

Evaluacion final - Escenario 8 Primer Bloque- Teorico - Virtual Elementos EN Teoría DE Computación-[Grupo B03]

Ingeniería de Software I (Politécnico Grancolombiano)

Evaluacion final - Escenario 8

Fecha de entrega 10 de mayo en 23:55

Puntos 125

Preguntas 20

Disponible 7 de mayo en 0:00 - 10 de mayo en 23:55 4 días

Límite de tiempo 90 minutos

Intentos permitidos 2

Instrucciones

Apreciado estudiante, presenta tus exámenes como SERGIO EL ELEFANTE,

quien con honestidad, usa su sabiduría para mejorar cada día.

Lee detenidamente las siguientes indicaciones y minimiza inconvenientes:

- Tienes dos intentos para desarrollar tu evaluación.
- 2. Si respondiste uno de los intentos sin ningún inconveniente y tuviste problemas con el otro, el examen no será habilitado nuevamente.
- 3. Cuando estés respondiendo la evaluación, evita abrir páginas diferentes a tu examen. Esto puede ocasionar el cierre del mismo y la pérdida de un intento.
- **4.** Asegúrate de tener buena conexión a internet, cierra cualquier programa que pueda consumir el ancho de banda y no utilices internet móvil.
- 5. Debes empezar a responder el examen por lo menos dos horas antes del cierre, es decir, máximo a las 9:55 p. m. Si llegada las 11:55 p. m. no lo has enviado, el mismo se cerrará y no podrá ser calificado.
- El tiempo máximo que tienes para resolver cada evaluación es de 90 minutos.

- Solo puedes recurrir al segundo intento en caso de un problema tecnológico.
- 8. Si tu examen incluye preguntas con respuestas abiertas, estas no serán calificadas automáticamente, ya que requieren la revisión del tutor.
- 9. Si presentas inconvenientes con la presentación del examen, puedes crear un caso explicando la situación y adjuntando siempre imágenes de evidencia, con fecha y hora, para que Soporte Tecnológico pueda brindarte una respuesta lo antes posible.
- Podrás verificar la solución de tu examen únicamente durante las 24 horas siguientes al cierre.
- 11. Te recomendamos evitar el uso de teléfonos inteligentes o tabletas para la presentación de tus actividades evaluativas.
- 12. Al terminar de responder el examen debes dar clic en el botón "Enviar todo y terminar" de otra forma el examen permanecerá abierto.

Confiamos en que sigas, paso a paso, en el camino hacia la excelencia académica!

;Das tu palabra de que realizarás esta actividad asumiendo de corazón nuestro

Volver a realizar el examen

Historial de intentos

	Intento	Hora	Puntaje
MÁS RECIENTE	Intento 1	19 minutos	125 de 125

① Las respuestas correctas ya no están disponibles.

Puntaje para este intento: 125 de 125

Entregado el 9 de mayo en 7:07

Este intento tuvo una duración de 19 minutos.

Pregunta 1	6.25 / 6.25 pts
Solucionar el módulo usando el Teorema de Ferma	at.
¿Cuál es resultado de	
$351^{61} \mod 13$	
?	
0	
O 13	
O 351	
0 1	

Pregunta 2 6.25 / 6.25 pts

Estimación de números primos.

¿Cuál es la cantidad apróximada de números primos menores o iguales a 342243?

26856
231132
7880
25565

Pregunta 3 6.25 / 6.25 pts

Si $7x\equiv 4 \mod 13$, entonces es correcto afirmar:

• $4x\equiv 6 \mod 13$ • $2x\equiv 6 \mod 13$ • $-x\equiv 8 \mod 13$ • $2x+1\equiv 7x-1 \mod 13$

Al calcular

This document is available free of charge on StuDocu.com

This document is available free of charge on StuDocu.com**

se obtiene:

- 2
- 0
- 0 1
- _-2

Pregunta 5

6.25 / 6.25 pts

Sobre la congruencia lineal

$$12x \equiv 16 \mod 18$$

es correcto afirmar:

No tiene solución.

Su solución existe dado que

$$d=mcd(12,18)$$

divide a

16

O .

La solución es

 $x \equiv 2 \mod 18$

Su solución es

$$x=rac{4}{3}$$

O .

Pregunta 6	6.25 / 6.25 pts
Sobre el conjunto	
$\mathbb{Z}/11\mathbb{Z}$	
es correcto afirmar:	
$a^{10} \equiv 1 \mod 11$	
para todo	
$aot \equiv 0 \mod 11$	
Existe un elemento no nulo de	
$\mathbb{Z}/11\mathbb{Z}$	
o que no tiene inverso.	
La ecuación	
$ax \equiv 1 \mod 11$	
no tiene solución para	
$a\in \mathbb{Z}/11\mathbb{Z}$	
o no nulo.	
Existen infinitos elementos en	
\circ $\mathbb{Z}/11\mathbb{Z}$	

Pregunta 7

6.25 / 6.25 pts

Si se sabe que

$11 \equiv x \mod 12$

, entonces es correcto afirmar:

$$\bigcirc x^2 \equiv 0 \mod 12$$

$$3x-1\equiv 7\mod 12$$

$$\bigcirc \ (x+1)^2 \equiv x \mod 12$$

Pregunta 8

6.25 / 6.25 pts

Si se sabe que

$$13 \equiv x \mod 14$$

, entonces es correcto afirmar:

$$\bigcirc x^2 + x \equiv 1 \mod 14$$

$$\bigcirc \ x^2 \equiv 0 \mod 14$$

$$3x-1 \equiv 7 \mod 14$$

$$(x+1)^2 \equiv x-13 \mod 14$$

Si

$$5 \mid 11x$$

, entonces es correcto afirmar:

- **○** 5 | *x*
- 011x = 5
- 0 5 | (11x 11)

$$5 \div 11x$$

es un número entero.

Pregunta 10

6.25 / 6.25 pts

Sobre la solución de la congruencia lineal

$$3x \equiv 5 \mod 14$$

es correcto afirmar:

- $\bigcirc x \equiv 2 \mod 14$

$\bigcirc \ x \equiv 12$	mod 14
$\bigcirc \ x \equiv 10$	mod 14

Pregunta 11	6.25 / 6.25 pts
Sobre el número 16 mod 18	
es correcto afirmar:	
No tiene inverso, módulo 18.	
Su cuadrado es congruente con 3.	
Su opuesto es congruente con 3.	
Si	
$c\equiv 16 \mod 18$	
, entonces el residuo de dividir	
c	
entre	
18	
O es 2.	

Pregunta 12 6.25 / 6.25 pts

Estimación de números primos.

¿Cuál es la cantidad apróximada de números primos menores o iguales a 324423?

- 25565
- 213312
- 7880
- 26055

Pregunta 13

6.25 / 6.25 pts

Si se sabe que

$$mcd(a,b)=7$$

con

, entonces es correcto afirmar:

- \bigcirc 7 | mcm(a, b)
- 0 a < 7
- 0 7 | (3a+b+9)

Si $d \mid a$ У $d \div b$, entonces d > 7

Pregunta 14	6.25 / 6.25 pts
Si	
$5\mid x$	
у	
$\boldsymbol{12} \mid \boldsymbol{x}$	
, entonces es correcto afirmar:	
60 x	
○ 17 <i>x</i>	
\circ 7 x	
5 12	
O .	

6.25 / 6.25 pts Pregunta 15

Si

$$7a \equiv 3 \mod 12$$

es correcto afirmar:

$$\bigcirc$$
 $7a+12 \equiv 15 \mod 12$

$$\bigcirc$$
 $9a \equiv 15 \mod 60$

$$\bigcirc \ a^2+1\equiv 9 \mod 12$$

Pregunta 16

6.25 / 6.25 pts

Si

$$a \equiv 5 \mod 7$$

У

$$b \equiv 2 \mod 7$$

es correcto afirmar:

$$\bigcirc \ a^2 + b^2 \equiv 0 \mod 7$$

$$\bigcirc \ a(b+3) \equiv 3 \mod 7$$

$$\bigcirc 2b \equiv a-2 \mod 7$$

6.25 / 6.25 pts

Pregunta 18

6.25 / 6.25 pts

Si se sabe que

$$mcm(a,b)=12$$

con

, entonces es correcto afirmar:

$\bigcirc \ 12 \mid mcd(a,b)$	
a=12k	
para algún	
$igcup k\in \mathbb{Z}$	
$\bigcirc ab =12$	

Pregunta 19	6.25 / 6.25 pts
El inverso de	
$12\mod 25$	
es:	
O 2 mod 25	
\bigcirc -12 mod 25	
© 8 mod 25	

Pregunta 20	6.25 / 6.25 pts
Solucionar el módulo usando el Teorema de Fermat.	
¿Cuál es resultado de	
$315^{61} \hspace{-0.2cm} \mod \hspace{0.1cm} 13$	
?	
3	
0 1	
O 315	
O 0	

Puntaje del examen: **125** de 125

X