A Brief Introduction to Computational Neuroscience

Darshan Mandge
Computational Neurophysiology Lab
Dept. of Biosciences and Bioengineering
IIT Bombay

home.iitb.ac.in/~darshanmandge

Introduction

- Computational Neuroscience ??
 - What?
 - Why?
- Levels of Modelling
- Single Cell Models
 - Morphologically Detailed Models
 - Abstract Models (Point Neurons)
 - Comparison Between the Modelling Approaches
- Network Models
- Demonstrations: Single Neuron Model, Openworm
- Simulators and Other Resources

Computational Neuroscience

- Understanding nervous system using computation
- Interdisciplinary field:
 - Computer Science: machine learning, neural networks
 - Neuroscience: cognitive neuroscience, psychology
 - Electrical Engineering
 - Maths, Physics and more
- How it helps predict things?
 - Understanding common neurological conditions like Addiction, Schizophrenia, etc.
 - Promoting targeted drug development
 - Normal physiology of body
- Other Contributions of the field:
 - Neuromorphic Engineering: <u>SpiNNaker</u> (**Spi**king Neural Network Architecture) and <u>SyNAPSE</u> (**Sy**stems of Neuromorphic Adaptive Plastic Scalable Electronics)
 - Neurorobotics: Simulated neural networks in robots

Experiments are difficult!

Patch Clamp Apparatus for Recording Single Channel Currents

Source: bbp.epfl.ch

Nervous System

1 m

Brain

10 cm

Source: Wikimedia Commons

1 cm

Neural networks

Mapping the human connectome: Human Connectome Project

Source: bbc.com/news/science-environment-21487016

100 μm

Neurons

 $1 \, \mu m$

Synapses

Source: EE 746 Course material

1 nm Signalling Pathways

1 pm Ion Channels

Source: Berridge, M.J. (2012)

Nervous System 1m 10 cm Brain 1 cm Neural networks 100 μm **Neurons** $1\,\mu\text{m}$ **Synapses** Signalling Pathways 1 nm 1 pm Ion Channels

Details in Sterratt et. al., 2011 (1st ed.)

Single Cell Models: Morphologically Detailed Neurons

Single Cell Models: Detailed

Compartmental Modelling: Simplifying morphology

Membrane Mechanisms

- Ion Channels
 - K⁺, Na⁺, Ca²⁺, Cl⁻, etc.
- Exchangers
 - Na⁺-Ca²⁺ Exchangers
- Pumps
 - Na⁺-K⁺ Pumps
- Receptors

Intracellular Signalling

Source: Berridge, 1998

Modelled and Experimental CA 1 Pyramidal Neuron

Source: www.opensourcebrain.org, nibr.com

Model Validation

Demonstration CA1 Neuron and ModelDB

- CA1 pyramidal neuron: Migliore et al 2005
 https://senselab.med.yale.edu/ModelDB/ShowModel.cshtml?model=55035
 One needs to install NEURON simulator running these simulations.
 Once installed, download the model using the "Auto-launch" button on model website and run the simulations.
- ModelDB: A database for all types of neuron models (detailed and abstract) https://senselab.med.yale.edu/ModelDB/default.cshtml

Single Cell Models: Point Neurons

Single Cell Abstract Models: Artificial Neuron

Single Cell Abstract Models: Izhikevich Neuron

Other point neurons: Integrate and Fire (IF) Neurons, FitzHugh-Nagumo (FHN) Model, Hindmarsh-Rose Models, etc.

Comparison: Detailed & Point Neuron Models

Morphologically Detailed Models

- Real neuron morphology and mechanisms
- Prediction power up to the molecular level
 - E.g. we can predict dysfunction of ion channels that control action potential firing rates
- Structure defines function: spine density variation (on dentrites) – memory, addiction, etc.
- Synaptic Plasticity possible: LTP, LTD, STDP, etc.
- Computationally expensive: several highly non-linear partial differential equations

Point Neuron Models

- Models generally don't represent the underlying biological mechanisms
- Limited prediction power
 - Can predict at the neuron and syanpse level

- No morphology
- Synaptic Plasticity possible
- Less expensive computationally
 - Can be used to simulate network with large number of neurons.
 - Few ordinary differential equations

Network Models

Neurons connections

Chemical Synapses

Electrical Synapses: Gap Junctions

Sosinsky GE, Nicholson BJ. 2005 Structural organization of gap junction channels. Biochim Biophys Acta 1711:99-125

Source: Wikimedia commons, electroneubio.secyt.gov.ar

Network Models

Mouse Cortical Circuits

Source: http://bluebrain.epfl.ch

C. elegans Neural Network

Human Connectome Project

Network Models

Demonstration

- Openworm Code : http://www.openworm.org/downloads.html
- Simulator used for displaying Openworm network: Neuroconstruct http://neuroconstruct.org/
- Human Connectome Project Relationship Viewer: shows the connections of different regions of the brain:

http://www.humanconnectomeproject.org/informatics/relationship-

viewer/

Collaborative Brain Projects

 US BRAIN (Brain Research through Advancing Innovative Neurotechnologies®) Initiative: http://www.braininitiative.nih.gov/

- Human Brain Project (Europe):
 https://www.humanbrainproject.eu/
- Other Collaborative brain projects around the world: http://incf.org/activities/projects/collaborative-brain-projects

Simulators

Eyewire

- Game to map the neurons in the mouse retina
- http://eyewire.org/explore
- Cube of stacked retinal imaging slices
- Human participation improve eyewire's Al algorithms.
- Details <u>here</u>.

Courses and Websites

• In IITB:

```
    BB661 Biopotentials I: Cellular Signals (Odd Sem.)
```

BB 803 Advanced Cellular Electrophysiology (Odd Sem.)

BB 606 Cellular electricity: Physics & modeling (Even Sem.)

- MOOCs:
 - Computational Neuroscience: https://www.coursera.org/course/compneuro
 - Exploring Neural Data:https://www.coursera.org/course/neuraldata
- HHsim: Graphical Hodkin Huxley Simulator: http://www.cs.cmu.edu/~dst/HHsim/
- Website for the book -- Principles of Computational Modeling in Neuroscience: http://www.compneuroprinciples.org/

Important References

- 1. SpiNNaker: http://apt.cs.manchester.ac.uk/projects/SpiNNaker/Publications/
- 2. DARPA's SyNAPSE Project: http://research.ibm.com/cognitive-computing/neurosynaptic-chips.shtml
- 3. The Blue Brain Project: http://bluebrain.epfl.ch/
- 4. Human Connectome Project: http://humanconnectomeproject.org
- 5. Book: Principles of Computational Modeling in Neuroscience Steratt et. al., 2011 (1st edition) http://www.cambridge.org/de/academic/subjects/life-sciences/neuroscience/principles-computational-modelling-neuroscience
- 6. Book: The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System; James M. Bower and David Beeman http://www.genesis-sim.org/bog/bog.html
- 7. Hodgkin, Alan L., and Andrew F. Huxley. "A quantitative description of membrane current and its application to conduction and excitation in nerve." The Journal of physiology 117.4 (1952): 500.
- 8. Berridge, Michael J. "Calcium signalling remodelling and disease." *Biochemical Society Transactions* 40.2 (2012): 297-309.
- 10. Migliore, Michele, Michele Ferrante, and Giorgio A. Ascoli. "Signal Propagation in Oblique Dendrites of CA1 Pyramidal Cells." *Journal of neurophysiology* 94.6 (2005): 4145–4155.
- 11. Izhikevich, Eugene M. "Simple model of spiking neurons." IEEE Transactions on neural networks 14.6 (2003): 1569-1572.

Thank You!