ggformula/lattice Comparison

Nicholas Horton (nhorton@amherst.edu)
2018-07-07

Introduction

This document is intended to help users of the mosaic package migrate their lattice package graphics to ggformula. The mosaic package provides a simplified and systematic introduction to the core functionality related to descriptive statistics, visualization, modeling, and simulation-based inference required in first and second courses in statistics. Originally, the mosaic package used lattice graphics but now support is also available for the improved ggformula system.

References

More information about ggformula can be found at https://github.com/ProjectMOSAIC/ggformula.

More information regarding Project MOSAIC (Kaplan, Pruim, and Horton) can be found at http://www.mosaic-web.org. Further information regarding the mosaic package can be found at https://github.com/ProjectMOSAIC/mosaic and https://journal.r-project.org/archive/2017/RJ-2017-02.

Examples of how to bring multidimensional graphics into day one of an introductory statistics course can be found at http://escholarship.org/uc/item/84v3774z.

Histograms (ggformula)

Histograms (lattice)

Histogram options (ggformula)

Histogram options (lattice)

Density plots (ggformula)

gf_dens(~ age, data = HELPrct) 0.05 0.04 20 30 40 age

Density plots (lattice)

Overlaid density plots (ggformula)

Overlaid density plots (lattice)

Density over histograms (ggformula)

Density over histograms (lattice)

We can use stacked layers to add a density curve based on a maximum likelihood fit or a kernel density estimate (see also gf_dist())

```
mosaic makes it easy to add a fitted distribution to a histogram.
```

```
histogram(~ age, data = HELPrct,
fit = "normal", dcol = "red")

0.06
0.05
0.04
20
0.01
{: the condition has length > 1
```

- ## Warning in if (grepl("^pois", dist_name))
 ## and only the first element will be used
- ## Warning in if (!grepl("^d", ddist_name)) {: theoc ## and only the first element will be used
- ## Warning in if (distname %in% c("dlnorm")) {: the condition has length > 1 ## and only the first element will be used
- www and only the libb element will be abea
- ## Warning in if (distname == "dnorm") {: the condition has length > 1 and
 ## only the first element will be used
- ## Warning in if (distname == "poisson") {: the condition has length > 1 and
 ## only the first element will be used
- ## Warning in if (distname == "dexp") $\{: \text{ the condition has length } > 1 \text{ and only }$ ## the first element will be used
- ## Warning in if (distname == "dgeom") {: the condition has length > 1 and
 ## only the first element will be used
- ## Warning: Computation failed in `stat_fitdistr()`:
- ## EXPR must be a length 1 vector

Side by side box plots (ggformula)

gf_boxplot(age ~ sex, data = HELPrct) 60 50 30 20 female sex

Side by side plots (lattice)

Faceted side by side box plots (ggformula)

Faceted side by side plots (lattice)

bwplot(age ~ sex | homeless,

data = HELPrct)

Scatterplot (ggformula)

Scatterplot (lattice)

Overlaid scatterplot with linear fit tice) (ggformula)

gf_point(cesd ~ age, data = HELPrct,

Overlaid scatterplot with linear fit (lattice) ${\bf v}$

xyplot(cesd ~ age, data = HELPrct,

groups = sex,

```
color = ~ sex) %>%

gf_lm()

sex

female

male
```


age

(ggformula)

```
Faceted scatterplot with smooth fit Faceted scatterplot with smooth fit
                                     (lattice)
```

```
gf_point(cesd ~ age | sex,
                                                    xyplot(cesd ~ age | sex, data = HELPrct,
          data = HELPrct) %>%
                                                            type = c("p", "smooth"),
  gf_smooth(se = FALSE)
                                                            auto.key = TRUE)
                                                                                 20
                                                                                     30
                                                                                         40
             female
                                                       60
                                                       50
 40
                                                       40
cesd
                                                       30
                                                       20
                                                       10
                                                        0
                                                           20
                                                                    40
                                                                         50
                                                                             60
                                                                30
                                                60
                                                                              age
```

More options for scatterplot with linear fit (ggformula)

```
More options for scatterplot with linear
fit (lattice)
```

```
gf_point(cesd ~ age, data = HELPrct,
         color = ~ sex) %>%
  gf_lm() %>%
  gf_theme(legend.position = "top") %>%
  gf_labs(title = "This is my ggformula plot"
   x = "age (in years)",
   y = "CES-D measure of
depressive symptoms")
```

This is my ggformula plot

This is my lattice plot

Refine graphs (ggformula)

gf_point(cesd ~ age, data = HELPrct) %>% gf_refine(scale_x_reverse())

Refine graphs (lattice)

Want to explore more?

Within RStudio, after loading the mosaic package, try running the command mplot(ds) where ds is a dataframe. This will open up an interactive visualizer that will output the code to generate the figure (using lattice, ggplot2, or ggformula) when you click on Show Expression.