SERIA 4

Zadanie 1. Ile pierwiastków rzeczywistych mają równania:

- (a) $x^3 6x^2 + 9x 10 = 0$;
- (b) $e^x = ax^2$, w zależności od $a \in \mathbb{R}$;
- (c) $x^5 5x = a$, w zależności od $a \in \mathbb{R}$.

Zadanie 2. Udowodnić, że dla każdego $x \in \mathbb{R}$ jest spełniona nierówność

$$2x \arctan \operatorname{tg} x \geqslant \ln(1+x^2).$$

Zadanie 3. Wykazać, że dla $x \in [0,1]$ oraz p > 1 zachodzi nierówność

$$\frac{1}{2^{p-1}} \leqslant x^p + (1-x)^p \leqslant 1.$$

Zadanie 4. Wykazać nierówność

$$\log_2 3 > \log_3 4$$
.

Zadanie 5. Udowodnić nierówność

$$\frac{a-b}{a} < \ln \frac{a}{b} < \frac{a-b}{b} \quad \text{dla } 0 < b < a.$$

Zadanie 6. Wykazać nierówność

$$\sum_{k=0}^{n} (k - nx)^2 \binom{n}{k} x^k (1 - x)^{n-k} \le \frac{n}{4}.$$

Zadanie 7. Niech $a \in \mathbb{R}$ i $f: (a, +\infty) \to \mathbb{R}$ będzie funkcją różniczkowalną. Udowodnić, że jeżeli $\lim_{x\to\infty} f'(x) = g$, to także $\lim_{x\to\infty} \frac{f(x)}{x} = g$.

Zadanie 8. Wykazać, że funkcje $f(x) = \ln(1+x)$, $g(x) = \ln(1+x^2)$ i $h(x) = \arctan \operatorname{tg} x$ są jednostajnie ciągłe na $[0, \infty)$.

Zadanie 9. Załóżmy, że f jest dwukrotnie różniczkowalna na (a,b) i że istnieje takie $M \ge 0$, dla którego $|f''(x)| \le M$ dla wszystkich $x \in (a,b)$. Wykazać, że f jest jednostanie ciągła na (a,b).

1

Zadanie 10. Czy funkcja $f(x) = \cos(e^x)$ jest jednostajnie ciągła

- (a) na przedziale $(0, \infty)$;
- (b) na przedziale $(-\infty, 0)$.