

Multi-Layered Perceptron

Hyerim Bae

Department of Industrial Engineering, Pusan National University ${\it hrbae} \\ @pusan.ac.kr$

Contents

01 Perceptron의 한계

02 Multi-Layer model

03 역전파 원리

Perceptron의 한계

• Linearly Separable 문제만 풀 수 있다.

x ₂	y <i>f</i>)	put (b	Out	ut	inp
^2 • • • • • • • • • • • • • • • • • •	XQR	OR	AND	X ₁	X_0
	10	0	0	0	0
	1	1	0	1	0
	1	1	0	0	1
x ₁	0	1	1	1	1
x ₂					

Linearly separable

Overcome the linearity

- In order to solve more complex problem
 - Using multiple linear classifier
 - Using non-linear classifier
 - Transforming into higher dimension

Using non-linear function

Transforming data

$$x \to \{x, x^2\}$$

$$x = \{x_1, x_2\} \to z = \{x_1^2, \sqrt{2}x_1x_2, x_2^2\}$$

Using multiple linear classifier

	<u>Height</u>	<u>Hair</u>	Eyes	Class
1	short	blond	blue	+
2	tall	blond	brown	-
3	tall	red	blue	+
4	short	dark	blue	-
5	tall	dark	blue	-
6	tall	blond	blue	+
7	tall	dark	brown	-
8	short	blond	brown	-

How to solve XOR problem?

XOR implementation

x_1	x_2	s_1	s ₂	y
0	0	1	0	0
0	1	1	1	1
1	0	1	1	1
1	1	0	1	0

```
def XORGate(x1, x2):
    s1 = NANDGate(x1, x2)
    s2 = ORGate(x1, x2)
    y = ANDGate(s1, s2)
    return y

[1.1.7] XOR Gate

XORGate(0.0)
>> 0
XORGate(0.1)
>> 1
XORGate(1.0)
>> 1
XORGate(1.1)
>> 0
```


Universal Approximation Theorem

- Activation functions
 - Sign

- Sigmoid
$$f(x) = \frac{1}{1 + e^{-x}}$$

• Use $f(\mathbf{M}x)$

https://www.youtube.com/watch?v=vnkGn4r62Q8&list=PL_iJu012NOxdDZEygsVG4jS8srnSdlgdn&index=22

$$y = 3\sin(x)\cos(x)(6x^2 + 3x^3 + x)\tan(x)$$

MLP

4-hidden layers with 10 perceptrons

Single hidden layer perceptron

1-hidden layers with 1000 perceptrons

4000

2000

-2000

MLP

Feed forward

$$s_1 = w_1 x_1 + w_2 x_2 = 0.45 \times 0.2 + 0.25 \times 0.1 = 0.115$$

 $s_2 = w_3 x_1 + w_4 x_2 = 0.7 \times 0.2 + 0.35 \times 0.1 = 0.175$

$$h_1 = sigmoid(s_1) = sigmoid(0.115) = 0.52871836$$

 $h_2 = sigmoid(s_2) = sigmoid(0.175) = 0.54363869$

$$y_1 = sigmoid(s_3) = sigmoid(0.37607098) = 0.59292512$$

$$y_2 = sigmoid(s_4) = sigmoid(0.53767056) = 0.63127036$$

$$E_{y_1} = \frac{1}{2} (target_{y_1} - output_{y_1})^2 = 0.01861005$$

$$E_{y_2} = \frac{1}{2} (target_{y_2} - output_{y_2})^2 = 0.00048892$$

 $E_{total} = E_{y_1} + E_{y_2} = 0.01861005 + 0.00048892 = 0.01909897$

Backpropagation

• Update w5, w6, w7, w8

- 우리가 목적으로 하는 것은 Loss(MSE, E_{total})를 최소화
- 우리가 찾고자 하는 것은 파라미터(w)

• E를 최소화하는 w5를 구하고 싶다면?

$$\frac{\partial E_{total}}{\partial w_5}$$

$$\frac{\partial E}{\partial w_5} = \frac{\partial E}{\partial y_1} \frac{\partial y_1}{\partial s_3} \frac{\partial s_3}{\partial w_5}$$

출력층

0.3 W₅

 $s_3 y_1$

0.37607098

실제값: 0.4

예측값: 0.59292512

* [보충설명] 연쇄법칙 (chain rule)

연쇄법칙 : 합성 함수의 미분에 대한 성질로 여러 함수로 구성된 합성 함수의 미분은 합성 함수를 구성 하는 각 함수의 미분의 곱으로 나타낼 수 있는 성질을 말한다.

$$z = t^2 t = x +$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial t} \frac{\partial t}{\partial x}$$

이를 활용하여 미분 $\frac{\partial z}{\partial x}$ 을 구하면 다음과 같다.

$$\frac{\partial z}{\partial t} = 2t$$

$$\frac{\partial t}{\partial x} = 1$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial t} \frac{\partial t}{\partial x} = 2t \times 1 = 2(x+y)$$

$$\frac{\partial E}{\partial w_5} = \frac{\partial E}{\partial y_1} \frac{\partial y_1}{\partial s_3} \frac{\partial s_3}{\partial w_5}$$

$$-(target_{y_1} - output_{y_1}) = -(0.4 - 0.59292512) = 0.19292512$$

$$\frac{\partial y_1}{\partial s_3} = y_1 \times (1 - y_1) = 0.59292512 \times (1 - 0.59292512) = 0.24136492$$

$$\frac{\partial s_3}{\partial w_5} = h_1 = 0.52871836$$

$$\frac{\partial E}{\partial w_5} = 0.19292512 \times 0.24136492 \times 0.52871836 = 0.02461996$$

$$w_5 = w_5 - \alpha \frac{\partial E}{\partial w_5} = 0.3 - 0.5 \times 0.02461996 = 0.28769002$$

$$\frac{\partial E}{\partial w_6} = \frac{\partial E}{\partial y_1} \frac{\partial y_1}{\partial s_3} \frac{\partial s_3}{\partial w_6}$$

$$\frac{\partial E}{\partial w_7} = \frac{\partial E}{\partial y_2} \frac{\partial y_2}{\partial s_4} \frac{\partial s_4}{\partial w_7}$$

$$\frac{\partial E}{\partial w_8} = \frac{\partial E}{\partial y_2} \frac{\partial y_2}{\partial s_4} \frac{\partial s_4}{\partial w_8}$$

Now, update w1

•
$$\frac{\partial E}{\partial w_1} = \begin{bmatrix} \frac{\partial E}{\partial h_1} & \frac{\partial h_1}{\partial s_1} & \frac{\partial s_1}{\partial w_1} \end{bmatrix}$$

•
$$\frac{\partial E}{\partial h_1} = \frac{\partial E_{y_1}}{\partial h_1} + \frac{\partial E_{y_2}}{\partial h_1}$$

으닉층
입력층
$$x_1$$
 0.2 0.52871836
 x_1 0.25 w_2 $s_1 h_1$ 0.2

$$\frac{\partial E_{y_1}}{\partial h_1} = \frac{\partial E_{y_1}}{\partial s_3} \frac{\partial s_3}{\partial h_1} = \frac{\partial E_{y_1}}{\partial y_1} \frac{\partial y_1}{\partial s_3} \frac{\partial s_3}{\partial h_1}$$

$$= -(\text{target}_{y_1} - \text{output}_{y_1}) \times y_1 \times (1 - y_1) \times w_5$$

$$= -(0.4 - 0.59292512) \times 0.4 \times (1 - 0.4) \times (0.3) = 0.01389061$$

$$\frac{\partial E_{y_2}}{\partial h_1} = \frac{\partial E_{y_2}}{\partial s_4} \frac{\partial s_4}{\partial h_1} = \frac{\partial E_{y_2}}{\partial y_2} \frac{\partial y_2}{\partial s_4} \frac{\partial s_4}{\partial h_1} = 0.00300195$$

$$\frac{\partial h_1}{\partial h_1} = \frac{\partial s_4}{\partial h_1} \frac{\partial h_1}{\partial h_1} = \frac{\partial h_1}{\partial h_2} = 0.01689256$$

$$\frac{\partial h_1}{\partial s_1} = h_1 \times (1 - h_1) = 0.24917526$$

$$\frac{\partial s_1}{\partial w_1} = x_1 = 0.2$$

$$\frac{\partial E}{\partial w_1} = \frac{\partial E}{\partial h_1} \frac{\partial h_1}{\partial s_1} \frac{\partial s_1}{\partial w_1} = 0.01689256 \times 0.24917526 \times 0.2 = 0.00084184$$

$$w_1 \ update$$

 $w_1' = w_1 - \alpha \frac{\partial E}{\partial w_1} = 0.45 - 0.5 \times 0.00084184 = 0.44957908$

Vanishing gradient

• Backpropagation is based on differentiation of activation function

• If we use sigmoid or tanh as activation function

$$\frac{\partial E}{\partial w_b} = \frac{\partial E}{\partial y_1} \frac{\partial y_1}{\partial z_3} \frac{\partial z_3}{\partial w_b}$$

$$w_{5} = w_{5} - \alpha \frac{\partial E}{\partial w_{5}} = 0.3 - 0.5 \times 0.9630084 = -0.1815042$$

$$\sigma(x) = rac{1}{1+e^{-x}}$$

 $\tanh (x) = \frac{1 - e^{-x}}{1 + e^{-x}}$ $= 2\sigma(2x) - 1$
0.6
0.4
0.2
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.7
0.8
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9

Solution

Vanishing gradient (NN winter2: 1986-2006)

Using ReLu

 $ReLu(x) = \max(0, x)$

