Package 'Rlgt'

March 18, 2018

Type Package **Title** LGT Package

Version 0.0-1
URL TODO
Date
Author Slawek Smyl, Christoph Bergmeir, Erwin Wibowo
Maintainer Christoph Bergmeir < christoph.bergmeir@gmail.com>
Description An implementation of various Bayesian Exponential Smoothing models as described in the paper by Smyl.These models include LGT (Local-Global Trend), SGT (Seasonal Global Trend), and their variations. The Bayesian model fitting is based on RStan package.
License GPL-3
Depends R (>= 3.0.2), Rcpp (>= 0.12.8), methods, rstantools
Imports rstan (>= 2.13.2), sn, forecast
LinkingTo StanHeaders (>= 2.13.1), rstan (>= 2.13.2), BH (>= 1.62.0.1), Rcpp (>= 0.12.8), RcppEigen (>= 0.3.2.9.0)
RoxygenNote 6.0.1
NeedsCompilation yes
R topics documented:
Rlgt2-package 2 fit.lgt 2 forecast.lgt 3 initModel 3 lgt 4 lgt.control 4 posterior_interval.lgt 6 print.lgt 7
Index 8

2 fit.lgt

Rlgt2-package	Getting started with the Rlgt package
WEGGE Pagewage	Sering started with the 11131 parentinge

Description

An implementation of LGT and SGT models as described in ...

Author(s)

```
Slawek Smyl <slaweks@hotmail.co.uk>
```

Christoph Bergmeir <christoph.bergmeir@gmail.com> Erwin Wibowo <rwinwibowo@gmail.com>

Examples

```
x <- 1
```

fit.lgt

Runs the model fitting

Description

Runs the model fitting

Usage

```
fit.lgt(y, model = c("LGT", "SGT", "LGTe", "SGTe", "Trend"),
  control = lgt.control(), nChains = 2, nCores = 2, addJitter = TRUE,
  verbose = FALSE)
```

Arguments

У	the time series	
model	a stan model	
control	control arguments list	

nChains number of MCMC chains . Must >=1. Perhaps optimal number is 4.

nCores number of cores to be used. For performance reasons it should be equal to

nChains, but nChains should be smaller or equal to the number of cores on the

computer.

addJitter adding a bit of jitter is helping Stan in case of some flat series

verbose print verbose information yes/no

Value

lgtModel

forecast.lgt 3

forecast.lgt	produce forecasts
--------------	-------------------

Description

This function produces forecasts from a model

lgt object

Usage

```
## S3 method for class 'lgt'
forecast(object, h = ifelse(frequency(object$x) > 1, 2 *
  frequency(object$x), 10), level = c(80, 95), NUM_OF_TRIALS = 2000,
  MIN_VAL = 0.001, MAX_VAL = 1e+38, ...)
```

Arguments

object

3	&J
h	Forecasting horizon (10 for annual and 2*periods otherwise)
level	Confidence levels for prediction intervals a.k.a. coverage percentiles. Beween 0 and 100.
NUM_OF_TRIALS	Number of simulations to run. Suggested rannge (1000,5000), but it may have to be higher for good coverage of very high levels, e.g. 99.8.

MIN_VAL Minimum value the forecast can take. Must be positive.

MAX_VAL Maximum value the forecast can take.

... description

Value

returns a forecast object compatible with the forecast package

Author(s)

bergmeir

initModel	Initialize a non-seasonal LGT stan model	

Description

Initialize a stan model that uses the (non-seasonal) LGT

Usage

```
initModel(modelType = NULL)
```

4 lgt.control

Arguments

modelType type of the forecasting model selected

Value

SkeletonModel

lgt *lgt class*

Description

a constructor function for the "lgt" class

Usage

```
lgt(y, lgtmodel, params, paramMean, seasonality, samples)
```

Arguments

y the time series data

lgtmodel type of lgtmodel selected

params list of parameters

paramMean mean of each parameter

seasonality number of seasons, 1 for annual

samples stanfit object representing the MCMC samples

Value

lgt instance

lgt.control

Sets and initializes the main parameters of the algorithm

Description

This is a function that initializes and sets the parameters of the algorithm. It generates a list of parameters, to be used with the fit.lgt function.

lgt.control 5

Usage

```
lgt.control(MAX_RHAT_ALLOWED = 1.005, NUM_OF_ITER = 2500,
    MAX_NUM_OF_REPEATS = 3, CAUCHY_SD_DIV = 200, MIN_SIGMA = 0.001,
    MIN_NU = 2, MAX_NU = 20, MIN_POW_TREND = -0.5, MAX_POW_TREND = 1,
    POW_TREND_ALPHA = 1, POW_TREND_BETA = 1, POW_SIGMA_ALPHA = 1,
    POW_SIGMA_BETA = 1, ADAPT_DELTA = 0.9, MAX_TREE_DEPTH = 11,
    SEASONALITY = 1, SKEW = 0)
```

Arguments

MAX_RHAT_ALLOWED

Maximum average Rhat that suggests a good fit, see Stan's manual. Suggested range(1.005,1.02), see also MAX_NUM_OF_REPEATS description below.

NUM_OF_ITER Number of iterations for each chain. Suggested range(1000,5000). Generally, the longer the series, the smaller the vallue will do. See also MAX_NUM_OF_REPEATS description below.

MAX_NUM_OF_REPEATS

Maximum number of the sampling procedure repeats if the fit is unsatisfactorily (avgRHat>MAX_RHAT_ALLOWED). Each round doubles the number of iterations. Suggested range(2,4)

CAUCHY_SD_DIV For parameters with non-obvious range Cauchy distribution is used. The error size of this distribution is calculated by dividing max value of the time series by

this constant. Suggested range(100,300)

MIN_SIGMA Minimum size of the fitted sigma, applied for numerical stability. Must bee

positive.

MIN_NU Minimum degrees of freedom of the Student's distribution, that is used in most

models. Suggested range(1.2, 5)

MAX_NU Maximum degrees of freedom of the Student's distribution. Suggested range(15,30)

MIN_POW_TREND Minimum value of power of trend coefficient. Suggested range(-1,0)

MAX_POW_TREND Maximum value of power of trend coefficient. It should stay 1 to allow the

model to approach exponential growth when needed.

POW_TREND_ALPHA

Alpha parameter of Beta distribution that is the prior of the power coefficient in the formula of trend parameter. To make the forecast more curved, make it

larger. Suggested range(1,6)

POW_TREND_BETA Beta parameter of Beta distribution that is the prior of the power of trend parameter. 1 by default, see also above.

POW_SIGMA_ALPHA

Alpha parameter of Beta distribution that is the prior of the power coefficient in the formula of the error size. 1 by default, see also below.

POW_SIGMA_BETA Beta parameter of Beta distribution that is the prior of the power coefficient in the formula of the error size. If the powSigma fitted is considered too often too high (i.e.> 0.7) you can attempt to tame it down by increasing POW_SIGMA_BETA. Suggested range(1,4). ADAPT_DELTA Target Metropolis acceptance rate. See Stan manual. Suggested range (0.8-0.97). MAX_TREE_DEPTH NUTS maximum tree depth. See Stan manual. Suggested range (10-12).

6 posterior_interval.lgt

ADAPT_DELTA Description Setting it negative makes negative innovations having smaller im-

pact on the fitting than the positive ones, which would have the effect of making

a model "more optimistic". Suggested range (-0.5, 0.5).

MAX_TREE_DEPTH Description

SEASONALITY E.g. 12 for monthly seasonality. 1 for non-seasonal models

Skew of error distribution used by manually-skewed models. 0 be default.

Value

list of control parameters

```
posterior_interval.lgt
```

lgt posterior interval

Description

This is a method of lgt object to produce posterior interval

Usage

```
## S3 method for class 'lgt'
posterior_interval(object, prob = 0.9, type = "central", ...)
```

Arguments

object an object of class lgt

prob percentile level to be generated (multiple values can be accepted as a vector)

type currently only central is available

... currently not in use

Value

confidence interval

Author(s)

wibowo

print.lgt 7

print.lgt

Generic print function for lgt models

Description

Print out some characteristics of a lgt model.

Usage

```
## S3 method for class 'lgt'
print(x, ...)
```

Arguments

```
x the lgt model
```

... additional function parameters (currently not used)

Index

```
*Topic exponential
Rlgt2-package, 2
*Topic forecasting,
Rlgt2-package, 2
*Topic smoothing
Rlgt2-package, 2
fit.lgt, 2, 4
forecast.lgt, 3
initModel, 3
lgt, 4, 7
lgt.control, 4
posterior_interval.lgt, 6
print.lgt, 7
Rlgt2 (Rlgt2-package), 2
Rlgt2-package, 2
summary.lgt (print.lgt), 7
```