Xử lý Câu truy vấn

Nội dung chi tiết

Giới thiệu

- * Phân tích củ pháp ngữ nghĩa
- * Biến đổi sang Đại số Quan hệ
- * Tối ưu hóa cây truy vấn
- * Ước lượng kích thước cây truy vấn
- * Phát sinh và thực thi mã lệnh

- * Xét hai quan hệ R và S nhu sau :
 - ❖ R(A, B, C)
 - ❖ S(C, D, E)
- * Xét câu truy vấn sau đây trên R va S
 - Select R.B, S.D
 From R, S
 Where R.A='c' And S.E=2 And R.C=S.C
- * Nhận xét
 - ❖ Một câu truy vấn có rất nhiều cách thực hiện
 - Tùy trường hợp mà các cách thực hiện được đánh giá là tốt hay dở

Giới thiệu (tt)

Xử lý của DBMS

Cách 1 :

$$\bullet \Pi_{B,D} [\sigma_{R,A='c' \land S,E=2 \land R,C=S,C} (RxS)]$$

Cách 2 :

$$\circ \Pi_{B,D} \left[\sigma_{R,A=c',(R) \bowtie s_{S,E=2}(S) \right]$$

- Cách 3 : Sử dụng chỉ mục trên R.A và S.C
 - ひ Tìm các bộ trong R thỏa R.A='c'
 - Với mỗi bộ tìm thấy, tìm tiếp các bộ trong S thỏa R.C=S.C
 - \bullet Bỏ đi những bộ S.E \neq 2
 - Chiếu trên thuộc tính B và D
- * DBMS chọn cách nào ?
- * Chương này tập trung vào xử lý truy vấn của RDBMS

* Quy trình xữ lý câu truy vấn

Nội dung chi tiết

- Giới thiệu
- Phân tích cú pháp ngữ nghĩa
- * Biến đổi sang Đại số Quan hệ
- * Tối ưu hóa cây truy vấn
- Wớc lượng kích thước cây truy vấn
- * Phát sinh và thực thi mã lệnh

Phân tích cú pháp và ngữ nghĩa (tt)

* Xét hai quan hệ sau :

- Customer(cusID, cusNm, cusStreet, cusCity)
- Account(accID, cusID, balance)

* Và câu truy vấn

```
SELECT cusNm
FROM Customer
WHERE cusID IN (
SELECT cusID
FROM Account
WHERE balance = 100)
```

Ví dụ 1 (tt)

* Xét hai quan hệ sau đây :

- Customer(cusID, cusNm, cusStreet, cusCity)
- Account(accID, cusID, balance)

* Và câu truy vấn trên hai quan hệ ấy

SELECT cusNm FROM Customer, Account WHERE Customer.cusID = Account.cusID AND balance = 100

Ví dụ 2 (tt)

* Sau khi có cây phân tích, DBMS kiểm tra ngữ nghĩa

Nội dung chi tiết

- Giới thiệu
- Phân tích cú pháp ngữ nghĩa
- * Biến đổi sang Đại số Quan hệ
- * Tối ưu hóa cây truy vấn
- Wớc lượng kích thước cây truy vấn
- * Phát sinh và thực thi mã lệnh

Biến đổi sang ĐSQH (tt)

Truy vấn đơn

- ❖ Xét câu trúc <SFW>, sử dụng quy tắc <SFW>
 - Thay thế <FromList> thành các biến quan hệ
 - Sử dụng phép tích cartesian cho các biến quan hệ
 - $oldsymbol{\circ}$ Thay thế < Condition> thành phép chọn σ_C
 - $oldsymbol{\circ}$ Thay thế <SelectList> thành phép chiếu $\pi_{
 m L}$
- ❖ Kết quả lá một <u>Cây truy vấn</u>

Biến đổi sang ĐSQH (tt)

Truy vấn lồng

- ❖ Tồn tại câu truy vấn con S trong <Condition>
- ❖ Áp dụng qui tắc <SFW> cho truy vấn con S
- Phép chọn 2 biến (two-argument selection)
 - Nút là phép chọn không có tham số
 - Nhánh con trái là biến quan hệ R
 - Nhánh con phải là <condition> áp dụng cho mỗi bộ trong R

Biến đổi sang ĐSQH (tt)

Truy vấn lồng

- ❖ Biến đổi phép chọn 2 biến
 - Thay thế < Condition > bằng 1 cây có ngọn là S
 - Nếu S có các bộ trùng nhau thì phải lược bỏ bớt bộ trùng nhau đi. Sử dụng phép δ để lược bỏ (giống Distinct)
 - \bullet Thay thế phép chọn 2 biến thành σ_C với C là điều kiện <u>liên kết</u> (không đơn thuần là kết) R với S
 - σ_C làm trên kết quả của phép cartesian của R và S

Xét ví dụ 1 (tt)

Ví dụ 3 (Lồng tương quan)

- * Xét hai quan hệ sau đây :
 - Customer(cusID, cusNm, cusStreet, cusCity)
 - Account(accID, cusID, balance)
- * Xét câu truy vấn sau đây :

Ví dụ 3 (tt)

Nội dung chi tiết

- * Giới thiệu
- * Phân tích cú pháp ngữ nghĩa
- * Biến đổi sang Đại số Quan hệ
- Tối ưu hóa cây truy vấn
- * Ước lượng kích thước cây truy vấn
- Phát sinh và thực thi mã lệnh

Tối ưu hóa cây truy vấn (tt)

Chiến lược tối ưu hóa

- Chiến lược
 - Tốc độ thức thi câu truy vấn nhanh nhất có thể
 - Việc xử lý câu truy vấn chiếm dụng bộ nhớ ít nhất có thể
- Nhận xét
 - Hai yêu cầu trên mâu thuẫn nhau
 - O Cần phải dung hòa, thỏa hiệp

* Chiến thuật

- Thực hiện các phép toán quan hệ 1 ngôi trước (nếu có thể)
- Sau đó thực hiện các phép toán 2 ngôi và các phép toán 1 ngôi còn lại

* Qui tắc: Kết tự nhiên, tích cartesian, hội

$$*R\bowtie S=S\times R$$

$$Arr (R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$$

$$*R \cup S = S \cup R$$

$$R \cup (S \cup T) = (R \cup S) \cup T$$

Áp dụng quy tắc (tt)

* Qui tắc Phép chọn σ

- Cho
 - o p là vị từ chỉ có các thuộc tính của R
 - o q là vị từ chỉ có các thuộc tính của S
 - o m là vị từ có các thuộc tính của R và S

Quan hệ R là tập hợp ∪ là phép hội trên tập hợp * Qui tắc: σ, ⋈

p là điều kiện chỉ liên quan thuộc tính của R và q là điều kiện chí liên quan thuộc tính của S

*
$$\sigma_{p \wedge q} (R \bowtie S) = [\sigma_p (R)] \bowtie [\sigma_q (S)]$$

*
$$\sigma_{p \land q \land m} (R \bowtie S) = \sigma_m [\sigma_p(R) \bowtie \sigma_q(S)]$$

$$\bullet \ \, \boldsymbol{\sigma}_{p \vee q} \, (\mathsf{R} \bowtie \mathsf{S}) \ = \ \, [\boldsymbol{\sigma}_{p} \, (\mathsf{R}) \bowtie \mathsf{S}] \cup [\mathsf{R} \bowtie \boldsymbol{\sigma}_{q} \, (\mathsf{S})]$$

m là điều kiện liên quan thuộc tính của R và S

Áp dụng quy tắc (tt)

* Qui tắc: σ, ∪ và σ, –

$$\bullet \ \mathbf{G}_{c}(\mathsf{R} \cup \mathsf{S}) = \mathbf{G}_{c}(\mathsf{R}) \cup \mathbf{G}_{c}(\mathsf{S})$$

$$\bullet$$
 $\sigma_c(R-S) = \sigma_c(R) - S = \sigma_c(R) - \sigma_c(S)$

* Qui tắc: Phép chiếu π

- Cho
 - X = tập thuộc tính con của R
 - Y = tập thuộc tính con của R
- Ta có
 - $\bullet XY = X \cup Y$
- ❖ Ta KHÔNG có
 - $\mathbf{o} \, \pi_{XY}(R) = \pi_{X}[\pi_{Y}(R)]$

Áp dụng quy tắc (tt)

* Qui tắc: π, ⋈

- Cho
 - X = tập thuộc tính con của R
 - Y = tập thuộc tính con của S
- ❖ Ta có
 - $\bullet \ \pi_{XY}(R \bowtie S) = \pi_{XY}[\ \pi_{XZ}(R) \bowtie \ \pi_{YZ}(S)]$

* Qui tắc: σ, π

- Cho
 - X = tập thuộc tính con của R
- Ta có

$$\boldsymbol{\circ} \, \boldsymbol{\pi}_{\!X} \left[\boldsymbol{\sigma}_{\!p} \left(\boldsymbol{R} \right) \right] = \boldsymbol{\pi}_{\!X} \{ \boldsymbol{\sigma}_{\!p} \left[\boldsymbol{\pi}_{\!X\!Z} \left(\boldsymbol{R} \right) \right] \}$$

Áp dụng quy tắc (tt)

* Qui tắc: σ, π, ⋈

- Cho
 - X = tập thuộc tính con của R
 - Y = tập thuộc tính con của S
- Ta có

$$\bullet \ \pi_{XY} \ [\sigma_p \ (R \bowtie S)] = \pi_{XY} \ \{\sigma_p \ [\pi_{XZ}, \ (R) \bowtie \pi_{YZ}, \ (S)]\}$$

* Qui tắc: x, ⋈

- $* \sigma_{C} (R \bowtie S) = R \bowtie_{C} S$
- $\star R \times S = \pi_L [\sigma_C (R \times S)]$

* Qui tắc: δ

- $\delta(R \bowtie S) = \delta(R) \bowtie \delta(S)$
- $\delta(R \times S) = \delta(R) \times \delta(S)$
- $\delta[\sigma_{C}(R)] = \sigma_{C}[\delta(R)]$
- $\delta(\mathsf{R} \cap_{\mathsf{B}} \mathsf{S}) \ = \ \delta(\mathsf{R}) \cap_{\mathsf{B}} \mathsf{S} = \ \mathsf{R} \cap_{\mathsf{B}} \delta(\mathsf{S}) = \ \delta(\mathsf{R}) \cap_{\mathsf{B}} \delta(\mathsf{S})$

Áp dụng quy tắc (tt)

* Qui tắc 3

- Cho
 - \bullet X = tập thuộc tính trong R được gom nhóm
- Ta có
 - $\delta[_{X} \Im(R)] = _{X} \Im(R)$
 - $\mathbf{o}_{X}\mathfrak{I}(R) = {}_{X}\mathfrak{I}\left[\pi_{Y}(R)\right]$

Xét ví dụ 2

Xét ví dụ 2 (tt)

Xét ví dụ 2 (tt)

- * Giới thiệu
- * Phân tích cú pháp ngữ nghĩa
- * Biến đổi sang Đại số Quan hệ
- Tối ưu hóa cây truy vấn
- Uớc lượng kích thước cây truy vấn
- * Phát sinh và thực thi mã lệnh

Ước lượng kích thước cây truy vấn

- * Trong quá trình tối ưu hóa câu truy vấn, có thể có nhiều giải pháp khác nhau
 - Các giải pháp này ngang nhau về mặt chiến thuật tối ưu hóa
 - ❖ Chỉ được chọn 1 giải pháp để thực thi
 - Việc lựa chọn không được thực hiện theo cảm tính
- * Do đó, cần một cách đánh giá bằng định lượng > Ước lượng kích thước cây truy vấn
 - Cây truy vấn A tốt hơn cây truy vấn B khi kích thước A nhỏ hơn kích thước B
 - Cây truy vấn được chọn để thực thi là cây truy vấn có kích thước nhỏ nhất trong các ứng viên

* Thống kê quan hệ R

- ❖ T(R): số bộ trong R
- ❖ S(R): tổng số byte của 1 bộ trong R
- ❖ B(R): tổng số block chứa tất cả các bộ của R
- V(R, A): số giá trị khác nhau mà thuộc tính A trong R có thể có

Ví dụ

* Cho quan hệ R như sau

- ❖ A: chuỗi
- 20 bytes
- B: số nguyên 4 bytes
- C: ngày 8 bytes
- D: chuỗi 68 bytes
- 1 block = 1024 bytes
- block header: 24 bytes

***** Vây

- ❖ T(R) = 5
- ❖ S(R) = 100
- * B(R) = 1
- ❖ V(R, A) = 3, V(R, B) = 1
- V(R, C) = 5, V(R, D) = 4

R	Α	В	С	D
	Х	1	1	а
	Х	1	2	þ
	у	1	3	a
	у	1	4	С
	z	1	5	d

* Uớc lượng: $W = R1 \times R2$

$$S(W) = S(R1) + S(R2)$$

$$T(W) = T(R1) \times T(R2)$$

* Uớc lượng: $W = \sigma_{Z=val}(R)$

* Uốc lượng: $W = \sigma_{Z=val}(R)$

Ví dụ

* Cho

* Uớc lượng kích thước biểu thức $S = \sigma_{A=10 \land B < 20}$ (R)

* Uớc lượng kích thước biểu thức $S = \sigma_{A=10 \vee B < 20}$ (R)

❖ Giả sử :

$$\bullet$$
 Đặt $n = T(R)$

$$T(S) = n[1 - (1 - m1/n)(1 - m2/n)]$$

- * Uớc lượng: $W = R1 \bowtie R2$
- * Cho
 - ❖ X = tập thuộc tính của R1
 - Y = tập thuộc tính của R2
- * Xét trường hợp $X \cap Y = \emptyset$
 - ❖ Tương tự W = R1 x R2
- * Xét trường hợp $X \cap Y = A$
 - ❖ Nếu mọi giá trị của A trong R1 đều có trong R2
 - T(W) = T(R1) [T(R2) / V(R2,A)]
 - Nếu mọi giá trị của A trong R2 đều có trong R1
 - T(W) = T(R2) [T(R1) / V(R1,A)]
 - ❖ Tổng quát
 - \circ T(W) = T(R1).T(R2) / Max[V(R1,A), V(R2,A)]

Ví dụ

* Cho

- ◆ R1
 - \circ T(R1) = 1000
 - \circ V(R1, A) = 50
 - \circ V(R1, B) = 100
- R2
 - \circ T(R2) = 2000
 - \circ V(R2, B) = 200
 - \circ V(R2, C) = 300
- R3
 - \circ T(R3) = 3000
 - \circ V(R3, C) = 90
 - \circ V(R3. D) = 500

```
* Hãy ước lượng U = R1(A, B) \bowtie R2(B, C)
```

$$T(U) = (1000 \times 2000)/Max(100,200) = 10000$$

* Hãy ước lượng $Z = R1(A, B) \bowtie R2(B, C) \bowtie R3(C, D)$

$$\circ$$
 T(Z) = (10000 x 3000)/Max(300,90)=100000

•
$$V(Z, A) = 50$$

•
$$V(Z, B) = 100$$

$$\circ$$
 V(Z, C) = 90

•
$$V(Z, D) = 500$$

Ước lượng kích thước (tt)

* Uốc lượng: $W = R1 \cup R2$

Nếu R1 và R2 chấp nhận giá trị lặp

$$\circ$$
 T(W) = T(R1) + T(R2)

Nếu R1 và R2 không chấp nhận giá trị lặp

$$\bullet$$
 TH2: R1 \cup R2 có tạo giá trị lặp T₂(W) < T(R1) + T(R2)

• Tổng quát :
$$T(W) = [T_1(W) + T_2(W)]/2$$

* Uớc lượng: W = R1 ∩ R2

❖ TH1 : (trường hợp nhỏ nhất) R1 ∩ R2 = Ø thì

$$T_1(W) = 0$$

❖ TH2: (trường hợp lớn nhất) R1 ∩ R2 = R1 hay R2 thì

•
$$T_2(W) = T(R1)$$
 hay $T(R2)$

♣ Tổng quát : T(M) = [T.(M)+T.(M/)] / 2

* Uốc lượng: W = R1 - R2

- ❖ TH1: (trường hợp lớn nhất) R1 R2 = R1 thì
 - $\circ T_1(W) = T(R1)$
- ❖ TH2: (trường hợp nhỏ nhất) R1 ∩ R2 = R2 thì
 - $T_2(W) = T(R1) T(R2)$
- ❖ Tổng quát : T(W) = [T₁(W)+T₂(W)] / 2 = T(R1) T(R2)/2

* Uốc lượng: $W = \delta(R)$

- ❖ Giả sử R(a₁,a₂,a₃,...,aո)
- ❖ Vậy số bộ phân biệt tối đa là Π_{i∈[1,n]}V(R,a_i)
- ❖ Trường hợp nhỏ nhất : R rỗng → T(W) = 0
- ❖ T(W) = Min(T(R)/2, $\Pi_{i \in [1,n]}V(R,a_i)$)

Ước lượng kích thước (tt)

* Uốc lượng: $W = \mathcal{S}(R)$

- TH1: (trường hợp lớn nhất) số bộ phân biệt trong R cũng là số nhóm
 - $T_1(W) = T(\delta(R))$
- TH2: (trường hợp nhỏ nhất) R rỗng
 - $T_2(W) = 0$
- TH3: Toàn bộ R tạo 1 nhóm
- ❖ Tổng quát : T(W) = Min(T(R)/2 , $\Pi_{i \in [1,n]}V(R,a_i)$)
- Kích thước sau cùng của cây truy vấn
 - Là tổng kích thước của phép toán ở tất cả các node, ngoại trừ node lá và node gốc.

- Nội dung chi tiết
- * Giới thiệu
- * Phân tích cú pháp ngữ nghĩa
- * Biến đổi sang Đại số Quan hệ
- * Tổi ưu hóa cây truy vấn
- * Ước lượng kích thước cây truy vấn
- * Phát sinh và thực thi mã lệnh

Phát sinh mã (tt)

* Từ cây Truy vấn sau bước tối ưu hóa DBMS sẽ

- Phát sinh mã lệnh của ngôn ngữ chủ (ngôn ngữ dùng để viết chính DBMS) để thực thì cây truy vấn ấy
- Các phép toán của Đại số quan hệ
 - Được cài đặt trước thành một bộ các hàm (với hệ thống tham số đầy đủ).
 - Ví dụ
 - ▶ Projection (R: Relation, A: Array of Attribute) As Relation
 - ► Selection (R: Relation, C: Array of Condition) As Relation

> ...

Việc phát sinh mã lệnh thực chất là việc phát sinh các lời gọi các hàm trên và truyền cho chúng đối số cụ thể

* Sắp xếp ngoài

- Việc sắp xếp là cần thiết cho thực thi truy vấn (Vd : Order by, join, union, distinct...)
- Có trường hợp yêu cầu truy vấn liên quan thuộc tính không có chỉ mục trên ấy
- ❖ Tập tin CSDL lớn → không chứa đủ trong bộ nhớ chính để sắp xếp → Cấn phải sắp xếp ngoài (dùng file tạm trên đĩa)
- Thuật toán : merge short
 - Ban đầu sắp xếp trong các run nhỏ của tập tin chính
 - Sau đó trộn các run nhỏ và lại sắp xếp để có run lớn hơn
 - Lặp lại quá trình đến khi chỉ còn 1 run
 - Số lượng run khởi điểm (nR) tùy thuộc vào số block cần sắp xếp (b) và không gian trống trong buffer (nF)

nR = b/nF

Phát sinh mã (tt)

Cài đặt hàm phép chọn 1 điều kiện

- Tìm tuyến tính : Đọc từng mẫu tin và kiểm tra điều kiện chọn
- Nếu điều kiện chọn là so sánh bằng trên thuộc tính là khóa sắp xếp file -> tìm nhị phân
- ❖ Nếu điều kiện chọn là so sánh bằng trên thuộc tính là khóa có primary index / hash key → dùng primary index / hash key
- ❖ Nếu điều kiện chọn là so sánh bằng trên thuộc tính không là khóa nhưng có clustering index → dùng clustering index
- ❖ Nếu điều kiện chọn không phải so sánh bằng → dùng Secondary Index
- ❖ Nếu điều kiện là so sánh ≤, ≥ thì tìm cho điều kiện = trước

* Cài đặt hàm phép chọn nhiều điều kiện (nối bởi AND)

- Chọn 1 điều kiện để thực hiện như phép chọn đơn. Khi có kết quả, loại dần những bộ không thỏa các điều kiện còn lại
- Thực hiện từng điều kiện như từng phép chọn đơn và giao kết quả với nhau

Phát sinh mã (tt)

* Cài đặt hàm phép kết $R \bowtie_{R,\mathcal{A}=S.B} S$

- Dùng 2 vòng lặp lồng nhau : Duyệt mỗi bộ r trong R, duyệt mỗi bộ s trong S và kiểm tra điều kiện r.A=s.B
- ❖ Nếu có chỉ mục trên B → dùng 1 vòng lặp : Với mỗi bộ r trong R, truy cập trực tiếp (bằng chỉ mục) các bộ s trong S thỏa s.B = r.A
- Nếu R và S đều được sắp xếp vật lý theo A và B thì duyệt trên file tương ứng và so khớp các giá trị A và B
- Dùng hàm băm

 - Băm trên khóa B → phân các dòng s trong S vào các lô S_i
 - \circ Quét qua R_i và S_i và tìm các lô mà R_i . $A = S_i$.B

Thực thi mã lệnh (tt)

- # Hiệu quả của việc thực thi mã lệnh đã phát sinh ở bước trước phụ thuộc vào 2 yếu tố
 - Mức độ tối ưu của cây truy vấn
 - Mức độ tối ưu của các hàm cài đặt các phép toán đại số quan hệ
- Tối ưu hóa cây truy vấn
 - Áp dụng các quy tắc (đã học trong chương này)
- * Mức độ tối ưu của các hàm
 - Vận dụng các cấu trúc lưu trữ Dữ liệu (chương 5) và các thuật toán truy xuất, tìm kiếm trên các cấu trúc Dữ liệu (môn Cấu trúc Dữ liệu 1 & 2)
 - ❖ Đặc biệt quan tâm cài đặt cho phép chọn và phép kết

