- 1. An $m \times n$ matrix is said to be a queen if the restriction of A to the orthogonal complement of its kernel is an isometry.
 - (a) Show that A is a queen if and only if A*A is an orthogonal projection.

Solution: Suppose A is a queen. Then A is an isometry on $(\ker A)^{\perp} = (\ker A^*A)^{\perp} = \operatorname{ran} A^*A$. Take any $v \in \mathbb{C}^n$, which can be decomposed as v = x + y with $x \in (\ker A^*A)^{\perp}$ and $y \in \ker A^*A$. Then:

$$(A^*A)^2 v = (A^*A)^2 (x + y)$$

= $(A^*A)^2 x + (A^*A)^2 y$
= $(A^*A)^2 x$.

But since A is an isometry on $(\ker A^*A)^{\perp}$, which contains x, we must have $A^*Ax = x$. Then

$$(A*A)^{2}v = (A*A)^{2}x$$

$$= A*Ax$$

$$= A*Ax + 0$$

$$= A*Ax + A*Ay$$

$$= A*A(x + y)$$

$$= A*Ay.$$

And therefore $(A^*A)^2 = A^*A$, and A^*A is an orthogonal projection.

Conversely, let A^*A be an orthogonal projection, and $v \in (\ker A)^{\perp} = \operatorname{ran}(A^*A)$. But we know that A^*A acts as identity on its range. So $A^*Av = v$, and

$$\langle A^*Av, v \rangle = \langle v, v \rangle$$
$$\langle Av, Av \rangle = \langle v, v \rangle$$
$$\|Av\|^2 = \|v\|^2$$
$$\|Av\| = \|v\|.$$

And so A is an isometry on the orthogonal complement of its kernel, and A is a queen.

(b) Show that A is a queen if and only if AA^* is an orthogonal projection.

Solution: We already have that A is a queen $\iff A^*A$ is an orthogonal projection. Rather than repeat the previous argument with AA^* , we show that A^*A is an orthogonal projection $\iff AA^*$ is an orthogonal projection.

 \implies : Let A^*A be an orthogonal projection. Then take $v \in \mathbb{C}^n$, and since $\operatorname{ran} A^*A = (\ker A^*A)^{\perp} = (\ker A)^{\perp} = \operatorname{ran} A^*$, we know that $A^*v \in \operatorname{ran} A^*A$. Then since A^*A acts as identity on its range, we have:

$$(AA^*)^2 v = A(A^*A)(A^*v) = AA^*v.$$

And so AA* is an orthogonal projection.

 \Leftarrow : Let AA^* be an orthogonal projection. Then take $w \in \mathbb{C}^m$, and since $\operatorname{ran}AA^* = (\ker AA^*)^{\perp} = (\ker A^*)^{\perp} = \operatorname{ran}A$, we know that $Aw \in \operatorname{ran}A^*A$. Then since AA^* acts as identity on its range,

$$(A^*A)^2 w = A^*(AA^*)(Aw) = A^*Aw$$
.

And therefore A^*A is an orthogonal projection.

Now we have: A is a queen \iff A^*A is an orthogonal projection \iff AA^* is an orthogonal projection.

(c) Show that a queen A is an isometry if and only if ker A = 0.

Solution: If $\ker A = \{0\}$, then $(\ker A)^{\perp} = V$, so the restriction of A to the orthogonal complement of its kernel is A restricted to all of V. Then A is an isometry on any vector.

Conversely, suppose A is an isometry. Then:

$$v \in \ker A \iff Av = 0$$

 $\iff ||Av|| = ||v|| = 0$
 $\iff v = 0$.

Therefore $ker A = \{0\}$.

(d) Find an example of a 4×2 queen that has non-zero kernel. Be sure to prove it's a queen!

Solution: Take the matrix:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Then clearly $A\begin{bmatrix} t \\ 0 \end{bmatrix} = 0$ for any $t \in \mathbb{C}$, so A has nonzero kernel, and all we must show is that A is a queen.

Begin by observing that since $\ker A = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$, we can find:

 $(\ker A)^{\perp} = \operatorname{span}\left\{\begin{bmatrix}0\\1\end{bmatrix}\right\}$. Then let $v = \begin{bmatrix}0\\t\end{bmatrix} \in (\ker A)^{\perp}$. Computing both ||v||, ||Av||, we see:

$$||Av|| = ||\begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ t \end{bmatrix} || = ||\begin{bmatrix} t \\ 0 \\ 0 \\ 0 \end{bmatrix} || = |t| = ||\begin{bmatrix} 0 \\ t \end{bmatrix} || = ||v||.$$

So the restriction of A to the orthogonal complement of its kernel is an isometry, and A is a queen.

2. (a) Given a singular value decomposition $A = W\Sigma V^*$ of a square matrix A, construct a polar decomposition of A using W, V, Σ .

Solution: Suppose $A = W\Sigma V^*$ is given, we wish to find |A| and some U unitary with A = U|A|.

$$|A| = \sqrt{A^*A} = \sqrt{V\Sigma^*W^*W\Sigma V^*} = \sqrt{V\Sigma^*\Sigma V^*}.$$

But recalling that Σ is a real diagonal matrix, we have $\Sigma = \Sigma^*$:

$$|A| = \sqrt{V\Sigma V^* V\Sigma V^*} = V\Sigma V^*.$$

Now we wish to right cancel V, and get back our W. So take $U = WV^*$ as the unitary (since it is the product of unitaries); and then:

$$U|A| = (WV^*)(V\Sigma V^*) = W\Sigma V^* = A.$$

(b) Using the method above, compute a polar decomposition for

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}.$$

Solution: Compute A*A;

$$A*A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} = \begin{bmatrix} 5 & 15 \\ 15 & 45 \end{bmatrix}.$$

And find the characteristic polynomial:

$$C_{A*A}(z) = \det(A - zI) = \begin{vmatrix} 5 - z & 15 \\ 15 & 45 - z \end{vmatrix} = z^2 - 50 = z(z - 50).$$

Which gives the nonzero singular value $\sigma_1 = 5\sqrt{2}$, and our $\Sigma = \begin{bmatrix} 5\sqrt{2} & 0 \\ 0 & 0 \end{bmatrix}$. Then find an associated eigenvector for σ_1^2 .

$$(50I - A^*A)v_1 = 0 \implies \begin{bmatrix} -45 & 15 \\ 15 & -5 \end{bmatrix} v_1 = 0$$

$$\implies \begin{bmatrix} -3 & 1 \\ 0 & 0 \end{bmatrix} v_1 = 0$$

$$\implies v_1 = t \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$

$$\implies v_1 = \frac{1}{\sqrt{10}} \begin{bmatrix} 1 \\ -3 \end{bmatrix}.$$

Now that we have v_1 , we need only pick v_2 so that V is unitary, so by inspection take $v_2 = \frac{1}{\sqrt{10}} \begin{bmatrix} 3 \\ -1 \end{bmatrix}$, which already has norm 1, and is orthogonal to v_1 . And so

we have our matrix $V = \frac{1}{\sqrt{10}} \begin{bmatrix} 1 & 3 \\ 3 & -1 \end{bmatrix}$.

Now we find W. Begin by computing:

$$w_1 = \frac{1}{\sigma_1} A v_1 = \frac{1}{5\sqrt{2}} \frac{1}{\sqrt{10}} \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

And again by inspection, $w_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$, and $W^* = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$. So then we have our SVD:

$$A = \frac{1}{\sqrt{10}} \begin{bmatrix} 1 & 3 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 5\sqrt{2} & 0 \\ 0 & 0 \end{bmatrix} \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}.$$

After a quick sanity check that all our matrix multiplication gives us back A, we

just need to find $|A| = V\Sigma V^*$ and $U = WV^*$.

$$|A| = V\Sigma V^*$$

$$= \frac{1}{10} \begin{bmatrix} 1 & 3 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 5\sqrt{2} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 3 & -1 \end{bmatrix}$$

$$= \frac{1}{10} \begin{bmatrix} 1 & 3 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 5\sqrt{2} & 15\sqrt{2} \\ 0 & 0 \end{bmatrix}$$

$$= \frac{1}{10} \begin{bmatrix} 5\sqrt{2} & 15\sqrt{2} \\ 15\sqrt{2} & 45\sqrt{2} \end{bmatrix}$$

$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 3 \\ 3 & 9 \end{bmatrix}$$

$$U = WV^*$$

$$= \frac{1}{\sqrt{200}} \begin{bmatrix} 2 & -4 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 3 & -1 \end{bmatrix}$$

$$= \frac{1}{10\sqrt{2}} \begin{bmatrix} -10 & 10 \\ 10 & 10 \end{bmatrix}$$

$$= \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}.$$

And so we have the polar decomposition:

$$A = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1\\ 1 & 1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 3\\ 3 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 3\\ 2 & 6 \end{bmatrix}.$$

3. Find your favorite 4×2 matrix A of rank 2 and compute a singular value decomposition for A. All of the entries of A must be nonzero.

Solution: Take the matrix:

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 2 & 1 \\ 1 & 2 \end{bmatrix}; \quad A^*A = \begin{bmatrix} 2 & 1 & 2 & 1 \\ 1 & 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 2 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 10 & 8 \\ 8 & 10 \end{bmatrix}.$$

And compute $C_{A*A}(z) = (z-10)^2 - 64 = z^2 - 20z - 36 = (z-18)(z-2)$. So now we have our Σ :

$$\Sigma = \begin{bmatrix} 3\sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix}.$$

And singular values: $\sigma_1 = 3\sqrt{2}$, $\sigma_2 = \sqrt{2}$. Now compute eigenvectors for σ_1^2 , σ_2^2 :

$$(A^*A - 18I)v_1 = \begin{bmatrix} -8 & 8 \\ 8 & -8 \end{bmatrix}$$
$$v_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$(A^*A - 2I)v_2 = \begin{bmatrix} 8 & 8 \\ 8 & 8 \end{bmatrix}$$
$$v_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

So we have our V:

$$V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$

And we are free to compute w_1 , w_2 from v_1 , v_2 :

$$w_{1} = \frac{1}{\sigma_{1}} A v_{1}$$

$$= \frac{1}{3\sqrt{2}}$$

$$= \frac{1}{3\sqrt{2}} \begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 2 & 1 \\ 1 & 2 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$= \frac{1}{6} \begin{bmatrix} 3 \\ 3 \\ 3 \\ 3 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$w_{2} = \frac{1}{\sigma_{2}} A v_{2}$$

$$= \frac{1}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 2 & 1 \\ 1 & 2 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}.$$

Now we must extend w_1 , w_2 to an orthonormal basis of \mathbb{C}^4 . We could do this with Gram-Schmidt, or we could be brave and move negative signs around until all our inner products turn out to be zero. Opt for the second option, and find:

$$w_3 = \frac{1}{2} \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}, \quad w_4 = \frac{1}{2} \begin{bmatrix} -1\\1\\1\\-1 \end{bmatrix}.$$

Then we take the transpose of all our w_i 's, and get our W:

And therefore we have our SVD:

4. For an $m \times n$ matrix A, show that the set of nonzero eigenvalues for A * A coincide with that of AA *.

Solution: Let $0 \neq \lambda \in \sigma(A^*A)$, with an associated eigenvector ν .

Then $A^*Av = \lambda v$. Applying A on both sides, we have $AA^*Av = A\lambda v = \lambda Av$, and so Av is an eigenvector for AA^* associated with λ .

Now let $0 = \lambda \in \sigma(AA^*)$

Then suppose $AA^*\nu = \lambda\nu$. Applying A^* on both sides, we have $A^*AA^*\nu = A^*\lambda\nu = \lambda A^*\nu$, and so $A^*\nu$ is an eigenvector for A^*A associated with λ .

5. Suppose $A = W\Sigma V^*$ is a singular value decomposition for A. Show that the columns of W are eigenvectors for AA^* .

Solution: Let $1 \le i \le n$, and take:

$$W = \begin{bmatrix} w_1 & \dots & w_n \end{bmatrix}, \qquad \Sigma = \begin{bmatrix} \sigma_1 & & & 0 \\ & \ddots & & \vdots \\ & & \sigma_r & 0 \\ 0 & \dots & 0 & 0 \end{bmatrix}.$$

Then begin the computation:

$$AA^* w_i = W\Sigma V^* V\Sigma^* W^* w_i$$

$$= W\Sigma^2 W^* w_i$$

$$= W\Sigma^2 \begin{bmatrix} w_1^* \\ \vdots \\ w_n^* \end{bmatrix}$$

$$= W\Sigma^2 \begin{bmatrix} w_1^* w_i \\ \vdots \\ w_n^* w_i \end{bmatrix}$$

$$= W\Sigma^2 \begin{bmatrix} \langle w_i, w_1 \rangle \\ \vdots \\ \langle w_i, w_n \rangle \end{bmatrix}$$

$$= W\Sigma^2 \begin{bmatrix} \langle w_i, w_1 \rangle \\ \vdots \\ \langle w_i, w_i \rangle \end{bmatrix}$$

$$= W\Sigma^2 \begin{bmatrix} 0 \\ \vdots \\ \langle w_i, w_i \rangle \\ \vdots \\ 0 \end{bmatrix}$$
Since w_i form an o.n.b.
$$= W\Sigma^2 \begin{bmatrix} 0 \\ \vdots \\ |w_i|^2 \\ \vdots \\ 0 \end{bmatrix}$$

Now we split by cases. If i > r, then the i-th column of Σ will be exactly zero, and we will have $AA^*w_i = W0 = 0 = 0w_i$, and w_i is an eigenvector associated with 0.

But if $i \le r$, then the *i*-th column of Σ^2 will be of the form $\Sigma^2 = \begin{bmatrix} 0 & \dots & \sigma_i^2 & \dots & 0 \end{bmatrix}^T$

Name: Thomas Boyko; UCID: 30191728

Then our equation becomes

$$AA * w_i = W\sigma_i^2 \begin{bmatrix} 0 \\ \vdots \\ \|w_i\|^2 \\ \vdots \\ 0 \end{bmatrix}$$

$$= \sigma_i^2 \begin{bmatrix} w_1 & \dots & w_n \end{bmatrix} \begin{bmatrix} 0 \\ \vdots \\ \|w_i\|^2 \\ \vdots \\ 0 \end{bmatrix}$$

$$= (\sigma_i \|w_i\|)^2 w_i.$$

And as we wanted to show, w_i is an eigenvector for AA^* .