ANALISI MATEMATICA II

ESERCITAZIONE 3

Argomenti: approssimazione di dati e di funzioni

1. Determinare i polinomi di grado 5, 9 e 13 che interpolano la funzione di Runge $f(x) = 1/(1+x^2)$ in nodi equidistanti nell'intervallo [-5,5] e, per ciascuno dei tre casi, riportare su un grafico la funzione di Runge, il polinomio e i nodi di interpolazione. Ripetere l'esercizio utilizzando i nodi di Chebyshev

$$t_i = -\cos\left(\frac{2i-1}{n}\frac{\pi}{2}\right), \quad i = 1, ..., n$$

definiti sull'intervallo [-1,1], appropriatamente modificati sull'intervallo di interesse [a,b] mediante la trasformazione $(x_i = \frac{b-a}{2}t_i + \frac{b+a}{2})$.

- 2. Approssimare con un polinomio interpolante di grado 9 le funzioni $f(x) = \log(1 + x^2)$ e $f(x) = \sin(x)$ negli intervalli [-5,5] e $[0,\pi]$, rispettivamente. Utilizzare sia i nodi equispaziati che i nodi di Chebyshev. Successivamente, rappresentare graficamente gli errori commessi nelle due interpolazioni in 100 punti equidistanti dei rispettivi intervalli di interpolazione e dire quale dei due polinomi fornisce un'approssimazione migliore.
- 3. Disegnare la spline cubica soddisfacente la condizione "not a knot" ed interpolante la funzione $f(x) = 1/(1+x^2)$ su 6, 10, 14 nodi equidistanti nell'intervallo [-5,5]. Confrontare i grafici ottenuti con quelli dell'esercizio 1 e commentare i risultati.
- 4. Utilizzare la function polyfit di MATLAB per determinare i coefficienti della somma esponenziale di ordine 3

$$f(x) = \sum_{k=0}^{3} a_k e^{kx}$$

passante per i punti (0,1), (1,4), (2,8) e (3,16). Successivamente rappresentare graficamente la funzione f e i punti di interpolazione.

- 5. Utilizzare la function spline di MATLAB per costruire le spline cubiche, $S_3(x)$ soddisfacente la condizione "not a knot" e $\bar{S}_3(x)$ soddisfacente le condizioni $\bar{S}_3'(x_0) = f'(x_0)$ e $\bar{S}_3'(x_n) = f'(x_n)$, interpolanti la funzione $f(x) = (1-x^2)^{5/2}$ nei nodi $x_i = -1 + 2i/n$, $i = 0, 1, \ldots, n$, $n = 2^k$, k = 2, 3, 4, 5. Rappresentare graficamente gli errori commessi nelle due approssimazioni in 100 punti equidistanti dell'intervallo di interpolazione [-1, 1] e dire quale delle due approssimazioni è più accurata. Stampare per ogni valore di k il massimo errore assoluto commesso e commentare i risultati.
- 6. Supporre di aver effettuato le seguenti misurazioni

Utilizzare la function polyfit di MATLAB per determinare con il metodo dei minimi quadrati i coefficienti della retta di regressione y = ax + b e della parabola $y = ax^2 + bx + c$ approssimante nel senso dei minimi quadrati i suddetti dati. Rappresentare graficamente le misurazioni

1

effettuate e le curve approssimanti. Successivamente determinare i coefficienti della somma esponenziale di ordine $2\,$

$$f(x) = \sum_{k=0}^{2} a_k e^{kx},$$

che meglio approssima nel senso dei minimi quadrati i dati assegnati. Quale delle tre approssimazioni determinate genera un residuo minore?

Esercizi facoltativi

1. Considerare la curva parametrica $\gamma(\vartheta) = (x(\vartheta), y(\vartheta))$ di equazioni:

$$\begin{cases} x(\vartheta) = r(\vartheta)\cos\vartheta \\ y(\vartheta) = r(\vartheta)\sin\vartheta \end{cases} \vartheta \in [0, 2\pi]$$

con $r(\vartheta) = c(1 + e\cos(m\vartheta))$, $\vartheta \in [0, 2\pi]$, c = 1, m = 4 e e = 0.5 e considerare i nodi ϑ_i , i = 1, ..., N, N = 8, 16, 24, equidistanti in $[0, 2\pi]$. Determinare le spline cubiche $S_x(\vartheta)$ e $S_y(\vartheta)$ not-a-knot interpolanti rispettivamente i dati $(\vartheta_i, x(\vartheta_i))$ e $(\vartheta_i, y(\vartheta_i))$ e approssimare la curva $\gamma(\vartheta)$ mediante la curva $\widetilde{\gamma}(\vartheta) = (S_x(\vartheta), S_y(\vartheta))$. Approssimare inoltre i dati $(x(\vartheta_i), y(\vartheta_i))$ anche con una lineare a tratti interpolante. Confrontare e commentare i grafici ottenuti.