3.3 Elementary matrices; A method for finding A^{-1}

Elementary row operations

- 1. Multiply a row by nonzero constant.
- 2. Interchange two rows.
- 3. Add a multiple of one row to another.

Definition

A matrix that results from applying a single elementary row operation to an identity matrix is called an elementary matrix.

Examples

a.
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

b.
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

c.
$$\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Elementary matrix

Theorem

If A is an $m \times n$ matrix and if the elementary matrix E results by performing a certain row operation on the $m \times m$ identity matrix, then the product EA is the matrix that results when the same row operation is performed on A.

Example

Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$. Find an elementary matrix E such that EA is the matrix that results by adding 3 times the first row of A to the second row.

Inverse operations of the elementary row operations

Row operations on I that gives E	Row operations on E that gives I
1. Multiply row <i>i</i> by $c \neq 0$	1. Multiply row / by $\frac{1}{c}$

Inverse operations of the elementary row operations

Row operations on I that gives E	Row operations on E that gives I
2. Interchange rows <i>i</i> and <i>j</i>	2. Interchange rows <i>i</i> and <i>j</i>

Inverse operations of the elementary row operations

Row operations on I that gives E	Row operations on E that gives I
3. Add <i>c</i> times row <i>i</i> to row <i>j</i>	3. Add $-c$ times row i to row j

Theorem

An elementary matrix is invertible, and its inverse is also an elementary matrix.

Theorem

If A is an $n \times n$ matrix, then the followings are equivalent.

- 1. The reduced row echelon form of A is I_n .
- 2. A is expressible as a product of elementary matrices.
- A is invertible.

Row equivalence

Definition

Two matrices that can be obtained from one another by finite sequence of elementary row operations are said to be row equivalent.

Theorem

If A and B are square matrices of the same size, then the followings are equivalent:

- 1. A and B are row equivalent.
- 2. There is an invertible matrix E such that B = EA.
- 3. There is an invertible matrix F such that A = FB.

The inversion algorithm

Theorem

To find the inverse of an invertible matrix A, find a sequence of elementary row operations that reduces A to I, and then perform the same sequence of operations on I to obtain A^{-1} .

The inversion algorithm

Example

Find the inverse of
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$

The inversion algorithm

Example

Find the inverse of
$$A = \begin{bmatrix} 1 & 6 & 4 \\ 2 & 4 & -1 \\ -1 & 2 & 5 \end{bmatrix}$$

Solving linear systems by matrix inversion

Theorem

If $A\mathbf{x} = \mathbf{b}$ is a linear system of n equations in n unknowns, and if the coefficient matrix A is invertible, then the system has a unique solution, namely $\mathbf{x} = A^{-1}\mathbf{b}$.

Solving linear systems by matrix inversion

Example Solve the linear system:

$$x_1 + 2x_2 + 3x_3 = 5$$

 $2x_1 + 5x_2 + 3x_3 = 3$
 $x_1 + 8x_3 = 17$

Solving linear systems by matrix inversion

Theorem

If $A\mathbf{x} = \mathbf{0}$ is a homogeneous system of n equations in n unknowns, then the system has only the trivial solution if and only if the coefficient matrix A is invertible.

Theorem

If A is an $n \times n$ matrix, then the followings are equivalent.

- 1. The reduced row echelon form of A is I_n .
- 2. A is expressible as a product of elementary matrices.
- 3. A is invertible.
- 4. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Theorem

- 1. If A and B are square matrices such that AB = I or BA = I, then A and B are both invertible, and each is the inverse of the other.
- 2. If A and B are square matrices whose product AB is invertible, then A and B are invertible.

Theorem

If A is an $n \times n$ matrix, then the followings are equivalent.

- 1. The reduced row echelon form of A is I_n .
- 2. A is expressible as a product of elementary matrices.
- 3. A is invertible.
- 4. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 5. $A\mathbf{x} = \mathbf{b}$ is consistent for every vector \mathbf{b} in \mathbb{R}^n .
- 6. $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every vector \mathbf{b} in \mathbb{R}^n .

Consistency of linear systems

Theorem (The consistency problem)

For a given matrix A find all vectors **b** for which the linear system $A\mathbf{x} = \mathbf{b}$ is consistent.

Consistency of linear systems

Example

What conditions must b_1 , b_2 , and b_3 satisfy for the following linear system to be consistent?

$$x_1+$$
 x_2+ $2x_3=$ b_1
 x_1 + $x_3=$ b_2
 $2x_1+$ x_2+ $3x_3=$ b_3