Real Analysis(H2) (MA4.101a) IIIT-H, Semester Monsoon 22, Quiz 2

Date: 13th January 2023, Duration: 45 minutes

1. Calculate the line integral of a vector field $\vec{V} = -y\hat{i} + x\hat{j}$ counterclockwise around a triangle with vertices (0,0),(L,0),(0,L). [6]

2. You are given two vector fields

$$\vec{F}(x, y, z) = \hat{i}yz + \hat{j}xz + \hat{k}xy$$
, $\vec{G}(x, y, z) = -\hat{i}y + \hat{j}x + 0\hat{k}$.

Determine in which of these vector fields a line integral around a closed curve will vanish.

3. Given a vector field

$$\vec{F} = -\hat{i}\frac{y}{x^2 + y^2} + \hat{j}\frac{x}{x^2 + y^2} \,,$$

calculate the value of $\int (\vec{\nabla} \times \vec{F}) . d\vec{S}$ over a circle of radius R centered at the origin in the x-y plane with normal vector \hat{k} . Hint: The circle includes the origin.

- 4. Given $r = \hat{i}x + \hat{j}y + \hat{k}z$, evaluate the surface integral $\oint \vec{r} \cdot d\vec{S}$ over a right circular cylinder of radius R and length L.
- 5. Prove that

$$\vec{\nabla} \times (\phi \vec{a}) = \vec{\nabla} \phi \times \vec{a} + \phi \vec{\nabla} \times \vec{a} ,$$

where ϕ is a scalar and \vec{a} is a vector.

[5] [3]

[3]

[2]

6. Evaluate the line integral

$$I = \oint \left[(e^x y + \cos x \sin y) dx + (e^x + \sin x \cos y) dy \right],$$

around an ellipse $x^2/a^2 + y^2/b^2 = 1$.

7. Determine the limits if they exist

(a)
$$\lim_{z\to 0} = \frac{\operatorname{Im}(z)}{z}.$$

(b)
$$\lim_{z\to 0} = \frac{\bar{z}^2}{z}$$
, where \bar{z} indicates the complex conjugate of z.

Useful formulas:

In cylindrical polar coordinate (ρ, ϕ, z) , we have $x = \rho \cos \phi$, $y = \rho \sin \phi$, and z = z, where $\rho \ge 0$, $0 \le \phi \le 2\pi$, and $-\infty \le z \le \infty$. The unit vectors are $\hat{e}_{\rho} = \hat{i} \cos \phi + \hat{j} \sin \phi$, $\hat{e}_{\phi} = -\hat{i} \sin \phi + \hat{j} \cos \phi$, and $\hat{e}_{z} = \hat{k}$.