МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

Кафедра мультимедийных технологий и телекоммуникаций

ЛАБОРАТОРНАЯ РАБОТА по теме

OFDM

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

под редакцией (*) 27.12.2017

- 1 Теоретические основы
- 2 Модулятор
- 3 Канал
- 4 Демодулятор
- 5 Дополнения
- 6 Практические задания

Постановка задачи

Студентам предлагается написать программу, имитирующую преобразования и процессы, происходящие с сигналом в рамках OFDM- модуляции, на всех трех этапах его существования: образования, передачи и приема. Выполнять задание можно на любом удобном языке програмирования (приоритетные языки matlab, python). Данная глава содержит последовательное описание каждого этапа и ожидаемые промежуточные результаты.

Разработка модели состоит из пяти этапов, на каждом из которых сигнал проходит полный 'жизненный цикл', то есть кодирование бит, формирование сигнала, передачу в канал, прием и декодирование. На каждом этапе нам предстоит добавлять новые элементы обработки сигнала, учитывающие реальные физические процессы.

6.1 Первый этап. Простейший цикл передачи-приема

Требуется сформировать простейший 'жизненный цикл' сигнала. Считать, что канал идеальный и не вносит искажений. Последовательность преобразований отображена на Puc.1)

Рекомендуется осуществлять кадждый этап преобразования в виде отдельной функции, что бы отслеживать результаты.

Нам потребуются слудующие входные параметры модели: * n_carriers - число несущих сигнала (по дефолту 400). * n_fft - порядок преобразования фурье (1024 или 2048) (как влияет на сигнал изменение числа несущих или числа отсчетов в FFT?)* constellation - параметр, задающий модуляцию. В простейшем случае BPSK, либо QPSK, либо 16-QAM

Эти переменные считаются параметрами приемо-передающей системы, известными как на передатчике, так и на приемнике.

6.1.1 Передатчик

Формирование битовой последовательности

Входную битовую последовательность можно сформировать случайным образом или импортировать из реального файла. Второе сделать предпочтительнее, так как данные в изображениях сильно кореллированны. Это позволит пронаблюдать характерные особенности сигнала, например, периодичности, соответсвующие блокам изображения с одинаковыми пветами.

Результатом выполнения функции должна быть некоторая последовательность нулей и единиц:

Рис. 1: Исследуемый кластер

1001011111110010000...

Маппер

Маппер - функция, которая осуществляет отображение групп битов на комплексную плоскость. В пункте описаны различные варианты модуляций. Предлагается выбирать тип в зависимости от параметра constellation. Данный параметр определяет разрядность одного отсчета (например, для кодирования всех точек 16 QAM требуется 4 бита, для QPSK - 2 бита и,соответсвенно, для BPSK - 1) (см. Рис.2).

Рис. 2: Типы созвездий:а) 16-QAM;b)QPSK;c)BPSK

При составлении созвездия необходимо использовать коды Грея, что бы минимизировать ошибку при неверном распознавании. Входной поток битов делится на 4ки или 2ки бит, которым в соответсвие ставится точка из созвездия:

$$1001011111110010000... \qquad \qquad 3+i, -1-i, 1-3i, -1+3i, -1-3i...$$

На выходе функции остается последовательность точек комплексной плоскости.

Формирование OFDM-символа

OFDM-модуляция предполагает частотное разделение сигнала. Передача информации в канале осуществляется пачками (они же OFDM-символы). В полосе выделяется $n_carriers$ поднесущих частоты, каждая из которых за время передачи одного символа несет информацию об одной информационной точке. Следовательно, возможна передача не более $n_carriers$ точек за раз.

На практике информационный объем одной передачи снижается, например, при выделении пилотных несущих (см последний этап), или при резервировании тона для снижения пик-фактора. Таким образом, целью данной функции является выделение необходимого числа точек из потока, а так же их подготовка к преобразованию Фурье.

Преобразование фурье

Для передачи в настоящий физический канал сигнал требуется преобразовать в вид, доступный для передачи. А именно в аналоговую фикцию, непрерывную по времени S = S(t). По сути, совершить цифро-аналоговое преобразование.

Поскольку мы моделируем цифровой сигнал, а не аналоговый воспользуемся теоремой Котельникова (ссылка), которая позволяет рассматривать сигнал не как континуальный, а как набор дискретных отсчетов. Пока что наш сигнал предствляет собой последовательность комплексных точек. Их можно считать частотными отсчетами, так как мы предполагаем, что каждая поднесущая несет информацию (фазу и амплитуду) об отдельной точке. Представить частотные отчсчеты в виде функции от времени нам поможет преобразование Фурье.

Большинство современных языков программирования содержат готовые пакеты с преобразованием Фурье (алгоритм Fast Fourier Transform и обратный ему), так что не будем изобретать велосипед и воспользуемся ими. Тем более, что даный алгоритм достаточно сложен для понимания и потребует много времени.

FFT принмает на вход последовательность дискретных временных отсчетов сигнала и возвращает дискретную последовательность отсчетов частотных. iFFT, соответсвенно, производит обратную операцию. Поэтому на текущем этапе обработки сигнала нас интересует именно обратное преобразование, поскольку дальше сигнал отправится в канал (см. Рис.3)

Перед непоследственно самим преобразованием необходимо дополнить последовательность отсчетов нулями от значения $n_carriers$ до n_fft (операция upsempling) Делается это по нескольким причинам. Прежде всего, исходят из особенностей алгоритма: преобразования на 2^n отсчетов проиходят существенно быстрее. Кроме того, upsempling позволяет существенно уплотнить временные отсчеты, так как имея всего $n_carriers$ частотных отсчетов, мы получим целых n_fft временных. Сравните плотность отсчетов на $p_carriers$ часто $p_carriers$ на $p_carriers$ часто $p_carriers$ часто $p_carriers$ на $p_carriers$ н

Рис. 3: FFT

Рис. 4: Часть сигнала для а)400 отсчетов и b)1024 отсчетов.

Выходом данного перобразования будет последовательность временных отсчетов сигнала.

Передача символьной последовательности в канал

Для каждого OFDM-символа формируется косочек сигнала, которые необходимо "сшить"вместе перед передачей. Позднее здесь будет добавлен защитный интервал, сейчас можно просто склеить результаты iFFT-преобразования.

6.1.2 Канал

Канал считается идеальным, так что на этом этапе он не моделируется.

6.1.3 Приемник

Разбиение на символы на принимающей стороне

Все дальнейшие преобразования происходят на приемнике. Пока что не требуется проводить синхронизацию, так как канал идеален, и прием начинается с первого отсчета первого символа. Аналогично как и в передатчике, следует разбить принятый сигнал на отдельные OFDM-символы для дальнейшего перобразования Фурье.

Преобразование Фурье

Необходимо выполнить аналого цифровое преобразование символа, что бы получть значения отдельных частотных отсчетов. Для этого применяем брпрямое преобразование Фурье (FFT). На выходе получим набор точек комплексной плоскости.

Выделение информационной полосы частот

Поскольку мы дополнили сигнал нулями, необходимо отбросить лишние частотные составляющие, которые не несут никакой информации. На текущем этапе их можно просто отбросить. на выходе должны получить n carriers точек.

- *отображение комплексных чисел в двоичный битовый вид
- * контроль принятой информации