STAT 443: Lab 8

Saksham Sudershan (Student #31339427)

14/03/2022

Problem 1

Monthly Sales from Jan 1987-Dec 1993

acf(ts)

Series ts

The series seems to have higher and higher peaks, which points to the existence of a multiplicative seasonal effect. The ACF clearly points out a period of 12 months or 1 year.

Problem 2

```
#Extracting
prediction_ts <- window(ts, start = c(1987,1), end = c(1992, 12))
#Fitting prediction model using HoltWinters()
model_smooth <- HoltWinters(prediction_ts, seasonal = c("multiplicative"))</pre>
#Providing parameter values
model_smooth$alpha
##
       alpha
## 0.3469842
model_smooth$beta
##
         beta
## 0.07501578
model_smooth$gamma
       gamma
## 0.5711478
```

```
#Plotting
plot(model_smooth)
```

Holt-Winters filtering

The Holt-Winter Smoothing parameters are $\alpha = 0.3469842$, $\beta = 0.0750158$ and $\gamma = 0.5711478$.

Problem 3

Predicted Sales for 1993


```
# Forecast for first 3 months
forecast_data[1:3,1]
```

[1] 13277.67 17609.17 28784.94

Problem 4

The 95% CI interval for the Jan 1993 is 1.0158098×10^4 to 1.6397236×10^4 while the observed value is 1.024324×10^4 .

The 95% CI interval for the Feb 1993 is 1.3857408×10^4 to 2.1360936×10^4 while the observed value is 1.126688×10^4 .

The 95% CI interval for the March 1993 is 2.3407225×10^4 to 3.4162645×10^4 while the observed value is 2.182684×10^4 .

This can also be seen in the plot. Only the observed value of the first month lies within the 95% confidence interval.

Problem 5

We could a consider a log transform to convert the model from a multiplicative seasonal effect to an additive seasonal effect. The results would be a time series which looks like this:

Transforming the Series into an Additive Seasonal Effect Model

