We claim:

5

10

- 1. A method of making a crosslinked polymer comprising the steps of:
 - a) providing a highly fluorinated polymer comprising pendent groups which include a group according to the formula -SO₂X, wherein each X is independently selected from F, Cl, Br, I, -OH or -O-SO₂R² wherein R² is an aliphatic group containing 1-18 carbon atoms which may be substituted; and b) reacting said polymer with a crosslinking agent according to the formula
- Ar_nR^1 , wherein each Ar is selected independently from aromatic groups containing 6-24 carbon or nitrogen atoms and wherein each Ar may be substituted, wherein R^1 is a direct bond or an aromatic or aliphatic linking group, wherein R^1 may be straight-chain, branched, cyclic, heteroatomic, polymeric, halogenated, fluorinated or substituted, and where n is at least 2, to form crosslinks.
- 15 2. The method according to claim 1 wherein said crosslinks comprise units according to the formula (-SO₂Ar)_nR¹.
 - 3. The method according to claim 1 wherein said method additionally comprises, prior to said step b), the step of:
 - c) forming said polymer into a membrane.
 - 4. The method according to claim 3 wherein said membrane has a thickness of 90 microns or less.
- 25 5. The method according to claim 1 wherein said method additionally comprises, after said step b), the step of:
 - d) converting any remaining groups according to the formula -SO₂X to sulfonic acid groups.

- 6. The method according to claim 1 wherein each Ar is a phenyl group which may be substituted.
- 7. The method according to claim 1 wherein one or more Ar is substituted with an electron donating group.
 - 8. The method according to claim 1 wherein one or more Ar is substituted with an alkoxy group.
- 10 9. The method according to claim 1 wherein R¹ is an aliphatic linking group containing 1-20 carbon or oxygen atoms.
 - 10. The method according to claim 1 wherein R^1 is $-O-R^3-O-$, where R^3 is an aliphatic linking group containing 1-18 carbon or oxygen atoms.
 - 11. The method according to claim 1 wherein n is 2.
- 12. The method according to claim 1 wherein said step b) of reacting said polymer with a crosslinking agent is carried out in the presence of a catalyst such as a Lewis20 acid.
 - 13. The method according to claim 1 wherein each X is independently selected from F or Cl.
- 25 14. The method according to claim 1 wherein said pendent groups are according to the formula -O-(CF₂)₄-SO₂X.
 - 15. The method according to claim 1 wherein said pendent groups are according to the formula -O-CF₂-CF(CF₃)-O-CF₂-CF₂-SO₂X.

- 16. The method according to claim 1 wherein step a) of providing a highly fluorinated polymer comprises the steps of:
 - e) providing a highly fluorinated polymer comprising pendent groups which include a group according to the formula -SO₂F; and
 - f) converting at least a portion of said -SO₂F groups to -SO₂Cl.

10

- 17. The method according to claim 16 wherein step f) of converting at least a portion of said -SO₂F groups to -SO₂Cl is accomplished by reduction of the -SO₂F group to -SO₂H followed by conversion to -SO₂Cl by reaction with hypochloride.
- 18. The method according to claim 16 wherein step f) of converting at least a portion of said -SO₂F groups to -SO₂Cl is accomplished by reaction with oxalylchloride.
- 15 19. The method according to claim 1 wherein step a) of providing a highly fluorinated polymer comprises the steps of:
 - e) providing a highly fluorinated polymer comprising pendent groups which include a group according to the formula -SO₂F; and
- f) converting at least a portion of said -SO₂F groups to -SO₂-O-SO₂R²,
 wherein R² is an aliphatic group containing 1-18 carbon atoms which may be substituted.
 - 20. A highly fluorinated crosslinked polymer comprising: a backbone, pendent groups which comprise sulfonic acid groups, and crosslinks comprising units according to the formula $(-SO_2Ar)_nR^1$ wherein each Ar is selected independently from aromatic groups containing 6-24 carbon or nitrogen atoms and wherein each Ar may be substituted, wherein R^1 is a direct bond or an aromatic or aliphatic linking group, wherein R^1 may be straight-chain, branched, cyclic, heteroatomic, polymeric, halogenated, fluorinated or substituted, and where n is at least 2.

- 21. A polymer electrolyte membrane comprising the highly fluorinated crosslinked polymer according to claim 20.
- 5 22. The polymer electrolyte membrane according to claim 21 having a thickness of 90 microns or less.
 - 23. The polymer according to claim 20 wherein each Ar is a phenyl group which may be substituted.

24. The polymer according to claim 20 wherein one or more Ar is substituted with an electron donating group.

- 25. The polymer according to claim 20 wherein one or more Ar is substituted withan alkoxy group.
 - 26. The polymer according to claim 20 wherein R¹ is an aliphatic linking group containing 1-20 carbon or oxygen atoms.
- 20 27. The polymer according to claim 20 wherein R¹ is -O-R³-O-, where R³ is an aliphatic linking group containing 1-18 carbon or oxygen atoms.
 - 28. The polymer according to claim 20 wherein n is 2.
- 25 29. The polymer according to claim 20 wherein said pendent groups are according to the formula -O-(CF₂)₄-SO₃H.
 - 30. The polymer according to claim 20 wherein said pendent groups are according to the formula -O-CF₂-CF(CF₃)-O-CF₂-CF₂-SO₃H.

- The polymer according to claim 20 having an equivalent weight of less than 1200.
- 32. A method of making a crosslinked polymer comprising the steps of:
- a) providing a highly fluorinated polymer comprising first pendent groups which include a group according to the formula -SO₂X, wherein each X is independently selected from F, Cl, Br, I, -OH or -O-SO₂R² wherein R² is an aliphatic group containing 1-18 carbon atoms which may be substituted, and second pendent groups which include groups -Ar, wherein each Ar is selected independently from aromatic groups containing 6-24 carbon or nitrogen atoms and wherein each Ar may be substituted; and
 - b) reacting said polymer to form crosslinks between said first and second pendent groups.
- 15 33. The method according to claim 32 wherein said crosslinks comprise units according to the formula -SO₂Ar-.
 - 34. The method according to claim 32 wherein said method additionally comprises, prior to said step b), the step of:
- 20 c) forming said polymer into a membrane.
 - 35. The method according to claim 34 wherein said membrane has a thickness of 90 microns or less.
- 25 36. The method according to claim 32 wherein said method additionally comprises, after said step b), the step of:
 - d) converting any remaining groups according to the formula $-SO_2X$ to sulfonic acid groups.
- 30 37. The method according to claim 32 wherein each Ar is a phenyl group which may be substituted.

- 38. The method according to claim 32 wherein one or more Ar is substituted with an electron donating group.
- 5 39. The method according to claim 32 wherein one or more Ar is substituted with an alkoxy group.
 - 40. The method according to claim 32 wherein said step b) of reacting said polymer is carried out in the presence of a catalyst such as a Lewis acid.

41. The method according to claim 32 wherein each X is independently selected from F or Cl.

42. The method according to claim 32 wherein said first pendent groups are according to the formula -O-(CF₂)₄-SO₂X.

10

25

- 43. The method according to claim 32 wherein said first pendent groups are according to the formula -O-CF₂-CF(CF₃)-O-CF₂-CF₂-SO₂X.
- 20 44. The method according to claim 32 wherein step a) of providing a highly fluorinated polymer comprises the steps of:
 - e) providing a highly fluorinated polymer comprising first pendent groups which include a group according to the formula -SO₂F; and
 - f) converting at least a portion of said -SO₂F groups to -SO₂Cl.

45. The method according to claim 44 wherein step f) of converting at least a portion of said -SO₂F groups to -SO₂Cl is accomplished by reduction of the -SO₂F group to -SO₂H followed by conversion to -SO₂Cl by reaction with hypochloride.

- 46. The method according to claim 44 wherein step f) of converting at least a portion of said -SO₂F groups to -SO₂Cl is accomplished by reaction with oxalylchloride.
- 5 47. The method according to claim 32 wherein step a) of providing a highly fluorinated polymer comprises the steps of:
 - e) providing a highly fluorinated polymer comprising first pendent groups which include a group according to the formula -SO₂F; and
- f) converting at least a portion of said -SO₂F groups to -SO₂-O-SO₂R²,

 wherein R² is an aliphatic group containing 1-18 carbon atoms which may be substituted.
 - 48. The method according to claim 32 wherein said highly fluorinated polymer comprises a greater number of first pendant groups than second pendant groups.
 - 49. A highly fluorinated crosslinked polymer comprising: a backbone, pendent groups which comprise sulfonic acid groups, and crosslinks comprising units according to the formula -SO₂Ar- wherein each Ar is selected independently from aromatic groups containing 6-24 carbon or nitrogen atoms and wherein each Ar may be substituted.
 - 50. A polymer electrolyte membrane comprising the highly fluorinated crosslinked polymer according to claim 49.
- 25 51. The polymer electrolyte membrane according to claim 50 having a thickness of 90 microns or less.
 - 52. The polymer according to claim 49 wherein each Ar is a phenyl group which may be substituted.

- 53. The polymer according to claim 49 wherein one or more Ar is substituted with an electron donating group.
- 54. The polymer according to claim 49 wherein one or more Ar is substituted with5 an alkoxy group.
 - 55. The polymer according to claim 49 wherein said first pendent groups are according to the formula -O-(CF₂)₄-SO₃H.
- 10 56. The polymer according to claim 49 wherein said first pendent groups are according to the formula -O-CF₂-CF(CF₃)-O-CF₂-CF₂-SO₃H.
 - 57. The polymer according to claim 49 having an equivalent weight of less than 1200.
 - 58. The method according to claim 3 wherein step c) comprises imbibing said mixture into a porous supporting matrix.
- 59. The method according to claim 58 wherein said porous supporting matrix is a porous polytetrafluoroethylene web.
 - 60. The method according to claim 34 wherein step c) comprises imbibing said mixture into a porous supporting matrix.
- 25 61. The method according to claim 60 wherein said porous supporting matrix is a porous polytetrafluoroethylene web.
 - 62. The polymer electrolyte membrane according to claim 21 wherein said intimate mixture is embedded in a porous supporting matrix.

- 63. The polymer electrolyte membrane according to claim 62 wherein said porous supporting matrix is a porous polytetrafluoroethylene web.
- 64. The polymer electrolyte membrane according to claim 50 wherein said intimate5 mixture is embedded in a porous supporting matrix.
 - 65. The polymer electrolyte membrane according to claim 64 wherein said porous supporting matrix is a porous polytetrafluoroethylene web.