AFE

Chapitre 1 : Suites de Fonctions

1^{er} février 2018

1 Introduction

On considère le problème suivant :

$$\forall x \in \mathbb{R}, y'(x) = y(x) \quad \text{avec } y(0) = 1 \tag{1}$$

Méthode de Euler: C'est une méthode générale pour construire une solution approchée de (1).

On suppose que (1) admet une solution f.

On cherche à approcher f(x) par la méthode d'Euler.

Cette méthode est basée sur l'approximation affine.

Pour $x \in \mathbb{R}$, pour h petit :

$$f(x+h) \approx f(x) + h' f(x)$$

o(h) = hg(h) avec $g(h) \xrightarrow[h \to 0]{} 0$ Donc ici l'approximation (1_h) s'écrit, en utilisant (1).

$$f(x+h) \approx f(x) + hf(x)$$

$$f(x+h) \approx (1+h)f(x) \tag{2}$$

Soit $x \in \mathbb{R}, x > 0$, on subdivise [0, x] en n sous-intervalles (n > 1). $0 \le k \le n - 1, I_k = [x_k, x_{k+1}]$

$$0 = x_0 < x_1 < \dots < x_n = x$$

on a: $k = \frac{x}{n}$, $x_k = kh$ et $x_{k+1} = x_k + h$

Pour n grand (donc h petit) n appliquant (2) en x_k on a $f(x_{k+1}) \approx (1+h)f(x_k)$

$$\implies f(x_n) \approx (1+h)^n f(x_0)$$

$$\implies f(x_n) \approx (1 + \frac{x}{n})^n f(x_0), n \in \mathbb{N}$$

On note
$$f_n(x) = (1 + \frac{x}{n})^n$$

Il est naturel d'étudier la suite de fonction $(f_n(x))_{n\in\mathbb{N}}$ pour tout $x\in\mathbb{R}^+$ et d'étudier $\lim_{n\to+\infty}f_n(x)$. En fait g est la fonction exponentielle.

Remarque : Calculons $\lim_{n \to +\infty} f_n(x)$, pour $x \in \mathbb{R}^+$. Soit $x \in \mathbb{R}^+$ $f_n(x) = e^{n \ln(1 + \frac{x}{n})}$

Soit
$$x \in \mathbb{R}^+$$
 $f_n(x) = e^{n \ln(1 + \frac{x}{n})}$

$$\implies n \ln(1 + \frac{x}{n}) \sim x \implies \lim_{n \to +\infty} n \ln(1 + \frac{x}{n}) = x$$

Avec les équivalence : $\ln(1+\frac{x}{n}) \underset{n \to +\infty}{\sim} \frac{x}{n}$ $\Longrightarrow n \ln(1+\frac{x}{n}) \underset{n \to +\infty}{\sim} x \Longrightarrow \lim_{n \to +\infty} n \ln(1+\frac{x}{n}) = x$ Comme $x \in \mathbb{R} \to e^x$ est continue sur \mathbb{R} , alors on a $\lim_{n \to +\infty} f_n(x) = e^x$

Avec un DL :
$$\ln(1 + \frac{x}{n}) = \underbrace{\frac{x}{n} + o\left(\frac{1}{n}\right)}_{=\frac{1}{n}g\left(\frac{1}{n}\right)}$$

2 Différentes notions de convergence

Définition : On considère une suite de fonctions $(f_n(x))_{n\in\mathbb{N}}$ où toutes les fonctions sont définies sur un intervalle D de \mathbb{R} et à valeurs numérique.

 $n \in D, f_n(x): D \to \mathbb{R}$

(i) On dit que la suite de fonction $(f_n)_{n\in\mathbb{N}}$ converge simplement sur D si pour tout $n\in D$ la suite numérique $(f_n(x))_{n\in\mathbb{N}}$ converge.

(ii) On appelle alors la limite simple de la suite $(f_n)_{n\in\mathbb{N}}$ la fonction définie sur D par $\forall x\in D: f(x)=\lim_{n\to+\infty}f_n(x)$

Exemple $1: x \in \mathbb{R}$ et $n \in \mathbb{N}, f_n(x) = x^n$

$$\begin{split} &-\text{ si }x\in]-1,1[,\text{ alors }\lim_{n\to +\infty}f_n(x)=0.\\ &-\text{ si }x=1\text{ }f_n(x)=1\text{ donc }\lim_{n\to +\infty}f_n(x)=1.\\ &-\text{ si }x\in]-\infty,-1]\cup]1,+\infty[\text{ la suite }(x^n)_{n\in \mathbb{N}}\text{ diverge.} \end{split}$$

Donc la suite de fonction $(f_n)_{n\in\mathbb{N}}$ converge simplement sur]-1,1] vers f et c'est le plus grand sous-ensemble de \mathbb{R} sur lequel $(f_n(x))_{n\in\mathbb{N}}$ converge simplement.

f est définie par :

$$f(x) = \begin{cases} 0 & \text{si } x \in]-1,1[\\ 1 & \text{si } x = 1 \end{cases}$$

Exemple 2: $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$, $g_n(x) = \sqrt{x^2 + \frac{1}{n}}$

 $\lim_{n \to +\infty} x^2 + \frac{1}{n} = x^2 \text{ et } x \mapsto \sqrt{x} \text{ continue sur } \mathbb{R}^+.$

Alors pour $x \in \mathbb{R}$ fixé : $\lim_{n \to +\infty} g_n(x) = |x|$.

Donc la suite de fonction $(g_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R} vers la fonction g définie par : $g(x)=|x|, \, \forall x\in\mathbb{R}$.

Exemple $3: x \in \mathbb{R}$ et $n \in \mathbb{N}, (h_n)$ la suite de fonction définie par :

$$h_n(x) = \begin{cases} 0 & \text{si } x \in]-\infty, n] \cup [n+1, +\infty[\\ 2n(x-n) & \text{si } x \in [n, n+\frac{1}{2}]\\ n-2n(x-n-\frac{1}{2}) & \text{si } x \in [n+\frac{1}{2}, n+1] \end{cases}$$

Soit $x \in \mathbb{R}$ fixé. $\forall n \in \mathbb{N}$ avec n > x, on a $h_n(x) = 0$. Alors $Limh_n(x) = 0$.

Donc la suite de fonction $(h_n)_{n\in\mathbb{N}}$ converge simplement sur R vers la fonction nulle, c'est-à-dire vers h avec $h(x) = 0, \forall x \in \mathbb{R}$.

Question naturelle : Si les fonctions f ont une propriété commune, pour $n \in \mathbb{N}$, (continuité, dérivabilité, intégrabilité) est ce que la fonction limite à les même propriété?

- Dans l'exemple 1; $f_n \in \mathcal{C}^0(]-1,1[)$ f n'est pas continue sur]-1,1[.
- Dans l'exemple 2; $g_n \in \mathcal{C}^0(\mathbb{R}), \forall n \in \mathbb{N} \text{ et } g \text{ n'est pas dérivable en } 0.$

Définition : Soit f une fonction majorée sur une partie non vide A de \mathbb{R} , à valeurs réelles. On appelle borne supérieur de f sur A, et on note $\sup_{x \in A} f(x)$ ou $\sup_{A} f$ la borne supérieur de l'ensemble $\{f(x), x \in A\}$.

Remarque : Si f est borné sur A, alors |f| est majoré sur A et admet donc une borne supérieur sur $A(\sup |f(x)|)$.

Proposition:

- 1. Si f est continue sur $[a,b] \implies \exists c \in [a,b], \sup_{x \in [a,b]} f(x) = f(c)$.
- 2. Si f est croissante sur [a, b] alors sup f(x) = f(b).
- 3. Si f est croissante et majorée sur [a,b[alors sup $f(x)=\lim_{x\to b^-}f(x).$
- 4. Si f est décroissante sur [a, b] alors sup f(x) = f(a).
- 5. Si f est décroissante et majorée sur a, b alors sup $f(x) = \lim_{x \to a^+} f(x)$.

Définition: Convergence uniforme

On dit que $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur D vers la fonction f si :

- 1. pour n assez grand, $f_n f$ est borné sur D.
- 2. $\lim_{n \to +\infty} \sup |f_n(x) f(x)| = 0.$

Exemple 1 : A-t-on $(f_n)_{n\in\mathbb{N}}$ qui converge uniformément sur] -1,1[vers f?

Soit
$$x \in]-1, 1[, |f_n(x) - f(x)| = |x^n - 0| = |x|^n$$

De plus, $\sup |f_n(x) - f(x)| = \sup_{x \in]-1, 1[} |x|^n = \lim_{x \to 1^-} |x|^n = 1$
 $\implies \lim_{n \to +\infty} \sup_{x \in]-1, 1[} |f_n(x) - f(x)| = \lim_{n \to +\infty} (1) = 1 \neq 0.$

Donc $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément sur]-1,1[vers f.

Remarque : On a]
$$-1,1[\subset]-1,1]$$
.

$$\implies \sup_{]-1,1[} |f_n-f| \le \sup_{]-1,1[} |f_n-f|$$

$$\implies \sup_{]-1,1[} |f_n-f| \ge 1.$$

Donc $\sup_{]-1,1]} |f_n - f|$ ne tend pas vers 0 quand $n \to +\infty \implies (f_n)_{n \in \mathbb{N}}$ ne converge pas uniformément sur]-1,1] vers f.

Si f_n est continue sur D et f n'est pas continue sur D alors f_n ne converge pas uniformément sur D vers f. Par contre si l'on considère $a \in]0,1[$ et si l'on regarde la convergence uniforme sur [-a,a].

$$\sup_{x \in [-a,a]} |f_n(x) - f(x)| = \sup_{x \in [-a,a]} |x|^n = |a|^n \xrightarrow[n \to +\infty]{} 0 \quad (\text{ car } a \in]0,1[).$$

Donc f_n converge uniformément sur [-a, a] vers $f, \forall a \in]0, 1[$.

Exemple 2:

$$\begin{split} x &\in \mathbb{R} \sup |g_n(x) - g(x)| = \sup \left| \sqrt{x^2 + \frac{1}{n}} - |x| \right|. \\ \text{On a } \left| \sqrt{x^2 + \frac{1}{n}} - \sqrt{x^2} \right| &= \frac{\frac{1}{n}}{\sqrt{x^2 + \frac{1}{n}} + x^2} \leq \frac{\frac{1}{n}}{\sqrt{\frac{1}{n}}} = \sqrt{\frac{1}{n}}. \\ \text{On a donc } \forall x \in \mathbb{R}, |g_n(x) - g(x)| &\leq \sqrt{\frac{1}{n}} \ , \forall n \in \mathbb{N}^*. \end{split}$$

--
$$|g_n(x) - g(x)| \le 1$$
, est borné.
-- $\sup |g_n(x) - g(x)| \le \sqrt{\frac{1}{n}} \xrightarrow[n \to +\infty]{} 0$.

Donc $(g_n)_{n\in\mathbb{N}^*}$ converge uniformément sur \mathbb{R} vers la fonction g.

Exemple 3:

$$\sup |h_n(x) - h(x)| = \sup_{x \in \mathbb{R}} |h_n(x)| = n \xrightarrow[n \to +\infty]{} +\infty.$$

Donc $(h_n)_{n\in\mathbb{N}}$ ne converge pas uniformément sur \mathbb{R} vers h.

Soit $a \in \mathbb{R}$, $\sup |h_n(x) - h(x)| = 0 \xrightarrow[n \to +\infty]{} 0$.

Donc $(h_n)_{n\in\mathbb{N}}$ converge uniformément sur $]-\infty,a]$ vers h.

Proposition:

1. Pour que $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur D vers f, il faut que $(f_n)_{n\in\mathbb{N}}$ converge simplement sur D vers f.

On retient $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur D vers $f \implies (f_n)_{n\in\mathbb{N}}$ converge simplement sur D vers f. La réciproque est fausse.

Preuve : Soit
$$x_0 \in D$$

 $|f_n(x_0) - f(x_0)| \le \sup_{x \in D} |f_n(x) - f(x)| \xrightarrow[n \to +\infty]{} 0.$
 $\implies f_n(x_0) \underset{n \to +\infty}{\longrightarrow} f(x_0)$ en tant que point de $x_0 \in D.$
 $\implies (f_n)_{n \in \mathbb{N}}$ converge simplement sur D vers f .

2. Si $\widetilde{D} \subset D$ et si $(f_n)_{n \in \mathbb{N}}$ converge uniformément sur D vers f, alors $(f_n)_{n \in \mathbb{N}}$ converge uniformément sur \widetilde{D} vers f.

Preuve:

$$0 \le \sup_{x \in \widetilde{D}} |f_n(x) - f(x)| \le \sup_{x \in D} |f_n(x) - f(x)| \xrightarrow[n \to +\infty]{} 0.$$

$$\implies \sup_{x \in \widetilde{D}} |f_n(x) - f(x)| \xrightarrow[n \to +\infty]{} 0.$$

Comparaison entre convergence simple et convergence uniforme :

- La convergence simple sur D de $(f_n)_{n\in\mathbb{N}}$ vers f signifie que : $\forall x \in D, \forall \epsilon > 0, \exists N_{\epsilon,x}$ tel que $\forall n \geq N_{\epsilon,x}, |f_n(x) f(x)| \leq \epsilon$.
- La convergence uniforme sur D de $(f_n)_{n\in\mathbb{N}}$ vers f signifie que : $\forall \epsilon > 0, \exists N_{\epsilon,x}$ tel que $\forall n \geq N_{\epsilon,x} \forall x \in D, |f_n(x) f(x)| \leq \epsilon$.

Théorème de Weiertrass(continuité):

Soit $(f_n)_n \in \mathbb{N}$ une suite de fonctions continues sur I de \mathbb{R} , si la suite (f_n) est converge uniformément sur I vers f alors f est continue sur I.

Preuve:

Hypothèse

— $\forall n \in \mathbb{N}$ la fonction f_n est continue sur I c'est-a-dire $\forall x_0 \in I$.

La fonction f_n est continue en x_0 signifie :

 $\forall \epsilon > 0, \exists \eta > 0 \text{ tel que } : \forall x \in I \text{ et } |x - x_0| < \eta \implies |f_n(x) - f_n(x_0)| < \epsilon.$

— $(f_n)_n \in \mathbb{N}$ converge uniformément sur I vers f cela signifie que $\forall \epsilon > 0, \exists N \in \mathbb{N}^*$ tel que $: \forall n \geq \mathbb{N} : \sup_{x \in I} |f_n(x) - f(x_0)| < \epsilon$.

Ce qu'on cherche a montrer :

f est continue sur I, c'est-a-dire continue en tout points x_0 de I c'est-a-dire

$$\forall \epsilon > 0, \exists \eta > 0 \text{ tel que} : \forall x \in I \text{ et } |x - x_0| < \eta \implies |f(x) - f(x_0)| < \epsilon.$$
 (3)

Soit $x_0 \in I$; soit $\epsilon > 0 \in \mathbb{R}$.

On veut montrer (3).

Pour tout $x \in I$ et tout $n \in \mathbb{N}$ on a :

$$f(x) - f(x_0) = f(x) - f_n(x) + f_n(x) - f_n(x_0) + f_n(x_0) - f(x_0).$$

$$\implies |f(x) - f(x_0)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)|.$$

Or $|f(x) - f_n(x)| \le \sup |f_n(x) - f(x)|$ et $|f_n(x_0) - f(x_0)| \le \sup |f_n(x) - f(x)|$.

Donc
$$f(x) - f(x_0)| \le 2 \sup |f_n(x) - f(x)| + |f_n(x) - f_n(x_0)|.$$
 (4)

$$\forall \epsilon_1 > 0, \exists \eta > 0 \text{ tel que} : |x - x_0| < \eta \implies |f_n(x) - f_n(x_0)| < \epsilon_1.$$
 (5)

$$\forall \epsilon_2 > 0, \exists N \in \mathbb{N}^* > 0 \text{ tel que} : \forall n \ge N : \sup_{x \in I} |f_n(x) - f(x)| < \epsilon_2.$$
 (6)

Si on choisit $\epsilon_1 = \frac{\epsilon}{2}$ et on prend n = N dans (5) : $\exists \eta > 0$ tel que $|x - x_0| < \eta \implies |f_N(x) - f_N(x_0)| < \frac{\epsilon}{2}$.

Si on choisit $\epsilon_2 = \frac{\epsilon}{4}$ et on prend n = N dans (6) : $\sup |f_n(x) - f(x)| < \frac{\epsilon}{4}$

On prend n = N dans (4): $2 \sup |f_N(x) - f(x)| < 2\frac{\epsilon}{4}$ et $|f_N(x) - f_N(x_0)| < \frac{\epsilon}{2}$.

Donc $\forall x \in I$ avec $|x - x_0| < \eta$ alors $|f(x) - f(x_0)| < 2\frac{\epsilon}{4} + \frac{\epsilon}{2} = \epsilon$.

Remarque:

1. Remplaçons l'hypothèse " (f_n) converge uniformément sur I vers f" par " (f_n) converge uniformément sur tout segment inclus dans I".

Par exemple : si $I =]0, +\infty[$.

Il suffit de montrer que f_n est continue sur I et f_n converge uniformément sur $[a, +\infty[, \forall a > 0.$ $\implies f$ est continue sur $[a, +\infty[, \forall a > 0.$ $\implies f$ est continue sur I par continuité.

- 2. L'hypothèse de la convergence uniforme de (f_n) est essentielle comme le montre l'exemple 1, c'est-a-dire que si on ne l'a pas, alors il existe (f_n) , f_n continue sur I, pour tout n et f n'est pas continue sur I.
- 3. La fonction limite f peut être continue sans qu'il y ait convergence uniforme de (f_n) vers f (comme dans l'exemple 3). C'est-a-dire que la réciproque du théorème n'est pas vrai.
- 4. Contraposée du théorème :

Si f n'est pas continue sur I alors (au moins) une des deux hypothèse est fausse. Soit $\exists n \in \mathbb{N}$ tel que f_n n'est pas continue sur I ou (f_n) ne converge pas uniformément sur I vers f. En particulier: Si f_n est continue sur $I, \forall n \in \mathbb{N}$, si (f_n) convergent simplement sur I vers f et si f n'est pas continue sur I alors (f_n) ne converge pas uniformément sur I vers f.

Exemple : $t_n(x) = \frac{1}{1+nx}, n \in \mathbb{N}etx \in I = [0,1]$

x = 0 $t_n(0) = 1 \xrightarrow[n \to +\infty]{n \to +\infty} 1$. $x \neq 0 \lim_{n \to +\infty} t_n(x) = 0$. $\implies (t_n)n \in \mathbb{N}$ converge simplement sur I vers t définie par :

$$t(x) = \begin{cases} 0 & \text{si } x \in]0,1] \\ 1 & \text{si } x = 0 \end{cases}$$

t n'est pas continue sur [0,1] (car elle n'est pas continue en x=0) et t_n est continue sur $[0,1], \forall n \in \mathbb{N}$. Alors d'après la remarque 3 $(t_n)n \in \mathbb{N}$ ne converge pas uniformément sur I vers t.

En revanche on aura (t_n) converge uniformément vers t sur $[a,1], \forall a>0$. $|t_n(x)-t(x)|=\frac{1}{1+nx}\leq \frac{1}{1+na} \implies \sup_{x\in [a,1]}|t_n(x)-t(x)|<\frac{1}{1+na}\xrightarrow[n\to+\infty]{}0$.