Magnetization measurements were performed at magnetic fields up to 50 kOe by using a superconducting quantum interface device (SQUID) magnetometer.

The initial permeability was measured as a function of temperature under hydrostatic pressures with an ac transformer method. The primary and secondary coils were wound around a cylindrical aggregate of sample. When an ac current of a constant amplitude flows in the primary coil, the voltage induced in the secondary coil is directly proportional to initial permeability. The hydrostatic pressure was applied to a sample in a Teflon pressure cell filled with a liquid pressure medium by using a piston—cylinder type device.

3. Results and discussion

Magnetization of Rh₂MnSn was measured at magnetic fields up to 50 kOe in the temperature range from 5 to 350 K. The obtained magnetization curves are characteristic of ferromagnets. We performed the $\sigma(H, T)^2$ versus $H/\sigma(H, T)$ plot (so-called Arrot plot) based on the results of magnetization curves. The spontaneous magnetization σ_s at each temperature was determined by the linear extrapolation to $H/\sigma=0$ of the plot at high fields. The value of σ_s and the magnetic moment p_s per formula at 5 K were estimated to be 57.9 emu/g and 3.93 μ_B /formula, respectively. The plot of σ_s against temperature is well fitted to a Brillouin function for s=2 with t=10 with t=12 with t=13 K, where t=12 is the value estimated by the method mentioned below.

Fig. 1 shows the initial permeability μ versus temperature curves for Rh₂MnSn at various pressures up to about 1 GPa. The value of μ decreases rapidly just below $T_{\rm C}$ with increasing temperature and then takes almost a constant value above $T_{\rm C}$. The Curie temperature $T_{\rm C}$ was defined as the point intersection of linear extrapolations of the μ –T curves from both higher and lower temperature ranges as shown in the figure.

Fig. 1. The initial permeability μ vs. temperature curves at various pressure for Rh₂MnSn.

Fig. 2. Pressure dependence of the Curie temperature $T_{\rm C}$ for Rh₂MnSn.

The Curie temperature was obtained to be $T_{\rm C}=431\,\rm K$ at normal pressure, which is larger than 412 K [1]. The Curie temperature appears to increase with pressure as seen in the figure. The pressure dependence of $T_{\rm C}$ is shown in Fig. 2. The Curie temperature increases linearly with pressure. The pressure coefficient of the Curie temperature $(1/T_{\rm C})dT_{\rm C}/dp$ is estimated to be $+2.6\times10^{-2}\,\rm GPa^{-1}$ as large as that of Ni₂MnX (X = Al, Ga, In, Sn) [4].

The magnetization of Rh₂MnGe was also measured at magnetic fields up to 50 kOe in the temperature range from 5 to 300 K. The obtained magnetization curves are characteristic of ferromagnets. We determined the spontaneous magnetization σ_s at each temperature using the Arrot plot. The value of σ_s and magnetic moment p_s at 5 K were estimated to be 69.9 emu/g and $4.17\mu_B$ /formula, respectively.

Fig. 3 shows the initial permeability μ versus temperature curves for Rh₂MnGe at hydrostatic pressures up to about

Fig. 3. The initial permeability μ vs. temperature curves at various pressures for Rh₂MnGe.