Problem 3, Sheet 3 Hailbam Babbili, Olalekan Peter Adara

Problem 3

Part I (uncoded)

Transmitted code $C = (C_1, C_2)$

Received code = & = (cî, &)

Given, y = x + n, where Y is received symbol and x is the transmitted symbol what is transmitted is well-known.

where naN(0,62) ~~ N(o, No)

QPSK, 2 bits per Symbol
M = 4

Optimum Decoding rule

For Boye's law

for Baye's
$$(aw)$$

 $P(x|y) P(y) = P(y|x) P(x)$
 $P(x|y) = P(y|x) P(x)$
 $P(y|y) = P(y|x) P(x)$

let received symbol be represented as &

To maximize &, for a corresponding y

To maximize
$$\hat{x}$$
, for a corresponding \hat{y} and \hat{y} for a corresponding \hat{y} and \hat{y} $\hat{$

Since P(y) is independent et it, we can do away with P(y)

Since P(3) is
$$P(x|y) = \text{org } m_{X} \times P(y|x) P(x)$$

$$x = \text{org } m_{X} \times P(x|y) = \text{org } m_{X} \times P(y|x) P(x) = \frac{1}{M} = \frac{1}{4}$$
for QPSK, equiprobable symbols, $P(x) = \frac{1}{M} = \frac{1}{4}$

$$\hat{\chi} = \arg \max_{x} p(x|y) = \arg \max_{x} p(y|x)$$

Since we are transmitting over a Gaussian channel 2 $\hat{\chi} = \text{org max } P(x|y) = \text{org max} \left(\frac{1}{275} Q - \frac{1|y-x||^2}{26^2}\right)$

$$\hat{X} = \arg\max_{\mathbf{x}} \left(\ln \frac{1}{|\mathbf{y} - \mathbf{x}||^2} - \frac{|\mathbf{y} - \mathbf{x}||^2}{26^2} \right)$$

$$\hat{X} = \arg\max_{\mathbf{x}} \left(-\frac{|\mathbf{y} - \mathbf{x}||^2}{26^2} \right)$$

$$\hat{X} = \arg\max_{\mathbf{x}} \left(-\frac{|\mathbf{y} - \mathbf{x}||^2}{26^2} \right)$$

$$\hat{X} = \arg\min_{\mathbf{x}} \left(|\mathbf{y} - \mathbf{x}||^2 \right)$$

$$\hat{X} = \arg\min_{\mathbf{x$$

(2)

Taken that x belongs to X=(x1, 12, 12, 12, 124) x = 201, If yIKO and Ye>0 x2, if yz >0 and 4@>0 x3, if yI >0 and Ye <0 24 if yILO and YOLO Based on the condition, that for QPSK Symbol Error rate, = P(YI>O UYQ < O|XI), HINT: P(AUB)=P(A)+P(B)-P(ANB) $P_{\text{ser}} = P(\hat{x} \neq x_1 | x = x_1)$ = P(YI)0|X1) + P(YQ<0|X)-P(YI)0|X1) P(YQ<0|X1) Since we assume the symbols one normally distributed and considering AWGN channel, $N\sim(0,6^2)$. $6^2=No=>6=VN_0$ Taking $\alpha = 11y - 211^2 = 3$ Average Symbol Energy Es = 2Eb $\alpha = \sqrt{E_2} \Rightarrow E_3 = 2\alpha^2, \ \alpha = \sqrt{E_2} = \sqrt{E_b}$ Thousand, In N(-0,82) and Ye ~ N(x,82) 50, P(Yz)0|Xi) = P(Yz)0) |Yz~~~ (-002) $= Q(\overset{\sim}{6}) = Q(\overset{\sim}{\sqrt{E_s}}) = Q(\overset{\sim}{\sqrt{N_0}})$ For QPSK, by symmetry, PCtQCOIXI) = P(YI>OIXI) PSER = PCTI >Olxi) + PCTE (Olxi) - PCTI >Olxi) P(Ye (Olxi) |SER = 2Q(12年) - [Q(12年)] 2 The Symbol Error Probability for QPSK $= 2Q(\sqrt{\frac{26}{N_0}}) - [Q(\sqrt{\frac{26}{N_0}})]^2$

(3)

Bot Error Probability for QPSK, for the first and second bit BER for an M-ary Constellation is generally given as let Pi and P2 represent probabilities for bit I and 2. M=4 for QPSK R=P(eb), For gray labelling =4[P(eb,1x1)+P(eb,1x2)+P(eb,1x3)+P(eb,1x4)] PI = 1 Z P(Cb. 12e) $=\frac{1}{4}\left[\left(P(b_1(x)=0|x_1)+P(b_1(x)=1|x_2)+P(b_1(x)=1|x_3)+Pr(b_1(x)=0|x_4)\right)\right.$ for OPSIK, PGW = Im = 4 Therefore $P(b_1(x) = 0 \mid x_1) = P(Y_1 > 0 \mid x_1)$ $= Q\left(\sqrt{\frac{ES}{N_0}}\right) = Q\left(\sqrt{\frac{2E_0}{N_0}}\right) - 31st Bit$ = P(Y,>0)|Y,~N(-0,02) P(b,(x)=11x2) = P(Y, <01x2) For the second but, = $P(Y, \langle O \rangle | Y, \sim N(\alpha, \sigma^2)$ = Q(2Eb) _ > Second bit Average Bit Error rate for QPSK, with gray labelling, will be $P_{\text{epsk-Grey}} = \frac{1}{2} (P_1 + P_2) = Q(\sqrt{\frac{2E_b}{N_0}})$ The average error probability for bits 1 and 2 is the same as the Bit error rate for either of the bits

(4)

					1	
	10	00			[] 201	00
	1 l 2 c 4				10,24	
	Gray lat	pelling				phical labelling
Taken	that	v. = X	(1+j), X3	= a(1-j)	, ×4 = 0	x(-1-j)
Avera Boscally for QPS	Persk Pser = where Sk, P()	$2 = \sqrt{\frac{2}{3}}$ $2 = \sqrt{\frac{2}{3}}$ $2 = \sqrt{\frac{2}{3}}$ $4 = \sqrt{\frac{2}{3}}$ $5 = \sqrt{\frac{2}{3}}$	is the same $x_i = Q(x_i)$	$ \left(\sqrt{\frac{2\xi_{b}}{N_{o}}}\right) $	$\begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$	$\left(\sqrt{\frac{1^2}{2N\delta}}\right)$
Ist	elling Opsk Raroy	= ISE	Pak R Lexiographical 2Eb No) - de(xi,xi) 2No	[Q(V	263 No]	
		24(1)	2No '			

(5)

for Bit Error rate, QPSK, Lexiographical mopping, we Can see that Pi 7 B2 for If P1 = Q(V = NO) B=(P1+P4)(1-P1) = (P1+P4)(1-P4) $P_2 = 2R(1-R) = 2R - 2R^2$ $P_{2} = 2Q(\sqrt{\frac{2E_{0}}{N_{0}}})(1-Q(\sqrt{\frac{2E_{0}}{N_{0}}}))$ $P_{\text{Average}}^{\text{QPSK}} = \frac{P_1 + P_2}{2} = \frac{1}{2} \left(Q(\sum_{N_0}^{2E_0}) + 2Q(\sqrt{\sum_{N_0}^{2E_0}}) (1 - Q(\sqrt{\sum_{N_0}^{2E_0}})) \right)$ $= P_1 + (2P_1 - 2P_1^2) = \frac{3P_1 - 2P_1^2}{2} = \frac{3}{2}P_1 - P_1^2$ => Paverge = = = = = (25) - (QV2Eb)2

BER for Gray Labelling + BER for Lexiographical

Port I (coded) $C = \begin{cases} C_1 = (000000) \\ C_2 = (010101) \\ C_3 = (101010) \\ C_4 = (111111) \end{cases}$ (1) Given C(n,k)=?N = length of codewords in bits -> n=6 K = Information block length 2 = Number of code words and there are 4 code words (C,C253) $2^{k} = 4$, $\implies k = 2$ Linear codes must satisfy two conditions (1/ Minimum Hamming distance = Minimum Hamming weight min(dH) = min(WH)(i) Addition of two codewords gives another code word. Here, $C_1+C_2=C_2$, $C_1+C_3=C_3$, $C_1+C_4=C_4$, $C_2+C_3=C_4$ $C_{1}, C_{2} = 3$; $C_{1}, C_{3} = 3$; $C_{1}, C_{4} = 6$; $C_{2}, C_{3} = 6$ Minimum Hamming weight $C_1 = 0$, $C_2 = 3$, $C_3 = 3$, $C_4 = 6$ The first condition of linearity is not satisfied, therefore it is not a linear code. OPSIC is 2 bit per symbol and these code words have 6 bits We will need 3 QPSK symbols for one Cocleword.

De Maximum Likelihood detection, we need to look into the minimum hamming distance

Receiver outputs ĉ = 10000.1

ĉ, c = 2

ĉ, c ≥ 3

ĉ, c ≥ 3

ĉ, c ≥ 4

⇒ min (c, ĉ) = c 1

C1 compared with ĉ offered the minimum Hamming distance

Since the Codeword mapping remains the Since the Codeword mapping remains the same irrespective of either gray or lexitographical mapping, the decision region will not change with the bit error rate will change.

The bit error rate will change the land th

