1 de julho de 2019

FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

Nome:

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros! Use $g = 9.8 \text{ m/s}^2$.

1. (4 valores) Um bloco de massa m = 1.5 kg encontra-se na superfície de um plano inclinado, que faz um ângulo $\theta = 28^{\circ}$ com a horizontal. Entre o bloco e o plano inclinado o coeficiente de atrito estático é 0.3 e o coeficiente de atrito cinético é 0.2. Sobre o bloco atua uma força externa \vec{F} , horizontal, tal como mostra a figura. (a) Quando o módulo da força for $F=10~\mathrm{N}$, o bloco permanece em repouso; determine o valor da força de atrito entre o bloco e o plano. (b) Se a força aumenta para F = 15 N, o bloco acelera para cima do plano; determine o valor da aceleração.

2. (4 valores) A função hamiltoniana de um sistema conservativo é:

$$H(x,y) = \frac{y^2}{2} + U(x)$$

onde U(x) é a função representada no gráfico à direita. (a) Determine a posição dos pontos de equilíbrio no plano xy. (b) Trace o retrato de fase aproximado, no plano xy, mostrando os pontos de equilíbrio e as curvas de evolução que considere mais importantes. (c) Se no instante t = 0 o estado do sistema for (x, y) = (5, -1), explique como será a evolução do sistema em t > 0.

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

- 3. O vetor posição dum ponto, em função do tempo, é dado pela expressão: $2t^4 \hat{i} + (t^2 + 2)\hat{j}$ (unidades SI). Calcule o ângulo entre os vetores velocidade e posição, no instante t = 1.
 - (A) 88.8°
- (C) 16.9°
- **(E)** 67.6°

- (**B**) 42.3°
- **(D)** 55.0°

Resposta:

- 4. A expressão da energia cinética dum sistema conservativo é $\frac{1}{2}$ ($\dot{s}^2 + 3 s^2$), onde s é a posição na trajetória, e a expressão da energia potencial total é 9 s. O sistema tem um único ponto de equilíbrio; determine o valor de s nesse ponto de equilíbrio.
 - (A) -1
- (C) -2
- **(E)** 1

- **(B)** 2
- **(D)** 3

Resposta:

5. As equações de evolução dum sistema linear são:

$$\dot{x} = x - 2y \qquad \dot{y} = 2x + y$$

Como variam x e y em função do tempo?

- (A) Oscilam com período $\pi/2$ e amplitude crescente.
- **(B)** Oscilam com período $\pi/2$ e amplitude constante.
- (C) Oscilam com período igual a π e amplitude constante.
- **(D)** Oscilam com período π e amplitude crescente.
- (E) Oscilam com período $\pi/2$ e amplitude decrescente.

Resposta:

- **6.** A força resultante sobre um objeto de massa 2 kg é $\vec{F} = 2 \hat{\imath} + 7 t \hat{\jmath}$ (SI). Se a velocidade do objeto em t = 0 for $5 \hat{i} + 6 \hat{j}$ m/s, calcule a velocidade em t = 7 s.
 - (A) $12.0 \hat{i} + 30.5 \hat{j}$
- **(D)** $12.0 \hat{i} + 85.8 \hat{j}$
- **(B)** $7.0 \hat{i} + 85.8 \hat{j}$
- **(E)** $19.0 \hat{i} + 177.5 \hat{j}$
- (C) $12.0 \hat{i} + 91.8 \hat{j}$

Resposta:

- 7. O espaço de fase dum sistema dinâmico é o plano xy. Em coordenadas polares, as equações de evolução são $\dot{\theta} = -3$, $\dot{r} = r^3 + 3r^2 + 2r$. Quantos ciclos limite tem o sistema?
 - (**A**) 1
- **(C)** 2
- $(\mathbf{E}) 0$

- **(B)** 4
- **(D)** 3

Resposta:

- 8. A matriz jacobiana dum sistema não linear, num ponto de equilíbrio P no plano de fase (x, y), encontra-se na variável J do Maxima. O comando eigenvectors (J) produz: [[[-1,-2], [1,1]], [[[1,-1]], [[1,1/3]]]]que tipo de ponto de equilíbrio é o ponto P?
 - (A) ponto de sela.
- (D) nó atrativo.
- (B) centro.
- (E) foco atrativo.
- (C) foco repulsivo.

Resposta:

- (A) Isoclina.
- (D) Ciclo.
- (B) Nulclina.
- (E) Órbita heteroclínica.
- (C) Órbita homoclínica.

Resposta:

10. O bloco B move-se para a direita com velocidade de valor constante 210 mm/s. Calcule o valor absoluto da velocidade do bloco A.

- (A) 105 mm/s
- (C) 210 mm/s
- (E) 315 mm/s

- (B) 70 mm/s
- (**D**) 140 mm/s

Resposta:

- 11. Quando um avião acelera desde o repouso, na pista de descolagem, a expressão da sua aceleração tangencial é 2.5 – 2.5 × $10^{-5}v^2$ (em unidades SI), onde v é o valor da velocidade do avião. Para conseguir levantar voo, a velocidade mínima do avião no fim da pista deve ser de 250 km/h. Determine o comprimento mínimo, em metros, que deverá ter a pista de descolagem.
 - (A) 612
- (C) 701
- (E) 820

- **(B)** 989
- **(D)** 1251

Resposta:

- 12. Qual das seguintes equações poderá ser uma das equações de evolução num sistema de duas espécies?
 - **(A)** $\dot{y} = y^3 3x \sin x$
- (D) $\dot{y} = x\sqrt{y-x} + xy^2$ (E) $\dot{y} = 2xy^2 x\cos y$
- **(B)** $\dot{y} = y^3 + 3xy \sin x$
- (C) $\dot{y} = x\sqrt{y+1} 5yx^2$

Resposta:

13. As equações de evolução dum sistema linear, são:

$$\dot{x} = a x + y$$

$$\dot{y} = x + a(x + y)$$

onde a está no intervalo a < -1. Que tipo de ponto de equilíbrio é a origem do espaço de fase?

- (A) nó atrativo
- (C) nó repulsivo
- (E) foco repulsivo

- (B) foco atrativo
- (D) ponto de sela

Resposta:

- (A) 8.4 cm
- (C) 12.2 cm
- (E) 14.6 cm

В

- (B) 17.5 cm
- (**D**) 10.1 cm
- Resposta:

e massa igual a 50 gramas. Se na posição inicial, no lado es-

querdo da figura, a barra for largada do repouso na posição horizontal, rodará descendo até a posição vertical, no lado direito da figura. Uso-se uma mola de 15 cm (quando não está nem comprida nem esticada) e com constante elástica que faz com que quando a barra desca fique novamente em repouso na posição vertical. Determine a constante elástica da mola.

- 15. Calcule o momento de inércia de uma esfera homogénea com 2 centímetros de raio e massa igual a 101 gramas, que roda à volta dum eixo tangente à superfície da esfera, sabendo que o momento de inércia de uma esfera de raio R e massa m à volta do eixo que passa pelo centro é $2 m R^2/5$.
 - (A) $3.23 \times 10^{-5} \text{ kg} \cdot \text{m}^2$
- **(D)** $2.89 \times 10^{-5} \text{ kg} \cdot \text{m}^2$
- **(B)** $8.08 \times 10^{-6} \text{ kg} \cdot \text{m}^2$
- **(E)** $5.66 \times 10^{-5} \text{ kg} \cdot \text{m}^2$
- (C) $1.62 \times 10^{-5} \text{ kg} \cdot \text{m}^2$

Resposta:

- 16. Um jogador de golfe lança a sua bola com uma velocidade inicial de 53 m/s, fazendo um ângulo de 25° com a horizontal. Desprezando a resistência do ar, determine o raio de curvatura da trajetória descrita pela bola, no ponto inicial onde esta foi lançada.
 - (A) 183.0 m
- (C) 316.3 m
- (E) 263.6 m

- (B) 219.6 m
- (**D**) 152.5 m

Resposta:

17. Para determinar a posição do seu centro de gravidade, uma barra retangular foi pendurada de dois fios verticais, ficando em repouso na posição horizontal que mostra a figura. Sabendo que a tensão no fio ligado no ponto A é 2.2 N, a tensão no fio ligado em B é 3.1 N e o comprimento da barra, desde A até B, é 30 cm, determine a distância desde a aresta AC até o centro de gravidade.

FEUP - MIEIC

Resolução do exame de 1 de julho de 2019

Problema 1. O gráfico à direita mostra o diagrama de corpo livre do bloco e uma forma possível de definir os eixos x e y. O sentido indicado na figura para a força de atrito, F_a , é o que terá na alínea b, quando for atrito cinético, oposto ao sentido do movimento do bloco. Na alínea a, em que o atrito é estático, poderá ter esse sentido ou o sentido oposto (nesse segundo caso, o valor obtido para F_a será negativo).

(a) Uma das condições de equilíbrio é que a componente x da força resultante seja nula, que traduz-se na seguinte equação:

Regente: Jaime Villate

$$F_a + mg \sin 28^\circ - F \cos 28^\circ = 0 \implies F_a = 10 \cos 28^\circ - 14.7 \sin 28^\circ = 1.928 \text{ N}$$

O sinal positivo indica que a força de atrito sim é no sentido indicado na figura.

(b) A força de atrito, F_a , corresponde a atrito cinético e, como tal,

$$F_a = \mu_c N = 0.2 N$$

A componente y da força resultante deverá ser nula, e a componente x deverá ser igual a menos a massa vezes a aceleração:

$$\begin{cases} N - 15\sin 28^{\circ} - 14.7\cos 28^{\circ} = 0 \\ 0.2 N + 14.7\sin 28^{\circ} - 15\cos 28^{\circ} = -1.5 a \end{cases} \implies \begin{cases} N = 20.02 \text{ N} \\ a = 1.559 \frac{\text{m}}{\text{s}^{2}} \end{cases}$$

Problema 2. As equações de evolução do sistema são obtidas a partir das equações de Hamilton:

$$\dot{x} = \frac{\partial H}{\partial y} = y$$
 $\dot{y} = -\frac{\partial H}{\partial x} = -\frac{\mathrm{d}U}{\mathrm{d}x}$

Ou, em vez de usarmos as equações de Hamilton, podemos considerar que o sistema é uma partícula de massa igual a 1, que se desloca no eixo dos x, sob a ação da energia potencial U(x), com velocidade $y = \dot{x}$. A função hamiltoniana é a energia mecânica dessa partícula.

(a) Há três pontos de equilíbrio, onde a derivada de U é nula: dois mínimos locais em $x \approx 1.5$ e $x \approx 6.5$, e um máximo local em $x \approx 3.5$, indicados na figura ao lado com três círculos. A primeira equação de evolução implica que nos pontos de equilíbrio y = 0. As coordenadas (x,y) dos 3 pontos de equilíbrio são então:

$$P_1 = (1.5,0)$$
 $P_2 = (3.5,0)$ $P_3 = (6.5,0)$

(b) As barras horizontais na figura mostram onde poderá estar o sistema para diferentes valores de H. Há 4 casos diferentes:

(*i*) H maior que o valor de H no ponto P_3 (igual a $U(6.5) \approx 1$, porque y = 0) e menor que o valor de H no ponto P_1 ($U(1.5) \approx 4.3$); optamos por usar H = 2 que, como mostra o gráfico, corresponde a um ciclo à volta de P_3 . (*ii*) H maior que 4.3 e menor que o valor de H no ponto P_2 ($U(3.5) \approx 6.3$); optamos por

usar H=5, que conduz a dois ciclos diferentes, um à volta de P_1 e outro à volta de P_3 . (iii) $H\approx 6.3$, que conduz a duas órbitas homoclínicas, uma à volta de P_1 e outra à volta de P_3 . (iv) H>6.3, que conduz a ciclos que contornam os 3 pontos de equilíbrio (mostra-se o caso H=8).

O retrato de fase é o sumário desses resultados:

(c) $H(5,-1)\approx 1/2+4=4.5$, que se encontra na região onde há ciclos em torno do ponto P_3 . O sistema oscila em torno desse ponto. O valor inicial negativo de y implica que x diminui e y aumenta, até um instante em que $x\approx 4.5$ e y=0. A partir desse instante, x e y aumentam, até um instante em que x=6.5 e y atinge o valor máximo $y=\sqrt{2(4.5-1)}\approx 2.6$; a seguir, x continua a aumentar mas y diminui, até um instante em que $x\approx 7.5$ e y=0. Depois, x e y diminuem até x=6.5, y=-2.6 (valor mínimo de y). A seguir, x continua a diminuir mas y aumenta, até voltar ao estado inicial do sistema: x=5, y=-1. O mesmo ciclo repete-se indefinidamente.

Perguntas

3. B	6. C	9. E	12. B	15. E
4. D	7. E	10. D	13. B	16. C
5. D	8. D	11. B	14. B	17. B

Cotações

Problema 1

Diagrama de corpo livre incluindo ângulos e eixos	0.8
• Expressão da soma das componentes das forças paralelas ao plano (a)	0.8
Obtenção da força de atrito, indicando as unidades	0.2
• Relação entre força de atrito cinético e reação normal (b)	0.4
ullet Expressão da soma das componentes das forças paralelas ao plano (b)	0.8
ullet Expressão da soma das componentes das forças perpendiculares ao plano (b)	0.8
Obtenção da aceleração, indicando as unidades	0.2
Problema 2	
Obtenção dos 3 pontos de equilíbrio	0.8
• Retrato de fase mostrando os eixos <i>x</i> e <i>y</i> , os 3 pontos de equilíbrio e as curvas importa homoclínicas/heteroclínicas, ciclos, curvas abertas) com setas que indiquem o senti-	
sistema evolui	-
• Explicação da evolução do sistema para $t>0$ na alínea c	0.8