

밸런싱 로봇 (임베디드 스쿨 LV1프로젝트)

> 임베디드스쿨1기 Lv1과정 2021. 01. 14 손표훈

목차

- 개요
- 시스템 구성
- MPU6050
- 상보 필터
- PID 제어기
- 구동영상
- M&S(작성 중)

● 개요

▶ 밸런싱 로봇의 원리

- 아래 그림과 같이 막대기를 손 위에 올려 놓고 기울어지는 방향으로 이동하면서 막대기가 손에서 떨어지지 않게 하는 것, 즉, 무게중심이 이동한 방향과 거리만큼 움직이면서 무게중심을 잡는 것이다.
- 2 자유도 운동(2-DOF) : 로봇 몸체의 기울기(PITCH)와 로봇의 병진운동

● 개요

> 목적

- 동역학 모델링과 제어알고리즘, 센서신호처리에 관한 자료의 접근이 수월한 밸런싱 로봇 제어 경험을 통해 시스템 모델링의 기초에 대한 지식 습득
- 습득한 기초 지식을 통해 목표인 소형로켓 설계(추진연료 : 물)와 RC비행기 설계

● 개요

▶ 구성품

- 싸이피아의 "SBOT" 제품을 사용하여 로봇의 프레임, 센서, 모터, 모터 드라이버, 바퀴를 구성
- 컨트롤러 : ArduinoUNO(ATmega328P 8bit MCU)

▶ 시스템 구성 블록도

• 가속도+자이로센서가 감지한 로봇의 자세(각도)를 PID연산을 통해 제어한다.

➢ 주요 회로 : Controller

- MPU6050 인터페이스: I2C 1CH
- 모터구동용 PWM: 8bit Timer 2CH(Timer0, Timer2), 16bit Timer 1CH(Timer1)

5V 3.3V

밸런싱 로봇 프로젝트에서 PWM출력은 2CH의 8bit Timer를 사용, 제어주기를 위해 Timer1을 사용

MPU6050 커넥터

MPU6050_SCL

MPU6050 SDA

VCC

SCLK SDA

ADO[×] INT

AUX_SDA AUX²SCL

외부 전원(12V 어댑터 사용)

Arduino Uno(ATmega328P)

➤ 주요 회로 – LN298

- LN298 H-bridge 모터 드라이버
- 2ch의 H-bridge 회로로 구성
- LN298의 EN핀은 Logic "High"로 항상 인가된 상태로 구성

ELECTRICAL CHARACTERISTICS (V_S = 42V; V_{SS} = 5V, T_I = 25°C; unless otherwise specified)

Symbol	Parameter	Toet Conditi	one	Min	Twn	May	Unit	1
Vs	Supply Voltage (pin 4)	Operative Condition		V _{IH} +2.5		46	٧	1
Vss	Logic Supply Voltage (pin 9)			4.5	5	7	V	۲
Is	Quiescent Supply Current (pin 4)	V _{en} = H; I _L = 0	V _i = L V _i = H		13 50	22 70	mA mA	1
		V _{en} = L	V _i = X			4	mA	1
I _{SS}	Quiescent Current from V _{SS} (pin 9)	V _{en} = H; I _L = 0	V _i = L V _i = H		24 7	36 12	mA mA	1
		V1	V - V					1
V _{IL}	Input Low Voltage (pins 5, 7, 10, 12)			-0.3		1.5	٧	1
ViH	Input High Voltage (pins 5, 7, 10, 12)			2.3		VSS	٧	
ΙL	Low Voltage Input Current (pins 5, 7, 10, 12)	V _i = L				-10	μA	Γ
IH	High Voltage Input Current (pins 5, 7, 10, 12)	$Vi = H \le V_{SS} - 0.6V$			30	100	μА	
V _{en} = L	Enable Low Voltage (pins 6, 11)			-0.3		1.5	V	1
V _{en} = H	Enable High Voltage (pins 6, 11)			2.3		Vss	V	1
I _{en} = L	Low Voltage Enable Current (pins 6, 11)	V _{en} = L				-10	μА]
I _{en} = H	High Voltage Enable Current (pins 6, 11)	V_{en} = H \leq V_{SS} $-0.6V$			30	100	μА	
V _{CEsat (H)}	Source Saturation Voltage	I _L = 1A I _L = 2A		0.95	1.35	1.7 2.7	V	1
V _{CEsat (L)}	Sink Saturation Voltage	I _L = 1A (5) I _L = 2A (5)		0.85	1.2 1.7	1.6 2.3	V V	1
VCEsat	Total Drop	I _L = 1A (5) I _L = 2A (5)		1.80		3.2 4.9	V	Ī
Vsens	Sensing Voltage (pins 1, 15)			-1 (1)		2	V	T

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
T ₁ (V _i)	Source Current Turn-off Delay	0.5 V _i to 0.9 I _L (2); (4)		1.5		μs
T ₂ (V _i)	Source Current Fall Time	0.9 I _L to 0.1 I _L (2); (4)		0.2		μs
T ₃ (V _i)	Source Current Turn-on Delay	0.5 V _i to 0.1 I _L (2); (4)		2		μs
T ₄ (V _i)	Source Current Rise Time	0.1 I _L to 0.9 I _L (2); (4)		0.7		μs
T ₅ (V _i)	Sink Current Turn-off Delay	0.5 V _i to 0.9 I _L (3); (4)		0.7		μs
T ₆ (V _i)	Sink Current Fall Time	0.9 I _L to 0.1 I _L (3); (4)		0.25		μs
T ₇ (V _i)	Sink Current Turn-on Delay	0.5 V _i to 0.9 I _L (3); (4)		1.6		μs
Ta (Vi)	Sink Current Rise Time	0.1 l ₁ to 0.9 l ₁ (3); (4)		0.2		us
fc (V _i)	Commutation Frequency	I _L = 2A		25	40	KHz
I ₁ (V _{en})	Source Current Turn-off Delay	0.5 V _{en} to 0.9 I _L (2); (4)		3		μs
T ₂ (V _{en})	Source Current Fall Time	0.9 I _L to 0.1 I _L (2); (4)		1		μs
T ₃ (V _{en})	Source Current Turn-on Delay	0.5 V _{en} to 0.1 I _L (2); (4)		0.3		μs
T ₄ (V _{en})	Source Current Rise Time	0.1 I _L to 0.9 I _L (2); (4)		0.4		μs
T ₅ (V _{en})	Sink Current Turn-off Delay	0.5 V _{en} to 0.9 I _L (3); (4)		2.2		μs
T ₆ (V _{en})	Sink Current Fall Time	0.9 I _L to 0.1 I _L (3); (4)		0.35		μs
T ₇ (V _{en})	Sink Current Turn-on Delay	0.5 V _{en} to 0.9 I _L (3); (4)		0.25		μs
T ₈ (V _{en})	Sink Current Rise Time	0.1 l _L to 0.9 l _L (3); (4)		0.1		μs

*모터의 효율과 내부 FET/BJT의 열과 관련

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Power Supply	50	٧
V _{SS}	Logic Supply Voltage	7	٧
V _I ,V _{en}	Input and Enable Voltage	-0.3 to 7	٧
<u>o</u>	Peak Output Current (each Channel) – Non Repetitive (t = 100μs) –Repetitive (80% on –20% off: t _{on} = 10ms) –DC Operation	3 2.5 2	A A
V _{sens}	Sensing Voltage	–1 to 2.3	٧
P _{tot}	Total Power Dissipation (T _{case} = 75°C)	25	W
T _{op}	Junction Operating Temperature	-25 to 130	°C
T _{stg} , T _j	Storage and Junction Temperature	-40 to 150	°C

▶ LN298N의 동작원리

- 모터의 + -> -핀으로 전류가 흐르면 CW, 반대로 흐르면 CCW라 가정
- Enable핀은 항상 "High"상태

> MPU6050이란?

- 자이로센서와 가속도센서가 결합된 6축 센서 모듈
- I2C, SPI 인터페이스 지원

7.6 Overview

The MPU-60X0 is comprised of the following key blocks and functions:

➤ MPU6050 특징

- 자이로 센서: X,Y,Z 3축의 각속도를 센싱 ±250deg/s ~ ±2000deg/s
- 가속도 센서 : ±2g ~ ±16g
- 16bit의 분해능을 가짐

5.1 Gyroscope Features

The triple-axis MEMS gyroscope in the MPU-60X0 includes a wide range of features:

- Digital-output X-, Y-, and Z-Axis angular rate sensors (gyroscopes) with a user-programmable fullscale range of ±250, ±500, ±1000, and ±2000°/sec
- External sync signal connected to the FSYNC pin supports image, video and GPS synchronization
- Integrated 16-bit ADCs enable simultaneous sampling of gyros
- Enhanced bias and sensitivity temperature stability reduces the need for user calibration
- · Improved low-frequency noise performance
- Digitally-programmable low-pass filter
- Gyroscope operating current: 3.6mA
- Standby current: 5µA
- Factory calibrated sensitivity scale factor
- User self-test

5.2 Accelerometer Features

The triple-axis MEMS accelerometer in MPU-60X0 includes a wide range of features:

- Digital-output triple-axis accelerometer with a programmable full scale range of ±2g, ±4g, ±8g and ±16g
- Integrated 16-bit ADCs enable simultaneous sampling of accelerometers while requiring no external multiplexer
- Accelerometer normal operating current: 500µA
- Low power accelerometer mode current: 10μA at 1.25Hz, 20μA at 5Hz, 60μA at 20Hz, 110μA at 40Hz
- · Orientation detection and signaling
- Tap detection
- User-programmable interrupts
- High-G interrupt
- User self-test

▶ 가속도센서란?

HOW DOES AN ACCELEROMETER WORK

- 속도의 변화량을 측정하는 센서
- 가속도 센서의 출력은 "가속도"
- 단위 : $g(\overline{S}$ 력가속도이며, $1g = 9.8^{m}/_{S^{2}})$
- 가속도 센서의 가속도를 측정하는 원리는 아래와 같다(예시)

STILL WEIGTLESS STATE X = 0.71g ACCELERATION ACCELERATION 1g X = 0.71g ACCELERATION 1g X = 0.71g ACCELERATION Y = 0.71g Piezo Electric Accelerometer

*기본 원리: 뉴턴의 제 2법칙(F=ma)

- 가운데 공이 들어있는 박스의 벽면은 Piezo 크리스탈로 구성
- 각 벽면은 x,y,z 3축을 의미
- 센서의 움직임에 따라 공이 벽면을 부딪혀 전류를 발생시킴
- 전류의 극성에 따라 방향이 결정되고, 크기가 힘의 크기가 됨

*그림 출처: https://acoptex.com/project/118/basics-project-020a-mpu-6050-gy-521-gy-521-module-3-axis-gyroscope-and-accelerometer-at-acoptexcom/

> 가속도센서를 이용한 각도 측정

*그림 출처 : https://pinkwink.kr/73

- * 이때 Roll각도는 다음과 같다
- $\Theta = \tan^{-1} \frac{Y}{Z} -> \text{Euler}$
- Y: Y축 가속도센서 출력
- Z: Z축 가속도센서 출력
- Y': 초기 Y축의 위치
- Z': 초기 Z축의 위치
- * 가속도 센서로는 yaw각도를 측정 할 수 없음..
- 기준 축이 바뀌으로.... (다음 장에서 계속)

- 가속도 센서가 Z축을 기준으로 가만히 있을 때
- 센서에 작용하는 가속도는 중력가속도뿐
- 이 때 Z축 값으로 1G가 측정된다.
- Z축을 제외한 X,Y축의 가속도 값은 0이 된다.

- 옆의 그림과 같이 센서가 기울었다면,
- Z축의 가속도 크기 = |g|cos(θ)
- X축의 가속도 크기 = |g|sin (θ)
- 두 축의 합은 1g(9.8m/s^2)이 된다.

➤ 자이로 센서란?

- 회전하는 물체의 각속도를 측정
- 자이로 센서의 출력은 "각속도"
- 자이로 센서의 원리

*그림 출처: https://ibmhdd.tistory.com/3

*기본 원리: 뉴턴의 제 2법칙(F=ma), 코리올리 효과

- *a_{cor}* : 코리올리 가속도

Z축으로 회전시 물체가 V의 속도로 X축으로 이동하면,
 코리올리 힘에 의해 코리올리 가속도는 Y축으로 발생한다.

- Ω: 회전계의 각속도

- F=ma에 의해 $F_{cor}=m2V\Omega$ 에서 2, m, V가 일정하므로 코리올리 힘은 각속도와 비례

* 코리올리 효과란?

- 회전하는 계에서 느껴지는 "관성력 "

- ▶ 자이로 센서란?
- 단위: °/s(DPS: Degree Per Second)이며, x, y, z축에 대한 각속도
- 각속도 $\omega = \frac{d\theta}{dt}$
- 자이로센서로 부터 각도를 얻기 위해서 센서출력을 "적분"하여 각도 값을 얻어야 한다.

*그림 출처: https://m.blog.naver.com/PostView.nhn?blogId=lagrange0115&logNo=220767476955&proxyReferer=https:%2F%2Fwww.google.com%2F

> MPU6050 I2C 인터페이스

• I2C인터페이스와 프로토콜은 아래와 같다.

* AD0핀에 VDD or GND에 따라 MPU6050의 I2C Address가 다르다.

ı		All registers, otaliaala-mode		100	MIL	L	
	I ² C ADDRESS	AD0 = 0	110100				1
		AD0 = 1	110100				
	DIGITAL INPUTS (SDI/SDA. ADO.						1

MPU6050에 데이터 쓰기

Single-Byte Write Sequence

Master	S	AD+W		RA		DATA		Р
Slave			ACK		ACK		ACK	

Burst Write Sequence

Master	S	AD+W		RA		DATA		DATA		Р
Slave			ACK		ACK		ACK		ACK	

MPU6050으로 부터 데이터 읽기

Single-Byte Read Sequence

Master	S	AD+W		RA		S	AD+R			NACK	Р
Slave			ACK		ACK			ACK	DATA		

Burst Read Sequence

Master	S	AD+W		RA		S	AD+R			ACK		NACK	Р
Slave			ACK		ACK			ACK	DATA		DATA		

> MPU6050 Register Map

Power Management1 Register

4.28 Register 107 – Power Management 1 PWR_MGMT_1

Type: Read/Write

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
6B	107	DEVICE _RESET	SLEEP	CYCLE	-	TEMP_DIS	CLKSEL[2:0]		

Note: The device will come up in sleep mode upon power-up.

- 우선 센서를 사용하기 위해...
- 데이터시트 9페이지에 센서에 전원이 인가되면 센서는 "슬립모드"로 들어간다.
- 이 슬립모드를 해제하기 위해 Power Management1의 bit6을 0으로 설정해야한다.
- 센서의 샘플링을 위한 클럭소스를 선택
- Bit0~2를 설정, 아래와 같이 클럭소스를 선택할 수 있다.

CLKSEL	Clock Source
0	Internal 8MHz oscillator
1	PLL with X axis gyroscope reference
2	PLL with Y axis gyroscope reference
3	PLL with Z axis gyroscope reference
4	PLL with external 32.768kHz reference
5	PLL with external 19.2MHz reference
6	Reserved
7	Stops the clock and keeps the timing generator in reset

> MPU6050 Register Map

Configuration Register

4.3 Register 26 – Configuration CONFIG

Type: Read/Write

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
1A	26	-	-	EXT_SYNC_SET[2:0]			D	LPF_CFG[2:0	G[2:0]		

• 내부 디지털 저역통과 필터 설정을 해줄 수 있다.

The DLPF is configured by *DLPF_CFG*. The accelerometer and gyroscope are filtered according to the value of *DLPF_CFG* as shown in the table below.

DLPF_CFG	Acceleror (F _s = 1k			Gyroscope	•
	Bandwidth (Hz)	Delay (ms)	Bandwidth (Hz)	Delay (ms)	Fs (kHz)
0	260	0	256	0.98	8
1	184	2.0	188	1.9	1
2	94	3.0	98	2.8	1
3	44	4.9	42	4.8	1
4	21	8.5	20	8.3	1
5	10	13.8	10	13.4	1
6	5	19.0	5	18.6	1
7	RESERVED		RESER\	/ED	8

• 8가지의 설정을 할 수 있고, 0을 선택하면 DLPF를 Disable하는 것

> MPU6050 Register Map

Sample Rate Divider Register

4.2 Register 25 – Sample Rate Divider SMPRT_DIV

Type: Read/Write

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
19	25	SMPLRT_DIV[7:0]							

- 센서 샘플링 속도를 설정해 줄 수 있다.
- 8bit인 0~255의 값으로 아래와 같이 설정할 수 있다.

The Sample Rate is generated by dividing the gyroscope output rate by SMPLRT_DIV:

Sample Rate = Gyroscope Output Rate / (1 + SMPLRT_DIV)

where Gyroscope Output Rate = 8kHz when the DLPF is disabled (*DLPF_CFG* = 0 or 7), and 1kHz when the DLPF is enabled (see Register 26).

<u>Note:</u> The accelerometer output rate is 1kHz. This means that for a Sample Rate greater than 1kHz, the same accelerometer sample may be output to the FIFO, DMP, and sensor registers more than once.

> MPU6050 Register Map

• Gyroscope Configuration Register

4.4 Register 27 – Gyroscope Configuration GYRO_CONFIG

Type: Read/Write

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1B	27	XG_ST	YG_ST	ZG_ST	FS_SI	EL[1:0]	•	•	

• 센서의 스케일 범위를 아래와 같이 설정한다.

FS_SEL selects the full scale range of the gyroscope outputs according to the following table.

FS_SEL	Full Scale Range				
0	± 250 °/s				
1	± 500 °/s				
2	± 1000 °/s				
3	± 2000 °/s				

> MPU6050 Register Map

Accelerometer Configuration Register

4.5 Register 28 – Accelerometer Configuration ACCEL_CONFIG

Type: Read/Write

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1C	28	XA_ST	YA_ST	ZA_ST	AFS_S	EL[1:0]		-	

• 센서의 스케일 범위를 아래와 같이 설정한다.

AFS_SEL selects the full scale range of the accelerometer outputs according to the following table.

AFS_SEL	Full Scale Range				
0	± 2g				
1	± 4g				
2	± 8g				
3	± 16 <i>g</i>				

> Initialize MPU6050


```
//Register : PWR management1, Set Bit : SLEEP MODE, Set SLEEP MODE Bit length : 1, Disable SLEEP MODE
MPU6050 WriteBits(PWR MGMT 1, SLEEP MODE BIT, SLEEP MODE LEN, DISABLE);
//Register : PWR management1, Set Bit : CLK Select, Set CLK Select length : 3, Set CLK source : PLL with X axis gyroscope reference
MPU6050 WriteBits(PWR MGMT 1, CLKSEL BIT, CLKSEL LEN, CLKSEL1);
//Register : Interrupt Enable, Set Bit : DATA_RDY_INT_EN, Set DATA_RDY_INT_EN length : 1, Enable DATA_RDY_INT
//MPU6050_WriteBits(INT_ENABLE, DATA_RDY_INT_EN, DATA_RDY_INT_EN_LEN, ENABLE);
//Register : Configuration, Set Bit : Digital LowPassFilter Config, Set DLPF Bit length : 3,
//Set DLPF config3 : Accele = 44Hz(Bandwidth), 4.9ms(Delay), Fs = 1KHz / Gyro = 42Hz(Bandwidth), 4.8ms(Delay), Fs = 1KHz -> 2020.12.07
//Set DLPF config0 : Accele = 260Hz(Bandwidth), Oms(Delay), Fs = 1KHz / Gyro = 256Hz(Bandwidth), 0.98ms(Delay), Fs = 8KHz -> 2020.12.28
MPU6050 WriteBits(CONFIG, DLPF_CFG_BIT, DLPF_CFG_LEN, DLPF_CFG0);
//Register : Sample Rate, Writes 0x04 : Sample Rate = Gyroscope Output Rate / (1 + SMPLRT_DIV(=4))
//where Gyroscope Output Rate = 8kHz when the DLPF is disabled (DLPF CFG = 0 or 7), and 1kHz
//when the DLPF is enabled
MPU6050 WriteByte(SMPLRT DIV, 4);
//Register : Gyro Configuration, Set Bit : Gyro Full Scale, Set Bit length : 2, Set Gyro Full Scale : +,-2000 degree/s
MPU6050 WriteBits(GYRO_CONFIG, GYRO_FS_SEL_BIT, GYRO_FS_SEL_LEN, GYRO_FS_SEL2000);
//Register : Accelerometer Configuration. Set Bit : Accelerometer Full Scale. Set Bit length : 2, Set Accel Full Scale : +,-16g
MPU6050 WriteBits(ACCEL_CONFIG, ACCEL AFS SEL BIT, ACCEL AFS SEL LEN, ACCEL AFS SEL16G);
```


➤ Get MPU6050 Raw Data


```
∃uint8 t MPU6050 ReadBytes(uint8 t reg addr, uint8 t len, uint8 t* pData)
     uint8 t cnt = 0;
     if(len > 0)
         i2c_start((MPU6050_ADD0 << 1) | I2C_WRITE);
        i2c_write(reg_addr);
         i2c_rep_start((MPU6050_ADD0 << 1) | I2C_READ);
         for(int i = 0; i < len; i++)
             cnt++;
             if(i == len-1)
                 pData[i] = i2c readNak();
             else
                 pData[i] = i2c_readAck();
     i2c_stop();
     return cnt;
* len : 14 = 0x3B \sim 0x48(Accel_Xout_H \sim Gyro_Zout_L)
```

> Scaling Raw MPU6050 Data

```
- void Calc_Accel_RollPitch(pAxis_Data AccelData, pAngle_3Dim Accel_Angle)
{
    Angle 3Dim Angle Tmp;
    Angle_Tmp.Roll = (float)AccelData -> Xaxis / (float)ACCEL_LSB_FS16G;
    Angle_Tmp.Pitch = (float)AccelData -> Yaxis / (float)ACCEL_LSB_FS16G;
    Angle Tmp.Yaw = (float)AccelData -> Zaxis / (float)ACCEL LSB FS16G;
    Accel_Angle->Roll = atan2(Angle_Tmp.Pitch, Angle_Tmp.Yaw) * 180.0F / (float)PI;
    Accel_Angle->Pitch = atan2(Angle_Tmp.Roll, Angle_Tmp.Yaw) * 180.0F / (float)PI;
    #ifdef ForTestMPU6050
    printf("Roll = %.2f\tPitch = %.2f\n", Accel Angle->Roll, Accel Angle->Pitch);
    #endif
}
- void Calc GyroData(pAxis Data GyroData, pAngle 3Dim Gyro Angle)
{
    Gyro_Angle->Roll = (float)GyroData->Xaxis / (float)GYRO_LSB_FS2000;
    Gyro Angle->Pitch = (float)GyroData->Yaxis / (float)GYRO LSB FS2000;
    Gyro Angle->Yaw = (float)GyroData->Zaxis / (float)GYRO LSB FS2000;
}
```


> Scaling Raw MPU6050 Data

```
Jvoid Calc_Accel_RollPitch(pAxis_Data AccelData, pAngle_3Dim Accel_Angle)
    Angle 3Dim Angle Tmp;
    Angle Tmp.Roll = (float)AccelData -> Xaxis / (float)ACCEL LSB FS16G;
    Angle Tmp.Pitch = (float)AccelData -> Yaxis / (float)ACCEL LSB FS16G;
    Angle_Tmp.Yaw = (float)AccelData -> Zaxis / (float)ACCEL_LSB_FS16G;
    Accel_Angle->Roll = atan2(Angle_Tmp.Pitch, Angle_Tmp.Yaw) * 180.0F / (float)PI;
    Accel_Angle->Pitch = atan2(Angle_Tmp.Roll, Angle_Tmp.Yaw) * 180.0F / (float)PI;
    #ifdef ForTestMPU6050
    printf("Roll = %.2f\tPitch = %.2f\n", Accel_Angle->Roll, Accel_Angle->Pitch);
    #endif
Jvoid Calc_GyroData(pAxis_Data GyroData, pAngle_3Dim Gyro_Angle)
    Gyro Angle->Roll = (float)GyroData->Xaxis / (float)GYRO LSB FS2000;
    Gyro_Angle->Pitch = (float)GyroData->Yaxis / (float)GYRO_LSB_FS2000;
    Gyro_Angle->Yaw = (float)GyroData->Zaxis / (float)GYRO_LSB_FS2000;
```

> Integral Gyro Data

```
Jvoid Integral_GyroData(pAxis_Data GyroData, pAngle_3Dim Gyro_Angle)
     Angle 3Dim Angle Tmp;
     Angle_Tmp.Roll = (float)GyroData->Xaxis / (float)GYRO_LSB_FS2000;
     Angle_Tmp.Pitch = (float)GyroData->Yaxis / (float)GYRO_LSB_FS2000;
     Angle Tmp.Yaw = (float)GyroData->Zaxis / (float)GYRO LSB FS2000;
     Gyro_Angle->Roll = Angle_Tmp.Roll*(float)dt + Gyro_Angle->Roll;
     Gyro_Angle->Pitch = Angle_Tmp.Pitch*(float)dt + Gyro_Angle->Pitch;
     Gyro_Angle->Yaw = Angle_Tmp.Yaw*(float)dt + Gyro_Angle->Yaw;
```

*그림 출처 : By I, KSmrq, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2359630

* 적분구간 = 1ms(제어주기=센서 데이터 획득주기)

X-axis = 0.006836

Y-axis = 0.026855

Z-axis = 1.304199

Roll = 1.179641

Pitch = 0.300312

X-axis = 0.004883

Y-axis = 0.021484

Z-axis = 1.307617

Roll = 0.941295

Pitch = 0.213949

X-axis = 0.006348

Y-axis = 0.024414

Z-axis = 1.307617

Roll = 1.069625

Pitch = 0.278133

▶ 상보필터란?

- 가속도센서 단점 : 진동과 이동시에 발생하는 고주파 노이즈에 취약
- 자이로 센서 단점 : 자이로센서를 이용한 각도추정시 적분으로 인한 누적오차가 발생, 각도 추정의 저주파성분의 드리프트 현상이 발생
- 가속도 센서는 고주파 노이즈를 차단하는 "Low Pass Filter"를 자이로센서는 저주파 노이즈를 차단하는 "High Pass Filter"를 적용하여 필터링된 결과 값을 더하여 서로 단점을 보완해주는 필터가 "상보 필터 " 이다.

> 상보필터 구현

- 1. 1社 8生 野时
- (1) 상별되란?
- ① 가득 선서라 자이로 선생이 선생값을 보장하기 위한 필터
- ② 가도선사는 건사간(낮은 주아는 어때)에 걸친 대비되가 정확하다
- ③) 자미오 선서는 짧은시간(높은 판누 어떡)에 경친 데이터가 챙딱하다.
- (2) 상보필데의 건성

· Og : 팔네킹틴 각진 데이터

⑤ ①惟 唯常 懋

 $\theta_{\beta}(t) = \theta_{\alpha}(t) + \Upsilon\dot{\theta}_{\beta}(t) - \Upsilon\frac{d\theta_{\beta}(t)}{dt}$

⑤ ⑤ 4을 Discrete Time e로 포함하면

> TTOIN = OBENJ+TOO [N] + TOF [N-1]

 $\Rightarrow \theta_{T}[n] = \theta_{0}[n] + q \theta_{0}[n] - \frac{q(\theta_{1}[n] - \theta_{2}[n+1])}{T}$

> Pytra] + T Bytra] = Patra] + T Bytra] + T Bytra-]

> Agen] = Tracen] + Tracen] + Tracen] + Tracen]

- · Ga = 145E MMP 37E CUING
- · Og : 자연 선생이 각가족도

① HFA TESTY

(a) HIFA TEST

3
$$\theta_3 = \frac{1}{s_7+1}\theta_2 + \frac{1}{s} \frac{s_7}{s_7+1}\theta_3$$

$$\Rightarrow \theta_f = \theta_a + q\dot{\theta}_{\theta} - sq\theta_{\theta}$$

07K1 = 2 , 1-2 = T 01=2

$$\theta_{\beta}[n] = (1-2)\theta_{\alpha}[n] + 2T \frac{\partial_{\beta}[n]}{\partial_{\beta}[n]} + 2\theta_{\beta}[n-1] = (1-2)\theta_{\alpha}[n] + 2(\theta_{\beta}[n-1] + T\theta_{\alpha}[n])$$

- (2) 个张 含
- OLPFe 315 St Gap (S) = 1
- @ | Gyp (ing) | = 1/2 0] ord 10 20 +6277 = 46
- 3 (1-jugy) = 1-jugy = 1-jugy = 1-jugy = 1-jugy
- ⑤ प्रमु६(१०) है ही + नेनिट प्रस्त ध्रेष्ट

(b) 分野 和道的时,

$$\frac{1}{(W_{1}^{2}q^{2}+1)^{2}} + \frac{W_{2}^{2}q^{2}}{(W_{1}^{2}q^{2}+1)^{2}} = \frac{1}{2} \Rightarrow 2(1+W_{1}^{2}q^{2}) = (W_{1}^{2}q^{2}+1)^{2}$$

$$\Rightarrow 2+2W_{1}^{2}q^{2} = W_{1}^{2}q^{2} + 2W_{1}^{2}q^{2} + 1 \Rightarrow W_{1}^{2}q^{2} = 1 \implies W_{1}^{2}q^{2} = 1$$

9 W_c → 2 tt, 4th

- (3) SERTI MAR = 9+Ts AND &= 10012 AD,
- () 9= 1 21 x 100118 0/28 9=0.0015915497 &c.
- ② Ts7+ Bms 라면 $a = \frac{0.001591549}{0.001591549+0.008} = 0.1459324$
- 3 A[N] = (1-0.1659324) A[N] + 0.1659324 (B3[N-1] + 0.008.0g[N])

▶ 상보필터 구현 - 코드

```
-Angle_3Dim CompleFilter(pAngle_3Dim AccelAngle, pAngle_3Dim GyroAngle)
    Filter_Angle.Roll = (1.0F-(float)alpha)*AccelAngle->Roll + (float)alpha*(preFilter_Angle.Roll + (float)dt * GyroAngle->Roll);
    Filter_Angle.Pitch = (1.0F-(float)alpha)*AccelAngle->Pitch + (float)alpha*(preFilter_Angle.Pitch + (float)dt * GyroAngle->Pitch);
    Filter Angle. Yaw = (1.0F-(float)alpha)*AccelAngle->Yaw + (float)alpha*(preFilter Angle. Yaw + (float)dt * GyroAngle->Yaw);
    preFilter_Angle = Filter_Angle;
    return Filter Angle;
}
//#define dt 0.001F //Ts
//#define alpha 0.1659324 //alpha = tau/(tau+Ts) @fc(cut-off Frequency) = 100Hz
//2021.01.20
//Set Sampling Time = 1ms
//\#define alpha 0.6141304F//tau = 1/(2*pi*fc), Ts = 1ms, alpha = tau/(tau+Ts)
//2021.03.06
//Set Sampling Time = 500us
//#define alpha 0.760942776
//2021.03.16
//fc = 2KHz
#define alpha 0.073711F
```


▶ 상보필터 적용결과

➤ PID 제어란?

- Feedback 제어의 형태
- 비례(Proportional), 적분(Integral), 미분(Differential)를 의미
- 목표 값(또는 설정 값)과 제어하고자 하는 대상의 출력 값을 비교하여 오차를 계산
- 오차를 비례, 적분, 미분 연산을 통해 제어량을 조절한다.

$$u(t) = K_P e(t) + K_I \int e(t)dt + K_D \frac{de(t)}{dt}$$

*u(t): 제어량, e(t): 목표 값 - 출력 값

- * 미분제어 : $K_D \frac{de(t)}{dt}$ 이지만, e(t)가 목표 값 출력 값으로 목표 값이 변하지 않는 상황이면 미분제어의 수식은 다음과 같다
- * 미분제어 = $-K_D \frac{dout(t)}{dt}$

*그림 출처: By Arturo Urquizo - http://commons.wikimedia.org/wiki/File:PID.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17633925

▶ PID 제어 동작원리

- 비례제어(P제어): 오차에 비례하여 제어량이 변함, 응답속도를 높일 수 있지만 오버슈트, 정상상태 오차가 발생
- 적분제어(I제어): 정상상태 오차를 없애고, 비례제어와 같이 응답속도를 높일 수 있지만, 오차를 계속 누적하여 정상상태에 도달하여도 제어량이 줄지 않는 와인드업 현상 발생(Wind-up).
- 미분제어(D제어): 오차의 급격한 변화량에 비례하여 제어량을 조절하며, 오버슛을 줄여준다.

*구간별 적분/미분제어 동작

- ①구간
 - → 적분제어는 오차가 (+)가 되어 제어량을 늘려준다
 - → 미분제어는 오차의 변화량이 증가하는 구간으로 제어량을 줄여준다
- ②구간
 - → 적분제어는 오차가 (-)가 되어 제어량을 줄여준다
 - → 미분제어는 오차의 변화량이 증가하는 구간으로 제어량을 줄여준다
- ③구간
 - → 적분제어는 오차가 (-)가 되어 제어량을 줄여준다
 - → 미분제어는 오차의 변화량이 줄어드는 구간으로 제어량을 늘려준다

$$u(t) = K_P e(t) + K_I \int e(t) dt - K_D \frac{dout(t)}{dt}$$

➤ PID 제어 코드1

➤ PID 제어 코드2

```
Jvoid RunPID_MotorCtrl(Angle_3Dim* AngleData)
    //0도를 180으로 변환하여 연산
    Input = AngleData->Pitch+180.0;
    if(Input == (float)ref)
        Iterm = 0;
        MotorStop();
    }
    else
        dir = (Input > (float)ref) ? (uint8 t)CCW : (uint8 t)CW;
        Cal_PID();
        if(u >= (float)Limit Max) u = (float)Limit Max;
        if(u <= (float)Limit Min) u = (float)Limit Min;</pre>
        //입력>기준값일 때 제어량은 음수이므로 양수로 변환하여 OCR값에 대입
        if(u < 0) u = -1 * u;
        //DeadBand 추가
        //if(Input >= (float)DeadBand Min && Input <= (float)DeadBand Max) u = 0;</pre>
        duty = (uint8 t)u;
        RunMotor(duty, dir);
```

```
□void Cal PID(void)
     float dInput = 0;
     cur err = (float)ref - Input;
     dInput = Input - preInput;
     Pterm = (float)Kp*cur_err;
     Iterm += cur err*(float)dt;
     Dterm = dInput/(float)dt;
     //if(cur err == 0) Iterm = 0.0F;
     preInput = Input;
     u = Pterm+(float)Ki*Iterm-(float)Kd*Dterm;
   * 미분 = 차분방정식(후방 차분법)
   \rightarrow y'[n] = \frac{x[n] - x[n-1]}{x}
    * 적분 = 구분구적법(0 order hold)
    \rightarrowy[n] = y[n-1] + x[n]*T
```

● 구동영상

▶ 밸런싱 로봇 구동영상

(1) 동역학 모델링

※기호 정리

- x:로봇의 이동거리

- θ:몸체의 각도

- φ: 바퀴의 회전각

- τ_B : 몸체의 회전토크

- τ_W : 바퀴의 회전토크

- m_W : 바퀴의 질량

- m_B : 몸체의 질량

- I_W : 바퀴의 관성모멘트

- I_{R} : 몸체의 관성모멘트

- 1: 무게 중심간 거리

- r: 바퀴의 반지름

(1) 동역학 모델링-로봇

(1) $x = (r\varphi)\vec{i}$: 바퀴의 X축 위치벡터(바퀴의 Y축 위치벡터는 작으므로 무시)

 $(2) \dot{x} = (r\dot{\varphi})\vec{i}$:바퀴의 X축 속도벡터

(3) $\vec{x}_{cog} = (x + l \sin \theta)\vec{i}$: 로봇무게중심의 X축 위치벡터

 $(4)\vec{z}_{cog} = (l\cos\theta)\vec{j}$:로봇무게중심의Y축위치벡터

 $(5)\dot{x}_{cog} = (\dot{x} + l\dot{\theta}\cos\theta)\vec{i}: X$ 축속도벡터

 $(6)\dot{z}_{cog} = (-l\dot{\theta}\sin\theta)\vec{j}$: Y축 속도벡터

 $(7)v_{cog} = \sqrt{\dot{x}_{cog}^2 + \dot{z}_{cog}^2}$: 로봇의속력

 $(8)E_{_{kB}} = \frac{1}{2}m_{_{B}}v_{_{COG}}^{^{2}} + \frac{1}{2}I_{_{B}}\dot{\theta}^{_{2}} = \frac{1}{2}m_{_{B}}(\dot{x}^{_{2}} + 2\dot{x}l\cos\theta\dot{\theta} + l^{_{2}}\dot{\theta}^{_{2}}) + \frac{1}{2}I_{_{B}}\dot{\theta}^{_{2}} : 로봇몸체의운동에너지$

 $(9)E_{kW} = \frac{1}{2}m_{W}\dot{x}^{2} + \frac{1}{2}I_{W}\dot{\phi}^{2} = \frac{1}{2}m_{W}\dot{x}^{2} + \frac{1}{2}\frac{I_{W}}{r^{2}}\dot{x}^{2}:로봇바퀴의운동에너지$

 $(10)E_{_{pB}} = m_{_B}gl\cos\theta$: 로봇 몸체의위치에너지

 $(11)E_{pw} = 0$: 로봇바퀴의위치에너지

(1) 동역학 모델링-로봇

$$(12)D = 2\frac{1}{2}b_w\dot{\varphi}^2 = \frac{b_w}{r^2}\dot{x}^2$$
: 바퀴마찰에 의한 에너지소실(Rayleigh's dissipation function)

$$(13)L = E_{k} - E_{p} = E_{kB} + 2E_{kW} - (E_{pB} - 2E_{pW})$$
:라그랑지안(2를 곱한이유는 바퀴가 2개라..)

$$(14)\frac{d}{dt}(\frac{dL}{d\dot{q}_{x,\theta}}) - (\frac{dL}{dq_{x,\theta}}) = Q_{x,\theta} - (\frac{dD}{d\dot{q}_{x,\theta}}) : 라그랑지방정식$$

$$(15)(m_{_{B}}+2m_{_{W}}+2\frac{I_{_{W}}}{r^{^{2}}})\ddot{x}+2\frac{b_{_{W}}}{r^{^{2}}}\dot{x}+m_{_{B}}l\cos\theta\ddot{\theta}-m_{_{B}}l\sin\theta\dot{\theta}^{^{2}}=\frac{\tau_{_{R}}+\tau_{_{L}}}{r^{^{2}}}:q가 x 일 때, 오른쪽/왼쪽 바퀴의토크$$

$$(16)m_{_B}l\cos\theta\ddot{x} + (m_{_B}l^2 + I_{_B})\ddot{\theta} - m_{_B}gl\sin\theta = -(\tau_{_R} + \tau_{_L}):q^{2}\theta = 0$$

(17)선형화를 위해비선형함수를 근사화하면, $\cos\theta\approx l,\sin\theta\approx\theta,\dot{\theta}^2\approx0$

(18)식(17)에 의해선형화된동역학식은

$$(m_{_{B}} + 2m_{_{W}} + 2\frac{I_{_{W}}}{r^{^{2}}})\ddot{x} + 2\frac{b_{_{W}}}{r^{^{2}}}\dot{x} + m_{_{B}}l^{^{2}}\ddot{\theta} = \frac{\tau_{_{R}} + \tau_{_{L}}}{r^{^{2}}},$$

$$m_{_{B}}l^{^{2}}\ddot{x} + (m_{_{B}}l^{^{2}} + I_{_{B}})\ddot{\theta} - m_{_{B}}gl\theta = -(\tau_{_{B}} + \tau_{_{L}})$$

다음장에선 라그랑지 방정식의 입력인 우변의 토크를 발생시키는 모터의 모델링과 최종 동역학 모델링에 대해 알아보자..

(2) 동역학 모델링-DC모터

모터의 등가회로

※기호 정리

- v_s : 모터의 입력전압

- 1: 모터의 전류

- R: 모터 권선저항

- L: 모터의 권선 인덕턴스

- v_{emf} : 역기전력

- $φ_M$: 모터 회전각

 $-~b_{\scriptscriptstyle M}\dot{arphi}$: 회전 마찰력

- I_M : 모터의 관성모멘트

- τ:모터의 토크

- τ_L : 부하토크

(2) 동역학 모델링-DC모터

모터의 등가회로

- $(1) \tau = k_i i : 모터의 토크$
- $(2) v_{emf} = k_e \dot{\varphi}_{M}$:모터의 역기전압
- (3) $v_s Ri L\frac{di}{dt} v_{emf} = 0$: 모터전압kvl
- (4) 모터의 L은 매우 작으므로, 식(3)에서 L의 값을 0으로 보면...

(5)
$$v_s = Ri + v_{emf} = Ri + k_e \dot{\varphi}_M, : i = \frac{v_s - k_e \dot{\varphi}_M}{R}$$

- (6) $\tau = k_{t}i = \frac{k_{t}(v_{s} k_{e}\dot{\varphi}_{M})}{R}$: 토크와 입력전압의 관계식
- $(7) \tau = I_{\scriptscriptstyle M} \ddot{\varphi}_{\scriptscriptstyle M} + b_{\scriptscriptstyle M} \dot{\varphi}_{\scriptscriptstyle M} + \tau_{\scriptscriptstyle L}$
- (8) 식(6)을 식(7)에 대입하면

$$\frac{k_{t}}{R}v_{s} = I_{M}\ddot{\varphi}_{M} + (b_{M} + \frac{k_{e}k_{t}}{R})\dot{\varphi}_{M} + \tau_{L}$$

(2) 동역학 모델링-DC모터

모터의 등가회로

 $(9)\tau_{\scriptscriptstyle L}\dot{\phi}_{\scriptscriptstyle M}= au_{\scriptscriptstyle W}\dot{\phi}_{\scriptscriptstyle W}:$ 모터와 바퀴의토크관계

 $(10)\dot{\varphi}_{_{M}}=\dot{\varphi}_{_{W}}n:n$ 은 기어비, 기어비와 각속도관계

 $(11)\tau_{L} = \frac{\tau_{W}}{n}$:기어비와 각속도의관계

(12)식(10),(11)을 식(9)에 대입하여정리하면

$$\frac{k_{t}}{R}v_{s} = (I_{M}n^{2} + I_{G})\ddot{\varphi}_{W} + ((b_{M} + \frac{k_{e}k_{t}}{R})n^{2} + b_{G})\dot{\varphi}_{W} + \tau_{W}$$

모터의 기어

(2) 동역학 모델링-DC모터

로봇의 이동거리 x에 대한 운동 방정식

로봇의 몸체의 각도 θ에 대한 운동 방정식 ←

$$(13)\,\varphi_{\scriptscriptstyle W}=\varphi-\theta$$

$$(14)\tau_R + \tau_L = 2\tau_W$$
: 두바퀴의토크가같다

(15) 앞서정리한식을 토대로다음과 같이정리된다.

$$(16) \left(\frac{m_{_{B}}r^{^{2}}}{2} + m_{_{W}}r^{^{2}} + I_{_{W}} + I_{_{M}}n^{^{2}} + I_{_{G}}\right) \ddot{\varphi} + \left(\frac{m_{_{B}}rl}{2} - I_{_{M}}n^{^{2}} - I_{_{G}}\right) \ddot{\theta}$$

$$+ (b_{_{W}} + b_{_{M}}n^{^{2}} + \frac{K_{_{e}}K_{_{t}}n^{^{2}}}{2} + b_{_{G}})\dot{\varphi} - (b_{_{M}}n^{^{2}} + \frac{K_{_{e}}K_{_{t}}n^{^{2}}}{2} + b_{_{G}})\dot{\theta} = \frac{K_{_{t}}n}{R}v_{_{s}}$$

$$(17) \quad \left(\frac{m_{B}rl}{2} - I_{M}n^{2} - I_{G}\right)\ddot{\varphi} + \left(\frac{m_{B}l^{2}}{2} + \frac{I_{B}}{2} + I_{M}n^{2} + I_{G}\right)\ddot{\theta}$$

$$- \left(b_{M}n^{2} + \frac{K_{e}K_{t}n^{2}}{2} - b_{G}\right)\dot{\varphi} - \left(b_{M}n^{2} + \frac{K_{e}K_{t}n^{2}}{2} + b_{G}\right)\dot{\theta} - \frac{m_{B}gl}{2}\theta = -\frac{K_{t}n}{R}v_{s}$$