

DIALOG(R)File 347:JAP10

(c) 2000 JPO & JAP10. All rts. reserv.

05285548

ELECTROLUMINESCENT DEVICE WITH ORGANIC ELECTROLUMINESCENT LAYER

PUB. NO. : 08-241048 [JP 8241048 A]

PUBLISHED: September 17, 1996 (19960917)

INVENTOR(s): CHIN WAN TAN

BIEI CHIEN SEI

APPLICANT(s): EASTMAN KODAK CO [000707] (A Non-Japanese Company or
Corporation), US (United States of America)

APPL. NO. : 07-323196 [JP 95323196]

FILED: December 12, 1995 (19951212)

PRIORITY: 7-355,786 [US 355786-1994], US (United States of America),
December 14, 1994 (19941214)

DIALOG(R)File 352:DERWENT WPI

(c) 2000 Derwent Info Ltd. All rts. reserv.

010782877 **Image available**

WPI Acc No: 96-279830/199629

Electroluminescent pixel device for flat panel display - has substrate carrying thin-film addressing transistors and organic electroluminescent thin-film layer overlaid by cathode layer

Patent Assignee: EASTMAN KODAK CO (EAST)

Inventor: HSEIH B C; TANG C W

Number of Countries: 004 Number of Patents: 002

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Main IPC	Week
EP 717445	A2	19960619	EP 95119098	A	19951205	H01L-027/15	199629 B
JP 8241048	A	19960917	JP 95323196	A	19951212	G09F-009/30	199647

Priority Applications (No Type Date): US 94355786 A 19941214

Cited Patents: No-SR. Pub

Patent Details:

Patent	Kind	Lan Pg	Filing Notes	Application	Patent
EP 717445	A2	E	16		

Designated States (Regional): DE FR GB

JP 8241048 A 11

Abstract (Basic): EP 717445 A

The pixel device uses a pair of thin-film transistors as active matrix addressing elements and organic electroluminescent thin-films as the emission medium.

An insulating substrate carries the thin-film transistors, a capacitor and an overlying passivation layer, with a tapered opening over which an organic electroluminescent layer (82) is applied. A cathode layer directly overlying the electroluminescent layer is pref. formed as a continuous layer of a low work function material.

USE/ADVANTAGE - For e.g. lap-top computer and pocket television.

Requires low voltage drive, e.g. 4 to 10 volts. Has high luminous efficiency, e.g. 4 lumens per Watt. Low temp. mfr. e.g. at room temp.

Dwg. 8/9

Derwent Class: U12; U14

International Patent Class (Main): G09F-009/30; H01L-027/15

International Patent Class (Additional): H05B-033/02

特開平8-241048

(43)公開日 平成8年(1996)9月17日

(51) Int.Cl. ⁸ G 09 F 9/30 H 05 B 33/02	識別記号 3 6 5	序内整理番号 7426-5H	F I G 09 F 9/30 H 05 B 33/02	技術表示箇所 3 6 5 C
--	---------------	-------------------	------------------------------------	-------------------

審査請求 未請求 請求項の数3 O.L (全11頁)

(21)出願番号 特願平7-323196

(71)出願人 590000846

イーストマン コダック カンパニー
アメリカ合衆国、ニューヨーク14650、ロ
チェスター、ステイト ストリート343

(22)出願日 平成7年(1995)12月12日

(72)発明者 チン ワン タン

アメリカ合衆国 ニューヨーク 14625
ロチェスター パーク・レーン 176

(31)優先権主張番号 355786

(72)発明者 ピエイ チエン セイ

(32)優先日 1994年12月14日

アメリカ合衆国 ニューヨーク 14534
ピットフォード サドルブルック・ロード

(33)優先権主張国 米国(US)

11

(74)代理人 弁理士 伊東 忠彦 (外1名)

(54)【発明の名称】有機エレクトロルミネセンス層を有するエレクトロルミネセンスデバイス

(51)【要約】

【課題】エレクトロルミネセンス媒体として有機材料を用いる4端子薄膜トランジスタエレクトロルミネンスデバイスを提供する。

【解決手段】そのデバイスは2つの薄膜トランジスタとコンデンサとその上に有機エレクトロルミネセンス層が配置されるテーパを有する端を有する開口を有するオーバーレイバシベーション層とからなる。有機エレクトロルミネセンス材料をオーバーレイするのは陰極層であり、これは好ましくは低い仕事関数の材料から作られる連続層である。

【特許請求の範囲】

【請求項1】 a) 上面及び底面を有する基板と；
 b) 該基板の上面に配置され、ソース電極とドレイン電極とゲート誘電体とゲート電極とかなり、該ゲート電極はゲートバスの一部分からなる第一の薄膜トランジスタと；
 c) 該基板の上面に配置され、ソース電極とドレイン電極とゲート誘電体とゲート電極とかなり、該ゲート電極は該第一の薄膜トランジスタのドレイン電極に電気的に接続される第二の薄膜トランジスタと；
 d) 該基板の上面に配置され、上部及び底部電極からなるコンデンサと；
 e) 該第二の薄膜トランジスタのドレイン電極に電気的に接続される表示陽極層と；
 f) 該第一及び第二の薄膜トランジスタと該コンデンサとオーバーレイし、該陽極層上に開口を有し、底端が該陽極層上に上端より更に延在するように該開口でチーパを付けられた端を更に有する誘電パシベーション層と；
 g) 該陽極層の上面に直接配置され、該パシベーション層により該第一及び第二の薄膜トランジスタと該コンデンサから絶縁される有機エレクトロルミネセンス層と；
 h) 該有機エレクトロルミネセンス層の上面に直接配置される塗膜層と；からなるエレクトロルミネセンスデバイス。

【請求項2】 該第一の薄膜トランジスタのソース電極に電気的に接続されたソースバスと、該コンデンサに電気的に接続され、該ソースバスに平行に位置する接地バスとを更に含む請求項1記載のエレクトロルミネセンスデバイス。

【請求項3】 該陰極は4eV以下の仕事関数を有する金属からなる請求項2記載のエレクトロルミネセンスデバイス。

【発明の詳細な説明】

【0001】関連する出願の相互参照

Tang等によるアメリカ国特許出願03/355742「TFT-EL Display Panel Using Organic Electroluminescent Media」及びTang等によるアメリカ国特許出願08/355940「A Method of Fabricating a TFT-EL Pixel」は両方とも同時に提出され、その記述をここに引用する。

【0002】

【発明の属する技術分野】本発明は能動マトリックスアドレッシング要素としての薄膜トランジスタ(TFT)と放射媒体として有機エレクトロルミネセンス薄膜とを用いたエレクトロルミネセンスデバイス(例えば画素)に関する。

【0003】

【従来の技術】フラットパネル表示器(FPD)技術の急速な発展は高品質大領域、フルカラー、高解像度表示器を可能にした。これらの表示器はラップトップコンピュータやポケットTVのような電子製品での新たな応用を可能にした。これらのFPD技術の中で液晶表示器(LCD)は市場での表示器の選択として出現した。それはまた他のFPD技術が比較される技術標準を設定した。LCDパネルの例は以下を含む：(1)ワークステーション用の14", 16-カラーLCDパネル(IBMと東芝、1989年)(K. Ichikawa, S. Suzuki, H. Matano, T. Aoki, T. Higuchi, Y. Oano等によるSID Digest, 226(1989)を参照)、(2)6"フルカラーLCD-TV(フィリップス、1987年)(M. J. Powell, J. A. Chapman, A. G. Knapp, I. D. French, J. R. Hughes, A. D. Pearson, M. Allinson, M. J. Edwards, R. A. Ford, M. C. Hemmings, O. F. Hill, D. H. Nicholls, N. K. Wright等によるProceeding, International Display Conference, 63, 1987を参照)、(3)4"フルカラーLCD-TV(モデルLQ424A01)(model LQ424A01用のSharp Corporation Technical Literatureを参照)。

4) 1メガ画素カラーTFT-LCD(ゼネラルリンクトリック)(D. E. Castleberry, G. E. PossinによるSID Digest, 232(1988)を参照)。特許及び出版物を含む全ての参考文献は以下で完全に再現されるようにここに引用する。

【0004】これらのLCDパネル内の共通の特徴は能動アドレッシング方式で薄膜トランジスタ(TFT)の使用であり、これは直接アドレッシング(S. MorozumiによるAdvances in Electronics and Electron Physics, P. W. Hawkes編集, Vol. 77, Academic Press 1990を参照)の制限を緩和する。LCD技術の成功は大領域TFT(主にアモルファスシリコンTFT)の製造の急速な進歩によることが大部分である。TFTスイッチング特性と電子光学LCD表示要素との間のほとんど理想的な適合はまたキーとしての役割を果たす。

【0005】TFT-LCDパネルの主な欠点は明るいバックライトが必要なことである。これはTFT-LCDの透過係数が、特にガラバネルで小さいためである。典型的には透過係数は約2-3パーセントである(S. MorozumiによるAdvances in

Electronics and Electron Physics, P. W. Hawkes編集, Vol. 77, Academic Press 1990を参照)。バックライト付きのTFT-LCDパネルに対する電力消費はかなりのものであり、バッテリー作動を必要とする携帯型表示器の応用に対して逆行するように影響する。

【0006】バックライトの必要性はまたフラットパネルの小型化を損なう。例えばパネルの深さはバックライトユニットを収納するために増加されなければならない。典型的な管状の冷陰極ランプを用いると、付加的な深さは約3/4から1インチである。バックライトはまたF PDに余計な重さを加える。上記の制限に対する理想的な解決はバックライトの必要を除去する低電力放射表示器である。特に魅力的な候補は薄膜トランジスタ二極トニルミネセンス(TFT-EL)表示器である。TFT-EL表示器ではそれぞれの画素は光を放射するようアドレスされ、補助のバックライトは必要でない。TFT-EL方式はFischerにより1971年に提案された(A. G. FischerによるIEEE Trans. Electron Devices, 802(971)を参照)。Fischerの方式の粉末化されたZnSはEL媒体として用いられている。

【0007】1975年に成功したプロトタイプのTFT-ELパネル(6")はZnSをEL要素として、CdSeをTFT材料として用いるBrody等により作られたと報告された(T. P. Brody, F. C. Luo, A. P. Szepesi, D. H. Davies等によるIEEE Trans. Electron Devices, 22, 739(1975)を参照)。ZnS-ELが百ボルト以上の高駆動電圧を必要とするのでスイッチングCdSe-TFT要素はそのような高電圧振動を扱うよう設計されねばならない。それで高電圧TFTの信頼性は疑わしくなった。究極的にはZnSに基づくTFT-ELはTFT-LCDとの競争に成功しなかった。TFT-EL技術を記載するアメリカ国特許は以下の通りである: 第3807037号、第3885196号、第3913090号、第4006383号、第4042854号、第4523189号、第4602192号。

【0008】近年有機EL材料はデバイス化されてきた。これらの材料はそれ自体をTFT-ELデバイス内の表示媒体に対する候補として示唆する(C. W. Tang, S. A. Van SlykeによるAppl. Phys. Lett., 51, 913(1987)及びC. W. Tang, S. A. Van Slyke, C. H. ChenによるJ. Appl. Phys., 65, 3610(1989)を参照)。有機EL媒体は2つの重要な利点を有する: それらはより高い効率を有する: それらは低い電圧要求を有する。後者の特性は他の薄膜放射デ

バイスと異なる。ELが有機材料であるTFT-ELデバイスの開示は以下のようにある: アメリカ国特許第5,073,446号、第5,047,687号、第5,059,861号; 第5,294,870号、第5,151,629号、第5,276,380号、第5,061,569号、第4,720,432号、第4,539,507号、第5,150,006号、第4,950,950号、第4,356,429号。

【0009】TFTに対してそれを理想的にする有機EL材料の特定の特性は以下のように要約される:

1) 低電圧駆動。典型的には有機ELセルは光出力レベルとセルインピーダンスに依存して4から10ボルトの範囲の電圧を要する。約20fLの輝度を作るために要求される電圧は約5ボルトである。この低電圧は高電圧TFTに対する要求が除去される故にTFT-ELパネルに対して非常に魅力的である。更にまた有機ELセルはDC又はACにより駆動されうる。結果として駆動回路はより複雑でなく、より高価でない。

2) 高効率。有機ELセルの発光効率はワット当たり4ルーメンの高さである。20fLの輝度を作るためにELセルを駆動する電流密度は約1mA/cm²である。100%デューティの励起を仮定すると400cm²のフルページパネルを駆動するために必要な電力は約2.0ワットにすぎない。電力要求はフロートパネル表示器の携帯性基準に確かに合致する。

3) 低温度での製造。有機ELデバイスは概略室温で製造されうる。これは高温(>300度C)プロセスを要求する無機放射デバイスに比べて顕著な利点である。無機ELデバイスを作らるのに要求される高温プロセスはTFTとは両立しない。

【0010】有機ELデバイスに対する最も簡単な駆動は2組の直交する電極(行と列)間にサンドイッチされた有機表示媒体を有することである。この2端子方式ではEL素子は表示器とスイッチング機能の両方を提供する。有機EL素子のダイオードのような非線形電流-電圧特性は原理的にはアドレッシングのこのモードで高い度合いの多重化を許容する。しかしながら有機ELに関する2端子方式の有用性を制限する大きな要因が幾つかある:

40 1) メモリの欠如。有機ELの立ち上がり、立ち下がり時間は非常に速く、マイクロ秒のオーダーであり、それは真性(intrinsic)メモリを有さない。斯くて直接アドレッシング方法を用いて、選択された列のEL素子はパネル内のスキャン列の数に比例する瞬間の輝度を生ずるよう駆動されなければならない。パネルの大きさに依存してこの瞬間の輝度は達成するのが困難である。例えば1/60秒のフレームレートで動作する1000スキャン列のパネルを考えてみる。列当たりの許容されうる休止時間は1.7μsである。例えば20F1の時間平均された輝度を得るために列休止時間中の

瞬間輝度は千倍高くなればならず、すなわち200000 F/Lであり、これは約 $1 \text{ A}/\text{cm}^2$ の高電流密度と約 15-20 ボルトの電圧で有機ELセルを動作することによってのみ得られる極端な輝度である。このような極端な駆動条件の下でのセル動作の長期間の信頼性は疑わしい。

2) 均一性。EL素子により要求される電流は行と列のバスを介して供給される。瞬時の高電流故にこれらのバスに沿ったIR電位の降下はEL駆動電圧と比較して顕著ではない。ELの輝度-電圧特性は非線形である故に、バスに沿った電位の変化は不均一な光出力を生ずる。

【0011】 $200\mu \times 200\mu$ の画素ピッチを有し、0.5の動作/実効領域比の1000行と1000列を有するパネルを考える。列電極が10オーム/平方シート(Ω/□)の抵抗のインジウム錫酸化物(ITO)であると仮定すると全体のITOバスラインの抵抗は少なくとも10000オームである。 $800\mu\text{A}$ ($2\text{A}/\text{cm}^2$) の瞬間画素電流に対するこのバスラインに沿ったIR降下は8ボルト以上である。一定の電流源が駆動方式内に設けられることなしにITOバスに沿ったそのような大きな電位降下はバスル内で許容できない不均一な光放射を引き起こす。どのような場合でもバス内の抵抗電力損失は無駄である。類似の解析は休止時間中に画素の行全体へ運ばれた全電流、即ち1000列のパネルに対して0.8Aを搬送する付加的な負荷を有する行電極バスに対してなされうる。シート抵抗が約0.028オーム/平方の $1\mu\text{m}$ 厚さのアルミニウムバスの棒を仮定すると導られたIR降下は約1.1ボルトであり、これはまた許容され得ない。

3) 陽極バターン化。陽極-インジウム錫酸化物の直交電極の一つの組は従来技術のフォトリソグラフィの方法でバターン化されうる。しかしながら電極の他の組のバターン化は特に有機ELに対して大きな困難が現れる。陽極は4eVより小さい仕事関数を有する金属で作られねばならず、好ましくは銀又はアルミニウムのような他の金属と合金されたマグネシウムである(Tang等によるアメリカ特許第4,885,432号を参照)。有機層の上面に堆積されたマグネシウムに基づいた合金の陽極はフォトレジストを含むどのような従来技術の手段によつても容易にはバターン化され得ない。ELセル上に有機溶剤からフォトレジストを適用するプロセスはマグネシウムに基づく合金層の下の溶解する有機層に有害に影響する。これは基板から有機層の層間剥離を引き起こす。

【0012】他の困難は湿度に対する陽極の極度の敏感さである。フォトレジストがELセルの有機層を攪乱することなくうまく適用され、展開されたとしても、酸性溶液中のマグネシウムに基づく合金の陽極をエッチングするプロセスは陽極を酸化し、黒い点を作りやすい。

【0013】

【発明が解決しようとする課題】本発明は有機材料がEL媒体として用いられる能動マトリックス4端子TFT-ELデバイスを提供する。

【0014】

【課題を解決するための手段】そのデバイスは基板上に配置された2つのTFTと記憶コンデンサと光放射有機ELパッドとからなる。ELパッドは第二のTFTのドレインに電気的に接続される。第一のTFTは第二のTFTのゲート電極に電気的に接続され、これにより励起信号に続いて第二のTFTが信号間でELパッドに対して一定に近い電流を供給することを可能にする。本発明のTFT-ELデバイスは典型的にはフラットパネル表示器内で形成される画素であり、好ましくはEL陽極が画素全てを横切る連続した層である。

【0015】本発明のTFT-有機ELデバイスは以下に示すよきな他段階プロセスで形成される：第一の薄膜トランジスタ(TFT1)は基板の上面に配置される。TFT1はソース電極とドレイン電極とゲート誘電体とゲート電極とかなり；ゲート電極はゲートバスの部分からなる。TFT1のソース電極は電気的にソースバスと接続される。

【0016】第二の薄膜トランジスタ(TFT2)はまた基板の上面に配置され、TFT2はまたソース電極とドレイン電極とゲート誘電体とゲート電極とかなり。TFT2のゲート電極は第一の薄膜トランジスタのドレイン電極と電気的に接続される。記憶コンデンサはまた基板の上面に配置される。動作中にこのコンデンサはTFT1を介して励起信号ソースから充電され、休止時間中にTFT2のゲート電極に一定に近い電位を供給するため放電する。

【0017】陽極層はTFT2のドレイン電極に電気的に接続される。基板を通して光が放射される典型的な応用では表示器はインジウム錫酸化物のような透明な材料である。誘電バシベーション層は少なくともTFT1のソース上に、好ましくはデバイスの表面全体上に堆積される。誘電バシベーション層は表示アノード上に開口を設けるためにエッチングされる。

【0018】有機ニレクトコルミネセンス層はアノード層の上面に直接配置される。統合てカソード層は有機ニレクトコルミネセンス層の上面に直接堆積される。好ましい実施例では本発明のTFT-ELデバイスは低温(即ち600度C以下)結晶化及びアニーリング段階、水素バシベーション、及び従来技術のパターン技術と結合されて低圧及びプラズマ増強化学蒸着を用いる方法により作られる。

【0019】薄膜トランジスタは好ましくは以下の多段階プロセスにより同時に形成される：多結晶シリコンアライアンド内にパターン化されたシリコンを堆積し；二酸

化シリコンゲート電極を化学蒸着し；イオンインプラントの後でソース、ドレイン、ゲート電極はニッケル薄膜トランジスタ上に形成されるよう自己整列されたゲート電極を形成するためにパターン化される他の多結晶シリコン層を堆積する。

【0020】多結晶シリコン及び二酸化シリコンからなる薄膜トランジスタを有する画素の構成はデバイス性能、安定性、再現性、他のTFT上でのプロセス効率の向上をもたらす。比較するとCdSe及びアモルファスシリコンからなるTFTは低易動度と閾値ドリフトの影響を被る。

【0021】

【発明の実施の形態】図1は能動マトリックス4端子TFT-EIデバイスの概略図を示す、各画素の素子は2つのTFTと記憶コンデンサとEL素子とを含む。4端子方式の主な特徴はEI励起信号からのアドレッシング信号を分離する能力である。EL素子は論理TFT(T1)を介して選択され、EL素子に対する励起電力は電力TFT(T2)により制御される。記憶コンデンサはそれがいったん選択されたアドレスされたEL素子に励起電力を留めることを可能にする。斯くして回路はEI素子がアドレッシングに対して割り当てられた時間を無視して100%に近いデュティサイクルで動作することを許容する。

【0022】本発明のエレクトロルミネセンスデバイスの構造は図2、3に示される。このデバイスの基板は絶縁及び好ましくは水晶又は低温ガラスのような透明材料である。本明細書で用いられる透明という用語は表示デバイスで実際的な使用に対して充分な光を透過する部品を意味する。例えば所望の周波数範囲で50%以上の光を透過する部品は透明と考えられる。低温ガラスという用語は約600度C以上の温度で融解又は歪むガラスをいう。

【0023】図2に示されるTFT-EIデバイスではTFT1はソースバス(列電極)をデータラインとして及びゲートバス(行電極)をデータラインとして有する論理トランジスタである。TFT2はEL素子と直列のEL電力トランジスタである。記憶コンデンサはTFT1と直列である。EL素子の陽極はTFT2のドレインに接続される。

【0024】図2のTFT-EIの構成は図3から9の断面図に示される。図3から8に示される断面図は図2の線A-A'に沿ったものである。図9に示される断面図は図2の線B-B'に沿ったものである。第一のプロセス段階でポリシリコン層は透明で絶縁性の基板にわたり堆積され、ポリシリコン層はオートリソグラフィによりアーランドにパターン化される(図4を参照)。基板は水晶のような結晶材料であるが、好ましくは低温ガラスのようなより高価でない材料である。ガラス基板が用いられるときにはTFT-EIの製造全体がガラスの

溶融又は歪みを回避し、能動領域内にドーパントの外側拡散(out-diffusion)を回避するために低プロセス温度で実施される。斯くしてガラス基板に対して全ての製造段階は1000°C以下、好ましくは600°C以下でなされなければならない。

【0025】次に絶縁ゲート材料42がポリシリコンアーランド上及び絶縁基板の表面にわたり堆積される。絶縁材料は好ましくはプラズマ増強CVD(PECVD)又は低圧CVD(LPCVD)のような化学蒸着(CVD)により堆積される二酸化シリコンである。好ましくはゲート酸化物絶縁層は約1000オングストニームの厚さである。

【0026】次の段階でシリコン44の層はゲート絶縁層上に堆積され、イオンインプラント後にソースとドレイン領域はポリシリコン領域内に形成されるようにポリシリコンアーランド上にオートリソグラフィによりパターン化される。ゲート電極材料は好ましくはアモルファスシリコンから形成されたポリシリコンである。イオンインプラントは好ましくは砒素であるN型ドーパントで導電化される。ポリシリコンゲート電極はまたコンデンサーの底部電極として供される(図9を参照)。本発明の好ましい実施例では薄膜トランジスタは二重(double)ゲート構造を用いていない。斯くして製造はより複雑でなく、より高価でない。ゲートバス46は絶縁層上で適用され、パターン化される。ゲートバスは好ましくは珪素化タンゲステン(WSi_x)のような金属珪素化物である。

【0027】次の段階では好ましくは二酸化シリコンである絶縁層はデバイスの表面全体にわたり適用される。接触孔54、56は第二の絶縁層内で切削され(図5を参照)、電極材料は薄膜トランジスタと接点を形成するよう適用される(図6、7を参照)。TFT2のソース領域に付けられた電極材料62はコンデンサーの上面電極をまた形成する(図9を参照)。ソースバス及び接地バスはまた第二の絶縁層上に形成される(図2を参照)。透明電極材料72はTFT2のドレイン領域と接触し、好ましくはITOであり、これは有機エレクトロルミネセンス材料に対して陽極として設けられる。

【0028】次の段階では好ましくは二酸化シリコンである絶縁材料のバシベーション層74はデバイスの表面上に堆積される。バシベーション層はテーパ化された端76を離れたITOからニッティングされ、これは続いて適用される有機エレクトロルミネセンス層の接着を改善するよう供される。テーパ付端は信頼しうるデバイスを製造するために必要である。何故ならば本発明は典型的には150から200nmの厚さの比較的薄い有機EL層を用いているからである。バシベーション層は典型的には約0.5から約1ミクロン厚である。斯くしてバシベーション層の端が陽極層に関して垂直又は鋭角を形成する場合には欠陥が有機EL層内の不連続により発生し

やすい。欠陥を防止するためにバシベーション層はテーパ付端を有さねばならない。好ましくはバシベーション層は陽極層に関して10度から30度の角度でテーパを付けられる。

【0029】有機ニレクトニルミネセンス層82はバシベーション層上及びEL陽極層上に堆積される。本発明の有機ELでの材料は、その開示は参考として引用される(Scozza favaのEPA 349, 265 (1990); Tangのアメリカ特許第4, 356, 429号; Van Slyke等のアメリカ特許第4, 539, 507号; Van Slyke等のアメリカ特許第4, 720, 432; Tang等のアメリカ特許第4, 769, 292号; Tang等のアメリカ特許第4, 885, 211号; Perry等のアメリカ特許第4, 950, 950; Littman等のアメリカ特許第5, 059, 861号; Van Slykeのアメリカ特許第5, 047, 637号; Scozza fava等のアメリカ特許第5, 073, 446号; Van Slyke等のアメリカ特許第5, 059, 862号; Van Slyke等のアメリカ特許第5, 061, 617号; Van Slykeのアメリカ特許第5, 151, 629号; Tang等のアメリカ特許第5, 294, 869号; Tang等のアメリカ特許第5, 294, 870号)のような従来技術の有機ELデバイスの形をも取りうる。EL層は陽極と接触する有機ホール注入及び移動帯と、有機ホール注入及び移動帯と接合を形成する電子注入及び移動帯とからなる。ホール注入及び移動帯は單一の材料又は複数の材料から形成され、陽極及び、ホール注入層と電子注入及び移動帯の間に介装される連続的なホール移動層と接觸するホール注入層からなる。同様に電子注入及び移動帯は單一材料又は複数の材料から形成され、陽極及び、電子注入層とホール注入及び移動帯の間に介装される連続的な電子移動層と接觸する電子注入層からなる。ホールと電子の再結合ヒルミネセンスは電子注入及び移動帯とホール注入及び移動帯の接合に隣接する電子注入及び移動帯内で発生する。有機EL層を形成する化合物は典型的には蒸着により堆積されるが、他の従来技術によりまた堆積されうる。

【0030】好ましい実施例ではホール注入層からなる

有機材料は以下のような一般的な式を有する：

【0031】

【化1】

【0032】ここで：

QはN又はC-R

Mは金属、金属酸化物、又は金属ハニゲン化物

T1、T2は水素を表すか又はアルキル又はハニゲンのような置換基を含む不飽和六員環を共に満たす。好ましいアルキル部分は約1から6の炭素原子を含む一方でフェニルは好ましいアリル部分を構成する。

【0033】好ましい実施例ではホール移動層は芳香族第三アミンである。芳香族第三アミンの好ましいサブクラスは以下の式を有するテトラアリルジアミンを含む：

【0034】

【化2】

【0035】ここでAr_nはアリレン群であり、nは1から4の整数であり、Ar₁、R₁、R₂、R₃はそれぞれ選択されたアリル群である。好ましい実施例ではルミネセンス、電子注入及び移動帯は金属オキシノイド(oxygenated)化合物を含む。金属オキシノイド化合物の好ましい例は以下の一般的な式を有する：

【0036】

【化3】

【0037】ここでR₁ - R₇は置き換え可能性を表す。他の好ましい実施例では金属オキシノイド化合物は以下の式を有する：

【0039】ここでR₁ - R₇は上記で定義されたものであり、L₁ - L₅は集中的に1-2又はより少ない炭素原子を含み、それぞれ別々に1から1-2の炭素原子の水素又は炭水化物群を表し、L₁、L₂は共に、又はL₂、L₃は共に連合されたベンゾ環を形成しうる。他の※

※好ましい実施例では金属オキシノイド化合物は以下の式を有する：

【0040】

【化5】

【0041】ここでR₁ - R₆は水素又は他の置き換え可能性を表す。上記例は単にエレクトニルミネセンス層内で用いられるある好ましい有機材料を表すのみである。それらは本発明の視野を制限することを意図するものではなく、これは一般に有機エレクトニルミネセンス層を指示するものである。上記例からわかるように有機EL材料は有機リガンドを有する配位化合物を含む。本発明のTFT-ELデバイスはZnSのような純粋な無機材料を含まない。

【0042】次のプロセス段階ではEL陽極8-4はデバイスの表面上に堆積される。EL陽極はどのような導電性の材料でも良いが、好ましくは4eV以下の仕事関数を有する材料で作られる(Tang等のアメリカ国特許第4885211号を参照)。低い仕事関数材料は陽極に好ましい。何故ならばそれらは電子移動層内に容易に電子を放出するからである。最も低い仕事関数の金属はアルカリ金属であるが、しかしながらそれらの空気中の不安定性はそれらの使用をある条件下で実際的でなくしている。陽極材料は典型的には化学蒸着により堆積さ

れるが、他の適切堆積技術も適用可能である。EL陽極に対して特に好ましい材料は10:1(原子比)マグネシウム:銀合金であることが見いだされた。好ましくは陽極は表示パネルの全表面にわたる連続層として適用される。他の実施例ではEL陽極は有機電子注入及び移動帯に隣接した低い仕事関数の金属のより低い層からなり、低い仕事関数の金属をオーバーレイし、低い仕事関数の金属を酸素及び湿度から保護する保護層とからなる。選択的にパシベーション層はEL陽極層上に適用される。典型的には陽極材料は透明であり、陰極材料は不透明であり、それにより光は陽極材料を通して透過する。しかしながら代替実施例では光は陽極よりもむしろ陰極を等して放射される。この場合には陰極は光透過性であり、陽極は不透明である。光透過と技術的伝導性の実際的なバランスは典型的には5-25nmの範囲の厚さである。

【0043】本発明による薄膜トランジスタを製造する好ましい方法を以下に説明する。第一段階では2000-20オングストローム厚さのアモルファスシリコン膜

は1023mTorrのブニセス圧力で反応性ガスとしてシランと共にLPCVDシステムないで550度Cで堆積される。この次にアモルファスシリコン膜を多結晶膜に結晶化するために真空中で550度Cで72時間低温アーニールする。それからポリシリコンアイランドはプラズマ反応器内でSF₆とフレオン12の混合物と共にエッチングにより形成される。ポリシリコンアイランド上で能動層は1000±20オングストロームPECVD-SiO₂ゲート誘電層を堆積される。ゲート誘電層は350度Cで18分間450KHzの周波数で200Wの電力レベルで0.8Torrの圧力でプラズマ反応器内で1/4のN₂O/SiH₄比で堆積される。

【0044】次の段階ではアモルファスシリコン層はPECVDゲート絶縁層上に堆積され、第一の段階に対する上記と同じ条件を用いて多結晶シリコンに変換される。フォトレジストは適用され、第二のポリシリコン層は続くイナンインプラント段階に対する自己整列構造を形成するようエッチングされる。第二のポリシリコン層は好ましくは約300オングストローム厚さである。

【0045】イオンインプラントはソース、ドレイン、ゲート領域を同時にドープするために $2 \times 10^{13}/\text{cm}^2$ の線量で120KeVで砒素でドーピングすることにより実施される。ドーパントの活性化は窒素雰囲気中で600°Cで2時間実施される。次の段階では5000オングストローム厚さの二酸化シリコン層が従来技術の低温法で堆積される。アルミニウム接点は物理的蒸着により形成され、400度Cで13分間形成ガス(10%H₂, 90%N₂)内で焼結される。

【0046】最終的に薄膜トランジスタの水素バシベーションは電子サイクロン共鳴反応器(ECR)内で実施される。ECR水素プラズマ露出はマイクロ波レベル900W、周波数3.5GHzで 1.2×10^{-4} Torrの圧力でおこなわれた。水素バシベーションは300度Cの基板温度で15分間なされる。この過程は低閾値電圧と高効率キャリア移動度と優秀なオン/オフ比を有する薄膜トランジスタでを生ずる。

【0047】本発明の特性の例として以下のTFT-ELパネルに対する駆動要求を考える

行の数	= 1000
列の数	= 1000
画素寸法	= $200\mu\text{m} \times 200\mu\text{m}$
EL充填係数	= 50%
フレーム時間	= 1.7ms
行休止時間	= 1.7μs
平均輝度	= 20fL
EL画素電流	= 0.8μA
デュティサイクル	= 100%
EL電力源	= 10v rms

これらの駆動要求はTFT及び記憶コンデンサに対する以下の特性により適合される：

TFT1	
ゲート電圧	= 10V
ソース電圧	= 10V
オン電流	= 2μA
オフ電流	= 10^{-11} A

TFT2	
ゲート電圧	= 10V
ソース電圧	= 10V
オン電流	= $2 \times \text{EL画素電流}$

= 1.6μA	
オフ電流	= 1nA

記憶コンデンサ

大きさ	= 1pf
-----	-------

TFT1に対するオン電流要求はTFT2をナンするために適切な電圧(10V)に対して行休止時間(1.7μs)中に記憶コンデンサを充電するのに充分大きいことである。TFT1に対するオフ電流要求はフレーム期間(1.7ms)中のコンデンサ(及びTFT2ゲート)上の電圧低下が2%以下であるために充分小さいことである。

【0048】TFT2に対するオン電流はEL画素電流の2倍であり、1.6μAである。この2倍の係数は動作と共に有機EL素子の余々の劣化に対する補正のための適切な駆動電流を許容するためである。TFT2のオフ電流はパネルのコントラストに影響する。1nAのオフ電流は点灯されたEL素子と点灯されないそれとの間の500倍以上のオン/オフコントラスト比を提供する。パネルの実際のミンマックス比はより近く環境要因に依存する。

【0049】400cm²のフルページパネルに対してEL素子単独による電力要求は約4ワットである。

$$\text{電力} = 400\text{cm}^2 \times 10\text{v} \times 0.001\text{A/cm}^2 = 4\text{ワット}$$

この電力消費はTFTによる電力消費を越える。TFT2はEL素子と直列である故にTFT2を横切るどのようなソースードレイン電圧低下もTFT2内の実質的な電力損失を生ずる。5ボルトのソースードレイン電圧を仮定すると、TFT2での全電力損失は2ワットである。TFT1に対する電力消費は 1000×1000 パネルに対して1ワットより大きくなないように推定される。行(ゲート)駆動に対して必要な電力は数十ミリワットのオーダーであって無視可能であり、列(ソース)駆動に対する電力は0.5ワットのオーダーである

(S. MorozumiのAdvances in Electronics and Electron Physics, P. W. Hawkes編集, Vol. 77, Academic Press, 1990を参照)。斯くてフルページTFT-ELパネルに対する全電力消費は約7ワットである。現実的には平均電力消

【図1】

【図2】

【図5】

【図6】

【図7】

【図8】

【図9】

