תשובה 1

$$x \in y$$
 .7 $x \subseteq y$.3 $x \in y$.2 $x \subseteq y$.8

ח. שניהם.
$$x \subseteq y$$
 ז. $x \subseteq y$ ח. שניהם.

תשובה 2

,
$$A-B=\{x\mid x\in A \text{ and }x\not\in B\}$$
 א. נכון. לפי הגדרת חיסור קבוצות $(A-B)-B=\{x\mid (x\in A \text{ and }x\not\in B) \text{ and }x\not\in B\}$ ושוב לפי אותה הגדרה: $\{x\mid x\in A \text{ and }x\not\in B\}$ זה שווה $\{x\mid x\in A \text{ and }x\not\in B\}$. כלומר

הוכחה אחרת: מהגדרת חיסור קבוצות והגדרת חיתוך קבוצות מובן כי:

(*)
$$(A-B) \cap B = \emptyset$$

: ניעזר כעת בטענה שבשורה השנייה בראש עמי 21 בספר

$$A - B = A \Leftrightarrow A \cap B = \emptyset$$

: כדי למנוע בלבול נרשום אותה מחדש כך

(**)
$$X-Y=X$$
 אם ורק אם $X\cap Y=\emptyset$

X = B , X = A - B נציב

. $X \cap Y = \emptyset$ -ש נקבל (*) למעלה (מנוסחה

$$A(A-B)-B=A-B$$
 כלומר $A(X-Y)=X$, (**) לכן, לפי טענה

ב. נכון. הוכחה: ניעזר שוב בטענה שבשורה השנייה בעמי 21 בספר:

$$.\ A-B=A \quad \Leftrightarrow \quad A\cap B=\emptyset$$

B-A נציב B-A במקום

(*)
$$A - (B - A) = A \iff A \cap (B - A) = \emptyset$$

. $A \cap (B-A) = \emptyset$: מהגדרת חיתוך קבוצות יחד עם הגדרת הפרש הבוצות, מתקיים

. A-(B-A)=A לכן מהשקילות (*) נקבל

אפשר להוכיח טענה זאת גם בדרכים אחרות, למשל בעזרת מושג המשלים, בדומה למה שנראה בפתרון שאלה 3.

ג. לא נכון: ראו החוברת "אוסף תרגילים פתורים", קבוצה 1 שאלה 2.

תשובה 3

$$A$$
 נניח $A \oplus A = Y \oplus A$ נבצע בשני האגפים הפרש סימטרי עם .

$$(X \oplus A) \oplus A = (Y \oplus A) \oplus A$$

לפי שאלה 1.22 (אסוציאטיביות) נקבל

$$X \oplus (A \oplus A) = Y \oplus (A \oplus A)$$

: ולכן קיבלנו , $A \oplus A = \emptyset$, ולכן היבלנו

$$X \oplus \emptyset = Y \oplus \emptyset$$

ולפי טענה אחרת באותו סעיף (הפרש סימטרי עם הקבוצה הריקה) קיבלנו

$$X = Y$$

, (שוב 22.1ב) הערה: הפרש סימטרי הוא פעולה חילופית

X=Y או $A\oplus X=A\oplus Y$ או אם $A\oplus X=A\oplus Y$ או לכן קיבלנו שנוכל לצמצם גם משמאל, כלומר:

 $A \oplus A = \emptyset$: מיידי משאלה 1.22 מיידי (A = B ב. כיוון אחד (אם

. $(A \oplus A = \varnothing$ כיוון שני : אם $A \oplus B = A \oplus A$ משמע $A \oplus B = \varnothing$ כיוון שני

A = A : B = A מכאן לפי כלל הצמצום משמאל שהוכחנו למעלה בסעיף אי

י. אם 'A=B', ניעזר בשאלה 2א בממיין זה ונקבל המבוקש (השלימו הפרטים) אם יוון שני: נובע מהכיוון הראשון בעזרת כלל הצמצום, בדומה לסעיף בי:

 $A \oplus A' = U$, זה, של סעיף הראשון בכיוון הראשור . $A \oplus B = U$ נניח

. B=A' : לכן $A\oplus B=A\oplus A'$ לכן הצמצום מסעיף אי

ד. כיוון אחד: אם $\varnothing=B$ אז אB=A אז אם לפי שאלה ב1.22 (הפרש סימטרי עם הקבוצה הריקה). כיוון שני: נובע מהכיוון הראשון בעזרת כלל הצמצום, בדומה לסעיפים ב, ג.

תשובה 4

mים והן ב- n והן ב- n והמתחלקים הן היא אפוא המספרים הטבעיים הגדולים ה- n והן ב- n והן היא אפוא היא אפוא המספרים הטבעיים הגדולים ה

$$B_n \cap B_m = \{nk \mid k \in \mathbb{N}^*\} \cap \{ms \mid s \in \mathbb{N}^*\}$$

c(n,m) משמע: מרחלק ב $B_n \cap B_m$ מרחלק שכל אבר שכל מבאדרכה, נובע שכל מכאן, לפי

$$B_n \cap B_m \subseteq B_{c(n,m)}$$

 $a_{c}(n,m)$ -ב מעד שני, $a_{c}(n,m)$ - משמע מתחלק הי $x\in B_{c(n,m)}$

לפיכך . m -ב והן ב- n והן ב- n לכן m -ב מתחלק הן ב- n והן ב- n לפיכך

$$B_{c(n,m)} \subseteq B_n \cap B_m$$

. $B_n \cap B_m = B_{c(n,m)}$: משתי ההכלות

על תכונות הכפולה המשותפת המינימלית ראו

http://mathworld.wolfram.com/LeastCommonMultiple.html http://en.wikipedia.org/wiki/Least_common_multiple

 $m\in {f N}^*$ ב. נראה כי לכל m , $m\in {f N}^*$ אינו שייך לחיתוך הנייל. יהי יהי $m\in {f N}^*$ ב. $m\not\in B_{m+1}$ כל אברי m גדולים או שווים m מובן אפוא כי $m\in B_m$ לפיכך m אינו שייך לחיתוך כל ה- m -ים.

ג. קבוצה זו היא קבוצת המספרים הראשוניים. נוכיח זאת:

 $.\,D_n=\varnothing$ יכיח נוכיח מספר שאינו מספר מספר $n\in \mathbb{N}^*$ יהי יהי כיוון אחד:

: כזה: ג נראה אלא ייתכן , $x\in D_n$ יהי

. n=km - כך ש- , 1 < m,k < n , $m,k \in \mathbf{N}^*$ ההנחה ש- , ראשוני פירושה שקיימים

 $.\,x\in B_{_{m}}$ בפרט . m-ב מתחלק ב- מתחלק ה' כל מספר מספר , mבפרט מתחלק ה' מכיון ש

. בסתירה להנחה , $x \notin D_n$ נקבל כי הגדרת אז מהגדרת $1 \! < \! m \! < \! n$ שמכיון ש-

. אינו שאינו שאינו עבור כל n שאינו ראשוני. D_n

 $:D_n
eq \varnothing$ ולכן בפרט ו $n \in D_n$ נראה ני, נראה ואס האטוני, אם מצד שני, אם

 $n \in B_n$ מתקיים $n \in \mathbf{N} *$ לכל

. $n \notin B_m$ ולכן , m -ב מתחלק ב- n אינו מתחלק ב- n טבעי המקיים . $n \notin B_m$ טבעי אינה n אינה n אינה ריקה. ולכן n אינה ריקה ולכן n ולכן n ולכן n אינה ריקה.

. משני המספרים המספרים היא קבוצת $D_n \neq \varnothing$ עבורם ערכי ערכי שקבוצת הראינו יחד, הראינו משני משני משני אינו ערכי