~

Sei R = K[x] odes Z.

Gegelen $f,g \in \mathbb{R}$, finde $d = ggT(f,g) \in \mathbb{R}$ und Bézout-Reflicemen &, SER: d= xf+/sg.

Algorithms: Ohne Einschränlung deg f 7, deg g (|f| = |g| piir R= Z)

Schreibe $f_0 = f$, $f_1 = g$.

The new, schreibe $f_n = a_n f_{n+n} + f_{n+2}$ (*)

Division wit Rest " f_n : f_{n+n} ", Polynaudivision.

Falls $f_{n+2} = 0$ (d.h. him Rest), Abbruch des Verfahrens. Dann: $f_{n+1} = 0$ $f_$

=> futil f1 => futil for Es gilt sogar: ggT (f,g) = futi. Die Bézout - Welfisienten findet man durch Riederebstitution von futi in die Gleichungen (x).

Beispiel: $d = ggT\left(x^3 + x^2 + x + 1, x^2 - x + 1\right)$ wher $H_3[x]$.

 $= \left(x^2 - x + 1 \right) \left(x + 2 \right) + 2x - 1$ $x^3 + x^2 + x + 1$

 $-(x^3-x^2+x)$ 2x2 +1

 $-\left(2x^2-2x+2\right)$

 $2\times - 1$

$$\frac{\chi^{2} - \chi + 1}{-\frac{(\chi^{2} - 2\chi)}{\chi + 1}} = \frac{(2\chi - 1)(2\chi + 2)}{+2} + 0$$

$$\frac{-\chi^{2} - \chi + 1}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi + 1}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi + 1}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi + 1}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi + 1}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi + 1}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi + 1}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi + 1}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi + 1}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi + 1}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi + 1}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi + 1}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi + 1}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi}{\chi + 1} = \frac{\chi^{2} - \chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi}{\chi + 1} = \frac{\chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi}{\chi + 1} = \frac{\chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi}{\chi + 1} = \frac{\chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi}{\chi + 1} = \frac{\chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi}{\chi + 1} = \frac{\chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi}{\chi + 1} = \frac{\chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi}{\chi + 1} = \frac{\chi}{\chi + 1} + 0$$

$$\frac{\chi^{2} - \chi}{\chi + 1} = \frac{\chi}{\chi + 1} + 0$$

$$\frac{\chi}{\chi + 1} = \frac{\chi}{\chi + 1} + 0$$

$$\frac{\chi}{\chi + 1} = \frac{\chi}{\chi + 1} + 0$$

$$\frac{\chi}{\chi + 1} = \frac{\chi}{\chi + 1} + 0$$

$$\frac{\chi}{\chi + 1} = \frac{\chi}{\chi + 1} + 0$$

$$\frac{\chi}{\chi + 1} = \frac{\chi}{\chi + 1} + 0$$

$$\frac{\chi}{\chi + 1} = \frac{\chi}{\chi + 1} + 0$$

$$\frac{\chi}{\chi + 1} = \frac{\chi}{\chi + 1} + 0$$

$$\frac{\chi}{\chi + 1} = \frac{\chi}{\chi + 1} + 0$$

Sezout - Koeffisienten:
$$2x-1=-(x+2)(x^2-x+1)+1\cdot(x^3+x^2+x+1)$$