Alliance Participation and Military Spending

Joshua Alley

August 19, 2019

Texas A&M University

How alliance participation affects military spending depends on treaty scope and state capability.

1: Though alliance participation usually increases major power military

spending, growth is lower in broad

treaties.

1: Though alliance participation usually increases major power military spending, growth is lower in broad treaties.

2: Though alliance participation usually decreases non-major power military spending, growth is higher in broad treaties.

Why Should You Care?

Does alliance participation

increase military spending?

increase military spending?

Or decrease it?

Does alliance participation

Competing Results

	Decrease	Increase	Null
Most & Siverson 1987			Χ
Conybeare 1994	X		
Diehl 1994		X	
Goldsmith 2003			X
Morgan & Palmer 2006		X	
Quiroz-Flores 2011		X	
Digiuseppe & Poast 2016	X		
Horowitz et al 2017		Χ	

Omission: Alliance Heterogeneity

• Alliances can *increase or decrease* military spending.

Omission: Alliance Heterogeneity

- Alliances can increase or decrease military spending.
- Depends on alliance characteristics and what states use alliances for.

Treaty scope and state capability are

two key sources of differences between

alliances.

I make my claim about alliance participation and military spending in three ways:

I make my claim about alliance participation and military spending in three ways:

1. Argument: Treaty Scope and State Capability

I make my claim about alliance participation and military spending in three ways:

- 1. Argument: Treaty Scope and State Capability
- 2. Statistical Analysis

I make my claim about alliance participation and military spending in three ways:

- 1. Argument: Treaty Scope and State Capability
- 2. Statistical Analysis
- 3. Apply Argument and Statistical Model to NATO

Argument

• States pursue domestic consumption and foreign policy goods.

- States pursue domestic consumption and foreign policy goods.
- Security and influence are the two main foreign policy goods, which states get through alliances and military spending.

- States pursue domestic consumption and foreign policy goods.
- Security and influence are the two main foreign policy goods, which states get through alliances and military spending.
- Military spending has opportunity costs, which decrease with state size.

- States pursue domestic consumption and foreign policy goods.
- Security and influence are the two main foreign policy goods, which states get through alliances and military spending.
- Military spending has opportunity costs, which decrease with state size.
- Alliances are a costly signal of shared foreign policy interests: reduced freedom of action.

Enforcement Problems in Alliance Politics

Alliance members have to address opportunistic behavior by their partners.

Enforcement Problems in Alliance Politics

Alliance members have to address opportunistic behavior by their partners.

1. Abandonment

Enforcement Problems in Alliance Politics

Alliance members have to address opportunistic behavior by their partners.

- 1. Abandonment
- 2. Free-riding

Treaty Scope

Broad treaties add cooperation on other issues besides military support.

Treaty Scope

Broad treaties add cooperation on other issues besides military support.

1. Canonical example is trade.

Treaty Scope

Broad treaties add cooperation on other issues besides military support.

- 1. Canonical example is trade.
- 2. Creates issue linkages.

In a broad alliance, opportunistic behavior risks more than support in war.

1. Issue linkages increase the costs of opportunism.

- 1. Issue linkages increase the costs of opportunism.
- 2. Sharpen the tradeoff between:

- 1. Issue linkages increase the costs of opportunism.
- 2. Sharpen the tradeoff between:
 - 2.1 Foreign policy gains.

- 1. Issue linkages increase the costs of opportunism.
- 2. Sharpen the tradeoff between:
 - 2.1 Foreign policy gains.
 - 2.2 Freedom of action.

The implications of treaty scope depend on state capability.

Capability/Power Status shapes:

Capability/Power Status shapes:

1. Goals.

Capability/Power Status shapes:

- 1. Goals.
- 2. Constraints.

Capability/Power Status shapes:

- 1. Goals.
- 2. Constraints.
- 3. Prevalent Opportunism.

1. Goal: External Influence.

- 1. Goal: External Influence.
- 2. Constraint: Foreign entanglements.

- 1. Goal: External Influence.
- 2. Constraint: Foreign entanglements.
- 3. Opportunism: Abandonment.

- 1. Goal: External Influence.
- 2. Constraint: Foreign entanglements.
- 3. Opportunism: Abandonment.
- 4. Alliance participation usually increases military spending.

Treaty Scope and Major Powers

• Broad treaties \uparrow influence without \uparrow spending.

Treaty Scope and Major Powers

- Broad treaties ↑ influence without ↑ spending.
- Issue linkages reassure allies of commitment.

Treaty Scope and Major Powers

- Broad treaties ↑ influence without ↑ spending.
- Issue linkages reassure allies of commitment.
- Greater entanglement abroad.

Hypothesis 1: As alliance treaty scope increases, growth in major

power military spending from alliance participation will

decrease.

• Goal: Security.

- Goal: Security.
- Constraint: Opportunity Costs of Military Spending.

- Goal: Security.
- Constraint: Opportunity Costs of Military Spending.
- Opportunism: Free-riding.

- Goal: Security.
- Constraint: Opportunity Costs of Military Spending.
- Opportunism: Free-riding.
- Alliance participation usually decreases military spending.

Treaty Scope and Non-Major Powers

• Broad treaties restrict freedom of action.

Treaty Scope and Non-Major Powers

- Broad treaties restrict freedom of action.
- Alliance is more valuable.

Treaty Scope and Non-Major Powers

- Broad treaties restrict freedom of action.
- Alliance is more valuable.
- Allies have more influence through issue linkages.

Hypothesis 2: As alliance treaty

scope increases, growth in

non-major power military

participation will increase.

spending from alliance

Empirical Analysis

Research Design

I need two things to test these predictions:

Research Design

I need two things to test these predictions:

1. Measure of treaty scope— economic cooperation.

Research Design

I need two things to test these predictions:

- 1. Measure of treaty scope— economic cooperation.
- Connect alliance-level variation with state-level outcomes— multilevel analysis.

Measuring Treaty Scope

I use a latent variable model to infer treaty scope from observed promises.

Measuring Treaty Scope

I use a latent variable model to infer treaty scope from observed promises.

My measure of scope for each alliance is the posterior mean of a latent factor.

Details of Measure

- Multiple observed indicators of scope (ATOP):
 - Military Support: offense, defense, neutrality, consultation, non-aggression, unconditional military support.
 - Other Cooperation: bases, integrated command, economic aid, military aid, IO formation, conclude multiple other agreements, no other alliances.

Details of Measure

- Multiple observed indicators of scope (ATOP):
 - Military Support: offense, defense, neutrality, consultation, non-aggression, unconditional military support.
 - Other Cooperation: bases, integrated command, economic aid, military aid, IO formation, conclude multiple other agreements, no other alliances.
- Semiparametric mixed factor analysis. (Murray et al 2013)

Details of Measure

- Multiple observed indicators of scope (ATOP):
 - Military Support: offense, defense, neutrality, consultation, non-aggression, unconditional military support.
 - Other Cooperation: bases, integrated command, economic aid, military aid, IO formation, conclude multiple other agreements, no other alliances.
- Semiparametric mixed factor analysis. (Murray et al 2013)
- Generates a posterior distribution of scope for each alliance.

Latent Measure of Treaty Scope

Latent Measure of Treaty Scope: Narrow

Latent Measure of Treaty Scope: Typical

Latent Measure of Treaty Scope: Broad

Empirical Analysis: Multilevel Model

• Link alliance-level variation with state-level outcomes.

Empirical Analysis: Multilevel Model

- Link alliance-level variation with state-level outcomes.
- Two connected regressions: alliance and state-level.

Empirical Analysis: Multilevel Model

- Link alliance-level variation with state-level outcomes.
- Two connected regressions: alliance and state-level.
- Alliance characteristics modify the association between alliance membership and spending growth.

ML Model

ML Model

ML Model

ML Model Specification

$$y \sim student_t(\nu, \mu, \sigma)$$
 (1)

$$\mu = \alpha + \alpha^{st} + \alpha^{yr} + \mathbf{W}_{n \times k} \gamma + \mathbf{Z}_{n \times a} \lambda$$
 (2)

$$\lambda_a \sim N(\theta_a, \sigma_{all})$$
 (3)

$$\theta_a = \alpha_{all} + \beta_1 \text{Treaty Scope} + \mathbf{X}_{a \times l} \beta$$
 (4)

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + W_{it}\gamma + Z_{it}\lambda$$

Example year:

- + Argentine Intercept + 1955 Intercept
- + Argentine Characteristics
- $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$\lambda_{Rio} = \alpha_{all} + \beta_1 0.717 + \text{Controls}$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + W_{it}\gamma + Z_{it}\lambda$$

Example year:

- + Argentine Intercept + 1955 Intercept
- + Argentine Characteristics
- $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$\lambda_{Rio} = \alpha_{all} + \beta_1 0.717 + \text{Controls}$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + W_{it}\gamma + Z_{it}\lambda$$

Example year:

- + Argentine Intercept + 1955 Intercept
- + Argentine Characteristics
- $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$\lambda_{Rio} = \alpha_{all} + \beta_1 0.717 + \text{Controls}$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + W_{it}\gamma + Z_{it}\lambda$$

Example year:

- + Argentine Intercept + 1955 Intercept
- + Argentine Characteristics
- $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$\lambda_{Rio} = \alpha_{all} + \beta_1 0.717 + \text{Controls}$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + W_{it}\gamma + Z_{it}\lambda$$

Example year:

- + Argentine Intercept + 1955 Intercept
- + Argentine Characteristics
- $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$\lambda_{Rio} = \alpha_{all} + \beta_1 0.717 + \text{Controls}$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + W_{it}\gamma + Z_{it}\lambda$$

Example year:

- + Argentine Intercept + 1955 Intercept
- + Argentine Characteristics
- $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$\lambda_{Rio} = \alpha_{all} + \beta_1 0.717 + \text{Controls}$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + W_{it}\gamma + Z_{it}\lambda$$

Example year:

- + Argentine Intercept + 1955 Intercept
- + Argentine Characteristics
- $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$\lambda_{Rio} = \alpha_{all} + \beta_1 0.717 + \text{Controls}$$

State-Year	Rio Pact	Warsaw Pact
Argentina 1954	.347	0
Argentina 1955	.418	0
:	:	÷

Sample and Key Variables

• **Split Sample**: major and non-major power states— 1816-2007. Alliances with military support.

Sample and Key Variables

- **Split Sample**: major and non-major power states—1816-2007. Alliances with military support.
- **DV**: Growth in Military Spending = $\frac{\Delta Mil. \ Expend_t}{Mil. \ Expend_{t-1}}$

Sample and Key Variables

- **Split Sample**: major and non-major power states— 1816-2007. Alliances with military support.
- **DV**: Growth in Military Spending = $\frac{\Delta \text{Mil. Expend}_t}{\text{Mil. Expend}_t}$
- Alliance-Level IV: Mean Treaty Scope

Controls

 State-Level Controls: Interstate war, Civil War, Annual MIDs, GDP growth, POLITY, Cold War, Rival military expenditures.

Controls

- State-Level Controls: Interstate war, Civil War, Annual MIDs, GDP growth, POLITY, Cold War, Rival military expenditures.
- Alliance-Level Controls: Share of Democracies,
 Number of Members, wartime, asymmetric obligations,
 US member (Cold War), USSR member.

Association Between Treaty Scope and Growth in Military Spending

Importance

Post. Mean Median Growth Sample -0.05Major

0.04

Importance

Sample	Post. Mean	Median Growth
Major	-0.05	0.04
Non-major	0.03	0.06

Importance

	Sample	Post.	Mean	Median	Growth	
	Major	-0	.05	0.	04	
	Non-major	0.	03	0.	06	
US spent \$36.0 billion on NATO in						
2018, or 5.5% of the total defense						
spending.						

Treaty Scope and λ

Treaty Scope and λ : Major Powers

Treaty Scope and λ : Non-major Powers

NATO

Foreign Entanglement and Formal Obligations

"The Parties agree that an ar<u>med attack</u>

against them all..."

against one or more of them in Europe or North America shall be considered an attack

"assist the Party or Parties so attacked by taking forthwith, individually and in concert with the other Parties, such action as it deems necessary, including the use of armed force"

"such action as it deems

necessary, including the use of armed force"

NATO Scope

Impact of NATO on Growth in US Military Spending

Implication: What to do with US alliances?

Note: OAS stands for Organization of American States; NATO for North Atlantic Treaty Organization; and ANZUS for Australian, New Zealand, United States Security Treaty.

Alliance Participation and US Military Spending

Conclusion

How alliance participation affects military spending depends on state capability and treaty scope.

1: Though alliance participation usually increases major power military

spending, growth is lower in broad

treaties.

1: Though alliance participation usually increases major power military spending, growth is lower in broad treaties.

2: Though alliance participation usually decreases non-major power military spending, growth is higher in broad treaties.

Looking Ahead

Dissertation

My dissertation articulates and tests a more general theory of alliance participation and military spending.

My Research Agenda

The political economy of security, with a focus on formal institutions.

International Security

- Alliance Participation and Military Spending
- Reassessing the Public Goods Theory of Alliances

Intra-State Conflict

- Conflict Management Institutions and FDI
- Sanctioning Terrorist Groups: Can it Work?
- Weapon of the Weak?: Rebel Groups' International Law Talk, 1974-2011

Thank you! jkalley14@tamu.edu

Limitations

- 1. Domestic political economy of military spending.
- 2. Measurement error and missing data.
- 3. Strategic alliance design

Spending Growth and the Hypotheses

Trace plots: Major

Trace plots: Non-Major

Model Check: Recovering Known Parameters

Another way to check complicated models is simulating fake data with known parameters, then using the model to recover said parameters.

To check my model, I simulated a fake dataset of 2,000 observations with 50 states, 200 years, 100 alliances and 2 variables at each level.

The 90% credible intervals contain the known value for all regression parameters. 93 of 100 alliance specific parameter intervals contain the known value.

Simulated Parameters and Credible Intervals

Alliance-Level Regression Table: Major Powers

930 observations, with 130 alliances.

	mean	S.D.	5%	95%	n_eff	Ŕ
Constant	0.038	0.038	-0.025	0.102	3380.954	1.000
Latent Str.	-0.054	0.031	-0.107	-0.005	3278.923	1.000
Number Members	0.000	0.002	-0.003	0.003	4000.000	0.999
Democratic Membership	-0.009	0.033	-0.065	0.042	4000.000	1.000
Wartime	-0.057	0.035	-0.115	-0.001	4000.000	1.001
Asymmetric	0.053	0.035	0.001	0.115	2218.509	1.000
US Member	0.002	0.031	-0.051	0.051	4000.000	1.000
USSR Member	0.023	0.033	-0.028	0.079	4000.000	1.000
σ Alliances	0.066	0.029	0.019	0.117	599.081	1.007

Alliance-Level Regression Table: Non-Major Powers

8,668 observations and 192 alliances.

	mean	sd	5%	95%	n_eff	Ŕ
Constant	-0.018	0.018	-0.047	0.012	2211.374	1.000
Latent Str.	0.026	0.017	-0.002	0.054	2191.382	1.000
Number Members	0.000	0.001	-0.001	0.001	4000.000	1.000
Democratic Membership	-0.031	0.015	-0.056	-0.009	3213.621	1.000
Wartime	0.041	0.023	0.002	0.078	4000.000	1.000
Asymmetric	-0.031	0.021	-0.065	0.003	4000.000	0.999
US Member	0.013	0.018	-0.016	0.042	2895.419	1.000
USSR Member	0.011	0.031	-0.041	0.062	4000.000	1.000
σ Alliances	0.014	0.009	0.002	0.030	1254.268	1.001

Priors

4 Chains with 2,000 samples and 1,000 warmup iterations.

$$\begin{split} & p(\alpha) \sim \textit{N}(0,1) \\ & p(\sigma) \sim \textit{half-N}(0,1) \\ & p(\alpha^{\textit{yr}}) \sim \textit{N}(0,\sigma^{\textit{yr}}) \\ & p(\sigma^{\textit{yr}}) \sim \textit{N}(0,1) \\ & p(\alpha^{\textit{st}}) \sim \textit{N}(0,\sigma^{\textit{st}}) \\ & p(\sigma^{\textit{st}}) \sim \textit{half-N}(0,1) \\ & p(\sigma^{\textit{st}}) \sim \textit{half-N}(0,1) \\ & p(\beta) \sim \textit{N}(0,1) \\ & p(\gamma) \sim \textit{N}(0,1) \\ & p(\nu) \sim \textit{gamma}(2,0.1) \end{split}$$

Details of Measurement Model

- Bayesian Gaussian Copula Factor Model: for mixed data.
- Uses copulas to break dependence between latent factors and marginal distributions.
- Treats marginals as unknown and keeps them free of dependence.
- IMH proposal, 10,000 iteration warmup, 20,000 samples, thinned every 20 draws.
- Generalized double Pareto prior for the factor loading flexible generalized Laplace distribution with a spike at zero and heavy tails.

Notable Major Power Alliances

Notable Non-Major Power Alliances

Non-Major Powers in NATO: Belgium

Impact of NATO on Belgium

Impact of EU on Belgium

Varying Slopes Model

Within each of the j groups of state capability, for i in $1...n_j$:

$$y_i \sim \textit{student}_t(\nu_j, \alpha_j + \alpha^{\textit{st}} + \alpha^{\textit{yr}} + \mathbf{W}_i \gamma + \mathbf{Z}_{ji} \lambda_j, \sigma_j)$$

$$\lambda_j \sim N(\theta_j, \sigma_j^{all})$$

$$\theta_j = \alpha_j^{\textit{all}} + \mathbf{X}\beta_j$$

I give β_j a multivariate normal prior with prior scale τ :

$$\beta_j \sim MVN(\mu_{\beta_j}, \Sigma_{\beta})$$

Varying Slopes Results: Scope

Full Varying Slopes Results

Single-Level Robust Regression

Binning Estimator Check of Interaction

