Trabalho de Arquitetura de Computadores 2

Membros:

André Luiz Baptista Esteves Bassini – Matrícula: 763995

Júlio César Gonzaga Ferreira Silva – Matrícula: 810642

Suzane Lemos de Lima – Matrícula: 770855

Objetivo:

Construir uma Unidade Lógica e Aritmética (ULA) de 1 bit, 4 bits e implementar no Logisim e Arduino.

01) Unidade Lógica e Aritmética(ULA) de 1 bit em logisim:

02) Unidade Lógica e Aritmética(ULA) de 4 bit em logisim:

Testando a ULA com o roteiro fornecido (Item 6): AND(A,B):

OR(A,B):

SOMA(A,B):

NOT(A):

AND(B,A):

Preencher a tabela a seguir considerando que cada linha corresponderá à execução de uma instrução:

Instrução realizada	Binário (A,B,Op.code)	Resultado em Hexa (0x)	Resultado em binário
AND(A,B)	0010 0001 00	0000 1000 0100 = 0x084	0000
OR(A,B)	0010 0011 01	0000 1000 1101 = 0x08D	0011
SOMA(A,B)	0010 0011 11	00 <mark>00 1000 1111 = 0x</mark> 08F	0101
NOT(A)	1100 0011 10	0011 0000 1110 = 0x30E	0011
AND(B,A)	1100 1101 00	$0011\ 0011\ 0100 = 0x334$	1100

Complete agora a tabela a seguir onde todas as instruções que a ULA pode fazer serão testadas:

Instruções	Binário	Resultado da operação
450	0100 0101 0000	В
CB1	1100 1011 0001	0
A32	1010 0011 0010	1
C43	1100 0100 0011	0
124	0001 0010 0100	F
785	0111 1000 0101	7
9B6	1001 1011 0101	2
CD7	1100 1101 0111	0
FE8	1111 1110 1000	E
649	0110 0100 1001	D
D9A	1101 1001 1010	9
FCB	1111 1100 1011	С
63C	0110 0011 1100	F
98D	1001 1000 1101	F
76E	0111 0110 1110	7
23F	0010 0011 1111	2

O projeto da ULA no Logisim com um printscreen de alguma instrução da tabela sendo executada:

Instrução sendo executada: 124

Pergunta:

Se o objetivo fosse realmente testar esta ULA, quantas linhas a nossa tabela verdade deveria ter, ou seja na verdade a tabela que você preencheu deveria ter quantas linhas?

Para testar adequadamente a Unidade Lógica e Aritmética (ULA) com todas as suas possibilidades, precisaríamos considerar todas as combinações possíveis dos bits de entrada. Se estamos lidando com 12 bits no total (4 bits em cada uma das 3 entradas: A, B e Seleção), então o número de combinações possíveis é de 2 elevado à potência de 12, que é igual a 4096.

Portanto, a tabela verdade resultante teria 4096 linhas, cada uma representando uma combinação única dos bits de entrada da ULA. Isso nos permitiria testar exaustivamente todas as operações e condições possíveis da ULA.