# Predicting Ski Resort Lift Ticket Prices

IBM Applied Data Science Capstone Project
March 17, 2019

## Single-day lift ticket prices

- Expensive
- Proxy for the ski resort riding experience
- Depend on the size of the resort
- Might depend on the resort off-mountain infrastructure
- Predicting prices is important for dynamic pricing and might guide the future resort infrastructure development
- Comparing actual and predicted prices might might help find good deals

### Data acquisition

- <u>www.skiresort.info</u> [number of ski lifts, vertical drop, price, etc.]
- www.onthesnow.com [lift ticket price]
- wikipedia.org [number of ski lifts, vertical drop, price, etc.]
- www.google.com [ski resort latitude and longitude]
- <u>developer.foursquare.com</u> [number of restaurants, hotels, etc.]

### Data cleaning

- Remove duplicates
- Fill missing price values/improve price relevance by merging all datasets and keeping the highest price value (assumption for the most recent price)
- Drop irrelevant or mostly unfilled features
- Drop 33 ski resorts and areas that still have missing prices
- Add information on number of venues within a 5 km radius using Foursquare API
- Resulting dataset has 385 entries with price information and 13 additional numerical features

### Data exploration: Histograms



### Data exploration: Correlations



### Data exploration: Correlations



Data exploration: Correlations

- 0.4

- 0.2

- 0.0



 Peak Elevation and Total Trails are redundant

 Resort stats and number of nearby venues features do not correlate as much as between themselves

• *Shops* and *Cafes* unlikely to improve the prediction performance

#### Models: Feature selection

- 1. All Stats (naïve, baseline model): base elevation, peak elevation, vertical drop, ski lifts, green trails, blue trails, black trails, total trails
- 2. Selected Stats (less-redundant model): base elevation, vertical drop, ski lifts, green trails, blue trails, black trails
- 3. Selected Stats & All Venues (model with all venue info): base elevation, vertical drop, ski lifts, green trails, blue trails, black trails, shops, cafes, restaurants, bars, hotels
- 4. Selected Stats & Venues (model with the most relevant venue info): base elevation, vertical drop, ski lifts, green trails, blue trails, black trails, restaurants, hotels

### Model evaluation: RMS

|       | All Stats  | Selected Stats | Selected Stats & All Venues | Selected Stats & Venues |
|-------|------------|----------------|-----------------------------|-------------------------|
| count | 100.000000 | 100.000000     | 100.000000                  | 100.000000              |
| mean  | 393.426425 | 401.158813     | 373.261989                  | 373.279516              |
| std   | 93.018727  | 94.993118      | 78.437656                   | 78.704967               |
| min   | 252.369772 | 250.531713     | 232.478668                  | 232.805593              |
| 25%   | 327.209253 | 328.888881     | 318.170719                  | 310.094670              |
| 50%   | 386.489422 | 395.957857     | 363.236319                  | 366.224141              |
| 75%   | 435.562997 | 449.859424     | 411.631497                  | 418.904158              |
| max   | 664.320995 | 680.741818     | 606.805815                  | 609.259115              |



### Model evaluation: R<sup>2</sup>

Selected Stats & Venues performs the best!

|       | All Stats  | Selected Stats | Selected Stats & All Venues | Selected Stats & Venues |
|-------|------------|----------------|-----------------------------|-------------------------|
| count | 100.000000 | 100.000000     | 100.000000                  | 100.000000              |
| mean  | 0.719842   | 0.714327       | 0.733802                    | 0.734135                |
| std   | 0.066570   | 0.067899       | 0.059033                    | 0.057498                |
| min   | 0.575071   | 0.565145       | 0.595133                    | 0.615049                |
| 25%   | 0.670912   | 0.662536       | 0.690870                    | 0.695566                |
| 50%   | 0.727849   | 0.724549       | 0.735853                    | 0.738808                |
| 75%   | 0.774616   | 0.771226       | 0.775955                    | 0.777494                |
| max   | 0.828915   | 0.828941       | 0.845145                    | 0.842283                |



# Best model performance





#### Best model coefficients

| Base Elevation (USD/m) | Vertical Drop (USD/m) | Ski Lifts (USD) | Green Trails (USD/km) | Blue Trails (USD/km) | Black Trails (USD/km) | Restaurants (USD) | Hotels (USD) |
|------------------------|-----------------------|-----------------|-----------------------|----------------------|-----------------------|-------------------|--------------|
| 0.003009               | 0.037872              | 2.512523        | 0.415106              | 0.252716             | 0.025395              | 0.061857          | 0.445723     |

Coefficients suggest that the best predictors for lift ticket price are:

- number of ski lifts
- lengths of the green trails
- number of hotels nearby

While this does not prove causality, this seems to be helpful in finding the most important on- and off-mountain infrastructure factors

#### Conclusion and future directions

- Including the number of nearby restaurants and, especially, of hotels improves the model performance
- Improvement is relatively small but the effect is robust: off-mountain infrastructure is important
- Model improvement ideas:
  - select more specific venues nearby/filter the venue datasets/adjust the radius
  - include other basic resorts stats as the average annual snowfall
  - include the cost of living at the state
  - include one hot encoding of the resort owners [www.nsaa.org]
  - explore residuals for any non-linear behavior
  - cluster the resorts for more insights