$Gr\'{a}falgoritmus ok$

Gaskó Noémi

2023. április 3.

Tartalomjegyzék

Gráfok szinezése

Síkbarajzolhatóság-Síkgráfok

Gaskó Noémi Gráfalgoritmusok 2023. április 3. 2 / 59

Egy feladat

Repülõutak, mindegyik Kolozsvárról indul:

A: München \rightarrow Zürich \rightarrow London \rightarrow New York

B: Bécs \rightarrow Frankfurt \rightarrow Berlin \rightarrow New York

C: Budapest o London o New York o Tokió

D: Budapest \rightarrow Ljubljana \rightarrow Frankfurt

 $\mathsf{E} \colon \mathsf{Budapest} \to \mathsf{Dortmund} \to \mathsf{London}$

F: Bukarest \rightarrow Berlin \rightarrow New York

G: Bukarest \rightarrow Würzburg \rightarrow Frankfurt

Egy feladat

Repülõutak, mindegyik Kolozsvárról indul:

A: München \rightarrow Zürich \rightarrow London \rightarrow New York

B: Bécs \rightarrow Frankfurt \rightarrow Berlin \rightarrow New York

C: Budapest o London o New York o Tokió

D: Budapest \rightarrow Ljubljana \rightarrow Frankfurt

E: Budapest \rightarrow Dortmund \rightarrow London

F: Bukarest \rightarrow Berlin \rightarrow New York

G: Bukarest \rightarrow Würzburg \rightarrow Frankfurt

Megszorítások:

- o csak hétfőn, szerdán és pénteken repülhetnek
- o egy nap nem repülhentek el ugyanabba a városba többször

Hogyan fogalmazhatjuk meg a feladatot gráfelméletileg?

Egy feladat

```
Repülõutak, mindegyik Kolozsvárról indul:
```

- A: München \rightarrow Zürich \rightarrow London \rightarrow New York
- B: Bécs \rightarrow Frankfurt \rightarrow Berlin \rightarrow New York
- C: Budapest o London o New York o Tokió
- D: Budapest \rightarrow Ljubljana \rightarrow Frankfurt
- E: Budapest \rightarrow Dortmund \rightarrow London
- F: Bukarest \rightarrow Berlin \rightarrow New York
- G: Bukarest \rightarrow Würzburg \rightarrow Frankfurt

Megszorítások:

- o csak hétfőn, szerdán és pénteken repülhetnek
- egy nap nem repülhentek el ugyanabba a városba többször

Hogyan fogalmazhatjuk meg a feladatot gráfelméletileg? Lehetséges-e így megoldani a repülõutakat?

Egy feladat (folyt.)

Gráfok színezése

Általánosan:

Színezés

Minimális számú színnel kifesteni a gráf elemeit (csúcsok, élek, tartományok) úgy, hogy két szomszédos elem ne legyen ugyanolyan színû.

Gráfok színezése

Általánosan:

Színezés

Minimális számú színnel kifesteni a gráf elemeit (csúcsok, élek, tartományok) úgy, hogy két szomszédos elem ne legyen ugyanolyan színû.

Síkgráfok tartományainak a színezése - négyszín probléma, 1976-ban oldották meg (K. Appel és W. Haken).

Gaskó Noémi Gráfalgoritmusok 2023. április 3. 6/59

Gráfok színezése

Általánosan:

Színezés

Minimális számú színnel kifesteni a gráf elemeit (csúcsok, élek, tartományok) úgy, hogy két szomszédos elem ne legyen ugyanolyan színû.

Síkgráfok tartományainak a színezése - négyszín probléma, 1976-ban oldották meg (K. Appel és W. Haken).

Értelmezés

Legyen G egy gráf. Egy csúcsszínezése a G-nek azt jelenti, hogy minden csúcshoz hozzárendeljük az 1,2,3,...,k színeket, úgy, hogy a szomszédos csomópontok különböző színûek legyenek.

Szinezések

- csúcs színezés
- él szinezés
- terület színezés
- lista szinezés
- teljes szinezés

Kromatikus szám

Az a legkisebb szám, amennyi szinnel ki lehet színezni a gráf csúcsait. Jelölése: $\chi(G)$.

Egy példa

- ${\bf \circ}$ Egy n csomópontú G gráf esetén $\chi(G) \leq n$
- ullet Ha a H a G gráf részgráfja, akkor $\chi(H) \leq \chi(G)$
- \bullet $\chi(K_n) = n, \forall n \geq 1$
- ha egy G gráfnak a K_n egy részgráfja, akkor $\chi(G) \geq n$

- \bullet Egy n csomópontú G gráf esetén $\chi(G) \leq n$
- ullet Ha a H a G gráf részgráfja, akkor $\chi(H) \leq \chi(G)$
- \bullet $\chi(K_n) = n, \forall n \geq 1$
- ullet ha egy G gráfnak a K_n egy részgráfja, akkor $\chi(G) \geq n$

Tétel

Egy gráf akkor és csakis akkor színezhető két színnel, ha páros gráf.

Gaskó Noémi Gráfalgoritmusok 2023. április 3.

- ullet Egy n csomópontú ${\sf G}$ gráf esetén $\chi(G) \leq n$
- \bullet Ha a H a G gráf részgráfja, akkor $\chi(H) \leq \chi(G)$
- $\chi(K_n) = n, \forall n \ge 1$
- ullet ha egy G gráfnak a K_n egy részgráfja, akkor $\chi(G) \geq n$

Tétel

Egy gráf akkor és csakis akkor színezhető két színnel, ha páros gráf.

Bizonyítás

Ha a gráf páros, akkor nyilván kiszinezhető két színnel.

Ha $\chi(G)=2$ akkor legyen X az a halmaz, amelyiket 1-es színnel színezhetjük ki, míg Y az a halmaz, amelyiket 2-es színnel színezhetjük ki. Így $V=X\cup Y$ lesz a páros gráf két diszjunkt halmaza.

Bármely G gráf esetén:

$$\chi(G) \le \Delta(G) + 1,$$

ahol $\Delta(G)$ a G gráf maximum fokszáma.

Gaskó Noémi Gráfalgoritmusok 2023. április 3. 1

Bármely G gráf esetén:

$$\chi(G) \le \Delta(G) + 1,$$

ahol $\Delta(G)$ a G gráf maximum fokszáma.

Bizonyítás

indukció a G gráf csomópontjai szerint

Bármely G gráf esetén:

$$\chi(G) \le \Delta(G) + 1,$$

ahol $\Delta(G)$ a G gráf maximum fokszáma.

Bizonyítás

indukció a G gráf csomópontjai szerint

Mikor teljesül az egyenlőség?

Bármely G gráf esetén:

$$\chi(G) \le \Delta(G) + 1,$$

ahol $\Delta(G)$ a G gráf maximum fokszáma.

Bizonyítás

indukció a G gráf csomópontjai szerint

Mikor teljesül az egyenlőség?

Brooks tétele, 1941

Legyen G egy összefüggő gráf, melyben $\Delta(G) \geq 3$. Ha G nem teljes, akkor

$$\chi(G) \leq \Delta(G)$$
.

Bizonyítás

indukció a gráfok csúcsa szerint

1 lépés:
$$G = \{x_1, x_2, ..., x_n\}$$
 a szinek: $C = \{1, 2, ..., n\}$

Gaskó Noémi Gráfalgoritmusok 2023. április 3. 11/

```
1.lépés: G=\{x_1,x_2,...,x_n\} a szinek: C=\{1,2,...,n\} 2.lépés: minden i=1,...,n esetén legyen C_i=\{1,2,...,i\} az a szín, amely az x_i csúcsot szine lehet
```


Gaskó Noémi Gráfalgoritmusok 2023. április 3.

```
1.lépés: G=\{x_1,x_2,...,x_n\} a szinek: C=\{1,2,...,n\} 2.lépés: minden i=1,...,n esetén legyen C_i=\{1,2,...,i\} az a szín, amely az x_i csúcsot szine lehet
```

3.lépés: legyen i=1

4 ロ ト 4 団 ト 4 豆 ト 4 豆 ト 9 Q CP

- 1.lépés: $G=\{x_1,x_2,...,x_n\}$ a szinek: $C=\{1,2,...,n\}$ 2.lépés: minden i=1,...,n esetén legyen $C_i=\{1,2,...,i\}$ az a szín, amely az x_i csúcsot szine lehet 3.lépés: legyen i=1
- 4.lépés: legyen c_1 a C_i első szine, ezt rendeljük hozzá x_i -hez

Gaskó Noémi Gráfalgoritmusok 2023. április 3. 11/5

```
1.lépés: G=\{x_1,x_2,...,x_n\} a szinek: C=\{1,2,...,n\} 2.lépés: minden i=1,...,n esetén legyen C_i=\{1,2,...,i\} az a szín, amely az x_i csúcsot szine lehet 3.lépés: legyen i=1 4.lépés: legyen c_1 a C_i első szine, ezt rendeljük hozzá x_i-hez 5.lépés: minden j esetén i< j és x_i az x_j szomszédja, C_j=C_j-\{c_i\}; i=i+1; ha i+1 < n térjünk vissza a 4. lépéshez.
```

```
1.lépés: G=\{x_1,x_2,...,x_n\} a szinek: C=\{1,2,...,n\} 2.lépés: minden i=1,...,n esetén legyen C_i=\{1,2,...,i\} az a szín, amely az x_i csúcsot szine lehet 3.lépés: legyen i=1 4.lépés: legyen c_1 a C_i első szine, ezt rendeljük hozzá x_i-hez 5.lépés: minden j esetén i< j és x_i az x_j szomszédja, C_j=C_j-\{c_i\}; i=i+1; ha i+1\leq n térjünk vissza a 4. lépéshez. 6.lépés: a csomópontok és megfelelő szinezések kiiratása
```

Az algoritmus $O(n^2)$ bonyolultságú, de nem mindig ad jó eredményt.

1/N//

Az algoritmus lépésenként:

1.lépés: a csomópontjaink: $v_1, v_2, ..., v_n$, a szinek: 1, 2, ..., n

Gaskó Noémi Gráfalgoritmusok 2023. április 3. 12 / 5

Az algoritmus lépésenként:

1.lépés: a csomópontjaink: $v_1, v_2, ..., v_n$, a szinek: 1, 2, ..., n

2.lépés:
$$C_1 = \{1\}, C_2 = \{1, 2\}, ..., C_7 = \{1, 2, 3, ..., 7\}$$

Az algoritmus lépésenként:

1.lépés: a csomópontjaink: v_1 , v_2 ,..., v_n , a szinek: 1,2,...,n

2.lépés: $C_1=\{1\}$, $C_2=\{1,2\},...,$ $C_7=\{1,2,3,...,7\}$

3 lépés: legyen i=1

Gaskó Noémi Gráfalgoritmusok 2023.

Az algoritmus lépésenként:

1.lépés: a csomópontjaink: $v_1, v_2, ..., v_n$, a szinek: 1, 2, ..., n

2.lépés: $C_1=\{1\}$, $C_2=\{1,2\},...$, $C_7=\{1,2,3,...,7\}$

3.lépés: legyen i=1

4.lépés: az 1-es szint kiválasztjuk v_1 -nek

Az algoritmus lépésenként:

1 lépés: a csomópontjaink: v_1 , v_2 ,..., v_n , a szinek: 1,2,...,n

2.lépés: $C_1=\{1\},\ C_2=\{1,2\},...,\ C_7=\{1,2,3,...,7\}$

3.lépés: legyen i=1

4.lépés: az 1-es szint kiválasztjuk v_1 -nek

5.lépés: a v_2 , v_3 , v_5 , v_6 és v_7 szomszédos a v_1 -el, így $C_2=\{1,2\}-\{1\}$,

$$C_3 = \{2,3\}, C_4 = \{1,2,3,4\}, C_5 = \{2,3,4,5\}, C_6 = \{2,3,4,5,6\},$$

 $C_7 = \{1, 2, 3, 4, 5, 6, 7\}$

i=2 és visszatérünk a 4-es lépéshez

4.lépés: a 2-es az első szín amelyet hozzárendelünk a v_2 -höz

5.lépés: v_2 szomszédja v_3 , így $C_3 = \{2,3\} - \{2\} = \{3\}$.

Gaskó Noémi Gráfalgoritmusok 2023. áp

```
4.lépés: a 2-es az első szín amelyet hozzárendelünk a v_2-höz
5.lépés: v_2 szomszédja v_3, így C_3 = \{2, 3\} - \{2\} = \{3\}.
i=3, visszatérünk a 4-es lépéshez
```

4.lépés: a 3-as az első szín amelyet hozzárendelünk a
$$v_3$$
-hoz

5.lépés:
$$v_4$$
 és v_5 szomszédos v_3 -al, $C_4 = \{1, 2, 3, 4\} - \{3\} = \{1, 2, 4\}$, $C_5 = \{2, 4, 5\}$

 $C_5 = \{2, 4, 5\}.$

```
4.lépés: a 2-es az első szín amelyet hozzárendelünk a v_2-höz
5.lépés: v_2 szomszédja v_3, így C_3 = \{2, 3\} - \{2\} = \{3\}.
i=3, visszatérünk a 4-es lépéshez
```

4.lépés: a 3-as az első szín amelyet hozzárendelünk a v_3 -hoz

5.lépés: v_4 és v_5 szomszédos v_3 -al, $C_4 = \{1, 2, 3, 4\} - \{3\} = \{1, 2, 4\}$, $C_5 = \{2, 4, 5\}.$

i=4, visszatérünk a 4-es lépéshez

4.lépés: az 1-es az első szín amelyet hozzárendelünk a v_4 -hez

5 lépés: v_5 és v_6 szomszédos v_4 -el, $C_5 = \{2, 4, 5\}$, $C_6 = \{2, 3, 4, 5, 6\}$

Gaskó Noémi

```
4.lépés: a 2-es az első szín amelyet hozzárendelünk a v_2-höz
5.lépés: v_2 szomszédja v_3, így C_3 = \{2, 3\} - \{2\} = \{3\}.
i=3, visszatérünk a 4-es lépéshez
4.lépés: a 3-as az első szín amelyet hozzárendelünk a v_3-hoz
5.lépés: v_4 és v_5 szomszédos v_3-al, C_4 = \{1, 2, 3, 4\} - \{3\} = \{1, 2, 4\},
C_5 = \{2, 4, 5\}.
i=4, visszatérünk a 4-es lépéshez
4.lépés: az 1-es az első szín amelyet hozzárendelünk a v_4-hez
5 lépés: v_5 és v_6 szomszédos v_4-el, C_5 = \{2, 4, 5\}, C_6 = \{2, 3, 4, 5, 6\}
i=5, visszatérünk a 4-es lépéshez
4.lépés: a 2-es az első szín amelyet hozzárendelünk a v_5-höz
```

5 lépés: v_6 szomszédos v_5 -el, $C_6 = \{3, 4, 5, 6\}$.

i=6, visszatérünk a 4-es lépéshez

4.lépés: a 3-as az első szín amelyet hozzárendelünk a v_6 -hoz

5.lépés: v_7 szomszédos v_6 -al, $C_7 = \{2, 4, 5, 6, 7\}$.

Gaskó Noémi Gráfalgoritmusok 2023. április 3. 14

- i=6, visszatérünk a 4-es lépéshez
- 4.lépés: a 3-as az első szín amelyet hozzárendelünk a v_{6} -hoz
- 5.lépés: v_7 szomszédos v_6 -al, $C_7 = \{2, 4, 5, 6, 7\}$.
- i=7, visszatérünk a 4-es lépéshez
- 4.lépés: a 2-es az első szín amelyet hozzárendelünk a v_7 -hoz

i=6, visszatérünk a 4-es lépéshez

4.lépés: a 3-as az első szín amelyet hozzárendelünk a v_{6} -hoz

5.lépés: v_7 szomszédos v_6 -al, $C_7 = \{2, 4, 5, 6, 7\}$.

i=7, visszatérünk a 4-es lépéshez

4.lépés: a 2-es az első szín amelyet hozzárendelünk a v_7 -hoz

i=8 az algoritmus leáll

6 lépés: v_1 és v_4 szine , v_2 , v_5 és v_7 szine 2; v_3 és v_6 szine 3.

Mikor nem ad jó színezést ez a szenkvenciálsi algoritmus?

Egy példa:

Gaskó Noémi Gráfalgoritmusok

Welsh és Powell algoritmusa

1.lépés: az x_1 , x_2 ,..., x_n csúcsokat rendezzük a fokszámuk szerinti csökkenő sorrendbe: $d(x_1) \ge d(x_2) \ge ... \ge (x_n)$

a többi lépés megegyezik az előző algoritmus lépéseivel

Gaskó Noémi Gráfalgoritmusok 2023. április 3. 16 / 59

Legkisebb-utolsó szekvenciális algoritmus

1.lépés:

- ullet válasszuk ki x_n -t a legkisebb fokszámú csomópontot
- minden i=n-1,n-2,...,1 esetén válasszuk ki x_i -t amely legkisebb fokszámú a $G-\{x_n,x_{n-1},...,x_{i+1}\}$ részgráfban, amelyből letöröltük a megfelelő csúcsokat
- felsoroljuk az $x_1, x_2, ..., x_n$ csomópontokat
- felsoroljuk az 1, 2, ..., n szineket
- a többi lépés megegyezik az első algoritmus lépéseivel

Kempe algoritmusa

- 6-szinezésre sikgráfok esetén
- minden sikgráf esetén létezik legalább egy csomópont, melynek a fokszáma kisebb vagy egyenlő mint 6
- szedjük ki ezt a pontot
- a maradékot szinezzzük ki rekurzivan

Gaskó Noémi Gráfalgoritmusok 2023. április 3.

Kromatikus polinom

Kromatikus polinom

A kromatikus polinom összeszámolja, hogy egy gráfot hányféleképpen lehet kiszinezni egy adott számnál nem több szinnel.

Példa:

Gaskó Noémi Gráfalgoritmusok 2023. április 3. 19 / 59

Kromatikus polinom (folyt.)

Néhány érték:

- K_3 szinezéseinek a lehetőségei: t(t-1)(t-2)
- ullet K_n szinezéseinek a lehetőségei: t(t-1)(t-2)...(t-(n-1))
- ullet fagráf szinezéseinek a lehetőségei: $t(t-1)^{(n-1)}$
- Petersen gráf szinezéseinek a lehetőségei:

$$t(t-1)(t-2)(t^7-12t^6+67t^5-230t^4+529t^3-814t^2+775t-352)$$

Kromatikus polinom meghatározása

Lásd 4. szeminárium

Gaskó Noémi Gráfalgoritmusok 2023. április 3. 21 / 59

Kritikus gráfok

Értelmezés

Egy G gráfot k-kritikusnak nevezünk, ha $\chi(G) = k$ és $\chi(G-v) < k$ bármely $v \in G$ esetén.

Tehát egy gráf akkor k-kritikus, ha k szín szükséges a színezéséhez, de ha bármely csomópontot letöröljük kiszinezhető lenne kevesebb szinnel is.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● りへ○

Kritikus gráfok

Értelmezés

Egy G gráfot k-kritikusnak nevezünk, ha $\chi(G) = k$ és $\chi(G-v) < k$ bármely $v \in G$ esetén.

Tehát egy gráf akkor k-kritikus, ha k szín szükséges a színezéséhez, de ha bármely csomópontot letöröljük kiszinezhető lenne kevesebb szinnel is. Egy példa:

Gaskó Noémi Gráfalgoritmusok 2023. április 3. 22/59

Dirac tétele, 1952

Legyen G egy k-kritikus gráf, ekkor:

- ullet G összefüggő
- ullet G minden csomópontjának a fokszáma legalább k-1
- \bullet G nek nincs G_1 és G_2 részgráfja, úgy, hogy $G=G_1\cup G_2$ és $G_1\cap G_2$ teljes gráf legyen
- $\circ \ G v$ összefüggő, bármely $v \in G$

Dirac tétele, 1952

Legyen G egy k-kritikus gráf, ekkor:

- ullet G összefüggő
- ullet G minden csomópontjának a fokszáma legalább k-1
- ullet G- nek nincs G_1 és G_2 részgráfja, úgy, hogy $G=G_1\cup G_2$ és $G_1\cap G_2$ teljes gráf legyen
- $\circ G v$ összefüggő, bármely $v \in G$

Öt-szin tétel

Minden síkgráf kiszinezhető 5 szinnel.

Bizonyítás

matematikai indukció

Élszínezés

Élszinezés

Legyen G egy egyszerű gráf. Élszinezés során G-hez az 1,2,3,... szineket rendeljük, úgy, hogy ugyanahhoz a csomóponthoz tartozó élek különböző szinűek legyenek.

Élszínezés

Élszinezés

Legyen G egy egyszerű gráf. Élszinezés során G-hez az 1,2,3,... szineket rendeljük, úgy, hogy ugyanahhoz a csomóponthoz tartozó élek különböző szinűek legyenek.

Élkromatikus szám

A minimális számú szint, amivel az éleket kiszinezhetjük élkromatikus számnak nevezzük, jelölése $\chi_l(G)$

Élszínezés

Élszinezés

Legyen G egy egyszerű gráf. Élszinezés során G-hez az 1,2,3,... szineket rendeljük, úgy, hogy ugyanahhoz a csomóponthoz tartozó élek különböző szinűek legyenek.

Élkromatikus szám

A minimális számú szint, amivel az éleket kiszinezhetjük élkromatikus számnak nevezzük, jelölése $\chi_l(G)$

Tétel

Legyen G egy páros gráf, ebben az esetben:

$$\chi_l(G) = \Delta(G)$$

Vizing tétele

$$\Delta(G) \le \chi_l(G) \le \Delta(G) + 1$$

Gaskó Noémi Gráfalgoritmusok 2023. április 3.

Vizing tétele

$$\Delta(G) \le \chi_l(G) \le \Delta(G) + 1$$

Shannon tétele

$$\Delta(G) \leq \chi_l(G) \leq [\frac{3\Delta(G)}{2}]$$

Gaskó Noémi Gráfalgoritmusok 2

Listaszinezés

Listaszinezés

Adott gráf csúcsait (vagy éleit) egy adott listában szereplő szinekkel szeretnénk kiszinezni.

1 L 2 1 D 2 1 E 2 1 E 2 1 E 2 1 S C 1

Teljes szinezés

Térkép- tartomány szinezés

4-szin tétel: sokáig sejtés volt, 1976-ban bizonyították be Kenneth Appel és Wolfgang Haken

Alkalmazás - Órarendkészítés (órák beosztása)

Egy egyszerűbb változat: tanárok tanítanak bizonyos tantárgyakat minden héten, bizonyos óraszámban.

Megszorítások: egy tanárnak egyszerre nem lehet több órája, egy diáknak sem lehet egyszerre több kurzusa

Egy példa

négy tanár: x_1, x_2, x_3, x_4

öt csoport: y_1 , y_2 , y_3 , y_4 , y_5 . a táblázatban a heti óraszám.

	y_1	y_2	y_3	y_4	y_5
x_1	1	2	0	0	0
x_2	1	1	1	0	0
x_3	0	1	1	1	1
x_4	0	0	0	1	2

Egy példa (folyt.)

Hours	1	2	3	4	5
x_1	_	_	y_2	y_2	y_1
x_2	_	y_3	y_1	_	y_2
x_3	y_3	y_2	y_5	y_4	_
x_4	y_4	y_5	_	y_5	_

Sudoku

Sudoku (folyt.)

A Sudoku gráf:

81 csomópontja van, ha két csomópontnak nem lehet ugyanaz az értéke (mert ugyanabban az oszlopban vannak, vagy sorban, stb.) akkor ezt egy éllel jelöljük; minden csomópont fokszáma 20 lesz, összesen 810 élet fog tartalmazni.

Gaskó Noémi Gráfalgoritmusok 2023. április 3. 32 / 59

Sudoku (folyt.)

Cell number: 1 2 3 4 5 6 7 8 9
Vertex color: • • • • • • • • •

Gaskó Noémi Gráfalgoritmusok 2023. április 3. 34 / 5

Síkgráf

Egy gráf síkba rajzolható, ha lerajzolható a síkban úgy, hogy élei a csúcsokon kívül nem metszik egymást. Egy síkba rajzolható gráfot síkgráfnak nevezünk.

A síkgráf élei és csúcsai tartományokat határoznak meg. Ezek közül egy végtelen, a többi pedig véges.

Egy példa

Euler tétele

Ha egy összefüggő síkgráfnak gráfnak n csúcsa, m éle és r tartománya van, akkor:

$$n-m+r=2$$

Bizonyítás

19 különböző bizonyítás

Gaskó Noémi Gráfalgoritmusok 2023. április 3

Egy bizonyítás

Vizsgáljuk meg az n-m+r értékét egy tetszőleges síkgráfban. Ha kitörlünk egy körből egy élt, akkor az élek száma és a tartományok száma is eggyel csökken, a csúcsok száma változatlan marad. Tehát az n-m+r kifejezés állandó bármely síkgráf esetében. Addig folytatjuk a körön lévő élek törlését, amíg fát nem kapunk. Ebben az esetben is n-m+r értéke ugyanaz az állandó, de fa esetében ez könnyen kiszámítható, mivel m=n-1 és r=1. Tehát n-m+r=n-(n-1)+1=2

Tétel

 K_5 nem síkgráf.

Gaskó Noémi Gráfalgoritmusok 2023. április 3.

Tétel

 K_5 nem síkgráf.

Bizonyítás

Mivel n=5, m=10 és minden tartományt legalább három él határol:

$$3r \leq 2m$$
,

tehát

$$r \le \frac{2m}{3} = \frac{20}{3}.$$

Mivel r egész szám, $r \le 6$. Ha K_5 síkgráf, akkor érvényes rá Euler képlete, azaz r=2-n+m=7, ami ellentmondás.

Gaskó Noémi Gráfalgoritmusok 2023. április 3. 40 / 59

Gaskó Noémi Gráfalgoritmusok 2023. április 3. 41/5

Tétel

 $K_{3,3}$ nem síkgráf.

Gaskó Noémi Gráfalgoritmusok 2023. április 3. 42 / 59

Tétel

 $K_{3,3}$ nem síkgráf.

Bizonyítás

Mivel n=6, m=9 és minden tartományt legalább 4 él határol:

$$4r \leq 2m$$
,

tehát

$$r \le \frac{m}{2} = \frac{9}{2}.$$

Mivel r egész szám, $r \le 4$. Ha $K_{3,3}$ síkgráf, akkor érvényes rá Euler képlete, azaz r=2-n+m=5, ami ellentmondás.

Gaskó Noémi Gráfalgoritmusok 2023, április 3. 42 / 59

Gráf összevonása

Gráf összevonása: elhagyunk egy gráfból egy kétfokú csúcsot, és a két hozzá illeszkedő élt eggyel helyettesítjük, amely összeköti az elhagyott élek másik végpontjait.

Kuratowski tétele

Egy összefüggő G gráf akkor és csakis akkor síkgráf, ha nem tartalmaz egyetlen olyan részgráfot sem, amely a K_5 vagy $K_{3,3}$ gráfok bővítése.

Síkba rajzolható-e a Petersen gráf?

Megoldás

Poliéderek

Síkba rajzolható-e a tetraéder, kocka, dodekaéder, oktaéder, ikozaéder?

Poliéderek

Síkba rajzolható-e a tetraéder, kocka, dodekaéder, oktaéder, ikozaéder?

Egy összefüggő, egyszerű síkgráfban, ahol a csúcsok száma $n \geq 3$ igazak a következők:

•
$$r \le 2(n-2)$$

•
$$m \le 3(n-2)$$
.

Egy összefüggő, egyszerű síkgráfban, ahol a csúcsok száma $n \geq 3$ igazak a következők:

- $r \le 2(n-2)$
- $m \le 3(n-2)$.

Bizonyítás

• minden tartományt legalább három él határol, tehát $3r \le 2m$. Euler képletéből $3r \le 2m = 2(n+r-2)$, és innen $r \le 2n-4$

Egy összefüggő, egyszerű síkgráfban, ahol a csúcsok száma $n \geq 3$ igazak a következők:

- $r \le 2(n-2)$
- $m \le 3(n-2)$.

Bizonyítás

- minden tartományt legalább három él határol, tehát $3r \le 2m$. Euler képletéből $3r \le 2m = 2(n+r-2)$, és innen $r \le 2n-4$
- o az első pontbeli eredményt felhasználva $m=n+r-2\leq 3n-6.$

Egy egyszerű síkgráfban mindig létezik olyan csúcs, melynek foka legfeljebb 5.

Egy egyszerû síkgráfban mindig létezik olyan csúcs, melynek foka legfeljebb 5.

Bizonyítás

Ha minden csúcs fokszáma legalább 6, akkor:

$$2m = \sum_{v \in V(G)} deg(v) \ge 6n.$$

Ebből következik, hogy $m \geq 3n$, amely ellentmondás az előző tétellel.

4D > 4B > 4B > 4B > B 990

Duális gráf

Duális gráf

G síkgráfnak G^* -gal jelzett duálisa: a G gráf minden tartományának megfeleltetjük a G^* egy-egy csúcsát. G^* -ben két csúcs p párhuzamos éllel van összekötve, ha G-ben a megfelelő két tartománynak p közös határéle van.

Egy példa

Egy összefüggő gráf akkor és csakis akkor síkgráf, ha létezik duálisa.

Keresztezési szám

Keresztezési szám

Egy gráf keresztezési száma az a legkisebb természetes szám, amely megegyezik a gráf összes lerajzolásai közül a legkisebb élkereszteződések számával.

Jelölése c(G) (crossing number)

Síkgráf: keresztezési száma: 0.

$$c(K_5) = 1, c(K_{3,3}) = 1.$$

$$c(K_6) = 3$$

Bizonyítás

A K_6 helyett értelemzzünk egy új gráfot: K_6 egy lerajzolásában bármely két élének keresztezési pontját tekintsük az új gráf egy-egy csúcsának a megfelelő élekkel együtt.

Ekkor az így kapott gráf egy síkgráf, melynek n'=6+c csúcsa és m'=15+2c éle van. Ezért $m'\leq 3n'-6$, tehát $15+2c\leq 18+3c-6$, azaz $c\geq 3$. De K_6 lerajzolható 3 élkereszteződéssel, így $c(K_6)=3$.

$$c(K_6) = 3$$

Bizonyítás

A K_6 helyett értelemzzünk egy új gráfot: K_6 egy lerajzolásában bármely két élének keresztezési pontját tekintsük az új gráf egy-egy csúcsának a megfelelő élekkel együtt.

Ekkor az így kapott gráf egy síkgráf, melynek n'=6+c csúcsa és m'=15+2c éle van. Ezért $m'\leq 3n'-6$, tehát $15+2c\leq 18+3c-6$, azaz $c\geq 3$. De K_6 lerajzolható 3 élkereszteződéssel, így $c(K_6)=3$.

K_n élkereszteződéseinek a száma

$$c(K_n) \ge \frac{(n-3)(n-4)}{2}, n \ge 3.$$

Felső becslés:

$$c(K_n) \leq \frac{1}{4} \left[\frac{n}{2}\right] \left[\frac{n-1}{2}\right] \left[\frac{n-2}{2}\right] \left[\frac{n-3}{2}\right]$$

Ha n <= 10 akkor egyenlőség áll fenn.

Felső becslés:

$$c(K_n) \leq \frac{1}{4} \left[\frac{n}{2}\right] \left[\frac{n-1}{2}\right] \left[\frac{n-2}{2}\right] \left[\frac{n-3}{2}\right]$$

Ha n <= 10 akkor egyenlőség áll fenn.

$$c(K_{m,n}) \le \left[\frac{m}{2}\right] \left[\frac{m-1}{2}\right] \left[\frac{n}{2}\right] \left[\frac{n-1}{2}\right].$$

 $1 \leq min(m,n) \leq 10$ esetében egyenlőség áll fenn.

Algoritmusok - tesztelés, hogy egy gráf síkgráf-e

"Brute-force" módszer

- ullet ha a csomópontok száma ≤ 4 , akkor síkbarajzolható
- ullet ha a csomópontok száma ≥ 3 , és az élek száma > 3n-6, akkor nem síkbarajzolható
- ullet ha a csomópontok száma >3, és a gráf nem tartalmaz 3 hosszúságú kört, és az élek száma >2n-4, akkor nem síkbarajzolható
- K₅ ellenőrzése
- K_{3,3} ellenőrzése

Síkgráf tesztelése "manuálisan"

- keressünk egy Hamilton kört (Hamilton gráfokról részletek egy következő kurzuson)
- rajzoluk le, és a többi élt is a gráfban rajzoljuk bele
- egy listába soroljuk fel a gráf összes élét
- válasszuk ki bármely élt a gráfból és cimkézzük meg l-vel (l- inside, belül van)
- amelyek metszik az I-vel cimkézett élt, azokat cimkézzük O-val (O outside, kivül van), ha ezek metszik egymást a gráf nem síkbarajzolható
- ismételjük az előző két lépést, ameddig minden élt felcimkézünk

Egy példa: lásd 6 jegyzet.pdf

Hopcroft-Tarjan algoritmus

1974-ben, az első lineáris algoritmus, DFS-en alapul Az algoritmus lépései:

- ullet ha E>3V-3 nem síkbarajzolható
- mélységi bejárással építsük fel egy T fát
- keressünk ciklusokat és ezeket töröljük le
- ellenőrizzük a darabok síkbarajzolhatóságát plusz az eredeti ciklusnak is
- ellenőrizzük, hogy a beágyazásokból felépíthető-e a gráf

Alkalmazások

gráfok színezése

Alkalmazások

- gráfok színezése
- nyomtatott áramkör

Forrásanyag

- Kása jegyzet
- Jean Claude Fournier, Graph Theory and Applications, 2009
- Santana Sahu Ray, Graph Theory with Algorithms and its Applications, Springer, 2013