PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-127314

(43) Date of publication of application: 16.05.1997

(51)Int.Cl.

G02B 5/02

G02F 1/1335

(21)Application number : 07-313506

(71)Applicant: KIMOTO & CO LTD

(22) Date of filing:

06.11.1995

(72)Inventor: TOYOSHIMA YASUMARO

KATO TAKAAKI

(54) LIGHT-DIFFUSING SHEET

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain higher brightness and high light-diffusing property of a lightdiffusing sheet using a prism sheet by laminating a prism sheet and a light-diffusing member comprising a light-diffusing layer formed on a transparent supporting body.

SOLUTION: This light-diffusing sheet 5 is produced by laminating a prism sheet 4 on a light-diffusing member 3 which is produced by forming a lightdiffusing layer 2 containing a transparent resin and polymethylmethacrylate sphefical particles on a transparent supporting body 1. The mixing ratio of the transparent resin and spherical particles is preferably 100 pts.wt. of the transparent resin to 100-220 pts.wt.

of polymethylmethacrylate spherical particles. As for the transparent resin of the lightdiffusing layer 2, a resin having optical transparency such as polycarbonate, polyvinyl chloride, polyethylene, polyester and polyurethane can be used. The transparent supporting body 1 used for the light-diffusing member 3 is polymethylmethacrylate, polycarbonate, polyester, etc.

LEGAL STATUS

[Date of request for examination]

30.10.2002

[Date of sending the examiner's decision of

22.11.2005

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3790571

[Date of registration] 07.04.2006

[Number of appeal against examiner's 2005-24562

decision of rejection]

[Date of requesting appeal against 21.12.2005

examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出頭公開發导

特開平9-127314

(43)公開日 平成9年(1997)5月16日

(51) Int.CL*		裁別配号	庁内整理番号	ΡI			技術沒示箇所
G02B	5/02			G 0 2 B	5/02	В	
G02F	1/1335			G 0 2 F	1/1335		

審査請求 京請求 語求項の数4 FD (全 5 頁)

(21)出顯番号	特 國平7 -313506	(71)出顧人	000125978 株式会社きもと	
(22)出題日	平成7年(1995)11月6日	(72)発明者	東京都新宿区新宿2丁目19番1号 登島 特庭	
			埼玉県与野市館谷4丁目6番35号 社会もと開発研究所内	模式会
		(72) 発明者	加藤 孝昭	
			埼玉県与野市館谷4丁目6番35号 社舎もと開発研究所内	模式会

(54) 【発明の名称】 光拡散性シート

(57)【要約】

【課題】 従来の光拡散性シートに比べて正面方向への 輝度が向上し、しかも光拡散性が十分な光拡散性シート を提供する。

【解決手段】 アクリル樹脂100重量部及びポリメチ ルメタクリレートの真球状粒子100~220重量部を 含有する光拡散性層2を透明支持体1上に積層してなる 光虹散性部材3と、プリズムシート4を重ね合わせて光 拡散性シート5とする。

(2)

【特許請求の部用】

【詰求項1】 透明性樹脂及びポリスチルメタクリレート の真球状粒子を含有する光並散性層を透明支持体上に積 **磨してなる光並散性部材と、プリズムシートを重ね合わ** せたことを特徴とする光鉱散性シート。

1

【語求項2】語求項1記載の光拡散性層に使用する真球 状粒子の含有量が、前記透明性樹脂100重量部に対し て100~220重置部であることを特徴とする光拡散 性シート。

であることを特徴とする光拡散性シート。

【語求項4】語求項3記載のアクリル樹脂がウレタン架 続したアクリル樹脂であることを特徴とする光症散性シ -1.

【発明の詳細な説明】

[0001]

【発明の居する技術分野】本発明は、照明器具、電飾者 板、背面投射スクリーン、液晶ディスプレイ等に用いら れる光拡散性シートに関する。

[0002]

【従来の技術】従来、液晶ディスプレイのバックライト に用いられる光粒散性シートとして、透明プラスチック フィルムの片面に、無機粒子もしくは樹脂粒子を分散し た透明な樹脂溶液を塗布したものが使用されている。

【りりり3】とのような光拡散性シートに要求される性 能としては、導光板の光粒散パターンが見えないこと、 正面方向への輝度が高いこと、などがある。

【0004】このような要求性能を満たすべく、光拡散 性層に使用する樹脂や光鉱散性粒子の種類や含有量を変 改良では正面方向への輝度の向上に限界があると考えら れるため、プリズムシートを使用して周辺方向への光を 正面方向へ向けることが考えられている。このようなプ リズムシートは光拡散能を有しないため、使用に際して は、従来より使用されている光拡散性シートと重ね合わ せるととが行われている。

【0005】しかし、従来より使用されている光拡散性 シートを重ね合わせると、せっかくプリズムシートによ り正面方向に向けた光が拡散されてしまい、結局従来か ち使用されている光拡散性シート単独と大差ないものと 40 なってしまう。

[0006]

【発明が解決しようとする課題】本発明は、これらの従 楽の問題点を克服し、従来の光拡散性シートに比べて正 面方向への超度が向上し、しかも光拡散性が十分な光拡 飲性シートを提供することを目的とする。

[0007]

【課題を解決するための手段】このような目的を達成す る本発明の光拡散性シートは、透明性樹脂及びポリメチ ルメタクリレートの真球状粒子を含有する光拡散性層を 55 りすぎて集光性が悪くなり、また、金鸌の接着強度が悪

透明支持体上に積層してなる光拡散性部材と、プリズム シートを登ね合わせてなるものである。

【0008】さらに、前記光拡散性層に使用する真球状 粒子の含有量が、前記透明性樹脂100重量部に対して 100~220重置部であるものである。

【0009】また、前記透明性樹脂がアクリル樹脂であ り、さらにはウレタン架橋したアクリル樹脂であるもの である。

【0010】尚、ここでいう光拡散性シートとは、狭義 【記求項3】記求項1記載の透明性樹脂がアクリル樹脂 10 のシートのみならず広義の意味で用い、すなわち板状 体、フィルム状体等をも含むものである。

[0011]

【発明の実施の形態】以下、本発明の光拡散性シートを 図1を用いて詳述する。

【0012】本発明の光拡散性シート5は、光拡散性部 材3とプリズムシート4から模成される。

【0013】光拡散性部付3に使用する透明支持体1と しては、ポリメチルメタクリレート、ポリカーポネー ト、ポリ塩化ビニル、ポリエステル、アセテート樹脂等 20 のフィルム状、板状のものや、ガラス板等で、透過率の 高いものが使用される。特に好ましいものとしては、耐 候性、加工性等の点からポリエステルフィルムが挙げる れる.

【0014】光鉱散性屋2の透明性樹脂としては、アク リル樹脂、ポリカーボネート、ポリ塩化ビニル。ポリス チレン、ポリエステル、ポリウレタン等の光学的透明性 を有する樹脂が使用される。もっとも好ましい樹脂とし ては、耐候性に優れているアクリル樹脂、さらに好まし くはアクリルポリウレタン2液硬化タイプのものが挙げ 更する改良が行われている。しかしながら、このような 30 られ、顔料を多量に充填しても強靱な強膜が得られるよ う、架織密度の高くなるようなOH価の大きいものを使 用するとよい。

> 【0015】真球状粒子としては、ポリメチルメタクリ レートの真球状粒子を使用する。さらに、耐熱性、耐溶 削性、熱安定性の点からジビニルベンゼン等で架橋され たものが好ましい。

【0016】ポリメチルメタクリレート真球状粒子の粒 径としては、1.0~30.0μmが好ましい。粒径が 1. りμmより小さい場合には、輝度が低くなる。-方、粒径が30.0 mmよりも大きい場合には、導光板 に印刷されているパターンを隠すレベルの光拡散性が得

【0017】透明性樹脂と真球状粒子の割合としては、 透明性樹脂 100 重量部に対して、ポリメチルメタクリ レート真球状粒子100~220重量部が好ましい。ボ リメチルメタクリレート真球状粒子が100重量部より 少ない場合には、ポリメチルメタクリレート真球状粒子 が緻密に配列しないため、光の拡散効果が悪くなる。— 方、220重量部より多い場合には、光拡散性が強くな

http://www4.ipdl.ncipi.go.jp/tjcontentdben.ipdl?N0000=21&N0400=image/gif&N0401=... 9/1/2006

特闘平9-127314

くなり塗膜としての耐久性の維持も困難となる。

【0018】 このような光拡散性部科の製造方法として は、上記の透明性樹脂および真球状粒子を溶剤に分散ま たは溶解させて、支持体上に塗布する方法が好ましく採 用される。塗布方法としては、スプレー法、ディッピン グ法、ロールコーター法、カーテンプロー法、メイヤー バー法等の公知の方法が挙げられる。光拡散層の厚みは 通常 $1\sim30\,\mu$ m程度とする。光拡散性層を設けた支持 体の裏側は、導光板と密着しニュートンリングが発生す るのを防ぐために、アンチニュートン処理のコーティン 10 た。 グをすることが好ましい。

【0019】次に、プリズムシート4であるが、本発明 の光鉱散性シートには、種々の市販されているプリズム シートが使用でき、光透過率が高く、量光性の高いもの が好ましい。本発明におけるプリズムシートとは、所定 の頂角を有するプリズムシートのみならず、円形状、精 円形状などの種々の形状のシートを含むものである。特 に好ましいプリズムシートとしては、楕円形状のプリズ ムシートやプリズム角度90°~100°の頂角を有す るプリズムシートが挙げられる。このようなプリズムシ 20 ートとしては、商品名BEF90HP、BEF1190/ 50.100/31、BEF90 (住友スリーエム 性). ダイヤアートH150、H210、P150、P 210(三菱レイヨン社)、ポートグラムV7(大日本 印刷社)、ルミスルー(位友化学工業社)、エスティナ ウェーブW518、W425 (積水化学工業性) などが 挙げられる。

【0020】なお、図1は、導光板(図示せず)の光出 料面側に光拡散性部材3がくるような場合の光拡散性部 材3とプリズムシート4の重ね方の一例を示したもので 30 あるが、本発明はこの重ね方に限定されることはなく、 必要に応じて光拡散性部付3とプリズムシート4の位置 を入れ替えることなどは直宜行うことができる。

【0021】本発明の光拡散性シートらは、このような 模成を有することにより、従来困難とされていたプリズ ムシートを用いた光拡散性シートの高輝度化と高光拡散 性を可能とできるものである。

[0022]

【実施例】以下、実施例及び比較例により本発明をさら に説明する。

【0023】 [実施例1] ポリエステルフィルム (ルミ ラーT60 100 um: 東レ社) の片面に、下記の処 方の光拡散性層用塗布液を乾燥膜厚12μmとなるよう に塗布して光拡散性部材を得た。

【0024】光拡散性層用塗布液

(透明性樹脂に対する真球状粒子160)宣置部)

・アクリルポリオール(固形分50%) 10重置部 (アクリディックA-807: 大日本インキ化学工業社)

・イソシアネート(固形分60%) 2 童昏部 (タケネートD11CN: 武田菜品工業社)

- ポリメチルメタクリレート真球状粒子 10重置部 (テクポリマーMBX-8(平均粒径8 μm):積水化成品

・メタルエチルケトン

18重置部 18重置部

・酢酸プチル

【0025】この光拡散性部材とプリズムシート (BE F90HP:住友スリーエム社)を、光拡散性部村の光 拡散性層の面とプリズムシートのプリズム面の反対面と が対向するように重ね合わせて光拡散性シートを作製し

【0026】 [実施例2] 実施例1の光拡散性層用塗布 液の真球状粒子を7重量部とした以外は箕施例1と同様 にして光拡散性シートを作製した(遠明性樹脂に対する 真球状粒子113重置部)。

【0027】 [実施例3] 実施例1の光拡散性層用途布 液の真球状粒子を13重量部とした以外は真旋例1と同 様にして光拡散性シートを作製した(透明性制脂に対す る真球状粒子210重量部)。

【0028】 [実施例4] 実施例1のプリズムシート (BEF90HP: 住友スリーエム社) をプリズムシー ト(ダイヤアート日150:三菱レイヨン社)に変更し た以外は真施例1と同様にして光拡散性シートを作製し た。

【0029】 [比較例1] プリズムシート (BEF90 HP:住友スリーエム社)のみで光拡散性部材を設けな いものを光拡散性シートとして用いた。

【0030】 [比較例2] 市販の高輝度タイプの光拡散 性シート(ライトアップ100S貝:きもと怪)を光拡 飲性シートとして用いた。

【0031】 [比較例3] 実施例1の光拡散性部材を市 販の高輝度タイプの光拡散性シート (ライトアップ)() ①SH:きもと社)に変更した以外は実施例1と同様に して光拡散性シートを得た。

【0032】 [比較例4] 実施例1の光拡散性層用塗布 液の真球状粒子を5重置部とした以外は真施例1と同様 にして光拡散性シートを作製した(透明性樹脂に対する 真球状粒子81重置部)。

【0033】 [比較例5] 実施例1の光拡散性層用塗布 液の真球状粒子を14重量部とした以外は実施例1と同 **様にして光拡散性シートを作製した(透明性制脂に対す** る真球状粒子226 重量部)。

【0034】以上の実施例1~4および比較例1~5の 光鉱散性シートを、5.6インチ液晶用バックライトユ ニット (ランプ2灯、5mm厚の導光板) に組み込ん で、ランプの水平方向について正面方向を() として、 10 毎に80 ないし-80 まで輝度を測定した。 測定結果を表1に示す。また、光拡散性シートを設けず に測定した結果についても合わせて表 1 に示す。 これち の測定結果を視覚的に評価すべく、図2および図3を作 50 成した。なお、図2、図3において縦軸は輝度(cd/

(4)

特闘平9-127314

m¹)、機軸は正面方向からの角度を衰している。 【0035】また、拡散性について目視評価を行った箱 早もあわせて表1に示す。拡散性の評価については、導 光板の光拡散バターンが視認できたものを「×」、視認*

* できなかったものを「〇」とした。 【0036】

【表1】

		拜 (g (cd/m²)								
	建設性	0	-10 +10	-20 +20	-30 +30	-40 ÷40	-60 +50	-60 +60	-70 +70	-50 +80
拡散性シ ートなし	-	3520	3530 3520	9560 9570	3610 9030	\$670 \$670	3720 3730	3700 3700	3450 3480	2530 2730
炭塩肉1	0	684D	6780 6780	6350 6480	5440 5630	4570 4860	27.40 21.60	301 394	254 262	325 303
355902	0	6730	603¢ 6580	6210 5390	54251 5580	4850 4740	2210 2840	255 235	281 262	321 500
実施領る	0	6620	6230 6230	6050 6170	6400 5640	4720 4820	2250 2949	295 295	278 251	318 207
寿钙斑4	Ç	6470	6400 6430	6030 6190	5390 5070	45%0 4580	3050 3510	1310 1270	1049 1110	836 841
J &100 901	×	6310	6210 6210	8370 6180	6090 6240	\$3337 8520	2370 3500	362 360	334 308	327 321
Ŀw¥i2	0	4039	4000 4010	9910 5583	3080 3090	\$320 2330	2830 2850	2610	2360 2380	2340 2340
比较明日	0	5980	5690 3710	5360 5440	4839 4990	3770 3840	21.80 2770	803 493	364 338	318 297
班税例4	×	6290	63/50 6270	5330 5370	97280 5460	431.0 4990	2200 2620	300 804	260 260	\$20 \$31
比較例5	0	6230	6310 6310	5820 6920	9230 5410	4270 4360	2200 2800	296 292	230 260	327 299

【0037】表1、図2及び図3からも明らかなよう に、実施例1~4の光拡散性シートを用いたものは正面 方向の輝度が非常に高く、光拡散性も良好であった。

【0038】比較例1では、プリズムシートを使用しているために正面方向の輝度は比較的高かったが、光拡散 40 能を有しないために導光板のパターンがはっきりと見えてしまった。

【0039】比較例2では、プリズムシートを使用しない従来から使用されている高超度タイプ光拡散性シートを使用したものであるが、図3から明らかなように実施例1の光拡散性シートと比べて超度が非常に劣るものであった。

場合に比べると正面方向の輝度が向上してはいるが、実 施例1の光拡散性シートに比べると劣るものであった。

【0041】比較例4は、実施例1の光拡散性シートと同様の模成を育するものであるが、返明性紛脂100章 置部に対する真球状粒子の霊を81重霊部としているため、正面方向の輝度が実施例1の光鉱散性シートに比べて若干劣っており、また、光拡散性も弱く導光板のバターンが見えてしまっていた。

【0042】比較例5は、実施例1の光拡散性シートと 同様の構成を有するものであるが、透明性樹脂100章 置部に対する真球状粒子の量を226章置部としている ため、正面方向の輝度が実施例1の光拡散性シートに比べて若干劣っており、また、透明性樹脂に対する真球状 粒子の置が多いために光拡散性層の登時強度が劣り、光 拡散性層系面に傷が付きるすかった (5)

待関平9-127314

[0043]

【発明の効果】本発明の光並散性シートによれば、従来困難とされていたプリズムシートを用いた光拡散性シートの高輝度化と高光拡散性を可能とできるものである。 【図面の簡単な説明】

【図1】 本発明の光拡散性シートの一実施例を示す筋面図。

【図2】本発明の真施例における光拡散性シートの光出 斜面の各角度における短度測定の結果を表した図。 *【図3】本発明の比較例における光鉱散性シートの光出 斜面の各角度における超度測定の結果を表した図。 【符号の説明】

1・・・透明支持体

2・・・光拡散性層

3・・・光拡散性部材

4・・・プリズムシート

5・・・光拡散性シート

【図1】

[図2]

[図3]

