

Case Study: DCT

Shao-Yi Chien

Most slides are prepared by C.J.Lian, DSP/IC Design Lab.

Outline

- DCT Algorithm
- 1-D DCT: Row-Column Method
- Direct 2-D Architecture

DCT Algorithm

Discrete Cosine Transform

DCT-Based Coding

- Optimal transform is KLT, but
 - □ KLT is image dependent
 - ☐ High computing complexity
- DCT-based coding,
 - Image independent, unlike KLT for highly correlated image data
 - □ DCT compaction efficiency is close to KLT
 - Computations of DCT can be performed with fast algorithms which can be easily implemented on parallel architectures.

Roles in Video Encoder

DSP in VLSI Design Shao-Yi Chien 6

Roles in Video Decoder

DSP in VLSI Design

Shao-Yi Chien

Hardware/Software Trade-Off

- For low-end applications, using software approach is powerful enough
- For high-end applications, must use hardware approach
- For middle-end applications, either software or hardware approach is possible, depending on the target design platform

Basic Transformation Forms

2-D forward transforms

$$T(u,v) = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} g(x,y) f(x,y,u,v)$$

2-D inverse transforms

$$g(x,y) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} T(u,v)i(x,y,u,v)$$

1-D Discrete Cosine Transform

Forward DCT

$$X(m) = u(m)\sqrt{\frac{2}{N}}\sum_{i=0}^{N-1}x(i)\cos\frac{(2i+1)m\pi}{2N}$$
, for $m = 0, 1, ..., N-1$,

where
$$u(m) = \begin{cases} 1 & \text{for } m = 0; \\ \frac{1}{\sqrt{2}} & \text{otherwise.} \end{cases}$$

Backward DCT

$$x(i) = \sqrt{\frac{2}{N}} \sum_{m=0}^{N-1} u(m) X(m) \cos \frac{(2i+1)m\pi}{2N}.$$

1D 8-Point DCT Basis Functions

$$\mathbf{k} = \mathbf{0}$$

$$\mathbf{k} = \mathbf{3}$$

$$\mathbf{k} = \mathbf{1}$$

$$\mathbf{k} = \mathbf{4}$$

$$\mathbf{k} = \mathbf{7}$$

$$\mathbf{k} = \mathbf{4}$$

$$\mathbf{k} = \mathbf{2}$$

2-D Discrete Cosine Transform

Forward DCT

$$X(m,n) = u(m)u(n)\frac{2}{N}\sum_{i=0}^{M-1}\sum_{j=0}^{N-1}x(i,j)\cos\frac{(2i+1)m\pi}{2M}\cos\frac{(2j+1)n\pi}{2N},$$
for $m = 0, 1, ..., M-1, n = 0, 1, ..., N-1$.

where $u(m), u(n) = \begin{cases} 1/\sqrt{2}, & \text{for } m, n = 0\\ 1, & \text{otherwise} \end{cases}$

Backward DCT

$$x(i,j) = \frac{2}{N} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} u(m)u(n)X(m,n) \cos \frac{(2i+1)m\pi}{2M} \cos \frac{(2j+1)n\pi}{2N},$$
for $i = 0, 1, ..., M-1, j = 0, 1, ..., N-1$.

Shao-Yi Chien

Block size = $N \times N$ X(m,n) : DCT coefficientsx(i,j) : image samples in black

2-D 8x8 DCT Basis Functions

 The DCT represents each block of image samples as a weighted sum of 2-D cosine functions (basis functions)

DCT Coefficients

DSP in VLSI Design Shao-Yi Chien 14

An Example of Energy Compaction

An Example of DCT

Pixel Domain

DC: $F(0,0) = (1/8) \Sigma\Sigma f(m,n)$

related to the average value of the block

DSP in VLSI Design

Shao-Yi Chien

DCT Algorithm Classification

Direct 2-D Method

 The 2-D transforms, DCT and IDCT, to be applied directly on the N x N input data items

Row-Column Method

- The 2-D transform can be carried out with two passes of 1-D transforms
- The separability property of 2-D DCT/IDCT allows the transform to be applied on one dimension (row) then on the other (column)
- Requires 2N instances of N-point 1-D DCT to implement an N x N 2-D DCT

Row-Column Decomposition

Separable, row-column decomposition

$$Z = AXA^T$$

$$a(k,n) = \sqrt{\frac{2}{N}}c(k)\cos[\frac{2\pi(2n+1)k}{4N}]$$

$$k, n = 0,1,...,N-1$$

$$c(0) = \sqrt{\frac{1}{2}}$$
 and $c(k) = 1$ for $k \neq 0$

TRANSPOSE MEMORY (Y)

1D DCT UNIT

$$Y=AX$$

$$Z=YA^T$$

Straightforward Approach

- Carry out the computation as full matrix-vector multiplications
 - □ 1-D transform requires N*N multiplications and N* (N-1) additions
 - 2-D transform requires N*N*N*N multiplications and N * N
 *(N * N-1) additions
 - Although requiring the most number of operations, this method is very regular
 - Most suitable for vector processors or deeply pipelined architectures for high PE utilization
 - □ 1-D fast algorithms => O(N*logN)
 - □ 2-D fast algorithms => O(N*N*logN)

DCT Definition

DCT

$$X(k) = e(k) \sum_{n=0}^{N-1} x(n) \cos \left[\frac{(2n+1) \pi k}{2N} \right], k = 0, 1 \dots N-1$$

IDCT

$$x(n) = \frac{2}{N} \sum_{k=0}^{N-1} e(k) X(k) \cos \left[\frac{(2n+1) \pi k}{2N} \right], n = 0, 1 \dots N-1$$

$$e(k) = \frac{1}{\sqrt{2}}$$
 if $k = 0$, $e(k) = 1$ otherwise

Example: 4-point DCT (N=4)

$$X(k) = e(k) \sum_{n=0}^{3} x(n) \cos \left[\frac{(2n+1) \pi k}{8} \right], k = 0,1,2,3$$

$$X(0) = \frac{1}{\sqrt{2}} \sum_{n=0}^{3} x(n) = \frac{1}{\sqrt{2}} x(0) + \frac{1}{\sqrt{2}} x(1) + \frac{1}{\sqrt{2}} x(2) + \frac{1}{\sqrt{2}} x(3)$$

$$X(1) = \sum_{n=0}^{3} x(n) \cos \left[\frac{(2n+1) \pi}{8} \right] = x(0) \cos \frac{\pi}{8} + x(1) \cos \frac{3\pi}{8} + x(2) \cos \frac{5\pi}{8} + x(3) \cos \frac{7\pi}{8}$$

$$X(2) =$$

$$X(3) =$$

4-point DCT - Matrix Form

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \cos\frac{\pi}{8} & \cos\frac{3\pi}{8} & \cos\frac{5\pi}{8} & \cos\frac{7\pi}{8} \\ \cos\frac{2\pi}{8} & \cos\frac{6\pi}{8} & \cos\frac{10\pi}{8} & \cos\frac{14\pi}{8} \\ \cos\frac{3\pi}{8} & \cos\frac{9\pi}{8} & \cos\frac{15\pi}{8} & \cos\frac{21\pi}{8} \end{bmatrix} \times \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \end{bmatrix}$$

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \cos\frac{\pi}{8} & \cos\frac{3\pi}{8} & -\cos\frac{3\pi}{8} & -\cos\frac{\pi}{8} \\ \cos\frac{2\pi}{8} & -\cos\frac{2\pi}{8} & -\cos\frac{2\pi}{8} & \cos\frac{2\pi}{8} \\ \cos\frac{3\pi}{8} & -\cos\frac{\pi}{8} & \cos\frac{\pi}{8} & -\cos\frac{3\pi}{8} \end{bmatrix} \times \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \end{bmatrix} \text{ Symmetric or antisymmetric symmetric rows}$$

4-point DCT - Matrix Form

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \cos \frac{\pi}{8} & \cos \frac{3\pi}{8} & -\cos \frac{3\pi}{8} & -\cos \frac{\pi}{8} \\ \cos \frac{2\pi}{8} & -\cos \frac{2\pi}{8} & -\cos \frac{2\pi}{8} & \cos \frac{2\pi}{8} \\ \cos \frac{3\pi}{8} & -\cos \frac{\pi}{8} & \cos \frac{\pi}{8} & -\cos \frac{3\pi}{8} \end{bmatrix} \times \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \end{bmatrix}$$

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \end{bmatrix} = \begin{bmatrix} c_2 & c_2 & c_2 & c_2 \\ c_1 & c_3 & -c_3 & -c_1 \\ c_2 & -c_2 & -c_2 & c_2 \\ c_3 & -c_1 & c_1 & -c_3 \end{bmatrix} \times \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \end{bmatrix}$$
Coefficients
$$C_1, C_2, C_3$$

4-point DCT

Define New Variables

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \end{bmatrix} = \begin{bmatrix} c_2 & c_2 & c_2 & c_2 \\ c_1 & c_3 & -c_3 & -c_1 \\ c_2 & -c_2 & -c_2 & c_2 \\ c_3 & -c_1 & c_1 & -c_3 \end{bmatrix} \times \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \end{bmatrix}$$

$$X(0) = [x(0) + x(3) + x(1) + x(2)] \times c_2$$

$$X(1) = [x(0) - x(3)] \times c_1 + [x(1) - x(2)] \times c_3$$

$$X(2) = [x(0) + x(3) - (x(1) + x(2))] \times c_2$$

$$X(3) = [x(0) - x(3)] \times c_3 - [x(1) - x(2)] \times c_1$$

4-point DCT

16 Mult reduced to 6

$$\begin{cases}
X(0) = [x(0) + x(3) + x(1) + x(2)] \times c_2 \\
X(1) = [x(0) - x(3)] \times c_1 + [x(1) - x(2)] \times c_3 \\
X(2) = [x(0) + x(3)] \times c_2 - [x(1) + x(2)] \times c_2 \\
X(3) = [x(0) - x(3)] \times c_3 - [x(1) - x(2)] \times c_1
\end{cases}$$

$$\begin{cases} X(0) = [P_0 + P_1] \times c_2 \\ X(1) = M_0 \times c_1 + M_1 \times c_3 \\ X(2) = [P_0 - P_1] \times c_2 \end{cases}, \text{ where } \begin{cases} P_0 = x(0) + x(3) \\ M_0 = x(0) - x(3) \\ P_1 = x(1) + x(2) \\ M_1 = x(1) - x(2) \end{cases}$$

Butterfly: First DCT Stage

$$P_0 = x(0) + x(3)$$

$$X(3)$$
 M_0

$$M_0 = x(0) - x(3)$$

$$X(1)$$
 P_1

$$P_1 = x(1) + x(2)$$

$$M_1 = x(1) - x(2)$$

Reversed input order

Butterfly: Second stage

8-point DCT

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \\ X(4) \\ X(5) \\ X(6) \\ X(7) \end{bmatrix} = \begin{bmatrix} c_4 & c_4 \\ c_1 & c_3 & c_5 & c_7 & c_9 & c_{11} & c_{13} & c_{15} \\ c_2 & c_6 & c_{10} & c_{14} & c_{18} & c_{22} & c_{26} & c_{30} \\ c_3 & c_9 & c_{15} & c_{21} & c_{27} & c_1 & c_7 & c_{13} \\ c_4 & c_{12} & c_{20} & c_{28} & c_4 & c_{12} & c_{20} & c_{28} \\ c_5 & c_{15} & c_{25} & c_3 & c_{13} & c_{23} & c_1 & c_{11} \\ c_6 & c_{18} & c_{30} & c_{10} & c_{22} & c_2 & c_{14} & c_{26} \\ c_7 & c_{21} & c_3 & c_{17} & c_{31} & c_{13} & c_{27} & c_9 \end{bmatrix} \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \\ x(4) \\ x(5) \\ x(6) \\ x(7) \end{bmatrix}$$

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \\ X(4) \\ X(5) \\ X(6) \\ X(7) \end{bmatrix} = \begin{bmatrix} c_4 & c_4 \\ c_1 & c_3 & c_5 & c_7 & -c_7 & -c_5 & -c_3 & -c_1 \\ c_2 & c_6 & -c_6 & -c_2 & -c_2 & -c_6 & c_6 & c_2 \\ c_3 & -c_7 & -c_1 & -c_5 & c_5 & c_1 & c_7 & -c_3 \\ c_4 & -c_4 & -c_4 & c_4 & c_4 & -c_4 & -c_4 & c_4 \\ c_5 & -c_1 & c_7 & c_3 & -c_3 & -c_7 & c_1 & -c_5 \\ c_6 & -c_2 & c_2 & -c_6 & -c_6 & c_2 & -c_2 & c_6 \\ c_7 & -c_5 & c_3 & -c_1 & c_1 & -c_3 & c_5 & -c_7 \end{bmatrix} \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(2) \\ x(3) \\ x(4) \\ x(5) \\ x(6) \\ x(7) \end{bmatrix}$$

1-D DCT Row-Column Method

31

Row-Column Method(1/2)

Basic concept :

2-D DCT = 1-D DCT(row)
$$\rightarrow$$
 1-D DCT(column)

DSP in VLSI Design Shao-Yi Chien

Row-Column Method(2/2)

Use transpose memory

$$Z = AXA^T$$

DSP in VLSI Design

Shao-Yi Chien

Row-Column Method Example

A. Madisetti and A. N. Willson Jr., "A 100 MHz 2-D 8x8 DCT/IDCT processor for HDTV applications," *IEEE Transactions on Circuits and Systems for Video Technology*, vol. 5, no. 2, April 1995

Matrix Decomposition

For 8-bit 1D-DCT unit array A:

$$\mathbf{Y} = \mathbf{A}\mathbf{X}$$

$$\mathbf{A} = \begin{bmatrix} a & a & a & a & a & a & a & a \\ b & d & e & g & -g & -e & -d & -b \\ c & f & -f & -c & -c & -f & f & c \\ d & -g & -b & -e & e & b & g & -d \\ a & -a & -a & a & a & -a & -a & a \\ e & -b & g & d & -d & -g & b & -e \\ f & -c & c & -f & -f & c & -c & f \\ g & -e & d & -b & b & -d & e & -g \end{bmatrix}$$

$$\begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \\ g \end{bmatrix} = \sqrt{\frac{2}{N}} \frac{\cos \frac{\pi}{4}}{\cos \frac{\pi}{16}} \cos \frac{3\pi}{16} \cos \frac{5\pi}{16} \cos \frac{3\pi}{16} \cos \frac{3\pi}{16} \cos \frac{3\pi}{16} \cos \frac{7\pi}{16} \end{bmatrix}$$

Matrix Decomposition

☐ Use symmetrical property of DCT coefficients:

$$\begin{vmatrix} Y(0) \\ Y(2) \\ Y(4) \\ Y(6) \end{vmatrix} = \begin{vmatrix} a & a & a & a \\ c & f & -f & -c \\ a & -a & -a & a \\ f & -c & c & -f \end{vmatrix} \begin{vmatrix} X(0) + X(7) \\ X(1) + X(6) \\ X(2) + X(5) \\ X(3) + X(4) \end{vmatrix}$$

$$\begin{vmatrix} Y(1) \\ Y(3) \\ Y(5) \end{vmatrix} = \begin{vmatrix} b & d & e & g \\ d & -g & -b & -e \\ e & -b & g & d \end{vmatrix} \begin{vmatrix} X(0) - X(7) \\ X(1) - X(6) \\ X(2) - X(5) \end{vmatrix}$$

IDCT:

$$\begin{bmatrix} Y(0) \\ Y(1) \\ Y(2) \\ Y(3) \end{bmatrix} = \begin{bmatrix} a & c & a & f \\ a & f & -a & -c \\ a & -f & -a & c \\ a & -c & a & -f \end{bmatrix} \begin{bmatrix} X(0) \\ X(2) \\ X(4) \\ X(6) \end{bmatrix} \ + \begin{bmatrix} b & d & e & g \\ d & -g & -b & -e \\ e & -b & g & d \\ g & -e & d & -b \end{bmatrix} \begin{bmatrix} X(1) \\ X(3) \\ X(5) \\ X(7) \end{bmatrix}$$

$$\begin{bmatrix} Y(7) \\ Y(6) \\ Y(5) \\ Y(4) \end{bmatrix} = \begin{bmatrix} a & c & a & f \\ a & f & -a & -c \\ a & -f & -a & c \\ a & -c & a & -f \end{bmatrix} \begin{bmatrix} X(0) \\ X(2) \\ X(4) \\ X(6) \end{bmatrix} - \begin{bmatrix} b & d & e & g \\ d & -g & -b & -e \\ e & -b & g & d \\ g & -e & d & -b \end{bmatrix} \begin{bmatrix} X(1) \\ X(3) \\ X(5) \\ X(7) \end{bmatrix}$$

Overall Architecture (1/2)

Architecture:

DSP in VLSI Design

Shao-Yi Chien

Overall Architecture (2/2)

DSP in VLSI Design

Data Reorder Unit (1/3)

DRU architecture

DSP in VLSI Design Shao-Yi Chien 38

Data Reorder Unit (2/3)

DRU_1 Data flow:

DSP in VLSI Design

Data Reorder Unit (3/3)

DRU_2 Data flow:

DSP in VLSI Design

Matrix multiplier (1/4)

ACF matrix vector multiplier

$$\begin{bmatrix} Y(0) \\ Y(2) \\ Y(4) \\ Y(6) \end{bmatrix} = \begin{bmatrix} a & a & a & a \\ c & f & -f & -c \\ a & -a & -a & a \\ f & -c & c & -f \end{bmatrix} \begin{bmatrix} X(0) + X(7) \\ X(1) + X(6) \\ X(2) + X(5) \\ X(3) + X(4) \end{bmatrix}$$

$$\begin{bmatrix} Y(1) \\ Y(3) \\ Y(5) \\ Y(7) \end{bmatrix} = \begin{bmatrix} b & d & e & g \\ d & -g & -b & -e \\ e & -b & g & d \\ g & -e & d & -b \end{bmatrix} \begin{bmatrix} X(0) - X(7) \\ X(1) - X(6) \\ X(2) - X(5) \\ X(3) - X(4) \end{bmatrix}$$

Matrix multiplier (2/4)

BDEG matrix vector multiplie

$$\begin{bmatrix} Y(0) \\ Y(2) \\ Y(4) \\ Y(4) \\ Y(5) \\ Y(7) \end{bmatrix} = \begin{bmatrix} a & a & a & a \\ c & f & -f & -c \\ a & -a & -a & a \\ f & -c & c & -f \end{bmatrix} \begin{bmatrix} X(0) + X(7) \\ X(1) + X(6) \\ X(2) + X(5) \\ X(3) + X(4) \end{bmatrix}$$

$$\begin{bmatrix} Y(1) \\ Y(3) \\ Y(5) \\ Y(7) \end{bmatrix} = \begin{bmatrix} b & d & e & g \\ d & -g & -b & -e \\ e & -b & g & d \\ g & -e & d & -b \end{bmatrix} \begin{bmatrix} X(0) - X(7) \\ X(1) - X(6) \\ X(2) - X(5) \\ X(3) - X(4) \end{bmatrix}$$

Matrix multiplier (3/4)

- Hardwired multipliers
 - □ Use SDC number system

TABLE II
SIGNED DIGIT REPRESENTATION OF THE DCT COEFFICIENTS

coefficient	value	12 bit signed	SD representation	No. bits
a	0.35355	0.35351	$2^{-2} + 2^{-4} + 2^{-5} + 2^{-7} + 2^{-9} = 0.35352$	5
ъ	0.49039	0.49023	$2^{-1} - 2^{-7} - 2^{-9} + 2^{-13} = 0.49036$	4
, c	0.46194	0.46191	$2^{-1} - 2^{-5} - 2^{-7} + 2^{-10} = 0.46191$	4
d	0.41573	0.41552	$2^{-2} + 2^{-3} + 2^{-5} + 2^{-7} + 2^{-9} - 2^{-12} = 0.41577$	6
e	0.27779	0.27734	$2^{-2} + 2^{-5} - 2^{-8} + 2^{-11} = 0.27783$	4
f	0.19134	0.19091	$2^{-3} + 2^{-4} + 2^{-8} - 2^{-14} = 0.19135$	4
g	0.09755	0.09716	$2^{-4} + 2^{-5} + 2^{-8} - 2^{-13} = 0.09753$	4

Matrix multiplier (4/4)

Accumulator

$$\begin{bmatrix} Y(0) \\ Y(2) \\ Y(4) \\ Y(6) \end{bmatrix} = \begin{bmatrix} a & a & a & a \\ c & f & -f & -c \\ a & -a & -a & a \\ f & -c & c & -f \end{bmatrix} \begin{bmatrix} X(0) + X(7) \\ X(1) + X(6) \\ X(2) + X(5) \\ X(3) + X(4) \end{bmatrix}$$

$$\begin{bmatrix} Y(1) \\ Y(3) \\ Y(5) \\ Y(7) \end{bmatrix} = \begin{bmatrix} b & d & e & g \\ d & -g & -b & -e \\ e & -b & g & d \\ g & -e & d & -b \end{bmatrix} \begin{bmatrix} X(0) - X(7) \\ X(1) - X(6) \\ X(2) - X(5) \\ X(3) - X(4) \end{bmatrix}$$

TABLE I
INPUT SELECTION FOR ACCUMULATORS FOR THE DCT/IDCT

ACF A	CCBAN	K FOR D	CT/IDCT	BDEG	ACCBA	NK FOR	DCT/IDCT
ACC0	ACC1	ACC2	ACC3	ACCO	ACC1	ACC2	ACC3
a/a	c/a	a/a	f/a	g/d	e/g	d/b	b/e
a/c	ſ/f	a/f	c/c	e/e	b/b	g/g	d/d
a/f	f/c	a/c	c/f	d/b	g/d	b/e	e/g
a/a	c/a	a/a	f/a	b/g	d/e	e/d	g/b

Transpose Memory (1/2)

- Pin-pong mode
- Using RAMs

ADDR												
TIME	0	1	2	3	7 8	9	10	1115	16	17.	62	63
	0	8	16	245	5 1	9	17	2557	2	10.	55	63
	0	1	2	3	7 8	9	10	1115	16	17.	62	63

DSP in VLSI Design

Transpose Memory (2/2)

Using registers

Scheduling

R: row

C: column

i: block index

DSP in VLSI Design

Scheduling

DSP in VLSI Design

49

Scheduling

100% hardware utilization!

DSP in VLSI Design Shao-Yi Chien

Finite Word Length Analysis

The word length for the accumulator is 22bit

	Specification	L,H = -256,255	L = H = 300	L = H = 5
Peak Pixel Error	≤ 1	1	1	1
Peak Pixel Mean Square Error	≤ 0.06	0.0134	0.0153	0.0139
Overall Mean Square Error	≤ 0.02	0.0104	0.0101	0.0028
Peak Pixel Mean Error	≤ 0.015	0.0133	0.0125	0.0139
Overall Mean Error	≤ 0.0015	0.00096	0.0011	0.0011

DSP in VLSI Design

Implementation Results

Core Characteristic

Inputs	9 bits (DCT), 12 bits (IDCT)			
Outputs	12 bits (DCT), 9 bits (IDCT			
Internal Wordlength	22 bits			
Technology	0.8-µm CMOS, triple metal			
No. of Transistors	67,000			
Core Size	10 mm ²			
Clock Rate	100 MHz			
Mode Selection	DCT or IDCT			
Block Size	8 × 8			
Accuracy	CCITT compliant			

IO Specification

Function	Number
Input	12
Output	12
Clock	1
Power	8
Ground	8
DCT/IDCT control	1
Start	1

DSP in VLSI Design

1-D Approach with DA

D. Slawecki and W. Li, "DCT/IDCT processor for high data rate image coding," *IEEE Transactions on Circuits and Systems for Video Technology*, vol. 2, no. 2, June 1992

DCT Algorithm (1/3)

Odd-indexed DCT component

$$\begin{bmatrix} Y(0) \\ Y(2) \\ Y(4) \\ Y(6) \end{bmatrix} = \begin{bmatrix} a & a & a & a \\ c & f & -f & -c \\ a & -a & -a & a \\ f & -c & c & -f \end{bmatrix} \begin{bmatrix} X(0) + X(7) \\ X(1) + X(6) \\ X(2) + X(5) \\ X(3) + X(4) \end{bmatrix}$$

$$\begin{bmatrix} Y(1) \\ Y(3) \\ Y(5) \\ Y(7) \end{bmatrix} = \begin{bmatrix} b & d & e & g \\ d & -g & -b & -e \\ e & -b & g & d \\ g & -e & d & -b \end{bmatrix} \begin{bmatrix} X(0) - X(7) \\ X(1) - X(6) \\ X(2) - X(5) \\ X(3) - X(4) \end{bmatrix}$$

DCT Algorithm (2/3)

Even-indexed DCT component

(b)

$$\begin{bmatrix} Y(0) \\ Y(2) \\ Y(4) \\ Y(6) \end{bmatrix} = \begin{bmatrix} a & a & a & a \\ c & f & -f & -c \\ a & -a & -a & a \\ f & -c & c & -f \end{bmatrix} \begin{bmatrix} X(0) + X(7) \\ X(1) + X(6) \\ X(2) + X(5) \\ X(3) + X(4) \end{bmatrix}$$
$$\begin{bmatrix} Y(1) \\ Y(3) \\ Y(5) \\ Y(7) \end{bmatrix} = \begin{bmatrix} b & d & e & g \\ d & -g & -b & -e \\ e & -b & g & d \\ g & -e & d & -b \end{bmatrix} \begin{bmatrix} X(0) - X(7) \\ X(1) - X(6) \\ X(2) - X(5) \\ X(3) - X(4) \end{bmatrix}$$

DCT Algorithm (3/3)

IDCT

DSP in VLSI Design

Block Diagram

- Word-serial/bit parallel input/output
- Word-parallel/digit-serial datapath
- Block Diagram

DSP in VLSI Design

Input Data Format Converter

- Input: wordserial/bit-parallel
- Output: wordparallel/2-digit serial

Preadd and Postadd

DA-Based DCT Core (1/3)

Biased redundant binary

DSP in VLSI Design

DA-Based DCT Core (2/3)

ROM size reduction

DA-Based DCT Core (3/3)

2x1 and scaler units

Transpose Memory

DSP in VLSI Design

Direct 2-D DCT Architecture

Direct 2-D DCT Method

- Computing the transform directly from the N x N input numbers
 - Derive fast DCT algorithms from the signal flow graph (like FFT)
 - □ Based on 1-D DCT
 - □ Larger flow graph
 - □ Global routing
 - More temporal storage
 - □ Larger datapath

An Example of 2-D DCT Architecture

