INDIAN STATISTICAL INSTITUTE

Second Semester Examination: 2019-2020

M.Stat. First Year

LARGE SAMPLE STATISTICAL METHODS

Maximum Marks: 60

Answer all questions

Note: $X, X_n, Y_n (n \ge 1)$ denote random variables. For any limiting statement we assume $n \to \infty$.

1. Let $X, X_n, n \geq 1$, be random variables such that

$$\lim \inf_{n\to\infty} E[g(X_n)] \ge E[g(X)]$$

for every bounded continuous function $g:(-\infty,\infty)\to [0,\infty)$. Show that $X_n \stackrel{d}{\to} X$. [It is known that $X_n \stackrel{d}{\to} X$ if and only if $\lim_{n\to\infty} E[g(X_n)] = E[g(X)]$ for all bounded continuous functions $g:R\to R$.]

- 2. If $X_n \stackrel{p}{\to} 0$, show that for any median M_n of X_n , $M_n \to 0$.
- 3. Let X_1, \ldots, X_n be a random sample from a distribution with a density $f(x,\theta)$ where θ is an unknown real parameter. Give an example to show that there may exist a consistent estimator T_n of θ for which $E(T_n) \to \theta + 1$ as $n \to \infty$. [Hint: Consider an example where there is an unbiased consistent estimator $\hat{\theta}_n$ and a set A_n , independent of $\hat{\theta}_n$, with probability tending to one and with some other property so that $\hat{\theta}_n$ can be modified with the help of A_n to construct T_n .]
- 4. Suppose that (X_i, Y_i) , $i \geq 1$ are i.i.d. bivariate random vectors with $E(X_1) = \mu_x$, $E(Y_1) = \mu_y$, $Var(X_1) = \sigma_x^2$, $Var(Y_1) = \sigma_y^2$ and $Corr(X_1, Y_1) = \rho$. If X_i and Y_i are positive random variables, using univariate Central Limit Theorem (CLT) show that

$$\sqrt{n} \left(\frac{\sum_{i=1}^{n} X_i}{\sum_{i=1}^{n} Y_i} - \frac{\mu_x}{\mu_y} \right)$$

converges in distribution to a normal variable with mean 0 and variance = $(\mu_y^2 \sigma_x^2 + \mu_x^2 \sigma_y^2 - 2\rho \mu_x \mu_y \sigma_x \sigma_y)/\mu_y^4$ (Note that one can use multivariate CLT and delta method to find the asymptotic distribution. You have been asked to use univariate CLT).

- 5. Let X_1, \ldots, X_n be a random sample from a distribution with mean μ , variance σ^2 and finite 4th central moment μ_4 . A common test for $H_0: \sigma^2 = 1$ versus $H_1: \sigma^2 > 1$ rejects H_0 when $nS_n^2 = \sum_{i=1}^n (X_i \bar{X}_n)^2 > \chi_{\alpha,n-1}^2$ where $\chi_{\alpha,n-1}^2$ is the upper α point of a central chi-square distribution with (n-1) degrees of freedom. Show that $P_{H_0}\left(nS_n^2 > \chi_{\alpha,n-1}^2\right)$ converges to α as $n \to \infty$ only if the value of the kurtosis $\kappa = \frac{\mu_4}{\sigma^4} 3$ is equal to zero. [Hint: First show (using the CLT and Polya's Theorem) that $\left(\chi_{\alpha,n-1}^2 (n-1)\right)/\sqrt{2n-2}$ converges to the upper α point z_{α} of the standard normal distribution.]
- 6. Simulation experiment. (a) For n=20 and 30, draw 1000 random samples of size n from a bivariate normal distribution $N_2(0,0,1,1,\rho)$ for $\rho=0.2,0.4,0.6,0.8$. Tabulate the estimated coverage probabilities of the (approximate) confidence intervals for ρ formed using the \tanh^{-1} transformation of the correlation coefficient.
- (b) Plot the histogram of the 1000 sample correlation coefficents r_n 's for n = 30 and $\rho = 0.4$ and also the histogram of the corresponding $\tanh^{-1} r_n$'s.
- 7. Let X_1, \ldots, X_n be a random sample from a double exponential distribution with density $f(x, \theta) = \frac{1}{2} \exp(-|x \theta|), -\infty < x < \infty$, where $\theta \in R$ is an unknown location parameter.
- (a) Find the maximum likelihood estimator (MLE) of θ and find the asymptotic (non-degenerate) distribution of properly normalized MLE.
- (b) Obtain a confidence interval for the poulation interquartile range (i.e., the difference between the third and first quartiles) with confidence coefficient approximately equal to 1α .
- 8. Let X_1, \ldots, X_n be a random sample from $N(\theta, 1)$. Find the joint asymptotic distribution of suitably normalized sample mean and sample median.
- 9. Let X_1, \ldots, X_n be a random sample from $N(\theta, 1)$ where θ is an unknown integer. Find the maximum likelihood estimator (MLE) $\hat{\theta}_n$ of θ . Prove that

it is not possible to find a sequence of real constants a_n such that $a_n(\hat{\theta}_n - \theta)$ converges to a non-degenerate limit distribution.

- 10. Let X_1, \ldots, X_n be i.i.d. with a common density $f(x, \theta)$ where $\theta \in \Theta$, and Θ consists of only finitely many real numbers. Assume also that the set $\{x : f(x, \theta) > 0\}$ is the same for all $\theta \in \Theta$ and that the distributions under different θ 's are different. If θ_0 is the true value of θ , prove that with probability tending to one (under θ_0) as $n \to \infty$, the likelihood function will be maximized at the value $\theta = \theta_0$.
- 11. Let X_1, \ldots, X_n be i.i.d. with a common density $f(x, \theta)$ given by

$$f(x,\theta) = \frac{e^{-(x-\theta)}}{[1 + e^{-(x-\theta)}]^2}, -\infty < x < \infty,$$

where $\theta \in R$ is unknown. Assume that Conditions (A1)–(A7) of the section on MLE hold.

- (a) Does there exist a consistent maximum likelihood estimator of θ for this problem? Justify your answer.
- (b) Can you suggest any sequence of functions $g_n(\cdot)$ (depending on n) of \bar{X}_n such that $g_n(\bar{X}_n)$ (after suitable centering and scaling) converges in distribution to $N(0, 1/I(\theta))$ where $I(\theta)$ is the Fisher Information? Justify your answer.
- 12. Let X_1, \ldots, X_n be i.i.d. with a common density $f(x, \theta)$ given by

$$f(x,\theta) = e^{-(x-\theta)}, \ x \ge \theta, \ -\infty < \theta < \infty.$$

- (a) Find the MLE $\hat{\theta}_n$ of θ and the limiting non-degenerate distribution of suitably normalized $(\hat{\theta}_n \theta)$.
- (b) Given that $\theta \leq 1$, find the MLE $\tilde{\theta}_n$ of θ and also find the limiting non-degenerate distribution of suitably normalized $(\tilde{\theta}_n \theta)$ under $\theta = \theta_0 < 1$.
- 13. Draw a random sample of size 25 from a Cauchy distribution with density

$$f(x,\theta) = \frac{1}{\pi[1 + (x - \theta)^2]}, -\infty < x < \infty,$$

where θ is chosen by you (you may take $\theta = 1$). Use the method of scoring to estimate θ .

14. Consider the set up for the chi-square test for independence of two attributes (see the document "Large Sample Chi-square test 2" sent to you by email). Note that under independence the $k \times l$ cell probabilities can be expressed as functions of (k-1)+(l-1) independent parameters. Find the maximum likelihood estimates of these parameters under independence.