as:

$$F: \mathbb{R}^n \to \mathbb{R}^m \quad F = f_p \circ f_{p-1} \circ \cdots \circ f_1$$

Define for short:

$$V_0 =$$
input and $V_k = f_k(V_{k-1})$

Apply the chain rule:

$$F'(V_0) = f_p'(V_{p-1}) \times f_{p-1}'(V_{p-2}) \times \cdots \times f_1'(V_0)$$

...and transform P to make it compute that.

Cost considerations

$$F'(V_0) = f'_p(V_{p-1}) \times f'_{p-1}(V_{p-2}) \times \cdots \times f'_1(V_0)$$

is often expensive:

- ▶ in computation time
- ▶ in storage space

What can save us:

- ▶ The shapes of the f'_k matter
- ► The final usage may not require the full F' but only a projection

Classical projections of F'

- $ightharpoonup F' imes \dot{V}_0$, "forward" or "tangent" mode
- $ightharpoonup \overline{V_p} imes F'$ "reverse" or "adjoint" mode

When full F' needed, use multi-directional AD

- $\rightarrow F' \times Id$ (or $Id \times F'$),
- \rightarrow possibly compressed as $F' \times S$ (or $S \times F'$)

For higher-order derivatives, differentiate F' If directional, differentiate $F' \times \dot{V}_0$

Focus on forward mode: $F' \times V_0$

$$F' \times \dot{V}_0 = f'_p(V_{p-1}) \times f'_{p-1}(V_{p-2}) \times \cdots \times f'_1(V_0) \times \dot{V}_0$$

 \dot{V}_0 is a vector \Rightarrow compute from right to left! This corresponds to P's original order \Rightarrow interleave derivative and primal computation. Easy!

Focus on reverse mode: $\overline{V_p} \times F'$

$$\overline{V_p} \times F' = \overline{V_p} \times f_p'(V_{p-1}) \times f_{p-1}'(V_{p-2}) \times \cdots \times f_1'(V_0)$$

Vector now on the left \Rightarrow compute from left to right Not so easy, but worth the effort!

A forward sweep, and then a backward sweep The derivative instructions form the backward sweep "Data-flow reversal" to get V_k 's in reverse order

Cost model

$$F : \mathbf{in} \in \mathbb{R}^n \to \mathbf{out} \in \mathbb{R}^m$$

- ▶ full F' cost grows like n using the forward mode Good if $n \le m$
- ▶ full F' cost grows like m using the reverse mode Good if n >> m (e.g. m = 1 for a gradient)

End of basics

Let's look in detail!