

Máster universitario de Ciencia de Datos

Práctica 2

Diseño y uso de bases de datos analíticas – identificación, diseño y desarrollo de los procesos ETL.

Autor:

Mario Ubierna San Mamés

Índice de Contenido

Índice de Co	ntenido	3
Índice de tab	olas	5
Índice de ilus	straciones	6
1. Introdu	cción	9
1.1. Pre	esentación	9
1.2. Des	scripción	9
2. Identific	cación de los procesos ETL	11
2.1. Blo	que IN	11
2.2. Blo	que TR	12
2.2.1.	Dimensiones	12
2.2.2.	Hechos	13
3. Diseño	y desarrollo de los procesos ETL	15
3.1. Cre	eación de tablas	15
3.1.1.	Tablas del área intermedia (staging area)	15
3.1.2.	Tablas de las dimensiones	18
3.1.3.	Tablas de hechos	20
3.2. Blo	que IN	22
3.2.1.	Definición de variables de entorno	22
3.2.2.	Conexión base de datos SQL Server	23
3.2.3.	Transformación IN_DENUNCIAS_INFRACCIONES	24
3.2.4.	Transformación IN_POBLACION	28
3.2.5.	Transformación IN_MOVILIDAD	32
3.2.6.	Transformación IN_AGLOMERACION	37

3.2.7. Transformación IN_LLAMADAS112	44
3.3. Bloque TR Dimensiones	51
4. Bibliografía	55

Índice de tablas

Tabla 1 - Procesos ETL Bloque IN.	12
Tabla 2 - Procesos ETL Bloque TR Dimensiones	13
Tabla 3 - Procesos ETL Bloque TR Hechos	14

Índice de ilustraciones

Ilustración 1 - STG_Denuncias_Infracciones
Ilustración 2 - STG_Poblacion
Ilustración 3 - STG_Llamadas1121
Ilustración 4 - STG_Movilidad1
Ilustración 5 - STG_Evitar_Aglomeracion
Ilustración 6 - Tablas de staging area
Ilustración 7 - DIM_Ambito_Geografico
Ilustración 8 - DIM_Fecha19
Ilustración 9 - DIM_Grupo_Edad 19
Ilustración 10 - DIM_Medicion
Ilustración 11 - DIM_Tipologia
Ilustración 12 - Tablas de dimensiones
Ilustración 13 - FACT_Llamadas112 20
Ilustración 14 - FACT_Mediciones
Ilustración 15 - Alter table hechos
Ilustración 16 - Tablas de hechos
Ilustración 17 - Variables de entorno
Ilustración 18 - Conexión a la base de datos
Ilustración 19 - IN_DENUNCIAS_INFRACCIONES 24
Ilustración 20 - Lectura IN_DENUNCIAS_INFRACCIONES 24
Ilustración 21 - Lectura IN_DENUNCIAS_INFRACCIONES 25
Ilustración 22 - Lectura IN_DENUNCIAS_INFRACCIONES 25
Ilustración 23 - Mapeo Valores IN_DENUNCIAS_INFRACCIONES
Ilustración 24 - Normalización Strings IN_DENUNCIAS_INFRACCIONES 20
Ilustración 25 - Ordenación IN_DENUNCIAS_INFRACCIONES

Ilustración 26 - Guardado IN_DENUNCIAS_INFRACCIONES	. 28
Ilustración 27 - Métricas IN_DENUNCIAS_INFRACCIONES	. 28
Ilustración 28 - IN_POBLACION	. 29
Ilustración 29 - Lectura IN_POBLACION	. 29
Ilustración 30 - Separación Campos IN_POBLACION	. 30
Ilustración 31 - Mapeo Valores IN_POBLACION	. 30
Ilustración 32 - Normalización Strings IN_POBLACION	. 31
Ilustración 33 - Guardado IN_POBLACION	. 31
Ilustración 34 - Guardado IN_POBLACION	. 32
Ilustración 35 - Métricas IN_POBLACION	. 32
Ilustración 36 - IN_MOVILIDAD	. 33
Ilustración 37 - Lectura IN_MOVILIDAD	. 33
Ilustración 38 - Mapeo Valores IN_MOVILIDAD	. 34
Ilustración 39 - Normalización IN_MOVILIDAD.	. 34
Ilustración 40 - Replace IN_MOVILIDAD.	. 35
Ilustración 41 - Select Values IN_MOVILIDAD.	. 35
Ilustración 42 - Guardado IN_MOVILIDAD	. 36
Ilustración 43 - Guardado IN_MOVILIDAD	. 37
Ilustración 44 - Métricas IN_MOVILIDAD	. 37
Ilustración 45 - IN_AGLOMERACION	. 38
Ilustración 46 - Lectura IN_AGLOMERACION	. 38
Ilustración 47 - Lectura IN_AGLOMERACION	. 39
Ilustración 48 - Lectura IN_AGLOMERACIONES	. 39
Ilustración 49 - Mapeo Valores IN_AGLOMERACION	. 40
Ilustración 50 - Replace IN_AGLOMERACION	. 40
Ilustración 51 - Split IN_AGLOMERACION	. 41
Ilustración 52 - Normalización Strings IN_AGLOMERACION	. 41
Ilustración 53 - Replace IN_AGLOMERACION	. 42
Ilustración 54 - Normalización Filas IN_AGLOMERACION	. 42
Ilustración 55 - Guardado IN_AGLOMERACIONES	. 43
Ilustración 56 - Guardado IN_AGLOMERACIONES	. 44
Ilustración 57 - Métricas IN_AGLOMERACION	. 44

Ilustración 59 - Lectura IN_LLAMADAS112	lustración 58 - IN_LLAMADAS112	45
Ilustración 61 - Lectura IN_LLAMADAS112	lustración 59 - Lectura IN_LLAMADAS112	45
Ilustración 62 - Mapeo Valores IN_LLAMADAS112. 47 Ilustración 63 - Mapeo Valores IN_LLAMADAS112. 48 Ilustración 64 - Normalización IN_LLAMADAS112. 48 Ilustración 65 - Guardado IN_LLAMADAS112. 49 Ilustración 66 - Guardado IN_LLAMADAS112. 50	lustración 60 - Lectura IN_LLAMADAS112	46
Ilustración 63 - Mapeo Valores IN_LLAMADAS112	lustración 61 - Lectura IN_LLAMADAS112	46
Ilustración 64 - Normalización IN_LLAMADAS112	lustración 62 - Mapeo Valores IN_LLAMADAS112	47
Ilustración 65 - Guardado IN_LLAMADAS112	lustración 63 - Mapeo Valores IN_LLAMADAS112	48
Ilustración 66 - Guardado IN_LLAMADAS11250	lustración 64 - Normalización IN_LLAMADAS112	48
_	lustración 65 - Guardado IN_LLAMADAS112	49
Ilustración 67 - Métricas IN_LLAMADAS11250	lustración 66 - Guardado IN_LLAMADAS112	50
	lustración 67 - Métricas IN_LLAMADAS112	50

1. Introducción

1.1. Presentación

A partir de la solución oficial de la primera práctica (PRA1), el estudiante debe diseñar, implementar y ejecutar los procesos de extracción, transformación y carga de los datos de las fuentes de datos proporcionadas.

Así pues, esta actividad tiene como objetivo identificar y desarrollar los procesos de carga del almacén de datos y que esta sea efectiva.

1.2. Descripción

Si nos centramos en los subobjetivos, esta segunda parte del caso práctico consiste en lo siguiente:

- Identificar los procesos de extracción, transformación y carga de datos (ETL) hacia el almacén de datos.
- Diseñar y desarrollar los procesos ETL mediante las herramientas de diseño proporcionadas.
- Implementar con los trabajos (*jobs*) los procesos ETL para que su carga planificada sea efectiva.

Además del documento con la solución de la PRA2 que se debe entregar, también se tendrá en consideración la implementación sobre la máquina virtual proporcionada en el curso.

En resumen, el documento de la solución de la PRA2 debe incluir los siguientes aspectos:

Descripción de todas las acciones que se han realizado.

- Capturas de pantalla que muestren todas las partes significativas del ETL, sus características y su correspondiente explicación.
- Capturas de pantalla que demuestren la correcta ejecución de la ETL y el tiempo de ejecución.
- Capturas de pantalla que demuestren las correcta carga de los datos (cargados en la base de datos).

2. Identificación de los procesos ETL

A la hora de diseñar los procesos de carga de una base de datos analítica no hay una única estrategia. Es habitual estructurar los procesos ETL sobre la base de las entidades de datos que se deben actualizar, ya que existen diferencias conceptuales en la actualización de una dimensión con respecto a la de una tabla de hechos. La división del proceso de carga inicial en diferentes bloques de actualización facilitará el diseño de un orden de ejecución y la gestión de las dependencias. Cada uno de estos bloques de actualización se dividirá en las correspondientes etapas de extracción, transformación y carga.

Se identifican los dos bloques siguientes:

- **Bloque IN:** procesos de carga de los datos desde las fuentes a las tablas intermedias en el área de maniobras (*staging area*). Estos procesos se distinguen por el prefijo «IN » en el nombre.
- Bloque TR: procesos de transformación para cargar los datos desde las tablas intermedias hasta nuestro almacén, según el modelo multidimensional diseñado. Así pues, son diferentes los procesos ETL de transformación para cargar las dimensiones de aquellos que se realizan para cargar las tablas de hechos. Estos procesos se distinguen con el prefijo «TR_» en el nombre.

2.1. Bloque IN

Respecto al bloque In, el cual nos va a permitir almacenar la información en el staging area, tenemos los siguientes procesos:

Nombre ETL	Descripción	Orígenes de los dastos	Tabla de destino (stage)

IN_ DENUNCIAS_ INFRACCIONE S	Carga de los datos correspondientes a las estadísticas sobre los expedientes incoados por el artículo 36.6 LOPSC de desobediencia durante el estado de emergencia sanitaria COVID-19 en la comunidad de Euskadi.	ACUMULADO- DENUNCIAS- INFRACCIONES.xlsx	STG_Denuncias _Infracciones
IN_POBLACIO N	Carga los datos respectivos a las cifras de la población española.	población_9687bsc .csv	STG_Poblacion
IN_MOVILIDA D	Movilidad de la población durante el estado de alarma.	35167bsc.csv	STG_Movilidad
IN_AGLOMER ACION	Porcentaje de la población que evitaba las aglomeraciones con motivo del coronavirus, por grupo de edad y provincia.	statistic_id1104235 _covid19 poblacion-que- evitabalas- aglomeraciones- segunedad-en- espana-2020.xlsx	STG_Evitar_Aglo meracion
IN_LLAMADA S_112	Llamadas al 112 por ámbito geográfico y tipología (accidentes de tráfico, civismo, incendios, asistencia sanitaria, seguridad)	rows.xml	SGT_Llamadas1 12

Tabla 1 - Procesos ETL Bloque IN.

2.2. Bloque TR

Respecto al bloque TR tenemos tanto los procesos para dotar de datos a las dimensiones como a los hechos.

2.2.1. Dimensiones

Los procesos ETL que se encargar de añadir la información a la dimensiones son los siguientes:

Nombre del ETL	Descripción	Tabla de origen	Tabla de destino (dimensión)
TR_DIM_FECHA	Carga y transformación de la dimensión temporal.	SQL	DIM_Fecha
TR_DIM_AMBITO_ GEOGRAFICO	Carga y transformación de la dimensión con los datos de los ámbitos geográficos.	STG_Poblacion STG_Llamadas112 STG_Evitar_Aglom eracion	DIM_Ambito_G eografico
TR_DIM_GRUPO_E DAD	Carga y transformación de la dimensión con los datos de los grupo de edad.	Manual, a partir de un grid.	DIM_Grupo_Ed ad
TR_DIM_MEDICIO N	Carga y transformación de la dimensión con los datos de las mediciones.	Manual, a partir de un grid.	DIM_Medicion
TR_DIM_TIPOLOGI A	Carga y transformación de la dimensión con los datos de la tipología.	STG_Llamadas112	DIM_Tipologia

Tabla 2 - Procesos ETL Bloque TR Dimensiones.

2.2.2. Hechos

Respecto a los hechos tenemos los siguientes procesos de carga:

Nombre del ETL	Descripción	Tabla de origen
TR_FACT_LLAMADAS112	Carga y transformación de la tabla de hechos Fact_Llamadas112.	STG_Llamadas112

TR_FACT_MEDICIONES

Carga y transformación de la tabla de hechos Fact_Mediciones

STG_Denuncias_infracciones

STG_Evitar_Aglomeracion

STG_Movilidad

STG_Poblacion

Tabla 3 - Procesos ETL Bloque TR Hechos.

3. Diseño y desarrollo de los procesos ETL

En este apartado, se deben diseñar los procesos de carga identificados en el punto anterior con la herramienta de diseño proporcionada. En este caso es Pentho Data Integration (PDI).

3.1. Creación de tablas

El primer paso para la implementación de los procesos ETL consiste en la creación de las tablas. Esto se llevará a cabo una única vez, mediante *scripts*, sobre la base de dastos proporcionada (en nuestro caso: SQL Server). Se deberán crear las tablas intermedias y las tablas del modelo dimensional de la solución oficial, es decir, las dimensiones y las tablas de hechos. Para hacerlo, deben utilizarse los *scripts* facilitados junto a la solución de la PRA1.

3.1.1. Tablas del área intermedia (staging area)

Lo primero que vamos a hacer es la creación de las tablas intermedias:

Tabla intermedia STG_Denuncias_Infracciones

```
USE [DB mariousm]
G0
/****** Object: Table [dbo].[STG_Denuncias_Infracciones]
SET ANSI_NULLS ON
G0
SET QUOTED_IDENTIFIER ON
|CREATE TABLE [dbo].[STG Denuncias Infracciones](
    [provincia] [varchar](100) NULL,
    [identificados ertzaintza] [float] NULL,
    [detenidos_ertzaintza] [float] NULL,
    [denuncias_ertzaintza] [float] NULL,
    [vehic_intercept_ertzaintza] [float] NULL,
    [identificados_ppll] [float] NULL,
    [detenidos_ppll] [float] NULL,
    [denuncias_ppll] [float] NULL,
    [vehic_intercept_ppll] [float] NULL,
    [fecha] [datetime] NULL
) ON [PRIMARY]
GO
```

Ilustración 1 - STG Denuncias Infracciones.

Tabla intermedia STG_Poblacion

```
USE [DB_mariousm]

GO

/****** Object: Table [dbo].[STG_Denuncias_Infracciones]

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

ICREATE TABLE [dbo].[STG_Poblacion](
     [provincia_codigo] [varchar](2) NULL,
     [provincia_nombre] [varchar](100) NULL,
     [poblacion] [bigint] NULL,
     [periodo] [varchar](25) NULL

) ON [PRIMARY]

GO
```

Ilustración 2 - STG Poblacion.

Tabla intermedia STG_Llamadas112

```
USE [DB_mariousm]
GO

/****** Object: Table [dbo].[STG_Denuncias_Infracciones]
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

3CREATE TABLE [dbo].[STG_Llamadas112](
        [anio] [int] NULL,
        [mes] [int] NULL,
        [provincia] [varchar](100) NULL,
        [comarca] [varchar](100) NULL,
        [municipio] [varchar](100) NULL,
        [tipo] [varchar](100) NULL,
        [tlamadas] [int] NULL

ON [PRIMARY]
```

Ilustración 3 - STG Llamadas112.

Tabla intermedia STG_Movilidad

```
USE [DB_mariousm]

GO

/****** Object: Table [dbo].[STG_Denuncias_Infracciones]

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

ICREATE TABLE [dbo].[STG_Movilidad](
        [zonas_movilidad] [varchar](27) NULL,
        [periodo] [datetime] NULL,
        [total] [decimal](5, 2) NULL

) ON [PRIMARY]

GO
```

Ilustración 4 - STG_Movilidad.

Tabla intermedia STG_Evitar_Aglomeracion

```
USE [DB_mariousm]

GO

/****** Object: Table [dbo].[STG_Denuncias_Infracciones]

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

CREATE TABLE [dbo].[STG_Evitar_Aglomeracion](
    [provincia] [varchar](100) NULL,
    [comunidad_autonoma] [varchar](100) NULL,
    [grupo_edad] [varchar](7) NULL,
    [porc_poblacion] [float] NULL
) ON [PRIMARY]

GO
```

Ilustración 5 - STG_Evitar_Aglomeracion.

Comprobamos que todas las tabla intermedias se han creado correctamente:

Ilustración 6 - Tablas de staging area.

3.1.2. Tablas de las dimensiones

Lo segundo que debemos de hacer es la creación de las tablas de dimensiones:

Tabla dimensión DIM_Ambito_Geografico

```
USE [DB_mariousm]

60

/******* Object: Table [dbo].[STG_Denuncias_Infracciones] ******/

SET ANSI_NULLS ON

60

SET QUOTED_IDENTIFIER ON

60

CREATE TABLE [dbo].[DIM_Ambito_Geografico](
    [pk_ambito_geografico] [int] NOT NULL,
    [provincia_codigo] [varchar](2) NOT NULL,
    [provincia_nombre] [varchar](100) NULL,
    [comarcia] [varchar](100) NULL,
    [comarcia] [varchar](100) NULL,
    [comarcia] [varchar](100) NULL,
    [municipio] [varchar](100) NULL,
    [constraint [PK_DIM_Ambito_Geografico] PRIMARY KEY CLUSTERED

(    [pk_ambito_geografico] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

60
```

Ilustración 7 - DIM_Ambito_Geografico.

Tabla dimensión DIM_Fecha

Ilustración 8 - DIM_Fecha.

Tabla dimensión DIM_Grupo_Edad

```
USE [DB_mariousm]
60

/****** Object: Table [dbo].[STG_Denuncias_Infracciones] ******/
SET ANSI_NULLS ON
60

SET QUOTED_IDENTIFIER ON
60

CREATE TABLE [dbo].[DIM_Grupo_Edad](
    [pk_grupo_edad] [int] NOT NULL,
    [nombre] [varchar](20) NOT NULL,
    [intervalo] [varchar](20) NOT NULL,
    (intervalo] [varchar](20) NOT NULL,
    (constraint [PK_DIM_Grupo_Edad] PRIMARY KEY CLUSTERED
    (
        [pk_grupo_edad] ASC
    )WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
60
```

Ilustración 9 - DIM_Grupo_Edad.

Tabla dimensión DIM_Medicion

```
USE [DB_mariousm]

(6)

/****** Object: Table [dbo].[STG_Denuncias_Infracciones] ******/

SET ANSI_NULLS ON

(6)

SET QUOTED_IDENTIFIER ON

(6)

CREATE TABLE [dbo].[DIM_Medicion](
    [pk_medicion] [int] NOT NULL,
    [nombre] [varchar](100) NOT NULL,
    [unidad_medida] [varchar](20) NOT NULL,
    [unidad_medida] [varchar](20) NOT NULL,

(CONSTRAINT [PK_DIM_Medicion] PRIMARY KEY CLUSTERED

(    [pk_medicion] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

(6)

(6)
```

Ilustración 10 - DIM_Medicion.

Tabla dimensión DIM_Tipologia

Ilustración 11 - DIM_Tipologia.

Comprobamos que todas las tablas de dimensiones se han creado correctamente:

Ilustración 12 - Tablas de dimensiones.

3.1.3. Tablas de hechos

Finalmente creamos las diferentes tablas de los hechos:

Tabla hecho FACT_Llamadas112

```
USE [DB_mariousm]

60

/****** Object: Table [dbo].[STG_Denuncias_Infracciones] ******/

SET ANSI_NULLS ON

60

SET QUOTED_IDENTIFIER ON

60

|CREATE TABLE [dbo].[FACT_Llamadas112](
        [pk_fk_fecha] [int] NOT NULL,
        [pk_fk_ambito_geografico] [int] NOT NULL,
        [pk_fk_tipologia] [int] NOT NULL,
        [llamadas] [int] NULL,
        [CONSTRAINT [PK_FACT_Llamadas112] PRIMARY KEY CLUSTERED

(
        [pk_fk_echa] ASC,
        [pk_fk_embito_geografico] ASC,
        [pk_fk_tipologia] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

60
```

Ilustración 13 - FACT_Llamadas112.

Tabla hecho FACT_Mediciones

```
USE [DB_mariousm]

GO

/****** Object: Table [dbo].[STG_Denuncias_Infracciones] ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

CREATE TABLE [dbo].[FACT_Mediciones](
    [pk_id] [int] NOT NULL,
    [fk_echa] [int] NOT NULL,
    [fk_embito_geografico] [int] NOT NULL,
    [fk_mmbito_geografico] [int] NOT NULL,
    [fk_medicion] [int] NOT NULL,
    [valor] [decimal](17, 2) NULL,
    [valor] [decimal](17, 2) NULL,
    [CONSTRAINT [PK_FACT_Mediciones] PRIMARY KEY CLUSTERED

(
    [pk_id] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

GO

ON [PRIMARY]
```

Ilustración 14 - FACT_Mediciones.

Realizamos los alter table de las tablas de hechos:

```
∃ALTER TABLE [dbo].[FACT_Llamadas112] WITH CHECK ADD CONSTRAINT [FK_FACT_Llamadas112_DIM_Ambito_Geografico] FOREIGN KEY([pk_fk_ambito_geografico]) 

REFERENCES [dbo].[DIM_Ambito_Geografico] ([pk_ambito_geografico])
 ALTER TABLE [dbo].[FACT_Llamadas112] CHECK CONSTRAINT [FK_FACT_Llamadas112_DIM_Ambito_Geografico]
ALTER TABLE [dbo].[FACT_Llamadas112] WITH CHECK ADD CONSTRAINT [FK_FACT_Llamadas112_DIM_Fecha] FOREIGN KEY([pk_fk_fecha]) [REFERENCES [dbo].[DIM_Fecha] ([pk_fecha])
 ALTER TABLE [dbo].[FACT_Llamadas112] CHECK CONSTRAINT [FK_FACT_Llamadas112_DIM_Fecha]
ALTER TABLE [dbo].[FACT_Llamadas112] WITH CHECK ADD CONSTRAINT [FK_FACT_Llamadas112_DIM_Tipologia] FOREIGN KEY([pk_fk_tipologia])

REFERENCES [dbo].[DIM_Tipologia] ([pk_tipologia])
 ALTER TABLE [dbo].[FACT Llamadas112] CHECK CONSTRAINT [FK FACT Llamadas112 DIM Tipologia]
ALTER TABLE [dbo].[FACT_Mediciones] WITH CHECK ADD CONSTRAINT [FK_FACT_Mediciones_DIM_Ambito_Geografico] FOREIGN KEY([fk_ambito_geografico])
REFERENCES [dbo].[DIM_Ambito_Geografico] ([pk_ambito_geografico])
 ALTER TABLE [dbo].[FACT_Mediciones] CHECK CONSTRAINT [FK_FACT_Mediciones_DIM_Ambito_Geografico]
ALTER TABLE [dbo].[FACT_Mediciones] WITH CHECK ADD CONSTRAINT [FK_FACT_Mediciones_DIM_Fecha] FOREIGN KEY([fk_fecha])
REFERENCES [dbo].[DIM_Fecha] ([pk_fecha])
 ALTER TABLE [dbo].[FACT_Mediciones] CHECK CONSTRAINT [FK_FACT_Mediciones_DIM_Fecha]
ALTER TABLE [dbo].[FACT_Mediciones] WITH CHECK ADD CONSTRAINT [FK_FACT_Mediciones_DIM_Grupo_Edad] FOREIGN KEY([fk_grupo_edad])

REFERENCES [dbo].[DIM_Grupo_Edad] ([pk_grupo_edad])
 ALTER TABLE [dbo].[FACT_Mediciones] CHECK CONSTRAINT [FK_FACT_Mediciones_DIM_Grupo_Edad]
ALTER TABLE [dbo].[FACT_Mediciones] WITH CHECK ADD CONSTRAINT [FK_FACT_Mediciones_DIM_Medicion] FOREIGN KEY([fk_medicion])
REFERENCES [dbo].[DIM_Medicion] ([pk_medicion])
 ALTER TABLE [dbo].[FACT_Mediciones] CHECK CONSTRAINT [FK_FACT_Mediciones_DIM_Medicion]
```

Ilustración 15 - Alter table hechos.

Comprobamos que se han creado todas las tablas correspondientes:

Ilustración 16 - Tablas de hechos.

3.2. Bloque IN

En este bloque se van a realizar las transformaciones para que la información en forma bruta se pase a las tablas intermedias, y luego haremos uso de éstas para crear las transformaciones de dimensiones y hechos.

3.2.1. Definición de variables de entorno

Es una buena práctica utilizar variables de entorno para así poder evitar errores en el definiciones futuras. Para ello accedemos a *kettle.properties* y definimos las siguientes variables:

Para el origen en el que se encuentran todos los archivos definimos la variables DIR_ENT:

Nombre: DIR

• Valor: F:\Mario\PRA2\data

Para la cadena de conexión a la base de datos vamos a usar:

Nombre: HOSTNAMEValor: UCS1R1UOCSQL02

Nombre: DBNAMEValor: DB_mariousm

Nombre: PORTValor: 1433

• Nombre: USERNAME

Valor: STUDENT_mariousm

```
kettle.properties 🔀
     # This file was generated by Pentaho Data Integration version 8.0.0.0-28.
  3
     # Here are a few examples of variables to set:
  4
     # PRODUCTION SERVER = hercules
  6
     # TEST SERVER = zeus
     # DEVELOPMENT SERVER = thor
  8
  9
     # Note: lines like these with a # in front of it are comments
 10
 11
 12
     DIR = F:\\Mario\\PRA2\\data
 13
     HOSTNAME = UCS1R1UOCSQL02
 14
 15 DBNAME = DB mariousm
 16 PORT = 1433
 17
    USERNAME = STUDENT mariousm
```

Ilustración 17 - Variables de entorno.

3.2.2. Conexión base de datos SQL Server

El siguiente paso es crear la conexión a la base de datos que va a ser usada tanto por las transformaciones como por los jobs que se realicen en esta práctica.

Para ello creamos la nueva conexión y establecemos los valores definidos en las variables de entorno:

Ilustración 18 - Conexión a la base de datos.

3.2.3. Transformación IN_DENUNCIAS_INFRACCIONES

Una vez que ya hemos definido las variables de entorno y la conexión podemos proceder a realizar todas las transformaciones y trabajos.

La primera transformación que vamos a realizar se llama "IN_DENUNCIAS_INFRACCIONES", su objetivo es leer todos los datos del archivo "ACUMULADO-DENUNCIAS-INFRACCIONES.xlsx" en la tabla intermedia "STG_Denuncias_Infracciones".

En este caso no hemos hecho ninguna modificación en el Excel original, por lo que la transformación nos queda de la siguiente forma:

Ilustración 19 - IN_DENUNCIAS_INFRACCIONES.

Ahora vamos a explicar paso a paso lo que hemos hecho:

Lectura del Excel

Lo primero de todo es leer el fichero Excel que se nos proporciona, y para ello usamos el componente "Microsoft Excel Input", una vez hecho eso escribimos el nombre del paso, le indicamos el fichero que va a utilizar, y le indicamos que el formato del fichero Excel es la XLSX:

Ilustración 20 - Lectura IN_DENUNCIAS_INFRACCIONES.

Una vez hecho eso, le indicamos qué hoja tiene que leer y desde qué fila y columna, en nuestro caso la hoja "Datos_tratados" y la fila 5 columna 0:

Ilustración 21 - Lectura IN DENUNCIAS INFRACCIONES.

Posteriormente obtenemos los campos leídos en la pestaña "Field":

Ilustración 22 - Lectura IN_DENUNCIAS_INFRACCIONES.

Mapeo

Una vez leídos los datos vemos que las provincias están escritas en euskera, por lo que para homogeneizar los datos hemos decidido convertirlas al castellano. Por lo tanto, hacemos la traducción tal y como vemos en la siguiente captura:

Ilustración 23 - Mapeo Valores IN_DENUNCIAS_INFRACCIONES.

Normalización

Posteriormente hacemos una normalización de los campos que son de tipo "string", ya que en éstos vamos a convertir los valores a mayúscula y sin espacios, tal y como vemos en la siguiente ilustración:

Ilustración 24 - Normalización Strings IN_DENUNCIAS_INFRACCIONES.

Ordenación

Posteriormente, ordenamos todos los campos de forma ascendente:

Ilustración 25 - Ordenación IN_DENUNCIAS_INFRACCIONES.

Guardado

Finalmente, introducimos todos los valores en la base de datos, es decir, en la tabla intermedia STG_Denuncias_Infracciones, indicamos que haga un truncate de la tabla y con la conexión definida guardamos los valores en la tabla correspondiente:

Ilustración 26 - Guardado IN_DENUNCIAS_INFRACCIONES.

Al ejecutar la anterior transformación obtenemos las siguiente métricas:

Ilustración 27 - Métricas IN_DENUNCIAS_INFRACCIONES.

Observamos que tenemos 219 registros leídos y en nuestra base de datos se han almacena también 219 registros, por lo que la información es correcta.

3.2.4. Transformación IN_POBLACION

La segunda transformación que vamos a realizar se llama "IN_POBLACION", su objetivo es leer todos los datos del archivo "poblacion_9687bsc.csv" y almacenarlos en la taba intermedia "STG_Poblacion".

En este caso no hemos hecho ninguna modificación al fichero original, por lo que la transformación nos queda de la siguiente forma:

Ilustración 28 - IN_POBLACION.

Lectura CSV

Lo primero que debemos de hacer es cargar la información que se nos proporciona a partir del fichero CSV correspondiente. Por lo tanto, lo primero escribimos el nombre del paso, indicamos el fichero y el delimitador del CSV, en nuestro caso ";":

Ilustración 29 - Lectura IN_POBLACION.

Cabe destacar que hemos tenido que modificar el tipo del campo "Total" ya que lo reconocía como decimal cuando realmente es un entero.

Split

Luego separamos el campo "Provincias", para así obtener tanto el código como la provincia correspondiente, para ello indicamos que el campo que queremos separar es "Provincias", y luego en el grid establecemos los nuevos campos:

Ilustración 30 - Separación Campos IN POBLACION.

Mapeo

Una vez hecho el paso anterior tenemos que mapear valores, esto se debe a que los nombres de las provincias no son del todo correctos (aparecen en gallego, euskera, catalán y valenciano). Además, al hacer la separación algunos nombres de provincias compuestas han desaparecido, es por ello que necesitamos de este paso para solventar los problemas:

Ilustración 31 - Mapeo Valores IN_POBLACION.

Normalización

Antes de almacenar los datos en la base de datos, vamos a normalizar los strings para que todos estén en mayúsculas y no tengan espacios ni al principio ni al final:

Ilustración 32 - Normalización Strings IN_POBLACION.

Guardado

Finalmente, guardamos los datos en la tabla "STG_Poblacion", indicando que haga un truncate de la tabla y asociamos los campos:

Ilustración 33 - Guardado IN_POBLACION.

Ilustración 34 - Guardado IN_POBLACION.

Al ejecutar la anterior transformación obtenemos las siguientes métricas:

Ilustración 35 - Métricas IN_POBLACION.

Observamos que tenemos 53 registros (52 registros + 1 cabecera) y se han almacenado 52 registros, por lo que la información es correcta.

3.2.5. Transformación IN_MOVILIDAD

La tercera transformación que vamos a realizar se llama "IN_MOVILIDAD", su objetivo es leer todos los datos del archivo "35167bsc.csv" y guardarlos en la tabla intermedia "STG_Movilidad".

En este caso no hemos hecho ninguna modificación en el fichero CSV original, por lo que la transformación nos queda de la siguiente manera:

Ilustración 36 - IN_MOVILIDAD.

Ahora vamos a explicar paso a paso lo que hemos hecho:

Lectura CSV

Lo primero que tenemos que hacer es leer el fichero CSV que se nos proporciona, luego escribimos el nombre del paso, indicamos el fichero y el delimitador del CSV, en nuestro caso ",":

Ilustración 37 - Lectura IN_MOVILIDAD.

Cabe destacar que el atributo "Total" hemos indicado que sea de tipo string, ya que si considerábamos que fuera numérico a la hora de introducirlo en la base de datos no guardaba los decimales.

Mapeo

Una vez leídos todos los datos, tenemos que realizar un mapeo del campo "Zonas de movilidad", esto se debe a que los nombres de las provincias vienen en (euskera, gallego, catalán, valenciano y balear), sin embargo para homogeneizar todas las provincias las traducimos al castellano.

Ilustración 38 - Mapeo Valores IN_MOVILIDAD.

Normalización

Una vez que tenemos ya los datos de forma correcta, normalizamos las provincias para que no haya un espacio al principio o al final de la cadena, y establecemos que todas las cadenas estén en mayúsculas:

Ilustración 39 - Normalización IN_MOVILIDAD.

Replace

Posteriormente reemplazamos en el string de "Total" la coma por el punto, ya que de esta manera cuando luego introduzcamos el valor en la base de datos sí que no va a aparecer con decimales:

Ilustración 40 - Replace IN_MOVILIDAD.

Select Values

Cuando ya tenemos el string modificado, hay que convertirlo de decimal, ya que en la tabla de la base de datos el "Total" lo almacenamos como un número. Para ello, hacemos uso del componente "Select_Values" y en "Meta-data" establecemos que cree un nuevo campo que sea de tipo numérico con el campo original "Total", el resultado de esta operación lo guardamos en "totalSQL":

Ilustración 41 - Select Values IN_MOVILIDAD.

Guardado

Finalmente, guardamos todo el proceso realizado en la tabla "STG_Movilidad", indicando que hay un truncate de la tabla y asociamos los campos obtenidos con los de la tabla:

Ilustración 42 - Guardado IN_MOVILIDAD.

Ilustración 43 - Guardado IN_MOVILIDAD.

Para terminar con esta transformación obtenemos las métricas de su ejecución:

Ilustración 44 - Métricas IN MOVILIDAD.

Como podemos observar, leemos 4733 registros (4732 observaciones + 1 cabecera) y almacenamos 4732, por lo que la información es correcta.

3.2.6. Transformación IN_AGLOMERACION

La cuarta transformación que vamos a realizar se llama "IN_AGLOMERACION", su objetivo es leer todo los datos del Excel "statistic_id1104235_covid-19_-poblacion-que-evitaba-las-aglomeraciones-segun-edad-en-espana-2020.xlsx" y guardarlos en la tabla intermedia "STG_AGLOMERACION".

En este caso sí hemos hecho una modificación en el fichero Excel, no sabemos por qué motivo determinadas provincias tenían un espacio o caracter especial que no era visible y al hacer la lectura, independientemente de si hacíamos un "trim" o usábamos un "string operations" no eliminaba ese "espacio/carácter especial", es por ello que hemos eliminado de forma manual dicho espacio en el campo "provincia" de los registros afectados.

La transformación nos queda de la siguiente manera:

Ilustración 45 - IN_AGLOMERACION.

Lectura

Lo primero que tenemos que hacer es leer el fichero Excel que se nos ha proporcionado, para ello escribimos el nombre del paso, indicamos el fichero y su formato correspondiente a XLSX:

Ilustración 46 - Lectura IN_AGLOMERACION.

Una vez hecho eso, le indicamos qué hoja tiene que leer y desde qué fila y columna, en nuestro caso la hoja "Datos_provincias" y la fila 5 columna 2:

Ilustración 47 - Lectura IN AGLOMERACION.

Posteriormente obtenemos los campos leídos en la pestaña "Fields", los nombres de los campos han sido definidos de forma manual:

Ilustración 48 - Lectura IN_AGLOMERACIONES.

Mapeo

Al igual que ha sucedido con transformaciones anteriores, muchas provincias vienen también con su nombre en catalán/gallego/euskera/valenciano... Es por ello que hemos decido mantener el nombre en castellano, mapeando así los valores de las provincias que venían en otro idioma:

Ilustración 49 - Mapeo Valores IN_AGLOMERACION.

Replace

Posteriormente tenemos que hacer un replace del símbolo ")" por nada, de esta forma luego podemos dividir el campo en dos, para así obtener el nombre de la provincia y su comunidad autónoma:

Ilustración 50 - Replace IN_AGLOMERACION.

Split

Una vez que ya tenemos la información que queremos, la podemos separar estableciendo como separado "[espacio](", de esta forma creamos dos nuevos campos: uno para la provincia y otro para la comunidad.

Ilustración 51 - Split IN_AGLOMERACION.

Normalización

Cuando ya tenemos la información separada, podemos hacer uso de un "string operations" para normalizar todos los strings, es decir, establecer mayúsculas y eliminar espacios:

Ilustración 52 - Normalización Strings IN_AGLOMERACION.

Replace

Analizando los datos hemos visto que todas las comunidades y provincias cumplían las reglas ortográficas, sin embargo, la comunidad Aragón la escribían sin tilde. Es por ello que para mantener la misma lógica en todas las transformaciones hemos corregido dicho problema:

Ilustración 53 - Replace IN_AGLOMERACION.

Normalización filas

Posteriormente, hemos tenido que normalizar filas para que las columnas respectivas al grupo de edad fueran filas y no columnas. Para ello establecemos el nuevo campo que vamos a crear y los valores que va a tener dicho campo:

Ilustración 54 - Normalización Filas IN_AGLOMERACION.

Guardado

Finalmente, una vez que tenemos ya todos los datos normalizados podemos proceder al guardado de los mismo en la tabla intermedia "STG_AGLOMERACION". Tenemos que marcar el truncate table y asociar los campos:

Ilustración 55 - Guardado IN_AGLOMERACIONES.

Ilustración 56 - Guardado IN_AGLOMERACIONES.

Al ejecutar la anterior transformación obtenemos las siguientes métricas:

Ilustración 57 - Métricas IN AGLOMERACION.

Como podemos observar leemos 50 registros y almacenamos 300, esto se debe a la normalización de las filas para el atributo "grupo_edad".

3.2.7. Transformación IN_LLAMADAS112

La última transformación respecto al bloque IN es "IN_LLAMADAS112", ésta se encarga de hacer la lectura del archivo "rows.xml" el cual contiene todas las llamadas, y las vamos a guardar en la tabla intermedia "STG_Llamadas112".

En este caso no hemos hecho ninguna modificación en el fichero XML original, por lo que la transformación nos queda de la siguiente forma:

Ilustración 58 - IN_LLAMADAS112.

Lectura XML

Lo primero que tenemos que hacer es leer la información que se nos proporciona en el fichero XML. Para ello escribimos el nombre del paso e indicamos el fichero:

Ilustración 59 - Lectura IN LLAMADAS112.

Luego nos dirigimos a la pestaña "Content" y definimos desde qué loop tiene que empezar a leer nuestro fichero XML:

Ilustración 60 - Lectura IN_LLAMADAS112.

Finalmente, obtenemos los campos y los definimos nosotros de forma manual:

Ilustración 61 - Lectura IN_LLAMADAS112.

Mapeo

Una vez leído los registros tenemos que hacer un cambio de valor de algunas provincias, ya que éstas aparecen en catalán y vamos a mantener en la base de datos solamente la traducción al castellano:

Ilustración 62 - Mapeo Valores IN_LLAMADAS112.

Mapeo

Necesitamos hacer otro mapeo de valores para el campo "tipo" ya que éste representa el motivo de la llamada y sus valores están en catalán. Por lo tanto, realizamos lo mismo que en el paso anterior:

Ilustración 63 - Mapeo Valores IN LLAMADAS112.

Normalización

Antes de introducir todos los datos a la base de datos, tenemos que normalizar las cadenas de valores, es decir, establecer los campos string a mayúscula y sin espacios al comienzo ni al final:

Ilustración 64 - Normalización IN_LLAMADAS112.

Guardado

Finalmente, guardamos los datos en la tabla "STG_Llamadas112", indicando que haga un truncate de la tabla y asociamos los campos:

Ilustración 65 - Guardado IN_LLAMADAS112.

Ilustración 66 - Guardado IN_LLAMADAS112.

Al ejecutar la anterior transformación obtenemos las siguientes métricas:

Ilustración 67 - Métricas IN LLAMADAS112.

Observamos que tenemos 340307 registros leídos y almacenamos el mismo número de registros, por lo que la información es correcta.

3.3. Bloque TR Dimensiones

Una vez que hemos almacenado toda la información en la base de datos gracias a las tablas intermedias, ahora vamos a hacer uso de estos datos para crear las diferentes dimensiones de nuestro modelo.

3.3.1. Transformación TR_DIM_GRUPO_EDAD

La primera transformación que vamos a realizar se llama "TR_DIM_GRUPO_EDAD", su objetivo es almacenar los diferentes grupos de edad para así hacer uso de ellos en el hecho de mediciones, el resultado de estas transformación va a ser los datos almacenados en "DIM Grupo Edad".

La transformación nos ha quedado de la siguiente forma:

Ilustración 68 - TR_DIM_GRUPO_EDAD.

Borrado

Lo primero que debemos de hacer es el borrado de los registros que contenía la dimensión, para ello escribimos directamente la sentencia SQL y la ejecutamos:

Ilustración 69 - Borrado TR_DIM_GRUPO_EDAD.

Grid

Puesto que la información de esta dimensión es fija y tiene tan solo 7 registros, nos resulta más fácil almacenar la información a partir de un grid (ya que en el enunciado de la práctica no se indica que no se pueda hacer uso de ellos), es por ello que hemos definido el siguiente grid:

Ilustración 70 - Grid TR_DIM_GRUPO_EDAD.

Una vez definidos los campos, introducimos los registros de forma manual. Cabe destacar que vamos a tener un registro con valores "NA", esto significa que está dimensión no va a aplicar para calcular ciertas medidas:

Ilustración 71 - Grid TR_DIM_GRUPO_EDAD.

Normalización

Normalizamos tanto el nombre como el intervalo para que estén en mayúsculas y no tengan espacios ni al principio ni al final:

Ilustración 72 - Normalización TR_DIM_GRUPO_EDAD.

Secuenciación

Otro aspecto a destacar es que las dimensiones ya tienen claves primarias, por lo tanto vamos a definir la misma como un autonumérico incrementándose de uno en uno:

Ilustración 73 - Secuenciación TR_DIM_GRUPO_EDAD.

Guardado

Finalmente, realizamos el guardado en la dimensión indicando la tabla destino como "DIM_Grupo_Edad" y asociamos los atributos:

Ilustración 74 - Guardado TR_DIM_GRUPO_EDAD.

Ilustración 75 - Guardado TR_DIM_GRUPO_EDAD.

Al ejecutar la anterior transformación obtenemos las siguientes métricas:

Ilustración 76 - Métricas TR_DIM_GRUPO_EDAD.

Como podemos observar generamos los 7 registros creados manualmente y guardamos todos en la base de datos.

3.3.2. Transformación TR_DIM_Medicion

4. Bibliografía

а