Uppgift 1

		1 (2	√ 3	4	5 !	\/ 9	(0)	√ 11	(18)	√)19	20	√ 21	23	25)26)	√ 27
\checkmark	a		X	X				X	X	X	X					X	X
\checkmark	b						X		X						X		X
	c	X		X			X		X								
	d	X				X											
	e					X							X				
\checkmark	f											X	X				
	g h										X			X			
	h												X	X			

Väsentliga primimplikatorer: a,b,f

Reducerad primimplikatortabell:

	1	5	23
c d e g	X X	X X	X
h			X

d dominerar över c och e

Fullständig täckning erhålls med: $\{a,b,f,d,g\}$ eller

 $\{a,b,f,d,h\}$

Uppgift 2

Svar: Minimal disjunktiv form $f_{min} = \bar{y}z + y\bar{z} + \bar{x}$

Uppgift 3

Med T_{CPS} betecknande clock skew samt $T_p = \max \{T_{pLH}, T_{pHL}\}$ ges villkoret för periodtiden av: $P > T_{CPS(max)} + T_{p(max)} + T_{K(max)} + T_{su(max)}$ (Se KT, Del A, 2.5.1) Med $T_{K(max)} = 2 \cdot T_{G(max)} = 20$ ns erhålls: P > 5 + 10 + 20 + 7 = 42 ns

Svar: $P_{min} = 42 \ ns.$

Tentamensdatum: 980825

Uppgift 4

Grundprincipen vid konvertering till Moore-nät är att utsignalsförändringar senareläggs en period för tillstånd som ger olika utsignaler för olika *x*-värden.

Uppgift 5

Uppgift 6

forts.

Uppg. 6 forts.

Nod *f* s-a-0:

Propagering av f kräver: $\alpha(a, b, c, d, e) = 1$ och D(a, b, c, d, e, g) = 0.

Ur figur:
$$\alpha = \frac{\overline{\overline{ab \cdot c \cdot d \cdot e}}}{\overline{ab \cdot c \cdot d \cdot e}} = (ab + \overline{c})d + \overline{e}$$

$$P_f = \alpha \cdot \overline{D}$$

$$T_f = f \cdot P_f = f \cdot \alpha \cdot \overline{D} = f[((ab + \overline{c})d + \overline{e}) \cdot ((\overline{a} + \overline{b} + c)\overline{d} + e)g] =$$

$$= fg[(ab + \overline{c})de + (\overline{a} + \overline{b} + c)\overline{d}\overline{e}]$$
 Härur kan samtliga vektorer erhållas.

Ex. på en testvektor är: $\langle abcdefg \rangle = \langle 1 \ 1 \ - 1 \ 1 \ 1 \ 1 \rangle$

Nod *d* s-a-1:

Sensibilisering genom tex. U kräver:

$$\beta(a,b,c) = 1;$$
 $e = 1;$ $f = 1;$ $D(a,b,c,d,e,g) = 0$
 $e = 1 \Rightarrow \gamma = 1$

För att åstadkomma D = 0 krävs g = 1.

$$\beta = ab + \bar{c}$$

Testvektorfunktionen T_{Ud} för sensibilisering genom U ges således av:

$$T_{Ud} = (ab + \bar{c}) \cdot e \cdot f \cdot g \cdot \bar{d}$$

Exempel på en testvektor är: $\langle abcdefg \rangle = \langle --00111 \rangle$

Svar:
$$f$$
 s-a-0: $\langle abcdefg \rangle = \langle 1 \ 1 \ -1 \ 1 \ 1 \ 1 \rangle$
 d s-a-1: $\langle abcdefg \rangle = \langle -0 \ 0 \ 1 \ 1 \rangle$

Uppgift 7

<u>Tillståndsgraf</u> 0(0)0(0)1(0)x(u)В \mathbf{C} 0(0)1(1) Α 0(1)= starttillstånd 0(0)1(0) 1(0) 1(0)

Uppgift 8

Maximala förenlighetsmängder: $\{A, B\}$, $\{A, C, E\}$, $\{B, D\}$, $\{B, G, H\}$, $\{C, E, H\}$, $\{C, G, H\}$, $\{D, E, F\}$, $\{F, G\}$

C_{i}	I(C _i)			
{A,B}	ф			
{A,C,E}	{E,H}, {A,B}			
{B,D}	ф			
{B,G,H}	{C,H}			
{C,E,H}	{A,B}			
{C,G,H}	ф			
{D,E,F}	{B,D}, {E,H}			
{F,G}	ф			
{E,F}	{B,D}			
•	•			

 $\{A,B\}$ Två stycken minimala slutna och täckande uppsättningar av fören-{B,D} lighetsmängder är {C,E,H} $\{A,B\}, \{B,D\}, \{C,E,H\} \text{ och } \{F,G\}$ {F,G} respektive ${A,B}$ \rightarrow {B,D} {A,B}, {B,D}, {C,G,H} och {E,F} {C,G,H} {E,F} Den första uppsättningen ger följande täckande $\delta(\lambda)$ -tabell.

δ(λ)	00	01	11	10
1 = {A,B}	4(-)	3(1)	1(0)	3(0)
$2 = \{B,D\}$	4(1)	3(1)	1∨2(0)	4(1)
$3 = \{C,E,H\}$	1(1)	3(1)	4(-)	3(0)
$4 = \{F,G\}$	2(0)	4(0)	2(1)	3(0)

Uppgift 9

