Modifying Priors to
Improve Neural Network
Predictions of Vegetation
Biophysical Variables from
Sentinel 2 Imagery

Hichem Lahiouel

Vegetation Parameters

- Leaf Area Index (LAI)
 - Dimensionless quantity
 - Ranges from zero to fourteen
 - Total area of leaves per unit ground surface area
- Fraction of Cover (FCOVER)
 - Ranges from zero to one
 - Fraction of ground covered by green vegetation
- Fraction of Photosynthetically Active (Solar) Radiation (FAPAR)
 - Ranges from zero to one
 - Fraction of the solar radiation absorbed by live leaves for the photosynthesis activity

Retrieval Approach

- The Sentinel-2 data was retrieved from Google Earth Engine
- Three different regions in Canada were chosen for analysis
- These regions were chosen because they have a wide range of values for LAI, FAPAR, and FCOVER

Geraldton, Ontario

Fox Creek, Alberta

Process to get Calibration Data

Process to get Images and Image Data

Research Question

- How can we reduce the bias towards low values of LAI and improve estimation of high values of LAI?
 - More specifically, can we improve our estimates of SL2P by modifying prior distributions given local information?

Modifying Prior Distributions

- The distributions for the different variables are determined in an Excel file
- One experiment I did was to compare the impact of modifying the prior distribution of LAI such that the LAI values varied from 1 to 10 (represented local distributions)

Workflow Chart

Calibration Database

- Contains spectral and angle data, plus data for the Biophysical vegetation variables themselves
- Simulations using PROSAIL Radiative Transfer Models with Default Priors

		Sentinel-2 Spectral Bands									Geometry				
	во	В1	B2	В3	В4	B5	В6	В7	A1	A2	А3	LAI	FAPAR	FCOVER	
0	0.1312746755	0.0743505601	0.1729546392	0.2952160738	0.3209243927	0.3303722287	0.1873586099	0.1113007554	0.9638065534	0.5275411500	-0.5752876765	1	0.4391203617	0.4803244610	
1	0.1019407701	0.0868185076	0.1599851769	0.3680334831	0.4389734403	0.4759755142	0.3043390179	0.1996883219	0.9995852344	0.5284670738	-0.4777431279	1	0.5296906764	0.5338211214	
2	0.0577228876	0.0543735427	0.0726863963	0.1146353863	0.1262129829	0.1300015294	0.1048168652	0.0853760008	0.9807097061	0.6843199822	0.6909005295	1	0.2406051357	0.2324486617	
3	0.0608335819	0.0423475494	0.0917885392	0.1738484853	0.1980468499	0.2153382831	0.1396374825	0.0906137034	0.9865515976	0.7869673865	0.8590635747	1	0.3515168619	0.3732491055	
4	0.0789422177	0.1359804109	0.1677317262	0.2554469658	0.2962514793	0.3108466204	0.3167107908	0.2088934617	0.9999190888	0.8237423248	-0.9085753290	1	0.2890892994	0.2565897729	
122875	0.0642385315	0.0276301255	0.0866383370	0.3106952678	0.4255780128	0.4466691326	0.1173674161	0.0414608341	0.9641458993	0.8501574022	-0.9266152189	10	0.9454688738	0.9530549586	
122876	0.0913131658	0.0504649365	0.1222839075	0.3081750760	0.4047671458	0.4293059492	0.1725548796	0.1005631041	0.9616583754	0.8710934328	0.9265827175	10	0.8085248415	0.8034524935	
122877	0.0621419307	0.0380236717	0.0921177459	0.2614424931	0.3577263614	0.3626203975	0.1294881968	0.0624406803	0.9757927762	0.8637999983	-0.9813994186	10	0.8185069725	0.8122050332	
122878	0.0514800307	0.0288523379	0.0690024543	0.4158467721	0.6343113015	0.6354447032	0.1810943898	0.0474550174	0.9606931097	0.8268533675	-0.8694016324	10	0.9810850825	0.9992241257	
122879	0.0668233773	0.0250243879	0.0907567987	0.4369922465	0.6772450624	0.6972009957	0.2347272437	0.0863371443	0.9591264867	0.8382274319	0.9967558231	10	0.9762029807	0.9928982883	
122000	oue × 14 colum														

Reference Database

- Normally we would choose a site and extract data from the site
- Contains the same kind of data as the Calibration data
- Simulated field sampling by extracting 200 samples from Calibration data
 - Samples were chosen by choosing the lowest 20% of NDVI

Fraction of Samples for given LAI in initial Calibration

Tensorflow Neural Network

- The neural network was created in Tensorflow
- A sequential model was used with three layers
 - The first layer uses a Sigmoid activation function
 - The second and third layer use a Rectified Linear Unit for the activation function
- Tensorflow allows you to use training and validation weights for training
- In addition, Tensorflow has a feature that allows you to monitor important metrics such as Mean Squared Error and Mean Absolute Error
- Tensorflow also has a feature that will stop training when the loss function stops decreasing for a certain amount of epochs

Neural Network Structure

Sample Results for FAPAR Variable (Geraldton Region)

Number of Samples

Conclusions

Modifying prior distributions impacts predictions of variables and may reduce bias

- It would be interesting to see how to incorporate the uncertainties in the data into the process and see how they affect the final results
- Further research could be done on how to improve the Neural Networks
- The results need to be validated with in-situ data

- It was really interesting to become more familiar with different tools in Python that are used for Data Science
 - For example, I gained experience with Pandas, Tensorflow, and Sci-Kit Learn

- Added data for subset ids, NDVI, and probabilities
 - o NDVI

B1

B2

вз

B4

B5

В6

во

Normalized Difference Vegetation Index

0	0.1312746755	0.0743505601	0.1729546392	0.2952160738	0.3209243927	0.3303722287	0.1873586099	0.1113007554	0.9638065534	0.5275411500	-0.5752876765	1	0.4391203617	0.4803244610	0.0561969505	0	0.9757562971
1	0.1019407701	0.0868185076	0.1599851769	0.3680334831	0.4389734403	0.4759755142	0.3043390179	0.1996883219	0.9995852344	0.5284670738	-0.4777431279	1	0.5296906764	0.5338211214	0.1278920384	1	0.9398261617
2	0.0577228876	0.0543735427	0.0726863963	0.1146353863	0.1262129829	0.1300015294	0.1048168652	0.0853760008	0.9807097061	0.6843199822	0.6909005295	1	0.2406051357	0.2324486617	0.0628120376	2	0.9940720495
3	0.0608335819	0.0423475494	0.0917885392	0.1738484853	0.1980468499	0.2153382831	0.1396374825	0.0906137034	0.9865515976	0.7869673865	0.8590635747	1	0.3515168619	0.3732491055	0.1066063936	3	0.9672943150
4	0.0789422177	0.1359804109	0.1677317262	0.2554469658	0.2962514793	0.3108466204	0.3167107908	0.2088934617	0.9999190888	0.8237423248	-0.9085753290	1	0.2890892994	0.2565897729	0.0978285043	4	0.9668794042
122675	0.0642295215	0.0276301255	0.0000000000	0.2106052679	0.4055700100	0.4466601226	0.4179674464	0.0414609241	0.0641459002	0.0004574000	0.0000450400	10	0.04E4600720	0.00000000000	0.470505500.4	12202	0.9454364076
122070	0.0042365515	0.02/6301255	0.0000303370	0.3100952076	0.4255/60126	0.4400091320	0.11/36/4161	0.0414606341	0.9641456993	0.85015/4022	-0.9266152189	10	0.9404000/30	0.9530549586	0.1/95355904	12203	0.9454364076
			0.1222839075														0.9448967476
122676	0.0913131658		0.1222839075	0.3081750760	0.4047671458	0.4293059492	0.1725548796	0.1005631041	0.9616583754	0.8710934328		10	0.8085248415	0.8034524935	0.1642494776	12284	
122676 122677	0.0913131658 0.0621419307	0.0504649365 0.0380236717	0.1222839075 0.0921177459	0.3081750760 0.2614424931	0.4047671458 0.3577263614	0.4293059492 0.3626203975	0.1725548796 0.1294881968	0.1005631041 0.0624406803	0.9616583754 0.9757927762	0.8710934328 0.8637999983	0.9265827175	10 10	0.8085248415 0.8185069725	0.8034524935 0.8122050332	0.1642494776 0.1621277372	12284 12285	0.9448967476
122676 122677 122678	0.0913131658 0.0621419307 0.0514800307	0.0504649365 0.0380236717 0.0288523379	0.1222839075 0.0921177459	0.3081750760 0.2614424931 0.4158467721	0.4047671458 0.3577263614 0.6343113015	0.4293059492 0.3626203975 0.6354447032	0.1725548796 0.1294881968 0.1810943898	0.1005631041 0.0624406803 0.0474550174	0.9616583754 0.9757927762 0.9606931097	0.8710934328 0.8637999983 0.8268533675	0.9265827175 -0.9813994186 -0.8694016324	10 10 10	0.8085248415 0.8185069725 0.9810850825	0.8034524935 0.8122050332	0.1642494776 0.1621277372 0.2088839645	12284 12285	0.9448967476 0.9591919288

B7

A1

A2

A3 LAI

FAPAR

FCOVER

NDVI subset_id