REPUBLIQUE ISLAMIQUE DE MAURITANIE

Ministère d'Etat à l'Education Nationale à

l'Enseignement Supérieur et à la Recherche Scientifique Mathématiques/T.M.G.M

Direction des Examens et de l'Evaluation

Honneur Fraternité Justice

Série:

Coefficient: Durée: 4H

8/4

Service des Examens

Baccalauréat

Sciences physiques session complémentaire 2012

Exercice 1

Le 2-méthyl-butanoate d''éthyle est un ester qui se développe dans les pommes lors de leur murissement. A partir de pommes mures, on a pu extraire une certaine quantité de cet ester pur.

- 1 Donner la formule semi développée de cet ester.
- 2 Donner les noms et les formules semi développées de l'ester isomère de cet ester provenant du même alcool.
- 3 Indiquer les noms et les formules semi développées de l'acide carboxylique et de l'alcool nécessaire à la synthèse de cet ester.
- 4 Ecrire l'équation bilan de la réaction de l'hydrolyse de cet ester.
- 5 L'objectif de cette hydrolyse est d'obtenir une quantité importante d'acide carboxylique à partir de l'ester recueilli.
- 5.1 Indiquer une technique permettant d'atteindre cet objectif.
- 5.2 Comment peut-on accroitre la rapidité de la réaction d'hydrolyse ?

Exercice 2

Les solutions aqueuses étudiées sont à la température 25°C.

On introduit 7,4g d'un acide carboxylique dans l'eau pour obtenir 1 litre de solution. On place dans un bécher 20mL de la solution d'acide préparée que l'on dose par une solution d'hydroxyde de sodium de concentration molaire $C_B=0,1$ mol/L. On obtient la courbe $pH=f(V_B)$.

1 De la courbe, déterminer à l'équivalence le volume V_E de soude versé et le pH correspondant.

- 2 Déduire:
- 2.1 Une valeur approchée de la concentration initiale C_A de la solution d'acide.

- 2.2 La masse molaire, la formule chimique et le nom de l'acide.
- 2.3 Lorsque le volume de soude versé est égal à 2mL, calculer la concentration des diverses espèces présentes dans le bécher.

Données: C:12g/mol; H:1g/mol; O:16g/mol.

Exercice 3

Un solide S de masse m=0,14kg se déplace sur une piste rectiligne inclinée d'un angle $\alpha = 10^{\circ}$ par rapport à l'horizontale. Le solide S est lâché sans vitesse initiale du point

A d'abscisse x_A définie relativement au repère (B; i; j). Arrivé au point O, il s'engage dans un mouvement de chute parabolique où tout type de frottement est négligeable et rencontre le sol au point I tel que la différence d'altitude entre les points O et I est h=1m comme l'indique la fig 1.

Les frottements auxquels est soumis le solide S au cours de son mouvement entre les

points A et O sont équivalents à une force

f d'intensité supposée constante

A l'aide d'un dispositif approprié on détermine la vitesse instantanée du solide S lors de son passage par les points B, C, D, E et O d'abscisses respectives 0m; 0,2m; 0,4m; 0,6m; 0,8m. Ceci permet de tracer le diagramme de la fig 2 correspondant à

l'énergie cinétique du solide S en fonction de l'abscisse x.

1 En appliquant le théorème de l'énergie cinétique au solide entre la position B et une position quelconque M d'abscisse x par rapport au repère (B; i), montrer que :

$$E_C(x) = mgx \sin \alpha - fx + E_{CB}$$

2 En utilisant le diagramme de la fig2 déterminer l'intensité de la force de frottement et la valeur de l'abscisse x_A

du point A. On donne g=9,8m/s².

- 3 Montrer que l'énergie mécanique E_m du système $\{terre+S\}$ est conservée au cours du mouvement de chute parabolique.
- 4 Calculer la valeur de E_m sachant que l'énergie potentielle de pesanteur au sol est nulle.

En déduire la valeur de la vitesse avec laquelle le solide percute le sol en I.

Exercice 4

On place un élément chimique inconnu X dans une chambre d'ionisation. Elle produit des ions X^{n+} qui sont introduits avec une vitesse nulle en P_1 (voir la figure).

La masse des ions est notée m et on donne $e=1,6 \cdot 10^{-19} \text{ C}$.

1. Entre P_1 et P_2 on applique une différence de potentiel $U = U_{P1P2}$.

Exprimer la vitesse V_B des ions au trou B de la plaque P_2 en fonction de n, e, m et U_{P1P2} .

2., Les ions pénètrent en B à partir d'une ouverture très petite avec une vitesse horizontale dans une région où règne un champ magnétique perpendiculaire au plan de la figure. Les particules sont détectées au point C.

- 3. Exprimer la distance BC en fonction de m, n, e, U_{P1P2} et B (où B est la norme du champ magnétique). (0,5pt)
- 4. On sait que X est : soit l'isotope de masse atomique 59 du nickel qui conduit à l'ion Ni²⁺, soit de l'aluminium (isotope de masse atomique 27) qui conduit à Al³⁺, soit de l'argent (isotope de masse atomique 108) qui conduit à Ag⁺.

Calculer numériquement les distances BC correspondant à chacun des trois ions. On donne : B=1 T , $U_{P1P2} = 1000 \text{ V}$ et $m_p = 1,67 \cdot 10^{-27} \text{kg}$

5. On trouve approximativement BC=27,4mm. Quel est l'élément X?

Exercice 5

Deux rails parallèles ab et a'b' distants de d = 10cm, inclinés par rapport à l'horizontale d'un angle $\alpha = 20^{\circ}$. On relie les extrémités des rails aux bornes d'un générateur de f.e.m E=1,4V et de résistance interne $r=1,8\Omega$ (voir figure 1).

On branche dans le circuit, et en série avec le générateur un dipôle ohmique de résistance $R=0,2\Omega$. Le circuit est fermé par l'intermédiaire d'une tige MN en cuivre de résistance négligeable et de masse m=20g pouvant glisser sans frottement sur les rails. L'ensemble est plongé dans un champ magnétique uniforme de vecteur $\vec{\bf B}$ vertical.

1- Faites l'inventaire des forces qui s'exercent sur la tige.

2 Déterminer le sens et la valeur du vecteur $\vec{\mathbf{B}}$ pour que la fig1 tige reste en équilibre.

3 On enlève le générateur et on ferme de nouveau le circuit (voir fig 2).

On ramène la tige à la positon aa' puis on l'abandonne sans vitesse initiale, elle parcourt une distance L avant de pénétrer dans une zone où règne un champ

magnétique $\vec{\mathbf{B}}' = \vec{\mathbf{B}}$ avec une vitesse $V_0 = 2.8 \text{m.s}^{-1}$.

3.1 Quelle est l'intensité I_0 du courant qui apparaît dans le circuit à l'instant t = 0 ?(Instant à partir duquel la tige pénètre dans le champ magnétique $\vec{\mathbf{B}}'$), indiquer sur un schéma le

Chamre P1 Chambre

d'accélération

d'ionisation

P

fig2

sens du courant et donner les caractéristiques de la force électromagnétique qui s'exerce sur la tige à cet instant. (1pt)

- 3.2 Faites l'inventaire des forces qui s'exercent sur la tige à cet instant t = 0 en précisant que \vec{a} et \vec{v} sont de sens contraire.
- 3.3 La vitesse de la tige atteint une valeur limite V_1 si la tige continue son mouvement dans le champ magnétique. Trouver l'intensité F_1 de la force magnétique, la valeur du courant induit I_1 et la valeur de V_1 . On prendra $g=10 \text{ m.s}^{-2}$.