$11a_{13} \ (K11a_{13})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{30} + u^{29} + \dots + u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}}=0,$ with total 30 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{30} + u^{29} + \dots + u + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{6} + u^{4} + 2u^{2} + 1 \\ -u^{6} - u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{8} + u^{6} + 3u^{4} + 2u^{2} + 1 \\ -u^{8} - 2u^{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{10} + u^{8} + 4u^{6} + 3u^{4} + 3u^{2} + 1 \\ -u^{10} - 3u^{6} - u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{23} + 2u^{21} + \dots + 18u^{5} + 6u^{3} \\ -u^{23} - u^{21} + \dots - 3u^{5} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{12} + u^{10} + 5u^{8} + 4u^{6} + 6u^{4} + 3u^{2} + 1 \\ -u^{14} - 2u^{12} - 5u^{10} - 8u^{8} - 6u^{6} - 6u^{4} - u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{12} + u^{10} + 5u^{8} + 4u^{6} + 6u^{4} + 3u^{2} + 1 \\ -u^{14} - 2u^{12} - 5u^{10} - 8u^{8} - 6u^{6} - 6u^{4} - u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-4u^{28} - 4u^{27} - 12u^{26} - 8u^{25} - 56u^{24} - 44u^{23} - 120u^{22} - 72u^{21} - 288u^{20} - 184u^{19} - 448u^{18} - 240u^{17} - 688u^{16} - 372u^{15} - 772u^{14} - 376u^{13} - 784u^{12} - 392u^{11} - 616u^{10} - 300u^9 - 392u^8 - 220u^7 - 196u^6 - 112u^5 - 64u^4 - 52u^3 - 16u^2 - 12u - 6$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{30} + u^{29} + \dots + 3u + 1$
c_2	$u^{30} + 13u^{29} + \dots + 3u + 1$
c_{3}, c_{8}	$u^{30} + u^{29} + \dots + u + 1$
<i>C</i> ₅	$u^{30} - u^{29} + \dots - 9u + 1$
c_6, c_7, c_9 c_{10}, c_{11}	$u^{30} + 5u^{29} + \dots + 3u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{30} + 13y^{29} + \dots + 3y + 1$
c_2	$y^{30} + 9y^{29} + \dots + 23y + 1$
c_{3}, c_{8}	$y^{30} + 5y^{29} + \dots + 3y + 1$
<i>C</i> ₅	$y^{30} + 5y^{29} + \dots - 29y + 1$
c_6, c_7, c_9 c_{10}, c_{11}	$y^{30} + 41y^{29} + \dots + 15y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.576972 + 0.788172I	0.12621 + 2.18606I	-3.44242 - 4.00116I
u = 0.576972 - 0.788172I	0.12621 - 2.18606I	-3.44242 + 4.00116I
u = 0.753269 + 0.693656I	3.64770 - 3.48747I	1.74738 + 2.61442I
u = 0.753269 - 0.693656I	3.64770 + 3.48747I	1.74738 - 2.61442I
u = -0.734724 + 0.748106I	5.14265 - 1.49049I	4.17557 + 2.85810I
u = -0.734724 - 0.748106I	5.14265 + 1.49049I	4.17557 - 2.85810I
u = -0.685664 + 0.853521I	4.78950 - 3.76974I	3.14381 + 3.88461I
u = -0.685664 - 0.853521I	4.78950 + 3.76974I	3.14381 - 3.88461I
u = -0.287305 + 0.847959I	-2.28263 - 5.27377I	-6.56092 + 8.94909I
u = -0.287305 - 0.847959I	-2.28263 + 5.27377I	-6.56092 - 8.94909I
u = 0.664026 + 0.894813I	2.98040 + 8.73007I	-0.24401 - 8.71246I
u = 0.664026 - 0.894813I	2.98040 - 8.73007I	-0.24401 + 8.71246I
u = -0.115414 + 0.820064I	-3.15838 + 1.07159I	-10.31816 - 0.17759I
u = -0.115414 - 0.820064I	-3.15838 - 1.07159I	-10.31816 + 0.17759I
u = 0.290049 + 0.709988I	-0.316552 + 1.365600I	-2.18848 - 5.41625I
u = 0.290049 - 0.709988I	-0.316552 - 1.365600I	-2.18848 + 5.41625I
u = -0.911746 + 0.940114I	9.51868 - 3.35799I	-1.73657 + 2.30059I
u = -0.911746 - 0.940114I	9.51868 + 3.35799I	-1.73657 - 2.30059I
u = -0.939027 + 0.928155I	13.7360 + 3.9165I	1.75197 - 2.34228I
u = -0.939027 - 0.928155I	13.7360 - 3.9165I	1.75197 + 2.34228I
u = 0.935072 + 0.937925I	15.4906 + 1.5996I	4.05928 - 2.15774I
u = 0.935072 - 0.937925I	15.4906 - 1.5996I	4.05928 + 2.15774I
u = 0.922373 + 0.959915I	15.4175 + 5.2269I	3.92816 - 2.38623I
u = 0.922373 - 0.959915I	15.4175 - 5.2269I	3.92816 + 2.38623I
u = -0.916401 + 0.967754I	13.6047 - 10.7354I	1.48227 + 6.83107I
u = -0.916401 - 0.967754I	13.6047 + 10.7354I	1.48227 - 6.83107I
u = 0.459289 + 0.421277I	0.49693 + 1.38708I	2.54940 - 4.49142I
u = 0.459289 - 0.421277I	0.49693 - 1.38708I	2.54940 + 4.49142I
u = -0.510769 + 0.183576I	-0.23650 + 2.48738I	1.65273 - 3.25175I
u = -0.510769 - 0.183576I	-0.23650 - 2.48738I	1.65273 + 3.25175I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{30} + u^{29} + \dots + 3u + 1$
c_2	$u^{30} + 13u^{29} + \dots + 3u + 1$
c_3, c_8	$u^{30} + u^{29} + \dots + u + 1$
c_5	$u^{30} - u^{29} + \dots - 9u + 1$
c_6, c_7, c_9 c_{10}, c_{11}	$u^{30} + 5u^{29} + \dots + 3u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{30} + 13y^{29} + \dots + 3y + 1$
c_2	$y^{30} + 9y^{29} + \dots + 23y + 1$
c_3,c_8	$y^{30} + 5y^{29} + \dots + 3y + 1$
<i>C</i> ₅	$y^{30} + 5y^{29} + \dots - 29y + 1$
c_6, c_7, c_9 c_{10}, c_{11}	$y^{30} + 41y^{29} + \dots + 15y + 1$