

Sinh viên thực hiện: Lê Thị Bình 19TCLC_DT2

Giáo viên hướng dẫn: TS.Ninh Khánh Duy

I. Tổng quan

a. Khái niệm về voiced và unvoiced

- Voiced (âm hữu thanh): là những âm sẽ làm rung thanh quản khi phát âm.
- Unvoiced(âm vô thanh):là những âm phát ra nhưng không tạo độ rung từ thanh quản.

b. Nhiệm vụ

- Phân tích đoạn tín hiệu huấn luyện thành các khoảng voiced và unvoiced bằng việc sử dụng các đặc trưng tín hiệu đã học.

II. Các đặc trưng tín hiệu

a. Short-Time Energy (STE)

- Là tổng bình phương các giá trị dạng sóng trên một số lượng mẫu hữu hạn thuộc một khung (20-25ms).

$$STE[n] = \sum_{m=0}^{N-1} x^2[n-m]$$

n: frame index

m: sample index

N: frame length (samples)

b. Zero-Crossing Rate (ZCR)

- Là tốc độ mà dạng sóng đi qua trục 0.

$$ZCR[n] = \sum_{m=0}^{N-1} |sgn(x[n-m]) - sgn(x[n-m-1])|$$

n: frame index

m: sample index

N: frame length

where sgn(.) is the signum function,

$$\operatorname{sgn}(x) = \begin{cases} 1 & x \ge 0, \\ -1 & x < 0. \end{cases}$$

c. Sự tương quan dữ liệu giữa 2 đặc trưng STE Và ZCR

Xét 1 đoạn tín hiệu hữu thanh (voiced)

 Khi đi qua đoạn tín hiệu voiced thì ZCR có biên độ nhỏ, còn STE có biên độ lớn.

III. Thuật toán

IV. Thuật toán tìm ngưỡng

a. Ngưỡng STE (T_ste)

- Dựa trên đặc trưng STE khi đi qua đoạn tín hiệu voiced có biên độ lớn.
- Xét ngưỡng cho STE là giá trị biên độ có được khi khảo sát 4 tín hiệu trong các đoạn voiced với những biên độ nhỏ nhất.
- Hàm STE được chuẩn hóa về hàm có giới hạn [0;1]:

STE= STE/max(STE)

 Biểu đồ thống kê các biên độ có giá trị nhỏ nhất trong các khoảng voiced của 4 tín hiệu

N No. 10	meanV_STE	stdV_STE
Studio_M1	0.0286	0.0247
Studio_F1	0.0253	0.0313
Phone_M1	0.0174	0.014
Phone_M2	0.0237	0.0151

=> T_ste= 0.0236

Dựa vào thống kê cùng với đó là việc thử các tín hiệu huấn luyện thì ngưỡng tìm được phù hợp: 0.02

Biểu đồ các phần tử được xét của 4 tín hiệu.

b. Ngưỡng ZCR (T_zcr)

- Dựa trên đặc trưng ZCR khi đi qua đoạn tín hiệu voiced có biên độ nhỏ
- Xét ngưỡng cho ZCR là giá trị biên độ có được khi khảo sát 4 tín hiệu trong các đoạn voiced với những biên độ lớn nhất
- Hàm ZCR được chuẩn hóa về hàm có giới hạn [0;1]:

ZCR= ZCR/max(ZCR)

 Biểu đồ thống kê các biên độ có giá trị lớn nhất trong các khoảng voiced của 4 tín hiệu

	meanV_ZCR	stdV_ZCR
Studio_M1	0.4027	0.2327
Studio_F1	0.3025	0.0506
Phone_M1	0.43	0.1225
Phone_M2	0.4233	0.1268

Dựa vào thống kê cùng với đó là việc thử các tín hiệu huấn luyện thì ngưỡng tìm được phù hợp: 0.4

Biểu đồ các phần tử được xét của 4 tín hiệu.

- Nhận xét về cách tìm ngưỡng và thuật toán của chương trình
- + Thuật toán
- Đơn giản, độ chính xác phụ thuộc vào ngưỡng được xác định.
- + Tìm ngưỡng
- Dựa vào thống kê của các tín hiệu huấn luyện.
- => Độ chính xác của thuật toán không cao
- => Gây ra sai lệch trong kết quả với các tín hiệu thực nghiệm, tùy vào từng tín hiệu mà độ sai lệch cũng khác nhau.

V. Kết quả chạy các file tín hiệu thực nghiệm

- a. Tín hiệu studio_M2
- Nhận xét
- Với tín hiệu này kết quả sai lệch các biên khá nhiều so với kết quả chuẩn
- Nguyên nhân
- Do các âm hữu thanh(voiced) trong đoạn lệch có STE thấp dẫn đến việc xác định bị sai.

b. Tín hiệu studio_F2

- Nhận xét
- Với tín hiệu này kết quả sai lệch các biên ít so với kết quả chuẩn
- Một khoảng tín hiệu voiced bị nhầm thành unvoiced
- Nguyên nhân
- Do việc đặt ngưỡng gây ra

c. Tín hiệu phone_M2

- Nhận xét
- Với tín hiệu này kết quả sai lệch các biên ít so với kết quả chuẩn
- Một khoảng tín hiệu voiced bị nhầm thành unvoiced
- Nguyên nhân
- Do việc đặt ngưỡng gây ra

c. Tín hiệu phone_F2

- Nhận xét
- Với tín hiệu này kết quả sai lệch các biên ít so với kết quả chuẩn
- Một khoảng tín hiệu voiced bị nhầm thành unvoiced
- Nguyên nhân
- Do việc đặt ngưỡng gây ra

