Shrinath Deshpande

http://github.io.deshpandeshrinath/

EDUCATION

Stony Brook University

Stony Brook, NY

Ph.D. (Major: Mechanical, Minor: Computer Science)

Aug. 2015 - Present

Mobile: +1-631-633-1851

Email: deshpandeshrinath@gmail.com

• Relevent Coursework: Computer Vision, Machine Learning, Analysis of Algorithms, Computational Geometry, Advanced Control Systems, Robotics, Geometric Modelling for CAD, Product Design Optimization

EXPERIENCE

Stony Brook University

Stony Brook, NY

Research Assistant

May 2016 - Present

- Machine Learning: Research on machine learning techniques for kinematic synthesis of planar mechanisms. Performed dimensionality reduction using Auto-Encoders. Developed a data driven approach to mechanism synthesis.
- Optimization: Developed a optimization routine for linkage synthesis. Led to award winning publication for solving practical synthesis problems (doi: 10.1115/1.4037801)
- MotionGen: Website, iOs and Android App for Linkage Synthesis: Developed core modules of a cross platform App for planar mechanism synthesis and simulation. Written in Javascript, HTML, CSS and built with Apache Cordova framework.

Stony Brook University

Stony Brook, NY

Teaching Assistant

Aug 2015 - May 2016

• Teaching Assistant - Design Innovation, Engineering Dynamics: The undergraduate courses at Stony Brook University, had more than 200 students per course enrolled. Involved in creating assignment, exams and conducting recitation sessions.

Relevant Projects

- Visual Odometry (Oct 2017 Dec 2017): Monocular Visual Odometry using Deep Learning. Implemented the paper "DeepVO: Towards end-to-end visual odometry with deep Recurrent Convolutional Neural Networks" in Tensorflow and OpenCV.
- Unsupervised Machine Learning (Sep 2017 Dec 2017): Developed a data driven approach to motion synthesis. Performed dimensionality reduction using Autoencoder Neural Networks. Resulted in quick and efficient motion queries for mechanism synthesis.
- MotionGen (Dec 2015 June 2017): A cross platform App for planar mechanism synthesis and simulation. Implemented several modules including Tolerance Based Synthesis, B-Spline Curve Generation. Worked with open source Apache Cordova framework for iOs and Android implementations.
- Central Trajectory Problem (March 2017 May 2017): Developed an algorithm for finding valid representative trajectory among n time stamped trajectories. Algorithm based on dijkstra's shortest path. Implemented in C++ using CGAL, OpenGL, Boost libraries
- Motion Planning of a car (Oct 2016 Dec 2016): Performed planning and optimal control of a car in drifting conditions using GPOPS-II. MATLAB based implementation available at deshpandeshrinath.github.io
- Motion Planning of a Serial Manipulator (March 2016 May 2016): MATLAB based implementation of Trajectory Planning and Inverse Kinematics of Baxter Arm for Planar Pushing Task.
- Interactive Manipulation of NURBS Surfaces(March 2016 May 2016): QT5, OpenGL based implementation in C++ for interactive manipulation of Non Uniform Rational B-Spline Surfaces.

SKILLS

- Languages: Proficient in Python, Javascript, MATLAB. Familiar with C++, HTML, CSS
- Technologies: Experienced with Git, Tensorflow, OpenCV, Numpy, Scikit-learn, Unix/Linux, Boost, STL, Apache Cordova

Awards

• A.T. Yang Award in Theoretical Kinematics (Aug 2017): Awarded \$1000 for Best Paper at ASME Mechanisms and Robotics Conference, Cleveland, OH, August, 2017