Exercise set #2

Please submit your solutions in teams of two using the sciebo file-drop folder. The link is available in ILIAS. For the formatting please stick to the submission_guideline.pdf that you can find on sciebo. In the case of multiple uploads we will consider the latest. Uploads after the deadline will be deleted without further notice.

1. Bayes net calculations

Consider the following directed acyclic graphs (DAGs):

- (a) Let A, B and C be binary random variables. Calculate p(B) and p(C) for the Bayes net defined by \mathcal{G}_1 and the (conditional) probabilities p(A) = 0.3, p(B|A) = 0.2, $p(B|\neg A) = 0.4$, p(C|B) = 0.7 and $p(C|\neg B) = 0.5$.
- (b) Let A, B, C and D be binary random variables. Calculate p(B) and p(D) for the Bayes net defined by \mathcal{G}_2 and the (conditional) probabilities p(A) = 0.3, p(B|A) = 0.2, $p(B|\neg A) = 0.4$, p(C|A) = 0.7, $p(C|\neg A) = 0.6$, p(D|B,C) = 0.9, $p(D|B,\neg C) = 0.5$, $p(D|\neg B,C) = 0.3$ and $p(D|\neg B,\neg C) = 0.3$.

25 points

2. The d-separation criterion

Consider the following DAG \mathcal{G} :

- (a) Write down the factorization of the joint distribution p(A, B, C, D, E, F).
- (b) From your answer in (a) derive the marginal distribution p(A, B, C, D, E).
- (c) Find a minimal set, that d-separates A and F (i.e. there is no other set with fewer elements, that also d-separates A and F). Prove that this is the case.
- (d) Prove that $C \perp \!\!\! \perp_{\mathcal{G}} D|B$ holds.

25 points

3. Three node networks

Prove all four cases from the lecture, i.e.:

(a) $A \to B \to C$	implies	$A \perp \!\!\! \perp C \mid B$
(b) $A \leftarrow B \leftarrow C$	implies	$A \perp\!\!\!\perp C \mid B$
(c) $A \leftarrow B \rightarrow C$	implies	$A \perp\!\!\!\perp C \mid B$
(d) $A \to B \leftarrow C$	implies	$A \perp\!\!\!\perp C$

For this write out the factorization of p(A, B, C) that is implied by the graph and show the wanted conditional independence.

20 points

4. Properties of expected value and variance

Let X and Y be two discrete, not necessarily independent, random variables and $a \in \mathbb{R}$ a real number.

(a) Show that the expectated value is an linear operator, i.e.,

$$E(aX + Y) = a E(X) + E(Y)$$

(b) Show that

$$Var(aX) = a^2 Var(X)$$

10 points

5. Mode of the Gaussian distribution

The mode of a continuous probability distribution is the point at which the probability density function attains its maximum value. Prove that the mean μ is also the mode of the Gaussian normal distribution

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right).$$

Hint: Try maximizing $\log \mathcal{N}(x|\mu,\sigma^2)$ and argue why it has the same maximum.

10 points

6. Plotting distributions (programming task)

The goal of this task is to make yourself familiar with some continuous distributions and plotting pdfs and histograms. First, add the following import statements:

import numpy as np

import matplotlib.pyplot as plt

from scipy.stats import beta, expon, gamma, laplace, norm

For each of the following distributions, plot its pdf in the given interval and a histogram based on 1000 samples. Use .pdf(x, *args) to compute the probability densities for the given array of x values, e.g., norm.pdf(x, a, b). Use .rvs(*args, n) to sample n values, e.g., norm.rvs(a, b, n). For plotting you may either use plotly or matblotlib.

- (a) Normal distribution: $\mathcal{N}(5, 1.5)$. Plot interval: [0, 10]
- (b) Laplace distribution: Laplace (5, 1.5). Plot interval: [-5, 15]
- (c) Exponential distribution: Exp(0, 1/1.5). Plot interval: [-1, 8]
- (d) Gamma distribution: Gamma(5, 0, 1). Plot interval: [0, 15]
- (e) Beta distribution: Beta(2, 1.5, 0, 1). Plot interval: [0, 1]

If you are interested, play around with the parameters of the distributions and see what influence they have on the probability densities.

Important: Make sure you also submit the output produced by your Python code.

10 points