Outline

- Incredibly brief review of simulation
- On to Differential Equations: ODEs and PDEs
- A brief look at tree algorithms (and Scan)

Simulation outline

- Discrete event systems
 - Time and space are discrete
- Particle systems
 - Important special case of lumped systems
- Lumped systems (ODEs)
 - Location/entities are discrete, time is continuous
- Continuous systems (PDEs)
 - Time and space are continuous

Summary of particle methods

- Model contains discrete entities, namely, particles
- Time is continuous must be discretized to solve
- Simulation follows particles through timesteps
 - Force = external _force + nearby_force + far_field_force
 - All-pairs algorithm is simple, but inefficient, O(n²)
 - Particle-mesh methods approximates by moving particles to a regular mesh, where it is easier to compute forces
 - Tree-based algorithms approximate by treating set of particles as a group, when far away

Review of last lecture

- Common problems:
 - Load balancing
 - May be due to lack of parallelism or poor work distribution
 - Statically, divide grid (or graph) into blocks
 - Dynamically, if load changes significantly during run
 - Locality
 - Partition into large chunks with low surface-to-volume ratio
 - To minimize communication
 - Distributed particles according to location, but use irregular spatial decomposition (e.g., quad tree) for load balance
 - Constant tension between these two
 - Particle-Mesh method: can't balance particles (moving), balance mesh (fixed) and keep particles near mesh points without communication

System of Lumped Variables

- Many systems are approximated by
 - System of "lumped" variables.
 - Each depends on continuous parameter (usually time).
- Example -- circuit:
 - approximate as graph.
 - wires are edges.
 - nodes are connections between 2 or more wires.
 - each edge has resistor, capacitor, inductor or voltage source.
 - system is "lumped" because we are not computing the voltage/current at every point in space along a wire, just endpoints.
 - Variables related by Ohm's Law, Kirchoff's Laws, etc.
- Forms a system of ordinary differential equations (ODEs).
 - Differentiated with respect to time
 - Variant: ODEs with some constraints

Circuit Example

- State of the system is represented by
 - v_n(t) node voltages
 - i_b(t) branch currents
 all at time t
 - v_h(t) branch voltages
- Equations include

Equations include
$$- \text{ Kirchoff's current} \\ - \text{ Kirchoff's voltage} \\ - \text{ Ohm's law} \\ - \text{ Capacitance} \\ - \text{ Inductance}$$

$$0 \\ A' \\ 0 \\ R \\ -I \\ C*d/dt \\ 0$$

$$0 \\ S \\ 0 \\ 0 \\ 0$$

- A is sparse matrix, representing connections in circuit
 - One column per branch (edge), one row per node (vertex) with +1 and -1 in each column at rows indicating end points
- Write as single large system of ODEs

Solving ODEs

- In these examples, and most others, the matrices are sparse:
 - i.e., most array elements are 0.
 - neither store nor compute on these 0's.
 - Sparse because each component only depends on a few others
- Given a set of ODEs, two kinds of questions are:
 - Compute the values of the variables at some time t
 - Explicit methods
 - Implicit methods
 - Compute modes of vibration
 - Eigenvalue problems

Solving ODEs: Explicit methods

- Assume ODE is x'(t) = f(x) = A*x(t), where A is a sparse matrix
 - Compute x(i*dt) = x[i] at i=0,1,2,...
 - ODE gives x'(i*dt) = slopex[i+1]=x[i] + dt*slope
- Explicit methods, e.g., (Forward) Euler's method.
 - Approximate x'(t)=A*x(t) by (x[i+1] x[i])/dt = A*x[i].
 - x[i+1] = x[i]+dt*A*x[i], i.e. sparse matrix-vector multiplication.
- Tradeoffs:
 - Simple algorithm: sparse matrix vector multiply.
 - Stability problems: May need to take very small time steps, especially if system is "stiff" (i.e. A has some large entries, so x can change rapidly).

Solving ODEs: Implicit methods

- Assume ODE is x'(t) = f(x) = A*x(t), where A is a sparse matrix
 - Compute x(i*dt) = x[i] at i=0,1,2,...
 - ODE gives x'((i+1)*dt) = slopex[i+1]=x[i] + dt*slope
- Implicit method, e.g., Backward Euler solve:
 - Approximate x'(t)=A*x(t) by (x[i+1] x[i])/dt = A*x[i+1].
 - (I dt*A)*x[i+1] = x[i], i.e. we need to solve a sparse linear system of equations.
- Trade-offs:
 - Larger timestep possible: especially for stiff problems
 - More difficult algorithm: need to solve a sparse linear system of equations at each step

Explicit vs. Implicit

Forward (Explicit: dt(i+1)) vs. Backward (Implicit): dt

Solving ODEs: Eigenvalue methods

- Computing modes of vibration: finding eigenvalues and eigenvectors.
 - Seek solution of $d^2 x(t)/dt^2 = A*x(t)$ of form $x(t) = \sin(\omega*t) * x_0$, where x_0 is a constant vector
 - ω called the frequency of vibration
 - x₀ sometimes called a "mode shape"
 - Plug in to get $-\omega^2 * x_0 = A * x_0$, so that $-\omega^2$ is an eigenvalue and x_0 is an eigenvector of A.
 - Solution schemes reduce either to sparse-matrix multiplication, or solving sparse linear systems.

Implicit methods: Eigenproblems

- Implicit methods for ODEs need to solve linear systems
- Direct methods (Gaussian elimination)
 - Called LU Decomposition, because we factor A = L*U
 - More complicated than sparse-matrix vector multiplication.
- Iterative solvers
 - Jacobi, Successive over-relaxation (SOR), Conjugate Gradient (CG), Multigrid,...
 - Most have sparse-matrix-vector multiplication
- Eigenproblems
 - Also depend on sparse-matrix-vector multiplication, direct methods.

ODEs and Sparse Matrices

- All these problems reduce to sparse matrix problems
 - Explicit: sparse matrix-vector multiplication
 - Implicit: solve a sparse linear system
 - direct solvers (Gaussian elimination).
 - iterative solvers (use sparse matrix-vector multiplication).
 - Eigenvalue/vector algorithms may also be explicit or implicit.
- Conclusion: Sparse Matrix-Vector Multiplication is key to many ODE problems
 - Relatively simple algorithm to study in detail
 - Two key problems: locality and load balance

Compressed Sparse Row (CSR) Format

y = y + A*x, only store, do arithmetic, on nonzero entries CSR format is simplest one of many possible data structures for A

Matrix-vector multiply kernel: $y(i) \leftarrow y(i) + A(i,j) \cdot x(j)$

```
for each row i
  for k=ptr[i] to ptr[i+1]-1 do
     y[i] = y[i] + val[k]*x[ind[k]]
```

Parallel Sparse Matrix-vector multiplication

• y = A*x, where A is a sparse $n \times n$ matrix

- Partitioning
 - Partition index set $\{1,...,n\} = N1 \cup N2 \cup ... \cup Np$.
 - For all i in Nk, Processor k stores y[i], x[i], and row i of A
 - For all i in Nk, Processor k computes y[i] = (row i of A) * x
 - "owner computes" rule: Processor k compute the y[i]s it owns.

May require communication

Matrix Reordering via Graph Partitioning

- "Ideal" matrix structure for parallelism: block diagonal
 - p (number of processors) blocks, can all be computed locally.
 - If no non-zeros outside these blocks, no communication needed
- Can we reorder the rows/columns to get close to this
 - Most nonzeros in diagonal blocks, few outside

Goals of Reordering

- Performance goals
 - balance load (how is load measured?).
 - Approx equal number of nonzeros (not necessarily rows)
 - balance storage (how much does each processor store?).
 - Approx equal number of nonzeros
 - minimize communication (how much is communicated?).
 - Minimize nonzeros outside diagonal blocks
 - Related optimization criterion is to move nonzeros near diagonal
 - improve register and cache re-use
 - Group nonzeros in small vertical blocks so source (x) elements loaded into cache or registers may be reused (temporal locality)
 - Group nonzeros in small horizontal blocks so nearby source (x) elements in the cache may be used (spatial locality)
- Other algorithms reorder for other reasons
 - Reduce # nonzeros in matrix after Gaussian elimination
 - Improve numerical stability

Graph Partitioning

Relationship between matrix and graph

	1	2	3	4	5	6
1	1			1	1	
2		1	1	1	1	
3		1	1			1
4	1	1		1		1
5	1	1			1	1
6			1	1	1	1

- Edges in the graph are nonzero in the matrix: here the matrix is symmetric (edges are unordered) and weights are equal (1)
- If divided over 3 processors, there are 14 nonzeros outside the diagonal blocks, which represent the 7 (bidirectional) edges

Graph Partitioning and Sparse Matrices

Relationship between matrix and graph

- A "good" partition of the graph has
 - equal (weighted) number of nodes in each part (load and storage balance).
 - minimum number of edges crossing between (minimize communication).
- Reorder the rows/columns by putting all nodes in one partition together.

Summary of common problems

- Load Balancing
 - Dynamically if load changes significantly during job
 - Statically Graph partitioning
 - Discrete systems
 - Sparse matrix vector multiplication
- Linear algebra
 - Solving linear systems (sparse and dense)
 - Eigenvalue problems will use similar techniques
- Fast Particle Methods
 - O(n log n) instead of O(n²)

Computational methods in Applications

PDEs: Continuous Variables, Continuous Parameters

- Examples of such systems include
 - Elliptic problems (steady state, global space dependence)
 - Electrostatic or Gravitational Potential: Potential(position)
 - Hyperbolic problems (time dependent, local space dependence):
 - Sound waves: Pressure(position,time)
 - Parabolic problems (time dependent, global space dependence)
 - Heat flow: Temperature(position, time)
 - Diffusion: Concentration(position, time)

PDEs: Local/Global Dependence

- Global vs Local Dependence
 - Global means either a lot of communication, or tiny time steps
 - Local arises from finite wave speeds: limits communication
- Many problems combine features of above
 - Fluid flow: Velocity, Pressure, Density (position, time)
 - Elasticity: Stress, Strain(position, time)

Explicit time stepping

- Approximate PDE by ODE system ("method of lines"):
- Need a time-stepping scheme for the ODE: Simplest scheme is Euler's Method
- Taking a time step ≡ sparse matrix vector multiplication
- This may not end well... (instability)

Implicit time stepping

- Examples of such systems include
 - Elliptic problems (steady state, global space dependence)
 - Electrostatic or Gravitational Potential: Potential(position)
 - Hyperbolic problems (time dependent, local space dependence):
 - Sound waves: Pressure(position,time)
 - Parabolic problems (time dependent, global space dependence)
 - Heat flow: Temperature(position, time)
 - Diffusion: Concentration(position, time)

Parallelism in Explicit Method for PDEs

- Sparse matrix vector multiply, via Graph Partitioning
- Partitioning the space (x) into p chunks
 - good load balance (assuming large number of points relative to p)
 - minimize communication (least dependence on data outside chunk)
- Generalizes to
 - multiple dimensions.
 - arbitrary graphs (= arbitrary sparse matrices).
- Explicit approach often used for hyperbolic equations
 - Finite wave speed, so only depend on nearest chunks
- Problem with explicit approach for heat (parabolic): numerical instability.

Implicit vs. Explicit

• Explicit:

- Propagates information at finite rate
- Steps look like sparse matrix-vector (in linear case)
- Stable step determined by fastest time scale
- Works fine for hyperbolic PDEs

• Implicit:

- No need to resolve fastest time scales
- Steps can be long... but expensive
- Linear/nonlinear solves at each step
- Often these solves involve sparse matrix-vectors
- Critical for parabolic PDEs

Algorithm overview

from slowest to fastest on sequential machines

- Dense LU: Gaussian elimination; works on any N-by-N matrix.
- Band LU: Exploits the fact that tridiagonal matrix T is nonzero only on sqrt(N) diagonals nearest main diagonal.
- Jacobi: Essentially does matrix-vector multiply by T in inner loop of iterative algorithm.
- Explicit Inverse: Assume we want to solve many systems with T, so we can precompute and store inv(T) "for free", and just multiply by it (but still expensive).
- Conjugate Gradient: Uses matrix-vector multiplication, like Jacobi, but exploits mathematical properties of T that Jacobi does not.
- Red-Black SOR (successive over-relaxation): Variation of Jacobi that exploits yet different mathematical properties of T. Used in multigrid schemes.
- Sparse LU: Gaussian elimination exploiting particular zero structure of T.
- FFT (Fast Fourier Transform): Works only on matrices very like T.
- Multigrid: Also works on matrices like T, that come from elliptic PDEs.
- Lower Bound: Serial (time to print answer); parallel (time to combine N inputs).

Summary of Approaches to Solving PDEs

- As with ODEs, either explicit or implicit approaches are possible
 - Explicit, sparse matrix-vector multiplication
 - Implicit, sparse matrix solve at each step
 - Direct solvers are hard
 - Iterative solves turn into sparse matrix-vector multiplication: Graph partitioning
- Graph and sparse matrix correspondence:
 - Sparse matrix-vector multiplication is nearest neighbor "averaging" on the underlying mesh
- Not all nearest neighbor computations have the same efficiency
 - Depends on the mesh structure (nonzero structure) and the number of Flops per point.

Comments on practical meshes

- Regular 1D, 2D, 3D meshes
 - Important as building blocks for more complicated meshes
- Practical meshes are often irregular
 - Composite meshes, consisting of multiple "bent" regular meshes joined at edges
 - Unstructured meshes, with arbitrary mesh points and connectivities
 - Adaptive meshes, which change resolution during solution process to put computational effort where needed

Parallelism in Regular meshes

- Computing a Stencil on a regular mesh
 - need to communicate mesh points near boundary to neighboring processors.
 - Often done with ghost regions
- Surface-to-volume ratio keeps communication down, but
 - Still may be problematic in practice

Implemented using "ghost" regions.

Adds memory overhead

Irregular mesh: NASA Airfoil in 2D (direct solution)

Adaptive mesh

Challenges of Irregular Meshes

- How to generate them in the first place
 - Start from geometric description of object
 - Triangle, a 2D mesh partitioner by Jonathan Shewchuk
 - 3D harder!
- How to partition them
 - ParMetis, a parallel graph partitioner
- How to design iterative solvers
 - PETSc, a Portable Extensible Toolkit for Scientific Computing
 - Prometheus, a multigrid solver for finite element problems on irregular meshes
- How to design direct solvers
 - SuperLU, parallel sparse Gaussian elimination

The "Seven Dwarfs": High-end simulation in the physical sciences

- 1)Structured grids
- 2)Unstructured grids
- 3) Spectral methods (Fast Fourier Transform)
- 4) Dense Linear Algebra
- 5) Sparse Linear Algebra: Both explicit and implicit
- 6)Particle Methods
- 7)Monte Carlo/Embarrassing Parallelism/Map Reduce (easy!)

Tree structured computation

Parallel Prefix, or Scan

• If "+" is an associative operator, and x[0],...,x[p-1] are input data then parallel prefix operation computes

$$y[j] = x[0] + x[1] + ... + x[j]$$
 for $j=0,1,...,p-1$

• Notation: j:k means x[j]+x[j+1]+...+x[k], blue is final value

Mapping Parallel Prefix onto a Tree: Details

- Up-the-tree phase (from leaves to root)
 - 1) Get values L and R from left and right children
 - 2) Save L in a local register Lsave
 - 3) Pass sum L+R to parent
- By induction, Lsave = sum of all leaves in left subtree
- Down the tree phase (from root to leaves)
 - 1) Get value S from parent (the root gets 0)
 - 2) Send S to the left child
 - 3) Send S + Lsave to the right child
- By induction, $S = \sup_{U_p \text{ the Tree}} \text{ all leaves to left of subtree rooted at the parent}$

Adding two n-bit ints in O(log n) time

- Let a = a[n-1]a[n-2]...a[0] and b = b[n-1]b[n-2]...b[0] be two n-bit binary numbers
- We want their sum s = a+b = s[n]s[n-1]...s[0]

```
c[-1] = 0 ... rightmost carry bit
for i = 0 to n-1
c[i] = ((a[i] xor b[i]) and c[i-1]) or (a[i] and b[i]) ... next carry bit
s[i] = (a[i] xor b[i]) xor c[i-1]
```

Challenge: compute all c[i] in O(log n) time via parallel prefix for all (0 <= i <= n-1) p[i] = a[i] xor b[i] ... propagate bit for all (0 <= i <= n-1) g[i] = a[i] and b[i] ... generate bit

$$\begin{bmatrix} c[i] \\ 1 \end{bmatrix} = \begin{bmatrix} (p[i] \text{ and } c[i-1]) \text{ or } g[i] \\ 1 \end{bmatrix} = \begin{bmatrix} p[i] & g[i] \\ 0 & 1 \end{bmatrix} * \begin{bmatrix} c[i-1] \\ 1 \end{bmatrix} = C[i] * \begin{bmatrix} c[i-1] \\ 1 \end{bmatrix}$$

... 2-by-2 Boolean matrix multiplication (associative)

= C[i] * C[i-1] * ... C[0] *
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

... evaluate each P[i] = C[i] * C[i-1] * ... * C[0] by parallel prefix

Used in all computers to implement addition - Carry look-ahead

Browser page layout via Prefix (Scan)

- Applying layout rules to html description of a webpage is a bottleneck, scan can help
- Simplest example
 - Given widths $[x_1, x_2, ..., x_n]$ of items to display on page, where should each item go?
 - Item j starts at $x_1 + x_2 + ... + x_{j-1}$
- Real examples have complicated constraints
 - Defined by general trees, since in html each object to display can be composed of other objects
 - To get location of each object, need to do preorder traversal of tree, "adding up" constraints of previous objects
 - Scan can do preorder traversal of any tree in parallel
 - Not just binary trees

Summary of tree algorithms

- Lots of problems can be done quickly in theory using trees
- Some algorithms are widely used
 - -broadcasts, reductions, parallel prefix
 - -carry look ahead addition
- Some are of theoretical interest only
 - -Csanky's method for matrix inversion
 - Solving tridiagonal linear systems (without pivoting)
 - Both numerically unstable
- Embedded in various systems
 - -MPI, NESL (CMU), other languages
 - CM-5 hardware control network