- **2.14** 1) Considérons la suite définie par $u_n = (-1)^n \cdot n$ pour tout $n \in \mathbb{N}$.
 - (a) Cette suite n'est pas majorée. Quel que soit $M \in \mathbb{R}$, il existe $n \in \mathbb{N}$ tel que $u_n > M$.
 - (b) Cette suite n'est pas minorée. Quel que soit $m \in \mathbb{R}$, il existe $n \in \mathbb{N}$ tel que $u_n < m$.
 - 2) Considérons la suite définie par $u_n = (-1)^n$ pour tout $n \in \mathbb{N}$.
 - (a) Cette suite n'est pas croissante. $u_2=1>-1=u_3 \quad \text{ou} \quad u_4=1>-1=u_5 \quad \text{ou} \quad u_6=1>-1=u_7$ Plus généralement, $u_{2n}>u_{2n+1}$ pour tout $n\in\mathbb{N}$.
 - (b) Cette suite n'est pas décroissante. $u_1=-1< u_2=1 \quad \text{ou} \quad u_3=-1<1=u_4 \quad \text{ou} \quad u_5=-1<1=u_6$ Plus généralement, $u_{2\,n-1}< u_{2\,n}$ pour tout $n\in\mathbb{N}$.
 - (c) Cette suite est bornée.
 - i. Cette suite est majorée par 1. $u_n = (-1)^n \leqslant 1 \text{ pour tout } n \in \mathbb{N}.$
 - ii. Cette suite est minorée par -1. $u_n = (-1)^n \geqslant -1$ pour tout $n \in \mathbb{N}$.