lio-sam问题描述以及解决

- 1. 官方数据集的IMU旋转了九十度,而我们的IMU是正放的,因此需要将旋转矩阵相乘这一步骤取消。
- 2. 小车自带的IMU只有陀螺仪的三轴IMU(非九轴),没有加速度,因此造成雷达数据与IMU不匹配,建图大幅度错误漂移,因此改用ZED2携带的IMU。
- 3. ZED2携带的IMU存在加速度及角度的偏差,建图小幅度缓慢漂移,因此在代码中补偿固定的值。
- 4. 由于小车未带有GPS,需要将参数useImuHeadingInitialization设置为false。
- 5. voxel filter的参数调整为室内参数。

lio-sam里程计定量评估

评估方法

小车绕行回到原点后, 计算lio-sam里程计当前读数与初始原点之间的平移误差。

实验结果

平移误差

实验序号	场地	速度 (m/s)	里程计	Tx	Ту	Tz	平移总误差 (欧氏距离,单位: m)
1	研究院内	0.2	初始读数	0.00	0.00	0.01	
1	研究院内	0.2	lio-sam	0.00	-0.01	0.01	0.01
2	研究院内	0.2	初始读数	-0.01	0.00	0.00	
2	研究院内	0.2	lio-sam	-0.03	-0.05	0.05	0.07
3	研究院内	0.2	初始读数	0.00	0.00	0.00	
3	研究院内	0.2	lio-sam	-0.01	-0.01	-0.03	0.03

可以看到,lio-sam在室内的里程计闭合结果比较优秀,误差都在厘米级。

链接: https://pan.baidu.com/s/1ua4khs3kZUTniVY18p0sVg

提取码: bhjx

室内建图,Z轴无明显问题

链接: https://pan.baidu.com/s/1e89djz5hnbFcRzqSA8pjRw

提取码: bhjx

角度误差——四元数 (论文中未使用)

实验序号	场地	速度(m/s)	里程计	Qx	Qy	Qz	Qw
1	研究院内	0.2	初始读数	-0.01	0.02	0.00	1.00
1	研究院内	0.2	lio-sam	-0.01	0.02	0.00	1.00
2	研究院内	0.2	初始读数	-0.01	0.02	0.00	1.00
2	研究院内	0.2	lio-sam	0.00	0.02	0.02	1.00
3	研究院内	0.2	初始读数	-0.01	0.02	0.00	1.00
3	研究院内	0.2	lio-sam	0.00	0.02	-0.03	1.00