Nota: todo lo presentado de los dispositivos en los cuadros llenados a continuación fueron completados con la información de las páginas web del fabricantes o distribuidores oficiales.

Sensores de Temperatura:

LM75

Resumen:				
Módulo con sensor de te	emperatura LM75, utiliza el prot	cocolo de comunicación I2	C y cuenta con amplia	
documentación que lo h	ace fácil de implementar en pro	yectos en plataformas co	mo Arduino.	
Encapsulado/Módulo	Módulo			
Datasheet	SI, <u>LM75</u>	Archivos CAD	<u>Snapeda.com</u>	
Costo	Newark a \$1.40	Dimensiones [mm]	6x4.9x1.45	
Sensibilidad/Precisión	-25°C to 100°C ±2°C (max)	Peso [g]	12.5	
Sensibiliaday i recision	-55°C to 125°C ±3°C (max)			
Rango de medición u		Consumo [mA]	280 μΑ	
operación	−55°C to 125°C		280 μΑ	
Protocolo de		Voltaje de Operación	3.0V a 5.5V	
comunicación	I2C	[V]	3.0 v a 3.5 v	
Características Extra:				
No requiere de componentes electrónicos extra para su funcionamiento, solo para su conexión física.				
Documentación/Guías/Tutoriales:				
No se hizo la investigación debido a que se descalificó.				

El DS18B20 es un sensor de temperatura de amplio rango de operación (–55°C a 125 °C), el componente electrónico se encuentra dentro de un tubo de acero inoxidable, permitiendo así, funcionar como una sonda de medición para condiciones extremas. Este dispositivo cuenta con el protocolo de comunicación OneWire®, lo cual lo hace de fácil implementación en plataformas como Arduino.

Datasheet	<u>DS18B20</u>	Archivos CAD	Grabcad
			Tubo de acero
			inoxidable: 6 diámetro por 30 largo.
			Resto del cuerpo: 4 de
		Dimensiones [mm]	diámetro por 91 largo
	−10°C a 85°C ±0.5°C		25
Sensibilidad/Precisión	-55°C a 125°C ±2°C	Peso [g]	
Temperatura de Operación	−55°C a 125 °C	Consumo máximo [mA]	1.5 mA
Rango de medición u operación	−55°C a 125 °C	Voltaje de Alimentación [V]	3.0V a 5.5V
	OneWire® (Pin digital,		
Protocolo de	con resolución de 12		5.0V
comunicación	bits)	Voltaje lógico [V]	

Características Extra:

Para su correcto funcionamiento únicamente requiere de una resistencia en conexión pull—up (4.7k 5% ¼ W) con el pin de datos, para posteriormente enviar al Arduino. El valor de la resistencia se indica en el Datasheet de acuerdo con un parámetro de distancia.

Debe estar en un espacio abierto, pero debe evitar contacto directo con corrientes de aire.

Documentación/Guías/Tutoriales:

Programación de DS18B20 en Arduino

Los detectores de temperatura de resistencia (RTD) son sensores de temperatura que contienen una resistencia que cambia el valor de resistencia a medida que cambia su temperatura, la resistencia es en realidad una pequeña tira de platino con una resistencia de 1000 ohmios a 0 °C, de ahí el nombre PT1000. En comparación con la mayoría de los termistores NTC/PTC, el tipo PT de RTD es mucho más estable y preciso. Los PT1000 se han utilizado para medir la temperatura en procesos industriales y de laboratorio, y han desarrollado una reputación de precisión, repetibilidad y estabilidad.

Encapsulado/Módulo		Módulo y Sonda	
Datasheet	MAX31865		
Costo	<u>Chip</u> a \$14.95 <u>Sonda</u> a \$14.95	Dimensiones [mm]	Chip: 28.0x 25.0x 2.4 Sonda:
Sensibilidad/Precisión	0.1 °C.	Peso [g]	1000x2.8 (cilíndrico) 2.6g
Temperatura de Operación	-50°C a 280°C.	Consumo máximo [mA]	3.5
Rango de medición u operación	-50°C a 280°C.	Voltaje de Alimentación [V]	3.0V a 5.5V
Protocolo de comunicación	SPI	Voltaje lógico [V]	3.3V a 5.0V

Características Extra:

Para su correcto funcionamiento únicamente requiere de una resistencia en conexión pull—up (4.7k 5% ¼ W) con el pin de datos, para posteriormente enviar al Arduino. El valor de la resistencia se indica en el Datasheet de acuerdo con un parámetro de distancia.

Debe estar en un espacio abierto, pero debe evitar contacto directo con corrientes de aire.

Documentación/Guías/Tutoriales:

Adafruit

https://learn.adafruit.com/adafruit-max31865-rtd-pt100-amplifier/

Sensores de Altitud (Barómetro)

BMP180

Resumen:

Este es un sensor barométrico Bosch, bajo costo y consumo eléctrico. En base a las mediciones precisas en cambios de presión puede ser utilizado como altímetro. El medidor cuenta con protocolo I2C y mucha documentación, lo cual lo hace de fácil implementación para proyectos con plataformas como Arduino.

Datasheet	Bosch BMP180		
		Dimensiones [mm]	100 x 130x 40
Sensibilidad/Precisión	0.03hPa / ±0.25m/ ±2°C	Peso [g]	2
Temperatura de			5 μΑ
Operación	-40°C hasta 85°C	Consumo máximo [mA]	Σ μΑ
Rango de medición u	300 - 1250 hPa	Voltaje de Alimentación	3.0V a 5.5V
operación	(+9000m500m)	[V]	3.0V a 3.3V
Protocolo de	I2C (3.3V, 16 bits)		3.0V o 5.0V
comunicación	120 (3.34, 10 0113)	Voltaje lógico [V]	3.00 0 3.00

Características Extra:

El dispositivo no debe estar encerrado, pero tampoco debe estar expuesto a flujos de aire directos

Documentación/Guías/Tutoriales:

Adafruit

https://learn.adafruit.com/adafruit-bmp388-bmp390-bmp3xxhttps://www.adafruit.com/product/1603

Sensor barométrico Bosch de su última generación sucesor del clásico BMP180, siendo más preciso y de bajo consumo eléctrico. El medidor actualiza sus protocolos llegándose a tener dos tipos de comunicación I2C y SPI.

Datasheet	Bosch BMP390	Archivos CAD	GrabCAD
		Dimensiones [mm]	110 x 106 x 7
Sensibilidad/Precisión	±0.03hPa/±0.25m/±1.5°C	Peso [g]	18g
Temperatura de Operación	-40°C hasta 85°C	Consumo máximo [mA]	730 μΑ
Rango de medición u operación	300 a 1250 hPa	Voltaje de Alimentación [V]	3.0V a 5.5V
Protocolo de comunicación	I2C y SPI (3.3V, 24 bits)	Voltaje lógico [V]	3.0V o 5.0V

Características Extra:

El dispositivo no debe estar encerrado, pero tampoco debe estar expuesto a flujos de aire directos. Ya que es considerado un producto "Indoor navigation" según la página de Bosch.

Documentación/Guías/Tutoriales:

Adafruit

https://learn.adafruit.com/adafruit-bmp388-bmp390-bmp3xxhttps://www.adafruit.com/product/4816

YT:

https://www.youtube.com/watch?v=XevQYG A5xA

Github

https://github.com/BoschSensortec/BMP3-Sensor-API

Este es un sensor barométrico MS5611, se caracteriza por su alta precisión y bajo consumo energético. Es muy utilizado como altímetro, de hecho, es parte del grupo de sensores que conforman la NAVIO2. Este módulo tiene integrado el circuito de acondicionamiento para chip del sensor, y también para el protocolo de comunicación I2C con el que cuenta. Todo lo anterior lo hace ideal para implementar en proyectos con plataformas como Arduino.

Datasheet	MS5611		
		Dimensiones [mm]	18 x 14mm x 2[mm]
Sensibilidad/Precisión	10 cm	Peso [g]	2.5[g]
Temperatura de Operación	-40°C hasta 85°C	Consumo máximo [mA]	1.4
Rango de medición u operación	10 to 1200 mbar	Voltaje de Alimentación [V]	3.0 a 5.0
Protocolo de comunicación	12C	Voltaje lógico [V]	3.0

Características Extra:

El dispositivo no debe estar encerrado, pero tampoco debe estar expuesto a flujos de aire directos

Documentación/Guías/Tutoriales:

- Arduino Forum https://www.arduino.cc/reference/en/libraries/ms5611/
- Github https://github.com/RobTillaart/MS5611

Sensores Inercial (IMU's)

MPU6050

Resumen:

EL MPU6050 es una unidad de medición inercial o IMU (Inertial Measurment Units) de 6 grados de libertad (DoF) pues combina un acelerómetro de 3 ejes y un giroscopio de 3 ejes. Este sensor es muy utilizado en navegación, goniometría, estabilización, etc.

Datasheet	MPU6050		
		Dimensiones [mm]	2 x 1.6 x 0.1 mm
Sensibilidad/Precisión	±2%	Peso [g]	
Temperatura de Operación	-40 to +85 °C	Consumo máximo	Giroscopio: 3.6 mA Acelerómetro: 500uF
Rango de medición u operación	±2g, ±4g, ±8g, or ±16g	Voltaje de Alimentación [V]	3.0 a 5.0
Protocolo de comunicación	12C	Voltaje lógico [V]	5.0

Características Extra:

Este sensor no necesita estar expuesto. Por lo que se recomienda tenerlo en un lugar cerrado.

Documentación/Guías/Tutoriales:

■ YT

https://www.youtube.com/watch?v=TwFZ4BJUX5chttps://www.youtube.com/watch?v=fH dG9AcFAY

Github

https://github.com/rfetick/MPU6050 light

El módulo IMU MPU9250 integra tres funcionalidades en un solo módulo: giroscopio, acelerómetro y magnetómetro.

Datasheet	MPU 9250		
		Dimensiones [mm]	3.1 x 3.1 x 2.0
Sensibilidad/Precisión	±3%	Peso [g]	3
Temperatura de Operación	-40 to +85 °C	Consumo máximo	5
Rango de medición u operación	±250 º/s (Giroscopio) ±16 g (Acelerómetro) ±4800T (Magnetómetro)	Voltaje de Alimentación [V]	5.0
Protocolo de comunicación	12C	Voltaje lógico [V]	3.3

Características Extra:

- 3-Axis Gyroscope with Programmable FSR of ±250 dps, ±500 dps, ±1000 dps, and ±2000 dps
- 3-Axis Accelerometer with Programmable FSR of ±2g, ±4g, ±8g, and ±16g
- \bullet 3-Axis Compass with a wide range to ±4900 μT

Documentación/Guías/Tutoriales:

YT

https://www.youtube.com/watch?v=wazPfdGBeZAhttps://www.youtube.com/watch?v=mzwovYcozvIhttps://www.youtube.com/watch?v=uRagSlpypAQ

Github

https://github.com/hideakitai/MPU9250

LSM9DS1

Resumen:

El Adafruit LSM9DS1 es un sensor de movimiento de alto rendimiento que combina un acelerómetro, un giroscopio y un magnetómetro en un solo chip. Es capaz de medir la aceleración lineal, la velocidad angular y el campo magnético en tres ejes diferentes. Los sensores interactúan con microcontroladores o dispositivos electrónicos mediante comunicación I2C o SPI.

Datasheet	<u>Adafruit</u>		
		Dimensiones [mm]	33.4 x 20.4 x 3.0
Sensibilidad/Precisión		Peso [g]	3
Temperatura de Operación	-40 to +85 °C	Consumo máximo	5
Rango de medición u operación	±250 º/s (Giroscopio) ±16 g (Acelerómetro) ±16 rangos de Gauss (Magnetómetro)	Voltaje de Alimentación [V]	5.0
Protocolo de comunicación	12C	Voltaje lógico [V]	3.3

Características Extra:

- Acelerómetro: ± 2, ± 4/± 8/± 16 g (no ± Rango de 6 g).
- Magnetómetro: ± 4/± 8/± 12/± 16 rangos de Gauss.
- Giroscopio: ± 245/± 500/± 2000 DPS rangos.

Documentación/Guías/Tutoriales:

Adafruit

https://learn.adafruit.com/adafruit-lsm9ds1-accelerometer-plus-gyro-plus-magnetometer-9-dof-breakout

Navegación GNSS

U-BLOX Neo 6M

Resumen:

Módulo GPS para Arduino y microcontroladores, basado en el receptor de la marca Ublox modelo NEO 6M, el módulo incluye su antena cerámica. Es un dispositivo de bajo costo, pero cuenta con abundante documentación para el desarrollo de pruebas, la taza de actualizaciones es baja, de 1 Hz.

Datasheet	Neo 6M		
			Antena:
		Dimensiones [mm]	25 x 25 x 8[mm]
		Difficusiones [filling	Módulo:
			25 x 35 x 2[mm]
Sensibilidad/Precisión	Posición: 3 metros Velocidad: 0.1 m/s Actualizaciones: 1Hz	Peso [g]	19
Temperatura de Operación	-40°C a 85°C	Consumo máximo [mA]	67
Rango de medición u	Velocidad Máx.: 500 m/s	Voltaje de Alimentación	5
operación	Altura Máx.: 40 km	[V]	J
Protocolo de comunicación	UART (TX y RX)	Voltaje lógico [V]	5

Características Extra:

El circuito del módulo debe estar encerrado de preferencia. Solamente la antena debe estar expuesta con vista al cielo.

Documentación/Guías/Tutoriales:

- Foro sobre Arduino
 https://create.arduino.cc/projecthub/ruchir1674/how-to-interface-gps-module-neo-6m-with-arduino-8f90ad
- YI https://www.youtube.com/watch?v=pVcjXIG4KW8 https://www.youtube.com/watch?v=3rU_p4eXPPY

El módulo Ultimate GPS de Adafruit es un dispositivo GNSS compatible también con la constelación de GLONASS, cuenta con 99 canales mediante su chip MTK3339. Es capaz mediante un conector uFL de utilizar una antena externa. En general, es un receptor de bajo coste, con buen nivel de calidad y con mucha documentación, así también, existe registros en línea de su uso en proyectos con HAB's.

Datasheet	<u>Ultimate GPS</u>		
Costo		Dimensiones [mm]	25.5 x 35 x 35[mm]
Sensibilidad/Precisión	Posición: 3 metros Velocidad: 0.1 m/s Actualizaciones: 10 Hz	Peso [g]	8.5
Temperatura de Operación	-40°C a 85°C	Consumo máximo [mA]	25 mA
Rango de medición	Velocidad Máx.: 500 m/s Altura Máx.: 40 km	Voltaje de Alimentación [V]	3.0 - 5.5
Protocolo de comunicación	UART (TX y RX)	Voltaje lógico [V]	3.0 - 5.5

Características Extra:

El circuito del módulo debe estar encerrado de preferencia. Solamente la antena debe estar expuesta con vista al cielo. Es necesaria la compra <u>Módulo</u>: \$29.95, <u>Adaptador SMA</u>: \$3.95 y antena <u>Antena SMA</u>: \$19.95

Documentación/Guías/Tutoriales:

Adafruit

https://learn.adafruit.com/adafruit-ultimate-gps-on-the-raspberry-pihttps://learn.adafruit.com/adafruit-ultimate-gps/circuitpython-parsinghttps://learn.adafruit.com/adafruit-ultimate-gps/downloads

El SparkFun NEO-M9N GPS Breakout es una placa GPS de alta calidad, es un receptor GNSS de motor ublox M9 de 92 canales, lo que significa que puede recibir señales de las constelaciones GPS, GLONASS, Galileo y BeiDou con una precisión de 1,5 metros. Este nivel de cobertura maximiza la precisión de la posición en condiciones desafiantes. Extra a todo lo anterior se cuenta con documentación por parte de la comunidad como también un software propio del fabricante.

Encapsulado/Módulo/Presentación		Módulo	
Datasheet	NEO M9N	Archivos 3D	-
Costo	Módulo M9N: \$74.95 Antena: \$72.95	Dimensiones [mm]	64 x 40 x 5
Sensibilidad/Precisión	Posición: 1.5 metros Velocidad: 0.05 m/s Actualizaciones: 25Hz	Peso [g]	18
Temperatura de Operación	-40°C a 85°C	Consumo máximo [mA]	100
Rango de medición u operación	Altitud Máx.: 80,000 m Velocidad Máx.: 500 m/s	Voltaje de Alimentación [V]	3.3
Protocolo de comunicación	UART, Qwiic, I2C	Voltaje lógico [V]	3.3

Documentación/Guías/Tutoriales:

- Sparkfun
 - https://learn.sparkfun.com/tutorials/sparkfun-gps-neo-m9n-hookup-guide? ga=2.168517985.1103695780.1655151332-1245594343.1652921600
- Github https://github.com/sparkfun/SparkFun u-blox GNSS Arduino Library