1. Solution

The sample size, *n*, is 32. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 32 \rceil$	8	42.37
Q2	$\lceil 0.5 \times 32 \rceil$	16	42.59
Q3	$\lceil 0.75 \times 32 \rceil$	24	42.68

We determine the IQR.

$$IQR = Q3 - Q1$$

= 42.68 - 42.37
= 0.31

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $42.37 - 1.5 \times 0.31$
= 41.905
upper boundary = Q3 + $1.5 \times IQR$
= $42.68 + 1.5 \times 0.31$
= 43.145

We determine the outliers.

outliers =
$$\{41.12, 41.68, 41.85\}$$

We identify the ends of the whiskers: 42.02 and 42.98. We plot the boxplot.

2. Solution

The sample size, *n*, is 63. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 63 ceil$	16	77.6
Q2	$\lceil 0.5 \times 63 \rceil$	32	82.64
Q3	$\lceil 0.75 \times 63 \rceil$	48	85.3

We determine the IQR.

$$IQR = Q3 - Q1$$

= $85.3 - 77.6$
= 7.7

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $77.6 - 1.5 \times 7.7$
= 66.05
upper boundary = Q3 + $1.5 \times IQR$
= $85.3 + 1.5 \times 7.7$
= 96.85

We determine the outliers.

outliers =
$$\{61.9, 62.75\}$$

We identify the ends of the whiskers: 70.67 and 89.88. We plot the boxplot.

