

Bazy Danych 1

edycja 21L

Laboratorium 1

Prowadzący

Agnieszka Szmurło

Agnieszka.Szmurlo@pw.edu.pl

konsultacje: śr: 14:15 - 15:00, p. 302

Piotr Maciąg

Piotr.Maciag@pw.edu.pl

konsultacje: pt: 10:15 - 12:00, p. 302

Tomasz Gambin

Tomasz.Gambin@pw.edu.pl

konsultacje: pon: 13:00 - 14:00, p. 304

Regulamin

- Obowiązkowa obecność
- Odrabianie zajęć po wcześniejszej zgodzie prowadzącego

- Przydział do grup zgodny z USOS
- Terminy zajęć zgodnie z USOS

Regulamin: organizacja

- 12 terminów laboratoryjnych
- Prace domowe, nieobowiązkowe
- 4 sprawdziany, hrak możliwości poprawy sprawdzianów
- Projekt 2-3 osobowy
 - o możliwość połączenia z PAP (po spełnieniu wymagań BD1)

Regulamin: punktacja

$$5+10+10+5+10=40$$

Regulamin: postanowienia dodatkowe

- Do zaliczenia przedmiotu wymagane jest więcej niż 20 pkt z laboratorium
- Sytuacje szczególne rozpatrywane indywidualnie.
- W kwestiach spornych Student ma prawo do odwołania się do Koordynatora.

Harmonogram

1	Organizacja, Środowisko, Modelowanie	0
2	SQL: definicja schematów (DDL)	0
3	SQL: manipulowanie danymi. SELECT, podstawowe funkcje	0
4	Sprawdzian + SQL: Grupowanie	5
5	SQL: Złączenia	0
6	SQL: Zapytania zagnieżdżone i operacje na zbiorach	0
7	Sprawdzian + PLSQL bloki anonimowe	10
8	PLSQL: Funkcje i procedury	0
9	PLSQL: Kursory, wyzwalacze	0
10	Sprawdzian +Wprowadzenie do projektów JDBC/JPA	10
11	Widoki + Wybrane zagadnienia wydajności w bazach danych	0
12	Sprawdzian + Konsultacje projektowe	5

Jeżeli podczas realizacji procedury zaliczania zajęć prowadzący zaliczenie stwierdzi niesamodzielność pracy studenta lub korzystanie przez niego z niedozwolonych materiałów, student traci prawo zaliczenia tych zajęć w danym etapie studiowania.

Dokumentacja i oficjalne materiały

SQL Language Reference

SQL Developer User's Guide

Database PL/SQL Language Reference

Oracle Academy Program (dla chętnych):

dodatkowe materiały

zniżka na Oracle Database SQL Certified Associate Certification

Materialy dodatkowe

Oracle SQL Tutorials

MySQL - Programming With Mosh

Basic SQL Training

Środowisko - architektura

DB : Oracle Database 19c EE

HOST: ora4.ii.pw.edu.pl

Service Name: pdb1.ii.pw.edu.pl

Oracle JDK 11

SQL Developer 20

IntelliJ IDEA / Eclipse

Środowisko - część centralna

Serwery Instytutu Informatyki, PW

- DB : Oracle Database 19c EE
- HOST: ora4.ii.pw.edu.pl

Service Name: pdb1.ii.pw.edu.pl

- Działające i skonfigurowane środowisko
- Zarządzane i monitorowane przez administratorów II
- Każdy słuchacz przedmiotu ma założone swoje indywidualne konto
- W ramach przedmiotu BD1 <u>nie będziemy</u>
 wykonywać działań instalacyjnych/administracyjnych
 na tym środowisku

Środowisko - część lokalna

Komputer studenta

Oracle JDK 11

SQL Developer 20

IntelliJ IDEA / Eclipse

- Środowisko dostępowe do bazy danych
- Niezbędne jest zainstalowanie narzędzi
 - odpowiedzialność studenta
 - SQL Developer do zajęć lab.*
 - IDE Javowe do realizacji projektu w dalszej części semestru (w instrukcji pomijamy)
- Połączenie do bazy danych jest możliwe poprzez publiczną sieć internetową

^{*)} Tak, istnieją inne aplikacje klienckie do baz danych. Na tych zajęciach będziemy korzystać z SQL Developera (przynajmniej na samym początku)

Wprowadzenie i przebieg laboratorium

- 1. Omówienie schematu bazy danych, typów kolumn i zależności pomiędzy tabelami.
- 2. Projektowanie schematu encyjnego.
- 3. Transformacja do schematu relacyjnego.

Wymagania

- Schemat bazy danych będzie przechowywać dane pewnej firmy.
- Chcemy przechowywać informacje o pracownikach, stanowiskach, departamentach, adresach itp.
- Adresy będą przypisane do krajów, a te do regionów.
- W ramach projektowanej bazy danych będzie konieczne przechowywanie także historii stanowisk pracowników.

Wymagania

- Przechowujemy informacje o Pracownikach (dane osobowe, data zatrudnienia, stanowisku na którym pracuje itp). Każdy pracownik może posiadać menadżera. Pracownicy są przyporządkowani do Zakładów. Każdy zakład również posiada swojego menadżera.
- Przechowujemy informacje o Stanowiskach (nazwa, "widełki" na stanowisku).
- Każdy adres (przechowywany w tabeli Adresy) będzie składać się ulicy, kodu pocztowego, miasta i kraju.
- Kraje będą przypisane do Regionów.

Modelowanie

Opracowanie schematu bazy danych na 2 poziomach + implementacja:

poziom	koncepcyjny	logiczny	implementacja
dokument	diagram ER	schemat relacyjny	skrypt SQL
obiekt modelowany	encja	relacja	tabela
wystąpienie obiektu	instancja	krotka	wiersz/rekord
cechy obiektu	atrybuty	atrybuty	kolumny
identyfikacja obiektu	identyfikator	klucz główny	klucz główny

Modelowanie koncepcyjne - diagram ER

Poprzez model ER przekazujemy koncepcję systemu od abstrakcji do implementacji.

W modelu ER tworzone są encje.

Encja:

- to model rzeczy/pojęć o których chcemy przechować informację
- posiada nazwę
- posiada identyfikator
- posiada atrybuty (opcjonalne/obowiązkowe)
- wchodzi w związki z encjami

Data Modeler

Narzędzie przeznaczone do:

- Projektowania diagramów koncepcyjnych (np. ER).
- Umożliwia wygenerowanie modelu implementacyjnego (np. relacyjnego).
- Umożliwia wygenerowanie skryptów języka DDL na podstawie modelu implementacyjnego.
- Zostanie wykorzystane przez nas do utworzenia modelu ER i relacyjnego

Ćwiczenie - encje i ich identyfikatory

1. W modelu ER stwórz niezbędne encje i zaproponuj ich identyfikatory

Atrybuty i typy danych

Baza danych Oracle udostępnia kilkadziesiąt typów danych (wbudowane i ANSI).

- Typy danych posiadają swoje ograniczenia np. wartości typu DATE powinny być odpowiednio sformatowane, wartościami typu NUMBER nie mogą być łańcuchami znakowymi.
- Typy danych możemy podzielić na skalarne oraz nieskalarne.
 - Typy skalarne przechowują wartości atomowe.
 - Typy nieskalarne przechowują zbiory wartości skalarnych.

Typy danych

CHAR	(rozmiar [BYTE CHAR])	Typ znakowy. W bazie danych rezerwowane jest dokładnie tyle miejsca ile zostanie określone przez parametr rozmiar
VARCHAR2	(rozmiar [BYTE CHAR])	Typ znakowy. W bazie danych używane jest maksymalnie tyle miejsca ile zostanie określone przez parametr rozmiar
NUMBER	(precyzja, skala)	Typ danych przechowujący liczby dodatnie oraz ujemne. Precyzja określa liczbę znaczących dziesiętnych cyfr (liczbę cyfr w liczbie). Skala (jeśli jest dodatnia) określa liczbę cyfr po przecinku.
DATE		Umożliwia przechowywanie daty (rok, miesiąc, dzień, godzina, minuta, sekunda) w formacie określonym przez parametr bazy danych – NLS_DATE_FORMAT.
TIMESTAMP [WITH [LOCAL] TIME ZONE]	(precyzja)	Umożliwia przechowywanie danych jak w przypadku typu DATE, ale dodatkowo możliwe jest przechowywanie części ułamkowej sekund. Format określony jest przez parametr bazy danych – NLS_TIMESTAMP_FORMAT.
BLOB		Umożliwia przechowywanie dużych łańcuchów znaków (zalecany do wykorzystania zamiast typu LONG)
CLOB		Podobnie jak w przypadku typu VARCHAR2, ale wykorzystywane jest narodowe kodowanie znaków.

Ćwiczenie - encje i ich identyfikatory

1. W modelu ER rozbuduj encje o ich atrybuty.

Związki

Związki pokazują zależność między encjami.

Cechy związku:

- nazwa
- opcjonalność / obligatoryjność
- stopień (1 lub wiele)
- transferowalność

Każdą z cech modelujemy dla każdego końca związku niezależnie.

Związki

Ćwiczenie - związki encji

1. W modelu ER zamodeluj związki między encjami

Model logiczny: diagram relacyjny

Na poziomie logicznym określamy model reprezentacji danych. My zakładamy model relacyjny.

Na schemacie relacyjnym obecne są:

- Relacje
- Klucze główne
- Klucze obce (jako implementacja związków między encjami)
- Tabele pośrednie
- Typy danych
- Indeksy dla kolumn nie będących kluczami głównymi

Ćwiczenie - model relacyjny

- 1. Wygeneruj model relacyjny.
- 2. Wygeneruj skrypt tworzący bazę danych według stworzonego diagramu

Praca domowa

- 1. Uzupełnij modele ER i relacyjny o pozostałe wymagania
- 2. Wygeneruj diagram ER, diagram relacyjny oraz skrypt do założenia bazy danych.
- 3. Zweryfikuj, czy zmiany wprowadzone w modelu relacyjnym są możliwe do propagacji do modelu ER
- 4. Odpowiedz na pytania:
 - a. Czy encja może wchodzić w związek sama z sobą?
 - b. Czy może istnieć więcej niż jeden związek między tymi samymi encjami?
 - c. Czy w modelu relacyjnym możliwy jest związek n-n?
 - d. Czy w modelu ER projektujemy klucze główne i klucze obce?
 - e. Czy związek znaczy to samo co relacja w kontekście modelowania bazy danych?