Cálculo II.

1º DE GRADO EN MATEMÁTICAS Y DOBLE GRADO INFORMÁTICA-MATEMÁTICAS. Curso 2019-20. DEPARTAMENTO DE MATEMÁTICAS

Hoja 8

Curvas. Integrales de línea. Fórmula de Green

1.- Hallar el vector tangente (normalizado) a la trayectoria $\gamma(t)=(t^2,t^3)$ en el punto (1,-1). Escribir la ecuación de la recta tangente correspondiente. ¿Existe la recta tangente en el punto (0,0)?

Solución: $\frac{1}{\sqrt{13}}(-2,3)$. $\eta(t) = (1,-1) + (t+1)\frac{1}{\sqrt{13}}(-2,3)$ o 2y = -3x + 1. No.

2.- Para las siguientes trayectorias, hallar la velocidad, la rapidez (es decir, la longitud del vector velocidad), la aceleración y la ecuación de la recta tangente en el punto correspondiente al valor de t dado:

(a) $\gamma(t) = (e^{-t} \sin t, e^{-t} \cos t), \quad t = 2\pi.$ (b) $\sigma(t) = (e^{-2t} \sin(2t), e^{-2t} \cos(2t), e^{-2t}), \quad t = \frac{\pi}{2}.$

Solución: (a) $\gamma'(t) = e^{-t}(\cos t - \sin t, -\cos t - \sin t), \quad \|\gamma'(t)\| = \sqrt{2}e^{-t}, \quad \gamma''(t) = 2e^{-t}(-\cos t, \sin t),$ $\eta(t) = e^{-2\pi}(0, 1) + (t - 2\pi)e^{-2\pi}(1, -1)$ o $y = -x + e^{-2\pi}$.

3.- Hallar la longitud de la curva en el intervalo indicado:

(a) $\sigma(s) = (s, 4s, s^2), 0 \le s \le 4$.

(b) $\sigma(u) = (e^{-u} \cos u, e^{-u} \sin u), 0 \le u < +\infty.$

Solución: (b) $\sqrt{2}$

- 4.- Hallar la longitud del arco de cicloide descrito por $x = R(t \sin t), y = R(1 \cos t), \cos 0 \le t \le 2\pi$. Solución: (b) 8R
- 5.- Hallar la longitud del arco de hipocicloide descrito por $x(t) = \cos^3 t$, $y(t) = \sin^3 t$, $0 \le t \le \pi/2$. Solución: 6a
- 6.- Calcular la longitud de la curva:

$$\sigma(t) = \begin{cases} \left(\cos t, \sin t, 3t\right) & \text{si } 0 \le t \le \pi, \\ \left(-1, -t + \pi, 3t\right) & \text{si } \pi \le t \le 2\pi. \end{cases}$$

Solución: $2\pi\sqrt{10}$

7.- Dada la curva γ mediante las ecuaciones paramétricas $x=t\cos t,\ y=t\sin t,\ z=t,\ 0\leq t\leq 2\pi,$ calcúlese la integral $\int_{\mathbb{R}}z\,ds;$

Solución: $\frac{1}{3} \left[(2 + 4\pi^2)^{3/2} - 2\sqrt{2} \right]$

8.- Dibujar la curva descrita por la trayectoria σ dada por $\sigma(t)=(\text{sen }t,\cos t,t),\, 0\leq t\leq \pi,\, y$ hallar la integral $\int_{\sigma}f\,ds,\, d\text{onde }f(x,y,z)=x+y+z.$

Solución: $\sqrt{2}\left(2+\frac{\pi^2}{2}\right)$

9.- Hallar la integral $\int_{\Gamma} F(x,y) \cdot ds$ del campo vectorial F a lo largo de la curva orientada Γ que se indica. Dibujar en cada caso el camino de integración.

 $(a) \ F(x,y) = (x^2 + y^2, x^2 - y^2), \ \text{a lo largo de la curva} \ y = 1 - |1 - x| \ \text{desde} \ (0,0) \ \text{hasta} \ (2,0).$

(b) F(x,y)=(x+y,x-y), siendo Γ la elipse $b^2x^2+a^2y^2=a^2b^2$ recorrida en sentido antihorario.

Solución: (a) $\frac{4}{3}$ (b) 0

10.- Para cada $(x,y) \in \mathbb{R}^2$ sea F(x,y) el vector unitario que apunta desde (x,y) hacia el origen de coordenadas. Calcular el trabajo que realiza el campo F para desplazar una partícula desde la posición (2a,0) hasta (0,0)a lo largo de la semicircunferencia superior de $(x-a)^2 + y^2 = a^2$.

11.- Calcular la integral $\int_{\Gamma} y \, dx + x^2 \, dy$, cuando Γ es la curva :

$$(a) \quad x^2 + y^2 = a x$$

(b)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

recorrida en el sentido antihorario.

12.- Hallar el trabajo que realiza el campo $F(x,y)=(y^2+x^3,x^4)$ al recorrer el contorno del cuadrado $[0,1]\times[0,1]$ en sentido antihorario.

Solución: 0

13.- Dados los puntos A=(2,0), B=(1,-1), C=(0,-1) y D=(0,0) en \mathbb{R}^2 , sea Γ el camino formado por el arco AB de la circunferencia de centro (1,0) y radio 1, y los segmentos de recta BC, CD, y DA.

Calcular el valor de la integral $\int_{\Gamma} (x^4 - x^3 e^x - y) dx + (x - y \arctan y) dy$, con Γ orientada en sentido horario.

Solución: $2 + \frac{\pi}{2}$

14.- Para cada uno de los siguientes campos vectoriales F(x,y) definidos en \mathbb{R}^2 , determinar si son gradientes de algún potencial $f: \mathbb{R}^2 \to \mathbb{R}$. En caso afirmativo, calcular el potencial f.

(a) $F(x,y) = (3x^2y, x^3)$

(b) $F(x,y) = (\operatorname{sen} y - y \operatorname{sen} x + x, \cos x + x \cos y + y)$

(c) $F(x,y) = (2xe^y + y, x^2e^y + x - 2y)$ (d) $F(x,y) = (\operatorname{sen}(xy) + xy \cos(xy), x^2\cos(xy))$.

Solución: (a) $f(x,y) = x^3y$ (b) $f(x,y) = x \sin y + y \cos x + \frac{1}{2}(x^2 + y^2)$ (c) $f(x,y) = x^2e^y + xy - y^2$ (d) $f(x,y) = x \sin(xy)$.

- 15.- Evaluar $\int_{\Gamma} (2x^3 y^3) dx + (x^3 + y^3) dy$, donde Γ es el círculo unidad orientado en el sentido antihorario. Solución: $\frac{3}{2}\pi$
- 16.- Verificar el teorema de Green para el campo (P,Q) con $P(x,y)=2\,x^3-y^3$ y $Q(x,y)=x^3+y^3$ y la región anular (corona) $a^2\leq x^2+y^2\leq 4\,a^2$.
- 17.- Sea A el área del recinto acotado por una curva γ de clase C^1 , simple y cerrada en el plano y orientada en sentido antihorario. Calcular la integral de línea $\int_{C} x \, dy - 4y \, dx$ en función de A.

Solución: 5A