<u>הוכח או הפרך: השפות הלא רגולריות סגורות לפעולות</u> <u>חיתוך.</u>

תשובה:נגרום לחיתוך של השפות להיות קבוצה ריקה או רק אפסילון.

 $L_2 = \{c^n d^n | n \in , \ L_1 = \{a^n b^n | n \in \mathbb{N}\}$ דוגמא נגדית: והשפה $L_1 \cap L_2 = \emptyset$ והשפה אינן רגולריות, אבל השפות אינן רגולריות,

$(L^*)^* = L^*$ הוכחה

 $(L^*)^* = \bigcup_{i \in \mathbb{N}} (L^*)^i$ עבור מההגדרה נובע מההגדרה $L^* \subseteq (L^*)^*$ $(A \subseteq A \cup B)$ $L^* \subseteq (L^*)^*$ נקבל כי הגדרה איחוד נקבל כי עיטרציה, $w \in (L^*)^*$ תיהי $(L^*)^* \subseteq L^*$ לפי הגדרת איטרציה. (מתקיים: ער אזקה מתקיים: ער איים איים לפי הגדרת ולכן שיים $u\in (L^*)^i$ ל אחת , $w=u_1,u_2...u_i:u_j:j\in[1,i],u_j\in L^*$ $u_j \in L^*$ היות ולכל היות היות ולכל היות ולכל מהמילים היות ולכל מהצורה מהצורה היות ולכל היות ולכל קיים k טבעי כך ש $u_j \in L^k$ אבעי כך א

 $w = t_{1_1}, t_{1_2}, \dots t_{1_{k_1}} t_{2_1} \dots t_{2_{k_2}} \dots t_{i_1} \dots t_{i_{k_i}} \in L^{k_1 + \dots k_i} \subseteq L^*$ סגירות לשרשור

<u>למה הניפוח:</u>

 $L=\{a\}^*\cup\left\{b^ia^{k^a}|j,k\in\mathbb{N}\right\}$ זשפה

 $n \in \mathbb{N}$ קיים $n \in \mathbb{N}$ כך nLב Z מילה

יטאר: Z=uvw באשר: פירוק פירוק n כאשר: $|uv| \leq n$.1 $1 \le |v| .2$

 $uv^iw \in L$ טבעי מתיים $i \geq 0$ 3.

הוכחה שהינה רגולרית:

$L = \{a^n b^m c^k d^l | 1 < n < 3, m = 2n, k \mod 3 = 1\}$

1. l mod 2 = 0

 $L = a^2 b^4 c((c^3)^*)((d^2)^*)$ פתרון ע"י ביטוי רגולרי:

$L = \{a^q b^p | p, q \text{ are prime, and } p + q < 1000\}$ הוכחה שהנה רגולרית:

השפה היא כמות ראשונים של a-ים, ולאחריה כמות ראשונית של b -ים , כך שסכום הכמויות אינו מעל 1000. לכן, השפה סופית, ולכן רגולרית. נבנה ביטוי רגולרי המכריע את השפה:

$$L = a^{2}b^{2} + a^{2}b^{3} + a^{2}b^{5} + \dots + a^{2}b^{997} + a^{3}a^{2}$$
$$+ a^{3}b^{3} + \dots + a^{3}a^{991} + \dots$$
$$+ a^{991}b^{2} + a^{991}b^{3} + a^{991}b^{5} + a^{991}b^{7}$$

$L = \{a^n b^m | n \text{ divides } m, \text{ and } m \text{ divides some } 0$ $\leq i \leq 100$

כדי ש ח יחלק את m , נדרוש $n \leq m$. התנאי ולכן , $m \leq 100$ אומר ש $m~divides~some~0 \leq i \leq 100$ גם $n \leq m$. קיבלנו שפה סופית ולכן רגולרית . תבנה לה ביטוי רגולרי:

$$\begin{split} \mathbf{L} &= \mathbf{a}(\mathbf{b})^{1\dots 100} + a^2 b^{2i(1 \le i \le 50)} + a^3 b^{3i(1 \le i \le 33)} + \dots \\ &+ a^{50} b^{50} + a^{50} b^{100} + a^i b^{i(51 \le i \le 100)} \end{split}$$

היות ובנינו אוטומט רגולרי, השפה רגולרית.

עליך להגדיר את אוטומט . $L(A)\Delta L(B)$: שבו $C = (\Sigma, Q_{\scriptscriptstyle A} \times Q_{\scriptscriptstyle B}, (q_{\scriptscriptstyle 0A}, q_{\scriptscriptstyle 0B})F, \delta)$ נגדיר

. רגולרית. $F = \{(q,p) \mid q \in F_{\scriptscriptstyle A} \ and \ p \not\in F_{\scriptscriptstyle B}\} \cup \{(q,p) \mid q \not\in F_{\scriptscriptstyle A} \ and \ p \in F_{\scriptscriptstyle B}\}$

 $\delta((q,p),\sigma)=(\delta_{\scriptscriptstyle A}(q,\sigma),\delta_{\scriptscriptstyle B}(p,\sigma)):\sigma\in\Sigma$ ולכל ו ולכל ולכל , $q\in Q_{\scriptscriptstyle B}$

נבנה אוטומט סופי (לא בהינתן אוטומט אוטומט סופי דטרמיניסטי אוטומט (בהינתן אוטומט אוטומט חופי דטרמיניסטי 1. א שפונקציית המעברים שלו מוגדרת , $B=(\{a,b\},Q,q_{_0},F,\mu)$,L דטרמיניסטי), B, המקבל את דטרמיניסטי

 $\mu(q,\sigma) = \delta(q,\sigma) : q \in Q$ לכל $\sigma \in \{a,b\}$ לכל

 $\mu(q,\varepsilon) = \delta(q,c) : q \in Q$ לכל

B-בנה את האוטומט הסופי הדטרמיניסטי C. נבנה את האוטומט הסופי

3. כבמשפט 4.9, נעבור על כל המילים מעל {a,b} שאורכן בין n ל- 2n-1 (עבור n מספר מצבי). ואם C יקבל אחת מהן נחליט שהשפה L אינסופית, אחרת נחליט שהיא סופית.

 $L = \{a^n b^m c^p | \exists g \in N \text{ so that } p = g^2 \text{ and } p\}$

\leq 100, and $n = m \pmod{p}$

במילים, זוהי שפת כל המילים מהצורה לעיל שבה n-m מתחלק ב p וגם p הוא ריבוע שלם שאינו גדול מ100. המשתנה p יכול לקבל את כל הערכים הריבועיים עד 100, כלומר:

n,m המשתנים.P={1,4,9,16,25,36,49,64,81,100} שקולים מודולו p, ולכן ניתן להכריע אותם. משום כך, נוכל לבנות ביטוי רגולרי עבור כל p כזה:

P=1: L= (a)*(b)*c

P=4: L= $((a)^4)^*((b)^4)^*c^4 + ((a)^4)^*a((b)^4)^*bc^4 +$ $((a)^4)^*a^2((b)^4)^*b^2c^4 + ((a)^4)^*a^3((b)^4)^*b^3c^4$

וכן הלאה. לכל p נוכל לבנות ביטוי רגולרי. לכן, הביטוי הרגולרי שיכריע את השפה יהיה איחוד של כולם. כלומר. לשים + בין כל הביטויים שנקבל. היות ובנינו ביטוי רגולרי עבור השפה – L הינה שפה רגולרית.

$-L = \{a^n b^m | n < m, and n + m < 500\}$

חיתוך של אינו רגולרי עם שפה סופית ולכן נשאר שפה סופית ולכן השפה רגולרית.

השפה היא כמות של a-ים, ואחריה כמות גדולה יותר של -ים, אך שתיהן ביחד לא מעל 500. לכן, השפה סופית,-b ולכן נוכל לבנות לה אס"ד (ענק) או ביטוי רגולרי (גם ארוך) שיכריע אותה:

L = $ab^2 + ab^3 + ... ab^{498} + a^2b^3 + a^2b^4 + ... a^2b^{497} + ... + a^{248}b^{249} + a^{248}b^{250} + a^{248}b^{251} + a^{249}b^{250}$ בנינו ביטוי רגולרי עבור השפה, ולכן היא רגולרית.

$L = \{a^n(a+b)^m | m \ge 0, n \text{ is a prime number}\}$ L=a²(a+b)* נבנה ביטוי רגולרי שמכריע אותה:

הסבר: נרצה לראות כמות ראשונית של a – ים בהתחלה, ים, שכן זוהי – b ו ים - a ואז לראות איזשהו המשך של , אשר m אופציה לקחת לקחת לא $(a+b)^m$ אוגבל האופציה האופציה לקחת "נוטלת את העוקץ" של הראשוניות, והופכת את השפה

<u>הוכחה ששפות רגולריות לא סגורות לאיחוד אינסופי:</u>

שרשרור של שני שפות רגולריות שנותן שפה שאינה $L_2 = \{b^n | n \in \mathbb{N}\}$ עם השפה $\mathrm{L}_1 = \{a^n | n \in \mathbb{N}\}$ רגולרית $\mathbf{L} = \{a^n b^n | n \in \mathbb{N}\}$ נקבל את השפה

השפה $L = \{a^n b^m | n < m \text{ and } n + m < 500\}.$ רגולרית. נבנה ביטוי רגלורי המוכיח את השפה: $r = ab^2 + ab^3 + \cdots \cdot ab^{498} + a^2b^3$

 $+ a^2b^4 \dots + a^2b^{497} \dots$ $+\alpha^{248}b^{249}+..\alpha^{248}b^{251}+\alpha^{249}b^{250}+\cdots+\alpha^{249}b^{250}$

<u>רגולרית L בולרית גם Lbroken-subs רגולרית L</u>

 $\in \Sigma, \exists u_1 u_2 ..., u_{n+1} \in \Sigma^*, u_1 x_1 u_2 x_2 ... u_n x_n u_{n+1} \}$ תשובה: נוכיח את הטענה. השפה L רגולרית, ולכן קיים לה אוטומט $\epsilon - \mathrm{NFA}$ המכריע אותה, עם מצב מקבל יחיד. (הוכח בהרצאות שמודל זה שקול לאס"ד רגיל) נסתכל על ניתן $L_{broken ext{-}subs}$ בין אותיות השפה q_f ל מסלול החישוב מ להכניס מילים שלמות, ולכן נוכל לקחת כל תת קבוצה של מצבים במסלול החישוב בתור אוטמט המכריע את -Lbroken את נהפוך את $\epsilon-NFA$ היות וקיים לה subs .Lbroken-subs המצבים שלקחנו למצבים מקבלים עבור

$L_{broken-sub} = \{x = x_1 x_2 \dots x_n \in \Sigma \mid n > 0 \text{ , } \forall i: x_i$

$\underline{L^{\mathrm{I}}} = 1$ קבוצת אינדקסים. עבור שפה L נגדיר $I \subseteq \mathbb{N}$ $. \cup_{i \in I} L^i$

תהי I שפה רגולרית ותהי I קבוצת . בגודל $I'=N \setminus I$ שהיא בגודל $I'=N \setminus I$ $\mathbf{L} \; \mathbf{I}'$ במונחי $\mathbf{L}^{\mathbf{I}}$ במונחי $\mathbf{I}' = \{i_1, i_2\}$ והוכח שהיא רגולרית.

לכל $I_1 \subseteq I_2 \subseteq \mathbb{N}$ אזי לכל $\mathbf{L^{I_1}}$ שפה מתקיים שאם $\mathbf{L^{I_2}}$ רגולרית אזי גם

רגולרית , בפרט היא רגולרית עבור שני אינדקסים $\mathbf{L} = \left(\mathbf{L}^{I'} \right)' = \mathbf{M}$ לכתוב את נוכל לכתוב . i_1, i_2 , היות ו L^{i1} רגולרית ($L^{I_2} \cup L^{I_1}$) $' = (L^{i_1})' \cap (L^{i_2})'$ גם המשלימה שלה רגולרית, (תכונות סגור). כנ"ל לגבי L^{l} חיתוך הוא גם תכונת סגור ולכן L^{l} רגולרית. L =ב. נפריך את הטענה על ידי דוגמא נגדית ב. $I_2 = \{2i+1|i\in\mathbb{N}\}$ תהי הקבוצה $\{a^i|i\in\mathbb{N}\}$ $I_1 = I$ (כלומר כל המספרים האי זוגיים) באופן טרוויאלי מתקיים: {all primes except 2} \mathbf{L}^{i_1} נראה כלי למרות ש \mathbf{L}^{i_2} רגולרית אזי $\mathbf{I}_1 \subseteq \mathbf{I}_2 \subseteq \mathbb{N}$ אינה רגולרית (ההוכחה עבור השפה (.a^P

Lו היות $L^{I'}=L^{I_2}\cup L^{I_1}$ היות א. נגדיר את

כ. בנה ביטוי רגולרי עבור השפה $L=\{x\in\{a,b,c\}^*\mid \text{every substring g of x of the form g=auc or g=cua contains at }$

|cast two b's במילים, אוהי שמה כל המילים, כך שבין כל אוג a ו c במחרואת (בסדר כלשהו), d חייבת להופיע פעמיים לפחות.

 $r = [(b + (c + bc)^*bb)$

 $+a(a+b(a+b^{+}a))^{*}b^{+}c(c+bc)^{*}bb]^{*}+$ $(\varepsilon + c(b+c)^*(b+\varepsilon) + a(a+b(a+b))$ CUA || AUC $b^*a)^*bb^+c(c+bc)^*(b+\varepsilon)$

הוכח או הפרך:

לכל ביטוי רגולרי r,s מתקיים

 $sr \in (r^*s)^* + (rs^*)^*$ נפריך את השקילות: s כי כדי להתחיל ב $sr \notin (r^*s)^* + (rs^*)^*$ אך $(r+s)^*$ נלך על החלק של $(r^*s)^*$ כאשר באיטרציה לא ניקח אף r. אך במצב זה, הביטוי הרגולרי תמיד מסתיים ב- $.sr \notin (r^*s)^* + (rs^*)^*$ ולכן

$(\mathbf{r}\mathbf{s}^*)\mathbf{r} = \mathbf{r}(\mathbf{s}\mathbf{r})^*$ הוכח או הפרך

 $L[(rs)^*r]\subseteq L[(rs)^*r]$ שני הביטויים דומים. נוכיח כי . |w| באינדוקציה על $L[r(sr)^*]$

 $r \in \mathcal{A}$ כאשר (|w|=1). לפי ההגדרה w=r $L[r(sr)^*]$

נניח כי הטענה נכונה לכל wr כאשר ונוכיח עבור האיטרציה מוסיפה שני איברים) |x|=n+2 כאשר xrבכל פעם).

לכן $(k \ge 0)$ $w = r(sr)^k$ לפי ההנחה xr = wrsr נרשום $r(sr)^{k+1} \in v$ ואכן $r = wrsr = r(sr)^k sr = r(sr)^{k+1}$ $L[r(sr)^*]$

כיוון שני זהה לכיוון ראשון.

בוכיח שהשפה $\mathbf{L} = \{a^{2p} | p \text{ is } odd\}$ הינה שפה

נבנה אוטומט לשפה:

עך ש $A = (\Sigma_A, Q_A = \{q_0, q_1, q_2, q_3\}, q_0, F_A = \{q_2\}, \delta_A)$ $\delta(q_0, a) = q_1 \ \delta(q_1, a) = q_2 \ \delta(q_2, a) = q_3$ מספר המצב מהווה את מספר ספר ל $\mathbf{\delta}(q_3,a)=q_0$. חלוקת אורך הקלט ב-4, ולכן המצב q_2 הוא המצב המקבל

$L = \{a^{\rm n}b^{\rm m}c^{\rm p}|n+m+p=100\}$ נוכיח שהשפה <u>שפה רגולרית.</u>

השפה סופית, ולכן רגולרית.

נבחר לראות כמות של a-ים (בין אפס ל-100), אח"כ כמות של b-ים (בין אפס ל 100-a), ואח"כ הכמות של ה-c-ים

$$L = \sum_{i=0}^{100} \left(a^i \left(\sum_{j=0}^{100-i} (b^j c^{100-i-j}) \right) \right)$$
תהיה קבועה:

לחילופין, ניתן לבנות אוטומט לשפות הבאות: $L_1 = \{abc^{98}\}, L_2 = \{a^2bc^{97}\}, L_3 = \{ac^{99}\}, \dots$ ולכחל שאר האופציות האפשריות, ואז לבנות אוטומט איחוד ביו כל השפות הרגולריות האלו. היות ואיחוד הוא תכונת סגור על כמות סופית של שפות, הרי שנקבל שפה

<u>שוכיח שהשפה L המוגדרת להיות שפת כל המילים ש</u> עם 2= $|\mathbf{w}'|$ המופיעה $\mathbf{w}'\in\Sigma^*$ המופיעה Σ^* לפחות פעמיים ב-w (ללא חפיפה). הערה: לכל w יכולה <u>להיות 'w אחרת.</u>

נבנה ביטוי רגולרי לשפה:

 $L = (a + b)^* aa(a + b)^* aa(a + b)^*$ $+(a+b)^*bb(a+b)^*bb(a+b)^*$ +(a + b)*ba(a + b)*ba(a + b)*

 $+(a + b)^*ab(a + b)^*ab(a + b)^*$

L= 1(0+1)*1 + 0(0+1)*0

האות הראשונה והאחרונה הן w, וכל השאר הן u. אין מגבלה כלל, חוץ מכך ש w=w^R.

$\mathbf{L} = \{\mathbf{0^n 1^m} | (n-m)mod5 = 0\}$ נוכיח שהשפה

השפה היא כמות האפסים פחות כמות האחדות שקולה לאפס מודולו 5.

כיוון ראשון : תהי L כך ש ϵ ב, אזי בעת ביצוע השרשור ϵ נוכל לבחור את כדי לקבל את אותן כיוון ראשון אותי מילים, ואכן L⊆L·L כנדרש

 $\epsilon\in L$ כיוון שני ϵ תהי L כך ש L \subseteq L. נראה ש \in

מילים שבה אם ריקה. אם שבה לא פילים עים (קיימת כזו לפי לפי לא הקצרה ביותר ביותר לפי (קיימת כזו לפי לפי תהי ${\bf u}$ ולכן $u\in L\cdot L$ וגם עובר אורך מינימלי, נבחר אחת מהן שרירותית). לפי ההנחיה, $u\in L\cdot L$ וגם ולכן המילה $u-\epsilon$ כלומר עלכן ולכן בהכרח L-L! ולכן הכי קצרה ב L subseteq LL iff epsilon in L

 $L = (0^5)^*(1^5)^* + (0^5)^*01(1^5)^* + (0^5)^*0^21^2(1^5)^*$ $+ (0^5)^*0^31^3(1^5)^* + (0^5)^*0^41^4(1^5)^*$

 $\{\Sigma, \cup, ^*, ^+, ^*$ שני ביטויים רגולריים מעל הא"ב b וa יהיו את הפריכו או הוכיחו או הפריכו את \mathbf{R}_{Σ} , כלומר ביטויים רגולרים מ $a=\emptyset$ אזי מתקיים $\mathbf{L}(a)=\mathbf{L}(a^+)$ אזי מתקיים הטענות הבאות: $\mathtt{L}(b) \subseteq \mathtt{L}(a)$ ב. אם $a = b^*$ אזי מתקיים:

תקיים ולכן מתקיים a=arepsilon ולכן מתקיים א. נפריך על ידי דוגמא נגדית: $.a \neq \emptyset$ אך $L(a) = L(a^+)$

ב. הטענה נכונה. באופן טריוויאלי, אם נשתמש באיטרציה בדיוק פעם אחת, נקבל a=b, ולכן כל מילה שנוכל לבנות . a נוכל לבנות גם מהביטוי הרגולרי b מהביטוי הרגולרי היות וניתן להשתמש באיטרציה כמה פעמים שנרצה, השפה של a גדולה יותר מהשפה b ונוכל לרשום $L(b) \subseteq L(a)$ ש

נגדיר שפה יחידת מצב ויחידת מצב הפוכה: שפה L רגולרית הינה יחידת מצב אא"ם קיים אס"ד בעל מצב יחיד כך שL=L(A)יחיד כך שפה וויד מצב . L=L(A)הפוכה הפוכה אא"ם קיים אס"ד בעל מצב יחיד שאינו L=L(A).מקבל כך ש

א. תנו דוגמא לשפה רגולרית שאיננה יחידת מצב . הסבירו את תשובתכם.

ב. תנו דוגמא לשפה רגולרית שאיננה יחידת מצב הפוכה. הסבירו את תשובתכם.

תשובה: א. כל שפה שחייבת לפחות שני מצבים מקבלים $L = \{w \in \{a\}^* | |w| = 1,2mod3\}$ לא תהיה יחידת מצב. (חייבת שני מצבים מקבלים) .

ב. כל שפה עם לפחות שני מצבים שאינם מקבלים איננה $L = \{w \in \{a\}^* | |w| = 1 \}$ יחידת מצב הפוכה. דוגמא 1,2 mod 4} השפה דורשת שני מצבים מקבלים ושני מצבים שאינם מקבלים.

הוכיחו או הפריכו:

20 מצבים מ10- עד 10)

אם L היא שפת כל המילים w מעל {a,b} המקיימות: בכל רישא 'w של w מתקיים: ים ברישא -a-ים ברישא כלומר מספר ה $||w|_a - |w|_b| \le 10$ פחות ממספר ה-b -ים ברישא קטן או שווה בערכו המוחלט מ10, אז L רגולרית.(תשובה: אטומט עם

אם L היא שפת כל המילים w המקיימות: במילה -a-ים במילה $||w|_a - |w|_b| \le 10$ פחות ממספר הלים במילה קטן או שווה בערכו המוחלט מ10 , אז L שפה רגולרית.

L = :הטענה איננה נכונה. נגדיר את השפה הבאה כלומר לא נרצה לראות את הביטוי $\{w=(a^nb^n)\mid\}$ סה"כ יותר מ11 פעמים. ההבדל בשאלה ababab. שכאן אין תנאי על הרישות, אלא על המילה הכללית. כאן .. משך כמו סעיף א L = $\{a^nb^n\}$ נוכל להשתמש גם

תקרא שפה קו – סופית אם המשלימה שלה היא שפה L סופית.הוכיחו או הפריכו:

1. תהי L שפה קו – סופית כלשהי, ותהי P שפה לא רגולרית כלשהי. אז בהכרח L ∪ P רגולרית.

2. תהי L שפה קו – סופית כלשהי, ותהי P שפה לא רגולרית כלשהי. אז בהכרח L ∩ P רגולרית.

1. היות ו- L קו – סופית, הרי ש- 'L שפה סופית. לכן, ניעזר בדה- מורגן ונקבל (הסימן ' משמעו משלים): L U $P = (L' \cap P')'$

היות ו- 'L' סופי, החיתוך שלה עם שפה לא רגולרית נשאר סופי, ולכן רגולרי. לכן, מסגירות למשלים גם L U P

 $P' = (L' \cup P') \setminus (L' \setminus P')$ עפ"י הדיאגרמה נקבל: 2.

יהיה בגולבי.

היות ו- 'L'\P' סופי, הוא רגולרי. חיסור הוא תכונת סגור $(L' \cup P')$ אינו רגולרי ולכן P' אינו רגולרי ולכן ולכן ולכן ולכן ולכן ולכן אריות. אך היה P' לא רגולרי (אחרת

 $L' \cup P' = (L \cap P)'$ מתקיים: לפי דה- מורגן מתקיים. לפי ולכן $L \cap P$ לא רגולרי, מסגירות למשלים.

> לכל אחת מהטענות הבאות קבעו אם היא נכונה או שגויה ונמקו בקצרה.

1. לכל שפה לא רגולרית L קיימת סדרה אינסופית של , i \neq j - יכך שלכל כך $L_0 \subseteq L_1 \subseteq L_2 \subseteq L_3 \subseteq \cdots$ שפות L_i כך שלכל שפה , $L_i
eq L_j$

בסדרה היא תת קבוצה של L.

2. נסמן $\mathbf{L} = \{a^nb^n \mid n \in \mathbb{N}\}$ קיימות שפות רגולריות . רגולרית $L_1 L L_2$ כך ש L_1, L_2

1. כדי ששפה תהיה לא רגולרית, היא חייבת להיות אינסופית, ועוד משהו שמונע את הרגולריות שלה.

נוכיח את נכונות הטענה: תהי שפה L לא רגולרית. היות והשפה אינסופית, קיימת סדרה אינסופית של אורכי מילים $L_i \subseteq \mathcal{M}$ מתקיים $j \in \mathbb{N}$ בשפה. נגדיר: באופן טריוויאלי מכילות את כל j+1 שהרי כל המילים עד אורך, L_{i+1} היא תת L_i היא בסדרה j, ואכן, כל שפה המילים עד אורך קבוצה של (כל שפה L_i היא שפה רגולרית, שכן יש אינה L אך השפה j מילים עד אורך רגולרית, שכן j יכול להיות אינסופי).

2. הטענה נכונה. ניתן דוגמא המקיימת את הטענה: תהי :כעת נסתכל על השרשור $L_1=\Sigma^*$ ותהי ותהי ותהי את ניקח אם ניקח עבוד אם ולכן רגולרי. אם ולכן $\Sigma^* a^n b^n a = \Sigma^*$ אחת השפות להיות ריקה ואז השרשור יהיה שפה ריקה

הוכיחו או הפריכו: תהינה L_1, L_2 שפות לא רגולריות כך L אז $L_1 \subseteq \mathsf{L} \subseteq L_2$ שפה המקיימת L ו- $L_1 \subseteq L_2$ אז בהכרח אינה רגולרית.

נגדיר את בצורה בזו שנוכל להכיל אותך אחת נגדיר את בצורה בזו בצורה בזו L_1, L_2 כך שהיא L בשנייה, אך עדיין יישארו לא רגולריות, ואת תוכל בתוך L_2 אך עדיין תישאר רגולרית. נפריך את הטענה ע"י דוגמה נגדית:

 $L_2=\{a^*b^*c^md^m\ | m\in \mathcal{L}_1=\{a^nb^n\ | n\in \mathbb{N}\}$ תהי תהי $L = \{a^*b^*\}$ ותהי \mathbb{N}

(קל $L_1 \subseteq L$ מתקיים, m = 0 עבור $L_1 \subseteq L_2$ לראות), וגם מתקיים $L_2 \subseteq L_1$, אך L_1, L_2 אינן רגולריות $c^m d^m$ אינה רגולרית, וההוכחה עבור $a^n b^n$ -ש (כבר הוכח לכבר הוכח אינה רגולרית) זהה לחלוטיו).

תהי $L \subseteq \mathbb{N}$ קבוצת אינדקסים עבור שפה L. נגדיר הוכיחו או הפריכו: $\mathbf{L}^{\mathbf{I}} = \mathbf{U}_{i \in I} \mathbf{L}^{i}$

- תהי L שפה רגולרית, ותהי קבוצת האידנקסים / כך שו\ת קבוצה סופית - אזי
- יהיו $I_1 \subseteq I_2 \subseteq \mathbb{N}$ אזי לכל שפה $I_1 \subseteq I_2 \subseteq \mathbb{N}$ שאם L^{I_2} רגולרית אזי גם L^{I_2} רגולרית.
- עבור $I = \mathbb{N}$ אזי מתקיים ש'L ולכן יכול להיות מצב שהשפה רגולרית. אנחנו יודעים ש/ היא קבוצה אינסופית של אינדקסים, ולכן מסגירות לחיבור\ שרשור של שפה עבודת רק על מספר סופי של אינדקסים.

פתרון: תהי / קבוצת האינדקסים כך שמתקיים שו וען קבוצה סופית ולכן נוכל לתאר את השפה ₪\I מכיוון שו\N קבוצה $L^2 = L^* \setminus (\cup_{i \in I} L^i)$ כך: סופית אזי יש כאן איחוד של מספר סופי של שפות רגולריות, ולכן מסגירות לאיחוד סופי

 $I_1 = I_2 = \{n \in \mathbb{N}\}$ ואילו $I_2 = \{n \in \mathbb{N}\}$ ואז השפה של $\{a^p | p \text{ is prime}\}$ ואילו השפה של 1/1 אינה רגולרית.

שפת כל המילים מעל $\Sigma = \{0,1\}$ שאינן מכילות את 101 כתת מילה.

۵.

ולכן, לסיכום נקבל:

ג) נבנה אוטומט, נאפיין את הדרכים לחזור מ q₀ לעצמו, ואת הדרכים להגיע ממנו לכל אחד

 $q_0 -> q_0: (0)^* + (1)^* 0^2 + \varepsilon$

 $q_0 \rightarrow q_1$: (1)⁺ $q_0 \rightarrow q_2$: (1)⁺0

 $L = (q_0 -> q_0)^* (q_0 -> q_0 + q_0 -> q_1 + q_0 -> q_2)$ $L = ((0)^* + (1)^+ 0^2)^* (\epsilon + (1)^+ + (1)^+ 0)$

 $\mathbf{L} = \{xy | x, y \in \Sigma^* \ and \ |x| = |y|\}$ הוכחה: קיים ביטוי רגולרי: *((a+b)(a+b))

דרישות השפה הן שגודל ה x וגודל ה y יהיו זהים. לכאורה זה לא רגולרי, אך x הוא כל המחרוזות האפשריות, y כל המחרוזות האפשריות. שרשור שלהם יוצר גם הוא את כל המחרוזות האפשריות. כל מחרוזת זוגית ניתן לחלקה y בדיוק באמצע ולהגדיר את החצי השמאלי כ יש להוסיף הוכחה שהשפה המתקבלת ע"י הביטוי הרגולרי אכן השפה הנדרשת בשאלה.

extend(L) =מהי L שפה רגולרית. אז השפה L תהי

$v \in \Sigma^* \mid \exists u \in L, w \in \Sigma^* s.t. v = uw$ גם היא בהכרח

תהי L שפה רגולרית ויהי A אס"ד המקבל אותה Ln = |Q| נבחר $m \geq n$ כך שL כילה ב $z = a_1 a_2, ..., a_m$ תיהי לכל $\delta^i = \delta(q_0, a_1, ..., a_i)$ נסמן $i \in [0, m]$ לכל

כיוון ש|Q| נובע מעקרון שובך היונים שקיימים $q^{s'} = q^s$ כך ש $s, s' : s \neq s', s < s'$ זוג אינדקסים $z=a_1a_2, \dots a_m$ נתבונן בחישוב האוטומט על המילה

qs= qs \mathbf{q}^{0} $a_1a_2...a_s$ $a_1 \dots a_s a_{s'+1}, \dots a_m \in L$ מכך ש $z \in L$ מכך ש

 $a_1, ... a_s (a_{s'+1} a_{s'})^i a_{s'+1} ... a_m \in \c L$ כעת נרצה באינדוקציה ש $i \in [0, \langle infinity \rangle]$ עבור כל :מתקיים , $\underline{a_1....a_s}, \underline{a_{s'+1}.....a_{s'}}, \underline{a_{s'+1}....a_m}$:נרשום •

s,s' מאיך שהגדרנו $|uv|=s'\leq n$ - $\delta\left(q^{0},uv^{i}w\right)=\delta\left(\delta\left(\delta\left(q^{0},u\right),v^{i}\right),w\right)=\delta\left(\delta\left(q^{s},v^{i}\right),w\right)\overset{\text{lemm.}}{=}\delta\left(q^{s},w\right)=q^{m}\in F$ $\delta\left(q^{s},v^{i+1}\right)\stackrel{\mathrm{def.}}{=}\delta\left(q^{s},v^{i}\cdot v\right)\stackrel{\mathrm{def.}}{=}\delta\left(\delta\left(q^{s},v^{i}\right),v\right)\stackrel{\mathrm{ind.}}{=}\delta\left(q^{s},v\right)\stackrel{*}{=}q^{s}$ הראנו שהליכה מספר כלשהו של פעמים בלולאה, : נוכיח באינדוקציה על מהגדרה. $\delta\left(q^{s},\varepsilon\right)=q^{s}$ י, $v^{0}=\varepsilon$ אז i=0 $\left(q^{0},u\right)=q^{s}$ וכן , $\delta\left(q^{s},w\right)\in F$ ואנחנו יודעים ש $uv^{\imath}w\in L:i\geq 0$ להראות שלכל $\delta(q^s, v) = q^s$, $\delta\left(q^{s}, v^{i}\right) = q^{s}$

יודעים ש

ž

מהביטוי הרגולרי. כמו-כן,

נקבל s-w ואכן

r₂-b*+b(ab+b)*, ותהי L כמתואר בשאלה

 $=q^{s}i$ לכל

בסים:

לפי הנחת האינדוקציה.

ניר ט ĊŶĠ פעמיים (כי מסתיימת ב ט תהי $\mathbb{E}[w]$. נראה כי $\mathbb{E}[w]$ באינדוקציה על $\mathbb{E}[w]$ בנוסף נראה שכל מילה בשפה on .b m ab לפי גו,

ដ

מהאיטרציה של מופיע a אזי הוא עטוף בשני צדדיו ב b, ולכן נוכל לרשום w–xbob מופיע a מופיע .(משר $\pm b\in L$, וניתן לגזור אותו מ ± 1 (לפי הנחת האינדוקציה). weL[r₂] אאי weL ,ab נקבל שניתן לגזור bb נקבל שניתן

ולכן ניתן גם לגזור את w–xbob כנדרש