IN THE CLAIMS

What is claimed is:

	1	1.	A semiconductor integrated circuit device, comprising:
	2		a plurality of insulated gate field effect transistors (IGFETs) coupled to
λ	3		a corresponding input/output (I/O) terminal through a corresponding first
W.	4		resistance;
√ <i>k</i> .	5		a first clamping device coupled to each I/O terminal;
1	6		a second clamping circuit corresponding to each IGFET, each second
1	7		clamping circuit including a second clamping device and the corresponding
	8		first resistance, each second clamping device having a first terminal connected
	9		to a gate electrode of the corresponding IGFET and a second terminal
In the first first first the first	10		connected to a source/drain terminal of the corresponding IGFET and a supply
Here Hand	11		potential wiring;
	12		each first clamping device being coupled to one second clamping
	13		device through a second resistance; and
	14		at least two of the second clamping circuits vary from one another.
	1	2.	The semiconductor integrated circuit device method of claim 1, wherein:
	2		a supply notential wiring is selected from the group consisting of

substrate electric potential wiring.

13 to

electric power supply potential wiring, a ground electric potential wiring, and a

1	3.	The semiconductor integrated circuit device of claim 1, wherein:
2		the at least two second clamping circuits vary by the second clamping
3		device of one second clamping circuit having a different capability than the
4		second clamping device of the other second clamping circuit.
1	4.	The semiconductor integrated circuit device of claim 1, wherein:
2		the at least two second clamping circuits vary by a first resistance (Rin) of
3		one second clamping circuit having a different value than the first resistance (Rin)
4		of the other second clamping circuit, and a ratio between the second resistance
5		and the first resistance (Rg/Rin) for both clamping circuits having a
6	Ø	predetermined maximum value.
1	5.	The semiconductor integrated circuit device of claim 1, wherein:
2		a length of a wiring that connects the second clamping devices to the
3		gate electrode of the corresponding IGFETs is no more than 100 micrometers.
1	6.	The semiconductor integrated circuit device of claim 1, wherein:
2		a length of a wiring that connects the second clamping devices to the
3		source/drain electrode of the corresponding IGFETs is no more than 100
4		micrometers.
l	7.	The semiconductor integrated circuit device of claim 1, wherein:
2		the first resistance comprises essentially a wiring resistance and a

3		contact resistance.
1	8.	The semiconductor integrated circuit device of claim 1, wherein:
2		the majority of at least one first resistance includes non-wiring
3		structures.
1	9.	The semiconductor integrated circuit device of claim 1, wherein:
2		at least one first resistance includes an effective channel resistance of
15. 15.	Ø	an input path IGFET.
1	10.	The semiconductor integrated circuit device of claim 1, wherein:
2		the second resistance comprises essentially a supply potential wiring
3		resistance and a contact resistance where the first and second clamping
4		devices are connected to the supply potential wiring.
1	11.	The semiconductor integrated circuit device of claim 1, wherein:
2		each first clamping devices has a first terminal connected to one of the
3		I/O terminals and a second terminal, the second terminals of each first
4		clamping device being connected to the second terminal of one of the second
5		clamping devices by system wiring of at least one supply terminal; and
6		the second resistance comprises essentially a contact resistance
7		between the second terminal of the first clamping device and the supply
8		potential wiring, a supply potential wiring between the first clamping device

9		and the supply terminal, a supply terminal resistance, a supply potential
10		wiring between the supply terminal and the second terminal of the second
11		clamping device, and a contact resistance between the second terminal of the
12		second clamping device and the supply potential wiring.
1	12.	The semiconductor integrated circuit device of claim 1, wherein:
2		each first clamping device has a first terminal connected to one of the
3		I/O terminals and a second terminal connected to a first supply terminal; and
4		the second terminal of each second clamping device is connected to a
Ø,		second supply terminal different from the first supply terminal.
ζſ	0	
4	13.	The semiconductor integrated circuit device of claim 12, wherein:
2		the first and second supply terminals are connected to one another
3		through a conductive integrated circuit package structure.
1	14.	The semiconductor integrated circuit device of claim 1, wherein:
2		at least a portion of each second clamping device is selected from the
3		group consisting of an IGFET having a source/drain coupled to a gate, an
4		NPN bipolar device, a diode, and a thyristor.
1	15.	The semiconductor integrated circuit device of claim 1, wherein:
2		the at least two second clamping circuits vary by the second clamping
3		device of one second clamping circuit having a different construction than the

4	second clamping device	e of the other second clamping circuit.
T	second clamping devic	e of the other second clamping circuit.

1 16. A method for designing a protective circuit for a semiconductor integrated circuit
2 device that includes insulated gate field effect transistors (IGFETs) formed thereon, the
3 method comprising the steps of:

executing a simulation with a predetermined charged device model (CDM) equivalent circuit that includes a first clamping device connected to an input/output (I/O) terminal, a first IGFET having a gate connected to the I/O terminal through a first resistance (Rin), a second clamping device connected between gate and source/drain terminals of the first IGFET and connected to a supply potential wiring, the first and second clamping devices being connected to one another through a second resistance (Rg); and

selecting a ratio of the second resistance and the first resistance (Rg/Rin) that prevents a potential between the gate and source/drain terminal of the first IGFET from exceeding a predetermined value.

17. The method of claim 16, wherein:

the predetermined value is determined from a relationship between CDM test results and ratios of the second resistance and the first resistance (Rg/Rin), and simulation results showing a relationship between a potential between the gate and source/drain terminal of the first IGFET and ratios of the second resistance and the first resistance (Rg/Rin).

In the same time that the same in

8

9

10

11

12

13

1

1	18.	The method of claim 16, wherein:
2		the first and second resistance values are set to ranges that ensure
3		predetermined circuit characteristics.
1	19.	The method of claim 16, further including:
2		changing the properties a second clamping device for a second IGFET
3		to prevent a potential between the gate and source/drain terminal of the first
4		IGFET from exceeding a predetermined value.
1	20.	The method of claim 19, wherein:
2		the changing the properties of the second clamping device includes
3		changing the size of the second clamping device.
)
1		