Analysis 3

Contents

Ι	Sequence of Functions	1
1	Introduction	1
2	Pointwise convergence	1
3	Uniform convergence	2
II	Series of Functions	3
4	Reminder: Convergence of a Series	3
5	Finite Expansion	4

Ι

Sequence of Functions

Section 1

Introduction

In previous courses, we analysed the convergence of sequences of numbers (example: $U_n = \left\{\frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \ldots\right\} = \sum_{n=1}^{\infty} \frac{1}{n^2}$) with a series of tests. In this course we will be analysing sequences of functions $f_n(x)$.

An example, is $f_n(x) = \frac{x}{x+n} = \{f_1, f_2, f_3, \ldots\} = \left\{\frac{x}{x+1}, \frac{x}{x+2}, \frac{x}{x+3}, \ldots\right\}$.

There are 2 ways these sequences can converge: pointwise and uniformly

Figure 1. Plot of the sequence $f_n(x) = xe^{-nx}$

Section 2

Pointwise convergence

This is a very natural way of proving convergence since all you have to do is fix f_n to a point x then the sequence just becomes an ordinary sequence of numbers, and if they all converge to a number we can define a limit function f and say that they converge to f pointwisely.

Definition 1 We say that a sequence of functions f_n where $f_n: I \to \mathbb{R}, I \subset \mathbb{R}$,

converges pointwise to function $f: I \to \mathbb{R}$ on the interval I if:

$$\forall x \in I \ \forall \epsilon > 0 \ \exists n \in \mathbb{N} \ \forall n \ge \mathbb{N} : |f_n(x) - f(x)| < \epsilon.$$

You either prove convergence using the definition or by doing:

- 1. Let x = 0 then find $\lim_{n \to \infty} f_n(0) = \text{some } f(x)$
- 2. Then let $x \neq 0$ and again find $\lim_{n \to \infty} f_n(x) = f(x)$
- 3. If neither of the results are unbounded $\pm \infty$ then we say $f_n(x)$ is convergent to some f(x)

Remark if the result of step 1 is g(x) and step 2 results in h(x) where $g(x) \neq h(x)$ then we define the limit function:

$$f(x) = \begin{cases} g(x) & x = 0 \\ h(x) & x \in]0, 1] \end{cases}.$$

SECTION 3

Uniform convergence

The idea of uniform convergence is that the sequence always approaches it's limit function as the value of n increases.

Definition 2

We say that a sequence of functions f_n where $f_n: I \to \mathbb{R}, I \subset \mathbb{R}$, converges uniformly to function $f: I \to \mathbb{R}$ on the interval I if:

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N \ \forall x \in I : \sup_{x \in I} |f_n(x) - f(x)| < \epsilon.$$

Remark We can also prove uniform convergence by proving

$$\lim_{n \to \infty} \sup_{x \in I} |f_n(x) - f(x)| = 0.$$

There is also an easy gay to prove uniform convergence of a function by

- 1. Prove that the sequence of functions $f_n(x)$ is pointwise convergent to a function $f(x)^{-1}$
- 2. Define a function $g(x) = |f_n(x) f(x)|$ and find the maxima of that function at a point x_0 (usually by doing dg/dx = 0)
- 3. If $\lim_{n\to\infty} g(x_0) = 0$ then the sequence converges uniformly to f(x)

¹ if the function f(x) is continuous at a point piecewise the the sequence doesn't uniformly

Series of Functions

Let $f_n(x)$ be sequence of functions defined on $I \subset \mathbb{R}$, we define the series S(x) to be

$$S(x) = \sum_{n=0}^{\infty} f_n(x).$$

Section 4

Definition 3

Reminder: Convergence of a Series

In order to prove a series of functions converge we have to prove that it converges for all fixed x.

Suppose there exists a sequence a_n such that $\forall x, n \mid f_n \mid \leq a_n$. The Weierstrass test states that if $\sum a_n$ converges then $\sum f_n(x)$ converges Theorem 1 uniformly and absolutely

Let a_n be a sequence of numbers, if $\left|\frac{a_{n+1}}{a_n}\right| = l$ then the sequence is a Theorem 2 geometric Series

$$\sum_{n=0}^{\infty} a_n \begin{cases} \text{converges} & \text{if } |l| < 1 \\ \text{diverges} & \text{if } |l| \ge 1 \end{cases}.$$

A harmonic series is defined to be $a_n = \frac{1}{n^p}$ Theorem 3

$$\sum_{n=0}^{\infty} \frac{1}{n^p} \begin{cases} \text{converges} & \text{if } p > 1\\ \text{diverges} & \text{if } p \le 1 \end{cases}.$$

Let a_n be a sequence of numbers. The 2 series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} 2^n a_n$ are Theorem 4 simultaneously convergent/divergent.

The sequence $\sum_{n=0}^{\infty} (-1)^n a_n$ is convergent if a_n is decreasing and $\lim_{n\to\infty} a_n =$ Theorem 5 0.

Theorem 6

Consider the series
$$S = \sum_{n=0}^{\infty} a_n$$

$$(1 < 1 \text{ if } S \text{ consider})$$

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = l \quad \text{such that} \quad \begin{cases} l<1 & \text{if S converges} \\ l>1 & \text{if S diverges} \\ l=1 & \text{this test cannot help us} \end{cases}.$$

Section 5

Finite Expansion

The general formula for the finite expansion (Taylor-young formula) is

$$f(x) = f(x-a) + \frac{x}{1!}f'(x-a) + \frac{x^2}{2!}f''(x-a) + \dots + \frac{x^n}{n!}f^{(n)}(x-a) + x^n o(1) \quad x \to a.$$

Some important expansions to keep in mind are

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}$$

$$\cos(x) = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!}$$

$$\sinh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$

$$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^{n-1} \frac{x^{n}}{n}$$

$$\ln(1-x) = \sum_{n=0}^{\infty} \frac{x^{n}}{n}$$

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} \frac{\prod_{k=0}^{n+1} (\alpha - k)}{n!} x^{n}$$