This file and several accompanying files contain the solutions to the oddnumbered problems in the book *Econometric Analysis of Cross Section and Panel Data*, by Jeffrey M. Wooldridge, MIT Press, 2002. The empirical examples are solved using various versions of Stata, with some dating back to Stata 4.0.

Partly out of laziness, but also because it is useful for students to see computer output, I have included Stata output in most cases rather than type tables. In some cases, I do more hand calculations than are needed in current versions of Stata.

Currently, there are some missing solutions. I will update the solutions occasionally to fill in the missing solutions, and to make corrections. For some problems I have given answers beyond what I originally asked. Please report any mistakes or discrepencies you might come across by sending me e-mail at wooldril@msu.edu.

CHAPTER 2

$$\text{2.1. a. } \frac{\partial \text{E}\left(y \mid x_1, x_2\right)}{\partial x_1} = \beta_1 + \beta_4 x_2 \text{ and } \frac{\partial \text{E}\left(y \mid x_1, x_2\right)}{\partial x_2} = \beta_2 + 2\beta_3 x_2 + \beta_4 x_1.$$

b. By definition, $\mathrm{E}(u|x_1,x_2)=0$. Because x_2^2 and x_1x_2 are just functions of (x_1,x_2) , it does not matter whether we also condition on them: $\mathrm{E}(u|x_1,x_2,x_2^2,x_1x_2)=0.$

c. All we can say about ${\rm Var}(u|x_1,x_2)$ is that it is nonnegative for all x_1 and x_2 : ${\rm E}(u|x_1,x_2)$ = 0 in no way restricts ${\rm Var}(u|x_1,x_2)$.

2.3. a. $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + u$, where u has a zero mean given x_1 and x_2 : $E(u|x_1,x_2) = 0$. We can say nothing further about u.

b.
$$\partial \mathbb{E}(y|x_1,x_2)/\partial x_1 = \beta_1 + \beta_3 x_2$$
. Because $\mathbb{E}(x_2) = 0$, $\beta_1 = \beta_1 + \beta_3 x_2 = 0$

 $\mathbb{E}\left[\partial\mathbb{E}\left(y\,|\,x_{1},x_{2}\right)/\partial x_{1}\right].\quad\text{Similarly, }\beta_{2}\,=\,\mathbb{E}\left[\partial\mathbb{E}\left(y\,|\,x_{1},x_{2}\right)/\partial x_{2}\right].$

c. If x_1 and x_2 are independent with zero mean then $\mathrm{E}(x_1x_2)=\mathrm{E}(x_1)\mathrm{E}(x_2)$ = 0. Further, the covariance between x_1x_2 and x_1 is $\mathrm{E}(x_1x_2\cdot x_1)=\mathrm{E}(x_1^2x_2)=\mathrm{E}(x_1^2)\mathrm{E}(x_2)$ (by independence) = 0. A similar argument shows that the covariance between x_1x_2 and x_2 is zero. But then the linear projection of x_1x_2 onto $(1,x_1,x_2)$ is identically zero. Now just use the law of iterated projections (Property LP.5 in Appendix 2A):

$$\begin{split} \text{L}\left(y \middle| 1, x_{1}, x_{2}\right) &= \text{L}\left(\beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{1}x_{2}\middle| 1, x_{1}, x_{2}\right) \\ &= \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}\text{L}\left(x_{1}x_{2}\middle| 1, x_{1}, x_{2}\right) \\ &= \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2}. \end{split}$$

- d. Equation (2.47) is more useful because it allows us to compute the partial effects of x_1 and x_2 at any values of x_1 and x_2 . Under the assumptions we have made, the linear projection in (2.48) does have as its slope coefficients on x_1 and x_2 the partial effects at the population average values of x_1 and x_2 zero in both cases but it does not allow us to obtain the partial effects at any other values of x_1 and x_2 . Incidentally, the main conclusions of this problem go through if we allow x_1 and x_2 to have any population means.
- 2.5. By definition, $\mathrm{Var}(u_1|\mathbf{x},\mathbf{z}) = \mathrm{Var}(y|\mathbf{x},\mathbf{z})$ and $\mathrm{Var}(u_2|\mathbf{x}) = \mathrm{Var}(y|\mathbf{x})$. By assumption, these are constant and necessarily equal to $\sigma_1^2 \equiv \mathrm{Var}(u_1)$ and $\sigma_2^2 \equiv \mathrm{Var}(u_2)$, respectively. But then Property CV.4 implies that $\sigma_2^2 \geq \sigma_1^2$. This simple conclusion means that, when error variances are constant, the error variance falls as more explanatory variables are conditioned on.
- 2.7. Write the equation in error form as

$$y = g(\mathbf{x}) + \mathbf{z}\boldsymbol{\beta} + u, \ \mathbb{E}(u|\mathbf{x},\mathbf{z}) = 0.$$

Take the expected value of this equation conditional only on ${\bf x}\colon$

$$\mathbb{E}(y|\mathbf{x}) = q(\mathbf{x}) + [\mathbb{E}(\mathbf{z}|\mathbf{x})]\boldsymbol{\beta},$$

and subtract this from the first equation to get

$$y - \mathbb{E}(y|\mathbf{x}) = [\mathbf{z} - \mathbb{E}(\mathbf{z}|\mathbf{x})]\boldsymbol{\beta} + u$$

or $\tilde{y} = \tilde{\mathbf{z}}\boldsymbol{\beta} + u$. Because $\tilde{\mathbf{z}}$ is a function of (\mathbf{x},\mathbf{z}) , $\mathrm{E}(u|\tilde{\mathbf{z}}) = 0$ (since $\mathrm{E}(u|\mathbf{x},\mathbf{z}) = 0$), and so $\mathrm{E}(\tilde{y}|\tilde{\mathbf{z}}) = \tilde{\mathbf{z}}\boldsymbol{\beta}$. This basic result is fundamental in the literature on estimating partial linear models. First, one estimates $\mathrm{E}(y|\mathbf{x})$ and $\mathrm{E}(\mathbf{z}|\mathbf{x})$ using very flexible methods, typically, so-called nonparametric methods. Then, after obtaining residuals of the form $\tilde{y}_i \equiv y_i - \hat{\mathrm{E}}(y_i|\mathbf{x}_i)$ and $\tilde{\mathbf{z}}_i \equiv \mathbf{z}_i - \hat{\mathrm{E}}(\mathbf{z}_i|\mathbf{x}_i)$, $\boldsymbol{\beta}$ is estimated from an OLS regression \tilde{y}_i on $\tilde{\mathbf{z}}_i$, $i = 1, \ldots, N$. Under general conditions, this kind of nonparametric partialling-out procedure leads to a \sqrt{N} -consistent, asymptotically normal estimator of $\boldsymbol{\beta}$. See Robinson (1988) and Powell (1994).

CHAPTER 3

3.1. To prove Lemma 3.1, we must show that for all $\varepsilon > 0$, there exists $b_{\varepsilon} < \infty$ and an integer N_{ε} such that $\mathrm{P}[|x_{\mathrm{N}}| \geq b_{\varepsilon}] < \varepsilon$, all $N \geq N_{\varepsilon}$. We use the following fact: since $x_{\mathrm{N}} \stackrel{\mathrm{P}}{\to} a$, for any $\varepsilon > 0$ there exists an integer N_{ε} such that $\mathrm{P}[|x_{\mathrm{N}} - a| > 1] < \varepsilon$ for all $N \geq N_{\varepsilon}$. [The existence of N_{ε} is implied by Definition 3.3(1).] But $|x_{\mathrm{N}}| = |x_{\mathrm{N}} - a + a| \leq |x_{\mathrm{N}} - a| + |a|$ (by the triangle inequality), and so $|x_{\mathrm{N}}| - |a| \leq |x_{\mathrm{N}} - a|$. It follows that $\mathrm{P}[|x_{\mathrm{N}}| - |a| > 1]$ $\leq \mathrm{P}[|x_{\mathrm{N}} - a| > 1]$. Therefore, in Definition 3.3(3) we can take $b_{\varepsilon} \equiv |a| + 1$ (irrespective of the value of ε) and then the existence of N_{ε} follows from Definition 3.3(1).

- 3.3. This follows immediately from Lemma 3.1 because $\mathbf{g}(\mathbf{x}_{\mathbb{N}}) \stackrel{p}{\to} \mathbf{g}(\mathbf{c})$.
- 3.5. a. Since $\operatorname{Var}(\overline{y}_{\mathbb{N}}) = \sigma^2/N$, $\operatorname{Var}[\sqrt{N}(\overline{y}_{\mathbb{N}} \mu)] = N(\sigma^2/N) = \sigma^2$.
 - b. By the CLT, $\sqrt{N}(\overline{y}_N \mu) \stackrel{a}{\sim} \text{Normal}(0, \sigma^2)$, and so $\text{Avar}[\sqrt{N}(\overline{y}_N \mu)] = \sigma^2$.
- c. We Obtain Avar (\overline{y}_N) by dividing Avar $[\sqrt{N}(\overline{y}_N \mu)]$ by N. Therefore, Avar $(\overline{y}_N) = \sigma^2/N$. As expected, this coincides with the actual variance of \overline{y}_N .
- d. The asymptotic standard deviation of \overline{y}_N is the square root of its asymptotic variance, or σ/\sqrt{N} .
- e. To obtain the asymptotic standard error of \overline{y}_N , we need a consistent estimator of σ . Typically, the unbiased estimator of σ^2 is used: $\hat{\sigma}^2 = (N-1)^{-1}\sum\limits_{i=1}^N (y_i \overline{y}_N)^2$, and then $\hat{\sigma}$ is the positive square root. The asymptotic standard error of \overline{y}_N is simply $\hat{\sigma}/\sqrt{N}$.
- 3.7. a. For $\theta > 0$ the natural logarithim is a continuous function, and so $\text{plim}[\log(\hat{\theta})] = \log[\text{plim}(\hat{\theta})] = \log(\theta) = \gamma$.
- b. We use the delta method to find $\operatorname{Avar}[\sqrt{N}(\hat{\gamma}-\gamma)]$. In the scalar case, if $\hat{\gamma}=g(\hat{\theta})$ then $\operatorname{Avar}[\sqrt{N}(\hat{\gamma}-\gamma)]=[\operatorname{d} g(\theta)/\operatorname{d} \theta]^2\operatorname{Avar}[\sqrt{N}(\hat{\theta}-\theta)]$. When $g(\theta)=\log(\theta)$ which is, of course, continuously differentiable $\operatorname{Avar}[\sqrt{N}(\hat{\gamma}-\gamma)]=(1/\theta)^2\operatorname{Avar}[\sqrt{N}(\hat{\theta}-\theta)]$.
- c. In the scalar case, the asymptotic standard error of $\hat{\gamma}$ is generally $|\mathrm{d}g(\hat{\theta})/\mathrm{d}\theta| \cdot \mathrm{se}(\hat{\theta})$. Therefore, for $g(\theta) = \log(\theta)$, $\mathrm{se}(\hat{\gamma}) = \mathrm{se}(\hat{\theta})/\hat{\theta}$. When $\hat{\theta} = 4$ and $\mathrm{se}(\hat{\theta}) = 2$, $\hat{\gamma} = \log(4) \approx 1.39$ and $\mathrm{se}(\hat{\gamma}) = 1/2$.
- d. The asymptotic t statistic for testing H_0 : $\theta = 1$ is $(\hat{\theta} 1)/\text{se}(\hat{\theta}) = 3/2 = 1.5$.
 - e. Because γ = log(θ), the null of interest can also be stated as H $_0$: γ =

- 0. The t statistic based on $\hat{\gamma}$ is about 1.39/(.5) = 2.78. This leads to a very strong rejection of H_0 , whereas the t statistic based on $\hat{\theta}$ is, at best, marginally significant. The lesson is that, using the Wald test, we can change the outcome of hypotheses tests by using nonlinear transformations.
- 3.9. By the delta method,

$$\text{Avar}[\sqrt{N}(\hat{\pmb{\gamma}}-\pmb{\gamma})] = \mathbf{G}(\pmb{\theta})\mathbf{V}_1\mathbf{G}(\pmb{\theta})', \quad \text{Avar}[\sqrt{N}(\hat{\pmb{\gamma}}-\pmb{\gamma})] = \mathbf{G}(\pmb{\theta})\mathbf{V}_2\mathbf{G}(\pmb{\theta})',$$
 where $\mathbf{G}(\pmb{\theta}) = \nabla_{\pmb{\theta}}\mathbf{g}(\pmb{\theta})$ is $\mathcal{Q} \times \mathcal{P}$. Therefore,

$$\operatorname{Avar}\left[\overrightarrow{\sqrt{N}}(\overset{\sim}{\pmb{\gamma}} - \pmb{\gamma})\right] - \operatorname{Avar}\left[\overrightarrow{\sqrt{N}}(\overset{\sim}{\pmb{\gamma}} - \pmb{\gamma})\right] = \mathbf{G}(\pmb{\theta}) (\mathbf{V}_2 - \mathbf{V}_1) \mathbf{G}(\pmb{\theta})'.$$

By assumption, \mathbf{V}_2 - \mathbf{V}_1 is positive semi-definite, and therefore $\mathbf{G}(\boldsymbol{\theta})$ (\mathbf{V}_2 - \mathbf{V}_1) $\mathbf{G}(\boldsymbol{\theta})$ ' is p.s.d. This completes the proof.

CHAPTER 4

4.1. a. Exponentiating equation (4.49) gives

$$\label{eq:wage} \begin{split} \text{wage} &= \exp (\beta_0 \ + \ \beta_1 \text{married} \ + \ \beta_2 \text{educ} \ + \ \mathbf{z} \boldsymbol{\gamma} \ + \ u) \\ &= \exp (u) \exp (\beta_0 \ + \ \beta_1 \text{married} \ + \ \beta_2 \text{educ} \ + \ \mathbf{z} \boldsymbol{\gamma}) \,. \end{split}$$

Therefore,

 $\mathbb{E}(\textit{wage} \mid \mathbf{x}) = \mathbb{E}[\exp(u) \mid \mathbf{x}] \exp(\beta_0 + \beta_1 \textit{married} + \beta_2 \textit{educ} + \mathbf{z} \boldsymbol{\gamma}),$ where \mathbf{x} denotes all explanatory variables. Now, if u and \mathbf{x} are independent then $\mathbb{E}[\exp(u) \mid \mathbf{x}] = \mathbb{E}[\exp(u)] = \delta_0$, say. Therefore

$$E(wage|\mathbf{x}) = \delta_0 \exp(\beta_0 + \beta_1 married + \beta_2 educ + \mathbf{z}\mathbf{y}).$$

Now, finding the proportionate difference in this expectation at married = 1 and married = 0 (with all else equal) gives $\exp(\beta_1) - 1$; all other factors cancel out. Thus, the percentage difference is $100 \cdot [\exp(\beta_1) - 1]$.

b. Since θ_1 = 100·[exp(β_1) - 1] = $g(\beta_1)$, we need the derivative of g with

respect to β_1 : $\mathrm{d}g/\mathrm{d}\beta_1 = 100 \cdot \exp{(\beta_1)}$. The asymptotic standard error of $\hat{\theta}_1$ using the delta method is obtained as the absolute value of $\mathrm{d}g/\mathrm{d}\beta_1$ times $\mathrm{se}(\hat{\beta}_1)$:

$$\operatorname{se}(\hat{\boldsymbol{\theta}}_1) = [100 \cdot \exp(\hat{\boldsymbol{\beta}}_1)] \cdot \operatorname{se}(\hat{\boldsymbol{\beta}}_1).$$

c. We can evaluate the conditional expectation in part (a) at two levels of education, say $educ_0$ and $educ_1$, all else fixed. The proportionate change in expected wage from $educ_0$ to $educ_1$ is

 $[\exp(\beta_2 educ_1) - \exp(\beta_2 educ_0)]/\exp(\beta_2 educ_0)$

=
$$\exp[\beta_2(educ_1 - educ_0)] - 1 = \exp(\beta_2\Delta educ) - 1$$
.

Using the same arguments in part (b), $\hat{\theta}_2 = 100 \cdot [\exp{(\beta_2 \Delta e duc)} - 1]$ and

$$se(\hat{\theta}_2) = 100 \cdot |\Delta educ| exp(\hat{\beta}_2 \Delta educ) se(\hat{\beta}_2)$$

- d. For the estimated version of equation (4.29), $\hat{\beta}_1$ = .199, $\operatorname{se}(\hat{\beta}_1)$ = .039, $\hat{\beta}_2$ = .065, $\operatorname{se}(\hat{\beta}_2)$ = .006. Therefore, $\hat{\theta}_1$ = 22.01 and $\operatorname{se}(\hat{\theta}_1)$ = 4.76. For $\hat{\theta}_2$ we set $\Delta educ$ = 4. Then $\hat{\theta}_2$ = 29.7 and $\operatorname{se}(\hat{\theta}_2)$ = 3.11.
- 4.3. a. Not in general. The conditional variance can always be written as $Var(u|\mathbf{x}) = E(u^2|\mathbf{x}) [E(u|\mathbf{x})]^2$; if $E(u|\mathbf{x}) \neq 0$, then $E(u^2|\mathbf{x}) \neq Var(u|\mathbf{x})$.
- b. It could be that $E(\mathbf{x}'u) = \mathbf{0}$, in which case OLS is consistent, and $Var(u|\mathbf{x})$ is constant. But, generally, the usual standard errors would not be valid unless $E(u|\mathbf{x}) = 0$.
- 4.5. Write equation (4.50) as $\mathrm{E}(y|\mathbf{w}) = \mathbf{w}\delta$, where $\mathbf{w} = (\mathbf{x},z)$. Since $\mathrm{Var}(y|\mathbf{w}) = \sigma^2$, it follows by Theorem 4.2 that $\mathrm{Avar} \sqrt{N}(\hat{\delta} \delta)$ is $\sigma^2[\mathrm{E}(\mathbf{w}'\mathbf{w})]^{-1}$, where $\hat{\delta} = (\hat{\beta}', \hat{\gamma})'$. Importantly, because $\mathrm{E}(\mathbf{x}'z) = \mathbf{0}$, $\mathrm{E}(\mathbf{w}'\mathbf{w})$ is block diagonal, with upper block $\mathrm{E}(\mathbf{x}'\mathbf{x})$ and lower block $\mathrm{E}(z^2)$. Inverting $\mathrm{E}(\mathbf{w}'\mathbf{w})$ and focusing on the upper $K \times K$ block gives

Avar
$$\sqrt{N}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) = \sigma^2 [E(\mathbf{x'x})]^{-1}$$
.

Next, we need to find Avar $\sqrt{N}(\tilde{\boldsymbol{\beta}} - \boldsymbol{\beta})$. It is helpful to write $y = \mathbf{x}\boldsymbol{\beta} + v$ where $v = \gamma z + u$ and $u \equiv y - \mathrm{E}(y|\mathbf{x},z)$. Because $\mathrm{E}(\mathbf{x}'z) = \mathbf{0}$ and $\mathrm{E}(\mathbf{x}'u) = \mathbf{0}$, $\mathrm{E}(\mathbf{x}'v) = \mathbf{0}$. Further, $\mathrm{E}(v^2|\mathbf{x}) = \gamma^2 \mathrm{E}(z^2|\mathbf{x}) + \mathrm{E}(u^2|\mathbf{x}) + 2\gamma \mathrm{E}(zu|\mathbf{x}) = \gamma^2 \mathrm{E}(z^2|\mathbf{x}) + \sigma^2$, where we use $\mathrm{E}(zu|\mathbf{x},z) = z\mathrm{E}(u|\mathbf{x},z) = 0$ and $\mathrm{E}(u^2|\mathbf{x},z) = \mathrm{Var}(y|\mathbf{x},z) = \sigma^2$. Unless $\mathrm{E}(z^2|\mathbf{x})$ is constant, the equation $y = \mathbf{x}\boldsymbol{\beta} + v$ generally violates the homoskedasticity assumption OLS.3. So, without further assumptions,

Avar
$$\sqrt{N}(\widetilde{\boldsymbol{\beta}} - \boldsymbol{\beta}) = [\mathbb{E}(\mathbf{x'x})]^{-1}\mathbb{E}(v^2\mathbf{x'x})[\mathbb{E}(\mathbf{x'x})]^{-1}.$$

Now we can show Avar $\sqrt{N}(\hat{\pmb{\beta}}-\pmb{\beta})$ — Avar $\sqrt{N}(\hat{\pmb{\beta}}-\pmb{\beta})$ is positive semi-definite by writing

Avar
$$\sqrt{N}(\widetilde{\boldsymbol{\beta}} - \boldsymbol{\beta})$$
 - Avar $\sqrt{N}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})$
= $[\mathbf{E}(\mathbf{x}'\mathbf{x})]^{-1}\mathbf{E}(v^2\mathbf{x}'\mathbf{x})[\mathbf{E}(\mathbf{x}'\mathbf{x})]^{-1}$ - $\sigma^2[\mathbf{E}(\mathbf{x}'\mathbf{x})]^{-1}$
= $[\mathbf{E}(\mathbf{x}'\mathbf{x})]^{-1}\mathbf{E}(v^2\mathbf{x}'\mathbf{x})[\mathbf{E}(\mathbf{x}'\mathbf{x})]^{-1}$ - $\sigma^2[\mathbf{E}(\mathbf{x}'\mathbf{x})]^{-1}\mathbf{E}(\mathbf{x}'\mathbf{x})[\mathbf{E}(\mathbf{x}'\mathbf{x})]^{-1}$
= $[\mathbf{E}(\mathbf{x}'\mathbf{x})]^{-1}[\mathbf{E}(v^2\mathbf{x}'\mathbf{x}) - \sigma^2\mathbf{E}(\mathbf{x}'\mathbf{x})][\mathbf{E}(\mathbf{x}'\mathbf{x})]^{-1}$.

Because $[\mathbf{E}(\mathbf{x'x})]^{-1}$ is positive definite, it suffices to show that $\mathbf{E}(v^2\mathbf{x'x}) - \sigma^2\mathbf{E}(\mathbf{x'x})$ is p.s.d. To this end, let $h(\mathbf{x}) \equiv \mathbf{E}(z^2|\mathbf{x})$. Then by the law of iterated expectations, $\mathbf{E}(v^2\mathbf{x'x}) = \mathbf{E}[\mathbf{E}(v^2|\mathbf{x})\mathbf{x'x}] = \gamma^2\mathbf{E}[h(\mathbf{x})\mathbf{x'x}] + \sigma^2\mathbf{E}(\mathbf{x'x})$. Therefore, $\mathbf{E}(v^2\mathbf{x'x}) - \sigma^2\mathbf{E}(\mathbf{x'x}) = \gamma^2\mathbf{E}[h(\mathbf{x})\mathbf{x'x}]$, which, when $\gamma \neq 0$, is actually a positive definite matrix except by fluke. In particular, if $\mathbf{E}(z^2|\mathbf{x}) = \mathbf{E}(z^2) = \eta^2 > 0$ (in which case $y = \mathbf{x}\beta + v$ satisfies the homoskedasticity assumption OLS.3), $\mathbf{E}(v^2\mathbf{x'x}) - \sigma^2\mathbf{E}(\mathbf{x'x}) = \gamma^2\eta^2\mathbf{E}(\mathbf{x'x})$, which is positive definite.

4.7. a. One important omitted factor in u is family income: students that come from wealthier families tend to do better in school, other things equal. Family income and PC ownership are positively correlated because the probability of owning a PC increases with family income. Another factor in u

is quality of high school. This may also be correlated with PC: a student who had more exposure with computers in high school may be more likely to own a computer.

b. $\hat{\beta}_3$ is *likely* to have an upward bias because of the positive correlation between u and PC, but it is not clear-cut because of the other explanatory variables in the equation. If we write the linear projection

$$u = \delta_0 + \delta_1 hsGPA + \delta_2 SAT + \delta_3 PC + r$$

then the bias is upward if δ_3 is greater than zero. This measures the partial correlation between u (say, family income) and PC, and it is likely to be positive.

c. If data on family income can be collected then it can be included in the equation. If family income is not available sometimes level of parents' education is. Another possibility is to use average house value in each student's home zip code, as zip code is often part of school records. Proxies for high school quality might be faculty-student ratios, expenditure per student, average teacher salary, and so on.

4.9. a. Just subtract $log(y_{-1})$ from both sides:

$$\Delta \log \left(y\right) \ = \ \beta_0 \ + \ \mathbf{x}\boldsymbol{\beta} \ + \ \left(\alpha_1 \ - \ 1\right) \log \left(y_{-1}\right) \ + \ \boldsymbol{u}.$$

Clearly, the intercept and slope estimates on ${\bf x}$ will be the same. The coefficient on $\log{(y_{-1})}$ changes.

b. For simplicity, let $w=\log(y)$, $w_{-1}=\log(y_{-1})$. Then the population slope coefficient in a simple regression is always $\alpha_1=\operatorname{Cov}(w_{-1},w)/\operatorname{Var}(w_{-1})$. But, by assumption, $\operatorname{Var}(w)=\operatorname{Var}(w_{-1})$, so we can write $\alpha_1=\operatorname{Cov}(w_{-1},w)/(\sigma_{w_{-1}}\sigma_w)$, where $\sigma_{w_{-1}}=\operatorname{sd}(w_{-1})$ and $\sigma_w=\operatorname{sd}(w)$. But $\operatorname{Corr}(w_{-1},w)=\operatorname{Cov}(w_{-1},w)/(\sigma_{w_{-1}}\sigma_w)$, and since a correlation coefficient is always between -1

and 1, the result follows.

- 4.11. Here is some Stata output obtained to answer this question:
- . reg lwage exper tenure married south urban black educ iq kww

Source		SS	df		MS		Number of obs	=	935
	+-						F(9, 925)	=	37.28
Model		44.0967944	9	4.89	964382		Prob > F	=	0.0000
Residual		121.559489	925	.131	415664		R-squared	=	0.2662
	+-						Adj R-squared	=	0.2591
Total		165.656283	934	.177	362188		Root MSE	=	.36251
lwage		Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
	+-								
exper		.0127522	.0032	308	3.947	0.000	.0064117		0190927
tenure		.0109248	.0024	457	4.467	0.000	.006125		0157246
married		.1921449	.0389	094	4.938	0.000	.1157839		2685059
south		0820295	.0262	222	-3.128	0.002	1334913		0305676
urban		.1758226	.0269	095	6.534	0.000	.1230118		2286334
black		1303995	.0399	014	-3.268	0.001	2087073		0520917
educ		.0498375	.007	262	6.863	0.000	.0355856		0640893
iq		.0031183	.0010	128	3.079	0.002	.0011306		0051059
kww		.003826	.0018	521	2.066	0.039	.0001911		0074608

iq | .0031183 .0010128 3.079 0.002 kww | .003826 .0018521 2.066 0.039 _cons | 5.175644 .127776 40.506 0.000 4.924879 5.426408

- . test iq kww
- (1) iq = 0.0
- (2) kww = 0.0

$$F(2, 925) = 8.59$$

 $Prob > F = 0.0002$

- a. The estimated return to education using both IQ and KWW as proxies for ability is about 5%. When we used no proxy the estimated return was about 6.5%, and with only IQ as a proxy it was about 5.4%. Thus, we have an even lower estimated return to education, but it is still practically nontrivial and statistically very significant.
 - b. We can see from the t statistics that these variables are going to be

jointly significant. The F test verifies this, with p-value = .0002.

c. The wage differential between nonblacks and blacks does not disappear. Blacks are estimated to earn about 13% less than nonblacks, holding all other factors fixed.

4.13. a. Using the 90 counties for 1987 gives

. reg lcrmrte lprbarr lprbconv lprbpris lavgsen if d87

Source	SS	df	MS		Number of obs F(4, 85)	
Model Residual	11.1549601 15.6447379		874002 405574		Prob > F R-squared Adj R-squared	= 0.0000 = 0.4162
Total	26.799698	89 .301	120202		Root MSE	= .42902
lcrmrte	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lprbarr lprbconv lprbpris lavgsen	7239696 4725112 .1596698 .0764213	.1153163 .0831078 .2064441 .1634732	-6.28 -5.69 0.77 0.47	0.000 0.000 0.441 0.641	9532493 6377519 2507964 2486073	4946899 3072706 .570136 .4014499

Because of the log-log functional form, all coefficients are elasticities.

The elasticities of crime with respect to the arrest and conviction probabilities are the sign we expect, and both are practically and statistically significant. The elasticities with respect to the probability of serving a prison term and the average sentence length are positive but are statistically insignificant.

- b. To add the previous year's crime rate we first generate the lag:
- . gen lcrmr_1 = lcrmrte[_n-1] if d87
 (540 missing values generated)
- . reg lcrmrte lprbarr lprbconv lprbpris lavgsen lcrmr_1 if d87

Source	SS	df	MS		Number of obs	=	90
+					F(5, 84)	=	113.90
Model	23.3549731	5	4.67099462		Prob > F	=	0.0000
Residual	3.4447249	84	.04100863		R-squared	=	0.8715
+					Adj R-squared	=	0.8638
Total	26.799698	89	.301120202		Root MSE	=	.20251
lcrmrte	Coef.	Std. E	rr. t	P> t	[95% Conf.	In	terval]
+							
lprbarr	1850424	.06276	24 -2.95	0.004	3098523		0602325
lprbconv	0386768	.04659	99 -0.83	0.409	1313457		0539921
lprbpris	1266874	.09885	05 -1.28	0.204	3232625		0698876
lavgsen	1520228	.07829	15 -1.94	0.056	3077141		0036684
lcrmr_1	.7798129	.04521	14 17.25	0.000	.6899051		8697208
_cons	7666256	.31309	86 -2.45	0.016	-1.389257		1439946

There are some notable changes in the coefficients on the original variables. The elasticities with respect to prbarr and prbconv are much smaller now, but still have signs predicted by a deterrent-effect story. The conviction probability is no longer statistically significant. Adding the lagged crime rate changes the signs of the elasticities with respect to prbpris and avgsen, and the latter is almost statistically significant at the 5% level against a two-sided alternative (p-value = .056). Not surprisingly, the elasticity with respect to the lagged crime rate is large and very statistically significant. (The elasticity is also statistically different from unity.)

c. Adding the logs of the nine wage variables gives the following:

. reg lcrmrte lprbarr lprbconv lprbpris lavgsen lcrmr $_1$ lwcon-lwloc if d87

Source	SS	df	MS		Number of obs	=	90
	·				F(14, 75)	=	43.81
Model	23.8798774	14	1.70570553		Prob > F	=	0.0000
Residual	2.91982063	75	.038930942		R-squared	=	0.8911
	+				Adj R-squared	=	0.8707
Total	26.799698	89	.301120202		Root MSE	=	.19731
lcrmrte	Coef.	Std.	Err. t	P> t	[95% Conf.	Int	erval]
	<u> </u>						

```
lprbarr | -.1725122
                     .0659533
                               -2.62 0.011
                                                -.3038978
                                                          -.0411265
lprbconv | -.0683639
                                      0.173
                     .049728
                                -1.37
                                                -.1674273
                                                            .0306994
          -.2155553
lprbpris |
                     .1024014
                                 -2.11
                                        0.039
                                                -.4195493
                                                           -.0115614
                    .0844647
                                                           -.0277923
lavgsen | -.1960546
                                -2.32
                                        0.023
                                                 -.364317
                                                .6396942
lcrmr_1 | .7453414 .0530331
                               14.05 0.000
                                                            .8509887
  lwcon | -.2850008 .1775178
                               -1.61 0.113
                                                -.6386344
                                                            .0686327
           .0641312
                      .134327
                                 0.48 0.634
                                                -.2034619
  lwtuc |
                                                            .3317244
            .253707
                     .2317449
                                 1.09 0.277
                                                -.2079524
                                                            .7153665
  lwtrd |
  lwfir |
          -.0835258
                     .1964974
                                -0.43
                                        0.672
                                                -.4749687
                                                            .3079171
  lwser |
           .1127542
                     .0847427
                                 1.33
                                        0.187
                                                -.0560619
                                                            .2815703
           .0987371
                    .1186099
  lwmfg |
                                 0.83
                                        0.408
                                                -.1375459
                                                            .3350201
           .3361278 .2453134
                                 1.37
                                       0.175
                                                -.1525615
                                                            .8248172
  lwfed |
           .0395089 .2072112
                                0.19 0.849
                                                -.3732769
                                                            .4522947
  lwsta |
  lwloc | -.0369855
                     .3291546
                               -0.11 0.911
                                                -.6926951
                                                            .618724
  _cons | -3.792525 1.957472
                               -1.94 0.056
                                                -7.692009
                                                            .1069592
```

. testparm lwcon-lwloc

```
(1)
    lwcon = 0.0
```

- (2) lwtuc = 0.0
- lwtrd = 0.0(3)
- lwfir = 0.0(4)
- (5) lwser = 0.0
- (6) lwmfg = 0.0
- (7) lwfed = 0.0lwsta = 0.0
- (8) (9) lwloc = 0.0

$$F(9, 75) = 1.50$$

 $Prob > F = 0.1643$

The nine wage variables are jointly insignificant even at the 15% level. Plus, the elasticities are not consistently positive or negative. The two largest elasticities -- which also have the largest absolute t statistics -have the opposite sign. These are with respect to the wage in construction (-.285) and the wage for federal employees (.336).

d. Using the "robust" option in Stata, which is appended to the "reg" command, gives the heteroskedasiticity-robust F statistic as F = 2.19 and p-value = .032. (This F statistic is the heteroskedasticity-robust Wald statistic divided by the number of restrictions being tested, nine in this example. The division by the number of restrictions turns the asymptotic chisquare statistic into one that roughly has an F distribution.)

4.15. a. Because each x_j has finite second moment, $\mathrm{Var}(\mathbf{x}\boldsymbol{\beta}) < \infty$. Since $\mathrm{Var}(u) < \infty$, $\mathrm{Cov}(\mathbf{x}\boldsymbol{\beta},u)$ is well-defined. But each x_j is uncorrelated with u, so $\mathrm{Cov}(\mathbf{x}\boldsymbol{\beta},u) = 0$. Therefore, $\mathrm{Var}(y) = \mathrm{Var}(\mathbf{x}\boldsymbol{\beta}) + \mathrm{Var}(u)$, or $\sigma_y^2 = \mathrm{Var}(\mathbf{x}\boldsymbol{\beta}) + \sigma_u^2$.

b. This is nonsense when we view the \mathbf{x}_i as random draws along with y_i . The statement " $\mathrm{Var}(u_i) = \sigma^2 = \mathrm{Var}(y_i)$ for all i" assumes that the regressors are nonrandom (or $\beta = 0$, which is not a very interesting case). This is another example of how the assumption of nonrandom regressors can lead to counterintuitive conclusions. Suppose that an element of the error term, say z, which is uncorrelated with each x_j , suddenly becomes observed. When we add z to the regressor list, the error changes, and so does the error variance. (It gets smaller.) In the vast majority of economic applications, it makes no sense to think we have access to the entire set of factors that one would ever want to control for, so we should allow for error variances to change across different models for the same response variable.

c. Write $R^2=1$ - SSR/SST = 1 - (SSR/N)/(SST/N). Therefore, plim(R^2) = 1 - plim[(SSR/N)/(SST/N)] = 1 - [plim(SSR/N)]/[plim(SST/N)] = 1 - $\sigma_u^2/\sigma_y^2=\rho^2$, where we use the fact that SSR/N is a consistent estimator of σ_u^2 and SST/N is a consistent estimator of σ_v^2 .

d. The derivation in part (c) assumed nothing about $Var(u|\mathbf{x})$. The population R-squared depends on only the unconditional variances of u and y. Therefore, regardless of the nature of heteroskedasticity in $Var(u|\mathbf{x})$, the usual R-squared consistently estimates the population R-squared. Neither R-squared nor the adjusted R-squared has desirable finite-sample properties,

such as unbiasedness, so the only analysis we can do in any generality involves asymptotics. The statement in the problem is simply wrong.

CHAPTER 5

- 5.1. Define $\mathbf{x}_1 \equiv (\mathbf{z}_1, y_2)$ and $\mathbf{x}_2 \equiv \hat{v}_2$, and let $\hat{\boldsymbol{\beta}} \equiv (\hat{\boldsymbol{\beta}}_1', \hat{\rho}_1)'$ be OLS estimator from (5.52), where $\hat{\boldsymbol{\beta}}_1 = (\hat{\boldsymbol{\delta}}_1', \hat{\alpha}_1)'$. Using the hint, $\hat{\boldsymbol{\beta}}_1$ can also be obtained by partitioned regression:
 - (i) Regress \mathbf{x}_1 onto $\overset{\circ}{v}_2$ and save the residuals, say $\overset{\circ}{\mathbf{x}}_1.$
 - (ii) Regress y_1 onto \mathbf{x}_1 .

But when we regress \mathbf{z}_1 onto \hat{v}_2 , the residuals are just \mathbf{z}_1 since \hat{v}_2 is orthogonal in sample to \mathbf{z} . (More precisely, $\sum\limits_{i=1}^{N}\mathbf{z}_{i1}'\hat{v}_{i2}=\mathbf{0}$.) Further, because we can write $y_2=\hat{y}_2+\hat{v}_2$, where \hat{y}_2 and \hat{v}_2 are orthogonal in sample, the residuals from regressing y_2 onto \hat{v}_2 are simply the first stage fitted values, \hat{y}_2 . In other words, $\ddot{\mathbf{x}}_1=(\mathbf{z}_1,\hat{y}_2)$. But the 2SLS estimator of $\boldsymbol{\beta}_1$ is obtained exactly from the OLS regression y_1 on \mathbf{z}_1 , \hat{y}_2 .

- 5.3. a. There may be unobserved health factors correlated with smoking behavior that affect infant birth weight. For example, women who smoke during pregnancy may, on average, drink more coffee or alcohol, or eat less nutritious meals.
- b. Basic economics says that *packs* should be negatively correlated with cigarette price, although the correlation might be small (especially because price is aggregated at the state level). At first glance it seems that cigarette price should be exogenous in equation (5.54), but we must be a little careful. One component of cigarette price is the state tax on

cigarettes. States that have lower taxes on cigarettes may also have lower quality of health care, on average. Quality of health care is in u, and so maybe cigarette price fails the exogeneity requirement for an IV.

Number of obs = 1388

-.044263

-.0481949

3.960122

.1754869

4.975601

c. OLS is followed by 2SLS (IV, in this case):

. reg lbwght male parity lfaminc packs

Source | SS df MS

parity | -.0012391 .0219322

lfaminc | .063646 .0570128

_cons | 4.467861 .2588289

						T/ / 1202\	10 EE
Model	1.76664363 48.65369					F(4, 1383) Prob > F R-squared	= 0.0000
Residual	40.00009	1303	.03	01/9019		Adj R-squared	
Total	50.4203336	1387	.036	6352079		Root MSE	
lbwght	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
	.0262407	.0100)894	2.601	0.009	.0064486	.0460328
parity	.0147292	.0056	5646	2.600	0.009	.0036171	.0258414
lfaminc	.0180498	.0055	5837	3.233	0.001	.0070964	.0290032
packs	0837281	.0171	1209	-4.890	0.000	1173139	0501423
	4.675618	0218	3813	213.681	0.000	4.632694	4.718542
cons							
	ght male parit	y lfar df	minc p			faminc cigprice) Number of obs	(2SLS) = 1388
. reg lbwg	ght male parit	 y lfar df		packs (male MS		faminc cigprice)	(2SLS) = 1388 = 2.39
. reg lbwg Source Model	ght male parit SS	y lfar df	ninc p	packs (male MS 3375067		faminc cigprice) Number of obs F(4, 1383)	(2SLS) = 1388 = 2.39 = 0.0490
. reg lbwg Source Model	ght male parit SS + -91.3500269	y lfar df	ninc p	packs (male MS 3375067		faminc cigprice) Number of obs F(4, 1383) Prob > F	(2SLS) = 1388 = 2.39 = 0.0490 = .
. reg lbwg Source Model	ght male parit SS + -91.3500269 141.770361	y lfar df 4 1383	ninc p	ms 3375067 2509299		faminc cigprice) Number of obs F(4, 1383) Prob > F R-squared	(2SLS) = 1388 = 2.39 = 0.0490 = .
Source Model Residual Total	ght male parit SS + -91.3500269 141.770361 + 50.4203336	y lfar df 1383	-22.8 .102	MS 3375067 2509299 6352079	parity l	faminc cigprice) Number of obs F(4, 1383) Prob > F R-squared Adj R-squared	(2SLS) = 1388 = 2.39 = 0.0490 = . = . = .32017

(Note that Stata automatically shifts endogenous explanatory variables to the beginning of the list when report coefficients, standard errors, and so on.)

-0.056 0.955

17.262 0.000

1.116 0.264

The difference between OLS and IV in the estimated effect of packs on bwght is huge. With the OLS estimate, one more pack of cigarettes is estimated to reduce bwght by about 8.4%, and is statistically significant. The IV estimate has the opposite sign, is huge in magnitude, and is not statistically significant. The sign and size of the smoking effect are not realistic.

- d. We can see the problem with IV by estimating the reduced form for packs:
- . reg packs male parity lfaminc cigprice

Source		SS	df	MS	Number of obs $=$	1388
	+-				F(4, 1383) =	10.86
Model		3.76705108	4	.94176277	Prob > F =	0.0000
Residual		119.929078	1383	.086716615	R-squared =	0.0305
	+-				Adj R-squared =	0.0276
Total		123.696129	1387	.089182501	Root MSE =	.29448

packs	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
male parity lfaminc cigprice _cons	0047261 .0181491 0526374 .000777 .1374075	.0158539 .0088802 .0086991 .0007763 .1040005	-0.298 2.044 -6.051 1.001 1.321	0.766 0.041 0.000 0.317 0.187	0358264 .0007291 0697023 0007459 0666084	.0263742 .0355692 0355724 .0022999 .3414234

The reduced form estimates show that cigprice does not significantly affect packs; in fact, the coefficient on cigprice is not the sign we expect. Thus, cigprice fails as an IV for packs because cigprice is not partially correlated with packs (with a sensible sign for the correlation). This is separate from the problem that cigprice may not truly be exogenous in the birth weight equation.

5.5. Under the null hypothesis that q and \mathbf{z}_2 are uncorrelated, \mathbf{z}_1 and \mathbf{z}_2 are exogenous in (5.55) because each is uncorrelated with u_1 . Unfortunately, y_2

is correlated with u_1 , and so the regression of y_1 on \mathbf{z}_1 , y_2 , \mathbf{z}_2 does not produce a consistent estimator of $\mathbf{0}$ on \mathbf{z}_2 even when $\mathrm{E}(\mathbf{z}_2'q)=\mathbf{0}$. We could find that $\hat{\boldsymbol{\psi}}_1$ from this regression is statistically different from zero even when q and \mathbf{z}_2 are uncorrelated — in which case we would incorrectly conclude that \mathbf{z}_2 is not a valid IV candidate. Or, we might fail to reject $\mathrm{H}_0\colon \boldsymbol{\psi}_1=\mathbf{0}$ when \mathbf{z}_2 and q are correlated — in which case we incorrectly conclude that the elements in \mathbf{z}_2 are valid as instruments.

The point of this exercise is that one cannot simply add instrumental variable candidates in the structural equation and then test for significance of these variables using OLS. This is the sense in which identification cannot be tested. With a single endogenous variable, we must take a stand that at least one element of \mathbf{z}_2 is uncorrelated with q.

5.7. a. If we plug
$$q=(1/\delta_1)\,q_1-(1/\delta_1)\,a_1$$
 into equation (5.45) we get
$$y=\beta_0\,+\,\beta_1x_1\,+\,\ldots\,+\,\beta_Kx_K\,+\,\eta_1q_1\,+\,v\,-\,\eta_1a_1, \eqno(5.56)$$

where $\eta_1 \equiv (1/\delta_1)$. Now, since the $z_{\rm h}$ are redundant in (5.45), they are uncorrelated with the structural error, v (by definition of redundancy). Further, we have assumed that the $z_{\rm h}$ are uncorrelated with a_1 . Since each $x_{\rm j}$ is also uncorrelated with $v - \eta_1 a_1$, we can estimate (5.56) by 2SLS using instruments $(1, x_1, \ldots, x_{\rm K}, z_1, z_2, \ldots, z_{\rm M})$ to get consistent of the $\beta_{\rm j}$ and η_1 .

Given all of the zero correlation assumptions, what we need for identification is that at least one of the $z_{\rm h}$ appears in the reduced form for $q_{\rm l}$. More formally, in the linear projection

$$q_1 = \pmb{\pi}_0 + \pmb{\pi}_1 x_1 + \ldots + \pmb{\pi}_K x_K + \pmb{\pi}_{K+1} z_1 + \ldots + \pmb{\pi}_{K+M} z_M + r_1,$$
 at least one of $\pmb{\pi}_{K+1}$, ..., $\pmb{\pi}_{K+M}$ must be different from zero.

b. We need family background variables to be redundant in the log(wage)

equation once ability (and other factors, such as educ and exper), have been controlled for. The idea here is that family background may influence ability but should have no partial effect on log(wage) once ability has been accounted for. For the rank condition to hold, we need family background variables to be correlated with the indicator, q_1 , say IQ, once the x_1 have been netted out. This is likely to be true if we think that family background and ability are (partially) correlated.

- c. Applying the procedure to the data set in NLS80.RAW gives the following results:
- . reg lwage exper tenure educ married south urban black iq (exper tenure educ married south urban black meduc feduc sibs)

Instrumental variables (2SLS) regression

Source	SS 	df	MS 		Number of obs F(8, 713)	
Model Residual	19.6029198 107.208996		036497 363248		Prob > F R-squared Adj R-squared	= 0.0000 = 0.1546
Total	126.811916	721 .175	883378		Root MSE	= .38777
lwage	Coef.	Std. Err.	 t 	P> t	[95% Conf.	Interval]
iq tenure educ married south urban black exper	.0154368 .0076754 .0161809 .1901012 047992 .1869376 .0400269 .0162185	.0077077 .0030956 .0261982 .0467592 .0367425 .0327986 .1138678	2.00 2.48 0.62 4.07 -1.31 5.70 0.35 4.05	0.046 0.013 0.537 0.000 0.192 0.000 0.725 0.000	.0003044 .0015979 035254 .0982991 1201284 .1225442 1835294 .0083503	.0305692 .0137529 .0676158 .2819033 .0241444 .2513311 .2635832
_cons	4.471616	.468913	9.54	0.000	3.551	5.392231

. reg lwage exper tenure educ married south urban black kww (exper tenure educ married south urban black meduc feduc sibs)

Instrumental variables (2SLS) regression

Source | SS df MS Number of obs = 722-----F(8, 713) = 25.70

Model Residual Total	19.82030 106.99161: +	2 713 . 1	2.477538 50058361 75883378		Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.1563 = 0.1468 = .38737
lwage		Std. Err	. t	P> t	[95% Conf.	Interval]
kww tenure educ married south urban black exper	.0249441 .0051145 .0260808 .1605273 091887 .1484003 0424452 .0068682	.0150576 .0037739 .0255051 .0529759 .0322147 .0411598 .0893695	1.36 1.02 3.03 -2.85 3.61	0.176 0.307 0.003 0.004 0.000 0.635	0046184 0022947 0239933 .0565198 1551341 .0675914 2179041 0063783	.0545067 .0125238 .0761549 .2645347 0286399 .2292093 .1330137 .0201147
_cons	5.217818	.1627592	32.06	0.000	4.898273	5.537362

Even though there are 935 men in the sample, only 722 are used for the estimation, because data are missing on meduc and feduc. What we could do is define binary indicators for whether the corresponding variable is missing, set the missing values to zero, and then use the binary indicators as instruments along with meduc, feduc, and sibs. This would allow us to use all 935 observations.

The return to education is estimated to be small and insignificant whether IQ or KWW used is used as the indicator. This could be because family background variables do not satisfy the appropriate redundancy condition, or they might be correlated with a_1 . (In both first-stage regressions, the F statistic for joint significance of meduc, feduc, and sibs have p-values below .002, so it seems the family background variables are sufficiently partially correlated with the ability indicators.)

5.9. Define $\theta_4=\beta_4-\beta_3$, so that $\beta_4=\beta_3+\theta_4$. Plugging this expression into the equation and rearranging gives

 $\log(wage) = \beta_0 + \beta_1 exper + \beta_2 exper^2 + \beta_3 (twoyr + fouryr) + \theta_4 fouryr + u$ $= \beta_0 + \beta_1 exper + \beta_2 exper^2 + \beta_3 totcoll + \theta_4 fouryr + u,$ where totcoll = twoyr + fouryr. Now, just estimate the latter equation by 2SLS using exper, $exper^2$, dist2yr and dist4yr as the full set of instruments. We can use the t statistic on $\hat{\theta}_4$ to test $H_0 \colon \theta_4 = 0$ against $H_1 \colon \theta_4 > 0$.

5.11. Following the hint, let y_2^0 be the linear projection of y_2 on \mathbf{z}_2 , let a_2 be the projection error, and assume that λ_2 is known. (The results on generated regressors in Section 6.1.1 show that the argument carries over to the case when λ_2 is estimated.) Plugging in $y_2 = y_2^0 + a_2$ gives

$$y_1 = \mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2^0 + \alpha_1 a_2 + u_1.$$

Effectively, we regress y_1 on \mathbf{z}_1 , y_2^0 . The key consistency condition is that each explanatory is orthogonal to the composite error, $\alpha_1 a_2 + u_1$. By assumption, $\mathrm{E}(\mathbf{z}'u_1) = \mathbf{0}$. Further, $\mathrm{E}(y_2^0 a_2) = 0$ by construction. The problem is that $\mathrm{E}(\mathbf{z}'_1 a_2) \neq \mathbf{0}$ necessarily because \mathbf{z}_1 was not included in the linear projection for y_2 . Therefore, OLS will be inconsistent for all parameters in general. Contrast this with 2SLS when y_2^* is the projection on \mathbf{z}_1 and \mathbf{z}_2 : $y_2 = y_2^* + r_2 = \mathbf{z} \mathbf{\pi}_2 + r_2$, where $\mathrm{E}(\mathbf{z}' r_2) = \mathbf{0}$. The second step regression (assuming that $\mathbf{\pi}_2$ is known) is essentially

$$y_1 = \mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2^* + \alpha_1 r_2 + u_1.$$

Now, r_2 is uncorrelated with \mathbf{z} , and so $\mathrm{E}(\mathbf{z}_1'r_2)=\mathbf{0}$ and $\mathrm{E}(y_2'r_2)=0$. The lesson is that one must be very careful if manually carrying out 2SLS by explicitly doing the first- and second-stage regressions.

5.13. a. In a simple regression model with a single IV, the IV estimate of the slope can be written as $\hat{\beta}_1 = \left(\sum_{i=1}^N (z_i - \mathbf{z})(y_i - \mathbf{y})\right) / \left(\sum_{i=1}^N (z_i - \mathbf{z})(x_i - \mathbf{z})\right) = 0$

 $\left(\sum_{i=1}^{N} z_i \left(y_i - \cancel{y}\right)\right) / \left(\sum_{i=1}^{N} z_i \left(x_i - \cancel{x}\right)\right). \text{ Now the numerator can be written as } \sum_{i=1}^{N} z_i \left(y_i - \cancel{y}\right) = \sum_{i=1}^{N} z_i y_i - \left(\sum_{i=1}^{N} z_i\right) \cancel{y} = N_1 \overrightarrow{y_1} - N_1 \overrightarrow{y} = N_1 \left(\overrightarrow{y_1} - \overrightarrow{y}\right).$ where $N_1 = \sum_{i=1}^{N} z_i$ is the number of observations in the sample with $z_i = 1$ and $\overrightarrow{y_1}$ is the average of the y_i over the observations with $z_i = 1$. Next, write \overrightarrow{y} as a weighted average: $\overrightarrow{y} = (N_0/N) \overrightarrow{y_0} + (N_1/N) \overrightarrow{y_1}$, where the notation should be clear. Straightforward algebra shows that $\overrightarrow{y_1} - \overrightarrow{y} = [(N - N_1)/N] \overrightarrow{y_1} - (N_0/N) \overrightarrow{y_0} = (N_0/N) \left(\overrightarrow{y_1} - \overrightarrow{y_0}\right).$ So the numerator of the IV estimate is $(N_0N_1/N) \left(\overrightarrow{y_1} - \overrightarrow{y_0}\right).$ Taking the ratio proves the result.

b. If x is also binary -- representing some "treatment" -- \overline{x}_1 is the fraction of observations receiving treatment when $z_i = 1$ and \overline{x}_0 is the fraction receiving treatment when $z_i = 0$. So, suppose $x_i = 1$ if person i participates in a job training program, and let $z_i = 1$ if person i is eligible for participation in the program. Then \overline{x}_1 is the fraction of people participating in the program out of those made eligibile, and \overline{x}_0 is the fraction of people participating who are not eligible. (When eligibility is necessary for participation, $\overline{x}_0 = 0$.) Generally, $\overline{x}_1 - \overline{x}_0$ is the difference in participation rates when z = 1 and z = 0. So the difference in the mean response between the z = 1 and z = 0 groups gets divided by the difference in participation rates across the two groups.

5.15. In $L(\mathbf{x}|\mathbf{z}) = \mathbf{z}\mathbf{\Pi}$, we can write $\mathbf{\Pi} = \begin{pmatrix} \mathbf{\Pi}_{11} & \mathbf{0} \\ \mathbf{\Pi}_{12} & \mathbf{I}_{K_2} \end{pmatrix}$, where \mathbf{I}_{K_2} is the $K_2 \times K_2$ identity matrix, $\mathbf{0}$ is the $L_1 \times K_2$ zero matrix, $\mathbf{\Pi}_{11}$ is $L_1 \times K_1$, and $\mathbf{\Pi}_{12}$ is $K_2 \times K_1$. As in Problem 5.12, the rank condition holds if and only if rank $(\mathbf{\Pi}) = K$.

a. If for some x_i , the vector \mathbf{z}_1 does not appear in $L(x_i|\mathbf{z})$, then $\mathbf{\Pi}_{11}$ has

a column which is entirely zeros. But then that column of Π can be written as a linear combination of the last K_2 elements of Π , which means rank(Π) < K. Therefore, a necessary condition for the rank condition is that no columns of Π_{11} be exactly zero, which means that at least one z_h must appear in the reduced form of each x_j , $j=1,\ldots,K_1$.

b. Suppose $K_1=2$ and $L_1=2$, where z_1 appears in the reduced form form both x_1 and x_2 , but z_2 appears in neither reduced form. Then the 2 x 2 matrix Π_{11} has zeros in its second row, which means that the second row of Π is all zeros. It cannot have rank K, in that case. Intuitively, while we began with two instruments, only one of them turned out to be partially correlated with x_1 and x_2 .

c. Without loss of generality, we assume that z_j appears in the reduced form for x_j ; we can simply reorder the elements of \mathbf{z}_1 to ensure this is the case. Then $\mathbf{\Pi}_{11}$ is a K_1 x K_1 diagonal matrix with nonzero diagonal elements. Looking at $\mathbf{\Pi} = \begin{pmatrix} \mathbf{\Pi}_{11} & \mathbf{0} \\ \mathbf{\Pi}_{12} & \mathbf{I}_{K_2} \end{pmatrix}$, we see that if $\mathbf{\Pi}_{11}$ is diagonal with all nonzero diagonals then $\mathbf{\Pi}$ is lower triangular with all nonzero diagonal elements. Therefore, rank $\mathbf{\Pi} = K$.

CHAPTER 6

6.1. a. Here is abbreviated Stata output for testing the null hypothesis that educ is exogenous:

- . qui reg educ nearc4 nearc2 exper expersq black south smsa reg661-reg668 smsa66 $\,$
- . predict v2hat, resid

. reg lwage educ exper expersq black south smsa reg661-reg668 smsa66 v2hat

lwage		Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
educ		.1570594	.0482814	3.253	0.001	.0623912	.2517275
exper		.1188149	.0209423	5.673	0.000	.0777521	.1598776
expersq		0023565	.0003191	-7.384	0.000	0029822	0017308
black		1232778	.0478882	-2.574	0.010	2171749	0293807
south		1431945	.0261202	-5.482	0.000	1944098	0919791
smsa		.100753	.0289435	3.481	0.000	.0440018	.1575042
reg661		102976	.0398738	-2.583	0.010	1811588	0247932
reg662		0002286	.0310325	-0.007	0.994	0610759	.0606186
reg663		.0469556	.0299809	1.566	0.117	0118296	.1057408
reg664		0554084	.0359807	-1.540	0.124	1259578	.0151411
reg665		.0515041	.0436804	1.179	0.238	0341426	.1371509
reg666		.0699968	.0489487	1.430	0.153	0259797	.1659733
reg667		.0390596	.0456842	0.855	0.393	050516	.1286352
reg668	Ì	1980371	.0482417	-4.105	0.000	2926273	1034468
smsa66	Ì	.0150626	.0205106	0.734	0.463	0251538	.0552789
v2hat	İ	0828005	.0484086	-1.710	0.087	177718	.0121169
_cons		3.339687	.821434	4.066	0.000	1.729054	4.950319

The t statistic on v_2 is -1.71, which is not significant at the 5% level against a two-sided alternative. The negative correlation between u_1 and educ is essentially the same finding that the 2SLS estimated return to education is larger than the OLS estimate. In any case, I would call this marginal evidence that educ is endogenous. (Depending on the application or purpose of a study, the same researcher may take t=-1.71 as evidence for or against endogeneity.)

- b. To test the single overidentifying restiction we obtain the 2SLS residuals:
- . qui reg lwage educ exper expersq black south smsa reg661-reg668 smsa66 (nearc4 nearc2 exper expersq black south smsa reg661-reg668 smsa66)
- . predict uhat1, resid

Now, we regress the 2SLS residuals on all exogenous variables:

The test statistic is the sample size times the R-squared from this regression:

- . di 3010*.0004
- 1.204
- . di chiprob(1,1.2)
- .27332168

The p-value, obtained from a χ_1^2 distribution, is about .273, so the instruments pass the overidentification test.

- 6.3. a. We need prices to satisfy two requirements. First, calories and protein must be partially correlated with prices of food. While this is easy to test for each by estimating the two reduced forms, the rank condition could still be violated (although see Problem 15.5c). In addition, we must also assume prices are exogenous in the productivity equation. Ideally, prices vary because of things like transportation costs that are not systematically related to regional variations in individual productivity. A potential problem is that prices reflect food quality and that features of the food other than calories and protein appear in the disturbance u_1 .
- b. Since there are two endogenous explanatory variables we need at least two prices.
- c. We would first estimate the two reduced forms for calories and protein by regressing each on a constant, exper, exper², educ, and the M prices, p_1 , ..., $p_{\rm M}$. We obtain the residuals, \hat{v}_{21} and \hat{v}_{22} . Then we would run the regression $\log(produc)$ on 1, exper, exper², educ, \hat{v}_{21} , \hat{v}_{22} and do a joint

significance test on \hat{v}_{21} and \hat{v}_{22} . We could use a standard F test or use a heteroskedasticity-robust test.

6.5. a. For simplicity, absorb the intercept in \mathbf{x} , so $y = \mathbf{x}\boldsymbol{\beta} + u$, $\mathbb{E}(u|\mathbf{x}) = 0$, $\operatorname{Var}(u|\mathbf{x}) = \sigma^2$. In these tests, $\hat{\sigma}^2$ is implictly SSR/N — there is no degrees of freedom adjustment. (In any case, the df adjustment makes no difference asymptotically.) So $\hat{u}_i^2 - \hat{\sigma}^2$ has a zero sample average, which means that

 $N^{-1/2} \sum_{i=1}^{N} \left(\mathbf{h}_{i} - \boldsymbol{\mu}_{h} \right) ' \left(\hat{u}_{i}^{2} - \hat{\boldsymbol{\sigma}}^{2} \right) = N^{-1/2} \sum_{i=1}^{N} \mathbf{h}_{i}' \left(\hat{u}_{i}^{2} - \hat{\boldsymbol{\sigma}}^{2} \right).$ Next, $N^{-1/2} \sum_{i=1}^{N} \left(\mathbf{h}_{i} - \boldsymbol{\mu}_{h} \right) ' = O_{p}(1)$ by the central limit theorem and $\hat{\boldsymbol{\sigma}}^{2} - \boldsymbol{\sigma}^{2} = O_{p}(1)$. So $N^{-1/2} \sum_{i=1}^{N} \left(\mathbf{h}_{i} - \boldsymbol{\mu}_{h} \right) ' \left(\hat{\boldsymbol{\sigma}}^{2} - \boldsymbol{\sigma}^{2} \right) = O_{p}(1) \cdot O_{p}(1) = O_{p}(1)$. Therefore, so

 $N^{-1/2} \sum_{i=1}^{N} \mathbf{h}_{i}' (\hat{u}_{i}^{2} - \hat{\boldsymbol{\sigma}}^{2}) = N^{-1/2} \sum_{i=1}^{N} (\mathbf{h}_{i} - \boldsymbol{\mu}_{h})' (\hat{u}_{i}^{2} - \boldsymbol{\sigma}^{2}) + o_{p}(1).$ We are done with this part if we show $N^{-1/2} \sum_{i=1}^{N} (\mathbf{h}_{i} - \boldsymbol{\mu}_{h})' \hat{u}_{i}^{2} = N^{-1/2} \sum_{i=1}^{N} (\mathbf{h}_{i}$

$$N^{-1/2} \sum_{i=1}^{N} (\mathbf{h}_{i} - \boldsymbol{\mu}_{h})' \hat{u}_{i}^{2} = N^{-1/2} \sum_{i=1}^{N} (\mathbf{h}_{i} - \boldsymbol{\mu}_{h})' u_{i}^{2}$$

$$- 2 \left(N^{-1/2} \sum_{i=1}^{N} u_{i} (\mathbf{h}_{i} - \boldsymbol{\mu}_{h})' \mathbf{x}_{i} \right) (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})$$

$$+ \left(N^{-1/2} \sum_{i=1}^{N} (\mathbf{h}_{i} - \boldsymbol{\mu}_{h})' (\mathbf{x}_{i} \otimes \mathbf{x}_{i}) \right) \{ \text{vec} [(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'] \},$$
(6.40)

where the expression for the third term follows from $[\mathbf{x}_{i}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})]^{2}=\mathbf{x}_{i}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})']$. Dropping the "-2" the second term can be written as $\left(N^{-1}\sum\limits_{i=1}^{N}u_{i}(\mathbf{h}_{i}-\boldsymbol{\mu}_{h})'\mathbf{x}_{i}\right)\sqrt{N}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})=o_{p}(1)\cdot O_{p}(1)$ because $\sqrt{N}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})=o_{p}(1)$ and, under $\mathbf{E}(u_{i}|\mathbf{x}_{i})=0$, $\mathbf{E}[u_{i}(\mathbf{h}_{i}-\boldsymbol{\mu}_{h})'\mathbf{x}_{i}]=0$; the law of large numbers implies that the sample average is $o_{p}(1)$. The third term can be written as $N^{-1/2}\left(N^{-1}\sum\limits_{i=1}^{N}(\mathbf{h}_{i}-\boldsymbol{\mu}_{h})'(\mathbf{x}_{i}\otimes\mathbf{x}_{i})\right)\{\mathrm{vec}[\sqrt{N}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})\sqrt{N}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})']\}=N^{-1/2}\cdot O_{p}(1)\cdot O_{p}(1)$, where we again use the fact that sample averages are $O_{p}(1)$ by the law of large numbers and $\mathrm{vec}[\sqrt{N}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})\sqrt{N}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})']=O_{p}(1)$. We have shown that the last two

terms in (6.40) are $o_p(1)$, which proves part (a).

b. By part (a), the asymptotic variance of $N^{-1/2}$ $\sum_{i=1}^{N} \mathbf{h}_{i}' (\hat{u}_{i}^{2} - \hat{\sigma}^{2})$ is Var[(\mathbf{h}_{i} $-\mu_{\rm h}$)' $(u_{\rm i}^2 - \sigma^2)$] = E[$(u_{\rm i}^2 - \sigma^2)^2(\mathbf{h}_{\rm i} - \mu_{\rm h})$ ' $(\mathbf{h}_{\rm i} - \mu_{\rm h})$]. Now $(u_{\rm i}^2 - \sigma^2)^2 = u_{\rm i}^4$ $2u_{\mathrm{i}}^{2}\sigma^{2}+\sigma^{4}$. Under the null, $\mathrm{E}(u_{\mathrm{i}}^{2}|\mathbf{x}_{\mathrm{i}})=\mathrm{Var}(u_{\mathrm{i}}|\mathbf{x}_{\mathrm{i}})=\sigma^{2}$ [since $\mathrm{E}(u_{\mathrm{i}}|\mathbf{x}_{\mathrm{i}})=0$ is assumed] and therefore, when we add (6.27), $\mathrm{E}[(u_{\mathrm{i}}^2 - \sigma^2)^2 | \mathbf{x}_{\mathrm{i}}] = \kappa^2 - \sigma^4 \equiv \eta^2$. A standard iterated expectations argument gives E[($u_{\rm i}^2$ - σ^2) 2 (${\bf h}_{\rm i}$ - ${m \mu}_{\rm h}$) $^\prime$ (${\bf h}_{\rm i}$ - ${m \mu}_{\rm h}$) $^\prime$ $= \mathbb{E}\{\mathbb{E}[(u_{i}^{2} - \sigma^{2})^{2}(\mathbf{h}_{i} - \boldsymbol{\mu}_{h})'(\mathbf{h}_{i} - \boldsymbol{\mu}_{h})]|\mathbf{x}_{i}\} = \mathbb{E}\{\mathbb{E}[(u_{i}^{2} - \sigma^{2})^{2}|\mathbf{x}_{i}](\mathbf{h}_{i} - \boldsymbol{\mu}_{h})'(\mathbf{h}_{i} - \boldsymbol{\mu}_{h})\}$ μ_h)} [since $\mathbf{h}_i = \mathbf{h}(\mathbf{x}_i)$] = $\eta^2 \mathbb{E}[(\mathbf{h}_i - \mu_h)'(\mathbf{h}_i - \mu_h)]$. This is what we wanted to show. (Whether we do the argument for a random draw i or for random variables representing the population is a matter of taste.)

c. From part (b) and Lemma 3.8, the following statistic has an asymptotic

 $\left[N^{-1/2} \sum_{i=1}^{N} (\hat{u}_{i}^{2} - \hat{\sigma}^{2}) \mathbf{h}_{i} \right] \left\{ \eta^{2} \mathbb{E} \left[(\mathbf{h}_{i} - \boldsymbol{\mu}_{h})' (\mathbf{h}_{i} - \boldsymbol{\mu}_{h}) \right] \right\}^{-1} \left[N^{-1/2} \sum_{i=1}^{N} \mathbf{h}_{i}' (\hat{u}_{i}^{2} - \hat{\sigma}^{2}) \right].$ Using again the fact that $\sum_{i=1}^{N} (\hat{u}_i^2 - \hat{\sigma}^2) = 0$, we can replace \mathbf{h}_i with $\mathbf{h}_i - \overline{\mathbf{h}}$ in the two vectors forming the quadratic form. Then, again by Lemma 3.8, we can replace the matrix in the quadratic form with a consistent estimator, which is

$$\hat{\eta}^2 \left(N^{-1} \sum_{i=1}^{N} (\mathbf{h}_i - \overline{\mathbf{h}})' (\mathbf{h}_i - \overline{\mathbf{h}}) \right)$$

 $\hat{\boldsymbol{\eta}}^2 \bigg[N^{-1} \sum_{i=1}^N \left(\mathbf{h}_i - \overline{\mathbf{h}} \right)' \left(\mathbf{h}_i - \overline{\mathbf{h}} \right) \bigg],$ where $\hat{\boldsymbol{\eta}}^2 = N^{-1} \sum_{i=1}^N \left(\hat{u}_i^2 - \hat{\boldsymbol{\sigma}}^2 \right)^2$. The computable statistic, after simple algebra, can be written as

$$\left(\sum_{\mathtt{i}=1}^{\mathtt{N}} (\hat{u}_{\mathtt{i}}^2 - \hat{\sigma}^2) (\mathbf{h}_{\mathtt{i}} - \overline{\mathbf{h}}) \right) \left(\sum_{\mathtt{i}=1}^{\mathtt{N}} (\mathbf{h}_{\mathtt{i}} - \overline{\mathbf{h}})' (\mathbf{h}_{\mathtt{i}} - \overline{\mathbf{h}}) \right)^{-1} \left(\sum_{\mathtt{i}=1}^{\mathtt{N}} (\mathbf{h}_{\mathtt{i}} - \overline{\mathbf{h}})' (\hat{u}_{\mathtt{i}}^2 - \hat{\sigma}^2) \right) / \hat{\eta}^2.$$
 Now $\hat{\eta}^2$ is just the total sum of squares in the $\hat{u}_{\mathtt{i}}^2$, divided by N. The numerator

of the statistic is simply the explained sum of squares from the regression \hat{v}_{i}^2 on 1, \mathbf{h}_{i} , i = 1,...,N. Therefore, the test statistic is N times the usual (centered) R-squared from the regression \hat{u}_{i}^{2} on 1, \mathbf{h}_{i} , i = 1,...,N, or NR_{c}^{2} .

d. Without assumption (6.37) we need to estimate E[($u_{\rm i}^2$ - σ^2) 2 (${\bf h}_{\rm i}$ - ${m \mu}_{\rm h}$)'(${\bf h}_{\rm i}$ - $\mu_{
m h}$)] generally. Hopefully, the approach is by now pretty clear. We replace the population expected value with the sample average and replace any unknown parameters -- $\boldsymbol{\beta}$, σ^2 , and $\boldsymbol{\mu}_h$ in this case -- with their consistent estimators (under \mathbf{H}_0). So a generally consistent estimator of $\operatorname{Avar}\left(N^{-1/2}\sum_{i=1}^{N}\mathbf{h}_i'\,(\hat{u}_i^2-\hat{\boldsymbol{\sigma}}^2)\right)$ is

$$N^{-1} \sum_{i=1}^{N} (\hat{u}_i^2 - \hat{\sigma}^2)^2 (\mathbf{h}_i - \overline{\mathbf{h}})' (\mathbf{h}_i - \overline{\mathbf{h}}),$$

and the test statistic robust to heterokurtosis can be written as

$$\begin{pmatrix}
\sum_{i=1}^{N} (\hat{u}_{i}^{2} - \hat{\boldsymbol{\sigma}}^{2}) (\mathbf{h}_{i} - \overline{\mathbf{h}}) \end{pmatrix} \begin{pmatrix}
\sum_{i=1}^{N} (\hat{u}_{i}^{2} - \hat{\boldsymbol{\sigma}}^{2})^{2} (\mathbf{h}_{i} - \overline{\mathbf{h}})' (\mathbf{h}_{i} - \overline{\mathbf{h}}) \end{pmatrix}^{-1} \cdot \begin{pmatrix}
\sum_{i=1}^{N} (\mathbf{h}_{i} - \overline{\mathbf{h}})' (\hat{u}_{i}^{2} - \hat{\boldsymbol{\sigma}}^{2}) \end{pmatrix},$$

which is easily seen to be the explained sum of squares from the regression of 1 on $(\hat{u}_{i}^{2} - \hat{\sigma}^{2})(\mathbf{h}_{i} - \overline{\mathbf{h}})$, $i = 1, \ldots, N$ (without an intercept). Since the total sum of squares, without demeaning, is $N = (1 + 1 + \ldots + 1)$ (N times), the statistic is equivalent to N - SSR_{0} , where SSR_{0} is the sum of squared residuals.

6.7. a. The simple regression results are

. reg lprice ldist if y81

Source	SS	aī	MS		Number of obs		142
Model Residual		1 3.86	426989		F(1, 140) Prob > F R-squared	= = =	30.79 0.0000 0.1803
+ Total	21.4373543				Adj R-squared Root MSE		0.1744
lprice	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]
ldist _cons	.3648752	.0657613	5.548 12.452	0.000	.2348615 6.769503		4948889

This regression suggests a strong link between housing price and distance from the incinerator (as distance increases, so does housing price). The elasticity

is .365 and the t statistic is 5.55. However, this is not a good causal regression: the incinerator may have been put near homes with lower values to begin with. If so, we would expect the positive relationship found in the simple regression even if the new incinerator had no effect on housing prices.

b. The parameter $\pmb{\delta}_3$ should be positive: after the incinerator is built a house should be worth more the farther it is from the incinerator. Here is my Stata session:

- . gen y81ldist = y81*ldist
- . reg lprice y81 ldist y81ldist

Source		SS	df		MS					of obs 317)		321 69.22
Model Residual		4.3172548 7.1217306	_)575159 7103251			Pi R-	rob > -squa	,	=	0.0000 0.3958 0.3901
Total	6	1.4389853	320	.191	996829				oot MS	-	=	
lprice	•	Coef.			t		P> t		²	~ % Conf.	 In	 terval]
y81 ldist y81ldist _cons	- 	.0113101	.8050 .0515 .0817 .5084	0622 5323 7929	-0.0 6.1 0.5 15.8)14 145 589	0.989 0.000 0.556 0.000		.215	59525 53006 27394 58133	•	1.57263 4180775 2091117 .058803

The coefficient on *ldist* reveals the shortcoming of the regression in part (a). This coefficient measures the relationship between *lprice* and *ldist* in 1978, before the incinerator was even being rumored. The effect of the incinerator is given by the coefficient on the interaction, *y81ldist*. While the direction of the effect is as expected, it is not especially large, and it is statistically insignificant anyway. Therefore, at this point, we cannot reject the null hypothesis that building the incinerator had no effect on housing prices.

c. Adding the variables listed in the problem gives

. reg lprice y81 ldist y81ldist lintst lintst
sq larea lland age agesq rooms baths $\,$

Source + Model Residual	SS 48.7611143 12.677871	df 			Number of obs F(11, 309) Prob > F R-squared	= 108.04 = 0.0000
+ Total		320 .1919			Adj R-squared Root MSE	0.7863
lprice	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
y81	229847	.4877198	-0.471	0.638	-1.189519	.7298249
ldist	.0866424	.0517205	1.675	0.095	0151265	.1884113
y81ldist	.0617759	.0495705	1.246	0.214	0357625	.1593143
lintst	.9633332	.3262647	2.953	0.003	.3213518	1.605315
lintstsq	0591504	.0187723	-3.151	0.002	096088	0222128
larea	.3548562	.0512328	6.926	0.000	.2540468	.4556655
lland	.109999	.0248165	4.432	0.000	.0611683	.1588297
age	0073939	.0014108	-5.241	0.000	0101699	0046178
agesq	.0000315	8.69e-06	3.627	0.000	.0000144	.0000486
rooms	.0469214	.0171015	2.744	0.006	.0132713	.0805715
baths	.0958867	.027479	3.489	0.000	.041817	.1499564
_cons	2.305525	1.774032	1.300	0.195	-1.185185	5.796236

The incinerator effect is now larger (the elasticity is about .062) and the t statistic is larger, but the interaction is still statistically insignificant. Using these models and this two years of data we must conclude the evidence that housing prices were adversely affected by the new incinerator is somewhat weak.

6.9. a. The Stata results are

. reg ldurat afchnge highearn afhigh male married head-construc if ky

	Source	SS	df	MS	Number of obs	=	5349
_	+-				F(14, 5334)	=	16.37
	Model	358.441793	14	25.6029852	Prob > F	=	0.0000
	Residual	8341.41206	5334	1.56381928	R-squared	=	0.0412
_	+-				Adj R-squared	=	0.0387

Total I	0600 05205	E 2 / 0	1.62674904	Doot MCE	= 1.2505
IOLAI I	8699.83383	3348	1.020/4904	Root MSE	= 1.2505

ldurat	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
afchnge	.0106274	.0449167	0.24	0.813	0774276	.0986824
highearn	.1757598	.0517462	3.40	0.013	.0743161	.2772035
_						
afhigh	.2308768	.0695248	3.32	0.001	.0945798	.3671738
male	0979407	.0445498	-2.20	0.028	1852766	0106049
married	.1220995	.0391228	3.12	0.002	.0454027	.1987962
head	5139003	.1292776	-3.98	0.000	7673372	2604634
neck	.2699126	.1614899	1.67	0.095	0466737	.5864988
upextr	178539	.1011794	-1.76	0.078	376892	.0198141
trunk	.1264514	.1090163	1.16	0.246	0872651	.340168
lowback	0085967	.1015267	-0.08	0.933	2076305	.1904371
lowextr	1202911	.1023262	-1.18	0.240	3208922	.0803101
occdis	.2727118	.210769	1.29	0.196	1404816	.6859052
manuf	1606709	.0409038	-3.93	0.000	2408591	0804827
construc	.1101967	.0518063	2.13	0.033	.0086352	.2117581
_cons	1.245922	.1061677	11.74	0.000	1.03779	1.454054

The estimated coefficient on the interaction term is actually higher now, and even more statistically significant than in equation (6.33). Adding the other explanatory variables only slightly increased the standard error on the interaction term.

b. The small R-squared, on the order of 4.1%, or 3.9% if we used the adjusted R-squared, means that we cannot explain much of the variation in time on workers compensation using the variables included in the regression. This is often the case in the social sciences: it is very difficult to include the multitude of factors that can affect something like durat. The low R-squared means that making predictions of log(durat) would be very difficult given the factors we have included in the regression: the variation in the unobservables pretty much swamps the explained variation. However, the low R-squared does not mean we have a biased or consistent estimator of the effect of the policy change. Provided the Kentucky change is a good natural experiment, the OLS estimator is consistent. With over 5,000 observations, we

can get a reasonably precise estimate of the effect, although the 95% confidence interval is pretty wide.

c. Using the data for Michigan to estimate the simple model gives

. reg ldurat afchnge highearn afhigh if mi

Source	SS	df	MS		Number of obs F(3, 1520)	
Model Residual	34.3850177 2879.96981	-	1616726 9471698		Prob > F R-squared Adj R-squared	= 0.0004 = 0.0118
Total	2914.35483	1523 1.91	356194		Root MSE	= 1.3765
ldurat	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
afchnge highearn afhigh	.0973808 .1691388 .1919906	.0847879 .1055676	1.15 1.60 1.25	0.251 0.109 0.213	0689329 0379348 1104176	.2636945 .3762124 .4943988

The coefficient on the interaction term, .192, is remarkably similar to that for Kentucky. Unfortunately, because of the many fewer observations, the t statistic is insignificant at the 10% level against a one-sided alternative. Asymptotic theory predicts that the standard error for Michigan will be about $(5,626/1,524)^{1/2}\approx 1.92$ larger than that for Kentucky. In fact, the ratio of standard errors is about 2.23. The difference in the KY and MI cases shows the importance of a large sample size for this kind of policy analysis.

- 6.11. The following is Stata output that I will use to answer the first three parts:
- . reg lwage y85 educ y85educ exper expersq union female y85fem

Source	SS	df	MS	Number of obs =	1084
+-				F(8, 1075) =	99.80
Model	135.992074	8	16.9990092	Prob > F =	0.0000

Residual		183.099094	1075	.170324738	R-squared	=	0.4262
+	+				Adj R-squared	=	0.4219
Total		319.091167	1083	.29463635	Root MSE	=	.4127

lwage		Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
у85	İ	.1178062	.1237817	0.95	0.341	125075	.3606874
educ		.0747209	.0066764	11.19	0.000	.0616206	.0878212
y85educ		.0184605	.0093542	1.97	0.049	.000106	.036815
exper		.0295843	.0035673	8.29	0.000	.0225846	.036584
expersq		0003994	.0000775	-5.15	0.000	0005516	0002473
union		.2021319	.0302945	6.67	0.000	.1426888	.2615749
female		3167086	.0366215	-8.65	0.000	3885663	244851
y85fem		.085052	.051309	1.66	0.098	0156251	.185729
_cons		.4589329	.0934485	4.91	0.000	.2755707	.642295

- a. The return to another year of education increased by about .0185, or 1.85 percentage points, between 1978 and 1985. The t statistic is 1.97, which is marginally significant at the 5% level against a two-sided alternative.
- b. The coefficient on y85 fem is positive and shows that the estimated gender gap declined by about 8.5 percentage points. But the t statistic is only significant at about the 10% level against a two-sided alternative. Still, this is suggestive of some closing of wage differentials between men and women at given levels of education and workforce experience.
- c. Only the coefficient on y85 changes if wages are measured in 1978 dollars. In fact, you can check that when 1978 wages are used, the coefficient on y85 becomes about -.383, which shows a significant fall in real wages for given productivity characteristics and gender over the seven-year period. (But see part e for the proper interpretation of the coefficient.)
- d. To answer this question, I just took the squared OLS residuals and regressed those on the year dummy, y85. The coefficient is about .042 with a standard error of about .022, which gives a t statistic of about 1.91. So

there is some evidence that the variance of the unexplained part of log wages (or log real wages) has increased over time.

- e. As the equation is written in the problem, the coefficient δ_0 is the growth in nominal wages for a male with no years of education! For a male with 12 years of education, we want $\theta_0 \equiv \delta_0 + 12\delta_1$. A simple way to obtain the standard error of $\hat{\theta}_0 = \hat{\delta}_0 + 12\hat{\delta}_1$ is to replace $y85 \cdot educ$ with $y85 \cdot (educ 12)$. Simple algebra shows that, in the new model, θ_0 is the coefficient on educ. In Stata we have
- . gen y85 = duc0 = y85*(educ 12)
- . reg lwage y85 educ y85educ0 exper expersq union female y85fem

Source	SS	df		MS		Number of obs	=	1084
+						F(8, 1075)	=	99.80
Model	135.992074	8	16.9	990092		Prob > F	=	0.0000
Residual	183.099094	1075	.170	324738		R-squared	=	0.4262
+						Adj R-squared	=	0.4219
Total	319.091167	1083	.29	463635		Root MSE	=	.4127
lwage	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
+								
y85	.3393326	.0340	099	9.98	0.000	.2725993		4060659
educ	.0747209	.0066	764	11.19	0.000	.0616206		0878212
y85educ0	.0184605	.0093	542	1.97	0.049	.000106		.036815
exper	.0295843	.0035	673	8.29	0.000	.0225846		.036584
expersq	0003994	.0000	775	-5.15	0.000	0005516		0002473
union	.2021319	.0302	945	6.67	0.000	.1426888		2615749
female	3167086	.0366	215	-8.65	0.000	3885663	_	.244851
y85fem	.085052	.051	309	1.66	0.098	0156251		.185729
_cons	.4589329	.0934	485	4.91	0.000	.2755707		.642295

So the growth in nominal wages for a man with educ = 12 is about .339, or 33.9%. [We could use the more accurate estimate, obtained from exp(.339) -1.] The 95% confidence interval goes from about 27.3 to 40.6.