Introduction to R for Biologists

Tidyverse ecosystem & making data tidy with tidyr Developed by Rachael Cox

Day 1 Outline

- How to get set up using R
- How and why to use RStudio & R Markdown (.Rmd)
- 3. Basics of programming
 - Data types
 - Functions
 - Troubleshooting
- 4. Intro to the Tidyverse
 - Tidy vs untidy data
 - Tidyverse-specific functions

Day 1 Outline

- 1. How to get set up using R
- 2. How and why to use RStudio & R Markdown (.Rmd)
- 3. Basics of programming
- 4. Intro to the Tidyverse
 - Tidy vs untidy data
 - Tidyverse-specific functions

Especially in biology, we work with many different types of data which we collect, analyze, and communicate

Figure 1, R for Data Science https://r4ds.hadley.nz/

In R, the collection of programs that make up the Tidyverse make this process easier and more reproducible

Tidy data

"Tidy datasets are all alike but every messy dataset is messy in its own way" — Hadley Wickham

Tidy data

country	year	cases	population
Afglan stan	9	7 5	1998 071
Afglanstan	0	666	2059 360
Bracil	99	3(73)7	17200 362
Bravil		8 148 8	17450/898
Chila	99	21(25)8	127291)272
Chila		216706	128(42) 583

Three rules:

- 1. Each variable has its own column
- 2. Each observation has its own row
- Each value has its own cell

Example: Contingency table

	survived	died	
drug	15	3	not tidy
placebo	4	12	_

Example: Contingency table

	survived	died	d ← Y varial	ole, outcome	
drug	15	3	not t	idy	
placebo	4	12			
<u> </u>			X	Υ	
X variable,		_	treatment	outcome	count
treatment	tid	У	drug	survived	15
			drug	died	3
			placebo	survived	4
			placebo	died	12

Example: Contingency table, extended

	survived	died	
drug	15	3	not tidy
placebo	4	12	_

	patient	treatment	outcome
tidy	1	drug	survived
	2	drug	died
	3	drug	survived
	4	placebo	died
		•	
		•	

tidyr library provides functions for transforming tables

	survived	died	
drug	15	3	pivot_longer()
placebo	4	12	

patient	treatment	outcome
1	drug	survived
2	drug	died
3	drug	survived
4	placebo	died

Making data sets longer or wider

We'll be discussing two functions:

- pivot longer() make a wide table long
- pivot wider() make a long table wide

pivot_longer()

pivot longer()

pivot_longer()

pivot longer()

pivot longer()

Example: Untidy dataset

```
> head(sitka_wide)
  tree treat t152 t174 t201 t227 t258
1     1 ozone 4.51 4.98 5.41 5.90 6.15
2     2 ozone 4.24 4.20 4.68 4.92 4.96
3     3 ozone 3.98 4.36 4.79 4.99 5.03
4     4 ozone 4.36 4.77 5.10 5.30 5.36
5     5 ozone 4.34 4.95 5.42 5.97 6.28
6     6 ozone 4.59 5.08 5.36 5.76 6.00
```

Is this data tidy? Why or why not?

Example: Tidying dataset using pivot_longer()

```
> head(sitka wide)
  tree treat t152 t174 t201 t227 t258
     1 ozone 4.51 4.98 5.41 5.90 6.15
     2 ozone 4.24 4.20 4.68 4.92 4.96
3
     3 ozone 3.98 4.36 4.79 4.99 5.03
   4 ozone 4.36 4.77 5.10 5.30 5.36
5
     5 ozone 4.34 4.95 5.42 5.97 6.28
     6 ozone 4.59 5.08 5.36 5.76 6.00
6
     Data Frame object
sitka wide %>% ← Pipe command (being "sent to")
  pivot longer (
  \sim t152:t258, names to = "time", values to = "size"
         pivot longer() function
```

Example: Tidying dataset using pivot_longer()

```
> sitka wide %>%
 pivot longer (
   t152:t258, names to = "time", values to = "size"
 A tibble: 395 x 4
    tree treat time size
   <int> <fct> <chr> <dbl>
      1 ozone t152 4.51
      1 ozone t174 4.98
 3
      1 ozone t201 5.41
      1 ozone t227 5.9
 4
 5
      1 ozone t258 6.15
 6
      2 ozone t152 4.24
                   4.2
      2 ozone t174
 8
      2 ozone t201 4.68
      2 ozone t227 4.92
10
      2 ozone t258
                   4.96
 ... with 385 more rows
```


Example: Let's turn the sitka data into a wide table

```
> head(sitka)
 size Time tree treat
1 4.51 152 1 ozone
2 4.98 174 1 ozone
3 5.41 201 1 ozone
4 5.90 227 1 ozone
5 6.15 258 1 ozone
6 4.24 152 2 ozone
sitka %>%
 pivot wider(names from="Time", values from="size")
```

Example: Let's turn the Sitka data into a wide table

```
> sitka %>%
 pivot wider(names from="Time", values from="size")
\# A tibble: 79 x 7
   tree treat `152` `174` `201` `227` `258`
  <int> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <</pre>
      1 ozone 4.51 4.98 5.41 5.9 6.15
      2 ozone 4.24 4.2 4.68 4.92 4.96
      3 ozone 3.98 4.36 4.79 4.99 5.03
      4 ozone 4.36 4.77 5.1 5.3 5.36
      5 ozone 4.34 4.95 5.42 5.97 6.28
    6 ozone 4.59 5.08 5.36 5.76
                                     6
      7 ozone 4.41 4.56 4.95 5.23 5.33
      8 ozone 4.24 4.64 4.95 5.38
                                     5.48
      9 ozone 4.82 5.17 5.76 6.12 6.24
     10 ozone 3.84 4.17 4.67 4.67 4.8
10
# ... with 69 more rows
```

Working with tidy data in R: tidyverse

Fundamental actions on data tables:

- make new columns mutate()
- combine tables, adding columns left_join()
- combine tables, adding rows bind rows ()
- choose rows filter()
- choose columns select()
- arrange rows arrange ()
- calculate summary statistics summarize()
- work on groups of data group_by()

Resources for more information on tidyverse and data sciences in R

Highly recommend "R for Data Science" (2e)

https://r4ds.hadley.nz/

Quick guides for tidyverse functions: https://posit.co/resources/cheatsheets/