3. The Explicit Method for the 1-D Diffusion Equation

Let us consider the problem for u(x, t):

$$u_t = u_{xx} \quad \text{in } 0 < x < 1, \ t > 0$$
with $u(0, t) = 0$, $u(1, t) = 0$, $u(x, 0) = f(x)$ (3.1)

We define a regular, rectangular grid (x_n, t^j) for $0 \le n \le N$, $0 \le j \le J$ of lengths (h, k), so that Nh = 1, $x_n = nh$, $t^j = jk$. We shall seek an approximation U_n^j to the exact solution evaluated on the grid points, $u_n^j \equiv u(nh, jk)$. The boundary conditions require $u_0^j = 0$, $u_N^j = 0$ and $u_n^0 = f_n \equiv f(x_n)$. Recalling the results from §1, we have

$$\frac{u_n^{j+1} - u_n^j}{k} = \frac{\partial u_n^j}{\partial t} + \frac{1}{2}k \frac{\partial^2 u_n^j}{\partial t^2} + O(k^2) ,$$

and

$$\frac{u_{n+1}^j - 2u_n^j + u_{n-1}^j}{h^2} = \frac{\partial^2 u_n^j}{\partial x^2} + \frac{1}{12}h^2 \frac{\partial^4 u_n^j}{\partial x^4} + O(h^4) .$$

Using the above in the equation $u_t = u_{xx}$, we have

$$\frac{u_n^{j+1} - u_n^j}{k} = \frac{u_{n+1}^j - 2u_n^j + u_{n-1}^j}{h^2} + R_n^j , \qquad (3.2)$$

where the **Truncation Error**, R_n^j is

$$R_n^j = \frac{1}{12} h^2 \frac{\partial^4 u_n^j}{\partial x^4} - \frac{1}{2} k \frac{\partial^2 u_n^j}{\partial t^2} + O(k^2, h^4) . \tag{3.3}$$

The simplest explicit method neglects terms of $O(k, h^2)$. If we write

$$r = k/h^2$$
,

neglect R_n^j and replace u by U in (3.2), we obtain the scheme

$$U_n^{j+1} = rU_{n+1}^j + (1-2r)U_n^j + rU_{n-1}^j , (3.4)$$

with the boundary conditions

$$U_0^j = 0$$
, $U_N^j = 0$ and $U_n^0 = f_n \equiv f(x_n)$.

With a little thought, we see that these boundary conditions and repeated use of (3.4) enable us to calculate U_n^j everywhere. We must now consider how accurate the approximation is. We shall perform a simple "Maximum Principle Analysis" to show that under some conditions U_n^j can be made as close as we choose to the real solution u_n^j , for all n and j.

Truncation Error and Solution Error

In general, suppose a PDE Lu = f, where L is some differential operator, is approximated on a suitable grid (nh, jk), at which points u and f take the values u_n^j and f_n^j , by the FDM $MU_n^j = f_n^j$, where M is a difference operator. The **solution error**, z_n^j and the **truncation error**, R_n^j , are defined by

$$z_n^j \equiv u_n^j - U_n^j$$
, and $R_n^j \equiv (Lu)_n^j - Mu_n^j$. (3.5)

Returning to our specific equation, subtracting (3.4) from (3.2), and using (3.5), we obtain

$$z_n^{j+1} = r z_{n+1}^j + (1-2r) z_n^j + r z_{n-1}^j + k R_n^j \quad \text{and} \quad z_0^j = z_N^j = z_n^0 = 0 \ . \eqno(3.6)$$

Now

$$|z_n^{j+1}| \le |r| |z_{n+1}^j| + |(1-2r)| |z_n^j| + |r| |z_{n-1}^j| + |kR_n^j|.$$

Since $R_n^j = O(k, h^2)$, over the finite interval $0 < t < T \equiv Jk$ we can find a positive constant A such that $|R_n^j| \leq A(|k| + h^2)$. We shall also define the norm

$$||z^j|| \equiv \max_{n=0...N} |z_n^j| ,$$

which is the maximum error over all the points at a fixed time-level j. Then $|z_n^j| \leq ||z^j||$ for all n, and so we have

$$|z_n^{j+1}| \le (|r| + |1 - 2r| + |r|)||z^j|| + A(k^2 + |k|h^2)$$

As this is true for all values of n, it is true for that value which maximises its LHS, and so

$$||z^{j+1}|| \le (|r| + |1 - 2r| + |r|)||z^{j}|| + A(k^{2} + |k|h^{2})$$

We now **assume** that $0 < r \le \frac{1}{2}$, so that the quantities inside modulus signs are positive. Then the maximum possible error at the time-level (j+1) is related to the maximum at time j by

$$||z^{j+1}|| \le ||z^j|| + A(k^2 + |k|h^2)$$

Now the initial error, $||z^0||$, is zero because we know the solution exactly at t = 0. Applying the above repeatedly therefore implies

$$||z^1|| \leqslant |k| A(|k| + h^2) \ , \qquad ||z^2|| \leqslant 2|k| A(|k| + h^2) \qquad \text{and} \quad ||z^j|| \leqslant j|k| A(|k| + h^2) \ .$$

We have therefore shown that provided $0 < r \le \frac{1}{2}$, the maximum possible error at time $t^j \equiv jk$ is $O(k, h^2)t^j$, which can be made as small as we choose by choosing small enough steplengths, k and h. Note that r < 0 would correspond to k < 0, which involves stepping backwards in time, which we saw in §2 leads to an ill-posed problem for this **Parabolic** equation. We have proved nothing yet about the case $r > \frac{1}{2}$, but we will find that for such values of r the FDM (3.2) is numerically unstable.