Convolution de loi Poisson composée

Jérémie Barde* sous la supervision de Prof. Hélène Cossette et de Prof. Etienne Marceau École d'actuariat, Université Laval, Québec, Canada

14 août 2024

Résumé

Ce document contient le preuve pour la loi de la somme de variables aléatoires de loi Poisson composée.

^{*}Corresponding author, jeremie.barde.1@ulaval.ca

1 Convolution de loi Poisson composée

Objectif

 $S = X_1 + \cdots + X_n$ et $X_1 \sim Pcomp(\lambda_1, F_{B_1}) \times sX_n \sim Pcomp(\lambda_n, F_{B_n})$. On cherche à trouver la distribution de S.

Résultats préliminaires

1. Si les X_i indépendants.

$$M_S(t) = E\left[e^{tS}\right] = E\left[e^{tX_1 + \dots + tX_n}\right] = E\left[e^{tX_1}\right] \times \dots \times E\left[e^{tX_n}\right] = \prod_{i=1}^n M_{X_i}(t)$$

2. Fonction génératrice des moments des X_i .

$$M_{X_i}(t) = e^{\lambda_i [M_{B_i}(t) - 1]}$$

3. $\sum_{i=1}^{n} \lambda_i = \lambda_S$

Distribution de S

$$M_S(t) = e^{\lambda_1 [M_{B_1}(t) - 1]} \times \dots \times e^{\lambda_n [M_{B_n}(t) - 1]} = e^{\lambda_1 \times M_{B_1}(t) - \lambda_1} \times \dots \times e^{\lambda_n \times M_{B_n}(t) - \lambda_n}$$

$$= e^{\sum_{i=1}^n \lambda_i \times M_{B_i}(t) - \sum_{i=1}^n \lambda_i} = e^{\sum_{i=1}^n \lambda_i \times M_{B_i}(t) - \lambda_S} = e^{\lambda_S \left[\sum_{i=1}^n \frac{\lambda_i}{\lambda_S} \times M_{B_i}(t) - 1\right]}$$

Il faut vérifier que $\sum_{i=1}^{n} \frac{\lambda_i}{\lambda_S} \times M_{B_i}(t)$ est bien une FGM.

$$\sum_{i=1}^{n} \frac{\lambda_i}{\lambda_S} \times \int_0^{\infty} e^{tx} f_{B_i}(x) dx = \int_0^{\infty} \sum_{i=1}^{n} \frac{\lambda_i}{\lambda_S} e^{tx} f_{B_i}(x) dx \quad \text{(La somme est une constante on peut la rentré)}$$

$$= \int_0^{\infty} e^{tx} \left(\sum_{i=1}^{n} \frac{\lambda_i}{\lambda_S} f_{B_i}(x) \right) dx$$

Si on intègre $\sum_{i=1}^{n} \frac{\lambda_i}{\lambda_S} f_{B_i}(x)$ on obtient 1, car $\sum_{i=1}^{n} \frac{\lambda_i}{\lambda_S} = 1$, donc on peut conclure qu'il s'agit bien d'une fonction de densité. On la notera $f_C(x)$. Ainsi $\sum_{i=1}^{n} \frac{\lambda_i}{\lambda_S} \times \int_0^{\infty} e^{tx} f_{B_i}(x) dx$ est bien la FGM de $f_C(x)$. Donc on peut écrire $M_S(t)$ comme :

$$M_S(t) = e^{\lambda_S[M_C(t)-1]}$$

Ainsi on peut conclure que $S \sim Pcomp(\lambda_S, F_C)$. Avec

- $\lambda_S = \sum_{i=1}^n \frac{\lambda_i}{\lambda_S}$
- $F_C(x) = \frac{\lambda_1}{\lambda_S} F_{B_1}(x) + \dots + \frac{\lambda_n}{\lambda_S} F_{B_n}(x)$