Математические основы робототехники

lec-07-probability

15.10.2021

Глобальное состояние и состояние системы

• World state – реальное положение в пространстве

• Belief State – предполагаемое (оцениваемое) положение в пространстве

Оценка состояния

Что влият на состояние БПЛА?

- положение
- скорость
- препятствия
- карта
- взаимодействие с и положение людей и других роботов
- etc.

Оценка состояния

Не можем наблюдать реальное состояние «напрямую», необходимо научиться оценивать, но как?

- Можно оценивать по показаниям датчиков
- Либо на основании выполненных перемещений или других действий

Sensor Model

• Робот «воспринимает» окружение через датчики

• Цель: оценить состояние системы по этим показаниям

$$\mathbf{x} = h^{-1}(\mathbf{z})$$

Motion Model

- Робот выполняет некое действие или команду (например, движется вперед со скоростью 1 м/с)
- Состояние системы оценивается с учетом этого действия

Вероятностные методы в робототехнике

- Показания датчиков могут быть зашумлены, недостаточны, потеряны
- Как правило, любые модели ошибочны или неполны
- Зачастую обладаем некоторым априорным знанием

Вероятностные методы в робототехнике

- Вероятностная модель на основе датчиков $p(\mathbf{z} \mid \mathbf{x})$
- Вероятностная модель на основе движений $p(\mathbf{x}' \mid \mathbf{x}, \mathbf{u})$
- Слияние данных (sensor fusion) с нескольких датчиков

$$p(\mathbf{x} \mid \mathbf{z}_{\text{vision}}, \mathbf{z}_{\text{ultrasound}}, \mathbf{z}_{\text{IMU}})$$

• Слияние данных с течением времени (фильтрация)

$$p(\mathbf{x} \mid \mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_t)$$

 $p(\mathbf{x} \mid \mathbf{z}_1, \mathbf{u}_1, \mathbf{z}_2, \mathbf{u}_1, \dots, \mathbf{z}_t, \mathbf{u}_t)$

Recap: теория вероятностей

- Случайное событие может иметь несколько исходов, например, бросание кости
- Выборочное пространство {1, 2, 3, 4, 5, 6}
- Событие A подмножество исходов, например, $\{2, 4, 6\}$
- Вероятность того, что событие A произойдет P(A) = 0.5

Аксиомы теории вероятностей

1.
$$0 \le P(A) \le 1$$

2.
$$P(\Omega) = 1$$
 $P(\emptyset) = 0$

3.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Дискретная случайная величина

- X случайная величина
- X может принимать счетное множество значений $\{x_1, ..., x_n\}$
- $P(X = x_i)$ вероятность, что случайная величина X примет значение x_i
- $P(\cdot)$ функция вероятности (PMF)

• Пример: P(Room) = <0.7, 0.2, 0.08, 0.02 >Room $\in \{\text{office, corridor, lab, kitchen}\}$

Непрерывная случайная величина

- Х принимает непрерывные значения
- p(X = x) или p(x) плотность вероятности (PDF)

$$P(x \in [a, b]) = \int_{a}^{b} p(x) dx$$

• Пример:

Сумма вероятностей всех исходов = 1

• Для дискретной величины $\sum P(x) = 1$

$$\sum_{x} P(x) = 1$$

• Для непрерывной величины $\int p(x) \mathrm{d}x = 1$

$$\int p(x)\mathrm{d}x = 1$$

Совместная и условная вероятность

- P(X = x and Y = y) = P(x, y)
- Если X и Y независимы, то $P(x,y) = P(x) \cdot P(y)$

• P(x|y) – вероятность, что произойдет x при условии, что произошло y

$$P(x|y) \cdot P(y) = P(x,y)$$

• Если X и Y независимы, то P(x|y) = P(x)

Условная независимость

• Определение условной независимости

$$P(x, y|z) = P(x|z) \cdot P(y|z)$$

• Эквивалентно

$$P(x|z) = P(x|y,z)$$

$$P(y|z) = P(y|x,z)$$

• При этом не обязательно, что $P(x,y) = P(x) \cdot P(y)$

Маргинализация (суммирование)

• Дискретный случай
$$P(x) = \sum_{y} P(x,y)$$

• Непрерывный случай $p(x) = \int p(x,y) \mathrm{d}y$

Маргинализация: пример

P(X,Y)	x ₁	x ₂	X ₃	X ₄	P(Y) ↓
У ₁	1/8	1/16	1/32	1/32	1/4
У ₂	1/16	1/8	1/32	1/32	1/4
У ₃	1/16	1/16	1/16	1/16	1/4
y ₄	1/4	0	0	0	1/4
$P(X) \rightarrow$	1/2	1/4	1/8	1/8	1

Математическое ожидание случайной величины

- Дискретный случай $E[X] = \sum x_i P(x_i)$
- Непрерывный случай $E[X] = \int x P(X=x) \mathrm{d}x$
- Математическое ожидание взвешенное среднее всех значений, которые принимает случайная величина
- Математическое ожидание линейный оператор

$$E[aX + b] = aE[X] + b$$

Дисперсия случайной величины

• Мера разброса относительно математического ожидания

$$Cov[X] = E[X - E[X]]^2 = E[X^2] - E[X]^2$$

Оценка по данным

• Наблюдения

$$\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbb{R}^d$$

• Выборочное среднее $\mu = \frac{1}{n} \sum_i \mathbf{x}_i$

$$\boldsymbol{\mu} = \frac{1}{n} \sum_{i} \mathbf{x}_{i}$$

• Выборочная дисперсия
$$\Sigma = \frac{1}{n-1} \sum_i (\mathbf{x}_i - \boldsymbol{\mu}) (\mathbf{x}_i - \boldsymbol{\mu})^{ op}$$