允

挥

争

专业班级

学院

武汉理工大学考试试卷 (A卷)

2021~2022 学年 1 学期 测控系统微处理器原理及应用 课程 闭卷

时间 120 分钟, <u>64</u> 学时, <u>4</u> 学分, 总分 100 分, 占总评成绩 <u>60</u>% 2021 年 11 月

题号	1	1 1	111	四	五	六	七	八	九	+	合计
满分	20	40	20	20							100
得分											

(特分)
得分
1、单片机又称单片计算机,其英文缩写是()。
(A) CPU (B) MCS
(C) DSP (D) MCU
2、在 MCS-51 系列中,特殊功能寄存器 PC 是 ()。
(A) 指令指针寄存器 (B) 中断优先级控制寄存器
(C) 程序计数器 (D) 输入控制寄存器
3、MCS-51 单片机的 4 个并行口中,不具有内部上拉电阻的是 ()。
(A) P0 (B) P1 (C) P2 (D) P3
4、在 C51 里,中断子程序与函数子程序的不同在于()
(A) 中断子程序不用声明 (B) 函数不必声明
(C) 中断子程序必须有形式参数 (D) 中断子程序一定有返回值
5、MCS-51 单片机进行并行扩展时,输出高地址的是()。
(A) P0 (B) P1 (C) P2 (D) P3
6、各中断源发出的中断请求信号,都会标注在51系统中的()里。
(A) TMOD (B) TCON或SCON (C) IE (D) TMOD
7、在下列寄存器中,与定时/计数器控制无关的是()。
(A) TCON (B) SCON (C) IE (D) TMOD
8、51 单片机能直接运行的文件格式是()。
(A) *.asm (B)*.c (C) *.hex (D)*.txt
9、要连接 4×3 矩阵键盘到微处理器,至少需要()位的输入/输出端口。
(A) 7位 (B) 12位 (C) 14位 (D) 24位
10、8051 串行口发送数据只需要将数据写入() 寄存器中, CPU 就会自动将它传
送出去。
(A) SMOD (B) TCON (C) SRUF (D) IF

二、简答题(每小题5分,共40分)

1、简述 P3 口的第二功能定义?

答:

2、在 C51 中,任何数据类型必须以一定的方式(如存储类型标识符)被定位到某一存储区中,请简述存储类型与存储区域的对应关系。

答:

3、作图简述什么是矩阵键盘的低电平列扫描。

答:

1	
4、MCS-5 如何撤回的?	1 单片机中断响应后,外部中断请求,定时器中断请求,以及串口中断请求各是
答:	
5、串口工	作在方式 1、3 时,通常选用定时器 T1 以工作方式 2 进行串口波特率的产生,
	的工作方式 2 的工作原理以及选用它的原因。
答:	
6、定时/记	十数器作为计数器使用时,对被测脉冲的最高频率为什么有限制?
答:	

7、结合 SM2、TB8、RB8 的变化,讲述主从机多机串行通信的过程。

8、MCS-51 并行扩展进行地址空间分配时, 若使用线选法, 存在地址空间不连续的问题, 请通过对下图进行分析, 证明该缺陷。

答:

得分

三、编程题(共20分)

1、如图所示, LED 与按键——对应, 按键按下后自然弹起, 且忽略抖动现象。请采用中断方式, 编程实现按键信息向 LED 信息的传递, (附必要的注释)。(10 分)

2、利用 **74LS164** 扩展并行输出口,并实现 LED **由上向下**循环。74LS164 的 R 端接电源时,当时钟端出现上升沿脉冲时,输出端 Q 锁存输入端 D 的电平;且 Q 端最先接收到的数将进入最高位。分析如下电路,用 C 语言完成整个程序的编制(附必要的注释)。(10 分)

得分

四、设计题(共20分)

随着微电子技术和计算机技术的不断发展,以单片机为主体,将计算机技术和检测技术有机结合,组成了新一代"智能化仪表",在测量过程自动化、测量数据处理及功能多样化方面取得了巨大进展。现有一路信号接入智能仪表的输入端(可用按钮电路模拟该信号的高低电平变化),受其影响,单片机进行 9.9~0.0 秒的倒计时,并通过两位 LED 数码管进行显示。(1)设计测控方案,画出简要的原理图(含最小系统)并解释其功能;(2)进行程序设计,包括详细的功能注释。

解:

EA			ES		Ε	Т1	[EX1		ET0		EX0
AFH			ACH		A	ВН		AAH		A9H		A8H
TCON	8FH	8EH	8DH	8C	Н	8BH		8AH		89H		88H
(88H)	TF1	TR1	TF0	TR0		IE1		IT1		IE0		IT0
TMOD	D7	D6	D5 D4			D3		D2		D1		D0
(89H)	GAT	C/\overline{T}	M1	M	0	GATE	3	C/\bar{T}		M1		M0
SM0	SM1	SM2	REN		TB8 RB8			TI RI 99H 98H 位1 位0		RI		
9FH	9EH	9DH	9CH	<u>9</u>						9AH 位 2		98H
位7	位 6	位 5	位 4		位							位 0
串彳	テロ	波特率	$f_{ m osc}$	$f_{ m osc}$		SMDO		定		定时器 T1		
工作	方式	(bps)	(MHz)				C/\overline{T}		工作方式		弋	初值
÷:	式 0	0.5M	6			×	×			×		×
///	E(U	1M	12		×		×			×		×
}	式 2	187.5K	6			1	×			×		×
///	14 2	375K	12		1		×		×		×	
			12			1		0	2			FFH
		19.2K	11.05	592		1		0		2		FDH
		9600	11.05	92	0		0			2		FDH
		4800	11.05	592		0	0		2			FAH
++	1 或	2400	11.05	92		0		0		2		F4H
	式 3	1200	11.0592			0		0		2		E8H
		19.2K	6			1		0		2		FEH
		9600	6			1		0		2		FCH
		4800	6			0		0		2		FCH
1			1									

F9H

F2H