MAT02023 - Inferência A

Lista 7 - Consistência e Eficiência

Exercício 1 Seja X_1, \ldots, X_n uma amostra aleatória de $X \sim Poisson(\lambda)$. Considere que queremos estimar $\tau(\theta) = P(X = 0) = e^{-\theta}$. Defina a estatística $S(\mathbf{X}) = \sum_{i=1}^{n} X_i$ e o estimador W tal que

$$W(\mathbf{X}) = \begin{cases} 1, \text{ se } X_1 = 0 \text{ ou} \\ 0, \text{ caso contrário.} \end{cases}$$

Encontre um estimador melhor do que W baseado em S.

Exercício 2 Prove o Teorema de Rao-Blackwell, que diz: se W(X) é um estimador não viesado para $\tau(\theta)$, então $\widehat{\theta} = E(W|S)$ é não viesado para $\tau(\theta)$ e $Var(\widehat{\theta}) \leq Var(W)$.

Exercício 3 Para os dados do exercício 1 acima, utilize o teorema de Lehmann-Scheffé para mostrar que \overline{X} é ENVVUM para λ .

Exercício 4 Prove que consistência forte de estimadores implica em consistência fraca.

Exercício 5 Mostre que se $\lim_{n\to\infty} Var[W_n(\boldsymbol{X})] = 0$ e $\lim_{n\to\infty} Vi\acute{e}s[W_n(\boldsymbol{X})] = 0 \Rightarrow W_n(\boldsymbol{X})$ é consistente.

Exercício 6 Seja X_1, X_2, \dots, X_n uma amostra aleatória, onde $X_j \sim Uniforme(0, \theta)$, para todo $j = 1, \dots, n, \theta \in \Theta = (0, \infty)$.

- a) Seja $X_{(n)}=\max(X_1,\cdots,X_n)$. Mostre que $X_{(n)}$ é um estimador consistente fraco para θ ;
- b) Considere $Y_n = 2\overline{X}$. Verifique se Y_n é consistente para θ .

Exercício 7 Seja X_1, X_2, \dots, X_n uma amostra aleatória, onde $X_j \sim Uniforme(0, \theta)$, para $j = 1, \dots, n$. Mostre que $W(\boldsymbol{X}) = \left(\prod_{j=1}^n X_j\right)^{\frac{1}{n}}$ é um estimador consistente para θe^{-1} . Dica: Use $W^*(\boldsymbol{X}) = \log(W(\boldsymbol{X}))$ e a Lei Fraca dos Grandes Números.

Exercício 8 Seja X_1, X_2, \dots, X_n uma amostra aleatória, onde X_j , para $j = 1, \dots, n$, possui função densidade de probabilidade dada pela expressão abaixo

$$f_X(x) = (1 - \theta) + \frac{\theta}{2\sqrt{x}} x^{\theta - 1} I_{[0,1]}(x),$$

onde $\theta \in [0,1]$.

- a) Mostre que \overline{X} é um, estimador viciado para θ e calcule o seu vício;
- b) Verifique se \overline{X} é um estimador assintoticamente não viciado para θ ;
- c) Verique se \overline{X} é um estimador consistente para θ .

Exercício 9 Seja X_1, X_2, \ldots, X_n uma amostra aleatória, onde $E(X_j) = \mu$ e $Var(X_j) = \sigma^2$, para todo $j = 1, \ldots, n, \sigma^2$ finita. Verifique se \overline{X} and S^2 são estimadores consistentes de, respectivamente, μ e σ^2 .

Dica: Seja X_1, X_2, \dots, X_n é uma a.a., onde cada X_j possui função densidade de probabilidade $f_X(\cdot)$ e $\mathbb{E}|X_j|^p < \infty$, para algum inteiro positivo p e $j = 1, \dots, n$. Então, para $1 \le k \le p$,

$$\frac{1}{n}\sum_{j=1}^{n}X_{j}^{k}\longrightarrow \mathbb{E}(X^{k}).$$

Exercício 10 Explique o significado de:

- a) Viés, ou vício de um estimador;
- b) Eficiência;
- c) ENVVUM;
- d) Desigualdade de Crámer-Rao;
- e) Consistência forte;
- f) Consistência fraca;
- g) Estimador assintóticamente não viesado;
- h) Eficiência assintótica;

Exercício 11 Comente o que significa, para a inferência pontual, o teorema de Rao-Blacwell.

Exercício 12 Qual a utilidade do Teorema de Lehmann-Scheffé?

Exercício 13 Suponha que $X_1; \ldots, X_n$ é uma amostra aleatória da distribuição Normal com média desconhecida $\theta \neq 0$ e variância conhecida σ^2 . Utilize o Método Delta para determinar a distribuição assintótica de \overline{X}^3 .

Exercício 14 Suponha que X_1, \ldots, X_n é uma amostra aleatória da distribuição Exponencial com parâmetro β . A densidade de probabilidade é dada por $f(x|\beta) = \beta \exp\{-\beta x\}I_{(0,\infty)}(x)$,

- a) Encontre $\hat{\beta}_n$, o estimador de máxima verossimilhança para β .
- b) Se n é grande, a distribuição de $\hat{\beta}_n$ será aproximadamente Normal com média β . Mostre que a variância desta distribuição Normal será β^2/n .
- c) Use o Método Delta para encontrar a distribuição assintótica de $1/\hat{\beta}_n$.
- d) Mostre que $1/\hat{\beta}_n = \overline{X}$ e utilize o Teorema Central do Limite para determinar a distribuição assintótica de $\hat{\beta}_n$.

Exercício 15 Seja Y_n uma variável aleatória com distribuição χ_n^2 . É possível mostrar que quando o tamanho amostral n é grande, a formulação $(Y_n - n)/\sqrt{2n}$ terá aproximadamente distribuição Normal (0,1).

a) Mostre que
$$\frac{(Y_n - n)}{\sqrt{2n}} = \sqrt{n} \left(\frac{Y_n}{n\sqrt{2}} - \frac{1}{\sqrt{2}} \right)$$
.

- b) Considere o estimador $W_n(X) = \frac{Y_n}{n\sqrt{2}}$. Qual a distribuição assintótica de W_n .
- c) Considere a função $g(u) = \sqrt{u}$, consequentemente $g'(u) = 1/2\sqrt{u}$. Determine a distribuição assintótica de $g[W_n(X)]$.

Exercício 16 Seja Y_n uma variável aleatória com distribuição Poisson(n). Para uma amostra grande, temos que a distribuição de $(Y_n - n)/\sqrt{n}$ será aproximadamente N(0,1). Considere a função $g(u) = u^2$. Obtenha a distribuição assintótica de $g(Y_n/n)$. Dica: Considere resultados similares ao que foi feito nos itens (a) e (b) da Questão 14.

Exercício 17 Qual a diferença entre a Informação de Fisher Observada e a Esperada?

Exercício 18 Indique o enunciado do Teorema de Lehmann–Scheffé. Comente sobre as suposições e resultados.