Exercice 1

Soient X et Y deux variables aléatoires réelles indépendantes telles que X suit la loi normale centrée réduite et U suit la loi uniforme sur $\{-1,1\}$. On pose Y=UX. Déterminer la loi de Y

* Exercice 2

(Loi de Laplace) Soit c > 0. On considère la fonction f définie sur \mathbb{R} par : $\forall x \in \mathbb{R}$, $f(x) = \frac{c}{2} e^{-c|x|}$

- 1) Montrer que f est une densité d'une variable aléatoire réelle X.
- 2) Déterminer la fonction de répartition F de X
- 3) Montrer que X admet une espérance et la calculer.
- 4) Montrer que pour tout $n \in \mathbb{N}$, X admet un moment d'ordre n
- 5) En déduire que X admet une variance et la calculer.

Soit c un réel strictement positif et f la fonction définie par $\forall x \in \mathbb{R}, F(x) = \begin{cases} x^{-4} & \text{si } x \notin [-1;1] \\ c & \text{si } x \in [-1;1] \end{cases}$

- 1) Déterminer l'unique valeur de c telle que f est la fonction de densité d'une variable aléatoire X.
- 2) Montrer que X admet une espérance et une variance et les calculer.
- 3) Déterminer l'ensemble des valeurs de $r \in \mathbb{N}^*$ telles que X admet un moment d'ordre r.

Soient λ et μ deux réels strictement positifs. On considère deux variables aléatoires X et Y indépendantes telles que X suit une loi exponentielle de paramètre λ et Y suit une loi exponentielle de paramètre μ . On pose $Z = \min(X, Y)$.

- 1) Pour $x \in \mathbb{R}$, que vaut $\mathbb{P}(X > x)$?
- 2) Pour $x \geq 0$, que vaut $\mathbb{P}(Z > x)$?
- 3) Déterminer la loi de ${\cal Z}$

Exercice 5

Soit Y une variable aléatoire suivant une loi exponentielle de paramètre $\lambda > 0$ et soit $L \in \mathbb{R}_+^*$. On s'intéresse à la variable aléatoire discrète X définie par $X = \left\lceil \frac{Y}{L} \right\rceil$ où $\left\lceil x \right\rceil$ désigne le plus petit entier k tel que $x \le k$ (partie entière supérieure).

- 1) Quel est l'ensemble des valeurs prises par X?
- 2) Montrer que X suit une loi géométrique dont on précisera les paramètres.
- 3) Peut on choisir L pour que X et Y ait la même espérance?

Exercice 6

(Loi de Cauchy) Soit $\alpha > 0$ et F la fonction définie sur \mathbb{R} par $F(x) = \alpha \cdot \arctan(x) + \frac{1}{2}$.

- 1) Montrer qu'il existe un unique réel $\alpha > 0$ tel que F est la fonction de répartition d'une variable aléatoire X. Préciser sa densité f.
- 2) Montrer que X n'admet ni espérance, ni variance.
- 3) Déterminer la loi de $Z = \frac{1}{X}$.

Exercice 7

(Oral ENS 2023) Soit X une variable aléatoire suivant une loi exponentielle de paramètre 2.

1) Calculer $\mathbb{P}(4X \leq X^2 + 3)$

2) Calculer $\mathbb{E}[\sin(X)]$ après avoir démontré son existence.

Soit $t \in \mathbb{R}$ fixé. Soit (X_n) une suite de variables aléatoires indépendantes définies sur un même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ qui suivent toutes la même loi telle que $\mathbb{E}[X_n] = V(X_n) = 1$.

Pour tout $n \in \mathbb{N}^*$, on pose $T_n = X_1 + X_2 + \cdots + X_n$.

- 1) Pour tout entier n > t, comparer les événements $(T_n < t)$ et $(|T_n n| \ge n t)$
- 2) Calculer $\mathbb{P}\left(\bigcap_{n=1}^{+\infty} (T_n < t)\right)$.

(Oral ENS 2023) On construit aléatoirement un intervalle de la manière suivante. On tire tout d'abord son milieu M selon une loi de Poisson de paramètre $\lambda > 0$. On tire ensuite la longueur totale L de l'intervalle, qui est indépendante de M et suit une loi exponentielle de paramètre $\mu > 0$. On note [X, Y] l'intervalle aléatoire ainsi produit.

- 1) Expliquer rapidement pourquoi $X=M-\frac{L}{2}$ et $Y=M+\frac{L}{2}$
- 2) a) Calculer les espérances $\mathbb{E}[X]$ et $\mathbb{E}[Y]$
 - b) Calculer les variance V(X) et V(Y)

On introduit Z la variable aléatoire qui vaut 1 quand X > 0 et qui vaut 0 quand $X \le 0$

- 3) Calculer $\mathbb{P}(Z=0)$. En déduire la loi de Z et son espérance.
- 4) Montrer que pour tous réels y et z, il y a au plus un choix de (λ, μ) qui vérifie $\mathbb{E}[Y] = y$ et $\mathbb{E}[Z] = z$.

Le coin des Khûbes

Soit U une variable aléatoire suivant la loi uniforme sur l'intervalle [0,1]. Calculer

$$I = \int_0^1 \mathbb{E}(\max(x, U) dx \text{ et } J = \mathbb{E}\left(\int_0^1 \max(x, U) dx\right)$$

* * * Exercice 11

(Oral ENS 2024) Soit $n \ge 1$ un entier et soient X_1, \ldots, X_n des variables aléatoires réelles indépendantes, toutes de loi exponentielle de paramètre 1. Ainsi, pour tout $i \in \{1, \ldots, n\}$ et pour tout $t \in \mathbb{R}$, on a

$$P(X_i \le t) = \begin{cases} 0 & \text{si } t < 0, \\ 1 - e^{-t} & \text{si } t \ge 0. \end{cases}$$

On note $M_n = \max(X_1, \dots, X_n)$.

- 1) Déterminer la fonction de répartition de M_n , notée F_n , ainsi que sa densité, notée f_n .
- 2) Montrer, sans trop de calculs, que $\mathbb{E}[M_n] \leq n$.
- 3) Vérifier que $t(1 F_n(t))$ tend vers 0 quand t tend vers $+\infty$.
- 4) En déduire, après une intégration par parties, que

$$\mathbb{E}[M_n] = \int_0^{+\infty} (1 - F_n(t)) dt.$$

5) Montrer que

$$\mathbb{E}[M_n] = \int_0^1 \frac{1 - y^n}{1 - y} \, dy$$

et établir finalement que

$$\mathbb{E}[M_n] = \sum_{k=1}^n \frac{1}{k}.$$

$$\star$$
 \star \star Exercice 12

(Oral ENS 2024) Dans tout cet exercice, α désigne un réel strictement positif fixé. Soit X une variable aléatoire réelle de densité f_{α} donnée par

$$f_{\alpha}(x) = \begin{cases} 0 & \text{si } x \in]-\infty, 1], \\ \frac{\alpha}{x^{\alpha+1}} & \text{si } x \in]1, +\infty[. \end{cases}$$

- 1) Calculer, pour tout réel t, la quantité P(X > t).
- 2) À quelle condition sur α la variable aléatoire X admet-elle une espérance finie? Lorsque cette condition est vérifiée, donner la valeur de $\mathbb{E}[X]$.
- 3) Pour tout réel x, on note $\lceil x \rceil$ l'unique entier k tel que $k-1 < x \le k$. Le nombre $\lceil x \rceil$ s'appelle la partie entière supérieure de x. Déterminer la loi de la variable aléatoire $Y = \lceil \ln(X) \rceil$.
- 4) Soient X_1, \ldots, X_n des variables aléatoires indépendantes et toutes de densité f_{α} . On pose

$$Y_n = \min(X_1, \dots, X_n).$$

Montrer que, pour tout $t \in \mathbb{R}$, la quantité $P(n(Y_n - 1) > t)$ converge, quand n tend vers $+\infty$, vers une limite que l'on déterminera.

