Sample Size (7.4), Confidence Intervals for Variance and Standard Deviation

Stat 400 - April 1, 2021

Today's topics

Review:

Chi Squared Distribution, t distribution, CI for mean

New:

- Confidence Interval for variance (or sd)
- Required Sample Size

Chi-squared distribution (review) χ^2

The Chi-Squared distribution is a special case of the Gamma distribution where $\theta = 2$.

Also, sum of squares of normal distributions

https://homepage.divms.uiowa.edu/~mbognar/applets/chisq.html

notes Let
$$X \sim G_{amme} (d=5, \theta=4)$$

$$\frac{1}{2} X \sim G_{amme} (d=5, \theta=2)$$

$$\frac{1}{2} X \sim \chi^{2}_{10}$$

$$P[X > 16] = P[\frac{1}{2} X > 8]$$

$$P[X > 8] = \frac{6288}{16}$$

SE

t distribution: Z=

If σ is unknown:

Use \boldsymbol{s} instead of σ

$$T = \frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t_{n-1}$$

if I "standardize" the sample mean using 's' instead of 'o'.

t distribution

Theorem 5.5-3

(Student's t distribution) Let

$$T = \frac{Z}{\sqrt{U/r}},$$

where Z is a random variable that is N(0,1), U is a random variable that is $\chi^2(r)$, and Z and U are independent. Then T has a t distribution with pdf

$$f(t) = \frac{\Gamma((r+1)/2)}{\sqrt{\pi r} \Gamma(r/2)} \frac{1}{(1+t^2/r)^{(r+1)/2}}, \quad -\infty < t < \infty.$$

If interested, please refer to textbook for proof. (You are not expected to know how to do it).

$\begin{array}{c|c} \alpha_{1} & \alpha_{2} \\ \hline \\ -\frac{1}{4} & 0 \end{array}$

n=8

Review: CI for mean

Given the following sample: {16, 12, 18, 13, 21, 15, 8, 17}

Construct a 92% confidence interval for the true mean.

$$\bar{x} = 15$$
, $s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1} = \frac{112}{7} = 16$, $s=4$

$$\alpha = 0.08, \alpha/2 = 0.04$$

df =
$$n - 1 = 7$$
, $t_{7,0.04} = 2.046$

CI: **15**
$$\pm$$
 2.046 $\cdot \frac{4}{\sqrt{8}}$ = (12.107, 17.893)

$$\overline{x} \pm t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$
.

x	$x-\overline{x}$	$(x-\overline{x})^2$
16	1	1
12	-3	9
18	3	9
13	-2	4
21	6	36
15	0	0
8	-7	49
17	2	4
'	0	112

74

margin of error

Required Sample Size

$$\bar{x} \pm z_{\alpha/2} * \frac{\sigma}{\sqrt{n}}$$

$$\mathbb{Z} = Z_{\alpha/2} * \frac{\sigma}{\sqrt{n}}$$
m. J. e.

$$n = \left[\frac{z_{\alpha/2} * \sigma}{\varepsilon}\right]^2$$

$\sigma^{2} = 6.15$ $\rightarrow \sigma^{2} = 3.5$ Required Sample Size

How many test runs of an automobile are required for determining its average miles-per-gallon rating on the highway to within 0.5 miles per gallon with 99% confidence? Suppose that the variance of the population in mpg² is 6.25.

$$n = \left[\frac{z_{\alpha/2} * \sigma_1^2}{\varepsilon}\right]^2$$

$$\alpha = 0.01 \quad z_{\alpha/2} = 2.576$$

$$n = \left[\frac{2.576 \cdot 2.5}{0.5}\right]^2 = 165.99 \quad n = 166$$

$$n = 166$$

last example, found s2=16 point estimate

Confidence Interval for σ^2

Now we want to make a confidence interval for σ^2 based on s^2 .

Given the following sample: {16, 12, 18, 13, 21, 15, 8, 17}

- The distribution of s² is not Normal.
- It can be shown that $\frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{(n-1)}$ will not need to prove this

Proof of $\frac{(n-1)S^2}{\sigma^2} \searrow \chi^2_{n-1}$

 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \cdot \overline{x})^2$

1. $ar{X}$ (the sample mean) and S^2 are independent.

2. If $Z\sim N(0,1)$ then $Z^2\sim \chi^2(1)$.
3. If $X_i\sim \chi^2(1)$ and the X_i are independent then $\sum_{i=1}^n X_i\sim \chi^2(n)$.

. A $\chi^2(n)$ random variable has the moment generating function $(1-2t)^{-n/2}$.

With some algebra, you can show, by adding $-\bar{X}+\bar{X}$ inside the parentheses and grouping appropriately, that $\sum_{i=1}^n (X_i - \mu)^2 = \sum_{i=1}^n (X_i - \bar{X})^2 + n(\bar{X} - \mu)^2$. Then, dividing through by σ^2 yields

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 = \sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{\sigma} \right)^2 + \left(\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \right)^2$$

$$+ \left(\frac{\bar{X} - \mu}{\sigma(\sqrt{n})}\right).$$

Denote these expressions by U,V, and W, respectively, so that the formula reads U=V+W. By facts (2) and (3) above, $U \sim \chi^2(n)$ and $W \sim \chi^2(1)$. Also, $V = \frac{(n-1)S^2}{\sigma^2}$.

Since \bar{X} and S^2 are independent, so are V and W. Thus $M_U(t) = M_V(t)M_W(t)$, where $M_X(t)$ denotes the moment generating function of the random variable X. By fact (4) above, this says that

$$rac{1}{(1-2t)^{n/2}} = M_V(t) rac{1}{(1-2t)^{1/2}}.$$

$$M_{\nu}(t) = \frac{1}{(1-2t)^{(n-1)/2}}$$

Confidence Interval for σ^2

Confidence Interval for σ^2 :

$$\left(\frac{(n-1)\cdot s^2}{\chi_{\alpha/2}^2}, \frac{(n-1)\cdot s^2}{\chi_{1-\alpha/2}^2}\right)$$

Confidence Interval for σ^2 :

$$\left(\frac{(n-1)\cdot s^2}{\chi_{1-\alpha/2}^2}, \frac{(n-1)\cdot s^2}{\chi_{1-\alpha/2}^2}\right)$$

Given the following sample: $\{16, 12, 18, 13, 21, 15, 8, 17\}$ $\leftarrow n = 8$

Construct a 95% CI for the true variance.

$$\alpha = 16$$
 $\alpha = 0.05$ $\alpha/2 = 0.025$ 1- $\alpha/2 = 0.975$

$$\chi^2_{(7, 0.025)} = 16.013 \ \chi^2_{(7, 0.975)} = 1.690$$

df = 7

Trequestist Confidence Interval

For a 100(1-alpha)% CI, if we continue to construct an infinite number of intervals, we expect that 100(1-alpha)% of these intervals will contain the true parameter.

20%

1-sided Confidence Intervals for σ^2

95% confidence lower bound:

$$\left(\frac{(n-1)s^2}{\chi^2_{(df,\alpha)}},\infty\right)$$

95% confidence upper bound:

$$\left(\frac{(n-1)s^2}{\chi^2_{(df,1-\alpha)}}\right)$$

Given the following sample: {16, 12, 18, 13, 21, 15, 8, 17}

5=16

Construct a 95% CI for the true variance.

n-1= /

95% confidence lower bound:

$$\left(\frac{(n-1)s^2}{\chi^2_{(df,\alpha)}},\infty\right)$$

d = 0.05 14.7 $\chi^{2}_{7.0.05}$

notes

Given the following sample: {16, 12, 18, 13, 21, 15, 8, 17}

Construct a 95% CI for the true variance.

95% confidence upper bound:

$$\left(-\infty, \frac{(n-1)s^2}{\chi^2_{(df,1-\alpha)}}\right)$$

$$(0, \frac{7.16}{2.167})$$
= $(0, 51.67)$

^ The last 10 seconds got cut out of the video, but I just typed those numbers in my calculator