Dimensionality Reduction with PCA

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Dimensionality Reduction

Let P be a set of n points in d-dimensional space, where d is a very large value (possibly even larger than n). Informally, the goal of dimensionality reduction is to convert P into a set P' of points in a k-dimensional space where k < d, such that P' loses as little information about P as possible.

Example. We can convert 2d points into 1d ones by projecting them onto a line ℓ .

Why Dimensionality Reduction?

- Better mining efficiency and/or effectiveness.
 - Most data mining algorithms work poorly in high dimensional space (a phenomenon known as the curse of dimensionality).
- Compression.
- Data visualization.
- ...

- A vector \mathbf{v} is a $d \times 1$ matrix: $\mathbf{v} = (v[1], ..., v[d])^T$.
- A point can be represented as vector.
- A vector \mathbf{v} is a unit vector if $\sum_{i=1}^{d} v[i]^2 = 1$.
- Dot product $v_1 \cdot v_2 = \sum_{i=1}^d (v_1[i]v_2[i])$.
- If two vectors $\mathbf{v_1}$, $\mathbf{v_2}$ are orthogonal, $\mathbf{v_1} \cdot \mathbf{v_2} = 0$.
- Let p be a point and v a unit vector. Then, $p \cdot v$ gives the distance from the origin to the projection of p on v.

Let S be a set of real numbers $r_1, ..., r_m$. The mean of S equals:

$$mean(S) = \frac{1}{m} \sum_{i=1}^{m} r_i.$$

The variance of S equals:

$$var(S) = \frac{1}{m} \sum_{i=1}^{m} (r_i - mean(S))^2.$$

Let P be a set of 2d points $p_1, ..., p_n$. Its co-variance between dimensions i and j (where $1 \le i \le j \le d$) equals

$$cov = \frac{1}{n} \sum_{k=1}^{n} (p_k[i] - mean_i)(p_k[j] - mean_j)$$

where $mean_i$ ($mean_j$) is the mean of the coordinates in P along dimension i (j).

The co-variance matrix A of point set P is a $d \times d$ matrix whose value at the i-th row and j-th column $(i, j \in [1, d])$ is the co-variance of P between dimensions i and j.

Note that A is symmetric, namely, $A = A^T$.

Let A be a $d \times d$ matrix. If for some real value $d \times 1$ unit vector \mathbf{v} , it holds that

$$A\mathbf{v} = \lambda \mathbf{v}$$

then v is called a <u>unit eigenvector</u> of A, and λ is called an <u>eigenvalue</u> of A.

Principle Component Analysis (PCA)

algorithm (P, k)

```
/* output: k \le d directional vectors */
```

- 1. shift P such that its geometric mean is at the origin of the data space
- 2. $A \leftarrow$ the co-variance matrix of P
- 3. compute all the d unit eigenvectors
- 4. arrange the eigenvectors in descending order of their eigenvalues
- 5. return the first k eigenvectors $v_1, ..., v_k$

Note

Each point \boldsymbol{p} is then converted to a k-dimensional point whose i-th $(1 \le i \le d)$ coordinate is $\boldsymbol{v_i} \cdot \boldsymbol{p}$.

Property of PCA

 $\mathbf{v_1}$ is the direction along which the projections of P have the largest variance. In general, $\mathbf{v_i}$ (i>1) is the direction along which P has the largest variance, among all directions orthogonal to all of $\mathbf{v_1}, ..., \mathbf{v_{i-1}}$.

Next we will prove this fact for v_1 and v_2 . Then, the case with $v_3, ..., v_i$ follows the same idea

Formally, let P be a set of n d-dimensional points with zero mean on all dimensions. Let \mathbf{w} be a unit vector. We can project P onto \mathbf{w} to obtain a set of 1d values: $S = \{\mathbf{p} \cdot \mathbf{w} \mid p \in P\}$. Define the quality of \mathbf{w} be var(S).

Theorem 1

The first eigenvector output by PCA has the highest quality.

Proof of Theorem ??

Let \boldsymbol{X} be the $n \times d$ matrix where each row lists out the coordinates of a point in P. Thus, we can view S as a vector $\boldsymbol{X}\boldsymbol{w}$. Thus:

$$var(S) = \frac{1}{n} (Xw)^{T} (Xw)$$
$$= w^{T} \frac{X^{T}X}{n} w$$
$$= w^{T}Aw$$

where $\bf A$ is the covariance matrix of P. Hence, we want to maximize the above subject to the constraint that ${\bf w}^T{\bf w}=1$.

Proof of Theorem ?? (Cont.)

Now we apply the method of Lagrange multipliers to find the maximum. Introduce a real value λ , and now consider the objective function

$$f(\mathbf{w}, \lambda) = \mathbf{w}^T \mathbf{A} \mathbf{w} - \lambda (\mathbf{w}^T \mathbf{w} - 1) \Rightarrow$$

 $\frac{\partial f}{\partial \mathbf{w}} = 2\mathbf{A} \mathbf{w} - 2\lambda \mathbf{w}$

Equating the above 0 gives $\pmb{A}\pmb{w}=\lambda\pmb{w}$. In other words, \pmb{w} needs to be an eigenvector, and λ the corresponding eigenvalue.

Proof of Theorem ?? (Cont.)

Now it remains to check which eigenvector gives the largest variance. Observe that:

$$var(S) = \mathbf{w}^{T} \mathbf{A} \mathbf{w}$$
$$= \mathbf{w}^{T} \lambda \mathbf{w}$$
$$= \lambda$$

In other words, when we choose eigenvector \mathbf{w} as our solution, its quality is exactly the eigenvalue λ . Hence, the eigenvector with the maximum eigenvalue is what we are looking for.

Recall our earlier definitions. P is a set of n d-dimensional points with zero mean on all dimensions. Let \mathbf{w} be a unit vector. Project P onto \mathbf{w} to obtain a set of 1d values: $S = \{ \mathbf{p} \cdot \mathbf{w} \mid p \in P \}$. Define the quality of \mathbf{w} be var(S).

Theorem 2

The second eigenvector output by PCA has the highest quality, among all the vectors \mathbf{w} orthogonal to the first eigenvector $\mathbf{v_1}$.

Proof of Theorem ??

Let \boldsymbol{A} be the covariance matrix of P. As shown in the proof of Theorem $\ref{eq:proof}$, we proved that

$$var(S) = \mathbf{w}^T \mathbf{A} \mathbf{w}$$

Hence, we want to maximize the above subject to the constraints $\mathbf{w}^T \mathbf{w} = 1$ and $\mathbf{w}^T \mathbf{v_1} = 0$.

Now we apply the method of Lagrange multipliers to find the maximum. Introduce real values λ and ϕ , and now consider the objective function

$$f(\mathbf{w}, \lambda, \phi) = \mathbf{w}^T \mathbf{A} \mathbf{w} - \lambda (\mathbf{w}^T \mathbf{w} - 1) - \phi \mathbf{w}^T \mathbf{v_1} \Rightarrow$$

$$\frac{\partial f}{\partial \mathbf{w}} = 2\mathbf{A} \mathbf{w} - 2\lambda \mathbf{w} - \phi \mathbf{v_1}.$$

Proof of Theorem ?? (Cont.)

The optimal \mathbf{w} needs to satisfy $\frac{\partial f}{\partial \mathbf{w}} = 0$, namely:

$$2\mathbf{A}\mathbf{w} - 2\lambda\mathbf{w} - \phi\mathbf{v_1} = 0. \tag{1}$$

Next we prove that ϕ must be 0. To see this, multiplying both sides of (??) by $\mathbf{v_1}^T$, we get:

$$2\mathbf{v_1}^T \mathbf{A} \mathbf{w} - 2\lambda \mathbf{v_1}^T \mathbf{w} + \phi \mathbf{v_1}^T \mathbf{v_1} = 0.$$
 (2)

We know that $\mathbf{v_1}^T \mathbf{w} = 0$, and $\mathbf{v_1}^T \mathbf{v_1} = 1$. Furthermore,

$$\mathbf{v_1}^T \mathbf{A} \mathbf{w} = \mathbf{w}^T \mathbf{A}^T \mathbf{v_1} = \mathbf{w}^T \mathbf{A} \mathbf{v_1} = \mathbf{w}^T (\mathbf{A} \mathbf{v_1}) = \mathbf{w}^T \mathbf{v_1} = 0.$$

Hence, from (??), we get $\phi = 0$.

Proof of Theorem ?? (Cont.)

Therefore, from (??), we know:

$$2\mathbf{A}\mathbf{w} - 2\lambda\mathbf{w} = 0$$

namely, w must also be an eigenvector.

From the proof of Theorem $\ref{eq:condition}$, we know that var(S) equals the eigenvalue corresponding to w. This thus indicates that w is the eigenvector of A with the second largest eigenvalue.

When d is large, PCA is slow because it has to deal with a gigantic matrix with d^2 values. This motivates FastMap, which can be regarded as a heuristic version of PCA that trades precision for efficiency.

Heuristic 1 of FastMap. Assume that the vector between the farthest pair of points in P captures a large amount of variance of P.

Heuristic 2 of FastMap. Use the following algorithm to find the farthest pair of points in ${\cal P}$

- 2 $p_2 \leftarrow$ farthest point from p_1
- **③** p_1 ← farthest point from p_2

FastMap

```
algorithm (P, k)

/* output: k \le d directional vectors */

1. for i = 1 to k

2. find the pair (p_1, p_2) of farthest points in P (Heuristic 2)

3. \mathbf{v_i} = \mathbf{p_2} - \mathbf{p_1} (vector subtraction)

4. P' \leftarrow the point set obtained by projecting the points in P onto the plane perpendicular to \mathbf{v_i}

5. P \leftarrow P'

6. return \mathbf{v_1}, ..., \mathbf{v_k}
```