Examples on Groups

Example 1. Show the set of integers ...,-4,-3,-2,-1,0,1,2,3,4,... is and infinite Abelian group with respect to the operation of addition of integers.

Example 2. Show the set of non-zero rational numbers with respect to operation is a group.

Example 3. Show that C, the set of all non-zero complex numbers is multiplicative group.

Example 4

Is the set (N,+) a Group?

Example 5

Is the set (N,-) a Group?

Example 6

Is the set (N,\cdot) a Group?

Example 7

Is the set (N, \div) a Group?

Example 8

Is the set (Z,-) a Group?

Example 9

Is the set (Z,\cdot) a Group?

Example 10

Is the set (Z, \div) a Group?

Example 11

Are the sets (Q,+), (Q,-), (Q,\cdot) , (Q,\div) the Groups?

Example 12

Are the sets (R,+), (R,-), (R,\cdot) , (R,\div) the Groups?

Examples on Subgroups

1. Is the following set (R,*) subgroup with respect to operation (*), if

a)
$$a * b = a + b + 3$$
;

b)
$$a * b = a(1-b)+b;$$

c)
$$a * b = \sqrt{a \cdot b} + 1$$
;

d)
$$a * b = \frac{1}{a \cdot b}$$
;

e)
$$a * b = -a - b + ab + 3$$
;

2. Are the following sets

$$(N,+), (N,\cdot), (Z,+), (Z,\cdot), (Q,+), (Q,\cdot), (R,+), (R,\cdot)$$

Subgroups?

Examples on Rings

1. Let Z is the set of whole numbers. (+), (-), (\cdot) are operations of addition, difference and multiplication on Z and $x, y \in Z$.

Is the set $(Z,+_1,-_1,\cdot_1,e)$ Ring, if

a)
$$x +_1 y = x + y - 2$$
; $x \cdot_1 y = xy - 2x - 2y + 6$.

b)
$$x +_1 y = x + y - 1$$
; $x \cdot_1 y = xy - x - y + 2$.

c)
$$x +_1 y = x + y + 3$$
; $x \cdot_1 y = xy - 3x - 3y + +6$.

Examples on Fields

1. Is the set $(Z,+_1,-_1,\cdot_1,e)$ field, if

a)
$$x +_1 y = x + y - \frac{1}{2}$$
; $x \cdot_1 y = xy - \frac{1}{2}x - \frac{1}{2}y + \frac{3}{4}$.

b)
$$x +_1 y = x + y - \frac{1}{2}$$
; $x \cdot_1 y = \frac{3}{2}xy - \frac{3}{4}x - \frac{3}{4}y + \frac{7}{8}$.

c)
$$x +_1 y = x + y + \frac{1}{2}$$
; $x \cdot_1 y = xy + \frac{1}{2}x + \frac{1}{2}y - \frac{1}{4}$.