Лекции по Линейной Алгебре

Дима Трушин

2022 - 2023

Содержание

1	Сис	темы линейных уравнений 3					
	1.1	Системы линейных уравнений и связанная с ними терминология					
	1.2	Матрицы связанные со СЛУ					
	1.3	Элементарные преобразования					
	1.4	Алгоритм Гаусса					
2	Мол	грицы					
4	2.1	Определение матриц					
	$\frac{2.1}{2.2}$	Операции над матрицами					
	$\frac{2.2}{2.3}$	Специальные виды матриц					
	$\frac{2.3}{2.4}$	Свойства операций					
	$\frac{2.4}{2.5}$	Связь с системами линейных уравнений					
	$\frac{2.5}{2.6}$	· · · · · · · · · · · · · · · · · · ·					
	$\frac{2.0}{2.7}$						
		Деление					
	2.8	Матрицы элементарных преобразований					
		Невырожденные матрицы					
		Блочное умножение матриц					
		Блочные элементарные преобразования					
		Массовое решение систем					
		Классификация СЛУ					
		Полиномиальное исчисление от матриц					
		Матричные нормы					
	2.16	Обзор применения матричных норм					
3	Перестановки 29						
	3.1	Отображения множеств					
	3.2	Перестановки					
	3.3	Операция на перестановках					
	3.4	Переименование элементов					
	3.5	Циклы					
	3.6	Знак перестановки					
	3.7	Подсчет знака					
	3.8	Возведение в степень					
	3.9	Произведение циклов					
4	-	ределитель					
	4.1	Философия					
	4.2	Три разных определения					
	4.3	Явные формулы для определителя					
	4.4	Свойства определителя					
	4.5	Полилинейность и кососимметричность определителя					
	4.6	Полилинейные кососимметрические отображения					
	4.7	Мультипликативные отображения					
	4.8	Миноры и алгебраические дополнения					

4.9	Формулы Крамера	51
4.10	Характеристический многочлен	51
4.11	Теорема Гамильтона-Кэли	54

1 Системы линейных уравнений

1.1 Системы линейных уравнений и связанная с ними терминология

Наша задачи научиться решать Системы Линейных Уравнений (СЛУ), то есть находить все их решения или доказывать, что решений нет. Общий вид СЛУ и ее однородная версия (ОСЛУ):

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases} \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases}$$

Коэффициенты Где живут коэффициенты a_{ij} и b_j ? Варианты:

- ullet Вещественные числа $\mathbb R$
- Комплексные числа C
- Рациональные числа ©

Для решения СЛУ **HE** имеет значения откуда берутся коэффициенты, так как решения будут лежать там же. Потому мы будем работать с числами из \mathbb{R} .

Решение Решением системы линейных уравнений называется набор чисел (c_1, \ldots, c_n) , $c_i \in \mathbb{R}$ такой, что при подстановке c_i вместо x_i , все уравнения системы превращаются в верные равенства. Введем обозначение $\mathbb{R}^n = \mathbb{R} \times \ldots \times \mathbb{R} = \{(c_1, \ldots, c_n) \mid c_i \in \mathbb{R}\}$. То есть элемент \mathbb{R}^n – это набор из n вещественных чисел. Потому любое решение $c = (c_1, \ldots, c_n)$ является элементом \mathbb{R}^n .

1.2 Матрицы связанные со СЛУ

Для каждой СЛУ введем следующие обозначения:

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \quad b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \quad (A|b) = \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix}$$

Названия:

- А матрица системы
- b вектор правой части
- (A|b) расширенная матрица системы
- х вектор решений

Будем кратко записывать СЛУ и ее однородную версию так: Ax = b и Ax = 0. Также для краткости будем обозначать системы буквами Σ .

При решении системы линейных уравнений приходится помногу раз переписывать кучу данных, чтобы сократить эти записи целесообразно сократить количество записываемой на бумаге информации. Расширенная матрица системы (A|b) является необходимым минимумом такой информации. Потому сейчас к такой записи можно относиться как к удобному способу компактно записать систему.

Количество решений Случай одного уравнения и одной неизвестной ax = b, где $a, b \in \mathbb{R}$:

- При $a \neq 0$ одно решение x = b/a.
- При $a = 0, b \neq 0$ нет решений.
- При $a=0,\,b=0$ любое число является решением, т.е. бесконечное число решений.

Что значит решить систему Решить систему значит описать множество ее решений, то есть либо доказать, что система не имеет решений вовсе, либо описать все наборы, которые являются решениями. Если система не имеет решений, она называется несовместной, в противном случае – совместной.

Эквивалентные системы Пусть даны две системы линейных уравнений с одинаковым числом неизвестных (но быть может разным числом уравнений) Σ_1 и Σ_2 . Будем говорить, что эти системы эквивалентны и писать $\Sigma_1 \sim \Sigma_2$, если множества решений этих систем совпадают. Если $E_i \subseteq \mathbb{R}^n$ – множество решений i-ой системы, то системы эквивалентны, если $E_1 = E_2$.

Вот полезный пример эквивалентных систем:

$$\begin{cases} x+y=1\\ x-y=0 \end{cases} \sim \begin{cases} 2x=1\\ 2y=1 \end{cases}$$

Как решать систему Пусть нам надо решить систему Σ . Идея состоит в том, чтобы постепенно менять ее на эквивалентную до тех пор, пока она не упростится до такого состояния, что все ее решения легко описать.

$$\Sigma = \Sigma_1 \mapsto \Sigma_2 \mapsto \ldots \mapsto \Sigma_n \leftarrow$$
 легко решается

Теперь надо объяснить две вещи: (1) какого сорта преобразования над системами мы будем делать и (2) к какому замечательному виду мы их приводим и как в нем выглядят все решения. Ответам на эти два вопроса и будет посвящена оставшаяся часть лекции.

1.3 Элементарные преобразования

Мы разделим все преобразования на три типа¹:

I тип:
$$\begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ a_{i1} & \dots & a_{in} & b_i \\ a_{j1} & \dots & a_{jn} & b_j \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix} \mapsto \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ a_{i1} & \dots & a_{in} & b_i \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix} \mapsto \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ a_{i1} & \dots & a_{jn} & \lambda a_{in} & b_i \\ a_{m1} & \dots & a_{mn} & b_i \\ a_{j1} & \dots & a_{jn} & b_j \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix} \mapsto \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ a_{j1} & \dots & a_{jn} & b_j \\ a_{i1} & \dots & a_{in} & b_i \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix}$$
III тип:
$$\begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ a_{i1} & \dots & a_{in} & b_i \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix} \mapsto \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \lambda a_{i1} & \dots & \lambda a_{in} & \lambda b_i \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix} \lambda \neq 0$$

Поясним словами, что делают преобразования:

- 1. Прибавляем к *j*-ой строке *i*-ю, умноженную на константу $\lambda \in \mathbb{R}$.
- 2. Меняем местами i-ю и j-ю строки.
- 3. Умножаем *i*-ю строку на ненулевую константу $\lambda \neq 0, \lambda \in \mathbb{R}$.

1.4 Алгоритм Гаусса

Этот метод заключается в приведении СЛУ к некоторому «ступенчатому виду», где множество решений очевидно. ² Разберем типичный ход алгоритма Гаусса на примере 3 уравнений и 4 неизвестных. ³

¹Стоит отметить, что нумерация типов преобразования не является общепринятой и отличается от учебника к учебнику.

²Данный метод является самым быстрым возможным как для написания программ, так и для ручного вычисления. При вычислениях руками, однако, полезно местами пользоваться «локальными оптимизациями», то есть, если вы видите, что какаято хитрая комбинация строк сильно упростит вид системы, то сделайте ее.

³При переходе от одной матрицы к другой я новым коэффициентам даю старые имена, чтобы не захламлять текст новыми обозначениями.

Прямой ход алгоритма Гаусса Идея прямого хода алгоритма в следующем. Мы смотрим на левый верхний элемент в матрице и пытаемся с помощью него обнулить все элементы под ним. Как только обнулили, забываем про первую строку и столбец и повторяем процедуру с оставшейся подматрицей.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & b_1 \\ a_{21} & a_{22} & a_{23} & a_{24} & b_2 \\ a_{31} & a_{32} & a_{33} & a_{34} & b_3 \end{pmatrix} \quad \text{2-я строка} \quad -\frac{a_{21}}{a_{11}} \cdot 1\text{-я строка}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & b_1 \\ 0 & a_{22} & a_{23} & a_{24} & b_2 \\ a_{31} & a_{32} & a_{33} & a_{34} & b_3 \end{pmatrix} \quad \text{3-я строка} \quad -\frac{a_{31}}{a_{11}} \cdot 1\text{-я строка}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & b_1 \\ 0 & a_{22} & a_{23} & a_{24} & b_2 \\ 0 & a_{32} & a_{33} & a_{34} & b_3 \end{pmatrix} \quad \text{3-я строка} \quad -\frac{a_{32}}{a_{22}} \cdot 2\text{-я строка}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & b_1 \\ 0 & a_{22} & a_{23} & a_{24} & b_2 \\ 0 & 0 & a_{33} & a_{34} & b_3 \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & b_1 \\ 0 & a_{22} & a_{23} & a_{24} & b_2 \\ 0 & 0 & a_{33} & a_{34} & b_3 \end{pmatrix}$$

В рассуждениях выше, мы пользовались тем, что угловые элементы a_{11} и a_{22} не нули. Но вообще говоря так могло не получиться. Например на третьем шаге могла быть одна из следующих ситуаций (здесь мы смотрим на элемент a_{22}):

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & b_1 \\ 0 & 0 & a_{23} & a_{24} & b_2 \\ 0 & a_{32} & a_{33} & a_{34} & b_3 \end{pmatrix} \quad \text{или} \quad \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & b_1 \\ 0 & 0 & a_{23} & a_{24} & b_2 \\ 0 & 0 & a_{33} & a_{34} & b_3 \end{pmatrix}$$

В первом случае $a_{22}=0$, но при этом есть какой-то ненулевой элемент под ним. В такой ситуации надо переставить вторую строчку с другой строкой, где второй элемент не ноль. В примере надо переставить вторую и третью строчку местами. Во втором случае $a_{22}=0$ и все элементы под ним. В такой ситуации надо пропустить второй столбец и перейти к третьему и мы смотрим на элемент a_{23} . После чего повторяем алгоритм Гаусса с подматрицей.

В результате прямого хода алгоритма из-за обнуления коэффициентов могут возникнуть следующие случаи 4

$$\begin{pmatrix} \underline{a_{11}} & a_{12} & a_{13} & a_{14} & b_1 \\ 0 & \underline{a_{22}} & a_{23} & a_{24} & b_2 \\ 0 & 0 & 0 & \underline{a_{34}} & b_3 \end{pmatrix} \quad \begin{pmatrix} \underline{a_{11}} & a_{12} & a_{13} & a_{14} & b_1 \\ 0 & 0 & \underline{a_{23}} & a_{24} & b_2 \\ 0 & 0 & \underline{a_{34}} & b_3 \end{pmatrix} \quad \begin{pmatrix} \underline{a_{11}} & a_{12} & a_{13} & a_{14} & b_1 \\ 0 & \underline{a_{22}} & a_{23} & a_{24} & b_2 \\ 0 & \underline{0} & 0 & 0 & \underline{b_3} \end{pmatrix} \quad \begin{pmatrix} \underline{a_{11}} & a_{12} & a_{13} & a_{14} & b_1 \\ 0 & \underline{a_{22}} & a_{23} & a_{24} & b_2 \\ 0 & \underline{0} & 0 & 0 & 0 & 0 \end{pmatrix}$$

Главные и неглавные переменные Подчеркнутые элементы считаются не равными нулю. Это первые ненулевые коэффициенты в строке, они называются лидерами. В ступенчатом виде все переменные делятся на главные и свободные. Соответствующие лидерам переменные называются главными. Остальные переменные называются свободными.

Обратный ход алгоритма Гаусса Задача обратного хода алгоритма в том, чтобы сделать все лидирующие коэффициенты единицами, а все коэффициенты над ними обнулить. Обратный ход осуществляется снизу вверх. Разберем типичный обратный ход алгоритма Гаусса. Подчеркнутые элементы считаются не равными

⁴Это не полный список всех случаев.

нулю.

$$\begin{pmatrix} \frac{a_{11}}{0} & a_{12} & a_{13} & a_{14} & b_1 \\ 0 & \frac{a_{22}}{0} & a_{23} & a_{24} & b_2 \\ 0 & 0 & \frac{a_{33}}{0} & a_{34} & b_3 \end{pmatrix} \quad \text{разделить i-ю строку на a_{ii}}$$

$$\begin{pmatrix} 1 & a_{12} & a_{13} & a_{14} & b_1 \\ 0 & 1 & a_{23} & a_{24} & b_2 \\ 0 & 0 & 1 & a_{34} & b_3 \end{pmatrix} \quad \text{2-я строка} \quad -a_{23} \cdot \text{3-я строка}$$

$$\begin{pmatrix} 1 & a_{12} & a_{13} & a_{14} & b_1 \\ 0 & 1 & 0 & a_{24} & b_2 \\ 0 & 0 & 1 & a_{34} & b_3 \end{pmatrix} \quad \text{1-я строка} \quad -a_{13} \cdot \text{3-я строка}$$

$$\begin{pmatrix} 1 & a_{12} & 0 & a_{14} & b_1 \\ 0 & 1 & 0 & a_{24} & b_2 \\ 0 & 0 & 1 & a_{34} & b_3 \end{pmatrix} \quad \text{1-я строка} \quad -a_{12} \cdot \text{2-я строка}$$

$$\begin{pmatrix} 1 & 0 & 0 & a_{14} & b_1 \\ 0 & 1 & 0 & a_{24} & b_2 \\ 0 & 0 & 1 & a_{34} & b_3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & a_{14} & b_1 \\ 0 & 1 & 0 & a_{24} & b_2 \\ 0 & 0 & 1 & a_{34} & b_3 \end{pmatrix}$$

В специальных случаях приведенных выше, получим

$$\begin{pmatrix} 1 & 0 & a_{13} & 0 & b_1 \\ 0 & 1 & a_{23} & 0 & b_2 \\ 0 & 0 & 0 & 1 & b_3 \end{pmatrix} \quad \begin{pmatrix} 1 & a_{12} & 0 & 0 & b_1 \\ 0 & 0 & 1 & 0 & b_2 \\ 0 & 0 & 0 & 1 & b_3 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & a_{13} & a_{14} & 0 \\ 0 & 1 & a_{23} & a_{24} & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & a_{13} & a_{14} & b_1 \\ 0 & 1 & a_{23} & a_{24} & b_2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Полученный в результате обратного хода вид расширенной матрицы называется улучшенным ступенчатым видом, т.е., это ступенчатый вид, где все лидирующие коэффициенты – единицы, и все коэффициенты над ними равны нулю.

Удобный формализм Пока мы подробно не говорили о матрицах, введем некие удобные обозначения, которые упростят запись решений СЛУ.

$$a=egin{pmatrix} a_1\ dots\ a_n \end{pmatrix}\in\mathbb{R}^n$$
 и $b=egin{pmatrix} b_1\ dots\ b_n \end{pmatrix}\in\mathbb{R}^n$. Тогда $a+b=egin{pmatrix} a_1+b_1\ dots\ a_n+b_n \end{pmatrix}\in\mathbb{R}^n$ и $\lambda a=egin{pmatrix} \lambda a_1\ dots\ \lambda a_n \end{pmatrix}\in\mathbb{R}^n$ для любого $\lambda\in\mathbb{R}$.

Получение решений В системе ниже, выберем переменную x_4 как параметр

$$\begin{pmatrix}
1 & 0 & 0 & a_{14} & b_1 \\
0 & 1 & 0 & a_{24} & b_2 \\
0 & 0 & 1 & a_{34} & b_3
\end{pmatrix}$$

Тогда решения имеют вид⁵

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} - x_4 \begin{pmatrix} a_{14} \\ a_{24} \\ a_{34} \end{pmatrix}$$

⁵Операция умножения матрицы на число покомпонентная (умножаем каждый элемент на число). Сумма и разность двух матриц покомпонентная (складываем или вычитаем числа на одних и тех же позициях).

Специальные случаи:

$$\begin{pmatrix} 1 & 0 & a_{13} & 0 & b_{1} \\ 0 & 1 & a_{23} & 0 & b_{2} \\ 0 & 0 & 0 & 1 & b_{3} \end{pmatrix} \quad \text{Решения:} \quad \begin{pmatrix} x_{1} \\ x_{2} \\ x_{4} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \\ b_{3} \end{pmatrix} - x_{3} \begin{pmatrix} a_{13} \\ a_{23} \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & a_{12} & 0 & 0 & b_{1} \\ 0 & 0 & 1 & 0 & b_{2} \\ 0 & 0 & 0 & 1 & b_{3} \end{pmatrix} \quad \text{Решения:} \quad \begin{pmatrix} x_{1} \\ x_{3} \\ x_{4} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \\ b_{3} \end{pmatrix} - x_{2} \begin{pmatrix} a_{12} \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & a_{13} & a_{14} & 0 \\ 0 & 1 & a_{23} & a_{24} & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \quad \text{Решения:} \quad \text{Нет решений, т.к. последнее уравнение } 0 = 1$$

$$\begin{pmatrix} 1 & 0 & a_{13} & a_{14} & b_{1} \\ 0 & 1 & a_{23} & a_{24} & b_{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \quad \text{Решения:} \quad \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} - x_{3} \begin{pmatrix} a_{13} \\ a_{23} \end{pmatrix} - x_{4} \begin{pmatrix} a_{14} \\ a_{24} \end{pmatrix}$$

Количество решений в ступенчатом виде Если во время прямого хода алгоритма Гаусса в расширенной матрице системы вам встретилась строка вида $(0 \dots 0 \mid b)$, где b — произвольное ненулевое число, то данная система решений не имеет. В этом случае нет необходимости переходить к обратному ходу. Если же таких строк не встретилось, то система обязательно имеет решения. При этом, если есть свободные переменные, то решений бесконечное число, а если их нет, то решение единственное.

Технические рекомендации Работая с целочисленными матрицами, старайтесь во время прямого хода алгоритма Гаусса не выходить за рамки целых чисел.

- Используйте элементарные преобразования I типа только с целым параметром.
- \bullet Полезно не злоупотреблять умножением на ненулевое целое, умножайте только на ± 1 . Иначе придется работать с большими числами.

На этапе обратного хода алгоритма Гаусса избавиться от деления уже не возможно.

2 Матрицы

2.1 Определение матриц

Матрица – это прямоугольная таблица чисел

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix},$$
где $a_{ij} \in \mathbb{R}$

Множество всех матриц с m строками и n столбцами обозначается $M_{mn}(\mathbb{R})$. Множество квадратных матриц размера n будем обозначать $M_n(\mathbb{R})$. Матрицы с одним столбцом или одной строкой называются векторами (вектор-столбцами и вектор-строками соответственно). Множество всех векторов с n координатами обозначается через \mathbb{R}^n . Мы по умолчанию считаем, что наши вектора – вектор-столбцы.

2.2 Операции над матрицами

Сложение Пусть $A, B \in M_{mn}(\mathbb{R})$. Тогда сумма A + B определяется покомпонентно, т.е. C = A + B, то $c_{ij} = a_{ij} + b_{ij}$ или

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} + \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

Складывать можно только матрицы одинакового размера.

Умножение на скаляр Если $\lambda \in \mathbb{R}$ и $A \in M_{mn}(\mathbb{R})$, то λA определяется так: $\lambda A = C$, где $c_{ij} = \lambda a_{ij}$ или

$$\lambda \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} = \begin{pmatrix} \lambda a_{11} & \dots & \lambda a_{1n} \\ \vdots & \ddots & \vdots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{pmatrix}$$

Умножение матриц Пусть $A \in M_{mn}(\mathbb{R})$ и $B \in M_{nk}(\mathbb{R})$, то произведение $AB \in M_{mk}(\mathbb{R})$ определяется так: AB = C, где $c_{ij} = \sum_{t=1}^{n} a_{it}b_{tj}$ или

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} b_{11} & \dots & b_{1k} \\ \vdots & \ddots & \vdots \\ b_{n1} & \dots & b_{nk} \end{pmatrix} = \begin{pmatrix} \sum_{t=1}^{n} a_{1t} b_{t1} & \dots & \sum_{t=1}^{n} a_{1t} b_{tk} \\ \vdots & \ddots & \vdots \\ \sum_{t=1}^{n} a_{mt} b_{t1} & \dots & \sum_{t=1}^{n} a_{mt} b_{tk} \end{pmatrix}$$

На умножение матриц можно смотреть следующим образом. Чтобы получить коэффициент c_{ij} надо, из матрицы A взять i-ю строку (она имеет длину n), а из матрицы B взять j-ый столбец (он тоже имеет длину n). Тогда их надо скалярно перемножить и результат подставить в c_{ij} .

Транспонирование Пусть A – матрица вида

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \quad \text{или} \quad \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \quad \text{или} \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Определим транспонированную матрицу $A^t = (a'_{ij})$ так: $a'_{ij} = a_{ji}$. Наглядно, транспонированная матрица для приведенных выше

$$\begin{pmatrix} a_{11} & \dots & a_{m1} \\ \vdots & \ddots & \vdots \\ a_{1n} & \dots & a_{mn} \end{pmatrix} \quad \text{или} \quad \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{pmatrix} \quad \text{или} \quad (x_1 \quad x_2 \quad x_3)$$

 $^{^6}$ Важно, directX и openGL используют вектор-строки! Потому часть инженерной литературы на английском связанной с трехмерной графикой оперирует со строками. Это важно учитывать, так как нужно вносить поправки в соответствующие формулы.

 $^{^{7}}$ Можно по аналогии определить и вычитание матриц, но в этом нет необходимости. Например, потому что вычитание можно определить как A+(-1)B, где (-1)B – умножение на скаляр. Либо можно определить аксиоматически, как это сделано ниже в следующем разделе.

След матрицы Пусть $A \in M_n(\mathbb{R})$, тогда определим след матрицы A, как сумму ее диагональных элементов: $\operatorname{tr} A = \sum_{i=1}^n a_{ii}$. Давайте отметим следующие свойства следа:

- 1. Для любых матриц $A, B \in M_n(\mathbb{R})$ верно $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$.
- 2. Для любой матрицы $A \in \mathcal{M}_n(\mathbb{R})$ и $\lambda \in \mathbb{R}$ выполнено $\operatorname{tr}(\lambda A) = \lambda \operatorname{tr}(A)$.
- 3. Для любых матриц $A \in \mathrm{M}_{m\,n}(\mathbb{R})$ и $B \in \mathrm{M}_{n\,m}(\mathbb{R})$ выполнено $\mathrm{tr}(AB) = \mathrm{tr}(BA)$.

Все эти свойства проверяются непосредственным вычислением по определению.

2.3 Специальные виды матриц

Ниже мы перечислим названия некоторых специальных классов матриц:

- $A = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix}$ диагональная матрица. Все ненулевые элементы стоят на главной диагонали, то есть в позиции, где номер строки равен номеру столбца.
- $A = \begin{pmatrix} \lambda & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda \end{pmatrix}$ скалярная матрица. Диагональная матрица с одинаковыми элементами на диагональная матрица с одинаковыми одинаковыми

2.4 Свойства операций

Все операции на матрицах обладают «естественными свойствами» и согласованы друг с другом. Вот перечень базовых свойств операций над матрицами:⁸

- 1. Ассоциативность сложения (A+B)+C=A+(B+C) для любых $A,B,C\in \mathrm{M}_{m\,n}(\mathbb{R})$
- 2. Существование нейтрального элемента для сложения Существует единственная матрица 0 обладающая следующим свойством A+0=0+A=A для всех $A\in \mathrm{M}_{m\,n}(\mathbb{R})$. Такая матрица целиком заполнена нулями.
- 3. Коммутативность сложения A + B = B + A для любых $A, B \in M_{m,n}(\mathbb{R})$.
- 4. **Наличие обратного по сложению** Для любой матрицы $A \in M_{mn}(\mathbb{R})$ существует матрица -A такая, что A + (-A) = (-A) + A = 0. Такая матрица единственная и состоит из элементов $-a_{ij}$.
- 5. Ассоциативность умножения Для любых матриц $A \in M_{mn}(\mathbb{R})$, $B \in M_{nk}(\mathbb{R})$ и $C \in M_{kt}(\mathbb{R})$ верно (AB)C = A(BC).
- 6. Существование нейтрального элемента для умножения Для каждого k существует единственная матрица $E \in \mathcal{M}_k(\mathbb{R})$ такая, что для любой $A \in \mathcal{M}_{m\,n}(\mathbb{R})$ верно EA = AE = A. У такой матрицы $E_{ii} = 1$, а $E_{ij} = 0$. Когда нет путаницы, матрицу E обозначают через 1.
- 7. Дистрибутивность умножения относительно сложения Для любых матриц $A, B \in \mathrm{M}_{m\,n}(\mathbb{R})$ и $C \in \mathrm{M}_{n\,k}(\mathbb{R})$ верно (A+B)C = AC + BC. Аналогично, для любых $A \in \mathrm{M}_{m\,n}(\mathbb{R})$ и $B, C \in \mathrm{M}_{n\,k}(\mathbb{R})$ верно A(B+C) = AB + AC.
- 8. Умножение на числа ассоциативно Для любых $\lambda, \mu \in \mathbb{R}$ и любой матрицы $A \in \mathrm{M}_{m\,n}(\mathbb{R})$ верно $\lambda(\mu A) = (\lambda \mu)A$. Аналогично для любого $\lambda \in \mathbb{R}$ и любых $A \in \mathrm{M}_{m\,n}(\mathbb{R})$ и $B \in \mathrm{M}_{n\,k}(\mathbb{R})$ верно $\lambda(AB) = (\lambda A)B$.
- 9. Умножение на числа дистрибутивно относительно сложения матриц и сложения чисел Для любых $\lambda, \mu \in \mathbb{R}$ и $A \in \mathrm{M}_{m\,n}(\mathbb{R})$ верно $(\lambda + \mu)A = \lambda A + \mu A$. Аналогично, для любого $\lambda \in \mathbb{R}$ и $A, B \in \mathrm{M}_{m\,n}(\mathbb{R})$ верно $\lambda(A+B) = \lambda A + \lambda B$.

 $^{^{8}}$ Все эти свойства объединяет то, что они являются аксиомами в различных определениях для алгебраических структур. Позже мы столкнемся с такими структурами.

- 10. Умножение на скаляр нетривиально Если $1 \in \mathbb{R}$, то для любой матрицы $A \in \mathrm{M}_{m\,n}(\mathbb{R})$ верно 1A = A.
- 11. Умножение на скаляр согласовано с умножением матриц Для любого $\lambda \in \mathbb{R}$ и любых $A \in M_{m\,n}(\mathbb{R})$ и $B \in M_{n\,k}(\mathbb{R})$ верно $\lambda(AB) = (\lambda A)B = A(\lambda B)$.
- 12. **Транспонирование согласовано с суммой** Для любых матриц $A, B \in \mathrm{M}_{m\,n}(\mathbb{R})$ верно $(A+B)^t = A^t + B^t$.
- 13. **Транспонирование согласовано с умножением на скаляр** Для любой матрицы $A \in \mathrm{M}_{m\,n}(\mathbb{R})$ и любого $\lambda \in \mathbb{R}$ верно $(\lambda A)^t = \lambda A^t$.
- 14. **Транспонирование согласовано с умножением** Для любых матриц $A, B \in \mathrm{M}_{m\,n}(\mathbb{R})$ верно $(AB)^t = B^t A^t$.

К этим свойствам надо относиться так. Доказывая что-то про матрицы, можно лезть внутрь определений операций над ними, а можно пользоваться свойствами операций. Так вот, список выше – это минимальный набор свойств операций, из которых можно вытащить базовую информацию про эти операции и при этом не лезть внутрь определений.

Нулевые строки и столбцы Пусть в матрице $A \in \mathrm{M}_{m\,k}(\mathbb{R})$ *і*-я строка полностью состоит из нулей и нам дана матрица $B \in \mathrm{M}_{k\,n}(\mathbb{R})$. Тогда в произведении AB *і*-я строка тоже будет нулевая. Изобразим это ниже графически

$$AB = \begin{pmatrix} * & * & \dots & * \\ * & * & \dots & * \\ 0 & 0 & \dots & 0 \\ * & * & \dots & * \end{pmatrix} \begin{pmatrix} * & * & \dots & * \\ * & * & \dots & * \\ * & * & \dots & * \end{pmatrix} = \begin{pmatrix} * & * & \dots & * \\ * & * & \dots & * \\ 0 & 0 & \dots & 0 \\ * & * & \dots & * \end{pmatrix}$$

Действительно, i-я строка произведения зависит от i-ой строки левого смножителя (матрицы A) и всех столбцов B. Но умножая нулевую строку A на что угодно, получим нули в i-ой строке результата. Аналогичное утверждение верно для столбцов в матрице B, а именно. Пусть в матрице $B \in \mathrm{M}_{k\,n}(\mathbb{R})$ i-ый столбец полностью состоит из нулей и нам дана матрица $A \in \mathrm{M}_{m\,k}(\mathbb{R})$. Тогда в произведении AB i-ый столбец тоже будет нулевой.

$$AB = \begin{pmatrix} * & * & * & * \\ * & * & * & * \\ \vdots & \vdots & \vdots & \vdots \\ * & * & * & * \end{pmatrix} \begin{pmatrix} * & * & 0 & * \\ * & * & 0 & * \\ \vdots & \vdots & \vdots & \vdots \\ * & * & 0 & * \end{pmatrix} = \begin{pmatrix} * & * & 0 & * \\ * & * & 0 & * \\ \vdots & \vdots & \vdots & \vdots \\ * & * & 0 & * \end{pmatrix}$$

2.5 Связь с системами линейных уравнений

Пусть нам дана система линейных уравнений соответствующая матрицам

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \quad b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \quad (A|b) = \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix}$$

Мы кратко записывали такую систему Ax = b, а ее однородную версию через Ax = 0. Но теперь, когда мы знаем умножение матриц, видно, что Ax – это произведение матрицы A, на вектор неизвестных x.

Главный бонус от матриц и операций над ними заключается вот в чем. У нас исходно была большая и неуклюжая система линейных уравнений, в которой участвовали очень знакомые и простые для использования числа. Теперь же мы заменили много линейных уравнений с кучей неизвестных на одно линейное матричное уравнение Ax = b. Однако, теперь вместо приятных в использовании чисел у нас встретились более сложные объекты – матрицы. Потому к матрицам надо относиться как к более продвинутой версии чисел.

Линейная структура Пусть у нас дана система Ax = b как выше. Тогда $y \in \mathbb{R}^n$ является решением этой системы, если выполнено матричное равенство Ay = b. Аналогично и для однородной системы. Теперь заметим следующее:

1. Если $y_1, y_2 \in \mathbb{R}^n$ – решения системы Ax = 0, то $y_1 + y_2$ тоже является решением системы Ax = 0. Действительно, надо показать, что $A(y_1 + y_2) = 0$. Но $A(y_1 + y_2) = Ay_1 + Ay_2 = 0 + 0 = 0$.

2. Если $y \in \mathbb{R}^n$ – решение системы Ax = 0 и $\lambda \in \mathbb{R}$, то λy – тоже решение Ax = 0. Действительно, $A(\lambda y) = \lambda Ay = 0$.

Теперь сравним решения систем Ax = b и Ax = 0. Прежде всего заметим, что однородная система всегда имеет решение x = 0. И вообще говоря, может так оказаться, что Ax = b не имеет решений. Например, (A|b) = (0|1). Однако, если Ax = b совместна, то обе системы имеют «одинаковое число» решений.

Утверждение. Пусть система Ax = b имеет хотя бы одно решение $z \in \mathbb{R}^n$ и пусть $E_b \subseteq \mathbb{R}^n$ – множество решений Ax = b и $E_0 \subseteq \mathbb{R}^n$ – множество решений Ax = 0. Тогда $E_b = z + E_0 = \{z + y \mid y \in E_0\}$.

Доказательство. Для доказательства $z+E_0\subseteq E_b$ надо заметить, что если $y\in E_0$, то $z+y\in E_b$. Для обратного включения проверяется, что если $z'\in E_b$, то $z'-z\in E_0$.

2.6 Дефекты матричных операций

Матрицы как новые числа Рассмотрим множество квадратных матриц с введенными выше операциями: $(M_n(\mathbb{R}), +, -, \cdot, t)$. Про это множество стоит думать как про новый вид чисел со своими операциями. Принципиальное отличие – нельзя делить на любую ненулевую матрицу, как это можно было делать с числами. Однако, это не единственное отличие.

Аномалии матричных операций Матричные операции обладают несколькими аномалиями по сравнению со свойствами операций над обычными числами.

- 1. Существование вычитания следует из «хорошести» операции сложения. Она позволяет определить вычитание без проблем. Однако, операция умножения уже хуже, чем на обычных числах, потому не получится определить на матрицах операцию деления.
- 2. Умножение матриц НЕ коммутативно. Действительно

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{HO} \quad \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

3. В матрицах есть «делители нуля», т.е. существуют две ненулевые матрицы A и B такие, что AB=0.9 Пример:

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 0$$

4. В матрицах есть «нильпотенты», то есть можно найти такую ненулевую матрицу A, что $A^n = 0$. Пример,

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = 0$$

2.7 Деление

Что значит деление в числах? Предположим, что у нас есть два числа $a,b \in \mathbb{R}$. Тогда деление $a/b = a \cdot b^{-1}$ – это просто умножение на обратный элемент, а обратный элемент b^{-1} определяется свойством $bb^{-1} = 1$. Данное наблюдение дает ключ к распространению деления и обращения на случай матриц. А именно, вместо деления, мы будем рассматривать обратные матрицы и умножение на них. Вот неочевидное преимущество такого подхода. Из-за некоммутативности матричного умножения, нам пришлось бы вводить два вида деления: левое и правое. А значит, пришлось бы изучать свойства двух операций и их согласованность. Вместо этого, намного проще изучать обратные матрицы и умножать на них слева и справа с помощью обычного умножения.

Односторонняя обратимость Пусть $A \in \mathrm{M}_{m\,n}(\mathbb{R})$, будем говорить, что $B \in \mathrm{M}_{n\,m}(\mathbb{R})$ является левым обратным к A, если $BA = E \in \mathrm{M}_n(\mathbb{R})$. Аналогично, $B \in \mathrm{M}_{n\,m}(\mathbb{R})$ – правый обратный к A, если $AB = E \in \mathrm{M}_m(\mathbb{R})$. Надо иметь в виду, что вообще говоря левые и правые обратные между собой никак не связаны и их может быть много. Например, пусть $A = (1,0) \in \mathrm{M}_{1\,2}(\mathbb{R})$. Тогда у такой матрицы нет левого обратного, а любая матрица вида $(1,a)^t$ является правым обратным. Если для матрицы A существует левый обратный, то она называется обратимой слева. Аналогично, при существовании правого обратного – обратимой справа.

⁹На самом деле, это очень «хорошая» аномалия, так как она связана с тем, что ОСЛУ имеют решения. Действительно, вопрос решения ОСЛУ Ax = 0 – это в точности вопрос существования правых делителей нуля A в множестве \mathbb{R}^n .

Обратимые матрицы Матрица $A \in \mathrm{M}_{m\,n}(\mathbb{R})$ называется обратимой, если к ней существует левый и правый обратный. 10

Утверждение 1. Пусть матрица $A \in \mathrm{M}_{m,n}(\mathbb{R})$ обратима. Тогда

- 1. Левый обратный и правый обратный единственны и совпадают друг с другом.
- $2. \ \ Mampuya \ A \ \ oбязательна квадратная, то есть <math>m=n.$

Доказательство. (1) Пусть $L \in M_{nm}(\mathbb{R})$ – произвольный левый обратный к A, а $R \in M_{nm}(\mathbb{R})$ – произвольный правый обратный. Тогда рассмотрим выражение LAR, расставляя по разному скобки имеем:

$$R = ER = (LA)R = L(AR) = LE = L$$

Теперь, если L и L' – два разных левых обратных. Зафиксируем произвольный правый обратный R. Из выше сказанного следует, что L=R и L'=R. Значит все левые обратные равны между собой. Аналогично для правых.

(2) Теперь покажем, что двусторонний обратный есть только у квадратных матриц. Пусть $B \in \mathrm{M}_{n\,m}(\mathbb{R})$ – двусторонний обратный к A, то есть $AB = E_m \in \mathrm{M}_m(\mathbb{R})$ и $BA = E_n \in \mathrm{M}_n(\mathbb{R})$. Тогда по свойствам следа получим получим

$$m = \operatorname{tr}(E_m) = \operatorname{tr}(AB) = \operatorname{tr}(BA) = \operatorname{tr}(E_n) = n$$

Значит, если матрица A обратима, то она как минимум квадратная и существует единственная матрица B, удовлетворяющая свойствам AB = BA = E. Такую матрицу B обозначают A^{-1} и называют обратной к матрице A.

Утверждение 2. Пусть $A, B \in \mathrm{M}_n(\mathbb{R})$ – обратимые матрицы. Тогда

- 1. AB тоже обратима и при этом $(AB)^{-1} = B^{-1}A^{-1}$.
- 2. A^{t} также будет обратима $u(A^{t})^{-1} = (A^{-1})^{t}$ и обозначается A^{-t} .

Доказательство. 1) Действительно, надо проверить, что для AB существует двусторонняя обратная. Заметим, что $B^{-1}A^{-1}$ является таковой:

$$ABB^{-1}A^{-1} = E$$
 w $B^{-1}A^{-1}AB = E$

В частности, последнее означает, что $(AB)^{-1} = B^{-1}A^{-1}$.

2) Пусть матрица A обратима, тогда

$$AA^{-1} = E$$
 и $A^{-1}A = E$

Транспонируем оба равенства, получим

$$(A^{-1})^t A^t = E$$
 и $A^t (A^{-1})^t = E$

Это означает, что A^t обратима и при этом $(A^t)^{-1} = (A^{-1})^t$.

Обратимые преобразования над СЛУ Пусть у нас есть $A \in M_{m\,n}(\mathbb{R})$ и $b \in \mathbb{R}^m$, которые задают систему линейных уравнений Ax = b, где $x \in \mathbb{R}^n$. Возьмем произвольную обратимую матрипу $C \in M_m(\mathbb{R})$. Тогда система Ax = b эквивалентна системе CAx = Cb. Действительно, если для некоторого $y \in \mathbb{R}^n$ имеем Ay = b, то, умножая обе части на C слева, получим CAy = Cb, значит y решение второй системы. Наоборот, пусть CAy = Cb, тогда, умножая обе части на C^{-1} слева, получим Ay = b, значит y решение первой системы.

Сказанное выше значит, что мы можем менять СЛУ на эквивалентные с помощью умножения слева на любую обратимую матрицу. Мы уже знаем, что есть другая процедура преобразования СЛУ с таким же свойством – применение элементарных преобразований. Возникает резонный вопрос: какая процедура лучше? Оказывается, что между ними нет разницы в том смысле, что умножение на обратимую матрицу всегда совпадает с некоторой последовательностью элементарных преобразований и наоборот любое элементарное преобразование можно выразить с помощью умножения на обратимую матрицу. Этому свойству и будет посвящен остаток лекции.

 $^{^{10}}$ Ниже мы покажем, что из двусторонней обратимости следует, что матрица A обязана быть квадратной.

 $^{^{11}\}mathrm{Tyr}\ E_n$ означает единичную матрицу размера n.

2.8 Матрицы элементарных преобразований

Тип I Пусть $S_{ij}(\lambda) \in \mathrm{M}_n(\mathbb{R})$ – матрица, полученная из единичной вписыванием в ячейку $i \ j$ числа λ (при этом $i \ne j$, то есть ячейка берется не на диагонали). Эта матрица имеет следующий вид:

$$i = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & \ddots & \lambda & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix}$$

Тогда прямая проверка показывает, умножение $A \in M_{n\,m}(\mathbb{R})$ на $S_{ij}(\lambda)$ слева прибавляет j строку умноженную на λ к i строке матрицы A, а умножение $B \in M_{m\,n}(\mathbb{R})$ на $S_{ij}(\lambda)$ справа прибавляет i столбец умноженный на λ к j столбцу матрицы B. Заметим, что $S_{ij}(\lambda)^{-1} = S_{ij}(-\lambda)$.

Тип II Пусть $T_{ij} \in \mathcal{M}_n(\mathbb{R})$ – матрица, полученная из единичной перестановкой i и j ($i \neq j$) столбцов (или что то же самое – строк). Эта матрица имеет следующий вид

Тогда прямая проверка показывает, умножение $A \in M_{nm}(\mathbb{R})$ на T_{ij} слева переставляет i и j строки матрицы A, а умножение $B \in M_{mn}(\mathbb{R})$ на T_{ij} справа переставляет i и j столбцы матрицы B. Заметим, что $T_{ij}^{-1} = T_{ij}$.

Тип III Пусть $D_i(\lambda) \in M_n(\mathbb{R})$ – матрица, полученная из единичной умножением i строки на $\lambda \in \mathbb{R} \setminus 0$ (или что то же самое – столбца). Эта матрица имеет следующий вид

Тогда прямая проверка показывает, умножение $A \in M_{nm}(\mathbb{R})$ на $D_i(\lambda)$ слева умножает i строку A на λ , а умножение $B \in M_{mn}(\mathbb{R})$ на $D_i(\lambda)$ справа умножает i столбец матрицы B на λ . Заметим, что $D_i(\lambda)^{-1} = D_i(\lambda^{-1})$.

2.9 Невырожденные матрицы

Начнем с полезного утверждения.

Утверждение 3. Пусть $A \in \mathrm{M}_n(\mathbb{R})$ – произвольная квадратная матрица. Тогда следующие условия эквивалентны:

- 1. Система Ax = 0 имеет только нулевое решение.
- 2. Система $A^t y = 0$ имеет только нулевое решение.
- 3. Матрица A представляется в виде $A=U_1\cdot\ldots\cdot U_k$, где U_i матрицы элементарных преобразований.
- 4. Матрица А обратима.
- 5. Матрица A обратима слева, т.е. существует L такая, что LA = E.

6. Матрица A обратима справа, т.е. существует R такая, что AR = E.

Доказательство Утверждения 3. (1) \Rightarrow (3). Приведем A к улучшенному ступенчатому виду с помощью Гаусса. Так как Ax=0 имеет только нулевое решение, то ступенчатый вид – это единичная матрица E. Пусть S_1, \ldots, S_k – матрицы элементарных преобразований, которые мы совершили во время Гаусса. Это значит, что мы произвели следующие манипуляции

$$A \mapsto S_1 A \mapsto S_2 S_1 A \mapsto \ldots \mapsto (S_k \ldots S_1 A) = E$$

То есть $A=S_1^{-1}\dots S_k^{-1}$. Заметим, что S_i^{-1} – это матрица обратного элементарного преобразования к S_i . Обозначим $U_i=S_i^{-1}$ и получим требуемое.

- $(2)\Rightarrow(3)$. Проведем предыдущее рассуждение для матрицы A^t вместо A. Получим, что $A^t=U_1\dots U_k$. Тогда $A=U_k^t\dots U_1^t$. Теперь осталось заметить, что U_i^t тоже является матрицей элементарного преобразования.
- $(3) \Rightarrow (4)$. Мы имеем $A = U_1 \dots U_k$, причем каждая из U_i обратима. Так как произведение обратимых обратима, то A также обратима.
 - $(4)\Rightarrow(5)$ и $(4)\Rightarrow(6)$ очевидно, так это переход от более сильного условия к более слабому.
- $(5)\Rightarrow(1)$. Пусть A обратима слева и нам надо решить систему Ax=0. Умножим ее слева на левый обратный к A, получим x=0, что и требовалось.
- $(6)\Rightarrow(2)$. Пусть A обратима справа и нам надо решить систему $A^ty=0$. Умножим эту систему слева на R^t , где R правый обратный к A. Тогда $R^tA^tx=0$. Но $R^tA^tx=(AR)^tx=Ex=x=0$, что и требовалось. \square

В силу этого утверждения, мы не будем различать невырожденные и обратимые матрицы между собой.

Определение 4. Пусть $A \in M_n(\mathbb{R})$ – произвольная квадратная матрица. Будем говорить, что A невырождена¹², если удовлетворяет любому из перечисленных в предыдущем утверждении условий.

Делители нуля Пусть $A \in \mathrm{M}_n(\mathbb{R})$ — некоторая ненулевая матрица и пусть $B \in \mathrm{M}_{n\,m}(\mathbb{R})$. Матрица B называется правым делителем нуля для A, если AB=0. Условие (1) предыдущего утверждения эквивалентно отсутствию правых делителей нуля. Условие (1) не сильнее, значит надо показать, что оно влечет отсутствие делителей нуля. Если B — правый делитель нуля для A, то любой столбец b матрицы B удовлетворяет условию Ab=0, а значит нулевой.

Аналогично определяются левые делители нуля для A и показывается, что их отсутствие равносильно условию (2) предыдущего результата.

Элементарные преобразования и обратимость Пусть $A \in M_{mn}(\mathbb{R})$ и $b \in \mathbb{R}^m$. Тогда у нас есть две процедуры преобразования СЛУ Ax = b:

- 1. Применение элементарных преобразований к строкам системы.
- 2. Умножение обеих частей равенства на обратимую матрицу: Ax = b меняем на CAx = Cb, где $C \in \mathrm{M}_n(\mathbb{R})$ обратимая.

Так как любое элементарное преобразование сводится к умножению слева на обратимую матрицу, то мы видим, что первый вид модификации систем является частным случаем второго. В обратную сторону, из доказанного утверждения следует, что любая обратимая матрица может быть расписана как произведение матриц элементарных преобразований. Значит, умножить на обратимую матрицу слева — это все равно что сделать последовательность элементарных преобразований.

Главный плюс элементарных преобразований – у них простые матрицы, а минус – их нужно много, очень много, чтобы преобразовать одну систему в другую. С обратимыми матрицами все наоборот: сами матрицы устроены непонятно как, но зато нужно всего одно умножение матриц, чтобы перевести систему из одной в другую. Именно на это надо обращать внимание при выборе подхода по преобразованию систем.

¹²Классически невырожденные матрицы определяются совсем по-другому, однако, все эти определения между собой эквивалентны. Будьте готовы к тому, что в литературе вы увидите совсем другое определение.

Насыщенность обратимых Я хочу продемонстрировать еще одно полезное следствие из Утверждения 3. Предположим у нас есть две матрицы $A, B \in \mathcal{M}_n(\mathbb{R})$. Тогда AB обратима тогда и только тогда, когда A и B обратимы. Действительно, справа налево мы уже знаем, обратимость обеих матриц A и B влечет обратимость произведения, мы даже знаем, что при этом $(AB)^{-1} = B^{-1}A^{-1}$. Надо лишь показать в обратную сторону. Предположим, что AB обратима, это значит, что для некоторой матрицы $D \in \mathcal{M}_n(\mathbb{R})$ выполнено

$$ABD = E$$
 и $DAB = E$

Тогда первое равенство говорит, что BD является правым обратным к A. А в силу эквивалентности пунктов (4) и (6) Утверждения 3 это означает, что A обратима. Аналогично, DA является левым обратным к B и в силу эквивалентности пунктов (4) и (5) Утверждения 3, матрица B обратима. Так что произведение матриц обратимо тогда и только тогда, когда каждый сомножитель обратим.

2.10 Блочное умножение матриц

Формулы блочного умножения Пусть даны две матрицы, которые разбиты на блоки как показано ниже:

$$\begin{array}{cccc}
k & s & & u & v \\
m & \begin{pmatrix} A & B \\ C & D \end{pmatrix} & k & \begin{pmatrix} X & Y \\ W & Z \end{pmatrix}
\end{array}$$

Числа m, n, k, s, u, v — размеры соответствующих блоков. Наша цель понять, что эти матрицы можно перемножать блочно. А именно, увидеть, что результат умножения этих матриц имеет вид

$$\begin{array}{ccc}
 u & v \\
 n & \left(\begin{matrix} AX + BW & AY + BZ \\
 CX + DW & CY + DZ \end{matrix}\right)
\end{array}$$

Делается это таким трюком. В начале заметим, что

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ C & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix}$$

После чего методом «пристального взгляда» перемножаем матрицы с большим количеством нулей (попробуйте проделать это!).

На этот факт можно смотреть вот как. Матрица – это прямоугольная таблица заполненная числами. А можно составлять прямоугольные таблица заполненные другими объектами, например матрицами. Тогда они складываются и перемножаются так же как и обычные матрицы из чисел. Единственное надо учесть, что в блочном умножении есть разница между AX + BW и XA + BW, так как A, B, X и W не числа, а матрицы, то их нельзя переставлять местами, порядок теперь важен.

Вот полезный пример. Пусть дана матрица из $\mathrm{M}_{n+1}(\mathbb{R})$ вида

$$\begin{pmatrix} A & v \\ 0 & \lambda \end{pmatrix}$$
, где $A \in \mathcal{M}_n(\mathbb{R})$, $v \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$

Тогда

$$\begin{pmatrix} A & v \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} A & v \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} A^2 & Av + v\lambda \\ 0 & \lambda^2 \end{pmatrix} = \begin{pmatrix} A^2 & Av + \lambda v \\ 0 & \lambda^2 \end{pmatrix} = \begin{pmatrix} A^2 & (A + \lambda E)v \\ 0 & \lambda^2 \end{pmatrix}$$

Предпоследнее равенство верно, так как не важно с какой стороны умножать v на скаляр λ .

Вот еще один полезный пример блочного умножения. Пусть $x_1, \ldots, x_m \in \mathbb{R}^n$ и $y_1, \ldots, y_m \in \mathbb{R}^n$ – столбцы. Составим из этих столбцов матрицы $X = (x_1 | \ldots | x_m)$ и $Y = (y_1 | \ldots | y_m)$. Заметим, что $X, Y \in M_{n,m}(\mathbb{R})$. Тогда

$$XY^{t} = (x_{1}|\dots|x_{m})(y_{1}|\dots|y_{m})^{t} = \sum_{i=1}^{m} x_{i}y_{i}^{t}$$

 $^{^{13}}$ Данная запись означает, что мы берем столбцы x_i и записываем их подряд в одну большую таблицу.

2.11 Блочные элементарные преобразования

Преобразования первого типа Пусть у нас дана матрица

$$\begin{array}{ccc}
k & s \\
m & \begin{pmatrix} A & B \\
C & D \end{pmatrix}
\end{array}$$

Я хочу взять первую «строку» из матриц (A,B) умножить ее на некую матрицу R слева и прибавить результат к «строке» (C,D). Для этого матрица R должна иметь n строк и m столбцов. То есть процедура будет выглядеть следующим образом

$$\begin{array}{ccc}
k & s & k & s \\
m & \begin{pmatrix} A & B \\ C & D \end{pmatrix} \mapsto \begin{pmatrix} A & B \\ C + RA & D + RB \end{pmatrix} & m \\
n & n
\end{array}$$

Оказывается, что такая процедура является умножением на обратимую матрицу слева, а именно

Заметим, что

$$\begin{pmatrix} E & 0 \\ R & E \end{pmatrix}^{-1} = \begin{pmatrix} E & 0 \\ -R & E \end{pmatrix}$$

В частности из этого наблюдения следует, что блочные элементарные преобразования строк не меняют множества решений соответствующей системы.

Аналогично можно делать блочные элементарные преобразования столбцов. А именно

$$\begin{array}{ccc}
k & s & k & s \\
m & \begin{pmatrix} A & B \\ C & D \end{pmatrix} \mapsto \begin{pmatrix} A & B + AT \\ C & D + CT \end{pmatrix} & m \\
n & n
\end{array}$$

где T матрица с k строками и s столбцами. Как и в случае преобразований со строками, эта процедура сводится к операции умножения на обратимую матрицу справа

Как и раньше

$$\begin{pmatrix} E & T \\ 0 & E \end{pmatrix}^{-1} = \begin{pmatrix} E & -T \\ 0 & E \end{pmatrix}$$

Замечание Обратите внимание, что при блочных преобразованиях строк умножение на матрицу-коэффициент R происходит слева, а при преобразованиях столбцов умножение на матрицу-коэффициент T происходит справа.

Преобразования второго типа Преобразование вида

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \mapsto \begin{pmatrix} C & D \\ A & B \end{pmatrix}$$

сводится к умножению на обратимую блочную матрицу слева

$$\begin{pmatrix} 0 & E \\ E & 0 \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} C & D \\ A & B \end{pmatrix}$$

А преобразование

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \mapsto \begin{pmatrix} B & A \\ D & C \end{pmatrix}$$

сводится к умножению на обратимую блочную матрицу справа

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} 0 & E \\ E & 0 \end{pmatrix} = \begin{pmatrix} B & A \\ D & C \end{pmatrix}$$

При этом

$$\begin{pmatrix} 0 & E \\ E & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & E \\ E & 0 \end{pmatrix}$$

Преобразования третьего типа Если $R\in \mathrm{M}_m(\mathbb{R})$ – обратимая матрица, то

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \mapsto \begin{pmatrix} RA & RB \\ C & D \end{pmatrix}$$

является преобразованием умножения на обратимую матрицу слева, а именно

$$\begin{pmatrix} R & 0 \\ 0 & E \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} RA & RB \\ C & D \end{pmatrix}$$

при этом

$$\begin{pmatrix} R & 0 \\ 0 & E \end{pmatrix}^{-1} = \begin{pmatrix} R^{-1} & 0 \\ 0 & E \end{pmatrix}$$

Аналогично, для обратимой матрицы $T \in \mathrm{M}_k(\mathbb{R})$, преобразование

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \mapsto \begin{pmatrix} AT & B \\ CT & D \end{pmatrix}$$

является преобразованием умножения на обратимую матрицу справа, а именно

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} T & 0 \\ 0 & E \end{pmatrix} = \begin{pmatrix} AT & B \\ CT & D \end{pmatrix}$$

Как и раньше, при работе со строками умножение на матрицу-коэффициент происходит слева, а при работе со столбцами – справа.

2.12 Массовое решение систем

Пусть нам надо решить сразу несколько систем $Ax_1 = b_1, \ldots, Ax_k = b_k$, где $A \in M_{mn}(\mathbb{R})$, $b_i \in \mathbb{R}^m$ и $x_i \in \mathbb{R}^n$. Определим матрицы $X = (x_1 | \ldots | x_k) \in M_{nk}(\mathbb{R})$ и $B = (b_1 | \ldots | b_k) \in M_{mk}(\mathbb{R})$ составленные из столбцов x_i и b_i соответственно. Тогда по формулам блочного умножения матриц

$$AX = A(x_1 | \dots | x_k) = (Ax_1 | \dots | Ax_k) = (b_1 | \dots | b_k) = B$$

То есть массовое решение системы уравнений равносильно решению матричного уравнения AX = B.

Решение матричных уравнений

Дано $A \in M_{mn}(\mathbb{R}), B \in M_{mk}(\mathbb{R}).$

Задача Найти $X \in \mathrm{M}_{n\,k}(\mathbb{R})$ такую, что AX = B.

Алгоритм

1. Составить расширенную матрицу (A|B). Например, если $A \in M_{3,3}(\mathbb{R})$, а $B \in M_{3,2}(\mathbb{R})$, то получим

$$(A|B) = \begin{pmatrix} a_{11} & a_{12} & a_{13} & b_{11} & b_{12} \\ a_{21} & a_{22} & a_{23} & b_{21} & b_{22} \\ a_{31} & a_{32} & a_{33} & b_{31} & b_{32} \end{pmatrix}$$

2. Привести расширенную матрицу (A|B) к улучшенному ступенчатому виду. В примере выше, может получиться

$$\begin{pmatrix} 1 & a_{12} & 0 & b_{11} & 0 \\ 0 & 0 & 1 & b_{21} & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
 или
$$\begin{pmatrix} 1 & 0 & a_{13} & b_{11} & b_{12} \\ 0 & 1 & a_{23} & b_{21} & b_{22} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

3. Для каждого столбца матрицы X выразить его главные переменные через свободные и записать ответ в виде матрицы. Если для какого-то столбца решений нет, то нет решений и у матричного уравнения AX = B. В примере выше, в первом случае нет решения для второго столбца, потому решений нет в этом случае. Во втором случае,

$$X = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} -a_{13} \\ -a_{23} \\ 1 \end{pmatrix} \begin{pmatrix} t & u \end{pmatrix},$$
где $t, u \in \mathbb{R}$

Если нужно решить матричное уравнение XA=B для матриц соответствующего размера, то можно его транспонировать и свести задачу к рассмотренной. А именно, это уравнение равносильно уравнению $A^tX^t=B^t$. Тогда его можно решать относительно X^t , а потом транспонировать ответ.

Нахождение обратной матрицы методом Гаусса

Дано Матрица $A \in M_n(\mathbb{R})$.

Задача Понять обратима ли матрица A и если она обратима, то найти ее обратную A^{-1} .

Алгоритм

- 1. Нам надо по сути решить систему AX = E, где E единичная матрица. Потому составим расширенную матрицу системы (A|E).
- 2. Приведем эту матрицу к улучшенному ступенчатому виду.
- 3. В результате возможны 2 случая:
 - (a) После приведения получили матрицу (E|B). Тогда A обратима и $A^{-1} = B$.
 - (b) После приведения получили матрицу (D|B) и у матрицы D есть свободные позиции. Тогда матрица A не обратима.

Заметим, что если в процессе алгоритма, мы слева от черты в расширенной матрице нашли свободную переменную, то на этом можно остановиться — матрица A необратима.

Корректность алгоритма Давайте я поясню почему алгоритм работает корректно. Пусть у нас есть система AX = B с краткой записью (A|B). Если мы применим элементарное преобразование строк к краткой записи, то это будет означать умножение на матрицу элементарного преобразования слева, то есть при переходе $(A|B) \mapsto (UA|UB)$ мы меняем систему AX = B на UAX = UB. А значит, если матрица X была решением AX = B, то мы имеем верное равенство двух матриц AX = B. Если две одинаковые матрицы слева домножить на одну и ту же матрицу, то результат получится равным, то есть отсюда следует, что UAX = UB. То есть любое решение системы AX = B превращается в решение системы UAX = UB. Так как матрица элементарного преобразования U обратима, то мы можем домножить второе на U^{-1} , а значит работает рассуждение в обратную сторону и все решения второй являются решениями первой.

Теперь мы знаем, что меняя по алгоритму систему, мы не меняем множество решений. Кроме того, по алгоритму, у нас в результате работы бывают две ситуации, либо мы приходим к ситуации (E|B) либо к (D|B) и в D есть свободная позиция. Давайте разберем их отдельно.

1. Пусть мы привели систему к виду (E|B). Эта запись соответствует системе EX=B, то есть X=B. Более того, полученная система эквивалента исходное AX=E. Теперь мы видим, что у системы X=B единственное решение B, а это значит что и у системы AX=E единственное решение B (так как они эквивалентны). А значит в этом случае B – это правая обратная к A, а следовательно и просто обратная.

2. Теперь предположим, что мы получим (D|B), где у D есть свободная переменная. Так как мы переходили от (A|E) к (D|B) элементарными преобразованиями строк, то для некоторой обратимой матрицы $C \in \mathcal{M}_n(\mathbb{R})$ выполнено D = CA. Так как у матрицы D есть свободная позиция и она квадратная \mathbb{R}^{14} , то обязательно найдется нулевая строка. А раз так, то матрица D не может быть обратима справа. Действительно, тогда в произведении DR для любой $R \in \mathcal{M}_n(\mathbb{R})$ будет иметь нулевую строку там же, где нулевая строка у D. А значит, не может быть E. Раз матрица D не обратима, то и матрица A не обратима, иначе D была бы обратима, как произведение обратимых матриц.

2.13 Классификация СЛУ

Единственность улучшенного ступенчатого вида Давайте в начале ответим на очень важный вопрос: а единственный ли у матрицы улучшенный ступенчатый вид? Очевидно, что ступенчатый вид не единственный. Однако, улучшенный ступенчатый вид окажется однозначно определенным. Это означает, что у ступенчатого вида однозначно определена его форма (количество и длины ступенек). В частности у любой СЛУ однозначно определены главные и свободные переменные. Все это не бросается сразу в глаза и требует доказательства. Давайте начнем с простого наблюдения.

Утверждение 5. Пусть $A \in M_{mn}(\mathbb{R})$ и $B \in M_{kn}(\mathbb{R})$ – матрицы в ступенчатом виде, причем B получена из A выкидыванием одного ненулевого уравнения. Тогда системы Ax = 0 и Bx = 0 не эквивалентны. ¹⁵

Доказательство. Пусть для определенности A и B имеют следующий вид (все незаполненные места предполагаются нулями):

И пусть уравнение, которым они различаются начинается с k-ой позиции, т.е. x_k – главная переменная в A, но неглавная в B.

Пусть $E_A, E_B \subseteq \mathbb{R}^n$ – множества решений систем Ax = 0 и Bx = 0, соответственно. Так как в A уравнений больше, чем в B, то $E_A \subseteq E_B$.

Чтобы показать неравенство, предположим, что наоборот $E_A = E_B$. Рассмотрим следующие подмножества в них:

$$E_A^0 = \{x \in E_A \mid x_i = 0 \text{ при } i > k\}$$

 $E_B^0 = \{x \in E_B \mid x_i = 0 \text{ при } i > k\}$

То есть среди всех решений в E_A и E_B , соответственно, рассмотрим только те, у которых координаты с номерами больше k обращаются в ноль. Это не пустые подмножества, например, там есть нулевое решение. Если $E_A=E_B$, то и $E_A^0=E_B^0$, так как последние задаются одинаковыми условиями. Значит, чтобы прийти к противоречию, достаточно показать, что в E_B^0 есть элемент, которого нет в E_A^0 .

Рассмотрим E_A^0 . Так как для Ax=0 переменная x_k – главная, то она выражается через предыдущие. А значит, если предыдущие ноль, то и она ноль. Это значит, что для $x\in E_A^0$ автоматически $x_k=0$. С другой стороны, для системы Bx=0 переменная x_k является свободной. Тогда сделаем так: положим все свободные переменные кроме x_k равными нулю, а $x_k=1$. Тогда все главные переменные правее x_k (с большими номерами) автоматически станут нулями. Таким образом мы получили точку $x\in E_B^0$, у которой $x_k\neq 0$. Последнее приводит к противоречию с предположением, что $E_A=E_B$.

Утверждение 6. Пусть $S_1 \in \mathrm{M}_{m\,n}(\mathbb{R})$ и $S_2 \in \mathrm{M}_{k\,n}(\mathbb{R})$ – произвольные матрицы в улучшенном ступенчатом виде. Если $S_1x=0$ эквивалентно $S_2x=0$, то после удаления нулевых строк матрицы S_1 и S_2 совпадут.

Доказательство. Так как $S_1x = 0$ и $S_2x = 0$ эквивалентны между собой, то если мы возьмем любое уравнение l из системы $S_1x = 0$ и добавим его к системе $S_2x = 0$, получив систему $\binom{S_2}{l}x = 0$, то новая система будет

¹⁴Вот то место, где мы пользуемся квадратностью матрицы.

¹⁵То есть имеют разное множество решений.

эквивалентна всем трем. Аналогично, можно перекладывать уравнения из второй системы в первую, не меняя множества решений.

Пусть для определенности матрицы S_1 и S_2 имеют следующий вид:

$$S_1 = \begin{pmatrix} 1 & * & 0 & * & 0 & 0 & * & * & * \\ & 1 & * & 0 & 0 & * & * & * \\ & & 1 & 0 & * & * & * \\ & & & 1 & * & * & * \end{pmatrix} \quad S_2 = \begin{pmatrix} 1 & \bullet & \bullet & 0 & \bullet & \bullet & 0 & \bullet & \bullet \\ & & 1 & \bullet & \bullet & 0 & \bullet & \bullet \\ & & & 1 & \bullet & \bullet & \bullet & \bullet \\ & & & & 1 & \bullet & \bullet \end{pmatrix}$$

Они вообще говоря могут содержать разное количество ненулевых строк, пока мы ничего про это не знаем.

Давайте докажем, что в системах совпадают последние уравнения, потом следующие и так далее. Будем двигаться снизу вверх от коротких к более длинным. Нам надо показать три вещи: почему совпадают самые короткие уравнения, объяснить как показать совпадение для произвольного промежуточного уравнения и почему у одной из системы уравнения не закончатся раньше, чем у другой.

Пусть для определенности последнее уравнение S_2 не длиннее последнего уравнения S_1 , как на картинке. Добавим это уравнение к системе S_1 . Тогда возможны два случая: уравнение либо строго короче, либо имеет такую же длину. В первом случае получим две эквивалентные системы с матрицами

Но по предыдущему утверждению это невозможно. Значит уравнения имеют одинаковую длину, потому эквивалентны системы

$$S_{1} = \begin{pmatrix} 1 & * & 0 & * & 0 & 0 & * & * & * \\ & 1 & * & 0 & 0 & * & * & * \\ & & 1 & 0 & * & * & * \\ & & & 1 & * & * & * \end{pmatrix} \quad S'_{1} = \begin{pmatrix} 1 & * & 0 & * & 0 & 0 & * & * & * \\ & 1 & * & 0 & 0 & * & * & * \\ & & 1 & * & 0 & 0 & * & * & * \\ & & 1 & 0 & * & * & * \\ & & & 1 & * & * & * \\ & & & 1 & * & * & * \end{pmatrix}$$

В матрице S_1' вычтем предпоследнее уравнение из последнего. Новая система $S_1''x = 0$ будет эквивалентна $S_1x = 0$. Если уравнения не совпадают, то разность даст новую ступеньку и по предыдущему утверждению системы не могут быть эквивалентными. Значит последние уравнения совпадают.

Теперь мы знаем, что матрицы S_1 и S_2 имеют вид (где треугольниками отмечены элементы одинаковых строк):

$$S_1 = \begin{pmatrix} 1 & * & 0 & * & 0 & 0 & * & * & * \\ & 1 & * & 0 & 0 & * & * & * \\ & & 1 & 0 & * & * & * \\ & & & 1 & \bullet & \bullet & \bullet \end{pmatrix} \quad S_2 = \begin{pmatrix} 1 & \bullet & \bullet & 0 & \bullet & \bullet & \bullet \\ & & 1 & \bullet & 0 & \bullet & \bullet & \bullet \\ & & & 1 & \bullet & \bullet & \bullet \end{pmatrix}$$

Теперь посмотрим на следующую пару уравнений. Пусть для определенности уравнение в S_1 будет не длиннее, чем уравнение в S_2 . Добавим второе уравнение из S_1 в S_2 и получим эквивалентную систему. У нас как и выше два варианта: либо длина уравнения строго меньше, либо длины одинаковые. Рассмотрим случай первый:

$$S_2' = \begin{pmatrix} 1 & \bullet & \bullet & 0 & \bullet & \bullet & \bullet & \bullet \\ & & 1 & \bullet & 0 & \bullet & \bullet & \bullet \\ & & & 1 & 0 & * & * & * \\ & & & 1 & \bullet & \bullet & \bullet \end{pmatrix} \quad S_2 = \begin{pmatrix} 1 & \bullet & \bullet & 0 & \bullet & 0 & \bullet & \bullet \\ & & 1 & \bullet & 0 & \bullet & \bullet & \bullet \\ & & & 1 & \bullet & \bullet & \bullet \end{pmatrix}$$

В этом случае по предыдущему утверждению системы не эквивалентны, чего быть не может. Значит у нас второй случай:

$$S_2' = \begin{pmatrix} 1 & \bullet & \bullet & 0 & \bullet & \bullet & \bullet & \bullet \\ & & 1 & \bullet & 0 & \bullet & \bullet & \bullet \\ & & 1 & * & 0 & * & * & * \\ & & & 1 & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{pmatrix} \quad S_2 = \begin{pmatrix} 1 & \bullet & \bullet & 0 & \bullet & 0 & \bullet & \bullet \\ & & 1 & \bullet & 0 & \bullet & \bullet & \bullet \\ & & & 1 & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{pmatrix}$$

Как и раньше, в S_2' вычтем из нового уравнения вышестоящее. Предположим, что уравнения были разные и получилась ненулевая строка. Вопрос: где не может начинаться эта строка? Ответ: там, где у обеих строк были нули. Теперь воспользуемся тем, что все нижестоящие уравнения у нас одинаковые. Это значит, что нули у обеих строк в одних и тех же местах (это места где начинаются нижестоящие строки). Значит, может получится что-то вроде

$$S_2'' = \begin{pmatrix} 1 & \bullet & 0 & \bullet & 0 & \bullet & \bullet & \bullet \\ & 1 & \bullet & 0 & \bullet & \bullet & \bullet & \bullet \\ & & * & 0 & * & * & * \\ & & & 1 & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{pmatrix}$$
 или $S_2'' = \begin{pmatrix} 1 & \bullet & 0 & \bullet & 0 & \bullet & \bullet & \bullet \\ & & 1 & \bullet & 0 & \bullet & \bullet & \bullet \\ & & & & * & * & * \\ & & & & 1 & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{pmatrix}$ и т.д.

Но по предыдущему утверждению такого опять быть не может, так как новая система не эквивалентна $S_2x = 0$. Продолжая аналогично, мы показываем, что все уравнения у систем совпадают.

Осталось объяснить почему уравнения в одной из систем не могут закончиться раньше, чем в другой. Но тогда у нас они обе в ступенчатом виде и одна получена из другой добавлением нескольких уравнений. Добавление одного уменьшает множество решений, как показано в предыдущем утверждении, а добавление нескольких – тем более.

Из этого утверждения следует, что матрица улучшенного ступенчатого вида для любой матрицы $A \in M_{mn}(\mathbb{R})$ определена однозначно. Так как если матрица A приводится к двум разным ступенчатым видам, то их однородные системы эквивалентны, а значит они совпадают. Потому, говоря о матрице A, можно говорить и о ее улучшенном ступенчатом виде без какой-либо неоднозначности.

Классификация

Утверждение 7. Пусть $A, B \in \mathrm{M}_{m\,n}(\mathbb{R})$ и пусть $E_A, E_B \subseteq \mathbb{R}^n$ – множества решений систем Ax = 0 и Bx = 0, соответственно. Тогда следующее эквивалентно:

- 1. $E_A = E_B$, m.e. системы эквивалентны.
- $2. \ A \ приводится \ \kappa \ B \ элементарными \ преобразованиями \ строк.$
- 3. Существует обратимая $C \in M_m(\mathbb{R})$ такая, что B = CA.
- 4. Матрица улучшенного ступенчатого вида для A совпадает c матрицей улучшенного ступенчатого вида для B.

Доказательство. Мы все это уже доказали по сути, потому напомним, что откуда следует. $(2) \Rightarrow (1)$ Так как элементарные преобразования меняют систему на эквивалентную. $(1) \Rightarrow (4)$ Предыдущее утверждение. $(4) \Rightarrow (2)$ Если матрицы A и B приводятся элементарными преобразованиями к одной и той же матрице (улучшенного ступенчатого вида), то они переводятся и друг в друга. Эквивалентность $(2) \Rightarrow (3)$ следует из Утверждения 3 о том, что матрица обратима тогда и только тогда, когда она раскладывается в произведение элементарных. \square

Смысл этого утверждения в следующем. Возьмем множество всех однородных систем фиксированного размера, которое описывается матрицами $M_{m\,n}(\mathbb{R})$. Тогда на этом множестве есть отношение эквивалентности: системы эквиваленты если они имеют одинаковое множество решений. Это полезное свойство, потому что нам не важно какую из систем решать среди эквивалентных. Однако, это свойство сложно проверяется. С другой стороны, у нас есть процедура изменения системы (элементарные преобразования), которая меняет системы на заведомо эквивалентные. Сделаем следующие замечания:

- 1. Утверждается, что эта процедура эффективная в том смысле, что если уж какие-то системы были эквивалентны, то мы обязательно от одной к другой сможем перейти элементарными преобразованиями.
- 2. Все то же самое верно и для второй процедуры умножение на обратимую матрицу слева (потому что это по сути та же самая процедура).
- 3. Утверждается, что в каждом классе эквивалентных систем мы можем найти одну единственную матрицу улучшенного ступенчатого вида. То есть классов попарно неэквивалентных систем ровно столько же, сколько матриц улучшенного ступенчатого вида.
- 4. Последнее означает, что свойства системы с произвольной матрицей точно такие же, как у какой-то системы в улучшенном ступенчатом виде. Потому в абстрактных задачах про системы можно всегда предполагать, что система уже имеет улучшенный ступенчатый вид.

2.14 Полиномиальное исчисление от матриц

Обозначим множество всех многочленов с вещественными коэффициентами через $\mathbb{R}[x]$. Формально это значит: $\mathbb{R}[x] = \{a_0 + a_1x + \ldots + a_nx^n \mid n \in \mathbb{Z}_+, a_i \in \mathbb{R}\}$. Аналогично можно обозначать многочлены с рациональными, целыми, комплексными и т.д. коэффициентами.

Подстановка матриц в многочлены Пусть $p(x) = a_0 + a_1 x + \dots a_n x^n$ – многочлен с вещественными коэффициентами, а $A \in \mathrm{M}_n(\mathbb{R})$. Тогда можно определить $f(A) = a_0 E + a_1 A^1 + \dots + a_n A^n \in \mathrm{M}_n(\mathbb{R})$. Если определить $A^0 = E$, то формула становится более единообразной $f(A) = a_0 A^0 + a_1 A^1 + \dots + a_n A^n$. Однако, психологически проще думать так: вместо x подставляем A, а свободный член отождествляем со скалярными матрицами. Отметим, что если два многочлена равны, то и их значения на матрице A тоже равны.

Утверждение. Пусть $A \in M_n(\mathbb{R})$ и $f, g \in \mathbb{R}[x]$ – два произвольных многочлена, тогда:

- 1. (f+g)(A) = f(A) + g(A).
- 2. (fg)(A) = f(A)g(A).
- 3. $f(\lambda E) = f(\lambda)E$.
- 4. $f(C^{-1}AC) = C^{-1}f(A)C$ для любой обратимой $C \in \mathrm{M}_n(\mathbb{R})$
- 5. Матрицы f(A) и g(A) коммутируют между собой.

Доказательство. Все это делается прямой проверкой по определению. Давайте объясним свойства (2) и (4).

(2) Пусть

$$f = \sum_{k=0}^n a_k x^k$$
 и $g = \sum_{k=0}^m b_k x^k$

тогда

$$fg = \sum_{k=0}^{n+m} \left(\sum_{s+t=k} a_s b_t \right) x^k$$

Потому надо проверить равенство:

$$\left(\sum_{k=0}^{n} a_k A^k\right) \left(\sum_{k=0}^{m} b_k A^k\right) = \sum_{k=0}^{n+m} \left(\sum_{s+t=k} a_s b_t\right) A^k$$

которое следует из перестановочности A со своими степенями и коэффициентами.

(4) Заметим, что

$$(C^{-1}AC)^n = C^{-1}ACC^{-1}AC \dots C^{-1}AC = C^{-1}A^nC$$

Осталось воспользоваться дистрибутивностью умножения, т.е. $C^{-1}(A+B)C = C^{-1}AC + C^{-1}BC$.

Обнуляющий многочлен

Утверждение 8. Пусть $A \in M_n(\mathbb{R})$, тогда:

- 1. Существует многочлен $f \in \mathbb{R}[x]$ не равный тождественно нулю степени не больше n^2 такой, что f(A) = 0.
- 2. Если для какого-то многочлена $g \in \mathbb{R}[x]$ имеем g(A) = 0, а для $\lambda \in \mathbb{R}$ имеем $g(\lambda) \neq 0$, то $A \lambda E$ является обратимой матрицей.

Доказательство. (1) Давайте искать многочлен f с неопределенными коэффициентами в виде $f = a_0 + a_1 x + \ldots + a_{n^2} x^{n^2}$. Надо чтобы было выполнено равенство $a_0 E + a_1 A + \ldots + a_{n^2} A^{n^2} = 0$. Последнее равенство означает равенство матрицы слева нулевой матрице справа. Это условие задается равенством всех n^2 ячеек матриц: $(a_0 E + a_1 A + \ldots + a_{n^2} A^{n^2})_{ij} = 0$ для всех i,j. Каждое из этих условий является линейным уравнением вида $a_0(E)_{ij} + a_1(A)_{ij} + \ldots + a_{n^2} (A^{n^2})_{ij} = 0$. То есть у нас есть система с n^2 уравнениями и $n^2 + 1$ неизвестной. А значит при приведении этой системы к ступенчатому виду у нас обязательно будет свободная переменная, а значит мы сможем найти ненулевое решение.

(2) Разделим многочлен g на $x-\lambda$ с остатком, получим $g(x) = h(x)(x-\lambda) + g(\lambda)$. Теперь в левую и правую часть равенства подставим A. Получим

$$0 = g(A) = h(A)(A - \lambda E) + g(\lambda)E$$

Перенесем $g(\lambda)E$ в другую сторону и поделим на $-g(\lambda)$, получим

$$E = -\frac{1}{g(\lambda)}h(A)(A - \lambda E)$$

To есть $-\frac{1}{q(\lambda)}h(A)$ является обратным к $A - \lambda E$.

На самом деле можно показать, что найдется многочлен степени не больше n, зануляющий нашу матрицу. Однако, мы пока не в состоянии этого сделать.

Спектр Пусть $A \in \mathrm{M}_n(\mathbb{R})$ определим вещественный спектр матрицы A следующим образом:

$$\operatorname{spec}_{\mathbb{R}} A = \{ \lambda \in \mathbb{R} \mid A - \lambda E \text{ не обратима} \}$$

Аналогично определяются спектры в рациональном, комплексном и прочих случаях.

Утверждение 9. Пусть $A \in M_n(\mathbb{R})$ и пусть $f \in \mathbb{R}[x]$ такой, что f(A) = 0. Тогда $|\operatorname{spec}_{\mathbb{R}} A| \leqslant \deg f$. В частности спектр всегда конечен.

Доказательство. Покажем, что любой элемент спектра является корнем f. Для этого достаточно показать двойственное утверждение, если λ не корень, то λ не в спектре. Но это в точности Утверждение 8 пункт (2). \square

Так как у нас для любой матрицы найдется многочлен степени n^2 ее зануляющий, то спектр всегда конечен и его размер не превосходит n^2 . Как говорилось выше, на самом деле, можно найти многочлен степени n, потому спектр всегда не превосходит по мощности n.

Примеры

1. Пусть $A\in \mathrm{M}_n(\mathbb{R})$ – диагональная матрица с числами $\lambda_1,\dots,\lambda_n$ на диагонали, т.е.

$$A = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$

Так как диагональные матрицы складываются и умножаются поэлементно

$$\begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} + \begin{pmatrix} \mu_1 & & \\ & \ddots & \\ & & \mu_n \end{pmatrix} = \begin{pmatrix} \lambda_1 + \mu_1 & & \\ & & \ddots & \\ & & \lambda_n + \mu_n \end{pmatrix}$$
$$\begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \begin{pmatrix} \mu_1 & & \\ & \ddots & \\ & & \mu_n \end{pmatrix} = \begin{pmatrix} \lambda_1 \mu_1 & & \\ & \ddots & \\ & & \lambda_n \mu_n \end{pmatrix}$$

То для любого многочлена $f \in \mathbb{R}[x]$ верно

$$f\begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} = \begin{pmatrix} f(\lambda_1) & & \\ & & \ddots & \\ & & & f(\lambda_n) \end{pmatrix}$$

То есть многочлен f зануляет A тогда и только тогда, когда он зануляет все λ_i . Например, в качестве такого многочлена подойдет $f(x) = (x - \lambda_1) \dots (x - \lambda_n)$.

Давайте покажем, что $\operatorname{spec}_{\mathbb{R}} A = \{\lambda_1, \dots, \lambda_n\}$. Так как многочлен f зануляет A, утверждение 8 пункт (2) влечет, что спектр содержится среди его корней. Значит, надо показать, что $A - \lambda_i E$ необратим для любого i. Последнее легко видеть, так как $A - \lambda_i$ содержит 0 на i-ом месте на диагонали.

2. Пусть $A = \binom{0}{1} \binom{-1}{0} \in M_2(\mathbb{R})$. Прямое вычисление показывает, что $A^2 = -E$, то есть многочлен $f(x) = x^2 + 1$ зануляет A. Покажем, что $\operatorname{spec}_{\mathbb{R}} A = \varnothing$. Действительно, по утверждению 8 пункт (2) спектр должен содержаться среди корней многочлена $f(x) = x^2 + 1$. Однако, этот многочлен не имеет вещественных корней. Этот пример объясняет, почему вещественных чисел иногда не достаточно и мы хотим работать с комплексными числами. Например, в комплексном случае $\operatorname{spec}_{\mathbb{C}} A = \{i, -i\}$.

Минимальный многочлен Пусть $A \in \mathrm{M}_n(\mathbb{R})$ – некоторая матрица. Рассмотрим множество всех ненулевых многочленов зануляющих A. Формально мы смотрим на множество

$$M = \{ f \in \mathbb{R}[x] \mid f(A) = 0, f \neq 0 \}$$

Пусть $f_{min} \in M$ — многочлен самой маленькой степени со старшим коэффициентом 1. Тогда он называется минимальным многочленом матрицы A.

Утверждение 10. Пусть $A \in M_n(\mathbb{R})$, тогда верны следующие утверждения:

- 1. Минимальный многочлен f_{min} существует.
- 2. Минимальный многочлен делит любой другой многочлен зануляющий А.
- 3. Минимальный многочлен единственный.
- 4. $\lambda \in \operatorname{spec}_{\mathbb{R}} A$ тогда и только тогда, когда $f_{min}(\lambda) = 0$.

Доказательство. (1). По утверждению 8 пункт (1) у нас всегда найдется многочлен зануляющий A, а значит M не пусто. Так как степень не может убывать бесконечно, то мы обязательно найдем многочлен самой маленькой степени, который зануляет A. Осталось разделить его на старший коэффициент.

(2). Пусть $f \in M$ – произвольный многочлен, а f_{min} – какой-то минимальный. Тогда разделим f на f_{min} с остатком, получим

$$f(x) = h(x)f_{min}(x) + r(x)$$

где $\deg r < \deg f_{min}$. Подставим в это равенство матрицу A, получим

$$0 = f(A) = h(A)f_{min}(A) + r(A) = r(A)$$

Значит мы нашли многочлен r, который зануляет A и меньше f_{min} по степени. Такое может быть только если r(x) = 0.

- (3). Пусть f_{min} и f'_{min} два минимальных многочлена матрицы A. Тогда у них по определению одинаковая степень. Рассмотрим $r(x) = f_{min}(x) - f'_{min}(x)$. Многочлен r(x) степени строго меньше, так как оба минимальных имеют старший коэффициент 1. Кроме того, $r(A) = f_{min}(A) = f'_{min}(A) = 0$. А значит r(x) = 0.
- (4). Мы уже знаем, что $\operatorname{spec}_{\mathbb{R}} A$ лежит среди корней f_{min} (утверждение 8 пункт (2)). Осталось показать обратное включение. Предположим обратное, что есть $\lambda \in \mathbb{R}$ такое, что $f_{min}(\lambda) = 0$, но $\lambda \notin \operatorname{spec}_{\mathbb{R}} A$. Тогда $f_{min}(x) = (x \lambda)h(x)$. Подставим в это равенство матрицу A и получим

$$0 = f_{min}(A) = (A - \lambda E)h(A)$$

Так как $\lambda \notin \operatorname{spec}_{\mathbb{R}} A$, то матрица $A - \lambda E$ обратима, а значит на нее можно сократить, то есть h(A) = 0 и степень h строго меньше степени f_{min} , хотя сам h – ненулевой многочлен. Последнее противоречит с нашим предположением о том, что f_{min} минимальный.

Поиск минимального многочлена Пусть задана матрица $A \in M_n(\mathbb{R})$. То мы знаем, что найдется многочлен $f \in \mathbb{R}[x]$ такой, что f(A) = 0. Кроме того, я сообщил, что $\deg f \leqslant n$. Давайте обсудим, как найти подобный многочлен. Будем искать его с неопределенными коэффициентами $f(x) = a_0 + a_1x + \ldots + a_nx^n$. Подставим в многочлен матрицу A и приравняем результат к нулю.

$$f(A) = a_0 E + a_1 A + \dots + a_n A^n = 0$$

Тогда то, что написано, является системой из n^2 уравнений, а именно

$$\{_{1 \le i, j \le n} E_{ij} a_0 + A_{ij} a_1 + \ldots + (A^n)_{ij} a_n = 0$$

Здесь через B_{ij} обозначены коэффициенты матрицы B, например, E_{ij} – это ij-ый коэффициент единичной матрицы, а $(A^n)_{ij}$ – ij-ый коэффициент матрицы A^n .

Теперь нас интересует ненулевое решение этой системы, у которого как можно больше нулей справа. Давайте поясню. Такое решение отвечает зануляющему многочлену. Мы хотим выбрать такой многочлен как можно меньшей степени. То есть мы хотим по возможности занулить a_n , потом a_{n-1} , потом a_{n-2} и так далее, пока находится ненулевое решение. Предположим, что мы привели систему к ступенчатому виду и a_k — самая левая свободная переменная. Я утверждаю, что k и будет степенью минимального многочлена, а чтобы его найти надо положить $a_k = 1$, и все остальные свободные переменные равными нулю.

Действительно, если мы сделали, как описано, то все главные переменные правее a_k тоже равны нулю, ибо они зависят от свободных переменных, стоящих правее, а они в нашем случае нулевые. То есть a_k будет старший ненулевой коэффициент в искомом многочлене, а значит k будет его степенью. Почему нельзя найти меньше. Чтобы найти меньше надо занулить еще и a_k . То есть все свободные переменные в этом случае будут нулевыми, а тогда и все главные будут нулевыми, а это даст нулевое решение, что противоречит нашим намерениям найти ненулевой многочлен.

Вычленение из какого-то зануляющего Предположим, что вы угадали какой-нибудь зануляющий многочлен для вашей матрицы $A \in \mathrm{M}_n(\mathbb{R})$, а именно, нашли какой-то $f \in \mathbb{R}[x]$ такой, что f(A) = 0. Тогда можно попытаться найти минимальный многочлен среди делителей многочлена f. Эта процедура требует уметь искать эти самые делители. Но в некоторых ситуациях эта процедура тоже бывает полезна. Например, в случае большой блочной матрицы A бывает проще найти зануляющий многочлен.

Замечание о спектре Можно показать, что любой вещественный многочлен $f \in \mathbb{R}[x]$ единственным образом разваливается в произведение

$$f(x) = (x - \lambda_1) \dots (x - \lambda_k) q_1(x) \dots q_r(x)$$

где числа $\lambda_i \in \mathbb{R}$ могут повторяться, а $q_i(x)$ – многочлены второй степени с отрицательным дискриминантом (то есть без вещественных корней).

Пусть теперь f_{min} — минимальный многочлен некоторой матрицы A. Разложим его подобным образом. Тогда мы видим из предыдущего утверждения, что $\operatorname{spec}_{\mathbb{R}} A$ помнит информацию только о первой половине сомножителей и теряет информацию о квадратичных многочленах. Однако, если бы мы рассмотрели f_{min} как многочлен с комплексными коэффициентами, то мы бы могли доразложить $\operatorname{Bec}_{\mathbb{C}} A$ помнит информацию о $\operatorname{Bec}_{\mathbb{C}} A$ помнит информацию о $\operatorname{Bec}_{\mathbb{C}} A$ помнит информацию о $\operatorname{Bec}_{\mathbb{C}} A$ может несколько раз участвовать в разложении f_{min} , но спектр не помнит это количество, он лишь знает был ли там данный $x-\lambda$ или нет.

Замечание об арифметических свойствах матриц Если вы работаете с матрицами, то готовьтесь к тому, чтобы думать про них как про более сложную версию чисел. А значит, вы будете писать с ними различного рода алгебраические выражения. Например, для какой-нибудь матрицы $A \in \mathrm{M}_n(\mathbb{R})$ можно написать $A^3 + 2A - 3E$. И предположим вы хотите упростить это выражение как-нибудь, не зная как именно выглядит ваша матрица A. Единственное, что вам поможет в этом случае – зануляющий многочлен. Пусть, например, $f(x) = x^2 - 3$ зануляет A. Это значит, что $A^2 = 3E$. Тогда выражение выше можно упростить так

$$A^{3} + 2A - 3E = 3A + 2A - 3E = 5A - 3E$$

Роль минимального многочлена заключается в том, что это «самый лучший» многочлен, который помнит как можно больше соотношений на матрицу A, чтобы можно было упрощать выражения. Более того, минимальный многочлен автоматически говорит, когда можно делить на выражение от матрицы, а когда нет. Например, на A-E поделить можно, так как 1 не является корнем f, с другой стороны на матрицы $A\pm\sqrt{3}E$ делить нельзя.

Обратимость и минимальный многочлен Обратимость матрицы по определению равносильна тому, что в ее спектре нет нуля, а это то же самое, что у минимального многочлена свободный член отличен от нуля. В этом случае мы можем явно выразить обратную матрицу через исходную. Действительно, пусть $f_{min} = a_0 + a_1 x + \ldots + a_m x^m$ для некоторой матрицы $A \in \mathcal{M}_n(\mathbb{R})$. Тогда

$$a_0E + a_1A + \dots + a_mA^m = 0 \implies A(a_1E + \dots + a_mA^{m-1}) = -a_0E \implies A\left(-\frac{a_1}{a_0}E - \dots - \frac{a_m}{a_0}A^{m-1}\right) = E$$

То есть по определению

$$A^{-1} = -\frac{a_1}{a_0}E - \dots - \frac{a_m}{a_0}A^{m-1}$$

Обратите внимание, что данная формула работает при условии, что $a_0 \neq 0$. Эта процедура похожа на процедуру избавления от иррациональности в знаменателе дробей или избавления от мнимой части в знаменателе в комплексных дробях. Это не спроста, это в точности тот же самый метод.

2.15 Матричные нормы

Здесь нас ждет пример первого абстрактного определения. Любое такое определение устроено одинаково, оно состоит из двух частей: первая часть содержит данные, а вторая аксиомы на них.

Нормы Будем через \mathbb{R}_+ обозначать множество неотрицательных вещественных чисел, т.е. $\mathbb{R}_+ = \{r \in \mathbb{R} \mid r \geqslant 0\}$.

Пусть задано отображение

$$M_{m,n}(\mathbb{R}) \to \mathbb{R}_+$$

т.е. это правило, которое по матрице A выдает некоторое неотрицательное вещественное число, которое будет обозначаться $|A| \in \mathbb{R}_+$. Такое отображение называется нормой, если выполнены следующие аксиомы

- 1. Для любой матрицы $A \in M_{mn}(\mathbb{R}), |A| = 0$ тогда и только тогда, когда A = 0.
- 2. Для любой матрицы $A \in \mathcal{M}_{mn}(\mathbb{R})$ и любого числа $\lambda \in \mathbb{R}$ выполнено $|\lambda A| = |\lambda| \cdot |A|.$
- 3. Для любых двух матриц $A, B \in \mathrm{M}_{m\,n}(\mathbb{R})$ выполнено $|A+B| \leqslant |A|+|B|$.

Стоит отметить, что \mathbb{R}^n можно отождествить с матрицами $M_{n\,1}(\mathbb{R})$. Потому определение выше дает понятие нормы на векторах из \mathbb{R}^n .

Субмультипликативность Пусть на квадратных матрицах $M_n(\mathbb{R})$ задана некоторая норма. Тогда она называется субмультипликативной, если выполнено следующее свойство: для любых матриц $A, B \in M_n(\mathbb{R})$ выполнено $|AB| \leq |A| \cdot |B|$.

Простые примеры

1. 1-норма на $M_n(\mathbb{R})$:

$$|A|_1 = \sum_{ij} |a_{ij}|, \quad A \in \mathcal{M}_n(\mathbb{R})$$

2. ∞-норма на $M_n(\mathbb{R})$:

$$|A|_{\infty} = \max_{ij} |a_{ij}|, \quad A \in \mathcal{M}_n(\mathbb{R})$$

3. Норма Фробениуса или 2-норма на $M_n(\mathbb{R})$:

$$|A|_F = |A|_2 = \sqrt{\sum_{ij} |a_{ij}|^2}, \quad A \in M_n(\mathbb{R})$$

4. p-норма на $M_n(\mathbb{R})$:

$$|A|_p = \sqrt[p]{\sum_{ij} |a_{ij}|^p}$$

Выясните в качестве упражнения, какие из этих норм являются субмультипликативными.

 $^{^{16}}$ Здесь $|\lambda|$ означает модуль числа, а |A| – норма от матрицы.

Индуцированная (согласованная) норма Пусть $|-|: \mathbb{R}^n \to \mathbb{R}_+$ – некоторая фиксированная норма. Определим индуцированную ей норму ||-|| на $M_n(\mathbb{R})$ следующим образом:¹⁷

$$||A|| = \sup_{\substack{x \in \mathbb{R}^n \\ x \neq 0}} \frac{|Ax|}{|x|}, \quad A \in \mathcal{M}_n(\mathbb{R})$$

Методом пристального взгляда мы замечаем, что отображение $\|-\|$: $M_n(\mathbb{R}) \to \mathbb{R}_+$ удовлетворяет первым трем аксиомам нормы, а значит действительно является матричной нормой. Более того, верно следующее.

Утверждение. Для любой нормы $|-|: \mathbb{R}^n \to \mathbb{R}_+$ индуцированная ей норма $||-|: \mathrm{M}_n(\mathbb{R}) \to \mathbb{R}_+$ является субмультипликативной.

Доказательство. Из определения индуцированной нормы следует, что $|Ax|/|x| \leq ||A||$ для любого ненулевого $x \in \mathbb{R}^n$. Ясно, что тогда для любого $x \in \mathbb{R}^n$, верно $|Ax| \leq ||A|| \cdot |x|$.

Пусть теперь $A, B \in \mathcal{M}_n(\mathbb{R})$ и нам надо показать, что $||AB|| \leq ||A|| \cdot ||B||$. Рассмотрим произвольный $x \in \mathbb{R}^n$, тогда

$$|ABx| = |A(Bx)| \le ||A|| \cdot ||Bx|| \le ||A|| \cdot ||B|| \cdot |x|$$

Значит

$$\frac{|ABx|}{|x|} \leqslant ||A|| \cdot ||B||$$

для любого ненулевого $x \in \mathbb{R}^n$. А значит, можно перейти к супремуму по таким x, и следовательно

$$||AB|| = \sup_{\substack{x \in \mathbb{R}^n \\ x \neq 0}} \frac{|ABx|}{|x|} \le ||A|| \cdot ||B||$$

Примеры индуцированных норм Индуцированные нормы хороши тем, что они субмультипликативны. Однако, обычно для них не существует явных формул для вычисления. Ниже мы приведем несколько случаев, когда такие формулы все же возможны. Все примеры будут даны без доказательств.

1. Пусть на \mathbb{R}^n дана 1-норма $|x| = \sum_i |x_i|$. Тогда индуцированная норма $\|-\|_1$ на матрицах $\mathrm{M}_n(\mathbb{R})$ будет задаваться по формуле

$$||A||_1 = \max_j \sum_i |a_{ij}|$$

2. Пусть теперь на \mathbb{R}^n дана ∞ -норма $|x| = \max_i |x_i|$. Тогда индуцированная норма $\|-\|_{\infty}$ на матрицах $\mathrm{M}_n(\mathbb{R})$ будет задаваться по формуле

$$||A||_{\infty} = \max_{i} \sum_{j} |a_{ij}|$$

3. И наконец, пусть на \mathbb{R}^n дана 2-норма $|x| = \sqrt{\sum_i |x_i|^2}$. Тогда индуцированная норма $\|-\|_2$ на матрицах $\mathrm{M}_n(\mathbb{R})$ уже считается более хитрым способом. Пусть $A \in \mathrm{M}_n(\mathbb{R})$. Если взять матрицу A^tA , то окажется, что ее спектр состоит целиком из неотрицательных вещественных чисел. Пусть σ_1 – максимальное такое число, тогда $\|A\|_2 = \sqrt{\sigma_1}$. ¹⁸

2.16 Обзор применения матричных норм

Для простоты изложения, я буду рассматривать лишь квадратные матрицы ниже. Хотя какие-то вопросы и можно формулировать и для прямоугольных матриц, это не сделает материал более интересным.

 $^{^{17}}$ Можно определить норму на прямоугольных матрицах, но тогда на до иметь две нормы одну на \mathbb{R}^n , а другую на \mathbb{R}^m . В этом случае индуцированная норма зависит от двух норм, одна фигурирует в знаменателе, другая в числителе.

¹⁸К этому явлению надо относиться так: есть спектр – объект из мира алгебры и есть норма – объект из мира анализа. Оказывается, что между анализом и алгеброй есть мостик через спектр и индуцированную 2-норму. Это позволяет задачи про спектр изучать аналитическими методами и наоборот задачи про сходимости изучать алгебраическими.

Сходимость Основная задача нормы – дать понятие о близости матриц друг к другу. А именно, если есть норма |-|: $M_n(\mathbb{R}) \to \mathbb{R}_+$, то можно определить расстояние между матрицами $A, B \in M_n(\mathbb{R})$ следующим образом $\rho(A, B) = |A - B|$. А как только у нас есть понятие расстояния между объектами, мы можем ввести понятие предела и сходимости, а именно: пусть задана последовательность матриц $A_n \in M_n(\mathbb{R})$, тогда скажем, что она сходится к матрице $A \in M_n(\mathbb{R})$ и будем писать $A_n \to A, n \to \infty$ (или $\lim_n A_n = A$), если $\rho(A_n, A) \to 0$ как последовательность чисел при условии $n \to \infty$.

Эквивалентность норм Тут встает законный вопрос: у нас есть много различных норм на матрицах, а потому много расстояний, а значит получается огромное количество разных сходимостей (по одной на каждый вид нормы). Оказывается, что все возможные нормы на матрицах дают расстояния приводящие к одинаковому определению предела. Ключом к пониманию этого явления является определение эквивалентности норм. Пусть |-| и |-|' – две разные нормы на $M_n(\mathbb{R})$. Вудем говорить, что они эквивалентны, если существуют две положительные константы $c_1, c_2 \in \mathbb{R}$ такие, что $c_1|A| \leq |A|' \leq c_2|A|$ для всех матриц $A \in M_n(\mathbb{R})$. Если две нормы эквивалентны, то несложно углядеть, что расстояние $\rho(A_n, A)$ в смысле нормы |-| стремится к нулю. А значит эквивалентные нормы дают одну и ту же сходимость. Второй ключевой факт – все матричные нормы между собой эквивалентны. Это не очень сложный результат и по сути связан с тем, что единичный куб в \mathbb{R}^n является компактным множеством.

Анализ для матриц Как только у нас есть понятие предела для матриц, мы можем с помощью него развивать анализ аналогичный анализу для обычных чисел. Например, можно определить хорошо известные гладкие функции от матриц. Скажем, пусть $A \in \mathrm{M}_n(\mathbb{R})$, тогда можно сказать, что значит e^A , $\ln A$, $\sin A$ или $\cos A$. Конечно, $\ln A$ будет существовать не для всех матриц A, так же как и обычный логарифм существует только для положительных чисел. Знакомые тождества вроде $e^{\ln A} = A$ и $\ln e^A = A$ будут оставаться справедливыми. Свойства $e^{A+B} = e^A e^B$ будет верным, в случае если A и B коммутируют.

Одним из простейших подходов к определению таких функций – использование степенных рядов. Например, $e^x = \sum_{k\geqslant 0} x^k/k!$. Тогда можно определить $e^A = \sum_{k\geqslant 0} A^k/k!$. Доказательство свойств экспоненты тогда сводится к игре в раскрытие скобок со степенными рядами. И в этой игре нам важно, чтобы символы были перестановочны между собой, потому какие-то свойства могут нарушиться, если исходные матрицы не коммутируют.

Еще стоит отметить такой момент. Так как для любой матрицы A существует минимальный многочлен ее зануляющий f_{min} , то, оказывается, что любую гладкую функцию от A можно приблизить многочленом. А именно, если φ – некоторая гладкая функция, то для любой матрицы A найдется такой многочлен f (зависящий от A) степени меньше, чем $\deg f_{min}$, что $\varphi(A) = f(A)$. Более того, существует общая алгоритмическая процедура по нахождению такого многочлена f. Эта процедура является эффективным способом вычисления гладких функций от матриц.

3 Перестановки

3.1 Отображения множеств

Пусть X,Y – некоторые множества, а $\varphi\colon X\to Y$ – отображение. Тогда φ называется *инъективным*, если оно «не склеивает точки», т.е. для любых $x,y\in X$ из условия $x\neq y$ следует $\varphi(x)\neq \varphi(y)$. Отображение φ называется *сюръективным*, если в любой элемент что-то переходит, т.е. для любого $y\in Y$ существует $x\in X$ такой, что $\varphi(x)=y$. Отображение φ называется *биективным*, если оно одновременно инъективно и сюръективно. 19

Свойства отображения можно подчеркивать видом стрелки. Например, инъективное отображение обычно обозначается $\varphi \colon X \hookrightarrow Y$, сюръективное $-\varphi \colon X \twoheadrightarrow Y$, а биективное $-\varphi \colon X \xrightarrow{\sim} Y$.

Для любого множества X отображение $\mathrm{Id}\colon X\to X$ заданное по правилу $\mathrm{Id}(x)=x$ называется тожедественным. Пусть $\varphi\colon X\to Y$ – некоторое отображение. Тогда $\psi\colon Y\to X$ называется левым обратным (соответственно правым обратным) к φ , если $\psi\varphi=\mathrm{Id}\ (\varphi\psi=\mathrm{Id}).^{20}$ Левых и правых обратных для φ может быть много. Однако, если есть оба обратных и ψ_1 – левый обратный, а ψ_2 – правый обратный, то они совпадают, так как $\psi_1=\psi_1(\varphi\psi_2)=(\psi_1\varphi)\psi_2=\psi_2.$ А следовательно совпадают все левые обратные со всеми правыми и такой единственный элемент называют обратным и обозначают φ^{-1} , а φ называют обратимым. Легко проверить следующее.

Утверждение. Пусть $\varphi \colon X \to Y$ – некоторое отображение. Тогда

- $1. \ \, \varphi \,$ инъективно тогда и только тогда, когда $\, \varphi \, \,$ обладает левым обратным.
- $2. \ \varphi$ сюр ϵ ективно тогда и только тогда, когда φ обладает правым обратным.
- 3. φ биективно тогда и только тогда, когда φ обратимо.

3.2 Перестановки

Пусть $X_n = \{1, ..., n\}$ – конечное множество из n занумерованных элементов. ²¹ Перестановкой называется биективное отображение $\sigma: X_n \to X_n$. Множество всех перестановок на n элементном множестве будем обозначать через S_n .

Как задавать перестановки Как только вам встречается новый объект, первый важный вопрос – а как подобные объекты вообще задавать? Для перестановок есть три способа:

1. Задать стрелками соответствие на элементах

2. С помощью таблицы значений (графика). Здесь под каждым элементом пишется его образ:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 2 & 5 \end{pmatrix}$$

3. Графически в виде действия на элементах

 $^{^{19}}$ В теории множеств, множества – это мешки с элементами, а отображения «сравнивают» эти мешки между собой. Биекция, между множествами говорит, что это по сути одно и то же множество, но по-разному заданное. Потому на биекцию между X и Y можно смотреть не как на отображение между разными множествами, а как на правило «переименовывающее» элементы на одном и том же множестве.

²⁰Легко проверить, что существование левого обратного никак не связано с существованием правого обратного и наоборот.

 $^{^{21}\}Phi$ ормально говоря, это множество из n элементов и фиксированный линейный порядок на нем.

Все эти виды записи однозначно задают перестановку. Самым популярным методом в литературе является второй способ. В общем виде для перестановки $\sigma \in S_n$ табличная запись выглядит следующим образом:

$$\begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

Заметим, что, если записать элементы $1, \ldots, n$ в другом порядке, скажем, i_1, \ldots, i_n , то перестановка σ запишется в виде²²

$$\begin{pmatrix} i_1 & i_2 & \dots & i_n \\ \sigma(i_1) & \sigma(i_2) & \dots & \sigma(i_n) \end{pmatrix}$$

Из однозначности табличной записи получаем следующее.

Утверждение. Количество перестановок на n элементах есть n!, т.е. $|S_n| = n!$.

3.3 Операция на перестановках

Так как перестановки являются отображениями, а на отображениях есть операция композиции, то и на перестановках появляется операция. Пусть $\sigma, \tau \in S_n$ – две произвольные перестановки, определим $\sigma\tau$ как композицию, т.е. $\sigma\tau(k) = \sigma(\tau(k))$. На языке диаграмм

$$X_n \xrightarrow{\tau} X_n \xrightarrow{\sigma} X_n$$

Важно Обратите внимание, что перестановки применяются к элементам справа налево. Это связано с тем, что они являются отображениями, а когда вы считаете композицию отображений, то вы сначала применяете к аргументу самое правое, потом следующее за ним и так далее.

Давайте посмотрим как выглядит произведение двух перестановок в табличной записи. Пусть даны перестановки

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} \text{ M } \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

То перестановки $\sigma \tau$ и $\tau \sigma$ имеют вид

$$\sigma\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} \text{ if } \tau\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

Свойства умножения

- Если $\sigma, \tau, \rho \in S_n$ произвольные перестановки, то как легко видеть по определению $(\sigma \tau)\rho = \sigma(\tau \rho)$. То есть в выражениях составленных из перестановок и произведений не важно в каком порядке расставлять скобки. Потому скобки обычно опускаются.
- Умножение перестановок не коммутативно, то есть вообще говоря $\sigma \tau \neq \tau \sigma$. ²³
- Тождественное отображение Id является нейтральным элементом для умножения перестановок в том смысле, что верно Id $\sigma = \sigma$ Id $= \sigma$ для любой перестановки σ . В табличной записи Id имеет вид

$$\begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}$$

• Обратное отображение к σ будем обозначать через σ^{-1} . Оно будет обратным элементом относительно операции в том смысле, что $\sigma\sigma^{-1}=\sigma^{-1}\sigma=\mathrm{Id}$. В табличной записи обратное отображение можно записать так

$$\begin{pmatrix} \sigma(1) & \sigma(2) & \dots & \sigma(n) \\ 1 & 2 & \dots & n \end{pmatrix}$$

²²Заметим, что в этой записи можно произвольным образом перемешивать столбцы, это никак не изменит задаваемую перестановку.

²³Один пример мы уже видели, еще один будет в разделе «Циклические перестановки».

3.4 Переименование элементов

В нашем определении перестановка – это биекция на множестве X_n . Однако, элементы X_n имеют конкретные имена – это числа от 1 до n. А что произойдет, если мы сменим имена элементов? Как изменится табличная запись перестановки?

В начале надо понять, что значит переименование элементов. Во-первых, у нас есть запас старых имен $\{1,\ldots,n\}$, во-вторых, у нас должен быть список новых имен, скажем, $\{"1",\ldots,"n"\}$ и, в-третьих, у нас должно быть соответствие, которое по старым именам строит новые, т.е. $\tau\colon\{1,\ldots,n\}\to\{"1",\ldots,"n"\}$. Потому, если мысленно убрать кавычки, то на переименование можно смотреть как на перестановку $\tau\colon X_n\to X_n$.

Пусть теперь у нас есть перестановка $\sigma: X_n \to X_n$. Ее можно записать в табличном виде в старых и новых именах. Чтобы различать эти таблицы мы будем использовать обозначения $\sigma_{\text{стар}}$ и $\sigma_{\text{нов}}$ для них соответственно. Тогда мы можем записать связь между ними с помощью следующей диаграммы:

$$\begin{cases} \{1, \dots, n\} & \xrightarrow{\tau} \{"1", \dots, "n"\} \\ \sigma_{\text{стар}} & & \int_{\sigma_{\text{HOB}}} \sigma_{\text{HOB}} \\ \{1, \dots, n\} & \xrightarrow{\tau} \{"1", \dots, "n"\} \end{cases}$$

Если вспомнить, что $\{"1", \dots, "n"\} = \{\tau(1), \dots, \tau(n)\}$, то действие $\sigma_{\text{нов}}$ в новых именах устроено так: мы берем произвольный элемент с новым именем $\tau(k)$, находим его старое имя -k, на старом имени можем подействовать $\sigma_{\text{стар}}$, которое есть $\sigma(k)$, а теперь надо найти новое имя для образа, что есть $\tau(\sigma(k))$.

Подытожим, что $\sigma_{\text{нов}} = \tau \sigma_{\text{стар}} \tau^{-1}$. В табличной записи перестановки выглядят так

$$\sigma_{\text{crap}} = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix} \quad \sigma_{\text{hob}} = \begin{pmatrix} \tau(1) & \tau(2) & \dots & \tau(n) \\ \tau(\sigma(1)) & \tau(\sigma(2)) & \dots & \tau(\sigma(n)) \end{pmatrix}$$

Хорошо еще иметь перед глазами следующую картинку:

Здесь в вершинах подписаны и старые и новые имена, а перестановка одна и та же.

3.5 Циклы

Пусть $\sigma \in S_n$ действует следующим образом: для некоторого множества $i_1, \ldots, i_k \ (k \geqslant 2)$ выполнено

$$\sigma(i_1) = i_2, \ldots, \sigma(i_{k-1}) = i_k, \sigma(i_k) = i_1,$$

а все остальные элементы остаются на месте под действием σ . Тогда σ называется $uu\kappa$ лом длины k. Такая перестановка для краткости обозначается (i_1,\ldots,i_k) . Заметим, что такая запись не единственная: например, можно сказать $\sigma=(i_2,\ldots,i_k,i_1).^{24}$ Стоит отметить, что если в определении выше выбрать k=1, то перестановка обозначаемая (i_1) совпадает с тождественной перестановкой. Потому циклов длины 1 просто не существует. Однако, в некоторых случаях сама запись (i_1) является удобным обозначением для единообразия в формулах. Потому такие «циклы» принято называть тривиальными (подразумевая не цикл, а обозначение), а настоящие циклы – нетривиальными.

Таблицей цикл задается следующим образом

$$\begin{pmatrix} i_1 & \dots & i_{k-1} & i_k & j_1 & \dots & j_{n-k} \\ i_2 & \dots & i_k & i_1 & j_1 & \dots & j_{n-k} \end{pmatrix}$$

 $^{^{24}{}m K}$ ак легко видеть, другой неоднозначности в записи цикла нет

где $\{1,\ldots,n\}=\{i_1,\ldots,i_k\}\sqcup\{j_1,\ldots,j_{n-k}\}$. Графически этот цикл выглядит так

Цикл длины 2 называется *транспозицией*, т.е. транспозиция (i,j) – это перестановка двух элементов i и j. Два цикла (i_1,\ldots,i_k) и (j_1,\ldots,j_m) называются *независимыми*, если множества $\{i_1,\ldots,i_k\}$ и $\{j_1,\ldots,j_m\}$ не пересекаются, т.е. множества действительно перемещаемых элементов не пересекаются. Заметим, что независимые циклы коммутируют друг с другом, а зависимые вообще говоря нет, как показывает следующий пример: (1,2)(2,3)=(1,2,3), а (2,3)(1,2)=(3,2,1). (2,3)(2,3)=(3,2,3)(3,2)=(3,2,3).

Утверждение 11. Пусть $\rho = (i_1, \dots, i_k) \in S_n$ – некоторый цикл длины k и $\tau \in S_n$ – произвольная перестановка, тогда

$$\tau(i_1, \dots, i_k)\tau^{-1} = (\tau(i_1), \dots, \tau(i_k))$$

Доказательство. Есть два способа понять это равенство. Первый – посмотреть на τ как на переименование элементов. Тогда справа написан цикл по элементам с новыми именами, а слева – правило переименования.

Второй способ – проверка в лоб. Надо проверить, что и левая и правая часть одинаково действуют на всех элементах вида $\tau(i)$. Возьмем элемент $\tau(i_1)$, тогда правая часть его переводит в $\tau(i_2)$. Посмотрим, что с ним делает левая часть. Вначале, мы переходим в i_1 , потом в i_2 , а потом в $\tau(i_2)$. Получили то же самое. Аналогично проверяется, что $\tau(i)$ остается на месте, если i не совпадает ни с одним из i_s .

Теперь мы готовы доказать структурный результат о перестановках.

Утверждение 12. Пусть $\sigma \in S_n$ – произвольная перестановка. Тогда

- 1. Перестановку σ можно представить в виде $\sigma = \rho_1 \dots \rho_k$, где ρ_i независимые циклы. Причем это представление единственное с точностью до перестановки сомножителей.
- 2. Пусть $\rho \in S_n$ произвольный цикл длины k, тогда его можно представить в виде $\rho = \tau_1 \dots \tau_{k-1}$, где τ_i транспозиции. 27

Доказательство. (1) Пусть $i_1 \in X_n$ – произвольный элемент. Подействуем на него σ , получим $i_2 = \sigma(i_1)$ и т.д. Так как X_n конечно, то мы в какой-то момент повторимся, например $i_5 = i_2$, как на рисунке ниже

На этой картинке видно, что $\sigma(i_1) = \sigma(i_4)$, но σ инъективно, потому $i_1 = i_4$. То есть правильная картинка следующая

Далее возьмем элемент, который не попал на этот цикл и повторим рассуждение для него. Так найдем другой цикл и т.д. В итоге картинка будет приблизительно такая

 $^{^{25}\}Pi$ роверьте это.

 $^{^{26}}$ Зависимые циклы могут коммутировать, например (1,2) коммутирует с (1,2).

 $^{^{27}}$ Это представление уже не единственное.

Значит перестановка выше раскладывается в циклы $\sigma = (i_1, i_2, i_3)(i_4, i_5, i_6)(i_7, i_8)$. 28

Единственность такого разложения следует из метода пристального взгляда на картинку и наше рассуждение. Если нужно формальное объяснение, то нужно делать так. Пусть $\sigma = \rho_1 \dots \rho_k$ и пусть $\rho_1 = (i_1, \dots, i_s)$. Подействуем σ на элемент i_1 . Так как циклы справа независимы, то только ρ_1 действует на i_1 и значит $\sigma(i_1) = \rho_1 \dots \rho_k(i_1) = i_2$. То есть i_2 однозначно определено. Продолжая в том же духе, мы видим, что все циклы однозначно определяются через σ .

(2) Пусть цикл σ действует по правилу как на картинке ниже

Чтобы получить цикл длины k нам необходимо применить k-1 транспозицию. То есть в нашем примере надо применить 4. Сделаем это следующим образом

То есть в общем случае $(1, 2, \dots, k) = (1, 2)(2, 3) \dots (k-2, k-1)(k-1, k)$.

Давайте поймем, почему представление во втором случае не единственное. Рассмотрим перестановку (1,2)(2,3). Тогда

$$(1,2)(2,3) = (1,2)(2,3)(1,2)^{-1}(1,2) = (1,3)(1,2)$$

здесь в первом равенстве мы поделили и домножили на (1,2), а во втором воспользовались утверждением 11.

3.6 Знак перестановки

Рассмотрим произвольное отображение

$$\phi \colon S_n \to \{\pm 1\}$$

удовлетворяющее следующим двум свойствам:

- 1. $\phi(\sigma\tau) = \phi(\sigma)\phi(\tau)$ для любых $\sigma, \tau \in S_n$.
- 2. $\phi \not\equiv 1$, т.е. ϕ не равно тождественно 1.

Заметим, что несложно найти отображение удовлетворяющее только первому свойству, например, $\phi(\sigma)=1$ для любого σ , что не интересно. Наша основная задача доказать следующее.

Утверждение 13. Существует единственное отображение $\phi \colon S_n \to \{\pm 1\}$ обладающее свойствами (1) u (2).

В этом случае такое отображение обозначается $\operatorname{sgn}: S_n \to \{\pm 1\}$ и называется знаком. Значение $\operatorname{sgn}(\sigma)$ называется знаком перестановки $\sigma \in S_n$. Перестановка называется четной, если знак 1 и нечетной, если -1.

 $^{^{28}}$ Цикл (i_9) здесь не используется, так как он совпадает с тождественной перестановкой Id, как и любой другой цикл длины 1.

 $^{^{29}}$ Здесь справа стоит произведение чисел вида 1 или -1.

Существование Обычно знак перестановки σ определяют в виде $(-1)^{d(\sigma)}$, где $d(\sigma)$ – некоторая целочисленная характеристика перестановки σ . Классическим определением является *число беспорядков*. ³⁰

Пусть $\sigma \in S_n$ – некоторая перестановка и $i, j \in X_n$ – пара различных элементов. Тогда эта пара называется инверсией, если « σ меняет характер монотонности», т.е. i < j влечет $\sigma(i) > \sigma(j)$, а i > j влечет $\sigma(i) < \sigma(j)$. Если использовать запись перестановки в виде

то инверсия соответствует пересечению стрелок. Определим число $d_{ij}(\sigma)=1$, если пара i,j образует инверсию и 0, если не образуют. Тогда число всех инверсия для всевозможных пар это $d(\sigma)=\sum_{i< j}d_{ij}(\sigma)$. Определим отображение sgn: $S_n \to \{\pm 1\}$ по правилу $\mathrm{sgn}(\sigma)=(-1)^{d(\sigma)}$. Для доказательства существования надо проверить, что sgn обладает указанными свойствами (1) и (2), то есть надо доказать следующее.

Утверждение. Пусть $\sigma, \tau \in S_n$ – произвольные перестановки, тогда

$$\operatorname{sgn}(\sigma\tau) = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau) \quad u \quad \operatorname{sgn}(1,2) = -1$$

Доказательство. Второе утверждение очевидно, в перестановке (1,2) всего одна инверсия, а значит sgn(1,2) = -1.

Для доказательства первого надо показать, что

$$d(\sigma) + d(\tau) = d(\sigma\tau) \pmod{2}$$

Давайте фиксируем пару i, j и докажем следующее равенство

$$d_{ij}(\tau) + d_{\tau(i)\tau(j)}(\sigma) = d_{ij}(\sigma\tau) \pmod{2}$$

Возможны следующие 4 случая:

Занесем результаты в таблицу

$d_{ij}(au)$	0	1	0	1
$d_{\tau(i)\tau(j)}(\sigma)$	0	0	1	1
$d_{ij} + d_{\tau(i)\tau(j)}(\sigma)$	0	1	1	2
$d_{ij}(\sigma\tau)$	0	1	1	0

Что доказывает равенство

$$d_{ij}(\tau) + d_{\tau(i)\tau(j)}(\sigma) = d_{ij}(\sigma\tau) \pmod{2}$$

Теперь сложим его для всех пар i < j. Получим

$$\sum_{i < j} d_{ij}(\tau) + \sum_{i < j} d_{\tau(i)\tau(j)}(\sigma) = \sum_{i < j} d_{ij}(\sigma\tau) \pmod{2}$$

Откуда

$$d(\tau) + \sum_{i < j} d_{\tau(i)\tau(j)}(\sigma) = d(\sigma\tau) \pmod{2}$$

Так как $\tau: X_n \to X_n$ – биекция, то если (i,j) пробегает все разные пары, то и $(\tau(i), \tau(j))$ пробегает все разные пары. Значит оставшаяся сумма равна $d(\sigma)$, что завершает доказательство.

³⁰Оно же *число инверсий*.

Единственность

Утверждение. Пусть $\phi \colon S_n \to \{\pm 1\}$ обладает свойством (1). Тогда

- 1. $\phi(\text{Id}) = 1$
- 2. $\phi(\sigma^{-1}) = \phi(\sigma)^{-1}$
- 3. Значение ϕ совпадает на всех транспозициях.

Доказательство. (1) Рассмотрим цепочку равенств

$$\phi(\mathrm{Id}) = \phi(\mathrm{Id}^2) = \phi(\mathrm{Id})\phi(\mathrm{Id})$$

Так как это числовое равенство (все числа ± 1), то можно сократить на $\phi(\mathrm{Id})$ и получим требуемое.

(2) Рассмотрим цепочку равенств

$$1 = \phi(\mathrm{Id}) = \phi(\sigma\sigma^{-1}) = \phi(\sigma)\phi(\sigma^{-1})$$

Значит число $\phi(\sigma^{-1})$ является обратным к $\phi(\sigma)$. ³¹

(3) Заметим, что для любых различных $i, j \in X_n$ у нас обязательно существует перестановка $\tau \in S_n$ такая, что $\tau(1) = i$ и $\tau(2) = j.$ ³² Тогда по утверждению 11 получаем $(i, j) = \tau(1, 2)\tau^{-1}$. А значит

$$\phi(i,j) = \phi(\tau(1,2)\tau^{-1}) = \phi(\tau)\phi(1,2)\phi(\tau^{-1}) = \phi(1,2)\phi(\tau)\phi(\tau^{-1}) = \phi(1,2)$$

В предпоследнем равенстве мы воспользовались тем, что числа можно переставлять. Следовательно, значение на любой транспозиции равно значению на фиксированной транспозиции (1,2). То есть значение на всех транспозициях одинаковое.

Теперь давайте докажем единственность. Пусть у нас существуют два таких отображения ϕ , ψ : $S_n \to \{\pm 1\}$ удовлетворяющие свойствам (1) и (2). Давайте покажем, что $\phi(\sigma) = \psi(\sigma)$ для любой $\sigma \in S_n$. Из утверждения 12 следует, что σ представляется в виде $\sigma = \tau_1 \dots \tau_r$, где τ_i – транспозиции.

Значение ϕ одно и то же на всех транспозициях: либо 1, либо -1. Предположим, что значение равно 1. Тогда $\phi(\sigma) = \phi(\tau_1 \dots \tau_r) = \phi(\tau_1) \dots \phi(\tau_r) = 1$ для всех $\sigma \in S_n$, что противоречит свойству (2). А значит $\phi(\tau) = -1$ для любой транспозиции τ . Аналогично, $\psi(\tau) = -1$ для любой транспозиции τ . А следовательно

$$\phi(\sigma) = \phi(\tau_1 \dots \tau_r) = \phi(\tau_1) \dots \phi(\tau_r) = (-1)^r = \psi(\tau_1) \dots \psi(\tau_r) = \psi(\tau_1 \dots \tau_r) = \psi(\sigma)$$

То есть, на самом деле, все определяется значением на транспозиции.

3.7 Подсчет знака

Декремент Декремент перестановки $\sigma \in S_n$ – это

 $dec(\sigma) = n$ – «количество нетривиальных циклов» – «количество неподвижных точек»

Если рассматривать все неподвижные точки как тривиальные «циклы», то формула превращается в

$$dec(\sigma) = n - «количество циклов»$$

Декремент можно описать еще так: каждая перестановка σ определяет граф на множестве вершин X_n , где (i,j) – ребро, если $\sigma(i)=j$. Тогда

 $\operatorname{dec}(\sigma)=$ «количество вершин» — «количество компонент графа»

Утверждение 14. Пусть $\sigma \in S_n$, тогда $sgn(\sigma) = (-1)^{dec(\sigma)}$.

 $^{^{31}}$ Так как все наши числа ± 1 , то можно было бы сказать $\phi(\sigma^{-1}) = \phi(\sigma)$. Но в указанной форме равенство лучше запоминается и встретится вам еще не раз.

³²Я оставляю это как упражнение.

Доказательство. Действительно, разложим перестановку σ в произведение независимых циклов $\sigma = \rho_1 \dots \rho_k$. Пусть длины циклов d_1, \dots, d_k , соответственно. Тогда

$$sgn(\sigma) = (-1)^{d_1 - 1} \dots (-1)^{d_k - 1} = (-1)^{\sum_i d_i - k}$$

Пусть s – количество неподвижных точек. Тогда

$$\operatorname{sgn}(\sigma) = (-1)^{(\sum_i d_i + s) - k - s} = (-1)^{n - k - s} = (-1)^{\operatorname{dec}(\sigma)}$$

При подсчете знака перестановки надо пользоваться декрементом. То есть надо разложить перестановку в произведение независимых циклов и сложить их длины без единицы. Например:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 8 & 2 & 3 & 7 & 1 & 5 & 9 & 6 \end{pmatrix}$$

Теперь видим, что

$$1 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 8 \rightarrow 9 \rightarrow 6 \rightarrow 1$$

$$5 \rightarrow 7 \rightarrow 5$$

Значит $\sigma = (1, 4, 3, 2, 8, 9, 6)(5, 7)$, а значит $\operatorname{dec}(\sigma) = 6 + 1 = 7$ и $\operatorname{sgn}(\sigma) = -1$.

3.8 Возведение в степень

Прежде всего сделаем два простых наблюдения:

- 1. Пусть $\sigma, \tau \in S_n$ две коммутирующие перестановки, тогда $(\sigma \tau)^m = \sigma^m \tau^m$.
- 2. Пусть $\rho \in S_n$ цикл длины d, тогда d совпадает с наименьшим натуральным числом k таким, что $\rho^k = \mathrm{Id}$.

Пусть теперь $\sigma \in S_n$ – произвольная перестановка. Мы можем разложить ее в произведение независимых циклов $\sigma = \rho_1 \dots \rho_k$ с длинами d_1, \dots, d_k , соответственно. Тогда

$$\sigma^m = \rho_1^m \dots \rho_k^m = \rho_1^m \pmod{d_1} \dots \rho_k^m \pmod{d_k}$$

Таким образом, расчет произвольной степени перестановки σ сводится к возведению циклов в степень не большую их длины.

Оставим еще одно замечание в качестве упражнения. Если $\sigma = \rho_1 \dots \rho_k$ – разложение в произведение независимых циклов длин d_1, \dots, d_k , соответственно, то наименьшее натуральное r такое, что $\sigma^r = \operatorname{Id}$, равно наименьшему общему кратному чисел d_1, \dots, d_k .

3.9 Произведение циклов

В этом разделе я приведу несколько примеров того, как перемножаются между собой зависимые циклы.

Два цикла Пусть циклы $\sigma, \tau \in S_n$ пересекаются по одному элементу как на рисунке ниже

Надо найти произведение $\sigma \tau$. Нетрудно видеть, что результат имеет следующий вид:

Таким образом мы получили формулу $(i_1, \ldots, i_k)(i_k, \ldots, i_n) = (i_1, \ldots, i_n)$.

Цикл и транспозиция Пусть $\sigma, \tau \in S_n$, где σ – цикл, а τ – транспозиция, переставляющая два элемента цикла σ как на рисунке ниже.

Вот так выглядят композиции для $\sigma \tau$ и $\tau \sigma$ соответственно

Таким образом общее правило выглядит так:

$$(i_1, \dots, i_n)(i_1, i_k) = (i_1, i_{k+1}, \dots, i_n)(i_2, \dots, i_k)$$

 $(i_1, i_k)(i_1, \dots, i_n) = (i_1, \dots, i_{k-1})(i_k, \dots, i_n)$

Пара циклов и транспозиция Пусть $\sigma, \tau \in S_n$, причем σ – произведение двух независимых циклов, а τ – транспозиция, переставляющая две вершины из разных циклов как на рисунке ниже.

Произведения $\sigma \tau$ и $\tau \sigma$ имеют вид

Таким образом общее правило выглядит так

$$(i_1, \dots, i_k)(i_{k+1}, \dots, i_n)(i_k, i_{k+1}) = (i_1, \dots, i_k, i_{k+2}, \dots, i_n, i_{k+1})$$
$$(i_k, i_{k+1})(i_1, \dots, i_k)(i_{k+1}, \dots, i_n) = (i_k, i_1, \dots, i_{k-1}, i_{k+1}, \dots, i_n)$$

4 Определитель

4.1 Философия

Сейчас я хочу обсудить «ориентированный объем» на прямой, плоскости и в пространстве.

Прямая На прямой мы можем выбрать «положительное» направление. Обычно на рисунке выбирают слева направо. Тогда длина вектора, который смотрит слева направо, считается положительной, а справа налево – отрицательной.

Плоскость Здесь объем будет задаваться парой векторов, то есть некоторой квадратной матрицей размера 2, где вектора — это ее столбцы. Основная идея такая: пусть мы хотим посчитать площадь между двумя векторами на плоскости, точнее площадь параллелограмма натянутого на вектора e_1 и e_2 как на первом рисунке ниже.

Давайте двигать вектор e_2 к вектору e_1 . Тогда площадь будет уменьшаться и когда вектора совпадут, она будет равна нулю. Однако, если мы продолжим двигать вектор e_2 , то площадь между векторами опять начнет расти и картинка в конце концов станет симметрична исходной, а полученный параллелограмм равен изначальному. Однако, эта ситуация отличается от предыдущей и вот как можно понять чем. Предположим, что между векторами была натянута хорошо сжимаемая ткань, одна сторона которой красная, другая — зеленая. Тогда в самом начале на нас смотрит красная сторона этой ткани, но как только e_2 прошел через e_1 на нас уже смотрит зеленая сторона. Мы бы хотели научиться отличать эти две ситуации с помощью знака, если на нас смотрит красная сторона — знак положительный, если зеленая — отрицательный.

Еще один способ думать про эту ситуацию. Представим, что плоскость – это наш стол, а параллелограмм вырезан из бумаги. Мы можем положить параллелограмм на стол двумя способами: лицевой стороной вверх или же вниз. В первом случае мы считаем площадь положительной, а во втором – отрицательной. Возможность определить лицевую сторону связана с тем, что мы знаем, где у стола верх, а где низ. Это возможно, потому что наша плоскость лежит в трехмерном пространстве и мы можем глядеть на нее извне. Однако, если бы мы жили на плоскости и у нас не было бы возможности выглянуть за ее пределы, то единственный способ установить «какой стороной вверх лежит параллелограмм» был бы с помощью порядка векторов.

Еще одно важное замечание. Если мы берем два одинаковых параллелограмма на нашем столе, которые лежат лицевой стороной вверх, то мы можем передвинуть один в другой, не отрывая его от стола. А вот если один из параллелограммов имеет положительный объем, а другой отрицательный, то нельзя перевести один в другой, не отрывая от стола. То есть, если вы живете на плоскости, то вам не получится переместить положительный параллелограмм в отрицательный, не сломав или не разобрав его.

Пространство В пространстве дело с ориентацией обстоит абсолютно аналогично. Мы хотим уже считать объемы параллелепипедов натянутых на три вектора. И мы так же хотим, чтобы эти объемы показывали «с какой стороны» мы смотрим на параллелепипед.

Здесь знак объема определяется по порядку векторов, как знак перестановки. На рисунке объемы первого и третьего положительные, а у второго отрицательный. Если вы сделаете модельки этих кубиков из подписан-

ных спичек, то третий кубик – это первый, но лежащий на другой грани. А вот второй кубик получить из первого вращениями не получится. Надо будет его разобрать и присобачить ребра по-другому.

Как и в случае с плоскостью, если бы мы могли выйти за пределы нашего трехмерного пространства, то у нас появилась бы лицевая и тыльная сторона, как у стола. И тогда первый и третий кубики лежали бы лицевой стороной вверх, а второй – вниз. Мы, конечно же, так сделать не сможем и никогда в жизни не увидим подобное, но думать про такое положение вещей по аналогии с плоскостью можем и эта интуиция бывает полезна.

Пояснение планов В текущей лекции я не собираюсь обсуждать объемы, а всего лишь хочу коснуться некоторой техники, которая используется для работы с ориентированными объемами. Чтобы начать честный рассказ про сами объемы (который обязательно будет, но позже), нам надо поговорить о том, что такое векторное пространство и как в абстрактном векторном пространстве мерить расстояния и углы. Потому, пока мы не покроем эти темы, всерьез говорить про настоящие объемы мы не сможем.

4.2 Три разных определения

Начнем с классического определения в виде явной формулы.

Определитель (I) Рассмотрим отображение det: $\mathrm{M}_n(\mathbb{R}) \to \mathbb{R}$, задаваемое следующей формулой: для любой матрицы $A \in \mathrm{M}_n(\mathbb{R})$ положим

$$\det A = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \dots a_{n\sigma(n)}$$

Данное отображение называется onpedenumenem, а его значение $\det A$ на матрице A называется определителем матрицы A.

Давайте неформально обсудим, как считается выражение для определителя. Как мы видим определитель состоит из суммы некоторых произведений. Каждое произведение имеет вид $a_{1\sigma(1)} \dots a_{n\sigma(n)}$ умноженное на $\mathrm{sgn}(\sigma)$. Здесь из каждой строки матрицы A^{33} выбирается по одному элементу так, что никакие два элемента не лежат в одном столбце (это гарантированно тем, что σ – перестановка и потому $\sigma(i)$ не повторяются). Заметим, что слагаемых ровно столько, сколько перестановок – n! штук. Из этих слагаемых половина идет со знаком плюс, а другая – со знаком минус.

Нормированные полилинейные кососимметрические отображения (II) Пусть $\phi \colon \mathrm{M}_n(\mathbb{R}) \to \mathbb{R}$ некоторое отображение и $A \in \mathrm{M}_n(\mathbb{R})$. Тогда про матрицу A можно думать, как про набор из n столбцов: $A = (A_1 | \dots | A_n)$. Тогда функцию $\phi(A) = \phi(A_1, \dots, A_n)$ можно рассматривать как функцию от n столбцов. В обозначениях выше рассмотрим отображения $\phi \colon \mathrm{M}_n(\mathbb{R}) \to \mathbb{R}$, удовлетворяющие следующим свойствам:

1. $\phi(A_1, \dots, A_i + A'_i, \dots, A_n) = \phi(A_1, \dots, A_i, \dots, A_n) + \phi(A_1, \dots, A'_i, \dots, A_n)$ для любого i.

- 2. $\phi(A_1,\ldots,\lambda A_i,\ldots,A_n)=\lambda\phi(A_1,\ldots,A_i,\ldots,A_n)$ для любого i и любого $\lambda\in\mathbb{R}$.
- 3. $\phi(A_1,\ldots,A_i,\ldots,A_j,\ldots,A_n) = -\phi(A_1,\ldots,A_i,\ldots,A_i,\ldots,A_n)$ для любых различных i и j.
- 4. $\phi(E) = 1$.

Первые два свойства вместе называются *полилинейностью* ϕ по столбцам, т.е. это уважение суммы и умножения на скаляр. Третье свойство называется *кососимметричностью* ϕ по столбцам. Последнее условие – это условие нормировки. Данный набор свойств можно заменить эквивалентным с переформулированным третьим свойством:

- 1. $\phi(A_1, \dots, A_i + A'_i, \dots, A_n) = \phi(A_1, \dots, A_i, \dots, A_n) + \phi(A_1, \dots, A'_i, \dots, A_n)$ для любого i.
- 2. $\phi(A_1,\ldots,\lambda A_i,\ldots,A_n)=\lambda\phi(A_1,\ldots,A_i,\ldots,A_n)$ для любого i и любого $\lambda\in\mathbb{R}$.
- 3. $\phi(A_1,\ldots,A',\ldots,A',\ldots,A_n)=0$, т.е. если есть два одинаковых столбца, то значение ϕ равно нулю.
- 4. $\phi(E) = 1$

³³Первый индекс – индекс строки.

Действительно, обозначим $\Phi(a,b) = \phi(A_1,\ldots,a,\ldots,b,\ldots,A_n)$. Тогда Φ полилинейная функция двух аргументов. ³⁴ И нам надо показать, что $\Phi(a,a) = 0$ для любого $a \in \mathbb{R}^n$ тогда и только тогда, когда $\Phi(a,b) = -\Phi(b,a)$ для любых $a,b \in \mathbb{R}^n$. Для \Rightarrow подставим b=a, получим $\Phi(a,a) = -\Phi(a,a)$. Для обратного \Leftarrow подставим a+b, получим $\Phi(a+b,a+b) = 0$. Раскроем скобки: $\Phi(a,a) + \Phi(a,b) + \Phi(b,a) + \Phi(b,b) = 0$. Откуда следует требуемое.

Пример На всякий случай поясню все свойства выше на примерах:

$$1. \ \phi \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix} = \phi \left(\begin{pmatrix} 1 \\ 2 \end{pmatrix} \middle| \begin{pmatrix} 3 \\ 7 \end{pmatrix} \right) = \phi \left(\begin{pmatrix} 1 \\ 2 \end{pmatrix} \middle| \begin{pmatrix} 1 \\ 3 \end{pmatrix} + \begin{pmatrix} 2 \\ 4 \end{pmatrix} \right) = \phi \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} + \phi \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$

$$2. \ \phi \begin{pmatrix} 1 & 3 \\ 2 & 9 \end{pmatrix} = 3 \phi \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$$

3.
$$\phi \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix} = -\phi \begin{pmatrix} 3 & 1 \\ 7 & 2 \end{pmatrix}$$

$$3' \ \phi \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} = 0$$

Везде далее будем упоминать отображения с такими свойствами, как отображения со свойством (II).

Нормированные полилинейные кососимметрические отображения (II') Аналогично (II) можно рассмотреть полилинейные кососимметрические отображения по строкам матрицы A вместо столбцов. Тогда можно рассматривать отображения $\phi' \colon \mathrm{M}_n(\mathbb{R}) \to \mathbb{R}$ с аналогами четырех свойств выше: полилинейность, кососимметричность, значение 1 на единичной матрице. Такие отображения мы будем называть, как отображения со свойствами (II').

Специальные мультипликативные отображения (III) Рассмотрим множество отображений $\psi \colon \mathrm{M}_n(\mathbb{R}) \to \mathbb{R}$ удовлетворяющие следующими свойствам:

1.
$$\psi(AB) = \psi(A)\psi(B)$$
 для любых $A, B \in M_n(\mathbb{R})$.

2.
$$\psi \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & & d \end{pmatrix} = d$$
 для любого ненулевого $d \in \mathbb{R}.$

Всюду ниже будем упоминать отображения с такими свойствами, как отображения со свойством (I).³⁵

План дальнейших действий Наша задача показать, что, во-первых, определитель обладает свойствами (II), (II') и (III), а, во-вторых, что кроме определителя никакое другое отображение не удовлетворяет этим свойствам. То есть все три определения между собой эквивалентны. Самое сложное будет показать, что (III) влечет остальные два определения. Это означает, что (III) легко проверять, но из него сложно выводить какие-либо свойства. Самые полезные с вычислительной точки зрения – определения (II) и (II').

4.3 Явные формулы для определителя

Подсчет в малых размерностях

- 1. Если $A \in M_1(\mathbb{R}) = \mathbb{R}$, то det A = A.
- 2. Если $A \in M_2(\mathbb{R})$ имеет вид $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, то $\det A = ad bc$. Графически: главная диагональ минус побочная.

³⁴Такие отображения называются билинейными.

³⁵Обратите внимание, что существует много отображений со свойством (1), не удовлетворяющих свойству (2). Действительно, если ψ – мультипликативное отображение, то есть удовлетворяет только свойству (1), то $\gamma_n(A) = \psi(A)^n$ – тоже мультипликативное отображение для любого натурального $n \in \mathbb{N}$. Кроме того, $\delta_{\alpha}(A) = |\psi(A)|^{\alpha}$ тоже является мультипликативным отображением для любого положительного $\alpha \in \mathbb{R}$.

3. Если $A \in M_3(\mathbb{R})$ имеет вид $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{23} & a_{33} & a_{33} \end{pmatrix}$, то определитель получается из 6 слагаемых три из них с + три с -. Графически слагаемые можно изобразить так:

$$\det A = + \left(\begin{array}{c} \\ \\ \end{array} \right) + \left(\begin{array}{c} \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \\ \end{array} \right)$$

Точная формула³⁶

$$\det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$

Треугольные матрицы

Утверждение 15. Для любых верхне и нижне треугольных матриц верны следующие формулы:

$$\det \begin{pmatrix} \lambda_1 & \dots & * \\ & \ddots & \vdots \\ & & \lambda_n \end{pmatrix} = \lambda_1 \dots \lambda_n \quad \det \begin{pmatrix} \lambda_1 & & \\ \vdots & \ddots & \\ * & \dots & \lambda_n \end{pmatrix} = \lambda_1 \dots \lambda_n$$

B частности $\det E = 1$.

Доказательство. Я докажу утверждение для верхнетреугольных матриц, нижнетреугольный случай делается аналогично. Для доказательства надо посчитать определитель по определению и увидеть, что только одно слагаемое соответствующее тождественной перестановке является не нулем. Действительно, рассмотрим выражение $a_{1\sigma(1)} \dots a_{n\sigma(n)}$. Посмотрим, когда это выражение не ноль. Последний множитель $a_{n\sigma(n)}$ лежит в последней строке и должен быть не ноль. Для этого должно выполняться $\sigma(n) = n$. Теперь $a_{n-1\sigma(n-1)}$ должен быть не ноль. Так как $\sigma(n) = n$, то $\sigma(n-1) \neq n$. А значит, чтобы $a_{n-1\sigma(n-1)}$ был не ноль, остается только один случай $\sigma(n-1) = n-1$. Продолжая аналогично, мы видим, что $\sigma(i) = i$ для всех строк i.

4.4 Свойства определителя

Определитель и транспонирование Прежде чем перейти к доказательству следующего утверждения сделаем одно полезное наблюдение. Если мы возьмем две произвольные перестановки $\sigma, \tau \in S_n$ и матрицу $A \in M_n(\mathbb{R})$, то выражения $a_{\tau(1)\sigma(\tau(1))} \dots a_{\tau(n)\sigma(\tau(n))}$ совпадает с выражением $a_{1\sigma(1)} \dots a_{n\sigma(n)}$ с точностью до перестановки сомножителей. Это делается методом пристального взгляда: замечаем что каждый сомножитель одного выражения ровно один раз встречается в другом и наоборот.

Утверждение 16. Пусть $A \in M_n(\mathbb{R})$, тогда $\det A = \det A^t$.

Доказательство. Посчитаем по определению $\det A^t$, получим

$$\det A^t = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\sigma(1)1} \dots a_{\sigma(n)n} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\sigma(1)\sigma^{-1}(\sigma(1))} \dots a_{\sigma(n)\sigma^{-1}(\sigma(n))}$$

Теперь применим наше замечание перед доказательством:

$$a_{\sigma(1)\sigma^{-1}(\sigma(1))} \dots a_{\sigma(n)\sigma^{-1}(\sigma(n))} = a_{1\sigma^{-1}(1)} \dots a_{n\sigma^{-1}(n)}$$

Значит

$$\det A^t = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma^{-1}(1)} \dots a_{n\sigma^{-1}(n)}$$

Вспомним, что $sgn(\sigma) = sgn(\sigma^{-1})$. Следовательно:

$$\det A^t = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma^{-1}) a_{1\sigma^{-1}(1)} \dots a_{n\sigma^{-1}(n)}$$

 $^{^{36}}$ Для больших размерностей чем 3 на 3 явная формула не пригодна из-за слишком большого числа слагаемых. Даже с вычислительной точки зрения.

Теперь, если σ пробегает все перестановки, то σ^{-1} тоже пробегает все перестановки, так как отображение $S_n \to S_n$ по правилу $\sigma \mapsto \sigma^{-1}$ является биекцией. ³⁷ То есть мы можем сделать замену $\tau = \sigma^{-1}$ и приходим к выражению

$$\det A^t = \sum_{\tau \in S_n} \operatorname{sgn}(\tau) a_{1\tau(1)} \dots a_{n\tau(n)}$$

Последнее в точности совпадает с определением $\det A$.

Отметим, что если мы доказали какое-то свойство определителя для столбцов, то это утверждение автоматически гарантирует, что такое же свойство выполнено и для строк. И наоборот, если что-то сделано для строк, то это автоматом следует для столбцов.

4.5 Полилинейность и кососимметричность определителя

Сейчас мы докажем, что определитель обладает всеми свойствами (II) и (II'). В силу утверждения 16 нам достаточно показать только (II).

Утверждение 17. Отображение $\det \colon M_n(\mathbb{R}) \to \mathbb{R}$ рассматриваемое как отображение столбцов матрицы является полилинейным и кососимметричным, т.е. удовлетворяет следующим свойствам:

1.
$$\det(A_1, \dots, A_i + A_i', \dots, A_n) = \det(A_1, \dots, A_i, \dots, A_n) + \det(A_1, \dots, A_i', \dots, A_n)$$
 для любого i .

2.
$$\det(A_1,\ldots,\lambda A_i,\ldots,A_n)=\lambda\det(A_1,\ldots,A_i,\ldots,A_n)$$
 для любого i и любого $\lambda\in\mathbb{R}$.

3.
$$\det(A_1,\ldots,A_i,\ldots,A_j,\ldots,A_n)=-\det(A_1,\ldots,A_j,\ldots,A_i,\ldots,A_n)$$
 для любых различных $i\ u\ j.$

4.
$$\det E = 1$$
.

Доказательство. Мы знаем, что

$$\det A = \det A^t = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\sigma(1)1} \dots a_{\sigma(i)i} \dots a_{\sigma(n)n}$$

Проверим свойство (1):

$$\det(A_1, \dots, A_i + A'_i, \dots, A_n) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\sigma(1)1} \dots \left(a_{\sigma(i)i} + a'_{\sigma(i)i} \right) \dots a_{\sigma(n)n} =$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\sigma(1)1} \dots a_{\sigma(i)i} \dots a_{\sigma(n)n} + \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\sigma(1)1} \dots a'_{\sigma(i)i} \dots a_{\sigma(n)n} =$$

$$= \det(A_1, \dots, A_i, \dots, A_n) + \det(A_1, \dots, A'_i, \dots, A_n)$$

Теперь свойство (2):

$$\det(A_1, \dots, \lambda A_i, \dots, A_n) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\sigma(1)1} \dots \left(\lambda a_{\sigma(i)i}\right) \dots a_{\sigma(n)n} = \lambda \det(A_1, \dots, A_i, \dots, A_n)$$

Для проверки свойства (3) введем следующее обозначение. Пусть $\tau \in S_n$ обозначает транспозицию (i,j). Тогда посчитаем определитель с переставленными местами столбцами i и j:

$$\det(A_1, \dots, A_j, \dots, A_i, \dots, A_n) = \sum_{\sigma \in \mathcal{S}_n} \operatorname{sgn}(\sigma) a_{\sigma(1)1} \dots a_{\sigma(i)j} \dots a_{\sigma(j)i} \dots a_{\sigma(n)n} =$$

$$= \sum_{\sigma \in \mathcal{S}_n} \operatorname{sgn}(\sigma) a_{\sigma(1)\tau(1)} \dots a_{\sigma(i)\tau(i)} \dots a_{\sigma(j)\tau(j)} \dots a_{\sigma(n)\tau(n)} =$$

$$= \sum_{\sigma \in \mathcal{S}_n} \operatorname{sgn}(\sigma) a_{\sigma(\tau^{-1}(1))1} \dots a_{\sigma(\tau^{-1}(n))n} = -\sum_{\sigma \in \mathcal{S}_n} \operatorname{sgn}(\sigma\tau^{-1}) a_{\sigma(\tau^{-1}(1))1} \dots a_{\sigma(\tau^{-1}(n))n}$$

³⁷Оно биекция, так как имеет обратное – оно само.

Здесь при переходе от второй строчки к третьей мы воспользовались замечанием перед утверждением 16. Так как отображение $S_n \to S_n$ по правилу $\sigma \mapsto \sigma \tau^{-1}$ является биекцией, то если σ пробегает все перестановки, то и $\sigma \tau^{-1}$ пробегает все перестановки. А значит, делая замену $\rho = \sigma \tau^{-1}$, получаем

$$-\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma \tau^{-1}) a_{\sigma(\tau^{-1}(1))1} \dots a_{\sigma(\tau^{-1}(n))n} = -\det(A_1, \dots, A_i, \dots, A_j, \dots A_n)$$

(4) Это непосредственно следует из определения, либо, если хотите, можно сослаться на утверждение 15.

Утверждение 18. Пусть $\Phi \colon \mathrm{M}_n(\mathbb{R}) \to \mathbb{R}$ – полилинейное кососимметричное отображение по столбцам. И пусть матрица A имеет нулевой столбец, тогда $\Phi(A) = 0.$

Доказательство. Пусть $A = (A_1 | \dots | 0 | \dots | A_n)$. Тогда

$$\Phi(A) = \Phi(A_1, \dots, 0, \dots, A_n) = \Phi(A_1, \dots, 0 + 0, \dots, A_n) = \Phi(A_1, \dots, 0, \dots, A_n) + \Phi(A_1, \dots, 0, \dots, A_n)$$

Теперь вычтем из обеих частей $\Phi(A_1,\dots,0,\dots,A_n)$ и получим, что $\Phi(A_1,\dots,0,\dots,A_n)=0.$

Утверждение 19. Если $A \in \mathrm{M}_n(\mathbb{R})$ имеет нулевой столбец или нулевую строку, то $\det A = 0$.

Доказательство. Так как определитель является полилинейной и кососимметричной функцией как по строкам так и по столбцам, то это утверждение следует из предыдущего. □

Определитель от элементарных матриц

Утверждение 20. Верны следующие утверждения:

- 1. $\det(S_{ij}(\lambda)) = 1$, где $S_{ij}(\lambda) \in M_n(\mathbb{R})$ матрица элементарного преобразования первого типа.
- 2. $\det(U_{ij})=-1$, где $U_{ij}\in \mathrm{M}_n(\mathbb{R})$ матрица элементарного преобразования второго типа.
- 3. $\det(D_i(\lambda)) = \lambda$, где $D_i(\lambda) \in M_n(\mathbb{R})$ матрица элементарного преобразования третьего типа.

Доказательство. (1) Является следствием для случая верхне- и нижнетреугольных матриц.

(2) Так как U_{ij} получается из единичной матрицы перестановкой i-го и j-го столбцов, то результат следует из кососимметричности определителя.

(3) Следует из полилинейности определителя – свойство (II) (2).

4.6 Полилинейные кососимметрические отображения

Все утверждения в этом разделе доказываются для строк. Соответствующие утверждения для столбцов доказываются аналогично. Их формулировки и доказательства я оставляю в качестве упражнения.

Утверждение 21. Пусть $\phi: M_n(\mathbb{R}) \to \mathbb{R}$ – полилинейное кососимметрическое отображение по строкам матрии, т.е. удовлетворяет следующим свойствам. 39

- 1. $\phi(A_1, \dots, A_i + A_i', \dots, A_n) = \phi(A_1, \dots, A_i, \dots, A_n) + \phi(A_1, \dots, A_i', \dots, A_n)$ для любого i.
- 2. $\phi(A_1,\ldots,\lambda A_i,\ldots,A_n)=\lambda\phi(A_1,\ldots,A_i,\ldots,A_n)$ для любого i и любого $\lambda\in\mathbb{R}$.
- 3. $\phi(A_1,\ldots,A_i,\ldots,A_j,\ldots,A_n) = -\phi(A_1,\ldots,A_j,\ldots,A_i,\ldots,A_n)$ для любых различных $i\ u\ j.$

Tогда $\phi(UA) = \det(U)\phi(A)$ для любой матрицы $A \in \mathrm{M}_n(\mathbb{R})$ и любой элементарной матрицы $U \in \mathrm{M}_n(\mathbb{R})$.

 $^{^{38}}$ Аналогичное утверждение выполнено для полилинейного и кососимметричного отображения по строкам, тогда в матрице A должна быть нулевая строка.

 $^{^{39}}$ Здесь через A_i обозначаются строки матрицы A идущие сверху вниз.

Доказательство. Случай $U = S_{ij}(\lambda)$.

$$\phi(S_{ij}(\lambda)A)=\phi(A_1,\ldots,A_i+\lambda A_j,\ldots,A_j,\ldots,A_n)=$$

$$=\phi(A_1,\ldots,A_i,\ldots,A_j,\ldots,A_n)+\lambda\phi(A_1,\ldots,A_j,\ldots,A_j,\ldots,A_n)=\phi(A)=\det(S_{ij}(\lambda))\phi(A)$$
 Случай $U=U_{ij}$.

$$\phi(U_{ij}A) = \phi(A_1, \dots, A_j, \dots, A_i, \dots, A_n) = -\phi(A_1, \dots, A_i, \dots, A_j, \dots, A_n) = -\phi(A) = \det(U_{ij})\phi(A)$$

Случай $U = D_i(\lambda)$.

$$\phi(D_i(\lambda)A) = \phi(A_1, \dots, \lambda A_i, \dots, A_n) = \lambda \phi(A_1, \dots, A_i, \dots, A_n) = \lambda \phi(A) = \det(D_i(\lambda))\phi(A)$$

Определитель и элементарные матрицы Заметим, что по утверждению 17, определитель тоже является полилинейной и кососимметрической функцией. Потому доказанное утверждение в частности означает, что $\det(UA) = \det(U) \det(A)$ для любой матрицы $A \in \mathrm{M}_n(\mathbb{R})$ и любой элементарной матрицы $U \in \mathrm{M}_n(\mathbb{R})$.

Подсчет определителя Предыдущее замечание позволяет дать эффективный способ вычисления определителя методом Гаусса. Мы берем матрицу A и приводим ее к ступенчатому виду, попутно запоминая как изменился определитель по сравнению с определителем изначальной матрицы. Если же мы будем использовать только элементарные преобразования первого типа, то определитель вовсе меняться не будет. Ступенчатый вид матрицы всегда верхнетреугольный. Там определитель считается как произведение диагональных элементов.

Следствия утверждения 21

Утверждение 22 (Единственность для полилинейных кососимметричных). Пусть ϕ : $M_n(\mathbb{R}) \to \mathbb{R}$ – полилинейное кососимметрическое отображение по строкам матриц. Тогда $\phi(X) = \det(X)\phi(E)$. В частности, если $\phi(E) = 1$, то $\phi = \det$.

Доказательство. Пусть $X \in \mathrm{M}_n(\mathbb{R})$ – произвольная матрица, тогда ее можно элементарными преобразованиями строк привести к улучшенному ступенчатому виду. Последнее означает, что $X = U_1 \dots U_k S$, где S – матрица улучшенного ступенчатого вида, а U_i – матрицы элементарных преобразований. Применим к этому равенству отдельно ϕ и отдельно det, получим

$$\phi(X) = \det(U_1) \dots \det(U_k) \phi(S)$$
$$\det(X) = \det(U_1) \dots \det(U_k) \det(S)$$

Теперь для матрицы S у нас есть два варианта: либо S единичная, либо содержит нулевую строку. Пусть S=E, тогда

$$\phi(X) = \det(U_1) \dots \det(U_k) \phi(E)$$
$$\det(X) = \det(U_1) \dots \det(U_k)$$

Откуда и получаем требуемое $\phi(X) = \det(X)\phi(E)$.

Пусть теперь S имеет нулевую строку. Тогда утверждения 18 и 19 гарантируют, что $\Phi(S) = 0$ и $\det(S) = 0$. Что тоже влечет равенство $\phi(X) = \det(X)\phi(E)$.

Утверждение 23 (Мультипликативность определителя). Пусть $A, B \in M_n(\mathbb{R})$ – произвольные матрицы. Тогда $\det(AB) = \det(A) \det(B)$.

Доказательство. Фиксируем матрицу $B \in M_n(\mathbb{R})$ и рассмотрим отображение $\gamma \colon M_n(\mathbb{R}) \to \mathbb{R}$ по правилу $A \mapsto \det(AB)$. Если A_1, \ldots, A_n – строки матрицы A, то A_1B, \ldots, A_nB – строки матрицы AB. Из этого легко видеть, что γ – полилинейна и кососимметрическая функция по строкам матрицы A. Значит по утверждению 22 $\gamma(A) = \det(A)\gamma(E)$. Но последнее равносильно $\det(AB) = \det(A)\det(B)$.

Утверждение 24 (Определитель с углом нулей). Пусть $A, \in M_n(\mathbb{R})$ и $B \in M_m(\mathbb{R})$. Тогда

$$\det\begin{pmatrix} A & * \\ 0 & B \end{pmatrix} = \det\begin{pmatrix} A & 0 \\ * & B \end{pmatrix} = \det(A)\det(B)$$

Доказательство. Рассмотрим функцию $\phi \colon \mathrm{M}_n(\mathbb{R}) \to \mathbb{R}$ по правилу

$$\phi(X) = \det \begin{pmatrix} X & * \\ 0 & B \end{pmatrix}$$

Заметим, что эта функция является полилинейной и кососимметричной по столбцам матрицы X. В этом случае по утверждению 22 о единственности для полилинейных кососимметрических отображений она имеет вид $\phi(X) = \det(X)\phi(E)$, то есть

$$\det \begin{pmatrix} A & * \\ 0 & B \end{pmatrix} = \det A \det \begin{pmatrix} E & * \\ 0 & B \end{pmatrix}$$

Теперь рассмотрим функцию $\psi \colon \mathrm{M}_m(\mathbb{R}) \to \mathbb{R}$ по правилу

$$\psi(X) = \det \begin{pmatrix} E & * \\ 0 & X \end{pmatrix}$$

Заметим, что эта функция является полилинейной и кососимметричной по строкам матрицы X. В этом случае по утверждению 22 о единственности для полилинейных кососимметрических отображений она имеет вид $\psi(X) = \det(X)\psi(E)$, то есть

$$\det \begin{pmatrix} E & * \\ 0 & B \end{pmatrix} = \det B \det \begin{pmatrix} E & * \\ 0 & E \end{pmatrix}$$

Последний определитель равен 1, так как по утверждению 15 определитель верхнетреугольной матрицы равен произведению ее диагональных элементов. Теперь собираем вместе доказанные факты и получаем требуемый результат.

Заметим, что таким образом мы можем считать определитель для блочно верхнетреугольных матриц и для блочно нижнетреугольных матриц с любым количеством блоков. Формулы тогда будут выглядеть так

$$\det \begin{pmatrix} A_1 & * & \dots & * \\ & A_2 & \dots & * \\ & & \ddots & \vdots \\ & & & A_k \end{pmatrix} = \det \begin{pmatrix} A_1 & & & \\ * & A_2 & & & \\ \vdots & \vdots & \ddots & & \\ * & * & \dots & A_k \end{pmatrix} = \det A_1 \dots \det A_k$$

где $A_i \in \mathrm{M}_{n_i}(\mathbb{R})$ – обязательно квадратные матрицы. Это правило является обобщением утверждения о вычислении определителя для треугольных матриц.

4.7 Мультипликативные отображения

Давайте подытожим, что мы показали. Утверждение 17 вместе с утверждением 16 объясняют почему определитель является полилинейной кососимметрической функцией как строк, так и столбцов. Далее утверждение 22 доказывает, что любая полилинейная кососимметричная функция по строкам, принимающая значение 1 на единичной матрице, должна быть определителем. С помощью утверждения 16 мы получаем аналогичный результат для столбцов. Таким образом мы показали эквивалентность подхода (I) подходам (II) и (II').

Теперь, утверждение 23 показывает, что определитель обязательно мультипликативен, а свойство (III) (2) следует из явных вычислений для элементарных матриц. Тем самым мы показали, что (I) и (II) влекут (III). Осталось показать, что (III) влечет (I), т.е. что определитель является единственной функцией с такими свойствами.

Утверждение 25. Пусть $\psi \colon \mathrm{M}_n(\mathbb{R}) \to \mathbb{R}$ – отображение, удовлетворяющее свойствам:

1. $\psi(AB) = \psi(A)\psi(B)$ для любых $A, B \in M_n(\mathbb{R})$.

2.
$$\psi \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & & d \end{pmatrix} = d$$
 для любого ненулевого $d \in \mathbb{R}.$

 $Tor \partial a \psi = \det$.

Доказательство этого утверждения разобьем в несколько этапов. В начале докажем элементарные свойства мультипликативных отображений.

Утверждение 26. Пусть $\psi \colon \mathrm{M}_n(\mathbb{R}) \to \mathbb{R}$ отображение со свойством $\psi(AB) = \psi(A)\psi(B)$ для всех $A, B \in \mathrm{M}_n(\mathbb{R})$. Тогда

- 1. Если $P \in M_n(\mathbb{R})$ такая, что $P^2 = P$, то $\psi(P)$ равно либо 0, либо 1.
- 2. В частности, значение $\psi(0)$ и $\psi(E)$ равно либо 0, либо 1.
- 3. Если $\psi(E)=0$, то $\psi(A)=0$ для любой матрицы $A\in \mathrm{M}_n(\mathbb{R})$.
- 4. Если $\psi(0)=1$, то $\psi(A)=1$ для любой матрицы $A\in \mathrm{M}_n(\mathbb{R})$.
- 5. Если $\psi(E) = 1$, то $\psi(A^{-1}) = \psi(A)^{-1}$ для любой обратимой матрицы $A \in \mathrm{M}_n(\mathbb{R})$.

Доказательство. (1) Применим ψ к тождеству $P^2 = P$, получим $\psi(P) = \psi(PP) = \psi(P)\psi(P)$. То есть число $\psi(P)$ в квадрате равно самому себе. Значит либо $\psi(P) = 0$, либо $\psi(P) = 1$.

- (2) Заметим, что $E^2 = E$ и $0^2 = 0$ и воспользуемся предыдущим пунктом.
- (3) Применим ψ к тождеству A=AE, получим $\psi(A)=\psi(A)\psi(E)=0$.
- (4) Применим ψ к тождеству 0 = A0, получим $\psi(0) = \psi(A)\psi(0)$. И так как $\psi(0) = 1$ по предположению, то $\psi(A) = 1$.
- (5) Применим ψ к тождеству $AA^{-1} = E$, получим $1 = \psi(E) = \psi(AA^{-1}) = \psi(A)\psi(A^{-1})$. Значит число $\psi(A^{-1})$ является обратным к числу $\psi(A)$, что и требовалось показать.

Утверждение 27. Пусть $\psi \colon \mathrm{M}_n(\mathbb{R}) \to \mathbb{R}$ – отображение, удовлетворяющее свойствам:

- 1. $\psi(AB) = \psi(A)\psi(B)$ для любых $A, B \in M_n(\mathbb{R})$.
- 2. $\psi(D_n(\lambda)) = \lambda$ для любого ненулевого $\lambda \in \mathbb{R}$.

Tог ∂a

- 1. $\psi(S_{ij}(\lambda)) = 1 = \det(S_{ij}(\lambda)).$
- 2. $\psi(U_{ij}) = -1 = \det(U_{ij})$.
- 3. $\psi(D_i(\lambda)) = \lambda = \det(D_i(\lambda))$.

Доказательство. В начале заметим, что $\psi(E) = 1$. Потому что иначе $\psi(A) = 0$ для любой матрицы, что противоречит второму свойству. А раз $\psi(E) = 1$, то можно пользоваться пунктом (5) предыдущего утверждения.

(1) Для доказательства воспользуемся следующим замечанием: если $A, B \in \mathrm{M}_n(\mathbb{R})$ – произвольные обратимые матрицы, то $\psi(ABA^{-1}B^{-1}) = 1$. Действительно,

$$\psi(ABA^{-1}B^{-1}) = \psi(A)\psi(B)\psi(A)^{-1}\psi(B)^{-1} = \psi(A)\psi(A)^{-1}\psi(B)\psi(B)^{-1} = 1$$

Для доказательства нам достаточно представить $S_{ij}(\lambda)$ в таком виде. Давайте проверим, что

$$S_{ij}(\lambda) = D_i(2)S_{ij}(\lambda)D_i^{-1}(2)S_{ij}(\lambda)^{-1}$$

Это равенство проверяется непосредственно глядя на матрицы. Давайте для простоты проверим в случае 2 на 2, когда все наглядно:

$$\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -\lambda \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2\lambda \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -\lambda \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$$

(3) Для доказательства этого пункта воспользуемся следующим наблюдением: если $A, B \in \mathcal{M}_n(\mathbb{R})$ причем A обратима, тогда $\psi(ABA^{-1}) = \psi(B)$. Действительно,

$$\psi(ABA^{-1}) = \psi(A)\psi(B)\psi(A)^{-1} = \psi(B)\psi(A)\psi(A)^{-1} = \psi(B)$$

Мы уже знаем, что $\psi(D_n(\lambda)) = \lambda$ по условию. Надо лишь доказать, что для всех i выполнено $\psi(D_i(\lambda)) = \lambda$. Для этого достаточно представить $D_i(\lambda) = AD_{i+1}(\lambda)A^{-1}$. Возьмем в качестве $A = U_{i,i+1}$ элементарную матрицу переставляющую i и i+1 строки. Тогда $A^{-1} = A$. Более того, легко видеть, что $D_i(\lambda) = U_{i,i+1}D_{i+1}(\lambda)U_{i,i+1}^{-1}$. Действительно, умножение на $U_{i,i+1}$ слева переставляет i и i+1 строки, а умножение на $U_{i,i+1}$ справа равносильно умножению на $U_{i,i+1}^{-1}$ и оно переставляет i и i+1 столбцы. Для наглядности двумерный случай:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix}$$

(2) Здесь мы воспользуемся тем, что элементарные преобразования второго типа можно выразить через элементарные преобразования первого и третьего типа, а именно, давайте проверим, что

$$U_{ij} = D_i(-1)S_{ji}(1)S_{ij}(-1)S_{ji}(1)$$

Применив ψ к этому равенству и воспользовавшись предыдущими двумя пунктами мы получаем требуемое. Однако, остается законный вопрос: а как вообще можно догадаться до такого и проверить? Вот вам рассуждение приводящее к такому ответу. Давайте последовательно применять элементарные преобразования первого и третьего типа к единичной матрице, пока не получим из нее матрицу U_{ij} . Написанное равенство означает, что надо сделать так: (1) прибавить i строку к j, (2) вычесть j строку из i, (3) прибавить i строку к j, (4) умножить i строку на -1. Давайте для наглядности это проделаем на матрицах 2 на 2. Ниже мы последовательно умножаем матрицу с левой стороны слева на матрицу, написанную над стрелкой:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \xrightarrow{\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \xrightarrow{\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}} \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \xrightarrow{\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \xrightarrow{\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Утверждение 28. Пусть $\psi \colon \mathrm{M}_n(\mathbb{R}) \to \mathbb{R}$ – отображение, удовлетворяющее свойствам:

- 1. $\psi(AB) = \psi(A)\psi(B)$ для любых $A, B \in M_n(\mathbb{R})$.
- 2. $\psi(D_n(\lambda)) = \lambda$ для любого ненулевого $\lambda \in \mathbb{R}$.

H пусть $P \in \mathrm{M}_n(\mathbb{R})$ матрица с нулевой строкой. Тогда $\psi(P) = 0$.

Доказательство. Пусть в матрице P нулевой является i-я строка. Тогда $D_i(\lambda)P = P$ при любом ненулевом $\lambda \in \mathbb{R}$. Применим к этому равенству ψ и получим

$$\lambda \psi(P) = \psi(D_i(\lambda))\psi(P) = \psi(P)$$

Выберем любое ненулевое число λ отличное от 1, тогда получим, что $\psi(P)$ обязано быть нулем.

Доказательство Утверждения 25. В начале пусть $A \in M_n(\mathbb{R})$ – невырожденная матрица. Тогда мы знаем, что она является произведением элементарных матриц $A = U_1 \dots U_k$. Применим ψ к этому равенству, получим $\psi(A) = \psi(U_1) \dots \psi(U_k)$. С другой стороны по утверждению 27 получаем $\psi(A) = \det(U_1) \dots \det(U_k)$. А из мультипликативности определителя следует, что правая часть равна $\det A$. То есть ψ совпадает с \det на невырожденных матрицах.

Теперь покажем, что ψ совпадает с det на всех матрицах. Пусть $A \in \mathrm{M}_n(\mathbb{R})$ – вырожденная матрица. Тогда элементарными преобразованиями строк она приводится к ступенчатому виду, то есть A можно представить в виде TB, где T – обратимая, а B имеет улучшенный ступенчатый вид. Так как A вырождена, матрица B имеет нулевую строку. Теперь применим к равенству A = TB отображение ψ и det. Получим

$$\psi(A) = \psi(T)\psi(B)$$
 и $\det(A) = \det(T)\det(B)$

Но мы знаем по утверждению 28, что $\psi(B) = 0$. Кроме того, мы знаем, что определитель от матриц с нулевой строкой тоже равен нулю по утверждению 19. Значит $\psi(A) = 0 = \det(A)$.

4.8 Миноры и алгебраические дополнения

Определения Пусть $B \in \mathrm{M}_n(\mathbb{R})$ – некоторая матрица с b_{ij} . Рассмотрим матрицу $D_{ij} \in \mathrm{M}_{n-1}(\mathbb{R})$ полученную из B вычеркиванием i-ой строки и j-го столбца. Определитель матрицы D_{ij} обозначается M_{ij} и называется минором матрицы B или ij-минором для определенности. Число $A_{ij} = (-1)^{i+j} M_{ij}$ называется алгебраическим дополнением элемента b_{ij} или ij-алгебраическим дополнением матрицы B.

Покажем как все это выглядит на картинках. Если мы представим матрицу B в виде

$$B = \begin{pmatrix} X_{ij} & \vdots & Y_{ij} \\ \vdots & \vdots & & \\ * & \dots & b_{ij} & \dots & * \\ Z_{ij} & \vdots & & W_{ij} \end{pmatrix}$$

Тогда

$$D_{ij} = \begin{pmatrix} X_{ij} & Y_{ij} \\ Z_{ij} & W_{ij} \end{pmatrix}, \quad M_{ij} = \det \begin{pmatrix} X_{ij} & Y_{ij} \\ Z_{ij} & W_{ij} \end{pmatrix} \quad \text{if} \quad A_{ij} = (-1)^{i+j} \det \begin{pmatrix} X_{ij} & Y_{ij} \\ Z_{ij} & W_{ij} \end{pmatrix}$$

 $Присоединенная матрица <math>\hat{B}$ для B определяется как

$$\hat{B} = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}$$

То есть надо в матрице B каждый элемент b_{ij} заменить на его алгебраическое дополнение A_{ij} , а потом полученную матрицу транспонировать. Полезно держать перед глазами формулу для элемента присоединенной матрицы $\hat{B}_{ij} = A_{ji}$.

Формула разложения по строке

Утверждение 29. Пусть $B \in \mathrm{M}_n(\mathbb{R})$ – произвольная матрица. Тогда⁴⁰

1. Для любой строки і верно разложение

$$\det B = \sum_{j=1}^{n} b_{ij} A_{ij}$$

2. Для любого столбца ј верно разложение

$$\det B = \sum_{i=1}^{n} b_{ij} A_{ij}$$

Доказательство. Мы докажем формулу для строки, для столбца она получается аналогично либо применением транспонирования к матрице. Рассмотрим i-ю строку в матрице B

$$B = \begin{pmatrix} X_{ij} & * & Y_{ij} \\ \vdots & \vdots & & \\ \hline b_{i1} & \dots & b_{ij} & \dots & b_{in} \\ \hline Z_{ij} & \vdots & & W_{ij} \end{pmatrix}$$

Эту строку можно разложить в сумму следующих строк

$$(b_{i1},\ldots,b_{in})=\sum_{j=1}^n(0,\ldots,0,b_{ij},0,\ldots,0)$$

 $^{^{40}}$ Всюду в формулах A_{ij} обозначает алгебраическое дополнение.

Теперь вычислим определитель B пользуясь линейностью по i-ой строке

$$\det B = \sum_{j=1}^{n} \det \begin{pmatrix} X_{ij} & * & & & \\ \vdots & & & & \\ \hline 0 & \dots & b_{ij} & \dots & 0 \\ & Z_{ij} & \vdots & & W_{ij} \end{pmatrix}$$

Теперь отдельно посчитаем следующий определитель

$$\det\begin{pmatrix} X_{ij} & * & Y_{ij} \\ \hline 0 & \dots & b_{ij} & \dots & 0 \\ \hline Z_{ij} & \vdots & W_{ij} \end{pmatrix} = (-1)^{j-1} \det\begin{pmatrix} * & X_{ij} & Y_{ij} \\ \vdots & X_{ij} & Y_{ij} \\ \hline b_{ij} & \dots & 0 \\ \hline \vdots & Z_{ij} & W_{ij} \end{pmatrix} = (-1)^{j-1} (-1)^{i-1} \det\begin{pmatrix} b_{ij} & \dots & 0 \\ \hline \vdots & X_{ij} & Y_{ij} \\ * & Z_{ij} & W_{ij} \end{pmatrix}$$

В первом равенстве мы переставили j-ый столбец j-1 раз, чтобы переместить его на место первого столбца. Во втором равенстве мы переставили i-ю строку i-1 раз, чтобы переставить ее на место первой строки. Последняя матрица является блочно нижнетреугольной, а следовательно, равенство можно продолжить так

$$(-1)^{i+j}b_{ij}\det\begin{pmatrix} X_{ij} & Y_{ij} \\ Z_{ij} & W_{ij} \end{pmatrix} = b_{ij}(-1)^{i+j}M_{ij} = b_{ij}A_{ij}$$

Явные формулы для обратной матрицы

Утверждение 30. Для любой матрицы $B \in \mathrm{M}_n(\mathbb{R})$ верно

$$\hat{B}B = B\hat{B} = \det(B)E$$

Доказательство. Нам надо отдельно доказать два равенства $\hat{B}B = \det(B)E$ и $B\hat{B} = \det(B)E$. Давайте докажем второе равенство, а первое показывается аналогично (или через трюк с транспонированием).

Для доказательства $B\hat{B} = \det(B)E$ нам надо показать две вещи: (1) все диагональные элементы матрицы $B\hat{B}$ равны $\det(B)$, (2) все внедиагональные элементы равны нулю.

(1) Рассмотрим i-ый диагональный элемент в матрице $B\hat{B}$:

$$(B\hat{B})_{ii} = \sum_{j=1}^{n} b_{ij}\hat{B}_{ji} = \sum_{j=1}^{n} b_{ij}A_{ij} = \det(B)$$

Последняя формула является разложением определителя $\det(B)$ по i-ой строке из утверждения 29.

(2) Рассмотрим элемент на позиции i j для $i \neq j$:

$$(B\hat{B})_{ij} = \sum_{k=1}^{n} b_{ik} \hat{B}_{kj} = \sum_{k=1}^{n} b_{ik} A_{jk}$$

Нам надо показать, что последнее выражение равно нулю. Давайте рассмотрим матрицу B и заменим в ней j-ю строку на i-ю, все остальные оставим нетронутыми. Обозначим полученную матрицу через B'. Тогда

$$B' = \begin{pmatrix} * & \dots & * & \dots & * \\ b_{i1} & \dots & b_{ik} & \dots & b_{in} \\ * & \dots & * & \dots & * \\ b_{i1} & \dots & b_{ik} & \dots & b_{in} \\ * & \dots & * & \dots & * \end{pmatrix}$$

Давайте посчитаем определитель B' двумя способами. С одной стороны $\det(B') = 0$ так как в матрице есть две одинаковые строки. С другой стороны, давайте разложим определитель $\det(B')$ по j-ой строке

$$\det(B') = \sum_{k=1}^{n} b_{ik} A_{jk}$$

Что и требовалось доказать.

В качестве непосредственного следствия этого утверждения получаем явные формулы обратной матрицы. 41

Утверждение 31 (Явные формулы обратной матрицы). Пусть $B \in \mathrm{M}_n(\mathbb{R})$ – обратимая матрица, тогда

$$B^{-1} = \frac{1}{\det(B)}\hat{B}$$

Заметим, что в случае матрицы 2 на 2 формулы принимают следующий вид

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

4.9 Формулы Крамера

Пусть $A \in \mathrm{M}_n(\mathbb{R})$ – произвольная матрица и $b \in \mathbb{R}^n$ – столбец. Рассмотрим систему линейных уравнений Ax = b. Давайте в матрице A i-ый столбец заменим на b, а остальные столбцы оставим как есть. Обозначим полученную матрицу через \bar{A}_i . Определим $\Delta = \det(A)$ и $\Delta_i = \det(\bar{A}_i)$.

Мы знаем, что данная система имеет единственное решение для любого b тогда и только тогда, когда матрица A обратима. Следующее утверждение дает явные формулы для координат решения системы в этом случае.

Утверждение 32 (Формулы Крамера). Пусть $A \in M_n(\mathbb{R}), x, b \in \mathbb{R}^n$ и выполнено равенство Ax = b. Тогда $\Delta \cdot x_i = \Delta_i$ для любого i.

Доказательство. Рассмотрим матрицу A как строку из столбцов $A = (A_1 | \dots | A_n)$, где A_i – столбцы матрицы A. Тогда равенство Ax = b, пользуясь блочными формулами, можно переписать так $x_1A_1 + \dots + x_nA_n = b$. Давайте посчитаем определитель \bar{A}_i , пользуясь последним равенством.

$$\det(\bar{A}_i) = \det(A_1|\dots|b|\dots|A_n) = \det(A_1|\dots|\sum_{k=1}^n x_k A_k|\dots|A_n) = \sum_{k=1}^n x_k \det(A_1|\dots|A_k|\dots|A_n)$$

В последней формуле, если $k \neq i$, то слагаемое имеет два одинаковых столбца A_i . Потому остается только одно слагаемое для k = i. Получаем

$$\det(\bar{A}_i) = x_i \det(A_1 | \dots | A_i | \dots | A_n) = x_i \det(A)$$

Что и требовалось.

Заметим, что если $\Delta = \det(A) \neq 0$, то имеется единственное решение системы Ax = b для любой правой части b и координаты этого решения заданы по формулам $x_i = \frac{\Delta_i}{\Delta}$. Однако, если $\Delta = \det(A) = 0$, то либо решений бесконечное число, либо их вообще нет. В этом случае единственная информация из формул Крамера это: $\Delta_i = 0$.

4.10 Характеристический многочлен

Пусть $A \in \mathcal{M}_n(\mathbb{R})$ – произвольная квадратная матрица и $\lambda \in \mathbb{R}$. Рассмотрим функцию $\chi_A(\lambda) = \det(\lambda E - A)$.

Утверждение 33. Пусть $A \in M_n(\mathbb{R})$. Тогда верно

- 1. Функция $\chi_A(\lambda)$ является многочленом степени n со старшим коэффициентом 1.
- 2. Для произвольного числа λ верно, что $\lambda \in \operatorname{spec}_{\mathbb{R}} A$ тогда и только тогда, когда $\chi_A(\lambda) = 0.$

 $^{^{41}}$ Заметим, что для формулы требуется условие $\det(B) \neq 0$. Однако, матрица обратима тогда и только тогда, когда $\det(B) \neq 0$. Один из способов это показать – применить \det к равенству $BB^{-1} = E$ и увидеть, что $\det(B) \det(B^{-1}) = 1$. А в обратную сторону – явные формулы.

 $^{^{42}}$ Здесь x_i – координаты вектора x.

 $^{^{43}}$ Аналогичное утверждение верно и для $\operatorname{spec}_{\mathbb C} A.$

Доказательство. (1) Давайте посмотрим на явную формулу определителя

$$\det B = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) b_{1\sigma(1)} \dots b_{n\sigma(n)}$$

Заметим, что данное выражение является многочленом от коэффициентов матрицы A, причем все его слагаемые имеют степень n. Теперь, когда мы считаем характеристический многочлен, мы находим $\det(\lambda E - A)$. То есть вместо b_{ii} мы должны подставить $\lambda - a_{ii}$, а вместо b_{ij} взять $-a_{ij}$ (при $i \neq j$). То есть мы в многочлен от многих переменных подставляем либо числа, либо линейный многочлен от λ . Понятно, что результатом будет многочлен от λ причем степени уж точно не больше n. Теперь давайте поймем какая будет у него степень и старший коэффициент.

$$\lambda E - A = \begin{pmatrix} \lambda - a_{11} & \dots & -a_{1n} \\ \vdots & \ddots & \vdots \\ -a_{n1} & \dots & \lambda - a_{nn} \end{pmatrix}$$

Ясно, что максимальная степень по λ может вылезти только из слагаемого являющегося произведением диагональных элементов – $(\lambda - a_{11}) \dots (\lambda - a_{nn})$. А его старший член λ^n . Вот и все.

(2) Вспомним, что $\lambda \in \operatorname{spec}_{\mathbb{R}} A$ тогда и только тогда, когда $A - \lambda E$ – необратимая матрица или что то же самое, $\lambda E - A$ – необратимая матрица. Матрица необратима тогда и только тогда, когда ее определитель ноль. Потому $\lambda \in \operatorname{spec}_{\mathbb{R}} A$ тогда и только тогда, когда $\det(\lambda E - A) = 0$, то есть $\chi_A(\lambda) = 0$. Что и требовалось. \square

Определение 34. Для произвольной матрицы $A \in \mathrm{M}_n(\mathbb{R})$ многочлен $\chi_A(\lambda)$ называется xapaкmepucmuческим многочленом матрицы <math>A.

Явные формулы для коэффициентов характеристического многочлена Вначале давайте введем некоторые обозначения. Пусть $A \in \mathrm{M}_n(\mathbb{R})$ – некоторая матрица. Рассмотрим произвольное k элементное подмножество в множестве чисел от 1 до n заданное в виде $i_1,\ldots,i_k{}^{44}$ Вычеркнем из матрицы A столбцы и строки с этими номерами и обозначим полученную матрицу через R_{i_1,\ldots,i_k} . Графически эта процедура выглядит так:

$$i_{1} \\ \vdots \\ i_{k} \\ \begin{bmatrix} R_{1\,1} & \vdots & \cdots & \vdots & \\ a_{1i_{1}} & \cdots & \vdots & \\ \hline a_{i_{1}1} & \cdots & \vdots & \\ \hline a_{i_{1}1} & \cdots & & & \\ \vdots & & \ddots & & \vdots \\ \hline a_{i_{k}1} & \cdots & & & & \\ \hline a_{ni_{k}1} & \cdots & &$$

Пользуясь этими обозначениями покажем следующее.

Утверждение 35. Пусть $A \in \mathrm{M}_n(\mathbb{R})$ и его характеристический многочлен имеет вид

$$\chi_A(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_1\lambda + a_0$$

Tог ∂a

1. В обозначениях выше, для коэффициентов a_k верна следующая формула 45

$$a_k = (-1)^{n-k} \left(\sum_{i_1 < \dots < i_k} \det R_{i_1, \dots, i_k} \right)$$

⁴⁴Здесь предполагается, что $i_1 < \ldots < i_k$.

 $^{^{45}}$ Заметим, что эта формула также имеет смысл при k=0 и при k=n. Если k=0, то множество индексов пусто \varnothing и $R_\varnothing=A$, потому формула превращается в равенство $a_0=(-1)^n\det A$. При условии k=n, мы вычеркиваем все строки из матрицы и в этом случае $R_{1,\ldots,n}\in \mathrm{M}_0(\mathbb{R})$. Такого объекта не существует, но мы можем для удобства считать, что в этом случае формула означает $\det R_{1,\ldots,n}=1$.

2.
$$a_0 = (-1)^n \det A$$
.

3.
$$a_{n-1} = -\operatorname{tr} A$$
.

Доказательство. (1) Введем обозначения для столбцов матрицы $A = (A_1 | \dots | A_n)$ и пусть $e_i \in \mathbb{R}^n$ – столбец, у которого i-я координата равна 1, а все остальные 0. Нам надо посчитать $\det(\lambda E - A) = (-1)^n \det(A - \lambda E)$. Тогда,

$$\det(A - \lambda E) = \det(A_1 - \lambda e_1 | \dots | A_n - \lambda e_n)$$

Теперь надо раскрыть последний определитель по полилинейности. ⁴⁶ Всего у нас будет 2^n слагаемых, каждое из которых – это определитель матрицы состоящей из столбцов A_i или $-\lambda e_i$, стоящих вперемешку.

Давайте для определенности считать, что у нас n = 5, тогда мы считаем

$$\det(A_1 - \lambda e_1 | A_2 - \lambda e_2 | A_3 - \lambda e_3 | A_4 - \lambda e_4 | A_5 - \lambda A_5)$$

Среди слагаемых давайте посмотрим на слагаемое, содержащее 2 столбца матрицы A и 3 столбца вида $-\lambda e_i$, например, такое

$$\det(A_1|-\lambda e_2|A_3|-\lambda e_4|-\lambda e_5) = \det \begin{pmatrix} a_{11} & 0 & a_{13} & 0 & 0\\ a_{21} & -\lambda & a_{23} & 0 & 0\\ a_{31} & 0 & a_{33} & 0 & 0\\ a_{41} & 0 & a_{43} & -\lambda & 0\\ a_{51} & 0 & a_{53} & 0 & -\lambda \end{pmatrix}$$

Давайте последовательно разлагать этот определитель по 2-ому, 4-ому и 5-ому столбцам. Обратим внимание, что $-\lambda$ всегда будут стоять на диагонали, потому знаки всех алгебраических дополнений будут положительными:

$$\det \begin{pmatrix} a_{11} & 0 & a_{13} & 0 & 0 \\ a_{21} & -\lambda & a_{23} & 0 & 0 \\ a_{31} & 0 & a_{33} & 0 & 0 \\ a_{41} & 0 & a_{43} & -\lambda & 0 \\ a_{51} & 0 & a_{53} & 0 & -\lambda \end{pmatrix} = (-\lambda) \det \begin{pmatrix} a_{11} & a_{13} & 0 & 0 \\ a_{31} & a_{33} & 0 & 0 \\ a_{41} & a_{43} & -\lambda & 0 \\ a_{51} & a_{53} & 0 & -\lambda \end{pmatrix} = (-\lambda)^2 \det \begin{pmatrix} a_{11} & a_{13} & 0 \\ a_{31} & a_{33} & 0 \\ a_{51} & a_{53} & -\lambda \end{pmatrix} = (-\lambda)^3 \det \begin{pmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{pmatrix}$$

В общем случае слагаемое с k столбцами вида $-\lambda e_i$ является определителем матрицы вида

$$i_1 \\ \vdots \\ i_k \\ \begin{pmatrix} R_{1\,1} & \vdots & \ddots & \vdots \\ \hline a_{i_11} & \dots & -\lambda & & & \dots & a_{i_1\,n} \\ \vdots & & \ddots & & \vdots \\ \hline a_{i_k1} & \dots & & & -\lambda & \dots & a_{i_k\,n} \\ \hline R_{k+1\,1} & \vdots & \dots & \vdots & & \\ \hline a_{0} & & & & & & \\ \hline R_{k+1\,k+1} & \vdots & \dots & \vdots & & \\ \hline a_{0} & & & & & & \\ \hline \end{array} \right) = I_{i_1,\dots,i_k}$$

Раскладывая этот определитель по столбцам i_1, \ldots, i_k мы получаем

$$\det I_{i_1,\ldots,i_k} = (-\lambda)^k \det R_{i_1,\ldots,i_k}$$

Слагаемые при λ^k вылезут, когда ровно k столбцов имеют вид $-\lambda e_i$. Остается не забыть, что мы считали $(-1)^n \chi_A(\lambda)$.

- (2) Свободный член многочлена $\chi_A(\lambda)$ всегда равен $\chi_A(0) = \det(0E A) = \det(-A) = (-1)^n \det(A)$, что и требовалось.
 - (3) Для подсчета a_{n-1} воспользуемся формулой, получим 47

$$a_{n-1} = (-1)^{n-(n-1)} \sum_{i=1}^{n} \det R_{1,\dots,\hat{i},\dots,n}$$

⁴⁶Думать про это выражение надо так: надо мысленно заменить вертикальные черточки умножением и считать, что мы раскрываем скобки в произведении.

 $^{^{47}}$ Здесь \hat{i} означает, что индексiпропущен.

Но заметим, что $R_{1,\dots,\hat{i},\dots,n}=a_{ii},$ а значит предыдущее равенство превращается в

$$a_{n-1} = (-1)^{n-(n-1)} \sum_{i=1}^{n} a_{ii} = -\operatorname{tr} A$$

Примеры

1. Если $A \in M_1(\mathbb{R})$, то есть $A = a \in \mathbb{R}$ – число, то $\chi_A(\lambda) = \lambda - a$.

2. Если $A \in M_2(\mathbb{R})$, то $\chi_A(\lambda) = \lambda^2 - \operatorname{tr} A\lambda + \det A$.

3. Если $A \in M_3(\mathbb{R})$, то $\chi_A(\lambda) = \lambda^3 - \operatorname{tr} A\lambda^2 + a_1\lambda - \det A$, где

$$a_1 = \det \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} + \det \begin{pmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{pmatrix} + \det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

Стоит отметить, что считать характеристические многочлены от матриц большего размера через эти формулы практически не целесообразно. Максимальный разумный размер – матрица 4 на 4. Самый быстрый способ остается алгоритм Гаусса для подсчета определителя $\det(\lambda E - A)$ с символьными коэффициентами.

4.11 Теорема Гамильтона-Кэли

Многочлены с матричными коэффициентами Обозначим через $M_n(\mathbb{R})[t]$ множество многочленов от переменной t имеющих матричные коэффициенты из $M_n(\mathbb{R})$, т.е.

$$M_n(\mathbb{R})[t] = \{A_0 + A_1t + \ldots + A_kt^k \mid A_i \in M_n(\mathbb{R})\}\$$

здесь t – формальная переменная, которая представляет собой неизвестное число. Про эти многочлены надо думать как про картинки. Такие картинки можно складывать и умножать по формулам известным для многочленов с обычными числовыми коэффициентами:

• Сумма.

$$\left(\sum_{i} A_{i} t^{i}\right) + \left(\sum_{j} B_{j} t^{j}\right) = \sum_{i} (A_{i} + B_{i}) t^{i}$$

• Произведение.

$$\left(\sum_{i} A_{i} t^{i}\right) \left(\sum_{j} B_{j} t^{j}\right) = \sum_{k} \left(\sum_{s+t=k} A_{s} B_{t}\right) t^{k}$$

Надо лишь отметить, что в произведении нельзя переставлять местами A_s и B_t , так как матрицы вообще говоря не перестановочны.

Подстановка матрицы в многочлен Теперь для произвольного многочлена $f \in \mathrm{M}_n(\mathbb{R})[t]$ и матрицы $D \in \mathrm{M}_n(\mathbb{R})$ определим подстановку матрицы D в многочлен f справа:

$$f(D) = A_0 + A_1 D + \ldots + A_k D^k$$

т.е. мы вместо t подставляем всюду матрицу D. Аналогично, можно определить левую подстановку:

$$(D)f = A_0 + DA_1 + \ldots + D^k A_k$$

Надо отметить, что вообще говоря $f(D) \neq (D)f$. Мы всегда будем пользоваться только правой подстановкой.

Свойства подстановки Пусть $f,g \in \mathrm{M}_n(\mathbb{R})[t]$ – два многочлена и $D \in \mathrm{M}_n(\mathbb{R})$ – некоторая матрица. Сделаем следующие замечания:

1. Всегда верно равенство

$$f(D) + g(D) = (f+g)(D)$$

2. Для произведения вообще говоря выполнено

$$f(D)g(D) \neq (fg)(D)$$

Действительно, возьмем $f(t)=t,\ g(t)=Bt,\$ тогда $(fg)(t)=Bt^2.$ В этом случае $f(D)g(D)=DBD,\$ а (fg)(D)=BDD. Вообще говоря, имеем $DBD\neq BDD$ если матрицы B и D не коммутируют.

3. Если D коммутирует со всеми коэффициентами матрицы g, то верно равенство

$$f(D)g(D) = (fg)(D)$$

Это видно непосредственно из определения умножения и подстановки.

Теорема Теперь мы готовы к формулировке и доказательству полезного результата.

Утверждение 36 (Теорема Гамильтона-Кэли). Пусть $A \in M_n(\mathbb{R})$. Тогда $\chi_A(A) = 0$.

Прежде чем доказывать теорему, давайте объясним в чем сложность и почему дурацкие доказательства не работают. Смотрите, у нас $\chi_A(\lambda) = \det(\lambda E - A)$. Хочется подставить вместо λ матрицу A и сказать, что определитель нулевой матрицы равен 0. В этом рассуждении есть лажа. Давайте продемонстрируем ее на матрице 2 на 2. Пусть

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

Тогда

$$\det(A - \lambda E) = \det\left(\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} - \lambda E \right) = \det\begin{pmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{pmatrix}$$

Так вот, последнее равенство верно если λ является числом. Если же λ является матрицей, то оно непонятно, что значит. Можно понимать правую часть как блочную матрицу 2 на 2 из блоков 2 на 2 (т.е. всего 4 на 4), но тогда это просто не верное равенство. Это рассуждение можно докрутить до верного, но тогда в правой части надо использовать вместо определителя более хитрую его версию. Подобное рассуждение растет из коммутативной алгебры, где доказательство естественным образом сводится к формулам Крамера, но для его освоения надо знать, что такое кольца и модули. Мы же пойдем чуть более простым путем.

Доказательство. Рассмотрим матрицу $\lambda E - A$, где λ – неизвестное число. Введем следующее обозначение $R(\lambda) = \widehat{\lambda E - A}$.

Заметим, что каждый коэффициент $R(\lambda)$ является многочленом от λ , т.е. $R(\lambda) = (r_{ij}(\lambda))$ и $r_{ij}(\lambda)$ – многочлен. То есть $r_{ij}(\lambda) = \sum_k r_{ijk} \lambda^k$. Тогда $R(\lambda) = \sum_k R_k \lambda^k$, где $R_k = (r_{ijk})$. То есть $R(\lambda) \in M_n(\mathbb{R})[\lambda]$. Для ясности, давайте проиллюстрируем сказанное на следующем примере.

$$\begin{pmatrix} 5 - \lambda + 2\lambda^2 & 3 \\ 4 - \lambda & 2 + \lambda \end{pmatrix} = \begin{pmatrix} 5 & 3 \\ 4 & 2 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix} \lambda + \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \lambda^2$$

Теперь применим формулы для перемножения матрицы с ее присоединенной из утверждения 30 для матрицы $\lambda E - A$, получим

$$(\lambda E - A)R(\lambda) = R(\lambda)(\lambda E - A) = \det(\lambda E - A)E = \chi_A(\lambda)E$$

Нас интересует только равенство

$$R(\lambda)(\lambda E - A) = \chi_A(\lambda)E$$

Тогда рассмотрим многочлены $f(\lambda) = R(\lambda)$, $g(\lambda) = \lambda E - A$. В этом случае $(fg)(\lambda) = \chi_A(\lambda)E$. Возьмем в качестве матрицы D матрицу A. Заметим, что она коммутирует с коэффициентами g, потому что это E и -A. Значит верно равенство f(D)g(D) = (fg)(D). Последнее означает

$$0 = R(A)(AE - A) = \chi_A(A)E = \chi_A(A)$$

Что и требовалось доказать.