

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introductio

Handle decompositions

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture for n > 6

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

GeoTop department University of Copenhagen

January 2023

Overview

Surgery theory: s-cobordism theorem

Daniel Expósite Patiño

Introduction

Handle decompositions of cobordism

CW-Structures

Whitehead groups & Whitehead

Poincaré conjecture for n > 6.

- Introduction
- 2 Handle decompositions of cobordisms
- 3 CW-Structures
- Whitehead groups & Whitehead torsion
- **6** Poincaré conjecture for $n \ge 6$.

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-

Whitehead groups & Whitehead torsion

Poincaré conjecture for

• Introduction

- 2 Handle decompositions of cobordisms
- CW-Structures
- Whitehead groups & Whitehead torsion
- **5** Poincaré conjecture for $n \ge 6$.

Problem to solve

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introduction

Handle decompositions of cobordism

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture fo

Problem to solve

We want to be able to determine when two n-manifolds M and N are homeomorphic or even better, diffeomorphic.

For this, s—cobordism theorem. We will use it to prove Poincaré conjecture for $n \ge 6$.

h-cobordism def

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introduction

Handle decompositions of cobordism

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture for n > 6.

Definition

A cobordism $(W; M_0, f_0, M_1, f_1)$ is called an h-cobordism if the inclusions

$$\partial_i W \hookrightarrow W$$

are homotopy equivalences for i = 0, 1.

Definition

An h—cobordism over M_0 is *trivial* if it is diffeomorphic relative M_0 to $(M_0 \times [0, 1]; M_0 \times \{0\}, M_0 \times \{1\})$.

h-Cobordism theorem

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-Structures

Whitehead groups & Whitehead

Poincaré conjecture for n > 6.

Theorem (h—cobordism th)

Every h—cobordism over a simply connected closed manifold M_0 with $dim(M_0) \ge 5$ is trivial.

Theorem (s-cobordism th)

Let M_0 be a closed connected smooth manifold of dimension $n \ge 6$ with fundamental group $\pi = \pi_1(M_0)$. Then

- $\tau(W, M_0)$ is an obstruction for W being trivial;
- Diff $(W, M_0) \leftrightarrow Wh(\pi)$.

h—Cobordism theorem

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture fo n > 6.

Theorem (h—cobordism th)

Every h—cobordism over a simply connected closed manifold M_0 with $dim(M_0) \geq 5$ is trivial.

Theorem (s-cobordism th)

Let M_0 be a closed connected smooth manifold of dimension $n \geq 6$ with fundamental group $\pi = \pi_1(M_0)$. Then

- $\tau(W, M_0)$ is an obstruction for W being trivial;
- Diff(W, M_0) \leftrightarrow $Wh(\pi)$.

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

of cobordisn

Whitehead groups & Whitehead

Poincaré conjecture for n. > 6.

- 1 Introduction
- Handle decompositions of cobordisms
- 3 CW-Structures
- 4 Whitehead groups & Whitehead torsion
- **5** Poincaré conjecture for $n \ge 6$.

Handles

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introductio

Handle decompositions of cobordisms

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture fo n. > 6.

Definition

We refer to $D^q \times D^{n-q}$ as a q-handle.

A q—handle has a core $D^q \times \{0\}$ with boundary $S^{q-1} \times \{0\}$ and a cocore $\{0\} \times D^{n-q}$ whose boundary $\{0\} \times S^{n-q-1}$ is called transverse sphere of the handle.

Given M an n-dimensional manifold with boundary ∂M and a embedding $\varphi^q:S^{q-1}\times D^{n-q}\hookrightarrow \partial M$ define a new n-dimensional manifold $M+(\varphi^q)$ with a handle of index q attached by

$$M \cup_{\phi^q} (D^q \times D^{n-q}).$$

Handles

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introductio

Handle decompositions of cobordisms

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture fo $n \geq 6$.

Definition

We refer to $D^q \times D^{n-q}$ as a q-handle.

A q—handle has a core $D^q \times \{0\}$ with boundary $S^{q-1} \times \{0\}$ and a cocore $\{0\} \times D^{n-q}$ whose boundary $\{0\} \times S^{n-q-1}$ is called transverse sphere of the handle.

Given M an n-dimensional manifold with boundary ∂M and an embedding $\varphi^q:S^{q-1}\times D^{n-q}\hookrightarrow \partial M$ define a new n-dimensional manifold $M+(\varphi^q)$ with a handle of index q attached by

$$M \cup_{\varphi^{\mathfrak{q}}} (D^{\mathfrak{q}} \times D^{n-\mathfrak{q}}).$$

Handle decomposition

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-Structure

Whitehead groups & Whitehead

Poincaré conjecture for n. > 6.

Definition

Given a compact n—manifold W with boundary $\partial_0 W \coprod \partial_1 W$, a handle decomposition of W is

$$W = \partial_0 W \times [0, 1] + (\varphi_1^{q_1}) + (\varphi_2^{q_2}) + \dots + (\varphi_r^{q_r})$$

This will be a basic tool, but how do we get a handle decomposition of our cobordisms?

Morse function induces handle decomposition

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture for

We now want to reduce the handle decomposition given by the morse function in a way that allows us to prove our theorems.

First lemmas

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introductio

Handle decompositions of cobordisms

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture for n > 6

Lemma (Isotopy Lemma)

Let W be an $\mathfrak{n}-$ dimensional compact manifold, with $\partial W=\partial_0 W\coprod\partial_1 W.$ If $\varphi^q,\psi^q:S^{q-1}\times D^{\mathfrak{n}-q}\hookrightarrow \partial_1 W$ are isotopic embeddings, then there is a diffeomorphism $W+(\varphi^q)\to W+(\psi^q)$ relative $\partial_0 W.$

Lemma (Diffeomorphism Lemma)

Given two n-manifolds W, W' with $\partial W = \partial_0 W \coprod \partial_1 W$ and $\partial W' = \partial_0 W' \coprod \partial_1 W'$. Let $F: W \to W'$ be a diffeomorphism, inducing a diffeo $f_0: \partial_0 W \to \partial_0 W'$.

Given an embedding $\Phi^q: S^{q-1} \times D^{n-q} \hookrightarrow \partial_1 W$, there is an embedding $\bar{\Phi}^q: S^{q-1} \times D^{n-q} \hookrightarrow \partial_1 W'$ and a diffeomorphism $F': W + (\Phi^q) \to W' + (\bar{\Phi}^q)$ which induces f_0 on $\partial_0 W$.

First lemmas

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introductio

Handle decompositions of cobordisms

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture fo n. > 6.

Lemma (Isotopy Lemma)

Let W be an $\mathfrak{n}-$ dimensional compact manifold, with $\partial W=\partial_0 W\coprod\partial_1 W.$ If $\varphi^q,\psi^q:S^{q-1}\times D^{\mathfrak{n}-q}\hookrightarrow \partial_1 W$ are isotopic embeddings, then there is a diffeomorphism $W+(\varphi^q)\to W+(\psi^q)$ relative $\partial_0 W.$

Lemma (Diffeomorphism Lemma)

Given two n-manifolds W,W' with $\partial W=\partial_0 W\coprod\partial_1 W$ and $\partial W'=\partial_0 W'\coprod\partial_1 W'$. Let $F:W\to W'$ be a diffeomorphism, inducing a diffeo $f_0:\partial_0 W\to\partial_0 W'$.

Given an embedding $\phi^q: S^{q-1} \times D^{n-q} \hookrightarrow \partial_1 W$, there is an embedding $\bar{\phi}^q: S^{q-1} \times D^{n-q} \hookrightarrow \partial_1 W'$ and a diffeomorphism $F': W + (\phi^q) \to W' + (\bar{\phi}^q)$ which induces f_0 on $\partial_0 W$.

More lemmas

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

ıtroductioı

Handle decompositions of cobordisms

CW-Structure

Whitehead groups & Whitehead torsion

Poincaré conjecture foi n > 6.

Lemma (right order on handles)

Let W be an n-dim compact manifold with $\partial W = \partial_0 W \coprod \partial_1 W$. Suppose that $V = W + (\psi^r) + (\varphi^q)$ for $q \leq r$. Then V is a diffeo relative $\partial_0 W$ to

$$V' = W + (\bar{\varphi}^{\mathfrak{q}}) + (\psi^{\mathfrak{r}})$$

for an appropiate $\bar{\Phi}^q$.

Lemma (Cancellation lemma)

Now let $\varphi^q: S^{q-1} \times D^{n-q} \hookrightarrow \partial_1 W$ and $\psi^{q+1}: S^q \times D^{n-1-q} \hookrightarrow \partial_1 (W+(\varphi^q)) \ \ \text{be embeddings.}$ If $\psi^{q+1}(S^q \times \{0\})$ is transverse to the transverse sphere of $(\varphi$ and intersects it in exactly one point, then there is a diffeorelative $\partial_0 W$ form W to $W+(\varphi^q)+(\psi^{q+1}).$

More lemmas

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-Structur

Whitehead groups & Whitehead torsion

Poincaré conjecture for $n \geq 6$.

Lemma (right order on handles)

Let W be an $\mathfrak{n}-\text{dim}$ compact manifold with $\partial W=\partial_0 W\coprod\partial_1 W.$ Suppose that $V=W+(\psi^r)+(\varphi^q)$ for $q\leq r.$ Then V is a diffeo relative $\partial_0 W$ to

$$V' = W + (\bar{\varphi}^{\mathfrak{q}}) + (\psi^{\mathfrak{r}})$$

for an appropiate $\bar{\Phi}^q$.

Lemma (Cancellation lemma)

Now let $\varphi^q: S^{q-1} \times D^{n-q} \hookrightarrow \partial_1 W$ and $\psi^{q+1}: S^q \times D^{n-1-q} \hookrightarrow \partial_1 (W+(\varphi^q))$ be embeddings. If $\psi^{q+1}(S^q \times \{0\})$ is transverse to the transverse sphere of (φ^q) and intersects it in exactly one point, then there is a diffeorelative $\partial_0 W$ form W to $W+(\varphi^q)+(\psi^{q+1})$.

Handle cancellation

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-

Whitehead groups & Whitehead

Poincaré conjecture for

Notation

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture fo n. > 6.

For $-1 \le q \le n$ denote

$$W_{q} := \partial_{0}W \times [0,1] + \sum_{i=1}^{p_{0}} (\varphi_{i}^{0}) + \sum_{i=1}^{p_{1}} (\varphi_{i}^{1}) + \cdots + \sum_{i=1}^{p_{q}} (\varphi_{i}^{q});$$

$$\partial_1 W_q := \partial W_q - \partial_0 W \times \{0\};$$

$$\partial_1^{\circ} W_{\mathbf{q}} := \partial_1 W_{\mathbf{q}} - \prod_{i=1}^{p+1} \Phi^{q+1}(S^{\mathbf{q}} \times int(D^{n-1-q})).$$

Notation

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture for n. > 6.

For $-1 \le q \le n$ denote

$$W_{q} := \partial_{0}W \times [0,1] + \sum_{i=1}^{p_{0}} (\varphi_{i}^{0}) + \sum_{i=1}^{p_{1}} (\varphi_{i}^{1}) + \cdots + \sum_{i=1}^{p_{q}} (\varphi_{i}^{q});$$

$$\partial_1 W_q := \partial W_q - \partial_0 W \times \{0\};$$

$$\partial_1^{\circ} W_{\mathbf{q}} := \partial_1 W_{\mathbf{q}} - \prod_{i=1}^{p+1} \Phi^{q+1}(S^{\mathbf{q}} \times int(D^{n-1-q})).$$

Notation

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture for n > 6.

For $-1 \le q \le n$ denote

$$W_{q} := \partial_{0}W \times [0,1] + \sum_{i=1}^{p_{0}} (\varphi_{i}^{0}) + \sum_{i=1}^{p_{1}} (\varphi_{i}^{1}) + \cdots + \sum_{i=1}^{p_{q}} (\varphi_{i}^{q});$$

$$\partial_1 W_q := \partial W_q - \partial_0 W \times \{0\};$$

$$\partial_1^{\circ} W_{\mathfrak{q}} := \partial_1 W_{\mathfrak{q}} - \coprod_{\mathfrak{q}} \Phi^{\mathfrak{q}+1} (S^{\mathfrak{q}} \times \operatorname{int}(D^{\mathfrak{n}-1-\mathfrak{q}})).$$

Elimination lemma

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-Structure

otructures
Whitehead
groups &

Poincaré conjecture fo n > 6.

Lemma

Suppose that for a fixed $1 \le q \le n-3$ we have that W looks like

$$W = \partial_0 W \times [0, 1] + \sum_{i=1}^{p_q} (\phi_i^q) + \sum_{i=1}^{p_{q+1}} (\phi_i^{q+1}) + \dots + \sum_{i=1}^{p_n} (\phi_i^n)$$

Now for an index $1 \le i_0 \le p_q$ suppose there is an embedding $\psi^{q+1}: S^q \times D^{n-1-q} \hookrightarrow \mathfrak{d}_1^\circ W_q$ satisfying:

i) $\psi^{q+1}|_{S^q \times \{0\}}$ is isotopic in $\partial_1 W_q$ to an embedding $\psi_1^{q+1}: S^q \times \{0\} \hookrightarrow \partial_1 W_q$ which meets the transverse sphere of $(\phi_{i_0}^q)$ transversally in exactly one point and is disjoint from transverse sphere of other handles.

Elimination lemma

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-Structure

Whitehead groups & Whitehead

Poincaré conjecture for n. > 6.

Lemma

Suppose that for a fixed $1 \le q \le n-3$ we have that W looks like

$$W = \partial_0 W \times [0, 1] + \sum_{i=1}^{p_q} (\phi_i^q) + \sum_{i=1}^{p_{q+1}} (\phi_i^{q+1}) + \dots + \sum_{i=1}^{p_n} (\phi_i^n)$$

Now for an index $1 \le i_0 \le p_q$ suppose there is an embedding $\psi^{q+1}: S^q \times D^{n-1-q} \hookrightarrow \mathfrak{d}_1^\circ W_q$ satisfying:

i) $\psi^{q+1}|_{S^q \times \{0\}}$ is isotopic in $\partial_1 W_q$ to an embedding $\psi_1^{q+1}: S^q \times \{0\} \hookrightarrow \partial_1 W_q$ which meets the transverse sphere of $(\varphi_{i_0}^q)$ transversally in exactly one point and is disjoint from transverse sphere of other handles.

Elimination lemma part 2

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture for n. > 6.

Continues

ii) $\psi^{q+1}|_{S^q \times \{0\}}$ is isotopic in $\partial_1 W_{q+1}$ to a trivial embedding $\psi_2^{q+1}: S^q \times \{0\} \hookrightarrow \partial_1^\circ W_{q+1}$.

Then W is diffeo relative $\partial_0 W$ to

$$\partial_0 W \times [0,1] + \sum_{i=1,\dots,p_q, i \neq i_0} (\varphi_i^q) + \sum_{i=1}^{p_{q+1}} (\bar{\varphi}_i^{q+1}) + (\psi^{q+2}) \cdots + \sum_{i=1}^{p_n} (\bar{\varphi}_i^n).$$

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introduction

Handle decompositions of cobordism

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture for n > 6

- 1 Introduction
- 2 Handle decompositions of cobordisms
- 3 CW-Structures
- Whitehead groups & Whitehead torsion
- **5** Poincaré conjecture for $n \ge 6$.

${\it W}$ as a pushout

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture for

We want to construct a CW complex $(X, \partial_0 W)$ and a homotopy equivalence

$$(f, id) : (W, \partial_0 W) \xrightarrow{\simeq} (X, \partial_0 W)$$

begin writing the diagram

$$\coprod_{1=1,\dots,p_q} S^{q-1} \times D^{n-q} \xrightarrow{\stackrel{1=1,\dots,p_q}{\longrightarrow}} W_{q-1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

CW construction

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

ntroduction

Handle decompositions of cobordisms

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture for n. > 6.

Construct by induction, $X_{-1} = \partial_0 W$ and $f_{-1} : \partial_0 W \times [0, 1] \rightarrow \partial_0 W$. Now,

Auxiliar spaces

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture for

$$(g_q, f_{q-1}): (Y_q, W_{q-1}) \to (X_q, X_{q-1})$$

 $(h_q, id): (Y_q, W_{q-1}) \to (W_q, W_{q-1})$

Auxiliar spaces

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture for

 $(h_a, id) : (Y_a, W_{a-1}) \to (W_a, W_{a-1})$

Set up for basis

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introduction

Handle decompositions of cobordism

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture for n > 6.

Also, consider $\widetilde{W} \xrightarrow{p} W$ universal cover of W and $\widetilde{W}_q = p^{-1}(W_q)$

Basis for $C_q(\tilde{W}, \partial_0 \tilde{W})$

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture for $n \geq 6$.

The image of the generator $H_q(D^q \times D^{n-q}, S^{q-1} \times D^{n-q}) \cong \mathbb{Z}$, well-defined up to multiplication by $\gamma \in \pi$, determines a $\mathbb{Z}\pi$ -basis $\{[\phi_i^q] \in C_q(\widetilde{W}, \widetilde{\mathfrak{do}}\widetilde{W}) \mid 1 \leq i \leq \mathfrak{p}_q\}$.

Normal Form Lemma

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture fo

Lemma

Normal form lemma Let $(W;\vartheta_0W,\vartheta_1W)$ be a compact h–cobordism of dim $n\geq 6.$ Let $2\leq q\leq n-3$ then there is a diffeo relative ϑ_0W

$$W \cong \partial_0 W \times [0,1] + \sum_{i=1}^{p_q} (\bar{\varphi}_i^q) + \sum_{i=1}^{p_{q+1}} (\bar{\varphi}_i^{q+1}).$$

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-

Whitehead groups & Whitehead torsion

Poincaré conjecture for n > 6.

- Introduction
- 2 Handle decompositions of cobordisms
- 3 CW-Structures
- Whitehead groups & Whitehead torsion
- **5** Poincaré conjecture for $n \ge 6$.

Matrix of the only differential

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introduction

Handle decompositions of cobordism

CW-

Whitehead groups & Whitehead

torsion

Poincaré conjecture for n > 6.

As W is an h-cobordism, the $\mathbb{Z}\pi$ -chain cx $C_*(W, \mathfrak{d}_0W)$ is acyclic. Hence

$$d_{q+1}: H_{q+1}(\widetilde{W_{q+1}}, \widetilde{W_q}) \to H_q(\widetilde{W_q}, \widetilde{W_{q-1}})$$

is bijective.

Now, consider the matrix A representing d_{q+1} on the $\mathbb{Z}\pi-\text{bases}$

$$\begin{split} ([\varphi_i^{q+1}])_{1 \leq i \leq p_q} \text{ of } H_{q+1}(\widetilde{W_{q+1}},\widetilde{W_q}) \text{ and} \\ ([\varphi_i^q])_{1 \leq i \leq p_q} \text{ of } H_q(\widetilde{W_q},\widetilde{W_{q-1}}). \end{split}$$

Matrix definition of $Wh(\pi)$

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-Structure

Whitehead groups & Whitehead torsion

Poincaré conjecture for n > 6.

Set of equivalence classes of matrices of arbitrary size with entries in $\mathbb{Z}\pi$ where two matrices are equivalent if they can be transformed into one another through:

i) Adding the k-th row multiplied by $x\in\mathbb{Z}\pi$ from the left to the l-th row (k \neq l);

ii)

$$B = \left(\begin{array}{cc} A & 0 \\ 0 & 1 \end{array}\right)$$

iii) Inverse of ii): eliminate column and row i if they have zeros excepto for position (i, i);

Matrix definition of $Wh(\pi)$

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-Structure

Whitehead groups & Whitehead torsion

Poincaré conjecture for $n \ge 6$.

Set of equivalence classes of matrices of arbitrary size with entries in $\mathbb{Z}\pi$ where two matrices are equivalent if they can be transformed into one another through:

i) Adding the k-th row multiplied by $x \in \mathbb{Z}\pi$ from the left to the l-th row (k \neq l);

ii)

$$B = \left(\begin{array}{cc} A & 0 \\ 0 & 1 \end{array}\right)$$

iii) Inverse of ii): eliminate column and row i if they have zeros excepto for position (i, i);

More equivalence operations

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introduction

Handle decompositions of cohordism

CW-

Whitehead groups & Whitehead torsion

Poincaré conjecture for

- iv) Multiplying the i—th row from the left with a trivial unit, i.e. $\pm \gamma$ for $\gamma \in \pi$;
- v) Interchange two rows or two columns.

Group structure given by

$$[A] \cdot [B] := [(A \oplus I_{\mathfrak{m}}) \cdot (B \oplus I_{\mathfrak{m}})]$$

then I_i acts as unit for any $i \in \mathbb{N}$. Inverse of [A] is $[A^{-1}]$.

More equivalence operations

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture for n. > 6.

- iv) Multiplying the i—th row from the left with a trivial unit, i.e. $\pm \gamma$ for $\gamma \in \pi$;
- v) Interchange two rows or two columns.

Group structure given by

$$[A] \cdot [B] := [(A \oplus I_m) \cdot (B \oplus I_n)]$$

then I_i acts as unit for any $i \in \mathbb{N}$. Inverse of [A] is $[A^{-1}]$.

More equivalence operations

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introduction

Handle decompositions of cobordism

CW-Structure

Whitehead groups & Whitehead torsion

Poincaré conjecture for > 6

- iv) Multiplying the i—th row from the left with a trivial unit, i.e. $\pm \gamma$ for $\gamma \in \pi$;
- v) Interchange two rows or two columns.

Group structure given by

$$[A] \cdot [B] := [(A \oplus I_{\mathfrak{m}}) \cdot (B \oplus I_{\mathfrak{n}})]$$

then I_i acts as unit for any $i \in \mathbb{N}$. Inverse of [A] is $[A^{-1}]$.

Proof of h—cobordism theorem

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introduction

Handle decompositions of cohordism

or cobordi CW-

Whitehead groups & Whitehead

torsion

Poincaré conjecture for n > 6

Proposition

The Whitehead group of the trivial group vanishes.

For s—cobordism theorem it will be enough to prove that $[A] = \tau(W, M_0)$.

Important lemma

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introductio

Handle decompositions of cobordisms

CW-

Whitehead groups & Whitehead

torsion

Poincaré conjecture for n > 6

Lemma

- i) Let $(W; \partial_0 W, \partial_1 W)$ be an n-dim compact h-cobordism for $n \geq 6$ and A be the matrix of d_{q+1} . If [A] = 0 in $Wh(\pi)$, then W is trivial $\partial_0 W$;
- ii) Consider $u\in Wh(\pi)$, a closed manifold M of dim $n-1\geq 5$ with $\pi_1(M)=\pi$ and $2\leq q\leq n-3$. Then we can find

$$W = M \times [0, 1] + \sum_{i=1}^{p_q} (\phi_i^q) + \sum_{i=1}^{p_{q+1}} (\phi_i^{q+1})$$

such that [A] = u.

Important lemma

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introductio

Handle decompositions of cobordisms

CW-

M/hitoboo

Whitehead groups & Whitehead torsion

Poincaré conjecture fo

Lemma

- i) Let $(W; \partial_0 W, \partial_1 W)$ be an n-dim compact h-cobordism for $n \geq 6$ and A be the matrix of d_{q+1} . If [A] = 0 in $Wh(\pi)$, then W is trivial $\partial_0 W$;
- ii) Consider $u\in Wh(\pi)$, a closed manifold M of dim $n-1\geq 5$ with $\pi_1(M)=\pi$ and $2\leq q\leq n-3$. Then we can find

$$W = M \times [0,1] + \sum_{i=1}^{p_q} (\phi_i^q) + \sum_{i=1}^{p_{q+1}} (\phi_i^{q+1})$$

such that $[A] = \mathfrak{u}$.

$K_1(R)$ for a ring R

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-Structure

Whitehead groups & Whitehead torsion

Poincaré conjecture fo n > 6.

Let R be associative ring with unit. Denote by GL(n, R) the group of invertible (n, n)—matrices with entries in R. Consider

$$\cdots \subseteq GL(n, R) \subseteq GL(n + 1, R) \subseteq \cdots$$

given by stabilization

$$A \mapsto \left(\begin{array}{cc} A & 0 \\ 0 & 1 \end{array}\right)$$

consider the colimit GL(R), then consider the abelianization $K_1(R) \coloneqq GL(R)/[GL(R),GL(R)]$

$K_1(\mathbb{Z}G)$ definition Wh(G)

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introductio

Handle decompositions of cobordisms

CW-Structure

Whitehead groups & Whitehead torsion

Poincaré conjecture fo

We have the canonical ring homomorphism $\mathbb{Z} \to R$ and the bijection

$$\det: \mathsf{K}_1(\mathbb{Z}) \longrightarrow \{\pm 1\}$$
$$[\mathsf{A}] \longmapsto \det(\mathsf{A})$$

We define $\widetilde{K}_1(R)$ as the cokernel of $K_1(\mathbb{Z}) \to K_1(R)$.

Definition

For a group G, and the map

$$G \times \{\pm 1\} \xrightarrow{k} K_1(\mathbb{Z}G)$$
$$(g, \pm 1) \longmapsto (\pm g) \in M_{(1,1)}(\mathbb{Z}G)$$

then the Whitehead group Wh(G) := coker(k).

Elementary matrices

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introductio

Handle decompositions of cobordism

CW-

Whitehead groups & Whitehead

torsion

Poincaré conjecture for n. > 6.

Denote $E_n(i,j)$ with $1 \le i,j \le n$ be the (n,n)-matrix with one at (i,j) and zero else where.

An elementary matrix is a matrix of the form $I_n + r \cdot E_n(i,j)$. Denote E(R) the subgroup spanned by elementary matrix. Turns out E(R) = [GL(R), GL(R)].

The 2 definitions of Wh(G) coincide.

Chain contraction

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introductio

Handle decompositions of cobordism

CW-Structure

torsion

Whitehead groups & Whitehead

Poincaré conjecture fo n > 6.

Given a free finite based chain cx:

Definition

A chain contraction γ_* for an R-chain cx C_* is a collection of homomorphism $\gamma_p:C_p\to C_{p+1}$ for $p\in\mathbb{Z}$ such that

$$\mathfrak{d}_{\mathfrak{p}+1}\circ\gamma_{\mathfrak{p}}+\gamma_{\mathfrak{p}-1}\circ\mathfrak{d}_{\mathfrak{p}}=id_{C_{\mathfrak{p}}}.$$

Put $C_{odd}=\bigoplus_{p\in\mathbb{Z}}C_{2p+1}$ and $C_{e\nu}=\bigoplus_{p\in\mathbb{Z}}C_{2p}$ and let γ_* and δ_* be chain contractions. Define R—homomorphisms

$$(\partial_* + \gamma_*)_{\text{odd}} : C_{\text{odd}} \to C_{\text{ev}},$$

$$(\partial_* + \delta_*)_{ev} : C_{ev} \to C_{odd}$$
.

Reidemeister torsion

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introduction

Handle decompositions of cobordism

CW-Structure

Whitehead groups & Whitehead

torsion

Poincaré conjecture for n > 6.

Let A be the matrix for $(\partial_* + \gamma_*)_{odd}$ and B for $(\partial_* + \delta_*)_{ev}$, turns out [A] = -[B].

Definition

Given a finite based free contractible R—chain $cx\ C_*$ define its Reidemeister torsion as

$$\rho(C_*) = [A] \in \tilde{K}_1(R).$$

For $f_*: C_* \to D_*$ chain homotopy equiv of finite based free R—chain cxs, then $cone(f_*)$ is a contractible finite based free R—chain cx.

Whitehead torsion

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

troductio

Handle decompositions of cobordism

CW-

Whitehead groups & Whitehead torsion

Poincaré conjecture fo

Definition

Given a chain homotopy equivalence of finite based free R—chain cx $f_*: C_* \to D_*$ define its *Whitehead torsion* by

$$\tau(f_*) \coloneqq \rho(cone_*(f_*)) \in \tilde{K}_1(R)$$

Definition

Given a homotopy equivalence $f: X \to Y$ it induces a chain homotopy equivalence $C_*(\tilde{f}): C_*(\tilde{X}) \to C_*(\tilde{Y})$ between chain cx of their universal covers. We define its *Whitehead torsion* as

$$\tau(f) := \tau(C_*(\tilde{f})) \in Wh(\pi_1(Y, y)).$$

Whitehead torsion

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introduction

Handle decompositions of cobordism

CW-

Whitehead groups & Whitehead torsion

Poincaré conjecture fo n. > 6.

Definition

Given a chain homotopy equivalence of finite based free R-chain cx $f_*: C_* \to D_*$ define its *Whitehead torsion* by

$$\tau(f_*) \coloneqq \rho(cone_*(f_*)) \in \tilde{K}_1(R)$$

Definition

Given a homotopy equivalence $f: X \to Y$ it induces a chain homotopy equivalence $C_*(\tilde{f}): C_*(\tilde{X}) \to C_*(\tilde{Y})$ between chain cx of their universal covers. We define its *Whitehead torsion* as

$$\tau(f) := \tau(C_*(\tilde{f})) \in Wh(\pi_1(Y, y)).$$

Whitehead torsion of an h-cobordism

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-Structure

torsion

Whitehead groups & Whitehead

Poincaré conjecture fo

Definition

The Whitehead torsion of an h-cobordism $(W; M_0, f_0, M_1, f_1)$ is defined as

$$\tau(W,M_0) \coloneqq (i_0 \circ f_0)^{-1}(\tau(i_0 \circ f_0:M_0 \to W))$$

belonging to $Wh(\Pi(M_0))$, where we equip W and M_0 with a CW structure.

s-cobordism theorem

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introductio

Handle decompositions of cobordisms

CW-

Whitehead groups & Whitehead torsion

Poincaré conjecture for n > 6.

Theorem (s-cobordism theorem)

Let M_0 be a closed connected smooth manifold of dimension $n \ge 6$ with fundamental group $\pi = \pi_1(M_0)$. Then:

• Let $(W; M_0, f_0, M_1, f_1)$ be an h—cobordism over M_0 .

 $W \text{ is trivial over } M_0 \Leftrightarrow \tau(W,M_0) \in Wh(\pi) \text{ vanishes;}$

• For any $x \in Wh(\pi)$ ther exists an h-cobordism $(W; M_0, f_0, M_1, f_1)$ over M_0 with $\tau(W, M_0) = x \in Wh(\pi)$;

s-cobordism theorem

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-Structur

Whitehead groups & Whitehead torsion

Poincaré conjecture for n > 6

Theorem (s-cobordism th continues)

The function

$$Diff(W, M_0) \longrightarrow Wh(\pi)$$

$$(W;M_0,f_0,M_1,f_1) \; \longmapsto \; \tau(W\!,M_0)$$

yields a bijection between diffeomorphism classes of h-cobordisms relative M_0 and $Wh(\pi)$.

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introduction

Handle decompositions of cobordisms

CW-

Whitehead groups & Whitehead torsion

Poincaré conjecture for n > 6.

- 1 Introduction
- 2 Handle decompositions of cobordisms
- 3 CW-Structures
- Whitehead groups & Whitehead torsion
- **5** Poincaré conjecture for $n \ge 6$.

Poincaré Conjecture

Surgery theory: s-cobordism theorem

> Daniel Expósito Patiño

Introduction

Handle decompositions of cohordisms

CW-

Whitehead groups & Whitehead

Poincaré conjecture for n > 6.

Theorem (Poincaré Conjecture)

If a closed n-dimensional manifold M with $dim(M) \geq 6$ is simply connected and its homology sphere, then M is homeomorphic to S^n .

Proof

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introductio

Handle decompositions of cobordisms

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture for n > 6.

- Find a map: use Hurewicz $\pi_n(M) \cong H_n(M) \cong H_n(S^n) \cong \mathbb{Z} \text{ take the map } f: S^n \to M \text{ inducing } 1.$
- As a consequence of Hurewicz, CW and Whitehead theorem we get f homotopy equivalence
- Now consider $W = M (\operatorname{int}(D_0^n) \coprod \operatorname{int}(D_1^n))$ two embedded disjoint disks

Proof

Surgery theory: s-cobordism theorem

Daniel Expósite Patiño

ntroductio

Handle decompositions of cobordisms

CW-Structures

Whitehead groups & Whitehead torsion

Poincaré conjecture for n > 6.

Use h-cobordism theorem

Fill the disks with Alexander trick. Note: not diffeo only homeo.

The end

Surgery theory: s-cobordism theorem

Daniel Expósito Patiño

Introductio

Handle decompositions

CW-

Whitehead groups & Whitehead

Poincaré conjecture for n > 6.

Thanks for you attention!

Images: Remy Bohm , Morse theory and handle decomposition Ideas: Wolfgang Lück and Tibor Macko, Surgery Theory: Foundations