

Formale Systeme

Prof. Dr. Bernhard Beckert, WS 2018/2019 Hilbertkalkül

David Hilbert

Wesentlicher Begründer der axiomatischen Logik

David Hilbert ★ 1862, † 1943

 Einer der bedeutensten und einflußreichsten Mathematiker aller Zeiten

David Hilbert

Wesentlicher Begründer der axiomatischen Logik

David Hilbert ★ 1862, † 1943

- Einer der bedeutensten und einflußreichsten Mathematiker aller Zeiten
- ► Professor in Königsberg und Göttingen

David Hilbert

Wesentlicher Begründer der axiomatischen Logik

David Hilbert ★ 1862, † 1943

- Einer der bedeutensten und einflußreichsten Mathematiker aller Zeiten
- ► Professor in Königsberg und Göttingen
- ► Wichtige Beiträge zu
 - Logik
 - Funktionalanalysis
 - Zahlentheorie
 - Mathematische Grundlagen der Physik
 - uvm.

Hilbertkalkül

Axiome und Regeln

Axiome sind Schemata!

x: Variable, t: Term, α, β, γ : Formeln

Zur Vereinfachung: Beschränkung auf logische Operatoren $\neg, \rightarrow, \forall$

Hilbertkalkül

Axiome und Regeln

Axiome sind Schematal

x: Variable, t: Term, α, β, γ : Formeln

Zur Vereinfachung:

Beschränkung auf logische Operatoren $\neg, \rightarrow, \forall$

Ax1: $\alpha \to (\beta \to \alpha)$ (Abschwächung)

Ax2: $(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$ (Verteilung von \to)

Ax3: $(\neg \alpha \rightarrow \neg \beta) \rightarrow (\beta \rightarrow \alpha)$ (Kontraposition) Ax4: $\forall x \alpha \rightarrow \{x/t\}(\alpha) \ \{x/t\}$ kollisionsfrei für α (Instantiierung)

Ax5: $\forall x(\alpha \to \beta) \to (\alpha \to \forall x\beta)$ $x \notin Frei(\alpha)$ $(\forall -Verschiebung)$

Mp: $\frac{\alpha, \alpha \to \beta}{\beta}$ (Modus ponens)

Gen: $\frac{\alpha}{\alpha}$ (Generalisierung)

Hilbertkalkül

Axiome und Regeln

Axiome sind Schemata!

x: Variable, t: Term, α, β, γ : Formeln

Zur Vereinfachung:

Beschränkung auf logische Operatoren $\neg, \rightarrow, \forall$

Ax1:
$$\alpha \rightarrow (\beta \rightarrow \alpha)$$
 (Abschwächung)

Ax2:
$$(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$$
 (Verteilung von \to)

Ax3:
$$(\neg \alpha \rightarrow \neg \beta) \rightarrow (\beta \rightarrow \alpha)$$
 (Kontraposition)
Ax4: $\forall x \alpha \rightarrow \{x/t\}(\alpha) \ \{x/t\}$ kollisionsfrei für α (Instantiierung)

Ax5:
$$\forall x(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \forall x\beta)$$
 $x \notin Frei(\alpha)$ $(\forall -Verschiebung)$

Mp:
$$\frac{\alpha, \alpha \to \beta}{\beta}$$
 (Modus ponens)

Gen:
$$\frac{\alpha}{\forall x \alpha}$$
 (Generalisierung)

Ax1, Ax2, Ax3 + Mp bilden den aussagenlogische Hilbertkalkül

1.
$$(\underbrace{A}_{\alpha} \rightarrow ((\underbrace{A \rightarrow A}_{\beta}) \rightarrow \underbrace{A}_{\gamma})) \rightarrow ((\underbrace{A}_{\alpha} \rightarrow (\underbrace{A \rightarrow A}_{\beta})) \rightarrow (\underbrace{A}_{\alpha} \rightarrow \underbrace{A}_{\gamma}))$$

Ax2

1.
$$(\underbrace{A}_{\alpha} \rightarrow ((\underbrace{A \rightarrow A}_{\beta}) \rightarrow \underbrace{A}_{\gamma})) \rightarrow ((\underbrace{A}_{\alpha} \rightarrow (\underbrace{A \rightarrow A}_{\beta})) \rightarrow (\underbrace{A}_{\alpha} \rightarrow \underbrace{A}_{\gamma}))$$

Ax2

2. $A \rightarrow ((A \rightarrow A) \rightarrow A)$

Ax1

1.
$$(\underbrace{A}_{\alpha} \rightarrow ((\underbrace{A \rightarrow A}_{\beta}) \rightarrow \underbrace{A}_{\gamma})) \rightarrow ((\underbrace{A}_{\alpha} \rightarrow (\underbrace{A \rightarrow A}_{\beta})) \rightarrow (\underbrace{A}_{\alpha} \rightarrow \underbrace{A}_{\gamma}))$$

Ax2

2.
$$A \rightarrow ((A \rightarrow A) \rightarrow A)$$

Ax1

3.
$$(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)$$

Mp auf (2),(1)

1.
$$(\underbrace{A}_{\alpha} \rightarrow ((\underbrace{A \rightarrow A}_{\beta}) \rightarrow \underbrace{A}_{\gamma})) \rightarrow ((\underbrace{A}_{\alpha} \rightarrow (\underbrace{A \rightarrow A}_{\beta})) \rightarrow (\underbrace{A}_{\alpha} \rightarrow \underbrace{A}_{\gamma}))$$

Ax2

2.
$$A \rightarrow ((A \rightarrow A) \rightarrow A)$$

Ax1

3.
$$(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)$$

Mp auf (2),(1)

4.
$$A \rightarrow (A \rightarrow A)$$

Ax1

1.
$$(\underbrace{A}_{\alpha} \rightarrow ((\underbrace{A \rightarrow A}_{\beta}) \rightarrow \underbrace{A}_{\gamma})) \rightarrow ((\underbrace{A}_{\alpha} \rightarrow (\underbrace{A \rightarrow A}_{\beta})) \rightarrow (\underbrace{A}_{\alpha} \rightarrow \underbrace{A}_{\gamma}))$$

Ax2

2.
$$A \rightarrow ((A \rightarrow A) \rightarrow A)$$

Ax1

3.
$$(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)$$

Mp auf (2),(1)

4.
$$A \rightarrow (A \rightarrow A)$$

Ax1

5.
$$A \rightarrow A$$

Mp auf (3),(4)

Deduktionstheorem

Theorem (Deduktionstheorem)

Sei M ein Formelmenge, A,B Formeln, wobei A keine freien Variablen enthält. Dann gilt:

$$M \vdash_{\mathsf{H}} A \to B \quad \Leftrightarrow \quad M \cup \{A\} \vdash_{\mathsf{H}} B$$

Deduktionstheorem

Theorem (Deduktionstheorem)

Sei M ein Formelmenge, A,B Formeln, wobei A keine freien Variablen enthält. Dann gilt:

$$M \vdash_{\mathsf{H}} A \to B \quad \Leftrightarrow \quad M \cup \{A\} \vdash_{\mathsf{H}} B$$

Proof.

 \Rightarrow

Es gelte
$$M \vdash A \rightarrow B$$
. Dann $M \cup \{A\} \vdash A \rightarrow B$. (erst recht) $M \cup \{A\} \vdash A$ (trivialerweise) $M \cup \{A\} \vdash B$ (Mp)

Deduktionstheorem

Theorem (Deduktionstheorem)

Sei M ein Formelmenge, A,B Formeln, wobei A keine freien Variablen enthält. Dann gilt:

$$M \vdash_{\mathsf{H}} A \to B \quad \Leftrightarrow \quad M \cup \{A\} \vdash_{\mathsf{H}} B$$

Proof.

 \Rightarrow

Es gelte
$$M \vdash A \rightarrow B$$
. Dann $M \cup \{A\} \vdash A \rightarrow B$. (erst recht) $M \cup \{A\} \vdash A$ (trivialerweise) $M \cup \{A\} \vdash B$ (Mp) \Leftarrow siehe Skriptum.

Zeige, dass

$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

eine Tautologie ist.

Zeige, dass

$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

eine Tautologie ist.

$$\{A \rightarrow B, B \rightarrow C, A\} \vdash A$$

(triv.)

Zeige, dass

$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

eine Tautologie ist.

$$\begin{array}{llll} \{A \rightarrow B, B \rightarrow C, A\} & \vdash & A \\ \{A \rightarrow B, B \rightarrow C, A\} & \vdash & A \rightarrow B \end{array}$$

(triv.) (triv.)

Zeige, dass

$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

eine Tautologie ist.

$$\begin{cases}
 A \to B, B \to C, A \} & \vdash & A \\
 \{A \to B, B \to C, A \} & \vdash & A \to B \\
 \{A \to B, B \to C, A \} & \vdash & B
 \end{cases}$$

(triv.)

(triv.)

(MP)

Zeige, dass

$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

eine Tautologie ist.

$$\{A \rightarrow B, B \rightarrow C, A\} \vdash A
 \{A \rightarrow B, B \rightarrow C, A\} \vdash A \rightarrow B
 \{A \rightarrow B, B \rightarrow C, A\} \vdash B
 \{A \rightarrow B, B \rightarrow C, A\} \vdash B \rightarrow C$$

(triv.)

(MP)

(triv.)

Zeige, dass

$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

eine Tautologie ist.

$$\{A \rightarrow B, B \rightarrow C, A\} \qquad \vdash \qquad A \\
 \{A \rightarrow B, B \rightarrow C, A\} \qquad \vdash \qquad A \rightarrow B \\
 \{A \rightarrow B, B \rightarrow C, A\} \qquad \vdash \qquad B \\
 \{A \rightarrow B, B \rightarrow C, A\} \qquad \vdash \qquad B \rightarrow C \\
 \{A \rightarrow B, B \rightarrow C, A\} \qquad \vdash \qquad C$$

(triv.)

(MP)

(triv.)

(MP)

Zeige, dass

$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

eine Tautologie ist.

$$\begin{cases} A \rightarrow B, B \rightarrow C, A \rbrace & \vdash & A \\ \{A \rightarrow B, B \rightarrow C, A \} & \vdash & A \rightarrow B \\ \{A \rightarrow B, B \rightarrow C, A \} & \vdash & B \\ \{A \rightarrow B, B \rightarrow C, A \} & \vdash & B \rightarrow C \\ \{A \rightarrow B, B \rightarrow C, A \} & \vdash & C \\ \{A \rightarrow B, B \rightarrow C \} & \vdash & A \rightarrow C \end{cases}$$

(triv.)

(triv.)

(MP)

(triv.)

(MP)

(DT)

Zeige, dass

$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

eine Tautologie ist.

(triv.)

(triv.)

(MP)

(triv.)

(MP)

(DT)

(DT)

(triv.)

Zeige, dass

$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

eine Tautologie ist.

 $\{A \rightarrow B, B \rightarrow C, A\} \vdash A$

Vollständigkeit der PL1 GÖDEL 1931

Theorem

Σ sei eine Signatur der PL1.

Dann ist **H** über Σ korrekt und vollständig: für alle $M \subseteq For_{\Sigma}$, $A \in For_{\Sigma}$ gilt:

$$M \models A \iff M \vdash_{\mathsf{H}} A$$

Konsequenzen der Korrektheit und Vollständigkeit

Theorem (Kompaktheitsatz)

Für beliebige $M \subseteq For_{\Sigma}$, $A \in For_{\Sigma}$ gilt:

$$M \models A$$

 $E \models A$ für eine endliche Teilmenge $E \subseteq M$.

Konsequenzen der Korrektheit und Vollständigkeit

Theorem (Kompaktheitsatz)

Für beliebige $M \subseteq For_{\Sigma}$, $A \in For_{\Sigma}$ gilt:

$$M \models A$$

 $E \models A$ für eine endliche Teilmenge $E \subseteq M$.

Theorem (Endlichkeitssatz)

Eine Menge $M \subseteq For_{\Sigma}$ hat genau dann ein Modell, wenn jede endliche Teilmenge von M ein Modell hat.

Konsequenzen der Korrektheit und Vollständigkeit

Theorem (Kompaktheitsatz)

Für beliebige $M \subseteq For_{\Sigma}$, $A \in For_{\Sigma}$ gilt:

$$M \models A$$

 $E \models A$ für eine endliche Teilmenge $E \subseteq M$.

Theorem (Endlichkeitssatz)

Eine Menge $M \subseteq For_{\Sigma}$ hat genau dann ein Modell, wenn jede endliche Teilmenge von M ein Modell hat.

Der Endlichkeitssatz ist der Spezialfall $A = \mathbf{0}$ des Kompaktheitssatzes.

$$M \models A$$

$$M \models A$$

⇔ *M* ⊢ *A* (Korrektheit und Vollständigkeit)

- $M \models A$
- \Leftrightarrow $M \vdash A$ (Korrektheit und Vollständigkeit)
- \Leftrightarrow $E \vdash A$ für ein endliches $E \subseteq M$ Endlichkeit von Ableitungen

- $M \models A$
- ⇔ M ⊢ A (Korrektheit und Vollständigkeit)
- \Leftrightarrow $E \vdash A$ für ein endliches $E \subseteq M$ Endlichkeit von Ableitungen
- \Leftrightarrow $E \models A$ für ein endliches $E \subseteq M$ Korrektheit u. Vollständigkeit