Dealing with Bad Vibes in Open Airwaves

Stefan Schmid (UPB)

Joint research with:

Andrea Richa (ASU)

Christian Scheideler (UPB)

Jin Zhang (ASU)

Open Airwaves

A shared resource

How to coordinate (efficient and/or fair) access?

Wireless Networks

Medium Access Protocols needed

- Interference, collisions, ...
- ... and jammers.

Jammers ("Bad Vibes")

This Talk: Recent Results on MacJam

- Today's system not really jammer-proof (e.g., WLAN)
- MacJam = A robust MAC layer protocol
- Based on a randomized, distributed access strategy

• Attention:

Preliminary/ongoing research!

Model: Multihop Wireless Network (1 Channel)

Model: Multihop Wireless Network (1 Channel)

Nodes:

- Cannot send and listen concurrently (one antenna!)
- Cannot distinguish between collision and jamming
- Can recognize an idle channel
- Backlogged: Always s.th. to send

Adversary:

- Can jam a (1-ε) fraction of all time slots at all positions in the plane
- Bursty (in time interval T, at most ε T)
- Adaptive: Knows entire history (but not whether nodes will send in *this* round)

Each node v has sending probability p_v (adjusted dynamically)

Goal: In each unit disk D(u), accumulated sending probability is constant
(Gives throughput guarantee!)

Each node v has sending probability p_v (adjusted dynamically)

Goal: In each unit disk D(u), accumulated sending probability is constant (Gives throughput guarantee!)

- Example with clique: How to achieve a constant probability?
- Let q₀ be prob. that channel is idle,
 and q₁ be prob. that exactly one successful transmission
 hat(p)=const the max node probability, p the total sending prob.

It holds:
$$q_0 = \prod_v (1-p_v)$$
, $q_1 = \sum_v p_v \prod_{q\neq v} (1-p_w)$

It can be shown:
$$q_0 \cdot p \le q_1 \le q_0 / (1 - hat(p)) * p$$

So what?

Thus: If # idle slots = # successful slots =>
$$p=\sum_{v} p_{v} \approx 1$$

Algorithm can be independent of collisions/jammed rounds! (If there are enough idle and successful slots..)

• (Too) simple MAC protocol (for some $\gamma>0$):

If (idle):
$$p_v := (1+\gamma) p_v$$

If (success): $p_v := 1/(1+\gamma) p_v$

(Too) simple MAC protocol (for some γ>0):

If (idle):
$$p_v := (1+\gamma) p_v$$

If (success): $p_v := 1/(1+\gamma) p_v$

(Too) simple MAC protocol (for some γ>0):

If (idle):
$$p_v := (1+\gamma) p_v$$

If (success): $p_v := 1/(1+\gamma) p_v$

• (Too) simple MAC protocol (for some $\gamma>0$):

If (idle):
$$p_v := (1+\gamma) p_v$$

If (success): $p_v := 1/(1+\gamma) p_v$

Problem?

If (idle):
$$p_v := (1+\gamma) p_v$$

If (success): $p_v := 1/(1+\gamma) p_v$

- Problem: if p_v initially very high, there are hardly any idling or successful slots to observe!
 - Therefore: introduce a threshold T_v
 - if no successful transmission within T_v, decrease p_v

Singlehop vs Multihop

Compared to earlier work, multi-hop setting is more complex (algo & analysis) Nodes around center are jammed => high sending probability E.g., nodes have different views: at center node, but does not hear many successful transmissions => T, values large => low prob as well => no constant probability!

Stefan Schmid @ Wroclaw, 2009

The MacJam protocol (for UDGs):

```
T_v=1, c_v=1, p_v=p_{max};
In each round:
    decide to send with prob p,;
    if decide not to send:
          if sense idle channel: p_v = (1+\gamma) p_v; T_v--;
          if succ reception: p_y = 1/(1+\gamma) p_y; T_y--;
                                New: idle is okay, too!
    if (c<sub>v</sub>>T<sub>v</sub>)
          if no idle or succ in last T steps:
                    p_{y} = 1/(1+\gamma) p_{y}; T_{y} = T_{y} + 2;
```


Analysis (1)

- Some "ideas" only
- Protocol is interplay of many dependent randomized local algorithms
- Cumulative probability thresholds:

Pgreen, Pyellow, Pred

Show that beyond "good accumulated probabilities", there is a high drift towards "better values"

Techniques: Martingale theory, stochastic dominance, etc.

Analysis (2)

Idea: Consider sectors of completely connected networks (PODC)

Analysis

Many idle slots => fast probability increase!

Simulations

- 500 nodes uniformly at random in 4x4 plane, $\epsilon \approx 0.5$
- Converges fast to good cumulative probabilities
- Around 30% of unjammed slots are successful transmissions
- T_v values around 2 or 3

Ideas for Extensions/Applications

- How to make it fair?
 - Problem: When a node is successful, other nodes will reduce $p_v =>$ node may be even more successful in future
 - Solution: Nodes remember number of nodes seen so far, and maintain a counter for successful transmissions.
 - Adapt their probabilities in a more equal manner (all around 1/n in clique)!

Leader Election

- Contention resolution with MacJam
- Leaders increase sending probability faster (to constant!)
- Dedicated leader slots determined online
- When leader offline: new one is selected

Conclusion & Future Work

- Jammers exciting research challenge
 - May improve robustness and performance in existing networks
- Many open questions
 - Provable MAC performance
 - Multihop networks
 - Fairness
 - Energy Efficiency
 - Applications
- But we are working on it... ②

Thank you for your attention!

More infos on:

http://www.cs.uni-paderborn.de/fachgebiete/fg-ti/personen/schmiste.html