Phys 2110-3 9/15/10

0/15/2010

20 Motion

又(十), 7(十)

Constant Accel

 $V_{x} = V_{ox} + G_{x}t$

X= Xo+ Voxt+ Zaxtz

 $\forall x, \forall y \qquad \alpha_x, \alpha_y$

ax, ay both constant

 $V_{\gamma} = V_{o \gamma} + \alpha_{\gamma} t$

Y= /o+Voyt-teayt2

An object is moving in the X dir at 1.3 mg; it is sub. /d to accul $\sqrt{a} = 0.52^{\circ} \frac{m}{s^2}$. what is velocity vector after 4.4s of acceleration? $V_X = V_{0X} + \alpha_X t = 1.3^{\frac{m}{3}} + 0$ $V_y = V_{oy} + \alpha_y t = 0 + (0.52\frac{\pi}{52})(4.4|s)$ $\sqrt{\chi} = 1.3^{\frac{m}{S}} \qquad \sqrt{\gamma} = 2.29^{\frac{101}{S}}$

$$V = \sqrt{(1.3)^2 + (2.29)^2} \frac{m}{s}$$

$$= 2.63 \frac{m}{s}$$

$$0 = \tan^2(\frac{2.29}{1.3}) = 60.4^{\circ}$$

$$1.3 \frac{m}{s}$$

Free-fall

$$a_{x}, a_{y}$$
 $a_{y} = 9.8 \frac{m}{5^{2}}$

Lanore $a_{1}y$.

 $a_{x} = 0$

A carpenter tosses a shingle off 8.8 m - high roof giving It an Initial horiz velocity of ILMs. a) How long does it take shingle to reach ground? b) How far shingle more horizontally in this time?

$$x = x_0 + v_0 + \frac{1}{2}a_x +$$

$$y = y_0 + V_{0y}t + \chi_{0y}t^2$$

$$= 0 + 0 + \chi_{0}(-9.5)^{2}t^2$$

$$= -\frac{1}{2}(9.5)^{2}t^2$$

$$(3)$$
 + when $y = -8.5 \text{ m}$
 $-8.5 \text{ m} = -2 (9.5 \frac{\text{m}}{\text{s}^2}) + 1$
 (4) (5) (5) (5) (5) (7)

b)
$$\chi = (11\frac{m}{8}) t = (11\frac{m}{8})(1.341s) = (14.7 m)$$

3.41 An arrow fired horizonefally at 41% travels 23m horizontally before it hits ground.

From what height fired?

X = (41%) t

 $\times = (41\frac{m}{5})t$ $y = -\frac{1}{2}at^2$ Find time on flight $\chi = 23 m = (41 \%)$ t= 0.561 s

At this time $y = -\frac{1}{2}(9.8 \%)(0.561_{-3})^{2}$ = -1.54 %

Fired from height of 1-54 m

"Projectile problem" Projectile fined from ground level, find Range, max H, time in flight

 $X = X_0 + V_{ox} + + Saxt^2$ = () + (19.3%) t + 0 $= (1).3^{\frac{1}{3}}t$ $V_{x} = V_{oX} = 13.3^{\frac{11}{5}}$ Y = Yo + Voy t + 2 axt = 22.96 M

Range = Value of
$$x$$
 when x hits
When x bes $y = 0$?
 $y = (22.98\%) + -\frac{1}{2}(9.8\%) + 2$
 $t = (22.98\%) - \frac{1}{2}(9.8\%) + 3$
 $t = 0$
 $t = 2(22.98\%) - 3$
 $t = 0$
 $t = 2(22.98\%) - 3$

what is I that the ! $\chi = (19.28\%)(4.75)$ = 90.4%R = 902mWhat is max he! How long to get to max ht?

Max ht:
$$V_{y} = 0$$

 $V_{y} = V_{0y} + Q_{y}t$
 $= (22.98\%) + (-9.8\%) t$
 $= 0$
 $t = 2.345$ (Half as log to max)
 $t = 30$
 $t = 2.345$ (2.345) - $t = 20.8\%$ (2.34)
 $t = 26.9 \text{ m}$ = H

