1 Week 3

- If f(n) = O(g(n)), there exist constants c_1 and c_2 such that $f(n) \leq c_2 \cdot g(n)$ holds for all $n \geq c_2$.
- If f(n) = O(g(n)), we have $\lim_{n\to\infty} \frac{f_1(n)}{g_1(n)} = c = \text{some constant } c$.

2 Week 3 - Extra

- When using 'Direction 1: Constant Finding' setting c_1 , always set it to match the coefficient on the LHS so that you can cancel.
- When trying to get a contradiction, try and isolate an $x \cdot c_1$ on the RHS, where $x \in \mathbb{Z}$, such that an expression that contains n is $\leqslant xc_1$
- Make judicious use of the *max* function when adding functions together
- If $f_1(n) + f_2(n) \leq c_1 \cdot g_1(n) + c'_1 \cdot g_2(n) \leq \max\{c_1, c'_1\} \cdot (g_1(n) + g_2(n))$, for all $n \geq \max\{c_2, c'_2\}$.

3 Week 4

Let f(n) be a function that returns a positive value for every integer n > 0. We know:

$$f(1) \leqslant c_1$$

 $f(n) \leqslant \alpha \cdot f(\lceil n/\beta \rceil) + c_2 \cdot n^{\gamma} \text{ for } n \geqslant 2$

where $\alpha, \beta, \gamma, c_1$ and c_2 are positive constants. Then:

- If $log_b \alpha < \gamma$ then $f(n) = O(n^{\gamma})$
- If $log_b\alpha = \gamma$ then $f(n) = O(n^{\gamma}log(n))$

• If $log_b \alpha > \gamma$ then $f(n) = O(n^{log_\beta(a)})$

4 Week 5

5 RAM Model

5.1 Memory

Infinite sequence of cells, contains w bits. Every cell has an address starting at 1

5.2 CPU

32 registers of width w bits.

5.2.1 Operations

Set value to register (constant or from other register). Take two integers from other registers and store the result of; $a+b, a-b, a \cdot b, a/b$. Take two registers and compare them; a < b, a = b, a > b. Read and write from memory.

5.3 Definitions

An algorithm is a set of atomic operations. It's cost is is the number of atomic operations. A word is a sequence of w bits

6 Worst-case

Worst-case cost of an algorithm is the longest possible running time of input size n

7 Dictionary search

let n be register 1, and v be register 2 register $left \rightarrow 1, \ right \rightarrow 1$ while $left \leq right$

register $mid \rightarrow (left + right)/2$

if the memory cell at address mid = v then return yes else if memory cell at address mid > v then right = mid - 1 else left = mid + 1 return no

Worst-case time: $f_2(n) = 2 + 6 \log_2 n$

8 Big-O

We say that f(n) grows asymptotically no faster than g(n) if there is a constant $c_1 > 0$ such that $f(n) \le c_1 \cdot g(n)$ and holds for all n at least a constant c_2 . This is denoted by f(n) = O(g(n)).

8.1 Example

 $\begin{array}{lll} 1000\log_2 n &=& O(n), n &\neq \\ O(10000\log_2 n) & \\ \log_{b_1} n &=& O(\log_{b_2} n) \text{ for any constants } b_1 > 1 \text{ and } b_2 > 1. \text{ Therefore } \\ f(n) = 2 + 6\log_2 n \text{ can be represented; } \\ f(n) = O(\log n) & \end{array}$

9 Big- Ω

If g(n) = O(f(n)), then $f(n) = \Omega(g(n))$ to indicate that f(n) grows asymptotically no slower than g(n). We say that f(n) grows asymptotically no slower than g(n) if $c_1 > 0$ such $f(n) \geq c_1 \cdot g(n)$ for $n > c_2$; denoted by $f(n) = \Omega(g(n))$

10 Big- Θ

If f(n) = O(g(n)) and $f(n) = \Omega(g(n))$, then $f(n) = \Theta(g(n))$ to indicate that f(n) grows asymptotically as fast as g(n)