Randomness

- 1. Numpy supports 35 different type of random functions vs 9 of MXNet $\,$
- 2. Functions that are supported by Numpy all return floats (so do MXNet)

To Do

- Include support for all 9 fxns in MXNet with integer
- Or like Numpy have a seperate randint function (basically discrete uniform distribution)

	Numpy	-	MXNet
1			
2	beta		exponential
3	binomial		gamma
4	chisquare		generalized_negative_binomial
5	dirichlet		negative_binomial
6	exponentia l		normal
7	f		poisson
8	gamma		uniform
9	geometric		multinomial shuffle
10	gumbel		Snuttle
11	hvpergeome tric		
12	laplace		
13	logistic		
14	lognormal		
15	logseries		
16	multinomia l		
17	multivaria te_normal		
18	negative_b inomial		
19	<pre>noncentral _chisquare (df, nonc[, size])</pre>		
20	<pre>noncentral _f(dfnum, dfden, nonc[, size])</pre>		
21	<pre>normal([loc, scale, size])</pre>		
22	<pre>pareto(a[, size])</pre>		
23	poisson([la m, size])		
24	power(a[, size])		
25	rayleigh([s cale, size])		
26	standard_c auchy([size])		
27	standard e xponential ([size])		
28	<pre>standard_g amma(shape[, size])</pre>		
29	<pre>standard_n ormal([size])</pre>		
30	<pre>standard_t (df[, size])</pre>		
31	triangular (left, mode, right[, size])		
32	uniform([lo w, high, size])		
33	vonmises(m u, kappa[,		

	Size])			
34	wald(mean, scale[, size])			
35	weibull(a[, size])			
36	<pre>zipf(a[, size])</pre>			