IT 601: Mobile Computing

Session 2
Wireless Transmission Basics

Prof. Anirudha Sahoo IIT Bombay

Spectrum and bandwidth

- Electromagnetic signals are made up of many frequencies
- Shown in the next example

$$s(t) = (4/\pi) \left[\sin(2\pi f t) + 1/3(\sin 2\pi (3f) t) \right]$$

Source: Stallings

Session: 2

FIG 1

Spectrum and bandwidth

- The 2nd frequency is an integer multiple of the first frequency
 - When all of the frequency components of a signal are integer multiples of one frequency, the latter frequency is called *fundamental frequency* (f)
 - period of the resultant signal is equal to the period of the fundamental frequency
 - Period of s(t) is T=1/f

Fourier Analysis

- Any signal is made up of components at various frequencies, in which each component is a sinusoid.
 - Adding enough sinusoidal signals with appropriate amplitude, frequency and phase, any electromagnetic signal can be constructed

Spectrum and bandwidth

- It is the range of frequencies that a signal contains (among its components)
 - In the example, spectrum is from f to 3f
 - absolute bandwidth is the width of the spectrum
 - 3f-f = 2f

Data Rate and bandwidth

- There is a direct relationship between data rate (or signal carrying capacity) and bandwidth
- Suppose we let a positive pulse represent 1 and negative pulse represent 0
 - Then the waveform (next slide) represents 1010..
 - Duration of each pulse is $t_{bit} = (1/2) (1/f)$
 - Thus data rate is $1/t_{bit} = 2f$ bits/sec
- As we add more and more frequencies the wave looks more like a square wave

Source: Stallings

FIG 2

Example

- Looking at FIG 2(a) the bandwidth = 5f-f = 4f
 - If f=1MHz = 10⁶ cycles/sec, then bandwidth = 4MHz
 - The period of the fundamental frequency = $T = 1/f = 1 \mu s$
 - So each bit takes up 0.5 μs i.e. data rate is 1/0.5
 Mbps = 2 Mbps

Example

- Looking at FIG 1(c) the bandwidth = 3f-f = 2f
 - If f=2MHz = 2x10⁶ cycles/sec, then bandwidth =
 4MHz
 - The period of the fundamental frequency = $T = 1/f = 0.5 \mu s$
 - So each bit takes up 0.25 μs i.e. data rate is 1/0.25
 Mbps = 4 Mbps

Example

 Thus a given bandwidth can support different data rate, depending on the ability of the receiver to discern the difference between 0 and 1 in the presence of noise and interference

Gain and Loss

 Ratio between power levels of two signals is referred to as Gain

- gain (dB) = $10 \log_{10} (P_{out}/P_{in})$
- $loss (dB) = -10 log_{10} (P_{out}/P_{in}) = 10 log_{10} (P_{in}/P_{out})$
- P_{out} is output power level and P_{in} is input power level
- Signal of power 10mw transmitted over wireless channel, and receiver receives the signal with 2mw power:
 - gain (db) = 10 log₁₀ (2/10) = -10 (0.698) = -6.98 dB
 - loss (db) = 6.98 dB

dBW power

- dB-Watt
 - power in dB transmitted with respect to a base power of 1 Watt
 - $dBW = 10 log_{10} P$
 - P is power transmitted in Watt
 - if power transmitted is 1 Watt
 - $dBW = 10 \log_{10} 1 = 0 dBW$
 - 1000 watt transmission is 30 dBW

dBm power

- dB-milliwatt
 - better metric in wireless network
 - power in dB transmitted with respect to a base power of 1 milliwatt
 - $dBm = 10 log_{10} P$
 - P is power transmitted in milliwatt
 - if power transmitted is 1 milliwatt
 - $dBm = 10 log_{10} 1 = 0 dBm$
 - 10 milliwatt transmission is 10 dBm
 - 802.11b can transmit at a maximum power of 100mw = 20 dBm

Channel Capacity

Four concepts:

- Data Rate : rate (in bps) at which data can be communicated
- Bandwidth: bandwidth of the transmitted signal as constrained by the transmitter and the medium, expressed in Hz
- Noise: interfering electromagnetic signal that tend to reduce the integrity of data signal
- Error rate: rate at which receiver receives bits in error i.e. it receives a 0 when actually a 1 was sent and vice-versa

Nyquist Bandwidth

- Given a bandwidth of B, the highest signal rate that can be carried is 2B (when signal transmitted is binary (two voltage levels))
 - When M voltage levels are used, then each signal level can represent log₂M bits. Hence the Nyquist bandwidth (capacity) is given by

 $C = 2 B log_2 M$

Shannon's Capacity Formula

 When there is noise in the medium, capacity is given by

- $C \le B \log_2 (1 + SNR)$
 - SNR = signal power/noise power
- $-SNR_{dB} = 10 log_{10} SNR$

Bandwidth Allocation

- Necessary to avoid interference between different radio devices
 - Microwave woven should not interfere with TV transmission
 - Generally a radio transmitter is limited to a certain bandwidth
 - 802.11channel has 30MHz bandwidth
 - Power and placement of transmitter are regulated by authority
 - Consumer devices are generally limited to less than 1W power

ISM and UNII Band

- Industrial, Scientific and Medical (ISM) band
 - 902-928 MHz in the USA
 - 433 and 868 MHz in Europe
 - 2400 MHz 2483.5 MHz (license-free almost everywhere)
 - Peak power 1W (30dBm)
 - but most devices operate at 100mW or less
 - 802.11 uses the ISM band of 2.4GHz
- Unlicensed National Information Infrastructure (UNII) bands
 - 5.725 5.875 GHz

Antenna

- An electrical conductor or system of conductors used for radiating electromagnetic energy into space or for collecting electromagnetic energy from the space
 - An integral part of a wireless system

Radiation Patterns

- Antenna radiates power in all directions
 - but typically does not radiate equally in all directions
- Ideal antenna is one that radiates equal power in all direction
 - called an isotropic antenna
 - all points with equal power are located on a sphere with the antenna as its center

Omnidirectional Antenna

 Produces omnidirectional radiation pattern of equal strength in all directions

 Vector A and B are of equal length

Omnidirectional Antenna

Directional Antenna

- Radiates most power in one axis (direction)
 - radiates less in other direction
 - vector B is longer thanvector A : more powerradiated along B than A
 - directional along X

Dipole Antenna

- Half-wave dipole or Hertz

 antenna consists of two
 straight collinear conductor
 of equal length
- Length of the antenna is half the wavelength of the signal.

Half-wave dipole

Quarter-wave antenna

 Quarter-wave or marconi antenna has a veritcal conductor of length quarter of the wavelength of the signal

Sectorized Antenna

- Several directional antenna combined on a single pole to provide sectorized antenna
- each sector serves receivers listening it its direction

3 sector antenna

Antenna Gain

- A measure of the directionality of an antenna
- Defined as the power output, in a particular direction, compared to that produced in any direction by a perfect isotropic antenna
 - Example: if an antenna has a gain of 3dB, the antenna is better (in that direction) than isotropic antenna by a factor of 2

Antenna Gain

- Antenna gain is dependent on *effective area* of an antenna.
 - effective area is related to the physical size of the antenna and its shape
 - Antenna Gain is given by

$$G = \frac{4\pi A_e}{\lambda^2} = \frac{4\pi f^2 A_e}{c^2}$$

where

G = antenna gain

 A_e = effective area

f = carrier frequency

c = speed of light

 λ = carrier wavelength

Signal Propagation

Transmission range:

receiver receives signal with an error rate low enough to be able to communicate

 Detection range: transmitted power is high enough to detect the transmitter, but high error rate forbids communication

 Interference range: sender interferes with other transmissions by adding to the noise

Signal Propagation

- Radio waves exhibit three fundamental propagation behavior
 - Ground wave (< 2 MHz): waves with low frequency follow earth's surface
 - can propagate long distances
 - Used for submarine communication or AM radio
 - Sky wave (2-30 MHz): waves reflect at the ionosphere and bounce back and forth between ionosphere and earth, travelling around the world
 - Used by international broadcast and amateur radio

Ground wave propagation (< 2 MHz)

sky wave propagation (2 - 30MHz)

Signal Propagation

- Line of Sight (> 30 MHz): emitted waves follow a straight line of sight
 - allows straight communication with satellites or microwave links on the ground
 - used by mobile phone system, satellite systems

Line of Sight (LOS) propagation (> 30 MHz)

Free Space loss

- Transmitted signal attenuates over distance because it is spread over larger and larger area
 - This is known as free space loss and for isotropic antennas

$$\frac{P_{t}}{P_{r}} = \frac{(4\pi d)^{2}}{\lambda^{2}} = \frac{(4\pi f d)^{2}}{c^{2}}$$

 P_t = power at the transmitting antenna

 P_r = power at the receiving antenna

 λ = carrier wavelength

d = propagation distance between the antennas

c = speed of light

Free Space loss

For other antennas

$$\frac{P_t}{P_r} = \frac{(4\pi d)^2}{G_r G_t \lambda^2} = \frac{(\lambda d)^2}{A_r A_t}$$

 $G_t = Gain of transmitting antenna$

 G_r = Gain of receiving antenna

 A_t = effective area of transmitting antenna

 A_r = effective area of receiving antenna

Thermal Noise

- Thermal noise is introduced due to thermal agitation of electrons
 - Present in all transmission media and all electronic devices
 - a function of temperature
 - uniformly distributed across the frequency spectrum and hence is often referred to as white noise
 - amount of noise found in a bandwidth of 1 Hz is

$$N_0 = k T$$

 N_0 = noise power density in watts per 1 Hz of bandwidth

 $k = Boltzman's constant = 1.3803 \times 10^{-23} J/K$

T = temperature, in Kelvins

N = thermal noise in watts present in a bandwidth of B

= kTB where

Data rate and error rate

- A parameter related to SNR that is more convenient for determining digital data rates and error rates
 - ratio of signal energy per bit to noise power density per Hertz, E_b/N_0
 - $-\ R$ = bit rate of transmission, S= power of the signal, $T_b = \text{time required to send 1 bit. Then } R = 1/T_b$ $E_b = S\ T_b$ so

$$\frac{E_b}{N_0} = \frac{S/R}{N_0} = \frac{S}{kTR}$$

Data rate and error rate

- Bit error rate is a decreasing function of E_b/N_0
 - If bit rate R is to increase, then to keep bit error rate (or E_b/N_0) same, the transmitted signal power must increase, relative to noise
- E_b/N_0 is related to SNR as follows

$$\frac{E_b}{N_0} = \frac{S}{N} \frac{B}{R}$$

B = signal bandwidth(since $N = N_0 B$)

Doppler's Shift

- When a client is mobile, the frequency of received signal could be less or more than that of the transmitted signal due to Doppler's effect
- If the mobile is moving towards the direction of arrival of the wave, the Doppler's shift is positive
- If the mobile is moving away from the direction of arrival of the wave, the Doppler's shift is negative

Doppler's Shift

$$f_d = \frac{v}{\lambda} \cos \theta$$

where

f_d =change in frequency due to Doppler's shift

v = constant velocity of the mobile receiver

 λ = wavelength of the transmission

Doppler's shift

$$f = f_c + f_d$$

where

f = the received carrier frequency

f_c = carrier frequency being transmitted

f_d = Doppler's shift as per the formula in the prev slide

Multipath Propagation

- Wireless signal can arrive at the receiver through different pahs
 - LOS
 - Reflections from objects
 - Diffraction
 - Occurs at the edge of an impenetrable body that is large compared to the wavelength of the signal

Multipath Propagation (source: Stallings)

Inter Symbol Interference (ISI) in multipath (source: Stallings)

Effect of Multipath Propagation

- Multiple copies of the signal may arrive with different phases. If the phases add destructively, the signal level reduces relative to noise.
- Inter Symbol Interference (ISI)

Multiplexing

- A fundamental mechanism in communication system and networks
- Enables multiple users to share a medium
- For wireless communication, multiplexing can be carried out in four dimensions: space, time, frequency and code

Space division multiplexing

- Channels are assigned on the basis of "space" (but operate on same frequency)
- The assignment makes sure that the transmission do not interfere with each (with a guard band in between)

Space division multiplexing

Source: Schiller

Frequency Division Multiplexing

- Frequency domain is subdivided into several nonoverlapping frequency bands
- Each channel is assigned its own frequency band (with guard spaces in between)

Frequency Division Multiplexing

Source: Schiller

Time Division Multiplexing

- A channel is given the whole bandwidth for a certain amount of time
 - All senders use the same frequency, but at different point of time

Time Division Multiplexing

Source : Schiller

Frequency and time division multiplexing

- A channel use a certain frequency for a certain amount of time and then uses a different frequency at some other time
 - Used in GSM systems

Frequency and time division multiplexing

Source : Schiller

Code division multiplexing

- separation of channels achieved by assigning each channel its own code
- guard spaces are realized by having distance in code space (e.g. orthogonal codes)
- transmitter can transmit in the same frequency band at the same time, but have to use different code
- Provides good protection against interference and tapping
- but the receivers have relatively high complexity
 - has to know the code and must separate the channel with user data from the noise composed of other transmission

has to be synchronized with the transmitter

Code division multiplexing

Modulation

- Process of combining input signal and a carrier frequency at the transmitter
- Digital to analog modulation
 - necessary if the medium only carries analog signal
- Analog to analog modulation
 - needed to have effective transmission (otherwise the antenna needed to transmit original signal could be large)
 - permits frequency division multiplexing

Amplitude Shift Keying (ASK)

- ASK is the most simple digital modulation scheme
- Two binary values, 0 and 1, are represented by two different amplitude
- In wireless, a constant amplitude cannot be guaranteed, so ASK is typically not used

Amplitude Shift Keying (ASK)

Frequency Shift Keying (FSK)

- The simplest form of FSK is binary FSK
 - assigns one frequency f₁ to binary 1 and another frequency f₂ binary 0
- Simple way to implement is to switch between two oscillators one with f₁ and the other with f₂
- The receiver can demodulate by having two bandpass filter

Frequency Shift Keying (FSK)

Phase Shift Keying (PSK)

- Uses shifts in the phase of a signal to represent data
- Shifting the phase by 180⁰ each time data changes: called binary PSK
- The receiver must synchronize in frequency and phase with the transmitter

Phase Shift Keying (PSK)

Quadrature Phase Shift Keying (Q-PSK)

- Higher bit rate can be achieved for the same bandwidth by coding two bits into one phase shift.
- 45⁰ for data 11
- 135⁰ for data 10
- 225⁰ for data 00
- 315⁰ for data 01

Spread Spectrum

- Spreading the bandwidth needed to transmit data
 - Spread signal has the same energy as the original signal, but is spread over a larger frequency range
 - provides resistance to narrowband interference

Spread Spectrum

Direct Sequence Spread Spectrum

- Takes a user bit sequence and performs an XOR with, what is known as, chipping sequence
- Each user bit duration t_b
- chipping sequence has smaller pulses t_c
- If chipping sequence is generated properly it may appear as random noise
 - sometimes called pseudo-noise (PN)
- t_b/t_c is known as the spreading factor
 - determines the bandwidth of the resultant signal
- Used by 802.11b

Direct Sequence Spread Spectrum

Frequency Hopping Spread Spectrum

- Total available bandwidth is split into many channels of smaller bandwidth and guard spaces
- Transmitter and receiver stay on one of these channels for a certain time and then hop to another channel
- Implements FDM and TDM
- Pattern of channel usage : hopping sequence
- Time spent on a particular channel: dwell time

Frequency Hopping Spread Spectrum

- Slow hopping
 - Transmitter uses one frequency for several bit period
 - systems are cheaper, but are prone to narrow band interference
- Fast hopping
 - Transmitter changes frequency several times in one bit period
 - Transmitter and receivers have to stay synchronized within smaller tolerances
 - Better immuned to narrow band interference as they stick to one frequency for a very short period
- Receiver must know the hopping sequence and stay synchronized with the transmitter
- Used by bluetooth

Frequency hopping spread spectrum

Session: 2

 $t_d = dwel time$

0.72