Московский физико-технический институт Физтех-школа прикладной математики и информатики

ОСНОВЫ КОМБИНАТОРИКИ И ТЕОРИИ ЧИСЕЛ (БИЛЕТЫ К ЭКЗАМЕНУ)

I CEMECTP

Лекторы: *Мусатов Даниил Владимирович Райгородский Андрей Михайлович*

Авторы: Николай Спицын Артемий Клячин Полина Подзорова Дмитрий Савичев Полина Чубенко

Даниил Дрябин Проект на Github

Содержание

7	Понятия образа и прообраза множества при соответствии. Критерий равенства образа пересечения и пересечения образов. Аналогичные критерии с объедине-	
	нием и разностью	2
11	Возведение множества в степень. Возведение множества в степень другого множества. Булеан. Свойства возведения множества в степень	3
14	Теорема Кантора для множеств	4
15	Континуальные множества. Доказательство того, что плоскость, пространство, \mathbb{R}^k и $\mathbb{R}^\mathbb{N}$ являются континуальными. Формулировка континуум-гипотезы.	4
16	Теорема Кантора-Бернштейна	5
17	Отношения на множествах. Свойства бинарных отношений. Отношения эквивалентности, теорема о классах эквивалентности	6
18	Отношения частичного и линейного порядка. Примеры отношений. Любое счётное упорядоченное множество можно доупорядочить линейно	9
19	Частично упорядоченные множества. Диаграмма Хассе. Изоморфизм. Описание попарно неизоморфных ч.у.м. для 3-х и 4-х элементов. Минимальные, максимальные, наибольшие и наименьшие элементы	11
20	Диаграмма Хассе. Определение цепи и антицепи. Теорема о длине наибольшей цепи в ч.у.м. (б/д). Доказательство теоремы на примерах задач о людоедах и числах.	12
23	Предпорядки: определение и примеры. Разбиение элементов множества с предпорядком на классы эквивалентности	14
24	Полный предпорядок. Равносильность полноты предпорядка и линейности индуцированного предпорядка.	14
25	Квазитранзитивные и ациклические отношения. Свойства и примеры	15
26	Правило сложения. Правило умножения. Примеры. Принцип Дирихле. Пример на принцип Дирихле.	16

27	Принцип Дирихле. Оценки мощности множества попарно неортогональных $(-1,0,1)$ -векторов: верхняя оценка величиной 140 и нижняя оценка величиной	
	70	16
28	Теорема о раскраске множества в два цвета	17
29	Размещения, перестановки и сочетания. Доказательство формул для чисел размещения и сочетания с повторениями и без повторений	17
30	Бином Ньютона. Полиномиальный коэффициент и полиномиальная формула	19
31	Комбинаторные тождества	20
32	Сумма степеней натуральных чисел. Знакопеременные тождества	21
40	Операция циклического сдвига на линейных последовательностях. Период линейной последовательности. Свойства периода. Общий вид последовательности периода d и длины n .	23
41	Операция циклического сдвига на линейных последовательностях. Период линейной последовательности. Свойства периода ($6/д$). Явная формула для числа циклических последовательностей для частных случаев ($n=3,4,5,6$)	23
42	Применение формулы обращения Мёбиуса для подсчета числа циклических последовательностей.	24
43	Функция Мёбиуса на ч.у.м. Совпадение функции Мёбиуса $\mu(1,n)$ на ч.у.м. $\langle N, \vdots \rangle$ и обычной функции Мёбиуса $\mu(n)$ на \mathbb{N} (для всех n). Общая формула обращения Мёбиуса для частично упорядоченных множеств (б/д)	25
44	Формула Мёбиуса на ч.у.м. Вывод формулы $\sum_{a \preceq z \preceq b} \mu(z,b) = \left\{ egin{array}{ll} 1, a = b \\ 0, a < b \end{array} \right. \dots \dots$	26
45	Формула Мёбиуса на ч.у.м. Обобщёная формула обращения Мёбиуса	26
46	Передоказательство формулы включений и исключений при помощи формулы обращения Мёбиуса на ч.у.м. Определение множества X, порядка ≤. Вычисление функции Мёбиуса на данном ч.у.м.	26
47	Передоказательство формулы включений и исключений при помощи формулы обращения Мёбиуса на ч.у.м. Формула для вычисления функции Мёбиуса на данном ч.у.м.(б/д). Вывод формулы включений и исключений	27

54	Формальные степенные ряды, операции над ними. Определение обратного ряда. Критерий обратимости ряда (задача 13.5). Примеры нахождения обратных рядов (задача 13.6).	27
55	Формальные степенные ряды, операции над ними. Определение обратного ряда. Пример деления в столбик. Комбинаторное тождество, получаемое с использованием формального степенного ряда $(\frac{1}{1-x^2})^2$	29
59	Числа Каталана (определение через пары скобочных последовательностей). Рекуррентное соотношение для чисел Каталана.	30
60	Числа Каталана. Производящая функция для чисел Каталана	31
61	Числа Каталана. Формула для коэффициентов ряда $\sqrt{1+x}$	31
62	Числа Каталана. Формула для коэффициентов ряда $\sqrt{1+x}$ (б/д). Вывод из неё формулы для чисел Каталана	31
66	Проблема Эрдеша–Гинзбурга–Зива (формулировка для $d=2$). Контрпример. История проблемы. Теорема Шевалле (формулировка)	32
67	Теорема Шевалле. Сведение к доказательству сравнения суммы	32
68	Теорема Шевалле (формулировка). Доказательство сравнения с суммой. Теорема Варнинга (формулировка)	33
69	Проблема Эрдеша—Гинзбурга—Зива при $d=2$ и $n=p$: нижняя и верхние оценки (формулировка). Теорема Варнинга (формулировка). Доказательство основной леммы.	33
70	Проблема Эрдеша–Гинзбурга–Зива при $d=2$ и $n=p$: нижняя и верхние оценки (формулировка). Основная лемма $(6/д)$, вывод из неё теоремы Роньяи	34

7 Понятия образа и прообраза множества при соответствии. Критерий равенства образа пересечения и пересечения образов. Аналогичные критерии с объединением и разностью.

Соответствие между множествами A и B - произвольное подмножество декартова произведения $F \subset A \times B$. Обозначение: $F : A \to B$; иногда, чтобы подчеркнуть, что одному элементу из A может соответствовать несколько элементов из B, пишут: $F : A \rightrightarrows B$.

Пусть $F:A\to B$ - соответствие, $S\subset A,\ T\subset B$. Тогда **образ** множества S - множество всех элементов B, соответствующих какому-то элементу S. Формально: $F(S)=\bigcup_{s\in S}F(s)\subset B$. **Прообраз** множества T - множество элементов A, которым соответсвует хотя бы один элемент T. Формально: $F^{-1}(T)=\{a:F(a)\cap T\neq\varnothing\}$

Образ пересечения любых двух множеств равняется пересечению образов тех же множеств \iff соответствие интективно.

▲ Пусть соответствие не инъективно. Тогда найдутся такие a_1 и a_2 , что $F(a_1)$ и $F(a_2)$ пересекаются. Тогда $F(\{a_1\} \cap \{a_1\}) = F(\varnothing) = \varnothing$, но $F(\{a_1\}) \cap F(\{a_2\}) = F(a_1) \cap F(a_2)$ не пуст по предположению. Значит, образ пересечения множеств $\{a_1\}$ и $\{a_2\}$ не равен пересечению образов.

Теперь пусть соответствие инъективно. Рассмотрим произвольные подмножества S и Q множества A. Докажем, что $F(S \cap Q) = F(S) \cap F(Q)$. Для этого докажем включение в обе стороны. Вначале пусть $y \in F(S \cap Q)$. Это значит, что $y \in F(x)$ для некоторого $x \in S \cap Q$. Тогда $x \in S$ и $x \in Q$. А раз $y \in F(x)$, то $y \in F(S)$ и $y \in F(Q)$. Значит, $y \in F(S) \cap F(Q)$. (Это включение верно для всех соответствий).

Теперь пусть $y \in F(S) \cap F(Q)$. Значит, $y \in F(x_1)$ для некоторого $x_1 \in S$ и $y \in F(x_2)$ для некоторого $x_2 \in Q$. Но при $x_1 \neq x_2$ в силу инъективности множества $F(x_1)$ и $F(x_2)$ не пересекаются. А их пересечение содержит хотя бы у. Значит, $x_1 = x_2 = x$, и $x \in S \cap Q$. А так как $y \in F(x)$, то получаем $y \in F(S \cap Q)$.

Образ объединения любых двух множеств равняется объединению образов тех же множеств - выполняется для любых соответствий.

```
▲ 1) A \subseteq A \cup B \Rightarrow F(A) \subseteq F(A \cup B) B \subseteq A \cup B \Rightarrow F(B) \subseteq F(A \cup B) B \subseteq A \cup B \Rightarrow F(B) \subseteq F(A \cup B) B \subseteq A \cup B \Rightarrow F(B) \subseteq F(A \cup B) B \subseteq A \cup B \Rightarrow F(B) \subseteq F(A \cup B) B \subseteq A \cup B \Rightarrow F(B) \Rightarrow F(A \cup B) \Rightarrow F(A \cup B) \Rightarrow F(A \cup B) \subseteq F(A) \Rightarrow F(A \cup B) \subseteq F(A) \cup F(B) Из пунктов 1 и 2 следует, что F(A \cup B) = F(A) \cup F(B) ■
```

Образ разности любых двух множеств равняется разности образов тех же множеств \iff соответствие инъективно.

Доказательство аналогично доказательству для пересечения.

11 Возведение множества в степень. Возведение множества в степень другого множества. Булеан. Свойства возведения множества в степень

Определение: Декартовой степенью A^n множества A называется множество кортежей длины n из элементов A.

Определение: Пусть A и B — два множества. Тогда множеством B^A называется множество всех отображений из A в B

Смысл определения: Если множество A состоит из n элементов, а множество B — из k элементов, то существует всего k^n различных отображений из A в B: действительно, есть по k вариантов значения для каждого из n элементов A.

Определение: *Булеаном* множества A называется множество всех подмножеств множества A. Обозначение: $\mathcal{P}(A)$ или 2^A .

Свойства возведения множества в степень:

- 1. $A^B \times A^C \cong A^{B \cup C}$ (для непересекающихся B и C)
 - ▲ Неформально это утверждение означает, что определить функцию на несвязном объединении двух множеств это то же самое, что определить её на каждом из этих множеств по отдельности. Метафорически элемент $A^{B\cup C}$ есть набор контейнеров, помеченных элементами B или C. А $A^B \times A^C$ это два набора контейнеров, в первом они помечены элементами B, а во втором элементами C. Таким образом, достаточно один набор разбить на два.

Формально множество с левой стороны имеет вид $\{(f,g) \mid f: B \to A; g: C \to A\}$, а с правой - $\{h \mid h: B \cup C \to A\}$. Рассмотрим такое соответствие между этими множествами: $h \longmapsto (h|_B, h|_C)$. Его инъективность очевидна. Оно также является сюръективным так как $\forall (f,g) \in A^B \times A^C \quad \exists h \in A^{B \cup C}$:

$$h(x) = \left\{ egin{array}{l} f(x), \ {
m ec}$$
ли $x \in B \\ g(x), \ {
m ec}$ ли $x \in C \end{array} \right.$ Таким образом равномощность доказана.

- 2. $A^C \times B^C \cong (A \times B)^C$
 - \blacktriangle Неформально утверждение означает, что пара функций это то же самое, что одна функция, принимающая значение среди пар. Это легко объяснить при помощи метафоры с контейнерами. Пара функций это два набора контейнеров, индексированных элементами C. В каждом контейнере из первого набора лежит элемент A, а в каждом контейнере из второго набора элемент B. Если переложить все элементы из контейнеров второго набора в соответствующие контейнеры из первого набора, то получится набор контейнеров с парами элементов A и B.

Формально пусть $F \in (A \times B)^C$. Это значит, что $F : C \to A \times B$. То есть каждому элементу $c \in C$ сопоставлена некоторая пара $(a,b) \in A \times B$. Вместо этого ему можно сопоставить отдельно элементы $a \in A$ и $b \in B$. Получится два отображения, первое отображает c в a, а второе -c в b, то есть пара отображений $(F_1, F_2) \in A^C \times B^C$. Можно сказать, что $F_i = pr_i \circ F$, где pr_i — проектор на i-ю координату: $pr_i(a_1, a_2) = a_i$. Легко понять, что разные F переводятся в разные пары (F_1, F_2) , и каждая пара получается из некоторой функции. Таким образом, эквивалентность установлена.

- 3. $(A^B)^C \cong A^{B \times C}$ (для произвольных A, B, C)
 - \blacktriangle Третья эквивалентность означает, что функция двух аргументов есть то же самое, что отображение первого аргумента в функцию, зависящую от второго аргумента. Метафорически есть набор контейнеров, помеченных элементами C, в каждом из которых лежат контейнеры, помеченные элементами B, а уже в каждом из маленьких контейнеров лежит элемент A. Если убрать внешние контейнеры, но при этом перенести с них метки на внутренние, то получится набор контейнеров, помеченных элементами $B \times C$, что и требовалось.

Формально пусть $F \in (A^B)^C$, $F : C \to A^B$, то есть каждому элементу $c \in C$ сопосотавляется некоторая функция $G : B \to A$. Пусть $H \in A^{B \times C}$, $H : B \times C \to A$. Рассмотрим такое соответствие между этими множествами: $(F(x))(y) \longmapsto H(x,y)$. Нетрудно понять, что данное соответствие - это биекция

14 Теорема Кантора для множеств

Теорема Кантора: Любое множество A менее мощно, чем его булеан 2^A .

▲ Вначале заметим, что A не более мощно, чем 2^A . Действительно, A равномощно множеству всех одноэлементных подмножеств A. Осталось доказать, что $A \not\cong 2^A$.

Предположим противное, т.е. что существует биекция $f:A\to 2^A$. Рассмотрим множество $M=\{x\mid x\not\in f(x)\}$. Это множество корректно определено, поскольку $f(x)\in 2^A$, т.е. $f(x)\subset A$, а значит вопрос о том, принадлежит ли x множеству f(x), правомерен. Поскольку f является биекцией, само множество M равно $f(x_0)$ для некоторого x_0 . Есть два варианта: $x_0\in M$ и $x_0\not\in M$. Оба приводят к противоречию.

Действительно, если $x_0 \in M$, то $x \notin f(x)$ для $x = x_0$, т.е. $x_0 \notin f(x_0)$, т.е. $x_0 \notin M$ в силу $f(x_0) = M$, что противоречит предположению. Если же $x_0 \notin M$, то $x \notin f(x)$ неверно для $x = x_0$, т.е. $x_0 \in f(x_0)$, откуда $x_0 \in M$, снова имеем противоречие. Таким образом, противоречие возникает во всех случаях, и теорема доказана.

15 Континуальные множества. Доказательство того, что плоскость, пространство, \mathbb{R}^k и $\mathbb{R}^\mathbb{N}$ являются континуальными. Формулировка

континуум-гипотезы.

Множества, равномощные множеству действительных чисел, называются **контину**альными.

Вспомогательная лемма: Множество бесконечных последовательностей из 0 и 1 континуально

▲ Построим биекцию между этим множеством и отрезком [0,1]. Выберем число. Если оно лежит в левой половине отрезка, то допишем в последовательность 0, иначе - 1. Те же действия повторим с отрезком в который попало число и так далее. Очевидно, что построенное отображение является биекцией.

Отрезок [0,1] равномощен интервалу (0,1), так как они бесконечны и второе множество получено исключением конечного числа точек. А интервал, в свою очередь, равномощен \mathbb{R} , биекция: $tg(\pi(x-\frac{1}{2}))$. Получаем $\{0,1\}^{\mathbb{N}} \cong [0,1] \cong (0,1) \cong \mathbb{R}$

Утверждение: $\mathbb{R} \cong \mathbb{R}^n$, $n \in \mathbb{N}$

▲ Так как $\mathbb{R} \cong \{0,1\}^{\mathbb{N}}$, можно доказать данное утрверждение заменив \mathbb{R} на $\{0,1\}^{\mathbb{N}}$. Построим биекцию: набору из n последовательностей сопоставим последовательность $a_1^1a_1^2...a_1^na_2^1...$ (верхний индекс - номер последовательности, нижний - номер элемента). Очевидно, что данное соответствие взаимно-однозначно \Rightarrow эти множества равномощны \blacksquare

 \mathbf{y} тверждение: $\mathbb{R}^{\mathbb{N}}\cong\mathbb{R}$

▲ По свойствам возведения множества в степень другого множества: $\mathbb{R}^{\mathbb{N}} \cong (2^{\mathbb{N}})^{\mathbb{N}} \cong 2^{\mathbb{N} \times \mathbb{N}} \cong 2^{\mathbb{N}} \cong \mathbb{R}$ ■

Континуум-гипотеза: Любое бесконечное подмножество \mathbb{R} либо счётно, либо континуально (иными словами, нет множеств A, удовлетворяющих соотношению $\mathbb{N} \leq A \lesssim \mathbb{R}$).

16 Теорема Кантора-Бернштейна

Теорема Кантора Бернштейна: если A не более мощно чем B, и B не более мощно чем A, то $A \cong B$

▲ Если A не более мощно чем B, то $A \cong B_1$ для некоторого $B_1 \subset B$. Обозначим через f соответствующую биекцию из A в B_1 . Аналогично $B \cong A_1$ для некоторого $A_1 \subset A$, обозначим через g биекцию из B в A_1 . Определим A_2 как $g(B_1)$. Поскольку $B_1 \subset B$, то $A_2 = g(B_1) \subset g(B) = A_1$, при этом $A_2 \cong B_1 \cong A$. Получим утверждение, эквивалентное исходной теореме: если $A_2 \subset A_1 \subset A_0$ и $A_2 \cong A_0$, то $A_1 \cong A_0$. Это утверждение мы и будем доказывать.

Обозначим через h композицию $g \circ f$. Это биекция из A_0 в A_2 . Для всех натуральных k>2 определим рекурсивно A_k как $h(A_{k-2})$. Также определим "слои" C_k как $A_k \setminus A_{k+1}$. Поскольку h — биекция, то $h(C_k) = C_{k+2}$ и h задаёт биекцию между C_k и C_{k+2} . Однако не обязательно любой элемент A_0 войдёт в какой-то слой. Будет ещё "ядро" $C = \bigcap_{k=0}^{\infty} A_k$. Тогда $A_0 = C \cup C_0 \cup C_1 \cup C_2 \cup C_3 \cup \dots$ и $A_1 = C \cup C_1 \cup C_2 \cup C_3 \cup \dots$ Наконец, построим биекцию α между A_0 и A_1 :

$$\alpha(x) = \begin{cases} x, x \in C \cup C_1 \cup C_3 \cup C_5 \cup \dots \\ h(x), x \in C_0 \cup C_2 \cup C_4 \cup \dots \end{cases}$$

Это действительно биекция: все элементы слоёв с нечётными номерами, а также элементы ядра, остаются на месте, а все слои с чётными номерами биективно отображаются в слои с номерами, на 2 бОльшими. Поэтому все слои, кроме нулевого, оказываются покрыты. Таким образом, эквивалентное утверждение, а с ним и исходная теорема, доказаны.

17 Отношения на множествах. Свойства бинарных отношений. Отношения эквивалентности, теорема о классах эквивалентности

Любое свойство можно отождествить с множеством всех объектов, которые им обладают. Например, свойство чётности соответсвует множеству чётных чисел.

Свойством элементов множества A называется любое подмножество A или, что тоже самое, любая функция из A в $\{0,1\}$.

Бинарным отношением на множестве A называется любое подмножество $A^2 = A \times A$ или, что тоже самое, любая функция из A^2 в $\{0,1\}$. Обозначения: $(x,y) \in R$ или R(x,y) = 1 или xRy.

Предикатом валентности k на множестве A называется подмножество A^k или, что тоже самое, функция из A^k в $\{0,1\}$.

Классификация отношений:

- 1. рефлексивные $\forall x \ xRx \quad (= \leqslant : \subset \cong)$
- 2. антирефлексивные $\forall x \neg (xRx) \quad (<)$
- 3. симметричные $\forall x,y \ xRy \to yRx \ (= \cong \mod \parallel)$
- 4. антисимметричные $\forall x,y \ (xRy \land yRx) \rightarrow (x=y) \ (< \leqslant \vdots \subset)$
- 5. транзитивные $\forall x,y,z \ (xRy \land yRz) \rightarrow xRz \ (= < \vdots \subset \cong)$
- 6. антитранзитивные $\forall x,y,z \ (xRy \land yRz) \rightarrow \neg (xRz) \ (\bot$ на плоскости)
- 7. евклидово (правое) $\forall x,y,z \ (xRy \land xRz) \to yRz$ (нетразитивное $\mathbf{R} = \{(1,2),(2,2),(2,3),(3,2),(3,3)\}$

Наборы свойств:

- \triangleright отношение эквивалентности: pefinexcue. + cummempuu. + mpan<math>sumue.
- \triangleright отношение нестрогого (частичного) порядка: $pe\phi$ лексив. + антисимметрич. + транзитив
- ightharpoonup отношение строгого (частичного) порядка: антирефлексив. + антисимметрич. + транзитив.
- ▶ отношение (нестрогого) предпорядка: рефлексив. + транзитив.

Отношения эквивалентности

Примеры: = mod \sim (подобие тругольников) \parallel (паралленльность или совпадение прямых) и тд

Общий пример: задана $F:A \to B$ $x \sim y,$ если f(x) = f(y) Тогда:

$$f: A \to A \quad f(x) = x$$
 $modk$ f возвращает остаток при делении на k
 f возвращает направление (элемент проективной прямой)
 f возвращает форму (3 угла, упорядоченных по неубыванию, в сумме дающие f

Пусть на множестве A задано отношение \sim , тогда **классом эквивалентности** элемента $x \in A$ называется множество $K_x = \{y \mid y \sim x\}$

Теорема. (Основная теорема об отношениях эквивалентности)

Если на множестве задано отношение эквивалентности, то все множество разбивается на классы эквивалентности (т.е. представляется в виде такого объединения непересекающихся подмножеств, что два элемента эквивалентны тогда и только тогда, когда лежат в одном и том же подмножестве).

Иначе говоря, если на множестве A задано отношение эквивалентности, то $A = \bigcup_{i \in I} A_i$ таких, что

- 1. если $x \in A_i$, то $A_i = K_x$
- 2. если $x \in A_i$ и $y \in A_i$, то $x \sim y$
- 3. при $i \neq j$ если $x \in A_i$ и $y \in A_j$, то $\neg(x \sim y)$

Искомая функция (отношение эквивалентности) отображает x в K_x и тем самым делит множество на классы эквивалентности.

- \blacktriangleright Так как отношение эквивалентности состоит из рефлексивности, симметричности и транзитивности, то получаем
 - 0. из рефлексивности ($\forall x \ xRx$) следует, что $x \in K_x$, т.е. каждый элемент лежит в своем классе эквивалентности
 - 1. если $y \in K_x$ и $z \in K_x$, то $y \sim z$ получаем следующими рассуждениями. Так как $y \in K_x \to y \sim x, \, z \in K_x \to z \sim x$, т.е. $x \sim z$. Тогда по транзитивности $y \sim z$
 - 2. если $z \in K_x$, $z \in K_y$, то $K_x = K_y$ получем следующими рассуждениями. Так как $z \in K_x \to z \sim x$, т.е. $x \sim z$, $z \in K_y \to z \sim y$. Тогда по транзитивности $x \sim y$. Пусть $t \sim K_x$. Тогда $t \sim x$, по транзитивности $t \sim y$. Таким образом, $K_x \subset K_y$ и $K_y \subset K_x$, следовательно $K_x = K_y$. По контрапозиции если $K_x \neq K_y$, то $K_x \cap K_y = \emptyset$.
 - 3. если $K_x \neq K_y$, $z \in K_x$, $t \in K_y$, то $\neg(z \sim t)$ так как, если бы $z \sim t$, то по транзитивности $z \sim y$, откуда $z \in K_x \cap K_y$, что противоречит предыдущему пункту. Следовательно, $\neg(z \sim t)$.

Задача: Являются ли следующие отношения отношениями эквивалентности? Если да, то укажите, на какие классы разбиваются соответсвующие множества.

- (a) $|x y| \in k$, $x, y \in \mathbb{Z}, k \in \mathbb{N}, k > 0$
 - ▲ $\forall x \ |x-x| \ \vdots \ k \ \text{OK}; \quad \forall x,y \ |x-y| \ \vdots \ k \ |y-x| \ \vdots \ k \ \text{OK}; \quad \forall x,y,z \ |x-y| \ \vdots \ k \ |y-z| \ \vdots \ k \ \text{имеют одинаковый остаток OK. Следовательно, классы эквивалентности по остаткам.$

- (б) $\{((x_1,y_1),(x_2,y_2)) \mid x_1-x_2=y_1-y_2\}$ на плоскости
 - ▲ Две точки на плоскости, удовлетворяющие заданному отношению, определяют прямую параллельную y = x. $\forall (x_1, y_1) \ 0 = 0$ ОК; $\forall (x_1, y_1), (x_2, y_2) \ D_1 = D_2$ и $-D_1 = -D_2$ ОК; $\forall (x_1, y_1), (x_2, y_2), (x_3, y_3)$ $D_1 = D_2$ $D_2 = D_3$ и $D_1 = D_3$ ОК. Значит, классы эквивалентности прямых вида y = x + b. ■
- (B) $|x-y| < 1, x \in \mathbb{R}$
 - **▲** $0R_{\frac{2}{3}}$ и $\frac{2}{3}R_{\frac{4}{3}}$, но $0R_{\frac{4}{3}}$ WA. Следовательно, не является отношением эквивалентности. ■
- (г) $\{(AB,CD) \mid ABCD$ параллелограмм, возможно вырожденный $\}$ на множестве направленных отрезков, возможно вырожденных, на плоскости
 - ▲ Рефлексивность очевидно выполнена ОК; симметричность тоже ОК; транзитивность для векторов тоже верна, так как возможны вырожденные случаи ОК. Следовательно, классы эквивалентности параллелограммов.
- (д) x||y; x||y или x = y на множестве всех прямых на плоскости
 - ▲ Если считать, что параллельные прямые это прямые не имеющие общих точек, то рефлексивность не выполняется WA. Следовательно, первое не является отношением эквивалентности.

 Во-втором случае рефлексивность уже выполнена ОК; симметричность тоже ОК; транзитивность для параллельности с совпадением тоже верна ОК. Следователь
 - но, классы эквивалентности направления.
- (e) x гомотетичен y; x подобен y на множестве всех треугольников на плоскости
 - ▲ Для гомотетии транзитивность неверна. В качестве примера можно рассмотреть треугольники X, Y, Z, где X = Z (со сдвигом в плоскости), а X и Y, Y и Z соответсвенно гомотетичны. Тогда транзитивности нет. WA. Следовательно, первое не является отношением эквивалентности. Во-втором случае рефлексивность выполнена, так как треугольник подобен сам себе ОК; симметричность тоже ОК; транзитивность тоже выполнена по равенству углов треугольников (3 признак подобия) ОК. Следовательно, классы эквивалентности наборов величин углов треугольника. ■
- (ж) из x существует путь в y на множестве всех вершин некоторого графа.
 - ▲ Рефлексивность выполнена, так как существует нулевой путь из вершины в саму себя ОК; симметричность тоже выполнена, так как граф не ориентирован ОК; транзитивность тоже выполнена, так как можно произвести неформальное сложение путей ОК. Следовательно, классы эквивалентности компоненты связности. ■
- (з) последовательность $a_n b_n$ бесконечно мала на множестве всех последовательностей рациональных чисел.

- ▲ Рефлексивность выполнена, так как $\lim_{x\to\infty}(a_n-a_n)=0$ ОК; симметричность тоже выполнена, так как граф $\lim_{x\to\infty}(a_n-b_n)=\lim_{x\to\infty}(b_n-a_n)=0$ ОК; транзитивность тоже выполнена, так как $\lim_{x\to\infty}(a_n-c_n)=\lim_{x\to\infty}(a_n-b_n+b_n-c_n)=0$ ОК. Следовательно, классы эквивалентности действительных чисел, к которым стремятся последовательности. ■
- (з) f и g равны в нуле; f и g равны в некоторой точке на множестве функций из $\mathbb R$ в $\mathbb R$
 - **A** В первом случае рефлексивность очевидно выполнена ОК; симметричность тоже ОК; транзитивность тоже выполнена так как если f(0) = g(0) = c и g(0) = h(0) = d, то c = g(0) = d ОК. Следовательно, классы эквивалентности по значению в нуле.

Во-втором случае транзитивность не выполнена, так как одна функция может совпадать с другой в точке a, которая совпадает с третьей в точке b, но при этом не факт, что первая и третья функции совпадают в какой-либо точке WA. Следовательно, не является отношением эквивалентности. \blacksquare

Задача: Докажите, что ни одно требование в определении отношения эквивалентности не является лишним: например, существует симметричное, транзитивное, но не рефлексивное отношение.

▲ Возьмем социальное отношение «быть знакомым с ...», или в более чёткой форме отношение «когда-либо встретиться с ...». Тогда рефлексивность выполнена, так как всякий человек встречался с собой ОК; симметричность тоже выполнена, так как если один человек встретился с другим, то второй встретился с первым ОК; но транзитивность не выполнена, так как если один человек встретился с другим, который встретился с третьим, то не факт, что первый и третий встречались WA. Следовательно, существует симметричное, транзитивное, но не рефлексивное отношение. ■

18 Отношения частичного и линейного порядка. Примеры отношений. Любое счётное упорядоченное множество можно доупорядочить линейно

Как было указано ранее, отношение называется **отношением частичного порядка**, если оно рефлексивно, антисимметрично и транзитивно. При этом антисимметричность: $\forall x,y \ (xRy \land yRx) \rightarrow (x=y)$

(Частично) упорядоченным множеством (сокращенно ч.у.м.) называется пара $\langle A, \leqslant_A \rangle$ — множество и частичный порядок (отношение порядка) на нем.

Частичный порядок называется **линейным порядоком**, если любые два различных элемента множества сравнимы. (Диаграмма Хассе вырождается в цепочку, т.е. линию). Если порядок линеен, множество называется **линейно упорядоченным**.

Отношение называется **отношением строгого порядка**, если оно транзитивно и антирефлексивно.

Задача: Проверьте, что следующие множества являются упорядоченными. Какие из них упорядочены линейно?

(a) $\langle A, = \rangle$, $\langle 2^A, \subset \rangle$ где A - произвольное множество.

- ▲ $A = A \text{ OK}; \quad x = y \text{ OK}; \quad \left((x = y) \land (y = z)\right) \to (x = z) \text{ OK}; \quad \text{Очевидно,}$ порядок не линеен. WA Во-втором случае $2^A \subset 2^A \text{ OK}; \quad \left((x \subset y) \land (y \subset x)\right) \to (x = y) \text{ OK}; \quad x \subset y \subset z \to x \subset z \text{ OK};$ Если $A = \{0,1\}$, то $\{0\}$ и $\{1\}$ не сравнимы, следовательно, порядок не линеен. WA ■
- (б) $\langle A, \leqslant \rangle$, $\langle A, \geqslant \rangle$ где A одно из множеств $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$.
 - ▲ $x \leqslant x$ ОК; $((x \leqslant y) \land (y \leqslant x)) \to (x = y)$ ОК; $((x \leqslant y) \land (y \leqslant z)) \to (x \leqslant z)$ ОК. Аналогично с \geqslant . По очевидным причинам в обоих случаях это линейный порядок. ОК ■
- (B) $\langle \mathbb{N}, \vdots \rangle$
 - **▲** x : x OK; $((x : y) \land (y : x)) \rightarrow (x = y) \text{ OK};$ $((x : y) \land (y : z)) \rightarrow (x : z) \text{ OK}.$ Элементы 2 и 3 не сравнимы, следовательно, порядок не линеен. WA ■
- (г) $\langle \mathbb{R}^2, \leqslant_{lex} \rangle$ где $(x_1, y_1) \leqslant_{lex} (x_2, y_2)$, если либо $x_1 < x_2$, либо $x_1 = x_2$ и $y_1 \leqslant y_2$
 - **▲** $(x,y) \leq_{lex} (x,y)$ OK; $\left(((x_1,y_1) \leq_{lex} (x_2,y_2)) \wedge ((x_2,y_2) \leq_{lex} (x_1,y_1)) \right) \rightarrow ((x_1 = x_2) \wedge (y_1 = y_2))$ OK; $\left(((x_1,y_1) \leq_{lex} (x_2,y_2)) \wedge ((x_2,y_2) \leq_{lex} (x_3,y_3)) \right) \rightarrow ((x_1,y_1) \leq_{lex} (x_3,y_3))$ OK.

По очевидным причинам это линейный порядок. ОК ■

- (д) $(\mathbb{R}^2, \leqslant)$ где $(x_1, y_1) \leqslant (x_2, y_2)$, если $x_1 \leqslant x_2$ и $y_1 \leqslant y_2$
 - ▲ $(x,y) \leqslant (x,y)$ ОК; $\Big(\big((x_1,y_1) \leqslant (x_2,y_2) \big) \land \big((x_2,y_2) \leqslant (x_1,y_1) \big) \Big) \rightarrow \Big((x_1 = x_2) \land (y_1 = y_2) \big)$ ОК; $\Big(\big((x_1,y_1) \leqslant (x_2,y_2) \big) \land \big((x_2,y_2) \leqslant (x_3,y_3) \big) \Big) \rightarrow \Big((x_1,y_1) \leqslant (x_3,y_3) \big)$ ОК. Элементы (2,3) и (3,1) не сравнимы, следовательно, порядок не линеен. WA

Задача: Докажите, что любое счётное упорядоченное множество можно доупорядочить линейно. (Т.е. для любого отношения порядка R существует отношение линейного порядка S, такое что $R \subset S$.)

▲ Занумеруем все пары, которые еще не упорядочены. Далее, рассмотрим первую пару таких a и b, что $(a,b),(b,a) \notin R$. Построим новое отношение $R' \mid R \subset R'$, в котором положим cR'd для всех таких c и d, что $(c,a),(b,d) \in R$. Проверим, что R' является отношением порядка.

Рефлексивность выполнена, так как R рефлексивно. Рассмотрим антисимметричность (c,d),(d,c):

- 1. если оба этих отношения из R, тогда c = d;
- 2. если одно из R, а другое из R', тогда имеем cRa, bRd и dRc, откуда по транзитивности R выполнено bRa, т.е. эти элементы сравнимы в R противоречие;
- 3. если оба этих соотношения из R', то имеем cRa, bRd, bRc и dRa, и снова по транзитивности aRb и bRa.

Транзитивность R' проверяется аналогично.

Таким образом, R' - частичный порядок. Тогда выкинем из нашей нумирации все добавленные пары и рассмотрим следующую по номеру пару, которая не упорядочена. Продолжая этот процесс, мы получим линейный порядок S, содержащий данный.

19 Частично упорядоченные множества. Диаграмма Хассе. Изоморфизм. Описание попарно неизоморфных ч.у.м. для 3-х и 4-х элементов. Минимальные, максимальные, наибольшие и наименьшие элементы.

Множество A с заданным на нем частичным порядком R называется частично упорядоченным множеством (ЧУМ) и обозначается (A; R). Отношением (нестрогого частичного) порядка называется любое рефлексивное, антисимметричное и транзитивное отношение.

Диаграммой Хассе называется ориентированный граф без циклов, по которому отношение порядка строится так: $a \le b$, если из а в b идёт ориентированный путь. Диаграмму Хассе для отношения можно получить из ориентированного графа, его изображающего, выкидыванием петель и таких рёбер между вершинами а и с, если есть вершина b, такая, что: a < b < c. Кроме того, вместо рисования стрелок граф располагают так, чтобы большие элементы находились выше.

Рис. 2: Упрощение картины с использованием диаграммы Хассе

Изоморфизмом упорядоченных множеств (A, \leqslant_A) и (B, \leqslant_B) называется биекция $f: A \to B$, для которого выполнено свойство: $x \leqslant_A y \Leftrightarrow f(x) \leqslant_B f(y)$. Обозначение: $A \simeq B$.

Описание попарно неизоморфных ч.у.м. для 3-х и 4-х элементов. Доказательство основывается на попарно неизоморфных графах без петель и кратных рёбер (для n=3 их 4, для n=4 их 11)

Элемент $x \in A$ наибольший в упорядоченном множестве (A, \leqslant_A) , если $\forall y \in A : y \leqslant_A x$. Элемент $x \in A$ максимальный в упорядоченном множестве (A, \leqslant_A) , если $\nexists y \in A : x <_A y$. Наименьший и минимальный элементы определяются аналогично.

Свойства максимальных/наибольших/минимальных/наименьших элементов:

- 1. Наибольший элемент всегда является максимальным, причём единственным;
- 2. Максимальных элементов может быть несколько;
- 3. Единственный максимальный элемент не всегда является наибольшим.
- ▲ 1. Если х наибольший, то $x \le y$ для всех $y \in A$. Поэтому $x \not< y$ для всех у. Поэтому он максимален. Любой другой элемент будет меньше наибольшего и потому не будет максимальным.
- 2. Например, можно взять натуральные числа от 1 до 10 и отношение делимости. Максимальными будут числа 6, 7, 8, 9, 10: на них никакое число из этого интервала не делится.
- 3. Например, можно взять множество $\{3\} \cup \{2^n | n \in \mathbb{N}\}$ с отношением делимости. 3 является единственным максимальным элементом, т.к. на любое другое делится ещё какоето число. Но наибольшего элемента тут нет.
- 20 Диаграмма Хассе. Определение цепи и антицепи. Теорема о длине наибольшей цепи в ч.у.м. (б/д). Доказательство теоремы на примерах задач о людоедах и числах.

Диаграммой Хассе называется ориентированный граф без циклов, по которому отношение порядка строится так: $a \leq b$, если из а в b идёт ориентированный путь. (см. билет 19)

Цепь упорядоченного множества $\langle M, \leqslant_M \rangle$ - упорядоченная последовательность элементов a_1, a_2, \ldots, a_n , для которой $a_i \leqslant_M a_{i+1}$ для всех $1 \leqslant i \leqslant n-1$. **Антицепь** - набор элементов, никакие два из которых не находятся в отношении \leqslant_M .

Теорема. Если d длина наибольшей цепи в упорядоченном множестве, то упорядоченное множество можно разбить на d антицепей.

Задача 6.2 про людоедов Некоторые людоеды хотят съесть некоторых других людоедов. Известно, что длина наибольшей цепочки, в которой каждый людоед хочет съесть последующего, равна п (в частности, циклов нет). Докажите, что людоедов можно рассадить в п пещер, в каждой из которых никто никого не хочет съесть. Можно ли гарантированно рассадить их в меньшее число пещер?

▲ Аналогично задаче 6.3, выбираем сначала все минимальные элементы для этого ч.у.м. Каждая следующая пещера: все людоеды, которых хотят съесть только людоеды из предыдущих пещер. Из условия, что максимальная цепь n, мы разбиваем всех великанов на n пещер, в каждой пещере антицепь. При этом гарантированно меньше пещер получить нельзя, рассмотрим пример с n великанами, где каждый великан пронумерован, и хочет съесть всех великанов с номером, большим, чем у него. ■

Теорема. В упорядоченном множестве из mn + 1 элемента есть цепь длины n + 1 или антицепь из m+1 элемента.

Задача 6.3 про числа (а) Докажите, что среди 36 различных натуральных чисел или найдется 6 чисел, среди которых ни одно не делится на другое, или найдется 8 чисел, которые можно выстроить в цепь, где каждое число делится на следующее. (б) Верен ли аналогичный факт для целых чисел?

▲ (а) Пусть не найдётся ни цепь длины 8, ни антицепь длины 6. Тогда возьмём все числа, которые в данном ч.у.м. являются минимальными. Очевидно, что количество таких чисел ≤ 5. Последовательно будем выбирать множества чисел, которые делятся только на числа из предыдущих множеств; получим следующую схему:

Нашли противоречие. Значит, начальное утверждение неверно.

(б) Формально, делимость среди целых чисел не является ч.у.м., т.к. нарушена антисимметричность => теорема не применима с её доказательством. Однако мы можем доопределить целые числа до ч.у.м.: будем считать, что -7 делится на 7, но не наоборот. Тогда делимость на таких целых числах будет ч.у.м. и можно применить теорему (аналогичные рассуждения из пункта а) ■

23 Предпорядки: определение и примеры. Разбиение элементов множества с предпорядком на классы эквивалентности

Предпорядком называется любое рефлексивное транзитивное отношение. Стандартное обозначение: \lesssim . Если на множестве задан предпорядок, то оно называется предупорядоченным.

Примеры предпорядков: (задача 7.1)

- 1. любой частичный порядок
- 2. любое отношение эквивалентности
- 3. сравнение по мощности на множествах
- 4. отношение достижимости в ориентированном графе
- 5. обратное отношение к предпорядку также является предпорядком
- 6. $x \preceq y$, если $f(x) \leqslant f(y)$, где $f: M \to Q$, а Q ЧУМ

Разбиение элементов множества с предпорядком на классы эквивалентности:

Пусть на множестве M задан предпорядок \lesssim . Отношение безразличия (\sim) - это такое отношение, что $a \sim b$, если $a \lesssim b$ и $b \lesssim a$.

Отношение безразличия является отношением эквивалентности (задача 7.2), так как выполнены

- 1. Рефлексивность: $a \sim a$, так как $a \lesssim a$
- 2. Симметричность: $a \sim b \Rightarrow a \preceq b$ и $b \preceq a \Rightarrow b \sim a$
- 3. Транзитивность: $a\sim b,\ b\sim c\Rightarrow a\precsim b,\ b\precsim c,\ c\precsim b,\ b\precsim a\Rightarrow a\precsim c,\ c\precsim a$ (в силу транзитивности предпорядка) $\Rightarrow a\sim c$

24 Полный предпорядок. Равносильность полноты предпорядка и линейности индуцированного предпорядка.

Предпорядок называется **полным**, если для любых двух элементов x и y выполнено $x \preceq y$ или $y \preceq x$.

Индуцированный порядок:

На множестве классов эквивалентности можно корректно ввести частичный порядок по правилу $K_a \leq K_b$, если $\exists a \in K_a, b \in K_b$, такие что $a \lesssim b$. Докажем, что это действительно отношение порядка (см. задачу 7.3)

- 1. Рефлексивность: $K \leq K$, так как $a \lesssim a$
- 2. Антисимметричность: $K \leqslant L, \ L \leqslant K \Rightarrow \exists l_1, l_2 \in L, k_1, k_2 \in K : \ k_1 \lesssim l_1, \ l_2 \lesssim k_2 \Rightarrow k_1 \lesssim l_1 \lesssim l_2, \ l_2 \lesssim k_2 \lesssim k_1$ (так как они k_1 и k_2 , l_1 и l_2 лежат в одном классе эквивалентности) $\Rightarrow k_2 \lesssim l_2 \Rightarrow k_2 \sim l_2 \Rightarrow K = L$

3. Транзитивность: $K \leq L$, $L \leq M \Rightarrow \exists k_1 \in K$, l_1 , $l_2 \in L$, $m_1 \in M$: $k_1 \lesssim l_1$, $l_2 \lesssim m_1 \Rightarrow k_1 \lesssim l_1 \lesssim l_2 \lesssim m_1$ (так как l_1 и l_2 лежат в одном классе эквивалентности) $\Rightarrow k_1 \lesssim m_1$ (по транзитивности предпорядка) $\Rightarrow K \leq M$

Утверждение (задача 7.4): предпорядок полон ⇔ индуцированный порядок на классах эквивалентности линеен

▲ ⇒ Рассмотрим два произвольных класса эквивалентности X и Y. Выберем из них по одному элементу $x \in X$ и $y \in Y$. В силу полноты предпорядка либо $x \lesssim y$, либо $y \lesssim x \Rightarrow$ либо $X \leqslant Y$, либо $Y \leqslant X \Rightarrow$ индуцированный порядок линеен

 \Leftarrow Рассмотрим два произвольных элемента k_1 и l_1 , которые принадлежат соответственно классам K и L. Так как индуцированный порядок линеен, то K и L сравнимы (для определенности можем считать, что $K \leqslant L$). Тогда существуют такие элементы $k \in K$ и $l \in L$, что $k \lesssim l \Rightarrow k_1 \lesssim k \lesssim l \lesssim l_1$ (так как k и k_1 , l и l_1 лежат в одном классе эквивалентности) $\Rightarrow k_1 \lesssim l_1$ (по транзитивности) \Rightarrow предпорядок полон

25 Квазитранзитивные и ациклические отношения. Свойства и примеры.

Пусть на множестве М задано отношение \preccurlyeq . По нему можно построить строгое отношение \prec по правилу: $x \prec y$, если $x \preccurlyeq y$, но $y \not\preccurlyeq x$. Назовём \preccurlyeq **квазитранзитивным**, если из $x \prec y$ и $y \prec z$ следует, что $x \prec z$.

Отношение \leq называется **ациклическим**, если в каждом непустом конечном множестве $M_0 \subset M$ найдётся максимальный элемент, т.е. такой x, что $x \prec y$ неверно ни для какого y.

Утверждение (задача 7.5): любой предпорядок квазитранзитивен

▲ Рассморим x,y,z, такие что $x \lesssim y,\ y \not \gtrsim x,\ y \lesssim z,\ z \not \gtrsim y$ (то есть $x \prec y,\ y \prec z$). Тогда по транзитивности предпорядка $x \lesssim z$. Пусть $z \lesssim x$. Тогда $z \lesssim x \lesssim y \Rightarrow z \lesssim y$ (по транзитивности) - противоречие с выбором $x,y,z \Rightarrow z \not \gtrsim x \Rightarrow x \prec z \Rightarrow$ предпорядок квазитранзитивен ■

Задача 7.6: Придумайте рефлексивное и квазитранзитивное отношение, не являющееся предпорядком. Может ли такое отношение быть полным?

Решение: Да, такое отношение может быть полным. Пример (петли рисовать не стал):

Утверждение (задача 7.7): квазитранзитивное отношение является ациклическим

▲ Пусть это не так. Тогда существует некоторое конечное множество вершин M_0 являющееся циклом, т.е. $m_0 \prec m_1 \prec ... \prec m_k \prec m_0$. Тогда по транзитивности получаем $m_0 \prec m_k$, но $m_k \prec m_0$ - противоречие определению $\prec \Rightarrow$ отношение ациклическое

Задача 7.8: Придумайте ациклическое отношение, не являющееся квазитранзитивным. Может ли такое отношение быть полным?

Решение: Например, $\{(a,b),(b,c)\}\subset\{a,b,c\}^2$ (думаю, комментарии излишни).

Пусть есть полное ациклическое не квазитранзитивное отношение \preccurlyeq над A, тогда $\exists x,y,z\in A$, такие что $x\prec y\wedge y\prec z\wedge \neg(x\prec z)$ (отрицание определения квазитранзитивности). Так как отношение полное, то $z\prec x$, но тогда во множестве $A'=\{x,y,z\}$

 $\forall a \in A' \; \exists b \in A' : a \prec b$ - противоречие \Rightarrow такое отношение не может быть полным

26 Правило сложения. Правило умножения. Примеры. Принцип Дирихле. Пример на принцип Дирихле.

Предположим, что у нас имеются 2 множества (здесь и далее предполагаем, что рассматриваемые множества конечны, если не оговорено обратного): $A = \{a_1, a_2, \dots, a_n\}$ и $B = \{b_1, b_2, \dots, b_m, \}$.

Базовые принципы комбинаторики:

- 1. **Правило суммы**: Количество способов выбрать один объект из A или B в предположении, что $A \cap B = \emptyset$, равно n + m.
- 2. **Правило произведения**: Количество способов выбрать один объект из A и k нему в пару один объект из B равно n*m.
- 3. **Принцип Дирихле**: Предположим, имеется n ящиков и n+1 кролик, которые сидят в этих ящиках. Тогда найдется ящик, в котором сидит ≥ 2 кролика.

Обобщённый принцип Дирихле: Если nk + 1 элементов разбить на n множеств, то хотя бы в одном множестве содержится k + 1 элемент.

Формальная запись: Пусть задано отображение $f: A \to B$ на конечных множествах A и B, причём |A| > |B|. Тогда отображение f неинъективно.

Задача: Найти количество шестизначных чисел с различными цифрами.

Решение: Для первой цифры есть 9 возможных вариантов (все, кроме нуля), для второй цифры 9 вариантов (все, кроме первой), для третьей 8 (все, кроме первых двух), и так далее. Тогда по правилу произведения всего количество шестизначных чисел с различными цифрами: 9*9*8*7*6*5.

Задача: Пусть есть квадрат со стороной 2, внутри которого выбраны пять точек. Доказать, что внутри него найдутся две точки, такие, что расстояние между ними не превосходит корня из двойки.

▲ Рассмотрим 4 квадратика 1х1. По принципу Дирихле, найдется квадратик, внутри или на границе которого 2 точки. Эти точки — искомые. \blacksquare

27 Принцип Дирихле. Оценки мощности множества попарно неортогональных (-1,0,1)-векторов: верхняя оценка величиной 140 и нижняя оценка величиной 70.

Рассмотрим множество
$$V=\{\overline{x}=(x_1,\ldots,x_n): x_i\in\{1;0;-1\}, x_1^2+\cdots+x_n^2=4\}.$$
 $|V|=C_8^4*2^4=1120.$ Рассмотрим произвольное $W\subset V: \forall \overline{x},\overline{y}\in W: (x,y)\neq 0.$ Max $|W|$ - ?

Нижняя оценка: Пусть $x_1=1$, а остальные координаты либо 0, либо 1. Такое множество подходит под условие W. Аналогично построим множество векторов, где $x_1=-1$, остальные координаты либо 0, либо -1. Это множество тоже подходит под условие W, причём условие сохраняется даже для объединения этих множеств. Тогда нижняя оценка: $\max |W| \geqslant 2*C_7^3=2*35=70$.

Верхняя оценка: Разобьем множество V на подмонжества-ящики, внутри которых любые два вектора гарантированно дают ноль. Первый ящик: (1, 1, 1, 1, 0, 0, 0, 0), (1, -1, -1, 1, 0, 0, 0, 0), (1, -1, 1, -1, 0, 0, 0, 0), (1, -1, 1, -1, 0, 0, 0, 0) и ещё четыре вектора, которые получены из первых четырёх, поменяв местами x_5 и x_1 и.т.д. Второй ящик: (1, -1, -1, -1, 0, 0, 0, 0), (1, -1, 1, 1, 0, 0, 0, 0), (1, 1, 1, 1, 0, 0, 0, 0), (1, 1, 1, 1, 0, 0, 0, 0) и ещё четыре вектора, полученные аналогичным способом. Третий ящик - векторы первого, домноженные на -1, четвёртый - векторы второго, домноженные на -1. Всего способов выбрать четыре нуля - 35, тогда всего таких ящиков 35*4=140. Два вектора не могут быть в одном ящике, значит, $\max |W| \leqslant 140$.

28 Теорема о раскраске множества в два цвета.

Теорема. Пусть $R = \{1, 2, ..., 30\}$ $M_1, M_2, ..., M_{15} \subset R$ $|M_i| = 5$. Всегда найдется раскраска множества R в два цвета так, что все M_i неодноцветны. mathbb \blacktriangle Заметим, что количество всех раскрасок 2^{30} .

Количество раскрасок, при которых конкретное M_i одноцветное, равно $2^{25} \cdot 2 = 2^{26}$. Количество раскрасок, при которых хотя бы одно M_i одноцветное, $\leq 15 \cdot 2^{26} < 2^4 \cdot 2^{26} = 2^{30}$.

Так как существует "идиотская" раскраска, когда все 30 элементов одного цвета (первого или второго), следовательно, оценку можно улучшить. Количество раскрасок, при которых хотя бы одно M_i одноцветное, $<15\cdot 2^{26}<2^4\cdot 2^{26}=2^{30}$. Так как всего раскрасок $=2^{30}$, а неподходящих по условию $<2^{30}$, следовательно, найдутся раскраски, при которых все M_i неодноцветны.

29 Размещения, перестановки и сочетания. Доказательство формул для чисел размещения и сочетания с повторениями и без повторений.

Пусть $A = \{a_1, \dots, a_n\}$. Извлекать элементы из A можно по порядку или пригоршнями. Превые называются **размещениями**, вторые - **сочетаниями**.

Размещения с повторениями

$$\overline{A}_n^k = n^k \quad k$$
 - любое порядок важен

Извлекаем с возвращением, а именно, извлекаем один объект из множвества A, вовзращаем его обратно, извлекаем следующий и т.д. k раз. Например, буквы для слова ЖАБА из русского алфавита.

▲ Возьмем n объектов $\{a_1, \ldots, a_n\}$. Мы хотим выбирать объект этого множества и возвращать обратно и так k раз. Это действие можно представить как последовательный выбор объектов по одному из множеств $A_1 = \{a_1, \ldots, a_n\}, \quad A_2 = \{a_1, \ldots, a_n\}, \ldots, A_k = \{a_1, \ldots, a_n\}$. В силу правила умножения мы получим количество способов выбрать k объектов равным n^k .

Размещения без повторений

$$A_n^k = n \cdot (n-1) \cdot \ldots \cdot (n-k+1) = \frac{n!}{(n-k)!} \quad 0 \leqslant k < n$$
 порядок важен

Извлекаем объекты последовательно без возвращения, один за другим k раз.

▲ Выберем из $\{a_1, \ldots, a_n\}$ первый объект n способами, назад его не возвращаем, затем извдечем из оставшихся n-1 объектов второй объект n-1 способом и т.д. вполть до k - го объекта, который мы извлечем n-k+1 числом способов. Применим правило умножения и получим требуемое.

Перестановки без повторений

$$A_n^n = P_n = n! \quad 0 \leqslant k < n$$
 порядок важен

Частный случай предыдущего.

Сочетания без повторений

$$C_n^k = \frac{A_n^k}{k!} = \frac{n!}{k!(n-k)!} \quad 0 \leqslant k \leqslant n$$
 порядок не важен

Извлекаем без возвращения, сразу все k объектов, кучей без повторов (неупорядоченно)

lacktriangle Возьмем k объектов и наведем там порядок, следовательно $A_n^k = k! \cdot C_n^k$.

Размещения с повторениями

Извлекаем неупорядоченно k объектов, которые могут повторятся. Например, покупка 5 фруктов в магазине, где есть бессконечное количество лимонов, яблок и груш.

▲ Формула следует из метода шариков и перегородок.

Задача: На ютуб-канале есть плейлист из 30 лекций по ОКТЧ. Сколькими способами их можно переставить так, чтобы (а) шесть лекций, прочитанных Даниилом Владимировичем, расположились в правильном порядке (не обязательно подряд)? (б) те же лекции по-прежнему были в правильном порядке, но никакие две из них не шли подряд?

Решение:

- (a) Количество всевозможных перестановок лекций 30!. Так как лекции Мусатова обязательно должны идти в правильном порядке, мы должны из 6! возможных перестановок оставить только 1 корректную. Ответ: $\frac{30!}{6!}$
- (6) Воспользуемся методом шаров и перегородок. Пусть (1) лекции Мусатова, а (0) 24 остальные лекции. Тогда расставить остальные лекции можно 24! способами. А для лекций Мусатова у нас 25 мест, на каждое место одна из 6 лекций $\to C_{25}^6$ способа. Ответ: $24! \cdot C_{25}^6$

Задача: Сколькими способами можно нарисовать прямоугольник на клетчатом листке бумаги размером $m \times n$ клеток?

Решение: Первую вершину можно поставить в $(n+1)\cdot (m+1)$ точку сетки. Вершину, которая расположена на диагонале относительно первой, можно поставить в $n\cdot m$ точек сетки. Так как первая вершина выбирается произвольно, то она может совпасть с 2,3 и 4.

Otbet:
$$\frac{(n+1)\cdot (m+1)\cdot n\cdot m}{4} \sim C_{n+1}^2 \cdot C_{m+1}^2$$

Задача: Дано множество $A = \{1, ..., n\}$ и числа k, s.(a) Сколько можно составить совокупностей из s различных k-элементных подмножеств множества A? (б) Сколько из этих совокупностей устроены так, что каждое множество в них имеет непустое пересечение с подмножеством $\{1, ..., l\} \subset A$?

Решение:

- (a) Количество способов выбрать одно k элементное подмножество A равно C_n^k . Значит, искомое количество совокупностей это количество способов выбрать s различных элементов из C_n^k элементного множества. Ответ: $C_{C^k}^s$
- (6) Количество k- элементных подмножеств A, не пересекающихся с множеством $L = \{1, \ldots, l\}$, равно C_{n-l}^k . Поэтому количество k- элементных подмножеств A, пересекающихся с множеством L, равно $C_n^k C_{n-l}^k$. Аналогично предыдущему пункту получаем количество совокупностей.

Otbet: $C^s_{C^k_n-C^k_{n-l}}$

Задача: Сколькими способами можно выбрать из полной колоды, содержащей 52 карты, 6 карт так, чтобы среди них были все 4 масти?

Решение: Выбираем 4 карты разных мастей 13^4 способами. Осталось выбрать еще 2 карты. Возможно два случая:

- ightharpoonup эти две карты разных мастей, тогда выбор мастей C_4^2 способами и карт 12^2 способами.
- \triangleright эти две карты одной масти, тогда выбор масти 4 способами и карт C_{12}^2 способами.

Заметим, что мы разложили карты по мастям двумя способами: 1+1+2+2 и 1+1+1+3. Так как карты, совпавших мастей, можно взять на первои шаге, а можно и на втором, то нужно учесть перестановки.

нужно учесть перестановки. Ответ: $13^4 \cdot \left(\frac{12^2 \cdot C_4^2}{2 \cdot 2} + \frac{4 \cdot C_{12}^2}{3}\right)$

30 Бином Ньютона. Полиномиальный коэффициент и полиномиальная формула

Биномиальные коэффициенты - это коффициенты в разложении $(a+b)^n$ **бинома Ньютона**:

$$(a+b)^n = \underbrace{(a+b)\cdot(a+b)\cdot\ldots\cdot(a+b)}_{n \text{ pas}} =$$

здесь n скобок, после раскрытия которых получается сумма одночленов вида $a^k b^{n-k}$ $(k=\overline{0,n}).$

Выясним, сколько раз встречается многочлен $a^k b^{n-k}$ при данном k. Он встретится столько раз, сколькими способами можно выбрать k скобок, из которых берется a, т.е. C_n^k . Таким образом, после приведения подобных членов получим формулу

$$\sum_{k=0}^{n} C_n^k a^k b^{n-k}$$

Полиномиальная формула (обобщение бинома Ньютона)

$$(x_1 + x_2 + \ldots + x_k)^n = \sum_{\substack{\alpha_1 \geqslant 0, \alpha_2 \geqslant 0, \ldots \alpha_k \geqslant 0 \\ \alpha_1 + \alpha_2 + \ldots + \alpha_k = n}} \frac{n!}{\alpha_1! \alpha_2! \ldots \alpha_k!} x_1^{\alpha_1} x_2^{\alpha_2} \ldots x_k^{\alpha_k}.$$

\Delta Выведем полиномиальную формулу. Допустим у нас есть α_1 объект первого типа . . . α_k объект k-ого типа. Тогда нас интересует число способов составить "слово" из всех этих объектов. Тогда аналогично биному Ньютона получаем:

$$(x_1 + x_2 + \dots + x_k)^n = \underbrace{(x_1 + x_2 + \dots + x_k) \cdot \dots \cdot (x_1 + x_2 + \dots + x_k)}_{n \text{ pas}} = \underbrace{(x_1 + x_2 + \dots + x_k)^n}_{n \text{ pas}}$$

Чтобы после раскрытия скобок получился одночлен $x_1^{\alpha_1}x_2^{\alpha_2}\dots x_k^{\alpha_k}$, нужно выбрать те α_1 скобок, из которых берется x_1 , те α_2 скобок, из которых берется x_2 и ... и те α_k скобок, из которых берется α_k . Коэффициент при этом одночлене после приведения подобных членов равен числу способов, которыми можно осуществить такой выбор.

Первый шаг последовательности выборов можно осуществить $C_n^{\alpha_1}$ способами, второй шаг — $C_{n-\alpha_1}^{\alpha_2}$, третий — $C_{n-\alpha_1-\alpha_2}^{\alpha_3}$ и т.д., k-й шаг — $C_{n-\alpha_1-\alpha_2-\ldots-\alpha_{k-1}}$ способами. Искомый полиномиальный коэффициент равен произведению:

$$C_n^{\alpha_1} \cdot C_{n-\alpha_1}^{\alpha_2} \cdot C_{n-\alpha_1-\alpha_2}^{\alpha_3} \cdot \dots \cdot C_{n-\alpha_1-\alpha_2-\dots-\alpha_{k-1}} = \frac{n!}{\alpha_1!(n-\alpha_1)!} \cdot \frac{(n-\alpha_1)!}{\alpha_2!(n-\alpha_1-\alpha_2)!} \cdot \dots$$

$$\frac{(n - \alpha_1 - \alpha_2 - \dots - \alpha_{k-1})!}{\alpha_k! \underbrace{(n - \alpha_1 - \alpha_2 - \dots - \alpha_k)!}_{0!}} = \frac{n!}{\alpha_1! \alpha_2! \dots \alpha_k!} = P(\alpha_1, \alpha_2, \dots, \alpha_k)$$

Задача: Сколько имеется способов раздать 11 разных цветков, трём девушкам: какойто -5, а остальным - по 3 цветка?

Решение (1 способ): Тремя способами выбираем девушку, у которой будет больше всех цветов. Цветы для нее можно выбрать C_{11}^5 способами. Одной из двух девушек нужно отдать три цветка из оставшихся шести C_6^3 способами. Оставшиеся 3 цветка идут последней девушке одним способом.

Ответ:
$$3 \cdot C_{11}^5 \cdot C_6^3$$

Решение (2 способ): Воспользуемся полиномиальной формулой для решения это задачи. У нас есть два букета из 3 цветков и один букет из 5 цветков. Тогда остается лишь выбрать двух девушек, которым достанутся маленькие букетики. Ответ: $C_3^2 \cdot \frac{11!}{(3!)^2 \cdot 5!}$

31 Комбинаторные тождества

(1)
$$C_n^k = C_n^{n-k}$$

Замечание: Это свойство симметрии.

(2)
$$C_n^k = C_{n-1}^{k-1} + C_{n-1}^k$$

Замечание: Доказательство непосредственно следует из выражения для C_n^k . Однако более интересно другое, раскрывающее его внутреннюю комбинаторную суть, доказательство.

▲ Количество k - сочетаний элементов множества $\{a_1, \ldots, a_n\}$ равно C_n^k . Причем количество таких, которые содержат a_1 , равно количеству способов выбрать k-1 элементов из n-1 оставшихся объектов, то есть C_{n-1}^{k-1} . С другой стороны, количество k - сочетаний, которые не содержат внутри себя a_1 , равняется количеству способов выбрать k также из n-1 объектов, то есть C_{n-1}^k . Поскольку других возможностей нет: $C_n^k = C_{n-1}^{k-1} + C_{n-1}^k$ mathbb

(3)
$$C_n^0 + C_n^1 + \ldots + C_n^n = 2^n$$

Замечание: Это сумма всех элементов фиксированной строчки треугольника Паскаля.

\triangle Формула есть бином Ньютона в случае a = b = 1:

$$2^{n} = (1+1)^{n} = \sum_{k=0}^{n} C_{n}^{k} 1^{k} 1^{n-k} = C_{n}^{0} + C_{n}^{1} + \dots + C_{n}^{n} \quad \blacksquare \text{ mathbb}$$

(4)
$$(C_n^0)^2 + (C_n^1)^2 + \ldots + (C_n^n)^2 = C_{2n}^n$$

▲ Рассмотрим множество объектов $\{a_1, a_2, \dots, a_n : a_{n+1}, \dots, a_{2n}\}$. Мы выбираем n-сочетаний без повторений из этого множества, при этом k объектов попадает в левую часть, а n-k объектов попадает в правую часть, где $0 \le k \le n$. Тогда получаем, что $C_{2n}^n = \sum_{k=0}^n C_n^k \cdot C_n^{n-k} = \sum_{k=0}^n (C_n^k)^2$ \blacksquare mathbb

(5)
$$C_n^1 + 2C_n^2 + \ldots + nC_n^n = n \cdot 2^{n-1}$$

A Воспользуемся **утверждением**: $kC_n^k = nC_{n-1}^{k-1}$, которое следует из определния числа сочетаний, т.е.

сочетаний, т.е.
$$k \cdot \frac{n!}{k!(n-k)!} = n \cdot \frac{(n-1)!}{(k-1)!(n-k)!}.$$

Тогда $0 \cdot C_n^0 + 1C_n^1 + \ldots + nC_n^n = \sum_{k=0}^n k \cdot C_n^k = \sum_{k=0}^n n \cdot C_{n-1}^{k-1} = n \cdot \sum_{k=0}^n C_{n-1}^{k-1} = n \cdot 2^{n-1}$ mathbb

(6)
$$C_{n+m}^n = C_{n+m-1}^{n-1} + C_{n+m-2}^{n-1} + \ldots + C_{n-1}^{n-1} = \sum_{k=0}^m C_{n+m-k-1}^{n-1}$$

▲ Рассмотрим все возможные m - сочетания объектов из множества $\{a_1,\dots,a_{n+1}\}$ с повторениями. Количество таких m - сочетаний: $\overline{C}_{n+1}^m = C_{n+m-1}^m = C_{n+m}^m = C_{n+m}^n$.

Все множество возможных m - сочетаний можно разделить на подмножества, в каждом из которых находятся только такие m-сочетания, где объект a_1 встречается фиксированное количество раз.

Так m-сочетания с повторениями, в которых нет объекта a_1 , на самом деле есть m-сочетания из множества $\{a_2,\ldots,a_{n+1}\}$. Их число равно $C_{n+m-1}^m=C_{n+m-1}^{m-1}$. В свою очередь, m-сочетания с повторениями, в которых ровно 1 объект a_1 , на самом деле есть m-1-сочетания из того же множества. Их число равно $C_{n+m-2}^{m-1}=C_{n+m-2}^{m-1}$. И так далее.

32 Сумма степеней натуральных чисел. Знакопеременные тождества

(1)
$$C_n^0 - C_n^1 + C_n^2 - \ldots + (-1)^n \cdot C_n^n = \begin{cases} 1 & \text{если } n = 0 \\ 0 & \text{если } n \geqslant 1 \end{cases}$$

▲ Тождество следует из бинома Ньютона в следующем частном случае:

$$0=(1-1)^n=\sum_{k=0}^n C_n^k 1^k (-1)^{n-k}=C_n^0-C_n^1+C_n^2-\cdots+(-1)^n C_n^n$$
 Следствие: $C_n^0+C_n^2+C_n^4+\ldots=C_n^1+C_n^3+C_n^5+\ldots$ mathbb

(2)
$$\sum_{k=0}^{n} (-1)^k C_n^k (n-k)^m = 0$$

A Рассмотрим $A = \{a_1, a_2, \dots, a_n\}$, m < n. Положим m- размещения с повторениями, тогда их всего $N = n^m$. Объектами, к которым мы будем применять формулу включений и исключений будут эти N размещений. Размещение обладает свойством α_i , если элемент a_i не принадлежит ему.

Очевидно, $N(\overline{\alpha_1}, \overline{\alpha_2}, \dots, \overline{\alpha_n}) = 0$ это количество объектов не обладающих ни одним из свойств.

Более того:
$$N(\alpha_i) = (n-1)^m$$
; $N(\alpha_i, \alpha_j) = (n-2)^m$ $N(\alpha_1, \dots, \alpha_n) = (n-n)^m = 0$ Тогда, $0 = N(\overline{\alpha_1}, \overline{\alpha_2}, \dots, \overline{\alpha_n}) = \sum_{k=0}^n (-1)^k C_n^k (n-k)^m$

Сумма степеней натуральных чисел

Рассмотрим 6 утверждение из комбинаторных тождеств, а именно $C_{n+m}^n = \sum_{k=0}^m C_{n+m-k-1}^{n-1}$. Подставим в это тождество n=3 (если в формулу подставить n=2, то получим арифметическую прогрессию).

$$C_{m+3}^3 = \sum_{k=0}^m C_{m-k+2}^2 = C_{m+2}^2 + C_{m+1}^2 + \dots + C_2^2$$

Заменим на эквивалентное левую и правую часть:

$$\frac{(m+1)(m+2)(m+3)}{6} = \frac{(m+1)(m+2)}{2} + \frac{(m+1)m}{2} + \ldots + \frac{2 \cdot 1}{2}$$

На данный момент мы получили пирамиду из апельсинов, но для получения квадратов натуральных чисел проведем дальнейшее преобразование правой части:

$$\frac{(m+1)(m+2)(m+3)}{6} = \frac{(m+1)^2}{2} + \frac{(m+1)}{2} + \frac{m^2}{2} + \frac{m}{2} + \dots + \frac{1}{2} + \frac{1}{2}$$

Просуммируем те слагаемые, у которых числитель стоит без квадрата (т.е. каждое второе слагаемое) и получим $\frac{(m+1)(m+2)}{4}$ откуда вытекает, что

$$1^{2} + 2^{2} + \ldots + (m+1)^{2} = 2 \cdot \left(\frac{(m+1)(m+2)(m+3)}{6} - \frac{(m+1)(m+2)}{4}\right)$$

Получили желаемое.

40 Операция циклического сдвига на линейных последовательностях. Период линейной последовательности. Свойства периода. Общий вид последовательности периода d и длины n.

Пусть дана последовательность символов $a_1a_2...a_n$. Назовём **циклическим сдвигом** операцию, при которой она переходит в последовательность $a_2...a_na_1$.

Периодом линейной последовательности называется минимальное положительное число циклических сдвигов, после применения которых последовательность перейдёт в себя.

Свойства периода:

Лемма 1: Период d слова длины n является делителем n

 \blacktriangle Пусть $n = d \cdot k + r$, r > 0. Очевидно, что после применения n циклических сдвигов последовательность перейдет в себя.

$$\underbrace{a_1...a_n \xrightarrow{d \text{ сдвигов}} a_1...a_n \xrightarrow{d \text{ сдвигов}} ... \xrightarrow{d \text{ сдвигов}} a_1...a_n}_{d \cdot k \text{ сдвигов}} \xrightarrow{d \text{ сдвигов}} a_1...a_n$$

r < d, так как остаток всегда меньше делителя, и после r сдвигов последовательность перешла в себя $\Rightarrow r$ является периодом - противоречие $\Rightarrow n = d \cdot k$

Лемма 2: если
$$a_1...a_n$$
 - слово периода d , то оно имеет вид $\underbrace{a_1...a_da_1...a_d...a_1...a_d}_{\frac{n}{2}$ блоков

▲ Применим d циклических сдвигов. Тогда a_{d+1} окажется на месте a_1 и так далее. Так как d - период, то последовательность перешла в себя, а значит $a_{d+1} = a_1$ и так далее. Дальше по индукции доказываем для остальных блоков. ■

- 41 Операция циклического сдвига на линейных последовательностях. Период линейной последовательности. Свойства периода (б/д). Явная формула для числа циклических последовательностей для частных случаев (n = 3, 4, 5, 6)
 - 1. Пусть в алфавите k букв. Рассмотрим пример для n=4 более подробно так как остальные рассматриваются аналогично. Так как период является делителем n, то d=1,2,4
 - (a) d=1: это все последовательности вида AAAA. Очевидно, что их k штук
 - (b) d=2: это все последовательности вида ABAB, где $A \neq B$. Таким образом количество таких последовательностей равно количеству способов выбрать множество $\{A,B\}$, то есть $\frac{k(k-1)}{2}$ способов
 - (c) d=4: это все остальные последовательности. Посчитаем количество линейных последовательностей с таким периодом. Количество линейных последовательностей длины 4: k^4 ; длины 4 периода 2: k(k-1); длины 4 периода 1: k. Таким образом, количество линейных последовательностей длины 4 периода 4: $k^4-k^2+k-k=k^4-k^2$. Так как 4 линейным последовательностям длины 4

периода 4 соответствует только одна циклическая последовательность длины 4 периода 4, то количество таких циклических последовательностей: $\frac{r^4-r^2}{4}$

Всего циклических последовательностей длины 4: $k + \frac{k(k-1)}{2} + \frac{r^4 - r^2}{4} = \frac{k^4 + k^2 + 2k}{4}$

- $2. \ n = 3$
 - (a) d = 1: k штук
 - (b) d=3: Всего линейных: k^3 ; линейных периода 1: $k\Rightarrow$ циклических периода 3: $\frac{k^3-k}{3}$.

Всего циклических последовательностей длины 3: $k + \frac{k^3 - k}{3} = \frac{k^3 + 2k}{3}$

- 3. n = 5
 - (a) d = 1: k штук
 - (b) d=5: Всего линейных: k^5 ; линейных периода 1: $k\Rightarrow$ циклических периода 5: $\frac{k^5-k}{5}$.

Всего циклических последовательностей длины 5: $k + \frac{k^5 - k}{5} = \frac{k^5 + 4k}{5}$

- 4. n = 6
 - (a) d = 1: k штук
 - (b) d = 2: $C_k^2 = \frac{k(k-1)}{2}$
 - (c) d=3: количество способов составить блок из 3-х букв: k^3 , но нам нужно исключить слова периода 1, поэтому получаем k^3-k . Так как нас интересуют циклические слова, то их количество равно $\frac{k^3-k}{3}$
 - (d) d=6: это все остальные последовательности. Всего линейных: k^6 ; линейных периода 1: k; линейных периода 2: k(k-1); линейных периода 3: $k^3-k\Rightarrow$ циклических периода 6: $\frac{k^6-k^3-k^2+k}{6}$.

Всего циклических последовательностей длины 6: $k + \frac{k(k-1)}{2} + \frac{k^3-k}{3} + \frac{k^6-k^3-k^2+k}{6} = \frac{k^6+k^3+2k^2+2k}{6}$

42 Применение формулы обращения Мёбиуса для подсчета числа циклических последовательностей.

Пусть V - множество всех линейных последовательностей (не циклических) длины п. d_1,\ldots,d_s - делители числа п, тогда $V=V_1\cup\cdots\cup V_s$, где V_i - множество линейных последовательностей с периодом d_i . Положим W_i - множество всех линейных последовательностей длины d_i и периода d_i . Очевидно, что $|V_i|=|W_i|$. Пусть U_i - множество циклических последовательностей, которые получаются из последовательностей W_i циклическим сдвигом. Тогда $d_i|U_i|=|W_i|$. Пусть есть функция $M(d_i)=|U_i|$ - число циклич. последовательностей, которые получаются из обычных последовательностей длины d_i , периода d_i . Рассмотрим функцию

$$r^{n} = \sum_{i=1}^{s} |W_{i}| = \sum_{i=1}^{s} d_{i}|U_{i}| = d_{1}M(d_{1}) + \dots + d_{s}M(d_{s}) = \sum_{d|n} dM(d)$$

Тогда возьмём $g(n)=r^n, \ f(n)=nM(n).$ Получается, что $g(n)=\sum_{d|n}f(d)$. Применима ф-ла обращ. Мёбиуса:

$$f(n) = nM(n) = \sum_{d|n} \mu(d)g(\frac{n}{d}) = \sum_{d|n} \mu(d)r^{n/d} \Rightarrow M(n) = \frac{1}{n} \sum_{d|n} \mu(d)r^{n/d}$$

M(n) - циклические последовательности, отвечающие словам длины n и периода n. Пусть $T_r(n)$ - искомая величина, количество всех циклических слов над алфавитом из r букв, имеющих длину n:

$$T_{r}(n) = \sum_{d \mid n} m(d) = \sum_{d \mid n} \frac{1}{d} \left(\sum_{d' \mid d} \mu(d') r^{\frac{d}{d'}} \right) =$$

$$= \sum_{d \mid n} \frac{r^{\frac{d}{d'}}}{\frac{d}{d'}} \frac{\mu(d')}{d'} = \left[k := \frac{d}{d'} \right] =$$

$$= \sum_{d'k \mid n} \frac{r^{k}}{k} \frac{\mu(d')}{d'} = \sum_{k \mid n} \frac{r^{k}}{k} \sum_{d' \mid \frac{n}{k}} \frac{\mu(d')}{d'} =$$

$$= \sum_{k \mid n} \frac{r^{k}}{k} \frac{\varphi(\frac{n}{k})}{\frac{n}{k}} = \frac{1}{n} \sum_{k \mid n} r^{k} \varphi(\frac{n}{k})$$

где φ — функция Эйлера.

43 Функция Мёбиуса на ч.у.м. Совпадение функции Мёбиуса $\mu(1,n)$ на ч.у.м. $\langle \mathbf{N}, \vdots \rangle$ и обычной функции Мёбиуса $\mu(n)$ на \mathbb{N} (для всех n). Общая формула обращения Мёбиуса для частично упорядоченных множеств (б/д).

 (P, \preceq) - ч.у.м., причём $\forall p \in P \; \exists$ лишь конечное число $p' \in P : p' \preceq p$. Тогда ф-ия Мёбиуса на ч.у.м.:

$$x, y \in P : x \leq y, \mu(x, y) = \begin{cases} 1, x = y \\ -\sum_{x \leq z \prec y} \mu(x, z), x \neq y \end{cases}$$

"Классическая" функция Мёбиуса $\overline{\mu}(x)$ на \mathbb{N} :

$$\overline{\mu}(x) = \begin{cases} 1, x = 1\\ (-1)^s, x = p_1 \dots p_s\\ 0 \end{cases}$$

Докажем, что на ч.у.м. $\langle N, \vdots \rangle \mu(x,y) = \overline{\mu}(y/x)$.

▲ Доказательство мат. индукцией по величине дроби y/x $\mu(x,y) = 1 = \overline{\mu}(x/x) = \overline{\mu}(1);$ Теперь $x \prec y$, т.е. x|y, но $x \neq y \Rightarrow y = x * p_1^{a_1} * \cdots * p_s^{a_s}$ согласно основной теореме арифметики. Тогда $\mu(x,y) = -\sum_{x \preceq z \prec y} \mu(x,z)$, причём $z = x * p_1^{\beta_1} * \cdots * p_s^{\beta_s}, \ 0 \leqslant \beta_i \leqslant a_i,$

z/x < y/x. Тогда по предположению индукции

$$\mu(x,y) = -\sum_{x \preceq z \prec y} \mu(x,z) = -\sum_{x \preceq z \prec y} \overline{\mu}(z/x) = -\sum_{x \preceq z \prec y} \overline{\mu}(p_1^{\beta_1} * \cdots * p_s^{\beta_s}) = \begin{cases} -\sum_{i=0}^{s-1} (-1)^i C_s^i = (-1)^{s+2} = (-1)^{s+2} \\ -\sum_{i=0}^{s} (-1)^i C_s^i = (-1)^{s+2} \end{cases} = \begin{pmatrix} -\sum_{i=0}^{s-1} (-1)^i C_s^i = (-1)^{s+2} \\ -\sum_{i=0}^{s} (-1)^i C_s^i = (-1)^{s+2} \end{cases} = \begin{pmatrix} -\sum_{i=0}^{s-1} (-1)^i C_s^i = (-1)^{s+2} \\ -\sum_{i=0}^{s} (-1)^i C_s^i = (-1)^{s+2} \\ -\sum_{i=0}^{s} (-1)^i C_s^i = (-1)^{s+2} \end{cases}$$

Обобщённая формула обращения Мёбиуса для ч.у.м.: Пусть $g(y) = \sum_{x \preceq y} f(x)$. Тогда $f(y) = \sum_{x \prec y} \mu(x,y) g(x)$

- 44 Формула Мёбиуса на ч.у.м. Вывод формулы $\sum_{a \preceq z \preceq b} \mu(z,b) = \begin{cases} 1, a = b \\ 0, a < b \end{cases}$
- **A** 1. $a \prec b$ между а и b нет элементов ч.у.м. Тогда $\sum_{a \preceq z \preceq b} \mu(z,b) = \mu(a,b) + \mu(b,b) = -\sum_{a \preceq u \prec b} \mu(a,u) + 1 = -\mu(a,a) + 1 = -1 + 1 = 0$ база индукции. Индукция по длине максимальной цепи между данными элементами ч.у.м. а и b.

$$\sum_{a \preceq z \preceq b} \mu(z,b) = \mu(b,b) + \sum_{a \preceq z \prec b} \mu(z,b) = 1 - \sum_{a \preceq z \prec b} \sum_{z \preceq u \prec b} \mu(z,u) = 1 - \sum_{a \preceq u \prec b} \sum_{a \preceq z \prec u} \mu(z,u) = 1 - 1 - \sum_{a \prec u \prec b} \sum_{a \preceq z \prec u} \mu(z,u) = 1 - 1 - \sum_{a \prec u \prec b} \sum_{a \preceq z \prec u} \mu(z,u) = 1 - 1 - \sum_{a \prec u \prec b} \sum_{a \preceq z \prec u} \mu(z,u) = 1 - 1 - \sum_{a \prec u \prec b} \sum_{a \preceq z \prec u} \mu(z,u) = 1 - 1 - \sum_{a \prec u \prec b} \sum_{a \preceq z \prec u} \mu(z,u) = 1 - 1 - \sum_{a \prec u \prec b} \sum_{a \preceq z \prec u} \mu(z,u) = 1 - 1 - \sum_{a \prec u \prec b} \sum_{a \preceq z \prec u} \mu(z,u) = 1 - 1 - \sum_{a \prec u \prec b} \sum_{a \preceq z \prec u} \mu(z,u) = 1 - 1 - \sum_{a \prec u \prec b} \sum_{a \preceq z \prec u} \mu(z,u) = 1 - 1 - \sum_{a \prec u \prec b} \sum_{a \preceq z \prec u} \mu(z,u) = 1 - 1 - \sum_{a \prec u \prec b} \sum_{a \preceq z \prec u} \mu(z,u) = 1 - 1 - \sum_{a \prec u \prec b} \sum_{a \preceq z \prec u} \mu(z,u) = 1 - 1 - \sum_{a \prec u \prec b} \sum_{a \preceq z \prec u} \mu(z,u) = 1 - 1 - \sum_{a \prec u \prec b} \sum_{a \preceq z \prec u} \mu(z,u) = 1 - 1 - \sum_{a \prec u \prec b} \sum_{a \preceq z \prec u} \mu(z,u) = 1 - 1 - \sum_{a \prec u \prec b} \sum_{a \preceq z \prec u} \mu(z,u) = 1 - 1 - \sum_{a \prec u \prec b} \sum_{a \preceq z \prec u} \mu(z,u) = 1 - 1 - \sum_{a \prec u \prec b} \sum_{a \preceq z \prec u} \mu(z,u) = 1 - 1 - \sum_{a \prec u \prec b} \sum_{a \preceq u \prec b} \mu(z,u) = 1 - 1 - \sum_{a \prec u \prec b} \sum_{a \preceq u \prec b} \mu(z,u) = 1 - 1 - \sum_{a \prec u \prec b} \sum_{a \preceq u \prec b} \mu(z,u) = 1 - 1 - \sum_{a \prec u \prec b} \sum_{a \preceq u \prec b} \mu(z,u) = 1 - 1 - \sum_{a \preceq u \prec b} \sum_{a \preceq u \prec b} \mu(z,u) = 1 - 1 - \sum_{a \preceq u \prec b} \sum_{a \preceq u \prec b} \mu(z,u) = 1 - 1 - \sum_{a \preceq u \prec b} \sum_{a \preceq u \prec b} \mu(z,u) = 1 - 1 - \sum_{a \preceq u \prec b} \sum_{a \preceq u \prec b} \mu(z,u) = 1 - 1 - \sum_{a \preceq u \prec b} \sum_{a \preceq u \prec b} \mu(z,u) = 1 - 1 - \sum_{a \preceq u \prec b} \sum_{a \preceq u \prec b} \mu(z,u) = 1 - 1 - \sum_{a \preceq u \prec b} \sum_{a \preceq u \prec b} \mu(z,u) = 1 - 1 - \sum_{a \preceq u \prec b} \sum_{a \preceq u \prec b} \mu(z,u) = 1 - 1 - \sum_{a \preceq u \prec b} \sum_{a \preceq u \prec b} \mu(z,u) = 1 - 1 - \sum_{a \preceq u \prec b} \mu(z,u) = 1 - 1 - \sum_{a \preceq u \prec b} \mu(z,u) = 1 - \sum_{a \preceq u \prec b} \mu(z,u) = 1 - \sum_{a \preceq u \prec b} \mu(z,u) = 1 - \sum_{a \preceq u \prec b} \mu(z,u) = 1 - \sum_{a \preceq u \prec b} \mu(z,u) = 1 - \sum_{a \preceq u \prec b} \mu(z,u) = 1 - \sum_{a \preceq u \prec b} \mu(z,u) = 1 - \sum_{a \preceq u \prec b} \mu(z,u) = 1 - \sum_{a \preceq u \prec b} \mu(z,u) = 1 - \sum_{a \preceq u \prec b} \mu(z,u) = 1 - \sum_{a \preceq u \prec b} \mu(z,u) = 1 - \sum_{a \preceq u \prec b} \mu(z,u) = 1 - \sum_{a \preceq u \prec b} \mu(z,u) = 1 - \sum_{a \preceq u \prec b} \mu(z,u) = 1 - \sum_{a \preceq u \prec b} \mu(z,u) = 1 - \sum_{a \preceq u \prec b} \mu(z,u) = 1 - \sum_{a \preceq u \prec b} \mu(z,u) = 1 - \sum_{a \preceq u \prec b}$$

45 Формула Мёбиуса на ч.у.м. Обобщёная формула обращения Мёбиуса

Доказательство формулы Мёбиуса на ч.у.м.:

46 Передоказательство формулы включений и исключений при помощи формулы обращения Мёбиуса на ч.у.м. Определение множества X, порядка ≤. Вычисление функции Мёбиуса на данном ч.у.м.

Рассмотрим ч.у.м.: $(2^{\{1,\dots,n\}},\subseteq)$. Вычислим функцию Мёбиуса. Рассмотрим множества $A_1,\dots,A_n,A=A_1\cup\dots\cup A_n;\ P=\{1,\dots,n\}$.

Разберёмся с формулой Мёбиуса на данном ч.у.м. Рассмотрим $I'\subseteq I\subseteq\{1,\dots,n\}$. Тогда $\mu(I',I)=(-1)^{|I|-|I'|}$

lacktriangle Докажем индукцией по |I| - |I'|. База: I = I' (очевидна).

|I|-|I'|=k>0. Тогда $\mu(I',I)=-\sum_{I'\preceq I''\prec I}\mu(I',I'')$. $|I''|-|I'|< k\Rightarrow$ по предположению индукции $\mu(I',I'')=(-1)^{|I''|-|I'|}$. Очевидно, что $|I''|\geqslant |I'|$. Тогда возникает вопрос, если мы зафиксируем $l=|I''|, l=|I'|, |I'|+1,\ldots, |I'|+k-1$, сколькими способами можно будет выбрать I'' при фиксированном I'? Очевидно, $C_k^{l-|I'|}=C_k^m$, где $m=l-|I'|=0,\ldots,k-1$.

Тогда

$$\mu(I', I) = -\sum_{I' \prec I'' \prec I} \mu(I', I'') = -\sum_{m=0}^{k-1} (-1)^m C_k^m = -(-1)^{k+1} = (-1)^k$$

47 Передоказательство формулы включений и исключений при помощи формулы обращения Мёбиуса на ч.у.м. Формула для вычисления функции Мёбиуса на данном ч.у.м.(б/д). Вывод формулы включений и исключений.

 $f(I \subset P) :=$ количество элементов из A, которые могут не принадлежать $A_i, i \in I$, но обязательно принадлежат всем остальным. Так, f(P) = |A|; если же $I \neq P$: f(I) = $\left|\bigcap_{i\notin I}A_i\right|$

 $g(I \subset P) :=$ количество элементов из A, которые обязаны не принадлежать $A_i, i \in I$, и

обязаны принадлежать всем остальным. $f(I) = \sum_{I' \subseteq I} g(I'); g(\{1, \dots, n\}) = 0$ Формула обращения Мёбиуса: $f(y) = \sum_{x \preceq y} g(x) \Rightarrow g(y) = \sum_{x \preceq y} \mu(x, y) f(x)$. Применим её: $f(I) = \sum_{I' \subseteq I} g(I') \Rightarrow g(I) = \sum_{I' \subseteq I} \mu(I', I) f(I')$. Рассмотрим $I = \{1, \dots, n\}$. $0 = \sum_{I' \subseteq \{1, \dots, n\}} f(I') = |A| + \sum_{I' \subset \{1, \dots, n\}} \mu(I', \{1, \dots, n\}) |\bigcap_{i \notin I'} A_i|$.

$$|A| = -\sum_{I' \subset \{1,\dots,n\}} \mu(I', \{1,\dots,n\}) |\bigcap_{i \notin I'} A_i| = -\sum_{I' \subset \{1,\dots,n\}} (-1)^{n-|I'|} |\bigcap_{i \notin I'} A_i| =$$

$$= \sum_{I' \subset \{1,\dots,n\}} (-1)^{n-|I'|+1} |\bigcap_{i \notin I'} A_i| = \sum_{I'' \neq \emptyset} (-1)^{|I''|+1} |\bigcap_{i \in I''} A_i|, I'' = \{1,\dots,n\} \setminus I'$$

54 Формальные степенные ряды, операции над ними. Определение обратного ряда. Критерий обратимости ряда (задача 13.5). Примеры нахождения обратных рядов (задача 13.6).

Формальный степенной ряд (Φ CP) — формальное алгебраическое выражение вида: $F = \sum_{i=0}^{\infty} a_i x^i$, где коэффициенты a_i берутся из некоторого кольца R

Операции с ФСР:

- 1. сложение: $(a_0, a_1, ...) + (b_0, b_1, ...) = (a_0 + b_0, a_1 + b_1, ...)$
- 2. умножение: $(a_0, a_1, ...) * (b_0, b_1, ...) = (..., \sum_{i=0}^{\infty} a_i b_{n-i}, ...)$
- 3. деление: $\frac{A}{B} = C \Leftrightarrow A = B * C$
- 4. взятие производной: $(a_0, a_1, ...)' = (a_1, 2a_2, 3a_3, ...)$ (на лекции не было, но рассматривалось на семинаре)

Формальный степенной ряд A называется **обратимым**, если существует ряд B, такой что A * B = (1, 0, 0, ...), а ряд B называется **обратным** к ряду A.

Критерий обратимости ряда: ряд $(a_0, a_1, ...)$ обратим $\Leftrightarrow a_0$ обратим в кольце R $\blacktriangle \Rightarrow \Pi$ усть ряд A обратим и B - обратный. Так как A*B=(1,0,...), то $b_0=\frac{1}{a_0}\Rightarrow a_0$ обратим

← Начнем искать коэффициенты обратного ряда

$$b_0 = \frac{1}{a_0}$$

$$b_n = -\frac{1}{a_0} \sum_{i=0}^n a_i b_{n-i}, \forall n \geqslant 1$$

Следовательно, так как элемент a_0 обратим, такой ряд существует

Примеры нахождения обратных рядов

1.
$$\frac{1}{1-t}$$

$$(1-t)(1-t)^{-1} = (1,0,...), (1-t) = (1,-1,0,...)$$

$$a_0b_0 = 1 \Rightarrow b_0 = \frac{1}{a_0} = 1$$

$$a_0b_1 + b_0a_1 = 0 \Rightarrow b_1 = -\frac{a_1b_0}{a_0} = 1$$

$$a_0b_k + a_1b_{k-1} = 0 \Rightarrow b_k = -\frac{a_1b_{k-1}}{a_0} = b_{k-1} = 1$$

$$\mathbf{Otbet:} \ \frac{1}{1-t} = (1,1,1,...)$$

2.
$$\frac{1}{(1-t)^2}$$

I способ:
$$\frac{1}{(1-t)^2} = (\frac{1}{1-t})^2$$

(1 - t)(1 - t) = (1, 1, ...)(1, 1, ...) = (1, 2, 3, 4, ...)

II способ (через формальную производную): Заметим, что $(\frac{1}{(1-t)})' = \frac{1}{(1-t)^2} = (1,2,3,...)$. В принципе, такое взятие производной согласуется с введенными операциями, так что можно написать и так. Но можем доказать это иначе.

Продифференциируем выражение $(1-t)\frac{1}{(1-t)}=1$

 $(1-t)'\frac{1}{(1-t)}+(\frac{1}{1-t})'(1-t)=0$ (формула производной произведения доказывалась на семинаре просто через равенство коэффициентов)

$$\frac{\frac{1}{1-t}}{\frac{1}{(1-t)^2}} = (1-t)(\frac{1}{1-t})'$$

$$\frac{1}{(1-t)^2} = (\frac{1}{1-t})'$$

Ответ:
$$\frac{1}{(1-t)^2} = (1, 2, 3, 4, ...)$$

3. $\frac{1}{(1-t)^m}$

По аналогии с I способом пункта 2:

$$\frac{1}{(1-t)^m} = \underbrace{(1+t+t^2+\ldots)\ldots(1+t+t^2+\ldots)}_{m}$$

Заметим, что коэффициент при x^i равен количеству неупорядоченных разбиений числа i на ровно m слагаемых. Таким образом i-ый коэффициент ряда имеет вид C^i_{m+i-1}

Ответ: $(..., C^i_{m+i-1}, ...)$

55 Формальные степенные ряды, операции над ними. Определение обратного ряда. Пример деления в столбик. Комбинаторное тождество, получаемое с использованием формального степенного ряда $(\frac{1}{1-r^2})^2$

Пример деления в столбик:

Комбинаторное тождество:

$$\left(\frac{1}{1-x^2}\right)^2 = \left(\frac{1}{1-x}\right)^2 \left(\frac{1}{1+x}\right)^2$$

$$\left(\frac{1}{1-x}\right)^2 = 1 + 2x + 3x^2 + \dots + (n+1)x^n + \dots \text{ (см. билет 54)}$$

$$\left(\frac{1}{1+x}\right)^2 = 1 - 2x + 3x^2 - \dots + (-1)^n(n+1)x^n + \dots$$

Коэффициент исходного ряда при x^n , если мы считаем через произведение, равен:

$$1(n+1)(-1)^{n} + 2n(-1)^{n-1} + \dots + (n+1)1(-1)^{0} = \sum_{k=0}^{n} (k+1)(n+1-k)(-1)^{n-k}$$

Посчитаем формулу исходного ряда через квадрат обратного ряда:

$$\left(\frac{1}{1-x^2}\right)^2 = 1 + 2x^2 + 3x^4 + \dots + (n+1)x^{2n}$$

Таким образом, из равенства коэффициентов получаем тождество

$$\sum_{k=0}^{n} (k+1)(n+1-k)(-1)^{n-k} = \begin{cases} 0, \text{ если } n=2l+1\\ l+1, \text{ если } n=2l \end{cases}$$

Строгое формальное определение формального степенного ряда через последовательности. Пример вычисления суммы и произведения рядов

Рассмотрим множество последовательностей $(a_0, a_1, ..., a_n, ...)$ (здесь a_i берутся из множества чисел \mathbb{Q} , \mathbb{R} или \mathbb{C}) и введём на них операции сложения и умножения следующим образом:

$$(a_0,a_1,\ldots)+(b_0,b_1,\ldots)=(a_0+b_0,a_1+b_1,\ldots);$$
 $(a_0,a_1,\ldots)(b_0,b_1,\ldots)=(c_0,c_1,\ldots),$ где $c_n=\sum_{j=0}^n a_jb_{n-j}$

Выражения $a_0 \cdot 1 + a_1 \cdot t + a_2 \cdot t^2 + ... + a_n \cdot t^n + ...$ (с введёнными операциями сложения и умножения) называют формальными степенными рядами. a_0 называют свободным членом ряда.

Пример вычисления суммы и произведения рядов (задача 14.3):

$$F = 1 + t + t^2 + \dots, G = 1 - t + t^2 - t^3 + \dots$$

$$F + G = (1, 1, \dots) + (1, -1, 1, \dots) = (2, 0, 2, 0, \dots)$$

$$F \cdot G = (1, 1, \dots)(1, -1, 1, \dots) = (1, 1 - 1, 1 - 1 + 1, \dots, \sum_{i=1}^n g_i, \dots) = (1, 0, 1, 0, \dots)$$

$$2. \quad F = \sum_{k=0}^\infty \frac{1}{k!} t^k, \quad G = \sum_{k=0}^\infty \frac{(-1)^k}{k!} t^k$$

$$F \cdot G : \quad c_n = \sum_{k=0}^n \frac{(-1)^k}{k!(n-k)!} = \sum_{k=0}^n \frac{(-1)^k}{n!} C_n^k = \begin{cases} \frac{1}{n!} = 1, \text{ если } n = 0 \\ 0, \text{ если } n \geqslant 1 \end{cases}$$
 (из знакопеременной суммы см
$$F \cdot G = (1, 0, 0, \dots) = 1$$

$$F^2 : \quad c_n = \sum_{k=0}^n \frac{1}{k!(n-k)!} = \frac{1}{n!} \sum_{k=0}^n C_n^k = \frac{2^n}{n!} \text{ (из комбинаторного тождества)}$$

$$F^2 = \sum_{k=0}^\infty \frac{1}{k!} (2t)^k$$

59 Числа Каталана (определение через пары скобочных последовательностей). Рекуррентное соотношение для чисел Каталана.

 T_n - число правильных скобочных последовательностей с 2n скобками (n открывающих и n закрывающих). $T_0=1;\ T_n=T_{n-1}T_0+T_{n-2}T_1+\cdots+T_0T_{n-1}$. Докажем, что это так. Очевидно, что любая правильная скобочная последовательность начинается с открывающей скобки. Между ней и соответствующей ей закрывающей скобкой можно расположить правильную последовательность из 2k скобок (rде $0 \le k < n$). Отсюда и получается это рекуррентное соотношение.

60 Числа Каталана. Производящая функция для чисел Каталана.

Итак, числа Каталана имеют вид:

$$C_n = \begin{cases} 1, n = 0\\ \sum_{k=0}^{n-1} C_k C_{n-k-1} \end{cases}$$

Ищем производящую функцию в виде: $G(z) = \sum_{n=0}^{\infty} C_n z^n$. В реккурентном соотношении домножаем C_n на z^n : $z^0C_0 = z^0 = 1$, $z_nC_n = z^n\sum_{k=0}^{n-1} C_kC_{n-k-1}$. Выполним суммирование по всем п: $G(z) = 1 + \sum_{n=1}^{\infty} z^n\sum_{k=0}^{n-1} C_kC_{n-k-1}$. Заметим, что $G^2(z) = T_0 + (T_0T_1 + T_1T_0)z + \cdots + (T_0T_n + \cdots + T_nT_0)z^n = T + T_2z + \cdots + T_{n+1}z^n + \ldots$. Отсюда верно: $G(z) = 1 + z * G^2(z)$. Решая квадратное уравнение и проверяя, подходит ли при z = 0 коэффициент (надо не подставлять z=0, а переходить к пределу), получаем, что нам подходит лишь один корень: $G(z) = \frac{1-\sqrt{1-4z}}{2z}$

61 Числа Каталана. Формула для коэффициентов ряда $\sqrt{1+x}$

 $\sqrt{1+x}=(1+x)^{1/2}=1+C_{1/2}^1x+C_{1/2}^2x^2+\cdots+C_{1/2}^kx^k+\cdots; C_a^k=\frac{a!}{k!(a-k)!}=\frac{(a)(a-1)\dots(a-k+1)}{k!}$ $C_{\alpha+\beta}^n=\sum_{j=0}^nC_{\alpha}^jC_{\beta}^{n-j}$. \blacktriangle Введём понятие убывающего n-ого факториала: $a^n=(a)(a-1)\dots(a-n+1)$. Тогда наше равенство перепишется в виде: $\frac{(\alpha+\beta)^n}{n!}=\sum_{j=0}^n\frac{\alpha^j}{j!}\frac{\beta^{n-j}}{(n-j)!}$. Домножая обе части равенства на n!, получаем: $(\alpha+\beta)^n=\sum_{j=0}^n\alpha^j\beta^{n-j}C_n^j$. Последняя формула доказывается по индукции. Пусть это уже известно, тогда надо доказать, что $(\alpha+\beta)^{n+1}=\sum_{j=0}^{n+1}\alpha^j\beta^{n-j+1}C_{n+1}^j$. $(\alpha+\beta)^{n+1}=(\alpha+\beta)^n*(\alpha+\beta-n)$. Тогда изначальное равенство нам следует лишь домножить на $(\alpha+\beta-n)$: $\sum_{j=0}^n\alpha^j\beta^{n-j}C_n^j(\alpha+\beta-n)=\sum_{j=0}^n\alpha^j\beta^{n-j}C_n^j(\alpha-j+\beta-n+j)=\sum_{j=0}^n\alpha^{j+1}\beta^{n-j}C_n^j+\sum_{j=0}^n\alpha^j\beta^{n-j+1}C_n^j$. Поменяем счётчики и применим тождество: $\sum_{j=1}^{n-1}\alpha^j\beta^{n-j+1}C_n^{j-1}+\sum_{j=0}^n\alpha^j\beta^{n-j+1}C_n^j=\sum_{j=1}^n\alpha^j\beta^{n-j+1}C_{n+1}^j+\alpha^0\beta^{n+1}C_n^0+\alpha^{n+1}\beta^0C_n^n=\sum_{j=1}^n\alpha^j\beta^{n-j+1}C_{n+1}^j+\alpha^0\beta^{n+1}C_n^0+\alpha^{n+1}\beta^0C_n^n=\sum_{j=1}^n\alpha^j\beta^{n-j+1}C_{n+1}^j+\alpha^0\beta^{n+1}C_{n+1}^0+\alpha^{n+1}\beta^0C_n^n=\sum_{j=1}^n\alpha^j\beta^{n-j+1}C_{n+1}^j+\alpha^0\beta^{n+1}C_{n+1}^0+\alpha^{n+1}\beta^0C_n^n=\sum_{j=1}^n\alpha^j\beta^{n-j+1}C_{n+1}^j+\alpha^0\beta^{n+1}C_{n+1}^0+\alpha^{n+1}\beta^0C_n^n=\sum_{j=1}^n\alpha^j\beta^{n-j+1}C_{n+1}^j+\alpha^0\beta^{n+1}C_{n+1}^0+\alpha^{n+1}\beta^0C_n^n=\sum_{j=1}^n\alpha^j\beta^{n-j+1}C_{n+1}^j+\alpha^0\beta^{n+1}C_n^0+\alpha^{n+1}\beta^0C_n^n=\sum_{j=1}^n\alpha^j\beta^{n-j+1}C_{n+1}^j+\alpha^0\beta^{n+1}C_n^0+\alpha^{n+1}\beta^0C_n^n=\sum_{j=1}^n\alpha^j\beta^{n-j+1}C_{n+1}^j+\alpha^0\beta^{n+1}C_n^0+\alpha^{n+1}\beta^0C_n^n=\sum_{j=1}^n\alpha^j\beta^{n-j+1}C_{n+1}^j+\alpha^0\beta^{n-j+1}C_n^j+\alpha^{n+1}\beta^0C_n^n=\sum_{j=1}^n\alpha^j\beta^{n-j+1}C_n^j+\alpha^{n+1}\beta^0C_n^n=\sum_{j=1}^n\alpha^j\beta^{n-j+1}C_n^j+\alpha^{n+1}\beta^0C_n^n=\sum_{j=1}^n\alpha^j\beta^{n-j+1}C_n^j+\alpha^{n+1}\beta^0C_n^n=\sum_{j=1}^n\alpha^j\beta^{n-j+1}C_n^j+\alpha^{n+1}\beta^0C_n^n=\sum_{j=1}^n\alpha^j\beta^{n-j+1}C_n^j+\alpha^{n+1}\beta^0C_n^n=\sum_{j=1}^n\alpha^j\beta^{n-j+1}C_n^j+\alpha^{n+1}\beta^0C_n^n=\sum_{j=1}^n\alpha^j\beta^{n-j+1}C_n^j+\alpha^{n+1}\beta^0C_n^n=\sum_{j=1}^n\alpha^j\beta^{n-j+1}C_n^j+\alpha^{n+1}\beta^0C_n^n=\sum_{j=1}^n\alpha^j\beta^{n-j+1}C_n^j+\alpha^{n+1}\beta^0C_n^n=\sum_{j=1}^n\alpha^j\beta^{n-j+1}C_n^j+\alpha^{n+1}\beta^0C_n^n=\sum_{j=1}^n\alpha^j\beta^{n-j+1}C_n^j+\alpha^{n+1}\beta^0C_n^n=\sum_{j=1}^n\alpha^j\beta^{n-j+1}C_n^j+\alpha^{n+1}\beta^0C_n^n=\sum_$

62 Числа Каталана. Формула для коэффициентов ряда $\sqrt{1+x}$ (б/д). Вывод из неё формулы для чисел Каталана.

 $\sqrt{1-4x}=\sqrt{1+(-4x)}=1+C_{1/2}^1(-4x)+\cdots+C_{1/2}^n(-4x)^n+\cdots=1+(-4x)+\cdots+(1/2)*$ $(-1/2)*(-3/2)*\cdots*((3-2n)/2)(-4x)^n/n!=1-4x+\cdots+(-1)^{n-1}*2^{-n}*1*3*\cdots*(2n-3)*2*4*\cdots*(2n-2)(-4x)^n/(n!*2*4*\cdots*(2n-2))=1-4x+\cdots+(-1)^{n-1}*2^{-n}*2^{1-n}(2n-2)!(-4x)^n/(n!(n-1)!).$ Рассмотрим $1-\sqrt{1-4x}=4x+\cdots-(-1)^n(-1)^{n-1}*2^{1-2n}*2^{2n}(2n-2)!x^n/(n!(n-1)!)=4x+\cdots+2C_{2n-2}^{n-1}x^n/n;$ тогда $(1-\sqrt{1-4x})/2x=2+\cdots+C_{2n-2}^{n-1}x^{n-1}/n;$ но коэффициент при $x^{n-1}-T_{n-1}$ - n-1-ое число Каталана. Отсюда $T_n=C_{2n}^n/(n+1)$

66 Проблема Эрдеша—Гинзбурга—Зива (формулировка для d=2). Контрпример. История проблемы. Теорема Шевалле (формулировка).

Проблема Эрдеша–Гинзбурга–Зива (d=2):

$$(a_1, b_1), (a_2, b_2), ..., (a_m, b_m) \in \mathbb{Z}^2$$

 $\exists I \subset \{1, 2, ..., m\}, |I| = n : \sum_{i \in I} a_i \equiv 0(m); \sum_{i \in I} b_i \equiv 0(m)$

Необходимо найти минимальное m, при котором условие выполняется, как функцию от n. Простая оценка:

$$m \geqslant 4n - 3$$

Контрпример для m=4n-4: (0,0) n-1 раз, (0,1) n-1 раз, (1,0) n-1 раз, (1,1) n-1 раз

История проблемы:

- 1. 1983 Гипотеза Кемница: m = 4n 3
- 2. 1990 Алон и Дубинер доказали, что $m \leqslant 6n-5, \ n \geqslant n_0$
- 3. 2000 Роньяи доказал, что $m \leqslant 4n-2$
- 4. 2005 Райер доказал, что m = 4n 3

Теорема Шевалле: если $deg\ F < n,$ то число решений уравнения $F(x_1,...,x_n) \equiv 0(p):$ $N_p \equiv 0(p)$

67 Теорема Шевалле. Сведение к доказательству сравнения суммы.

A Заметим, что $N_p \equiv \sum_{x_1=1}^p ... \sum_{x_n=1}^p (1-F^{p-1}(x_1,...,x_n)) \ (p)$, так как мы складываем столько единиц, сколько есть наборов, где $F \equiv 0(p)$, а остальные обнуляются по малой теореме Ферма.

Разобьём на 2 суммы. Очевидно, что сумма с 1 делится на p, поэтому нам остается только доказать, что $\sum\limits_{x_1=1}^p ... \sum\limits_{x_n=1}^p (F^{p-1}(x_1,...,x_n)\equiv 0(p)$

Многочлен F^{p-1} можно представить как сумму мономов вида $x_1^{\alpha_1}...x_n^{\alpha_n}$, где $\alpha_1+...+\alpha_n < n(p-1)$ (так как степень многочлена могла увеличиться не более чем в p-1 раз). Тогда, если мы докажем, что любая сумма вида $\sum_{x_1=1}^p ... \sum_{x_n=1}^p x_1^{\alpha_1}...x_n^{\alpha_n} \equiv 0(p)$, то всё доказано. \blacksquare

68 Теорема Шевалле (формулировка). Доказательство сравнения с суммой. Теорема Варнинга (формулировка).

Пусть $p \geqslant 3$ и $\forall i \ \alpha_i \geqslant 1$. Тогда $\exists i: \ 1 \leqslant \alpha_i \leqslant p-2$ (если такого нет, то все $\alpha_i \geqslant p-1$, и $\alpha_1 + \ldots + \alpha_n \geqslant n(p-1)$ - противоречие).

Утверждение: $\exists a: (a,p) = 1$ и $a^{\alpha_i} \not\equiv 1(p) \ (1 \leqslant \alpha_i \leqslant p-2)$ (будет доказано в весеннем семестре)

Обозначим $S = \sum\limits_{x_i=1}^p x_i^{\alpha_i}.$ Тогда по утверждению существует такое a, что

$$a^{\alpha_i}S = \sum_{x_i=1}^p (ax_i)^{\alpha_i}$$

Так как a и p взаимно просты ax_i это просто какая-то перестановка \mathbb{Z}_p . Следовательно

$$a^{\alpha_i}S \equiv S(p)$$

$$(a^{\alpha_i} - 1)S \equiv 0(p)$$

В силу нашего выбора a первая скобка не сравнима с 0 по модулю p. Тогда $S \equiv 0(p)$ **Теорема Варнинга:** Если degF < n и $F(0,...,0) \equiv 0(p)$, то $\exists (x_1,...,x_n) \neq (0,...,0) : F(x_1,...,x_n) \equiv 0(p)$

69 Проблема Эрдеша—Гинзбурга—Зива при d=2 и n=p: нижняя и верхние оценки (формулировка). Теорема Варнинга (формулировка). Доказательство основной леммы.

Обобщенная теорема Варнинга: Пусть $F_1, ..., F_k$ - многочлены, причём $degF_1 + ... + degF_k < n$. Рассмотрим систему:

$$\begin{cases} F_1(x_1, ..., x_n) \equiv 0(p) \\ ... \\ F_k(x_1, ..., x_n) \equiv 0(p) \end{cases}$$

Если ей удовлетворяет набор (0, ..., 0), то существует набор $(x_1, ..., x_n) \not\equiv (0, ..., 0)$, удовлетворяющий системе.

Основная лемма: Пусть $(a_1,b_1),...,(a_{3p},b_{3p})$ - наборы, такие что $\sum_{i=1}^{3p}a_i \equiv \sum_{i=1}^{3p}b_i \equiv 0(p)$.

Тогда
$$\exists I \subset \{1,...,3p\}: \ |I|=p, \ \sum_{i\in I}^p a_i \equiv \sum_{i\in I}^p b_i \equiv 0(p)$$

\triangle Рассмотрим некоторый набор переменных $x_1, ..., x_{3p-1}$ и систему

$$\begin{cases} F_1(x_1, ..., x_{3p-1}) = \sum_{i=1}^{3p-1} a_i x_i^{p-1} \equiv 0(p) \\ F_2(x_1, ..., x_{3p-1}) = \sum_{i=1}^{3p-1} a_i x_i^{p-1} \equiv 0(p) \\ F_3(x_1, ..., x_{3p-1}) = \sum_{i=1}^{3p-1} x_i^{p-1} \equiv 0(p) \end{cases}$$

Очевидно, что $degF_1 + degF_2 + degF_3 = 3p - 3 < 3p - 1$, набор (0, ..., 0) удовлетворяет системе \Rightarrow по обобщённой теореме Варнинга существует набор $(x_1, ..., x_{3p-1}) \not\equiv (0, ..., 0)$, удовлетворяющий системе.

Рассмотрим $J \subset \{1, ..., 3p-1\}: \forall j \in J \ x_j \not\equiv 0$. Тогда

$$F_1(x_1,...,x_{3p-1})=\sum_{i=1}^{3p-1}a_ix_i^{p-1}\equiv\sum_{j\in J}a_j\equiv0(p)\ (\text{по малой теореме Ферма})$$

$$F_2(x_1,...,x_{3p-1})=\sum_{i=1}^{3p-1}b_ix_i^{p-1}\equiv\sum_{j\in J}b_j\equiv0(p)$$

$$F_3(x_1,...,x_{3p-1})=\sum_{i=1}^{3p-1}a_ix_i^{p-1}\equiv\sum_{j\in J}1=|J|\equiv0(p)$$

Из последнего равенства следует, что

- 1. либо |J| = p, тогда всё доказано
- 2. либо |J|=2p, тогда рассмотрим множество $I=\{1,...,3p\}\setminus J$. Получается, что |I|=p, $\sum_{i\in I}a_i=\sum_{i=1}^{3p}a_i-\sum_{j\in J}a_j\equiv 0(p)$, так как каждое из слагаемых сравнимо с 0 по модулю p (аналогично для b) \blacksquare
- 70 Проблема Эрдеша–Гинзбурга–Зива при d=2 и n=p: нижняя и верхние оценки (формулировка). Основная лемма (6/д), вывод из неё теоремы Роньяи.

Теорема Роньяи для $\mathbf{n} = \mathbf{p}$: $m \leqslant 4p - 2$

▲ Зафиксируем m = 4p - 2. Пусть нельзя выбрать набор, удовлетворяющий проблеме. Тогда $\forall I: |I| = p$ либо $\sum_{i \in I} a_i \not\equiv 0(p)$, либо $\sum_{i \in I} b_i \not\equiv 0(p)$. Тогда по основной лемме это же условие выполнено и для I: |I| = 3p.

Рассмотрим функцию

$$F(x_1, ..., x_m) = \left(\left(\sum_{i=1}^m a_i x_i \right)^{p-1} - 1 \right) \left(\left(\sum_{i=1}^m b_i x_i \right)^{p-1} - 1 \right) \left(\left(\sum_{i=1}^m x_i \right)^{p-1} - 1 \right) (\sigma_p(x_1, ..., x_m) - 2)$$

где $\sigma_p(x_1,...,x_m)=\sum_{I\subset\{1..m\},|I|=p}(\prod_{i\in I}x_i)$ - симметрический многочлен (сумма всех произведений по p множителей)

Подставим вместо $x_1, ..., x_n$ нули и единицы

- 1. единиц среди аргументов p или 3p штук. Тогда в силу предположения о том, что теорема неверна одна из первых двух скобок $\equiv 0(p)$ по малой теореме Ферма
- 2. число единиц не делится на p, то зануляется 3 скобка по малой теореме Ферма
- 3. единиц 2p штук: $\sigma_p(x_1,...,x_n)=C_{2p}^p\equiv 2(p)$ (доказано в билете $64)\Rightarrow$ последняя скобка $\equiv 0(p)$
- 4. все переменные равны нулю $\Rightarrow F = 2$

Раскроем скобки. Заменим слагаемое $Cx_1^{\alpha_1}...x_n^{\alpha_n}$ на $Cx_1...x_n$ и получим некоторую функцию F'. Тогда значение функции не изменится (так как $0^k=0$ и $1^k=1$).

Утверждение:
$$F'(x_1,...,x_m) = 2(1-x_1)...(1-x_m)$$

▲ Докажем, что мономы $x_{i_1}...x_{i_k}$ образуют базис в пространстве функций $\{0,1\}^m \to \mathbb{Z}_p$. Их линейная независимость очевидна. Также очевидно, что любую функцию можно выразить в базисе характеристических функций:

$$\chi_u(v) = \begin{cases} 1, u = v \\ 0, u \neq v \end{cases} = \prod_{i:u_i=1} v_i \prod_{j:u_j=0} (1 - v_j)$$

Если раскрыть правую часть, то получим линейную комбинацию мономов \Rightarrow любую функцию можно выразить через эти мономы \Rightarrow они образуют базис. Так как разложение по базису единственное, то функция F' представляется именно так \blacksquare

$$degF'=m=4p-2\leqslant degF$$
 (т.к. степень не могла увеличиться)

$$degF = (p-1) + (p-1) + (p-1) + p = 4p-3$$
 (сложили степени скобок)

Получаем, что $4p-2\leqslant 4p-3$ - противоречие \Rightarrow теорема верна