TOWARDS BALL SPIN AND TRAJECTORY ANALYSIS IN TABLE TENNIS BROADCAST VIDEOS VIA PHYSICALLY GROUNDED SYNTHETIC-TO-REAL TRANSFER

MOTIVATION

- Ball Spin and 3D Trajectory are key to gameplay analytics
 → Improve training, extract statistics, enable virtual replay
- Ball motion alone provides sufficient information
 - → No need for analyzing human behavior
- Ball trajectories are deterministic
 - → Fully governed by physics and can be simulated
- Train on synthetic data only

KEY IDEAS

- Train a neural network to predict the ball's initial spin and 3D trajectory
- **Uplifting approach**: Use 2D trajectory and table points as input → Built on top of established 2D keypoint methods
- Fully synthetic training: Generate physically accurate 2D trajectories using MuJoCo [1, 2] → No real-world data required
- Zero-Shot Generalization

ZERO-SHOT GENERALIZATION

- Physically accurate training data from simulation
- 2D pixel coordinates as input
- Targeted augmentations: Motion blur, annotation noise, early trajectory cutoffs
- Real and synthetic data become indistinguishable

13 Table Keypoints

References:

- [1]: E. Todorov, T. Erez and Y. Tassa, "MuJoCo: A physics engine for model-based control,"IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012
- [2]: D. B. D'Ambrosio, S. W. Abeyruwan, L. Graesser, et.al., "Achieving Human Level Competitive Robot Table Tennis", 7th Robot Learning Workshop: Towards Robots with Human-Level Abilities, 2025

METHOD

- For each frame at time t_i :
 - → Extract 2D ball coordinates and table keypoints
 - \rightarrow Embed into a **location token** l_i
- Prepend a learnable spin token s to the sequence $\{s, l_0, ..., l_{T-1}\}$
- Process the sequence with the Spin Prediction Transformer (SPT). Output:
 - \rightarrow 3D position $\vec{r}(t_i)$ for each time t_i
 - \rightarrow Initial ball spin $\vec{\omega}$
- Training: Fully supervised using only physically accurate synthetic data

EVALUATION DATA

- Annotations: 2D trajectory, table keypoints, binary spin class
- Evaluation: Trajectory reprojection error and spin classification

Backspin Topspin

RESULTS

Evaluation on real broadcast videos

Method			spin		trajectory	
motion blur	sudden end	gaus. blur	$acc \uparrow$	$\mathrm{F}_1 \uparrow$	$\Delta ec{r}_{ m img} \downarrow$	rel. $\Delta \vec{r}_{\rm img} \downarrow$
×	×	×	74.0%	0.740	$15.6\mathrm{px}$	0.53%
✓	×	×	88.0%	0.875	$16.1\mathrm{px}$	0.55%
×	✓	×	96.0%	0.959	$9.9\mathrm{px}$	0.34%
×	×	✓	80.0%	0.800	$18.9\mathrm{px}$	0.64%
✓	✓	✓	92.0%	0.917	$5.6\mathrm{px}$	0.19%