HEATING ENERGY CALCULATIONS

Parameters

Calculations

1) The air conditioning cycle on the Psychrometric chart

2) The table

State Point	Tdb (°F)	Twb (°F)	Tdp (°F)	RH (%)	h (Btu/ lba)	v (ft³/lba)	W (lb _w /lb _a)	m (lba/hr)	Q (ft³/min)
A	45	34.6	17	30	12.8	12.76	0.00185	9404.39	2000
В	76.5	50.5	17	10	20.6	13.55	0.00185	9404.39	3228.84
С	50.5	50.5	50.5	100	20.6	13.03	0.0078	9404.39	3228.84
D	70	58.5	50.5	50	25.4	13.52	0.0078	9404.39	3981.19
Е	87	64.5	50.5	28	29.65	13.95	0.0078	9404.39	4647.34

- 3) (20.6-12.8) * 9404.39 = 73354.24 Btu/hr
- 4) Since the enthalpy is the same, no energy is required.
- 5) (0.0078-0.00185) * 9404.39 = 55.96 lbw/hr 55.96 / 8.34 lbw/gal = 6.71 gph
- 6) (29.65-20.6) * 9404.39 = 85109.73 Btu/hr

7) The adjusted supply air CFM =
$$\frac{E \text{ (space heating loads)} \times v \text{ (air volume)}}{(h_E - h_D)*60 \text{ min/hr}} = \frac{40000*12.76}{(30.2-2.4)*60}$$
$$= 1772.22 \text{ ft}^3/\text{min}$$

- Less air than 2000 CFM
- This is because the enthalpy difference has increased.