Inferência Estatística II

Testes de hipótestes específicos - Aula 2

Prof. Paulo Cerqueira Jr - cerqueirajr@ufpa.br Faculdade de Estatística - FAEST Instituto de Ciências Exatas e Naturais - ICEN

https://github.com/paulocerqueirajr

Introdução

Introdução

- Os testes não-paramétricos são muito úteis na ausência de normalidade ou na aplicação em variáveis em a natureza é não numérica.
- Para uma amostra, temos alguns testes:
 - Teste χ^2 de aderência;
 - Teste χ^2 de homogeneidade;
 - Teste χ^2 de independência.

Objetivo: Verificar se uma população P segue uma distribuição especificada P_0 .

• Seja X uma v.a. que caracteriza uma população P. Suponha que esta variável está categorizada em s classes A_1,A_2,\cdots,A_s , com $p_i=P(X\in A_i), i=1,2,\cdots,s$. Queremos testar

$$H_0: p_1=p_{10}, p_2=p_{20}, \cdots, p_s=p_{s0} \quad ext{versus} \quad H_1: p_j
eq p_{j0}, ext{para algum } j,$$

onde p_{i0} são os valores especificados pela hipótese H_0 , ou seja, são as probabilidades conhecidas que determinam P_0 .

Tabela 1: Frequências observadas (O) e esperadas (E)

Frequências	A_1	A_2	• • •	A_s	Total
Observadas	O_1	O_2	• • •	O_s	n
Esperadas	E_1	E_2	• • •	E_s	\overline{n}

7

O valor esperado, sob H_0 , para a classe A_i é dado por

$$E_i=n imes p_{i0}, \quad i=1,2,\cdots,s.$$

A estatística do teste é dada por

$$\chi^2 = \sum_{i=1}^s rac{(O_i - E_i)^2}{E_i},$$

que sob H_0 tem distribuição qui-quadrado com s-1 graus de liberdade. A regra de decisão consiste em rejeitar H_0 , ao nível lpha, se o valor da estatística for grande, ou seja, a região crítica do teste é dada por

$$RC = \{\chi_{obs}^2 > k\},$$

onde k é tal que $P\{\chi_{s-1}^2>k\}=lpha.$

Ö

Exemplo: Um estudo sobre acidentes de trabalho numa indústria revelou que, em 150 acidentes, obtemos a distribuição da Tabela 1. O objetivo é testar a hipótese que os acidentes ocorrem com igual frequência nos 5 dias da semana.

Tabela 1: Acidentes de trabalho nos dias da semana

Dia	Segunda	Terça	Quarta	Quinta	Sexta	Total
O_i	32	40	20	25	33	150

Solução:

1. Hipóteses:

- H_0 : Os acidentes ocorrem com igual frequência nos 5 dias ($p_1=p_2=\dots=p_5=0.2$).
- H_1 : Pelo menos um dia tem frequência diferente dos demais.

2. Cálculo das Frequências Esperadas (E_i):

Sob H_0 , cada dia deve ter:

$$E_i = n \times p_{i0} = 150 \times 0.2 = 30 \quad ext{(para todos os dias)}$$

9

3. Estatística do Teste (χ^2):

$$\chi^2 = \sum_{i=1}^5 rac{(O_i - E_i)^2}{E_i} = rac{(32 - 30)^2}{30} + rac{(40 - 30)^2}{30} + rac{(20 - 30)^2}{30} + rac{(25 - 30)^2}{30} + rac{(33 - 30)^2}{30}$$

$$\chi^2 = rac{4}{30} + rac{100}{30} + rac{100}{30} + rac{25}{30} + rac{9}{30} = 7.933$$

4. Região Crítica (α = 0.05):

- Graus de liberdade: s-1=4.
- Valor crítico da tabela $\chi^2_{4;0.05}=9.488$.
- Regra de decisão: Rejeitar H_0 se $\chi^2_{obs} > 9.488$.

5. Conclusão:

Como 7.933 < 9.488, **não rejeitamos** H_0 . Não há evidências estatísticas para afirmar que os acidentes ocorrem com frequências diferentes nos dias da semana.

Tabela de Cálculo Detalhado:

Dia	O_i	E_i	$(O_i-E_i)^2/E_i$
Segunda	32	30	0.133
Terça	40	30	3.333
Quarta	20	30	3.333
Quinta	25	30	0.833
Sexta	33	30	0.300
Total	150	150	7.933

Exemplo: Considere os dados abaixo, que supostamente são uma amostra de tamanho 30 de uma distribuição normal, de média 10 e variância 25.

Dados					
1,04	1,73	3,93	4,44	6,37	6,51
7,61	7,64	8,18	8,48	8,57	8,65
9,71	9,87	9,95	10,01	10,52	10,69
11,72	12,17	12,61	12,98	13,03	13,16
14,11	14,60	14,64	14,75	16,68	22,14

Solução:

1. Hipóteses:

- H_0 : Os dados seguem uma N(10,25)
- H_1 : Os dados **não** seguem uma N(10,25)

2. Organizar os dados em classes

- Primeiro, devemos agrupar os dados em **k intervalos (classes)**. Como temos 30 observações, uma sugestão é usar $k \approx \sqrt{n}$, ou seja, **5 ou 6 classes**.
- Vamos usar **6 classes** com amplitudes aproximadamente iguais. Como os dados variam de 1,04 a 22,14, dividimos esse intervalo:
 - ullet Amplitude total: 22, 14 1, 04 = 21, 10
 - lacksquare Amplitude de cada classe: 21,10/6pprox3,52

As classes ficam:

Classe	Intervalo	Frequência Observada (O_i)
1	[1,04;4,56)	4
2	[4, 56; 8, 08)	4
3	[8,08;11,60)	10
4	[11,60;15,12)	10
5	[15, 12; 18, 64)	1

- 3. Calcular Frequências Esperadas (E_i)
- ullet Com base na $N(10,25)=N(10,5^2)$, para cada classe calculamos a probabilidade p_i de um valor cair naquele intervalo, e multiplicamos por n=30:
- ullet Utilizando a padronização, temos que $Z=rac{x-\mu}{\sigma}=rac{x-10}{5}\sim N(0,1)$
- Calculamos:

Classe	Intervalo	Z lim.inf	Z lim. sup	p_i (usando tabela normal)	$E_i=30$
1	[1,04;4,56)	-1.79	-1.09	$\Phi(-1.09) - \Phi(-1.79) = 0.1379 - 0.0367 = 0.1012$	3.04
2	[4, 56; 8, 08)	-1.09	-0.38	0.3516 - 0.1379 = 0.2137	6.41
3	[8,08;11,60)	-0.38	0.32	0.6255 - 0.3516 = 0.2739	8.22
4	[11,60;15,12)	0.32	1.02	0.8461 - 0.6255 = 0.2206	6.62
5	[15, 12; 18, 64)	1.02	1.73	0.9582 - 0.8461 = 0.1121	3.36
6	[18,64;22,16]	1.73	2.43	0.9925 - 0.9582 = 0.0343	1.03

4. Estatística do teste qui-quadrado

A fórmula é:

$$\chi^2 = \sum_{i=1}^k rac{(O_i - E_i)^2}{E_i}$$

Calculando cada termo:

Classe	O_i	E_i	$(O_i-E_i)^2/E_i$
1	4	3.04	0.3032
2	4	6.41	0.9061
3	10	8.22	0.3855
4	10	6.62	1.7257
5	1	3.36	1,6576
6	1	1.03	0.0009
Total			$\chi^2=4,9789$

5. Grau de liberdade (a média e variância são **especificadas** e não estimadas)

$$gl=\mathrm{n}^{\circ}$$
 de classes $-1-\mathrm{n}^{\circ}$ de parâmetros estimados $=6-1=5$

6. Valor crítico: Para lpha=0.05, e gl=5, temos:

$$\chi^2_{0.05:5}pprox 11{,}07$$

7. Conclusão: Como:

$$\chi^2_{
m calculado} = 4,\!9789 < 11,\!07 = \chi^2_{
m crítico}$$

Não rejeitamos a hipótese nula. Dessa forma,os dados são compatíveis com uma distribuição normal N(10,25), ao nível de significância de 5%.

Exercício: Gols por Partida de um Time de Futebol

Um analista esportivo quer saber se o número de **gols por partida** marcados por um determinado time em uma temporada segue uma **distribuição de Poisson**, com média de $\lambda=1,5$ gols por jogo. Ele coleta os dados de **40 jogos** e registra a **frequência de gols por partida**:

Número de Gols	Frequência Observada
0	5
1	14
2	12
3	6
4	2
5 ou mais	1
Total	40

Objetivo: Testar, ao nível de 5% de significância, se a distribuição do número de gols por jogo segue uma distribuição de Poisson com $\lambda=1,5$.

Objetivo: Comparar duas ou mais populações.

Suponha novamente que a v.a. X assume valores em s categorias, e deseja-se comparar a distribuição da v.a. X em r populações P_1,\cdots,P_r , com base em amostras de cada população.

Tabela: Frequências observadas (O) nas amostras de cada população

População	A_1	A_2	• • •	A_s	Total
P_1	O_{11}	O_{12}	• • •	O_{1s}	n_1
P_2	O_{21}	O_{22}	• • •	O_{2s}	n_2
• •	•	•	•	•	•
P_r	O_{r1}	O_{r2}	• • •	O_{rs}	n_r
Total	n_1	n_2	• • •	n_s	n

Neste caso, os valores esperados sob H_0 para a população i na categoria A_j são dados por

$$E_{ij}=rac{n_i imes n_j}{n}, \quad i=1,2,\cdots,r; \quad j=1,2,\cdots,s.$$

• Estatística do Teste:

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^s rac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

- Distribuição sob H_0 : $\chi^2 \operatorname{com}(r-1) imes (s-1)$ graus de liberdade.
- ullet Região Crítica: Rejeitar H_0 se $\chi^2_{obs}>k$, onde $P(\chi^2_{(r-1)(s-1)}>k)=lpha$.

Exemplo: Uma prova básica de estatística foi aplicada a 100 alunos de Ciências Humanas e a 100 alunos de Biológicas. As notas foram classificadas segundo os graus A, B, C, D e E (onde D o aluno não recebe o crédito e E o aluno foi reprovado).

• Objetivo: Testar se as distribuições de notas são iguais entre alunos de Ciências Humanas e Biológicas.

Tabela: Resultados da prova

Aluno de	A	В	C	D	Ε	Total
C. Humanas	15	20	30	20	15	100
C. Biológicas	8	23	18	34	17	100
Total	23	43	48	54	32	200

Solução:

- 1. Definição das Hipóteses
 - ullet $H_0:$ As distribuições das notas são as mesmas para ambos os grupos (Humanas e Biológicas).
 - H_1 : As distribuições diferem entre os grupos.

2. Cálculo das Frequências Esperadas (E_{ij}): Sob H_0 , as frequências esperadas são calculadas por:

$$E_{ij} = rac{ ext{(Total da linha } i) imes ext{(Total da coluna } j)}{ ext{Total geral}}$$

Exemplo para Célula (Humanas, A):

$$E_{11} = rac{100 imes 23}{200} = 11.5$$

Tabela de Valores Esperados:

Aluno de	Α	В	C	D	Ε
C. Humanas	11.5	21.5	24	27	16
C. Biológicas	11.5	21.5	24	27	16

3. Cálculo da Estatística Qui-Quadrado χ^2

$$\chi^2 = \sum rac{(O_{ij}-E_{ij})^2}{E_{ij}}$$

Cálculos Parciais:

- Humanas, A: $\frac{(15-11.5)^2}{11.5} = 1.09$
- Biológicas, D: $\frac{(34-27)^2}{27} = 1.81$

Valor Total de χ^2 :

 $\chi^2_{
m obs}pprox 13.14$ (soma de todas as contribuições)

- 4. Determinação da Região Crítica
 - Graus de Liberdade: (r-1)(c-1) = (2-1)(5-1) = 4
 - Valor Crítico (α = 0.05): $\chi^2_{4;0.05}=9.488$ (da tabela qui-quadrado).

5. Decisão e Conclusão

- Regra de Decisão: Rejeitar H $_{0}$ se $\chi^{2}_{\mathrm{obs}} > 9.488$.
- Resultado: Como 13.14 > 9.488, rejeitamos H₀.

6: **Conclusão**: Há evidências estatísticas (α = 0.05) de que as distribuições de notas diferem entre alunos de Ciências Humanas e Biológicas.

Tabela de Resumo do Teste Qui-Quadrado de Homogeneidade

Categoria	Grupo	O _{ij} (Observado)	E _{ij} (Esperado)	(O _{ij} - E _{ij}) ² / E _{ij}	Contribuição para χ²
A	Humanas	15	11.5	$\frac{(15-11.5)^2}{11.5} = 1.09$	1.09
A	Biológicas	8	11.5	$\frac{\left(8-11.5\right)^2}{11.5} = 1.07$	1.07
В	Humanas	20	21.5	$\frac{\left(20-21.5\right)^2}{21.5}=0.10$	0.10
В	Biológicas	23	21.5	$\frac{\left(23-21.5\right)^2}{21.5}=0.10$	0.10
C	Humanas	30	24	$\frac{(30-24)^2}{24} = 1.50$	1.50
C	Biológicas	18	24	$\frac{(18-24)^2}{24} = 1.50$	1.50
D	Humanas	20	27	$\frac{(20-27)^2}{27} = 1.81$	1.81
D	Biológicas	34	27	$\frac{(34-27)^2}{27} = 1.81$	1.81
E	Humanas	15	16	$\frac{(15-16)^2}{16} = 0.06$	0.06

Categoria	Grupo	O _{ij} (Observado)	E _{ij} (Esperado)	(O _{ij} - E _{ij}) ² / E _{ij}	Contribuição para χ²
E	Biológicas	17	16	$\frac{(17-16)^2}{16} = 0.06$	0.06
Total		200	200	Soma	χ^2 = 13.14

Exercício: Preferência de Gêneros de Jogos entre Plataformas

Um estudo investigou se a preferência por gêneros de jogos eletrônicos é homogênea entre jogadores de PC e Console. Foram entrevistados 400 jogadores, e os resultados estão na tabela abaixo:

Plataforma	Ação	RPG	Estratégia	Esportes	Total
PC	60	80	70	30	240
Console	40	50	30	40	160
Total	100	130	100	70	400

Objetivo: Testar se a distribuição de preferências por gêneros é a mesma para jogadores de PC e Console (α = 0.05).

Objetivo: Verificar se duas v.a.'s qualitativas são independentes.

- ullet Sejam $X\in Y$ duas v.a.'s qualitativas com r e s categorias, respectivamente.
- Seja p_{ij} a probabilidade de um indivíduo ser classificado nas categorias i e j ($i=1,\cdots,r$ e $j=1,\cdots,s$) simultaneamente.
- Seja $p_i = \sum_{j=1}^s p_{ij}$ a probabilidade marginal de um indivíduo ser classificado na categoria i da v.a. X, e $p_j = \sum_{i=1}^r p_{ij}$ a probabilidade marginal de um indivíduo ser classificado na categoria j da v.a. Y.
- A hipótese de independência pode ser escrita como

$$H_0: p_{ij} = p_i \times p_j, ext{ para todo par}(i,j),$$

e a hipótese alternativa $H_1: p_{ij} \neq p_i \times p_j$, para algum par(i,j).

A estatística do teste é dada por

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^s rac{(O_{ij} - E_{ij})^2}{E_{ij}}.$$

Novamente temos

$$E_{ij}=rac{n_i imes n_j}{n}, \quad i=1,2,\cdots,r \quad j=1,2,\cdots,s,$$

e a regra de decisão consiste em rejeitar H_0 , ao nível lpha, se o valor da estatística for grande, ou seja, a região crítica do teste é dada por

$$RC=\{\chi_{obs}^2>k\},$$

onde k é tal que $P\{\chi^2_{(r-1) imes(s-1)}>k\}=lpha.$

Exemplo: Suponha que o grau de satisfação de consumidores de um produto está sendo estudado, em diferentes classes de renda familiar. Para uma amostra de 300 consumidores, obteve-se os resultados na Tabela. É possível afirmar que a renda influencia o grau de satisfação?

Tabela: Grau de satisfação e renda dos consumidores

Grau de satisfação

Renda	Insatisfeito	Satisfeito	Muito satisfeito
Faixa A	55	30	15
Faixa B	28	45	27
Faixa C	8	40	52

Solução:

- Passo 1: Definir as hipóteses
 - H_0 (Hipótese nula): A renda e o grau de satisfação são independentes (não há relação).
 - H_1 (Hipótese alternativa): A renda e o grau de satisfação são dependentes (há relação).
- Passo 2: Calcular as frequências esperadas (E_{ij})
 A fórmula para calcular as frequências esperadas é:

$$E_{ij} = rac{ ext{Total da linha} \ i imes ext{Total da coluna} \ j}{ ext{Total geral}}$$

Aplicando aos dados da tabela de valores esperados:

Renda	Insatisfeito	Satisfeito	Muito satisfeito	Total
Faixa A	$\frac{100 \times 91}{300} = 30.33$	$\frac{100 \times 115}{300} = 38.33$	$\frac{100 \times 94}{300} = 31.33$	100
Faixa B	$\frac{100 \times 91}{300} = 30.33$	$\frac{100 \times 115}{300} = 38.33$	$\frac{100 \times 94}{300} = 31.33$	100
Faixa C	$\frac{100 \times 91}{300} = 30.33$	$\frac{100 \times 115}{300} = 38.33$	$\frac{100 \times 94}{300} = 31.33$	100
Total	91	115	94	300

• Passo 3: Calcular a estatística qui-quadrado (χ^2) A fórmula é:

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^s rac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

Calculando para cada célula:

Célula (O_{ij}, E_{ij})	Cálculo	Contribuição para χ^2
(55, 30.33)	$\frac{\left(55{-}30.33\right)^2}{30.33}$	19.88
(30, 38.33)	$\frac{\left(30 - 38.33\right)^2}{38.33}$	1.81
(15, 31.33)	$\frac{(15 {-} 31.33)^2}{31.33}$	8.56
(28, 30.33)	$\frac{(28{-}30.33)^2}{30.33}$	0.18
(45, 38.33)	$\frac{\left(45{-}38.33\right)^2}{38.33}$	1.17
(27, 31.33)	$\frac{\left(27{-}31.33\right)^2}{31.33}$	0.60
(8, 30.33)	$\frac{\left(8 - 30.33\right)^2}{30.33}$	16.34
(40, 38.33)	$\frac{\left(40{-}38.33\right)^2}{38.33}$	0.07
(52, 31.33)	$\frac{(52-31.33)^2}{31.33}$	13.65

• Passo 4: Para uma tabela $r \times s$, os graus de liberdade são:

$$gl = (r-1) \times (s-1) = (3-1) \times (3-1) = 4.$$

- Passo 5:
 - Nível de significância (lpha): Vamos adotar lpha=0.05.
 - Valor crítico ($\chi^2_{4:0.05}$): Consultando a tabela qui-quadrado, encontramos 9.488.

Regra de decisão:

- Se $\chi^2_{
m obs}>\chi^2_{
m crítico}$, rejeitamos H_0 .

Resposta final: Rejeitamos H_0 , concluindo que há evidências estatísticas para afirmar que a renda influencia o grau de satisfação dos consumidores, ao nível de 5% de significância..

(i) Observações:

- 1. A Tabela de valores observados é denominada Tabela de Contingência r imes s (r linhas e s colunas);
- 2. No caso de tabelas 2×2 , em que ocorrer algum valor esperado menor que 5, deve-se usar um outro teste de independência, denominado *Teste Erato de Fisher*;
- 3. Quando ocorrem valores esperados menores que 5, o teste χ^2 não apresenta bons resultados.

Exercício: Influência do Gênero do Jogador na Preferência por Categorias de Jogos Eletrônicos

Uma empresa de jogos eletrônicos deseja investigar se o **gênero do jogador** está associado à **preferência por categorias de jogos**. Para isso, foi realizada uma pesquisa com **200 jogadores**, e os resultados estão na tabela abaixo:

Gênero	Ação/Aventura	Esportes	Estratégia	Total
Masculino	50	30	20	100
Feminino	20	40	40	100
Total	70	70	60	200

Pergunta: Com base nos dados, teste a hipótese de que o gênero do jogador é independente da preferência por categoria de jogo (use $\alpha=0.05$).

Objetivos: Verificar se existe correlação linear significativa entre duas variáveis quantitativas X e Y combase em uma amostra.

Definição do Coeficiente de Correlação

O coeficiente de correlação de Pearson, denotado por r, mede a intensidade e direção da relação linear entre duas variáveis:

$$r = rac{\sum (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum (x_i - ar{x})^2 \sum (y_i - ar{y})^2}}$$

- ullet $-1 \leq r \leq 1$
- r>0: correlação positiva
- r < 0: correlação negativa
- r=0: ausência de correlação linear

- Queremos testar:
 - Hipótese nula (H_0): ho=0 (não há correlação na população)
 - Hipótese alternativa (H_1):
 - $ho \neq 0$: teste bilateral
 - $\circ \rho > 0$: teste unilateral à direita
 - $\circ \
 ho < 0$: teste unilateral à esquerda
- A estatística de teste t é dada por:

$$t=rac{r\sqrt{n-2}}{\sqrt{1-r^2}}, \sim t_{n-2}$$

- Regra de decisão para a rejeição da Hipótese Nula:
 - Calcular o valor da estatística t
 - Comparar com o valor crítico da tabela t.
 - Ou: calcular o **p-valor** e comparar com o nível de significância α .

Exemplo: Considere os seguintes dados referentes a horas de sono (Y) e notas na prova (X) cinco alunos.

Horas de estudo (X)	Nota na prova (Y)
2	65
3	70
5	75
6	78
8	85

1. Calcular as médias

$$ar{x} = rac{2+3+5+6+8}{5} = 4.8, \quad ar{y} = rac{65+70+75+78+85}{5} = 74.6$$

2. Tabela auxiliar

x_i	y_i	$x_i - \bar{x}$	$y_i - \bar{y}$	$(x_i-\bar x)(y_i-\bar y)$	$(x_i-ar{x})^2$	$(y_i-ar{y})^2$
2	65	-2,8	-9,6	26,88	7,84	92,16
3	70	-1,8	-4,6	8,28	3,24	21,16
5	75	0,2	0,4	0,08	0,04	0,16
6	78	1,2	3,4	4,08	1,44	11,56
8	85	3,2	10,4	33,28	10,24	108,16
$\overline{\sum}$				72,6	22,8	233,2

3. Calcular *r*

$$r = \frac{72,6}{\sqrt{22,8 \cdot 233,2}} = \frac{72,6}{\sqrt{5316,96}} = \frac{72,6}{72,94} = 0,995$$

4. Estatística de Teste

$$t = \frac{0.995 \cdot \sqrt{3}}{\sqrt{1 - 0.995^2}} = \frac{1,724}{\sqrt{0,009975}} = \frac{1,724}{0,0999} = 17,25$$

5. Valor Crítico

Com n-2=3 graus de liberdade e $\alpha=0.05$ (teste bilateral):

$$t_{0,025,3}=3{,}182$$

Como |t| = 17,25 > 3,182, rejeitamos H_0 .

• Conclusão: Há evidências estatísticas fortes de que existe correlação linear significativa entre as horas de estudo e as notas da prova.

Exemplo: Correlação entre Chutes a Gol e Vitórias em Jogos de Futebol

Um analista esportivo quer saber se há uma correlação linear significativa entre o **número de chutes a gol** de um time e o **número de vitórias** em uma sequência de partidas. Foram coletados dados de 8 jogos de um time:

Jogo	Chutes a gol (X)	Vitórias (Y)
1	5	1
2	7	1
3	10	2
4	12	3
5	14	4
6	9	2
7	4	1
8	11	3

Teste as hipóteses ao nível de 5%.