

Table of Content

O1
Business
Challenge

02 Exploratory Analysis

03

Feature Transformation & Engineering

04 Dimension Reduction Clustering & Classification Insights & Recommendations

Business Challenge

Employ data mining techniques to

- unravel underlying patterns of cancellation
- predict if each room reservation will be canceled

"Unpredictable" room reservation cancellation

- deteriorates customer satisfaction
- harms operational efficiency

Two Portuguese hotels (1 city, 1 resort) attempt to

- increase revenue
- improve cost-effectiveness

Exploratory Analysis

26 MonthsJUL 2015 - AUG 2017

City : Resort 61.5% : 38.5%

Lisbon, Portugal
Travel season Sep, Oct

Algarve, Portugal
Travel season Jun, Jul, Aug

1) Average Cancelled %:

Overall, both hotel types show quite <u>similar</u> <u>fluctuation patterns</u>, while the cancelled bookings percentage for **City Hotel** is consistently <u>higher</u>.

2) Average ADR:

There is <u>huge seasonality effect</u> (best time to visit) for **Resort Hotel** while the ADR fluctuation in **City Hotel** is comparably smaller.

3) Traveler demographic (geo):

Most bookings are from **European** countries, among which PRT (Portugal) makes up the biggest share (18%).

Exploratory Analysis

119k observation 30 original features 1 response (is_cancled)

Missing Value

< 1%: Mode Imputation

~15%: New Label

~95%: Drop Column

canceled : not cancelled = **37: 63**No imbalanced issue

The <u>more</u> requests, the <u>less</u> <u>likely</u> a traveler will cancel.

Among cancelled bookings, <u>online</u> <u>travel agencies</u> (OTAs) accounts for the largest proportion.

Travelers with cancellation records are **more likely** to cancel.

Feature Transformation & Engineering

1. Drop some features

Useless features

- meaningless features,
 agentID
- 2) some text columns that cannot be encoded

Features that will change over time

e.g., "booking_changes"

Highly- correlated pairs save the more informative one of each highly-correlated pair. E.g.:

Save: "arrival_date_week_num"
Drop: "arrival_date_year

2. Create some new features

- 1) adult + children ->
 is_family
- 2) adult + children + babies-> total_customer

•••

3. Feature Transformation

For categorical features:

- 1) Manually Encoding
- 2) Ordinal Encoding

For numerical features:

Log transformation for those with large variance

Dimension Reduction

After PCA

Conclusion:

- Save the first 15 principal components as a new dataset to do further clustering
- More exploration is needed to determine the underlying data patterns and structure

t-SNE

PCA

Clustering

Elbow Method

Business Traveller (Label 0): More likely to live in a city hotel

Self-driving Lover (Label 1): Needed car parking space

Group Travel Enthusiasts (Label 2): People love to travel in group

Loyal Traveller (Label 3): More likely to be a repeated guest

Classification

	Name	Time	Train_Accuracy	Test_Accuracy	CV_Accuracy	Train_Precision	Test_Precision	Train_Recal1	Test_Recal1	Train_F1	Test_F1
1	RandomForestClassifier	16.000975	0.995464	0.879941	0.87475	0.996373	0.868217	0.991319	0.799569	0.99384	0.83248
3	XGBClassifier	12.372164	0.882213	0.858658	0.858078	0.867409	0.835357	0.803717	0.77364	0.834349	0.803315
0	DecisionTreeClassifier	2.117703	0.995464	0.834711	0.82849	0.997633	0.772865	0.99006	0.788793	0.993832	0.780748
2	GradientBoostingClassifier	13.723186	0.829495	0.827198	0.827523	0.795211	0.794285	0.724639	0.724475	0.758287	0.757775
6	KNeighborsClassifier	0.014567	0.880919	0.822147	0.819846	0.858497	0.778535	0.811036	0.731344	0.834092	0.754202
4	LogisticRegression	0.903223	0.765746	0.764756	0.769465	0.713145	0.713563	0.611111	0.617255	0.658197	0.661924
5	SGDClassifier	18.601356	0.745706	0.741187	0.746661	0.746919	0.746104	0.470384	0.464305	0.577241	0.572401

Final Model: XGBoost Accuracy: 0.86 Precision: 0.84

Recall: 0.77

Important Features:

Required Parking Spaces, Previous Canceled, Market Segment...

Insights & Recommendations

Important Features:

- Required Parking Spaces
- Previous Canceled
- Market Segment

Customized modeling:

- Seasonal : High vs Low season
- Hotel-specific : City vs Resort

Based on important features:

- Parking: clear guidance
- Tighten: cancellation policies
- Channel: direct booking

For sustainable improvements:

- Incentives: for non-cancellation
- Marketing: cohort targeting
- Dis-association: OTAs

Thanks