Interfejsy w Systemach Komputerowych - ULTIMATE

SonMati Ervelan Doxus

23 grudnia 2014

Pytania i odpowiedzi

1 RS-232

Prawda/Fałsz

RS-232 jest portem przeznaczonym do synchronicznej transmisji znakowej. Generator taktu odpowiedzialny za wyprowadzanie znaków typowo ustawiany jest na: 1200bd, 2400bd, 4800bd, 9600bd, 19200bd.

RS-232 jest portem przeznaczonym do asynchronicznej transmisji znakowej. Da się sztucznie stworzyć synchroniczną transmisję.

- Linie kontrolne w interfejsie RS-232 to: DTR, DSR, RTS, CTS, RI, DCD. Pary DTR/DSR i RTS/CTS wykorzystywane są do realizacji handshake'u w połączeniach bezmodemowych. Tak, te pary linii mogą być wykorzystywane do handshake podczas gdy RxD i TxD zajmują się przesylem danych.
- Transakcja w systemie MODBUS składa się z zapytania (query) wysyłanego przez stację Slave i odpowiedzi odsyłanej przez stację Master.
 Jest odwrotnie - zapytanie wysyła Master, a odpowiedź odsyła Slave.
- W trybie transmisji ASCII znacznikiem początku ramki jest znak ':', a kooca ramki para znaków CR LF. W trybie transmisji RTU znacznikiem początku ramki jest znak 'Ctrl-A', a kooca para znaków CTRL-Y CTRL-Z.

Zdanie jest poprawne dla ASCII. Dla RTU, znacznikiem początku i końca ramki jest przerwa o długości minimum 4T, gdzie T jest czasem trwania jednego znaku.

- Standard RS-232 transmituje znaki synchronicznie, bity w znakach [asynchronicznie] Ostatnie słowo ucięte, więc spekuluję że tak właśnie było napisane. To nieprawda, jest odwrotnie.
- Standard RS-422 pozwala na osiągnięcie szybkości 10MBodów na odległości 100m. IMO pozwala, na słajdzie 12 jest napisane że 10 Mbd przy zasięgu DO 100m - czyli 100m chyba też.
- Liniami kontrolnymi w RS-232 nie są linie TxD, RxD, SG. Owszem, TxD i RxD są liniami danych, a SG to po prostu masa.
- System MODBUS składa się z faz zapytania i odpowiedzi.
 Tak właśnie jest.
- W systemie MODBUS
 - Obowiązuje master/slave.
 Pewnie, a w dodatku Slave'ów może być wielu.
 - Prędkości transmisji wynoszą od 1200 do 19200bd.
 Jak najbardziej.
 - Ramka w ASCII może mieć format 7N2 (lub np. 7E1, 7O1).
 Tak, patrz warstwa fizyczna MODBUS.
 - Ramka w RTU może mieć format 8N2 *(lub np. 8E1, 8O1).
 Tak, patrz warstwa fizyczna MODBUS.
- W trybie transmisji RTU jest kontrola błędów CRC. Tak, jest elementem budowy ramki RTU.
- Bit kontrolny w RS-232 zależy od bitu danych i bitu stopu.
 Bit kontrolny słuzy do kontroli parzystości/nieparzystości, nie ma związku z bitem stopu.
- Za pomocą RS-232 możemy połączyć ze sobą 2 stacje DCE
 Połączyć możemy dwie stacje DTE, lub DTE z DCE. Dwie stacje DCE łączą się za pomocą łącza telefonicznego.

- W MODBUS kontrola błędów jest realizowana za pomocą LRC lub CRC. Tak, LRC wykorzystywane jest w trybie ASCII, CRC w trybie RTU.
- Do portu RS 485 można podłączyć tylko jedno urządzenie, ale za to obsługiwać go z dużo większą szybkością i na większą odległość niż jest to możliwe w przypadku interfejsu RS 232.
 Można podłączyć do 32 stacji.
- Format ramki w protokole Modbus jest następujący: znacznik początku ramki, adres urządzenia slave, adres mastera, pole danych, znacznik końca ramki.

 Opis nie pasuje ani do trybu ASCII, ani RTU
- RS 232 jest portem przeznaczonym dla asynchronicznej transmisji znakowej, realizowanej zazwyczaj w trybie dupleksowym, czyli dwukierunkowej transmisji niejednoczenej (naprzemiennej)

 Tryb dupleksowy jest równoczesny, to półdupleksowy jest niejednoczesny.
- W interfejsie RS 232 linie TxD i RxD służą do transmisji znaków, natomiast DTR, RTS to wyjścia kontrolne, a DSR, CTS, RI i DCD to wejścia kontrolne.
- Multipleksowanie urządzeń ze znakowym portem asynchronicznym pozwala na ich kontrolę poprzez
 jeden port RS-232.
 Żeby kontrolować kilka urządzeń z jednego portu potrzebny jest koncentrator. Jeśli "używanie koncentratora"
 równa się "multipleksowanie", to PRAWDA.
- Węzeł podrzędny w systemie MODBUS po wykryciu błędu w komunikacie wysyła potwierdzenie negatywne do węzła nadrzędnego.
 W odpowiedzi pole to jest wykorzystywane do pozytywnego lub negatywnego potwierdzenia wykonania polecenia.
- Czy w trybie ASCII systemu MODBUS każdy bajt wysyłany jest jako znak z przedziału 0x00, 0xFF?
 Bajt dzielimy na 2 części i wysyłamy jako 2 znaki z przedziału 0-9 i Ah-Fh

2 USB

Prawda/Fałsz

- Kontrola urządzenia USB odbywa się poprzez zapisy komunikatów do bufora o numerze 0 i odczycie informacji statusowych z bufora o numerze 0.

 Zgadza sie.
- W przypadku błędu transmisji każda transakcja USB jest powtarzana, ponieważ niedopuszczalne jest przekazywanie danych przekłamanych.

Transakcje izochroniczne nie są powtarzane w przypadku blędu transmisji.

- Hub nie dopuszcza ruchu full speed do portów, do których są podłączone urządzenia low speed. Tak, urządzenie lowspeed blokuje możliwość włączenia fullspeed na całym porcie.
- Reset portu USB polega na rekonfiguracji hosta, po której host zapisuje tablicę deskryptorów do urządzenia podłączonego do tego portu.
 - Reset portu USB polega na rekonfiguracji urządzenia. W następującej procedurze enumeracji między innymi dochodzi do odczytu tablicy deskryptorów z urządzenia przez host.
- Typowa transakcja USB składa się z pakietów żądania i odpowiedzi, z których każdy potwierdzany jest osobnym potwierdzeniem.

 $Typowa\ transakcja\ USB\ składa\ sie\ z\ pakietów\ token,\ data\ i\ handshake.\ Transakcje\ izochroniczne\ nie\ są\ potwierdzane.$

• W systemie USB urządzenia zgłaszają żądania do hosta, który je kolejkuje i następnie obsługuje w kolejności pojawiania się zgłoszenia.

Urządzenia nie zglaszają żądania, tylko są odpytywane przez hosta. Host nie tworzy jednej kolejki, tylko w miarę możliwości stara się obsługiwać wszystkie urządzenia jednocześnie, równomiernie, zapobiegając zawlaszczeniu.

- W USB można połączyd kaskadowo do 5 hubów, korzystających z zasilania magistralowego Podlączyć je można tylko korzystając z zasilania zewnętrznego lub hybrydowego. Przy zasilaniu magistralowym zabraknie zasilania już na drugim hubie. Co więcej, należy mieć na uwadze maksymalne dopuszczalne opóźnienie sygnalu, które przy przejściu przez 5 hubów jest osiągane 350ns. Urządzenia podpięte do 5'tego huba mogą nie działać poprawnie.
- Mechanizm data toggle w USB służy do przywracania synchronizacji pomiędzy hostem i urządzeniem, utraconej na skutek wystąpienia błędów w pakietach danych.

 Mechanizm data toggle zabezpiecza przed utratą synchronizacji pomiędzy hostem i urządzeniem na skutek blędu w potwierdzeniu odsylanym przez odbiorcę.
- Host kontroler USB komunikuje się z interfejsem magistrali USB urządzenia peryferyjnego za pomocą fizycznego kanału komunikacyjnego.
 Tak, używamy kabelka.
- Kamera internetowa może przesyłać obraz do komputera za pomocą transferu izochronicznego z szybkością LowSpeed w interfejsie USB.
 Z tabelk można wyczytać, że dla transferu izochronicznego nie można wykorzystać szybkości LowSpeed.
- Pakiety USB przesyłane z szybkością LowSpeed muszą byd poprzedzone pakietem preambuły Tak, jest on charakterystyczny dla pakietów przesylanych z szybkością LowSpeed
- Urządzenie peryferyjne USB 2.0 może być podłączone do host kontrolera za pośrednictwem maksymalnie sześciu hubów.
 Aby spełnid normę (ograniczenie czasowe oczekiwania na odpowiedź), można podłączyd za pośrednictwem
 - Aby spełnid normę (ograniczenie czasowe oczekiwania na odpowiedź), można podłączyd za pośrednictwem maksymalnie 5 hubów.
- Pole PID w pakiecie USB zabezpieczone jest 16-bitową sumą kontrolną CRC.

 Pole PID zabezpieczone jest 4-bitowym polem kontroli, będącym prostą negacją bitów pola PID.
- Do portu dolnego huba podłączane mogą byd tylko wtyki USB typu B. *Tylko wtyki typu A*.
- Transakcja dzielona w USB 1.1 składa sie z dwóch części: SSPLIT i CSPLIT. Takie czary dopiero w USB 2.0
- W przypadku połączenia USB HighSpeed wykonywane jest podparcie linii D- do Vcc za pośrednictwem rezystora 1,5k.

Po podlączeniu urządzenia High Speed wpierw jest ono identyfikowane jako Full Speed, więc wykonywane jest podparcie linii D+ do Vcc za pośrednictwem rezystora 1,5k. Następnie, poprzez chirp ("dwierkanie") host i urządzenie ustalają, czy możliwa jest komunikacja w trybie High Speed. Jeśli tak, usuwane jest podparcie przez rezystor, a obwód zamykany jest terminatorami.

- W kodowaniu NRZI co sześć jedynek jest wstawiany bit synchronizacji "0".

 Pomieszane pojęcia. W kodowaniu NRZI nie występuje dodawanie bitu synchronizacji. Proces ten nazywa się bit stuffing. Zdanie było by poprawne, gdyby brzmiało np. W kodowaniu NRZI z bit stuffingiem co sześć.
- $\bullet\,$ Transakcje kontrolna i przerwaniowa w USB 1.1 są transakcjami aperiodycznymi z gwarantowanym pasmem w ramach jednej mikroramki.
 - Transakcja kontrola jest transakcją aperiodyczną. Transakcją przerwaniowa jest transakcją periodyczną.
- W kontrolerze OHC transakcje izochroniczne są porządkowane/kolejkowane w drzewo/strukturę drzewiasta.
 - Tak, OHC wykorzystuje strukturę drzewa, a UHC tablicę wskaźników (listę podwieszaną).

- Standard USB 2.0 wymaga skręconych, ekranowanych kabli. Well, High speed all the way, więc wymaga
- Transfer kontrolny i przerwaniowy są transferami aperiodycznymi.

 Było podobne pytanie. Transfer kontrolny jest aperiodyczny, transfer przerwaniowy jest periodyczny.
- Wielowarstwowa architektura USB 2.0 składa się z 3 warstw.

 Tak warstwa interfejsu magistrali USB, warstwa urządzenia USB, warstwa funkcji urządzenia
- W porcie USB dane są dzielone na transakcje. Dane w ramce są dzielone na transakcje, więc tak
- Hub podłączony do portu USB ma obciążalność 100uA.

Hub podlączony do portu USB bez własnego zasilania (zasilanie magistralowe) ma obciążalnośd dla portów dolnych do 100mA na port (maksymalną 400mA na cały hub). Hub z zasilaniem zewnętrznym lub hybrydowym ma obciążalnośd do 500mA na port.

- W systemie USB do mechanizmów kontroli danych należą:
 - Przełączanie pakietów danych Tzw. Data Toggle
 - Wykrywanie braku aktywności na linii danych;
 - Zabezpieczenie znacznika SOF lub EOF
 Reakcją jest natomiast objęte wystąpienie falszywego znacznika kooca pakietu (false EOP)
 - kodowanie LRC
 Pakiety zabezpieczone są kodowaniem CRC.
- Wydajnośd dolnego portu (USB 2.0) wynosi 500mA.

 Nie wiadomo. Zasilany Hub może wystawić te 500mA, ale niezasilany już tylko 100mA
- USB 2.0 ma parę przewodów ekranowanych. *Taki upgrade.*
- W kodowaniu NZR wstawia się dodatkowe bity synchroniczne.

 Dodatkowe bity synchroniczne wstawia się w kodowaniu NRZI
- Urządzenie USB 2.0 może zasygnalizować swoją niegotowość do zapisu danych z szybkością High-Speed wysyłając pakiet PING-NYET.

Wychodzi na to, że niegotowość zgłasza samym NYET? Pyta – PING, odpowiada (niegotowość) NYET. I Tak cały czas, chyba że dostanie ACK. ACK – wykonanie transakcji OUT. NYRT – host kontynuuje wysyłanie zapytań PING

- W systemie deskryptorów urządzenia USB może wystąpić kilka deskryptorów urządzenia, konfiguracji, interfejsów I punktów końcowych.
 - Deskryptor urządzenia może być jeden. Innych konfiguracji, interfejsu, końcowych może być więcej.
- Hub USB ma przerwaniowy punkt końcowy, który wykorzystuje do powiadamiania hosta o podłączeniu urządzenia USB do któregoś z jego portów dolnych.
 Chyba.
- Na wierzchołku wielopoziomowego, hierarchicznego układu deskryptorów USB znajduje się deskryptor konfiguracji. Na szczycie znajduje się pojedynczy deskryptor urządzenia.
- Transfer masowy I izochroniczny USB 1.1 są przykładami transferów aperiodycznych z zagwarantowanym pasmem w ramach jednej mikroramki.

 Izochroniczny jest periodyczny, masowy nie ma zagwarantowanego pasma (wg tabelki z prędkościami)
- W deskryptorze konfiguracji USB jest jakiś pole statusowe, które mówi o maksymalnym poborze prądu. Dla wartości 50 urządzenie pobiera 50mA.
 - Pole to jest tak skonstruowane, żeby wartość zmieściła się w jednym bajcie, ze skokiem co 2mA. Dlatego urządzenie, które zglasza, że 50 może zasysać maksymalnie 100mA.
- Uszeregowanie transakcji w USB. Nie zależy od implementacji kontrolera. w OHC przerwaniowe są w strukturze drzewa, a w UCH listy podwieszanej, co ma wpływ na uszeregowanie (do sprawdzenia)

- 3 IEEE 1394 Firewire
- 4 IEEE-488 i SCPI