Generalized Planck's postulate: Any object with 1 degree of freedom, the parameter of which is a sinusoidal function of time (a harmonic oscillator), may only have such total energy that satisfies:

$$E = nhv$$
, $n = 0,1,2,3,...$

(quantization of energy)

Problem 01a: Pendulum

So, let's consider a pendulum consisting of a weight of a mass m=1 kg, hanging on a strand of a length l=0.5 m. Assume that the amplitude of the oscillations is such that at the highest position, the strand makes an angle $\alpha=0.5$ rad with the vertical. The energy of the pendulum is decreasing, e.g., due to friction.

Is the energy decreasing continuously or discretely? Consider the ratio: $\frac{\Delta E}{E}$

Pendulum frequency:
$$v = \frac{1}{2\pi} \sqrt{\frac{g}{l}} = \frac{1}{2\pi} \sqrt{\frac{9.8 \left[\frac{m}{s^2}\right]}{0.5 \left[m\right]}} = 0.70 \left[Hz\right]$$

$$\Delta E = h \nu = 6.626 \cdot 10^{-34} [Js] \cdot 0.70 [Hz] = 4.67 \cdot 10^{-34} [J]$$

Total energy:
$$E = m \cdot g \cdot elev = 1.0 [kg] \cdot 9.8 [\frac{m}{s^2}] \cdot 0.5 [m] \cdot (1 - \cos \alpha) = 6.0 \cdot 10^{-1} [J]$$

The ratio:
$$\frac{\Delta E}{E} = 7.78 \cdot 10^{-34}$$

 $= 0.061 \, \text{m}$

Problem 01b: Micro spring

Consider a mass $m = 10^{-7}$ kg oscillating on a micro spring of a spring constant $k = 10^6 \, \text{N/m}$. Assume the maximum deflection of the spring to be $\Delta x = 10^{-7} \, \text{m}$.

Is its energy decreasing continuously or discretely?

Consider the ratio:

MEMS structures:

Pendulum frequency:
$$v = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{1}{2\pi} \sqrt{\frac{10^6 \left[\frac{N}{m}\right]}{10^{-7} \left[kg\right]}} = 5.03 \cdot 10^5 \ [Hz]$$

$$\Delta E = h v = 6.626 \cdot 10^{-34} [Js] \cdot 5.03 \cdot 10^{5} [Hz] = 3.33 \cdot 10^{-28} [J] = 2.08 \cdot 10^{-9} [eV]$$

Max spring potential energy:
$$E = \frac{1}{2} \cdot k \cdot \Delta x^2$$
 $E = 0.5 \cdot 10^6 \left[\frac{N}{m} \right] \cdot \left(10^{-7} \left[m \right] \right)^2 = 5.0 \cdot 10^{-9} \left[J \right] = 3.12 \cdot 10^{10} \left[eV \right]$

The ratio:
$$\frac{\Delta E}{F} = 6.67 \cdot 10^{-20}$$