Week 10 Tuesday 1 7 Large optical depth And interiors

Interiors

Photons don't go far = energy transport is easier (diffusion approximation)

We will have to include the energy created by nuclear reactions

Atmospheres

Transport of energy more tricky (radiative transfer)

No energy production

Scale height is small: Flat geometry approximation We can do the same procedure (approximation for large τ) for all of the 'moment' equations, and also for the intensity solution.

$$I(\tau,u) = S(\tau) + u \frac{dS(\tau')}{d\tau'} \bigg|_{\tau} + 2! \ u^2 \frac{d^2S(\tau')}{d\tau'^2} \bigg|_{\tau} + \dots \qquad \qquad \text{Reminder}$$

$$J(\tau) = S(\tau) + \frac{1}{3} \frac{d^2 S(\tau')}{d\tau'^2} \Big|_{\tau} + \dots$$

$$\frac{F}{4\pi} = \frac{1}{3} \frac{dS(\tau')}{d\tau'} \Big|_{\tau} + \frac{1}{5} \frac{d^3 S(\tau')}{d\tau'^3} \Big|_{\tau} + \dots$$

$$K(\tau) = \frac{1}{3}S(\tau) + \frac{1}{5} \frac{d^2 S(\tau')}{d\tau'^2} \Big|_{\tau} + \dots$$

We can do the same procedure (approximation for large τ) for all of the 'moment' equations, and also for the intensity solution.

We can use this (yah!)

$$\frac{F}{4\pi} = \frac{1}{3} \frac{dS(\tau')}{d\tau'} \Big|_{\tau}$$

We can do the same procedure (approximation for large τ) for all of the 'moment' equations, and also for the intensity solution.

We can use this (yah!)

$$\frac{F}{4\pi} = \frac{1}{3} \frac{dS(\tau')}{d\tau'} \Big|_{\tau}$$

The "enclosed luminosity" $L_r(r)$:

Energy per second (erg/s or Watt) going through a spherical surface at radius *r*

$$L_r(r) = 4\pi r^2 \tilde{F}(r)$$

Plan:

- 1. Let's sketch $L_r(r)$
- 2. How can we quantify the change in $L_r(r)$ in the core
- 3. How can we relate $L_r(r)$ to the T(r) through the flux at high τ

Plan:

- 1. Let's sketch $L_r(r)$
- 2. How can we quantify the change in $L_r(r)$ in the core
- 3. How can we relate $L_r(r)$ to the T(r) through the flux at high τ

How much (nuclear) energy is added to L_r by one thin shell? (On the board)

$$\frac{dL_r(r)}{dr} = 4\pi r^2 \rho(r)\epsilon(r)$$

Q: what is $\epsilon(r)$ in the atmosphere of the Sun?

Q: why is $L_r(r=0)$ zero?

Plan:

- 1. Let's sketch $L_r(r)$
- 2. How can we quantify the change in $L_r(r)$ in the core
- 3. How can we relate $L_r(r)$ to the T(r) through the flux at high τ

$$L_r(r) = 4\pi r^2 \tilde{F}(r)$$

$$\frac{F}{4\pi} = \frac{1}{3} \frac{dS(\tau')}{d\tau'} \Big|_{\tau}$$

On the board: transform the flux equation to get:

$$\tilde{F}(r) = -\frac{4\pi}{3\rho} \frac{dT}{dr} \int_0^\infty \frac{1}{\kappa_\lambda} \frac{dB_\lambda}{dT} d\lambda$$

This is an analytic equation (we can derivate B_{λ} with respect to T, and we can also integrate over λ . $\tilde{F}(r) = -\frac{4\pi}{3\rho}\frac{dT}{dr}\int_0^\infty \frac{1}{\kappa_{\lambda}}\frac{dB_{\lambda}}{dT}d\lambda$

$$\kappa_{\lambda}(z) = f(\text{composition, T}(z))$$

Beuh — at each layer, need a full wavelength dependent calculation....

This is an analytic equation (we can derivate B_{λ} with respect to T, and we can also integrate over λ .

$$\tilde{F}(r) = -\frac{4\pi}{3\rho} \frac{dT}{dr} \int_0^\infty \frac{1}{\kappa_\lambda} \frac{dB_\lambda}{dT} d\lambda$$

How about we take an average value over all λ so that we can pull it out of the integral?

This is an analytic equation (we can derivate B_{λ} with respect to T, and we can also integrate over λ .

$$\tilde{F}(r) = -\frac{4\pi}{3\rho} \frac{dT}{dr} \int_0^\infty \frac{1}{\kappa_\lambda} \frac{dB_\lambda}{dT} d\lambda$$

How about we take an average value over all λ so that we can pull it out of the integral?

This is an analytic equation (we can derivate B_{λ} with respect to T, and we can also integrate over λ .

$$\tilde{F}(r) = -\frac{4\pi}{3\rho} \frac{dT}{dr} \int_0^\infty \frac{1}{\kappa_\lambda} \frac{dB_\lambda}{dT} d\lambda$$

How about we take an average value over all λ so that we can pull it out of the integral?

Weighted average:

$$\frac{1}{\kappa_R} = \frac{\int_0^\infty \frac{1}{\kappa_\lambda} \frac{dB_\lambda}{dT} d\lambda}{\int_0^\infty \frac{dB_\lambda}{dT} d\lambda}$$

Rosseland Mean Opacity

$$\frac{1}{\kappa_R} = \frac{\int_0^\infty \frac{1}{\kappa_\lambda} \frac{dB_\lambda}{dT} d\lambda}{\int_0^\infty \frac{dB_\lambda}{dT} d\lambda}$$

Figure 3.17 Rosseland mean opacity as a function of temperature from the Opacity Project data. The densities used are those for $\log R = -3$. Three curves are shown for different abundances that are defined in the figure. Also identified in the figure is the position of the Z-bump.

$$\tilde{F}(r) = -\frac{4\pi}{3\rho} \frac{dT}{dr} \int_{0}^{\infty} \frac{1}{\kappa_{\lambda}} \frac{dB_{\lambda}}{dT} d\lambda$$

On the board: replace κ_{λ} with κ_{R} , so that we can pull it out of the integral

$$\frac{dT(r)}{dr} = -\frac{3\kappa_R(r)\rho(r)}{64\pi\sigma} \frac{L_r(r)}{r^2 T(r)^3}$$

$$\frac{dM_r(r)}{dr} = 4\pi r^2 \rho(r)$$

$$\frac{dP(r)}{dr} = -\rho(r) \frac{GM_r(r)}{r^2}$$

$$\frac{dT(r)}{dr} = -\frac{3\kappa_R(r)\rho(r)}{64\pi\sigma} \frac{L_r(r)}{r^2 T(r)^3}$$

$$\frac{dL_r(r)}{dr} = 4\pi r^2 \rho(r)\epsilon(r)$$

$$M_r(r)$$
 $P(r)$ $L_r(r)$ $T(r)$ $ho(r)$ $\mu(r)$ $\epsilon_{
m nuc}(r)$ $\kappa_R(r)$

$$P(r) = \frac{\rho(r)}{\mu(r)} kT(r)$$

$$\mu(r) = f(\text{comp}, T(r), P(r))$$

$$\kappa_R(r) = f(\text{comp}, T(r), P(r))$$

$$\epsilon_{\mathrm{nuc}}(r) = f(\mathrm{comp}, T(r), P(r))$$

$$\frac{dM_r(r)}{dr} = 4\pi r^2 \rho(r)$$

$$\frac{dP(r)}{dr} = -\rho(r) \frac{GM_r(r)}{r^2}$$

$$\frac{dT(r)}{dr} = -\frac{3\kappa_R(r)\rho(r)}{64\pi\sigma} \frac{L_r(r)}{r^2 T(r)^3} \qquad P(r) = \frac{\rho(r)}{\mu(r)} kT(r)$$

$$\mu(r) = f(\text{comp}, T(r))$$

$$\frac{dL_r(r)}{dr} = 4\pi r^2 \rho(r)\epsilon(r)$$

$$M_r(r)$$
 $P(r)$ $L_r(r)$ $T(r)$

$$\rho(r)$$
 $\mu(r)$ $\epsilon_{\rm nuc}(r)$ $\kappa_R(r)$

$$P(r) = \frac{\rho(r)}{\mu(r)} kT(r)$$

$$\mu(r) = f(\text{comp}, T(r), P(r))$$

$$\kappa_R(r) = f(\text{comp}, T(r), P(r))$$

$$\epsilon_{\mathrm{nuc}}(r) = f(\mathrm{comp}, T(r), P(r))$$

$$\frac{dM_r(r)}{dr} = 4\pi r^2 \rho(r)$$

$$\frac{dP(r)}{dr} = -\rho(r) \frac{GM_r(r)}{r^2}$$

$$\frac{dT(r)}{dr} = -\frac{3\kappa_R(r)\rho(r)}{64\pi\sigma} \frac{L_r(r)}{r^2 T(r)^3}$$

$$P(r) = \frac{\rho(r)}{\mu(r)} kT(r)$$
Always valid?
$$\mu(r) = f(\text{comp}, T(r), P(r))$$

$$\frac{dL_r(r)}{dr} = 4\pi r^2 \rho(r)\epsilon(r)$$

$$M_r(r)$$
 $P(r)$ $L_r(r)$ $T(r)$

$$\rho(r)$$
 $\mu(r)$ $\epsilon_{\rm nuc}(r)$ $\kappa_R(r)$

$$P(r) = \frac{\rho(r)}{\mu(r)} kT(r)$$

$$\mu(r) = f(\text{comp}, T(r), P(r))$$

$$\kappa_R(r) = f(\text{comp}, T(r), P(r))$$

$$\epsilon_{\mathrm{nuc}}(r) = f(\mathrm{comp}, T(r), P(r))$$

$$\frac{dM_r(r)}{dr} = 4\pi r^2 \rho(r)$$

$$\frac{dP(r)}{dr} = -\rho(r) \frac{GM_r(r)}{r^2}$$

$$\frac{dT(r)}{dr} = -\frac{3\kappa_R(r)\rho(r)}{64\pi\sigma} \frac{L_r(r)}{r^2 T(r)^3} \qquad P(r) = \frac{\rho(r)}{\mu(r)} kT(r)$$

$$\mu(r) = f(\text{comp}, T(r))$$

$$\frac{dL_r(r)}{dr} = 4\pi r^2 \rho(r)\epsilon(r)$$

$$M_r(r)$$
 $P(r)$ $L_r(r)$ $T(r)$

$$\rho(r)$$
 $\mu(r)$ $\epsilon_{\rm nuc}(r)$ $\kappa_R(r)$

Ideal gas always valid?

$$P(r) = \frac{\rho(r)}{\mu(r)} kT(r)$$

$$\mu(r) = f(\text{comp}, T(r), P(r))$$

$$\kappa_R(r) = f(\text{comp}, T(r), P(r))$$

$$\epsilon_{\mathrm{nuc}}(r) = f(\mathrm{comp}, T(r), P(r))$$
 Nuclear mechanism?

$$\frac{dM_r(r)}{dr} = 4\pi r^2 \rho(r)$$

$$\frac{dP(r)}{dr} = -\rho(r) \frac{GM_r(r)}{r^2}$$

$$\frac{dT(r)}{dr} = -\frac{3\kappa_R(r)\rho(r)}{64\pi\sigma} \frac{L_r(r)}{r^2 T(r)^3} \qquad P(r) = \frac{\rho(r)}{\mu(r)} kT(r)$$
$$\mu(r) = f(\text{comp}, T(r))$$

$$\frac{dL_r(r)}{dr} = 4\pi r^2 \rho(r)\epsilon(r)$$

$$M_r(r)$$
 $P(r)$ $L_r(r)$ $T(r)$

$$\rho(r)$$
 $\mu(r)$ $\epsilon_{\rm nuc}(r)$ $\kappa_R(r)$

Ideal gas always valid?

Nuclear mechanism?

How to solve?

$$P(r) = \frac{\rho(r)}{\mu(r)} kT(r)$$

$$\mu(r) = f(\text{comp}, T(r), P(r))$$

$$\kappa_R(r) = f(\text{comp}, T(r), P(r))$$

$$\epsilon_{\mathrm{nuc}}(r) = f(\mathrm{comp}, T(r), P(r))$$

$$\frac{dM_r(r)}{dr} = 4\pi r^2 \rho(r)$$

$$\frac{dP(r)}{dr} = -\rho(r) \frac{GM_r(r)}{r^2}$$

$$\frac{dT(r)}{dr} = -\frac{3\kappa_R(r)\rho(r)}{64\pi\sigma} \frac{L_r(r)}{r^2 T(r)^3}$$

$$\frac{dL_r(r)}{dr} = 4\pi r^2 \rho(r) \epsilon(r)$$

$$M_r(r)$$
 $P(r)$ $L_r(r)$ $T(r)$

$$\rho(r)$$
 $\mu(r)$ $\epsilon_{\rm nuc}(r)$ $\kappa_R(r)$

$$P(r) = \frac{\rho(r)}{\mu(r)} kT(r)$$

$$\mu(r) = f(\text{comp}, T(r), P(r))$$

$$\kappa_R(r) = f(\text{comp}, T(r), P(r))$$

$$\epsilon_{\mathrm{nuc}}(r) = f(\mathbf{comp}, T(r), P(r))$$

Ideal gas always valid?

Nuclear mechanism?

How to solve?

What changes with time?