Colpier Clément Fornara Thibault Pellegrino Guillaume Renard Charles

Projet de Mathématiques appliquées PR3003 _

Table des matières

1	Dét	erminer l'équation différentielle vérifiée par $\mathrm{M}(\mathrm{t}){=}(\mathrm{x}(\mathrm{t}),\mathrm{y}(\mathrm{t})).$	4
	1.1	Projection du Poids sur la composante tangentielle	5
	1.2	Projection de la tension du ressort su la composante tangentielle	5
		1.2.1 Methode de Guillaume, diff d'angle	6
		1.2.2 Methode de Charles, Al-Kashi	7
	1.3	Determination de $ T $	7
	1.4	Détermination de a_t	7
	1.5	Détermination de l'équation différentielle	8

1 Déterminer l'équation différentielle vérifiée par M(t)=(x(t),y(t)).

La masselotte M se déplace uniquement selon la composante tangentielle. Pour déterminer l'équation différentielle on va donc particulièrement s'intéresser à l'équation sur la composante tangentielle. Pour cela, on commence à faire la somme des forces s'exerçant sur la composante tangentielle $\vec{u_t}$ et normale $\vec{u_n}$:

$$\left\{ \begin{array}{l} P_t + T_t = ma_t \\ P_n + R_n + T_n = 0 \end{array} \right.$$

On s'intéresse à l'équation :

$$P_t + T_t = ma_t$$

Pour déterminer l'équation différentielle, on doit alors projeter \vec{T} et \vec{mg} sur $\vec{u_t}$. On projette $\vec{mg}=-mg.\vec{u_y}$ sur $\vec{u_t}$

Projection du Poids sur la composante tangentielle 1.1

On remarque sur le graphique que $P_t = P.\cos(\alpha)$

On cherche à déterminer α . On calcule la pente a de la tige parabolique. $a = \frac{\partial y}{\partial x} = \frac{\partial x^2/2}{\partial x} = x$ En $M(x_0, y_0)$ la pente a de la tige parabolique vaut donc x_0 . Cette pente a nous permet de calculer l'angle α . En effet, on remarque graphiquement que $\tan(\alpha) = \frac{1}{a}$. On en déduit : $\alpha = \tan^{-1}(\frac{1}{x_0})$

Au final on trouve donc : $P_t = P.\cos(\tan^{-1}(\frac{1}{x_0}))$ Or $\cos(\tan^{-1}(x)) = \frac{1}{1+x^2}$ On en déduit donc : $P_t = P.\frac{1}{1+1/x_0^2}$ D'où :

$$P_t = P.\frac{x_0}{1+x_0^2}$$

Projection de la tension du ressort su la composante tangentielle

On projette désormais \vec{T} sur $\vec{u_t}$.

1.2.1 Methode de Guillaume, diff d'angle

$$\cos(\phi) = \frac{x}{\sqrt{x^2 + y^2}} = \frac{1}{\sqrt{1 + x^2}}$$

$$\cos(\theta) = \frac{x}{\sqrt{(1-y)^2 + x^2}} = \frac{x}{\sqrt{1+x^4/4}}$$

$$\cos(\theta) = \frac{x}{\sqrt{(1-y)^2 + x^2}} = \frac{x}{\sqrt{1+x^4/4}}$$
Et: $T_t = T \cdot \cos(\alpha 2) = T \cdot \cos(\phi - \theta) = T[\cos(\phi) \cdot \cos(\theta) + \sin(\phi) \cdot \sin(\theta)]$
On en déduit:
$$T_t = T[\frac{1}{\sqrt{1+x^2}} \cdot \frac{x}{\sqrt{1+x^4/4}} + \sin(\cos^{-1}(\frac{1}{\sqrt{1+x^2}})) \cdot \sin(\cos^{-1}(\frac{x}{\sqrt{1+x^4/4}}))]$$
Or: $\sin(\cos^{-1}(u)) = \sqrt{1-u^2}$

On trouve donc :

$$T_t = T \cdot \left[\frac{1}{\sqrt{1+x^2}} \cdot \frac{x}{\sqrt{1+x^4/4}} + \sqrt{1 - \frac{1}{1+x^2}} \cdot \sqrt{1 - \frac{x^2}{1+x^4/4}} \right]$$

1.2.2Methode de Charles, Al-Kashi

On note x,y les coordonnées du point M.
$$a = \sqrt{(x_M - x_P)^2 + (y_M - y_P)^2} = \sqrt{x^2 + (\frac{x^2}{2} - 1)} = \sqrt{x^2 + \frac{x^4}{4} - x^2 + 1} = \sqrt{\frac{x^4}{4} + 1}$$

$$b = \sqrt{(x_M - x_P)^2 + (y_M - \Delta(0))^2} = \sqrt{x^2 + (\frac{x^2}{2} + \frac{x^2}{2})^2} = \sqrt{x^2 + x^4} = x\sqrt{1 + x^2}$$
 note : faut-il mettre plutôt $|x|\sqrt{1 + x^2}$?

$$c = \sqrt{(y_p - \Delta(0))^2} = \sqrt{(1 + \frac{x^2}{2})^2} = 1 + \frac{x^2}{2}$$

$$c^2 = a^2 + b^2 - 2ab \times \cos(\beta)$$

D'après le théorème d'Al-Kashi :
$$x_1 = \frac{5+\sqrt{25-4\times6}}{2} = 3$$
 $c^2 = a^2 + b^2 - 2ab \times \cos(\beta)$ $\cos(\beta) = \frac{a^2+b^2-c^2}{2ab} = \frac{x^4/4+1+x^2+x^4-1-x^2-x^4/4}{2x\sqrt{x^4/4+1}\sqrt{1+x^2}} = \frac{x^3}{2\sqrt{\frac{x^4}{4}+1}\sqrt{1+x^2}}$

On trouve donc :

$$T_t = T \times \frac{x^3}{2\sqrt{\frac{x^4}{4} + 1}\sqrt{1 + x^2}}$$

1.3Determination de ||T||

On détermine la valeur de la tension du ressort.

T =
$$k(l - l_0) = k(\sqrt{(x_M - x_P)^2 + (y_M - y_P)^2} - l_0) = k(\sqrt{x^2 + (x^2/2 - 1)^2} - l_0)$$

T = $k(\sqrt{x^2 + x^4/4 - x^4 + 1} - l_0)$

$$T = k(\sqrt{1 + \frac{x^4}{4} - l_0})$$

1.4 Détermination de a_t

On a vu dans la première équation que $a_n = 0$. On en déduit : $||\vec{a}|| = a_t$ Avec une accélération normale nulle, on peut écrire la formule de l'accélération dans le repère de Frenet ainsi : $a_t = ||\vec{a}||$

Or
$$||\vec{a}|| = \frac{\partial v}{\partial t} = \frac{\partial \pm \sqrt{\dot{x}^2 + \dot{y}^2}}{\partial t}$$

 $\dot{y} = \frac{\partial y}{\partial t} = \frac{\partial y}{\partial x} \times \frac{\partial x}{\partial t} = x\dot{x}$
 $v = \sqrt{\dot{x}^2 + \dot{x}^2 x^2} = \dot{x}\sqrt{1 + x^2}$
 $\frac{\partial v}{\partial t} = \ddot{x}\sqrt{1 + x^2} + \frac{\dot{x}^2 x}{\sqrt{1 + x^2}}$
On trouve:

$$a_t = \ddot{x}.\sqrt{1+x^2} + \frac{\dot{x}^2.x}{\sqrt{1+x^2}}$$

(Equation de Charles)

1.5 Détermination de l'équation différentielle

A l'aide de ce qu'on a calculé précédemment on développe l'équation $mg_t + T_t = ma_t$ pour déterminer l'équation différentielle. On obtient alors :

$$mg.\frac{x}{1+x^2} + k(l-l_0).\left[\frac{1}{\sqrt{1+x^2}}.\frac{x}{\sqrt{1+x^4/4}} + \sqrt{1-\frac{1}{1+x^2}}.\sqrt{1-\frac{x^2}{1+x^4/4}}\right] - m.\ddot{x}.\sqrt{1+x^2} - m.\frac{\dot{x}^2.x}{\sqrt{1+x^2}} = 0$$

Equa diff de Charles :