Tianfei Zhou¹, Wenguan Wang^{2,1}*, Ender Konukoglu¹, Luc Van Gool¹

Computer Vision Lab, ETH Zurich ² ReLER, AAII, University of Technology Sydney

https://github.com/tfzhou/ProtoSeg

CVPR2022 oral

Exploring Cross-Image Pixel Contrast for Semantic Segmentation

ICCV2021 oral

Motivation:

- Pixel-Wise Cross-Entropy supervision:
- 1) ignore relationship between pixels
- 2) cannot supervise the learned representation directly
- Previse sturecture-aware loss ignore correlations between pixels across image

Method:

Figure 3: Detailed illustration of our pixel-wise contrastive learning based semantic segmentation network architecture.

- Design memory bank for dense pixel embeddings
- hard sample selection

Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Figure 3: Detailed illustration of our pixel-wise contrastive learning based semantic segmentation network architecture.

Limitation:

- pull all features $\in C_i$ together
- · two stream

Previous semantic segmentation methods

dense visual feature extractor →

pixel wise linear layer $W = [w_1, \dots, w_C] \in \mathbb{R}^{C \times D}$

$$p(c|oldsymbol{i}) = rac{\exp(oldsymbol{w}_c^{ op} oldsymbol{i})}{\sum_{oldsymbol{c}'=1}^C \exp(oldsymbol{w}_{oldsymbol{c}'}^{ op} oldsymbol{i})},$$

Parametric Pixel-Query

dense visual feature extractor →

pixel query layer $\boldsymbol{E} = [\boldsymbol{e}_1, \cdots, \boldsymbol{e}_C] \in \mathbb{R}^{C \times D}$

$$p(c|\boldsymbol{i}) = \frac{\exp(\boldsymbol{e}_c * \boldsymbol{i})}{\sum_{c'=1}^{C} \exp(\boldsymbol{e}_{c'} * \boldsymbol{i})},$$

Previous semantic segmentation methods

test image dense feature

dense prediction dense visual feature extractor →

pixel wise linear layer $W = [w_1, \dots, w_C] \in \mathbb{R}^{C \times D}$

Limitation

- 1. single prototype per class
- 2. parameter: D*C
- 3. ignore relationship between pixels and prototypes

pixel query layer $E = [e_1, \cdots, e_C] \in \mathbb{R}^{C \times D}$

$$p(c|i) = \frac{\exp(e_c * i)}{\sum_{c'=1}^{C} \exp(e_{c'} * i)},$$

Proposed Method

$$p(c|\mathbf{i}) = \frac{\exp(-s_{i,c})}{\sum_{c'=1}^{C} \exp(-s_{i,c'})}, \text{ with } s_{i,c} = \min\{\langle \mathbf{i}, \mathbf{p}_{c,k} \rangle\}_{k=1}^{K}$$

$$\mathcal{L}_{CE} = -\log p(c_i|i)$$

$$= -\log \frac{\exp(-s_i)}{\exp(-s_{i,c_i}) + \sum_{c'\neq i} 1}$$
Limitation
$$1. \text{ ignore within-class pixel-prototype relations}$$
2. only consider relative relation between intra-

Limitation

- 1. ignore within-class pixel-prototype relations
- class and inter-class
- -> cannot directly supervise the feature distribution

Proposed Method

Pixel-Prototype Contrastive Learning.

$$\mathcal{L}_{\text{PPC}} = -\log \frac{\exp(\boldsymbol{i}^{\top} \boldsymbol{p}_{c_i, k_i} / \tau)}{\exp(\boldsymbol{i}^{\top} \boldsymbol{p}_{c_i, k_i} / \tau) + \sum_{\boldsymbol{p}^{-} \in \mathcal{P}^{-}} \exp(\boldsymbol{i}^{\top} \boldsymbol{p}^{-} / \tau)}, \quad \boldsymbol{p}_{c_i, k_i}$$

Pixel-Prototype Distance Optimization.

$$\mathcal{L}_{\text{PPD}} \!=\! (1 - \boldsymbol{i}^{\top} \! \boldsymbol{p}_{c_i, k_i})^2$$
.

Proposed Method

Pixel-Prototype Contrastive Learning.

$$\mathcal{L}_{\text{PPC}} = -\log \frac{\exp(\boldsymbol{i}^{\top} \boldsymbol{p}_{c_i, k_i} / \tau)}{\exp(\boldsymbol{i}^{\top} \boldsymbol{p}_{c_i, k_i} / \tau) + \sum_{\boldsymbol{p}^{-} \in \mathcal{P}^{-}} \exp(\boldsymbol{i}^{\top} \boldsymbol{p}^{-} / \tau)}, \quad \boldsymbol{p}_{c_i, k_i}$$

Pixel-Prototype Distance Optimization.

$$\mathcal{L}_{\text{PPD}} \!=\! (1 - \boldsymbol{i}^{\top} \boldsymbol{p}_{c_i, k_i})^2$$
.

£ _{CE} (Eq. 7)	£ _{PPC} (Eq. 11)	£ _{PPD} (Eq. <mark>12</mark>)	mIoU (%)
1	/		45.0 45.9
1	•	•	45.4
✓	✓	✓	46.4

Result

Method	Backbone	# Param (M)	mIoU (%)
DeepLabV3+ [ECCVIS] [16]	ResNet-101 [46]	62.7	44.1
OCR [ECCV20] [131]	HRNetV2-W48 [110]	70.3	45.6
MaskFormer [NeurIPS21] [20]	ResNet-101 [46]	60.0	46.0
UperNet [ECCV20] [119]	Swin-Base [79]	121.0	48.4
OCR [ECCV20] [131]	HRFormer-B [132]	70.3	48.7
SETR [CVPR21] [141]	ViT-Large [31]	318.3	50.2
Segmenter [ICCV21] [102]	ViT-Large [31]	334.0	51.8
[†] MaskFormer [NeurIPS21] [20]	Swin-Base [79]	102.0	52.7
FCN [CVPRIS] [80]	ResNet-101 [46]	68.6	39.9
Ours	KesNet-101 [40]	68.5	41.1 ↑ 1.2
HRNet [PAMI20] [110]	HRNetV2-W48 [110]	65.9	42.0
Ours	TIKINGLY 2-W46 [TTO]	65.8	43. 0 ↑ 1. 0
Swin [ICCV21] [79]	Swin-Base [79]	90.6	48.0
Ours	SWIII-Dase [/9]	90.5	48.6 † 0.6
SegFormer [NeurlPS21] [120]	MiT-B4 [120]	64.1	50.9
Ours	IVII 1- D 4 [120]	64.0	51.7 ↑ 0.8

t: backbone is pre-trained on ImageNet-22K.

Table 1. Quantitative results (§5.2) on ADE20K [142] val.

Method	Backbone	# Param (M)	mIoU (%)
SVCNet [CVPRI9] [29]	ResNet-101 [46]	-	39.6
DANet [CVPRI9] [35]	ResNet-101 [46]	69.1	39.7
SpyGR [CVPR20] [68]	ResNet-101 [46]	-	39.9
MaskFormer [NeurIPS21] [20]	ResNet-101 [46]	60.0	39.8
ACNet [ICCV19] [36]	ResNet-101 [46]	-	40.1
OCR [ECCV20] [131]	HRNetV2-W48 [110]	70.3	40.5
FCN [CVPR15] [80]	ResNet-101 [46]	68.6	32.5
Ours	Kesivet-101 [40]	68.5	34.0 ↑ 1.5
HRNet [PAMI21] [110]	HRNetV2-W48 [110]	65.9	38.7
Ours	HKNetv2-W46 [110]	65.8	39.9 ↑ 1.2
Swin [Icev21] [79]	Swin-Base [79]	90.6	41.5
Ours	Swiii-Dase [79]	90.5	$42.4 \uparrow 0.9$
SegFormer [NeurIPS21] [120]	MiT-B4 [120]	64.1	42.5
Ours	WII 1-154 [120]	64.0	43.3 ↑ 0.8

Table 3. Quantitative results (§5.2) on COCO-Stuff [10] test.

		# Param	mIoU
Method	Backbone	(M)	(%)
PSPNet [CVPR17] [137]	ResNet-101 [46]	65.9	78.4
PSANet [ECCV18] [138]	ResNet-101 [46]	-	78.6
AAF [ECCVIS] [60]	ResNet-101 [46]	-	79.1
Segmenter [ICCV21] [102]	ViT-Large [31]	322.0	79.1
ContrastiveSeg [ICCV21] [113]	ResNet-101 [46]	58.0	79.2
MaskFormer [NeurlPS21] [20]	ResNet-101 [46]	60.0	80.3
DeepLabV3+ [ECCV18] [16]	ResNet-101 [46]	62.7	80.9
OCR [ECCV20] [131]	HRNetV2-W48 [110]	70.3	81.1
FCN [CVPR15] [80]	DowNet 101 [46]	68.6	78.1
Ours	ResNet-101 [46]	68.5	79.1 \uparrow 1.0
HRNet [PAMI20] [110]	HRNetV2-W48 [110]	65.9	80.4
Ours	HKNet v 2- w40 [110]	65.8	$81.1 \div 0.7$
Swin [100v21] [79]	Paria Paga [701	90.6	79.8
Ours	Swin-Base [79]	90.5	$80.6 \uparrow 0.8$
SegFormer [Naur[PS21] [120]	MiT-B4 [120]	64.1	80.7
Ours	MIII-D4 [120]	64.0	81.3 ↑ 0.6

Table 2. Quantitative results (§5.2) on Cityscapes [23] val.

prototype explanation

Figure 3. **Visualization of pixel-prototype similarity** for *person* (top) and *car* (bottom) classes. Please refer to §3 for details.

Figure 5. **Embedding spaces** learned by (left) parametric model [120], and (right) our nonparametric model. For better visualization, we show five classes of Cityscapes [23] with two prototypes per class.

# Prototype	mIoU (%)	
K = 1	45.5	
K = 5	46.0	
K = 10	46.4	
K = 20	46.5	
K = 50	46.4	

Deep Hierarchical Semantic Segmentation

