4 Differentiation

4.1 Partial derivatives and Jacobians

66: Find all first and second order partial derivatives for the function

$$z = x^5 + y^5 - 3x^3y^3.$$

67: Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{(x^2 + y^2)} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{otherwise.} \end{cases}$$

i) Calculate

$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$

first for $(x, y) \neq (0, 0)$ (you can use Maple if you like) and then for (x, y) = (0, 0).

ii) Show that

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0).$$

Discuss!

68: Let

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{otherwise} \end{cases}$$

Does the derivative

$$\frac{\partial^2 f}{\partial x \partial y}(0,0)$$

4.2 Definition of differentiability

72: If $f: \mathbb{R}^n \to \mathbb{R}$ and $a \in \mathbb{R}^n$, show that there cannot be two different linear functions

$$\ell: \mathbb{R}^n \to \mathbb{R}$$

satisfying

$$\frac{f(\boldsymbol{a}+\boldsymbol{x})-f(\boldsymbol{a})-\ell(\boldsymbol{x})}{\|\boldsymbol{x}\|}\to 0\quad\text{as}\quad \boldsymbol{x}\to \boldsymbol{0}.$$

73: Let $f: \mathbb{R}^3 \to \mathbb{R}$ be defined by

$$f(x, y, z) = xy + yz + xz.$$

Show, using the definition of differentiability (see these webnotes¹⁹), that f is differentiable at the point (1,1,1).

exist?

69: Find $\frac{\partial f}{\partial y}(1,y)$ for the function

$$f(x,y) = x^{x^{x^y}} + (\ln x) \times$$
$$\tan^{-1} \left[\tan^{-1} \left(\sin \left[\cos(xy) - \ln(x+y) \right] \right) \right].$$

70: Find a general formula for the Jacobian matrix of the function $f: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$f(x, y, z) = \begin{bmatrix} xy \sin z \\ xy \cos z \\ x^2 + y^2 + z^2 \end{bmatrix}$$

and find its value at the point (2, 1, 0).

71: Verify that the equation

$$J(\boldsymbol{f} \cdot \boldsymbol{g}) = \boldsymbol{g}^T \times J\boldsymbol{f} + \boldsymbol{f}^T \times J\boldsymbol{g}$$

holds in the case where

$$f, g: \mathbb{R}^n \mapsto \mathbb{R}^n$$
.

74: Let

$$f(x,y) = \sqrt[3]{xy}, \quad x,y \in \mathbb{R}.$$

Find

$$f_x(0,0)$$
 and $f_y(0,0)$.

Is this function differentiable at (0,0)?

75: Let

$$f(x,y) = \sqrt[3]{x^3 + y^3}, \quad x, y \in \mathbb{R}.$$

Find

$$f_x(0,0)$$
 and $f_y(0,0)$.

Is this function differentiable at (0,0)?

 $^{^{19} \}verb|http://web.maths.unsw.edu.au/~potapov/2111_2015/Differentiability-of-vector-map.html| and the control of the control$

76: Let

$$f(x,y) = \begin{cases} \frac{\sin(x^2 + y^2)}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 1, & \text{otherwise} \end{cases}$$

4.3 Best affine approximations

77: What is the best affine approximation to the function $f: \mathbb{R}^2 \to \mathbb{R}^2$

$$\mathbf{f}(x,y) = \begin{bmatrix} e^{xy^2} \\ x^2 - 3x + y^2 \end{bmatrix}$$

at the point (1, -1).

78: When two resistances r_1 and r_2 are connected in parallel, the total resistance R (measured in ohms) is given by:

$$\frac{1}{R} = \frac{1}{r_1} + \frac{1}{r_2}.$$

i) Show that
$$\frac{\partial R}{\partial r_1} = \frac{R^2}{r_1^2}$$
.

4.4 Chain Rule, First order

80: Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^p$ and $h = g \circ f: \mathbb{R}^n \to \mathbb{R}^p$ and let $\mathbf{a} \in \mathbb{R}^n$. For each of the examples below find the left hand side and the right hand side of the chain rule identity:

$$J_{\mathbf{a}}h = J_{f(\mathbf{a})}g \times J_{\mathbf{a}}f.$$

i)

$$egin{aligned} oldsymbol{f}(x,y,z) &= egin{bmatrix} x^2 - y^2 \\ 2xy \\ z \end{bmatrix}, \ oldsymbol{g}(u,v,w) &= egin{bmatrix} u + w^2 \\ u/w \end{bmatrix}, \ oldsymbol{a} &= (2,1,2). \end{aligned}$$

$$\begin{split} \boldsymbol{f}(x,y) &= \begin{bmatrix} x^2 + y \\ x - 2y^2 \end{bmatrix}, \\ \boldsymbol{g}(u,v) &= \begin{bmatrix} 2u + v \\ \sin u \\ u + 2v^2 \end{bmatrix}, \\ \boldsymbol{a} &= (1,1); \end{split}$$

Find

$$f_x(0,0)$$
 and $f_y(0,0)$

and show that this function is differentiable at (0,0).

ii) Use the best affine approximation of function $R(r_1,r_2)$, to estimate the maximum possible error in the calculated value of R if the measured values of r_1 and r_2 are $r_1=6\pm0.1$ ohms and $r_2=9\pm0.03$ ohms

79: The specific gravity δ of a solid heavier than water is given by

$$\delta = \frac{W}{W - W_1}$$

where W and W_1 are its weight in air and water respectively. W and W_1 are observed to by 17.2 and 9.7 gm. Use the best affine approximation of function $\delta(W, W_1)$ to estimate the maximum possible error in the calculated value of δ due to an error of 0.05 gm in each observation.

iii)
$$g(x,y)=\sqrt{x^2+y^2},$$

$$\boldsymbol{f}(s,t)=\begin{bmatrix}e^{st}\\1+s^2\cos t\end{bmatrix},$$

$$\boldsymbol{a}=(1,0).$$

iv)
$$g(x,y)=e^{xy^2},$$

$$\boldsymbol{f}(t)=\begin{bmatrix}t\cos t\\t\sin t\end{bmatrix},$$

$$a=\frac{\pi}{2}$$

81: A function f(x,y) is said to be homogeneous of degree m if $f(tx,ty) = t^m f(x,y)$ for every real number t > 0. Euler's theorem states that if f is homogeneous of degree m and if all its partial derivatives of first order exist then

$$x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = mf(x, y).$$

i) Verify Euler's theorem for

$$f(x,y) = Ax^2 + Bxy + Cy^2$$

and for

$$g(x,y) = \tan^{-1} \frac{y}{x}, \quad x \neq 0.$$

- ii) Prove Euler's theorem.
- iii) Generalise the theorem and prove your generalisation.

4.5 Directional derivatives

83: Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{otherwise.} \end{cases}$$

Show that for all unit vectors \boldsymbol{u} the directional derivative of f at the origin in the direction \boldsymbol{u} does exist, but f is discontinuous at (0,0). Show that there is no plane which contains all the lines which are tangent to the surface z = f(x,y) at (0,0,0).

- 84: For each of the following scalar fields
 - a) find ∇f
 - b) graph some level curves f(x,y) = constant,
 - c) indicate ∇f at some points by arrows on these curves.
 - i) f(x,y) = xy
 - ii) $f(x,y) = x^2 + y^2$
 - iii) $f(x,y) = \frac{y}{x^2}$.
- **85**: Let r = x i + y j + z k and r = ||r||.
 - i) Prove that $\nabla r = \frac{r}{r}$ and $\nabla \left(\frac{1}{r}\right) = \frac{-r}{r^3}$.
 - ii) Calculate $\nabla(\cos r)$, $\nabla\left(\frac{\log r}{r}\right)$.
 - iii) Prove that $\nabla r^n = nr^{n-2} \mathbf{r}$.

86: In each case find ∇f at the point P and use it to find the directional derivative of f at P in the direction of v.

i)
$$f(x,y) = 13x^2 + 7xy + 2y$$
, $P = (-1,1)$, $\mathbf{v} = 5\mathbf{i} + 12\mathbf{j}$.

82: Suppose that $f: \mathbb{R} \to \mathbb{R}$ is differentiable and

$$z = xy + f\left(\frac{y}{x}\right), \quad (x,y) \in \mathbb{R}^2, \quad x \neq 0.$$

Show that z satisfies the partial differential equation

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 2xy.$$

- ii) $f(x,y,z) = x(x^2 + y^2 + z^2), P = (1,2,-1),$ $\mathbf{v} = \mathbf{i} + \mathbf{j} + \mathbf{k}.$
- 87: Suppose f(x, y) is a differentiable function, which has, at the point x, directional derivative $1/\sqrt{2}$ in the direction (1,1) and directional derivative 1/5 in the direction (3,4). Find $\nabla f(x)$.
- 88: A bushwalker is climbing a mountain, of which the equation is $h(x,y) = 400 (x^2 + 4y^2)/10000$. Here x, y and h are measured in metres, the x-axis points East and the y-axis points North. The bushwalker is at a point P, 1600 metres West and 400 metres South of the peak.
 - i) What is the slope of the mountain at *P* in the direction of the peak?
 - ii) In which direction at P is the slope greatest?
- **89**: The electrical potential V is given by $V(x, y, z) = x^2 xy + xyz$.
 - i) Find the rate of change of the potential V at (1,1,1) in the direction of the vector $\mathbf{v} = \mathbf{i} \mathbf{j} + \mathbf{k}$.
 - ii) In which direction(s) does V change most rapidly at (1,1,1)?
 - iii) What is the maximum rate of change of V at (1,1,1)?
- **90**: Skier is on a mountain described by the equation $h(x,y) = 2000 x^4/10^8 y^2/10^2$ at the point (100, 1). He skis down the mountain, always moving in the direction of steepest descent.
 - i) In what direction does he start moving?
 - ii) Describe the curve along which he skis. [You will need to solve a separable first order ODE.]

Answers to problems

A66: $\partial z/\partial x = 5x^4 - 9x^2y^3$, $\partial z/\partial y = 5y^4 - 9x^3y^2$, $\partial^2 z/\partial x^2 = 20x^3 - 18xy^3$, $\partial^2 z/\partial x\partial y = -27x^2y^2$, $\partial^2 z/\partial y^2 = 20y^3 - 18x^3y$. **A67**: See these web $notes^{20}$ for solution **A68**: No **A69**: 0.

notes²⁰ for solution A68: No A69: 0.

$$\mathbf{A70}: \quad J_x f = \begin{bmatrix} y \sin z & x \sin z & xy \cos z \\ y \cos z & x \cos z & -xy \sin z \\ 2x & 2y & 2z \end{bmatrix},$$

$$J_{(2,1,0)} f = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 2 & 0 \\ 4 & 2 & 0 \end{bmatrix}. \quad \mathbf{A74}: \quad f_x = 0, \ f_y = 0; \ f$$
is not differentiable, see these we have to \mathbf{x}^{21} for solution.

$$J_{(2,1,0)} \boldsymbol{f} = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 2 & 0 \\ 4 & 2 & 0 \end{bmatrix}$$
. A74: $f_x = 0, f_y = 0; f_y = 0$

is not differentiable, see these webnotes²¹ for solution **A75**: $f_x = 1$, $f_y = 1$; f is not differentiable, see these webnotes²² for solution

A76: $f_x = 0$, $f_y = 0$; see these webnotes²³ for

A77:
$$\begin{bmatrix} e \\ -1 \end{bmatrix} + \begin{bmatrix} e & -2e \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x-1 \\ y+1 \end{bmatrix}$$

A79: 0.024

A84: i) $y \, \mathbf{i} + x \, \mathbf{j}$, $2x \, \mathbf{i} + 2y \, \mathbf{j}$, $-2y/x^3 \, \mathbf{i} + 1/x^2 \, \mathbf{j}$.

A85: i) $-(\sin r/r)r$, $[(1 - \log r)/r^3]r$. **A86**: i) -155/13, ii) $10/\sqrt{3}$. **A87**: (3, -2). **A88**: i) $8/5\sqrt{17}$, ii) North East.

A89: i) $\sqrt{3}$, ii) $\pm (2i + k)$, iii) $\sqrt{5}$.

A90: i) 2i + j, ii) $y = \exp \left[-2.5 \times 10^5/x^2 + 25\right]$.

 $^{^{20} \}mathtt{http://web.maths.unsw.edu.au/~potapov/2111_2015/Clariaut-Theorem.html}$

²¹http://web.maths.unsw.edu.au/~potapov/2111_2015/Differentiability-Example-II.html

²²http://web.maths.unsw.edu.au/~potapov/2111_2015/Differentiability-Example-III.html

 $^{^{23} \}texttt{http://web.maths.unsw.edu.au/~potapov/2111_2015/Differentiability-of-vector-map.html}$