

Manipolazione del Segnale Audio

Lezione 5: Rappresentazione digitale

del segnale audio

20/03/2017 - Laboratorio di I.A.M.

Conversione A-D

Descrivere un'onda come sequenza di numeri, che rappresentano il valore assunto dal segnale ad intervalli regolari di tempo

Decibel Full-Scale

Rappresentano il livello del segnale in rapporto al valore massimo rappresentabile con segno a n bit

$$dB_{fs}(A) \coloneqq 20 \cdot \log_{10} \left(\frac{A}{2^{n-1}} \right)$$

In genere però i valori del segnale sono rappresentati come float compresi tra -1 e 1, quindi si può tranquillamente usare a formula

$$dB_{fs}(A) \coloneqq 20 \cdot \log_{10}(A)$$

Decibel Full-Scale

In base a n si può definire un $range\ dinamico\ DR$ che determina la soglia del rumore di quantizzazione

$$DR = 20 \cdot \log_{10} \left(2^n \cdot \sqrt{\frac{3}{2}} \right) \approx 6.0206 \cdot n + 1.761$$

Ad esempio con 16 bit si ha un range di circa 98db

Segnale digitale nel dominio del tempo

Livello del segnale

Picco: valore di ampiezza massimo

$$x_{peak} = \max(|x|)$$

RMS: Radice della potenza media

$$x_{rms} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2}$$

Crest factor: Misura del range dinamico

$$x_{crest} = \frac{x_{peak}}{x_{rms}}$$

Livello del segnale

Rappresentazione dello spettro

Rappresentazione dello spettro

Il resto su Matlab...

scaricate il materiale di esempio dal sito

http://www.ludovico.net/students_lim.php

e portatelo in una cartella di lavoro di Matlab

