

PDV 08 2019/2020

Úvod do distribuovaných systémů

Michal Jakob

michal.jakob@fel.cvut.cz

Centrum umělé inteligence, katedra počítačů, FEL ČVUT

Paralelní výpočty

Distribuované výpočty

Studijní materiály

Slidy

Hlavní kniha: Maarten van Steen, Andrew S. Tanenbaum: **Distributed Systems (3.01 Edition),** 2017, k dispozici online: https://www.distributed-systems-3rd-edition-2017/

Sekundární kniha: George Coulouris, Jean Dollimore, Tim Kindberg, Gordon Blair: **Distributed Systems: Concepts and Design (5th Edition)**, 2011

Úvod do Distribuovaných Systémů

Dva generálové

Pouze **synchronizovaný útok uspěje** \rightarrow generálové se potřebují dopředu **shodnout na čase**, kdy oba zaútočí.

Komunikují skrze **posílání zpráv.** Poslané zprávy se mohou **ztratit**...

Jak zaručit, že zaútočí ve stejný čas?

Dva generálové

Možné řešení:

- Generál A: zaútočit za úsvitu!
- Generál B: potvrzuji, zaútočit za úsvitu!
- Generál A: potvrzuji, potvrzuji, zaútočit za úsvitu!
- Generál B:potvrzuji, potvrzuji, potvrzuji, zaútočit za úsvitu!
- **-** ...

Lze ukázat:

Řešení problému Dvou generálů za těchto předpokladů **neexistuje**!

Reality Check

Příklad: Výběr z bankomatu

- vyberete si z bankomatu v Praze 1000 Kč
- ze zůstatku z vašeho účtu se odečte 1000 Kč

Problém **atomického commitu**: atomický commit je sada více operací, které jsou provedeny jako jedná operace.

 zúčastněné systémy musí zkoordinovat zda a kdy tyto operace budou provedeny

Pragmatické řešení problému Dvou Generálů

Předpokládejme, že pravděpodobnost chycení kurýra je p a že opakované zachycení kurýra jsou nezávislé jevy.

Možné řešení:

- Generál A pošle n kurýrů a každopádně zaútočí za úsvitu
- Generál B zaútočí za úsvitu pokud k němu dorazí aspoň jeden kurýr

Pravděpodobnost **nekoordinovaného útoku** je p^n .

- snížit pravděpodobnost nekoordinovaného útoku můžeme posláním více kurýru ...
- ... za cenu nutnosti poslat více kurýrů

Jistoty koordinovaného útoku ale dosáhnout nemůžeme (pokud p>0).

Obecně

Řešitelnost problémů v distribuovaných systémech

- Řada zdánlivě jednoduchých problému nemá v distribuovaných systémech 100% řešení...
- …ale mají pragmatická řešení.
- Některé problémy 100% řešení mají…
- ... ale jen za určitých předpokladů.

Pochopit, které problém jsou které, a jak se dají řešit je cílem tohoto předmětu.

Co to je distribuovaný systém?

Distribuované systémy jsou všude

Od té doby, co existují počítačové sítě (natož Internet!) už prakticky **neexistují systémy**, které by **nebyly** aspoň částečně **distribuované**.

Co to je DS?

Definice (optimistická)

Soubor (*collection*) **autonomních výpočetních elementů**, které se uživateli jeví jako **jeden koherentní systém.** [Andrew Tanenbaum]

Definice (pesimistická)

Systém, ve kterém selhání počítače, o které jste vůbec nevěděli tušení, že existuje, učiní váš vlastní počítač nepoužitelný. [Leslie Lamport]

Definice (pragmatická)

Soubor (*collection*) nezávislých, **autonomních výpočetních elementů** propojených **komunikační sítí.** Výpočetní elementy komunikují formou **posílání zpráv** za účelem určité formy **spolupráce**.

Příklady distribuovaných systémů

Mezibankovní Uber/Lyft/ **MMOG** Liftago platby Sensorové P2P sítě Blockchain sítě Řízení výrobní Datové Internet linky centrum

8

Je počítač distribuovaný systém?

Není* → Proč?

(moderní počítače se jim v lecčems blíží)

Charakteristiky DS

V distribuovaném systému:

- Počítače pracují souběžně (concurrently)
- Počítače nesdílejí globální hodiny
- Počítače selhávají nezávisle

Naopak:

Paralelní systémy sdílejí

- Paměť: předávání stavu používá sdílenou paměť a synchronizační mechanismy
- Hodiny: přístup ke společným hodinám
- 3. Osud: selže buď nic nebo vše

Cíle při vývoji DS

Výkon/Škálovatelnost

Schopnost řešit více úloh nebo větší instance úloh, než je možné s jedním počítačem

Podobné jako u paralelních výpočtů, ale řeší i případy, když už jeden počítač nestačí.

Spolehlivost/Dostupnost

Schopnost zajistit (téměř) trvalou dostupnost požadovaných služeb

U paralelních výpočtů tento cíl typicky nemáme

zaměření distribuované části PDV

Další cíle: otevřenost, bezpečnost, ...

Nezávislá (a částečná) selhání

Nezávislá selhání **komplikují život vývojářům**

Algoritmy je třeba navrhnout tak, aby byly robustní vůči selhání.

n závislých procesů, pravděpodobnost selhání $p \rightarrow$ dostupnost $(1-p)^n$

Nezávislá selhání usnadňují život uživatelům

Replikace pomocí více nezávislých počítačů zvyšuje odolnost vůči selhání

n nezávislých procesů, pravděpodobnost selhání $p \rightarrow$ dostupnost $1-p^n$

Nejen odolnost, ale taky např. **výkonnost**

Proč existují DS?

Distribuce jako nástroj

volbou v softwarovém návrhu směřující k splnění specifických požadavků: odolnost vůči selhání, zvýšený výkon nebo poměr cena / výkon, nebo minimální QoS.

Např. replikované servery, cloud, ...

Inherentní distribuce

Aplikace vyžadující sdílení zdrojů nebo šíření informace mezi geograficky nebo organizačně vzdálenými entitami jsou "přirozené" distribuované systémy.

Např. banka se několika pobočkami, senzorová síť, ...

Hlavní typy DS

DS pro vysoko výkonnostní výpočty (high-performance computing)

Distribuované informační systémy

DS pro pervazivní výpočty/loT

DS pro spolehlivé a vysoko výkonnostní výpočty

DS jako nástroj pro zvýšení výkonů, spolehlivosti a ekonomické efektivity.

Model sdílené paměti se na multi-počítačové architektury **nepodařilo rozšířit** → Další škálování možné jen v paradigmatu distribuovaných výpočtů založených na posílání zpráv.

Výkonnost

Výkonnost, sdílení zdrojů Sdílení zdrojů, výkonnost, spolehlivost

Distribuované informační systémy

Distribuce vynucena příslušností jednotlivých výpočetních uzlů do **různých organizací.**

Hlavní výzva: spolehlivost a konzistence.

Pervazivní DS/IoT

Malé, mobilní výpočetní uzly, často **vtělené do fyzického prostředí**. Omezení na dosah a rychlost komunikace, a na spotřebu energie.

Distribuce vynucena nutností **fyzické blízkosti** uzlu k uživateli nebo

prostředí.

Hlavní výzva: efektivita, dostupnost,

Modelování DS

Klíčové elementy DS

Výpočet Interakce Čas Selhání

Výpočet

Proces: jednotka výpočtu v distribuovaném systému (někdy nazýván uzel, hostitel, element, ...)

Množina (skupina) procesů: označována Π – je složena ze souboru N jednoznačně identifikovaných procesů p_1, p_2, \dots, p_N .

Klasické **předpoklady DS**:

- množina procesů je **konstantní** (*N* je dobře definováno)
- procesy se navzájem znají
- BÚNO: všechny procesy provádějí kopii stejného algoritmu (souhrn těchto kopií vytváří distribuovaný algoritmus)

V **reálných rozsáhlých** (někdy tzv. **extrémních)** distribuovaných systémech tyto předpoklady nemusí být splněny.

Interakce

Procesy komunikují zasíláním zpráv

- send(m, p) pošle zprávu m procesu p
- receive(m) přijme zprávu m

Zprávy mohou být v některých případech jednoznačně identifikovány

- odesílatelem zprávy
- sekvenčním číslem, které je lokální odesílateli

Klasickým předpoklad: každý pár procesů je propojen **obousměrným** komunikačním **kanálem** (point-point messaging)

 plně propojená topologie může být realizována pomocí směrování (routingu)

Čas

Přesné globální hodiny by umožnily globální uspořádání výpočetních kroků v DS. Bohužel **neexistují**.

Každý proces má své lokální hodiny.

Lokální hodiny nemusí ukazovat přesný čas.

Synchronizce lokálních hodin je možná jen s určitou přesností.

DS a Čas

V distribuovaných systémech je obtížné uvažovat o čase nejen kvůli absenci globálních hodin, ale také proto, že obecně nelze dát časové limity na komunikaci a délku výpočtů.

Různé možné modely:

- Asychronní DS
- Synchronní DS
- Částečně synchronní DS

Synchronní vs. Asynchronní

Asynchronní systém

- Žádné časové limity na relativní rychlost vykonávání procesů.
- Žádné časové limity na trvání přenosu zpráv.
- Žádné časové limity na časový drift lokálních hodin

Synchronní systém

- Synchronní výpočty: známe horní limit na relativní rychlost vykonávání procesů.
- Synchronní komunikace: známé horní limit na dobu přenosu zpráv.
- Synchronní hodiny: procesy mají lokální hodiny a je znám horní limit na rychlosti driftu lokálních hodin vzhledem k globálním hodinám.

Částečně synchronní DS

Částečná sychronicita: pro většinu systému je relativně snadné definovat časové limity, které platí **většinu času**. Občas se ale mohou vyskytnout období, během kterých tyto časové limity neplatí.

- zpoždění procesů: např. swappování, garbage collection
- zpoždění komunikace: přetížení sítě, ztráta zpráv (vyžadující jejich opakovaný přenos)

Prakticky užitečné systémy jsou částečně synchronní

- → Umožňuje v praxi vyřešit problémy, které jsou za předpokladu plně asynchronních DS neřešitelné.
 - některé z časových úseků synchronního běhu DS jsou dostatečně dlouhá na to, aby distribuovaný výpočet skončil

Selhání

Jak procesy, tak komunikační kanály mohou v DS selhat.

Selhání procesu

- havárie (crash/fail-stop): proces přestane vykonávat algoritmus (a reagovat na zprávy)
- libovolné (byzantské) selhání:
 proces může pracovat dále (a
 reagovat na zprávy), ale vykonává
 chybný algoritmus (z důvodu
 softwarový chyby nebo úmyslu)

Selhání kanálu

- ztráta zprávy (message drop): zpráva není doručena cílovému procesu (např. kvůli přetížení sítě nebo přetečení zásobníku v OS u přijímacího procesu)
- rozdělení (partitioning): procesy jsou rozdělené do disjunktních množin (oddílů - partitions) tak, že v rámci oddílu je komunikace možná, ale mezi oddíly nikoliv

V případě synchronních DS definujeme ještě **selhání časování**, pokud doba odezvy procesu nebo přenosu zprávy po síti vybočila z dohodnutého **časového rozmezí**.

Předpoklad na komunikační kanál

Dokonalý (perfect) kanál **Spolehlivé doručování**: Pokud proces p pošle zprávu procesu q ani p a ani q nehavaruje, pak q nakonec zprávu obdrží.

Žádná **duplikace**: Žádná zpráva není doručena vícekrát než jednou.

Žádné **vytváření**: Je-li zpráva m doručena procesu p, tak zpráva m byla dříve poslána nějakým procesem q procesu p.

Garantované pořadí doručování: Odešle-li proces p procesu q zprávy m_1 a m_2 , tak pokud byla m_1 odeslána dříve než m_2 , tak m_2 nemůže být doručena aniž by předtím byla doručena m_1 .

Spolehlivý kanál

FIFO kanál

Chybné předpoklady při vývoji DS

Řada DS je **zbytečně komplexních**. Komplexita je způsobena chybami, které je třeba později záplatovat. Chyby vycházejí z **mylných předpokladů**.

Typické mylné předpoklady

- Síť je spolehlivá
- Síť je zabezpečená
- Síť je homogenní
- Topologie sítě se nemění
- Síť ma nulovou latenci
- Neomezená kapacita sítě
- Systém má jednoho administrátora

Shrnutí

Distribuované systémy jsou všude kolem nás a jejich **význam** a složitost dále roste.

Základním rozdílem mezi paralelními a distribuovanými výpočty jsou: absence **sdílené paměti**, absence **globálních hodin** a nezávislá **selhání**.