My Institution

Courses

Community

Content Collection

QIHUA GONG 37 🔻

Logout

EN.520.645.01.FA21 Audio Signal Processing

Quizzes Review Test Submission: Quiz6

Review Test Submission: Quiz6

User	QIHUA GONG
Course	EN.520.645.01.FA21 Audio Signal Processing
Test	Quiz6
Started	11/11/21 2:27 PM
Submitted	11/11/21 2:41 PM
Due Date	11/11/21 3:00 PM
Status	Completed
Attempt Score	80 out of 100 points
Time Elapsed	14 minutes out of 15 minutes
Instructions	You have 15 minutes to complete the test
Results Displayed	Submitted Answers, Correct Answers

Question 1 0 out of 20 points

> A circumplex model of affect is a theory that emotions are perceived according to six, distinct and universal categories of emotions.

Selected Answer: 👩 True

Correct Answer: 👩 False

Question 2 20 out of 20 points

> Non-verbal vocalizations are very culture-specific. Emotionally expressive human non-verbal communications cannot be easily recognized across cultures.

Selected Answer: 👩 False

Correct Answer: 👩 False

Question 3 20 out of 20 points

Musical noise refers to

Selected Answer: 👩 noise caused by isolated spectral peaks due to spectral subtraction

Correct Answer: noise caused by isolated spectral peaks due to spectral subtraction

Question 4 20 out of 20 points In spectral subtraction, the denoised spectrum $\widehat{X}(\omega)$ is computed as:

$$|\widehat{X}(\omega)|^2 = |Y(\omega)|^2 - |D(\omega)|^2$$

where $Y(\omega)$ is the noisy spectrum and $D(\omega)$ is the distortion spectrum.

Use of a spectral floor refers to

Selected

Answer:

 $|\widehat{X}(\omega)|^2 = \beta |D(\omega)|^2$ when $|Y(\omega)|^2$ is below a certain value relative

to the noise

Correct

Answer:

 $|\widehat{X}(\omega)|^2 = \beta |D(\omega)|^2$ when $|Y(\omega)|^2$ is below a certain value relative

to the noise

Question 5 20 out of 20 points

Psychoacoustics is the field that studies

Selected Answer: 👩 how sound are perceived

Correct Answer: ohow sound are perceived

Thursday, April 7, 2022 7:49:19 PM EDT

 \leftarrow OK