

Application of Graph Learning to inverse problems

Cédric Mendelin <cedric.mendelin@stud.unibas.ch>

Department of Mathematics and Computer Science, University of Basel

Date

Outline

Imaging methods

2 Graph Denoising

3 Conclusion

Cryo-EM

Cryo-EM overview Singer 2018, Figure 1 and Figure 2

Cryo-EM challenges

- > High-noise level
- Unknown rotation during freezing
- > (Structural variety of observations)

Cryo-EM challenges

- > High-noise level
- Unknown rotation during freezing
- (Structural variety of observations)

Only single particle cryo-EM is considered.

Cryo-EM challenges

- > High-noise level
- Unknown rotation during freezing
- > (Structural variety of observations)

Only single particle cryo-EM is considered.

The main domain of interest is high-noise domain (cryo-EM).

Computed Tomography

- Related to cryo-EM
- Can be seen as simpler version in 2D
- > Good to start with

Consider *n* observed images (x_0, x_1, \dots, x_n) , where $x_i \in \mathbb{R}^M$ with M as image dimension. A graph can be constructed by:

- > V: The images can be used as nodes.
- E: If similarity measure d of two images x_i, x_j is smaller than given threshold τ , there will be an edge.

Consider *n* observed images (x_0, x_1, \dots, x_n) , where $x_i \in \mathbb{R}^M$ with M as image dimension. A graph can be constructed by:

- > V: The images can be used as nodes.
- E: If similarity measure d of two images x_i, x_j is smaller than given threshold τ , there will be an edge.

Definition (Adjacency Matrix)

$$A_{ij} = \begin{cases} 1 & \text{if } d(x_i, x_j) < \tau \\ 0, & \text{otherwise} \end{cases}$$
 (1)

Consider n observed **noisy** images (y_0, y_1, \ldots, y_n) , where $y_i \in \mathbb{R}^M$ with M as image dimension. Then, $y_i = x_i + \eta$ with η drawn from $\mathcal{N} \sim (0, \sigma^2)$ and (x_0, x_1, \ldots, x_n) as the original images. A noisy graph can be constructed like:

- > V: The **noisy** images y can be used as nodes.
- E: If similarity measure d of two **noisy** images y_i, y_j is smaller than given threshold τ , there will be an edge.

Consider n observed **noisy** images (y_0, y_1, \ldots, y_n) , where $y_i \in \mathbb{R}^M$ with M as image dimension. Then, $y_i = x_i + \eta$ with η drawn from $\mathcal{N} \sim (0, \sigma^2)$ and (x_0, x_1, \ldots, x_n) as the original images. A noisy graph can be constructed like:

- > V: The **noisy** images y can be used as nodes.
- E: If similarity measure d of two **noisy** images y_i, y_j is smaller than given threshold τ , there will be an edge.

Definition (Noisy Adjacency Matrix)

$$A_{0_{ij}} = \begin{cases} 1 & \text{if } d(y_i, y_j) < \tau \\ 0, & \text{otherwise} \end{cases}$$
 (2)

Graph Denoising

Graph denoising is the task, to estimate a denoised graph \tilde{G} from a given noisy graph G_O , with underlying original graph G:

Definition (Graph Denoising)

$$GD: G_0 \mapsto \tilde{G} \approx G,$$

where G_0 , \tilde{G} , G denotes noisy, estimated denoised and original graph respectively.

Slide about Manifolds on cryo-EM and CT.

Manifolds

We know structure of manifolds for noiseless data:

- \rightarrow Computed Tomography \rightarrow circle
- \rightarrow Cryo-Em \rightarrow sphere

If data is noisy, manifold will "drift" away from noiseless manifold:

Manifolds for phantom without noise, and different noise levels.

Project Conclusion - Next steps

- > Focus on high-noise domain (cryo-EM)
- > Introduce Graph Denoising method
- Exploit known manifold in 2D and 3D
- > Further study Graph Laplacian and connection with
 - > Tomography domain
 - ONNs and Machine Learning in general
- Evaluate on toy dataset in 2D and 3D
- Nice to have: evaluate on cryo-EM / CT dataset

Project schedule

References

Singer, Amit (2018). "Mathematics for cryo-electron microscopy". In: Proceedings of the International Congress of Mathematicians: Rio de Janeiro 2018. World Scientific, pp. 3995–4014.