Math 620: §3.3 Constructing Examples

Due on Monday, October 19, 2015

Boynton 10:00

Kailee Gray

Exercise 3.3.6: Construct an abelian group of order 12 that is not cyclic.

Let G be the group we want to construct. If G is not cyclic, then there is no element in G with order 12. Since the order of the elements of G have to divide the order of G, the order of the elements of G must be 1, 2, 3, 4, or G. Note $|\mathbb{Z}_2 \times \mathbb{Z}_6| = 12$ and by commutativity of addition in \mathbb{Z} , $\mathbb{Z}_2 \times \mathbb{Z}_6$ is abelian. Note there is no element in $\mathbb{Z}_2 \times \mathbb{Z}_6$ has order 12 so $\mathbb{Z}_2 \times \mathbb{Z}_6$ is not cyclic:

+	(0,0)	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(1,0)	(1,1)	(1,2)	(1, 3)	(1,4)	(1,5)
order	1	6	3	2	3	6	2	6	6	2	6	6

Exercise 3.3.7: Construct a group of order 12 that is not abelian.

Consider S_4 . Note $|S_4|=24$ and S_4 is not abelian because (12)(34)(123)=(243) and (123)(12)(34)=(134). Let A_4 be the set of all permutations in S_4 that can be written as a product of an even number of transpositions. Then, $A_4 \subset S_4$ and $A_4 = \{(1)(1), (12)(34), (13)(24), (14)(23), (123), (124), (132), (134), (142), (143), (234), (243)\}$ and so $|A_4|=12$. Consider $\sigma, \tau \in A_4$. Then, σ can be written as the product of even number of transpositions and τ can be written as the product of even number of transpositions. So $\sigma\tau$ can be written as the product of even number of transpositions which implies $\sigma\tau \in A_4$. Thus, by corollary 3.2.4, A_4 is a subgroup of S_4 so A_4 is a group. Also, (12)(34)(123)=(243) and (123)(12)(34)=(134) with $(12)(34), (123) \in A_4$ so A_4 is not abelian.

Exercise 3.3.9: Concerning subgroups of $\mathbb{Z} \times \mathbb{Z}$. (a) Let $C_1 = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid a=b\}$. Show that C_1 is a subgroup of $\mathbb{Z} \times \mathbb{Z}$.

Proof. Since $(0,0) \in C_1$, C_1 is nonempty; note (0,0) is the identity element of C_1 since (a,b)+(0,0)=(a,b) for any $a,b \in \mathbb{Z}$. Also, $C_1 \subseteq \mathbb{Z} \times \mathbb{Z}$. Suppose $(a_1,a_2),(b_1,b_2) \in C_1$. Then, $a_1=a_2$ and $b_1=b_2$. Because $(b_1,b_2)+(-b_1,-b_2)=(0,0), (b_1,b_2)^{-1}=(-b_1,-b_2)$. If $b_1=b_2, -b_1=-b_2$ so $(b_1,b_2)^{-1} \in C_1$. Also, $(a_1,a_2)+(-b_1,-b_2)=(a_1-b_1,a_2-b_2)$. Since $a_1=a_2$ and $-b_1=-b_2, a_1-b_1=a_2-b_2$. Thus, $(a_1,a_2)+(b_1,b_2)^{-1} \in C_1$. By corollary 3.2.3, C_1 is a subgroup of $\mathbb{Z} \times \mathbb{Z}$. □

(b) For each positive integer $n \geq 2$, let $C_n = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a \equiv b \pmod{n}\}$. Show that C_n is a subgroup of $\mathbb{Z} \times \mathbb{Z}$.

Proof. Since $0 \equiv 0 \pmod{n}$ for any n, $(0,0) \in C_n$, C_n is nonempty. Also, $C_n \subseteq \mathbb{Z} \times \mathbb{Z}$. Consider any $(a_1, a_2), (b_1, b_2) \in C_n$. Then, $a_1 \equiv a_2 \pmod{n}$ and $b_1 \equiv b_2 \pmod{n}$. Therefore, $a_1 + b_1 \equiv a_2 + b_2 \pmod{n}$ so $(a_1, a_2) + (b_1, b_2) \in C_n$. Because $(b_1, b_2) + (-b_1, -b_2) = (0, 0), (b_1, b_2)^{-1} = (-b_1, -b_2)$. If $b_1 \equiv b_2 \pmod{n}$, $-b_1 \equiv -b_2 \pmod{n}$ so $(b_1, b_2)^{-1} \in C_n$. By proposition 3.2.2, C_n is a subgroup of $\mathbb{Z} \times \mathbb{Z}$.

(c) Show that every subgroup of $\mathbb{Z} \times \mathbb{Z}$ that contains C_1 has the form C_n , for some positive integer n.

Proof. Suppose H is a subgroup of $\mathbb{Z} \times \mathbb{Z}$ such that $C_1 \subseteq H$. If for all $(a, b) \in H$, a = b, then $a \equiv b \pmod{1}$ so $H = C_1$ and H is in the form C_n .

Suppose there exist $(a, b) \in H$ such that $a \neq b$. Since H is a group, it must be closed under addition and have inverses, so $(-a, -a), (-b, -b) \in H$ and

 $(a,b)+(-a,-a)=(0,b-a)\in H.$ Thus, elements of the form $(0,n)\in H.$ If n<0, elements in H have inverses so $(0,-n)\in H.$ Since $(a,b), a\neq b$ there exists one such n, so by the Well-Ordering Principle, we can let n=|n| be the smallest positive integer such that (0,n) or (0,-n) is in H.

We will show $H = C_n$. First, we will show $H \subseteq C_n$. Let $(a, b) \in H$. We want to show that $(a, b) \in C_n$ which is equivalent to showing $a \equiv b \pmod{n}$. From above, we know $(a, b) \in H$ implies $(0, b - a) \in H$. By the division algorithm there exists $0 \le r < n$ and $q \in \mathbb{Z}$ such that b - a = qn + r. We want to show r = 0. Notice (0, b - a) = (0, qn) + (0, r) and (0, r) = (0, b - a) - (0, qn). Since $(0, b - a), (0, n) \in H$, $(0, qn) \in H$ and therefore $(0, r) \in H$. Thus, we have r < n such that $(0, r) \in H$. But, n was selected as the least possible positive integer with $(0, n) \in H$ so (0, r) = (0, 0) and so r = 0. Since r = 0, b - a = nq which implies $a \equiv b \pmod{n}$ and so $(a, b) \in C_n$.

Next, show $C_n \subseteq H$. Let $(a,b) \in C_n$. Then, $a \equiv b \pmod{n}$ implies b-a=nk and so b=a+nk for some integer k. Since $C_1 \subset H$, we know $(a,a) \in H$. Also, from above, we know $(0,n) \in H$. Thus, (a,b) = (a,a) + k(0,n). H is closed under addition so $k(0,n) \in H$ and so $(a,b) \in H$. Thus, $C_n = H$.

Exercise 3.3.10: Let n > 2 be an integer, and let $X \subseteq S_n \times S_n$ be the set $X = \{(\sigma, \tau) \mid \sigma(1) = \tau(1)\}$. Show that X is not a subgroup of $S_n \times S_n$.

Proof. Consider $X \subseteq S_3 \times S_3$. Then, $(\sigma_1, \tau_1) = ((12), (123))$ and $(\sigma_2, \tau_2) = ((13), (132))$ are in X since $\sigma_1(1) = 2 = \tau_1(1)$ and $\sigma_2(1) = 3 = \tau_2(1)$. If X is a subgroup of $S_3 \times S_3$, $(\sigma_1, \tau_1) \circ (\sigma_2, \tau_2) \in X$. Notice $(\sigma_1, \tau_1) \circ (\sigma_2, \tau_2) = ((12)(13), (123)(132)) = ((132), (1))$. Let, $\sigma = (132)$ and $\tau = (1)$. Notice $\sigma(1) = 3$ but $\tau(1) = 1$. Thus, $((132), (1)) \notin X$. Since X is not closed, X is not a subgroup of $S_3 \times S_3$

Exercise 3.3.13: Let p,q be distinct prime numbers, and n=pq. Show $HK=\mathbb{Z}_n^{\times}$.

Proof. Let p,q be distinct prime numbers, and let n=pq and consider the subgroups

 $H = \{[x] \in \mathbb{Z}_n^{\times} \mid x \equiv 1 \pmod{p}\} \text{ and } K = \{[y] \in \mathbb{Z}_n^{\times} \mid y \equiv 1 \pmod{q}\} \text{ of } \mathbb{Z}_n^{\times}. \text{ By }$ proposition 3.3.2, since \mathbb{Z}_n^{\times} is abelian, HK is a subgroup of \mathbb{Z}_n^{\times} From page 41 of Beachy, $|\mathbb{Z}_n^{\times}| = \varphi(n) = \varphi(pq) = (p-1)(q-1)$. We will show |HK| = (p-1)(q-1).Since n = pq, all elements $h, k \in H, K \subseteq \mathbb{Z}_n^{\times}$ must satisfy $1 \le h, k \le pq - 1$. Also, $h \in H \subseteq \mathbb{Z}_n^{\times}$ implies h = 1 + mp and $k \in K \subseteq \mathbb{Z}_n^{\times}$ implies k = 1 + nq with $m, n \in \mathbb{Z}_n$. Since $1 \le h, k \le pq - 1, 0 \le m < q \text{ and } 0 \le n < p.$ Thus, H contains at most $1, 1+p, 1+2p, \ldots, 1+(q-1)p$ and K contains at most $1, 1+q, 1+2q, \ldots, 1+(p-1)q$. We need to check to ensure these elements are in \mathbb{Z}_n^{\times} . Notice if $x \in H$, $x \equiv 1 \pmod{p}$. If $x \notin \mathbb{Z}_n^{\times}$, x is not relatively prime to n. Since $x \equiv 1 \pmod{p}$ and p, q are the only divisors of $n, x \in \{1, 1+p, 1+2p, \dots, 1+(q-1)p \text{ but } x \notin \mathbb{Z}_n^{\times} \text{ implies } q \mid x \text{ so } x \equiv 0 \pmod{q}.$ Since gcd(p,q) = 1, the Chinese Remainder Theorem implies there exists a unique x mod pq with $x \equiv 0 \pmod{q}$ and $x \equiv 1 \pmod{p}$. Thus, there is exactly one element in $1, 1+p, 1+2p, \ldots, 1+(q-1)p$ that is not in $H\subseteq \mathbb{Z}_n^{\times}$. Since $1, 1 + p, 1 + 2p, \dots, 1 + (q - 1)p$ contains q elements, |H| = q - 1. Similarly, if $x \in K$, $x \equiv 1 \pmod{q}$. If $1 \le x \le n-1$ and $x \notin \mathbb{Z}_n^{\times}$, x is not relatively prime to n. Since $x \equiv 1 \pmod{q}$ and p, q are the only divisors of n, $x \in \{1, 1+q, 1+2q, \dots, 1+(p-1)q \text{ but } x \notin \mathbb{Z}_n^{\times} \text{ implies } p \mid x \text{ so } x \equiv 0 \pmod{p}.$ Since

 $\gcd(p,q)=1$, the Chinese Remainder Theorem implies there exists a unique $x \mod pq$ with $x\equiv 0 \pmod p$ and $x\equiv 1 \pmod q$. Thus, there is exactly one element in $1,1+q,1+2q,\ldots,1+(p-1)q$ that is not in \mathbb{Z}_n^{\times} . Since $1,1+q,1+2q,\ldots,1+(p-1)q$ contains p elements, |K|=p-1.

Next, consider $H \cap K$. If $x \in H \cap K$, then $x \equiv 1 \pmod{p}$ and $x \equiv 1 \pmod{q}$. Since $\gcd(p,q) = 1$ the Chinese Remainder Theorem implies there exists a unique $x \mod pq$ such that $x \equiv 1 \pmod{p}$ and $x \equiv 1 \pmod{q}$. Thus, $|H \cap K| = 1$.

Thus, by exercise 3.3.14,

$$|HK| = \frac{|H||K|}{|H \cap K|} = \frac{(q-1)(p-1)}{1} = (p-1)(q-1) = \varphi(pq) = \varphi(n) = |\mathbb{Z}_n^{\times}|. \text{ So } HK \text{ and } \mathbb{Z}_n^{\times} \text{ are }$$
 finite groups of the same cardinality with $HK \leq \mathbb{Z}_n^{\times}$ implies $HK = \mathbb{Z}_n^{\times}.$

Exercise 3.3.15: Let G be a group of order 6. Show that G must contain an element of order 2. Show that it cannot be true that every element different from e has order 2.

Proof. Let G be a group of order 6. Then, G is a finite group with an even number of elements, so by exercise 24 in §3.1, there must exist an element $a \in G$ such that $a^2 = e$ with $a \neq e$. Thus, o(a) = 2 and so G must have at least one element of order 2. Suppose all elements in G have order 2. Let $a, b \in G$. Then, since all elements of G have order 2, $a^2 = e, b^2 = e$. Then, $\langle a \rangle = \{e, a\}$ and $\langle b \rangle = \{e, b\}$. By proposition 3.2.6(a), $\langle a \rangle$ and $\langle b \rangle$ are subgroups of G. Consider the product of these cyclic groups: HK where $H = \langle a \rangle$, $K = \langle b \rangle$. Then, $HK \neq \emptyset$ since HK contains at least $\{e, a, b, ab\}$. Consider any $h \in \langle a \rangle$ and $k \in \langle b \rangle$. Then, h = e or a and k = e or b, so we consider the following cases: If $h = e, k = e, h^{-1} = e$ then $h^{-1}kh = eee = e \in K$. If h = e and h = a and h =

Suppose h = a and k = b. Then, $h^{-1}kh = aba$. Since G is a group and $a, b \in G$, so $ab \in G$. Then, from our assumption above ab has order 2. So (ab)(ab) = e. $b^{-1} = b$, so (ab)(ab) = abab = e and ababb = eb. Hence, $aba = b \in K$.

Since $h^{-1}kh \in K$ for all $h \in \langle a \rangle$ and $k \in \langle b \rangle$, HK is a subgroup of G. Notice |H| = 2, |K| = 2 and $H \cap K = \{e\}$, so $|H \cap K| = 1$. By exercise 14 in §3.3,

$$|HK| = \frac{|H||K|}{|H \cap K|} = \frac{2 \cdot 2}{1} = 4$$

However, 4 does not divide 6, the order of G. But, by Lagrange's Theorem, the order of any subgroup of G must divide 6. Hence, no such HK exists and so it is not the case that all elements of G have order 2.

Exercise 3.3.16: Let G be a group of order 6, and suppose that $a, b \in G$ with a of order 3 and b of order 2. Show that either G is cyclic or $ab \neq ba$.

Proof. Let G be a group of order 6, and suppose that $a, b \in G$ with a of order 3 and b of order 2. Assume that ba = ab. By exercise 25 in §3.2, since gcd(o(a), o(b)) = 1 and ba = ab, o(ab) = o(a)o(b) so $o(ab) = 2 \cdot 3 = 6$. Thus, G contains an element of order 6 which implies G is cyclic. We have proved the statement "Let G be a group of order 6, if $a, b \in G$ with a of order 3 and b of order 2 and ab = ba, then G is cyclic." Note this is logically equivalent to the desired statement.

Exercise 3.3.17: Let G be any group of order 6. Show that if G is not cyclic, then its multiplication table must look like that of S_3 .

Proof. Let G be any group of order 6. Assume that G is not cyclic. By proposition 3.2.11, the order of any element in G must divide 6. So the order of any element in G must be 1, 2, 3, 6. Since G is not cyclic, no element in G has order 6. Thus, elements of G must have order 1, 2, or 3. Also, by exercise 3.3.15, G must contain an element of order 2. Let $b \in G$ have order 2. Also by exercise 3.3.15, there must be an element of G, other than e, that does not have order 2. Therefore there must be an element $a \in G$ that has order 3. Since G is a non-cyclic group of order 6 with o(a) = 3, o(b) = 2, exercise 3.3.16 implies $ab \neq ba$.

element(s) in G	justification
e, b, a, a^2	order of b is 2, order of a is 3 and G is a group
ab, ba, a^2b, ba^2	because G is closed and $ab \neq ba$

Notice we've listed 8 elements of G. But G has 6 elements, so there must be two pairs of elements that are equivalent. Since o(a) = 3, o(b) = 2, and $b \neq a$, so the elements e, a, a^2, b must be distinct. Notice $ab \neq ba$, so we will test the following equivalencies:

=	ab,ba
e	If $ab = e, ab^2 = b$ implies $a = b$, but $o(a) \neq o(b)$. Thus, $ab \neq e$. Similarly, $ba \neq e$.
a	If $ab = a$, cancellation implies $b = e$, but $o(b) \neq 1$. Thus, $ab \neq a$. Similarly, $ba \neq a$.
b	If $ab = b$, cancellation implies $a = e$, but $o(a) \neq 1$. Thus, $ab \neq b$. Similarly, $ba \neq b$.
a^2	If $ab = a^2$, cancellation implies $b = a$, but $o(a) \neq o(b)$. Thus, $ab \neq a^2$. Similarly, $ba \neq a^2$.
a^2b	If $ab = a^2b$, cancellation implies $a = a^2$, but $o(a) \neq 1$. Thus, $ab \neq a^2b$.
ba^2	If $ba = ba^2$, cancellation implies $a = a^2$, but $o(a) \neq 1$. Thus, $ba \neq ba^2$.

Thus, $ab = ba^2$ and $ba = a^2b$ so we can conclude $G = \{e, a, a^2, b, ab, a^2b\}$. Additionally, if $ba = a^2b$ then $aba = a^3b = b$ and $bab = a^2b^2$ implies $bab = a^2$. Using these equalities and the associative property of G, we can simplify the following products: $a^2ba = a(aba) = ab$, $a^2ba^2 = a(aba)a = a(b)a = b$, $aba^2 = (aba)a = ba = a^2b$, $aba^2 = (aba)a = ba$, (aba)b = bb = e, $a^2bab = a^2(bab) = a^2a^2 = a$, $a^2a^2b = a(a^3)b = ab$, $ba^2b = (ba^2)b = abb = a$, $a^2ba^2b = a^2(ba^2b) = a^2a = e$, $aba^2b = a(ba^2b) = aa = a^2$ and $a^2ba^2b = a^2(ba^2b) = a^2a = e$. Now, we can construct the multiplication table of G:

	$\mid e \mid$	a	a^2	b	ab	a^2b
\overline{e}	e	a	a^2	b	ab	a^2b
\overline{a}	a	a^2	e	ab	a^2	$a^3b = b$
a^2	a^2	e	a	a^2b	$a^2ab = b$	$a^2a^2b = ab$
\overline{b}	b	$ba = a^2b$	$ba^2 = ab$	e	$bab = a^2$	$ba^2b = a$
ab	ab	aba = b	$aba^2 = a^2b$	a	abab = e	$aba^2b = a^2$
a^2b	a^2b	$a^2ba = ab$	$a^2ba^2 = b$	$a^2b^2 = a^2$	$a^2bab = a$	e

Notice this multiplication table looks like the multiplication table of S_3 listed on page 116 of Beachy. Thus, if G is not cyclic and has order 6, G has a multiplication that looks like the multiplication table of S_3 .