Name: Arul Kumar ARK

Roll No.: 225229103

Lab: 7

In [3]:

```
import pandas as pd
```

In [4]:

```
df = pd.read_csv('train_upvote_mini.csv')
df.head()
```

Out[4]:

	ID	Tag	Reputation	Answers	Username	Views	Upvotes
0	52664	а	3942.0	2.0	155623	7855.0	42.0
1	327662	а	26046.0	12.0	21781	55801.0	1175.0
2	468453	С	1358.0	4.0	56177	8067.0	60.0
3	96996	а	264.0	3.0	168793	27064.0	9.0
4	131465	С	4271.0	4.0	112223	13986.0	83.0

In [5]:

df.shape

Out[5]:

(15440, 7)

In [6]:

df.dtypes

Out[6]:

ID int64
Tag object
Reputation float64
Answers float64
Username int64
Views float64
Upvotes float64

dtype: object

In [7]:

```
df['Tag'].unique()
```

Out[7]:

array(['a', 'c', 'r', 'j', 'p', 's', 'h', 'o', 'i', 'x'], dtype=object)

In [8]:

```
import matplotlib.pyplot as plt
plt.scatter(x=df['Views'], y=df['Upvotes'])
```

Out[8]:

<matplotlib.collections.PathCollection at 0x7f63c0b7a3d0>

In [9]:

```
import seaborn as sns
sns.relplot(data=df,x="Views",y="Upvotes")
```

Out[9]:

<seaborn.axisgrid.FacetGrid at 0x7f63b6e28f40>

In [10]:

```
sns.relplot(data=df,x='Views',y='Upvotes',hue='Tag')
```

Out[10]:

<seaborn.axisgrid.FacetGrid at 0x7f63be33feb0>

In [11]:

```
sns.relplot(data=df,x='Views',y='Upvotes',hue='Answers')
```

Out[11]:

<seaborn.axisgrid.FacetGrid at 0x7f63b6b44910>

In [12]:

sns.relplot(data=df,x='Views',y='Upvotes',size='Tag')

Out[12]:

<seaborn.axisgrid.FacetGrid at 0x7f63b6b8e7c0>

In [13]:

```
sns.relplot(data=df, x="Answers", y="Upvotes", kind='line')
```

Out[13]:

<seaborn.axisgrid.FacetGrid at 0x7f63b6aa32e0>

In [15]:

sns.relplot(data=df, x="Reputation", y="Upvotes")

Out[15]:

<seaborn.axisgrid.FacetGrid at 0x7f63be3565e0>


```
In [ ]:
```

2. Visualizating Categorial Data

Various Categorial Plots in Seaborn

Jitter Plot

In [18]:

```
df2=pd.read_csv('train_hr_mini.csv')
```

In [19]:

df2.head()

Out[19]:

	employee_id	department	region	education	gender	recruitment_channel	no_of_trainings
0	65438	Sales & Marketing	region_7	Master's & above	f	sourcing	1
1	65141	Operations	region_22	Bachelor's	m	other	1
2	7513	Sales & Marketing	region_19	Bachelor's	m	sourcing	1
3	2542	Sales & Marketing	region_23	Bachelor's	m	other	2
4	48945	Technology	region_26	Bachelor's	m	other	1
4							>

In [20]:

df2.shape

Out[20]:

(6397, 14)

In [21]:

sns.stripplot(data=df2, x="education", y="avg_training_score", jitter=True)

Out[21]:

In [22]:

sns.stripplot(data=df2, x="education", y="avg_training_score", jitter=False)

Out[22]:

<AxesSubplot:xlabel='education', ylabel='avg_training_score'>

In [23]:

sns.swarmplot(data=df2,x='education',y='avg_training_score')

/usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:1296: UserWarn ing: 74.2% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

/usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:1296: UserWarn ing: 88.1% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

Out[23]:

In [24]:

```
sns.swarmplot(data=df2,x="education",y="avg_training_score",hue ='gender')
```

/usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:1296: UserWarn ing: 74.2% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

/usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:1296: UserWarn ing: 88.1% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

Out[24]:

In [25]:

```
sns.swarmplot(data=df2,x="education",y="avg_training_score",hue ='is_promoted')
```

/usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:1296: UserWarn ing: 74.2% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

/usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:1296: UserWarn ing: 88.1% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

Out[25]:

In [26]:

sns.boxplot(data=df2,x="education",y="avg_training_score")

Out[26]:

<AxesSubplot:xlabel='education', ylabel='avg_training_score'>

In [27]:

sns.boxplot(data=df2,x="education",y="avg_training_score",hue='is_promoted')

Out[27]:

In [28]:

sns.violinplot(data=df2,x="education",y="avg_training_score",hue='is_promoted')

Out[28]:

In [29]:

sns.violinplot(data=df2,x="education",y="avg_training_score",hue='is_promoted',split=True)

Out[29]:

<AxesSubplot:xlabel='education', ylabel='avg_training_score'>

In [30]:

sns.catplot(data=df2,x="education",y="avg_training_score",hue ='is_promoted')

Out[30]:

<seaborn.axisgrid.FacetGrid at 0x7f63b4c3e8e0>

In [31]:

```
sns.pointplot(data=df2,x="education",y="avg_training_score",hue ='is_promoted')
```

Out[31]:

In [32]:

```
sns.catplot(data=df2,x="education",y="avg_training_score",hue ='is_promoted',kind='swarm')
```

/usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:1296: UserWarn ing: 56.8% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

/usr/local/lib/python3.9/dist-packages/seaborn/categorical.py:1296: UserWarn ing: 81.5% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

Out[32]:

<seaborn.axisgrid.FacetGrid at 0x7f63b2a23730>

In []:

Visualizing the Distribution of Data

In [33]:

 $sns.histplot(x=\begin{tabular}{ll} age',data=df2,kde=True \end{tabular})$

Out[33]:

<AxesSubplot:xlabel='age', ylabel='Count'>

In [34]:

sns.histplot(x='age',data=df2)

Out[34]:

<AxesSubplot:xlabel='age', ylabel='Count'>

In [35]:

sns.jointplot(x='avg_training_score',y='age',data=df2)

Out[35]:

<seaborn.axisgrid.JointGrid at 0x7f63b29200a0>

In [36]:

sns.jointplot(x='avg_training_score',y='age',kind='hex',data=df2)

Out[36]:

<seaborn.axisgrid.JointGrid at 0x7f63b6e4cc40>

In [37]:

sns.kdeplot(x='age',y='avg_training_score',data=df2)

Out[37]:

In [38]:

sns.heatmap(df2.corr())

Out[38]:

<AxesSubplot:>

In [39]:

sns.catplot(x='age',y='avg_training_score',data=df2,kind='boxen',height=15,aspect=.5)

Out[39]:

<seaborn.axisgrid.FacetGrid at 0x7f63b2461ac0>

In [40]:

sns.pairplot(df2)

Out[40]:

<seaborn.axisgrid.PairGrid at 0x7f63b2116fa0>

In []: