

Insert

Loan Status prediction 8 Nov 2021

Cell Kernel Widgets

```
In [32]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sb
         import missingno
```

In [33]: dt = pd.read_csv('train_u6lujuX_CVtuZ9i (1).csv')

Out[33]:

Edit

View

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
0	LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	1.0
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	1.0
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	1.0
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	1.0
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	1.0
609	LP002978	Female	No	0	Graduate	No	2900	0.0	71.0	360.0	1.0
610	LP002979	Male	Yes	3+	Graduate	No	4106	0.0	40.0	180.0	1.0
611	LP002983	Male	Yes	1	Graduate	No	8072	240.0	253.0	360.0	1.0
612	LP002984	Male	Yes	2	Graduate	No	7583	0.0	187.0	360.0	1.0
613	LP002990	Female	No	0	Graduate	Yes	4583	0.0	133.0	360.0	0.0

614 rows × 13 columns

4 In [34]: dt.isnull().sum()

Out[34]: Loan_ID

0 13 Gender Married Dependents 15 Education 0 Self_Employed 32 0 ApplicantIncome CoapplicantIncome 0 LoanAmount 22 Loan_Amount_Term Credit_History 50 Property_Area 0 Loan_Status 0 dtype: int64

In [35]: dt.isnull().sum()/dt.isnull().shape[0]*100

Out[35]: Loan_ID

0.000000 Gender 2.117264 0.488599 Married 2.442997 Dependents 0.000000 Education Self_Employed 5.211726 ApplicantIncome 0.000000 CoapplicantIncome 0.000000 LoanAmount 3.583062 Loan_Amount_Term 2,280130 Credit_History 8.143322 Property Area 0.000000 Loan_Status 0.000000 dtype: float64

In [36]: missingno.matrix(dt, figsize = (13, 6))

Out[36]: <AxesSubplot:>

Dropping Missing values

In [37]:	<pre>In [37]: dt = dt.dropna()</pre>											
In [38]:	dt.	t.head(3)										
Out[38]:		Loon ID	Condor	Married	Dependents	Education	Colf Employed	Annlicentlaceme	Coopplicantlycome	LoonAmount	Loon Amount Torm	Cradit History
		Loan_ID	Gender	Warried	Dependents	Education	Seil_Employed	Applicantincome	Coapplicantincome	LoanAmount	Loan_Amount_Term	Credit_History
	1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	1.0
	2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	1.0
	3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	1.0
	∢											+

Data Visualisation

Leable Encoding Load Status in 0 & 1

Converting Catagorical Data to Numerical Data

Education

```
In [40]: dt.head(1)
Out[40]:
             Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term Credit_History
         1 LP001003
                       Male
                               Yes
                                              Graduate
                                                                Nο
                                                                            4583
                                                                                           1508.0
                                                                                                      128.0
                                                                                                                       360.0
In [41]: dt['Married'].value_counts()
Out[41]: Yes
                311
         Name: Married, dtype: int64
In [42]: dt['Property_Area'].value_counts()
Out[42]: Semiurban
                      191
                      150
         Urban
                      139
         Name: Property_Area, dtype: int64
C:\Anaconda\lib\site-packages\pandas\core\indexing.py:1676: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
```

```
Iry using .loc[row_indexer,col_indexer] = value instead
          See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-ve
           self._setitem_single_column(ilocs[0], value, pi)
In [44]: dt.head(2)
Out[44]:
             Loan ID Gender Married Dependents Education Self Employed ApplicantIncome CoapplicantIncome LoanAmount Loan Amount Term Credit History
                                                                               4583
                                                                                              1508.0
                                                                                                           128.0
                                                                                                                                          1.0
          2 LP001005
                                                                               3000
                                                                                                0.0
                                                                                                           66.0
                                                                                                                            360.0
                                                                                                                                          1.0
In [45]: dt['Dependents'].value_counts()
Out[45]: 0
                41
         Name: Dependents, dtype: int64
         Dependent में +3 है
In [46]: dt = dt.replace(to_replace = '3+', value = 4 )
In [47]: dt['Dependents'].value_counts()
Out[47]: 0
               274
               80
               41
         Name: Dependents, dtype: int64
In [48]: dt.head(2)
Out[48]:
             Loan ID Gender Married Dependents Education Self Employed ApplicantIncome CoapplicantIncome LoanAmount Loan Amount Term Credit History
          1 LP001003
                                                                               4583
                                                                                              1508.0
                                                                                                           128.0
                                                                                                                            360.0
                                                                                                                                          1.0
          2 LP001005
                                                                               3000
                                             0
                                                                                                0.0
                                                                                                           66.0
                                                                                                                            360.0
                                                                                                                                          1.0
In [49]: x = dt.iloc[:, 1:12]
y = dt['Loan_Status']
In [50]: from sklearn.model_selection import train_test_split
         x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.1, random_state=2)
          SVM
In [51]: from sklearn.svm import SVC
         svm_model = SVC()
In [52]: svm_model.fit(x_train, y_train)
Out[52]: SVC()
In [53]: svm_model.score(x_test, y_test)
Out[53]: 0.6875
In [54]: svm_model.score(x_train, y_train)
Out[54]: 0.70138888888888888
          Logistic Regression
In [55]: from sklearn.linear_model import LogisticRegression
         L_model = LogisticRegression()
In [56]: L_model.fit(x_train, y_train)
         L_model.score(x_train, y_train)
          C:\Anaconda\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
          Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
              https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
           n_iter_i = _check_optimize_result(
```

Out[56]: 0.8078703703703703