Introduction to Computing – Fall 2012

Assignment #3

Submission Deadline: Thursday, 6th December 2012

Instructions

- This is an individual assignment. You are not allowed to work/submit in form of group. There will be a viva of each student on the next day (Friday) about this assignment.
- Only **handwritten** assignments will be accepted.
- 1. Fill the following table with appropriate values. You must show <u>complete working</u> for each conversion, to get full credit.

Radix 2	Radix 4	Radix 8	Radix 10	Radix 16
101001				
	10101			
		1010		
			1001	
				101

- 2. Perform the following operations in Binary Arithmetic (use **8-bit 2's complement** to represent negative values), then convert your binary answer into decimal:
 - i. 1000100 / 10
 - ii. 101 * 100
 - iii. 1010 + 1110
 - iv. 1100 1001
 - v. 1001 1110
- 3. Assuming **8-bit** capacity, compute the decimal value for each of the following **unsigned** binary numbers:

00011101

10001000

11111111

10000000

00000000

4. Assuming **8-bit** capacity, compute the decimal value for each of the following **signed** binary numbers (in 2's complement system):

00011101

10001000

11111111

10000000

00000000

5. Convert the following decimal values into **signed** binary and use binary operations for solving them (assume **8-bit** capacity) [Hint: remember that division of both integers gives integer result]

75 / 5	75 / 3	8/3	20/3	84 / 5
3 * 8	17 * 4	-7*3	(-5) * (-4)	8 * (-2)
120 + 120	130 + 130	(-3) + (54)	(-2) + (-5)	2 - 7

6. Convert the following hexadecimal values into octal, without using decimal number system:

F10

A09

1BC

10

100

7. Convert the following octal values into hexadecimal, without using decimal number system:

100 70 201 1010 77

- 8. Let there be a special counting system with the symbol set {a, e, i, o, u}. Answer the following questions about this system:
 - i. What is the radix (base) of this system?
 - ii. What is the decimal equivalent of the number 'oai' in this system?
 - iii. What is the equivalent in this system for the decimal value 23?
- 9. Perform the following operations (in binary arithmetic) assuming **6 bit** 2's complement representation:

100101 + 010110

Also convert the result to decimal. Show your working to get full credit.

10. Perform the following operations (in binary arithmetic) on the following **unsigned** binary numbers. Show your working to get full credit.

1001011 ÷ 11

- 11. Represent the following numbers using **8-bit** 2's complement system:
 - a) 25
 - b) -123
- 12. Each of the following **bytes** represents a number using 2's complement system. Convert them into equivalent decimal numbers.
 - a) 10101010₂
 - b) 01101010₂
- 13. Perform the following subtraction using **8-bit 2's complement** system
 - a) 44 33
 - b) 127 115
 - c) 127 127
 - d) 33 115
- 14. Calculate the base.
- a) $(213)_x = (39)_{10}$
- b) $(169)_x = (361)_{10}$
- c) $\frac{(533)_x}{(3)_x} = \frac{(151)_x}{}$
- d) $(765)_x * (31)_8 = (30355)_8$
- e) $\frac{(B90)_x}{(5A0)_x} = \frac{(2)_{10}}{}$

15. Fill in the following table of complements: (Examples are given for illustration)

13. I in in the following table of complements: (Examples the given for mustration)					
Sr#	Radix	Digits	Value	Padded Value	Answer
1.	10	3	13	013	987
2.	16	3	9E	09E	F62 ¹
3.	10	4	51		
4.	16	2	7		
5.	8	3	21		
6.	8	5	21		
7.	2	4	101		
8.	2	6	11010		
9.	2	8	101		
10.	2	8	1		

16. Fill in the following table of complements: (also show your working)

Sr#	Binary	Signed/Unsigned	# of bits	Decimal
1.	1110	S	4	
2.	1110	U	4	
3.	1110	S	8	
4.	10101110	S	7	
5.	10101110	U	8	

17. Write down the ASCII code in binary, decimal and hexadecimal systems for the following symbols: (please consult appendix in your textbook, Discovering Computers 2010)

18. What is numerical difference between the ASCII codes of:

(a) A and a

(b) Z and z

(c) 0 and 9

19. Fill the following table with appropriate values. You must show complete working for each conversion, to get full credit. Then write 32-bit representation of each of the following value.

Radix 2	Radix 10	Radix 16
	7.75	
11001.001		
1110000.01		
		A7.4
		1F.C8

¹ Since F_{16} is a number so $F-0 \rightarrow F$; and F_{16} means 15_{10} so $F-9 \rightarrow 6$, and E_{16} is 14_{10} so $F-E \rightarrow 1$. And since R's complement requires addition of 1 so $F61 + 1 \rightarrow F62$

- 20. Build the Truth Table for the following logical expressions (also include columns to show intermediate steps):
 - (i) not a or b
 - (ii) not (a or b)
 - (iii) a and b or c
 - (iv) a and (b or c)
 - (v) a xor b xor c
 - (vi) a xor not b and c

Problem Solving Portion

21. Write pseudo-code (only use the wording of flow-chart, without diagram) of all the programs of previous programming assignments, and home work of Looping programs. Use curly braces to enclose a block of code [discuss this during the lecture in next week, if you do not understand it].

© GOOD LUCK! ©

<u>Remember:</u> Honesty always gives fruit (no matter how frightening is the consequence); and Dishonesty is always harmful (no matter how helping it may seem in a certain situation)!

NOTE:

There will be a **grand quiz** of Chapter 1 to 7 and Office tools, on Friday. This grand quiz may compensate your poor performance in corresponding portion of previous quizzes.