MTL783: Theory of Computation

1st Semester, 2025-2026

Lecture 04 - 04/08/2025

Lecturer: Prof. Minati De

Scribe: Team 04

### Scribed by:

1. Aniket Anand (2022MT11259)

2. Aditya Arya (2021MT60958)

3. S. Madhur Goyal (2022MT11269)

4. Abhinav (2022MT11940)

5. Aditya Thomas (2021MT60944)

#### 1 Overview

In the last lecture, we discussed the basics of regular languages and deterministic finite automata (DFAs).

In this lecture, we introduce **non-deterministic finite automata (NFAs)**, compare their expressive power with DFAs, and cover the *subset construction* for converting NFAs to DFAs.

## 2 Regular-Language Warm-up

Question: Show that the language

$$L = \{awa \mid w \in \{a, b\}^*\}$$

is regular.

**Sketch:** The DFA in Fig. 1 accepts precisely those strings whose first and last symbols are a.



Figure 1: DFA for  $L = \{awa\}$ . States with double circles are final.

### 3 Non-Deterministic Finite Automaton (NFA)

**Definition 1** (NFA). A Non-deterministic Finite Automaton (NFA) is a 5-tuple  $N = (Q, \Sigma, \delta, q_0, F)$ , where:

- Q a finite set of states,
- $\Sigma$  a finite input alphabet,
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$  the transition function,
- $q_0 \in Q$  the initial state,
- $F \subseteq Q$  the set of accepting (final) states.

#### Example 1: Accepting $\lambda$ , 10, 1010, ...



Figure 2: NFA accepting  $\lambda$ , 10, 1010, 101010, . . . .

#### **Explanation:**

- Accepts  $\lambda$ : Initial state  $q_0$  is accepting, and no input is needed.
- Accepts 10, 1010, 101010, . . .: Each repetition of "10" moves the automaton along  $q_0 \xrightarrow{1} q_1 \xrightarrow{0} q_2 \xrightarrow{\lambda} q_0$ , looping back.
- Rejects strings starting with 0: There is no transition from  $q_0$  on 0.
- An NFA is allowed to have transitions undefined (like  $\delta(q_0, 0)$ ); this is valid.
- Even if some computation paths fail, a string is accepted if any path ends in a final state.

### Example 2: Multiple transitions from same state

#### **Behavior:**

• From  $q_0$ , input a can lead to both  $q_2$  and  $q_4$  (nondeterminism).



Figure 3: NFA with two choices after reading 'a' from  $q_0$ .

- aaaa is accepted through path  $q_0 \xrightarrow{a} q_2 \xrightarrow{a} q_3 \xrightarrow{a} q_4 \xrightarrow{a} q_5$ ; however, aaaaa is not accepted.
- Take the case of aaa:
  - aaa is not accepted through path  $q_0 \xrightarrow{a} q_4 \xrightarrow{a} q_5 \xrightarrow{a} q_4$ .
  - aaa is accepted through path  $q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{a} q_3$ .
  - Hence aaa will be accepted since there is a possible path where it ends at a final stage
- b is accepted via path  $q_0 \xrightarrow{b} q_1$ .

### 4 Extended Transition Function

**Definition:** Let  $\delta^*(q_i, \omega) = Q_j$  where  $q_i \to q_j$  (all such) where we have a labeled path  $\omega$ .

 $\delta^*(q_i,\omega)$  contains  $q_j$  iff  $\exists$  a walk in the transition graph from  $q_i$  to  $q_j$  labeled  $\omega$ .

[Try to define it recursively  $\Rightarrow$  You will be in trouble?]

#### Example



Figure 4: Example NFA with  $\lambda$ -moves for extended transition function.

At  $q_1$ , reading [a]: pointer at a, we read an empty string  $\lambda$  to reach  $q_2$ .

$$\delta^*(q_1, a) = \{q_1, q_2, q_0\}$$
$$\delta^+(q_2, \lambda) = \{q_0, q_2\}$$
$$\delta^*(q_2, aa) = \{q_0, q_1, q_2\}$$

**Definition 2** (Language of an NFA). The language L accepted by an NFA  $N = (Q, \Sigma, \delta, q_0, F)$  is defined as the set of all strings accepted by N. Formally,

$$L(N) = \{ \omega \in \Sigma^* \mid \delta^*(q_0, \omega) \cap F \neq \emptyset \}.$$

#### Example



Figure 5: Example NFA  $N_2$  with  $\lambda$ -moves.

We have:

$$L(N_2) = \{(10)^n : n \ge 0\}$$

#### Constructed DFA with $L(N_2)$ language



Figure 6: DFA equivalent to  $N_2$  accepting  $\{(10)^n : n \ge 0\}$ .

## 5 Equivalence of DFA and NFA

**Theorem 3** (Subset Construction). For every NFA  $N=(Q,\Sigma,\delta,q_0,F)$ , there exists a DFA  $M=(Q',\Sigma,\delta',q'_0,F')$  such that

$$L(M) = L(N)$$
.

Two finite acceptors are said to be acceptors  $M_1$  and  $M_2$ , and are said to be **equivalent** if and only if they both accept the same language, i.e.,

$$L(M_1) = L(M_2)$$

[Every DFA is an NFA]  $\Rightarrow$  NFA has some non-deterministic property.

**Theorem:** Let L be the language accepted by an NFA

$$M_N = (Q_N, \Sigma, \delta_N, q_{0N}, F_N)$$

Then there exists a DFA

$$M_D = (Q_D, \Sigma, \delta_D, \{q_{0D}\}, F_D)$$

such that

$$L = L(M_D)$$

An example of this equivalence is shown below.

#### 5.1 Example

Fig. 7 shows conversion of an NFA to an equivalent DFA.



Figure 7: NFA (top) and equivalent DFA (bottom) via subset construction.

# References

[1] Peter Linz, An Introduction to Formal Languages and Automata, 6th Edition, Jones & Bartlett Learning, 2016.