Queensland University of Technology

MZB221

Electrical Engineering Mathematics

 $Profressor\ Nicholas\ Buttle$

Dinal Atapattu

October 6, 2023

Contents

1	Infi	nite Series	ŀ
	1.1	Sequences, Infinite Series, Convergence	ŀ
	1.2	Taylor polynomials, Taylor series, Radius of convergence	
	1.3	Introduction to Fourier series	
	1.4	Constructing Fourier series	
2	Vec	tor Calculus	,
	2.1	Introduction to Vector Calculus, div, grad, curl	,
		2.1.1 Scalar Fields	
	2.2	Review of Multiple Integration, Change of Variables	
	2.3	Introduction to cylindrical and spheroidal coordinates, integration	
	2.4	Line Integrals, Surface Integrals	
3 Dif		erential Equations	ę
	3.1	Introduction to Laplace transform, Strategy for Solving Linear ODEs	(
		3.1.1 Definition of the Laplace Transform	
	3.2	Further Properties of Laplace Transforms, solving more complicated initial value problems	
	3.3	Non-Linear first-order ODEs, Phase lines, Stability, Bi-Furcation	
	3.4	Linear Systems of ODEs, Exact Solutions, Classification, Non-Homogeneous Systems	
	3.5	Non-Linear Systems of ODEs, Phase Plane, Nullclines, Stability	

4 CONTENTS

Chapter 1

Infinite Series

- 1.1 Sequences, Infinite Series, Convergence
- 1.2 Taylor polynomials, Taylor series, Radius of convergence
- 1.3 Introduction to Fourier series
- 1.4 Constructing Fourier series

Chapter 2

Vector Calculus

2.1 Introduction to Vector Calculus, div, grad, curl

2.1.1 Scalar Fields

A scalar field is a function

$$f: \mathbf{R}^n \to \mathbf{R}$$

$$\boxed{n=2} \ f = f(x,y)$$

- 2 independent variables x, y
- f is a function that has x and y as inputs and a single real number as the output

Phyiscal examples of scalar fields are

- The temperature T(x, y, z), the pressure p(x, y, z), the density $\rho(x, y, z)$ of a fluid
- Concentration of a pollutant in a lake c(x, y, z)
- Height of a surface or a mountain h(x,y)
- Charge density $\rho(x,y,z)$, electrical potential V(x,y,z)

Partial Derivatives

For $f: \mathbb{R}^2 \to \mathbb{R}$

$$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}, \frac{\partial f}{\partial y} = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

- f_x is the rate of change of f in the x-direction (y is constant) (and vice-versa)
- Geometrically, f_x and f_y are the slopes of the surface z = f(x, y) in the x and y directions.

For $f: \mathbb{R}^3 \to \mathbb{R}$

$$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}, \frac{\partial f}{\partial y} = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$
$$\frac{\partial f}{\partial z} \lim_{h \to 0} \frac{f(z+h,y) - f(z,y)}{h}$$

No equivalent geometric representation as "surface" (f(x,y,z)) is a 4-dimensional hypersolid

Directional Derivative of a Scalar Field

- 2.2 Review of Multiple Integration, Change of Variables
- 2.3 Introduction to cylindrical and spheroidal coordinates, integration
- 2.4 Line Integrals, Surface Integrals

Chapter 3

Differential Equations

- 3.1 Introduction to Laplace transform, Strategy for Solving Linear ODEs
- 3.1.1 Definition of the Laplace Transform

The Laplace Transform of the function f(t) is defined as

$$\mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) dt$$

for values of s that the integral converges The notation F(s) is often used to represent $\mathcal{L}\{f(t)\}$

- 3.2 Further Properties of Laplace Transforms, solving more complicated initial value problems
- 3.3 Non-Linear first-order ODEs, Phase lines, Stability, Bi-Furcation
- 3.4 Linear Systems of ODEs, Exact Solutions, Classification, Non-Homogeneous Systems
- 3.5 Non-Linear Systems of ODEs, Phase Plane, Nullclines, Stability