<u>Recall</u>	given paths β , γ s.t. $\beta(1) = \gamma(0)$,		γ(0),	Q	suppose $\beta(1) = \beta'(1) = \gamma(0)$ and $\beta \sim_p \beta$ do we have $\beta * \gamma \sim_p \beta' * \gamma$?
β * γ is a	a new path (β * (β *	$\beta(y)(s) = \beta(2s)$ $\beta(y)(s) = \gamma(2s - 1)$	$s \le 1/2$ $s \ge 1/2$	[draw]	
[draw]				<u>Thm</u>	if $\beta(1) = \beta'(1) = \gamma(0) = \gamma'(0)$ and $\beta \sim_p \beta'$ and $\gamma \sim_p \gamma'$
given paths γ , γ' s.t. $\gamma(0) = \gamma'(0)$ $\gamma(1) = \gamma'(1)$					then $\beta * \gamma \sim_p \beta' * \gamma'$
$\gamma \sim_p \gamma'$ means there's a path homotopy from γ to γ'				<u>Pf</u>	pick a path homotopy h from β to β' pick a path homotopy j from γ to γ'
[draw]				then h	$\alpha(1, t) = \beta(1) = \beta'(1) = \gamma(0) = \gamma'(0) = j(0, t)$
Q	suppose $\beta(1) = \gamma(0) = \gamma'(0)$ and $\gamma \sim_p \gamma'$ do we have $\beta * \gamma \sim_p \beta * \gamma'$?				$s(s, t) = h(2s, t)$ $s \le 1/2$ $s(s, t) = j(2s - 1, t)$ $s \ge 1/2$

for the \sim_p equiv class of γ
for the \sim_p equiv class of γ

Thm 1 if α, β, γ are paths s.t. $\alpha(1) = \beta(0)$ $\beta(1) = \gamma(0)$

for any paths β , γ s.t. $\beta(1) = \gamma(0)$, take $\lceil \beta \rceil * \lceil \gamma \rceil$ to be the equiv class $\lceil \beta * \gamma \rceil$

[draw]

by thm, * is a well-def operation on equiv classes

then $(\alpha * \beta) * \gamma \sim_p \alpha * (\beta * \gamma)$ so $([\alpha] * [\beta]) * [\gamma] = [\alpha] * ([\beta] * [\gamma])$

(Munkres §52) now focus on loops:

Thm 2 write $e_x : [0, 1]$ to X for the <u>constant</u> path $e_x(s) = x$

if β , γ are loops in X at the same <u>basepoint</u> x then β * γ is also a loop at x

then $e_x * y \sim_p y$ for all paths y starting at x $\beta \sim_p \beta * e_x$ for all paths β ending at x

get a binary operation on equiv classes of loops:

so $[e_x] * [y] = [y]$ $[\beta] * [e_x] = [\beta]$

 $[\beta] * [\gamma] = [\beta * \gamma]$

Thm 3 write y(s) = y(1 - s) for the <u>reverse</u> path

then $y * y^- \sim_p e_x$ for y starting at x $y^- * y \sim_p e_y$ for y ending at y

so $[y] * [y] = [e_x]$ $[y] * [y] = [e_y]$

[proofs of Thms 1–2 are long and tedious]

[to show that $[y] * [y] = [e_x]$ for y starting at x: need path homotopy h : $[0, 1] \times [0, 1]$ to X

s.t. for all s in [0, 1], $h(s, 0) = e_x(s) = x$ $h(s, 1) = (y * y^-)(s)$ for fixed t, the path h(s, t) should "freeze" when it hits $\gamma(t)$, then go back

h(s, t) =
$$y(2s)$$
 s in [0, t/2]
= $y(t)$ s in [t/2, 1 - t/2]
= $y(2-2s) = y(2s)$ s in [1 - t/2, 1]

<u>Cor</u> for loops in X based at a point x:

1)
$$([\alpha] * [\beta]) * [\gamma] = [\alpha] * ([\beta] * [\gamma])$$

2)
$$[y] * [e_x] = [y] = [e_x] * [y]$$

3)
$$[y] * [y] = [e_x] = [y] * [y]$$

<u>Df</u> the fundamental group of X based at x is

$$\pi_1(X, x) = \{[y] \mid \text{loops } y \text{ in } X \text{ based at } x\}$$

under the operation * on \sim_p equiv classes

Q how much does $\pi_1(X, x)$ depend on X and x?