Organización de Computadoras

Clase 3

Temas de Clase

 Representación de números en Punto Flotante

Números en punto fijo

- Todos los números a representar tienen exactamente la misma cantidad de dígitos y la coma fraccionaria está siempre ubicada en el mismo lugar.
- La diferencia principal entre la representación en el papel y su almacenamiento en la computadora, es que no se guarda coma alguna, se supone que está en un lugar determinado.

Rango y Resolución

- Rango: diferencia entre el número mayor y el menor
- Resolución: diferencia entre dos números consecutivos

Error en punto fijo (1)

• El máximo error cometido en una representación puede considerarse como la mitad de la diferencia (resolución) entre dos números consecutivos

- $5,01 \le N^{\circ} \le 5,015$ se representa por 5,01
- 5,015 < N° ≤ 5,02 se representa por 5,02

Error en punto fijo (2)

 En cualquiera de los dos casos el Error Absoluto máximo resulta ser:

EA max =
$$5,015 - 5,01 = 0,005$$
 ó $(5,02 - 5,01)/2 = 0,005$

 Que corresponden a los Nº marcados en rojo ó azul.

- En punto fijo (ej. Ca2), es posible representar un rango de enteros positivos y negativos centrados en 0.
- Suponiendo un número con componente fraccionaria, en este formato de punto fijo también se pueden representar números.
- Limitaciones: "números muy grandes y números muy pequeños".

Números en punto flotante (2)

Un número decimal "muy grande": 976.000.000.000.000

se puede representar como:

$$9,76 \times 10^{-14}$$

➤ Un número decimal "muy pequeño": 0,0000000000000976

Notas de clase 3

 $9,76 \times 10^{-14}$

Números en punto flotante (3)

- Lo que hemos hecho es desplazar en forma dinámica la coma decimal a una posición conveniente y usar el exponente de base 10 para mantener la "pista" de la coma.
- Esto permite tener un rango de números desde "muy pequeños" a "muy grandes" y pueden ser representados con pocos dígitos.

Números en punto flotante (4)

Veamos este mismo enfoque con números binarios:

Un número se puede representar de la forma:

$$\pm$$
 M x B \pm E

- Este número se puede almacenar en una palabra binaria con dos campos:
 - > Mantisa M
 - > Exponente E

Números en punto flotante (5)

- La base B es implícita y no necesita almacenarse ya que es la misma para todos los números. Debemos almacenar M y E.
- Se necesitan menos bits para almacenar M y E, que para almacenar el "número completo" en la base correspondiente.

✓ M y E están representados en alguno de los sistemas en punto fijo que ya conocíamos como BSS, BCS, Ca2, Ca1, Exceso.

La figura muestra un formato típico

Ejemplo

Supongamos el siguiente formato en punto flotante

Determinar el rango y resolución

Ejemplo 1

- ✓ Máximo = $1111 \times 2^{1111} = 15 \times 2^{15}$
- \checkmark Mínimo = 0
- ✓ Resolución en el extremo superior

$$R = (15 - 14)x2^{15} = 1 \times 2^{15}$$

✓ Resolución en el extremo inferior

$$R = (1 - 0)x2^0 = 1$$

Ejemplo 2

Consideremos enteros de 8 bits y en BSS Calcular el rango y resolución:

- \triangleright Rango = [0,...,255]
- > Resolución en el extremo superior

$$R = 255 - 254 = 1$$

> Resolución en el extremo inferior

$$R = 1 - 0 = 1$$

Si comparamos ambos ejemplos vemos:

- ✓ el rango en punto flotante es mayor
- ✓ la cantidad de combinaciones binarias distintas es la misma en ambos sistemas 28 = 256
- ✓ en punto flotante la resolución no es constante a lo largo del intervalo, como lo es en el segundo ejemplo.

Conclusión

✓ En el sistema de punto flotante el rango es mayor. Podemos representar números más grandes ó más pequeños que en un sistema de punto fijo (para igual cantidad de bits), pero pagamos el precio que los Nos no están igualmente espaciados, como en punto fijo.

Mantisa y exponente en Ca2

Ejemplo: supongamos el siguiente formato en punto flotante

Determinar el rango y resolución

Mantisa y exponente en Ca2

- ightharpoonup Máximo = 0111 x 2⁰¹¹¹ = +7 x 2⁺⁷
- \rightarrow Mínimo = 1000 x 2⁰¹¹¹ = -8 x 2⁺⁷
- \triangleright Rango = [-8 x 2⁺⁷,...,+7 x 2⁺⁷]
- Resolución en el extremo superior $R = (7 6) \times 2^7 = 1 \times 2^7$
- > Resolución en el origen

$$R = (1 \times 2^{-8} - 0) = 1 \times 2^{-8}$$

Mantisa fraccionaria

Ejemplo: supongamos el siguiente formato en punto flotante

Mantisa BCS (6 MyS)
23 bits Exponente 8 bits
fraccionaria
1 bit signo

Determinar el rango y resolución

Mantisa fraccionaria

- ✓ Máximo positivo
- 0 0,111..111 x $2^{011111111} = +(1-2^{-23}).2^{+127}$
- ✓ Mínimo positivo (≠0)
 - 0 0,000..001 x $2^{100000000} = +(2^{-23}).2^{-128}$
- ✓ Máximo negativo (≠0)
 - 1 $0,000..001 \times 2^{10000000} = -(2^{-23}).2^{-128}$
- Mínimo negativo
 - 1 $0,111..111 \times 2^{011111111} = -(1-2^{-23}).2^{+127}$

Formato final

El formato anterior se puede representar

 0 1
 8 9
 31

 S Exponente
 Mantisa

El mínimo negativo es

Normalización

Veamos el siguiente ejemplo:

$$40 \times 10^0 = 4 \times 10^1 = 0,4 \times 10^2 = 400 \times 10^{-1}$$

- Existen distintos valores de mantisa y exponente para representar un mismo número.
- Lo mismo sucede en base 2.
- Con el objetivo de tener un único par de valores de mantisa y exponente para un número, se introduce la normalización.

Normalización

 Con el objetivo anterior, las mantisas fraccionarias se definen de la forma:
 0,1ddddddd.....ddd

donde d es un dígito binario que vale 0 ó 1.

Todas las mantisas empiezan con 0,1...

Normalización

Ejemplo: formato en punto flotanțe

3CS
23 bits Exponente fraccionaria Mantisa -1 bit signo Normalizada

Determinar el rango y resolución

Normalización

- ✓ Máximo positivo
 - 0 0,111..111 x $2^{111111111} = +(1-2^{-23}).2^{+127}$
- ✓ Mínimo positivo (≠0)
 - 0 0,100..000 x $2^{000000000} = +(0,5).2^{-128}$
- ✓ Máximo negativo (≠0)
 - 1 $0,100..000 \times 2^{00000000} = -(0,5).2^{-128}$
- Mínimo negativo
 - 1 $0,111..111 \times 2^{11111111} = -(1-2^{-23}).2^{+127}$

Normalización

El formato anterior se puede representar

0 18 9SExponenteMantisa

El máximo negativo (≠0) es

1	00000000	100000
---	----------	--------

- Como todos los números comienzan con 0,1 ¿es necesario almacenar el 1?
 - siempre está presente !!!
- Si no lo almaceno, puedo "adicionar" un bit más a la mantisa. El bit no almacenado se conoce como *bit implícito*.

Recta numérica

Sin bit implícito

Con bit implicito

¿Cómo se escribe un Nº en punto flotante normalizado?

- 1. Se escribe el Nº en el sistema propuesto para la mantisa.
- 2. Se desplaza la coma y se cambia el exponente hasta obtener la forma normalizada.
- 3. Se convierte el exponente al sistema propuesto para él.

¿Cómo....? (2)

- Ej. 13,5 . Formato anterior
- 1) 1 1101,100..0=1 1101,100..0x2⁰
- 2) 1 0,110110..0 x 2⁴
- 3) 4 en Ca2=000001004 en Exceso=10000100
- Finalmente

¿Cómo.....? (3)

Sin bit implícito

1 10000100 1101100000......00

Con bit implícito

1 10000100 101100000......00

Resolución – Error absoluto

- Resolución: es la diferencia entre dos representaciones sucesivas, y varía a lo largo del rango, no es constante como en el caso de punto fijo.
- Error Absoluto: es la diferencia entre el valor representado y el valor a representar

Error absoluto y relativo

Error Absoluto máximo ≤ Resolución/2

Error Relativo = EA/Número a representar

Estándar IEEE 754

Simple precisión

Doble precisión

1	11	52	

Estándar IEEE 754

Mantisa: fraccionaria normalizada, con la coma después del primer bit que es siempre uno (1,) en M y S.

Exponente: representado en exceso 2ⁿ⁻¹ - 1

Estándar IEEE 754

Bits en signo				
Bits en exponente				
Bits en fracción				
Total de bits				
Exponente en exceso				
Rango de exponente				
Rango de números				

Simple	Doble precisión
1	1
8	11
23	52
32	64
127	1023
-126 a +127	-1022 a +1023
2 ⁻¹²⁶ a ~2 ¹²⁸	2 ⁻¹⁰²² a ~2 ¹⁰²⁴

Ejemplo 1 en simple precisión

¿Qué valor representa el hexadecimal 3F800000?

0011 1111 1000 0000 0000 0000 0000 0000

01111111=127 en exceso 127 representa 0

$$+ 1,0 \times 2^{0} = 1$$

Ejemplo 2 en simple precisión

¿Qué valor representa el hexadecimal C0066666?

1100 0000 0000 0110 0110 0110 0110 0110

10000000=128 en exceso 127 representa 1

0000110011001100110=0,05

$$-1,05 \times 2^{1} = -2,1$$

Estándar IEEE 754

Casos especiales:

- E = 255/2047, M \neq 0 \Rightarrow NaN -Not a Number-
- E = 255/2047, M = $0 \Rightarrow$ Infinito
- E = 0, $M = 0 \Rightarrow Cero$
- E = 0, $M \neq 0 \Rightarrow Denormalizado$
 - ± 0,mantisa_s-p 2⁻¹²⁶
 - \pm 0,mantisa_d-p 2⁻¹⁰²²

Operaciones aritméticas en pf

Sumar y restar

- Comprobar valores cero.
- Ajuste de mantisas (ajuste de exponentes).
- Sumar o restar las mantisas.
- Normalizar el resultado.

Operaciones aritméticas... (2)

Multiplicar y dividir

- Comprobar valores cero.
- Sumar y restar exponentes.
- Multiplicar y dividir mantisas
 - tener en cuenta el signo
- Normalizar.
- Redondear.

Todos los resultados intermedios deben doblar su longitud al almacenarse

mayor información ...

- Punto flotante
 - Apunte 2 de Cátedra
 - PFI-PFO. Software en Descargas del sitio de cátedra
- Capítulo 8: Aritmética del computador (8.4., 8.5.)
 - Stallings, W., 5° Ed.

- Link de interés
 - http://babbage.cs.gc.edu/ieee-754/