6.002 CIRCUITS AND ELECTRONICS

Amplifiers --Small Signal Model

■ MOSFET amp

- Saturation discipline operate
 MOSFET only in saturation region
- ■Large signal analysis
 - 1. Find v_O vs v_I under saturation discipline.
 - 2. Valid v_I , v_O ranges under saturation discipline.

Reading: Small signal model -- Chapter 8

Large Signal Review

$$\begin{array}{lll} \textbf{1} & v_o \quad v_S \quad v_I \\ & v_o = V_S - \frac{K}{2}(v_I - 1)^2 R_L \\ & \text{valid for} \quad v_I \geq V_T \\ & \text{and} \\ & v_O \geq v_I - V_T \\ & \text{(same as } i_{DS} \leq \frac{K}{2}{v_O}^2 \text{)} \end{array}$$

Large Signal Review

2 Valid operating ranges

"interesting" region for v_I . Saturation discipline satisfied.

But...

Amp is nonlinear ... \otimes

Small Signal Model

Hmmm ... So what about our linear amplifier ???

Insight:

But, observe v_I vs v_O about some point (V_I, V_O) ... looks quite linear!

- ullet Operate amp at V_I , V_O
 - → DC "bias" (good choice: midpoint of input operating range)
- lacktriangle Superimpose small signal on top of V_I
- Response to small signal seems to be approximately linear

- \diamond Operate amp at V_I , V_O
 - → DC "bias" (good choice: midpoint of input operating range)
- riangle Superimpose small signal on top of V_I
- Response to small signal seems to be approximately linear

Let's look at this in more detail—

I graphically
II mathematically
Week
III from a circuit viewpoint

I Graphically

We use a DC bias V_I to "boost" interesting input signal above V_T , and in fact, well above V_T .

Good choice for operating point: midpoint of input operating range

Small Signal Model

aka incremental model aka linearized model

Notation —

Input:
$$v_I = V_I + v_i$$
total DC small
variable bias signal (like Δv_I)
bias voltage aka operating point voltage

Output:
$$v_O = V_O + v_o$$

Graphically,

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture

II Mathematically (... watch my fingers)

$$v_{O} = V_{S} - \frac{R_{L}K}{2} (v_{I} - V_{T})^{2} | v_{O} = V_{S} - \frac{R_{L}K}{2} (V_{I} - V_{T})^{2}$$
substituting $v_{I} = V_{I} + v_{i} | v_{i} << V_{I}$

$$v_{O} = V_{S} - \frac{R_{L}K}{2} ([V_{I} + v_{i}] - v_{T})^{2}$$

$$= V_{S} - \frac{R_{L}K}{2} ([V_{I} - V_{T}] + v_{i})^{2}$$

$$= V_{S} - \frac{R_{L}K}{2} ([V_{I} - V_{T}]^{2} + 2[V_{I} - v_{T}]v_{i} + v_{i}^{2})$$

$$V_{O} + v_{O} = V_{S} - \frac{R_{L}K}{2} (V_{I} - V_{I})^{2} - R_{L}K (V_{I} - V_{T})v_{i}$$

$$v_o = -R_L \underbrace{K \left(V_I - V_T\right)}_{g_m} v_i$$
 related to V_I

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

From

Mathematically

$$v_o = -R_L \underbrace{K \left(V_I - V_T \right)}_{g_m} v_i$$
 related to V_I

$$v_o = -g_m R_L v_i$$

For a given DC operating point voltage V_I , $V_I - V_T$ is constant. So,

In other words, our circuit behaves like a linear amplifier for small signals

Another way

$$v_{o} = V_{S} - \frac{R_{L}K}{2} (v_{I} - V_{T})^{2}$$

$$v_{o} = \frac{d}{dv_{I}} \begin{bmatrix} V_{S} - \frac{R_{L}K}{2} (v_{I} - V_{T})^{2} \\ \\ V_{I} = V_{I} \end{bmatrix} \cdot v_{i}$$

$$\text{slope at } V_{I}$$

$$v_o = -R_L K (V_I - V_T) \cdot v_i$$

$$g_m = K (V_I - V_T)$$

$$A = -g_m R_L \quad \text{amp gain}$$

Also, see Figure 8.9 in the course notes for a graphical interpretation of this result

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

 More next lecture ...

How to choose the bias point:

- 1. Gain component $g_m \propto V_I$
- 2. v_i gets big \rightarrow distortion. So bias carefully
- Input valid operating range.
 Bias at midpoint of input operating range for maximum swing.