

1.

- **1.1.** Resposta: Opção (**D**) $\forall x \in [0, 7], 1 f(x) \ge 0$
- **1.2. Resposta:** Opção (C) $]0,1[\cup\{-3\}]$
- **1.3.** a) Resposta: $D'_g = [-1, 6]$
 - **b) Resposta:** $D'_{g} = \left[-\frac{1}{2}, 3 \right]$
- 2. Se o vértice tem coordenadas (-3,7) e g(2)<0, então a concavidade é voltada para baixo.

Assim, o contradomínio da função $g \in]-\infty, 7]$

O contradomínio de $h \in [-7+4, +\infty[$, ou seja, $[-3, +\infty[$.

Resposta: $D'_h = [-3, +\infty[$

3.
$$f(x) = a(x-h)^2 + k$$

$$f(x) = a(x+1)^2 + 9$$

O ponto A(-2, 8) pertence ao gráfico de f. Então, f(-2) = 8.

$$f(-2) = 8 \Leftrightarrow a \times (-2+1)^2 + 9 = 8 \Leftrightarrow a = -1$$

Assim, tem-se $f(x) = -(x+1)^2 + 9$.

As soluções da equação f(x) = g(x) são as abcissas dos pontos $A \in B$.

$$f(x) = g(x) \Leftrightarrow -(x+1)^2 + 9 = -3x + 2 \Leftrightarrow -x^2 - 2x - 1 + 3x = -7$$

$$\Leftrightarrow -x^2 + x + 6 = 0 \Leftrightarrow x = \frac{-1 \pm \sqrt{1 + 24}}{-2} \Leftrightarrow x = 3 \lor x = -2$$

A abcissa de $B \in 3$, sendo (3, g(3)) as respetivas coordenadas. Assim, tem-se B(3, -7).

Resposta: B(3,-7)

4.

4.1. Repara no estudo do sinal de cada uma das seguintes funções: f, g e $f \times g$

X	-∞	a		b	+∞
f	+	0	_	_	-
g	+	+	+	0	_
$f \times g$	+	0	-	0	+

Dos gráficos apresentados o único compatível com o sinal de $f \times g$ é a opção (A).

Resposta: Opção (A)

4.2.
$$D_{\frac{f}{g}} = D_f \cap D_g \cap \{x \in \mathbb{R} : g(x) \neq 0\} = \mathbb{R} \setminus \{b\}$$

Resposta: Opção (B) $\mathbb{R} \setminus \{b\}$

5.

5.1. Se $x \le 0$, tem-se f(x) = mx + 5 e o ponto D(-2, 8) pertence ao gráfico de f. $f(-2) = 8 \Leftrightarrow -2m + 5 = 8 \Leftrightarrow m = -\frac{3}{2}$

$$f(-5) = -\frac{3}{2} \times (-5) + 5 = \frac{25}{2}$$

Resposta: A ordenada do ponto de abcissa $-5 ext{ } ext{\'e} ext{ } ext{25}$.

5.2.
$$f(x) = \begin{cases} -\frac{3}{2}x + 5 & \text{se } x \le 0 \\ -x^2 + 4x + 5 & \text{se } 0 < x \le 5 \end{cases}$$

$$f(x) = -x^2 + 4x + 5 = -(x^2 - 4x + 4 - 4) + 5 = -(x - 2)^2 + 9$$

O ponto B tem coordenadas (2,9). A altura do triângulo [OAB] em relação ao lado [AO]é, portanto, 9.

A área do triângulo [*OAB*] é dada por $\frac{\overline{OA} \times 9}{2}$. $\frac{\overline{OA} \times 9}{2} = \frac{5 \times 9}{2} = 22,5$

$$\frac{\overline{OA} \times 9}{2} = \frac{5 \times 9}{2} = 22,5$$

Resposta: A área do triângulo [*OAB*] é 22,5.

6. 6.1.

	1	_4	0	16	-16
2		2	-4	-8	16
	1	-2	-4	8	0
2		2	0	-8	
	1	0	-4	0	
2		2	4		
	1	2	0	-	
2		2		-	
	1	4	•		

 $P(x) = (x-2)^3 (x+2)$. Conclui-se que 2 é uma raiz tripla.

Resposta: Opção (C) raiz de multiplicidade 3.

6.2. Sejam Q(x)e R(x), respetivamente, o quociente e o resto da divisão de P(x) por A(x). Efetuando o algoritmo da divisão, obtém-se:

Resposta: $Q(x) = x^2 - 2x - 1$ e R(x) = 8x - 19

6.3.
$$A(x)(x-3) \le 0 \Leftrightarrow (x^2-2x-3)(x-3) \le 0$$

Tem-se:
$$x^2 - 2x - 3 = 0 \Leftrightarrow x = \frac{2 \pm \sqrt{4 + 12}}{2} \Leftrightarrow x = 3 \lor x = -1$$

Х	-8	-1		3	+∞
$x^2 - 2x - 3$	+	0		0	+
x-3	ı	1	I	0	+
A(x)(x-3)	_	0	+	0	+

$$(x^2 - 2x - 3)(x - 3) \le 0 \Leftrightarrow x \in]-\infty, -1] \cup \{3\}$$

Resposta: $x \in]-\infty, -1] \cup \{3\}$

7.

7.1. Para t = 0, tem-se f(0) = 130.

Resposta: O avião encontrava-se a 130 m de altitude.

7.2. a) Após inserir a expressão da função na calculadora e definir uma janela adequada tendo em conta que $t \in [0, 10]$, identifica-se o máximo da função.

Observa-se que a altitude máxima atingida pelo avião, durante o período em que foi obbservado foi, aproximadamente, de 162,5 m.

b) Pretende-se resolver a inequação $f(t) < 100 \Leftrightarrow t^3 - 14t^2 + 40t + 130 < 100$ Seja g a função constante g(t) = 100.

Identificam-se os pontos de interseção dos gráficos das funções f e g, bem como o intervalo correspondente ao conjunto-solução da inequação f(t) < 100.

As abcissas desses pontos são os valores de a e de b.

Podemos observar que $a \approx 5, 2$ e $b \approx 9, 4$.

FIM