

Computer Vision Tasks

Source: Fei-Fei Li, Andrej Karpathy & Justin Johnson (2016) cs231n, Lecture 8 - Slide 8, *Spatial Localization and Detection* (01/02/2016). Available: http://cs231n.stanford.edu/slides/2016/winter1516_lecture8.pdf

nodeflux

General Pipeline of Image Classification

Use Case

Face Recognition

Optical Character Recognition

Product Recognition

Cancer Detection

What is Feature?

Color

Shape

Texture

Edge

Corner

etc

Source: google images

Section 2 - Intro to CNN

www.nodeflux.io

Neural Network

Inspired by:

And modelled as this:

Neural Network Behind the Scenes

Activation Function

Sigmoid

$$\sigma(x) = \tfrac{1}{1+e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Softmax

$$\sigma(x_j) = \frac{e^{x_j}}{\sum_i e^{x_i}}$$

Loss Function

Regression Case	Classification Case
Mean Absolute Error/L1	Cross Entropy Loss
$\frac{\sum_{i=1}^{n} y_i - \hat{y}_i }{n}$	$-(y_i log(\hat{y}_i) + (1 - y_i) log(1 - \hat{y}_i))$
Mean Square Error/L2	SVM Loss
$\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}$	$SVMLoss = \sum_{j \neq y_i} max(0, s_j - s_{y_i} + 1)$

How model learns?

I. Forward-propagate Input Signal

II. Back-propagate Error Signals

III. Calculate Parameter Gradients

IV. Update Parameters

$$w_{ij} = w_{ij} - \eta(\partial \mathbb{E}/\partial w_{ij})$$

 $w_{jk} = w_{jk} - \eta(\partial \mathbb{E}/\partial w_{jk})$
for learning rate η

How model learns?

Local Minima vs Global Minima

Learning Rate

Overfitting vs Underfitting

Convolutional Layer

1x1	1x0	1x1	0	0
0x0	1x1	1x0	1	0
0 x 1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

Stride and Padding

Pooling Layer

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Flattened

1	1	0
4	2	1
0	2	1

1	
1	
0	
4	
2	
1	
0	
2	
1	

Performance Metric

Confusion Matrix

$$Precision = \frac{TP}{TP + FP} = \frac{TP}{\text{all detections}}$$

$$Recall = \frac{TP}{TP + FN} = \frac{TP}{\text{all ground truths}}$$

Section 3 - CNN with Pytorch

www.nodeflux.io

Transfer Learning

bit.ly/nodeflux-image-classification

nodeflux