CS 726: Quiz 1

Jan 24, 2019. 3:40 to 4:50pm	Roll:
	Namo

This quiz is open notes.

- 1. Let X and Y be two binary random variables, each of which takes +1 with probability 1/2, and -1 with probability 1/2. Calculate the expected value E(X.Y) under the following two cases.
 - (a) X and Y are correlated ...1

 The expectation will be a positive quantity if the correlation is positive and negative if the two are negatively correlated. The exact value cannot be determined based on the information given in this question.
 - (b) X and Y are independent 0
- 2. Let X and Y be two binary random variables each of which takes value either 0 or 1 and the probability of 1 for each is p. What is the probability that X = 1 given that X + Y < 2, that is P(X = 1|X + Y < 2)?

 ... $p(1-p)/(2p(1-p) + p^2)$
- 3. Let X and Y be two continuous uniformly distributed random variables between 0 and 1. Calculate the probability $\Pr(X+Y<1|X>1/2)$...2 1/4
- 4. In the following multiple choice questions, wrong answers will carry negative marks of 1, so do not do random guesses. Let f(x) be a continuous differential function over a real number x. Let f'(x) denote its derivative and f''(x) denotes its second derivation.
 - (a) Select all that are true. Assume $\epsilon > 0$ and very small.

i.
$$f(x - \epsilon \operatorname{sign}(f'(x))) \le f(x)$$
.

ii.
$$f(x - \epsilon \operatorname{sign}(f'(x))) \le f(x)$$
 only when $f(x) < 0$

iii.
$$f(x - \epsilon \operatorname{sign}(f'(x))) \le f(x)$$
 only when $f(x)$ is convex.

iv. When
$$f(x)$$
 is convex, $f(x - \epsilon f'(x)) \le f(x)$.

..2 a,d

..1

(b) A point x^* is a local maxima of f(x) when

i.
$$f'(x^*) = 0$$
, $f''(x^*) = 0$

ii.
$$f'(x^*) = 0$$
, $f''(x^*) > 0$

iii.
$$f'(x^*) = 0$$
, $f''(x^*) < 0$

iv.
$$x^*f'(x^*) > 0$$
, $f''(x^*) > 0$

v.
$$f'(x^*) = 0$$
, $f''(x^*) < f'(x^*)$

- 5. Consider a training dataset for one dimensional data D with just two instances: One positive labeled instance at x = -1 and another negative labeled instance at x = 1. Assume we are training a logistic regression classifier that predicts a class label based on wx. Which the training objectives for learning w via maximum likelihood in terms of w.
 - ..2 $\min_{w} 2 \log(1 + e^{w})$
- 6. Consider a Bayesian network where the nodes $X_1 ... X_n$ are numbered topologically i.e., if X_i is a parent of X_j then i < j.
 - (a) If X_i has no parents than $X_i \perp \!\!\! \perp X_j$ for any j < i. State true or false with a brief justification. ...1 True. Just use the local-CI of BN on X_i and j has to be a non-descendant because of the topological order.
 - (b) We can write $P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | Pa(X_i))$ as the product of n CPDs (Conditional Probability Distributions). Write the probability of $P(X_1, ..., X_{n-1})$ in terms of the fewest possible CPDs. ...1 We can just drop the last term and write as $\prod_{i=1}^{n-1} P(X_i | Pa(X_i))$
 - (c) If $ND(X_i)$, $D(X_i)$ denotes non-descendants, and descendants of X_i write the simplest possible expression for $P(X_i, ND(X_i), Pa(X_i))$? ...2 $\prod_{i \in \{i, ND(i), Pa(i)\}} P(X_i | Pa(X_i))$
- 7. Coin 1 has a probability 0.7 of showing heads, coin 2 has a probability of 0.2 of showing heads. A user selects coin 1 with probability 0.3 and coin 2 with probability 0.7, tosses the selected coin and sees the outcome as head. The probability that coin 1 was chosen is ...2 Apply Bayes rule: $\Pr(C_1|H) = \frac{\Pr(H|C_1)\Pr(C_1)}{\Pr(H|C_1)\Pr(C_1)+\Pr(H|C_2)\Pr(C_2)} = \frac{0.7*0.3}{0.7*0.3+0.2*0.7}$
- 8. Consider the parallel HMM below.

- (a) List a minimal set of variables Z for each of the following variable pairs that makes them d-separable.
 - i. z_2 and y_2 ...1 empty.
 - ii. x_1 and x_3 ... 1 any single node from z chain and any single node from y chain.
 - iii. x_1 and y_2 ...1
- (b) Draw another Bayesian network that satisfies the same conditional independencies as the one drawn above but comprises of a different edge orientation. ...3
- 9. Let X, Y, Z be three sets of random variables. Does $X \perp \!\!\! \perp Y$ and $X \perp \!\!\! \perp Z$ always imply that $X \perp \!\!\! \perp \{Y, Z\}$. If yes, give a short proof. If no, give a counter example. ...3 Let $X = Y \ xor \ Z$. Knowing value of X does not tell us anything about Y or Z separately but jointly they get constrained.

- 10. Let matrix $X = [x_1 \ x_2], \Sigma = \begin{bmatrix} a_{1,1} \ a_{2,2} \end{bmatrix}$. Assume none of the elements are zero in X, Σ . Let X^T denote the transpose of vector X. For what values of Σ can you write $X\Sigma X^T$ as $(x_1 x_2)^2$?
- 11. Using the above definitions of X and Σ , what property should Σ satisfy for $X\Sigma X^T$ to be always positive? ... 2 Σ has to be positive definite, that is, diagonal elements must be positive and $a_{1,1}a_{2,2}-a_{1,2}a_{2,1}>0$

Total: 30