QUÍMICA

Profs.: Aleksándros Souza, Diego J. Raposo, Elaine C. Vaz,

Lêda C. Silva, Michelle F. Andrade

Nome:	
CPF:	Turma:

1.º Exercício Escolar - 2025.1

Orientações:

- Responder tudo de caneta azul ou preta, e na ordem.
- Assinar também na folha do papel pautado.
- Todas as respostas e cálculos devem ser realizados APENAS na folha do papel pautado.
- É permitido o uso de qualquer tipo de calculadora, com excessão da do celular.

Questão 1 (2,0 pontos). O modelo de Thomson foi o primeiro modelo do átomo no qual se assumiu que ele não era indivisível, mas que era composto de cargas elétricas que podiam ser separadas em algumas circunstâncias.

- a) (0,5 ponto) Que tipo de raios representavam os elétrons nos experimentos com ampolas de Crookes?
- b) (0,5 ponto) Qual o comportamento desses raios frente a um campo elétrico?
- c) (1,0 ponto) Descreva como Thomson inferiu, a partir dos dados experimentais, o modelo frequentemente chamado de "pudim de passas".

Questão 2 (2,0 pontos). Considere o elemento químico fósforo (P):

- a) (0,5 ponto) Faça a sua configuração eletrônica.
- **b)** (1,0 ponto) Determine os quatro números quânticos do último elétron do fósforo (P), considerando que os elétrons são alocados do menor m₁ ao maior m₁, iniciando por elétrons com spin +1/2.
- c) (0,5 ponto) Forneça a estrutura de Lewis da molécula do PF₃.

Questão 3 (1,0 ponto). Sabe-se que os átomos se combinam de maneiras diversas para formarem compostos. Considere a combinação entre um elemento X qualquer do grupo 2 (família 2A) e um elemento Y qualquer do grupo 15 (família 5A).

- a) (0,5 ponto) Qual o tipo de ligação que há entre eles?
- b) (0,5 ponto) Qual a fórmula química do composto formado?

Questão 4 (2,0 pontos). Um estudante curioso resolveu testar o efeito fotoelétrico incidindo uma luz de 365 nm em um papel alumínio, conectado a um eletroscópio carregado com elétrons coletados em uma bexiga.

- a) (0,5 ponto) Em que região do espectro eletromagnético encontra-se essa luz? Justifique.
- **b)** (1,0 ponto) Sabendo-se que a função trabalho do alumínio é 4,0 eV, o estudante pôde verificar o efeito? Por quê?
- c) (0,5 ponto) Se sim, calcule a energia cinética dos elétrons ejetados. Se não, justifique. (Dado: $1 \text{ eV} = 1.6 \text{ x} + 10^{-19} \text{ J}$).

Questão 5 (1,0 ponto). Considere os átomos dos elementos a seguir: Sódio (Na), carbono (C) e nitrogênio (N). Coloque-os em ordem crescente de acordo com (e justifique):

- a) (0,5 ponto) Raio atômico.
- **b)** (0,5 ponto) Energia de ionização.

Questão 6 (2,0 pontos). Considere a Aula Prática 1.

- **a)** Durante o experimento de identificação de íons metálicos por meio do teste de chama, um estudante observa que, ao aquecer diferentes sais, uma das cores apresentadas na chama é verde.
 - (i) (0,4 ponto) Qual é o sal metálico mais provável que foi utilizado para gerar a cor verde na chama?
 - (ii) (1,0 ponto) Justifique sua resposta com base na cor característica desse íon e porque essa cor foi gerada.
- **b)** (0,6 ponto) Um estudante decide preparar uma solução de cloreto de sódio (sal de cozinha). Ele pesa uma certa massa numa certa vidraria **X.** Depois, em outra vidraria **Y** mistura o sólido com um certo volume de água. Finalmente, transfere a solução para uma vidraria **Z** que apresenta apenas uma marca de aferição, e adiciona água até a marcação do volume final da solução. Quais são as vidrarias **X**, **Y** e **Z**?

Formulário (equações):

$$E = hf$$
, $c = \lambda f$

$$E_{cin\acute{e}tica} = hf - W$$

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \text{ com } n_2 > n_1$$

 $h = \text{constante de Planck} = 6,626 \cdot 10^{-34} \text{ m}^2 \cdot \text{kg} \cdot \text{s}^{-1} \text{ ou J} \cdot \text{s}$

 R_H = constante de Rydberg = 1,097 · 10⁷ m⁻¹

c = velocidade da luz no vácuo = 3,00 · 10⁸ m · s⁻¹

 λ = comprimento de onda

f ou v = frequência

 n_1 = nível atômico inferior, n_2 = nível atômico superior

W = função trabalho

Tabela Periódica:

Ĥ																	Йe
Li	В́е											B	Ĉ	Ň	Ô	F	Ν̈́e
Ν̈́a	Mg											Ål	Ši	P	S	ČI	År
K	Ca	Sc	Ti	V 23	Ĉ۲	Mn	Fe	Co	Ni	Ĉu	ẩ̈n	Ğa	Ğe	Ås	Še	Br	Kr 36
Åb	Ŝ̈́r	³⁹ Y	Źr	Ń́b	Mo	Tc	Rúu	R⁵h	Pd	Åg	Ćd	În	Sn	Sb	Te	53	Xe
Cs Cs	B⁵a		Hf	Ta	W	Re	Ös	ir	Pt	Åu	μ̈́g	۳I	₽̈́b	Bi	Po	Åt	₽n
۴̈́r	ка		Rf	Db	Sg	Bh	1ºS HS	Mt	Ds	Ϋg	Cn	Nh	FI	Mc	Lv	Ts	Ög

			l								Ēr			
Åc	Τ̈́h	Pa	ů	Ν̈́p	Pu	Åm	Ĉm	₿k	cf	Ës	Fm	Md	No	Lr

Espectro Eletromagnético:

