Lecture5: Diode Part1: Asymmetry in I-V

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Equilibrium state

Perfect balance

Forward bias

- Assume that $V_{cathode} = 0 \text{ V}$ and $V_{anode} > 0 \text{ V}$.
 - What will happen to $\phi(-\infty)$ and $\phi(\infty)$?
 - Is E stronger or weaker? Weaker.
 - No sufficiently strong electric field to prevent the diffusion
 - It raises the diffusion currents substantially.

Reverse bias

- Assume that $V_{cathode} = 0 \text{ V}$ and $V_{anode} < 0 \text{ V}$.
 - What will happen to $\phi(-\infty)$ and $\phi(\infty)$?
 - Is E stronger or weaker? Stronger.
 - Even stronger electric field to prevent the diffusion
 - It prohibits the current flow.

Qualitatively,

- We can expect the following I-V curve.
 - For a reverse bias, almost no current flows.
 - For a forward bias, the diode conducts.
 - What is the analytic expression of the diode current?

n and p across junction

- At equilibrium,
 - We have the following relation:

$$n = n_i \exp\left(\frac{\phi}{V_T}\right), \qquad p = n_i \exp\left(-\frac{\phi}{V_T}\right)$$

- At two points across the junction, $x = -W_{d,n}$ and $x = W_{d,p}$.

$$n(-W_{d,n}) = n_i \exp\left(\frac{\phi(-W_{d,n})}{V_T}\right)$$

$$n(W_{d,p}) = n_i \exp\left(\frac{\phi(W_{d,p})}{V_T}\right)$$

$$= n_i \exp\left(\frac{\phi(-W_{d,n})}{V_T}\right) \exp\left(\frac{\phi(W_{d,p}) - \phi(-W_{d,n})}{V_T}\right)$$

$$= n(-W_{d,n}) \exp\left(\frac{\phi(W_{d,p}) - \phi(-W_{d,n})}{V_T}\right)$$

The law of the junction

- Even at non-equilibrium,
 - The previous relation holds:

$$n(W_{d,p}) = n(-W_{d,n}) \exp\left(\frac{\phi(W_{d,p}) - \phi(-W_{d,n})}{V_T}\right)$$

- Potential difference, $\phi(W_{d,p}) \phi(-W_{d,n})$
 - When the cathode voltage is zero,

$$\phi(W_{d,p}) - \phi(-W_{d,n}) = -V_{bi} + V_{anode}$$

- The minority carrier density
 - It is simply given by

$$n(W_{d,p}) = n_0(W_{d,p}) \exp\left(\frac{V_{anode}}{V_T}\right)$$
Equilibrium density

What does it mean?

- Assume that $N_D = 10^{20} \text{ cm}^{-3}$ and $N_A = 10^{17} \text{ cm}^{-3}$.
 - At equilibrium, the minority electron density in the P-type region is 10^3 cm^{-3} .
 - When a forward bias voltage of 0.3 V is applied, the minority electron density at the edge of the depletion region is 10^8 cm⁻³.
 - When a reverse bias voltage of 0.3 V is applied ($V_{anode} = -0.3 \text{ V}$), the minority electron density at the edge of the depletion region becomes very small. (It is not 10^{-2} cm^{-3} , but small anyway.)

Numerical example

Three bias voltages, +0.3 V and 0.0 V

GIST On-Line Lecture on March 30, 2020 (Internal use only)

n in linear scale

- In the neutral P-type region, the electric field is quite small.
 - Only the diffusion mechanism is important.

$$J_{n,x}^{diff} = qD_n \frac{dn}{dx} = \text{a constant}$$

Position (micron)
GIST On-Line Lecture on March 30, 2020 (Internal use only)

Diffusion equation

- Its solution, n(x), is a linear function.
 - Try this:

$$n(x) = ax + b$$

- We need two boundary conditions.
- Law of the junction

$$n(x = W_{d,p}) = n_0 \exp\left(\frac{V_{anode}}{V_T}\right)$$

Anode contact

$$n(x = L_p) = n_0$$

The current density becomes

$$J_{n,x}^{diff} = qD_n \frac{dn}{dx} = -qD_n \frac{n_0}{L_p - W_{d,p}} \left(\exp\left(\frac{V_{anode}}{V_T}\right) - 1 \right)$$

I-V characteristics

- Exponential dependence on V_{anode}
 - V_{anode} is normalized by the thermal voltage, $V_T = \frac{k_B T}{q}$.
 - At 300 K, V_T ≈ 0.02585 V = 25.85 mV.
 - Then, the diode current can be written as

$$I_{anode} = I_S \left(\exp \frac{V_{anode}}{V_T} - 1 \right)$$

- Here, the "reverse saturation current" (I_S) is a given constant. It's a small current.

$$I_{s} = Aqn_{i}^{2} \left(\frac{D_{n}}{N_{A}L_{n}} + \frac{D_{p}}{N_{D}L_{p}} \right)$$

Some limiting cases

Useful relations:

$$I_{anode} = I_S \left(\exp \frac{V_{anode}}{V_T} - 1 \right)$$

- When V_{anode} is close to zero, $\exp{\frac{V_{anode}}{V_T}} \approx 1 + \frac{V_{anode}}{V_T}$ $I_{anode} = I_S \frac{V_{anode}}{V_T}$
- When V_{anode} is negative and $V_{anode} \ll -V_T$, $\exp \frac{V_{anode}}{V_T} \approx 0$ $I_{anode} = -I_S$
- When V_{anode} is positive and $V_{anode} \gg V_T$, $I_{anode} = I_S \exp \frac{V_{anode}}{V_T}$