STA721 Homework 4

1. Add 95% prediction intervals to your plot from HW3 for the Prostate data using a different linetype and color. Explain why the prediction intervals are wider than the confidence intervals for $\hat{\mu}$. (See the function predict() in R. Please label all axes with units and informative names, add a legend to explain the multiple lines, and a caption). (Post your code/example from HW 3 on Piazza for participation points and vote on the best solution!)

- 2. Consider the linear model model $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$ and \mathbf{X} a full rank matrix with rank p. For a new observation Y_* at \mathbf{x}_* with $Y_* = \mathbf{x}_*^T \boldsymbol{\beta} + \epsilon_*$ and ϵ_* independent of $\boldsymbol{\epsilon}$, consider the predicted residual $Y_* \mathbf{x}_*^T \hat{\boldsymbol{\beta}}$ where $\hat{\boldsymbol{\beta}}$ is the MLE using data \mathbf{Y} .
 - (a) Find the distribution of the predicted residual $Y_* \mathbf{x}_*^T \hat{\boldsymbol{\beta}}$ given $\boldsymbol{\beta}$ and σ^2 .
 - (b) Show that the standardized predicted residual (center so that the mean is 0 and and scale (sd) is 1 with σ^2 replaced by the usual unbiased estimate $\hat{\sigma}^2 = \mathbf{Y}^T (\mathbf{I} \mathbf{P_X}) \mathbf{Y} / (n p 1)$ has a student t distribution. What are the degrees of freedom?
- 3. Consider the linear model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ with $\mathsf{E}[\boldsymbol{\epsilon}] = \mathbf{0}_n$ and $\mathsf{Cov}(\boldsymbol{\epsilon}) = \sigma^2 \mathbf{I}_n$ and with \mathbf{X} of full column rank (p+1).
 - (a) Consider estimation of $\boldsymbol{\beta}$ using quadratic loss $(\boldsymbol{\beta} \mathbf{a})^T (\boldsymbol{\beta} \mathbf{a})$ for some estimator \mathbf{a} . Find the expected quadratic loss if we use the MLE $\hat{\boldsymbol{\beta}}$ for \mathbf{a} . Simplify the expression as a function of the eigenvalues of $\mathbf{X}^T \mathbf{X}$. What happens as the smallest eigenvalue goes to 0?
 - (b) Consider estimation μ 's at the observed data points \mathbf{X} . Find the expected quadratic loss $\mathsf{E}[(\mu \mathbf{X}\hat{\boldsymbol{\beta}})^T(\mu \mathbf{X}\hat{\boldsymbol{\beta}})]$. What happens as the smallest eigenvalue of $\mathbf{X}^T\mathbf{X}$ goes to 0?
 - (c) Consider predicting \mathbf{Y}_* 's at the observed data points \mathbf{X} where \mathbf{Y}_* is independent of \mathbf{Y} . Find the expected quadratic loss $\mathsf{E}[(\mathbf{Y}_* \mathbf{X}\hat{\boldsymbol{\beta}})^T(\mathbf{Y}_* \mathbf{X}\hat{\boldsymbol{\beta}})]$. What happens as the smallest eigenvalue of $\mathbf{X}^T\mathbf{X}$ goes to 0?
 - (d) Consider predicting \mathbf{Y}_* 's at new points \mathbf{X}_* with $\mathsf{E}[\mathbf{X}_*^T\mathbf{X}_*] = \mathbf{I}_p$. Find the expected quadratic loss $\mathsf{E}[(\mathbf{Y}_* \mathbf{X}_*\hat{\boldsymbol{\beta}})^T(\mathbf{Y}_* \mathbf{X}_*\hat{\boldsymbol{\beta}})]$. What happens as the smallest eigenvalue of $\mathbf{X}^T\mathbf{X}$ goes to 0? (If $E[\mathbf{X}_*^T\mathbf{X}_*] = \mathbf{\Sigma} > 0$ does that change the result)
 - (e) Comment on the difference in estimation, prediction at observed data and prediction at new data as **X** becomes non-full rank. Which is the most stable? Which is the least?