

1 Logische Verknüpfungen

Betrachtet man die binären Zahlen 0 und 1 als Zustände, so kann man ihnen entsprechende Wahrheitswerte 0=false und 1=true zuweisen. Verknüpft man zwei Zustände, so ist der Ausgang (Output) abhängig von den eingehenden (Input) Zuständen. Dabei können auch wieder nur die entsprechenden Zustände 0=false und 1=true angenommen werden.

Es stellt sich nun die Frage, welche Verknüpfungen gibt es?

Hier ist zu unterscheiden zwischen **Grundverknüpfungen** und **Erweiterte Verknüpfungen**¹.

Nachfolgend betrachten wir zunächst die <u>drei</u> Grundverknüpfungen. Dazu zählt zum einen die Funktionalität, das gebräuchlichste Schaltsymbol sowie die dazugehörige Wahrheitstabelle.

1.1 Grundverknüpfungen

Wir bezeichnen diese Verknüpfungen als *Grundverknüpfungen*, da sie selbst nur unter Verwendung der anderen Grundverknüpfung dargestellt werden kann und sie zudem in Kombination alle in *Erweiterte Verknüpfungen* dargestellten Verknüpfungen erzeugen können.

NOT

Die **NOT**-Verknüpfung wird auch als *Negation* bezeichnet. Sie negiert also ihren Eingangszustand.

Geht ein 0 rein, so kommt eine 1 raus.

AND

Für die **AND**-Verknüpfung kann auch der Begriff *Konjunktion* verwendet werden.

Sie verknüpft die <u>zwei</u> Eingangszustände als logisches UND. Dabei ist der Output nur dann 1, wenn <u>beide</u> Eingangszustände 1 sind.

		x_1	x_2	$f(x_1;x_2)$
-	٦.	0	0	0
. &	Ŀ	0	1	0
1		1	0	0
	5.3	1	1	1

OR.

Die **OR**-Verknüpfung wird auch als *Disjunktion* bezeichnet.

Sie verknüpft die <u>zwei</u> Eingangszustände als logisches ODER. Dabei ist der Output in dem Moment $\mathbf{1}$, wenn <u>mindestens einer</u> der beiden Eingangszustände $\mathbf{1}$ ist.

		x_1	x_2	$f(x_1;x_2)$
+	1.	0	0	0
: ≥1	-	0	1	1
		1	0	1
		1	1	1

1.2 Erweiterte Verknüpfungen

NAND

Die Verknüpfung entspricht dem AND. **Vorsicht:**Das Ausgangssignal wird negiert. Es ist also **immer 1**, <u>außer wenn beide</u> Eingangszustände **1**sind.

¹Die Bezeichnung ist selbst gewählt.

NOR

Die Verknüpfung entspricht dem OR. <u>Aber</u> auch hier wird das Ausgangssignal negiert. Entsprechend ist der Output **nur 1**, <u>wenn beide</u> Eingangszustände $\mathbf{0}$ sind.

	x_1	x_2	$f(x_1;x_2)$
- T	0	0	1
≥1 。	0	1	0
	1	0	0
	1	1	0

XOR

Die logische Verknüpfung OR wird hier verschärft. Das Ausgangssignal ist **nur genau dann** 1, <u>wenn eine</u> der beiden Eingangssignale 1 ist.

<-> (XNOR)

Diese Verknüpfung entspricht dem invertierten XOR. Das bedeutet, das Ausgangssignal ist **genau dann 1**, wenn <u>beide</u> Eingangszustände $\mathbf{0}$ oder <u>beide</u> $\mathbf{1}$ sind.

	x_1	x_2	$f(x_1;x_2)$
	0	0	1
=	0	1	0
<u> </u>	1	0	0
	1	1	1

Ihre Aufgabe:

Überlegen Sie für die einzelnen Erweiterten Verknüpfungen, wie sie diese <u>nur</u> unter Verwendung der **Grundverknüpfungen** realisieren können.