Lemma 1: The Lebesgue integral for nonnegative measurable functions is translation invariant. If f is a nonnegative measurable function, then for all $c \in \mathbb{R}$, we know $\int f = \int f(x+c)$.

Proof. Suppose f is nonnegative measurable function and $c \in \mathbb{R}$. Let f' = f(x+c) and note that it is also a nonnegative measurable function. By definition of the Lebesgue integral we know that,

$$\int f = \sup \left\{ \int \varphi : 0 \le \varphi \le f, \ \varphi, \text{ is simple and integrable} \right\}.$$

 $\int f' = \sup \left\{ \int \psi : 0 \le \psi \le f(x+c), \ \psi, \text{ is simple and integrable} \right\}.$

Let,

$$S_f = \left\{ \int \varphi : 0 \le \varphi \le f, \varphi \text{ simple and integrable} \right\}$$

and define $S_{f'}$ analogously. Let $\int \varphi \in S_f$, and by definition we know that $0 \le \varphi \le f$. We have shown that $\int \varphi = \int \varphi(x+c)$, noting that $0 \le \varphi(x+c) \le f'$, we find $\int \varphi \in S_{f'}$. Hence $S_f \subseteq S_{f'}$. Now consider $\int \psi \in S_{f'}$, by definition we know that $0 \le \psi \le f(x+c)$ and therefore $0 \le \psi(x-c) \le f$ so we find that $\int \psi = \int \psi(x-c)$ so $\int \psi \in S_f$. Thus $S_f = S_{f'}$ and hence $\int f = \int f'$.

1. In your last homework you showed that Riemann integrable functions are measurable. Now show that the Riemann integral and the Lebesgue integral agree for such functions.

Proof. (Preface: Riemann integrals are denoted with (R), we also recall that the Lebesgue and Riemann integrals for step functions agree, therefore integrals of step functions will be denoted with just \int . Also this is Theorem 18.16 in the book) Let $f \ge 0$ be a Riemann integrable function defined on an interval [a, b]. As stated, we have shown f to be measurable in a previous homework. Recall the definition of a Riemann integrable function, there exists two sequences of step function (ℓ_n) and (u_n) with $\ell_n \le f \le u_n$ such that,

$$\sup_{n} \int_{a}^{b} \ell_{n} = (R) \int_{a}^{b} f = \inf_{n} \int_{a}^{b} u_{n}$$

However by monotonicity of the Lebesgue integral it also follows that,

$$\sup_{n} \int_{a}^{b} \ell_{n} \le \int_{a}^{b} f \le \inf_{n} \int_{a}^{b} u_{n}.$$

Hence,

$$\int_{a}^{b} f = (R) \int_{a}^{b} f.$$

2. Carothers 18.21 Suppose that f, f_n are non-negative measurable functions, that $f_n \to f$ and that $f_n \le f$ for all n. Show that $\int f = \lim_{n \to \infty} \int f_n$

Proof. Suppose hat f, f_n are non-negative measurable functions, that $f_n \to f$ and that $f_n \le f$ for all n. By the definition of the Lebesgue integral for non-negative measurable functions,

$$\int f = \sup \left\{ \int \varphi : 0 \le \varphi \le f, \varphi \text{ simple and integrable} \right\}.$$

Define the following set for a given function f,

$$S_f = \left\{ \int \varphi : 0 \le \varphi \le f, \varphi \text{ simple and integrable} \right\}.$$

Fix n, and let φ be a measurable simple function with the property that $0 \le \varphi \le f_n$, since $f_n \le f$ it follows that that $0 \le \varphi \le f$. Hence $S_{f_n} \subseteq S_f$, and therefore $\int f \ge \int f_n$ for all n, so therefore $\int f \ge \lim_{n \to \infty} \int f_n$.

Now by Fatou's Lemma it follows,

$$\int \left(\liminf_{n \to \infty} f_n \right) \le \liminf_{n \to \infty} \int f_n$$

$$\int \left(\lim_{n \to \infty} f_n \right) \le \liminf_{n \to \infty} \int f_n$$

$$\int f \le \liminf_{n \to \infty} \int f_n$$

$$\int f \le \lim_{n \to \infty} \int f_n$$

- **3. Carothers 18.26** Let $f(x) = x^{-\frac{1}{2}}$ for 0 < x < 1 and f(x) = 0 otherwise. Let (r_n) be an enumeration of \mathbb{Q} , and let $g(x) = \sum_{n=1}^{\infty} 2^{-n} f(x r_n)$. Show that:
 - (a) $g \in L^1$, and in particular g is finite a.e.

Proof. First note that, since f is measurable, and $2^{-n} > 0$ for all n we know that $2^{-n}f(x-r_n)$ is a sequence of nonnegative measurable functions. Now by Corollary 18.11 it follows that,

$$\int g(x) = \int \sum_{n=1}^{\infty} 2^{-n} f(x - r_n) = \sum_{n=1}^{\infty} \int 2^{-n} f(x - r_n).$$

So therefore by translation invariance of the Lebesgue integral it follows that $\int f(x) = \int f(x - r_n)$ and therefore,

$$\int g(x) = \sum_{n=1}^{\infty} 2^{-n} \int f(x - r_n) = \sum_{n=1}^{\infty} 2^{-n} \int f(x) = \sum_{n=0}^{\infty} 2^{-n} = 2.$$

Therefore $g \in L^1$, and g is finite a.e.

(b) *g* is discontinuous at every point and is unbounded on every interval; it remains so even after modification on an arbitrary set of measure zero;

(c) g^2 is finite a.e., but g^2 is not integrable on any interval.

4. Carothers 18.36 Suppose that $f, (f_n)$ are measurable and uniformly bounded on [a, b]. If $f_n \to f$ on [a, b], prove that $\int_a^b |f_n - f| \to 0$.

Proof. Suppose that $f,(f_n)$ are measurable and uniformly bounded by constant K on [a,b]. Let $\epsilon>0$ and by Egorov's Theorem choose a measurable set $E\subset [a,b]$ such that $m(E)<\frac{\epsilon}{2K}$ and $f_n\to f$ uniformly on $E'=[a,b]\setminus E$. On E' choose N such that for all $n\geq N$, we have $|f-f_n|<\frac{\epsilon}{(b-a)}$. Now note that since $f,(f_n)$ uniformly bounded on [a,b], we know that $|f-f_n|<2K$, so it follows that for all $n\geq N$,

$$\int \chi_{[a,b]} |f - f_n| = \int \chi_E |f - f_n| + \int \chi_{E'} |f - f_n|$$

$$< \int \chi_E |f - f_n| + \int \chi_{[a,b]} |f - f_n|$$

$$< \frac{\epsilon}{2K} 2K + (b - a) \frac{\epsilon}{(b - a)} = 2\epsilon$$

,

5. Carothers 18.39 Compute $\sum_{n=0}^{\infty} \int_0^{\frac{\pi}{2}} \left(1 - \sqrt{\sin(x)}\right)^n \cos(x) dx.$

Proof. The series rewritten, with an integral over \mathbb{R} ,

$$\sum_{n=0}^{\infty} \int \chi_{[0,\frac{\pi}{2}]} \left(1 - \sqrt{\sin(x)}\right)^n \cos(x) dx$$

Now note that since $0 \le \sqrt{\sin(x)} \le 1$, and $0 \le \cos(x) \le 1$ on $[0, \frac{\pi}{2}]$ we find that $\chi_{[0,\frac{\pi}{2}]} \left(1 - \sqrt{\sin(x)}\right)^n \cos(x)$ is a sequence of nonnegative measurable functions. By Corollary 18.11 we find that,

$$\sum_{n=0}^{\infty} \int \chi_{[0,\frac{\pi}{2}]} \left(1 - \sqrt{\sin(x)} \right)^n \cos(x) dx = \int \chi_{[0,\frac{\pi}{2}]} \sum_{n=0}^{\infty} \left(1 - \sqrt{\sin(x)} \right)^n \cos(x) dx$$

Now note that $|(1 - \sqrt{\sin(x)})^n| < 1$ on $(0, \frac{\pi}{2})$, which in terms of our integral is an equivalent support. With this fact, we note that the sum is an geometric series an conclude that,

$$\sum_{n=0}^{\infty} \int_{0}^{\frac{\pi}{2}} \left(1 - \sqrt{\sin(x)} \right)^{n} \cos(x) dx = \int_{0}^{\frac{\pi}{2}} \frac{\cos(x)}{\sqrt{\sin(x)}} dx.$$

This function however is unbounded, since as $x \to 0$ we have $\frac{1}{\sqrt{\sin(x)}} \to \infty$. Consider the following sequence of nonnegative measurable functions,

$$f_n = \chi_{(\frac{1}{n}, \frac{\pi}{2})} \frac{\cos(x)}{\sqrt{\sin(x)}}$$

Note that clearly f_n converges pointwise to our desired integrand, with $f_n \leq f_{n+1}$. By the Monotone Convergence Theorem, it follows that

$$\int_0^{\frac{\pi}{2}} \frac{\cos(x)}{\sqrt{\sin(x)}} = \lim_{n \to \infty} \int_{\frac{1}{n}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sqrt{\sin(x)}} = \lim_{n \to \infty} \left(2\sqrt{\sin\left(\frac{\pi}{2}\right)} - 2\sqrt{\sin\left(\frac{1}{n}\right)} \right) = 2.$$

6. Carothers 18.40 Let (f_n) , (g_n) , and g be integrable, and suppose $f_n \to f$ almost everywhere, $g_n \to g$ almost everywhere, $|f_n| \le g_n$ almost everywhere for all n, and that $\int g_n \to \int g$. Prove that $f \in L^1$ and $\int f_n \to \int f$.

Proof. Let (f_n) , (g_n) , and g be integrable, and suppose $f_n \to f$ almost everywhere, $g_n \to g$ almost everywhere, $|f_n| \le g_n$ almost everywhere for all n, and that $\int g_n \to \int g$.

Let E be the set where $g_n \not\to g$, $f_n \not\to f$ and $|f_n| \le g_n$. Note that E is a union of null sets and is therefore a null set. Define a new sequence $\tilde{g_n} \to \chi_{E^c} g_n$ where $\tilde{g} = \chi_{E^c} g$. Define $\tilde{f_n}$ and \tilde{f} analogously. Note that $|\tilde{f_n}| = \tilde{g_n} = 0$ on E and $|\tilde{f_n}| = |f_n| \le g_n = \tilde{g_n}$ on E^c f and therefore $|\tilde{f_n}| \le \tilde{g_n}$ everywhere.

$$|\tilde{f}_n| \le \tilde{g}_n$$
$$-\tilde{g}_n \le \tilde{f}_n \le \tilde{g}_n$$

Since $\tilde{f}_n \to \tilde{f}$, and $\tilde{g_n} \to \tilde{g}$ we know

$$-\tilde{g} \leq \tilde{f} \leq \tilde{g}$$

So we conclude that $|\tilde{f}| \le \tilde{g}$ a.e so since g is integrable we find that,

$$\int |f| = \int \left| \tilde{f} \right| \leq \int |g| = \int g < \infty.$$

So $f \in L^1$.

The following inequalities apply everywhere as a consequence of $|\tilde{f}_n| \leq \tilde{g_n}$.

$$-\tilde{g_n} \le \tilde{f_n} \le \tilde{g_n}$$
$$0 \le \tilde{g_n} + \tilde{f_n} \le 2\tilde{g_n},$$

$$\tilde{g}_n \ge -\tilde{f}_n \ge -\tilde{g}_n$$

$$2\tilde{g}_n \ge \tilde{g}_n - \tilde{f}_n \ge 0.$$

Therefore $(\tilde{g_n} + \tilde{f_n}), (\tilde{g_n} - \tilde{f_n})$ are nonnegative everywhere. By Fatou's lemma,

$$\int \lim_{n \to \infty} \tilde{g}_n + \int \lim_{n \to \infty} \tilde{f}_n = \int \lim_{n \to \infty} (\tilde{g}_n + \tilde{f}_n),$$

$$\leq \liminf_{n \to \infty} \int (\tilde{g}_n + \tilde{f}_n),$$

$$= \liminf_{n \to \infty} \int \tilde{g}_n + \int \tilde{f}_n,$$

$$= \liminf_{n \to \infty} \int \tilde{g}_n + \liminf_{n \to \infty} \int \tilde{f}_n,$$

$$= \int \tilde{g} + \liminf_{n \to \infty} \int \tilde{f}_n.$$

$$\int \lim_{n \to \infty} \tilde{g}_n - \int \lim_{n \to \infty} \tilde{f}_n = \int \lim_{n \to \infty} (\tilde{g}_n - \tilde{f}_n),$$

$$\leq \liminf_{n \to \infty} \int (\tilde{g}_n - \tilde{f}_n),$$

$$= \lim_{n \to \infty} \inf \int \tilde{g}_n - \int \tilde{f}_n,$$

$$= \lim_{n \to \infty} \inf \int \tilde{g}_n - \lim_{n \to \infty} \sup \int \tilde{f}_n,$$

$$= \int \tilde{g} - \lim \sup_{n \to \infty} \int \tilde{f}_n.$$

Thus we conclude that $\lim_{n\to\infty} \int \tilde{f}_n = \int \tilde{f}$. Since \tilde{f}_n , \tilde{f} and (f_n) , f differ on a set of measure zero, we also conclude that $f \in L^1$ and $\int f_n \to \int f$.

7. Carothers 18.41 Let (f_n) , f be integrable, and suppose that $f_n \to f$ almost everywhere. Prove that $\int |f_n - f| \to 0$ if and only if $\int |f_n| \to \int |f|$.

Proof. Suppose $\int |f_n - f| \to 0$. By the reverse triangle inequality,

$$||f_n| - |f|| \le |f_n - f|. \tag{1}$$

Let $\epsilon > 0$ and choose N such that for all $n \ge N$ we have $\int |f_n - f| < \epsilon$, and note that

$$\left| \int |f_n| - \int |f| \right| = \left| \int |f_n| - |f| \right| \le \int ||f_n| - |f|| \le \int |f_n - f| < \epsilon.$$

Hence $\int |f_n| \to \int |f|$.

Proof. Let (f_n) , f be integrable, and suppose that $f_n \to f$ almost everywhere. Suppose $\int |f_n| \to \int |f|$. Define $g_n = |f_n| + |f|$, and $h_n = |f_n - f|$. We find that g_n , h_n are integrable for all n. Note that $h_n \to 0$ a.e and $g_n \to 2|f|$ a.e since $f_n \to f$ a.e .Now we see that since, (g_n) is a sequence of nonnegative measurable functions we find by Fatou's Lemma that

$$\int g \le \lim_{n \to \infty} \int |f_n| + |f| = 2 \int |f| < \infty$$

Therefore g is integrable. Now note that $|h_n| = ||f_n - f|| \le |f_n| + |f| = g_n$. We also know that $\int g_n \to \int g$ since,

$$\lim_{n\to\infty}\int g_n=\lim_{n\to\infty}\int |f_n|+|f|=\lim_{n\to\infty}\int |f_n|+\lim_{n\to\infty}\int |f|=2\int |f|=\int g.$$

Having satisfied the hypothesis for problem 18.40 it follows that $\int h_n \to \int h$ and therefore $\int |f_n - f| \to 0$

8. Carothers 18.55 Prove the Riemann-Lebesgue Lemma: If f is integrable on \mathbb{R} , then $f(x)\cos(nx)$ is integrable and $\lim_{n\to\infty}\int f(x)\cos(nx)dx=0$. The same is true with $\sin(nx)$ instead of $\cos(nx)$.

Proof. Let f be integrable on \mathbb{R} . Note that since $|\cos nx| \le 1$ for all n it also follows that,

$$\int |f(x)\cos(nx)| = \int |f(x)||\cos n(x)| = \int |f(x)||\cos n(x)| \le \int |f(x)||\cos n(x$$

for all *n*. Therefore $f(x)\cos(nx)$ is integrable.

Consider the case where $f = \chi[a, b]$, and note that,

$$\lim_{n\to\infty}\int \chi_{[a,b]}\cos(nx)dx = \lim_{n\to\infty}\int_a^b\cos(nx)dx = \lim_{n\to\infty}\frac{1}{n}\left(\sin(nb) - \sin(na)\right) \to 0.$$

Recall that step function has finite step partition \mathcal{P} and can be represented by the following sum, where $a_p < \infty$ is the value along $p \in \mathcal{P}$,

$$h = \sum_{p \in \mathcal{P}} \chi_p a_p.$$

Considering the case where f = h we find,

$$\lim_{n\to\infty}\int\sum_{p\in\mathcal{P}}\chi_pa_p\cos(nx)dx=\lim_{n\to\infty}\sum_{p\in\mathcal{P}}a_p\int\chi_p\cos(nx)dx\to0.$$

A finite sum of integrals which converge to zero, clearly converges to zero.

Finally to the main result, recall that f is an integrable function on \mathbb{R} and let $\epsilon > 0$. By Theorem 18.27 there exists an integrable step function h such that $\int |f - h| < \epsilon$. Choose N such that for all $n \ge N$ we have $\int h \cos(nx) < \epsilon$. Now note that,

$$\left| \int f(x) \cos(nx) dx \right| = \left| \int f(x) \cos(nx) - h(x) \cos(nx) + h(x) \cos(nx) dx \right|$$

$$= \left| \int (f(x) - h(x)) \cos(nx) + \int h(x) \cos(nx) dx \right|$$

$$\leq \left| \int (f(x) - h(x)) \cos(nx) \right| + \left| \int h(x) \cos(nx) dx \right|$$

$$< \int |(f(x) - h(x))| \cos(nx) + \epsilon$$

$$< 2\epsilon.$$

9. For $t \in \mathbb{R}$ and $f \in L^1$, let $f_t(x) = f(x - t)$. Show that $f_t(x) \in L^1$ and that the map $t \to f_t$ is continuous from \mathbb{R} to L^1 .

Proof. Suppose $t \in \mathbb{R}$ and $f \in L^1$. Note that by Theorem 18.27 there is a continuous function $g : \mathbb{R} \to \mathbb{R}$ such that g = 0 outside of an interval [a, b] and $\int |g - f| < \epsilon$. Note that g is a continuous function on compact support and is therefore uniformly continuous. Note that by translation invariance we also have $\int |g_t - f_t| < \epsilon$ for all t.

Let $\epsilon > 0$, and consider a $\delta > 0$ such that if $|x - y| < \delta$ then $|g(x) - g(y)| < \frac{\epsilon}{b-a}$. Now note that by triangle inequality we get,

$$||f_x - f_y||_{L^1} \le ||f_x - g_x||_{L_1} + ||g_x - g_y||_{L_1} + ||g_y - f_y||_{L_1},$$

$$< 2\epsilon + ||g_x - g_y||_{L_1},$$

Let x < y and note that, the function $g_x - g_y$ has nonzero support over a region [a + x, b + y] and therefore we get the following,

$$\left\| f_x - f_y \right\|_{L^1} \le 2\epsilon + ((b+y) - (a+x)) \frac{\epsilon}{(b-a)} = 2\epsilon ((b-a) + (y-x)) \frac{\epsilon}{(b-a)} \le 3\epsilon + \delta\epsilon.$$

Clearly δ can be taken to be less than zero, and hence we have continuity of the map $t \to f_t$ from \mathbb{R} to L^1 .

10. Carothers 19.23 Let 1 and let <math>q be defined by $\frac{1}{p} + \frac{1}{q} = 1$. If $f \in L^p$, then $|f^{p-1}| \in L^q$ and

$$||f|^{p-1}||_q = ||f||_p^{p-1}$$
.

Proof. Let $1 , where q is defined by <math>\frac{1}{p} + \frac{1}{q} = 1$, and suppose that $f \in L^p$. Consider the following,

$$\frac{1}{p} + \frac{1}{q} = 1,$$

$$1 + \frac{p}{q} = p,$$

$$\frac{p}{q} = p - 1,$$

$$p = (p - 1)q.$$

Now note that,

$$\begin{split} \int |f|^{(p-1)q} &= \int |f|^p \\ \left\| |f|^{p-1} \right\|_q^q &= ||f||_p^p \\ \left\| |f|^{p-1} \right\|_q &= ||f||_p^{\frac{p}{q}} = ||f||_p^{p-1} \,. \end{split}$$