

The Nature of Monte Carlo Mine Burial Prediction

P.A. Elmore and M.D.
Richardson

Marine Geosciences Division

Naval Research Laboratory

Stennis Space Center, MS

The Nature of the Problem

- Mine burial is <u>stochastic</u>
 - Large number of physical influences, some of which are stochastic
 - Initial conditions at deployment uncertain (small changes initially may result in very large differences in the end state).
- Best possible prediction: probabilities for different states of burial.

Monte Carlo Approach

se deterministic models of impact and subsequent urial in a <u>Monte Carlo simulation</u> to calculate buriate for a large number of mines.

- Random numbers generator > probability density for each initial variable.
- Direct computation of burial over the life of each mine.
- End result: final states of a large number of mines.

Monte Carlo Approach (cont.)

- Results are used to determine probability for different states of burial in a particular region of interest over time.
- Probabilities are associated with lat/long positions to form maps of mine burial probabilities in operational area.
- An analyst can then use these maps to plan mine clearance or avoidance (go/no go).

Monte Carlo – High Lever Technology View

Mission planning

NAVO DB and model results

Front end of MC model

MC Run(s)

End result and analysis

NAVO Model and DB Input

Model Front End

Model Mechanics

(one run)

Model Front End

- DB and model ingest
- PDF's (models, historical data, intelligence)
- Monte Carlo

Liquefaction

Bedform migration

Sediment Influx

Model Mechanics

(Subsequent Burial Process)

Turn-based coupling of post-impact processes.

Processes "take turns"operate one at a time cyclically.

Period of the cyclic made small relative to mine life so that a continuous coupled process is approximated.

Analogy: Card game. Each player is idle at the table until it is their turn to play a card.

Model Mechanics

(Saving Intermediate and Final Results)

Some Currently Available Components

- IMPACT 28 with Monte Carlo shell
- Coded in QBASIC and MATLAB

Scour: HR Wallingford Equations

- Validation and "tweaking" against NRL mine data
- Coded in MATLAB

Sand Ridge Migration: Mulhearn model

- Australian defense research
- Currently in a technical report, needs coding

Leveraging MBP Modelification Efforts

Process models

(Impact and Post-Impact)

- Form the parts required by holistic models.
- Q/A of physics and define applicability

Holistic models

(Expert System, Monte Carlo Sim)

- Use process models as parts in an overall model
- Integration, statistics, and end product

r factory analogy: Process models form the car parts (brakensmission, etc.). Holistic models are the assembled car.

The Nature of the Prediction

- Stochastic problem -> probabilistic prediction.
 - Probabilities for different states of burial
 - Time dependent
 - Risk analysis and planning required afterwards
- Uncertainties
 - Convergence of a solution
 - Sensitivity of variables to change
 - Accuracy of the impact and subsequent burial models
 - Capabilities/Limitations of databases

End Goal - Avoid This!

