Triple unit

https://github.com/heptagons/meccano/units/triple

Abstract

Triple unit is a group of five meccano ¹ strips a, b, c, d, e intended to build regular polygons three consecutive perimeter sides. This unit has three angles equal to the polygon internal angle θ . Triple unis has been using to build the pentagon type 2 mentioned in pentagons paper².

Figure 1: Triple unit has five strips a, b, c, d, e

1 Algebra

From nodes A and B of fig 1 we get α from θ ($\pi = 180^{\circ}$):

$$\theta = \pi - \alpha$$

$$\alpha = \pi - \theta \tag{1}$$

And from node H we get β from θ :

$$\theta = \alpha + \beta$$

$$\beta = \theta - \alpha = \theta - (\pi - \theta) = 2\theta - \pi$$
(2)

We calculate horizontal segment \overline{OK} :

$$\overline{OK} = \overline{MA} + a + \overline{BN} - \overline{PL}$$

$$= b\cos\alpha + a + c\cos\alpha - d\cos\beta$$

$$= a + (b + c)\cos\alpha - d\cos\beta$$

$$= a + (b + c)\cos(\pi - \theta) - d\cos(2\theta - \pi)$$

$$= a - (b + c)\cos\theta + d\cos(2\theta)$$
(3)

¹ Meccano mathematics by 't Hooft

 $^{^2}$ Meccano pentagons

And vertical segment \overline{OL} :

$$\overline{OL} = \overline{KN} - \overline{PH} - \overline{HM}
= c \sin \alpha - d \sin \beta - b \sin \alpha
= (c - b) \sin \alpha - d \sin \beta
= (c - b) \sin (\pi - \theta) - d \sin (2\theta - \pi)
= (c - b) \sin \theta + d \sin (2\theta)$$
(4)

So we can express e in function of a, b, c, d and angle θ :

$$e^{2} = (\overline{OK})^{2} + (\overline{OL})^{2}$$

$$= (a - (b + c)\cos\theta + d\cos(2\theta))^{2} + ((c - b)\sin\theta + d\sin(2\theta))^{2}$$

$$= a^{2} + (b^{2} + 2bc + c^{2})\cos^{2}\theta + d^{2}\cos^{2}(2\theta) + (c^{2} - 2cb + b^{2})\sin^{2}\theta + d^{2}\sin^{2}(2\theta)$$

$$- 2a(b + c)\cos\theta + 2ad\cos(2\theta) - 2(b + c)d\cos\theta\cos(2\theta)$$

$$+ 2(c - b)d\sin\theta\sin(2\theta)$$

$$= a^{2} + b^{2} + c^{2} + d^{2} + 2bc\cos^{2}\theta - 2bc\sin^{2}\theta$$

$$- 2a(b + c)\cos\theta + 2ad\cos(2\theta)$$

$$- 2d((b + c)\cos\theta\cos(2\theta) + (b - c)\sin\theta\sin(2\theta))$$

$$= a^{2} + b^{2} + c^{2} + d^{2} + 2bc(\cos^{2}\theta - \sin^{2}\theta) - 2a(b + c)\cos\theta + 2ad\cos(2\theta)$$

$$- 2d(b(\cos\theta\cos(2\theta) + \sin\theta\sin(2\theta)) + c(\cos\theta\cos(2\theta) - \sin\theta\sin(2\theta)))$$

$$= a^{2} + b^{2} + c^{2} + d^{2} + 2bc\cos(2\theta) - 2a(b + c)\cos\theta + 2ad\cos(2\theta)$$

$$- 2d(b\cos(\theta - 2\theta) + c\cos(\theta + 2\theta))$$

$$= a^{2} + b^{2} + c^{2} + d^{2} + 2(bc + ad)\cos(2\theta) - 2a(b + c)\cos\theta - 2d(b\cos\theta + c\cos(3\theta))$$

$$= a^{2} + b^{2} + c^{2} + d^{2} + 2(bc + ad)\cos(2\theta) - 2(ab + ac)\cos\theta - 2(bd\cos\theta + cd\cos(3\theta))$$

$$= a^{2} + b^{2} + c^{2} + d^{2} + 2(bc + ad)\cos(2\theta) - 2(ab + ac)\cos\theta - 2(bd\cos\theta + cd\cos(3\theta))$$

$$= a^{2} + b^{2} + c^{2} + d^{2} - 2(ab + ac + bd)\cos\theta + 2(bc + ad)\cos(2\theta) - 2cd\cos(3\theta)$$
(6)

2 Regular polygons

Polygon	θ	$\cos \theta$	$\cos(2\theta)$	$\cos(3\theta)$
Pentagon	$\frac{3\pi}{5}$	$\frac{1-\sqrt{5}}{4}$	$\frac{-1-\sqrt{5}}{4}$	$\frac{1+\sqrt{5}}{4}$
Hexagon	$\frac{2\pi}{3}$	$-\frac{1}{2}$	$\frac{1}{2}$	1
Heptagon	$\frac{5\pi}{7}$			
Octagon	$\frac{3\pi}{4}$			
Decagon	$\frac{4\pi}{5}$			
Dodecagon	$\frac{5\pi}{6}$			

Table 1: Regular polygons internal angles and cosines.

2.1 Equilateral pentagon

We replace the cosines for pentagon in table 1 in e^2 equation:

$$e^{2} = a^{2} + b^{2} + c^{2} + d^{2} - 2(ab + ac + bd)\cos\theta + 2(bc + ad)\cos(2\theta) - 2cd\cos(3\theta)$$

$$= a^{2} + b^{2} + c^{2} + d^{2} - 2(ab + ac + bd)\left(\frac{1 - \sqrt{5}}{4}\right) + 2(bc + ad)\left(\frac{-1 - \sqrt{5}}{4}\right) - 2cd\left(\frac{1 + \sqrt{5}}{4}\right)$$

$$= a^{2} + b^{2} + c^{2} + d^{2} - \frac{ab + ac + bd + bc + ad + cd}{2} + \frac{ab + ac + bd - bc - ad - cd}{2}\sqrt{5}$$
(7)

e cannot to be and integer if the factor of $\sqrt{5}$ is not zero so we force this factor to be zero:

$$ab + ac + bd - bc - ad - cd = 0$$
$$ab + ac + bd = bc + ad + cd$$
 (8)

We replace ab + ac + bd by bc + ad + cd in the e^2 equation to get:

$$e^{2} = a^{2} + b^{2} + c^{2} + d^{2} - \frac{(bc + ad + cd) + bc + ad + cd}{2} + \frac{0}{2}\sqrt{5}$$

$$= a^{2} + b^{2} + c^{2} + d^{2} - bc - ad - cd$$

$$e = \sqrt{a^{2} + b^{2} + c^{2} + d^{2} - bc - ad - cd}$$
(9)

The last formula matches the formula used in the paper Meccano pentagons which finds several pentagons of type 2. Only when we get e integer we have a solution.

2.2 Equilateral hexagon

We replace the cosines for hexagon in table 1 in e^2 equation:

$$e^{2} = a^{2} + b^{2} + c^{2} + d^{2} - 2(ab + ac + bd)\cos\theta + 2(bc + ad)\cos(2\theta) - 2cd\cos(3\theta)$$
(10)