Introduction to Riemannian Optimization

Taskynov Anuar

Moscow State University taskynov.anuar@mail.ru

April 5, 2019

Overview

- Manifolds
 - Definition
 - Tangent space
 - Riemannian Manifold
- Riemannian Optimization
 - Riemannian gradient
 - Geodesic, exponential map
 - Retraction
 - Vector transport
- Conclusion

Definition (manifold)

Manifold \mathcal{M} is a set which looks like Euclidean space around every point.

Figure: Manifold ${\mathcal M}$ and coordinate system ξ . E_2 is a two-dimensional Euclidean space

Definition (manifold)

Formally \mathcal{M} is a *d*-dimensional manifold if

- $\forall x \in \mathcal{M}$, \exists bijective function $\phi \colon \mathcal{U} \to \mathbb{R}^d$, where \mathcal{U} neighborhood at the point $x \in \mathcal{M}$;
- for neighborhoods \mathcal{U} and \mathcal{V} ($\mathcal{U} \cap \mathcal{V} \neq \emptyset$) the change of coordinates is smooth: $\phi \circ \psi^{-1}, \psi \circ \phi^{-1} \in C^{\infty}(\mathbb{R}^d)$;

- $\phi(x) \in \mathbb{R}^d$ is called the local (intrinsic) coordinates of point x.
- If $\mathcal{M} \subset \mathbb{R}^n$, then the point x has global (extrinsic) coordinates $(\in \mathbb{R}^n)$.

Example:

• Circle, $S^1 = \{x = (x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1\}.$ $x \in \mathbb{R}^2$ — extrinsic coordinates. $t \in [0, 2\pi) \in \mathbb{R}$ — intrinsic coordinates. Mapping between coordinates: $\phi^{-1}(t) = (\cos t, \sin t)$.

Examples (subsets of finite Euclidean space):

- ullet \mathbb{R}^d .
- (Real projective) \mathbb{RP}^{n-1} is the set of all directions in \mathbb{R}^n .
- (Grassman) Grass(p, n) is the set, which parametrizes all p-dimensional linear subspaces of the n-dimensional vector space \mathbb{R}^n .
- (Stiefel) $St(p, n) = \{X \in \mathbb{R}^{n \times p} : X^T X = I_p\}.$
- r-rank matrices $\mathcal{M}_r = \{X \in \mathbb{R}^{m \times p} : \operatorname{rank}(X) = r\}.$

Example (probability distribution):

• Gaussian distributions $p(x|\mu, \sigma^2) = \mathcal{N}(x|\mu, \sigma^2)$, $\phi(p) = (\mu, \sigma)$.

Tangent space

Definition (tangent space for $\mathcal{M} \subset \mathbb{R}^n$)

Let $\gamma:(-a,a)\to\mathcal{M}$ is a smooth curve on a manifold, such that $\gamma(0)=x$. The tangent space at $x\in\mathcal{M}$, noted $T_x\mathcal{M}$, is the linear subspace $(\dim(T_x\mathcal{M})=\dim(\mathcal{M}))$ of \mathbb{R}^n defined by:

$$T_{\times}\mathcal{M} = \Big\{ \xi \in \mathbb{R}^n : \xi = \gamma'(0) \Big\}.$$

Figure: Tangent space $T_x \mathcal{M}$.

Tangent space to a sphere S^{n-1}

Consider a sphere manifold $S^{n-1} = \left\{ x \in \mathbb{R}^n : x_1^2 + x_2^2 + \dots + x_n^2 = 1 \right\}.$

What is $T_{x_0}S^{n-1}$?

Let x(t) is a curve on a sphere, $x(0) = x_0$. Since $x(t) \in S^{n-1}$ for all t, we have:

$$x(t)^T x(t) = 1.$$

Differentiating this equation with respect to t = 0:

$$x'(0)^T x_0 + x_0^T x'(0) = 0.$$

So we have:

$$T_{x_0}S^{n-1} = \{z \in \mathbb{R}^n : z^Tx_0 = 0\}.$$

Basis of the tangent space

Let $\phi: \mathcal{U} \to \mathbb{R}^d$, where \mathcal{U} is a neighborhood at the point $x \in \mathcal{M} \subset \mathbb{R}^n$; $\hat{x} = \phi(x)$ — local coordinates.

Basis vectors E_i defined as:

$$E_i = \lim_{\tau \to 0} \frac{\phi^{-1}(\hat{x} + \tau e_i) - \phi^{-1}(\hat{x})}{\tau} = \frac{\partial \phi^{-1}(\hat{x})}{\partial \hat{x}_i},$$

where $\frac{\partial \phi^{-1}(\hat{x})}{\partial \hat{x}_i} \in \mathbb{R}^n$ is a i^{th} column of Jacobi matrix for ϕ^{-1} at the point \hat{x} . Example for sphere, S^2 :

$$\begin{pmatrix} \hat{x}_1 \\ \hat{x}_2 \end{pmatrix} \xrightarrow{\phi^{-1}} \begin{pmatrix} \cos \hat{x}_1 \\ \sin \hat{x}_1 \cos \hat{x}_2 \\ \sin \hat{x}_1 \sin \hat{x}_2 \end{pmatrix}$$

Jacobi matrix:

$$\frac{\partial \phi^{-1}}{\partial \hat{x}} = \begin{pmatrix} -\sin \hat{x_1} & 0\\ \cos \hat{x}_1 \cos \hat{x}_2 & -\sin \hat{x}_1 \sin \hat{x}_2\\ \cos \hat{x}_1 \sin \hat{x}_2 & \sin \hat{x}_1 \cos \hat{x}_2 \end{pmatrix}$$

Tangent Bundle

Definition (tangent bundle)

The tangent bundle, noted TM, is the set

$$T\mathcal{M} = \bigcup_{x \in \mathcal{M}} \{(x, \xi) : \xi \in T_x \mathcal{M}\}$$

Example (circle):

$$\mathcal{T}S^1 = \cup_{x \in S^1} \Big\{ (x, \xi) : \xi \in \mathcal{T}_x S^1 \simeq \mathbb{R} \Big\} \simeq S^1 \times \mathbb{R}.$$

Vector field on a manifold

Definition (vector field on \mathcal{M})

A vector field $\mathbf{X}: \mathcal{M} \to T\mathcal{M}$,

 $\mathbf{X}(x) = \xi, \ \xi \in T_x \mathcal{M}.$

Figure: Vector field on a sphere.

Riemannian manifold

Definition (riemannian manifold)

A manifold whose tangent spaces are endowed with a smoothly varying inner product $g_x(\cdot,\cdot) = \langle \cdot, \cdot \rangle_x$ is called a **Riemannian manifold**.

Smoothly varying can be understood in the following sense: for all vector fields $\mathbf{X}, \mathbf{Y} \in \mathcal{X}(\mathcal{M})$, the function $x \to g_x(\mathbf{X}_x, \mathbf{Y}_x)$ is a smooth function from \mathcal{M} to \mathbb{R} .

Inner product can be represented as:

$$g_{x}(\xi_{x},\eta_{x}) = \left\{ \xi_{x} = \sum_{i=1}^{d} (\hat{\xi}_{x})_{i} E_{i}, \eta_{x} = \sum_{i=1}^{d} (\hat{\eta}_{x})_{i} E_{i} \right\} = \hat{\xi}_{x}^{T} G_{x} \hat{\eta}_{x}, \quad (1)$$

where $G_x = \{\langle E_i, E_j \rangle\}_{i,j=1}^d \in \mathbb{R}^{d \times d}$ — symmetric, positive definite matrix, $\hat{\xi}_x, \hat{\eta}_x, \in \mathbb{R}^d$ is coordinate representation of tangent vectors.

Riemannian gradient

Let $f: \mathbb{R}^n \to \mathbb{R}$ — differetiable function, $x, \xi \in \mathbb{R}^n$. Usual directional derivative:

$$Df(x)[\xi] = \lim_{\tau \to 0} \frac{f(x + \tau \xi) - f(x)}{\tau}.$$

If $f: \mathcal{M} \to \mathbb{R}$, $x \in \mathcal{M}$, $\xi \in T_x \mathcal{M}$:

$$Df(x)[\xi] = \frac{df(\gamma(t))}{dt}\Big|_{t=0},$$

where γ is a differentiable curve on \mathcal{M} satisfies $\gamma(0) = x$, $\gamma'(0) = \xi$.

Definition (riemannian gradient)

Given a smooth scalar field $f: \mathcal{M} \to \mathbb{R}$ on a Riemannian manifold, **the gradient** of f at x, denoted by $\operatorname{grad} f(x)$, is defined as the unique element of $\mathcal{T}_x \mathcal{M}$ that satisfies:

$$\langle \operatorname{grad} f(x), \xi \rangle_{x} = Df(x)[\xi], \forall \xi \in T_{x}\mathcal{M}.$$

Riemannian gradient

Let $f: \mathcal{M} \to \mathbb{R}$ grad $f: \mathcal{M} \to T\mathcal{M}$ is a vector field on \mathcal{M} .

$$\frac{\mathrm{grad} f(x)}{\|\mathrm{grad} f(x)\|_{\mathcal{X}}} = \underset{\xi \in \mathcal{T}_{x} \mathcal{M}, \|\xi\|_{x} = 1}{\mathrm{arg} \max} \, Df(x)[\xi].$$

Figure: Function $f(x) = (x_1 - 1)^2 + x_2^2$ on a circle S^1 .

Riemannian Gradient

Coordinate expression: $\hat{\operatorname{grad}}f(x) = G_x^{-1}\operatorname{Grad}\hat{f}(\hat{x})$, where $\operatorname{Grad}\hat{f}(\hat{x})$ is a vector of partial derivatives: $\operatorname{Grad}\hat{f}(\hat{x}) = \left(\frac{\partial \hat{f}}{\partial \hat{x}_1} \dots \frac{\partial \hat{f}}{\partial \hat{x}_d}\right)^T$. We need to inverse G_x .

Example:

Manifold:
$$S^2 = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 + x_3^2 = 1\}$$
.
Function ϕ^{-1} : $\phi^{-1}(\hat{x}) = (\cos \hat{x}_1, \sin \hat{x}_1 \cos \hat{x}_2, \sin \hat{x}_1 \sin \hat{x}_2) = x$.
Let $f(x) : \mathbb{R}^3 \to \mathbb{R}$, $f(x) = (x_1 - 1)^2 + x_2^2 + x_3^2$, so $\hat{f}(\hat{x}) = f(\phi^{-1}(\hat{x}))$.
 $\operatorname{Grad} \hat{f}(\hat{x}) = \left(\frac{\partial \phi^{-1}}{\partial \hat{x}}\right)^T \frac{\partial f}{\partial \phi^{-1}} = \left(\frac{\partial \phi^{-1}}{\partial \hat{x}}\right)^T \nabla_x f(x)$.
Matrix $G_x = \left(\frac{\partial \phi^{-1}(\hat{x})}{\partial \hat{x}}\right)^T \frac{\partial \phi^{-1}(\hat{x})}{\partial \hat{x}} = \begin{pmatrix} \sin \hat{x}_1^2 & 0 \\ 0 & 1 \end{pmatrix}$.
Riemannian gradient: $\operatorname{grad} f(x) = G_x^{-1} \operatorname{Grad} \hat{f}(\hat{x})$.

4D > 4@ > 4 = > 4 = > 900

Riemannian Gradient

Riemannian gradient for $f: \mathcal{M} \to \mathbb{R}$, where $\mathcal{M} \subset \mathbb{R}^n$:

$$\operatorname{grad} f(x) = \operatorname{Proj}_{T_x \mathcal{M}} \nabla \overline{f}(x),$$

where $\overline{f}: \mathbb{R}^n \to \mathbb{R}$ such that f is a restriction of \overline{f} . Only calculate projection to the tangent space.

Example:

Manifold:
$$S^2 = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 + x_3^2 = 1\}.$$

Tangent space:
$$T_x S^2 = \{z \in \mathbb{R}^3 : z^T x = 0\}.$$

Projection to
$$T_x S^2$$
: $Proj_{T_x S^2}(y) = (I - xx^T)y$

Let
$$\overline{f}(x): \mathbb{R}^3 \to \mathbb{R}$$
, $\overline{f}(x) = (x_1 - 1)^2 + x_2^2 + x_3^2$, $f: S^2 \to \mathbb{R}$ is a restriction of \overline{f} .

Riemannian gradient: grad
$$f(x) = (I - xx^T)\nabla_x \overline{f}$$

Riemannian optimization

- Optimization problem: $f(x) \to \min_{x \in \mathcal{M}}$, where \mathcal{M} is a riemannian manifold.
- How can you optimize this function?
- Usual gradient descent step: $x_{k+1} = x_k \alpha_k \nabla f(x_k)$.
- For manifolds:
 - if you have intrinsic parametrization:
 \$\phi_1 = \hat{\phi}_1 = \hat{\text{out}} G^{-1} \text{Grad} \hat{\text{f}}(\text{f})\$
 - $\hat{x}_{k+1} = \hat{x}_k \alpha_k G_{x_k}^{-1} \operatorname{Grad} \hat{f}(\hat{x}).$
 - if you have extrinsic parametrization:

$$x_{k+1} = x_k - \alpha_k \operatorname{grad} f(x).$$

Figure: Mapping from tangent space $T_x \mathcal{M}$ to \mathcal{M} .

Geodesic

• The length of a curve $\gamma: [0,1] \to \mathcal{M}$:

$$L(\gamma) = \int_0^1 \langle \gamma'(t), \gamma'(t) \rangle_{\gamma(t)} dt.$$

• Distance between two points $x, y \in \mathcal{M}$ on a Riemannian manifold:

$$\mathsf{dist}(x,y) := \inf_{\gamma: \gamma(0) = x, \gamma(1) = y} \mathsf{L}(\gamma)$$

Figure: Geodesic distance

Definition (geodesic)

Geodesic is a curve γ with minimal distance.

Exponential map

Definition (exponential map)

Let $\mathcal{M} \subset \mathbb{R}^n$ — riemannian manifold and $x \in \mathcal{M}$. For every $\xi \in T_x \mathcal{M}$, there exists an open interval (-a,a) and a unique geodesic $\gamma(t;x,\xi):(-a,a) \to \mathcal{M}$ such that $\gamma(0)=x$ and $\gamma'(0)=\xi$. The mapping

$$\mathsf{Exp}_{\mathsf{x}}: \mathcal{T}_{\mathsf{x}}\mathcal{M} \to \mathcal{M}: \xi \to \mathsf{Exp}_{\mathsf{x}}(\xi) = \gamma(1; \mathsf{x}, \xi)$$

is called **exponential map** at x. In particular, $\gamma(0; x, \xi) = x, \forall x \in \mathcal{M}$.

Optimization step: $x_{k+1} = \operatorname{Exp}_{x_k}(-\alpha_k \operatorname{grad} f(x_k))$. Hard to compute! Because you should solve DE.

Retraction

Figure: Retraction is an approximation of exponential map.

Retraction

Exponential maps can be expensive to compute.

Definition (Retraction)

A **retraction** on a manifold \mathcal{M} is a smooth mapping $R: \mathcal{TM} \to \mathcal{M}$, $\mathcal{M} \subset \mathbb{R}^n$ with the following properties. Let R_x denote the restriction of R to $\mathcal{T}_x \mathcal{M}$.

- $\bullet \ R_{\times}(0) = x, \ 0 \in \mathcal{T}_{\times}\mathcal{M}.$
- $\bullet \left. \frac{dR_x(t\xi)}{dt} \right|_{t=0} = \xi, \ \forall \xi \in T_x \mathcal{M}.$

We may do the following step: $x_{k+1} = R_{x_k}(\alpha_k \eta_k)$, $\eta_k \in T_{x_k} \mathcal{M}$. If $\eta_k = -\operatorname{grad} f(x_k)$, then this step is one GD step.

Retraction on S^{n-1}

Retraction $R_x(\xi) = \frac{x+\xi}{\|x+\xi\|}$, $\xi \in T_x S^{n-1}$, $x \in S^{n-1}$. Let's check it!

$$\bullet \ \left(\frac{x+\xi}{\|x+\xi\|}\right)^T \frac{x+\xi}{\|x+\xi\|} = 1, \text{ so } R_x(\xi) \in S^{n-1}, \ \forall (x,\xi) \in TS^{n-1}.$$

• $R_x(0) = \frac{x}{\|x\|} = x$, because $x^T x = 1$.

•

$$\frac{dR_{x}(t\xi)}{dt}\Big|_{t=0} = \left(\frac{x+t\xi}{\|x+t\xi\|}\right)'\Big|_{t=0} = \frac{\xi}{\|x\|} - \frac{x^{T}\xi x}{\|x\|^{3}} = \xi.$$
 (2)

Retractions on St(p, n)

Retractions on St(p, n):

- $R_X(\xi) = \operatorname{Proj}_{\operatorname{St}(p,n)}(X + \xi).$
- $R_X(\xi) = (X + \xi)(I_p + \xi^T \xi)^{-1/2}$.
- $R_X(\xi) = QR(X + \xi)$, where $QR(\cdot)$ return orthogonal matrix from QR decomposition.
- $R_X(\xi) = \text{Cayley}\Big(-1/2\big(\xi X^T X\xi^T\big)\Big)X$, where $\text{Cayley}(A) = (I+A)^{-1}(I-A), \ A \in \mathbb{R}^{n\times n}$ skew-symmetric matrix.

Gradient Descent with Momentum

Optimization step on \mathbb{R}^n :

$$\begin{cases} d_k = \beta d_{k-1} + \alpha_k \nabla f(x_k); \\ x_{k+1} = x_k - d_k. \end{cases}$$

Back to the manifold \mathcal{M} :

$$\begin{cases} d_k = \underbrace{\beta d_{k-1}}_{\in T_{x_{k-1}} \mathcal{M}} + \underbrace{\alpha_k \operatorname{grad} f(x_k)}_{\in T_{x_k} \mathcal{M}}; \\ x_{k+1} = R_{x_k} (-d_k); \end{cases}$$

Vector Transport

Definition (vector transport)

A **vector transport** on a manifold M is a smooth mapping:

Transp: $\mathcal{TM} \times \mathcal{TM} \to \mathcal{TM}$, satisfying the following properties for all $x \in \mathcal{M}$:

- $\exists R_{\times}$, called the retraction associated with Transp: Transp_{η}(ξ) $\in \mathcal{T}_{R_{\times}(\eta)}\mathcal{M}$.
- $Transp_0(\xi) = \xi$, $\forall \xi \in \mathcal{T}_x \mathcal{M}$.
- Transp $_{\eta}(a\xi + b\zeta) = a$ Transp $_{\eta}(\xi) + b$ Transp $_{\eta}(\zeta)$.

Figure: Vector transport

Vector Transport

Typical vector transport:

$$\mathsf{Transp}_{\eta}(\xi) = rac{d}{dt} R_{\mathsf{X}}(\eta + t\xi) \Big|_{t=0}.$$

Example (sphere S^{n-1}):

- Retraction: $R_x(\xi) = \frac{x+\xi}{\|x+\xi\|}$.
- Vector transport:

Transp_{$$\eta$$} $(\xi) = \frac{1}{x + \eta} \Big(I - \frac{1}{\|x + \eta\|^2} (x + \eta) (x + \eta)^T \Big) \xi.$

Another notation of vector transport: Transp $_{T_{x \to R_{x}(\eta)}\mathcal{M}}(\xi)$

Riemannian GD with Momentum

Optimization step:

$$\begin{cases} d_k = \mathsf{Transp}_{T_{\mathsf{x}_{k-1} \to \mathsf{x}_k} \mathcal{M}}(\beta d_{k-1}) + \alpha_k \mathsf{grad} f(\mathsf{x}_k); \\ \mathsf{x}_{k+1} = R_{\mathsf{x}\,k}(-d_k) \end{cases}$$

Conclusion

What do you need to optimize f(x) on riemannian manifold \mathcal{M} ?

- if you have intrinsic parametrization:
 - $\hat{\operatorname{grad}} f(x) = G_{\hat{x}}^{-1} \nabla_{\hat{x}} f(\hat{x}).$
- if you have extrinsic parametrization:
 - Define the tangent space: $T_x \mathcal{M}$;
 - Riemannian gradient: $\operatorname{grad} f(x) = \operatorname{Proj}_{T_x \mathcal{M}} \nabla \overline{f}(x)$, for $\mathcal{M} \subset \mathbb{R}^n$;
 - Retraction operation: $R_x(\xi), \xi \in T_x \mathcal{M}$.
 - Vector transport operation: Transp $_{T_{x \to R_{x}(p)} \mathcal{M}}(\xi)$.