

Course > Unit 2: ... > Part B ... > 1. Inver...

1. Inverses and solving linear systems

Find the inverse

4.0/4 points (graded)
Find the inverse of the matrix

$$\mathbf{D} = \left(egin{array}{ccc} 7 & 2 & 1 \ 0 & 3 & -1 \ -3 & 4 & -2 \end{array}
ight).$$

(Enter a matrix in MATLAB notation. That is, enter coordinates between square brackets separated by commas, with semicolons at the end of each row: e.g. type [1, 0, 0; 0, 1, 0; 0, 0, 1] for the 3×3 identity matrix.)

$$\mathbf{D}^{-1} = \boxed{ [-2,8,-5;3,-11,7;9,-34,21]}$$

Find a solution to the following system of equations.

$$egin{array}{lll} 7x_1+2x_2+x_3&=&21\ 3x_2-x_3&=&5\ -3x_1+4x_2-2x_3&=&-1 \end{array}$$

$$x_1 = \boxed{3}$$

$$oldsymbol{x_2} = oldsymbol{1}$$

$$x_3 = \boxed{-2}$$

Submit

You have used 2 of 4 attempts

More about inverses

2/2 points (graded)

Which of the following must be true for $\mathbf{A}\mathbf{x} = \mathbf{b}$ to imply that $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$?

- A is singular.
- A is nonsingular.
- A is a square matrix.
- \blacksquare The nullspace of **A** is 1 dimensional.
- lacktriangledown The nullspace of f A is zero dimensional. $m \checkmark$
- \blacksquare The matrix **A** is 1×1 .
- None of the above.

Which of the following must be true for $\mathbf{A}\mathbf{x} = \mathbf{b}$ to imply that $\mathbf{x} = \mathbf{b}\mathbf{A}^{-1}$?

- **A** is singular.
- A is nonsingular.
- A is a square matrix.
 ✓

2018	1. Inverses and solving linear systems Part B Homework 2 18.033x Cours	eware edX	
	The nullspace of A is 1 dimensional.		
•	$lacksquare$ The nullspace of $oldsymbol{A}$ is zero dimensional. $lacksquare$		
•	lacktriangledown The matrix $f A$ is $1 imes 1$. $lacktriangledown$		
	None of the above.		
~			
Solu	ıtion:		
In order for $\mathbf{A}\mathbf{x} = \mathbf{b}$ to imply that $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$, it must be true that \mathbf{A} is invertible. Therefore \mathbf{A} must be square and nonsingular. A nonsingular matrix is equivalent to \mathbf{A} having a zero dimensional nullspace.			
In order for $\mathbf{A}\mathbf{x}=\mathbf{b}$ to imply that $\mathbf{x}=\mathbf{b}\mathbf{A}^{-1}$, again \mathbf{A} must be square and invertible (nonsingular and zero dimensional nullspace). However, in this case, \mathbf{A} must also be 1×1 . Let's see why.			
bA	is $m{n} imesm{n}$, $m{A}^{-1}$ is also $m{n} imesm{n}$, and $m{x}$ and $m{b}$ are both $m{n} imesm{1}$ column versions the product of a $m{n} imesm{1}$ vector by an $m{n} imesm{n}$ matrix. This product $m{n}$ that $m{n}=m{1}$.		
S	ubmit You have used 1 of 2 attempts		
•	Answers are displayed within the problem		
4			
1. Inverses and solving linear systems		Hide Discussion	
Topic syster	:: Unit 2: Linear Algebra, Part 2 / 1. Inverses and solving linear ms		
		Add a Post	
Sho	ow all posts ▼	by recent activity ▼	
Ther	e are no posts in this topic yet.		