Geometría Lineal

Victoria Torroja Rubio 8/9/2025

Índice general

0.	Pre	iminares	3
	0.1.	Partición de $\mathbb Z$ definida por $n\mathbb Z$	4
1.	Geo	metría sintética	6
	1.1.	Planos afines sintéticos	ô
		1.1.1. Independencia de los axiomas	3
		1.1.2. Algunos teoremas	
		1.1.3. Planos afines finitos	1
	1.2.	Planos proyectivos sintéticos	2
		1.2.1. Independencia de los axiomas	3
		1.2.2. Algunos teoremas	3
		1.2.3. Construcción de planos proyectivos desde planos afines	ŏ
		1.2.4. Construcción de un plano afín desde un plano proyectivo 17	7
		1.2.5. Dualidad	3
	1.3.	Independencia del teorema de Desargues	J
2.	Geo	metría afín y proyectiva lineal	3
	2.1.	Espacios proyectivos y afines	3
		2.1.1. Sistemas de referencia	ô
		2.1.2. Cambio de coordenadas cartesianas	2
		2.1.3. Cambio de coordenadas baricéntricas	
		2.1.4. Cambios de coordenadas homogéneas en \mathbb{P}	
	2.2.	Aplicaciones afines	
	2.3.	Aplicaciones provectivas	1

Información útil en el Campus Virtual.

Bibliografía: El libro que más sigue es el tercero de la bibliografía, aunque no incluye la primera parte de geometría sintética.

Evaluación: será el máximo entre

- Final
- \bullet 75 % Final + 15 % Parcial + 10 % Entrega ejercicios

Fechas:

- Parcial individual en el aula: 27 de octubre
- Entrega de ejercicios en grupo: 1 de diciembre

Capítulo 0

Preliminares

Definición 0.1 (Cuerpo). Un **cuerpo** es un conjunto \mathbb{K} con dos operaciones + y \cdot tales que:

- $(\mathbb{K}, +)$ es un grupo abeliano.
- $(\mathbb{K}/\{0\},\cdot)$ es un grupo abeliano.
- Se cumple la propiedad distributiva.

Definición 0.2 (Espacio vectorial). Un **espacio vectorial** V sobre un cuerpo \mathbb{K} , es un grupo abeliano (V, +) con una función $\cdot : \mathbb{K} \times V \to V$ tal que:

- $\forall \lambda, \mu \in \mathbb{K}, \forall \vec{v} \in V, \lambda \cdot (\mu \cdot \vec{v}) = (\lambda \mu) \cdot \vec{v}.$
- $\quad \blacksquare \ \forall \vec{v} \in V, \, 1 \cdot \vec{v} = \vec{v}.$
- $\forall \lambda \in \mathbb{K}, \forall \vec{u}, \vec{v} \in V, \ \lambda \left(\vec{u} + \vec{v} \right) = \lambda \vec{u} + \lambda \vec{v}.$
- $\forall \lambda, \mu \in \mathbb{K}, \forall \vec{v} \in V, \lambda \vec{v} + \mu \vec{v}.$

Observación. Dado V un \mathbb{K} -espacio vectorial, si dim $(V) = n < \infty$, entonces se tiene que $V \cong \mathbb{K}^n$.

Definición 0.3 (Relación de equivalencia). Una relación \mathcal{R} en un conjunto X es de **equivalencia** si cumple:

Reflexiva. $\forall x \in X, x \mathcal{R} x$.

Simétrica. $\forall x, y \in X, x\mathcal{R}y \Rightarrow y\mathcal{R}x$.

Transitiva. $\forall x, y, z \in X, (x\mathcal{R}y) \land (y\mathcal{R}z) \Rightarrow (x\mathcal{R}z).$

Recordamos los conjuntos de clase de equivalencia de un elemento $x \in X$:

$$[x]_{\mathcal{R}} = \{ y \in X : y\mathcal{R}x \}.$$

Similarmente, tenemos que el conjunto cociente de una relación de equivalencia es

$$X/\mathcal{R} = \{ [x]_{\mathcal{R}} : x \in X \}.$$

Una **partición** de X es una familia de subconjuntos de X, disjuntos dos a dos, cuya unión es X.

0.1. Partición de \mathbb{Z} definida por $n\mathbb{Z}$

Para $A, B \subset \mathbb{Z}$, definimos las operaciones

- $A + B = \{a + b : a \in A, b \in B\}.$
- $A \cdot B = \{a \cdot b : a \in A, b \in B\}.$
- $n\mathbb{Z} := \{n\} \cdot \mathbb{Z}.$
- $a+n\mathbb{Z}:=\{a\}+\{n\}\,\mathbb{Z}.$

Teorema 0.1 (Algoritmo de la división). Para todo $x \in \mathbb{Z}$ existe un único $q \in \mathbb{Z}$ y $r \in \{0, 1, \dots, n-1\}$ tal que x = r + qn. Por tanto,

$$\{n\mathbb{Z}, 1+n\mathbb{Z}, \ldots, (n-1)+n\mathbb{Z}\}\$$
,

es una partición de \mathbb{Z} que denotamos por $\mathbb{Z}/n\mathbb{Z}$.

Observación. La partición anterior se corresponde con la relación de equivalencia

$$a\mathcal{R}_n b \iff a - b \in n\mathbb{Z}.$$

Teorema 0.2. El par $(\mathbb{Z}/n\mathbb{Z}, +)$ es un grupo, con la suma definida de la siguiente forma:

$$(a+n\mathbb{Z}) + (b+n\mathbb{Z}) = (a+b) + n\mathbb{Z} = r + n\mathbb{Z},$$

donde $a + b = r + qn \text{ con } r \in \{0, 1, \dots, n - 1\}.$

Demostración. Primero vamos a ver que la aplicación está bien definida. Para ello, vamos a ver que no depende del representante. Es decir, supongamos que $x_1, x_2 \in [x]_{\mathcal{R}}$ e $y_1, y_2 \in [y]_{\mathcal{R}}$. Tenemos que $x_2 = x_1 + \lambda n$ e $y_2 = y_1 + \mu n$, así tenemos que

$$y_2 + x_2 = y_1 + \mu n + x_1 + \lambda n = (y_1 + x_1) + (\mu + \lambda) n.$$

Así, tenemos que $y_2 + x_2 \mathcal{R}_n y_1 + x_1$, por lo que $y_2 + x_2 \in [y_1 + x_1]_{\mathcal{R}_n}$. Así, hemos visto que está bien definida y, por la definición, se puede ver que es una operación binaria en $\mathbb{Z}/n\mathbb{Z}$. Ahora tenemos que ver que es asociativa:

$$\begin{split} \left[(a+n\mathbb{Z}) + (b+n\mathbb{Z}) \right] + (c+n\mathbb{Z}) &= \left[(a+b) + n\mathbb{Z} \right] + (c+n\mathbb{Z}) \\ &= (a+b+c) + n\mathbb{Z} \\ &= (a+n\mathbb{Z}) + \left[(b+c) + n\mathbb{Z} \right] \\ &= (a+n\mathbb{Z}) + \left[(b+n\mathbb{Z}) + (c+n\mathbb{Z}) \right]. \end{split}$$

Ahora vamos a ver que existen el elemento neutro y los inversos. Por un lado, tenemos que el elemento neutro es claramente $0 + n\mathbb{Z}$. En efecto, $\forall a \in \mathbb{Z}$,

$$(0+n\mathbb{Z}) + (a+n\mathbb{Z}) = (0+a) + n\mathbb{Z} = a + n\mathbb{Z}.$$

Así, tenemos que 0 es el elemento neutro. En cuanto al inverso, si $a \in \mathbb{Z}$, tenemos que $-a + n\mathbb{Z}$ es su inverso:

$$(a+n\mathbb{Z}) + (-a+n\mathbb{Z}) = (a-a) + n\mathbb{Z} = 0 + n\mathbb{Z}.$$

Observación. Además, se tiene que dado que la suma en \mathbb{Z} es conmutativa, la suma definida en $\mathbb{Z}/n\mathbb{Z}$ también lo es.

Proposición 0.1. Para $\forall a, b \in \mathbb{Z}$ se tiene que

- (i) $(a + n\mathbb{Z}) \cdot (b + n\mathbb{Z}) \neq \emptyset$.
- (ii) $(a+n\mathbb{Z})\cdot(b+n\mathbb{Z})\subset(a\cdot b)+n\mathbb{Z}=r+n\mathbb{Z},$ donde $a\cdot b=r+qn$ con $r\in\{0,1,\ldots,n-1\}.$

Demostración. (i) Dado que $a, b \in \mathbb{Z}$, tenemos que $a + n\mathbb{Z}, b + n\mathbb{Z} \neq \emptyset$. Así, por nuestra definición del producto de conjuntos, tenemos que $(a + n\mathbb{Z}) \cdot (b + n\mathbb{Z}) \neq \emptyset$.

(ii) Si $x \in (a + n\mathbb{Z}) \cdot (b + n\mathbb{Z})$, tenemos que $x = y \cdot z$ para $y \in a + n\mathbb{Z}$ y $z = b + n\mathbb{Z}$. Así, $y = a + \lambda n$ y $z = b + \mu n$, con $\lambda, \mu \in \mathbb{Z}$. Así, queda que

$$x = y \cdot z = (a + \lambda n) \cdot (b + \mu n) = ab + (a\mu + \lambda b + \lambda \mu n) n.$$

Así, está claro que $x \in (a \cdot b) + n\mathbb{Z}$.

Observación. En cuanto a la parte (ii) de la proposición anterior, la igualdad no tiene por qué darse. En efecto, consideremos como ejemplo

Definimos la operación $*: \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ como

$$(a+n\mathbb{Z})*(b+n\mathbb{Z}) = (c+n\mathbb{Z}) \iff (a+n\mathbb{Z})\cdot(b+n\mathbb{Z}) \subset c+n\mathbb{Z}.$$

Capítulo 1

Geometría sintética

1.1. Planos afines sintéticos

Definición 1.1 (Plano afín). Un plano afín es un par $(\mathcal{P}, \mathcal{R})$ donde \mathcal{P} es un conjunto no vacío cuyos elementos llamamos **puntos**, y \mathcal{R} es un conjunto de subconjuntos de \mathcal{P} cuyos elementos llamamos **rectas**, que satisfacen lo siguiente:

- **A1.** Sean $P,Q \in \mathcal{P}$ con $P \neq Q$. Existe una única recta $l \in \mathcal{R}$ tal que $P,Q \in l$ (escribimos l = l(PQ)).
- **A2.** $\forall l \in \mathcal{R}, \forall P \in \mathcal{P}, P \notin l$, existe una única recta $m \in \mathcal{R}$ tal que $P \in m$ y $m \cap l = \emptyset$.
- A3. Toda recta tiene al menos dos puntos y hay al menos dos rectas.

Observación. El tercer axioma asegura que se trata de algo dimensional.

Definición 1.2 (Rectas paralelas). Si $l, m \in \mathcal{R}$ tales que $l \cap m = \emptyset$, diremos que l y m son paralelas y escribimos l||m.

Ejemplo (Plano cartesiano). El plano cartesiano \mathbb{R}^2 es un plano afín. Tenemos que

$$\mathcal{P} = \{ (x_1, x_2) : x_1, x_2 \in \mathbb{R} \}.$$

 $\mathcal{R}: l = \{(x_1, x_2) \in \mathbb{R}^2 : ax_1 + bx_2 = 0, a, b, c \in \mathbb{R}, (a, b) \neq (0, 0)\} := \{ax_1 + bx_2 = c\}.$

Vamos a ver que verifica los axiomas. Comprobamos A1. Si tomamos $P = (a_1, a_2)$ y $Q = (b_1, b_2)$, tenemos que la ecuación de una recta que pasa por P y Q será

$$\begin{vmatrix} 1 & x_1 & x_2 \\ 1 & a_1 & b_1 \\ 1 & a_2 & b_2 \end{vmatrix} = 0 \iff (b_2 - b_1) x_1 + (a_1 - a_2) x_2 = a_1 b_2 - a_2 b_1.$$

Así, existe una única recta que contiene a P y Q. Sabemos que la recta es única porque

el sistema

$$\begin{cases} ax_1 + bx_2 = c \\ a'x_1 + b'x_2 = c \end{cases},$$

tiene dos soluciones (porque $P \neq Q$), por lo que tiene infinitas soluciones. Ahora comprobamos el axioma **A2**. Supongamos que $l = \{ax_1 + bx_2 = c\}$, $P = (a_1, b_1) \notin l$, es decir,

$$aa_1 + bb_1 \neq c$$
.

Tomamos la recta $m = \{ax_1 + bx_2 = aa_1 + bb_1\}$. Tenemos que $P \in m$. Por otro lado, calculamos $m \cap l$:

$$\begin{cases} ax_1 + bx_2 = c \\ ax_1 + bx_2 = aa_1 + bb_1 \end{cases}$$

Se trata de un sistema incompatible puesto que ran $\begin{pmatrix} a & b \\ a & b \end{pmatrix} < \operatorname{ran} \begin{pmatrix} a & b & c \\ a & b & aa_1 + bb_1 \end{pmatrix}$. Así, tenemos que $l \cap m = \emptyset$. La unicidad se deduce de un argumento similar al anterior. En cuanto a **A3**, tenemos que existe dos rectas $\{x_1 = 0\}$ y $\{x_2 = 0\}$, y los puntos $\left(0, \frac{c}{b}\right), \left(\frac{c}{a}, 0\right) \in l = \{ax_1 + bx_2 = c\}$. Si a = 0 o b = 0 tenemos que **A3** se sigue cumpliendo:

$$\left(\frac{c}{a},0\right),\left(\frac{c}{a},1\right)\in\left\{ax_{1}=c\right\},\quad\left(0,\frac{c}{b}\right),\left(1,\frac{c}{b}\right)\in\left\{bx_{2}=c\right\}.$$

Observación. Una recta tiene más de una ecuación asociada. En efecto,

$$l = \{ax_1 + bx_2 = c\} = \{\lambda ax_1 + \lambda bx_2 = \lambda c\}, \ \forall \lambda \in \mathbb{R}/\{0\}.$$

Ejemplo. Consideremos $\mathcal{P} = \{A, B, C, D\}$ y

$$\mathcal{R} = \{ \{A, B\}, \{A, C\}, \{A, D\}, \{B, C\}, \{B, D\}, \{C, D\} \}.$$

Tenemos que este plano se corresponde con el gráfico sigiuente:

Se puede ver claramente que A1 y A2 se cumplen. Es trivial que A3 se cumple.

Teorema 1.1. Si \mathbb{K} es un cuerpo, entonces \mathbb{K}^2 es un plano afín con puntos \mathbb{K}^2 y rectas las ecuaciones lineales.

Demostración. Adaptar la demostración del ejemplo del plano cartesiano.

Ejemplo. Consideremos el cuerpo $\mathbb{F}_2 = \{0,1\}$ con la suma módulo 2 y el producto también módulo 2. Tenemos, por el teorema anterior, el plano afín \mathbb{F}_2^2 de la forma:

$$\mathbb{F}_2^2 = \{(0,0), (1,0), (0,1), (1,1)\}.$$

$$\mathcal{R} = \{\{x_1 = 0\}, \{x_2 = 0\}, \{x_1 = 1\}, \{x_2 = 1\}, \{x_1 + x_2 = 1\}\}.$$

Gráficamente podemos ver que es igual al ejemplo anterior. En este caso, decimos que existe una colineación entre ellos.

1.1.1. Independencia de los axiomas

En primer lugar, estudiamos la independencia de **A3**. Consideremos un ejemplo que satisface **A1** y **A2**: $\mathcal{P} = \mathbb{R}$ y $\mathcal{R} = \{l = \mathbb{R}\}$. Así, tenemos que **A3** es independiente de los otros dos axiomas.

Ahora vamos a ver la independencia de **A2** respecto de **A1** y **A3**. Para ello eplearemos el ejemplo del plano de Fano (Gino Fano, 1892):

$$\mathcal{P} = \{A, B, C, D, E, F, G\}.$$

$$\mathcal{R} = \{ \{A, B, C\}, \{C, D, E\}, \{E, F, A\}, \{A, G, D\}, \{B, G, E\}, \{C, G, F\}, \{F, B, D\} \}.$$

Tenemos que $|\mathcal{P}| = |\mathcal{R}| = 7$. Está claro que se verifica $\mathbf{A3}$, puesto que $|\mathcal{R}| = 7$ y $\forall l \in \mathcal{R}, |l| = 3$. Se puede ver gráficamente que se cumple $\mathbf{A1}$ y no se cumple $\mathbf{A2}$, pues cualquier par de rectas se interseca y por tanto no existen rectas paralelas: Este es el plano proyectivo más pequeño.

Ahora tenemos que estudiar la independencia de A1 respecto de A2 y A3. Consideremos

$$\mathcal{P} = \{A, B, C, D\}.$$

$$\mathcal{R} = \{ \{A, B\}, \{C, D\} \}.$$

Tenemos que A3 se verifica, pues $|\mathcal{R}| = 2$ y $|\{A, B\}| = |\{C, D\}| = 2$. Por otro lado, si $P \notin \{A, B\}$, tenemos que $P \in \{C, D\}$, por lo que $\{C, D\} || \{A, B\}$. Lo mismo podemos decir si $P \notin \{C, D\}$. Así, tenemos que se verifica A2. Sin embargo, no se cumple A1 porque no existe ninguna recta que contenga a A y C.

1.1.2. Algunos teoremas

Lema 1.1 (Tricotomía). Sea $(\mathcal{P}, \mathcal{R})$ un plano afín. Sean $l, m \in \mathcal{R}$. Se cumple una y solo una de las siguientes afirmaciones:

- 1. l = m.
- 2. l||m|
- 3. $l \cap m$ es un punto.

Demostración. Si l no es paralela a m, tenemos que $l \cap m \neq \emptyset$. Si $|l \cap m| = 1$, tenemos que es un punto y se cumple **3**. Si $|l \cap m| \geq 2$, tenemos que existen $P, Q \in l \cap m$. Por **A1**, dado que por dos puntos pasa una única recta, debe ser que m = l.

Teorema 1.2 (Rectas equipotentes). Sea $(\mathcal{P}, \mathcal{R})$ un plano afín. Todo par de rectas están en biyección.

Demostración. Sean $l, m \in \mathcal{R}$.

Caso 1. Si l = m, es trivial que l y m son equipotentes.

Caso 2. Supongamos $l \cap m = O$, donde $O \in \mathcal{P}$. Por **A3**, tenemos que existen $L \in l, M \in m$ tales que $M, L \neq O$. Por **A1**, existe una única $r \in \mathcal{R}$ tal que $L, M \in r$. Si $P \in l/\{L\}$, tenemos que existe una única $r_p||r$ tal que $P \in r_p$.

Podemos hacer un par de observaciones:

Observación 1. Vamos a ver que $\forall P \in l/\{L\}$ tenemos que $P \notin r$, queremos ver que r_p existe. Si $P \in l \cap r$, tenemos que $L, P \in l \cap r$, por lo que l = r, por lo que $M \in l$ y $O, M \in l$ y l = m, que es una contradicción. Por tanto, podemos afirmar que $\forall P \in l, P \neq L, \exists r_p$ recta paralela a r y $P \in r_p$.

Observación 2. Tenemos que ver que $r_p \cap m$ es un punto. Si $r_p||m$, como $r_p||r$, $M \in m$ y $M \in r$, se tiene que m = r, por lo que $L \in r = m$ y $O \in m$, por lo que m = l, lo que es una contradicción. Por otro lado, si $r_p = m$, $P \in l$ y $P \in r_p = m$ y $O \in m, l$, por lo que m = l, que es una contradicción. Por tanto, debe ser que $r_p \cap m$ es un punto.

De esta manera, podemos definir la función

$$f: l/\{L\} \to m/\{M\}$$

$$P \to r_p \cap m.$$

Para ver que f es biyectiva, vamos a ver que existe su inversa. En efecto, tenemos que $\forall Q \in m/\{M\}, \ Q \notin r \ y \ r_Q \cap l$ es un punto. Así, tenemos una función

$$g: m/\{M\} \to l/\{L\}$$

 $Q \to r_Q \cap l.$

Para ver que $g = f^{-1}$ tenemos que ver que $g \circ f = id$ y que $f \circ g = id$:

$$(g \circ f)(P) = g(f(P)) = g(r_p \cap m).$$

Tenemos que $r_{f(P)} = r_{r_p \cap m} || r \le r_{f(P)}$ pasa por $r_p \cap m$. Pero $r_p || r \le r_p$ pasa por $r_p \cap m$. Por **A2**, tenemos que $r_{f(P)} = r_p$. Así, tenemos que

$$g(r_p \cap m) = r_{f(P)} \cap l = r_p \cap l = P.$$

Caso 3. Si $m|l y M \in m, L \in l$, tenemos que existe una recta r tal que $M, L \in r$. Así, tenemos que $r \cap m$ y $r \cap l$ es un punto y por lo aplicado en el caso anterior, tenemos que existe una biyección entre r y m y entre r y l.

Lema 1.2. Sea $(\mathcal{P}, \mathcal{R})$ un plano afín. Ponemos $l \sim m, l, m \in \mathcal{R}$, si l = m o l||m. Entonces, \sim es una relación de equivalencia.

Demostración. (i) Está claro que si $l \in \mathcal{R}$ se tiene que l = l, por lo que se cumple la propiedad reflexiva.

- (ii) Sean $l, m \in \mathcal{R}$. Si l = m es trivial que se cumple la propiedad simétrica. Si $l \sim m$ y l||m, tenemos que $l \cap m = m \cap l = \emptyset$, por lo que $m \sim l$. Así, hemos verificado la propiedad simétrica.
- (iii) Sean $l, m, r \in \mathcal{R}$ con $l \sim m$ y $m \sim r$. Hay que valorar varios casos:

Caso 1. Si l=m y m=r, está claro que l=r y, por tanto, $l\sim r$.

Caso 2. Si l=m y m||r, está claro que $l \cap r=m \cap r=\emptyset$, por lo que $l \sim r$.

Caso 3. Si $l||m ext{ y } m = r$, tenemos que $l \cap r = l \cap m = \emptyset$, por lo que $l \sim r$.

Caso 4. Si $l||m \ y \ m||r$, supongamos que $l \cap r = \{P\}$. Así, $P \notin m \ y$ por A2 existe una única recta paralela a m que pase por P. Como $l \ y \ r$ cumplen esto debe ser que l = r, lo que es una contradicción, por lo que debe ser que l = r o l||r. En cualquier caso $l \sim r$.

Así, queda demostrada la propiedad transitiva.

Definición 1.3 (Haz de rectas). Un haz de rectas paralelas es una clase de equivalencia de \sim . Entonces, $\mathcal{H} \subset \mathcal{R}$ es un haz si y solo si $\exists l \in \mathcal{R}$ tal que

$$\mathcal{H} = [l]_{\sim} = \{ m \mid m = l \text{ o } m | |l\} .$$

Proposición 1.1. Sea \mathcal{H} un haz y $l \in \mathcal{R}$ con $l \notin \mathcal{H}$, entonces $f : \mathcal{H} \to l : m \to l \cap m$ es una biyección.

- Demostración. (i) Primero vamos a ver que la función está bien definida. Como $l \notin \mathcal{H}$, $\forall m \in \mathcal{H}$ tenemos que l no es paralelo a m y $l \neq m$. Por el lema de la tricotomía, debe ser que $l \cap m$ es un punto. Así, la función está bien definida.
- (ii) Veamos que la función es inyectiva. Consideremos $m_1, m_2 \in \mathcal{H}$ tales que $m_1 \cap l = m_2 \cap l \neq \emptyset$, por lo que $m_1 \cap m_2 \neq \emptyset$. Dado que $m_1, m_2 \in \mathcal{H}$, tenemos que $m_1 \sim m_2$ y como m_1 no es paralela a m_2 , debe ser que $m_1 = m_2$.
- (iii) Comprobemos que la aplicación es sobreyectiva. Supongamos que $P \in l$, $m \in \mathcal{H}$. Si $P \in m$, tenemos que $m \cap l = P$, por lo que hemos ganado. Si $P \notin m$, por A2 tenemos que existe $m_1 \in \mathcal{H}$ (es decir, paralela a m) tal que $P \in m_1$, por lo que $P = m_1 \cap l$.

Proposición 1.2. Si \mathcal{H}_1 y \mathcal{H}_2 son dos haces distintos, tenemos que $\forall P \in \mathcal{P}, \exists ! l \in \mathcal{H}_1, \exists ! m \in \mathcal{H}_2$ tales que $P = l \cap m$. En particular, la aplicación $f : \mathcal{H}_1 \times \mathcal{H}_2 \to \mathcal{P} : (l, m) \to l \cap m$ es una biyección.

Demostración. Supongamos que

$$\mathcal{H}_1 = [l]_{\sim} = \{l' \mid l' = l \circ l' | |l\}.$$

$$\mathcal{H}_2 = [m]_{\sim} = \{m' \mid m' = m \text{ o } m' | |m\}.$$

Tenemos que dado que $\mathcal{H}_1 \neq \mathcal{H}_2$, tenemos que $l \neq m$ y l no es paralelo a m, por lo que $l \cap m$ es un punto. Así, hemos visto que la aplicación está bien definida. Sea $P \in \mathcal{P}$:

Caso 1. Si $P \in l$ hemos terminado.

Caso 2. Si $P \notin l$, por A2 existe una única recta $l' \in \mathcal{H}_1$ tal que $P \in l'$.

En ambos casos, tenemos que $\exists ! l_1 \in \mathcal{H}_1$ tal que $P \in l_1$. Así, simétricamente existe una única $m_1 \in \mathcal{H}_2$ tal que $P \in m_1$.

1.1.3. Planos afines finitos

Definición 1.4. Un plano afín tiene **orden** n si todas sus rectas tienen n elementos.

Observación. La definición tiene sentido dado que todas las rectas tienen el mismo número de puntos.

Teorema 1.3. Sea $(\mathcal{P}, \mathcal{R})$ una plano afín de orden n.

- (i) Cada haz de rectas tiene n elementos.
- (ii) $|\mathcal{P}| = n^2$.
- (iii) Cada punto está en n+1 rectas.
- (iv) Hay n+1 haces de rectas.
- (v) Hay n(n+1) rectas.

Demostración. Sea $(\mathcal{P}, \mathcal{R})$ un plano afín de orden n.

- (i) Sea \mathcal{H} un haz de rectas. Por $\mathbf{A3}$, existe $l_1, l_2 \in \mathcal{R}$ con $l_1 \neq l_2$. Si existe $l \notin \mathcal{H}$ hemos ganado. Si $l_1, l_2 \in \mathcal{H}$, sea $P \in l_1$ y $Q \in l_2$, tenemos que $l(P, Q) \notin \mathcal{H}$ por lo que existe $l \notin \mathcal{H}$. Por una proposición anterior, tenemos que existe una biyección entre \mathcal{H} y l, por lo que $|\mathcal{H}| = |l| = n$.
- (ii) Por el argumento del apartado anterior, existen $l, m \in \mathcal{R}$ con $l \neq m$ y que no son paralelas entre sí, tales que $\mathcal{H}_1 = [l]_{\sim}$ y $\mathcal{H}_2 = [m]_{\sim}$. Por la proposición anterior, tenemos que $|\mathcal{H}_1 \times \mathcal{H}_2| = |\mathcal{P}|$. Por la primera propiedad, nos queda que $|\mathcal{P}| = |\mathcal{H}_1| \cdot |\mathcal{H}_2| = n^2$.
- (iii) Sea $P \in \mathcal{P}$. Por **A3** es fácil deducir que existe una recta $l \in \mathcal{R}$ tal que $P \notin l$. Tenemos que $l = \{A_1, \ldots, A_n\}$, por lo que $P \in l(P, A_1), \ldots, l(P, A_n)$. Por **A2**, existe una única paralela m a l tal que $P \in m$, por lo que P está en n + 1 rectas. En efecto, todas las rectas anteriores son distintas porque de no serlo tendríamos que

$$l(P, A_i) = l(P, A_i) \Rightarrow l(P, A_i) = l(A_i, A_i) = l \Rightarrow P \in l.$$

Si $r \in \mathcal{R}$ tal que $P \in r$, por $\mathbf{A2}$ se sigue que o $r \cap l = \emptyset$, por lo que r = m; o $r \cap l = A_i$, por lo que $r = l(P, A_i)$.

- (iv) Por (iii), dado $P \in \mathcal{P}$, existen $l_1, \ldots, l_{n+1} \in \mathcal{R}$ con $P \in l_i$, $\forall i = 1, \ldots, n+1$. Como $l_i \cap l_j = P$, tenemos que $[l_i]_{\sim} \neq [l_j]_{\sim}$ si $i \neq j$. Por tanto hay al menos n+1 haces. Sea $r \in \mathcal{R}$,
 - Si $P \in r$, tenemos que $r = l_i$ para algún $1 \le i \le n + 1$.
 - Si $P \notin r$, por **A2** tenemos que existe una única l_i tal que $r||l_i$, por lo que $P \in l_i$.

En ambos casos tenemos que $r \in [l_i]_{\sim}$ para algún i.

(v) Los haces son distintos dos a dos, por ser una relación de equivalencia. Por tanto,

$$|\mathcal{R}| = \left| \bigcup_{i=1}^{n+1} \mathcal{H}_i \right| = \sum_{i=1}^{n+1} |\mathcal{H}_i| = \sum_{i=1}^{n+1} n = n (n+1).$$

Observación. Para todo primo p y todo $k \geq 1$, existe un cuerpo \mathbb{K} con p^k elementos. Entonces, $\forall p$ primo y $\forall k \geq 1$, existe un plano afín de orden p^k , porque \mathbb{K}^2 es un plano afín.

1.2. Planos proyectivos sintéticos

Definición 1.5 (Plano proyectivo). Un **plano proyectivo** es un par $(\overline{\mathcal{P}}, \overline{\mathcal{R}})$ donde $\overline{\mathcal{P}}$ es un conjunto no vacío cuyos elementos se llaman **puntos** y $\overline{\mathcal{R}}$ es un conjunto de subconjuntos de $\overline{\mathcal{P}}$ cuyos elementos se llaman **rectas**. Se cumplen los axiomas:

- P1. Para cada par de puntos distintos existe una única recta que los contiene.
- P2. Todo par de rectas tiene intersección no vacía.
- P3. Toda recta tiene al menos tres puntos y hay al menos dos rectas.

En primer lugar, vamos a comprobar la consistencia de la definición, es decir, que hemos definido algo que existe.

Ejemplo (Plano de Fano). Consideremos los conjuntos

$$\overline{\mathcal{P}} = \{A, B, C, D, E, F, G\}$$
.

 $\overline{\mathcal{R}} = \{ \{A, B, C\}, \{C, D, E\}, \{E, F, A\}, \{B, G, F\}, \{A, G, D\}, \{F, G, C\}, \{F, D, B\} \}.$

Es fácil comprobar que se trata de un plano proyectivo.

Observación. Este es el plano proyectivo más pequeño, es decir, que tiene menos puntos.

1.2.1. Independencia de los axiomas

- Comprobamos la independencia de **P3** respecto de **P2** y **P1**. Consideremos el ejemplo $\overline{P} = \mathbb{R}$ y $\overline{\mathcal{R}} = \{\mathbb{R}\}$. Está claro que se cumplen **P1** y **P2** pero no se cumple **P3**.
- Comprobamos la independencia de **P2** respecto de **P1** y **P3**. Consideremos como ejemplo el plano afín \mathbb{R}^2 . Tenemos que **A1** es igual que **P1**, hay rectas paralelas, por lo que **P2** no se cumple y está claro que se cumple **P3** puesto que $|\overline{\mathcal{R}}| = \infty, \forall \overline{l} \in \overline{\mathcal{R}}, |\overline{l}| = \infty$.
- Comprobamos la independencia de **P1** respecto de **P2** y **P3**. Consideremos por ejemplo:

$$\overline{\mathcal{P}} = \left\{A, B, C, D, E\right\}.$$

$$\overline{\mathcal{R}} = \left\{\left\{A, B, C\right\}, \left\{C, D, E\right\}\right\}.$$

Claramente se cumple **P3** y se cumple **P2** porque hay dos rectas y las dos se intersecan. No se cumple **P1** puesto que no existe $\overline{l} \in \overline{\mathcal{R}}$ tal que $A, D \in \overline{l}$.

1.2.2. Algunos teoremas

Teorema 1.4. Sea $\mathbb K$ es un cuerpo y $\mathbb K^3$ un espacio vectorial. Sean

$$\overline{\mathcal{P}} = \{ U \subset \mathbb{K}^3 : U \in \mathcal{L}(\mathbb{K}^3), \dim_{\mathbb{K}} U = 1 \}.$$

$$\overline{\mathcal{R}} = \{ W \subset \mathbb{K}^3 : W \in \mathcal{L}(\mathbb{K}^3), \dim_{\mathbb{K}} W = 2 \}.$$

Entonces, $(\overline{\mathcal{P}}, \overline{\mathcal{R}})$ es un plano proyectivo ^a.

"La definición de $\overline{\mathcal{R}}$ es más bien el conjunto de los conjuntos de rectas que son contenidas por un plano, así se puede hacer una correspondencia biyectiva entre $\overline{\mathcal{R}}$ y la descripción que le hemos dado. Así, decimos que un punto $\overline{P} \in \overline{\mathcal{P}}$ está en una recta $\overline{l} \in \overline{\mathcal{R}}$ si \overline{P} está contenido en el plano que caracteriza a \overline{l} .

Demostración. (i) Vamos a ver que se cumple **P1**. Si $P, Q \in \overline{P}$ con $P \neq Q$, existen $\vec{v}_1, \vec{v}_2 \in \mathbb{K}^3$ linealmente independientes tales que $P = L(\{\vec{v}_1\})$ y $Q = L(\{\vec{v}_2\})$. Así, existe $r \in \overline{\mathcal{R}}$ tal que $r = L(\{\vec{v}_1, \vec{v}_2\})$ que cumple que $P, Q \subset r$. En concreto, tenemos que $r = P \oplus Q$.

Sea $r_2 \in \overline{\mathcal{R}}$ tales que $P, Q \subset r_2$, entonces tenemos que $P \oplus Q \subset r_2$ y dim $(P \oplus Q) = \dim r_2$, por lo que $r_2 = r$.

(ii) Vamos a ver que se cumple **P2**. Sean $l, m \in \overline{\mathbb{R}}$, tenemos que

$$\underbrace{\dim\left(l\cap m\right)}_{\leq 3} = \underbrace{\dim l}_2 + \underbrace{\dim m}_2 - \underbrace{\dim\left(l\cap m\right)}_{\geq 1}.$$

Por tanto, dim $(l \cap m) \ge 1$, por lo que $l \cap m \ne \emptyset$.

(iii) Vamos a ver que se cumple **P3**. Sea $\mathbb{K}^3 = L(\{\vec{u}_1, \vec{u}_2, \vec{u}_3\})$, sean $r_1 = L(\{\vec{v}_1, \vec{v}_2\})$ y $r_2 = L(\{\vec{u}_1, \vec{u}_3\})$ dos rectas. Así, hemos visto que hay al menos dos rectas. Ahora, dada una recta $r = L(\{\vec{v}_1, \vec{v}_2\})$ tenemos que $P_1 = L(\{\vec{v}_1\})$, $P_2 = L(\{\vec{v}_2\})$ y $P_3 = L(\{\vec{v}_1 + \vec{v}_2\})$ son puntos de la recta. Así, hemos visto que cada recta tiene al menos tres puntos.

Definición 1.6. Sea \mathbb{K} un cuerpo. Al plano proyectivo construido en el teorema anterior lo llamamos **proyectivizado de** \mathbb{K}^3 y lo denotamos por $\mathbb{P}(\mathbb{K}^3)$.

Notación. Dado $(a_0, a_1, a_2) \in \mathbb{K}^3$ denotamos por $[a_0 : a_1 : a_2]$ al punto $L(\{(a_0, a_1, a_2)\})$. Observamos que

$$[a_0:a_1:a_2] = [b_0:b_1:b_2] \iff L(\{(a_0,a_1,a_2)\}) = L(\{(b_0,b_1,b_2)\}).$$

Esto es cierto si y solo si existe $\lambda \in \mathbb{K}/\{0\}$ tal que $(a_0, a_1, a_2) = \lambda(b_0, b_1, b_2)$. Así, tenemos que esta notación está bien definida salvo proporcionalidad. Así, tenemos que los puntos de $\mathbb{P}(\mathbb{K}^3)$ son

$$\{[a_0:a_1:a_2]:(a_0,a_1,a_2)\in\mathbb{K}^3/\{0\}\}.$$

Por otro lado, si $u \in \mathbb{K}^3$ tal que dim (u) = 2, podemos describir u con una ecuación implícita homogénea:

$$u = \{(x_0, x_1, x_2) : ax_0 + bx_1 + c_2 = 0\}.$$

CAPÍTULO 1. GEOMETRÍA SINTÉTICA

Así, definimos \bar{l} de la siguiente forma:

$$\bar{l} = \{ [x_0 : x_1 : x_2] : ax_0 + bx_1 + cx_2 = 0 \}, (a, b, c) \neq (0, 0, 0).$$

Tenemos que si $(u_0, u_1, u_2) \in \bar{l}$, entonces $(\lambda u_0, \lambda u_1, \lambda u_2) \in \bar{l}$. En efecto,

$$au_0 + bu_1 + cu_2 = 0 \Rightarrow a\lambda u_0 + b\lambda u_1 + c\lambda u_2 = 0.$$

Así hemos visto que $[u_0: u_1: u_2] \in \bar{l}$ si y solo si $au_0 + bu_1 + cu_2 = 0$, por lo que $[u_0: u_1: u_2] \in \bar{l}$ está bien definido. Definimos $\mathbb{P}(\mathbb{K}^3)$ de la siguiente forma,

$$\overline{\mathcal{P}} = \{ [a_0 : a_1 : a_2] : a_i \in \mathbb{K}/\{0\} \}.$$

$$\overline{\mathcal{R}} = \{ax_0 + bx_1 + cx_2 = 0\}^{1}.$$

Podemos observar que si $P = [a_0 : a_1 : a_2]$ y $Q = [b_0 : b_1 : b_2]$ con $P \neq Q$, se cumple que

$$\bar{l}(P,Q) = \left\{ \begin{vmatrix} x_0 & x_1 & x_2 \\ a_0 & a_1 & a_2 \\ b_0 & b_1 & b_2 \end{vmatrix} = 0 \right\}.$$

1.2.3. Construcción de planos proyectivos desde planos afines

Sea $(\mathcal{P}, \mathcal{R})$ un plano afín.

- Para cada haz de rectas \mathcal{H} creamos un punto $P_{\mathcal{H}}$ ².
- Cogemos $\overline{\mathcal{P}} = \mathcal{P} \cup \{P_{\mathcal{H}} : \mathcal{H} \text{ haz de rectas}\}.$
- Dado $l \in \mathcal{R}$ con $l \in \mathcal{H}$, ponemos $\bar{l} = l \cup \{P_{\mathcal{H}}\}$.
- Ponemos $\bar{l}_{\infty} = \{P_{\mathcal{H}} : \mathcal{H} \text{ haz de rectas}\}.$
- Tomamos $\overline{\mathcal{R}} = \{\overline{l} : l \in \mathcal{R}\} \cup \{\overline{l}_{\infty}\}.$

Observación. Se tiene que $\overline{\mathcal{P}} = \mathcal{P} \cup \overline{l}_{\infty}$.

Ejemplo. Consideremos el plano afín $(\mathcal{P}, \mathcal{R})$ tal que

$$\mathcal{P} = \{A, B, C, D\}.$$

$$\mathcal{R} = \{\{A, B\}, \{A, C\}, \{A, D\}, \{B, C\}, \{B, D\}, \{C, D\}\}.$$

Tomamos los haces de rectas:

$$\mathcal{H}_1 = \{\{A, B\}, \{C, D\}\}, \quad \mathcal{H}_2 = \{\{A, C\}, \{B, D\}\}, \quad \mathcal{H}_3 = \{\{A, D\}, \{C, B\}\}.$$

Gráficamente queda así:

 $^{^1{\}rm Claramente}~a,~b~{\rm y}~c$ no son 0 simultáneamente.

²Este punto es distinto para cada haz de rectas.

Teorema 1.5. Con esta construcción, $(\overline{\mathcal{P}}, \overline{\mathcal{R}})$ es un plano proyectivo.

Demostración. Comprobamos que se cumplen los axiomas.

P1. Sean $P, Q \in \overline{P} = P \cup \overline{l}_{\infty}$. Entonces, tenemos los casos:

Caso 1. Si $P,Q \in \mathcal{P}$, por **A1** existe una única $l \in \mathcal{R}$ tal que $P,Q \in l$. Así, tenemos que $P,Q \in \overline{l} = l \cup P_{\mathcal{H}} \in \overline{\mathcal{R}}$.

Caso 2. Si $P,Q \in \bar{l}_{\infty}$ tenemos que P y Q están en una recta y \bar{l}_{∞} es la única recta con más de un punto que no está en \mathcal{P} .

Caso 3. Si $P \in \mathcal{P}$ y $Q \in \overline{l}_{\infty}$, tenemos que $Q = P_{\mathcal{H}}$, siendo \mathcal{H} un haz de rectas. Por A2, existe $l \in \mathcal{H}$ tal que $P \in l$, por lo que $P, Q \in \overline{l} = l \cup \{P_{\mathcal{H}}\}$. La unicidad se deduce por construcción.

P2. Sean $\overline{l}, \overline{m} \in \overline{\mathcal{R}}$.

Caso 1. Si $\bar{l} = \bar{l}_{\infty}$, tenemos que $\bar{l} \cap \overline{m}$ contiene un punto del infinito por construcción, por lo que $\bar{l} \cap \overline{m} \neq \emptyset$.

Caso 2. Si $\overline{l} \neq \overline{l}_{\infty} \neq \overline{m}$, tenemos que $\overline{l} = l \cup \{P_{\mathcal{H}_1}\}$ y $\overline{m} = m \cup \{P_{\mathcal{H}_2}\}$. Si l||m, tenemos que $P_{\mathcal{H}_1} = P_{\mathcal{H}_2}$, por lo que $\overline{l} \cap \overline{m} \neq \emptyset$. Por otro lado, si l = m está claro que $\overline{l} = \overline{m}$. Finalmente, tenemos que si $l \cap m$ es un punto, entonces $\overline{l} \cap \overline{m} \neq \emptyset$.

P3. Por **A3** se tiene que $|\mathcal{R}| \geq 2$, por lo que $|\overline{\mathcal{R}}| \geq 2$. Similarmente, por **A3** tenemos que $|l| \geq 2$, $\forall l \in \mathcal{R}$. Por tanto,

$$|\bar{l}| = |l \cup \{P_{\mathcal{H}}\}| \ge 3.$$

Ejemplo (Completación proyectiva de \mathbb{K}^2). Sea $(\mathcal{P}, \mathcal{R})$ un plano afín sobre \mathbb{K}^3 . Consideramos $\mathcal{P} = \{(u_1, u_2) : u_i \in \mathbb{K}\}$. Construimos la siguiente aplicación:

$$\mathbb{K}^2 \to \mathbb{P}\left(\mathbb{K}^3\right)$$
$$(u_1, u_2) \to [1: u_1: u_2].$$

Vamos a ver que es inyectiva. Si $(u_1, u_2) \neq (u'_1, u'_2)$, no existe $\lambda \in \mathbb{K}$ tal que $[1:u_1:u_2] = \lambda[1:u'_1:u'_2]$.

Sabemos que las rectas de \mathbb{K}^2 son de la forma $l = \{ax_1 + bx_2 = c\}$. Vemos que

$$(u_1, u_2) \in l \iff [1: u_1: u_2] \in \bar{l} = \{ax_1 + bx_2 = cx_0\}.$$

Por ahora todo ha sido notación. Vamos a ver la construcción. Tenemos que $l = \{ax_1 + b_2 = c\}$ es paralela a $m = \{a'x_1 + b'x_2 = c'\}$ si y solo si existe $\lambda \in \mathbb{K}$ tal que $(a,b) = \lambda(a',b')$. Consideremos $\mathcal{H} = \{\{ax_1 + bx_2 = d\} : d \in \mathbb{K}\}$ y tomamos $P_{\mathcal{H}} = [0:b:-a]$.

Podemos hacer un par de observaciones:

- $[0:b:-a] \in \bar{l} = \{ax_1 + bx_2 = cx_0\}.$
- $\bar{l} = l \cup \{[0:b:-a]\}.$
- $\bar{l}_{\infty} = \{ [0: u_1: u_2] : u_i \in \mathbb{K} \}.$

Ahora ya podemos construir $\overline{\mathcal{P}}$ y $\overline{\mathcal{R}}$:

$$\overline{\mathcal{P}} = P \cup \overline{l}_{\infty} = \{ [1:u_1:u_2] : u_i \in \mathbb{K} \} \cup \{ [0:u_1:u_2] : u_i \in \mathbb{K} \} = \mathbb{P} \left(\mathbb{K}^3 \right).$$

$$\overline{\mathcal{R}} = \mathcal{R} \cup \{ \overline{l} \} = \{ \overline{l}_{\infty} = \{ ax_1 + bx_2 = cx_0 : (a,b) \neq (0,0) \} \} \cup \{ x_0 = 0 \}.$$

1.2.4. Construcción de un plano afín desde un plano proyectivo

Sea $(\overline{\mathcal{P}}, \overline{\mathcal{R}})$ un plano proyectivo y sea $\overline{l}_{\infty} \in \overline{\mathcal{P}}$ una recta cualquiera ³. Tomamos

$$\mathcal{P} = \overline{\mathcal{P}} - \overline{l}_{\infty}.$$

$$\overline{\mathcal{R}} = \left\{ l = \overline{l} - (\overline{l} \cap \overline{l}_{\infty}) : \overline{l} \in \overline{\mathcal{R}} - \{\overline{l}_{\infty}\} \right\}.$$

Teorema 1.6. El par $(\mathcal{P}, \mathcal{R})$ construido anteriormente es un plano afín.

Demostración. Comprobemos que se cumplen los axiomas.

- **A1.** Dados $P, Q \in \mathcal{P} \subset \overline{\mathcal{P}}$ con $P \neq Q$, por **P1** tenemos que existe una única $\overline{l} \in \overline{\mathcal{R}}$ tal que $P, Q \in \overline{l}$. Como $P, Q \notin \overline{l}_{\infty}$, tenemos que $P, Q \in \overline{l} (\overline{l} \cap \overline{l}_{\infty}) = l \in \mathcal{R}$. La unicidad de l es por construcción de \mathcal{R} .
- **A2.** Sea $l \in \mathcal{R}$, por lo que $l = \overline{l} \{Q\}$ donde $\overline{l} \in \overline{\mathcal{R}}$ y $Q \in \overline{l}_{\infty}$. Sea $P \in \mathcal{P}$ tal que $P \notin l$. Por **P1** tenemos que existe una única $\overline{m} \in \overline{\mathcal{R}}$ que une P y Q. Por tanto

$$m = \overline{m} - \left(\overline{m} \cap \overline{l}_{\infty}\right) = \overline{m} - \{Q\}.$$

Si $m \cap l \neq \emptyset$, existe $Q_2 \in \mathcal{P}$ tal que $Q_2 \in m \cap l \subset \overline{m} \cap \overline{l}$ y $Q \in \overline{m} \cap \overline{l}$. Así, tenemos que $\overline{m} = \overline{l}$, y como $P \notin \overline{l}$ y $P \in \overline{m}$, obtenemos una contradicción. Así, debe ser que m||l. La unicidad se deduce por construcción.

³Realmente es una recta cualquiera, lo que pasa es que la vamos a tratar como la recta infinita.

A3. Por **P3**, tenemos que $|\bar{l}| \geq 3$, $\forall \bar{l} \in \overline{\mathcal{R}}$. Tenemos entonces que si $l \in \mathcal{R}$

$$|l| = \left| \bar{l} - \left(\bar{l} \cap \bar{l}_{\infty} \right) \right| \ge 2.$$

Por lo que se vio en uno de los ejercicios, tenemos que $|\overline{\mathcal{R}}| \geq 3$, por lo que

$$|\mathcal{R}| = |\overline{\mathcal{R}} - \{\overline{l}_{\infty}\}| = |\overline{\mathcal{R}}| - 1 \ge 2.$$

Corolario. Todo par de rectas de $(\overline{\mathcal{P}}, \overline{\mathcal{R}})$ están en biyección.

Demostración. Habíamos demostrado que todo par de rectas de un plano afín están en biyección. Sean $\bar{l}, \overline{m} \in \overline{\mathcal{R}}$. Existe $\bar{r} \in \overline{\mathcal{R}}$ tal que $\bar{r} \neq \bar{l}, \overline{m}$. Tomamos $\bar{l}_{\infty} = \bar{r}$ y construimos un plano afín $(\mathcal{P}, \mathcal{R})$. Así, tenemos que

$$l = \overline{l} - (\overline{l}_{\infty} \cap \overline{l}), \quad m = \overline{m} - (\overline{l}_{\infty} \cap \overline{m}) \in \mathcal{R}.$$

Como l y m están en biyección y $\left| \overline{l}_{\infty} \cap \overline{l} \right| = \left| \overline{l}_{\infty} \cap \overline{m} \right| = 1$, es fácil ver que \overline{l} y \overline{m} están en biyección.

1.2.5. Dualidad

Proposición 1.3. Sea $(\overline{\mathcal{P}}, \overline{\mathcal{R}})$ un plano proyectivo. Se cumplen:

- **P1'.** Si P y Q son puntos distintos de $\overline{\mathcal{P}}$, entonces existe una única $\overline{l} \in \overline{\mathcal{R}}$ tal que $P,Q \in \overline{l}$.
- **P2'.** Si \overline{l} y \overline{m} son rectas distintas de $\overline{\mathcal{R}}$, entonces existe un único $P \in \overline{\mathcal{P}}$ tal que \overline{l} y \overline{m} contienen a P.
- P3'. Cada recta contiene al menos tres puntos y cada punto está contenido en al menos tres rectas.

Demostración. P1'. Como P1' y P1 son lo mismo, es trivial que se cumple.

- **P2'.** Por **P2** sabemos que $\bar{l} \cap \overline{m} \neq \emptyset$. Por **P1**, si $|\bar{l} \cap \overline{m}| \geq 2$, tenemos que $\bar{l} = \overline{m}$. Así, debe ser que si $\bar{l} \neq \overline{m}$, entonces $|\bar{l} \cap \overline{m}| = 1$.
- **P3'.** Por **P3** cada recta contiene al menos tres puntos. Por un ejercicio de la hoja, tenemos que $|\overline{\mathcal{R}}| \geq 3$, por lo que si $\overline{l}, \overline{m}, \overline{r} \in \overline{\mathcal{R}}$ son distintas, y $P \in \overline{\mathcal{P}}$ con $P \in \overline{l} \cap \overline{m} \cap \overline{r}$, tenemos que P está en tres rectas. Si $P \notin \overline{l}$, existen $A_1, A_2, A_3 \in \overline{l}$ y existen $\overline{l}(P, A_1), \overline{l}(P, A_2), \overline{l}(P, A_3) \in \overline{\mathcal{R}}$ tres rectas distintas.

Teorema 1.7. Sea $\overline{\mathcal{P}}$ un conjunto no vacío y sea $\overline{\mathcal{R}}$ una colección de subconjuntos de $\overline{\mathcal{P}}$. Entonces, son equivalentes

- \bullet $\left(\overline{\mathcal{P}},\overline{\mathcal{R}}\right)$ es un plano proyectivo.
- $(\overline{\mathcal{P}}, \overline{\mathcal{R}})$ cumple **P1'**, **P2'** y **P3'**.

Es decir, podríamos haber tomado P1', P2' y P3' como axiomas.

Demostración. (i) Es trivial a partir de la proposición anterior.

(ii) Tenemos que P1' es igual que P1, P2' implica P2 y P3' implica P3.

Observación. En los nuevos axiomas, si cambiamos la palabra 'punto' por 'recta' y 'está contenido' por 'contiene', obtenemos los mismos axiomas. En efecto, **P1'** se convierte en **P2'**, **P2'** se convierte en **P1'** y **P3'** cambia el orden de las oraciones.

En particular, toda afirmación cierta usando **P1**, **P2** y **P3** tendrá una afirmación (llamada afirmación dual) que también será cierta y se obtiene haciendo el cambio indicado anteriormente.

Corolario. En un plano proyectivo cada par de puntos está contenido en el mismo número de rectas. a

Ejemplo. Consideremos la afirmación:

$$\forall \overline{l}_1, \overline{l}_2 \in \overline{\mathcal{R}}, \overline{l}_1 \neq \overline{l}_2, \exists P \in \overline{\mathcal{P}}, P \notin \overline{l}_1 \cup \overline{l}_2.$$

La afirmación dual será:

$$\forall P_1, P_2 \in \overline{\mathcal{P}}, P_1 \neq P_2, \exists \overline{l} \in \overline{\mathcal{R}}, \overline{l} \not\supset \{P_1, P_2\}.$$

Demostración de la primera afirmación:

- Por **P2**' tenemos que existe un único $Q \in \overline{l}_1 \cap \overline{l}_2$ con $Q \in \overline{\mathcal{P}}$.
- Por **P3'** existe $\overline{r} \in \overline{\mathcal{R}}$ tal que $\overline{r} \neq \overline{l}_1, \overline{l}_2$ y $Q \in \overline{r}$.
- Por **P3'** existe $A \in \overline{r}$ tal que $A \neq Q$ y $A \in \overline{P}$.
- Tenemos que si $A \in \bar{l}_1$ se tiene que $A, Q \in \bar{r} \cap \bar{l}_1$ y por **P2'** se tiene que A = Q, que es una contradicción. Por tanto, $A \notin \bar{l}_1 \cup \bar{l}_2$.

Demostramos la afirmación dual:

- Por **P1'** tenemos que existe una única $\bar{l} \in \overline{\mathcal{R}}$ con $P_1, P_2 \in \bar{l}$.
- Por **P3'** tenemos que existe $Q \in \overline{l}$ tal que $Q \neq P_1, P_2$.

^aEsta es la afirmación dual del corolario anterior.

- Por **P3'**, existe $\overline{r} \in \overline{\mathcal{R}}$ con $\overline{r} \neq \overline{l}$.
- Si $P_1 \in \overline{r}$, tenemos que $P_1, Q \in \overline{r}$, por lo que $\overline{r} = \overline{l}$, que es una contradicción, por lo que $P_1, P_2 \notin \overline{r}$.

1.3. Independencia del teorema de Desargues

Teorema 1.8 (Desargues proyectivo). Sean A, B, C, A', B', C' puntos dos a dos distintos y ningún triple alineado ^a. Si $\bar{l}(A,A') \cap \bar{l}(B,B') \cap \bar{l}(C,C') = O \in \overline{\mathcal{P}}$, entonces $\bar{l}(A,B) \cap \bar{l}(A',B')$, $\bar{l}(A,C) \cap \bar{l}(A',C')$ y $\bar{l}(B,C) \cap \bar{l}(B',C')$ están alineados.

Lema 1.3. Sean $A, B, C, D \in \mathbb{P}(\mathbb{K}^3)$ distintos dos a dos y ninguna terna alineada. Existe una base $\mathcal{B} = \{v_0, v_1, v_2\}$ de \mathbb{K}^3 tal que $A = L(\{v_0\}), B = L(\{v_1\}), C = L(\{v_2\})$ y $D = L(\{v_0 + v_1 + v_2\})$.

Demostración. Sean $\vec{a}, \vec{b}, \vec{c}, \vec{d} \in \mathbb{K}^3$ tales que $A = L(\vec{a}), B = L(\vec{b}), C = L(\vec{c})$ y $D = L(\vec{d})$. Si $A \neq B$, tenemos que $\{\vec{a}, \vec{b}\}$ son linealmente independientes. Como C no está alineado con A y B, debe ser que $\vec{c} \notin L(\vec{a}, \vec{b})$. Por tanto, tenemos que $\{\vec{a}, \vec{b}, \vec{c}\}$ son linealmente independientes. Así, tenemos que

$$\vec{d} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}, \ \alpha, \beta, \gamma \in \mathbb{K}.$$

Si $\alpha=0$, tenemos que $\vec{d}\in L\left(\vec{b},\vec{c}\right)$, por lo que $D\in \bar{l}\left(B,C\right)$, lo que es una contradicción, por lo que $\alpha\neq 0$. De análoga demostramos que $\beta,\gamma\neq 0$. Tomamos $v_0=\alpha\vec{a},\,v_1=\beta\vec{b}$ y $v_2=\gamma\vec{c}$, de forma que nos queda que $\vec{d}=v_0+v_1+v_2$.

Teorema 1.9. Sea \mathbb{K} un cuerpo. Entonces, el teorema de Desargues se cumple en $\mathbb{P}(\mathbb{K}^3)$.

Demostración. En primer lugar, veamos que se cumplen las hipótesis del lema anterior.

- Veamos que $O = \bar{l}(A, A') \cap \bar{l}(B, B') \cap \bar{l}(C, C')$, no está alineado con A y B. Si $O \in \bar{l}(A, B)$, tenemos que $O \in \bar{l}(O, B)$, por lo que $\bar{l}(A, B) = \bar{l}(O, B)$. Sin embargo, tenemos que $B' \in \bar{l}(O, B)$, por lo que A, B y B' están alineados, que es una contradicción.
- Debe ser que $O \neq A$, puesto que si O = A tendríamos que $A \in \bar{l}(B, B')$ y A, B y B' estarían alineados.

De forma análoga tenemos que $O \neq B, C$ y $O \notin \overline{l}(B, C), \overline{l}(A, C)$. Podemos usar el lema con A, B, C y O. En la base apropiada, tenemos que

$$A = [1:0:0], \ B = [0:1:0], \ C = [0:0:1], \ D = [1:1:1].$$

 $[^]a \mbox{Buscamos}$ poder tener dos tríangulos: ABC y A'B'C'.

Tenemos que

$$A' \in \bar{l}(A, O) = \left\{ \begin{vmatrix} x_0 & x_1 & x_2 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{vmatrix} = 0 \right\} = \left\{ x_1 = x_2 \right\}.$$

De esta manera, tenemos que $A'=[\alpha:\beta:\beta]$. Como $A\neq A'$, tenemos que $\beta\neq 0$. Así, podemos definir $A'=\left[\frac{\alpha}{\beta}:1:1\right]=[1+a:1:1]$, para algún $a\in\mathbb{K}/\{0\}$. De forma similar, deducimos que B'=[1:1+b:1] y C'=[1:1:1+c] con $b,c\neq 0$. Calculamos $\bar{l}(A,B)\cap \bar{l}(A',B')$:

$$\bar{l}(A,B) = \left\{ \begin{vmatrix} x_0 & x_1 & x_2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} = 0 \right\} = \{x_2 = 0\}.$$

$$\bar{l}(A', B') = \left\{ \begin{vmatrix} x_0 & x_1 & x_2 \\ 1+a & 1 & 1 \\ 1 & 1+b & 1 \end{vmatrix} = 0 \right\} = \left\{ -bx_0 - ax_1 + ((1+a)(1+b) - 1)x_2 = 0 \right\}.$$

Así, tenemos que $\bar{l}(A,B) \cap \bar{l}(A',B') = [a:-b:0]$. De forma similar, tenemos que $\bar{l}(B,C) \cap \bar{l}(B',C') = [0:b:-c]$ y $\bar{l}(A,C) \cap \bar{l}(A',B') = [a:0:-c]$. Para ver que estos tres puntos están alineados vamos a ver que el determinante se anula:

$$\begin{vmatrix} a & -b & 0 \\ 0 & b & -c \\ a & 0 & -c \end{vmatrix} = -abc + abc = 0.$$

Otra forma de hacerlo es calcular la recta de dos cualesquiera de ellos y ver si el tercero pertenece a esa recta. $\hfill\Box$

Proposición 1.4. Supongamos que $(\overline{\mathcal{P}}, \overline{\mathcal{R}})$ es un plano proyectivo que cumple el teorema de Desargues. Sea $(\mathcal{P}, \mathcal{R})$ un plano afín obtenido de $(\overline{\mathcal{P}}, \overline{\mathcal{R}})$ quitando una recta. Entonces, dados A, A', B, B', C, C' puntos dos a dos distintos de \mathcal{P} , ningún triple alineado, tales que l(A, A') || l(B, B') || l(C, C'), l(A, B) || l(A', B') y l(A, C) || l(A', C'). Entonces, l(B, C) || l(B', C').

Demostración. Si $\overline{\mathcal{P}} = \mathcal{P} \cup \overline{l}_{\infty}$, tenemos que

$$l\left(A,A'\right)||l\left(B,B'\right)||l\left(C,C'\right)\Rightarrow\bar{l}\left(A,A'\right)\cap\bar{l}\left(B,B'\right)\cap\bar{l}\left(C,C'\right)=O\in\bar{l}_{\infty}.$$

De forma similar, como l(A,B)||l(A',B') y l(A,C)||l(A',C'), se tiene que $\bar{l}(A,B) \cap \bar{l}(A',B'),\bar{l}(A,C) \cap \bar{l}(A',C') \in \bar{l}_{\infty}$. Como se cumple el teorema de Desargues, tenemos que $\bar{l}(B,C) \cap \bar{l}(B',C') \in \bar{l}_{\infty}$, entonces l(B,C)||l(B',C').

Vamos a probar que existen planos proyectivos que no cumplen el teorema de Desargues viendo un plano afín que no cumple la proposición anterior.

Ejemplo (Plano de Moulton). Consideremos el plano afín $\mathcal{P} = \mathbb{R}^2$ y tenemos que \mathcal{R} es el conjunto de:

- Rectas horizontales, $x_2 = k$.
- Rectas verticales, $x_1 = k$.
- Rectas de pendiente negativa, es decir, $x_2 = \lambda x_1 + c$, $\lambda < 0$.
- Rectas quebradas de la forma

$$x_2 = \begin{cases} 2\lambda (x_1 - c), & x_1 \le c \\ \lambda (x_1 - c), & x_1 \ge c \end{cases}$$

con $\lambda > 0$.

Vamos a ver que el plano de Moulton no cumple la proposición.

Tenemos que

son verticales y l(A, B) y l(A, B') son horizontales y paralelas. Las rectas l(A, C) y l(A', C') son paralelas y de pendiente negativa. Sin embargo, por construcción tenemos que l(B, C) y l(B', C') no son paralelas. Este es el primer ejemplo de un plano afín que no viene de un espacio vectorial.

Capítulo 2

Geometría afín y proyectiva lineal

2.1. Espacios proyectivos y afines

Definición 2.1 (Espacio afín). Sea \mathbb{K} un cuerpo. Un \mathbb{K} -espacio afín de dimensión $n<\infty$ es una terna $\left(\mathbb{A},\vec{\mathbb{A}},\vec{\cdot}\right)$ donde \mathbb{A} es un conjunto no vacío, $\vec{\mathbb{A}}$ es un \mathbb{K} -espacio vectorial de dimensión n y

$$\vec{\cdot}: \mathbb{A} \times \mathbb{A} \to \vec{\mathbb{A}}$$

$$(A, B) \to \overrightarrow{AB},$$

que cumple

- 1. $\forall A \in \mathbb{A}, \forall v \in \vec{\mathbb{A}}, \exists ! B \in \mathbb{A} \text{ tal que } \overrightarrow{AB} = v.$
- 2. $\forall A, B, C \in \mathbb{A}, \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}.$

Ejemplo. Dado un espacio vectorial \mathbb{K}^n , siempre podemos dotar a \mathbb{K}^n de una estructura afín. En efecto, tomamos $\mathbb{A} := \mathbb{K}^n$, $\vec{\mathbb{A}} := \mathbb{K}^n$ y

$$\vec{\cdot}: \mathbb{K}^n \times \mathbb{K}^n \to \mathbb{K}^n : (A, B) \to B - A.$$

Si tenemos una base podemos expresar la aplicación anterior de la forma

$$\overrightarrow{(a_1,\ldots,a_n)(b_1,\ldots,b_n)} = (b_1-a_1,\ldots,b_n-a_n).$$

Notación. Si $\overrightarrow{AB} = v$ escribimos A + v = B.

Observación. • $\forall A \in \mathbb{A}$ la función $\overrightarrow{A} : \mathbb{A} \to \overrightarrow{\mathbb{A}} : B \to \overrightarrow{AB}$ es una biyección. Esto se deduce directamente de **(1)**. De forma similar, si $v \in \overrightarrow{\mathbb{A}}$, la aplicación $+v : \mathbb{A} \to \mathbb{A} : A \to A + v$ también es biyectiva.

 $\overrightarrow{AB} = 0 \iff A = B$. En efecto, por (2) se tiene que

$$\overrightarrow{AA} + \overrightarrow{AA} = \overrightarrow{AA} \iff \overrightarrow{AA} = 0.$$

Como la aplicación \overrightarrow{A} es biyectiva, si $\overrightarrow{AB} = 0$ debe ser que A = B.

 $\overrightarrow{AB} = -\overrightarrow{BA}$. En efecto, tenemos que

$$0 = \overrightarrow{AA} = \overrightarrow{AB} + \overrightarrow{BA} \iff \overrightarrow{AB} = -\overrightarrow{BA}.$$

■ Se cumple la **ley del paralelogramo**. Es decir, tenemos que $\overrightarrow{AB} = \overrightarrow{CD} \Rightarrow \overrightarrow{AC} = \overrightarrow{BD}$. En efecto,

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BD} + \overrightarrow{DC} = \overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{CD} = \overrightarrow{AB} + \overrightarrow{BD} - \overrightarrow{AB} = \overrightarrow{BD}$$

Definición 2.2 (Proyectivizado de un espacio vectorial). Sea V un \mathbb{K} -espacio vectoria de $\dim_{\mathbb{K}} V = n$. El **proyectivizado** de V, denotado $\mathbb{P}(V)$, es el conjunto de los subespacios vectoriales de V de dimensión 1. La dimensión de $\mathbb{P}(V)$, denotada $\dim \mathbb{P}(V)$, es igual a $\dim_{\mathbb{K}} (V) - 1$.

Observación. $\mathbb{P}(V) = (V - \{0\}) /_{\sim}$, donde \sim denota la relación

$$u \sim v \iff \exists \lambda \in \mathbb{K}^*, \ u = \lambda v.$$

Si $v = (a_1, \ldots, a_n) \in \mathbb{K}^n$, usamos [v], $[v]_n$ o $[a_1 : a_2 : \cdots : a_n]$ para denotar al punto L(v) de $\mathbb{P}(V)$.

Ejemplo. 1. Sea $V = \{0\}$ el espacio vectorial trivial. Tenemos que $\mathbb{P}(V) = \emptyset$. Así, tenemos que el conjunto vacío es un espacio proyectivo con dim $\mathbb{P}(V) = -1$.

- 2. Si $V = \mathbb{K}$, tenemos que $\mathbb{P}(V) = \{*\}$ es un punto, por lo que dim $(\mathbb{P}(\mathbb{K})) = 0$.
- 3. Si $V = \mathbb{R}^2$, tenemos que dim $\mathbb{P}(\mathbb{R}^2) = 1$. Hay una biyección $[0, \pi) \to \mathbb{P}(\mathbb{R}^2)$: $\theta \to [(\cos \theta, \sin \theta)]$. Tenemos que $\mathbb{P}(\mathbb{R}^2) \cong \mathbb{S}^1$, que es una circunferencia.

Proposición 2.1. Sea V un \mathbb{K} -espacio vectorial de $\dim_{\mathbb{K}} V \geq 1$. Sea $f: V \to \mathbb{K}$ una aplicación lineal sobreyectiva. Tenemos que $\mathcal{U} = \mathrm{Ker}\,(f) \subset V$ es un subespacio vectorial de V. Entonces, $(\mathbb{P}\,(V)\,/\mathbb{P}\,(\mathcal{U})\,,\mathcal{U},\vec{\cdot})$ es un espacio afín donde $\overline{[u][v]} = \frac{v}{f\,(v)} - \frac{u}{f\,(u)}$.

Demostración. Primero comprobamos que la definición de $\vec{\cdot}$ no depende de los representantes. Sea $u' = \lambda u$ y $v' = \mu v$ con $\lambda, \mu \neq 0$. Tenemos que

$$\frac{v'}{f\left(v'\right)} - \frac{u'}{f\left(u'\right)} = \frac{\lambda v}{f\left(\lambda v\right)} - \frac{\mu u}{f\left(\mu u\right)} = \frac{\lambda v}{\lambda f\left(v\right)} - \frac{\mu u}{\mu f\left(u\right)} = \frac{v}{f\left(v\right)} - \frac{u}{f\left(u\right)}.$$

Comprobamos que $\forall [v_1], [v_2] \in \mathbb{P}(V) / \mathbb{P}(\mathcal{U}), |v_1| |v_2| \in \mathcal{U}$. Tenemos que

$$\overrightarrow{[v_1][v_2]} = \frac{v_2}{f\left(v_2\right)} - \frac{v_1}{f\left(v_1\right)} \Rightarrow f\left(\frac{v_2}{f\left(v_2\right)} - \frac{v_1}{f\left(v_1\right)}\right) = \frac{f\left(v_2\right)}{f\left(v_2\right)} - \frac{f\left(v_1\right)}{f\left(v_1\right)} = 0.$$

Así, tenemos que $\overline{[v_1][v_2]} \in \mathcal{U}$. Demostremos que cumple los axiomas.

1. Demostremos primero la existencia. Sea $A \in \mathbb{P}(V)/\mathbb{P}(\mathcal{U})$, por lo que A = [w] con $f(w) \neq 0$. Sea $v \in \mathcal{U}$. Tomamos $B = \left[\frac{w}{f(w)} + v\right]$. Comprobemos que $B \in \mathbb{P}(V)/\mathbb{P}(\mathcal{U})$:

$$f\left(\frac{w}{f\left(w\right)}+v\right)=f\left(\frac{w}{f\left(w\right)}\right)+f\left(v\right)=\frac{f\left(w\right)}{f\left(w\right)}+f\left(v\right)=1\neq0\Rightarrow B\in\mathbb{P}\left(V\right)/\mathbb{P}\left(\mathcal{U}\right).$$

Así, tenemos que

$$\overrightarrow{AB} = \overrightarrow{[w]} \left[\frac{w}{f(w)} + v \right] = \frac{\frac{w}{f(w)} + v}{f\left(\frac{w}{f(w)} + v\right)} - \frac{w}{f(w)} = v.$$

Demostramos ahora la unicidad. Sea $B' \in \mathbb{P}(V)/\mathbb{P}(\mathcal{U})$ tal que $\overrightarrow{AB'} = v = \overrightarrow{AB}$. Tenemos que B' = [z] con $f(z) \neq 0$. Así,

$$\overrightarrow{AB'} = \overrightarrow{[w][z]} = \frac{z}{f\left(z\right)} - \frac{w}{f\left(w\right)} = v \Rightarrow z = \left(v + \frac{w}{f\left(w\right)}\right) f\left(z\right) \Rightarrow z = \lambda \left(\frac{w}{f\left(w\right)} + v\right), \ \lambda \in \mathbb{K}^*.$$

Por tanto, tenemos que $[z] = \left[\frac{w}{f(w)} + v\right]$, por lo que B = B' y queda demostrada la unicidad.

2. Sean $A,B,C\in\mathbb{P}\left(V\right)/\mathbb{P}\left(\mathcal{U}\right)$ tales que A=[a],B=[b] y C=[c] con $f\left(a\right),f\left(b\right),f\left(c\right)\neq0.$ Tenemos que

$$\overrightarrow{AB} + \overrightarrow{BC} = \left(\frac{b}{f(b)} - \frac{a}{f(a)}\right) + \left(\frac{c}{f(c)} - \frac{b}{f(b)}\right) = \frac{c}{f(c)} - \frac{a}{f(a)} = \overrightarrow{AC}.$$

Ejemplo. Sean $V = \mathbb{K}^3$ y $f : \mathbb{K}^3 \to \mathbb{K} : (x_0, x_1, x_2) \to x_0$. Entonces, $\mathcal{U} = \text{Ker}(f) = \{x_0 = 0\}$. Tenemos que

$$\mathbb{P}(V)/\mathbb{P}(\mathcal{U}) = \{ [x_0 : x_1 : x_2] \in \mathbb{P}(V) : x_0 \neq 0 \} = \{ [1 : x_1 : x_2] \in \mathbb{P}(V) \}.$$

Tenemos que $\mathbb{P}(V)/\mathbb{P}(\mathcal{U})$ es un plano afín con espacio vectorial asociado \mathcal{U}^{a} . En este caso podemos observar que

$$\overrightarrow{[x_0:x_1:x_2][y_0:y_1:y_2]} = \frac{(1,y_1,y_2)}{f(1,y_1,y_2)} - \frac{(1,x_1,x_2)}{f(1,x_1,x_2)}$$
$$= (1,y_1,y_2) - (1,x_1,x_2) = (0,y_1-x_1,y_2-x_2).$$

Consideremos ahora $\mathbb{P}(\mathcal{U}) = \{[0: x_1: x_2] \in \mathbb{P}(V)\}$. Podemos considerar la aplicación $g: \mathcal{U} \to \mathbb{K}: (0, x_1, x_2) \to x_1$. Sea W = Ker(g), entonces $\mathbb{P}(\mathcal{U})/\mathbb{P}(W)$ es un espacio afín asociado a W con $\dim_{\mathbb{K}}(W) = 1$. Así, tenemos que

$$\mathbb{P}(\mathcal{U})/\mathbb{P}(W) = \{[0:x_1:x_2] \in \mathbb{P}(V): x_1 \neq 0\} = \{[0:1:x_2] \in \mathbb{P}(V)\}.$$

Si realizamos el cálculo anterior

$$\overrightarrow{[0:1:x_2][0:1:y_2]} = \frac{(0,1,y_2)}{g(0,1,y_2)} - \frac{(0,1,x_2)}{g(0,1,x_2)}
= (0,1,y_2) - (0,1,x_2) = (0,0,y_2 - x_2).$$

Tenemmos que $\mathbb{P}(W) = \{[0:0:x_2] \in \mathbb{P}(V)\} = \{[0:0:1]\}$. Podríamos seguir hasta obtener el conjunto vacío.

Observación. Tenemos que

$$\mathbb{P}\left(\mathbb{K}^{3}\right) = \mathbb{P}\left(V\right) = \mathbb{P}\left(V\right) / \mathbb{P}\left(\mathcal{U}\right) \sqcup \mathbb{P}\left(\mathcal{U}\right)$$

$$= \underbrace{\mathbb{P}\left(V\right) / \mathbb{P}\left(\mathcal{U}\right)}_{\text{plano affin}} \sqcup \underbrace{\mathbb{P}\left(\mathcal{U}\right) / \mathbb{P}\left(W\right)}_{\text{recta affin}} \sqcup \underbrace{\mathbb{P}\left(W\right)}_{\text{punto}}.$$

2.1.1. Sistemas de referencia

Definición 2.3 (Referencia cartesiana). Sea \mathbb{A} un espacio afín. Una **referencia cartesiana** es un par $\mathcal{R}_C = (O, \mathcal{B})$ donde $O \in \mathbb{A}$ y \mathcal{B} es una base de $\vec{\mathbb{A}}$. Las coordenadas de $A \in \mathbb{A}$ en \mathcal{R}_C son las coordenadas de \overrightarrow{OA} en la base \mathcal{B} .

Ejemplo. Consideremos $\mathbb{A} = \mathbb{R}^2$ y la siguiente referencia cartesiana:

$$\mathcal{R}_C = (O = (1, 0), \mathcal{B} = \{(1, 1), (1, -1)\}).$$

Consideremos $A = (3,2) \in \mathbb{A}$ y calculemos sus coordenadas en \mathcal{R}_C :

$$\overrightarrow{OA} = (3,2) - (1,0) = (2,2) = 2e_1.$$

Por tanto, $\overrightarrow{OA} = (2,0) \mathcal{B} \text{ y } A = (2,0)_{\mathcal{R}_C}.$

A continuación introduciremos las coordenadas baricéntricas. Para ello, necesitamos primero:

Proposición 2.2. Consideremos $P_0, \ldots, P_n \in \mathbb{A}$ y $\lambda_0, \ldots, \lambda_n \in \mathbb{K}$ tales que $\sum_{i=0}^n \lambda_i = 1$.

Entonces, $\forall s, t = 0, \dots, n$ se tiene que

$$P_s + \sum_{i=0, i \neq s}^n \lambda_i \overrightarrow{P_s P_i} = P_t + \sum_{i=0, i \neq t}^n \lambda_i \overrightarrow{P_t P_i}.$$

^aEsto se parece mucho a nuestro intento de constuir un plano afín desde el espacio proyectivo \mathbb{K}^3 .

Demostración. Está claro que

$$P_{s} + \sum_{i=0}^{n} \lambda_{i} \overrightarrow{P_{s}P_{i}} = P_{t} + \overrightarrow{P_{t}P_{s}} + \sum_{i=0}^{n} \lambda_{i} \left(\overrightarrow{P_{s}P_{t}} + \overrightarrow{P_{t}P_{i}} \right) = P_{t} + \overrightarrow{P_{t}P_{s}} + \sum_{i=0}^{n} \lambda_{i} \overrightarrow{P_{s}P_{t}} + \sum_{i=0}^{n} \overrightarrow{P_{t}P_{i}}$$

$$= P_{t} + \overrightarrow{P_{t}P_{s}} + \overrightarrow{P_{s}P_{t}} + \sum_{i=0}^{n} \overrightarrow{P_{t}P_{i}} = P_{t} + \sum_{i=0}^{n} \lambda_{i} \overrightarrow{P_{t}P_{i}}.$$

Definición 2.4 (Combinación afín). Una combinación afín de $P_0, \ldots, P_n \in \mathbb{A}$ es un punto de la forma $P_0 + \sum_{i=1}^n \lambda_i \overrightarrow{P_0 P_i}$ con $\sum_{i=0}^n \lambda_i = 1$. Usamos $\sum_{i=0}^n \lambda_i P_i$ para denotar a $P_t + \sum_{i=0}^n \lambda_i \overrightarrow{P_t P_i}$ con $\sum_{i=0}^n \lambda_i = 1$.

Observación. La proposición anterior nos permite ver que la notación que hemos empleado en la definición anterior tiene sentido.

Definición 2.5. Una colección $\{P_0, \ldots, P_n\} \subset \mathbb{A}$ es

- afinmente generadora si $\forall P \in \mathbb{A}$ existen $\lambda_0, \dots, \lambda_n \in \mathbb{K}$ tales que $\sum \lambda_i = 1$ y $P = \sum \lambda_i P_i$ (todo punto es combinación afín de P_0, \dots, P_n).
- afinmente dependiente si existe $i \in \{0, ..., n\}$ tal que P_i es combinación afín de los demás.
- **afinmente independiente** si no es afinmente dependiente.

Definición 2.6 (Referencia afín). Una **referencia afín** de \mathbb{A} es una colección ordenada de puntos $\mathcal{R}_A = \{P_0, \dots, P_n\}$ que es afinmente generadora y afinmente independiente. Las **coordenadas baricéntricas** de $A \in \mathbb{A}$ son $(\lambda_0, \dots, \lambda_n)$ si $\sum \lambda_i = 1$ y $\sum \lambda_i P_i = A$.

Proposición 2.3. Las coordenadas baricéntricas de A en \mathcal{R}_A existen y son únicas.

Demostración. Como \mathcal{R}_A es afinmente generador, tenemos que existen $\lambda_0, \dots, \lambda_n \in \mathbb{K}$ tales que $\sum \lambda_i = 1$ y $A = \sum \lambda_i P_i$. Demostremos ahora la unicidad. Supongamos que

$$A = \sum \lambda_i P_i = \sum \mu_i P_i, \ \sum \mu_i = 1.$$

Tenemos que

$$\begin{split} P_0 + \sum_{i=1}^n \lambda_i \overrightarrow{P_0 P_i} &= P_0 + \sum_{i=1}^n \mu_i \overrightarrow{P_0 P_i} \\ \Rightarrow \sum_{i=1}^n \lambda_i \overrightarrow{P_0 P_i} &= \sum_{i=1}^n \mu_i \overrightarrow{P_0 P_i} &= \sum_{i=1}^n \left(\lambda_i - \mu_i\right) \overrightarrow{P_0 P_i} &= 0. \end{split}$$

Hay dos posibles casos:

• Si $\lambda_i - \mu_i = 0, \forall i = 1, \dots, n$, tenemos que

$$\lambda_0 = 1 - \sum_{i=1}^n \lambda_i = 1 - \sum_{i=1}^n \mu_i = \mu_0.$$

Así, nos queda que $\lambda_i = \mu_i$ para $i = 0, \dots, n$.

■ Supongamos que existe algún $i \in \{0, ..., n\}$ tal que $\lambda_i - \mu_i \neq 0$. Entonces, tendríamos que

$$(\lambda_i - \mu_i) \overrightarrow{P_0 P_i} = \sum_{j=0, j \neq i}^n -(\lambda_j - \mu_j) \overrightarrow{P_0 P_j} \Rightarrow \overrightarrow{P_0 P_i} = \sum_{j=0, j \neq i}^n \alpha_j \overrightarrow{P_0 P_j},$$

donde $\alpha_j = -\frac{\lambda_j - \mu_j}{\lambda_i - \mu_i}$. Así, nos queda que

$$P_i = P_0 + \overrightarrow{P_0 P_i} = P_0 + \sum_{j=0, j \neq i}^n \alpha_j \overrightarrow{P_0 P_j}.$$

Por tanto, P_i es una combinación afín de $P_0, \ldots, P_{i-1}, P_{i+1}, \ldots, P_n^{-1}$ que contradice que \mathcal{R}_A sea afinmente independiente.

Lema 2.1. $\mathcal{R}_A = \{P_0, \dots, P_n\}$ es una referencia afín si y solo si $\mathcal{B} = \{\overrightarrow{P_0P_1}, \dots, \overrightarrow{P_0P_n}\}$ es una base de $\vec{\mathbb{A}}$. En particular, $|\mathcal{R}_A| = \dim \mathbb{A} + 1$.

Demostración. (i) Vamos a ver que $\mathcal{B} = \left\{ \overrightarrow{P_0P_1}, \dots, \overrightarrow{P_0P_n} \right\}$ genera $\vec{\mathbb{A}}$. Sea $v \in \vec{\mathbb{A}}$. Tenemos que $P_0 + v \in \mathbb{A}$ y $P_0 + v = (\lambda_0, \dots, \lambda_n)_{\mathcal{R}_A}$. Así, tenemos que

$$P_0 + v = P_0 + \sum_{i=1}^n \lambda_i \overrightarrow{P_0 P_i}.$$

Por tanto, debe ser que $v = \sum_{i=1}^{n} \lambda_i \overrightarrow{P_0 P_i}$, por lo que \mathcal{B} genera a $\vec{\mathbb{A}}$. Veamos que son linealmente independientes:

$$\alpha_1 \overrightarrow{P_0 P_1} + \dots + \alpha_n \overrightarrow{P_0 P_n} = 0,$$

¹Es fácil comprobar que $\sum_{i=0, i\neq i}^{n} \alpha_{j} = 1$.

con $\alpha_0 = 1 - \alpha_1 - \cdots - \alpha_n$. Así, nos queda que

$$\sum_{i=0}^{n} \alpha_i P_i = P_0 + \alpha_1 \overrightarrow{P_0 P_1} + \dots + \alpha_n \overrightarrow{P_0 P_n} = P_0 + 0 = P_0.$$

Así, tenemos que $P_0 = (1, 0, \dots, 0)_{\mathcal{R}_A}$ y $P_0 = (\alpha_0, \alpha_2, \dots, \alpha_n)_{\mathcal{R}_A}$, por lo que $\alpha_1 = \dots = \alpha_n = 0$. Así, hemos visto que \mathcal{B} son linealmente independientes.

(ii) Supongamos que \mathcal{B} es una base de $\vec{\mathbb{A}}$. Veamos que \mathcal{R}_A es afinmente generadora. Sea $P \in \mathbb{A}$, está claro que $P = P_0 + \overrightarrow{P_0P}$. Como $\overrightarrow{P_0P} \in \vec{\mathbb{A}}$, tenemos que existen $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ tales que

 $\overrightarrow{P_0P} = \lambda_1 \overrightarrow{P_0P_1} + \dots + \lambda_n \overrightarrow{P_0P_n}.$

Si tomamos $\lambda_0 = 1 - \sum_{i=1}^n \lambda_i$, tenemos que $P = P_0 + \sum_{i=1}^n \lambda_i \overrightarrow{P_0 P_i}$, por lo que P es una combinación afín de \mathcal{R}_A y \mathcal{R}_A es afinmente generadora. Veamos que \mathcal{R}_A es afimente independiente. Supongamos que $P_i = \sum_{j \neq i} \alpha_j P_j$ con $\sum_{j \neq i} \alpha_j = 1$ para $i \neq 0$ (si i = 0)

para lo que continua tomamos otro punto). Tenemos que $P_i = P_0 + \overrightarrow{P_0P_i}$ y además

$$P_i = P_0 + \sum_{j=0, j \neq i}^n \alpha_j \overrightarrow{P_0 P_j} \Rightarrow \overrightarrow{P_0 P_i} = \sum_{j=0, j \neq i}^n \alpha_j \overrightarrow{P_0 P_j}.$$

Esto contradice que \mathcal{B} sea linealmente independiente.

Ejemplo. Consideremos $\mathbb{A} = \mathbb{P}\left(\mathbb{R}^2\right)/\left\{x_0 + 2x_1 = 0\right\} = \mathbb{P}\left(\mathbb{R}^2\right)/\mathbb{P}\left(U\right)$ donde $U = \operatorname{Ker}\left(f\right)$ y $f\left(x_0, x_1\right) = x_0 + 2x_1$.

1. Probemos que $P_0 = [1:1]$ y $P_1 = [1:0]$ forman una referencia afín de \mathbb{A} . Por lo visto anteriormente, $\mathcal{R}_A = \{P_0, P_1\}$ es una referencia afín si y solo si $\mathcal{B} = \{\overrightarrow{P_0P_1}\}$ es una base de $\vec{\mathbb{A}}$. En este caso, tenemos que $\vec{A} = U$ y dim U = 1. Tenemos que

$$\overrightarrow{P_0P_1} = \frac{(1,0)}{f(1,0)} - \frac{(1,1)}{f(1,1)} = (1,0) - \frac{1}{3}(1,1) = \left(\frac{2}{3}, -\frac{1}{3}\right).$$

Como $\overrightarrow{P_0P_1} \neq 0$, tenemos que \mathcal{B} es una base de $\vec{\mathbb{A}}$.

2. Calculemos las coordenadas baricéntricas de [5:-2] en la referencia afín. Queremos que existan $\lambda_0, \lambda_1 \in \mathbb{R}$ tales que $\lambda_0 + \lambda_1 = 1$ y

$$[5:-2] = (\lambda_0, \lambda_1)_{\mathcal{R}_A}.$$

Además,

$$[5:-2] = [1:1] + \lambda_1 \overrightarrow{P_0 P_1} = [1:1] + \lambda_1 \left(\frac{2}{3}, -\frac{1}{3}\right) \iff \overline{[1:1][5:-2]} = \lambda_1 \left(\frac{2}{3}, -\frac{1}{3}\right).$$

Así, nos queda que

$$\left(\frac{14}{3}, -\frac{7}{3}\right) = \lambda_1 \left(\frac{2}{3}, -\frac{1}{3}\right).$$

Nos queda que $\lambda_1=7$ y $\lambda_0=-6$. Así, las coordenadas baricéntricas de [5:-2] son $(-6,7)_{\mathcal{R}_A}$.

Ahora vamos a intriducir referencias en el espacio proyectivo.

Definición 2.7. Una familia de puntos $[v_0], \ldots, [v_n] \in \mathbb{P}(V)$ es **independiente** si v_0, \ldots, v_n es linealmente independiente.

Lema 2.2. Ser independiente no depende de los representantes.

Demostración. Sean $[v_0],\ldots,[v_n]\in\mathbb{P}(V)$ y supongamos que v_0,\ldots,v_n son linealmente independientes. Sean $[v_0']=[v_0],\ldots,[v_n']=[v_n]$. Así, para $i=1,\ldots,n$ existe $\lambda_i\in\mathbb{K}^*$ tal que $v_i'=\lambda_iv_i$. Tenemos que demostrar que v_0',\ldots,v_n' son linealmente independientes. Si $\mu_0,\ldots,\mu_n\in\mathbb{K}$,

$$0 = \mu_0 v_0' + \dots + \mu_n v_n' = \mu_0 \lambda_0 v_0 + \dots + \mu_n \lambda_n v_n.$$

Como v_0, \ldots, v_n son linealmente independientes, debe ser que $\mu_i \lambda_i = 0, \forall i = 0, \ldots, n$. Como $\lambda_i \neq 0$ debe ser que $\mu_i = 0$ y v'_0, \ldots, v'_n son linealmente independientes.

Observación. Observamos que si dim (V) = n + 1, entonces toda familia independiente de $\mathbb{P}(V)$ tiene a lo sumo n + 1 elementos.

Definición 2.8. $P_0, \ldots, P_r \in \mathbb{P}(V)$ están en **posición general** si cualquier subconjunto de tamaño dim(V) contiene elementos independientes. ^a

Ejemplo. $P_0, \ldots, P_n \in \mathbb{P}(\mathbb{R}^3)$ están en posición general si ninguna terna está alineada.

Definición 2.9 (Referencia proyectiva). Sea $n = \dim \mathbb{P}(V)$ ($\dim_{\mathbb{K}} V = n + 1$). Una **referencia proyectiva** de $\mathbb{P}(V)$ es una colección ordenada de n+2 puntos en posición general

$$\mathcal{R} = \{P_0, P_1, \dots, P_n; P_{n+1}\}.$$

A P_{n+1} se le llama **punto de medida** o **punto de unidad**. Diremos que una base de V, $\mathcal{B} = \{v_0, \dots, v_n\}$, es una **base asociada** a \mathcal{R} si $P_i = [v_i]$ para $i = 0, \dots, n$ y $P_{n+1} = [v_0 + v_1 + \dots + v_n]$. Las **coordenadas homogéneas** de $P \in \mathbb{P}(V)$ son $[\lambda_0 : \lambda_1 : \dots : \lambda_n]$ si $P = [\lambda_0 v_0 + \dots + \lambda_n v_n] = [(\lambda_0, \dots, \lambda_n)_{\mathcal{B}}]$.

Lema 2.3. Las bases asociadas a una referencia proyectiva son proporcionales entre ellas. En particular, las coordenadas homogéneas respecto a una referencia proyectiva son únicas, salvo proporcionalidad.

^aEn el caso de que $r+1 < \dim(V)$ basta con que los elementos de $\{P_0, \ldots, P_r\}$ sean independientes.

Demostración. Sea $\mathcal{R} = \{P_0, \dots, P_n; P_{n+1}\}$ una referencia proyectiva de $\mathbb{P}(V)$ y sean $\mathcal{B} = \{v_0, \dots, v_n\}$ y $\mathcal{B}' = \{v'_0, \dots, v'_n\}$ bases asociadas tales que $P_i = [v_i] = [v_i]'$ para $i = 0, \dots, n$ y $P_{n+1} = [v_0 + \dots + v_n] = [v'_0 + \dots + v'_n]$. Así, existe $\lambda_i \in \mathbb{K}$ para $i = 0, \dots, n$ tal que $v'_i = \lambda_i v_i$ con $\lambda_i \neq 0$. Similarmente, existe $\lambda \neq 0$ tal que

$$v_0' + \dots + v_n' = \lambda \left(v_0 + \dots + v_n \right).$$

Así, tenemos que

$$v_0' + \dots + v_n' = \lambda_0 v_0 + \dots + \lambda_n v_n = \lambda v_0 + \dots + \lambda v_n.$$

Por ser \mathcal{B} base de V, tenemos que $\lambda_i = \lambda$, $\forall i = 0, \ldots, n$ y nos queda que $\mathcal{B}' = \{\lambda v_0, \ldots, \lambda v_n\}$. Explicamos el 'en particular': si $P = [a_0 v_0 + \cdots + a_n v_n]$, entonces

$$P = [a_0 : \dots : a_n] = \left[\frac{a_0}{\lambda} (\lambda v_0) + \dots + \left(\frac{a_n}{\lambda}\right) (\lambda v_n)\right] \Rightarrow P = \left[\frac{a_0}{\lambda} : \dots : \frac{a_n}{\lambda}\right].$$

Ejemplo. La referencia proyectiva estándar es

$$\mathcal{R} = \{ [1:0:\cdots:0], [0:1:\cdots:0], \cdots, [0:0:\cdots:1]; [1:1:\cdots:1] \}.$$

Así, tenemos que la base asociada es la base estándar

$$\mathcal{B} = \{(1, 0, \dots, 0), (0, 1, \dots, 0), \dots, (0, 0, \dots, 1)\}.$$

Ejemplo. Consideremos los puntos

$$P_0 = [1:2:3], P_1 = [2:-3:4], P_2 = [4:5:-6], P_3 = [11:9:-5].$$

Veamos que $\mathcal{R}=\{P_0,P_1,P_2;P_3\}$ es una referencia proyectiva y buscamos la base asociada.

Consideremos

$$v_0 = (1, 2, 3), \quad v_1 = (2, -3, 4), \quad v_2 = (4, 5 - 6), \quad v_3 = (11, 9, -5).$$

Tenemos que \mathcal{R} es una referencia proyectiva si y solo si están en posición general, es decir, si toda colección de tres vectores de $\{v_0, v_1, v_2, v_3\}$ son linealmente independientes. Esto es equivalente a que $\{v_0, v_1, v_2\}$ sean linealmente independientes y que $\alpha v_0 + \beta v_1 + \gamma v_2 = v_3$ implica que $\alpha, \beta, \gamma \neq 0$. Tenemos que

$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & -3 & 4 \\ 4 & 5 & -6 \end{vmatrix} = 120 \neq 0.$$

Por tanto, $\{v_0, v_1, v_2\}$ son linealmente independientes. Veamos la segunda parte:

$$\alpha(1,2,3) + \beta(2,-3,4) + \gamma(4,5,-6) = (11,9,-5).$$

Así, nos queda el sistema

$$\begin{cases} \alpha + 2\beta + 4\gamma = 11 \\ 2\alpha - 3\beta + 5\gamma = 9 \\ 3\alpha + 4\beta - 6\gamma = -5 \end{cases} \Rightarrow \alpha = \beta = 1, \ \gamma = 2.$$

Por tanto, P_0, P_1, P_2, P_3 están en posición general y \mathcal{R} es una referencia proyectiva. Busquemos la base asociada $\mathcal{B} = \{u_0, u_1, u_2\}$ tal que $P_i = [u_i]$ con i = 0, 1, 2 y $P_3 = [u_0 + u_1 + u_2]$. Tendremos que

$$\mathcal{B} = \{u_0, u_1, u_2\} = \{\alpha v_0, \beta v_1, \gamma v_2\} = \{v_0, v_1, 2v_2\}.$$

2.1.2. Cambio de coordenadas cartesianas

Estudiemos primero el caso de las coordenadas cartesianas en A.

Sean $\mathcal{R}_C = \{O, \mathcal{B}\}\$ y $\mathcal{R}'_C = \{O', \mathcal{B}'\}\$ referencias cartesianas de \mathbb{A} . Si $A \in \mathbb{A}$ tenemos que

$$A = O + \sum_{i=1}^{n} x_i v_i = O' + \sum_{i=1}^{n} y_i v_i'.$$

De aquí deducimos que

$$\overrightarrow{O'A} = \sum_{i=1}^{n} y_i v_i' = \overrightarrow{O'O} + \overrightarrow{OA} = \overrightarrow{O'O} + \sum_{i=1}^{n} x_i v_i.$$

Tenemos que $\overrightarrow{O'O} = (a_0, \dots, a_n)_{\mathcal{B}'}$ con $O = (a_0, \dots, a_n)_{\mathcal{R}'_C}$. Así, nos queda que

$$\sum_{i=1}^{n} y_i v_i' = \sum_{i=1}^{n} a_i v_i' = \sum_{i=1}^{n} x_i v_i \Rightarrow \sum_{i=1}^{n} (y_i - a_i) v_i' = \sum_{i=1}^{n} x_i v_i.$$

Sea $C_{\mathcal{BB}'}$ la matriz de cambio de base de la base \mathcal{B} a la base \mathcal{B}' . Así, tenemos que

$$\begin{pmatrix} y_1 - a_1 \\ \vdots \\ y_n - a_n \end{pmatrix} = C_{\mathcal{B}\mathcal{B}'} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \Rightarrow \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} + C_{\mathcal{B}\mathcal{B}'} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Para que quede elegante ponemos

$$\begin{pmatrix} 1 \\ y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ a_1 & & & \\ \vdots & & C_{\mathcal{BB'}} & & \\ a_n & & & \end{pmatrix} \begin{pmatrix} 1 \\ x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

La matriz de cambio de \mathcal{R}_C a \mathcal{R}'_C es

$$C_{\mathcal{R}_C \mathcal{R}_C'} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ a_1 & & & \\ \vdots & & C_{\mathcal{B}\mathcal{B}'} & \\ a_n & & \end{pmatrix}.$$

2.1.3. Cambio de coordenadas baricéntricas

Sean $\mathcal{R}_A = \{P_0, \dots, P_n\}$ y $\mathcal{R}'_A = \{Q_0, \dots, Q_n\}$ referencias afines de \mathbb{A} . Sea $A \in \mathbb{A}$ con $A = (\lambda_0, \dots, \lambda_n)_{\mathcal{R}_A} = (\mu_0, \dots, \mu_n)_{\mathcal{R}'_A}$. Supongamos que $P_j = (a_{0j}, \dots, a_{nj})_{\mathcal{R}'_A}$. Tenemos que

$$A = \sum_{j=0}^{n} \lambda_j P_j = \sum_{j=0}^{n} \lambda_j \sum_{i=0}^{n} a_{ij} Q_i = \sum_{i=0}^{n} \left(\sum_{j=0}^{n} \lambda_j a_{ij} \right) Q_i = \sum_{j=0}^{n} \mu_j Q_j.$$

Así, tenemos que $\mu_i = \sum_{j=0}^n a_{ij} \lambda_j$. Matricialmente obtenemos la expresión

$$\begin{pmatrix} \mu_0 \\ \mu_1 \\ \vdots \\ \mu_n \end{pmatrix} = \underbrace{\begin{pmatrix} a_{00} & a_{01} & \cdots & a_{0n} \\ a_{10} & a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n0} & a_{n1} & \cdots & a_{nn} \end{pmatrix}}_{C_{\mathcal{R} A \mathcal{R}'}} \begin{pmatrix} \lambda_0 \\ \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}.$$

Tenemos que $C_{\mathcal{R}_A\mathcal{R}'_A}$ es la matriz de cambio de \mathcal{R}_A a \mathcal{R}'_A . Podemos observar que las columnas de $C_{\mathcal{R}_A\mathcal{R}'_A}$ son las coordenadas baricéntricas de P_i en la referencia \mathcal{R}'_A .

2.1.4. Cambios de coordenadas homogéneas en \mathbb{P}

Sean \mathcal{R} y \mathcal{R}' referencias proyectivas y sean $\mathcal{B}=\{v_0,\ldots,v_n\}$ y $\mathcal{B}'=\{v_0',\ldots,v_n'\}$ sus bases asociadas, respectivamente. Sea $P\in\mathbb{P}$ con $P=[a_0:\cdots:a_n]_{\mathcal{R}}=[a_0v_0+\cdots+a_nv_n]=[a_0'v_0'+\cdots+a_n'v_n']$. Supongamos que $v_i=b_{i0}v_0'+\cdots+b_{in}v_n'$. Así, nos queda que

$$(a_0, \dots, a_n)_{\mathcal{B}} = a_0 (b_{00}v'_0 + \dots + b_{0n}v'_n) + \dots + a_n (b_{n0}v'_0 + \dots + b_{nn}v'_n)$$

$$= (a_0b_{00} + \dots + a_nb_{n0}) v'_0 + \dots + (a_0b_{0n} + \dots + a_nb_{nn}) v'_n$$

$$= (a_0b_{00} + \dots + a_nb_{n0}, \dots, a_0b_{0n} + \dots + a_nb_{nn})_{\mathcal{B}'}.$$

Matricialmente nos queda que

$$\begin{pmatrix} a'_0 \\ a'_1 \\ \vdots \\ a'_n \end{pmatrix} = \underbrace{\begin{pmatrix} b_{00} & b_{10} & \cdots & b_{n0} \\ b_{01} & b_{11} & \cdots & b_{n1} \\ \vdots & \vdots & \vdots & \vdots \\ b_{0n} & b_{1n} & \cdots & b_{nn} \end{pmatrix}}_{C_{BB'}} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix}.$$

Cada una de las columnas de $C_{\mathcal{BB}'}$ es v_i en la base \mathcal{B}' . Podemos observar que $P = [a_0 : \cdots : a_n] = [\lambda a_0 : \cdots : \lambda a_n]$ con $\lambda \in \mathbb{K}^*$. En particular

$$\begin{pmatrix} a_0' \\ a_1' \\ \vdots \\ a_n' \end{pmatrix} = \lambda C_{\mathcal{B}\mathcal{B}'} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix}$$

también nos sirve para cambiar de coordenadas homogéneas de \mathcal{R} en \mathcal{R}' . Por tanto, no buscamos una matriz para cambiar de una referencia a otra, sino una clase de equivalencia de matrices de cambio de referencias:

$$[C_{\mathcal{R}\mathcal{R}'}] = \{ \lambda C_{\mathcal{B}\mathcal{B}'} : \lambda \in \mathbb{K}^* \}.$$

Ejemplo. Consideremos las refernecias

$$\mathcal{R} = \{[1:0:0], [0:1:0], [0:0:1]; [1:1:1]\}.$$

$$\mathcal{R}' = \{[1:1:0], [-1:1:0], [1:0:1]; [1:-2:1]\}.$$

Calculemos las posibles matrices de cambio de referencia. Tenemos que $\mathcal{B} = \{(1,0,0), (0,1,0), (0,0,1)\}$ es la base asociada a \mathcal{R} . Calculemos la base asociada a \mathcal{R}' . Cogemos $v_0 = (1,1,0), v_1 = (-1,1,0)$ y $v_2 = (1,0,1)$. Tenemos que

$$\begin{vmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = 2.$$

Así, $\{v_0, v_1, v_2\}$ son linealmente independientes. Encontremos $\alpha, \beta, \gamma \in \mathbb{K}$ tales que

$$\alpha v_0 + \beta v_1 + \gamma v_2 = (1, -2, 1)$$
.

Nos queda el sistema

$$\begin{cases} \alpha - \beta + \gamma = 1 \\ \alpha + \beta = 2 \\ \gamma = 1 \end{cases} \Rightarrow \alpha = \beta = -1, \ \gamma = 1.$$

Así, tenemos que $\mathcal{B}' = \{(-1, -1, 0), (1, -1, 0), (1, 0, 1)\}$. Para encontrar $[C_{\mathcal{R}\mathcal{R}'}]$ buscamos

$$C_{\mathcal{B}\mathcal{B}'} = (C_{\mathcal{B}'\mathcal{B}})^{-1} = \begin{pmatrix} -1 & 1 & 1\\ -1 & -1 & 0\\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2}\\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2}\\ 0 & 0 & 1 \end{pmatrix}.$$

Así, nos queda que

$$[C_{\mathcal{R}\mathcal{R}'}] = \begin{bmatrix} \begin{pmatrix} -\lambda & -\lambda & \lambda \\ \lambda & -\lambda & -\lambda \\ 0 & 0 & 2\lambda \end{pmatrix} : \lambda \in \mathbb{K}^* \end{bmatrix}.$$

Observación. En los tres tipos de referencia tenemos que $C_{\mathcal{R}\mathcal{R}'}^{-1} = C_{\mathcal{R}'\mathcal{R}}$. También es cierto que $C_{\mathcal{R}'\mathcal{R}''}C_{\mathcal{R}\mathcal{R}'} = C_{\mathcal{R}\mathcal{R}''}$. Esto último es útil porque, en general, es más sencillo calcular $C_{\mathcal{R}\mathcal{E}}$, donde \mathcal{E} es la base canónica. Así, para cambiar de \mathcal{R} a \mathcal{R}' podemos hacer

$$C_{\mathcal{R}\mathcal{R}'} = C_{\mathcal{R}'\mathcal{E}}^{-1} C_{\mathcal{R}\mathcal{E}}.$$

2.2. Aplicaciones afines

Definición 2.10 (Aplicación afín). Sean \mathbb{A} y \mathbb{A}' espacios afines. Una aplicación afín es una función $f: \mathbb{A} \to \mathbb{A}'$ tal que $\forall O \in \mathbb{A}$,

$$\vec{f}_O: \vec{\mathbb{A}} \to \vec{\mathbb{A}'}: \overrightarrow{OA} \to \overrightarrow{f(O) f(A)}$$

es lineal. Si f es biyectiva, diremos que f es una **afinidad**.

Proposición 2.4. Sea $f: \mathbb{A} \to \mathbb{A}'$ una función. Son equivalentes:

(i)
$$\forall O \in \mathbb{A}, \ \vec{f}_O : \vec{\mathbb{A}} \to \vec{\mathbb{A}} : A \to \vec{f}_O \left(\overrightarrow{OA} \right) = \overrightarrow{f(O) f(A)} \text{ es lineal.}$$

(ii) Si
$$\sum \lambda_i = 1$$
, $f\left(\sum_{i=0}^r \lambda_i P_i\right) = \sum_{i=0}^r \lambda_i f\left(P_i\right)$.

$$f(O) + \vec{f_O}\left(\overrightarrow{O\sum \lambda_i P_i}\right) = f\left(\sum \lambda_i P_i\right).$$

Así, tenemos que

$$f\left(\sum_{i=0}^{r} \lambda_{i} P_{i}\right) = f\left(O\right) + \vec{f}_{O}\left(\overrightarrow{O} \sum_{i=0}^{r} \lambda_{i} P_{i}\right) = f\left(O\right) + \vec{f}_{O}\left(\sum_{i=0}^{r} \lambda_{i} \overrightarrow{OP_{0}}\right).$$

Esta última igualdad se debe a que

$$\overrightarrow{O} \sum_{i=0}^{r} \lambda_{i} \overrightarrow{P_{i}} = \overrightarrow{O} \left(\overrightarrow{P_{0}} + \sum_{i=0}^{r} \lambda_{i} \overrightarrow{P_{0}} \overrightarrow{P_{i}} \right) = \overrightarrow{OP_{0}} + \sum_{i=0}^{r} \lambda_{i} \overrightarrow{P_{0}} \overrightarrow{P_{i}}$$

$$= \sum_{i=0}^{r} \overrightarrow{OP_{0}} + \sum_{i=0}^{r} \lambda_{i} \overrightarrow{P_{0}} \overrightarrow{P_{i}} = \sum_{i=0}^{r} \lambda_{i} \left(\overrightarrow{OP_{0}} + \overrightarrow{P_{0}} \overrightarrow{P_{i}} \right).$$

Aplicando que \vec{f}_O es lineal, si volvemos a nuestro cálculo inicial tomando $\lambda_{-1}=0$ y $f\left(P_{-1}\right)=O,$

$$= f\left(O\right) + \sum_{i=0}^{r} \lambda_{i} \overrightarrow{f_{O}}\left(\overrightarrow{OP_{i}}\right) = f\left(O\right) + \sum_{i=0}^{r} \lambda_{i} \overrightarrow{f\left(O\right)} f\left(\overrightarrow{P_{i}}\right) = \sum_{i=-1}^{r} \lambda_{i} f\left(P_{i}\right) = \sum_{i=0}^{r} \lambda_{i} f\left(P_{i}\right).$$

(ii) Sean $v_1, v_2 \in \vec{\mathbb{A}}$ y $\lambda_1, \lambda_2 \in \mathbb{K}$. Supongamos que $v_1 = \overrightarrow{OA}$ y $v_2 = \overrightarrow{OB}$. Tenemos que

$$\vec{f_O}(\lambda_1 v_1 + \lambda_2 v_2) = \vec{f_O}\left(\lambda_1 \overrightarrow{OA} + \lambda_2 \overrightarrow{OB}\right) = \overrightarrow{f(O)} f\left(O + \lambda_1 \overrightarrow{OA} + \lambda_2 \overrightarrow{OB}\right)$$

$$= \overrightarrow{f(O)} f\left((1 - \lambda_1 - \lambda_2) O + \lambda_1 A + \lambda_2 \overrightarrow{B}\right)$$

$$= \overrightarrow{f(O)} \left((1 - \lambda_1 - \lambda_2) f\left(O\right) + \lambda_1 f\left(A\right) + \lambda_2 f\left(B\right)\right)$$

$$= \overrightarrow{f(O)} \left(f\left(O\right) + \lambda_1 \overrightarrow{f(O)} f\left(\overrightarrow{A}\right) + \lambda_2 \overrightarrow{f(O)} f\left(\overrightarrow{A}\right)\right)$$

$$= \lambda_1 \overrightarrow{f(O)} f\left(\overrightarrow{A}\right) + \lambda_2 \overrightarrow{f(O)} f\left(\overrightarrow{B}\right) = \lambda_1 \overrightarrow{f_O} \left(\overrightarrow{OA}\right) + \lambda_2 \overrightarrow{f_O} \left(\overrightarrow{OB}\right)$$

$$= \lambda_1 \overrightarrow{f_O} \left(v_1\right) + \lambda_2 \overrightarrow{f_O} \left(v_2\right).$$

Por tanto, \vec{f}_O es lineal.

Proposición 2.5. Sean \mathbb{A} y \mathbb{A}' dos espacios afines de dimensión n. Sean $\mathcal{R}_A = \{P_0, \dots, P_n\}$ y $\mathcal{R}'_A = \{Q_0, \dots, Q_n\}$ referencias afines de \mathbb{A} y \mathbb{A}' , respectivamente. Entonces existe una única afinidad

$$\phi: \mathbb{A} \to \mathbb{A}', \ \phi(P_i) = Q_i, \ i = 0, \dots, n.$$

Demostración. Existencia. Definimos ϕ de las siguiente forma:

$$\phi\left(\sum_{i=0}^{n} \lambda_i P_i\right) = \sum_{i=0}^{n} \lambda_i \phi\left(P_i\right) = \sum_{i=0}^{n} \lambda_i Q_i, \ \sum \lambda_i = 1.$$

Vamos a ver que esto define una aplicación lineal $\vec{\phi}_{P_0}$. Por ser \mathcal{R}_A y \mathcal{R}'_A referencias afines, tenemos que $\left\{\overrightarrow{P_0P_1},\ldots,\overrightarrow{P_0P_n}\right\}$ y $\left\{\overrightarrow{Q_0Q_1},\ldots,\overrightarrow{Q_0Q_n}\right\}$ son bases de $\vec{\mathbb{A}}$ y $\vec{\mathbb{A}}'$, respectivamente. Sea $A=(a_0,\ldots,a_n)_{\mathcal{R}_A}\in\mathbb{A}$. Así, tenemos que

$$\overrightarrow{P_0A} = a_1 \overrightarrow{P_0P_1} + \dots + a_n \overrightarrow{P_0P_n}.$$

Ahora podemos calcular

$$\vec{\phi}_{P_0}\left(\overrightarrow{P_0A}\right) = \vec{\phi}_{P_0}\left(a_1\overrightarrow{P_0P_1} + \dots + a_n\overrightarrow{P_0P_n}\right)$$

Por otro lado tenemos que esta expresión es igual a

$$\overrightarrow{\phi(P_0) \phi(A)} = \overrightarrow{\phi(P_0) \phi\left(\sum a_i P_i\right)} = \overrightarrow{Q_0 \sum a_i Q_i} = a_1 \overrightarrow{Q_0 Q_1} + \dots + a_n \overrightarrow{Q_0 Q_n}$$
$$= a_1 \overrightarrow{\phi_{P_0}} \left(\overrightarrow{P_0 P_1}\right) + \dots + a_n \overrightarrow{\phi_{P_0}} \left(\overrightarrow{P_0 P_n}\right).$$

Así, tenemos que $\vec{\phi}_{P_0}$ es lineal y ϕ es una afinidad.

Unicidad. Sea $\psi : \mathbb{A} \to \mathbb{A}'$ una afinidad tal que $\psi(P_i) = Q_i, \forall i = 0, ..., n$. Entonces, tenemos que

$$\psi\left(\sum_{i=0}^{n}\lambda_{i}P_{i}\right) = \sum_{i=0}^{n}\lambda_{i}\psi\left(P_{i}\right) = \sum_{i=0}^{n}\lambda_{i}Q_{i} = \sum_{i=0}^{n}\lambda_{i}\phi\left(P_{i}\right) = \phi\left(\sum_{i=0}^{n}\lambda_{i}P_{i}\right).$$

Como ϕ y ψ coinciden en todo punto tenemos que $\phi = \psi$.

Notación. Dados \mathbb{A} y \mathbb{A} espacios afines con referencias afines \mathcal{R}_A y \mathcal{R}'_A , respectivamente, y $f: \mathbb{A} \to \mathbb{A}'$ afín, denotamos por $M_{\mathcal{R}_A \mathcal{R}'_A}(f)$ a la matriz de la función f que cumple que

$$f\begin{pmatrix} a_0 \\ \vdots \\ a_n \end{pmatrix}_{\mathcal{R}_A'} = M_{\mathcal{R}_A \mathcal{R}_A'} \left(f \right) \begin{pmatrix} a_0 \\ \vdots \\ a_n \end{pmatrix}_{\mathcal{R}_A}.$$

Ejemplo. Sea $\phi: \mathbb{A} \to \mathbb{A}$ de dimensión 2 tal que

$$\phi(1,1) = (2,2), \ \phi(0,1) = (-1,1), \ \phi(2,-1) = (0,1).$$

Tenemos que $\mathcal{R}_A = \{(1,1),(0,1),(2,-1)\}$ y $\mathcal{R}'_A = \{(2,2),(-1,1),(0,1)\}$ son referencias afines de \mathbb{A} . Tenemos que en estas referencias

$$M_{\mathcal{R}_A \mathcal{R}'_A}(\phi) = I.$$

Calculemos la matriz de ϕ esta vez con la referencia $\mathcal{E} = \{(0,0), (1,0), (0,1)\}$, es decir, buscamos $M_{\mathcal{E}\mathcal{E}}(\phi)$. Veremos que

$$M_{\mathcal{E}\mathcal{E}}\left(\phi\right) = C_{\mathcal{R}_{A}^{\prime}\mathcal{E}}M_{\mathcal{R}_{A}\mathcal{R}_{A}^{\prime}}\left(\phi\right)C_{\mathcal{E}\mathcal{R}_{A}}.$$

Tenemos que

$$C_{\mathcal{R}_A\mathcal{E}} = \begin{pmatrix} -1 & 0 & 0 \\ 1 & 0 & 2 \\ 1 & 1 & -1 \end{pmatrix}, \ C_{\mathcal{R}'_A\mathcal{E}} = \begin{pmatrix} -3 & 1 & 0 \\ 2 & -1 & 0 \\ 2 & 1 & 1 \end{pmatrix}.$$

Así, nos queda que

$$M_{\mathcal{E}\mathcal{E}}(\phi) = \begin{pmatrix} \frac{9}{2} & \frac{1}{2} & 1\\ -\frac{7}{2} & -\frac{1}{2} & -1\\ 0 & 1 & 1 \end{pmatrix}.$$

Proposición 2.6. Sean \mathbb{A} y \mathbb{A}' espacios afines de dimensión n. Sea $\mathcal{R}_C = \{O, \mathcal{B} = \{v_1, \dots, v_n\}\}$ referencia de \mathbb{A} y $\mathcal{R}'_C = \{O', \mathcal{B}' = \{v'_1, \dots, v'_n\}\}$ referencia de \mathbb{A}' . Entonces existe una única afinidad $f: \mathbb{A} \to \mathbb{A}'$ tal que f(O) = O' y $\vec{f}(v_i) = v'_i$.

Demostración. Sean $\mathcal{R}_A = \{O, O + v_1, \dots, O + v_n\}$ y $\mathcal{R}'_A = \{O', O' + v'_1, \dots, O' + v'_n\}$ referencias afines de \mathbb{A} y \mathbb{A}' , respectivamente. Podemos poner $v_0 = v'_0 = 0$. Por la proposición

anterior, existe una única $f: \mathbb{A} \to \mathbb{A}'$ afinidad tal que $f(O + v_i) = O' + v_i'$, $i = 0, \dots, n$. De esta forma, tenemos que

$$\vec{f}(v_i) = \vec{f}\left(\overrightarrow{O(O + v_i)}\right) = \overrightarrow{f(O)} f(O + v_i) = \overrightarrow{O'(O' + v_i')} = v_i'.$$

Observación. Sabemos que

$$f: \mathbb{A} \to \mathbb{A}': O + \overrightarrow{OA} \to f(O) + \overrightarrow{f}(\overrightarrow{OA}).$$

La matriz de f en las referencias cartesianas \mathcal{R}_C y \mathcal{R}'_C cumple que

$$\begin{pmatrix} 1 \\ f\left(\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}\right)_{\mathcal{R}_C'} = M_{\mathcal{R}_C \mathcal{R}_C'} \left(f\right) \begin{pmatrix} 1 \\ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}_{\mathcal{R}_C} \right).$$

Nos queda que

$$M_{\mathcal{R}_C \mathcal{R}'_C} = \begin{pmatrix} 1 & 0 \\ f(O)_{\mathcal{R}_C} & M_{\mathcal{B}\mathcal{B}'} (\vec{f}) \end{pmatrix}.$$

Ejemplo. Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que

$$f(1,1) = (2,2), \quad f(0,1) = (-1,1), \quad f(2,-1) = (0,1).$$

Habíamos calculado $M_{\mathcal{R}_A}(f)$ donde $\mathcal{R}_A = \{(0,0),(1,0),(0,1)\}$. Ahora, buscamos $M_{\mathcal{R}_C}(f)$ en la referencia $\mathcal{R}_C = \{(0,0),\mathcal{B} = \{(1,0),(0,1)\}\}$.

Opción 1. Sea

$$\mathcal{R}_{1}=\left\{ \left(1,1\right),\mathcal{B}_{1}=\left\{ \overline{\left(1,1\right)\left(0,1\right)},\overline{\left(1,1\right)\left(2,-1\right)}\right\} \right\}=\left\{ \left(1,1\right),\mathcal{B}_{1}=\left\{ \left(-1,0\right),\left(1,-2\right)\right\} \right\}.$$

Podemos tomar otra referencia

$$\mathcal{R}_{2} = \left\{ (2,2), \mathcal{B}_{2} = \left\{ \overline{(2,2)(-1,1)}, \overline{(2,2)(0,1)} \right\} \right\} = \left\{ (2,2), \mathcal{B}_{2} = \left\{ (-3,-1), (-2,-1) \right\} \right\}.$$

Así, nos queda que

$$M_{\mathcal{R}_1 \mathcal{R}_2} \left(f \right) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Así, tenemos que

$$\begin{split} M_{\mathcal{R}_C}\left(f\right) = & C_{\mathcal{R}_2\mathcal{R}_C} M_{\mathcal{R}_1\mathcal{R}_2} C_{\mathcal{R}_C\mathcal{R}_1} \\ = & \begin{pmatrix} 1 & 0 & 0 \\ 2 & -3 & -2 \\ 2 & -1 & -1 \end{pmatrix} I \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & 0 & -2 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{7}{2} & 3 & \frac{5}{2} \\ 0 & 1 & 1 \end{pmatrix}. \end{split}$$

Opción 2. Buscamos $\vec{f}(1,0)$ y $\vec{f}(0,1)$. Tenemos que

$$\vec{f}(1,0) = \vec{f}(-(-1,0)) = -\vec{f}((1,1)(0,1)) = -\vec{f}(1,1)f(0,1)$$
$$= -(2,2)(-1,1) = (3,1).$$

De forma análoga, tenemos que

$$\begin{split} \vec{f}\left(0,1\right) = & \vec{f}\left(-\frac{1}{2}\left(-1,0\right) - \frac{1}{2}\left(1,-2\right)\right) = \vec{f}\left(-\frac{1}{2}\overline{\left(1,1\right)\left(0,1\right)} - \frac{1}{2}\overline{\left(1,1\right)\left(2,-1\right)}\right) \\ = & \frac{1}{2}\overline{f\left(1,1\right)f\left(0,1\right)} - \frac{1}{2}\overline{f\left(1,1\right)f\left(2,-1\right)} = -\frac{1}{2}\left(-3,-1\right) - \frac{1}{2}\left(-2,-1\right) \\ = & \left(\frac{5}{2},1\right). \end{split}$$

Finalmente, calculamos f(0,0):

$$f(0,0) = f((1,1) - (1,1)) = f(1,1) - \vec{f}(1,1)$$
$$= (2,2) - (3,1) - \left(\frac{5}{2},1\right) = \left(-\frac{7}{2},0\right).$$

Así, hemos obtenido la misma matriz de dos formas distintas.

Proposición 2.7. Sean $f: \mathbb{A} \to \mathbb{A}'$ y $g: \mathbb{A}' \to \mathbb{A}''$ aplicaciones afines. Entonces

- 1. $g \circ f : \mathbb{A} \to \mathbb{A}''$ es afín y $\overrightarrow{g \circ f} = \overrightarrow{g} \circ \overrightarrow{f}$.
- 2. f inyectiva $\iff \vec{f}$ inyectiva.
- 3. f sobreyectiva $\iff \vec{f}$ sobreyectiva.
- 4. Si f es biyectiva, entonces f^{-1} es afín y $\overrightarrow{f^{-1}} = \overrightarrow{f^{-1}}$.

Demostración. 1. Por ser g y f aplicaciones afines, sabemos que conserban las combinaciones afines, por lo que $g \circ f$ también conservará las combinaciones afines y será una aplicación afín. Ahora, sean $P, Q \in \mathbb{A}$ y $A = f(P), B = f(Q) \in \mathbb{A}'$. Tenemos que

$$\overrightarrow{g \circ f} \left(\overrightarrow{PQ} \right) = \overrightarrow{\left(g \circ f \right) \left(P \right) \left(g \circ f \right) \left(Q \right)} = \overrightarrow{g \left(A \right) g \left(B \right)} = \overrightarrow{g} \left(\overrightarrow{AB} \right) = \overrightarrow{g} \left(\overrightarrow{f \left(P \right) f \left(Q \right)} \right)$$

$$= \overrightarrow{g} \left(\overrightarrow{f} \left(\overrightarrow{PQ} \right) \right) = \overrightarrow{g} \circ \overrightarrow{f} \left(\overrightarrow{PQ} \right).$$

- 2. Tenemos que f es inyectiva si y solo si $f(P) \neq f(Q)$ cuando $P \neq Q$, es decir, si $\overrightarrow{f}(\overrightarrow{PQ}) = \overrightarrow{f(P) f(Q)} \neq 0$ cuando $\overrightarrow{PQ} \neq 0$, es decir, cuando \overrightarrow{f} sea inyectiva.
- 3. Supongamos que f es sobreyectiva. Dado $v \in \vec{\mathbb{A}'}$, sean $P, Q \in \mathbb{A'}$ tales que $v = \overrightarrow{PQ}$. Sean $A, B \in \mathbb{A}$ tales que f(A) = P y f(B) = Q. Así, tenemos que

$$\overrightarrow{f}\left(\overrightarrow{AB}\right) = \overrightarrow{f\left(A\right)} \, f\left(\overrightarrow{B}\right) = \overrightarrow{PQ} = v.$$

Por tanto, \vec{f} es sobreyectiva. Ahora, supongamos que \vec{f} es sobreyectiva y sea $P \in \mathbb{A}'$. Fijamos $O \in \mathbb{A}$ y como $\overrightarrow{f(O)P} \in \mathbb{A}'$, existe $u \in \mathbb{A}$ tal que $\overrightarrow{f}(u) = \overrightarrow{f(O)P}$. Entonces, tenemos que si cogemos B = O + u, entonces f(B) = P. En efecto,

$$f(B) = f(O+u) = f(O) + \overrightarrow{f(u)} = f(O) + \overrightarrow{f(O)P} = P.$$

Así, hemos visto que f es sobrevectiva.

4. Veamos que f^{-1} conserva las combinaciones afines. Dados $Q_1, \ldots, Q_r \in \mathbb{A}'$ y $\lambda_0, \ldots, \lambda_r \in \mathbb{K}$ con $\sum_{i=0}^r \lambda_i = 1$, sea $P_i = f^{-1}(Q_i)$. Como f es afín tenemos que

$$\sum_{i=0}^{r} \lambda_i f^{-1}(Q_i) = \sum_{i=0}^{r} \lambda_i P_i = f^{-1} \left(f\left(\sum_{i=0}^{r} \lambda_i P_i\right) \right)$$
$$= f^{-1} \left(\sum_{i=0}^{r} \lambda_i f(P_i)\right) = f^{-1} \left(\sum_{i=0}^{r} \lambda_i Q_i\right).$$

Por tanto, tenemos que f^{-1} también es afín. Usando (1) deducimos que

$$id_{\vec{\mathbb{A}'}} = \overrightarrow{f \circ f^{-1}} = \overrightarrow{f} \circ \overrightarrow{f^{-1}} \quad \text{y} \quad id_{\vec{\mathbb{A}'}} = \overrightarrow{f^{-1}} \circ \overrightarrow{f} = \overrightarrow{f^{-1}} \circ \overrightarrow{f}.$$

Por tanto, tenemos que $\overrightarrow{f^{-1}} = \overrightarrow{f}^{-1}$.

Proposición 2.8. Sea $\mathcal{R} = \{P_0, \dots, P_n; P_{n+1}\}$ una referencia proyectiva de $\mathbb{P}(V)$. Sea $\mathcal{B} = \{v_0, \dots, v_n\}$ asociada y sea $f: V \to \mathbb{K}$ lineal tal que $f(v_i) \neq 0, \forall i = 0, \dots, n$. Entonces $\mathcal{R}_A = \{P_0, \dots, P_n\}$ es una referencia afín de $\mathbb{P}(V) / \mathbb{P}(\text{Ker}(f))$.

Demostración. Como $P_i = [v_i]$ para i = 0, ..., n y $f(v_i) \neq 0$, tenemos que $P_i \in \mathbb{P}(V) / \mathbb{P}(\text{Ker}(f))$. Veamos que $\{\overrightarrow{P_0P_1}, ..., \overrightarrow{P_0P_n}\}$ es una base de Ker(f). Basta ver que son linealmente independientes puesto que dim Ker(f) = n. Recordamos que

$$\overrightarrow{P_0P_i} = \frac{v_i}{f(v_i)} - \frac{v_0}{f(v_0)}, \ \forall i = 1, \dots, n.$$

Así, tenemos que

$$0 = \alpha_1 \overrightarrow{P_0 P_1} + \dots + \alpha_n \overrightarrow{P_0 P_n} = \alpha_1 \left(\frac{v_1}{f(v_1)} - \frac{v_0}{f(v_0)} \right) + \dots + \alpha_n \left(\frac{v_n}{f(v_n)} - \frac{v_0}{f(v_0)} \right).$$

De donde se deduce que

$$\sum \alpha_{i} \frac{v_{0}}{f(v_{0})} = \alpha_{1} \frac{v_{1}}{f(v_{1})} + \dots + \alpha_{n} \frac{v_{n}}{f(v_{n})}.$$

Como $\{v_0,\ldots,v_n\}$ son linealmente independientes, tenemos que $\alpha_i=0,\,\forall i=0,\ldots,n.$ Por tanto, $\{\overrightarrow{P_0P_1},\ldots,\overrightarrow{P_0P_n}\}$ son linealmente independientes.

Proposición 2.9. Sea \mathbb{A} un espacio afín sobre \mathbb{K} de dimensión n. Sea $\mathcal{R}_A = \{Q_0, \dots, Q_n\}$ una referencia afín y sea $\mathbb{P}(V)$ un espacio proyectivo de \mathbb{K} de dimensión n con $\mathcal{R} = \{P_0, \dots, P_n; P_{n+1}\}$ una referencia proyectiva con base asociada $\mathcal{B} = \{v_0, \dots, v_n\}$. Si $f: V \to \mathbb{K}$ es lineal tal que $f(v_i) \neq 0$, $\forall i = 0, \dots, n$ tal que $P_i = [v_i]$, entonces

$$\phi: \mathbb{A} \to \mathbb{P}(V) / \mathbb{P}(\operatorname{Ker}(f))$$
$$(a_0, \dots, a_n)_{\mathcal{R}_A} \to \left[\frac{a_0}{f(v_0)} : \dots : \frac{a_n}{f(v_n)}\right],$$

es una afinidad que cumple $\phi(Q_i) = P_i, \forall i = 0, \dots, n$.

Demostración. En la situación de la proposición tenemos que $\mathcal{R}'_A = \{P_0, \dots, P_n\}$ es referencia afín de $\mathbb{A}' = \mathbb{P}(V)/\mathbb{P}(\operatorname{Ker}(f))$. Por tanto, existe una única afinidad $\phi : \mathbb{A} \to \mathbb{A}' : Q_i \to P_i$. Sea $P = (a_0, \dots, a_n)_{\mathcal{R}'_A}$, entonces $P = P_0 + \sum_{i=1}^n a_i \overrightarrow{P_0 P_i}$. Así, tenemos que $P = [a_0 : \dots : a_n]$ si y solo si $P = [a_0 v_0 + \dots + a_n v_n]$. Si $P \in \mathbb{P}(V)/\mathbb{P}(\operatorname{Ker}(f))$, entonces $f(a_0 v_0 + \dots + a_n v_n) \neq 0$. Así, nos queda que

$$P = [v_0] + a_1 \left(\frac{v_1}{f(v_1)} - \frac{v_0}{f(v_0)}\right) + \dots + a_n \left(\frac{v_n}{f(v_n)} - \frac{v_0}{f(v_0)}\right)$$

$$= \left[\frac{v_0}{f(v_0)} + a_1 \left(\frac{v_1}{f(v_1)} - \frac{v_0}{f(v_0)}\right) + \dots + a_n \left(\frac{v_n}{f(v_n)} - \frac{v_0}{f(v_0)}\right)\right]$$

$$= \left[\left(1 - \sum_{i=1}^n a_i\right) \frac{v_0}{f(v_0)} + a_1 \frac{v_1}{f(v_1)} + \dots + a_n \frac{v_n}{f(v_n)}\right]$$

$$= \left[a_0 \frac{v_0}{f(v_0)} + \dots + a_n \frac{v_n}{f(v_n)}\right] = \left[\frac{a_0}{f(v_0)} : \frac{a_1}{f(v_1)} : \dots : \frac{a_n}{f(v_n)}\right]_{\mathcal{R}}.$$

2.3. Aplicaciones proyectivas

Escribimos $f:A\to B$ para denotar a una función definida sobre un subconjunto de A.

Definición 2.11 (Aplicación proyectiva). Una aplicación proyectiva $f: \mathbb{P}(V) \to \mathbb{P}(V')$ es una función asociada a una función lineal $\hat{f}: V \to V$ de tal forma que $[\hat{f}(v)] = f([v])$. La aplicación f no está definida sobre $\mathbb{P}\left(\operatorname{Ker}\left(\hat{f}\right)\right)$. A este conjunto lo llamamos el **centro** de f y lo denotamos Z(f).

Observación. Podemos ver que la definición de aplicación proyectiva está bien definida puesto que

$$f\left(\left[\lambda v\right]\right) = \left[\hat{f}\left(\lambda v\right)\right] = \left[\lambda \hat{f}\left(v\right)\right] = \left[\hat{f}\left(v\right)\right].$$

Observación. Tenemos que realmente f es de la forma $f: \mathbb{P}(V)/Z(f) \to \mathbb{P}(V')$. Si $Z(f) = \emptyset$, es decir, $\operatorname{Ker}(\hat{f}) = \{0\}$, entonces escribimos $f: \mathbb{P}(V) \to \mathbb{P}(V')$. Si además \hat{f} es un isomorfismo, decimos que f es una **homografía**.

Proposición 2.10. Sea $f: \mathbb{P}(V) \to \mathbb{P}(V')$ una aplicación proyectiva. Si $\hat{f}, \hat{g}: V \to V'$ cumplen que $\left[\hat{f}(v)\right] = \left[\hat{g}(v)\right] = f\left([v]\right), \, \forall [v] \in \mathbb{P}(V) / Z(f)$, entonces existe $\lambda \in \mathbb{K}^*$ tal que $\hat{f} = \lambda \hat{g}$.

Demostración. Tenemos que f está bien definida en $\mathbb{P}\left(V\right)/\mathbb{P}\left(\operatorname{Ker}\left(\hat{f}\right)\right) = \mathbb{P}\left(V\right)/\mathbb{P}\left(\operatorname{Ker}\left(\hat{g}\right)\right)$. Por tanto, $\mathbb{P}\left(\operatorname{Ker}\left(\hat{f}\right)\right) = \mathbb{P}\left(\operatorname{Ker}\left(\hat{g}\right)\right)$ y en consecuencia $\operatorname{Ker}\left(\hat{f}\right) = \operatorname{Ker}\left(\hat{g}\right)$. Ponemos $\hat{Z} = \operatorname{Ker}\hat{f}$. Buscamos un complemento de \hat{Z} tal que $V = \hat{Z} \oplus W$. Si $v \in V$, $\exists ! z \in \hat{Z}, w \in W$ tales que v = z + w. Así, tenemos que

$$\hat{f}(v) = \hat{f}(z+w) = \hat{f}(z) + \hat{f}(w) = \hat{f}(w).$$

Análogamente, $\hat{g}(v) = \hat{g}(w)$. Así, tenemos que

$$f([v]) = [\hat{f}(v)] = [\hat{f}(w)] = [\hat{g}(v)] = [\hat{g}(w)],$$

por lo que existe $\lambda_w \in \mathbb{K}^*$ tal que $\hat{f}(w) = \lambda_w \hat{g}(w)$. Necesitamos probar que $\forall w_1, w_2 \in W$ se tiene que $\lambda_{w_1} = \lambda_{w_2}$. Consideremos

$$\hat{f}(w_1 + w_2) = \lambda_{w_1 + w_2} \hat{g}(w_1 + w_2) = \lambda_{w_1 + w_2} \hat{g}(w_1) + \lambda_{w_1 + w_2} \hat{g}(w_2) = \lambda_{w_1} \hat{g}(w_1) + \lambda_{w_2} \hat{g}(w_2).$$

Si $\{\hat{g}(w_1), \hat{g}(w_2)\}$ son linealmente independientes, está claro que $\lambda_{w_1+w_2} = \lambda_{w_1} = \lambda_{w_2}$. Supongamos ahora que son linealmente dependientes, es decir, $\hat{g}(w_1) = \mu \hat{g}(w_2)$ para $\mu \in \mathbb{K}^*$ (para que $\mu \neq 0$ debemos tomar $w_1, w_2 \neq 0$). Sabemos que $\hat{g}(w_1), \hat{g}(w_2) \neq 0$. Así, nos queda que

$$\hat{q}(w_1 - \mu w_2) = 0 \iff w_1 - \mu w_2 \in \hat{Z} \cap W \iff w_1 = \mu w_2.$$

Así, está claro que

$$\hat{f}(w_1 + w_2) = (1 + \mu) \,\hat{f}(w_2) = (1 + \mu) \,\lambda_{w_2} \hat{g}(w_2) = \mu \lambda_{w_1} \hat{g}(w_2) + \lambda_{w_2} \hat{g}(w_2).$$

De aquí obtenemos que

$$\mu \lambda_{w_2} \hat{g}\left(w_2\right) = \mu \lambda_{w_1} \hat{g}\left(w_2\right).$$

Como $\mu \neq 0$, tenemos que $\lambda_{w_1} = \lambda_{w_2}$. Por tanto, existe $\lambda \in \mathbb{K}^*$ tal que $\forall w \in W$ se tiene que $\hat{f}(w) = \lambda \hat{g}(w)$. Así, si $v \in V$, tenemos que

$$\hat{f}(v) = \hat{f}(w) = \lambda \hat{g}(w) = \lambda \hat{g}(v)$$
.

Proposición 2.11. Sean $\mathbb{P}(V)$ y $\mathbb{P}(V')$ espacios proyectivos de dimensión n sobre \mathbb{K} . Sea $\mathcal{R} = \{P_0, \dots, P_n; P_{n+1}\}$ y $\mathcal{R}' = \{P'_0, \dots, P'_n; P'_{n+1}\}$ referencias proyectivas de $\mathbb{P}(V)$ y $\mathbb{P}(V')$ respectivamente. Entonces, existe una única homografía $f : \mathbb{P}(V) \to \mathbb{P}(V')$ tal que $f(P_i) = P'_i$.

Demostración. Sea $\mathcal{B} = \{v_0, \dots, v_n\}$ una base asociada a \mathcal{R} y $\mathcal{B}' = \{v'_0, \dots, v'_n\}$ una base asociada a \mathcal{R}' .

Existencia. Tomamos $\hat{f}: V \to V'$ tal que $\hat{f}(v_i) = v_i'$, por lo que \hat{f} es un isomorfismo. En particular, $\operatorname{Ker} \hat{f} = \{0\}$. Como $\dim \mathbb{P}(V) = \dim \mathbb{P}(V')$ tenemos que \hat{f} induce una homografía. Así, podemos tomar

$$f(P_i) = f([v_i]) = [\hat{f}(v_i)] = [v'_i] = P'_i.$$

Además, tenemos que

$$f(P_{n+1}) = f([v_0 + \dots + v_n]) = [\hat{f}(v_0 + \dots + v_n)] = [v'_0 + \dots + v'_n] = P'_{n+1}.$$

Unicidad. Sea $h : \mathbb{P}(V) \to \mathbb{P}(V')$ una homografía tal que $h(P_i) = P'_i$ con i = 0, ..., n + 1. Sea $\hat{h} : V \to V'$ la aplicación lineal que induce h. Tenemos que

$$h(P_i) = f(P_i) \Rightarrow [\hat{h}(v_i)] = [\hat{f}(v_i)].$$

Así, tenemos que $\hat{h}(v_i) = \lambda_i v_i'$ y $\hat{h}(v_0 + \dots + v_n) = \lambda(v_0' + \dots + v_n')$. De esta manera, obtenemos que

$$\lambda \left(v_0' + \dots + v_n' \right) = \lambda_0 v_0' + \dots + \lambda_n v_n'.$$

Como \mathcal{B}' es una base tenemos que $\lambda_0 = \cdots = \lambda_n = \lambda$, así tenemos que $\hat{h}(v_i) = \lambda v_i' = \lambda \hat{f}(v_i)$, por lo que $\hat{h} = \lambda \hat{f}$ y h = f.

Ejemplo. En $\mathbb{RP}^1 := \mathbb{P}(\mathbb{R}^2)$ consideremos

$$f: \mathbb{RP}^1 \to \mathbb{RP}^1 : [x_0 : x_1] \to [x_0 : 2x_1]$$

 $g: \mathbb{RP}^1 \to \mathbb{RP}^1 : [x_0 : x_1] \to [2x_0 : x_1].$

Tenemos que f([1:0]) = [1:0] y g([1:0]) = [2:0], por lo que f([1:0]) = g([1:0]). Análogamente, podemos ver que f([0,1]) = [0:2] = [0:1] = g([0:1]). Sin embargo, como $f([1:1]) = [1:2] \neq [2:1] = g([1:1])$ no puede tratarse de una homografía. Es decir, para poder decir que f y g son iguales debemos encontrar tres puntos que formen una referencia proyectiva y cuyas imágenes cuadren. Sin embargo una afinidad de $\mathbb{R} \to \mathbb{R}$ está determinada por dos puntos.

Observación. Si $f: \mathbb{P}(V) \to \mathbb{P}(V')$ es una aplicación proyectiva, \mathcal{R} y \mathcal{R}' son referencias proyectivas de $\mathbb{P}(V)$ y $\mathbb{P}(V')$, respectivamente, con bases asociadas \mathcal{B} y \mathcal{B}' , existe una aplicación lineal $\hat{f}: V \to V'$ tal que $f([v]) = [\hat{f}(v)]$. Entonces, tenemos que la matriz que representa a la aplicación f será la clase de equivalencia

$$\left[M_{\mathcal{R}\mathcal{R}'}\left(f\right) \right] = \left\{ \lambda M_{\mathcal{B}\mathcal{B}}\left(\hat{f}\right) \; : \; \lambda \in \mathbb{K}^* \right\}.$$

Tenemos que

$$f((x_1,\ldots,x_n)_{\mathcal{R}}) = M_{\mathcal{B}\mathcal{B}'}\left(\hat{f}\right) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = M_{\mathcal{R}\mathcal{R}'}\left(f\right) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Ejemplo. Consideremos los siguientes puntos en $\mathbb{P}(\mathbb{R}^3)$:

$$P_0 = [1:0:0], \quad P_1 = [1:-2:1], \quad P_2 = [0:2:1], \quad P_3 = [1:-2:0].$$

$$Q_0 = [1:-1:0], \quad Q_1 = [1:0:1], \quad Q_2 = [1:-1:1], \quad Q_3 = [1:0:0].$$

Nos preguntamos si existe una aplicación proyectiva $f: \mathbb{P}(\mathbb{R}^3) \to \mathbb{P}(\mathbb{R}^3)$ tal que $f(P_i) = Q_i$ y calcular f en la referencia estandar

$$\mathcal{E} = \{ [1:0:0], [0:1:0], [0:0:1]; [1:1:1] \}.$$

Comprobemos que se $\mathcal{R} = \{P_i : 0 \le i \le 3\}$ es una referencia proyectiva. Tenemos que

$$\begin{vmatrix} 1 & 1 & 0 \\ 0 & -2 & 2 \\ 0 & 1 & 1 \end{vmatrix} = -4 \neq 0.$$

Así, son independientes. Por otro lado, tenemos que

$$(1,-2,0) = \alpha(1,0,0) + \beta(1,-2,1) + \gamma(0,2,1)$$
.

Obtenemos que $\alpha = \frac{1}{2}$, $\beta = \frac{1}{2}$ y $\gamma = -\frac{1}{2}$. Como ninguno es nulo, tenemos que \mathcal{R} es una referencia proyectiva que tiene de base asociada

$$\mathcal{B} = \{(1,0,0), (1,-2,1), (0,-2,-1)\}.$$

Hacemos lo mismo para ver que $\mathcal{R}' = \{Q_i : 0 \le i \le 3\}$ es una referencia proyectiva y calculamos que su base asociada es

$$\mathcal{B}' = \{(1, -1, 0), (1, 0, 1), (-1, 1, -1)\}.$$

Por la última proposición, existe la f que buscamos y es única por mandar de una referencia a otra. Así, podemos definir la aplicación lineal asociada como

$$\hat{f}(1,0,0) = (1,-1,0), \quad \hat{f}(1,-2,1) = (0,-2,-1), \quad \hat{f}(0,-2,-1) = (-1,1,-1).$$

De aquí es fácil deducir el valor de \hat{f} en la referencia canónica calculando como actúa \hat{f} sobre la base canónica o con matrices. Lo hacemos por matrices. Tenemos que $M_{\mathcal{BB'}}(\hat{f}) = I$. Así, tenemos que

$$M_{\mathcal{E}\mathcal{E}}\left(\hat{f}\right) = C_{\mathcal{B}'\mathcal{E}}M_{\mathcal{B}\mathcal{B}'}\left(\hat{f}\right)C_{\mathcal{E}\mathcal{B}}.$$

Donde tenemos que

$$C_{\mathcal{E}\mathcal{B}} = C_{\mathcal{B}\mathcal{E}}^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -2 & -2 \\ 0 & 1 & -1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & \frac{1}{4} & -\frac{1}{2} \\ 0 & -\frac{1}{4} & \frac{1}{2} \\ 0 & -\frac{1}{4} & -\frac{1}{2} \end{pmatrix}, C_{\mathcal{B}'\mathcal{E}} = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}.$$

Como estamos en el caso proyectivo, tenemos que lo que nos importa son las clases de equivalencia de las matrices, no los representantes, por lo que podemos tomar

$$C_{\mathcal{EB}} = \begin{pmatrix} 4 & 1 & -2 \\ 0 & -1 & 2 \\ 0 & -1 & -2 \end{pmatrix}.$$

Así, nos queda

$$M_{\mathcal{E}\mathcal{E}}(f) = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 4 & 1 & -2 \\ 0 & -1 & 2 \\ 0 & -1 & -2 \end{pmatrix} = \begin{pmatrix} 4 & 1 & 1 \\ -4 & -2 & 0 \\ 0 & 0 & 4 \end{pmatrix}.$$

En la igualdad anterior estamos igualando clases de equivalencia, no ponemos los corchetes por estética. Así, tendríamos que la expresión analítica de f es

$$f([x_0:x_1:x_2]) = [4x_0 + x_1 + x_2: -4x_0 - 2x_1: 4x_2].$$