Next Word Prediction Using Multi-Turn Dialogue Dataset

IE 7500 - Natural Language Processing

Team: Kirthana Shri Chandra Sekar, Srinidhi Aduri, Suja Ganesh Murugan

Objective

The objective of this project is to build a next word prediction model suitable for auto-completion systems using the multi-turn dialogue dataset

Enhance user interaction through immediate suggestions

Minimize typing error through improved typing accuracy

Leverage State of the Art NLP techniques

Outline of Previous Work Done

1

Traditional Methods

Support Vector Machines, Markov Models 3

The Attention Movement

Advancement in RNN Encoder-Decoder models

2

Rise of Deep Learning

RNN, LSTM, Seq2Seq Models 4

Transition to Attention

Transformers, BERT over RNNs, CNNs

Methodology

About the Dataset

- This is a daily dialogue dataset, that is human-written, and contains daily conversations on various topics
- It has around 13,000 transcribed dialogues
- Specifics on dataset:
 - o average of 15 tokens per utterance
 - Dialogue separation by <eou>

A: I'm worried about something.

B: What's that?

A: Well, I have to drive to school for a meeting this morning, and I'm going to end up getting stuck in rush-hour traffic.

B: That's annoying, but nothing to worry about. *Just breathe deeply when you feel yourself getting upset.*

A: Ok, I'll try that.

B: Is there anything else bothering you?

A: Just one more thing. A school called me this morning to see if I could teach a few classes this weekend and I don't know what to do.

B: Do you have any other plans this weekend?

A: I'm supposed to work on a paper that'd due on Monday.

B: Try not to take on more than you can handle.

A: You're right. I probably should just work on my paper. <u>Thanks!</u>

Data Preprocessing Flow Diagram

Model Development and Evaluation Framework

Training Development	Model Evaluation		
Training: Tensorflow	Loss	 	Train,
Epochs: 30	Accuracy	Validate and test	
Overfitting mitigation: Early Stopping	Perplexity		Test
Metric Tracking: MLFlow	Top k accuracy		

LSTM – Each Utterance + embedding from scratch

Observations:

- Struggles to remember long term dependencies due to high input sequence length
- Vanishing gradient problem is more pronounced in deep networks

LSTM – Each Utterance + word2vec

Observations:

• Adopting word2vec yielded better results but the model still struggled to learn effectively

LSTM Model – Five-in, one-out sequence + embedding from scratch

Observations:

- The model is given five words from a sentence and is trained to predict the sixth word
- Notable performance in model's performance, perplexity reduced substantially
- Demonstrates the effectiveness of using shorter input sequences to enhance the LSTM model

LSTM Model — Five-in, one-out sequence + Word2Vec embedding

Observation:

• The learning process enhanced due to word2vec embedding, resulting in a further reduction in perplexity.

LSTM Model - Five-in, one-out sequence + GloVe embedding

Observations:

The usage of GloVe embedding displayed similar performance as Word2Vec

Summary of best-performing Models

Model	Embed_ dim	Layers	Units	Perplexity	Test Acc.	Top-5 Acc.
Word2Vec (sg=1)	500	1	100	6.00	76.78	83.22
Word2Vec (sg=1)	300	1	200	6.14	76.30	83.10
Word2Vec (sg=1)	300	1	100	6.20	77.00	82.84
Word2Vec (sg=1)	500	1	200	6.34	75.90	82.88
Word2Vec (sg=1)	300	1	200	6.41	74.84	83.08

Conclusion

- Models with Shallow layers consistently outperformed those with dense layers
- Five-Word-In and One-Word-Out sequence format helped achieve improved results
- Pre-trained embeddings improved the performance of the model
- Word2Vec embeddings gave highest accuracy among the tested methods.

Thank You