

Shlukování 2

František Kynych 31. 10. 2024 | MVD

Část I.: Rozšíření K-Means algoritmu

K-Means inicializace

- Standardně v prvním kroku vybráno K náhodných centroidů
 - Algoritmus je potřeba provést několikrát
- Další možnosti
 - K-Means++ (2007)
 - První centroid je vybrán náhodně
 - Další centroid je nejdále od prvního centroidu, ...
 - Využití řazení
 - Podle nějaké metriky seřadíme body
 - Vzdálenost od centra, hustota, ...
 - Na základě seřazení vybereme centroidy
 - Prvních K bodů (+ zákaz bodů bližších než ε k již existujícím centroidům)
 - Každý bod na indexu $\frac{N}{K}$

K-Medoids clustering

- Průměrný bod je nahrazen za medoid
- Medoid
 - Centrální bod v clusteru
 - Vždy je reprezentován reálným objektem z dat
- Nejpoužívanější K-Medoids metoda Partitioning Around Medoids (PAM, vznik 1990)
 - 1. Vybereme K medoidů
 - 2. Jednotlivé body přiřadíme do clusteru s nebližšími medoidy
 - 3. Prohledáváme body v každém clusteru
 - Pokud nějaký bod v clusteru snižuje průměrnou vzdálenost, tak se stane medoidem
 - 4. Pokud se změnil alespoň jeden medoid, tak dále iterujeme od bodu 2.

K-Medoids clustering vylepšení

- Výpočetní náročnost PAM O(K(n-K)2)
 - Problém s velkým množstvím dat
- CLARA (1990)
 - Řeší výpočetní náročnost PAM
 - Neprohledáváme všechny body v clusteru, ale pouze S bodů
 - $O(KS^2 + K(n K))$
 - Špatné výsledky pokud je jeden nebo více počátečních medoidů daleko od nejlepších možných medoidů
- CLARANS (1994)
 - Vylepšené hledání nových medoidů

K-Medians

K-Medians

- Medián je méně náchylný na outliery
- Mediány jsou použity jako centroidy (+ použití L1 normy jako vzdálenostní metriky)
- Stejné postup jako u K-Means, pouze nový medián je vypočten jako medián jednotlivých příznaků (každé dimenze)

Sequential K-Means

- Podobný jako standardní K-Means algoritmus
- S přicházejícími body postupně aktualizujeme polohu centroidů
- Existuje i možnost, kdy předem nelze odhadnout počet shluků
 - Vytvoření prvního shluku s počátečními daty
 - Pro každý nový bod je potřeba se rozhodnout, zda bude zařazen do již existujícího shluku nebo bude vytvořen nový
 - Řešeno na základě vzdálenostní metriky

Block-online K-Means s look-ahead

Část II.: Shlukování založené na hustotě

Shlukování založené na hustotě

- Shluky jsou založeny na základě hustoty dat
 - Lokální kritérium
- Výhody
 - Nalezne shluky libovolného tvaru
 - Nevadí šum v datech
 - Stačí projít jednou

- Density-Based Spatial Clustering Algorithm
- Shluk je definován jako maximální množina hustě spojených bodů
- Dva parametry
 - Epsilon (Eps)
 - Radius okolo bodu
 - MinPts
 - Minimální počet bodů v okolí Eps
 - Eps okolí bodu q: $N_{Eps}(q) = \{p \ pat | do \ D \ | \ d(p,q) \leq Eps \}$

MinPts = 5 Eps = 1 cm

https://www.coursera.org/learn/cluster-analysis

https://www.coursera.org/learn/cluster-analysis

- Přímá dosažitelnost
 - Bod p je přímo dosažitelný z bodu q, pokud:
 - p patří do $N_{Eps}(q)$ (bod p patří do okolí bodu q)
 - $|N_{Eps(q)}| \ge MinPts$ (bod q je core bod)
- Nepřímá dosažitelnost
 - Bod p je nepřímo dosažitelný z bodu q, pokud existuje řada bodů $p_1, \dots, p_n \ (p_1 = q, p_n = p)$ taková, že p_{i+1} je přímo dosažitelný z p_i
- Propojenost
 - Body p a q jsou propojené, pokud existuje bod o, ze kterého jsou oba body (p a q) nepřímo dosažitelné

https://www.coursera.org/learn/cluster-analysis

Algoritmus:

- 1. Vybrat počáteční bod *p*
- 2. Získat všechny nepřímo dosažitelné body
 - a) Pokud je bod *p* core bod -> cluster hotový
 - b) Pokud je *p* border bod, tak z něj ostatní body nemohou být nepřímo dosažitelné -> vybrat další počáteční bod z databáze
- 3. Pokračujeme, dokud jsme neprošli všechny body

OPTICS

- Ordering Points To Identify Clustering Structure
- Vytvořeno (téměř) stejnými autory jako DBSCAN
 - DBSCAN je citlivý na nastavení správných parametrů
- Parametr maximální Epsilon poskytujeme pouze pokud chceme zrychlit výpočet
- Vytvoření grafu dosažitelnosti, ze kterého lze extrahovat shluky

OPTICS

https://www.coursera.org/learn/cluster-analysis

- Core distance minimální hodnota ε, se kterou bude v okolí MinPts bodů (aby se stal core bodem)
- Reachability-distance minimální radius, díky kterému je p nepřímo dosažitelný z bodu q

$$\max(core_distance(q), d(q, p))$$

Pokud je q core bod, jinak nedefinováno

OPTICS

- Graf dosažitelnosti
 - Čím hlubší je oblast, tím hustší je shluk
- Body patřící do shluku mají nízkou vzdálenost dosažitelnosti k jejich nejbližším sousedům, proto vytvoří údolí

Figure 9. Illustration of the cluster-ordering

Figure 12. Reachability-plots for a data set with hierarchical clusters of different sizes, densities and shapes

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.407.5572&rep=rep1&type=pd

Část III.: Spektrální (grafové) shlukování

- Založeno na teorii grafů
- Využívá spektrální informace matice podobnosti dat
- Transformuje data do nového prostoru pomocí vlastních vektorů
 - Umožňuje aplikaci K-means algoritmu

Vytvoření grafu z dat

- Uzly reprezentují jednotlivé datové body
- Hrany reprezentují podobnost mezi datovými body
- Matice podobnosti (W) vyjadřuje podobnost mezi body i a j

Vytvoření matice W

$$W_{ij} = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)$$

U některých aplikací se používá např. kosinová podobnost

$$W_{ij} = \frac{x_i \cdot x_j}{\|x_i\| \|x_j\|}$$

Upravení grafu

nttps://gitnub.com/wq2012/SpectraiCluste

Matice stupňů (Degree matrix)

- Diagonální matice D, kde každý prvek na diagonále představuje stupeň uzlu i v grafu
- Stupeň Uzlu: Součet všech podobností daného uzlu s ostatními uzly

$$D_{ii} = \sum_{j} W_{ij}$$

- Vlastnosti
 - Všechny ne-diagonální prvky jsou nulové
 - Všechny prvky D_{ii} jsou pozitivní

Laplacián grafu

Matice L definovaná jako rozdíl mezi maticí stupňů D a maticí podobnosti W

$$L = D - W$$

Normalizace

$$L_{svm} = D^{-1/2}LD^{-1/2}$$

- Zachycuje strukturu grafu a vztahy mezi uzly
- Používá se při spektrální analýze k identifikaci shluků pomocí vlastní vektorů
- Vlastní vektory Laplaciánu poskytují nové reprezentace dat, které lépe odhalují skryté struktury a shluky

- Získání vlastních hodnot λ a vlastních vektorů v Laplaciánu
- Transformace do spektrálního prostoru
 - Vybereme k vlastních vektorů odpovídajících nejmenším vlastním hodnotám $\lambda_1, \lambda_2, ..., \lambda_k$ do matice V_k $Y = X \cdot V_k$
- Každý datový bod je nyní reprezentován k-dimenzionálním vektorem v spektrálním prostoru

- Shlukování
 - Aplikace K-means algoritmu na transformovaná data
- Výhody
 - Shluky, které jsou nelineárně separovatelné v původním prostoru, mohou být lineárně separovatelné ve spektrálním prostoru
 - Možnost využití různých metrik podobnosti podle povahy dat
 - Efektivní pro datové struktury, kde tradiční metody selhávají
- Nevýhody
 - Vysoká výpočetní náročnost
 - Je nutné znát předem hodnotu k (jako u K-means)
 - Řeší další vylepšení (eigengap)

Část IV.: Shlukování založené na mřížce

STING

- Statistical Information Grid
- Vytváříme mřížkovou strukturu
 - Pro každou buňku jsou spočítány statistiky
 - Počet bodů, průměr, min, max, typ rozdělení
 - Postupně vytváříme další vrstvy

https://www.coursera.org/learn/cluster-analysis

CLIQUE

- Clustering in Quest
- Založený na mřížce
 - Rozděluje prostor mřížkou a počítá počet bodů v buňce
- Založený na hustotě
 - Shluk je vytvořen z husté množiny sousedících bodů
 - Za podmínky, že je počet bodů v buňce větší, než vstupní parametr modelu
- Automaticky nalezne podprostor, který umožňuje lepší shlukování než původní prostor dat – založeno na Apriori principu

CLIQUE

Bottom-up přístup

 $https://list01.biologie.ens.fr/wws/d_read/machine_learning/SubspaceClustering/CLIQUE_algorithm_grid-based_subspace_clustering.pdf$

Část III.: Vyhodnocení shlukování

Měření kvality shlukování

- Externí (Supervised)
 - Porovnání s předem daným požadovaným výsledkem např. na základě vzdálenosti
- Interní (Unsupervised)
 - Vyhodnocení správnosti shlukování na základě toho, jak dobře jsou shluky separované a kompaktní
 - Silhouette koeficient
- Relativní
 - Porovnání výsledků algoritmu s různým nastavením vstupních parametrů

Měření kvality shlukování

- Purity (čistota)
 - Měří zastoupení dominantních členů jednotlivých tříd ve shlucích (hodnota 0 až 1)
 - Pro shluk i:

$$purity_i = \frac{1}{n_i} \max_{j} \{nij\}$$

Pro celý výsledek

$$purity = \sum_{i=1}^{r} \frac{n_i}{n} \ purityi = \frac{1}{n} \sum_{i=1}^{r} \max_{j} \{nij\}$$

• Např.: $purity_1 = \frac{30}{50}$; $purity_2 = \frac{20}{25}$; $purity_3 = \frac{25}{25}$; $purity = \frac{30 + 20 + 25}{100} = 0.75$

Problém – výpočet čistoty je stejný u obou tabulek

$C \setminus T$	T ₁	T ₂	T ₃	Sum
C_1	0	20	30	50
C_2	0	20	5	25
C_3	25	0	0	25
m_j	25	40	35	100

$C \setminus T$	T ₁	T ₂	T ₃	Sum
C_1	0	30	20	50
C_2	0	20	5	25
C_3	25	0	0	25
m_j	25	50	25	100

https://www.coursera.org/learn/cluster-analysis

Měření kvality shlukování

- Maximum matching
 - Třída může patřit pouze jednomu shluku
 - Váha $w(e_{ij}) = n_{ij}$; $w(M) = \sum_{e \in M} w(e)$
 - Maximum weight matching

$$match = armax_M \left\{ \frac{w(M)}{n} \right\}$$

 Např.: zelená -> match = purity = 0.75 oranžová ->

1. Možnost ->
$$\frac{w_{1(M)}}{n} = \frac{30 + 5 + 25}{100} = 0.6$$

2. Možnost ->
$$\frac{w_{2(M)}}{n} = \frac{20 + 20 + 25}{100} =$$
0.65 $match =$ **0.65**

C\T	T ₁	T ₂	T ₃	Sum
C_1	0	20	30	50
C_2	0	20	5	25
C ₃	25	0	0	25
m_j	25	40	35	100

$C \setminus T$	<i>T</i> ₁	T ₂	T ₃	Sum
C_1	0	30	20	50
C_2	0	20	5	25
C_3	25	0	0	25
m_j	25	50	25	100

https://www.coursera.org/learn/cluster-analysis

Užitečná literatura / kurzy

- How much can k-means be improved by using better initialization and repeats?
 - Článek k porovnání různých k-means přístupů (2019)

