МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное учреждения высшего образования

«ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт компьютерных технологий и информационной безопасности Кафедра математического обеспечения и применения ЭВМ

САМОСТОЯТЕЛЬНАЯ РАБОТА № 1

по дисциплине «Структуры и алгоритмы обработки данных»

на тему:

«Алгоритмы сортировки массивов»

Вариант № 1

Выполнил: Студент группы КТбо1-8

Нестеренко П. А.

Проверил: ассистент кафедры МОП ЭВМ Гуляев Н. А.

Опенка

		2020
<<	>>	2020 г.

ЗАДАЧА 1.

Дан массив чисел А. Выполнить сортировку массива по алгоритму простой вставки. В качестве разделяющего выбирать средний элемент отрезка. Показать состояние массива после каждого удлинения сортированной части массива.

$$A = (1, 69, 79, 22, 21, 38, 12, 59, 42, 91).$$

Решение.

	1	2	3	4	5	6	7	8	9	<i>10</i>
1	1	69	79	22	21	38	12	59	42	91
	1	69	79	22	21	38	12	59	42	91
2	1	69	79	22	21	38	12	59	42	91
	1	69	79	22	21	38	12	59	42	91
3	1	69	79	22	21	38	12	59	42	91
	1	22	69	79	21	38	12	59	42	91
4	1	22	69	79	21	38	12	59	42	91
	1	21	22	69	79	38	12	59	42	91
5	1	21	22	69	79	38	12	59	42	91
	1	21	22	38	69	79	12	59	42	91
6	1	21	22	38	69	79	12	59	42	91
	1	12	21	22	38	69	79	60	42	91
7	1	12	21	22	38	69	79	60	42	91
	1	12	21	22	38	60	69	79	42	91
8	1	12	21	22	38	60	69	79	42	91
	1	12	21	22	38	42	60	69	79	91
9	1	12	21	22	38	42	60	69	79	91
	0	5	13	19	19	20	27	35	60	81

Пояснение.

На шаге 1 выбирается элемент а2 = 69. После сравнения его с предыдущим элементом а1 = 5 выбранный элемент остаётся на своём месте. Длина сортированной части массива теперь равна 2.

На шаге 2 выбирается элемент а3 = 79. После сравнения его с предыдущим элементом а2 = 69 он остаётся на своём месте. Длина сортированной части массива при этом увеличивается до 3.

На шаге 3 выбирается элемент a4 = 22. После сравнения его с предыдущим элементом a3, элемент a3 перемещается на 1 позицию вправо. После сравнения с элементом a2, он, так же смещается на 1 позицию вправо. После сравнения с элементом a1, элемент a4 помещается в позицию a1, элемент a4 помещается a1, элемент a2, a2, a3, a4, a4

В дальнейшем каждый следующий выбранный элемент сравнивается с предыдущими элементами последовательно, справа налево. При этом элементы, меньшие, чем выбранный, сдвигаются на 1 позицию вправо. Так продолжается, пока не будет определена позиция, в которую должен быть помещён выбранный элемент.

После 9 шагов длина отсортированной части массива достигает 10, т.е. весь массив отсортирован.

Задача 2

Формулировка:

Дан массив чисел А. Выполнить сортировку массива по алгоритму QuickSort. В качестве разделяющего выбирать средний элемент отрезка. Показать состояние массива после каждой операции разделения.

A = (71, 57, 35, 16, 18, 11, 36, 93, 59, 81, 67, 15).

Ход решения:

шаг\эл.	1	2	3	4	5	6	7	8	9	10	11	12
1	71	57	35	16	18	11	36	93	59	81	67	15
2	15	36	35	16	18	11	57	93	59	81	67	71
3	15	11	16	35	18	36	57	71	59	67	81	93
4	11	15	16	18	35	36	57	59	71	67	81	93
5	11	15	16	18	35	36	57	59	67	71	81	93

Пояснение:

На первом проходе выбираем разделяющий элемент а7 = 36. Выполняем операцию разделения: двигаясь с обоих концов массива, обмениваем местами расположенные слева элементы, большие или равные разделяющему, с расположенными справа элементами, меньшими разделяющему. В результате массив разделяется на два отрезка: a1 – a6 (элементы, меньшие 57) и a7 – a12 (большие или равные)

На втором проходе выбираем разделяющий элемент на каждом из отрезков и выполняем разделение. И так далее, пока остаются отрезки, длиной больше 1.

Задача 3

Формулировка:

Дан массив чисел А. Выполнить преобразование массива в пирамиду (1-я фаза алгоритма HeapSort) и два первых прохода второй фазы алгоритма. Показать состояние массива после каждой операции просеивания.

Исходные данные:

Массив А									
1 2 3 4 5 6 7 8 9 10									
18	14	27	17	83	82	78	50	34	61

Ход решения (фаза 1) – построение пирамиды:

шаг\элемент (а)	1	2	3	4	5	6	7	8	9	10
k = 5	18	14	27	17	83	82	78	50	34	61
$\mathbf{k} = 4$	18	14	27	17	83	82	78	50	34	61

	18				83			17		
k = 2	18	14	82	50	83	27	78	17	34	61
k = 1	18	83	82	50	61	27	78	17	34	14
	83	61	82	50	18	27	78	17	34	14

Пояснение (фаза 1):

Построение пирамиды начинается с середины массива (k=5).

При k=5 элемент a5=83 сравнивается с a10=61 и не меняется с ним местами.

При k=4 элемент a4=17 сравнивается с a8=50 и a9=34, и меняется местами с a8.

При k=3 элемент a3=27 сравнивается с a6=82 и a7=78, и меняется местами с a6.

При k=2 элемент a2=14 сравнивается с a4=50 и a5=83, и меняется местами с a5. Затем a5=14 сравнивается с a10=61 и меняется с ним местами.

При k=1 элемент a1=18 сравнивается с a2=83 и a3=82, и меняется местами с a2. Затем a2=18 сравнивается с a4=50 и a5=61, и меняется местами с a5, затем происходит сравнение a5=18 с a10=14, после чего элементы не меняются местами.

На этом построение пирамиды заканчивается.

Ход решения (фаза 2) – преобразование пирамиды в массив:

№ прохода\индекс	1	2	3	4	5	6	7	8	9	10
1	83	61	82	50	18	27	78	17	34	14
	14	61	82	50	18	27	78	17	34	83
	82	61	14	50	18	27	78	17	34	83
	82	61	78	50	18	27	14	17	34	83
2	82	61	78	50	18	27	14	17	34	83
	34	61	78	50	18	27	14	17	82	83
	78	61	34	50	18	27	14	17	82	83
	78	61	34	50	18	27	14	17	82	83

Пояснение (фаза 2):

На 1 проходе меняются местами элементы а1 и а10. После этого элемент а10=83 исключается из пирамиды.

Элемент a1=14 просеивается, обмениваясь сначала с a3=82, затем с a7=78.

На 2 проходе меняются местами элементы а1 и а9. После этого элемент а9=82 исключается из пирамиды.

Элемент а1=34 просеивается, обмениваясь с а3=78.

После двух проходов получены два последних элемента сортированного массива (82, 83), а пирамида сократилась до 8 элементов.

Задача 4

Формулировка:

Дан массив чисел A. Выполнить сортировку массива по алгоритму ShellSort, используя значения h = 5, 3, 1. Показать состояние массива после каждого прохода.

Исходные данные:

A = (14, 61, 95, 13, 91, 84, 33, 39, 25, 49, 9, 13).

Ход решения:

1	2	3	4	5	6	7	8	9	10	11	12
14	61	95	13	91	84	33	39	25	49	9	13
9	13	95	13	91	14	33	39	25	39	84	61
9	13	39	13	91	14	33	95	25	39	84	61
9	13	39	13	91	14	33	95	25	39	84	61
9	13	39	13	39	14	33	95	25	91	84	61
9	13	39	13	39	14	33	95	25	91	84	61
9	13	39	13	39	14	33	84	25	91	95	61
9	13	14	13	39	25	33	84	39	91	95	61
9	13	13	14	25	33	39	39	61	84	91	95

Пояснение:

На 1 проходе выбирается h=5, сортируются методом вставки цепочки элементов с индексами (1, 6, 11), (2, 7, 12), (3, 8), (4, 9), (5, 10).

На 2 проходе выбирается h=3, сортируются цепочки элементов с индексами (1, 4, 7, 10), (2, 5, 8, 11), (3, 6, 9, 12).

На 3 проходе выбирается h=1, сортируется единственная цепочка из всех элементов массива.

Задача 5

Формулировка:

Дан массив чисел А. Выполнить сортировку массива по алгоритму простого слияния. Показать состояние массива после каждого прохода.

Исходные данные:

A = (34, 63, 97, 37, 5, 46, 1, 25, 64, 2, 34, 64, 44, 97).

Ход решения:

1	2	3	4	5	6	7	8	9	10	11	12	13	14
34	63	97	37	5	46	1	25	64	2	34	64	44	97
34	64	2	63	34	97	37	64	5	44	46	97	1	25
5	34	44	64	2	46	63	97	1	25	34	97	37	64
1	5	25	34	34	44	64	97	2	37	46	63	64	97
1	2	5	25	34	34	37	44	46	63	64	64	97	97

Пояснение:

На 1 проходе отдельные элементы сливаются в пары: a_1 с a_9 , a_2 с a_{10} , и т.д.

На 2 проходе пары элементов сливаются в четверки: (a_1, a_2) с (a_9, a_{10}) , (a_3, a_4) с (a_{11}, a_{12}) и т.д.

На 3 проходе четверки элементов сливаются в восьмерки: $(a_1 - a_4)$ с $(a_9 - a_{12})$, $(a_5 - a_8)$ с $(a_{13} - a_{14})$.

На 4 проходе восьмерки $(a_1 - a_8)$ и $(a_9 - a_{14})$ сливаются в один сортированный массив.

Задача 6

Формулировка:

Дан массив дат А. Для упрощения принято, что номер года и номер дня лежат в пределах от 01 до 10. Выполнить поразрядную сортировку массива. Показать результаты каждого прохода.

Исходные данные:

A = (09.01.01, 07.04.03, 04.02.04, 05.01.05, 01.11.01, 04.12.03, 07.04.08, 04.08.09, 05.04.02, 03.12.03, 09.02.05, 10.10.03, 09.11.05, 02.02.1).

Ход решения:

	Исходный	1 проход	2 проход	3 проход
1	09.01.01	01.11.01	05.01.05	09.01.01
2	07.04.03	02.02.01	09.01.01	02.02.01
3	04.02.04	03.12.03	02.02.01	01.11.01
4	05.01.05	04.02.04	04.02.04	05.04.02
5	01.11.01	04.09.09	09.02.05	07.04.03
6	04.12.03	04.12.03	05.04.02	10.10.03
7	07.04.08	05.01.05	07.04.03	03.12.03
8	04.09.09	05.04.02	07.04.08	04.12.03
9	05.04.02	07.04.03	04.09.09	04.02.04
10	03.12.03	07.04.08	10.10.03	05.01.05
11	09.02.05	09.01.01	01.11.01	09.02.05
12	10.10.03	09.02.05	09.11.05	09.11.05

13	09.11.05	09.11.05	03.12.03	07.04.08
14	02.02.01	10.10.03	04.12.03	04.09.09

Пояснение:

На первом проходе сортируем массив по номеру дня На втором проходе сортируем массив повторно, но уже по номеру месяца, На третьем аналогично сортируем массив по номеру года.