

金山云互联网金融解决方案

杨敏强北京金山云网络技术有限公司

提纲

- 金山云产品家族
 - 金山云应用场景
 - 互联网应用
 - 视频应用
 - 深度学习应用

• 金山云互联网金融行业应用场景

金山集团简介

中国领先的应用软件产品和服务供应商, 26年以上历史, 2家上市公司(金山软件 HK03888, 猎豹移动 NYSE CMCM)

金山云:国内领先的云计算服务提供商,5年实现跨越式发展

完善的云服务产品家族,帮助企业搭建混合云应用

金山公有云用例模型

- 账号管理员
 - 通过控制台对所有账单操作负责(比如创建、 释放云服务器)
- 账号用户
 - 通过控制台对非账单操作负责(比如修改云服务器网络设置)
- 实例管理员
 - 管理云服务实例,比如在云服务器上部署应用)
- 应用用户
 - 访问运行在云服务实例上的应用
- 集成系统
 - 通过API实现云服务实例的操作自动化

完备的计算、存储和网络基础设施,是金山云服务的基石

丰富的公有云运维经验,确保交付高安全、高可用公有云服务

• 实时监控

•智能定位

• 自动修复

众多客户已经基于金山云加速业务创新

- 云存储解决方案
 - 小米
 - WPS
- ・医疗云解决方案
 - 北大人民医院
- ・政务云解决方案
 - 北京政务云
- ・混合云解决方案
 - 当当网
 - 新网银行

提纲

• 金山云产品家族

• 金山云应用场景

- 互联网应用
- 视频应用
- 深度学习应用

• 金山云互联网金融行业应用场景

互联网应用典型逻辑架构

互联网应用上云部署架构

计算: 搭建高稳定、高可用、高安全的计算环境

- 服务器类型
 - 云服务器
 - 云物理机
 - 专属云
 - GPU云服务器
 - GPU物理服务器
- 存储类型
 - 本地硬盘
 - 云硬盘
- 通过冗灾组、可用区、数据中 心实现云服务器高可用

网络: 创建安全、互联互通的网络环境

- 实现不同类型 服务器的统一 组网
- 完备的网络隔 离和安全访问 策略
- 通过EIP和NAT实现互联网互访

• 通过专线和VPN整合自有数据中心

KRDS:基于MySQL的关系数据库服务

• 高可用MySQL实例

• 完善的监控信息

• 自动备份数据

• 详尽的操作日志

缓存数据库Redis:实现对常用数据的快速访问

- 通过控制台即时开通、部署、配置和扩容Redis服务
- 支持Redis集群模 式和单主从模式
- 通过白名单或VPC 策略对服务访问进 行安全控制
- 缓存服务监控告警

对象存储KS3:存储和操作大容量图像、视频等文件

- 提交:控制台、命令行、API
- 管理: 图片处理, 访问控制

- 流量统计分析:按天、网络线路、地区统计
- 访问统计分析:每个对象访问次数统计

内容分发网络(CDN):提高用户访问速度,分析用户访问行为数据

- 页面加速
 - 静态加速
 - 动态加速
 - 动静混合加 速
- 多媒体文件加速
 - 音视频下载
 - 软件下载
 - 游戏下载

KMR: 实现日志数据分析

- 基于Ambari实现 集群快速部署和 扩容
- 集成金山云告警 服务
- 利用KRDS实现 支撑数据库的高 可用

云监控和云告警:实时监控云服务实例,并自动发送告警信息

- 完善的监控 指标
- 可自定义的 告警策略
- 自定义监控 仪表盘

提纲

• 金山云产品家族

- 金山云应用场景
 - 互联网应用

- 视频应用
- 深度学习应用

• 金山云互联网金融行业应用场景

企业视频应用架构

直播控制台:灵活配置和监控直播场景

- 推流
- 拉流
- 录制
- 截屏
- 转码
- 安全

点播控制台:管理点播视频,统计点播数据

云点播

统计报表

• 管理点播视频

• 配置转码规则

• 点播数据统计 分析

提纲

• 金山云产品家族

- 金山云应用场景
 - 互联网应用
 - 视频应用

- 深度学习应用

• 金山云互联网金融行业应用场景

深度学习是高维浮点密集型计算

• 基于卷积神经网络的深度学习算法进行手写数字识别(以mnist_deep.py为例)

[14,14,32]

[14,14,64]

- 模型参数个数: (5*5*32+32) + (5*5*64+64) + (7*7*64*1024) + (1024*10)

Pooling 2×2

[28,28,32]

- 大量的训练数据要求大存储,高吞吐
- 大量矩阵运算

[28,28,1]

Conv

5×5×32

[7,7,64]

[1024]

[10]

采用GPU进行深度学习,大幅度提高模型训练和推理速度

\$python mnist_deep.py

金山云基于GPU的深度学习laaS

GPU服务器和标准CPU服务器融合

• 融合高速内部网络

• 融合大容量 存储

KDL: 深度学习PaaS平台,快速实践深度学习技术

- 模型开发
 - 定义深度学习训练模型
- 模型训练
 - 执行模型训 练任务
- 模型服务
 - 利用模型进行行推理

提纲

• 金山云产品家族

- 金山云应用场景
 - 互联网应用
 - 视频应用
 - 深度学习应用

金山云互联网金融行业应用场景

整合的混合云平台

利用公有云的弹性实施大数据平台

利用深度学习技术提升风控能力

- AutoEncoder自编码器算法实现欺诈检测
- 训练数据
 - 284,807交易数据,%0.17是欺诈,数据非常不平衡
 - 出于隐私考虑,数据经过主成分分析(Principal Component Analysis, PCA),难以进行特征抽取
- 利用Tensorflow实现基于AutoEncoder的欺诈检测过程
 - 定义神经网络
 - n_input = train_x.shape[1]
 - n_hidden_1 = 15
 - n_output = train_x.shape[1]
 - 激活函数: tanh(双曲正切)
 - Cost: MSE (均方误差)
 - optimizer = tf.train.RMSPropOptimizer
 - 进行训练,保存模型
 - 对模型进行测试

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	

Credit card fraud detection 1 – using auto-encoder in TensorFlow: https://weiminwang.blog/2017/06/23/credit-card-fraud-detection-using-auto-encoder-in-tensorflow-2/

全球高品质云服务专家