

Answers and Solutions

Solution of trigonmetrical equations,

1. (b)
$$\sin\theta + \cos\theta = 1 \Rightarrow \frac{1}{\sqrt{2}} \sin\theta + \frac{1}{\sqrt{2}} \cos\theta = \frac{1}{\sqrt{2}}$$

Dividing by $\sqrt{1^2 + 1^2} = \sqrt{2}$,
we get $\sin\left(\theta + \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} = \sin\frac{\pi}{4}$
 $\Rightarrow \theta + \frac{\pi}{4} = n\pi + (-1)^n \frac{\pi}{4} \Rightarrow \theta = n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{4}$.

2. (c)
$$\sin^2 \theta = \frac{1}{4} = \sin^2 \frac{\pi}{6} \Rightarrow \theta = n\pi \pm \frac{\pi}{6}$$

3. (b)
$$\cos^2 \theta = \frac{3}{4} = \cos^2 \left(\frac{\pi}{6}\right) \Rightarrow \theta = n\pi \pm \frac{\pi}{6}$$

4. (b) On simplification, it reduces to
$$\cos 2\theta = \sin 2\theta$$

$$\Rightarrow \tan 2\theta = \tan \frac{\pi}{4} \Rightarrow 2\theta = n\pi + \frac{\pi}{4} \Rightarrow \theta = \frac{n\pi}{2} + \frac{\pi}{8}.$$

5. (d)
$$\frac{\sqrt{3}}{2}\cos\theta + \frac{1}{2}\sin\theta = \frac{\sqrt{2}}{2}$$
 {dividing
$$\sqrt{(\sqrt{3})^2 + 1^2} = 2$$

$$\Rightarrow \sin\left(\theta + \frac{\pi}{3}\right) = \frac{1}{\sqrt{2}} = \sin\left(\frac{\pi}{4}\right)$$

$$\Rightarrow \theta = n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{3}.$$

6. (b)
$$1-\cos^2\theta - 2\cos\theta + \frac{1}{4} = 0$$

$$\Rightarrow \cos^2\theta + 2\cos\theta - \frac{5}{4} = 0$$

$$\Rightarrow \cos\theta = \frac{-2\pm\sqrt{4+5}}{2} = -1\pm\frac{3}{2}$$

Since $|\cos\theta| \le 1$, hence $\cos\theta = -1 - \frac{3}{2}$ is ruled

$$\Rightarrow \cos\theta = -1 + \frac{3}{2} = \frac{1}{2} = \cos\left(\frac{\pi}{3}\right) \Rightarrow \theta = 2n\pi \pm \frac{\pi}{3}.$$

7. (c)
$$\sqrt{2} \sec\theta + \tan\theta = 1 \Rightarrow \frac{\sqrt{2}}{\cos\theta} + \frac{\sin\theta}{\cos\theta} = 1$$

 $\Rightarrow \sin\theta - \cos\theta = -\sqrt{2}$
Dividing by $\sqrt{2}$ on both sides, we get
$$\frac{1}{\sqrt{2}} \sin\theta - \frac{1}{\sqrt{2}} \cos\theta = -1$$

$$\Rightarrow \frac{1}{\sqrt{2}} \cos\theta - \frac{1}{\sqrt{2}} \sin\theta = 1 \Rightarrow \cos\left(\theta + \frac{\pi}{4}\right) = \cos(\theta)$$

$$\Rightarrow \theta + \frac{\pi}{4} = 2n\pi \pm 0 \Rightarrow \theta = 2n\pi - \frac{\pi}{4}.$$

8. (c)
$$2\tan^2\theta = \sec^2\theta \Rightarrow 2\tan^2\theta = \tan^2\theta + 1$$

$$\Rightarrow \tan^2 \theta = 1 = \tan^2 \left(\frac{\pi}{4}\right) \Rightarrow \theta = n\pi \pm \frac{\pi}{4}.$$

9. (b)
$$2\sin\theta + \tan\theta = 0$$
; $\sin\theta \left(2 + \frac{1}{\cos\theta}\right) = 0$
 $i.e.$, $\sin\theta = 0 \Rightarrow \theta = n\pi$
or $\frac{1}{\cos\theta} = -2 \Rightarrow \cos\theta = -\frac{1}{2} \Rightarrow \theta = 2n\pi \pm \left(\frac{2\pi}{3}\right)$.

10. (b)
$$\sqrt{3} \tan 2\theta + \sqrt{3} \tan 3\theta + \tan 2\theta \tan 3\theta = 1$$

$$\Rightarrow \frac{\tan 2\theta + \tan 3\theta}{1 - \tan 2\theta \tan 3\theta} = \frac{1}{\sqrt{3}} \qquad \tan 5\theta = \tan \frac{\pi}{6}$$

$$\Rightarrow 5\theta = n\pi + \frac{\pi}{6} \Rightarrow \theta = \left(n + \frac{1}{6}\right) \frac{\pi}{5}.$$

11. (a)
$$\tan 2\theta = \cot \theta$$
 $\tan 2\theta = \tan \left(\frac{\pi}{2} - \theta\right)$

$$\Rightarrow 2\theta = n\pi + \frac{\pi}{2} - \theta \Rightarrow \theta = \frac{n\pi}{3} + \frac{\pi}{6}.$$

12. (c)
$$\frac{1}{\sin\theta} = 1 + \frac{\cos\theta}{\sin\theta} \Rightarrow \sin\theta + \cos\theta = 1$$
$$\Rightarrow \cos\left(\theta - \frac{\pi}{4}\right) = \cos\frac{\pi}{4} \Rightarrow \theta - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4}$$
Hence $\theta = 2n\pi$ or $\theta = 2n\pi + \frac{\pi}{2}$.
But $\theta = 2n\pi$ is ruled out.

13. (d)
$$\frac{1-\cos 2\theta}{1+\cos 2\theta} = 3$$
 $\frac{1-(1-2\sin^2\theta)}{1+(2\cos^2\theta-1)} = 3$ $\Rightarrow \tan^2\theta = 3 \Rightarrow \theta = n\pi \pm \frac{\pi}{3}$.

14. (c)
$$\sec^2 \theta + \tan^2 \theta = \frac{5}{3}$$
, also $\sec^2 \theta - \tan^2 \theta = 1$

$$\Rightarrow \tan^2 \theta = \frac{1}{3} = \tan^2 \left(\frac{\pi}{6}\right) \Rightarrow \theta = n\pi \pm \frac{\pi}{6}.$$

15. (c)
$$\sin 4\theta = \cos \theta - \cos 7\theta$$
 $\sin 4\theta = 2\sin(4\theta)\sin(3\theta)$

$$\Rightarrow \sin 4\theta = 0 \Rightarrow 4\theta = n\pi \text{ or } \sin 3\theta = \frac{1}{2} = \sin\left(\frac{\pi}{6}\right)$$

$$\Rightarrow 3\theta = n\pi + (-1)^n \frac{\pi}{6} \Rightarrow \theta = \frac{n\pi}{4}, \frac{n\pi}{3} + (-1)^n \frac{\pi}{18}.$$

16. (a)
$$\frac{1 - \tan^2 \theta}{\sec^2 \theta} = \frac{1}{2} \Rightarrow \cos^2 \theta - \sin^2 \theta = \frac{1}{2}$$
$$\Rightarrow \cos 2\theta = \frac{1}{2} = \cos \left(\frac{\pi}{3}\right)$$
$$\Rightarrow 2\theta = 2n\pi \pm \frac{\pi}{3} \Rightarrow \theta = n\pi \pm \frac{\pi}{6}.$$

17. (d)
$$\cos^2 \theta - \frac{5}{2} \cos \theta + 1 = 0$$

$$\Rightarrow \cos \theta = \frac{(5/2) \pm \sqrt{(25/4) - 4}}{2} = \frac{5 \pm 3}{4}$$
Rejecting (+) sign,

$$\Rightarrow \cos\theta = \frac{1}{2} = \cos\left(\frac{\pi}{3}\right) \Rightarrow \theta = 2n\pi \pm \frac{\pi}{3}.$$

- **18.** (c) $\cot \theta + \tan \theta = 2 \csc \theta$ $\frac{2}{\sin \theta} = \frac{1}{\sin \theta \cos \theta}$ $\Rightarrow \cos \theta = \frac{1}{2}$ or $\sin \theta = 0 \Rightarrow \theta = 2n\pi \pm \frac{\pi}{3}$ or $\theta = n\pi$.
- **19.** (a) $\tan^2 \theta \tan \theta \sqrt{3} \tan \theta + \sqrt{3} = 0$ $\Rightarrow \tan \theta (\tan \theta - 1) - \sqrt{3} (\tan \theta - 1) = 0$ $\Rightarrow (\tan \theta - \sqrt{3}) (\tan \theta - 1) = 0 \Rightarrow \theta = n\pi + \frac{\pi}{3}, n\pi + \frac{\pi}{4}.$
- **20.** (a) It is obvious.
- **21.** (a) $4 4\cos^2\theta + 2(\sqrt{3} + 1)\cos\theta = 4 + \sqrt{3}$ $\Rightarrow 4\cos^2\theta - 2(\sqrt{3} + 1)\cos\theta + \sqrt{3} = 0$ $\Rightarrow \cos\theta = \frac{2(\sqrt{3} + 1) \pm \sqrt{4(\sqrt{3} + 1)^2 - 16\sqrt{3}}}{8}$ $\Rightarrow \cos\theta = \frac{\sqrt{3}}{2} \text{ or } 1/2 \Rightarrow \theta = 2n\pi \pm \frac{\pi}{6} \text{ or } 2n\pi \pm \pi/3.$
- **22.** (d) $\cot\theta + \cot\left(\frac{\pi}{4} + \theta\right) = 2 \Rightarrow \frac{\cos\theta}{\sin\theta} + \frac{\cos\{\frac{\pi}{4} / 4\} + \theta\}}{\sin\{\frac{\pi}{4} / 4\} + \theta\}} = 2$ $\Rightarrow \sin\left(\frac{\pi}{4} + 2\theta\right) = 2\sin\theta\sin\left(\frac{\pi}{4} + \theta\right)$ $\Rightarrow \sin\left(\frac{\pi}{4} + 2\theta\right) + \cos\left(\frac{\pi}{4} + 2\theta\right) = \frac{1}{\sqrt{2}}$ $\Rightarrow \cos 2\theta = \frac{1}{2} \Rightarrow 2\theta = 2n\pi \pm \frac{\pi}{3} \Rightarrow \theta = n\pi \pm \frac{\pi}{6}.$
- **23.** (a) $2\cos^2\theta 1 + 3\cos\theta = 0$ $\cos\theta = \frac{-3 \pm \sqrt{9 + 8}}{4} = \frac{-3 \pm \sqrt{17}}{4}$ $\Rightarrow \theta = 2n\pi \pm \cos^{-1}\left(\frac{-3 + \sqrt{17}}{4}\right)$, (Taking +ve sign).
- **24.** (a) $\tan m\theta = \tan n\theta \Rightarrow m\theta = p\pi + n\theta \Rightarrow \theta = \frac{p\pi}{(m-n)}$ Hence different values of θ are in A.P. with $\frac{\pi}{m-n}$ as common difference.
- **25.** (d) $\tan\theta \sqrt{2}\sec\theta = \sqrt{3} \Rightarrow \sin\theta \sqrt{3}\cos\theta = \sqrt{2}$ $\Rightarrow \sin\left(\theta - \frac{\pi}{3}\right) = \sin\frac{\pi}{4} \Rightarrow \theta = n\pi + (-1)^n \frac{\pi}{4} + \frac{\pi}{3}$
- **26.** (b) $\sin\theta + \cos\theta = \sqrt{2}\cos\alpha \Rightarrow \cos\left(\theta \frac{\pi}{4}\right) = \cos\alpha$ $\Rightarrow \theta - \frac{\pi}{4} = 2n\pi \pm \alpha \Rightarrow \theta = 2n\pi + \frac{\pi}{4} \pm \alpha$.
- **27.** (b) $\tan\theta + \tan 2\theta + \tan 3\theta = \tan\theta \tan 2\theta \tan 3\theta$ $\tan 6\theta = \frac{\tan\theta + \tan 2\theta + \tan 3\theta \tan\theta \tan 2\theta \tan 3\theta}{1 \sum \tan\theta \tan 2\theta}$ = 0, (from the given condition) $\Rightarrow 6\theta = n\pi \Rightarrow \theta = n\pi/6.$

Trick: In such type of problems, the general value of θ is given by $\frac{n\pi}{\text{sumof numbeof }\theta}$. So the general value of θ is $\frac{n\pi}{1+2+3} = \frac{n\pi}{6}$.

- **28.** (a) $\frac{3\sin(4-15^{o})}{\cos(4-15^{o})} = \frac{\sin(4+15^{o})}{\cos(4+15^{o})}$ $3\sin(4-15^{o})\cos(4+15^{o}) = \cos(4-15^{o})\sin(4+15^{o})$ $\Rightarrow 2\sin(4-15^{o})\cos(4+15^{o}) = \frac{1}{2}$ $\Rightarrow \sin 2A \sin 30^{o} = \frac{1}{2} \Rightarrow 2A = 2n\pi + \frac{\pi}{2}$ $\Rightarrow A = n\pi + \frac{\pi}{4}.$
- **29.** (b) $\tan\theta + \frac{1}{\tan\theta} = 2 \Rightarrow \tan^2\theta 2\tan\theta + 1 = 0$ $\Rightarrow \tan\theta = 1 = \tan\frac{\pi}{4} \Rightarrow \theta = n\pi + \frac{\pi}{4}$.
- **30.** (b) $2\cos^2\theta (\sqrt{2} + 1)\cos\theta 1 + \frac{(\sqrt{2} + 1)}{\sqrt{2}} = 0$ $\Rightarrow \cos\theta = \frac{(\sqrt{2} + 1) \pm \sqrt{(\sqrt{2} + 1)^2 - \frac{8}{\sqrt{2}}}}{4}$ $\Rightarrow \cos\theta = \cos\left(\frac{\pi}{4}\right) \Rightarrow \theta = 2n\pi \pm \frac{\pi}{4}.$

Trick: Since $\theta = \frac{\pi}{4}$ satisfies the equation and therefore the general value should be $2n\pi \pm \frac{\pi}{4}$.

31. (a) $\tan\theta = \cot\alpha \Rightarrow \tan\theta = \tan\left(\frac{\pi}{2} - \alpha\right)$ $\Rightarrow \theta = n\pi + \frac{\pi}{2} - \alpha$.

32. (a) $3(\sin\theta - \cos\theta) = 4\sin\theta\cos\theta$

 $3(\sin\theta - \cos\theta) = 2\sin 2\theta$ Squaring both sides, we get $9(1-S) = 4S^2$, where $S = \sin 2\theta$ or $4S^2 + 9S - 9 = 0$.

$$\therefore (S+3)(4S-3)=0 \text{ or } S=\frac{3}{4} \text{ as } S\neq -3$$
or $\sin 2\theta = \frac{3}{4} = \sin \alpha$

$$\therefore 2\theta = n\pi + (-1)^n \alpha \text{ or } \theta = \frac{1}{2} \left[n\pi + (-1)^n \sin^{-1} \left(\frac{3}{4} \right) \right].$$

- **33.** (b) $\cos p\theta = \cos q\theta \Rightarrow p\theta = 2n\pi \pm q\theta \Rightarrow \theta = \frac{2n\pi}{p\pm a}$.
- **34.** (b) $4 + 2\sin^2 x = 5$ $\Rightarrow \sin^2 x = \frac{1}{2} = \sin^2 \frac{\pi}{4} \Rightarrow x = n\pi \pm \frac{\pi}{4}.$

35. (b) $3\sin\alpha - 4\sin^3\alpha = 4\sin\alpha(\sin^2x - \sin^2\alpha)$

$$\therefore \sin^2 x = \left(\frac{\sqrt{3}}{2}\right)^2 \qquad \sin^2 x = \sin^2 \pi / 3$$
$$x = n\pi \pm \pi / 3.$$

- **36.** (a) We have $\frac{\pi}{4}\cot\theta = \frac{\pi}{2} \frac{\pi}{4}\tan\theta \Rightarrow \tan\theta + \cot\theta = 2$ $\Rightarrow \sin 2\theta = 1 = \sin\frac{\pi}{2} \Rightarrow \theta = n\pi + \frac{\pi}{4}.$
- **37.** (d) $2\sin^2\theta 3\sin\theta 2 = 0 \Rightarrow (2\sin\theta + 1)(\sin\theta 2) = 0$ $\Rightarrow \sin\theta = -\frac{1}{2}, \quad (\because \sin\theta \neq 2) \Rightarrow \sin\theta = \sin\left(\frac{-\pi}{6}\right)$ $\Rightarrow \theta = n\pi + (-1)^n \left(\frac{-\pi}{6}\right) \Rightarrow \theta = n\pi + (-1)^{n+1} \frac{\pi}{6}$ $\Rightarrow \theta = n\pi + (-1)^n \frac{7\pi}{6}, \quad \left\{\because \frac{-\pi}{6} \text{ is equivalent to } \frac{7\pi}{6}\right\}.$
- **38.** (a) Let $\sqrt{3} + 1 = r\cos\alpha$ and $\sqrt{3} 1 = r\sin\alpha$. Then $r = \sqrt{(\sqrt{3} + 1)^2 + (\sqrt{3} - 1)^2} = 2\sqrt{2}$ $\tan\alpha = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = \frac{1 - (1/\sqrt{3})}{1 + (1/\sqrt{3})} = \tan\left(\frac{\pi}{4} - \frac{\pi}{6}\right) \Rightarrow \alpha = \frac{\pi}{12}$ The given equation reduces to $2\sqrt{2}\cos\theta - \alpha = 2 \Rightarrow \cos\left(\theta - \frac{\pi}{12}\right) = \cos\frac{\pi}{4}$ $\Rightarrow \theta - \frac{\pi}{12} = 2n\pi \pm \frac{\pi}{4} \Rightarrow \theta = 2n\pi \pm \frac{\pi}{4} + \frac{\pi}{12}.$
- **39.** (b) $\tan 3x = 1 \Rightarrow \tan 3x = \tan \frac{\pi}{4}$ $\Rightarrow 3x = n\pi + \frac{\pi}{4} \Rightarrow x = \frac{n\pi}{3} + \frac{\pi}{12}$
- **40.** (b) The given equation can be written as $\Rightarrow \frac{\sin^2 \theta}{\cos \theta} + \sqrt{3} \tan \theta = 0 \Rightarrow \tan \theta \sin \theta + \sqrt{3} \tan \theta = 0$ $\tan \theta (\sin \theta + \sqrt{3}) = 0 \Rightarrow \tan \theta = 0 \Rightarrow \theta = n\pi, n \in \mathbb{Z}.$
- **41.** (b) Using $\sec 2\theta = \frac{1}{\cos 2\theta} = \frac{1 + \tan^2 \theta}{1 \tan^2 \theta}$, we can write the given equation as $\tan^2 \theta + \frac{1 + \tan^2 \theta}{1 \tan^2 \theta} = 1$. $\Rightarrow \tan^2 \theta (1 \tan^2 \theta) + 1 + \tan^2 \theta = 1 \tan^2 \theta$ $\Rightarrow 3\tan^2 \theta \tan^4 \theta = 0 \Rightarrow \tan^2 \theta (3 \tan^2 \theta) = 0$ $\Rightarrow \tan \theta = 0 \text{ or } \tan \theta = \pm \sqrt{3}$ Now $\tan \theta = 0 \Rightarrow \theta = m\pi$, where m is an integer and $\tan \theta = \pm \sqrt{3} = \tan \frac{\pi}{3}$, where n is an integer. Thus $\theta = n\pi$, $n\pi \pm \frac{\pi}{3}$, where m and n are integers.
- **42.** (d) $\cos 2\theta = \cos \left(\frac{\pi}{2} \alpha\right) \Rightarrow 2\theta = 2n\pi \pm \left(\frac{\pi}{2} \alpha\right)$

$$\Rightarrow \theta = n\pi \pm \left(\frac{\pi}{4} - \frac{\alpha}{2}\right).$$

- **43.** (a) $\sin 6\theta + \sin 4\theta + \sin 2\theta = 0$ $\Rightarrow 2\sin 4\theta \cos 2\theta + \sin 4\theta = 0$ $\Rightarrow \sin 4\theta (2\cos 2\theta + 1) = 0$ $\Rightarrow 2\cos 2\theta = -1 \Rightarrow \cos 2\theta = -\frac{1}{2}$ $\Rightarrow 2\theta = 2n\pi \pm \frac{2\pi}{3} \Rightarrow \theta = n\pi \pm \frac{\pi}{3}$ and $\sin 4\theta = 0 \Rightarrow 4\theta = n\pi \Rightarrow \theta = \frac{n\pi}{4}$ $\theta = \frac{n\pi}{4}$ or $n\pi \pm \frac{\pi}{3}$.
- **44.** (c) $\sin^2 \theta + \sin \theta 2 = 0 \Rightarrow (\sin \theta 1)(\sin \theta + 2) = 0$ $\Rightarrow \sin \theta \neq -2$, $\therefore \sin \theta = 1 = \sin \pi / 2$ $\Rightarrow \theta = n\pi + (-1)^n \frac{\pi}{2}$.
- **45.** (a) $\tan 5\theta = \tan \left(\frac{\pi}{2} 2\theta\right) \Rightarrow 5\theta = n\pi + \frac{\pi}{2} 2\theta$ $\Rightarrow 7\theta = n\pi + \frac{\pi}{2} \Rightarrow \theta = \frac{n\pi}{7} + \frac{\pi}{14}$.
- **46.** (b) $3\sin^2 x + 10\cos x 6 = 0$ $3(1 - \cos^2 x) + 10\cos x - 6 = 0$ On solving, $(\cos x - 3)(3\cos x - 1) = 0$ Either $\cos x = 3$, (which is not possible) or $\cos x = \frac{1}{3} \implies x = 2n\pi \pm \cos^{-1}(1/3)$.
- **47.** (a,b) $\cos\theta + \cos 2\theta + \cos 3\theta = 0$ $(\cos\theta + \cos 3\theta) + \cos 2\theta = 0$ $2\cos 2\theta \cos\theta + \cos 2\theta = 0$ $\cos 2\theta (2\cos\theta + 1) = 0$ $\cos 2\theta = 0 = \cos\frac{\pi}{2}$ $\theta = \frac{\pi}{4}$ $\theta = 2m\pi \pm \frac{\pi}{4}$ or $\cos\theta = \frac{-1}{2} = \cos\frac{2\pi}{3}$ $\theta = 2m\pi \pm \frac{2\pi}{3}$.
- **48.** (c) $2\sqrt{3}\cos^2\theta = \sin\theta$ $2\sqrt{3}\sin^2\theta + \sin\theta 2\sqrt{3} = 0$ $\sin\theta = \frac{-1 \pm 7}{4\sqrt{3}} \Rightarrow \sin\theta = \frac{-8}{4\sqrt{3}}$, (Impossible) and $\sin\theta = \frac{6}{4\sqrt{3}} = \frac{\sqrt{3}}{2}$ $\theta = n\pi + (-1)^n \frac{\pi}{3}$.
- **49.** (a) On expanding determinant, $\cos^2(A+B) + \sin^2(A+B) + \cos 2B = 0$ $1 + \cos 2B = 0 \text{ or } \cos 2B = \cos \pi$ or $2B = 2n\pi + \pi \text{ or } B = (2n+1)\frac{\pi}{2}, n \in \mathbb{Z}$
- **50.** (a) $\sin 2\theta = \cos 3\theta \Rightarrow 3\theta = 2n\pi \pm \left(\frac{\pi}{2} 2\theta\right)$ $\Rightarrow \theta = \frac{2n\pi}{5} + \frac{\pi}{10} \text{ or } \theta = 2n\pi - \frac{\pi}{2}.$

Since
$$\theta$$
 is acute $\theta = \frac{\pi}{10}$ $\sin \theta = \frac{\sqrt{5} - 1}{4}$.

51. (a) The given equation can be put in the form $4\sin^4 x = 1 - \cos^4 x = (1 - \cos^2 x)(1 + \cos^2 x)$ $\Rightarrow \sin^2 x[4\sin^2 x - 1 - (1 - \sin^2 x)] = 0$ $\Rightarrow \sin^2 x[5\sin^2 x - 2] = 0 \Rightarrow \sin x = 0 \text{ or } \sin x = \pm \sqrt{2/5} \text{ .}$ Hence $x = n\pi$ is the required answer.

52. (a) We have
$$\cos 3x + \sin \left(2x - \frac{7\pi}{6}\right) = -2$$

$$\Rightarrow 1 + \cos 3x + 1 + \sin \left(2x - \frac{7\pi}{6}\right) = 0$$

$$\Rightarrow (1 + \cos 3x) + 1 - \cos \left(2x - \frac{2\pi}{3}\right) = 0$$

$$\Rightarrow 2\cos^2 \frac{3x}{2} + 2\sin^2 \left(x - \frac{\pi}{3}\right) = 0$$

$$\Rightarrow \cos \frac{3x}{2} = 0 \text{ and } \sin \left(x - \frac{\pi}{3}\right) = 0$$

$$\Rightarrow \frac{3x}{2} = \frac{\pi}{2}, \frac{3\pi}{2}, \dots \text{ and } x - \frac{\pi}{3} = 0,$$

$$\pi, 2\pi, \dots \Rightarrow x = \frac{\pi}{2}$$

Therefore, the general solution of
$$\cos \frac{3x}{2} = 0$$
 and $\sin \left(x - \frac{\pi}{3}\right) = 0$ is $x = 2k\pi + \frac{\pi}{3} = \frac{\pi}{3}(6k+1)$, where

- **53.** (b) After solving the determinant $2\cos\theta = 0$ $\theta = 2n\pi \pm \frac{\pi}{2}$.
- **54.** (a) $\tan \beta x 2x = \tan x = 1$ $x = n\pi + \frac{\pi}{4}$ But this value does not satisfy the given equation. Hence option (a) is the correct answer.
- **55.** (c) Given relation is $\tan\theta + \tan2\theta + \sqrt{3}\tan\theta \tan2\theta = \sqrt{3}$ $\tan\theta + \tan2\theta = \sqrt{3}(1 \tan\theta \tan2\theta)$ $\frac{\tan\theta + \tan2\theta}{1 \tan\theta \tan2\theta} = \sqrt{3}$ $\tan\theta = \tan(\pi/3)$ $3\theta = n\pi + \frac{\pi}{3}$ $\theta = (3n+1)\frac{\pi}{9}$.
- **56.** (b) We have, $1-\cos\theta = \sin\theta . \sin\frac{\theta}{2}$ $2\sin^2\frac{\theta}{2} = 2\sin\frac{\theta}{2}.\cos\frac{\theta}{2}.\sin\frac{\theta}{2}$ $2\sin^2\frac{\theta}{2}\left[1-\cos\frac{\theta}{2}\right] = 0 \qquad \sin\frac{\theta}{2} = 0 \quad \text{or}$

$$2\sin^2\frac{\theta}{4} = 0$$

$$\sin\frac{\theta}{2} = 0 \text{ or } \sin\frac{\theta}{4} = 0 \qquad \frac{\theta}{2} = k\pi \text{ or } \frac{\theta}{4} = k\pi.$$

Hence, $\theta=2k\pi$ or $\theta=4k\pi$, $k\in I$.

57. (b)
$$\frac{\tan 3\theta - 1}{\tan 3\theta + 1} = \sqrt{3}$$

$$\frac{\tan 3\theta - \tan (\pi/4)}{1 + \tan 3\theta \cdot \tan (\pi/4)} = \sqrt{3} \qquad \tan \left(3\theta - \frac{\pi}{4}\right) = \tan \frac{\pi}{3}$$

$$3\theta - (\pi/4) = n\pi + (\pi/3)$$

$$3\theta = n\pi + \frac{7\pi}{12} \qquad \theta = \frac{n\pi}{3} + \frac{7\pi}{36}.$$

- **58.** (a) $2 2\sin^2 x + 3\sin x 3 = 0$ $\Rightarrow (2\sin x - 1)(\sin x - 1) = 0 \Rightarrow \sin x = \frac{1}{2}$ or $\sin x = 1$ $\Rightarrow x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{\pi}{2}$ *i.e.*, 30°, 150°, 90°.
- **59.** (d) No solution as $|\sin x| \le 1$, $|\cos x| \le 1$ and both of them do not attain their maximum value for the same angle.

Aliter: Since the maximum value of $(\sin x + \cos x)$ = $\sqrt{1^2 + 1^2} = \sqrt{2}$.

Hence there is no 'x' satisfying $\sin x + \cos x = 2$.

60. (a)
$$2-2\cos^2\theta = 4+3\cos\theta$$
 \Rightarrow $2\cos^2\theta + 3\cos\theta + 2 = 0$ \Rightarrow $\cos\theta = \frac{-3\pm\sqrt{9-16}}{4}$,

which is imaginary, hence no solution.

- **61.** (d) $\sin x \cos x = 2 \text{ or } \sin 2x = 4$, which is impossible.
- **62.** (c) $\sec\theta + \tan\theta = \sqrt{3}$ (i) Also we have $\sec^2\theta \tan^2\theta = 1$ (ii)

$$\Rightarrow$$
 se θ - tan $\theta = \frac{1}{\sqrt{3}}$ (iii)

Now (i) and (iii) gives

$$\tan \theta = \frac{1}{2} \left(\sqrt{3} - \frac{1}{\sqrt{3}} \right) = \frac{1}{\sqrt{3}} = \tan \left(\frac{\pi}{6} \right)$$
$$\Rightarrow \theta = n\pi + \frac{\pi}{6}.$$

 \therefore Solutions for $0 \le \theta \le 2\pi$ are $\frac{\pi}{6}$ and $\frac{7\pi}{6}$

Hence there are two solutions.

63. (c)
$$\sin 5x + \sin 3x + \sin x = 0$$

 $\Rightarrow -\sin 3x = \sin 5x + \sin x = 2\sin 3x \cos 2x$
 $\Rightarrow \sin 3x = 0 \Rightarrow x = 0$
or $\cos 2x = -\frac{1}{2} = -\cos\left(\frac{\pi}{3}\right) = \cos\left(\pi - \frac{\pi}{3}\right)$
 $\Rightarrow 2x = 2n\pi \pm \left(\pi - \frac{\pi}{3}\right) \Rightarrow x = n\pi \pm \left(\frac{\pi}{3}\right)$

For x lying between 0 and $\frac{\pi}{2}$, we get $x = \frac{\pi}{3}$.

Trick: Check with options.

64. (a) $f(x) = \cos x - x + \frac{1}{2}$, $f(0) = \frac{3}{2} > 0$

$$f\left(\frac{\pi}{2}\right) = 0 - \frac{\pi}{2} + \frac{1}{2} = \frac{1-\pi}{2} < 0$$
, $\left(\because \pi = \frac{22}{7} \text{ nearly}\right)$

One root lies in the interval $\left[0, \frac{\pi}{2}\right]$.

65. (c) $\sec x \cos 5x = -1 \Rightarrow \cos 5x = -\cos x$

$$\Rightarrow 5x = 2n\pi \pm (\pi - x) \Rightarrow x = \frac{(2n+1)\pi}{6} \text{ or } \frac{(2n-1)\pi}{4}$$

Hence $x = \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \frac{5\pi}{6}, \frac{5\pi}{4}, \frac{7\pi}{6}, \frac{7\pi}{4}, \frac{9\pi}{6}, \frac{11\pi}{6}$.

66. (c) $\sin^4 x + \cos^4 x + \sin 2x + \alpha = 0$

$$(\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x + \sin 2x + \alpha = 0$$

 $\sin^2 2x - 2\sin 2x - 2 - 2\alpha = 0$

Let $\sin 2x = y$. Then the given equation becomes $y^2 - 2y - 2(1 + \alpha) = 0$,

where $-1 \le y \le 1$, $(:: -1 \le \sin 2x \le 1)$

For real, discriminant $\geq 0 \Rightarrow 3+2\alpha \geq 0 = 3$

 $\alpha \ge -\frac{3}{2}$

Also $-1 \le y \le 1 \Rightarrow -1 \le 1 - \sqrt{3 + 2\alpha} \le 1$

 \Rightarrow 3+2 $\alpha \le 4 \Rightarrow \alpha \le \frac{1}{2}$. Thus $-\frac{3}{2} \le \alpha \le \frac{1}{2}$.

67. (b) $3\cos\theta + 4\sin\theta = 5\left[\frac{3}{5}\cos\theta + \frac{4}{5}\sin\theta\right] = 5\cos\theta - \alpha$

where
$$\cos\alpha = \frac{3}{5}$$
, $\sin\alpha = \frac{4}{5}$

Now $3\cos\theta + 4\sin\theta = k$

$$5\cos\theta - \alpha = k \Rightarrow \cos\theta - \alpha = \pm 1$$

$$\Rightarrow \theta - \alpha = 0^{\circ}, 180^{\circ} \Rightarrow \theta = \alpha, 180^{\circ} + \alpha$$
.

- **68.** (c) $3\sin^2 x 7\sin x + 2 = 0$
 - \Rightarrow 3sin² x-6sinx-sinx+2=0
 - \Rightarrow 3sin(sinx-2)-(sinx-2)=0

$$\Rightarrow$$
 $(3\sin x - 1)(\sin x - 2) = 0 \Rightarrow \sin x = \frac{1}{2}$ or 2

 $\Rightarrow \sin x = \frac{1}{3}, (\because \sin x \neq 2)$

Let $\sin^{-1}\frac{1}{3} = \alpha$, $0 < \alpha < \frac{\pi}{2}$ are the solutions in

 $[0, 5\pi]$. Then α , $\pi - \alpha$, $2\pi + \alpha$, $3\pi - \alpha$, $4\pi + \alpha$, $5\pi - \alpha$ are the solutions in $[0, 5\pi]$.

 \therefore Required number of solutions = 6.

69. (d) Given equation is $\sqrt{3} \sin x + \cos x = 4$

which is of the form $a\sin x + b\cos x = c$ with $a = \sqrt{3}$, b = 1, c = 4.

Here $a^2 + b^2 = 3 + 1 = 4 < c^2$, therefore the given equation has no solution.

70. (d) $3\cos x + 4\sin x = 6$

$$\frac{3}{5}\cos x + \frac{4}{5}\sin x = \frac{6}{5}$$

 $\cos(x-\theta) = \frac{6}{5}$

[wher $\Theta = \cos^{-1}(3/5)$]

So, that equation has no solution.

71. (a) Given $\sin x + \sin y + \sin z = -3$ is satisfied only when $x = y = z = \frac{3\pi}{2}$, for $x, y, z \in [0, 2\pi]$.

72. (d) $\sin 2\theta = \cos \theta \Rightarrow \cos \theta = \cos \left(\frac{\pi}{2} - 2\theta\right)$

$$\Rightarrow \theta = 2n\pi \pm \left(\frac{\pi}{2} - 2\theta\right) \Rightarrow \theta \pm 2\theta = 2n\pi \pm \frac{\pi}{2}$$

i.e.,
$$3\theta = 2n\pi + \frac{\pi}{2} \Rightarrow \theta = \frac{1}{3} \left(2n\pi + \frac{\pi}{2} \right)$$

and
$$-\theta = 2n\pi - \frac{\pi}{2} \Rightarrow \theta = -\left(2n\pi - \frac{\pi}{2}\right)$$

Hence value of θ between 0 and π are $\frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}$

i.e., $30^{\circ}, 90^{\circ}, 150^{\circ}$.

73. (b) $2-2\cos^2\theta = 3\cos\theta$

$$2\cos^2 + 3\cos\theta - 2 = 0$$

$$\cos\theta = \frac{-3 \pm \sqrt{9 + 16}}{4} = \frac{-3 \pm 5}{4}$$

Neglecting (-) sign, we get

$$\cos\theta = \frac{1}{2} = \cos\left(\frac{\pi}{3}\right) \implies \theta = 2n\pi \pm \frac{\pi}{3}.$$

The values of θ between 0 and 2π are $\frac{\pi}{3}$, $\frac{5\pi}{3}$.

74. (d) $\cos 6\theta + \cos 4\theta + \cos 2\theta + 1 = 0$

$$\Rightarrow$$
 2cos² 3 θ + 2cos3 θ .cos θ = 0

$$\Rightarrow$$
 4 cos3 θ cos2 θ cos θ = 0

$$\Rightarrow$$
 $3\theta = (2n+1)\frac{\pi}{2}$; $2\theta = (2n+1)\frac{\pi}{2}$ and $\theta = (2n+1)\frac{\pi}{2}$

 $\Rightarrow \theta = 30^{\circ}.90^{\circ}.150^{\circ}.45^{\circ}.135^{\circ}.$

75. (d) $\cos \theta + 2 = 0$

$$\Rightarrow$$
 $\sin\theta = -\frac{1}{2} \Rightarrow \theta = 210^{\circ} \text{ or } 330^{\circ}.$

76. (b) We have $1-\cos^2 2x + 1-\cos^2 2x = 2$ or $\cos^2 2x (\cos^2 2x + 1) = 0$

:.
$$\cos 2x = 0, -1, : 2x = \left(n + \frac{1}{2}\right)\pi \text{ or } (2n+1)\pi$$

$$\Rightarrow x = (2n+1)\frac{\pi}{4} \operatorname{or}(2n+1)\frac{\pi}{2}$$

Now put n = -2, -1, 0, 1, 2

$$\therefore \qquad x = \frac{-3\pi}{4}, \frac{-\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4} \qquad \text{and}$$

$$\frac{-3\pi}{2}$$
, $\frac{-\pi}{2}$, $\frac{\pi}{2}$, $\frac{3\pi}{2}$, $\frac{5\pi}{2}$

Since $-\pi \le x \le \pi$, therefore $x \pm \frac{\pi}{4}, \pm \frac{\pi}{2}, \pm \frac{3\pi}{4}$ only.

77. (a)
$$\sin 7\theta + \sin \theta - \sin 4\theta = 0$$

 $\Rightarrow 2\sin 4\theta \cos 3\theta - \sin 4\theta = 0$
 $\Rightarrow \sin 4\theta (2\cos 3\theta - 1) = 0 \Rightarrow \sin 4\theta = 0, \cos 3\theta = \frac{1}{2}$
Now $\sin 4\theta = 0 \Rightarrow 4\theta = \pi \Rightarrow \theta = \frac{\pi}{4}$.
and $\cos 3\theta = \frac{1}{2} \Rightarrow 3\theta = \frac{\pi}{3} \Rightarrow \theta = \frac{\pi}{9}$.

78. (c) The expression is
$$\frac{(1+\tan x + \tan^2 x)(1+\tan^2 x - \tan x)}{\tan^2 x}$$

$$= \frac{(1+\tan^2 x)^2 - \tan^2 x}{\tan^2 x}$$

Obviously, $1+\tan^2 x \ge \tan^2 x$, $\forall x$. Hence it is positive for all value of x.

79. (d)
$$5\cos 2\theta + 2\cos^2 \frac{\theta}{2} + 1 = 0$$

 $\Rightarrow 5(2\cos^2 \theta - 1) + (1 + \cos \theta) + 1 = 0$
 $\Rightarrow 10\cos^2 \theta + \cos \theta - 3 = 0$
 $\Rightarrow (5\cos \theta + 3)(2\cos \theta - 1) = 0$
 $\Rightarrow \cos \theta = \frac{1}{2}, \cos \theta = -\frac{3}{5} \Rightarrow \theta = \frac{\pi}{3}, \pi - \cos^{-1}\left(\frac{3}{5}\right).$

- **80.** (c) Given, $\cos\theta = \frac{-1}{2}$ and $0^{\circ} < \theta < 360^{\circ}$. We know that $\cos 60^{\circ} = \frac{1}{2}$ and $\cos 180^{\circ} 60^{\circ}$) $= -\cos 60^{\circ} = -\frac{1}{2} \text{ or } \cos 120^{\circ} = -\frac{1}{2}.$ Similarly $\cos 180^{\circ} + 60^{\circ}$) $= -\cos 60^{\circ} = -\frac{1}{2}$ or $\cos 240^{\circ} = -\frac{1}{2}$. Therefore $\theta = 120^{\circ}$ and 240° .
- **81.** (b) $(2\cos x 1)(3 + 2\cos x) = 0$ Then $\cos x = \frac{1}{2} \operatorname{as} \cos x \neq \frac{-3}{2}$ $\Rightarrow x = 2n\pi \pm \frac{\pi}{3}; \begin{cases} \text{for } n = 0, \ x = \frac{\pi}{3}, \frac{5\pi}{3} \\ \text{for } n = 1, \ x = \frac{5\pi}{3} \end{cases}$
- **82.** (a) We have, $81^{\sin^2 x} + 81^{\cos^2 x} = 30$ Now check by options, put $x = \frac{\pi}{6}$ then $(81)^{\sin^2 \pi/6} + (81)^{\cos^2 \pi/6} = 30$ $(81)^{1/4} + (81)^{3/4} = 30$ 30 = 30Hence (a) is the correct answer.

83. (b)
$$\tan \theta = \sqrt{3} = \tan \frac{\pi}{3} \Rightarrow \theta = n\pi + \frac{\pi}{3}$$

For $-\pi < \theta < 0$

84. (d) We have,
$$\tan\theta + \frac{1}{\sqrt{3}} = 0$$
 or $\tan\theta = -\frac{1}{\sqrt{3}}$
 $\therefore \theta$ lies in between 0° and 360°

∴
$$\theta$$
 lies in between 0° and 36
∴ θ = 150° and 330°.

85. (d) We have, $\cos^2 \theta + \sin \theta + 1 = 0$

$$1-\sin^2\theta+\sin\theta+1=0$$

$$\sin^2\theta-\sin\theta-2=0 \quad (\sin\theta+1)(\sin\theta-2)=0$$

$$\sin\theta=2 \text{ , which is not possible and } \sin\theta=-1.$$
 Therefore, solution of given equation lies in the interval $\left(\frac{5\pi}{4},\frac{7\pi}{4}\right)$.

Put n = -1, we get $\theta = -\pi + \frac{\pi}{3} = \frac{-2\pi}{3}$ or $\frac{-4\pi}{6}$.

86. (a) We know
$$\frac{5^x + 5^{-x}}{2} \ge 1$$
, (using A.M. \ge G.M.)
But since $\cos(e^x) \le 1$
So, there does not exist any solution.

87. (c)
$$\tan\theta = -1 = \tan\left(2\pi - \frac{\pi}{4}\right)$$
, $\cos\theta = \frac{1}{\sqrt{2}} = \cos\left(2\pi - \frac{\pi}{4}\right)$
Hence general value is $2n\pi + \left(2\pi - \frac{\pi}{4}\right) = 2n\pi + \frac{7\pi}{4}$.

88. (d)
$$\sin\theta = -\frac{1}{2} = \sin\left(-\frac{\pi}{6}\right) = \sin\left(\pi + \frac{\pi}{6}\right)$$

$$\tan\theta = \frac{1}{\sqrt{3}} = \tan\left(\frac{\pi}{6}\right) = \tan\left(\pi + \frac{\pi}{6}\right) \Rightarrow \theta = \left(\pi + \frac{\pi}{6}\right)$$

Hence general value of θ is $2n\pi + \frac{7\pi}{6}$.

89. (b) $2\sin^2 x + \sin^2 2x = 2$

and
$$\sin 2x + \cos 2x = \tan x$$
(ii)
Solving (i), $\sin^2 2x = 2\cos^2 x$
 $2\cos^2 x \cos 2x = 0$ $x = (2n+1)\frac{\pi}{2}$ or $x = (2n+1)\frac{\pi}{4}$
 \therefore Common roots are $(2n\pm 1)\frac{\pi}{4}$

Solving (ii),
$$\frac{2\tan x + 1 - \tan^2 x}{1 + \tan^2 x} = \tan x$$
$$\Rightarrow \tan^3 x + \tan^2 x - \tan x - 1 = 0$$

$$\Rightarrow (\tan^2 x - 1)(\tan x + 1) = 0 \Rightarrow x = m\pi \pm \frac{\pi}{4}$$

Trick : For n=0, option (a) gives $\theta=-\frac{\pi}{2}$ which satisfies the equation (i) but does not satisfy the (ii). Now option (b) gives $\theta=\frac{\pi}{4}$ which satisfies both the equations.

- **90.** (b) Eliminating r, we get $\therefore \sin\theta = \frac{1}{2}, -\frac{3}{2}$ (rejected)
 - $\Rightarrow \theta = \frac{\pi}{6}, \pi \frac{\pi}{6} = \frac{5\pi}{6}.$
- **91.** (b) $\cos\theta = -\frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{3\pi}{4}, \frac{5\pi}{4}; \tan\theta = 1 \Rightarrow \theta = \frac{\pi}{4}, \frac{5\pi}{4}$ \therefore The general value is $2n\pi + \frac{5\pi}{4}$ or
 - $(2n+1)\pi+\frac{\pi}{4}.$
- **92.** (a) $\sin(A + B) = 1$ and $\cos(A B) = \frac{\sqrt{3}}{2}$ $\Rightarrow A + B = \frac{\pi}{2}$ and $A - B = \frac{\pi}{6} \Rightarrow A = \frac{\pi}{3}, B = \frac{\pi}{6}$
- **93.** (a) $2 2\cos^2 \theta + \sqrt{3}\cos \theta + 1 = 0$ $\Rightarrow 2\cos^2 \theta - \sqrt{3}\cos \theta - 3 = 0$ $\Rightarrow \cos \theta = \frac{\sqrt{3} \pm \sqrt{3 + 24}}{4} = \frac{\sqrt{3}(1 \pm 3)}{4} = \sqrt{3}\left(-\frac{1}{2}\right)$ $\Rightarrow \theta = \frac{5\pi}{6}$.
- **94.** (b) $\cot \theta = \sin 2\theta$, $(\theta \neq n\pi) \Rightarrow 2 \sin^2 \theta \cos \theta = \cos \theta$ $\Rightarrow \cos \theta = 0 \text{ or } \sin^2 \theta = \frac{1}{2} = \sin^2 \left(\frac{\pi}{4}\right)$ $\Rightarrow \theta = (2n+1)\frac{\pi}{2} \text{ or } \theta = n\pi \pm \frac{\pi}{4}$ $\Rightarrow \theta = 90^\circ \text{ and } 45^\circ.$
- **95.** (a) $\sin\left(\theta + \frac{\pi}{6}\right) = 1 = \sin\left(\frac{\pi}{2}\right) \Rightarrow \theta = \frac{\pi}{2} \frac{\pi}{6} = \frac{\pi}{3}$
- **96.** (a) $\cos A \sin \left(A \frac{\pi}{6} \right) = \frac{1}{2} \left[\sin \left(2A \frac{\pi}{6} \right) \sin \frac{\pi}{6} \right]$ But $\sin \left(2A - \frac{\pi}{6} \right) - \frac{1}{2}$ attain maximum value at $2A - \frac{\pi}{6} = \frac{\pi}{2} \Rightarrow A = \frac{\pi}{3}$.
- **97.** (a) Here $\cos\theta = 1 2\cos^2 40^\circ = -(2\cos^2 40^\circ 1)$ $= -\cos(2 \times 40^\circ) = -\cos 80^\circ$ $= \cos(180^\circ + 80^\circ) = \cos(180^\circ - 80^\circ)$ Hence, $\cos(260^\circ) = \cos(100^\circ)$ i.e., $\theta = 100^\circ$ and 260° .
- **98.** (a) Since A.M. \geq G.M. $\frac{1}{2}(2^{\sin x} + 2^{\cos x}) \geq \sqrt{2^{\sin x}.2^{\cos x}}$ $\Rightarrow 2^{\sin x} + 2^{\cos x} \geq 2.2^{\frac{\sin x + \cos x}{2}}$ $\Rightarrow 2^{\sin x} + 2^{\cos x} \geq 2^{1 + \frac{\sin x + \cos x}{2}}$ and we know that $\sin x + \cos x \geq -\sqrt{2}$ $\therefore 2^{\sin x} + 2^{\cos x} > 2^{1 - (1/\sqrt{2})}$, for $x = \frac{5\pi}{4}$.

- **99.** (b) $(1+\tan\theta)(1+\tan\phi) = 2 \Rightarrow \frac{\tan\theta + \tan\phi}{1-\tan\theta\tan\phi} = 1$ $\Rightarrow \tan\theta + \phi = 1 \Rightarrow \theta + \phi = \frac{\pi}{4} = 45^{\circ}.$
- **100.** (a) $\tan \ln \cos \theta = \tan \left(\frac{\pi}{2} \pi \sin \theta \right)$ $\therefore \quad \sin \theta + \cos \theta = \frac{1}{2} \Rightarrow \cos \left(\theta - \frac{\pi}{4} \right) = \frac{1}{2\sqrt{2}}.$
- **101.** (c) $\tan(\pi \cos\theta) = \tan\left(\frac{\pi}{2} \pi \sin\theta\right)$ $\therefore \sin\theta + \cos\theta = \frac{1}{2} \qquad \sin\left(\theta + \frac{\pi}{4}\right) = \frac{1}{2\sqrt{2}}.$
- **102.** (a) The given determinant (Applying $R_1 \rightarrow R_1 R_3$ and $R_2 \rightarrow R_2 R_3$) reduces to $\begin{vmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ \sin^2\theta & \cos^2\theta & 1 + 4\sin 4\theta \end{vmatrix} = 0$
 - $\Rightarrow 1 + 4\sin 4\theta + \cos^2 \theta + \sin^2 \theta = 0$ (By expanding along R_1)

$$4\sin 4\theta = -2 \qquad \sin 4\theta = \frac{-1}{2}$$

$$4\theta = \frac{7\pi}{6} \text{ or } \frac{11\pi}{6}, \qquad (0 < 4\theta < 2\pi)$$

Since,
$$0 < \theta < \frac{\pi}{2}$$
 $0 < 4\theta < 2\pi$ $\theta = \frac{7\pi}{24}, \frac{11\pi}{24}$

- **103.** (a) Given, $\cot (\alpha + \beta) = 0 \Rightarrow \cos(\alpha + \beta) = 0$ $\alpha + \beta = (2n+1)\frac{\pi}{2}, n \in I$ $\sin(\alpha + 2\beta) = \sin(2\alpha + 2\beta \alpha) = \sin[(2n+1)\pi \alpha]$ $= \sin(2n\pi + \pi \alpha) = \sin(\pi \alpha) = \sin(\pi \alpha)$
- **104.** (c) Given equation is, $\cos x \sin x = \frac{1}{\sqrt{2}}$

Dividing equation by $\sqrt{2}$, $\frac{1}{\sqrt{2}}\cos x - \frac{1}{\sqrt{2}}\sin x = \frac{1}{2}$ $\cos \left(\frac{\pi}{4} + x\right) = \cos \frac{\pi}{3}$. Hence, $\frac{\pi}{4} + x = 2n\pi \pm \frac{\pi}{3}$ $x = 2n\pi + \frac{\pi}{3} - \frac{\pi}{4} = 2n\pi + \frac{\pi}{12}$ or $x = 2n\pi - \frac{\pi}{3} - \frac{\pi}{4} = 2n\pi - \frac{7\pi}{12}$.

- **105.** (b) $\sin x \frac{1}{\sqrt{2}} \cos x \frac{1}{\sqrt{2}} = 1 \Rightarrow \cos \left(x + \frac{\pi}{4}\right) = -1$ $x + \frac{\pi}{4} = 2n\pi \pm \pi \Rightarrow 2n\pi + \frac{3\pi}{4} \text{ or } 2n\pi - \frac{5\pi}{4}$.
- **106.** (c) $12\cot^2\theta 31\cos\theta + 32 = 0$ $12(\cos\theta^2\theta - 1) - 3\cos\theta + 32 = 0$ $12\cos\theta^2\theta - 31\cos\theta + 20 = 0$

$$12\cos 2\theta - 16\cos 2\theta - 15\cos 2\theta + 20 = 0$$

$$(4\cos 2\theta - 5)(3\cos 2\theta - 4) = 0$$

$$\cos 2\theta = \frac{5}{4}, \frac{4}{3}; \qquad \sin \theta = \frac{4}{5}, \frac{3}{4}.$$

Periodic functions

- **1.** (b) Period of $|\sin 2x|$. Period of $\sin 2x = \frac{2\pi}{2} = \pi$ and period of $|\sin 2x| = \frac{\pi}{2}$.
- 2. (b) Since $\sin\theta\cos\theta = \frac{1}{2}\sin2\theta$. Hence period = $\frac{2\pi}{2} = \pi$.
- 3. (c) $\frac{\sin\theta + \sin 2\theta}{\cos\theta + \cos 2\theta} = \frac{2\sin\left(\frac{3\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)}{2\cos\left(\frac{3\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)} = \tan\left(\frac{3\theta}{2}\right)$ Hence period $= \frac{2\pi}{3}.$
- **4.** (c) It is obvious.
- **5.** (d) $\sin\theta \sqrt{3}\cos\theta = 2\sin\left(\theta \frac{\pi}{3}\right)$, hence period = 2π .
- **6.** (d) Period of $\sin \frac{x}{2}$ is 4π and period of $\cos \frac{x}{3}$ is 6π . Hence period of expression is 12π (L.C.M.).
- 7. (c) Period of $\cot 3x$ is $\frac{\pi}{3}$ and period of $\cos (4x+3)$ is $\frac{\pi}{2} \Rightarrow \text{L.C.M.}$ is π .
- **8.** (d) Period of $2\sin 3\theta$ is $\frac{2\pi}{3}$ and period of $4\cos 3\theta$ is $\frac{2\pi}{3}$. Therefore period of the expression is $\frac{\pi}{3}$.
- 9. (a) Let $f(x) = \sin^4 x + \cos^4 x$ $= (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x$ $= 1 - \frac{4\sin^2 x \cos^2 x}{2} = 1 - \frac{\sin^2 2x}{2}$ $= 1 - \frac{1}{4}(2\sin^2 2x) = 1 - \left(\frac{1 - \cos x}{4}\right) = \frac{3}{4} + \frac{1}{4}\cos 4x$

Hence the period of function $=\frac{2\pi}{4} = \frac{\pi}{2}$.

- **10.** (d) Period of $\sin(\theta/3) = 6\pi$ and period of $\cos(\theta/2) = 4\pi$ L.C.M. of 6π and $4\pi = 12\pi$.
- **11.** (d) $\sin\left(\frac{x}{n}\right) = \sin\left(2\pi + \frac{x}{n}\right) = \sin\left(\frac{1}{n}(2n\pi + x)\right)$

Period of the function $\sin \left(\frac{x}{n}\right)$ is $2n\pi$. $2n\pi = 4\pi \Rightarrow n = 2$.

12. (a) $\sin^2 x = \frac{1 - \cos 2x}{2}$ Period $= \frac{2\pi}{2} = \pi$.

- **13.** (b) : Period of $\sin(ax + b) = \frac{2\pi}{|a|}$ Period of $\sin 2x = \frac{2\pi}{|a|} = \pi$.
- **14.** (c) The period of the function in option (a) is 2. The period of the function in option (b) is 24. The period of the function in option (c) is 2π .
- **15.** (d) Period of $\sin\left(\frac{2x}{3}\right) = \frac{2\pi}{2/3} = 3\pi$ Period of $\sin\left(\frac{3x}{2}\right) = \frac{2\pi}{3/2} = \frac{4\pi}{3}$ L.C.M. of 3π and $\frac{4\pi}{3} = 12\pi$. Hence period is

12 π . **16.** (a) Let f(x) be periodic with period λ , then $\sin(x+\lambda)+\cos p(x+\lambda)=\sin x+\cos px \ \forall \ x\in R$ Putting x=0 and replace λ by $-\lambda$, we have $\sin \lambda +\cos p\lambda =1$ and $-\sin \lambda +\cos p\lambda =1$ Solving these, we get $\sin \lambda =0$ so $\lambda =n\pi$ and $\cos p\lambda =1$ so $p\lambda =2m\pi$. As $\lambda \neq 0$, m and n are non-zero integers. Hence $p=\frac{2m\pi}{\lambda}$, which is rational.

- 17. (a) Period of $\sin\left(\frac{\pi x}{2}\right) = \frac{2\pi}{\pi/2} = 4$ Period of $\cos\left(\frac{\pi x}{2}\right) = \frac{2\pi}{\pi/2} = 4$ \therefore Period of $\sin\frac{\pi x}{2} + \cos\frac{\pi x}{2} = \text{L.C.M. of } (4, 4) = 4.$
- **18.** (d) Period of $\sin \frac{\pi x}{2} = \frac{2\pi}{\pi/2} = 4$ Period of $\cos \frac{\pi x}{3} = \frac{2\pi}{\pi/3} = 6$ Period of $\tan \frac{\pi x}{4} = \frac{\pi}{\pi/4} = 4$ \therefore Period of f(x) = L.C.M. of (4, 6, 4) = 12.
- **19.** (d) Period of $|\sin \pi x| = \frac{\pi}{\pi} = 1$.
- **20.** (c) $f(x) = \sin\left(\frac{\pi x}{n-1}\right) + \cos\left(\frac{\pi x}{n}\right)$ Period of $\sin\left(\frac{\pi x}{n-1}\right) = \frac{2\pi}{\left(\frac{\pi}{n-1}\right)} = 2(n-1)$ and period of $\cos\left(\frac{\pi x}{n}\right) = \frac{2\pi}{\left(\frac{\pi}{n}\right)} = 2n$

Hence period of f(x) is L.C.M. of 2n and $2(n-1) \Rightarrow 2n(n-1)$.

Relation between sides and angles, Solutions of triangles

- 1. (b) $\frac{\sin A}{a} = \frac{\sin B}{b} \Rightarrow \frac{3}{4 \times 5} = \frac{\sin B}{7} \Rightarrow \sin B = \frac{21}{20}$
- 2. (a) $\tan \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}} = 1 = \tan \left(\frac{\pi}{4}\right)$, from given data. Hence $C = 90^{\circ}$.
- 3. (a) $\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$ $\Rightarrow bc\sin^2 \frac{A}{2} = (s-b)(s-c)$ Hence x = bc.
- **4.** (b) A, B, C are in A. P. then angle $B = 60^{\circ}$, $\cos B = \frac{a^{2} + c^{2} b^{2}}{2ac}, \begin{cases} \sin ce A + B + C = 180^{\circ} \text{ and} \\ A + C = 2B \Rightarrow B = 60^{\circ} \end{cases}$ $\frac{1}{2} = \frac{a^{2} + c^{2} b^{2}}{2ac} \Rightarrow a^{2} + c^{2} b^{2} = ac$ $b^{2} = a^{2} + c^{2} ac.$
- **5.** (c) $(b+c)\cos A + (c+a)\cos B + (a+b)\cos C = a+b+c$ From expanding and collecting terms using projection rule, $a=b\cos C + c\cos B$ etc.
- **6.** (b) $\frac{\sin B}{\sin(A+B)} = \frac{\sin B}{\sin C} = \frac{b}{c}$.
- 7. (a) $\frac{\sin(A B)}{\sin(A + B)} = \frac{\sin A \cos B \sin B \cos A}{\sin C}$ $= \frac{a}{c} \cos B \frac{b}{c} \cos A$ But $\cos B = \frac{a^2 + c^2 b^2}{2ac}, \cos A = \frac{b^2 + c^2 a^2}{2bc}$ $\Rightarrow \frac{a}{c} \cos B \frac{b}{c} \cos A = \frac{1}{2c^2}$ $(a^2 + c^2 b^2 b^2 c^2 + a^2)$ $= \frac{a^2 b^2}{c^2}.$
- 8. (c) $\cot B + \cot C \cot A = \frac{\cos B}{\sin B} + \frac{\cos C}{\sin C} \cot A$ $= \frac{\sin C \cos B + \cos C \sin B}{\sin B \sin C} \cot A = \frac{\sin (B + C)}{\sin B \sin C} \frac{\cos A}{\sin A}$ $= \frac{\sin^2 A \sin B \sin C \cos A}{\sin A \sin B \sin C} = \frac{a^2 b \cos A}{k(aba)}$ Since $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{C} = k$ (say)

and
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{a^2 - bc \frac{(b^2 + c^2 - a^2)}{2bc}}{(ab)bc}$$

$$=\frac{(a^2-a^2)}{abck}=0, \left\{ As \frac{b^2+c^2-a^2}{2}=\frac{3a^2-a^2}{2}=\frac{2a^2}{2}=a^2 \right\}.$$

9. (c)
$$\cos B = \frac{c^2 + a^2 - b^2}{2ac} \Rightarrow \cos B = \frac{1}{2}i.e, B = \frac{\pi}{3}$$
.

Trick: Such type of unconditional problems can be checked by putting the particular values for a=1, $b=\sqrt{3}$, c=2 and $A=30^{\circ}$, $B=60^{\circ}$, $C=90^{\circ}$.

Hence expression is equal to 2 which is given by (d).

11. (c)
$$\frac{1}{\sin^2 \frac{A}{2}}, \frac{1}{\sin^2 \frac{B}{2}}, \frac{1}{\sin^2 \frac{C}{2}}$$
 are in A. P.

$$\frac{1}{\sin^2 \frac{C}{2}} - \frac{1}{\sin^2 \frac{B}{2}} = \frac{1}{\sin^2 \frac{B}{2}} - \frac{1}{\sin^2 \frac{A}{2}}$$

$$\frac{ab}{(s-a)(s-b)} - \frac{ac}{(s-a)(s-c)}$$

$$= \frac{ac}{(s-a)(s-c)} - \frac{bc}{(s-b)(s-c)}$$

$$\left(\frac{a}{s-a}\right) \left(\frac{b(s-c) - c(s-b)}{(s-b)(s-c)}\right) = \left(\frac{c}{s-c}\right) \left(\frac{a(s-b) - b(s-a)}{(s-a)(s-b)}\right)$$

$$abs-abc-acs+abc=acs-abc-bcs+abc$$

abs- abc- acs+ abc= acs- abc- bcs+ abc ab- ac= ac- bc \Rightarrow ab+ bc= 2ac

or
$$\frac{1}{c} + \frac{1}{a} = \frac{2}{b}$$
, *i.e.*, *a,b,c* are in H. P.

Note : Students should remember this question as a fact.

12. (c)
$$(a^2 + b^2 - 2ab)\cos^2\frac{C}{2} + (a^2 + b^2 + 2ab)\sin^2\frac{C}{2}$$

 $= a^2 + b^2 + 2ab(\sin^2\frac{C}{2} - \cos^2\frac{C}{2})$
 $= a^2 + b^2 - 2ab\cos C = a^2 + b^2 - (a^2 + b^2 - c^2) = c^2$.

13. (a)
$$2s = a + b + c$$
; $\cos \frac{B}{2} = \sqrt{\frac{30 \times 6}{320}} = \frac{3}{4}$.

14. (a)
$$\cos A + \cos C = 4 \sin^2 \frac{1}{2}B$$

$$2\cos \frac{A+C}{2}\cos \frac{A-C}{2} = 4 \sin^2 \frac{B}{2}$$

$$\cos \frac{A+C}{2}\cos \frac{A-C}{2} = 2\sin^2 \frac{B}{2}$$

$$\cos \left(\frac{A-C}{2}\right) = 2\sin \frac{B}{2}$$

$$\cos \frac{A}{2}\cos \frac{C}{2} + \sin \frac{A}{2}\sin \frac{C}{2} = 2\sin \frac{B}{2}$$

$$\sqrt{\frac{A(s-a)}{bc}}\sqrt{\frac{A(s-c)}{ab}} + \sqrt{\frac{(s-b)(s-c)}{bc}}\sqrt{\frac{(s-a)(s-b)}{ab}}$$

$$= 2\sqrt{\frac{(s-a)(s-c)}{ac}}$$

$$\frac{\sqrt{(s-a)(s-c)}}{ac} + \frac{s-b}{b}\sqrt{\frac{(s-c)(s-a)}{ac}} = 2\sqrt{\frac{(s-a)(s-c)}{ac}}$$

$$\frac{s}{b} + \frac{s-b}{b} = 2 \qquad a+c=2b \qquad a,b,c \text{ are in A. P.}$$

15. (a)
$$1 - \tan \frac{A}{2} \tan \frac{B}{2} = \frac{\cos \frac{A}{2} \cos \frac{B}{2} - \sin \frac{A}{2} \sin \frac{B}{2}}{\cos \frac{A}{2} \cos \frac{B}{2}}$$

$$= \frac{\cos \left(\frac{A}{2} + \frac{B}{2}\right)}{\cos \frac{A}{2} \cos \frac{B}{2}} = \frac{\sin \frac{C}{2}}{\cos \frac{A}{2} \cos \frac{B}{2}}$$

$$= \left[\frac{(s - a)(s - b)bc \ ac}{ab(s - a)(s - b)}\right]^{1/2} = \frac{c}{s} = \frac{2c}{a + b + c}.$$

16. (a)
$$b^2 \cos 2A - a^2 \cos 2B = b^2 (1 - 2\sin^2 A) - a^2 (1 - 2\sin^2 B)$$

= $b^2 - a^2 - 2(b^2 \sin^2 A - a^2 \sin^2 B) = b^2 - a^2$.

17. (a)
$$a\sin(B-C) + b\sin(C-A) + c\sin(A-B)$$

= $k(\sum \sin A \sin(B-C)) = k(\sum \sin(B+C) \sin(B-C))$
= $k(\sum \frac{1}{2}(\cos 2C - \cos 2B)) = 0$.

Note: Students should note here that most of the expressions containing the cyclic factor associating with '-' reduces to 0.

18. (c)
$$\cot A$$
, $\cot B$ and $\cot C$ are in A. P.

$$\cot A + \cot C = 2\cot B$$
 $\frac{\cos A}{\sin A} + \frac{\cos C}{\sin C} = \frac{2\cos B}{\sin B}$

$$\frac{b^2 + c^2 - a^2}{2bdka} + \frac{a^2 + b^2 - c^2}{2adkb} = 2\frac{a^2 + c^2 - b^2}{2adkb}$$

 $a^2 + c^2 = 2b^2$. Hence a^2, b^2, c^2 are in A. P.

Note: Students should remember this question as a fact.

19. (a)
$$(a+c)^2 - b^2 = 3ac \Rightarrow a^2 + c^2 - b^2 = ac$$

But $\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{1}{2} \Rightarrow B = \frac{\pi}{3}$

20. (c) On putting the values of $\cos A, \cos B$ and $\cos C$, we get the required result *i.e.*, $a^2 + b^2 + c^2$.

21. (c)
$$\left(\frac{b}{a}\cos C + \frac{c}{a}\cos B\right) = 1$$
; (by projection rule).

22. (b) It is obvious.

Trick: Obviously it is not an equilateral triangle because $A=B=C=60^{\circ}$ does not satisfy the given condition. But $B=90^{\circ}$ then $\sin^2 B = 1$ and

$$\cos^2 A + \cos^2 C = \cos^2 A + \cos^2 \left(\frac{\pi}{2} - A\right)$$
$$= \cos^2 A + \sin^2 A = 1$$

Hence this satisfy the condition, so it is a right angle triangle but not necessarily isosceles.

23. (c) $x+2x+7x=180^{\circ} \Rightarrow x=18^{\circ}$ Hence the angles are $18^{\circ}, 36^{\circ}, 126^{\circ}$

Greatest side ∝ sin(126°)

Smallest side
$$\propto \sin(18^{\circ})$$
 and
$$ratio = \frac{\sin(126^{\circ})}{\sin(18^{\circ})} = \frac{\sqrt{5}+1}{\sqrt{5}-1}.$$

24. (c)
$$\cos C = \frac{\pi}{3} \Rightarrow a^2 + b^2 - c^2 = ab$$

$$b^2 + bc + a^2 + ac = ab + ac + bc + c^2$$

$$b(b + c) + a(a + c) = (a + c)(b + c)$$

Divide by (a+c)(b+c) and add 2 on both sides

$$1 + \frac{b}{a+c} + 1 + \frac{a}{b+c} = 3$$
 $\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$

25. (d)
$$\tan \frac{A}{2} \tan \frac{C}{2} = \frac{1}{2}$$
 $\sqrt{\frac{(s-b)(s-c)}{s(s-a)} \frac{(s-a)(s-b)}{s(s-c)}} = \frac{1}{2}$ $\frac{s-b}{s} = \frac{1}{2} \Rightarrow 2s - 2b - s = 0$ $a+c-3b=0$.

26. (b)
$$\frac{\sin\frac{A}{2}\sin\frac{C}{2}}{\sin\frac{B}{2}} = \sqrt{\frac{a(s-b)(s-c)(s-b)(s-a)}{(s-a)(s-c)bc \times ab}} = \frac{s-b}{b}$$

But a, b and c are in A. P. 2b = a + c

Hence
$$\frac{s-b}{b} = \frac{\frac{3b}{2} - b}{b} = \frac{1}{2}$$
.

27. (c)
$$\tan \frac{B-C}{2} = x \cot \frac{A}{2} \Rightarrow x = \frac{b-c}{b+c}$$

28. (c)
$$\cos B = \frac{9 + 25 - 16}{2.3.5} = \frac{18}{2.3.5} = \frac{3}{5} \Rightarrow \sin B = \frac{4}{5}$$

Therefore $\sin 2B = 2.\frac{4}{5}.\frac{3}{5} = \frac{24}{25}$.

29. (b)
$$\cos\theta = \frac{4+6-(\sqrt{3}+1)^2}{2.2.\sqrt{6}} \Rightarrow \theta = 75^\circ$$

30. (b)
$$a^3 \cos(B-C) + b^3 \cos(C-A) + c^3 \cos(A-B)$$

 $= k^3 \sin^3 A \cos(B-C) + k^3 \sin^3 B \cos(C-A)$
 $+ k^3 \sin^3 C \cos(A-B)$
 $= \frac{1}{2} k^3 [\sin^2 A(\sin 2B + \sin 2C) + \sin^2 B(\sin 2C + \sin 2A)]$

$$\mathcal{K}$$
[siff A (sin2 B + sin2 C)+ siff B (sin2 C + sin2 A)
+ siff C (sin2 A + sin2 B)]

 $= k^{3}[\sin A \sin B(\sin A \cos B + \cos A \sin B)$ $+ \sin B \sin C(\sin B \cos C + \cos B \sin C)$ $+ \sin C \sin A(\sin C \cos A + \cos C \sin A)]$

 $= k^{3}[\sin A \sin B \sin C + \sin B \sin C \sin A + \sin C \sin A \sin B]$ $= 3k^{3} \sin A \sin B \sin C = 3abc.$

31. (b)
$$\cos\theta = \frac{49 + 16.3 - 13}{2.7.4\sqrt{3}} \Rightarrow \theta = 30^{\circ}$$
.

32. (c) Let sides be
$$a-d$$
, a , $a+d$ and as it is a right angled triangle $(a-d)^2 + a^2 = (a+d)^2$

$$a^2 + d^2 - 2ad + a^2 = a^2 + d^2 + 2ad$$

$$a = 4d \Rightarrow d = \frac{a}{4}.$$

Hence the sides are $\frac{3a}{4}$, $a_1 \frac{5a}{4}$ *i.e.*, in ratio 3: 4:5.

33. (d)
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

$$\frac{\sqrt{3}}{2} = \frac{(47)^2 + (94)^2 - c^2}{2 \times 47 \times 94} \Rightarrow c = 58.24$$

 $\angle B = 124^{\circ}$. Hence obtuse angled triangle.

35. (b)
$$\angle C = 90^{\circ}, \angle A = 30^{\circ}, c = 20$$
,
then $a = \frac{c \sin A}{\sin C} = 10$ and $b = \frac{c \sin B}{\sin C} = 10\sqrt{3}$.

Trick: Since the angles are $30^{\circ},60^{\circ},90^{\circ}$, therefore sides must be $1:\sqrt{3}:2$. Hence $a=10,b=10\sqrt{3}$.

36. (b)
$$c\cos(A-\alpha) + a\cos(C+\alpha) = c(\cos A\cos\alpha + \sin A\sin\alpha) + a(\cos C\cos\alpha - \sin C\sin\alpha)$$

= $\cos\alpha(c\cos A + a\cos C) + c\sin A\sin\alpha - a\sin C\sin\alpha$
 $b\cos\alpha + kac\sin\alpha - kac\sin\alpha = b\cos\alpha$.

37. (b)
$$\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}$$
$$= \frac{b^2 + c^2 - a^2 + a^2 + c^2 - b^2 + a^2 + b^2 - c^2}{2abc}$$

$$=\frac{a^2+b^2+c^2}{2abc}.$$

38. (a)
$$\Sigma a^2 (\cos^2 B - \cos^2 C) = \Sigma a^2 (\sin^2 C - \sin^2 B)$$

= $k^2 \Sigma a^2 (c^2 - b^2) = 0$.

39. (d)
$$\frac{1 + \cos C \cos(A - B)}{1 + \cos(A - C) \cos B} = \frac{1 - \cos(A + B) \cos(A - B)}{1 - \cos(A - C) \cos(A + C)}$$
$$\frac{1 - \cos^2 A + \sin^2 B}{1 - \cos^2 A + \sin^2 C} = \frac{\sin^2 A + \sin^2 B}{\sin^2 A + \sin^2 C} = \frac{a^2 + b^2}{a^2 + c^2}$$

40. (b)
$$\frac{\cos \frac{B-C}{2}}{\sin \frac{A}{2}} = \frac{\sin \frac{B+C}{2} \cos \frac{B-C}{2}}{\sin \frac{B+C}{2} \sin \frac{A}{2}} = \frac{\sin B + \sin C}{\sin A} = \frac{b+c}{a}$$
.

41. (a)
$$(b^2 - c^2)\cot A = (b^2 - c^2)\frac{\cos A}{\sin A} = \frac{(b^2 - c^2)(b^2 + c^2 - a^2)}{2bcka}$$
 Hence L.H.S. $= \frac{1}{2kabc}$

$$2k \ abc$$

$$[(b^4 - c^4) + (c^4 - a^4) + (a^4 - b^4) - \{a^2(b^2 - c^2) + b^2(c^2 - a^2) + c^2(a^2 - b^2)\}] = 0.$$

42. (d)
$$\frac{\sin 3B}{\sin B} = \frac{3\sin B - 4\sin^3 B}{\sin B} = 3 - 4\sin^2 B$$
$$= 3 - 4 + 4\cos^2 B = -1 + \frac{4(a^2 + c^2 - b^2)^2}{4(aa)^2}$$
$$= -1 + \frac{\left(\frac{a^2 + c^2}{2}\right)^2}{(aa)^2} = -1 + \frac{(a^2 + c^2)^2}{4(aa)^2}$$
$$= \frac{(a^2 + c^2)^2 - 4a^2c^2}{4(aa)^2} = \left(\frac{c^2 - a^2}{2ac}\right)^2.$$

43. (c) Let
$$\cot \frac{A}{2}$$
, $\cot \frac{B}{2}$ and $\cot \frac{C}{2}$ be in A.P.,

then
$$2\cot\frac{B}{2} = \cot\frac{C}{2} + \cot\frac{A}{2}$$

$$2\sqrt{\frac{s(s-b)}{(s-a)(s-c)}} = \sqrt{\frac{s(s-c)}{(s-a)(s-b)}} + \sqrt{\frac{s(s-a)}{(s-b)(s-c)}}$$

$$R.H.S = \sqrt{\frac{s}{(s-b)}} \left(\sqrt{\frac{(s-c)}{(s-a)}} + \sqrt{\frac{(s-a)}{(s-c)}} \right)$$

$$= \sqrt{\frac{s}{s-b}} \left(\frac{s-c+s-a}{\sqrt{(s-a)(s-c)}} \right) = \sqrt{\frac{s}{s-b}} \left(\frac{2s-a-c}{\sqrt{(s-a)(s-c)}} \right)$$

$$= 2\sqrt{\frac{s}{(s-b)}} \sqrt{\frac{(s-b)^2}{(s-a)(s-c)}},$$

{:
$$a+c=2b$$
, $a+b+c=2s$ i.e., $2(s-b)=2s-a-c$ }

$$=2\sqrt{\frac{s(s-b)}{(s-a)(s-c)}}=L.H.S.$$

Note: Students should remember this question as a fact.

44. (b) Angles are $x+2x+3x=180^{\circ}$ or 30° , 60° and 90° , therefore sides are in ratio of $\sin 30^{\circ}$: $\sin 60^{\circ}$: $\sin 90^{\circ}$

$$=\frac{1}{2}:\frac{\sqrt{3}}{2}:1=1:\sqrt{3}:2.$$

Note: This is a fact. We have used it in so many questions.

45. (c) $\frac{2\cos A}{a} + \frac{\cos B}{b} + \frac{2\cos C}{c} = \frac{a}{bc} + \frac{b}{ca}$

$$\frac{2(b^2+c^2-a^2)}{2abc}+\frac{a^2+c^2-b^2}{2abc}+\frac{2(a^2+b^2-c^2)}{2abc}$$

$$= \frac{a}{bc} + \frac{b}{ca}$$

$$= \frac{a}{bc} + \frac{b}{ca}$$

$$= \frac{a}{bc} + \frac{b}{ca}$$

$$\frac{3b^2 + c^2 + a^2}{2abc}$$
$$\frac{3b}{2ac} + \frac{c}{2ab} + \frac{a}{2bc} = \frac{a}{bc} + \frac{b}{ca}$$

$$b^2 + c^2 = a^2$$
. Hence $\angle A = 90^o$.

- **46.** (d) $\cos C = \frac{2}{3} = \frac{81 + 64 x^2}{2.9.8} \Rightarrow x^2 = 49 \Rightarrow x = 7$.
- **47.** (a) $\tan\left(\frac{B-C}{2}\right) = \frac{b-c}{b+c}\cot\frac{A}{2} \qquad \tan\left(\frac{90^{\circ}}{2}\right) = \frac{\sqrt{3}-1}{\sqrt{3}+1}\cot\frac{A}{2}$ $\tan\left(\frac{A}{2}\right) = \frac{\sqrt{3}-1}{\sqrt{3}+1} = \frac{3+1-2\sqrt{3}}{2} = 2-\sqrt{3}$

$$\frac{A}{2} = 15^{\circ} \Rightarrow A = 30^{\circ}.$$

- **48.** (a) $a \frac{4(s-c)}{ab} + c \frac{4(s-a)}{bc} = \frac{3b}{2}$ $24(s-c+s-a) = 3b^2$ $24(b) = 3b^2 \Rightarrow 2s = 3b$ $a+b+c=3b \Rightarrow a+c=2b \Rightarrow a,b,c$ are in A.P.
- **49.** (d) Since the angles are in A.P., therefore $B = 60^{\circ}$ and $\frac{b}{c} = \frac{\sin B}{\sin C} = \frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{3}}{2\sin C} = \frac{\sqrt{3}}{\sqrt{2}}$

$$C = 45^{\circ}$$
 so that $A = 180^{\circ} - 60^{\circ} - 45^{\circ} = 75^{\circ}$.

- **50.** (c) Use $\cos A = \frac{b^2 + c^2 a^2}{2bc}$
- **51.** (b) $\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2} = \frac{a-b}{a+b} \tan \left(\frac{A+B}{2}\right)$ $\tan \frac{A-B}{2} \cot \frac{A+B}{2} = \frac{a-b}{a+b}.$
- **52.** (a) Since A, B and C are in A.P., therefore $B = 60^\circ$ and $B^2 = ac$.

$$\cos B = \frac{a^2 + c^2 - b^2}{2ac} \Rightarrow \frac{1}{2} = \frac{a^2 + c^2 - b^2}{2b^2}, \ (\because b^2 = a)$$
$$b^2 = a^2 + c^2 - b^2 \Rightarrow a^2 + c^2 = 2b^2.$$

53. (b) Largest side is $\sqrt{p^2 + pq + q^2}$. If largest angle is θ , then $\cos\theta = \frac{p^2 + q^2 - p^2 - pq - q^2}{2pq} = -\frac{1}{2} = \cos\left(\frac{2\pi}{3}\right)$

 $\theta = \frac{2\pi}{2}$.

- 54. (b) $\sqrt{\frac{b+c}{4c}} = \sqrt{\frac{\sin 3C + \sin C}{4\sin C}}$ $\sqrt{\frac{2\sin 2C\cos C}{4\sin C}} = \cos C$ $\frac{b-c}{2c} = \frac{\sin 3C \sin C}{2\sin C} = \frac{2\cos 2C\sin C}{2\sin C} = \cos 2C = \sin \frac{A}{2}.$
- 55. (a) $(b-c)\cot\frac{A}{2} = k(\sin B \sin C)\cot\frac{A}{2}$ $= 2k\cos\frac{B+C}{2}\sin\frac{B-C}{2}\cot\frac{A}{2}$ $= 2k\sin\frac{A}{2}.\sin\frac{B-C}{2}.\frac{\cos\frac{A}{2}}{\sin\frac{A}{2}}$ $= 2k\sin\left(\frac{B-C}{2}\right)\sin\left(\frac{B+C}{2}\right) = 2k\left(\sin^2\frac{B}{2} - \sin^2\frac{C}{2}\right)$ or we get L.H.S. $= \Sigma 2k\left(\sin^2\frac{B}{2} - \sin^2\frac{C}{2}\right) = 0$.
- **56.** (a) $2a^{2}b^{2} + 2b^{2}c^{2} = a^{4} + b^{4} + c^{4}$ Also, $(a^{2} - b^{2} + c^{2})^{2} =$ $a^{4} + b^{4} + c^{4} - 2(a^{2}b^{2} + b^{2}c^{2} - c^{2}a^{2})$ $(a^{2} - b^{2} + c^{2})^{2} = 2c^{2}a^{2}$ $\frac{a^{2} - b^{2} + c^{2}}{2ca} = \pm \frac{1}{\sqrt{2}} = \cos B$ $B = 45^{\circ} \text{ or } 135^{\circ}$.
- **57.** (b) $\Delta = 10\sqrt{3}$ $\Delta = \frac{1}{2}ab\sin C \Rightarrow ab = 20\sqrt{3}\frac{2}{\sqrt{3}} = 40 \qquad(i)$ Also a+b+c=20 or a+b=(20-c)Now, $\cos C = \frac{a^2+b^2-c^2}{2ab} = \frac{1}{2}$ $a^2+b^2-c^2 = ab \qquad (a+b)^2-c^2 = ab+2ab=3ab$ $(20-c)^2-c^2 = 3(40) \qquad -40c+400=120 \Rightarrow c=7.$
- **58.** (a) $A + C = 2B \Rightarrow B = 60^{\circ}$, $\cos B = \frac{a^{2} + c^{2} b^{2}}{2ac}$ Since $B = 60^{\circ} \Rightarrow ac = a^{2} + c^{2} - b^{2}$ $b^{2} = a^{2} + c^{2} - ac$ Therefore $\frac{a + c}{\sqrt{a^{2} - ac + c^{2}}} = \frac{a + c}{b} = \frac{\sin A + \sin C}{\sin B}$ $= \frac{2\sin \frac{A + C}{2} \cos \frac{A - C}{2}}{2\sin \frac{B}{2} \sin \frac{A + C}{2}} = \frac{\cos \frac{A - C}{2}}{\sin \frac{B}{2}}$

$$= \frac{\cos \frac{A-C}{2}}{\sin 30^{\circ}} \Rightarrow 2\cos \frac{A-C}{2}.$$

59. (a) Let the fourth side be of 'd' length.

We know that
$$AB^2 + BC^2 - 2AB.BC\cos 60^\circ = AC^2$$

= $CD^2 + DA^2 - 2CD.DA\cos 120^\circ$ (by cosine

rule)

or
$$4+25-2.2.5.\frac{1}{2}=9+d^2+3d$$

$$d^2 + 3d - 10 = 0 \Rightarrow d = -5 \text{ or } d = 2;$$
 $d = 2$

60. (a)
$$\cos A = \frac{(b^2 + c^2 - a^2)}{2bc}$$

$$\Rightarrow \cos 60^\circ = \frac{1}{2} = \frac{9 + c^2 - 16}{2.3c} \qquad c^2 - 3c - 7 = 0.$$

61. (d)
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = -1$$

 $\angle C = 180^{\circ}$, which is inadmissible in a triangle.

62. (b) Here $b \sin A = 8 \sin 30^\circ = 4, a = 7$

Thus, we have $b > a > b \sin A$.

Hence angle B has two solutions.

63. (d) Hence $c\sin B = 4\sin\frac{\pi}{3} = 2\sqrt{3} > b = 3$

Thus, we have $b < c \sin B$.

Hence no triangle is possible *i.e.*, the number of triangles that can be constructed is nil.

64. (c) $\sin^2 B - \sin^2 A = \sin^2 C - \sin^2 B$

$$\sin(B+A)\sin(B-A) = \sin(C+B)\sin(C-B)$$

or sinC(sinBcosA-cosBsinA)

 $= \sin A(\sin C \cos B - \cos C \sin B)$

Divide by sinAsinBsinC

 \therefore cot A – cot B = cot B – cot C. Hence the result.

65. (d) Let the sides of $\triangle ABC$ be a=n,b=n+1,c=n+2, where n is a natural number. Then C is the greatest and A the least angle. As given C=2A.

$$sinC = sin2A = 2sinAcosA$$

$$kc = 2ka\frac{b^2 + c^2 - a^2}{2bc}$$
 or $bc^2 = a(b^2 + c^2 - a^2)$

Substituting the values of a, b, c, we get

$$(n+1)(n+2)^2 = n(n+1)^2 + (n+2)^2 - n^2$$

or
$$(n+1)(n+2)^2 = n(n^2+6n+5) = n(n+1)(n+5)$$

Since $n \neq -1$, we can cancel n+1.

Thus
$$(n+2)^2 = n(n+5)$$
 or $n^2 + 4n + 4 = n^2 + 5n$

This gives n=4, Hence the sides are 4, 5 and 6.

66. (a) From the given relation $\sin C = \frac{1 - \cos A \cos B}{\sin A \sin B} \le 1$

....(i)

$$1 \le \cos A \cos B + \sin A \sin B$$

 $\cos (A - B) \ge 1; \because \cos \theta > 1$ (ii)
 $A - B = 0$ or $A = B$

Hence from (i),
$$\sin C = \frac{1 - \cos^2 A}{\sin^2 A} = \frac{\sin^2 A}{\sin^2 A} = 1$$

$$C = 90^{\circ} \Rightarrow A + B = 90^{\circ} \text{ or } A = B = 45^{\circ} \{ \text{by (ii)} \}$$

Hence. a: b: $c = \sin A$: $\sin B$: $\sin C = 1$: 1: $\sqrt{2}$.

67. (d)
$$\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c} \Rightarrow \frac{\cos A}{k \sin A} = \frac{\cos B}{k \sin B} = \frac{\cos C}{k \sin C}$$

 $\cot A = \cot B = \cot C \Rightarrow A = B = C = 60^{\circ}$

 $\triangle ABC$ is equilateral.

$$\Delta = \frac{\sqrt{3}}{4} a^2 = \sqrt{3} .$$