

SRM Institute of Science and Technology College of Engineering and Technology

Department of Mathematics

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2023-2024(ODD)

Tutorial sheet - 2

Date: 24/07/2023

Course Code &Title: 18MAB302T-Discrete Mathematics for Engineers

Year & Sem: III/V

	0 "	Δ -
Q.	Questions	Answer keys
No 1	 State TRUE or FALSE with proper justification for each of the following statements: (a) If R₁ and R₂ are partial order relation on A, then R₁ − R₂ is a partial order relation. (b) If R₁ and R₂ are equivalence relations on A, then R₁ ∩ R₂ is an equivalence relation. (c) If R₁ and R₂ are transitive, then R₁ ∪ R₂ need not be transitive. (d) If R₁ and R₂ are both symmetric, then R₁ ∘ R₂ is symmetric. 	(a) False, (b) True, (c) True, (d) False.
2	For the poset {3,5,9,15,24,45}, with divisibility relation defined on it. Draw the Hasse diagram of the poset.	24 9 15
3	Let R bethe following equivalence relation on the set $A = \{1,2,3,4,5,6\}$, and $R = \{(1,1), (1,5), (2,2), (2,3), (2,6), (3,2), (3,3), (3,6), (4,4), (5,1), (5,5), (6,2), (6,3), (6,6)\}$ Find the equivalence classes of R . Hence find the partition of A induced by R .	$[1] = \{1,5\}, [2]$ $= \{2,3,6\},$ $[3] = \{2,3,6\}, [4]$ $= \{4,4\},$ $[5] = \{1,5\}, [6]$ $= \{2,3,6\}.$ $P(A)$
4	For the relation $R = \{(1,2), (2,3), (3,3), (3,4), (4,2)\}$ defined on $X = \{1,2,3,4\}$, find the transitive closure of R using Warshall's algorithm.	$= \{\{1,5\}, \{2,3,6\}, \{4\}\}\}$ $\begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$
5	Given A = $\{1, 2, 3, 4\}$ and R = $\{(1,2), (1,1), (1,3), (2,4), (3,2)\}$ and S = $\{(1,4), (1,3), (2,3), (3,1), (4,1)\}$ are relations on A. Find $S \circ R$ and write its matrix representation.	$S \circ R = \{(1,3),(1,4), (2,1),(3,3)\}$ $\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

6	Let D be a set of all positive divisor of 30. A relation is defined on D as "a R b iff a divides b", for a, b in D. Prove that R is a partial ordered relation. Hence draw the Hasse diagram of the poset.	10 6 2 15 3
7	Show that $R = \{(A, B) \mid A \subseteq B\}$ on the power set of $\{a, b, c\}$ is a partial order relation.	
8	Let $A = \{1, 2, 3, 4, 5, 6\}$ and $P = \{\{1, 5\}, \{2, 3, 6\}, \{4\}\}$ be a partition on A. Find the equivalence relation R determines P.	R= {(1,1), (1,5), (5, 1), (5,5), (2,2), (2,3), (2,6), (3,2), (3,3), (3,6), (6,2), (6,3), (6,6), (4,4)}
9	Let <i>R</i> is the relation on $A = \{1, 2, 3\}$ such that $(a, b) \in R$ if and only if $a + b$ is even, find the relational matrix M_R and $M_{R'}$.	$M_{R} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ $M_{R'} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$
10	Let R be a relation defined on the set of all real numbers, by 'if x, y are real numbers, x R y \Leftrightarrow x - y is a rational number'. Show that R is an equivalence relation.	