

PATENT APPLICATION

**DATA INPUT AND OUTPUT CIRCUITS FOR
MULTI-DATA RATE OPERATION**

Inventor: Hua Zheng
256 Scotia Court
Fremont, California 94539
a citizen of United States

Assignee: **Winbond Electronics Corporation**
No. 4, Creation Road, III
Science-based Industrial Park
Hsin Chu, Taiwan, Republic of China
a corporation of Taiwan, R.O.C.

Entity: Large

DINH & ASSOCIATES
2506 Ash Street
Palo Alto, CA 94306
Tel (650) 289-0600
Fax (650) 289-0700

DATA INPUT AND OUTPUT CIRCUITS FOR MULTI-DATA RATE OPERATION

BACKGROUND OF THE INVENTION

5 The present invention relates generally to memory devices, and more particularly to data input and output circuits capable of supporting multi (e.g., double) data rate operation and a number of timing schemes.

10 Memory devices are integral to computer systems, and to many electronic circuits. Continuous improvements in the operating speed and computing power of central processing units (CPUs) enable operation of an ever-greater variety of applications, many of which require larger and faster memories. Larger memories are characterized by having more memory cells to store more bits of data. Faster memories can be provided by reducing the time necessary for each read and write cycle and by allowing for access of multiple data bits on each clock cycle.

15 Memory devices can be designed to support a number of operating modes such as a single data rate (SDR) and a double data rate (DDR) mode. In the SDR mode, one data bit is accessed (i.e., written to or retrieved from the memory device) for each device input/output (I/O) pin and on each active clock cycle. In the DDR mode, two data bits are accessed for each device I/O pin on each active clock cycle. The memory devices may further be designed to support other operating modes such as a block write mode in which a block of data bits is concurrently written to memory.

20 Larger memory devices typically include many device I/O pins to support concurrent access of many data bits. The memory cells within a memory device are coupled to the I/O pins through a structure of interconnections. As the number of I/O pins increases and the number of memory cells in the memory device grows, the interconnection structure also grows in complexity. Moreover, the data input and output circuits to interface the memory cells to the device I/O pins become more complicated, particularly if the memory device is required to support a number of operating modes.

25 Memory devices are also designed to meet various timing specifications. When the operating speed is slow, these timing specifications can be more easily satisfied because of the longer clock period. However, as the operating speed increases, it becomes more challenging to meet these timing requirements. More complicated timing circuits are typically required to generate triggering signals for synchronous circuits

within the memory device to ensure conformance with the input and output timing specifications.

As can be seen, data input and output circuits that can support multi data rate operation and a number of different timing schemes are highly desirable.

5

SUMMARY OF THE INVENTION

The invention provides data input and output circuits for use in an integrated circuit (e.g., a memory device) and capable of supporting multi data rate read and write operations and a number of timing schemes. The data input and output circuits include appropriate circuitry to receive data bits, latch the received data bits with triggering signals having the appropriate timing characteristics, multiplex (i.e., order) the data bits to generate data bits in the proper order, and provide the necessary signal drive. The triggering signals can have different timing characteristics, and are selected based on a particular operating mode of the memory device.

An embodiment of the invention provides a data output circuit that includes a first (input) multiplexer, data latches, and at least one output driver. The input multiplexer receives a set of data bits in a first order and provides the data bits in a second order. The data latches can latch the data bits in the second order with a latch signal to satisfy memory access timing requirements, and can further latch the data bits with a data write clock signal to satisfy output timing requirements. The data output circuit typically further includes a second (output) multiplexer that multiplexes the latched data bits to provide time multiplexed data bits. The output driver(s) receive and provide signal drive for the time multiplexed data bits. To achieve variable drive capability, a number of output drivers can be designed such that they can be individually enabled and disabled (e.g., all output drivers can be disabled to place the data output circuit a tri-state condition).

The signals used to trigger the synchronous circuits in the data output circuit can have different timing characteristics to allow the data output circuit to satisfy various timing requirements. For example, the latch signal can have a phase (e.g., delayed by a particular amount) that is selected based on an operating mode of the data output circuit. Also, the data read clock signal can be generated based on one of a number of clock signals, again depending on the particular operating mode, and may further have an adjustable phase determined, for example, by a delay lock loop circuit. The data bits

provided to the input multiplexer can be prefetched from a memory array based on the fallings edge of an input clock signal.

For a specific implementation that supports DDR read operation, the input multiplexer receives data bits associated with even and odd memory addresses and

5 provides the data bits in first and second temporal order. One memory address can be provided for each pair of odd and even data bits and the other address can be generated internally based on a particular addressing scheme. For ease of implementation, the even and odd memory addresses can be consecutively numbered.

Another embodiment of the invention provides a data input circuit that

10 includes a demultiplexer, a multiplexer, and a number of driver circuits. The demultiplexer can be implemented with a first set of latches that latches a sequence of time multiplexed data bits with a number of phases of a latch signal (which may be generated from a DQS signal) to provide a number of sequences of data bits. The multiplexer orders the sequences of data bits to provide ordered sequences. The data input circuit typically further includes a second set of latches that latches the ordered sequences with a data write clock signal. Each driver circuit then receives a respective sequence from the second set of latches and drives a respective data line.

15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9

Yet another embodiment of the invention includes a method for providing a number of data bits to an output node in a multi data rate operation. In accordance with the method, a set of data bits is received and ordered to provide ordered data bits that are then latched to provide latched data bits. The latched data bits can then be multiplexed 5 into a sequence of time multiplexed data bits, which is then provided to the output node.

For DDR read operation, the received data bits can correspond to even and odd memory addresses and the ordered data bits can correspond to first and second temporal order to be provided to the output node. The data latching can include: (1) latching the ordered data bits with a latch signal to fulfill (e.g., memory access) timing 10 requirements, (2) latching the first latched data bits with a data read clock signal to provide second latched data bits, and (3) latching one of the second latched data bits with the inverted data read clock signal to properly align the data bits. The latch signal and data read clock signal can be generated as described in detail below.

Yet another embodiment of the invention includes a method for providing a number of data bits to a memory array in a multi data rate operation. In accordance 15 with the method, a sequence of time multiplexed data bits is received and demultiplexed into a number of sequences of data bits. The demultiplexing typically includes latching the time multiplexed data bits with a number of phases of a data latch signal to generate a number of sequences of data bits. The sequences are then ordered to provide ordered 20 sequences. The ordered sequences may further be latched with a data write clock signal to generate sequences of latched data bits that are then provided to the memory array.

For DDR write operation, the sequence of time multiplexed data bits includes two data bits per active cycle of an input clock signal, and is demultiplexed into 25 first and second sequences of data bits corresponding to first and second phases of the input clock signal. The first or second sequence is then selected as an even sequence to be provided to even-numbered address memory cells, and the other second or first sequence is selected as an odd sequence to be provided to odd-numbered address memory cells.

The data output and input circuits and the methods described above can be 30 advantageously implemented within an integrated circuit, a DRAM device, and other devices. Various other aspects, embodiments, and features of the invention are described in further detail below.

The foregoing, together with other aspects of this invention, will become more apparent when referring to the following specification, claims, and accompanying drawings.

5

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a diagram of a specific embodiment of a memory device;

FIG. 1B is a diagram of a specific embodiment of a memory array and a datapath within the memory device;

FIG. 2 is a simplified diagram of some of the circuitry within the memory
10 device;

FIG. 3A is a block diagram of an addressing and data output structure for an access of two data bits in a double data rate (DDR) mode;

FIG. 3B is a block diagram of an embodiment of a data output architecture capable of providing a set of data bits from a memory array to a DQ pad in a memory
15 read operation;

FIG. 3C is a diagram of an embodiment of the multiplexer, registers and shifter, output multiplexer, and output driver of a data output circuit;

FIGS. 4A and 4B are timing diagrams for a DDR read operation to read two data bits from the memory array on each active clock cycle for a fast and a slow input
20 clock signal CLKIN, respectively;

FIG. 5 is a block diagram of an embodiment of a data input architecture capable of writing a set of data bits provided on a DQ pad to the memory array in a memory write operation;

FIGS. 6A through 6C are timing diagrams for a DDR write operation to
25 write two data bits to two memory cells on each active clock cycle of the input clock signal CLKIN for a nominal, minimum, and maximum t_{DQSS} delay, respectively;

FIG. 7 is a diagram of an embodiment of the clock generation within the memory device;

FIG. 8 is a schematic diagram of an embodiment of a 2x1 multiplexer; and

30 FIG. 9 is a schematic diagram of an embodiment of an output driver.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

For clarity, the invention is described for a specific implementation of a memory device. However, the specific details are intended to be illustrative, and not limitations, of the present invention. It will be recognized that alternative 5 implementations of the invention and modifications of the circuits and architectures described herein can be made (e.g., to satisfy a particular design requirement), and these modifications and variations are within the scope of the invention.

FIG. 1A is a diagram of a specific embodiment of a memory device 100. In this embodiment, memory device 100 includes four memory arrays 110a through 110d, 10 with each memory array 110 including two memory banks 120a and 120b. Each memory bank 120 includes an upper half 130a and a lower half 130b. A control circuit 140 couples to memory arrays 110a through 110d and provides the necessary control signals, clock signals, and reference voltages. Additional control and support circuitry may be dispersed throughout memory device 100. Some of these circuits are described below, as 15 necessary for the understanding of the invention.

As shown in FIG. 1A, each memory array 110 is associated with a datapath 150 that interconnects the memory cells in the memory array to an associated set of data input/output (I/O) pads 160, one data I/O pad for each device data I/O pin. The I/O pads and I/O pins are also referred to as DQ pads and DQ pins, respectively. 20 Additional pad sections 160e and/or 160f are provided for control signals, clock signals, address lines, power supplies, ground, and other inputs and outputs.

Generally, the memory device can include greater or fewer number of memory arrays, each memory array can include greater or fewer number of memory banks, and each memory bank can be configured differently than that shown in FIG. 1A. 25 In certain embodiments, memory device 100 is DRAM device having at least 64 million bits (Mbits) of memory, and each memory array includes at least 16 Mbits of memory.

Each memory array 110 includes memory cells for many data bits. The memory cells are typically arranged in a two-dimensional array. A word line selects a particular row within the memory array, and a column select line selects a particular 30 column. Thus, each memory cell is identified by a unique combination of word line and column select line. A set of word line drivers associated with each memory array activates the word lines for that memory array, and a column decoder associated with each memory bank activates the column select lines for that memory bank. In an

embodiment, a column decoder 142 is associated with each array 120. The word line drivers and portions of the column decoders are implemented within control circuit 140.

The word lines and column select lines are activated in accordance with memory addresses provided by a source external or internal to memory device 100. The generation of the control signals is described in further detail in U.S. Patent Application Serial No. 09/427,150, entitled "Clock-Based Transparent Refresh Mechanisms for DRAMs," filed October 25, 1999, assigned to the assignee of the present invention and incorporated herein by reference.

In an embodiment, the memory cells in each memory array are arranged into a number of sections, with each section corresponding to a particular set of memory addresses. For example, in an implementation that advantageously supports double data rate (DDR) operation, the memory cells are arranged into odd and even sections, with the odd section including memory cells having odd-numbered addresses and the even section including memory cells having even-numbered addresses. For a DDR memory access, two data bits are retrieved from, or written to, an even and an odd section of the memory array for each "active" clock cycle.

FIG. 1B is a diagram of a specific embodiment of memory array 110 and datapath 150. In this embodiment, datapath 150 is partitioned into two sets of alternating even section 152 and odd section 154 that are associated with corresponding even and odd sections of memory array 110. Datapath 150 couples to a set of global data lines 156, two of which are shown in FIG. 1B. Each global data line 156 traverses the length of the associated memory array and couples to a respective set of memory cells. Datapath 150 further couples to an associated set of DQ pads 160 via a set of pad lines 158 (one DQ pad 160x and one pad line 158 are shown in FIG. 1B). Via the DQ pads, pad lines, datapath, and global data lines, input data bits are written to the memory cells in the memory device and stored data bits are read from the memory cells.

A design of a datapath that supports a number of different operating modes is disclosed in U.S. Patent Application Serial No. 09/236,509, entitled "Memory Array Datapath Architecture," filed January 25, 1999, assigned to the assignee of the present invention and incorporated herein by reference.

FIG. 2 is a simplified diagram of some of the circuitry within memory device 100. As shown in FIG. 2, memory device 100 includes an address buffer 210 for receiving an input address and providing buffered address information to a row decoder 212 and a column decoder 214. Row decoder 212 activates one or more row control lines

(or word lines) 216 for the selected memory cell(s), as determined by the address information received from buffer 210. For a multi-data rate operation, row decoder 212 may select two or more of word lines to allow concurrent access to multiple memory cells.

5 Similarly, column decoder 214 activates one or more column select lines (CSLs) 218 for the selected memory cell(s), as determined by the address information received from address buffer 210. Column select lines 218 couple to a sense amplifier and I/O control circuit 220. Circuit 220 further couples to a memory array 110x and data input/output circuits 240. Circuit 220 provides the signal conditioning and drive for the
10 signals to and from memory array 110x. Circuit 220 further provides the control and signal buffering for the signals to and from data input/output (I/O) circuits 240. Circuits 240 provide signal buffering and drive for retrieved data bits to be provided to the DQ pads, signal buffering for input data bits to be provided to the memory array, and other functions. A timing circuit 250 generates the clock and control signals for various
15 synchronous circuits within memory device 100.

FIG. 3A is a block diagram of an addressing and data output structure for an access of two data bits in the DDR mode. To access two data bits, an address of the memory cell for the first data bit is provided and the address of the memory cell for the second data bit is (internally) generated by an address generator 302 from the first address based on a particular addressing scheme. For example, in one simple scheme, the second address is generated by simply incrementing the first address by one. For ease of implementation, the two accessed data bits typically have consecutively numbered addresses (i.e., ADDR and ADDR+1), but this is not a necessary condition. For the above design, address generator 302 generates an odd address and an even address for
20 memory array 110. Address generator 302 further generates a signal SBIT indicative of the particular order of the odd and even-numbered data bits being accessed.
25

In an embodiment, memory array 110 is arranged such that concurrent memory access of a number of data bits can be achieved. In an embodiment, to support concurrent access of two data bits in the DDR mode, the memory cells in each memory array are arranged into even-numbered address memory cells and odd-numbered address memory cells. Appropriate support circuitry (e.g., data sense amplifiers) is provided to allow for concurrent access of one even-numbered address memory cell (or simply, even memory cell) and one odd-numbered address memory cell (or simply, odd memory cell) for each active clock cycle.

The odd and even-numbered data bits are prefetched from memory array 110 and provided to an output data multiplexer 304. In an embodiment, the memory cells being accessed are not restricted to any particular order of even and odd addresses. For example, an even memory cell may be accessed before an odd memory cell (e.g., memory cells with addresses xxxx0 and xxxx1) or an odd memory cell may be accessed before an even memory cell (e.g., memory cells with addresses xxxx1 and xxxx0). Thus, after the data in the memory cells are prefetched, the data bits from the even and odd memory cells are appropriately arranged such that they are provided to the DQ pad in the proper order. This is achieved with the signal SBIT from address generator 302.

FIG. 3B is a block diagram of an embodiment of a data output architecture 300 capable of providing a set of data bits from the memory cells in memory array 110 to pad 160x. Architecture 300 is one implementation of output data multiplexer 304. A portion of data output architecture 300 is incorporated within sense amplifier and I/O control circuit 220 and the remaining portion is incorporated within data I/O circuits 240.

For a memory read operation in the DDR mode, the word lines and column select lines for memory array 110 are appropriately selected and activated such that two data bits from two memory cells are prefetched and provided on two sets of differential global data lines GD_E 156a and GD_O 156b to two data sense amplifiers (DSAs) 310a and 310b. Each data sense amplifier 310 senses the signal on the associated differential data lines 156 and provides an output signal having a value (e.g., "0" or "1") indicative of the sensed signal. As indicated in FIG. 3B, data sense amplifier 310a senses the even memory cell and data sense amplifier 310b senses the odd memory cell. The even and odd data bits from data sense amplifiers 310a and 310b are provided via respective data lines DWR_E and DWR_O to a data output circuit 320.

Within data output circuit 320, a multiplexer 330 receives the even and odd data bits on respective data lines DWR_E and DWR_O, selects either the even or odd data bit as the first data bit to be provided to the DQ pad (depending on the memory address), and selects the other odd or even data bit as the second data bit to be provided to the DQ pad. The first and second data bits are then provided via respective data lines DWR_0 and DWR_1 to registers and shifter 340.

Registers and shifter 340 latches the data bits on data lines DWR_0 and DWR_1 with the appropriate clock signals, as described below, and also provides a one-half clock cycle of delay for the second data bit to be provided to the DQ pad. The time aligned data bits are then provided from registers and shifter 340 via two respective data

lines QV_0 and QV_1 to an output multiplexer 350 that multiplexes both data bits onto one data line GT. The multiplexed data bits are then provided to an output driver 360 that buffers the data bits and drives DQ pad 160x.

FIG. 3C is a diagram of an embodiment of multiplexer 330, registers and shifter 340, output multiplexer 350, and output driver 360 of data output circuit 320. The even and odd data bits on data lines DWR_E and DWR_O are respectively provided to 2x1 multiplexers 332a and 332b. Multiplexer 332a selects either the even or odd data bit as the first bit to be provided to the DQ pad, depending on a control signal SBIT which is generated based on the memory address, and provides the selected data bit to data line DWR_0. Similarly, multiplexer 332b selects either the odd or even data bit as the second bit to be provided to the DQ pad, again depending on the control signal SBIT, and provides the selected data bit to data line DWR_1.

The first and second data bits from multiplexers 332a and 332b are then provided to latches 342a and 342b, respectively. Each latch 342 latches the received data bit with a latch signal DRLAT3 and provides the latched data bit to a respective register 344. Latching the data bits with the latch signal DRLAT3 allows data output circuit 320 to support a number of read modes. Each read mode corresponds to a particular timing relationship between a read command and when data is available from a data buffer. For example, the read modes can include the various column address select (CAS) latencies (i.e., timing delays) such as the CAS latency 2 and CAS latency 3 described in U.S. Patent No. 5,986,945, entitled "Memory Device Output Circuit Having Multiple Operating Modes," issued November 16, 1999, assigned to the assignee of the present invention and incorporated herein by reference. Typically, the read mode is known a priori before the device is accessed, and may be determined from a value stored in a mode setting register. Latches 342 thus ensure that the data bits from the memory cells are triggered in a manner that satisfies the timing specifications. In certain designs, latches 342 may be omitted if support for these different various timing modes (e.g., CAS latency 3) is not required nor desired. For example, latches 342 may be removed or forced ON for CAS latency 2.

The latched data bits from latches 342a and 342b are respectively provided to registers 344a and 344b, which register the received first and second data bits with a data read clock signal CLKDR. The second data bit from register 344b is then provided to a latch 346 and latched with a clock signal CLKDR. Latch 346 provides a half clock cycle of delay for the second data bit.

In accordance with an aspect of the invention, the data read clock signal CLKDR has different timing characteristics for different read modes. These timing characteristics are designed and selected to meet the system timing requirements and are described in further detail below. For example, the data read clock signal CLKDR may 5 be generated from one of several clock signals. Alternatively or additionally, the clock signal CLKDR may be delayed by different amounts for different read modes.

The data bits from register 344a and latch 346 are then provided via respective data lines QV_0 and QV_1 to a 2x1 multiplexer 352 that multiplexes the data bits onto one output data line GT. The time multiplexed data bits on data line GT are 10 then provided to a set of line drivers 362a through 362n. Each line driver 362 also receives a respective control signal CTRL_i (where i = 0, 1, 2, ... or n) and, when enabled by the control signal, drives DQ pad 160x.

In an embodiment, zero or more line drivers 362 can be enabled at any given moment. Zero line drivers 362 are enabled, for example, when DQ pad 160x is 15 operative to receive data bits to be written to the memory array. One or more line drivers 362 are enabled to provide data bits to the DQ pad. The number of line drivers enabled is typically based on the required drive strength. Generally, as more line drivers are enabled, the drive strength increases and the signal transitions are enhanced (i.e., sharpened). The line drivers can be designed to provide approximately equal drive 20 strengths (e.g., by designing the line drivers with similar physical dimensions) or different drive strengths. For example, line driver 362a may be designed to provide half the drive strength of line driver 362b, which may be designed to provide half the drive strength of line driver 362c, and so on.

FIG. 4A is a timing diagram for a DDR read operation to read two data 25 bits from the memory array on each active clock cycle for a fast input clock signal CLKIN. The input clock signal CLKIN is generated by buffering a clock signal VCLK provided on one of the device pins. In the embodiment shown in FIG. 4A, the rising edge of the clock signal CLKIN is used to generate the latch signal DRLAT3 and an output clock signal CLKOUT. Generation of the clock signals is described in further detail 30 below. The falling edge of the clock signal CLKIN is used to access the memory cells and the accessed data bits are available on data lines DWR_E and DWR_O some delay period later (i.e., delayed by t_{DATA} from the falling edge of the input clock signal CLKIN).

As shown in FIG. 4A, the latch signal DRLAT3 has falling edges that are delayed relative to the rising edges of the input clock signal CLKIN by a delay period

t_{DRLAT3} . The rising edges of the latch signal DRLAT3 occur a particular time period $t_{WDRLAT3}$ after the falling edges of the latch signal and are used to latch the data on data lines DWR_E and DWR_O. Since the memory access time t_{DATA} is typically fixed, the signal transitions on data lines DWR_E and DWR_O occur toward the rising edges of the
5 latch signal DRLAT3 when the input clock signal CLKIN is fast. However, the latch signal DRLAT3 is designed (i.e., the rising edges are appropriately delayed) such that it is able to latch the data on data lines DWR_E and DWR_O on the rising edges. The latched data is then provided on data lines DR_i_0 and DR_i_1.

The output clock signal CLKOUT is the main clock signal used
10 throughout the memory device to either latch the data on various data lines or to generate clock signals that are then used to latch the data. To provide output data that is aligned to the rising edges of the input clock signal CLKIN (which is required for some memory designs), a delay lock loop (DLL) is used to generate the output clock signal CLKOUT such that its rising edges lead the rising edges of the input clock signal CLKIN by a
15 particular amount of time $t_{DCLKOUT}$. The lead time $t_{DCLKOUT}$ allows the output clock signal CLKOUT to be used to trigger the data such that it is aligned with the input clock signal CLKIN at the device pins. The output clock signal CLKOUT is thus advanced relative to the input clock signal CLKIN by an amount $t_{DCLKOUT}$ that is dependent on the system requirements and the particular memory design (e.g., $t_{DCLKOUT} \approx 1.5$ nsec in some
20 memory device designs).

In accordance with an aspect of the invention, a number of read and write modes are provided to support different read and write timing schemes. Each read or write mode is associated with a particular set of clock signals used for writing data bits to the memory device or reading data bits from the memory device. The clock signals in
25 each read or write mode are selected such that the timing requirements are met. The particular read or write mode can be selected by a mode setting register, a control signal provided internally or by an external source, fuses, or by some other mechanisms.

In an embodiment, the supported modes include a DLL_ON mode and a DLL_OFF mode. The DLL_ON mode is characterized by the use of a delay locked loop (DLL) to generate the clock signals and other triggering signals, and the DLL_OFF mode is characterized by the use of the input clock signal CLKIN to generate some of the clock signals used for triggering the data. Since the delay locked loop can adjust the timing of the clock signals to ensure fulfillment of the timing specifications, the DLL_ON mode

can be used for a fast input clock signal CLKIN and the DLL_OFF mode can be used for a slow input clock signal CLKIN.

The delay locked loop can also be used to adjust for timing skews within the memory device. Referring back to FIG. 1A, each set of data I/O pads 160 is located at a respective corner of the integrated circuit and receives a respective set of one or more clock signals for clocking data from the memory device. Due to layout and other factors, the timing between the four sets of data I/O pads may have different timing. The delay locked loop can be used to adjust the timing of the clock signals such that the data provided on the four sets of pads are properly aligned.

In an embodiment, the data read clock signal CLKDR is generated based on the output clock signal CLKOUT in the DLL_ON mode (e.g., by delaying and inverting the output clock signal, as shown in FIG. 4A) and based on the input clock signal CLKIN in the DLL_OFF mode. The use of different clock signals to generate the data read clock signal CLKDR ensures that the timing specifications are met for different operating modes and conditions. The clock signals used for the generation of the data read clock signal CLKDR are shown in Table 1 and described in FIG. 7.

The rising edges of the data read clock signal CLKDR are used to register the first and second data bit on data lines DR_i_0 and DR_i_1. The registered second data bit is then latched with the data read clock signal CLKDR to provide a half clock cycle delay. As shown in FIG. 4A, after the registers and latch, the first data bit is provided on data line QV_0 on the rising edges of the data read clock signal CLKDR, and the second data bit is provided on data line QV_1 on the falling edges of the data read clock signal CLKDR.

The appropriately time-aligned data bits on data lines QV_0 and QV_1 are then multiplexed onto one data line GT by the output multiplexer with a clock signal CLKOP. In an embodiment, the clock signal CLKOP is generated based on the output clock signal CLKOUT in the DLL_ON mode (e.g., by delaying the output clock signal, as shown in FIG. 4A) and based on the input clock signal CLKIN in the DLL_OFF mode. Again, the clock signals used for the generation of the clock signal CLKOP are shown in Table 1 and described in FIG. 7. As shown in FIG. 4A, the first data bit on data line QV_0 is provided from the output multiplexer when the clock signal CLKOP is low, and the second data bit on data line QV_1 is provided from the multiplexer when the clock signal CLKOP is high. FIG. 4A shows a memory access of four data bits, which are provided to the DQ pad on two cycles of the input clock signal CLKIN.

Table 1

Signal	DLL_ON Mode	DLL_OFF Mode
DRLAT3	CLKIN	CLKIN
CLKDR	CLKOUT	CLKIN
CLKOP	CLKOUT	CLKIN
CLKDW	CLKIN	CLKIN

FIG. 4B is a timing diagram for a DDR read operation to read two data bits from the memory array for a slow input clock signal CLKIN. The memory cells are prefetched on the falling edges of the input clock signal CLKIN, and the accessed data bits are provided on data lines DWR_E and DWR_O a particular delay later. The data access delay t_{DATA} is typically the same regardless of the speed of the input clock signal CLKIN. The latch signal DRLAT3 is also generated from the rising edges of the input clock signal CLKIN and has falling edges that are delayed relative to the rising edges of the input clock signal CLKIN by the delay period t_{DRLAT3} . However, because of the longer input clock cycle, the timing margin between the signal transitions on data lines DWR_E and DWR_O and the rising edges of the latch signal DRLAT3 is greater when the input clock signal is slow. The subsequent timing and data latching in FIG. 4B is similar to that in FIG. 4A.

FIG. 5 is a block diagram of an embodiment of a data input architecture 500 capable of writing a set of data bits provided on pad 160x to memory array 110. The data bits to be written to the memory array are provided via DQ pad 160x to data input circuit 510. Within data input circuit 510, a buffer 512 receives and buffers the data bits and provides the buffered bits to registers 514a and 514b. For a DDR write operation, two data bits are provided on each active cycle of the input clock signal CLKIN.

A memory device is typically provided with a data strobe signal VDQS that indicates the availability of data on the device data pins. For a DDR write, each data bit is associated with a rising or falling edge on the data strobe signal VDQS and is provided to meet the specified setup and hold time requirements such that the associated VDQS edge can be used to latch the data bit within the memory device. The rising edges of the data strobe signal VDQS are aligned to the rising edges of the input clock signal CLKIN within a specified time period (e.g., $\pm 0.25t_{CLKIN}$, where t_{CLKIN} is the period of the input clock signal CLKIN). In a nominal case, the t_{DQSS} delay between the data strobe

signal VDQS and the input clock signal CLKIN is approximately zero. However, the worse case delay between the data strobe signal VDQS and the input clock signal CLKIN is typically specified to be $0.25t_{CLKIN}$. Thus, the maximum t_{DQSS} delay is $+0.25t_{CLKIN}$ and minimum t_{DQSS} delay is $-0.25t_{CLKIN}$, where $+t_{DQSS}$ indicates the data strobe signal VDQS leading the input clock signal CLKIN and $-t_{DQSS}$ indicates the data strobe signal VDQS lagging the input clock signal CLKIN.

The buffered data bits are then provided to registers 514a and 514b that register the data bits with the rising and falling edges of a signal CLKDQS. The signal CLKDQS is generated by buffering the data strobe signal VDQS and is closely aligned to the VDQS signal. The registered data bit from register 514a is then latched with the signal CLKDQS to provide a half clock cycle of delay to appropriately align the pair of data bits provided on each active clock cycle. The data bit from latch 516 and the data bit from register 514b are then provided via respective data lines DW_0 and DW_1 to multiplexers 518a and 518b.

Analogous to the memory read operation described above, the data bits to be written to the memory device are not restricted to any particular order of even and odd addresses. For example, the first data bit may correspond to an even memory address and the second data bit may correspond to an odd memory address, or vice versa. Thus, after the data bits are latched, they are appropriately routed to the even and odd data lines DW_E and DW_O to be written to the proper memory cells.

Multiplexer 518a selects either the first or second data bit as the even data bit to be provided to the memory array, depending on a control signal BSEL which is generated based on the memory address. Similarly, multiplexer 518b selects either the second or first data bit as the odd data bit to be provided to the memory array depending on the control signal BSEL. The even and odd data bits are then provided to respective latches 520a and 520b and latched with a data write clock signal CLKDW, which is generated from the input clock signal CLKIN as described below.

The latched data bits from latches 520a and 520b are then provided to respective drivers 522a and 522b, which buffer the data bits and drive data lines DWR_E and DWR_O to effectuate the writing of the data bits to memory.

FIG. 6A is a timing diagram for a DDR write operation to write two data bits to two memory cells on each active clock cycle of the input clock signal CLKIN for a nominal (i.e., ~ 0 nsec) t_{DQSS} delay. The input data DIN is provided with the input data

stroke signal VDQS. The data strobe signal VDQS is gated such that an edge is provided for each data bit (i.e., the data strobe signal VDQS transitions from a high-Z state to a logic low pre-amble, to a state where the required clock edges are provided for the data burst, then to a logic low post-amble, and then to the high-Z state). The rising edge of the data strobe signal VDQS is typically specified to be within $\pm 0.25 t_{CLKIN}$ of the rising edge of the input clock signal CLKIN. For a nominal t_{DQSS} delay of ~ 0.0 nsec, the rising edge of the data strobe signal VDQS is approximately aligned with the rising edge of the input clock signal CLKIN. The signal CLKDQS is generated by buffering the data strobe signal VDQS and used to latch the input data bits.

As shown in FIG. 5, the first data bit is registered with the rising edge of the signal CLKDQS by register 514a and the second data bit is registered with the falling edge of the signal CLKDQS (i.e., bCLKDQS) by register 514b. Each register is implemented with two latches coupled in series. The first latch latches the data with the indicated triggering signal (i.e., the signal CLKDQS for register 514a and the signal bCLKDQS for register 514a). The second latch then re-latches the data with the inverted triggering signal. Thus, each register provides the registered data bit on the opposite edge of the indicated triggering signal. Register 514a thus provides the first data bit on the falling edge of the signal CLKDQS and register 514b provides the second data bit on the rising edge of the signal CLKDQS. The first data bit from register 514a is then latched with the rising edge of the signal CLKDQS to provide a half cycle of delay. After the registers and latch, the first and second data bits are approximately aligned to the rising edge of the signal CLKDQS and provided on data lines DW_0 and DW_1.

The first and second data bits are then latched with a data write clock signal CLKDW, which is generated based on the input clock signal CLKIN. Since the rising edge of the data strobe signal VDQS is specified to be within $\pm 0.25t_{CLKIN}$ of the rising edge of the input clock signal CLKIN, and the data bits are initially latched with the signal CLKDQS that is generated from and slightly delayed relative to the data strobe signal VDQS, the data write clock signal CLKDW is delayed relative to the input clock signal CLKIN by at least $0.25t_{CLKIN}$. This ensures that the input data bits, after having been latched by the signal CLKDQS, will be properly latched by the data write clock signal CLKDW. Thus, as shown in FIG. 6A, the data write clock signal CLKDW is generated from the input clock signal CLKIN and delayed by a time period t_{DCLKDW} . The

data bits on data lines DW_0 and DW_1 are latched with the data write clock signal CLKDW and provided on data lines DWR_E and DWR_O.

FIGS. 6B and 6C are timing diagrams for a DDR write operation for a minimum and maximum t_{DQSS} delay, respectively. When the t_{DQSS} delay is at the minimum specified value as shown in FIG. 6B, the rising edge of the data strobe signal VDQS (and thus the signal CLKDQS) is $0.25t_{CLKIN}$ earlier than that of the input clock signal CLKIN. The data bits on data lines DW_0 and DW_1 are thus shifted left by the same amount (i.e., $0.25t_{CLKIN}$), but can still be properly latched with the data write clock signal CLKDW and provided on data lines DWR_E and DWR_O.

Conversely, when the t_{DQSS} delay is at the maximum specified value as shown in FIG. 6C, the rising edge of the data strobe signal VDQS (and thus the signal CLKDQS) is $0.25t_{CLKIN}$ later than that of the input clock signal CLKIN. The data bits on data lines DW_0 and DW_1 are shifted right by the same amount (i.e., $0.25t_{CLKIN}$), but can still be properly latch with the data write clock signal CLKDW and provided on data lines DWR_E and DWR_O.

FIG. 7 is a diagram of an embodiment of the clock generation portion of control circuit 140. In an embodiment, as described above, the data read clock signal CLKDR used to trigger the data bits from the memory array and the clock signal CLKOP used to provide the accessed data bits to the DQ pad in a memory read operation are each generated from either the input clock signal CLKIN or the output clock signal CLKOUT.

In accordance with an aspect of the invention, a delay locked loop (DLL) circuit 710 receives the input clock signal CLKIN (or the chip input clock signal used to generate the clock signal CLKIN) and generates the output clock signal CLKOUT having the characteristics shown in FIG. 4A and described above. Delay locked loop circuit 710 adjusts the phase of the output clock signal CLKOUT such that its rising edges lead the rising edges of the input clock signal CLKIN by a particular amount (e.g., 1.5 nsec) determined necessary to allow for proper alignment the data bits to the input clock signal CLKIN at the device I/O pins. The design of the delay locked loop circuit is known in the art and not described in detail herein. An example design of a delay locked loop circuit is described in U.S. Patent No. 5,963,069, titled "System for Distributing Clocks Using a Delay Lock Loop in a Programmable Logic Circuit," issued October 5, 1999 and incorporated herein by reference.

The output clock signal CLKOUT from delay locked loop circuit 710 is provided to a delay adjust circuit 712 that delays the signal by an amount determined by a

control signal CLKOUT_ADJ. The input clock signal CLKIN and a control signal DLL_OFF are provided to a NAND gate 714, which disables the input clock signal when not operating in the DLL_ON mode. The output from NAND gate 714 is provided to a delay adjust circuit 716 that delays the signal by an amount determined by a control 5 signal CLKIN_ADJ. Delay adjust circuits 712 and 716 allow for adjustment of the output and input clock signals used for data read operations such that various read timing schemes can be supported. The control signals CLKOUT_ADJ and CLKIN_ADJ determine the amounts of delay and can be provided by mode setting registers, fuses, 10 control lines, or other mechanisms. For example, the control signals CLKOUT_ADJ and CLKIN_ADJ can each be provided by means of fuses that are programmed during testing of the device in the manufacturing process.

The phase adjusted clock signals from delay adjust circuits 712 and 716 are provided to a multiplexer 720 that selects the delayed output clock signal when operating in the DLL_ON mode and the delayed input clock signal when operating in the DLL_OFF mode. The output from multiplexer 720 comprises the clock signal CLKOP used for providing the accessed data bits to the DQ pad during a memory read operation. The output from multiplexer 720 is also provided to a pair of series-coupled inverters 732a and 732b and a delay circuit 734. The signal from inverter 732b and the delayed signal from delay circuit 734 are provided to a multiplexer 736 that selects the signal 15 from inverter 732b when operating in the DLL_ON mode and the delayed signal when operating in the DLL_OFF mode. Inverters 732 and delay circuit 734 provide a timing difference between the DLL_OFF and DLL_ON modes. The output from multiplexer 736 comprises the data read clock signal CLKDR. In an embodiment, one clock 20 generation circuit such as that shown in FIG. 7 is provided for each set of data I/O pads 160 (i.e., each set of data I/O pads receives a respective clock signal CLKOP and data 25 read clock signal CLKDR).

The input clock signal CLKIN is used to generate the latch signal DRLAT3 that is used for latching the prefetched data bits during a memory read operation (e.g., for CAS latency 3). The input clock signal CLKIN is provided to a delay 30 circuit 740 that delays the clock signal by a particular amount. The input clock signal CLKIN and the delayed input clock signal from delay circuit 740 are provided to a multiplexer 742 that selects the input clock signal CLKIN when operating in the DLL_ON mode and the delayed clock signal when operating in the DLL_OFF mode. The clock signal CLK1 from multiplexer 742 is provided to a delay circuit 744 and to one

input of a NAND gate 746. Delay circuit 744 delays the clock signal CLK1 by a particular amount and provides the delayed signal to the other input of NAND gate 746. The output from NAND gate 746 comprises the latch signal DRLAT3.

The falling edges of the latch signal DRLAT3 are delayed relative to the 5 rising edges of the input clock signal CLKIN (by the delays of multiplexer 742 and NAND gate 746 when operating in the DLL_ON mode, and by the delays of delay circuit 740, multiplexer 742, and NAND gate 746 when operating in the DLL_OFF mode). Delay circuit 744 determines the low pulse width of the latch signal DRLAT3. The latch signal DRLAT3 may be generated based on the falling edge of CLKIN for a different 10 timing setup.

The input clock signal CLKIN is also provided to a delay circuit 750 and delayed by a particular amount (i.e., t_{DCLKDW}). As noted above, the delay of delay circuit 750 is selected to account for the variations in the t_{DQSS} delay of $\pm 0.25t_{CLKIN}$. The output of delay circuit 750 comprises the data write clock signal CLKDW used for memory 15 write operations.

FIG. 8 is a schematic diagram of an embodiment of a 2x1 multiplexer 800 that can be used for the 2x1 multiplexers in FIGS. 3B and 5. The input signals IN_0 and IN_1 are provided to the inputs of respective transmission gates 810a and 810b. Each transmission gate 810 comprises an N-channel transistor 812 coupled in parallel with a P-channel transistor 814. A control signal MUX_CTRL couples to a non-inverting control input of transmission gate 810a, an inverting control input of transmission gate 810b, and an input of an inverter 816. The control signal bMUX_CTRL from inverter 816 couples to an inverting control input of transmission gate 810a and a non-inverting control input of transmission gate 810b. The outputs of transmission gates 810a and 810b couple 20 together and form the output of the 2x1 multiplexer. 25

An inverter 820 can be coupled to the output of the multiplexer to provide buffering, signal inversion, and additional signal drive. Inverter 820 comprises a P-channel transistor 820a coupled in series with an N-channel transistor 820b. The output of inverter 820 comprises the buffered and inverted output of multiplexer 800.

FIG. 9 is a schematic diagram of an embodiment of an output driver 900 that can be used for one output driver 362 in FIG. 3C. Output driver 900 receives differential input signals PGT and NGT and a control signal bCTRL_x, and drives the associated DQ pin based on the received signals. Output driver 900 is designed to operate 30

on a differential input signal. Other circuits in data output circuit 320 (e.g., register 344 and multiplexer 352) can also be designed to operate on and provide differential output signals.

The input signals PGT and NGT are provided to the inputs of respective
5 transmission gates 910a and 910b. Each transmission gate 910 comprises an N-channel transistor 912 coupled in parallel with a P-channel transistor 914. The control signal bCTRL_x couples to the inverting control inputs of transmission gates 910a and 910b and an input of an inverter 916. The control signal CTRL_x from inverter 916 couples to the non-inverting control inputs of transmission gates 910a and 910b. The output of
10 transmission gate 910a couples to the source of a P-channel transistor 920a and to the gate of a P-channel transistor 922a. The output of transmission gate 910b couples to the source of an N-channel transistor 920b and to the gate of an N-channel transistor 922b. The control signal bCTRL_x couples to the gate of transistor 920a, and the control signal CTRL_x couples to the gate of transistor 920b.

15 Output driver 900 is enabled when the control signal bCTRL_x is low and tri-stated when the control signal bCTRL_x is high. Output driver 900 operates as follows. When the control signal bCTRL_x is low, transmission gates 910a and 910b are turned on and the input signals PGT and NGT are provided to the gates of transistors 922a and 922b, respectively. Transistors 920a and 920b are also turned off when the control signal bCTRL_x is low, thereby enabling the operation of transistors 922a and 922b. Thus, when the control signal bCTRL_x is low, the DQ pin can be driven low or high by the input signals PGT and NGT. Conversely, when the control signal bCTRL_x is high, transmission gates 910a and 910b are turned off. Transistors 920a and 920b are also turned on, which then disables transistors 922a and 922b.
20

25 The data input and output circuits of the invention provide many advantages. The data input and output circuits support concurrent write and read of multiple data bits to and from multiple memory cells in a multi-data rate mode. The data input and output circuits also support a number of read and write modes, and can advantageously be used to support various timing requirements.

30 Although the invention is described for a specific embodiment, alternative implementations of the invention and modifications of the data input and output circuits described herein can be made. For example, the clock signals described herein can be generated in different manners and/or based on different signals. Further, the latching circuits and multiplexers described herein can be implemented with other circuits or

differently than that described above. Thus, the specific implementation details are intended to be illustrative, and not limitations, of the present invention.

The architectures described herein can support single data rate (SDR) operation as well as double data rate (DDR) operation. A more detail discussion of 5 operating a memory array in DDR operation is included in U.S. Patent Application Serial No. 09/195,269, entitled "Memory Array Architecture for Multi-Data Rate Operation," filed November 18, 1998 and Serial No. 09/235,222, entitled "Memory Array Architecture Supporting Block Write Operation," filed January 22, 1999, both assigned to the assignee of the present invention and incorporate herein by reference.

10 The general inventive concepts described herein can be extended to concurrent memory access of any number of data bits. For example, the circuits described herein can be modified to support a quadruple data rate operation, an octal data rate operation, or a Q data rate operation (where Q is any integer greater than one).

15 The data input and output circuits described herein can be implemented within a stand-alone integrated circuit (IC) such as, for example, a dynamic random access memory (DRAM) IC, a synchronous graphics RAM (SGRAM), and other memory devices. The memory arrays can also be implemented within other ICs, such as a processor, a controller, a digital signal processor, an application specific integrated circuit (ASIC), and others. The circuits described herein can be implemented on a memory array 20 that is embedded within an integrated circuit such as, for example, central processing unit (CPU).

25 The foregoing description of the preferred embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without the use of the inventive faculty. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein, and as defined by the following claims.