ALA 03 24.04.2014

Jonathan Siems, 6533519, Gruppe 12 Tronje Krabbe, 6435002, Gruppe 9

24. April 2014

Die Unstetigkeitsstellen von f befinden sich bei x=2 und x=6.

b)

Sei $x_0 \in D(g) \setminus \mathbb{Z}$. So muss für jede Folge $(x_n)_{n \in \mathbb{N}}$ mit

$$\lim_{n \to \infty} x_n = x_0$$

gelten:

$$\lim_{n \to \infty} g(x_n) = g(x_0)$$

Also:

 $\lim_{n\to\infty}g(x_n)=\lim_{n\to\infty}(x_n-\lfloor x_n\rfloor)=\lim_{n\to\infty}x_n-\lim_{n\to\infty}\lfloor x_n\rfloor=x_0-\lim_{n\to\infty}\lfloor x_n\rfloor$

Da Abrundung nicht stetig ist, weiss ich leider nicht weiter...

2. a)

$$\lim_{n \to \infty} \left(\frac{\sqrt{3n^2 - 2n + 5} - \sqrt{n}}{\sqrt{n^2 - n + 1} + 4n} \right)$$

$$= \lim_{n \to \infty} \left(\frac{n}{n} \cdot \frac{\sqrt{3 - \frac{2}{n} + \frac{5}{n^2}} - \sqrt{\frac{1}{n^2}}}{\sqrt{1 - \frac{1}{n} + \frac{1}{n^2}} + 4} \right)$$

$$\frac{*}{\sqrt{\lim_{n \to \infty} 3 - \frac{2}{n} + \frac{5}{n^2}} - \sqrt{\lim_{n \to \infty} \frac{1}{n^2}}}{\sqrt{\lim_{n \to \infty} 1 - \frac{1}{n} + \frac{1}{n^2}} + 4}$$

$$= \frac{\sqrt{3}}{5}$$

 * an dieser Stelle wurde benutzt, dass die Wurzelfunktion stetig ist

b)

$$\lim_{n \to \infty} \left(\cos \left(\frac{\sqrt{10n^2 - n} - n}{2n + 3} \right) \right)$$

$$= \cos \left(\lim_{n \to \infty} \left(\frac{\sqrt{10n^2 - n} - n}{2n + 3} \right) \right)$$

$$= \cos \left(\lim_{n \to \infty} \left(\frac{n}{n} \cdot \frac{\sqrt{10 - \frac{1}{n} - \frac{n}{n}}}{2 + \frac{3}{n}} \right) \right)$$

$$= \cos \left(\frac{\sqrt{\lim_{n \to \infty} 10 - \frac{1}{n}} - 1}{\lim_{n \to \infty} 2 + \frac{3}{n}} \right)$$

$$= \cos \left(\frac{\sqrt{10 - 1}}{2} \right)$$

* an dieser Stelle wurde benutzt, dass die Cosinusfunktion stetig ist.

 $\ast\ast$ an dieser Stelle wurde benutzt, dass die Wurzelfunktion stetig ist.

3. Wir wollen zeigen, dass $g(f(x_n)) \to g(f(x_0))$ gilt, somit die Nacheinanderausführung stetiger Funktionen ebenfalls stetig ist. x_n und x_0 befinden sich für $x_n \to x_0$ beide in der Definitionsmenge von $g \circ f$. Da f an der Stelle x_0 stetig ist folgt $f(x_n) \to f(x_0)$. Da g an der Stelle $f(x_0)$ stetig ist gilt somit:

$$q(f(x_n)) \to q(f(x_0))$$
.

4.
$$\lim_{n\to 0} (f(x)) = \lim_{n\to 0} \left(\cos\left(\frac{1}{x}\right) \right) = \cos(\infty)$$

Geht $x \to 0$ wird unser Wert für $\cos(\frac{1}{x}) \Rightarrow \cos(\infty)$, somit fängt die Funktion an, immer schneller zu alternieren. (Die Periode von Cosinus bleibt immer konstant). Somit ist die Funktion an der Stelle $x_0 = 0$ nicht stetig.

$$\lim_{n \to 0} (g(x)) = \lim_{n \to 0} \left(x \cdot \cos \frac{1}{x} \right) = 0$$

Geht $x \to 0$ nimmt $\left(\cos\left(\frac{1}{x}\right)\right)$ auch hier wieder den wert $\cos(\infty)$ an, das verknüpfpte x allerdings nimmt den Wert 0 an, somit geht der ganze Funktionswert ebenfalls gegen 0.

Darum ist diese Funktion an der Stelle x = 0 stetig.