

Linear Regression

BUCIERUSS Done predictive

Dr. Rathachai Chawuthai

Department of Computer Engineering Faculty of Engineering King Mongkut's Institute of Technology Ladkrabang

Agenda

- Linear Regression
- Evaluation Methods
- Feature Extraction
- Cross Validation
- Feature Scaling

Data Analytics

- Four types of analytics capability (Gartner, 2014)
- (image) https://www.healthcatalyst.com/closed-loop-analytics-method-healthcare-data-insights

Machine Learning

द्र ४ माणात्र्यणप्रमाभः

Supervised Learning

Develop predictive model based on both input and output data

Unsupervised Learning

Develop predictive model based on both input and output data

oncantinuousnumber

9) MUNUMPIP

Regression

- Linear Regression
- Polynomial Regression

Classification

- Decision Tree
- Logistic Regression
- Neural Network
- etc.

Clustering

- K-Means
- DB-SCAN
- etc.

Linear Regression

Your Salary?

GPA	Salary
1.07	15,400
2.32	20,500
2.75	23,300
3.02	28,200
3.25	27,900
3.63	32,100
3.98	30,200

(assumed data)

Prediction!

Ref:

Prediction!

Ref:

Linear Equation

Simple Linear Regression

$$\widehat{Y}_i = b_0 + b_1 X_i$$

Ref:

Simple Linear Regression

$$\hat{Y}_i = b_0 + b_1 X_i$$

Sal	la	ry
-----	----	----

15,400

20,500

23,300

26,200

27,900

32,100

30,200

GPA

1.07

2.32

2.75

3.02

3.25

3.63

3.98

Your Salary?

GPA	U. Ranking	Salary
1.07	6	15,400
2.32	7	20,500
2.75	8	23,300
3.02	9	28,200
3.25	7	27,900
3.63	10	32,100
3.98	5	30,200

(assumed data)

Multiple Linear Regression

$$\hat{Y}_i = b_0 + b_1 X_{1i} + b_2 X_{2i} + \cdots$$

Ref:

Multiple Linear Regression

$$\hat{Y}_i = b_0 + b_1 X_{1i} + b_2 X_{2i} + \cdots$$

Salary		
15,400		
20,500		
23,300		
28,200		
27,900		
32,100		
30,200		

GPA
1.07
2.32
2.75
3.02
3.25
3.63
3.98

U. Ranking		
6		
7		
8		
9		
7		
10		
5		

Ref:

Coefficients

$$\hat{Y}_i = 4006 + 5655 * GPA + 698 * URank$$

Python

- 1. from sklearn import linear_model
- 2. X = df["GPA", "Urank"]
- 3. y = df["Salary"]
- 4. lm = linear model.LinearRegression()
- 5. lm.fit (X,y)
- 6. lm.coef_ array([406, 565, 698])

SKNINGNAICHPIONIPAM

Evaluation Methods

Residual

Root Mean Squared Error (RMSE)

$$\hat{Y}_i = ? + ??* GPA + ???* URank$$

GPA	U. Ranking	Actual Salary
1.07	6	15,400
2.32	7	20,500
2.75	8	23,300
3.02	9	28,200
3.25	7	27,900
3.63	10	32,100
3.98	5	30,200

$$\hat{Y}_i = 4006 + 5655 * GPA + 698 * URank$$

GPA	U. Ranking	Actual Salary
1.07	6	15,400
2.32	7	20,500
2.75	8	23,300
3.02	9	28,200
3.25	7	27,900
3.63	10	32,100
3.98	5	30,200

$$\hat{Y}_i = 4006 + 5655 * GPA + 698 * URank$$

GPA	U. Ranking	Actual Salary	Predicted Salary
1.07	6	15,400	16,350
2.32	7	20,500	23,100
2.75	8	23,300	25,750
3.02	9	28,200	27,600
3.25	7	27,900	27,750
3.63	10	32,100	31,150
3.98	5	30,200	30,400

$\hat{Y}_i = 4006 + 5655 * GPA + 698 * URank$

GPA	U. Ranking	Actual Salary	Predicted Salary	$\hat{y}_i - y_i$	$(\widehat{y}_i - y_i)^2$
1.07	6	15,400	16,350	1,155.15	1,334,371.52
2.32	7	20,500	23,100	-1,511.60	2,284,934.56
2.75	8	23,300	25,750	-1,841.25	3,390,201.56
3.02	9	28,200	27,600	833.90	695,389.21
3.25	7	27,900	27,750	629.25	395,955.56
3.63	10	32,100	31,150	586.35	343,806.32
3.98	5	30,200	30,400	197.10	38,848.41
SUM			8,483,507.15		
MEAN			1,211,929.59		
				RMSE	1,100.88

Other Evaluation Methods

Mean squared error	$\text{MSE} = \frac{1}{n} \sum_{t=1}^n e_t^2$
Root mean squared error	$\mathrm{RMSE} = \sqrt{\frac{1}{n} \sum_{t=1}^{n} e_t^2}$
Mean absolute error	$ ext{MAE} = rac{1}{n} \sum_{t=1}^n e_t $
Mean absolute percentage error	$ ext{MAPE} = rac{100\%}{n} \sum_{t=1}^n \left rac{e_t}{y_t} ight $

Ref:

Python

- from sklearn import linear_model
- from sklearn.metrics import mean_squared_error
- from math import sqrt
- X = df["GPA", "Urank"]
- y = df["Salary"]
- lm = linear model.LinearRegression()
- lm.fit (X,y)
- y_predicted = lm.predict(X)
- rmse = sqrt(mean_squared_error(y, y_predicted))

Solve by Matrix

27

Solve by

Learning based on Gradient Descent

$$y = ax + c$$

$$\mathbf{b} = \mathbf{a} - \gamma \ \nabla \ \mathbf{f(a)} \quad \mathbf{b} = \mathbf{a} - \gamma \ \frac{\partial}{\partial \mathbf{a}} \ \mathbf{f(a)} \quad \mathbf{b} = \mathbf{a} - \gamma \ \frac{d}{d\mathbf{a}} \ \mathbf{f(a)}$$

$$y = \theta_0 + \theta_1 x_1$$

repeat until convergence: {

$$egin{align} heta_0 &:= heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) \ heta_1 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m ((h_ heta(x_i) - y_i) x_i) \ heta_1 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i) \ heta_1 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i) \ heta_1 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i) \ heta_1 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i) \ heta_1 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i) \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i) \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i) \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i) \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i) \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i) \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i) \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_2 &:= heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_2 &:= heta_1 - a \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_2 &:= heta_1 - a \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_2 &:= heta_1 - a \sum_{i=1}^m (h_ heta(x_i) - y_i) x_i \ heta_2 &:= heta_1 - a \sum_{i=1}^m (h_ heta(x_$$

2्रममुद्रम्यूर्लं एं मर्गण १९२२ प्रमुख्यास

Feature Extraction

Boston Housing

CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV	CAT. MEDV
0.00632	18	2.31	0	0.538	6.575	65.2	4.09	1	296	15.3	396.9	4.98	24	0
0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.9	9.14	21.6	0
0.02729	0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7	1
0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4	.1
0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.9	5.33	36.2	-1
0.02985	0	2.18	0	0.458	6.43	58.7	6.0622	3	222	18.7	394.12	5.21	28.7	0
0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.6	12.43	22.9	0
0.14455	12.5	7.87	0	0.524	6.172	96.1	5.9505	5	311	15.2	396.9	19.15	27.1	0
0.21124	12.5	7.87	0	0.524	5.631	100	6.0821	5	311	15.2	386.63	29.93	16.5	0
0.17004	12.5	7.87	0	0.524	6.004	85.9	6.5921	5	311	15.2	386.71	17.1	18.9	0
0.22489	12.5	7.87	0	0.524	6.377	94.3	6.3467	5	311	15.2	392.52	20.45	15	0
0.11747	12.5	7.87	0	0.524	6.009	82.9	6.2267	5	311	15.2	396.9	13.27	18.9	0
0.09378	12.5	7.87	0	0.524	5.889	39	5.4509	5	311	15.2	390.5	15.71	21.7	0
0.62976	0	8.14	0	0.538	5.949	61.8	4.7075	4	307	21	396.9	8.26	20.4	0
0.63796	0	8.14	0	0.538	6.096	84.5	4.4619	4	307	21	380.02	10.26	18.2	0

Boston Housing

CRIM	Per capita crime rate by town			
ZN	Proportion of residential land zoned for lots over 25,000 sq.ft.			
INDUS	Proportion of non-retail business acres per town			
CHAS	Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)			
NOX	Nitric oxides concentration (parts per 10 million)			
RM	Average number of rooms per dwelling			
AGE	Proportion of owner-occupied units built prior to 1940			
DIS	Weighted distances to five Boston employment centers			
RAD	Index of accessibility to radial highways			
TAX	Full-value property-tax rate per \$10,000			
PTRATIO	Pupil-teacher ratio by town			
В	1000(Bk - 0.63)^2 where Bk is the proportion of African-Americans by			
	town			
LSTAT	% Lower status of the population			
MEDV	Median value of owner-occupied homes in \$1000's			
CAT.MEDV	Binary variable that indicates based on the MEDV variable. If MEDV > 30, CAT.MEDV = 1			

Correlations

linear ธรรณร์ที่เป็นเราเทรร

Content

Correlations

Cross Validation

Rotation Estimation

How accurately a predictive model will perform in practice?

- Cross-validation is a technique to evaluate predictive models by partitioning the original sample into a training set to train the model, and a test set to evaluate it.
- In k-fold cross-validation, the original sample is randomly partitioned into k equal size subsamples. Of the k subsamples, a single subsample is retained as the validation data for testing the model, and the remaining k-1 subsamples are used as training data. The cross-validation process is then repeated k times (the folds), with each of the k subsamples used exactly once as the validation data. The k results from the folds can then be averaged (or otherwise combined) to produce a single estimation. The advantage of this method is that all observations are used for both training and validation, and each observation is used for validation exactly once.

Cross-Validation

K-Fold Cross-Validation

Python Code

- 1. from sklearn import neighbors, datasets, preprocessing
- 2. from sklearn.model selection import train test split
- 3. iris = datasets.load iris()
- 4. X, y = iris.data[:, :2], iris.target
- 5. X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33)
- 6. lm = linear model.LinearRegression()

- 8. y predicted = lm.predict(X test)
- 9. rmse = sqrt(mean_squared_error(y_test, y_predicted))

Feature Scaling

Note Properties for the state of the sta

Feature Scaling

Feature scaling is a method used to standardize the range of independent variables or features of data. In data processing, it is also known as data normalization and is generally performed during the data preprocessing step.

Rescaling

• The simplest method is rescaling the range of features to scale the range in [0, 1] or [-1, 1]. Selecting the target range depends on the nature of the data. The general formula is given as:

WIMM WOX YOUM (N)

$$x' = rac{x - \min(x)}{\max(x) - \min(x)}$$

• where x is an original value x' is the normalized value. For example, suppose that we have the students' weight data, and the students' weights span . To rescale this data, we first subtract 160 from each student's weight and divide the result by 40 (the difference between the maximum and minimum weights).

Mean Normalization

$$x' = \frac{x - \text{mean}(x)}{\text{max}(x) - \text{min}(x)}$$

• where x is an original value, x' is the normalized value.

Standardization

• In machine learning, we can handle various types of data, e.g. audio signals and pixel values for image data, and this data can include multiple dimensions. Feature standardization makes the values of each feature in the data have zero-mean (when subtracting the mean in the numerator) and unit-variance.

$$x'=rac{x-x}{\sigma}$$

• Where x is the original feature vector, x-bar is the mean of that feature vector, and sigma is its standard deviation.

Scaling to unit length

 Another option that is widely used in machine-learning is to scale the components of a feature vector such that the complete vector has length one. This usually means dividing each component by the Euclidean length of the vector:

$$x'=rac{x}{||x||}$$

• In some applications (e.g. Histogram features) it can be more practical to use the L1 norm (i.e. Manhattan Distance, City-Block Length or Taxicab Geometry) of the feature vector. This is especially important if in the following learning steps the Scalar Metric is used as a distance measure.

Box Plot

Python Code

- 1. from sklearn import neighbors, datasets, preprocessing
- 2. from sklearn.model_selection import train_test_split
- 3. from sklearn.metrics import accuracy score
- 4. iris = datasets.load iris()
- 5. X, y = iris.data[:, :2], iris.target
- 6. X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33)
- 7. scaler = preprocessing.StandardScaler().fit(**x_train**)
- 8. X_train = scaler.transform(X_train)
- 9. X_test = scaler.transform(X_test)
- 10. # Do Prediction

Data is a precious thing and will last longer than the systems themselves.

99

Tim Berners-Lee