VLC

with a smartphone camera

VLC Visible Light Communication

- Visible Light Communication (VLC) refers to optical wireless communication
- data communications variant
- uses modulated light in a wavelength spectrum, that is perceivable by the human eye
 - between 400 nm and 700 nm
 - usually used for illumination

Receiver

Sender

Receiver

Sender

Sender

Receiver

Receiver

Sender

How to extract information out of one frame? Rolling Shutter effect

- Only works with CMOS cameras
 (which are principally built into smartphones)
- Frame doesn't get captured all at once
- Rather gets captured row per row

Rolling shutter effect LED

- Switching a LED on and off at a very high frequency results in following for CMOS sensor
- Black stripes show when LED is off
- White stripes show when LED is on

How does the sender (LED) transmit a string?

- Converts a string into binary representation and switches LED on and off respectively
- Follows specific schema to send data

1010101010 + Header

01001000

Н

01101001

00100001

, test + 1010101010

Header

H xor i

, test + 1010101010

Header

, test + 1010101010 Header

What does the receiver do?

- records frames
- extracts the transferred string from it
- provides possibility to change ISO (100-3200)
 value and exposure time (125 microseconds 1 millisecond)
- saves it

Get luminance values of frame

Get luminance values of frame

Get medium lighted row (decrease blooming effect)

Get medium lighted row (decrease blooming effect)

Get luminance values of frame

Get medium lighted row (decrease blooming effect)

Split row into black & white pixels and form groups of them

Get luminance values of frame

Get medium lighted row (decrease blooming effect)

Split row into black & white pixels and form groups of them

Increase size of black groups

Get medium lighted row (decrease blooming effect)

Split row into black & white pixels and form groups of them

Increase size of black groups

Get median size of group -> size of single stripe

Split row into black & white pixels and form groups of them

Increase size of black groups

Get median size of group -> size of single stripe

Size of group decides about amount of 0's or 1's

How to cope with continuous frames?

How to cope with continuous frames?

Add 'x' between every analysed frame for better error detection

How to cope with continuous frames?

If 'x' is in between symbol bits then recover with XOR