

(Approved by AICTE-New Delhi & Affiliated to JNTU-GV, Vizianagaram)
Beside VSEZ, Duvvada, Vadlapudi Post, Gajuwaka, Visakhapatnam - 530 049.

Team Name: Code Freaks Team members:-

- Malla. Madhavi sri lakshmi
- Rayi Navya
- Mycharla Deepak
- Dasireddy. Chaitanya
- Devupalli. Pardava krishnam naidu
- Avula. Ragavendra

Problem Statement:

Industry: Automobile

Department: Manufacturing pain points

--Quality control

Problem statement:

The Ola Electric Scooter S1 is encountering safety concerns due to incidents of battery burning and break down of front fork, requiring a thorough review and redesign of the battery management system and prefabricated safety checks for enhanced rider safety.

Level 1: (Network and problem statement)

VPC block diagram:

Note: problem statement is picked according documentation

About VPC:

With Amazon Virtual Private Cloud (Amazon VPC), you can launch AWS resources in a logically isolated virtual network that you've defined. This virtual network closely resembles a traditional network that you'd operate in your own data center, with the benefits of using the scalable infrastructure of AWS.

FEATURES:

- Virtual private clouds (VPC)
- Subnets
- IP addressing
- Routing
- Gateways and endpoints
- Transit gateways
- VPN connectionS

Ref:

https://www.cartoq.com/ola-s1-pro-fire-in-bhopal/

Ref:

https://www.indiatoday.in/india/story/ola-electric-scooter-recall-fire-incident-battery-system-1941302-2022-04-24

Ref:

https://www.moneycontrol.com/news/

https://www.outlookindia.com/business/electric-scooter-fire-

"Several mishaps involving electric twowheelers have come to light in the last two months. It is most unfortunate some people have lost their lives and several have been injured. We have constituted an expert committee to enquire into these incidents and make recommendations on remedial steps. Based on the reports, we will issue necessary orders on the defaulting companies," Gadkari said.

But not just the government, even the auto industry veterans have slammed the new EV companies, questioning their underlying "process of manufacturing."

Bajaj Auto Managing Director Rajiv Bajaj earlier this month said the people who have no business being in the business of EVs are trying to be in this space.

"The issue is not the fire itself. This (such incidents) happened in the vehicles with internal combustion engines as well. The

Level 2: Feature engineering

Step 1: selection

```
Step 1: Selection
Attributes:
design -----x
software integration -----x
company brand----x
battery capacity +++++++
tyre width and height--x
acceleration +++++++
range ++++++
speed +++++++++++
motor type++++++
lights -----x
load capacity +++++
base height----x
battery charging speed -----x
breaks -----x
color -----x
battery power +++++++++++++
storage space -----x
gps -----x
features -----x
```

Step 2:Transformation

here
Motor type(kw)
Battery capacity(in kwh)
Battery power (in w)
range(100-110=1, 110-120=2,

Motor type(kw) Batte 6000 4400	ery capacit Ba		range(100-110=1,	acceleration(0-40	load capacitulin kg)	satisfaction rate(%)	
	3 94			accererationly 40	ioau capacity(iii kg)	Satisfaction rate(%)	performance rate
4400	0.54	4000	2	10	125	70	79.76673697
4400	4.56	4400	1	9	180	72	70.82696664
4200	2.9	4080	1	9	150	77	66.55651902
7500	3.97	5000	6	10	125	85	99.44512147
7100	3.5	4500	5	5	110	92	92.3013827
6000	3	3000	6	7	108	82	71.91625654
5500	4.2	4500	4	8	130	87	79.94062964

Cramer's rule:

Step 3: Extraction

Code:

```
import random
import pandas as pd
[w1,w2,w3,w4,w5,w6,w7] =
[0.00781,0.00682,0.00782,0.01042,0.00782,0.00773,0.00755]
vals = []
for i in range(1000):
  x1 = random.randint(1, 10)
  x2 = random.randint(1, 5)
  x3 = random.randint(0, 100)
  x4 = random.randint(0, 70)
  x5 = random.randint(1, 2)
  x6 = random.randint(1, 10)
  x7 = random.randint(1, 2)
  eq = w1*x1+w2*x2+w3*x3+w4*x4+w5*x5+w6*x6+w7*x7
  vals.append([x1,x2,x3,x4,x5,x6,x7,eq])
df =
pd.DataFrame(vals,columns=['MOTOR TYPE','BATTERY CAPACIT
Y', 'BATTERY POWER', 'RANGE', 'ACCELERATION', 'LOAD CAPACITY'
,'SATISFACTION_RATE','PERFORMANCE_RATE'])
df.to_csv('team-14.csv',index=False
```


67 81.66131

83 76,49636

97 72.44651

81 92,17034

Level 3: (Data framing and Github)

Github:

Data framing:

Level 4: (Notebook instance and ML model)

Notebook instance:

ML model:

Linear regression-

Predicted value (LR): 36.78768197484835 Accuracy (LR): 92.34246959288245 100 95 90 4000 4500 5000 5500 6000 6500 7000 7500 MOTOR_TYPE

Random forest regressor:

Decision tree regressor-

Evaluation:

Linear regression-

```
[21]: from sklearn.metrics import mean_absolute_error
      from sklearn.linear_model import LinearRegression
      regressor=LinearRegression()
      regressor.fit(x_train,y_train)
      score=regressor.score(x_train,y_train)
      y_predL=regressor.predict(x_test)
      print("Accuracy of Linear Regression",score)
      y_predL=regressor.predict(x_test)
      from sklearn.metrics import mean absolute error, mean squared error, r2 score
      mse=mean_squared_error(y_test,y_pred)
      r2=r2_score(y_test,y_pred)
      mae=mean_absolute_error(y_test,y_pred)
      print("Mean Square Error of Linear Regression", mse)
      print("R2 score of Linear Regression",r2)
      print("Mean absolute Error of Linear Regression", mae)
      Accuracy of Linear Regression 1.0
      Mean Square Error of Linear Regression 0.14466155531357702
      R2 score of Linear Regression 0.9981407156391697
      Mean absolute Error of Linear Regression 0.306500080000000767
```

Random forest regressor:

```
[19]: from sklearn.ensemble import RandomForestRegressor
rf_model=RandomForestRegressor(n_estimators=100, random_state=42)
rf_model.fit(x_train, y_train)
y_pred=rf_model.predict(x_test)

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
mse=mean_squared_error(y_test,y_pred)
r2=r2_score(y_test,y_pred)
mae=mean_absolute_error(y_test,y_pred)
print("Mean Square Error of RandomForest Regression",mse)
print("R2 score of RandomForest Regression",n2)
print("Mean absolute Error of RandomForest Regression",mae)

Mean Square Error of RandomForest Regression 0.14466155531357702
R2 score of RandomForest Regression 0.9981407156391697
Mean absolute Error of RandomForest Regression 0.30650008000000767
```

Conclusion:

Using more efficiency materials and checking the vehicle more times during manufacturing