ABSTRACT

A process for the preparation of a class of phenylalanine enamide derivatives is described:

$$Ar^{1}L^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{y}$$

$$R^{y}$$

$$R^{y}$$

$$R^{y}$$

$$R^{y}$$

wherein:

5

10

20

Ar¹ is an optionally substituted aromatic or heteroaromatic group; L² is a linker group selected from -N(R⁴)- [where R⁴ is a hydrogen atom or an optionally substituted straight or branched C_{1-6} alkyl group], -CON(R⁴)-, or -S(O)₂N(R⁴)-; R¹ is a carboxylic acid (-CO₂H) or a derivative or biostere thereof; R² is a hydrogen atom or a C_{1-6} alkyl group; R^x, R^y and R^z which may be the same or different is each an atom or group -L¹(Alk¹)_n(R³)_v;

and the salts, solvates, hydrates and N-oxides thereof;

which comprises reacting a compound of formula (2):

wherein:

Q^a is a group -N(R⁴)H;

and the salts, solvates, hydrates and N-oxides thereof;

with a compound Ar^1W wherein W is a group selected from X^1 (wherein X^1 is a leaving atom or group), $-COX^2$ (wherein X^2 is a halogen atom or a -OH group) or $-SO_2X^3$ (in which X^3 is a halogen atom).