Práctica Alternativa: Grey Wolf Optimizer

Mario Muñoz Mesa

- Grey Wolf Optimizer (GWO).
- 2 Inspiración.
- 3 Jerarquía social Modelo matemático.
 - Rodear a la presa Modelo Matemático.
 - Cazar Modelo matemático.
 - Explotación y exploración.
- Pseudocódigo.

- Grey Wolf Optimizer (GWO).
- 2 Inspiración.
- 3 Jerarquía social Modelo matemático.
 - Rodear a la presa Modelo Matemático.
 - Cazar Modelo matemático.
 - Explotación y exploración.
- Pseudocódigo.

Grey Wolf Optimizer (GWO).

- Técnica tipo Swarm Intelligence.
- GWO está inspirado en la jerarquía social y de comportamiento de caza de manadas de lobo gris.

4 / 17

Mario Muñoz Mesa Grey Wolf Optimizer

- Grey Wolf Optimizer (GWO).
- 2 Inspiración.
- 3 Jerarquía social Modelo matemático.
 - Rodear a la presa Modelo Matemático.
 - Cazar Modelo matemático.
 - Explotación y exploración.
- 4 Pseudocódigo

Inspiración.

Grandes depredadores que viven en manadas de 5 a 12 en promedio. Conviven en una jerarquía social dominante:

Figura: Jerarquía, más dominante arriba.

Fases de caza:

- Rastrear, seguir y acercarse a la presa.
- Perseguir, rodear y hostigar a la presa hasta que deje de moverse.
- Atacar a la presa.

Mario Muñoz Mesa Grey Wolf Optimizer 6 / 17

- Grey Wolf Optimizer (GWO).
- 2 Inspiración.
- 3 Jerarquía social Modelo matemático.
 - Rodear a la presa Modelo Matemático.
 - Cazar Modelo matemático.
 - Explotación y exploración.
- 4 Pseudocódigo

Jerarquía social - Modelo matemático.

Para modelar matemáticamente: primera solución alpha, segunda beta, tercera delta. El resto de soluciones omega. La caza estará guiada por α , β y δ

Rodear a la presa - Modelo Matemático.

Ecuaciones para modelar el rodeo de los lobos grises a su presa durante la caza:

$$\vec{D} = |\vec{C} \cdot \vec{X}_p(t) - \vec{X}(t)|$$

$$\vec{X}(t+1) = \vec{X}_p(t) - \vec{A} \cdot \vec{D}$$

donde t es la iteración actual, \vec{A} y \vec{C} vectores de coeficientes reales, \vec{X}_p es el vector de posición de la presa, y \vec{X} denota el vector de posición de un lobo gris.

 \vec{A} y \vec{C} se calculan como:

$$\vec{A} = 2\vec{a} \cdot \vec{r}_1 - \vec{a}$$

$$\vec{C} = 2 \cdot \vec{r}_2$$

donde \vec{a} decrementa linealmente de 2 a 0 en el transcurso de iteraciones y \vec{r}_1 , \vec{r}_2 son vectores aleatorios con valores en [0,1] (unidimensionales).

Rodear a la presa - Modelo Matemático.

Con las ecuaciones propuestas, un lobo gris en posición (X,Y) puede actualizar su posición en base a la posición de la presa (X^{st},Y^{st})

 \vec{r}_1 y \vec{r}_2 permiten cualquier posición intermedia a las ilustradas. Así un lobo gris podría moverse alrededor de la mejor posición hasta el momento a cualquier posición en el espacio de búsqueda usando las ecuaciones anteriores.

Cazar - Modelo Matemático.

Para modelar la caza, como no se sabe la localización de la presa, se supone que el alpha, beta y delta tienen mejor conocimiento de la localización de la presa (esas posiciones se guardarán). Las fórmulas propuestas:

$$\vec{D}_{\alpha} = |\vec{C}_{1} \cdot \vec{X}_{\alpha} - \vec{X}|, \quad \vec{D}_{\beta} = |\vec{C}_{2} \cdot \vec{X}_{\beta} - \vec{X}|, \quad \vec{D}_{\delta} = |\vec{C}_{3} \cdot \vec{X}_{\delta} - \vec{X}|$$

$$\vec{X}_{1} = \vec{X}_{\alpha} - \vec{A}_{1} \cdot (\vec{D}_{\alpha}), \quad \vec{X}_{2} = \vec{X}_{\beta} - \vec{A}_{2} \cdot (\vec{D}_{\beta}), \quad \vec{X}_{3} = \vec{X}_{\delta} - \vec{A}_{3} \cdot (\vec{D}_{\delta})$$

$$\vec{X}(t+1) = \frac{\vec{X}_{1} + \vec{X}_{2} + \vec{X}_{3}}{3}$$

$$(3.7)$$

11 / 17

Mario Muñoz Mesa Grey Wolf Optimizer

Cazar - Modelo matemático

Figura: Actualización de posición.

Explotación.

• Atacar la presa (explotación). Los lobos grises finalizan la caza atacando a la presa cuando deja de moverse. \vec{A} decrementa por a, \vec{A} toma valor aleatorio en [-2a,2a], donde a decrementa de 2 a 0 durante las iteraciones. Cuando $|\vec{A}|<1$ el lobo ataca a la presa, la siguiente posición del agente estará entre la suya y la de la presa.

Exploración.

- Buscar a la presa (exploración). Los lobos grises mayormente buscan en base a la posición de alpha, beta y delta. Divergen entre sí para buscar la presa y convergen para atacarla. Cuando $|\vec{A}| > 1$ el agente buscador diverge de la presa. Esto enfatiza la exploración.
- Otra componente que favorece la exploración es \vec{C} que toma valores en [0,2]. Esta componente provee pesos aleatorios para acentuar $(|\vec{C}|>1)$ o minorar $(|\vec{C}|<1)$ el efecto de la presa. Esto ayuda a que GWO tenga un comportamiento más aleatorio, favoreciendo la exploración y evitando quedar atrapado en óptimos locales.

- Grey Wolf Optimizer (GWO).
- 2 Inspiración.
- 3 Jerarquía social Modelo matemático.
 - Rodear a la presa Modelo Matemático.
 - Cazar Modelo matemático.
 - Explotación y exploración.
- Pseudocódigo.

Pseudocódigo

- El proceso de búsqueda comienza creando una población de lobos grises (soluciones candidatas).
- Conforme se itera, los lobos alpha, beta y delta estiman la probable posición de la presa.
- Cada solución candidata actualiza su posición a la presa.
- El parámetro a decrementa de 2 a 0 para enfatizar la exploración y explotación respectivamente.
- Las soluciones candidatas tienden a diverger de la presa cuando $|\vec{A}|>1$ y converger cuando $|\vec{A}|<1.$
- Finalmente el algoritmo termina con una condición de parada como puede ser un máximo de iteraciones.

Pseudocódigo

```
Initialize the grey wolf population X_i (i = 1, 2, ..., n)
Initialize a, A, and C
Calculate the fitness of each search agent
X_a=the best search agent
X_{\beta}=the second best search agent
X_{\delta}=the third best search agent
while (t < Max number of iterations)
   for each search agent
            Update the position of the current search agent by equation (3.7)
    end for
    Update a, A, and C
    Calculate the fitness of all search agents
    Update X_{\alpha}, X_{\beta}, and X_{\delta}
    t=t+1
end while
return X_a
```

Figura: Pseudocódigo.