NP-Completude: Redução

Análise de Algoritmos - Ciência da Computação

Prof. Daniel Saad Nogueira Nunes

IFB – Instituto Federal de Brasília, Campus Taguatinga trodução \mathcal{NPC} Reduções

Sumário

- Introdução
- 2NPC
- Reduções

Introdução \mathcal{NPC} Reduçõe

Sumário

Introdução

Redução Entre Problemas

- Sejam P e P' problemas de decisão.
- Uma redução de um problema P para um problema P' consiste de uma função computável que mapeia instâncias de I_P de P em instâncias de $I_{P'}$ de P'.
- Além disso, a redução deve manter a propriedade de que, I_P leva a **Verdadeiro** se, e somente se, $I_{P'}$ leva a **Verdadeiro** também.
- Podemos resolver P a partir de P'.

${\mathcal P}$ vs ${\mathcal N}{\mathcal P}$

Reduções Polinomiais

- Como estamos interessados na questão $\mathcal P$ vs $\mathcal N\mathcal P$, estamos interessados em reduções polinomiais.
- Isto é, em mapeamentos de instâncias que podem ser computados em tempo ${\cal O}(n^k).$
- \bullet Transformamos uma instância de P em outra de P^\prime em tempo polinomial.

Introdução ${\cal NPC}$ Reduções

Reduções Polinomiais

Definição (Redução Polinomial)

Sejam P e P' problemas de decisão.

Uma redução polinomial de um problema de decisão P para um problema de decisão P' é uma função computável em tempo polinomial que mapeia instâncias I_P de P para instâncias $I_{P'}$ de P', de modo que a saída de I_P é **Verdadeira** se e somente se a saída de $I_{P'}$ é **Verdadeira**.

${\mathcal P}$ vs ${\mathcal N}{\mathcal P}$

Problemas \mathcal{NPC}

- Com posse da definição de redução, podemos estudar os problemas mais difíceis desta classe, os problemas NP-completos.
- Eles são a chave e ponto central da questão $\mathcal P$ vs $\mathcal N\mathcal P$.

trodução \mathcal{NPC} Reduções

Sumário

$\mathcal{NP}\text{-}\mathsf{Completude}$

Definição (Problemas NP-Difícil)

Um problema é dito \mathcal{NP} -difícil se todos os problemas em \mathcal{NP} se reduzem a ele em tempo polinomial

$\mathcal{NP}\text{-}\mathsf{Completude}$

Definição (Problemas NP-Completo)

Um problema é dito \mathcal{NP} -completo se:

- Ele está em \mathcal{NP} .
- Ele é NP-difícil.

\mathcal{NP}

- Os problemas da classe \mathcal{NPC} são os mais difíceis de \mathcal{NP} .
- Se uma solução polinomial for encontrada para qualquer problema em \mathcal{NPC} , então demonstramos que $\mathcal{P}=\mathcal{NP}$, visto que todos os problemas em \mathcal{NP} podem ser reduzidos para um problema em \mathcal{NPC} .
- Se for demonstrado que um problema em \mathcal{NPC} não pode ser resolvido em tempo polinomial, então demonstramos que $\mathcal{P} \neq \mathcal{NP}$.
- Mostrar que um problema está em NPC, é atestar a sua dificuldade!

\mathcal{NP}

Demonstrando a Dificuldade de Problemas

- Para tentar demonstrar a intratabilidade de um problema P, podemos tentar provar que ele está em \mathcal{NPC} .
- Como fazer isto?
 - lacktriangle Precisamos mostrar que P admite um verificador que rode em tempo polinomial.
 - ${\bf 2}$ Precisamos demonstrar que qualquer problema em ${\cal NP}$ se reduz em tempo polinomial a P.
 - Não precisamos fazer isto para cada problema em \mathcal{NP} , basta reduzir um problema de \mathcal{NPC} a P.

ntrodução \mathcal{NPC} Reduções

Demonstrando a Dificuldade de Problemas

Framework para demonstrar que $P \in \mathcal{NPC}$

- lacktriangle Mostrar que P está em \mathcal{NP} .
- ② Mostrar que um problema $P' \in \mathcal{NPC}$ possui uma redução em tempo polinomial para P, tornando P pelo menos tão difícil quanto P'.

trodução \mathcal{NPC} Reduções

Demonstrando a Dificuldade de Problemas

• Para este *framework* funcionar, precisamos conhecer problemas em \mathcal{NPC} , no entanto não vimos nenhum até o momento.

ntrodução ${\cal N\!P\!C}$ Reduçõe

Sumário

Definição (SAT)

O problema SAT consiste em determinar se uma fórmula proposicional na CNF é satisfazível.

• Entrada: Uma fórmula φ na CNF. Exemplo:

$$\varphi := (p \vee q \vee r) \wedge w \wedge (\neg q \vee p)$$

Saída:

Verdadeiro , se φ é satisfazível.

Falso, caso contrário.

• Stephen Cook mostrou que a satisfazibilidade é um problema difícil!

Teorema (Cook 1971)

 $\mathtt{SAT} \in \mathcal{NPC}.$

 \bullet Como SAT está em $\mathcal{NPC},$ podemos partir dele para mostrar que outros problemas também estão em \mathcal{NPC}

ntrodução \mathcal{NPC} Reduções

Sumário

Reduções

ntrodução NPC Reduções

Sumário

- Reduções
 - 3SAT
 - CLIQUE
 - VC
 - DS

Satisfazibilidade

3SAT

- Entrada: uma fórmula $\varphi \in \mathcal{L}_p$ na CNF em que cada cláusula tem exatamente três variáveis.
- Saída:

Verdadeiro, se φ é satisfazível. **Falso**, caso contrário.

Satisfazibilidade

Theorem (3SAT $\in \mathcal{NPC}$)

3SAT está em \mathcal{NPC} .

Demonstração

• 3SAT está em \mathcal{NPC} .

Claramente 3SAT está em \mathcal{NP} . Dado uma valoração que torna φ verdadeira, é possível verificar em tempo polinomial que φ é satisfazível.

Demonstração

A ideia da prova é mostrar que toda cláusula φ na CNF pode ser convertida em cláusulas na 3-CNF. Seja C uma cláusula da forma $c_1 \vee c_2 \vee \ldots \vee c_n$ na instância de SAT. Mostraremos que existe uma fórmula C' equivalente a C na 3-CNF. Temos 3 casos:

- n = 3.
- $1 \le n < 3$.
- $4 \leq n$.

Demonstração

•
$$n = 3$$

Não precisamos fazer nada, a cláusula já está na 3-CNF.

Demonstração

• n < 3

Se
$$n = 1$$
, $C = (c_1)$ e
$$C' = (c_1 \lor x \lor y) \land (c_1 \lor \neg x \lor \neg y) \land (c_1 \lor x \lor \neg y) \land (c_1 \lor \neg x \lor y).$$

Se
$$n = 2$$
, $C = (c_1 \lor c_2)$ e $C' = (c_1 \lor c_2 \lor x) \land (c_1 \lor c_2 \lor \neg x)$

Demonstração

• n > 3

$$C = (c_1 \vee c_2 \vee \ldots \vee c_n)$$
. Então:

$$C' = (c_1 \lor c_2 \lor x_1) \land (c_3 \lor \neg x_1 \lor x_2) \land (c_4 \lor \neg x_2 \lor x_3) \land \dots \land (c_{n-1} \lor c_n \lor \neg x_{n-3})$$

Demonstração

- O que queremos mostrar: C é satisfazível sse C' é. Mostraremos para n>3, uma vez que é fácil mostrar para n<3.
- ullet \Rightarrow). Se C é satisfazível, então existe pelo menos um c_i que é verdadeiro.
 - Podemos valorar os x do jeito que queremos. . .
 - Exemplo: $c_3 = V$. Colocamos $x_1 = V, x_2 = F$ e o restante dos x para V.

Demonstração

• \Leftarrow). Se C' é satisfazível, pelo menos um dos c_i é verdadeiro. Caso contrário, teríamos uma expressão da forma $(x_1) \wedge (\neg x_1 \vee x_2) \wedge (\neg x_2 \vee x_3) \wedge \ldots \wedge (\neg x_{n-4} \vee x_{n-3})(\neg x_{n-3})$, que é insatisfazível.

ntrodução NPC Reduções

Sumário

- Reduções
 - 3SAT
 - CLIQUE
 - VC
 - DS

Clique

Definição (Clique)

Uma clique é um grafo completo. O tamanho de uma clique é a sua quantidade de vértices.

CLIQUE

- Entrada: um grafo G = (V, E) e um inteiro k.
- Saída: sim se G contém uma clique de tamanho $\geq k$, não caso contrário.

Clique

Teorema

CLIQUE está em \mathcal{NPC} .

- CLIQUE está em \mathcal{NP} . Basta verificar se cada nó do certificado se conecta aos demais nós do certificado.
- A ideia da prova é mostrar que SAT se reduz a CLIQUE em tempo polinomial.

Clique

Demonstração

- A partir de uma instância de SAT vamos construir uma instância para CLIQUE.
- Cada cláusula será uma coluna de vértices. Cada vértice representa um literal.
- As colunas se conectam entre si, exceto se dois vértices representarem um literal e a sua negação.
- Teremos com esta redução que, uma fórmula φ em SAT é satisfazível se e somente se existe uma clique de tamanho m, em que m é o número de cláusulas.

Clique

$$\varphi = (x \vee y \vee \neg z) \wedge (\neg x \vee \neg y \vee z) \wedge (y \vee \neg z)$$

Clique

- Vamos mostrar que φ é satisfazível sse existe uma clique de tamanho m, onde m é a quantidade de cláusulas em φ .
- ullet \Rightarrow). Suponha φ satisfazível. Existe uma valoração em que cada cláusula possui pelo menos um literal verdadeiro. Esse vértice tem que estar em uma clique de tamanho m que envolve os vértices desta valoração, uma vez que só não existe arestas entre dois literais opostos.

Clique

- Vamos mostrar que φ é satisfazível sse existe uma clique de tamanho m, onde m é a quantidade de cláusulas em φ .
- \Leftarrow). Suponha que G tem uma clique de tamanho m. Logo, φ é satisfazível, e a valoração é aquela apontada pela clique.
- Note que dois vértices da mesma coluna nunca estão conectados e que o literal e seu oposto também não.

ntrodução NPC Reduções

Sumário

- Reduções
 - 3SAT
 - CLIQUE
 - VC
 - DS

Definição (Cobertura de Vértices)

Uma cobertura de vértices é um **conjunto** de vértices de modo que cada aresta de G incide em pelo menos um desses vértices

VC

VC

- Entrada: um Grafo G = (V, E) e um inteiro k.
- Saída:

Verdadeiro, se G tem uma cobertura de vértices de tamanho $\leq k$ **Falso**, caso contrário.

Theorem (VC $\in \mathcal{NPC}$)

VC está em \mathcal{NPC} .

- VC está em \mathcal{NP} . Basta verificar se cada aresta incide em um dos vértices da cobertura.
- Vamos mostrar que CLIQUE se reduz polinomialmente a VC.
- Seja G, k uma instância do problema CLIQUE.
- Tome o complemento do grafo, \bar{G} e tome k' = n k.
- Agora, basta mostrar que G tem uma clique de tamanho k sse G tem uma cobertura de vértices de tamanho n-k.

- G tem uma clique de tamanho k sse G tem uma cobertura de vértices de tamanho n-k.
- ullet \Rightarrow). Se G tem uma clique G=(U,F) de tamanho k, então em \bar{G} , todos os vértices de V-U possuem todas as arestas.
 - O miolo da clique está vazio.
- Logo, existe uma cobertura de tamanho n-k: os vértices V-U.

- G tem uma clique de tamanho k sse \bar{G} tem uma cobertura de vértices de tamanho n-k.
- ullet = (1). Suponha que \bar{G} tenha uma cobertura D de tamanho n-k.
- Não pode existir arestas entre os vértices de V-D.
 - Caso contrário não teríamos a cobertura D.
- No grafo G, existirão arestas entre todos os vértices V-D e portanto, existe uma clique de tamanho n-(n-k)=k.
- •

ntrodução NPC Reduções

Sumário

- Reduções
 - 3SAT
 - CLIQUE
 - VC
 - DS

Definição (Conjunto Dominante)

Um conjunto dominante é um conjunto de vértices D em G=(V,E) de modo que todo vértice de G está em D ou se liga a um vértice de D.

DS

DS

- Entrada: Um grafo G = (V, E) e um inteiro k.
- Saída:

Verdadeiro, se G tem um conjunto dominante de tamanho $\leq k$. **Falso**, caso contrário.

Theorem (DS $\in \mathcal{NPC}$)

DS está em \mathcal{NPC} .

- DS está em \mathcal{NP} .
- Vamos mostrar que VC se reduz polinomialmente à DS.
- Adicionaremos 2|E| arestas e |E| vértices ao grafo G, formando assim o grafo G^\prime .
 - Se temos uma aresta (v, u), teremos agora arestas (v, u), (v, w), (w, u).
 - Transformamos toda aresta em um triângulo.

trodução NPC Reduções

Conjunto Dominante

- G tem uma cobertura de tamanho k sse G' tem um conjunto dominante de tamanho k.
- \Rightarrow). Se G tem uma cobertura de tamanho k, então G', por construção, tem um conjunto dominante de tamanho k.

- G tem uma cobertura de tamanho k sse G' tem um conjunto dominante de tamanho k.
- \Leftarrow . Suponha que G' tem um conjunto dominante de tamanho k.
 - Observação : se o conjunto dominante tem vértices que não existem em G, podemos trocar por um vértice que existe em G. Basta pegar um adjacente.
- Como existe um conjunto dominante de tamanho k contendo apenas vértices de G, então existe uma cobertura de vértices em G de tamanho k.