Joint surrogate modelling and reconstruction of Laser-Wakefield Acceleration by invertible neural networks

F. Bethke, R. Pausch, P. Stiller, A. Debus, M. Bussmann, N. Hoffmann

HELMHOLTZA ARTIFICIAL INTELLIGENCE COOPERATION UNIT

Motivation

Surrogate model for computationally demanding Laser-Wakefield Acceleration

Reconstruction of experimental diagnostics requires fast approximation of non-linear mapping

Energy spectrum: generated

ground-

truth

Posterior of INN

each mode = possible

parameter configuration

Method

Invertible Neural Network

- simulation and reconstruction done by same network
- trained bi-directionally
- resolves ambiguous inverse problems
- uncertainty quantification for inverse pass

 $z_{
m focus}$ [μ m]

Results

Comprehensive study on 2.7 TB of training data generated by PIConGPU.

- inference time: 5 ms
- surrogate model: MSE < 0.007
- reconstruction: relative error < 8.2%

Parameters: reconstructed

Application in Radiation PhysicsVery fast interpolation in derived moments of

Very fast interpolation in derived moments of energy spectrum.

<u>1) Peak Energy</u>

2) Full Width at Half Maximum

