PHOTOELECTRIC CONVERTING ELEMENT AND PHOTOELECTRIC CHEMICAL BATTERY

Publication number: JP2000294306
Publication date: 2000-10-20

Inventor: NAKAMURA SHIGERU
Applicant: FUJI PHOTO FILM CO LTD

Classification:

- international: H01L31/04; H01G9/20; H01M14/00; H01L51/00; H01L51/30; H01L31/04; H01G9/20; H01M14/00; H01L51/00; H01L51/05; (IPC1-7); H01M14/00;

H01L31/04

- European: H01G9/20D2; H01G9/20M Application number: JP19990098707 19990406 Priority number(s): JP19990098707 19990406

Report a data error here

Abstract of JP2000294306

PROBLEM TO BE SOLVED: To prevent short-circuit inside of an element without deteriorating the photoelectric converting performance by mounting a spacer layer including the substantially insulating particles between a semiconductor fine particle layer and a counter electrode, forming the element with a conductive base and a charge moving layer. SOLUTION: A photoelectric converting element sensitized by a coloring matter, consists of a conductive base, a semiconductor film (photosensitive layer) mounted on the conductive base and sensitized by a coloring matter and the like, a charge moving layer and a counter electrode. In the photoelectric converting element, a spacer layer substantially composed of insulating particles, is mounted between the semiconductor film and the counter electrode for preventing the short-circuit therebetween. As the substantially insulating particles, the oxide glass or crystalline oxide as a substance of below 10-3 siemens/cm of conductivity is used. The insulating particles, to example, the oxide glass including silicon, boron or phosphorus, have a particle size of 5-1000 times of that of the semiconductor fine particles acting as the electrode, preferably 5-1000 times.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-294306 (P2000-294306A)

(43)公開日 平成12年10月20日(2000.10.20)

(51) Int.Cl.7	酸別記号	F I	ŕ	-73-1 (参考)
H 0 1 M 14/00		H 0 1 M 14/00	P	5 F O 5 1
H01L 31/04		HO1L 31/04	Z	5H032

審査請求 未請求 請求項の数7 OL (全 34 頁)

(21)出願番号 特額平11-98707 (71)出顧人 00006;201 富士写真ブルム株式会社 第名川県南足輔市中部210番地 172)発明者 中村 茂 神奈川県南足輔市中部210番地 富士写 フィルム株式会社内 (74)代理人 1008/8865 弁理士 石井 陽一 Pターム(参考) 57051 Al44 Al20 BA17 DA20 5H032 Al06 AS19 0006 CC11 田05			
(22) 出顧日 平成11年4月6日(1999.4.6) 神奈川県南足柄市中昭210番地 (72) 発明者 中村 茂 神奈川県南足柄市中昭210番地 富士写 フィルム株式会社内 (74)代理人 100082885 弁理士 石井 陽一 F ターム(参考) 57051 A14 AA20 BA17 DA20	(21)出顧番号	特額平11-98707	(71) 出題人 000005201
(72)発明者 中村 茂 神奈川県南足橋市中和210番地 富士写 フイルム株式会社内 (74)代理人 10008/2855 弁理士 石井 陽一 Fターム(参考) 5F051 AA14 AA20 BA17 DA20			富士写真フイルム株式会社
(72)発明者 中村 茂 神奈川県南足崎市中和210番地 富士写 フイルム株式会社内 (74)代理人 10008/2865 弁理士 石井 陽一 Fターム(参考) 5F051 AA14 AA20 BA17 DA20	(22) / IMA	平成11年4月6日(1999.4.6)	神奈川県南足柄市中沼210番地
神奈川県南足崎市中招210番地 富士写 フイルム株式会社内 (74)代理人 10008265 寿理士 石井 陽一 Fターム(参考) 5F051 AA14 AA20 BA17 DA20	,		(72)発明者 中村 茂
フイルム株式会社内 (74)代理人 100082865 発理士 石井 陽一 Fターム(参考) 5F051 AA14 AA20 BA17 DA20			
(74)代理人 10008%865 弁理士 石井 陽一 Fターム(参考) 57051 AA14 AA20 BA17 DA20			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
弁理士 石井 陽一 Fターム(参考) 5F051 AA14 AA20 BA17 DA20			
Fターム(参考) 5F051 AA14 AA20 BA17 DA20			
5H032 AA06 AS19 0006 CC11 IH005			F ターム(参考) 5F051 AA14 AA20 BA17 DA20
			5H032 AA06 AS19 CC06 CC11 HH05

(54) 【発明の名称】 光電変換素子および光電気化学電池

(57)【要約】

【課題】 光電変換の性能を劣化させることなく、素子 内部での短絡を防いだ光電変換素子および光電気化学電 池を提供することにある。

【解決手段】 導電性支持体、この上に途設された色素 を吸着した半導体徴粒子層 電荷移動層および対極を有 する光電変換素子において、該半導体徴粒子層と対極の 間に、実質的に絶縁性の他子を含有するスペーツ層が 設置されていることを特徴とする光電変換索子。

【特許請求の範囲】

【請求項1】 溥電性支持体、この上に途設された色素 を吸着した半導体徴粒子層 電荷移動層および対極を有 する光電変換素子において、該半導体酸粒子層と対極の 間に、実質的に絶縁性の孢子を含有するスペーサー層が 設置されていることを特徴とする光電変換案子。

【請求項2】 前記スペーサー層が半導体微粒子層上の 対極側に一体化して設置されている請求項1の光変換素 子。

【請求項3】 前記絶縁性の粒子が、珪素、硼素および リンから選ばれる少なくとも1つの元素を含むアモルフ アス酸化物、または酸化アルミニウムからなる請求項1 または2の米電変権素子。

【請求項4】 前記絶縁性の粒子の平均粒径が、半導体 微粒子の平均粒径の5倍以上1000倍以下である請求 項1~3のいずれかの光電変換素子。

【請求項5】 前記半導体敵粒子層が酸化チタンを含む 請求項1~4のいずれかの光電変換素子。

【請求項6】 前記色素が金属絹体色素またはポリメチン色素である請求項1~5のいずれかの光電変換素子。 【請求項7】 請求項1~6のいずれかの光電変換素子 を用いた光電気化学電池

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は光電変換素子および これを用いた光電気化学電池に関し、詳しくは色素で増 感された半導体徴粒子を用いた光電変換素子および光電 気化学電池に関する。

[0002]

【従来の技術】太陽光発電は単結晶シリコン太陽電池、 多結晶シリコン太陽電池、アモルファスシリコン太陽電池 、テルル化グドラムネやセン化インジウム舞等の化 合物太陽電池が実用化もしくは主な研究開発の対象となっているが、普及させる上で製造コスト、原料料確保 エネルギーペイバックタイムが長い等の問題点をご願す る必要がある。一方、大面様化や低価格化を指向した有 機材料を用いな太陽電池もこれまでにも多く提案されているが、変換効率が低く、耐久性も悪いという問題があった。

【0003】こうした状況の中で、Nature(第553巻、 第737~740頁、1991年)および米国特許4927721号等 に、色素によって増密された半導体就粒子を用いた光電 変換素子および太陽電池、ならびにこれを作成するため

の材料および製造技術が開示された。提案された電池 は、ルテニウム錯体によって分光増感された二酸化チタン多孔質達膜を作用電極とする。こ の方式の第一の利点は二酸化チタン等の安価を酸化物半 棒体を高純度に精製することなく用いることができるた め、安価な光電変換素子を提供できる点であり、第二の 利息は用いるん色素の販皮がプロードなため、可提先 線のほぼ全ての波長領域の光を電気に変換できることで

【0004】しかしながら太陽電池として実用化するには、電荷移動層の耐久性の向上が重要な課題であった。 加期の検討では高存動機としてレドックス化合物の有機溶媒溶液が用いられたが、これらの素子においては有機溶媒の飛散が起き、性能の多化が大きいとの問題があった。これを解決する方法として、高沸点の溶媒の使用、また低温溶融塩、固体状の電荷輸送材料の使用が検討されてきたが、これらの電荷移動層では、電荷の移動が遅くなる傾向にある為、層の厚みを薄くすることが必要であった。

【0005】従来の素子では、半導体域粒子を担持した 支持体と対極を担持した支持体との間にスペーサーを力 して挟み込むことで、負極となる酸化物半導体層と対極 との直接接触による短絡を防止するのが一般的であっ

[0006]しかしながら、スペーサーによる方法では、電荷移動層の厚みを薄くするために電極間距離を狭くしようとすると、半導体微粒子層の厚みの変動およびスペーサー厚みの変動により電極の直接的な接触によ短続がしばしば発生するという問題が発生した。

【0007】電荷移動層が個体である場合には電荷移動 層自体がXベーサー層として機能するがこの場合でも半 導体電極あるいは対極の微細な凹凸によって部分的な短 結が起こる場合があり、やはり安定した性能を得ること が困難であった。

1000081

ある。

【発明が解決しようとする課題】本発明の目的は、光電 変換の性能を劣化させることなく、紫子内部での短絡を 防いた光電変換紫子および光電気化学電池を提供するこ とにある。

[0009]

[課題を解決するための手段] 本発明の課題は、本発明 を特定する下記の事項およびその好ましい態様により、 達成された。

- (1) 薄電性支持体、この上に塗設された色素を吸着 した半導体微粒子層、電荷等動層および対極を有する光 電変携素子において、該半導体微粒子層と対極の間に、 実質的に絶縁性の粒子を含有するスペーサー層が設置さ れていることを特徴とする光電変換案子。
- (2) 前記スペーサー層が半導体微粒子層上の対極側 に一体化して設置されている上記(1)の光変換素子。
- (3) 前記絶経性の粒子が、珪素、硼素およびリンから選ばれる少なくとも1つの元素を含むアモルファス酸化物、または酸化アルミニウムからなる上記(1)または(2)の光電変換素子。
- (4) 前記絶縁性の粒子の平均粒径が、半導体微粒子 の平均粒径の5倍以上1000倍以下である上記(1) ~(3)のいずれかの光電変換素子。

- (5) 前記絶縁性の粒子の平均粒径が、半導体微粒子の平均粒径の5倍以上100倍以下である上記(1)~(4)のいずれかの光雷変換素子。
- (6) 前記半導体微粒子層が酸化チタンを含む上記
- (1)~(5)のいずれかの光電変換素子。
- (7) 前記色素が金属錯体色素またはポリメチン色素である上記(1)~(6)のいずれかの光電変換素子。 (8) 上記(1)~(7)のいずれかの光電変換素子を用いた光電変化学電池。

[0010]

【発明の実施の形態】以下、本発明を詳細に説明する。 まず、本発明の光電変換素子および光電気化学電池の構 成と材料について詳述する。本発明において色素増感し た光電変換案子は導電性支持体、導電性支持体上に設置 される色素等により増感した半導体膜(感光層)、電荷 移動層および対極からなる。ここでは、この光電変換素 子を外部回路で仕事をさせる電池用途に使用できるよう にしたものを光電気化学電池とよぶ。感光層は目的に応 じて設計され、単層構成でも多層構成でもよい。感光層 に入射した光は色素等を励起する。励起された色素等は エネルギーの高い電子を有しており、この電子が色素等 から半導体微粒子の伝導帯に渡され、さらに拡散によっ て導電性支持体に到達する。この時色素等の分子は酸化 体となっている。光電気化学電池においては導電性支持 体上の電子が外部回路で仕事をしながら対極および電荷 移動層を経て色素等の酸化体に戻り、色素等が再生す る。半導体膜はこの電池の負極として働く。なお、本発 明ではそれぞれの層の境界において(例えば、導電性支 持体の導電層と感光層の境界、感光層と電荷移動層の境 界、電荷移動層と対極の境界など) 各層の構成成分間 士が相互に拡散して混合していてもよい。但し、半導体 膜と対極は直接接触していてはいけない。

【0011】本発明は、上記の半導体膜と対極の組絡を 防止するために、両者の間に実質的に治線性の粒子から なるスペーツー層を設置することを特徴とする。本発明 の実質的に電気絶縁性の粒子としては、電気伝導度が1 0°3シーメンス/cm以下の物質であって、電解後に対 して不活性大学類質であれば任意のものが用いられる。こ のような物質としては、酸化物ガラスあるいは結晶性酸 化物が挙げられる。好ましい酸化物ガラス物質の具体的 は、注塞、ホウ率、およびいから遅ばれる少なくとも 一種の元素を含む酸化物ガラスである。また、好ましい 結晶性酸化物の具体例としては酸化アルミニウムが挙げ られる。

【0012】さらに好ましい酸化物ガラスは少なくとも 珪素、 ホウ素、リンの一つを含み、軟化点が700度以 下となるような相成のガラスである。例えば以下のよう な相成が挙げられるが本発明はこれに限定されるもので はない。

[0013]

 $\begin{array}{l} N\,a_{0.\,2}\,B_{0.\,4}\,P_{0.\,4}\,O_x \\ R\,b_{0.\,2}\,B_{0.\,4}\,P_{0.\,4}\,O_x \\ P\,b_{0.\,5}\,B_{0.\,25}\,S\,i_{\,0.\,25}\,O_x \\ S\,n_{0.\,2}\,P\,b_{0.\,1}\,P_{0.\,5}\,F_{0.\,2}\,O_x \\ P\,b_{0.\,2}\,Z\,n_{0.\,1}\,B_{0.\,7}\,O_X \end{array}$

Tl_{0.1}Pb_{0.2}B_{0.7}O_X

【○○14】酸化物ガラスは構成原料の酸化物を混合し溶融することにより得られる。得られたガラスは、良く知られた物等配と分級機にも防死定のサイズにして用いる。粉砕機としては例えば振動ボールミル、旋回式ジェットミルが用いられ、分級機としては何えば振動節、風力が軽機が用いられるが、

【0015】上記の電気絶縁性粒子は電極として作用する半導体散粒子の5から1000倍の粒子径のものが用いられ、好ましくは5倍から100倍である。

【0016】本発明において、色素増盛された半薄体で は、光吸収およびこれによる電子および正孔の発生は主 として色素において起こり、半薄体はこの電子を受け取 り、伝達する役割を相う。

【0017]半導体としてはシリコン、ゲルマニウムの ような単体半導体の他に、金属のカルコゲニド (例えば 酸化物、硫化物、セレン化物等) に代表されるいわゆる 等を使用することができる。金属のカルコゲニドとして 好ましくはナタン、スズ、亜鉛、鉄、タングステン、ジ ルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、 エオブ、もしくはタンタルの酸化物、カドミウム、亜 鉛、鉛、銀、アンチモン、ビスマスの硫化物、カドミウム ム、始のセレン化物、カドミウムのテルル化物等がサゲ ムの、カドミウムをサービには亜鉛、がリウム、イ ンジウム、カドミウム等のリン化物、ガリウム、イ ーインジウム・セレン化物、第一インジウム・硫化物等 が終好られる。

【0018】また、ペロブスカイト構造を有する化合物 として好ましくはテタン酸ストロンチウム、チタン酸カ ルシウム、チタン酸ナトリウム、チタン酸パリウム、ニ オブ酸カリウムが終行られる。

【OO191*A発明に用いられる半導体としてより好ま しくは、具体的には5: Ti0½、Sn0½、Feg.03、M0½、Zn Nb2,05、CdS、ZnS、PbS、Bi252、CdSe、CdTe、GaP、1 nP、GaAs、GuInS½、CuInSe½が挙げられる。さらに好ま しくはTi0½、Zn0、Sn0½、Feg.03、M0½、Nb2,05、CdS、Pb S、CdSe、InP、GaAs、GuInS½、CuInSe½であり、特に好 ましくはTi0½とたはNb20%であり、最も好ましくはTi0½ である。

【0020】本発明に用いられる半薄体は、単結晶で も、多結晶でもよい。交換効率としては単結晶が好まし いが、製造コスト、原材料確保、エネルギーペイバック タイム等の点では多結晶が好ましく、特にナノメートル からマイクロメートルサイズの微粒子半導体が好まし

【0021】これらの半導体微粒子の粒容は、投影面積 を円に換算したときの直径を用いた平均程とで一次粒子 として5~200mであることが好ましく、特に8~1 00mであることが好ましい、また、分散物中の半導体 酸粒子(二次粒子)の平均粒径としては0.01~10 0μmであることが好ましい。

【0022】また、2種類以上の粒子サイズ分布の異なる微粒子を混合して用いてもよく、この場合、小さい粒子の平均サイズは5m以下であることが好ましい。また、入射光を散乱させて光循標率を向上させる目的で、粒子サイズの大きな、例えば300m程度の半導体粒子を混合してもよい。

【0023】半導体微粒子の作製法は、作花済夫の「ケルーゲル法の科学」アプネ張風社(1988年)、技術情報協会の「ケルーゲル法による薄限コーティング技術」(1995)等に記載のゲルーゲル法、杉本忠夫の「新合成法ゲルーゲル法による単分散位子の合成とサイ 正りまり、まつり、第3号、1012頁から1018頁(1996)記載のゲルーゲル法が好ましい。またDegussa牡が開発した塩化物を酸水素炎中で高温加水分解により酸化物を作製する方法も好ましい。

【0024】また酸化チタンの場合は上記のゾルーゲル 法、ゲルーゾル法、塩化物を酸水素炎中で高温加水分解 法がいずれも好ましいが、さらに清野学の「酸化チタン 物性と応用技術」技術盤出版(1997)に記載の硫 酸法、塩素法を用いることもできる。

【0026】 準電性支持体は、金属のように支持体その のに海電性があるものか、または表面に海電剤を含む 薄電層(海電剤層)を有するガラスもしくはプラスチッ クの支持体を使用することができる。後者の場合好ましい い海電剤としては金属(例えば白金、金、銀、銅、アル ミニウム、ロジウム、インジウム等)、炭素、もしくは 導電性の金属酸化物(インジウムースズ接合酸化物、酸 化スズにフッ素をドープしたもの等)が挙げられる。上 記簿電剤層の厚さは、0.02~10μm程度であるこ とが好ましい。

【0027】導電性支持体は表面抵抗が低い程よい、好ましい表面抵抗の範囲としては100公/□以下であり、さらに好ましくは40公/□以下である。この下限には特に制限はないが、通常0.10/□程度である。

【0028】導電性支持体は実質的に透明であることが 好ましい。実質的に透明であるとは光の透過率が10% 以上であることを意味し、50%以上であることが好ま しく、70%以上が特に好ましい、透明遵霊性支持体と してはガラスもしくはプラスチックに導電性の金属酸化 物を塗設したものが好ましい。この中でもフッ素をドー ピングした二酸化スズからなる導電層を低コストのソー ダ石灰フロートガラスでできた透明基板上に堆積した導 電性ガラスが特に好ましい。また、低コストでフレキシ ブルな光電変換素子または太陽電池には、透明ポリマー フィルムに上記導電層を設けたものを用いるのがよい。 透明ボリマーフィルムには、テトラアセチルセルロース (TAC)、ポリエチレンテレフタレート(PET), ポリエチレンナフタレート (PEN)、シンジオクタチ ックポリステレン (SPS)、ポリフェニレンスルフィ ド(PPS)、ポリカーボネート(PC)、ポリアクレ ート(PAr)、ポリスルフォン(PSF)、ポリエス テルスルフォン (PES)、ポリエーテルイミド (PE I)、環状ポリオレフィン、ブロム化フェノキシ等があ る。透明漢電性支持体を用いる場合、光はその支持体側 から入射させることが好ましい。この場合、導電性金属 酸化物の塗布量はガラスもしくはプラスチックの支持体 1㎡当たり0.01~100gが好ましい。

【0029】透明薄電性基板の抵抗を下げる目的で金属 リードを用いることが好ましい。金属リードの材質はア ルミコウム、側、銀、金、白金、ニッケル等の金属が好ましく、特にアルミコウム、銀が好ましい。金属リード は透明基板に蒸着、スッパタリング等で設置し、その上 にフッ素をドープした酸化スズ、または1TO酸から 透明薄電原を設けることが好ましい。また上記の透明 薄電層を透明茎板に設けたあと、透明薄電層上に金属リ ードを設置することも好ましい。金属リード設置による 入射光量の低下は1~10%、より好ましくは1~5% である。

【0030】半導体微粒子を薄電性支持体上に塗設する 方法としては、半導体微粒子の分散液またはコロイド高 液を導電性支持体上に途布する方法、前述のソルーゲル 法などが挙げられる。光電空換素子の量差化、液物性や 支持体の融通性を考えた場合、湿式の限付与方式が比較 的有利である。湿式の限付与方式としては、強布法、印 脚誌が代巻的でよる。

【0031】半導体微粒子の分散液を作成する方法としいる前述のゾルーゲル法の他、乳鉢ですり潰す方法、まルを使って筋砕しながら分散する方法、あるいは半導体を合成する際に溶媒中で微粒子として折出させそのまま使用する方法等が挙げられる。分散媒としては水または各種の積骸積緩(例えばメタール、エタノール、イソプロピルアルコール、ジクロロメタン、アセトン、アセトン、アセトン、アセル、前数エチル等)が挙げられる。分散の際、必要に応じてポリマー、界面活性剤、酸、もしくはキレ

ート剤などを分散助剤として用いてもよい。

【0032】 徳布方法としては、アプリケーション系と してローラ法、ディップ法、メータリング系としてエア ーナイフ法、ブレード法等、またアプリケーションとメ ータリングを同一部分でできるものとして、特公昭58 ー4589号公報に開示されているワイヤーバー法、果 町特半2631294号、同2761419号、同27 61791号等に記載のスライドホッパ法、エクストル ージョン法、カーテン法等が対ましい。ま次刑機とし マスピン法やスプレー法も数半しく用いられる。

【0033】湿式印刷方法としては、従来から凸版、オフセット、グラビアの3大印刷法をはじめ、凹版、ゴム版、スクリーン印刷等が軽ましい。

【0034】前記方法の中から、液粘度やウェット厚み により好ましい膜付与方式を選択する。

【0035] 液粘度は半導体総粒子の種類や分散性、使用溶媒種、界面活性剤やバイングー等の添加剤により大きく左右される。高粘度液(例えば0001〜500% いではエクストルージョン法やキャスト法が好ましく、低粘度液(例えば0101〜500% ボーバー光もしくはワイヤーバー法もしくはスピン法が 好ましく、助一な腕にすることが可能である。

【0036】なお、エクストルージョン法による低粘度 液の塗布の場合でも塗布量がある程度の量あれば塗布は 可能である。

【0037】また半導体徴粒子の高粘度ペーストの塗設 にはしばしばスクリーン印刷が用いられており、この手 法を使うこともできる。

【0038】このように塗布液の液粘度、塗布量、支持 体、塗布速度等のパラメータに対応して、適宜ウェット 膜の付与方式を選択すればよい。

【0040】一般に、半導体戦粒子含有層の原外が増大 するほど単位技彩面積当たりの担持色素量が増えるため 大の捕獲率が高くなるが、生成した電子の拡散距離が増 すため電荷再結合による口えも大きくなる。したがっ て、半導体徴粒子含有層には好ましい厚さが存在する が、典型約には0.1~100μ°である。光電気化学 電池として用いる場合は1~30μ°であることが起 しく、2~25μ°であることがより好ましい。半導体 微粒子の支持体1m²当たりの塗布量は0.5~400 g.さらには5~100gが好ましい。

[0041]半環体微色子は準電性支持体に塗布した後 に粒子同土を電子的にコンタクトさせるため、および塗 脱煙度の向上や支持体との密著性を向上させるために加 熱処理することが好ましい。好ましい加熱処理温度の範 囲は40℃以上700℃末済であり、より好ましくは1 00℃以上60℃以下である。また加熱処理は度 や軟化点の低い支持体を用いる場合は、高温処理は支持 体の劣化を招くなか、好よしてない。また、コストの観 点からもできる限り低温であることが好ましい。低温化 は、先に述べた5m以下の小さい半導体微粒子の併用や 並輸のな存在での加熱処理率により可能である。

【0042】また、加熱処理後、半導体粒子の表面積を 増大させたり、半導体粒子近傍の純度を高め、色素から 半導体粒子への電子注入効率を高める目的で、例えば四 腫化チタン水溶液を用いた化学メッキや三塩化チタン水 溶液を用いた電気化学的メッキ処理を行ってもよい。

【0043】半導体微粒子は多くの色素を吸着すること ができるように表面積の大きいものが好ましい。このた か半導体微粒子層を支持体上に塗設した状態での表面積 は、投影面積に対して10倍以上であることが好まし、 く、さらに100倍以上であることが好まし、この上 限には特に制限はないが、遺常100倍程度である。 【0044】本発明のスペーサー層は、上記半導体微粒 子層上(すなわち、対極側であり、支持体と反対側 定置するのが好ましい。スペーサー層の設置は、前述の 半導体微粒子の塗設と同様の方法で、半導体微粒子層上 に設置することができる。スペーサー層はこのように、スペーサー層の設置は、前述の エーサー層の設置は、前述の半導体微粒子層の加熱処理 の前でも後でもよいが、スペーサー層設置後に加熱処理 の前でも後でもよいが、スペーサー層設置後に加熱処理 の前でも後でもよいが、スペーサー層設置後に加熱処理

【0045】本発明に使用する色素は金属錯体色素また はメチン色素が好ましい。本発明では、光電変換の波長 域をできるだけ広くし、かつ変換効率を上げるため、 種類以上の色素を混合することができる。そして、目的 とする光源の波長域と強度分布に合わせるように混合す る色素とその割合を選ぶことができる。こうした色素は 半導体微粒子の表面に対する適当な結合基(interlocki ng group)を有していることが好ましい。好ましい結合 基としては、COOH基、SO₂H基、シアノ基、-P(0)(OH) ₂基、-OP(D)(OH)₂基、または、オキシム、ジオキシム、 **ヒドロキシキノリン、サリチレートおよびα-ケトエノ** レートのようなπ伝導性を有するキレート化基が挙げら れる。この中でもCOOH基、-P(D)(OH)2基、-OP(O)(OH)2 基が特に好ましい。これらの基はアルカリ金属等と塩を 形成していてもよく、また分子内塩を形成していてもよ い。また、ポリメチン色素の場合、メチン鎖がスクアリ リウム環やクロコニウム環を形成する場合のように酸性 基を含有するなら、この部分を結合基としてもよい。 【004台】以下に本港明で好ましく用いられる色業を 具体的に説明する。本発明に使用する色素が金属錯体色 素の場合、ルテニウム錯体化素が好ましく、さらに下記 式(1)で表される色素が好ましい。

式(I) (A1), RuB, B, B,

【0048】にこで、R。は水素原子、ハロゲン原子 炭素原子数(以下C数という)1~12個で置換もしく は無置換のアルキル基、C数7~12個で置換もしくは 無置換のアラルキル基、またはC数6~12個で置換も しくは無置換のアラルキル基を表す。上記のアルキル基 アラルキル基のアルキル部がは直鎖状であっても分較状 であってもよく、アリール基、アラルキル基のアリール 部分は単環であっても多環(縮合環、環集合)であって もよい。

【0049】本発明に用いられるルテニウム錯体色素と

式 (1) 中、 $p40 \sim 2$ であり、好ましくは2である。 R uはルテニウムを表す。 A_1 はC 1、S C N、 H_2 O、 B r、1、C N、N C O、 および S e C N から選択される配位子である。 B。 B。 B。 B_2 はそれぞれ独立に以下のB- $1 \sim B$ - 8から選択される有機配位子である。 $\{0047\}$

[化1]

しては、例えば、米国特許4927721号、同4684537号、同 5084365号、同5350644号、同5463057号、同5525440号お よび特開平7-249790号明細書に記載の錯休色素が挙げら

【0050】以下に本発明に使用する金属錯体色素の好ましい具体例を示すが、本発明はこれらに限定されるものではない。実施例使用の色素E、H、Kも挙げられる。

【0051】 【化2】

ns.

No.						
	Aı .		Ba	Вь	B ₀	R _a
R-1	SCN	2	B-1	B-1	~	-
R-2	CN	2	B-1	B-1	-	-
R-3	Cl	8	B-1	B-1	-	-
R-4	Br	2	B-1	B-1	-	-
R-5	1	2	B-1	B-1	**	-
R-G	SCN	2	B-1	В-х	-	H
R-7	SCN	1	B-1	B-3	-	-
R-8	Cl	1,	B-1	B-4	-	н
R-9	I	2	B-1	B-5	-	H
R-10	SCN	2	B-1	B-6	-	H
R-11	CN	2	B-1	B-7	-	H
R-12	Cl	1	B-1	B-8	-	H
R-13	-	0	B-1	B-1	B-1	-

[0052]

【化3】

R-14

[0053] 【化4】

【0054】本発明に使用する色素がメチン色素である場合、以下で説明する式(II)、式(III)、式(IV) または式(V)で表される色素が好ましい。 【0055】 【他5】

$$(3_{0})_{n_{1}} \times_{11} + (C = C)_{n_{1}} + (B_{0})_{n_{2}} \times_{12} + (B_{0})_{n_{3}}$$

£(11)

【0056】式中、R₆およびR₇は各々水素原子、アル キル基、アリール基、または横索環基を表し、R₆~R₆ は各々水素原子または置換基を表す。R₆~R₇は互いに 結合して環を形成してもよい、X₁₁およびX₁₂は各々窓 素、酸素、硫黄、セレン、テルルを表す。n₁₁および n 13は各々0~2の整数を表し、n₁₂は1~6の整数を表 す。式(11)で表される化合物は分子全体の電荷に応じ て対イオンを有してもよい。

【0057】上記におけるアルキル基、アリール基、複 素環基は、置換基を有していてもよい、アルキル基は真 鎖であっても分岐鎖であってもよく、アリール基、複素 環基は、単環でも、多環 舗合環、環集合)であっても よい。また $R_b \sim R_f$ によって形成される環は、置換基を有していてもよく、単環であっても縮合環であってもよ

Æ(111)

W.

【0059】式中、乙。社合窒素核素類を形成するに必要な非金属原子酵を表す。 R。は7ルキル基またはアリール基である。 Q。は式(旧1)で表される化合物がメチン色素を形成するのに必要なメチン基またはポリメチン基を表す。 X。は電荷均衡対イオンを表し、 n。は3片で電荷を中却するのに必要なり以上10以下の数を表

ァ・ 【0060】上記のZ。で形成される含窒素複素環は置 換基を有していてもよく、単環であっても縮合環であっ でもよい。また、アルキル基、アリール基は置換基を有 していてもよく、アルキル基は直鎖であっても分岐鎖で あってもよく、アリール基は単環であっても多環(縮合 環、環集合)であってもよい。

【0061】式 (III) で表される色素は、下記式 (III

−a) ~ (III−d) で表される色素であることが好ま しい。【0062】【化7】

$$\bigvee_{3_1}\bigvee_{P_{3_1}}\bigvee_{P_{3_2}}\bigvee_{P_{3_2}}\bigvee_{P_{3_3}}\bigvee_{P_{3_4}}\bigvee_{P_{3_5}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}\bigvee_{P_{3_5}\bigvee_{P_{3_5}}\bigvee_{P_{3_5}\bigvee_{P_{3_5}\bigvee_{P_{3_5}\bigvee_{P_{3_5}\bigvee_{P_{3_5}\bigvee_{P_{3_5}\bigvee_{P_{3_5}\bigvee_{P_{3_5}\bigvee_{P_{3_5}\bigvee_{P_{3_5}\bigvee_{P_{3_5}\bigvee_{P_{3_5}\bigvee_{P_{3_5}\bigvee_{P_{3_5}\bigvee_{P_{3_$$

$$\bigvee_{q_1}\bigvee_{R_{l_1}}\bigvee_{q_2}\bigvee_{R_{l_3}}\bigvee_{q_3}\bigvee_{q_4}\bigvee_{q_4}\bigvee_{q_5}\bigvee_{q_4}\bigvee_{q_4}\bigvee_{q_5}\bigvee_{q_4}\bigvee_{q_5}\bigvee_{q_4}\bigvee_{q_5$$

【0064】V₁₁、V₁₂、V₂₁、V₂₂、V₃₁、およびV 41はそれぞれ独立に置換基を表し、n₁₅、n₂₁および n 41はそれぞれ独立に1~6の整数を表す。式(IIIa)~(III-d)で表される化合物は、分子全体の電 高に応じて対イオンを有していてもよい。

【0065】上記におけるアルキル基、アリール基、複 素環基は置度基を有していてもよく、アルキル基は直鎖 であっても分岐鎖であってもよく、アリール基、複素環 基は単環であっても多環(総合環、環集合)であっても よい。

【0066】以上のようなポリメチン色素の具体例はM. Okawara,T. Kitao,T.Hirasima, M.Matuoka著Organic Co Iorants (Elsevier) 等に詳しく記載されている。 【0067】 【化8】 或(IV)

$$R_{5}-N$$
 $L_{1}-L_{2}-L_{3}$
 $L_{1}-L_{2}-L_{3}$
 $L_{1}-L_{2}-L_{3}$

【0068】式(IV)中、Q。は5月または6月の含整条へテロ環を完成するためた必要な原子団を表し、Q。 は縮環していてもよく、また置度基を有していてもよい。Q。で完成されるヘテロ環の好ましい例としては、ベングチアゲール核、ベングセレナゾール核、ベングルルを、2ーキノリン核、4ーキノリン核、インドレニン核、オキサジアゾール核、チアゾリン核、イミゲゾール核が挙げられるが、さらに好ましくはベングチアゾール核、ベングセレナゾール核、ペンスイミゲゾール核、インドレニン核であり、特に好ましくはベングチアゾール核、ベングセレナゾール核、ペンスイミゲゾール核、インドレニン核であり、特に好ましくはベングチアゾール核、ベングオキサゾール核、2ーキノリン核、4キスリン核、4キスリン核、4キスリン核である。環

上の面換基としては、カルボン酸基、ホスホン酸基、ス ルホン酸基、ハロゲン原子(P, C1, Br, 1)、ス アノ基、アルコキシ基(メトキシ、エトキシ、エトキシなど)、アリーロキシ基(フェノキシなど)、アルーロキシ基(フェノキシなど)、アルキル基(メチル、エチル、シクロプロビル、シクロ ルベンジルなど)、アルキルチオ基(メチルチオ、エ チルチオなど)、アルケニル基(ビニル、1-プロペニ ルなど)、アリール基ないし複素環基(フェニル、アルケルチャイルレなど)、アリールエコールなどのアルゲルをデられ る。

【0069】2。は炭素原子、酸素原子、発素原子、硫 黄原子および水素原子から濁ばれる原子により構成され た、3ないし9員環を完成するために必要な原子団を表 す。乙。によって完成される環として好ましくは4ない し6個の炭素によって骨格が形成される環であり、より 好ましくは比下の(ア)~(4) で表されるものであ り、最も好ましくは(ア)である。

[0070]

【化9】

$$(7) \qquad (4) \qquad (5) \qquad NC \qquad UN \qquad (7) \qquad OH \qquad OH \qquad OH \qquad OH \qquad OH \qquad (7) \qquad$$

【0071】L1、L2、L2、L4およびL5はそれぞれ 独立に置換基を有していてもよいメチン基を表す。置換 基としては、置換または無置換のアルキル基(好ましく は炭素原子数1ないし12、さらに好ましくは1ないし 7のものであり、例えばメチル、エチル、プロビル、イ ソプロピル、シクロプロピル、ブチル、2-カルボキシ エチル、ベンジルなど)、置換または無置換のアリール 基(好ましくは炭素原子数6ないし10、さらに好まし くは6ないし8のものであり、例えば、フェニル、トル イル、クロロフェニル、o-カルボキシフェニル)、複 素環基(例えば、ピリジル、チエニル、フラニル、ピリ ジル、バルビツール酸)、ハロゲン原子(例えば、塩 素、臭素)、アルコキシ基(例えば、メトキシ、エトキ シ)、アミノ基(好ましくは炭素原子数1ないし12、 さらに好ましくは6ないし12のものであり、例えば、 ジフェニルアミノ、メチルフェニルアミノ、4-アセチ ルピペラジン-1-イル)、オキソ基などが挙げられ る。これらのメチン基上の置機基は互いに連結してシク ロペンテン環、シクロヘキセン環、スクアリリウム環な どの環を形成してもよく、あるいは助色団と環を形成す ることもできる。

【0072 n_{51} d0 から4までの整数を表し、好ましくd0 から3である。 n_{52} d0 またd1 である。

【0073】R。は置換基を表す。置換基として好まし くは置換基を有してもよい芳香族基または置換基を有し ていてもよい脂肪族基であり、芳香族基の炭素原子数は 好ましくは1ないし16、さらに好ましくは5ないし6 である。脂肪族基の炭素原子数は好ましくは1ないし1 0、さらに好ましくは1ないしらである。無置換の脂肪 族基および芳香族基としては、メチル基、エチル基、n 一プロビル基、n ープチル基、フェニル基、ナフチル基 等が挙げられる。

【0074】W、は電荷を中和させるのに対イオンが必 要な場合の対イオンを表す。ある色素が陽イオン、陰イ オンであるか、あるいは正味のイオン電荷を持つかどう かは、その助色団および置換基に依存する。置換基が解 離性基を有する場合、解離して負電荷を持っても良く、 この場合にも分子全体の電荷はW」によって中和され る。典型的な陽イオンは無機または有機のアンモニウム イオン (例えばテトラアルキルアンモニウムイオン、ビ リジニウムイオン) およびアルカリ金属イオンであり、 一方、陰イオンは具体的に無機陰イオンあるいは有機陰 イオンのいずれであってもよく、例えば、ハロゲン除イ オン、(例えば、フッ化物イオン、塩化物イオン、臭化 物イオン、ヨウ化物イオン)、置換アリールスルホン酸 イオン(例えば、pートルエンスルホン酸イオン、pー クロロベンゼンスルホン酸イオン)、アリールジスルホ ン酸イオン(例えば、1、3-ベンゼンジスルホン酸イ オン、1,5-ナフタレンジスルホン酸イオン、2,6 ナフタレンジスルホン酸イオン)、アルキル硫酸イオ ン(例えば、メチル硫酸イオン)、硫酸イオン、チオシ アン酸イオン、過塩素酸イオン、テトラフルオロホウ酸 イオン、ピクリン酸イオン、酢酸イオン、トリフルオロ メタンスルホン酸イオンが挙げられる。

【0075】さらに電荷均衡対イオンとしてイオン性ポ リマーあるいは、色素と速電荷を有する他の色素を用い てもよいし、金属鉛イオン(例えば、ビスペンゼンー 1、2-ジチオラトニッケル(III)も可能である。

【0076】 【化10】

£ (V)

【0077]式(V)においてDは少なくとも4首能以上の芳香族基を示し、X1、X1はそれぞれ独立に疏資原 チ、セレン原子、CResRes はたはCRes でのできます。ここでResで表ませれてれた来原子またはアルキル基である。Rei、Resはそれぞれ水来原子またはアルキル基である。Rei、Resはそれぞれかないエルメチン色素を形成するのに必要な非金属原子群を表す。W2は電荷を中期させるのに対イオンが必要な場合の対イオンを示す。

【0078】式(V)について更に詳しく説明する。式(V)中、Dは少なくと四官能以上の芳香族基を示す。このような芳香族基の例としては、これらの基が誘導される芳香族及化水素としてベンゼン、ナフタレン、アントラセン、フェナントレンなどが挙げられ、芳香族ペテロ環としてはアントラキノン、カルバゲール、ピリジン、キノリン、チオフェン、フラン、キサンテン、チアントレンなどが挙げられ、これらは連結部分以外に置換基を有していても良い、Dで表される芳香族基として好ましくは芳香族火化米素の誘導基であり、さらに好ましくは不少生ジまなはナフタレンの誘導基である。

たものも含んでいる。これらの色素の詳細については、 エフ・エム・ハーマー(F.M. Harmer)著「ヘテロサイクリ ック・コンパウンズーシアニンダイズ・アンド・リレィ ティド・コンパウンズ(Heterocyclic Compounds-Cyanin e Dyes and Related Compounds)」、ジョン・ウィリー ·アンド・サンズ(John Wiley & Sons)社一二ューヨー ロンドン、1964年刊、デー・エム・スターマー (D.M.Sturme r)著「ヘテロサイクリック・コンパウンズ ースペシャル・トピックス・イン・ヘテロサイクリック ・ケミストリー(Heterocyclic Compounds-Special topi cs in heterocyclic chemistry)」、第18章、第14 筒、第482から515章などに記載されている。 シ アニン色素、メロシアニン色素、ロダシアニン色素の式 は、米国特許第5、340、694号第21、22貫の (XI)、(XII)、(XIII) に示されているも のが好ましい。また、P、およびP。によって形成される ボリメチン色素の少なくともいずれか一方のメチン鎖部 分にスクアリリウム環を有するものが好ましく、両方に 有するものがさらに好ましい。

【0081】R₆₁、R₆₂は汚香族基または脂肪族基であり、これらは置換基を有していてもよい、芳香族基の炭素原子数は好ましくは5ないし16、さらに好ましくは5ないし6である。無間族基の機能が廃基、方香族基としては、メチル基、エチル基、カープロドル基、カープアルル基、フェニル基、ナフチル基等が挙げられる。

【0082】式(V)はRe1、Re2、P1、P2のうち少なくともひとつに散性基を有することが好ましい。ここで散性基とは、解離性のプロトンを有する置換基であり、例としてはカルボン酸、ホスホン酸、スルホン酸、ホウ酸などが挙げられ、好ましくはカルボン酸である。またこのような酸性基はプロトンを放出して解離した形を探っていても良い。

【0083】 W_s は式(1V)の W_s と同義である。 【0084】以下に式(1I)~(V)で表されるボリメチン色素の好ましい具体例を示すが、本発明はこれらに限定されるものではない。実施例使用の色素B、D、F、G、I、Kも挙げられる。

[0085]

【化111

[0086] [化12]

(7)
$$CH_{3}$$
, CH_{5} CH_{5} CH_{5} CH_{5} CO_{2} :H
$$CH_{2}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{5}$$

$$CH_{5}$$

$$CH_{5}$$

$$CH_{5}$$

$$CH_{5}$$

$$CH_{6}$$

$$CH_{13}$$

$$CH$$

$$\begin{array}{c} \text{CH}_{9}\text{O} \\ \\ \text{CH}_{9}\text{O} \\ \\ \text{CH} \\ \\ \text{CH} \\ \text{CH} \\ \\ \text{CH}$$

[0087] [化13]

$$(12) \begin{picture}(20,0) \put(0,0){\line(0,0){12}} \pu$$

(13)
$$C_0H_5$$
 C_0H_5 C_0H_5 C_0H_5 C_0H_5 C_0H_5 C_0H_5 C_0

(16)
$$C_{\theta}^{\dagger}I_{5}$$
 $C_{H_{3}}$ $C_{H_{3}}$

[0088] [化14]

(17)
$$C_2H_5$$
 C_1H_2 C_1H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_3H_5 $C_3H_$

[0089] [化15]

$$(CH^2)^2COO.$$

$$(CH^2)^2COO.$$

$$(CH^2)^3-(CH^2CH^2)^3-(CH^2)^3$$

$$\begin{array}{c} C_2H_0 \\ \\ \end{array} \begin{array}{c} C_2H_0 \\ \\ \end{array} \begin{array}{c} C_1H_0 \\ \\ \end{array} \begin{array}{c} C_2H_0 \\ \\ \end{array} \begin{array}{c} C_1H_0 \\ \\ \end{array} \begin{array}{c} C_1H_$$

(26)
$$CH_3$$
 CH_5 CH_4 CO_2 CO_2 CH_4 CO_2 CO

【0090】 【化16】

$$\underset{\mathsf{CH}_{9}\mathsf{COO}}{ } \underset{\mathsf{CH}_{9}}{ } \underset{\mathsf{CH}_{9}\mathsf{CO}_{2};1}{ } \underset{\mathsf{CH}_$$

$$(32) \qquad CO_2H \qquad CO_2H$$

[0092]

[0093]

【化19】

$$(40) \qquad \begin{array}{c} CH_5 CH_5 \\ CH_5 CH \\ CH_3 \end{array} \\ CH \\ CH_5 \\ CH_6 \end{array}$$

$$(41) \qquad \qquad \begin{array}{c} \text{H}_3\text{C} \\ \text{CH}_4 \\ \text{CH} - \text{CH} + \begin{array}{c} \text{S} \\ \text{O} \end{array} \\ \text{PO(OH)}_2 \end{array}$$

(43)
$$H_2O_3P \longrightarrow S \longrightarrow CH \longrightarrow CH \longrightarrow S \longrightarrow I^1O_3H_1$$

$$C_2H_2 \longrightarrow CH \longrightarrow CH \longrightarrow I^1O_3H_2$$

$$C_2H_3 \longrightarrow CH \longrightarrow I^1O_3H_2$$

$$C_2H_3 \longrightarrow CH \longrightarrow I^1O_3H_2$$

色素	х	v	R	Y1	Y ₂
S-1.	C(CH ₃) ₂	1, 5-ペンソ	. C ₃ H ₇	0	0
S-2	C(CH ₃) ₂	н	(CH ₂) ₃ COOH	0	0
S-3	C(CH ₃) ₂	4. 5ーペンゾ	C ₂ H ₅	S	s
S-4	C(CH ₃) ₂	4. 5ーペンゾ	C ₂ H ₅	C(CN)2	0
S-5	C(CH ₃) ₂	4, 5-ペンソ	C ₂ H ₅	C(CN) ₂	C(CN) ₂
S-6	s	Н	C ₂ H ₅	О	0
S-7	s	5、6ーペンゾ	CH ₃	0	0
S-8	0	Н	CH ₃	0	0
S-9	Se	Н	CH ₃	0	0
S-10	NC ₂ H ₅	н	СН₃	0	0
S-11	-CH=CH-	Н	C ₂ H ₅	0	0

$$V = \begin{array}{c} (S-1 ?) \\ V = \begin{array}{c} X \\ Y \\ R \end{array} = CH + \left(CH + CH\right)_{n} \begin{array}{c} OH \\ O \end{array}$$

色素	х	v	R	n
S-13	C(CH ₃) ₂	Н	CH ₃	1
S-14	C(CH ₃) ₂	4,5-ペンゾ	C ₂ H ₅	1
S-15	s	H	CH3	2
S-16	s	5,6ーペンソ	C ₂ H ₅	3
S-17	s	5, 6ーペンゾ	C ₂ H ₅	4
S-18	0	н	CH ₃	1

[0097]

色素	x	R ₁	R ₂	R
S-19	C(CH ₃) ₂	CH ₃	CH ₃	C ₂ H ₅
S-20	s	СН3	СН3	C ₂ H ₅
S-21	0	СН₃	CH ₃	(CH ₂) ₃ COOI ₁
S-22	0	Ph	н	C ₂ H ₅

[0098] [化24]

色素	х	Y	R ₁	R ₂	V ₁	w
S-23	s	S	CH ₃	CI ₁₃	Н	1-
S -24	s	S	C ₂ H ₅	CH3	5-COOH	1-
S-25	C(CH ₃) ₂	C(CH ₃) ₂	CH ₃	CH ₃	ь-соон	1-
S-26	C(CH ₃) ₂	C(CH ₃) ₂	CH ₂ CH ₂ COOH	C ₂ H ₅	н	сг
S-27	0	C(CH ₃) ₂	CH ₃	C ₂ H ₅	н	Ι-

[0099]

色素	х	Y	R ₁	R ₂	V ₁
S-28	s	C(CH ₃) ₂	CH3	CH ₃	Н
S-29	s	C(CH ₃) ₂	C ₃ H ₇	CH ₃	4, 5-ペンゾ
S-30	C(CH ₃) ₂	s	СН3	CH ₃	5-COOH
S-31	C(CH ₃) ₂	C(CH ₃) ₂	CH ₃	CH ₃	5-соон
S-32	C(CH ₃) ₂	NCH ₃	СН3	C ₂ H ₅	5-CH ₃

[0100]

$$v_{i} = \bigvee_{\substack{N_{i} \\ N_{i}}} c_{i} = \bigvee_{\substack{N$$

色素	x	Y	R ₁	R ₂	V ₁
S-33	s	C(CH ₃) ₂	CH ₃	CH ₃	Н
S-34	s	C(CH ₃) ₂	C ₂ I f ₅	CH ₃	5-SO ₃ H
S-35	C(CH ₃) ₂	C(CH ₃) ₂	CH ₃	C_2H_5	5-COOH
S-36	C(CH ₃) ₂	C(CH ₃) ₂	СН₂СН₂СООН	CH ₃	4, 5ーペンゾ
S-37	C(CH ₃) ₂	NCH ₃	CH ₃	C ₂ I ł ₅	5-CH ₃

[0101]

$$[0\ 1\ 0\ 2]$$

$$[0\ 1\ 0\ 2]$$

$$[0\ 1\ 0\ 2]$$

$$[0\ 1\ 0\ 2]$$

$$[0\ 1\ 0\ 3]$$

$$[0\ 1\ 0\ 3]$$

$$[0\ 1\ 0\ 3]$$

$$[0\ 1\ 0\ 3]$$

$$[0\ 1\ 0\ 3]$$

$$[0\ 1\ 0\ 3]$$

$$[0\ 1\ 0\ 3]$$

$$[0\ 1\ 0\ 3]$$

$$[0\ 1\ 0\ 3]$$

$$[0\ 1\ 0\ 3]$$

$$[0\ 1\ 0\ 3]$$

$$[0\ 1\ 0\ 3]$$

$$[0\ 1\ 0\ 3]$$

$$[0\ 1\ 0\ 3]$$

$$[0\ 1\ 0\ 3]$$

$$[0\ 1\ 0\ 3]$$

$$[0\ 1\ 0\ 3]$$

$$[0\ 1\ 0\ 3]$$

$$[0\ 1\ 0\ 4]$$

$$[0\ 1\ 0\ 4]$$

$$[0\ 1\ 0\ 4]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\ 1\ 0\ 5]$$

$$[0\$$

【0106】式(II) および式(III) で表される化合 物は、エフ・エム・ハーマー(F.M. Harmer)著「ヘテロサ イクリック・コンパウンズーシアニンダイズ・アンド・ リレィティド・コンパウンズ(Heterocyclic Compounds -Cyanine Dyes and RelatedCompounds) 1. ジョン・ウ ィリー・アンド・サンズ(John Wiley & Sons)社-ニュ ーヨーク、ロンドン、1964年刊、デー・エム・スタ ーマー(D.M.Sturmer)著「ヘテロサイクリック・コンパ ウンズースペシャル・トピックス・イン・ヘテロサイク リック・ケミストリー(Heterocyclic Compounds-Specia l topics in heterocyclic chemistry)」、第18章、 第14節、第482から515項、ジョン・ウィリー・ アンド・サンズ(John Wiley & Sons)社-ニューヨー ク、ロンドン、1977年刊、「ロッズ・ケミストリー ・オブ・カーボン・コンパウンズ(Rodd's Chemistry of Carbon Compounds) | 2nd.Ed.vol.1V.partB, 1 9 7 7 刊、第15章、第369から422項、エルセピア・サ イエンス・パブリック・カンパニー・インク(Elsevier Science Publishing Company Inc.)社刊、ニューヨー

ク、英国特許第1,077,611号などに記載の方法に基づい て合成することができる。

【0107】本発明に用いられる式(IV)で表される化 合物の合成は、Dyes and Pigments第21巻227~23 4頁などの文献の記載を参考にして行える。また、式

マストン人間である。 (V) で表される化合物の合成は、Ukrainskii Khimich eskii Zhurnal 第40巻3号253~258頁、Dyes and Pigments 第21巻227~234頁およびこれらの文 離中に引用された文献の記載等本巻素にして行える。

【0108】半導体微粒子に色素を吸着させる方法は色素溶液中によく乾燥した半導体微粒子を造設した作用電極を浸漬するか。もしくは色素溶液を半導体微粒子層に塗布して吸着させる方法を用いることができる。前者の場合、浸漬法、ディップ法、ローラ法、エアーナイフ法、スライドホッパ法、エクストルージョン法、カーテン法、スピン法、スプレー法があり、印刷方法としては、凸版、オフセット、グラビア、スクリーン印刷等がある。本地明では、半導体微性子層の上にスペーサー層

を塗設した後、前者の方法により、半導体微粒子に色素 を吸着させるのが好ましい。

[0109]液粘度も半帯体制粒子層の形成動を同様 に、高粘度液(例えば0.01~500Poise)ではエ クストルージョン法の他、条種印刷法が、低耗度液(例 えば0.1Poise以下)ではスライドホッパー法もしく はワイヤーバー法もしくはスセン法が適していて、均一 を観にするとが可能である。

【0110】このように色素塗布液の液粘度、塗布量、 支持体、塗布速度等のパラメータに対応して、適宜付与 方式を選択すればよい。塗布後の色素吸着に要する時間 は、最産化を考えた場合、なるべく短い方がよい。

【011】未吸着の色素の存在は素子性能の外乱にな またい。融充洗浄情を使い、アセトニトリル等の極性溶 剤、アルコール系溶剤のような有機溶媒で洗浄を行うの がよい。また、吸着色素量を増大させるため、加熱処理 を吸着前に行うことが好ました。加熱処理な 粒子表面に水が吸着するのを避けるため、常温に戻さず 40~80℃の間で業早く色素を吸着させることも好ま しい。

【0112】色素の使用量は、全体で、支持体1m²当たり0.01~100mtルが好ましい。また、色素の半体体徴発子に対する吸着量は半導体微粒子1mtに対して0.01~1mtルが好ましい。このような色素量とすることによって、半導体における地感効果が十分に得られる。これに対し、色素量が少ないと地感効果が不十分となり、色素量が多すぎると、半導体に付着していない色素が浮遊し地感効果を低減させる原因となる。

【0113】また、会合など色素同士の相互作用を低減 する目的で無色の化合物と共吸着させてもよい。共吸着 させる疎水性化合物としてはカルボキシ基を有するステ ロイド化合物(例えばコール酸)等が挙げられる。ま た、紫外線吸収剤を併用することもできる。

【0114】また、余分を色素の除去を促進する目的
で、色素を吸着した後にアミン類を用いて半導体値粒子
の表面を処理してもよい、抜ましいアミン類をしてはピ
リジン、4ーtertーブチルセリジン、ポリビニルビリジン、ジ等が挙げられる。これらが液体の場合はそのまま用い
てもよいし有機溶媒に溶解して用いてもよい。

【01151以下、電荷郵酬展と対極について詳しく説 明する、電荷移動層は色素の酸化体に電子を補充する機 能を有する限である。本列明で用いることのできる代表 的か電荷移動館の例としては酸化還元対を有機溶媒に溶解 解した液体(電解液)、酸化還元対を有機溶媒に溶解し た液体をポソマーマトリクスに合浸したいかゆるゲル電 解質、酸化還元対を含有する溶積塩などが寄げられる。 さらには固体電解質や正孔(ホール)輸送材料を用いる こともできる。

【0116】本発明で使用する電解液は電解質、溶媒、

および添加物から構成されることが好ましい。本発明の 電解質は1、とヨウ化物の組み合わせ(ヨウ化物としては Lil, Nal, Kl, Csl, Cal, などの金属ヨ ウ化物。あるいはテトラアルキルアンモニウムヨーダイ ド、ピリジニウムヨーダイド、イミダゾリウムヨーダイ ドなど4級アンモニウム化合物のヨウ素塩など)、Br 。と臭化物の組み合わせ(臭化物としてはLiBr、N aBr、KBr、CsBr、CaBr。などの金属臭化 物、あるいはテトラアルキルアンモニウムブロマイド、 ピリジニウムプロマイドなど4級アンモニウム化合物の 臭素塩など)のほか、フェロシアン酸塩-フェリシアン 酸塩やフェロセンーフェリシニウムイオンなどの金属錯 体、ポリ硫化ナトリウム、アルキルチオールーアルキル ジスルフィドなどのイオウ化合物 ビオロゲン色素 ヒ ドロキノンーキノンなどを用いることができる。この中 でも1。とし11やピリジニウムヨーダイド、イミダゾリ ウムヨーダイドなど4級アンモニウム化合物のヨウ素塩 を組み合わせた雷解質が本発明では好ましい。上述した 電解質は混合して用いてもよい。また、電解質はEP-718 288号、W095/18456号、J. Electrochem, Soc., Vol.14 3, No. 10, 3099 (1996), Inorg. Chem. 1996, 35, 1168-1178 に記載された室温で溶融状態の塩(溶融塩)を使用する こともできる。溶融塩を電解質として使用する場合、溶 媒は使用しなくても構わない。

【0117】好ましい電解質濃度は0.1M以上15M以下であり、さらに好ましくは0.2M以上10M以下である。また、電解質にヨウ素を添加する場合の好ましいヨウ素の添加濃度は0.01M以上0.5M以下である。

【0118】本発明で電解質に使用する溶媒は、粘度が 低くイオン易動度を向上したり、もしくは誘電率が高く 有効キャリアー濃度を向上したりして、優れたイオン伝 導性を発現できる化合物であることが望ましい。このよ うな溶媒としては、エチレンカーボネート、プロピレン カーボネートなどのカーボネート化合物、3-メチルー 2-オキサゾリジノンなどの複素環化合物、ジオキサ ン、ジエチルエーテルなどのエーテル化合物、エチレン グリコールジアルキルエーテル、プロピレングリコール ジアルキルエーテル、ポリエチレングリコールジアルキ ルエーテル、ポリプロピレングリコールジアルキルエー テルなどの鎖状エーテル類、メタノール、エタノール、 エチレングリコールモノアルキルエーテル、プロピレン グリコールモノアルキルエーテル、ポリエチレングリコ ールモノアルキルエーテル、ポリプロピレングリコール モノアルキルエーテルなどのアルコール類、エチレング リコール、プロピレングリコール、ポリエチレングリコ ール、ボリプロピレングリコール、グリセリンなどの多 価アルコール類、アセトニトリル、グルタロジニトリ ル、メトキシアセトニトリル、プロピオニトリル、ベン ゾニトリルなどのニトリル化合物、ジメチルスルフォキ シド(DMSO)、スルフォランなど非プロトン極性物 質、水などを用いることができる。

【0119】また、本巻明では、J. Am. Geram. Soc. , 80 (12)3157-3171(1997)に記載されているようなセーブ チルビリジンや、2ーピコリン、2、6ールチジン等の 塩基性化合物を添加することもできる。塩基性化合物を 添加する場合の好ましい濃度範囲は0.05k以上2k以下で よる。

【0120】本発明では、電解質はポリマー添加、オイ ルゲル化剤添加、多官能モノマー類を含む重合、ボリマ 一の架橋反応等の手法によりゲル化(固体化)させて使 用することもできる。ボリマー添加によりゲル化させる 場合は、"Polymer Electrolyte Revi ews-1および2" (J.R.MacCallumとC.A. Vincentの共編、ELSEVIER APPLI ED SCIENCE) に記載された化合物を使用することができ るが、特にポリアクリロニトリル、ポリフッ化ビニリデ ンを好ましく使用することができる。オイルゲル化剤添 加によりゲル化させる場合はJ. Chem Soc. Japan, Ind. Chem. Soc., 46779(1943), J. Am. Chem. Soc., 111, 55 42(1989), J. Chen. Soc., Chem. Com mun., 1993, 39 Angew. Chem. Int. Ed. Engl., 35, 1949 (1996). Che m. Lett., 1996, 885, J. Chm. Soc., Chem. Commun., 1997.545に記載されている化合物を使用することができ るが、好ましい化合物は分子構造中にアミド構造を有す る化合物である。

【0121】ゲル電解質を多官能モノマー類の重合によ って形成する場合、多官能モノマー類、重合開始剤、電 解質、溶媒から溶液を調製し、キャスト法、塗布法、浸 漬法、含浸法などの方法により色素を担持した電極上に ゾル状の電解質層を形成し、その後ラジカル重合するこ とによってゲル化させる方法が好ましい。多官能性モノ マーはエチレン性不飽和基を2個以上有する化合物であ ることが好ましく、例えばジビニルベンゼン、エチレン グリコールジメタクリレート、エチレングリコールジア クリレート、エチレングリコールジメタクリレート、ジ エチレングリコールジアクリレート、ジエチレングリコ ールジメタクリレート、トリエチレングリコールジアク リレート、トリエチレングリコールジメタクリレート. ベンタエリスリトールトリアクリレート、トリメチロー ルプロパントリアクリレートが好ましい例として挙げら れる。ゲル電解質を構成するモノマー類はこの他に単官 能モノマーを含んでいてもよく、アクリル酸またはαー アルキルアクリル酸 (例えばメタクリル酸など) 類から 誘導されるエステル類もしくはアミド類(例えばN-is 0-プロビルアクリルアミド、アクリルアミド、2-ア クリルアミドー2-メチルプロパンスルホン酸、アクリ ルアミドプロピルトリメチルアンモニウムクロライド. メチルアクリレート、ヒドロキシエチルアクリレート、 n-プロピルアクリレート、n-ブチルアクリレート、 2-メトキシエチルアクリレート、シクロヘキシルアク リレートなど)、ビニルエステル類(例えば酢酸ビニ

ル)、マレイン酸またはフマル酸から誘導されるエステ ル類(例えばマレイン酸ジメチル、マレイン酸ジブチ ル、フマル酸ジエチルなど)、マレイン酸、フマル酸、 p-スチレンスルホン酸のナトリウム塩 アクリロニト リル、メタクリロニトリル、ジエン類(例えばブタジエ ン、シクロペンタジエン、イソプレン)、芳香族ビニル 化合物(例えばスチレン、p-クロルスチレン、スチレ ンスルホン酸ナトリウム) 会容素複素環を有するビニ ル化合物、4級アンモニウム塩を有するビニル化合物、 N-ビニルホルムアミド、N-ビニル-N-メチルホル ムアミド、ビニルスルホン酸、ビニルスルホン酸ナトリ ウム、ビニリデンフルオライド、ビニリデンクロライ ド、ビニルアルキルエーテル類(例えばメチルビニルエ ーテル)、エチレン、プロピレン、1-ブテン、イソブ テン、N-フェニルマレイミド等を好ましく使用するこ とができる。モノマー全量に占める多官能性モノマーの 好ましい重量組成範囲は0.5重量%以上70重量%以下であ ることが好ましく、さらに好ましくは1.0重量%以 F50 重量%以下である。

【0122】上述のモノマーは、大津隆行・木下雅悦共 著: 高分子合成の実験法(化学同人)や大津隆行: 講座 重合反応論 1 ラジカル重合 (I) (化学同人) に記載さ れた一般的な高分子合成法であるラジカル重合によって 重合することができる。本発明で使用できるゲル電解質 用モノマーは、加熱、光、電子線、また電気化学的にラ ジカル重合することができるが、特に加熱によってラジ カル重合させることが好ましい。架橋高分子が加熱によ り形成される場合に好ましく使用される重合開始剤は、 例えば、2、21-アゾビスイソブチロニトリル 2、 2'-アゾビス(2,4-ジメチルバレロニトリル)。 ジメチル2、2′ーアゾビス(2-メチルプロピオネー ト)(ジメチル2,2′ーアゾビスイソブチレート)な どのアゾ系開始剤 ベンゾイルバーオキシドなどの過酸 化物系開始剤等である。重合開始剤の好ましい添加量は モノマー総量に対し0,01重量%以上20重量%以下 であり、さらに好ましくは0.1重量%以上10重量% 以下である.

【0123】ゲル電解質に占めるモノマ一類の重量組成 範囲は0.5重量以上70重量以下であることが好まし く、さらに好ましくは1.0重量%以上50重量%以下であ る。

【0124】また、ボリマーの契橋反応により電解質を がル化させる場合、架橋可能な反応性基を含有するボリ マーおよび突橋剤を併用することが望ましい。この場 合、射ましい梁橋可能な反応性基は、含盤素検楽環(角 えば、ビリジン環、イミケゾール環、テアソール環、オ キサゾール環、トリアゾール環、モルホリン環、ビベリ ジン環、ビベラジン環など)であり、貯ましい梁橋剤 は、窒素原子に対して京電子反応可能な2官能と上の試 煮(例えば、ハロゲン化アルキル、ハロゲン化アラルキ 表(例えば、ハロゲン化アルキル、ハロゲン化アラルキ

ル、スルホン酸エステル、酸無水物、酸クロライド、イ ソシアネートなど)である。 【0125】本発明では、電解質の替わりに有機または 無機あるいはこの両者を組み合わせた正孔輸送材料を使 用することができる。本発明に適用可能な有機正孔輸送 材料としては、N, N'-ジフエニル-N, N'-ビス (4-メト キシフェニル) - (1, 1'-ビフェニル) -4, 4'-ジアミン (J. Hagen et al., Synthetic Metal 89(1997)215-22 0)、2,2',7,7'-テトラキス(N,N-ジ-p-メトキシフェニ ルアミン) 9.9'-スピロビフルオレン (Nature, Vol. 395, 8 Oct. 1998,p583-585およびW097/10617)、1,1-ビス {4-(ジ-p-トリルアミノ)フェニル{シクロヘキサン の3級芳香族アミンユニットを連結した芳香族ジアミン 化合物(特開昭59-194393号公報)、4、4、- ビス [(N-1-ナフチル) - N-フェニルアミノ] ビフェニルで 代表される2個以上の3級アミンを含み2個以上の締合 芳香族環が窒素原子に置換した芳香族アミン (特開平5 -234681号公報)、トリフェニルベンゼンの誘導体でス ターバースト構造を有する芳香族トリアミン (米国特許 第4、923、774号、特開平4-308688号公報) N. N'-ジ フエニル-N、N'-ビス (3-メチルフェニル) - (1, 1'-ビ フェニル)-4,4'-ジアミン等の芳香族ジアミン(米国 特許第4,764,625号)、α,α,α',α'-テトラメチ $\mathcal{N}-\alpha$, α' - \mathcal{C} 3 (4- \mathcal{C} - \mathcal{P} - \mathcal{C} 4) \mathcal{P} 7 (4- \mathcal{C} 7) \mathcal{P} 7 (4- \mathcal{C} 7) \mathcal{P} 7 (4- \mathcal{C} 8) \mathcal{P} 7 (4- \mathcal{C} 9) \mathcal{P} 9 (4- \mathcal{C} 9) キシレン (特開平3-269084号公報)、p-フェニレンジ アミン誘導体、分子全体として立体的に非対称なトリフ ェニルアミン誘導体(特開平4-129271号公報)、ピレ ニル基に芳香族ジアミノ基が複数個置換した化合物 (特 開平4-175395号公報) エチレン基で3級芳香族アミン ユニツトを連結した芳香族ジアミン (特開平4-264189 号公報)、スチリル構造を有する芳香族ジアミン(特開 平4-290851号公報)、ベンジルフェニル化合物(特開 平4-364153号公報). フルオレン基で3級アミンを連結 したもの(特開平5-25473号公報)、トリアミン化合物 (特開平5-239455号公報)、ピスジピリジルアミノビ フェニル(特開平5-320634号公報), N. N. N-トリフ ェニルアミン誘導体(特開平6-1972号公報). フェノ キザジン構造を有する芳香族ジアミン(特願平5-29072 8号)、ジアミノフエニルフエナントリジン誘導体(特 願平6-45669号) 等に示される芳香族アミン類、α-オ クチルチオフェンおよび α , ω-ジヘキシル- α -オクチル チオフェン (Adv. Mater. 1997,9,NO.7,p557)、ヘキサ ドデシルドデシチオフェン(Angew. Chem. Int. Ed. Eng 1, 1995, 34, No.3, p303-307), 2,8-ジヘキシルアンス ラ[2,3-b:6,7-b'] ジチオフェン(JACS, Vol120, NO. 4, 199 8,p664-672) 等のオリゴチオフェン化合物、ボリビロー N (K. Murakoshi et al.,; Chem. Lett. 1997, p47 " Handbook of Organic Conductive Molecules a nd Polymers Vol.1.2.3.4 (NALWA著、WILEY出版) に 記載されているボリアセチレンおよびその誘導体、ボリ

(ローフェニレン) およびその誘導体、ポリ(ローフェニレンビニレン) およびその誘導体、ポリチオフェンドニレンビニレンおよびその誘導体、ポリテオフェンおよびその誘導体、ポリトルイジンおよびその誘導体等の導電性高分子を好ましく使用することができる。また、有機正月(ボール) 輸送材料にはは、ture、Wol.395、80 ct. 1998、か583-585に記載されているようにドーパントレベルをコントロールするためにトリス (4-プロモフェニル) アミニウムペキサクロロアンチモネートのようなカチオンラジカルを含有する化合物を添加したり、酸化物半導体表面のボテンシャル制御(空間電荷脚の補償)を行うためには1((CF₂SO₂)₂N)のような塩を添加してり材かない。

【0126】有機正孔輸送材料は真空素着法、キャスト法、途布法、スピンコート法、浸漬法、電解重合法、光 連解重合法等の手法により電極内部に導入することができる。また、正孔輸送材料を電解液の替わりに使用するときは短絡防止のためElectorochim. Acta 40,643-652 (1995)に記載されているスプレーバイロリシス等の手法を用いて二酸化ナタン澤層を下塗り層として塗設することが暫ましい。

【0127】無機固体化合物を電解質の着わりに使用する場合、ヨウ化銅(p-cul) (J. Phys. D;Appl. Phys. 31 (1998)1492-1496)、チオシアン化銅(Thin Solid Films 261(1995)307-310、J. Appl. Phys. 80(8),15 0ctober 1996, p4749-4754、Chen. Mater. 1998, 10, 1501-150 9、Senicond. Sci. Technol. 10, 1689-1693)等をキャスト法、途布法、スピンコート法、浸渍法、電解メッキ法等の手法により電極内部に連入することができる。

[0128]電荷郵動層の形成方法に関しては2通りの 方法が考えられる。1つはスペーサー層の上に先に対極 を貼り合わせておき、その間隙に流状の電荷爭動層を挟 み込む方法である。もう1つはスペーサー層上に直接電 荷移動層を付与する方法で、対極はその後付与すること になる。

【0129】前者の場合の電荷移動層の挟み込み方法と して、浸漬等による毛管現象を利用する常圧プロセスと 管圧より低い圧力にして気相を液相に置換する真空プロ セスが利用できる。

【0130】後者の場合、湿式の電荷移動層においては 未乾燥のまま対極を付与し、エッジ部の液漏池助止措置 始離立ととなる。またが一座解質の場合には湿式で能 布して重合等の方法により固体化する方法もあり、その 場合には乾燥、固定化した核に対極を付与することもで さる。電解液のほか湿式有機正孔輸送材料やゲル電解 を付与する方法としては、半導体微粒子各右層や色素の 付与と同様に、浸漬法、ローラ法、ディッフ法、エアー ナイフ法、エクストルージョン法、スライドホッバー 法、ワーヤーバー法、スピン法、スプレー法、キャスト 法、毎種印刷法等が考えられる。固体電解質や固体の正 孔 (ホール) 輸送材料の場合には真空蒸着法やCVD法 等のドライ成膜処理で電荷移動層を形成し、その後対極 を付与することもできる。

【0131】量産化を考える場合、固体化できない電解 核や温式の正孔輸送材料の場合には、施設後速やかにエ ッジ部が全封止することで対応も可能であるが、固体化 可能な正孔輸送材料の場合は淘式付与により正孔輸送層 を膜形成した後、例えば近重合や熱ラジカル重合等の方 法により固体化することがより好ましい。このうに膜 付与方式は流物性や工程条件により適宜選択すればよ

【0132】なお、電荷移動層中の水分としては10, 000ppm以下が好ましく、さらに好ましくは2,0 00ppm以下であり、特に好ましくは100ppm以 下である。

【0133】対極は、光電変換条子を光電気化学電池としたとき、光電気化学電池の正程として體くものである、対極は通前近の薄電性支持体と同様が適性度有する支持体を用いることとできるが、強度や密封性が十分に保たれるような構成では支持体は必ずしも必要でない。具体的に対極に用いる薄電性の材料としては金の気候(例えば行金、金、銀、網、アルミニウム、ロジウム、インジウムースズ接合酸化物、酸化スズにフッ素をドーブしたもの等)が挙げられる。対極の厚さは、特に制限はないが、3mu以上10μm以下であることが射ましい。金属材料である場合は、その膜厚は射ましくは5μm以下であり、さらに好ましくは5mu以上3μm以下の範囲である。とらに好ましくは5mu以上3μm以下の範囲である。

【0134】感光層に光が割途するためには、前途の導 症性支持体と対極の少なくとも一方は実質的に透明でな ければならない。本発明の光電気化学電池においては、 導電性支持体が透明であって太陽光を支持体圏から入射 させるのが新ましい。この場合対極は光を反射する性質 を有することがざらに好ましい。本が明において対極 しては金属または薄電性の機化物を蒸着したガラスまた はプラスチック、あるいは金属薄膜を使用できる。

【0135】対極の途影については電荷移動層の付けで 記したように、電荷移動層の上に付与する場合と先にス ペーサー層上に付与する場合の2通りある、いずれの場 合も、対極材の種類や電荷移動層の種類により、適宜、 電荷移動層上または半導体散粒子含有層上に対極材を塗 布、ラミネート、蒸着、貼り合わせなどの方法により形 成可能である。例えば、対極を貼り合わせる場合は、上 記の薄電性材料を塗布、蒸着、C V D等の手法により薄 電層として設けられた基板を貼り合わせるととができ る。また、電荷移動層が固体の場合には、その上に直 後、前述の導電性材料を遂布、メッキ、P V D、C V D 等の手法に文材極を形成することができる。

【0136】さらに、作用電極の導電性支持体または対

篠に保護層、反射防止膜など、必要な他の機能の層を設けることも可能である。このような層を多層にて機能分割をさせる場合、同時多層塩布が淡次で塗布することが可能であるが、生産性を侵先させると同時多層塗布がより好ましい。同時多層塗布では、生産性および脱付与均一性を考えた場合、スライドホッパー法やエクストルージョン法が適している。また、これらの機能層はその材料により、素着や貼り付けなどの手法を用いて設けることもできる。

【0137】本発明の光電気化学電池では構成物の劣化 や内容物の揮散を防止するために電池の側面をポリマー や接着剤等で密封するのが好ましい。

【0138】次に本発明の光電変換素子をいわゆる太陽 電池に適用する場合のセル構造およびモジュール構造に ついて説明する。

【0139】色素増密型大幅電池のセル内部の構造は、 基本的には上述した光電変換素子や光電気化等電池と同 じであるが、図2または図3に示すように目的に合わせ 様々な形態が可能である。大きく二つに分ければ、両面 から洗の入射が可能な構造[図2(a)(d)、図3 (g)]と、月面からのみ部をタイプ「図2(b)

(g)」と、斤面からのみ可能なテイノ [図2 ((c)、図3 (e) (f) (h)] である。

【0140】図2(a)は、透明導電層12間に、色素 吸着半導体微粒子含有層である色素吸着TiO。層14 と、スペーサー層10、および電荷移動層11とを介在 させた構造である。図2(b)は、透明基板13 hに一 部金属リード9を設け、さらに透明導電層12を設け、 色素吸着TiO₂層14、スペーサー層10、電荷移動 層11および金属層8をこの順で設け、さらに支持基板 15を配置した構造である。図2(c)は、支持基板1 5上にさらに金属層8を有し、色素吸着TiO2層14 とスペーサー層10を設け、さらに電荷移動層11と透 明導電層12とを設け、一部に金属リード9を設けた透 明基板13を、金属リード9側を内側にして配置した機 造である。図2(d)は、透明基板13.Fに一部金属リ ード9を設け、さらに透明導電層12を設けたものの間 に色素吸着TiO。層14とスペーサー層10と電荷移 動層 1 1 とを介在させた構造である。図3 (e)は、透 明基板13上に透明連電層12を有し、色素吸着TiO »層14とスペーサー層10を設け、さらに電荷移動層 11および金属層8を設け、この上に支持基板15を配 置した構造である。図3(f)は、支持基板15上に金 属層8を有し、色素吸着TiO2層14とスペーサー層 10を設け、さらに電荷移動層11および透明導電層1 2を設け、この上に透明基板13を配置した構造であ る。図3(g)は、透明導電層12を有する透明基板1 3間に、透明導電性層12を内側にして、色素吸着Ti 〇。層14とスペーサー層10および電荷移動層11を 介在させた構造である。図3(h)は、支持基板15上 に金属層8を設け、色素吸着TiO。層14およびスペ

ーサー層10を設け、さらに固体の電荷移動層16を設け、この上に一部金属層8または金属リード9を有する 構造である。

【0141】本発明の色素相感型大腐電池のモジュール 構造は、従来の太陽電池モジュールと基本的には同様の 構造をとりうる。一般的には、金属・セラミック等の支 持基板の上にせれが構成され、その上を充塊樹脂や保護 ガラス等で覆い、支持基板の反対側から光を取り込む構 造とすることができるが、支持基板に強化ガス等の 明材料を用い、その上にセルを構成してその透明の支持 基板側から光を取り込むことも可能である。具体的に は、スーパーストレートタイプ、ガッティングタイプと呼ばれるモジュール構造ある いはアモルファスシリコン大陽電池をどで用いられる基 がはアモルファスシリコン大陽電池をどで用いられる基 板一板型をとやジュール構造が可能である。これらの モジュール構造は使用目的や使用場所(環境)により適 宜選択できる。本発明の素子を基板一体型でモジュール 化した解決的はに示す。

【0142】図4の構造は、透明基拠13の一方の面上 に透明準電間12を有し、この上に色素吸着下10月 14とさらにスペーサー層10、固体の電荷移動層16 および金属層をを設けたセルをモジュール化したもので あり、透明基敞13の他方の面には反射近上層17が設 けられている。この場合、入射炎の利用効率を高めるた めた、逐光部である色素吸着下102層14の面積比率 (光の入射面である透明基板13側から見たときの面積 比率)を大きくした方が保えしい。

【0143】スーパーストレートタイプやサブストレー トタイプの代表的な構造は、片側または両側が透明で反 射防止処理を施された支持基板の間に、一定間隔にセル が配置され、隣り合うセル間が金属リードまたはフレキ シブル配線等によって接続されており、外縁部に集電電 極を配置して、発生した電力を外部に取り出す構造にな っている。基板とセルの間には、セルの保護や集雷効率 アップのため、目的に応じ、エチレンビニルアセテート (EVA) 等様々な種類のプラスチック材料をフイルム または充填樹脂の形で用いることができる。また、外部 からの衝撃が少ないところなど表面を硬い素材で覆う必 要のない場所に使う場合には、表面保護層を透明プラス チックフイルムで構成したり、または、上記充填・封止 材料を硬化させることによって保護機能を付与し、片側 の支持基板をなくすことも可能である。支持基板の周囲 は、内部の密封およびモジュールの鋼性確保のため、金 属製のフレームでサンドイッチ状に固定し、支持基板と フレームの間は封止材で密封シールする。

【0144】また、セルそのものや支持基板、充填材および封止部材に可接性の素材を用いれば、曲面の上に太 物電池を構成することもできる。このように、使用目的 や使用環境に合わせて様々な形状・機能を持つ太陽電池 を製作することができる。 【0145】スーパーストレートタイプの大陽電池モジェールは、例えば、基板採給装置から送り出されたフロント基板をベルトコンベヤ等で搬送しながら、その上にセルを封止村・セル間接続用リード線・背面封止材等と共に暇び飛翔した後、背面基板まなは背面カバーを乗せ、外緒都にフレームをセットして作ることができる。【0146】一方、サブストレートタイプの場合、基板供給装置から送り出された支持基板をベルトコンベヤ等で搬送しながら、その上にセルをセル間接続用リード線・・ 封止材等と共に順次積層した後、フロントカバーを乗せ、 周縁部にフレームをセットして作製することができ

[0147] 図4に示した構造のモジュールは、支持基 板上に適明電極・感光層・電荷移動層・裏面電極等が 検的かつ一定面隔で配列されるように、選択メッキ・選 択エッチング・CVD・PVDといった半導体プロセス 技術、あるいはパターン協市または広隔で値布した後に レーザースクライビングやアラズマCVM (Solar Ener 家 Materials and Solar Cells、48、p373-381等に記 載)または研削等の機械的手法などの方法でパターニン グすることができ、これらにより所望のモジュール構造 を得ることができる。

[0148]以下にその他の総材や工程について詳述す る、封止材料としては、流状のEVA(エチレンビニル アセテート)やフッ化ビニリデン共重合体とアクリル樹 脂混合物フィルム状のEVA等、耐候性付与 電気絶縁 性付与 東光効率向上 セル保護性(耐荷撃性)向上等の 目的に応じ複々な素材が便用である。

【0149】これらを、セル上に固定する方法としては、封止材の物性に合わせ、フイルム状の素材ではロール加圧後加熱毒者や真空加圧後加熱毒者、液またはペースト状の材料ではロールコート、スプレーコート、スプリーン印刷等の様々か方法がある。

【0150】また、透明フィラーを封止材に混入して強度を上げたり、光透過率を上げることができる。

【0151】モジュール外縁と周縁を囲むフレームとの 間は、耐候性 防湿性が高い樹脂を使って封止するとよ

【0152】支持基板としてPET・PEN等の可挽性 素材を用いる場合は、ロール状の支持体を繰り出してそ の上にセルを構成した後、上記の方法で連続して封止層 を積層することができ、生産性の高い工程を造ることが できる。

【0153】発電効率を上げるため、モジュールの光取 り込み側の基板 (一般的には強化ガラス) の表面には反 射防止処理が能される。これには、反射防止膜をラミネ トする方法、反射防止層をコーティングする方法があ る。

【0154】また、セルの表面をグルービングまたはテ クスチャリング等の方法で処理することによって入射し た光の利用効率を高めることが可能である。

【0155]発電効率を上げるためには、光を損失なく モジュール内に取り込むことが最重要だが、光電変換度 を透過してその内側まで割建した光を反射させて光電変 検層側に効率良く戻すことも重要である。このために は、支持基拠面を鏡面側態した後、AgやAl等を蒸着 またはメッキする方法、セルの展下層にAl-Migまた はAl-Tiなどの合金層を反射層として設ける方法、 あるいは、アニール処理によって数下層にテクスチャー 構造を作り戻用率を高める方法等がある。

【0156】発電効率を上げるためには、セル間接続抵抗を小さくすることが、内部電圧降下を抑える意味で重要である。

【0157】ワイヤーボンディングや溥電性のフレキシ ブルシートで接続するのが一般的だが、溥電性粘着テー アや導電性接着剤を使ってセルの固定機能と電気的な接 機能を兼ねる方法、導電性ホットメルトを所望の位置 にパターン徐布する方法等が有る。

【0158】ポリマーフィルムなどのフレキシブル支持 体を使った太陽電池では、ロール状の支持体を送り出し ながら半導体の強敵の説明で示した方法によって、順 次、セルを形成・所望のサイズに切断した後、周縁部を フレキシブルで防湿性のある素材でシールして、電池本 体を作戦できる。また、Solar Energy Malerials and S olar Cells, 48, p383-391記載の「SCAF」とよばれるモジュール構造とすることもできる。

【0159】フレキシブル支持体の太陽電池では、更に これを曲面ガラス等に接着固定して使用することもでき ス

[0160]

【実施例】以下、本発明を比較例とともに示す実施例に よって具体的に説明する。実施例および比較例で用いた 色素ならびに電解質は下記に示す通りである。

[0161]

[作32]

【0162】 【化33】

色素-3

色巻ーム

[0163]

【化34】

【0164】 [実施例1]

1. 二酸化チタン粒子含有塗布液の調製

オートクレーブ温度を230℃にした以外はバルベらの ジャーナル・オブ・アメリカン・セラミック・ソサイエ ティ 80巻3157買記載の方法と同様の方法で二酸化チタ ン濃度11重量%の二酸化チタン分散物を得た。得られ た二酸化チタン粒子の平均サイズは約10mであった。 この分散物に二酸化チタンに対し30重量%のポリエチ レングリコール(分子量20,000、和光純薬製)を 添加し、混合して整布液を得た。

【0165】2. アルミナ粒子含有塗布液の調製

平均粒径約0.8μのアルミナ粉末18gに、2%のC MC水溶液120gと水150mlを加え、ホモジナイ ザーを用いて、1000rpm, 3分間撹拌して分散液 を得た。これにノニルフェニルエーテルの2%液1ml を加え、途布液とした。

【0166】3. 色素を吸着した二酸化チタン電極の作成

フッ素をドープした酸化スズをコーティングした透明薄 電性ガラス (日本板硝子梨、表面販抗は約10 Ω/ の導電面側に上記1.の二酸化チタン分散液をドクター プレードで100 μωの厚みで途布し、乾燥後さらにこ の上に上記2.のアルミナ分散物を 25 μω の所みたいこ を指した。5でで30分間炎域とた後、電気炉(ヤマト科 学製マッフル炉ドP-32型)で450℃にて30分間 炭成した。二酸化チタン腰の厚みは約9μm,アルミナ 層の厚みは約2μであった。

【0167】ガラスを取り出し冷却した後、色素-1の

溶液 (色素 3×10^{-4} モル/リットル、溶媒: $2 - \tau$ ロパノール) に 18 時間浸漬した。色素の染着したガラスをエタノールで洗浄し暗所にて自然乾燥させた。色素の 喫着量は、二酸化チタンの塗布面積 $1 m^2$ あたりおよそ 1.35×10^{-2} モルであった。

【0168】4. 光電気化学電池の作成

上述のようにして作成した色増感されたTiO。電極基 板(2cm×2cm)をこれと同じ大きさの白金蒸着ガラス と重ね合わせた(図1参照)。次に、両ガラスの隙間に 毛細管現象を利用して電解液(ヨウ化テトラブチルアン モニウム0.65モル/リットル,ヨウ素0.05モル /リットルのアセトニトリル溶液)をしみこませてTi O。電極中に導入することにより、光電気化学電池Aを 得た。また、アルミナ分散物を塗布しない以外は上記と 同じである光電気化学電池を比較例として作製した。光 電気化学電池AおよびBは、それぞれ同じ方法で5個ず つ作製した(表1)。本実施例により、図1に示したと おり、導電性ガラス1 (ガラス上に導電剤層 2が設層さ れたもの)、色素吸着TiO,層3、スペーサー層4、 電解液5、白金層6およびガラス7を順に積層し、エポ キシ系封止剤で封止された光電気化学電池が作製され t ...

【0169】5、光電変換効率の測定

500Wのキセノンランプ (ウシオ製) の光を分光フィ ルター (Oriel社製AMI5) を通すことにより模 概太陽光を発生させた。この光の強度は100mi/cm² であった。

【0170】前途の光電気化学電池の導電性ガラスと自 金素着ガラスにそれぞれ、アニロクリップを接続し、模 規太陽光を照射し、発生した電気を電流電圧測定装置 (ケースレーSW238型)にて測定した。これにより 求められた光電気化学電池の開放電圧(Voc)、短絡電流 密度(Jsc)、形状因子(FF)、変換効率(カ)を一括して 表1に記載した。

[0171]

【表1】

Æ 1

電池	サンブルNo.	Jsc (mA/cm²)	V o c (Y)	FF	η (%)
A	1	13. 1	0.71	0.73	5. 7
(本発明)	2	12.7	0.72	0.72	5.5
	3	12.8	0.71	0.73	5. 6
	4	13.0	0.71	0.72	5. 6
	5	13.2	0.70	0.72	5.6
В	1	12.8	0.69	0.55	4. 1
(比較例)	2	13.0	0.70	0.48	3. 7
	3	12.9	0.71	0.69	5. 3
	4	13.0	0.71	0.60	4.6
	5	12.8	0.70	0.53	4. 0

【0172】上記実施例の結果から、比較例において は、FFが低い電池が出来る頻度が高いのに対して、本 発明になるスペーサー層を設置した電池では、一定の性 能が得られることが判る。比較例の性能の悪い素子の抵 抗を測定したところシャント抵抗が低く、セル内部での 短絡が起きていることが判った。

【0173】[実施例2]

1. 色素吸着電極の作製

10cm四方の0, 1mm厚みのアルミニウム基板 上に 実施例1と同様にして5 μm 厚の二酸化チタン層とアル ミナ層を塗設し、酸素雰囲気下、300℃で30分間焼 成して電極を調製した。基板の縁には封止と端子取り出 しの為1cm幅で未塗布部分を残した。次いで表2に示 す色素-2、3及び4と添加物を混合してなる色素吸着 液を用いた他は実施例1記載の方法で色素を吸着させ

た。 [0174]

【表2】

表 2

濃度
3×10-4 M
u
,
4×10-2 M

【0175】2. 対極の作製

10cm四方の50µ厚のポリエチレンナフタレートの シートにスパッター法を用いてアルミニウムの細線(5 0 0 μ幅. 2 μ厚みで5 mm間隔)をパターニングし、 その上から全面に白金を10nmの厚みにスパッター法 により被覆した。得られたシートの面積抵抗率は0.2 Ω/□で、平均光透過率は80%であった。シートの外 周部にはEVA系の熱融着材を10μmの厚みで設置し た。

【0176】3. 光電気化学電池の作製

上記の色素吸着電板に転写ローラーにより、電解液を含 浸させ、次いで対極シートと重ね合わせて、一対の加圧 ローラーに通して圧着せしめた後、周辺部を加熱ローラ - で熱融着させルことで、シート状の光電気化学電池C を作製した。また、比較例として、アルミナのスペーサ ー層が無い他は光電気化学電池Cと同様にして光電気化 学電池Dを作製した。これらも、それぞれ5個ずつ作製 した。

【0177】4、光電変換効率の測定

得られた電池を快晴の太陽光下で、光電変換効率を実施 例1と同じ測定装置により測定した。それぞれの電池に ついて、性能評価をした結果を表3に示した. [0178]

【表3】

表 3

電池	サンプルNo.	J sc (mA/cm²)	V oc (V)	FF	η (%)
C (本発明)	1 2 3 4	8. 5 7. 9 8. 1 8. 3 8. 6	0.69 0.70 0.70 0.71	0.73 0.72 0.73 0.72	4. 2 3. 9 4. 1 4. 2 4. 1
D	1	7. 5	0.69	0.45	2. 3
(比較例)	2 3 4	6.8 7.2 6.9	0.68 0.66 0.69	0.46 0.38 0.44	2. 1 1. 8 2. 1
	5	7. 1	0.68	0.61	2. 9

【0179】表3から判るように、比較例では極めて低い性能の電池が出来る頻度が高いのに対して、本発明により所定の性能の電池が安定に件要できることが判る。
【0180】【実施例3】実施1と同様に1つ2.5 μ
■ の厚みの二酸化チタン機を作製し、その上にスペーサー層としてアルミナの代わりにPb/B/P-0.2:
0、4:0、4の組成比から成る低融点ガラスの粉末(17均2千段約0.5 μ)を実施例1のアルミナと同様にして分散した液を遮脱上横結した。次いて実施例1と同様にして、色素を吸着させた。得られた電極に表4の組成の常温部路塩からなる電解液の2 μ1を成げ、次いて減圧下で30分間放置することで電極内に電解液を完全に浸透させた。その後、実施例1と同じ対極を重ね合わせか

【018】 重ね合わせた状態で固定した電池E及び 外部より1kg/cm²の圧力を掛けることで、色素吸 着電極と対極とを互いに接するまで接近させた電池Fを 作製した。また比較用としてスペーサー服が無い以外は 同じである電池G及びHを作製した。電池E〜Hは、そ れぞれ3個等つ作製した。

[0182]

【表4】

表 4

成分	重量		
唯解質 - 1	ь	g	
電解費-2	b	g	
ヨウ素	0.3	g	

[0183]得られた電池を実施例1と同じ方法で性能 評価した結果を表ちに示した。比較用の電池Gでは埋絡 電流が小さい、電極間の卵面を減じた電池Hでは短絡電 流の増加が速度出来るもののフィルファクターはさらに 低いレベルとなって変換効率は向上しない。これに対し 本発明になるスペーサー層を設置し、電旋両距離を最 小とした電池Fでは、短絡電流の増加とフィルファクタ ーが増加し、変換効率の大幅な増加が速度できることが 判る。

【0184】即ち、木発明の効果はスペーサー層を挟ん で、半導体微粒子電極と対極とが接する形態において特 にその効果が発揮されることが判る。 【0185】

【表5】

催袍	サンプルNa.	Jsc (mA/cm²)	V o c (V)	FF	η (%)
Е	1	6. 5	0.60	0. 56	3. 5
(本発明)	2	6.6	0.62	0.55	3. 6
	3	6. 7	0.63	0.57	3. 9
F	1	10.0	0.63	0.70	7. 1
(本発明)	2	9. 5	0.62	0.71	6. 7
	3	9.3	0.61	0.72	6.5
G	1	6. 4	0.60	0.50	3. 1
(比較例)	2	6.6	0.62	0.55	3. 6
	3	6.6	0.61	0.54	3. 5
н	1	9. 2	0.60	0.43	3. 8
(比較例)	2	9. 3	0.60	0.50	4. 5
	3	8.8	0.61	0.40	3. 4

[0186]

【発明の効果】本発明によって、内部短絡による性能劣 化を起こすことの無い、高性能の色素増感光電変換素子 および光電気化学電池が得られる。

【図面の簡単な説明】

【図1】実施例で作成した光電気化学電池の構成を示す 断面図である。

【図2】光電気化学電池の基本的な構成例を示す断面図 である。

【図3】光電気化学電池の基本的な構成例を示す断面図 である。

【図4】基板一体型のモジュール構成例を示す断面図である。

【符号の説明】

1 導電性ガラス

2 導電剤層

- 3 色素吸着TiO2層
- 4 スペーサー層
- 5 電解液
- 6 白金層7 ガラス
- 1 475
- 8 金属層 9 金属リード
- 10 スペーサー層
- 10 / ,
- 11 電荷移動層
- 12 透明導電層
- 13 透明基板
- 14 色素吸着Ti○2層
- 15 支持基板
- 16 固体の電荷移動層
- 17 反射防止層

【図4】

