Bhoris Dhanjal

Calculus IV

Lecture Notes for SMAT401

Contents

1	Tutorial 1				
	1.1	Question 1	1		
	1.2	Question 2	1		
	1.3	Question 3	1		
	1.4	Question 4	2		
	1.5	Question 5	2		
	1.6	Question 6			

Chapter 1

Tutorial 1

Show that the limits as the function approaches (0,0) dont exist

1.1 Question 1

$$\frac{x^2 - y^2}{x^2 + y^2}$$

use x and y axis

1.2 Question 2

$$\frac{x^3y}{x^6+y^2}$$

consider y = 0 then we have limit equal 0. Consider now $y = x^3$ so now limit of $\frac{x^6}{2x^6} = \frac{1}{2}$.

1.3 Question 3

$$\frac{\sin(x^2+y)}{x+y}$$

along the x axis (y=0) we get $\sin(x^2)/x$ and the lim is 0. But for y axis (x=0) we get $\sin(y)/y$ and the lim is 1.

1.4 Question 4

$$\frac{x^3 + y^3}{x - y}$$

take the line y = 0 we get $\frac{x^3 + m^3 x^3}{x - mx} = \frac{(1 + m)x^3}{x(1 - m)}$ is 0 but with $y = x - x^3$ is equal to 2. Try with $y = x - x^2$ we get

$$\lim \frac{x^3 + (x - x^3)^3}{x - (x - x^3)} = \lim \frac{x^3}{x^3} + \frac{((x - x^3)^3)}{x^3}$$
$$= 1 + \lim \frac{(x - x^3)^3}{x^3} = 1 + 1 = 2$$

1.5 Question 5

$$\frac{x^2y^2}{x^2y^2 + (x - y)^2}$$

consider the line x = 0 then the limit is obviously 0. Now consider y = x then the limit of $\frac{x^4}{x^4} = 1$.

1.6 Question 6

$$\frac{2xy^2}{x^3 + y^3}$$

take y=0 and x=y.

Tutorial 2

1.7 Question 1

$$\lim_{(x,y)\to(0,0)} xy \sin\left(\frac{1}{x^2 + y^2}\right) = 0$$