AI Assignment – 4: (Udit Kumar – MT21148)

Steps to show my analysis:

1.Analysis of the data given roo_data.csv

This csv file, has first 14 columns as the numeric value and the rest 15 to 39 columns has type of object that means the categorical values.

2.The last column is suggested job roles:

It has 34 unique job roles, First of all in our file we separate the object columns in a new data frame called object_Columns, then I checked is there any null values in it.. found none..

- 3.seeing_Count function can see the count of various object of all columns of object_Columns.
- **4.**Then I pre-process the last column that is our suggested roles as there are 34 unique suggested job roles in 20,000 rows I have written a function from the scratch called "make_Reduction"

Which will reduced all 34 unique roles broadly in 7 roles,

If any job role has substring Administrator as it will convert into 0...Engineer in 3...and so on..

They are

[Administrator: 0, Ananlyst:1, Developer:2, Engineer: 3, Artitect:4, Manager:5, UX other jobs like testing, QA:6]

They are label as 0....6, total 7 multi classes.

- **4.**We use the label encoder() on rest object columns to make the values of different categories in number.
- **5**.Then we concatenate the numeric and object columns except the suggested role coumn in a data frame called by the name "final_Data"
- **6.**we then train test split the data in the ration 70-30 ,training data 70% and testing data 30%.

// we can use select the best k feature

- **7.**Before making ANN model,we perform the feature scaling by using the Standard scaler ()
- **8.**First Approach: For making the Ann we have used the **keras library** in which we have used the **Sequential()** model for making ANN.

9.We built the first Dense layer of 38 neurons ,then the first hidden layer has 30 neurons, and a last dense layer has only 1 neuron which will predict the lable.

We have use adam as our optimizer and loss function as "categorical_crossentropy".

- **10.**We fit the model on X train and Y train and get the accuracy of 19.73%.
- **11**.Accuracy score with 70-30 training testing split we get an accuracy of 18.53 % on the test set.
- **12.**Second approach is with the use of MLP classifier provided by the sklearn. neural network,

We have trained our model with 70-30 training-testing split on **MLP classifier**,

We again get the accuracy of 18.5 % on the test set.

- 13.I have also try the oversampling technique with **SMOTE**() but the accuracy get dropped by 4%, so I drop the idea..
- 14. We have also trained our Ann with train test split 80-20, and 90-10, I have found that the accuracy of the

model on test set get **increase by 1 percent** with these splits ratio as compared to 70-30 train-test split.