# More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server

Q. Ho, J. Cipar, H. Cui, J.K. Kim, S. Lee, \*P.B. Gibbons, G.A. Gibson, G.R. Ganger, E.P. Xing

\*Intel Labs





#### Distributed ML: one machine to many

- Setting: have iterative, parallel ML algorithm
  - E.g. optimization, MCMC algorithms
  - For topic models, regression, matrix factorization, SVMs, DNNs, etc.
- Critical updates executed on one machine, in parallel
  - Worker threads share global model parameters θ via RAM



#### Distributed ML: one machine to many

- Want: scale up by distributing ML algorithm
  - Must now share parameters over a network
- Seems like a simple task...
  - Many distributed tools available, so just pick one and go?



Multiple machines, communicating over network switches



multiple threads



## Distributed ML Challenges

- Not quite that easy...
- Two distributed challenges:
  - Networks are slow
  - "Identical" machines rarely perform equally







### Networks are (relatively) slow

- Low network bandwidth:
  - 0.1-1GB/s (inter-machine) vs ≥20GB/s (CPU-RAM)
  - Fewer parameters transmitted per second
- High network latency (messaging time):
  - 10,000-100,000 ns (inter-machine) vs 100 ns (CPU-RAM)
  - Wait much longer to receive parameters



# Networks are (relatively) slow

- Parallel ML requires frequent synchronization
  - Exchange 10-1000K scalars per second, per thread
  - Parameters not shared quickly enough → communication bottleneck
- Significant bottleneck over a network!



### Networks are (relatively) slow

#### Time Breakdown: Compute vs Network

LDA 32 machines (256 cores), 10% data per iter



For a "clean" setting with <u>full control over machines</u> and <u>full network capacity</u>
Real clusters with many users have even worse network:compute ratios!

# Machines don't perform equally

- Even when configured identically
- Variety of reasons:
  - Vibrating hard drive
  - Background programs; part of a distributed filesystem
  - Other users
  - Machine is a VM/cloud service
- Occasional, random slowdowns in different machines









#### Consequence: Scaling up ML is hard!

- Going from 1 to N machines:
  - Naïve implementations rarely yield N-fold speedup
    - Slower convergence due to machine slowdowns, network bottlenecks
  - If not careful, even worse than a single machine!
    - Algorithm diverges due to errors from slowdowns!















#### Existing general-purpose scalable ML

#### Theory-oriented

- Focus on algorithm correctness/convergence
- Examples:
  - Cyclic fixed-delay schemes (Langford et al., Agarwal & Duchi)
  - Single-machine asynchronous (Niu et al.)
  - Naively-parallel SGD (Zinkevich et al.)
  - Partitioned SGD (Gemulla et al.)
- May oversimplify systems issues
  - e.g. need machines to perform consistently
  - e.g. need lots of synchronization
  - e.g. or even try not to communicate at all

#### **Systems-oriented**

- Focus on high iteration throughput
- Examples:
  - MapReduce: Hadoop and Mahout
  - Spark
  - Graph-based: GraphLab, Pregel
- May oversimplify ML issues
  - e.g. assume algorithms "just work" in distributed setting, without proof
  - e.g. must convert programs to new programming model; nontrivial effort





#### Existing general-purpose scalable ML

#### Theory-oriented

- Focus on algorithm correctness/convergence
- Examples:
  - Cyclic fixed-delay schemes (Langford et al., Agarwal & Duchi)
  - Single-machine asynchronous (Niu et al.)
  - Naively-parallel SGD (Zinkevich et al.)
  - Partitioned SGD (Gemulla et al.)
- May oversimplify systems issues
  - e.g. need machines to perform consistently
  - e.g. need lots of synchronization
  - e.g. or even try not to communicate at all

#### **Systems-oriented**

- Focus on high iteration throughput
- Examples:
  - MapReduce: Hadoop and Mahout
  - Spark
  - Graph-based: GraphLab, Pregel
- May oversimplify ML issues
  - e.g. assume algorithms "just work" in distributed setting, without proof
  - e.g. must convert programs to new programming model; nontrivial effort

#### Can we take both sides into account?





## Middle of the road approach

- Want: ML algorithms converge quickly under imperfect systems conditions
  - e.g. slow network performance
  - e.g. random machine slowdowns
  - Parameters are not communicated consistently
- Existing work: mostly use one of two communication models
  - Bulk Synchronous Parallel (BSP)
  - Asynchronous (Async)
- First, understand pros and cons of BSP and Async





### Bulk Synchronous Parallel

Synchronization Barrier (Parameters read/updated here)



**Time** 

#### Threads synchronize (wait for each other) every iteration

Threads all on same iteration #

Parameters read/updated at synchronization barriers





#### The cost of synchronicity



**Time** 

- (a) Machines perform unequally
- (b) Algorithmic workload imbalanced

So threads must wait for each other

End-of-iteration sync gets longer with larger clusters (due to slow network)



#### The cost of synchronicity



**Time** 

Threads must wait for each other End-of-iteration sync gets longer with larger clusters

**Precious computing time wasted** 





#### Asynchronous

Parameters read/updated at any time



#### Threads proceed to next iteration without waiting

Threads not on same iteration #
Parameters read/updated any time





#### Slowdowns and Async

Difference in iterations → parameter error



Time

Machine suddenly slows down (hard drive, background process, etc.)

Causing iteration difference between threads

Leading to error in parameters





#### Async worst-case situation

Difference in iterations → parameter error



#### Large clusters have arbitrarily large slowdowns!

Machines become inaccessible for extended periods

**Error becomes unbounded!** 





### What we really want

- "Partial" synchronicity
  - Spread network comms evenly (don't sync unless needed)
  - Threads usually shouldn't wait but mustn't drift too far apart!
- Straggler tolerance
  - Slow threads must somehow catch up
- Is there a middle ground between BSP and Async?



**BSP** 

**???** 

**Async** 

## That middle ground

- "Partial" synchronicity
  - Spread network comms evenly (don't sync unless needed)
  - Threads usually shouldn't wait but mustn't drift too far apart!
- Straggler tolerance
  - Slow threads must somehow catch up



# That middle ground

#### How do we realize this?



#### Stale Synchronous Parallel



Note: x-axis is now <u>iteration count</u>, not time!

#### Allow threads to <u>usually</u> run at own pace

Fastest/slowest threads not allowed to drift >S iterations apart
Threads cache local (stale) versions of the parameters, to reduce network syncing

### Stale Synchronous Parallel



A thread at iter T <u>sees all parameter updates</u> before iter T-S Protocol: check cache first; if too old, get latest version from network

Consequence: fast threads must check network every iteration

Slow threads only check every S iterations – fewer network accesses, so catch up!

### SSP provides best-of-both-worlds

- SSP combines best properties of BSP and Async
- BSP-like convergence guarantees
  - Threads cannot drift more than S iterations apart
  - Every thread sees all updates before iteration T-S
- Asynchronous-like speed
  - Threads usually don't wait (unless there is drift)
  - Slower threads read from network less often, thus catching up
- SSP is a spectrum of choices
  - Can be fully synchronous (S = 0) or very asynchronous (S  $\rightarrow$  ∞)
  - Or just take the middle ground, and benefit from both!









Instead of  $x_{true}$ , SSP sees  $x_{stale} = x_{true} + error$ 

The error caused by staleness is bounded

Over many iterations, average error goes to zero

SSP approximates sequential execution



Compare actual update order to ideal sequential execution





#### SSP approximates sequential execution



SSP may lose up to S iterations of updates to the left...





#### SSP approximates sequential execution



... as well as gain up to S iterations of updates to the right





#### SSP approximates sequential execution



Thus, at most 2S-1 iterations of erroneous updates

Hence numeric error in parameters is also bounded

Partial, but bounded, loss of serializability





### Convergence Theorem

- Want: minimize convex  $f(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} f_t(\mathbf{x})$  (Example: Stochastic Gradient)
  - L-Lipschitz, problem diameter bounded by F<sup>2</sup>
  - Staleness s, using P threads across all machines
  - Use step size  $\eta_t = \frac{\sigma}{\sqrt{t}}$  with  $\sigma = \frac{F}{L\sqrt{2(s+1)P}}$





### Convergence Theorem

- Want: minimize convex  $f(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} f_t(\mathbf{x})$  (Example: Stochastic Gradient)
  - L-Lipschitz, problem diameter bounded by F<sup>2</sup>
  - Staleness s, using P threads across all machines
  - Use step size  $\eta_t = \frac{\sigma}{\sqrt{t}}$  with  $\sigma = \frac{F}{L\sqrt{2(s+1)P}}$

Difference between SSP estimate and true optimum



- Where *T* is the number of iterations
- Note: RHS bound contains (L, F) and (s, P)
  - The interaction between theory and systems parameters





#### SSP solves Distributed ML challenges

- SSP is a synchronization model for fast and correct distributed ML
  - For "abelian" parameter updates of the form  $\theta_{new} = \theta_{old} + \Delta$
- SSP reduces network traffic
  - Threads use stale local cache whenever possible
  - Addresses slow network and occasional machine slowdowns







# SSP + Parameter Server = Easy Distributed ML

- We implement SSP as a "parameter server" (PS)†, called SSPTable
  - Provides all machines with convenient access to global model parameter
  - Can be run on multiple machines reduces load per machine
- SSPTable allows easy conversion of single-machine parallel ML algorithms
  - "Distributed shared memory" programming style
  - No need for complicated message passing
  - Replace local memory access with PS access



Single Machine Parallel

```
UpdateVar(i) {
  old = y[i]
  delta = f(old)
  y[i] += delta
}
```

Distributed with SSPTable

```
UpdateVar(i) {
  old = PS.read(y,i)
  delta = f(old)
  PS.inc(y,i,delta)
}
```

## **SSPTable Programming**

- Easy, table-based programming just 3 commands!
  - No message passing, barriers, locks, etc.
- read\_row(table,row,s)
  - Retrieve a table row with staleness s
- inc(table,row,col,value)
  - Increment table's (row,col) by value
- clock()
  - Inform PS that this thread is advancing to the next iteration





# SSPTable Programming

- Just put global parameters in SSPTable! Examples:
- Topic Modeling (MCMC)
  - Topic-word table
- Matrix Factorization (SGD)
  - Factor matrices L, R
- Lasso Regression (CD)
  - Coefficients β
- SSPTable supports generic classes of algorithms
  - With these models as examples







#### SSPTable uses networks efficiently

#### **Time Breakdown: Compute vs Network**

LDA 32 machines (256 cores), 10% data per iter



## SSPTable uses networks efficiently

### Time Breakdown: Compute vs Network

LDA 32 machines (256 cores), 10% data per iter



Network communication is a huge bottleneck with many machines SSP balances network and compute time

## SSPTable vs BSP and Async

#### **LDA on NYtimes Dataset**

LDA 32 machines (256 cores), 10% docs per iter



BSP has strong convergence guarantees but is slow Asynchronous is fast but has weak convergence guarantees

#### NYtimes data

N = 100M tokens

K = 100 topics

V = 100K terms

## SSPTable vs BSP and Async

#### **LDA on NYtimes Dataset**

LDA 32 machines (256 cores), 10% docs per iter



NYtimes data

N = 100M tokens

K = 100 topics

V = 100K terms

BSP has strong convergence guarantees but is slow Asynchronous is fast but has weak convergence guarantees SSPTable is fast and has strong convergence guarantees

# The Quality vs Quantity tradeoff

### **Quantity: iterations versus time**

LDA 32 machines, 10% data



#### **Quality: objective versus iterations**

LDA 32 machines, 10% data



### Progress per time is (iters/sec) \* (progress/iter)

High staleness yields more iters/sec, but lowers progress/iter

Find the sweet spot staleness >0 for maximum progress per second

# The Quality vs Quantity tradeoff



Progress per time is (iters/sec) \* (progress/iter)

High staleness yields more iters/sec, but lowers progress/iter

Find the sweet spot staleness >0 for maximum progress per second

# Matrix Factorization (Netflix)

### **Objective function versus time**

MF 32 machines (256 threads)

Netflix data 100M nonzeros 480K rows 18K columns rank 100







# LASSO (Synthetic)

Synthetic data

N = 500 samples

P = 400K features







# SSPTable scaling with # machines

#### **LDA on NYtimes dataset**



SSP computational model scales with increasing # machines (given a fixed dataset)

### Recent Results

- Using 8 machines \* 16 cores = 128 threads
  - 128GB RAM per machine
- Latent Dirichlet Allocation
  - NYTimes dataset (100M tokens, 100K words, 10K topics)
    - SSP 100K tokens/s
    - GraphLab 80K tokens/s
  - PubMed dataset (7.5B tokens, 141K words, 100 topics)
    - SSP 3.3M tokens/s
    - GraphLab 1.8M tokens/s
- Network latent space role modeling
  - Friendster network sample (39M nodes, 180M edges)
  - 50 roles: SSP takes 14h to converge (vs 5 days on one machine)





### **Future work**

### Theory

- SSP for MCMC
- Automatic staleness tuning
- Average-case analysis for better bounds

### Systems

- Load balancing
- Fault tolerance
- Prefetching
- Other consistency schemes

### Applications

- Hard-to-parallelize ML models
- DNNs, Regularized Bayes, Network Analysis models





### Coauthors



James Cipar



Henggang Cui



Jin Kyu Kim



Seunghak Lee



Phillip B. Gibbons



Garth A. Gibson



Gregory R. Ganger



Eric P. Xing



# **Workshop Demo**

- SSP is part of a bigger system: Petuum
  - SSP parameter server
  - STRADS dynamic variable scheduler
  - More features in the works
- We have a demo!
  - Topic modeling (8.2M docs, 7.5B tokens, 141K words, 10K topics)
  - Lasso regression (100K samples, 100M dimensions, 5 billion nonzeros)
  - Network latent space modeling (39M nodes, 180M edges, 50 roles)
- At BigLearning 2013 workshop (Monday)
  - http://biglearn.org/





# Summary

- Distributed ML is nontrivial
  - Slow network
  - Unequal machine performance
- SSP addresses those problems
  - Efficiently use network resources; reduces waiting time
  - Allows slow machines to catch up
  - Fast like Async, converges like BSP
- SSPTable parameter server provides easy table interface
  - Quickly convert single-machine parallel ML algorithms to distributed
- Slides: www.cs.cmu.edu/~qho/ssp\_nips2013.pdf



