В.М. ЧЕРНЕНЬКИЙ, В.И. ТЕРЕХОВ, Ю.Е. ГАПАНЮК

Московский государственный технический университет им. Н.Э. Баумана gapyu@bmstu.ru

ПРЕДСТАВЛЕНИЕ СЛОЖНЫХ СЕТЕЙ НА ОСНОВЕ МЕТАГРАФОВ

Рассмотрена концепция сложных сетей как «сетей с эмерджентностью». Дана формализованная модель метаграфа. Рассмотрены преимущества метаграфов перед гиперграфами и гиперсетями для представления «сетей с эмерджентностью». Предложено использование холонической многоагентной системы для реализации активности в сложной сети. Рассмотрены структура и описание работы метаграфового агента как активного элемента для моделирования работы сложной сети.

Ключевые слова: сложная сеть, сеть с эмерджентностью, гиперграф, гиперсеть, метаграф, многоагентная система, холоническая многоагентная система, метаграфовый агент.

Ввеление

В настоящее время модели на основе сложных сетей находят все более широкое применение в различных областях науки от математики и информатики до биологии и социологии. Сложные сети рассматриваются в работах И.А. Евина [1], О.П. Кузнецова и Л.Ю. Жиляковой [2], К.В. Анохина [3] и других исследователей.

Одним из примеров таких моделей может служить когнитом, предложенный К.В. Анохиным [3]. В своих работах профессор К.В. Анохин для определения когнитома использует термин «гиперсетевая модель».

Гиперсети, как формальные модели для описания сложных графов, в отечественной литературе детально рассмотрены в работах профессора В.К. Попкова [4].

Одним из главных свойств, которые используются в сложных сетях, является свойство эмерджентности. Как выразил эту мысль в работе [3] К.В. Анохин: «формализм гиперсетей обобщает сети и гиперграфы, давая аппарат, необходимый для отображения феноменов эмерджентности в многоуровневых системах».

Таким образом, сложные сети можно, прежде всего, охарактеризовать как «сети с эмерджентностью», то есть фрагмент сети, состоящий из вершин и связей, может выступать как отдельное целое.

Но гиперсетевая модель, не смотря на все ее преимущества, является сложной при практической реализации. С нашей точки зрения для описания сложных сетей в большей степени подходит другой графовый формализм – метаграфы.

Постановка задачи и описание решения

Основной задачей данной статьи является рассмотрение основ описания и моделирования сложных сетей на основе метаграфов.

Для решения данной задачи вначале будет рассмотрено понятие метаграфа и его основные свойства, как базовой модели для представления сложных сетей.

Далее будут показаны преимущества метаграфовой модели перед гиперграфами и гиперсетями для описания «сетей с эмерджентностью».

Метаграф является пассивной структурой данных. Поэтому для реализации активности в сложной сети предлагается подход на базе холонической многоагентной системы. Основным элементом такой системы является метаграфовый агент, поэтому будут рассмотрены структура и описание принципов работы метаграфового агента.

Таким образом, предлагаемый подход позволяет моделировать сложную сеть на основе метаграфов.

Формализованная модель метаграфа

Основополагающими работами по теории метаграфов являются работы А. Базу и Р. Блэннинга, которые в 2007 году были обобщены в виде монографии [5]. Из отечественных работ необходимо отметить работу [6], в которой рассмотрены особенности применения метаграфов для описания моделей сложных объектов. В работе [6] отмечается, что единая теория метаграфов на сегодняшний день не сформирована. Поэтому в разных источниках можно встретить различные определения метаграфа, которые различаются в деталях. В данной статье используется определение из работы [7], адаптированное для описания сложных сетей:

$$MG = \langle V, MV, E \rangle,$$

где MG – метаграф; V – множество вершин метаграфа; MV – множество метавершин метаграфа; E – множество ребер метаграфа.

Вершина метаграфа характеризуется множеством атрибутов:

$$v_i = \{atr_k\}, v_i \in V,$$

где v_i – вершина метаграфа; atr_k – атрибут.

Ребро метаграфа характеризуется множеством атрибутов, исходной и конечной вершиной:

$$e_i = \langle v_S, v_E, \{atr_k\} \rangle, e_i \in E,$$

где e_i – ребро метаграфа; v_S – исходная вершина (метавершина) ребра; v_E – конечная вершина (метавершина) ребра; аtr $_k$ – атрибут.

Фрагмент метаграфа:

$$MG_i = \{ev_j\}, ev_j \in (V \cup E \cup MV),$$

где MG_i – фрагмент метаграфа; ev_j – элемент, принадлежащий объединению множеств вершин, метавершин и ребер метаграфа.

Таким образом, фрагмент метаграфа в общем виде может содержать произвольные вершины (метавершины) и ребра.

Метавершина метаграфа:

$$mv_i = \langle \{atr_k\}, MG_i \rangle, mv_i \in MV,$$

где mv_i – вершина метаграфа; atr_k – атрибут, MG_i – фрагмент метаграфа.

Таким образом, метавершина в дополнение к свойствам вершины включает вложенный фрагмент метаграфа. Наличие у метавершин собственных атрибутов и связей с другими вершинами является важной особенностью метаграфов. Это соответствует принципу эмерджентности, то есть приданию понятию нового качества, несводимости понятия к сумме его составных частей. Фактически, как только вводится новое понятие в виде метавершины, оно «получает право» на собственные свойства, связи и т.д., так как в соответствии с принципом эмерджентности новое понятие обладает новым качеством и не может быть сведено к подграфу базовых понятий

Метаграфы и гиперграфы

Рассмотрим более детально разницу между метаграфом и гиперграфом на основе рис. 1.

Рис. 1. Схематическое представление метаграфа (а) и гиперграфа (б).

Сплошными линиями на рис.1 показаны вершины и метавершины, пунктирными ребра и гиперребра. Ребра и гиперребра могут быть как ненаправленными (что показано на рисунке), так и направленными.

Гиперребро гиперграфа задает последовательность обхода вершин. На рис. 1 гиперребро he₁ включает вершины hv₁, hv₃, hv₄; а гиперребро he₂ включает вершины hv₁ и hv₂.

Метаграф содержит вершины, метавершины и ребра. На рис. 1 показаны две метавершины: v_{11} (которая включает вершины v_1 , v_2 , v_3 и ребра e_1 , e_2 , e_3) и v_{12} (которая включает вершины v_4 , v_5 и ребро e_6).

Если гиперребро гиперграфа может включать только вершины, то метавершина метаграфа может включать как вершины (или метавершины), так и ребра.

Ребро метаграфа может соединять вершины внутри одной метавершины (e_1 , e_2 , e_3 , e_6), вершины между различными метавершинами (e_4 , e_5), метавершины (e_7), вершины и метавершины (e_8).

Рассмотренный пример показывает, что, хотя гиперграф и содержит гиперребра, но не позволяет моделировать сложные иерархические зависимости и не является полноценной «сетью с эмерджентностью». В отличие от гиперграфа, метаграф позволяет естественным образом моделировать сложные иерархические зависимости и является «сетью с эмерджентностью».

Метаграфы и гиперсети

Рассмотрим определение абстрактной гиперсети в соответствии с [4]. Пусть даны гиперграфы $PS \equiv WS_0, WS_1, WS_2, ...WS_K$. Гиперграф PS или WS_0 называется первичной сетью. Гиперграф WS_i называется вторичной сетью і-го порядка.

Пусть также задана последовательность отображений между сетями различных уровней $\{\Phi_i\}\colon WS_{\scriptscriptstyle K} {\buildrel -} {\buildrel \Phi_{\scriptscriptstyle K}} \longrightarrow WS_{\scriptscriptstyle K-1} {\buildrel -} {\buildrel \Phi_{\scriptscriptstyle K-1}} \longrightarrow \dots WS_{\scriptscriptstyle 1} {\buildrel -} {\buildrel \Phi_{\scriptscriptstyle I}} \to PS$.

Тогда иерархическую абстрактную гиперсеть порядка K автор работы [4] определяет как $AS^K = \langle PS, WS_1, ..., WS_K; \Phi_1, ..., \Phi_K \rangle$.

Эмерджентность в гиперсети возникает при переходе между уровнями за счет возникновения гиперсимплексов. В соответствии с [3] «основание гиперсимплекса содержит множество элементов одного уровня, а его вершина образуется описанием их отношений и приобретает интегральные свойства, делающие ее элементом сети более высокого уровня».

Простейший пример фрагмента гиперсети представлен на рис. 2.

Рис. 2. Схематическое представление фрагмента гиперсети.

Первичная сеть PS образуется вершинами гиперребер he_1 и he_2 . Первый уровень вторичной сети образуется вершинами гиперребра he_3 . Штрихпунктирной линий выделен гиперсимплекс hv_3 - hv_4 - hv_5 .

Отметим, что гиперсимплекс, как совокупность элементов различных уровней, в теории метаграфов может быть представлен в виде метавершины (в соответствии с определением метавершины).

Рассмотрим отличия между моделью гиперсети и моделью метаграфа.

В соответствии с определением гиперсеть является «послойным» описанием графов. Предполагается, что слои-гиперграфы идут последовательно и имеют регулярную структуру. Метаграф позволяет с помощью метавершин группировать произвольные элементы, наличие регулярных уровней не обязательно, что делает подход метаграфов более гибким. Фактически, каждый гиперсимплекс может быть представлен отдельной метавершиной.

Гиперсеть состоит из разнородных элементов (гиперграфов и отображений). Метаграф позволяет с помощью метавершин обеспечивать связь как между элементами одного уровня, так и между элементами различных уровней (при этом, не обязательно соседних). Это делает метаграфовый подход более унифицированным и удобным в описании, так как для описания используются не разнородные структуры (гиперграфы и отображения), а только метавершины (и связи как элементы метавершин). Метаграфовый подход позволяет рассматривать сеть не только в виде «горизонтальных» слоев, но и в виде «вертикальных» колонок.

Эмерджентность в гиперсети обеспечивается за счет гиперсимплексов и фактически возникает только при переходе между уровнями. Эмерджентность в метаграфах обеспечивается за счет использования метавершин и может применяться на одном уровне или между уровнями (не обязательно соседними), что делает реализацию эмерджентности в метаграфах более гибкой.

По результатам сравнения моделей можно сделать следующие выводы:

- 1. Модель гиперсети фактически представляет собой попытку описания «сверху вниз» (по уровням), а модель метаграфа попытку описания «снизу вверх» (путем «выращивания» метавершин из более простых элементов).
- 2. Модель метаграфа является более простой при описании, так как состоит из однородных элементов (метавершин, и связей, как элементов метавершин).
- 3. Модель метаграфа является более гибкой, так как не требует регулярности уровней. Произвольный подграф может быть превращен в метавершину.

Тем не менее, необходимо подчеркнуть, что метаграфы и гиперсети являются лишь различными формальными описаниями одних и тех же процессов, которые происходят в «сетях с эмерджентностью».

Также необходимо отметить, что настоящее время теория гиперсетей является намного более зрелой по сравнению с теорией метаграфов и благодаря теории гиперсетей исследователям удалось понять многие аспекты «сетей с эмерджентностью».

Использование холонической многоагентной системы для реализации активности в сложной сети

Не смотря на все рассмотренные преимущества метаграф является пассивной структурой данных. Поэтому следующим вопросом является вопрос о том, каким образом реализовать активность при моделировании сложной сети.

Для решения этого вопроса нами предлагается использовать подход на основе многоагентной системы (MAC). В [8] приводится несколько определений МАС и программных агентов, мы адаптируем данные определения применительно к нашей задаче.

Под программным агентом будем понимать программный модуль, который выполняется в виде автономной задачи (не зависит от других агентов), способен обмениваться информацией со средой и другими агентами. Под МАС будем понимать систему однородных или разнородных агентов, функционирующих в среде.

Наиболее интересным представляется подход на основе холонической многоагентной системы (холонической МАС). Такой класс систем рассмотрен в работе В.Б. Тарасова [8]. В соответствии с определением [8, с.

234] холон – это «целое, рассматриваемое в то же время как часть целого».

Отметим, что это определение похоже на определение метавершины, но в отличие от метавершины, агент является не пассивной структурой данных, а активным элементом системы. Назовем такого агента метаграфовым и рассмотрим более детально его структуру и описание работы.

Структура и описание работы метаграфового агента

Определим метаграфовый агент следующим образом:

$$ag^{M} = \langle MG, R, AG^{ST}, \{ag_{i}^{M}\} \rangle, R = \{r_{i}\},$$

где ${\rm ag}^{\rm M}$ — метаграфовый агент; ${\rm MG}$ — метаграф, на основе которого выполняются правила агента; ${\rm R}$ — набор правил (множество правил ${\rm r}_{\rm j}$); ${\rm AG}^{\rm ST}$ — стартовое условие выполнения агента (фрагмент метаграфа, который используется для стартовой проверки правил, или стартовое правило).

При этом агент ag^M содержит множество вложенных агентов ag_i^M что соответствует принципам организации холонической многоагентной системы. Агент верхнего уровня может активизировать агентов нижнего уровня для решения подзадач.

Структура правила метаграфового агента:

$$r_i: MG_i \to OP^{MG}$$
,

где r_i – правило; MG_j – фрагмент метаграфа, на основе которого выполняется правило; OP^{MG} – множество действий, выполняемых над метаграфом.

Антецедентом правила является фрагмент метаграфа, консеквентом правила является множество действий, выполняемых над метаграфом.

Детальное описание действий, которые могут быть выполнены над метаграфом, рассмотрены в [7].

Особенностью метаграфового агента является то, что его структура может быть представлена в виде фрагмента метаграфа. Это соответствует принципу самоотображаемости (англ. homoiconicity) в языках программирования. Самоотображаемость — это способность языка программирования анализировать программу на этом языке как структуру данных этого языка.

Пример представления метаграфового агента в виде фрагмента метаграфа приведен на рис. 3.

Метаграфовый агент представлен в виде метавершины метаграфа. В соответствии с определением он связан с метаграфом MG_1 , на основе которого выполняются правила агента. Данная связь показана с помощью ребра e_4 .

Метаграфовый агент содержит множество вложенных метавершин, соответствующих правилам (правило 1 – правило N). Каждая метавершина правила содержит вершины антецедента и консеквента. В данном примере с антецедентом правила связана метавершина данных mv_2 , что показано ребром e_2 , а с консеквентом правила связана метавершина данных mv_3 , что показано ребром e_3 . Условия срабатывания антецедента и множество действий консеквента задаются в виде атрибутов соответствующих вершин.

Стартовое условие выполнения агента задается с помощью атрибута «start=true». Если стартовое условие задается в виде стартового правила, то данным атрибутом помечается метавершина соответствующего правила, в данном примере это правило 1. Если стартовое условие задается в виде стартового фрагмента метаграфа, который используется для стартовой проверки правил, то атрибутом «start=true» помечается ребро, которое связывает стартовый фрагмент метаграфа с метавершиной агента, в данном примере это ребро е₁.

Рис. 3. Представление метаграфового агента в виде фрагмента метаграфа.

Правила метаграфового агента можно разделить на замкнутые и разомкнутые.

Разомкнутые правила не меняют в правой части правила фрагмент метаграфа, относящийся к левой части правила. Можно разделить входной и выходной фрагменты метаграфа. Данные правила являются аналогом шаблона, который порождает выходной метаграф на основе входного.

Замкнутые правила меняют в правой части правила фрагмент метаграфа, относящийся к левой части правила. Изменение метаграфа в правой части правил заставляет срабатывать левые части других правил. Но при этом некорректно разработанные замкнутые правила могут привести к зацикливанию метаграфового агента.

Таким образом, метаграфовый агент позволяет генерировать один метаграф на основе другого (с использованием разомкнутых правил) или модифицировать метаграф (с использованием замкнутых правил).

Использование метаграфового агента для моделирования работы сложной сети

Метаграфовый агент может быть «закреплен» за произвольным фрагментом сложной сети, представленной в виде метаграфа. Правила закрепления должны зависеть от решаемой задачи. Наиболее простым принципом является сопоставление метаграфового агента конкретной метавершине метаграфа.

В зависимости от решаемой задачи метаграфовый агент может модифицировать метаграф (с использованием замкнутых правил) или генерировать другой метаграф (с использованием разомкнутых правил). В частности, генерируемый метаграф может быть моделью работы метаграфа нижнего уровня.

Данный подход позволяет моделировать широкий класс задач, связанных как с изменением, так и построением сложных «сетей с эмерджентностью».

Выводы

Основным свойством сложной сети является эмерджентность, таким образом, сложную сеть можно охарактеризовать, прежде всего, как «сеть с эмерджентностью».

Одним из вариантов описания «сетей с эмерджентностью» является подход на основе метаграфов. Эмерджентность обеспечивается за счет использования метавершин.

В отличие от метаграфа, гиперграф не является в полной мере «сетью с эмерджентностью».

Гиперсеть в полной мере содержит возможности описания «сетей с эмерджентностью». Эмерджентность обеспечивается за счет использования гиперсимплексов.

Метаграф по сравнению с гиперсетью обеспечивает более простое и гибкое описание «сетей с эмерджентностью». Но необходимо подчерк-

нуть, что метаграфы и гиперсети являются лишь различными формальными описаниями одних и тех же процессов, которые происходят в «сетях с эмерджентностью» и теория гиперсетей на сегодняшний день является более развитой по сравнению с теорией метаграфов.

Для реализации активности в «сетях с эмерджентностью» может быть использована холоническая многоагентная система на основе метаграфовых агентов.

В зависимости от решаемой задачи метаграфовый агент может модифицировать метаграф (с использованием замкнутых правил) или генерировать другой метаграф (с использованием разомкнутых правил). В частности, генерируемый метаграф может быть моделью работы метаграфа нижнего уровня.

Таким образом, предлагаемый подход позволяет моделировать сложные «сети с эмерджентностью» на основе метаграфов.

Список литературы

- Евин И.А. Введение с теорию сложных сетей //Компьютерные исследования и моделирование. 2010, Том 2, №2, с. 121-141.
- 2. Кузнецов О.П., Жилякова Л.Ю. Сложные сети и когнитивные науки // Нейроинформатика-2015. XVII Всероссийская научно-техническая конференция. Сборник научных трудов. Ч. 1. М.: МИФИ. 2015. С. 18.
- Анохин К.В. Когнитом: гиперсетевая модель мозга // Нейроинформатика-2015.
 XVII Всероссийская научно-техническая конференция. Сборник научных трудов. Ч. 1. М.: МИФИ. 2015. С. 14-15.
- 4. Попков В.К. Математические модели связности. Новосибирск: ИВМиМГ СО РАН, 2006. 490 с.
- 5. Basu A., Blanning R. Metagraphs and Their Applications // Amit Basu, Robert W. Blanning Springer, 2007. 174 p.
- 6. Астанин С.В., Драгныш Н.В., Жуковская Н.К. Вложенные метаграфы как модели сложных объектов // Электронный научный журнал «Инженерный вестник Дона», 2012. № 4 // http://ivdon.ru/magazine/archive/n4p2y2012/1434
- 7. Самохвалов Э.Н., Ревунков Г.И., Гапанюк Ю.Е. Использование метаграфов для описания семантики и прагматики информационных систем. Вестник МГТУ им. Н.Э. Баумана. Сер. «Приборостроение». 2015. Выпуск №1.
- 8. Тарасов В.Б. От многоагентных систем к интеллектуальным организациям: философия, психология, информатика. М.: Эдиториал УРСС, 2002. 352 с.