Problem Set 1

Due: Wednesday, January 18

We will assume rings have identity and ring homomorphisms are unital (send 1 to 1) unless stated otherwise. Do Problems A–C but do not turn these in. Turn in Problems 1–9.

Problem A. Let R be a ring. Show that $(-1)^2 = 1$ in R.

Problem B. Decide which of the following are subrings of the ring of all functions from the closed interval [0,1] to \mathbb{R} :

- (a) the set of all functions f(x) such that f(q) = 0 for all $q \in \mathbb{Q} \cap [0,1]$
- (b) the set of all polynomial functions
- (c) the set of all functions which only have a finite number of zeros, together with the zero function
- (d) the set of all functions which have an infinite number of zeros
- (e) the set of all functions f such that $\lim_{x\to 1^-} f(x) = 0$.
- (f) the set of all rational linear combinations of the functions $\sin(nx)$ and $\cos(mx)$, where $m, n \in \{0, 1, 2, \ldots\}$.

Problem C. Decide which of the following are ideals of the ring $\mathbb{Z} \times \mathbb{Z}$:

- (a) $\{(a,a)|a\in\mathbb{Z}\}$
- (b) $\{(2a, 2b)|a, b \in \mathbb{Z}\}$
- (c) $\{(2a,0)|a\in\mathbb{Z}\}$
- (d) $\{(a, -a) | a \in \mathbb{Z}\}.$

Problem 1. An element x in a ring R is called *nilpotent* if $x^m = 0$ for some $m \in \mathbb{Z}^+$. Let x be a nilpotent element of the commutative ring R.

- (a) Prove that x is either zero or a zero divisor.
- (b) Prove that rx is nilpotent for all $r \in R$.
- (c) Prove that 1 + x is a unit in R.
- (d) Deduce that the sum of a nilpotent element and a unit is a unit.

Problem 2. Let R be a ring with $1 \neq 0$. A nonzero element a is called a *left zero divisor* in R if there is a nonzero element $x \in R$ such that ax = 0. Symmetrically, $b \neq 0$ is a *right zero divisor* if there is a nonzero $y \in R$ such that yb = 0 (so a zero divisor is an element which is either a left or a right zero divisor). An element $u \in R$ has a *left inverse* in R if there is some $s \in R$ such that su = 1. Symmetrically, v has a *right inverse* if vt = 1 for some $t \in R$. Let \mathbb{F} be a field. An \mathbb{F} -algebra is a ring A together with a (unital) ring homomorphism $f: \mathbb{F} \to A$ such that the image $f(\mathbb{F})$ is contained in the center of A, where the *center* of a ring A is the set $\{a \in A: ab = ba$ for every $b \in A\}$. It follows from this definition that an \mathbb{F} -algebra is also an \mathbb{F} -vector space. So a finite-dimensional \mathbb{F} -algebra is an \mathbb{F} -algebra that is also finite-dimensional as an \mathbb{F} -vector space.

- (a) Prove that u is a unit if and only if it has both a right and a left inverse (i.e. u must have a two-sided inverse).
- (b) Prove that if u has a right inverse then u is not a right zero divisor.
- (c) Prove that if u has more than one right inverse then u is a left zero divisor.
- (d) Prove that if R is a finite-dimensional algebra over a field then every element that has a right inverse is a unit (i.e., has a two-sided inverse).

- **Problem 3.** Let $\mathcal{K} = \{k_1, \dots, k_m\}$ be a conjugacy class in the finite group G.
 - (a) Prove that the element $K = k_1 + \cdots + k_m$ is in the center of the group ring RG.
 - (b) Let $K_1, ..., K_r$ be the conjugacy classes of G and for each K_i let K_i be the element of RG that is the sum of the members of K_i . Prove that an element $\alpha \in RG$ is in the center of RG if and only if $\alpha = a_1K_1 + a_2K_2 + \cdots + a_rK_r$ for some $a_1, a_2, \ldots, a_r \in R$.
- **Problem 4.** Prove that the rings $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$ are not isomorphic.
- **Problem 5.** Decide which of the following are ideals of the ring $\mathbb{Z}[x]$ (and justify your answer):
 - (a) the set of all polynomials whose constant term is a multiple of 3
 - (b) the set of all polynomials whose coefficient of x^2 is a multiple of 3
 - (c) the set of all polynomials whose constant term, coefficient of x, and coefficient of x^2 are zero
 - (d) $\mathbb{Z}[x^2]$ (i.e., the polynomials in which only even powers of x appear)
 - (e) the set of polynomials whose coefficients sum to zero
 - (f) the set of polynomials p(x) such that p'(0) = 0, where p'(x) is the usual first derivative of p(x) with respect to x.
- **Problem 6.** Prove that every (two-sided) ideal of $M_n(R)$ is equal to $M_n(J)$ for some (two-sided) ideal J of R.
- **Problem 7.** Let I and J be ideals of R.
 - (a) Prove that I + J is the smallest ideal of R containing both I and J.
 - (b) Prove that IJ is an ideal contained in $I \cap J$.
 - (c) Give an example where $IJ \neq I \cap J$.
 - (d) Prove that if R is commutative and if I + J = R then $IJ = I \cap J$.
- **Problem 8.** Let R be the ring of all continuous functions from the closed interval [0,1] to \mathbb{R} and for each $c \in [0,1]$ let $M_c = \{f \in R | f(c) = 0\}$ (recall that M_c was shown to be a maximal ideal of R).
 - (a) Prove that if M is any maximal ideal of R then there is a real number $c \in [0,1]$ such that $M = M_c$.
 - (b) Prove that if b and c are distinct points in [0,1] then $M_b \neq M_c$.
 - (c) Prove that M_c is not equal to the principal ideal generated by x-c.
 - (d) Prove that M_c is not a finitely generated ideal.
- **Problem 9.** (Bonus) Let S_3 denote the symmetric group on three letters. Determine all nonzero minimal two-sided ideals of $\mathbb{C}S_3$ (a nonzero two-sided ideal of a ring is *minimal* if the only two-sided ideals it contains are 0 and itself).