

INSTRUCTION DIVISION SECOND SEMESTER 2013-2014 Course Handout (Part-II)

Date: 22/07/2016

In addition to Part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : MATH F441

Course Title : Discrete Mathematical Structures

Instructor-in-charge: TRILOK MATHUR

1. Scope and Objective of the course: The objective is to present and discuss some method of discrete mathematics and some discrete mathematical structures at graduate level. One part deals with some functions and techniques of discrete nature used in design and analysis of algorithms and the other part deals with Combinatorial Structures and algorithm. (Since there is a separate course offered on Graph theory, graphical structures are not discussed in detail)

2. Text Books:

- 1) Lindsay Childs, A Concrete Introduction to Higher Algebra-2e, Springer-Verlag, 1979.
- 2) V. Krishnamurthy, Combinatorics, Theory and Applications, East-West Press, 1985.

3. Reference Books:

- (1) Graham, Ronald and others, Concrete Mathematics, Addison-Wesley, 1990.
- (2) R. Lide and H. Niederreiter, Introduction to finite fields & their applications, Cambridge University Press, 1986.
- **4. Course Plan:** (Sections/Articles refer to Text-Book)

Lect	Learning	Topic	Chapters	Book
No.	Objectives			
1-4	Introduction to	Definition and examples of groups.	9-E, 11-A,B	T-1
	Groups.	\mathbf{Z}_n and	8-A,B	T-1
		Permutation group S_n .	2 (Part-IV)	T-2
5-8	Introduction to the	Euler's φ function, Euler's theorem	9-C	T-1
	number theory.	and Mobiöus function μ,	30-E	T-1
		The Legendre symbol.	27-B	T-1
9-12	The Chinese CRT for integers		12-A,C	T-1
	remainder theorem	CRT for polynomials	20	
	(CRT)	Application of CRT to fast	21-B	
		polynomial multiplication		

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus

13-16	Introduction to the theory of finite fields.	Construction of finite fields and simple field extension	28-A,B 30-C	T-1
17-24	Introduction to the coding theory	Secret Codes, Error correcting codes and Reed-Solomon codes	7-F, 10-B, 13-E, 13-F, 29-B,C	T-1
25-26	Factoring in Q[x]	Eisenstein's criteria for Irreducibility	18	T-1
27-29	Factoring in $Z_p[x]$	Berelekamp's algorithm	22-A, 30-B	T-1
30-32	Introduction to advanced method of	Generating functions and Recurrence relations	2 (Part-I)	T-2
33-35	computing	Polya's theory of enumeration	3 (Part-II)	T-2
36-40	Introduction to	Block design	Part-VIII	T-2
	Design	Latin square and	29-A	T-1
		Hadamard matrix	Part-VIII	T-2

5. Evaluation Scheme:

EC No.	Evaluation Component	Duration	Weightage (in %)	Date & Time	Nature of Component
1.	Mid-Term Test	90 Min.	30	8/10 10:00 - 11:30 AM	Close Book
2.	Comprehensive Exam.	3 Hrs.	40	13/12 FN	Partially Open Book
3.	Class performance test*	20 Min.	30	Unannounced	Open Book

- (*) Classroom performance tests will be conducted in lecture sessions and they will be unannounced & open book. Total 4 such tests of 20 Marks and 20Min. each will be conducted and best 3 will be considered for final evaluation. No makeup for classroom performance test will be given in any circumstances.
- **6. Make-up:** Make-up will be given only in genuine cases.
- **7. Chamber consultation hour:** Tuesday 5th Hour.
- **8. Notices:** All notices regarding MATH F441/MATH C441 will be put on Department of Mathematics Notice Board and on NALANDA website.

Instructor-In-Charge MATH F441/ MATH C441

