Algèbre linéaire : Espaces vectoriels

1 Espaces vectoriels et Sous-espaces vectoriels

Dans tout ce chapitre $\mathbb K$ représente soit l'ensemble des réels $\mathbb R$ soit celui des complexes $\mathbb C$. Soit $\mathbb E$ un ensemble non vide. On munit $\mathbb E$ d'une loi de composition :

- interne « + » (addition) : $\forall (x,y) \in \mathbb{E}^2$, on a $x + y \in \mathbb{E}$;
- externe « » (multiplication par un scalaire) : $\forall x \in \mathbb{E}$, $\forall \lambda \in \mathbb{K}$ on a $\lambda \bullet x \in \mathbb{E}$.

1.1 Espaces vectoriels sur **K**

Déf 1.1. Soit \mathbb{E} un ensemble muni d'une loi de composition interne notée + et d'une loi de composition externe à opérateurs dans K notée \bullet . On dit que $(\mathbb{E}, +, \bullet)$ est un \mathbb{K} -espace vectoriel s'il vérifie les dix propriétés suivantes :

- 1. $(\mathbb{E},+)$ est un groupe commutatif, c'est-à-dire que :
 - (a) l'opération + est une loi de composition interne sur $E: \forall (x,y) \in \mathbb{E}^2$, on a $x+y \in \mathbb{E}$;
 - (b) Pour tout triplet (x, y, z) d'éléments de \mathbb{E} , on a (x + y) + z = x + (y + z);
 - (c) Il existe une éléments $0_{\mathbb{E}}$ dans \mathbb{E} , tel que pour tout $x \in \mathbb{E}$, on a $x + 0_{\mathbb{E}} = 0_{\mathbb{E}} + x = x$;
 - (d) Pour tout élément x de \mathbb{E} il existe un élément y de \mathbb{E} tel que $x+y=y+x=0_{\mathbb{E}}$. On note cet élément -x;
 - (e) Pour tout couple (x, y) d'éléments de \mathbb{E} on a x + y = y + x;
- 2. La loi vérifie les cinq propriétés suivantes :
 - (a) L'opération est une loi de composition externe : $\forall x \in \mathbb{E}$, $\forall \lambda \in \mathbb{K}$ on a $\lambda \bullet x \in \mathbb{E}$;
 - (b) Pour tout $(\lambda, \mu) \in \mathbb{K}^2$ et pour tout $x \in \mathbb{E}$, on a $\lambda \bullet (\mu \bullet x) = (\lambda \mu) \bullet x$;
 - (c) Pour tout $x \in \mathbb{E}$, $1 \bullet x = x$;
 - (d) Pour tout $(\lambda, \mu) \in \mathbb{K}^2$ et pour tout $x \in \mathbb{E}$, on a $(\lambda + \mu) \bullet x = \lambda \bullet x + \mu \bullet x$;
 - (e) Pour tout $\lambda \in \mathbb{K}$ pour tout $(x,y) \in \mathbb{E}^2$, on a $\lambda \bullet (x+y) = \lambda \bullet x + \lambda \bullet y$.

Vocabulaire : Les éléments de \mathbb{E} sont appelés des vecteurs et ceux de \mathbb{K} des scalaires.

Remarque 1.1. Le vecteur nul $0_{\mathbb{E}}$, élément neutre pour l'addition des vecteurs, est unique et nous avons, pour tout scalaire λ et tout vecteur x, l'équivalence $\lambda \bullet x = 0_{\mathbb{E}} \iff (\lambda = 0)$ ou $(x = 0_{\mathbb{E}})$. Tout espace vectoriel contient au moins le vecteur nul et n'est donc pas vide.

Exemple 1.1. On rappel ici quelques exemples classique d'espace vectoriels :

1. L'ensemble $\mathbb{K}[X]$ des polynômes à coefficients dans \mathbb{K} muni des lois habituelles (somme de polynômes et multiplication de polynôme par un scalaire) est un \mathbb{K} -espace vectoriel.

- 2. Pour tout entiers naturels non nuls n et p, l'ensemble $\mathcal{M}_{n,p}(\mathbb{K})$ des matrices de n lignes et p colonnes munit de la somme de matrices et de la multiplication d'une matrice par un scalaire est un \mathbb{K} -espace vectoriel.
- 3. Pour tout entier naturel non nul n, l'ensemble \mathbb{K}^n des n-uplets de scalaire est un \mathbb{K} -espace vectoriel.

Déf 1.2. On appelle **famille finie de vecteurs** tout *n*-uplet de *n* vecteurs où *n* est un entier naturel non nul.

Déf 1.3. Un vecteur x de E est dit **combinaison linéaire** d'une famille $(e_1, e_2, ..., e_n)$ s'il existe n scalaires $\lambda_1, ..., \lambda_n$ tels que $x = \sum_{i=1}^n \lambda_i e_i$.

L'ensemble des combinaisons linéaires de (e_1, e_2, \dots, e_n) est noté $Vect(e_1, e_2, \dots, e_n)$.

Exemple 1.2.

1. Dans l'ensemble \mathbb{K}^3 des triplets de scalaires, le vecteur (2,5,9) est combinaison linéaire de la famille de vecteurs $\{(1,1,1),(0,1,1),(0,0,1)\}$, en effet

$$(2,5,9) = 2(1,1,1) + 3(0,1,1) + 4(0,0,1).$$

2. Dans $\mathbb{R}[X]$, on a : Vect $(1,X,X^2) = \{aX^2 + bx + c \mid (a,b,c) \in \mathbb{R}^3\} = \mathbb{R}_2[X]$ l'ensemble des polynômes de degré au plus deux à coefficients réels.

1.2 Sous-espaces vectoriel (sev)

Déf 1.4. Soient \mathbb{E} un espace vectoriel et F un sous-ensemble de \mathbb{E} . On dit que F est un sous-espace vectoriel de \mathbb{E} si F est non vide et s'il vérifie les deux propriétés suivantes :

- 1. Pour tout couple (x, y) de vecteurs de F, le vecteur x + y appartient à F;
- 2. Pour tout scalaire λ et tout vecteur x de F, le vecteur $\lambda \bullet x$ appartient à F.

Exemple 1.3.

- 1. Tout espace vectoriel \mathbb{E} a toujours au moins deux sous espaces qui sont \mathbb{E} et $\{0_{\mathbb{E}}\}$.
- 2. L'ensemble $\{(x,0,y)|(x,y)\in\mathbb{K}^2\}$ est un sous espace vectoriel de \mathbb{K}^3 .

Exo 1.1. Montrer que l'ensemble $F = \{(x, y, z) \in \mathbb{R}^3 \mid z = x + y\}$ est un sev de \mathbb{R}^3 .

Solution 1.1.

- $(0,0,0) \in F \ car \ 0 = 0 + 0. \ Donc \ F \neq \emptyset.$
- Soient (x,y,z) et (x',y',z') deux éléments de F. Alors z = x + y et z' = x' + y'. Donc z + z' = x + x' + y + y'. D'où $(x,y,z) + (x',y',z') = (x + x',y + y',z + z') \in F$.
- Soient (x, y, z) et $\lambda \in \mathbb{R}$. Alors z = x + y et donc $\lambda z = \lambda x + \lambda y$. Il vient que $\lambda(x, y, z) = (\lambda x, \lambda y, \lambda z) \in F$.

On conclut que F est bien un sev de \mathbb{R}^3

Exo 1.2. Montrer que $E = \{P \in \mathbb{R}[X] \mid P(x) - xP'(x) = 0\}$ est un espace vectoriel.

Solution 1.2. On commence par constater que $E \subset \mathbb{R}[X]$ qui est un espace vectoriel. Il suffit donc de vérifier que E est un sev de $\mathbb{R}[X]$.

- Le polynôme nul $0_{\mathbb{R}[X]}$ est de dérivée nulle. Par définition de E, $0_{\mathbb{R}[X]} \in E \neq \emptyset$.
- Soient P et Q deux éléments de E . Alors P(x) xP'(x) = 0 et Q(x) xQ'(x) = 0. Donc P(x) + Q(x) x(P'(x) + Q'(x)) = 0. D'où $P + Q \in E$.
- Soit $P \in E$ et $\lambda \in \mathbb{R}$. On a P(x)-xP'(x)=0. En multipliant cette inégalité par λ , on obtient : $\lambda P(x)-x\lambda P'(x)=0$. Donc $\lambda P \in E$.

On conclut que E est bien un sev de $\mathbb{R}[X]$.

Prop 1.1. Toute intersection de sous-espaces vectoriels d'un espace vectoriel est un sous-espace vectoriel.

Démonstration. Soit F une intersection de sous-espaces vectoriels d'un espace vectoriel \mathbb{E} ; $0_{\mathbb{E}}$ appartient à chacun des sous-espaces donc à F qui est de ce fait non vide. Une combinaison linéaire d'éléments de F appartient à chacun des sous-espaces donc à leur intersection F. L'ensemble F est non vide, stable par combinaison linéaire : c'est un sous-espace de \mathbb{E}

2 Familles de vecteurs génératrices, libres

2.1 Sous-espace vectoriel engendré par une famille de vecteur

Prop 2.1. Soit $(e_1, e_2, ..., e_n)$ une famille de vecteurs de \mathbb{E} . L'ensemble $\text{Vect}(e_1, e_2, ..., e_n)$ des combinaison linéaire de cette famille est un sev de \mathbb{E} . C'est le sev engendré par $(e_1, e_2, ..., e_n)$

Démonstration. Il suffit de vérifier que $Vect(e_1, e_2, ..., e_n)$ est non vide et stable par combinaison linéaire.

Exo 2.1. Montrer que $E = \left\{ \begin{pmatrix} a+b & b \\ a & a-b \end{pmatrix} \mid (a,b) \in \mathbb{R}^2 \right\}$ est un \mathbb{R} -espace vectoriel.

Solution 2.1. Par définitions de E, on a :

$$E = \left\{ a \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \middle| (a, b) \in \mathbb{R}^2 \right\}$$
$$= \operatorname{Vect} \left\{ \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \right\}$$

C'est donc un sev de $\mathcal{M}_{2,2}(\mathbb{R})$.

Ens: Dr M. Barro 3/7 Algèbre linéaire

2.2 Familles génératrices d'un espace vectoriel, familles libres

Déf 2.1. Soit \mathbb{E} un espace vectoriel sur \mathbb{K} et \mathbb{F} un sev de \mathbb{E} . Une famille $(e_1, e_2, ..., e_n)$ de n vecteur de \mathbb{E} est dite **génératrice** de \mathbb{F} si \mathbb{F} =Vect $(e_1, e_2, ..., e_n)$.

Exo 2.2. Montrer que $F = \{(x,y) \in \mathbb{R}^2 \mid x-2y=0\}$ est un sous-espace vectoriel de \mathbb{R}^2 et déterminer une famille génératrice de F.

Solution 2.2. Par définitions de F, on a :

$$F = \{(x,y) \in \mathbb{R}^2 \mid x - 2y = 0\}$$

=\{(x,y) \in \mathbb{R}^2 \ | x = 2y\} = \{y(2,1) \ | y \in \mathbb{R}\} = \text{Vect}\{(2,1)\}

C'est donc un sev de \mathbb{R}^2 et $\{(2,1)\}$ en est une famille génératrice.

Exo 2.3. Montrer que $F_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x - y + 2z = 0\}$ et $F_2 = \{(x, y, z) \in \mathbb{R}^3 \mid y + z = 0\}$ sont des sev de \mathbb{R}^3 et déterminer dans chaque cas une famille génératrice du sev.

Solution 2.3. On a:

$$F_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x = y - 2z\} = \{y(1, 1, 0) + z(-2, 0, 1) \mid (y, z) \in \mathbb{R}^2\} = \text{Vect}\{(1, 1, 0), (-2, 0, 1)\}$$

$$F_2 = \{(x, y, z) \in \mathbb{R}^3 \mid y = -z\} = \{x(1, 0, 0) + z(0, -1, 1) \mid (x, z) \in \mathbb{R}^2\} = \text{Vect}\{(1, 0, 0), (0, -1, 1)\}$$

Propriété 2.1 (Familles génératrices). Soient \mathbb{E} un espace vectoriel et $(e_i)_{1 \le i \le n}$ une famille de vecteur de \mathbb{E} . Soit $F=Vect(e_1,e_2,\ldots,e_n)$. Si

- on change l'ordre des vecteurs de la famille $(e_i)_{1 \le i \le n}$,
- ou on ajoute à un vecteur de la famille $(e_i)_{1 \le i \le n}$ une combinaison linéaire des autres,
- ou on multiplie un vecteur de la famille $(e_i)_{1 \le i \le n}$ par un scalaire non nul,
- ou on ajoute à la famille $(e_i)_{1 \le i \le n}$ un nombre p d'autres vecteurs de F,
- ou on enlève de la famille $(e_i)_{1 \le i \le n}$ un de ses vecteurs qui lui-même est une combinaison linéaire des autres vecteurs de la famille,

alors le sous-espace engendré par chacune de ces nouvelles familles est encore égal à F. En particulier ceci est vrai pour une famille finie génératrice de E lui même.

Déf 2.2. Une famille $(e_1, e_2, ..., e_n)$ est dite **libre** si pour tout n-uplet de scalaire $(\lambda_1, ..., \lambda_n)$ on a $\sum_{i=1}^n \lambda_i e_i = 0 \Longrightarrow \lambda_1 = \lambda_2 = ... = \lambda_n = 0$. On dit aussi que les vecteurs $e_1, e_2, ..., e_n$ sont **linéairement indépendants**. Une famille de vecteurs qui n'est pas libre est dite **liée**.

Exemple 2.1. Dans \mathbb{R}^2 , la famille $\left\{ \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix} \right\}$ est linéairement indépendante. En effet, pour tout $a, b \in \mathbb{R}$, on a

$$a \begin{pmatrix} 3 \\ 1 \end{pmatrix} + b \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Longleftrightarrow \begin{pmatrix} 3a \\ a+2b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Longleftrightarrow a = b = 0.$$

Ens: Dr M. Barro 4/7 Algèbre linéaire

Propriété 2.2 (Familles liées). Soit $\mathbb E$ un espace vectoriel.

- Une famille finie de vecteurs liée dont on change l'ordre des vecteurs reste une famille liée.
- La famille {e} est liée si, et seulement si, le vecteur e est nul.
- La famille $\{e_1, e_2\}$ est liée si, et seulement si, l'un des vecteurs est égal à l'autre multiplié par un scalaire; on dit dans ce cas que les vecteurs e_1 et e_2 sont **colinéaires**.
- La famille $\{e_1, e_2, ..., e_n\}$ est liée si, et seulement si, l'un des e_i est égal à une combinaison linéaire des autres.

Propriété 2.3 (Familles libres). Soient \mathbb{E} un espace vectoriel et $\{e_1, \ldots, e_n\}$ une famille de vecteurs de \mathbb{E} .

- Une famille finie de vecteurs libre dont on change l'ordre des vecteurs reste une famille libre?
- Si la famille $\{e_1, \dots, e_n\}$ est libre, toute sous-famille de $\{e_1, \dots, e_n\}$ est aussi libre
- La famille $\{e_1, ..., e_n\}$ est libre si, et seulement si, tout vecteur de $Vect(e_1, ..., e_n)$ s'écrit de manière unique comme combinaison linéaire de cette famille.

3 Base, dimension d'un espace vectoriel

3.1 Base d'un espace vectoriel

Déf 3.1. Une base \mathcal{B} d'un espace vectoriel \mathbb{E} est une famille qui est à la fois libre et génératrice de \mathbb{E} .

Exemple 3.1. $\mathcal{B} = \{(1,0), (0,1)\}\ est\ une\ base\ de\ \mathbb{R}^2.$

Propriété 3.1 (Propriété caractéristique). \mathcal{B} est une base de \mathbb{E} si et seulement si tout vecteur de \mathbb{E} s'écrit comme combinaison linéaire unique des vecteurs de \mathcal{B} .

Exemple 3.2. La famille $\{(1,1),(1,0),(0,1)\}$ n'est pas une base de \mathbb{R}^2 . En effet,

$$(1,1) = 1(1,1) + 0(1,0) + 0(0,1) = 0(1,1) + 1(1,0) + 1(0,1).$$

Déf 3.2. Soit $\mathcal{B} = \{u_1, ..., u_n\}$ une base de \mathbb{E} . Alors d'après la propriété caractéristique, pour tout $x \in \mathbb{E}$, il existe un unique n-uplet $(x_1, ..., x_n)$ de scalaires tel que : $x = x_1.u_1 + ... + x_n.u_n$. Le n-uplet $(x_1, ..., x_n)$ s'appelle les coordonnées de x dans \mathcal{B} .

Certains des espaces vectoriels que nous rencontrerons ont une base particulièrement simple que l'on appelle **base canonique**. Elles sont décrites ci-dessous :

- 1. Base canonique de \mathbb{K}^n : $\mathscr{B} = \{e_1, e_2, ..., e_n\}$ avec $e_i = (0, ..., 0, 1, 0, ..., 0)$ où c'est la $i^{\text{ème}}$ coordonnée qui fait 1.
- 2. Base canonique de $\mathbb{K}_n[X]$: $\mathscr{B} = \{1, X, ..., X^n\}$.
- 3. **Base canonique de** $\mathcal{M}_{n,p}(\mathbb{K})$: $\mathscr{B} = \{E_{ij} \mid 1 \le i \le n, 1 \le j \le p\}$ avec $E_{ij} \in \mathcal{M}_{n,p}(\mathbb{K})$ telle que seul le coefficient qui est sur la ligne i et la colonne j vaut 1 et tous les autres 0.

Ens: Dr M. Barro 5/7 Algèbre linéaire

3.2 Dimension d'un espace vectoriel

Déf 3.3. Un espace vectoriel est de **dimension finie** s'il admet une base avec un nombre fini de vecteurs.

Propriété 3.2. Si une base \mathcal{B} de \mathbb{E} a n vecteurs alors toute base de \mathbb{E} a n vecteurs. Ce nombre s'appelle la dimension de \mathbb{E} et on note dim $\mathbb{E} = n$.

Exo 3.1. Montrez que $\mathbb{E} = \left\{ \begin{pmatrix} 2a+b & b \\ a+c & -a \end{pmatrix} \mid a,b,c \in \mathbb{R} \right\}$ est un \mathbb{R} -espace vectoriel, en donner une base et la dimension.

Solution 3.1. Par définition de \mathbb{E} , on a :

$$\mathbb{E} = \left\{ \begin{pmatrix} 2a+b & b \\ a+c & -a \end{pmatrix} \mid a,b,c \in \mathbb{R} \right\}$$

$$= \left\{ a \begin{pmatrix} 2 & 0 \\ 1 & -1 \end{pmatrix} + b \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \mid a,b,c \in \mathbb{R} \right\}$$

$$= \operatorname{Vect} \left\{ \begin{pmatrix} 2 & 0 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}$$

Par ailleurs, $a \begin{pmatrix} 2 & 0 \\ 1 & -1 \end{pmatrix} + b \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ si et seulement si a = b = c = 0. Donc \mathbb{E} est un sev de dimension 3 de $\mathcal{M}_2(\mathbb{R})$.

Exo 3.2. Montrez que $\mathbb{E} = \{P \in \mathbb{R}_3 [X] \mid P(2) = P(1) = 0\}$ est un espace vectoriel. Donner une base de \mathbb{E} et la dimension de \mathbb{E} .

Solution 3.2. Soit $P \in \mathbb{E}$. Alors P est un polynôme de degré au plus 3 et P(1) = P(2) = 0. Il existe donc $a, b \in \mathbb{R}$ tels que $P(X) = (X - 1)(X - 2)(aX + b) = a(X^3 - 3X^2 + 2X) + b(X^2 - 3X + 2)$. On en déduit que

$$\mathbb{E} = \{a(X^3 - 3X^2 + 2X) + b(X^2 - 3X + 2) | a, b \in \mathbb{R}\} = \text{Vect}\{X^3 - 3X^2 + 2X, X^2 - 3X + 2\}.$$

De plus, la famille $\{X^3 - 3X^2 + 2X, X^2 - 3X + 2\}$ est libre. Donc \mathbb{E} est un sev de dimension 2 de $\mathbb{R}_3[X]$.

Convention : On considère qu'un espace vectoriel réduit au vecteur nul est de dimension 0.

Propriété 3.3. Soit $\mathbb E$ un espace vectoriel de dimension n , alors :

- 1. Le cardinal d'une famille libre de \mathbb{E} est inférieur ou égal à n.
- 2. Le cardinal d'une famille génératrice de \mathbb{E} est supérieur ou égal à n.
- 3. Si le cardinal d'une famille libre de $\mathbb E$ est exactement égal à n (On parle de famille libre maximale) alors c'est une base de $\mathbb E$.
- 4. Si le cardinal d'une famille génératrice de \mathbb{E} est exactement égal à n (On parle de famille génératrice minimale) alors c'est une base de \mathbb{E} .

Propriété 3.4 (Théorème de la base incomplète). Soit $\{e_1, \dots, e_k\}$ une famille libre de \mathbb{E} un espace vectoriel de dimension finie n > k. Alors il existe des vecteurs e_{k+1}, \dots, e_n de \mathbb{E} tels que $\{e_1, \dots, e_k, e_{k+1}, \dots, e_n\}$ soit une base de \mathbb{E} .

Ens: Dr M. Barro 6/7 Algèbre linéaire

3.3 Somme de sous espaces vectoriels

Déf 3.4. Soient \mathbb{E} un \mathbb{K} -espace vectoriel, F_1 et F_2 deux sous-espaces de \mathbb{E} . L'ensemble $H = \{x_1 + x_2 \mid x_1 \in F_1, x_2 \in F_2\}$ est un sous-espace vectoriel de \mathbb{E} appelé somme de F_1 et F_2 et noté $F_1 + F_2$.

Exo 3.3. On considère les deux sous-espaces vectoriels $F_1 = \{(x, y, z, t) \in \mathbb{R}^4 \mid 3x - y + z = 0 \text{ et } t = 0\}$ et $F_2 = \{(x, y, z, t) \in \mathbb{R}^4 \mid y - z - 2t = 0 \text{ et } x = 0\}$ de l'espace vectoriel \mathbb{R}^4 . Déterminer une base et la dimension de chacun des sous-espaces vectoriels $F_1, F_2, F_1 \cap F_2$ et $F_1 + F_2$.

Solution 3.3. On a:

- $F_1 = \text{Vect}\{(1, 0, -3, 0), (0, 1, 1, 0)\}$ et la famille $\{(1, 0, -3, 0), (0, 1, 1, 0)\}$ est libre dans \mathbb{R}^4 , c'est donc une base de F_1 dans \mathbb{R}^4 . Donc dim $F_1 = 2$.
- $F_2 = \text{Vect}\{(0,1,1,0),(0,2,0,1)\}\ et\ la\ famille\ \{(0,1,1,0),(0,2,0,1)\}\ est\ libre\ dans\ \mathbb{R}^4,\ c'est\ donc\ une\ base\ de\ F_2\ dans\ \mathbb{R}^4.\ Donc\ \dim F_2 = 2.$
- Par définition de F_1 et F_2 , on $a: F_1 \cap F_2 = \{(x,y,z,t) \in \mathbb{R}^4 \mid | x = t = 0 \text{ et } y = z \}$. Donc $F_1 \cap F_2 = \text{Vect}\{(0,1,1,0)\}$. Comme le vecteur (0,1,1,0) est non nul alors $\{(0,1,1,0)\}$ est une base de $F_1 \cap F_2$. Donc $\dim F_1 \cap F_2 = 1$.
- Par définition, on a

```
F_1 + F_2 = \{x(1,0,-3,0) + y(0,1,1,0) + z(0,1,1,0) + t(0,2,0,1) \mid x,y,z,t \in \mathbb{R}\}= \{x(1,0,-3,0) + u(0,1,1,0) + t(0,2,0,1) \mid x,u,t \in \mathbb{R}\}= \text{Vect}\{(1,0,-3,0), (0,1,1,0), (0,2,0,1)\}.
```

Comme la famille $\{(1,0,-3,0),(0,1,1,0),(0,2,0,1)\}$ est libre, on en déduit que c'est une base de $F_1 + F_2$ et par suite $\dim(F_1 + F_2) = 3$.

Déf 3.5. Soient F_1 et F_2 deux sous-espaces d'un espace \mathbb{E} . La somme $F_1 + F_2$ est **directe** si $F_1 \cap F_2 = \{0_{\mathbb{E}}\}$. Elle est alors notée $F_1 \oplus F_2$.

Propriété 3.5. Soient F_1 et F_2 deux sous-espaces d'un espace \mathbb{E} . La somme F_1+F_2 est **directe** si, et seulement si, pour tout $x \in F_1+F_2$, il existe un et un seul couple $(x_1,x_2) \in F_1 \times F_2$ tel que $x = x_1 + x_2$.

Déf 3.6. Soient F_1 et F_2 deux sous-espaces d'un espace \mathbb{E} . F_1 et F_2 sont dits **supplémentaire** si $F_1 \oplus F_2 = \mathbb{E}$.