FICHE DE T D Nº 1

Exercice 1.

1. Décomposer en éléments simples dans $\mathbb{R}[X]$ les fractions rationnelles suivantes :

$$A = \frac{x^5 + x^2 + 2}{(x+2)^4} \qquad B = \frac{x^3 + 7x^2 + 6x + 2}{x^2(x-2)^2(x^2+1)}.$$

2. Décomposer en éléments simples dans $\mathbb{C}[X]$ les fractions rationnelles suivantes :

$$C = \frac{2x^2 - 5x}{(x+2)(x^2 + x + 2)^2}$$

Exercice 2. Calculer les intégrales suivantes :

$$I. \ I_1 = \int \frac{x dx}{x^3 - 3x + 2}.$$

2.
$$I_2 = \int \frac{\cos x dx}{\sin^2 x + 2 \tan^2 x}$$
.

3.
$$I_3 = \int \frac{6x^4 - 4x^3 + 3x^2}{2x^2 - x + 1} dx$$

4.
$$I_4 = \int \frac{x+2}{\sqrt{4x^2+4x+3}} dx$$

5.
$$I_5 = \int \sqrt{\frac{1+2x}{x-3}} dx$$

6.
$$I_6 = \int \frac{dx}{(x+2)\sqrt{1+x+x^2}}$$

7.
$$I_7 = \int \sqrt{3 + x + x^2} dx$$

8.
$$I_8 = \int \sin^3(x) \cos^5(x) dx$$

9.
$$I_9 = \int \sin^2(x) \cos^4(x) dx$$

Exercice 3. Calculer les intégrales suivantes :

$$I. I_1 = \int 2x\sqrt{2x - 1}dx$$

2.
$$I_2 = \int x^2 e^{2x} dx$$

3.
$$I_3 = \int \cos x e^x dx$$

4.
$$I_4 = \int_0^\pi \frac{dx}{2 + \cos x}$$

$$5. I_5 = \int \frac{1}{\cos(t)} dt.$$

6.
$$I_6 = \int_0^1 \frac{x^2}{\sqrt{25 - 9x^2}} dx$$

Exercice 4.

1. Calculer la limite, lorsque $n \to +\infty$ des suites (définies pour $n \in \mathbb{N}^*$)

(a)
$$t_n = \sum_{k=1}^n \frac{1}{n+k} \sqrt{\frac{k}{k+n}}$$
;

(b)
$$u_n = \sum_{k=1}^n \frac{1}{k+n} \ln \left(1 + \frac{k}{n}\right);$$

(c)
$$v_n = \frac{1}{n} \sqrt[n]{\prod_{k=1}^{n} (n+k)}$$
.

2. Montrer que

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \sqrt{\frac{n-k}{n^3 + n^2 k}} = \int_{0}^{1} \sqrt{\frac{1-x}{1+x}} dx = \frac{\pi}{2} - 1$$

Exercice 5.

Considérons les équations

1.
$$(E_1)$$
: $y'(x)y(x) = ay''(x)$ avec $a \in \mathbb{R}$.

2.
$$(E_2)$$
: $y''(t) = f$ où f est une fonction fixée.

3.
$$(E_3)$$
: $(y''(x))^2 + a^4y'(x) - 5x = 0$, avec $a \in \mathbb{R}$.

4.
$$(E_4)$$
: $y'(t) = \frac{y(t)}{e^t}$.

Pour chaque Equation, dire si elle est linéaire, dire si est-elle homogène et donner son ordre. (On mettra les réponses dans le tableau suivant que l'on recopiera sur la feuille de composition)

Equation	est linéaire	est homogène	son ordre est
(E_1)			
(E_2)			
(E_3)			
(E_4)			

Exercice 6. Donner l'ensemble des solutions des équations différentielles suivantes :

1.
$$y'(x) - 3y(x) = 4 \text{ pour } x \in \mathbb{R}$$
.

2.
$$\frac{yy'}{1+y^2} = \frac{1}{x} pour x > 0.$$

3.
$$y' + 2y = x - (x+1)e^{-2x} + \cos 3x \text{ pour } x \in \mathbb{R}$$
.

4.
$$y'(x) - \tan(x)y(x) = \sin(x) pour x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[.$$

5.
$$x^2y'(x) - (2x - 1)y(x) = x^2$$
, $y(1) = 1$, $x > 0$.

Exercice 7. Résoudre sur $\mathbb R$ les équations différentielles suivantes :

1.
$$y'' - 5y' + 4y = e^x$$
, $y(0) = 5$, $y'(0) = 8$

2.
$$y'' - 3y' + 2y = 2x + 1$$
 avec $y(0) = 1$ et $y'(0) = 0$

3.
$$y'' + y' - 2y = x \exp(-2x)$$

4.
$$y'' + 2y' + 5y = [3\cos(2x) - 2\sin(2x)]\exp(-x)$$