CE394M: An introduction to plasticity

Krishna Kumar

University of Texas at Austin

 $krishnak@utexas.\ edu$

April 9, 2019

Overview

Constitutive modeling

- 2 Plasticity
 - Equations of plasticity

Constitutive law

Isotropic linear elasticity

The knowledge of strain alone allows us to obtain the stress value.

Nonlinear elasticity

Hyperbolic model (Duncan and Chang., 1970)

There is no physical meaning to $(\sigma_1 - \sigma_3)_{ult}$. The $(\sigma_1 - \sigma_3)_f$ is determined from the strength criteria $\tau = c + \sigma' \tan \phi'$ (drained) or $\tau = s_u$ (total stress undrained).

Classical plasticity

Specimen 1 at point 0 same as specimen 2 at point D, but yield stress of specimen 2 is greater than the yield stress of specimen 1 due to **plastic hardening**.

Classical plasticity

Elasto-plastic materials

Basic concepts of classical plasticity

To formulate an elasto-plastic constitutive model we need:

Yield functions

defines when plastic strains occur. If the material is isotropic, we can use the principal stresses to define the stress state.

Hardening law

How the threshold of yielding changes with plastic strain or how the yield function changes with plastic strain.

Equations of elasto-plasticity: 1. Stress-strain relation

Equations of elasto-plasticity: 2. Flow rule

Drucker's postulate

Drucker (1952) established that for a stable inelastic material in a closed stress cycle, a positive work must be done.

Associated and non-associated plasticity

Equations of elasto-plasticity: 3. Consistency condition

Equations of elasto-plasticity: 3. Consistency condition

The consistency condition can be written as:

$$dF = \left(\frac{\partial F}{\partial \sigma}\right)^{T} \cdot d\sigma + \frac{\partial F}{\partial Wp} \cdot dWp = 0$$

$$= \left(\frac{\partial F}{\partial \sigma}\right)^{T} \cdot d\sigma + \left(\frac{\partial F}{\partial Wp}\right) \cdot \left(\frac{\partial Wp}{\partial \varepsilon^{p}}\right)^{T} \cdot d\varepsilon^{p} = 0$$

$$= \left(\frac{\partial F}{\partial \sigma}\right)^{T} \cdot d\sigma + \left(\frac{\partial F}{\partial Wp}\right) \left(\frac{\partial Wp}{\partial \varepsilon^{p}}\right)^{T} \cdot \frac{\partial G}{\partial \sigma} d\lambda = 0$$

$$dF = \left(\frac{\partial F}{\partial \sigma}\right)^{T} \cdot d\sigma - Hd\lambda = 0.$$

if H > 0: Hardening, if H = 0: perfect plasticity, if H < 0: softening.

Hardening v Softening

Linear elastic – hardening plastic material H > 0

Linear elastic – softening plastic material H < 0

Isotropic v kinematic hardening

Two primary types of hardening laws: density and kinematic hardening.

- **Oensity hardening**: also referred to as isotropic hardening. $(\sigma_1 \sigma_3) 2c(h) = 0$
- **Winematic hardening**: typically describing fabric anisotropy. No change in size of yield surface but translating in stress space. $F = (\sigma_1 \sigma_3) \alpha(h) 2c = 0$.

Basic concepts of elasto-plasticity

The response of the material is:

elastic:

• elasto-plastic:

Note: When the response is elastic, we have no problem! Knowing the strain, we directly can calculate the stress $(d\sigma = D^e \cdot d\varepsilon)$.

The difficulty arises when the material response is elasto-plastic, we need to determine D^p !

Equations of elasto-plasticity

For an elasto-plastic material:

- Input material:
- Results from FE analysis:
- unknowns:
- What we are interested:
- **1** Stress-strain: $d\sigma = D^e \cdot (d\varepsilon d\varepsilon^p)$
- ② Consistency-condition: $dF = \frac{\partial F}{\partial \sigma}^T \cdot d\sigma Hd\lambda$
- **3** Flow rule: $d\varepsilon^p = \frac{\partial G}{\partial \sigma} d\lambda$.

Solution procedure:

Equations of elasto-plasticity

Eq 1 and 3 (stress-strain & flow rule) in Eq 2 (consistency condition) for $d\lambda$

$$\begin{split} dF &= \left(\frac{\partial F}{\partial \sigma}\right)^T \cdot D^e \cdot \left(d\varepsilon - \frac{\partial G}{\partial \sigma} d\lambda\right) - H d\lambda = 0 \\ d\lambda &= \frac{\left(\frac{\partial F}{\partial \sigma}\right)^T \cdot D^e \cdot d\varepsilon}{\left(\frac{\partial F}{\partial \sigma}\right)^T \cdot D^e \left(\frac{\partial G}{\partial \sigma}\right) + H} \\ &\qquad \left(\frac{\partial F}{\partial \sigma}\right)^T \cdot D^e \frac{\partial G}{\partial \sigma} + H > 0 \end{split}$$

 $d\lambda$ in Eq 3 \rightarrow $d\varepsilon^p$

$$d\varepsilon^{p} = \frac{\partial G}{\partial \sigma} d\lambda = \frac{\partial G}{\partial \sigma} \frac{\left(\frac{\partial F}{\partial \sigma}\right)^{T} \cdot D^{e} \cdot d\varepsilon}{\left(\frac{\partial F}{\partial \sigma}\right)^{T} \cdot D^{e} \left(\frac{\partial G}{\partial \sigma}\right) + H}$$

Equations of elasto-plasticity

 $d \varepsilon^p$ in Eq $1 o d \sigma$

$$\frac{d\sigma}{d\sigma} = D^{e} \cdot (d\varepsilon - d\varepsilon^{p})$$

$$= D^{e} \cdot \left(d\varepsilon - \frac{\partial G}{\partial \sigma} \frac{\left(\frac{\partial F}{\partial \sigma} \right)^{T} \cdot D^{e} \cdot d\varepsilon}{\left(\frac{\partial F}{\partial \sigma} \right)^{T} \cdot D^{e} \left(\frac{\partial G}{\partial \sigma} \right) + H} \right)$$

$$d\sigma' = \left[D^{e} - \frac{D^{e} \left(\frac{\partial G}{\partial \sigma'}\right) \left(\frac{\partial F}{\partial \sigma'}\right)^{T} D^{e}}{-\left(\frac{\partial F}{\partial W_{p}}\right) \left(\frac{\partial W_{p}}{\partial \varepsilon^{p}}\right)^{T} \left(\frac{\partial G}{\partial \sigma'}\right) + \left(\frac{\partial F}{\partial \sigma'}\right)^{T} D^{e} \left(\frac{\partial G}{\partial \sigma'}\right)}\right] d\varepsilon$$

Plastic loading v elastic unloading

Depending on α , we might have three different scenarios:

If
$$\alpha = 90^{\circ} \Rightarrow \left(\frac{\partial F}{\partial \sigma}\right)^{T} \cdot \mathbf{D}^{e} \cdot d\mathbf{\varepsilon} = 0$$

$$\Rightarrow d\lambda = 0 \Rightarrow d\mathbf{\varepsilon}^{p} = 0$$

$$\Rightarrow \text{Neutral loading}$$

$$\Rightarrow dF = 0$$

If
$$\alpha < 90^{\circ} \Rightarrow \left(\frac{\partial F}{\partial \sigma}\right)^{T} \cdot \mathbf{D}^{e} \cdot d\mathbf{\varepsilon} > 0$$

$$\Rightarrow d\lambda > 0 \Rightarrow d\mathbf{\varepsilon}^{p} > 0$$

$$\Rightarrow \mathbf{Elastoplastic loading}$$

$$\Rightarrow dF = 0$$

If
$$\alpha > 90^{\circ} \Rightarrow \left(\frac{\partial F}{\partial \sigma}\right)^{T} \cdot \mathbf{D}^{e} \cdot d\mathbf{\varepsilon} < 0$$

$$\Rightarrow d\Lambda < 0 \Rightarrow d\mathbf{\varepsilon} = 0$$

$$\Rightarrow \mathbf{Elastic unloading}$$

$$\Rightarrow dF < 0$$

Plastic loading v elastic unloading

Don't confuse elastoplastic loading with softenting...

Problems associated to softening

- The modeling of **strain softening** (i.e. strength decreases from pick to residual conditions) leads to the localization phenomenon.
- Localization shows up when all deformation is absorbed by one element, while the neighboring elements remain under elastic conditions.
- The solution depends on the element size, hence the localization is a mesh dependent numerical problem.
- Solution: regularization techniques: non-local integration, strain softening models dependent on the element size,...
- Be careful: Most of the commercial software do not include regularization techniques.

Problems associated to softening

Don't confuse elastoplastic loading with softenting...

FE workflow

